From 42f92c3ad65ba59bebceadfbe3986b83ff34254e Mon Sep 17 00:00:00 2001
From: Wenqing Wang <wenqing.wang@ufz.de>
Date: Wed, 28 Feb 2024 12:53:13 +0100
Subject: [PATCH] [CTest/TRM] A modification of A2 for the effective initial
 stress

---
 .../ThermoRichardsMechanics/Tests.cmake       |  15 +++
 .../MFront/A2/A2_effective_stress0.xml        | 101 ++++++++++++++++++
 .../A2/mfront_A2_ts_76_t_2764800.000000.vtu   |  39 +++++++
 3 files changed, 155 insertions(+)
 create mode 100644 Tests/Data/ThermoRichardsMechanics/MFront/A2/A2_effective_stress0.xml
 create mode 100644 Tests/Data/ThermoRichardsMechanics/MFront/A2/mfront_A2_ts_76_t_2764800.000000.vtu

diff --git a/ProcessLib/ThermoRichardsMechanics/Tests.cmake b/ProcessLib/ThermoRichardsMechanics/Tests.cmake
index d08ec317ed2..af3d0db7736 100644
--- a/ProcessLib/ThermoRichardsMechanics/Tests.cmake
+++ b/ProcessLib/ThermoRichardsMechanics/Tests.cmake
@@ -472,6 +472,21 @@ if(OGS_USE_MFRONT)
 
     if (NOT OGS_USE_MPI)
         OgsTest(PROJECTFILE ThermoRichardsMechanics/MFront/A2/A2.xml RUNTIME 18)
+        AddTest(
+            NAME ThermoRichardsMechanics_A2_effective_initial_stress
+            PATH ThermoRichardsMechanics/MFront/A2
+            RUNTIME 1
+            EXECUTABLE ogs
+            EXECUTABLE_ARGS A2_effective_stress0.xml
+            WRAPPER time
+            TESTER vtkdiff
+            DIFF_DATA
+            A2_ts_76_t_2764800.000000.vtu A2_effective_stess0_test_ts_76_t_2764800.000000.vtu displacement displacement 1e-10 1e-10
+            A2_ts_76_t_2764800.000000.vtu A2_effective_stess0_test_ts_76_t_2764800.000000.vtu pressure pressure 1e-9 1e-8
+            A2_ts_76_t_2764800.000000.vtu A2_effective_stess0_test_ts_76_t_2764800.000000.vtu temperature temperature 1e-10 1e-10
+            A2_ts_76_t_2764800.000000.vtu A2_effective_stess0_test_ts_76_t_2764800.000000.vtu epsilon epsilon 1e-10 1e-10
+            mfront_A2_ts_76_t_2764800.000000.vtu A2_effective_stess0_test_ts_76_t_2764800.000000.vtu sigma_total sigma_total 5e-8 1e-8
+        )
     endif()
 endif()
 
diff --git a/Tests/Data/ThermoRichardsMechanics/MFront/A2/A2_effective_stress0.xml b/Tests/Data/ThermoRichardsMechanics/MFront/A2/A2_effective_stress0.xml
new file mode 100644
index 00000000000..a50b12c4231
--- /dev/null
+++ b/Tests/Data/ThermoRichardsMechanics/MFront/A2/A2_effective_stress0.xml
@@ -0,0 +1,101 @@
+<?xml version='1.0' encoding='ISO-8859-1'?>
+<OpenGeoSysProjectDiff base_file="A2.prj">
+    <add sel="/*/processes/process"><subtype>StressSaturation_StrainPressureTemperature</subtype></add>
+
+    <remove sel="/*/processes/process[1]/initial_stress"/>
+    <add sel="/*/processes/process[1]">
+        <initial_stress type = "effective">sigma0</initial_stress>
+    </add>
+
+    <!-- Remove in reverse order, because the later commands will operate on the modified XML tree -->
+    <remove sel="/*/processes/process/constitutive_relation[2]" />
+    <remove sel="/*/processes/process/constitutive_relation[1]" />
+
+    <add sel="/*/processes/process">
+        <constitutive_relation id="0">
+            <type>MFront</type>
+            <behaviour>ThermoPoroElasticity</behaviour>
+            <material_properties>
+                <material_property name="YoungModulus" parameter="E"/>
+                <material_property name="PoissonRatio" parameter="nu"/>
+                <material_property name="ThermalExpansion" parameter="alpha"/>
+                <material_property name="BiotCoefficient" parameter="alpha_B"/>
+                <material_property name="BishopsExponent" parameter="m_chi"/>
+                <material_property name="ResidualLiquidSaturation" parameter="S_L_res"/>
+                <material_property name="ResidualGasSaturation" parameter="S_G_res"/>
+                <material_property name="BubblePressure" parameter="p_b"/>
+                <material_property name="VanGenuchtenExponent_m" parameter="m_S"/>
+            </material_properties>
+        </constitutive_relation>
+        <constitutive_relation id="1">
+            <type>MFront</type>
+            <behaviour>ThermoPoroElasticity</behaviour>
+            <material_properties>
+                <material_property name="YoungModulus" parameter="E"/>
+                <material_property name="PoissonRatio" parameter="nu"/>
+                <material_property name="ThermalExpansion" parameter="alpha"/>
+                <material_property name="BiotCoefficient" parameter="alpha_B"/>
+                <material_property name="BishopsExponent" parameter="m_chi"/>
+                <material_property name="ResidualLiquidSaturation" parameter="S_L_res"/>
+                <material_property name="ResidualGasSaturation" parameter="S_G_res"/>
+                <material_property name="BubblePressure" parameter="p_b"/>
+                <material_property name="VanGenuchtenExponent_m" parameter="m_S"/>
+            </material_properties>
+        </constitutive_relation>
+    </add>
+
+    <!-- Add parameters for the extended MFront model -->
+    <add sel="/*/parameters">
+        <parameter>
+            <name>alpha</name>
+            <type>Constant</type>
+            <value>1e-5</value>
+        </parameter>
+        <parameter>
+            <name>alpha_B</name>
+            <type>Constant</type>
+            <value>0.6</value>
+        </parameter>
+        <parameter>
+            <name>m_chi</name>
+            <type>Constant</type>
+            <value>1</value>
+        </parameter>
+        <parameter>
+            <name>S_L_res</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+        <parameter>
+            <name>S_G_res</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+        <parameter>
+            <name>p_b</name>
+            <type>Constant</type>
+            <value>42e6</value>
+        </parameter>
+        <parameter>
+            <name>m_S</name>
+            <type>Constant</type>
+            <value>0.4</value>
+        </parameter>
+    </add>
+
+    <!-- Replace name of stress output -->
+    <remove sel="/*/time_loop/output/variables/variable[text()=&quot;sigma&quot;]" />
+    <add sel="/*/time_loop/output/variables">
+        <variable>sigma_total</variable>
+    </add>
+    <remove sel="/*/processes/process/secondary_variables/secondary_variable[@internal_name=&quot;sigma&quot;]" />
+    <add sel="/*/processes/process/secondary_variables">
+        <secondary_variable internal_name="sigma_total" output_name="sigma_total" />
+    </add>
+   
+    <replace msel="/*/time_loop/output/prefix/text()">
+        A2_effective_stess0_test
+    </replace>
+
+    <remove sel="/*/test_definition" />
+</OpenGeoSysProjectDiff>
diff --git a/Tests/Data/ThermoRichardsMechanics/MFront/A2/mfront_A2_ts_76_t_2764800.000000.vtu b/Tests/Data/ThermoRichardsMechanics/MFront/A2/mfront_A2_ts_76_t_2764800.000000.vtu
new file mode 100644
index 00000000000..b97ce52ac11
--- /dev/null
+++ b/Tests/Data/ThermoRichardsMechanics/MFront/A2/mfront_A2_ts_76_t_2764800.000000.vtu
@@ -0,0 +1,39 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
+    </FieldData>
+    <Piece NumberOfPoints="216"                  NumberOfCells="125"                 >
+      <PointData>
+        <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-4.5231774705e-14"    RangeMax="4.3773366716e-14"     offset="92"                  />
+        <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-7.3317472273e-08"    RangeMax="1.001484651e-08"      offset="2440"                />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="580007.21145"         offset="4000"                />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.0010292756203"      offset="6968"                />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="6" format="appended" RangeMin="6.4161751728e-19"     RangeMax="0.0030659565772"      offset="12092"               />
+        <DataArray type="Float64" Name="liquid_density" format="appended" RangeMin="1197.969647"          RangeMax="1200.0504421"         offset="25460"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000"               RangeMax="4000000"              offset="26760"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="1"                    RangeMax="1"                    offset="28004"               />
+        <DataArray type="Float64" Name="sigma_total" NumberOfComponents="6" format="appended" RangeMin="10326474.73"          RangeMax="22530258.588"         offset="28180"               />
+        <DataArray type="Float64" Name="temperature" format="appended" RangeMin="298.15"               RangeMax="298.15"               offset="41420"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="3" format="appended" RangeMin="5.4571134926e-26"     RangeMax="6.4150438127e-10"     offset="41608"               />
+        <DataArray type="Float64" Name="viscosity" format="appended" RangeMin="0.0015"               RangeMax="0.0015"               offset="46748"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Float64" Name="liquid_density_avg" format="appended" RangeMin="1198.1571416"         RangeMax="1200.2066159"         offset="46920"               />
+        <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.0015"               RangeMax="0.0015"               offset="47996"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="1.7320508076"         offset="48076"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="48848"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="50444"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="50748"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Y1NrYw1k1PNjVITUpKMtFLySwqqQQAVPEHbQ==AQAAAAAAAAAAgAAAAAAAAMAGAAAAAAAAwAYAAAAAAAA=eF4tyn081HkeAHCTp32NiRkzGIyn0WQmFRaj8vuGOJuHYsvTIY+xk4fKZN0Vu+Qhj7WEljux5SHddll0ss33Iw+tdV5y7VAeq0HElOeYGOler3vd+++3gsL/pL3e/sfy58+KqEOOhMGZS0RNwES4zGwN583GFzdY7oDppBXXhxUaoPD/79P5lGGn/QzniufvzfBVQEqTD7279jvhndzE7Ch+SUQUHkcXa79A1OpZ+3yqJtj8WS73b6EB+6cXZm+l6kiTV9lfspeMrmi9C+tx1oB66am1yuRFPFHfWyZ3fY5nFg7HRUg1YPuU5f3sw2QUOl38NsNUCX0OjlYzV/8Dq0DcPcsjS4RXW+ZSTZoiGreZHpo+uEr0vaIOEO3bRPm+vsIsFg2qRDeXHnCVUFlZ/G9ZtEmCFeVwgGMvJdpcd9XMRytDu6A+/VmaCBdYX9epdZoletXzhdkfKEhlaERKyF7hlkv+kZ4yMnyfTysfLX6LJYcLg83P3cGT34HD8BoFZeY4cFuPLBP+aeTk3OoP2JDz0kpjWh+KhsQeb8x54Nn3l4xe8QJW14kpDVbXAHJFrYWghouMeV/pWZszkIur3si/eknATalfLk3iQTM/L2n8khZUSX2oA+EmUFa1EerFE+OfDH72iG9dw1Pf29pGeJLRfp+LtuFBL/DXz+uKmrsYYHXS6tl74SJ2F/41wD5HAc5bVl4NTJ7BXmMbHTsaJgmhKNiuM58L1bbpv4xd04U2UpDC181mcCF9tMHlpiEi+9oxs2wYwCwRQW1dO+F4OXQ+6o4qrKgLeqaoJMQKsXbkyrTgg3bLRBCNAmzRmSrN6AkimdPQEJUsxxgV2cuDGOh0/yNGcLAOIi8+Sk35jQGGJTOjLCsa5B+VivRi5rGKBSdUzp/DnI1YN4r5DhRnX264nGeK+D9GFdl4mIDChPKARh4NdcZI85PiJURknhFyf2IAD7X0xcJLhmjk9G1nyT4D2HqpXPG49BNm/tzWrbypjUqcBa8NnypCIUr0FjgPEkuoIuBKqxqIHt2/Tl6loS+HdEnNt02Q0t8rfs8xmCbekNqzCnQMYIh4vCA4r4Ys/QPiBF2dxAq374xejTq60cGy9zAxhMG5aMV//irB3BZ7vl7/Z4LZaVDtOygjTix/U7Q7dgfg1KmIjC01NHD+BMfynhGIcxIqkyOZcO1Tzt6sVySgiB94PzzZS4QVBloU24kJX5MLH+hsOnorHb5oFa6FKkizsi5dBUT31dM8e1ANJZIWbXlOK4RSknaKhSMdTQnOZKz+Wx9VePlOKRrJsOTyrjZ3mjI8KWmKXeMPYGb1ZuGWBQOS9vT6jB/TQ4+INt4dsimY/qCSZBxpBikuQ6OTZ/Vh+MRsRZDJAmGzzyt4U9xJbMXj5vud/fi7cu/JDGcKEpEJ1dL9qiiX66XYd1sBnRVqW+g50JDOnluN2Yc2ieusGZ2I/H6CH3WYda6fBWUr47xkUzpK8VML83bbxGaqPFc95UkiWKV23Npom0i4nz1jN8ZA7WHi0W1HOohvma5b/aKFknSe5vnfVoFgG/W/rX+S4tYfB6r6BFQ4njtcED6kDE2xTRnseAX4YrVq+261mCjydR2YvvER9+xsPF+ZLMPgN7u0dYMNLv6xbh5PWCiMORfidEABXmz0px6N00Gt0ysOGzpLeHW8M6HuoiqMVIa5JZyjg2vomZt/2BihYc/clcG890Q35cWf6hoNISYuxT81cBSPm2bNaDZyUEnVkck6x1Ws0lg/EPueCqNGbr7jyWyQGMSV9szpoPZm27tsQzXoMYQfeL3rREFI1pPTbhRIupk5VvmcgiTd68zjWe3E8ZqX02ltNBTCpF9glesibXli0x4qGcmurbgp3trEfvXRV4/soiL3hwlzh1bpECkS+EmODmOPc8Ypx7J3wlnO5KbXyY9YU9Y1+mX7Nu5m6As71j9hXTOXaLr1Tvhm5N23jop0xJ+cf3dgkAUF3C6rAioVbTbxAhPCaSAJOxUzsbWOG2T85uqPmihC7C7o2toNV/1zJKRoGsTtXdzX1vyR8CmpshZFa6NLnGP3DvpTEKcyKL33K11YCPPbT4rUR1Y57kp77mqDVdbC7gdyRXR3XMWzyFMJWpyvVG8wJrF4USuwX4MKV4oWyuy1dsJSgMW3Y4kb2OdxulImiYMidfNr2gs2MXuAb71XXRfl1ySqhgmN0fXSX4cDLzPQtFz5OVvDGJUuUNxvxGtBgmSkuMaKCnPWqQuvd6nCoXVTIf8/b4j8bqdVtpMBtGgmnAoxo0CrizWT/ZoE/wXcvTNTAQAAAAAAAAAAgAAAAAAAAMAGAAAAAAAAbwQAAAAAAAA=eF5VVG1MU1cY7iIDJsqA1Or4Eii1oVBtKS20p/d4x8ePlk/d+ApkOJfMZA5xdMyBw13UZOgcY7JN0W0Z4EIWhzoNAl5gFUMzJnYDhiGbIkw+JhYUnIpLJbuH894l9kefvOc85z3vfc77PhLJ8o9bETq1I+kdppuGMYjiRsBoVCCfbN3rCscS4Nsa8XhXTybwEeWxicD35qs7UiZHH2twW8PcWH9VYveX1/X5HU9fA76Ef+acPRn1LdqPzhyMgfxhsC8F1AGGA+rRK62nnvBvRgJfA+uRgBJu+d/+MtRz31SinfGtUKzB8luVFo+iKNzpueKP0u3xuLOuMWA4MxZXujtWpYwo8ZxPT+Dhv2RYfuBC8lXpU6ZCwiiILpn1VTcKR/OhfhbyxgLq+abfF/NSHRr8qOlAM9HlzPOZq5UXdgLfQnljWcA38wkViVOpPZtxdoY9g+gSV+P8KueMDfhpwCukyLGo+PRs92SbCb7XCN8ZwYv7FK1wTosmjzDfWmQ64CuAD3pwKRRrc0D/SHTt7efqr/wmx+au8mVd2Aj/vPaqFNw+Vz1jWWJx2fB6abncgANva7ItOQpcHHfxowaDD+RfB3UkwT0qQAXU44dOnPI5WJYRDfxgsR5AE0U2HfhSfnTXxBbnqBH4Yh/eN1FMpXFYAUXWgPraXP/W2/XAlwJfAxgKKPaVL/JalT3DxWyifM4A63JRb4hBVztGDXd/nnOpwvDSw5ekpF+czi/uEl0CzuvWuR0mPJQ//Kq8U4uTDklxzaZwbFA7JnqjPcV5gfsZmtduBb02Ayp59Dho+mRPBNQDddszQZc8qCce8kSjD9krxZ0OLeRXwbqYD953dy7FbVno8vrxhsQFNfCVkE/sIz3cZ/z/vTagN2L32RSUb9cC7+9LNIY5D9PDuj+f07y36vs0GVbZb8nIHEnmS0JIv9wO8igkujTtq0gOcSixir255VHeWjxQPLLfo3yJWT7OMXCvDHCRvrP4LpyUn9GVGJhfA2g9rDh/aroflg51iHW+iGoqlGk9Q+BXXAK8K+xzkTRmYS63xaO+utatMp/QZ/kszBMn+lo8nNcgv4SF7374bA3lj5lhH3QUfSEL+ijLyMve+7FFV+KJSx4M5hJ/0U64PyVzFPDnQinpl/b5xq+JLv0K98fHkRfesDLwXlDtHGO1FKUS3x1+QTVvFfylrXd64F1hjmptr79P+sXlK/vHLOhi/mnt5PWAJ8xh61v7ie/aosYVxF/0I0darglzpEn/xpv0S1TOaX+iS7D6XJGj1wuf6PzFfUfw3e1X69TEX4YOfc6RORp8WOZP+mXpkzuriS6mqumW1pUe2FVQfZ74bvNQVwHxl2DVng/IHKlt9UuVQr8Y86vPEV22Dhy79OCymxkMSYohvrsz1uci8ZcbwTf9ZoU5smnax0i/VMYN7IkTdMnYhXTtU7OM/3hpbr/gu971mqONgr+oz0aPOoQ5QmcHEj2Ffpk6tiM3VNAl3eW78d5uJ/Mf7KjQLw==AQAAAAAAAAAAgAAAAAAAAEAUAAAAAAAAjwgAAAAAAAA=eF51V3lcFEcWbgHn0HAIOqDI5bJuokbZeAZpnRavCGq4VkSEVcBjRTMiHoDg6K4KhIgYIkgIgiBXTBgRWTWW9BCyjhciGVbESWQRLzAcUWcGI7Bspl/1TiH9z/vVV6/e++odVdUU9fsnp94qD6FbZTvss1e+klb4hV4NsBnGGPALdPHM0tBvNgoY7XZVz9IF1hyuQK0eQUE/nBUx8bfHiC06LTEeGBCa0ItEzLcm3yz7apwlk6zVvr6zWss+8bMdW9ipl7Yc/0+ppaRf+nYeIFNog2Tp+tyu8Nm1VmCfw1W0jcQzcsU5Fw6vo2G9ev4/y7urnRhjeyoUczKG8hc6MenJqmMffSpQwnxlUUyaj8CSCW5NMR8/Uy81oBVo9JyHGbtnUQz4M0g1OiOYHjPZaxzer0GytCwlIWJOvTOHaxCss/ZwDv96PclHgZ62jJz0osmRaegKuZFjJuT4KOhEvXv79fsWjD7sbPqq/BEM2A9Iev/XXDXEQU2DHacTw05JSsAvC3xQxonE7eWXwC+OG9o+de3Gbc8cCZylK4NnfleX58j4O/VUmiUCH0ou2JnM/lRgwTyncqP3uYqxnw0flQvsl0PeIT4KOjfhXscdT3K/LGp4/uDYQz3pV4HiE6Ys9SnFOI7nqlteT2rjHJkJPtucTj8DPiwdsrFq4cUYC+ZPsrZHvtN6pFuOVn18UqRjN4TJI2dJoa4UKNV23TS3aUKlrzZv4s4P+Ppc4zm6b1GUUDk1LaqxQmeB95Mh/VLwuEKolC44GlCpsMD65m6u9XYD/n9pas1o3GvBfFbzj9YzY/SsTeCEoLtmetYsX1v5fFufVO2f73v++5fSCju1xNG728CDPcftMxfdOh3pklU9itinii52nhu7Ps2OyCsl3z3cPK/lGuB1CNb1Rqeens7yeE1W8q739guUP0+Icw1+JsJx/y5v5uN/2Qw3zoO8EvjgvBukGhnpYRz8NnLjVm4MPBu5cRcnm5H9sfpnLd9KuHypcD3Kir333GywGdSvnB7pj5MavN4gIW7AB3iT9nj+h+bObtrvaIv7C/QSPqsvKkoZ3MfGEvyDXT4PBtlCzGuGiBvgLGoao0ssOw58+H1/uORO1gHHsWS+uXmIIxl30CPzBXz4euL0uHnsl5atj15wo5PkQ8klI3+MmP6umNGkKfNDnHD/wXqU9Xe6ds5CHFccl1cTlJX9Bwfjpw61aa5Uk3loRJn2ERersP9m+ssXk7c+tRUpJ+sXFZcLRfgcCtyeoZFcfYeR3hy+eY8t1DU+72jXuf2piQ7QFxAPBYp9mXauoQxwnGe0aUTKq8OlgEOe6ujs6uJx0eU87n5p9jz5fYEy4uV8PaMWYTvnTe1qDtTaE3axpI0l8FQTY/4+M15fR+jDWIXKzW6YJPTj/sJ+xieM/Ln0MlnPkPdmTo+/lwwS+oe/Bzg9yA/Ok0FCn/F+az9eWR72F8gfX3/t9K/U6q1Qz3zfGQRZryRfMn7N3HwLYQfmgW8b6k7vvyc8R9aZms6OoibO+4WsA5A4LpzE/AiejUPo4Tgi47EGzaou1yzU4fjgOLeHv9+jocSMvvf+sadL+PvWIFR07KRZ4R2bYR0+l9AUH/egNQXk/lS0x0G3R1YNWB/40Ad2vnGWaXn9At+7wlkSkfJopptshgj6a+Dd5uVM+zeLmfbF8UHh+VDnuI/oTDbrp5Zmsr9YdFArk925TfaRAj0sc5NOxX3En3/zLrwcVVWC7y/6w6O5BV7uQuVXJ9EaGQK/Ktpk1I1X6ZVQP2S/PIZ9Q164MeSnmcA7iDzjfiLsqJBDgfPjCB8y7pS84NGJ7iVhuJ4R4MZjXC9D1AU+l4kx8IA4AU8NfSBRYd+UOCivaHnbMpfy1+T7YCg+0P8whriQ5wBZ9yyh30j39q08cuR7ko+aZlRJ+87i94qKsEOea9gurMfxN54n98XXI+gXCk+alHWQ900dPfJmwDbxv0VMzihR5h92CYl5FmlfrDvofgTWwf4oefamT+LbK0l7lHxF/I9F4+8Oxt/9a0GX5XMeTzmf4P+FiUhpHTs29FMd/65PXxfpLmLFTIbnpvrVW/A7GsdpiWy/6efroL7489bOPDDOZAr5LqijF2+KezD/GcSbv993LDy8aDrCfYqiXOxENauFyifXZqwJuIDvL/qdzh6tbR7ZX/g8JvL/HHBO4voh8kPmiXw3UfLbwS39xzaQcdSg6w5ukVZBwAfqASSc+3UEDu9Rsi7Ic7gN+BK8VHTqixJJPn6v8P1zSjTfNsqU7Hd8ThD+SJzkD31NvsvIflPQM0/H6joLB72f6JsWvz345CqZb7xPwg55PwI/3p7xGPLP/y9zOO1ZwVyOqxp8D621PZV6pErE1C5ecuZQNNQ5f278MbjJ5ex+/K7Efq0WN010PwE48KbkOZM6diefIfVVtMR3tJ3HRR7PPa6KSrouVDqNVpdcqeL7WjfizZ/f/PBaWrDLeeSunNdSk//B3r0szN+bJ/t6aiT3P+1tjvna7UttiG4TMyZGOCUv3GO1XLqKxBVoa8lti5h2EdPbP/B5mSutr7n5uZjr2L7NjSsKr+ql/b/jvWzIFbS+KZX/fzc1toPjb7DvQMRv4P4zwvn+GmaEE/kdwHPfU9Khdvx7oo/j6Xj51vkkAfABv8CHz7exfb4ezN6KD6XP49l6c63fDOJ9M+C35qWlRWYEnIMkHxbvy9g+z9M4PhAHSm46hL4hLw7KpWkNBZF+/P/MGy4+l8RerQva+f9niBvogR3KyD7xX4VxzJ/Q598xvRwfk8CclPi/8fEBPof3uN8MUeqliUnynr3WOhbqiluPIkUztng4CJX9RjwpeXqEeG8+xPv/6vmyW51rmDeJs7TgQn3XsrVC5W+cnQynrg+e7tCxRd2pgT7hOraX8/tfaKzZnQ==AQAAAAAAAAAAgAAAAAAAAEAUAAAAAAAA4g4AAAAAAAA=eF6VmHk4lF//x4exb9l3sk/KniWFaJ1Qtq8laxQqS2UXIqkQIntRKSmKtEnJ+TxZKkSFiqKSPYYx9v3xT/d9Xc/8ftdzPZ8/X3PPec+Zc96f5SYQ/u/weEv4bOVBhv/kzJNMTM9HtOl4ne1P78ExOTrObvHrrpEHLx3/X6Pu1pNWYcpeyNtXGUSsGER/+UCyw11qrgZ8INukM8YIYDrKTYyqDiEyMJzcPp52cBV7/l7pwVANE26QODMoyyVDw/jfuHli8DyhYoSO/2jh8GWs3o2tH7siS7NWVIHiBvYgH6Iyxj2fdDoS8mRgR3qGUSqzIMY/nrm8W8NNCIb3X3DfpsiKcQGBL4k5HMwgM3k/75vRIp1un7+BQuLdaXpuWVZdvoz/38ePU0stFblBuYu4hewljvEoFrGPYj68UKxg6mZxAD+HFIZTTy8dZgVB4lckwknE+KnrSVeTquaRHaO65buGeTrdqs+lG6tvTNHxjn/5KivXcWDrFA1cZOHXmkQ+/EGPWqdZML4u42ueV8kiijPu+aMyQsB4odW3M4PW82j7/nIL1foZbH2tCcmkP9YUpFWwItFUO0any6czGejGPUzH/zPqpI64h8sN0T2n1azfwreB/h4Emg6l0NZN0PHNQR1heQ19/1Xv/wtbTw2yaLcl7IwUr9au3Yztv8fwk1vsHQPY1b+F00VHFeMaXFnr379UgFvCcS861WUwPvy6+qM7kzBwVVA+Hb3BjXFDbl8RvVwuOr9BbTbb4zg2XO+taMOtSipSKel40RZgCWZOsVvz7mjCbH9Z49npBUS7tLz3K0Ufxldy1MztNoDS3qm5ShtWmOd1CzG/JQc8ml0nPTdIwnRBBPPQx0XUfJES/ntBABLdD33fcooDmgYdH4fcoqL3bL71DeKcmK7Qs/QDJ3j+IO9BqXuTzrgPFK+lBs3ObIT6N3UlfjG60MntO9IvJA1Z+i0muXoS0Hc7vdjgrTJw5/c51caIQ/X2e3ykM9xwizVUw6ZPFGxuOfsddOSHHQl2ad83MkGFqOHgy4F1AKyTTiusRJhSE04V2DqPpOqO5eZp4rptX8hsm0ynkOCH5t+HopgwzurVNFF6QRKKzKSixdb0Pgwd0l2IJ4LLAN+Qj60gqOWeCPbVEoK2lDxB33R22N6b9Xl+nB1sNAJauxN5gbUifqXhKhOYxZrq3FVjAIsY3+EsKis83fX8RLfzLCI2cNA038wicnS+C/9nRkw3WNnFx99jEuX05+triTBgPCy2mduOmw1geNddVyMuoARxO3dvoyHNuqSh66tE4Ey5qDdeyAFi2yoPjLLMo+KkT+d+b19GCjozLQxRLCB4lta3oWIGJe526ap2mkIPyKTQ1dOM4PkgSyOddQQVG+jsHCsZRVXp+pVvpPB8GaSZel0udBC9NvMf39S7RHfvVccltyk0s0DSxv1ecZkD2Oc1B385dtczQ35QBvkxL+6jfv/OmRZPIvx+KRCc3TWOcQTWlNooAvi+YN8lqdeLcUHtLW8bL9HrqgxuNXMYWKDjkufy5AiDO6Dxud87Dm/cL5l5vPdrv2yFo3FdOzNNZTFuRruqa+WjBuBATbmkKIJxj4gHSWOH5eCbqSH7sQ48f9HKS6uKe8To/GWua/GEJVYY46tjdveMvolCgMIH5oWO7WDvrhHOaS4FBtwyDwvFueBTbY3a5SN6cNjd/51EqjSkfZJokTVbQfuFUtivVW0Ch8ugMOMvCN1s/VYfYqYQmRhMCOaUBZNtckS+UCZ4eC08m2ft3BY/bJM9fUEU032RU2SuzzOArJccawMjhTCumuQp/VpRAvJ7SlySyrQgIvNp6TfiOhizYXiXrckP7JXz714wqEGNe7dCUy4/JD+8IGR2gHUtHzXVqNopQEyuDeka4oSXp2O5q7asIKnMR5aH2yRAJuhzmmvdMuo+syO4p3kKOe0QP9imgOumpvWUzpMm0KPbaiIpvfx4XToQ0GDjKwj33luZ3KlWgB8UgntI7jJ66sxTJR/IA33N2VyfPsiCc/iNk/XljGCjOOft0EmEXUJL7E6vJOBqclSgsBoBZsxno7/nLiKnxkDvjggh6CjfdP5VBQ2dmI1rT78/iZbEQ+Y7DvBhukFHUgdcI6lI1kVb1+XuOoyXXj5ZZRhMBOKlHvEybTH4curzvsNPRlFUTcNrPXUCLKcqPC9+IALWt7PD71yYQgmhBa2kA7No1f1Fie1xQWjvZmvnuEJD9VJk1yP+VGReuOXcrnFeOF+8SaE+fABJlR9yjmYdQk1VBXpGH/D87Gb7VMVzqhf5PISIPb/w+vk3Xu0ID2uVFAL9USMyyyLuizFJaWqboiBkRYZEJQdQMM4v7bJP4BsfyIcu35Pxw/uYnX5dlhUXecB6Nyhsd/+F+8aVG02k0OvqBMb6rV/HTseHKEfW27PqA/f6XkICDd9HY6TdZYN2HWgJLq00DsTP+U0EyXeZTQOitnofMVTB6xTXNhn18/5KUM885U3RxfNN1bHIBqsaGTrdZxVGcvFPpDD+6ACv/lYaE9wkcZBPFOpCzBvj4R8v2cCDMvo7Np4BqNusHiR/2wyuib8MWvfwQtenp8JTL2dQyXtTD+s7qrDC9qY6kswBWsf/gfFkCiIttqpdEVIETqnH7m12S4ivTUnyl2c/Ol/822zk13pMd+RSxcTPo7/RrDHXzYfekhjPF8sbGfbhgWGnJ7ouExpgbIFk//wkQILxjjNcmuzwmtRsUKusBq7/ZN3ISmGBDZQ8fuVqAqgr5YpmpJLAVEPcrZ2LCHKMN3dKruXpCDPHDsEHsiAzOkzQOTKNAo/6XDR+TkUXjieI5tRJYLqktzm63ZOjiGFHY4iOOJ6Xeqt6dRwy2UAlf3bTNCcJUmZ0Sd7+k0jiJwvDeS5mmDxFtT4prwhTdyQ9Vs0WkYhwBqXKYQWlT+xjKomQBWoNw6VeqTlk2MB+KcFjGhVxTYwaDkmACcf2MpH4USRhRKOeU6Qi7WbKfD4znjcZd1Ue9BEcRXNVApy1mngeYKqJSrxftojy1VVzalxkIJrYLCBqPoDiEw+5wcgsuqoWla3ZLg2KKuGfB05T0YKdr+DJjgmktlStJ9IoDvGfDJ0a6scQ9YVum5/8H5RywaG0PV4YvAe4kt1v/0ZmXvJvqrt6UWa0y3C5Iz4HPAqrPdEq2YOUw5IMPRTwe/k3ppz3BJSzSELGmjFvc/Rg95An4z3tTJM4dFZyPAp7gPeXpNCSieyvInDBOE5KTQXvJ608Odg9otbywNtifiulbryuWbmZK03w0emKTeT775mnn4ti4xoTPlVrw+ON5MgJk2VsneH7hrqjKpvBt0AgBSqYse8dD9ptcH2vOgSybTN5Bngfz7VnJxIeI8HtvCg5Ausstg61U9HRr5F+Tqsk9saaD+O+e5CWXry3fg6tKt6LFrDaDGQGk5aksQW07+bYwMzRGXR2omdXeq8miPm8vTIyQgQvQkd9du4EKrSdZ7Q6qAq8bZfSOrcwQljGaKhzzB80VNQ+drpECaq7ufoY1+4zb4mB/37dftSsr53DM4PXY57L8tO2Tr3oaUDatPdW/Pe8bD23N7OOESa3cEpPXlOHavuvbSEDU0hs3FCvTJYBuIIbv5MCVKFYlul+udUqOuadZlPnsogyniUdW07bAGR391PsvMuItL4vvbh/Ct25d+xtVoQ88HxrVrTYP4F2hPgLR/+moh87S9/EPcL9XlJusXizZwydp1VSrszhfj+sf0XN6gkDqN28IxXVRYIbvkLJwyEUlJhjGKKgRADjloIcCFQClYH1p5v8Z9DD4sL3TLwLKKFD7OtjE3lY+qy2W2jvNBKX9hhXW+vHAsoExAqerQev9CeHj5UOoxk+48z916moSY2l89cLfJ4L96Q6nfIeQynB7FoX2/G6f7LLTblkbV8/ilmkzTXk4OP2FtlugX5knrhAFN0xiRw3JJG8bGXh+eefqRq2VORrHLb1RsE40jzhGBh/Rxr2TQX18UaMo3MsX5+1E4bReOvxpHhtcVBPyjRN1u5FrbIihfYxfUjd/i0lpQvvc3L4JQKWCn4jLsfeLwHpuN//Rui+iICt/DKwYXZ30bM/uL+oZ+3jkj9KA0sZh8INoVGMO7zMOGtwRwJGT7lHPjTB69fXT6v21wVFoSvsY4l9Gl6/dLRjtU450+vy3r2/vvkfQTpuf7FmZrONFpSb8pyvncH764zdP9mU9mhCiGbzyrsKfF65235W+nW0KqhwPztbYoPXSf8ETpbZPhLE+zEduOeF1y9bpREB8VfydLrvNhbt7VXCfXcV5P1uvCdASVVI5EsLTTB99E8ZvFnrf0MjrzCeXUVl3w46J9ppgPrF288DxtjBq/2J3P7jC4h9dKZCgUEFvsS4mYsXsQHToIgJal3zwcgXMeF2JTD8crXWxH8ZNT6N+VzYTEX3bvuH/ljCdTPCjzmSn42hoU0uqvXncd9ds5aPsw3igIG6V2xOsarwwcBeyO1fiyjmsTm341s2qP1RWD4ztQmKBAMfdoUygx45LS3oPRPkxmeanzbaAHGVffnWYUwQ9HzGffQMASgsz4W45BUg81Db5dy4OcRTKcbWWb+AzvvnbdwohOve9E79wxo7h8IlrhUIt+K++2o+53HhHDswTtayt+eSoDJ2ZchGYBotJhoa7aWxQnVTQjTjOSUYIg8ocXkQ4JC6/V0ZDSawyQb1+gF5kDizXkjFdxXt1z1bwCNBgC+u0Xo0giwcGrwgen+UtjavdiZ4Wi4gW9q6uFfFeF9hzhscFSw/h6zsDu8LWsTrrG1ZoWBY/wry6do8Iya4ljdsEhwsOKjIVf4mrX1+Cak0Fpz8aC8HX2U0DbKk55Fg1rVwmbA5tCTvGrPvigzoStQaxJPnkOWtkJC8G5OoPvI7WUNZCmLOMkjtPkxBcS0RnY6iVOR1pPPnkhzud8m4K98Z1voT0+D52KZZ3O9/w7KlzZ5oKQt7/WZd3nvgPnKu+On06LkMsAUtE6T24O9Thu7bL7UkSoPN7Q3WRdn4e6Wi6aLrPDslgM+tO9pM5Q/GXYtWmig19LoWDM1DiR9E4N9pH4HpAQAAAAAAAAAAgAAAAAAAAIAoAAAAAAAACCcAAAAAAAA=eF4tl3c8Ft77/43bzLhve++9N7k5F0KSEomoJCmjKGVFEUmIsqKiskJFU2V1H6OQUUIp2Tt7b/n1+37e55/zz3XO43G9rut6neeR4CgbT6tdJ/eWFJyLjeY1eDCwoTm5S6rivXDn8qupfj2q/1uV/+1Teof6P4wmu9tA7ZERm8icLcqL2oEQ31EbnFvCelTPZh5lb///VU5OPEO0GxYzAQ+VxjXDhMNAEJTTo3XRw/q3Q2TD/uzBGWvHvvbelYb/u1asjzwTzhykcEcVOHgT1OYYzODFzyHtjTRJ7KoxZRp8nYzpvB5Y3X3L+L94qgzy/sCEr9EBO0BLscM466kuPDx2QoG9gAebRuf4VPeqY+bXNPpXE+bQ/4VffUk+QjQcb7owgxpdf9p8CdaCmscvD1bakPDT4g+xPY9VcJ3CCY3rYWPk/4s3qir/37np8geaDPYygUZYdLq+YPCAPdj13ekSeGmOy2OGZA437QI56kOhxQ67gOH/DiyWVzTe4iht3w/z3wsEplL5MOeHehanv7ZY4gGNmPBOMzAOtGO7UswILyx8GFr+5bnwzHrNpeYwsJfs3L9IL481vi8n91ruxj0+4gkRoUrA3y2y83gaJ4hZGLQsysuA/vNoZKhiBE79oztjp4VwxR8PvvQ1PfzhmHSzxFNJ+JBekWzzrB9Zr3+JD/jOAPNXdulNJ2vBTOBElgUDCYdePylImVXDsW/UaS6lMYE1ZeNd4ddmJLBWwVsoOomus9y1pFhoQGLs3qKzpB1Y94R0kpqWMo7orXYiOw4jvz1m8oU3K/+nq9FnsoGw7YlTjWa4ZGN32UztKWi4p7jY3XUA+9O29/9KMYNfYz61bs9M/6vbWrnFVk/Caqgwfviom9OPVxLQQQjhJFpiyYeKrPDVBkofMWze7pSF7A6tswl7FKD9i9o1+TZteOd5hJFqbhtd+5yy6S4MWIX6fJZ5DhkWjarjzrkww77VSBf+BiLc9HOKO3FcCe4VPhqI6Zil+KhGtWjNauJQxYhbwVHSEPW8W5xSN4V+Zmz6uqn9RRHOC/ab7xTgZsPri/ZyCxQx7Y+Y9q8SZpGf2ssyR4KSJ7+u1Kq2I0PfnnY6gSH0Le1mEdqnANWWNrt+TsxS2kzCBUsz5LHiHWWnpMUJtKefQdVnb+P/9KF6S44weXfWVlcDx9B++zrD5QgW1hdm2BOMMNv0MTm8KAT23BMdlTm8/+lTUM5hIWrad10K715Ou+THqwcXwhqTGML0sZjHXd6r3Trwu6n09j47NqD9OKLwk54RVFmu9P6s30QBvb8CZkeF4FQF2+47RVr47RNvsR+bCqAUdsk84wUVHC5f6pqXoQGVorz86GU+0HPVbEk/zQrOmXU5FZPKmEvi2IMxUVHoYLhy/FTGAEILHIKJHRNo2jg+y8dAGA6kvsh1K9hCfL2EJftYWVzyNPv7UVYWUDb0KuqVbEfO4YcKO153IJrBtD5dbjEY4shnkmhdRqvOdPV/j0rjzZ7r5bqtf1CU/755mYb6//S5TD7QJx+d+pcXiw3zTwl90AU+jptyG3nqWMjjt8NLhgVUdk6PC6Qm/pvjt+URFfQSVy1J+K4njeRUmBp8LCmO4M5Xw6xf7gjF3+MCbTamX3QPp5DPQIKNsEENGuDJcFTMnaa0FgnpDp6QAvfqNyYmQkrY/tnznS7cPPDtU/E9u9kRdP3STtY6105k6xpSqGxMBT9r4p53N/NCm8CcHeaXxU9IPG9BkA349qFwJ5GfqECajfaCaCdiHklwzspnB78TwhrCIkSw3ZTUzLggiZu6mmZj17fR3qnuwMzVj4jmJUr2nKtF5TxJaa0HOUBur6N/YR0T2M3k+m+wSuB0oZ0WAgldSMqi4lllBf5Pn7JybekPpbyKbDh2dbD0XpkarCsM7fG+qoSD7k972hs3/M+vXKgq/rd/Kvc3qjfmeU2PCbzfju1+owSK5+++stNVxB7pqfbcrf/5IVVSuR5V4wNJWowq5dkd4tfGKDkJ96RXpaXhbsPtYhOQwxK+sYT2Tyv/xeeWJ0yMnw9o+4Q+zIRPynksoCiXjJygACEoOJc/pvVACi+Suh3c8hf/q9MbskqkSxpjVi1iO5atMXOQDiqkwuac9TkhRuxahXOHOA7QU1Tb5TD83/2x5bZpMmKECxhpJbKl0W4ygRXN7IH3B9jBv4WguvJVDC8rijiqWZb+z5f72v/L+yvZVvDEJHWxBf6w5hzSOELAvo7aMZs3bKGgjVLV7PWNfBa9NXx3nwqydVL19hpbwFV6qxq3B7I4doX2ubw5PxZcH9SktwScMP0nb6acHaLfvdG4doILeCvm6zYmDoK1QPdLTSVDmDysrpsvp4y9OsSqOWh34ewwUWu7I3wg0yKdsblIgP79ybOfJMzh2fezcYNGZNA286ZNdBXHOvc7VMc3dTDj1G/mKC464DKTcFtzXkQtlKerdUoKYCE0LNtC1oKyrDlnrkYunHzLiptZWQ1z7rue1ds8g4YPU3nE9nUjjrOZz3hPc0Btota1rGsaoGAjlEi3h4h7aCVdoiWUsMqm3owR7iZ36lyP6RXoQOfPSVveO72I7EXHFAo39+DpU4deBRkKYWX/omddPNbwO4t+U8SNHXpYCGOT1RZwwW19/UPTXghfqH7MdEcON3a39BfzyeDW66GdYY8Bm9e2NkpeVoACr1IvI4oqmIefqRp/ZAfJZhWKdZH60C7LdOanjwS2bl4dNjpkjJnAgzz/VRJ0e4lX2L+KQ/FFXbL0CxNQFXvlf0VOBxIUC/2TtPkxn2mSke1+bfzy1TwzjAkAS+m1m4R5Omj5kTDKlSUDTx/GnIZ76lBYJuh3N5odL9XEPuErUMHhAYf3HwyhBwnOcvMC8wVkXDU3U/ivfisGQjE1UWoQyXKk4e1RJuxWrl6c8FsB25oc0iUzDqC/bREf9+tMoPm8qCSVt/PoVU1dzuWXCF85P7lXBaTgWUBqPqOyHm5wCtb8I6wEBR0JoCx6CKjA9dbBKQ0oDHA+T9JRwB69iXx1r1iw92TogKoj4IWdsalxQgZQ3ErNuKxgBO7LESGBkwbQHidD7rUThnk+p4fRAuOUpJ5QzdIzO/Ft7mrrlEQ1UDZozeRVlQBzPfJI60lVCOw9tXOJLA0pAXhz23mWorblwyHipo4daah8dp4Tg/obV3tukdggtpkUYvyXH8Ya3tTPzMoA8xtdUbtfc5TZVhdVRh8FbJ4yZFC8zgYC8vWL4eWbyGrvHK/WMh28/Dwzv/VZFuJiXdpJ9TOUDKv1DN8MWfyyhCY/9sUYUrinLvdz3xJySOKVOMT8z3cl12r0zshh6Rg371g1fWiCvES2qZ1YHlvzSYdwwZr3ZFKopiEcvuymdiKSGa69ruHfvSqKnZv/GFVcl4ZjVR+sP+3SwRLu4lXXiuSBR1hpx8V+FbDpJNOPeXKDDaNQDtntO6XK4cWumjscsCfecKTkkDpWooo6pvVXEr6GHv1my8QPUXtzRNhcuOCu7NwbA2cS6FQOpgWuMsJsxYHwL50K+OMczU32TD5oCCxqcLZjgJxxC4W8NmaIGVQIvVzFD4l/tLhukDdQaVab7u1saVyTsWvhzD8OM9huf5NQsY5qnxm2hg2voQHux41cWsJg9Dt8/1W3JaRd1md8v14SfxF2y/o2P4xS/brFXu1ZRF1Um+5VXv1IupX4pr2BB38UFX2v1K4OlKl7Wb/CVbHb+11lyab/5lz2pbOBLy9wKDSWFW/2op49p13zLdjx4nGegVovedB/OyXVnqaMB2Z7XA2lWeFg6Wf2UFESFBp8Tu3zXUSlBpcKL50coTDsD5Xe1BaDy2Xu3BOR8vjdnuettP94R9guQpDhFQPY36dqjj60hUwMiPU/6jZRzz/gtAnmhmPN9LncitKYl23FnCjKBNUZNLmxN9fR/NHHi8c/rqHD4qoib06ygElIvA/lPSsc5f40EEUtgf9euvStc20D3XaPSwTdGRS3WwRCKZMIKzr/LR8iQutFLXpmMiNkNTuwKjWJYZLeTt11mk6U/41o6JA8huq/znbssPyBlPz7wob1WTDPoFHiM6IKnE1O42FwU8BvAivOmvc+JjcO1QlJ6Wwg58LyyJjEdlSdWNrZY0eHYelFdtS2HCjkSk9aqMpjaVXjkRqnOXSGztTa8cgqst3GWuvaI6jdYzb3hfooZWLFNWlqtwSknioWvHtABuued2RPHF1AfhRR383RaZSraXTqQ+gcqt447dKZO4+mU/0OFl3ghz0fY+a/cUli3nt04wULs2i/4z7Xg0ODqMxcuDRiexZ9sVN60vOHFsbNqMfbx0lQ6VTP43BPDJ877mItHzOIrlawenW8+YWcVp7cPvN+CH2WZTk0SGCEdkMt8wk7VqAiDlqM2orivhj/HMmJF+SRKWov0742xEY93BEU0IJKpWOCm6+a4rKnZ22/EAFnjv0ykol0goIU0fC3DHPlPzxIhqKflYGN8VQ4rxcZrjxuS9F/oI1NGf2m8hLUcfGARozKDnWQ2e0QoBFLDS3k6970ZHE4yWDLYqZjAcyljQRHaT5Ydf0mtjQtgY9bfWledFTCfGb+FXv4CTCcdbVauPvfnMilv31qZgzam33XNBeUgLjXWYY2ix/rnRh82XpLCVP3jEr/EN9ADK6HFkP/rCOxrQrNuBA1mPQpvDA9rQSW1IUinkNETHeVk4mZXg7Pp7MZnm8eRZA8TCwRnUAJV01ta+4JQMKDuL3XbinBEGp5VJe4AzPGnhsObpbGbmGcNPqkXvKtG1w4+NwQ0jr1U161hwraDSiKN6xN8P3A7dd3V9Rw3oG0mr2rTjBtOvd5P5UgcJAMrw7NaEPC3EP+HZLa0L1peowkoIlHCqjLtj7IYELCMebzLiqQ88aEbleGNIg907Dxs1WCp5e2mIcOmcIai8DBt3I84H1krLNbXBjrHmpuvnVDEe+nP3f8gYQolAzTbBx3EIPm2l0fHd4ZwOuUFL4ST3l4Hec75jfIgUVi847aVihimb7v1co/iCB72Cz+dAwbXFp0H2AtVQLVizNFb2LlIUEkudWRmhm7fQmk9RiTwWl3TN+/wNuoPkpf/67gNip0ubH77Vle4GoY3/U9RR7mlxz5V33pcHLmJro2KoXH2UQDFLp+/uPHorz23mV0x7T+Kbj9RWe7Ewo9XDVxvESgU6o0PZjyOJjaNirC/bh1B3dXHrAcNijivbQLVgVHjnm7SYB6Gde0oZEs7hSwDlz2G6VYJIv2ZU5yY4+g32NFzrLw95nXrqgiHSjUyBZV8VCH6YmhR4ZOs6hcJTlyOGKFMs49bsTcpIi1765YLY1JgniauxmfjTQ8IDqqLWUpQ8sOQlXlsCDAU+WLDylzFMP4I1bbhnKY4pIgEhrKC0f7bpx6t4sb/BXPZyuUisMcpKyKOYjD0texZ6h+mpLy9DOq0JHCJqx+Vnys9BBL9av+x1EGaAvimAs6QYQ7HtKC5fclwCdI3Xiv5QSFU73C/HSSBI7OHhqKMhxApxpwAUc9NeRpaCUXxy2jpymZm3/CJLDHnZ8t45+k4aAXPfunK3L4eWZa+uctJuDhb3t0KU4L8hZ2sVtassIbh7qm5aO8+K1IXdWSET+cehBvkOiogL32/86ZpxOCwkPBTCUdShD+Oe5ynQ0v2H76RBZP/03x64+aZpJgheuiT2uSGWQxIxP10g4kCIOEM85u9GKg9Oxkl6g4Pzhw8C2EH2IA9UXGI5MG1JAetodnZkISZxAGc981kiDuxWv6yGckeHHMqmSPCwdQzx0lZuzkAsKJIl+7tSW00DKy9YtaHI9zlRwXvEEDi99GHM89oAPNbhQ60UYL7A8C8s648YJWeGuZ7/wcGl9+1ubxSBS3fojfS/rZix5mH0p9vkIFTkEqx60fTSEpd2k2kVkSFhr4Uu5xQx4mh4YPntkli2epTfqEnWeRBIlN/0eHKIRH1zQ4ZE4jibitjv0FTHh2bcxumUESAqvyg+UGpHHZm2IrJVp6GCrq1XF05oNISsVEmDsVxJWkTnzgH6bkqyyHP//KB9T3Dw6F+EjiXb79ceqijBD9TGnU6Qc7sO28402lTg8ekR9N3PVWEH/Cuqq8EQlqBHRUFB6K4Qvn7OZp3tFAgcRuf0MBApyP+cXQdp8W9nDviInXYQAr7bzPQamMcL/ajEtkVginhHt4DugtoUHjw62Ux2uoSGDexaxsGQ0n63jr8LFAwhWtzIB0ArAY6kutWwni8k/HpiOOt6O9FZtJLP6LqC6k3b7o0CAyz9/fWbfGiO++sVKIt5WD1z3Df6TrpTDLoY/xdleryMc8mZQsAwnAtSiSP7B3EHWzevncdafBIpoGr+nIUrB89Y198YAkZtm/em2saRhZmYoNKmX/688k99PRHxeQxZGuOeMHA5Sz3/fUvRIXhkzV5uSuInEsvbYv7xfNFDLKv9+clr2G3hyLsJ15vYW46Yansw7NIj3pTv+tGC54FD+vbJQhgq2evb7itmcMPbUYuyn8eha1dniOmz3bQAFeDz21pKhBuitI8zgTGzQpnqEJpxXEVEvCWw+Ce9D8k0a8GTGCEpZJ8XPJs+gJz8zUrUsEKPfqDwydYwQj5qhhvUf8uGfx97uUs6VkUSe3W1GKA6jJodPSZ7MbnV6Iz7zDq4GdXO3q6lUUsJiEpZe+nRn0yJhJpOv/Ln9PuenJ1s0LEmcSMpm2RcGg7ecIkSiL38sVpOeMS+Mnjuy59+U0oaRMMcCWZwldi9bqaa/kBBVK+raqtiYcSLHgP874mrKP3lXolacQdlOw9SXozFFsNah/HKhYQnWF8hkpiBHulkx/2/1cC/olSs82PxCAo9UpHW+DOPCBpbmV+teCeHJ6b0TU8CT6ucVIvzm/jkjLwaPi5xQhPrLSOY8sAW031CQPY2a8i+Gm9zoIY03eZESo6kLnc7prNU7NIqIh9elFRgFIv7bqYhchCQMqUtO8tAy4jVn+i/ceISxR+9daXK+d3Kwxpzg++QdV3c7WjOGmBaHVhJzUPyqYKsFY8wKtJBa8fMK68iDAtZGXz1OIcyhJ82JFZJ8q/NDayd0yIAjLhXxNUYelcGFL6wPrK6I4QdAtcSJSEaZdSS06pB1wLHzT4ICMDExvHNc43KYG3eqe9+2IvRRfOVOHi5Nc2P2aGkVQngonRnLqqGSwQXXFb+pNfX54TPv9Xj+nBtQwSIR8XueBAppou5yTLFhIoydfWFAIzyrTNZkpEWB9KOl4qh0LXO2e+PhEWw4efUpf3uctBrdNzJ8QhwmY8d7MY95QIbxiaX0iAS2gH4lrbI7qVOAZ8So/xJoX5GzZhU3fiUPgZVETLz4a/K724smRs4L4bp1rAfVAM0pSXj135vkqqmNWO6LgTA1sg8pPh3ilMb2E+Owd1XmKyxs/jopPQuBiWCVxUGYdyXMMD8lc1AS7lu35tgwO8PsTsttAQwjnlYSnMqfMUSICXdmbfUZQQ4PMg2szJBCn7tK4pa8MTFj1Rf9BSfBoSD0lUzVMSVJQuXeReYEST/pozKbIjavFdFeuB3DBrfNKMKgtAYp7+x39D8tA9Zm2fTr5rOA076M0GTlL8bK3S7/0SxDHBa2U/DRmgeeZgxF3PnDBH/9N0h99MThW0RfA1MILv2WcfAYNJiifrs0klh8XwFwfH4W9HthA8oVy9c5pjGBvKSuQ95oIcu5SxiYfBEDPihDZpTRGYfnkyBenxY9r1XR2ap76gXa5JGrs4acF5TuBNp3560itmDBHZcmHcdSiamkpF6jsMk/30WLHI9YHGMUK59DRJ/2f+8SVwfDl7mC1f/32ftTmQRg7CXMH69CsxhChgVqjokCTFxNmuucPDTLBb9+21txRGXASCTwpdIsDRraW5r29RykKQ1R3nGJp4TLdzfv35wTwSt4Fq8sdbBBF/2v16QthWLl6Slc2mweYPSu8Z/dQwWjGjhNbAqtIp4y9wj+BH3clmkQbcjCA1JsT6pXmHMDm27tY5sYBhZrV3kel2cDIrE9Aa3kWRamPPU++yYvVPN6K3DJbRdWdQd2sc/SgEFzBp+dHAM/To01s30kgZ8o9d//eFApRt78kHMGD6fm7C9hI39HLtEvzK5o0YF8YaRdvPo+OmlbyifTuwJ1Pj+56XiYCtf5Ttp+nBLEbd1JHxpcBlH1pbx2TrhDojeSs7mJaQEqBHbGZ9wh4INXCOM9aAMyO94fYhwjiaoHr21Iza0hSozSQ+yIvkHWZOs8aUgMP7X0NstowpTn+sp//CgesZSYt/U3+l2+K5nFKzjayuHCw6AciwsPIL042RxjgyBdnaYbRORRHbppSLGeGO35bPArKvFjsJxX/oelVNBbRudG/TYBGbQ5jmyMEWMqm//WATAvZzSpTQyoE0FAdi3OQ4sZXqvwUvMsmkZHrss7X+xvIRmCdJ4x6FdGIHZjdacUAEQqcfDVx1PD9U/Rf88NcmNkCH1cPa0RclZMRs1NLyDvF7qw0GkNBFIVYq3102PTeLR3FfeJw2WInO0+yIB5j4C/VNagg2+5weycbzQCzr64tdT8aQ1Fv8nwad1BhpSI93RcjwnDj8u35r08FcDqvvb757k5EIVzUvaJIABWe3WOF2svoiJS/dmdbP6X07A3+uP088IL+JstoCB9OZ6s5b6c7gCw1aipWg7bQCWmHj7ZqVOCYYn7SAk8gXS2aXCl7ItAQJpdHmXhw1Li1AOFqH3K3Yj0TfGER7UeOy87pW+jJgeHcnbp/UR8U6k61MQJjc3HLWS0ufI7lLoewTTtqSvm9qx1NosHIgy+DA+bQiNDTZ/O6NNBnX7yDwY0OHpIso/jDObF7gdCg2dI7slV8toKS8ygaiRM8eOXY4D8uKJrS2SOBuQJWk+8ti2BvqtRhh2o1mNdbGrBH78r1XF80/AxlgfEJqhvjNuxQHXPX95yUIHaweJqpRSuEWbjsMs/XygDfw91N08YdiJSg8Hu+jAn4N7/XvFEVg1B84fbze2uUK1T7329tc+P1o7Qmxu+YQF90vWX3ZD/6qLlmQLCmBWeXpA/pw1JQyc5VInKVCT53LTTsTCDiElHXhiGjLcobxZel8jE9qNUnV0vJYg0ZqoZRK17958sNMYnZL/ggob3xc981Zrx47OBYaxUrXvJzPz90rAW9i+iTcU+bRR7XbyqxXyFBI62wYmW9ELRcOHtBUYMRS7BmEzPCiXikWPYP/3gDOa+AwvXu4ATScs7wsGikgcbMMSq+72LYo87tXpk/L64X7F+7ka8A3d6+92XTO1DSCavHJeaC0M5/OY1wiwV6zC4Fjozw4S4v1k/8XtzYaqT9NjFFHMyv6KoueSygpVN1nvouvCC6VBjyVEUIhDP42nvrViiZffrF9wVIeE+t+at6TyogHJIYrLizjlIPCwXEIXZw2m3HluovAckBAzafiQwwJdO9yinKjH2Py6rI+lLj8rmqfPPPS+jLtSPfJf1p4EVnU2LOFWFor5teYq/jgRZO5i4RQTq8zDWswneZDWsVaaRHoFG0kPj16d6vS8g0UaS/NJwdVLmJD2j/+bPXF9IDwj5aLLLzTWv2PSLWYNsoexpfjdhSvukcS5pFf2uPOEXYUcMz5eZoLjEBTNEYr3RNXqc8pNisdPVzw56hsmz6Y31ogetM2YViSWDOv5E6m0UHDHcGvNiSOfGaZy/rvpJVyuivpEtb7PRg8mylTXh5Ax20f3/e4rMYLCzn95cFcUIX76+YafdFik7+dgJRbomS5HJOdFVxguKu/JFT14AW2rYPocuv/uVHz/jnYSo/RPy6NnLp+j++TIyvDK+Zo3jbPjpV8JgRfzk8OlvEQAVeT80EQ7N2wHq6RcHQBBc0d3WN0ClwQNbLAvtq9n//LwNv1aJNdpyoflPgVcQcQmWMsYHFVCBBOF+6i5EBEg8Yz2RncgMTH1W46cMJSr4o88TrRiJOsI+cyelvQmoKXut709aQr/LNSxd2bqCBk8qrNl4c2LScFObSRIBdnlP5rQojlKmEjNOhDL0o1mzGRuKyGMSetnL7orKJ3vXmHw5lZsG9BeLX71TRwBfajZAzgRsUKWori5lHq2h/imOXZZAQPFR56N77lw6Ure8bkI7NUqg0vted7NtEkZfuvmZXZcQ2R6L2X22nAoNI+z1vNzjhba/8k/REVlDf/WJRb3MF4evebCJbi0jM3zTW6CobTnBWMTX330T135k0XSSY4LXaI0rPCCOE3AxO7bzLDM6GKwotd2ZRy9FDjlb3iVgWPC6IkGaR+bWjhpoXt1FOv69vWdImEjc40HOChQgqN2kdBB9No07qOkHyKhHHnX9Ayj7YhCJbzhYRnVaRh0Hv9atL86jqq7FX+2FmXFanEywtxgOb2KTQU3QH9tBe8n97sgXNP/9QGRXEAfYiScYr/HNIspH37WUvAi7825RcpMoFxZu955X2sOLTT7rQSckJ5Gss6bSbkQh8cxqf12OWkUJN5mlqmnEK2/jINo0lEWaCVya9PrJjysbFJc6ZeeTab/3yLgMDzEdsxb2P2EZs+YtNFm2zKOux/rN1Xya44V5HGP7nQx4OZXn3ImeRvZ7N9+cLW2hFb16urXkDFfJ9vjVeSAsXeRLW+z4RgLlCe+zDIhETW2tDch0HUYnJbas3IgsoLKTQJtR7FpFn9B+8pGaEsxDwK4+KFlqDEpRvEEn44N2fC7dfVKNMk9HzTL5TqLL262f1d3/QlF8H+8lT9Phm2/s3XKICoC168Z5DGBEbiNxu6cspIBM++r55qUQHgwe94zhvjaOawqiAa/HUuE9pjfCQgw+eCh8/W/pvfjN+2LbFpn9F7Uwfl3buooXKiRvLVA3TaPq1adp5x1GKqdzNSNpPnPCH9tV9pkoiZl6IXvw8+gOFEkt9V2j+ojlbsR1tvUtoIJL04nXDJJKutxpkMmaHdg+GANVpIm6/eYJxVOQ7mmdWYZGBJdQZLBRIF7uANEcriliZqMF8XCjeO5MJ7hxkwxdYSNik6rUhn0sDii4/nWVLM42+kETDKv+OIK60yDtFbwlg1JF1K8SSAa4X+Ks/4yXhi89vvPh5/jW5bMPxwPzQGBqjrwn6dncI2XfbnPbzk8EhL85a1G1L4VeD1hRZBTk47sgiIsjzvjziz0T8FTMCaEpW3eGho4NRZPTI0FYcZzbEp2e9lMT22y8+faCVhMGNsFqryg607Hg2WL6EBnBGLX+d1w7QHckMNB4j4Aq3l9rnI8RwpmGufM4XEpTkZdY5t/UjJ6VOHr2hLaSf4NBiIcEJ7y6ECOYyskFl37Fv3gz/ODjW4abV13fIMsSBO7uuD+U7C/kl2SyhHuU+JlU1IujJkRIt/cRgrb+PmY2aG39f8bwW2k+DR8ZEPaiL29Cil9/FA/1TSMAuKbwF0UDQx2o1+UxJ2JwI19unzomNWeF43VdGHB/GIc7m30kWaHMXLFb6g6jyTy7tLthGd7v/3Du3KoUfcKZeeBsthq1lp0WDWaWgYd90s9N8O1q+wRiy9xkjvEs2jqgOpIVQrdrXDNpiWLT3UYLamgi+Wp+l8JogClqm53jFNBcQA4ndOiOVDn6jL7wDLYzQQy940/U5LTa/v/Q2cZsfixqpzfoPMkPUpoiS1MomCjrN3fg34i+6+YPr0UFBEkiap6VaMbPAgVN+wfkPuXDPQ6/+dapOikQ5o4BKwTriIF2y/5Q7jy7o3vUyJLAC84nA3syvIsDISXycX07EwmYJ5w2jCXg2RoP1dP80Crqin72bbQQdNpuhrw2mgolPRgJ/3CQgPlxrOCabDTMFjR+xGGTCyGVGmnWzCeUEf9hL7deHNp2OfV7bt4W2rtt7kw+LY64TyaeNP9Phq9HE77PbXEBj7JrbWtWHprzEmF3nSfBuvbv/x45t1PLL+nfbdwGsYR465HOZgN9+mHHuqGOFj69oXnhUbKHU/MIo5WJ2kLQecqKuoQbLKraXDpep8JzSmo7vRWocx4ZY1/jGUS4D314mS3ow13qUOVNKDzlFDdLMKYzQH9xRPUrHABv7GiK9gzYpVuU8BnYK6xTfnfInZ879405Nu95Zmk1U6PN7snmJAHkjx8zc/717cew91f21K5SKjYuJgiWMuFAz/lRVxQo6HfljZ1bHLLo/QSxo3rmKKvXqF/BjEfjckmmxY3mJcvPed3rpMBZsK3VMVjHvBwow+R1XZ/kHFd6WJ3heWEGukmhQ7rAATvKLfbl9bQd0Ckfp/GgfQprSaT3Th3tRT+EPJRdrIgSRbjY51y8h8d+P1G4Hc2HGpJU5nn8cSO7azMrkrKH8Uuai5ljcQD+j2a08klngCzfz8xGJJRTqZ+sj1LNGmSwZa1v3oIPQr8O/uhvWKKK3M0orZgjwrj3aqSCIAD3JetgVthAzd1qExT5qqAhrd2l8SwUmd1WOZK3T49UNj+ANDVqQIjWla06tIesYW2Mr+zX07blmfHoOJ/yoi/Urf7WOTuaceJ7izIoVN9KC6I8vIyXP8i/zX2aQgf/LgMTWKWSUVdDzPZ8XprrnAr/ZraLcuog/JtfZscCzyRCXqu+IXaFPCn6OIgU+imXrl1nUlP9MZZCFC9O7vNtwHxKF9fkbg1xN1Pi+t7Ldca02JPDqPqft3D8/+dXac/nMFNrhadhIPs2Oy6aaWH9NC4NH7su3+9QI2Kt7/1OenFmUeIY2+k8rFcx53Nh/KnsEufsl6N9KX6Ts3FD6JmfAD9WBrdc9lxlxTK1OudGXVcQ4+qPe+dkqEvALTve0mUE6s3oaJ4jrqO9a/55WcS44nH36aPwtVjxp2UV2rlpGtNrv7h3/OYMcKOp2PYcnEGFgYe9TJzboW5QNgAtEYDNxKpN2IWKzTWVNjvfjKKMmZIdc4yBKOFWrJHWpD83PimnscOaAU3atXbZKbKAX7XO0fImI7dbmPelPNaChs56XxTq6kP7zUOPfx0eRZW5ZGf5AwouTIyxnrCVh2WV8/FUbI/5VdebLqnwlmTa+UnWggBoEKJLOX5tGEes3A+Pcjh1YhCeXV1pIAtoV2WnstJixklD0I8FLrUimNuWrjjEVvAyrOzNm3Y3KrWcdMsPmKQ9DaO7KpYrA63MPGktWWDBrJeFAhV8XyuSbViyg/sfR3EItn5KGkMlErsT4yjIas+RKuXaDDwRP36h2bWHHPc8ZFdrGOpHWbta8A1vzKDkne7t6sx8pNr0eub3FDHLVnbd9RbigVd9n24eKhJUKi0l9HC3o4U+eeOXwCVSdVrvjxnY7unBkXPXFESKkJZHlxf9xi1lN3lTxKRIOyH/0R6OumVzEfmkHi/Qo2jnch0tpB9H/A4JKxjY=AQAAAAAAAAAAgAAAAAAAAMAGAAAAAAAArQMAAAAAAAA=eF6FlHlIVFEUxnMLhkYtK4xKLUONSk0lCSN7Vm6JuBQqhmYaloHWpAVSjClq5lqPcnLBclwicS1t3McmTAyNIjSz3G0SFa10cnc6c++7+HggvX8+7r2/d+553zvnKJXwSGlKYpgw4dVAU4siUdXhepoa+64tG2mkqdYZyqqgmaY2qJ4Wmnog3v7cBnRQUGCgD+elyT2WfsAHGktGtjTRVOR75cca4JeYuCXS1je74XzzXK/BbC1NuUxoHPKBexpnPRLTgT/6I0YwAfwyw+eIw6tHgJc3pixnAVe6/faKKo97ur6PXYFzFxaOHpOu8RFJNaYasO8XNhBkAZqTfWQyD9TxzBO5MZwL77er5UjX8lFnvmOFWZM4ZL3K6AKj1YwveuXOQ4uQv2bkraJhyC+ksPz1XshfdMK+soGV/+ExU81PwNfxa65dqqMp3szbq3xY66ddHnQD3nJb0rcO4JUM/6y5cuM0xP3VaTYxKIH9Np7lKvC8vM+99cAPerjZKVm8qBD7YpZwMZ4CX4yr5sv2Axd0cJNWBHA8++FxF9Z3yC9hX1bmfyu8QP/Ydjk1g35MtXaygfNExdRSvnQtPnmP/G+yz1XCGeY/RvWit3QT+TIzl823hrzcDWan2yCvxINW4iVW/sPd3aheqEzsi0I6FRMI/M8oSlsOfNYB+yoeK/4XIa6X6B7sS/lXE8Ek8JNuVwIpiOutdWKHFSuvYEdcL8fHsS8dLqdEi6CpTTr+MpUPvNid4Sy+thjXyxEn7Itwp4VME/Z7Ct1bLoCGOFfrVLP8IHlx/eD6RdbJrrqoj/pCK1G9pJcqkC8xOgqnDLgvbkux3JMVxza3FvVRuGMYqpfJcQfki2dRbpkYeJPOR+b+rPh6wV6oj2R7ulC90IIw5MumFe+nvaAO1+62R7Hiv1vGfRSxlY/qpchfF/nyMMzsnMpHoWvfjVyW/8nRuI8q6nC9xDdhX4wkGeaZoKG7AjM6pOv7sp5PRPs9TqP5YpDqgPpoaMwG1YuP4Dny5eWAaekL6Vp/df9S/6SaL6/3p6A+Sn5FoXoZ081EvkSkhlqVs+456R+H5sv3SnfUR47TFKqXgPOxyBffWb5RAyt/TVkRmi/9kSOoj/bN43oRV2BfJCVn2z6w+OtpeL78ncN9JLHD9TK1EIB8GU3RuSNn8f/rL64/ZA5x5xVXueckHvdesk/m4PI65+R+ss/l14tP3iM8mbuEV+PEJbwGo+Q71Dn7apy1FqP/ACsJ3lc=AQAAAAAAAAAAgAAAAAAAAMAGAAAAAAAAggMAAAAAAAA=eF5jYACCrB8ODFBat2Kf5DcJC8cTWxjnByx0cbziVLR0tb6XI0i6ocXPEaYORj81ORPDK2LpqJP0ovWbsavjWvnFz+5n4VbPLd5QfiPJ3vFWwp87WgfcHC8+vbcgUtQbrr6aUcFdtNvGMTF0zf3/HQ6OGxw6O3gXuTger38//7yQp+OldLnL4qI+cPXfHjw+9dLIw1Gg6L5uyB4Px5A1Gz9LKHk58myZ8WvJUW/HqL9nVxc7+6K4h1Qa2f1c7vltUS02jvJX1Yxd0lwdfW23T+2qxe3fS9Gt29702jqqnLvR4vPG1XHNzElX5LbgVj979anpLccdHT39Jl4U83V3jD7krGsXggifBoF4cLj4Sz66nDTLyfEq1yr5zBpXx+0JLTMWt3k6emv0i9fbIcKH0/8iOFyar/GqFOp6Onp2z3p2pNXL8fahxp0bf3o7CmV4rl0YSX74PCx25AWll0erS5pB4fJPZPr1lBwnR/9HPBlry9wdt663c7jogXD/zY6fgaD0sqrYfAsoXDaWXdm/6aeT46wf/2ZlXHN3fH7VMbipFKE+a8G5ElB6+cr9Hxwu2eu8lr7e4+K47dic4y1fPRzPlU3jPvIJod7wpUInKL286otXAIXLokth8ZvFPRzTT3Nb7pzk5bjyOV9k+0ZE+PAa3ACnF3ee0+BwUTirqXE51dvRTElDT7Tdx7Fv9Z8TopPJDx+Zax2LQflo9919FqD0YiTKlAsKF5mvGjNjPng6ct/cxf0gHOEew/aZXaB85Dk9oAuUXiS+LZ4PChetZXzanHpejgvbTh6ILUWoP7Sv9SEoH11dE3cNlF4YPZxOg8IlxiBi1YP7Xo5/Nlx1/nISod5q3cNFoHw0RyhtNii9LDL+bwUKl0OPVtY0ffZ2dJrU957DA+FfsZ96v0H5yCtDYBcovRydWAYOl2Mt8y5Imvg63rnWyv3rAfnhU1GusAFUvtS/MF4AykddNl88QOllnaukAChcrn7tqBQqQphf0r3sA6h8+WwXew+UjwoOBUSD0otd/+kjoHB5af/NpbABob6ue90KUPnyedVlE1A+mvpltSAovdxwPuIGChfJzdyxXSsR6mvKlK+DypcAiQxpUD4S+MIcA0ovnB6XP4DC5cGHV53sLxDqBdtugcsXZs1AcD5SjLsCTi/2hdLgcHk7i6M52ZhwOIzS5NEA7Zo5xg==AQAAAAAAAAAAgAAAAAAAAMAGAAAAAAAAYgAAAAAAAAA=eF5jYACBD/b/weA9TvoflGaEqv+HJo5O/xqk6pmIVP8dSv8hoA5G/ydSHYxmINId9FZPKj0aPvjp0fDBT4+GD376B1T/HwI0TD2snPtPgGYapOph/oGV67hoFigNAOc+utQ=AQAAAAAAAAAAgAAAAAAAAIAoAAAAAAAApyYAAAAAAAA=eF41eXc4lu/7v72zyshKRESS7NB1GZEyEpIV94NHRGi8tSSVRFEKKaU0aCBEZpxklJGdvQnZZI/f/fm+37/nn/t4juN8ruO+zvN1vsbxbGxsbPzkpcDGf08a8uPU7wZibn9mKzPaNP/3nSYw598nzYDmfY5l82dnrcGDc59IFMUZvh0Rn9JS94R9D61lBgxG0Nz/Dtqo097Z2Euo0WvgljgLduR3EHZr5tCk7XECq7D0PWqObvC+8XmSS5Uo/vf8Mu0YL6fkjO9SeNXz+VrNoi1U3KZd0fzrDFe1BeI2m1DhYXK7biM77b/1NPe1TUtPc0rN0OGhevaUHEcnmPBkWlYfIuDHK66Dlt+ocERZTG9t/zD6tz5S2yLa79Z62iCij/lFPaPhDC5NYjLiDhSo2bHo7iLuDp1Sn7Ye292r/X/l6EvB/z2Lfhcw2O6+qzrsApEJmaetCixhX0wSR1DlKXCRKnq1Yr4fF+/vldn0SROz/t8Phgocuzpu3BqyA1r3QIpyFQUyj49vQwle8Pi8abO+kTb2iTDu4CbvMRNYwXaAQRv/Iys4sHhLBxR9nU8d67YFjzrufCdFF3i9a7QeJUnigdLj2waZ2XH4fd7LDx6J4ULpQyEPChxAdwlutRsRcNNYQFLgJRXsHTSqKrYL41ALuddrTi3IetlNRsWXBs9U5WtzFjqBJkdpomk/AUxV9cydlVQ4obKWmZhIi/tMEnTa7n9DCjFlXQ1u/chqYtDx8j/OcEmJm6fWigK8EaYjzGLu4O6hbxt1rhN5lMzbizZm/dtXVKKNRtbnrljbQRVN7KeFs/p4NveW7aNQCowq07z8VaaNCYcnV/Nuav07NzRbYF5QYEjr5Aq2H3PfXhmlgELl0+cBHF7QOUlbEBFphNmq8vJyzolj9U1nK29ISGDuhug2JepJCBQatLM85Qwp7DGSrVvcwa3lRyodzz58XFOU+7ASHb6/cF37wC5m3JnRF/fa0RlqMyXbN6USEBcafjGEnO/G2cvi9BmiOD6zw905bADVjTorP2yYQ58yu/n2v3aGuUdJ1XcGCTj+9EpoSjsVXnHJTysBC45XZ5+Sa6tEe94Ev5XJb0fWZSwjbXQEnFsYfHRTiwIp7u9VfLjJ/qgKsAke6kfpvjLP3BuL/8PdJ21X3oLm2XBbOCKRJ2JxTh34leY75Z0JsPDk312/tBnzW3AKjJpy/4fr6oKr27okEyQowPGucFxX3gnWH6TIxpxwh2Y7sxzju3uw4D9iB06MMWBf9UyVgw9psPvbYMfXTwmY678d3iBJQGcrEUC1dwcPUw1PxecSOItNUSiDcQEJTx6wfsC+hB6FLN2d1yBgb4Sd4BM/AgqaeGifdFEhXuO+yU9/Phx1NFntWXIreqF38jGfSj9KeMd+Qfg4AWEjd6RDfxIQPuJV1l5FBXk5RUMlW3r8QjdMouh7JeKgWE9anKhF8uJ5guGBBES2pf2JJvmEq9Iq33eCCjtblc8p1PYiv66qSjoh+K8/sdpfpTcrWScQ8M032b+DxwkSNlm+lz1HhbXMNx5v8SgaZjjq75TT9x/esgo6bQuqrjBToHzZ/XXtfmeg9ZSU1Bmmwkr1T3PR0xyYNabQI9Z7ABmUfm1auZOLRquPi5SuEHBIOFwmkZEAwc5fmhfHqVAkU6kq78+JhWgEig3edqOJxelXw/vqEd2lz2XuLQR80T+S2X+dgK6hprKaRipU77wovvaNAXPMmvMGvKpF46WKJ84z1iNi2MuXM5uAxgFll3NZBOgeXYx+mUWFgNs1/q+45pG/w5Dm4cl8pH9RcKQksRCFOPg5y1YTkNVdkCz3h4DnLIwHZX5Q4WuUZRXlcwP6Pdw8TTeY+e99X3wqsFKLibW/TYEknxrRn8XO8LfFQeLgAXfQPcHMeLk4+1++Cpz/l698igoalZ7+diHrM5jvxC2xE0C3fbIq38Adbvvn1V+M/v986F5wDnOennfJRJ+YLfZwOFGAWFV4RbgS4JK49pBBzh0WS3gnPd2m/qt3KtDdW9CgKfoVsVz/82BtFwWCb4u8T0ki4D7RF925RIUzO/ezq14b+7c+MEHbXrJrS6d6Ifow4mmis0aAThhz6DJ571AhIfqYaioIPTyc3+nb+d/5oQVNmiU059IykY2Fzo4dZF/WQhiNvDsIWBEumljOpwKri9atzuH8f+9ZW/XvvadKtH20TtV09RCw6PfRIzfVAfzU9K6VbrGBs71PU+TONmjvOyB4oXN4Hs3cYi16nIewJZVfWPMLyT8PFeU4dVwhgIfDolPFE5z+VhT6DTDi8NEfOZViHLgoOGMj4cphrFvQZjV60Ql4aw2Gyg64gB9/9q9BPg/gDJ2qCK/mxi22WUEGo6voLN+to0mhOjjlr9VW4ScngffecE00qUd/pen48meoYFH6IaeCbw1FLubJHhYeQw+eioUkcUpg89KT/N3NTiBmS+tswkKBgt/nzJRJfrZU8YurnxpEfdsofVfiGtGB8YRbnwhWHNnrHOXl4wxCawePMlIowMK39yYm+UdG/dzBL9GN2jz6zpTFnp+Iw4ffoFZqDL2dnIm9Tt5T6hNL/DrJix/rew+KeTsCly8re1ciI06+MhPExIcxizlj37PdejjFdfVC1g034NvDn3nQ3Q2O8w0+jtjwhLdJ/eVUAwkc87IxmX1ICpvHf60cPHcEt3HsJORInlrQN1PYhCmQFVXwy1vvFHD7yHfNWgnjp1v2iJpGCuJDPq+KL5drYHqqbOqapxMgCZfjhuTc7jKa93GuUmEHrRn3agQvTvVEBymG6+idARfvhPo2XLhLgntI2hlMK+8KedJR4GZGx4UTNVR4OljL18ywgawVh1JvPx5F9zxDc/TJ+TW3P//WmugM74wGPn+wpUBhZipjxiZ3sJ9TjNzT24LMKkVUmkv7kPTegrGfP0dQKpOa5qY2N6ChFYnfTOrdWSG7nnohD+g74lcb5yqJh9LP3ru8wwTH7DXpPCi6C9e3fb/EtssVemSkxn4fd4FSZ566Y/c8IERY7uhHl334cmfV22RTVWzmuNQjPLcPd6R8y3nrTUAAc0X3HZLX18YWFw7ynoKXLKl5eh3SuGdXWUk1/1acK/nn3rtEKeym+ZpGssMZqrP8mYQ7CUhbffGQRsAd/t5+Idz5kR/zvU7+aPKVATtd+94eMcGDg0+qzNYMOEN+oMjhpGUCNvZvjrZopkK5GX/+jpOMWEw0ysWqfha1HK7LlTVZR8pGpSy3SJ2wfj4XzoQoYPLU5pPhBhU+3HRUSWTuRUs//KS6XcZR6NCxP9cS+9BMvAgpkCQ/eGdO/Gg+Ce+4OJrOarpDyDsFT1ldDhz552K9sJQy5jvAu8p/mA7PFCztbZ+kQNvr5rS2owS8Z2q5d3XFHZSTSy50ZG3Hy18zYrNNpHC7aMZ6dNgmPOP4Rb+CkwKG91svNb0gddXFJ/KNtTuEXd45VBYljE/2suvFGPBgxfJvSxUiHNhL4oNA310CHrKoVzUmkno0sZ8ze5AKsik8e5ZWufGO1odh0oI0mEHwuX/ZdTpcP6/BZELq3JWrn3W72wjoNY7dU1tIhZjPZlyMpA87LTz7pdV3BjHmtny+3DmNFDrj9CcfEHDG3Esnho8CLhuaU6ykPmoHsmkHGHWh6fXN6+Nrf1DfMwmREeYWNNQkbNnHRQFZehePIBZnoAl9p+79lcSz0RaH7vk/KP0tG8Etz42djf1vbOdpRsfSeBwiVUld/MYenlbuDNRTePjsAhVUc/PtDwozYD0GOW2eF8x4y9mxlZMqYyghtd8ln9TRBO1ACztzAmikt4mEkPrFpXM8cDvpd3rEt/jx2tDgqR9HA2K05pAhy4mb53sJyGz4YpAQSeqL5moAUUIFh97Q9GhLWizSZ9jAbD6DsHxa1suyaaQh+5re7xsBIorlH8qLCLhRcey24HsqdHkpcBccmUXjG85aIyGD6G2mWKJLYz8q+NCVJdxAAHN7X+SlcQJifPrCzXOpkJDNnVs3XYeeH6MtUZrrQZrmotwtRTXI7y2Xr+Fdso+36mdvzTiD+tXzNtpK7sBmOiS6FpKtfZN9sjy7dAZVyDMncTpXoeWqzOqiR6SvetxgP29AgEZStKQPcgdu91tSrdO/0f0uHq3I6ink8Uzv4s43XSjm2WE7r1MU0C8pfPA6ggC/KgnZI6Tfe7739VDohT/oUtQ/TPstBtGqenTjZclh5CgR2T4tT4FwoZVF9VxSry8cMWodocJMiA5tDOU3UngctovXrx29PireOXX2NzLm9tm0Y53U659qtCr1BOQrTxl0k3oUoadafGiuDWm0r9Zq5NWhHUKL1GNRHSg+Z8PnwgQB8io3/Ku7CVjINOBUSCH9uUZVTsbfZO28Zrl3/qcrkZ2PmUBnVhmyZr1PdSD5kMagu7tp20lIk3vM1alsChW5WgXChaMFJ1s+0Frd3YGbVvGziBEl3Gxs/vBLjgsMB3YctXRygW0Xpc/2KLvCGoU9zXjfInJV+7ids0wAb33pUL+WgfDxFAmjR0Hkez8KYGtooUCv9TvX4zzuoCrRLi6Vt4KK7Rq8TUPocOaHe2P5jWpYVt/rkb2LM+xUGQuz3UuBPRaspZ9SqaBFuHZlfZlB6XkFxS33Z1C0zPHOzgJpbL7LETXfJH15o6Sb13YKfHLalDHxjAphNdqzHzx7ULio7m+U1Ycqol54/DrBix1iaaworc6wFd2p+ED6Dm/ezQ0/m0h9fCDBs4PaqB2iP8rGo9SBTI823PtrsIBCxBs/aEjZw/NE6YILYAOqrApMPz8bABdD3KWoF7zYr3w54Zy+AubQTjlUJ7sbr+2vj8gZpAC/xc5FLpK38mMlRkzABcw43BR46kRxnSfz0Y47ktj3lGJlMacWVo3Xyco8TYCMJFtKBembFqWGzc/8psJrBXa15Et8+OJe571/w/jx+YogXFqzD1vF9F6weOAMvuM2EbzkXo5anggL+UgFmsPtoyOazPh90NP4ZW5GTOsoKvy6VhK3zT6b1sp0Bs1AWzTOT4FXtsq7o+KoMLS0i4f191/0qgc8m87/RRtvj5RMyXDjHzF7fHRpCSAKg1WrrSlwuVli/3g9FfDIKwkf6Tokl32t7nrEJHrfMGZ/YmEOpej9WA6sJCC9arH8Qp8TnEjanHyigAJ+dQweZ/s4cXHpCyaxLk0splJu5eK0FRtVyJt/+0sBSZrKLFNGUq/NVvpSdUj/eeaBot42cbxV04B5q/EeLEeVuGjHIINlbAO+750nwEA2da/Sbgqc26ZTJ0n6jV9Dzp4X/IUx91SOjt0pURy6/OiEue8OTINo39/UJyAvzQUtkL9T5Lz54wXJD+faS+NVVLhx55Cpz4D1JnzGK6hf8JwgHhKzDL+tQEAwr8WdXfQUOD9n4RZH4ueXf6FB4el1lH55QH5dlAZzOd8q7o9lwsrHFnhp7Qj4lBm8fw853yc8ZgqjpVRQPJekm72rFUUPjG68C1lERdxyw7Uik6jx/SXF5HMUYOZZtZTOdgb9lzp5J29TYRPNBVntCVo8rZX/jtdWHvftsg5tUmbAQS6vPPkDKXD8ghtt2VkC9pv6vw8n/ZuY/WrpFqvN2OTyXHLloCTOePJ+1p6fG1+4kfTqGpkvlo6dS456SYD6Cbbs/CIqTNrBgnwlLxbOTWDQEOHHXJny7+isebCKz0ZoL5kX6FbPTmZ8J8BI91pjzhvSz1xrGki9x4KPlnse0HNmwYdusJik2LLiRvtXEEHyeOJQvnYnmd+PGx7l8w+nQrFw7lvt+2Se+2c9PLV+DfnSZXuesVtBN/J112vfESBxUTBxJ4lPexXDcRqSzysXcibbFprQg1NdKZKnFpD/oYqvV84MIJT6XaZMkgItLbbH1t46gyobc41oJBUMnz+5qBs1hDyVevekL/Bh8zZpSo34IDqyRNG/o0aBQemfix/ECFBiPqjVkk6Fdr3aAs6T62jFfGz11U9ujLaefK+cMI82Fto4mEkdbfCSmLtzlYDh6ftuN5OpgKYyT/O+psFatIOBH+cZ8abPqeuHnq+jsMrF0OHfBIwWyKcVkPki/6W58WQEuS9BDDNztUuodctdt/P5K+h6qWtYEscKqvNQqV+uIUD/fVbmHnIPnk4lyJpeo8K7aqbGWcNx5PQ81j4wbRoJpPEZpNpNojLvF76GZL4rXd94NzVGwPXTz5ZY71Eh/FHsBItIFbrERTUr0hhDo5IrHSi5DfEaGB8Mu0Tmr/2G33bKEvD1YhDHwz8kHpw49AunMrWlec7l/NJaRXf9rx3+Gt+GNi6YJLlfIXnzeeKzox5knjoTX538lwrDxNa8PVu60K6gIiEny0XUNvH3uvLBP6g/SPRwLrnn7CWXdUXIuV2QkeqP7qSCbuHw1F36AeRuQfPiWOo0Ul91iGO6Ood6rGokGkkfyb3QLUJfQcDjTbP3Osn+P8GfWPZAD3Jys+rfyfobeWjYsN/mn0XNot+bIpYIsOl3O7HcRADnzGejGyR+3j/LKi1nakKNMf727lzdSDFroTq4ewh1Tu49zUPqus2ZqeJ80p+rUwac7tygQjehGf8y8Y2207UdC708rciFPfGf3NRGpL9wzJp2wxmsZXk2x913BmFR/5TzkU6gWCmfNBddX3Dum+QuvwvcuMHL8XABLz+eP7IzmIWV1GtXxUznVQJeuNIyCii7wJPjj1b0BMcR0/gT2a2YHdcM3BbzCtyFHS3ujM21ErDNh39R5TwFRA2qVjKL3OBMSRrH4bVxFP7cPCInhwbftH63+0uIPGaLmCU2TAjQfvTjT9NBCtDNMQtYGFMBQmRpLCb70c3F79dcYmbQ2Se9dazjElhj56hlligB9nf4fMsUKXDmm63kXxsqdOw/ayrR3IDanVWrmeOHkGQql+30Xx5M7IhnuIAIWDY4oWVynJzDKaG1izfJeha9gNvbKrWvCsccje3rRU40uRSwXEYSzaF83o4EWHIybRFodwYBrhuWqtIEVNsc0g0I+41utO/0Sl2TwvXbWLJ+aW3GDPiXXL4ABRgrEmZnBgiIvN7Qt/DLBYReSB448JEO7zr7rjQ0Qgxf5TnWSKO2E/MbJL7VI+u6FHUfM5lQgK1JrPNzsxu48/88OCnKiL/kCaS1UnmwFb3rJd1pGTz0Ym9g/SkC/qQyyq6SPvTyxwNlFpZUSO8VzLduWkH3djIwWYXR42+T2zIiM8TxiYmlTXEqBORqvnSO3kEBB9XnAQVkf9Kkmukd7o2iD6V7I64en0dG8QOny7dw47mLASHc1qSPtw84FniY1AssbnT1OhXmf+8pvvbsGxr9fpKnl2ka6TqMSoXOLyD2iE1vWAxIX1JR9O7IeQK62y14lu+5gvHTVmNlthnE6tX/9U/TLtw4FVuhksKKn1z7/knoBAX2bgoP+Eri+cDW2F8PA9zgbOCbHXyFLHgsOKBlWXYH7uRlf1f2XggH/byHGxkoEBN0M1+Am/TpGYklKvtJfpjupfu+nwM/0ZBd2S2+FUfr8z3LbRTDKpcFfoW8In2k8DXXnRwU2OKwuTr+JBUqeFwPUgPIvjRvRDQ+48C13NzyqS782L234/ppUidyRdRiE0hcC3EzfJon+3PERsekRGsWKc+KuCzP0+BE7eAjA6zM+GukWXddCAGmfSq0vKSeOtoUlXP5UyHEoUvSbKgG0SScmxg/sYz6/JVKIygzKFAsgFZNjwLfSlmlK4wJUNl8gLW53w1uoaYAIWIYHSzIfTcnuAN3H9dfOkjibS/vLBObMTknqU+LT+4TcEnnVEaAFuln6M88XWunxdruTbcPPdmG3eqMQn/HsmKPvusvp8h7+vj4HGsvI2DQvymLjSD92LaxPy0HGXHA3dhXpZe24L8/r9x11+TC2Dt7+WMVySN6+RcdSB6NGTtld/A4Fe553JPlatpAs45u+/3UWPEM1wXKTydWnO1Mf4T6gYBd+fc4FUleb9gmyL71KKnvpV+O3fk6hYJzp04aJG6gHr0Eqafqq0jV+p+zKVkkDyqsqSWTc9Nl9I7udaWCnfAPRxqeanT49qBoiOgSsp5g5pRXG0FXX780Wdcm8bOlxOKqIQHTzH+9K+zI+6KvxNBMK0r5GeA3c2EzrlRVOdqgN4rEWeoWBvaRObw4rqGZ3INsmVtKRhQq5FHkRSUHptGKjVix9W4yR3ZudDt8X0Af61v/vCJxc9laoN8mlpzb57SFQhIPB9Vk9hU3/EXBTLveCHkwYQdT4VvTIjRYTthAlHaUAIYncRNTpM4/cjlydPcxcr9Kwi8sKk0jTl06UdOlVRSaoRt6gH8VdYedyPAl9UtIvcm5ntSv3b/25hUbUYHt8lvf6Lp+VLvF8Zwc+ywK6+7IiYqYQtbGv9PpyRxis/Z6Vw+Z8x5aLrJJk+ev8j3cK7ZYjNYKLSuK8QTKm6BrP53Tg3ymrML+uFBg/UDs412e5NxKtrP1kfpeus59qGhnhnagL/OWnv00ON1bY7l5tQeZS+SdHXegQMj55kMvyJw95vNmjIiiwvP8bNdJ8XrEtHF/FTeuIJtPJ+vzX0+gyENcNpdIH5YbsP8Dz2cCksz4xLqCqXC1h+eknEQrCs1dmGS1mkOKXFffb7aeR42tKembyLxfvrJ9g6WcgKnV454UTyr0ErFSLN+a0ZYua01l1TFEfwFvLj09hy5+EFl8Q/azKrnudsPP/+VBtkF3kq8yjO94yLFUoQdwzdniSj9q1jEW4BccRlsYhQaedJG5LvnMcivJD6fToh7zmVChaOxzkNbgR+2pdLHUEbEeJFmkd5Qluw19OkDz/o4G+f5JV12jhCjwnM5e1rjGBWy7tD1OC6UXhJSeM7uSRO69V9qU6VNGzBE2n1hD8hpTvaBonDkFauqsqxXCXOEu5ydHb/ZaFPJ7eU28iBbvz1o0Urfix0M16lw8YuS5/TWOsqQPrSOOSNrddAMzPWaa+NwWxJGZYMD9ehkFTFDeb2oSwcHcGxExZA53KvCwPElQIMfdxq9vww2sOfTe1XI3IW07hYYZn2m0bSWxXvsbP9atK+CM/4eAHipjGfMhCnT9ql29I0GFR0+kNWcflaG+Eq+MIwNDSH68V2vXdhb8IqIzvdKPAPZpW+HTluT73wl2MtemgrXnIfZT88XaAQLXuLe19aE3Bz2R6cQSmlp+/E+eIQViG7R8T3FRYLdycrqxuiuYC3MFrxjVorb3l2dl6nhxbYRa/Gw6PXZzuh78+ii5j8YtKq46FAgLng/+2uwKcl90WdrLR9GV1/E5luLcOKtpuE3OdzOui0gU+ipKgeKSX7nH7Mi9DOTN2ffCDd5yeNzjPj6DaMzygmfuMeJ+cy8BHv+t2PiJwg0+kqdyNxn71JJ6NztOJ+jFRPpnwaRv8lwTiOVcZMDZf5bQBHVMVddmCy4xMMgIvk7mccUjNRfJOZ8NMd3/R5IKGrvfjfCw9iDetMS/lwQmkO8A6xXjfEac+FHsi9AVAg7xf386oU/WG/XdbCX1ouxVRbZxbA6qOcQ8btM5hDymZr3VRhaQSCeDgIYryc/jj6s/kz6r5rxmcJO8GzxNcFCCh83oqPHUPnpFYfwWD2UPtayhGN92YWUKqYsymwsMt1Lggf1ER1uoG9TFPu+UMZ5F6mxu82KyAjjNQW79WScb5pK7abRFigIvnEydRKXJvOZfYbV/zA1spemctoUuI5w+s+m+GRe+2eKLeBJ58OX5hlvPGghQcPD2vShCAbzW7REqSAW9mNyCDdF5NDiV/7Wcix63pOnfzenkwBtsiWlTMQSU2zxeHyN5Lu9Fx0kGKSos95VmT8oMI/muqktuHAsoqWLHo8PlGyjy7enMB2QeodbwJa+Q5zsdEJzao0YFtfo9Pa/GShCdkPWbkMRp5P7P7ySaihkULiLwi0LmfJq/CfoOQMDtupcv49rcoOUn76UFahNaWRxe/fiVHz/yjXuh7zuLMh9whK9bUCA9N6O5vY6A+yWxSptX3eC80uvxvtUplNe0u3j+1Wb81r2octuJdWQlbCXHReKnBa5UvyL3/qdhrHf5VjLP6okTseoL6Eels6RVJDv+qJjbx+LGgOWXFVM5Okh+2HuOfw/pb7exRR/o3k6F8VzB0t6Xs8hyy+rbbmtafPEOT2T9blo8UMwdE/yRgHs91sdZuwnYyTwdL0LuVxHT0T5GuSFUVvhKxCD9L0rbpB24L2sWzZ24b3M7kYAtlM7jSyRvvZZQ7jNXoIJkhdGVj6ElqPfknVupVVPosVXx03CZUUQzGBPMSu7tWqunikYwAWF8GUEFwlSY+3kndSmuDB2tDHu27QorLpnq2u37+Dd6zWGYaqtFgQyPpN1xjwigDRiJciHnZd9tVVuR3Yf4afzdG8SYsLyE0g7OrZMo9qeveCeZAy20agcZyffy4JqSl5KlQm5TdWjatlHkP7P78cmyDWRRRn9lKf8vOuV8+FYe2Zf+cnejvDRSj545Z0+S+/JXqcXK7scQ0oiaCkl7N4ek3NO2OijMovNFbzjM8gh49exOgSGpd5uT2eO/bqPCrg/tATnpbWhmswTFzXkU/bE2z7v4fggxLj0OXc4g4B/36yHfSTzM7v4guLCDCgdox2m5KnLQ7HfxuPtmA2hLP69Ta34vMsqS/lBoSwHO3Ry9FaQeVTw6NR3+P3280V5cu/+RtnG74CdxtTV0YvedK+VH+1DVpkj3NyQ/zwd6XreNJsB6bCaFYkgFpdw/37fWlKLYJa9flQ+XkX2F2FyY9iCKKdS8Z0DmqRfQ4cX5hoDG32X2cgeo4PtateTKk59okdxbrc9zqEj6ltQhhQnko3jAVG6KgI8PjM5/TyagLapej0WJCosrnh+FdlQj7q1Rpx+bj6PkkcYbF/+OIi7O97T7yZx2te1p/61PBLhfpaUMkPOqGqxr5FQqRkckvjJWZgwgpfW8J3K53cjS7g+VO5cA8aaSial0ArRWDx8XJvEW9IXt98WwJO30y2Rj5XvRuD/NaSHPDiRcoqjAQ+8KenIWzzdmXEBzvkuBo84NfF+dDXZnSSowmv6wsn1xBQ1ZpxRdoVlDPVy/9kOOC6gvpwYNNbhA4NP3IzpLbiAxb/jkKVGLIpfKQ8YallCqXEARyygdrk1wuFk8TYEi3y+CR7xdQHcDqdtKU8EgIdkBPW5BQY4xt5ji51CmLf1RGzc2XD8XEhxG+rZB9v14828KiOe3RDOQ9evzEeot0r9QXKBYA73HOKK5WOrYZ8WEjQU8M4+Ree30eXetrgsUuLgqfDaOmfRvHXatbnsqUUuFTRDjswF0I7yW9Zr8EpJ9ueo1wkJA8hmNjvPknONNe+QezLtBGs+31FK6eu1+2b7YDYdeNPf5a2h/819UnNH4i6HdBVT9U6o53ruAmtT7mtIhNxB6ytL8aqgKqeqO7cthoMWaJ3+YGHYso0tdRj+3RbtAOr0zi3y4C2gtCsw+YaFCzWbBwkdXR5EFq/dWg+9raJn+dGiiGC12532xYt5KAZu9U95XlVxApah+zpHcL4/LJzdfXJlFbOsN1AiOv+jY4kjj0SfM+HfV+LjLMgFD4Qu9D3IoUH3f87IJyT9Bn/sffCf9Pn3yoWNyOSOo6/ijk0EMDLivt8FIw5yA9o9xi8+sKcD17ofMVXoqqPqqvUo1GUS6dWGVzt5dSHS7+5mq/Hl05OcNvR5uAlRZXjH4kXn2Lcvw3eFZkm+lD2t0rJeg8Oas7PMZzYhwvRHtpDaH9C+I0IT5uEDP/Nd/VMcpsGvMNKF4E8knEqemG8R+Id6R7efZSljwzXLH6XmPv8jRuRyVq7jAtCH7sHIbBR6PtO3nEqeCpUfMj4gbc4gNLKIEuxlx5/44ro/XF9GAzEHh8McUSFKvXFR7SoHVyG974sn+WAfbhTUWrSP24Tdz6nYbyCH2yp6UORp8v/n6XWHS1xaLOn/9Q/qOyer1CBM+KtRbLS+lKa0ijg6xfNpjs8i0ItjM7c8q4jG+mp9O5s3y4osns0ncxedGHPu0SPqroDMvZZ2m0P3aeZ9Rrd+o3Wmu1ytrCtm/5nfwliR9P3f2426Sn1MmfnuU/nGDS4YsTTMHfiLH1ovKhX69yCFI6Ee3/BS6UhhnfnmAAjqzgiMyzBR4coPlkyH5Pkw62xWkXzShvy+uFf8JZMLb17m6xjaR/mPiROjnbArQunUuf6KhgADDMOUOyef6qXTXCo1mUZDO3JkPWfT4n+Jo1njZcZRt+u5OHukzzGg9d8wPEuCSdXBVkTzfP+qyCXP/Klo7y9mXq7OKdD+UD5ntnkPeb7Jv3i0kIIpG964CyZ/+jJHLeqQ/NEup0CSuLqO38wwrlX3TKJY16HTapWl0sy3IINyO3Bf7zS9EyFxrJFWYeXfEDSoIJrEfnRNokwrhd396ENklReu1Rg6gjsW6aKxKQOx2dRNt0hfUcx23te1xg+rDWz4fZKhBUSPHi8TP9qDily80ShR/o6G7TB9uelPgmFZUdKsZAWx590dDaKnQNA0qJtd+oHSOwI/fJZaRzCbLJ/mHB9CsoddwjSmJy/TOr/MWBASrjrifoSH5YXRl3+m5IWR+qFvSXXUBfXgWo/ZVsxs5+aTHHVkn89Ryju9jcs5Vp1lGzBbc4BO3P90vkWkU80LsVhnDNOKXiKWZfzKILt2hg9MJ5H1POaoYHidAfUUsJmjYDQjhU5suuU6ivO6pOe7FQYS2J3Ukd/ahfjmL3G57ApQfXLnTZUXAvHH6WGS7G4xZvPPg8u5DiaP6m2zM2pGc3OfhsNxmFKJzSURHjwA1f3OnE2S9eaePTlmzG3zd9eD+eZVi9It7y3bKYANa/KC5ZbN4D+rLWjVTI31wT6N8mgwzAR3pKXRO026QHxWjFHo0W5valB780mERuXX7LGr97/+SP0cyvXZQwG9XcncGFwHcNnHx/lNukHDek2H8yncUqQOZzl7zyHJUsD5TvREFndt6yLuPAGh6tE1InNRrJ5EOKjlf5bWo2KCXDWjm7rFbw1PTSPmWDlcJ0YG4DxfOvyR10Vs/m5hRIID/6bmxj11uEBoWcIC4X48ENz/C1vtGUVheg719XQu6MPvxsqMDAYkmXiq16iTe2M9s1SHvu0r7TMdvdxkyYez7dmWpD9kPPH9du1iFLnk97zcxIsDSXHpfohYBkteRkWyDG1jU8Xja+5Rq6z9+OEY72Y18B/XDFLTa0P8DXGbvwA==AQAAAAAAAAAAgAAAAAAAAMAGAAAAAAAAagAAAAAAAAA=eF5LSwOCRUUOaVA6HUqnoonjotHVEdKXjkZTWx26ekL6KaVpbT46TWy4EKueWHNw0aTqJ+QedDqDgHpixYlVRyua2HyF7l9C7sOV/qnlX1LVk0qT605S9RGbHgjpI7W8G6VpSwMAG4nNdA==AQAAAAAAAAAAgAAAAAAAAEAUAAAAAAAA7Q4AAAAAAAA=eF5NmHk8VWsXx5FUkktUiqJIc9HVjS2SKBVdkSgllQZFUbyGV5wMb0RyRR2pyJx5HjaLg0PmFCIkhYzdkCTd9J7nPE+u/nk+zzrbXqv9rO/+/dYueneRCq/rozasCH4fFCSgujZE60aJUDKtukF5nvLIMJgH8ZZE2UVQt0ZOL5Qd+0Qln3ukINnwAypPzDLguZMD8RK+cRU+rfDXgChTRuULJIp8ZRV45oPAGbmWR84lsMO0ZNWTlI/waXugoZxyDFgdlx0NUkmCN99euOvyDQAP+meeR3FX1hPq9idJUzv/fohZvmnUs3dAbaOkjr+9UgdIaN5ZpSc6AdX71nREX+xQ8470snd/EA4K0tGLd6VMQaGF5KmV75sgwusIb0FnK3hI1Mv7NI2B95X4dzYOlRB5taY15EAxbB5IP2L0dRBW5EiZ5/plQT3v4GqV6wmg/4qpVvW4D9czVEhzV2Wa3lK68orh/A/wn4zt3/4+2Aa7AjXeftfpAVX7vWrBQ99BQyD/fvbCYbDKm2oI/J4LB49ZxvDf4ClUkfvTeYFeH2TqG5VpCb+GxvaasjNLRyBXijWvRa0ZPj3eNzfWlgaTIuMB9qFeOBDgci17qhQq9uQK+jyIBeGaqosrwrpxPQwmrudgK2XRx1ckvKUN9PbGVOre5y2cNXw6H+3N8xbL2i7tgl5lOtl2irfwTscuo9ymFrgcGi6WHNEPg+XpYjYmn2A/n97hZy5s6FZQsEk/8QGiD/ZLz13TARVhzjKKBZzn0fbykKVJJ/xXRWr87uYqMFtyd9tzsTA4LpU1p0P9DaknCZ9XQArlef4fLZXKPEiTeHDL+swECB8w0kT7qCoz1jj1DCLy89J9f4xB2JeiH2UqWTBw9PSbMNWX8M1h+ahl0kfIFE3ZJZqZDn/wtQ9MVL+EWpL/2JhNQ7l3JHzfUp55w6UeznLz14L3g7x1/dEBsA9GCw9J1+F6RKpwPUr5eOXxo6zmW5yImhjFv2uwcdw8khrVEq8UOT6C48rl+Ll2ZlNeacxjtYakH3licFwjnfrKzd+J43J1OC6TSinNzO/HwnFGLM4j0oBX8eeUnIv+j+60L9Rpnvb5rVEdtMD1lp/bOVzt99+3wlZzDDrWrUw4wO6kG+UWSKF9Z6K0cNnkFOSJKmbVDuSC2lOTwVjZLvgoXvmq9vgovNmytzxTPg+ubhgeiZ31Alrq4Lye+SD88+bozYr/RsFWr227h8xpWMZO+T1jM+lnlh2uR8OLLtl4qEzst0pgMEVaS3Mb1eaE2Wap232B1HU6FbkPxsH/zxYH0Z1VarSFcJCi7hc4+eFQ5mTpT2AxGFdOyjVBvV6X9YRBF7R83uF7rncEIDo+x/dVOcgviTJ6Gfkc3pgelXxf2w/VI7vOfZHLhA3Xv4Sa8OcBJU8ljH/4gOtpDMD1pF6lDK57iI3wF3D40pXY4jYKsjH7jH/mfwe7qjL31EuT4CE4OqDE+AqjWhJ/nTWchFrGLc3qAZ7CpbIeFg5y3XByUl1vy4EOyFnzIEIwcQh+OyyV4xDRBEFvRzSjvKrg3OoGp/j4HvA7JaGpyyiBSMtKRao8E+L2Srfar+7C9Yg9w/WsZdBfX70zQdw4P0zhciQi0iGHuDJSvQN+9BsoUk4rNzHkK3z0By8L7atqjUVmVXZD+xnHcWmNAYDf0pRkyxthot2l5ML+bli0fkniSdF2CNizOTiCrwRiztxz0/32BnZUmZ9/ol0Bp9d7Phs4lgRDA6biT/TaSP/54n4yuUVVip7nKedwk0pvykAc8R/ZVIK4Ut6xjZVoXwYv3UTjGt+PwM6JF8Vo73Hx3a3PNfWQ2Xx3zovlg8AWthhOOFkIjUOf58dM1kMsyZ+gO+qlKp8O53etuDNwsw56uPmrgbng8JW+94/gs09+SJBgDa5HPI37fFj2leQ9nUTR2er/cpSahePegdRjbWVLu7nDpO+syHs0gTJ+fnrrgR+9hNd7OM4TQZ/i5u/Ace0CfJ96JtU1Iz/rfAnhK4y8d8K5e4Z2IR2oHv0O6c+ChlnOSI9yXCy3I31KnC0xhbi5vP5sGeLoqa3XYsTViRCJVWsjB8E3Nsl5ricN7IvuG9H+drtibfaDAbAUFfAuH0+DpaKVKvKabcDQrlpXu6kHAiUCs5vKwqEj3WDVHY1yCGTyXxW9SPqnsRLXJ8GmLgVdV0L6s3GhpyvSo+S9qcuRPo1HrHJF3Kx/muiEOFqgebMAcdUUq5nc+/sgmC41SOGtqQbd/sJctH8bqPo5yrEf1CbyNcq+FEP0W7OGmDuv4WL3vmJz4W6I3n7qkVB3ClxeYCSwW6wMBBxCF2eeeE/qIXoqwqI9rcabkf4I1Bv5IT2SFHvxFOlT62wjI8TNvtSlFxFHN7VW70FcdWjaZln694B7gbeeHt0B/9HmLUb7TMvfN3yN7gE7Ja91Gtb14OJnKyxt3wTX9oa+Nk3tBKfcsmSfGICNvPpnpb2LYXdXaoF0GznXvie4nsdsamj9MmOkP65XFCWQHimPmS9H+mRxepUi4uZiqRWXo6S4KQnEVaBsc5qMXwcwq6UHa6e6QHT0eTHaH20O4w8Lb4M5o0Nv2dZNwJY0P3NBphaOBgkfvZHSDJYCqwYbbpZC0yvh/bM5518q2mgk29dE/EYKPq95NXTRsP9upD+6K48MIz06FqT2DumT4kT5EOLmc9vV2YijK5Mq/oir9neD+aniFSA5zDY22d8Fp807i9H+lavNoKNcFRiT/Bub68yr3QCyVe7G9PQ8g5fc/GVwPcNiDvvsU0jLWx55P6Yc13OPxX0+DMV6ol9XqHeX0o5O65F+GXk/xdB1t3cqTnNklYnjw/F0a5Kb2ft8cv6pUYTTECqBm78Zx52r8f9bJ4FKmZn/fCnJG0V+JxwK0NTUwaIR5OPqzV5XIF8XtsU5Dfk8fimvMaQ/zkIUC+nR65zSPqRPn34oSiBu/piccEQclbYb9yKuXJt17m7W47z3dAZXX1sdC8qC+6vR/i+/9GA71zaIP//64PNV9yD56m4Vs7FKcGwS0m6WasX1Hakg9d2mu6KvfEQ+br5uGdfXrZn4qoZ83sCKhVz9maLXJiM9ss2OD0X61Gvjk464UbD6RwFx9PyA9fxoDldOHuHqVkVtwKfytXjSMRui9gVfRXvhFsMzy4Va4eZyp5YNF6Jhp1+EqbJ3BfDtlNaPp1twPY4OuJ5XTdSKY0KLkI9braD1s5nj62zU/RqQz9ttsksZ6Y94aFAs0qMA7bRcpE/05dCRFRxuHp41WYo4eh3moIa4kix7bX/o5yvw5m9bL7inDJQNjz1C+z8LlXq2dTaBnFtw8RJ2BkTUiAu6B7Nhmf/fB2tKGnE9E4n43JhJ9MLI08uRj1v/VnEu8nUWrs7OyOd1+1A+SH8UHoYEIj0yFe6vRvq0M5WtgbgRsu6oRhx9KD21GHEVej1p0dbd9VAVkz54bqIalOT51qH9nYSaUIWXddA32DDnwyYabkr6MidXAoxPxXXsSKvF9SwD/HxMkqkIz6B65OPkbkzqIF+nzaPB9XlTvUpuSH/+TtK5jPTIjvopiPQp/b6VIeLGBIz1EEcRzn79iCvxmE5jTquBO8nPagk4gvYpCdYwL6AI3nHzA/z4XPQXLZ4MWeYLN55NKSQ8xON67LBu8NhEUWte70yb9nXDpP858eSV1t7TeuRXguPh7rSmek/ENEcaPvg+LllUIjf/cxxnpuO4YwR1b2b+3EAcbyccpxK/oc2iDWb5vUXz0LdnTmJoPpLfsn4RmpfslraLIR+3Z9JHC/k6Le3RI8jnKeW3tPhz9MdEYZ4j0iOZJ73LkD6N2CbUn+BwY7KVMQ9x5EO4cuINFmmWqoKbdzfIhwZ6wTUuV1VQ6+Jr5FNUSd4L6bgeRgF9e9tDETQPtW1TlETzkWrIQx00L6V+/mmFfJylIa8M8nWuUX8LIp8n6/aWpcnRn657WtJIj9xFTTKQPl2Pa5vczuHGcO3Vu4ijX1yZTP0jHU9XgLC6XvH2F0Ewn8tVBTwsXRt58lwFrofzfsLPqYpiO9WMenPmISfHGxvQfLS2PbcdzUvyW/TmIh8nuDdr8gDH191YfOES8nnM0MxNSH/OR+5UQnq0+H9xdUifxj/PKr7B4YbSqnBDHB0gXJk55G6oKWGDrMMSmTU2kSDN5YoNZpuUz6r6snE9RuW4ntwYapGRvTiahz5WdTHRfCRN+tpE1ykI+TgDqyEh5Ov6SV8bZkoJIf0JXbcpHOmRKenrTZYehxA3GRutcno4HEWQvj6Tq8hCfWzcNraIr+MpdJO+Fheh5JnHAddT8xTXo1VF2cyTlUfzUIjv5eY3nPloGbevORyluZkiH2fxx5oP4Rxfl8jt6zq4vfjbSClHfyKU9bciPVLj9vUziOHXD0HcmJH80YSrSY95GmdTkkn+JIjh9nUyPJwav9Bvk4zrqSO8WxNeGGXUpeQymJ6PAupx//NEUQZ6vP/6yvBHRKci6KninphpPTLPw9enMuj33PyEI89UfP3hOPrIzPz6OeT+Bvh3OeJHU71IPACvrETa/XGK5r/fHZj4us1s6nBH9lj6r3nJPBzHDepoJWau2rTP43HH9wmPpFy4XBF9kiE6zPKj6mZyxSBcuZDzYmAfzdNH6mN4UEJ8jrzT3x3WPiD3YdIF6pdtpuclJvFPOg/oNbOVP2T88nnmYbgexkHKlMsV0SeGL76+KpAOm8mVDPEF3iTPn+/x30+kkecTTEse6lL997uDP463FtKuPtmJ0/OShh2Oe2ZScYLh16Z93twMHGdH0NZcrog+8djjfOGp9N6ZXPEk4rhjDl7jyPNyrMOrRhYdye1r8t0hPBTHxzIpM25fk3lpWTE5Zwv6Ebevf/k8Mi/w7KX1uH1N9IlnLb5expVaOJOrPvL9oJvoRV8jXjvJ947OTNp5Zl8PX8Zxzwzq6My+lkvA9+/0o/hLZvS1zn0cNw+meT1n9DUzDt9nIoSym9nXWhmkT47jv1Mg97XJIueVSc6fnOucZLwfJudpVYPj+o9IXvK8ee7hlUX6p5PwcYHoU9yvvnLDqyP57tH5FK8F5LyOZ1L/BzbnEs4=AQAAAAAAAAAAgAAAAAAAAMAGAAAAAAAAXwAAAAAAAAA=eF77WZe1p2RyhP0PIulfRKr7NkjV/4bS3wnQn9H0EVL/AwcfF/1zkKqH8X8RoGHhOBo+2OnR8MFPj4YPfhoWPl+g9DcCNMwdX9Hsw0X/HaTqYf75Q4BmrofQAAhhkFI=AQAAAAAAAAAAgAAAAAAAAOgDAAAAAAAABQMAAAAAAAA=eF4tkn0s1HEcx8lu4Tw0V8xWeShWJtKWXNr1o9AWMmvJYyOuco5TE2nZ0WRqns7DlkpSC2Ge7sZ5KHdZHrK4mZXYqmN5mhx5GIne9/3mn9fm877vvfa+t44O/rokzGBC20x5q4RxaRmKGWuXMCHnwh5Pd0oYD3WXS9g7CTOww7pwGLnR6JOGM8jdyA3X8+2QMIo3TXm2byVMSpRhjRA59YJica8c5Dfwh9okzPo0wzjincm1rya5yDnzYhdykNv3xMDzBz5fWtlTkoK7X5Js2R/3uuycJUvc46Yqua3gSt+AuzmY9sC90R3cI9sQ3Aa7YwNimsDvpi3Pp8DJb3Li7+MV9dEV3+s6bsMvxPtSY5HTcbzLk/1sT0TOx4L692Vd3ihCbnev2yUNctt5H8R85MRms2Ni5G7FUH+rs+0H9HBXHWl1roQnK16fp0Suqvlv/1PksqTU38Oqdm0OVDjedS3GfYkj/cXFvWxIJ0MBhmb/9w+UXw8Bo0UaxUNwWHjQthN8du2iYhYU/qb9VxTYEv/6JdHgS7wbZurEbsK7pd4rRiXI7WdFkP6v3uESf0d2TYUaucVgu/oR5B75mbm9QM7jvgfpX9ZB/ccEpcZXcGdNRb63wF1PPjEvA3UHaP+2CdR/+PRmpC7+75ilSYkH+8zjvVTgzm7a/1Yq9Rfbs/1rwNG1e6pPYLCvkqMBlxsiyH7KA2+S/q2FzsR/cyFwW9tDqAE3ogu0U0nJfiayekn/Zen2xD9kPbEgAPfXFov6PeD91HGynyKFAe3/VRTxP7oeaJgMbvQHRQ+DX6xyyX7E+bT/aiX1lxsdG60GE5qbeye0v0My3Q8vifbvsEL92efZcjU4UySMXAUb05Rk/4cdpsl+Ws6skv5rw6l/Zl3jH+3vVtzNJvvPuTBH9qO04ZD+M8Kpv6XIxGEetD4kIPvPTN8i+/HnTZL+PVeov5ozcGoRFJyoIvv/zNEl+8l1p/2zOqj/iHdcldavbhfdfxCf7qfEm/bfnk/901Tpg5vgP/yrBdU=AQAAAAAAAAAAgAAAAAAAAOgDAAAAAAAAGQAAAAAAAAA=eF77U5e1p2RyhP2fUXqUHqWHLQ0AX4QSZQ==AQAAAAAAAAAAgAAAAAAAAEAUAAAAAAAAIQIAAAAAAAA=eF6NmEtuAyEQRH0nZ59zJjfKEVh7xY4jWNaohbqq3pDeTHjGQ9H0B+fxyPb787G/78yH8a/nx14wfxq/bAH39Wuc+TBeevL8afyyBdz33fUoH8a7Hp0/jV+2gLu/S0/mw3iN8/xp/LIF3M+5+0f5MN79o/On8csW8P15/dXPVfkw3vep86fxPj7HdY5Liic6V/Iv7ZPz6f45jGt+qZ68zwXc8/h+/WFc8yvr0TqxgHv9uN/3MK75pXpyfVrAvW7d+3sY1/zK39+8+0d5GZ2n8mFc80v1KK9x5tv6/im+vF5T3ex6uF7k93L+qB7lFGd6HuRf2ietd3rm/FI96l/NL+6HpYfWUZ7za+vJ/Vbzi/tw94/vT3nOL523efeP8jKqT+TXzXN+aTzr/ULzi+8dXQ/fb+ieQf2e+i71v//VaY8vqtf9PLhOUb2gvD3FNcW3xgedK/mX9nnKJ3qWnnyuC7jfK7t/PF9pnTx/Gu/+Od9nS0/mXj9o37We8hpnvk3jL3OvW+Tvrofvr3me1j/tX1wv6Zzz+7zfZz3c/7Ie7gdZD9dH1ZPjj+qI5zPFddbr8ZT9w/6lfdJ6p2f3j8dZ/pzuld4PKY9p/Rpnrkb3R+p7lK+0Dv0O5N+j/byoz1N9Ir+e7s38O7jrOd3nuF7SOev7Ovd7QOnJ3Psi1WmKL/1e5143u39O9YL7Q/fPKY75/w335+1+p/2TDnq+AaB7aZY=AQAAAAAAAAAAgAAAAAAAAEAfAAAAAAAAjAQAAAAAAAA=eF6F1dffOAIZhnGUmZAkIyMhZGQkIV4jpCijQdGPspLMlJResxAKFSpeUmhYGaFEMosG8e846Poe/j7Pc3IdXffncz8n9wor/P9WjKvGVeKWcav4gbhd5K0UV4tyeFvH7aMc3lvi6lEO7/1xhyiH99a4RpTD2ybuGOXwVo5vi3J428adohx/0vftcc3oT/ruHD8YefquFeXw9N0lyuHpu3aUw9N31yiHp+86UQ5P392iHJ6/vSPK4fnbh6Icf9L3nXHd6E/6fjjuHnn6rhfl8PTdI8rh6fuuKIen70eiHJ6+60c5PH33jHJ4/vbuKIfnb3tFOf6k74Zxg+hP+n407h15+m4U5fD03SfK4em7cZTD03ffKIen73uiHJ6+C1EOz982iXJ4/rZfXIj+pO9mcdPoT/oeEPePPH03j3J4+h4Y5fD0fW/cPPL0/ViUw9N3iyiHtxAPinJ4/va+KGch+tvBUc60D4fEj8dPxcPjtA+8Q+Ono5xpH3ifiEdEOdM+8D4Zj4xypn3gHRaPinKmffAnfT8Tj47TPvD0/WyUM+0DT9/PRTnTPvD0/XyUM+0Dz9+OiXKmffAnfb8Qj43TPvD0/WKUM+0DT9/jopxpH3j6Hh/lTPvA87cvRTnTPviTvifEZXHaB56+J0Y50z7w9P1ylDPtA0/fr0Q50z7w/O2kKGfah2VR31PiyXHaB56+p0Y50z7w9D0typn2gafvV6Ochbi8feD52+lRzrQPX4tnxHPjOXHaB97X43lRzrQPvDPjN6KcaR94Z8Xzo5xpH3hnx29GOdM++JO+F8RvxWkfePp+O8qZ9oGn74VRzrQPPH2/E+VM+8Dzt+9GOdM++JO+34sXxWkfePouRjnTPvD0vTguxmkfePpeEuVM+8Dzt0ujnGkf/Enfy+NlcdoH3mK8IsqZ9mEx6vv9KGfaB56+P4hypn3g+duVUc6yuLx98Cd9r45XxWkfePr+MMqZ9oGn7zVRzrQPPH2vjXKmfeD523VRzrQPP4o/jj+LP43TPvCujzdFOdM+8G6IN0c50z7wboy3RDnTPvB+En8e5Uz74E/6/jL+Ik77wNP31ihn2geevrdFOdM+8PRdinKmfeD52+1xKU774E/6/ireEad94Ol7Z5Qz7QNP319HOdM+8Jbib6KcaR+Wor/dFeVM++BP+t4T747TPvD0/W2UsxiXtw88fX8X5Uz7wNP391HOtA88f/tDlDPtgz/pe1+8N077wNP3/ihn2geevg9EOdM+8PR9MMqZ9oHnb3+McqZ9eCg+HJ+Ij8dpH3iPxD9HOdM+8B6Nf4lypn3g/Sk+GeVM+8B7LP41ypn2wZ/0fTo+Fad94On7tyhn2geevs9EOdM+8PT9e5Qz7QPP356NcqZ9eCrq+3x8Lk77wNP3hShn2geevi9GOdM+8PR9KcpZisvbB56//SPKmfbBn/R9Of4zTvvA0/eVKGfaB56+/4pypn3g6fvvKGfaB56//SfKmfbBn/R9Nf43TvvA0/e1KGfaB56+/4typn3g6ft6lDPtA8/f3ohy3gTtt6P8AQAAAAAAAAAAgAAAAAAAAOgDAAAAAAAAwgAAAAAAAAA=eF4txRFghAAAAMC2SRg+hmEYhmEYhmEYhmEYhmEYhmEYho+Pj4Pu5MLgEfnl2IlTZ85duHTl2o1bd+49ePTk2YtXb959+PTl229//HXw8xQ68suxE6fOnLtw6cq1G7fu3Hvw6MmzF6/evPvw6cu33/746+D3KXTkl2MnTp05d+HSlWs3bt259+DRk2cvXr159+HTl2+//fHXwd9T6Mgvx06cOnPuwqUr127cunPvwaMnz168evPuw6cv3377H1iHPNM=AQAAAAAAAAAAgAAAAAAAAH0AAAAAAAAADAAAAAAAAAA=eF7j4RlAAABxsAXd
+  </AppendedData>
+</VTKFile>
-- 
GitLab