diff --git a/MaterialLib/SolidModels/MFront/CMakeLists.txt b/MaterialLib/SolidModels/MFront/CMakeLists.txt index cb9de4f9425a5c782c1b8b156bad8673179ef877..3238725b977386b2fbddc685fffb892bbf3a1ee2 100644 --- a/MaterialLib/SolidModels/MFront/CMakeLists.txt +++ b/MaterialLib/SolidModels/MFront/CMakeLists.txt @@ -18,6 +18,8 @@ mfront_behaviours_check_library( GuentherSalzer Lubby2 Lubby2mod + ModCamClay_semiExpl + ModCamClay_semiExpl_absP ModCamClay_semiExpl_constE MohrCoulombAbboSloan MohrCoulombAbboSloanAniso diff --git a/MaterialLib/SolidModels/MFront/ModCamClay_TriaxTest.py b/MaterialLib/SolidModels/MFront/ModCamClay_TriaxTest.py index 7c070357f467896d39fce1cb286096d257a0bfa6..08bdd7aa8340f5ad2052f617ddd9767703fbe41b 100644 --- a/MaterialLib/SolidModels/MFront/ModCamClay_TriaxTest.py +++ b/MaterialLib/SolidModels/MFront/ModCamClay_TriaxTest.py @@ -1,4 +1,4 @@ -import mtest +import mtest as mtest import numpy as np import matplotlib.pyplot as plt @@ -6,40 +6,58 @@ m = mtest.MTest() mtest.setVerboseMode(mtest.VerboseLevel.VERBOSE_QUIET) m.setMaximumNumberOfSubSteps(20) m.setModellingHypothesis("Axisymmetrical") -m.setBehaviour("generic", "src/libBehaviour.so", "ModCamClay_semiExpl_constE") + +mcc_models = [ + "ModCamClay_semiExpl", + "ModCamClay_semiExpl_absP", + "ModCamClay_semiExpl_constE", +] +controls = ["stress", "strain"] + +# Set MCC material model implementation and path +lib_path = "./src/libBehaviour.so" +mcc_model = mcc_models[0] +control = controls[0] + +m.setBehaviour("generic", lib_path, mcc_model) # Material constants (according to Modified Cam clay model Report) nu = 0.3 # Poisson ratio -E = 2 * (1 + nu) * 20.0e6 # Young's modulus in Pa -la = 7.7e-2 # slope of the virgin consolidation line -ka = 6.6e-3 # slope of the swelling line -M = 1.2 # slope of the critical state line (CSL) -v0 = 1.788 # initial volume ratio -phi0 = 1 - 1 / v0 # initial porosity +la = 7.7e-2 # Slope of the virgin consolidation line +ka = 6.6e-3 # Slope of the swelling line +M = 1.2 # Slope of the critical state line (CSL) +v0 = 1.7857 # Initial volume ratio pc0 = 200.0e3 # Initial pre-consolidation pressure in Pa -pamb = 1.0e3 # Ambient pressure in Pa +phi0 = 1 - 1 / v0 # Initial porosity +pamb = 0.0 # Ambient pressure in Pa # Loading programme tMax = 1.0 # s , total time nTime = 200 ltime = np.linspace(0.0, tMax, nTime) +p_con = pc0 # confining pressure p_axi = 587387 # axial pressure, +12614 for reaching CSL -p_con = 200000 # confining pressure -e_con = p_con * (1 - 2 * nu) / E -m.setImposedStress("SRR", {0: 0, 0.02: -p_con, 1.0: -p_con}) -m.setImposedStress("STT", {0: 0, 0.02: -p_con, 1.0: -p_con}) -# stress-controlled: works only until reaching the CSL -m.setImposedStress("SZZ", {0: 0, 0.02: -p_con, 1.0: -p_axi}) -# strain-controlled: works, CSL reached asymptotically for EYY->inf -# m.setImposedStrain('EZZ', {0:0, 0.02:-e_con, 1.0:-130*e_con}) + +# Young's modulus: consistent initial value for the models +E0 = 3 * (1 - 2 * nu) / (1 - phi0) * p_con / ka + +e_con = p_con * (1 - 2 * nu) / E0 +e_axi = 16 * e_con # Environment parameters m.setExternalStateVariable("Temperature", 293.15) -m.setParameter("AmbientPressure", pamb) # Material parameters -m.setMaterialProperty("YoungModulus", E) +if mcc_model == "ModCamClay_semiExpl_constE": + m.setMaterialProperty("YoungModulus", E0) + m.setParameter("AmbientPressure", pamb) + print("Young Modulus set to E =", E0 / 1e6, " MPa") +if mcc_model in ( + "ModCamClay_semiExpl", + "ModCamClay_semiExpl_absP", +): + m.setMaterialProperty("InitialVolumeRatio", v0) m.setMaterialProperty("PoissonRatio", nu) m.setMaterialProperty("CriticalStateLineSlope", M) m.setMaterialProperty("SwellingLineSlope", ka) @@ -50,6 +68,23 @@ m.setMaterialProperty("CharacteristicPreConsolidationPressure", pc0) m.setInternalStateVariableInitialValue("PreConsolidationPressure", pc0) m.setInternalStateVariableInitialValue("VolumeRatio", v0) +# Set initial stress and strain state +eps_init = [-e_con, -e_con, -e_con, 0.0] +sig_init = [-p_con, -p_con, -p_con, 0.0] +m.setStress(sig_init) +m.setStrain(eps_init) + +m.setImposedStress("SRR", {0: -p_con, 0.02: -p_con, 1.0: -p_con}) +m.setImposedStress("STT", {0: -p_con, 0.02: -p_con, 1.0: -p_con}) + +if control == "stress": + # stress-controlled: works only until reaching the CSL + m.setImposedStress("SZZ", {0: -p_con, 0.02: -p_con, 1.0: -p_axi}) +if control == "strain": + # Strain-controlled: works, CSL reached asymptotically for EZZ->inf + m.setImposedStrain("EZZ", {0: -e_con, 0.02: -e_con, 1.0: -e_axi}) + print("confining strain in z direction: ", e_con) + s = mtest.MTestCurrentState() wk = mtest.MTestWorkSpace() m.completeInitialisation() @@ -57,15 +92,22 @@ m.initializeCurrentState(s) m.initializeWorkSpace(wk) # initialize output lists -pCurve = np.array([pamb]) +pCurve = np.array([pamb + p_con]) qCurve = np.array([0.0]) eVCurve = np.array([0.0]) eQCurve = np.array([0.0]) lpCurve = np.array([0.0]) pcCurve = np.array([pc0]) phiCurve = np.array([phi0]) -strains = np.empty(shape=(6, nTime)) -stresses = np.empty(shape=(6, nTime)) +strains = np.empty(shape=(4, nTime)) +stresses = np.empty(shape=(4, nTime)) + +# stresses[0][:] = sig_init +for k in range(4): + strains[k][0] = eps_init[k] + +for k in range(4): + stresses[k][0] = sig_init[k] # initialize yield functions nPoints = 1000 @@ -151,7 +193,6 @@ print("final normal stress in z direction: ", s.s1[1], "Pa") print("final von Mises stress: ", vMstress, "Pa") print("final hydrostatic pressure: ", pressure, "Pa") print("final pre-consolidation pressure: ", pc, "Pa") -print("confining strain in z direction: ", e_con) # plots fig, ax = plt.subplots() @@ -184,6 +225,7 @@ ax.set_xlabel("$p$ / Pa") ax.set_ylabel("$q$ / Pa") ax.grid() ax.legend() +fig.tight_layout() fig.savefig("ModCamClay_TriaxStudy_YieldSurface.pdf") fig, ax = plt.subplots() diff --git a/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl.mfront b/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl.mfront new file mode 100644 index 0000000000000000000000000000000000000000..7dc9595e305d998ac8b991398aee1ad28260fcea --- /dev/null +++ b/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl.mfront @@ -0,0 +1,233 @@ +@DSL Implicit; +@Behaviour ModCamClay_semiExpl; +@Author Christian Silbermann, Eric Simo, Miguel Mánica, Thomas Helfer, Thomas Nagel; +@Date 10/01/2023; +@Description{ + The modified cam-clay model according to Callari (1998): + "A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity" + but here in a consistent geometrically linear form (linearized volume ratio evolution) + semi-explicit due to explicit volume ratio update at the end of time step, + nonlinear hypoelastic behavior: pressure-dependent bulk modulus, constant Poisson ratio, + incremental formulation assuming constant elastic parameters over the time step, + normalized plastic flow direction, lower limit for a minimal pre-consolidation pressure, +} + +/* Domain variables: dt (time increment) + (Input) theta (implicit time integration parameter) + eto, deto (total strain (increment)) + eel, deel (elastic strain (increment)) + sig (stress) + dlp (plastic increment) + dpc (pre-consolidation pressure increment) + + Output: feel (strain residual depending on deel, dlp, dpc) + flp (yield function residual depending on deel, dpc) + fpc (pc evolution residual depending on deel, dlp, dpc, dphi) + df..._dd... partial derivatives of the residuals + */ + +@Theta 1.0; // time integration scheme +@Epsilon 1e-14; // tolerance of local stress integration algorithm +@MaximumNumberOfIterations 20; // for local local stress integration algorithm +@ModellingHypotheses{".+"}; // supporting all stress and strain states +@Algorithm NewtonRaphson; //_NumericalJacobian;_LevenbergMarquardt + +// material parameters +@MaterialProperty real nu; +@PhysicalBounds nu in [-1:0.5]; +nu.setGlossaryName("PoissonRatio"); + +@MaterialProperty real M; +@PhysicalBounds M in [0:*[; +M.setEntryName("CriticalStateLineSlope"); + +@MaterialProperty real ka; +@PhysicalBounds ka in [0:*[; +ka.setEntryName("SwellingLineSlope"); + +@MaterialProperty real la; +@PhysicalBounds la in [0:*[; +la.setEntryName("VirginConsolidationLineSlope"); + +@MaterialProperty stress pc_char; +pc_char.setEntryName("CharacteristicPreConsolidationPressure"); +@PhysicalBounds pc_char in [0:*[; + +// Initial value of the volume ratio represents the operating point for the linearization. +@MaterialProperty real v0; +@PhysicalBounds v0 in [1:*[; +v0.setEntryName("InitialVolumeRatio"); + +// state variables (beside eel): +// A "standard" state variable is a persistent state variable and an integration variable. +@StateVariable real lp; +lp.setGlossaryName("EquivalentPlasticStrain"); + +// Reduced (normalized) pre-consolidation pressure for better integration performance +@IntegrationVariable strain rpc; + +// An auxiliary state variable is a persistent variable but not an integration variable. +@AuxiliaryStateVariable stress pc; +pc.setEntryName("PreConsolidationPressure"); + +@AuxiliaryStateVariable real epl_V; +epl_V.setEntryName("PlasticVolumetricStrain"); + +@AuxiliaryStateVariable real v; +@PhysicalBounds v in [1:*[; +v.setEntryName("VolumeRatio"); // Total volume per solid volume = inv(1 - porosity) + +// local variables +@LocalVariable StressStensor sig0; +@LocalVariable StiffnessTensor dsig_deel; +@LocalVariable bool withinElasticRange; +@LocalVariable real M2; +@LocalVariable real young; +@LocalVariable real pc_min; +@LocalVariable real rpc_min; + +@InitLocalVariables +{ + tfel::raise_if(la < ka, "Invalid parameters: la<ka"); + M2 = M * M; + + // update sig0 + sig0 = sig; + + // compute elastic stiffness (constant during time step) + const auto p = -trace(sig) / 3; + const auto K = v0 / ka * p; + const auto E = 3.0 * K * (1.0 - 2*nu); + + young = E; + rpc = pc / young; + pc_min = 0.5e-8 * pc_char; + rpc_min = pc_min / young; + + // stress derivative + dsig_deel = E / (1.0 + nu) * Stensor4::K() + K * Stensor4::IxI(); + + // elastic trial stress + const auto sig_el = sig0 + dsig_deel * deto; + + // elastic estimators + const auto s_el = deviator(sig_el); + const auto q_el = std::sqrt(1.5 * s_el | s_el); + const auto p_el = -trace(sig_el) / 3; + + const auto pc_el = pc; + const auto f_el = q_el * q_el + M2 * p_el * (p_el - pc_el); + withinElasticRange = f_el < 0; +} + +@ComputeStress { + sig = sig0 + theta * dsig_deel * deel; +} + +@Integrator +{ + constexpr const auto id2 = Stensor::Id(); + constexpr const auto Pr4 = Stensor4::K(); + const auto the = v0 / (la - ka); + + // elastic range: + if (withinElasticRange) + { + feel -= deto; + return true; + } + // plastic range: + const auto epsr = strain(1.e-12); + // calculate invariants from current stress sig + const auto s = deviator(sig); + const auto q = std::sqrt(1.5 * s | s); + const auto p = -trace(sig) / 3; + // update the internal (state) variables (rpc holds the old value!) + const auto rpc_new = rpc + theta * drpc; + const auto pc_new = rpc_new * young; + // calculate the direction of plastic flow + const auto f = q * q + M2 * p * (p - pc_new); + const auto df_dp = M2 * (2 * p - pc_new); + const auto df_dsig = eval(3 * s - df_dp * id2 / 3); + auto norm = std::sqrt(6 * q * q + df_dp * df_dp / 3); // = std::sqrt(df_dsig|df_dsig); + norm = std::max(norm, epsr * young); + const auto n = df_dsig / norm; + const auto ntr = -df_dp / norm; + // plastic strain and volumetric part + const auto depl = eval(dlp * n); + const auto deplV = trace(depl); + + const auto fchar = pc_char * young; + + // residual + feel = deel + depl - deto; + flp = f / fchar; + frpc = drpc + deplV * the * (rpc_new - rpc_min); + + // auxiliary derivatives + const auto dnorm_dsig = (9 * s - 2 * M2 / 9 * df_dp * id2) / norm; + const auto dn_ddeel = (3 * Pr4 + 2 * M2 / 9 * (id2 ^ id2) - (n ^ dnorm_dsig)) / norm * dsig_deel * theta; + const auto dn_ddrpc = (id2 + df_dp * n / norm) * M2 / (3 * norm) * theta * young; + const auto dfrpc_ddeplV = the * (rpc_new - rpc_min); + + // jacobian (all other parts are zero) + dfeel_ddeel += dlp * dn_ddeel; + dfeel_ddlp = n; + dfeel_ddrpc = dlp * dn_ddrpc; + + dflp_ddeel = (df_dsig | dsig_deel) * theta / fchar; // in case of problems with zero use: + dflp_ddlp = strain(0); // (q<epsr) ? strain(1) : strain(0); + dflp_ddrpc = -M2 * p * theta / fchar * young; + + dfrpc_ddlp = dfrpc_ddeplV * ntr; + dfrpc_ddeel = dfrpc_ddeplV * dlp * (id2 | dn_ddeel); + dfrpc_ddrpc = 1 + deplV * the * theta + dfrpc_ddeplV * dlp * trace(dn_ddrpc); +} + +@ComputeFinalStress { + // updating the stress at the end of the time step + sig = sig0 + dsig_deel * deel; +} + +// explicit treatment as long as change of v (or e) during time increment is small +@UpdateAuxiliaryStateVariables +{ + pc += drpc * young; + const auto deelV = trace(deel); + const auto detoV = trace(deto); + epl_V += detoV - deelV; + v += v0 * detoV; +} + +@AdditionalConvergenceChecks +{ + if (converged) + { + if (!withinElasticRange) + { + if (dlp < 0) + { + converged = false; + withinElasticRange = true; + } + } + } +} + +@TangentOperator // because no Brick StandardElasticity +{ + if ((smt == ELASTIC) || (smt == SECANTOPERATOR)) + { + Dt = dsig_deel; + } + else if (smt == CONSISTENTTANGENTOPERATOR) + { + Stensor4 Je; + getPartialJacobianInvert(Je); + Dt = dsig_deel * Je; + } + else + { + return false; + } +} diff --git a/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl_absP.mfront b/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl_absP.mfront new file mode 100644 index 0000000000000000000000000000000000000000..4ce070c89892a6ef051259a800d1444448bf1fdf --- /dev/null +++ b/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl_absP.mfront @@ -0,0 +1,277 @@ +@DSL Implicit; +@Behaviour ModCamClay_semiExpl_absP; +@Author Christian Silbermann, Eric Simo, Miguel Mánica, Thomas Helfer, Thomas Nagel; +@Date 16/01/2023; +@Description{ + The modified cam-clay model according to Callari (1998): + "A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity" + but here in a consistent geometrically linear form (linearized volume ratio evolution) + semi-explicit due to explicit volume ratio update at the end of time step, + nonlinear hypoelastic behavior: pressure-dependent bulk modulus, constant Poisson ratio, + absolute/integral formulation taking into account pressure-dependent elastic parameters, + normalized plastic flow direction, lower limit for a minimal pre-consolidation pressure, +} + +/* Domain variables: dt (time increment) + (Input) theta (implicit time integration parameter) + eto, deto (total strain (increment)) + eel, deel (elastic strain (increment)) + sig (stress) + dlp (plastic increment) + + Output: feel (strain residual depending on deel, dlp, dpc) + flp (yield function residual depending on deel, dpc) + fpc (pc evolution residual depending on deel, dlp, dpc, dphi) + df..._dd... partial derivatives of the residuals + */ + +@Theta 1.0; // time integration scheme +@Epsilon 1e-14; // tolerance of local stress integration algorithm +@MaximumNumberOfIterations 20; // for local local stress integration algorithm +@ModellingHypotheses{".+"}; // supporting all stress and strain states +@Algorithm NewtonRaphson; //_NumericalJacobian;_LevenbergMarquardt + +// material parameters +@MaterialProperty real nu; +@PhysicalBounds nu in [-1:0.5]; +nu.setGlossaryName("PoissonRatio"); + +@MaterialProperty real M; +@PhysicalBounds M in [0:*[; +M.setEntryName("CriticalStateLineSlope"); + +@MaterialProperty real ka; +@PhysicalBounds ka in [0:*[; +ka.setEntryName("SwellingLineSlope"); + +@MaterialProperty real la; +@PhysicalBounds la in [0:*[; +la.setEntryName("VirginConsolidationLineSlope"); + +@MaterialProperty stress pc_char; +pc_char.setEntryName("CharacteristicPreConsolidationPressure"); +@PhysicalBounds pc_char in [0:*[; + +// Initial value of the volume ratio represents the operating point for the linearization. +@MaterialProperty real v0; +@PhysicalBounds v0 in [1:*[; +v0.setEntryName("InitialVolumeRatio"); + +// state variables (beside eel): +// A "standard" state variable is a persistent state variable and an integration variable. +@StateVariable real lp; +lp.setGlossaryName("EquivalentPlasticStrain"); + +// An auxiliary state variable is a persistent variable but not an integration variable. +@AuxiliaryStateVariable stress pc; +pc.setEntryName("PreConsolidationPressure"); + +@AuxiliaryStateVariable real epl_V; +epl_V.setEntryName("PlasticVolumetricStrain"); + +@AuxiliaryStateVariable real v; +@PhysicalBounds v in [1:*[; +v.setEntryName("VolumeRatio"); // Total volume per solid volume = inv(1 - porosity) + +// local variables +@LocalVariable StiffnessTensor dsig_deel; +@LocalVariable StressStensor s0; +@LocalVariable bool withinElasticRange; +@LocalVariable real M2; +@LocalVariable real young; +@LocalVariable real pc_min; +@LocalVariable stress p0; + +@Includes{ +#ifndef MFRONT_PRESSUREDEPENDANTBULKMODULUS_IMPLEMENTATION +#define MFRONT_PRESSUREDEPENDANTBULKMODULUS_IMPLEMENTATION 1 + // compute the stress + template <unsigned short N, typename stress, typename strain> + void computeStress(tfel::math::st2tost2<N, stress> & dsig_deel, + tfel::math::stensor<N, stress> & sig, + tfel::math::stensor<N, stress> & s0, + const stress p0, + const tfel::math::stensor<N, strain>& eel, + const tfel::math::stensor<N, strain>& deel, + const double nu, const strain v0_ka) + { + using namespace tfel::math; + using Stensor = tfel::math::stensor<N, strain>; + using Stensor4 = tfel::math::st2tost2<N, strain>; + + constexpr auto id = Stensor::Id(); + const auto deelV = trace(deel); + const auto deelD = deviator(deel); + const auto alpha = 3 * (1 - 2 * nu) / (2 * (1 + nu)); + + // incremental computation of the hydrostatic pressure + const auto p = p0 * exp(-v0_ka * deelV); + const auto K = v0_ka * p; + const auto G = alpha * K; + // incremental form of Hooke's law for deviatoric stress + const auto s = s0 + 2 * G * deelD; + sig = s - p * id; + // stress derivative + dsig_deel = 2 * G * Stensor4::K() + K * Stensor4::IxI(); + } // end of computeStress +#endif /* MFRONT_PRESSUREDEPENDANTBULKMODULUS_IMPLEMENTATION */ +} + + +@ComputeStress{ + const auto eps_el = StrainStensor{eel}; + const auto deps_el = StrainStensor{deel}; + ::computeStress(dsig_deel, sig, s0, p0, eps_el, deps_el, nu, v0/ka); +} + +@InitLocalVariables +{ + tfel::raise_if(la < ka, "Invalid parameters: la<ka"); + M2 = M * M; + + // get deviator and pressure from current stress + const auto s = deviator(sig); + const auto p = -trace(sig) / 3; + const auto K = v0/ka * p; + + young = 3.0 * K * (1.0 - 2*nu); + pc_min = 0.5e-8 * pc_char; + + s0 = s; + p0 = p; + + // computation of the elastic prediction (does not work for plane stress!) + const auto eps_el = StrainStensor{eel + deto}; + const auto deps_el = StrainStensor{deto}; + auto sig_el = StressStensor{}; + ::computeStress(dsig_deel, sig_el, s0, p0, eps_el, deps_el, nu, v0/ka); + + // elastic estimators + const auto s_el = deviator(sig_el); + const auto q_el = std::sqrt(1.5 * s_el | s_el); + const auto p_el = -trace(sig_el) / 3; + + const auto pc_el = pc; + const auto f_el = q_el * q_el + M2 * p_el * (p_el - pc_el); + withinElasticRange = f_el < 0; +} + +@Integrator +{ + constexpr const auto id2 = Stensor::Id(); + constexpr const auto Pr4 = Stensor4::K(); + const auto the = v0 / (la - ka); + + // elastic range: + if (withinElasticRange) + { + feel -= deto; + return true; + } + // plastic range: + const auto epsr = strain(1.e-12); + // calculate invariants from current stress sig + const auto s = deviator(sig); + const auto q = std::sqrt(1.5 * s | s); + const auto p = -trace(sig) / 3; + // update the internal (state) variables (pc holds the old value!) + const auto deelV = trace(deel); + const auto detoV = trace(deto); + auto deplV = detoV - deelV; + const auto pc_new = (pc - pc_min) * exp(-the * deplV) + pc_min; + // calculate the direction of plastic flow + const auto f = q * q + M2 * p * (p - pc_new); + const auto df_dp = M2 * (2 * p - pc_new); + const auto df_ds = 3 * s; + const auto df_dpc = -M2 * p; + const auto df_dsig = eval(3 * s - df_dp * id2 / 3); + auto norm = std::sqrt(6 * q * q + df_dp * df_dp / 3); // = std::sqrt(df_dsig|df_dsig); + norm = std::max(norm, epsr * young); + const auto n = df_dsig / norm; + const auto ntr = -df_dp / norm; + // plastic strain and volumetric part + const auto depl = eval(dlp * n); + deplV = trace(depl); + + const auto fchar = pc_char * young; + + // residual + feel = deel + depl - deto; + flp = f / fchar; + + const auto alpha = 3 * (1 - 2 * nu) / (2 * (1 + nu)); + const auto K = v0 / ka * p; + const auto G = alpha * K; + + // auxiliary derivatives + const auto dp_ddeelV = -K; + + const auto dn_dpc = 1 * (id2 + df_dp * n / norm) * M2 / (3 * norm); + const auto dn_dp = -2 * (id2 + df_dp * n / norm) * M2 / (3 * norm); + + const auto dn_ddeelD = 3 / norm * (Pr4 - 3 / norm * (n ^ s)) * 2 * G; + const auto dn_ddeelV = eval(dn_dp * dp_ddeelV ^ id2); + const auto dn_ddeel = dn_ddeelD + dn_ddeelV; + + const auto dpc_ddeplV = -the * (pc - pc_min) * exp(-the * deplV); + const auto ddeplV_ddlp = ntr; + const auto ddeplV_dn = eval(dlp * id2); + + const auto dpc_ddlp = dpc_ddeplV * ddeplV_ddlp; + const auto dpc_ddeel = dpc_ddeplV * (ddeplV_dn | dn_ddeel); + //const auto dpc_dn = dpc_ddeplV * ddeplV_dn; + //const auto dpc_ddeel = dpc_deplV * theta * dlp * (id2 | dn_ddeel); + + // jacobian (all other parts are zero) + const auto dfeel_dpc = dlp * dn_dpc; + dfeel_ddeel += dlp * dn_ddeel + eval(dfeel_dpc ^ dpc_ddeel); + dfeel_ddlp = n + dfeel_dpc * dpc_ddlp; + + dflp_ddeel = (6 * s *G + df_dp * dp_ddeelV * id2 + df_dpc * dpc_ddeel) / fchar; + dflp_ddlp = strain(0) + 1 * df_dpc * dpc_ddlp / fchar; +} + +// explicit treatment as long as change of v (or e) during time increment is small +@UpdateAuxiliaryStateVariables +{ + const auto deelV = trace(deel); + const auto detoV = trace(deto); + const auto deplV = detoV - deelV; + epl_V += deplV; + pc = (pc - pc_min) * exp(-v0 / (la - ka) * deplV) + pc_min; + v += v0 * detoV; +} + +@AdditionalConvergenceChecks +{ + if (converged) + { + if (!withinElasticRange) + { + if (dlp < 0) + { + std::cout << " Negative plastic increment! " << std::endl; + converged = false; + withinElasticRange = true; + } + } + } +} + +@TangentOperator // because no Brick StandardElasticity +{ + if ((smt == ELASTIC) || (smt == SECANTOPERATOR)) + { + Dt = dsig_deel; + } + else if (smt == CONSISTENTTANGENTOPERATOR) + { + Stensor4 Je; + getPartialJacobianInvert(Je); + Dt = dsig_deel * Je; + } + else + { + return false; + } +} diff --git a/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl_constE.mfront b/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl_constE.mfront index 0d5dd181883d096c5a9f1535faab6f4d998ada2e..e0346711277ceae44bd30c13e589934e4c12e29b 100644 --- a/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl_constE.mfront +++ b/MaterialLib/SolidModels/MFront/ModCamClay_semiExpl_constE.mfront @@ -130,11 +130,11 @@ v.setEntryName("VolumeRatio"); // Total volume per solid volume = inv(1 - poros const auto q = std::sqrt(1.5 * s | s); const auto p = -trace(sig) / 3 + pamb; // update the internal (state) variables (rpc holds the old value!) - const auto rpcNew = rpc + theta * drpc; - const auto pcNew = rpcNew * young; + const auto rpc_new = rpc + theta * drpc; + const auto pc_new = rpc_new * young; // calculate the direction of plastic flow - const auto f = (q * q + M2 * p * (p - pcNew)); - const auto df_dp = M2 * (2 * p - pcNew); + const auto f = (q * q + M2 * p * (p - pc_new)); + const auto df_dp = M2 * (2 * p - pc_new); const auto df_dsig = eval(3 * s - df_dp * id2 / 3); auto norm = std::sqrt(6 * q * q + df_dp * df_dp / 3); // = std::sqrt(df_dsig|df_dsig); @@ -142,7 +142,7 @@ v.setEntryName("VolumeRatio"); // Total volume per solid volume = inv(1 - poros const auto n = df_dsig / norm; const auto ntr = -df_dp / norm; // plastic strain and volumetric part - auto depl = eval(dlp * n); + const auto depl = eval(dlp * n); const auto deplV = trace(depl); const auto fchar = pc_char * young; @@ -150,7 +150,7 @@ v.setEntryName("VolumeRatio"); // Total volume per solid volume = inv(1 - poros // residual feel += depl; flp = f / fchar; - frpc = drpc + deplV * the * (rpcNew - rpc_min); + frpc = drpc + deplV * the * (rpc_new - rpc_min); // auxiliary derivatives const auto dnorm_dsig = (9 * s - 2 * M2 / 9 * df_dp * id2) / norm; @@ -159,7 +159,7 @@ v.setEntryName("VolumeRatio"); // Total volume per solid volume = inv(1 - poros theta; const auto dn_ddrpc = (id2 + df_dp * n / norm) * M2 / (3 * norm) * theta * young; - const auto dfrpc_ddeplV = the * (rpcNew - rpc_min); + const auto dfrpc_ddeplV = the * (rpc_new - rpc_min); // jacobian (all other parts are zero) dfeel_ddeel += dlp * dn_ddeel; diff --git a/ProcessLib/SmallDeformation/Tests.cmake b/ProcessLib/SmallDeformation/Tests.cmake index 5cdf0488059b9321ecfea0ccffd1d7474f63e281..5733f96fb526964741f45c8b93168f8fe52dc816 100644 --- a/ProcessLib/SmallDeformation/Tests.cmake +++ b/ProcessLib/SmallDeformation/Tests.cmake @@ -93,7 +93,9 @@ if (OGS_USE_MFRONT) OgsTest(PROJECTFILE Mechanics/Burgers/cube_1e0_mfront_mod.prj) OgsTest(PROJECTFILE Mechanics/ModifiedCamClay/square_1e0_shear.prj) OgsTest(PROJECTFILE Mechanics/ModifiedCamClay/square_1e0_biax.prj) - OgsTest(PROJECTFILE Mechanics/ModifiedCamClay/model_triaxtest.prj) + OgsTest(PROJECTFILE Mechanics/ModifiedCamClay/triaxtest.prj) + OgsTest(PROJECTFILE Mechanics/ModifiedCamClay/triaxtest_original.prj) + OgsTest(PROJECTFILE Mechanics/ModifiedCamClay/triaxtest_original_abs.prj) OgsTest(PROJECTFILE Mechanics/Ehlers/MFront/square_1e1_2_matIDs.prj RUNTIME 4) OgsTest(PROJECTFILE Mechanics/Ehlers/MFront/square_1e1_2_matIDs_restart.prj RUNTIME 4) OgsTest(PROJECTFILE Mechanics/Ehlers/MFront/two_material_ids_single_solid.prj RUNTIME 1) diff --git a/Tests/Data/Mechanics/ModifiedCamClay/model_triaxtest.prj b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest.prj similarity index 92% rename from Tests/Data/Mechanics/ModifiedCamClay/model_triaxtest.prj rename to Tests/Data/Mechanics/ModifiedCamClay/triaxtest.prj index 22d55549c7471a6c6496a45f94b1c79b2fb903b2..0f06ed038244c77f1cdee867a3e3300e604a17e6 100644 --- a/Tests/Data/Mechanics/ModifiedCamClay/model_triaxtest.prj +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest.prj @@ -31,6 +31,7 @@ </constitutive_relation> <solid_density>rho_sr</solid_density> <specific_body_force>0 0</specific_body_force> + <initial_stress>InitialEffectiveStressField</initial_stress> <process_variables> <process_variable>displacement</process_variable> </process_variables> @@ -132,7 +133,7 @@ <parameter> <name>YoungModulus</name> <type>Constant</type> - <value>52e6</value> <!--Pa--> + <value>64.9345e6</value> <!--Pa--> </parameter> <parameter> <name>PoissonRatio</name> @@ -192,7 +193,7 @@ <value>-625.e3</value> <!--Pa--> </parameter> <parameter> - <name>confining_pressure_value</name> + <name>loading_value_side</name> <type>Constant</type> <values>-200.e3</values> <!--Pa--> </parameter> @@ -200,19 +201,35 @@ <name>confining_pressure</name> <type>CurveScaled</type> <curve>pre_loading_curve</curve> - <parameter>confining_pressure_value</parameter> + <parameter>loading_value_side</parameter> + </parameter> + <parameter> + <name>InitialEffectiveStressField</name> <!--Pa--> + <type>Function</type> + <expression> <!--xx--> + -200.e3 + </expression> + <expression> <!--yy--> + -200.e3 + </expression> + <expression> <!--zz--> + -200.e3 + </expression> + <expression> <!--xy--> + 0 + </expression> </parameter> </parameters> <curves> <curve> <name>ax_loading_curve</name> <coords>0.0 0.02 1 </coords> - <values>0.0 0.32 1.0 </values> + <values>0.32 0.32 1.0 </values> </curve> <curve> <name>pre_loading_curve</name> <coords>0.0 0.02 1 </coords> - <values>0.0 1.0 1.05 </values> + <values>1.0 1.0 1.05 </values> </curve> </curves> <process_variables> @@ -275,7 +292,7 @@ <vtkdiff> <file>triaxtest_output_ts_99_t_0.484339.vtu</file> <field>displacement</field> - <absolute_tolerance>1e-14</absolute_tolerance> + <absolute_tolerance>7e-13</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> @@ -288,7 +305,7 @@ <vtkdiff> <file>triaxtest_output_ts_99_t_0.484339.vtu</file> <field>sigma</field> - <absolute_tolerance>1e-7</absolute_tolerance> + <absolute_tolerance>2e-7</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> @@ -301,13 +318,13 @@ <vtkdiff> <file>triaxtest_output_ts_99_t_0.484339.vtu</file> <field>PreConsolidationPressure</field> - <absolute_tolerance>9e-9</absolute_tolerance> + <absolute_tolerance>2e-7</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <file>triaxtest_output_ts_199_t_1.000000.vtu</file> <field>PreConsolidationPressure</field> - <absolute_tolerance>1e-7</absolute_tolerance> + <absolute_tolerance>2e-7</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> </test_definition> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original.prj b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original.prj new file mode 100644 index 0000000000000000000000000000000000000000..a6e8c715cc2d4c218254055681afaa2e6e3857e7 --- /dev/null +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original.prj @@ -0,0 +1,326 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<!-- units: kg, m, s, N --> +<OpenGeoSysProject> + <meshes> + <mesh axially_symmetric="true">model.vtu</mesh> + <mesh axially_symmetric="true">geometry_left.vtu</mesh> + <mesh axially_symmetric="true">geometry_right.vtu</mesh> + <mesh axially_symmetric="true">geometry_top.vtu</mesh> + <mesh axially_symmetric="true">geometry_bottom.vtu</mesh> + </meshes> + <processes> + <process> + <name>SD</name> + <type>SMALL_DEFORMATION</type> + <integration_order>2</integration_order> + <constitutive_relation> + <type>MFront</type> + <behaviour>ModCamClay_semiExpl</behaviour> + <material_properties> + <material_property name="PoissonRatio" parameter="PoissonRatio"/> + <material_property name="CriticalStateLineSlope" parameter="CriticalStateLineSlope"/> + <material_property name="SwellingLineSlope" parameter="SwellingLineSlope"/> + <material_property name="VirginConsolidationLineSlope" parameter="VirginConsolidationLineSlope"/> + <material_property name="CharacteristicPreConsolidationPressure" parameter="InitialPreConsolidationPressure"/> + <material_property name="InitialVolumeRatio" parameter="InitialVolumeRatio"/> + </material_properties> + <initial_values> + <state_variable name="PreConsolidationPressure" parameter="InitialPreConsolidationPressure"/> + <state_variable name="VolumeRatio" parameter="InitialVolumeRatio"/> + </initial_values> + </constitutive_relation> + <solid_density>rho_sr</solid_density> + <specific_body_force>0 0</specific_body_force> + <initial_stress>InitialEffectiveStressField</initial_stress> + <process_variables> + <process_variable>displacement</process_variable> + </process_variables> + <secondary_variables> + <secondary_variable internal_name="sigma" output_name="sigma"/> + <secondary_variable internal_name="epsilon" output_name="epsilon"/> + <secondary_variable internal_name="ElasticStrain" output_name="ElasticStrain"/> + <secondary_variable internal_name="EquivalentPlasticStrain" output_name="EquivalentPlasticStrain"/> + <secondary_variable internal_name="PreConsolidationPressure" output_name="PreConsolidationPressure"/> + <secondary_variable internal_name="VolumeRatio" output_name="VolumeRatio"/> + <secondary_variable internal_name="PlasticVolumetricStrain" output_name="PlasticVolumetricStrain"/> + </secondary_variables> + </process> + </processes> + <time_loop> + <processes> + <process ref="SD"> + <nonlinear_solver>basic_newton</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>INFINITY_N</norm_type> + <abstol>1e-13</abstol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0</t_initial> + <t_end>1</t_end> + <timesteps> + <pair> + <repeat>1</repeat> + <delta_t>0.001</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.0012</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.00144</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.001728</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.002074</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.002488</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.002986</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.003583</delta_t> + </pair> + <pair> + <repeat>2</repeat> + <delta_t>0.0043</delta_t> + </pair> + <pair> + <repeat>188</repeat> + <delta_t>0.00516</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.004863</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>triaxtest_original_output</prefix> + <timesteps> + <pair> + <repeat>10000</repeat> + <each_steps>1</each_steps> + </pair> + </timesteps> + <variables> + <variable>displacement</variable> + <variable>sigma</variable> + <variable>epsilon</variable> + <variable>PreConsolidationPressure</variable> + </variables> + </output> + </time_loop> + <parameters> + <!--Modified Cam clay parameters--> + <parameter> + <name>PoissonRatio</name> + <type>Constant</type> + <value>0.3</value> + </parameter> + <parameter> + <name>CriticalStateLineSlope</name> + <type>Constant</type> + <value>1.2</value> + </parameter> + <parameter> + <name>SwellingLineSlope</name> + <type>Constant</type> + <value>6.6e-3</value> + </parameter> + <parameter> + <name>VirginConsolidationLineSlope</name> + <type>Constant</type> + <value>7.7e-2</value> + </parameter> + <parameter> + <name>InitialPreConsolidationPressure</name> + <type>Constant</type> + <value>200.e3</value> <!--Pa--> + </parameter> + <parameter> + <name>InitialVolumeRatio</name> + <type>Constant</type> + <value>1.78571428571428571429</value> + </parameter> + <!-- Initial and boundary values --> + <parameter> + <name>rho_sr</name> + <type>Constant</type> + <value>0</value> + </parameter> + <parameter> + <name>displacement0</name> + <type>Constant</type> + <values>0 0</values> + </parameter> + <parameter> + <name>zero</name> + <type>Constant</type> + <value>0.0</value> + </parameter> + <parameter> + <name>axial_pressure</name> + <type>CurveScaled</type> + <curve>ax_loading_curve</curve> + <parameter>loading_value_top</parameter> + </parameter> + <parameter> + <name>loading_value_top</name> + <type>Constant</type> + <value>-625.e3</value> <!--Pa--> + </parameter> + <parameter> + <name>loading_value_side</name> + <type>Constant</type> + <values>-200.e3</values> <!--Pa--> + </parameter> + <parameter> + <name>confining_pressure</name> + <type>CurveScaled</type> + <curve>pre_loading_curve</curve> + <parameter>loading_value_side</parameter> + </parameter> + <parameter> + <name>InitialEffectiveStressField</name> <!--Pa--> + <type>Function</type> + <expression> <!--xx--> + -200.e3 + </expression> + <expression> <!--yy--> + -200.e3 + </expression> + <expression> <!--zz--> + -200.e3 + </expression> + <expression> <!--xy--> + 0 + </expression> + </parameter> + </parameters> + <curves> + <curve> + <name>ax_loading_curve</name> + <coords>0.0 0.02 1 </coords> + <values>0.32 0.32 1.0 </values> + </curve> + <curve> + <name>pre_loading_curve</name> + <coords>0.0 0.02 1 </coords> + <values>1.0 1.0 1.05 </values> + </curve> + </curves> + <process_variables> + <process_variable> + <name>displacement</name> + <components>2</components> + <order>1</order> + <initial_condition>displacement0</initial_condition> + <boundary_conditions> + <!--fix left in radial direction--> + <boundary_condition> + <mesh>geometry_left</mesh> + <type>Dirichlet</type> + <component>0</component> + <parameter>zero</parameter> + </boundary_condition> + <!--fix bottom in axial direction--> + <boundary_condition> + <mesh>geometry_bottom</mesh> + <type>Dirichlet</type> + <component>1</component> + <parameter>zero</parameter> + </boundary_condition> + <!--compression in axial direction --> + <boundary_condition> + <mesh>geometry_top</mesh> + <type>Neumann</type> + <component>1</component> + <parameter>axial_pressure</parameter> + </boundary_condition> + <!--compression in -radial direction--> + <boundary_condition> + <mesh>geometry_right</mesh> + <type>Neumann</type> + <component>0</component> + <parameter>confining_pressure</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_newton</name> + <type>Newton</type> + <max_iter>60</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <eigen> + <solver_type>SparseLU</solver_type> + <scaling>true</scaling> + </eigen> + </linear_solver> + </linear_solvers> + <test_definition> + <!--primary field--> + <vtkdiff> + <file>triaxtest_original_output_ts_99_t_0.484339.vtu</file> + <field>displacement</field> + <absolute_tolerance>1e-14</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>triaxtest_original_output_ts_199_t_1.000000.vtu</file> + <field>displacement</field> + <absolute_tolerance>7e-12</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <!--secondary field--> + <vtkdiff> + <file>triaxtest_original_output_ts_99_t_0.484339.vtu</file> + <field>sigma</field> + <absolute_tolerance>1e-7</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>triaxtest_original_output_ts_199_t_1.000000.vtu</file> + <field>sigma</field> + <absolute_tolerance>2e-7</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <!--material-specific internal variable--> + <vtkdiff> + <file>triaxtest_original_output_ts_99_t_0.484339.vtu</file> + <field>PreConsolidationPressure</field> + <absolute_tolerance>9e-9</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>triaxtest_original_output_ts_199_t_1.000000.vtu</file> + <field>PreConsolidationPressure</field> + <absolute_tolerance>2e-6</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + </test_definition> +</OpenGeoSysProject> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs.prj b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs.prj new file mode 100644 index 0000000000000000000000000000000000000000..5eb84c790cea7b9bc557f53fc5c47c03ee75a134 --- /dev/null +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs.prj @@ -0,0 +1,326 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<!-- units: kg, m, s, N --> +<OpenGeoSysProject> + <meshes> + <mesh axially_symmetric="true">model.vtu</mesh> + <mesh axially_symmetric="true">geometry_left.vtu</mesh> + <mesh axially_symmetric="true">geometry_right.vtu</mesh> + <mesh axially_symmetric="true">geometry_top.vtu</mesh> + <mesh axially_symmetric="true">geometry_bottom.vtu</mesh> + </meshes> + <processes> + <process> + <name>SD</name> + <type>SMALL_DEFORMATION</type> + <integration_order>2</integration_order> + <constitutive_relation> + <type>MFront</type> + <behaviour>ModCamClay_semiExpl_absP</behaviour> + <material_properties> + <material_property name="PoissonRatio" parameter="PoissonRatio"/> + <material_property name="CriticalStateLineSlope" parameter="CriticalStateLineSlope"/> + <material_property name="SwellingLineSlope" parameter="SwellingLineSlope"/> + <material_property name="VirginConsolidationLineSlope" parameter="VirginConsolidationLineSlope"/> + <material_property name="CharacteristicPreConsolidationPressure" parameter="InitialPreConsolidationPressure"/> + <material_property name="InitialVolumeRatio" parameter="InitialVolumeRatio"/> + </material_properties> + <initial_values> + <state_variable name="PreConsolidationPressure" parameter="InitialPreConsolidationPressure"/> + <state_variable name="VolumeRatio" parameter="InitialVolumeRatio"/> + </initial_values> + </constitutive_relation> + <solid_density>rho_sr</solid_density> + <specific_body_force>0 0</specific_body_force> + <initial_stress>InitialEffectiveStressField</initial_stress> + <process_variables> + <process_variable>displacement</process_variable> + </process_variables> + <secondary_variables> + <secondary_variable internal_name="sigma" output_name="sigma"/> + <secondary_variable internal_name="epsilon" output_name="epsilon"/> + <secondary_variable internal_name="ElasticStrain" output_name="ElasticStrain"/> + <secondary_variable internal_name="EquivalentPlasticStrain" output_name="EquivalentPlasticStrain"/> + <secondary_variable internal_name="PreConsolidationPressure" output_name="PreConsolidationPressure"/> + <secondary_variable internal_name="VolumeRatio" output_name="VolumeRatio"/> + <secondary_variable internal_name="PlasticVolumetricStrain" output_name="PlasticVolumetricStrain"/> + </secondary_variables> + </process> + </processes> + <time_loop> + <processes> + <process ref="SD"> + <nonlinear_solver>basic_newton</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>INFINITY_N</norm_type> + <abstol>1e-13</abstol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0</t_initial> + <t_end>0.95</t_end> + <timesteps> + <pair> + <repeat>1</repeat> + <delta_t>0.001</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.0012</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.00144</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.001728</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.002074</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.002488</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.002986</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.003583</delta_t> + </pair> + <pair> + <repeat>2</repeat> + <delta_t>0.0043</delta_t> + </pair> + <pair> + <repeat>188</repeat> + <delta_t>0.00516</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>0.004863</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>triaxtest_original_abs_output</prefix> + <timesteps> + <pair> + <repeat>10000</repeat> + <each_steps>1</each_steps> + </pair> + </timesteps> + <variables> + <variable>displacement</variable> + <variable>sigma</variable> + <variable>epsilon</variable> + <variable>PreConsolidationPressure</variable> + </variables> + </output> + </time_loop> + <parameters> + <!--Modified Cam clay parameters--> + <parameter> + <name>PoissonRatio</name> + <type>Constant</type> + <value>0.3</value> + </parameter> + <parameter> + <name>CriticalStateLineSlope</name> + <type>Constant</type> + <value>1.2</value> + </parameter> + <parameter> + <name>SwellingLineSlope</name> + <type>Constant</type> + <value>6.6e-3</value> + </parameter> + <parameter> + <name>VirginConsolidationLineSlope</name> + <type>Constant</type> + <value>7.7e-2</value> + </parameter> + <parameter> + <name>InitialPreConsolidationPressure</name> + <type>Constant</type> + <value>200.e3</value> <!--Pa--> + </parameter> + <parameter> + <name>InitialVolumeRatio</name> + <type>Constant</type> + <value>1.78571428571428571429</value> + </parameter> + <!-- Initial and boundary values --> + <parameter> + <name>rho_sr</name> + <type>Constant</type> + <value>0</value> + </parameter> + <parameter> + <name>displacement0</name> + <type>Constant</type> + <values>0 0</values> + </parameter> + <parameter> + <name>zero</name> + <type>Constant</type> + <value>0.0</value> + </parameter> + <parameter> + <name>axial_pressure</name> + <type>CurveScaled</type> + <curve>ax_loading_curve</curve> + <parameter>loading_value_top</parameter> + </parameter> + <parameter> + <name>loading_value_top</name> + <type>Constant</type> + <value>-625.e3</value> <!--Pa--> + </parameter> + <parameter> + <name>loading_value_side</name> + <type>Constant</type> + <values>-200.e3</values> <!--Pa--> + </parameter> + <parameter> + <name>confining_pressure</name> + <type>CurveScaled</type> + <curve>pre_loading_curve</curve> + <parameter>loading_value_side</parameter> + </parameter> + <parameter> + <name>InitialEffectiveStressField</name> <!--Pa--> + <type>Function</type> + <expression> <!--xx--> + -200.e3 + </expression> + <expression> <!--yy--> + -200.e3 + </expression> + <expression> <!--zz--> + -200.e3 + </expression> + <expression> <!--xy--> + 0 + </expression> + </parameter> + </parameters> + <curves> + <curve> + <name>ax_loading_curve</name> + <coords>0.0 0.02 1 </coords> + <values>0.32 0.32 1.0 </values> + </curve> + <curve> + <name>pre_loading_curve</name> + <coords>0.0 0.02 1 </coords> + <values>1.0 1.0 1.05 </values> + </curve> + </curves> + <process_variables> + <process_variable> + <name>displacement</name> + <components>2</components> + <order>1</order> + <initial_condition>displacement0</initial_condition> + <boundary_conditions> + <!--fix left in radial direction--> + <boundary_condition> + <mesh>geometry_left</mesh> + <type>Dirichlet</type> + <component>0</component> + <parameter>zero</parameter> + </boundary_condition> + <!--fix bottom in axial direction--> + <boundary_condition> + <mesh>geometry_bottom</mesh> + <type>Dirichlet</type> + <component>1</component> + <parameter>zero</parameter> + </boundary_condition> + <!--compression in axial direction --> + <boundary_condition> + <mesh>geometry_top</mesh> + <type>Neumann</type> + <component>1</component> + <parameter>axial_pressure</parameter> + </boundary_condition> + <!--compression in -radial direction--> + <boundary_condition> + <mesh>geometry_right</mesh> + <type>Neumann</type> + <component>0</component> + <parameter>confining_pressure</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_newton</name> + <type>Newton</type> + <max_iter>60</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <eigen> + <solver_type>SparseLU</solver_type> + <scaling>true</scaling> + </eigen> + </linear_solver> + </linear_solvers> + <test_definition> + <!--primary field--> + <vtkdiff> + <file>triaxtest_original_abs_output_ts_99_t_0.484339.vtu</file> + <field>displacement</field> + <absolute_tolerance>1e-12</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>triaxtest_original_abs_output_ts_189_t_0.948739.vtu</file> + <field>displacement</field> + <absolute_tolerance>1e-12</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <!--secondary field--> + <vtkdiff> + <file>triaxtest_original_abs_output_ts_99_t_0.484339.vtu</file> + <field>sigma</field> + <absolute_tolerance>6e-5</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>triaxtest_original_abs_output_ts_189_t_0.948739.vtu</file> + <field>sigma</field> + <absolute_tolerance>6e-5</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <!--material-specific internal variable--> + <vtkdiff> + <file>triaxtest_original_abs_output_ts_99_t_0.484339.vtu</file> + <field>PreConsolidationPressure</field> + <absolute_tolerance>6e-5</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>triaxtest_original_abs_output_ts_189_t_0.948739.vtu</file> + <field>PreConsolidationPressure</field> + <absolute_tolerance>6e-5</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + </test_definition> +</OpenGeoSysProject> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs_output_ts_189_t_0.948739.vtu b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs_output_ts_189_t_0.948739.vtu new file mode 100644 index 0000000000000000000000000000000000000000..4880f72c9f81fb7e569659942d351e634e557912 --- /dev/null +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs_output_ts_189_t_0.948739.vtu @@ -0,0 +1,42 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="97" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="160" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="304" format="appended" RangeMin="671633.97344" RangeMax="671633.97344" offset="252" /> + </FieldData> + <Piece NumberOfPoints="100" NumberOfCells="76" > + <PointData> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0049924578026" RangeMax="0.0049924578026" offset="6296" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.1748514562" RangeMax="0.1748514562" offset="8328" /> + <DataArray type="Float64" Name="MaterialForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="8620" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="6.2821391557e-08" RangeMax="443825653.32" offset="8700" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.046827792539" RangeMax="-0.046827792539" offset="9728" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="655970.93653" RangeMax="655970.93653" offset="10056" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="1.6985799397" RangeMax="1.6985799397" offset="10384" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="15.876473575" offset="10644" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.17607175511" RangeMax="0.17607175511" offset="11728" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="671633.97344" RangeMax="671633.97344" offset="13672" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="15744" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="671633.97344" RangeMax="671633.97344" offset="15808" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="16572" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="17404" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="18016" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="18480" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="19576" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="20116" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="20384" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAGEAAAAAAAAAVwAAAAAAAAA=eF5VjDEKgDAMAP+S2Umc+hWREDVKhiQlrYOU/t2ujncH10Cs8h1UxQ2zD0KKoLdAWtsvepwckOYJjJQhQZFbCSXDMI/uHOgXHq7Zja2OwdK3/gELTCQsAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Y1NDA10U03TzMzMkwyTNJLySwqqQQAUGcHCg==AQAAAAAAAAAAgAAAAAAAAAAmAAAAAAAAlBEAAAAAAAA=eF5lmnk41s33x8ku4bY+lhZ71ihLT/UZRXsK7aVNlBZSSosW0r4oqbRolYqKitLT8hmFEE+rFhVppQUpJCLf33X1Pq7ruX9/vq73zNwz5zNz5pwz99KXmSFWcSq3Vr/MrDadZXprKVizeNaowxaFoh94KfQx4H+6nyvzNa4Vd4M3Qt8FHlYUUpDs9lpYCV4DfT34TdDEc1EldeIF8A7oxNoGk70SGx+JXuDF0H3BLlOsxtubvxXtwfOhE/e5OrdvxPUq0RO8ADpx3j6X0K4lDcIk8ELoY8EK/E5iqM0XIQS8HPp8spd9h+bYJFnmKDW+E/hJoIbnYM/nQhI4BnoCeHhghruhpEGQL/3DydAVwDZVZ4aFcDlWgPbx0G+C55xPiZuSpc3CwBHQA8GDdFsCF5k2C/HgzdAPgSVB+gZFd+4Ju178YQ/o8cTKQSvqCura7Uf29wF/0D3W90n8D6EvOBj6CHCXO8dXjhlTKxiAZ0A3BGeOztmjdUOZO0r1Jx6/p6Yyra5SXCL1fRaBH4X+zrHNrhNo/TFSeopK/bkmZy2WCd4PnXjj728xlSGd2F9kT+j64D3qvuPrRndkr2EPH+iVYAerztc2fFNntH5/6IPBXUP9fLRWVwoGpf/9/c7gFmerlu5t+qwM7Y9C/wAuDmuNGXDineiE9vdof4Enh+k5nFU0Zw7gI9CJL15bphxz/5tA5zMa+nbwL/fPssWH5Vg21jMUei44qaEuf932ajEdPAD6WfD+tNRI3WmqfBrGI/9B/uFSjT9b9lqn3b5BUt/fb0htgecUCVco+8M/oMuCnxzqmxD3q0l8g/ZnoJeCDWaHHw16+UWcifXegh4AtkzraOi7T4aVg99DLwMX101Y420hYX9jPQL0fuDnqad2fi/SYDOkzsd0slek2li368YsDNwb+kqw04Y3AR0SjZkc5usLvRF65fO489ueKDNF6GOhS8CPXdfnTKtpEzuByb8RD1l7RXPBVjO2AhwFPQq800r8GmBeK6pivQXQNcD1+5c2TouUsIloT/55Btho643k5IXGrBXzjYRO3JYsH9TJ0Jk3o/1J6HXgpNOB93/P7cZW4/ceQI8A99z0MDSttAvvju/dDL0r+NiFWfvWPrLnOzDeNehx9P2tLbfFJ0l4E8Yrgt4G9lcdEBmS14t3xHy7QVcDrx/S//iyzXb8gdT+yAb/mvVt5b5TTuxV6X/nR/vnjPmYqARPF8Yxn3ToV8i/NIkH51fascXg7dAXgqs+LI4Jm9csyEjZRw68++ZmxSGtvdlt8Efod8Enph1QlGTliucw3kE6n+C822HrMq/0Ydtf/eHhpX/0GPDOHZ1mxSU6MA3Ywwb91cElwXW77s8tESbhe/yGPhZ8IzVkp8V3CVtT8ocvvMD+Az8stUyImmnOPmM82t/vwWM2uv7V8uy94IH5kn8fAr6hm2Stn9eXJUr5pxSwZUL00L+3ujI/KfsRm8oM7FWl5spUMV8trJ84tin8UpB3H5YDewRAvw0+m3k5J9XEirWSPTF+h1Ky79yS3T0U+XHMRwd6MviB3eaKUitT1hP9R0Gn+01z5OkT/v5mbA6Y7u9gsOyNFJub5YViNJjOXyR4VXLPvSZ5V4QIqfNP8dajFREmXkXVAsUrFL9RfJB5SbLkfIYqI/svgT4K7FpzsWZS2D+i9Pymgxd8e9X8fsMbYYGU/6D9XaAXp/1p3QeRgedB7w9uPXR6cdvOn4I5eDb0LuDFVeO7Rm2W46ngOOhXwTv6Li8eF6DMZ5M9oAeBf9f0i1Qq/ipmgSl+ugVWuh2WpnJCi+vje6ZC16bzNcV7c8anbyLZaxn0oeC1RnZTpzq2iOR/10l9v32Xt318tbpJzAFT/HUC7J96JMDnX1n2gNpDPw021NF+GubyUGgEk39Vw/xalZ5p62xuEm9Lre8y+Ivh4KEjNXPb7Uvn629wn7XLGw8f68LJPsegPwbfO6uaVzVGla+j9ULfAB64evzQRXvChYFg2j8Ur3d81W3KzUhZXgM+BZ3W45+gfmCJnhyvkJp/OXiQZmOG3gLF9v1J8aE2WCbjftXAIyr8Oc4b3a/F4O9Pj3wdFinhpmg/HTrdx+e0bg39kJAraoInQ6d4b5OxcEM1QZtZwN6J0FvQvvl6aXb1MjXeBzr5f4rv/H1K9jQZaTF1+Jsq6J+gv53xSm5LxRvBQWp+RuClvk41h0UFLj0/ihecp2vEjRymwq3AAdCNwXUBxwwt1iqwPWC6fygezEj5IJP+twZzwPzqaX+AJ2gbLbFM7cY6SN3PbzD/5aL5yYJh38QE8GPoxMfL5U+8rZJhlM9cgP4Wv1/xOCSkLNqAq4ADoRfB/mW5QWfr55nxztBnUn/otV0XndyzV4f9++K/9jkFNkqwi/9or88pH1gBnfKXQ934uH4du7HlaN8F+hxwYv3W4HnZEk7+dwv062DV99VJGS/+avc/5B9mgUOHnL35Jk+P+2D9adAX0n21Iiq7XOjMM9Ce8gM6D3zez8p3NgXiKjD5NzpvrNJ5wMs7qkwW81WH3gWcfzB2SES+Hid7TYGeD9atDXO37teBjQLbQZcHT7y22P3uawt2ATwQ+lxwSrLSpbNy9QLls3T+6b5pDDgfN2tfuRgDpvzYH6zf9iz0IP8h9MZ4btB70e99enY07IguL33+hym+9oM++ozSs73WcvwO7PkaeiF4xbqARV/zzRjZuxR6McWfSQ0Xa4534pcwH6pfeED/Wq1ZV8qtmD/4EvQw8GjfSfWdu18S88EvoFvhvPgNMTGMdrDlc6DfIPuBg08qb8p2MOGV+H3K/z6CbRSzZuxr6sm/gcn/+KJ/1JCvbMwva07+dip0d7BZoU70XA033op4rBTxWU/Y82vb3//cddFnFO9TfpgCPtH4c0P3ad3ZdrSvR/9gcPA2V9fOG8043S9h6D8efD5vuWmbkxXbhPlS/B4IvmXx62rgJAteAr4K/ST4y5OI2O03e/E82NML8VkJOKpgwtTwofrMBb/njv7k/yJn+Cf5P7Tl5E/If9SC37j6f2duamyQ1P4le9Tv/+F8NuazMA5M8Q/FOzO1yw8q//Ou/f6j80/1JJcM4y/e3d+11y8oflsDfjh+aPwVb3lO8QWd77nggI4Lj9/8+FMg/0X5NfmX+XFqhVe97wsBUr8/BRxVWDnDvqpCkB6f5p8okxneUKjELoIpvqLzcM3d1mTc3e/t9RWKL2k9kk89Qjd5KDFrMMVvZP+mlMIk8xyF9vyR7K8OXcfFQyf+/+5Xup/JP1iAFeS32n/sosGovrAIOsWn0xw1/T7bpQn2Uv0p3g7VCu0/xCFXpP0cC30vuIPH5pZRFQo8EUz1oyPg9SuZl5jfgR0Ab4VO7bPa3l9xszBg9D2oPkb1w8FRUWlh/XUZ2YvsR/FicPTrGzFNn9rrj7S/yD++1fOpt1+ixaj+RvE71dd8/LYcfd1bnVH+eA66BFwwedKXJ4Vq7BraJ0GneE9n2dzzs091YfS96PzSedrtmTtv6uG3At1PZB/Kbzvc3q1d0d+AU/5L+WcurVdui9uDAhV+HEzxxzFan9XutZmBj0Sqf1H89xm8cfztK3ty3ouRUv2pPh18WSc3eJ5Re/2E4kMlsOccs4XvTTsxipfp/lUEO+hW6fwqMmBUr6Pz0Qvc6Wvh+l0pBsxZyv603wMeK8cHrcgXH2K8R7R+8L4exUf1R6oxqneHQ6f6zOYojUEs2JwfQfti6BQ/VdamaQ5sNGT7pexzEpxpNPyCVqw9Owh/3Az/HA92u91zZFSALD+A80f1y00U7yzpVDDpWA9G+RXFH1Q/kEkMvrAlxJm1oD3Flw3gd2KN4hzlDsyk7L/rNwTLfFbbvvarLfMFU31lIliy+HGAsFGVd8d6aX+agZv8Cu36Rlpx8oeUX5L99ujLpEzfas9mYb0tWP9ocKeIldmyybac/A/Fl8q03zN++pwq6s6Spb7/UbB33fchl3yMmJPU/Kg+U/j9UGq8uxx7ht+Th/4E3D3BfvnFcAmjfOcQ9BJw46iZwgNvS07xZh/oVI+c3NBPJ+KQBR+G36P6rzN4wbjsCQ/YAE71nQG4H6eD/eWd1roUGHN6L6Hv7wq2lnEsPDKY8a7gEOgV+P0Wnx9BP4Mt2uNvev+4Bn3sobjyHRt7tOcnc6F/gu5gWb6wYmUPfo7sBX0G+G5PI8UBY925Iuarg/mfwf6oOdRU0qqXIRZI9d8JtnqmaJ8/Q5f5wd6P8P01wKd+frQZ5+vEyb/R/VCC+TGd6ON5Zl25iPYS6IdpvIt3ZJ6eM2CPweNp/4PjZVvWityQU/1XD3oIuGJgkejcs05sQfxVgfnZ0P5QmNNk4tksukvVp4LBn2/EdF5VosoLyV9gfFOsPyxJtVTX2JJ5o30X9I8AW7wLHPD9WJ3wHO2pfmgOvVrOU33UR0UegvmoQt8Pzolw3NJQLs+p3rMeui3YbE2aqlFHE66N9dpCF8DGjmvswqMbRMo/6H0lC1wZXmCTVaTFD0qNT/WrgbM/j05c/Vv0l9p/dN+6Md9LrPKbSPWIDVL9d6iks95iTnv8Rvkf1btbB+8a0OfeOyEUTPEZ8cTKT4fM9WpFigcoP9gEtl8aXO24+m17/LVKan7eF3of9tnzW6T7keIr8q8jOmT0Hf2tRlgNpvuf4p376eUbem2Sb49P6X6eQL9/7+aumnENAsUnNL+N4NNyJ+cMOH5YoPor5X90P97Pva7g2q1Z7Aem+GoYeMrW1O3pK5R5NngXdKq/mb9OGf+il1K7f6DvS/yvo+xilUYt7io1vht43Fy7rLbTqpziGYpfKZ6eH335SLphvagApvdDek+sTeg5PP2gPtcDU/ypC9bwatS/uuCDSPEa5Tf0Hnv8fkRU58lGnN7b6H69Dw5fPMNVZvl7kda/FzrdF00FHx7WXK0S6TxSfcMabLmutb9khBLfIvX728A5OY8TvWa+E+h9gOpzVE/wsnPrN+J+qyCCd0JPA8uMrHe+s0OfUbxO8ekZcMbO9O9L3z5t37+0PykfvxXKQmRdDJkZeDR0ug8Ovz9aqH7yp3gJ+8cF+hZw3Fmr8rK7ze3vu3S/WoJLX4dbaxZKONVDpeuD/3Yuq9S9IMPp/wK0/6k+c7VI72ufCRJeK5Vf03uMgu3sHk8lWqwP2pN/0AILHq5LH3Cj/1efofzB9kNWVw8NCauj+xb6FfCwqJfqNgvfisReZD/whsaZMVN7qvBHGI/yc/pe9RP1DAZFWLBotHeCPga8vZOXo72yCn8Gf2wM/70bLD9t8KjgED1uCf6O/m+x/hbt/L9aByuzUujd0P8KuPz1gS2rjLV5V6n84Dfm59wcOzk1T4fbSN1fP+H/1f1sY4dd78wpvqrB/WUFjmUbvFfXmTJF9NdE/2LoBlsDN1UpfhfywD/QP5nu0ynzt33R1mez0Z/enzzA+Z/S7/I2Uz4S3Av6QfDJJf1fLvG1YH2xvkzaf+CTf4lP1rwzYs/xe3LQ6b3LPX25gVejCaP8keKfteB7A1+f7D5XiVE9md5fyX8VH4m1fqvfi2VCp/oz5bfqttW7luz+KaRgPlRfbQGPHrt/sKzVTzEQ/f2gXwYfW6VfrVSXJVK+Qv6J6s8GrQ9f1D5zYfReTfW7+eCF6yLu2g+zYjQfyr8pHs5fWWN1gssy+n1D6MPB42R+jRi3zpGVwX6y0D+DPUxmq8somvJQzI/qY7PBw32X3Uy66syKEf/k4vtngs0Dfx3znKbPKH+i91va3/2DLT78mK3EErGfnbC/i+h92KRkt7jJiYton4v+NF5UD629Zr8eCOQf6Xw2gMtjrSJu5NhyL8pXMP5k8Iml805PuG3OF4OpvugEXpk9fMGWsjbBVsq+9N51JdxWUNys0h5f0/vXD9g39OloyywPCSN/Tu8r9N5mPaIlNP+OAltP5xE61eNEn+xdy6aZcLpPKH7xBlt0lrR4xuozek+g+qAJ7c+K6o4H7NT4/wBEgTWhAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA0QUAAAAAAAA=eF51lns012ccxzuqrVASa02KSQ5boWZy6knR/Fq6SfyolMtP5H79ufyWkEty/c2l0GVCp7RO00WSJ9bU6DZRtIomRo4olmRU2x+9P87pu7M/X+f1fD/f5/k8n+fzPNz1aHXtNfvlke1ftXYNBFf/Bl7/8PqpF3ITTpwK/xAsnSjuWfbUmpWDA+FdwD9/ruO4jodyS7f3vB9eE1xdYL/ErCqDP8b4RPg7YC6bXXLp5Ep2BSyDbwAfevMnHxKtZjSfOMH8uF2vnmbfVt4NDhN4y5BXnvWPbHkexRPEHzw2ff18741MhPkGw88GpyukahxskHLinfAfgadlv1zA28y4GPG+h7cA60vqL/blxPBzgvXVgEUemmomhpb8hWB/JiH+ltfzB3rfbWO18Onwf4HbWUjRyCex/BQ4C57Gv22807jiqpz5g+Xwe8H3BvuvRA5HcR38zwk+Chxq1DC61NqLSzF+H3wh+NZJK8VHQQlMRfKeZ8Ln4HuzhN0aw0WRrAjjT8E70/45r32iOxzGpoJPwM8Ej4S2VGQYRzMPxBPBFxPnyxoXNkUwd7Aj/FRwj5Z9upZhIn+LeFHw6fD9muHuR63jWTt4Ozyt5wun3jgWnciVBfWhDX7+dUmC500J73V5z83wv4NNwt7NLGnJZN3gO/A94Az5yZZVSTlsBHwV/jE42NKiZ86SXGaM/0XA03mbUSG1vP4smfthfV3wHpTv3p5DerWFLBlcD0/noU5s8UPJHwmM6uc0PPWD2cEWQwbrj3CqxxBBfqcr5Sk7lGcxU0H+F4C1W2o8Irq2Mxcw1Tft1xXboqzSDhsuw/8K4eVgnT6/ixu+DeBXwdnw1D+MNigarzsXwwwQzxdeDbz0lVWTe5rrWH+j/tAG7rW7q3J0kw9rAe+m/QPbdPjua1dYw1QRzwtej+qlbapKZrUrO4vx+fAXweY7w1XOKUlYF5jqh+bT37R80dz4lfwCOBn+Njjije1mxwZT/oxYMD/5Z4tk5m8cOK0nAH4IPE6bhd33nc5SBfHTwBNy05TinI3YNcH628E9CukOdW6WvEmQ/yPg4qDJsrB3m8bmHw9P+9W24dho54APyxXkn/LjkKKkr/bYh53/n/zn+hTN8jQ258fAMfCZYBejinH6ZhpsF7gA/idwaUSzbMq8xXwQbAevhf2LdkqO1vbcyKg/V8AHgTfVdJ7ob/Vi1N/3wMeDU0cml7VnbuMytw/jV4LnWERZxaQE8gLwVvhPweqOwWfKEvexHYi3Fz4RLF3cLJ54P+Q//XMjOHyo2zTwF2+miHhi+EXgtvGLdWsTA3gvxsfC14H/Mfo79bi9hDUL1ncLrOufor5nloh1gun+png2OpLNPxou5PsF9UXxC9vkUoMyF/Yx5uMHPwwfejj/hsYaxiYI+gvVX5xq63g1dSceAk6BzwDrTwlSPl0nGTvfdP++Bt8z7ag/L/qOuYHL4Z3AF86EnDWoDGM0nwR46h+lZrGR92J3MaqnJPhq8HOP6oLxDwL5XbAz/EGqv+Pj6vOsA9gUQX/yA6fkjsw1zVjL9DG+DH4nWHatwi40IJqP4j64Cd8GPnwg9PLyiiRO54fOF+3XNzp6yk0dITwT/6PzJQabf3l7lyQhlFG+6P6rAvvPsbrRmePPqT7o+0bwwdgMnfoRV36Z6lGwvzVVecbmaT6M8hkE/wR+Vbm7l1KPmGUJ6us6WF2UdHtg3oqx/kT9hd43S/xbVW2W7eA032yBl08SNRd9bMvo/ekvmP+vpaXBSlJ/Rvcn1e8l8KiWwmB3s+9YfVB+6L3Ulb12qDg8lm+BPyCoz0s3vV/KZ0czqhe6/+g+KE6epjtDP4nTe2YpfDO4yl2570ajbOx9UEX5AavdGtZ6us2W38X41fA7wKpJ8yat9o3hDyjf8Nbww8+PV0pixJzD0/1WCR461LomP2w3D3f98P+GYOkKb1m+YgI3AdP735zWF1cxv327MfsX8Uwmog==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAugAAAAAAAAA=eF510s0KAWEUxvGSKFJEFlJWio0sKGZ4x+f4WLBwBe7GDYxLclWKhf+z8NSsfp33Pafe58wkz8LtcX8lC2xi0c7lDANGOX1H3GCCO9Pn1DfAsdVtrGMFS/jOfn6y/z7N93GEE0wt38rOz3i12vOrXubk032ckztYrT2trU6t/2TvH2IHe5a/nPPeYM7tnerb4sU8oL771PJovoZdrGJsBpvbo/YRWZ/ya0+JnWtO+9H/1LK6gV87XTMgAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBH/UMo/QoPUqP0qP0KE0CDQAVlyUIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA4gIAAAAAAAA=eF5dk19IU2EYxj+8KiEKhbqJWtOL9CK8EUzs6+zCCqISKhCCOF0EJoSuNBUql6ZmRE0zm7rguKmouZqV/+lrS5eaRZbzTxA6LYOyUkohKKqzvc+ps3bz8Hve93u/57znTHmWsvDYLvOuaf9eX3Ge6WTyu6INjVXeW2kxDTfj3aa4qPkQHyoxBtlbcCbyyWdeIYYTJ4P9Xhb6mYXLN/N9zFFvIq4RP6MDKrcTe5o4e5i2siOn1zS5Mzi/AeequCtZz3fE+q16tolWg57tYpdRz118cY+e7wklS8+dIsMcVuetYdwmlsP4Db+oZ+mjON+jY4+fH4ic1/ErbovSscUnwpg188yw+gy3Rut5TEToWc1Pfr0YMYT2Rb7iFb3O0D7Rl8Dz42aD+/ay1C8xP4YL6ZzHLtiJjoKOtjpiVshZxraUxRSZhzDgFixx+4es2OuoXxWWlaenbPtawCWcGR/1FZdVUb+lmrOk3afTj9iJmTpn40RlHasglqxq3b9jbqUU/a2CeSbWRjqPERucnKX/Ov5pIRd1NdemmVJXhBVcztnyYuqq1Rcwv0QwQ+zAN/Nh1FV/3RrX5t9msFWwo1sc+w/mIm8OZ/FF/Tnj2eAEwaySsT7JDE6HZmJ+LfZ7DVwDzYM6kLsBnP9vj6FzqLNz8B2kUiXm3qa6fBd9Hei7RBwYwRzsV36OeiP22U6qPIDvInZ3Y77AfTcwB/dJNvIVH/g+7vOQPzWA8304Z4GK/54zW2PoFeTsRL0N6oTWoq8M2oR8LeAe3NsMHcS91agPku8exjnkZ8gXGCVf/psTfq/WT5o2gblD6LtManhJasUepBfEniHkf4tceA5pFueL4b9G31mo9j/QvgPtPTlxfw/m4H+sBictJw0gj9SE/j7kwn60fWjvWRnX7kH/NPnuAfhL8PH9JXwlzfZiHp63G88h+YkV7XuAL/dj7nvSUcwPTJNOjZIuzWm5SeUF8Qdd1KKbAQAAAAAAAAAAgAAAAAAAACADAAAAAAAA0wAAAAAAAAA=eF5d0j1qAmEUheFsRUifBQjaSey0EFEw/utoRlEJoigi+IeIhWBjkyKN4BJssoQ0Fm5FbNK8pznVA/PdO/fO+SZ4fXn+Pc6/Y4zhDTv4iT3s4hdWMLS6FuZxgXOsmQFGcIkzTGAGN7i3uh+bM7LzO17xGxv4gVvr32EBi9ix/j6W7DywuiEqzwkqT+VWt+crjOMJlaPuJYdtHOA7hqb6tKfep/ts4hQPuLbvSFq/cjxiFnVPUZvrOWm+/kPlpH2qmLJ6zU/b3mV8s30vtt8/JjfZmw==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA1QAAAAAAAAA=eF5d0ssKQVEUxvGSjMTMzBnJe5h4Ly/gEcwVM2UiA1Fyyf1+XHLJNQMhGcjAfw18o1+rtXd7nW+dUTixrHgjsQNmMOb8nFCP0cUZrrAt5+Y4wire8IJdsY9JOX/CHJbwiW88Y4D5r9RbeTdOP4p+HNKv40Puv7CGDcljgK70p9Lv4U76R2yh5Wb5dCSXLPqc//5a7ttelmg5TsUN2t5sr7ZPm8P28cG75JCXeW1PHuYsUwep09SWj/0H9t5CvmMv5y2vArpyvyhzNzEl84Zkvi+tn1gLAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAoAAAAAAAAAA=eF51ksENwjAMRdfhwgzswiqsUoGAJqQkNBWMxqUXv8uTcnryt/1tt6mX2+F8/J+qOAffIvkWTMEtmMVVMT5L8BksqvtKZ04d6PjOYhroU/AafOmOj/Znbg8+dAe+fJciHR/2xIe5+GT1/dTHPcxvylfF+HXlm4jvXf2u83sog7hL50728TtbpG/qG+1J/ao6vxP+Z1Ydeybl2WcHT9J7sg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACgMAAAAAAAA=eF5d039MzHEcx/EmUUcqV3T9UCp146hj2UI6o7haP6jWGv242k1XYlRDScji2NUVo9EiN9EftmYkxH3SHe5Wav2aWlZsba0aYVmyxPf7+nxuo/8efb/3/X6+z8/nbWX175+NKC07dGQ6jLndFZaUmKPL7wQS9n8pteJB6t/rfZb7JQbOoxZ/kL5x2JA1ZfFC+vwSjwr/ft24fjG11pfzrF5AXZY4UTMya03sqZXO3HUBcaGuU4neK+sdiTP1KTl3v5CsoM4MfqHYH7uSuFL3r+Z+70Y8qWOWKSbiZjzJKuqMYu553sSbuibv3BZdnA/xou5Tcc/3JULqjpyEec+7a4gttd0R7n0BZI722nnM31D9U0ymqM8UcO9fSz5SPz8xc1EYIyHD1N+KuPWsJ5HF6BVI+w5dTeN7BlFr29L43tL/9uN3FX7PbKrH85krn+H9zCnvsD5m8Sesn/nrNL6POd92kv9+5q0OpXwf5nkXN74fc3lIBt+X2X23lu/PfC/hJb8/zC2Rk/z+MUdsd+P3l/lWppbff+aH/P3WFl/jr8/qmTW8x/WCFpxPgxPcZIavCHH/gQFYaY/nLRmDOx3wvuYfsLsd1qO0Qf9cAdbr5wz3LsX3tPrApjmctzwprP+M87ZcBg98wXl7HQPvG8N5S0+B20dw3mwPwQd7sB/aQjjdiP2SqOGkJ9jPoetwbAP2u64e3nUT58HlMbxNg/MS1Il5XUAwj4GDsKYN8ygdhUVdmMfNU3S+WzCPwb/g7z2Yx4hFOK8eZsyj3Am2MWIeIzzgwkfoExUAT+rQJ3Ij3GhCn/hQOKcVfaL2wH5P0UcWDw83oo8sFa6+jz7rVHDCbfQR5cOCavQRl8CkAn0cL8HHL6DPYDDmUXYYfXpDYE0e+vSEwl1V6NO9A5ZmoU97OGyqRR+zHO5Qo8/baHhTMfoY98LiHPQxJMJeyejzKhlW69BHnwKX3kCfZgV8uhJ9GpRwUjn61Krg7svoU5ELy9XoU3QUNpahj6oADjuPPtkn4aaz6PMHkI+8OA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAkAUAAAAAAAA=eF5llmlMVFcYhsFaorWto7jgRC0at4IoqCCOZ5xBUVzihjgdNh0QBJQiOxYEagWxwcEliiCjFnAcEEcUl0Bz4oZGBY06EtEGDOJux9pMSSUC2h/93mty+Pnkud+595zznu+e0OoywzK7EypteneEo+rqxWDi6rrEO52tahZJHEJeR+z83LFywcdgpiaeQt6BuOVWWKtdcy1rP/k/zyDfRtxlkY+Irj3Eguh5Dfm1xHHFDX55W9exNYIHzzWNvt9dHCV5reCb+/bVlTZ68jDiQOH7p71sDwgtjeTBgkd9bmlOZd0efxYv+AjisVVHLugPHuHrhe+Dlw0t25T0IYClE0eQjybO9nC/L8vIZD8SB5PHertVXHddEpLD4oT5YXx1q0UeFOzG1hGHkY8iLjKbbzWaijjmGyq8/5JLhUeaJZEHCvPbSPyHykfzNO64VP8DeXzvT5nLzh+OLOVBQv0GYpeHx7e/Ky9nWB+1sL5tyws6hi0pkvKzivwy4ilWw40JN47yccR+5GcR23JrOpoKTExB7El+Cr7f3mnUmy4TcyN2J++E/alKvbd/uIF3Ux49BN9wQPat4X0Nm0A8lfw7ej7L72nUnNaz3EbsTP4xsUFxz9rYcpK3EE8mj/MwWfkgsYqdYDIafzb5gcTfnDnUPbmukqmIV5Cfg/Xz8ZWvHH6VeREvJA8+ZbHTL1lt5qOF/DgTd/3+pfejwcfYTOI1Qn1WqbrZs18t0xIjv9jvhOKM5auefd7/APJ4Xn7b4Lh0ew1LEcZPJTYtuq7U+ZaxWGF85GfLo80xaSVZDM+vJ59MvNfVa7wpoYajPpo8zuvBw52ywddLWQYxzsdm4t8uTHxgGXeI4/zg/CKvrcnGRtuH3TycOIg8+hNbkb/9pls5w/nA/DHeyB6fHtOzMMmjHvmPXVnya4dZy8V6sH38mX2mwOxe/Q3jW27kB9rbsqTxtUL92Xq9sWJiEkO/wPzQDxfGVdy0Vq3mGB/nN5Q4yXZ8wMz2PGl9goR69bbb9186fH7/GuH9ynTetcgtnMUI9ehPTnZfDXiuSZX6H+rRL/ukjRjewDfyDYJHPwyo6855uWWH1J915JG3aybFhUJ9Ecf4keTR3845tG8d5JDBkKfVQn1H2Yvqe5ZshuejyKNfauR37+z450Cv/1MIcUSRnKfvLuT+WG/ys4l9B81b+le9ns8jVpAfS2yX9yr3VGAsn0Q8Vzif/rLczlnmEuYpjM+wP+sOqp37lzP0Txfy6DfWt/XZ8/sZpP8f+jv2b9JDY9Pjns298os8fB0/48T4puVc9GB92WKZfEAKQ17EfE7L3sb2RqdJ50sj+Mf2by42/LKn1/j4f7XZPp6URbkz8f+F/Q5/3ewx0DWJI/84/9hP63xfPlKZxzDeRiFfr53v2u9bsEvKB/Yf/aa22JYyPcQo5S+cfBKxu3PTi4Yx/hx51grv3xk+5O13mljp/4v+jvx4ni1QueRsYmDkO4B4/4xjfjHjzBy8lvx84tLsV/8Wqox8FNabPPK0M6Skv/Z0Pu9D7EN+OnF0XM/IOMcU6f+J+x3yGWN0yjk/7DAX84/+oauvPTBvw89SvsT99XK8rIk6upRjPbA+6K9tU6/strd6S/c33D+xn7VerkM+vYjkicToD8hT1vseRfyT/Rzj6QT/t7LljumKTsqXRvCZ7lsTzvnl9+r/6EeplxO+MBrWS/cv3F+QH31j/hGNewFHvpAP5MUarEhsr86Uxsf8kJ/Oq/yiqjpeyqe/UK+7Fuvax2mX9P3Yf6z3oLthi3duSeQLiReQX4H609+/bt9TyKcSTyePfjRBcUk56c9kyeN+hftQyTDvIO9nRfwT3WfmkB9CXnmpcvCuJ0f5UGLc/3H/yOuJNtcn72X/AVMJ5eI=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA7wUAAAAAAAA=eF5d1nk4VWkAx3HXlutGRQzFfYqiUREyFc5baVNNZW+QLWtCRlOJLIMpw30i0za3Rcmop6ZS0ijOIUnFpEVjuciSskwZk0mFNH/4vT1P58/P8z3r+57znrOz6Xq4cZbw1p6m668NAg1uxcIt2hdd25Vr2Qw4DV0Ce8icdj341M2UwTvRm+DjFv3J0Ywm91A2Zil6M1xwOIwNmDOXi8P2iejxsMHNhqrdi9qZEDgOPRq+1qbElJq8ZH6AE9ADYY3JgwMFXh9YW3g7+nL43ldu2QUF/ewbOBv9Lzha9aNf7eN+5i6u15F3/QruQ30ejRpcA+yB/gwu27S14MrRRta1ecxF6J6wXvX9ylpPMbeXd/+psGKeW6+HaQdrCgegW8ETjfptnx8aZuh87EcPgjOlEoG+ipij83MM/Qb8KDMnfI+6KVmE68lBF8Hmw7Wv/M7ocjG4n0XozrBq64Pyd9FK3EjTl/PbBad69hBfE0Mi3zjmO7Kx7gK32lUvuHxXm8zG+Uqxfyjc+q7R/0SxFumC29Bl8CwDJcmA61QyDtczHr0bx3c0eb9CeluLBKEvRD8Hh16awp5MNeSeyL4c3yzYUjr/tkncdOKL401G/w5WTtZbyFkacp3YPhD9KX3enViRSbWA29mC+W4e6ynwoxrndenV80garIqeAa9fLSrLabQgIfAIHR/Y/JXa93GGVqQI5/NCL4FXpdncyw815u5jvDRw/Bo40rYr5kL9EkLHuwv7h8CG+9oWLpM3JL2Yzz/QW+j7ZPOf28w2a+4TzueLroBuf3OulWO6OUlFJ+gHYfljh5rUtg0xSbALegI8tMn8R89p/Sx9PgvQTeHzO7xLhUnjOCnOdwL9FCz3YlfjP2v1iYx3/C5YUiunZTR7lN2E7SPRXeDNH/rNtNYJyUY4Bj0AjvcbNtf/poOp4x2/Cn7L7JPG7ZcjDbz3ow0Wulq325QJCF2PwtDt6HokiFhaodLJ/s57v3Pg3isj5R2knqX7R6E7wEzDanWlBYOsCRyCPh2edqHwdeH4y0wPb/17Ccs2ZHWmymqZKJiuv/6wRmYwYylrY4t491cFuzE9YWc937Cn4RT0PLigRTG420pIrtHxpO8fvZ/113uuhQjJAV6n639EXVC+XnE7Ww5L0P+EGxJ83J4WPmWm4nm5ii4Pz5MGnNyaVs8+x3wx6BwcLa5It5DvY8yw/QN0H9h9JM7F2kSZGMOn0Idw/u7RGUs9/h1k+7BeGKDfp+uJkry383w1zhTns0DfD+e9dyoU2xmTCbzjC+DKZknFnPRJxA4uRk+C65aR8N/8lcgd3vp3CnbK11XWParKBeN66fc/ElYPVcs4PklA6P8A/T7FwOV7Z513MOtkvHjdnc6HIFnyi85j9gmcSccXHk7KsD1wYpQZ5a0fqui5n6Ykmq9qY7TgcHQjONll8ZatykOsOu6Xvv8q8M2NNnVOBYLP39d0/v1d2bte9JMOyaTjRcefPi8XYz9qB08mxtg+Fl0P1srIje8e1fn8/NL38xx8fp3AMUWqxq2BN6PT9SM/qdrw11gRqcT926PT9dH3aJ551OkOphzX04KeCwe4Or/4tmoKR78P6ljfA2Hx7lTnXpERR/8n6PpA5+ueDleilqTB2eN8Pujx8FKv7OIWTQ0yA9s7oFvDFttrzgqahVwYTNdHalW322eGJslx3rzzr4SX+OkrJj5TIXS+g3jzq/xocWvZyrcMfb+zeOObuPu00GO0+fP/D11fjsATanbYt62V50rgw+iX4DCT5c4p2n0MA2/j3d8Fdc2zEtPxRAHjfRC9Dr1MqdKpK1SVvMB4rUGvhR16NbsPDYk5e+x/GX0aXDKvLsJHpE/o/+sOdCc4ckWeUWn9TC4L68Ug/p/CYe3oI72NIl3iivkexf5R8PLtCTozNAfYq9h+InonrPSz2DtCrM/R79XX6BJ6/TdCKxQsB1j6vgSjb4EVb3/IMpswlZPgfv5GL4IPu+d2l/obcNkw/X+g71v/w6gNry/dYP4HB6ZP2A==AQAAAAAAAAAAgAAAAAAAADABAAAAAAAADQAAAAAAAAA=eF5jYBgFpAAAATAAAQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAGgIAAAAAAAA=eF5d1UtIVVEUh3EJeuiwSY9RSC8ahTUIAgeWITToZSUIUUQWomEkalQm2guVyh4QJBUV2kOCa+KgiViDoiIqkrRr45xUkxAJouDc3+LgHX38P/bed++11uG2Zod/FB8qHm3JDtevulo42oxNfLUcPMEflg/iFX5YzuB+fqFchG18o3wM6/gqeRfe53/LwWr+z9dcnsGPfOdkLp/HMr7DumA7X+fcGuzln8mD+JD/JQdf8Rv8Xgl+51/II7iVH3KPDPbxX5z7Ce/xq+1fjqfy6nk8r4975T3Z2e9tk89gN/9UvpXX34H0/Qkv8f3ybaznK+SS7Ox3LXPvGb6WL5XX42TUx/o+rOEXWzelbo386XSeEsYczpWDlXyh/N45XXwXH3M4xPe4xw7cx6+xbgEe4dfJK/FxXh+LMb6vWut240k+vruYz+hv3G8ntvCxfxt28OfSnDD6e0e+gZ38dbkbL/O9csxJzMOQ/CjtQ+KXytG3AX6L92/G6FeBdX/1pSGvPpUYcxV1LIjvnm+1biNe5D+kOeES/s1ELo/gFF/0LZffOb+Cb4j7YSvf5NyjeJaPOrZjzG30bzs28/HdxnujDuVyGd7kP8tv099J/F35Glbxi+T52MO/lh9gzPk/7xzDab5UfaJOc/hxdezHcv6l/YN4gc+k90sY8zBP/mn9Cv6AXInj/KQ+Pccn/CZ5Lcb/yLT9E/gf0Xesig==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAATwIAAAAAAAA=eF5jYEAGH+wZsAKEuJvLky21mSf3oIsnxUUnSOy9gSGOChDisZ2PnzXbXsdQnxpcOy1z/SMMcXWbrzcTPR5iiDswKKsvP3/QBl18VlS5r87cIxjqb6sc3vqs9w2GuE6VjUjP5rsY4ra/5298tfIBhvmekuf5zp5gtEUX/zCh6tCHUKa96OIzI6O/VnuwYYj3Tzs25cHHJxj2/nh6bZlnoQCG+p1fBE8eivuEob5S7M6XeOVjRIf/9cy8NOFtdzH8hUv9/+J3qes7rmOoP5W59bHglysY4rcfy7Kx+Z/CEPdnWZyQonKRaHf+uzTL0OrTfqLVc5x6arWj8z3R/rIWj7yyqQYzXeFSf3jtrel2m25jmL/GfE3+tHQGjPQQ6HZ+l/a1gxjmb4rIFVhj8oFodz6Om+56wuMshjnmhxLufDK5T7T7pS4oLJix5jGG+nyfabLXjV5hiKt4FXzlW3ID0523Z2xL2vmUaHuXmRQ3P8n/jqH+7kxTmffm34g2B5e45fzJRyumcmOE/yvR04uONHFgiO8OzzlhV/AKw183Yk2U6iYfwBCX2f1w7j3NCxjuvPUxj5/76TOi45FUce6AI96MWx9hmC/8RFrtbM9jDPGKi7suedcdwRDP5FzU1D8ds1x12HX1qyj/RaLd/+AWk+33rZjl6goNfbu7OzDLSa/uazVcVzHL+drYCZGbLzzDEJ9ibpA4J/kthvjiD7cmim/HTD/rpLm+Wm3FTD97n/3/Nev8Jwz3ZBUuZRdJuowhfn2lhY+a+mEMcQBaDlaPAQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAqQEAAAAAAAA=eF5jYACBD/YMWAFucTeXJ1tqM0/aoIsnxUUnSOy9gSaODmDmfrCP7Xz8rNn2OtHq1W2+3kz0eIhhrwODsvry8wf3oIvPiir31Zl7BEP9bZXDW5/1viHaXtvf8ze+WvkAw3xPyfN8Z08w7kUX/zCh6tCHUCZbBrwAYX7/tGNTHnx8QqR7cIl/sK8Uu/MlXvkYxebgkv9f/C51fcd1tHDAVAejbz+WZWPzP4URbv4sixNSVC5ixAsDVvDB/t+lWYZWn/YTqR4dEPaXtXjklU016OkKUx11xT/Yb4rIFVhj8oHo8HwcN931hMdZIt2J236pCwoLZqx5TKQ5pIrjll9mUtz8JP87RjzenWkq8978G5HuwW2+5fzJRyumcmPkx1eipxcdaeLAEN8dnnPCruAVkeGPS/yD/a2PefzcT59hpHNMPeSIowNC+j/YV1zcdcm77giGezI5FzX1T3+EWX7uuvpVlP8i0e5/cIvJ9vtWzHJ1hYa+3d0dmOWkV/e1Gq6rxJbzpIp/sF8nzfXVaivx6SercCm7SNJlDHdeX2nho6Z+GC4OALoy7iY=AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAOwEAAAAAAAA=eF5jYMAGPthjFSZbHJc8OkCoTw2unZa5/pENceqpJf7BXqfKRqRn810a2fvBfmZk9NdqDzZb7Oow1f94em2ZZ6EAmvoP9ju/CJ48FPeJSHfidtf1zLw04W1392CXR6jDL/7B/lTm1seCX65QaA61xD/Yc5x6arWj8z2F7sEtf3jtrel2m26jmf/Bfo35mvxp6Qx70cUD3c7v0r52kML4QgcI9eaHEu58MrlPpPm4xD/Y5/tMk71u9ArNnA/2Kl4FX/mW3MDwL8PtGduSdj6l0F5c4qSGA7XEP9jfiDVRqpt8AMO/Mrsfzr2neYFG/sUl/sGeO+CIN+PWRxjuEX4irXa25zGF6XygxD/Y18ZOiNx84RlGeptibpA4J/kthvjiD7cmim//TmT4f7Df++z/r1nnP5EdPgBt3b5PAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs_output_ts_99_t_0.484339.vtu b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs_output_ts_99_t_0.484339.vtu new file mode 100644 index 0000000000000000000000000000000000000000..4c3cb9492f32b78468e3c36504a499cd00eb8378 --- /dev/null +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_abs_output_ts_99_t_0.484339.vtu @@ -0,0 +1,42 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="97" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="160" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="304" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="252" /> + </FieldData> + <Piece NumberOfPoints="100" NumberOfCells="76" > + <PointData> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0028239625858" RangeMax="0.0028239625858" offset="5788" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.027689831659" RangeMax="0.027689831659" offset="7800" /> + <DataArray type="Float64" Name="MaterialForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="8100" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="7.2654662815e-09" RangeMax="295534165.26" offset="8180" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.024213080919" RangeMax="-0.024213080919" offset="9120" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="369624.8051" RangeMax="369624.8051" offset="9412" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="1.7404890464" RangeMax="1.7404890464" offset="9680" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="2.9214086312" offset="9904" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.029338874354" RangeMax="0.029338874354" offset="10988" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="12996" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="14972" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="15036" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="15664" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="16376" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="16952" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="17340" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="18436" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="18976" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="19244" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAGEAAAAAAAAAVwAAAAAAAAA=eF5VjDEKgDAMAP+S2Umc+hWREDVKhiQlrYOU/t2ujncH10Cs8h1UxQ2zD0KKoLdAWtsvepwckOYJjJQhQZFbCSXDMI/uHOgXHq7Zja2OwdK3/gELTCQsAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Y1NDA10U03TzMzMkwyTNJLySwqqQQAUGcHCg==AQAAAAAAAAAAgAAAAAAAAAAmAAAAAAAAFhAAAAAAAAA=eF51mmdUVdfWhilSpEiXaqcIKCoabOxtS2JFA9ZYsBKwB2Mh6BVFLIlKRAPYYhRBVMSCiorsDShFEaSjghikl1AVpSnfj2+++467zjg/nzHPXnWuOd8118mw9Rmv91U9ydpnvMoWP5OkDOKQwbdmvxzrL6QSW5I9hbja/mlZ4cU44RljB3ssNGxWWHqYeyGnfXHvRQ3zY4kCeCjZ8fuWzNrF3nWvhUzme3DXwGO5tydXCtnEtmTPIbZTXfn9xNElAtiG7LnEtfs9Hv4W8Y8QS9yf7PeIFYOE8gCvAkEkHkh2cMZpz/d/XHnIJTHzf0KcsCXyV8uZBdL6Yfzg7v37HlYNei8UYrxkBw/kHxd8tc/l0N8Qpn+t9k9aqzOahdfE9mQH+3b2d3wT94KTt367m84GB2s1Cy+Z9c8iVs5O9uVsPwlPmP6Tids/vplm2vhE2j92fx8XeXVtqu4WsJ9YH3D9/eanpU0xgsCsbzxxg3OwW+aLQgHcn7FP2GtxJ21ulVBg+7/7j/X7UuTW9jnpHQf/wPzAdyPXpfbtfCOUEjuQHTxusBj01iOFY/0D3D7BtGHA9VbuDnE/soOVD4wYoOrTwv1JbEh2cGhUheiS8IXTsKP5kB28e+NNL+N73Vwv4olkB5sc9bL5dqQaX0ztwX/eEme2/rhh32RF/gaxOdnBV/84peLmo82fJTYlO9h9d+7B7P5GfByzf2Cn+PqJ8dNV+IeMHVxrP9f1eoYeH0M8mOxgE3f33lsbP3EYjxkzvpJtBjGtzer8PmItsoNNSi9mv0ivEc6ByX6e+Mg4q4zxFor8bWb/0P/BWc7KnQblHM4jxof49YVbWxNi2iPFD8wP/mM5I350+NTXkv/je/h3yTKHuIEDerhyYvhfBXF6oMeVOTbPZPoHqy+L3V5pWyLFB8Qv8ITk0nO23lc5zM+C7LeIRzmGTzW17xbQP/wbnDYl4tHqYZ1S/0OY/nXm5c3UOV4oxXecb7DdjHUJ7nvSuD0YL9nBqn8oVnZ+UhFxnoYx5yvk5Ea/HjM9MZGZP+KpYVDoqspfNcSPxN+Q/RPGtyP34zd/feCuM/sPbkwttdcfoSy1j/MJPjfRUi9yZZswjM7Tt2QHxy+fknr6rTqP/pyY/jebb5g6fas+/4HYkezgXXP3jdd1NpT834Dxv9zW9w8tPbX5m8z4wBcvK3eNOKbHIx9hf8Bla8LmDIgyls4f5v+AuOi1X5J+lA7fSjyS7C3ENr5mLxVHavPwR8SPKuIqbWPzwWkmvMi0Dz44Qs/DJMaQL2K+RzzqNX7IhsBgA/5vYn2yXyI+vO7g/sY+Rvw7YvgneFe06qKnszT5KDn7+2SAqc9Mk2dcHfEostcTDzWYkxpRq80r2v3v/oE7sxvcbhxtFSyJJ5MdXBbmveP72FZhGvECsoOrP1q2F6w1EHH+tJnzl9XPJc55kL74nBj5DTx3l4VysaIyz56vdOKe83m6lTuj5eqrnGKV3Z/mFQjP5Xy/4mxCstGgozL6C/Yhd8xdHgSnyeRv6IN7HYvC7FVz5Oqvcv+hT/pFPufY8wu2PhTtsPx+ocz4MV7dax/yDmXflvQNvkd+r/1lX+5cx3Qpf8O/wCur//XYdCFFGj/aB88uUTtuKORx0HuIv+DvDF6lbD5QKshrv+xobr/G4ZlCLmMHf8z2efXN0mtCOtM++OTR/gb3kouFNGIrsiO+Hs7ICNe4mCPpG4wf67HIZdmRufsrOVafYXyHfOpVXjyqk+I//AvxZaDOg/kO5mXcPcYO/ZKUOG7hQpt70vywv/nENWN+vdtg3sax9jfE2e+i3bYvzRFi5LS/cfbReKOFjVL/g8j+iPhH07qI9opY6XvkZ8SvGl3zF/ujozn4D/If9Of8TtUbAdt0pfwynOyIZ05FurHmuS0C4t8YsjcS2564v2t0qpZ4lRj64yJx2tdNfs4rDcSbjP0KsfuMosCRLt3CUzn79yWy9prt39ricWJdsh8hTik5M7bjVa2kr+H/0FduZWYjFz7N5JqJER8R744ajRmz4mS6tH/4Hv7f1NXyLMu3TlCneDWe7NCPrypa8py+VHDoj9W3msX/0Ztz6qPM/Qr7MWNB597tpzO4GuIRZK8kdrGw2+kc9pL7lxk/8suVC4t8jFvURC0azzhmfO+nKysmmr/gDIjHkl2HuHDvksyrVzq4X6k9xN9txIrDLlnMHKUksuuL+LRlY3+9NmMFKf/2JTvyzeE4z11XbhhI+RP5Hbwms5e9ZkiwoEDjgX+BD72pefPzPQMe88X5xXp9b++j9DROgcd+IT4gvirH3D2yPrpQup/Bv8DpzwPiXvZVFpH/cf5wvq7lBIy+/rhTaGPGD/5NbaH3YLMaIY8Y+gz+5LTIs+XowVYun7FjvLkj8nf4eCmL8vTrGZWM+1lLe4l6zP5hv4+4+fr87KonsvkH5yleN/V+UamGCP8cQHbEO2XNREW9zs8c7gOaZIc/zIu+KPTeWCNsIFYh+zpihRJeedr9Tu4+sRnTvvukTV+HGXVJ8Q/xB3onevr1mj37SwTct6A/EB+PP/lrilVWgoDzysaftOSffk+/2yOcJIZ+x/3L+/Aph9xEbcl/bMkO/b4jq3fXfPc2AffJPmQ/Q7x8iguXcLZN0ueqZPclXhs09sylP3tL+hb6EPFGyfq22appOZwRo5/6QC95aK+Ov9PNQW9hfxF/i6xdnGeFlwrT6ffTyQ79tGagW9KHWgUe/gX/RXyvUho01bNYn19Mv3cj+0ji0PjAHod35vxp+j3uH38Qz28IynLY3SE40O8nkd0Q81l1I2KGtRnP+h+4TskssTwilcP5YPNv3gTeftXxfBl9hfho4PFLWoWnvxSfsX+or2zN3dXHflmOjH5C/uieKI5SX3Vapn6D8S1yLPpw6qe3UnywYuyv8xaZzPJOkquPHBXMN826VyZT3wPrfxh0elRQgMz9FPW/lY/98veXPeDY+AW+EWT4IuWH90KWHPud0I+u6ilFcu+/kzrnn8hPjOAQv9n62+gU/VXJbW8E+AvGD047e2aH/7syaX1smP6X5g6f49AvQ1p/fA89dvVEltui+hqpvgb9h/u35QE1Zzf+FsfmF4xvVEVzy/SIJkkfsv6hMrOje9/5DoGt36C/7ctDhvlm1MrUBxFfAh+HGL+d0M6x3yM+rf9Jf8yaomShjBjxG/HjivJ5q6QFkVwtMfJDA/G2yS7rH7a0cIg/iA/I58d9YrKKH32Q8ju+R3z7fVxV4Av1rxziAfI/+vO4/uzzSNceSR/i/ot8Zr97l+PY775yqOcgPoOF9QEVegl9RMwf4/uH+PsL94rHRbdzWH+sD9a/JGZZk2+bhoj6DtYH/uI7wd7pn0dKIuaD+I14viPUarVJbbtUv2T1W0ryX/1aFXpkzhfyW3bKMqVM8auAfA39dZf4fp7p6pGeXdxn4tHM+goD/PmLykp8GtM/2o/bdfTvS8YNAvKJMdmRb84eX+nfqN7OhclZ3yWrZ2zuyW7moI8xPuilck719Pq4Gik+oT6B9X29zNSktKhQ0u9s/PkuaobBgZoWAXoA9c2+xLGXV26uD2uSzifOL/anz6bDlg3FSjxbH+oiPma3M85Kp1bS/8hfncRN3jbrpq19KsUf9v4TEmtsvuhAt8CuD+4rdyyCnEutVEWcd8wP/jb87EG/MEsVEb9Hfkd9y/lRwq31BspiBzH0uSrN/2eD1qCNAzV4zB/xE/EmSbRI8uzs4bCf0K8XiCs3qJ2LetcmeBF37fp/O/TQcM2Re9aG95Hqv7ifQE/8+Kp8dKqqMo96BurX+L35iCB/r0FtMvd7jG906NrCpwVqfAFjR/5wUZqwwOZlGTeZ5juX7I7EfsZhptfnVAqYD+YHfxx+6Ub9bE81EfEF+RnxM2uO95CWwHIB9S6cX+x/odPo3PAF7ZI+Q/yA//w8Y2Ja5dhqDvrImezwp8s1V3fkfdUSW5j+of+bB3eXzN2jJ90/2Prj9NQ/L6wx1hcRr3F/hf89+aI0O+RfYxEM/5TqwRr5L09sr+GqiRF/Ee+dtrSOPa9pJM4j7qH9dyU23lrVt85PgZfyGX1fQlygkl7jWvff+ztbv1j5Q2DfxdZ3pPyL/IzzbT//gm/HtFqZ+gnu64/yIrqKRQMp/sIOvZD1jestl9BgSV9g/tBbdd45FeFbyjl5+fX1jT3ab6fflvFPjLfE3SUi61mRzPsQ4suwQN3vgoxL5dpn7nVxDq6ol8bHxrePMZWX78ZUy62/nbM9FTE/9T3H6kOsR4bn2r+WrKmSmR/a7/wSoFMcWshhPuz73ILfKgdcCanh0B7GDz3rNKfdOmH8Y+n+z+qXVU/c3oeY1Aj5cr7Pt7Oe2bqtkUM9BPHxGnFUrOfNSq1WAfkM/g9OGZz6Zei7Emn9hjLz2219vd2oqZVj9R3ix+TLRr5nLd7L5N/HxJetuOCts6s56DnUnzBfY5P5ize4tMjdv9xlOTZCYrlkZ+sr16qu67h+TZb7vrvTMf7BNOEQx9a3cb6yLZJPdQ8vk9lfcFiT+aPV3qlS/mP3d/ulccsU/BKl+bPvw19WrTDfapfLQU8h/2A9AoMjM1eolUnvp2x9r9rO8qX7q1QZ/5L062aL2efnRnMJzPpAfyyJtJ+mYFrH4X6M8w3WMzfq2NnyVsD7AOI73gd+adBdbtXSJdU/sT+S3lBYfyv021YO9TS8L/xO/CC/arPtkk/S+xD8E/wx3f9c+Il2LoAY74v+xPutTlYbedULfsSoL/yH2HHfs3k1b6oEtv1IYtsgO35W71jhBOZL9kDigG+NHINMP3DQ26x+vj3kjH7ErHccW39Cvpmo6vRs6pZmyb/Z9/OdLo3jLmS85NqJoR/BETv+PrF04yepfgF9hf13GTr4BwNOh+/H1A9xf+6VsXf288mfOOg35EdN4oZr/+49dPq/+puNv1v7uH8J6dLke9PvkX97yF68JTBP7VwvHvEX/gd/uJXxqOOtfgKHfA//xe/rp35zxStPh0d8gn+FEx8vSlYfsk6DR74ZxnwfViFEGf6gwkP/4f0J9eGAsk2pYz4r8az/HIL/6Cx8NdNMgz9AjPok/Ct0892WTfc/czh/dkz/eg7hK0J6Nwvs+xz2a2euq8bhAg1RidYP+qab7Nv6G0ZGRSmKJmTH/wtQv3m7PHRQQLOueIx+r0F2zGdKSuy5575aYjQzf9THftTt3cujQldE/GHf/02OKR/cndUkoL5mwdiHL13QZL5bU2TjE+LXpIGTdJ1sWgToI9SX4Z9Lc/4xPXDJnF9M3E36Zjmxf1CfzA4fXdGHGPWhncTnVZ9sHJCizyNeIH5g/y5Ms3SqGKbJzyFupvYnEBsGHtZ21X0jsP6HfL4v57hoXmLAo/6vQ3bEkwVeDeMsnFql/ID1gx77/VSFUb8HhiL7fgX9NOLgzQ7/jFZJP7D3jwNTZzpaV2qJaB/+A717OuVAxv48LfH/AEYfBS8=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAwgUAAAAAAAA=eF5llntUznccx7ubmEuxcFZCN7c8S0dtvt1kId0elafQlXKZkpaVYspyOZ1OMz25jnqWZSyW0mR9d0FaOYtM0XIiMR50F7roaTvH+/Oc83z9+Trv3+f7/Xy/n/fn8/3VyZ97D+Ytdnm29MxWHhv1+2vwwU3uj9Iv9sxvB/dBl+S8ZWPPtmhVnCN/DL0Vuhy8Yf5Rq5/a0nhj9lvuh/4IXGWZ+zD1ZCZ/D+v1Qh8HfvK+za2kZmPWjfV6oNP3LZdDYuTOs9mHOZrr9+L7xaXd6ec/lvAR0DuF89m2WUosAvzYaGF/K7C0y71pmpE3sxL0CeABE1drVWkQtwN3QP8AXGW2XRXps4jNAL8SzmeW7eL8raWUtSKfN9CHQTdYGaNrdDOQOYJV0KXg22vf+CSPcGBzcjTvh9YPza7XtYmScLofyp/WSx1h8M/VOh+WlqNZPwdwZWydYuaxSLYC+Q1A/wKcIHdRJlpHq89P/vAB73U6ey/Zbhs7LOSXCW62mODUn5LERgr6FPCd+isRKv8Anov9BqFfAY9UaJVd8FrLv8P33dD3g+0U261yu9O4AbgN+jxw3pGka5/mfMUYWMvrrf4lWLsgrum4XwDvF/xH+1sd9Z288UA4LwC/hH4ZfKDo4F2HZ6ksRIivBJufu6CXl7ib6eRo1n84+at6KCNKP4zpC3ob4q2lq3+4XLKVtYC7oBvh+28aX1lElqSzyeBROJ8FuLbpnPKJLIWFCv0tBRfrHDN0toxjs4X6WIPNd8WPvHRzDe8S/NsDjr1+8ur52c78mTBfOsEZrpVK3SInFo31qD+DwWPqM7VKTidwHWF/bfAFrdpwvXEJrFGuGU/9z/fKzj5VJqt16j8lePSvxScrm1cxYqofzZuWCpn+xM/8+Cyhf2zBg257FsUZznpnfpmD/7DT3fzCPpKPAlP/0jwyeXJ/eme5N6P77BLyP52gs9Cs0ZdTf9B8mwb2MVhx/byLhNO8eA2d/JrqFjhlyl03dX3I/9QPfrLH5e1ZA+r5TufvAEdVD68rDJRwleCvAfDEWI9F2WP9Od0f1ec+uP23sOPZeqHMGPu9gE7ztuLg/vY3jguYm3B/NJ+y7II9Jk5Yx+1zNPMjPTcxuEnmtpFRPWh/4t32P7+4FubJbyAfml+Ur/cZW1/p9XXq/nou3L9/0fx7IYeWq+cTxdN8bT3L0mU1Fpzmd4dw/s5lPhWbZOv5U8F/uohvLPn7luHKUD4T/Bi6Bzj+YW/8jax41ivEU7+7pjUEsfx4dlfovzEUP9a4wbY2gjVDbxXiq9xvmg5bvZJb4nvqfz2wq7tHSsFAV/koQSf/2p+YU98bM53Re0r+GAIv8MyI8Yt05PR+kv8XgquKrR1TJi3gWuB26IOIt1TkLqudI3mnv+h/Y9ahHcvzXPxYveDff6m++T4Nqjop/0TwRwS4eoDF7yyN4bflmutfA4cPeWorasKZiVB/L/DYuB1z2c41/C+55vkqwEnB+x8obTYz2p/8Qf0397D0RG3IEvYc31N/36H9l56qDLo1idH31D9TwZL66E63U56c6jsEneZ/UciPRRdTHTjdN/mb5kNh4b76DqNAbgZdB+9DILhz/LauvrQNvEauGV8IVnokfT11vQEX/89o/kf11zxcXubKmuSa+ZOf/K4GtAWFdZXTe0/np3lhE3G/9p65E38p1If8tiW/bI/CNoj1CfokxJtmBC02VEjV84n2fwA2rS5Q6PnaM8qX/h/o/U43K8vySlzFPhL8R/Plkql1/PctMk79Qu8P3adtz8KqbLNwTv4hf5Mf9tnVDZv3i5O6vqTTff3Z7Z/SviSY7RLyywSfnlE5qP3/fKf3hu6f+km1Y1C/b+8aLhN08u/MK5vHJ9d8rp4vj4T+zN/ku3Rcw1q1v6i/joHNjaLO5dtv4S1CfjQPo7NkyUdMPFkW1lNCLwJnF/evLw0O4f8BhELGDw==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAvgAAAAAAAAA=eF5d0jtuAjEUheHVsAka9sEiICWBLqBBEPEMGTLJ8BRQpYyQKNlZmv80f/XJY/vO8bWr5qHxaNetL/zAu74fNf7W+BM3mq+xUp0ZvuAv9rGDIzxjD99wiYW+Z1ziRfN/+MQxzuWr8t/wR/XTty26T5X2ua9Zt8f0ca08K9VJf9LPKdaan+BJdUqtT678P+dxzkL73rV/qHMnV+oMlKfU+rjDvC/3KfexUK7kyb2mXvqZPF28Yt5T3t8/7C1d0g==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBH/UMo/QoPUqP0qP0KE0CDQAVlyUIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAngIAAAAAAAA=eF5lkj9MU1EUxm9cHKAu/on/kDqYaKKGEEXjcPNaGYoh2pja0EHp0KEqQq1VS6j1Ni2KCUgopVWkUoHSFqKFpoOD3rQxOhBD3CQmJhg0Oji4mxDb975L38W3fPmdc79zzzn3XZxm5kR+N0//iSZWrT2mX58nXAPHYmXDhRb3+MO0aWg+qXKPcrLK5Rf792XW3gX4oW3x6vkyUT8Lbb/86mY2kDBpbKXj76ucAbv4zuDZS8Hkosn8tVp/Bj4/PbCi5wht+aDnQf6FS0wbSzKv/dDzAK+vT0r51wY9x/iMxE6alThDv0scp+s2PTM6NS35edu8jtkC9Ui8yB16JnlulrhAT0scoZqGOd2l7gt1xnhzf766T5xL0rpTC9V9l4nxY7G74yh8bkrch5tGDtrAXk6aGp5lMp3g+5woe4rBlU6u1Q1x8iS14+2JkMaktaKty54H7ch7KTGO9q5vcYh8pU6p79bSGXATJalPLduPXKW1/N/48HGHxszHiTMXclmuoV7lfn90b0PYD3/lnpLNufX3FbCdE8/yjW+NdtQjjCh1hm67BVyZK9V19/zSObCVEuv1QvynGWzkZLVzojndputH9aG+QmV184066uep7Un9Aug7LPzQe7X+1K8XPAztgy+msTK56V4X9DG0Azqi+ZRxsLi/HxyExtGHV2M2CA4jPwTugjoRfwq9DR0Tc4LFu2zsR/Qt6kDvbMqLuQfRD+YmPmgCmodfzDuraWkKcR9U9CHi2AvLon4U/lEtruRwLiLuR7wAnUM8D30u+pf7YS81TRW5nBdzM6h49wFwYFPeK8/BonKdjXkZlX2ibgQ8h/Np8CxUvPcC/I+g4v/NQcUck+hjEYo9/OfH/pQ3on8w3o1xLp1nBfoPGelZzw==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAuQAAAAAAAAA=eF51kTmOAkEQBP+yL8Lel4EHBh63OAcYlj1GwCCEAPEctE6EkxJWqLuqujKzy4/is1E3d19wDl9xv4ffcBv1Am7i/heO4Q6WcAAf8U4XzuATdmJuHXsu8BZ+fLeK+j10q2sJJ+H7HH1lzOtbn+rL/KxXMZd5Zq4LeIKjN/M/sA0P0DyHb3R69n/1Z776mMI6+o+xR7/qNr8+vMJe9LtXPfrKnM1P/f73Kvr/Ys7c3GvO5tSC/3pYt98=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAqAAAAAAAAAA=eF51kjsOgzAQRO9AwTGgTZuzUHIYzpciKFIIv9jkByiiSjNT5ElUT/bOemdWjll5KKr0+BR7Mcn/78lJfIh3MaD+Flvcm424of8iDqjX4g1z7WsRv8gToNugi/DlvhZ9804O5uZeuD/P+0Dv/hHvBtzbx95ePeeMOcxlH/TPfdC/31mgm1F3LvteMd9n/wP+LzJC51ze8wg61wv9nXiFzv5P4g9Mhy38AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAhwAAAAAAAAA=eF6NkjsOgDAMQ3e4EhL3PwFiQdBS+rkCC0u8PMkSk5XUTmO3ZdmmeX/XEfgE9sCKfkPt8A4sqB1P2KATL+Gc88U7Aw/TT6gz/Gu+fCsH7ndBT3/i6T7uWaEr6EunvTL0Lk93/wCK53L++17MRXrmRp78uP+hmjlR53LlP6EP6rin5nzZk5ytAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADAMAAAAAAAA=eF5d1F9IU1EAx/GlovPfktRCNCMlMwoiCy0tS/Khessss3/QX+d0wxYi4p+GCQbZoIYxezBbsyyqEaEUgveSmGVa2nLTYkNdsSFOF4rTjWnc8ztnUb59PHf33Ps951yR6N+/L9NFh4t/tO9n1lBL83VLGedCePZ/GbVSKYzf9F9/sVGw1u/0gUi3Wq/z20TvJ5PKr7S/6OHGqB/JBRu579QjCfrm6noLZ6YuuSCM27hf1PJOsWpNs4NzUEeEC9c7ObET7nrzoHAu4zc3S8cLS4Xfz3FWas+GrGtnkxc4C7XWKNxvkZuiTm8wNfZJvBx7XmOmcH8f56HuX7n6eIdnhYun8x21CfOt4kfpeNf74PFBZQC/jo5vfibMH8hP0nHN7W/TdY4gPpuO+8qE5wnmxzdKSK9i2re0Ukp6st7il1LSW/bfeojq8HvGJgPuz7zVgvmZ34WFkOdjPrG7lTw/89gnJXk/5pRNbeT9mePlZtKHeXVHKOnHHOJDX2ZvroL0Z3Y1tpL1YU5oaCPrx9zkCiXryyw5pSDr7ze53vJ3PjJu9Hu5UEH2V/wN7E/tetiogWcScX2NHr6+Dffb0wGnJGA+dy8cpsPz3DLBcal43n12eKIA72N1w18leF+ZGOvV04seUXHw62r0mtgCP9yJnhWZ8J0p7DfvEXhEi/XIOQPHJmO9ouUwt4T9NlANlwxhvdVqOOYJ9sNMC8zXYL84tTivuyZwHiva4GEbzqP9FTw7jPNY1g3vteI8evth1TH0uW+GYz/S8/gTNiWhT40Lfj6K8xjog2vV6HM6FPs9Lxd9YtfCqR6cR1US7DWgT+R2ePgy+hiyYGMk+hw/BHc70OdAPvy0B33qz8OaFvQJUMC1lejTO4Tv12c9+uSNwG/b0cc0Bl+qQJ+TVji/FX1sk/B8EPpU2WGJDH1E03CfE98ruQuu06GPex7OLkAf1RK8EI4+4mXYwKNPVQC+H0Xl6JMWAg+moc+HcPjuIr5XOVFwlxl9uBjY3ok+B+Pg6HvoE5EIZ5ejzx/dX+dlAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAvwUAAAAAAAA=eF5llns012ccx+VYJK3aumy5TJejJGfqVNbxoEzNKq1QJEpC/GZKv36RCD+ipEZnk+Mn6aJMKWtJ9OTSRe5JVpjMpfrRKEpFWdsfe39+53j25+u8nuf5PpfP836+5fY+itn3NlmfaQ7ztew6VlQO1r26tuVu43TWBc6BbwVLZcnR7ksc2H1wKvwccFnd/absl0k8fOV/XA+/F1zkVx01UTuYNwjfrwF/przlEnLuU/YYnA1P7dt0ggfVPZczmk8WfBM4rFlh8tjFjr0AX4BXglOsF8wu6lnOqsBn4TvB3hqJFe3xrnxI8M/BnU3+z73cpfxP8Cn4dnBecG3dJVMvNm7V8Pm/hO/rW9i3bIwXKwKfE8Z/3pxkmCrxYLvQPxN+Ejh5aPQFfY+N3HXV8PN5g/471+x5Zae7j9eDM+CJv7Uwks4MDuAt4EPwFWD3U99kRnWF8qfgSvgS8OPonytujQziHHwU/gw4yTzqww+HpSwFLId/CDY3W1fjmR3ABsHH4NWwHsf5sX9Vle7mnaiX3+AVaG/VtLgkXs2ZS9D+gNDfKKTjUs/0ED4L7Q/CX6b9iSyu1Fizk1WDFfCz0T9C0/9z88kbeDr8cfh3mI9GrUlhYUkCnyP4fPhZji8VenphLBecBh8D1n7KMnfJfZgnvncFnjjFONTVxmYPKwGXwBeDLxnsd2K28YwJ+0cscwvwrr4ZyX5E+zr4RPDrfklD6b4Ithj8O7wV+A47mK9YGsh20H2BDwS3l7aayY5G8mKhvgrB3W4b4t6NsOa14JPwD8CP5sUo5Yss2E1wotB/xWlDtW7l95zuN91f4o5pmoF7/9nKX4M5nQ/YK+2TaLet+5g21nMZnrj37VbFmIwpqvz4Bb4NHKMe9D7PzYX/A6Z8+QB29Tr8wN/Im/UKvh/skLDbZXKZhD8Bn4enPAtv07ngl+Csyo9MYX3NlpKEQuNxnPKQ8vEeOC13fEb2kYWcxqP8uEtsbNofF7qUvxLWR/m0d+PA+wkzTHgzOEeYn+aTvoGWahcu5i/ll4Xm2S+UQ1+r1n8R/m9wQuVSHccOiWr/KT8pT9IjUmfEBi3jlHe0PmqfleQYWjBVxrsEPwAu2xh8rcLfn1H/0/C0n6t9GnM+rtnOM4X1Ud6ufmG8eUWBgyr/k+DrwK/sTW8oT3zHboGpfqk+34XnjkwwWMG44EPA8k3uPUftdqr2j/LrK6xPTbdNmTFxFDOjPIePBRc2tFy+brSW+QjjW4FTR/S//clWyoLR/ir8NbAkpueQfGwUcxLeDw/wtoYrB8Ir43iPsL90PhfNA2PT5GaM9pvqi85/9Kk7BnMjbXm3/fDxH4HV5AuMeGyTRSOY8oH2I71cV1pRa6h6/+n+0Hl6xC4ZPbRfW1U/lI/E2YsiDjzV9GE0fzpfeu/1eHNp0q9OqveJ/k/ofS/WeziqqzGQ032i8Wk9zq2DUX4r1/Hbwv5TPcVXaWnZps3jGcL36f30uTr5XpDEkyUI9XUDPCE6/aB6RQCbLrzfVJ9ZWinzy6q2M8ojej+Izxvqn5XpbuFy++Hnb4LxWqe6eOkcm8FngilfA9CebdZc6Dvoz3aD8+G3UV7Gn3gmKVzPLIX7uxqsHp1eExq6gz+j+Qjn6+33RF//zKr//Z9R/UzxDRxbfUNXla+U7zTe+pu76rVKN/M/hPrrAIeUDYSNSXZU3f8s4fsfzW1qLOhdq8pPyqf3ND/jrvCT+VuYjXB/qN4LDBbZTut34dSe8oXes+4XxUHOeVJO55UOT+9b622n2PrXO1T3gzy9d94jGkKkVTKeAz4BnwdOLjmi0e5jxeKE/TkOVhR6NzbOlKrynfafvvdG/7pfumUA08f66P+E/o/UTBPHy2uWMW20jxLmr5izPneufghPRvs8eDrPkX5jJynv+vM3K4fvD9Wn7zqtikkOG7gG+tP/nx24s/fLcpm1DfsXdhpAJQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAApwUAAAAAAAA=eF51lmlQk1cUhsMgDFg2ASGoFFSEQEUtKKj1fq5tI21nqHutCh2XdlSoC4PLoMUqo6K0hIooIm3VQkRUUFSU3iCKEQQNUXYdBNEIGGksYRGR9ofnzY/P4ecz73e/e+857znnan23ThnSb1Uk2zrFIvInaZGWuLfDfYZL2H52R6SDXRbO1eyOquAtxH6k9xJ72h2pai+Tqrb7veNI0sHS3DO3HXZ7qdT0vTfpJVh/qGvr6PNZpv19SC8nTi5w80ltv8kqRPtD/+Wws+P8jtu8lHgU6divJzizwiHvObsu0guJPZocrHvMdawA5yGdEy8a1BBn88DAc4lHkH6e+IImnakCG9lV4pGk5xOvlCt/m6V+zqqJx5FeSRzQHXo8TdPOzhG7kX6BuE8tS95p1LJLOC/pecQzRho83l7M5ZeJPyT9IvHFFEXy2O06dpDYnvR47L8jKad1Vx8bT/mSk/4xcd6t6rndGf38LH0/nPRTxMFJrqfD/Z2FKOJBpEcTR4wJjPpVMUQoFsUX+QjNvxc859s2bkn7fUJ6H+muV+8lnLwsUa0jNiN9I7HRMe6sxQU3FeKN+CE+C6Ir941bMELIIB5GegpxRmur+Z5V7Rz5gb/aiKUr+Re1kUbeRRxEeidxWFFk27EyV2EYnZ+RLiH2rAry0Xh6CrX0PfwP7pk9M3HDWiOrI0b91ROH5D6peZM5RBioftp+l4/yVbgL8BP8VUV8eF3a6Q+mOwlT6TwhpIMb6o79d7bPUoBf3EXxs3/eNHFJ9RveKIoPOFH2ecD5ziqOekR9oZ5bZsvrJf2V7ACxA+nwY/bY2pi9qbYqrMf9wLus0oflZ9sKD4jHkg4OTd0cwp85Ck+J/UkHS/wWTqruM7KHovOD53UuUtWrdab6wf2vIP8v9xdMTyjl8OsY0m8Q/6DfX5Ud+5prROcHfzYz6dNZ7jqGfgL//03cF3Wt1e+Njt8i9iL9JvHCF9cCU0vU/K7o/+iHT5KuVxxR1vFi0XqwbEaybYpVMhsofvFy9tXGuGIu7r9g18w14fJtL/gjYl/SweO+qfRw9O58736IzxKJ7N9+5UNTf0P/zCKe7J/vJKuXqM6IdNSrZk7zd1Ft5kKOKD/ov+M9Aje5GRq5nngC6ZhXZQs2JU4oNTPVD/6P+Pjd9XZZOtRgmj9eovvvLF19q5kXcdQX7o/6yt+bZ+OUbKZCPFG/yNfpCN/w8XGd/CSxHenpxCHWh4brMgeb/A3/ov4b79iEhoUNFp6I8tNEPLc55sri2G6GfGD+1BD3Z1lPrpn2isNPo0mHnyc7BugVqiOm+h0jOn+JLrYjIewmKxPFB+ydsVz5R7CWXxHtj/5xNfLp64YTde/5G9wzpUFepCjm94k/Ep1f7VDy48QVOob7Iz5gyzkFOWuXtfI0YhfSU4mbe081KJ0tVC+JA0hHf98WkPf4z3k9DPMD/oVfJaVhg9aefPte/8f7x8ztWIS5xsrkT/gL74H13KWtw6mRoV+iP8OfsZWZ56KlCab+gvmNevp59bJyL5sm3ixaD7+UbBia5T9dy1E/UtJxn8s+XmHxvf9wvB/QPzDP9Rb+mk43c5WRGP7FfRM3GfTTihS8QqSDl31vWXZuag0bSJcoW/Xa8AMc/UDc3xZrv7SvunefI9/oz6i3fSu1QqHsFRtoPsz+q9xuZ1qLqT+J5+cj/eP5k9LVpvpA/0M8g9LXPNpzycgw/xB/+PeGi4NZh7vBlB/4A+/H7UHWhd32Xab3EfKPfNQeXR+tjHjIxPMBfg8try3hulfMlebxVNKHEg+2lR63z6nk2A/xu03c4lW9ND6hn8PvjqQnE2/ekZNZc9RGwHvSmfQTxBOsRnydrZCoDMTwVz+xoiNmZskKOxXyg/ghP3lbugo9bJ+xVcS9W97py4ljqi1Sdtd18v8B1Q5Uwg==AQAAAAAAAAAAgAAAAAAAADABAAAAAAAADQAAAAAAAAA=eF5jYBgFpAAAATAAAQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAtAEAAAAAAAA=eF6FlM0rpWEYh1dqbET5puj4PAgLm/NPWdvZWLOZxTRNFiQpUxbKV/n+ODjMOMykGQo1aWZIUbKQLFyXcteb1a/r1/Pez/P83vu5m/syBb39lSvb6b5MydOHV23F34fVFP4SvPTO+ib83VC/ET8Lb6F1+DOw2oX/B1br8adgtRJ/GFbdNw/ng5+DVc8zD6sN+J5b7ca/hVVzW4XV+oQ6Hfin8O9Q/wFWm/F3Qs7mb87ZhPWq/3EPVr3vIrwQ/E14DU3jH4Wcq/En4FG0Df8CPgn+cajjOX/Ch2Hfc1j1vn5/EHI+CzmX4X+BPybcSy3HH4NH0Ax+cdsLF6Kd+I+su0Rb8L+n3+Yf30s2+DsJ/gasmoN95n9rxzf3X6j9dgX/DfV9//aF+ZhvnBv2h9/Z/7Ow770H/x6+DuvXw/pa/Gl4Eq3Bn4O/JtzrH2o//IedM6lQx33N4Uf6bf7+x1zwzd9ccmH9XvC9r+/N+eO+cZ5Y3/y/hfO7bjnUif3mOx2H1WL8IXgQtZ/jfDbnO/gm7Ov7df8K/Di3k+pU4TtP1FL8z/AntCicfyDkZt87b54BOxHXEA==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAA9QEAAAAAAAA=eF5jYEAGH+xhrLqZq2L4E47aoIujAsLiCl/vp943vkS0ORPfaG/2u3ltD7q4uKJKQbHoGwxxkZa517bmfsIQ1/0tfFdU5DaGOCogLD6zVOG9v85jDPf764pMPsJ6H0P8/bTj+yLefcWw99alNwJXHnzHEN/vfOPN/M1/MMSXFxm4qlc9wBCfcZKfU/z0U6LDk1riH8/m/RN1PYrhnubcSyUbQ49giP8qCxPIiXuO4c45N88pH17+lmj3z6gTDE2IvEK0+qTz03keHHmP4Z6KuRKswV23Mcyx7+p/tW8r5eHJ97jsi1v1Iwx7L2TWFZ9tuIwh/nb3TTFvrW8Up0+SxYsYVLgWXyTavw2y8UxJDZjp8BH/3omP1TDjpfIhS9f+dU8wxC8+16rc7nuDaP9m+1xJUfl8BkP9gVYL5g2dLzHMZ/6279WDWU8w1O/a+DA0fyWmvRsSFhquabmHYU6obY3r1sL3GOJOcg6e8QXPMMSzzvvdi9t7k+jw/PrK9HlxNaa/XtffYeHsw8xHqAAh3mtzO17E/BTR6kkVX18eKKbBeZ9i8xtfhn5t736NYc4nl+2pujNeYcZX0jVrG2FM8e+dzzbwnXmDEc6i1c9qH7t/wBAXtNrHGS7+EMMc3dqKH889X2CIG5f25D9+iVkuAQAMEC+fAQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAjQEAAAAAAAA=eF5jYACBD/YMWMEH+7qZq2L4E47uQRfHpR67ODogpP+D/cQ32pv9bl6zQZcXV1QpKBZ9gyEu0jL32tbcTxjiur+F74qK3MYQZ8AKcIvPLFV476/zGCMc/HVFJh9hvY8h/n7a8X0R775i2Hvr0huBKw++Y4jvd77xZv7mP2ji6AARPjNO8nOKn36KZi9u9fjliRVHB6TqR7hnzs1zyoeXvyU6Xc2oEwxNiLxCtPqk89N5Hhx5T3R42nf1v9q3FT08CfmDEECYfyGzrvhsw2WMeH+7+6aYt9Y3itMnyeJFDCpciy8S6V90QMi+D/aVD1m69q97gmH+xedaldt9bxDpX3RAyF5c4h/sd218GJq/EtPeDQkLDde03CM6HznJOXjGFzwjWj0u+a+vTJ8XV58hMn3iEv9g32tzO17E/BSNwvOD/fryQDENzvtEmo9bvPFl6Nf27tcY5nxy2Z6qO+MVhviupGvWNsKY4t87n23gO/MGI12JVj+rfez+geh40a2t+PHc8wXB8AcA6Vrkng==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAAQEAAAAAAAA=eF5jYMAGPthjFSZb/IO9wtf7qfeNL+3BLk8IEDJ/uIp/sF9eZOCqXvXABrs6TPX41cEAIXtxiX+w/3g275+o61E093ywb869VLIx9AiG+K+yMIGcuOdo8Y4OCNlLLfEP9hVzJViDu27TyD0f7Pkel31xq35EZHwNFfEP9g2y8UxJDejp8IP9I/69Ex+rXaFZeGb7XElR+XwGw94DrRbMGzpfYpQnzN/2vXow6wmF4f/BPtS2xnVr4Xsi/fXBPuu83724vTeJVI9L/IP96/o7LJx9mPkIUw82QNh8/PKEAKn6B1r8g72g1T7OcPGHRKaHD/bGpT35j1++hccjAPHFoWc=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_output_ts_199_t_1.000000.vtu b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_output_ts_199_t_1.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..cf0c844bd788fa843670b2679bada9f43ae6d2cf --- /dev/null +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_output_ts_199_t_1.000000.vtu @@ -0,0 +1,42 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="97" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="160" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="304" format="appended" RangeMin="691971.82024" RangeMax="691971.82024" offset="252" /> + </FieldData> + <Piece NumberOfPoints="100" NumberOfCells="76" > + <PointData> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0052189767817" RangeMax="0.0052189767817" offset="6304" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.30168701854" RangeMax="0.30168701854" offset="8312" /> + <DataArray type="Float64" Name="MaterialForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="8604" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="2.2642317805e-08" RangeMax="460194236.37" offset="8684" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.04875572157" RangeMax="-0.04875572157" offset="9708" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="691684.60925" RangeMax="691684.60925" offset="10052" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="1.6949830579" RangeMax="1.6949830579" offset="10416" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="26.392846406" offset="10672" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.30229860427" RangeMax="0.30229860427" offset="11748" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="691971.82024" RangeMax="691971.82024" offset="13668" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="15780" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="691971.82024" RangeMax="691971.82024" offset="15844" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="16620" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="17420" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="17932" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="18480" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="19576" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="20116" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="20384" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAGEAAAAAAAAAVwAAAAAAAAA=eF5VjDEKgDAMAP+S2Umc+hWREDVKhiQlrYOU/t2ujncH10Cs8h1UxQ2zD0KKoLdAWtsvepwckOYJjJQhQZFbCSXDMI/uHOgXHq7Zja2OwdK3/gELTCQsAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Y1NDA10U03TzMzMkwyTNJLySwqqQQAUGcHCg==AQAAAAAAAAAAgAAAAAAAAAAmAAAAAAAAmBEAAAAAAAA=eF5lmnlYzlnYx9u073skDykhI7KF37FFtijU2Jeyh6jJVmQy1gihQYbKmEmkmGzxO1rIMqMiWVLaKQktSg/1vN7X936uq+f9q+tzfc99nvM7272cbJWUlLbFaaUbfP+ba2ybbgu2/nh/hP3WFEED3CqTyXK+6+rgn/VSrYdn5ArmYC3YW4A3x4Wd7xX1j0j96UPvCTZzdYwZf+Cl0FXB3h7sZzC/pf/SKsED3BX6bLDkgPl2zdRGoR/YCDpxlNfEertNpaIJWBW6Ffh1ES9UW/5SEL9/V+h3foXvywKfvtJ/gOOb98I7cAv0D2Av7eJDkQfLxDZwG3RiTZXeyi1mkcIjcD104trETboZeup8IsbTG+ObAg7f0lzmp1EqTgX3gO4F9j5zONH+l0xhPrgb9AXghaNlU5ZvqhHpe02h24BXqWnfTZtxV+ygMD/ES38yD4rRLBCIO0BXAxfPTYsK/NwqRIIHQt8P7tOSWbI8oFGk9f6G73cA2xxaUDLUvkr0BHeG/TRwQcO+tFStKvEQ5qsA9lHge6qRCy8NaRaNldrvL+KL0SdfhPm+EXaDx0E/BOae46WTRtUJL9CfBvTn4FUvl0f0tOnAaH8bQyfOOzbr9s5YdfazwvxPB/ectyZ64zktpgqm/U1cM9PkmIZtq9ADTL9PrO/asjqra4s4AmwJ3QWc9ZPH4Kzkx6IfxpuJ+VkLPpM0tn5GtUxYgfZ0vleClbZMmK56u1g8Bx4FnfhO0DGr5j3KPBv9vUX/98ENJn1rFhka8TDwE+jbwN2XP3S/42/Oaf1eQJdzxcZbF7eacj38XhN04hMZczqkRRYLpWifB/0N2L84f/yZTB32AHwHOrGTZ7Gram9NVg4uhE78hIceTDauFOLxe14K37/g7MqW1dMzBdoPX2BP/KRmeq7XFGM+Bu3pfNF6RZ2XJfus0uKTFfYP7e+3J4foTZxtxWk+36P/DPCcwiHB2/5tEmPBxdCJTV11w5JSv4l0Hm3RvzbYqTIydlt5k6gLtoFOfF8y/2uI1JjHob8S9B8PZn8aDfPb90q8Bab1SQcPkkX8cr+fCfcAn4PuDj5h7Jyd2KrHr4M/Qk8BFy1Jl87zsuIS5R/jWYTxET/u77/08tYu3ArsC90GfNR4bUJGjg4/Ag6EHgmOiTysdENFwh/ge+n+fAiWLjRs6cds+L22H+PZh/ERj/bLExuPSngm2s+HPXHy2tsar9V1WSba74U9cXDazoXJN7vzRfjek9BngkdqzLT9a8598TD4M/TfwUv2bB/a8WN3FgP+D/pJcL5OkUVemiW7CP4Knfg/9ZCHPSvMWIKs/fn5CxylGpvQseiqaIv5CsD3dQGbhxT4ne6uzCrRvhT25A87L2hzsCq2YJaYjzfQO4OtvgxpWlbZmTViPnygN4AvW1tWRS2wZFXoj+639+DM16Vdq1U6sCUK+2sp2LcpoUzfsFKU4ve8Ya+G8U8ZOuF00LxqwQ3t/4Y9seuFlAl1Zy3YGfAz6MRbtU59y3sq4X3A/0J3AKsUnTRSlmizxa0/OK3th74AnJK35fyT7+d7IMangvE50X6cG+7jfM+GdwNrQqf5G5scXzDm9SWR7On+IP/p3HB78W+W60WKl/SgdwdbpCuH7+OHBGLyP+S/rv0+NHup0xW5/6TfNwRLFtsc3mucKI/PqH87cOqxq9GBn56Kz2Ttz3c+2LzQ/d/jj8sFTbTXhn0n8O0xcY5d3ItFut8bYE/rf/Sox6oeBfXy8enA3hFcMOLR4EN5hnwJuLtSe//mdjlGYr+qTVwEpviR+HKQTPtRmBGXgMk/0vq4S6VObo+15fe3RKm9f68KrN19xKFcTMV4qzH+h2BtnV3hBfq6nL5HBr0eXOO9q+WgkxYfi/6s0L8r2PfdJ7+xL/KFZLR/Dfsr4AStfWOW5XwStNCe4nOK17I3ZRVapSQLtB7voL8G39/9c8Eywy/CFzDFf8TLjHTEmvPGzFqhf9pPSYJ2StRaY/YV7Sk+VIY+N2LfgAvfLFk1dIqPP4FdZAbicEND9lnBXgX220oMrXrpGbH+YIoPR4NHxDSX9Az6KIwDd4FO8XOu7R9fvKaoMIq3aX2egEuLAz2/bnklj09pf/YBX7z0VitrnBI7Be4DfRfYdNgdIbpKn1G8bQHdB7zGaUNwN7XH4lJwL6X2+2/iSe2xukukwmmF9Q0H3/U5Hn03y4LdVtCvgVeMyk15P0cmTEJ/Jgr7Z8e59Px9EVZsAtqT/6D7b80+/19tE2XCYnCarP39esTeNK+ksxpvQ38L0H8H3K+TC4NUkw80C5QvqUG/B65KHrjMt2NnVgf7WdBbwMuyvVKmxSmz5eDB0EPAo3yEpCH6JSKd577QQ8HrNvM+9wOkAu1niv+J48t3exy3VGa+CvPvB2bz1T65nXonDkf7aHw/xTPx3HxR2mwl9hn+Kgm6JvThDdd31qc+EOn80v3iDbZbsDHS0aMjo/yL7kfKh2cda7JpvqLKqtE/+Sfyjz1Gae6xGfKnsEZhfQLp/Lgfdt6+sbM8vqL8lOLHdxP/uOIYWSKSv9BVan+/OY+Ov3WjrE44jvX8G3oE+FJXdiQjQoPfRnvK7yLA+wP6z3o6x5bdA1P+kwHe7Ohf++5PU74O4zmF8VF8eO3mpGNbotTZBfBD6FvAqvfMPYZnaTNqfwX6ULDX72ktkW9N2G5wJXR/8IiGydEbrSWM8n/KPyn+LfSPmFzqJxOS0L4Z+t/g+yw7cGC2Jn+N9TgKvRAcavihrclejyeCI6AT/xb9ZtjdNHNO/oL8C+W71/q1/tLBzI4/xXz/B/0OeMnXkBFdC3QZxbc7oHuB88+uKAyYbsX2Yrw38fvBNH9Pvg7INtJhdJ9T/P4KHMVeRr/yNZPvH7L3BSeF/DYkPl+ZkX+/AZ3yPY9xOSajDXqzGWC6vyk+6pXvtu1ZoBV7g/k4DvurYMmd1t+vieZcMb81BfsE6PV2TjdmsfjeW9DfgZ+9TQqbs95anp/eQv+Xwc4fxwTNDG8RqF5F/m0Q2CQgvS12hiEzAFP8Q/GskU5thqZtrUD+ieLrb+Dq7jKD5/55ItUP6qC/BSdPuj3qRGq8WAGm81kDfuar7lCYkCsWgMk/0/rk23+qyBKPiEoYD/lPGs+2nP2efgc/itSe/BuNxzAut9R6dIxYp7D+lD+feeiyXm1ntbw+RPND+WPPXHH4iQFV4jqwA3SKtwaNjE8+XvVcXt+qQP+UL4YXuy79aUCLSPEa+ceOYOeXQ19f2yEVqB6iWD9b9iVhzsqqFqFWYf6o/mYulZa8Klfj42FP9+8o8C2fq6e8o+sFys/pfqL72idipM+DRDU+H/1R/SQI7G6SpGxsqc3p/qX6QgBYsnhQQsIqTU7+9Br06eBdsx/P7VKkysfJ2p+f2eCbqwzmVoaUyO/3R7L299+FyMM/LQ94KlL8qITx03pmD/aetnTkM4H8Cfn/wbSfVVT65HI1PoPWE/os8KW8aZO3Bb4X1oD7QV8GlgYcDRiqo8wFMMVfDHxZ32VuYuFr+fpRfkHnIyKpcsHNeg1O9akcfN8GsJvfX61duhmyruB46HR/dJ5ccujzHGVG9SDy7+S/lGfMOtLwKVte/6XxUX1s7X3Pyblnddlq9Ef1w+3girJMF41mdTYA7e1gT/W8cWneOSMNNVkI2mfBfj34yEPDPiFlnTjVIyl/pPy6d0XVkNBYA075vgh9IXjy9qYpuzdo8Ktgqg/T/TVCPzilo2DIj4Ipf48Av2icH/M+q1GYJWu/v2g/pwpWn7wOGjKKJ7Nl7e/vat21iRk3LViOrP3+ovjY/+oh/dObG/9ffEX1gC6texsDT8jEBnAR+qf9usI+tmONQYVI+cAH6PrglbGfqvvamsnzCzr/xGm+/X+LjbdkHrjv/fH7vcAela7uZc/0uR54HnTK/+OCJNbMqVWgesZB6DL0nz/Wzo251Av0/VX4ffL/5lu/qY5zknCqZ6ZAp3jZI/2fcUv/MuMUD7mg/1/A86OjDYrcHsvvZ/IPVJ/MXuPdvFTPimdQvAD9CvhDaKrkfbIpn4v+qL44E1zYY83aLW1KjPz3S9jL63mZe+/uuFQnDACHQu8FXiA9E3Y+TIvPBZdBp3qVg53fpku1pvwPhf1B8drYCp3yOl0L9i+Y8nfiRwc0Ow8erscoXy2HngZ2e3y09eAcdUb+kPJ78kcNf+/v9OGsNid/QP6N7qcr/xlYZpTViwx6BvR54G9lzu5lkcrsV3AtdKo32Ji7X+94TyqEK+i0X99Otal6a6rE1VV+sKXyj/H1BAfafngyeIkhe4H1Wgd7Z/QXY5x2xDuzCx+P/TcD37cY7Ng51OzERAmfBA6HvhC8rtfDpo9h1ozifYp/Kd7b55si2f+0Gw/GeFfDfg94jNJF1QcnzeT1p/7QyR+uG6OWm/6XPtfG9xRC1wT/+nhg+sFn9jxN3t8PnfLfCa5f9zq4W3C6Lyk/o/eqJt+YAZ2mOPAX4MnQ48AdN8TWzRhqzaneRfEX1S/CNnqapQkpAsVndD/I8P2/rlz554hbUvn7FMX3H6E7em/RVmn6KvSFTvmpEtjJMzRwTb1UJP9F8R3Faw97zTDgsU3y+FEJ9tQ+xzAvxTQjR3QDK76f9gzx/PBI/atA/pj8owSc7XJIuij8mzy+ofpvI3hTpwGl4rJS+f1RA53u33nvZ87pZKbHe6E/Oj9UL5lt/J/H1otF8vhPCnv6ntqQQcHvxmpyqs8pw94I/Hx0xT/Lt5tyYpo/Wq/cA3Z2H5TfCjTf9D5C/c1cee6UW5UWf6kwfoo/70QFFJtPqREo37gOfSPYqb6n6zo7dUb1NLo/KL41+Xov9GqDhvx+egqd6t2JbZ6jjXtXyusT9L5L8WqHdyuuN1Sr8Dtgqq9Q/iwW8Pc7z2lxmi/aH/S9ylZxt9jUZpH8M/m/SLCl+/NL4QfNOZ0HCeaP6qdN57rfLvHQ5UfBlF+vBrv5Bbh2mtwk0u/T+aD9oJefVlLes168C6b6O93/WtK6wYeKG0XaTxQ/U32ma2DDYY+LDSKtl2L91sY1SanvYV3eDJ3qN7lgK5fQs77La4RV4EHQKT58dGrD2KJ+HXg42Bk6tXeWfqjSn/ZceAmm+7EM3Ff54Lxz5kUCxUsUP54Gr+ZmQdsc1Bj5R4pfqb72z4Bd9+2/WbCJaH8a9ptovcysZxW6aDDqj94nyT/YbqopSl5RJ9L5pfczqgf3WKQ1pebiE4HqZXS+6H1uLJ/726a2J8IqhfHT+6xaYsWyKB01Hoj+6H16Gzhm761JC10LRPJ3dL9SfTGmOCulQabOaP9RfEHxy/jNnnezSnX5Dln780H1kufZfePb3K3l71O3FcZ3YKDx5tqFnfg++KNd+P14cG037wn7d5nxJoxnNvQv4EmtThWPvFW4JtrT+5kx2M7sYbX5ElXeH79H8T/lU3HlhZPsaiT8F3ACdJrvEm09qyRfCVMHU36mC665YbvSbHqm+Az+eQ/0HHCfHdY/+xbmiz+hfSp0UzDLM/07WcXif8OL/2O6Xyn/tNjh+8fGBBNG56UY9v+AO6yNVL3AjBm97z6HTvF+P53K/G4Flozew2n8tD5vedrzrPXW/DTNB/Sd4KhrRksKpZ04vSeoKYyv2ParkuMDPd4b60Hv9+Sf7lSPn9bS0FH+PkHjo3rErT3l068ulIpUz6T8agg4f3Wj1aIN3ZkO2tP7mAo4fVpTZnCYMad8bCTsu4LvTv09c/yBbswf6+ENex/wHwU35gZPNGYW6O88dC+wt/OF9SuCP8v9O71PUT54Uqvrqcoya/YnjQf2j8m+Zbbqo9EXRXX8Hr1PuoDNd9ddqF7hyMPQH73P0/+T/Doi9NFJ2Ue5fzHH79N9OyXyxrRhO2z5CvBl2FO+/+b6IKsu5qIQROcF9hvA6rzxrrGDEf8IPg2d6u85Oh5x7LKh/P2U3u/p/pqqEjxsmFcXTv8fNAz2lJ80rxj/YOoGdfY/JFaMVQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAwAUAAAAAAAA=eF51l3tQjWkcx421NCNlSLO5tNlT7crqpiSe2SinSQp16mh1P6fT3TolpzqS6LIc2VSbJWUlKql1W9byCNHNZaVkVy5RxNjJRI3KWvYP39/7xzuzf37mc3qf9/39nt/3edJ0m3UmN8ld1kSa6NxurLsQBNYuqCqpHzFjKWAveB04w/FVee+/iUwDjoW3BYcoL4U+NtGycT0f+aXqo9cD69p3Kqqu7mC0XgD+fgt4qKIowjbKlieAVfBasPdTK5uj71ayJLAbfARYrfD0v7VUxul9FPD54MEW6ZfvFUF8GVgO7weOXmvb4/IqkG0E+8JHg1sfnlwWXqbmpWBH0fp12VVe31esZgfBdvA/CM8v7vgxUMNDROsfBced7H95OEbF/cEb4Gm9Pef/zi+wUXJabyN8Iti+sODmP58ks/tgS/it4BGH0hAL12B2U+TPgHUNvVeczdbx5eBkeG/wfkNt1pPiNP4rOAJ+P/XPJ76s/Eo4OwyeDn8FbLJozAy3ZhnPAi+BzwXXVM/lTmGxbB/YHJ7qabTzSG5maDanfjXC7wL3dk9oGOOey3LASvjZ4AL5tsOHHDfzVPAj7M8y8EzflqYP6SncCvxA1N+L0TGOrbFewv6whs8En5r74mbfczW7/vgjv6P+gN9USyx+z83nVE8PeE/w5AoW1FuczatF9T0Gfm1Y7LpKt4kZg1Pgnej751ScSm4LZfHgetF83/uqb/SsJdsYzcMseKpXTeptvWIHrVDfSPgl4F2lmZIiyRahf/NE/dvVunZy2hN/VgC2h68B81N9Cz5NUwvPj4dfDDbQi39aarNeyB93eDX47K3i9nF5idwLXAIvB2cO+pl72PkK+RINHwBufTAk3X11Nm8Cfw3fCNY3PzfH0NuOfwdOFdXPtK7CzvPgt0J9g+CJB7eP9m9pdxZ8FPwmcK318J/7DFw55edKeMqX4GtNtU7NwYzYFZ7yYvQEy9rpC5ayWHAYvJL6Zdp1d/dYSyE/pfBx4En6zZmB1g5sM5j2Vxj40e6H8/beSeC+//P9mmM7g07vm8jywM7waeDON/YtJfdkjOqtgfcBT/Q2OxP/0zpGeUb7n57Xou8u3x8TzqiflA8bwHnGHZePxPmwdPAU+Axw947IqVYmSu4uWt8NbPs2tXP1BRkXn2/0fQ6j3jxq+8yDPwVL4Cm/zjZMcW7JUAj5sBXeETyhMKlyoS6LB4Jp/1I+9E2ziNhsHcwpL53g68AjRfnP7CVxjPJmhej97riOzzMzCGAGYBd4mof4oXpv894IdgLMkW9jcf7WZPRsj2/cKtSP6k/1aFAEf1NrKWGRYMpP2j+FldLClYZ+nPaLHzy97zHNiZlMKueUL4vg6fzOmrnxWb1hHKe8ng9fBL7E179b6hvIaD/T/IZTfUfclKtjlzM6zyhfaD+72ieuMprvzClPqT/m9Hv1WntP4yRG5x3V/zp4bNP9zuPGSk55RvNF+/vE8L3+kuZoYX7o/ah+iilK6YrfYpgDmOaL+jfebkC640YqpzybKqqv+WBax7SEBL5XVL+z4IHbgw8OGSnZefpe+D3g/jZ/ZpRkxek+8Dm8Hrg2cMzz968jOa03LJqv+6+7tGbSLYzy2V70fh8qh9c4WuZx2j8+8HS/iTAd/6TwUCCj+xzNL/3+2rKOP2QuAZw81YfysjpHX+oWFMazRd9P/fBrLBlQfFjIMkVeAdZa9Uy04VHC/KXB03mfWp52PN1GzikvaD5LwJfnc/Xi/gAWBab8pvzt7pqUogz1523gSfCUt190/TIky1Awuj/R/TgZnG4kyXpxwIOtEfWP8q5j1R6ZxTkVswZXwtuBL9aVzyvrShDqT/fPA+C+y9YD6SVa4fw0had81ahON/1cFCDM7yh42o8qnfTIjIwwIf+GRfcjg5a/fJ1zYlk7mOaH/j9Q3X2rrqvSCedHOjzN4+O8vTUhcVH8PyiwMwU=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAugAAAAAAAAA=eF510rsNwkAQRdEaqIgOyImwwGC8GPP/ykIIJCA0EUQEFEMDBLRDcl/ypI2OZjT2zM5u+NSNX+vbzHCBKywiBlP5kcUJdq2+b/kdVrjGg3nFGk8W3/GJL3zjBY+4wRLHFrt7TLGNQztXZnl9X1g+xwF27D+qC1Y3i8yn82jOJWp/2s/N5tG9qV9iqn/PYtXPrd/U8up/Rr2zB+pe8oi+D+1B70f71r2o7wS3pubRHHp/mk/v6Q8xdJZzAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBH/UMo/QoPUqP0qP0KE0CDQAVlyUIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA3gIAAAAAAAA=eF5dk0tME1EUhi8rZYFoSFyhVKMbNrBAfCRepkGMJVHx7UJjNQrYQAMqiFDIRKNJjRqBakCIFKwUEEkpoVDAa8sjghCsgAYwgUl8oKhIgroxEmnvP3rrbP585/zn3HPPzNjjoz+ua9jMiNto7z+Zp60Lc/3QOS3egag1C1t7HNrQGc7RuyP97J3TDRk/DWfQhI3Zfr+XBB4DNUeXFh7W1Wg5lzNXgZ+dnGULTZ063hVi7NTGR/j72VBno5NhIluZ6VerwM2se0HkTrb4XeR2Gh4p1lcymiiw/IzuSRLzgyx/h8hZrD6ILZSIfmmEzt4U2PqWbZsS/UN0yweRa+mFIHZQQxC72cR7kW+zEjEvP6cBVdqYtD2wL/jMNGqVxb9PzFVBd1b4ucYrHYuNSFzqE4h7yhn5Ml+xPlTPmWQwsvrbfvP0dXAuIxuqTJ8XS8EmStLPbQo1FKG+mhFfX1zubA6fg9RTknWo8OfL0+ACRsazmyI7TODUpbqQtWl7dai/S0n/TPLcWTP65zMixRzZV3YVfJSSFNeZFaYc8BVGDr5ZVu66gX4GRuqSpjNZBjiFkvGvcQnLM8FLdfqixlO/D/B6qZiSeXr+RFryv35K7qtd4TH073mB57J6X6iFBvNF6EMelx+A73HV2MB5PO8pBl9T945+MriKs9QJH5G52NG/Gv4mqJH7rN3wl8BnRz/MQYYRvwMehaajTz1Ufd/94EuclT6uK92IP0a/+/Cr91TP60K+DH43+ji4Sj1cNa1c5V741P12cFXUfBvq2tG/FvXNYBf8T8ENnD02zNEGfcFVGuS+2J7g+RUnzmuHz4F5GnF+F/KjPO7D3BL2b8XeNGOYpwX1lah7BMZ71WN+yYN4CmfPBOJ4L9Jr5G9hXsQ1DHHM6xsOvh/B/ylj/zK+L8XHVVa/x0lwL/bwDuer+8S9PU9wnv2/+gEw9qUf43HHJOpGEB9AX4X+AXicooA=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA3wAAAAAAAAA=eF5d0rkOQVEQgGEPoFBSIBH7FluBIPZEkNhCQyhEIxHPIFGptWqJh1DovIBWPILE1SgU/ilM9eVM7syZOXN7Rm23MY7nNC4xhzGsYgEzWMYoOtGBJZziAm3oxi6u0YRZdOFB9Xd5/bxy9uNN1R/iHE9oxwFGVJ7EE6q/IvpwpuKSF8YUyjsm1PdjDGIH8xjHN/N2VZ0QrlRfMl8FP+TvUfbWQtmvV+WP0Iqyxyb2cKLmkvuSnBv4JG5wthj//XhUHYnLXuS9ZO42yn/TxwBuVV0z3unj8fq/r45fG7vv2Q==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA8AAAAAAAAAA=eF5d0r2OgUEUxnHxsVgSiSDCxlcoiFAJhcJXrXQhbsA1aJRbbUXiAqglNEQlUSglawUhYUOIwv8UTvXLc2bmnZkzb7y3z0+CibINK2hBB4bwE93oxA88dV/+op96Dav4x/gOw9SLOKNuV99tkX3Yof5N/if/kLfkFLmAbTwwnibfuu/7RagbsN57v9dDrfdgFo14ZV5U9cuLObwwL6H6K+caY1LtL+vK1DfkI0q/5uQm3vGLcZe6r6yX+63JJXV+6VNGnXuk3lH6M6S+IK/IZrV/AOVdr+o8JpS+TtX/dCY31HeW2McBWpkXwyf8gGERAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAngAAAAAAAAA=eF6FkjEOwjAQBH8ABRFYDk5CIEHiE/yQZ9DxQhqanWYklGqk3fOe7+z+s3+9h++zhYfwHI7hHE7hEBbpkLwa9uFJPjlH9akiuUX6qvPU7VRHP/p3Ok/uTfed5bOXRf4k33lVPnOP8ot06r1f74F69nCR3nT+oTn/3e8qnXn9fv4H6Pewk06d3w3St4n4zLf1f/wPnUO990XuD2zmU44=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAABQMAAAAAAAA=eF5d1HtIk1EcxvFhNrxkiUYRlhiTEm1iWWmO3DIC07yUiimChg3JtBTFZtBWSjgSQYKVhoimkobOmMU2VHaUGooUFl7CG8WyVqmVoUWKi/c85wxq/332vnsv33N+E4n+/aToVGEvpJsV3MXMBcYTcnVMFOHf5zPvlQrH5+X8+yMnBa84ndD0dOjRc4fT/PoeOdkOzz2rlrPMdqVgMUlg3q+tcgzpvEkcc2KGcHwHiWUuC45wJLb6kRjmILVwfgBRMPsWl2jyMyTkFHPJReH3+5yeSI/XdL0LIvHMx+KF64WQVOYH0RLN97xQksG8USdcP4zkMhc13LDU/zpICpi/NQn3Cyf5zIVtl+Sy3sPO40sdwv2PkjLmK/o0y4w6gtxkXjAIzxNJ1g49o714b7NXOe3JPRtVTntf/m89xFb8nrt5DNfnltlwf+7pH3g+bpWolD4/985tavp+3O27tfT9uVcUgbQP9/3YSNqPOzr5DO3LbUvPof25tdmldH24e1K0dP24K6oj6fpyN1zNoevPbaDneztdR4+Lnb5LvWpJkWF/PgmBb52GQ6U4vyMdHg3A9SaVsHsw7repFD4ejucJroCT/fG8ylr4swTv09oIi/3wvjOdcKAPerj0wgp39JINw1ki9CyahPvXsN/q5+GCZey39z/he3bst60u2A+WOaxnsjf8dQzr3eIP+45gP4wegOUD2C/TCSq6v15/wjxePw+TL5hH/1x4YRHz2FcIl33APGap4PUpzKNHJbxkxzz21MBJdszjuTpYOod53HgIu41hHvVd8MdhzGOmCbZaMI8bg+x5p9BH/xIeHEefC29hwyj6uNngthH0ebwI66zok/cbvj2APj6bMG/X+tDHtR3/X0st6KPvhlPb0UdphD170cfLAtsa0cdshU0V6FP4Cq7uQZ/ACbi7E33GZ+GkZvTRzcPLOvTJXIRr76CP7wocpkGfoXXYbkafGlf8n+wyo0/aFviNCX1ct8NVJvTp94MVJvSplMB/jOgTFwIbjOjzF/GTuiE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAfwUAAAAAAAA=eF5llntQlGUUxlsG0LxfR1tNQzFjwiw0qen1AmEioKKFXPJWggmGiCIrpiIgiMhtARdSW5Z2gV0uu1wUEV8RwVYTvAA6kjcYccDJkhAwQ7H+Oc/XzOufv3m+9/Kd85xz3txmo/HepDMLt3vMXRJw9fo5HfHgb8cen/xoA9MQB5OeR9wR3Bfz1foslkocQfolYlUQ/7Hm/AleSRxOOtjzTQvZPJsjXE8cQjr49j1FaJV6LQOHCnrRF+u+fipX8GzircL9LiVs2e/dH8N/Eu6fTyxz8PxzVnc6+1lYD678a3fvu52xzCDo0nkdoYFOZi0vI/6edMRr7fC5J6PKNaxc0HMQb+fGele7CJZOvIn0LMRnXq/V/DO5PJk4SNBXD79R77cklYO3kX6c2Lv95MimfVquEfbH+a6dU34LqCllGYKO+B4MstFF5hv4aeIfSC8h3tDjO/TF3SB+jnifoKcN9W9wCM1htfhf0jmxVZbytMxjP6sj3kP6ReJ3kiuV+2bsYlcF/QJx/ytD24TiU9L5h0nHfmsvjzg2wuUk6yJOJv0m8cpA5yCf5vO8hRj+bSWOtzV3e8TVSvnNIP028WZ+bZerzSn2iDhRWN/nM7F1vEnP7hIfJb2a+BNNymTHajN/RZxFOrijh/v07VSzl8Rq0l8QP16hCg5cVspQb3Gk/0o8rExXMedKIy8ljhXyY6ecOK4hwMRriHcJ99PVO7o/+/wERz0gf+CkdPmmDRalHPuhPo3EvXErruc90jLUI+qvgLhrQqisJ1vDdMJ67D/LrXpddLSWGYXzwc/dV42VjyrnxcTwJ/53QeuMwYeGZDDUA+oPbKj+Zlh2XQRLJF5POuptkf/htjtGT6YS1qNepmvyx64cZ2Kov81CfdpPrlXbt6YwNfFW4fyI7rymazdUUnyxv5bYaeCh1YPANIZ+hf6I+Fk9LYyYmhsn6ah/xFvvmZgUcGuzFF/EH7xmY19dUex+qT+I8fGt9Tt6+X4ezxB0xCPMy7Lj08i9Uv/YSPoRYq9pCS1hCf/HH/0L82KPe06FvFvFtML+uM+OJw3xyz9MYkcFHfk3NikOpso00nr0r0LieWMK7LoSiqX5Av/kEsvfyqw69CyWmYT44XvnrAzLFZMyWJmgFxErG13fXvRRvqTvFtb7ZuoWnJ1SwM8Ti/WladQ/tj2TxNEfw0jHvFjeq7dZMqyYVxHvJR39saj435mzZxp4GzH6H/rDk+3vr9G5qFmHsF7SXRxNs1YbOOIRLNz/ZZni7NLYeI55Af8hP1tdDow78DTiNf/Azxbrfdx6lNEcfvEnHfNOk/TdePsdOn6MWPRPcKRvmsyczuEfsX60vq6RHl7pkr+Qf/jbfz7LXm7yk84X52NLV0uYu2X8a/0B/xNu0nYbrXNYBbFCqL+Wyqvto/7QSf0J+QU73JS/4VuYKL1fkF/0ywZ7XUWmOluaj7gf/GT94MuFzYtVrJ4Y8xXfL22vNndpSvhl4ihBd1rmYV3lVSDNR+wPPyWPDOmeNsSfgY+Tfp84yC4yup8VM8zLGNLbiV0sp452Ti+X/IP44X9HF1nY9mVGS+8r1D/4vZK7o2cvOvSaf8A+bSkJTmEpPF9Yj/4aH/V81aAbClYo6OgXWwoWJ00fks/TwILe4n5xfO+abVxJHEA6/PiBzLDF4bNoyZ+oD7wnQ8KdBtzk/lL/xnr0owsDnUMn1hdI+d8p5H+u29+/N3krOPqPOD9Tb7VOSDgVKvkL9Qv/mW2j9XO8S/gvxPAf8lnad/FO1aAyBn+gP5mJKx2bH17rP8FF/+E9oLdf0GvdVMjx/oJ/cZ6qPfXYET+tpMN/V4ifz/9nIDyqjt8hxvsL/Spk8JjOj2uU/D/6q+LyAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAADwYAAAAAAAA=eF5dlnlQFEcYxXdZ5FJAEFwOwY3gAosBYhBwZUZFo4iEqwgloiaEaDQoIkQ8kEtQEDwIIUQtE4koSjQVY4HZQmYE5RCIiIjIAi4eK4ch6HLfG6p8bZX719Sv3vde9/R8091uHA4n8YJ2mfn0s97QqmwZeOPq/IenXUqoDqVSmTDN/dPPB9P6M7CByFXbX2hAB6DeDf5osNB3qb3FuCntNPWu/ij8IrBjV+ju7WdE9GzUq8GvC+4N3xtlVfCAcQQbQXcGR/pWS73t31BDmM8Y8vvAVYMTv1j0KZjNqDeEfyG4fOKUwO3HMcYHbAB9Bfgn691W0c9GqW6VfG3oGrKKbP6YLnsdugx6CVhgquuZuGWIigfXQE8BhzZnyXlRRqwm8rgYvwm6zhfBAZE6PHYT9MXQ7cG5X+kHzunnsuEq60/q28pyw53kxrQQeSzG3wEWHy9IevN8gnIAS6ATLs7VzI5/pcceQp4d8g+AM74P/nVGshlL5jsbegs4//fO6wmdE1Qw+A/k0+C28YSZbU8GmCrwf9BLwUaVtSMvr+rQgeBK6ITzNqdzvlxuxQ5gPgkYXw4+u++wF+cvO3oJ2Aw6Wa9/6T09JectWB7y9iN/AP25rnrJzkcrjVkf7rv6AvjF4NVGVnJOYA91jbwP/BdI3ifeYSfG9ei9au/qlfAXgiMs5w8bb3Nk3TEf0l+k/8QObHFXjjVbgLwJ6KTfLH0MV270MqcbUO+F/EqwebVLXDSrTjeDU6HLyPs/XHrN08iGzkHeY+SfBSsC8kr2NPBZ8n8I4fcDH34xN8RAR8Bmob5Fxb820XeyyE9BHQE/gB4LLqn1l2510WPjkSdC/hFwykV+t0Q8hyb91At/A3h7TeflFjtdtg71wfDXgItCPVpL3WXUN2ABdMJv7+flG7rdY6yRV4r8heDMepfhK7qNTCTqHeDfDfZY7z/wcc8AZQaeCd0SvMIvydbWso2yBs+DbgsuXisWWZi0MDPA5Psagoe3dSjC5GPUMObTB52w8JFg5GDkK4r0jynyl4IDDmzNL8qsZkZQPwL/KHi88FRVWE8jNQ/1uvCLyPtNibtjpPpsHNgFOvlefk0Vw881UplbyHuGfAl48FvRDyaX31IxqF+k4vfIuspKqwzoIuWH/38Z6W/J11GzspUUB/UK6D3Qd9ose3pyXjcVBy6ETlgzbTRz7Z4pJhN+Z4x/GszU/l2e1qZgplTWh6x/ZGn/OS6/g1FXyZ8FThFkbxg/psaS/SYI+S/An8Vm8P9JXcBOoL4D/qfgNxbtI8dSxxhyHtRBPwhOvBe1oGxSm56LPB3km4L9V9++c6dmlCL/yxD8QeBmjtklQ28uvQ37mSt0Z7BthVRyvteGlmG8Huit4AiHUc6q8buUK/JMML4YbC50XW+ap2DIeaoNfQE4VOwdHSUdYFjkdSG/AhxZn8/7s1GLPQ1ugn4eHNIwp1Xj6Qi1CnlWyCdcnhPsaGrWRV1EfQP8hDfFnomLaJcyt0i/wv8EfGONVsYymSEdgPpm+D3BLUUbRoUF3Pffj7zfJPi4bVXU64gZtDFZD+hW4L5cYXL9Yi16v4oeBrb0SU/zPWHCnkNeCcb/GawXIlz3qXz2+/2V/F/J4PsB6Vfti3g02U9Jf6WDBYeM9hV/VMU8AtdC52N8b1GnJLBSg3XAeVaO+YnA82t4tk17BXQv/OR8k4NzYkw+X95tz6reD9tI/a46ScyWUaoR/Fr54f6tVejkmmU5xFhgPnoYn6ynU7veXONdkwy5T72E/x64nkeVbVzYTJH7B+lfcl9bvGhkhaRGnSX7N9l/toC394W1ylMGmUrlh/15E6xz7NX4msFhyp98L/jXgx3Nn3dxhf0MOS8K4Cf3nXM37Y7rz+TS5Pwk+78XOPv+65bbSW8pNdIv8GuANaNDjAQyHq0E74BfHd/HM35JhLuPPkv6nZy/GeCT/MeFzqZ8OhN8F3oaWP1m0rXYdgVD6q9AJ/fVDf2y724wYwyD/SIJeju5zwd5lEjvaNJBqCf/z1Gwx2+Bu9wlNuwlzJ/sv4TroqXh1FYN9n/fDCk1AQAAAAAAAAAAgAAAAAAAADABAAAAAAAADQAAAAAAAAA=eF5jYBgFpAAAATAAAQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAIwIAAAAAAAA=eF5d1F9oTnEcx/GDZ//QjIWsZfOssQv/XXA5hZQbJUspKbL8aUpKuUCulD93SpKLmVrc+HuhllJoKW2N8t9Ga6yWjba1pnk8J6+fnZ2rd593n9/393vO75ynOIqiznk1TyryPNNc8p9l/Dp5Bf7M5XIded+d5+l8/oRZ/a16m7CUXyOvwnI+K1fhXL48kWNO2Lc0MTfmMP/VOXrwPf9d7sNK88P5AjP8Z73Aj+ZclQN36S+d9m99LT7VP6x3EHv5ZjnwG1/oHAU4mDp/L17hK+QFONt56qyvTv2uEnlG6jmvl1diIV+WOs+YfUftN4KRfpj7h5/JL+Tn4GJ+v7wHw3Nos/4BVulv09uCdfx2eTO+Meeh9TfwA39ZvoTLzGmx/jy+1b+pdxFf8PvkvVhvziPrr0VT34djequxVv+kXhP+1h/XG8JffH/qfQjPeUk0ea/h+4h9+K4q8bE5B6zfidP1I73h1PyiaPL9iDlgzrPUffXwIbdiF39BPoej/IAc3vcG+/bZrwvD/89gYm7MNv6sfAJ/5Kbe43XsT825hWvte8d+R3ADH+5pNzbyObkHw/NcJE+YX8DX8LNw3Hky8ph+8MUp/4q/K7fgSOp5vsMi+85P3F/sl/On+B2J83Yk+mHfIb5Tvo3hfcsk1se+nm/nw/fRak5Wrxq7+Xty+L99zYf7bsfI/C/yS7yv3yQ34HM+vH9HcaM5x53vEP4FC7x+dA==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAANQIAAAAAAAA=eF5jYEAGH+wZsAL6ifu3L/7F13ZrD7HqpSI/7n+9/akNuviWivL0f/6XMcyJyLlR+HHOQwz1cruZ7Z33XscQv/Mx59Dr8McY4vt/T2qYxPARQ9wuMvWqWzKm+l03k0W3Xn+N4Z7Kc50c/MmY4qvu36l/+/Iqhnh2fcNXPZsXGOajAsLi7Ll9vSsq7mKY4//J7uXtM7cwxJv2z1Bb/HYvhnuEmLav3LT+BYa4dN9d9+rPFzHE16+TPK2fdglD3N+ba963vicY4isf9Gv+CcQMB1SAEL/o22/I13gbQz2TwfmZTAwXMfz19MCkL+EWxzDU217vX2Op8xxDXNaM750221sMc24tbGL4qnoFQ31URZfJn8OY/pJ/VncoJP8A0f6ilvgM7m9XMt9eoTj9zDso2cCceg3D/fw1NU55WbcxzG9ZLmGcXYUZ76WLA1k2sh7BEBdm4Y9vXHoKMx41rktaBr7EMN/ygKVY5ruTGOKRH/jvLVuEmQ5RAUJcvTHvi/x6zPLh/9qXuWtlMPNLvi/v/qds34kOT5EtizZxFx3HcM8xd7Y1F1MvY5izVOrQ8sdamOkWFSDEn/8KVjlZi+n+74u4HNKnYYaPk3GewmEXTHFxBy2vCIZ7GO5UurLx4JT4fRjqX4vM2K15DDNdZbmG+zxJxyyfUQFCvH9Gxjk5cczyMH7WvGWK3O8xzOFxvLKUd+cDDPVWe8vYprViimsw9zw2vP8Gw5wPPw441P3EDAcAe6RGkw==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAXgEAAAAAAAA=eF5jYACBD/YMRAFc6giJk2r+B3v/9sW/+Npu2WCXRwcf7KUiP+5/vf3pHuzyCHUwOiLnRuHHOQ/R1H+wl9vNbO+89zqG+J2POYdehz8m2ny7yNSrbsno6j/Y77qZLLr1+ms0f6EDwuGZXd/wVc/mBYb5mHqwAULm01r8g/36dZKn9dMuYcSvvzfXvG99TygMH1LFP9g/PTDpS7jFMQz32F7vX2Op8xxDXNaM750221uM8L+1sInhq+oVDPVRFV0mfw5T6i9C8sSKowNC+qlnTstyCePsKvR4x61emIU/vnHpKYzwZNK4LmkZ+BIj/C0PWIplvjtJZD6llvgH+3xf3v1P2b4TmR8/2ItsWbSJu+g4keFAqvgH++e/glVO1mKWb98XcTmkT0MPnw/2TsZ5Codd6B1uuMQ/2PfPyDgnJ45eTn6wj581b5ki93sM9/M4XlnKu/MB1cMTAE2JyYY=AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAegEAAAAAAAA=eF5jYMAGPtij0rjkiRVHB4TMRwek2ocwf0tFefo//8s22NWhqydV/IP9/t+TGiYxfNyDXR26elziH+wrz3Vy8Ce/RnPnB/tV9+/Uv315lUL345Znz+3rXVFxF839H+z9P9m9vH3mFoZ40/4Zaovf7sVwpxDT9pWb1r/AEJfuu+te/fkixe5f+aBf808gejjg1nfRt9+Qr/E2hnomg/MzmRguUhhf1BL/YC//rO5QSP4BIv2FDgiZj0v8g/0M7m9XMt9ewYhfTD3YAMKceQclG5hTr2G4n7+mxikv6zaR4fzBvnRxIMtG1iMUphNc4h/sIz/w31u2CD0d4tan3pj3RX79Q4zw+b/2Ze5aGfT8gg4IuQeX+Af7Y+5say6mXsawd6nUoeWPtdDTLanxRar4B3txBy2vCIZ7GOGmdGXjwSnx+zDc81pkxm7NY5jpKss13OdJ+lO6u99qbxnbtNYHGO7XYO55bHj/DYZ7Pvw44FD38yRcHACOVdfzAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_output_ts_99_t_0.484339.vtu b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_output_ts_99_t_0.484339.vtu new file mode 100644 index 0000000000000000000000000000000000000000..b7c5c75b5bd8a3fe6d32b37ab5e2d7a439423e70 --- /dev/null +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_original_output_ts_99_t_0.484339.vtu @@ -0,0 +1,42 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="97" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="160" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="304" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="252" /> + </FieldData> + <Piece NumberOfPoints="100" NumberOfCells="76" > + <PointData> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0028332163372" RangeMax="0.0028332163372" offset="5852" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.027590581944" RangeMax="0.027590581944" offset="7868" /> + <DataArray type="Float64" Name="MaterialForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="8172" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="4.8679340773e-09" RangeMax="295534165.26" offset="8252" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.024128996195" RangeMax="-0.024128996195" offset="9188" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="369624.8051" RangeMax="369624.8051" offset="9488" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="1.7406358565" RangeMax="1.7406358565" offset="9760" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="2.9126417081" offset="9968" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.029251228449" RangeMax="0.029251228449" offset="11056" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="13068" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="15048" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="15112" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="15736" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="16472" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="17064" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="17428" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="18524" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="19064" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="19332" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAGEAAAAAAAAAVwAAAAAAAAA=eF5VjDEKgDAMAP+S2Umc+hWREDVKhiQlrYOU/t2ujncH10Cs8h1UxQ2zD0KKoLdAWtsvepwckOYJjJQhQZFbCSXDMI/uHOgXHq7Zja2OwdK3/gELTCQsAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Y1NDA10U03TzMzMkwyTNJLySwqqQQAUGcHCg==AQAAAAAAAAAAgAAAAAAAAAAmAAAAAAAARRAAAAAAAAA=eF51mnlUT2sXx3/NA9FcGlQqKUpofp1jDNeUa7rCfXPNuoaLWzLcJGOGJFekJPMUEQl1ToPhzVA0m6KBZjRRobzvWu/+nrXu0+qv3/qsfYbn2c9+9v4++/xybQPctTpU0//3o7Rys2F6LnHanJhbufaPuSxiK7KDT9jPe3J4Ujn3lLn/GXGJ2SM/s4J07iFzP3iEgn+t34FX3GPifmR/QmzRbjDYMa5cer8d8/5TVrMzTbSzuBfEA8kOrtpavMa0sFIanw3ZwQFFRmcWjk8Vshk7np+YN2dcxMwHHMZjy4wv4P2W3t4j8qX7MX6wasgs05F+r7hM5vngr7ljo2RLiyX/9GX8o5mZenh+3wxp/OzzTx9fa515+ZnwH2JLsoNnOERsKYjOFl4SD2L883dounzxqSohhdia7ALx+JDBnvNrS4XnzPzBd4LmlOrY13A5xAPIDo7v19Ok/6sWIc32n+ufShx0v84hQ61KuM/Ywaqmjb3n7YrniontyQ5ufbFGxXN4jVBF7Eh28Pp0r4sD+1QImK8DM/+ymLdvIlS+CWXM+MFGfnEHZYeVxffM88uJE0Oc4uIDGoQiZn3hn5zX3lEPx+cLTcQuZAeP8tHOXOjyXKgkHkx28Hy5PUUh2ecEkbg/2cEWla89yopruXTiPmQHv5+Znm5w8zNXwswPbLrDdfVStVTuAnFvsoM9Pd8pTxhcJ+Tb/nP9wYaP/1R+rKEuYr0Rn+A3YdFa59zyuArGf+C7Fxb1s1+mLrL+A0+U9UvKeC4n1jLzB19V9HsVn/GZi8F4yA62WPGxys5STTxMrEt28PXgsLLt/W4K2F/IL+DtFoMG1B9s5e4SY3/Bv38pFP+8YPg9Ts/u/8yTXZ/YYGmho0rlFkGV2I3s4O2vlbmEio+cAvG/yA62aflrirlVBZfM+Ac8d/Zi7xEJzYIhXT+c7ODiS+tT2rZ8FzbT9XpkBzsbXdQ2CS0XkO+xv8CWNSHjg+oahFZid7K3EYdFhxS+3KckIt6Rv7C/rvnXVth5KYm3sR5kv0N8//b5zaY9PwvtxK5kB6+yiTGqv6AutjHv/0r8zN1nf0zYN0GZ8a8KceDAdQ+O9JKJ1+l6Y7LfILbSUzwYcqOAw3gwfoz3ae+mOM/f26T8ivgFa93mxpk9VBDfEGN/IT91Pzr604mLBdxBYh2yhxNPzx7sbVT4tkv/J/fq1vZ1j4KIfIT8jfyzsDFhbZjyOw751JTs4PgFI5uzQrVF1Cu2vuoaLRp13eSrgOvZ/LI8arVz5AUFMZF5PvhQzrm1fiNfcOcZ/yJ/XC491XvqzhbuAHFPsoO3a6xds1GuiLtKbEZ2sFZsQKyjnTw/mdZzAtknEb8z7rDM+kmb30/XI77By1sSA50LW6T8hfnlEY943qDxLl2fX0msQXZw/W4TxXttBnwSsz7gnGJTmdmsnvwq4o51/7eDLV3zTFvyevKniZGfwAq3QvZNM5TnWf0Bvteo3Fdb957wpAv7LK8rUz/vThOgVxC/uD751cPzo+5tkOysvhlQ1+DWPf6EgHxtx/hHnFaoG3DomKRPoA+g15wahty2LC7ispn3g4sbPaJ/H31DeNTF/V5JRQ+a7zznEG+o/8ivwRbvugWYXZfyM/YX9oevU/I4m6+V0vwQ37j+Vwv5vVNmFHGYD9Zfql8T1rwZNuSegP2L/Q0+5bWj9eaZq8Jr5v3QU0Ob9i7/Xlcm6TtWv1nNcN5TFVrZSZ/dIzZzubdWfWuxpM+gX1H/sjR/WbVpaqLkP1tmfVd57+1rd/6LUNDF/MpOWa9YGCFyD5j7MV7d1EHOm2+0CtAD0Efgb32PXZIZNnJFzPPxvqcWFYG2qk1SfcL8oSdT/EZPrLtZLxQS2zP3rwn3CBvlcqLT+5E/i4+bj0zJbJD0wxCyI/85zv+yMET9PdfE2BuIx7rPmvXSspr7SIz68oG40bo9fFyNjD9JbET2WOL548yWvLJslfQtu/9K67019ZXbOdQLxDfyQ2HDgn6Bi2q5UmZ9EV/eJS5OixQUeHZ/Y3/o8rxnxKSrUn6FPrtG3DSl/6akhkNSfKG+Qj+f2PHD/35QgbS/MD7EX/CAD427PGX8LmJNsiM/z2x872r3rFaoJ4Z+rSNWPyOcLD6nIMJ/GB/Gm3B5b+jUwW85vA/7E3rKt7tZvPrJegH13ZnsWM88+7/a4va3CFgv1L9qYnH063nlT2U89DLiC/VybtLSq/4e+Z38j/g60BTx9eVXGX+cWJvs0cTPHvSt7TDR4KuZ9+M8MH2P4uoHn7rzOczzkX+ypr+qSvHR4jWoXkG/dCM23LrOZfYfBjz0E/YXWF4r6+iPTE1el64fTXYL4sbWZVnmwSo89jv8i/3lIm8rZ2NdyanR9RzZNYk7VjzKjvRO5d7S9dg/WF9fz2StDBsFvqv8YHVpVven3jVSfmbPP9qn17vzFj8E+JvVR5sGxUUGDdUU2fNvBrGG15ugakeZiHyC800c8X8SdL3yr7Zz+czzsT8roq4v8b1RJkQR9yJ7GLFehuN627ZuPHv+QL61GdE3dGOuAv/N9p/r10H8vehhW0fSHc6Y/PkT2bFe5k9bp5mel+NdGf3iTpzsrjW08kAbF0LPgz6AfpnusPy3SY0dXFfn54ioQdvSFJT4bcTqZMd+jv/k9zbYUZOHvoV+Q766XjoxLPi4Og//oz6hXnj6J0fOW1vCCcz7ke+XL4kKiW1SFO1pPpPJ3p9Ytt7kpEy+vVP+Okfsc3TMT598qjisjwHZkX8H3TD32edjLAbT834n+yHsn0sel89+MBKX0PVyZPclHno6u8jM2kREfkT+g354Fu3crfKbTGT1C/SEdZAQeDMmlUM8wD/wV+GQ8AEa0UKX+uq2ut6MzCupHPphbP9maMC0tCOz7nS6H3bF0m0Tppc96qSfUC/8V/TxenDkhKQPWf13uOxC/TT9MwLWE+uH+u/Rw/bLqpPXJX2E+8Eukap9dD7lcOz+R754prdkwtN/f+CgX5B/oZcUN6bMbn6S0an/hvmucq5yvjX5IfeauR/P06uOKry0LJ7DerH6ruW21tlz9/M69XeQf8Z6O8ZWWJdw74iRX1EPmqv9X7YVv5XyV39mfBe5jdcWxLyX9DFrj+42Kq/duUwaP5v/UmKNP8/TDZL2D+IH+y/R98Gfoa4l0vrA/9C/Sx4NfFs0pli4TIz6Hk+87ejx0JiUmC7r2yAPL4vPX+s79d9Qj+UO5dgt+pYn9Teh/xGvuglZYwbnPhPY/o3UD9txRe23vNccWx/Rn1m3P2i1e/n3Tv6FP+deuz7wxfbPkv7F+kEvWnnsaUgdkCfpS4wf58/tCae3FKrIRMwP/oe/Ry7cOPLu1CYBehH6AvpL3s0nLqJDWUT/YCjZZcQzlt5dGfzmu6RPoB/RD/GbFHzHbJiCiHrJ9rdmLfZsLhmlKGL+7PlI4bvPWKc/ZSLqGc6/WO/UtAXZp/a1CheJzcmeQJx4I+7Jo7PNAvQt9Bn02m9Ppulk18lLz0f8oB8ys9/MpvIfciL2F9Yf8due7Sl0m94iYL2dyA59NT9sfErv79lCKLEW2f8mfh0/zLLtiJoYzdgjiP890niNR7VMRL+Gra+qiSVfvObkCGD4H/2fcGPvp6s7ygXsF7Y+3QgzDTddXcOx40c+KHmaGbnJV1GEnoZ/0X/w7qszpGnTO+ETMeIb7PJxTg+HZQp8DTH6t9gPa/nr8TEb1EX0e/TJDt48PbC7W4UWf4sY8YHzw6B3C9fveFnCsfEHfdy8zsfX5A89HvGO9YVeOlq6zElfUOYRL7rM/GySo9zczZSk97Px5Xhw7uWim6o88hPyF/S7zjG1/DRjOVGO1s+D7N/JHrbzef5CEwP+h+0/7ejvlTiWvgjM6SFCv2F9oF97fBiWH/epm8h+v0D9SXpfbR/mpdql/o1X028r8NcWcR5C/kH9s8qXU/VcniLVN+xfxMexUJ291Z7vJf2I+SOeVQoOBVSdkRePEeP8cIr40rZfl+3WrJDyN/pTl4iVyyNVB97qKTYSIz9hPxuHlu47fCifcyL/jif7QGKfGq03ehMNpfMJ4gPnoQVDo37dtKpOgF6Bf5D/d6kfuyM32ZDvSc8bRnacF27rGdt0NOhL/S/oD8RLvzHmBgvPa/KIN3PGrrB1ydUFcd15nD9tyQ79yt9oDRzWriT1v2BHfZgY4jkp3jtDqk/s9zs9s6ntZ83vdqovyGeLFjtMcdVOlPQX+3yDlXOVPl24LPkH+QPn76xesgolkyOdvs8hfoxzTboFKt3k2PdjPg/CFNWe8zkc4o/t/1gbJgcmfH/SSd/hfR1WL1Qu3nwgYDysfuo4pr2ydECFwPoP45niN3r0FKN06f5+zP3nQvN2qbwqEaAfkL8Q/9Xrk4rlduZL/RvMD+elFd/dJu5dnSvZ2f7YkONaGwbnve/UP3tF3PNa0kWn/QUc+30R94+InXLQIzKPw/XQh9j/sh5bfN0+Nkn9c7a/++Wo4CDbcEj6foP1RT5TMbA4PvFcg4DzJvv99M1X902jYnO5DOZ+rH/SE9U3w8NLpe/PrH7dHVi8UdmvrlP9vkL8t5qT77ATedL3b4wf8brY5GX4addSgdU3iJ/oHkVJF90+csgnOF8hv5/1X7TkL9MKAfUe9eEm8ZLZ9WanY8uk/r81M/8Q77OWJsPqpP6uHTO/gxtKfRN+Uu7Uv8L+MrSqmnnhSiWH8xy+D8Af9k01FVvqijjkD+wv7IdBNoOjX0RpSPXNhhnfm9TMhmXeWtL5Fvdjff844HUra6wSD/+hf4D9dd1b6edjiSo88jvGd4JYfULPhief66X+J+IX8R4+P9Zryz0FEfkW+gv9queOy3dPWZHf5f8XatxG6hwYqSbiexTiA/p+6npV1bQBWiLyMfQR6mfRnlW79/duE9BPwvdDfF9s3tndYdcRXUkfY/2hnw20f8jNXqoh9qXrR5DdlPh8QqFV2ApFkf3+Ce6jp7N0TPY76fsK5od40LLWCYpNapXOJ9D3YJdZrpFr+nd06i8jvhI/LX086lYjB39gfcAf8yZtHL5Vnmf1K8bjeE5LMzziubCPGPUZerU65LCVv3ybgH4L23+J21I+rYe7ptQfwPojv6q4zm22zFYV8X0P/SUwr+ilFzz2i7T/oO/h/19yj6T+Me+1lN+gP+CfZIfIjolpTVwPZn3xfVfzaMHJX64a8MjXbH90186aDheHH9L/J9DfQ7xOX1bbwzVNm/chVib7cmIl/QjdW5NqucXE3ci+mnhfoL5qQbIhj/Fj/XD+uWhc6HLpkAYfSIz+MvpTY7WOZgZUq/E4T7DnS6UDLuNrjsp4O5qvJ9nRv+zt7HymuIcyj34/9ONn4rTbK3/2DVXmrZj4hj/bswfWb9qlJOlPW2Z9pohRob0zVCX9aMTYNRdnqsw11xKhn6Bvv5Ddyrhao2mxgoh8jfwDfTS5IuzvlhQN6fmwg0+1GhseyzES2fM59KptQMDFR3N6ib8Qo/81g3hC/3UGl3vpi9OIVci+gPhZYcDQcfIvuf8CcrTz+w==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAxQUAAAAAAAA=eF5llnlUDVgcx6eypZDnlGxJyyS0SLub0pRpTJZHJPWiTu+dqChtJlOWYybjNJZB0mSImCWDaBxylUxT0eJVtO8zUiMmZdcwf/j+3jnd+fNzvvf+7r2/+/397h3TUFOz+bqXa83UAc/O7fKCnvoPnJb6VlLkZsCmQm+Hrg5OP1I6skpqyqwbP3Ap9FzozmsNxxic285GgpuhdyK+5MIez72usWwQXAvdFONlHt79bXlGfIQwXx+8VdrofiF+lmp/1dDfI15SZlr84AwHNgy6Uti/MuBKs9VCR/YG4+9C14EePKz1iOOPC7gE3AjdEByxwVK74iNfri3o7Yg3rHHprejwZar170FXA7PZJz3n1QbzKCH/AeBc57Ibk6xNGa1P558M1vdt6tWRG/Ldgr4UrGv1sf+Egs/Y39hPB/Rq8IwQdZ1INTnLB1dAzwJbZnwbnpWRxIMQrwX6cfAO79t9R7d68mph/u/guSb7Mr13BbCLGN8G/Qdwv6WH+lG/MD4KXA69H/P1ZZsVq++EsLr6ofk9C04tUTtrn5PI1gn5l4KLV/qP22gQwxyF+80G9yREPU4rSeAZGN8EvRJsZlQd3Vq8g3cK65eDx3rJ1pl3x/IYjCf/e4O79CzmHTCPYqOE/Dyo+8DO0ScMLN3j+UXoldDPgwMu1bxskuxkwcL9hoLnxOZ9v+tUJHsr7O8j6JEOsWem2ARxqo8+6FSPWvmZ9/fLo/hocL3gT8n+/C+VzxSc/ED+PUX7m2toofH1Vm4s7G8m+KvAGbaJ19bwMeBW6OTnxxd4zq2YFew+4t2B/id4hF1gd9KaKNYv6EXg5VmLK65Yx/KdiPcAegJ4S3qJVZbPUtZdP/R+68FVdq8mlilWciW4RLjfA4s8/SNnbuIGiFcFnfpHyslDNYqwQGYDpv5lSeebHjj9xDsvVX7/gk73cVHTpUrp5KDqL9S/iG++nCRNT2CM+h+dX5Pq57B6QO/gckbx70Onfupy0Hhfi9KNTYBO/U8PXLY61y65VF+l0/1SPInjw9z4X2z4AOJR/ZO/UvIWH18x0Z1TPqh//YPxtQX+SomNK6d+1QndCFykFnTXZZY70xPmE1tkF6YbBvuwFsF/r8E7ZEFXZn+ygoVjfB10GdixvTvgtVEkJ3+RP2vATiatnRNuKHguuBj6TfDRw4WBxb8GMhfhfi3AmWH6XubzZf/rTzRf7lfYunleEJveMFQnPxX1HdOOqF/IFxBD3wRer5GYvVdjGhf9Rfl0jj4XoKhxYxFC/uLBbdtOp2rEefAvhPxso/hsVSmzsFfln/oj3a9ufKVZio8t1wWT/8mf+2zLjesinNkTnJf6x1joC0IvzT+/cTIbD64Q9N739n+4P/fgJg1D78ed1rt32SyUSzm9x1Qf5O/mgy/CHzI19hRM7wu953ldT/Zcdwlmz6jeob8Cu74JvXfnuj23FvIzjfLT2DlFo2Uuo/8GnY/eK22L5ZXm8iW8DPHof/QYrPtNidOj90GM8kn+pXrOlhp3yxzlqv8H9cda8NXyJRnnk9fwRsFfWph/1W6LQs98LaP/SJfgL520kI1aMitO9UP+oPdZOXDt0HeuMYzeN/ofvABLUyOuPVR6sx5h/XGIHzvfUFfTJ4SRH+n+aD/eaZ9nGK2yVNU/zR8Ojjnk1z5tw0xmJsz/F+vp/6Ze8HSWFu+ifgJdA+O718cdLD09nFE/pP5HfulYdPmnZJmfqr82Cedr7+vN8Mv05G7Qqb85gR+98P5Zr9qBP8d48gf9d4wGWJ7VwEI2p2Ho/uj8G9pScuQaK9kywb+x4JSkcR29u+M49QuqD3qPJraMX+/7qS9vF/LfCz6p5dgceSxK9f+g9ek9VGseKLypuUXlL/LfO/DoniXRiTuDGPFt6FQvNuMV8cX5YXy7EJ/q02TQlg3aRLFcIT7dr1vOmTh5Rwin/knvD+XDWrc5tTrZlP0HGgXe5g==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAwwAAAAAAAAA=eF5dkjsOgkAYhEXUIJDgO0bBwto76NW8B8fwLJ7AysLY+IgasXCm2K/6Msv8jx02qvb1YVdvm/LPo9jS+Uv6W4a+pAp9bTETp+Jd/o50Ki7EHL6x9Fm6Kz0U32VYd5KOpC9l2H8pFpi3EVc4H0LHVbi/7zsAZ8jBdc7Ndc7PvhR9vGcC+vtV9f0qpPvOcQ/7P/iPD+gY83rgCLnQ5/tMkFcBMqc1cmiwTw56nvtlqHfOT+TunPye3eeGd12g/gf04kvTAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBH/UMo/QoPUqP0qP0KE0CDQAVlyUIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAnQIAAAAAAAA=eF51km1IU1EYx8+XSsLeKOtDVqAQEhiTUoLwcFdBUZarVmxhZLHGisLrmjFS1k2XjYpYNjcczpZOtxTSdJH0crgjevmQMQgsgmDUilF9CL8Efcrt/s9276D75c/vef7Pc87znPtl5VbpdUU9G/ndE0gZWvSZD/0WT7UvsaKxzha8NqxvGAvl2CzUZjlRU719WfkNKy1b6s/6EyT36ej+4w9aYx0BvcICDb7McjTPq1w7j7hCD/U7Pmf7R1AnsvKPam6me16p2UkzTM1uViVrefablheXhlQsUXmJmgfopIYjRfkwS2vYx9JGNd9k/iE1e5ljTM0j1KJhkTZp+DFt1/Aga1Cz9IzlVI6yLatz++JzsL1Xx7P7BBvor7qJ7L4T5H3Ju9MLnUqd4Gbk7YmjyT+XFSZGSt7U3DUGzoINjKTO2BfETeAWSpJdM7vThwp53YbZ6QMW8HlKlru8bZWnwCcpKXF8rdh8gSq8bb7f9NOY+RjyVkpE08apNbzeQkmVfv26tW0FvzT3s/uvuXCedLi07Ek9zfeXqVGc2QduoqS59+Ci543g+XnkucqpH5vAOkbk0ej3TzrwLkaSL/wZQ23hPH5O7jPRIi6K26BWrU+S4LMjLhTVX4LvNpjv5yK4FeqB4n2kAHw9iPcpKvB4N3ydYBd8/D3s0FvIE0mRdvA9JS/3gc/xvlB+Dp9D5Ax1Qq9DRfiugPkeLWAHuBfK+4taf37ucJHaUDcEDSpxKYS6CHwdyEvID4LvQLsQHwZjbnmCz4M49kP6ocgLUdTHEedz8vk7oW70w/sTL5jvz/Ofen5P7Fca4PWYcxQcgzrQD/OE+Rx8rx4ovzf+I3IfytmH+XjfOPw4lySg/P7on3oExn2FSfjG6T/YPl7fAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAvgAAAAAAAAA=eF510j0KwkAQhuELeQ1baxGJICIqSQwaNcYk/iBBVKw9hVY2Nl7N5v2aD1I9sDs7OzO78atVtz/PX4oj/OIYYwwxwwSHti4n2Lfzd7zi3tZ1TvlPOMANdvCCa3zjwuq/4dk8Yo2V5ds29Jda/NzqjqwO399hiSuLV5+6f2Z1lxanOeTYs/70DoHlW5qal+rIG9S7KP8DNQ/1d0DNX/lVb2Lr+ieav88vs/jC4gtT90QWN0X9X/3HLv4Bxvefig==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAqgAAAAAAAAA=eF6FkjsOwkAMBS9AzVloOQslh+EWSHyUhBCSACFSGkTFmWjeNCNFVCM/v117124X29Vmt1w/w1P4DbuwDpvwHlbK9/KhX6Xje4RnxaU4hBf5jsrT/ye8hUU4he9w1H2wVf+18v0fH7rro/vfXjPnGpF7qF8pP0g/hJ1iWMpPXc8TnT3xHIknnec97Muo/CSf9wSdd3fKz/XBnlCH+oV8hfzMdx/+AIDlC6I=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAegAAAAAAAAA=eF6VkrsNgDAMRLdhDYZIRD4O27EUBZOkock1TzohqifbZ58Vp23PvO65x2JfTIsD9QFdR76BylfEefEw/gVz6CdqbkJe8wvIfSr6Anrl3R7sd3WnO1F3vo7U04f+vIOrB+j25x7u/bLpd/q/5H8JE0v3dTfxBW7++ZQ=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADwMAAAAAAAA=eF5d1HtIU1EAx3Ff2EuzRFzZYw5Nl65UVEJLe1hqOSHwUU7LGDMrFdMwtIE6oXxlkKmNzMylVGAhQWog3JWipVCmFTNcaFao+GiI8zGkvOd3zqD232f3dc73nHstLP79eW9RtuYOPDnIXC6A1/rVl4VJ12jZ/3bUi3XXVo+XmM+fauOtNrtfMlzytU5jdhC9f/XU1vbSB51cKHWfgfcgF0UtGPOoep+h5w5R3/vFHx/j4qmbE109JDfGuRPUso/8+dNcNrW82VnV7mXgIqkLf/PXz3GbqBsCdszKHI3cDJ3f61z+fouckfpbh9uZlaVlboF6xcJz9f4r3G56fWq8V1/96B9OSq37wj/PUiukVhaptzcorLRsvMK9LqvPt9a6U3cO1cZk62y0KmrFdX48tlrHIvRaT/tGNSpJzw3Ucp2S9Lb7bz2SanA9c7MJ92c2ncPzmaO7MT7mWm8BGT+zTuRN5sd8fxLzZ3bSuJM+zOUJItKP2XbzTtKXOf+tC+nPPF8gIOvDHCkVk/Vj/lElIuvLXKh3IevPvI+crzf7Kjk+aHYmcSdX8xz7M7ABTuLgcg3OX/4Azxg8yf3aRuCeejwv3QBXh2M8S5boXzHtScb70BF2iMJ8DrjB+ZWYb5M/PD2E/eZ/FJaJ0GtjHNx9AT1vp8D+Leg9nwObZrDfYovhNGesl50aPvUS6zn8GD4Wi/XOegX7zWE/mN7Bwkrsl6wuvK9WKegz2w/XpaJPsh5uvIs+Pydgezn6ZBrhiEW8j/bW2K8Dt9DnogO8xxl9erfBqiT08RXT8zXokxYA75rA+yg4DOf5oM+zaLg3B31cZbCwA326zsNBluiTfAVWNKJPTAFcEYE+b27CrZPoM6qGRyrQJ9EP72OvGH3GA+EXEvS5FAwnh6DPbCgc544+2WHwwlP0sYmEnXzRp0gKh4/iezV2ElZ5oM/pOLgjDX0+JcBzLehz/CwsMeJ71SOHFfvRpzgVPlKKPj7p8LopfK/KLsMZd9DHNQf+HIw+TXlwyHf0UeTDj0rR5y+BTOM+AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAwwUAAAAAAAA=eF5dlnlUzWkYxxk3pebEIFNIGTJpbHNpoddSN7nqaqMFV9po33VTkxY17SiyR9OIRphJMaN6UVlKnHJMrk4ay2QLR+lYsgzzh+9zz7m/Pz/nc+/7e99ne1/DW8nWNZfWLlzzh+E7mxsHzo8FiyJ2u5c8ncJmgoPgxeDVeReeOZwIYg+VX1gMrwCf+Ucx8rN9Cp918wuHwU8DX3I6G1CUlsFoPS94Y/CI22my8mYxXwReCz8H7PdyWeHFWkdmBvYR7K9WMty/6cpy5ibYvx2YZ2V29buImWo9eFdwR29Ywi97g3ipwK8H13WOqIyUxnMvcDi8HOyc8npZm2YoqwPHwSeDd+rpf6ixCOVBgvNvBBcmpafumu/H7DvUv18Gv1CXN5ac9OTj4UPhaT3tpKO7nbI3cH9wOrwRePuLQGPZpCh+DPmKgX8A7h1SXqFvvp0/VqrH/w448VV+SZXJQu6C9X6C/wh/5LKBmSxtFZtM8YC3Bds1mhjHtZlzir8/vA84oy/2sbNLMh8NjhXkt0Sjy01b4cF6wHL4VDALm5FucSmA5WI/gfCm8M3PZ1WYe+TyEPAC+FPgge4nKVtGRfM/8f/18C7g+4dGG4TU7OCdSvXzzQdr35zW6fTMn4nBaXR+1L++UlPTwKGQv6DzwhNv9VxwLN1qC5vdoR5fMeXb1GLo4cEFjPKhEOTn6q9uyY9Xb+IfKN+UH/B1E9G8v7oseaPg+/VgjwLH8OD2DbwF60XAEx8vvFuUfzOLW+D3GwT92f7R2u6uZDmbAo6i/gePnfj1o6fDoznViy/8ALiv0l0z9rMb07qlnr+hYK2u9pgy/xweBqb+jgC3vDc2OidLYlGC/RHPOVTUauu1jicJ9kdsVNVyqrPVnWeDN8ITH42fecv1QjhTgEPgiQ2byq5JqoO5DEz14wge1BM4R6clhFM/0PmJm986Fk21WsG+Ba+Gp/kcwmR57pP9GM1Hb4Hfn9EtStRwZDTPqL/swQGJ1zp45WJOTPNrKfhs1+b6kVkBqvlG8Yul+qkqf5q/Rao6fzR8FuV3UtqidwflbJsgPtSflQOifSPuGzHKX4Rg/dumD3+Tljqp4kf5CQVflr6vzdX3Z7PAK+C1wa/HNfydoJ3Gzwvq9w14gqjn8vgxwVxDsD+q1yev7eZv61vJrSle1H/gtm6XQRd2RLOpgvpox/rFEaX2ilJb7iyIXy04tSBTYvm9Fqd4ucO/BH8j33n+cL87v6dU/z71d9Gh6QWx+4O5boe6/xEsap1YMDAhnbUJ6uM5+DuTiiM+Ojmq+U3znepvQlPP78ZmDpzuO+o/uk/H1eu8mafhyVeBqf+k4ILWZvMHw6yZE3gdvCc4t7T71PTjc7mrYP04sES3Zm6vgSujfqT4FYBHFzna1MwNVNUP1V84mCduu1+t7cuGCPJL9TTb/FFKxm4/PgxM75MZ4AHlxZgUrWD+XnB/NIKrh38K78ixUd0PlP9B+P85w8X3qusi2Eml+vmt4KfoH5SYFyewfHA8PL1nFLuaqjzGShnFk+5nmh9yxZ3IwASJav4nwW+Gz+jJ9w3LXKXqP5ovj/D7Bw06DaMKs5kIPhtehPppTn5Zt880lXFBfK+BTzgvafvBUsGXgOn9RfPoRX31ia909VTvL5o/K8FlP7dbVDQt43lger/QvLnS21/cfd1bVV+UH3pfabSIdT4NXsRonlD9BYCPnN6U9+azL/cWxG8T2KPZ0vbtaU92R7A+3R9m3v17PiYEcXqP0fyh90PfjDD5UukS1fuE3mea4PqrhWcUMXqM6oviQ/VkbCE77XUgR1U/wv623VP+Kqjdh58DR8J3gaOSiyIDxAq+huoBnvqtP33r3qOVmYzmKc13uv+m3Rsvt4qO4fQ9mp/z4G+M6w038Yrneh3q+6d8FB929fgvO4U50H7gfeEX5GSOCW2I4/vBnvAtYC0b+0Tlv87sf0RJibI=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAArAUAAAAAAAA=eF5tlntUznccx9ueLg8lFem2mRL1POnRVhrq+7BwXHLkNpYacUxFoy2nyzqJOMxarqvMkfsYnbYQqfX9kUrpptQqT2mkmyTd0yO1P3zezx+/7c/XeX+/v+/n+7m8v78qWfgs42FptkP4LJ3t0ebZfxO7f2uy+qDsJntE7CjS87dq20Z5pDMbYnXYe92V+PJXsU3fO5gp64g9aD94U5w8uyVzjLKcWE46eLtDmZN1ayYvI7YnvZR42Zxt1hE12axUtB/ry8tdIoqaHzLEi/griT8PaxU8X5ezAmJb0sFlRpvvZhU+4sWi8/H9MPVW4/iTHRz3UZCuwv0uLj3RF9rEqkTxgX0jo477r1TzY8TmpCcSO+2Z7OhXdYs9JLYjHWyfPXlOlncaP0FsRfp54rj0ewuWKxtZB/FnpPcTu/o716oyhplU/p5nkw5WpIZveCUxFX6m9cak7yZe5Gw3f8SjnuN7M0h/Q7zk4/7g+Km9LJzYkHSwX6a7y2CmREC9p4rq01kZNvrO8AgbInYTxWcbLD9jvNJUeVp0/6vE0sW9ZyzOGigZrV9I+iTi1Xf8ustCTIQAWq9L+ibEf17t+6G2ufBcdL8e3OfJ/TvzEscIccQmpB8njp5+JSHPUKoMovM2kv4DseqCDVMXjBVwn5mk6xJfd0z5IrrATHmKvjeBdHDd7Zipa3N0NPPlKpqvGcklloHmA7xelD9wvm/ulT6nUQL6Ff0B3sHjB/xOjXADioeRrk+srPCK6OoyErJoPfobXJyYWZGu7Obi/kd9TZx6i0ZdbGfNxJjPVuKu33e0r38gVT4V7QfrVt1oiWozEI4QTyQdPP9F2tFnxxtYH7GLqH6JK9buTk9q423ETqSD5Qe0zprd0BHgL/AH8BK1hzpf0sduE9uQDo4yT14a5/qUFxLDP8CSYAPF4/HFvIRYRjr8JqUopOR1aMV//OkBcZiD3qBRZIvGn+HfyG9s3bg2H1k1yxXFl0ecOaA/Zb9/GoOf4Xzw/m0b9zkM5PFGYmdR/o90bHkTaa7ij0Xno39c/3x5ydayRnM/O9H96mIO3K+cr2KIB/OfQ7xz5oplq0ZeafpjGumIh3n/5b28uZXB/zAf8IOrnur7Dot1BdQf84H6Z/yh2PDOUksYIIZ/Y/2a7m/O6e3rZ2nE1qRfI/aqkp61au5hvcSYXy2ajwkhSc735g4y1Hsy6fnE9joJnoaKGg6/NiI9gdjJ58LQucZr/JYoP5ivfWaBuVaBKob3Av4cT+z5qnJvcupzfpAY/gu2fWkWeHSwlqEe6C9w3NWAyBT9Yi7WUc+QiNf1racqGeqP+UX9Ux+HXu9V3GC4L+JHvac96vb0uv2E3yVGfwjEkpjI2AXFLzTny0Tnj/dZ5zaoOMjRH/Av9Mfm+PpVvQ8HWQ2x2H+U/ns/uGRRojkf83mP+Jfo0KS5i0tZkSg+zL+90YMtMdZNmvcP/thNvGtPdadhwCCrFu2HH87yb55u2DbE2lFv0vFeB2lbmK6Z3s3hh5+S3kDcsHBkYtDEHk1/oX8x7wVe7WGyjELeJdIR70d8rP13FfrKFmL0bxNx7A6F3DfnGcN7gfmrJa52X71rwH1Y0z+oL/LT9rZ2dlxAHtfkS6Rvs/AMXlSbwypE30d9fixcsXl0yh7eINoP/5nU09hxuuCw5v9PRjr+jyT/zJtzM6GLI15H0f79vj52HYee8lRi+CPmPTjgYlC0tFSTf/gf6rXG1EXLbYaKYR6niPrny3Iry9zYlwzzDH/6lVh+9K3bkjZDQS37//rvtDHTrTrWyfH/gfqjv1UnNwQfviIVYonHkf4T8nX58Dp1qlSJ/1/kD/14KOKTjXqBas37gfnGvBS9y+jT9pYI8BP8n8Jfk7JGz13/Qk8JP0V+0C/t6bM79YKH+HViM9KTiTvL+n/7euQW+xfCRFCIAQAAAAAAAAAAgAAAAAAAADABAAAAAAAADQAAAAAAAAA=eF5jYBgFpAAAATAAAQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAsQEAAAAAAAA=eF51lEtLVmEUhUeCNJMMbCCFpnY+TTQNVPAvOXbWtIkOnDgXHOQsCATzknlBxbviNVAKEywRBXEmDXwewQXfaLGec3jPPmvv/Tb2d1f0fayZXS/6u6vuKx+1BN/Eq2/ha/i14HlOE3wJr7bAD/BqK/wM/xtthm/h1XL1vILP4NU2+D+8+g6+h1f97n7wdvglXm2AT+En0aJM/bXwMbya31Wr4QN41ZwzB/kGfjXqsU8rwbejTuvJeZDvxPsd8Av8eeQzh/+O1sH19qsePoEfL57m/zfOt57DyO0D/A5/g9r3E/xxfNc+fkV74c9KD74CfQkf5b0R1HnO+XG/fuLNrzH6Yr/Mzb4uxzm5R+ZwFDnknnqOc7KAn4/6rfMozs9z3sOv8O6X/zWLN9fX0d+JOMf+/olzFvHqG7j3i/9h/adRv3wX79x6b9jvL2gX/Bbv/ORemEcB3wpu/eaV+dtv1fk0f+eziPpV58RcfkQ+0/hvZd6fiffN03usFHX63Dp/4d0/71v30+fl+m7+n/FqJ/wa773yHD6E/4T2wCvZz3u48+8c+N8v4MP4QfQ/6bTaOg==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAABgIAAAAAAAA=eF5jYEAGH+wZsALyxQWd5+blax61QRcvjZeb4rPvAob4vr2b196cdgNDPOxKeOeivhN70MXD99dcuc3xGEP9NGYv3eY7VzHEu1t+nz/gdgbDHNe+ZwcPvT+PoV7XfudrxxNPMMS36u3fpPXxIYY43+JEW96maxjiPY++GSdPfIohjgoQ4pyLV3joF77FcCfD8c8/53R8xRRHAdQXPzQpbqu9Pmb44FLvO+nOOqZnNzDc+YttXdHqqocY4hsvlxdz7TqJIZ513n1LxrorGPY+1MuymRV9AUN9h889651u3zHEWbLmxcW5P8UQj+f4bnRkyXUM84VrZ/KdcD6LoX7u3uPP7rFjun+HsmBf7uX3RMeLu2HAGnH/f0SH50CJT/U+Za0yCzPe+UXST8nfvochfmkCZ+G2sucY4tH3TYt/X8PMp/LvVuYkbH6EIa7sdv0V77fTGOJL10i+8qs8jxHOJW6LT/MGvMMQfxGZF3RlzTkM8QWJl/R3FdzCMN8x9LPc01TM/K7b8mftskeY5uvf6k2OWkL//Ni522OLxgTMchWXelziXUr5l7823MRwP4fqqYb9Zp8wxK3FPDPerMAs3/pYb/fwTv1MsXvUIyJ7Z83BLCftw5obSpIx3bN2qYCD+EJM8SDdO3+cS25hiIs8qLa5y/oJw/z6grkXb5j9wBAHAMBYNXo=AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAmgEAAAAAAAA=eF5jYACBD/YMWAH1xAWd5+blax7dgy5eGi83xWffBQzxfXs3r7057QaGeNiV8M5FfSds0MXD99dcuc3xGEP9NGYv3eY7VzHEu1t+nz/gdgbDHNe+ZwcPvT+Pph4dwPz5wX6r3v5NWh8fYpjPtzjRlrfpGoZ4z6NvxskTn2KIM2AFH+w5F6/w0C98i+FOhuOff87p+IopThQgFH+45Q9Nittqr48ePrjV+066s47p2Q0Md/5iW1e0uuohmjg6IOzOh3pZNrOiL2CY3+Fzz3qn23eKzReuncl3wvkshvlz9x5/do+dWPeTGi/UUk8tcXSAsJdfJP2U/O17GOnh0gTOwm1lz4nOR/LvVuYkbH6EYY6y2/VXvN9OY4gvXSP5yq/yPEa8lLgtPs0b8A5D/EVkXtCVNeeIjC9c4h/sdVv+rF32CNN8/Vu9yVFL0PMjOiA3vtABwpzO3R5bNCagl6u41NNa/IN9H+vtHt6pn4kuH3CJq0dE9s6ag15OYqrDL/7BPkj3zh/nklsY8SXyoNrmLusnguYDAFn775w=AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAA8AAAAAAAAAA=eF5jYMAGPthjFR6x4h/sde13vnY88WQPdnXo6gebOCF5QoBU/eSKf7DfeLm8mGvXSRt0+azz7lsy1l2hMPw/2LNkzYuLc3+KYX48x3ejI0uuU2z+DmXBvtzL79HMx63e3TBgjbj/PyLtHaj4+mA/1fuUtcqs80S6E5f4B/vo+6bFv689ptAcaol/sF+QeEl/V8EtNPd8sHcM/Sz3NJXS/E6t+CLVHELmYYp3KeVf/tpwEyNfcKieathv9glD3FrMM+PNimsUhg+p4h/s7cOaG0qSMd2zdqmAg/hCdHF0QNj8+oK5F2+Y/YD7CwACGqJEAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_199_t_1.000000.vtu b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_199_t_1.000000.vtu index f8115e71cc3f0fb05141fe19e3e86755504ccd3f..e8383e9a01460407a2dd2e984a235d52df2d382d 100644 --- a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_199_t_1.000000.vtu +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_199_t_1.000000.vtu @@ -2,42 +2,28 @@ <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> <UnstructuredGrid> <FieldData> - <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="97" format="appended" RangeMin="34" RangeMax="125" offset="0" /> - <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="160" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="304" format="appended" RangeMin="691971.82024" RangeMax="691971.82024" offset="252" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="19" format="appended" RangeMin="45" RangeMax="103" offset="0" /> </FieldData> <Piece NumberOfPoints="100" NumberOfCells="76" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0096591599687" RangeMax="0.0096591599687" offset="6312" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.28769504412" RangeMax="0.28769504412" offset="8388" /> - <DataArray type="Float64" Name="MaterialForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="8728" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="2.23578756e-08" RangeMax="460194236.37" offset="8808" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.050301979727" RangeMax="-0.050301979727" offset="9820" /> - <DataArray type="Float64" Name="Porosity" format="appended" RangeMin="0.40635753641" RangeMax="0.40635753641" offset="10172" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="691701.73346" RangeMax="691701.73346" offset="10456" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="1.6845156156" RangeMax="1.6845156156" offset="10796" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="25.746206129" offset="11072" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.29199784664" RangeMax="0.29199784664" offset="12140" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="691971.82024" RangeMax="691971.82024" offset="14132" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="691701.73346" RangeMax="691701.73346" offset="80" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="25.303183944" offset="464" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.28846163205" RangeMax="0.28846163205" offset="1552" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="691971.82024" RangeMax="691971.82024" offset="3556" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="16244" /> - <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="691971.82024" RangeMax="691971.82024" offset="16308" /> - <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="17088" /> - <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="17696" /> - <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="18148" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="18532" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="5696" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="19628" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="20168" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="20436" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="6792" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="7332" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="7600" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAGEAAAAAAAAAVwAAAAAAAAA=eF5VjDEKgDAMAP+S2Umc+hWREDVKhiQlrYOU/t2ujncH10Cs8h1UxQ2zD0KKoLdAWtsvepwckOYJjJQhQZFbCSXDMI/uHOgXHq7Zja2OwdK3/gELTCQsAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Q1NzXTTU9KNjAzSzU3MtNLySwqqQQAUzEHGg==AQAAAAAAAAAAgAAAAAAAAAAmAAAAAAAAnhEAAAAAAAA=eF5dmnlYj9n7xyuV9k2LSnsSkSiM5Tk0hFCoGUzIOmaSoklIKImxR7hopZSQQVNqLM8hkiip0KRUCKWUFlJSff1+8767Lh//uF69z/6c5z7vcz+f1p6enuAExazWb/8/0rLI+gBOa+dxgdOvCM/BDdCfgpV1Sra8XXhF7ABLfftX+E0n7jf2xvSx2m8EmW9/D/nG8tDlwO5+BbqNqk+EbpTvQvs94BiDDUp1OcViGbgRehVYw6Ji6vz0e+Jb8EfoxGbG2QEd7sVCX/TXB/2rgaPWXVkuY10l2oHVoQ8Fj7uQu3/E2BeCMrgH7RNn9Axx/XlEuagE7ov6imAtgx9ijvwQIrzAeJokxq8VFPxs2PlSYYBEfUvwJcNVWzfbtYo03i+oTyy3vDx2kl6e4AEegPq/gPfEet7yWLJBtADLQjcD19n1kc7UVmWdGA89H+KlAZOWPOuSYfT8m9F/BfjV7+PcdjQqsldgWh+an0q/aJuLE2SZJ/ozRfuLwUGbIv/p+0WZiSj/BvX/AdcmJm3Je/hK9AcXQF8PLrq7+rNcTYdI+0cB7TeDb92uzVvo0inMRn8G0GeC70SXKc452iVOAGtDdwTvO7/s6tq/+nLaPzQ/Wn8v4ayM2ovO3v3VDl0ebDV/lee8MVo8GuP5F/pp8I2l+67/OFebVaP8PPRfRf2NPdTtflyOqYNloNN+e1uj7Tp5XoOoD1aBbgAurt1lvVP5pegsMT9i+UGOoyJHlohDwIOgDwefiJmsEOQrzzl4EnQRnDZA+fIlzWoxAzwV+iVw9qhZWSXpzcJEsBz0H8GpzXphKuP68Pbu/9bjENZHBuvjUBk9c3qyLg8FP4O+FextYjcsP61KvAd+Cf0+2L31Q9yru1ZcFnwceg/6uy1f9jJ2jBGn8uXQC8CnSnxG3HPsx9dIjH8tOHPqBWd7Vib+i/Kkl4DrN+rnzFbT5OHgCrR/BDykgLV2GJqzaxL7Ox083OXxVs+fNNkYcDL00eDQirMx2XEaPBjjmYj+N4N1fbSOLrmsykzAn1Gf4k3CAO8zah9OiSHgoRL1FZL7rzULaBavgH+UeL4zXugbFd00YRRvzKAvAuu9FaOC5jeJ9LztoE8HJxe+uRVcaMgo/lJ8pv1XYaRW1KCkxyww3zsYvxV43SIzlb0nq8VScD504pd/l9S9MpVna8GZ0H3B6j5dbTn2GiwP/bmj/ztgnbMBWbtylXvfv+eor0P7Yf6Yv+MtdbmG9H8chvpq4PqpR/eVPDLmDeivE/VrwKeNf3bd62XKx4NvQZ8KvhHvVLSm1JDnYb+ugv4AHCW7XCE3QJFroPxV6Lrgvd47fll70pLb0nwwPmKNVL9BCQ/MuRzG+yd0efDFRQkmUoP1uAvKD4buBnYosvirfYM2p/ON4g/x8QkKp//YYM7pvKDnVw5eoLnOx0sw4T+D6f2eS88zfvdBO+2BfB74Xwk9NU91bF3kIN6J8QSgf+LXd5+HlFYN5otQvhT1iafYBXtta6wRJ2G+IajvCJ64d0//0Rk2fCvao/gYCl4xzzu7cbo13wc2hH4ArBWgE//6li5PpfWCngkO1BTyVz605tJgSf8jWkhnpXq2CLVgOn9f0/O9prx4bGGT8BJM7zdxU+CZgKmKZUILuKPn+/139d1+2zPD3wm0nxUxPvIHh5Ke1hX65Yp0nn5C/Y/gVVmXXCa8kuGmKK+M+uQ3VqYZjHJRaer1b+R/aH/81GfVHfkVzf93nPx/+W7oX6HfH38waUPtv+JjcA30u+C4gG2HHwQ1CEXgeugPwRGBZoc9578W88HkX/PAS9PePJELahLt0T/5P2LH2z7XDMOKBfKTNH6a/821llYPY5IF8rPSqE/xwqeP1fsve+tFgfYDdFdwsoVzvn77y17/QM+f6vd8kR45+0OreAv9VUMvBo8em3vQyaBVpPiuJLH+qXNWrPg3u1A4j/J0/pwDL8idM+J22zvxNrhWYv08wqcbnytrE8nvS/Z/sVDzQ0BVnUjrQf6Lnl+Y67GPE7a9E3Ik1o/Oyz8u7vwl0LFdoPbJ39P5mdxtlbO5LEU4C86Fvhf8Z6NM3PloKXYZTPGZ2HBUmf9S5xaRng/t/2roSSn1J15cKRdyoDth/OR3LMbcLG4x/ypeANtDfwIeFHT06JI7PUJTz/fvxztw8/L+XpPKP4nzUN4Y9QPAv46fL/PJQ5ntAU+Ang2+WVyiuv29GYsFD4d+ElxTNENdXmkoWycxvghw+Ccp99wgHUb3L7ofdWF8NWf/tH0cZcR6wFKo3w6OTLOeo/r1mUj+/AXqkz86fd1OzqFAh29C+3T+e4OPh1X6tKwyZOSnP6C+E9gjZeHM6nBZXovzLBH6a/CCJV7lh41UeSnKk7+h9Vrg+qv6LmN9TutJ67cerF1ZUX/K2ZL7gUdDp/HcH9fgV1Nnz9+Bx0M/QuNfn/ax45AZ98d5sBH6FPDCpDn/XNNU5hSf8jD+Y+BQNf88/4hB/DOY4jO9P9F21fV2E9tFOl/p+Q0EO39MPTVmZH9Gft0C+mhw5t3c7F2HhzKqT/On+FVfbuGuGWbAOrGef6P/l+DwZYHi+/eyLFVi/MfBF39vvLxiijaj/Uv7eyy4wGrwzpW6TUIX2BL914EVHrhdVK9UZdPA5M/J3+mUr7626NQHYQv6o/j0B7gs1fz6gRRTrgq+Ad0B7Dsr6zfRt0YwR3v90L82ODj1r5Ivnf05nZ90v6b7+6eKpcVTbfoxiicUf7LBxVpBB5pWfRInoTyd/1vAGzXbflVKNOc14LnQtbA/FL4sVeyqkuELoQ+Bvh28fEh6Y+aqQZz8Nu2/c+Bzb7u1vaIU+CWMh/wP3Se9n2f5z/FrErfieR6Dngj2uN3TUTfNjNehPJ2f5B92Fg61Pz92ICd/T/7/FPhpc2fAnHBLTucX3W/J3w93WK16xUOLj8V8D6P+IPB+R98g29FGvBX9kX+k+DI5bVBlt5U+G4ryM6EvAtu9jDgcsU26Nz9A+4fyI44DfJf52t4X6T5D5zfFl2m6/QriGpTYLon9Q37h+inHLXcj1RmdB23QyS85hzfkxudU9eZnKD9C9/vgEYZW21o+9+Yf6Pyn+3mm76RkN/2PIr0vGtDpvrNufNLRlqQ+nO7HqtDp/ajf7DTQaigXVcFS0Cl++0v/vbmt+6lA93fy33rgEJaz2/7yHZH85VfMrw31ly3ftz3drl6g+y/5o0Iwz01UFSpahUIJneJXUtlPBbbPYkUVtE/3tx7oV/pap70434dx8DvUzwIfG9V5erdembgc9U1Rn3iz2z8Txtm8ESmfRv6IzrM3s41GeC1pE63AdL8h//O2aGSfHy4Wi3R+joQeCT5/6ePKNS9lOOVPKD+iC/b3EIZOVLwu3sF4myXGfyG051qxoxSjeEv+n+J32iL71W5Z9cJRlC9B/cNgF+tAW+P7qiwFTP6L/EvfnFn7J91tFbTQHvljGu/ECYtPvr+s2Hv/GCb1fXwJN7t0c3Fou0B+jPyPJu2PygLT87tlmR/0R9A30vNKkX5gWa/Re//Kgu4BDu/yLU7S0GaUz6DxnwLPMwgIKV3RJVL+kMZP8Tiy9KO+nvdX4U8w3c/2g1uCpyh0z9NmdJ+yxfyiwFmxHQ0/zO7Xe367QCc+NKMjqtNDibkhnvhBnws+e+SF5uUQZf4I/ZF/pvzBiYKUe3v6D+CUD6b3k/KJw45ZKHofk+LRYPIXCeCM7cMy6iOMeBzao/xOMnib/1+7rqkp8hkS7dP+91l5coXMEWNeRM8b+kPwp4CFKz1najF6P8lfPQHrbe+OXVxmwKvA5L/pfmiUHv/zJiep3vOPzvcEsEq0StZzkyahHqyG/t3Rf4pDsKu7gyzXkBj/YLCR9J269D5fxaGoH4/2N4E3xA052ZqvzR6TH4FuA92OPzn+w7NBjPw7xR+KB2MqbJ4t/jSwN380Cv0HgY9EVitYaukx2s/kv3aAa8ft9U2OUeDxtN+g7wSr2j2OGdElz34CF0GfAU74vfLHSAtzpgO+CF0OvOREnWlKpSz70v39/BvBKqdO2hu4GrDR2I/bMH4z8GqDkjMPVW1YKNgH+gqw+uK+W2dXWTNtMOWvZMFV44bn1zoPZ6+lvn9/KN+106/Oyt/BgNF6FGJ8lB87lGvdcfqgLEvBeP+AHgOO0LRUL+Sa/IzE/jkB9s1oONHXU59RPpref7rvBs1erBq8xLj3/SH/cRDc1upoZxDVn9N9ne6fdB9e6yb7wuWGDFuA8o4S+3Pk7ps3c7kq3wu2gU7xUkdF09ptc434G9brAHQPcMu6bB5QZsAoPlH8dgZvfXLigYm6HKf33Qj1w8FzNsQkvi3R5JQfp/eH/N6HZQvnqn7T6fyl85nihcOS6SUTNG34KJSn84X8Z+KKc2ZqIeY8DONNgL4YvGV0fgrvb8Wi8bzC0H4x8fGlXV550lwyv0P+KVW3tWT1OnU+v+s/XQ96APjzpv2HI24OYJRPoOdD9+GO57MjXjb1Y/Xo7wJ0deh6N0pqY6/rMvI35M+NwDUhvw5wm9bQ6y8oPpuC76yrXr8itVCkeEP+zxq88JxP1KiZhb3f5yg/1R/82/w+oROvNgqfMB7qn/Iv1vdT3HdPbhMyob/H+Om+FzZdg43/oMjIT1H+n/b37ftjMtxLuwTyX+QfaTyTusIunXP92KvT9x0677XCz+cY/d0jUD6Bvs/S8xpfs7lCbHgv0PzJX44Au7g/Pn5leJNI86P9Rf61qd12drqfIjOTWB9a3/JligfWO5wV6HsuxU8p6N0Du+zT70v13j/p+9pkmt/t2lDHbV/FRRI6nXcfSo+f/TlWmT1A+xR/ab33NiUsPnhEml0Fk7+g+6l58571BeOfCuSH6fsmzderTLvbzFWavZVon/y+7CqWrV7ZKtD3bvJ3lC+MmMrcQlMLBZqP5P5a4BXe5uZlwFaj/GPUdwW/mJHpOSXsqaCA8tT/F5pfTLrfMl9pRue1FNqnfJn7uOyZJsNUGPlPym/S/fRe5hoe7yLLJfM/XuDL0o+7P77W6c3v0P2mETw538XsRnG68BnlXVGf8ue3xd3LGjtkmCLiyTRaX+jySXvFhIMV4lXwCOj0fXDiTsvyZQFqnPKTFF/IL1RMuZZQYPNKIL9I99t94APTutMzg+WYP8qbo32KTw5OG4wvJvbl9Hzp/aPvC8lLxQ2r2wx4JPgJ2g8GZ7xeaX6KqXHyQz3Q02g8xrdDi6K0Oe0X+j5N3zNMrnv/mK80gOdjPG7on/JzPbFOn52VZLiHxPgp/5tiMzeNXX0j0H2Dxk/5+GK9zaN3dGozWp+H6D8ArOzT49Xqoc2mgW9CnwBOn6WQGOKhy+l9eAWd9ldltF3Dtvj3Avl58vfGYPVrti5ys5Q4xUOKP+SPX2uGNT8y0eJ0n6D8byX00mKTXUEeBtwQOt3fKP9wYe2NNZXn9Djla+j+Qt/Llkx9osN2aDF5ep6oT98Du969e6iursMpnlN+gX6/oFo4ZNjqtn4skcaD+vS9WH6TnlyVsyLLwP7OQP3X4DtH4h8tW5AsXEP7k6E/B6vNnxPoPMaM0+8bKD9H+dfYWe1XeaANf4P+6tA/+dfOQ4923si+JVD8oPmR/8wO2tWi8aspXwVO6vk+/sUNyHGr6yoTlkq0HwyO3jjC6VB1m0h+m86vC+C+1RdjnL7osxCMh/wT5bsP6uyrq3tgzmqxHknQv5A/Mr11ONDbgJF/mwL9H3CInY5MeIcpIz9E96M4cIHhhYArAR3CBvBC6HRfj4vaesuwsUWgeEv5xd1g/euf5um0WTDyB+Qvh4GfBtfs+Xris9AMpvz+ZIzfoTNyvUe7KZvc83182Axe+/b9yNX6lr35Ufq+Ogq8sWRYgt5Ee2YOfgDdBSyXFWiUYW3GIsCXoFuCZc9sz9N3Gswpf0DxcQ/0NQcbd7g5GzF6Xyqhe4MdEru00+9pMjrP6Xyh30fYan753WuoAo8B0/lE35u1fx/r2d9zAPsfkNpi6g==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA8wUAAAAAAAA=eF5dlnswFVgcx0sy2sWUkayUHVvksZ4ROkWyca2kRuKyckluXHnE9ViPcC951/VIrPJI2cmYlMeos7t60e5U2Gw0ERabYspKaKfYP3yPGffPz3x+5/c773MKU814oWKOjY5x4uzWq6m/1YEDeib9NyXqU3fwd/A3wTy/941zO9zoHtEifwFvmoZ8pTUdT2XLSRziv4bng4erdmUYBBfTXrAV/AjYt8jf10GNTzyRXxf+Jfy0Repx5w1+RE+0vH0Z/N+TD9J9/YOpK/xuqfaZqonPYvlRpATsCF8JthRWPmq5FEnbwdbwmWCD8WiN8HteZA/YGf4Z+LBdl6temoi0ob46/CdwlIPthGboUfImZZFd4afAoZpBcXFXRKQVbAkvi/wtjsobExPTqDrybYfngWUjNqS56ojpXsTbwtvDK5mcdkzPF9IxsAarD57XVm9LVkihWahvD/8G+TzKhwsWJuPoLbAbvJYY45mNDBt47U5lkE8FXoR8m9/INah8Pk99EL8Fvor136kjsX4ijRSAA+ADUW+99umdrvMlxJqNR2r/TGepj0ocTlFjeBf4zmTUf1VhmjxUQbTRnzXwMti/Fsoz2bkNtfSj1P5VQ38XIn8R5xsJya70RRYYLXprtH+um0SHBooIV7R8/UJRb7BZtVx4sYimI38OfBHYz/T1lrK2aipCvW3wJ8HHpz6QQyuzKNuvavAUPKvtFnFjc8SSl4E3BDuZvHI0leRTBbZezLN6xb9WfJhPIPbory98GPh6t07spEIJ8cD4lFn/2P6O7+HqSc5SFcQrsvzgC5PxB+TmhcRStHz9HcCnq+/vHczj0gb0VwE+BdxvkTqX2xVBJxBvDD8IXvF04EnKYxG9gnqn4JvAJVmrePsOJJN4xGvBu7F8vO8Vu9uil87XBnhN8IStY8u7In9Sy+4LeHZ/dg/G+3Ek7uQJmJ3PS+BQ47znAo8QehdsBP8QXHfNZ3N7tAfpBOvDz4CvZjZvUqg8SD+BzeBZPe+hxxeC9vuSR2AC3wye8QpPmDM7Sdn9bC7lkxp6E5ze/UAUMV5t+Dn4y4okfmwuhPwLtoBvAU/8rhFcnRFA7MA74HngLruRdhqRTNl42fxroN79Md3nOXaRZAHr5QevCm466mhz71oK2Yb2O+HZe3Wu/qV80FtvSrGfJ3A+w8DGo3956PqcpQXIF472bL3TXgl1b9ckED68D/w8uNiSd937SQCdklof1l7PirNqtvE8sYHnSJ1vgdlXc+8bxdQJ98UM+leA/k2NE/3RnBRajvgzaF+F+mMrgjO+zCukXmC2f+QQ7+lVkPTtYCGthV8Pz87jTS1d491aAsLmi+2PDrDtfFTAnbdculXqfHwDHq+PmYwtNyd/SK1/Nbivb98Jg2uBtInlgy9l47878tEq3pw0IB/7fzAutQ0K8VkXvPS+s/epB+07DYUJxoJUehFeDl4G8zfdZzkkKhURFXgufAw7H4UvzDmxkdRcav8/xPwIjZxHjCxCyGp4d7a+4Bj3D3kVFS7kH+RfDc/Oa8etED4ntZgGgY/AmyB+01OFVmorIez8s/nXgR9VWrAQBGSTvVLvvzLib3NOZCitjSRcsAH8OOJ/au33rK85RleIl+eXIP9c2KfhWgmX/of27H/khPj+QIP+Zysr6X7Eh8GXIX9rj2ZV4mH7pfVl/4MCcLvVZ3tNT38qL3U/s/8RR3Kv7kFm8tL6GsJvATt3Kcmo1xygUYhn/7M8MDWxO1hm7kTYf5K1J2gv22R78efOIyQQbAJ/DFxdGb3KmnuGsPfQC34Y43sd92OI6eVQoin1/gnYeXtr2JZZG04npea/G/lz1vLv1K/MpOy9YvefKVhNfd77hYsfvcH6C88Hr+sYSLEuyibNouXrU4L1ua57bqz3YShtRL598Prg7Uk5d2LqcgmrrwkvBPefl3/5Z7aYsvPB7k8Wn5uwRu/gdAhVx3gz4Mfwf8q35ux+rx1Me+AT4DeCBS2824fki4kq8vfifqtB//uSXLL5NuXkf47RggE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA3AAAAAAAAAA=eF5d0r2rgWEYx3EWA3VW/pvz91i8d46nkLyUhAzqeEsisVBOXlKyKAMmnRRlOxuDQQYDBt9rcE2f7u6ep9913T+X3W0UnZvPL7Q6Xp44+5QBDKrvIsoYZjCPJWUTG9jDBW7xgDu8oZm8H2jBB/d3vOCf+v8YBzjCNtawjjk1TwKjav5v9KIbPehH2WMI45jCNBZUjir+4hD7OMM5yv7OeFX55F0NNY/Ml1Xqd+yg7K2LE1ziGvd4RJvjPYf0KqzyJFH28oNlrKD0qYXSqymuUPr1j9ITE3meO99uzw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBH/UMo/QoPUqP0qP0KE0CDQAVlyUIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA1AIAAAAAAAA=eF5VkltIVFEUhve8+WIoPmY4lF3oqctLhW3OUFGWhBJFaMUprChqGNFkSoyD3UATvIyTZNY4mJaYHseU0XR7jqZZgY1oUFgmFCoIFYgPaWQzs/4De+bl51v/+tfea5+picvprdhzlC8Enc2jZ90OPb57KT3gMSdS1i3uHtId6bPEvzOSI2xOJl47eKTDLVY35kX6TRb9FQr31uriE+l+B3EJ7yiKcIBYe8ALp0/32ZyvHClJkXmNyHlEKF7mWu5d6ZI4wFcWZe4SiUsyN4m4ZDk/wrP3ydzC/+yXWBsRtgMxzN/JPpsUnhju53PlMrt4+7TMAV41K88LiRaZ2RTfMBfTL3JlXxkX2TH51zyqu0L8Zlr0vVDvEc8SPJH3JJ5pE7l1EfabzBhenb+USjn2hLPvF39uSrsDzuPMOJVrX84k1po4+zRSOrnDCd8r2PL2r3Z2j9h4zNkWs/2XXiyi7PMLlqHvzLleQr5Sw5k6Zmx+mYW8Jtj83/XecyXUb9RyNpPEBuaK0P9IsNHOrPGrYFbAWab94zFbOfVrt8L3CfavvXADvivMydVJwTLcNzxfq3Ocz1esfDjnLDj+z0Z5djK8n8jQ9x4GX+YsdY2vbOAM+g+hfhfsxr0qUL8PrYL60bcNXGntBc6E1uP+T8H5mGuQ+nyolyLfgX2GidUA+qEGzlUH0deAvHVuJeqDxHYf7om59iaw9Z3qkLP2vI16H+ZY+z4nVRqQfwi/AtyNPWvBA9Aa9AUwx7qPdR7TSPrBBeh/iz4vj8kZbehrQx37skaq6++xdwj8xtoLegXzx0lVE/kv8PHd1QnSBOud8Z5GKxjfTx/D3p9JVWvPdqgKbUZfPfJ4H7sOfxQ+3pl1kq/04n4Cfg94GnNase8UqfICvga/C7kh+D3WPqQu7KGYONeFeQtUN3qJE2bh4/+q/ICP/5P2ATm8v/KN1BeEb4r/dHqesw==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA5QAAAAAAAAA=eF5d0jtqAlEYxXEFFQmKYETFWAwqkmgYrXwEhZDKQmwEH1i7hawgm0ntAkLasXUBqdMlRJAUYpH/KXKqH+fOd+e+vux+twnfX99aGMcr7GAVA7zHEG+tPmF1FZs/woLNn+Ax+rNJXmEM2/hLXYr8Qq6Rn+3/OtcndXPbz4nxD8wy/k3ukqe2/7TdU8ly3nJguWzjRczgg633xX6W5Ec73x0mcWvfdT6tq/0p11HvlsMz856svoc/0f+svrpG9cUQx7hA9Yv+q/dXXzXwBgcY2rjUe/bJej/1i+5/jTM8MO8CqlK7Ug==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAsgAAAAAAAAA=eF51kUsKwkAQRBFceSlv4YXduxCUYEQlGWNiVELUEIVIFlZtHszqMf2p7urp8sVsOdnNX+JbPImNGMQW3Itf1Lm/FAv0bTHvKt7EBHrO5+IB+hl8ZKh7iCuxh77nWm+Av2n48xLxVaD+LP7EDn3esxZ51zt8p/DvOs+lT94hIP6MzHd/j7fv43mfSL5Gf4K4/7tB3jr2bf0j8vbhPXyfNfZw3Hol6HwlbrCX9x8BHNyTCQ==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA3QAAAAAAAAA=eF5d0j1qAkAQhuGDWEa7XCClhZ02wYAGEREsBKPGaPwD8V8JUSQEQQsLi1SiniEn8AYewEtY+H6FX/Wwy+7szM68Baf1SyAUHmMOU9jFKnZwhHPb/8aixX23cwOs2DtbfMYW7jCBfYxjAc8PNz9ZnyyPJIYtrupI45PVEbU4f1jGLLaxYXWXbb+HNSxZvdrP4zJ4X1cM9/iL+s8Jqo//lmfE8lWder9va917xY3d0/+pb2uLo/5ovn5wgQec4gc28Qv1L5oXxZlZvprXF1zhEDOoPhxR8/CIV8FKMAo=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAArAAAAAAAAAA=eF51krkNwlAQBUsjpxKQwAgwl7Exl4GAgCZohYbIiEjeJCM5Gu35dvf/bjh+f76/wS28hGV4Drey4VL1u3AdVvJTV4TXsA6bcK4+xDeab6/5mH+l+jYcad5KcXSemuMlPe9VKx8/fW7K67Qvd+A+reIL7UkeOrzDUfGtyH3QO/To3tWPPPQe8jey2bdQHN1TOJMuevQvFUef+9N3ItvzkM/7+b9Ne/T/nlLdqQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA/gIAAAAAAAA=eF5d1HtIU2EcxvHZmnkpyVSwKFKxsuGWRZfpxOMlaoFpBc0mipcyJWGJrBJptVkMNVGsoSDDxrDEvIuYl8g3iyZdlheCojBRKxAzoxQtlTjned9B+d/nnJ3b9/29ikT//kX07baseSmOdh54BHvZrCaTNZyww67UIxr+/CTHjuu0vH86fTw1avpG24rTSnr/N7tE8nrzfD9HfUvGW0LiqFe2GTL1ezYSFXVsIH/ejyRSlwQbloaWthANNefL/z6AZLDrt0erNk0EkRxqWSh//Q5ykTpDQXwij4YQPbX5MH8/KSmitp+I/pTVJCOl1Ho5f/8wYqHeGpX+1l68l7RTP03gn7eP9FLnpAX0pSj3k+fU3nn88w+QD9TdhnHrj28HyQJ1ZiX/PgoS/xW9PGlfTahU6OlGXaCWCr1d/1sPcR2uZxbdx/0ZV+rxfOblBryf83wj3p95tRnfx7zYgu9nnoyPEfowjyqNQj9mu/SJ0Je5d7OL0J+5zS1GWB9m2xTWj9ldbxTWl9kR5iKsP3PVFOaDeUA4L3G6R/B8v1825vP6LOYtTQf/+o55qzfCsx2431w5PD2DeeMs8OedeB9TA1zShvd91QUbHJg3/2ewegzzdmkYDp3FvD0cg8WrmDePGfj9BvRMWaIuR+9aV6y35DbWY8IHbjFjvbhAWF2N9ayRw+IarPeiEm6yYB4ij8Fn7mJecguwX+Oa0Ce9CA5qRR9NGXzEiD6nq+B1DXQ/WuHBIezHUw/gvKvoo+qEk8zowz2GF2zoww3Cle3oEzMChxH0if0IjzqwH8O/wD1a9ImYg9dfRp/I33CqHn2Ua7F/Om6iT4QXLClDn3h/OPkO+pwMgltr0Md0DvvR4wL69OTCai36/MmHbYnooyiEg7PQR2eE6wrRp6sYTlKhz0IFHJKMPvJquDKbzk8tvKxDn+578Nki9BE1w68r0OdQJ2xJQJ8rfbBvMvo4BmDv8+jj+4L+v8lHn7Rh+r3X0KfxHXUp+niOw+5V6PMXwXqUhw==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAtQUAAAAAAAA=eF511n0wVWkcB3CshCQZXM0mV+GmbW+akVTPRrYXSTQrEkva5OplWhLZLXEja4lI2ry7iSm0XqIXPULKKNXSlnaaUi6hlGplhhll/9jv787safbPz3yfc+65z/md3/PT7Mjpu+l1xfG5uXkMD25vUIPNjRvmPg32YtPhQeQ6sHGd44E623Cudf9fB4iRwzYTpnk+LaWsHetdkN+DS/xWdzY2pXBN+AXurwG3zJObn3GMZnqCfBL81e/NHc0ZaWwKPIBcG/Z8f2pC5u2kuv4lcl3Yd6R5xTOHQtX/e4Oc1hcnZPfYdkeyWfBb5EawoX6Oe1v0IW4Kv0M+A47tTfsmyTOdieEh5NZwTWZuYFNEGJsPjyNfAEcNvB8PLy9mS2E17N8SWOSe5n3sehZ3h7WQO9PvP3uV76W9lS8T5Kvp91zlpd73E5kfrIfcB76mFRzeMJHL3GB95AFwsFtc6q+VlZzWi5AHwSOPX9gt2tfCimEJ8lh6Xw4JhtNrUjmH7ZFn0/5Oinuo11LFq2FH5GfgsEdfdPU2N7KLsAPyGnhDaOCjNZsK+BC8EfmflC9wFhWc6WBjsA9ysqmlSZuL/nWujXr+AbkunF10d+ML5SVuDW9ATuvFb4f/KJ+Zorqe7v8A9/dPDDndubmOP4cDkSvhvXP2Ko9WFbKujv/e/wkc2WCzpTuqlp2D7ZCXw9Kav3zKRhv5SdgSOTlHljNSKynj++DZyMPhVqN7HkbpMWw3bIZ8F1zddVP/aVUVi4JNkJOVOsuUK80quExQPzvhLrOmGmOdErYR1kb+HXxyVaVmekMS8xXkVG+D9lNutcbncHv4E74fB9rP0pL+o5PPcVtYA9dLaT9tPNbcdlFwCfwB15OvmyivujgX8Nkwfb8WsNy4JzNQ/RdG3z/1B7Lo2BaFouU0N4RfIad+Y5E7Lf7BlnRO/apP0L+aTs/J0xYlc3XaT+Ra9PyT1q094HecT4Z7Bf3zTvAii8yy9Xwq3C+4/7Y9tu5FcQnc4H+eL9RvIthfdILPhF8L+tsNsa5uwtJoZiXYvzm0/52rSg+3uKn2fxT5XNh3ufuR9c5nuR08hpzWf5ylPq89+ghnsCbeH71vS3lc/Lv9x5krrCuoj/iezBnjW3dwX8H1nrC3nnJyv8dJHghTfYfAuxUTs55KKtgOWIw8AnZ6PTZi0iflVO+myEPh/O0DSQGDYTyRnhc5fW/i5LHkNdN38lOwNfJMej6NWxmRtgpeAjsjp+/dbXl73bqpKZz6mZugP6TcnrvAY9tl/gb2QN4Nq9drORi8rORUT32C+rKyGtu+ZyT8s/OXXPJm/ak4Nfln9U311Ho+tDwvd7uqfv5G/iVsY6J+aVmQnFE9DAvOR5MPuxKGapMYvW+qH/p+xywNh7piMlT1QTmtv+NVktNxbT9bBVP/cII7Mz9FWnYX829hqg8X2Lc3I+ygVME2wYbIN8Nnr4QlVYsYp/qYinwrfLXw0eAt/XpO5yWdj1RfpYodbS/ll9lBmOqL6snQKkAWUVbFcuH5yJPhJ/bDseOLo3gRLEWeBSfW/CwZs4hntTBDfpb269jivXdHgtgN2BU5zWs6AWUDCStruCbOLxlyOk9dHyib3kvyGfUT4fwltf5tME8q50aCnObHovRLh5QRmYz6CfVXWt8TJtHwL5Sr6mdYUD9uBQV+pooYVX+m/kP15BdkcOLItMNsIUz9hayb09qfFrKL0bxE8xHNV/2p9e1Bzz+vn+VwyMqwYOt3sdxFcD3NS+IVx+0i3CtU/YfOPzrvvu+1//GuZyX3h2n+ovpo13SqFj+OZDRPCetndMliHrMoi8fD1F8i4dD5FwxiPa4wet9fI0+FD1plq8ki8vkFmOavfHi17sfzP32oV81na5HTPOZcUbQh/GgWewjTfNUGa4amN1ZVlzCqH8pHkZs5LJT17rvI/gEyesr+AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAADwYAAAAAAAA=eF5dln04lWccxw/pxOGEIy9pceag8hpb5qXnzqTIamhNlvLazLRexmp26opMK2PVGhelKMUaRq2r9OJ5NjIaK6IWylunCUleIkzOXJfv7bqcv57rc31/v+99P7/7fn7PTy6Xy2Oz1UoHJp81IknpONh5zvbuIqti1p3H48VNsu7ks3ZSXwY+a12YpKLezvohvhT56uDaLYNBUiVLooz4fuiq4E0DZJ9/qiknAKvAn+pRWhdCY7xfMbfh14f8ZjBTka3xV2wvMwZWRr4Q+Rppvm+b671mB6DPhq4CfVuKj9Fv6spkOdgAujM461F8yzehStx8sAC6CVhssVQs/uwZsx5sBJ2A9QdHjHvXapMorP8A+48Au+7JETjGdjNJiLdA/vdg7pSfmmWENokAa0EPBLecutSkPiziWuA3Cv96sLgsuq78vja3lNYD+bTeBlHWjpVzZnG7EN+A/B3T9RrISNs+l4tSqA+tV6VTtUnJFT5nBJ4PvRP5m7c5nz3qI2PbwR3wp/GZggivJEdTLhx6K/R48NUEoUffeh3yLuKXKrx/hWHX50N/mJNshfoWgjOT4wuCXXkcPR9z5BeC/evPJxqY2RC63xrkbwAPeD+sDLR35KhfC/QEcPiZ4598d1mZRL2ZYhXoJ8HtW0tyJJ4SMlfh/vjR85XtlE1oSbgb4GDoxeCmLUd8NALsOW+s1wR/X3BubJt0/y097hH4KfQG8K39Eiu35Am2ElynoOflZp7xiBVzN8F0f1dp/WRZ422eakSG/bhBfwwO/EnetH/IjBxF/H34J4OP3dFOLX25gAtCfC/0zWDb3XkuySGzSAniu6HfABe4eL1oDutgq+Qz7+c9MO+KuKn6upxNBT+Hng7+KOJhn3aiNteG9dZj/0/ABw8Omh+3EZJchfrR8y7oiVKtFahwF8GPoFNOea9duvrbPkYXfnz4zwNvNVvlepMvY9TBStBF4IyvjZi4khF2An5j8Kese/2A10jWU6YPPAS9G7z49JXghTea2Vfgcei0H3YYpZ1u2vucoftRw/p64OJ9kVuO7R5ljcG0/9L4mBD7xnyXLuYB/Oj50fvjsC9iUeXKUYb2d9p/aX+ZGPUe/3nRAOOkcP/p/6P/odQuIFI43b/o+dWCv3p90LpPR4mwCvePnmeDmccdHakmWQPWhE7/V547015IwjrZuokpvwz4t4LP5R44pJu+gCtB/Grkx4Ot7bJO2PHUSDl4OfQi8KXRUN+UkAH2CfY7CH/6PocvHhacGJeQDYhfgPzVYFe5VKC0TsRx2E82rS84JuED6XUPTa4S8SHI7wGf6XfgL7Myme7PtL7+YPXq/qr0XSacF5juLxis4Z60Xa34NWNHGfm0P+u3eZo0XO5gy/E+XcivABv+EJLc4VzGaPBm3h96v3uzUjfGDQ6y5grnYwGuiKgz9n+rjDkJv3/lM79fU5PLX8y+N8yw8pnfJ+0HDk66fBKkxfmDy6B7gtOG+Qa9gdqE/o8XY/2NYNvwmFaRmxK3FiyEHgA+VSLtPZc1whwCW0FPAMfZq9rz6hqZT7FeBdY/Av7QuLw+/xdTzgfxZsh/B+ySWBmW86cRod8L7R/0+xWIqzzyXuoTuv486HQeuFbW7B7UxSO2YNpfVoAv5MhaVSP72QL5zP5C66mS6Ct3Cu9g28AT0Gm8VuSv5zICbLgd8HOH/0VwZ8218GeSe6wVWASdzhtqbWF7LL372B74jcB/EBz55u9lbceFhPYT2t8ob9q1xG5FUdP0/Enni/fBGUuEzrf1/2HovEjnny7kh5vdsjHUecrQ+zoMnf4Pg5cEh2oemkeSkW8P/3Rw697GjFf5Y8xz8ErezP5jZJvJ3a1+w9bA76V85v/jyyJjD5UeXc6G1gP5dL4seDxkGd3cy4Yhvhz5dP4yzFtne9fAgJxX2D+djzoLW6Maq8ZYer/14E/vW8rQJf36x/MJnedp/5aDky1G8j+2EHF8xKsifyE4Rly4o3PFKLtKaYqjoXuBNwj5sQ6yYXYY8YHQRdB/35O2ZrabKdHDej9i/Ub0N7/o1P+Wb7Uk/wO5tO8EAQAAAAAAAAAAgAAAAAAAADABAAAAAAAADQAAAAAAAAA=eF5jYBgFpAAAATAAAQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAJgIAAAAAAAA=eF5d1EtsDWEYxvGpaqlbaKIsaJtigbZpYyEsRLBo2GhFWNiyQGKBhaTCjlhIRIilCLpBiDSx0CZnIRH3iCBSl0QdcWupS5Gm45z098bprP55nnnmmfm+95v5m6bpw+oFuaECD52ryn3FP/zvdFwvS5LkUcGfUuDhgp5cwqK/lF6ClfxKugJ/6X+j90XmuWmJLrJWz2b3d2AT/wAdvKGnw/3tJesr+h/o9/iJ30+/xhb9+/TuxcfyXXIXsVF+v1zc1yO/RS7eq15+ndxaTOVzcr24Sj4n14vD8gMl6ylylB/7n+Agv0/uGU7U3yA3B4fkozf26Rv/Jf0E3/Lv0T3YoL9T7x5cxD9Ib8cRPfPoYI38YroK5/OP0RtxFv+394h1x/tvkluJX/jX5M7jwmT8eYh59ctfz+SXyx+VO4Ixl1hn7He5/Ax6Glbwa+m4Hu//3POCc+XXy7VlnhvnP+YYz62Rq8ZX8qfljmOr/Bm5UziJH3OajlP5K+hl+Fl/Xu8l/Mi/T5/FW/zVdAtu099UNtY7Gx/Id8rtxDr5du+xAWO+J+ndOJMf+xLfU5f+Zr3Do2OM9dZl9jPhj8jH/yf8mOuE5P+ci34r3Yg/PDf+m3cwvtOYb+xf/IfL3R/fQTO/m3810x/n4y7GdxdzrMc++Zvp+PM/wH9HX8Gf/G46uEb/U72X8bb8icwct8on5p2Xj/N5gd6BOT1xfxvm+YP0LvwHINFpHA==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAApQEAAAAAAAA=eF5jYEAGH+wZsALyxT/PdeRrzLq7h1j11BL/qrB9656U9zbEqsclnmFzKOeIygMM9wsv2VO53+oehnhxIXNEzpZnGPb6ixeYqd/+hCFevGzK+/DlHzHEH+10TOw9+A1DPDe/3iX25m+K/TXYxHmXPly9ZOo3otPJk7WFlw0df2KEg76vVGGu2AcMcYGi95v/rvuEYb46W9i3l663McTVFLTPSD+6hmHOy8VC702sMNNV0tNpgoca32KIV71f0PRG4AmGeHfUq/yu5utE+5da4snzdReXll+gmb1qUs/anE+9wPDvcof0DbVTLhOdbhNevq67r/UBw52y/U8kDTa+whCfr/uucFn2P6L9dejwkxzR+1eIds8vedMjFxY9xFDfYf5h/vHpD4m2t2Brt1TVgstEqydVXM2ivaFhE2a6Kv3wYuWaVuLj/WRHleRNp9sY/hU/4/KELxozHFABQvzE1aCXs9a8xFDfu9/6MO/fSxjuKVmdJ3GP8Q3R5ts8eeEVVomZTsqq9Wv3rsdMJ6J+gVesH7/HEN8gftD/MeMTDHEAuWMLQQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAMAEAAAAAAAA=eF5jYACBD/YMRAGYOtLVf57ryNeYddcGuzwhQMheUs3BJY5bPsPmUM4RlQcY7hdesqdyv9U9DPHiQuaInC3P9jDgBYTd82inY2LvwW9EmkNqOJCqnlRxapmPW/7J2sLLho4/0cLng72+r1RhrtgHDHGBoveb/677hBFf6mxh31663kYTRweE3IlL/IN91fsFTW8EnlAYj9QTT56vu7i0/AKN/Etr8Q/2sv1PJA02vsKIx/m67wqXZf8jspz5YH/o8JMc0ftXMNIJdvXogJA7qSVOSB5TXM2ivaFh03WMcCj98GLlmlb0eMdtzsmOKsmbTrcxwkf8jMsTvuiHRIbbB/sTV4NezlrzEkN9737rw7x/L9E5HX6wF/ULvGL9+D1GOGwQP+j/mPEJXBwAgN25nQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAA/wAAAAAAAAA=eF5jYMAGPtij0oQAuepxiVPPnK8K27fuSXm/B7s8IUDIfFLFP9j7ixeYqd/+hOGe4mVT3ocv/4gmjg4Q5uTm17vE3vxNtHr86mCAkHpSxdEBYfN5lz5cvWTqNxvs8gh19BH/YK+moH1G+tE1jPh6uVjovYkVZrpKejpN8FDjW6LjpTvqVX5X8/VB41/88sSLq0k9a3M+9QIjfJY7pG+onXKZyPz4wT7h5eu6+1ofBk34/JI3PXJh0UMM93eYf5h/fPpDNHfiNq9ga7dU1YLLRKpHB4TcOdTFP9iXrM6TuMf4huh0YvPkhVdYJXo6+WBfVq1fu3f9K7LTDwCPT6uKAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt + _AQAAAAAAAAAAgAAAAAAAABMAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9E1szTTTU9JMTJLNk4zBAArfAS+AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA/gAAAAAAAAA=eF5d0rErhHEYB/CUf8B8Zbh7Tym50erKcAuKEkoGEh2LLsSChAymU1LqYiBJ2a4w2GSxSJazsVjYZJDh/fyG+02fvs/v7Xl+7/O+B8nu8mcmX5zkSS61Lpe5wRkOcZt73OI9H9nD9nxqxZwu9T71HXnV+bH6q1yT63KLXOVzmOt8rCN1Wu5Mmuce8p1tvGDYQ6J/Q58R+VsO+ztilbNcivYzEc1Z5D4f+KT/L8/VL6PvMcw5hn2tyVPR86Nc4TyvuclBnkX1gvfPyut84200Z4B/PGW3Pi/uG/azwPCf9Uf7uWMvW9lgiV+55nv/8EY9Y/5HNvXK+bj6P5HvM6Y=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADQMAAAAAAAA=eF5d1HtIU1EAx/Hhmqnlo4cagi0XPpo4MZ0u3UMbFmYQaH8kJJhQSqA4LQnDavlWRAu1RvaHrdRGmvRHllQ7SVn5hyNUnK90CSKJFsioDLXt/M4Z1P777N577rnfc88VCP79uaukl8cXhcnceiVsyOisSZIdIfz/Nuag6UOO4wsa/v/Ed6fXXO4Rm6OTpzZc3sbGv/WmyD0/zm4WMMveOS0i3P77H3u2j/gSEfO+F87j/mSTzSfcttPjpj6I/GL+6uU8X0xWuI0PRNONErLI/H7QeX0osTF32dTb7VPhxMpcKfB2jCclg8z54mkP34go0sesVTvHjyYDzN/6k6paEmNIL/PTz877HSYG5ivLntUhtlhSx5wi0jnuLycNzDvE1uremnhSzjym0Djmk0CKu9HrDut7qUdKe95l9rRKae/7/63HwXRcz92rxfjcGiXuz/0xzovOjzszykjnzz0fqqTPxz2UaKLPzx0WOEP7cOvX0M91vUVD+3Irnuhof+6mWiNdH+7ihya6ftz9sT50fbk3B3V0/bkL6fm+Lq/R4yKXl6ntZt0S3k+LHrbYYW0Fzg8SoufkUYxX5Aen3sD9+oPhvXPedD5bUni3GvPNUcC5p/A8plT4iw7Pu5oBn25Bj6Qc+MNz9KoogBWTeN+WyuDuP3jfAmvZ+F5Yj4utcEEA1mv6AVwiwXq69cHXZFjvk6/h6kS8D23DcPMxvC8zv7FfzcnoMyvE+9aoRZ85b1hlw36cCYTrVegzGgIX1aPPeCT8bAL7cVIOKwPQ55MG1iegz1Aa/PYM+rzMhN3L0GcgG067hz4deXDtK/Qx6eCFVezH5qtwxRbbj1WwxA99LjSx+x1An1IDfDYGfeqM8HoK+qyEYT92beF7FSaD54XokyeHO6+jj1EJW9bxvbJq4WE5+uxKh4/r0EedAfvM4ntVkgVLNvC96s6B44PRZyQPPqFCn5+FcFY2+kSWwrnl6HOuHD4/ij6tlXD7Evo8amDz3cD3auw27LYHfX4Y4LgI9EnvYOOp0Ocv+aSctA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAvgUAAAAAAAA=eF51lnlQlGUcx0ULz8yjFBAQRjLkkjwQ9XFBWsQAERVwRhRlUYYYJBBBUWJJklC8QHFZ5RJxExa5FdBHQAwFqxUPhtMDD6CidSI8EJSa6fvbGd/GPz/zeY73fZ7f832et3Uen/lFVtgttVtw+bhBQ9Ww+v9Y4qcdNjsmjA0HL4EfQvvEcd7Zg4f38HDwFdF/fg14brGkuV1Uwf3BffASsPyI3C3doIO/BS8WzF8jtYx2mbqWDcLbwRPne00S2yds58QMnsYbyvnhqFujP3sFXgj/BuzuXuFauyWDPxT07wNbx0scFQEy9kzQn/ymg8EzA/dm8hH43rnwA/BSmd4s6fhs9ud7xjeSnmltuRTM74Gt4HvAFQVTe22WZfFWsDl8O3hYw/S2CIvF/Cr4C/i74M8NguRG31Rr/Bh4FbjzU1vn2vG5vAlsCF8D3qWrv+7mw2qWCp4JrwDreBtu1v6qjnuBJ8AfAm+LjKhb+lrJiV9g/2k8E4dB3UADzneBfxO923+l4nK06+J6tgc8CuOH0Pr2qHNsdtSy1YL/8wGnGyb+mJhazy6CJ8JvArd3nTPU0qrkxuDh8G5g3pNc7F3TyGn8XnzfMtq/qGM68XLO54Bb4V3B/ftjO27Puc1WgMdh/C3gj/eqfZ2UV5kYTOeDuNxotFh2s1gz/w34VeCXxp0XqpcWcz9wj+B8Lctbq98XfEuzfzp2766/7/MFEWPbz7NosBr9d1N7r7JH2ftKeRT9r9273r7SX9ssq4yVgPXgi8C1+rZP5Vmcp4EnwWfR/yhnqPqaS3ipwBeCf+Xbd2dOKOS0f7PhK2h/7+ntedR+kd8C0/lrBG+MG8htlxbyJ+B58MTbvpy1I/peGqP2lvDNYBe3laerixS8G2wN/xRclH69NSX8JHsNXgRPfGPC883OU5Sa/HIU5JenVUJj5zUZH4n8oHwjDjI/PzHSN4lRHorgKX+vvWyyvnbhJKO8sxfkn6llmvqntYmM8onyfRT4bv2j4sqxcUwLLIanfPRszOhNWR7DKT8pn/vBO0Jfyfq785j6Petj/Wxfa6LUnnfR98C3gKvKvAI7WT6nvLOB7wTrDmm7Dvc8w5sF41O+7bcu+D7GJJYT68JXgWOcNgRKglYwDp4uqM+84GMtbRtz+CUwnc9McLTqujp28AQ/Aabzkw/2NddWTE4v5VTP4+FjwfN2m3y0UHyOfQvuFZwvSfVTl8kiOYsH34c/Cc6Mavo7dtpR7gAegqd8C/HWXWPXepp7gClfKS+KAgxU4VsvcMrLD/F9TmB9lWpmrIj/b3+pfkR/rL6eHRLKXoDp/qJ6VIRKjC2+26nxIoE/nnjHLqEgR3P/2sITp4+q8dcPPMsGBP2pnmyWeHiMGRmnud+pP9VTSPKGV/eVOewB2ASe6qnbzDzlgMsJzf1Ovg3s7jwwbTAll9F9agF/h/Z3RL3/inUFjO7PGfCXqR5MdSMOvVFyqgfKR6o3uUNX4YPwTE55S+tP9ZRhZuU31vUSo/50/1A92XZr+TS4X2FUj1rwlNc+zooOs3/vb08w1R/VU1LwL9Kvg1V8PbhTcL9Yej02iVtfx+3B/YL3W275VR8n2wwWCO6A3wpWn3U3SvYtZpQH9D6k/Iis1b3jlLuL/U77CU/7ObppmzyvJETzPpoPT/lZXSKe8kzsyWk8yleaLyBzkXjeqSxNfVF9PgffXd7wsqVLpsmnOYL62v6B1dBNeSqj/KD8p3oKTTddlNsWp7lf6H1E9XMkxDmh6ZSM3wCbwVN7h/zS3GMTy3g9mN5PleD78VrnNjge4AcF668Euytqmo0tjnDKE9r/0+ADUaZ7p3umMRmY8ikDHJK84MGL5MOa+jOGTwJ3V0VZbvxkJ/cG/4X5g8B6lSOrHOcX8QjwY3h6P3l5lm9OKktj1P4hvCM4NcxBJ2xqObcCP4Gn+QJW9csu/lzE/wF6+vrmAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJAYAAAAAAAA=eF5dlnswlWkcx0/kLsQRuZVDlpBLDkrvQ41WEZWVNm3FbFN0rzHVtKWyKV02JW03ZGlLVia2Qct5XPYsJ4QoktV2US4tjkvCylkz5/s0w1/vfOb7+35/7/s8z/s8jz2PxzuWqlZiPP6s1bUosQRPXckrD/u6nkuXyWRHx7lp/Fkzrl8DhxLzrXmNOnQmeAH0kjE5PxzkOxq4utBU5PkjPx3sFNKzLyBpEa2Evw3+cvBH48z/gmteibRQrwq/Jjje3eBlT6UWrUJ9K/xZ4Of5RRmSZpHoFrga+jlwVKG3Zv1aFeqOPF3kW4GD/YN+tJEokQzUD8FfBjYT5sasStGlnWAF+AfAgWENDpWnlUgu8r6FngXmr9zvWeFtSN+DQ6FfBw/eU47Ny9cjp5BXiP5XwUsDo0rdk5QIf4q8Pg3+dvjve0Ru6e3OFgV/ltfnjMn9TuDSbZ8LJIU2RIC8NORHsvm1u+bvLTAnYuRlIl8CPnTarX4vsaCT52cYfvfYI8LMXgFZhPUwgP6MtfROctrUhO6B/xH8q9l4FD6UxIe4kWDkReL91oPP6pTysztn08WK8voDU+T+UQU5lzXsz4/+5Ery0M8Lfik4W+HNoa5tJlSMeh78jPt7e3s825xJHTgEeg64b+1vg9L5dpRiPNORLwbzD/reUQrzIrGYn27oHNjSZebgrHmuRBfv34p8VbCC4RHFqE3e5MKoPO8Yxi8ZXMud3SIstCVJGI9c5DPeOtbk7HxMQIJkE99vI/imW3DowXsmpB6sjPFvBH/Xfmubfr4u2YL3vQp9MzgqpTgjXDqXvMF4HkI+46oCy94frN9yIsxnAPwl4Jysi6dKlxiSvknrn7HRupFa69UDogvoVwX9JzC/a0wrONKCpqPfCvS/C34R/Vg7LVaHBKH+Ofx+4IrK08NNWw0I288uT/q/Ooot1+c094lmsv8ROtsfkrQCNm13nk6LJ42fGDyj9LWeyVdGxBb1hryJ+2t3uPTKpQf6xBrMg+4INhs4Mbp7zSCnBh5Df7b/md55uEN3VMoZgjXhNwLXzvuQsqsonqvF+/wDvwi880CjRvUjMReEemf4Q8CKpi3enppdIj/wNOjLwLsSYr9/HjPCSZHHdLYfvJLw3coDh0Xs/VygzwL7VvW8vXNZjXZivoIm/Z/7yxLnVyf3i+yRfxy6B/h2THKEuFKPuCDPEvl8Nj/vuzv+tRVQYzZe0P+G30pztsvdP5S/rP9O5LPxMn0dFbG8UZ1umDT+oeCspLwc343alNVLoY+An74MbBH+bEXWgPdB9wdHF9y28YtVpWZgCXRDtn62dwQ78C2JMvr1TcrfeHjahZtTdQg7n2uhC9n3bTCuu/GNDdHAerfG93ch7/7VdoPwNAfK1osib+L5GpT9pDDVrJcbRF4/8rvAMbq9SXHiFlEE6oXwe4CbxGcSHM6qkKlgFehTwO2qHkN/GisTlsfOb6YPLapxKdAo4IRge/jXgbnzksQPlp0cm092PheB3y1pnT7PnEfv4/tfwt8GnsPp2++RmdNc1D+A/1dw2RNpnEmqEbFDP3a+fYb+WNFX+DFBJmpGXjr062CB7IDRfB8LEoZ6dj9g52u4Z8hQUuETjp1vf6F/ODhHubSt5q4BYSyGHg9uV4gzP9OkSVaiXzLybcE6/YvzT9YYUXZf0YM+Bi6/1nyPdtpSPs6zbugj8ItjlJx2vOvj5uD7r6D/A/iXvXCwamufQ02gq8PP5jvRKqXoWUo991g28f8qACckVfjE+QyLfgFXQWf3s5R3a9Xf51zi8sEN0CvArkudPI5rqpCL6OeI/olgnb1zI8w0dInPpPU5F1y2N65YO1yVPkNeHfKfgh2feeWMLWjgUrAfhUK/AU7dfPmE8yYlmoC8DciPBosviZNNFPWJI/J+hz8A7BFg1SId0afsf98JfRj5541iTdWum5AbvIn/7wnw28Mlq7zqPn3Z3z2hs+/x5d5UnNs3wC1FfQryV7D5aj1lnCrhEzvMN7vf2YBPZmZUxabPoBm4byzE/SMLXP3xg1/9UQFZjjxX+HeDC1c9etWWNZ0uxPpSx/2mH/kdabNbmgQu5H/Upv48AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt </AppendedData> </VTKFile> diff --git a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_99_t_0.484339.vtu b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_99_t_0.484339.vtu index 789cb2295eaac637a67b6f834954abd87dac4bf5..4a3a0361bcda425deb274f77fd7738d944cadd4a 100644 --- a/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_99_t_0.484339.vtu +++ b/Tests/Data/Mechanics/ModifiedCamClay/triaxtest_output_ts_99_t_0.484339.vtu @@ -2,42 +2,28 @@ <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> <UnstructuredGrid> <FieldData> - <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="97" format="appended" RangeMin="34" RangeMax="125" offset="0" /> - <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="160" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="304" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="252" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="19" format="appended" RangeMin="45" RangeMax="103" offset="0" /> </FieldData> <Piece NumberOfPoints="100" NumberOfCells="76" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0053924218781" RangeMax="0.0053924218781" offset="5704" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.028004971735" RangeMax="0.028004971735" offset="7680" /> - <DataArray type="Float64" Name="MaterialForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="7984" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.6493349291e-09" RangeMax="295534165.26" offset="8064" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.024626687829" RangeMax="-0.024626687829" offset="8992" /> - <DataArray type="Float64" Name="Porosity" format="appended" RangeMin="0.42244668273" RangeMax="0.42244668273" offset="9288" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="370258.61058" RangeMax="370258.61058" offset="9556" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="1.7314418775" RangeMax="1.7314418775" offset="9808" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="3.2218150577" offset="10048" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.032231923331" RangeMax="0.032231923331" offset="11124" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="13124" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="370258.61058" RangeMax="370258.61058" offset="80" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="2.9791455545" offset="376" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.029919981864" RangeMax="0.029919981864" offset="1464" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="3464" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="15076" /> - <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="494908.58524" RangeMax="494908.58524" offset="15140" /> - <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="15720" /> - <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="16052" /> - <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="16388" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="16616" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="103.07764064" offset="5488" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="17712" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="18252" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="18520" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="6584" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="7124" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="7392" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAGEAAAAAAAAAVwAAAAAAAAA=eF5VjDEKgDAMAP+S2Umc+hWREDVKhiQlrYOU/t2ujncH10Cs8h1UxQ2zD0KKoLdAWtsvepwckOYJjJQhQZFbCSXDMI/uHOgXHq7Zja2OwdK3/gELTCQsAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Q1NzXTTU9KNjAzSzU3MtNLySwqqQQAUzEHGg==AQAAAAAAAAAAgAAAAAAAAAAmAAAAAAAA1g8AAAAAAAA=eF51mnk41lnYx8la0qZQk6UaRVqZasjvKUt6p0zLlDakVYuimLRoQZN2qS6totA6FMruPLZUlEiUJVEkpayPLeH94z3f815znsufn+v2/H7n3Odevuf+yTLYYzK4Wzlt3B4TBZdDmmlZlGuynBXPzrxHsnqxlw7qXBe+/BnJpqxP7eDuwrJTahfiSS7l8dQOtso8H6l66AXJoWxA7eBp8pKI/Apv4TXlCdQOrjtDdiw8mSk8pfwrtYOtx/xcHSkXJjzh1g+WDZrbeSopX3hOWY/awR8df4tc+vahkM+t/xXlmQf2rDL9+pgUcHbwhwfWcyVTEoXe7LqLv1UMb77O3j+Oe//814NrYrzTBbwP/sV6/L3+2Kau+6XX9/s6F8SnlSSRF5x/wWfy0vvM8C4gr7jfgzWcbZY1hYUz/xty/ndqLQouD6sU3lGeTO3gDJ/iA/rfigW8byz3/jeub7b3vVzVa/zIehv9e2tOpVBi8N/zB4/cGBC9zVbC/GPIrT+k/N+ZSXV3hQzu/WC9s7t3epq3CXmcf8AzndyPbSKFwktufeCkssqlEXvbBTHlMdQO1rw/3iossUpIpTya2tMor0u99P6tT4vwiLIOtYPPqufelUttFKI5O/hKecwvdip3hDLOP2AD2fAtSnPbhVLODn4wZUJN5MrVpJmyMbWDDXfV56WnfyFY/xhu/b4ZoffGJj8T3lBG/ICjjL223BsiER5z/gd73vS/7mP0le1fl9v/z5cu1YVHy8hj7v3gd/dPqXTI15E6ytOoHVyh1dUSY1cgfKY8kdqrKUc6xVqamOaz+jaK2sFe9aYbtEdWkyDKQ6gdLEnZ43NuQiKJ5fYHLggefUj7nYT0Fn/93ErSrhd2sviCHXw4aZ7ty0yJ0Fv+FqzqtmgLayb13PmBFcZ6GgdvkxO1cnawg45ue+nlagJ/a3P+j5cPf+UV0UwQzzifFMotMXkqmceURVjPaG59Rj37TJRnVQvPKKO+oT4PGGo07uqlLwLWO5Vb/1UnFYn6wn6iWu78wKOa6q5s6xgg6s1/Kj+0ncbmDRQhXrA+8JF+wWW1+weLkO+IX/BDjQ3v/tw2TFTK2cH33LZ4ORxXFVVSnkTtVZRPmsvezrioLirkzg/1+eG5rwoRxZqij5SRn+B5ObljFs1VEiF+jagdvCrFLc26op7FB+oT+OC0bTuNtjQI77n1gd96nP6k+scHqfwGv1A095igX0hiKI+gdnCw445TH36VF6Mf4HzRn2oGeB4/sOw6wXkjfsBqia1ZBf2KSSNl5C94k7bNsrnHFEXoJ9g/6tt+pRU+Ka59RV8pT+HiI27oY92GG2KhmDL6E/qHd5Wm8+1pcqIzlAdQO1h+35qv3XuySDBlTWoHx25fIKtFJOQBZ79P2dhyke6l3e3kLWX0J7DjedWYYMt8AXoI5wf980Q8fk1ew2GmbxDfyKcVahnJawPEhP894t+hJ2D3HrsMqfqB57fqL10UsNSOnc847vknXFzn7VsQSvj+h+cdTXiSXhVaSfj4w/N7TPYri8NTpPQH9M307X//8DxRyNZvyP1eSXfvA/3plQTnj/xH/rkPm088qooJ37/xvFnp1t8aNrxm7+f1Vcj9AX1vT35BUM9QH8Aque4R/j0VJJ3bXyZlzRdZ4t2Wb5j/eP0pl3/K3m/aRyl9hv7416GVmSH2+YSvj1ivRf9c48pLCQLqB/IX8bxn/X2dc0v2k9e9PF+9/0qN15+zWP9H/CN/ZhyYeDd/VZGU/sR5f1NM8dS+2ioQyshf9IMtxtmPzY43sv1N5N6vdzIswVHuu/CJez947y8uP1LNvzP/wb/gdk2tqtYtH8k9yuhPEZQVMzuvrb1TIwRiv9QOVqiu7Ror+5lEcet/SPm81ZpREXNqmL7V59a/bovtqLzoRoHvf6iPjg8mRu/a9F3g9TOeF/jC0Dq2rkNK36F+nj3kVCG7oZX5H/EDHuDxt73M6e8C4hH6JIny9k/dlVpnP/SqrywWrl2b+61TQLyivkN/lK44PUTiL2H5gfcjHoMLA0ysrYpY/cL5Ih63mVmsqJsiYfGB/EmkfEw9Ye4gn5vMf3g+2LTPVMdM9//fH6+f3Q/PUTE6LSNC/mH/0J+3FDMurLlYwfQT6gd4xi63upLLyqIizo79yIU4jhUHNRC58f/H06m9D+WiaoNZpyY2sP6B3yOfdNS0be0blUV4Hh8/n10Tgvxm72P5N4n7/cj6sze9rw8UXaGsxsWvjKKN1fCtbUw/4XxxP8q5otQz1raC4H0G3P5MAlVP+1kkCm+534Oznnu5TVitJIbeN6F2cB+L6pFeasrieMq4H0PfFtnuNr/ZPFjM6xuwjpXfS9WkTtYff6F29MdHn750TPCQEfP+gb8n7bB86DRBSfySez7i9cut7o1D4suEU5SHUfsJysLeCdG3R3eQI5QHUfs/lFMsr/7+2aul1/nCUZV9I8LV01l8mFG7AuW7Viprd0v8ST/KptQOTis709yk+IEk0+chvpEvWk/XnfnNo5y0Y73U/pNyfPGB2xrbf5CLlEdSO/RH1akDRbGTskkA5cHUjr+/b+9y6KtzE0G9R3x+oBx61DNq4fA+Ipnx/z1/ZcrBS0qadW/XEtQbPr9TbvjOs1WoZP0J9wucZ3rGndpiyyYCPQj9Bu569SZvhGs7caLch9rBcqFPrE2quwjW+xu1Q/8+GH5fa0VsO0ng1od4fevez6m0QEkMfYD7BfqV2iPb+5ZBQ0X8fAj3PxeJ1iw32XQhm7OjPjslhFhHzUpn+mUitz+NZVof5CJDpfQP9M0wcUpZzZUidv/k9d2xJ0tqZyzIkdJ3+P3o5kbTEZJXrL4jP9l9OcNXY8Gl14SvH+CLM8ObF/Y9yPQdrz9Sl1pn67+qYPMrvB/+VFnRTKY6VAj8fBDPl1uw/IRVWiabn+H36Je1vzTEH3fOZv0Tv8d+u26PES2ZmktQD5CfqOfZzgYlrpPi2fwD+h960UxDUp5a/FHorf7/Y6PgUOJSTPj+hH5012no3pjyIqb/eP+avlJovjngO5vPaFE72NsqtuJa02uC+OL1zQ79rykWfRqY/jfg/DOf6MnHaNRIzR/Berqz287E5fU6fykKUjypdqxGaKGM/gZe57zjR+nldDYfxf7AW2+UtBVYV7P7H/ovm8946AR2qMmKX3DvR34YvC9TbO2plbofwD7qeN2ltes6Cb9/xLf3ogWO9icVxGCcP/LxhPG16f5uPVLzS8Sn5z/1uq7+MuIs7vnwf7j5oMlVdp3kO2XUly+U58kKRTqzWgju46gfiLc54/5qX1BVwOIX68N+HH2+LwlQaGP6ltdn7k+DVTYqlrH8+ZWzi1YZJf3YLCuOo4z6hnrna2m5z6v7I+svv3L2ZP8es/GBSmLUT+hv7Kdf7MjDfeM6WHzz85lJowx2bovvYvWVj//oQY/WTDrRRNDPER+If+tml4EFo/0FzEdQ/3FfH2UftkretU7q+wDid84Un9Plkd9ZfMO/qEe2V7J0GztqCc4L8Y35UdSAw2Z1aVWkjTL6K+LfSLz6bvjDDoL1QH9gPui9PH3xIvtPrH/y98+uiwuyZ31WFME/uJ8gX/ZekI88n9/F7mcGXH5b6GwOOKUuKxpI++1Malel7Ocw/UVEk6roX/r3uD+EU06Mt9Rc3NYi4Pyhr9Cf34XGDbQQhor4+oT7z4X1Rxafsxkkgp7j5zsJ7lqXjw+TZ/q0P7X7UXbw/DP67cIPTH/j/JCv23om+rbfUxT1H/9f/0NPuRtHvby3JkuAv5FfqN9VjWZBTs9kxcPp38+hdm3oleWG883kKgnuk5gf4bxmBzVlF5r/ZP5H/YdeuRa9PmDx7GTWH/D+CspK52uS/t4lIYgXC2qHXjsmvnoi6pKM+CD+ntqhL+edHpzY1FUkHKeM+dJJynG2f76ryFcR93b+T2vVlZYmDxHjfHH/RDxM36VlvGdOHzHf/5HPGybemBzoK8P0M+oP7q+RbcnyvgdURcg//n5ZetZvaE5qN7lFGfdrxINH6YzfDV/3FyO/+fy8mvv+LnHoIhLOv8i3kDElgb5vWqX0FXj4+g1REV77BV7/I76aj20ur7LO6nX+Wauu1cc18gLTLxO59TVW7e65XZjG9BP8A97yvLJmYWuI1PwL718Z0j+9x+2W1P0M9bPv7tGzjtwjUvcL5L/dJhvHHScT2PdPvj8+dutS+mNJHLPz388+librvJwXy/yH80c/+aSnp1agHsb6rx73+5wjr1V6PEtZ/4J/EQ8Knp4PDf1yWX/C+rBfq1V/2Zasq2Pf5/j7253fB9mr7Xsl9Lb+nR7nnq0YV8O+z6F/4X4/32hJmF31ZyGNs0OfzVh8P2q1fU6v823HMWkjyp9+6jU+ptg9ubpybTO7XyA+kP9LGuekpNxsId8o8/rAo3DXt9x+tVLfx3H+f2bGuSkXPWX6Ac8vp+yy9V7lD+9qqfkb/Ov8T+2tE5OK2f2K16/1YWemL7ZskFo/9l9zOC/x1o4Gdj74PeqrWslUsuroJ+E2ZdR/1Jcx6WqSulXZTH8aUDvWs+to+7lC6zT2fY6/XwRkzxJm7NpL0G9QX9BvkpqTkq4FRzH9An2D+/Hx82LVuQ5ZUvNVxIvtG1/rIPO37P2wI39rpm0Wq0wtYPqWn3+Z7J96ruZzC8F+eP24XjPkpF1ilID5I/prGGUf7XnKMa5tUv4LpZyjs9vQdcETNp+Gf3DeJm+t9fc1dAi4v6O++lN2vzb74Ga7T+z7MfaH/n5I5uf556SEIJ5QX5B/MQZVKTaeDQL0AtZ/h3K2wqancYGJpIMy9Bn63asDET07IosIP3+E/3aNuNrfa0kWwfcW3P+RH2Zyd/0O+nUx/Qc7+r3NslGi/meLWH+BfkL8OZg+3HxLuVtKH4A9WzaenjpwoBj9BfmJ/lxUHjtE4UKHwOcH+LFyTNC7B8pi9APsH5ytr2p4wlFGjHkDv7+QR7OHb3z8g7D7DrWjvugWWV0Ljxogxv0S+g31LCikYHna2p8E+gzxg/vVZT0fWcmMIvZ9Dv7HecSsjm0O71AU8/dD9Bu9pNFyNZrKYn6+BD28s2PRdIffq8h5yoi/c/BH/ZceudT3bH7Oz6+dtMxnB6YOZN9/+flIYI18sbNRPoHewXwT39d+SzZoMhwtJzrL7f8C5egEm6BxX3qEHsqYT3VRnlxiqjP5f0qJPDd/U6J8JePMoH9Xy4r6Urakdsy3Yj6Iuru2prPv8/Af9JPL1sSKJzKtUv9/gL9/WH/zmc2xLnY/QX1F/Dy9cbGt1vt5r/9fUpczbe7XfjUC5pXQj/CXWeh5jQjNXAE8lNrhL6+kFfKDMhsI6j38j3rwPqHTOE5bVYT+hfjF99Xn0bWS1YKs6H8BOsBIlQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAqAUAAAAAAAA=eF5llmtMk1cYx4sLMo1hiIrc5KKIiFItcpVHKNINhWphQwoVkZZ7YVgYFCETFRhMwWU6RCZ4QTTWGLm4wJwcgShtxyaiQyeCCEjQgBdAGNE5zT7sOSbv2cdf/u957uc5r5Uuqsr2EbSu0YtN8ieyWh2RY1qrR/bsNgQHZBfUvZDrQ6cTZs2MNpfruedHkYf8vVKUq3PhRft/7Iz6JLLxneH7dpIcEor2+KivR5642fD44tQCshx5NeobkfP9I7s74z8Ff2QB6mLkQ+bHHjWemkc+Z+x/hmwiHE6c3S4EVvdA5u2MXrVkXgBRI69FPQN51DbUoMsqFC7ouPmdRd69PKaq4csEeKnl2h9ENkpaZhBnrSQ8Pfe8Ds+LY38XHs9JgTzkVajXInfkLG4KexgOVVpuf9qQhWrvnr7SCFAjr0TdD7nul65ml+sqUqHn1leEPPa0mwT3ZcBNxv5J5BD/WsGAlQpk+L0r6tXIiT61E6azomAz0z/K/DNFNS+kxWQU7Tmibor65WKzh5lz8shRtOeBehIyz7TiYlu7GOh80PyUyOeO/m1FGnJhANkN9XbkfTaC/hZ/S7jGxEeQF88SJI3fyIVXTP8MUD+e0fhsR1gi+DD1WYBc0GiWZRKUDSqmPnXI/bqvkxRFqeSIltvf48jO8y07RG8yIYvJ7ys6nzMS68QMP7KNmU/K5oevWepHZNCP7IT6EPKTjkPeLuo9UM/olMPGZP5XnhfDZWa+f0KO9i1qv/qqEL7DeOn9K0fWfGthETE3j5Qh26Fegqxokfa23JZ8mG/a/4PIpYrKpSLDGLJDy/UvQ07aVxYjT19Iipj7W0j7+3pFzfmyBPKcqe8k7Wfy5P00UxU0Mf2n+ebVXLA9ogyDdTpufz2Ra/8JvG+fEgeRzHnKmlHNac8BOVnB9McO2fBeRLG21wvCmfjDkO3dTlQYqtaDC+Of7meLLov893x3YsX4X42cM/Wx8Zbe5WQtMrvfn4gmA4eMAsluHbc+dL+ZFxX2ecaKiDkT/xrkpoNpKWmBfiBh4tuFLDxRVvIsdg6Z0HLjo/c9TfLj2vfNgv/FT9+XB6o7vkaKVFAx80nn37VVXplWLYM0xv9W5D/n7xsVFIR86B+bf1RNaXHAI4DXjP/nyPLsrQXXH6uBxrOMsT+0qzxI1pYKpcjrUKccYrNoz9t0dwhh/NP3h9dk1r/AwY/wmPhfY30OT1/yMkvPhnpmfxBkG6lG/31vDKH9pveD9tPrhkR0YoOCvMT31gH1QWSPuoOyeE0IuOL3dP58kcsHkpOfDq8nUUx8dH93O4zZvXTyhQ2M/6XIceGe9s1KEVEw9jORZ6pO5b9vcCLUH60PrVfJb42WAXdjwYyx/wnyinH39C94kWQ2Y98Y+XBNVqKHdjuh94fO7xLkK3u9O53zg4DOO+0/vS93+wq3vHJJIj1a7vlx+v7x67Tzd8lhhtkvNJ+E7pK/Cl4oyCCT33VkzZbcsc4uBQD2k+53F+RfK5XTt2aHgxnzftvQeAQ+79qKhGShjtvf06hHl/RIlxzwJ1rm/aLvq9KT32nfnUzOoT/6Pt5DPvl24zbb/XISzdTvEto7d82wt+WH/R/uL7VvgSzeWR8Q9UBInBmdfn/aUXo2MmDEh/5f0fmSI1dKrRcZC8QwztR3Ctmktu329qs2QPcl+3/h5evunMMLgvPI9P4cQZb1SLMdZzYRI+Y8jT+swmnYc7uSANM/EXJhcLV7lTaeuDH6W4wvoMlA0zEYQXyZ/wNH5B6bqQJwiwChnlufzchnQiTb7A8kEjXTv73I1vFn+Z2ZwSSOqV8w8h8VfNcEcRBYMvnRfeZWZzR32loN+Ux9ViIXWDxwvTw3l/yM+4LuX2P0f8z2wLtN3nthgMmvG3kk9dZH0sX7CbVH55OgntxT9c2mNxnwL3C9PgA=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAwQAAAAAAAAA=eF51kjsOwkAMRDuExKFyCk4Ex+AKuQL0VNAERMJHKIJNgBBB+IqCgpnmSVRPtmXveLxZr0i68SC6gkPxIB7FgLgQT8hvxQb1lZiIL+Tb/R8z9LWUrxRfxB3mjcQl6nfo+0DnRpyLYzEX12INvTfMpa4asefZ1yf2PEOP37FO+12if4E+z3+I9tX3mIh76Pdc/wPvY9/Dn74c9Jy3OBV514502ceAuvXyH1pXiT77nIr2x/taX4X+meg72/cvDvPzBg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBH/UMo/QoPUqP0qP0KE0CDQAVlyUIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAlgIAAAAAAAA=eF5dkk1IVFEUxy8SkWQtWqRtyhBaKNFE6ULkMoMLXQRKGWhYjh+MGiONNorZNNxs/IBMJvOLaV5laYqKpvQBQaeZoo9N64oIbFGQFLmICmqRM+9/nHff2/z5nfO/555z3vWM7hl5beTI2bWhsZXyM64vb6MN/fuH4zvKCpoifVOuY3NGkj3O/ATHv32ofWq0t8gt20cT/rhIfhWy7ORC60xgzGVyJUVfJHgaLFRmsPh40FhyOT8m6k/inJuy31nZRyUvrTwgV8jKnTI3ZmWhfn3W8xkZhoVD9Hibofmfa6xoWeOwjGt8Q65WGFp9umPlaWqc0+t5NZ6g01ZWy9Kn5SPUrHFImuqlop3JfSHulwU9i4l9gh3yd8G9xL7jIn0xfexhq3lOtZGozvvnWWgg01cvxXjx7mcdtahbTSJ2YbWqqw7sJxGePb+r8KjpV0ESjpzDRfn1ON9IYu3cg0ObvPC7SfiyPj3yesDZUtyafFPVUgU+sl5vX9r85hawk4T779bAq1NgB4mVwa/NyzWpeur9SN79Gkrxj8ys2VLa8Ku9T36eOAh2ShEOdw4ulfD96/nCtKuFueyXwj3z/U/lAbBQqJvqJ/mVgn3QOsTLoV6oX+r+NtL92LMK8Tn4usAB6FloF/Lt4P7UnMmvF/kG6AjXMVkNQ68jHoavAzzA5/X7VTf4IvIOaBBxN5T35QM3cZ9SZ57PZ2P0KcZt/fO7vsn32nzdUAU/738U8T4w5t/oh/+fH/kJm28B8+NeNY847/ca/L3QKOK8pyHux9YfvxPeF++X3xnvIYr4ZfAU9Ao0gjy/i3H0O4w4v48e6AD0Eunnef6Ibb7bfD8U8/M7EpOmxthn/593CXl9foU+xRT9B1ADWFA=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAuwAAAAAAAAA=eF51kjsOwjAQRAMkEOwQCD/RATUH4CbcjaM4EuJKaaBACFEwr8hIVE+b7M7YO87bS7ydr/eNuBIbcSlW4lRciFGsjZn1lWIujkwXnYP1FeJJHItr00Xvk37cms5Q3InBzlnZ/DP1/+M7szrYPHVp/dSF9XOPaN8zI/PB+sntlfrnIjf8j6bTqX9iuuyLHMnPc6qthuSAL+/oLT/2i95enP+5H/68O3x9r16TN3vA1/ND72H7GIhfgAFhHg==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApwAAAAAAAAA=eF51kkEOgkAQBJFViK/yJbzP5/gA4z7AcMCYgLqKHpw6UAmnTs9MT/cOlMvx1O3PhynwFXgXnwPfwofmiuqb/Mch+Db4GLwSp+/9H/kYmcfvqnoT9V4+KbDOS582L/PR5w5+N/Wb6pV0T+Vau6t92TdJ9xXaF17rPY36zsOccyXtQe8cO+mZwxcf3sPdmS/SeQ93JAfzSbn83dDhNwvZx3/0A4k8xEc=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAmwAAAAAAAAA=eF6FkTsOgkAURXdhLCQiAZwZ/gSpaGxdhVtwOeyW5t7mJMTqZN7c+77xu/0+++UdxVksEH+KnZjAHm/rwwkL+GrxJVbQrdBNqBfwvyCP+2E9shWvYgm2f3ysw/4C9AnvRownPu7dvlwckMc679X93fDPOzN/jTh9CTrO7zs+MM8KHffj/M7ruUbEqfe9eG/26X1lmP8uHoJH87w=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAkwAAAAAAAAA=eF51kbENgDAMBIdgIKYBCUEBMQkJClMxFiNAQeNvTkr1sv9tv23rnuG7394cg+OCODnuwA064eqY0a+AT4irY0Re8wJi+ZaPw3FEH/Wd4Ksglv5CXj7VX/N28DN8sp7+iZyTUce7ReitUcd+FbzqInT8O+9l4DWnIm+NPP9LfevfvK/yJ3jFEbqEeu6tPX6yCttGAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAABAMAAAAAAAA=eF5d1GtIU2Ecx/HNppuWRIRldBEpijKRvFCGlYJkTtJgWNmWZiiEUyJTEYtsWl7QMM0szaIUhMzU3crEOueFy66ji8t7M/CSjZEG5kQGdZ7f8wxq7z47Z+c85/v8z0Sifz8RFy/PTSiqDzDfvgCPLDe0Bb305Nn3Y9SLW4Xj51zne4QL1ricXBKZMeAsd1lOr88H6bySDSYunbooTLCFq6T+2exedjBmnCuk3rJdOD7JVVCfaE++lutv48qo/RqE82e5u9TfppSxn5y/uMPUa0KF389zh6jjNbJ3MxkO7gh1sVm43hKXQN213hgvHnRyAdR5BuH6Ij6Eunmi80xlk5i/RT3go/p7Pzc+mNorRrrDN0nCN1JH5gv3d+ezqXMenrQ1r5TyvdQtw8J6ZHyoE71Gad/SMfRktok1pPfof/uhtuP3zAtmXJ+5uBP3Z15Vg/Ux3zuP9TPvTNSS52PWhnmQ52eOW/eE9GEO6Ush/Zg35XqSvszSzXrSn3n2g4rsD3O32oPsH/OY7BTZX+aYvXqy/8xacv64y/vIcYvLu4hNXEkw5vPmAuYtcz/svYh5C5LDXDiu9yqRzvNvzFtBKhyhSyHrsWfCit1YrzofVtfhedZegeOmMW+1VXDAHvTwvQN7lqPXUAs8NYR569DBp33Qu+05PT8c+zHzGg5UYb+sFji+EPtpHYdzmrDfGjt9fhPmocIBP/uOeZmKwnw5DOjTLodHnqJPmgJ+L0WfMBVs1KKPOB1uVKKPPgu2u6GPXx78Q4k+xktw9SP0qSuFQ5fwPi67Dg/L0UdcDxc1oE/rA3j1PN5HRSs8vQF97Dq4Oxp9onrgqkz0OdoLp9aij8RM79+DPjVfYNkE+nRU4n1UZaPPthvw4zz0aaqHrRb8X0nuw1lZ6BPcAi9I0MfQBl814/9Kq4PT/NGnrgv+fBZ9vDk4+gX6FJjgzhXoM/AW3qhEn6GPsKkffY4Pwr0i9Bn9CscGoo/fJPwmCX1qbXBCCfr0zcH9OtrHAR+zos8fTFriSA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAugUAAAAAAAA=eF51ln1QzWkUxytdb6VVolJLIW1stDRkeyouSZJet0Rbtyth1e2iUqnoEm1FxCZKW60NJfdad9fbWUJIzJYkd9KyqSENraj0wrQ70znN9Mz48zPf5/ye55zzPc/zuxDcpWq3WuqoY9JWW5eYf+035NZX3tOXzJvBdiOPR/0asm71o8xLyc6sQTTA+qifR9YVaoEoIhLcgwZYDXU35PJVNdo2+insFH2P27/5XESCxaw50Iysh3oJ6ebFawuKRawKeRzqtcia31Z7StVtoDB46PnuID+ZrfolP20OS+fi65CHT9DpjVngAT1c/EfSlUr9+yM3QQqnv0Du9x8lPi4Rsw/I2qh3IzuV7/Fw75NAAFffJmSlR9LlZ1lSViMe4AmoayHbym8nLvITgqN4aP8uY3y2jvKH8NqlQP0bifpZ5E7Z9L1liTGQimzIxbvn1yWm5cYzb+QxqOciC4Rtw6bFhLBtyGaoi5DDl23/4kx2HGsXDc0/kPKtyfv9eschkImH9leAnFlQIQi6lQEKjJ/C7e8anen5/u1BRvFU/3nIFm2TujujwkGM6w1QL0OuMXY2sXKQsWqu/8Mx/p+JopYdEWngwtWvCM+TcdDVO7ciCVyp38YDujnqRSNKdB0LdoIRshblj/7fLX4Mo+3/nw/cbyzqK5FntlopU//MYk/FQ/tDfDMg4crLw+ksk/MfcVyv1foXFVtAjusnUv+RWzV1Qo8t3M1u43ryD3HiycV319gkMQGnE1vvV+/tV2SymuCh+VE97xZOmZ+/NRVonjW4+X774/l6r6JIKObmowi5WeKs0T8mmD3i/EfzaVLRtNzheiyc4+aHuHFRt+rW6SBQcOcn/wu/ee6bNjMQOpFpvrqQL4T1ussWOjFTzl+TkKNvNMcPsw5g5BeKJ5bkPTBZoogHiid/myF/MnBWP+DjzXq5/YlXOcgFbqVilo1M/iD///RJ/l3fmbXwnNN/Rn5/UBX2oWox0P0zjvu+tGRygeShGutAJn98iecz0t3pq39yLdB9R/lrol4bOvVImEDExnL5U3yHm0SaW+rItLn7ie7TGW+6j+u1zQW6z0mnfqk1epet3rGJ5X2mfw2mOxoWqvxZG5efCvls2cdRWdnuEMnpJ5APm8oflFq7wTFkQ+77ptaxDlGNiewQ8mjU7yMfiV2eY6u9mdF9R+fTQfYb5Rqa4rgGwrj6XUUujzYutJd6QCQ338XI1dJj/rvSHQbfl6moH0DuU+g5a9WvY1lcvAq5S+tUxfrJ22ALsgB1L+TK3I3JwxbEwb/4PfIn+UnfR5ITcsSWvebOT/Oh77/k15kKP3iLTO/3O6pfj0mMy9FOu9Hc+chPPf3j6+yWujJ678g/Org+rmn+dsXFLYPzR/M9BtnTvrrh2WYh0P1A/qf+GRdm7V/RYj34PlF+x6n+h/xfdczSBDmXXyuyppGsz3CNK3vCfT8G2cxHVqG+cgMDrv85yOkulqsMLePAmNt/H/Llv+3G1Tsnsxuc/+i9Ms06rd6uXAz0PzEcdfLTi68sb5hdErH9yHT/hmN96n1ib4ZP3cRE3P2VgesD5kZ1tPougxBkc9RTcX22j7DeUBXMPnHnk6KuvkIY4rkrerB+1P+HyKFdhiqjXS5A9aH8yS+R9+zFyZUWbATnDzVkNbumoElXAqGO+z756ebpw6ujtm6Ap6iTP8ifIu29582DbAbrS/7Sw3ivdeJSp3uBsJG7n+/h+pbnSmVRqS9Uc/vT/5JX3sY372ZHQBTnD8r3j5RnGX8ZRIKGeGh/KlE3SPg+WTJrM+QjG6F+EdmqIGfeBrME+Jrrvx/57Wr7OadQCQRy+ycjd2ncmWbhJWNHuf5TvUJL0nrMVkaxSvw/ofvxJepJBVWWQfvSgf436P+H3r8921v8J9rK2GuMp/eZ5mVFlfyEOCIe6L2i/CdgfPnqx+8aRTL2H4REv7k=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAlQUAAAAAAAA=eF51lnlMVFcUh2Vw2FxhUMGgEUVkEWqhKITeqRtUrY1LsYKtIRosi9SKrVGLQaSiYGkFlwSXiijVCtoIIlbkDg5FHIalMyADFSowoFAFRHHBgtomPb/3xzX8NfnyvTnv3nPOO/dWuG73s35tof7vR75pl526gjhu7W8+XvYHGXiG4Ddsi1S7GbdyW7f/eR75icTWnnZe5mPNlCn0vA15cEDY4Zm7VslVfxC7ka8m3mf8uTdGf4priF2E9/+YbL4/xrKG6Yg9ydcSy8du/6hySjrXDRFf9rTMVbegkg3lgwv+uTpvtI43EM8kX0+8o/eVY3V9E/tL8E3EmtDWamPHE6YidiIPHr5+y+RE2XPeJay/kzhlkZeP0eUFuyPEv0uc6Z+0YXpAG8slnkL+MnHNeJswntvOThFPIH+CuDbRZenluYPckurlS15GbGWrWj1b+4bl0/OTyecR+6WdfPWJywAbSc8ryY8lbn5pfvrh8Q6GfKJ+4OiQBflBFxWqQuJJ5IuIBwK+dy5cYamyoXgLyY8hTtl2PU8+t4Fphfwi/p8RmaER8WbKXqyXfA+xRbnKRDb1LGsX8guOD3S/W3zATHlDiF9CHJTd7RmU3ceOEU8kn068sU/7IivTVDma1jufvIL442Xzp389op/n0PMO5C8Qr7+2Of7pRRPlbWJnob97dyZFD+zWcnj0D7h/d7o+8MJ91kHsTh580KHl88N1Fkr0q9i/p3VRuTfcbJXoN3wfzcRL/IZFxvxirbxE7EgenNBzLW/HSktVBjG+f3BMskXNbv0dhv04Ces/7OXO58gecvSvHXmwTl3cGeGfyRuJPciDs66eXVRo0cfRT1OF/koNGREUZTfAjMSzyIOnGKu/yfFpleYf9g821tccdZr9mOmJ0d81xHHeNquZYw+vGuL/4xZEB0f1lUrzB/MV8bKaZ4wevriMYf65kgenqNvlykY1LyN2FnygaUBW1sY8Xim8H9+LVatH753IWl4nxAdH3VbUbn9Hz7XC/xFvoll3UslaLcN+0V+oX/y+kBZ5+BHOhfqCs8fnKBrvcWn98OXEnZfmVlR1vXgrv+gXhUwTmr3lvtQ/WB+ez/Z3SttjaGRYr7uw/jWtplV7V2kY5q8XebB/g2N+6hJTZSkx5h/W65Ox0n/5+/2sRfg/eFZscNIVRYmUH6wP9fZ1Sdv57AMtVxNPJ19MvLU0/UpyialyvDA/JhDLJoQs1kV2SfVB/fG+rvKbB9bd6OF7iUeST0R9IlLb/Mc1SfkR53Obr35bXnaZdH66ksd5fSnjxMN50eUM9UL9bhG37D0ir/bRcwMx5gvO06AP3f+20udzvA/1Qf2iH8da9xf0MuR/Gnmw22fFC20U9zjYWfDJByb5nYzo4BVCfKz3y9SCnGXBhrf6C/n4VO9rV7TuqdS/iI/6eE474zQzrJuhfuL+gzOaM7s7H/EHxO+Sx/neHxZaZSh4xPqJvcmDHb7yGHBJM7JDxLbkwZsveO7b01TBC4hx/uD8WLqstNY2tUqaf8gfzi+TLWYJpaXPuD31UyD5ScSaNvvvjid0c/H+h3jOt394Muz0KFWZ4LF/43WFuya8UupPeOR/+VTXX7/oimG4T+H7wPzxMI9TJ/5eL92fML9Rj1nZzt4N989L8xP1k+Zn7AnN4IM61kYsfp9rPBw2x1nVceQD9btJPL8oUf/tnOfS/EZ89H9Py7Qi7zVP3tof8hGbFn1oZ387x33LnjzuCy2rTcItw9vZa2LcT8B5unO21YY+fo4Y96PzxPkZuR4Gp3ouzhfs/6dXlS8H3QxsqPNBW7jjfO0ZmRLfI+4PiHd0zHu3jvXJVQnEY8gnE6tH9d2rW2GlFM/Xa8SvfcITAnQjVdeJcb/B/fTcwsebSgffsH8BXrpQUA==AQAAAAAAAAAAgAAAAAAAADABAAAAAAAADQAAAAAAAAA=eF5jYBgFpAAAATAAAQ==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAkAEAAAAAAAA=eF6FlLdKRVEURCvB1k5QzDkrKPhT1q/zbwTBgChiwpxzzogiooLgH4jNWhYDD6thhss++8zMPS2FwZKh4fK1g9bCYNlP6R+2oB/Bj0I/g5+FfgoX29Av4Behn8DFJvQduNiIvgvf/Wd+K/olXKxBX4CLXejPcLEOfR0ueu4D/CH0O/hdzH+Ei7Xom3CxD/0NLlagj8PFzCtzzHzd8xwuFvO/A/0q/NTn7EM1+hR8EmyI+VtgffiwAWbu22Az+j5c1OdXuGiOWzHf/Q9jjvtPwMfAXvR3uNgQ81fAnsj9NvaZhc/EPsexj7nswfUv/zvzNy/PuwmfV+HL4ds9XPTc7Kf98bzDInOuY457m6P7ey9zsf/m9xLfO9e+6b9+2Zf60N1/AP0b/gWai++CuXhf/fS9sp++O9krcxTzP/Xe+pM99FzzPYk5+V93oj/B7V07uj3QP+9rH5bCN/1ai+/t9zzoOzYHnwa70c1PtJ/2RF/ds9h7bt76UIk+Ch8B+9E/4R/hW/pfhb4I9x6/v/bbzg==AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAA1wAAAAAAAAA=eF5jYEAGH+wZsIJRcXTxP9fZ+gTXftmDLr5JLaXz8f3fGOKogLD4TOcpkfVbn1FszmAT79YJiex4fotm/ppwp+ue6cSnRJv/4qHgRW3JdzbEqh9p4rOuKPvNf3wHI3yyuk0OODc8Izrc8led05Dreky0elLFm6VaFm75/wkj3ouZL2v7WjwgOj3Ms37P4qnzEMOdrJM+/bzbjBkO8ddZq/cuvk8zf4008ebZZkdnP3iBEZ6CewVffkp8hCF+NWaxT+j1u0THLy7xC+XhxbdmY5ZLAOpFqrQ=AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAA2wAAAAAAAAA=eF5jYACBD/YMWMGoOCHxP9fZ+gTXfrFBF9+kltL5+P5vDHEGrAC3+EznKZH1W59RbA51xNEBTB2p6nGJE5InXnzCna57phOfooUbpjoY/eKh4EVtyXd7sMujA2r5l1RxQvLEiqMDwubPuqLsN//xHYzwyeo2OeDc8IzocMtfdU5DrusxmnpMdfjFccs3S7Us3PL/E0Z+KWa+rO1r8YDIfIQOEPayTvr0824zZjjEX2et3rv4PtHhMDDi6ICQfkLylIqjA4S9zbPNjs5+8ILCdIJLnHj3AABc1ZUzAQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAigAAAAAAAAA=eF5jYMAGPthjFR4VH+HiuOTRASH1H+y7dUIiO57fssEuj1BHXXFS3U+qOCF5SsXRAan6CbkTHRAyh1rihOQJAVL1ExL/YD/P+j2Lp87DPdjVoasfKuKE5AkBUvUTEifV3g/2gnsFX35KfIQWLx/sr8Ys9gm9fhetPCHd/Avl4cW3ZiPKJQD/dW92AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt + _AQAAAAAAAAAAgAAAAAAAABMAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9E1szTTTU9JMTJLNk4zBAArfAS+AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAvAAAAAAAAAA=eF510j0OAVEUxfEl6CxBoxF0xEdB5MUzgxnMxEciOhSzAWEZswtL1PxPcxLVL/eNd9+5N2IxrELdnGb4xRoTTM2VWVod7Dza9xtucIsH/Py5d8c2tnCAZ8yxgW97p29zv7CDFzzh1eY/4s7m8D35vhKrdW9v+XQe7Vx7LVD7yuyefvfACWpPT+urPJ5XfXKr9Z7yaa655eih9qU+a+uj/4n6BDO1urR6gUvLpRwzm0vvd3GEY6zwB9T1ARA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADgMAAAAAAAA=eF5d1HtIU1EAx/FpW2FKUWkhmqYS5jTN8pWYYlJsYg/DytTlH5osJZmjEUKKaJYGsT9UtMyRpuGjoRtFf6y6V1pp5aPBisyy8lVa9kBNTLG853fOoPbfZ/fcc8/9nnuvSPTvL7XRUFqT3xLD7N4EfzHNKVXWVTz7f5La0Vc4Xm4bnxEr+KrNs877Mne63bQ5nc7/YDpvT9g6M+dNvX5esJXTUI9MSdMsrkNcN3XjlHB8lBPR9Sgy+3pKXCa4FdSGQWH8N26Ajq82PtKs1f7kHlLzc8L5M9x96smoLRJFxS+uhXpTsTDfPKejju46X9lavcAVUp9y8l+ef4nLpW4wfF23eEDEX6OWDAnXs+Mr2fjVtQPeL+z5XuquMPXy9cW8hVqaIa+XH5HwSrr+Mq2wnpV8+Rn0Yr0TQo2kJ/NwtpH0nvhvP4Zv4HzmV6WYn/lZNq7PzB/C+pjvhZjJ+pn1rlPk/phPLOD+mTsMBaQPs52yn/RjTvbwIn2Z26xq0p956bKZ7A+zLD2A7B+zqbGf7C+z36Qa+09/kWT8kM1byXGrzRuIzZw+HM9n4W3YTQ5/1GP8hRT4gz3m68iBHdpwPacCWJeE9fy4Amcs+ZP1vtbBo0m4H1U7rK7D/f7m4YUxPG9WC3wpEL08R2Dnc+i5fwZu4NDbU4L9bv2D5y14I+zoif2q94WV0djPiAi4V4H9FsfD2wrwPJxMhcuu43lRHsT7+j0XfY6nwlV56BOjhItu+ZM+iRp4PAd9gorhi2L08dHChXXoY6qFezzQJ6sZ3p2FPpvvwjo9+rzphB1n8T529sH5UejTNAi/L0Gf8U9w8xj6hM/CaQ7os8se74/LdvSpWwN3H0afve5w0Vn08fKDQ2rQR+uK9zE5GH0SPeCjoegj9oGD4tHniS/8OAB9tAGw6g6+V7HBcFUU+jwNhds/43sVHwkvBqLPy2hYrkEfVRysNaGPVAa/tUOfhgTYR4Y+skS46Tn67DgGG6fxvWpPgU1u6KNIh7vi0CcoE7bkoI/0NPyuAn3+AlhBpTg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAuwUAAAAAAAA=eF5llnk01WkYx0NSBqMMSaJFq2om09DyJlpmqGh0Sg1NypK9uFeypNzCtRSGkaXRtMhMpUkbLe9J027kZjgxVEgxMR0pyxg6zB/zfe453vnzcz6/+97f+z7f53l/b+X6tpUOW5fGPohpSok+WtIOVmRal5m+alrcCk6DJ7aPSPLu8rJjMfH/cS28B3jkiumHVcsTeDaez4HPAr//XbV4zId09gicAP+GvEJxxKx2F28BH4an59cs1hybKpGw4fFDfRu8zfMay0NLt3Id+O+F9c80xCrMin25ETgf/jZYd49OgcnJ9UwBzobvBWvt3xQw2lLCHbH+Qfi54N5brZ2jrGJZCDgDfh3YsGNBwYXnjmwTWCb4L3Wrrh5daMMtwcnwC8B5qw+NHvBL5NaCnwmOL53cMrjQh4fR8/DTwGqrVvm3HJCxLeAj8MbgPte9mufPZ/ERYDn8GLCu8eW7NwrDmQk4BX4Q5/Mzf5rf2mjPX4EL4DvBjXeWlMhTbdhZ+dD6fIz1YjIGHl6/7cx74KPgteHL5mUsqTyzh/mB4+AtwNdz9zZkrolgH/B7L8EbnXBJy644xnOE/WWAFcYPx2eah/E84XypXv5tndL6jV6sCBwNP53ysPlPlZaDaXwi+AT8SbyP/ubUoAUGsTwbPgie3kfvI5sRWtn5yv09gic+uHFXpW9bLuuSD12fuOOFXd+u5ae4LZ4/Br8M3PBGXXtunQ8fCab+JN7yWMP22y8ClPWn/BDvvDKnK9Q0mM8W1p8FbvzmsNys+TinPEXAm4LPrrbcuUgu5VQfCXwf9Vek3oEJo75mE/A89bdyvYv9V514EKugfoavpDx5THHw+DxSef774YnVZJYzB9VC+SLKGzwD10dYRa1L3qHsz1NC/bseG9zf6pbMZoBz4YmvTVHpdcgJ5UZCfoijL1hKPQtdeKMw316AV4QnWkvVh7F8Yf7+BE50KFvvnbqF07ym+VIAHt5ZNe2DWRBXF+r7En6wtPZZ7Y7djPr5O3hDsM7xaq26exLGhPen+lYUSkvv/OHE7ME0P5zBCRLH8vvv9jFXIR80r1JULk08a+LIFwp+MthnX52aoSSSm1He4Kvx/nlVHf67ZzkwfXipkA+jt2v5U/MQpiGs34/fb39tkdH6PoAbwFN+aJ4ZJmtP3W4RpPz/RGH/eYbVVncUG1ipcH+pwjsfyePtLxP4eHC80F89M4ovdkkCGe2f7hcb8E314F5zo3T+N9Y/BE/z01qaMq55mx/fh+d3wAeAg/q7JafCZDwJTP2XBe7IWK7QfuDDqd/o/uoA8xu3TbJ0NzBN4f0pT2vD3aKdyvzYgJA/ytNlme7AryycTQLTfKc8lSW5yUyrvZi14O2oHjo2PYrX2/hmMM034rDT0X3Fs/zZKjD1D/WzdZHxfNdxIcp80v1K9+O16bc6XMI9GdWL9v8J2C7KPfCaWRyn/RcJ9atJ0vC/FxL4v/6hPBY5PdpQbuXE6uRDPeXbOHl2yHiVOPZOuN8egI/6eRY6zQnkdB40fyjfzzqrHC61R3C6b0/D0/eBXcK9Zj2DJD5POB+qt0yzvWbS8xhmBX8Ffg/4ydj+kRWucSxVOD/K0z/z6sN+8w7mbUL9G8CZw57eOtfjzWKE/NL/n59g6v8mypPR/KP5RvdLU7pK5C8m0Zz6MROe+nEb9/khqyaYUR7o/v8KfPXt3U9vVPry1WDqX/q+WrZyYqdejr9yvtH6i8Hnap1sEyxCOfU75ZPynN7uvNI8x105v8LhtcCqLooSD9dgTt+DdD70vXp9joaWm8p+5fcp5Y/mr/2Titwl5eHsGc4nC74bHNBi3VvfHM0pT/eF8z0z/LNA90uxyvlH50t5GObhafDaNE55/4QJ+W9i+j7d84M4zRPaH93fxuonvV9Nded/4ffr4VfS+XfX3Cxx8GU/gjl8Glg69nhq5lw5+xcVheyjAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAywUAAAAAAAA=eF5d1n80VnccB/B+UB4Rjx8j+Z3Qr8mqpdb3VixJdVpqMYceO2ltdBKlOUcraiZtWWptSLOo1o8hOyor9/KE5GfyM54KD9pTC08RktjO6f1xzu6fr/O+3++93+/9fj73lsyKWCId0ZLbRyzR3HXQVF4GT/TXWm2y8SpfD89DXgcrfFb+VrGkmFfPfud85E/hwMj55carOtguOB45Occqu0e5p4qvEd2/Ch436uZ5d6KcJzsivw+HTmqo1D0s56tFOV3f3RXqu0WfZ0WwLfJCuHl4n7Mko4jVicbTfLkHXKrcS2/zT+EPkavgGn8dm1XhrXwD7CB6vqhK918lDqf5AtgaOVkrY1qm+aiSaWM/OOSTYOtvb42+rTLk7uD6mcgr6f5rfR92BUuECtgOOa3X59RE7zynDmaG+dYhnw8/i5pw9stCa472fy7yVji64vmZzxcYCRdhG+QZ8EMWW5XRYSF8J1rfCfh4gOxs4GAZ64N9kWvi/o0jT0IrByWcJbwQuQRWPantHz1qzD0SPV8zbOCo86Akto89gF2RP4YDR+3VDRs1BBms/vpd7gfXZeUEmCiNhT5HGLkR8ptDVZudhyZzPvAb5Jvh3jXas2PnTuaezfr/+1PDSUnDpzips9ACz0f+HJYeOybxsDEQguAmzL8TbmvxS9V0thHCsB/hGB8CBzUpF7ptN+XO4XpL5GlwkF6QrCp2iKf1DmB+X7jxxCbBJmOCYIP5VmC8LexwbZd/8YNuNorr/ZCPwHlHs+t7X5txjvATzD8TFlwT0/ausxDWYj4vjF8Hj2uc2qvKPc/o/FB9ki+t0LNsi1Uzd9F4D9hV0R6+aboeJ66/Rlhv0IBFDnTwVN/OyKmfPdZX1Zb+8pbdhd9HXgLz29cc822vZTdhqi+yLGCPZnqADacSjafz0FmzJem2qo6n+qX+RvVZ57t4aLz732P9a5ao/1hekWqoUrt56sd0/1K4eUCR3OxVP5bT+qkfyIZenfVWVPMVopz6Y3LK5avGfoqx+88W9ZfF91q+8LdvZ1R/dH4VcGqu1VZVrYpXitZPPu4WHRz8ySCj/kLrI7tuYAkR5+v5JtHzUX0nbgqL9D8oZ9dF+3cDLlRkv7czpZ1Fw1Lkh+AwoyPpH1mNMBOcl+XI9eFzIcePfPCxkfAS17sg74WnnSw+EO/1htF+0f7Qfl4J6W9KNVAyqm/qT3Qe7fvUPdqyOj4GNkKeCJdan45zXG/E9cOrRednvHOja/zK8UKWaH0XYO+BhP1zXfQ4Ot8myNvg534n0r0XmQkpMPXXM7TepN8tPB6+5sth+v7RebqQnc6rBsp5Oq8zROd3Tla62y2HK0x8fml/fsq0Tezf38cUopz6dVbWqwSLnx+xTNgceQ49j22Iy59a11k7TPXbAbcme2ZU/1DO6HtF54fc7Tio62RZx+7B80T3Pxe7l+270MVov+j90vejs8JqzrZifSEPthU9nzrsjw0FCTrcSdgAeTLcfKfTwylAh+uGnZBTPRXcSJDnFNzn6fvyCv2TvlfKkh2tkjhTgb4nyzCe+u8h46XL43Kf8XKY6oPqZfGMxJh46RBvJ+rvM+BtymbHpbUvWA+up/qm/c7s8You227AxeJ66v8xcO9nskxZgAVH9UHvl/5/9C9+Gm9+LX2sf9L/QS7cqJli2ry7hc8T5XR9cHayrqf3Pzy9b6ovqreGoj67qDA1uwVbIaf5dhhe7Io4dXvs/5H2n3y6csrWaQ6ThDLReMoXCGeG7P7rz/kwfV/p/+3Hqwd1wxXVLAqm+v4eHl721ZGplyRj9U37OwwXHdjfYLZIyd7C9H9J/0emLclT/FdXMzo/dL7pfVWkxZnUaOkI4v5E+5WWLxwKvDzIR8KGyHfDKzS020565LMImP5v9sHnC/te7FwvFbJF4/+CQ8OqPTsvWQkL4JcYbwsnREz3ubtXgzuM9eym+oANbc2/Uflac/8Csw5OAQ==AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAFAMAAAAAAAA=eF591X9IU1EUB/BDGcrclmlmTgkxZjPFqTVrgvha5GBalpoa5hOkH6KEIhbYH6ZhVpJBtJBYv6Ymg0hBw8KGhlqs/SNFYCVZEZaJRFlqWGnveTA5uzfvH/ePz7vc3Xe/5+wBLDeMwvJ+4D/Pl3yudl4a65l1ypuy6xgvei1xbzzjOIyCazJ/Z6Uq0OO5URB/yq5l/OiEctRg1TNeMCGvNzBeX2iwDu1NZNe/kvdJZvxG3KTGXWJi/Pe0vP8uxvOdT0t07WbGnTXy71oYDzHbnXWTaYxXKlXSedIZ31ouLdfsYzyqQD5nBuPhabp2uzOTcY1RlM6/n3H/COmYYjbjPgFu6b1y/vmLWGl6tJjjUj18apDnSMbT+uU5mPHFkail+y+OCgvvPABtpbzzA4xZee8LEN7Nux+Ag2959wkQ5a3m3D/AmqQmTl4AP8oTOPkCDDvcnHoA6B0ROfUDcHvtd069AfwqVXPqE6ClI4FTzwDpUyKn/gG+Luzj2S8A5oX1nv0FICz4Uj/2XMF+b7pHvboVXd1F9xHuoytX099d4UIP6KTn7HuJfl2k71X9GT1LQe/BNIv+fpj2qZevPAcLgy30np+EoD88RnM5E43uSKA5piShX56nfeqzB73KRfvUJaL7D9C6OleKfriZ1mFqNXrXaVq3ikvoikJa5247et4O2hf1Heh3w2gf3bqD/8NeFTSvmAfogydoXn0D6Lo2Fckr+xn6UBnNa/QNeqOC5lU1jt7WoiJ5qWbQw5tpXraV8hwpvCumeen90G3xNK/+UPTcWfq/mhOJvq6P5vXRgP78PM3rpAnd5aB5qdPRWy/QvK7lodeV0bziitAPZdG8Hlegm7bTvDJr0MNCaV7TI/h9PLLFo78+oDduo3n5jaFbdtO8bBPothial/Yb+sUu+h3snEJflUzzEmbRC4ppXu459C+xNK9cOUfpu3Bqhn4HR73RfXtoXuVK9Ku1NK8/fugRqTSvs4HoVQ00ryAN+vhxmlfTBvQMkeal34jek0Lz6t6EvllP8zJHo1uDaF5/AYA38IE=AQAAAAAAAAAAgAAAAAAAAIAJAAAAAAAAcgEAAAAAAAA=eF5d0sVWFQAARVEEREJQFJRGygCku+s9urvr//+BAedM7p3stc74lpS8rxyH8H9oH8bB0D6CA6F9FPtD+xj+C+3j+De0T+Cf0D6Jv0P7FPaF9mnsDe0z2BPaZ7E7tM9hV2ifx1+hfQE7Q/sidoT2JWwP7cvYFtpbsQz91UdcwaHQvorDoX0NR0L7Oo6G9g0cC+0FHA/tRZwI7Zs4Gdq3cCq0b+N0aN/BmdC+i7OhfQ/nQvs+zof2A1wI7Ye4GNqPcCm0H+NyaG9Bf+avKvAEV0L7Ka6G9jNcC+3nuB7aL3AjtF9iIbRfYTG0X+NmaL/BrdB+i9uh/Q53Qvs97ob2B9wL7Y+4H9qf8CC0P+NhaH/Bo9D+isehvRn9mb/6gJ/wJLRX4mlor8Kz0F6N56G9Bi9C+2e8DO21eBXa6/A6tH/Bm9D+FW9Dez3ehfZveB/av+NDaG/Ax9DeiE+h/Qc+h/af+BLam/A1tJeiP3sDGe9FPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAqAAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIPgQBEEQBEEQBEEQBMEgCAaDIAiCIAiCIAiCIAiCYDAIgkEQBMEgCAZBEARBEATdyUVCb1HHHHfCgZNOOe2Ms84574KLLrnsiquuue4PN9z0p7/cctsdd91z3wMPPfLYE08989wLL73yt3+89sa/3nrnvQ/+89En//vsi6+++e6Hnw6F30UcdcxxJxw46ZTTzjjrnF9UqSDGAQAAAAAAAAAAgAAAAAAAAEwAAAAAAAAADAAAAAAAAAA=eF7j5KQeAABnKgKt </AppendedData> </VTKFile> diff --git a/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/ModifiedCamClay_report.pdf b/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/ModifiedCamClay_report.pdf index 81bf56db7286d684952f6a07c3ca5e64ba026775..1fef16001390362cf113c627ddb6f3098249b686 100644 Binary files a/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/ModifiedCamClay_report.pdf and b/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/ModifiedCamClay_report.pdf differ diff --git a/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/index.md b/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/index.md index 82e79cdddea87c95f1c20ca8c90b7129ff3a3c84..db16d14acad32a9d9b8985a7d71e6669c03a230e 100644 --- a/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/index.md +++ b/web/content/docs/benchmarks/small-deformations/ModifiedCamClay/index.md @@ -1,6 +1,10 @@ +++ author = "Christian Silbermann, Thomas Nagel" -project = ["Mechanics/ModifiedCamClay/square_1e0_shear.prj", "Mechanics/ModifiedCamClay/square_1e0_biax.prj", "Mechanics/ModifiedCamClay/model_triaxtest.prj"] +project = ["Mechanics/ModifiedCamClay/square_1e0_shear.prj", + "Mechanics/ModifiedCamClay/square_1e0_biax.prj", + "Mechanics/ModifiedCamClay/triaxtest.prj", + "Mechanics/ModifiedCamClay/triaxtest_original.prj", + "Mechanics/ModifiedCamClay/triaxtest_original_abs.prj"] date = "2020-12-14T14:39:39+01:00" title = "Modified Cam clay model" image = "" @@ -8,10 +12,13 @@ image = "" ## Test cases -Three tests are presented: +Five tests are presented: {{< data-link >}} +of which the last three have the same test program but use different implementations of the modified Cam clay model. +The mfront-files can be found at [here](MaterialLib/SolidModels/MFront). + ## Problem description We perform plane strain and axisymmetric mechanical tests using