diff --git a/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc b/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc index e4123dad3ede51c85e4fe379e07e05fe33986aa5..e37a04734bd2a67c6816a496bc5e6c5f1b591841 100644 --- a/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc +++ b/web/content/docs/benchmarks/creepbgra/CreepBRGa.pandoc @@ -101,7 +101,6 @@ Newton-Raphson is applied to . Let $$\begin{gathered} \mathbf{r}= { \mathbf \sigma}^{n+1} - { \mathbf \sigma}^{n} - \mathbf{C} (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I) - + 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} {\mathbf s}^{n+1} \end{gathered}$$ diff --git a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc index f9ab0fb2c4f5f42fb0786e9498d1f8a206b50ca3..603b3f694094fcfaee8a519019e2b911f2db9edd 100644 --- a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc +++ b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.pandoc @@ -18,7 +18,6 @@ weight = 102 We start with Poisson equation: $$ \begin{equation} - - k\; \Delta p = Q \quad \text{in }\Omega \end{equation}$$ w.r.t boundary conditions diff --git a/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc b/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc index e8a509d6621414f0549c63a54deb16d4a63be79b..bac4ee84302dcd660255e12d69363edc983e8b3f 100644 --- a/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc +++ b/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc @@ -18,7 +18,6 @@ weight = 102 The Poisson equation is: $$ \begin{equation} - - k\; \Delta p = Q \quad \text{in }\Omega \end{equation}$$ w.r.t boundary conditions diff --git a/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc b/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc index 609eff114c3a75012a92532a145832d86036297b..995492abbf8ca7d09681fab2b48c44127cf91108 100644 --- a/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc +++ b/web/content/docs/benchmarks/liquid-flow/primary-variable-constrain-dirichlet-boundary-condition.pandoc @@ -20,7 +20,6 @@ $$ \left( c \rho_R + \phi \frac{\partial \rho_R}{\partial p}\right) \frac{\partial p}{\partial t} - \nabla \cdot \left[ \rho_R \frac{\kappa}{\mu} \left( \nabla p + \rho_R g \right) \right] - - Q_p = 0. $$ where diff --git a/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc b/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc index 2d4d0c2fd18ffb37715da2768b4672e0daa58a88..3b9e0705df4137e301cb4f5b73e24212a2221f05 100644 --- a/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc +++ b/web/content/docs/benchmarks/python-bc/laplace-equation/python-laplace-eq.pandoc @@ -33,7 +33,6 @@ We solve Laplace's Equation in 2D on a $1 \times 1$ square domain. Laplace's equation is $$ \begin{equation} - - \mathop{\mathrm{div}} (a \mathop{\mathrm{grad}} u) = 0 \end{equation} $$