diff --git a/ProcessLib/HeatConduction/Tests.cmake b/ProcessLib/HeatConduction/Tests.cmake index c773ddd63386074776e2fd7bd7006fb7b58d3944..a9f63a7f22f25ce260b637ef8d893099b16ed863 100644 --- a/ProcessLib/HeatConduction/Tests.cmake +++ b/ProcessLib/HeatConduction/Tests.cmake @@ -142,13 +142,20 @@ AddTest( wedge_1e2_axi_ang_0.02_t_2s_extracted_surface.vtu square_1e2_axi_ts_2_t_2.000000.vtu heat_flux heat_flux 1.7e-5 1e-5 REQUIREMENTS NOT OGS_USE_MPI ) -# # WEDGE 1x1 HEATCONDUCTION TEST -- computes reference results for the above test -# AddTest( -# NAME 2D_HeatConduction_wedge -# PATH Parabolic/T/2D_axially_symmetric -# EXECUTABLE ogs -# EXECUTABLE_ARGS wedge_1e2_axi_ang_0.02.prj -# ) + +# WEDGE 1x1 HEATCONDUCTION TEST -- computes reference results for the above +# 2D_HeatConduction_axi test +AddTest( + NAME 2D_HeatConduction_wedge + PATH Parabolic/T/2D_axially_symmetric + EXECUTABLE ogs + EXECUTABLE_ARGS wedge_1e2_axi_ang_0.02.prj + TESTER vtkdiff + DIFF_DATA + wedge_ang_0.02_ts_2_t_2.000000.vtu wedge_ang_0.02_ts_2_t_2.000000.vtu temperature temperature 1.7e-5 1e-5 + wedge_ang_0.02_ts_2_t_2.000000.vtu wedge_ang_0.02_ts_2_t_2.000000.vtu heat_flux heat_flux 1.7e-5 1e-5 + REQUIREMENTS NOT OGS_USE_MPI +) # The 25 BHE array benchmark # test results are compared to 2D simulation result diff --git a/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02.prj b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02.prj index 881e1290656e346642296cbf0a34fd86f02bf231..969f67589e1759672dfb04558f5750a38318e9bd 100644 --- a/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02.prj +++ b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02.prj @@ -19,11 +19,6 @@ <medium id="0"> <phases/> <properties> - <property> - <name>density</name> - <type>Constant</type> - <value>2.0</value> - </property> <property> <name>thermal_conductivity</name> <type>Constant</type> @@ -34,6 +29,11 @@ <type>Constant</type> <value>1</value> </property> + <property> + <name>density</name> + <type>Constant</type> + <value>2.0</value> + </property> </properties> </medium> </media> @@ -52,7 +52,7 @@ <time_stepping> <type>FixedTimeStepping</type> <t_initial> 0.0 </t_initial> - <t_end> 10.0 </t_end> + <t_end> 2.0 </t_end> <timesteps> <pair> <repeat>1</repeat> @@ -68,7 +68,7 @@ <timesteps> <pair> <repeat> 1 </repeat> - <each_steps> 1 </each_steps> + <each_steps> 2 </each_steps> </pair> </timesteps> <variables> diff --git a/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02_t_2s_extracted_surface.vtu b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02_t_2s_extracted_surface.vtu index 82024b2a158f952362ed601e726d75c2ff248e23..5d22379a1783d0bc56e632bd278e8f8bdff20570 100644 --- a/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02_t_2s_extracted_surface.vtu +++ b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_1e2_axi_ang_0.02_t_2s_extracted_surface.vtu @@ -2,30 +2,68 @@ <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> <UnstructuredGrid> <FieldData> - <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" > + </DataArray> </FieldData> <Piece NumberOfPoints="121" NumberOfCells="100" > <PointData> - <DataArray type="Float64" Name="D1_left_bottom_N1_right" format="appended" RangeMin="1" RangeMax="1.6753144833" offset="92" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-0.2351800407" RangeMax="0.5412505295" offset="1236" /> - <DataArray type="Float64" Name="Linear_1_to_minus1" format="appended" RangeMin="-1" RangeMax="1" offset="2588" /> - <DataArray type="Float64" Name="heat_flux" NumberOfComponents="2" format="appended" RangeMin="0.34938450892" RangeMax="1.0051420911" offset="2716" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="0.69387794795" offset="5212" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-0.00043368846559" RangeMax="0.0008999400012" offset="92" > + </DataArray> + <DataArray type="Float64" Name="heat_flux" NumberOfComponents="3" format="appended" RangeMin="0.34933725275" RangeMax="1.0019098568" offset="1036" > + <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2"> + <Value index="0"> + 0.34933725275 + </Value> + <Value index="1"> + 1.0019098568 + </Value> + </InformationKey> + <InformationKey name="L2_NORM_FINITE_RANGE" location="vtkDataArray" length="2"> + <Value index="0"> + 0.34933725275 + </Value> + <Value index="1"> + 1.0019098568 + </Value> + </InformationKey> + </DataArray> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="0.69421802207" offset="4728" > + </DataArray> + <DataArray type="Int64" IdType="1" Name="vtkOriginalPointIds" format="appended" RangeMin="0" RangeMax="220" offset="5988" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="6452" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="6324" > + </DataArray> + <DataArray type="Int64" IdType="1" Name="vtkOriginalCellIds" format="appended" RangeMin="1" RangeMax="208" offset="6388" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="6516" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="6692" > + <InformationKey name="L2_NORM_FINITE_RANGE" location="vtkDataArray" length="2"> + <Value index="0"> + 0 + </Value> + <Value index="1"> + 1.4142135624 + </Value> + </InformationKey> + <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2"> + <Value index="0"> + 0 + </Value> + <Value index="1"> + 1.4142135624 + </Value> + </InformationKey> + </DataArray> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="7052" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="7776" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="8084" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="7236" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="7936" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="8244" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Q1M7LQTTdMNjQxMjMwMtJLySwqqQQATcEGqA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAANwMAAAAAAAA=eF610PlTzHEcx/Et0TA2u5hq1NaumhSbc0PD9lJpMe6jsCWsMXbGuoaoiKkcX3RJ2Y1ojCRZZUijY0RbznQ30SCWmSYZfb7H7laOrF+2v8D7l/dvj3k/3zzevyHg/ad92VuinDGZoMvtAD8tjEAZpJqg2U0geFeq35lNoHubvEVfR/BQmJpzaYjgcHhgefdSGn2xTb1L7tLwFNR2GJYxCBsnie3bz9rcTK3mpCyUYPGh1rpCiuCb3tPQ2kJQuvBBV5E3jc9G9okgicaXyraoHELDa6LE2T6OQU/GfLnzVBZNyc1lSSIO0bKGB9GxJptbH7ev2l5F4Hq/okn8nGD3xpjy0tk0nrOGP/mFNNLtfZ40+jNYNKunQv+CgVNW2eGgJBYhxWs2yXdx+OFyzxRPmaBqznRabjHbXMfNPu3VCQTSmoQzgdZOYfs79+0UDbmIu1Qgsjoj+YmKWgbyul88vdUTeQgft2/j8FLGyzqqNsGoHmEXmW/G1Um6j6y43+auMKipeusfHdYO6R7NoCEIrfQWttDo4Gd9OpHIIJgt81oYysI4UbphrrW38Dzl4+tsve+PpE0ZYIZGpXXrSrSgWJPLutgN2FyqXhzw9DZB3M7KzM6NNPaFlOtrnBg0zw6bNK2Vgf/evBUuRSw6ojsHv+o4XH1W1Rdw0wRRvuH+jTYzVrpHTPGT9qM7fLTLqpJhd0FMTbuqnOB0xIiX847Q0DY6GO2CGIx0e6VWjWfx+EtFi2iAhX/e7elCC4cLvz+lOAnNSFZHOmqXWxCZ0ZG8v6gfAZFnj0+ZOWhz15flhGTXEowe9d79ZioNlUxA39vKgAo/cy0ULFIVUWm9MzlszeB++gSaMFWz45w8yoxRHsEXHa5ZcMqPjzRrf0x3oZeQGnYrRQ4Rq14THAmULnW9QuNUcaZn50EG9fo5u/hKFt8Oxa8VrePgrmz0Xb3NBPG4nOBcyoy2IFQlNFgwNvuDa4lsABKKkzBVw67urq9jyhuCgpLi9RfzaNz57teUHs/gukdsAadiselWbo94C4cxi+YMKfaY8KPaaFFozTjm1Ws89tGCPS0v1lBhA5BCke7cMIi/xDur+w==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/HArexqpUoQ/jGhWD+x8rj/8oZsZIX++P/aJvgsf4sY/Tjq/VTKIzj9wmelurRnTP3plvrbJ8tY/+o1tDb/Q2j96nxhWarXePzMTZaHsUeE/tscyDPY6xD+AH/jZGNhPv9Bbv2ps03e/AATK77awh7+gnPTJ75iRv5Cy639OIpe/AMRkAx5cnL848JY66pOgv/iut5e/rqK/UEq+JyJjpL/QTeNYRIqlvzzNvCthGs6/AEZNI7BMSr/ggd2ymKtzvyCGDJmlioO/sEwjGlf9jL/QrcmT7wOTv8Dr34anPpe/AAh/F1gTm78Avo6mkF+ev9iSL18GfKC/GD8IORZVob/gwyrDzCzIv2CFQdyBf0W/sMp1AdsScL/AJKNCUOl/v/AvwIt0o4e/gFmzwKvzjr9wdHpw5t6Sv3Dng96U6ZW/cKAfGDp+mL/AKDLxIX2avwCC+LNAxZu/KPgwXXBYw7+A/l4jblNBvyDKMfuI5mm/IL5peSyxeb+QxWmyWwKDvyATTWx22Yi/gDMs7p88jr+gZUUc+YKRv0BClwZrhZO/oGV5ZdEOlb/gZToG7AiWv65yqdeOrb6/YKd5DYxaO7+AMNd2snBkvyAEod9tQ3S/4JkgcaP0fb+YgjZPjY2DvzB1azJ8wIe/cHlsy3N1i7+A5RTTfYyOv9C0wRd0cpC/YGQXNxcwkb+61jcAGOu3vyC9XS465zS/gCKXh8Y7X7/AysZCsvJuv2Dhq0x523a/4NX1JbLOfb8gMl/rqBSCv1iqICdR34S/QPkOOPwvh7+wAhW9kO+Iv7AfFtIaCYq/+wt2lgIcsr8A9ZNvcTouv0DfsBptlFa/QMrdqm9dZr8IMrAIG4Jwv6D1HOOzgnW/gD5CbSsSer9A76S1oBB+v+gbtMTGroC/0KEi7Lvsgb8gH/3/LbSCvyfjx+B+A6q/QMG11S2fI7/wNC0ZhU9Nv9CcBOYsBl2/WEj63yFqZb9QQ6DgY+Nrvzh3wSSu43C/CCIGRo92c79w3WMpxpV1vxg1DfC3LXe/kMHq0icteL+FuipzYc+gv+CFcY1XThO/YHeU7EPWPL9gG9RQ94xMv0AYlsJgD1W/QO/nou9qW78ga7HUH5lgvxCAaPSqHmO/UN+4fjAyZb8A/Rjq3MBmv0A6B2w/ume/2PMhRiR/kL8AE9EUOfBtvxj02LSuW5a/2KYCFEUipr8Gu7/g/FKwv7GSJF9mP7W/Os0m2i+4ub+vuv8BgJ69v+jsmSrlacC/TNPbqqmdwb89iDy1D17Cv6cgtrlsP7O/MiL3YQ==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAPgAAAAAAAAA=eF5jYACBD/azZoLAS3tjMHgM5d+0nwGmT9ozQAGUvx9C39xvAlG/H6p/P0TVBxg9au6ouaPm0sFcANgLnbk=AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAALQcAAAAAAAA=eF410Xk8FIgCB/AUY7OuV3J9UlI8TXmlkHT8JKFIlsrDSKkpYbucbXKU+0VF0eRYbMgtM4hGGtqQbI4wjjGXGeOYWYWkDW/f5+n33/fz++/3YzOz/1oVfx+Uyg3q4fUS9ONEe09gBmQzPVdZ1kmwMdFLTTmhCDfkZk1HqyUgBF9MLZmkgfegnFRXKoGNo1bFxg90zLY9OvYpS4Jw9xXbpwcaMOYzE0tMkODnC/aWiyua0fnbVMnkFQk+b1ts22j2B5hyvTXZ1hKoHd9Pi5TrgmnniWZTGQlUi3a4nzbog6ZTtqYVRYzV9jU5choshMwKVT8nj8N/+OXBJIv7gNk8+26kGCsSClle8+lwSySv3hYuxulDzIv96kW4dGi2jxoghlL05MeOBzToFUXmt5wVI750+1nmUTpcdiwqTdqIYbSyZmLyRgP01KV1c3XEWJX7jzxxcBPECeodURMToN5pXE7zbENhS+UZt8wJ2Kb/sGYzqRP+25yvUfUmcK69sUiL3oPcy2WdKq7jGEyxTPNW7INIMV3qDHkUo6yqbvbVe3j0PPlo8LpxWOSmKJ1MS8OqTJ3DiqrjoLi6utS8KYDegzLfKalxVLCfWt+Np8J21PhFNXsMJ2vVMxff1kJpU7UHvXgMBa1eRrbeDJCGcrc1nhuDlcGaXcxPv+OIWpvDs2VjUK2ac+zXacXgqrm/1P1HsTbLMGU2oh1WxBS16XwRpi/Sb7wo7MJxV/0hXZ8RiN/6nNpj1Y3rcT+y51MFoEZO2us4JEKd9cjOmyNC6bwu450vBdrOkYVJH0TY8kX+P1ep+ThOiR1yey5Ck4xBvMb4MxSu1IlMjRWB4FxOMAp8jp6Omfb1FiLwizZ4xqXWg0ovJqzljGB70Kley6pGSFl6dn1xHcET5ohW/WITTrsvpw3nCRF38o+KqAfvsKFPOrHkmQDNiaVmhuntKFe2nN1yYRieTh2ZbxkdkP6ELajl4XUDMVsyG4/TF7TIAX1C1BgkHo2lpEBCpDL+fCvEqdvGUwTZXHDUdH4LeCqEvrVulfuzMiwkDVBCLglBcrxUsTGmEm6hn1+LNIT4pG8ccirtBdSCRK3meQKolPtMfFVgYNv1faL1CgL4ykXuK7n5Grea3db1HhrGeQXv3fIyzbAtUGZbWfGRvIvsWxfUitD08bZsGR4oWVUkZd02pEuPT+hGcJBp30lxUIhBIJPAk14jwHsFesQHu2TYHLJbSJIWwOh6sgImsvH7ffHXYtYw5vyyDMniQtB0W3i16cOoCFJLPWFUgdu0n5V+xDCcb7mEWBhW4+Yl6zJ5Bh+l150t9l6k4wDJ32fTOj6UKUZzrsOv4N8B+rQDD4F5ClfLkxvx4Q5J6qfjXLDj3xQPbXyD3JWViQubOGgfyTCu8mjCr7yZqYAYFn7ZzG389vIWdiwcnDJN46O55O0HVfe7+GoWYR4Zx8c+FdlAudUZGMqtLW3y4MPI758L+5tykRQoo5egyYeWIWPrOacSxJRYmFGreRg4703a/KAC3x6uUSwx4mEy6LG5SVoV/Pv31EcncuFIOUysL66F5taLBOsGDrwHbxIuFL7EG26Yo1MaG7EtQ/ZkYwbi9DUMdp1mYZIlqJrSbIDdFnaQS28/pj24VyTkEOwP0zEPuMrDboIO17kuBh1rBXeWefDQRi5tfTz3EAtzjwd+3cnDGYn2mJZvFtYKdrKUJ7hQEm4vK5DLwxOD4oIX0Vw4dB2yqXtfBLuPofofpbh4SpyWlu8ph/W9HcI5Nw5yBHEWbQwqflGUpnXrsWGfaHJWJqUKV3ReudgcY4G5R+7P7l01OJBfpsfYMYBIgQ8jNLgWLXO3KU49TNwZ8ThitdIPZSHK7bJpXGjSO8k33ofh2E+j81tjubi759WivncCSh1k5qfd/t7HLeDl7MeH4JiOSduv5mKniN/Q4ZmBfeHRrnIlf/83axZhEpKDa6Gy9Rr6HAjtz1Nk7fNwPpjiRZRlo/yAT72OSiEcVRSDl4eyoBr275zNtBK8mTlSYFM5gOjJd+mz0eVwiPRbW1PWB1OHS9I3HJ9B5V5GRNW1XsRK+Sabqp5FUv64Y4sGF6ZqpOt3eJdRaJ0t/4rAxatTBmWSwJvQXK5NIvZz8DTj/Q/vZ6JQZ5XjpXafg/xvKpYP3RNg7rw18zGRgye6Ti3dV5Lw2V61UsqOjcsbGqjrjVMQc8zQt1RmCOd9sUZjlAL1qFGG+a1ByO027Arzy4DDyEEVYmM/iEcKsjTdsmASkJnwopWJ2Jjg7i7tbGwvUjbwze7Bsv8l3JYuOLAZmRLO/73sMH24+yEhduC7N+2tjjPR6yv9bgu6l3afbTF5yeFkeqoGx+3EAnupd6HLf7xyMGxmaMmme/m0yhyzctaSjfYOFX+xG/jX4JKP7D3ZpBCu5tf/3fSXUUmOPuHMJV+jv/Pn9zqQevBfwfSeeA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAgQMAAAAAAAA=eF610P1T0wUAx3FOeWbWkYrJjVI0rWUNxzi8wD60ZAiIgFACohwgJJbYroB1Gjq8cyjsGmaAnBXFNmpGhBCNDWSTb6A0xjbHYBt7ZjvJBx5ORBkH+U/0/vH14ztDI7sIuhsicm1F9A43uA6dJ9THjbZPvhSvU7nwUDghCDnngpbtNVi70QVRgnDsD94UPuAtn9jhcML42rzgTqATJElu380lO7Jafdfgog184YOwzVtfeFwVI2m9Exs91ZPd8w5Q+wsyr/Y6wCXaS1ZKHWjmch6U+jnA/pdUV1Rlx7OJyJZlow0xs6mLjEAb2q6svjQXYMFwN3v1XLUJv/0dzps5YEN+pEU0BBvG/faqB7bY0HE4hd1gtCJZMzVZnGBF/sHVRMEFC7gfGy9fuWSG4W6IRZE+iUPETrJTa0RzuSib722AbH+Uetaph6NpTVpUiQmWOD59Ic2E1K20nYZNJjAyQ+rie4zwsbczK2lGkC/wjr513oBTjVdVYT9M4Lj4e3s1dxy51yNcfdF6zOk+mrbf0L1YGidKcWkRVuxfwBHpcVAsjX3M16PGx9xGPaaHL5dkzgnUg3DeD8/5dgxdoxkJyqc6HIpxj3p265DMaqdGMu6hrXn+7Mk3tOAFZPGTTWqwSqKnzihV2BZEUXwWr0UH1dHpoWlBqdy+WeynxYfu7Y+Ycg2C96ccyzyiwfpH9ULGuBpyejurgqZGQdetCtq4Co4k6dTL3iP4+rlsyfRwGKkFeQtn6++gVcJiFJ1W4njaHntxuhJn6r/b5R+kxO+9wZ9mNPwDiZrpG/9kGL4JMaNPXh/G6cGxxNZX7+Jn3dvUWPMQutT0vKFTg4iYkNh3KwnQymLIncu3MZ30Vz/bRKCkcGBEThCIDQ6N43xDgP3eKzPkPQTI2hXegb4BDHqqDEthA8jK9DhTs2+Ds6gWPi9VIL9vC6U6Tw6etlBTk30LRf6Gy65OGUJJX6WX5cpQhqgNXu/LkLPW6x3xUyl2sdTr+jlSrMwxIwhzDxaC4hebAnpwkqS4VOMtgVUtpTepukHquV7++MSfoBCVAqq+E7Xhxtne0JvwX8toLNx0A/dmwgWGZ2L0Mw5/fqRDjPIRhZUZKwZ7w/nEfY2/ooXHGy0ifkHV0br778pb4dq21OKoEYH9o+Ca9U0hGrwZZTPXWrCXMm39wvkTvP6n/gPDxcB3AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eNoz0zPRM9Y1NddNtzC2NDZJMkhNSdFLySwqqQQAUucHSw==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAoQIAAAAAAAA=eNotkl1Ik1EYx18/WpJYYUalc4ktbLvYyOmCfJlDZclIMaL8yracsT4UV4rpbDiFthIvhDL8GDRkzNmFrWk2t7GzotZEREXN5U2r0RBvJPuCJpnv83gu3h//8zznf/7nnFdLFRSY22LyqZ2hrxHT7Iu1Ko04ldH6Ys4qTcEYztv5SOcNa6hzTgInmgOog1E3U+8Pf0XN5TL05bEXUbPjPAz8LS+BVCYF883+F1i/ugd1cBT16l/Gj+LLh+j9ovgbY+pNr8p273TW/USydES1k48PeeMvTUF/0dhboD7JCP5B1jhojdgJWiroBpYqsZ+abgCd8UdB89KKDrmz08jKhW75kk0EvrRsGepO1wIwsOUFHv2FfqZ/AeDBVBf6THYBt4ptQH1TnafgelZsJJFL0jlM3rPgS9W8xpxaE1A5a4X+BJcDdMZTPdDmtgClPe1QVxrQ3/dFTR/raImhk/lkbT1dwqqVgm9w3Y79+4bwfBV1yLIRzOd4DjQn4b6hyhGsf7gN7FUYPbzCaUGuUUh+Sph7KATfBJYd34tVj/eo7UVWjGKu2F2fUCZSehNznurD/d60eubDkfPezGwSN/D78vCGDHx9VX70dQzDOp+wD9eLhvD+GnV4nm2ctwsG8RxePdLVQieHV4IVKTmkM8r8r3LMuz2D66sHMCfnGfrc6sf9ZNeAmhQzvgPfgPOfruB5Su7Q7xTrT7qNuWS5eq5RoivBvLJXUA91WrCv3Yrr1bv/a5UWtQ7zmb8/xPmPCvR3Zngsn2dNcw1iEmnzeEvzhPmbx33+w/U04Z3bKBvsO0MeGVpDE00i0jX1YF5tF5Jxufe9RM4j3xatS+WGE6Scw//R084m5o4DM5OmZMJ1RSv7VbHk8cJe892OLPIfkEYYdg==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAsAoAAAAAAAA=eNot1Xc4FYobB3AKqYxslRDlmhWVjMPXKWRvGWWPgwo3q6K6RbqR1aBuMjKzOUic7I4Ssknh2Ps0ftJN5NdN7z/v87z/vZ/nHYt00Vyl4DhoCESdvuAogc7zrPKbauloKfNlDTgUB/Wj5anjzBJQEXK9GX99AaUSG4VC7R4hpiAI9q8VIPH1M0/Hczost3sfdJlIRIJWlH3IZQUQTxm2aVxdQMWS78Qrt1hIHn9JsFndA0HXTpKn6Bxer7iVjIY/hFm2vKJkkjw+ep7s5Bacg7ujq2WyWjSimllLWm3FkXyHy4J3bBqfCyJvGtg9QOMx+7i3qgfwZTBph0XfNPL4bnAFzUWAt11Zp1BlN/iF3WYS308i+1miu2ZMPGr5edLiabIwr8rg29c2Ce+1koDDLDeQt6xf1Xt+F9TlNO76Ck7gcleqk8TxO5ALpfUczJfEYMg1Hy7WCczMFZSMV12Dd2r108/LArjlGrq1KmkMb7wkHC9ax0CLSdOol3MPsvLDdHiixnCbv3A+yzUEk573dQVluVG5WPrnR/9RKAnnXamn3ABdynxjqLMwWPgNm645j+KVyJVV4S1+SNSfUuFzYEUm4a86n6QRZCZTfO50XEHj6+YMKzteKBpsk0yIHIG91aVvQoIucFcONfvh+696VU1tvsiuEXxXS8t1n/SBrLZDba4XE1I1GqL5toyA4b8w8Sf8lyTsqJRzLv2lC59o6/XaFMp/ych4hSI0OZTQM0RDv1TI00f+uWgci+8PvE0Eu+QVhesVdIQ1u9LqGXPhHPTQfVGHiE4FgfCRwAVE9yZqmpCfgOwjnzN5TgPPTEJLJJnm8ICTtMSZkQWS3IYEOU113NUlO1lVTUPI2WTDu9V0rOUW5zYMqUD2zd6KudxJWF8QJIVOpYKNnEwWmFMEy0ikrfXIOC7edI6ncT7C1+PCuwseKMCLJWDU32UMouJlzT++3UOfqHV86G5Z6HTzFMofGUUiPdLJ5WwUDvB1BN3oEYPjfjlhF4cR6LlVlL8OvgSJHeCtHeLGRe2R8JDB3w4v8385kHa9JXwWujolWkIDT9zaa97BUvCbG/S9KdXDjy3bngUU0uHQwBDz57VSPFenljZr6IGbJPJVxm0BEc4VZf7BZOh3zLBIftSBZXRV2vHRWWwMEdY7SSvGoffUMPqINtL5L1JXIqfh3jVXHp9eCL+ppZJbGpqY7igysDw3iQQJw5vFUzkQV91rpqVEBGvktsaSlHHcYSdvO0bNwH57XXb9YVVIvfFgPS08BqZoX52/z6aAlxLedHTTYZyVFzV59uHn/HhXKkx+uYePJclWWkKyGOaRfFXNPwKBioHVz8vXYchoIksRE8LINjVGx7u/HaSLfjmYGN4jXGdi8pz0oCHFoObdRDkFgaU1xCpHMyT6w+V9Kh2uyUWKNQoUOPJyz0uwmYHB0Cg0X28BC+J+AhFllYhXOdkqI2iKtk1TMxOFs7h/K4NlkVSBWEHPmAw1Y/gseykqaP+chwcGLflXyiD8xTPpU5g+dnQGkk4KT+JbxP+6luVL0HRotcRT7ziyLCRF/Y6NY7OYcHSPRT74yqpJ7S+OYpxAMuqsGoWt1xlGMkcm+l/I8zMRCJgJTCoMiRjB4eS9+aNej8DBqUJa6FKAddwjt8AiGvZRY4nypCgYJTmaxHaIgclP37JV7rdD+7qDhnECRfn4bWPdDTRksjr4+FHrMf3+4YlAVmtsd2zhPBNNR2njKxlPj3por7Ro8MdagWn03mWGvQv4oyCS4/nJOoDzyQtZpRNYkqlUo3vMgk0vpNolvAbLiZHlSnIWMNXiUyNOTMHIboXmfbcK6tlO812ZpiiNs5WIz52A7C7VO6LyT7G950gZtdAQDAMeLluoY1C2vn87OKEEtQwbdKxajuPCHsYhfuVRKLyRrTTtzwXPdFeddicRuiFZbA3MIzCf5ZIODn2MrLjCj5SSI9COFbD3laGBX3wtbun8bVjOchlpZ/wBalNWH5fZ8LqDbPEvB2uhOkLZCv25zfch8Fy6t1w41oRud1Oi1V17pHb6E/vO0VFL3cxy5lQTvi5V/ZCfssPpwO1zax/mIX9TP3J4+AW+Kwwm8zCcwqBII/99lll8DB84Yp3fAMVP+juYDtgg9p+ptnanKXzmMygOYqtDzkd399JOS4TncWwg80zAYn/WALs3BVRin5iQghk2d58s7xYfQ4dNzoHVx+VQTA8w7PlmAKXMx1YH74ygdiXQvH6wCGcyZgNm47UQFTH/odGBBlYvHflum0xMai46708kYPYi3+qf7MOYWtn6qZIYDw49n+ATl2RRnW2hJbN1aN2hZd3h/n4yQTRnvMWvbBAXpIhZTsxtSG/SG25TdEF9WDhfsx4dis2SfiZKrfCSqYuIITvjX9cGZ7b0eUgbH3pwautr+OQpuG03dgLjqX16UpdmsK/9HFPQchO221epXim2R5jHPW1S0SQeNwfV8F5thBM1X5ENthjtqehiNBpHp60akXuuFsvXj9YtZlmiXkRml4HVKJZz8me4qyrB7Mr/oHynKSSFd55lb6KBOUidma+NjC8CYmNzNrqw8TE0Z9w3DM0Uhqfpe3MQV3xKkIeigZ27nXsjQwexhyntm8z3B9CQNTEeTzmAiMrLpn3h79cdaHm/HP5aLCKIXWp1EDv4Hmy7BZ37BjtxXqNPmiThAaY0jywjNjr2SBt81VbsxKqPwfyMMQmtiM+6LD8Ph5wmK+bgdjBzrfaFC7rBLpW/avfTaWzwdrO/+k8LLlnmaMYYOSPwwvl+9ZoJTGxjljrG9RL+tKbq/DZ7yBoTO94aj6FT3FMyIaUBvNXZhUUiNqiIJ499sh2ByhJplbOuGu0IjlooMMcrwtIb5/RhuLf65xRnlUPHkcD3bs0AXtWGlAuWg7DLNXXe0ZKPQFVZLgnuY3BkdwxOfvYOYVHUpjuRj3BLeaHt7bQCiu76FwRSB37fh5JfDgzEvymZukWGHIEDEMn7xnfVvx/Zwiue5YY+eBFVmaOctoBvXYfbDxX3Qiz8iywr21kUSj20Szs3hwnHHs+DpV3YrtrX1azkCf/HuyUy/56CinHtRpkn7bBP+9F/39wN1/o+ux4OGkfK2EDebMxr9FvmLXxIc4JLg7L2Dc5RpNdwuPArUSFWcD7lh+8pGA3Em+36udcigwXqGlp18M5Ib3PZeQJNg0lFVaRBvCSfsWAzfgYJL4a0SgUTaGSppWgceYeE+DWaSHwRwqWIQUqqWrh1gphtXfL2575P53B4pYBEesravuEwxK4fYrZo7V93cFz/mwwsXoTw3O7Jwqv9MFEedHcbfoeDBhc123r/xJvmdKcNuvOwJxd3L0m/hUdfhe/jnb5Q3BHWYdUxA7Pvfykese1BM8hHVy1OY2XoXbcQeQLZGf/EdHR3gLWsIkmqyx1DVxvbRF6NIkA3pqruWCsuEPysRyudcbFvz7TuTRooc1H7KoKaYMz+XEx8iz0EpE1jo2MHcV1klweXXD2cN13bK6pphcnNEeQd7weQpRTg73G7EtlX2goKGU0RcljxnlP/z76KfwRJuxSjWVPgSQFRG8sfUlWF/frQz7ooLC2fimdU/dx8RkWsFRwqp6f0rjukFP5y0FnoIPhILz2OONmL/wNo4DBhAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAkAMAAAAAAAA=eNpdzP1T0wUAB2AWBciIZmccBjveDhCJi8JYCPIJ2FI51M2A4s3zBYiXUCDjTjjvMkMgTHBkk5zHDeS9Ox3jfYcIWxuOhWOMARuO7YtjB/g2PF/WAOun1fX8AQ+T2djrRFtCQ0fiuMpvERnchCqXoCXEUM/t3uq2CP3ZkV0/HtLDVNVkyYrVI/do5ZSxQAtPCr2iO0kL4lmZob5DDdrjgh7KFTWuVFhiNfuU+PAPkvFkuBKZteKuudNyrOrm6PpkOVbMVfvLF8Qg18vTJ8bEeJ21a7/8mBDZX3/KT4oTwq/hTsVNz05w1JyLvpsdsPufTn4b38VpCXHSHMvV5wS6NIWhZ/z0iDhpzxB6apG6We+Qe1yNoXOBY0FkJSg3M45UU+QYzDS31tSJIS/MKfrLOogNKcnlWu+/f+F3pJehk0ZUtiZ81DxMIDrtxZdM/QIeEqZHR29rsPMw26nfVY3hNFXOrGgS2z558LaBO46UTp/NwCgxog5aSXYVg+gpcGgrjPnP271DUv6DEda0Rt/kYgIu8Vlm9oEFRHj0mJZpGsQlOMYaOdNgh3hVvzoyCY6PUKGyyMDNKJ/ZNyJCO+tdX4IYAI+84h57vd32ms8s0/K3G/F0S1J4CPmfN0ymPvWTDvFvSLyt5XPoPnvJXGlV4bWUR1/TKLCesG455S/DveJ3opU+IpREXPj9tOsA1CfWONvuttne7FRZWBj7AZIZs5/3XTCgsX8oKuzyfXjxrSuZN2YhL5X2LoSr4PFNDZMaroDIfcGVoN6Fo7d9mi59FFzvjrwnTv0Y9VlpShe32t4yu+P5jaZFXE/h3QvU6yEkt7/3beo8SDtCPXBpBqsGhzq3vVNoKZKnuOkmQKKvxjw1SMEKoHLJxSMoHRvXMJS9+FXmLDhY02J7vYxTrMdbFxER6RYjoOjRdys/5P68BvHcZNrFaDW8v4/c8zJIiS0ShtTe+U+UJJoy6ookYO5d/Gz+2B3UUnb6s/N7IHH8+UZ0cLPt/eXEB2UtbxIY78h21Hro0LZ8gNbsOocc+4BXm3wVpi1esS90CpTm9bGCzTJs0KVa3oQY1KEnRED6bVTk1eaVzAjAqKJ4Pfutyfaef7Q719CgR6sx0b+Go8WAfYy7w0M1ZtbWueeXlVh9y716WDGB7Q4lgqyrY3B+nsH6YmMUzpO39iwLhIgcFl3+6v0ufJwUfGia4NnevwFYsriaAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA2gAAAAAAAAA=eNotxTkrBQAAAOCnED0REREhNzvxnDu52cnNTniu/cnNTm52crOTmx9j8H3LFwj8i3K0YxzrOMc76AQnOsnJTnGq05zuDGc6y9nOca7znO8CF7rIxS5xqctc7gpXusrVrnHIta5zvRvc6CY3u8WtbnO7O9zpLne7x73uc78HPOghD3vEox7zuCc86SlPe8azDnvO817wopcc8bJXvOo1r3vDm97ytne86z3v+8CHPvKxT3zqM5/7wpe+8rVvfOs73/vBj37ys1/86je/+8Of/vK3f/zrP52zMmw=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eNpjYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAwwAAAAAAAAA=eNotxWsuAgAAAGA2s2bNrFkTwgHMI3KA5hUOYChxACPPA5hQHKCRRw5glNcBjAhH8qPv+/M1NzW0uNUBtznodnc45E6H3eWIu93jXkfd534PeNBDHvaIRx3zmMcd94QTnvSUpz3jWSc953kveNFLXvaKU0571Rmved0b3vSWs972jne9530f+NBHzvnYJz513gWf+dxFX/jSJV/52je+ddl3vveDH11x1U9+9otf/eZ3f/jTNX/523X/+Nd//ge/tikAAQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAdQEAAAAAAAA=eNqNlsFpQ0EMRN1TCthu0lPSSUoQJKecdBMIAoIcVEKwQQd/zYPsxexYSLuz0rNvt/+t97f7+jjzSd/T/lm3o+Ntxb881veKH13nd8jvR98u4F4B50k4T67418f6WfGj6/MXnL9W/Nfnff2u+NH1fRvuO7rhu+l+sKPf145+Rzv6vezod7Gj/bejfbaj/bSjfbPlA/XXVR8ftG5Ln72Od6gbkCeXPj7o/LX08UHXnX5wnDPdDw794NAPDv3g0A8O/eDQDw794NAPvnwgHlz157kK4FsAxwJ4FcClAP4EcCaAJwHcCJiLRC7quUiYi4S5SJiLhLlImIuEuUiYi4S5yOUD8fuqjw9at6WPDzreoW5Anlz67HX+Wvr4oOsOHwp/xzQfCvhQwIcCPhTwoYAPBXwo4EMBH2r5QL+3V3180LotfXzQ8Q51A/Lk0scHnb+WPntddzjZ+L9Dc7KBkw2cbOBkAycbONnAyQZONnCylw9/6dwCGA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA7AEAAAAAAAA=eNpd0Nc7EGAchmElSZKksimbsil7ZFM2ZVP2ao8/v4N+38n9nrzX9RzeGRn/dzs+M/4Wn3pW/B0+9ez4u3zqOfH3+NRz4+/zqefFP+BTz49/yKdeEP+IT70w/jGf+tP4J7g9iy/CK5NejFcWvQSvbHopXjn0Mrxy6eV45dEr8MqnV+JVQK/Cq5D+HMfk9iK+Gq8ieg1exfRavErodXiV0uvxKqM34FVOb8Srgt6EVyW9Ga8q+ksck9ur+Ba8qumteNXQ2/CqpbfjVUfvwKue3olXA70Lr0Z6N15N9B68mumvcUxub+J78Wqh9+HVSu/Hq40+gFc7fRCvDvoQXp30Yby66CN4ddNH8eqhj+GY3N7Gj+PVS5/Aq48+iVc/fQqvAfo0XoP0GbyG6LN4DdPn8Bqhz+M1Sn+HY3J7H7+A1zh9Ea8J+hJek/RlvKboK3hN01fxmqGv4TVLX8drjr6B1zz9A47J7WP8Jl4L9C28FunbeC3Rd/Bapu/itULfw2uVvo/XGv0Ar3X6IV4b9E84JrfP8Ud4bdKP8dqin+C1TT/Fa4d+htcu/RyvPfoFXvv0S7wO6Fd4HdKvcUxuN/Ff8Dqif8XrmP4NrxP6d7xO6T/wOqP/xOuc/guvC/pvvC7pf/C6ov/F8R9BVF1dAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eNotxRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eNrj5KQ9AACx7gOF </AppendedData> </VTKFile> diff --git a/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_ang_0.02_ts_2_t_2.000000.vtu b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_ang_0.02_ts_2_t_2.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..87b12146336ea0653984188f81d620ba5f7bc5b8 --- /dev/null +++ b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_ang_0.02_ts_2_t_2.000000.vtu @@ -0,0 +1,29 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="231" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-0.00043368846559" RangeMax="0.0008999400012" offset="92" /> + <DataArray type="Float64" Name="heat_flux" NumberOfComponents="3" format="appended" RangeMin="0.34933725275" RangeMax="1.0019098568" offset="1596" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="0.69421802207" offset="6856" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="8444" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="8508" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="9632" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="10908" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="11188" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Y1NddNtzC2NDZJMkhNSdFLySwqqQQAUucHSw==AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAARgQAAAAAAAA=eF5dlH1QVFUYh+8CkaOZDJKVLrRDNMhOAymITdxZNzSkTRioDPwgLqADlowgDAlEeyHd5asZEiGQHb2DuK5ZtAEi7N72bh8gRAygIJv/uEgyDNOkEX2CWfv+Nnam+88z73vefc457zlnS5jYWKFYto359+PTolmGvtYYQtQziB2LVmJICGK5t0gMZhC/+RB48y/ro5E+Oe3Z8zb5a5lZedHrXV4+Puima1w9qpuluq7CAYqbpm+7aI+RX6d8f9Hn5C3s/4ziQsdFolLTwmaZ3tkU+u4qKSo36z8v0zt1y1XPbyr+kX73Ss2Ii+pD8jsU9007iAMvHyfPVXkPxTWhHxNHLxtEcw+844+7vEry+uzupfod7V8R+dV6qnf4dlKcFw2POryamMihnhnMpVjxezobtmHHWuvmDdLCVOayl7nUTeO25CEi9/WnxGf/FImmQXicsyeJ9rMWzHMU8yf5cOKLcngnk6s146ZI8rJxEzTeYxnDfpdsxCd+xToNfw8Q/dbDp+iuIC7Fm4h8wQEx9mCo18yqEGmt0uN19E7QOpJeGiOqva3EpZVfEN+T0TkyATMWrLe+hOh3xYj6/nx2Yw68gUGu/r6APqRdQV9LDERu2EjrWGHpoFjRyBNN1jZ4akvRLx3WbZ/KZp/UFslYf6X0wUzmsve5c13oV8kprLvZTGRq4WeMOB97ZSP6Efghjd8T61DH/GRN5uGdnQtU+Waq0Yc5eNQrW1CXegBMuoB+duA+CauxH+eeCxi/+jaxLl0vhm0fDN+ij5DuTXi8grId6yptBffDy5kF9CERHmH+IxqPN15E3ckUzCNUsglqeBdUrnPbTt4VvmbU+R5296MOTMXvOS/3+pzBoPoQ+rKxAfv48pg4Oj2zyxa8Wfoj1uPlFvAuGS36a39ET/R7HefmvO/exydpoLmc8k2TDahXadlzbq93829vtN6NI699bz/qO1pRF4F6JrKF8vyRMorVD5A3h5+mvMLGg5Yi1n960pEaECUVGD1e4Xwf1fOGM/CPgvww1s/HVyEvw31gruF8+eO4x+q4UnHE7S1fdN0zDfr7AO+X39eMvgadRf1bTfDEZRDzAnCOvFKH/Pf7iVxCPvtN+typav0W6ZpP1rLXLPsW+z7fSFTkt8HfCD/zKvZrn0RfmBvoL1Ofgfk7i8SdHLwT+0aOqMoS0N+4y1TvLIePK8X75LPx/8rsxX75MviFnyuRv5GOeXoUYtutYcNIbrS0+6DH62fBO2bunyFyJy6hL814F4ypDPH7NahbU4P8uhzEhq2sw+2dKRZtiTER2+afsvc/dpiVwnbeTTrdsFWq0h1zdhVEShW9J0azzRFSp8bWp9KESXeuG8dTdE9LKUHKX2pL5ZKgXTPUbfCXQiyLe5qyvKT6sYeFo9pQqajC7V3n9u6Cd7DJ7R36n/c7eB3Pw5tRBe8PNnhvu73/AEmpJis=AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAASA8AAAAAAAA=eF5V13lYztn/x/Ey1TRkaQ+pJElChRQ3rzuS9k0pRfvOyCiFwhAZ0kJKaFWqKe2LVFosRZv2Eu1alLJ8CSl+M59zrutnzj/n7/O4ntd5n/NxQipN1fcy2KJB+4/ZyqLpKK/Sr+UTqM0/xHtk/WVs3VYQ/4pbFpvEHS9EnBtH4eShwadOoZDb+YS1Z0YGYo5NLm5SY3C2dTSL3RKMoGrenDrLZYgN4zcVGhjBHeHz/D5jFyHUoKaVuWkpRCScXke9HMLBHzlHNvCcx50p3eK2o0uwdTX76iGxQbwey8h5VXwGB+NL736YEsUlR/85xTEDuCKS+SbZ0Q9DbpHaYgoCKPqY98c7r348lTw1IzHbE1G6w5uEbXiRxPqzwiOmD9bmJ76KiznAWc3f5PuhL1uLy8rTJZf0gePfZeTF+neT3VdZctihI2/8fS/yZH8R998XjZAMH1jXKEP28wfBxvsTMFt4cJ3DYBSu7Qiy9jupDPW9+vXs0+OomXbK6Q+4CZMUJRW5GCW8c7NqEhAbw4eMwAt6+67j0Xbry883K+JTV8wi0/YRpNyLctYIiUC5iGBCRK8CdhXfFl5TP4STzfF2sjvDsNq/t3Vduhy6/M548PMO4pm7rO1xixDs4NIwaJsvg+T0s1qCQQNQlbhz6kHJeUys3PWLv70EeET0q87Y9yMptsQjrPEUHtVU3zbfJwQVvQVy1wL78G1LQprzkAcUNG3K09y5EM9+GCw8mzqUx5X8uxkYTpeID3Vfa+3+fweBjUcZh95J4iC9iDg8dg1kHGSpQwqnM+OQsJ7NOIi5EweHNOJw5oYV4yDWTRwEiojDkz/mMw5s6hBDHSpViUMbdVjqQRzaPHYyDpHUYe4K4lA/z5BxEKIOE9HEYf6NGsZBnzo8USYOzfVWjEPkzw4NSUwPNrlfSiSoQ8dKv7vRXml4NBDR4X1FHXPlTimfK5zA2WrH3gecabD3uen8UUsdTcqiAX3e4whui9Iwyv0buR5KqUOH2bhn5J8jxzWG6/NdJuffTobL6lnXVmtsxVXtXDvz4hGI2xvNejGTiB9p2WkPuzdB4dnywrG0IVgcE3PxH44HX25sruiYCnj6Ai0t+l7h+AX7iN750fi8U2JpxnVluPMc6fdyGIDUsvzq71/D0S5lEeG/VAFaLYKZShv7ETURaOfwexAUhRt9zrdKw3btagkHmz7oOBUW1PiegOwiCJV3C+C4Zl+AX1cvcXiSzvTgsuQ564P46WGpnF6EryAOvN7hjMPQCuKwoIY4KP2IZhweUwfRduKw0n4t45BHHbIWUIfBHxH/OoRRh1o74qCZlMs4sKlD0XHiEJxPHOZSB5VA4tD5WZxx8KUO6dLEYZuEGeNgRh3WjROHR3pNjMMe6jCbOkifJw6+PzvE32R6WJ5Sz+JdQhwEL/+oEerKg8guvfZneTr4PnvBvSOZE7B5yBHyx5k83N9amVfN1oGAi+TnVU7juGhfmO/lmwvdxtc8cu+0YBZcnLCzfxS/+EnoWPVmY/3LyrMTfZpIFDleOR04AufmsYKIxEx4Dk/mXGJrYKQxS8/s8BCuyepfyB5OxbLNy012qKqDN3DBo5y4Vwibm7tge+VtrLXWnqvbsxkrn7ny7pcYAFfwIa2/fo+DUElA1bZfN+B3JSmje2/7kHSwSHnoUzje5cSa7xBXQI+g3NNSkT6IFnbOfJg6B31OI4USaXH0LdjCaXuVOshnMT0Y6YezznFxuQ259sL7CnHo/04cNs4hDl8qiMP0DeIgRR3eUQfbOOJgSh0qfYnDqeYnjMNd6hDdQhy8LD8zDtxNxMFahjjYXZJhHESpgzd1yA7TYhz4qcPCEOIQpnn+Pw4B1KHTnTh8og7TBcSBfdKYcej/2cEgnukh7nQJK5Q6xOmVvRgsKIF3Xpl6sa0Jorzg8DJ+Ao6xWSplyiWwFRJ4I8tnAg59A/90nXGML/MUvZhfhIhNVnWrxIxR/+vw68HMUUReus3z0aUQoWJuIbe3GMJjyl1FWfOf++G6Xm36qXxIfHKLeX9WF4uavF2sJIbw9eL/mqeUclC1fibHTWcnkk3lpDy3v8Jv0hLBrabpEM4vdWl4vA2vWC4GTcX9sHQ/wJk7Lwkdj5VEuFgsvPaOyfS72IcNscvT+92jMW/+JpfxZmVYXI528s7qxZrKUHUllyAYxNgahTZKg8tT16xuNXVoID2wDa+VqO28Yqg9qxeR1OHHUCnjUORJHBrjiEPpBD/jUKtHHGbLEAfpDZaMAy8vcciiDhveuzIO/tSBjzoorHBnHLipw5cLxKEpappxSKUOsVLEof8mcRDcQhzi9hMHx1nKjMMYdbCkDruliYMedeCgDjOFNowD788OOrFMD9tiS1h61CGJ18bDs/IBRl7e3O3Na4GFtrXzDwRPIO/R01Vurg+gOV3LFgk1B1d/+EmO5eNYkRE4775VBTD/78cKqrsxuapoy4TrKPh0/EodAsowFRVYoLraFMY7hLeoDw7DYN9078GrxdiaYvemOckYeZctZSPSBqGwZHOYlNJdLGzdmF+ZqQ+OTleH2ZUDULOIvOJ7LQflHLO0zGt34pgMZ7eIWj+UnykUGXekQXCkuUKzSR3afsl8D7n7sGuUX97X/xaSL2e+K8nZCM1QUetDq3ohsuzH5cmjV2A2ym+geXsFKquS2/lNeoiDQjbTg4V4BSt/euL+nm/dOPwrcSh8EMU4lNoQB99K4uDWQRy6+4jDXurwzDWFcXhJHWqpw5NA4uBIHWb2EoeABuIQTx2uSBCHC+eIAw91aDMnDgbKxCGaOtjXE4fceuJgQh1CqMNbc+KgSx1CqIPmQQHGofVnB9YNpgf2Bh/WE+ogeCJ8KnOgCi3OxurmV60R3+Sl3n54AuWVv/Ec2FuFz5PF35WG92G/98KxH2/fQOmCbmBPz2N8U+6KFeTYiy7JRyKRPKN4F9C50SL9IVTe6y7iUtyD0BvD9Q12w/ggrJftw1eB1HfOznlNZgi4M29WruAgTNcmd849WIJK9XZpcWUT/NZiVdCybACNe1IVZ24VQCXxiH7rVz2oJt0yXxfWh/Jp710PurJw4PbokdGIHQi6+ObtI5te8LprKbXsScKQxkf7tVEsjB4Xnvljbg+Gp+e8L1KPwDwdD9/dJxRQmmK6Y9WcbuJQS3qIXJvLkkp9VeuZ34WjfsThwBbiwG4mDiGPiQPPW+JwjDocpA4N5sShlDqUUYdWPj3GIZw6vKQOzwqJgy91kFYkDnOW/9fhA3UYPU8c1KhDJXVYsI84XKcOwW7EwWjBJ8Zhni9xsKIOatrEofxnBxMyL7K0w0oUqMOxlerJdtz1SKzS6alXccCDswHC1ToTUKmW8zRSrYP7qoqLIbn2+OL40J4v8Q3kDddf3zunBh53lJ0WGtqBc+8anZUnXmNNw2Eun6kqLLQu3nwq2xpnXcM1XbKGcKvap0zo9CPYVaar8MES/a2FzZwGr9BkuUVdYKwcU+e2VXxMNsMDyVVL9Mz7MZWa/lqguAjcjiLXCxYbQ05i8e9zq3rB7bOVW7g+F59EpQfG9mhjj4f+Ls41PdCI47ibuDwVl7P3igmWsLF4qX1boH8XZLgSvq76dh1sBSPDV3GKuFh00rg94CVx6L3D9PDnxyyW9Ik6G+l1L2EkTxwEyohDFHX48pQ4RC4lDuJOxEGDOnRWEgcJ6iBEHVZoEofT1EGmhjgkphKHCerQTx1qw4lDM3VQTCMOBX7EQZE65FCHRH3iYEsdqqmDijdxUKIOV38hDjAhDqk/O2jGMT0cMg5jbaIOfEvF7Nu7mnCU3S7vIusKrgTXZAO+CcjI633WVGnCjIfem9eGLqhDRPJJpTewSa0y5/ZtADf/THuAmBP2xYsUL707glkHnaxP36jFCbNUjRADe3gfO9qxtWwQgwu4V27nfwKv3qrS9HprKBiqNz43HEDTMje5a3EPIVSakpkluQeFEbkD7y37sGnSZWZ+RSka4Bs0nrELT1mTz+wTe+Bc55WanVwALVuW8IsfenAv1S85ZtaFfWnG9otq0+G9WYFfVmA7bOfa+sbee4GzQZVVYYHRuKQ2Xv98RBlZV70yvCs76fshh+mBQ/2vkiTtLP153p2YTR009YjD/24RB03qoHiWOGRQBz/qIPB9mnFgUwd56sBhRRyCqYMuP3EQaSUOitThOXU4EE4cMqiDLHXQWEwchqlDKXUY3E8cDlCHMupQt4M4WFOH95eIw7rlxCH3ZweLZKaHP9M9Wfepg+Sdr8KnvTqQIjHtVqDvgcdBRalqCeP42ryhYX12G6QDPinw8v2OzJU39yUcHsOgbavburxmLNzc3lyt6gavW0tlk/4axibD8l9W/d0A64TvHZG7nHCm/YPjBp9XiBvovDMaUoMOszvjbxPs4PBQTfP8/H4kls1zEFGthHTG0bjvh/bCoDPCZMk/806yK2Mre0cFDt5OrHdYvBtVXTFZxS5deJJ7wJTP8B5k3TkSipSNwE7eEsfe+ALXIn70SkZkIWCluo/q5h24tFs9xSLn+T9zcCR1nnscXFzu8jbM2gDpc+u5Tes6iIMt+W9y8LizAtJahjJPd6A+jTjsffqNceANJg511KE6lji8pA6t1IFPhzgcpg4G1GEknThEUwc+6lDkShyMqUMMdVgUShy2UofF1OFUEnF4Rx2OUIc3u4nDTupwlToIrPuvQ5sfcThpRhwUf3bgTWB6kNp1mnWTOhipdTk79bzAOr3jGvVtf+BZdaLdLO03sM7NbpmUfw7X9sJDtxYfgsqis43mja9h8u1PlY2WrahG7rYZ0/2Y7n7RIp47iJTbN0IaWxrBm18Ys7LZGd2nH9VLPu3HEe2Q4ortdTjG8rToL7LH8XaZEe0LvSgZC1pT6FMFw7n3pZfNtoaovHFocGgXzkkuceVf/QD2v55ZLqVhjqHfLuYuetmJZNUjXq5XipByqj4jk9MYfhtUwu06/jlX9ncfeYdsVGuI/p2hrompt/GbJTzb0cH7UUJeKR73KnXT0jlV8CNjfcFEXBtxiMtketAab2R5yE/eumjVBgfqUG5FHPhqiIMFdXDvIA4s6vBxijhEqhAHjh7i4EsdNt0kDhPUga1FHCy3E4fD1KGbOhyWIA4O1OESdWiRJQ58s4nD243EodCTOARQhy9ZxMFhMXGQeUccnlCHb4PEQSrzJ4fey0wPiu51rADq8H/QK+osAQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAhgQAAAAAAAA=eF5d1flP0wccxnEqjltWjGNVIBzOAxkZG44OQZ5xeQURNmCTgvEAhuCBzJGJcZlTQDwAy1x11jkOAXFRkVMb5KptgQ6hYIGi0BYrAxUF48FAmImf1Oz7/AGvPL+9Q0Lyq0y4D3C+NKy1a+Eg1Acalh/eoMb2zUc6dTv7oH22X3OmVIlTGRN+qjUKxOSIr/XulWNkLHNt2oAYM7HL18q3iLDwfH3GFdtLMKBFC4MyLZwfwNfu4Aor60EMZRZMxPqpYcsOyKgI7wN3dGcl+5QSn9xi6XZ5KPCwvzdAHSGH+Rl5VJtMjLjvvigL9xdBoBQcd5ou1bs8cv3JfUQuh1wPhjtO7ofkRpPLZ7iXykrKLEzeuNL4idPPtbimSnLbt1ANz12GgSLbPkROnzHavlWJ2oNLZM7mCrCvRG86xpbjRsxYcXauGPKk+D3/Tt7AaynL4mzVO7eE3ACGC3J5DHcOuRXk3iLXVPZ/N+kH1ku3Dh2OFAd9eqFOCx/ei29C1AN4pB16vPmmCsu+4pvUWCpRx+uK72nqwLzP78/RCFux8ZLj9BJvMbyDJ1kGGTdQudOoJMn3nbuX4fqTO0yuC7k15FqQG0euJ7llDDepYqkk7RcdJnn5ThHJWlisix3jrx+Ap03l0DBXBf8gYz+d4A74rvbHXm3qgMBR1N410QJhdFr3moYmXAyd66TVXkee+QjH79xFvRtH7uyot64VuT7kgtw/yD1B7ilyC8m9zHDH9g1zE+fr8NQ03MPV/M1f9xbl7qP9WDdL4jCZ1ouKA1ljRya7MCPNCxhXtWMqaGpi96IW3E5+30fh2IQUz/S/9lpeh3LbuGBec4ne/YfcUXLnMtxqcs1kb90ZcuXk/kiuguHGRba4u/PvIyKwZ1V1ugb5NbXe7ifvwb5sciSmsAfyVGnVgEcXbHZkh9h5tKOJM2CptWuGsYMhrz+qEUKH0oQnJjVodBwpiBIX690d5AaRW0CuDblt5NqSKyGXTe5ZckUMd7/B1sT8oUGc25h3e4laDZH5xQ++j7wL1lI3G2R146HGKNd6dSeK9sg3Wve3gRXw0PepRorQxXZC8+QGpMpaVYGKKvzWYlYenF2kd38i909ya8mdRe5jci+TO4vcMHLTyM1luPa6ztBRq0F4eln7lrPVqL6a6HrvrgrrhBHc4z5KOPzstfKlswKmkkCpodnfSAkbis7dI0HI6sEv726pRw572SJ+YiUkxicKfVwu6N0F5C4nt4rcYHI55FqSm0xuELlZ5MoY7q/bPt5fNFuL1tI44z6bfpQMr+desOxFvOHiV9NlXbgzYe/3or8dqQnVoS5jLXgdIO3LaxPDrvaJdnHUTWQk5CSkdJcjMJNt/+z3Ar0rIFdCbiG5MeQ2k3uY3ClyrcnNIncVwz30eMV2zXk1inVhi7IFfbhu6MsxeqRE9/iU8NDwmz68xzlW196G+UYp5bGnZTB7Hh369etGmHVcXTlcLoJXXdPJbxdcw2fhLhvuaPP0bjq5BeTWk9tD7gtyPyLXmFwOuf7kejDc/wDW0EItAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAKgMAAAAAAAA=eF6Nlj1rlEEUhd9GQTt/gLY2VloIFo5WfrRpLAyIEO3EUrQREQwSIfiFiq2Vrc3+hMFEhAVhqowMBAYCTm0hkmTPLHPOveJtlveZu+fse7g7M9P0f/Xh/X7Ngs2j8HMHNXf6k/DDyo5OEX7noHYd/Sp8e2u/9hzfFv79fkuOZ5tH4cjB7k+Ob3Z0inDkYOtX4cjB9m1h5/ipE9ffzcJKPnnx6O1bfZ05vm/zKBw52P3J8c2OThGOHGz9Khw52L6tv8dExXycB+ZR+DgP3J8c3+zoFOHjPLB+FT7OA/tiHuIin/s0D0s+zgPzKHycB+5Pjm92dIrwcR5Yvwof54F9W/+9ExVz5GDzKBzPdn9yfLOjU4QjB1u/CkcOtm8Lp9d/bJw/Ow+Pvp9ZPfbqQV9njhxsHoXDz+5Pjm92dIpw5GDrV+HIwfZt/XdNVMzH/YF5FI4c7P7k+GZHpwgf9wfWr8LH/YF9sT+kxf/lMe0PSz7uD8yjcORg9yfHNzs6Rfi4P7B+FT7uD+zbuv9kVqacZ9KPHJiP/0PuT8LHZ9YpwpEDc+TAfLxHsW8Lb1+svbn5ZyfcvfFp+9nDp32dOXKweRSOHOz+5PhmR6cIRw62fhWOHGzf1n0mKubIweZROHKw+5Pjmx2dInw8L1i/Ch/PC/bFeVEW++d6X2eOHGwehR/6zZ3+5PhmR6cIH88L1q/Cx/OCfVvXm6iYIwebR+HIwe5Pjm92dIpwPNv6VThysH1beHLt97dLa7th8+qXveefN/o6c+Rg8ygcOdj9yfHNjk4Rjvex9atw5GD7tv69iYo5crB5FI4c7P7k+GZHpwhHDrZ+FT7eH9gX94e6OE83+zpz5GDzKBw52P3J8c2OThGOHGz9Kny8P7BvC+O5uizmyMHmUThysPuT45sdnSIcOdj6VTiebd8WLmxdXln5uhdWP/48cuXey77OHDnYPApHDnZ/cnyzo1OEIwdbvwrH+9u+jT65GuU8k37kwBw52P1J+GFlR6cIH/d91q/CxzlgX9wnfy3uV6/7OnPkYPMoHDnY/cnxzY5OEY4cbP0qfLxPsm8LfwGHmV77AQAAAAAAAAAAgAAAAAAAAGAYAAAAAAAAnAMAAAAAAAA=eF6F0te7yAUcx3FJJHvUoWS1SMNOIidFRmUnhU6FSFtDQ46VRLQU2YVoiEpLciRCSprSQKq/w0Xv90U9z+/5fG9ed5+b77uk0r93AtbE0yr992pgI6yMtbAE/7/TGE/E2li0czpWwTpYtHMGnoR1sWinCVbFeli0cyZWw/pYtNMUT8YGWLTTDKtjQyzaaY6n4KlYtOMf/M+F2BL9q/++AFugf/FfF+FZmPb9k/+7GM/GtO/f/GdbPAfTvn/0v+3wXEz7/tV/t8fzMO37Z//fAVth2vfv9tARW2PatwP76ITnY9q3r+bYGdtg2rcDu7gSu6Cd2V1PvATtwC6uwksx7duBXfTCrpj27cAueuNlmPbtwC6uxm6Y9u3ALvpgd0z7dmAXffFyTPt2YBf9sAemfTuwi/5YimnfzuzuGrwC074d2MUIvA7tzO5uwGvRDuziRhyAad8O7OImHIhp3w7sYiQOwrRvB3YxCgdj2rcDuxiNQzDt24Fd3IxDMe3bgV2U4TBM+6VoF7fg9Zj27czubsXhWIpF+3ZgF/fgGLQzu7sbb0M7sIt7cSymfTuwi/twHKZ9O7CL+/F2TPt2YBeTcDymfTuwiwdwAqZ9O7CLB/EOTPt2UIYP4URM+3ZgFw/jnZj27czuJuNdmPbtwC5m4aNoZ3Y3Ex9BO7CLJ/ExTPt2YBez8XFM+3ZgF0/hFEz7dmAXc/AJTPt2YBdP41RM+3ZgF3OxHNO+HdjFPJyGad8O7OIZnI5p387sbj7OwLRvB3axBJ9FO7O7V3AB2oFdLMXnMO3bgV0sw+cx7duBXSzHFzDt24FdrMAXMe3bgV2sxIWY9svRLlbhS5j27cAuXsWXsRyL9u3ALl7DRZj27czuVuNiTPt2YBebcC3amd1txDVoB3bxLr6Oad8O7OI9XIdp3w7s4n1cj2nfDuxiM76Bad8OVuIH+CamfTuwiw/xLUz7dmAXH+HbmPbtwC4+xg2Y9u3M7j7BdzDt24FdfImfop3Z3S7cgnZgF7txK6Z9O7CLPfgZpn07sIu9uA3Tvh3YxVdYgWnfDuxiH27HtG8HdvE1fo5p3w7s4hvcgWnfDuxiP36Bad/O7O5b3Ilp3w7s4nf8Du3M7n7DA2gHdvEHfo9p3w7s4jD+gGnfDuziCP6Iab8C7eIo/oRp3w7s4k/8GSuwaN8O7OIYHsS0bwd28Rf+gmnfDuzibzyEad/O7O4f/BXT/nFuhFa4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAsQAAAAAAAAA=eF4txRuQhAAAAND7NEfRzcLBzlF0s3CwcxSGYRguLoZhGIZhGIZhuBiGYbgYHPSevI+XQ+hPf/nbkX/86z/HTpw6c+6b7y5cunLtxq079x48evLDsxev3vz07uD1OPTJZ0e++OrYiVNnzn3z3YVLV67duHXn3oNHT3549uLVm5/eHbwdhz757MgXXx07cerMuW++u3DpyrUbt+7ce/DoyQ/PXrx689O7g/fj0P8BDTDBAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADgAAAAAAAAA=eF7j5YUBHpoBAPDXBLs= + </AppendedData> +</VTKFile>