diff --git a/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc b/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc
index e4123dad3ede51c85e4fe379e07e05fe33986aa5..e37a04734bd2a67c6816a496bc5e6c5f1b591841 100644
--- a/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc
+++ b/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc
@@ -101,7 +101,6 @@ Newton-Raphson is applied to .
  Let $$\begin{gathered}
  \mathbf{r}= { \mathbf \sigma}^{n+1} -
  { \mathbf \sigma}^{n} - \mathbf{C} (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I)
-
 + 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
  {\mathbf s}^{n+1}
 \end{gathered}$$
diff --git a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc
index f9ab0fb2c4f5f42fb0786e9498d1f8a206b50ca3..603b3f694094fcfaee8a519019e2b911f2db9edd 100644
--- a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc
+++ b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc
@@ -18,7 +18,6 @@ weight = 102
 We start with Poisson equation:
 $$
 \begin{equation}
-
 - k\; \Delta p = Q \quad \text{in }\Omega
 \end{equation}$$
 w.r.t boundary conditions
diff --git a/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc b/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc
index e8a509d6621414f0549c63a54deb16d4a63be79b..bac4ee84302dcd660255e12d69363edc983e8b3f 100644
--- a/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc
+++ b/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc
@@ -18,7 +18,6 @@ weight = 102
 The Poisson equation is:
 $$
 \begin{equation}
-
 - k\; \Delta p = Q \quad \text{in }\Omega
 \end{equation}$$
 w.r.t boundary conditions
diff --git a/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc b/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc
index 609eff114c3a75012a92532a145832d86036297b..995492abbf8ca7d09681fab2b48c44127cf91108 100644
--- a/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc
+++ b/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc
@@ -20,7 +20,6 @@ $$
 \left( c \rho_R + \phi \frac{\partial \rho_R}{\partial p}\right) \frac{\partial
 p}{\partial t} - \nabla \cdot
 \left[ \rho_R \frac{\kappa}{\mu} \left( \nabla p + \rho_R g \right) \right]
-
 - Q_p = 0.
 $$
 where
diff --git a/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc b/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc
index 2d4d0c2fd18ffb37715da2768b4672e0daa58a88..3b9e0705df4137e301cb4f5b73e24212a2221f05 100644
--- a/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc
+++ b/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc
@@ -33,7 +33,6 @@ We solve Laplace's Equation in 2D on a $1 \times 1$ square domain.
 Laplace's equation is
 $$
 \begin{equation}
-
 - \mathop{\mathrm{div}} (a \mathop{\mathrm{grad}} u) = 0
 \end{equation}
 $$