diff --git a/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc b/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc
new file mode 100644
index 0000000000000000000000000000000000000000..0d920439850b933cc420168283f897931b071bbb
--- /dev/null
+++ b/web/content/docs/benchmarks/elliptic/poisson_equation.pandoc
@@ -0,0 +1,194 @@
++++
+date = "2018-10-10T09:17:39+01:00"
+title = "Poisson equation using Python for source term specification"
+project = "Elliptic/square_1x1_GroundWaterFlow_Python/square_1e3_poisson_sin_x_sin_y.prj"
+author = "Tom Fischer"
+weight = 102
+
+aliases = [ "/docs/benchmarks/" ] # First benchmark page
+
+[menu]
+  [menu.benchmarks]
+    parent = "elliptic"
+
++++
+
+{{< data-link >}}
+
+## Poisson Equation
+
+The Poisson equation is:
+$$
+\begin{equation}
+- k\; \Delta p = Q \quad \text{in }\Omega
+\end{equation}$$
+w.r.t boundary conditions
+$$
+\eqalign{
+p(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr
+k\;{\partial p(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
+}$$
+
+where $p$ could be the pressure, the subscripts $D$ and $N$ denote the
+Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector
+pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and
+$\Gamma_D \cap \Gamma_N = \emptyset$.
+
+## Problem specification and analytical solution
+
+We solve the Poisson equation on a square domain $\Omega = [0\times 1]^2$
+with $k = 1$ w.r.t. the specific boundary conditions:
+$$
+\eqalign{
+p(x,y) = 1 &\quad \text{on } (x=0,y=0) \subset \Gamma_D,\cr
+p(x,y) = 1 &\quad \text{on } (x=0,y=1) \subset \Gamma_D,\cr
+p(x,y) = 1 &\quad \text{on } (x=1,y=0) \subset \Gamma_D,\cr
+p(x,y) = 1 &\quad \text{on } (x=1,y=1) \subset \Gamma_D,\cr
+}$$
+and the source term is
+$$
+Q(x,y) = a^2 \sin\left(ax - \frac{\pi}{2}\right) \sin\left(by - \frac{\pi}{2}\right)
++b^2 \sin\left(ax - \frac{\pi}{2}\right) \sin\left(by - \frac{\pi}{2}\right)
+$$
+
+The analytical solution of (1) is
+$$
+p(x,y) = \sin\left(ax - \frac{\pi}{2}\right)
+        \sin\left(by - \frac{\pi}{2}\right).
+$$
+Since
+$$
+\frac{\partial^2 p}{\partial x} (x,y)
+    = - a^2 \sin\left(ax - \frac{\pi}{2}\right)
+        \sin\left(by - \frac{\pi}{2}\right)
+$$
+and
+$$
+\frac{\partial^2 p}{\partial y} (x,y)
+    = - b^2 \sin\left(ax - \frac{\pi}{2}\right)
+        \sin\left(by - \frac{\pi}{2}\right)
+$$
+it yields
+$$
+\Delta p(x,y)
+    = - a^2 \sin\left(ax - \frac{\pi}{2}\right) \sin\left(by - \frac{\pi}{2}\right)
+    - b^2 \sin\left(ax - \frac{\pi}{2}\right) \sin\left(by - \frac{\pi}{2}\right)
+$$
+and
+$$
+Q = - \Delta p(x,y)
+    = a^2 \sin\left(ax - \frac{\pi}{2}\right) \sin\left(by - \frac{\pi}{2}\right)
+    + b^2 \sin\left(ax - \frac{\pi}{2}\right) \sin\left(by - \frac{\pi}{2}\right).
+$$
+
+## Input files
+
+The project file is
+[`square_1e3_poisson_sin_x_sin_y.prj`](https://github.com/ufz/ogs/tree/master/Tests/Data/Elliptic/square_1x1_GroundWaterFlow_Python/square_1e3_poisson_sin_x_sin_y.prj). It describes the
+process to be solved and the related process variable together with their
+initial, boundary conditions and source terms. The definition of the source term
+$Q$ is in a [Python
+script](https://github.com/ufz/ogs/tree/master/Tests/Data/Elliptic/square_1x1_GroundWaterFlow_Python/sinx_siny_source_term.py).
+The script for setting the source terms is referenced in the project file as
+follows:
+```
+<python_script>sin_x_sin_y_source_term.py</python_script>
+```
+In the source term descripition
+```
+<source_term>
+    <mesh>square_1x1_quad_1e3_entire_domain</mesh>
+    <type>Python</type>
+    <source_term_object>sinx_siny_source_term</source_term_object>
+</source_term>
+```
+the domain is specified by the mesh-tag. The function $Q$ is defined by the
+Python object `sinx_sinx_source_term` that is created in the last line of the
+Python script:
+```python
+import OpenGeoSys
+from math import pi, sin
+
+a = 2.0*pi
+b = 2.0*pi
+
+def solution(x, y):
+    return - sin(a*x-pi/2.0) * sin(b*y-pi/2.0)
+
+# - laplace(solution) = source term
+def laplace_solution(x, y):
+    return a*a * sin(a*x-pi/2.0) * sin(b*y-pi/2.0) + b*b * sin(a*x-pi/2.0) * sin(b*y-pi/2.0)
+
+# source term for the benchmark
+class SinXSinYSourceTerm(OpenGeoSys.SourceTerm):
+    def getFlux(self, t, coords, primary_vars):
+        x, y, z = coords
+        value = laplace_solution(x,y)
+        Jac = [ 0.0 ]
+        return (value, Jac)
+
+# instantiate source term object referenced in OpenGeoSys' prj file
+sinx_siny_source_term = SinXSinYSourceTerm()
+```
+
+## Running simulation
+
+To start the simulation (after successful compilation) run:
+```bash
+$ ogs square_1e3_poisson_sin_x_sin_y.prj
+```
+
+It will produce some output and write the computed result into the
+`square_1e3_volumetricsourceterm_pcs_0_ts_1_t_1.000000.vtu`, which can be
+directly visualized and analysed in paraview for example.
+
+The output on the console will be similar to the following on:
+```
+info: This is OpenGeoSys-6 version 6.1.0-1132-g00a6062a2.
+info: OGS started on 2018-10-10 09:22:17+0200.
+
+info: ConstantParameter: K
+info: ConstantParameter: p0
+info: ConstantParameter: pressure_edge_points
+info: Initialize processes.
+createPythonSourceTerm
+info: Solve processes.
+info: [time] Output of timestep 0 took 0.000695229 s.
+info: === Time stepping at step #1 and time 1 with step size 1
+info: [time] Assembly took 0.0100119 s.
+info: [time] Applying Dirichlet BCs took 0.000133991 s.
+info: ------------------------------------------------------------------
+info: *** Eigen solver computation
+info: -> solve with CG (precon DIAGONAL)
+info:    iteration: 81/10000
+info:    residual: 5.974447e-17
+
+info: ------------------------------------------------------------------
+info: [time] Linear solver took 0.00145817 s.
+info: [time] Iteration #1 took 0.0116439 s.
+info: [time] Solving process #0 took 0.011662 s in time step #1 
+info: [time] Time step #1 took 0.0116858 s.
+info: [time] Output of timestep 1 took 0.000671864 s.
+info: The whole computation of the time stepping took 1 steps, in which
+         the accepted steps are 1, and the rejected steps are 0.
+
+info: [time] Execution took 0.0370049 s.
+info: OGS terminated on 2018-10-10 09:22:17+020
+```
+
+## Results and evaluation
+
+### Comparison of the numerical and analytical solutions
+
+{{< img src="../square_1e3_poisson_sin_x_sin_y_sourceterm_Pressure_PythonSourceTerm.png" >}}
+The above picture shows the numerical result. The solution conforms in the edges
+to the prescribed boundary conditions.
+{{< img src="../square_1e3_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png" >}}
+Since a coarse mesh ($32 \times 32$ elements) is used for the simulation the
+difference between the numerical and the analytical solution is relatively large.
+
+#### Comparison for higher resolution mesh ($316 \times 316$ elements)
+{{< img src="../square_1e5_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png" >}}
+The difference between the numerical and the analytical solution is much smaller
+than in the coarse mesh case.
+
diff --git a/web/content/docs/benchmarks/elliptic/square_1e3_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png b/web/content/docs/benchmarks/elliptic/square_1e3_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png
new file mode 100644
index 0000000000000000000000000000000000000000..9c4e18ab60faec0c22dea3b93e51412ec116858c
--- /dev/null
+++ b/web/content/docs/benchmarks/elliptic/square_1e3_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:776901f0e2b1eac0114c682265bb95578a37fcc66616f040e3be97528c6682ac
+size 164143
diff --git a/web/content/docs/benchmarks/elliptic/square_1e3_poisson_sin_x_sin_y_sourceterm_Pressure_PythonSourceTerm.png b/web/content/docs/benchmarks/elliptic/square_1e3_poisson_sin_x_sin_y_sourceterm_Pressure_PythonSourceTerm.png
new file mode 100644
index 0000000000000000000000000000000000000000..fc2efbc0e2aed28239e5b16cab83ccfe7a1a02c3
--- /dev/null
+++ b/web/content/docs/benchmarks/elliptic/square_1e3_poisson_sin_x_sin_y_sourceterm_Pressure_PythonSourceTerm.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8f0535683ab8662903d1d8dcf38c3bf290d0925591a0ce5b2b99dfe3a0048567
+size 183103
diff --git a/web/content/docs/benchmarks/elliptic/square_1e5_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png b/web/content/docs/benchmarks/elliptic/square_1e5_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png
new file mode 100644
index 0000000000000000000000000000000000000000..dcfc2d318d1be110dc27a0a5780944685eb11c9f
--- /dev/null
+++ b/web/content/docs/benchmarks/elliptic/square_1e5_poisson_sin_x_sin_y_sourceterm_Diff_Pressure_AnalyticalSolution_PythonSourceTerm.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5bede41f6571cb9d91e6fd619c2eb08757c06f772842ad1426e4c9cc6345de8c
+size 163087