diff --git a/web/content/docs/benchmarks/elliptic/elliptic-robin.pandoc b/web/content/docs/benchmarks/elliptic/elliptic-robin.pandoc index 2606b938090df621c91db52a68e3c7789e87025f..aed9b30b3280717b2eb91d1e069a324088d15a94 100644 --- a/web/content/docs/benchmarks/elliptic/elliptic-robin.pandoc +++ b/web/content/docs/benchmarks/elliptic/elliptic-robin.pandoc @@ -2,7 +2,7 @@ date = "2017-02-15T11:46:49+01:00" title = "Robin boundary condition" project = "Elliptic/line_1_GroundWaterFlow/line_1e1_robin_left_picard.prj" -author = "Dmitri Naumov" +author = "Thomas Fischer, Dmitri Naumov" weight = 104 [menu] @@ -17,32 +17,142 @@ weight = 104 We start with simple linear homogeneous elliptic problem: $$ -\begin{equation} +\begin{equation*} k\; \Delta h = 0 \quad \text{in }\Omega -\end{equation}$$ +\end{equation*}$$ w.r.t boundary conditions $$ \eqalign{ -h(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr -k{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N, +h = g_D &\quad \text{on }\Gamma_D,\cr +k{\partial h \over \partial n} = g_N &\quad \text{on }\Gamma_N,\cr +{\partial h \over \partial n} = \alpha (h_0 - h(x)) &\quad \text{on }\Gamma_R, }$$ -where $h$ could be hydraulic head, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$. +where $h$ could be hydraulic head, pressure, or temperature and $k$ is +the diffusion tensor (hydraulic conductivity, permeability divided by dynamic +viscosity, or heat conductivity). The subscripts $D,$ $N,$ and $R$ denote the +Dirichlet-, Neumann-, and Robin-type boundary conditions, $n$ is the normal +vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N \cup +\Gamma_R$ and $\Gamma_D \cap \Gamma_N \cap \Gamma_R = \emptyset$. -## Problem specification and analytical solution +## First benchmark: Problem specification -We solve the Laplace equation on a line domain $[0\times 1]^2$ with $k = 1$ w.r.t. the specific boundary conditions: +We solve the Laplace equation on a line domain $[0, 1]$ with $k = 1$ +w.r.t. the specific boundary conditions: +$$ +\eqalign{ +{\partial h \over \partial n} = \alpha (h_0 - h(x)) &\quad \text{for } x=0,\cr +h(x) = g_D &\quad \text{for } x=1, +}$$ +see +[`line_1e1_robin_left_picard.prj`](https://github.com/ufz/ogs/tree/master/Tests/Data/Elliptic/line_1_GroundWaterFlow/line_1e1_robin_left_picard.prj). +### Analytical solution + +One particular solution is +$$ +\begin{equation*} +h(x) = A x + B. +\end{equation*} +$$ + +The normal direction is facing out of the bulk domain. The Robin-type boundary +condition in this example is set on the left side of the line domain. +Consequently, in this case the directional derivative is the negative derivative +$$ +\begin{equation*} +\left.\frac{\partial h}{\partial n}\right\rvert_{x=0} = -h'(x)|_{x=0}. +\end{equation*} +$$ +From the evaluation of the the Robin-type boundary condition it follows +$$ +\begin{equation*} +\left.\frac{\partial h}{\partial n}\right\rvert_{x=0} = -A = \alpha (h_0 - h(0)) = \alpha (h_0 - B). +\end{equation*} +$$ +Using the expression for $A$ in the Dirichlet-type boundary condition +$$ +\begin{equation*} +h(x)|_{x=1} = A + B = -\alpha (h_0 - B) + B = -\alpha h_0 + (1+\alpha) B = g_D +\end{equation*} +$$ +yields for $\alpha \not= -1$: +$$ +\begin{align*} +B &= \frac{g_D + \alpha h_0}{1 + \alpha} \quad \textrm{and}\\ +A &= -\alpha \left( h_0 - \frac{g_D + \alpha h_0}{1 + \alpha} \right) += -\alpha \left( \frac{h_0 + \alpha h_0 - g_D - \alpha h_0}{1 + \alpha} \right) += -\alpha \left( \frac{h_0 - g_D}{1 + \alpha} \right). +\end{align*} +$$ +The particular solution is +$$ +\begin{equation*} +h(x) = \frac{\alpha (g_D - h_0)}{1 + \alpha} x + \frac{g_D + \alpha h_0}{1 + \alpha}. +\end{equation*} +$$ +Using the values from the project file $\alpha = -2,$ $h_0 = 1.5$, $g_D = 2$ +results in +$$ +\begin{equation*} +h(x) = \frac{-2 (2 - 1.5)}{1 + (-2)} x + \frac{2+(-2) \times 1.5}{1 + (-2)} + = x + 1. +\end{equation*} +$$ + +### Results and evaluation + +The left figure shows the pressure along the line, in the right figure the +difference between the analytical solution and the numerical calculated solution +is plotted. + +{{< img src="../line_1e1_robin_left.png" >}} + +## Second benchmark: Problem specification and analytical solution + +We solve the Laplace equation on a line domain $[0, 1]$ with $k = 1$ +w.r.t. the specific boundary conditions: $$ \eqalign{ -h(x,y) = 1 &\quad \text{on } (x=0,y) \subset \Gamma_D,\cr -h(x,y) = 1 &\quad \text{on } (x,y=0) \subset \Gamma_D,\cr -k {\partial h(x,y) \over \partial n} = 1 &\quad \text{on } (x=1,y) \subset \Gamma_N,\cr -k {\partial h(x,y) \over \partial n} = 0 &\quad \text{on } (x,y=1) \subset \Gamma_N. +h(x) = g_D &\quad \text{for } x=0,\cr +{\partial h \over \partial n} = \alpha (h_0 - h(x)) &\quad \text{for } x=1, }$$ +see +[`line_1e1_robin_right_picard.prj`](https://github.com/ufz/ogs/tree/master/Tests/Data/Elliptic/line_1_GroundWaterFlow/line_1e1_robin_right_picard.prj). -The solution of this problem is +One particular solution is +$$ +\begin{equation*} +h(x) = A x + B. +\end{equation*} +$$ +Due to the Dirichlet boundary condition it follows: +$$ +\begin{equation*} +h(0) = g_D = B \quad \Rightarrow \quad h(x) = A x + g_D. +\end{equation*} $$ -\begin{equation} -h(x,y) = 1 + \sum_{k=1}^\infty A_k \sin\bigg(C_k y\bigg) \sinh\bigg(C_k x\bigg), -\end{equation} +From the Robin-type boundary condition we get $$ +\begin{equation*} +h'(x)|_{x=1} = A = \alpha \left(h_0 - h(x)|_{x=1} \right) + = \alpha \left.\left(h_0 - (Ax+g_D)\right)\right\rvert_{x=1} + = \alpha (h_0 - g_D) - \alpha A. +\end{equation*} +$$ +$$ +\begin{equation*} +\Rightarrow A = \frac{\alpha (h_0 - g_D)}{1+\alpha} +\end{equation*} +$$ +$$ +\begin{equation*} +h(x) = \frac{\alpha (h_0 - g_D)}{1+\alpha} x + g_D. +\end{equation*} +$$ +The values from the project file are: $\alpha = -2,$ $h_0 = 1.5$, $g_D = 1$ yielding +$$ +\begin{equation*} +h(x) = x + 1. +\end{equation*} +$$ + diff --git a/web/content/docs/benchmarks/elliptic/line_1e1_robin_left.png b/web/content/docs/benchmarks/elliptic/line_1e1_robin_left.png new file mode 100644 index 0000000000000000000000000000000000000000..401e19a3ddca8e0b34b7e95596839b87f09f926e --- /dev/null +++ b/web/content/docs/benchmarks/elliptic/line_1e1_robin_left.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e0ea790fa068602c72399c756fa313b8431bab7cbad8c333a950a30794637aa +size 36677