From 07315ef7ef1848e0511b87ba9df4624cf4e2d7c5 Mon Sep 17 00:00:00 2001 From: Wenqing Wang <wenqing.wang@ufz.de> Date: Tue, 9 Jul 2024 15:19:08 +0200 Subject: [PATCH] [CTest/LD/F-bar] 3D Cook's membrane example --- ProcessLib/LargeDeformation/Tests.cmake | 2 + .../CooksMembrane/3D/CooksMembraneLD_3D.prj | 209 ++++++++++++++++++ .../CooksMembrane/3D/boundary.gml | 35 +++ ...oks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu | 29 +++ .../CooksMembrane/3D/mesh3D_n10.vtu | 23 ++ 5 files changed, 298 insertions(+) create mode 100644 Tests/Data/LargeDeformation/CooksMembrane/3D/CooksMembraneLD_3D.prj create mode 100644 Tests/Data/LargeDeformation/CooksMembrane/3D/boundary.gml create mode 100644 Tests/Data/LargeDeformation/CooksMembrane/3D/cooks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu create mode 100644 Tests/Data/LargeDeformation/CooksMembrane/3D/mesh3D_n10.vtu diff --git a/ProcessLib/LargeDeformation/Tests.cmake b/ProcessLib/LargeDeformation/Tests.cmake index f880ce026c5..fbb1d0bddf6 100644 --- a/ProcessLib/LargeDeformation/Tests.cmake +++ b/ProcessLib/LargeDeformation/Tests.cmake @@ -12,4 +12,6 @@ if (NOT OGS_USE_MPI) OgsTest(PROJECTFILE LargeDeformation/CooksMembrane/CooksMembraneLDRefinedMesh20.xml RUNTIME 2) OgsTest(PROJECTFILE LargeDeformation/CooksMembrane/CooksMembraneLDRefinedMesh25.xml RUNTIME 2) OgsTest(PROJECTFILE LargeDeformation/CooksMembrane/CooksMembraneLDRefinedMesh30.xml RUNTIME 4) + OgsTest(PROJECTFILE LargeDeformation/CooksMembrane/3D/CooksMembraneLD_3D.prj RUNTIME 4) endif() + diff --git a/Tests/Data/LargeDeformation/CooksMembrane/3D/CooksMembraneLD_3D.prj b/Tests/Data/LargeDeformation/CooksMembrane/3D/CooksMembraneLD_3D.prj new file mode 100644 index 00000000000..ec02a101bf0 --- /dev/null +++ b/Tests/Data/LargeDeformation/CooksMembrane/3D/CooksMembraneLD_3D.prj @@ -0,0 +1,209 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProject> + <mesh>mesh3D_n10.vtu</mesh> + <geometry>boundary.gml</geometry> + <processes> + <process> + <name>LD</name> + <type>LARGE_DEFORMATION</type> + <integration_order>3</integration_order> + <specific_body_force>0 0 0</specific_body_force> + <f_bar> element_average </f_bar> + + <constitutive_relation> + <type>MFront</type> + <behaviour>NeoHooke</behaviour> + <material_properties> + <material_property name="YoungModulus" parameter="E"/> + <material_property name="PoissonRatio" parameter="nu"/> + </material_properties> + </constitutive_relation> + + <process_variables> + <process_variable>displacement</process_variable> + </process_variables> + <secondary_variables> + <secondary_variable internal_name="sigma" output_name="sigma"/> + <secondary_variable internal_name="epsilon" output_name="epsilon"/> + </secondary_variables> + </process> + </processes> + <media> + <medium> + <phases> + <phase> + <type>Solid</type> + <properties> + <property> + <name>density</name> + <type>Constant</type> + <value>0.0</value> + </property> + </properties> + </phase> + </phases> + </medium> + </media> + <time_loop> + <processes> + <process ref="LD"> + <nonlinear_solver>basic_newton</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <abstol>5e-7</abstol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0</t_initial> + <t_end>1</t_end> + <timesteps> + <pair> + <repeat>2</repeat> + <delta_t>1.0</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>cooks_membrane_ld_3D_n10</prefix> + <timesteps> + <pair> + <repeat>1</repeat> + <each_steps>10000000</each_steps> + </pair> + </timesteps> + <variables> + <variable>displacement</variable> + <variable>sigma</variable> + <variable>epsilon</variable> + <variable>NodalForces</variable> + </variables> + <suffix>_ts_{:timestep}_t_{:time}</suffix> + </output> + </time_loop> + <parameters> + <parameter> + <name>E</name> + <type>Constant</type> + <value>240.565e6</value> + </parameter> + <parameter> + <name>nu</name> + <type>Constant</type> + <value>0.499</value> + </parameter> + <parameter> + <name>displacement0</name> + <type>Constant</type> + <values>0 0 0</values> + </parameter> + <parameter> + <name>Zero</name> + <type>Constant</type> + <value>0.</value> + </parameter> + <parameter> + <name>Dirichlet_bottom</name> + <type>Constant</type> + <value>0.</value> + </parameter> + <parameter> + <name>F</name> + <type>Constant</type> + <!-- F = 100/16/1 N/mm^2 --> + <value>6.25e6</value> + </parameter> + </parameters> + <process_variables> + <process_variable> + <name>displacement</name> + <components>3</components> + <order>1</order> + <initial_condition>displacement0</initial_condition> + <boundary_conditions> + <boundary_condition> + <geometrical_set>geometry</geometrical_set> + <geometry>z0</geometry> + <type>Dirichlet</type> + <component>2</component> + <parameter>Zero</parameter> + </boundary_condition> + <boundary_condition> + <geometrical_set>geometry</geometrical_set> + <geometry>z1</geometry> + <type>Dirichlet</type> + <component>2</component> + <parameter>Zero</parameter> + </boundary_condition> + <boundary_condition> + <geometrical_set>geometry</geometrical_set> + <geometry>left</geometry> + <type>Dirichlet</type> + <component>0</component> + <parameter>Zero</parameter> + </boundary_condition> + <boundary_condition> + <geometrical_set>geometry</geometrical_set> + <geometry>left</geometry> + <type>Dirichlet</type> + <component>1</component> + <parameter>Zero</parameter> + </boundary_condition> + <boundary_condition> + <geometrical_set>geometry</geometrical_set> + <geometry>right</geometry> + <type>Neumann</type> + <component>1</component> + <parameter>F</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_newton</name> + <type>Newton</type> + <max_iter>60</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <eigen> + <solver_type>BiCGSTAB</solver_type> + <precon_type>ILUT</precon_type> + <max_iteration_step>10000</max_iteration_step> + <error_tolerance>1e-16</error_tolerance> + </eigen> + </linear_solver> + </linear_solvers> + + <test_definition> + <vtkdiff> + <file>cooks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu</file> + <field>displacement</field> + <absolute_tolerance>1e-14</absolute_tolerance> + <relative_tolerance>1e-12</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>cooks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu</file> + <field>epsilon</field> + <absolute_tolerance>5e-13</absolute_tolerance> + <relative_tolerance>1e-12</relative_tolerance> + </vtkdiff> + <vtkdiff> + <file>cooks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu</file> + <field>sigma</field> + <absolute_tolerance>7e-5</absolute_tolerance> + <relative_tolerance>5e-7</relative_tolerance> + </vtkdiff> + </test_definition> + +</OpenGeoSysProject> diff --git a/Tests/Data/LargeDeformation/CooksMembrane/3D/boundary.gml b/Tests/Data/LargeDeformation/CooksMembrane/3D/boundary.gml new file mode 100644 index 00000000000..970d8efd6b9 --- /dev/null +++ b/Tests/Data/LargeDeformation/CooksMembrane/3D/boundary.gml @@ -0,0 +1,35 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<?xml-stylesheet type="text/xsl" href="OpenGeoSysGLI.xsl"?> + +<OpenGeoSysGLI xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ogs="http://www.opengeosys.org"> + <name>geometry</name> + <points> + <point id="0" x="0." y="0." z="0." /> + <point id="1" x="48.0e-3" y="44.0e-3" z="0." /> + <point id="2" x="48.0e-3" y="60.0e-3" z="0." name="pnt0" /> + <point id="3" x="0." y="44.0e-3" z="0." /> + <point id="4" x="0." y="0." z="0.001" /> + <point id="5" x="48.0e-3" y="44.0e-3" z="0.001" /> + <point id="6" x="48.0e-3" y="60.0e-3" z="0.001" name="pnt2" /> + <point id="7" x="0." y="44.0e-3" z="0.001" /> + </points> + + <surfaces> + <surface id="0" name="left"> + <element p1="0" p2="4" p3="3"/> + <element p1="4" p2="7" p3="3"/> + </surface> + <surface id="1" name="right"> + <element p1="2" p2="6" p3="5"/> + <element p1="1" p2="2" p3="5"/> + </surface> + <surface id="3" name="z0"> + <element p1="0" p2="1" p3="3"/> + <element p1="1" p2="2" p3="3"/> + </surface> + <surface id="4" name="z1"> + <element p1="4" p2="5" p3="7"/> + <element p1="5" p2="6" p3="7"/> + </surface> + </surfaces> +</OpenGeoSysGLI> diff --git a/Tests/Data/LargeDeformation/CooksMembrane/3D/cooks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu b/Tests/Data/LargeDeformation/CooksMembrane/3D/cooks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu new file mode 100644 index 00000000000..794dddec806 --- /dev/null +++ b/Tests/Data/LargeDeformation/CooksMembrane/3D/cooks_membrane_ld_3D_n10_ts_1_t_1.000000.vtu @@ -0,0 +1,29 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="24" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="242" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="3" format="appended" RangeMin="0.51494758753" RangeMax="229.24372989" offset="88" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.0086889254263" offset="5948" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="6" format="appended" RangeMin="0.0026589095863" RangeMax="0.11288837849" offset="9364" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="6" format="appended" RangeMin="1800306.0684" RangeMax="40548149.451" offset="21992" /> + </PointData> + <CellData> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.076843997814" offset="35044" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="37248" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="38808" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="39076" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABgAAAAAAAAAIAAAAAAAAAA=eF4z0zPVM9I1M9RNNzc2TEtKTjPQS8ksKqkEAEg8Btg=AQAAAAAAAAAAgAAAAAAAALAWAAAAAAAAChEAAAAAAAA=eF5V13tcjckfB/ARJSHdpdApJOlKKieakdJFpQtJukkUoiO3LugpRRSSSkm7p0S1LkVFRM8gamPJrqxLpXVZbWUd2o1V8pszc/7w+/f7el5z5vs88/m+5+TEwdvO3VpY99eiwy86xuN9QY1xta/m4j9eiLSfqTij6ue7tPorLbFFSaH1ywn+aEv5gcXtvif57p3CZRsmjEDTUUrInvb7/EBzY+G6pxHQ9OiurRHyI9CrFIeYzUcMcZtsneuydWaxdfDd5jV0nVEH2ToHn++RrgPrRJF0Hb8Eto5+Kl0Htcn2Oer/94kctw4myYXNRTFAHBPHz0C3k4zzMueGoilrZ3R0BxsiUev5kqcXn0Ghkr/dxzFuaMv7rtQ/s+VxQpyh79OlE5Gy0/VdRxqnIZ/39sYlOXpYb9NfDh37FbBEq7JzXtQ8HP9KUFi03wSryJcG7zD5xn9IPlPx7qYzPhAQd/h9qgne3vYgvLZJHye/ylQ71+SJnU8N/CTnZ4pbLR+7bn9ggAuRQHfvj574Y2yCofbr6Xh9+0P1Js4IFxfXaKsaeeBn17eGi3YY4lGF2SfVfzHEIzRtsromuuHKCa0Fis8vQKspvaO+vFVHr0eVhmSGqWI0TlSjFlIDk6+rbHaeo4H87Tq95pYZYnA8XHufeSGMSnk9Ln2WBqpUODDuZbsJ5vgI5WLzBl4rcubyyAJ1dOLB2uKlqy0wt1m37X7sGX6q9Z2WpEfq6G7O5IHoYksMgsc3V04+yZvtrkm536aOAj//U6C3dRZG++adEgfdgHu76je5b9RACTq5rWf9Z2NOYViowcJzMLH35RRdGw1kEKj8uzqwwgL3/ZPvGF/i48a1frxWqY7Qz4XjExWsMQBbb/fk/1cPgNfpwbdf6l+eOPr4rw4XUpe8X7FjOARgcMtduz77rZoJj749dSX1J5vK7g+S54FzcY8Ob2bv721r5kHqag0NEbPI84V9HiIhbOkwOKQ0wQsDbl1iwTtPHuDcz1F6vnz4/g0wMIfUJc5/7ewJ44HXCEFbyWbeOP/8BYWyJRhMCN7U0F8IgXXJkiyTYihS9n1h6e2OsajU79TlKp5riOlU76ri3ZQrl3fMdcFc75uwP4RnIVgf2W6wqxz6bhup12G1gPxufPWL+AXkd1VqS3xcocM0ce2a86sQQLb+HQmBPBDXGJ6JWAg1rl896BrhiwBWTcq0d4QAqannN3vwvN3ID7X/+iCgAUIs/jwIgeSLzkA8B8Ny9HZsdvZE4HiSfOjRUh60WJ67fuYYnzH83mbbLjcEpk9ViHCshOD1489aHhmw/vHj2BptJ8TtSShvTb8IOZeuKN9Z56Boke/qq2oIiUvGrovL/52PzdZ/4pjewJdcNXb+wWgOMtodP8ZV9THkurtHeZ+/BCPfLrln2TYJAcCzvsBvl6V9ubC+yPvfJ+srj/alyPrCACmyvsRf1KR9NbK+MGj7EEz76u6jfYWzvjCYksr6GmbzfV8YHJjC+lJ+8n1fGE/ZxfpS6KF9HWd9YUHbaNpXWqMe7aue9YWx6y7aF8j9SPvK/4v2hSVj62m+fnzXQ/PlpkLzhTq3xtB8iRpYvg7b0nwhYB5D8xWdwfJlO5LmC4kq1tJ8/bOG5esxyxfi1hvQfL2YyfLVzPKFuH41mq+wZJav259ovlCnrj3N11lZvux0ab4QMPk3RJqv4y0sX3IsXyg0NpXma4Quy1dvE80XAj099HxyBtH0fK5i5xOhWyX0PKMhET3P+uw8I9Aexs7/3lP0/Aez849AZgTLS4oqzYsFyws5DxosX14RNF8RLF+kHsfyiKpoHh+xPJL62SiW32OLvssvqV+T5X1ijDTvW1jeST3wZzYf3Mu+mw/oF9mcFJ1gc1KezUnUK5urK2RzVczmKvKRzeETsjksZnMYLZTN7UDZ3E5kcxsdks15byU25/vYnEcPZS78HfV/LqDxMkcM4pkjo5gj2F/mDveEuTOHuYMdZE7pypy6wZzCAC/pvnjHm+Qr0WO4iz/v9/hE8b3SKDIfPGcsct0IQejkamGSEx9+YXir0azVZJ4s+zXiwWIIHFrKZsZvgkXXB7+m24cg0NJ7bL/TMR6cWDh7zMwsfnSNlqKL6koEJKeFsRFVEL9bK0g5XwJ1nPyaBzb5IZD3w3238Fqem5t7+MOcPN78lvYmkYcP4oJXzknIusCLHR2dV5+7yL+9Xed5osANtZjfbP8aRnLUXPPKt6QBGth3aeusX4AUP57Z07q9lUe2H21GP6jgc202jIzeoU2+48venUtmQoDtTsU5WsAEzbBh7xqDSF9KhZKzXqTfLWYnTTzhsxU1qdFhpI7GNikMLuWBVob9+CAyn+NcItWclyHglXrZLDMNCuTKhoe/PABzt6WbVmR4I/DY7pakUMxzffHalRty+GLN9vEnGsi51ZYbEdV9EoIvB+e/xUdgWqKyQqz/IsTho0aJrWIebE4UOXgn8VMmG19/OwARSLipabXiMpSEzdg/KHcalmKFMwHJFgg0qgbO1rnNA+87OR4ZNfxQU+ewh8EGZO79cygxfICcT/+vrdnaMLzwR/GxUET2X6O6ysqGzMOBKw8jPXm5bKWry76R+SyI2WI2FApBpDVnykXCNocYU+815Jyfdf2q2BXLA5+wmNfG23hl98VyqyMXIHBtSlDF3RTYeeXq+CQtDoqSPvxp9YMQgeBshx2HjvLgh4YnnlYH+CDTjKAdRbMQWL90ZMXuPIi9VzRdSc+AWeXvR5zVJPNKnBLQ0Z4BOXVdXuCRB+81J+9OEH2A3KHPC4JnVPBiyW8b3AyreLktMZutlaxIXyKTyc9Gku8SbzzPbjSfNiFl0R4hIudTpzFnnzXJafKMiEs20CRxwvOY+E4I0o5tGIz04wHX8++XuuX8tgWllsGOAgRikywlEZEQ7Ey0Wrd0FfylrjQ5fLEaArUpe+98DOaBypGjGgEjoP+nYO7hBSUMmqLjlK7F8ODuOFvl97v5kreewnc7JmCQHi98YnkECpT75LAoB/40yc3BvUsfcwPa+/ZEVvI3y6uiWz/9xFc3OKTaHTHGoVx0uLD6ZwiWlazmSuthV2rFXMNgO9JXJNh7ctAegLz8QZ1X9uGcQdPzo8Qp0HCmZI0u6XdRac+jcfz+u38f36iwCANBSFz0WgfSb/rV2yZmUGnco5zzM+cTvzrs561cwQOLH2+gWA9+9rZfbY9hsr7AOaXisAuZe2V3Lkj0+e3blhutrCTPH+1Pt3VKgThuvbv4CQeVj/ZuX7wRknvaWjNXnwJe8GGyuumYbD7+4MXHHdnzMEhxLpp/djvxUd1oqH4jTLxcM639sxCDDXedhr2pgFhFLYDbXgr7L95AuRXkuwD33Xvvy5H9t+VNudVfX7V4gcuuZQGknjV9fcEwsn/JJV3FN/a38ttyvgil/arrtczWhYD7ZaI/MoN+nYtzr48h95/OIb/yOhUyZ96Gq6k68B6/1anFB5L7z4mJlyItyffCYX3fyLy/2Te3QWmCOwZDszMOVMVAsHX05OiAjRD1y58aZbIYA8Vt5wzfxEOwJ0EvIT0GWi9y/qhWRO5L6Q9eZZws47G/fXGR4Ul+5tiMcV8XOmL8m1N5rA1xfPgD+aJblXCppKIpO3Mh2Se3I22JHNn/UOiaCcqwcdrWP8y7A0l959/NBhqkX59/J5WN43XAoUntP/qTusvli2+kdQvHkEXy0GivxxmVP5dhIK77ZlLqRu4hHSMup3nAS5OLTLyeL8XArw/6FgbxQPCl9OazNbxCRlRs4iRS19gn0BS78sAoNSlLwR/eH+358Jz0vbmj5MRP28h+Kp70hfvA215r89s9vTE3sepP06k/QKTUFNJuWgAHvjoX5cq5Y3HL3oroglu8YHdfgfGXer6gv7V81wZyrkBafl6qCtmnTsOiNeP5it8LzrvqS/v6KbClSo+sX3a4NVgL+hha3hqmtJLUFySpvJrKA+Q7aWqaJa+bP1Z4arX0+6oETBVOIuvcTK+5ORdam5l7hC4ldUmFxRWN1RCIlrnV14TCX3eNzP1tYAUGem3DDR9yPDh0zs1eI4mvNQrcWBlF3tvsqYe055PzJvpy+brvFph16Z5r2nw/HPrSfHb6wyLINXyemtYthunTKvY9NfXBnHBdtnfTJb7SyyfE7001r3ztiklDELmnAf3qYa/J+QHye2wvq8LyBzeuCD+R3wW5wvZD+mSf4cpr3NR5zQuGp3MSyD45H/OPkw3JOcxQfJpiBr9ml/TOSyPvAWkKV0XZk/PWvPR52hI+xiZhxqz8YJIvlY838pwgyGxYXzxvOXQJHaf1zDAEg0fBOQpfYyEItF5+zCgJDg578fzg+SCMVq2Mtx0kc/6C7tIL60p4a9X86e5FARjXVe3ZklsKwV8Jn+WDyuFKNc/dWuV+mHs9olrTg9zny/UUtn47DfvvWUapXyG5wCrMZSSkLvswlzEQbWcud+6nLkcyl8nzHQ+py/YvqMtHmcvkHvuWuRzrSF3WZi5jzqKMugyWR3zvMubCxNRlYFxAXZ7GXMb4fCB1mbNyoC63MZexZDumLvtnVlOXh+ZTl3GnayVzecpn6nKgOXVZ+n+qh7oMNlCXNzOXyfufw1zmdptKXX7FXMYgtK+Ruqwgoi5bMJcxyNhLXeamiqnL2cxlzH2C1GVwkaMuH2MuY9DCXOZcD1OXC5nLZG7kMJdnJlOX3ZnLmKu7RV2ulGMu1zGXscBXmbqMXt6kLh+/Q10m942UfczlZ9+kLq9lLpPvkqpCXUb6V6UuKzKXyXvYz1zOdKAu32cuk+/rwVzOWkVdHlhMXSbnzYm5PLyFupzGXMZg317mMrhPXfZhLmPQZUdd5g44UperyqjLGHSsoy6DR8zl3Xepyzx39V/qsmAPc9mYuUz66rZgLjuYSF3eyVwm9cQ7zOVyI6nLB+Koy+Re3slcRqr9UpfLmMsY+J9iLj85TV3Wv0ZdxsB2iLlcqZ8ldbmLuYzAvTzmcqoTdbmJuYzAB466zBn2UpeTmcuIs9WhLjecqaAud92iLiMkYC7jTae/d5nsP2MwlbqceVDq8mrmMqlvkbk8VCR1OY25TOoXZC6710pdHsNcRiBliLksfoOlLjswl8m9y4i5zK1vkroczlxGoEYrQ+oytyqJutydRV1GoMSDugzGaFGXjzOXyX0mjbrMfb5PXT7PXEbgTTN1GX1VoS7/w1wm+7TdyVxWOS51uYa5TOo7ZS4LGqUu88xlUv91EnPZXVfqcgBzmex/LHMZrKUuezKXEdYMZy5L4v6Ruswzl8n9aiidufzfJKnLQuYyuf8fYy435VCXbZjLCGz+hbqM0udSl82Yy4grcKYud2ozl12Zy2SfJfHMZbNwqcsNzGVSl/Qwlxsk37lM6ourmctTF0pdns5cJvdkzFzmTOWlLtcwlxEYsmEuPymhLisxlxFQjGcuV5pTlx8xlxFQ/5REXQ6dT11uYi4jrvckdRmsuUZddhiiLiPxGeYydpFQl9cyl6V95TGXU29KXT7LXCb13pXM5Y2Z37lM6jOZy9wgdXkic1maU5nLDdTl2cxlBFSCmcu106jLrcxlBCZ2MpfLqqnLV5nLCPhNZy5Hja2VupzNXEaCkhnUZewhoS57MZcR6mUuC84toS6nM5elebnIXP6QKHX5LHOZ1JfbMZd3UJdVmMsIcHVmzOWFI6UugxzqMvleVsxlBJZJXd7EXCb/45YwlzvvUZcdmMvkvG1jLu+cT13uZy4jriqAuswtmEhdtmMuI2xwmbks2kVdTmMuI1z+X5XUZXxlInW5iLmM/gepmwPqAQAAAAAAAAAAgAAAAAAAALAWAAAAAAAA4QkAAAAAAAA=eF7d1nk0ltseB3AlpAiVE6lMnTqSzJGLhwxHpjLEEZK5VELmuQiVEpJIlHRLEUcqQ707UyVDhpBZUiqJkgwddda67z7Pdn/rWOvef8/z53e961m+3v3dn5eF5f97ymWjBH4774vSN/luNQgLov7Kr/7oenQudTeyKSuIDQ0m+VyPGX5PJniPGEv3f96j8j++55/6mLfsmCw55Y3aHl8P2M0g/4eOkIZdDIYXYpdSb/dqJnlNZb9VLb8nWuQxEv6pleR3TDSpCZ5D6I5yQ+tIFcn1n1jNO7nxACqP0+6yvUvysYnaQyN796F6yYYTq9JJvpGxtk+u0QWJ5jzuKI+d9fd4+6v66zuh7ksJHkGBJH842ZAj/dweZapw2N33IrmBkpD2701N6qFNVi+PsSnQeVZ8doBUAwvFVZ9FFc7XovMibYfMi66rqN2BB4defDKg8wX2yfbnU6WoOkXp06bVZnSO8osifPkVqK83DDKWiNjQuVH028gaTznK9vaM8IoHjnS++cnwJs1yfmroZKGfW4cbnZeUKnRz3VBA2gzKpzHLk85jarP3GhluR4i1UTvPzZfOO4PcDT6HqqLY8wvFeNLV6Py3+urnbaeNUQ0aWfOxZCud68ZZ7rlRsRMtZ3vRrVpuTOeDN70VNRm2KHzmuqtn8U46DxJhSFQNOiADW7YbbzJ30/lMCGNS1t0V5Ue/1xpPd6Lz6urjqcdlDqDOUceZlWL76XzgRMbzlBwPFH9Ule3HHtLLOkQj45DrYXQ0YUD7TZ0PnXfhXidBLz3cqx302oZ7sYNe/bhXGOgViHtZgl7juNfvoFcD7tUGenXjXgmg1zbcKw30SsX7ug32VYP3JQD29QTvixPsKx/v6zbYlzHe1wOwL45J5r5qwb5GHjD3tRnsa70Pc1/3wb5C8b7KwL6Gapjnsw2cTwY+z5rgPLPj8z8Kzv9BvBcbsJd7eF9fwL7G9/z9Hq/j/dqC/frhvS8Ce/+A74cwcD/8Ux+eirS4yHOC6EPKLWXxfiG6r/njyZdB+yn0zGJGt3gjRedTj+593zLPCJkrIp7Esm10nrJ0+kmx4U4U8dQpStfLnM4nFf7VmyZli7gV+ubF2tnSuWm+tsyzAQc0beFzsseC7Cv/7jW/Zbdd0epwrv77C8i+JiL3OZe8OYBagz6IavmS85PD9VXgo6YnUhrLiJFZQM4bv5pKRpE9K1rj9jn4TcyQ+l/5EvsTvNnv16FLPj3P66bk6c/7L+NfPuGpgbqErS+bHf6Vzm+1DgsPZxoi9W+Jqqy85FyZpDvrhHjtRLkcDZZ1ueQc9jiw2b2qsEWtS2WTCzlIr2lV9vur0xyRQtGdLNdpcs45HqpNPO7bizw5LEsEj5JexZGcAUZZ7ihDcl6VtDzp9TGqpdfixTt1LV27XJsno3SvZl5z7nVoARIpRe/4KqTpzy/9XnbUl10SmQUPDjhXadO587GybI5vGih83oWyXg9TOo8MX/nzmVgjxM0nEJ0wbE3nl6yebl2RaoE+1jyqXP+S7NE/54hNQbMd+vSr7I+OWfsNf5Qex1ByRpcCDKPvxpFef8yoDJ5bsx+ZThwqaDMgvUTfJy0eZJ1SPyLI0q0nwUXnUg+uTnFxclNCXZsodhcZOo/y8VY9Lj/NSObtcd3VTPY730ZvZ06cFHJJGY5+0WZC52fFqw9LWGxFI3aHNk5fJr0svwa5VSrtQKmZglKH8kivTC35+lBJKzSgFpti+Iz0utwjxbuh3R4ZG+f2lZ8ivSr7DSwFBl2RNYsx20tb0kuLvdEmYIqVuhPb9lbtyBpynuPiNHiPCVLX5TNlO3zIORw3Y+eoDheion7h1N21hXxfO8SeDtanjzE0qx8rfc8jvW6WFudZJMmi1pakwDJ70svecV3SykAdtDeHT3n7JdKrR9niaS6PGYrPav1QU0h69XA7eLHG2iJ/98lbPadJr01dxW4b+p1QZdipstc2pNd0Rcvrmt751Nhzdgdfz/V0TrWbeHesEKEShCyVdKWV6TxX5/6EzOt1VPExvQXXTuvQ+TbxEh2DUlFql3VvwVg36ZV2b/GXcdWFiJfzmXKuDeklf4+/W+iZEvqj72Nq11nSyyM7TbzQyAB1Pm1dbJdPeqWFF3xLZ1iiyDwN5aoo0utswFA4D78Dkps3njJiTXpdNBVqs5SeT5V6jaArO8iO6g/rmTZKCVNWIYJNUUvI7xDhok8b2DIlKcWiq7ubA8m90dWu+DaoQ4p68XPfxh0mZF9WuSzRaw6KUJRbE/dqf9Jr+6v3kcIDImjzN9F3Q6mkl2ONirJNvCbiTJr+9/pZvYoEvI6bu5oi7hYn++WzelX9YtcbinYjJfkK515T0st63/DJsekJ9Yeha333aMnRuVpjr/UIWkmJhuTfEqrToPNRxbdiC6c2UFp2vD7B7uSeZ5HkUc1fJEflXwzslH5PeqU/TCwWVpGmhFzK3XMKSK9g8ZhV1Ksl1BX15g32V0ivn65sTS9/JId+7FBr60Wk13TUueB3tfqo4HO7ZH4M6eWI+hWszlihrPijlIIJ6aVefDzFPfadujzPcL5oKtmRfpyBsYclH1XuwKnJbUF+H0YEbpSyvb6O6u1LnIxfRX4PcDWWn31bL0sVZWrHWHmTe15dnL+7tlie+pohWX1iYta9kSXDGA2UoJIFwhZOz7o32jvbkuVblyODwCOe+vWkl8QDDym/UU3UFO2UfD+J9IowtPXg8DNH+iLLbsdZkF582OVU4LILdvk1cPkLdlkPuHwBuxwFXJ7GLi8BLu/ELk8Bl7PncJn1GNPlRuByMXZ5C3C5RpXpMi9weTV2OQ+47IldbgEu38QuawKXDbHLt4DLr7DLbXO4rAhc/oaYLvsBl29hl1OBy/bYZT7gcht2WQy4LDuHy67Y5RDg8nnsMidwOQO7PApc9sIujwGXY7HLF4DLC74zXTYBLhtil7OByy7YZVHgcok30+VE4PIq7LIrcDkCu/wFuLwLu3wBuHwFu/wauJyJXTYELpdil+2ByxR2+RpweRi7nAdcfoldjgAuN4oyXdYALpfO4bITdtkZuPwGu5wAXG7ELvsBlzWwy+XAZb5KpsusLf/tsiJ2OQK4nI9dfgBctsIuWwCXJ7DLAsDlH3eZLn8HLgfO4XLiHC6HYZe3AJcPY5cLgMt12GUb4LIIdnkzcHkYu9wJXD6AXVYDLifP4bIVdpkduFyOXV4MXJ4vwXR5E3BZB7tcClzWxy6vBS4PYpfVgcufNvy9yzewyyuBy33Y5SzgssAcLn/FLhcCl9dglwuBy2ewyyrAZUPschlwORa7/BK4/NMcLm/BLk8Al+Wwy+eAy1PYZT3gsih2uRm43IRdVgIu/wlbpqKTAQAAAAAAAAAAgAAAAAAAAGAtAAAAAAAA3iQAAAAAAAA=eF5d14c/11/4N3CJjCQpQhJKRhKlQufjGKVE34wIEaGSUciqrOwysvfee0RZh7cVUgoppWGWSKWyknJ3d87vfjx+939wfd6vz7le13NiMv6xzYYLUHzZTej7ZRnKPDDZstBmLzXnNLW5TS0dMpQ9zvqweAak6OTb/xDlB6/76oRGPYqpDTs+zjV9ToP5N8bidGzSYdXmLRfuZxdAtj1a+7PCwtE683uhPA/8wZtb1u9lDAOpSt61HZrZgTCr5J28U/5Hxe1NfQ4G5hpUVtZe110vWBvOmkQ6rX0rTjP3+uQ08dEP+rv89GmtMIfMhdzK7if9qIyOxQitA5nwUIW0hzqNpaFDXUuoaJaz4SWZh5vMU0TmKSPzSDgpntth44Ie2nQb8AhYg5IUPM9dPjyPm4Skwv+d54nl43/z6HI4X+EaYmtIK6/Tv2whTqvZjufZVbL0bx66eDzPqi48z0rtl6j32usaIgVajfkWOBvspvD35FnC39PJH3/Pn+R79uhX6zw7bQUy7rDe3n6MF1x3qp0/Ix1CTawciB0edYPeN45KHuO/Ad1jfq0MbA2EjOd1rgvz6oJdNncntT6pAJPaoz5iJ5ypGItwP+69lvDJXEHyHMd5eH3dqcO2D0/Dj6f9O9RLLVGAV0fsUQkD8LLaQi4BnoEcj4OX9UQ0qOVQWk+BnyZ1ZJUC27l7Z2AJX8jzHeUiYLLSp957rwE4UPo6wFrdBvIoKgncPm1IzS0yVE2pnaHCc92esT12gYsvxa9GHFIBiUZ9WSs/pMFi+/nrB6pcIPPU8uoZO0vqaIaGDUP+eYo+actEc0YQnNjQ9qP2tj7YNue81DwlDna+POJDd9AVVum1nCvfa0HFTwR+XmdjSc3cNGRb/hoJ6YfnYqmPesh7nU+1+O6eQ/Zpz4cOtrvBHqV9WV/SzKns8Nb9sqkW1GEBOe4grQT47oCw6f6GY+j3RGatSQkXWG8+zJSyygke+yMg8tzfgDrVYK82Wm1ISbW5ToK4FFhiF3eOns0C7Zw7uGFPtwji4zMxyuK8DL0fhb4yf65OGXXF3lAfPU6Z7jUdGXuWBt/9/p4TwaoFXpubZrrv2gAMum8IFqr5USOyDzlLbUJhZGnuVe/zV6hXdg2txuLeMPmBfXT9/V9o/HVBqUehcAO93gV6p5bwvz9pzyTv+jiYk5R4167dkcpb16MZAaJgqXe1WMHNJZA7/a5Q1ZaBpuR49sfGHdFUm0niDmftZPgl6PV+00EXSvK0nWX58QT4wcL29A3hJKSbrf0w4FQd4Dvk8ej9zhhqg1Jd+LmFFMi9ceuQerQr9bh1gNZpkwzbpKO5/2N+jRTDRQVW90WAIiVa41JQNCXOJCTo55cC163UG09Vu1D96dMfru9Oh/Mdreuvpr1DUcFO09VX+5Dfs5ywaItI6vOpDQE7EpKg5evwJ+ECrlRxxOKDdpUM2Fq31BS4qhY86n3uyNj7HTGEcAreqrtD1U38V55RFA8HrSsNahOcqEJP9bhrc5nwQ9CEYce1JaDxn5IAN+cGWqfl6OK1SwHUnPwBP1nVaEjb9nU0x96FOu4VySJyNAtGG4/wlgYyN9BLbdy4u4WroS1D40BkpxlFr3Jw5GlwAMwNTHu4NcCNAvtEWeuMsuD1hCvDCmJrafE8Oz8Vd26kzS+KPLPKs4PfgwM19rkaUDNX+O7QraGDE5taNXn/vker9edNQ/NDQN/wsU9pg9EgnSV45maFKzyny5YqKetADTs6jQsMaUOTVbydMuyZkPpP7KmBdBF6mRsTtHdPHmJV/HhHSckb8gyffni6yJkKZt0nmxV7BqafOhmycSUX/prP6Z28m448Zd6WjPtkorWJSVuibt+CTRbZsozP3Cg6n/GV9+9XFA87V/Jw/SmCjSo16xRWCtDY2w+ik4YVyLv3hleLcij0/ChpsbXAkRJhdB1MZtWjZJ6tOfBHuBxqRVSfGza5iqrUqQd1NeUoUbx52mYpHO4FQbuckCMVnrTka7TzAhU8rBUaM10Oew7vf+XgW4uOe19gsZXqBtJCJ36zxt6BX/cYn29ltKb2rBcsOTl+kfo+nrxzhakCnrxcslX5wiNQXdvXbeqfgS7V9+fd5AyD57I2G3Xr2lHv6xna3WYtKY5opRscGuVwNOmHmN2eV8jbwu7mI68udHHXc/f0wgC4s2ihSkrEmNrVdGY8ttaWclnvnB2VWwgPoU2nAzroaZohYmppkiw0h6B9AqnzFZQg93FbjV/34JHf67d37LOnjqdVMZ88EkMxTNQEK+SXgx5F15Yqlkq0ivuB39WLudRtOZcfDLtzYHiS0VVR2k04w/idCdRkUIY1dRyvDNsBrcX/Cd3DXjC+zuUPNZ1H0fnBC+8KC2Gd9UqC9l1l6KQsXHVyUyLV0rOVOerFEyR95mNV488sNHt4QfJLbTZ1mTdySIMhB7bMO36urHGAwb9yPx19lULZq+n8fl1di/ZdnNik4NEKBi1D9Z6+zKbEEkzffJTPhU9nDbn8Vkxg5GmWga6MeIrzZdvJ57bPwA49RraSNY/Assfe6i61TMqjZ7NcaH4mtOdOMdR7cQG6CAy6xxyKo7xVut8MzAWiU9Lb97OZjYLL91jj88PTqTGVsNFjX9KhfdVQQcQVU7hypYm9yiyCevuN8YDypWa089eI51jTGGKP8mi6PJlAqVi7nd2rlADnF3fJpfKZw9WRFq72LCGUBUegzr7AZqSwsPqbrMI4+C6z44mTfwTFtUfmum1qGLRunBONH7gEF9PfJu+L1qc+N7gofq5cTds8xDFfAtfQrEheUiQvT5KXMslLXuRE2/qtOaBo/WzLr64yJEHy8iZ52ZC8OkheEteq3bcrtYE8zpCuj8O9YJDkNe2L80q+iPPqI3mVGUU2VGc+RdrnD99qlYxASySvAyQvD5IXM8krTSLoUlJ2GeKYaZVfd6YeTJG8zEleJ7/ivJxJXk1XVgr3Vj4DXwPXMrwbeQgSPXFenSQvel6cl/tWnJfuB6C0WrUQDTZ8uCu2cRhsInl5k7zoy3BeBxxwXnLi1UFyM17oAsPy+v0Oo+hFJM7rJ8nLeBbnFXsL57V+33XRrZ/vgk5edw9LqVEQT/LKPIjzkkrGeXlr4LyspM8d/bOwihawRg1OzzLRasdxf0nL4P56qYH7K+c27i/2e/q0A2t+I7MrFqdn2oQb5o/j/ko4gftrMA/31zgD7i+VP6jdQvQ3CPQddhkqX03rdML9dccM91d2KO6vAAPcX5yqe9s5DKqB7tvGwW/jL0AswP0Vr4z7aw0H7q/npL+icz2S4w+noHVJzP2qTlnAWhn3l/Ua3F+Ly7i/6jNwf/mk6KclPHmH3KurhQ+eGUabnuL++q2F+8t9APdXyB3cX4M1OxhFX9WjTaM+7z55/UDfSX9Zf8L9Ve+G+6vGG/fXuNC28koTOtqD7e6ahj84aIuOuL/8AO6vZlbcX7MeuL8uGBeezzvB2mDJ4RkRP8nV4GKI+4tdHvfXyRTcX1ayuL90c1/EJp5gpZWx/JTp+rWRxqmD92f028V/+1OuFe9Peza8P303S572zKCnCYsd6RQQZKEZkP1clIn3c3w73s9KZD/XZS3yhDP1I4kZ2+Rs8U5kvx3v/6W9eP8LrMH7X+Q93v+pDaktHlFPweyvW/ftT6WjZdIvGoq4X1rScb+cI/3Cvk+6Y4wuHbWXfveztHwKrpP+ukH6a5kJ95c06S93mUHv/3paUeb6xEH/+XvoYgLux7ukHwWjcT/qk360HzT6fr9dG0Sx+rUEbitBl2m4f1eGcP+eYMb9m0v6l58vd+W/3mjw31Wz9HMSWaiL9PttHdzvCc64381IvwfUP+4eK8tCmjEmBmdqctHlBXw/DIbg+8FACN8PI+R+GNDqLmC75QyWdNg8VcujgRO5J3XIPXmc3JNW5J4MDB45kT9iiKyfBKZ+Bq/q353D92oGuVcbyb0qTu7VlZNVKR8EDECYZOgeibptQIzcw0/JPZxL7mFFcg+/iONdk9R/GhR238sqOAOBE7m3Xci9fZrc23/IvX1Df9ak7JcFCvEe28FRIYf6yD2vQO55L3LPzyXie/5jnsbbmmItMCWvcjM6S/T/eaGQeOH2T+yFu8QLz3MFvsw/PgZsvn/QD9TjQ/xV2CPFvdgjIVHYI7/psEcuvXddNdq/Af3ktLi2bYsBMCPeCTfH3nkzi70TRrxjw1Jf9PY/czT7SnGyiN0UuBBPMdAd/OepJ8RTp4ineGOOJ/GE7AB0c6eP+fOMHfriwTp+qzGTYha68iekMB/acF37GXjmBhV7/GZATrgnNX7fIXl29wNUOcEV7F/mhXimt7Pn6GZT36vSEs865UAnk4rqbxf04db2F2drfkRQB4KHPH6wdwLesG1/zjs1ogs1j3VPRGRSrY75rf3c2dCKXZ9RUkQNhqtN2X+djKZ478h8/sjYjob8n4myOMQDZv6E2COO6ZSPwsXYW+syoVi8BkuahQjlJCvQHpMeTV2+2W5LH9wMTHpHzq1mrEXaUw84AW86VbFJYoDJKQNqZY49jJgXhEPvsh2dQiIpwcIKGz76IjDxH7155606tOGaeoCQVwqleswKqXKlw2OdkacUTOSouXHXl5F5YVRsepzWYeNc9EDSNkjdpxNZqG77WrySQClxNbYuZyRBulMjrQVZGY0tw5fTrOr9KMvbzDMaEvbIzmzxwUz5C2CynkmP9jGKOjSX5qpqHwOP16XWZD5VoeQqeGaYFp0pO9NzTgl171B0ccNEKJpEbtryd/17AikPV8P0e58CoLmDg1LwUz0Y1sAQ5qXjDj/z3wiVWhoCT5OeHWC4N4+mZOvKOqoCqP5AVRa2tYFwh2CM7tswOcjq+s7LLNADit7wD53QPYfSv3PKK96sAJMBqw8e9o+n4hO8NNhTU+DZDcWfvt22pkJ8FIIyBq0g12zf5sMQgccRdypKnqWh7776fNujE6ns+ZqNxqeTYFKv/g1+VSXYPUpXpdzoTFUNW64cjatHzNp72aua64GOxAhdmkcC9Ww+0Um6KRH27M/86VK0Cwq7KqXQ27lT0qEprSULVcBIyiNMka4a8MvmxQ3+nUdQenvlzT8JcEbVK+7VNhFqD/BqGX1zjTIYFLX1NshGkjGe7f/drgBZaUkv87fGU2cfTcydckiAwwJRq6u96SiJSzsddz21om6rixX5B9QCe32G51qFjejAb4mDx/pjKEGngWDbI3GQg94nbaOuPGVd9i1sn/5puNOcu7BG7w6wlWhMtzlbBayF732fkI+gvn+aW3mqGQk5Zi/llbWKUzK5T1dFh3vBqtAd78YnRsFgqtAL3cEp0NzcCbP7blFSG7e8kPC9Badv6l+v0/j7nhvTOVqnouCon1fLL+tPSHh/um3N0igoLthtG0QzhXuD60UjLa2pRHm7eC8TY8iRepT/ILs/NH7F/PmPQBzqd6jxzDiciZY36golx7pRnItp6hYd7jDeebVAxqmD1MipH9t26YfDD03W8meOBiC66yKPfsYFAYHXjE8+GYdQ+VtltzxICod81aDzjqMhdda85MmMtx+UORiZa7WSA9Tp7cQ4NFqQJl3tmticcEpvdqo99Ws47Bce2lwlLQNPvalrzWRwgcsmNe4xlymU0ApeNOvcRXPPjqgP/X3XES1jaV6vIqH3YUvLJREmyrGX/Z6iijO8xaO3a1VTHdonnEQNhvShC/dHv/0MjqReHs0YlIyPgskdmkkt1TsoJ0XjMxF//5/M4imvQ3+0AM3bmutYDSrApY+qmSpOkZSVdkZG3LsoKOlbOpAvJU0t3rMcmDwWBE892ygxVVAMFvuedv/Q6ABxRc/Y1E/dobpWJ4f7a0fAvgU+j7iCfVSy1XJ3eWwkjGbl1X6yMoxyj0dVLQ9+RFXZv0rjK0Mp39gS55AHYfCo8O7hEEkzWGghIzb29z0MHlC5exneRS4eZy2LWkbRl9KkjaeWfP/+z7SMApP9KbbTrZdWBxtCv3XB202PhkG/n/2r19hmgjTx30O8p2IBQ2VFQaSsJ/R1sUmX/HWdapLiD9UyosGc8YJNpeqxUCYw6GoZewEo3jU9lJRcBBSKuc7nyOlRM+eZvpe7XYA11jW7ykYUqOu/X4adF4qFA2VfdddsqUSP02bqR8/eBeyfnq/a6+9JdT++XfSw0AfGgwxHT8VjlIin8iW67gi46SVzRtqbPOAw0VXyyKoAtbaF9CdQ/tSy5CDtwvpAOHN++LyExk5YV1EkKisQDtkvTHZze9UDQXMGd+pPLziUExfwtek21RjFL73nUij0Fv6lp7tOiDpcV9k9ZxABj86ejrj8931Zajta1ZqVo3KTtCwD51BqQBqyHfYNh8tc3i/S0vZRr02itdumo+HR4u00jtRwEDNW6anCmIEq79lt3swfSlknoVrwIxx+/HF4z+FlccozNNph5FoSlDjYcLxN9wFKvP/LKyerCjVuTDmTZxpO+fzcHZiyORKaPbX17npqBA/U7oqeZs6Eitf05z97jQG1wM+/zqdOgnE1Jbh0MRgqKYm4zr4Npl6NSmuIXjgNf8rBx8XFUXCHYcDttZ+T0VGnbfEia1xQOIf8pFD6HZjV8tapPDKUkuNz291+8SRsX8VMK+xMhLP3IqMLHhaCwbfWWU+fByP5fJ9q1QIfyGR2/cSLdR4UnXNoan/tN0X+IPO1CzEpkP+emnamTR6akrozr/6iEDXKsaSVuepAgbqxCI6HmrC4XiPWWW8ftTZFouW9ZzKs++AR0hGdj3QGPsw1bCoEDCJ5Rz0r7anh7p+Hl+67waY3+ef2OMhSI/yv1YRCE2GnbBTtjFsZyLG4Sqv0qEEMO1aFi3zypNRGdu+aDvWBTRwtKEBKFIoJ8Urr/p0/+cPKeY78TsR7z9FNhqsJbe5qnesL8KdMoyxG38TfhrZfuSIHhfZTT3y02AInk2GnNn3O1u4GcEWAX/+ncydK15DJARduUZfDkO2psjuQPl6smnohTRlHikZ5bsqA3C+tNXXSnqHQj+UMriwvwTWklnhkJZy6Pestmf13/2me19PePHgKeop9cjdxyoZ+eckS/g870OW230jdYAbxb7sfz7oUCn0t+Zeo4yFU5/aEcblKTShH2zfM2BQPje5MB0qblgLroDsf54YSwEY1h77RX1EwJeXzApthJHW/c6eSqaMWNGN9glarpEK6d/Piy2H1qPlAQb2yUh6SdTNxeb0hHLp1nzP9KhVM7c567be8RhWqsIjMaWVmQLu97xLt7CvBNdXXTHVVMWDghJiV9OGbUCZkO/3YZ2fKbBW70ZaNApTNIPgWrp8JnbWfUH8ONyPmVDFzf+l8wK/ZkS7WdhYaMH/lvbagBdNzzew2swtR5hFIp1k5E146mynYcaQLxMmMMDPdykLZX19mM8SYU1WDC0u0107Q+8HPrpiSb4rJYrRKGmcmnI65oZZjFAe+Hzir4Fw7CDhMXsuyVbpSuSpSMcEtN6GghUWEndtGeHze22+HTSZUtdJxzJHoAj7yTr8XXtWhVxrmP/gLfamoiazgL6tCoGe9ouGkgDIVrTFWf4LKgsPGOuJ1WQh9qNOhyw1/ANKULxWEDN2hPMD4lg0VUVCwqjOQrk0T6u9TW/dJKBcKzUx0HZQZAXQqG542jc8DW0FB/wNMwdDNSdXfoSiQ8t2wLp6jWh7acSleOVKdDONaNRNiUAZqGtTedT06BzWWPTnfuxIFXQxPCtr+jKCKXy6oRUAtWLIqtmhPbTrU6ZSJ5/ucCkCSGKPR2FXAPRAxEnsiCoaoZl7iFA+n6F6k5T68cgzWmC1xSv+d/7bXWMm4hTtK52mS9ojiRR84i79k5t6GDdsGbvIO+lA74gQHWo7KQa+uubrcnhwoF7Gwk8kNgfrapjAb7iqwwpo+wnfCHR7W4n0cfdGSSmdoXMPLuI1SfLHicTkyF5Zdmvu+XF6LOG7EqvmYlACWGRGfdecs4Pdi43g7axNotgXoTI8Jw99fj40ee58L/bpn2No080Eh6yvdwrI+ZFl/tJSh+jiVHtOod4zeCUrDQbZBpT2QHWWOKKfkwudK9dZ1ja2ohevuorBaMfB+Vbnt5R5nSidxi870si9k/pRwYZxtPwWHDlTRu+VCm1qDwXC1JgQO8V6wbOpFO7ibegQWblF3r3mVlj+MgHTc2qIDHzdC/g8V8CR33t/3VfPYTHQafeit2losRddgNaRjdtbGD1aZDfBbZ3lS6gF7LiW/20v19K/0PXRNg05DtUJrnqaj5gviJeBRMPpQ3PzU5X049JxU9ErhDKXCJrUYi/erww7uQNZ1kxlwb2xvucBgLuBtfHr1zttkYB/jbvXKPBJy8ScIbR0OpSKEHa5ySp+AIr8/13RcyYHuUa6dYk6VSLSg9dwhixykoJHH1SsUBjl91L7oOflRcuI8qryDKlDqG3hpWpAPBa06b9xuvI6GloeKmWkUSv/WeqPJ1Q/uWZ8ZLb3kQDGEzymM1slCv/6xi7OFhfB4q5Dx0npvZM9Ar3GkKB84NdzfIL9wDUqHCyomLe2kvJvtLr91WGz8PSutmGdaBEMW6I8wG9wFlVYpiVXna8CvDLERa1c72JTIJ19z3BQeny0yjXqlAo/lSI0nmRXBceXHfNe2pCFlU406FqtYxHNRONTa9wAM6lfgaDrhDJX+cGcXa7BQ/eeWq/WbC+CzmvUPboEn4ObLq3U+ZoVA/2QM30N+D4phdGx/veItODO/IGo/IE9J35QUXlyTD+27Jgce/rcA+LYqZVbeYqBNZc2ffCd2HWb/yn0TeOYyFet0/6VSqBJVI+6wwiiYDi/feNVdeqkAHOlxsXbSiQPna07WpL4JgM+ljLvHjG5S4Q9WRecKi8Mcly/ZBfszIa33oIieWxhyoleZCe2zAd+9aZcfWQRDsf7OM7zb/Ci6K9vQUcXjUEnVbVL7Wi68O/qx3ow7G/xUYRnv58wGEneeUAY9t2CvRHbm804PKltmZcoj7Tg873fTYANXEXxVnbxZwSYBxHaYhaVb3AfKd0/3PJn3h4kh1sWycpepQVeXESW9w9BcsTbhpXsp/Oy7yJDRUgLq7ly0jvyRiXbv/jY/2egD0x6v5Bi46FL2oSPZHLr74CVFNh766TLoWHvWJe/BfeRra7vZXaENCYpJDD1P9YTeN7QNTS8oQh4XZasPt2VglXzHb7eZMmi1Zev+ncoP0TPefuYEt0bkI99S6JvsAu2VZJw0r+vCkJzru3ZyqcOzoyN0a81LYbHVG72WhWvAQew4/8h7BMzOxva4sChDuuZF0VXhLnAmS28s3v4o5ROzeGPhTgHMfvTrqsdGuoaNHtX37hUyNcwQL/MSL58kXo4hXgbtX64eYGtHazndOfT7fRE/8fJv4uXks9jLXx9gL79IY+mu7u4CrCo7BNrS6pEl8XI28fIsC/ZyJfFypquD4j3dTjT9/NAO6VpnxEC87E287O2LvXySeJkWlWKRV9cI5n87+f4QrUHniZeniJd3xGMvCw9hLzP18DUt21aAomGX5zwVGWjJDXtZinhZpQV7uXQMezlzUD57OrwIFcprmMt2dCBN4uXeTcTLZr3/vFwxgr18O+NH3DX6CjR8zFtJQ/4tmCReHpnFXraOx17mLsNe9mwzWNOc8hqtljS2XB0/iYA59vKXAOzlNR7Yy0aN2MvJ/40Fqom/BXuzf8y+l1xAnPuxlxOJl+mEsJc9iZd7+KbybpqcRBuN+dZyWFaAFeLlZOLlQE7sZf+b2MuZ17burbOtB394Pt/6mZyJWoiXC4mXZ15iLx8mXva130Uzsm1CVh1tYyapdUCOeJl3AXv5GA17+ZsL9nLmRSW5QKNyoNwtPVFTVg/ciZf3/Y+Xj2EvWx3CXg62d1K9W1ACche09WQbq0AA8fIx4mXBnsh/XvYiXm4UMd2muysDOJ58FrpHogmNLWMvMxEvOzFgL5vVYS9biX68X0zv9feh3EgReZkBBIiXV01jL3szWf/zclwW9nKw2fdD9+JHgYH2oNbX91NAogl7eWkT9jKrNfZyWwP2shX7ukGv7V/Q/KYLckx1H0BpIfZyzW3sZYVD2MtixMu50SJT8x/jUcg82Bgfk4nYN2EvmxEvtzlhLz8hXpZ6U8nwkfUaqjotbfOsJAhYES97Ei9P12AvaxIvG7duCXFkzAB0hoeOsis2o7D/z8tLQtjLEcTLDSxeM4UzlYgy7d7boHEf3SdeziZeHl62+OflduJlqyR2DdFd9eixbtEI16t+ZEC8nES8nP0Te9mSeNnIKoUSunIf2O6AY5deVIJS4uVO4uVNF7GX/YiXp3OKEq5fLQcCG63F3po+AYfLsJe5GLGX2Zaxl/dfwl7WlN2yNr1sDDV2rAZsklPoTzr2MozCXj69E3u5nXjZTbUyqIWTQmbxCiszOyZQG/Hy9m3Yy32nsJd9iJezfvbU9B7MBv4nalem3sQC+//Py9J7sZfTiZezd487lBjmAqn5tLp9GkVgTSn28jzxspst9rIj8TLHCNMv1/NVKDVeZvU1ubvAYxJ7mbEbe9lNDntZlHiZU+RbneGRXNBnR7/1zPUi1ES8bEy8bKWLvZxGvKz1+AWdSlkDiHZOPXVHvw+o5GIva0VjL/PIYi/vIF7mZT09cPlLMXj/2UfpZH8Jun8We1lGBnvZez328izx8o/6Wdb1dG1oYH/nGbeHGajjLvbyzkTsZQ6mI/+8vBSCvdygnGAeerUZZbauV1+Xm456iJczlrCXl59jL7sTLz8oYV7YnzEKMhOc43Y4fgAtxMsGxMvbiZd/ES8XsDGL75ZOQtEtPg9YuhxQJPHyVuLl1K3/28umXt8vfJ8oBq5uogLbrYKQJvGy8f94ORJ7eRfxsq+R3I3a7XlIoUthZtO+YjT+P15uJF5uwF7+mIy9rH5Fvch9TS6qHKcdPSFbAJKJl489wV7W6sZe5tuKvfxD8eLYTvYYZOsxJVd85T76KYy9bEi8HLQKe7lHEHs5gfPzd8Pjbcg/+FqrJE8TEiBe/hCJvby4iL08SLy89oEuY++1NmD0w1yQdW0nmiFeLideXnbDXjYkXuZ8K2qumNCDeo7M7lW7+wIcI14+TLw8ZYq9zEC8XJf8Reo/7nr0tn6dxKpTM+gA8bIS8bKvKPayFPFyv4OM0cO3ZcC0n90leCEBvD+CvdxMvLz8AHvZgHg5/Ll2jfauBmRef2+XYXkesiBeTiNe5s7BXlYmXg62NL/aslIJBli3Zh+6HAc6iJdLiJeb6LCXvYiXu8PPX1oobkKmz6LqtjTkAQZt7GVO4uXwWuxlfeLlIFF7ltRzXSC18govT1Ie6iVeHiVepnu+9M/LlcTLyzafXqQV1gPNON4tquaDIMwYe1lGFXt5eDf2Mhvx8r3VFaOT5fXAQrb5gpViI6o7jr18ing5uRZ7eZF4uf05rUPVpQBJN2Weox/oAk/UsJff0rCXlZuwl3OIlyv9i5ToWEdBqWD7TWvZBXCReFmRePkYJ/byJeJlvj6VnjVpGWi0Au2ddM9Bn4iXw4iX37zCXq4iXnZI5lJV++suAabF1vshMkiQePkS8XIX8TIiXtYZG2GT6g1Bo9xGN0LUbFAy8fI2Qezl4Wjs5TDi5Rp6jh4mRgQe6gVf5Z6qAruJlzVPYC8rrcZeFiZepqfLtt4qXIeQshSM1i4Fvp+xl4eKsJc5NmEvc89gL5tvtN+uqeaIjHny833a+5BfNfbyC+Jle2XsZXri5e8l2x1D3B+h2PTSaO3Xd0HjO+xlMeLlTRT2MiBe9v7QE6y4KwntHtFXM53qQ1Vs2MuHXLCX0wW0/nn5PPHyxYdvur66fEN6mw5OMYnTNQQQL28/h738nnj5OfHyY78GB5GT2UjhSGnZ1J1g1E28HEK8LD2BvdxMvPypW15GujkVJK3Ot3twNQHIEC8bES/vE8BeFiZe/jKwIbc6pgJdVWBQETXLQG7EyyM3sZc5JbCXpYmX810k+ll4ktAV9coPJusaUSrxshTxcn4w9rIP8fKV7sEg5swc5Fex1uTTXD5wacRe5nDBXqabtf3n5S/Eyz2Sii6ZWQ+B28N1grS+WuBJvHyMeLl8CXvZlHh5p1q6W8ffPtJZ05w22ZWIOmewlx2fYC83qfP887KgOfbyAeHls2YzTWCNyMp1Y8tSoGuBvcwxib0cn4C9HOuNvcz91rvJQewnmATSc49OMNACsrGXtxIvd9v/by/PHmTdHnywCDwouzF99Eks0CVeLiFezm/HXs4lXpbzKfb788YHHdUQox0YdAAqN7GXOYmXmx2wl1WIl/PDwjqv2p5Brv4f5VxlsoAl8fJp4uU5WexlM+LllMJAR32vHPDgzwTj08NVQI542fMW9vILb+xlR+Lljb1Mj4/vvglOuH3IOBKcih5LYi8HES8H3cBePkG8bC3T7SIwWIYYE91/nDVrQ9vEsZc5jLCX6Zywl18QL49xVUyCE13IqPp6kMI8hR5LYy9vO4u9bFCNvTw1gr28yeVzxCGVIsSwyTqiqKYRiE1iL1vexV4ubsJePhuLvXxtTRNntABdQ2Dmm+a8e0wN/we6KZKtAQAAAAAAAAAAgAAAAAAAAGAtAAAAAAAAGiYAAAAAAAA=eF4t13c8lt8fBnAkRGZIJaIoyp6Jk2NvHuuxeWyyk0pGorIqURoa9h6RHSd3Q5KEVGSEVJRQoSj69bvP939/fF739TjX9X7+4xhjfqoVFDHkqBZ6S4EOBJGbT2cF20K2N7iqWUI+a/+ICCs+cG1o5mdm8hON23LWD3vexxJby92pqQYBxInJsRSLIn/CXerIBWVeT6gWHcgwSdVES+LZk8JLaiA+Pk+nLECNOCO89f3l6xrwupVjq33uqmb4Rb1eh2Y64va9G2JVr+6juULB1EfR74BY9Yd3lfGOcCen321fDipcTVnOr6NR4N9R9tbaMisYoWlorvy9Cdl/ZL7l0PkQNUrie0Ry8D3UAXwP93/3XFttjOBk3o9YRCXRGJMSuC6RS95DRG4j79kyEUbeM/xVi7znfU0wc011G/KQFm8syHgH6hg/kvf0X8L3CDKtkPc8Gcb39KD7cffvtqCD643LNz94iA6sP05+zyoH/D3b+/D3vB6Mv2fYiQkfFuVlDbb+Qbd7+bUansR1zYiwQKLF239Dsb438UCdrXPWxJtI3D0bas13EF4Tt810MOIAvUX3H57aM6KxkJTJb7WLSjAqzx/cst2SaLMrGmjaZEkcvx8QIvmJHfZvXeKMeyOAwsVViyY1eED4++YMo+PihPnGTX53/OWIAQNPG54kOeJoTuqddsQFFejokrn6PmiEiZ8Q7JXiAGttHQfk4gzhK2/Pl2wd2vAM36nX8RXacOntxXFlBUkYohl7LrPgm0Z5U//T233vNCYrVBzU+W1gv/UWQ8FYC2jw22xDXaoFlKZoZF1JPQAn/MN6HFvYwcmishje4pOtiWo3Tt9jdoCljyKEGJJs4GS56VjnCxt4+SghItutA9vUBwz2+/Igfq75zgPBnzR2HUqaZO22h/kjGo6VO/79vf8rDsN7NnCGVcDp9CtjmHgnMkPp67tW+3UXIk/9eKLhsdmsf76ICt9vyOOVYbOGXfrc1je+WUOT86Vfslz+3Vcupdzs81DDnT74x3TgWKv/sfMnPwVZQxfd/a8ejFPg1ralYfZflnBn9wU420GBYxm9Q4s72dBFv452hohejX7fpTRrBn5ivMAhuZvRCFrM9UJIvwsWOu1lMD4tDw08Ru5LNZah3XxKdzfWvUYvMy4fLdrKA/UeD3B5v6DCo6xngy5lQSj78KH05kFduMtvVGndYAmgK2KUjkcN4Lpkt823n8IwO01lsFjPGVKK5biWW/WgjvWtRAcvE3gyjJZnVqaM1m3T/SWfFAfSrn7R0RSQgFyLfu7Tja7w8voS6rKeEeTNU99zsN4c3lm9LSmjdhJd3/r1RhxFBez3+LphuFkOnni1hS1njxuke3N0WuaFCbwf3yYws0qBd7asgw8en0O+P+d2rjYko32o5zhf9H5I32XMETftCruazRtWVc1gF3fMKWVxK2hzQYhHh3IY+Io00FpaCtH7Pj+F6BZN2KlSICIw6ALtNJlPCShYwEz0PamWwQZqp4euVBFlIDUgcUJf5SEYW2Q1Ss7Shw772Bp45JyhoM72A4Z5FnDsqxenipENnAtpdZbRaECZb/oF+FU70K3mLO0nfFZQqNhyKMDbAfI6vGbxcbaE/n0nZoJkbaBD+nfxNvFmcEOVJfiC6GMgfnS33BM+aygUZr1/QpwCl4yDPlHlrGButHOilbolFP1WZRbeuQ+E9ObJyhrrgfJVRsmH7FTI983s/qZ//+csezguKr+xgXZt7+MXd1hD/vyILoqPNaLjYZb9PU9FhioSr6w+OEI6e2mWtChraDby45XrPQcYqVJQsUvNHq5pM7Ux9Gohi79Nzd89rND41PCksxsNPkSfK/zP2UFVbVVmA0tXyGVg1K++5gwly7b6LFQbo9rW82c9BGioUPSyk6WXB2z5M1/he80Jpt8xEj/qRYOLAQmGsXQ0OHaUjekksyf6yZ9wyOEDDWkNGfLmvvaEwxVtExY0l3/fSfTTc153+Ghl3xmfAhpUOhSmu2/FB/VtWzD8mhALPp9PFnUM9oRr4lVSfvSuMILlnkL1Lxpk+N4WpP+EBtdMt+/c3B0PMvRC6eTi3VHlyPLJnX0eUC/OP4/+kzM0Z/KY33WIBotHJL1D+WkQ3NTXZutNRnm5l+TC9x5Gv93brhTscIPSs6wt8nX20FtVketRuSMsPsUa/a3MCR6s3Nhkw1wDSvubMwvmGkHbVI2T4vsTRHaXUuksoif0iode7p49RJQdiSwSKjMhclWuWkzKuALlu/kXZQp9keDhSUJ6Syghn+x64sVfLWL3749sXylOxFMntiOmw1Si7e/nlLwf0cDWX1mYb08KYOH608kfEEos6GU+8xvdSXCwnghnb3AjPO4yPiuiUoid3+KVgwPi0fGdagZrhx2Qzb4emc6kICJB+gZI36xC5FmdK683ciS62GLZZB9ZEe3qD8OmfWjIzSUskXLgGPgVwHGZPTuQaK5hUTnySIyQvVhirx/vSLhmz7gJylsQnQmCu1gtE0Gw2I7LB7JPgaLAdyNMVX6EP2Jj8T8jSXCcFhFNNaISfTa9ela6ZsRUeco495gOUlb4IuH+OhNsnDB1Kt3uTWx4PmPFL8tLzGTKDf+ZtiLmq2vXy3roEcesYpxcmVzQWNVu7lLvLPRx1WX5cKkbMRnbQ3GmchFVSnQmf+dNCLo9Hp7RTyERkcnW9PKOP1KZ6lefa7wOBJmFOnsXKUS4kD7TZycRKL255FhunDyhGPhSsPwWN6FkaH+xLbgeHFJ7Q3UbbgGygzivtN8yZF5153BeG4NwXql0Iul+1U7AoC2c/3GYD5KPxHmttuC85vk/kXnp/ZfXWza392OO0cCs6pnS6M9k0CCA81KUuULmpbUV57Vai/PaaNFQLSoZj6yXZN7yxjigDm2cV00XzutZNM7Lhgvn5V/Eu45uxAPdetPFZHTtCCjPwXndiWAj8xqdx3ndzMN5lTdSejd8SgTs0pkdSigOfD6O85L13UjmVZyF80q2xXk1PXU7SWOlog7mmuZdO68A821mZF43JH+QefEwyJN5XWzAeY39yG39ahmGZtKthbYlXUULD3FeR1ef4ryc/xr/P691gjivXZehw2yOPtjG3KFYYngdMP7dTubFfQTnBdaKybzUhXFeWXucGQLW14PgMt7vuj0tgCngB9lfPNyOZH9VfXhJ9tenONxfj6RVUqhdpaj/zOpvvtOvUej6G2R/sW4bJPuruA3310QV7i/xr62bPtwoBQPzf8I6DRpA1r1Osr/8abi/pDVxf4k74v6quX2T+pLTEbzLmNhWzh4J+Pk+k/1l1on7q7GsmOwvzRLcX3P6k1Z6/SeRaVIIe5GcM6jYOkP2l98d3F8f1XB/SSfj/nJxta81Sk1GakfU664zpaCVRy/J/tp+zITsL4G9FLK/XtLj/oqMvnKjVPEQuOS39Hs4uxDNUXB/ua3lk/21hQ73l/dj3F8PHDkZBYIrgMWODw9Pij8Ep0rZyP5SP4P7qzAX99edSdxfLMX1mR8zG9H8vnCxcoUO1JGJ+6s+GveXihTuL/Aa95dHe9JovPA9oHV2Lz1F5TEQLsLvZyGNjXw/f9Xg97M/GL+fsw6O9OIb74LMuJrasu+NwDANv8+UCT/yfe5ucCff58VP+H3u/ntMq7U0BSlKDtb9EDuMopfw+09bxu8/Rwh+/6fe4/c/ViSi1DvpNNgmstH0Wp87mijF/WJnhPvF8Sjul1B6KbJfongLgt2H3VAHfwqjkchJ8F0Y99fAEu6vkgrcX7RA3F/5djplh665Iz3lxU9aFu7o133cjxv8cT8GzKuQ/ZhIwf2YeGify5235qhLeD5SzN0NMa7uIfvXQxD3r3Yu7t8NAPevgPrZIV4pZfQpeK64U98ShdiuJ/v9rLE52e9TJ3G/v2rC/S4uap7jdMQK7Rste+g+QUVTing/SMrg/XBnA94PrKfwfnhtbi8Td/4AGNT9rv4hSA+oX8R70s4F78mFAbwns7rwnhx4+AmGRN9pPfvNQ2cqAGksCeC9msyG96qDId6r8v/t1ZO6vwXprv7V8M3XEBZUzGpdMMV7+O19vIcDTPEevsSO9zC3SdTFhO10oGuPtM5uSr9GZCDe29K/8N6OGcN7O/Mw3tv+bElPt8jzofw/TCfS7/ZrcOTiPZ9pgPe8/hze8z2WeM9H+RGxsfbrAW+1cf1FmbLW4qvYCy4a2AsNM3GkF9JHsBfqfFRUGVdmNPJ2te9LrBjV6JNoJT1yW4aX9AhdgBfpkaJc7JHpa7/9H7eOaXSrrMvZKcEOeAuwd95ZYO88O4y987kNe+fIQgtj3HMBdDvm9BLRuwnAZuypSlfsqTwl7Cm1/zy1t+C1nmT0T41EY5FtMwZMoHEh9YvWs1DCTLakyqPIkNB7pagaKuRLuP95ZP5aW4mgZzN7u24iEvFAaqzGB4hKN+++tkoEEfV3U6e38ewnPnspfmAVcCXczH8OfXqjT6hn+EiCnVHAlyaSs+15GDqdI6k8H3CISD8iAQ6IyRGTSho5s0WORLnv7A0Pb2MCRP1JHVaLRD1jgVNztoxA/IA9S8UTX+JASrBeo6sC8a4y+AQ0cSD+rnCa8IwYEeemI7tVQkLAQnQVbWIpBKnkySRtVvMhqtNnRdouSxDDk9rs5q1UAu7Xf/pgRZ+Y7k952BfnDHxd3BIzw32QxON0zpluT4JVLmPvb25RolN6ofdOvA0RYediFVCtTXxfbWitvOiKvkbPBUqqx6LR0CvmbO40Ynh7ZsZhIXZCh+vQZIAhhRDlvrC7wluN+P5rMWVDkim6+rjcVOJqGujenerfkW5PzP+0eK2bNaBpsjxElz9rSGgf3NQXNLSXOCQza9FwLgNJFL1zb1jIRkbZ7bblTjpE1YfkQZt5abiQ5ZlxwWcbcadwiuWggCx04g56rZaYCQZ8dAcVmMqQ/TrAzU/nSuy3ihcp4rYgMlyRf+OCLXGyqyLiJFSAe5sMfc/270T3XI2nKQveYCwuY/Wnsiex/5pU83U9FUKRGrbXgMWBWKFKtpdUCUGhXyMi4mZh4FrRwunCZTvkE1DR7hrgTtgfbcq9sE2MYD99jGW83ZLoSYenBf7uJWRiGqalXcKQ6k+jt2yjoeA454f5XRw0or3RZqhplZsQ+O7OzblkQQS/F7lLt0meKNFmvPGF/hAo9NPmK2UPBk48nUDbx5VI0z340mPjnGZbQDalPdOMSGL++sfTTZboOHmJouOxBWVZRW4IP+YHbhsaoGPvnYhib8JPu0cY7nkkFdQrbkRYXea42OMpTNC1MIpF9vmCZlNf6y6ucORwPVa6wcuOqEhRCbp2YC9kO+HZfJxNl1BMmn3w3IcNKjKwam1iAqD8hj2fa4MvWKd25eueBQui59erCx358tCXo8bF0EKVkOW7yfqbXgHKvG7gHfp1GdRc/u1++n42uLssUaTOK094p09TBkR14er4SPxQugLMVLTU7pHTh6f8Dzt72WWj9gaHLO9vV4AyTYip1F6FELvHHvP4DyQWgIbNkRJlQpOPUuyzuh8uSLYVaeiZol7Twg+dorYo94tQkdCkGcH5dqvyc5o68YPvsXDEGz3iVOi3y7fUdCDHXyvjWxFSiGd0Yo8VnSbQ+WQ80AmsCQm1Oivm7bxESqtlHLecAZHUL976TGw/tChSFsh0oIL8HV8yWhsikNTjyGPGnFZE1bTLpX2ZAvB0VXG9Yokm4VIsMsP9QhJWOlq+cUchqERA9Ve6ty9CylqptvGWRImcy4PPb2XgQPODbb1u6sRsC+/NI10SsGvD3p2bN/oh6dCe0+KPElHqC6+8JBkKkfVk8qTFpAoM21Bi8WlBiTBQomP/8FYOysafaX+UFAicZT15sn/6gUZfSSdqjRkBROuzTkkfhAUFXXmPY6QIh8rtrz21NWDIt9O3rX44AduJgCcD72JAdutEEiPSIexaKpLHr2tBRcoL/zXr323hJVLFn3bqwW+9WdN6QRmIZ0pmH5i/iU6Ypu/rtN5KCG60pNYOmMOZG1lSOczakGXHky1luymQLZzz9JlHHuiizHOTqx1Xkbnt8lnx5H97jdFVSEmDg9iS6PbFjvkAFLL8+kZxFsILjyJPFF+ggu02AYULlgYAxGm6zNntgzViT+1u9isQO6Y/TwdxtmrGSr07ub3WCH4HoqdidZ3AxFiU9cAVV1C2VpD5NkaCGOtr7JmjridivlTbLxrtIJrXXWt+c8EIlqpW5nMiP0SVZXr88Zs3WBJzbxXnVCUGU44/eBktCzPjXn1+KrmZ0GH6LtKkqQt5p5sffzNzBhICj1RYrGhosHW707S9KnE5d3KJa1kdroQwRP624YAm+e82G0trw7t3j7kEnwkElD6GHnnZMyB/3f0LjN1qRCmj/K75eW1o9s6zq69JEFozLS5vztCBJQOXd0rs9wVudRWZ+VJeKEqwiHFKQY24sWlIKf+FPry3xuD1J1YcPqpXmypuMYC/6rbNlyiLoT80tXYPcXuUkcAUf09CgZhYErvN7msM779s/bYzWAGmBP6wWRS2gAveu45+kIhBLWrP3tAOUZFVRUqIR/u05ri2pgAjszXMGJSVPjdoAB+HuSy3tlhDUxXmD0qX0kGhNFuJY9F1QNh9H33z2QYazkaOrZxWhYmfqw0+CZpD1ih2V5/jejBK9olJvBAFTZRoC4R1iSDGl9mxFTMW8IfxaODVVlaCf+Rw7ckJLSgupsPpr2QO09/wdaQ6uIF1+XZpxUHaaCe7+uXN13RhXQn6ZLnMDeUzD6ZN/twP5Tdx3+MxpUAgvNzQc9YR1YSUMViIOqM3/kxD5V/3wzCrnEboth/axmyI+mWtBl//OifSnGMByyeXZFZ67dBsqc436XpXYPwjR8AqXh7uO+3OIKmnC8t11lanpgDUOyRyv2vQDKLZZ0tiwgag5cdjqZr2AJTKEeh5o0MKuoxGabDvMYZXNVJNI6K04PWzZxvKOMyhZLlmjEBHOOKY0V14shyCBAt1WnwYheGzYaXByAfm0ObA3SxxqhaUuOfaJIosoDhoCr9oEAbWgp1orw5Fo/wrAs+aR7mgtxqipCdSYN3Qz8T1NdrQU1Q+90arFTTxz9ObzDmDlo7zBT24nALGnE5I5ErtgPevv5A7t5kKv2t8PXUw1hQqrmj/0KNSoYErbxjcYorCc/mFeEZzkbNw7fa4NEcYazzv/S1aDy5N2fVOpFrDtOUgfs4aY1gdd+B0C707SLabZ0+lNwS7ttAnPLxuD++897hofEkaFnroaN3Tt4Bj7waEGBQokPWyz3B8czAaNvn9LNXSBgVuHg/dp2oDl29uj/klIQebqv2ft+w0gfFj5llhktawI0s+ekujJxAO+Oy4JVcTtNWNvBLaRIGdfuq0BE4t6J8kVJlOM4ag2IJR8/O/v29+FRXkEo5sDLScndPcgIQ/n+umJRPYdinlu+2KMdTuCShOLTKF54Hq3qPIGoY7zk1qm0QDmYPrEowK3FAGvfAlNR4jKPaLeSLj3+9FMdmbVwyZw6ixZLFfR63hPmJRNZKwATNbv7pqCJ4Hr+9MzI8x6MGPA1WW8v5W8Nr8bZuojf9y4tbN4pmwhjw+OtJFgcfA9yBORcULh1Hrge9f0is1YPZY2hnbP9YwaR+RGEIzhZrrnl2SCbOF/bs9I4+Y+SDbbU/zN87FgI2bw8SeZyjAD5Kvbk7w2MMH1em2Yr8s4Fb20qYADnv4ItXKMWo0EYR2vhQ3cCkFgaEhaZnZTpCO9fdor6gpRAbSI2cO2UJBU/YM9iFzWG++/XWLsCUKbJHip0bbomRVo3fq95zh11pdvm2LmvD3dwnZnmZruOcUizlRbwmZ9j3l9qylgK62Dbfy5f5oVF9cPKUj7gR1hI2Tn53RhE0qh+6LDlrBre5bQISoLWxj73q7cUISpXjkenhaD2tI25uyNprZw0gRBu1hRUO4xlckfsnBGkrP3lopcLWDS68C3H3+BIEwQbvnRt4e4HvS3O2lZVt4VXqGqf02BX6MLKnfrGsDubpnbjPz2sPsuZEnfDRvRN+7fvHqdXegLVT2nvuoDfRsoWzi2GUDk8YWu2MSbGEQlcXyh5M9PHNBw8GplwZYBYiGWbPT6ONw3d7qGiv4YrX6MO9PW6g9usGu9rotvEgXTq/FZQ8Zb+azzL45jFg04539wn1ABMenz2OJZlDSo1GTeYQKlZ5bNGT+85J+2+ETDv/uObWglMx4OhSFDx7pvGgRj6xt/P13rtOCx8ObtZvMHWDqo/Pd9WuWsDs+vVDhoz0MkA2WOHzmBmo7l3a1QaoG7VhJpb8IHGD8cedZdjsLmFZ7ap9Jpg3sLgy6qR1BgShohO0Vqy1iSAqzppaoIh6/QHeTRWfoLHio5tF6Q3jLoXzgdqUt1LziE/NxzApKCoTPRG6wB1k5L/XSfY2BkXCewWEdVziQ2+4xUmQIE3TvtAR8psJr58++q62hQstP/vd/x3gh/0Uaag62RMr+EqzonQtEbq0LtisWMMvJksh8YA/73mkxK7M6wpLPz5wtedTRVj/GW+vLg9HWWAsbr4/O8JRDfzzTuA1UWw6aSip0hNu3Vl9XZXKGaW5niye6LJGT6dUr3j32ADVd+POhzwlySRz8pq/07/t9r3Z6edYJHl6dncstdoam0/unPPT9wOeN3RMKTb5ge1Xn/Pw1R9h94gkP5Y4D5EE22ip7nOEtMZEY6wpn+EWdTan5VCDa3Z/WbagCkMf6r/v2/stJqCj9UkmtA0w7SFjyFTpAxPfxfoSYE+ypMZ3mVj8GhIwP8vckWYBgXeGv4K8ZrBq6GyBZ4gA1q0cdd3PYwm8v+N6+L3CAmbbHtLkvFwKzvcYfm8TrQUCt78eWW7aQ13Ey89yoBYyOPu9pM2QF63rGc56uUmB8zZqE8JAjuDdtbUffrgt+XTh2NeHf3Xb1iwNBAubwloTvxXDGf783FterTsrW0F+p4kPbIzkU4t7uv/6NGEjYdrfGNM0FJr+8bfkkngJ/jiikT722hyY1xuZmhXYw5G9j5aWt5qDeUd5uYoM1GB/ad/d3rhsc+DtxRUHdFrY8WeNm/OsMszSnPXN1nGEnn93jNMpBYDF2Qc20yAukmbxekfWmQU1f1anRcQeYslvfojvbDdrBq0ZpOm6Q+Uo+S9gOGzCepeai1UZB7Eh2k3MeDaaNTNixlDpDuQd0oV4eNMjd+D1NfdYNts1c1aiLtkIfvSZ/+YNw1LQsnzAuT4NiLyT7qFkusLs+OsDQnQYDlF4eFJp3g0MJGj9rNx1DX1KCD12K8EPJ0/f3b+Bzgw8O8boMTTlDO4rr7f7HbtCxg52L84AbXGeoTVu8aAZaVMavzW8MBnHa7876/qHCuqfPqha5HaG/ZvDZP04OsNJKxVt12hGabDwP1cIrEadIRwCzciMSW8RentqHvWz8n5fFGB+TXuZMrh/27YxE0y6imrGbdVE/O/ayWwj2cp0V9rKvEfbyfZvP0vV+0WDqZfx2YZ7DKLgZe1lGVJL0MpMn9vKLAOzlSn7FtbXlSHRyeqE3hG0XGFDEXj7qgr28IQ972WUZe3mG0+z2h6owsIe2VmYxG4zkk7GX85S+kl72rMdeHlLEXrYIecrvb+0EFja0d7as0ZBLH/ay3DT2spc+9rKcI/ay2hMe3bpgNzTM8O7ECSIGdZ/EXn516xrpZTkp7OUxLuxloa+DfErxVKRH4XsGK9LAum3Yy2kezqSXN41gL/cpYi9rrjinVdSlo7/jKQdDNucgTjvsZV31VNLLLJLupJenc7CXNUAPj7DQJfCJTib7TnkZ6tmBvbwxFHvZIBp7+X039jJrq2ti3sFdSGO0sH3dC28wcg57+fMU9vKyP/byxpPYyxeFT9dGmoeB7+Pcm9mt7NG4K/ayQXsj6eUtQdjL8lewlx2HU5YeaB9GYnF/dhh+CQVd3yZJL9fZWpJejmrCXt46jr38Lsugc3HWH8Qc1Qhm5A8F3xT+8/IvGdLLEhXYy+Us2MvM9y7ZOlYaAoVAlSOEpyco3YO9bGH5kPTyuQTsZVo69nJl3JbhQU5fEGAdGuN/8DDaW4G9rP5HmfRyzW3s5Ylr2MtmPQkjZnvsQH/zF4fcRjcgb4y9nHwPe/mDGfZyLi/28gT7eOmlPZdBO3PN+XzeHEDdsZf08hIz9rLjg2HSy9Jq2MtXr/PtqwY5aD67ms1v0zUQo4u93FGJvewhhr0syIW9nBiKNqdwmqG+7PT4N1K2KOXpf16+hb288+cj0stxIdjLXC+5loKUdiOG5fUeR1w1wIPNJqSXD843kF4O2WJFern9Py/nFN+/unabCvjmwg/Y00Wgu1PYy19eOZFe3riAvbxagb284Cm0rBYXguYy+3jmPxxCrz9B0ssHotxIL/cnEaSX2+9hL2tnX67YveyPooTUUme9EpG1kTfpZUb696SX+cdKSS/za2IvC/UFNQxT/UBXs/aknIU3mLonQXpZz6eB9PIMUyfp5YR87OVKOvUElWs0cJ5IAI3KJ0Fp0XvSy1ET5aSXnW58Ib08WoW93CYtEHyA/xLiTfQV16feQnxxaaSXP2lgL1u9xF4uEsJe3kFfPSNoxAiiWu8iwa9XEMNm7GUfeQ/Sy33rsZeLbLCX12rHtY7mUsH5RvGEqQoD8NsMkl6+2tJBerntvfnn/3uZKoG9zFJbJqy5zgGEuGUyJexyBRllhaSXGdPukV7Ou1FDevk4I/byId5kPuYT3mj05sTJSSYfYPzWjfTy8/ZI0stGkT2kl7vosJdBj5jgjRgHIBJAlRJ0paG9LUKkl5Nq3pNeFu9fOf5/L/8twV5OpQvVyQwJARyMAqXWjmeAayj28tuXcqSXj6h7kF62YsZeXrvuXc7YeQioiX+u37rbC80sYi8XVr0lvbzHg570cn0L9rKlbpDnx5MU1NTc532E0wZtLVhPejnQUZz0MlMBIr380Q97ufnBw1yVK7Fo9outVKCUGzKLaCe93F2FvSzVJEd6mc4fezlMLfVL9Gg6yPxrcVmo/hqIVcNe1gzCXj5Rjr18KQZ7eV1ZS5WPlAWa71x0dzkgjI7S55BeLuYeIL08px5OerlAGHvZApSId2XRgI74Nf6RVojU6bCXtXSxl9NisZejeLGXdT+e9aB/54z0FI5J3TvijGSjsJc3emEva1/AXrb7z8sOzBvOZxvYIYNC2hYrYVcgFpNLetmyE3vZsxd72cUPe/mRqusrULMdbKBdeqv+/hBaYQwgvbyQhb3ssJJCerk/CXt569c7vu/njqJdH9d51D8IQREmBqSXxQyVSS/XFmMvc9djL0c4FHKckggFfC+dbAYHo1EznyDp5f4g7GUDg1+kly8LYS9L59PrDAbHo2f3P2kfq08FjKzHSS97WWMva1bMkF4eXcNedpD+aVfdbQNeTN134gvKQ4rm2MvdNdjLSVvtSS87LWAvx/qI86ledAe1E3NV8ZmGQJ6gI73cOu9GevkjC/ay2QfsZbmjp7j7I4NQ15oIY26ZDVq3E3s5oBN7eeUJ9rLeO+zl0MezSbKDXuDSPaQ1/1ETHM7AXo4VxV5m0cFeflqKvVy9Jhu15nEElRp2Cmy/7Qb6c7CXU7uwl3lZAkkvl6tjL+8WTdwiLhsLhgqOFphVuaGbVtjLp3awkF7ePoS9zDOCvbxH+MqM6ZQ2YHYavpe96TwID8RejmzEXl57gb38dhP2Mmvb1vcjlREARb7UuVAThrgTfpBe1pG+SHq57hn2csBqJ+llnsoL+weFnVCj/AUW8dIowC0fSnpZeqWf9DJjDPZyEQ/2srjn38b57aeBpOEwpSuyFCQkYC9fV8BeHnDCXhYzxl6+r6TlcI7BEim+9X6gEGCL6ryxl1ME9Egv54tKkl7eGIu97HR+t+iLUGOwEi7OZBwyp3E+C3vZWAl7+bwW9vIlGvayItv4HdXTjKBK9Yn1KRUWkCODvXysg570ctPnQtLLBt+wl//uGPE0EA8EVnfQWsKiO0g+h73cJY+9nBiDvez9HHvZ3fOjV6tXEHrd/Y4jjeIO6vtLSS+vhGIvb8nEXlZ1xl4uGwqhrn/qCyarHhkI+Z5Gahz1pJdVZGpIL5dyspJezvxzmPSyzrjoSEH4CZSfZ3uRxu4DuO0+kl4eYMdeDj2Kvczbib0sVnu5sr0sBNEN7gBS3PEoW+EQ6WWZN9jLJ/deIL28OxJ7memlnZD/oyx0qyirspW7Bsl8xl4u8MVeFsnHXr5fhL0sVLofXuqxQZt3PErrsFZF3y2xl92/+pNeHtfGXma5hr28/Fmk6O02GzBRw17Wuc0QiL7JJb2syIK9vO93Fell0cvYy1e2dh1UqKQh2uMnNvGPLZBMLvay1w3s5YOZ2Ms/32Iv8zfqdVgIqqOYL7a3hkRDUHMA9nKBPvby5Y/Yy6KC2MuP0pqziFWIPky7wAexjiDuQBrpZZNy7GWu8BrSy/Jz2Ms3Nw0I6f/2BSUBSr/5c3yBbAX2suR/Xg5pxV6e/8/LO74zGXoJBqBs5vjcbSz70fAO7OWzBPZynwP2cjgv9jID2x1JAasocDDy/F6ePGNQ2itEermxGHs5Iwp7ua4fe7mr3Jir6kohKB0JpcRuqwcK49jLkonYywal2MvEc+zlVoXW3ip6R/BWosnGjUsPOORiL9ePYC/Xq2MvA2bs5cm6Y5uGPygj37vjzaV3xYCTJPbytgns5YQZ7OW0O9jL+vbui+eCDMCzYBdL8X5L0P8Fe3mb6HvSy5NT2MsGGtjLHcUJ758zGAPzQhW1V61eIMYfezmvAHs5Rhd7+bAG9nJXv8PO1gwLULrdUEjJ0wpZ3sRerrmOvaybg7385h72Mpz469d8wR4xzIZwFdqHo4IO7GUYgL2cfgZ72U4de5lhen1nd34squo+wvb8tD/K/4W9vJKMvczkhr3s+hh7mdNp5pnOkhgKeCAoQr0fAtKGR0kvI7f/vPw2iPQyFw17mU2NS1zKsApFcrHdVrNtRP8DGQ0ivg==AQAAAAAAAAAAgAAAAAAAALAWAAAAAAAAUwYAAAAAAAA=eF59lntQlFUchnHFUBSTXFesJFGTERxEsUbRaZtoBEsUR1gtc7TUIAc1louXTLwlXkIlUEEilfXCKqllzigR2UBo6TDiBQfES5rmpRnFSkDMauec9ztz3m+m/Y9nvvmW55zzO896ef3/p2xMF0to1m47/n60ZHZ5Wm6J/UjgJ3cnHNlv4vw8v+exu+lM7Htxdn4Pc36e38e86sqFZamjd5qe+2m+q115h2ITX9r/sqXT2m0mPt2RbtnasdDEP13r+X82m7ij2PP+z0zcJ9XznnUmfqzI8/xyE7+a7+FO03q+NXzQua03vzTxwQlny69bzXzS8kW7BkWVmnhCSdD69JR9Jv7whxMZFdv2mviWi/Om+dS4TXxBmy0m7nGJiS+0VYQXhJj5s+Gzel2bvMfg43wTwkPcqXbnGN33fnsPX2EvjNLXZ+jizJjvP862Zzamaet56HH8f8/n2ltG6eu/cITne/Pt7X31/dqR53lPkf32gzRtfxvmv3HHe9gO+9GLl7TzUNnP8/+47Men6+fn1bPTMsYH7ra31enn7U6A8KoM0X0nPi282nXW1ydmkfCy39bXs6BZeMWf0Nd/sfRylej7FbVZeKVk6/sbK72WpOjnYXmQ8LoZr5+fhjPCqzRSP2/shbljL3D2AmcvcPYCZy9w9gJnL3D24nsG88Uc88Uc88Uc88Uc88Uc88Uc88Uc88Uc8wXO5xOcz7OxPnT+wXlewHm+wHkewXl+wXnewfl+4Hse9yRz3KvMcQ8zx73NHPc8c3SBOTrCHN1hjk6Bp/UUvkWxV+sujdplPBfWVaxPXtmt0JgI1dMMOV9fvNi09OuB6p4JbBHrn5XTev75Puo+wX45n7QLzbKp+6SnnK+aD32XNnVR98k7mK9rz5yf0l7dJ+VyvuZNfC6kulXxX+V8NVT3ywy/r+6Zv3sIrxznlLz6Pi6Dd/ETXonJ3YObR6r7c6/0csw8edQ6Sa3DNukVPnXF2KFOtQ7wqneMvDI+W63DvU3C67rjj5Q5JWodkqTXeMc+73WVah0eSq/f42dsKbms1uGu9LI5dN8sq/CaVFg34bz3DoPf6iy8kvu90nf366oXl6XXAfeuBxkr1ToEtQqv+nC/yugqtQ7wKj6SlhvgrXyPS6/y6MYZt6OU7wLpNbYualjZCuU7pK/wap2h+7ZIr9F/6vtr7S68uq10BRbXFhm82ld41VxI6p0Qu13t40fC6+e7maH1X6l1cEmvMq8tI6balC+8/G37o39ZpHwLpVdpxI8Js66ofV8lvU7H6b6J0utRsr6/FnnvNa7Tz3Ohv/DyqS3wfAxe3El4vdYjeEjH0s8NHim9vBzfeC5ug/d/JLwmn+pz0JmkfOF1a85vbe4mte+p0mtPgO6bK728K/X93Sm94pL18+wnveYGWLT5HdBNeKV7b7TmvLvJ4Es6Cq/BMxcHv/9dvsHnSq/Vx5IiR/ZSvm7pdSMwIbZbuvKFl6tC942RXn81b9b2t1h6PaTz3Ci9apP0+Q2QXnku/b460FV4FQxftWH1wByDv+0jvAYcru1dVZOnvld6fRDWu/SfVOUb2ia8qty6L7wO9Nf39wXpdaNBP88HpVeES59fm+xp1Gz9vgqSXo5h+v0c6Se8Is+1WL2urzH4y08Jr0OWYGvfqxsNflp6+efrvqXSq3Cwvr/4HRVbPUA7z82y42vL9PmtkF4V/vp9FSe9tifq93OY9Np6TO9RZWfhFR15w/eec5nBu3cQXtnFuu8T6TXOou9vmPz9kHN4g3aesV/rE/X5PSW9Vkbo99VJ6VWUqd/Pa6SXbabeo5ek17dv6v3lLqPX3GVw7jI4d5l/R6HL4NxlcO4yOHcZnLsMzl0G5y6Dc5fBucvshS6Dc5fBucvg3GVw7jI4dxmcuwzOXQbnLrMXugzOXQbnLoNzl8G5y+DcZXDusrGP1GVw7jJ7ocvg3GVw7jI4dxmcu2y8n7oMzl0G5y6Dc5fZC10G5y6Dc5fBucvg3GVw7jI4dxmcuwzOXWYvdBmcu2ysJ3UZnLsMzl0G5y6Dc5eN76Uug3OX2QtdBucug3OXwbnL4Nxl41xRl8G5y+DcZXDuMjh3GZy7DM5dBucug3OXwbnL4NxlcO6y8X7qMu8XugzOXQbnLoNzl8G5y+D/ArJxlU0=AQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAAbwQAAAAAAAA=eF5d0tMD6IUBR/FsLBtbto21GrKt3exadt1Vy1vLrptta91su1bdbP0HPXQ+L7/vy3k537cz9li/baK4YZwrjhc3iFfEhQee30Zx7oHnd2VcZOD5bRznGXh+V8VFB57fJnHeged3dVxs4PltGucbeH7XxMUHnt9mcf6B53dtXGLg+W0eFxh4ftfFJQee3xZxwYHnd31cauD5bRkXGnh+N8SlB57fVHGcgee3TBw/6m7iuFXUk+7WjzdGPfH8to564vndFPXE89sm6onnd3PUE89v26gnnt8tUU88v+2innh+t0Y98fy2j3ri+d0W9cTz+3vUE8/v9qgnnt+IqCee3x1RT7wRcYeoJ57fnVFPPL+pow55fstGHepukrhj1JPu1ot3RT3x/HaKeuL53R31xPPbOeqJ53dP1BPPb5eoJ57fvVFPPL9do554fvdFPfH8dot64vndH/XE89s96onn90DUE89vjzhi4Pk9GPXE89sz6onn91DUE89vmqhDnt9yUYe6mzTuFfWku3Xjw1FPPL+9o554fo9EPfH89ol64vn9L+qJ57dv1BPP79GoJ57fflFPPL/RUU88v39EPfFGx8einnh++0c98fwej3ri+R0Q9cTzeyLqied3YNQTz+/JqCee37RRhzy/5aMOdTdZPCjqSXfrxKeinnh+B0c98fyejnri+R0S9cTzeybqied3aNQTz+/ZqCee32FRTzy/5+Loged3eNQTz+/5qCee3xFRTzy/F6KeeH5HRj3x/F6MeuL5HRX1xPN7KeqJ5zdd1CHPb4WoQ91NHo+OetLd2vHlqCee3zFRTzy/V6KeeH7HRj3x/F6NeuL5jYx64vm9FvXEGxn/GfXE83s96onnd1zUE8/vjagnnt/xUU88vzejnnh+J0Q98fzeinri+f0r6onn93bUE89v+qhDnt+KUYe6myKeGPWku7XiO1FPPL+Top54fu9GPfH8To564vm9F/XE8zsljhx4fu9HPfH8To164vl9EPXE8zst6onn9/+oJ57f6VFPPL8Po554fv+OeuL5fRT1xPP7T9QTz+/jqCee3wxRhzy/laIOdTdlPCPqSXdrxjFRTzy//0Y98cbET6KeeH5nRj3x/D6NeuL5nRX1xPP7LOqJ53d21BPP7/OoJ57fOVFPPL8vop54fudGPfH8vox64vmdF/XE8/sq6onnd37UE8/v66gnnt+MUYc8v5WjDnX3u3hB1JPu/ha/iWMGnt+FUU88v2+jnnh+F0U98fy+i3ri+V0c9cTz+z7qied3SdQTz++HqCee36VRTzy/H6OeeH6XRT3x/H6KeuL5XR71xPP7OeqJ5zcq6onn90vUE29UnCnqkOe3StSh7mzmqCfdTRj/GvXE85sl6onn95eoJ57frFFPPL8/Rz3x/GaLeuL5rRH1xPObPeqJ57d61BPPb46oJ57fn6KeeH5zRj3x/FaLeuLNGX8f9cRbLf4x6onn94c4auD5rRr1xPMbN+qQ5zdB1OGvaN+u6A==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApgAAAAAAAAA=eF4txRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j4aE9AADtHASx + </AppendedData> +</VTKFile> diff --git a/Tests/Data/LargeDeformation/CooksMembrane/3D/mesh3D_n10.vtu b/Tests/Data/LargeDeformation/CooksMembrane/3D/mesh3D_n10.vtu new file mode 100644 index 00000000000..8bc80f4a9ca --- /dev/null +++ b/Tests/Data/LargeDeformation/CooksMembrane/3D/mesh3D_n10.vtu @@ -0,0 +1,23 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64"> + <UnstructuredGrid> + <Piece NumberOfPoints="242" NumberOfCells="100" > + <PointData> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="0" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.076843997814" offset="544" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="8300" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="16844" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="17924" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _kAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsBYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALpJDAIrh6Y/AAAAAAAAAAD6fmq8dJOoP7gehetRuK4/AAAAAAAAAAD6fmq8dJOoP7pJDAIrh6Y/AAAAAAAAAAAAAAAAAAAAALpJDAIrh6Y//Knx0k1iUD/6fmq8dJOoP7gehetRuK4//Knx0k1iUD/6fmq8dJOoP7pJDAIrh6Y//Knx0k1iUD8AAAAAAAAAAAAAAAAAAAAA/Knx0k1iUD8AAAAAAAAAAMTf14FzRqQ/AAAAAAAAAAAAAAAAAAAAAMl3owG8BaI/AAAAAAAAAAAAAAAAAAAAAIAk3gIJip8/AAAAAAAAAAAAAAAAAAAAAGBWdQKaCJs/AAAAAAAAAAAAAAAAAAAAAIyKDAIrh5Y/AAAAAAAAAAAAAAAAAAAAAFaiowG8BZI/AAAAAAAAAAAAAAAAAAAAAAdzdQKaCIs/AAAAAAAAAAAAAAAAAAAAAMCdowG8BYI/AAAAAAAAAAAAAAAAAAAAAOCYowG8BXI/AAAAAAAAAAD6fmq8dJOoP1k4LNSa5q0/AAAAAAAAAAD6fmq8dJOoPy9V07zjFK0/AAAAAAAAAAD6fmq8dJOoP1eCeqUsQ6w/AAAAAAAAAAD6fmq8dJOoP1WoIY51cas/AAAAAAAAAAD6fmq8dJOoP/bByHa+n6o/AAAAAAAAAAD6fmq8dJOoP5fbb18Hzqk/AAAAAAAAAAD6fmq8dJOoP3j7FkhQ/Kg/AAAAAAAAAAD6fmq8dJOoP3kWvjCZKqg/AAAAAAAAAAD6fmq8dJOoPxowZRniWKc/AAAAAAAAAABOClUwKqlzP3JJowG8BXI/AAAAAAAAAADwA1UwKqmDP5tDowG8BYI/AAAAAAAAAAAyfH9Iv32NP3/cdAKaCIs/AAAAAAAAAACz/FQwKqmTP/g8owG8BZI/AAAAAAAAAAB5OWq8dJOYPwMKDAIrh5Y/AAAAAAAAAAChlH9Iv32dP+nydAKaCJs/AAAAAAAAAADad0rqBDShP7nb3QIJip8/AAAAAAAAAADDI1UwKqmjP8dgowG8BaI/AAAAAAAAAABA0192Tx6mP/vW14FzRqQ/AAAAAAAAAADqGFUwKqlzP8MqZRniWKc/AAAAAAAAAABTD1UwKqmDPwELvjCZKqg/AAAAAAAAAABIen9Iv32NPz/pFkhQ/Kg/AAAAAAAAAACZ91QwKqmTP1TIb18Hzqk/AAAAAAAAAAB8OWq8dJOYP6OoyHa+n6o/AAAAAAAAAABDln9Iv32dP3GNIY51cas/AAAAAAAAAABNd0rqBDShP35xeqUsQ6w/AAAAAAAAAACCIVUwKqmjP+ZU07zjFK0/AAAAAAAAAADa0l92Tx6mP6w6LNSa5q0/AAAAAAAAAADqGFUwKqlzP8MqZRniWKc//Knx0k1iUD9TD1UwKqmDPwELvjCZKqg//Knx0k1iUD9Ien9Iv32NPz/pFkhQ/Kg//Knx0k1iUD+Z91QwKqmTP1TIb18Hzqk//Knx0k1iUD98OWq8dJOYP6OoyHa+n6o//Knx0k1iUD9Dln9Iv32dP3GNIY51cas//Knx0k1iUD9Nd0rqBDShP35xeqUsQ6w//Knx0k1iUD+CIVUwKqmjP+ZU07zjFK0//Knx0k1iUD/a0l92Tx6mP6w6LNSa5q0//Knx0k1iUD/6fmq8dJOoP1k4LNSa5q0//Knx0k1iUD/6fmq8dJOoPy9V07zjFK0//Knx0k1iUD/6fmq8dJOoP1eCeqUsQ6w//Knx0k1iUD/6fmq8dJOoP1WoIY51cas//Knx0k1iUD/6fmq8dJOoP/bByHa+n6o//Knx0k1iUD/6fmq8dJOoP5fbb18Hzqk//Knx0k1iUD/6fmq8dJOoP3j7FkhQ/Kg//Knx0k1iUD/6fmq8dJOoP3kWvjCZKqg//Knx0k1iUD/6fmq8dJOoPxowZRniWKc//Knx0k1iUD9A0192Tx6mP/vW14FzRqQ//Knx0k1iUD/DI1UwKqmjP8dgowG8BaI//Knx0k1iUD/ad0rqBDShP7nb3QIJip8//Knx0k1iUD+hlH9Iv32dP+nydAKaCJs//Knx0k1iUD95OWq8dJOYPwMKDAIrh5Y//Knx0k1iUD+z/FQwKqmTP/g8owG8BZI//Knx0k1iUD8yfH9Iv32NP3/cdAKaCIs//Knx0k1iUD/wA1UwKqmDP5tDowG8BYI//Knx0k1iUD9OClUwKqlzP3JJowG8BXI//Knx0k1iUD8AAAAAAAAAAOCYowG8BXI//Knx0k1iUD8AAAAAAAAAAMCdowG8BYI//Knx0k1iUD8AAAAAAAAAAAdzdQKaCIs//Knx0k1iUD8AAAAAAAAAAFaiowG8BZI//Knx0k1iUD8AAAAAAAAAAIyKDAIrh5Y//Knx0k1iUD8AAAAAAAAAAGBWdQKaCJs//Knx0k1iUD8AAAAAAAAAAIAk3gIJip8//Knx0k1iUD8AAAAAAAAAAMl3owG8BaI//Knx0k1iUD8AAAAAAAAAAMTf14FzRqQ//Knx0k1iUD90F1UwKqlzP51N4NbdPKU/AAAAAAAAAAAuDlUwKqmDP5S66CtIM6Y/AAAAAAAAAAB2en9Iv32NP54l8YCyKac/AAAAAAAAAAAe+FQwKqmTP4eR+dUcIKg/AAAAAAAAAAB5OWq8dJOYP3L+ASuHFqk/AAAAAAAAAAAXln9Iv32dP85wCoDxDKo/AAAAAAAAAABcd0rqBDShP37iEtVbA6s/AAAAAAAAAAC8IVUwKqmjP29TGyrG+as/AAAAAAAAAADk0l92Tx6mP9rGI38w8Kw/AAAAAAAAAAD9FVUwKqlzP5FyW5TZIKM/AAAAAAAAAAAMDVUwKqmDP2dsEyf3O6Q/AAAAAAAAAACqen9Iv32NP1Zky7kUV6U/AAAAAAAAAACf+FQwKqmTPzBdg0wycqY/AAAAAAAAAAB5OWq8dJOYP9lWO99Pjac/AAAAAAAAAADvlX9Iv32dP+NW83FtqKg/AAAAAAAAAABod0rqBDShP09WqwSLw6k/AAAAAAAAAAD2IVUwKqmjP+xUY5eo3qo/AAAAAAAAAADr0l92Tx6mPxZWGyrG+as/AAAAAAAAAACHFFUwKqlzP1eb1lHVBKE/AAAAAAAAAADoC1UwKqmDP2wjPiKmRKI/AAAAAAAAAADeen9Iv32NP6+ppfJ2hKM/AAAAAAAAAAAh+VQwKqmTP9kwDcNHxKQ/AAAAAAAAAAB5OWq8dJOYP6K4dJMYBKY/AAAAAAAAAADHlX9Iv32dP7xH3GPpQ6c/AAAAAAAAAAB4d0rqBDShP0zWQzS6g6g/AAAAAAAAAAAxIlUwKqmjP/ljqwSLw6k/AAAAAAAAAAD40l92Tx6mP0b0EtVbA6s/AAAAAAAAAAAUE1UwKqlzPxCEox6i0Z0/AAAAAAAAAADGClUwKqmDP87XaB1VTaA/AAAAAAAAAAAMe39Iv32NP8rrfyvZsaE/AAAAAAAAAACj+VQwKqmTP7oAlzldFqM/AAAAAAAAAAB5OWq8dJOYPxEWrkfheqQ/AAAAAAAAAACblX9Iv32dP6wzxVVl36U/AAAAAAAAAACGd0rqBDShP9BQ3GPpQ6c/AAAAAAAAAABnIlUwKqmjP/ps83FtqKg/AAAAAAAAAAAC0192Tx6mP9yLCoDxDKo/AAAAAAAAAACbEVUwKqlzPwfRmZmZmZk/AAAAAAAAAACiCVUwKqmDP0IVJzEIrJw/AAAAAAAAAAA6e39Iv32NPwBWtMh2vp8/AAAAAAAAAAAk+lQwKqmTP1jMILByaKE/AAAAAAAAAAB5OWq8dJOYP+ht5/up8aI/AAAAAAAAAABzlX9Iv32dP6cYrkfheqQ/AAAAAAAAAACTd0rqBDShPwTDdJMYBKY/AAAAAAAAAACkIlUwKqmjP1BsO99Pjac/AAAAAAAAAAAN0192Tx6mP24YAiuHFqk/AAAAAAAAAAAmEFUwKqlzP3UEkBSRYZU/AAAAAAAAAAB+CFUwKqmDPy9kfCdmvZg/AAAAAAAAAABue39Iv32NP4jAaDo7GZw/AAAAAAAAAACp+lQwKqmTP+UeVU0QdZ8/AAAAAAAAAAB5OWq8dJOYP6O+ILByaKE/AAAAAAAAAABIlX9Iv32dP/X3ljldFqM/AAAAAAAAAACid0rqBDShP/YwDcNHxKQ/AAAAAAAAAADcIlUwKqmjP9Fog0wycqY/AAAAAAAAAAAY0192Tx6mP5Sj+dUcIKg/AAAAAAAAAACvDlUwKqlzP5k4ho+IKZE/AAAAAAAAAABaB1UwKqmDPya10R3EzpQ/AAAAAAAAAACie39Iv32NP2kuHaz/c5g/AAAAAAAAAAAr+1QwKqmTP8SpaDo7GZw/AAAAAAAAAAB5OWq8dJOYP68ktMh2vp8/AAAAAAAAAAAflX9Iv32dP+XafyvZsaE/AAAAAAAAAACwd0rqBDShPzOjpfJ2hKM/AAAAAAAAAAAWI1UwKqmjP0Nqy7kUV6U/AAAAAAAAAAAh0192Tx6mP1Y08YCyKac/AAAAAAAAAAA6DVUwKqlzPzrU+BQA44k/AAAAAAAAAAA2BlUwKqmDP7MCJxQi4JA/AAAAAAAAAADQe39Iv32NPxGY0R3EzpQ/AAAAAAAAAACs+1QwKqmTP5svfCdmvZg/AAAAAAAAAAB8OWq8dJOYP03GJjEIrJw/AAAAAAAAAAD3lH9Iv32dP4q6aB1VTaA/AAAAAAAAAAC+d0rqBDShP74RPiKmRKI/AAAAAAAAAABQI1UwKqmjP6BnEyf3O6Q/AAAAAAAAAAAu0192Tx6mP5rA6CtIM6Y/AAAAAAAAAADDC1UwKqlzP0c65QrvcoE/AAAAAAAAAAATBVUwKqmDP42i+BQA44k/AAAAAAAAAAD+e39Iv32NP04Cho+IKZE/AAAAAAAAAAAu/FQwKqmTP5G1jxSRYZU/AAAAAAAAAAB5OWq8dJOYP45nmZmZmZk/AAAAAAAAAADMlH9Iv32dP4Qzox6i0Z0/AAAAAAAAAADLd0rqBDShP51/1lHVBKE/AAAAAAAAAACJI1UwKqmjPxZkW5TZIKM/AAAAAAAAAAA10192Tx6mP7tL4NbdPKU/AAAAAAAAAAB0F1UwKqlzP51N4NbdPKU//Knx0k1iUD8uDlUwKqmDP5S66CtIM6Y//Knx0k1iUD92en9Iv32NP54l8YCyKac//Knx0k1iUD8e+FQwKqmTP4eR+dUcIKg//Knx0k1iUD95OWq8dJOYP3L+ASuHFqk//Knx0k1iUD8Xln9Iv32dP85wCoDxDKo//Knx0k1iUD9cd0rqBDShP37iEtVbA6s//Knx0k1iUD+8IVUwKqmjP29TGyrG+as//Knx0k1iUD/k0l92Tx6mP9rGI38w8Kw//Knx0k1iUD/9FVUwKqlzP5FyW5TZIKM//Knx0k1iUD8MDVUwKqmDP2dsEyf3O6Q//Knx0k1iUD+qen9Iv32NP1Zky7kUV6U//Knx0k1iUD+f+FQwKqmTPzBdg0wycqY//Knx0k1iUD95OWq8dJOYP9lWO99Pjac//Knx0k1iUD/vlX9Iv32dP+NW83FtqKg//Knx0k1iUD9od0rqBDShP09WqwSLw6k//Knx0k1iUD/2IVUwKqmjP+xUY5eo3qo//Knx0k1iUD/r0l92Tx6mPxZWGyrG+as//Knx0k1iUD+HFFUwKqlzP1eb1lHVBKE//Knx0k1iUD/oC1UwKqmDP2wjPiKmRKI//Knx0k1iUD/een9Iv32NP6+ppfJ2hKM//Knx0k1iUD8h+VQwKqmTP9kwDcNHxKQ//Knx0k1iUD95OWq8dJOYP6K4dJMYBKY//Knx0k1iUD/HlX9Iv32dP7xH3GPpQ6c//Knx0k1iUD94d0rqBDShP0zWQzS6g6g//Knx0k1iUD8xIlUwKqmjP/ljqwSLw6k//Knx0k1iUD/40l92Tx6mP0b0EtVbA6s//Knx0k1iUD8UE1UwKqlzPxCEox6i0Z0//Knx0k1iUD/GClUwKqmDP87XaB1VTaA//Knx0k1iUD8Me39Iv32NP8rrfyvZsaE//Knx0k1iUD+j+VQwKqmTP7oAlzldFqM//Knx0k1iUD95OWq8dJOYPxEWrkfheqQ//Knx0k1iUD+blX9Iv32dP6wzxVVl36U//Knx0k1iUD+Gd0rqBDShP9BQ3GPpQ6c//Knx0k1iUD9nIlUwKqmjP/ps83FtqKg//Knx0k1iUD8C0192Tx6mP9yLCoDxDKo//Knx0k1iUD+bEVUwKqlzPwfRmZmZmZk//Knx0k1iUD+iCVUwKqmDP0IVJzEIrJw//Knx0k1iUD86e39Iv32NPwBWtMh2vp8//Knx0k1iUD8k+lQwKqmTP1jMILByaKE//Knx0k1iUD95OWq8dJOYP+ht5/up8aI//Knx0k1iUD9zlX9Iv32dP6cYrkfheqQ//Knx0k1iUD+Td0rqBDShPwTDdJMYBKY//Knx0k1iUD+kIlUwKqmjP1BsO99Pjac//Knx0k1iUD8N0192Tx6mP24YAiuHFqk//Knx0k1iUD8mEFUwKqlzP3UEkBSRYZU//Knx0k1iUD9+CFUwKqmDPy9kfCdmvZg//Knx0k1iUD9ue39Iv32NP4jAaDo7GZw//Knx0k1iUD+p+lQwKqmTP+UeVU0QdZ8//Knx0k1iUD95OWq8dJOYP6O+ILByaKE//Knx0k1iUD9IlX9Iv32dP/X3ljldFqM//Knx0k1iUD+id0rqBDShP/YwDcNHxKQ//Knx0k1iUD/cIlUwKqmjP9Fog0wycqY//Knx0k1iUD8Y0192Tx6mP5Sj+dUcIKg//Knx0k1iUD+vDlUwKqlzP5k4ho+IKZE//Knx0k1iUD9aB1UwKqmDPya10R3EzpQ//Knx0k1iUD+ie39Iv32NP2kuHaz/c5g//Knx0k1iUD8r+1QwKqmTP8SpaDo7GZw//Knx0k1iUD95OWq8dJOYP68ktMh2vp8//Knx0k1iUD8flX9Iv32dP+XafyvZsaE//Knx0k1iUD+wd0rqBDShPzOjpfJ2hKM//Knx0k1iUD8WI1UwKqmjP0Nqy7kUV6U//Knx0k1iUD8h0192Tx6mP1Y08YCyKac//Knx0k1iUD86DVUwKqlzPzrU+BQA44k//Knx0k1iUD82BlUwKqmDP7MCJxQi4JA//Knx0k1iUD/Qe39Iv32NPxGY0R3EzpQ//Knx0k1iUD+s+1QwKqmTP5svfCdmvZg//Knx0k1iUD98OWq8dJOYP03GJjEIrJw//Knx0k1iUD/3lH9Iv32dP4q6aB1VTaA//Knx0k1iUD++d0rqBDShP74RPiKmRKI//Knx0k1iUD9QI1UwKqmjP6BnEyf3O6Q//Knx0k1iUD8u0192Tx6mP5rA6CtIM6Y//Knx0k1iUD/DC1UwKqlzP0c65QrvcoE//Knx0k1iUD8TBVUwKqmDP42i+BQA44k//Knx0k1iUD/+e39Iv32NP04Cho+IKZE//Knx0k1iUD8u/FQwKqmTP5G1jxSRYZU//Knx0k1iUD95OWq8dJOYP45nmZmZmZk//Knx0k1iUD/MlH9Iv32dP4Qzox6i0Z0//Knx0k1iUD/Ld0rqBDShP51/1lHVBKE//Knx0k1iUD+JI1UwKqmjPxZkW5TZIKM//Knx0k1iUD810192Tx6mP7tL4NbdPKU//Knx0k1iUD8=ABkAAAAAAAABAAAAAAAAAAgAAAAAAAAAUAAAAAAAAAAjAAAAAAAAAAQAAAAAAAAATwAAAAAAAAChAAAAAAAAACwAAAAAAAAAIwAAAAAAAABQAAAAAAAAAFEAAAAAAAAAJAAAAAAAAAAsAAAAAAAAAKEAAAAAAAAAogAAAAAAAAAtAAAAAAAAACQAAAAAAAAAUQAAAAAAAABSAAAAAAAAACUAAAAAAAAALQAAAAAAAACiAAAAAAAAAKMAAAAAAAAALgAAAAAAAAAlAAAAAAAAAFIAAAAAAAAAUwAAAAAAAAAmAAAAAAAAAC4AAAAAAAAAowAAAAAAAACkAAAAAAAAAC8AAAAAAAAAJgAAAAAAAABTAAAAAAAAAFQAAAAAAAAAJwAAAAAAAAAvAAAAAAAAAKQAAAAAAAAApQAAAAAAAAAwAAAAAAAAACcAAAAAAAAAVAAAAAAAAABVAAAAAAAAACgAAAAAAAAAMAAAAAAAAAClAAAAAAAAAKYAAAAAAAAAMQAAAAAAAAAoAAAAAAAAAFUAAAAAAAAAVgAAAAAAAAApAAAAAAAAADEAAAAAAAAApgAAAAAAAACnAAAAAAAAADIAAAAAAAAAKQAAAAAAAABWAAAAAAAAAFcAAAAAAAAAKgAAAAAAAAAyAAAAAAAAAKcAAAAAAAAAqAAAAAAAAAAzAAAAAAAAACoAAAAAAAAAVwAAAAAAAABYAAAAAAAAACsAAAAAAAAAMwAAAAAAAACoAAAAAAAAAKkAAAAAAAAANAAAAAAAAAArAAAAAAAAAFgAAAAAAAAAEQAAAAAAAAACAAAAAAAAADQAAAAAAAAAqQAAAAAAAAA1AAAAAAAAAAUAAAAAAAAACAAAAAAAAAAJAAAAAAAAAFkAAAAAAAAAUAAAAAAAAABPAAAAAAAAAE4AAAAAAAAAqgAAAAAAAAChAAAAAAAAAFAAAAAAAAAAWQAAAAAAAABaAAAAAAAAAFEAAAAAAAAAoQAAAAAAAACqAAAAAAAAAKsAAAAAAAAAogAAAAAAAABRAAAAAAAAAFoAAAAAAAAAWwAAAAAAAABSAAAAAAAAAKIAAAAAAAAAqwAAAAAAAACsAAAAAAAAAKMAAAAAAAAAUgAAAAAAAABbAAAAAAAAAFwAAAAAAAAAUwAAAAAAAACjAAAAAAAAAKwAAAAAAAAArQAAAAAAAACkAAAAAAAAAFMAAAAAAAAAXAAAAAAAAABdAAAAAAAAAFQAAAAAAAAApAAAAAAAAACtAAAAAAAAAK4AAAAAAAAApQAAAAAAAABUAAAAAAAAAF0AAAAAAAAAXgAAAAAAAABVAAAAAAAAAKUAAAAAAAAArgAAAAAAAACvAAAAAAAAAKYAAAAAAAAAVQAAAAAAAABeAAAAAAAAAF8AAAAAAAAAVgAAAAAAAACmAAAAAAAAAK8AAAAAAAAAsAAAAAAAAACnAAAAAAAAAFYAAAAAAAAAXwAAAAAAAABgAAAAAAAAAFcAAAAAAAAApwAAAAAAAACwAAAAAAAAALEAAAAAAAAAqAAAAAAAAABXAAAAAAAAAGAAAAAAAAAAYQAAAAAAAABYAAAAAAAAAKgAAAAAAAAAsQAAAAAAAACyAAAAAAAAAKkAAAAAAAAAWAAAAAAAAABhAAAAAAAAABIAAAAAAAAAEQAAAAAAAACpAAAAAAAAALIAAAAAAAAANgAAAAAAAAA1AAAAAAAAAAkAAAAAAAAACgAAAAAAAABiAAAAAAAAAFkAAAAAAAAATgAAAAAAAABNAAAAAAAAALMAAAAAAAAAqgAAAAAAAABZAAAAAAAAAGIAAAAAAAAAYwAAAAAAAABaAAAAAAAAAKoAAAAAAAAAswAAAAAAAAC0AAAAAAAAAKsAAAAAAAAAWgAAAAAAAABjAAAAAAAAAGQAAAAAAAAAWwAAAAAAAACrAAAAAAAAALQAAAAAAAAAtQAAAAAAAACsAAAAAAAAAFsAAAAAAAAAZAAAAAAAAABlAAAAAAAAAFwAAAAAAAAArAAAAAAAAAC1AAAAAAAAALYAAAAAAAAArQAAAAAAAABcAAAAAAAAAGUAAAAAAAAAZgAAAAAAAABdAAAAAAAAAK0AAAAAAAAAtgAAAAAAAAC3AAAAAAAAAK4AAAAAAAAAXQAAAAAAAABmAAAAAAAAAGcAAAAAAAAAXgAAAAAAAACuAAAAAAAAALcAAAAAAAAAuAAAAAAAAACvAAAAAAAAAF4AAAAAAAAAZwAAAAAAAABoAAAAAAAAAF8AAAAAAAAArwAAAAAAAAC4AAAAAAAAALkAAAAAAAAAsAAAAAAAAABfAAAAAAAAAGgAAAAAAAAAaQAAAAAAAABgAAAAAAAAALAAAAAAAAAAuQAAAAAAAAC6AAAAAAAAALEAAAAAAAAAYAAAAAAAAABpAAAAAAAAAGoAAAAAAAAAYQAAAAAAAACxAAAAAAAAALoAAAAAAAAAuwAAAAAAAACyAAAAAAAAAGEAAAAAAAAAagAAAAAAAAATAAAAAAAAABIAAAAAAAAAsgAAAAAAAAC7AAAAAAAAADcAAAAAAAAANgAAAAAAAAAKAAAAAAAAAAsAAAAAAAAAawAAAAAAAABiAAAAAAAAAE0AAAAAAAAATAAAAAAAAAC8AAAAAAAAALMAAAAAAAAAYgAAAAAAAABrAAAAAAAAAGwAAAAAAAAAYwAAAAAAAACzAAAAAAAAALwAAAAAAAAAvQAAAAAAAAC0AAAAAAAAAGMAAAAAAAAAbAAAAAAAAABtAAAAAAAAAGQAAAAAAAAAtAAAAAAAAAC9AAAAAAAAAL4AAAAAAAAAtQAAAAAAAABkAAAAAAAAAG0AAAAAAAAAbgAAAAAAAABlAAAAAAAAALUAAAAAAAAAvgAAAAAAAAC/AAAAAAAAALYAAAAAAAAAZQAAAAAAAABuAAAAAAAAAG8AAAAAAAAAZgAAAAAAAAC2AAAAAAAAAL8AAAAAAAAAwAAAAAAAAAC3AAAAAAAAAGYAAAAAAAAAbwAAAAAAAABwAAAAAAAAAGcAAAAAAAAAtwAAAAAAAADAAAAAAAAAAMEAAAAAAAAAuAAAAAAAAABnAAAAAAAAAHAAAAAAAAAAcQAAAAAAAABoAAAAAAAAALgAAAAAAAAAwQAAAAAAAADCAAAAAAAAALkAAAAAAAAAaAAAAAAAAABxAAAAAAAAAHIAAAAAAAAAaQAAAAAAAAC5AAAAAAAAAMIAAAAAAAAAwwAAAAAAAAC6AAAAAAAAAGkAAAAAAAAAcgAAAAAAAABzAAAAAAAAAGoAAAAAAAAAugAAAAAAAADDAAAAAAAAAMQAAAAAAAAAuwAAAAAAAABqAAAAAAAAAHMAAAAAAAAAFAAAAAAAAAATAAAAAAAAALsAAAAAAAAAxAAAAAAAAAA4AAAAAAAAADcAAAAAAAAACwAAAAAAAAAMAAAAAAAAAHQAAAAAAAAAawAAAAAAAABMAAAAAAAAAEsAAAAAAAAAxQAAAAAAAAC8AAAAAAAAAGsAAAAAAAAAdAAAAAAAAAB1AAAAAAAAAGwAAAAAAAAAvAAAAAAAAADFAAAAAAAAAMYAAAAAAAAAvQAAAAAAAABsAAAAAAAAAHUAAAAAAAAAdgAAAAAAAABtAAAAAAAAAL0AAAAAAAAAxgAAAAAAAADHAAAAAAAAAL4AAAAAAAAAbQAAAAAAAAB2AAAAAAAAAHcAAAAAAAAAbgAAAAAAAAC+AAAAAAAAAMcAAAAAAAAAyAAAAAAAAAC/AAAAAAAAAG4AAAAAAAAAdwAAAAAAAAB4AAAAAAAAAG8AAAAAAAAAvwAAAAAAAADIAAAAAAAAAMkAAAAAAAAAwAAAAAAAAABvAAAAAAAAAHgAAAAAAAAAeQAAAAAAAABwAAAAAAAAAMAAAAAAAAAAyQAAAAAAAADKAAAAAAAAAMEAAAAAAAAAcAAAAAAAAAB5AAAAAAAAAHoAAAAAAAAAcQAAAAAAAADBAAAAAAAAAMoAAAAAAAAAywAAAAAAAADCAAAAAAAAAHEAAAAAAAAAegAAAAAAAAB7AAAAAAAAAHIAAAAAAAAAwgAAAAAAAADLAAAAAAAAAMwAAAAAAAAAwwAAAAAAAAByAAAAAAAAAHsAAAAAAAAAfAAAAAAAAABzAAAAAAAAAMMAAAAAAAAAzAAAAAAAAADNAAAAAAAAAMQAAAAAAAAAcwAAAAAAAAB8AAAAAAAAABUAAAAAAAAAFAAAAAAAAADEAAAAAAAAAM0AAAAAAAAAOQAAAAAAAAA4AAAAAAAAAAwAAAAAAAAADQAAAAAAAAB9AAAAAAAAAHQAAAAAAAAASwAAAAAAAABKAAAAAAAAAM4AAAAAAAAAxQAAAAAAAAB0AAAAAAAAAH0AAAAAAAAAfgAAAAAAAAB1AAAAAAAAAMUAAAAAAAAAzgAAAAAAAADPAAAAAAAAAMYAAAAAAAAAdQAAAAAAAAB+AAAAAAAAAH8AAAAAAAAAdgAAAAAAAADGAAAAAAAAAM8AAAAAAAAA0AAAAAAAAADHAAAAAAAAAHYAAAAAAAAAfwAAAAAAAACAAAAAAAAAAHcAAAAAAAAAxwAAAAAAAADQAAAAAAAAANEAAAAAAAAAyAAAAAAAAAB3AAAAAAAAAIAAAAAAAAAAgQAAAAAAAAB4AAAAAAAAAMgAAAAAAAAA0QAAAAAAAADSAAAAAAAAAMkAAAAAAAAAeAAAAAAAAACBAAAAAAAAAIIAAAAAAAAAeQAAAAAAAADJAAAAAAAAANIAAAAAAAAA0wAAAAAAAADKAAAAAAAAAHkAAAAAAAAAggAAAAAAAACDAAAAAAAAAHoAAAAAAAAAygAAAAAAAADTAAAAAAAAANQAAAAAAAAAywAAAAAAAAB6AAAAAAAAAIMAAAAAAAAAhAAAAAAAAAB7AAAAAAAAAMsAAAAAAAAA1AAAAAAAAADVAAAAAAAAAMwAAAAAAAAAewAAAAAAAACEAAAAAAAAAIUAAAAAAAAAfAAAAAAAAADMAAAAAAAAANUAAAAAAAAA1gAAAAAAAADNAAAAAAAAAHwAAAAAAAAAhQAAAAAAAAAWAAAAAAAAABUAAAAAAAAAzQAAAAAAAADWAAAAAAAAADoAAAAAAAAAOQAAAAAAAAANAAAAAAAAAA4AAAAAAAAAhgAAAAAAAAB9AAAAAAAAAEoAAAAAAAAASQAAAAAAAADXAAAAAAAAAM4AAAAAAAAAfQAAAAAAAACGAAAAAAAAAIcAAAAAAAAAfgAAAAAAAADOAAAAAAAAANcAAAAAAAAA2AAAAAAAAADPAAAAAAAAAH4AAAAAAAAAhwAAAAAAAACIAAAAAAAAAH8AAAAAAAAAzwAAAAAAAADYAAAAAAAAANkAAAAAAAAA0AAAAAAAAAB/AAAAAAAAAIgAAAAAAAAAiQAAAAAAAACAAAAAAAAAANAAAAAAAAAA2QAAAAAAAADaAAAAAAAAANEAAAAAAAAAgAAAAAAAAACJAAAAAAAAAIoAAAAAAAAAgQAAAAAAAADRAAAAAAAAANoAAAAAAAAA2wAAAAAAAADSAAAAAAAAAIEAAAAAAAAAigAAAAAAAACLAAAAAAAAAIIAAAAAAAAA0gAAAAAAAADbAAAAAAAAANwAAAAAAAAA0wAAAAAAAACCAAAAAAAAAIsAAAAAAAAAjAAAAAAAAACDAAAAAAAAANMAAAAAAAAA3AAAAAAAAADdAAAAAAAAANQAAAAAAAAAgwAAAAAAAACMAAAAAAAAAI0AAAAAAAAAhAAAAAAAAADUAAAAAAAAAN0AAAAAAAAA3gAAAAAAAADVAAAAAAAAAIQAAAAAAAAAjQAAAAAAAACOAAAAAAAAAIUAAAAAAAAA1QAAAAAAAADeAAAAAAAAAN8AAAAAAAAA1gAAAAAAAACFAAAAAAAAAI4AAAAAAAAAFwAAAAAAAAAWAAAAAAAAANYAAAAAAAAA3wAAAAAAAAA7AAAAAAAAADoAAAAAAAAADgAAAAAAAAAPAAAAAAAAAI8AAAAAAAAAhgAAAAAAAABJAAAAAAAAAEgAAAAAAAAA4AAAAAAAAADXAAAAAAAAAIYAAAAAAAAAjwAAAAAAAACQAAAAAAAAAIcAAAAAAAAA1wAAAAAAAADgAAAAAAAAAOEAAAAAAAAA2AAAAAAAAACHAAAAAAAAAJAAAAAAAAAAkQAAAAAAAACIAAAAAAAAANgAAAAAAAAA4QAAAAAAAADiAAAAAAAAANkAAAAAAAAAiAAAAAAAAACRAAAAAAAAAJIAAAAAAAAAiQAAAAAAAADZAAAAAAAAAOIAAAAAAAAA4wAAAAAAAADaAAAAAAAAAIkAAAAAAAAAkgAAAAAAAACTAAAAAAAAAIoAAAAAAAAA2gAAAAAAAADjAAAAAAAAAOQAAAAAAAAA2wAAAAAAAACKAAAAAAAAAJMAAAAAAAAAlAAAAAAAAACLAAAAAAAAANsAAAAAAAAA5AAAAAAAAADlAAAAAAAAANwAAAAAAAAAiwAAAAAAAACUAAAAAAAAAJUAAAAAAAAAjAAAAAAAAADcAAAAAAAAAOUAAAAAAAAA5gAAAAAAAADdAAAAAAAAAIwAAAAAAAAAlQAAAAAAAACWAAAAAAAAAI0AAAAAAAAA3QAAAAAAAADmAAAAAAAAAOcAAAAAAAAA3gAAAAAAAACNAAAAAAAAAJYAAAAAAAAAlwAAAAAAAACOAAAAAAAAAN4AAAAAAAAA5wAAAAAAAADoAAAAAAAAAN8AAAAAAAAAjgAAAAAAAACXAAAAAAAAABgAAAAAAAAAFwAAAAAAAADfAAAAAAAAAOgAAAAAAAAAPAAAAAAAAAA7AAAAAAAAAA8AAAAAAAAAEAAAAAAAAACYAAAAAAAAAI8AAAAAAAAASAAAAAAAAABHAAAAAAAAAOkAAAAAAAAA4AAAAAAAAACPAAAAAAAAAJgAAAAAAAAAmQAAAAAAAACQAAAAAAAAAOAAAAAAAAAA6QAAAAAAAADqAAAAAAAAAOEAAAAAAAAAkAAAAAAAAACZAAAAAAAAAJoAAAAAAAAAkQAAAAAAAADhAAAAAAAAAOoAAAAAAAAA6wAAAAAAAADiAAAAAAAAAJEAAAAAAAAAmgAAAAAAAACbAAAAAAAAAJIAAAAAAAAA4gAAAAAAAADrAAAAAAAAAOwAAAAAAAAA4wAAAAAAAACSAAAAAAAAAJsAAAAAAAAAnAAAAAAAAACTAAAAAAAAAOMAAAAAAAAA7AAAAAAAAADtAAAAAAAAAOQAAAAAAAAAkwAAAAAAAACcAAAAAAAAAJ0AAAAAAAAAlAAAAAAAAADkAAAAAAAAAO0AAAAAAAAA7gAAAAAAAADlAAAAAAAAAJQAAAAAAAAAnQAAAAAAAACeAAAAAAAAAJUAAAAAAAAA5QAAAAAAAADuAAAAAAAAAO8AAAAAAAAA5gAAAAAAAACVAAAAAAAAAJ4AAAAAAAAAnwAAAAAAAACWAAAAAAAAAOYAAAAAAAAA7wAAAAAAAADwAAAAAAAAAOcAAAAAAAAAlgAAAAAAAACfAAAAAAAAAKAAAAAAAAAAlwAAAAAAAADnAAAAAAAAAPAAAAAAAAAA8QAAAAAAAADoAAAAAAAAAJcAAAAAAAAAoAAAAAAAAAAZAAAAAAAAABgAAAAAAAAA6AAAAAAAAADxAAAAAAAAAD0AAAAAAAAAPAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAGgAAAAAAAACYAAAAAAAAAEcAAAAAAAAABwAAAAAAAABGAAAAAAAAAOkAAAAAAAAAmAAAAAAAAAAaAAAAAAAAABsAAAAAAAAAmQAAAAAAAADpAAAAAAAAAEYAAAAAAAAARQAAAAAAAADqAAAAAAAAAJkAAAAAAAAAGwAAAAAAAAAcAAAAAAAAAJoAAAAAAAAA6gAAAAAAAABFAAAAAAAAAEQAAAAAAAAA6wAAAAAAAACaAAAAAAAAABwAAAAAAAAAHQAAAAAAAACbAAAAAAAAAOsAAAAAAAAARAAAAAAAAABDAAAAAAAAAOwAAAAAAAAAmwAAAAAAAAAdAAAAAAAAAB4AAAAAAAAAnAAAAAAAAADsAAAAAAAAAEMAAAAAAAAAQgAAAAAAAADtAAAAAAAAAJwAAAAAAAAAHgAAAAAAAAAfAAAAAAAAAJ0AAAAAAAAA7QAAAAAAAABCAAAAAAAAAEEAAAAAAAAA7gAAAAAAAACdAAAAAAAAAB8AAAAAAAAAIAAAAAAAAACeAAAAAAAAAO4AAAAAAAAAQQAAAAAAAABAAAAAAAAAAO8AAAAAAAAAngAAAAAAAAAgAAAAAAAAACEAAAAAAAAAnwAAAAAAAADvAAAAAAAAAEAAAAAAAAAAPwAAAAAAAADwAAAAAAAAAJ8AAAAAAAAAIQAAAAAAAAAiAAAAAAAAAKAAAAAAAAAA8AAAAAAAAAA/AAAAAAAAAD4AAAAAAAAA8QAAAAAAAACgAAAAAAAAACIAAAAAAAAAAwAAAAAAAAAZAAAAAAAAAPEAAAAAAAAAPgAAAAAAAAAGAAAAAAAAAD0AAAAAAAAAIAMAAAAAAAAIAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAgAAAAAAAAACgAAAAAAAAAMAAAAAAAAAA4AAAAAAAAAEAAAAAAAAAASAAAAAAAAABQAAAAAAAAAFgAAAAAAAAAYAAAAAAAAABoAAAAAAAAAHAAAAAAAAAAeAAAAAAAAACAAAAAAAAAAIgAAAAAAAAAkAAAAAAAAACYAAAAAAAAAKAAAAAAAAAAqAAAAAAAAACwAAAAAAAAALgAAAAAAAAAwAAAAAAAAADIAAAAAAAAANAAAAAAAAAA2AAAAAAAAADgAAAAAAAAAOgAAAAAAAAA8AAAAAAAAAD4AAAAAAAAAAABAAAAAAAACAEAAAAAAAAQAQAAAAAAABgBAAAAAAAAIAEAAAAAAAAoAQAAAAAAADABAAAAAAAAOAEAAAAAAABAAQAAAAAAAEgBAAAAAAAAUAEAAAAAAABYAQAAAAAAAGABAAAAAAAAaAEAAAAAAABwAQAAAAAAAHgBAAAAAAAAgAEAAAAAAACIAQAAAAAAAJABAAAAAAAAmAEAAAAAAACgAQAAAAAAAKgBAAAAAAAAsAEAAAAAAAC4AQAAAAAAAMABAAAAAAAAyAEAAAAAAADQAQAAAAAAANgBAAAAAAAA4AEAAAAAAADoAQAAAAAAAPABAAAAAAAA+AEAAAAAAAAAAgAAAAAAAAgCAAAAAAAAEAIAAAAAAAAYAgAAAAAAACACAAAAAAAAKAIAAAAAAAAwAgAAAAAAADgCAAAAAAAAQAIAAAAAAABIAgAAAAAAAFACAAAAAAAAWAIAAAAAAABgAgAAAAAAAGgCAAAAAAAAcAIAAAAAAAB4AgAAAAAAAIACAAAAAAAAiAIAAAAAAACQAgAAAAAAAJgCAAAAAAAAoAIAAAAAAACoAgAAAAAAALACAAAAAAAAuAIAAAAAAADAAgAAAAAAAMgCAAAAAAAA0AIAAAAAAADYAgAAAAAAAOACAAAAAAAA6AIAAAAAAADwAgAAAAAAAPgCAAAAAAAAAAMAAAAAAAAIAwAAAAAAABADAAAAAAAAGAMAAAAAAAAgAwAAAAAAAA==ZAAAAAAAAAAMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM + </AppendedData> +</VTKFile> -- GitLab