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This report describes the implementation of the basic modified Cambridge
(Cam) clay material model for small strains in the open-source multi-field
software OpenGeoSys. For this, the set of constitutive equations is outlined
and summarized. For the sake of simplicity, the elastic material parameters
are kept constant. Therefore, the model is called basic modified Cam clay
model. An implicit numerical solution scheme is presented with additional
options of refinement and stabilization. Based on the interface MFront, the
implementation is outlined briefly. Then, numerical studies are presented
for a single integration point using MFront mtest, and eventually for meshes
consisting of one or multiple finite elements using OpenGeoSys.

1 Introduction

The Cambridge (Cam) clay model describes the stress-dependent deformation behaviour
of cohesive soils. Thereby, effects like

1. elasto-plastic deformation,

2. irreversible (plastic) pore compaction,

3. hardening and softening,

4. consolidation,

5. different loading and unloading stiffness

can be considered. Typical applications for the Cam clay model are the calculation of
soil strata, for example in geomechanical simulations. The goal of this technical report
is a consistent and clear presentation of the basic modified Cam clay model ready for
implementation and practical use in continuum mechanical simulations using FEM. Here,
the material model interface MFront is used. For the sake of compactness, a symbolic
tensor notation is used where the number of underscores indicates the order of the tensor
object.
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2 Constitutive equations

2.1 Preliminaries

In the small-strain setting there is an additive split of the linear strain tensor reading

ε = εe + εp . (1)

The generalized Hooke’s law relates elastic strains with stresses as

σ = D ·· εe . (2)

Splitting the stress tensor1 with respect to deviatoric and volumetric parts yields

σ = σD +
1

3
I1(σ) I . (3)

Therewith, the von-Mises stress and the hydrostatic pressure is defined as

q :=
√

3
2
σD ·· σD , p := −1

3
I1(σ) . (4)

Consequently, positive values of p represent a pressure whereas negative values represent
hydrostatic tension, as expected. With this, the stress tensor split reads σ = σD − pI.
Later the following derivatives will be required:

∂q

∂σ
=

3

2

σD

q
,

∂p

∂σ
= −1

3
I . (5)

Dealing with porous media there is a kinematic relation between porosity and volumetric
strain. Let the total volume of an REV be divided into a pore volume and the solid
volume:

V = VS + VP . (6)

Now, the porosity is defined as the pore volume fraction, i. e. φ = VP/V . Evaluating the
mass balance equation of the porous solid yields the porosity evolution in the form

φ̇− φ div(u̇) = tr(ε̇) . (7)

Exploiting div(u̇) ≡ tr(ε̇) and separating the variables, this differential equation can be
solved in a straightforward manner (cf. App.). If the elastic volume changes are small
compared to the plastic ones, the porosity (evolution) can be calculated from εVp only.
Instead of the porosity φ, the pore number e = VP/VS can equally be used with the
relations

e =
φ

1− φ
with 1 + e = (1− φ) 1 . (8)

1In soil mechanics, this would be the effective stress tensor. As the context is clear here, we refrain from
writing σ′. Note also that a mechanical sign convention is used in contrast to the soil mechanical
concepts.
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2.2 System of equations

The following set of equations fully describes the basic modified Cam clay model. Elas-
ticity is

σ = D ··
(
ε− εp

)
. (9)

Then, the modified Cam clay yield function with the parameters M and pc(e) is given
by

f := q2 +Mp(p− pc) ≤ 0 . (10)

An associated flow rule (normality rule) is used to obtain the plastic flow as2

ε̇
p

= Λ̇p n with n =
m

‖m‖
, m =

∂f

∂σ
. (11)

where Λ̇p denotes the plastic multiplier such that dΛp is the plastic increment and n
gives the direction of the plastic flow. The plastic volume change rate is obtained from

ε̇Vp = tr(ε̇
p
) = Λ̇p tr(n) . (12)

The so-called pre-consolidation pressure pc represents the yield stress under isotropic
compression and evolves as

ṗc = ε̇Vp ϑ(e) pc with pc
∣∣
t=0

= pc0 . (13)

This way, the pre-consolidation pressure increases in case of plastic compaction, i. e.
ε̇Vp < 0. Moreover, the pre-consolidation pressure remains constant during purely elastic
loading. Furthermore, the parameter ϑ depends on the pore number e or the porosity
φ, respectively:

ϑ(e) =
1 + e

λ− κ
(8)
=

1

(λ− κ)(1− φ)
= ϑ(φ) , (14)

where the material constants λ, κ represent the slope of the virgin normal consolidation
line and the normal swelling line, respectively (with λ > κ), in a semi-logarithmic (1 +
e)− ln p plot. This gives

ṗc = −ε̇Vp
(

1 + e

λ− κ

)
pc . (15)

With the porosity evolution given by formula (7), the system of constitutive equations
for the modified Cam clay model is closed. This way, all the basic effects 1. − 5. are
captured.

In order to refine effect 5., namely load-path dependent elastic stiffness, an evolution
equation for the hydrostatic pressure and the elastic volumetric strain, respectively, has
to be added [6]:

ṗ = −ε̇Ve
(

1 + e

κ

)
p . (16)

2Note that we deviate here from the classical form by means of normalizing the yield function gradient
in stress space. This was done in an effort to maintain consistency in the units, as the MCC yield
function has dimensions of stress squared in contrast to the usual units of stress.
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As a consequence, the compression modulus becomes load-path-dependent, too. Then,
care must be taken that the constitutive equations are still thermodynamically consistent
[5]. I also seems counter-intuitive that the bulk modulus should increase with the pore
number. For these reasons and for the sake of simplicity, linear elasticity is used here.
This means instead of (16) holds

ṗ = −ε̇Ve K , (17)

which is automatically fulfilled applying linear elasticity (9) with a constant bulk mod-
ulus K.

3 Numerical solution

3.1 Total implicit solution scheme

For a time integration, the total values at the next instant of time are calculated from
the current values and the increments, i. e.

εe := k+1εe = kεe + θ∆εe , (18a)

Λp := k+1Λp = kΛp + θ∆Λp , (18b)

pc := k+1pc = kpc + θ∆pc , (18c)

φ := k+1φ = kφ+ θ∆φ , (18d)

The discretized incremental evolution equation now read

∆εp = ∆Λp n , (19a)

∆εVp = ∆Λp tr(n) , (19b)

∆pc = −∆εVp ϑ(e) pc , (19c)

∆φ = (1− φ)∆εV . (19d)

With this, the discretized set of equations has the form

fεe = ∆εe +∆Λp n−∆ε = 0 , (20a)

fΛp = q2 +M2(p2 − p pc) = 0 , (20b)

fpc = ∆pc +∆εVp ϑ(φ) pc = 0 , (20c)

fφ = ∆φ− (1− φ)∆εV = 0 , (20d)

where the total values are the values at the next instant of time, meaning q = k+1q, p =
k+1p. For the partial derivatives the functional dependencies are required. They read

fεe = fεe(∆εe, ∆Λp, ∆pc) , (21a)

fΛp = fΛp(∆εe, ∆pc) , (21b)

fpc = fpc(∆εe, ∆Λp, ∆pc, ∆φ) , (21c)

fφ = fφ(∆φ) , (21d)
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where it was taken into account, that q(σ), p(σ) and σ(∆εe) and n(q, p, pc) and∆εVp (∆Λp, n).

For the solution of the incremental set of equations (20) with the Newton-Raphson
method the partial derivatives with respect to the increments of the unknowns are re-
quired. They read

∂fεe

∂∆εe
= I +∆Λp

∂n

∂∆εe
with I = ea ⊗ eb ⊗ ea ⊗ eb , (22a)

∂fεe

∂∆Λp
= n , (22b)

∂fεe

∂∆pc
= ∆Λp

∂n

∂∆pc
, (22c)

∂fΛp
∂∆εe

=
∂fΛp
∂σ

:
∂σ

∂εe
:
∂εe

∂∆εe
= m : D θ , (22d)

∂fΛp
∂∆pc

=
fΛp
∂pc

∂pc
∂∆pc

= −pM2 θ , (22e)

∂fpc
∂∆εe

=
∂fpc
∂n

:
∂n

∂∆εe
, (22f)

∂fpc
∂∆Λp

=
∂fpc
∂∆εVp

∂∆εVp
∂Λp

= ϑpc tr(n) , (22g)

∂fpc
∂∆pc

= 1 + ϑ∆εVp θ +
∂fpc
∂n

:
∂n

∂∆pc
, (22h)

∂fpc
∂∆φ

= ∆εVp pc
∂ϑ(φ)

∂φ

∂φ

∂∆φ
=

∆εVp pc θ

(λ− κ)(1− φ)2
,=

∆εVp pc ϑ θ

(1− φ)
, (22i)

∂fφ
∂∆φ

= 1 + θ∆εV . (22j)

All other partial derivatives vanish according to the (missing) dependencies (21). Using
the normalized flow direction n, the derivatives with respect to some variable X can be
obtained with the following rule:

∂n

∂X
=

1

m

{
∂m

∂X
− 1

2
n⊗ 1

m

∂m2

∂X

}
with m = ‖m‖ . (23)
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Now, the missing expressions in overview (22) can be calculated as

m =
∂f

∂σ
=
∂f

∂q

∂q

∂σ
+
∂f

∂p

∂p

∂σ
= 3σD − M2

3
(2p− pc) I , (24)

m2 = m : m = 6q2 + M4

3
(2p− pc)2 , n = m/m , (25)

∂m

∂εe
=

{
∂m

∂q

∂q

∂σ
+
∂m

∂p

∂p

∂σ

}
:
∂σ

∂εe
=
{

3P + 2
9
M2 I ⊗ I

}
: D , (26)

∂m2

∂εe
=

{
∂m2

∂q

∂q

∂σ
+
∂m2

∂p

∂p

∂σ

}
:
∂σ

∂εe
=
{

18σD − 4
9
M4(2p− pc) I

}
: D , (27)

∂n

∂∆εe
=

1

m

{
∂m

∂εe
− 1

2
n⊗ 1

m

∂m2

∂εe

}
:
∂εe

∂∆εe
, (28)

∂n

∂∆pc
=

1

m

{
∂m

∂pc
− 1

2
n⊗ 1

m

∂m2

∂pc

}
∂pc
∂∆pc

=
M2

3m

{
I +M2(2p− pc)n/m

}
θ , (29)

∂fpc
∂n

=
fpc
∂∆εVp

∂∆εVp
∂n

= pcϑ ∆Λp I . (30)

The solution of System (20) can be accomplished based on the Karush Kuhn Tucker
conditions with an elastic predictor and a plastic corrector step. This leads to a radial
return mapping algorithm (also known as active set search). Alternatively, the case
distinction can be avoided using the Fischer-Burmeister complementary condition [cf.
e. g. 1, 2]. Both methods can be used in MFront [8, 9].

3.2 Numerical refinement and stabilization

It is recommended to normalize all residuals (20) to some similar order of magnitude,
e. g. as strains. For this, equation (20b) can be divided by some characteristic value:

fΛp = f/f̂ =
{
q2 +M2(p2 − p pc)

}
/(E pc0) . (31)

Here f̂ = E pc0 was chosen with the elastic modulus and the initial value of the pre-
consolidation pressure. Of course, this has to be considered in the corresponding partial
derivatives (22d–f). Instead of applying the same procedure to fpc it is advantageous to
directly normalize the corresponding independent variable pc. Then, the new reduced
integration variable is

prc := pc/p̂c = pc/pc0 . (32)

Thus, the partial derivatives with respect to pc have to be replaced as

∂(∗)
∂pc

→ ∂(∗)
∂prc

=
1

p̂c

∂(∗)
∂pc

. (33)

Consequently, all integration variables εe, Λp, p
r
c, φ are dimensionless, strain-like vari-

ables, which improves the condition number of the set of equations.
In order to stabilize the numerical behaviour two more minor modifications are benefi-

cial. The first one regards some (initial) state with zero stress. Then f = 0 is indicating

6



potential plastic loading, but plastic flow (11) is undetermined. To prevent this case, a
small (ambient) pressure pamb can be added to the hydrostatic pressure, i. e.

p := I1(σ)/3 + pamb . (34)

Hence, a small initial elastic range is provided.
Another problem occurs in case of strong softening and dilatancy: pc → 0 and the yield

surface contracts until it degenerates to a single point such that the direction of plastic
flow is undefined. In order to limit the decrease of pc to some minimal pre-consolidation
pressure pmin

c the evolution equation (13) is modified to

ṗc = ε̇Vp ϑ(e) (pc − pmin
c ) with pc

∣∣
t=0

= pc0 , (35)

where the normalization from above can be applied again. A reasonably small value
for pmin

c can be, e. g., the ambient atmospheric pressure. The modifications need to be
considered in Eq. (20c) and its derivatives.

3.3 Semi-explicit solution scheme

The number of equations in System (20) can be reduced exploiting the minor influence of
the porosity in a given time step. Since φ usually does not significantly change during the
strain increment, it can be updated explicitly at the end of the time step [4]. Exploiting
formula (42) yields

k+1φ = 1− (1− kφ) exp( ∆εV) or (36)
k+1φ = kφ+ ∆φ with ∆φ = (1− kφ)

[
1− exp( ∆εV)

]
. (37)

Thus, the residual equation (20d) and the corresponding derivatives can be omitted.
The pore number follows directly from the new porosity value using the relation

1 + k+1e =
1

1− k+1φ
. (38)

4 Implementation into MFront

For the MFront implementation the domain specific language (DSL) Implicit was used,
cf. [8, 12]. The coupling to OpenGeoSys [10, 3] is done using MGIS [9]. The implemen-
tation is part of the OpenGeoSys source code, cf. https://gitlab.opengeosys.org.

In the preamble of the MFront code the parameters are specified and integration vari-
ables are declared. Note that a state variable is a persistent variable and an integration
variable, whereas an auxiliary state variable is also persistent but no integration variable.

// environmenta l parameters ( d e f a u l t v a l u e s )
@Parameter s t r e s s pamb = 1e +3; //Pa
@PhysicalBounds pamb in [ 0 : ∗ [ ;
pamb . setEntryName ( ” AmbientPressure ” ) ;
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// m a t e r i a l parameters
@MaterialProperty s t r e s s young ;
@PhysicalBounds young in [ 0 : ∗ [ ;
young . setGlossaryName ( ”YoungModulus” ) ;
. . .
@StateVariable r e a l lp ;
lp . setGlossaryName ( ” E q u i v a l e n t P l a s t i c S t r a i n ” ) ;
@Integrat ionVar iab l e s t r a i n rpc ;
@Auxi l i a ryStateVar iab le s t r e s s pc ;
pc . setEntryName ( ” PreConso l idat ionPres sure ” ) ;
@Auxi l i a ryStateVar iab le r e a l phi ;
phi . setGlossaryName ( ” Poros i ty ” ) ;
. . .

The semi-explicit solution scheme is then implemented with three basic steps:

@In i tLoca lVar iab l e s {
// e l a s t i c p r e d i c t o r s t e p

}
@Integrator {

// p l a s t i c c o r r e c t o r s t e p
}
@UpdateAuxi l iaryStateVar iables {

// e x p l i c i t p o r o s i t y update
}

5 Numerical studies

5.1 Consolidated plane strain simple shear test using mtest

MFront provides the tool mtest for testing the implemented material behaviour at a sin-
gle material point (integration point), see [8]. For this, non-monotonic loading sequences
can be prescribed in terms of stress and strain trajectories.

In order to test the consolidation behaviour, plane strain simple shear tests were con-
ducted with the same initial state but three different loading trajectories. To be precise,
first the hydrostatic pressure p was increased until 0.25 pc0, 0.5 pc0 or 0.75 pc0. This re-
sults in the so-called overconsolidation ratios (OCR) of 4, 2, 4/3. From this hydrostatic
stress state, shear is applied up to the strain εxy = 0.01.

Table 1: Material parameters for the basic modified Cam clay model

E / Pa ν M λ κ φ0 pc0 / Pa pamb / Pa

150 · 109 0.3 1.5 7.7·10 3 6.6·10 4 0.44 30 · 106 0 · 103
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The material parameters are given in Table 1. It should be noted that only the differ-
ence λ−κ plays a role in the basic model with constant elastic parameters. Considering
the OCR, there are three different cases (cf. Figure 1):
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 / 

M
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0.0
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OCR=1.33

Figure 1: Consolidated shear test for three typical OCR values: εVp > 0 causes softening,

whereas εVp < 0 (compaction) results in hardening.

For OCR > 2 the shearing is accompanied by a plastic expansion (dilatancy) with
εVp > 0, which causes softening until the critical state is reached.

For OCR = 2 shearing until yield leads directly to the critical state. Considering the
state of the soil (porosity, stress, volume) this is a natural asymptotic state. Further
shearing does not alter that state anymore. Hence, there is ideal plastic behaviour.

For OCR < 2 the shearing is accompanied by a plastic compaction (contractant flow,
consolidation) with εVp < 0, which causes hardening until the critical state is reached.
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Figure 2: Consolidated shear test for 3 typical OCR values: depicted are the different
stress trajectories, the critical state line (CSL) and the final yield surfaces.
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The stress trajectories, and the final yield surfaces are illustrated in the p, q-space to-
gether with the initial yield surface and the critical state line (CSL).

Now, the same consolidated shear loading is applied, but there are two different initial
states: a high value of the initial pre-consolidation pressure pc0 resembles a heavily pre-
consolidated, compacted (dense) soil material, whereas a low value of pc0 resembles a
loosened initial state.
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Figure 3: Consolidated shear test for two different initial pre-consolidation pressures.

As can be seen in Figure 3 and 4 the materials thrive to the same (asymptotic) critical
state, since the CSL is identical. However, this is either accomplished by hardening
(contraction) or softening (dilatancy).
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Figure 4: Consolidated shear test for two different initial pre-consolidation pressures:
the CSL and the final state including the final yield surface are equal.
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5.2 Plane strain simple shear test with one FE using OpenGeoSys

As a next step the shear test from the previous section was repeated using OpenGeoSys,
but without consolidation phase. A unit square domain was meshed with only one
finite element. At the boundaries (top, bottom, left, right) Dirichlet boundary condi-
tions (BCs) were prescribed. The top boundary was loaded by a linear ramp from time
0 to 1 s. The material parameters were taken from Table 1 with only one difference: As
the test has no pre-consolidation phase, it is starting from zero stress and due to the
reasons explained in subsection 3.2 some small initial ambient pressure pamb = 1 · 103 Pa
was added.3

Test BC left BC right BC top BC bottom behaviour

Shear xy free free ux = −0.05t ux = uy = 0 no convergence
Shear xy free free ux = −0.05t, uy = 0 ux = uy = 0 convergence

Table 2: Convergence behaviour for different shear loadings and BCs.

Figure 5: Test results for different BCs according to Table 2: the top boundary is either
confined (left) or free (right).

In order to have true simple shear the top BC uy = 0 has to be applied. Else there
is a tilting effect, and the deformation consists of shear and bending. As this is related
to some parts with dominant tension stresses, convergence cannot be achieved with the
Cam clay model (cf. next section). Note also that for pure shear εV = 0 and the volume
and porosity thus remain constant.

5.3 Plane strain simple biaxial test with one FE using OpenGeoSys

It must be noted that the Cam clay model is primarily intended to capture the shear
behaviour of soil materials without cohesion. Hence, the uniaxial stress states with free

3If the test is stress-controlled and the material is initially on the critical state with zero stress, this
causes an infinite strain increment and no convergence can be expected.
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boundaries cannot be sustained just as these states cannot be reached in reality. As
an example, uniaxial tension causes pronounced lateral stretching due to plastic volume
increase (dilatancy). The application of some minimal pre-consolidation pressure can
help to stabilize the simulation, but convergence cannot be expected in general.

Still, the biaxial tension/compression behaviour can be simulated to a certain degree.
The Table 3 shows under which conditions convergence can be expected. In the converged
cases a homogeneous solution was obtained as expected.

Test BC left BC right BC top BC bottom convergence

Uniax. compr. y ux = 0 free uy = −0.05t uy = 0 no
Uniax. tension y ux = 0 free uy = +0.05t uy = 0 no
Biaxial compr. x, y ux = 0 ux = −0.05t uy = −0.05t uy = 0 yes
Biaxial tension x, y ux = 0 ux = +0.05t uy = +0.05t uy = 0 (yes)
Biaxial mixed x, y ux = 0 ux = +0.05t uy = −0.05t uy = 0 yes
Biaxial mixed x, y ux = 0 ux = −0.05t uy = +0.05t uy = 0 yes

Table 3: Convergence behaviour for different biaxial loadings and BCs

It is interesting to note that the biaxial tension test can be simulated with the Cam
clay model. In order to achieve convergence the drop of the pre-consolidation pressure
has to be limited. For this, either the value of the parameter difference λ−κ is increased
or some minimal value pmin

c has to be ensured according to Eq. (35).

Figure 6: Biaxial test results for different BCs: shown are the mixed cases from Table 3.

5.4 Axially-symmetric triaxial compression test

As a benchmark to existing results an axially-symmetric triaxial compression test was
performed. For this, a cylindrical domain of height 100 m and radius 25 m is meshed with
100× 25 finite elements. At the left and bottom boundaries symmetry BCs of Dirichlet
type are prescribed. The top and right boundaries are loaded by prescribing an axial
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and a confining pressure pcon, respectively. The loading consists of two stages, similar to
subsection 5.1: iI) a linear ramp until a hydrostatic stress state with p = pcon = 200 kPa
is reached (with an OCR=1) and ii) a further increase of the axial pressure while the
confining pressure pcon is held constant. As the simulation time is irrelevant it is again
set to 1 s. The material parameters are taken from Table 4.

Table 4: Material parameters for the basic modified Cam clay model

E / Pa ν M λ κ φ0 pc0 / Pa pamb / Pa

52 · 106 0.3 1.2 7.7·10 2 6.6·10 3 0.44 200 · 103 1 · 103

The material and loading parameters were chosen such that the stress trajectory
approaches the CSL from the right but does not meet it (cf. Figure 9). When this
happens there will be zero resistance to plastic flow causing an infinite strain increment
in the stress-controlled test and no convergence can be expected. The tendency can
already be seen in Figure 8 with the steep increase of the equivalent plastic strain.

Figure 7: Triaxial benchmark results: shown are the displacement coefficients in the
radial (here x) and the vertical (here y) direction.
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The curve of the pre-consolidation pressure (cf. Figure 8 left) shows monotonic hard-
ening related to the plastic compaction (cf. Figure 8 right).

Figure 8: Triaxial benchmark results: shown is the evolution of stress (left, unit Pa) and
strain measures (right) at some arbitrary integration point.

Figure 9: Triaxial benchmark results: depicted is the stress trajectory and the evolving
yield surface as well as the CSL.

In order to check the accuracy of the numerical results, they were compared to an
analytical solution [13] for proportional loading. For this, the straight stress path from
(q = 0, p = pcon) until the final state is considered (cf. Figure 9). The plot of the von-
Mises stress over the corresponding equivalent strain defined by ε2q = 2

3 ε
D ·· εD shows
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accurate agreement between numerical and analytical solution (cf. also the appendix).
Minor deviations might arise from the assumption (16) [13], whereas a constant bulk
modulus according to Eq. (17) was applied here. Considering the radial and circumfer-
ential strains another peculiarity is found (cf. Figure 10): The initial plastic compaction
causes lateral (i. e. radial and circumferential) contraction. However, with increasing ax-
ial compression this necessarily turns into expansion. Note also that for this numerical
test the magnitude of the strains is beyond the scope of the linear strain measure.
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Figure 10: Triaxial benchmark results: depicted are the strain trajectories (left) and a
comparison between analytical and numerical solution (right).

As an alternative the test can, of course, also be conducted displacement-controlled.
However, in doing so it was found that the homogeneous solution becomes unstable and
strain localization occurs at the top of the domain. Apparently, at some integration
points softening sets in even though the homogeneous solution only shows monotonic
hardening. Varying the mesh size and topology, convergence could be achieved in some
cases, indicating a strong mesh dependency.

6 Concluding remarks

The presented Cam clay material model has a simple structure, but can capture several
characteristic phenomena of soil materials very well. However, it must be considered
with caution when applied to realistic finite element simulations. The major limitations
have two origins: first, the missing cohesion and second, the dilatant/softening part of
the captured material behaviour. The provided numerical refinements can stabilize this
only to a limited degree. It seems that the softening can cause a pronounced strain
localization, which requires special strategies for regularization of the underlying ill-
posed mathematical problem [cf. e. g. 11]. In order to include finite cohesion different
modifications of the Cam clay model have been proposed [cf. e. g. 7]. Finally, mechanical
loading in the vicinity of the critical state can easily cause large deformations, a finite
strain formulation should be considered in the future [cf. e. g. 5, 6].
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Appendix

Numerical convergence behavior of the modified Cam clay implementation

In order to check the convergence rate of the Cam clay implementation the consolidated
shear test from Section 5.1 was considered again. The parameters were taken from
Table 1. The hydrostatic pressure p was increased until 0.66 pc0 resulting in an OCR of
1.5. From this hydrostatic stress state, shear is applied up to the strain εxy = 5 · 10−4

within 20 time steps.
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Figure 11: Convergence plot: depicted is the norm of the residuals from the global it-
eration (colored) and the local iteration (grey) using the modified Cam clay
MFront implementation and mtest. Within the first 12 steps the behavior is
purely elastic (top), followed by contractant plastic flow (bottom).

As can be seen in Figure 11, convergence is achieved in one step in the elastic stage
(top). In the plastic stage (bottom), the typical acceleration of convergence when ap-
proaching the solution is observed (asymptotic quadratic convergence). However, the
convergence depends on the plastic flow behavior dictated by the parameters M , λ κ
and pc0 and can reduce to super-linear (order ∈ [1, 2]).

Orthotropic modified Cam clay model implementation

The implementation of the modified Cam clay model can be extended to orthotropic
elastic behavior using the so-called standard bricks within MFront. Thus just one line
of code need to be added:

@Brick S ta n d a r d E l a s t i c i t y ;
@OrthotropicBehaviour<Pipe>;
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As a consequence the nine independent constants of orthotropic elasticity are already
declared.

// m a t e r i a l parameters
// Note : YoungModulus and PoissonRatio d e f i n e d as parameters
// Note : Glossary names are a l r e a d y g iven ; entry names are newly d e f i n e d
@MaterialProperty r e a l M;
@PhysicalBounds M in [ 0 : ∗ [ ;
M. setEntryName ( ” C r i t i c a l S t a t e L i n e S l o p e ” ) ;
. . .

However, from the physical point of view it might be more realistic to consider the
anisotropy both for the elastic and plastic behavior.

Analytical expressions for porosity and pre-consolidation pressure evolution

Given is the evolution equation for the porosity:

φ̇− φ div(u̇) = tr(ε̇) with εV = tr(ε) . (39)

Exploiting div(u̇) ≡ tr(ε̇) and separating the variables yields the form

dφ

1− φ
= dεV . (40)

Integration over some time increment ∆t with φ(t) = kφ and φ(t + ∆t) = k+1φ as well
as ∆εV = k+1εV − kεV as the volumetric strain increment, i. e.

k+1φ∫
kφ

dφ

1− φ
=

k+1εV∫
kεV

dεV . (41)

then results in the incremental solution

1− k+1φ = (1− kφ) exp( ∆εV) . (42)

Integration over the whole process time span with the initial values φ(t = 0) = 0φ and
εV(t = 0) = 0 results in

1− φ = (1− 0φ) exp( εV) . (43)

Combining (43) with (13) finally yields the evolution of the pre-consolidation pressure:

ṗc = −
ε̇Vp pc

(λ− κ)(1− 0φ) exp( εV)
. (44)
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Analytical solution of the Cam clay model for proportional loading

A straight stress path from (p, q) = (0, pc0) until the final state (p, q) = (387387, 330129) Pa
is considered:

q = k (p− pc0) . (45)

The analytical solution [13] for the corresponding equivalent strain ε2q = 2
3 ε

D ·· εD reads

εq = εeq + εpq (46)

and to be precise, using the abbreviations C = (λ κ) and α = 3(1− 2ν)/(2(1 + ν)) it is

(1 + e0) ε
e
q = ln

[(
1− q

kp

) 2Ck
k2−M2−

κk
3α

]
, (47)

(1 + e0) ε
p
q = ln

[(
1− q

Mp

) Ck
M(M−k)

·
(

1 +
q

Mp

) Ck
M(M+k)

]
− 2

C

M
arctan

(
q

Mp

)
. (48)
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