Benchmark tests on pressure boundary conditions

Francesco Parisio?, Dmitry Naumov?®, Thomas Nagel®P

“Department of Environmental Informatics, Helmholtz Centre for Environmental
Research — UFZ, Leipzig, Germany
b Department of Mechanical and Manufacturing Engineering, School of Engineering,
Trinity College Dublin, College Green, Dublin, Ireland

1. Analytical solutions

In the following are reported the formula relatives to the analytical so-
lutions of the stress and displacement fields around a thick-walled pipe and
sphere in elastic conditions and a thick walled sphere in elasto-plastic con-
ditions. The full derivation of the analytical solutions can be found in [1].

1.1. Thick-walled elastic cylinder
The stress field around a thick walled elastic cylinder in plain strain
conditions is expressed by the set of equations
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defining the radial o,,, circumferential ogg and longitudinal o,, stress
components in cylindrical coordinates, where the z axis is along the cylin-
der directive. The thick walled cylinder is subjected to an internal and an
external pressure, respectively p; and p,, and has internal and external radii
of R; and R,. The radial coordinate is r and v is Poisson’s ratio. The radial
displacement u, writes

e e () ()]

where F is Young’s modulus.
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1.2. Thick-walled elastic sphere
The stress field around a thick walled elastic sphere of internal and exter-
nal radii R; and Ry, respectively, and subjected to and internal and external
pressure of p; and p,, respectively, is given by
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where in spherical coordinates, 6 and ¢ define the angular coordinates
and r the radial one. The radial displacement field writes
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1.8. Thick walled plastic sphere

The solution obtained is based on perfect plasticity theory (no hardening
or softening) and the Von Mises plastic yield surface F'; which reads
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where s;; = 0;; —1/30y0;; is the deviatoric stress tensor and o is the yield
stress. A new variable 7, defines the boundary between the elastic and the
plastic region and the yield pressure reads
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In the elastic region, the stress components are
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and the radial displacement is



u,,zég(E)grl(1—2u)+lgy<?>3]. (12)

In the plastic region, stress components write
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while the radial displacement is
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2. Numerical analyses and comparison

2.1. Elastic cylinder

The solution was obtained with the values reported in Table 2.1. The
comparison between analytical and numerical solution is reported in Figure
1 for plain strain conditions and in Figure 2 for axisymmetric conditions.
The numerical solution matches well the analytical ones.

Table 1: Values of parameters for elastic cylinder problem.

Parameter Value Units

R; 1 mm
R, 2 mm
i 52.2  MPa
Pa 0.1 MPa
v 0.3 -
E 210 GPa
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Figure 1: Plain strain elastic cylinder comparison between numerical and analytical re-
sults.
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Figure 2: Axisymmetric elastic cylinder comparison between numerical and analytical
results.

2.2. Elastic sphere

The comparison is carried out for the case of an elastic sphere of which
properties are reported in Table 2.2. Two models are used for the numerical
computations, a bi-dimensional axisymmetric one and a full tri-dimensional
model. Results comparison for the axisymmetric model are reported in Fig-
ure 3 and for the tri-dimensional one in Figure 4. There is good agreement
between numerical computations and the anylitical solution. The slight dis-
crepancy at the inner boundary is caused by nodal interpolation error.



Table 2: Values of parameters for elastic sphere problem.

Parameter Value Units
R; 1 mm
R, 2 mm
Pi 1 kPa
Pa 100 kPa
v 0.35 -
E 125 GPa
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Figure 3: Axisymmetric elastic sphere comparison between numerical and analytical re-

sults.
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Figure 4: Tri-dimensional elastic sphere comparison between

results.
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2.8. Plastic sphere

The final benchmarks consists in simulating an elasto-plastic sphere
subjected to an internal pressure. The material properties, geometry and
boundary conditions are reported in Table 2.3. The plastic radius r, was
set to be at the middle point of the sphere wall thickness. Based on this
value, through Equation 9 the plastic stress p, was computed. In the nu-
merical analysis, the internal pressure was increased linearly to the value of
the computed plastic pressure p,;. Results comparison are shown in Figure
5 and once again, the numerical solution well compares to the analytical
one, validating the pressure boundary conditions implementation in OGS-6.

Table 3: Values of parameters for plastic sphere problem.

Parameter Value Units

R; 1 mm
R, 2 mm
i 239.27 MPa
Pa 0 MPa
v 0.35 -
E 125 GPa
o 200 MPa
Tp 1.5 mm
Dy 239.27 MPa
FE 125 GPa
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Figure 5: Axisymmetric plastic sphere comparison between numerical and analytical re-
sults.
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