diff --git a/ProcessLib/ThermoRichardsMechanics/Tests.cmake b/ProcessLib/ThermoRichardsMechanics/Tests.cmake
index fa820d0a91c3673226e25eb9960baaf7596cc9e3..5e3d74ee177143d8a74d9039c2174446865ac114 100644
--- a/ProcessLib/ThermoRichardsMechanics/Tests.cmake
+++ b/ProcessLib/ThermoRichardsMechanics/Tests.cmake
@@ -95,3 +95,25 @@ AddTest(
     cube_1e3_tm_ts_17_t_72000_000000_0.vtu cube_1e3_tm_ts_17_t_72000_000000_0.vtu epsilon epsilon 1e-10 1e-9
     cube_1e3_tm_ts_17_t_72000_000000_1.vtu cube_1e3_tm_ts_17_t_72000_000000_1.vtu epsilon epsilon 1e-10 1e-9
 )
+
+AddTest(
+    NAME ParallelFEM_ThermoRichardsMechanics_FullySaturatedFlowMechanics
+    PATH ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc
+    RUNTIME 10
+    EXECUTABLE ogs
+    EXECUTABLE_ARGS flow_fully_saturated_petsc.prj
+    WRAPPER mpirun
+    WRAPPER_ARGS -np 2
+    TESTER vtkdiff
+    REQUIREMENTS OGS_USE_MPI
+    DIFF_DATA
+    flow_fully_saturated_ts_2_t_2_000000_0.vtu flow_fully_saturated_ts_2_t_2_000000_0.vtu pressure pressure 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_0.vtu flow_fully_saturated_ts_2_t_2_000000_0.vtu velocity velocity 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_1.vtu flow_fully_saturated_ts_2_t_2_000000_1.vtu velocity velocity 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_0.vtu flow_fully_saturated_ts_2_t_2_000000_0.vtu displacement displacement 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_1.vtu flow_fully_saturated_ts_2_t_2_000000_1.vtu displacement displacement 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_0.vtu flow_fully_saturated_ts_2_t_2_000000_0.vtu sigma sigma 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_1.vtu flow_fully_saturated_ts_2_t_2_000000_1.vtu sigma sigma 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_0.vtu flow_fully_saturated_ts_2_t_2_000000_0.vtu epsilon epsilon 1e-10 1e-9
+    flow_fully_saturated_ts_2_t_2_000000_1.vtu flow_fully_saturated_ts_2_t_2_000000_1.vtu epsilon epsilon 1e-10 1e-9
+)
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_petsc.prj b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_petsc.prj
new file mode 100644
index 0000000000000000000000000000000000000000..925d27acfdd1d09df00e59b9a23b80c8550e6e87
--- /dev/null
+++ b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_petsc.prj
@@ -0,0 +1,303 @@
+<?xml version='1.0' encoding='ISO-8859-1'?>
+<OpenGeoSysProject>
+    <mesh>square_1x1_quad8_1e2.vtu</mesh>
+    <geometry>square_1x1.gml</geometry>
+    <processes>
+        <process>
+            <name>RM</name>
+            <type>THERMO_RICHARDS_MECHANICS</type>
+            <integration_order>3</integration_order>
+            <constitutive_relation>
+                <type>LinearElasticIsotropic</type>
+                <youngs_modulus>E</youngs_modulus>
+                <poissons_ratio>nu</poissons_ratio>
+            </constitutive_relation>
+            <process_variables>
+                <temperature>temperature</temperature>
+                <pressure>pressure</pressure>
+                <displacement>displacement</displacement>
+            </process_variables>
+            <secondary_variables>
+                <secondary_variable internal_name="sigma" output_name="sigma"/>
+                <secondary_variable internal_name="epsilon" output_name="epsilon"/>
+                <secondary_variable internal_name="velocity" output_name="velocity"/>
+                <secondary_variable internal_name="saturation" output_name="saturation"/>
+            </secondary_variables>
+            <specific_body_force>0 0</specific_body_force>
+        </process>
+    </processes>
+    <media>
+        <medium>
+            <phases>
+                <phase>
+                    <type>AqueousLiquid</type>
+                    <properties>
+                        <property>
+                            <name>viscosity</name>
+                            <type>Constant</type>
+                            <value>1e-9</value>
+                        </property>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>1</value>
+                        </property>
+                        <property>
+                            <name>specific_heat_capacity</name>
+                            <type>Constant</type>
+                            <value>0.0</value>
+                        </property>
+                        <property>
+                            <name>thermal_conductivity</name>
+                            <type>Constant</type>
+                            <value>1.0</value>
+                        </property>
+                    </properties>
+                </phase>
+                <phase>
+                    <type>Solid</type>
+                    <properties>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>1</value>
+                        </property>
+                        <property>
+                            <name>bulk_modulus</name>
+                            <type>Constant</type>
+                            <value>1e100</value>
+                        </property>
+                        <property>
+                            <name>specific_heat_capacity</name>
+                            <type>Constant</type>
+                            <value>0.0</value>
+                        </property>
+                        <property>
+                            <name>thermal_conductivity</name>
+                            <type>Constant</type>
+                            <value>1.0</value>
+                        </property>
+                        <property>
+                            <name>thermal_expansivity</name>
+                            <type>Constant</type>
+                            <value>0.0</value>
+                        </property>
+                    </properties>
+                </phase>
+            </phases>
+            <properties>
+                <property>
+                    <name>relative_permeability</name>
+                    <type>Constant</type>
+                    <value>1</value>
+                </property>
+                <property>
+                    <name>permeability</name>
+                    <type>Constant</type>
+                    <value>1e-12</value>
+                </property>
+                <property>
+                    <name>biot_coefficient</name>
+                    <type>Constant</type>
+                    <value>1</value>
+                </property>
+                <property>
+                    <name>saturation</name>
+                    <type>Constant</type>
+                    <value>1</value>
+                </property>
+                <property>
+                    <name>bishops_effective_stress</name>
+                    <type>BishopsPowerLaw</type>
+                    <exponent>1</exponent>
+                </property>
+                <property>
+                    <name>porosity</name>
+                    <type>Constant</type>
+                    <value>0.8</value>
+                </property>
+                <property>
+                    <name>thermal_conductivity</name>
+                    <type>EffectiveThermalConductivityPorosityMixing</type>
+                </property>
+            </properties>
+        </medium>
+    </media>
+    <time_loop>
+        <processes>
+            <process ref="RM">
+                <nonlinear_solver>basic_newton</nonlinear_solver>
+                <convergence_criterion>
+                    <type>PerComponentDeltaX</type>
+                    <norm_type>NORM2</norm_type>
+                    <abstols>1e-11 1e-14 1e-16 1e-16</abstols>
+                </convergence_criterion>
+                <time_discretization>
+                    <type>BackwardEuler</type>
+                </time_discretization>
+                <time_stepping>
+                    <type>FixedTimeStepping</type>
+                    <t_initial>0</t_initial>
+                    <t_end>2</t_end>
+                    <timesteps>
+                        <pair>
+                            <repeat>2</repeat>
+                            <delta_t>1</delta_t>
+                        </pair>
+                    </timesteps>
+                </time_stepping>
+            </process>
+        </processes>
+        <output>
+            <type>VTK</type>
+            <prefix>flow_fully_saturated</prefix>
+            <timesteps>
+                <pair>
+                    <repeat>10000</repeat>
+                    <each_steps>1</each_steps>
+                </pair>
+            </timesteps>
+            <variables>
+                <variable>displacement</variable>
+                <variable>pressure</variable>
+                <variable>sigma</variable>
+                <variable>epsilon</variable>
+                <variable>velocity</variable>
+                <variable>saturation</variable>
+            </variables>
+            <suffix>_ts_{:timestep}_t_{:time}</suffix>
+        </output>
+    </time_loop>
+    <parameters>
+        <!-- Mechanics -->
+        <parameter>
+            <name>E</name>
+            <type>Constant</type>
+            <value>1e10</value>
+        </parameter>
+        <parameter>
+            <name>nu</name>
+            <type>Constant</type>
+            <value>.3</value>
+        </parameter>
+        <!-- Model parameters -->
+        <parameter>
+            <name>mu</name>
+            <type>Constant</type>
+            <value>1e-9</value>
+        </parameter>
+        <parameter>
+            <name>displacement0</name>
+            <type>Constant</type>
+            <values>0 0</values>
+        </parameter>
+        <parameter>
+            <name>pressure_ic</name>
+            <type>Constant</type>
+            <values>0</values>
+        </parameter>
+        <parameter>
+            <name>dirichlet0</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+        <parameter>
+            <name>dirichlet1</name>
+            <type>Constant</type>
+            <value>1</value>
+        </parameter>
+        <parameter>
+            <name>T_ref</name>
+            <type>Constant</type>
+            <value>293.15</value>
+        </parameter>
+    </parameters>
+    <process_variables>
+        <process_variable>
+            <name>temperature</name>
+            <components>1</components>
+            <order>1</order>
+            <initial_condition>T_ref</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>left</geometry>
+                    <type>Dirichlet</type>
+                    <parameter>T_ref</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+        <process_variable>
+            <name>displacement</name>
+            <components>2</components>
+            <order>2</order>
+            <initial_condition>displacement0</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>left</geometry>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>dirichlet0</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>right</geometry>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>dirichlet0</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>bottom</geometry>
+                    <type>Dirichlet</type>
+                    <component>1</component>
+                    <parameter>dirichlet0</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>top</geometry>
+                    <type>Dirichlet</type>
+                    <component>1</component>
+                    <parameter>dirichlet0</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+        <process_variable>
+            <name>pressure</name>
+            <components>1</components>
+            <order>1</order>
+            <initial_condition>pressure_ic</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>left</geometry>
+                    <type>Dirichlet</type>
+                    <parameter>dirichlet0</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>right</geometry>
+                    <type>Dirichlet</type>
+                    <parameter>dirichlet1</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+    </process_variables>
+    <nonlinear_solvers>
+        <nonlinear_solver>
+            <name>basic_newton</name>
+            <type>Newton</type>
+            <max_iter>50</max_iter>
+            <linear_solver>general_linear_solver</linear_solver>
+        </nonlinear_solver>
+    </nonlinear_solvers>
+    <linear_solvers>
+        <linear_solver>
+            <name>general_linear_solver</name>
+            <petsc>
+                <parameters>-ksp_type gmres -pc_type hypre  -pc_hypre_type boomeramg -ksp_rtol 1e-8 -ksp_rtol 1e-10 -ksp_max_it 4000</parameters>
+            </petsc>
+        </linear_solver>
+    </linear_solvers>
+</OpenGeoSysProject>
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_ts_2_t_2_000000_0.vtu b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_ts_2_t_2_000000_0.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..e60ed9596d9bf2f66d12febdc96d77c00ebcb9b8
--- /dev/null
+++ b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_ts_2_t_2_000000_0.vtu
@@ -0,0 +1,47 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="27" format="appended" RangeMin="45"                   RangeMax="121"                  offset="232"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="504" format="appended" RangeMin="8.3721237139e-13"     RangeMax="3.6305644771e-11"     offset="324"                 />
+      <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="504" format="appended" RangeMin="0.8"                  RangeMax="0.8"                  offset="12988"               />
+      <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="504" format="appended" RangeMin="1"                    RangeMax="1"                    offset="13080"               />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="504" format="appended" RangeMin="0.013178612702"       RangeMax="0.57148944243"        offset="13172"               />
+      <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="504" format="appended" RangeMin="0"                    RangeMax="0"                    offset="23452"               />
+      <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="504" format="appended" RangeMin="0.8"                  RangeMax="0.8"                  offset="23548"               />
+    </FieldData>
+    <Piece NumberOfPoints="201"                  NumberOfCells="56"                  >
+      <PointData>
+        <DataArray type="Float64" Name="HeatFlux" format="appended" RangeMin="-1.1368683772e-13"    RangeMax="1.9895196601e-13"     offset="23640"               />
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-0.0001"              RangeMax="0.0001"               offset="23856"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.1249962841e-18"     RangeMax="0.050476190476"       offset="24156"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="9.2857142857e-12"     offset="26628"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="3.139507974e-26"      RangeMax="3.7142857143e-11"     offset="29200"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="1"                    offset="34648"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0"                    RangeMax="1"                    offset="34908"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="1"                    RangeMax="1"                    offset="35400"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="4.0111036855e-16"     RangeMax="0.58466805513"        offset="35556"               />
+        <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="293.15"               RangeMax="293.15"               offset="40128"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="0.001"                RangeMax="0.001"                offset="40444"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.8"                  RangeMax="0.8"                  offset="42592"               />
+        <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="42664"               />
+        <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="0.058466805513"       RangeMax="0.52620124962"        offset="42732"               />
+        <DataArray type="UInt8" Name="vtkGhostType" format="appended" RangeMin="0"                    RangeMax="0"                    offset="44020"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0.4472135955"         RangeMax="1.4142135624"         offset="44080"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="45008"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="46040"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="46232"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABsAAAAAAAAAIwAAAAAAAAA=eF4z0zPRM9Q1sjDUTTc0TDU1SzYzMTLQS8ksKqkEAFViBw8=AQAAAAAAAAAAgAAAAAAAAAA/AAAAAAAA+CQAAAAAAAA=eF5Nm3c8lf/7+E8qoWGXVKhQUZKkujlSKGnZK5ll7zIjx8jee2ZvyaabEzLSMCINMlKJyKi0SN/P4/e+7+v18+/zcV3Oucfrer6u13XG9ktO+78oo4vLazOyM3liFOLP6/X+AeXTwVgzwV32fWfrs/MFzsyZsSbrTBpO8sKKxjupbwKA659O5vTMr8Zzi798G6EV0qPqaTEv3d2Bl40cP92w6iBWSHAf75DrafGOwG0fKIa0/wjC0whOCd9b1GZiCjxUVDVQ5Uchnrm3YPnYgWy6ivT7+7biLsDlt1AuGwyXYEYEFzzat/zMRh4n+WQhE5fZjkSMRnDK4y2/M9ffBH6a9VKlgmoR1vyUNnHkbxqdlld4s6AGff55PtkEXDQPlyM4hSGlK+TZx/skP/o5PMvrfQJOI3j5CRfGG0/dIT/f2tuMvcohON+jbz+nNKPoconblZpGb0H+7VeKlMd7MzA2gtOqvjakfkXXx+d5UZPNYT+Mm+Syu5vGuDWA7247prBfOhCjbJY6N3/Dli4QYb/qmvt14FrZe8/cW58DnPe4aHGJIeJXzYMeGSonAM/8MKH2VRHxHmPG9aotPjiF9/9xqtEto4xWGRf4fqaOZ0+a2WZhFJ7/eOa5dxekOdQhvneH2gOjZ/D/qTRB1dPv2r3R9d3xXO8UTwpG+e/7UQVj5mfCtdMhv3DrJ7ek+FCcuD5USvE+2VKuq8D5D8WG1Dul41wEL9xjNmyilgT5T/+Q9tgXlEXeP+oy40S4oE8e+vxn+JwsZnCcuP/UtKqciCTMHuI1n2ELdsbVOIXgU154hqtFEfAn1Hk2bFM9Tjxf1A0MaczWrmmQP3fj4dn0PRU48XxSlxXoke8FPSCeQVXIO6z5f5+P4DfU6BazbbnAaxSoWTT+Sjzhv/eDqrPB/bFHcxrwHZPXmeo1M7FMglMkLwy1LV4DntArc/ShXBAWS3CLprwYZvlE+Hy8Yo3X551zyPebmsC/aJEeVAPxecLrrogNNGBjBJfbXo1rSJ2H+L5SUZ+fyvfI9YM6OTfa4PK7BrhAgt/20dPR2K2x1uqoxVZ6FFumaIFMBOQPFOIymMQ0cC+CN3t+MlglSwN+xjNNosrNCThFyTX67R9V4IZzincWBi3x7ye+ShUYPaSXc3fL7GjwAT5dODiyXO2GkZxS1+VS9xCtH8nG/1Kph+ywrwR3uL3yyYLvKvCNBR5178Z8MIsMgfv0p810uSMd34/80gN+0+emdEfgDcyS4FFJ63flF5qg+ytQ1tVb6gvxtM3VZw8NmAPnvVLAzCwXjFkMh9vub26iG12wHogM0Qbet98ok2O/L/BnI+re2S0WwBU95DdJmSRiDgS3WP87eGXECfj1CGq/4a4U7HLaZ0fdhEZ6p89f7NxO9H5nqwyICueE40YE92f11hpscUWfr9Wb/u6nMWZMcJV0ipOlCaofqp8cml5xxmJKl8+4BNjcp2fK1hnG+aHvrygawB3NE4XrELyXyn/chRl9/sfxN+sPe0TjcgSXowZy6ETaAucfeT9yRzMRG/sd63g0vo7eW63Wkn7NBJ6vRg+lBr2WEJzkN9YfNDfh1QKekObwLeTWdWyS4JTqcTGhfCrw8TtPcmXEC7De+nnnq9bV9L140Rovu9vA7U2FH7SXBOIk38mtWdnC4wNcW+7wlR3sIVg3wY3GKM0bAtD6H4qtuf9Z2wlrdr3gEX2ygl4qbJY8cCQaON/5NS3iCf54PcEP90RXXEoIBe4WZ7cxnyMS6yQ4j6q2+Pdmf+BHy142OW6lQf0uNLpLjbkfiT6/p0OgfWM4Try/9Bra9OKZwADgZ/iMX/4bTAROOamuv1TkAXxmo7TBneOWeCpRn1+zVFSGFaP/n2hzyfnjRVc8ieAMYX5v9lw1B55mmbr/ILsXFkdwo+CR0IV5VN9eiWU3GEjkQ31WmjZh2rYtEOLjZf2V9tZaQn1XGdnduKKmCXy9b+BU3ZVMjFg/6UnfdHUvd6D3v7Kv8Ee9dgFG1u9ml8qpmuthEK863afcvu42Rtbvbo4R48gV9PmpIp9F7E56Q33fa9t6zO4GWp/a41+pBvxvvdpO1ucHwSqXMyMgXrONd4OAdDCq705++uK+1sADrQ8dlg9IAs6zVmmX/CjKb+smPvDVKBujcP1Xn5tZ6KfUl4Mgnv/9q63U5btQvykV4VVUp5XjJB9+N2twtiMfeFSSA62dNxjy+9iWjH83zoP6TZO+OCBcEQL5VzouNFpF1pH/n/p9QeVYhjRaXxo+PvAVfVIBPCqhh9HUJQF4hkjEtT2TVRhZn/VjhO1HA1F9PGiamq3vmIWT9Z/GyHdrdAytLwdmGONLV90EXv6EN3GPZx7wpdLStYcu3iHvH3Vf0FjVyyMlkF+HzhyjwlQP9T/KkemqnKEycHygVVptfRV5f6kDCs3lb02KIT+b009uA/ZyqO8XD9eKef/Lh3gDhq9fmPcVAS/fmxoUa3kDuHnUnYXl2jio/yKWked5P2ZB/uP/lM8mRVzHQ4n6XN99QcJyGNVHpbe7rR6puEJ9Z3DZbHurGuXPkOvAng3kYSkEV9pV2fOtMxm4k9fl7VeNi6B+C9O5mQW3VEF+0d8endJ/y6B+r3rE969jBfldCOvDXgu2WuD0+N+Tyz9Qfb9hoLJO+Gs1Rqxf1DXtFXNxwcgfLkpxDdWntOHlBM98cURtps0J4i1bmkRdTVpwYn2krvP+5S4xXgdcLvu1TkxXBz7w3/pKfVGlsU0GL4P8r3a+uETpLMBfEFxOtHtqedgIeNHZ3IfF0zk4sT5TFWZ5b3neKYX8CQd3m3iudSfrCzVKuiLKRRD5V7uyhpmjbQVZP6iezvf8uEeCgGfdKyvSzMzHegk+z2AmfW8Avf/zmbZKXfF3MZX/6ht1LHltV95UBsTfKuSsFB6oxo4RfDiVFZ91iQIe91HyeV5CCcRTppMdPeRVgG80pElwBuHYxf/qM9VoZ9mn09LR6PNV6DOE28dhWgR30p8p1uxD7//NWxuU7IXzgKu4eAbsEEPr54s/+pJVp6pJv6AG4RsXt8Veh+8nWdC/JrfsLhZE8MkAES7vVAOI91BzXNoeFYGpEFzGO7rJ1gHllzfo77ullk/6E9VEirNfOyoT8jP4my7ZOMViBgQf2XNAL1cCPT9HpSKoQQ6ZuDXBO1+zul9Zh/z/hN3bJ1tNS/Cl//yOunnHhxz/hvsQn1hHnWn6kYL/Jrjs88YfAWqo/k+s8hTm+OtO+iM1fVJyYtysGvLf6/pVoF+fiHn+56fUDuuZ+fdB7RDPg9md8rrdgoUQ/IZVymygahTwUpUouutsDmZC8O3PFRd9brRA/tLOlZiklGoyP10ueboTb0fPdxKTxdBJDj/wY4HPnAWREWh/ceVX/X2hY+IQ37z6zXeBK2j//uFj7S3uHm/sG+G/8w1XXh4buQ3cN9c36ejfIHyR4MtJYdKhrX7Ah3/m6idPHEV+7dKQOVyI7m+AzAOfl1ujwI/ndf8aH3geCjyY8VXDaSm4f3QdFp7NX9d7Ac99hjX7mmrgZDxtXcnJc6XywP0i7Kisk+ngx7/EmM7Qm9D3O6kW4uKWEIuTnKWgu3Sh0AH41MP6jb5mMRBP45+wELtsAffnZM8EZYw5HyP9uHf0gq6vjw3EGxdI/D7hmoobEJxCExuNezUL9ddk31mjz7zGuD7Bx3wjD/bL20D+yzkCvnSRbIz0419BagKz1x2AxxikKtWvS8KJ95+u7ue9mo2C+JH4gHObpSLBr+f/6HSZ8tgD36jq3D/xv/0X6b+9LP55za6ofrT4qvDGLsTjJDdp49M0OW4LPOLjkxurVcLAv+edjhjK+xkD36BWc8GTLw3rI/xXvN6zoPYz8vPROr43v6NzyfWZThEf+afuzAXXj29bXNgmvyjsJcFVUj0+rZdA+69pddpuHbN08N9Mf+24n4f0Ib9b1MDC4GA2TvK33m3pl1LR/mwTb/58U6s/1ktw8Z2/qoT0bgBnkEwSEt2G/NnoZqq8jwy6P6/0ph7bW1TgmQTHTYaMVHafhHj+t82vMp8hfx5LWINzmSM/kub63qaxHIVFEf47n1W6tIONBvnx8V4ZBeYKnOQeh4ZFJZeuAf8VNX1eys0A/Hpe8FcCqzK6Ps/VpbdF3zKH/lhjySxHcBby+1/hzWcDE9XBny+JLrC5y6H1+4fl7k0pf2OBy62eYaUxXYb8KhHSLfLXEsCfXztm+Kt0+EJ8tDjzZP6/EOiP1Scar3Z5ifx5ROQjq2GMLsSPJeLrtWysIX/7jLVi0+tI8GeBtsayI1/Q89f8x9K0qv8W2f+hU+Y0taW+of2/78OOrirVHIyH4FG6zKul5tH+9bUv91LZkzLwX1pP4rzqIPJvKnPBmdSSPOByNKWytp+CwHmWOubUb+SQfkyXa+7W05W2hPxPxdlD5cpywH/ZJsYrdt9E9YPmrFE/mhUE/S8BnuhVQvrawNdV7tsdMHwP4ilyf8cllVB/bHN8uuOZ8fvYGsJ/Ja28BJXL70B89q/hmRn2SNQfy84oCuVWgPjEhuj6+EArjIXgOle3jGYvIP9Ykgoor0vMBH9mf/ZlsGO+APKr5xo9K25sBj/OvuTHeWLcGeLZaJxSN3Vq8OYn/3GjzO4MLcu7wKmNYr788dngv1Laj/aHqmVAfo+cj+YrcoXAWZRrGZttUf/5y+LV7w2yKcAbex8kC40VovxVQsmZWnnk+0PtPHPEbiw+Bzj7mqkhlvlI4PsumvGOyKP680HB/frWsiQskuBMfkz+7T1o/5lY/HZHmnMJ+G+yWOxcaQ0O8RP6DkaJU8if5d64jJ69jvw9up+a3q5SDZzDrcZ1kKcK8icNmluYyDRjpB+r2aQOnN5Kh/gWEwnn3e0dZH+A6rvnrma1KfJDlxsyI8+sH+LE+kYVfN1WbPOpGvKbKTpIfrzdSvYvqAmzLufFR5D/T6rNMX4bLgOusU46pq8K5X8s6ljk9r4Q/Hl2oJIxggk9H6OflX7PmVljrwn/teDI2r0ikw3xOmdKYnWYsrF5gg+G+7JveI/8Qt6DVfjUZAHENx/wth47EA757YcXV6XurAT/Pd+L7RTdGAvxAS7B5y8x5mBE/4ia0JuntTkG7R8ZOfSDdSaLyfpKVUnPeOXNhtY/IbmrnFJqTZgK4b9BQjqchxSQP1kc/bFvUfE2TvrxsxL6/R0/kT9wzc/W3b+YjakRnNIZRttXiPyX/0e23LGVetIvqCpGXDYy5aj+zuyYGovg8wF/rpD8tcOsHPld69+3TxWqLHEl0r+VGRVVy9H7oRi8+9SF0nvgz3d28TTwJ6H14YzR7BeBE1m4EcFLpRe+sqQjP2BdJTgvHlaE2xD8bf/llbflaP8u93Fewf17Ef6H8F8zqSseYwP16PlVGj/hsaEU/Hl7dPSZa1qo/yS/crd/6xdnsj9LFelz23uGUoHeDyELKue1NMyN8N/pxP5CroRWiLeMkVu76nQzFkrwJPG/B1l+o/zdnhmHypJyMQOCN70vaJ840AT51xZ/Dy+crcU8CP+Nnxp1dlHMgnh9xeeut1nCMBeCOwyLMg6cRvvnuNfT94/hqthNgjd+ShSgMyB/XxTntrZ56I/PEf675+sSxZEZXX9+p79UK8V8bIbgxZli9H9/k4Avf53qjohxwMn+s8wlY/eIr7HAZxP3pRx1K8HNCP9tTtK0i7eKBz7Vaua/fuweZkrwG9MXnz1JjAOuy/f0xOalUPDni7JKIpR2lL9roWPD59F68GP9H7deFTmh/mTEOSb1X9drMSOCl73mGdO2iwF+l/dax3S2JPgzU0Pl5ForlJ/l+WljPYP74L+nEzdMJEui/pUZw7bzNeXVmAbB1UZ/BBwVQvvnzRSpfx1C/jjJG2PnYz+zoP+/ra9qoburEfrH4tzmLMc4kZ/WZP5lD2ipgf70jZ3OZnpXPIE32gcaO9Qmof6z/pBpGA/6fAmWbC1ZfM04sX7Ro9xrDw7yq8HzFSKtPmS0rx78+Gr/IlYR7gjxSiJv578cEge/TsqeoZU+9wNucuvFD6pJM/6K8F+a96H+wXcykJ+aLi8SxPcAI/2ZoQjjXbMFrR+vGUxDdHbpQ/+Z7ciLeY4V1J8Vnhe0HDbHwY9pq7rujIlpQf6lg3GjgdYPoD/9vkch8/1etL/oGb7zq1UkAriAA1910yzyP49KuVtmVfdR/9jzk9aq9gvAB98+TY9WhPpIL2b+xix7zBU4LqG1lN4TC/GZ0f7fv1xG/kQ52tWW+a4JJ/pbdLZkPXmJFTfgW6zYbnN21GCkH0fv9I4zDEOfD1tj6MUbY4enE7z6h8q6/GR0f7vjcVnJ7XSyf0ev/6PTeiAD3b/Gj5i0gWUj+PGqIyH3ijRQf2zjXruHagVxqD9t35AqxILOlyuEmPgzy+D8kC4wtf1j27ghcG/dc2p0jnvgx8XZdImIjXbo/n3OXHS4GQ1+7WDh8vstF/r/fpndPyasHuCbyfNlPruGJkW0f5mzoYW8i8Khv/z1opPTihq6PmJNf43/9PvhpH9bbGb+ERaH6q/06e1ibZRmnPTf+ffSwwfj0fMlYiDdJzPfBP4c0S/2J7MTvf8Xe7ZYLXhaQf9arqZpbfFpdL7rUsSwl2G+gcxPdXi04+3dBLT+3JQvojKZdGLk+fPb24OXvczQ+lffqq0h41gI/eurColD56XQ+n1UqdjGaG8F9I8lzjyL4UxG67+uef/qQbf75PWhCqQJvAmTRfXl0ZLWoFJYCr6J4GPRTaZ9aeh8uG7XN0mNqRY4H9ZYLe9yyhn1F9P1ehP3a//Ptwn+Jcpx8dMUOt+h3VJ/VbSI/DnNhetnGiUd8purLSSrJLSD/w7h6w8x7i+E+ITnygcOWVdg4M+FSewBjKg+6fm/CV6KuwPxv4QmZCnnkN9VNeJ9XLxteDTpv7I79tiOID9+VCpx7sqx++T7Re33brU+ZIY+v+L4mj9LT9KxYIJ7sBb9qyrORc/v/MZUH/c6cv9MFdtwoOarWi3kH+Q4cHFGpAP8WOCCMrehHtp/dszf4M9dVYWR8fn3fRv53VD/udE6TIOhuxD6y9bSgpfwhHqIP3b0qfX49Vrw57GKurPKWuj86fiEg2WXXju5PlKfKHxZu2BdC/nzNpv/LKc/x7sI/72kILZDehCdD5jvauQ+4JZMnh9Sm4Mu/P34zBTiWW2+aHZMlYJf31p89faV+l3gO89+UIzxbyXPL6ltihH4Y894yC+bq3FzObEF/HkyWvh2/0G0/9RhcY+13ZYD/tx7KriyyBjVTxWJfQW6gUVkf4hqxHnq8tnzgRAvobFP1vRsO/jz7sMvHovxo/0dT/OTxPLT0J+i0n7ahb6wUIX8TzMjxC/pROGXSH8+PSnbnoT6K8IX//nIelRBf3lvfIlqdhry28P7nq7UzIZhqmT/OfSj5ZZ3lyC/gPnRHSe9Kkg/ocrZxk++GkD9g7Quq525ag8wGsE5jUose+6g8+Pj51/E5YWHgD9nqrd87jBH72+2/dC6wxa1uDnhv0qKsd/UmND7fzX4S9jexlJMj+BiYsJ3FRdR/+XKTj/Dc4erof+sL8b50aMlDvisTuOeu12d+A/Cf7GbNcG2s5WQ//EPVfWEVDl8geCNpWpVbH6KED+p4M9pwx6KE/1Z6p9232fuCmj/Zuzq14aJFOLOhP8+8xl8ke3cBPnluO046xhbMRrpx/vYS71zUX/2nUjRep6sIuwKwRXN5gyN51D/uUkzVCH4VC1G9pdHyvtGvAyRv1bY3L1jmeMHfn0+Lix7NAfVp/WLt7/q2qrjfgRX6uLZtn1bCHo/Tz0oYJOOBP8t4+9avVyF1i+bcQ0/88pijPTrd7f6V52KRPVffp9ux9Rxf/L60ptp4ettKtD7HUx/Wn0tqRy3Ivw3TEp6QYQD1a9VNiUPu8YqsKsEr01zymT3ugX89ZzmphEr5M8nn9kZdA0g/wrKXyd9veoB+POG51tH3FhQ/4DzqM2RasH74MdZwnrXQvxRf275Rlwa9yl/nPTrvZ4pM6kryH/4D1lzcfY9IPef9BeBO19ybkfXZ65Hb1+UbC2mR3COuHdePgfR+/8oKWHLB84YXIfgtjy0S0PC6Py7c8vyzCn9Rpz047UBnxT6hdH/v3tYfV2wEZw/0bWPfzByTkXzDxqVpy+/tQkHf6a+afktJoD8mkFph+FRqwrwX547fXMS3Wi+IPjeb2NV4Urw50z/TY955pEfjmulvWB9Fgz+zWatnL3C7gw84+2XYnfVWvwZ4b99spMfd84i/3Ji8/qjrF2MkZyBYjJ1+xz6frn78zYIr4vGewgeMNYz+icDXR/NmS5q0vsGmM94ISE8mn4K+Xv3ysOnSj5VZP+GbkWptFe+i/ylO6uywZ/VE+KVP/XOKd5HfsJ1YNPRyK4G8N9mH8lQoc2WwPe84TR4vFhCnt/SK0u+fTq+Hn1+U4fqx0y78nHKgf+49rZwKedJ9P/ZHoQ5P/hZB/Mbb1/fyteYRv3RBwfV7qkylZPny/R3444pX5bQ+h3q9dwp/H0K+PeLmasRARtQfzuCb98/tr+10H/WSX3FcTkfPf+vTmJnJ+h14McmGzwP785E95f5cl/bxld2pJ/QKUwydl6jk3B+stG7PciUoRb8VycyIMzRFz3fl9q/Xu4ZLYP5DUEB22EmLvT/R0bK7a88z4L5jQ/GBfpy57yBc0/wfGG5WIuzk/3l3bmaibRj8P14DNNOJzoWgz/39aXt8TmB1o9P8jHqY26hOAfBFU2/+ftlof13656idUtHysGfM4dcnrcwoP6Resr40xXVWvDj+O9u7cw4ir8s4COdd/h/zwPh11M9Bf+McTR/cPolz5zx5gaYz2T/YCamJ46eL9xvOTnq333w59WCkxvYzFG8CsPY1pANgeDPY1YXfX7zlgN3VU5mFJ+uwQUJ/41x6RmUm0P9xbOCauk771Rj4qRfN8cyfXpfAdxIJtwyuSYbFyZ4Eme5DW8F8p/b+0XKRe62wHzG9oIEAb9/KP/HoStb7kWmw3ymSmswQyMD8suWT59PLF8vg/50uVday/skVN+b/hz8svp5E8xnqK0/VXw9LRviI1ZZ82YoFGHAd2mpUf+h/V/fG2qvQ0IszGfKrNUtUTqO5i9/pt1cv6DWjIcR/svar/SiewjNh+py31M0n2gAf5Z/p5Zuvoz8eoNs7tyn5UDsDsFz22TXSzWg+Uy5Ecptr5oH4M8fMyZ8NV+i+QodmQ/n1C07wZ9d3QUL4/vQ8zOkkfT4b1g5zH8csPMU7eVvBp5cZaW7sL0O/Nn9I8uJE0INkP+PhHMT08YK4GkUN/a9F1D9E7xz1jlTsw7mN4Q+Hj/5oYwOvPHsTEAjtYVcX6mza5PNNOtRfy4kgeVsWXYh1knwoUe0M0aS5cBTTKsitnTk448I7o+xb7y20Qz4A1+/gzfcmvBO0o9Z5RUcxO8Bf/zhhP/QqzaY7+AaF1Zq+o7uz4Lw0T/8KtY4Ob+hU81yftN9NP/BlRNRd6arljx/pSY9ijS5VR4JvDQrTvVWfyvMbzDxFH0es0H+pz9yfGuPtA/0r1POs+T6rkoG3ltup2/flIOT8xv3vrFsCc5G9Z3GsOIUsLMeI+o39YbXJsbRd2h9U3urkLi+5RxO9p/l92xq1P6L6q/DiNSbV/U1pF9Qa+2185aPoP2v+1c2aWOmFvDnC8VMb83T0f58WumhEI9+CMQzOZvYvuxG/rehrCO9kfs+Tsy3UoXL9I9Rj+UAtw7beCKbUorpEnxL5GWtdGdUn5K1oo/09BaDf4/NsQus7EPn61bN12oWz7dBf9l+788AKSa0PhwOpN0U/uIA/eWKQwbD0y7o/HBya5uCY04K+LeE4s7Hj8QrIT8lX/jMbZa7ONl/doyM5GOQ6YB4lcKBVHmRViyI4HxnZcw9ltD6yb5dZbWQczB2leCtA+MDwZ7o/fykzqwituALfsN2YHLtnBDy10uiFzKWQkqAO1S6H7QJQfMtj/rbO632ZwJXsd9c2TeM/IA5h1VMVM8QJ8/P2TpunElsQ/O3d54z/PxSVoG9JjiTvU2l8DTaP/p8y7eoNU+A/uKv9ZWbhoJQfXoZH1Zis8kbzs9plUUXbx5D88P6o7Ivd0TlovnWMYn3ga3IH8YWD+X3fY2D+LFNja5xF9H8tbuEdptpWyqcr1N2vMOX+9H+zn5iwzdG5xxy/09n2OVmuOX/m79ov/HXqpTdG36fIreXdY2EGNr/rXFNuv2OJRP6f7TThdrcDWj+ehmjfJyWzIf+4SrB9hQ9cbS/szk4rDFkn4CR/kRbNT6ckYf2rzaLb9/K2CWA/9B+zOxmckDnR3nX7t+pe1IH861/VR5wNUeg79/4PLeTt7EEeG9J5Fq3u8ivmr1m7Huq/Mj+EV383qGq13/Q/bHdyrCxUrwG/CdMTbksxssKuHR2fKcX9Rb8voVy5tCP62vR72uUtvlbipjHkL+foFNkvTku+aP1/fFQvLM2pQwTILlYpWNILvLvxKOHsqZpiXD+TuH72NvehvZ/SqL6arhWMPiP3DmTC1oRyP9PGvWnfuevhvP1U3kN9+gcaH76toFWqu7PAuDNK1wcQonIH58d5nR6uRf9vkT8ROLuySW0Pu77nMcYUPAQeOfip+e+Vuj7lXG4PvrgWYvmX895hIuE6sP1cV23TffyybvYVsJfgt4wVd38hebTGLU1BXSnwQ+pNPX4/Sdl0PXhmLsnYoSHYRsIrsT8qOelWiLkN6vJMdj/iAbn70KfBlls59D8quL5hIDB9eXgR/79+HfP3yh/yhrzhMu2FdB/zJMo7dromA/51SUFOw811YD/eEiVJZg7ovXrqoT803QsCf0+ZYZfiq8J5f9xxNjwl2sg+I+htDBz5io0v1prHbZj8ks+HkP4S3N/95P+GDR/aMhXdlanwwH8h3Yy7TzHITQfdJH1fGL0Hnj/qHs/LF7h4U8AblWgUa9jis7fA76ZamNb0Pq6W+z0vRZX1B+cixxUfzmK1p90Dcn3ruE1EK+WNRl24ibqv+idGIr9G9wA86vXLrGHSuF1EF8lWZ9jUNsK/cPz1R1c091oPs1m2qaT82ETnL/buLnt1aWg+rTqQ4zNtcEOcn2mss09njZmRn6StMh5eNCzECfWZypNU0+ywwj1335vNzzT4JgF86+4bpWBeEUR5HeeXX0zUacI+ofzT3X6n6y5A/HN7GlnJORwmF/9JfQofjMnWj+OD3L6ekfkgR+9PuYcdGIJ9dfzTTlDPuwIhf7O6zjLg6x66HxA/mHGe+chD5gvXOkLelNTjc7Xw5S8Llx034F5E7zTr6WkUhnVjzke+2MHPV3xeaJ/03h1xsCTLRjixe+OfvuVcBMj+mN0OXH/A1JDyG/+3fFv4FjtCP0jiv6DG92aBsBXb+bY+jwuHM5PM9dObxX1QOff8YxeWh3uWsA5Lh54v2CM5v8uhAfKshb6Qv+IlmBfWn8WnS/+ExFbGf+WirsR/Zux2X0XVj1F8z17ebfVXLBDv+8ptMtXrZhF5z+G91xVfGdMgM+7sJeIM6Pft6m97J7evTsZJ3+/01ypXVG2C70/v6be0trkoqH/Q3OJkf7Oh/zgWtPmkY8n/XGS702fGE/biM736vsPr2EwToH+T2/ZickHE6g+2N4x+Bz4SBnmD+O62Uq3UDSAM7odKCyoSId4yjz/81adKdi/mw2IDk08KsOJ/jR9zO7BuU2hKH7m9I9IyUR4/uhGU3ZXN8TKAld6pf9pOM6T7H/TKRPbzAQYj8Dn/9P46MNgTyb5/tDH2lhbeNWR/30yEOU+P1IMfsNU6h5P+4eu76uctQPy3w3I+RY6RfhR/zNtXeAFo1w716/LgvPTZqdX13FJ9Pul5dcC5lwDyH90vEUkQgpQfyXkdaM+z1pL4OXZkvGXU1D/VZ3B5Iq0bBasL2YaZspaSmj9SdlRVRig2AL7r71NE0dqp9H93WI/z/qtrxXWnx9NbXfZP6H5DLbIavZq7AmcPyiNu/kpZ6L1RyjzbHh1UyrwZjvVUdE1aP8bln1R5/HBe7B+MWbk04vn0f5+TiBltbJbHXl/qWP2qZofrqP5q33WLSyHS6ph/WmeOETb81Ic+AlXwcjjM5kYuX/TKEypCxVH+4ekdaL6MwcSyeeL2rtddLmsB61vxX+EfFYb18P5xQ8GT8el98ifRhtqZ22D8snzf2onr618xRW0vknrd6joxd6F+Z3xHIUHXzA0/6Lq8azd/lgO7L+yp0Zr9rz0Bz6R6lQq5JqBqROclnsuwOg8+v1Z8VNT1li3PJj/KWM/rM5/G80nuzQIlbC4VWBRBD8V5raW5zrqDzS/ODlk2mkL8/PZq0cvB4mj87tDLgxpiQ0p5O8LqVFbLg0f1ED9qbXdE2pvPodi+gTXxYS/B1ei/nswPeQz90Iuub5R+d+bLajYofkti3XBAz0vamH/9CFPdqO+Aqqf17/+Fe8uSwRuwmb204yCnu98uZJkUZ3DsD9bK8Lz1Nkfnf9R86RyrpRGYDeI/VP1klX2B+0WyJ9ymHutlvdD2H/RGLcUlfKcR9f/5zemx64FmBHB3++jL3FHofOLs6u3Wgt+r8b+D4sklnc=AQAAAAAAAAAAgAAAAAAAAMAPAAAAAAAAJAAAAAAAAAA=eF7txTERAAAIBKBo5vQb2sKzhQMspM9UbNu2bdv22xc0YViQAQAAAAAAAAAAgAAAAAAAAMAPAAAAAAAAJAAAAAAAAAA=eF7txTENAAAIA7A5w78bJCy44GifJmcntm3btm377QWso1SnAQAAAAAAAAAAgAAAAAAAAAA/AAAAAAAA/B0AAAAAAAA=eF51mwlUTlsfxiOhhFuGTOHSQIRClJ1jnocuEZlVlEyhUl2hkQZDmksaqVAaNWwdjZo0aDJUpsxziMj1ffe+zz7f+s5dWnet31rP0+mu9L5n/85/7zfnMRewZFQxb7dq3bua1FT+T7DBxPjS6Eh/EoXeBPk2UFNnVs/BK+Mo6zeL+qal3ia9HfMomfj3Vz6/spu1QTfrK/xq0Lmn0ZBZBdPIdPQsXwtaDGiI/2jsT3XQGyD/A3xxZNAjD+N0WiKzNGzin5SP2adsYr0jlo8HC753lfr4MYNsQ78GOWNke+GZHinRJAS9F3I3xiOlL35cTCcdmk99f6an858WFxYvOBjFt4NarXv3bPmcTIPQX0AeC570cuImHI6mFeibkDeA76UvBVh7BtC4oL+/4vjemz702/TBjx8K8iUhLvmHLhF/9N2Qs++r4Swti7ROk3PoByAfDEoPk56TdtOXqG8KUa3q6847BW+2SC7ez0eDM+rUe07olfTL3uG9j51iWxQZJepjwORzaXqJ5Sfpgq3/9Nzos//knAF4yXjAfhOdRFKyWdKrhkpyZTBiXkZaTlYSWSj5+dyIEEn+QvLzuf2RRosnbLxAdkp+Py564z+/F3cbvDzSQuVySiANQN9T8ntzCmBLg7H1h43xNBH9NuTTwHrVZpkV2xKpp+Tvw5lK/i6cB1jdyUl5zJBi+hN9lyWSXAp0bL10UHdGHrVDfxPXhYEnvhf0S/MopCckry9uleR1xe0Bl2kNXGeemUPN0W9Fvh7s7pKhs7wskc5Cvwv5AlB9UkJQot51OkXy/uBMJe8Lbg0Yot962X7mZaKL3gj5KrCfs+nez1f9yFj005DPBR/2H124elcSTZG8v7lLkvc15wZOepraPex1MclB74j8MBh91Um7QYaSAPQqyJeALfsSnbZ+CCPdVGsc186/z3dOHrHAqrKU7wKaKD9wylTeSlnPchnQb4iG9CmPI7TrL/rIvq0189VtaWX531+N/FePxP/+V8x/A3tGGVXIDXcj4r4drB7u0+gt60DK0X9Bzr6vIIp/ENL5FPE9UDRoxoq7/GsTEhd9skggv82p/8mtTuQM+leiPnRpzwPTMv93PesZ16+VnX0y1J8E5ewc8PHBbV7X+LzTwJWFvB4od6Xzyg9zTwn9VOSMA0uPZ8W/jyZh6PWRTwc793wyhtt+gZht+/urnp+A+6wW2KLc5/Ryj2Bqjl4b+STQZ8WAsElKe4m4nwjG9O+ywLFfBBnba3PqnVc1vKr89cdL+uQK7Nga6f+pJpTqop+AnNG88zDzP5aeo2rohyEfDnrlFawzfRJNJq7pmuxlf4t/1cXQ3vkyz78EI3/6qZz9HEBZz/IXoI2itHIP66NED/0n5IwKbw20X+anku8///6q5JvSd91L35XN3waVNRW8PbT96Df0jcgbwMKMzF2lRgHkM/p65DWgdNM190m7jpCTyz+GPJUr4yvM3clLzav8DfCMsddn2z0+9Cj6XOTZYK95BqvMa0JICPoa5JXgiF29vrjVeZFYrM82WJd3g1tSne0+hQfT6+jdkTuD1ir8rLr1MZRH74L8KHhadS5X5W9Dp+LvvU60vjvErqjdeN+FstfDCtH6Pf67gmFQNw/CXncLkS8G1xn85nPmQQoJxfrsi3XZA8wdV+C7uqutsL6vFa3vTw2+7K1YfplMQD8UuTp4IqF66rxnqSQM63MO1uUkcGS9nuK4Oh9Sjv428lqw0x7j9iU/PGkx+kLkWAd4n8rQSe+VvEk61udVWJf1QO/65HOjA/1JCPrhyAeB2+XSB05siyFn0H+XrHu8LPq48spui62vkMINkvVZGutyfJCEmt+89ZTuZpFJWL9z0PPgWPff9GXNUoki+t/Zug+qbtih8EE1hURg/d6D9bkCXHvPV0ltYCFJlPz/uXDJ/5c7Ar5Qf+/g0ciT++iPYF2/j161ePYfYTW5xAvrcx7W9c+ghlz45D/1E6kr+v5Yt+XA0hRDY53xx2goenfkumBf49py+5EXSSbW50NYly+DyrtacyxcC5m/ceeRw+O4futrsxp75tIm9KpY9z+jz7BvK+h9g1IPrM96WJdNQLs5LkZf3NNpAHp75I5s/b8bVFDvFUn3oT+JfC+YGeLe3dL5KB2D9Rn+zC0FH68cvbPXQxfC1n+8r4Tvq1TxOnLZO4WMR6+PfAF4z71ZZndWOinD+pyFdTmQre9BJ1r1rmeTGPRmyLeDK1vWqWrk5RP/X6zvf07w16vOzSMnJPcnrl1yX+Jwn+KWr11a57b/FrVCH4v8IrhpzsV5FSMq6Z/obZBHgCGVBoYnLWupjNTfX1Vcj6v/3Fe5d5L7K/dzv1pb9eI0KoUe92/uHlg5XzUlvz6Jvpbcn7kY5DwYE3vk0XBzN6IjWR+47jL/rAtcm2R94GYcem5uq8Oz9YP7gfwLeO3jvHL52alEFX0x8gowK3ggXeeYRXQk6xs3RbKucVrgmk8xZ+9cyCO/o/8duTIo03mjUVhqBtFGPxb5GHCk85YXf+TdIBsk6zPHXgfM95QO+z5oWhJJtqLHfZrD+s/pyLrmRr1PJlvQs5z9nIJhni0pKnnMLzj4BQe/4La/P/czyDeLJKM3QL4cvDEmdLbzxhDijn4c8rHghQuBs9f8SCGnJH7ENUu8iHsKZi1sXqS1I4I4o29E3gQaT17idMTqMg1C/xV5K/gmI32OtVsGrZH4Hdck8TruEyiTIPV+l2osrUP/A/lPsF91h0XDXHdyG/0QT0kuC/YK9b5cpR9Dvqj846fc9aR/vJR7Dn4uK/U7tqWSDJL4K6cg8VauH1iyqTl37p0k8hTXKyH/iutX7C97bbE/j4j9l7H7EOUKxb6nafdf+PGpzuFTXeT1iQx6KeTMw536BN9X+9OLlMF/8e/Ct4FdOtcvztzsT6t+4dfmxWPtp26fK/gzu45931gNhZ3T6kPZ35fH35V/Dq55prtGQ/Yy9RP58Rtwb5JCWr9ZW6k/epa/BbfbfB8vUxwv+PFkkR8fNFnsdtAjggaK/Jl59rrfprvPtQ8Xrp8m8m/pR0dHGtAUYgH/xfuHnwxKGcTtPhIYS7ejZ97MaGRgUBEbuftfPfs5W4NG3uXnXCHMjyfCe3F/4OcGm2166BJD8f7n8f4X2F/DzUvlY4jg19qi62P/ql6597/PX8x/v8J7P4MtIc7LvM9HUV30baL+8tV5WmeNg/7l38yv1Zbe+TZrXBz5C/57F97LOHLTvbIky2T6E/09UV/wprlTgs9Z0kly/xZ65tnaW7aoNq6MJ8Eify4HlZfVfLV+dIUGoi9Dzuh8pcumOYE+JEbkz3Xg6PxAp7O3vch5+O9OeO8O0NEuX/aIJk+90K9EzpjdMiO9bXkMvYaezdUOgXdMOn14aBnGnr+F+dYSUO317+XyzjmU9SxfBAZ+Hvd18EJLyp674AX8MtCx+rtubzlrWgH/5eG9aaD+91Pylp5bCOYP/EbkxqBU12lTap5GEDP0mF/wq0H3R25K6r2iSSj89yq8NwG08LxfuE0zkAajh3fxceBfH1cmLnq6jQSij0IeA1ZY71CtcAklCfBfLXivBhjz4kyobIgnDUSPuQ/fFxwQN8Xp8ZIkEoFeHrkS6B67dFebTzaZDv99Ce+9BT4a66/7ZHuK4M+5In/+JHdi/RPLJJIj8WP+ncSLeRnJfIt/Xb5uR8G5JOIO/30QKPFeTfjvxa3zv73u5U8mYP51CX6cDqp8qNLtd5ySDFxfgutOgZrHHu+8o3mDWMF/Y+DNjaCzm7p33q0QGowev7fg0Tr7hng9zLUl0eitkE8Fr2gteZRw9TLJhv8eg/cmgxaK9VqN7TfZfJO7h7wefJb+qvmAcj5diB6vC84OvNJs/0U6+gpdD/9Vg/fOAs9GP1o9JiONWqA3Q74BDFgYHxl95AK1QX+eeTe4Jv/43bLBKRT3Vc4C3svmYPtGFXvHB4VS5jNsLob3D6e0ryH2/sDzZDT6GcjngSnmCvu7B2SQq/DfHHjvCfBY7cyfUQnZ7Pmbw/M3h+dvLuqwXONSrTwShH4ccgNwsp1ry6C+N4kb/Lebxf/7c+O8Z7KdTWupE/oC5BQcNDKsoPPhKhqA3g855gfcnATVy+EO1VQaftwX/vwe/svt1uw/JTqbYv7BPUSO+zNH784YeHFhOn2LPgF5Huh626qq5fhBMgH++x3ei3WCyw0Nl/6oeoXMRN8Vft0ZfFXfdj/VPI2MRX8L190BzSb3zjhNrpNJ8F+sb9w40KDX3XubZJOIOvqRyEeA5pXX7rsPyCBT0bPrxoND9Sy/rpQvF/xZE68D9jw2SaHnumb5M5T5M+YYgh/bHqPm7aZXyEbR9cy/94/rMeLcliLmFxz8g4N/cCMdR7weF3fil/5sL79t43VpW3oE/SjkqqDNAdfBnTZQNl/kHsF74Vfcz+KLFi6PE6gr+vvIH4Az/b0f5z5IpyHo25F/AjULu7iqTL/K/I+7By/+wPzYfk78iKGZtBY9vFDw6O8qZ9I8I51pPfr+8ObuoH7aci+7XXGkFf6bB+99Av7Rnmq1SvUmUYY/94UfM0/22FxQkmyVTO7jennk73D91PCblhOOF5Au8N9e8N5uoKpZqc7WIUFECn13kR8bq+7Q/sZvItKinvm1zM5hhn0DfCjzZynP//fj/AWPgyI+pJAC9Gzu/BGcebNO0yrhEK0QXf8dfWj9lPEbgzIomx+3ivxYSX22hpEnJZ4if34GFjbOeXyyVxANQP8Z+Qdw8IuUaId5RTQE/jsD3svmyKSkde6KwQXEDz1BPgWssIyzbLafRdj1M0XXL1yodirtapHgv5hjCB7s169WeYp7Htks8mu8v/i+cb3Nb8r5sPefcB3rr9165Di7rESYH+N9z+M5mj9UejbF1SFfmE+PQq4Ohr0KdjT6/TzF/YNXQc5+zsT153ZVN5dTDv77F7yXcWJX6eMyUYWCH78WzadNumWt3NJJnzL/7kD+hc2nw865PDe6STvDf9n8mTH5kfSz8q+lBPMNvlnkx07a9a1XtSzIV5Ff14FDd/UttYu5QYPgv6UiP+7zdmLJdf0y4o2+EHkeOCZzvlWudAib7/DFyNn3PZU39myWviHMj7EvJNDCSPG3vMHZgl+zubQlGKlqvzjmWsS/5tNOYM9REQp5XuVs/4vHus4bgkV0xYagw/lkkqhn+9AJii7uizc7UOyP8RuQs+/TSEkKtlUopcHw3+PwXlfw1tLQ5D+sSgR/3ox8HRhgvCKq0jFS6LeKep1dHy6sdc2j5vDfw/BeR7B7ffKYQzXZJAQ98+p4to+8f47f8eXnKOuvIL8EvlrUfmWCfhmNgf+OgveOYHPmfiEJk0pvCPvHWqJ+1ZSH3b1zT9M09IbIMV/l8w2rNQzjyulD+G8AvHcZ2Pet5+KGoHKyA/6cDj8eDfqfPfF6bYYtacX8uh5e3QU85H17VHSXEhqA+bMe5s4Z4JDmTsa5dXVEGfvPW7Gv3AHWrpbK2vg4jTjh+nvw6pO4fkWCQnJBVg41h/+ehjdXgRfktFfurSwiJ9C3IJeCH292t/7Uv+gCe/7gsG/PYR+es9t9wXSsXBU1hP+qwHtXg3GxBRmFv10iJui3I98PHtp5O04nPp9y6PH64MzAeeHtw2sNa+hq+K88vHcK+GKgoekebZ5sRj8d+RIw/fvbE/e3XqQ70VshZ/vQyS7VyoZStwQ/xr4OtxxU1NqRecWvSJgvz0GO/Rtu5p7uWd8vx5Nh6FWRTwH7LJw6yF2mkIbAf4PhvfvA6O+q65/fqWH3Bw73BQ7P31zB/g1ntGRyiSN6BeRTQD6FvNink05dRPPnm+Dnn+djpw8uoEfQZyHPAG/NC/l2bFgNPY7eDXkCmNh9kJxW0X02v+B+wHufgD0nTLWtqzjP7r8c9v043H+5ttUh/LKWTPoO/XnkuaDcxkOjreyr6ST47zd473uwx4DZpnFOlQTrD9cJ3vwTferEQ1oLhySRMSJ/vgsu2asyeGdjOtWD/06G9zKPfp6x9/L73jX/8mc2hzYOd+ZubBDmUxz2bQX+MdnGbOi8s3Qd/Jd5M3ue+jT9TZyWVa4wX2avo3Hg/rd31mU9DxL8mV3PuKTs6aPiFTxl/oz5HIf5HFfU2nTfRr2MXEK/GPkiUH5+h/7yGwGCP6uJ/Lmt1LHxxm8F9DT894nIn1VCDWZbZ2eSQ+jvIGfcvNtn3PP+ecL8+Yto/mw8uj1STaeeYj7K3Rf5c5TK6KFnc5bSEvSfkTNmmt0+ZaAfKPi1Ery5K7h5Rsml4qg0+gH+WyaaP+/6cbqUylaTnvDnnvDjHmC3jshqu4/p5AGuV0Teiuu3hzpH9XyXT7qL/Jl58FvpNpve/qdJJ9H5jk5g12mfpM6bbaG90DPvlgOdlzZdC/oSwv59+B+i8xnX0z/f031+leDfR5gvM9a03XatG+IjzKeZdzN/rug46PU045owP2b+/B78S668k0fn68Qb/QuRP49ptsy38A4U5tPsOjZ/NnVPmjjKsYwGi85fME9u8vfw6+dSRFjPiXr3134Faio+1Fd0/kOHefa97RW+QWXUROS/bD89VW1ZteOrfOF8B/OkieCITXaJCyeEU1PR9WyeWD5ks7SfWQnVhP9qwHuZJ98tPTpitEsGmYh+nGj+7LNYXi55bbDgzyNF/m2ycPqPxAk8/dX82fBKS7fSGdcFf36LnM2ZN9kuV/80MEDwb2nJ/Y+XAm9mtJvt7sinH+C/tfDeavDZzgUJkf5XySf07FwH+74Xz1bTmYfD2PyDfyCaT2cbTjJ0ay8WzmfkwHuz2Bx6o0zYYdtcYoM+E3kSmOPqW35v+HG2Pgn+zYPHhoUVlT4pFvyZnbs4Aqr2+ausSjaT/MqP7esfhLdWp9C76CORY53lwydnv/axKRTOZ7D5MtZ3fnvT/n730ilh5zvYfJr5s7OZg7R+31jh+qWi60cWj9yt5F9AK+G/10Xz51fRc8cUzSoU/HiLyI9Lt49YLBfmQNn5DiPkjOeNvd6FpOVTdn6Dh/diPslbasRGP4zJJpXonyDHnJKfoXhjy64XicL5zGbk7JyH1pAEh3Xt+ZSdz2BzY3bO8njRjIPjE66ScPSTkY8El1XKzP8cFEjj0a9FPhGMT9XLi+x+jWbDn1vgxZ3gz54rT5x90pFP7sKPd8CL63C+Q+5b52c2p21oIvz6K65Lwc8p6/EzM3dmMVWEH2vDi5+BO4zk1fosuEGat0h6fXixI/rt4U9DWqN8yQD481vMr6/BoztfNFKqC8+nR+G/Y+DH18GJPXuZ+trkETZ/3oz8AVi8+VT/gblXqA96W+QPQb9AxYDA2Ep6SOTPe8BXMhWTHh6Mp+/R4+/PPQZ1z7j8WDE3m95Efwd5HVimuC7q4aFy6gn/nQ/vtWBz5ucfouLD0wk7v+GA/DB4ol/kJSuPCDodPc4dcRzo21K1+Ci5Sdm++V54L843c+W63XTlOooJ9gs5nJ8S5tDfvJ2Wazv4sedXbhZydv7jzPzMF98Plwn+zM5tWIHjR31curCxjkSiX4t8K/joY8rng9HXSBz6QcgNwb13qnpEJRdQV/ivFObPVfDfVS72+uXHc+g+9BeQx4Eht5JvmD0poHboTZEHgb/dUx/Q9WEF7Yr5sw7mz8yjdUn/zzG908kX+HEHctyHOZ9L5hGNpqn0JfoS5MWgimyW7Jlx5VRN5M/N4FT+hey8+FvC+Q4F+DP7vmHFM/vZWh+kGuhxLpB7BA7a5nB4iWUB/dX8eYy98Tvl3GoyQuTPQ9n8+cux9T5NJ8hkkX+z+fPuGatPqycm0bXw35F4HaiBl5pqJv8IKRTOb2ggZ3Nm7wD1135311A2v1ZHzvzbqMfyZH5/Pj0F/1WH944HZQ8M1bM5WkHiROc75oA1XPD2d8EB9DT6McgngOVUd2uCTRE9ITqf0QI6WMUfdu+TSezQVyGvBUPeJGoekM6g7PwH/EvgGb9O7x5r3qK34L+PRX7c66CiX5KBI72JHucOOPgjt1k3vqnm7gXKzm8MEp3fWHPrYlJEpyz6Hv6bCe99CI7OWWjkM7qa9IM/w28Fj44zKT40tNyfPMP1XZF/xPXn1IcPPNB2ikz6hd8UJ83UHhufQbTRvxHND+XUF74/+uXSL+eL09IKJh7os5P+av9c5p1u7fWLPJEWzRfZHHF2xIDZa36LJni+Fc613gEVmx99PFfp+cv986pnb9267UgmnuivifxGbVVEpWVeJIkWXV8LHq1YE+HbFCvsr/8Bb2H765ZlP+JddyYRcb+Csfhd8bFbnhTn14TPpZiDxW1vrlhlXxLmh+xcKvOb86ts7RsfpRB2HprtqzO/iWkvMohSimb37399PiWIbhk1oX+08PmUKHhLHKiqGBw6Y1kh8UeP84E81he+Ve3OgtH1GWz94R1E/W3ne2E50afJNviLDbwF+6v8Kv3K7rXteaQMfQXyavB7oY6BW19P8gP9N+QdYELXKYsb7cMp2z8fDW9h51Qj7Ipq8puyhPOt+FwFrw3Gup0r0ZCPIezzLWy+qA5GmVsfenjFnzbAfyzgL3qgS3Ngnr9MHmG9GfKpYPYi69CpNmmkDv1m5FNA2z4qqxePSiJ9sb8+Ct7iCPaVH8M5plYRNfSHkUeBDt+UOhuMLBA+vzIWXjQc3PVF4RbVziKn4S9X4S2fwEHpj1WnDs4gfui7YC7YCww63Xa6MTOIRKI3Rj4eXFv8Qe+y/Anh/KoDvIWdX920zS12/DVKcX6CO4c8GlRbqLDGQIenNujzkQeDb02XZO6xyxfOrxJ4iylopn3H0Do5huL8B7cMuSFYY6rQptbFj3Lo4e/cbHCo33Yll2Opgv8Yw1vY+dSVCzpMtHo4EjxvCvvujGNX9tzyrP5/51c55Oz8asK54rDLbhkkFf5yEd7iyvbPU5RMvuzOJd7o1yBfBf7VsVPx+ZJ8Yf99PHK2//7zxt3kBXHF5JTIf+rhL+fcB6yTvVDNnv+EfXc2R5z5Jnbw0b3l7PwRF4icfd8KBW5VD9ta2g3+0xP+0wp/uaZ3vq7wTZqwP9+CnO3Dv9lic1V1eiL7/AGXhrwcHHLdpsQrOZ1Ohr/guZj7CH8ptBl7++PRGwTnu4Rzq3j+5qbs769au/S/9z/0DSL/KbC9sNNhQaCwf8rmN+ycYVms4Zsf8seE84msZ/ujDevv9G4w1SA9RPunsuCna7aKb7q50lLR/IZ9Dsd2g3zp89RjwvnEdlGv89pE7bOtsP4L5w4Zq/vKPrM7FExPYn7Dzh0yblrhLOU63FToXyJnc6AhTXOHt6eeEvZf2b4ro2befE65exyNwfxmLuY2jM8+mWj9VehP2PlD8fnCh4tU+85t3fvLfqCFxvBEp/N0G+Y3E7EOsflNoNO4+/ufhhHTX/RBXgbSHSN9KJsPsZytd1l2q2pXnbtA2f4o2/9UAw08GgaofjcSzh+y+RDjxmnBUksD4oXr1UTXO2YkXz14KpvifAffBG9pZvugtZlzwlelCP7DzhUybmtZlDE38DgR779i/s2rnx1arDskgb1/+EfwFrx/+BPvJ5FjvTMEv2H+wzzJpuL1S+0MS9qGnn1uh7G61NlV4XCCcL6wBN7C9k/fWPQiJRf+5z9U5D/vcm4a3NhuQzzQs7kRmyMd+Pp81ouHCRSfD+L+wn0DfsW5uE0MbH9bITx/xSNn5+cvtXSeFnG9mvqiP448DXyZtcK3+6EGtr/MdcP95yXuH0pG77K23omlbP/iFnLMx7hB1q9Vj7zJZv8+wvn5QlC7co7i3i6FlJ3/Yefj2fmfH3ez9RY45Qn3H/Z8xdhuYDZDdnkCGYI+HjkFO41VqmjIjabjRc9feP1x/Q97NTbUFgr7F+zcD9u/+NBw4FS0ZioZg15Z1I8yTlig8WcW2YTnJ/Ycztajo7IvNs7WSWLvr3+dnx+kZuCwXfMSO78gPJcx/r6k53htvRTh/A87N4/5L3f9LPd430KeZKE3Rm4EJnuadoq7aE+OoWfPXez8vP6ftzUOvL9A2P4F5tYc7mPcccPKtTJSQcQJPTv3w87Px27V8m66nkwD0XcgZ+d/bh5O+r3HvgJh/+KBaP/i9cg7jTMnxwj7E53xXIVzLJzvk0XzE1bMpA3ohyKXA5e9+zKsyjaEvMHzUz6emx6BDcduLT96qooMwPMXOzfPzgEdO9dxukM6TXj+Ep+f9x3ELwjOzyP/AZ2vR4w=AQAAAAAAAAAAgAAAAAAAAAA/AAAAAAAAJgAAAAAAAAA=eF7twTEBAAAAwqD1T20MH6AAAAAAAAAAAAAAAAAAAADgbz8AAAE=AQAAAAAAAAAAgAAAAAAAAMAPAAAAAAAAJAAAAAAAAAA=eF7txTERAAAIBKBo5vQb2sKzhQMspM9UbNu2bdv22xc0YViQAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAfwAAAAAAAAA=eF5jYAABh70MENAAoRRsIbQFmriLLXZ1MBpmjgUa3wDKN0AzDybugcM+BTT96PJwcTR3wOR90PgWaHx098PMh9mLHi7o5hqgqcflPnR/wGh0cy3Q1Cug89Fo9HDCJf+jfpQepUdpWtMY+RJH+YQhjlZ+OOAojwZvfgYAv5jpCA==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAwAAAAAAAAAA=eF5jYACBH7sZIKABQj2A8j/AaGsFZ5nXj8yk9kP4B6DiF6xR1aGb8wHDHAjNYaMBMc/eBMXcG+jm4qAF9mDnM+yxgZqrj2ouVN0FqPlf0NwJc7eADSrNAaU/7HaBmquG1b0wc+D+htrHsAeNhspz7IHR0HC1twTTXFBzL6C5F0b/gJnbgEbboPI/WAdAzLOH6qsfpUfpUZrWNCzfwsqXF2jlHnr5ACsXEflZG6V8uQDXDysvIXxC7qA/DQCHxSIAAQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAHAcAAAAAAAA=eF5llntUE1cex4PWLVXwgCC4KqIsUFtht1XQbbiUsLVlhVrBRk5ARBC1QCsPjQlKIcMbkYQQQ0DkkUAIFOWNWZQfTZZFoZZdwfW0Ht94LK5HWdq1arUW1yW/O5XZ+WfOZ7537nzvd373weP97zpEpm9mJUzfeSLkoxZmNBbmpaAuQOYxlttBfK6Go3b2L67SAAtnY7t41EuQDyHnEvqe5V6IXGdhQSVyNfpQW5ipQlahzuD7YmQxsoTDAsK3n/ZnsnA8aZ/hNwXbf47tjyCXW9iMLNCiPx3qOvRTi/7q8X1kngb1KtRpzgrUYzh5CJAziT/Hb//LfpkMbC/B9jSPfPSLeZnRn5nmWYtM/XH/s5wz/iLkPGT6/+j/zUT+jHjN8BtDembkm4jtab45yLnIWIcM+hHg9xn0y6vA9lnotww5hzN+EXIx8l5kWh8xeA8lz+xe9isi16Y5K2DLhUCXi4F76HMYjRTeUBRkI4shdvjV9jVJ+RZmVDD33V7mkrAIdQWca0sKy/BTIOfCuRnfkZCKrxIPxL1yBDmTVGQPjJ18rEYWkAS/ZcHW9zSsr9//KO2MvF5hcprON8u0qWV0cctokalzul9dwNjxBxNz7unZHBLv1o7uWt/A5vCpVbSkP6YV2vqbambJTmKuWBe8SjIVdG0df3E7KFcc8Ogo7MZ8alCvJ3le9Qt9iRGuexpv6uO+QL0Y9RriGHIn+RSvG9aclUXM0rWjTue1hpx+Ojmm6Whi/QUPGbPaVuA8euEk5bdh4oj4MvY/P2M6rwdtlEHY9Hh1psvRGycYvgxuejx+5aePaV0qoQfH7zFPesLZoAFPqXPq1TONqOO8fTGvnitcy4d+0oJm1fAfmha0c3Ql2d2zy8fXpR369sDba5/3cPxricuGgdDflBnhwYpbtnxPqlewfmvtHeZZJf0FNGvfeOf98E7WH9Wdvlf3d/kZoSJ2jjBJQr9P615FXIJLPvi2phWgd92TlrAa1FWoMyRauMb7xrx66ClUrVVMKWkdo55GvKSXQsbatPCvmKHmhpIiTv8M2bA9rq14HwME87T9UOnmP7Ab/pQ5/PXKNJpnIXyJeTo4bhncG6qGHy/vELZubUCdrgO5ZHz5/voFA3VgXeg6kvW7DtQ1rK6bv1VutmqFpTqbHJEVHS/Nq5j8ErVK7hXRBR1P3j32ztddHF1J7u//60SdwwkgQY7NGVs6Of0Xk1vhqf+U6tsgasjBrmHLcc54lWTSLvQb3WYDXFyZ4HJHpOXoaeTYzw9D/7FUC7cf98KeTw6iTveRQpK4rSfurrsGPOxtPAw8qtO8Y0i/T8vC2OpU8MQ8d5xyswp8OxG6DbKIN1wL2O91Y57GbLvAoVE17DpluBK4vub//Lxul76jCjRwv/ESOZNL61fJ6qfdfL/VhOthnWn7ZGMCzesIWz9F3n8cnL24GRwVn6ka+XpO/ajI8Jy9gxHJx8Ha4d8nbj7Xc/rPJaqtZeOSQANU+u384EFzFcdfLvEatBef4+vg42brv1n7lKKexvqrnaqL2ClVg2JJwuGwzftRT2Hfnx04HL7TvxAcYaovOCAVdXp+4DHzW5xGourSwRXz1DVN5kR6JkCSTYbv2Si6z8UDYJ4jh33eG/TNhIPVfcGb+o6hLmb9TH3eaL23Ix3EptDI1wPpPkf3nULy6MKVxIdTpaDf/I2Zn9SEej7r1zzZWC76qAyEeZc1yzKqOXkwRCY6/+RwoxocTpbGxe6m+1Ih6kriztyf8l6vgZINSpX8u92c+kkhaU7p8gH3PNjs93dZwDNuHrmwcc5R3vxeBla/aSu84hPFyTsFIPrc04A2CfCDDe5uw/R5DNuPNuS1+Q1mH1iIefLUQULtIjcYjRNdHS8RE9u6pxKiVpoMWSc95MuLSJdDa9DYQbXprSbZ8JLOYhKaF7soP7bCtFKXvm/PNh15+sjx7pt/rjKFLN2VdHOVkgh9bl/9xFlrenW/OjvdTUn8J/zfPz23zqRlcrKP+RwCZ0N5i81Uven4+UrH1cvDyaztPyzc/kODacn4qFR46lNy2Tkks+N2o2kkcrZv/EdxYBzRj8++9AXup3SeSwmOBpmua7Su5ci4LgmOItPzAs57gcHCTDnqdB/CeUjPG+x5ja4DEtL68vnFnD+zjtjzEvVTQHZO5/3r+ediasFVl9t0/fp1v0jetrFP590OReeTc54lU13B6oJr/xksWt4Gbz268PA7fSvqpagXE75j+g0nUTd8Gd2u/rmcvo/nZl4zsVK5L4KHXWC/rC6x42wf6lVs/1/tOHSnZl4nbJiQn/nF5zRHV5H7TnJxum0HPDe2ZCsW4HnhpfXd1ZDf68FvAqfv66Xe1XQ9qYRN++YGR3XRc1kxyN7buubeLbo+qyDsgFFSsIDuJ7lgEws9q11ojjHwX8S0cmc=AQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAZgcAAAAAAAA=eF51lntQVEcWxm8UUYQENj7AsoqHbDYkMQJCGDkMckFEFAgPYUAYYN4D4oICCuiQuQMGEIZyNGiEEFSEKL6A7E7Ei7OORCWLSkAR8JGVCRAZAmZAJT5W3a3a231TU7X9X9fp7vP1r78+3ZzL6rxZ7x/VEevmk9sspHCmPX4mrOaYjrKsuTGZKYW+NtN2SUaDTn/Sdo3cJxvHib4Yg0YqhlXMfH19tAVhKwGCaVS++iUZkgSl1cVT2+SVOqp7cYriAwGMNTg9tnWt0RFZHJnMEAscZj4VePjHTxR/Zdd/dHVL+iUx3GbyE86z2uINOWzcdjxcWpYOvki/X4t3fZkIRpn19deDa6urCmg1k5888c6Fv8tkWJ9im0ERq1LhPplmSFDvlUAxM15/++MvRUuFrN5vDvo0HuBhveTv8wLqdgvhNKOHjIinjluL4Bajlwz0cBk9mIvjRKHnu5kSKZ6vPyysHclJwnqjcmd7j7vm0HuY/C2Hdjm1kixP7pKvfXvu7cJ9fXniaB43jdUbLtcMbZHCL0hv09Msm+/CWb0r96l6R0RYD9VXOJ57LYnVW05FeTzLwXHnHx87lkZmsPOfBAevu5sOI4ivqqhX1pmF9eaLO02eZVKsb9fBkHPVoTtYP9RLXlQEBwEaT9k7KetTN8BDpPeTOyILPxJ8kB8ehF1zXyZg+R6PmHWuncf6MYlbN/ueBMf1fEGeuC8V+3Hw4vabb4m3Yh6h4pZszqLN9F4m/7KWS24e1elYn1Vm6K2J3Sxf1DTMeNQfR3qZhvKh/ll03kzD/mXaGbM4x2z+mNn6+83y/79GfelvHTI7AYqQ35Ob6PFiAfYX5Vj1qrAtBvyUg7zJqnodIUtq1T77A+9dP7uMJ6dBRcF8niPnv3qdjlmeFiWx923ByQyJUgblTHzoBv9ZcQqFz4PSfKv9aTIb/Jn1Ke/X3FWSGBrXE4vphIvN0dhPQzEuPyuW57H6Bm1fWXvtoHG9qHz5q+B1Mj4Pj47RO5zETOj/Qmuqt1LqCP8mH+FoAnt/H9b2pniKIZ2j05puVekIsnJFVooYShCP9T2dH60QQMAiY8vio3U6Kr9dpo4UgxHlL5zr6pUdB1zE57r4+BurSLY+vX0mvKJExvKJ0D4NDBWy9fJoW8CEjQDHyY0WsW/alZgP+bTHyfJQNqxG67vkxbW/CaOxX2JsJL9rooBk9PVYz2jt/Sga+YtU3m29+TwX5Mz+qO8becPR62h0fwT3ni1snc6hpxCfsed2/86XQwXa//PaLzraRZhX1F63/jM9QuhlxlMfjCjnEUK2vlgIEl26JZCG8jV9Y9PtmAZlqN7E24sd5FJYjXiGVFu3TiWwPG//iyq9H836repA8YWza/H9pKpnxrYHCLGfKKNxcIFdMuu3xf94OiTj47h+R9TWhkgV5jmkXvjVxbEcfF6U+jLXLpSH/Uao3TIDBqKxPjv3eR+vr1NinlGV0XUbvPNBhvyyuY9ufB2I672HdedCZ24W/SvDpydppuO94WSoZPZvapoVtCmc5Tn0KCSX885GlqeXsevOwzTWnw9KjWtF8fj89J17vhp2SYOdyO9LrotigA9cRi9xcuWVLe9uggeoHiwfXzXtHs7yrBlq0Xb6gheqHya7K8FGEZQhfy61Ca2+lwJNyJ9/cq9wOLQJxzX3U41Xs1TQw/A03T0UQe/byvq/JeS7/vmvz6P5+kaHklclLE/n5eXTT37Lp72RP0+5fh/HUYCU2R+pn2N03RcJQ4x+u88LPWasMjBP4iZUTgR7gZLZf8OwqVkdJMe8gn/LSXWMisP3nZLel3c3rmHfE+/+oiuhvjS67+Qaledbf0mAz1C9vK1tL1sP4I94EmOTHKtoGEY8H1DXeH5umCelfWIo/yeJ9yMI1+z/fDoW+48M2nD+xsooOIV4quILlq32hz3Iv17n3x48rICbiKdSNXzcIGR5qrbbl4h5NOLpvPFEh8J1HY3qkcame1A2WYDz21lPKOd05+P75+bZ2OuwdCPWP1Z6PTstk0+bGD4Jl1o38PZz8H/gw4q8xNQl8ZjXIn6hu8vmONqA+DNtC/I/0wIxr/81VM9RX438xbQKs/5qs/Gk2XoZZvlemOnB9aP5XFuoFR//7yh+0dKpcCH7vyF3f3Q04VNoQfdd1nx6+M+pMIDeo8TRAQ3kQjOK+1m/edgnB0D35ep0w/oXibhekV32Qo2rgsbv0QGubemRnTTSpT9bEpa3QIDfV+LUpyscmwT4f0u8z/1l6xwe5v2D6I5D/ZAK13NC2i8+0Cti35PL85tnHMTYn1T/zqAl6ez/jSK76h7diMXvKaFQUhe6PNn3pnDu1akuEaDzoKQn/rZtjgj/lynLK3Nn3suBSuTftZK5sZkqwO/N4x8eqUfCIACtXxSfVKuKoBHvI0dKBl725cIaRp++0Acmsin83hzR/eQUuqIA+1d/0SNrX8dndA9znvrA+gGXVSLsX/LbsZpSgxTXW9LH91hwLJ82MuPJs5sXWp4WwH8ASciP0w==AQAAAAAAAAAAgAAAAAAAACAZAAAAAAAA0w8AAAAAAAA=eF5NmHk81cv/x22VFkWhFNJCC6X0JU1OkUglWyhbV11RIntkPZElZSfbEbIvcXAsDR9OthQV3W4L5dKGFtlu9vzuI3Nmfuff5+M95/15zWve7/fM2oej4wNGTKp2YDM03n8FcKEf1PWcsJ52hoa/eRp1q0GdviLeE/M0RbmXU7YGcIWPwJjmjVIgl8ivpympATlcT3R77WxBHuht/h1P69fZcUzzkx2OF32lMNtjyobC8/9PK7LVLL4nfg3zi3d3r36/KAs+rxpys7rUSFVu0CiIPBmOeU1TyBLNeku45Hc8m3JqvbvE/60+/v/NrJv+Rw0jYUT+99FuehUV9fRti5+LPo63HbW6ap5/F/Kj76/jl8k4avgnjt+v5FRuEpkDxdH3L2nfNK3KdQvzhvcvF/0cYoAW8+kDP9mlwFFIfdmJeGfMa56tK9++qQR8Qd/PPGQQuGHnecxZ07YSlyer4Fr0/fyuSr55Ut6Y31Hk3i1ZWAlvzudPswyqst5ieQbnb8Ao3C1qXwYWzn8/zfM0YyQ8kOirt8JVzWrWGWTO60ej99FW8V+Nw+sLz5UOMJkPwVOkbwLIMfavs8L82pBx2MeyALgY6cvM9310NiQAr3/4VMEY+1UgjET6ZgnM9TaEEP06g3V2BjfEAXGkL/3s7AYzbU/MZ9z1jSpPZEBBpK8ddWYHzxMdzLs7/rF+WusPnh5fbvlTJBvqNz3LPvT2Ktm/gazFY6wsML9/aTSu/dqnwJsDmBs6zL4piKlC/mDS+nPkBtI2BmPu9dL54vEfLBiO9M30XjawRJh8n1dLSyvVyQJ8SF/zSzl3Si6r4fxs34VXbA6NgBx9LR2bWi/QXDAPjky6pjXZjPWVWqtwfCz6BuZ8VctsfrR7AY5/t31QCjh5Ihhzfd4dVR+elIIYpK9qd+Bo4KqtmDf2u3UzXpeATUhflrgl3LrGFeevKj7VoXDoHhid9x8V1OZ4NPWwBub5u+mTJrfzgMOLGYnOjaWwcGnq55EpB7y++o+XBi3n68Ez5N+WsL7UJNULOJ6ekxNRJWIKliJ9tZ63Npjo0jG/3XHDqABGglSkr0qvwFLFQWvMhzLKGsZkm7G+YgErTM9J+WNelsKreU+zBKQjfbnKBeX7xi9ibkNX9KNfbwHtSN+WXa47Hk8Tf/fcWdW9haKB5Ujfek/ZJ3VmNzEXNOW1z0wk/r1eGNHox/THfJuHl3tAfBanPlFrnX/y80UTPrxrZv9X2m24EPl3oXEkdcCY1AdH96J3u1l/AF9dR9qHulwgxZJ/EmQeirlda9Zr1V+3wCekr1T6D3ulEzGYf+/Z9NVlpAZyIX17PlreS2jUxtxKWV5EuK6MU99oKZuiTtywCsH6yPW1xw2HVmN9O00i01ZmRJD4Z0utg8pTsH97LONOrAhPxPxpjS3rmU4reIf0DTm5YFeffxxef++uDq7hs87o/LGpK13yZtKWdBxfL2b1K/1sI4xG+rZtzVjwlIvUl5DwyVwNfhZcj/Rljm5e80gsDfORrg1lv6LrIB/SNzg9IW+ZpiPm8SOJMTWTNXCqWsGLWzUWnFnY7aZWUIy5m+0/Rhv56mAP0veF3vjysAu5OP+r1n8PnXj8AMogfWvUNurcfv8Ix3uEHnBsV6iHsUjf/EsdfXUqGTg+HB790TlXBBchfVPqlOVH6oh+C3V1g/ryHsHbSF/lO9UPLsTV4vjd6hZ2uXvjwEuk74jH9cVWf17A8Qfvirfw7D8MlyF9X7vAEK1hdcwZDcG5rk6+MB7pK3Tz2Er7G6T+/1seuWRiIAYyf/NcyqrSK037sRPmm33PViyQ84Yrkf5azmPWl2QDMe+7Zu8RVukNt/7mkZRwGNQVET6FuQHbvDCxNABw9oc9dqBF9qElOV9WWdW2yX+Cwd/6R9LoAR0xp6dI/3tc7cqVvpoOZ9811wvdSgCL4jyirO454vWdHwuNp7xKAQnz+dNO95674fya8L7F77K0VLKBJKr/uVvGxGSKfDH/Vnmi6kV4GdKPSXskylA29DuD/7/6Z2d7kf49fH5qmGbTtwatcLxpj5DShEQRp37QFFxNKn5evYX5LmmfVwMznrAT7a+WjRel2mKB19dVdY2hrakAYwdHlHIs6ymLnU9AR68zjhd82DF85bIn5Ow/92BDhoAumX+2epuprhvzh6cZX5xMbtdQbP2EDWZvRDFXaTd3DbBIxP7giWpzm/lkgLl47KY88F//nZ+fWFRPQqatvtpVnJ91WqRKW1EqZCD/SMpUbXJdQuajaA3ev7KSLsEM5J9jX8p8i4+44fgpWv+egHV3oCjyT9R994GpL2GYD726EevH5QslkX9Ur8Qd2uxK6uei7ytTl6kGcvo3JXvEXCVG7CzmSrVif7JTAsG8PyNpgkmlbOe9lzAXDcj1Y0tkw+xBcelggzDovUfRYc0Zc5x/8aLFyS47y0AI8g/forirg21kPntR5X5OSDqdM9/RHN8kSb8ocyX/f5jt2NPEhC/m9aMxN/4TLGFO9Jut3/0mSa8c1X8mzUfUh+6w2ANzOenL0fVLs6HG/P7Rssqal/fpeeH8hBu6Qkuz8gFn/tC1yLheIRaJ+X7Gu8JKy2IwMu8f2msFW8P0ET+8vl1YTYf60xjsT7ekWonN3uR8rWB3mhU99ARvkT91PM70SPRGYa7R1fVkfzGLsz4VpGeb75NH5qsRBco4V9gOfX8j5VVoUZtoSfzbeG2gbi7cGFoif1r7uNdFL/fA/IJRaHeKvTXk9N9fBuu73eLdiD/vP/yqPR6A/WljYi4yk+2E8zPQEpn0E0uBKcifpTcDvcOiyf50LvhL28bKBvk3l1rS0egxcukU5o6Cd5eaSt9E8yWTUmJkKnBfN8P/r2pvNri97AjikZRJ9qp9BsO2mM/G796i1REOeJE/Pw9e3ZtOkf+f/Rbx7cvTaDCF6tv1RbxvCzaT/VXJnzgQJhYASts+9CV0R0K1267Jqm2ncbxhZLbaKlgAbiN/dnPXLBDK9MHx2Vsfef7BE4Tn28PJrQd94gmXZLls+PZf/2xD/lw27bDzASDz7efUy6NfXqZBznwWaqZg80KP3J+8p4MZTO8cqI38melIM+yXIevLcNlqgPsFqP5W0bK4j08IqZH5To6/1ua+OBMMI38qV7eKHXL3xd+n1bSU2elxDfuz/vVXE8HbJji+haoX87CKgl3In4NhzJuCPWQ+c67e4b+DUY79KdkbMSo/HYT5oGWG7Q6PDDz/FUEnqe23EzAv9t/zvoxlDM4gf57bc+wjK5mcn51iH8tH2srw/JJ44eE3xdBozCn+qfMNTh6ovrOoxwuNc1Mkz+P8Te1m8tbeKwdoPqCGNjyUit1D5udYozXjYQejYRHyp/iAwtA21mHM9wuo2iWYFALOfKm9v1xSP4nUN519tv4HdD3gauTPdJ5NdSa8ZH7WiD+uFKQBwQSa7ze+Hwop17mI40v7Xn5dxnABb5A/uRRjNc9JiuD4Y6uKl0ofrwR+lSWOfAXloOuzmzqrMx7HX3FXkLFIzgI3kT/71wdcuLnOiPhDK04VTFUAznwVLrTNw8iHzL9KTK6svFMlsAX5s/2TcuJwL8lfXVXlFNdRBtKfSdtukTZsfIL0v8T3nxf02xfAo8if7E8l60M22GP+7+elzaJ6bJCE/KmYuLbzm6c3yc9zgq0hWQKGkD/pOomN3rbWOL+nfQK6bR9zOfcvWo/fh9XjhuT+JPyFnq+engKfIX/+rbj4VuqOUMzj3dRTt3bfBz+RPyc2LbneIUXmd0fauGJlvSWun6taZyeK/r6CuQFv20XmSWeoj/wZYN809yuH1Oceye/9C86F4PcN5mWXiCYvMl9L+ivs+3T0FuTUz+74G3N63KS/Suw7HRX+KB2i80sd8o/wajpK6tfRR9V7E7v9YCHyZ3JelMLkCPEfl+rJ4DXeybi/m7+SrK3eHot57mDXhBQjFkogfzrtmNPKmCT9USpaUmbaPBuuQ/VzsVBvfaYt8Ue3sOut/8nGwDHkTwGHrvdJFzIwf7nFRCBl1x0oe858XbFADUhwbg1sFErCfPSb9JOHa+jAF/lThae3+UEGeZ9iR83KJDkbgf+h+vl+H2N77UeyPxM+r9yjf+TCVuTPsfVvN4x5peP4i2o5a4rE8yAP8ieUX3Wk3isTx2vxLNPeaUeHx5E/pU2bB6U+BmB+UUKONz0qE4Qif8ocKMo5dCINr09bOGWU8j0ejCJ/Ssk+qx+OIf1hjXvJRbFSPfQ+xaYJio8oeM+lYp5u2H5m66tQ+Br588FhAT7hPSWYu/SNK3/WzAeTyJ/jaZPL+WZJfU/YKxOgLVoB9ZD/+nUim0wiSP2dHDbUUmQ8gH8jf0XHWlB89eGYP4blX3k3P4C5yD/P/Xdt/mc3uV+IUpV2m/ghul/911+D1GSVmaS+PLsmIXloTxnk9M+GH/SE4K8FmMtaqVvK32mGMWh/3bzV/apN0zH3cJqdnhRpgmy0f9eFU2V2J5P8/kX566D9cQiV4CsPcsf864cGqiisHHL6l2eB42EPdiXOPzrurcVepywYgs7PqmNTBYKa5P5qeWeFrq56JOf9g/LNyhnx9P5/91vHEf3gBnfgx+kPMZ8GA+L2Yh42+qTaXP0KGEP1m338bU7+SnK+y2zNM3h7SoDexsIb4TUZ0Ca3y6BZxALn18hfs5pHsAag80Xj72/ekfSOzJ+8BrU/DgYUQvQ+RBviujRb85Lsb+2ACHfCxSzO/E9rDxS5FnOUvE/Qt/aVmXs0ovmkitZyddphyJbMFypMZSfNXxWgDdU3m4JFZyO2kPMlU3o3WFbSH79vJZl+mTosRe7vN771D84N+gPO/TnHN0h+VI7MF2OhznaiFtdAGvJ3iFzYcyN6IuYKrtbvO8db0P2ZRR0+tjLw633Sn0+e4a45eTEPrc+kkmNzKuhxZH7VUws/8FX+CJo/WFTIGXr/EmVZzKWCLw0FfGJwvp/6Y7RUVkmY7M/4yYaaT4uCQBryf8BrE7rPdVL/2mdYFob8xUAG1b+c9OMvLumQ81dxRL5If1cO535MnRszXhE0Q95HXePO1f5ilIDC/UcepVtlwHXvTrenbiP1W9luj6L26XKggO5Hjv8NQOonLfH6fxk0NxutLgZzqD/r8STFlsmR/jMT7vxv4hEmzETn685rs0+RheT/ebUrmCfd4wE38s9MKmMmw47sz3Ng8TT2VjK+H3G9C098Vk/q36GWTm333iT8ftIkJXUeqlzG8UHDi2v075Vx5n9ams7IXWkecn9/S9l0fZfOgpz5z8FBQILBS/wp0ja5rk3TBZpy7h96e9NWT5H354n73Ovvyvrh81++llFl70L6Q6HxTN4qVikYROc/WvmU/MCzaMzF4ryvVN5JAv8Hq0xhyg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAoQAAAAAAAAA=eF4zMQaBy/azZoLATXsGMHhgDxY2fmyfBgbPoOIMDLPB6nbaQ+iT9iZE6gdLz3xpf/YMCLyBqvtAtLn/weC+vRHU3FSouTOg5p7BYe5MNHONoebOxGFuCtTc6QTcO4eAuf+g5hqimUvIvbOg5s5CM3cG1Nw/UHMNoOYmoZmLy72jYBSMAtoB9HIAxidULsLy7UwojWreTpzlxGADAG2DASA=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAATgEAAAAAAAA=eF6tlFFKw0AQhuONatP3uYu17ZGaTXsBj+CzT60RCoJQEFRaasUiHsDYkp3/34eBZVfsvCyZZP//25nZDMouHqV2Xayl8PEqPl1uZOxjh3xRzPx3t6LrQgaZ+/1r9yEPTRcHfPedrXv08SJ96I6gW0G3ieg6o1tC10V0r6E7TfDOE7q/0L00uineGrq10a2g+wPdHnSvjG5ufSd+31Oos+57DvXW9S30U3m30b7a86jPTfBXnzshx4XPrv7Nw75pfh+4lPMz1EXzX9mc7EOKszGcDpycK8upc/Ee5qGfyekSnIXhHIOzNJzOcHJO78/EOY9wsu/k5HzHODnvFThbcC7Byfkn5/CPnDU4yUcu8izBMYX/Ar4t/OhDffsf4HPqv0hOh5V1Y70sNzk5f3Y+yU9f3iP68x6Ro8G5yHPE+cil+/bhnrBe9vwntXXeTg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAVAAAAAAAAAA=eF779h8E3tt/I0B/JVIdsfQPKD1qLoT+icanFs0ABh/s/0H5/3CIk8rHRf9BU49OE2s+rfmj7qQuf6i58x+VaUL5nFgaV/mCKz/Ti0+IBgD5GC+OAQAAAAAAAAAAgAAAAAAAACAZAAAAAAAARA0AAAAAAAA=eF51mAlUjWkDx4tUqqk0IgyZQZJECybfozeVIrRpU5RRgyzJKGNNtkE1LZI2JERXpO226NFbSruEFqqxT2hkSCLCp+7/uc653/nu6ZzfOfeee3vf//N7/88iiOt7VfJjPF+re74W8mPBEz96OyR8CaLS8X2f5/Mr+99P5teAFUpTL1kGLqfLlW/cbVe4ToLdEmJinfOIScoXnZa0PJIyvePLfz7lENv+38/nmj36v8fdAe9PTtuXZ32dnhT9f05T9H+50eDgaKNWq4ZM+v5L3+s+X5ezviVnfTVfD65+R/PaBvrSiP7v3+VV+r93TUxX0zGk3eQ4nWzY97rNz5cLsJMLKBJTOdi3Qj43nYbh/r/DfSuBvnNah/eOENIM0fXzs3DfU0Dl6TqGhe0CYuGvGpZ3pIbkyqwboHRcSFRVEzyepuaSLT0BUn4ZhcQD9/8Xu2+wfWKaptOyMpqC+/8B9438OcvMmuK7BtfoJNH1c5ai6+aswDvWcY4+vxaTg6L75+RF983Jgc/OLfDykt5NskX5cYdFuXFxoPMGjfGdMxrIG4l8Gfdlrz1w80wk8rnLKyBXxqE+Tk/Xh0dRPeS7CLkuAJ3L9uvb7zxN0pDvZOQ6EdwScuWC/fwMGot8hyFXDbDT0KDcpTKCqFpkpcWMKaLbFv02uuzKaSqz6fuFcw0E1KpcodPcL4uEIl/RdSVziuDmU15K0weUwY9KTh25DgGvauS+NeOvUl3ki+vnrMHc1s2TWy5cJYeQryxyZbyovNV1jckxmo58jyLXWDDmmOyE7MP1pBP51kvkuyl8TUrds4MkCvl+j1xVQXmlD7F3G4vINIl8F4I2KnFbVnfzJAf56iJXPbDQs7Rsp+Fl4oN8O0Te8S/AnnNJmi3Pc4jGpfm7X/TU0HnPZja+zyigt2mKQVhcPg1b8MQocWsdmY58S+BtEZguq7Sq3X0VOYx8hyJXNXDziCfa87qPk5nI1xG5MtbMlp/a0HxbnK+ChL9zR2uZDn5dSNKQrzhXcKnT2cDErgbC+qEFuTaCSjfvhMYlWZMY5KuBXIeDZ49Gvap1+eavLXJlOTuY/dbR5pRFTyHfcciV9aNOc7fmP+2n8Xzkoz+TeTUw/bFSpJr3OqLmPsxg88RiYrLdqN4iP5Y8UXU0FuxNIcqO0r7J3XHEDvkWItdaUMp5o97QF5V0D/IdgFwZi44+u92QVkynIF8b5Ao/uN8vWE4fd76C7EG+nz1EuUoj39gh5TNK48/TS8g3DLkeAb2Gz3gz3/8OkZHqez0Q53sfNIuSP6O3OYj8iXxZ77J+kHEcP22V6S12fbyNRD+EPnrq+curYpqJfM2QqxGoO/5GsItlDT2AfPF887JgzqOi3rjOSmrX1fa7hW40PZMWoO/udo1KVY9eHq55kVp2mLWtLqumrH/Hohe6kG+L50CtitYb6J9KLtJDlOtLsLlTqfrDgjpqgHyXSfjbu3v8u6irBZT17xfkK4N8y7zGJSz72EhTkG8Ocj3OPDa2mKgqdZpII997yPUvcMgHa52box3E8xvrBUa/EHU1FfMQqi+RL2Nr9a+rTRqSqGX/5yX80v7303lPcM66EeYrZh2i8cgfvYgeFvIb3W56O+UeorT/cwE/tf/9aN4AnOP11FhwOpKw8RmMcZEH7T51bmkL20h+EX2fe9CfTzT3CHwXFxZneSuUZp8blmxQmk0cs5MbZf89Sxz6uOo0qdXcem1B/nliKLp+zkF03ZwdKNsaZ+X/PIukY3yNML66YGBKi1bS3mLK+klVop8cK11D3OdcFvc/631GYUbFpwXvL7P+4NAfHHqa83Muedepc5AOFI0f9xDj+gBcXP7eZ0plCamr6Xu18u+DL339q+A/gDaWa66tSD1A2fiz54vRtdy2TK0ngq5Y2fdq5KdiHKeBOs8qNN7mnKWR8EMZXrDnUO22Z6rS1/m3/+el6uBVAd8M2mivtpvteYHOgD8O8GYx6P882sUwbws1kfDHDQx67p+j0X2enoE/k+DNT2Crr1/x07+CaQ78sYQ3M8Cj3xXei5KLYvM3rj8Z669kvtzIvGeHexTyF3Ci96MxftGcpcaQth9qs2hY+i1hfEwyPannk/zEK4Q6xmQ7dNpH0mVho+wdphQTLfhjBm8swJrkE2eastOoAP6MgjesJ3rHWBe6KRTSz/3P7w1ONK8UcHfApbW7ZqwaVoLnvxLPvRDrAyFnGpJqJVWYRZ1F48ex6xgPrpH+u+5Oay5h/mH+4dCPXMN8+T32IyipEfnDdYu84eAR9/MvBjYbaBI5Aj/RC2Ia727fb/XxAOtvrlXCzzcqCmp/779KquBnF7x8C7Yf9ewImLBV7Ce+D3+qeXtH/tQfht50Nfw0gCdGYH3zkvIkdX+K6xP31hDQN3HNWb2HkQT54ve/+bkndO4FRZXzYj+d4CX6l39yUHFxUqc/Pi+Bt+nwOJ2vOG7nPck2lvU7j/UJ1llC/sGetqeTjJ3wuQDeRWP+juYjpHj1+7EJ4n5jXsqBzRFWC681nSTb4KcyvJQCL8zeqpwwMpK8GaSt+Eo3laa/GJxidS6BLu/z83UsDbvwj6JrfR5BbphXvvWb7Z9yNrHCKBIOP7E+5lTAaYpDNnV/nT/fwE/mZT04+8raQQ+008T9x/YXrP+WXJvyerm8kLrBTx1chzbY4+hMo2/nESP4aQ8v7cCrLz5UrWyhpBJ+voGX8Ih7MdJ/01PrcHIUfqrBS8btN0L/9dZKpIPgJ/PyMbiu9In+ULcSUgs/eyX6s2rW9laXDRnkI9Z/bF1yB/TRtZhg7eRN1sBP5gnz0yZry7o5BcXon29+KoHzBe5pTY/3Uxn05wN4+RA0V7ofQnxKCFs/Ss6/zwrid3m5nBTPv8vhJWO87x/1+l755AT8ZPtvjBPPtScbvyzdj/WnAP5G8yPBNI1aLv+PcrIZfn7Auv496BC/Iuf38N3EHH7WYN5lXH1ZsXxAaynZ93n6p5LxtcSub961TSa39n1S11MQkvcPaxOWLMkizId58JLx7ffvT4ZGlZJ58JOtX6tAmXhvowAVnr6EnzXwklH+6B6Bk6OAYP8t9lIZjLa32fBTRN7/9Cdj48RNy3+deV3sJ1uXYR7jKiYmdaWmFIr9ZF6yHj1z/o5pi3UOwfoK//eamI2Ka7cnHjxP4ReH3uOawMNmAfXaOuXkFvwcGCLy8jP8LNLKXZ0h40s/wU/Wm3fBh/bl9mt9guhyif6cAnYZJJnzDdHi+Z35yeb3DJvQkz85xdFe9Oc9if6MDx24cmPLJWoIP9n8jueYnxx2LFwxOJRaSPjpAZqOMnFrOpZCz8LPKfByPPg4cJt9pf8pnI8IeAIvp4E7H+5Tp7LZ9CL8ZOcnWJ/x21w2jFyjk0Qd4edmeEnBMx2K6p/lU+lLwVyB0v3bRKfZYe3exAxS3+en1hVSSt2POteHkjHwwRxemoJBQbKKd428SBX81EJvzgTldo3U3+2YQ3vg53N4ify4jnPqmm07cmgg/HyCfUE3WEEX+Ap9/qSu8JPN68zP4FcrTFaszSQ6En6y/VmNQlFZ0Ppk1m9cD7xEv3FF1R8bXrYto2x/zPZvg+DnZN1ze8cNjqVf4GcJvMQ5AzegMndr14FcUi/Rn1Lw1LWoxtqvvIR6SKwvmX8VGlt+MA6+QQeg/5AP/wgcmqUt/zazVrw+dIY3rqBfk9mJIttyeh1+7IQXDuARM1uTk/rF1Bbjb4VxTwVNh1UMHDunnrJ5yRDjysa5y6Cdtj28Re9h/DIwbpfBYly/O8ZngsT4RLQe1h+xqITeRP6jRLlwMuDb6387JhhmUVH/3eZx7sbjHI7PKanQ2TP2ODv/wLpBiOdUyOdFLD1RZ7WfjMX3OXzPlM0P35VJV/+7l/ji+WD93QnWkEPSDdJFZOzw7fJKuYXUfTE9EyafQlVmro3RuiSgQo2hKgt/rCQp8HskvMY5BDc0JkB+18F8mg1/cX7B6YBhKwselutmUdafzEs2zwurSEux4y2C/SWHfYH4nEH186hg3ZjS/3u+9bHh3fhA4wjk821/wrhjqs+QoK4IEgy/FeE1Owf6cKh2r+6IcMLO1xLhdTz484okuRfujdg/12HfVCBeRypwN1wPFefg9ytxbiDE+k3In21KXJRU4oj1Rx3/GN97AmpOyFwQ+EAgPn+zk5jftfTSyoIvR5H/wH+2L1oChlrZZupUFZA8jK82ek8PFHR3yn8qySar8Hz0irznX4Fycc0dSSE80brgf7HNuIg2Trh4ZIdUBpVJuhRoE3iR8js3lVuP/rq/xPMzT/RccRZg0/aV6fFNBWQH/GDnHvCMK/OraNbXvkIJngesnzkXcJbfgx1RA5MJO39i+xq2z+kVDk+MT01B/9zgbuK5Y/ukQIXcNA+1FDoV/jBv2Dmr+rCq8Jcnitn6n7sn0b8GpRNbpr7KpNcl+gs9yfvPVwnWNN9NvSXmT8ZZ0+3kKp6H0KV4/ifjPlmfhE5bOITyRaRCon/Z+qD5psv22MZz5L/LewZHAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAzAAAAAAAAAA=eF6tlDsOgzAQBa+WM6RIIHwCxNkD5P4FFPuakZ7WRWhGtvDTsOx6i+u5/27v5GoYyZY8kntxfimo3C9yN+SKPD+DE3Lpy1znqZwXqFz6qg7KZ678lDOAzP2YXNZBnmPymXwg19WBvlUf9P5ffUck9T30+JeP85jNWgywgaq/82R/Vl6VD/tY/VLVs/JczbryZN+SIxig/Dgv9OQ94jxZvwn78nBzpvmIZO9cuPnVnPG81r19wfuwYV/kfeD+e+/cVF7a573E906ow1ckAQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAKQYAAAAAAAA=eF51VmlQU1cUZkcigrKGKIjIjgsga/JGiEShCuggImIHbUQRtVKY1k4VEcWloUpxrdJaXFCUQo0LlZo3iI5LKiiKWpfSoiiDtBgiBALI0vG+e06UTt+/b869Z/nOd8592tNv6mOk8y5nVjcs7lB2KbooPix8VDgz2p/VUlyWslnqLhCwPRQPXv8sYVqlJwO45TfFodTWQMR69AN8M8DhVaRWIwKcVmiuOb6Bx3aD/1pj+xGfeDAaik96qif5L5nMdlBcLLvSsiXZjOml+Ozrzx3kBRKmk+JTkZlDBbHhjBrqcVQGy3O8GPBvvmJ5xW6VHmtQyuFo9yVby34QYz0VD31ypLVPFFDv9k/Ft8/+oo/xMtbYt+Zn6eF5frtDYk6tLwP59YgvRO/tNWYhf0n+i5D8F65MH8URF3cK/9CGob/kvINdi85Nx3qD6qq/nC3zYwYpzj4v1p68EcBAvo86HmYn/OyNfM19vDnLcORjBeD+f8KrNhu3IZZXROTeCX0mAn5WT3f566uNbsgXb8WYmfyJAhb6/XJp0PiOV76Y/wPDOREBfqFYn59a4GSzfTrzluI1WyxUb+wMsN/F4a6rjqqDsd6u86roKxcc0J6/veFO7t167P/vEkZytFh3f176N05ti1ow3watvDjr1QTsX1zUJbXZfBfUo2k9r+tvPW+8n1qu8ZjjEobnk2/Y1KVfikE+LxzXyh2WGSLuPrB+W95QCKtH+Y0o6jx4K8uIhf7sl/nXuFo+x3xHO7XwCo3cMd5unxTpt4wJxjshdvMNLLVF/IzofTTqxfyOyZ/fCwyxf2fWrbwbahrO9FO81X7DyviGWYwZzcdKxd/TZiXW6bWt7mljfDjWv2XhwudZymgW6oF5A395AXk1rSUaBfTr7bX0gqJBI8w/qiqtzfPEoAjj9/Yulp0cw0L/5KXvPm8W7KnZgwnH0nwx35+G2bnzAgb4NCLZhKBexsbFGRZ6BqE+tpH4U5D/U0QfQmaA2ntIvvGYj7Sg+VpFQhQLdqh3eP1gryT58FiID3xAvtIF7z5jZjg/0H/N0LvPkvk/fngkmq6/T4J3OZ544IP9jxJcb9bM98bzm5qClXM3CdHfdYuXYxOrdf3PInbdPltE8gtEvnjrnBurDdwRt5N8A5D/I+kC0ezTkahvK5KfM+KdJH8/PM/np4RmlDcrgK8+Uu8Q6qGE7MNW5Cus3nNKSVGTCPjKmd1cWD1rDOZvQOLxEY/r7LxoFdOpAH7Wiw9YP0rSH6YfAeoxntRri/UtJXoLwvOgR7A7ED7ssH+cvxnobyPh0x/3K5efzn7ZgV/wdLkZ8pPE6QHn6QDRSyxjTPXZzfHN6FM8szFg3b64SJzHK841stXlvsgvp0ZlCOL6IqHatkwE/jk92OH5yh2ltnKXiVjfGVKPFfLR8WPPqI77dSLQVy3R20Ss3y3N5rv7c83wvjeppwv7tZRgR+TzHPHvgvqN5fSK+q0n/sMYqE9A5lfIwHtxlusH5pdC3scQlkf5kdJ+Qr2dskbnsIEJON9V1pfF2X3WyHcsnUeIR/WA9m4iz3YF4MN0P0M9g8RujfPu4RZ4RCZ1xvxIO3LUIYAV9+eXaau8UA9JNV8E2CWOxPPHPLJz+zWm2J9eug/g/N5ZGaED+/yRzwKiFxvc7xtIf8PRX5AysynJh8H6uPsS3JerKF/g7yqnJ8aE2j+m9iFqbyZ8RqAeTSh/cJ/rZ8J/9ifgHjrvgJX3uPmG/cfpt7cS6pFQfUD90SSeG9ZXzvUT7Zw+IzF/rj/BzKjS9/3bhUK8XOrvw3g6Pg9ZKrym2pihf3tHy2X7a/j4/1KSdnu1ysgZ5/G8/kcXzatCUd8vb2WMu5lRi/9HEvZxxPEmC9y3map7K0yVk/F/J9lg96ltV6eiv9dpa2eMmKTA/4GCfJcYr/5WfF9dl7xObfb2Q/3xHxyxOijoEn3ItyXqaQ/RiyviBVz/sD9fk/fRAvvJvad6iF3JPE5BPuA9/vD9FmB/fm0WCkaWTcb81paUJLZvnIbzCe81+JOQ/RbMqihWk/3nivF30Pxgv4I+wT5A5xXwpF1NmX1etpifjNx3Qv2Pp/r9FyFt1dE=AQAAAAAAAAAAgAAAAAAAAMABAAAAAAAAEwAAAAAAAAA=eF6bORMEXtrPHKWHJA0AC1cJoA==AQAAAAAAAAAAgAAAAAAAAMABAAAAAAAAEgAAAAAAAAA=eF5jYACBD/YMo/SQpAFxv0JJAQAAAAAAAAAAgAAAAAAAAAAHAAAAAAAApAMAAAAAAAA=eF5llHtMjWEcx7sgsdpCqiPawrTlWoR56ukyua5TzWW5FI4i12yOa201o9VBcunitEInOQ1dHA09eUeakIrkVrGEuaQtnUOJsuP9Pu8fr+efz3bed7/z+37e3/Mj3uZTJSy3UYfaqEuEFWBCfZlRk7uPFWWbj15wjepyjOo6I7iDiaPn99x5upsYxOd0ivg7nQy+dox/4TG9iHmJ9WmoWFdiUNWyhTUL4kjtv9Mi/Ewt7kktrhF6wLftLut3RySQ6BjzeS7MQJ+oJ+zyX9ue8/ww+T1gPvVCS/n25vLtFcJL0HeLRfm+oiNkpixfOKi0HKWZNC+dZCCfC3KNAk/92lM4flohOYF8zsjlAEZ22gdoVwcyH+QLQS7Up6PbdvU9NuiJSeyPPhP7oo2g1ivRuzL9Gtso5qPok3JfAQ8bq10Db5JHoh/aLXqh8ERV9hnr9BfzSR38/ZD5Ux+19B/iNIVtgj/ugbOzOtjX/ZqaWFmYT4PQCm9vwDl2I8o+HQ8n3HcYvOH7CSG/c8h3+zMsC/4cZf4Ksg85FRsKSBz8mSJFb93gt5ALrv1+R9hU5F0Gb0rQ75zt18a6AtILf+iL4vtSxeEnwZfvXmcq+MN8SLzRsLhZG2+Q/BnhzQQOqyur1W48yZ8Lf2T+5uzNi9tUmszrS96mgxNGrnBI7MtklvDHvfE59HjS+rE4JJbMxfsR8LYS7M5U+/bP1rAU+OP3yg40jnFT6mvS2QH4q4e3DpC6b9sa75fFJiIv5fcKHNBNzC/TZZKfsvnjTFo+ZG+q4jbbIPOHfNSuVe3+2rqQVMvmrwtMcktQReSvkubvF7z1ggdNqqkR307+54/Pk5Wu/dLgD6cZ+hOa4a0JrHnrvFP3J4f54/1IeFsDLoqpvGVlq2WF8BcMb9hDQmx2tFuJUwZ7BH8V8MbvsfLp+U9RBy8znncJvC0F7yn6FJ4dGtIJf+9l93dQZJ5FmKqUrYe/yajD2bZ5gT6mJI/ch78Omb9ZZ13SBvkek+anRTY/k7y/+AWYCqT9pZTdvwttP6pSlujIfeQPQm4KrnawHlfaf1XaX5bIbQsuDHtX55OcSzzR7yLk5mwqfac0bb1C+pEf+4GiPzrslMJrx+frjO/vXtn9CU4Lr9K8OsSiZd/fG+y03a+r9chiqC/tbc6HnrFDnRuSiBH/X4//bQDTmsb63CyvlPYn6krzWyHEDF+pM5AH8I++KPYkPT5gzO21ziV/AaPMn8E=AQAAAAAAAAAAgAAAAAAAADgAAAAAAAAADAAAAAAAAAA=eF5jYCAPAAAAOAABAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAlgIAAAAAAAA=eF51lkGq40AMRH2nzN63mTvN3CBHyPqvDH/AEAg0zMKhh49NPqGPMMRKYbpKpY2jl4paLXXcOp1edh2H3Zb3cxh+/3pZEd77B9/DnKrwn7t9mTj8O6x7GXM+CT+988/1RXjYYuJU4cg/j78J//P5sm+zbjOc63TUIeeT8Ih7NfoiPGwxcapw+Hn8TTjqkK/bDD/i9f5lzPkkHHXI9UV42GLiVOHIO4+/CUcd8nWb4cfv4KMOOZ+Eow65vggPW0ycKhx1yONvwuHn6zbDj+/xCXXI+SQcdcj1RXjYYuJU4f055vib8H6fvG4zHPHuUoecT8Ijz9vb5/f2VfSR51/R9/8jXvcuevis38N//jP5VJP/l1l3M/l/Cw9rJs7Zvp/7fIfhx677MPfCZWR92GzvNdajX6xHv1iPfuXxi+ix/3y/i+jh5/lUs9/V3qesj3o+7D2b1+dp7988n2bqcLb3UdgqfWd9/15aKc5s73HWo++sj31eRY++5/GL6NH3fL+L6FGvPJ8qevis732u58POFawP3dPOG6wPa8LR936dw5BX73+Ye/8ysj5stnML62M/NzvPsB59z+MX0aPv+X4X0aPveT7V7He181Jez4edo/L6PO18lefTTB3Odt7AOvDRdzePsT5stnMa69F3N7+xHn13cx3r0Xc377EefXdzYL7f1c6HrEc/3NyY1+dp58k8n2bqcB7xPTj6yzxsFh5xb8L7eYnnwLtw1Jl52Cq8P8ecz1M4zlt/D/C8V0Qfnpv3Dj10efwqHOchX3ezHOsMqXGeF9H354bjNMNnW7e+z4c+npzPJHqcn3y/RfT9e17rz3qcN9cX1uMcun7l+11tv5w+nlyfs/D+/8j8Ibw//wf/D6gGTEw=AQAAAAAAAAAAgAAAAAAAAAAOAAAAAAAA5AIAAAAAAAA=eF5V19ffFnIcx+HH3kKUEI/skbJnGqjskeyRlWwpm8oKIaMoIyMje4ayRfRnOeh9HbhPrqPv+/V67vtz8HsGBjZ+Nsltcuscn5PywpyQ7jbNbVNnYp6e01LP3Wa5XeqclpNzeuq52zy3T50zckpemnpb5Ja5c+6UZ+d5OSPPSXdb5S6pc25ekNennjvf99DUOT8vyhtTz53ve9fU8XtdnDNTz53ve7fU8XtdkrNSz53ve1jq+L0uy1tTz53fbXjq+L2uyNtTz90OuXvqXJ5X5Z2p527HHJE6V+Y1eXfquRuSe6TO1Xlt3pN6dmYve+WeOSNvyHvzunRnLyNTx95uyvtTz5297J069nZzPph67uxln9Sxt1vy4dRzZy+DqWNvt+WjqefOXvbNwbS3O3J+6rmzl1GpY2935WOp585e9ksde5udT6SeO3vZP3XsbU4+lXru7O6A1LG3ufl06tmZvRyUB6a9PZCL8r50Zy8Hp469PZTPp547ezkkdeztkVyceu7s5dDUsbd5+VLquRvMw1LH3hbkK6k3mPZyeOrY2+O5NBekO3sZnTr29mS+lnru7OWI1LG3hbk89dzZy5jUsbdn8o3Uc2d3Y1PH3p7Nt1LPzuzlqDwy7e2FfCefS3f2cnTq2NuL+W7qubOXY1LH3l7O91LPnb0cmzr2tiRXpp47ezkudezt1Xw/9dzZy/GpY2/L8oPUc2cvJ6SOvb2eH6aeO3s5MXXs7c38KPXc2ctJqWNvK3JV6rmzu5NTx97ezo9T75P8dOD/n8/yh/wx1+TadPd5eg/7/JQ/p/e0nrsv0ntY55f8Nb2n9dx9md7DOr/l7+k9refuq/SO1vkj/0zvaT13X+c3qbMu/8q/U+/b/C69p73L1+e49B4/Jd35vbyndf7JU9N7XM+dj/e0jt97QnqP6/k7/d3ek96l/t6p6T3q/xF3q9N7UuffPDO9R/XcfZ/eoTob8qz0HtX7D82ejy4=AQAAAAAAAAAAgAAAAAAAAMABAAAAAAAAbgAAAAAAAAA=eF4txREAgwAAALCyMAzDMAzDMAzDMAzDMAzDMAzD8Hg8HsPjoU0WBY/YiVNnzl24dOXajVt37j149OTZi1dv3n349OWX3/7469s/B+FT5NiJU2fOXbh05dqNW3fuPXj05NmLV2/effj0Hwb7GPo=AQAAAAAAAAAAgAAAAAAAADgAAAAAAAAADAAAAAAAAAA=eF4TFycPAACPnAUJ
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_ts_2_t_2_000000_1.vtu b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_ts_2_t_2_000000_1.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..d5c9df8441679bfe244fa928dd95b3106940d407
--- /dev/null
+++ b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/flow_fully_saturated_ts_2_t_2_000000_1.vtu
@@ -0,0 +1,47 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="27" format="appended" RangeMin="45"                   RangeMax="121"                  offset="232"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="504" format="appended" RangeMin="8.3721237139e-13"     RangeMax="3.6305644771e-11"     offset="324"                 />
+      <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="504" format="appended" RangeMin="0.8"                  RangeMax="0.8"                  offset="12996"               />
+      <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="504" format="appended" RangeMin="1"                    RangeMax="1"                    offset="13088"               />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="504" format="appended" RangeMin="0.013178612702"       RangeMax="0.57148944243"        offset="13180"               />
+      <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="504" format="appended" RangeMin="0"                    RangeMax="0"                    offset="23416"               />
+      <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="504" format="appended" RangeMin="0.8"                  RangeMax="0.8"                  offset="23512"               />
+    </FieldData>
+    <Piece NumberOfPoints="203"                  NumberOfCells="56"                  >
+      <PointData>
+        <DataArray type="Float64" Name="HeatFlux" format="appended" RangeMin="-1.1368683772e-13"    RangeMax="1.9895196601e-13"     offset="23604"               />
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-0.0001"              RangeMax="0.0001"               offset="23832"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.734723476e-18"      RangeMax="0.050476190476"       offset="24112"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="9.2857142857e-12"     offset="26564"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="4.0087966478e-26"     RangeMax="3.7142857143e-11"     offset="29124"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="1"                    offset="34604"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0"                    RangeMax="1"                    offset="34852"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="1"                    RangeMax="1"                    offset="35316"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="4.4885187807e-16"     RangeMax="0.58466805513"        offset="35492"               />
+        <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="293.15"               RangeMax="293.15"               offset="40044"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="0.001"                RangeMax="0.001"                offset="40316"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.8"                  RangeMax="0.8"                  offset="42428"               />
+        <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="42500"               />
+        <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="0.058466805513"       RangeMax="0.52620124962"        offset="42568"               />
+        <DataArray type="UInt8" Name="vtkGhostType" format="appended" RangeMin="0"                    RangeMax="1"                    offset="43868"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="1.166190379"          offset="43932"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="44832"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="45840"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="46032"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABsAAAAAAAAAIwAAAAAAAAA=eF4z0zPRM9Q1sjDUTTc0TDU1SzYzMTLQS8ksKqkEAFViBw8=AQAAAAAAAAAAgAAAAAAAAAA/AAAAAAAA/yQAAAAAAAA=eF5Nm3k8Vd/XgG9EUSFUKkmzIXOJUzdTg4SEkJAp81jmoW6GzDLPZMiUyByHG6ISkpBEokIDShlSqPf7eTtn7V//Pu1977ln77WftfZydaS5MmqumT4gT3l5K9cXoxD/GubcdcwfCeNXCX4zdVSLtewGcOe5mhG2i7Y4jeCVG0/Rj92MBH6q7sQKgTlvfFbuh3S+8UP6p13+a8MTrgIff1rzG9/hgZGcJzPuosA7P+AhgZ35nemG+DzBqSUfa1jd0ecPUSUXLiS54Da3+Gvp7Y10RZvq0dwvQcBXDkuf38l4BiO5xZoFEXEZxPcqMLR1FDvhtgSPvCvrjgei+c8bGe4cDvPAPYYi7Pc3NtBf8SnGC2qi52vcG6AjlCeFORH8vYbk3tUKiKsXieZHORnC+Gm/nffHxRDvHy9hxbpccLO0L87nE+rplntmvb+eCgFuWt48nfZcEzcneFSei2hE0U3g73Mr+jfc8cdNCD4Y6zUdzxwLfHDW70CdeBqufOGk2w27WjqNyb2+8D07TvKKh9+LhU4l43oEDywv0F6w8oTxtvnvGH4sR+DyBM8UvPRnIBh9vxM6qapeR6LxT79inQ/F36fTNswWbl60hvm1bZ56DSbrYNME7zDWGIsLNIXx63TaFk2cfDByfJStCr7D/xpwyfCw5OyIGPxNzbSruW0lPephc5JZuw/wXyMKUn+ljDCSc5yhfjjs5AW8MGpHd1ykJ/aKHD9YLcK9wQN4/dm3ejaK17BWdzWvaIUyunmTwc31n+OAtwkPua7/aAq89LvJo+c64cADGX1WVeTdAK7RxN2/UI32D2fgKra23Tfwxv0HJgJ6S+jnkttXfD6Bxp8124KL9LgAF1koY3v6GD3f/VO/VUMNbuKZBKe0JMoyLogBr71sH898OBi/eWdq5i2tgH5sVja4hsEbfn/3s1eus9yIx6IIfks85YiYLw04EzUPV9GnYfEE57PcdJDB0x84X5+vZGykGW4skL8kI5JNb8ziifhboACfP/t3ilU+MxkjeaVL7MqhtZfR82/9FMnqEYzRCJ7ypWmN2g8a8JdshgueH/973nba+MHlNPqkK0Ok7wn0/srk1JknnPIweYK32A0Eu65B+3OlQ4qhnEE4TvK0jAqVuzNof3nXbnb7NZSOCz2Z+fn5XBSdkyXCmZmO4ovZnLTauvBzGD/B+fe/e17LHwDcpDNSonrNFWw1wcXPHBS1DwgEXtSlcndM7L/9wiN9etrFnj56MGAmdikR+NF8/1ROwQLgaxsnpoUn0fqSyoh78rviv/+/8R8/pqL1tXkwGrh6yW+mAH0LnODUDqt9bFHT2cC3KCe9fOhdhlG4//EkY7ebTetyge+fyfSoPZ5Jzk89pveIY0YoH3jAMeWLV5UcsZnH//98VMUeiU43m1vAYx/RNQXSXPAuguswfxyJ21YKPLf37i7ZWRN8lOADiQps4cY1aH10aqs474kk3x91c1ZcdujNJFhfVWaZ4fKdd3Eawe8td70fy0PPp+46bq2tl4sT64PKtNctrLUNzR87Hzxg130bJ9YXVZX7U0TUzlyY33Zxw1DHmRzgKukH1mYyuMH4xbodmHyJJrm+qfWH56Jkcu4AVzg3sCS/KxtP/7c/qManvln2M6L3Y3/uzJSE53W8gOCN64ao574Ew+cr8D8RXdLLxooJHi083r3x523gvWpXnkc35mLE/qdq20uUGoY3oPXz2G3v5+T/fm+Rf7ytZX9cvieK7xYVJ08VyZZhI8T4Ntat4yHPq2D+wIHMLR+uV2CN/+ITddezV+0UgQcwPqlGZ/vWd3k4yT/FprmebUbxt0lo4kP+bDneRXBbbHd6ghgO8x923+DXfroFH/4XX6kbj896r/awg/EPi4L1KBO3yPhMjXMf5uCRuAPjG03aLxeHpuMDBK/d3KDdz10HvPNKFuNFym3yfKGqbO5P9eXJB14cyv9WZPA2eb5QjUI2m28qz0PPv/f84MsKV6yL4OG/9PeXnUa8jrVETOo0jTz/qIEbEk3rGLOBt5YP0fcGFGLE+Ull7lOuaWWKA+5+MtKWPSYcMya4DGNksQ2HE/BoxRs71vjew/T/nc/U1TejJR0ynIFHcrCryzLG4kYEp2RaSTxwR/F/jM7SEz90HTMleEeFXq5XTgzw0faxKw6aiaR/UBvObqhorgoGzjYdtc9bPx8LJvhJ2+w/p8zR+ik/Jrhx65QtbkzwKhF8V7l9CnCdSd+jlanRmMM/P6KuKDJ7OxYQCd//pLBbI2NzDGZK8Ey2xr7jNWj9fOTy7NRkzcGdCM4wFD0Qz4fiy2oRBg1r0Sr87z+/o/Kdu2xnLlgN85/RXtWmtHQHXyR4Jld8bMyAK3AN5z17DqjH4gsEv1v+dzOnQwXMH2z1o8XJ7gbu889PqSeU3ivxW9JhfKj98Vr9oHIsnOBLMoa5vVHJML7OSnX0WrEzdongY47Kpx9tegRc1Ct+wtiyHLtG+G+N3JdmnkLkZ7zG53hTixzAnzME6u+fv4TOjyu5d3k7OyxwX4Lz7+LVPaiE4pNtqTDjmKcy+LNTn7PCJbsw4GoT63hf0gPBnwX2ik/7mqP3H/hI+Ot2Hmfgb1y/ZiQYoM932tvAHO8jj9sR/qstyqto/RGdzyxUpj/PLztjpB93jj4uOr8Vjb+xTqsKU/TH7AmunOq8QeUM8sM7U+feLRprYjTCf4PP6h36wO0O/PlpcdWZKzHgz9P8bAKpjOj8Pa6IPfs9EIuR/rx7s1Nliw/yp7/JCa8bZq5jxqQfX4mvStrrBPwkk5R+fH4URvozjSfIxGMZ+T+2dUhwYMKV3F/09LodB7pn0P44N+1wkPrf+9Mg/Ddp/uFc66A58NktIRLVG2LBn9/6BT3gj0Hfr1fDkiqWEQD+zbn7+a38ebS+whxexUSkpYH/Ftg4j4c4WQIfctk+GsvqCP48FFCx5uVlNH/cu/0iRUHBwCN0xzqbA9D8TymLvIciNDEivtJHynL2qOS5AO+3ibr/sDwD/Ln/zoqh9JfIrzKkjXZ95Q7DXhPc/EGS1pq76PyTLrCVlbwSTZ4f9AXs8w+bDyh+ZSU1XdeoCwDOvInuPTuM1pecz6EZLbVE8nyip0UxXZVS90fv72tJF4u5H0b6b4FbjXDdMhp/sEZW9YFOCfgzR4+ij9YwGq/p+jYuMDgTJ85HeovYs46JRvR87EzrhaSsaXgC4b+ZQ4rinf4o/8lg8JCVVUvGkwj+NmqnJd8xtP+mvh4ydRZwwm8R3OX1+kGhD8jvAut/nRTYEQf+O91/a7nh8H8+R/zT+y7vuetOEfiz5Hd29fFYtP55Hspz/r6dAdxoslnN6ALyy+IGnwen+5LBj0tZFviZCq7D/K7vxFtPKfuDH2tU4wWqPq4w3ln3fXXeYAjpX3QG49ejAjFo/a+a//n4u0g0/ucx4cdlD0retfjB/F4t0lv49XwwDsKPKa89X+3jQ+uXwnknsLTqOraR4KXp3ilzWsjPN+a82eCs6Q/+S6msv7qbfS9w06DXRdYy+eDP/W+GL31iRfFHPajIS3lfAowPNnvP2/YW/f43VW0cJOSzyfFU+Ze/mI3eXwK+s6Yxmo8PB3++tJXtgi0LWt9B80HOCptKgfMvHZkL1UHn14k19I2S5XHYBOG/mabqtbr6N+D30d2t0fnkmQc+QnAr/VVPerLQ+X3au/eyiaACvkTwjTP6VdYyBcA9RdQeJjaHkPkRVaSwF99yLwvmr6gPDXt1iE6+X+ryYxZH7bH/2T9H6oamH5XhjW3/OE/E+R8tWUXAS1rnmzGre+DHa+VPCXC+T4X5X/s/KopdzAO+TW3b/kQbZxg/wyKZLj0dA9xpRni45DTy98KCLOaFg4X4HcJ/P40bsxVII7+wXlq3qlTxNkb6M6V7X6IiozF8fkE1j3hvYyF2l+BOg0KVHocygLf1LCsx78wEfy5qEhiq4kfnv/iD6TeejQ3Ab2Rc9mPQQH4u4xStUrW9Bjif9SPf6gO1wCVY2bkr7MqwAsJ/p9gi4uun0PwyvskJXIdwvIbg/SFObCwXkB89+Dnbo7yiCfz5t7jg66sByG8bOnus9qo8wgcJ/3Wq5qzAPqD8bdeDb82djdFk/YMqPm0+qL8Nff/7+f3XT7tl4/0EV0k05ZhdKAVeeEr7lr7yf5zw3+BcsYMuV1D+y37kneViXj3485Hh4gea4ldhvE7llySHgTsYOd7h4VfPD2dR/vYt5Xn8lFo6RvozBbP6oZ4kCXy27IzWSedq8OfOH4VrhtIsgV9a4XLLsLsIxk/b+fPqXXEDLr/cXHrtew1G+vGIdrTYQqQG8HX8E2VcimGYAcGNB92CHWaRP4WIBV3beSsXu0hwFmbrSDVm5CeusSsVFT2LwJ8pY7G48i3k5+EcBzpEF0rAnzk9rBiWU5A/dP+xKTN2oGEaBDdyXifxnCENuGKy8bfFVXkY4VfUI5zjr4+YJcL8zqydd57YB+ImBFdd8yz1841QGH8uhsFCNvAO7kjwjsjXGNccig/V8aPP3iSW4n8I/z0W+eb6VHIl+v4DfO1Nv7Px3wSnKCYxn+dH8fd57aycPLMaWV+lPs/wa2bcWQ9cd7Uklq98EyP9ecfGdv5Elyb0+8fLMjl6N2GhBOex1bXUv43i2162S0J2tbmYMcGXpzPx4m2PgY/tdTzilVtNzk+njLYyja84CvPfeWk94/tahvR3OraNVW1ruhmMzx84M2j+wAsn/TuzyKJY1hedb9LtVwU3HQrGfxD+K68ToCrCbAvzz3N0uJX/jsJI3vjtxePKeLQ+Oy1Ys2XfOsB445DtCkf2mAP/+kns6EflOKg/N3pYm8utNwG+ZXtkUuDlJMyK4OM/zKR6HqP88O1rTznxIQvMguBWgrGVzEyewHurxK+v+h0L9WNKctmmSKez8Hyng2zkf0omYFYE571aYvdLBH1++ePcTQ1tYeDXeqMpP3hDUf6ks1Ha4dbzaKgfU1TbmGJKUf0tX1jwTq15HPg1zeDVySJeI+BHxk3UW0w8yPyVHnWY3uxxDP1+GhOPvp/XyQN/ln9SeJY9D51Ppq2ZfhU8vhjJR2LffBvptwWu3KPcEX/YD5cheNfslIX3OPKna0tdMfW8JVB/zuyTaxh1R/Ftm+2rrZun4jHK73/coGYuN/wVml9JibXYUcgb/HnkM1eZp7gpzB/awfvMgSsf6s/y76a370+8AuN3vfVys2hKxoj4S6eUqXUNP0F+MVX6wn9qwgfrJTjNd9wvPRDVT89zn+kO/GYA9WPaxQvL7AyK8Pnejzu3Cm69A34cnC70/vgXFRi//s8GasK+KIw4f+iZe+2m8+ZMgPNwcPOdYLtMnm90CseD0uP5F2D+ILXh7+/fuoE/q0jP8yjePg3cMLzFMYoSB/5MoYwcfcBbIEtyLfZjzbF6t/A8wn9p3qkuIWvPw+fLqL7O1zqSh5H+vOIcHmWw0grmTxu1VBKn3cAyCD4i9W7q6kl0/hSqbjvRdi+J9At6o7cV3z0dtD43XdalbmEoB7+eLTAuctNE+7vumOgVnb4c8Gf5mNHRmN5Q4Lyh862UVTHgv6t7jVZqxyO/xE5v7YgJS8UaCW732Zj7sawOcIUTigcHfILBr1uTT1x7z4zq62f5bnTcL0zGhcn6sXRV2tI+lL+9ObGUsmZtJiZP8GYDpbgjmih/lzB1XaXOfgNjJ7iy/4swHx+UH+Se1GaePBcF/is+vdrehg/tr+VAIcb07GLw592zP9OZ/ud+qj/9xLl8z1uk39IFfK5YdpUhfx6r0a31GMgCf6b0TMndS0f7u/lphp9dZxXUl5PU902qzaD9J5dtGLtzHfJnDpY9vYwf44Ez4itKzqYXYL8J/23xUrusm4z88/171mdlGZk4kV9QKULDBiMaajD+4fXtL1JW3sTXEVzDfqvHJYd04BtT2AW5ggPAn1/2+Anu18iB+Xvk2vzyXapw4v1Spd1PjvF9QvWJkmLZrL2D5VCfZi7vfS+lUgjcNm5JbsanHM8k/Fd8e5fR1znkRxPZXEZsjBngx36dhceEgtD90E6RgOiC9xlQf77kH9PY9CYH+PeOv0xPhivxFMJ/O5JO1so1pQKnjD2cK759Fcsk/bkQZxBZjeKz0DbRQuueOCyN4KVK0zwYBX0/bJHvqkRDNE4j/Nd1SZ11xKsKxl+TN3q7+LsR/Dh4V5JT325D4OdXxXXbK1RC/XnP4Tad2mjkH4kZIxEGlAIyvlHd+Hqqn5dWw3jt46pnF882gD/LR8nYRMuj+PO6e9XRu6zIn9UpPksvtt0HXtElraed+BTqx9UeX5d2KKH3I85oOzfWkAV+bKxYfXT3JZQfvw0a6PPvzQM+07GbbeA38ucX16fNmbty8BHCf6cFbPze16L8cMv663NHsAryfKEaXH0es/Ygyo/zD9uoFF7PA3/O7EkLdf+J8re1TxafrvLJAv91khzJaV+HzpedDTpeXzbVgj+r+2l/Dn2C5g/d0ufT5V0A9WeNSNXu5VDkl1u9Tkn2uZVj5wn/Pfpj0qa3wgW4c209QxpjFtSXTePPzHGdRfHrdbnLn7IDWeDfcWUCVVRllN+u5U15XSp+G/x5JOPnIMPVK8Djt1XVmRmXgT8vn9KXdgywgefTUzKgcAy6YWT9uXRWgEV2BfLr3D1+XbWHYsj6IrWf7eOrsOFomJ/rHVP281YLzJjg74Km16ybRPHbsH3lwXXX7pH3+1Sr9gnnjjG0v4y9w3wH22vBjxfT5nQexJTD/BpHRHMSWfLxnwSP2RqyeX8uit8fhx9UyG+IIOuz1LcfdA1Z6muBr50S3SYjrYW7Ef7LwPL0r+oJ5M9d7c8MjDyasGCyvtzF+0XZAsX3G2r6f+6HZWMmBBfIWbttY08zcMajB6q9vMoxsr7spKe1sEoa1T/j3n8McBL2Bn8+1J2zdb8Gim81CuLHND7bAB85PXtUwwb1Zxj5Buvq+hrjc4T/Zro1OG5yQvFdQJMzfvqaEdSX1evqTJw1UH3OXOOHPle2Jkb2b/BTnPITTFB9sHWM3zFG0xCzJv1XgamcVxCdXz0789qNzfygPs3KW7Tatxbld72yYU/M/Mxwsv5MeSlaxeBvAFxUo9fu+3oLnPRfitgepeO/0PO3MQ8wH9/pCH7coe4dKFyP8gv5tr39UVyhwOVp+fMWsyj/vJqwdeKHVADUj0c2XFscyLgInLkglqthLpDMT+kUtVHJ9YI6wJcSuPbzql0n74fo8qtjeyMtTgE34T7UlPWQRu5/unis9cSVFl/gO/Z8WE5b6Q1cQ916XcObS8APly53TEn5QP05k2uFR0/GRXi+hN25olnZXtgI2X+RNXCrIRDFB+ulWBeJ+URsgfRrXd/7OB8VeKiRRYh3yQ0Ynzn/RfnTO7T+OlwKXsgWXYP68Uj4KZG1eaj/I8zvg5AgHgt+TfsZNcgsYQFcxLDw1RnbSKyP4Pym/SEr6q2BczddamW3TAZ/lu+fSU4vtkL7M8Rg+YRgDNSfRwrXPNWKOgHfnzc75XT9gyswPqrvSMOH3yj/X4r7FGD4zRT6L4ytNm268x31N3zTiRo8I3cd+DfudKe//ej9W2i3Vq8PTwDO/6v8I7cjOn+6Fbe8mnzpiucQ/mu80WSLyByqTygp+fWZRifhxPlOp3g0yRqIywK3Fdn41eNkEJZC+vOfFp19pqg+9KbJHnN3zQM/FqjynF1TiOq7zCrGU8V/C5A/G14Ka3bVAv6d++8rrsE04Jos6/y1MBR/ZaLkCtcxFUL92eNj68Xj3VEwPv+ockDnBhPw68b1euXjngLAO/kF/Xtrb0L/B2/Q3xZDpyiYH5P+trv5ZDS2g/BfeWqbZbQUWr93qHrUDtko6N/wYPIwi6pA+blltPbMBu0sjIHgXXE2dBeaD/C7AoNmYtHFqP68tnt1DS/6/UoiXZ5aTgSBP9cbOQ37rbgMfPsM26/sMVSflq+6kdtrh9aflVdD59uhIvDjaZF9oc9q0O8Xn+J62jQhGfzYOFAsfFXKeeC7Nq/q18HQeGMvRYnNayJg/u3TdOVu4UqMrB97OG+hu2qh+qgT57vn+Y1Z4M80a926kn1o/+znverYdMYD30Xwt3sWqkrVUf3W5wqLso5WEUb671C2QfnOKHR/T1vzt+1kXRP4cdfPeKsBF5Q/jytdoImsR/4sM3rqUpACql+t79mXOpaVA/5rHlMzcm0L8vNrup/EBI0rcXmCv/n8mPVnmxFwM1naufO7E2D8m11rnbpEsmB+a7rMUekaY5zof6KWb5qtnxZH3F5S68Snx1Hk/Q7V59sHAa9R5CdSkgdvX2rKBL+mSd379rAA5Sf4B7G2Ps5C8OPRCOa8rxn30f4y+CO3Uu0++HHIOnbOF7UOMP4M9nSS9rca+jv8r+67HxaK6s/ZhTt8kpJqyfyeOnu1TVt1DvW/WJbe27n6YAv0b7TIMJseO4vW9xeN7OxurSa8n+Dhx9e8c7lWj97fok/yFpYmvJvsv3CN/0thKIH51f8s7vYSK8WJ+gU1sz/ok7408k+O6cd+n7tzcSI+UxnKJmUTIyuA37xs23/rmD3UnxsjZ/WX1JGfXWztnD+0MRPqz1rD99WMilF/RUzchYkzK25D/8Ykg6v5thVo/bnm7nvxKbQE/Fee5Wi10Tm0/7teO/60WV2BEf2L1GIr1fUO47HAd0R+FAwNvwPjK4M+7eHJQv0f62fXTUR5NWE6ZP3ZvLkkaRyd/5SOAol6XxrUnx3OdtXcuoj8uVtGtP06ey7wY9KtF+yy0f2A0bYvkYJb75P329RMA10TDQ5Un/i5EBNltymXvD+nlvdTJS+9Rf15EYas4kLWPuDPmQXKzLN6qP/vaF/XHDaQSfa/UnlcpBtonuj5zrE3+QSpJEL9OVvMfp1BAop/C0w71Oi3i3Fngss4/32nUovqE7v+LKTgYaX4EuG/PE77V4zF1cB4UaHhr5Oxt8GvL644fH93Fvr+XwVXz11U9wO/xu8Z9qTeRfcrk8Z9KewMMZgX4b/9TuxG3N+a0e/X4HqadqYR6s/Dxnv0OqzR+v/FSjkl819+RdafO7dEJLkLPIT5jQ2MlLfJVWLepP8OShYW70X3T7NbfdcEfNfAPQg+dahFe4MzWv8bl7MEFwc1ceL70T3epN+Ss0PnV/Hb6QBjKV3o36C8+8r/TcAYPt+7Q4RPnCEU6s+0h3ZPi5RRfXh4sTcp7ZsBqk97FUR/1AwAXlXw8vJKzSDw38YvbqOnl9H9a+S+19w/OX2h/zkYdy+XqkB+krvTtb1UMgCzJHimpnu7XD9aP/df/Kq1fw/9QXTKlNsPhf/pT/gRMlX4YiEX/Dj4gterVU5ofyiYvXAxMUiE+rTG7YXR3dMoP9S7XTDH9jUYu0D4b+PkmTcp3oow/6H2Cre1irHIn6VPzBlgZ2C87eEvf/xl5Mn8lK6x8b7EhiNo/yu/sZzYeyEN6s9dKT7JF0y9gFdfF5fiCnOH+jPPxtaM6kV0/8Sgn/raxdQc+p/lo7lur49H339zbG4Az2QiTsYPynz3i6tKqL/g5V3K699WTRB/OK5uSrqqZwDjpeTF+Vd+L0P3Z7397hnnI4DbCdoIWfFWYNpk/HH8vXhJ9Cbwuh39zEKSZRBfKvRfedU4hKP9q/ShoHSmCPrPaMcrf7HeCwGeI+lqulRfQr4f6tl3y5VTKzOBR88+u7B7sA7ij3idfcK4KVrfGr67Wc5rpGJ6ZPxxnb8gc/UkcLbPdz3L3yXC/dcqEdn27kbUv1dzmaE9Zk8hZkRwb/EE9af1KD6U78I+sRQnQP6eJPjm5JsWVP/SiT4x7z9XCvGl74LZ+M01qD40I1s+4VMTAvdbfg+H9k1PofrxjrLcB7KOgdh3gotyX5xQs8aBJ86qX8g8l4wR+59q7Hv4uL8hyt/nxbYotdU0YYEEN4tlFuU9huqbHG9f1Qp75GNGBFfaSdcILUH3X7jyeM7OyGrInzhEPjF92+MB858RVru1GFoE3KncU8wuFPnnk55HrTb7M4FrOG4s7x5C/fcsOeyiwvoXyfOZzvHY5WRiC8q/Ml4w/JwqKYP7i9WOduV7J5AfXp/Js6q2TID7i4U15WyDwSi/64sPL7Jju4Z1kfcX5YXq3jKofmUwfLRvW9RtuL+4OyL5IajZBfjInERe9484GD/CVu8ep47ye09J3RazllTU/77tHb7Ug+5vHMfXzjC75kB/EMNOj4ubrqP+00cuyzZ311+D+w15AfaVkqL2wFe6JwW+Y80k+3vptBMFuhvqUHxbwihjEwf+5/5i96MUfXHU/2UnNqQ96JiApZLjV7wfupWL4rvd3Js3RxwSyPownTY/uWv1//x9Qu6l2oz7bfchv1rWeMDdGImev/7F7dYt9UXAu4puMnkUo/yz0XfS8XmFP+RP4vckKvp/o/djv5lhXbl4Fenv9HBNlZIYX+S3h7PjW32pV+F+g3JSYv4KE6p/KG8NsBayjMG5yf6eo9c4zwSg+sDTwXhXXUoJ5F8U0XLn0NvofjHxkETWBC0R4yE531jXoxYUX5WFDTRxnf/iEZk/nTZV04lE8VnBuCd1dnsl5FeKuXX36JzofjTQSCf1/E+UfzX+4ebck+gOvEOK63KfQA7kT+Jyibs+LQYBF/ySy3wj/yHw1rmPL/xs0POVcLo/GfWphvsP2mmvCKEwVF9yX7X1/AWFYmwzkT8Fv15d4b2A4iez7jn+8xN3MMi/tOL3KxxBvw/nt3tCxng4tpbgyixPnvdpov4ui6oco/1PaJB/7fk4wGr/rQjGH1dNuDGwphT6fwJ68FmfX2j+lJWWCRfsy6B/Plfy7rN1znkwv9aB3a0SDVVwP+ElXZJg6Yz6o80lldrTsSTIr5Ymt0vzNaD55w+aXFxwD4L87OLhvSyZK1B+VW0bvu3TVB4eQ/bH93S29cSg+vlFvpJTeo+dyP1FpSmkqXJKoPxRnV01MXof7D+qwOicIc/2BOA2+do1emZFqL9nxkwX24TuL3aJnrjX5F5Bxgfqt5sDWn3DKP6kax/44B5RBeM1sz6Fy3mj+q++3GDsckgd5F+XzqwPk8ZRfldxoCbHqLoZ7i9UKx9zT3Si+x27CbtWrocNcH9h5+EhcJ6C7kdWjMbYXRp4DPkTx7enEyYs92B80hyX1IBPAdxP0M7pH3hsjPobfvFePFnnnIW/JDh+vsJIvKwQ5nf9yuidqFeI7i/a9XraVmbA+Mb1aScl5XGy/5S6sOdJ/EYuFD9kB7j8rkXmkucLtV/GNVhuMR7mzzPjCh3dFkb6Ob0/zlqMXR/5i9LDWx9cB72gv+NPd/DrqkrkT+HKvmrqntugf7rVv6moXAWdH994HGXEfNzxacJ/680njXw4kL+IFw/PLCR4k+c3XV48QER6EPn/34yAOk5GZ+jfoBg8cOk8h+oHjBs5N7+Ii8DJ/otMponNwl6OwOOZfXUee+oA51QX+fDdBN1fq0UEHWUv8IP+D1qC492aU6j/4q+Q6J/3M6nQvzHyVVBtRbsucIEtW6vUHELAjwsc8s6WfUV+fvGeu4bfpCnwabf1ReIsyG81+zondu1KxsGfy3XLSnai/bPw+Q2tRT4a6ss0t5jDs3zIDy41bHw7phCAk1wgffx92jqUf9T0SK1kMEmB+nFXidynB+PofLDPMPoS9EQF/Dquk+PuJoo2cGYPkYL8snQYT5ne/qJZ7zP0D1i8FB4cf1JC1gfoIw4PTrOFofGTJ+ZvHkiE9Uc3/uxgvjb2KHDlVwYfh+J8oH+DMr7Vgp/5IHz/3/VPRgeeZ5L7hz7Swt60Rcse+Ecj4Q2qb++A36y+6xlP+4t+31c5TC+VZo3wTrK/Y++Tng5dVJ/LH+besWZVFk7Wjxsvv7qCH0D1v6V+fkvul8h/9K4JSYbmo/uH0P56Ax4ma+Cl2QfiL6RcB67FYGp4+GgWxBcLbQsVHWUUf1K2VRTcON6ElxJcoGH8YPUEer+bHKfZZ7qbIf7MN7QUr/+I8nOOm5XrK7E2vIuIH8rvPfxVMlH82ZN5KqKyIRV4o8PZYeGV/9Mfl62u91TsHsQv5lt59DvTZcC/8acwqnjch/rPiGPqudEr6P5N0LaJVaqoEuJP47gEbV+fOHA59903ZSczsVaCaxek3A8TR/XBpFXCBpMiieT6onbxCi+VPEfx7c7vPdcZTWog/5pn8HFe/ID8abiu+qt9cB7cr7ZusVcqM0Tx7bDBYw392GJMk8if3uccezCFJcD4s14djxxlcjA9gmd/Hq7a14fu78ZTL9/d434L0yLzr9unbxirovufO+1m7LEeuZB/layX0tr+P39/7Fa3p4jVowyLIrhiuAcTzxXUf97YqzBo1moP/YfZjMMXgsVR/V3CjSEtsS6F7D+jRm06MySmjeoHTJ3jmq+/hGEGBD+P7Z0NKUf9hyH00C8bvt8m4xt1+weL7xoOqD5stSrk5fPeasivRnOPrjM4hs7PKz+WxTtLEoGbclj8tKCg9Z0nX5QsrCcF96dMQjztrgGoP4CaK51jeDcScyHyp8pFm+xRXZR/pUhtYNK59hDuT2nMmwrv8qii3//nzOqn7vlQ//kgSF/cENUE/BTjZtvds5XY/wHvJ3PnAQAAAAAAAAAAgAAAAAAAAMAPAAAAAAAAJAAAAAAAAAA=eF7txTERAAAIBKBo5vQb2sKzhQMspM9UbNu2bdv22xc0YViQAQAAAAAAAAAAgAAAAAAAAMAPAAAAAAAAJAAAAAAAAAA=eF7txTENAAAIA7A5w78bJCy44GifJmcntm3btm377QWso1SnAQAAAAAAAAAAgAAAAAAAAAA/AAAAAAAA2h0AAAAAAAA=eF51m3lUT1v/x5NIZMo8czWQQoOQzSljJLpSJEOGUoZ7k0aRsZTQrHnSoEJpTu06jYSIRChTxiQzGaLf7z7f9z7Pes5d+ue11vvdcZer7z6v/dm7bko33c0XPORlMv8w2FFzme8K2ry8t3HXg2m0G3pp5F3A5O2f9t4+4ELl0bPnuoFL6hoM9eS86dXqf74a+S9H0r8eSa/i28A5+4301CI9yDX0LP8GVpp++ejpsYXWiPrvoGqvTyq2Ow7QIIcLQ/WW3eObN5KUBN8L/GtwxOHwlIOVFoT1L5C/ArWtf0XOeLiHnkDfgrwV1H919se0Hx40oXjb4I+P7vCzViUdGGJSyc8GGwNij3iG6pMo9NORzwQNhhbM7LxmC00UPa8PfnjunGkXf4Butf7n6zav9Z+vcl4H7Jm6OHfTHUuh10A+BUyOPjFJLtKf2qCfiFwTvK9/qipsVgqd0Msy+27LTV5ZvuTJ4n6lAjsspsbShCQ6Hf1E5JPA9+MS3aIbwqkS+mHIR4JB80N+VDyIproru2Ye3VXLf5FZvuvgWZ7/BB4dKv+Um7mJ6KFvR/4TnH1mZXWYszeZjr4V+Xvw2+TKtUujYmkXqX++rvOPcrc35G4v5J+ADfFL87vIbyW/6/s8ra971uRJpNE3IL8PRo4af3XiLx8SvPRjxPPuV3hqc5i8Us/jK0GfEwsvWLXakRD0pcgvgkqTjZ7zBkFCfwH5ZXCmn7nmlrpAGv+EC1k8ropfa2rx9mZ2Nm8Fzgubv2VA0gGagH4jcmtw9a91jwMHRNKj6JcjZ7z6uHjCzcxgqoZ/76Wyjsayjud4Q3D+vHY3vfnxhP1c/IncCOzq9Nz69MJjhP3cmSFfBi5RfeBqfXAHte5iFK21m/Jm9iM2Om5JFmj9ev7G/A9JZBN6Y+TLQV/q98ypOZicQO+IfA94PTTmPtfkTazUnwd15Oby9oaVVQYu8bwr6GbfK/rE4GwSjP4E8ljQQHnGTX+rMBqE3hd5FDiSL9X8WZxKC8P++Urhh657P2Dd+2BeDWxIHmoZb7iRnEbfA/kI8LvNsVk6vfYTD/TNayV5OxivbRI17Lgn8bCMULre/zD/KtzSNrNqJx8cIeHXElcn/mQOOYa+D/IkMH7B025PpycSmXWS/mGYJF+LP6fM7e5LTxkHGibpubDI/+TcEcnzXH7e6WnDjXnSf62kd0a+UPI8Zz/WZ/EtxbPkHJ6XiZLkefg+28+eP5Q63MhByd+P+1Py9+aGgLZbcp7XOByglui9kQ8EV1TEPGntZ0eD0Xe3lOQW6HMP+o37+Suc+Ev+fbj9kn8XLgQcbJenm3LlPL2DvudiSf4a/dMPcaOXjcii3ugHo+fRT+9vmmmTmEm9JT9fnJ7k54qzBtNS63dOMsygYeh9kHuCu5dtdTtUYEmd0Z9G7gbq5dqE95h1jupKPh/cesnnglsFdj9hl3nQ0JfORI/PF2fGeql+W8b/dY4Q9DORG4Pb761uS92VRQokn2/uquRzzQWB4ZfcnSILi8g99PHII0DpD4N1i+4Wk3PodZGvBw0D31bLuZSSOMn6xI2y/c+6xDVL1ifOUoV499yTTY+jx7rGlYMNnULy/L6V0CD0HsizQHvy5ekdtVoqJ1lfuVbJusq9Blv2Wj1TDj5DOqEvQl4Hrhn5Zo+VQyr93PHPVw13FDn7vmnqQwctac6gOpL3A3dd8l7gnoJJJfQwdzaTzEDfgPwt+CnO5fScvw+SP9CfQ14Jmvj2vhg/8RjVkbzfuD8k7zVOFdwsdafi+N1coooe7z1uLCjn9MK4LDiMcOinINcBo+RXaqdrUrJB8n7msA5zk0Fz/StbIrvGsfc3h/c+h/c7F7Zu/ArjDl+yDf0s5Ozn0XOhgr53UwKJlfgFN1fiFRz8ggv1UY4ubs4m2ehXIF8GmniMLuou7UqD0XPI4TFce0mm1DLvGBIh8SMOXsW9A2cu0Do6/Gos8UL/DPkT8Ni+47/a5DPoSfTSmyT5D/SOgRbWVW1l9J7E77iXEq/jfoALUv6eu1Y1nzai7+wjyWVAOee0HaUL44TnRyKXB3/eD1EM6h9Efyr+x0+5Oxn/8VLuA1hZYXkwPaSEjJH4K6co8VZuJGizNHeyRspe8hbPqyDvBJrJjBzW062EyIn8mHnw5aIPr8c4u1HZ3/hzr15ZYQ+3OFC53/j3eGOvylEtppT58Wd471cwauPp3VNdAgV//iLqC3Y06aZEuZNq0fPMoyP3aFsOOGxEQ+G/b+C9b0EL81tLB+jtJcyPmTczPz7t6mbWjfMnYehZjp8Pvka9dYyJoyU5A/81gPcuBKWlCics9YwlMeh1Rf5sONNJufZiHGH+jJ9Pfg64vkpj/v5+fsRW5M/Mjwf+OLFiSF0U+Z1f34qfvHN73EHheeZJ7PtkC3revurkRrXgv1gXBIa1dCtUHRRHp4l6dXAVlxAS6xRAVUX+jHWG19V5VakSkyL47wd470fwzc2E/hOr3QiHnuXfwT8C6hwd24IJQd+CnHn4kpXRI95GWgp+/BDe2wS+LdL+48ie00J/X9Sv0DGuctALZes3fxP5PXCK/8dZlXox1Af+WwjvLQbf1DeH5PoFCH2BqP+kPGpB2/0EcuQ3vbmivUVvFz/iA/81gvf+CUrbzTUaO6FQ8OcNIn9u3mGV5hx5lhahd0TuBtZ5d0leu+kYxXrML4T3LgalB81KXJucJPTzRH59MudJxcZ3u6k2+jmi50dHDjRI7XqSwD94eAd/CLSJWhiicCGfbEC/ADnz6GDTn9M0d5wma9FrIWffp27Wsmjk2FMkEv6bA+89C34eKb3cca4/DUEfgzwBLLva3tGsEkIr0WcjvwCaFtscKKqIpofgv8Phxd3BVTMDbz1a701C0Msj7wv+eP1zTmOeLwlF/wbeLIfeVb5c+piRP9GC/1J4bzFo9K3rAXIlm6TAnwPgzQ/A7LFzXybejiftEv/lz8Ofl+D5upwfjz+vOEeqJc9z0+DPSuC69t1Ff2+8SG6skfQE3lwm+XO4XxvMHCJuUNKG/i363qDXvooRR71OEnP4b5nk78fdBjvOReybpeNJV6HvAy/G/wfuvPPLrv50CQ1H749+Bmiy/lH8WoUQYgH/nQfvtQIP2/sdm6p6mUahz0OeBgZsX+XUVsfTBehTkDuDq7/cju8xmlJf+C/2ddzfoOoU+rE0KFvwZ2/kHqDWXl+DE59jaQL6QuQRoObNsCM+gbl0nuTzwdnBezeBz2ZNl89QzCTMa1aK/LrEUlX6We88wvwanz9uOejXrfjt06dnSCb8NxHeexA0Mx/UVeHvaoL9N2eJHPtvTtu0c8rq8EoShH4ocgNwTkh/nz+m8MQB/vsQ3ot1jnvvZj7qkutF6o4+FXkGuGinbfdSh2s0EP0+5JmgbuyYnTF9btJu8GOZPIn3vof/GuYUP6+8EkNl0GN+wT0GnQd+SbbxOke/w59TkVeBF70mls1dd46qw3+fw3ubwAY7wyj35Evs/cJ9RY45DVczvLuygnw+mYD+CvLb4O4+3mW/ZqYSzI+4yfBexuCcJ/OaB1cQNfRKyBkHtL2OGPwqX3ge8ycO8yfuZOWph7pmFwjzY6yzAr28toc32YQSa/TMm/H+5j5Y0P4Fq7PIFvTMm6eCtttOf1scns/8g4N3cJjTccamNv1yCgtJFnoT5H+CPT8ZpydsP0a80U9BPhF8XuJ6Krogi/kTh/mj4NFXc6V8D08OpGJ/bgJjh3eyrODzaCz6riJ//sgbWrzPK6J3RP6M+SkXV8Jvlu04R+vRy4r8+VSKS9O1n+aCX49H3hs8d72spqJzJPkO/70Gb34DqhVpD/dcWkOGwZ9HwIuHgLsuXj041yGLvFT8X7/+iefDlz27fGpBBZGB/3aG9zIPLvuTmBfqzaedRf7MqHv2qtOXD4eF+TObO8uBcyvzuhilB9MrovkxY43ZhNJPNtFE3DOPflS4y9gpwY1e/k3/rW5Cu77qSRos8l9GpXtNwR5PE0kgejaXZnPmCsuTjj6uDsRP5Ndsjp1wrGxG7JM4YX6M/Z3AhevLlYc/jifhIn9mPFzi+mLek1C2PxTm1mz+vPPUyuAlz2Po7/x5UUrcGLU5JwU/1hb1cV8VDh265UE3o2c5+76Jw3JnVEtlU0347zh473hQh7gGLu91hDC/ZjnzaM/aU4dumfjRMeiHI2cebTljnplGWwFl/vxaND/u7P6hj8/JeGKIvm8XSa4ALmwx6ZRn4iXMp6WQd+D5ryEdz0emZgvzZ+bFbL68Nsq9Y3OfU6Qz+gfImWc/np61nDz3Jj8l6zN/Bzmj6ehCZ4dmWxIK/62G914FQ6RO/XXJMo8cQ1+CnM2hA/LcFjS8iSR70ecgzwUXqJV805+wjyTBf7fCe21B93OGhX3cDtFE9FuQM5b+Ocp8V3McLUa/FzkjtX5nIatwhuL9zeP9LbB63Iix7s1ZhJ1HsLkym0Nrrk0zn6McRKahx3tfmEOX7Xyst3FYEg2B/zrDe93BDIVOWRajS0g4+sPI4Sd8erz995TyDLIV/Tbk68En+2qVeMVYWgX/LYP3XgGbNr8OyEpNJj/RtyNnzNEKr69sDaa/8+/Jqf0faP5IovkiP1YCE3O3+R4uOkMa0E9CPg9c2fT9pVppIPFF/wH+3AW9pq5Udb1+FBkGf54P7z0KvlYMLarzLiBR8GdzeHMFeDLw4cCkSWfINonf8htDJXkb2BJzo4B+SyfF8Of3mBt3hT8P6+nco9/hcmKE+fIU9O/hx1lvD2q68ZTchz+7Im+EXxfGjb50p3su2QD/jYUX3wCnbXK/oV5xloahZ3PpQWw+/cb5ct2FCJqEfhvyqWDZmnHfb24IIKvgv3rw3o3gyyvl+9J1ymkHelnMl6VBH+LNn28qoY3oxyD/jOfTG06tWXu8hJbBf9lcOYr5cW/PkZqPUmkE+mPI8XPKrQ56nPRX8mnqgD4YuT3YNXfA2TUZZcL82Vrkx9NnBfV5Y+dDpqNnc2fG3j27DzRMOklwbshxyBeB1ZtNCx5XxdAD8N8D8F4LsGlp2zQX22ts/eCwfnBYH7jW8xMO+o0tIxnoZyHHORY3OF9qzyL3HJIM/+2H+fMr+O+Dq5NWjZKvpvvQY/0SmNS+zN/f4xo9gf4Y8jxw3OiI5YWvbgv+3B3+/An+W35733vFy+kU538c1l2uETxm/L3fxR3Z//LnS6BsnxdXpIsz6BSRH78DY7T01jyaWsreL5y85P3B4T3Daa3M+B6kkk3Goy/Dc7WgVdqk/BDjdKIL/9WE92qAsid1P8a5XCA4vxXmzopg6Ty/J/Wvc8hM9Jg7CX9OQ+T8hqdeJf+aP08CdR71lWlxSRP8mHk18+iqgj6lddfTCN7vwnNYz7nrcX2WBvbP/K0/q3356DxwFC/4szHypWD+7oYBCc6HSBB6NnfWAXvlXrpgaRxLQuC/8CIOfsW9uFXWZrjZgXigZ3Pnx6Dc0jBfN21Kw9H/RP4JnNVqa1A55CKtg/++gDfD8ziLmrHtS+KyhZ55sxTYS/uVzKwe4YJ/j0XeA5R1fye7QHs9fQ//rYT3PgPXBWZXdVtUQ4bAn5k3DwQL3n6RDY04R14o/q9ff8Pz1+z+aFU5WkJkRfNjNl9uXLxQOmq5F+0q8mfm2ZVnHfOshrgIfSdRb6m6xmqH13Z6A/7L7l20g5eKQjxljbf+a77M5s+L51w3jkq3JLXoMdfnf4LyRh6WKrO3CH7MvJf58asxLR3Ozn405DfzaX5nhOwelx3s35d/j5xRviW4wLt8J2X+S0Tz5Yl9crZZPXYT5s/sfgabM1vfyTdrNw8Rek7UHxo2dJr7oABhvsw8BvtLfpFDl7SFqYFsfyr4NWNGesa94+3HySb07H4Ho33HhB9HZI4TdZEfq4AaJdpj72h4CT3L2f2ONfeCbjvpe1Psv3nsuwW+vjjWc8i9w0RLdP/iFWhspGIzyTGRzEMvBz/uDg61adHIXxpENNFjvsC/AGsCtu7svvqocP9C7Mf7I4yd/0qN+5dfPwXP75kceXxmhDB/ZnNnrN+8fXtmx34+iYTBfy/Be6+AW37ou9jNiaVHRfc3mEd7/SjTOZy2X3i+RuTfPokND29+shPuXxjDe5eBu72VnO48OS70psjZ/Yx9WYO/P5+cQI+hX4XcDHzY5p59+dhBive3cC+DebKbZq3qeKkkoTdFjvkX33Pdzef5d4IIO8+wEPnzVRdF1ZTh2SQA/rsR3svuYQTIupa1bsgloej3Id8PToxx3a5Un0Ki0UcjPw4OPBpcWLQ5l7D7F8fhvZGguY/FtgNhf9Fq9LXIGX9srnAcaRtJtovudxwGszIUW75/iCbZ8F8VeK8qmD5lygeX3lFCr4VcHdxnOVGjp1w68UIPfxQ83PrGhZXTdxUQU/izGby4A/58x+RvE8+tweQG/HmJxHv5ieDH+3W3LKxzSBH6d3gefsy/1Ngva/0pn3SBHz+C966DB08r7xzY1JxEYuDHJujXglkvpPlP6/PJajzvCL+WBxWcfTpN7VNGrOC/EfDmWtAmreiPfVfShfnyaHgx7sFwGhPnu2ys9KA30J9Ebgka88scV7jkkwL4717mvaDeltKzD0tr6BX0NchvgF+3u59tUP+vP4+CP39EP9vMrCMrKIOaw3+HwXtngj8u86UDuDKqhX488gmgb52+fpe6eGov8uu/QDN7c4fH77dT5itWIj+WmhY8T0s+mmI95vC5E+5xOOgNqF0unUaYD+khx/kON2LLgX4DHXJJDvw3G957BOwzqv1F+v0Kgv0ztxu5O/PoSbfGzQ+tIBfQz0VuDz6tMQm733KB+MF/u8Cf6+G/YzyLnZ0G17LzNQ731zgejNYxiwvqVkOj0Xshxzkb92r+9OllB65RzC+4rvDnFjZfnlz9rr2dUswvhHsbzKNTxiz8Psgni35BH4O8DIwY9+5FypRdwvz5hWj+3Pfv8u98zRkyEz3eP1wbWLVyYa3SqwwyBn0qcubRkXG+S+6ZF5JZ8F9t+f+9f3F+xMsxc3qUEtxf5AYjHwGGPX9g9+eFPELQq4jm18Vf3i37alRD1sF/1fFzwDy6dVdpF2XvY8RK5MdsvzXzuXPUsMZM9n4Xnmf3P2jUyqbuGRUkQXT/AnM6bsWethDNJ5nkNPr5yHGOzl00TBk0doc3CUCvgVwLPGe3rubaxDQSAP99yLyZzZkny6Q7NiRQ5s+NyB+A0ysGqFCfAhov8mc2f/ZKDB6rc7KI3oL/PhL5s7b15gK77ZnC/QzmzdJgVIWCbMomP3oX/XCRPy/K/aW2bHQs+Qj/LRX589Q9Sx6s0LkqzJ/7i/x537MjgW/+f3/F/Jn5NfPnNFudp3vGlBFp0fyZefLtE9aKB1eupVKinnny5aXWCi5PLCmbX8uK5tcvZDL7FlzYJNxfZv7MOD9itvu2RSGCP38T+fPJgO+NXs22hN2fbhc975xSbqLaFEQj4b8f4L2My65PCNWQO0LYfJp5M/Pogi+ZpWsGBrCfD2FuzfzbXr63tNtXFxoI/9WG9+Kcg5dbPlCh+9msf/mxHthjm+pQ+5YEYT7N/HsGeDzQSF3Z5ITgx2xOyKjj1fb6waw4tv8UvJn1R64s6q3e04j8bv7cvtM8/cSmFOH+BruXMQGcreqXM3uAhzB/VhP1R6+lSCvq21MV9Ozexhjw2ribJxS3JVI9rB+6WDemgcHOzYNcJ9YI689o5IyZketO9+pbQqaix39XOAez/HE9dPyIUrIG64cK1g1V8G7/xpmLq4uF9UVNtL74yLmovZM9/6+erVNvfF/NzvQsJCFYP9i5FTvHupvZ1f/T+yqSih73brgFbP1pvKKe6phMjoqenwSW9hx7vm5DIvv54+6L1p8Wj4yXjYdyyQH0d5Gzdci1rn7y9iUJlN0/+478MxivEvnjzLpitj/lHmDd+QgO/6v/w23dQoT9u7Ro/35KseJLrUYg258K98fYOdloe4ufT9OThPXnEtaNl+DwXxENtkU1pD/Wn0FYXxTAssllH5bL5AjrjxLydjxvdDE3rkSzgmhj//QG+yZ2j6cqQ19TLTVf2F+J92fdVRa+2992Rti/vRb1M3IqtBz6baNs/9Qg2j91eTu9ruQ0L5xfsPs/bJ82J27wnJV9EkgHzi/qkd8FFR40fYyp8SGJ2D/dxL7pFnj9xRtP2S2ZhN3/KUIOP+GVTeNqtpadJAmi5+vA/ddWxgXdTxb2V+zejwm49crPVI9tGUTcs/3Zsqq3VV61PsL5BrsXZANWfWk9t6PwDGX7dXYuYQImmTrvamzKYvNTfglyds8+8dsF4/hBCcwPeWPR+UYYXT9u8sAEegn7p3jsm1JAJYXwSL0llcL9+F3I94IflO8ajL+dT9j5h5uov3OwIbo4wZ9YY//khH0Tuz9vOrOmW923MgI/568hv8H2X5U6xp79fYTzje+i8420rlMNG3fF0jjsn8Zj34R9BB/neuFm+f0Ckot+BjuXAJM9Yy6pyieSFPQayNk+Lt7Gcc/jcydoPfZPttg36YKHHoSWnehSRlhvhRz3ePjCRY6R05xyyC30lsings79FM0Mx2WQ/tg/jcO+yx3sLz+Bc8++TpTR70UeD7p9HyRtPLaCXML5hxrOPUaD29v61lLNAuKP/VMe9l2fwKG5T5SmDcsn7H68DPZVvcAw/y/+jefDyEn0q5DjHIgzr3qve1b+ODmP/ZMb9k04X+LWWXsmTyqiNBQ97ndxuN/FKS/su9JYh6dO6MuRh4NvNi0+/7drOT2C/RPBvmkTaKV5d7ljZiK1Qr8EOX6/g7u5qe8XZZlgyqHHuRo3BxwZvHnQIa9synyYnVuYMBq0b9To4c7OBzl8vgSqmfRc/+J2FmHvK3Z+YQCmxVRFn/XMJ9nYP53GvskDnJI1aGPbX6UE8xduJXLMabhf7dsUXi4uJ2HoJyHHnIfruHgv0yClSth/SWH/dRv7p5jDgy3kTt2g+0X7L7a/0m9NHrbfrprifJcLRc6+b1lfzrSHcx2Vxf6rJ/ZfH7B/KtJNulXZmiPszzAXE+7/tK53ylOalS6cX+QgrwaHlzhdOpqZK5xf4Hybwz1SrtJJ7c7H/RfZ/VNh3/UZnLpzoFKd0f+vf+jrRfu3CudT29wMQsnv/PdK8vLWn/JepKuoZ/Pp+tV3e9dvUiU9fnN/41ORs0KrrIdw/4J5L7uH4bxG/vLLbC/h/sY3Ua/zeqPyZ2d34fcPmVcz3ugv98J1Tzj1hf++hPcyrlt2UMpj9CahF9/PGH5/3uhv2X7C7x+K73+oly3gRnRLEe5vzIP3Mr74tFHjV+UJEoqeeTG7v/F4kVL/eR/sftsPsVUdnX4giTJ/1sJ7iPlx6IGJD3c+jxbmy+I+7Khx5/axAdRK5N/sfVfgalpnGnNKmB8riubLxkfqByv9WCHc7xDfj147I1zKKCRVeF78+4fu+Zl5Ln6FVA3+ch/e8gBsqzs/N9Y0S/CfZuSM1k8X5c8L9RbuR/9Czu5vqESNrJo+PI19foT5Mj4//PF32sSrd77gN8x/mCc5XXv9SjN/K5tvCPefGW9cPujRd28a+3z/a/7catuLXDr1X/9hv1/I/Odt8VXji5udfnv/2eHry9nNj9OoL9aPX1g34FfcIU+t0G9vrlF70f3D0+CZp9Iz4kpuCL+/442cna++KlgW1G1PvXA+Kov15xXWj0Er3hZsuJtMv2J9qUXO5kBDHV8r7WstFOY/icgrQc2auQp2MpV0MtYP/N4nB7/lft4r1DU4UCasP/i9UYHfjK305JamkeGi+Q8FO6kNulZfmkAnic5P2e/vDNx7tLG+rpKoiH6/B/s37n29g1+CerZwvjpC1I9blWagurtAmP+w81H2Ptov17x2jk6GsL/C50uY/wxVNnbbrH6GWKJn8x/GMYt7TtLUzSJh2D+xc1Psk7mSKO6J/UKeFKBfxeZCYKbPpk4pp3cRL/STkauBM3ffUXV4d4r4i+4fYh3jvJfXmHeRChP2X4+Qs31a8gaNY/dLMtnvh3DtyNn56dW9GWN62FdQzC+E+c978PXYu436UxJ/u/8KerZoQdoyfeF+Itt/dQeXvG0bdd05grRi/1SOfVMTWO9Vu3S/33UyGPuvAdhfsTmQV0y7f3vn/+6/2P7sK54PGsobhJeXkf8D9ksQbA==AQAAAAAAAAAAgAAAAAAAAAA/AAAAAAAAJgAAAAAAAAA=eF7twTEBAAAAwqD1T20MH6AAAAAAAAAAAAAAAAAAAADgbz8AAAE=AQAAAAAAAAAAgAAAAAAAAMAPAAAAAAAAJAAAAAAAAAA=eF7txTERAAAIBKBo5vQb2sKzhQMspM9UbNu2bdv22xc0YViQAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAiAAAAAAAAAA=eF7tlLENwCAMBBklI1DSIFGkZCeyGHuljCJ4JI6gdFS4eb0N7wfJNuYN602Jq8Dhv7HVc8+F1ImVu3qe96g79Md56UTcm/lR3kLPyg90Tvh1qA889yhd+pDf1pfvmvx3y8OPdAL/lxx97rRx48bVGDCHnFPuC+0h7gPNPfes+J+PdfgAAQ3pYw==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAsAAAAAAAAAA=eF7TdZZ5/ciMaz8DGBywhtAMDRCKaQ+EfgAV/4CL3g3VZyMBMc9eF0xLQc29AVX3AKruD5TPATWfAUrDzOOwQRPf7QAxz14bxdwLu1H14XIn3J4GVL7IHhus5sLUwWiY/1jQ3Amj0dUJ2GhAzdXBau4FqL4vaO6Hm4MernBx/OHwAkM9zB0Q/o/6UXqUHqXpTqPlS1g5+AEt/x/YrYCar9HKAfRygcNmsOZvAEtzKHA=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAADQcAAAAAAAA=eF5lVn1Yk1UUBz9QyUpQPtTwq6TEUAPNgGugkhgKsdIiSd10Fk2QiTAkdbyDAQP5GGOMMRUYzAno+BTy4yhkoWImQuTDQ4iKlKFShpIfGWVy7vu41/1znt9+95z33N+955z71zibJz+Zd2LbYqe2xeHeFkM/5krIqisZyfGIQyHth1GV7luSEAcBz/s4074qlcWOVVt4u7wyEMsg4v+wNlms/+xzotiNI7IRC8Eq4btrtffViPnQ5TXFf/QtDbteei+mek2X1lv8NI6sPs3UMsnUkurdP+7ZuBbMkNkOQ3YDWikHh6INQutD0CJOQRuG/wcT8/UUh6IVc+JEIuaDZGjf9UM4jPSY5fsOrhdy8tmNdh7yWYhjEGN+jAxxAvVDzEerQkvjJSNWIo5HLEMsJub5Csl5s3xX4jo52mj034k4zjwfJhVxKvJaxHmI04cwk484BzHNLxsxXa9A/zQWR5nlKyWnzPL9Etfj+TMpGE+D/qgnU4iYk69PHuIC5AuHsI8R4+UiX4J8PiffAs5+dpNITr7lz+bbkITxUE9Gg1hlrpcFg1jC4ZOJ0Cw+n7QdMm2+0BtNJhQ/khC10nvw6ff03oHLY+6DVALfBip1+s9jSf2Ecr9rX9H6E5PHwuv1fiIBNPDqYxd/LyKSJIFjkkDL1qfgRp5edFMIF/snL5oTFEZ8HkzodVm+F3k1sbh7+BUH+10wI6vAzdcji9yf39P5hUMhW6fytvjlMU6J4LCp3X3ka2rS2LfovWPWRSzPTLTTCzcmwurwN/Z1Z6eTYmOuaexgMRv/nKeT4ZebMigtvL6loUlGktf/abf+z/3IM8Q22zSiyZgKpx95jFwvTCILHVdIq3oOIL+dLJs1JqtUsQ1+yllg9euMrWRsi+HX4e2lrH+o21WGlK2G6Kd66us9HnVvOpIWCX3jB96EswmoexB5gHoe6vQ2WelkMH/p5A8SFyopD3Q/435eqz8Z8SHM3a4oaxTRe8P2KyJ7+d+Qmp3pUGKZLfw7j8aPQn8V0XXWRttY74XShM4Dynt4r9g6VBE750uuFeP1cGN2UHBw2AHkaR/kk4fLPBy/CSmC9mWMnYtbPsdfSXQpPbnddcVwqFlJ1l7ey+EZcr5359J8qR6KNn0XPllK65j2PQWZ1n9sAcnJB3/V4Ja5tXLO9xnidm74qW4XHcSgnpYBGxJUIgWkv2WQlrDrLZjrqOe08GGmwlVKOOyv3zdjF+1jtG+LiW3knibprd0QMN5LOlVp4OQrJ+LhZ273TyyABpNvYupVytM6VBPXBR08vzF6ED+88KNlhgl5Neu/uTWwQmcsg7BjrilrBFRP2nc0ZNToMUnNNVWwo6vXY1a5kRNfTsIko19dMqoCur3uZMoFZc/p3VnW2xDWeggCX+VNssgr5PAacqmDF+FTYITxzpZTfccmPsfnZM355EJ8Ec4XfX3gx+fOzHHJhLfcR9YYnLNw/U74CfXseONkv9U7GaDs1TiuWFvM8kNWRfTreY9K1Fq43VwbndbD1VNJPt+z3Kbd0wiDr/tus86keuWw5zulLbjVVFgD885HXjhRWoG8FvkicvMgBIg1dXBHNLArdGId8rQPFxPVD7M6FgV+DS7TN9rfTa/i+GuItuvjluPWR0H99u9Wm+dXcvw1ZJ7Aqv6bJUeh8d2X0iWTSjjnqSWtK2+uDr9RAXPej9at7KBzhO4vjTQqpr8XkqyHSNRz1Yy5l5XBMiiOidwzSkvreTsA6ukZfskYLDXAxbI/Gh1aDyIfj/EUZEC+YvilHQXQtjW506mnmrMfLfG53H8mdVoFzPurdeAXQznyWSwfsTbghN61Ek6uq1T/nUv9i9h8PSfsuGIffBhsphSJqk6fQH4v8mXEUvWaIwzUwPt96Y3/zD/G4bWkaUPKjfwXquHfOlN8hm0tR08VuW2fHrXjxSpoWtLpZThdytFLTqYak47P9CwBO5tvDeJmnNPsXGKIWHCbd+8zLfBRz4t/zPr+iGsSfLDN2v+zGpzzT+opbmmI+61uqp8KUpsjEh5H0P1mgP2d4hjXffQ+6oAXWydJtt3P5jNWAEfcnOic5OP3cc430HrE91oDzmV2rnLfbbQff4X/0/tD+04myTN7X9D3E30v0j5G/eg9o32czmuqUxSH9yGeZvM7lFScKskfFofnw+hBOT12ZpXiMPrlQ5dz3VXDRno+aeB+Ou7TYXpaHzQPFRH1FrRs8t0PV2feH/HgI3peSqjG+3zt4N2+kbcMuD6NbLZcJznFLwfnGIetnY20/+UiryODfpcXek6qBM3s83NLbCs5vAUjnsiL+jQ0B+D4wocmHp03KjYf/7N1sorp9N2lJY+Z6i6/gDg4olC9nTFI640PPLw/HesC+hjPOPiNf7ZsfyZ9p8nhP0fZep4=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAXwcAAAAAAAA=eF51ln04Vdkex/eUNHGb09O7Xrykpqe5mN4OWsI+eUmpIzpRHNrnHUVIOHWM5ZiI0OkOGTR1knlGEYZhzC63MxXFJNxcL800lxFFZagZd0o1tz/2WusZPXf/t57f2r/1XZ/f7/fdm6L++qTmp4xFq7Lq0fpxscVznnUBXjvdyIyfsvIcXldeDhj3LjiP1z11o4fk+4rxunpS3GXS+08m5f9s0vn/76Hdyp5PcReBdG5/7/qSQ3mtIoDzZV1MK0tcAZBewyCv38YmCHzN6aFnjj/7uGgX6Ob06oMlCV+ZKADSC5kvOwvnMsCZe9/SIffSsDYSPOXy6z84eOLeyVD2JHf+Doo/xcqaAUifId7T56VNNF7T+Z1n2n6WAMx3za98+RsJGOby0eLrf26qDgQA6e3+0LHrCxnWa/BQ2S60l2C9NNNaUcREgSp0Hz4//bcEOdjIvQ/thhvf9JD8VGOlo+eeCDaTOx+2HrxW/nk41sf0b/nvTTs1XsOMDZuP1iqI3v7Lh4fGgnE+Q67AQ7icARuQXttp3lfKZQD3w6CFd5NXMOji9DJVkYkPP47DcYMmTpd0eD+uD13flxy8VA6GUP7zR3XdLdFYr2Vpp6+ejcL6elv3NEU4avCaGjTzO7YkDPcD7Vxaz3OU4nyw4ts6rxlirBeKtYvHtkmIXmVFWf/yvVgvDBzo0oFYUIHiTqZ/PuxQ4fpQjc+Kt7wMxPnp5gUSnbWGPYH0mq268e1cFdanXzy7cEct4WsoT/WOn8MALeJbKrQzv8CAQVQv+tO/n9stBANIf+5GXpr+MJuG9q/cOBg1zR/nuyXtWVjUmwz+/VnNaNGMpHfmx6DtzXYxdwX7HOprRu/m4DjOdyAl/ZM2D+A+b6hy/rkz785//FWL7HPWLJ3U7f80p+gdP6AfL3vw82tfkK028Td3IPOP+T4yL319xxXoJsVRP8MGYxvf1QHAbVL+b7j39buivhOvFbFbJ+lD80k99hrKFSa8cz80r5ViMwf+9wz7+yQ+Ou7+jJlfe0fgVlKfCRjRvi2U7eb2G/JZxUy+EMctY0LkUWv3gv3cefRR3XET/z0A8YRztOEuDYGYJ+0q9zn1oQfAPJlQ+9l8Grii+yZftx2QbGURT6ZhAOouMpgn9H/oardoB/YDau00+EIlAie4+Ghn8fqRW2rsD5RgechoSCjhafog7+LIThb7sc1ps+piD+DF6ZvVWEXP+S2WRf6xozf7hlGrGt+Pgpbfr2n0xP7KjJwqXKcLwzzhT7PiSo4I2GzE89Z24Xw18UMq9XLbqmJH9i7ar128k+cjIfN8KeJ+bY8UhHPn6ZPW3C10U4IU5O8udUY/rJMAN04v/NEspqlLDB6h+bipEyyDDOFZQMd7uwiIP4m9t5cYyQjPxcr21u9EZL4XnM2rHZbiuKHSclPkGYh5Mtt+EG72igEClJ9vUfvpsgAW1QNO2KaugAHAA+kT2xpfbVTjelKyypqP0uNAGHc/Q15mYulJEfH/nSvdl77axz5BfJ7PszOrExI/WyJcOjR7H+nPE0ufvVq9C3Ry++n3Zy7MGQwm8f03VXn1SjwPtPurJpMGFTiG8m1JdWxrk4BNqD+3lS86ks+Q78U/Gz2nLgkCLui+vdG/3z5uh/0PetY1X2siPOl8VYZygZz4qZM83MVHjuNt87Q8/xbCE85gC91uHsQ8YcbfwqqtRJgn1T9c/NMhwpOZevQ/ewWJmKchY9w49mw85kklU1XTZ7ng/rS8d2nPV7tj2VHE0yp9mbf1W72oP++0d6ZUk+8fXJQYLzy1E6D+pKfU3b6vVhCeL4fSwtKV5Lx7UWmyC6Q/Ka2rh6xYCmjkT4pOWW67FPs5pJvPjLSIgDPiqUmCV5rXAAfE84ZJxfhCGchE/akoqY6eJgWXUH8lTm8ca5aCLMTbQz5dFPnW7xFP44bp4ysOkv7XBgSdTt7OliOez2+NZD7wxvNjSLQHT2Igi+ZDr0/tmuiIJfcbVn7x0S579iH636m/b+Flp2Z/RTx/rBhI+Ic//j8wvPjXqvfuB5B5V7l57n9vL2hD/iko6rJ6+z0ORf1Y9aggrU8BnNG8dB7eZBamAK5I39XVB05e+4RVov32G867i8TsEKpPefhc4zIG86M2m9DRRgrCy7ig5WmkAnRwfAwXeW4q+xgcpzr8+nQKGXBE/VTka0Tx5MS/78wP0awi/gUTMidozyDsN9QBB6WyT0TqJzjbytdE4O+14bb76fwcNeZLOVWuLzomBeh/hi754Mo3SiXOr4nu04iSk4ETqp8y6OuaP2hwHH0vLc4bl0mDQAa37m0R/5ESAnE/wfVvNjrK/Vj0P0EHX2CHUxjsD5TzBXvJwG5ynzxnU8+pu8n/hXnO68Q6P1J/OsvuQIgM2KP7HfnFajg4FNcHJlxWZvrIyPvdvNem6+JY1P9tpuM1C5wgi/j0+ln9orGJJ3yzJh4zb4KBijsPXv/Sv993M4v0rb420OMQGAnGkP5HL2a9SlCB/wFbQYvNAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAA6w8AAAAAAAA=eF5FWXk81cv/tqRE2YqUdBXiSkoL7nCKFlSyk7V0vqLsZD3XclD25diXTrJkzXKypeHILVd0SXSLi24qKlKJVkv97i9zZs6/z+uZz8wzzzzv98zpbZr2c3RtZ1/L41mWsfl3wIV+nn+t+F8B31kofHf2y4RFG/ukWeOyWxcTMC7FbWgr0eUEL1S8nf2X3sQey1+bqq4TBjl4xZ622BrlDLjqJ5/FnrR1Vxb9cQnzazuCA7Sk/eFIx//j+WzWFicDHq8gjD+jHq99PlwD3qjc62meSgFVGllZQdeuYFxQRE3vfvBNIPhz/HxKxYtvJZPF1/H3V+gPdFjXsODype9Ttj/6vanjchfmb4gMqVinkAauLM2fkhu6zmskugLzW76Ib20NbgBCS+unRLV2XtSJj8X8zjjVf1ZFNAC4pB+lu1BNWjSpHfOTf3mYmZDeAfqRvss7YhMtN6Rivldc7cp2vwi4Ful76/WnXLpSOMYNO9wK11N+A1FIXxlnRWbqufMYj6XO7hKKvwS/dyzpu/BjIppVTvbPkXr35i7PYii5pA/78q/Xv45TCH/tatqWv50igfHZEf609kZQ/VJa1Xg6CuPJozUPfZtKwNOl/aGw/1zFc2wuB+M39vHdsB2CUADpOxh39UrpTne8fiGlcu7OymyYgvRdGWHbSncnuNL6Oo32vRCsQvr+FdUjJLidjsfXktWetA91hWVI3/Yw1/hDqRkYH+1KLr9q1Al6kb6axm0BRxINMF5f168fP6UNxZC+mUFG6b1tNIzbmHkmuLxhgHikbzV1ag31KRlfcOBEeoRsHhBH/p2vCWnKS3LAeBztzN8WomlAAumrp0CraXNMw7iiKJdVwxsmSLr5OWQqqBhMVckMFfckY9z9nr6h/rZa8AzpG2CrpLd5N1m/X9e+ZYof6uFqpK9dnMim9OZIrB+9d7eths4lmI70/fihvbZV8Bjml8klyJe2NgMBpO+M+rZwfxvyfe3Nk913NmWCfI5/T+m90qCmYzz/obXvzOou7N+BPdYKtG5fjO8SeiBknx+J9r+NnS73z72N+pYYb7kq3/s2gwFDkb5CIV/Me2RIPjAt3d2HqblQBOl7i9Vky5hzwXwRn4ufbgrS4RTKhxlLG3GP5T4Y5zo+rRSvYgfyJJ5bVxQUAmaHt+8m8zMYX//ieOJZi3zAj/KhbHXP+txdp/H3KZeUm82//4HOB4uinXQ0760p0d9O1Wm76/Y6mI30vUBV4CoZTcR8n7pM3v3j9di/2Z9D3/TvN8f87/MeLncPZ8GrSN+2OxI7FSzPYL54rPdWWcUOcB/pm0xVdWdJncV8sbdcsn03/aAg0lf6Smya7XZjjEeIHBkSC40HMUjfNUfnronoOuLxHfKEjYwOMlA+stihxaUztGCCx3jNmETfCQAfkb5tx0ZKK8ToGK9zsSviHb0OjLdUxia1FEHnsmHTDnF7/P12/pZ1PCItQArpy/+6Y3vuk0DM5zVtfb8/shLKIn2nuVwXWx7HY7x1Qpw7+1wxZCJ9H1wUD087Ekf8rfiqzi6wHesrcsB1+exYJsZZ+9jbuXiKQSHSl8XawnXGleTbmZHZVQVJd0E30tf52orTyQppmL+1tjB626YIzvlg59pMzh2S8cJ47NTrdz/eRYAwpO902vi7yAx1jCfO9jTbHfQHmWj+nUHzntMu0fj7WiwNb93vjWAFmn9paNSOWWXir49xPm4S9uH4/MUoJ/Zb0Em+7vJ1ej70pRN83j+jVupwmz1goH7Amh6M8TUO+h5hOnTwGK1vjXkWi9eC1KcPlYoHCqr8IZU56W2d2cLm3qNYluRB5ueuA/heVFMAp75LHhAzC+GNw3hVe7bKqnoqHP45fj2bf+cK6itaCMYv2N2qUBmOgIVIH8OdGeXrnthgPK/r73fi//mJ8RMvYz/mr+bboRuE9Wue3Z0QfosJxJA/taYnVjPnGZhvMJwb8UU6Em78iTPYR732VV6wiMB44Nz3JyHbQrF/Mxl175sF4jHuMFwdaMirCCZ/4gzK+RvC06xuku+P960cfzseDsP1DZPn7VhQqCHI0uR4LsZjA68rqG4vRPW3jNLjfPa5UxbZH9G3Z8FFs0tQBvmf1WTYfXs9yc8qY83fircUwpEl/SgViQcpjo9Jfcg6PqaX5FAIpNH5iDwQUtkvWoRxH093971BKfDE0v5RngWIKhauIPnZYH366F/nDEEu8h/oN9pt0piH8bKuHekJXKlgYck/lNgG1eQUtRaMZ0vGvuerLICc/sZX+/aBiW1k/otycpSKbBoYQf4sFZd8oRFYjPHzU/fPVM2VYH9Khr1ZVHxN/HfI+tPuWh8HMID8Kb4tfITPKhLj9wruiDSNhEEH5E916qiSXNVFjA+l9Rqo5QSg+tDG9mi6szvkK9l/la6+0L2yKcj/9WyZJ3m05VRSH/LkJ0VDbsSAq8ifeonh97yWJWF88mEdPbDWGeV7GZtOVS87zXTG+kh9TxwJ1U7G/es0bcOzO1tDMZ9WnXSkyj0cTi/5i+1gFP/a860R5kv61Jy0nIoD35A/oeZlXu5vYZhfvtiva+eWCIaQP5sq3yUk9hF9teUMHgn5HQaDl4vGjMUaoFXA+ttx+okYr+Bb1KHOlIMC5M/gqfuf9oiT/JacFfHf859/BZA/Dyn2Bjd/8sP8nT1Q+YJyLXyE/NlnyhdyWD4f8/UHFbIeUPPhMuTPZRnX2o6XJGP8sVnOsaFHedAG+XP+2De9/Qtkf2qTM3zNuktABvInf/oeww3jAZhfU7xoEddbz/EP5TVlgKZU441xEeUTL3SGLHH/Lbf8ssNzeZJP/CmMhvLAc3AI+XMhgV8uYhnxb8T280mSVxrBR+RPhSZ3DZcZ0l/QhI/1WAlHgEfIn0ca3x2JViP148n7zUL/5NFxfuZ3VgtdsiD+iVdj7ZG0pHPqE3uGVtlgo+aB58+ybHhmrHMRDCJ/FgoyFx/wkfMR12cbvdXEG5Yhf5quutVwa9IV4+sZY6qCl/1gCfLny4iY9Pwxwk/KGDdQX38V7S+LnXBwMuPEJnGMp42N0ccaIiAXys/bztpbsmpIvvp7p2emqucBZdS/6mueM+S9fg7PX0ymY6fqfCwYRf5cVvjCfECdnE95c8nopy+T4PfNv1He7c6BL3I3LrNaRfwZlWrvoR5TA/KRP9s8v6iXbbHG4z8X27r1uUEC2IP8KblbNnWY9wLmT7/qkDrKWwP7kT9lzu40Xn2a+FsgqlhFrqgQ8iN/VmRcO15X4IT5Mianokz686AF8qeipqvznDXpX7uMqnknPWo5+UBpjWqPlTAg+er1x8KMdwcLzCB/6sruPX7kLPGXn66m4Kh0PPbnqj7hOjcFcn/7YVWgK1cQAweRP19qXdlDcyD5ocST9K9RWgP258m8KyWicW4Yv2UkPRhGjYUPkT9du06rCX/3wrg6mM8adCP+rP8cn5XWQ/ZPax9/Dt9sNs7PJloEd7Qm4W9mrjJoB27gAfJn7vzveQbvSX+5KaxbR/xfBsxD/vzk+k2ySIv0rzJFb87Y+ylx8oc9+MeNp1NfPDD/4ybPzJWBech/LLaN8sbh930kXz0HXnZV0yLgC5Sf+qF/XTObIPf/p448H2hWcYBzf43nutS7IscU4wKdv0lPvsgAX5E/Wd8esYqum+LxTaeCEz7bpEHzlx/OG4RVQVMP+wBqxnmMqy33Fg2+VwqykD/9Rcod4v8IwOOH8nXcPdrJRPmXT1HWlxz4pEny65aWy9bM7OvwPvKnw+jJgWvrSH/NYz5u/UK7Gm7g5OezC42JDOJf/eOHi+TGLuP8pF+Qcl4/74dx2ROCFp0PS0AO8ufcKffYY49zML7nt09z31SJP720DuxUSaHi+Wt9bN5hszoA+zMp+56K5YdYzGeofd4o6JeI87NSoOe+rDjpzwx+VJ97q1KH67tHyt4mY0VSPzxlVI7EUILx/VtewItRkRmF+dZlEmMa3mc5/Qtb0bf6+ikpJcwfzHHh6pNKxf3nv26au58qncJ8k4O/yArwZ+P6fuio2MU3N8n9zuwkd4vZuXJO/80+NVu7TW0t0feL2Z2W8RVRnPxhRw5a00MukPU9WKi3N+evQf05i30pvbSRnkH6B2OdpH1vdujBd8if1I+WwlELNMz3zaC2fmdeB1uRP0sLjv3takj640a9HdUmO0vBrqX8pXhVQ++DZuT94KFpR4fFuhpQqanXVeBYBKWeWD248qsvHl/DbfdeA6sGlE9llLxB23FGJfk+r0EjyywgC/xA7wfGPLnpdcr+GF9I8vmUo8eCfyN/cj1Jyum9Td4PDnQOGQQ8y4XcyJ8LV5gLRW7kftIP7O+nJ1zC/kzr4+tfYDEwv9Bfj9sktQVw3h/+lJE5A7XI+Y/6sLLFpKqOk2+UQcNNCyURZH9K0hpfF4vl4/vd68RLR78rJ2F83QZ54Y82KZz6TPmzLOWrgxTpvwtGJS0afm3k+J/t6blamslL7o/i3d+kunXPc+bPdjJWz1839z+Mf73J/UvhtjB8v4k5SX8toLENjy8T7TodOc4EnPqTbzhTKM9D8nuE7Tz8Vr4YGiJ9GjYwm9zPk/elSsuF8jX1teAdWn+qxokdE73k/W99RrD/jbxcgPKB3TohBy01/TEOjWhfneZ9oDnyV8Kdg3ThLDJ+/l7lx3MuplA4ZPVH3dhaoJzDb6y76TBen7GEUuvitXL8vvTacPtR3XFSXyQGdi2O2rSh90cWpdpFt6ZqI6lf5wpV1z1fUYzfd7z/KhSIGDHB48vVx0ccMWdAzvvQjc2HrzHMSH/U8meMgO5tB5iMzmfK/ZHOsPMmGHeZdQyyq8D1m32Lf2vREXOyP5pq3g3WjFKI3ucoDlFNTgoOJzHflFmpKuFex9GPwu+rFlouE4z5eXu5VTdV3kDvv20UmhVzJukiWb+xsK+O46IP4LzP0F9R1vAHZWD+2h+1EyzWXcBC+eF44/d8g3vemC8XerqRTzkYKqL+am0iNBJfe4LMr82uMqc2EqD8oNAj+9Ks5kj9vNfsy1Wwjs65f1CsnlFjfQZJfX618kmxvlYJ7i8Hz8MY/Q8HMZ95J7rM1zsUcvoHe5Ue0PeM5JfI3b4P/h40yHkfmAm8sNLxf2cxf3/hxk4ezUMwC+2PaPxRMfdYos+nBobA14k0aIXOT5tJ9mbbfyQwrvXAzjfSPgdy7u/6Ph+dXLeR/vBVuHtg4o1gTv/GHs2+6mKiQ/LXKZ+h1V19heMPSgvLdj7hnSPm24yKqn2Vrgac/GJteRotbUf4i7dV/8k1buDczyhdEkwN87CTGG/+PPSg2qQK3293+Vo3fg4i/1/slA8ZmPgvzw+j81tc1yH0ypi8n6+9MxxXW1wBOPVR3/l3tnanPR7fSNs3jSKJ84cyuMvFvGCG9I9uiS19B++ngf8D7X082w==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAmAAAAAAAAAA=eF5jYICAGTNBYKc9hD5pb2QMApeh/Jv2/8HgPlT8sX0aGDyzB0vPfGl/9gwIvLGHmPYBSjMwzISaOxPN3JkUmjsLau4sqLnGaOZCVD0g2Vx098LMnQU19x/UvcYkmgtz72wc5sLci27uDALmzkYzF+aOMzjUj4JRMAroB0yIzOewfAzTB8vPMP2wfA1Tj6s8GCwAAGva/q8=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAOgEAAAAAAAA=eF69lFGKwkAQROOVMv7PaVav5ExOkCPst19CREEQFhY2YRfdRRFPoJJUV0M6hCCG7Z+QSab6VfUkSYJahLrePa4rn7q6dnL/4e9Nfcn6t581dfDN4/Dn10VdZw+1q1yTJIhuMLrhRd0oulF0ndHFW+XTupaXulF0b8LrntQlb9ajS16ruxjQzYwuOQrzPnRy3Ydclp5zh6+Nzv+t6b/XeUHvU88D+lQ6Pzz/0bzR5Vd9wNdJ+bB+6fgKhtMJJ/MjJ+c+6+EMhhNq5Wic0XBODSdWtx1OZzg5f3L+d55jcboBTp7jV/PkOSfnVDjXhjMKJ/aVHU7wH5Uz7eEsDGcmnOSbCBd9U4f7yTf0nfM7pn/65P7Q4jp08ptLHu0cKvXd/k/kPX2W2o++2Jf+2J+5OPFLDvp+AAUizDU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAYgAAAAAAAAA=eF77+B8E3tt/oRL9HUp/hdLfqET/gNKj5kJoYs2FqWdkAIEP9gxQGsb/hyY/UPw/UBrmPnT6H5r8QPFH3Uld/nBxJy6aUP5Ep4nN1+j5m5A70P2FS5xYPro4evgAAJXK+/k=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAANA0AAAAAAAA=eF5lmXtcTVkbx5VSEhG5RWEwTS7JLZfFRhdKYiqV6i0iqplxzyBDxFCSku4poZRSp3RBS7s6RVG6EFHuI0LkWii9k/1be973zPnn+0effc7av/Vdz3rW6m1H5+cBfzX7t7rs367x18HQBSrO8j6eNCyi83OH7+38VsP5bTHfF+zXrLHo4JrNdPikzs8N3ljJc4mSZz5vCEb4jLlKPp2ggd+fL+XbnDqfy+K7Owss0HydlFDuQ42///0CX/T97/H8NdDe4cixY/speXtPwz29Lof4lj9dZOKTR5z0vnlqBEjIxQE6FV+qL5MtwvPcceE57j6YOZPGyD++RBOF3+cShN/lzMAPfvtm546OI5OF8XNzhHFzpmDMsGRp0ywpCRfenxsgvDenAY61z/RKnSclV4X8uG1Cblw0OEjDsMuuaTfJZ+RbjVwZt9iU273ZH0hjke9A5Mro9vb+8tcRJmQk8p0nk+/Ka+9vkjOJ1Av5fkK+X8Eh+86cLdM/R08iX2H88fxgsEvk2dTrzkGET6i8vO1ONSk0fRbbt0JK9OVtHylzBWRIxuSUBLtMYoN825DrU/DtV+NZcqolbH45FeSqCrrUD9+ePjCBjkW+LNeFoLpBa1n01ivkKPJVR67wjHN0NW17ELOVUuSbiFxPgebBvTNNi2tIC/KtRK43wH5ZM2KjFlvQKOSLeUMOxbzCueidoYtiyGjkyyFXI9ChsGjkvPYz5DjyHQxvh4B3Y3U2cH3jyDHk2wFv+yBf1TW+SioNSeR1o6la8wkpWX8noMyl5SLxWvpy1pq8c+SMvMkoYpxPFiPfR8i1Djztm1bYlF9IjyBfrBuuF/hXqKWellsinYB8FyFXc3D1iB+3b6gtIQHItw9y7QlK3OMHK1acJBnIl3kbCTrvsI/KXHeLtCPfW8iV0aX7xK3WwUE0CPnie0UeVnKt2p55TKwPzF+sMz4jXre4/fhpGo58+yJXDfCPXWXWH6k/dUa+WNf8Y7BXQK3RKeJOIl8c0LRwyyPLxn5b1+tzCgnenXZ7zrEz5O7swdav5pwl/si3mzAvnDLY/Gy3xtchlWJ90EGuP4AbW033uY4tEPM1Q64s57druzobZheSI8iXeasGkj+NJZNvn6KpyPcocg0BrS+YXXS/fYO8k/GX1V81VfM3MZt9aDDyxfyJdTj/lG1RdEw40UG+85GrCZgtLdHdM+wYxlfKqyPX3uD5QMeYyvn7yFrk+wW5vgPLiK9cjVw+GTbAS1k1J486WNFTAcqJVM3gl7DRaUk0a2A/NfPhpSQR+aKucFpgvzBP5V0HLtBM5Mty1QUDVuc+ujL2HGX1l3n7M5h1ldQVWFeL+XZDrqpgScX7xV0rM0g68o2S8Td02FGvDQNrxHxvIleW89ealpE7pwey7+d7IVfGHXrufbw/BJJhMvWB+fu852W5a298iD7Gb4VxW4C9v2n6jQ0rIn4Yfw+MWwX84nvdZ+ygw0SC8cfKjH+aS5zSK4dbpLKs81PPf/ZLa/VLK+G/gJ5urQ6GQw8R+S6dn4f8HbzXPXBowcsLHyz2Uo/VnZ9b/MTv45TyU0HV0niP6qNmJATvz9Yt6jD/4YmaUxa/nip+//5K/sH3783ln4AXVvZ8l/84kM5EPtbIZSmro4ucVJaV+NPx+D1hXiX8IjA5JS9zc14SiYSf2D9ETz83fptyWCuIxn//exIvrNsQfhD4VTGtcY3CQeIGf1E3+QbQe+rO2CbvKWSd8Dz3o/AcJwcGxV3pNlwpkHrJXZUnk4ppk9IfHze920RtPyncPKl5hhYrmje+NZGQMcL4uWXCuDG/Es7d6vqu3VsT6Xn4bwbvDUBTlfSh3rMktLuQH9cq5Ma9AYP2eLQ1b5YQtj6MsC4mgvmqq1p8F8bS5cL8cboYxzjwecKkpInEgbD6ZCRT/1Vdq8JatI6TGsEfrk7w5u++R2D0k/tG/glplPU3g+FlfzBwRt2ocVX7iTD+h1wLvGwCXVOeXnofnEmq4GeLjJ/nfwlPXO75m+hnHby8D/6upS1xPOBPV8PPCfCEeRquuiT25fB9NBJ+Mi/7gfdqMyx90mPw/ZX8XXh5D+yw0ddcMCKUzICfqCuip1ohG7X9pnmi/kh5S3jJGDygMGVLWxTbf/ke8FINtE6Zmvx46mHqBj9fOwlevgTLreKaBg8JJxvg5wuZ+jpk+3NbblkkcYGfNvCyGzhh+zwlVQMrUm2jbRcUfp3eHnX26I4yCa3tpF0OtZRz8DAmOWQ6fFgCL63A2fenP/jwt7+H4acGvOzNPB1+Tc7WJJ8K/WkFlw8vK8GjS52GvbE7S/fAz1ahr+Q6wMrj3PtP0cls/jjUFQ55chYLbhdu8MgU/TSX8bM4dpT9jROFpBp+tsFLxsyihD0vt6wS+0PMu9gnWoeM62NcsYUqwM/n8LIBTK1Wv9k8t4iUwc9WeMl4elDJB4OxgeQb9gdWP5mn63O2aG8uOkTdZfxkvhR+fv5q9LxDbHzivszYfLR1drZyMOkCP2vgJfNUp8N+1bWuuygHP+3gpT3YkKmfc9fehxL8HuoO/JXwk+8r5h3qSBf3d/SF4v4e7Th0qWNBIN0EP6/Cy+eg9U8Fm6arJZMi+Dlb8IKfCco1RmXrGIURK/j5QXgOfWoI9077Rv3klCgaIKnOijRIpS5Vofaajn+Sdp+8L9O3+dP+G7loCaGin8zLpeDNR+kxFbYR5Cb8XAovzUFFzQNGp4tz6Vf4WQ0vb4Eh6oongiQS6g8/2bmD9cnHH927UBaRLNZPzB+nB3r7Lj5WtjufEPhpAy8ZFVLilzn3yGP7Lyd/8P/9HCWvvvr3BeEkVMZPnI+5R+YtWsa9QinqH/cEXj4C+QqDiz9YSsl1GT9Z/VwZ7aT5a24oZX7K9t9OATfXNnj846cBPGH7+4h9Tt3DbRNYff9X/fxP9lb30PnbyCchX5xLc3F+yuXjc6XGWVNi6FT4yeomo3fE1hOB6QZsfnkrGT/lE280vV+QTL3hpzy87AJWNJ47bOMfSC3g52V4WQ26yq94lBEWRhLgJ/pKXhvUHZKQ93PkSbIRfjYzL8EJgwz3jl8aR0embD7b0HiF6nrJv6gKyaG3OutneBatv+W+oIdFFsF+w2HcYh0lfkYNlpeT6F74if6Y6wI/yZWCaOrD04/wswpeMk6Ys6Zr0IBcmgA/cW7khoEzJGX2PkVnqAv8RJ8kemqiOUtXe0MmxneDM5Gpnyd2XHmyRe4S84eDNxz6RG6Emv77lFN7Cc4P4rmPnU+2qI1oUFwRKdZP5uVj8FVfzpUfV8Dqs+gl/OcfLnvj0dvMl3yRqZ/Mz2aSG+/wxJO9H491x7N+MDFs0lEXg+OE3S9pyPh5I8QgRXdfPJFD/ayDl/WgCldh51uQzfYXfgm8RP/Njx6fetnvYjCZid+zh5fo43j/+YszdK/moj8v5bvBSyUw4XbsojipNV0DP9vgJTzjlSLuNsUd5An6P14HXo4Hkz69U26XZpJK+LnAWfDSCLzttVoSeTuXjO70c3q+4GWXdKoQl7bTYudZyv+x6YrZUCnq0z/10xacsf7hjuCu8WQH/PwAP5mnl9eX3NXXuSRcn/yPn6x+7lTJSXVSTxT3d7w/pwC2ZQ2IjUxOpCtk+k/m6eiokartIaVED36ycw87H2v0v3r4dUwBqYCfLTJ+lm9XeGZfmiKe77rDS+Zp9AH9z8s0YjH/D8V9nXl6zl3xcVWtlJTDT+YlOydtNlXz0zbcTVfJnH8YZ0xZolTSeFA837BzzV+g9qiMhTsfJqE/qODuIzfs39zEoh/r9JozqCPyYecElpP/BPM+lM8nJXh/9t6fwLtVtl7ht06TJPinBe9QH/iY4assozq8qVyk4NdqeOUBlqjqpZnsXE6X96q480KlnPjZR4WF25wnsxM7dOtSz5PEKU0dM9uzxfulu/CiFnwwJnXvebNyivstThvzPpTtoyGT6+fXZOB+7w763mKRdnO0yIvZx2gr1j87V7NztlsLPd/QdS0dg/WJ+z+RvfzWlijnSGgA3r8n3hv7OL92bv2AtkFZ9Cf4xeof7jm4WrMIa3fXAsLub2Trq0lGWcGdicX0APxShldK4PPTC1eulNtNMoXxc0fgVQRos27gyHdTa4gJfHFE3XAG5/46yNBlhi+l378/idcT1jU/EZy78tn0pJNBZIXwd+4h9qXHYEtEQIRJtT+dBF8sZfafbvUR8zc3niMsf9n+cv1BDXU1w4OU3Q/I9g8WJh7FLsn7KdaPeO5i9wN9vpjpVg21pLi/EOsmY/01V7fZNXH/qt+sD9Z9XjLwY3YCZef3Ppi3/uAG+6pVS3N8Ket/2bmM9b8WOm5LZjmniPfD7H6NMSu9pH1h60Vx/bG6VQs6Xt81dU1/qXg/ir4X54MszrrU7qDD3Ivs/xcc7tXF/my9jbTlne4BaoP1OxrzMBL0kHtaWVufQ7rK7I8PQasrre7jSqXsfCGua8wDN23FRIt1NI78FxDUMVc=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAqQAAAAAAAAA=eF6llDkOgDAMBL/GG6i5wpEH8P8CCrsZabVG0KwweDOxE/f+PuM9nKEtdDO6QpfQKbQLX+dPvxlK30P4ruK96rsbX/p99VVcyofflS/zUi/k5f+ZnzyuP1Wt1onnxnE2xP9y5/qO09XzhO7QKifPLTmVVjnzvjhOx+d4HCfjjlP1vdrHKoeKk5NzR/WhWrfcZw/l/FH95TrOX92v3M+GuJpDjucBPJZd/Q==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAADwYAAAAAAAA=eF51VntQzWkYPt1cI1SnnC5OF0elG3X2VOe3JEexEgpjMStJaZhaWaYhZBdJLgdrB2XWMJS2ZsNmy/lNYqTaaHMJu2u1mkIuXZzTvU47fef7njOdGb//nvl+3/u+z/M+3/t96ivtjxbFLLlVduBFzQ+1DXINxWlLpyQOPu1SdVB8t7+/QPF4Av+J4qfPvR859Nhzaopz16dln4h25TspdjPemlTl0iXvoTg6a9xNmdSR66Z4pai8SRPlzLF8JoKhL4jrp1iccjU9tNyBF+TpsHPFFvuKLeGIL9h2z++w5DcVw683NUZpPD4BxyuSCuqcJvKsftsVxysenHgNftdIvVY8w0/a19eJFS58L8U109W7P2Y6cwzHzuxxjm2yR/1+d6ZaDh6QcX0Uv90mri8zFvKsfidabxfFG5cPfU0qhoUXLuwwf9ktZ/hG67oFPbXjoIeytqj0353v5ax+s7iJ82xd7MFne5Vxebi/OeoR7gmdb5eoUTFsd3rnQscSMcf00AQeu3I/zAt8Duy4bpkYEAi+oVVbc1saZyM+aYegMIDtV4zz2HtlabucxXeMjDQ562bOMzyn3n/7j5E2qF9bXNf+pmgq4qVZ913vlJXLWb6R3h1jrAdd4Kf2rHtHI99Jsf/cyw/77CJ8OabPmiV+pl/VmvGm1A8X0iNSSoJC4IcIp5T6/Vl/ob5cl2MVmbc75aif+M0K/5+xULn7WI3mWH05CQ82tZiK0a/rRgt+Ny8NBL/GP4b6eR/+UvDP515sGA//J7c8jBtZ6cUxvwZXNWYqT6lVWroe8r7GKjxLgfgfExJDRnmqUK/yqPMi9/5m9M/GwWL9qWpb6PON8fHc/Xd8eOY317Uf45s8ZgDbPjk/6bSoQ85w7yD5VMyPpfR8M/0fyo44XHriAr9Oe+3754ZfR/ADw/qvDmDxii1vzdndqwb/dOLnDsRn/u4ftt8kkGGlKDZwS0ER6osi/0vhv4G7ScqftZ4c6+8i0i/9PDjpf6i6OceTY/PkGanHEvuDif9kPNM7O2/oCwI/nV8V3Agav4XIMxvxI0m+UPijgOyPhL6mhE8b+Alda/6R/P1GxfLPqExuWDXdCvXEhXy/6/A6tYrVm0/iTUK8PHF1xqaCNqxvM9DvXUa9ePaAF/yn07MxgPGT3sj8LmyWL/RYRfVk8VNLEz64XXLEedHNV1/wPdjTszrjsjvmQzTZb80Z6sn8fPkzerJ1YxI/mGP1fU7P4f5okxv4E/yvkf97oW9e4IZ2iwa93lrSPxvEqyN+dsI81NUjwHq8sulu0YoJ4L9M51+ch8lyZVK0kR30SG2QVS7e8wX6mZyTs7J1l4wzpnyrSf/08XxpPDa/dPw9oOeriMVXX/Z584MUW28fui8k6NfN25tnNT78EnqWEP4eiF9B7l8F/FD30/uNnoUSAz1rA1g+w/MuJPk6od/5w1KH/+S10DuFnme2nkj46u9DjqybgY8p1ZfVs1jnH/x/mpxXMfQqawoSjc33At9Cwk+E+leS/V7wz8Hne1NNxnarmJ52pH4h/B632ab5aKo/b0Tjy4lffRAvc+yrquyTYYinIX7xAR5VPjRvOF49LP9SAz31/nlL5nU1/Co50pDc6+4EPm2Pa0ZcChaCfzfJZwF8kJzH8egn1Q/4BNHLFXr+ous/8ruS8+YN/UuongxTPcFPFz8A7xNdP/24FlYvmbeuOC8Ket5Zv4zIfjHqS6f1M3+OJuu+yLfQwB9R1A9s/wDRoxV+8yT66deX6/bjPbZGtx/xMnTzDPmn0HzsPk0ue7H6U2UH3qvngp6dnRc+E/dtfuzeGIlIBH215d+u8Ct2A/83Vaoz8c1S4Ar/yW/DujS4n6kfBAwnnDXXXNw5BvMt/76Zzah107g2Vo9DpawwzV3/Pg5LHlRGBGO+mMdtKDreIoDe4ZK1+/Kz56C++YSvVj68v3o/MH8wPVi/2foh4ieNavh9LhBoDTDzRx/xgynH/i8m8ccg3z5yX0wEjqH6s/y5ZN4Ege/XZF2K/u0nfLzxvugm+ZbBv60E+wPHkHk9H/f5JOrH/wGr7eRpAQAAAAAAAAAAgAAAAAAAAMABAAAAAAAAEwAAAAAAAAA=eF6bORMEXtrPHKWHJA0AC1cJoA==AQAAAAAAAAAAgAAAAAAAAMABAAAAAAAAEgAAAAAAAAA=eF5jYACBD/YMo/SQpAFxv0JJAQAAAAAAAAAAgAAAAAAAAAAHAAAAAAAArgMAAAAAAAA=eF5llWtMk1cYx7moDGcCujCRTVwYgQ3UiSiweeRA8AaNCBuERTL4IihWEBIdwV2cVkTa1aIybsYaSBUxCppwGXKWo8OBKNaqQCDctMaobKuatVyGg6V5/6cfXp8vv6TvyTnn+T3/962x215DfFzdMKluuMX/BZvZs2plXS7blWmvPh4Saq92vgaMTtGe3VpWyuY42cvEh5qzB5uz2/gjcHqu2ymn6lSyHOvj3PYnuO2/whWgcihoxYGEg0RXaa86/jzttVf661+4a7rEf7Sa91OySkih9Jz+KP1OPwVLF+x7Ygz5lkVJ+9M0aV/6DXhu1NzZe9NAnKT70Q7pXrQHXLRgYsTd9xLbLfVHI7BPGLg+7j/NcT8DeSD5obOSFzoDpi9PPvrM9j0zwd+EzN+1ynn+u2/mESX8rYaHteDg3hBdy+1i4gJ/ffAmPHZYe7TlqWqyCus3yvxNt41d16g/IhXwNw/ePMDgvEGXDUtOkiT4c4a3p5JnWutdllxsKWTr0G8SvKWA4/3nraOe9WRq1l736F14ewgGRCcF/5lUL/JBw7EP+qPxBxb/fCSvhRjhz0kjeXsDf6qaKuc/3pSTO/A3CW+CyoNp1T9symGZMn+h4E9bv5qaUGkd+RuFt8fgFtXvPNJ2gnyO9eiLJ4MVS2IVtX+pSQP8ecKbH/jcMhJRk19NzsBfAPwtBaNWmLYHemqZyIvwJxihWxRT9WGVmC8dgDfMl3b63/A5tLOJZcHfGpm/leaCS/qgJuHH4W1SMMtyo2XHPuHX4U3kz4UwX+/NeWwn/In3VvBl4a7sPbnHHPkbhjfh8XCaNf9JvMqRv3h4E4y7vqHV0lpBDPDnD2/LwA8+vmAwF9YRPfz5wJtgY2WPIuayjom+E+AtEez77n5/Kb9AppE/o+z9fTBRdbGrrtGRP9yTIh/Uq+iLnET9r6Qb/qwyfy5dA1e+nqt2+JuW5c8tcGSthmaQHbL8ie9g+Dr3nld+R0gGzl+Jc7GOnlVoO07XctKF88W5NvCz9/4+k+hxkTjLvp+CgaFjkdG2c0TMaxu8wxOveTzeXqwwkE74j4F3CqYudPW9OlNPSmTvvzu4JdFsDCvSk2DcNxbeBXuvmrfZlJfJDPwPy/I7/5TP6pwXTQx++ZTM3ybdl+2aARXLkOUP8+EW9wJD9ycVDPvzfvQteDs46x1v0yFixfn3cK4J1PUuDWtt/o1hPo65ixy08cx3UwyNb/nH/xw9PmvVT7nqyf+7+5OZAQAAAAAAAAAAgAAAAAAAADgAAAAAAAAADgAAAAAAAAA=eF5jYCAeMCIBAACGAA0=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAgQIAAAAAAAA=eF51l1FKBDEQRL2T/nsb76Q32CP4vV+BFQYEYWA/skRkwsiSI4gbiqWruvov5bOn05XM9D485PH2+h/vz7leRH+8xafhV9FnVJOnif5yix+Tv4v+cfqPX/PcYXTdN9a5XkRHH3J+FX1GNXma6OhDnr+Ljj7kzx1GV59jH1gvosc+ML+KPqOaPE302AfO30WPfeDnDqPruUYfcr2IjnXOr6LPqCZPEx19yPN30dGH/LnD6HqP43lgvYiOvDm/ij6jmjxN9HgeOH8XPZ4Hfu4wOqJSftwf1ovRu+jxfcXvxWHyHEx9+venW9+Oxlf4yPkWwxfhZ/+/hI++3/m537M9Z8zP9cX6wfwt/enb1NPMfjfh47nifu6m/m76cxU+nkOuZ5g+HOx7m33Gmnms83OxGL4ID9+Zh+/Mw/c8/yo8fM/3W4WH73k9zex3Ex6+5/3cTf3d9OcqPHzP6xmmD/Bdv1MzFqrzKHysg+/3YvgifPRdv/vMR991HmA++q5zAvPRd50fmJ+xCQ/fmY++67zBfPRd5xDmZwzR4Xvs6z3gA9bwnXn4zvyMxc4zzGPNPNbMw/c8/yo8fM/3W4WH73k9zex3s3MU8/A9r7+b/lzt3JXXM0wfcN91DuHvZ7zvOqfl39vF8EV41Mc89sl8vO867zEf77vOgczD97yeZva7CQ/f837upv5u+nMVHr7n9QzTB3zvK9VzFH3GYvTN5NlFR/2sx3PM8+cqelxzniY6+s86zm38v3uwjnPLOurP+S466mE9/m7ieobJg/vMc/5ZdJx/1nHOcx5z+4X0g+1bzhfJE78j2k/mZyy2zzm/2f4zH+dkrnO3vjCPc878H7lYA80=AQAAAAAAAAAAgAAAAAAAAAAOAAAAAAAA0wIAAAAAAAA=eF410ucb1nMchuEIGSWbFDIyQvYIKUKoZFV2kU12ZqjIHhllhWwhZEeRrPJXeeE6nzfnq891PN/jdw8Y8P9vsxyc2+W4nJAX5qnpbvMckjrj8/S8OCeku4G5feqclmfkjNRzt0UOTZ2JeVZeknrutswdUufMPDsvSz13W+WOqTMpz80rUs/doNwpdc7JKXlV6rnbOndOncl5Xs5OPXfb5C6pMzXPz2tSz922uWvqTMsL8trUszN72T13S3ubnjfkRenOXvZIHXubmTelnjt7GZY69nZp3pJ67uxlz9Sxt8tzbuq5s5fhqWNvV+btqefOXkakjr3NyjtTz5297JU69nZ13p167uxl79SZnXNyXuq5s5d9Usfersv7Us+d3Y1MHXu7Ph9IPTuzl/1y37S3m3N+3pju7GX/1LG3W/OR1HNnLwekjr3dlgtSz529jEode7sjF6WeO3s5MHXs7a58PPXc2ctBqWNv9+QTqefOXg5OHXu7N59KPXf2ckjq2Nv9+UzqubOX0aljbw/mc6nnbmQemjr29lC+kHp2Zi+H52Fpb4/mS/lwurOXMaljbwvzldRzZy9HpM6CfCyXpp47ezkydextcb6Weu7s5ajUsbcn843Uc2cvR6eOvT2db6WeO3s5JnXs7dl8O/Xc2cuxqWNvz+e7qefOXo5LHXt7Md9LPXd2d3zq2NuS/CD17MxeTswT0t5ezY/z5XRnL2NTx96W5Sep553+78l5Unrvh/lZvp/uvPuU1PHej/Lz1PO/7fWL9A57fz0/Te9xZ6+rUsfe38w1qefOXr9MHXtfnj+nnjt7/Sp17P2d/CX13Nnr16lj7ytybeq58x19Nx17971W5oq0M3tZnd+kva3LX/O3dOd7fZs69rY+f089d77Xd6nje2/IP3J9eqd3f58/pPf+mX/l3+nOXn9MHXv/Jzemnju7/yl17H1T/pt6/wH8PJffAQAAAAAAAAAAgAAAAAAAAMABAAAAAAAAbgAAAAAAAAA=eF4txREAgwAAALCyMAzDMAzDMAzDMAzDMAzDMAzD8Hg8HsPjoU0WBY/YiVNnzl24dOXajVt37j149OTZi1dv3n349OWX3/7469s/B+FT5NiJU2fOXbh05dqNW3fuPXj05NmLV2/effj0Hwb7GPo=AQAAAAAAAAAAgAAAAAAAADgAAAAAAAAADAAAAAAAAAA=eF4TFycPAACPnAUJ
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1.gml b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1.gml
new file mode 100644
index 0000000000000000000000000000000000000000..d959c7c34c6d9f3fd6e4b7e2c0bb1c774630c77e
--- /dev/null
+++ b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1.gml
@@ -0,0 +1,31 @@
+<?xml version="1.0" encoding="ISO-8859-1"?>
+<?xml-stylesheet type="text/xsl" href="OpenGeoSysGLI.xsl"?>
+
+<OpenGeoSysGLI xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ogs="http://www.opengeosys.org">
+    <name>square_1x1_geometry</name>
+    <points>
+        <point id="0" x="0" y="0" z="0" name="origin"/>
+        <point id="1" x="0" y="1" z="0"/>
+        <point id="2" x="1" y="0" z="0"/>
+        <point id="3" x="1" y="1" z="0"/>
+    </points>
+
+    <polylines>
+        <polyline id="0" name="left">
+            <pnt>0</pnt>
+            <pnt>1</pnt>
+        </polyline>
+        <polyline id="1" name="right">
+            <pnt>2</pnt>
+            <pnt>3</pnt>
+        </polyline>
+        <polyline id="2" name="bottom">
+            <pnt>0</pnt>
+            <pnt>2</pnt>
+        </polyline>
+        <polyline id="3" name="top">
+            <pnt>1</pnt>
+            <pnt>3</pnt>
+        </polyline>
+    </polylines>
+</OpenGeoSysGLI>
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2.vtu b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..32a0c26bd0dc9a87fa9d9075370f82e41e0058a3
--- /dev/null
+++ b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2.vtu
@@ -0,0 +1,33 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <Piece NumberOfPoints="341" NumberOfCells="100">
+      <PointData>
+      </PointData>
+      <CellData>
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary" RangeMin="0" RangeMax="1.4142135624">
+          AQAAAACAAAD4HwAAAwQAAA==eJx1WEuK3TAQnDsl+9wmd0pu8I6Q9awEEzAEBgRZvEEhWDgYHSHMM81QP+1ULlqtakvq7qcnP75/ex8/vni8Cf7pMX4Ffhf8GvdgZwj+9TH+BvtT8J8v7+NfWHcFXPddc483wUsHz++CX+Me7AzBSwdvfwpeOvh1V8A1zqgD401w1IH5XXDUge0MwVEHtj8FRx143RVw/a9LB483wWvu+V3w0sHbGYKXDt7+FLx08OuugOs5xv+B8SY4/g/M74KXDt7OEBz/B7Y/Bcf/gdddAf/wi3XweBMc9WV+FxznbGcIjvck25+C4z3J666A6z2N54LxJjieC+Z3wcsPb2cIjueC7U/B8Vzwuivg+i6VDh5vgpcOnt8FLx28nSF4zb39KXjp4NddAdd3GO8HxpvgeD8wvwteOng7Q3C8H9j+FBzvB153BVzzjtLB403w0sHzu+Clg7czBC8dvP0peM39uivgH99ZB483wfGeZH4XvHTwdobg+B+z/Sk47pPXXcHOLeii3z8//HwO56rOEdvbYt7G/Gu/rzG/Yf61398xD2D+NX+L7yXzH+Zf/sR3xe93j/ev1/OI95TX54zn2fuzgg63mFdznGue6g7/X2yxHmF+xT3VKcyvuKf6hfkV91TXML/inuodv9891kFezyPWR16fM9ZN3p8VdKi4ax1xjS3EXess5tc81V/Mx7hrXcZ8jLvWa8zHuGsdx3yMu9Z3fr+78PHeZj2P4P8M+pzCx3ue/VlBh1usm/jerbgzH/NGvqe3WG8yv+bMxzzzVeLu7XfhV9z9fu/Cr7h7f0bY7x7rXK/nEetfr88Z62Lvzwo61HnXOpHfTzzvWkf793YL/CZ8PO9adzMfz7vW48zH8651OvPxvGv97ve7Cx/zVdbzCP7PoM8pfMxv2Z8VdKj3XutizoPwndC+gc+btsBvwsf/UvsMzMf9aP+B+TjXvgTzMa/TfoXf7y58zOtYzyP4P4M+p/Axr2N/VtDhFvsAnM/iPa99Ep//brF/wny857Wvwny857Xfwny857UPw3y857U/4/e7x76N1/OI/Ryvzxn7PN6fFXS4xb5H7QP9fA79lsrruI7ZYr+I+RV35uN7tkvcvf0u/Iq73+9d+KWX92eE/e6xT8X8irv3fwZ9ztjX8v6soEO979rn4foS33ftg/l6dAv8Jnx837Vvxnx837Wfxnx837XPxnx837X/5ve7C7/i5PU8gv8z6HMKH+s49mcFHW6xr4XvyUfcU9+P+dfYYj+Q+RX31CdkfsU99Q+ZX3FPfUXmV9xTv9Hvd499SK/nEfuTXp8z9i29PyvoUHndkvgyfo1N8IoX45h3cZ/wTXB8h3jdPfh5BH9Owf8Dtpa8yQ==
+        </DataArray>
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="binary" RangeMin="0" RangeMax="340">
+          AQAAAACAAAAAGQAAuwQAAA==eJxdl0XUkFUYBvno7s6f7u7+aUFsVGxssRW7JezuFluxMcDG7ha7G7u7Fj6z+OZuZvXMas57zq1S5f9XhPXDeuHB4WHhKeEh2lUNG8hzaHhEeJp87KqFDeU5PDwqPEM+dtXDRvIcGS4Mz5KPXY2wsTxHh4vDc+RjVzNsIs+i8JjwPPnY1QqbyrMkPC68QD52tcNm8hwbnhBeJB+7OmFzeY4PTwovkY9d3bCFPCeGJ4dL5aMzemkVtgzp7fTwivBU7eiltTz0dmZ4lXzs6KWNPPR2dniNfOzopa089HZueJ187OilnTz0dn54vXzs6KW9PPR2YXijfOzopYM89HZxeLN87Oilozz0dml4q3zs6KWTPPR2WXibfOzorkKepeHl4R3y0Rm9dAk7h/R2dbgyvFI7eukqD71dG94tHzt66SYPvS0L75WPHb10l4febgjvl48dvfSQh95uClfJx45eespDb7eED8nHjl56yUNvy8NH5GNHL73lobfbw8fkY0cvfeShtzvDJ+RjVxH2lYfeVoRPyUdn9NI/7BfS2z3hs+Fd2tHLAHno7b7wefnY0ctAeejtgfBF+djRyyB56O3B8GX52NHLYHlWhQ+Hq+VjRy9D5KG3R8PX5GNHL0PlobfHwzfkY0cvw+ShtyfDt+RjRy/D5aG3p8N35GNHdyPkobdnwvfkozN6GRWODOnthfDD8Dnt6GW0PPT2UvixfOzoZYw89PZK+Kl87OhlrDz09mr4uXzs6GWcPPT2eviFfOzoZbw89PZm+JV87Ohlgjz09nb4jXzs6GWiPPT2bvidfOzopVIeens//EE+dnQ3SR56+yD8ST46o5cp4eSQ3j4Jfw0/0o5epspDb5+Fv8vHjl6myUNva8I/5WNHL9Plobcvw7/lY0cvM+Sht6/Df+VjRy9ryUNv34ZFUfaxo5eZ8tDb92G1ouxjRy+z5KG3H8MaRdnHrjJcWx56+zmsVZR97Ohutjz09ktYpyj76Ixe1g3XCentj7B+9r9pRy/ryUNvf4UNi7KPHb2sLw+9/RM2Lso+dvSygTz0xke9aVH2saOXDeWht6rZNefDX5R39LKRPPRWPWxZlH3s6GWOPPRWM2wtHzt62VgeeqsdtpWPHb1sIg+91Q3by8eO7jaVh97qhR3lozN62SycG9Jbo7Bz2KAo7+hlc3norUnYVT529LKFPPTWLOwuHzt62VIeemsR9pSPHb1sJQ+9tQp7y8eOXraWh97ahH3lY0cv28hDb+3C/vKxo5d58tBbh3CgfOzoZVt56K1TOFg+dnS3nTz0VhEOlY/O6GWHcPuQ3rqFI8IuRXlHLzvKQ289wlHysaOXneSht17hGPnY0cvO8tBbn3CcfOzoZRd56K1fOEE+dvQyXx56GxBWyseOXnaVh94GhZPlYzcv3E0eehsSTpWPHb3sLg+9DQuny8eO7vaQh96Gc+/lozN62SvcM6S30dzbcGRR3tHL3vLQ29hwtnzs6GUfeehtPPdaPnb0sq889DaRey0fO3pZIA+9TeJey8eOXvaTh96mcK/lY0cv+8tDb9O41/Kxo5cD5KG3Gdxr+djRy4Hy0NtM7rV87OjuIHnobRb3Wr7/ABCELb4=
+        </DataArray>
+        <DataArray type="Int64" Name="offsets" format="binary" RangeMin="8" RangeMax="800">
+          AQAAAACAAAAgAwAApgAAAA==eJwtxRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==
+        </DataArray>
+        <DataArray type="UInt8" Name="types" format="binary" RangeMin="23" RangeMax="23">
+          AQAAAACAAABkAAAADAAAAA==eJwTF6c9AADGKQj9
+        </DataArray>
+        <DataArray type="Int64" Name="faces" format="binary" RangeMin="0" RangeMax="0">
+          AQAAAACAAAAgAwAAEAAAAA==eJxjYBgFo2AU4AIAAyAAAQ==
+        </DataArray>
+        <DataArray type="Int64" Name="faceoffsets" format="binary" RangeMin="1" RangeMax="100">
+          AQAAAACAAAAgAwAArwAAAA==eJwtxdciAgAAAEAjkYRskazskpUtFJGRUbYI//8NHrp7ueamhha3OuA2B93uDofc6bC7HHG3e9zrqPvc7wEPesjDHvGoYx7zuOOecMKTnvK0ZzzrpOc87wUvesnLXnHKaa864zWve8Ob3nLW297xrve87wMf+sg5H/vEp8674DOfu+gLX7rkK1/7xrcu+873fvCjK676yc9+8avf/O4Pf7rmL3+77h//+s//+ewTuw==
+        </DataArray>
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+</VTKFile>
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_cell_properties_cfg2.bin b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_cell_properties_cfg2.bin
new file mode 100644
index 0000000000000000000000000000000000000000..64015f96e146089e06d111ebee855f0371aed6bd
Binary files /dev/null and b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_cell_properties_cfg2.bin differ
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_cell_properties_val2.bin b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_cell_properties_val2.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3a9b69879e85512d9ed6ba1c5a2688ec1782c90a
Binary files /dev/null and b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_cell_properties_val2.bin differ
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_cfg2.bin b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_cfg2.bin
new file mode 100644
index 0000000000000000000000000000000000000000..653ae49716800ec98f057b9648f5ebb6d539d240
Binary files /dev/null and b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_cfg2.bin differ
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_ele2.bin b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_ele2.bin
new file mode 100644
index 0000000000000000000000000000000000000000..2d25acd0cc46a678ca7035b157f0f8ae4e14d17d
Binary files /dev/null and b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_ele2.bin differ
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_ele_g2.bin b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_ele_g2.bin
new file mode 100644
index 0000000000000000000000000000000000000000..dc4cb87a80b7456e059124928d676519cc73bc0f
Binary files /dev/null and b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_ele_g2.bin differ
diff --git a/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_nod2.bin b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_nod2.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5c63fa1a224cbf9e0932a9784523b251fda61d61
Binary files /dev/null and b/Tests/Data/ThermoRichardsMechanics/FullySaturatedFlowMechanics/PETSc/square_1x1_quad8_1e2_partitioned_msh_nod2.bin differ