diff --git a/ProcessLib/LiquidFlow/Tests.cmake b/ProcessLib/LiquidFlow/Tests.cmake index 5f06a0792dc390902be5d89b58966f72eb636c9f..4c24bf2798891be75de85e50baaa09d837520df1 100644 --- a/ProcessLib/LiquidFlow/Tests.cmake +++ b/ProcessLib/LiquidFlow/Tests.cmake @@ -535,3 +535,30 @@ if (NOT (OGS_USE_MPI)) OgsTest(PROJECTFILE Parabolic/LiquidFlow/SimpleSynthetics/PrimaryVariableConstraintDirichletBC/cuboid_1x1x1_hex_1000_Dirichlet_Dirichlet_3.prj) OgsTest(PROJECTFILE Parabolic/LiquidFlow/SimpleSynthetics/FunctionParameterTest.prj) endif() + +# inclined mesh +AddTest( + NAME LiquidFlow_HydrostaticFlowInInclined_2D_Plane + PATH Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh + EXECUTABLE ogs + EXECUTABLE_ARGS hydrostatic_flow_in_inclined_2D_plane.prj + WRAPPER time + TESTER vtkdiff + REQUIREMENTS NOT OGS_USE_MPI + DIFF_DATA + hydrostatic_flow_in_inclined_2D_plane_ts_t_1.000000.vtu hydrostatic_flow_in_inclined_2D_plane_ts_t_1.000000.vtu pressure pressure 1e-07 1e-13 + hydrostatic_flow_in_inclined_2D_plane_ts_t_1.000000.vtu hydrostatic_flow_in_inclined_2D_plane_ts_t_1.000000.vtu v v 1e-14 1e-14 +) + +AddTest( + NAME LiquidFlow_TransientFlowInInclined_2D_Plane + PATH Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh + EXECUTABLE ogs + EXECUTABLE_ARGS transient_flow_in_inclined_2D_plane.prj + WRAPPER time + TESTER vtkdiff + REQUIREMENTS NOT OGS_USE_MPI + DIFF_DATA + transient_flow_in_inclined_2D_plane_ts_t_864000.000000.vtu transient_flow_in_inclined_2D_plane_ts_t_864000.000000.vtu pressure pressure 1e-14 1e-11 + transient_flow_in_inclined_2D_plane_ts_t_864000.000000.vtu transient_flow_in_inclined_2D_plane_ts_t_864000.000000.vtu v v 1e-14 1e-14 +) diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_bottom.vtu b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_bottom.vtu new file mode 100644 index 0000000000000000000000000000000000000000..5fb53842d111391399c02fa19084d205d1aa93ec --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_bottom.vtu @@ -0,0 +1,24 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32"> + <UnstructuredGrid> + <Piece NumberOfPoints="11" NumberOfCells="10" > + <PointData> + <DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="1" RangeMax="31" offset="0" /> + </PointData> + <CellData> + <DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="20" RangeMax="468" offset="124" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1.1180339887" offset="236" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="596" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="816" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="928" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _WAAAAAIAAAAAAAAAHwAAAAAAAAAeAAAAAAAAAB0AAAAAAAAAHAAAAAAAAAAbAAAAAAAAABkAAAAAAAAAGAAAAAAAAAAXAAAAAAAAABoAAAAAAAAAAQAAAAAAAAA=UAAAANQBAAAAAAAAygAAAAAAAAA2AAAAAAAAAJYBAAAAAAAAFAAAAAAAAADPAAAAAAAAAK8BAAAAAAAASAAAAAAAAAAOAQAAAAAAACEAAAAAAAAACAEAAAAAAAAAAOA/AAAAAAAA4D+uTFjoerbrvwAAAAAAAOA/HIaZmZmZ2T+uTFjoerbrvwAAAAAAAOA/JQwzMzMz0z+uTFjoerbrvwAAAAAAAOA/giSZmZmZyT+uTFjoerbrvwAAAAAAAOA/RmGYmZmZuT+uTFjoerbrvwAAAAAAAOA/+P///381eL2uTFjoerbrvwAAAAAAAOA/sg6amZmZyb+uTFjoerbrvwAAAAAAAOA/QVozMzMz07+uTFjoerbrvwAAAAAAAOA/GK2ZmZmZ2b+uTFjoerbrvwAAAAAAAOA/CtKamZmZub+uTFjoerbrvwAAAAAAAOA/AAAAAAAA4L+uTFjoerbrvw==oAAAAAoAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAcAAAAAAAAABwAAAAAAAAAGAAAAAAAAAAYAAAAAAAAACQAAAAAAAAAJAAAAAAAAAAUAAAAAAAAABQAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAwAAAAAAAAADAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAA=UAAAAAIAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAgAAAAAAAAACgAAAAAAAAAMAAAAAAAAAA4AAAAAAAAAEAAAAAAAAAASAAAAAAAAABQAAAAAAAAACgAAAAMDAwMDAwMDAwM= + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_left.vtu b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_left.vtu new file mode 100644 index 0000000000000000000000000000000000000000..ffa847120301dd853a3606b17d7418188b3716b0 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_left.vtu @@ -0,0 +1,24 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32"> + <UnstructuredGrid> + <Piece NumberOfPoints="11" NumberOfCells="10" > + <PointData> + <DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="0" RangeMax="59" offset="0" /> + </PointData> + <CellData> + <DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="52" RangeMax="461" offset="124" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1.1180339887" offset="236" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="596" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="816" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="928" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _WAAAADMAAAAAAAAANQAAAAAAAAA2AAAAAAAAADcAAAAAAAAAOAAAAAAAAAA5AAAAAAAAADoAAAAAAAAANAAAAAAAAAA7AAAAAAAAAAMAAAAAAAAAAAAAAAAAAAA=UAAAAMwBAAAAAAAAFAEAAAAAAAB4AAAAAAAAAKMBAAAAAAAAjAAAAAAAAAA0AAAAAAAAAKIBAAAAAAAAdwAAAAAAAAAVAQAAAAAAAM0BAAAAAAAACAEAAAAAAAAAAOC/GK2ZmZmZ2T+uTFjoerbrPwAAAAAAAOC/sg6amZmZyT+uTFjoerbrPwAAAAAAAOC/CtKamZmZuT+uTFjoerbrPwAAAAAAAOC/+P///381eD2uTFjoerbrPwAAAAAAAOC/RmGYmZmZub+uTFjoerbrPwAAAAAAAOC/giSZmZmZyb+uTFjoerbrPwAAAAAAAOC/JQwzMzMz07+uTFjoerbrPwAAAAAAAOC/QVozMzMz0z+uTFjoerbrPwAAAAAAAOC/HIaZmZmZ2b+uTFjoerbrPwAAAAAAAOC/AAAAAAAA4D+uTFjoerbrPwAAAAAAAOC/AAAAAAAA4L+uTFjoerbrPw==oAAAAAoAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAYAAAAAAAAABgAAAAAAAAAFAAAAAAAAAAUAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAcAAAAAAAAABwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQAAAAAAAAA=UAAAAAIAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAgAAAAAAAAACgAAAAAAAAAMAAAAAAAAAA4AAAAAAAAAEAAAAAAAAAASAAAAAAAAABQAAAAAAAAACgAAAAMDAwMDAwMDAwM= + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_right.vtu b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_right.vtu new file mode 100644 index 0000000000000000000000000000000000000000..5fb53842d111391399c02fa19084d205d1aa93ec --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_right.vtu @@ -0,0 +1,24 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32"> + <UnstructuredGrid> + <Piece NumberOfPoints="11" NumberOfCells="10" > + <PointData> + <DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="1" RangeMax="31" offset="0" /> + </PointData> + <CellData> + <DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="20" RangeMax="468" offset="124" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1.1180339887" offset="236" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="596" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="816" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="928" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _WAAAAAIAAAAAAAAAHwAAAAAAAAAeAAAAAAAAAB0AAAAAAAAAHAAAAAAAAAAbAAAAAAAAABkAAAAAAAAAGAAAAAAAAAAXAAAAAAAAABoAAAAAAAAAAQAAAAAAAAA=UAAAANQBAAAAAAAAygAAAAAAAAA2AAAAAAAAAJYBAAAAAAAAFAAAAAAAAADPAAAAAAAAAK8BAAAAAAAASAAAAAAAAAAOAQAAAAAAACEAAAAAAAAACAEAAAAAAAAAAOA/AAAAAAAA4D+uTFjoerbrvwAAAAAAAOA/HIaZmZmZ2T+uTFjoerbrvwAAAAAAAOA/JQwzMzMz0z+uTFjoerbrvwAAAAAAAOA/giSZmZmZyT+uTFjoerbrvwAAAAAAAOA/RmGYmZmZuT+uTFjoerbrvwAAAAAAAOA/+P///381eL2uTFjoerbrvwAAAAAAAOA/sg6amZmZyb+uTFjoerbrvwAAAAAAAOA/QVozMzMz07+uTFjoerbrvwAAAAAAAOA/GK2ZmZmZ2b+uTFjoerbrvwAAAAAAAOA/CtKamZmZub+uTFjoerbrvwAAAAAAAOA/AAAAAAAA4L+uTFjoerbrvw==oAAAAAoAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAcAAAAAAAAABwAAAAAAAAAGAAAAAAAAAAYAAAAAAAAACQAAAAAAAAAJAAAAAAAAAAUAAAAAAAAABQAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAwAAAAAAAAADAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAA=UAAAAAIAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAgAAAAAAAAACgAAAAAAAAAMAAAAAAAAAA4AAAAAAAAAEAAAAAAAAAASAAAAAAAAABQAAAAAAAAACgAAAAMDAwMDAwMDAwM= + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_top.vtu b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_top.vtu new file mode 100644 index 0000000000000000000000000000000000000000..ffa847120301dd853a3606b17d7418188b3716b0 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/geometry_top.vtu @@ -0,0 +1,24 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32"> + <UnstructuredGrid> + <Piece NumberOfPoints="11" NumberOfCells="10" > + <PointData> + <DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="0" RangeMax="59" offset="0" /> + </PointData> + <CellData> + <DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="52" RangeMax="461" offset="124" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1.1180339887" offset="236" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="596" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="816" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="928" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _WAAAADMAAAAAAAAANQAAAAAAAAA2AAAAAAAAADcAAAAAAAAAOAAAAAAAAAA5AAAAAAAAADoAAAAAAAAANAAAAAAAAAA7AAAAAAAAAAMAAAAAAAAAAAAAAAAAAAA=UAAAAMwBAAAAAAAAFAEAAAAAAAB4AAAAAAAAAKMBAAAAAAAAjAAAAAAAAAA0AAAAAAAAAKIBAAAAAAAAdwAAAAAAAAAVAQAAAAAAAM0BAAAAAAAACAEAAAAAAAAAAOC/GK2ZmZmZ2T+uTFjoerbrPwAAAAAAAOC/sg6amZmZyT+uTFjoerbrPwAAAAAAAOC/CtKamZmZuT+uTFjoerbrPwAAAAAAAOC/+P///381eD2uTFjoerbrPwAAAAAAAOC/RmGYmZmZub+uTFjoerbrPwAAAAAAAOC/giSZmZmZyb+uTFjoerbrPwAAAAAAAOC/JQwzMzMz07+uTFjoerbrPwAAAAAAAOC/QVozMzMz0z+uTFjoerbrPwAAAAAAAOC/HIaZmZmZ2b+uTFjoerbrPwAAAAAAAOC/AAAAAAAA4D+uTFjoerbrPwAAAAAAAOC/AAAAAAAA4L+uTFjoerbrPw==oAAAAAoAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAYAAAAAAAAABgAAAAAAAAAFAAAAAAAAAAUAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAMAAAAAAAAAAwAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAcAAAAAAAAABwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQAAAAAAAAA=UAAAAAIAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAgAAAAAAAAACgAAAAAAAAAMAAAAAAAAAA4AAAAAAAAAEAAAAAAAAAASAAAAAAAAABQAAAAAAAAACgAAAAMDAwMDAwMDAwM= + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/hydrostatic_flow_in_inclined_2D_plane.prj b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/hydrostatic_flow_in_inclined_2D_plane.prj new file mode 100644 index 0000000000000000000000000000000000000000..77184ce0bdd113eaa9df51a87ad8d31cc6208df4 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/hydrostatic_flow_in_inclined_2D_plane.prj @@ -0,0 +1,159 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProject> + <mesh>inclined_2D_mesh.vtu</mesh> + <geometry>plane_r.gml</geometry> + <processes> + <process> + <name>LiquidFlow</name> + <type>LIQUID_FLOW</type> + <integration_order>2</integration_order> + <process_variables> + <process_variable>pressure</process_variable> + </process_variables> + <specific_body_force>0 0 -9.8</specific_body_force> + <secondary_variables> + <secondary_variable internal_name="darcy_velocity" output_name="v"/> + </secondary_variables> + </process> + </processes> + <media> + <medium> + <phases> + <phase> + <type>AqueousLiquid</type> + <properties> + <property> + <name>viscosity</name> + <type>Constant</type> + <value> 1.e-3 </value> + </property> + <property> + <name>density</name> + <type>Constant</type> + <value> 1.e3 </value> + </property> + </properties> + </phase> + </phases> + <properties> + <property> + <name>permeability</name> + <type>Parameter</type> + <parameter_name>k</parameter_name> + </property> + <property> + <name>reference_temperature</name> + <type>Constant</type> + <value>293.15</value> + </property> + <property> + <name>porosity</name> + <type>Constant</type> + <value>0.2</value> + </property> + <property> + <name>storage</name> + <type>Constant</type> + <value> 0.0e-10 </value> + </property> + </properties> + </medium> + </media> + <time_loop> + <processes> + <process ref="LiquidFlow"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <abstol>1.e-6</abstol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial> 0.0 </t_initial> + <t_end> 1 </t_end> + <timesteps> + <pair> + <repeat>1</repeat> + <delta_t>1</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>hydrostatic_flow_in_inclined_2D_plane</prefix> + <timesteps> + <pair> + <repeat> 1 </repeat> + <each_steps> 1 </each_steps> + </pair> + </timesteps> + <variables> + <variable> pressure </variable> + <variable> v </variable> + </variables> + <suffix>_ts_t_{:time}</suffix> + </output> + </time_loop> + <parameters> + <parameter> + <name>k</name> + <type>Constant</type> + <values>1.e-12 0.0 0.0 5.e-12 </values> + </parameter> + <parameter> + <name>p0</name> + <type>Constant</type> + <value>0</value> + </parameter> + <parameter> + <name>p_top</name> + <type>Constant</type> + <value>1.0e+5</value> + </parameter> + </parameters> + <process_variables> + <process_variable> + <name>pressure</name> + <components>1</components> + <order>1</order> + <initial_condition>p0</initial_condition> + <boundary_conditions> + <boundary_condition> + <type>Dirichlet</type> + <mesh>geometry_top</mesh> + <parameter>p_top</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_picard</name> + <type>Picard</type> + <max_iter>10</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <lis>-i cg -p jacobi -tol 1e-20 -maxiter 10000</lis> + <eigen> + <solver_type>CG</solver_type> + <precon_type>DIAGONAL</precon_type> + <max_iteration_step>10000</max_iteration_step> + <error_tolerance>1e-20</error_tolerance> + </eigen> + <petsc> + <prefix>lf</prefix> + <parameters>-lf_ksp_type cg -lf_pc_type bjacobi -lf_ksp_rtol 1e-16 -lf_ksp_max_it 10000</parameters> + </petsc> + </linear_solver> + </linear_solvers> +</OpenGeoSysProject> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/hydrostatic_flow_in_inclined_2D_plane_ts_t_1.000000.vtu b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/hydrostatic_flow_in_inclined_2D_plane_ts_t_1.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..46a373bc1c4218714d554b6f1503fa0b581883b5 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/hydrostatic_flow_in_inclined_2D_plane_ts_t_1.000000.vtu @@ -0,0 +1,29 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="287" NumberOfCells="512" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-0.00055982459718" RangeMax="0.00036086188319" offset="92" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000" RangeMax="1797409.7914" offset="1400" /> + <DataArray type="Float64" Name="v" NumberOfComponents="3" format="appended" RangeMin="1.9198292432e-20" RangeMax="1.3147815517e-18" offset="4136" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="11724" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="3.9550130975" RangeMax="111.80339887" offset="11800" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="19200" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="22916" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="24060" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NbHUTTeyTE4yTTQ2TNRLySwqqQQAU28HPw==AQAAAAAAAAAAgAAAAAAAAPgIAAAAAAAAswMAAAAAAAA=eF5dlUtsFWUUx79CeylIH9DLhFLBoS2tUG4pjdGknWTGBwu1RBNFulGvGhBYSFhoNSTmW7kRdUNgg0JcsFGb+gjR9MqdIBFiWBQrWE3T3kCBWspTyEV626pzfucm09n8cx7feZ8zXc+Onul5c52fSH80/omfyO6v+DjCR6dGIv709on3Klc5vom+Ki8C62SEBm0N9HJwqWDwkOARVzBshL8augl9lTfEaVM7x0+1oLs+M7Tm/3id7Iv390X4VErok92Cf74qOHxA8Ng1waNRfk72MCh+l5FXEj/kkS7Ff9gpWCl6JgF/qF/wEvLFyOeD9zvjevqp/DLym0UcHb0a1Tv/+sHC40cf83edOn7t2M8p/4fvJs8Xzqd8d9bZdOBSq//B+4f+at/b7N9e9GHvlcFW/+FvzvVWjKR855ct4ZWelD85Ie/F7gPEuxI81R+Lw5bTF62zIb5yMI9+NTR1CVSvFiyQh8HPOPRp3k9Cj0EPQd8R2m3Dv9qbRh6KPKjHrtrjC5kTuwI5+QbMm0lgT/0Sn9V6aNxJ0Qta4c8Hc7xbJHKdY1OAfxvUfKfAu+B15KuIY3yO/gCIfTOLnDmcO5emKo6Wurir5b3uo2WuwybyasT+WrDO23d2z1dv95bIHpgB/JbH87Z16N9CrneA+gToW/pYrBfzYpcgb/RudW36dLRznsxlSL3tbH/hlS93bzBlzKvuh9YHe90r4OeFb2fwo/U73WmrnIFdnzX4vx9JRhixg2Tm3o4Fpv3d/PGIDonT1mNP97sFmn6FFwX7XOGnVb+OfBzoCvAm8UwJ5niv81WsD/uepi5hDe+1/0vBafQ1T+5JyB00inp3JshD91bv1EJwWOxUM78desdz8u5p8szpHIxhD/+W/N7ROuheaXy/9bc91/LGia0P0tdK7A/yXuPRfml/SzJXD+6sO/NytffMH89/O9hXGu9Lel08TjNTnIu/939xd8/Xtd4/Zz/ftn6K+F9bjn/ti97fRKZ+708jd841e4c3dLvhr4/I3AdrvJkne/IdP0KbBfLO5T9m+vCn/bsOTZ1CvZvke4g+Wvpgy7DD/Snet5liXMIn7oA9/m+eha/zEcbnydyDZj/aSr2Omq63Nm5uz8bkbr3nnhi+sXJQ+fq/IQ7LHppJtYdc90Lv5mLyKEFf52QYvQvgLNiAfe5s2My7MlD7XzWH1jun/9vL+JkHnztguacufnIbvYmXKluaup/IjiU7vn9hS0mmZafQ8o69NY73L0Ibqt4=AQAAAAAAAAAAgAAAAAAAAPgIAAAAAAAA4wcAAAAAAAA=eF6VlXk4FPoax0e2W1kmyVKNxoxtMGN2MyPyzZLshAqVRIkoHdXpjBbX0siWaCNXIc5tkSwl2pxDTk4pFCpHSMeucHNLxfHc0T/3ee4f9/3n+7zvH+/v+37e5/e8BMJshH6yLvHJatANt0DpnBLm6ldUCwY56QqoJBYMlu0nomTR5JsnBUtQru7woq95KZ4tcHl3lECG88LJNylnKJBTyn2VxdDHYmWHF0V1hpBTGXta7m+MZ6pZDTUTpigj2dQ1HjdDhubkmxEiC+wLjpui/NnYZ5j7aqqIg1vFE+tjJriY5jm8UFzFh+juec/U4+YQ2449VW8VYPixnUu2rghlcz5vzun3vPx/1Cv+Syvn9MFzab9jntL+ds3S9xI9pO+7NEn9yHtI/ZU8k/o1dJf635MrnScvRzpfeZp0XsFh6fyEcCmP2M1SPjNuUl6Tf5fy+xYs5fnVQcrXxFXK+zv/6ZnZ2PnJ+nv+/+qZ/Liafj1d0NLXat9z4aIvOfvbaJ4p9NQ27Osjs/DwTFdmdYIhDCfuzHdfrIFxbZPfRiLM0TenFzblLz3C0sDDqzCKyDHAWd+AiuECFmgm7MhtW3QxYlsz744NF0ZTFTLHSsmoiZ86W5fEBdumJSiqgA5zbymXhg80X5kPRCS9Uo2quSUAwzJHmKbMwo7RpGftvka4Nyar1b5WGQk1xw9F0IT46Up0SJanCm69PFef4ChE07Cg92scH8FbrZx2ntRG8ERl02EBA+vOn+mO9WHDWiLfLBbpYyaIwAzewEdh9bKMW5eXYkeP8N9VEhrErXtcrE5rQ37Y214xnY8Hbu5/jNOUELRm5XLqXiHWjSQGrw8XIqJX9tMFRyW0DWo5hZSzIX9Bo8+eqoeGyxUFxDwS/DyHHMlxPKzce+25R4Ye9PxWtfZWsRES0z/teoWJvRovQ4lLmXDbNHXsuhsNWXRRlHKSMWb6MoZ0yii4/8AvNDaSg6tyaf/qvGaGgIrnBz4eMobXIppcFZOE6fyweWQPHsarGG/FjlysarsYqOisC5/fd64JP60HmVUjia2VbNBTc7neZhpIuJ3u2jW7pwSrQM2gXHNUV71wWuG1BE7Uj3wSXxdqYdK9FzvWHk+mMRD1yGzgyVZ1pAe5uru+NkeYZ+21b1xFCOIFmbbKIlTE/no7bp4prlKonjkEE9SpHFWZrjUAYUFx99YYM1idPvjrtBofkzu6mg/LLcdlc9L94xdZCFw2qNnYYICi8DpJgJoZYm53KHo/UsdGo3zJrhpzDMTnDKpr6uJAQfSUh78CIvm+RxZSRVDQeRf6SV8EpV8IvqXxCrCtcmYJFThg+FiPybynYl/Tm8D5JCNo3Lhfk3iMB4NLAyP+KSzUyfzi8MmQg6QfZG6EWuvBmneKvkdVhD0Laf3JFEW0z6nlXF0sS+2RMBRBry9xslYRoXDw3uhomAmWfzs37891xrh2RCnDtpwF90fpERNCJorcAzbdsqBjzbsyQ8tTPMRuPZek9hMJ1Bvbk4INuFDwN6lvCWbBuKeCqtBqAOXwcUZfgzkUhecvDRSrY0je65TZEBsunUWloXJ66BaK23lK+khtnddEC2BCsPLlzuiTAowOGHXfjV6EsMV9l5K+kGCqaOfrE8VDM1v1a3Q6A58VH3ZWS0hor1H6W9MRHnbostreTzHx+h7Zoz/YEEO61VwTTQ3Qt7vZ54SYIy05J5QVyUc2KUCd3GkEiSc7JJeoA46aRb7onClUre7JW8YLwOysr1K+vQhm3XHb/fxM0C+JuMj/TERqnd/ZO80CLDy6fq/XdRZkArqHGclkuGqNNPblGUAyn1VM+12AJFyKDMgjoiEuacDuHAe7Nz5QOWBCBW06cYhgOvvfvEZH5StIYOs2Slg6dCi7tN9Xek6GkjjokApHG6v7iU75hXwIp36mtq/RhlyqOW3BQz5qQ9zaoiu1kM3c4DQoy0NPyTKvckUiwsIyKp6PCWDzKsRQO4CLM3tl3IMtmSi1t93S9YIKi9GEekclDt6Wi1M6d3PQZ9tbu86ZCsbJwmY5hg4OdRrWG4byYPOykqIXyER9TiQ9I0UWNo4N3oJ4ETaPxSvsTJIFqEEtLgkixFZEJwdu0UaHq8Ggv5iPr5sfLl+xgYfcqQaL1xu56Iq5WEluNEbepDdPZzUNlN1V26Y9mcik2m/mtQuw+4lF1L4fiJjo0mmb1GRD+FhXoa1QHytLPDUdW7TRrRYiTmFQYOT4fvHbfQJM/0Pf5YvOCnzo+DH98EkuXi/hbPkyey/SAj5cHi3nIDvi7OYTyrN3k96c09HIhEqpc3ZThhEen/hc2cEyw4SoxZuwQQ0cHlmcpSUHNXe+uHiPCNt8pXqiZ8V/6pR3y1Z2H2DjkfbIaVKmOawkvcNDoUsgHDXNSF6thf0ff9QqUjCFEYV+2D3FFBdjH91fU0cBN9P+VG0+H4y2FX0dH/gYqZ7pjNFj4M6nmmWZ/zTGR7a+n/NaU2hdtzeJoNDgPv99x3CaGn5zVB/wiSLjj7KWTXb7+VB2+HJKf0YbuJFteciEBsnT6IlUOTZGdZ70ZMsYwGB1j67xWgHitlwnHi1Ug4Wt8burf9Ihe6HXQPZnDhxjbkaZjuujtunlQeVxFlYlEq5p2gtw93MUVfumCEV9xkK7ERnkTkvz3AfS3N/yYFSPMQUNAbsKFHYZ4C+x0rmmAQAAAAAAAAAAgAAAAAAAAOgaAAAAAAAAGRYAAAAAAAA=eF41WXlczGsXn6mmVbtSKlmKRERCniciO0lRurJnCTfthbqKi3Bzb6RLolIoIkIq53cVqWihVbRpm/apWZv23uaZeZ9Pf52ez/md53vO+Z5lmscnTkgDXMkIunbJugXpz/UzZh3vQpm0iRPaCtO73WeFyk2nOiN+UG05HKQukucw4aLnj9S4O2pYR6bnqtx3Lpopkts0QdH3zxm7D3IhanHIBaqRhbpE+rOZYFegfn80uArNlNwPchKdDvg56hFsqt0Ptmddij5qCFD6U9Fph9Fwq8nCz0JIG5h3Q3COj3KIvA1+8U9vzCrvh41LO7NWP+ChFaLv0lrgTuRFTeFPXcrfgz/o4sdGt0TqtQahfWEVY+r02ZR8eOEzhSwGLhOpMRXC3pSteQdX61GBt6890lOTwZ0Eh0HIGIvr2fO3HJ6+dzbnuJYsZonkv2iUZ5Gg/sGBKbhjuvID/xXKWIvgwweFQAN27CVZSueGCB86tqWL/vEZSmqfby89rEnNsFqzoO5zJXIj9teCh+3We3iIhvdKLev9JGhHO0R2VklTO7I5+03/FsAl1WcXdM3UcRTBpwV+9mwr/WWmQdmkKt5e9Z6NHEViSynKLnZWQp1sF1o9J/vq06uq2IW8lwfX2fJ+Xk5FKHPU6kH5ZRr+jXy3ElDEvZIbrco4Js1NqYbZhMT2d0C1gXHKThYPnt1t0X27TIDWi947XoUubH10/9uxJuh9Q4X4KbeArOi+mgA0pjr/V8LUpvyn9TJjrKXwv0Q/H15ucu1WshtE14h+On5JcG4Gw8sJpjemKFBKt880mwf2obnkXRWo085SbfJfMtR+8q5GYBA/5qBHCW4zM5VLIXmrS8fZt0XwYCe5D/9xF4Yv19TAYeL76AzBrQVcRs7UjJ81oIIJbhx0nuivBKU7vRdbVdnwzMvuFC+mCQ0QP/bA3ylyf9Ru1sWLnye1J9MHkRuJz3IU0fXr9SEnbaz73yyZHtwIPiJzDvCg9fm1uh8zluOtAc9PBBfQ8DxiJhsOj57K+8fNGJt54RR56VH0mryXDQWtQ26vVZvB//qpSwdpI2L/OglgXeDT1r46I8rAImJd0hkp7CoSR40A39Em3O2JNhW0ZMm08Rx5bEfus6EpjrtSK2UGtenrxZkbN4+gA+S+AGwd3l+/9mwK9ablAJqcJoWzJf7tm7eNuTtqJnVO4l9xPAxDemjw/e/mfdCitt3V208OjxL/cuBOdEiY8RAD2zq7rdtsNo6GiJwPueDhvjNjHHZwzyTnLJTCGUQ/E348dZ+bkVuP2n0fN1/P5aK9BH82yLcJ/YQB9SgpomBweM4o+o18lw97zk5NnB/LBoOc4NOXD9OxEvFvH6QvU5nxNfERsr2mpV7wYwgRv9tM8InzSX+HBDZ0JWyONTvGRSTecrqAkrf6NDLxPu1Sq/fXTIVIVySf3gV2ubNPlLW2wQ3tl7uG4vpRL7GfCenFNk7Xhc2IInHLQzHEfha8Topdn3S+HHTDqHvz0wbRdoLzBC8drN9Rnv4NDIlfuCiO3G+Cg+ve+p1ZnY5eVC5V+iO6F5HrVa2gZSlkXTpdCJ1lvb+VKHLRG+L3Jqgsj3eg8VhgrcG3+AIslEL0VMN2K8trD45fQemEx1pRJpE3QKnTaOFPn18ocNO4b+PfXUiG4FMP+78nbylamg9BjIhD+w06kRg3Idwbi1Cc/0WO0gkcdzbplsbPRWoKByGJ22s98rkZiqqi32k6y2Jiz4leiDVsNnG7zUG/7iw457trCGWJ5F39oGaZIHfbsAda2rJepP6QxiS90rnQt5Wh4u6uQFXyQ81fWNCwmJdYUEzhK/ZhoxCctKHb8PsgYnrUvp34Qz8tNGOtT6pRNq5le4KLciFeot+GOmeT9Ls81S3R/5Lc74FeizUZCtoVkNF50P316AAaIXwrgC16adW9LrLUpR16t+7GSmFxPIzBPJ3fyhdWDsGZ04kLQxcr4o03jTbdNOKDil1w81QLaZy25UhRpjcdHzgqOn1w5+eGofhT4+Cz0vyY/6JhtJ84rBl6XCMcauKHUGX1PyFTPvQhBZH++DFIfutXGDdLltp/fk984iVFLE1wZsN3c+dPJ+QZ+Cnhn2G0TfTdVi6ora15X7emHaX9cBi7vYeG5cj9NuBlOP6RGNOD3kjizYbIf0G248b1blgfLyFx3oV2ERpgQ9HL6V0eLxiU7eo7fe77RyV5yoWCNHr17QAGfhTQG2ntOI4KiB/bwNrRcnvukmL0/JLOp8rjPCS28yfssN+4POQTD9qGLzIiHjPF8gk+D7U07HMfHkCvJHy+YUwEdDrSVbtVZaJJp5ami+zMhQ7Chzwo1vqnZOSMEn5Uvc3ZeSkdkzQaZ8GUhM+Zx5Y0oKaCcivN4UEk5isWHO/EyNdQgBr7AwSvYgeRu0jOoFO/3+2s3W2miy9Gh54wDFLGk0n+dsNtJ88v67Q0cODN4KiV8gNoHcFzEPS8kj2XbJfFp+caN134XVbiXxZ8fSfdd9yKjdbMeL9HyXoQ2RP5IAgVdZbKrS+Cp1Nej6N8hjhOQllgwbgUrH2oHaUeXbTNKnwQyYqub3qFHsf8G1PZN42Kz9NbMJSSDQSfnBbIcfiRTKX2gEPI0dq4qRwUQnBmouy7Xk2+9rrU/tyqnunhXAASP18gt7hPS+WzIhWBYxIC2FUSPmmFPmvrp6uVGNRVwrcccb6/k6a2TjM+F8RWwev0orzp2upiPEN6Ydqnm4Eu5mVIm/RXQ2I8tTrA9dkMPQNBE6R9CatyquWjBSI7pwsg0HyaU92WqThi86FZgVukcHmx6PTDzWeZu75xaFjWgDuv7L00/iYSb5WjQHfZ2emr1PCKc5FTUswmY0+SF/nQp1m89d5GOq51r66aebRCHFcTfO4UX3z+zmImNEn4/BnBgQdGPL/hI1wGvrxy+8qsUhp2kvA8rVh7/GjwCKRIeP4L4Z8hkO8JV0v/okaZ3Km7UWAhJ8kjLti9rO3ll5YgG0l90SHyJriQcf+zXa4+PlFW/2+zN0uMgyUfLONa/CubOOiEzhEeDqWL8yueB5YBloNM1VKQmXPuQOcYDa+wmDivZahXX0eUXjzVxYu6me3WLHVMiey5NgBvfFxWC/IUcMGhyyyuDQOT8LnKB4+Wk+42GjRKVecwlH2m40MieNrYcPeY+n/mF7vgaGDpyb/WjSLir+whCM0az68sYiMdUnfkxPaE9sJBpcfLDV7IUZoSP96X4Pms77P7wnEBYknwHCZ6BkAQskzpsaM+tt/yRnWWJwPbkzzqhH1Xu616IyrAjnXyTsucfiSdISJKFlTJRwaEdwxAjstUB7fgQTRFFM43+bAorKL05tRxYMT1ZVGldGxM8OyCRNl4+SM6CtjmfUGd7cV+9JnwbQe4n4taqWXagvQanZVaLwuQi0i8tAUSGNm3QqM0scVtK05N4kSeEYBaIerlvR+quXXwivAqB20g8g50bN+1yb2zetAGJy+TKx18cR65cGGKmrf+kemN0IoOdqbnjaMGUVV4zgZZi+NdY5l1cG6nStqelhE0T2R/ORcWfPmo6X+gDkoKV9A/bqVhct+jFvL/W9SguYsDUpW3EoZz2sX8fGUEZvnufr+5Wob67V2ylm+6vBh/tT4QujCTjJZTcPLt1W0JbUNIiuQLjfpxxs4/z0Mbrx01aWhnKeEnIreY8uGfsIaQOVtKYcf2j4a0QDqOJPzQDrkHu1VGKSEkpbpuCTXlo2qRPawu8E/5LPDmN6JSH97bGY5CtEx0XaMTvgTrbXiyg4JchXtSR98K0BlSBjlgnJPoZFEtT81uf7rnbuoYOkLkjRDmns+STqiBo4eMUxfzepALeW4ZitEqeeh7IBNxpsk5cFkNoEFwiAEv7cbZOopalAbBIUlsj0cHvH0TQk8yzYOy8GL9xjkC5Er8Mg5BY4zfP4aNI7nHtkq+A4o4gbxLAKoOh/b8cVOaqp77/Z6OpxQm4fOwH6KmbfZcoFyEXiwKPzIUIy2WG/EgonS17rPCbrT16ky+zC0aFte7cbCaoaLnptgL1RnpPVmxSlie+GUYzjHYHb4/W1C/8MjK7Go5HCtS80UIf4dH2davVqW+q44u3R0tg0ldcMoDs9T53ZMSmmEK6a/KxX2UVjukO+w6pbHyO9omt27swSgPbSE80wIdayM+L5/Vgq5K+vkXJL9KkY1DW7r/phFUb5+2R6uhDsT5yARh0wvmyeQuCCX9AxcVEPzz0G19g92j4Qys8seBv/S/lgPpqwVjkOrgrf7bPhls9tHH+to3RfGcojjBD5GLpNJOTPQBAz8fbnKl431EzxiYree/i01VwDmOWfqe0YqS+lgDyWOP+/9Q5sLLUMU3woPt4jr1sBfc9pmuLoqbiKe1CYbRV4dQEuGlMRhuW9m0fJ46ZcbRHpzrq4j1iP3d0D/ZIVprNp2qbUqJKysVIrG/WBD3an2IDr8f+VzYv5GZIqmDh3lQbqFyqWCHKtVixev0LqLhvwj+HDj5cdex9PtjSCD103n91zFUReysQr77J7+3/2JEfZTMcaRu5nSAp2dxTL4NHW8hvCRAewg+A5ArLXhv8qcQFVk0L9pxn4EJ/l3tkBGRmclfJ0R2T0YuH3rLR1UieMw48CTYUN34MI3q0Ha4ovZhVFxHJuZ0q122I9KPVLGdZE7fTfCsB72aSLXoZzVoX0TAOoBOZE4e3AoL5rYduJNTAWOxIn7jiPtw01aIzJ4139W3BO0k+ctBbiI7/SfyPWJ+pudMbVx9zkkn/fwkcd2ZmBf0St9IPY9Tp7Qk8wKxv5ANYbfKm0pDOMiPdsHxgtaouB/zF8LynyELS68oU0vUxk7lbZfBbgR/DpxZqxwR8E6K2lUUfKj37zFJvWbDxoIb85Oy9LGyR8vSU7XDSEhw7gbz95wvwtpm0LG1+ytl1QAifbXlMESvv/7qrNRsbH58+fc5EXJYPDf1gbHdw7mfVWSx7fyS6LAbwyiZ4DYAf+6ydD6QLUXpwin3J3sYmPBhaDtsLUbnP070Z1t+xK+R2s0X93uNXPhzpa2z8kZpvFxrUkiCCw2TOjvR5zSZGZ53FeW/pM8h88IJJsTTB9+VhArAXtzniPlzYs79IdRao/ymAk5K5lwx/kwYVIuaxyprhywNhvD1Ti56ROT1EGV0WM5puTHFNNZLc1zTKZmvR8CyPt3UOb0OzMh8rYBLyHf7IHef/eK4TTIUdvV2mmM5LJ53QvtB/pXAirkiEbVp7Tu5LVgaPxDFST8brO8f4Dy/pYIDcvOjJx0aRWrkfieo/D71KWXDAQ2yn+lHykQ+Cn/Oqf3Geq2Jk0kfqIAXi/oE3gC4bxbUHj4/DPsefVhxNoaBt4vq/uwxuN6dfW+4jY79i/Tv7tRXFM9TJzgQbrPZ1me9JuXnG2WYaDqGYqInji4Hpt6exDrvzYQr87o/WMWOIsKH8XwYjKiWC2riI/fOnGX36+iY3I/uAscTgpP5KgJ0ubhv7yYFIdIgdvYAY8XrG2FzOGDzsDfgUuoAcibxMME/6UP1umcEkrlSCqsSPQWgabsBr33ZCKGX5vww86pE7qSv64KnCyvX3rHLBh+f5sXcun4kJ8HH32uJMN5QEU+W4FNC+sNu0HkTXaF3pR0VhcX6nX0oRJkifCxKkIWudobePxrYa//96283/QSxX2iUyWUu28JeBqupxmQvuDUJq4rkNCaMHNxz9MNE/mwl+wEu8iP9jBDmtVnM9TTvh9PubZ1Bv8uI49BmCGjvXH++aWqFulN3yl+CrHj/kM0Hu8X2vaNPaFTm6ievdgzQJXPrAOzQqlxSuK8U/aEY64ONGdiG9HvdsN7p2xK2KgdxUVahyagQkb63mEFVDM5WhzOaVOzuFzsNmjSwE4nPcuR+k7a70EsNW5O90y/4h/ixHf71S0v0ivoOs40u9+yg81Ek0fMLreemKk110KEeczf/N+taNxQQeTOUh5QfHljDBx/N9q/0jWwUT/zSimreXkkvcBsD45X7HTWqOUDiwYYLRq9PvFd2Y1AeGTKLjO6NozSRPbulKZd2h8HGNAbeq1FHa/ioJpnfpagnXo4OrFRpLHMpv9pkvZp4j2csRe3MjdJ7ViIE9tfvKnwPVUzcfrQTzuZ3lFdrvgOVl3GuKyf6zXnEjzxIrRye8u8DAbpbQDd+GU/D78j9BvhaFZpnq9sP7CDWPx92dCEesb8e7OzX+fjsL4N4zcyWwwmd4n0LrR5mqmupL6lgwhnJ/sFPpOYyg5qa/D4ppqMAfRgLPmP8UAOfInk0DCt00w+WaBhQ1hd3Trb6Uw6T+GnkgEB2yfrA6iJIfHTTvl4whsj8Es6BhAoVE5OzsrjZJkn645ExFET6cC5c9P7rk3YNgwrI8Thsto+GlxK/t8OFGRoy0937YN/iVI/fLvORCsF5AAJu6HiNyytizS4No000hoT/BbDKu6t08koZrEf2zFL4LNHfCjVMXfuSh6No1TqeRpQuFyVK8vSIyc+xSFUe/D9PIwluX2GTQ3ySYgQdDxDcasT5Fc8B8+M2+kptTch7LcdNOmwMkX0gLR9GjizVf3NUB6eQOluB3Mh3G4G25mf87ZoROETmC5Y4H4sbYLenBWffil9ogbl8m+ezLrSK+PE7eJ0ItvR60wZ5KoVPi6xakDjv2GC+eq902hMt6r5kL6FJ8GFCw2W5d8zsNhT73CSbU8hFS0TyiTk/iaL37KzkgXTVHOGsyIl5nDRev2DgAj95QF8BGxfNS30+s1u8b+/qhYpHb2kfnDqQ6tC343b5Q2I+X9ULm3adL5udVoyCyB5mSLJ/aIF4q0D27y5d6KJk3y7mDQF4B96rzNmrjUMl+xzxXmsU5i0w2UCLSUanSVwp4OMifB7LUNbfspU82UPo6a2ZBibN6pgr+u43HlKLWK+/0HkGFZRSoxNkQqfI3sy0GbZ2e9MjcpWwjGSfLO5P+EC/EnTUazYdTz20hL7BQAqLeZID39GoiU2CEOVaadqumjUm3jtld8Nyt1PymUXKVLBkL8EhdbwZZh9bsbillU5dkbyLrE+y2cBMSSguOaaNbST7XpK/E/NmxNtp+SUfjHChZN4kv4+EsuBOYoOT41EuJEn2EqTf0GqDcPcWA6uAdmhbKzWn15CHSF9qOQ6XHjHSsbYiledjayGUVcIzSV/Ehk0nZisHhfWjKtMvWTWvR1AAeRcPpkWybk96rImTZqhulyuh4bWSfGFqVei3KBeAqyRflovkvgLIy8qYW9jFhuGRXV8uRkphUvdzeKB4bvK0oRsjYE/6BDo+R/KaD42pfePCBgblY3F+0TZfOnYU6amgUbtprjt5tvLUf76XlTYbKWMDYk819HP2aZkH6lEu86Y+/27bikxI2HKgObgiuW87jaoZPVsYqT4uiedW6NwyedecbZ3QunBZ2SRHDiI/m+TUwuupnKf09un4NPFLByK/v8Q1ghbXy0U6sQa9zj6ZHlPUg7pEaTRJCJ8U1mU2h0+m/i35OGNlvzTOI/WuC2pmSGUb6TyAE3mu9/Pz+9H/AJFya1k=AQAAAAAAAAAAgAAAAAAAAAAIAAAAAAAAFwAAAAAAAAA=eF5jYBgFo2AUjIJRMApGwUgDAAgAAAE=AQAAAAAAAAAAgAAAAAAAAOgaAAAAAAAAixUAAAAAAAA=eF5l13k81NsbB3CJSIhQ9uxLsi8z1nnGDLLvsoSUkkpuCcnepuhmKRStKvzchCSl5FGSKBKSihCXlOxUkp8xc+eP8s9x3vO8znzPM5853+8sYaH9WSILY+yfPcKekusKS+hz+M3xN4ffHH9zyGBbmMaZM9fvEvHZZRflDLmctDmV6dsJhGZuJ0c4wUerJzM9ulhqT4a9HQyq0eYmTI8afaUvMGsJt0xoc32mq2sdXXhfM4iyo811mN4dQlufDLX3aXM1psfsbFlYRx8oHbS5HNP5vtDqNeH4V9rOBJmu8Z644NLAujBDiZ7K/3xxuD5sXMT2a35+XgD+85QDurR63C23wPOyTK/eq0dbH33MaK7KdCMF2r70cbKQ5tpMfzdIqycj4R7NiUzPeEjrsxlG1dDcmOlOZxb7g90DCxxLZjrPzsV+4qFhWj2F6f1rF/uPcVO0enOmN3Evfl7Mz91+OW2k/pGHnR600eQPFz5NG3X+cCN32n9yfzitr3HtA5W/u4P3r8X+/e5RtvQ+/e5zx+n9+N3JvfR9/+eMfAIL43VGPpGRT6Yz8omMfDKdkU9k5JPpjHwiI59MZ+QTGflkOiOfyMgn0xn5REY+mc7IJzLyyXRGPpGRT+P/fHG4PlzJyCf+54x8AiOfTGfkExj5ZDojn8DIJ9MZ+QRGPpnOyCcw8sl0Rj6BkU+mM/IJjHwynZFPYOST6Yx8/ndeISOfzPPnP2fk8w9n5PMPZ+TzD2fk0/h3Z+Tz9/MTGfn8wxn5/MMZ+WS6ZAf7xJEGPSyvZyN4OzWT5AMvm5RVUiDLnHYhelDRavP0dXGB8XJnWh8o6FpGSf4Q97Eq+KOgfrIILx7Y6RA/+XGU9L5T29IrUg7GLnUnBpVqge/stEXPA01Mk8xgGxuXw51Th2SOemnD/Uc/Tu6V0wLeOwUFBVZk3NG8MK7ThpTXNcp6E7bAR3dgODIcJ8vofrKLXr+V4e078veJGJFRjD3DuaNaG2fYomd+dNhC14eZrWXhSjh5KqaKs10HKwq4uxI0dMFjbHfpizAlKLG507F9Vge/hvcQqtR1MSBe/OBlTz2sl/DbFfiXAawRSy0d9aJA29GkYS8PPehM3bzCllUf2quJOe2eFDxGKj3kkk9A/bD2q2wuhpgfHnZyJIoKuZLCzdHBBDDKLWyq/tsQxQ0NLO5YUxG9l0G14xRJi2tK9F8+Q5RrvfD57zBWVAzXvdD5+lhludHS8Lo3hhDVEvFPyLPTxgOe8ytDn1DwfXDZoZihNyThztwqj7WO8InusJ7uVQzHFFHhuz/6ZaG8e3hk8Odk1brY1B+HDTUxYX2w9GyVNM7qJpGneVhxecS1oYCHaoDPfcwauqn4yM02vaePBPZdQKgQdIIT17MeD1ymws5l+wYeAaAC/56v2zodcRndMbpz76Lf5Vt0EGxaXAfC1tDXceleXAevzXxoEeElwZtbXl159zlxbPsgda7PCo8ay+h76pIwls145U03TuB/4Bk8u8waLkd8W6GeuRQGKxf6IKwIWsb2z81n+PCMZ+4S2VeqIPqmKfLhcRLMzCoZeLXoI3HlouNKhhdXLDqQX2iHffUzgS/RwXXSJgD+U+M9vfZWODC5MbNewQRvdFZx1h4BSGmo8vlH3AqIqtLH3vqLIt96pcI3fQv7nVfZlP1OAUpO5TvmaZJQXuHSjkdPACsuOvk/XWoNMRJFFRlGpIVzMCNXphbwRU46knisMbM0k4OqYIanhExmYhfut1tcaql9Dk6gnMvWa6pqBnok2jdQDXd/26k54eaEoQFWzSxyZjCm+CmYy1kNpjLn877aOaHP20k9P0kzdHhY2CsUqo72jn99WWnlBCk9x4rOOGuAnlSdyv59iiA/+5GHZGGEMjb5WfxsmghaJyozZxXB0tuz9OsBYxAVzzrabmmIKsbu9pVRyniSuC5n6IoFPOtx2OurZgj7TTvjeboVQKYp84ZUogUe7SrjrlXRQGMRrrSVc4Dypzs9bViNoE8nbvzSbg1oeXQ/ekyajEuE/Ysu7TPCeKsJOZsRKRDZVFD/RJ+Mmg94MyddVFGbvcQ4QkwErO4/U3UWNgWh4dyfng/lMX5l/wl3CXFcFXorQcqZDInBw5lCHkoA+85cksxahbVVp4pOb9DEE/Zh7RLiUpCndfhMXb02CnPpsHZZquGuri8Z07JkqKju0SpTXThHZPe/teZWxupfrIe/ZgNm5V3nruYVgqYVnT1CI6roU1tXmGAkg6X8DlSD+VW4zvLnLbkxacjmZn9QGCIFPPOx4cblhvi6L/tWhoIG3Jk2jcln2QBSz/f1hwYagGVX6ad/T6vgSMO3e2c/mOPB6qtKu0L0QN9K8jSJnwo56c9XB+6l4NlS2v1CDy2zw3rNeSlwr8Wbdk5CRs2L0Fp5Dbx6UKYsRpQDt3u/yBmcMYQth3tHi/w1YHlxmKQi1yqMsboo3+1vhHknP9bIGZNxkGv8RlmxNHIV8cw+e2cLEpyOeSkL515sriBFgkcWrqYGiy1fOPf40aCImE8G9eM8Bp9aTYEE6U2QbocNe7ooo7lkdCVGN35vNwXdwGffOE7bwYSmvpldgR7+CJExjk6gYPiVoLKxyxTIpl8/8BW8WGkURMFy+vXjqfb8Ic9iVpB+l+f/SoWKKR3Sh33V+dD5QuGNXjFTHOlSS9B0oODEu8DmDG97eEJ3WDNO96L3i47LuYg/ItzNccM93fNVGwXA+dSeSQFPZ3hg9D7tgbs5WM+OSj/bKIChnHOXbT2dsXzzbl+K2FzVBNujxBt/UWD417dbszrLQe3+yvKr4rx4JkUkxKNWG1ScAwu7BUTBN/WW8nSXInrtYmEhclDRPP/sQdINHYiVZZ8klAvAqup/9AVLdMDQ9Pkcm4A01ixxd5t1NQYHmUSzR9wElOiWfdwWYInLV30u5OwwQr+Bofc77AkoVbwk/vLsBngezP7m5iYlMCnzOa3TJw2F378aSInooldH1uiROkWsERri6fslD5cczb41ndWBdGL3EW4fPnjMWzZbVztAcnIJ/t9mD3Hc+bzu+edPZNzd5LHRalIKWKfP+HJz2MNuugPDkeFY9OtovN6/eiiUzP7c/Z08fKo2tmhppYCB9pKWRyfN8WaQSI+TDRFFzh9M80pwBt6+8PraQ+Zg05hwrydl4fm9LWq2LMYZ1ymvS9593BySEvM9Z7YTMWFynCfrsDMmTizW49oHxxfrd/Yu1oPrVEF5eLImhBKCxtN26gEB/3m/eacJnhFQV/q+QxPf9FHfOnIRIPKkHuW2ogmMN8eGXb4pgy+fyodoE5QQ1nO4datqQLM34XWSoSFckoxfeuKBLpzkaYYT6RZ4RqdrSScqQmX8qy8vWWWwNc7holqaDn5ObHz4iF8LmjNcsvaQiPhMYXk4jw0Jz5dolL5s0EDPo7PDPs8JeKppY1bsGmNgP6crN7xpYb8auza8vUdBv+Lx2K/ezshwdKI7bKE7DJ6l+xdter01w4fpDoN0BzvGOtOJj5s4Pc2xNn24VF1bBI8VTHsGeTlDzVXf+BxPc6gffu07NyMMjm9MQ8e9nPGY5d+Fhlc5MMhSxKmqiYrpEY0JRw8IQsRYrONSqiDyGkinaDuIYpO8UNjESWkY2zFI3DCsBN17MzrTdlFRVn0H0TNDFxs63w9/4RADAc5kv1YeIm5LvNPYukMR69kcPlp695AMLWb9q+5qYtTFk4bhAl+rilKtb+39yxBYVXUOfztFxdsE1g73xxa4d3zRsdSG7seTFh2G1b7uXz2oC3kjwxEbn6pCepn56qpvplgy3JOflqwABg+4Vb9JUiFh74uZ+hPaeDrDQlbngiJy9p0/uPkzBTLLhZ/ZhOiARpHNZuJPMuR3HvjJNWWES6VlbR4q2GPxp4rhf6bJePyzBt/7WSMc3J3BKiNhDxuf9z4TUNSEwL1Nkun2VFjl3pKfWmaMXA4/yq+RNNGv+fLWV2JUsFXoD5DsNoYNgwGXGo6o4SuT8as3ypXQLD3CRnCPASSL/XrG7yYBncTNaVGeshDDijqfApSx/oOU96FoCohxpfjndRLglSxXMVePA263e8J7Ip6C3y5v8+0uIYDp91DrhD4HKJZr7DowYYDxej3qqwo40SzWmyS50QK6iBlVgWMGYJCft8fUZxl8VBSvcnW1wLvVFyJTpzhB4GdQ5qWbVGjn17BMuCCEu3wr31ptMcSVY+673Y5TQWxPp++acgv493H9y/sShrCSXPLiznkqfF52oaI80gLjLDOPq7rJQtRwUtr1QiO4ButbfjzUwHTp1ccL98rjD4k1JxLqjUAis8dJO00LdJNGjRs3kLH847ynIKcRyMoXfPs5YguNtaMrDpqQweJMwcUGFSMwa9ZfI9Jli7liNlk3qk3go026e5KVMq5+nWL5IscKCzzvfTRJXItTnlwlZaJEvJDbFxHnoALu571LpD4Y4PG3FXY5cvpwjLC5LdbMAth3KV/xedNfJUCRrgj9JAAfLcs8ZD6PkxwGh/xGtlJg4xrX+qkCaVCs72/rq3fAEEmrw0H+FCyJfiebfUsat2x24HdqcIALsi0Nhlc5Mb/m6p3HJ/Xx6IsNEfpuQrDeanzb0moKNksJOjz4poccfFfj4sQcIceTRyTpOwUu3y1z8R3Vw0ifG5tCbRwxZvmxWoWnSnC2wzS7VMYEnUl6yS6huphmqqviOb7wHD6f1//DXAv90qWDuSqp8L+752+lblHCAfFNQdfrjPFrhK6OvqQuVDf6C34ZosC++qd1jrup0Gmi8rKB5IjX6hYdOxroflp/0cHbvOwp4ak2EB/nnNn6jgT+Xt2C3VJkfPOFzTesVwsbR6X+59q18Pzc+imwxhNgVIJvtFtDAtdvhu3TSWboE6I+WGqhDK3V2ycTCYZ48X7quaK/REHSsq+QP80CUuYa3nJGtpKo4XLkh0e0oLThYd+5Bz1VIbvmb18IIKBLV1nOu30y+GLuunkflQrBk8rb/FNJuDS7HJoXnivf3uv6UOxmDbyF0QnsKSTI2W/0WEHWDMS+s7HFu1rjlZVa6BxNwqmdBUOX1irDsPL4Dgcza8i94ZtyhQ0g6HxmfIT5wnWqbvSOe2iN8cFK2R1LAccHe6p3Lfi282wcCpXWoLRP6LIXSR/uOVR6rLtLgqwB3it7Os3Q2y2jM1WXilP8/+7svEjFGb8k371xjiDlvuiQL0z3qK2Ljg8kljztqtUDNw8vOLFCBu/WHjt2c+E8Ju+5HSVlLAb1E3c26H2SwPiipuKBDEXsUxv7HnVOE+1ct1EPDVFRsNKW/UGkCRjVxC77N1cTwh8FEMcnqNj/+S+j6TQT3Nedb7ZJURu+vS9JufI/Xjh28/aG4AzAw9053exXtdDxhxGo1bHB84bG+y2yAPdfKPXjIwN0YvtHLSMYMH7ORHt4vQW8Lo0cEqk3AFvJazxHAwHXTFH0rLQtcE/kRcqF/RJgGilUvEnHDK9nTfJ7H1LGXfofNmkbWGADr0eWcqsqqO5elpos4QItqj3zNmABcWs23VR/o4o3dF/Mtsu4oKtHrtC9hfq9F5OGV/ipIfvMQd+lki4QHNJX5G9qAT/Nsu7qyqnBmaRVA3lyLrjDsuNN1nYSsv6Y0CzSUMFjJ9te5WhaA5E769TooAlIBIvarQ5Vg6fAcqKxxgrPDoUaRxwxAL131huyngjhnR6WzLlpc9wl+sbmyU09mHbmiPA8q4XlZnPnmq5R0M78i+j6M3yoHNQz3N9gBCHkEuO15eKwuiJfWuKYOJ7/EGhv5GYG1v2xgy9LlSCuO8/0ZqI4OFnlbU1/agYx9rYBTxbO6S6XDpIYGxXcRo62beqSwv6Adv1sV0cMaMeGlCVUNKxjObuuUQo2yt8YCnB2BAsjOVWpERXIVuPChd+r0FZxJpxXk4j+/rwpT9XX452zW5xT6jThWMTmrdyBRPjwZXlLxbQJbpw5+TP0qx7wKom9rnppBblOq16W1uvgxQMPpn6aaoGoz9J9Z5eYgr6KeaWNOQU0LjjnuGerLtyn1p43KHFAt1b7L+ve6uPrg2uvqfkB6Ar8dIvbag7DUTZb9p0gwJsDPA3u3qLQKhN4TWMLFdvLD19cP6+NqmsFslbkk7BiLrna1ZEMM7crlVm1dOBa75VHrgqAHiwvX3pFk3H7Fa6PPUQ+0Goc2LCs0Bi2m/S3sYiI4+2b2NC2RAZeX5/PkTmkhklspNlwDXV86dctwtYnhak1ihgTKAzaZQTPnWRV0Alv81jvyA8Ko+e+u4cClr6O04v8JYGT52/Gl6+hYNcmw8NjfGoL/VTm/XjcAY601XfmClvgqWvrtZJ5AU2JH8riWVwgie6QQnewoDtGf6J7TD+9PtGS7gfpjnF0B4bDX1flNta2qAFfUqZXioc6Fsk1EQ/eMsAq45Ob96eRgUXu4eYhtSnS49Ysq7+D7fAyV3rASDYZE/ZLGAbl/1sVub9y2fdYO6gVSh6uMQLUOOXJdSjBAHU4hG0erLUB363lIynZP6sqbp+8WnJaAVdGbZvwr+UEFULnkW13B6tumfP4iSz87ubZ98vr7x1TpLSpNoWKPG1ckmYrYx4hgiI+hfFZ7GSYNiK9Gz1CgtOef2clexHAYsvfWwatrTGEV6DZZiPAiHeOQHqyAWbJpmgW29rg18xk4ZgtrNCI9dHBYfLI+7TGu7d9JdY7x9duv8mP3e3v21OSp0l2NhdXTV2ShPnYsFLu1MkqXnf71SpHlCEybK6woGkJlEvWebw4KIFBHaR7dRxqcHTF0PDdBGXIPdEsXPHTFNeKNXW7P1JHbXF0ObzXAXKKDtf7SRGRTz/mVOgWbeAXKvEY6KNCUIRZjkWbCRxpD9ZK6ReGyXnX/qelVsi9WyV323MTvHm7a7vAUWGMlCKmrr5hBcnButihI4FNDUkc9z4QoV1HI0bOWhkivh8oN/dQgelvXVrndH6Q7vaPhW8oIqDHVOI25+Z16LzaTm1AhxN+udQMJukTIOJaaO/0iCnIuX0QXSsCsDvmbHvodgdUi7g20TpmivZTGWd7BAD6v5i9F9jhAO96HdQV7OdIZCGCy9rN5IV8/W9iyG85ri8rWi7FogMFA+6Htj/lx7x0oRQlJzLyta2++plbBZVKbHDUlgiSR0K1lYII4P7uSdTm+nXQonia98xyIthlSbskaBMw5KdeHueQKahY3v70Y586dHt+XOrs54B8rxrP5V+0gMslF7Qdjc1ROUHAI3m/C3LTHa/QHZToDgfe0ev3X6e7YzK9fj/dMZzu6EB30F338HRdsw7eFb7Qq81CwMDmAPcKDlPg6um/vV9PGXt9zC/cpgqhpawgx702Xfg/D0nwcA==AQAAAAAAAAAAgAAAAAAAAAAwAAAAAAAAwQoAAAAAAAA=eF5d2nm8p2MZx/EzDMYMw2DGMIyplPakaOeMSqVVSqVwhiLSgmgRjqW0aifaTqG0KUvK2iFbG8pSlnImS1ooS2XnD5+312ue88/3dV/P/buf57mW77U859iRR/6+Hb4yPDZ87+D6zeHHwq3Dc8JvhK8JfxF+PXx1+N/wtPCjofP3Dt1nn/Dx4Ybh+8Onh08LfxluFR4VHhiuGK4QHhTODdcKrwj9zv4rB/v9/sFwv/A94Q/C74ZPCH8YPjU8IbwwXBR+LbwoPCbcZLD/MeGiwX77nhnSD7vSk/0bhx8Onf+h8LHhiSH7bRHyg4ND/sAPxkP+sPq0R3CX1teEc5Jf2/rtg/0fb+139tv3ifBP4WHhzJD/eW7vwY5Hhuz5o/Cl4VcGcut3h98JvxC+fCD33K6T2/flgdx611Ac7RF6H3Z5U+i9DgmfHD4ppJdZIf3cMtjv9/xHXL0z3D9cOZwRfiRcI5wT4o0lIb/BGzuH/IZ/8mN+yj/5pTjwnLuH/P2AcHa4aihO3xyKV3EqPt8S/jF8bchfnIOv8Jdz8Ba+Gg+fE24Wip8F4brh/0L3d98zQ/75pYHces9QXOwW8oOfhp4b354a4lvv8f1whxBffi/EjzuGd4TinH/PKn4/0Pol4UrJN2/9ydDvxZFz7LePnvgRPY+H/I6e6f320Hu+LPxmyI/4j7jDS/ziV6HfO89++zwv++Jlfju395JX8NL54SvCwwdy63eE8tr08KuhvHZ0OC+8IHxbyE9uDPERfsKf+MF7OIc/Og/P4Jd3hZ5T3vW8ntPzycMTIf/m7yukN8/rOY8L8RKeOj7EZ3gMH2wUyuN4QR5/SnhDSP/8eX7P88HWLw4vDfGYfHtJKB/jvZ+EO4WfH8ittwl/HH42xLvkbxhcnwzpU104FYoTvHR9OB7isT+H6kV13Skhu8tHd4XscXV4Z4i32Mda3iH3O+fIO3eHfwnF8czsom4YDU8Ptw/Z5echu7w1dL684z6fC9cJ54fstGn47PCI8Pnh80L2WRiuH+JP+ROPTobsp86nZ3qSx+lZXqBfdqRP9rwuxD/0f1m4V/ibkJ7/35q+8fNzQzyNn9cL8fTl4cWhfEWujnJd/Is38SdOxSe9iUf2Zn/xyN7sz87qCn71sxBP4Ddy9YTr6jh8ox4hV++5zj/Fsffjn4tDvLBq+n+o9RvD2clHwu1a8hP2Zn9+wt7s73z6dR/n06/7TAvpH1+qH14fqiPUG+qMbUP8gw/Hw6lwLMRbfwvxz6sGcnZyXb7WL8jz+hF1mHxOLk+7Lg+KL30DubU6bsXOoQ911IzkE61fN7LsWv4jPyP8dLjlQM4PXBcX6gZ2cV/niuOzQ32HeobcWh2HH/ACf1NfqatWCad3X/2WPot835Flr3sv7ynvkFubN+A3cnrmn+pb/rdGcnEnDtdMLv7EHf+hB3o6N+T/zj8vZHfvIW/Kl08M1Y3qRfObtXoe/s2fbwrZnV7Eq/5M/y5e5Rf9u/3i3e/sF+9+961w9XC18A+h+Yz4/n0o/s1n2Jmfi5d/huMhPvhHKP7HBvu9z/hgv/f3u5V7r/e1PjRkr7FQvie3xmfsLs/rd8nxmuvqXnpwjjrZfnpjX3bl5+pPdmI3cShffyZcrv3qwImQvdxPfLCX+PG85jgvDJ1Pbm1+o06gX/r+bWiuIY7I+bnr+nH1ur5cP64PV7+rZ7wP3iO3lu/MGfi1uo9cXeW6vmPNUP+h79BvrBR6L3rwfuxFb/SqT39GqF/X1+vnHxf+OjT/0d/JR9by1fLZRZ2rznkgfFZoTnl/uHaov7w31H++ILwvNPfcIFTf4klxok7zPvondZp+iT68F77Qj8r79Evffw2XhOrvpaG4Fafk1up25/i9un0q1BfgCfWMvkCfYL99Y4P99uE9+scXfsde+kO/o3/PqS9kL++Fb/gPP9HXyzvylbqV/+hD+JH99plvmvt5Tn5l7sdPPKfvCOYP5iXk6ljX9QfmsOptcn2E6+Y5XwzNdcjV867fFuJVdY++Sx7ED+TW+IPe1Ef0/J9QnlEnsK9+UlzyB/2nuGRfcajv5A/iUN/pHP7kPPflT+7vfOfyI+c7l9/R06fCxQO5etH1f4XqcnU6uTmh67eG+k95h3x0cN178T/+SA94TZx5L37JT+lB/OA//aP8wf7k1uol9ap8oi+Tp/Rl8oo5mPmXftZ3E/WzfKx/MWfVx5jviStxZM6qvtUH6RP1NfKIvkadoO5WN7IrO6sz9SfqVuf4Pf/HH+oAvG4+QA/im5xeXJdn5deTBvvNHeRXcmvnqd/4B39Rv/EDfkH/9Mhv9SPqEHUKHsYP+iZyfOG6Pk4/NhHiPXWT9yPHj67jPfUU/iM373Zdfaj+4b/qSf6q/sGf4h4P4D325hfqef6jrlfP26eul6/Nncyh5GtzJ3Mo++2T/+23T73w71A+wDPk8ofr+ln+Jh7pjb7EDb3xA/pTH+kn+ZU8wQ/1l57H86kr1VHqJ/Wluoufq78mQ3WVvuGekP3Y53ehOYP4IremD/zArs7BD+zKzvTDn/SX9Kmf5I/iRfyoixd2X3MPfecqyelLnpevxd1k6LsSu58V+i72ohDv8n/zBHNH56u/xTX/4Td4XR5Ux8iH8h2788O1O0e8+928acvuE++e0/N5L32o9zo5lI/wo/mJOYb5hbwyGdIn/+In5kG+e5nPmN+qF8mt5WdzG3ld3Ulubd5rDqBP0KeZl8qL6k1y9Zzr4ogexJO4E2/0irfN1fC3PCVe5M31208/8jA9m0v6TmdO6/fOM9eVd9lRPeD3zvPdwP8T+D6jvvU9Rv2rDjFPFGfk6jDX1T94EC+qf/AgXlync+Rdde+6ydV16mT7fWf0O/v9X43fLUiuzlsUrpdcfvcdk1y97bpz1NvOM4eZaM3u7Muu6i1xx07s9vfQd0zfEXyH9R3Cd0z1p7rT9w18iAfN4/CA+MeH7mte6f7u637+32S1zvedxDx+aaivlrflX321vD0V+k6pz9Yv+06pz8YPeMF8Fw+Y5+IJfeVVoTkbuTrZdTzv/xV8P6cH78kO9MZO+mN9sz7a3JfcWj/hHP04O5A713X+47nxN77Fs/K2/G7uQE/qc3WaekMdqz4x18E/eMf55pbssSTES/ycPsWL757qEPq3z+/4m7njaHL5Gv/iY3Jrda7/P5G/3N993Y8+6Y2+Fofyo+95vl96TnnH88rL8rG4kcd9P5TPxan7qS/kFzxr7uq+/NO8DE8Gj/Ilnly+Nb7Ee/7wH95brjX+cw5edp774nHHOmdRa+e5L/71x6/4k7m4Okre5Pf0ab5Ar/RP76MhnsSP6jH+gyf5l//zEXf4g1+ph/iXPmgsVN+z12hrz+V9+ZV4Ml/Vz/heo77F456X3Fo965xzWztPnsIb9Ipn8Kb3Ng/0vQovOUeeM4cXL+pI7yc++DG/Zl921V+oqydb41e8hI98H8U/+EScsqM6XryTm6e4Lr+oL8WjfOS91LPsrs/R3+ITfTA+Ftf0oH5Ux/qOMpRb+537ut9YyD/xHf4lt1a3iCN9iXgSR6Ot9SfeS7/n/Tyn+tt78BP+we/4rX5X38Yu7MQP2Z29fc9kd/b2HU3c4Uc87b7ixP35uXmVORX96LvoiX7oRR+GZ/CLupncWl39MBYB72w=AQAAAAAAAAAAgAAAAAAAAAAQAAAAAAAAOQMAAAAAAAA=eF4118OiGAYAAMHYaGy0sW0nTWPbtm1bjW3btm3btq0e3nQv8w0bNFBAIRia4RiRkRmNMRmH8fknEzMZUzIN0zMTszIHczMfC7Iwi7IES7McK7IKq7MW67IBG7MZW7IN27MTu7IHe7MfB3IIh3MUx3A8J3EqZ3A253Ehl3A5V3EtN3Azt3En93A/D/EoT/A0z/Eir/A6b/EuH/Axn/El3/A9P/Erf/A3gwQOMDhDMSwjMBKjMgZjMx4TMhGTMgVTMx0zMguzMxfzsgD/ZhEWZymWZQVWZjXWZB3WZyM2ZQu2Zjt2ZBd2Zy/25QAO5jCO5GiO40RO4XTO4lwu4GIu40qu4Xpu4lbu4G7u40Ee4XGe4lle4GVe403e4X0+4lO+4Gu+40d+4Xf+YuAgAQZjSIZheP7BKIzOWIzLBPyLSZicqZiWGZiZ2ZiTeZifhfgPi7Eky7A8K7Eqa7A267Ehm7A5W7EtO7Azu7En+7A/B3EoR/BfjuUETuY0zuQczuciLuUKruY6buQWbucu7uUBHuYxnuQZnuclXuUN3uY9PuQTPucrvuUHfuY3/mSgoGAIhmY4RmRkRmNMxmF8/snETMaUTMP0zMSszMHczMeCLMyiLMHSLMeKrMLqrMW6bMDGbMaWbMP27MSu7MHe7MeBHMLhHMUxHM9JnMoZnM15XMglXM5VXMsN3Mxt3Mk93M9DPMoTPM1zvMgrvM5bvMsHfMxnfMk3fM9P/Mof/M0gwQIMzlAMywiMxKiMwdiMx4RMxKRMwdRMx4zMwuzMxbwswL9ZhMVZimVZgZVZjTVZh/XZiE3Zgq3Zjh3Zhd3Zi305gIM5jCM5muM4kVM4nbM4lwu4mMu4kmu4npu4lTu4m/t4kEd4nKd4lhd4mdd4k3d4n4/4lC/4mu/4kV/4nb8YOHiAwRiSYRiefzAKozMW4zIB/2ISJmcqpmUGZmY25mQe5mch/sNiLMkyLM9KrMoarM16bMgmbM5WbMsO7Mxu7Mk+7M9BHMoR/JdjOYGTOY0zOYfzuYhLuYKruY4buYXbuYt7eYCHeYwneYbneYlXeYO3eY8P+YTP+Ypv+YGf+Y0/+f/w/wcrEAQUAQAAAAAAAAAAgAAAAAAAAAACAAAAAAAADgAAAAAAAAA=eF5jZR0FIxkAAAeWCgE= + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/inclined_2D_mesh.vtu b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/inclined_2D_mesh.vtu new file mode 100644 index 0000000000000000000000000000000000000000..3f617ea72217a6d518bdf750ca7376ded1245872 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/inclined_2D_mesh.vtu @@ -0,0 +1,23 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32"> + <UnstructuredGrid> + <Piece NumberOfPoints="287" NumberOfCells="512" > + <PointData> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="0" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="3.9550130975" RangeMax="111.80339887" offset="2736" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="11928" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="28320" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="33788" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6BoAAAEAAAAAAEnAAAAAAAAAScDl+4QFkKZVQAEAAAAAAElAAAAAAAAAScDl+4QFkKZVwAEAAAAAAElAAAAAAAAASUDl+4QFkKZVwAEAAAAAAEnAAAAAAAAASUDl+4QFkKZVQJYEAAAAgEbAAAAAAAAAScDeGV5rTnxTQKYIAAAAAETAAAAAAAAAScBmNzfRDFJRQIkQAAAAgEHAAAAAAAAAScB9sCBulk9OQOguAAAAAD7AAAAAAAAAScB88NI5E/tJQLI+AAAAADnAAAAAAAAAScAvMoUFkKZFQHxOAAAAADTAAAAAAAAAScDgczfRDFJBQMa7AAAAAC7AAAAAAAAAScB+atM5E/s5QEPZAAAAACTAAAAAAAAAScAQ7DfRDFIxQIjuAQAAABTAAAAAAAAAScAw3DjRDFIhQAIAAADAHeG9AAAAAAAAScAAAAAAAKXtPa8E/v///xNAAAAAAAAAScCQeDXRDFIhwGwk/////yNAAAAAAAAAScDBcTbRDFIxwF5F/////y1AAAAAAAAAScA8JtI5E/s5wPSt/////zNAAAAAAAAAScDb6DbRDFJBwDe5/////zhAAAAAAAAAScCWvoQFkKZFwHzE/////z1AAAAAAAAAScBSlNI5E/tJwODn////f0FAAAAAAAAAScANaiBulk9OwILt/////0NAAAAAAAAAScDlHzfRDFJRwID1////f0ZAAAAAAAAAScDPDF5rTnxTwAEAAAAAAElATwkAAAAARMDl+4QFkKZVwAEAAAAAAElAalkAAAAAPsDl+4QFkKZVwAEAAAAAAElAGJMAAAAANMDl+4QFkKZVwAEAAAAAAElAPFgBAAAAJMDl+4QFkKZVwAEAAAAAAElAAgAAAIDX573l+4QFkKZVwAEAAAAAAElAUF3+////I0Dl+4QFkKZVwAEAAAAAAElAfE3/////M0Dl+4QFkKZVwAEAAAAAAElA/Yj/////PUDl+4QFkKZVwAEAAAAAAElAQeL/////Q0Dl+4QFkKZVwJYEAAAAgEZAAAAAAAAASUDeGV5rTnxTwKYIAAAAAERAAAAAAAAASUBmNzfRDFJRwIkQAAAAgEFAAAAAAAAASUB9sCBulk9OwOguAAAAAD5AAAAAAAAASUB88NI5E/tJwLI+AAAAADlAAAAAAAAASUAvMoUFkKZFwHxOAAAAADRAAAAAAAAASUDgczfRDFJBwMa7AAAAAC5AAAAAAAAASUB+atM5E/s5wEPZAAAAACRAAAAAAAAASUAQ7DfRDFIxwIjuAQAAABRAAAAAAAAASUAw3DjRDFIhwAIAAADAHeE9AAAAAAAASUAAAAAAAKXtva8E/v///xPAAAAAAAAASUCQeDXRDFIhQGwk/////yPAAAAAAAAASUDBcTbRDFIxQF5F/////y3AAAAAAAAASUA8JtI5E/s5QPSt/////zPAAAAAAAAASUDb6DbRDFJBQDe5/////zjAAAAAAAAASUCWvoQFkKZFQHzE/////z3AAAAAAAAASUBSlNI5E/tJQODn////f0HAAAAAAAAASUANaiBulk9OQILt/////0PAAAAAAAAASUDlHzfRDFJRQID1////f0bAAAAAAAAASUDPDF5rTnxTQAEAAAAAAEnATwkAAAAAREDl+4QFkKZVQAEAAAAAAEnAalkAAAAAPkDl+4QFkKZVQAEAAAAAAEnAGJMAAAAANEDl+4QFkKZVQAEAAAAAAEnAPFgBAAAAJEDl+4QFkKZVQAEAAAAAAEnAAgAAAIDX5z3l+4QFkKZVQAEAAAAAAEnAUF3+////I8Dl+4QFkKZVQAEAAAAAAEnAfE3/////M8Dl+4QFkKZVQAEAAAAAAEnA/Yj/////PcDl+4QFkKZVQAEAAAAAAEnAQeL/////Q8Dl+4QFkKZVQB7ZBfOEyzbAt8oEN11S0T8laaA+tb1DQJpGAAAAgDZAutRMx9awqj0JU15rTnxDwFW1Q4/fgOO/b+MUOY8ZDsB4alCB9OPwP9zdM0lbeyRA8Z/gim2zMkBf+/ZH4bwxwJIelgTx8iTAavWCIoVbM0C7wvqMcSQyQA62qqqqSkHAaNGqqqoqM0CQ1sQpNvNNQBC2qqqqSkFAaNGqqqoqM8CQ1sQpNvNNwPS1qqqqSkFAjN6qqqoqM0Bj1sQpNvNNwNdoqHIZPEHAGwWWU9nBM8D3BH33+tlNQN7f92O1dyjA9I5+vwjXNMC6qgzehzA1QFnxbLPNdihAsUy22Wb7NMDud+E3vy81wGeBHHqgWjbAyh1ha2lwOkAXG5Gz8FtDQNWFi+1bWTZA3ZFgC00COUDXwTii11pDwIY/s4JUqDfAOXbXowRUO8Cod3aM73xEQKYeGNF9bzdAPKatz8GNO8AcOzpHtktEwMBdBkDBUfU/Mgr1GuYQO8Ak1J3rjXYCwCd3NZ3d1oa9tzwDd8jYO0B803mrc8mTPeda/w91xUPA3G+1gn7q2D8Y3aa/WR9RQOla/w91xUNALG+1gn7q2L8Y3aa/WR9RwJAaGLj65SNAt+Dt7+j89L8qf5H6gzsxwIcsbyH7vyHA+zWLQfYNAsAJeaTqZ74uQMDMXkXL4ETAwlZNleHkP0BP3kA3uhRSQImlmsPnoERAagZy58JAQMAmEW7uZd1RwAalmsPnoETAfd1x58JAQMC4EG7uZd1RQBTPXkXL4ERAdhdNleHkP0BU4EA3uhRSwKT339MZDj9A2LJb3qe7CMDxZuhE/eRKwIU9IjlaNT/AfwQ9D65WCEARvFpv+wZLQKB5+AsvlwNA6L0Dd8gYJ0AyPU/MRvcQwJRapgEj0i1AGtjPe76IP0D3+yg6W9M5wDgPpgEj0i3AD9jPe76IP0Cwuig6W9M5QEHNM3buYT5A7H1vyCE+QEBk9fLh4k9KwOf0V5fKJj7ArN2/CMaEQECQy79eqxxKQDgtIYbaZBrAECwordjkQMAm/ytcm9smQLGOqFGnMT/AJSafaMLFQMC6nlJkxwNLQH4dr7qWPD9AMNyWpiLGQMDNopXAPw1LwJezlwdEJkXAjhU+93//LUBiVMZE5FBSQCmmBOJCLUVANj8BAAAALsBs+Gox81ZSwHVnStEAJEVA8SfpbwpTLkD1l/+n7k5SwF7a9DZhHkXAUL6t4hV1L8BPUXDsD0pSQJDhhq+UUzBANiDIK3RyJ0Al++MNP0c8wCJMqJoRBDHAQDKJvZf7J0BJXVqz7ng9QBocmoXXSTvAKz1YT718KcCMOCqi6qFHQMnhUHFfLjtAdELdgQ3gJkAiz5esIIpHwIXetQzGKzDAPRkKkg/9QMAlk91aTAI8QOQ0gPKfbDBA08K7ffEhQcABGGSvn3I8wIFK8yRM7yBAGVyqysU5QcAxvA6X9FQtwDMFsT15GxlASrvJLVMYQkAV7ab8Wr4lwIEP5YlYHRzAEnWyhyBTQUCKb+2XFVkoQEBylJ8emhLAxr+Or5NIMcCJT3bXHRwgQKcyg5TIyjPAGAo0At5JLsBr3uyW9iNBQLrB4TK1LTNAuyN02ksMKcDB/gKD7ptAwJqnpQzBDhVAzwvd4RXvLcBexsithzwiwLMRUEQ6/xLAKkn8siTxIUCbDAW8rXMgQA3/f3c9tzvA1uSbspYmMEC29kJ+qABIQCDMcuV1aTpASd6z6eaTK8Dvy/i5mN9GwHrBoyhrczZAOUoekz8RRECilcwWaXFDwJiz////fzbASZt24kYOQ0C5011rTnxDQJbEzXXGJTDAo3oitX4aB8BmXc2i6Pc7QGKD4vCvZDBACbB2HicKEsB+Sp4l4GQ8wKeM48QkPUHA6AryrLWwIcAKrw37ydtNQB0IUaeQSkFAf6YUQx0NI0CjkW8bCfNNwBHAOq84qEFAL4gNOunUQkA/QJXPQJVOwMtu3kPwpkHAVTh9zvnXQkA1acn4B5NOQPMxOUVOqjbA+nMiPX2HQ8B3oW218aBDQJuz////fzZAEKrNDzxtQ8C3011rTnxDwI7XqOpasAJAIdunZNIrRMCQ2SGDXy8QwFOdraziG0LA794uhzFQQ8Dz22nRll1PQMWdraziG0JAF/IuhzFQQ8Cv3GnRll1PwAkKOPp5WEbASLk1nL9XE0BTjm70E1pTQLw83JK8WEZAS/vwIclXE8B1CP2gTVpTwLdgbF9DG/2/8wTCiqxwQ0Dt/viy+zQJQC67D7ejHA7AlJAZc1nGM0ArU2mt4BMaQF+Rsin23ifAW2sAADgHRMBGqJh6P6w0QH8jBfQ3txNAEsGrORSxNEA7Qsz9BBMhwMQBWFb7VT1AUCKKRcIMN8Ad4CPD1WdJwAkS660I2TzAYefq3GhPN8AgsAGBoPtIQMxvBdiuXChAPrVekzTkIUCt+e46IBk1wFvZmvCEyCfAxBXqDeT+JUCfUUX4z5g0QJU44IQMXhBAww61+8jG5z9SVG+pYFkcwGrMyMzr6UHAbM9ZV0r0IEAC9pRfDAdPQGzMyMzr6UFAbM9ZV0r0IMAC9pRfDAdPwK/+hYE25jbAFY8FzFjbJUDpwT1H09RDQDozAdPCjEbArm0Z4VJMOMAZnHqSW4dTQA7kd8rGgkZATM6HueGQOEAA1Xz7tX5TwCopKo9siEZAi4qoWvdmOMCH9PINmoNTwIrzd8rGgkbAH7yIueGQOEBq4nz7tX5TQFX1qrd3jzFAdTdt8pJqNkA3wKvcYGo+wJQTLyj5aDHA2ORE2lEKN0B7jDZDtCc+QPLRf3agriLA0MclczM3KMBALAdW4C0wQNFdN9aLOztAnx6BA4m8NUCMDdFAiZVHwJQ03gHdwCdAvYHS7NACIsDUgFCeLpI0wOuKzr7CETJA0ZZUmm4/OMDJJgl3DUw/wJyxMLPQyzDAWoX77V7MN8COz1eafxc9QAWZNSTtXEZATDBrSNq5Q8BhsPJ/7l1TwAWZNSTtXEbAUjBrSNq5Q0BisPJ/7l1TQOiYNSTtXEbA7DNrSNq5Q8BLsPJ/7l1TQO2YNSTtXEZA6DNrSNq5Q0BOsPJ/7l1TwPaKw88IWkbAxpXtsy8zGcCGqvZabVtTQMSjX4GiWkZAyu3WX/33GEBR2EJ18ltTwIZJja07owfAbUkZUr/PRMCVec6HhXgUQHnxf1EDRBTADjohkDNQGsDPJRV284whQPFo6DhI7ShA4HGW3ZJrRMAjL2g4WpY1wMvd3O3sBxtAEwiPYdQNOMBlirbO1GgnwMoEUONJXeE/O0f7ZL+4McB8now7dxPuv6+RS7JxcDtAAi00g/iORMC0NwLZWMNHwHHyS7JxcDvAs0w0g/iORMCIiwLZWMNHQO0u7nQW6DVAp+/teVfHLUCVtUYWv/hCwLHt4aiSjyZAOrwMLfgeRECHcc33yokzwJOWRyM0nSfACOScemDrQ0CXtxjJTHM0QDCvTGA4/EFAqN14/Ar1PMADISNMviZPwLDpuu2r9kHAiOswENz7PMDobJYCIh1PQFfM4skTJzFAaXHPHpVPREASWNOokbU9wApQ+rekPzHAYdGgY9IbREBNJuVnHuA9QEjoZ5/LhC7A0j7yo6y3KMBFlXlMFG46QI8b/skRVh1A3ThgknxaI0B+AsA06WcpwMrfIF2CfUNAGwqQZKfdN0DSIwqwCuFQwGZOxQ6JgUPA+KBlX+CxN0BC+XVLh+RQQLAkzt548zrAgTbhLxKqCMBFf10/HldHQN44lr9p8TpAOqinbkJeBkDjJxy/VVVHwLjBnXuR9QhAE/xtl5+uREDXETBJh50VwGtfvdpKYjvAD/FYbFaIREAbbt1fF7dHQObDytC7HTtAD0GxzbacREDrBp26t3tHwIBJl4gtViNAfO2LkqWtPECkQCzT+r4wwJUhFoitcSXA+h0XiYfKPEAdl+FSM5IyQDWL8D3OSEHAt+P/WhQIPEAjJar4/O9NQM7G8At6PkFAR5SqnssrPEBF0TkXGd5NwKYbTJqswT5A40yVWItKKcAW1pBJzaJKwKpaueM+ih/A9VoKsbUaOMCdpuR5gFArQFicXbEg3zrAiNq6TqIkOUCGN2DVf0VHQAVrKaFe2OW/E0MhunXpE0DjSbVZIuvyP1Do6mHvY0NAVxdVyvWqIUAnyuXV5MpQwHMeSoNtZEPAsX3bI5uyIcBiYFARUstQQJ0j08s7owjAqMSjtsOMOcCFzUh5OVYVQCxK8mUDwUPA0SAUULz4NsAHEKOAgBtRQKJaDRmL+UNAoLi1VF/wNsB7XqxcdUxRwH4JhsYmxyhAmNlCm7MiPsBTPzaPVHU1wJJCNSta8jfAOf+n5fpGMsBhlSFvCr1EQKm4nLKRYijA5xxcbaXIPcDueTU0OR41QMHOZBTs6kNAcsrHyFFsREDdPivQyz9RwKTIZBTs6kPA2cvHyFFsRECTOSvQyz9RQF1Gtcc3xzNAOMOilGPbP0BkW+AU4CBBwNjsBF924jLAzvAgqVXeP0BP1OlpxFpAQPAdEPDgMB3ALGBAZvaLRcBecy/os0cpQNTBZvSKNzvAnruRma9wGkAeSeStEZJHQJD9y9oIe9Q/RHckQb6EMkCzy77kmbzhv3Nr/7SdZzfAVN61ottyIsDN/aVG5EREQG/0KWVkkT/AA5u3QNEtRUDaud7fsFZLQA6tfYcFkD9AonQ8wyYjRUAb+QQEgVVLwKEPMsBTfT/A9Wqq6p8fKUDtKfJoUEVLQKasX5ChBEBAbZyXgXlGRcBeLVddgL5LwIFvKJvZA0DA8ujhwWtGRcBlnAQHJr1LQChyFaBbPzlAuVC9WSq4P0Ca5w6hbt1FwF1Wlt2RNUTA9RHmat2eRMD3YYtfcYBRQCBYlt2RNURAqBjmat2eRMB8Y4tfcYBRwLwdAcfexjZAVllbQIkLIsC4xoaGrrlDwEFutHwgPRtAyvO2SDbpHcCBr8+w55YnwOQu8fl8mTHATlVlRILqRMAUvU0FvHs+QDzEfwbmpjFAd8JnOPLzRMDl63A89pI+wHLgqEVcJzNA+NyxkKGpDkCGrrRIb5ZAwIPgouAFozLAUfo8QC7IBEDMy8670yNAQLvNKOXAwjrAUgSrLpZvQMCB/T4z7SxHQNaze+oZyjpATR6kDYVpQMAX9UM2SjNHwG57nkOddB1AQnsVsFw0RcClmvQRXYIpwGs531wzOkfAyw5ZminULUAtbAaRjx1UQNMt4f9MQEdAgBdcri/YLcCsNc371yJUwFVZphW5OkfAcZ6L7QthLsAF93pfAx5UQG9z5K9kQkdA/EWauDUkLkCUixLnpyRUwGhJ2diaZj/AAvrzMa8wK8CGjNXSojFLQDgMmo7w6D5AHW8aThZ1LkDHQACJzsRKwJjqdT15hDpANttLSJrFFcC24QCX/fZGwGsa2EzFrjZA9lMHeVqYMsC3Rf2Zz6RDwE5G7BoslBDAKW3h7eXLPEBzQbE9H7ccQBa6qCEdhhzAnN9pTzxWRUBL5X/o0LMoQIDgp0KuihxAUkqnY5XHRUB+T01nxbcowN5U2T8bBERAVu+F1VzeIMDlZ9c5m1VRwGfXwMuQAUTAO8gAmCrOIEBXJazqZ1NRQEc8JC0g7ytAmy4KwIM7MUDVupR3DjE4wGRkDpDHLyzAtphiU5DIMUCGeWBjDGk4QN/sCdO69j7AV/eM/HXuNkAOKBvWv9BKQKZSEtCzyjTAnni89fxCMkAaXgNymAFCQDkrRr1MRkNAMJ1TolibLcADIR+cOrFQwFbUT+wq2jnA1nofpC5hQEA1E/xWgGNGQO18TGJyiTdA2HgNy1hdGkDUImmkMGJEwNe3g54s/zPALR8TmguoP8C6/Y/BVVFBQPe0vSkCMjRApOKhwlUmQMBZANDQW31BwGahCuPhOBBAMs7nSAatPUBmPuXVABkcwLSuwMvVASJA1qX/oiKCLsCLBD/7dzAvwNBh4BkE5CDAkcQnwH5pGEAztTdaakEtQDR31VksURFAJvCZ+Vh1QMCz1oA2e/4dwPScroG3F0PA3lw7g/EQLkBXJSkO44hQQITVyt2mGEfAjqQsMo8OQMBCON+1gQBUQIvVyt2mGEdAkKQsMo8OQEBHON+1gQBUwH3pyt2mGEdAfuUsMo8OQMCKSd+1gQBUwHrpyt2mGEfAgOUsMo8OQECKSd+1gQBUQHCjJFfG0y5AEIuXW5BZL8CvJM84erI6wL89jGB0kkFAACS+YOou9T/D1JpKjW9OwKAKlWfvm0HAh3QdO22o5r97dL0G+X9OQMYVj+3EPEDAMI5aCoKHOsA0BxhMvB9MQF9jt++Qm/y/urSMo7GTJsAPfGXzZMYIQCs33YRluOi/skYNYRnGQMANcv5bjWj1P5L11Sa6pzPAAZJNIkZ5GcAZXq2BmgVBQPY8P9vwhD9Ak1qNmo9bN0BHYo1i6EtLwHMOE9FMV0BA712iE5WPOsCaI5AxsE1MwO6Xjxh+YgJAzsDKfW92JcAOx8Rd4tcPwMpTgcZmrhHA4Nfc15CP9j9OTJ4S9Z8eQP9/drMMkfS/DlhPFiuEKUB7dv2tqs8BQLceyFnNeh3Abdk/ucgHLkCFC+rtuIcpQKaJ0Ri6/ELAHxvP4FjCL8AzHMBUg3FQQKKvg8phIDjAEDl+jnViM0ARFbFZ5+REQG15RaJH1T5AhNdvMpDlGED0/1Xlx7NKwAxsK6ZlzD7ArrTeZhOFGMB7IDiRFqxKQI9vNcDZNB3Az8uLB7nfOEDXNDB+JEspQHn5eLdGWStA9vjeMpk0+j+45fF3SK83wFn1imVT0SrAUxZOLuc0CED+VMToizk3QHmkdeL270JAJFbfGh8ZQEBsfpjXdWZQwC55pPPU8ULAT/WWmOETQEDl7EXcE2hQQNviUC8mT/0/QRU3VB9gQUCQpKnz6mEJwCy1rwkgADRAqudYgmbHEcCnlRWQKFJBwBDVFqPrDCvAKLFMwPBNOEAehHUzKG03QFjbxXxgyipA0yeTDpQJOEBOmiFUhzM3wHP8NqcI6kJAK0m06fpyL0DgWuMDU2FQwBDSzpmonkdAoLGdM1E9RsAphxNZj3RUwAzSzpmonkfAobGdM1E9RkAohxNZj3RUQHjbzpmonkdAdKWdM1E9RkBRjxNZj3RUwHTbzpmonkfAd6WdM1E9RsBQjxNZj3RUQDUqvpPI0TTAuBid4jMAN8Bp0WdYugdCQArh5bR0NinA4l5GnbREFcBJIxQHudU1QA==ADAAAKMAAAAAAAAAogAAAAAAAABLAAAAAAAAAKMAAAAAAAAAbwAAAAAAAACiAAAAAAAAAOYAAAAAAAAAhgAAAAAAAABKAAAAAAAAAL4AAAAAAAAAngAAAAAAAABOAAAAAAAAAL8AAAAAAAAAnQAAAAAAAABNAAAAAAAAAPUAAAAAAAAAtgAAAAAAAACFAAAAAAAAAOYAAAAAAAAAcgAAAAAAAACGAAAAAAAAAHMAAAAAAAAAJQAAAAAAAAAkAAAAAAAAAHQAAAAAAAAALgAAAAAAAAAtAAAAAAAAAMMAAAAAAAAARgAAAAAAAACXAAAAAAAAAH4AAAAAAAAABgAAAAAAAAAFAAAAAAAAAH8AAAAAAAAAFQAAAAAAAAAUAAAAAAAAANQAAAAAAAAAfgAAAAAAAAAFAAAAAAAAANUAAAAAAAAAFQAAAAAAAAB/AAAAAAAAAP4AAAAAAAAAdgAAAAAAAABuAAAAAAAAAKsAAAAAAAAApwAAAAAAAAAmAAAAAAAAAKwAAAAAAAAALAAAAAAAAACoAAAAAAAAAMYAAAAAAAAAIAAAAAAAAACcAAAAAAAAAMcAAAAAAAAAmgAAAAAAAAAyAAAAAAAAAMYAAAAAAAAAIQAAAAAAAAAgAAAAAAAAAMcAAAAAAAAAMgAAAAAAAAAxAAAAAAAAAMMAAAAAAAAAogAAAAAAAABGAAAAAAAAAMcAAAAAAAAAMAAAAAAAAAB6AAAAAAAAAMYAAAAAAAAAeQAAAAAAAAAiAAAAAAAAAK4AAAAAAAAAhQAAAAAAAAA/AAAAAAAAAJ4AAAAAAAAAgQAAAAAAAABOAAAAAAAAAJ0AAAAAAAAAgAAAAAAAAABNAAAAAAAAABABAAAAAAAAYwAAAAAAAADaAAAAAAAAABEBAAAAAAAA2wAAAAAAAABkAAAAAAAAABABAAAAAAAAiAAAAAAAAABjAAAAAAAAABEBAAAAAAAAZAAAAAAAAACJAAAAAAAAANgAAAAAAAAAhAAAAAAAAAAKAAAAAAAAALYAAAAAAAAAPwAAAAAAAACFAAAAAAAAAP4AAAAAAAAAlgAAAAAAAAB2AAAAAAAAAK0AAAAAAAAARQAAAAAAAACYAAAAAAAAAK0AAAAAAAAAmAAAAAAAAABtAAAAAAAAAKYAAAAAAAAAkgAAAAAAAABIAAAAAAAAAKYAAAAAAAAAYwAAAAAAAACSAAAAAAAAAKYAAAAAAAAASAAAAAAAAACVAAAAAAAAAKYAAAAAAAAAlQAAAAAAAABmAAAAAAAAAPUAAAAAAAAAagAAAAAAAAC2AAAAAAAAAK4AAAAAAAAAVwAAAAAAAACFAAAAAAAAAIIAAAAAAAAAKgAAAAAAAAApAAAAAAAAAIQAAAAAAAAACwAAAAAAAAAKAAAAAAAAAOgAAAAAAAAAKgAAAAAAAACCAAAAAAAAAMMAAAAAAAAAlwAAAAAAAABoAAAAAAAAAHsAAAAAAAAACQAAAAAAAAAIAAAAAAAAAHwAAAAAAAAAEgAAAAAAAAARAAAAAAAAAL4AAAAAAAAAYQAAAAAAAACeAAAAAAAAAL8AAAAAAAAAYgAAAAAAAACdAAAAAAAAAMcAAAAAAAAAMQAAAAAAAAAwAAAAAAAAAMYAAAAAAAAAIgAAAAAAAAAhAAAAAAAAAMMAAAAAAAAAaQAAAAAAAACiAAAAAAAAAH0AAAAAAAAADgAAAAAAAAANAAAAAAAAAKsAAAAAAAAAWAAAAAAAAACnAAAAAAAAAKwAAAAAAAAAqAAAAAAAAABZAAAAAAAAANcAAAAAAAAATwAAAAAAAACWAAAAAAAAAKsAAAAAAAAAJQAAAAAAAABzAAAAAAAAAKwAAAAAAAAAdAAAAAAAAAAtAAAAAAAAAIAAAAAAAAAANwAAAAAAAAA2AAAAAAAAAIEAAAAAAAAAGwAAAAAAAAAaAAAAAAAAAPYAAAAAAAAA1wAAAAAAAACWAAAAAAAAALsAAAAAAAAARQAAAAAAAACUAAAAAAAAALsAAAAAAAAAlAAAAAAAAABsAAAAAAAAANgAAAAAAAAAZwAAAAAAAACEAAAAAAAAALUAAAAAAAAAcwAAAAAAAAAkAAAAAAAAALQAAAAAAAAALgAAAAAAAAB0AAAAAAAAAKoAAAAAAAAAXQAAAAAAAAB+AAAAAAAAAKkAAAAAAAAAfwAAAAAAAABeAAAAAAAAAPIAAAAAAAAA2gAAAAAAAACmAAAAAAAAAAsBAAAAAAAAdwAAAAAAAABEAAAAAAAAAAcBAAAAAAAAPgAAAAAAAACKAAAAAAAAANoAAAAAAAAAYwAAAAAAAACmAAAAAAAAAAcBAAAAAAAAigAAAAAAAADXAAAAAAAAAJ0AAAAAAAAANwAAAAAAAACAAAAAAAAAAJ4AAAAAAAAAGwAAAAAAAACBAAAAAAAAAPEAAAAAAAAAdAAAAAAAAABHAAAAAAAAAJ8AAAAAAAAAfQAAAAAAAAANAAAAAAAAAK4AAAAAAAAAiAAAAAAAAABPAAAAAAAAAMkAAAAAAAAARwAAAAAAAAB0AAAAAAAAAK4AAAAAAAAATwAAAAAAAACKAAAAAAAAAPYAAAAAAAAARgAAAAAAAACiAAAAAAAAABUBAAAAAAAAbgAAAAAAAAB2AAAAAAAAAMQAAAAAAAAASQAAAAAAAACHAAAAAAAAAMQAAAAAAAAAhwAAAAAAAABlAAAAAAAAANQAAAAAAAAABAAAAAAAAACbAAAAAAAAANUAAAAAAAAAmQAAAAAAAAAWAAAAAAAAAMUAAAAAAAAAXAAAAAAAAACEAAAAAAAAAOQAAAAAAAAAZgAAAAAAAACVAAAAAAAAAP4AAAAAAAAAlwAAAAAAAABGAAAAAAAAAMUAAAAAAAAAuwAAAAAAAABcAAAAAAAAAOgAAAAAAAAAggAAAAAAAABrAAAAAAAAANQAAAAAAAAABQAAAAAAAAAEAAAAAAAAANUAAAAAAAAAFgAAAAAAAAAVAAAAAAAAAKAAAAAAAAAAbAAAAAAAAACUAAAAAAAAAAUBAAAAAAAA5AAAAAAAAACVAAAAAAAAAKQAAAAAAAAAEgAAAAAAAAB8AAAAAAAAAKUAAAAAAAAAewAAAAAAAAAIAAAAAAAAAKcAAAAAAAAAJwAAAAAAAAAmAAAAAAAAAKgAAAAAAAAALAAAAAAAAAArAAAAAAAAAOMAAAAAAAAAhwAAAAAAAABEAAAAAAAAABgBAAAAAAAAeAAAAAAAAABDAAAAAAAAAM8AAAAAAAAAIgAAAAAAAAB5AAAAAAAAAM4AAAAAAAAAegAAAAAAAAAwAAAAAAAAALAAAAAAAAAAXwAAAAAAAACRAAAAAAAAALAAAAAAAAAAkQAAAAAAAABRAAAAAAAAAK8AAAAAAAAAjwAAAAAAAABhAAAAAAAAAK8AAAAAAAAAVAAAAAAAAACPAAAAAAAAAMAAAAAAAAAAbAAAAAAAAACjAAAAAAAAAOAAAAAAAAAAgQAAAAAAAAAaAAAAAAAAAN8AAAAAAAAAgAAAAAAAAAA2AAAAAAAAAN0AAAAAAAAASgAAAAAAAACGAAAAAAAAALMAAAAAAAAAggAAAAAAAAApAAAAAAAAAPQAAAAAAAAAfAAAAAAAAADZAAAAAAAAAPMAAAAAAAAA2AAAAAAAAAB7AAAAAAAAANgAAAAAAAAACQAAAAAAAAB7AAAAAAAAANkAAAAAAAAAfAAAAAAAAAARAAAAAAAAAPgAAAAAAAAA3gAAAAAAAAB9AAAAAAAAAAoBAAAAAAAAiQAAAAAAAABAAAAAAAAAALkAAAAAAAAAWgAAAAAAAAB5AAAAAAAAALgAAAAAAAAAegAAAAAAAABbAAAAAAAAAPgAAAAAAAAAaQAAAAAAAADeAAAAAAAAAJAAAAAAAAAAGQAAAAAAAAAYAAAAAAAAAJEAAAAAAAAANQAAAAAAAAA0AAAAAAAAAI4AAAAAAAAAOgAAAAAAAAA5AAAAAAAAAI8AAAAAAAAAHgAAAAAAAAAdAAAAAAAAAAsBAAAAAAAAvwAAAAAAAAB3AAAAAAAAAMAAAAAAAAAAowAAAAAAAABLAAAAAAAAAPQAAAAAAAAA2QAAAAAAAABoAAAAAAAAAPMAAAAAAAAAZwAAAAAAAADYAAAAAAAAAN0AAAAAAAAAfAAAAAAAAABKAAAAAAAAANwAAAAAAAAASQAAAAAAAAB7AAAAAAAAANAAAAAAAAAAcQAAAAAAAADLAAAAAAAAAAoBAAAAAAAA9wAAAAAAAACJAAAAAAAAAJ0AAAAAAAAAOAAAAAAAAAA3AAAAAAAAAJ4AAAAAAAAAHAAAAAAAAAAbAAAAAAAAANMAAAAAAAAAyAAAAAAAAABzAAAAAAAAANMAAAAAAAAASAAAAAAAAADIAAAAAAAAAOQAAAAAAAAAQwAAAAAAAAB4AAAAAAAAAOMAAAAAAAAARAAAAAAAAAB3AAAAAAAAAM8AAAAAAAAAeQAAAAAAAABaAAAAAAAAAM4AAAAAAAAAWwAAAAAAAAB6AAAAAAAAAN4AAAAAAAAADgAAAAAAAAB9AAAAAAAAALcAAAAAAAAAqAAAAAAAAABrAAAAAAAAALcAAAAAAAAAWQAAAAAAAACoAAAAAAAAALYAAAAAAAAApwAAAAAAAABYAAAAAAAAALYAAAAAAAAAagAAAAAAAACnAAAAAAAAALkAAAAAAAAArwAAAAAAAABDAAAAAAAAALgAAAAAAAAAQQAAAAAAAACwAAAAAAAAAA0BAAAAAAAA/wAAAAAAAABVAAAAAAAAAA4BAAAAAAAAAAEAAAAAAABWAAAAAAAAAPQAAAAAAAAASgAAAAAAAAB8AAAAAAAAAPMAAAAAAAAAewAAAAAAAABJAAAAAAAAAA0BAAAAAAAAeAAAAAAAAAD/AAAAAAAAAA4BAAAAAAAAdwAAAAAAAAAAAQAAAAAAAAEBAAAAAAAARAAAAAAAAACHAAAAAAAAAKkAAAAAAAAAUgAAAAAAAAB/AAAAAAAAAKoAAAAAAAAAfgAAAAAAAABTAAAAAAAAAN8AAAAAAAAAXwAAAAAAAACAAAAAAAAAAOAAAAAAAAAAYAAAAAAAAACBAAAAAAAAAOcAAAAAAAAAggAAAAAAAABMAAAAAAAAAOcAAAAAAAAAawAAAAAAAACCAAAAAAAAAK4AAAAAAAAAPwAAAAAAAACIAAAAAAAAABABAAAAAAAAlgAAAAAAAABPAAAAAAAAABABAAAAAAAAdgAAAAAAAACWAAAAAAAAAMUAAAAAAAAAZwAAAAAAAACYAAAAAAAAAMUAAAAAAAAAmAAAAAAAAABFAAAAAAAAAAYBAAAAAAAAqQAAAAAAAABeAAAAAAAAAAgBAAAAAAAAoAAAAAAAAABQAAAAAAAAAKAAAAAAAAAAlAAAAAAAAABQAAAAAAAAALoAAAAAAAAAjAAAAAAAAABCAAAAAAAAALoAAAAAAAAAVQAAAAAAAACMAAAAAAAAAOMAAAAAAAAAZQAAAAAAAACHAAAAAAAAAAgBAAAAAAAAUAAAAAAAAAD3AAAAAAAAAL0AAAAAAAAAVwAAAAAAAACKAAAAAAAAAL0AAAAAAAAAigAAAAAAAAA+AAAAAAAAANAAAAAAAAAAywAAAAAAAABWAAAAAAAAAJ8AAAAAAAAADQAAAAAAAAAMAAAAAAAAAAQBAAAAAAAArQAAAAAAAABtAAAAAAAAAAQBAAAAAAAAdQAAAAAAAACtAAAAAAAAALoAAAAAAAAAQgAAAAAAAACGAAAAAAAAALoAAAAAAAAAhgAAAAAAAAByAAAAAAAAAN0AAAAAAAAAhgAAAAAAAABeAAAAAAAAAAEBAAAAAAAAXQAAAAAAAACqAAAAAAAAABIBAAAAAAAArwAAAAAAAAC5AAAAAAAAABMBAAAAAAAAuAAAAAAAAACwAAAAAAAAAK4AAAAAAAAAigAAAAAAAABXAAAAAAAAAMEAAAAAAAAARAAAAAAAAACqAAAAAAAAAMIAAAAAAAAAqQAAAAAAAABCAAAAAAAAALMAAAAAAAAAKQAAAAAAAAAoAAAAAAAAAPYAAAAAAAAAogAAAAAAAABvAAAAAAAAABQBAAAAAAAATAAAAAAAAACCAAAAAAAAAOUAAAAAAAAAVQAAAAAAAAC6AAAAAAAAAP8AAAAAAAAAvgAAAAAAAABOAAAAAAAAAAABAAAAAAAAvwAAAAAAAABNAAAAAAAAAP8AAAAAAAAAeAAAAAAAAAC+AAAAAAAAAAABAAAAAAAAdwAAAAAAAAC/AAAAAAAAAKEAAAAAAAAAEAAAAAAAAAAPAAAAAAAAANIAAAAAAAAABgAAAAAAAAB+AAAAAAAAANEAAAAAAAAAfwAAAAAAAAAUAAAAAAAAAK0AAAAAAAAAlAAAAAAAAABFAAAAAAAAAOsAAAAAAAAAgAAAAAAAAABfAAAAAAAAAOoAAAAAAAAAgQAAAAAAAABgAAAAAAAAAOsAAAAAAAAATQAAAAAAAACAAAAAAAAAAOoAAAAAAAAATgAAAAAAAACBAAAAAAAAAAkBAAAAAAAAcAAAAAAAAACDAAAAAAAAAMIAAAAAAAAAYAAAAAAAAACQAAAAAAAAAMIAAAAAAAAAkAAAAAAAAABSAAAAAAAAAMEAAAAAAAAAjgAAAAAAAABiAAAAAAAAAMEAAAAAAAAAUwAAAAAAAACOAAAAAAAAANUAAAAAAAAAfwAAAAAAAABSAAAAAAAAANQAAAAAAAAAUwAAAAAAAAB+AAAAAAAAAOUAAAAAAAAAugAAAAAAAAByAAAAAAAAABgBAAAAAAAAvgAAAAAAAAB4AAAAAAAAAMsAAAAAAAAAcQAAAAAAAACNAAAAAAAAAAIBAAAAAAAAbAAAAAAAAACgAAAAAAAAANIAAAAAAAAAfgAAAAAAAABdAAAAAAAAANEAAAAAAAAAXgAAAAAAAAB/AAAAAAAAANsAAAAAAAAAPAAAAAAAAACNAAAAAAAAANsAAAAAAAAAjQAAAAAAAABkAAAAAAAAAAoBAAAAAAAAgwAAAAAAAABwAAAAAAAAAMwAAAAAAAAAhQAAAAAAAABXAAAAAAAAAMwAAAAAAAAATAAAAAAAAACFAAAAAAAAAKsAAAAAAAAAJgAAAAAAAAAlAAAAAAAAAKwAAAAAAAAALQAAAAAAAAAsAAAAAAAAANwAAAAAAAAAXQAAAAAAAACHAAAAAAAAANwAAAAAAAAAhwAAAAAAAABJAAAAAAAAAMMAAAAAAAAAoQAAAAAAAABpAAAAAAAAAMMAAAAAAAAAaAAAAAAAAAChAAAAAAAAAKQAAAAAAAAAEwAAAAAAAAASAAAAAAAAAKUAAAAAAAAACAAAAAAAAAAHAAAAAAAAAMwAAAAAAAAAgwAAAAAAAABMAAAAAAAAAMsAAAAAAAAAjQAAAAAAAAA8AAAAAAAAALQAAAAAAAAALwAAAAAAAAAuAAAAAAAAALUAAAAAAAAAJAAAAAAAAAAjAAAAAAAAAMoAAAAAAAAACwAAAAAAAACEAAAAAAAAAMUAAAAAAAAAhAAAAAAAAABnAAAAAAAAAAMBAAAAAAAA+AAAAAAAAAB9AAAAAAAAAP0AAAAAAAAAMwAAAAAAAACaAAAAAAAAAPwAAAAAAAAAFwAAAAAAAACZAAAAAAAAAPoAAAAAAAAAmwAAAAAAAAA7AAAAAAAAAPsAAAAAAAAAnAAAAAAAAAAfAAAAAAAAAAsBAAAAAAAARAAAAAAAAADBAAAAAAAAAM8AAAAAAAAAIwAAAAAAAAAiAAAAAAAAAM4AAAAAAAAAMAAAAAAAAAAvAAAAAAAAAMUAAAAAAAAARQAAAAAAAAC7AAAAAAAAAOcAAAAAAAAATAAAAAAAAACDAAAAAAAAAOIAAAAAAAAAYQAAAAAAAACPAAAAAAAAAOEAAAAAAAAAYgAAAAAAAACOAAAAAAAAAOEAAAAAAAAAjgAAAAAAAAA5AAAAAAAAAOIAAAAAAAAAjwAAAAAAAAAdAAAAAAAAAOAAAAAAAAAAGQAAAAAAAACQAAAAAAAAAN8AAAAAAAAANQAAAAAAAACRAAAAAAAAAOAAAAAAAAAAkAAAAAAAAABgAAAAAAAAAN8AAAAAAAAAkQAAAAAAAABfAAAAAAAAAPwAAAAAAAAAUgAAAAAAAACQAAAAAAAAAP0AAAAAAAAAUQAAAAAAAACRAAAAAAAAAPsAAAAAAAAAjwAAAAAAAABUAAAAAAAAAPoAAAAAAAAAjgAAAAAAAABTAAAAAAAAAMoAAAAAAAAAhAAAAAAAAABcAAAAAAAAABQBAAAAAAAAswAAAAAAAABqAAAAAAAAAAMBAAAAAAAASwAAAAAAAAD4AAAAAAAAABQBAAAAAAAAagAAAAAAAAD1AAAAAAAAAMcAAAAAAAAAUQAAAAAAAACaAAAAAAAAAMYAAAAAAAAAnAAAAAAAAABUAAAAAAAAAOYAAAAAAAAAlwAAAAAAAABuAAAAAAAAAOYAAAAAAAAASgAAAAAAAACXAAAAAAAAAMgAAAAAAAAAkgAAAAAAAABYAAAAAAAAAMgAAAAAAAAASAAAAAAAAACSAAAAAAAAAMkAAAAAAAAAkwAAAAAAAABHAAAAAAAAAMkAAAAAAAAAWQAAAAAAAACTAAAAAAAAAO4AAAAAAAAAcQAAAAAAAADQAAAAAAAAANkAAAAAAAAAEAAAAAAAAAChAAAAAAAAANkAAAAAAAAAoQAAAAAAAABoAAAAAAAAAAMBAAAAAAAAnwAAAAAAAABcAAAAAAAAAPAAAAAAAAAAwgAAAAAAAABCAAAAAAAAAP0AAAAAAAAANAAAAAAAAAAzAAAAAAAAAPwAAAAAAAAAGAAAAAAAAAAXAAAAAAAAAPoAAAAAAAAAOwAAAAAAAAA6AAAAAAAAAPsAAAAAAAAAHwAAAAAAAAAeAAAAAAAAAPwAAAAAAAAAkAAAAAAAAAAYAAAAAAAAAP0AAAAAAAAAkQAAAAAAAAA0AAAAAAAAAPoAAAAAAAAAOgAAAAAAAACOAAAAAAAAAPsAAAAAAAAAHgAAAAAAAACPAAAAAAAAANAAAAAAAAAAiwAAAAAAAABBAAAAAAAAANAAAAAAAAAAVgAAAAAAAACLAAAAAAAAAOwAAAAAAAAAiAAAAAAAAAA/AAAAAAAAAOwAAAAAAAAAYwAAAAAAAACIAAAAAAAAAO0AAAAAAAAAiQAAAAAAAABkAAAAAAAAAO0AAAAAAAAAQAAAAAAAAACJAAAAAAAAAP0AAAAAAAAAmgAAAAAAAABRAAAAAAAAAPwAAAAAAAAAmQAAAAAAAABSAAAAAAAAAPsAAAAAAAAAVAAAAAAAAACcAAAAAAAAAPoAAAAAAAAAUwAAAAAAAACbAAAAAAAAAN4AAAAAAAAAaQAAAAAAAAChAAAAAAAAAN4AAAAAAAAAoQAAAAAAAAAPAAAAAAAAAN0AAAAAAAAApAAAAAAAAAB8AAAAAAAAANwAAAAAAAAAewAAAAAAAAClAAAAAAAAAAUBAAAAAAAAlQAAAAAAAABaAAAAAAAAABEBAAAAAAAAdQAAAAAAAADbAAAAAAAAABABAAAAAAAA2gAAAAAAAAB2AAAAAAAAAP4AAAAAAAAAbgAAAAAAAACXAAAAAAAAANcAAAAAAAAAigAAAAAAAABPAAAAAAAAAPMAAAAAAAAAmAAAAAAAAABnAAAAAAAAAAYBAAAAAAAAXgAAAAAAAACGAAAAAAAAAAABAAAAAAAAiwAAAAAAAABWAAAAAAAAAP8AAAAAAAAAjAAAAAAAAABVAAAAAAAAAAYBAAAAAAAAhgAAAAAAAABCAAAAAAAAAPUAAAAAAAAAhQAAAAAAAABMAAAAAAAAANMAAAAAAAAAlQAAAAAAAABIAAAAAAAAANMAAAAAAAAAWgAAAAAAAACVAAAAAAAAAMsAAAAAAAAAPAAAAAAAAACxAAAAAAAAANMAAAAAAAAAcwAAAAAAAAC1AAAAAAAAANMAAAAAAAAAtQAAAAAAAABaAAAAAAAAANUAAAAAAAAAUgAAAAAAAACZAAAAAAAAANQAAAAAAAAAmwAAAAAAAABTAAAAAAAAABABAAAAAAAATwAAAAAAAACIAAAAAAAAAAEBAAAAAAAAhwAAAAAAAABdAAAAAAAAAMoAAAAAAAAAnwAAAAAAAAAMAAAAAAAAAMoAAAAAAAAAXAAAAAAAAACfAAAAAAAAAAgBAAAAAAAAPgAAAAAAAACgAAAAAAAAAMgAAAAAAAAAqwAAAAAAAABzAAAAAAAAAMgAAAAAAAAAWAAAAAAAAACrAAAAAAAAAMkAAAAAAAAArAAAAAAAAABZAAAAAAAAAMkAAAAAAAAAdAAAAAAAAACsAAAAAAAAANEAAAAAAAAAEwAAAAAAAACkAAAAAAAAANIAAAAAAAAApQAAAAAAAAAHAAAAAAAAAO4AAAAAAAAA0AAAAAAAAABBAAAAAAAAAPAAAAAAAAAAQgAAAAAAAACMAAAAAAAAAOsAAAAAAAAAiwAAAAAAAABNAAAAAAAAAOoAAAAAAAAAjAAAAAAAAABOAAAAAAAAAOEAAAAAAAAAOAAAAAAAAACdAAAAAAAAAOIAAAAAAAAAHAAAAAAAAACeAAAAAAAAAOEAAAAAAAAAnQAAAAAAAABiAAAAAAAAAOIAAAAAAAAAngAAAAAAAABhAAAAAAAAAO8AAAAAAAAAkwAAAAAAAABkAAAAAAAAAO8AAAAAAAAARwAAAAAAAACTAAAAAAAAAAQBAAAAAAAAPAAAAAAAAADbAAAAAAAAANEAAAAAAAAApAAAAAAAAABeAAAAAAAAANIAAAAAAAAAXQAAAAAAAAClAAAAAAAAAMEAAAAAAAAAqgAAAAAAAABTAAAAAAAAAMIAAAAAAAAAUgAAAAAAAACpAAAAAAAAAO8AAAAAAAAAZAAAAAAAAACNAAAAAAAAAM4AAAAAAAAALwAAAAAAAAC0AAAAAAAAAM8AAAAAAAAAtQAAAAAAAAAjAAAAAAAAAMAAAAAAAAAAuwAAAAAAAABsAAAAAAAAAPkAAAAAAAAAQQAAAAAAAACLAAAAAAAAAM0AAAAAAAAAZQAAAAAAAACxAAAAAAAAAM0AAAAAAAAAsQAAAAAAAAA8AAAAAAAAAAABAAAAAAAATQAAAAAAAACLAAAAAAAAAP8AAAAAAAAATgAAAAAAAACMAAAAAAAAANIAAAAAAAAABwAAAAAAAAAGAAAAAAAAANEAAAAAAAAAFAAAAAAAAAATAAAAAAAAAMoAAAAAAAAADAAAAAAAAAALAAAAAAAAAB4BAAAAAAAAUAAAAAAAAACUAAAAAAAAAAwBAAAAAAAAjQAAAAAAAABxAAAAAAAAAAMBAAAAAAAAXAAAAAAAAADAAAAAAAAAAPEAAAAAAAAARwAAAAAAAAC8AAAAAAAAAPIAAAAAAAAAPQAAAAAAAADaAAAAAAAAAO4AAAAAAAAAuAAAAAAAAABbAAAAAAAAAAMBAAAAAAAAfQAAAAAAAACfAAAAAAAAAAQBAAAAAAAA2wAAAAAAAAB1AAAAAAAAAOwAAAAAAAAAkgAAAAAAAABjAAAAAAAAAO0AAAAAAAAAZAAAAAAAAACTAAAAAAAAABcBAAAAAAAAWAAAAAAAAACSAAAAAAAAABYBAAAAAAAAkwAAAAAAAABZAAAAAAAAAO4AAAAAAAAAWwAAAAAAAAC8AAAAAAAAAOUAAAAAAAAAPQAAAAAAAACyAAAAAAAAAAUBAAAAAAAAWgAAAAAAAAC5AAAAAAAAAPYAAAAAAAAAbwAAAAAAAADXAAAAAAAAAMAAAAAAAAAAXAAAAAAAAAC7AAAAAAAAAM0AAAAAAAAAbQAAAAAAAADEAAAAAAAAABIBAAAAAAAAeQAAAAAAAADGAAAAAAAAABIBAAAAAAAAxgAAAAAAAABUAAAAAAAAABMBAAAAAAAAUQAAAAAAAADHAAAAAAAAABMBAAAAAAAAxwAAAAAAAAB6AAAAAAAAAAkBAAAAAAAAgwAAAAAAAADMAAAAAAAAAPQAAAAAAAAAlwAAAAAAAABKAAAAAAAAAPQAAAAAAAAAaAAAAAAAAACXAAAAAAAAAM8AAAAAAAAAWgAAAAAAAAC1AAAAAAAAAM4AAAAAAAAAtAAAAAAAAABbAAAAAAAAAAgBAAAAAAAAvQAAAAAAAAA+AAAAAAAAAMsAAAAAAAAAsQAAAAAAAABWAAAAAAAAAB0BAAAAAAAAbQAAAAAAAACYAAAAAAAAAPYAAAAAAAAAlgAAAAAAAABGAAAAAAAAAA4BAAAAAAAAVgAAAAAAAACxAAAAAAAAAA0BAAAAAAAAVQAAAAAAAACyAAAAAAAAAP4AAAAAAAAARgAAAAAAAACWAAAAAAAAANgAAAAAAAAACgAAAAAAAAAJAAAAAAAAANkAAAAAAAAAEQAAAAAAAAAQAAAAAAAAABEBAAAAAAAA9wAAAAAAAABQAAAAAAAAABEBAAAAAAAAiQAAAAAAAAD3AAAAAAAAAN0AAAAAAAAAXgAAAAAAAACkAAAAAAAAANwAAAAAAAAApQAAAAAAAABdAAAAAAAAABkBAAAAAAAAmQAAAAAAAAAXAAAAAAAAABoBAAAAAAAAmgAAAAAAAAAzAAAAAAAAABkBAAAAAAAAFgAAAAAAAACZAAAAAAAAABoBAAAAAAAAMgAAAAAAAACaAAAAAAAAABsBAAAAAAAAnAAAAAAAAAAgAAAAAAAAABwBAAAAAAAAmwAAAAAAAAAEAAAAAAAAABwBAAAAAAAAOwAAAAAAAACbAAAAAAAAABsBAAAAAAAAHwAAAAAAAACcAAAAAAAAAAIBAAAAAAAAoAAAAAAAAAA+AAAAAAAAAB0BAAAAAAAAmAAAAAAAAADzAAAAAAAAAOUAAAAAAAAAsgAAAAAAAABVAAAAAAAAAOkAAAAAAAAAJwAAAAAAAACnAAAAAAAAAOgAAAAAAAAAqAAAAAAAAAArAAAAAAAAAN4AAAAAAAAADwAAAAAAAAAOAAAAAAAAAB4BAAAAAAAAlAAAAAAAAACtAAAAAAAAAO4AAAAAAAAAvAAAAAAAAABxAAAAAAAAAOkAAAAAAAAAKAAAAAAAAAAnAAAAAAAAAOgAAAAAAAAAKwAAAAAAAAAqAAAAAAAAAA8BAAAAAAAAtwAAAAAAAABrAAAAAAAAAOEAAAAAAAAAOQAAAAAAAAA4AAAAAAAAAOIAAAAAAAAAHQAAAAAAAAAcAAAAAAAAAOAAAAAAAAAAGgAAAAAAAAAZAAAAAAAAAN8AAAAAAAAANgAAAAAAAAA1AAAAAAAAABIBAAAAAAAAVAAAAAAAAACvAAAAAAAAABMBAAAAAAAAsAAAAAAAAABRAAAAAAAAAOYAAAAAAAAA1gAAAAAAAAByAAAAAAAAAOYAAAAAAAAAbgAAAAAAAADWAAAAAAAAAPIAAAAAAAAApgAAAAAAAABmAAAAAAAAAOgAAAAAAAAAawAAAAAAAACoAAAAAAAAAOkAAAAAAAAApwAAAAAAAABqAAAAAAAAAPgAAAAAAAAASwAAAAAAAACiAAAAAAAAAPgAAAAAAAAAogAAAAAAAABpAAAAAAAAAOkAAAAAAAAAswAAAAAAAAAoAAAAAAAAAOkAAAAAAAAAagAAAAAAAACzAAAAAAAAAOUAAAAAAAAA1gAAAAAAAAA9AAAAAAAAAM0AAAAAAAAAxAAAAAAAAABlAAAAAAAAAPkAAAAAAAAAXwAAAAAAAACwAAAAAAAAAAYBAAAAAAAAQgAAAAAAAACpAAAAAAAAAAEBAAAAAAAAqgAAAAAAAABEAAAAAAAAAA4BAAAAAAAAsQAAAAAAAABlAAAAAAAAABgBAAAAAAAArwAAAAAAAABhAAAAAAAAAA0BAAAAAAAAsgAAAAAAAABmAAAAAAAAAAIBAAAAAAAAowAAAAAAAABsAAAAAAAAAPIAAAAAAAAAZgAAAAAAAACyAAAAAAAAAA8BAAAAAAAACgEAAAAAAABAAAAAAAAAAPEAAAAAAAAAWwAAAAAAAAC0AAAAAAAAAPEAAAAAAAAAtAAAAAAAAAB0AAAAAAAAAAcBAAAAAAAAbwAAAAAAAACjAAAAAAAAAPIAAAAAAAAAsgAAAAAAAAA9AAAAAAAAAPkAAAAAAAAAsAAAAAAAAABBAAAAAAAAAAUBAAAAAAAAQwAAAAAAAADkAAAAAAAAAA8BAAAAAAAAgwAAAAAAAAAKAQAAAAAAABYBAAAAAAAAWQAAAAAAAAC3AAAAAAAAABcBAAAAAAAAtgAAAAAAAABYAAAAAAAAAO4AAAAAAAAAQQAAAAAAAAC4AAAAAAAAAAgBAAAAAAAA9wAAAAAAAABwAAAAAAAAAA8BAAAAAAAAawAAAAAAAADnAAAAAAAAABkBAAAAAAAAAQAAAAAAAAAWAAAAAAAAABoBAAAAAAAAAwAAAAAAAAAyAAAAAAAAABwBAAAAAAAAAAAAAAAAAAA7AAAAAAAAABsBAAAAAAAAAgAAAAAAAAAfAAAAAAAAABoBAAAAAAAAMwAAAAAAAAADAAAAAAAAABkBAAAAAAAAFwAAAAAAAAABAAAAAAAAABsBAAAAAAAAIAAAAAAAAAACAAAAAAAAABwBAAAAAAAABAAAAAAAAAAAAAAAAAAAABgBAAAAAAAAYQAAAAAAAAC+AAAAAAAAAAQBAAAAAAAAbQAAAAAAAADNAAAAAAAAABcBAAAAAAAAPwAAAAAAAAC2AAAAAAAAABYBAAAAAAAAtwAAAAAAAABAAAAAAAAAAB4BAAAAAAAArQAAAAAAAAB1AAAAAAAAAPEAAAAAAAAAvAAAAAAAAABbAAAAAAAAABUBAAAAAAAA1gAAAAAAAABuAAAAAAAAAAcBAAAAAAAA1wAAAAAAAABvAAAAAAAAAPAAAAAAAAAAYAAAAAAAAADCAAAAAAAAAA8BAAAAAAAAQAAAAAAAAAC3AAAAAAAAABgBAAAAAAAAQwAAAAAAAACvAAAAAAAAAAsBAAAAAAAAYgAAAAAAAAC/AAAAAAAAAAwBAAAAAAAAcQAAAAAAAAC8AAAAAAAAAAwBAAAAAAAAvAAAAAAAAABHAAAAAAAAAAsBAAAAAAAAwQAAAAAAAABiAAAAAAAAAB0BAAAAAAAAxAAAAAAAAABtAAAAAAAAAOUAAAAAAAAAcgAAAAAAAADWAAAAAAAAABQBAAAAAAAAggAAAAAAAACzAAAAAAAAAB0BAAAAAAAA8wAAAAAAAABJAAAAAAAAAAUBAAAAAAAAuQAAAAAAAABDAAAAAAAAAAoBAAAAAAAAcAAAAAAAAAD3AAAAAAAAAAQBAAAAAAAAzQAAAAAAAAA8AAAAAAAAAAMBAAAAAAAAwAAAAAAAAABLAAAAAAAAAA4BAAAAAAAAZQAAAAAAAADjAAAAAAAAAA0BAAAAAAAAZgAAAAAAAADkAAAAAAAAABUBAAAAAAAA2gAAAAAAAAA9AAAAAAAAABUBAAAAAAAAdgAAAAAAAADaAAAAAAAAABMBAAAAAAAAegAAAAAAAAC4AAAAAAAAABIBAAAAAAAAuQAAAAAAAAB5AAAAAAAAAPAAAAAAAAAAjAAAAAAAAADqAAAAAAAAAPkAAAAAAAAA6wAAAAAAAABfAAAAAAAAAAgBAAAAAAAAcAAAAAAAAAC9AAAAAAAAAAkBAAAAAAAAVwAAAAAAAAC9AAAAAAAAAAkBAAAAAAAAvQAAAAAAAABwAAAAAAAAAPAAAAAAAAAA6gAAAAAAAABgAAAAAAAAAAcBAAAAAAAAowAAAAAAAAACAQAAAAAAAAcBAAAAAAAAAgEAAAAAAAA+AAAAAAAAABcBAAAAAAAA7AAAAAAAAAA/AAAAAAAAABYBAAAAAAAAQAAAAAAAAADtAAAAAAAAAPkAAAAAAAAAiwAAAAAAAADrAAAAAAAAAAkBAAAAAAAAzAAAAAAAAABXAAAAAAAAAB0BAAAAAAAASQAAAAAAAADEAAAAAAAAAAwBAAAAAAAA7wAAAAAAAACNAAAAAAAAABUBAAAAAAAAPQAAAAAAAADWAAAAAAAAAA4BAAAAAAAA4wAAAAAAAAB3AAAAAAAAAA0BAAAAAAAA5AAAAAAAAAB4AAAAAAAAAA8BAAAAAAAA5wAAAAAAAACDAAAAAAAAAAwBAAAAAAAARwAAAAAAAADvAAAAAAAAABQBAAAAAAAA9QAAAAAAAABMAAAAAAAAABcBAAAAAAAAkgAAAAAAAADsAAAAAAAAABYBAAAAAAAA7QAAAAAAAACTAAAAAAAAAB4BAAAAAAAAdQAAAAAAAAARAQAAAAAAAB4BAAAAAAAAEQEAAAAAAABQAAAAAAAAAA==ABAAAAMAAAAAAAAABgAAAAAAAAAJAAAAAAAAAAwAAAAAAAAADwAAAAAAAAASAAAAAAAAABUAAAAAAAAAGAAAAAAAAAAbAAAAAAAAAB4AAAAAAAAAIQAAAAAAAAAkAAAAAAAAACcAAAAAAAAAKgAAAAAAAAAtAAAAAAAAADAAAAAAAAAAMwAAAAAAAAA2AAAAAAAAADkAAAAAAAAAPAAAAAAAAAA/AAAAAAAAAEIAAAAAAAAARQAAAAAAAABIAAAAAAAAAEsAAAAAAAAATgAAAAAAAABRAAAAAAAAAFQAAAAAAAAAVwAAAAAAAABaAAAAAAAAAF0AAAAAAAAAYAAAAAAAAABjAAAAAAAAAGYAAAAAAAAAaQAAAAAAAABsAAAAAAAAAG8AAAAAAAAAcgAAAAAAAAB1AAAAAAAAAHgAAAAAAAAAewAAAAAAAAB+AAAAAAAAAIEAAAAAAAAAhAAAAAAAAACHAAAAAAAAAIoAAAAAAAAAjQAAAAAAAACQAAAAAAAAAJMAAAAAAAAAlgAAAAAAAACZAAAAAAAAAJwAAAAAAAAAnwAAAAAAAACiAAAAAAAAAKUAAAAAAAAAqAAAAAAAAACrAAAAAAAAAK4AAAAAAAAAsQAAAAAAAAC0AAAAAAAAALcAAAAAAAAAugAAAAAAAAC9AAAAAAAAAMAAAAAAAAAAwwAAAAAAAADGAAAAAAAAAMkAAAAAAAAAzAAAAAAAAADPAAAAAAAAANIAAAAAAAAA1QAAAAAAAADYAAAAAAAAANsAAAAAAAAA3gAAAAAAAADhAAAAAAAAAOQAAAAAAAAA5wAAAAAAAADqAAAAAAAAAO0AAAAAAAAA8AAAAAAAAADzAAAAAAAAAPYAAAAAAAAA+QAAAAAAAAD8AAAAAAAAAP8AAAAAAAAAAgEAAAAAAAAFAQAAAAAAAAgBAAAAAAAACwEAAAAAAAAOAQAAAAAAABEBAAAAAAAAFAEAAAAAAAAXAQAAAAAAABoBAAAAAAAAHQEAAAAAAAAgAQAAAAAAACMBAAAAAAAAJgEAAAAAAAApAQAAAAAAACwBAAAAAAAALwEAAAAAAAAyAQAAAAAAADUBAAAAAAAAOAEAAAAAAAA7AQAAAAAAAD4BAAAAAAAAQQEAAAAAAABEAQAAAAAAAEcBAAAAAAAASgEAAAAAAABNAQAAAAAAAFABAAAAAAAAUwEAAAAAAABWAQAAAAAAAFkBAAAAAAAAXAEAAAAAAABfAQAAAAAAAGIBAAAAAAAAZQEAAAAAAABoAQAAAAAAAGsBAAAAAAAAbgEAAAAAAABxAQAAAAAAAHQBAAAAAAAAdwEAAAAAAAB6AQAAAAAAAH0BAAAAAAAAgAEAAAAAAACDAQAAAAAAAIYBAAAAAAAAiQEAAAAAAACMAQAAAAAAAI8BAAAAAAAAkgEAAAAAAACVAQAAAAAAAJgBAAAAAAAAmwEAAAAAAACeAQAAAAAAAKEBAAAAAAAApAEAAAAAAACnAQAAAAAAAKoBAAAAAAAArQEAAAAAAACwAQAAAAAAALMBAAAAAAAAtgEAAAAAAAC5AQAAAAAAALwBAAAAAAAAvwEAAAAAAADCAQAAAAAAAMUBAAAAAAAAyAEAAAAAAADLAQAAAAAAAM4BAAAAAAAA0QEAAAAAAADUAQAAAAAAANcBAAAAAAAA2gEAAAAAAADdAQAAAAAAAOABAAAAAAAA4wEAAAAAAADmAQAAAAAAAOkBAAAAAAAA7AEAAAAAAADvAQAAAAAAAPIBAAAAAAAA9QEAAAAAAAD4AQAAAAAAAPsBAAAAAAAA/gEAAAAAAAABAgAAAAAAAAQCAAAAAAAABwIAAAAAAAAKAgAAAAAAAA0CAAAAAAAAEAIAAAAAAAATAgAAAAAAABYCAAAAAAAAGQIAAAAAAAAcAgAAAAAAAB8CAAAAAAAAIgIAAAAAAAAlAgAAAAAAACgCAAAAAAAAKwIAAAAAAAAuAgAAAAAAADECAAAAAAAANAIAAAAAAAA3AgAAAAAAADoCAAAAAAAAPQIAAAAAAABAAgAAAAAAAEMCAAAAAAAARgIAAAAAAABJAgAAAAAAAEwCAAAAAAAATwIAAAAAAABSAgAAAAAAAFUCAAAAAAAAWAIAAAAAAABbAgAAAAAAAF4CAAAAAAAAYQIAAAAAAABkAgAAAAAAAGcCAAAAAAAAagIAAAAAAABtAgAAAAAAAHACAAAAAAAAcwIAAAAAAAB2AgAAAAAAAHkCAAAAAAAAfAIAAAAAAAB/AgAAAAAAAIICAAAAAAAAhQIAAAAAAACIAgAAAAAAAIsCAAAAAAAAjgIAAAAAAACRAgAAAAAAAJQCAAAAAAAAlwIAAAAAAACaAgAAAAAAAJ0CAAAAAAAAoAIAAAAAAACjAgAAAAAAAKYCAAAAAAAAqQIAAAAAAACsAgAAAAAAAK8CAAAAAAAAsgIAAAAAAAC1AgAAAAAAALgCAAAAAAAAuwIAAAAAAAC+AgAAAAAAAMECAAAAAAAAxAIAAAAAAADHAgAAAAAAAMoCAAAAAAAAzQIAAAAAAADQAgAAAAAAANMCAAAAAAAA1gIAAAAAAADZAgAAAAAAANwCAAAAAAAA3wIAAAAAAADiAgAAAAAAAOUCAAAAAAAA6AIAAAAAAADrAgAAAAAAAO4CAAAAAAAA8QIAAAAAAAD0AgAAAAAAAPcCAAAAAAAA+gIAAAAAAAD9AgAAAAAAAAADAAAAAAAAAwMAAAAAAAAGAwAAAAAAAAkDAAAAAAAADAMAAAAAAAAPAwAAAAAAABIDAAAAAAAAFQMAAAAAAAAYAwAAAAAAABsDAAAAAAAAHgMAAAAAAAAhAwAAAAAAACQDAAAAAAAAJwMAAAAAAAAqAwAAAAAAAC0DAAAAAAAAMAMAAAAAAAAzAwAAAAAAADYDAAAAAAAAOQMAAAAAAAA8AwAAAAAAAD8DAAAAAAAAQgMAAAAAAABFAwAAAAAAAEgDAAAAAAAASwMAAAAAAABOAwAAAAAAAFEDAAAAAAAAVAMAAAAAAABXAwAAAAAAAFoDAAAAAAAAXQMAAAAAAABgAwAAAAAAAGMDAAAAAAAAZgMAAAAAAABpAwAAAAAAAGwDAAAAAAAAbwMAAAAAAAByAwAAAAAAAHUDAAAAAAAAeAMAAAAAAAB7AwAAAAAAAH4DAAAAAAAAgQMAAAAAAACEAwAAAAAAAIcDAAAAAAAAigMAAAAAAACNAwAAAAAAAJADAAAAAAAAkwMAAAAAAACWAwAAAAAAAJkDAAAAAAAAnAMAAAAAAACfAwAAAAAAAKIDAAAAAAAApQMAAAAAAACoAwAAAAAAAKsDAAAAAAAArgMAAAAAAACxAwAAAAAAALQDAAAAAAAAtwMAAAAAAAC6AwAAAAAAAL0DAAAAAAAAwAMAAAAAAADDAwAAAAAAAMYDAAAAAAAAyQMAAAAAAADMAwAAAAAAAM8DAAAAAAAA0gMAAAAAAADVAwAAAAAAANgDAAAAAAAA2wMAAAAAAADeAwAAAAAAAOEDAAAAAAAA5AMAAAAAAADnAwAAAAAAAOoDAAAAAAAA7QMAAAAAAADwAwAAAAAAAPMDAAAAAAAA9gMAAAAAAAD5AwAAAAAAAPwDAAAAAAAA/wMAAAAAAAACBAAAAAAAAAUEAAAAAAAACAQAAAAAAAALBAAAAAAAAA4EAAAAAAAAEQQAAAAAAAAUBAAAAAAAABcEAAAAAAAAGgQAAAAAAAAdBAAAAAAAACAEAAAAAAAAIwQAAAAAAAAmBAAAAAAAACkEAAAAAAAALAQAAAAAAAAvBAAAAAAAADIEAAAAAAAANQQAAAAAAAA4BAAAAAAAADsEAAAAAAAAPgQAAAAAAABBBAAAAAAAAEQEAAAAAAAARwQAAAAAAABKBAAAAAAAAE0EAAAAAAAAUAQAAAAAAABTBAAAAAAAAFYEAAAAAAAAWQQAAAAAAABcBAAAAAAAAF8EAAAAAAAAYgQAAAAAAABlBAAAAAAAAGgEAAAAAAAAawQAAAAAAABuBAAAAAAAAHEEAAAAAAAAdAQAAAAAAAB3BAAAAAAAAHoEAAAAAAAAfQQAAAAAAACABAAAAAAAAIMEAAAAAAAAhgQAAAAAAACJBAAAAAAAAIwEAAAAAAAAjwQAAAAAAACSBAAAAAAAAJUEAAAAAAAAmAQAAAAAAACbBAAAAAAAAJ4EAAAAAAAAoQQAAAAAAACkBAAAAAAAAKcEAAAAAAAAqgQAAAAAAACtBAAAAAAAALAEAAAAAAAAswQAAAAAAAC2BAAAAAAAALkEAAAAAAAAvAQAAAAAAAC/BAAAAAAAAMIEAAAAAAAAxQQAAAAAAADIBAAAAAAAAMsEAAAAAAAAzgQAAAAAAADRBAAAAAAAANQEAAAAAAAA1wQAAAAAAADaBAAAAAAAAN0EAAAAAAAA4AQAAAAAAADjBAAAAAAAAOYEAAAAAAAA6QQAAAAAAADsBAAAAAAAAO8EAAAAAAAA8gQAAAAAAAD1BAAAAAAAAPgEAAAAAAAA+wQAAAAAAAD+BAAAAAAAAAEFAAAAAAAABAUAAAAAAAAHBQAAAAAAAAoFAAAAAAAADQUAAAAAAAAQBQAAAAAAABMFAAAAAAAAFgUAAAAAAAAZBQAAAAAAABwFAAAAAAAAHwUAAAAAAAAiBQAAAAAAACUFAAAAAAAAKAUAAAAAAAArBQAAAAAAAC4FAAAAAAAAMQUAAAAAAAA0BQAAAAAAADcFAAAAAAAAOgUAAAAAAAA9BQAAAAAAAEAFAAAAAAAAQwUAAAAAAABGBQAAAAAAAEkFAAAAAAAATAUAAAAAAABPBQAAAAAAAFIFAAAAAAAAVQUAAAAAAABYBQAAAAAAAFsFAAAAAAAAXgUAAAAAAABhBQAAAAAAAGQFAAAAAAAAZwUAAAAAAABqBQAAAAAAAG0FAAAAAAAAcAUAAAAAAABzBQAAAAAAAHYFAAAAAAAAeQUAAAAAAAB8BQAAAAAAAH8FAAAAAAAAggUAAAAAAACFBQAAAAAAAIgFAAAAAAAAiwUAAAAAAACOBQAAAAAAAJEFAAAAAAAAlAUAAAAAAACXBQAAAAAAAJoFAAAAAAAAnQUAAAAAAACgBQAAAAAAAKMFAAAAAAAApgUAAAAAAACpBQAAAAAAAKwFAAAAAAAArwUAAAAAAACyBQAAAAAAALUFAAAAAAAAuAUAAAAAAAC7BQAAAAAAAL4FAAAAAAAAwQUAAAAAAADEBQAAAAAAAMcFAAAAAAAAygUAAAAAAADNBQAAAAAAANAFAAAAAAAA0wUAAAAAAADWBQAAAAAAANkFAAAAAAAA3AUAAAAAAADfBQAAAAAAAOIFAAAAAAAA5QUAAAAAAADoBQAAAAAAAOsFAAAAAAAA7gUAAAAAAADxBQAAAAAAAPQFAAAAAAAA9wUAAAAAAAD6BQAAAAAAAP0FAAAAAAAAAAYAAAAAAAA=AAIAAAUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUF + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/plane_r.gml b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/plane_r.gml new file mode 100644 index 0000000000000000000000000000000000000000..1f1f75bc505fb471111f25c1738769042391f217 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/plane_r.gml @@ -0,0 +1,22 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<?xml-stylesheet type="text/xsl" href="OpenGeoSysGLI.xsl"?> + +<OpenGeoSysGLI xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ogs="http://www.opengeosys.org"> + <name>geometry</name> + <points> + <point id="0" x="-50" y="-50" z="86.60254037844386"/> + <point id="1" x="50" y="-50" z="-86.60254037844386"/> + <point id="2" x="50" y="50" z="-86.60254037844386"/> + <point id="3" x="-50" y="50" z="86.60254037844386"/> + </points> + <polylines> + <polyline id="0" name="top"> + <pnt>0</pnt> + <pnt>3</pnt> + </polyline> + <polyline id="0" name="bottom"> + <pnt>1</pnt> + <pnt>2</pnt> + </polyline> + </polylines> +</OpenGeoSysGLI> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/transient_flow_in_inclined_2D_plane.prj b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/transient_flow_in_inclined_2D_plane.prj new file mode 100644 index 0000000000000000000000000000000000000000..94061785920f8e9eff45aa08b012be5bc429426f --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/transient_flow_in_inclined_2D_plane.prj @@ -0,0 +1,177 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProject> + <mesh>inclined_2D_mesh.vtu</mesh> + <geometry>plane_r.gml</geometry> + <processes> + <process> + <name>LiquidFlow</name> + <type>LIQUID_FLOW</type> + <integration_order>2</integration_order> + <process_variables> + <process_variable>pressure</process_variable> + </process_variables> + <specific_body_force>0 0 -9.8</specific_body_force> + <secondary_variables> + <secondary_variable internal_name="darcy_velocity" output_name="v"/> + </secondary_variables> + </process> + </processes> + <media> + <medium> + <phases> + <phase> + <type>AqueousLiquid</type> + <properties> + <property> + <name>viscosity</name> + <type>Constant</type> + <value> 1.e-3 </value> + </property> + <property> + <name>density</name> + <type>Linear</type> + <reference_value>1000.0</reference_value> + <independent_variable> + <variable_name>phase_pressure + </variable_name> + <reference_condition>1e5 + </reference_condition> + <slope>4.6511627906976743356e-10 + </slope> + </independent_variable> + </property> + </properties> + </phase> + </phases> + <properties> + <property> + <name>permeability</name> + <type>Parameter</type> + <parameter_name>k</parameter_name> + </property> + <property> + <name>reference_temperature</name> + <type>Constant</type> + <value>293.15</value> + </property> + <property> + <name>porosity</name> + <type>Constant</type> + <value>0.2</value> + </property> + <property> + <name>storage</name> + <type>Constant</type> + <value> 1.0e-10 </value> + </property> + </properties> + </medium> + </media> + <time_loop> + <processes> + <process ref="LiquidFlow"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <abstol>1.e-6</abstol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial> 0.0 </t_initial> + <t_end> 864000 </t_end> + <timesteps> + <pair> + <repeat>10</repeat> + <delta_t>86400</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>transient_flow_in_inclined_2D_plane</prefix> + <timesteps> + <pair> + <repeat> 5 </repeat> + <each_steps> 2 </each_steps> + </pair> + </timesteps> + <variables> + <variable> pressure </variable> + <variable> v </variable> + </variables> + <suffix>_ts_t_{:time}</suffix> + </output> + </time_loop> + <parameters> + <parameter> + <name>k</name> + <type>Constant</type> + <values>1.e-12 0.0 0.0 5.e-12 </values> + </parameter> + <parameter> + <name>p0</name> + <type>Constant</type> + <value>0</value> + </parameter> + <parameter> + <name>p_top</name> + <type>Constant</type> + <value>1.0e+5</value> + </parameter> + <parameter> + <name>p_bottom</name> + <type>Constant</type> + <value>1.0e+6</value> + </parameter> + </parameters> + <process_variables> + <process_variable> + <name>pressure</name> + <components>1</components> + <order>1</order> + <initial_condition>p0</initial_condition> + <boundary_conditions> + <boundary_condition> + <type>Dirichlet</type> + <mesh>geometry_top</mesh> + <parameter>p_top</parameter> + </boundary_condition> + <boundary_condition> + <type>Dirichlet</type> + <mesh>geometry_bottom</mesh> + <parameter>p_bottom</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_picard</name> + <type>Picard</type> + <max_iter>10</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <lis>-i cg -p jacobi -tol 1e-20 -maxiter 10000</lis> + <eigen> + <solver_type>CG</solver_type> + <precon_type>DIAGONAL</precon_type> + <max_iteration_step>10000</max_iteration_step> + <error_tolerance>1e-20</error_tolerance> + </eigen> + <petsc> + <prefix>lf</prefix> + <parameters>-lf_ksp_type cg -lf_pc_type bjacobi -lf_ksp_rtol 1e-16 -lf_ksp_max_it 10000</parameters> + </petsc> + </linear_solver> + </linear_solvers> +</OpenGeoSysProject> diff --git a/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/transient_flow_in_inclined_2D_plane_ts_t_864000.000000.vtu b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/transient_flow_in_inclined_2D_plane_ts_t_864000.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..38342def82aa3a6051af446fb95c3b2581df86c3 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/InclinedMeshElements/Inclined2DMesh/transient_flow_in_inclined_2D_plane_ts_t_864000.000000.vtu @@ -0,0 +1,29 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="287" NumberOfCells="512" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-3.988832396e-05" RangeMax="3.9888411869e-05" offset="92" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000" RangeMax="1000000" offset="2060" /> + <DataArray type="Float64" Name="v" NumberOfComponents="3" format="appended" RangeMin="3.9887280152e-06" RangeMax="3.9889218347e-06" offset="4844" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="12412" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="3.9550130975" RangeMax="111.80339887" offset="12488" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="19888" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="23604" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="24748" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NbHUTTeyTE4yTTQ2TNRLySwqqQQAU28HPw==AQAAAAAAAAAAgAAAAAAAAPgIAAAAAAAAoQUAAAAAAAA=eF4lVnlQlGUYf9EVg1AXHMMD3QXW5cblEJZc2E9A5ZBDUVZXVDRIYCRALHS6vhrAYNZQgSAnx2UQNMJcFQnl+hILhFGsvCqMVTGElHQV8MLa9/f+9ZvneZ/7+j4in3LVMPQ0pLmwtf7c0NO2XMeVYxRrLHr/oXxCCH9tjq3KjKShxbSEonWkWwtFm0YO6L9oOvBC7atmM1zJGg6l8kLEfUfwLctnUXx0sj+Cop5MV1KUdvkrYfdObQBFqTHTlyK/d/Ms0MFO0ZB3PetHkVeo3oLdxnypSiOJ0hiGRO3ek3W9P5jRtiOhjeLWr5NnnjHjrUs/HqR4o/j4BorurZI7jWasOGeT3GTGm60ph6g+9S+69i+Nm7v6izPinXQRKBw4LKOo6LFYDr/FJ1ZRvCLPXIq4y1w9IRf/sTuluV0+gYh/9NJcvP98V4641aa5sJv710zg8CwHoKpkEt63GV1AV4/Mg5/0eo8W++dp0c1DIrXM9jfdaTNa5ek3NZgxozzyvDkPtSbp5AyKBqtTGorq7xJ96Pspi/EuKl9aE5tK9al9F/8lqOe1heHUD1dp9Tb8fv8kFLSqCDQRettpf4WgCpafqV8KOS8dq39xlS/yzdoShDwT2jwoKvZZrYH+iQxXoNtrb4r6HFMs6NKbDrA38MWb0B9OY323PIE5EsIKFZDzyZODfzpIBfr+cwmw7NvpqMvG8+HwW5eDucuOyl2NvAYMGxBfutciSieXazFn5Ekh6slnrUFfkqNqkD/p/hXzzL/Py+Bv8DWb0wVurP99V6WUzzmsxxxzYSuQL3eqlWFiTRD8yTj0Nz58ZxLseQmIh5QUSiB36QN/yPXUOQGbbZ0Qb+COpZQ2HtvB6lzkjrqSguxgxDn1KPpCDtZqgWLZBJ1PYWI39sRY8cYK6K0csqbvXPI8H9BXcuGX5DxG/PztNPg1L1Q/9lY5FoX3LB36Rl4vjAWmPHGGvK2AveQyqldBL10Le3yVTA16lRZzxO+pioDe4kRWp8RuNfCxI/IlIQELgE1+Ach7sDIBdN4A8if62h7EI3dl9dli6Qa+0uUl5XPtSswD/02KB/R6//bGe/46R/iZOz+OopA5zuogCpugevzGKB/ohcWqwNe6uEDOogbzSz7aj3km8Q7M7h4Ty69rLepuiDy+FvqSNlb3hgRW7wIrVreuT+2AdddxnwTR9jDQim1iyKf4/kf7RCJGLCktlGlYHyOUY+Bf1M1H/FMI7HLr/QLxnjZ+D+9dR2xAx5zGnBleOseDzr41FXF1+KI/wng1m+N1nYPQ883H3BNu2h+U5vvXsPx2pY7gXW89A/4ODMRQvl49NQ7vD8OwB8KjDDY/BUOYZzIqZ/3gjl1GP4wvkKf+1QjLt7KEzVdRIOotXLiBu0gkm8XAYU92/+zqsb98XBvi5YtUXrBvmHwd/UrZw/xIt78Cvc+AOTJ2FKC/RLzMhPiNnYiLu+eKveHP57O709SPfRPc+RWUr2iUaGB/8U74MQa4sO+TppLto7ZvGfj7rSOhtymd7XHZfFfkc3m9O+RvPJgN/6ntqCPfLWP38mwf5l8fbo87pK9r51j89t2Y52lxIaDJ5DrE/eVZto9blc9AD65m9zGpEPvOv7eWfR96YkKZ3rufwU70EXYXgnNwDzmHh5iX7F4Tm4ffYzF/vM0o9okfi2F3SzrRAT+HAtjd/HCRM7MrOoP7UZIRQvnJdjrUi+wuXw70XAf7wpIi1IF8bsDd5jtbWL/T07DPwp8K5E0ebmd3U3yU1WtizAv1cP8pGHqGFyz+Yu0kYGnrbMgdfgEU7Evhjy+cg/yM79yNxPuuO6gTV3wLfSGfWOO7KTx4yfLYnci+E5n1Ioqc31fRlP9IGoDvs/iZlsXXtRf/IcLtHvadadbNgZ20FFan1PqFLf8Dsd9xUA==AQAAAAAAAAAAgAAAAAAAAPgIAAAAAAAABggAAAAAAAA=eF6llWs41OsaxpmGCMsYMzIYxhyNMSqJonBHonObxFrLISEkp1BRSYR0lZxKKhEqhzJSclhakUyrqFBtHUSoEFYHlUK2/4d9XfvD/rT3++W+3ufD897377me65WRmTmB4zaEHEgwxn8qUc90FETWXJXFolHr/APzZ8O9OunupivKmHin3amjoYaVN8g59CfqsMv1zaVnamCeT8UvTCcG+hclyYmoOth3UrLbpk0XLupRJcZ3WdA63+l6S8BGwdr8k5uSOGCkTcWMvuXCjbSjJ8Wej12jPe8MLwiwf1lt2AM5IXxCl4dF+hqiU3JDl3VHBJe3TzY/4Irx3/z+L1pZPMeV6GfQec2U6D+iGrueeC8hRM+TeL+4X+8t4UdIMpI5MuNvQp51mvDr3TCZRvjfN1jsTORJdjWLJvKdvTicROSNk+mSJfIL1hspETx++3a+neDjUmheRfC6dKzuNsEvOm7In+DpeXBXN8F3KHnIi+D9b/7/r4Yt8H6kpUTH+TdrMn/9yse5wfefnM6ykDxR0mSfzcFKqcVU+ENtXFnX/2QfRwV/Rqi5CRwMkZRb5k+oeWKM7D5bFfjUHNqt1qkFav7TWkcuF3H3Dh7VdqTj9fbTwvr3fBjXp40+TqOBdnW8hrtYgLDeStVunj5Uv3dHElwOvwt4oFkxG2pfT8p/KRShRYf3oDGegzyKYoK7RAflat9L65bLwUlYXZTCNMK8Pde2UB7KYfPa6aUXbIyQ2vwikrRBiDnt0ZLFQRSU0Lpa3SP08a2idTq/h4uCL99Krnsy4FJAa7rOEuKISYTMQxk1LBVI7fZ8YOL0loYym2AK3E8HDUl/F2KtnNxddgkZwfRvf5cEGqHfv+x6pq8RkrXs/SLryIjT61plZsfDkfX058XmmuBlmHa4ZFARnrs1PdXaAO92RFRFXdHE5T7SgbmreVCJtDx8XJsD3fHS7clxbLSWc00nK5kY6bvU6UvSQ3+Qr9mGCg08XjWV1KzMB/kXEw1XCzZimssD48dm9kM3mLR8MxXt5pOJuxQNEBKzsOHNJz4Ws+WlmaZ06D23dGms0MSIY7D3oAMP634GB5pABbYZpfqMmTmVPFVnpMYYwqRI4WmLqzLM04/vcWXSkaX8I4CYO8XHezI0SB82bsdlBzcr4Sorfg6zzhBHCwdDDiuSEF7j8NFCVQzjc1aPVjiwoHbuQJ5qrB5GEibpZJI2pkao47fYbAhIakqMfxpgg0NVula1GkLzhn0qWVx8D9ovMFbQxtjDjqH+d/rwHHj7rPiOEk43m9VfOmcIia5WTtgkDeqFbzorTshi3WPeoDNfjFplf78QoRhW4nRyXpksXjaGMSdzeDgum+FkJaMJuYfOV9qDdeAhzZoQ2xpg28rmW2uUuJCQ872ab/IggFt2qosm3JdMBSWridGcxc+7PS0Lh2NJJYQ2e1uHEvWhL922THkSnJtSPq6giCGl/KXT9UEPvqqPLgxKdaETq+CXasqFbNS9r64FbPR+njW9aZSFAO89DlUbDSCJf5rA2U9FbtuZpeda+Lhp+POHx2sO5HYfdFSnaWPNmVd9VcWGWFav2HexWAkJFyik9ft5MKvd4P1RQxNuJ6Y6Co0Z+OinHdl9n42b2c70oH0iYKtizCp7Bfx1Q/XDnUYqbpf/vfeRsQE0u+1zjxbo44EfZcHgISrKT5L9pywMwJuubiOFcvC15f6ewjJtpIcNOGUKVICfRbURMERmkmTLLEsh7qWm5aRZMrEzvNrxUysV9aq3S42zWXDsvXzZI0SErWxJq0WiAtLn7LV37NZDuFtl1ova2fiDatWV0SDCg2pyzT/mceFYjExxAA2PTx4K7+7Swi8p9/WO1IigPGhGb/WYjYXTtJcfzfh4f/vPm4Pz5+Jr4JAp/xgTXoyaw1vPUlEtKqy78oqFIwbSZs/rNIydXfWhbAkFr/tN7lbunNlnqkJVhR0F5Wujb5CyhFi58RPf/6Mq9hfEn0i/IYCrMD/kSa08ngVz2lJ7RZiTFhzTrihA1FVpnMxFNs5/0E/LfjMXGYnbrm3P56G7PYuroMRH7K8Dyxqc5kLRrSYvqYsKlbamnllcA+TonLMZb2WjsJMyXM+QQe95QWr0MTEWs3JY2ZoysHdJH8hLFcOcbr3XaCMFoU7awy0rhGDe3c7poxggZVFW4sJZAsTekolMdNTDkhap5akiJkJ/bNQYqGejynq4f4tUhHuHPP6giGcj8LKiw+pcLpbVjZvktDNQKrft8ZljFLSHWw40cDWw6/0umoanCJ87tq2xc1eHvEq9lb31TG7rCJWUmf+CdPpH/0pnPhi9FpLNb/QxFmGstAIcrJjybGwe1sGytfUvTozrY+Hvzx7WGSsiNGedfPBWGcSmej2T7BbjYvxoB6H7k5bQibrXWMATMpmHxDgrj1MhhnhEXiAdD1WGT69DvWeEKla9563etYqF+V2WAV1pLPDE6Y5pTRrI8+zYeSlUiEWqK9ghjUIIni+VNAXoY/kG/tEmth5KlZ6vbt3BgihK4jcdz8SH9TSGXKAiokh2Nm/X07A64hX8bIQw/XEv7mURBSd6bI/lHGXiQlunV9VhLhieDa6dJlqot84OLZongl6HkvRznCIWFD0rnXDQR6GtxuOMmf/XYqz9WzRbC/xCHxuNKC4GHTM5W41EKOuLrHFuFONVY+7EvOifNqG/BdQSd2+7EaX5M3faqQU9XSwNHJ/vplVeoIV/AXkVlVI=AQAAAAAAAAAAgAAAAAAAAOgaAAAAAAAAChYAAAAAAAA=eF4dmXc81W8Ux2Vnr1CyMkIllGg8CilZJaNkZzSUka6RH5FkJ6vIyN4yukZ4rj2iZFRWQzKStGSH3z3ff9+v8/o853zO+T7j3jyDu6UfaxrU7Lh+jAcYF6M0wa4/UisvKXpb2Wa5ahvUfFY2nS43KkZXn47N/0flj/P0VoBbckeuDpYXYvOWd2y+VF6umfcddJ4mrSrmvy/ECsXzF6Sp3JDrre0Cld/+fN6wxTkeqZge+mdA5a1VV6LmqLxIjO6Xg1Ap4l2fF9Sh8i/toRTgQwxdHHwvG9GuB/FXgQv4tzQvUrnTvTg2rqF6JMqgaWtI5azr5wOWqRy1DA1x5TWjJDcmB2Mq//nwUiusa5yxcazd+wUaVS3LO03lpDZVG9CRDd7n1lrZifqnB8hnqLxvs1TzPJX/C6ePV5VsR+9J1tP6VO5p0ssO8XOrVmWjZ5qQf6iwNMRvLk5NWaLy8zR8hio1Lejgy0fDZ6n8CbvtIvA8MQYNxYsdiBzI6WFE5XGSydcgz+qzPhIhW18iqaPb1SHPCJllSdBP81e9O9f+AiW/UTUAfbPHYYR+QrB7ymxAK2pkIhH6EhF3X0FdfY6XLhVoNyP7VEol1BWq9GYM4nkis0VacAOad/M8C+ve/xCm/o/KO+PZLsQzNqHAuRoZMyo3UuLPAd5/6JJ6o3kJGm0ffQfcW35SCfI8e6TR+PXMI1S5Lv0BdB5vK3LlpvZd2/XphmxtOhr49GEI+q67yOLNSeUVpa/VrcRqcTzHfbdbVJ7Le7MJeDGN5L0pMTKaLyb/Al73TvUSzE+/XM2rhsUaLDolwAFztW9M/D8eKi9x52Fs3B6IJmhF829T+SZ0WATixfkVl0mKFLTHrzDKh8r39tl5gb6Ak7V43vFK/CDymivocz8tyga+/1eIFvdQFdq3PEIB/pjDOhPyV35jc5fGOAWH8T1V9IP+doxuXqHW+0ul2z0h2gxlVAcYmlB52n6jFPBZQ7pSzyGgEitVadmBz9NWx0tgTqYG6gfOhdRgkfTfbTAnpXt6l0An8LWN0ZaSOmzja/HTFOak4okJ+HmAr5os4NeIp7bpbYW+6/Pf7YF+uXsJLjQudWBrx3ol8JnpslUNxGe7h2qTpV9g9q+d7RCveyXNCPqV43qC7sZCAz4dxa4N/dKhTVGBPM8Pv+ri3UTG/ke2PYPvyyTd6C98RzG7hcKPJ7Vg3az6dviO3AVfzEH8kuNbOyvdDvy2jnEZ6npQtuQLdSVV+d5iYe7AEhVRblBXv9OezTCfgnQP/XOtWzErHZ8IzOcpUd3LoFO1eK2v7HIb/nrUiQl0vn+rtIe6Po/sbbfIaMbqz5i8YG5zbXp2Q/zIhYBxS6sqzNnokAZ5OtBkfYR6LRoSu1rTqrAHUyoj+H+oZfkX6OxZU4wJ26jEr/cuXQV/7AXm6yFPGqVPKrt9hNGg0vAXyHMpd5MO7D8/5OQqmcpS8aAvUod97PT2++dHqXyZm3nmH6kKxb482itD5YYCsarAxbod0wZFy7GU50gi8DnudoNPVK74rz+PzFuHXJ9/pd9J5d7GesofqNzwhXxN6eVQnJ21aCtB5SoONKkQf32G8fk6LQX70Irfh3jBpI92oG+hY+NTT65ATMWD46C/vqDjC7x/fqE8rbcaz/h85pKl8n/puYchf9c4LyeyWBaymLCVgfw3d3x5Dv5E+17abFGRikMCF9pgHgR3iHoS++euluk/5AqcxP/lxykqL6Qv9oP4nyc7JG1nChBri6MNxHO1CzuCn4V9t/KXl6JwuCbpFvTlOZPgyiqV104N5VxTfYSSdFeKzkO9zzJsYZ5vPmzQW+YpwhJvA6ahL2a3Pm1AHz9SthZ9iihF4ZYL7DAPnRaWJ2FOSDeSuElekbhZpjMUeIx5jA3EU0ZjLIJzylChPesK9F1ureEL5KN51KdztCMI+cVxG0N/xQVWP4HOqJCh602rGkSeFouBff7qNCMD8ImZs8Wd5jWIp+wLP+ivqT1nhHppruYd63LPRxznMx+ADu+NXxTQT6k/Uqj3JQ+/7NTnAx49lTsNvMUrdw1HUjDrAx0r4IKSDKKQJ+OnUBE1jlIs5h0QAnnuNIo+BvMmbZTKuTetFuks7GeCeQv2j3wH/iivKw5eoolBwv50ZPje7yjY8EI8n/EpH0+RRNyc/qNaj8q1Vgrd16l8qZuhMCw8Btd+s1ywoPKxhiZ3yKfnBQP/AEcVDj8hEAN9sRv17AZ9hf8aL3WyJKH6V7Q5oN++v1EB4p1n6VXnY+1xI4lZBOJZ5n+eA38WGSaronsCMCnCLwf88SgvnvxL5UiZwS3TJw1Z5gY6QT7xD7yjwTfZBuXFXX6lSPvcgj/Mic3obBvoHL8Z90PNIgDFTtY5gv9bNtyIc1DBk2naRCIG2V32kgL9eHWXp5BPxDndGL/9aagoomoR8jlPz/sP4ud5BzwmrVLRWtmLJtDxPXlAFuKDn8zRygtnY9GNRS6I501b7gduIqQ0GlKTjK8oYVXoy+l0ZWbQseEM9mQXicAa/Y7bYd1F+hxN8Od0SElQlXo24nCOroD5bAgL8QH/L4RPUGZZy5Bstul16NfIdy0/0NH9ud1Y+VgK3ng3/hV0Zh0OJwIvLP9QN65khHPDHgpAnj/f5suDP/Fmkbxi5QHYcLjnLeQzdO/bGsxJoWIBY6lSJEZlMSygE6EfmQzcacfWlBOymXjfrx+2sB92u8w1EX0Zs4656u2GDKYHrUGfrnDvCOg7XRDPpFhF4WjDDBrI/8l1sw2oS8Z5RyLPgUR8bLpoBfoupNRIzNW+w/jkuK856sl5+Bz6aDVy/AL4xquf86aZIRmZCvxyAD9lssa+wbrPbHKlrR6kIhMG+mxY99PiZgZYtzDASEgv1BNZm1VHQl0CZ8haoHOm1+j08PMKLJlhqAE6f7+nJsL8+HM2bW3ILkFbx1gndancOwiVQ3z/uwj54yqRuITx9DrEh1jmWIK+OV9lqbhkBc4aVdpJ3HMMDhF+HmN2Nj5FF4QmijkJPzt1uApBP2k8+0f6gUq0KqpBD3WlHfUqAi5MMz580y4L3XxYxghc0KUpGNZVk7/PohOUhvz6asiwrsLGXT5iH9hS4UHab4y23A3JA/2D+jZvoC/xmTL750/F4ZSiJ03Ql6ZmRJx3ZwT++2A3lIUnfuq6wpwcyrz/m4ifM72x1fU/tFwkNw/xsVJP+UE/K3n0UwWpBicknigC/dibl/4Dn/VX+f6dvlmK9gjlTcA8PEWUeYjfm36lfOVtHOrqTJeH/mYOR5+FdQ966HW3bUlDmrvspGHd9cJhQ4iXN6gy/pfrj51TWnjAt1yOBTLEa0XlZ/NJhuPcq909xHkXNiJF1MucebtKyAWl6D9og3wuJNLpA0+1rdaZbKzBBrcushD3DdGP9VCX74xcvG5bLW4S3PYE6gowFxWC/DVMuxhcNuIR6bcMgvz90g9YgM+0cRfuSkWm4Q8aBlfAZy8ZER6YT7wl8sCMXgFmOd5uDXXd3aLyBvJk3/EhrG48D68k/mKE/XNRoegRcf8xKnM72FGKL5HKwyGfzo3ffKDv1GcXs8L6GDekf5iF+RyXpdm2RuXfRlKFZC1KsVVi9pMLVC5pN5gF8QW16Sn3QzPx7UdCU5APx0XaLtB3VeL/UliQg5kupYyDvvTjf1zEvsp7S3xbQQz2tKGdAv22avdSqJfG6tsh49xIHH6l+yhwieVJHoi3eXm7dzUiH3k8N/oGvC71uyrwdjaBgXa5R1h+Qn434cNCOwnqpdPqfthv8xzv4rKxg76Uqb0VB/3l39Px3HsyscGVDm3w87WZQC7oPLK0WmCUDUYHSRvfQEeONMwL8aE+RWqcJolYoTVaAeI1ovcaAt/8ntvvfL8r+vjl5WPgH5T/CwAd79DXzDuZotGPpvf5oGPJdvMAEf99NWB3UgHeGX37GsS7mbHTQb+cGdj7x/Xv4CbeEi3o14SRwSHgq1vLD994XoLWJi5mA9/zlmIA+mmlbt8KiqPR0O0VQ9DXZK9WhHgyq1HKDtscdN068CHEB2zXDIS5Ovh0BNtsykXotPgBmKuBrjIb+H57yzrKLOWicYLPjUDYN75FsRH3iu/K/M+1tQpRT4fvV9CRPOrLBveQCjV6ShFdPD6l4sJ9jsob2T2dwecy2QiTptUiRCNANgWf2b8eGgb+4r33/L+JCLSQY84N8xY+hIZgHjaTKKuujo+wH8/xNZgHzz1//CG+0DeIaze7K17KqPQAnXDTt3bAH0V2tBSKZOLoX6eOA3+QsPGZmJPZ3Sb9Z73R53tP4mEevA1XjEG/dZ+Vr8whMk7L2iMI+hvv+uxBR+rl3hMbJ4pRCP2mE6AzLrQ3Hnj+VopOGEMxHtFqSSTyl6+ygXr3enl8Krqfj8/FGWZCvdFyCizgvyxDTvmZlEJMGj48Aut2/Rglzimb2hyf6rFU9FC9QhD4gYcGxL6dfyoyrm1zPtJ2TVeHfvldJh8H/mrhjUcdGaMG+4fHgD+lPXcYdITOBmuYRDej7XoLN2FO2Pk3QoEnrN/aaXY6HQ/S7FsDrvyVrAn8lc/PUwzbc1HtrpuBwHn1pB9B3w+5OHj28pficP/Y89D3uHe6LbAu612yv4NNCBIXjheGfcnq2yzxboqp0xrf//M4EtMR6AAftnycXQA/G9SrgpeuBCDd0hIFmIfrV80UgZMPq434+qfjnjbPYdCJ8rUJAX5Zh0VCo70esR3f7wb+2+rwBkE+Cc7mSTVvclGejtZByCfXO1kN8vGJ0T5atBqCEu8wHwAfPPG4AtTF1ft3Zl46ECsYfbwIdcnPfXMm3oPON+L5mcOR55FAGjh/rbVEPYCHB3V418oFopKyNTbgfZvlnEFfxkQarSQnoijsEAL6q9e4x6HeGS8ynxF9JFobdtgB86lxUcEFdH63aVqsPqzEg7dXCf0y22oR0MnEzzPLD5eh/LGudehvxC5pF6hrz7PPfwwepOFpPl1eqCvZ3vsF8S7bzEtZ3JmKjlpIORHn+wlKC3x3hdo0DUn8Hqg4sU4Bzs3bv9I/wrqvZPLLQupjUbwEbROsO2B2nfBNzELr7/XcQDx48jPhm/bJ7TvA55myf+HGtsl4tZunAfznLu/OBM7meYVbbDUDL/JVpYH/s9onByCfKCUTybmD1fgJ4giEfKTsnaKAB5dz3Ku4H4iPpj5iJHj7LBvwXzV7FiPfJ2Mmx1hJ8J/zx8Uk8C27nJNXWisbJ5DuZMGccMhLLcG6cmFXzWk7cnDrRKcSzAlJeTUR8re8+tJ8RjQJ/d7iYwn5N+gcLwceJiD5Oqc9BfXYhQcDlxjcIkDci/aNWC1IFWDfQbkDxP1t/twq8b237JN866uG4p8FNUKezTzliqAzGW5arTaWgp11hvOgj6StD4j7rf8fwzo/rcto9/mMZoh/yaExCvHrPIfO743NQLek9w/Autvo36dC/s9mj1wjuUWjSTGpBPBN+DRFH+LpjPLHxGXL0XSf8xDomw9bmkG8FxP9kGNZJn6Q3y4K8S7afWMQf7ZLhrFKuQiztmSNgD4KSHwH+8kxjWal8ZRQXLd02wXecVeEBzzgPPWPFjZmafNGfnLux8yp/Kdb970/MFdHKTumdsQjX/EcA20qb7zDugz+f3CvIfunJeF44doTkI/RAgsd8S4rvancfjYEPZtw5wXfKjZx20M+qrTN7lxrGdh1SZAG8vnMPPYa4qvyTMcnh57hDeajHuBPfN1XIZhzGtVeB3nqee19bXYZ+JmkBOL+kG0tyZ7bVYzp7iYywbpVK3zexD2kKm/iS2s+0q02SILvK0yomTgHu50cWKP58hF/1LkC4B0cNZzE/dnclZ+skoXzeTPNYU5kditOgn5tdp1AYvxjJJXLKw36dyquV4PP3Dpnsi8a3cXCj51bwOffA7uIc6G29HEXw19RNGspqQlzWFiQ2gz6icPqbJz2JCwXqhoL39EXN5044j7wUSN822wAZlFRTYB4lcSNWvBB0+TId2VyCBKS7DaCek905pKA+1qvn1c/m42qni0OgZ91rLzW8K7f9ztrE8vnQpTnfKQV3vV91z2/gs9GOmLqJY9dEd1bpwnw2Z8ieoq4f+5l3yY2XYI01N5FEO/ieEEycb/6vqworFuHit8HbYLv16w8QRV0HEtSAnI44jDD7m4y+EBxj30JPnA99BI0+56OGHmNp8CHFZ9SR9A/1l5ras3WhINKWBtAf26wIxd05O4l96zKlmDeYDsS5JNoGnMC4reGZeZVxiXh13euhkB89XBaJ8QfIMcxD9smoGZnXAbxBfWKxPe1sPXskFx/EUpj/JcL+Uj0rR0hzi9jlSXtwDOow+DQPugvaVSGG7i+nYJrxroXYuU6TdzrDqj8uAP7Xsjjng+FUemYe4pCgfuGSDVbD3wXr2Ivp9McS8exZTvt4buQnxIXIN7FCelrw/pF6G0JMz3Ehy6Zt8LvbAVBDTRb+0uxkgIrO9w/O7jPXYV1BSsoT18kPUfNwm0BkM9Ov0fviXfcWvwJxjlvlBbJTQfz9k1sTBDWvb4pypOF1x+PdE9Kw/luekLDCeoVvp5/n/IjA81J3Gcj3hfXPHpBR3P2mbpATy527Ov8Cf6/2axHD3wfntm0U+kxyrR1iYA+tv6i5QGd0fa5wN7WfFzusOwGvslXvL4FXMFab8tqZQI+sddvJ9GXe1M3iff1m7oGjouxSMuaJw7yj04ceAnxWvOtNv2VXjiWK7YC4tkXbhDxPQPsE3N5wWjeWzsW4s86sBC/h7TZ7j/ZP5SC+TV0GWHOdb3ZKkDH5PuPUMuTnqj9u0UE6JwzDY0Bn2W7cuQnWTLR39y2IfBZ+MZtP9Bvjc86c4EtA/lIl2YRvxN+RsygUxPAknyyOx15uLDbEv8XaE55E+/uGzSRPnlxaCRuRgr0h4Ob1cCf/sL89G0iuSj03bPf4E/MIns/xD9QSjW9V5+HzuebNEA8ZVGfeF879abdM6a7gzI5E4n3NWXqAnEv3Rfl6HOJMwyTbjEQv3fd2K7MCvO8b+Wbv7mjC1KSTBAnflfxMH8D3K1rmRT85ikKWl73hTl8Q6+vB/nYp/KXdAcEYRskvRn6uGheTpyPfz9fU/j6Mxx9KW8nzkfZ/MiDsA87dV7isu3yQbp1Ax0nqfzCZF81xEusn9a611OIrgcYGEA8Leu7l+Dn/eyFM14X0pHqpkY1ON/PSBrWQP5h0o3MR4eT0UKyUCDUtUCu7/0NfdEwaupqwlhQj20L6Gf/fi0AeTp/KmhsMQtCrOFHnoJvaluciXeKxoGbEk5/c1DF0/gZ6Avlg7U15DP8p+JChkgG1laxeQY+hK0bEe/o2eBkvsch0SjF9QbxjvYySSP8sZ3vkSp6UYntNT38IP/B1HuLwAOlBk6W7q5GvZNfa4C/ul47A9xFrHtMxroa7bnjkwOc76BWC3CexiEH/vpK7LMsfhE4f8pbEvR3W9uKEFuKPQ60+yQC/b3+j0IDdUVdzYkvI2UgiRHte1DX/wTGIE4=AQAAAAAAAAAAgAAAAAAAAAAIAAAAAAAAFwAAAAAAAAA=eF5jYBgFo2AUjIJRMApGwUgDAAgAAAE=AQAAAAAAAAAAgAAAAAAAAOgaAAAAAAAAixUAAAAAAAA=eF5l13k81NsbB3CJSIhQ9uxLsi8z1nnGDLLvsoSUkkpuCcnepuhmKRStKvzchCSl5FGSKBKSihCXlOxUkp8xc+eP8s9x3vO8znzPM5853+8sYaH9WSILY+yfPcKekusKS+hz+M3xN4ffHH9zyGBbmMaZM9fvEvHZZRflDLmctDmV6dsJhGZuJ0c4wUerJzM9ulhqT4a9HQyq0eYmTI8afaUvMGsJt0xoc32mq2sdXXhfM4iyo811mN4dQlufDLX3aXM1psfsbFlYRx8oHbS5HNP5vtDqNeH4V9rOBJmu8Z644NLAujBDiZ7K/3xxuD5sXMT2a35+XgD+85QDurR63C23wPOyTK/eq0dbH33MaK7KdCMF2r70cbKQ5tpMfzdIqycj4R7NiUzPeEjrsxlG1dDcmOlOZxb7g90DCxxLZjrPzsV+4qFhWj2F6f1rF/uPcVO0enOmN3Evfl7Mz91+OW2k/pGHnR600eQPFz5NG3X+cCN32n9yfzitr3HtA5W/u4P3r8X+/e5RtvQ+/e5zx+n9+N3JvfR9/+eMfAIL43VGPpGRT6Yz8omMfDKdkU9k5JPpjHwiI59MZ+QTGflkOiOfyMgn0xn5REY+mc7IJzLyyXRGPpGRT+P/fHG4PlzJyCf+54x8AiOfTGfkExj5ZDojn8DIJ9MZ+QRGPpnOyCcw8sl0Rj6BkU+mM/IJjHwynZFPYOST6Yx8/ndeISOfzPPnP2fk8w9n5PMPZ+TzD2fk0/h3Z+Tz9/MTGfn8wxn5/MMZ+WS6ZAf7xJEGPSyvZyN4OzWT5AMvm5RVUiDLnHYhelDRavP0dXGB8XJnWh8o6FpGSf4Q97Eq+KOgfrIILx7Y6RA/+XGU9L5T29IrUg7GLnUnBpVqge/stEXPA01Mk8xgGxuXw51Th2SOemnD/Uc/Tu6V0wLeOwUFBVZk3NG8MK7ThpTXNcp6E7bAR3dgODIcJ8vofrKLXr+V4e078veJGJFRjD3DuaNaG2fYomd+dNhC14eZrWXhSjh5KqaKs10HKwq4uxI0dMFjbHfpizAlKLG507F9Vge/hvcQqtR1MSBe/OBlTz2sl/DbFfiXAawRSy0d9aJA29GkYS8PPehM3bzCllUf2quJOe2eFDxGKj3kkk9A/bD2q2wuhpgfHnZyJIoKuZLCzdHBBDDKLWyq/tsQxQ0NLO5YUxG9l0G14xRJi2tK9F8+Q5RrvfD57zBWVAzXvdD5+lhludHS8Lo3hhDVEvFPyLPTxgOe8ytDn1DwfXDZoZihNyThztwqj7WO8InusJ7uVQzHFFHhuz/6ZaG8e3hk8Odk1brY1B+HDTUxYX2w9GyVNM7qJpGneVhxecS1oYCHaoDPfcwauqn4yM02vaePBPZdQKgQdIIT17MeD1ymws5l+wYeAaAC/56v2zodcRndMbpz76Lf5Vt0EGxaXAfC1tDXceleXAevzXxoEeElwZtbXl159zlxbPsgda7PCo8ay+h76pIwls145U03TuB/4Bk8u8waLkd8W6GeuRQGKxf6IKwIWsb2z81n+PCMZ+4S2VeqIPqmKfLhcRLMzCoZeLXoI3HlouNKhhdXLDqQX2iHffUzgS/RwXXSJgD+U+M9vfZWODC5MbNewQRvdFZx1h4BSGmo8vlH3AqIqtLH3vqLIt96pcI3fQv7nVfZlP1OAUpO5TvmaZJQXuHSjkdPACsuOvk/XWoNMRJFFRlGpIVzMCNXphbwRU46knisMbM0k4OqYIanhExmYhfut1tcaql9Dk6gnMvWa6pqBnok2jdQDXd/26k54eaEoQFWzSxyZjCm+CmYy1kNpjLn877aOaHP20k9P0kzdHhY2CsUqo72jn99WWnlBCk9x4rOOGuAnlSdyv59iiA/+5GHZGGEMjb5WfxsmghaJyozZxXB0tuz9OsBYxAVzzrabmmIKsbu9pVRyniSuC5n6IoFPOtx2OurZgj7TTvjeboVQKYp84ZUogUe7SrjrlXRQGMRrrSVc4Dypzs9bViNoE8nbvzSbg1oeXQ/ekyajEuE/Ysu7TPCeKsJOZsRKRDZVFD/RJ+Mmg94MyddVFGbvcQ4QkwErO4/U3UWNgWh4dyfng/lMX5l/wl3CXFcFXorQcqZDInBw5lCHkoA+85cksxahbVVp4pOb9DEE/Zh7RLiUpCndfhMXb02CnPpsHZZquGuri8Z07JkqKju0SpTXThHZPe/teZWxupfrIe/ZgNm5V3nruYVgqYVnT1CI6roU1tXmGAkg6X8DlSD+VW4zvLnLbkxacjmZn9QGCIFPPOx4cblhvi6L/tWhoIG3Jk2jcln2QBSz/f1hwYagGVX6ad/T6vgSMO3e2c/mOPB6qtKu0L0QN9K8jSJnwo56c9XB+6l4NlS2v1CDy2zw3rNeSlwr8Wbdk5CRs2L0Fp5Dbx6UKYsRpQDt3u/yBmcMYQth3tHi/w1YHlxmKQi1yqMsboo3+1vhHknP9bIGZNxkGv8RlmxNHIV8cw+e2cLEpyOeSkL515sriBFgkcWrqYGiy1fOPf40aCImE8G9eM8Bp9aTYEE6U2QbocNe7ooo7lkdCVGN35vNwXdwGffOE7bwYSmvpldgR7+CJExjk6gYPiVoLKxyxTIpl8/8BW8WGkURMFy+vXjqfb8Ic9iVpB+l+f/SoWKKR3Sh33V+dD5QuGNXjFTHOlSS9B0oODEu8DmDG97eEJ3WDNO96L3i47LuYg/ItzNccM93fNVGwXA+dSeSQFPZ3hg9D7tgbs5WM+OSj/bKIChnHOXbT2dsXzzbl+K2FzVBNujxBt/UWD417dbszrLQe3+yvKr4rx4JkUkxKNWG1ScAwu7BUTBN/WW8nSXInrtYmEhclDRPP/sQdINHYiVZZ8klAvAqup/9AVLdMDQ9Pkcm4A01ixxd5t1NQYHmUSzR9wElOiWfdwWYInLV30u5OwwQr+Bofc77AkoVbwk/vLsBngezP7m5iYlMCnzOa3TJw2F378aSInooldH1uiROkWsERri6fslD5cczb41ndWBdGL3EW4fPnjMWzZbVztAcnIJ/t9mD3Hc+bzu+edPZNzd5LHRalIKWKfP+HJz2MNuugPDkeFY9OtovN6/eiiUzP7c/Z08fKo2tmhppYCB9pKWRyfN8WaQSI+TDRFFzh9M80pwBt6+8PraQ+Zg05hwrydl4fm9LWq2LMYZ1ymvS9593BySEvM9Z7YTMWFynCfrsDMmTizW49oHxxfrd/Yu1oPrVEF5eLImhBKCxtN26gEB/3m/eacJnhFQV/q+QxPf9FHfOnIRIPKkHuW2ogmMN8eGXb4pgy+fyodoE5QQ1nO4datqQLM34XWSoSFckoxfeuKBLpzkaYYT6RZ4RqdrSScqQmX8qy8vWWWwNc7holqaDn5ObHz4iF8LmjNcsvaQiPhMYXk4jw0Jz5dolL5s0EDPo7PDPs8JeKppY1bsGmNgP6crN7xpYb8auza8vUdBv+Lx2K/ezshwdKI7bKE7DJ6l+xdter01w4fpDoN0BzvGOtOJj5s4Pc2xNn24VF1bBI8VTHsGeTlDzVXf+BxPc6gffu07NyMMjm9MQ8e9nPGY5d+Fhlc5MMhSxKmqiYrpEY0JRw8IQsRYrONSqiDyGkinaDuIYpO8UNjESWkY2zFI3DCsBN17MzrTdlFRVn0H0TNDFxs63w9/4RADAc5kv1YeIm5LvNPYukMR69kcPlp695AMLWb9q+5qYtTFk4bhAl+rilKtb+39yxBYVXUOfztFxdsE1g73xxa4d3zRsdSG7seTFh2G1b7uXz2oC3kjwxEbn6pCepn56qpvplgy3JOflqwABg+4Vb9JUiFh74uZ+hPaeDrDQlbngiJy9p0/uPkzBTLLhZ/ZhOiARpHNZuJPMuR3HvjJNWWES6VlbR4q2GPxp4rhf6bJePyzBt/7WSMc3J3BKiNhDxuf9z4TUNSEwL1Nkun2VFjl3pKfWmaMXA4/yq+RNNGv+fLWV2JUsFXoD5DsNoYNgwGXGo6o4SuT8as3ypXQLD3CRnCPASSL/XrG7yYBncTNaVGeshDDijqfApSx/oOU96FoCohxpfjndRLglSxXMVePA263e8J7Ip6C3y5v8+0uIYDp91DrhD4HKJZr7DowYYDxej3qqwo40SzWmyS50QK6iBlVgWMGYJCft8fUZxl8VBSvcnW1wLvVFyJTpzhB4GdQ5qWbVGjn17BMuCCEu3wr31ptMcSVY+673Y5TQWxPp++acgv493H9y/sShrCSXPLiznkqfF52oaI80gLjLDOPq7rJQtRwUtr1QiO4ButbfjzUwHTp1ccL98rjD4k1JxLqjUAis8dJO00LdJNGjRs3kLH847ynIKcRyMoXfPs5YguNtaMrDpqQweJMwcUGFSMwa9ZfI9Jli7liNlk3qk3go026e5KVMq5+nWL5IscKCzzvfTRJXItTnlwlZaJEvJDbFxHnoALu571LpD4Y4PG3FXY5cvpwjLC5LdbMAth3KV/xedNfJUCRrgj9JAAfLcs8ZD6PkxwGh/xGtlJg4xrX+qkCaVCs72/rq3fAEEmrw0H+FCyJfiebfUsat2x24HdqcIALsi0Nhlc5Mb/m6p3HJ/Xx6IsNEfpuQrDeanzb0moKNksJOjz4poccfFfj4sQcIceTRyTpOwUu3y1z8R3Vw0ifG5tCbRwxZvmxWoWnSnC2wzS7VMYEnUl6yS6huphmqqviOb7wHD6f1//DXAv90qWDuSqp8L+752+lblHCAfFNQdfrjPFrhK6OvqQuVDf6C34ZosC++qd1jrup0Gmi8rKB5IjX6hYdOxroflp/0cHbvOwp4ak2EB/nnNn6jgT+Xt2C3VJkfPOFzTesVwsbR6X+59q18Pzc+imwxhNgVIJvtFtDAtdvhu3TSWboE6I+WGqhDK3V2ycTCYZ48X7quaK/REHSsq+QP80CUuYa3nJGtpKo4XLkh0e0oLThYd+5Bz1VIbvmb18IIKBLV1nOu30y+GLuunkflQrBk8rb/FNJuDS7HJoXnivf3uv6UOxmDbyF0QnsKSTI2W/0WEHWDMS+s7HFu1rjlZVa6BxNwqmdBUOX1irDsPL4Dgcza8i94ZtyhQ0g6HxmfIT5wnWqbvSOe2iN8cFK2R1LAccHe6p3Lfi282wcCpXWoLRP6LIXSR/uOVR6rLtLgqwB3it7Os3Q2y2jM1WXilP8/+7svEjFGb8k371xjiDlvuiQL0z3qK2Ljg8kljztqtUDNw8vOLFCBu/WHjt2c+E8Ju+5HSVlLAb1E3c26H2SwPiipuKBDEXsUxv7HnVOE+1ct1EPDVFRsNKW/UGkCRjVxC77N1cTwh8FEMcnqNj/+S+j6TQT3Nedb7ZJURu+vS9JufI/Xjh28/aG4AzAw9053exXtdDxhxGo1bHB84bG+y2yAPdfKPXjIwN0YvtHLSMYMH7ORHt4vQW8Lo0cEqk3AFvJazxHAwHXTFH0rLQtcE/kRcqF/RJgGilUvEnHDK9nTfJ7H1LGXfofNmkbWGADr0eWcqsqqO5elpos4QItqj3zNmABcWs23VR/o4o3dF/Mtsu4oKtHrtC9hfq9F5OGV/ipIfvMQd+lki4QHNJX5G9qAT/Nsu7qyqnBmaRVA3lyLrjDsuNN1nYSsv6Y0CzSUMFjJ9te5WhaA5E769TooAlIBIvarQ5Vg6fAcqKxxgrPDoUaRxwxAL131huyngjhnR6WzLlpc9wl+sbmyU09mHbmiPA8q4XlZnPnmq5R0M78i+j6M3yoHNQz3N9gBCHkEuO15eKwuiJfWuKYOJ7/EGhv5GYG1v2xgy9LlSCuO8/0ZqI4OFnlbU1/agYx9rYBTxbO6S6XDpIYGxXcRo62beqSwv6Adv1sV0cMaMeGlCVUNKxjObuuUQo2yt8YCnB2BAsjOVWpERXIVuPChd+r0FZxJpxXk4j+/rwpT9XX452zW5xT6jThWMTmrdyBRPjwZXlLxbQJbpw5+TP0qx7wKom9rnppBblOq16W1uvgxQMPpn6aaoGoz9J9Z5eYgr6KeaWNOQU0LjjnuGerLtyn1p43KHFAt1b7L+ve6uPrg2uvqfkB6Ar8dIvbag7DUTZb9p0gwJsDPA3u3qLQKhN4TWMLFdvLD19cP6+NqmsFslbkk7BiLrna1ZEMM7crlVm1dOBa75VHrgqAHiwvX3pFk3H7Fa6PPUQ+0Goc2LCs0Bi2m/S3sYiI4+2b2NC2RAZeX5/PkTmkhklspNlwDXV86dctwtYnhak1ihgTKAzaZQTPnWRV0Alv81jvyA8Ko+e+u4cClr6O04v8JYGT52/Gl6+hYNcmw8NjfGoL/VTm/XjcAY601XfmClvgqWvrtZJ5AU2JH8riWVwgie6QQnewoDtGf6J7TD+9PtGS7gfpjnF0B4bDX1flNta2qAFfUqZXioc6Fsk1EQ/eMsAq45Ob96eRgUXu4eYhtSnS49Ysq7+D7fAyV3rASDYZE/ZLGAbl/1sVub9y2fdYO6gVSh6uMQLUOOXJdSjBAHU4hG0erLUB363lIynZP6sqbp+8WnJaAVdGbZvwr+UEFULnkW13B6tumfP4iSz87ubZ98vr7x1TpLSpNoWKPG1ckmYrYx4hgiI+hfFZ7GSYNiK9Gz1CgtOef2clexHAYsvfWwatrTGEV6DZZiPAiHeOQHqyAWbJpmgW29rg18xk4ZgtrNCI9dHBYfLI+7TGu7d9JdY7x9duv8mP3e3v21OSp0l2NhdXTV2ShPnYsFLu1MkqXnf71SpHlCEybK6woGkJlEvWebw4KIFBHaR7dRxqcHTF0PDdBGXIPdEsXPHTFNeKNXW7P1JHbXF0ObzXAXKKDtf7SRGRTz/mVOgWbeAXKvEY6KNCUIRZjkWbCRxpD9ZK6ReGyXnX/qelVsi9WyV323MTvHm7a7vAUWGMlCKmrr5hBcnButihI4FNDUkc9z4QoV1HI0bOWhkivh8oN/dQgelvXVrndH6Q7vaPhW8oIqDHVOI25+Z16LzaTm1AhxN+udQMJukTIOJaaO/0iCnIuX0QXSsCsDvmbHvodgdUi7g20TpmivZTGWd7BAD6v5i9F9jhAO96HdQV7OdIZCGCy9rN5IV8/W9iyG85ri8rWi7FogMFA+6Htj/lx7x0oRQlJzLyta2++plbBZVKbHDUlgiSR0K1lYII4P7uSdTm+nXQonia98xyIthlSbskaBMw5KdeHueQKahY3v70Y586dHt+XOrs54B8rxrP5V+0gMslF7Qdjc1ROUHAI3m/C3LTHa/QHZToDgfe0ev3X6e7YzK9fj/dMZzu6EB30F338HRdsw7eFb7Qq81CwMDmAPcKDlPg6um/vV9PGXt9zC/cpgqhpawgx702Xfg/D0nwcA==AQAAAAAAAAAAgAAAAAAAAAAwAAAAAAAAwQoAAAAAAAA=eF5d2nm8p2MZx/EzDMYMw2DGMIyplPakaOeMSqVVSqVwhiLSgmgRjqW0aifaTqG0KUvK2iFbG8pSlnImS1ooS2XnD5+312ue88/3dV/P/buf57mW77U859iRR/6+Hb4yPDZ87+D6zeHHwq3Dc8JvhK8JfxF+PXx1+N/wtPCjofP3Dt1nn/Dx4Ybh+8Onh08LfxluFR4VHhiuGK4QHhTODdcKrwj9zv4rB/v9/sFwv/A94Q/C74ZPCH8YPjU8IbwwXBR+LbwoPCbcZLD/MeGiwX77nhnSD7vSk/0bhx8Onf+h8LHhiSH7bRHyg4ND/sAPxkP+sPq0R3CX1teEc5Jf2/rtg/0fb+139tv3ifBP4WHhzJD/eW7vwY5Hhuz5o/Cl4VcGcut3h98JvxC+fCD33K6T2/flgdx611Ac7RF6H3Z5U+i9DgmfHD4ppJdZIf3cMtjv9/xHXL0z3D9cOZwRfiRcI5wT4o0lIb/BGzuH/IZ/8mN+yj/5pTjwnLuH/P2AcHa4aihO3xyKV3EqPt8S/jF8bchfnIOv8Jdz8Ba+Gg+fE24Wip8F4brh/0L3d98zQ/75pYHces9QXOwW8oOfhp4b354a4lvv8f1whxBffi/EjzuGd4TinH/PKn4/0Pol4UrJN2/9ydDvxZFz7LePnvgRPY+H/I6e6f320Hu+LPxmyI/4j7jDS/ziV6HfO89++zwv++Jlfju395JX8NL54SvCwwdy63eE8tr08KuhvHZ0OC+8IHxbyE9uDPERfsKf+MF7OIc/Og/P4Jd3hZ5T3vW8ntPzycMTIf/m7yukN8/rOY8L8RKeOj7EZ3gMH2wUyuN4QR5/SnhDSP/8eX7P88HWLw4vDfGYfHtJKB/jvZ+EO4WfH8ittwl/HH42xLvkbxhcnwzpU104FYoTvHR9OB7isT+H6kV13Skhu8tHd4XscXV4Z4i32Mda3iH3O+fIO3eHfwnF8czsom4YDU8Ptw/Z5echu7w1dL684z6fC9cJ54fstGn47PCI8Pnh80L2WRiuH+JP+ROPTobsp86nZ3qSx+lZXqBfdqRP9rwuxD/0f1m4V/ibkJ7/35q+8fNzQzyNn9cL8fTl4cWhfEWujnJd/Is38SdOxSe9iUf2Zn/xyN7sz87qCn71sxBP4Ddy9YTr6jh8ox4hV++5zj/Fsffjn4tDvLBq+n+o9RvD2clHwu1a8hP2Zn9+wt7s73z6dR/n06/7TAvpH1+qH14fqiPUG+qMbUP8gw/Hw6lwLMRbfwvxz6sGcnZyXb7WL8jz+hF1mHxOLk+7Lg+KL30DubU6bsXOoQ911IzkE61fN7LsWv4jPyP8dLjlQM4PXBcX6gZ2cV/niuOzQ32HeobcWh2HH/ACf1NfqatWCad3X/2WPot835Flr3sv7ynvkFubN+A3cnrmn+pb/rdGcnEnDtdMLv7EHf+hB3o6N+T/zj8vZHfvIW/Kl08M1Y3qRfObtXoe/s2fbwrZnV7Eq/5M/y5e5Rf9u/3i3e/sF+9+961w9XC18A+h+Yz4/n0o/s1n2Jmfi5d/huMhPvhHKP7HBvu9z/hgv/f3u5V7r/e1PjRkr7FQvie3xmfsLs/rd8nxmuvqXnpwjjrZfnpjX3bl5+pPdmI3cShffyZcrv3qwImQvdxPfLCX+PG85jgvDJ1Pbm1+o06gX/r+bWiuIY7I+bnr+nH1ur5cP64PV7+rZ7wP3iO3lu/MGfi1uo9cXeW6vmPNUP+h79BvrBR6L3rwfuxFb/SqT39GqF/X1+vnHxf+OjT/0d/JR9by1fLZRZ2rznkgfFZoTnl/uHaov7w31H++ILwvNPfcIFTf4klxok7zPvondZp+iT68F77Qj8r79Evffw2XhOrvpaG4Fafk1up25/i9un0q1BfgCfWMvkCfYL99Y4P99uE9+scXfsde+kO/o3/PqS9kL++Fb/gPP9HXyzvylbqV/+hD+JH99plvmvt5Tn5l7sdPPKfvCOYP5iXk6ljX9QfmsOptcn2E6+Y5XwzNdcjV867fFuJVdY++Sx7ED+TW+IPe1Ef0/J9QnlEnsK9+UlzyB/2nuGRfcajv5A/iUN/pHP7kPPflT+7vfOfyI+c7l9/R06fCxQO5etH1f4XqcnU6uTmh67eG+k95h3x0cN178T/+SA94TZx5L37JT+lB/OA//aP8wf7k1uol9ap8oi+Tp/Rl8oo5mPmXftZ3E/WzfKx/MWfVx5jviStxZM6qvtUH6RP1NfKIvkadoO5WN7IrO6sz9SfqVuf4Pf/HH+oAvG4+QA/im5xeXJdn5deTBvvNHeRXcmvnqd/4B39Rv/EDfkH/9Mhv9SPqEHUKHsYP+iZyfOG6Pk4/NhHiPXWT9yPHj67jPfUU/iM373Zdfaj+4b/qSf6q/sGf4h4P4D325hfqef6jrlfP26eul6/Nncyh5GtzJ3Mo++2T/+23T73w71A+wDPk8ofr+ln+Jh7pjb7EDb3xA/pTH+kn+ZU8wQ/1l57H86kr1VHqJ/Wluoufq78mQ3WVvuGekP3Y53ehOYP4IremD/zArs7BD+zKzvTDn/SX9Kmf5I/iRfyoixd2X3MPfecqyelLnpevxd1k6LsSu58V+i72ohDv8n/zBHNH56u/xTX/4Td4XR5Ux8iH8h2788O1O0e8+928acvuE++e0/N5L32o9zo5lI/wo/mJOYb5hbwyGdIn/+In5kG+e5nPmN+qF8mt5WdzG3ld3Ulubd5rDqBP0KeZl8qL6k1y9Zzr4ogexJO4E2/0irfN1fC3PCVe5M31208/8jA9m0v6TmdO6/fOM9eVd9lRPeD3zvPdwP8T+D6jvvU9Rv2rDjFPFGfk6jDX1T94EC+qf/AgXlync+Rdde+6ydV16mT7fWf0O/v9X43fLUiuzlsUrpdcfvcdk1y97bpz1NvOM4eZaM3u7Muu6i1xx07s9vfQd0zfEXyH9R3Cd0z1p7rT9w18iAfN4/CA+MeH7mte6f7u637+32S1zvedxDx+aaivlrflX321vD0V+k6pz9Yv+06pz8YPeMF8Fw+Y5+IJfeVVoTkbuTrZdTzv/xV8P6cH78kO9MZO+mN9sz7a3JfcWj/hHP04O5A713X+47nxN77Fs/K2/G7uQE/qc3WaekMdqz4x18E/eMf55pbssSTES/ycPsWL757qEPq3z+/4m7njaHL5Gv/iY3Jrda7/P5G/3N993Y8+6Y2+Fofyo+95vl96TnnH88rL8rG4kcd9P5TPxan7qS/kFzxr7uq+/NO8DE8Gj/Ilnly+Nb7Ee/7wH95brjX+cw5edp774nHHOmdRa+e5L/71x6/4k7m4Okre5Pf0ab5Ar/RP76MhnsSP6jH+gyf5l//zEXf4g1+ph/iXPmgsVN+z12hrz+V9+ZV4Ml/Vz/heo77F456X3Fo965xzWztPnsIb9Ipn8Kb3Ng/0vQovOUeeM4cXL+pI7yc++DG/Zl921V+oqydb41e8hI98H8U/+EScsqM6XryTm6e4Lr+oL8WjfOS91LPsrs/R3+ITfTA+Ftf0oH5Ux/qOMpRb+537ut9YyD/xHf4lt1a3iCN9iXgSR6Ot9SfeS7/n/Tyn+tt78BP+we/4rX5X38Yu7MQP2Z29fc9kd/b2HU3c4Uc87b7ixP35uXmVORX96LvoiX7oRR+GZ/CLupncWl39MBYB72w=AQAAAAAAAAAAgAAAAAAAAAAQAAAAAAAAOQMAAAAAAAA=eF4118OiGAYAAMHYaGy0sW0nTWPbtm1bjW3btm3btq0e3nQv8w0bNFBAIRia4RiRkRmNMRmH8fknEzMZUzIN0zMTszIHczMfC7Iwi7IES7McK7IKq7MW67IBG7MZW7IN27MTu7IHe7MfB3IIh3MUx3A8J3EqZ3A253Ehl3A5V3EtN3Azt3En93A/D/EoT/A0z/Eir/A6b/EuH/Axn/El3/A9P/Erf/A3gwQOMDhDMSwjMBKjMgZjMx4TMhGTMgVTMx0zMguzMxfzsgD/ZhEWZymWZQVWZjXWZB3WZyM2ZQu2Zjt2ZBd2Zy/25QAO5jCO5GiO40RO4XTO4lwu4GIu40qu4Xpu4lbu4G7u40Ee4XGe4lle4GVe403e4X0+4lO+4Gu+40d+4Xf+YuAgAQZjSIZheP7BKIzOWIzLBPyLSZicqZiWGZiZ2ZiTeZifhfgPi7Eky7A8K7Eqa7A267Ehm7A5W7EtO7Azu7En+7A/B3EoR/BfjuUETuY0zuQczuciLuUKruY6buQWbucu7uUBHuYxnuQZnuclXuUN3uY9PuQTPucrvuUHfuY3/mSgoGAIhmY4RmRkRmNMxmF8/snETMaUTMP0zMSszMHczMeCLMyiLMHSLMeKrMLqrMW6bMDGbMaWbMP27MSu7MHe7MeBHMLhHMUxHM9JnMoZnM15XMglXM5VXMsN3Mxt3Mk93M9DPMoTPM1zvMgrvM5bvMsHfMxnfMk3fM9P/Mof/M0gwQIMzlAMywiMxKiMwdiMx4RMxKRMwdRMx4zMwuzMxbwswL9ZhMVZimVZgZVZjTVZh/XZiE3Zgq3Zjh3Zhd3Zi305gIM5jCM5muM4kVM4nbM4lwu4mMu4kmu4npu4lTu4m/t4kEd4nKd4lhd4mdd4k3d4n4/4lC/4mu/4kV/4nb8YOHiAwRiSYRiefzAKozMW4zIB/2ISJmcqpmUGZmY25mQe5mch/sNiLMkyLM9KrMoarM16bMgmbM5WbMsO7Mxu7Mk+7M9BHMoR/JdjOYGTOY0zOYfzuYhLuYKruY4buYXbuYt7eYCHeYwneYbneYlXeYO3eY8P+YTP+Ypv+YGf+Y0/+f/w/wcrEAQUAQAAAAAAAAAAgAAAAAAAAAACAAAAAAAADgAAAAAAAAA=eF5jZR0FIxkAAAeWCgE= + </AppendedData> +</VTKFile>