A benchmark of a viscoelastic(LUBBY?2) model

The LUBBY?2 model is based on the generalised Burgers model and is described by the following
evolution equation (Nagel et al. (2016)):
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where V1 and Vi represent the viscosity tensor of the Maxwell and Kelvin model, respectively. Cy and
Cx are the tangent moduli. The Kelvin shear modulus and the viscosities are functions of the current stress
state:
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with
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where m, are material parameters characterising the stress dependency.
The rheological model is shown in Fig. 1 consisting of a Maxwell element in series with a Kelvin element.
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Figure 1: Rheological analogue of the LUBBY2 model.
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and the 18 x 18 Jacobian:
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Figure 2: Loading and boundary conditions.

where the components are given as follows:
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1 The mechanical model is a square plate/cube with a positive shear stress of 0.01 MPa applied on the top
> side/surface, see Fig. 2. Displacements of the left, right side and the top are constrained in vertical direction.
3 The material property set for this benchmark is listed in Table 1.

Table 1: Material properties used in LUBBY?2 model

Gm/MPa Ky /MPa nyo/MPad Ggo/MPa ngo/MPad m;/MPa~! m;/MPa~! mg/MPa’!
0.8 0.8 0.5 0.8 0.5 03 0.2 0.2
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Figure 3: Variation of the shear strain with time (a) and the deviation between analytical solution and numerical simulations (b).



