From 727a39823c4a6ed8e8b2686fa69f3a867d78b818 Mon Sep 17 00:00:00 2001 From: Thomas Fischer <thomas.fischer@ufz.de> Date: Thu, 28 Jul 2016 16:38:15 +0200 Subject: [PATCH] [MaL] Impl. of isPointInTriangleXY(). --- MathLib/GeometricBasics.cpp | 25 +++++++++++++++++++++++++ MathLib/GeometricBasics.h | 7 +++++++ 2 files changed, 32 insertions(+) diff --git a/MathLib/GeometricBasics.cpp b/MathLib/GeometricBasics.cpp index a90c5bf86f0..255564779e7 100644 --- a/MathLib/GeometricBasics.cpp +++ b/MathLib/GeometricBasics.cpp @@ -169,6 +169,31 @@ bool barycentricPointInTriangle(MathLib::Point3d const& p, return true; } +bool isPointInTriangleXY(MathLib::Point3d const& p, + MathLib::Point3d const& a, + MathLib::Point3d const& b, + MathLib::Point3d const& c) +{ + // criterion: p-a = u0 * (b-a) + u1 * (c-a); 0 <= u0, u1 <= 1, u0+u1 <= 1 + MathLib::DenseMatrix<double> mat(2, 2); + mat(0, 0) = b[0] - a[0]; + mat(0, 1) = c[0] - a[0]; + mat(1, 0) = b[1] - a[1]; + mat(1, 1) = c[1] - a[1]; + double y[2] = {p[0] - a[0], p[1] - a[1]}; + + MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> gauss; + gauss.solve(mat, y, true); + + // check if u0 and u1 fulfills the condition + if (0 <= y[0] && y[0] <= 1 && 0 <= y[1] && y[1] <= 1 && y[0] + y[1] <= 1) + { + return true; + } + return false; + +} + bool dividedByPlane(const MathLib::Point3d& a, const MathLib::Point3d& b, const MathLib::Point3d& c, const MathLib::Point3d& d) { diff --git a/MathLib/GeometricBasics.h b/MathLib/GeometricBasics.h index 80a5783e559..e87d8b553aa 100644 --- a/MathLib/GeometricBasics.h +++ b/MathLib/GeometricBasics.h @@ -154,6 +154,13 @@ bool barycentricPointInTriangle( double eps_pnt_out_of_plane = std::numeric_limits<float>::epsilon(), double eps_pnt_out_of_tri = std::numeric_limits<float>::epsilon()); +/// Checks if the point \f$p'\f$ is in the triangle defined by the points +/// \f$a', b', c'\f$, where the \f$p', a', b', c' \f$ are the orthogonal +/// projections to the \f$x\f$-\f$y\f$ plane of the points \f$p, a, b, c\f$, +/// respectively. +bool isPointInTriangleXY(MathLib::Point3d const& p, MathLib::Point3d const& a, +MathLib::Point3d const& b, MathLib::Point3d const& c); + /** * Checks if a and b can be placed on a plane such that c and d lie on different * sides of said plane. (In 2D space this checks if c and d are on different -- GitLab