From 84bb557686894658aa6b15297e58997c6f3359c5 Mon Sep 17 00:00:00 2001 From: Dmitri Naumov <github@naumov.de> Date: Mon, 22 Feb 2021 18:04:40 +0100 Subject: [PATCH] [T/RM] Add liakopoulos test using assemble(). Using central differences for Jacobian computation. Still the HydraulicFlow and Nodal forces are not correct and don't include the 'M \dot{x} + K x' part. --- ProcessLib/RichardsMechanics/Tests.cmake | 1 + .../LiakopoulosHM/liakopoulos_QN.prj | 504 ++++++++++++++++++ .../LiakopoulosHM/liakopoulos_QN_t_0.06.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_0.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_1100.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_120.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_1200.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_2400.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_300.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_4800.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_60.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_600.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_6000.vtu | 44 ++ .../liakopoulos_QN_t_6606.06.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_6670.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_7200.vtu | 44 ++ .../LiakopoulosHM/liakopoulos_QN_t_9.06.vtu | 44 ++ 17 files changed, 1165 insertions(+) create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN.prj create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.06.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1100.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_120.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1200.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_2400.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_300.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_4800.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_60.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_600.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6000.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6606.06.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6670.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_7200.vtu create mode 100644 Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_9.06.vtu diff --git a/ProcessLib/RichardsMechanics/Tests.cmake b/ProcessLib/RichardsMechanics/Tests.cmake index 62f212eb23a..71cfbb056d5 100644 --- a/ProcessLib/RichardsMechanics/Tests.cmake +++ b/ProcessLib/RichardsMechanics/Tests.cmake @@ -20,6 +20,7 @@ if (NOT OGS_USE_MPI) OgsTest(PROJECTFILE RichardsMechanics/alternative_mass_balance_anzInterval_10.prj) OgsTest(PROJECTFILE RichardsMechanics/rotated_consolidation.prj) OgsTest(PROJECTFILE RichardsMechanics/LiakopoulosHM/liakopoulos.prj RUNTIME 17) + OgsTest(PROJECTFILE RichardsMechanics/LiakopoulosHM/liakopoulos_QN.prj RUNTIME 50) endif() diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN.prj b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN.prj new file mode 100644 index 00000000000..032f1e95d28 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN.prj @@ -0,0 +1,504 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProject> + <meshes> + <mesh axially_symmetric="true">liakopoulos.vtu</mesh> + <mesh axially_symmetric="true">liakopoulos_left.vtu</mesh> + <mesh axially_symmetric="true">liakopoulos_right.vtu</mesh> + <mesh axially_symmetric="true">liakopoulos_top.vtu</mesh> + <mesh axially_symmetric="true">liakopoulos_bottom.vtu</mesh> + </meshes> + <processes> + <process> + <name>RM</name> + <type>RICHARDS_MECHANICS</type> + <integration_order>3</integration_order> + <jacobian_assembler> + <!-- + <type>CompareJacobians</type> + <jacobian_assembler> + <type>Analytical</type> + </jacobian_assembler> + <reference_jacobian_assembler> + <type>CentralDifferences</type> + <component_magnitudes>1</component_magnitudes> + <relative_epsilons>1e-8</relative_epsilons> + </reference_jacobian_assembler> + <abs_tol>1e-5</abs_tol> + <rel_tol>1e-7</rel_tol> + <fail_on_error>false</fail_on_error> + <log_file>/tmp/test.py</log_file> + --> + <type>CentralDifferences</type> + <component_magnitudes>1</component_magnitudes> + <relative_epsilons>1e-8</relative_epsilons> + </jacobian_assembler> + <dimension>2</dimension> + <mass_lumping>true</mass_lumping> + <constitutive_relation> + <type>LinearElasticIsotropic</type> + <youngs_modulus>E</youngs_modulus> + <poissons_ratio>nu</poissons_ratio> + </constitutive_relation> + <process_variables> + <displacement>displacement</displacement> + <pressure>pressure</pressure> + </process_variables> + <secondary_variables> + <secondary_variable internal_name="sigma" output_name="sigma"/> + <secondary_variable internal_name="epsilon" output_name="epsilon"/> + <secondary_variable internal_name="velocity" output_name="velocity"/> + <secondary_variable internal_name="saturation" output_name="saturation"/> + </secondary_variables> + <specific_body_force>0 -9.81</specific_body_force> + <initial_stress>Initial_stress</initial_stress> + </process> + </processes> + <media> + <medium> + <phases> + <phase> + <type>AqueousLiquid</type> + <properties> + <property> + <name>viscosity</name> + <type>Constant</type> + <value>1e-3</value> + </property> + <property> + <name>density</name> + <type>Linear</type> + <reference_value>1e3</reference_value> + <independent_variable> + <variable_name>phase_pressure</variable_name> + <reference_condition>0</reference_condition> + <slope>5e-10</slope> + </independent_variable> + </property> + </properties> + </phase> + <phase> + <type>Solid</type> + <properties> + <property> + <name>density</name> + <type>Constant</type> + <value>2e3</value> + </property> + <property> + <name>bulk_modulus</name> + <type>Constant</type> + <value>1e12</value> + </property> + <property> + <name>biot_coefficient</name> + <type>Constant</type> + <value>1</value> + </property> + <property> + <name>porosity</name> + <type>Constant</type> + <value>0.2975</value> + </property> + <property> + <name>permeability</name> + <type>Constant</type> + <value>4.5e-13</value> + </property> + </properties> + </phase> + </phases> + <properties> + <property> + <name>saturation</name> + <type>SaturationLiakopoulos</type> + </property> + <property> + <name>relative_permeability</name> + <type>Curve</type> + <independent_variable>liquid_saturation</independent_variable> + <curve>k_rel</curve> + <!--<type>RelPermLiakopoulos</type>--> + </property> + <property> + <name>bishops_effective_stress</name> + <type>BishopsPowerLaw</type> + <exponent>1</exponent> + </property> + <property> + <name>reference_temperature</name> + <type>Constant</type> + <value>293.15</value> + </property> + </properties> + </medium> + </media> + <time_loop> + <processes> + <process ref="RM"> + <nonlinear_solver>basic_newton</nonlinear_solver> + <compensate_non_equilibrium_initial_residuum>false + </compensate_non_equilibrium_initial_residuum> + <convergence_criterion> + <type>PerComponentDeltaX</type> + <norm_type>NORM2</norm_type> + <abstols>1e-6 1e-10 1e-10</abstols> + <!--Toleranzen pressure u_x u_y--> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial> 0.0 </t_initial> + <t_end>7200</t_end> + <timesteps> + <pair> + <repeat>10</repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat>9</repeat> + <delta_t>10</delta_t> + </pair> + <pair> + <repeat>11</repeat> + <delta_t>100</delta_t> + </pair> + <pair> + <repeat>3</repeat> + <delta_t>200</delta_t> + </pair> + <pair> + <repeat>3</repeat> + <delta_t>400</delta_t> + </pair> + <pair> + <repeat>7</repeat> + <delta_t>600</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>{:meshname}_QN</prefix> + <suffix>_t_{:gtime}</suffix> + <timesteps> + <pair> + <repeat>500</repeat> + <each_steps>10</each_steps> + </pair> + </timesteps> + <variables> + <variable>displacement</variable> + <variable>pressure</variable> + <variable>sigma</variable> + <variable>epsilon</variable> + <variable>velocity</variable> + <variable>saturation</variable> + </variables> + <fixed_output_times> + 0.06 + 60. + 120. + 300.0 + 600.0 + 1200.0 + 2400.0 + 4800.0 + 6000.0 + 7200.0 + </fixed_output_times> + </output> + </time_loop> + <parameters> + <parameter> + <mesh>liakopoulos</mesh> + <name>Initial_stress</name> + <type>Function</type> + <expression>0</expression> + <expression>-((1-0.2975)*2e3+0.2975*1e3)*9.81*(1-y) + </expression> + <expression>0</expression> + <expression>0</expression> + </parameter> + <!-- Mechanics --> + <parameter> + <name>E</name> + <type>Constant</type> + <value>1.3e6</value> + </parameter> + <parameter> + <name>nu</name> + <type>Constant</type> + <value>0.4</value> + </parameter> + <!-- Model parameters --> + <parameter> + <name>displacement_ic</name> + <type>Constant</type> + <values>0 0</values> + </parameter> + <parameter> + <name>pressure_ic</name> + <type>Constant</type> + <value>0.0</value> + </parameter> + <parameter> + <name>pressure_bc</name> + <type>Constant</type> + <value>0.0</value> + </parameter> + <parameter> + <name>dirichlet</name> + <type>Constant</type> + <value>0</value> + </parameter> + </parameters> + <curves> + <curve> + <name>k_rel</name> + <coords> + 0.2 + 0.528 + 0.536 + 0.544 + 0.552 + 0.56 + 0.568 + 0.576 + 0.584 + 0.592 + 0.6 + 0.608 + 0.616 + 0.624 + 0.632 + 0.64 + 0.648 + 0.656 + 0.664 + 0.672 + 0.68 + 0.688 + 0.696 + 0.704 + 0.712 + 0.72 + 0.728 + 0.736 + 0.744 + 0.752 + 0.76 + 0.768 + 0.776 + 0.784 + 0.792 + 0.8 + 0.808 + 0.816 + 0.824 + 0.832 + 0.84 + 0.848 + 0.856 + 0.864 + 0.872 + 0.88 + 0.888 + 0.896 + 0.904 + 0.912 + 0.92 + 0.928000000000001 + 0.936000000000001 + 0.944000000000001 + 0.952000000000001 + 0.960000000000001 + 0.968000000000001 + 0.976000000000001 + 0.984000000000001 + 0.992000000000001 + 1 + </coords> + <values> + 0.0 + 0.0 + 0.0 + 0.003125124673949 + 0.020823885169721 + 0.038518821680155 + 0.056209865519575 + 0.073896945473639 + 0.091579987656767 + 0.109258915358633 + 0.126933648878653 + 0.144604105347267 + 0.162270198532675 + 0.179931838631514 + 0.197588932041764 + 0.215241381115967 + 0.232889083892571 + 0.250531933802915 + 0.268169819351031 + 0.285802623763035 + 0.303430224602408 + 0.3210524933469 + 0.338669294922165 + 0.356280487186422 + 0.373885920359564 + 0.391485436388984 + 0.409078868243118 + 0.426666039122081 + 0.444246761572863 + 0.461820836494194 + 0.479388052013308 + 0.496948182213303 + 0.514500985685365 + 0.532046203874627 + 0.549583559181513 + 0.56711275277159 + 0.584633462035706 + 0.602145337627643 + 0.619647999987513 + 0.637141035234136 + 0.654623990276238 + 0.672096366947284 + 0.689557614907064 + 0.707007122967474 + 0.724444208378889 + 0.741868103439419 + 0.759277938533726 + 0.776672720324285 + 0.79405130322659 + 0.811412351361665 + 0.828754286640385 + 0.846075216009299 + 0.863372826201009 + 0.880644225491632 + 0.897885694137663 + 0.915092266056643 + 0.932256968686883 + 0.949369276790233 + 0.966411379494378 + 0.983345955951454 + 1 + </values> + </curve> + </curves> + <process_variables> + <process_variable> + <name>pressure</name> + <components>1</components> + <order>1</order> + <initial_condition>pressure_ic</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>liakopoulos_bottom</mesh> + <type>Dirichlet</type> + <parameter>pressure_bc</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <process_variable> + <name>displacement</name> + <components>2</components> + <order>2</order> + <initial_condition>displacement_ic</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>liakopoulos_left</mesh> + <type>Dirichlet</type> + <component>0</component> + <parameter>dirichlet</parameter> + </boundary_condition> + <boundary_condition> + <mesh>liakopoulos_right</mesh> + <type>Dirichlet</type> + <component>0</component> + <parameter>dirichlet</parameter> + </boundary_condition> + <boundary_condition> + <mesh>liakopoulos_bottom</mesh> + <type>Dirichlet</type> + <component>1</component> + <parameter>dirichlet</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_newton</name> + <type>Newton</type> + <max_iter>50</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <eigen> + <solver_type>SparseLU</solver_type> + <scaling>true</scaling> + </eigen> + </linear_solver> + </linear_solvers> + <test_definition> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>HydraulicFlow</field> + <absolute_tolerance>2e-14</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>NodalForces</field> + <absolute_tolerance>8e-9</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>displacement</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>epsilon</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>pressure</field> + <absolute_tolerance>5e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>pressure_interpolated</field> + <absolute_tolerance>5e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>saturation</field> + <absolute_tolerance>1e-14</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>sigma</field> + <absolute_tolerance>2e-9</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>liakopoulos_QN_t_.*.vtu</regex> + <field>velocity</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + </test_definition> +</OpenGeoSysProject> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.06.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.06.vtu new file mode 100644 index 00000000000..c8ef83f5b95 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.06.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="6.9589272995e-16" RangeMax="2.0603148223e-05" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="13460" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.99999963245" RangeMax="1" offset="13556" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="117.63620142" RangeMax="16654.467748" offset="13696" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="25896" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="25988" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2457071795e-05" RangeMax="9.2457042264e-05" offset="26084" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.6803735626e-15" RangeMax="349.79592151" offset="26500" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="2.6372996116e-07" offset="29592" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="5.6590454026e-16" RangeMax="2.3371862063e-05" offset="32068" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-65.107354549" RangeMax="3.3286145466" offset="38688" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-65.107354549" RangeMax="3.3286145466" offset="39460" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.99999951077" RangeMax="1" offset="41092" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="89.481466244" RangeMax="16701.524989" offset="41280" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="3.1826491712e-06" RangeMax="4.4774807752e-06" offset="47980" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="50572" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.99999985002" RangeMax="1" offset="50644" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="241.42139931" RangeMax="16492.755932" offset="50732" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="52428" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="53644" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="54376" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="54548" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAXyYAAAAAAAA=eF5NmHdcz98Xx9/tobRFae+pvd63SZuUdpEUEu0SRfWRrIQGaYiQllBW430jMtIgKpE+KUU77aL1u7x/vtW/r8fz9bnvc84959ymw5kr1n82BOvHBZO/il3Q//Rs5zaGM9xw44mXZl0PRKF0WAGb4W+68uPwuHkn0scVrpS8O68Bw+5x3tTdrw5/kzwM6L1R8UcvVbdluqdvAnOja56eWRSGSvvLfM0yTUFs2IB733OKvnz8XQYL6XVwXi4g4rK0IuRZpDnQDOjKzS/3Gg0gvZRN8sCnHhzO7jlqECKgAxVJHiYIXOkeRHowHrCfo8oCVjvXCQQ3SMO2NL/wRUtrYFT6WumMiL1+5LaFsvhqEVjqcFV7Pl4H0px2e+MbQ1tum+j+4TrSK6cdk4OyjOHBhCIhygsj+IXkoad/4e4ypEttTGgINNkKzWyM2CTr1WFDtZDNYeEtQDRP/EGUvmWlUFG52oFxUUgzftGz5bQ2HM2IGFI50FjmOR8i54z04c2VEx/rTOAFn9931Ia14VuSh503siT5kb6Pf++5M3dsYXCK6IWaHk0o5CInV1i+BVw0HL94ckKv8nNW2OnKzWJwTwb72J6rBrBq2qQGbn1bJqqy4LIB6bFNJeH0Khuh3DiX46tiE7iG5KF4NZS+Na5X+cTw5ks/RjvoZUaZm/qyCe4e0qBvd7AB2Olf6897rqpMvbChgyNPDGr98rgSd3QjpJQml/K/qSvDDG7Oxu5YVcnnlvtL9eJGuPnh07tH2a2gN8lDjHZcrNNlVaXwvs6FrTvtYFkI4yqufVshs+jZIbm1WwAWfory8DKzfohu0K2nI6KQe1XcpV+9xhBLTi3Ke0Sji2V4ex9OZ9bfefX61xevTaDVG1H3ziOb/vEQ84gJV7rCrK94eWJgqMAW3mmaavfxtoVrc8ev3QIWoJPoa+QfWgCLO6qNuLXWw9ct3z8q12+CbbmN/Xb69LqYv9pHvdEFkBgloSJvZQg5mwnBcBNLyE3y0MhtDjeaXgDVXKv6fKqtoZZ2z/y3UnsopOhmL7ZrI8A4Txifs/sOeC1ztW6dXwONze4U3LS2gJ//+VvgdSzu34HnE7rrtfS68K7LU3/rHBsoSPIQm/3JZ73vO9CaUv49pWYGz6fHfl9wdYZXZFO+hl/FAaZimRXs2QLsOPRPjXBzwvTyTtVkenPonOqb3PZMSBezDS64GdECpD+lcc00qcIodssHerlGMIvkITb6grrGowX4+3kdU7tpCJ9S9SKP+9nD7KI6hiuOIwQmnyV7weUzMPJgyorJe4YbH7qy30fPDrr881ch5ET3fgaid2UG7lzsxnf5Lj6PbdCHonf+8jhWTW8/boD45yenK3eO4TQtZ+609pvDoO6f1xqP60NMdOxBkS0VaJ5gP7ZXiQskx9K47452hNv++XMyFF7ZRgWM9vioMbs6eKzpnsEarQEjSB5giZtqGkSowPnGOtFLvUagq8sxMdVSFtbvULZIrEV1kjjsciisA7yUv6zi+4gXZEIp2yh/d1j9uj0f8tOXY9n89F5uHSBa1uHiwIwWmLXqT89z2wYbSR5gnmeVLDd1AIGNxgH6uzYBvb105d3FmlD59+lbI1QcUnCBcU+dDvAx0fpchzYnyImtFc/NdoFsTd32C9xYOdbove2WXAew3MU/PTKvCnavrtT0ZLf9xwMKNqPyQ7gDWHV8sfgxaAjojohnsE4qwgqdRxVQWgPlx+ys1TwV1A4vNeWFMYFXTa7pDIbOcM1f/9EyDCvO7pulAlmNR/d+0MmDDXL0g1edbGApyQOs2Evj+C8q8NbSfGTHpw1mTAW+0XbKwYTPwUJHCVkU/9it/TNUsNbkifKjN/P4x7xoBxDkAp/bq7q/aeYpx7CzeTuGqYBtv5hv/7AIGO266Xkk0R6eJ3kU/zJD7n4qgNctq+87KAJRvcCUI/c0oAtLMn3PPQFAEfl9KWicCiIPDJorcP4kJvpYZwLDneGTf/62BmXXJqiAL8TswIwuF9ShVjKVetjDIJKH2NdcAY45KigMv+DfnyQMX/owm8Qza8OQMRqu4ke6AMNC2meGUHw+OuCjQ+ywnvt35/yEM8xceMOs/JS9HEscq+lC338uZZAjPE0Fbu4E09Y5DjCc5CFme2lqFXsHUEnwW2sTqg/zT+usXjQwhD80RjVGHFB92YpHuqPv663v0xPi5oIvcoRe6MU7QEEeo2Kd8EEdrNjhygKKX94WNd/FETUY5P5O+W2GGfxC8hCr2j90GfkvqLc8q6g3gtviRczfBWlC3LV+751KLUCh8ekuH6WCotsqV7YcZoWLjT+KuE46Qru//nM6mMqtHQ0ov+vjPjVUuSvBTsIl4pStFdQieYjJvGb4zNQBkgK2CZSy6cHYE6w+iopG8FRUfpqftArK/+3NaxEfX3nhuWc9LdQ6qXSZp9gRRv53/inhLBSfQb/Nb+I+S0K5k62vUr02wwSShxhFQkSAtgPIH/xdPBujBs8wHVQyn98I860m+7rClAFmdOdyB8pf4pOgifvlNJBdjGNPZKgT3F9UphJzsr0Mo7zcaTZCBZMOTiXUfAn4zdKloZ+6DRaSPMSKTYX3MXcAXv2+bXnBqnAw1K50j6Q1rHDxya/MVQOUTq9D4ci/0doFlDxigJyraTUUF+2h21//oTKs6vrz0DEqKDgQNSPHKwsjhCx823Y6/OMhJdqCXoGjA6z3Gn8XukMTSsulbvJaZQ+FExy2s/Joofpd67wa+XN/Njxxr4QFCp+t8zk/Zwe1jsXv/rp7qgzrjJK6PkkFHrE5+uExivDUtlX7jzg4QVGSh5in9cAwXweQPDW/2chSF+pTHLhNZlygaqoS5w495M8pFLkH1U9U39bRsK8sUCNC0cP5gB1k9TzEYLV2XAfjvDHriuK/NdF4s959RXghdEDq7WkHqEbyEMv+UCCKziebon3XOlwXnnJ6odm21hV+ODkWo+aoDrDM3uM+6H6eP14f/ozCCLUbjx81LnOAypTJEi/RPh3MduIzD+ofD/NyqF5TspA6XJS+yOEIm0keYnGFXsno+1T46+5aSWlB/aipRds2Jxh86NFPpiBUP0b3z/mi+F4TtlxgF6eDHUtFZ6XbnSH27y97E9GwSAVrnjIFntWRgsPRpotyAY4wlOQhFhQrSD+N/DM97lk2q8EPs1j58xAHeMCivut4gSLAsg1EWtH9WXLeouF2F4OJ18GZD0+d4d3HyrGx677pYJ0TtZvR96tE/opyoYjDwF3H1467OEI/kkf9saUqH+VX5F2g9rn9KvD9mVQefmFH2Hr1tlrALwmAffm8dRL9/uxX6T2DhjNEbsqiBTvm+H9/FP/iLRn70P2rdZpa5ftmHWyJ/CY0/cgJNpE8xNxHlKtZO8CDSNtrB7qkYdj0BY+ey27w4AAfU0nyGtR/DlK4kH+fyN7qTWYDBF3zhU5BbBu88e/8QXm+cSg/e0N+aptIskPe7TxzDR+c//EQ62TMojJ0AJu7sdcivqyDJ109jp14vxOyGR5oeio7imOeKnYP0flEVVen8b17TjxYHZcwcMx2Of7F/YHF6H6b1QXonmjvIcL942YleRwhM8kTmOihg7/Q/eNk8D95I3aceL1/wnlfwE4ozb2laZWEFKToVXHcRv5617AAp4xZPDfoOHe1x7Zl/xo9zzeoPkZ1GwKuWwqCX7z0rhnlDlCL5AFl+5nLGr1UMCLFft1JSxZUHB9NjuzYDsVfHW+8jOoJE7V9ex35W8cee23+mgXM0eU1dj21h7yGN6ylRGbR/T1r+w3pudK7n/teVgQeFvljjj32UIDkUX1klgd+pQLj6dA3FA9dIHaDl7HpgyuscXZY/RoHqL5mt6TRd4B833dRRwM4Qa8scUHhiv3y+UXnjf1Q/VowXs2N1VUDqXU64+p99v94gFEu8b/toQJsXc+aBwpGIN6n9tDZr2h+9+oWqr0xgRSZkBYd1P/yJjaU1FP5gKCp39Clbyvi7/Junys6/8/uEx9vGemA4Y6bx9xQ/leTPMDsn1OZvlPBju87jYbiTAFH+6huwBtnqH3DsuFYmDnK/+D2z0tofkQl9qzfIgjS6lP2yd7avOyfeOOC2U8quPTMn/GNuQFowPXneU1soQ7Jo/7y86Yx8i8v+eIr1WEFklo29va0O8Gc81phhwORf3G3rB3WAXKrWoSNzAXBqgrWYzdTbZb9KbdPnUR8zeLgEQtjA8CQtPEoE68zzCN5gIlu/HK7mwoumHEd9vxkBTx6LxqKiLrBmaTXR9rum0CsxOgEDfIP6ZM9VVvNB1jVe8BlY9Nlf0+Zch7U/1bXJwk1SOiA1yFykzGnHOEvkgeUn9QuvkEq6L5bVG9/wBR46YbapZa4wwT5EsaIIbSfZmd1laD4GHIe/elgxAmYXzVTKK91l/1Vbg5ko/lvn6791I5RDRTfH+RICXeASSSP6udwXwzaP/YpJ5qcnzcEwt4qTPlPdkCWcgP8g78m2g/DdJ6i/hNO21e9c4wZMH2dLour14KN+7ukx5+z6mKi7rv0UP/JKNdRlC9UAHuCTyQORDhCWpJH9TN6aATdL9lyQn3xrA4YxGhaIpo9oPAtgyVCXgxiJ2a7Y1B/8Pr8M37n3AR+55Mc7112zRXxUbIxQfcrJPN3V4rcGpDQIpu1jcsR8pI8oPzizNVH55fPvjIqUygB7h87dHkpxANmb8VGXdi40H569ILRFBXY5nR2Y5+6ibaoI2sOh2is6M9LelZIzz88K+tKywj5Ji823RhzgNdJHt0f1eYEpNPuPsrmeooHHnUkjvu7eUC90jEsvk8IvS+2wm5Uf1etxmwY9o0R1MPjU1IXZJf9G6NjBFH89JQ1HcxseKDvlST2ehYbqEvyEFM54beI9Dp650JTMTEYqZWSNEJ1hx6rWQa3lqH+KU9jM4/uZ3R7b+/qkAHiQ2HDcWxEZdl/X91+FsT7MdDdanJghzkw37zhtQ3cTvIQi/AreYbO/5CFsSaJUQCueR/q6xDiDn/VGhUqcHKg8z/4yoviWyUxrMrD+40oyKB+FojRgONPrxZfmaCi+bvWaQblZ+/dzOsC7PTw89u9fZJzNpCm7i+P9jf76bg/+weLB55WywXNa26H7XnmBk+/meobvDmJY8XJoylI56/vZ/ZgrCGqh0pk7YdUV/Tnebu7KH+xQOXA8VsDBI3DpjMfbKz+8QQ22hktgOqnhZansDRnhlCaLHIz8HKF9lV7vrFY80MKc00YQN+Xk+2k/mn9IM7D73Ki0Udt2f+TVfOuP/vJPvynIfdqcBHIr6G/bgm3kDzAaC2WPqH8rb/Y2JdzVwBoBR9ITLzkAv0i4nae+ioHMaOF2R70/dJtoZM3hRbxk9HOI/V9K/w50534kD5Taqt8+IEomDU0lZuasoCRJI/6z72Yyyh/hya5O/CbSiBB3+iMSa0zZK194NWhhXxUmPc+QvOJ7yh4HqHOACbiRz2FDFbkN6h/uhvFj7bfpAkelwEcusV1S6tNITPJI38lD7sBKnB3ncvYQtUAjdsaXGNineDXDM8NQ0AfUubGzUrRfqOqtdVWkp4LnEvM7nqXLb/sX/XgMSc636TAC4WYr2pAfbtxUZuPCewkeUBhbp3P70TvG42K67+fGIFz971TX6c6wLZHjItHxTZBrJEqU476m7My5enZAH7wMeLis1OdgvAM87795jOM5RhndLg+yt/uZz+GRRZ0QV6K15m2NQC2kzzAOimZWCsVBBDTB204zEEBNnz3QKMdzPl2xqn+IvK3/TJKv4B0Zb8r1ZP8gDfi1DrJthX3KxFwPUPzVXUkR38hSQ/EKCxZ9vhZw5skj/Yzu5L9SNfex1+7O8UcmAR9av/i5gAvUS75MV81glj+8YZ85L+73/xCujMP8FMKCxnKoAf/+Z/2DfiE+m9PpE/jSKgmiOm08WWTtYSpJA8oL2kvTKHvS4mKvjrHvBG8th78JvLREa7WN2E4Y4P6cKdC4Wa0/z22MKf/GsYOkqKZ3q57uGHZn5Ja9xPV30Umee9ORxVwE74q4K0yh2wkj/rXQz8Kqq8OqbrvkgsABPpe+tWE9j9FP5OZoIOoj1URjjdQfXx4c3F4YyMTiI7lEgkrVgU1D/arGapy62KdSnoHUX4vXs0bP+YrD2T02z6t1TH/x6P5lb0g3UYFygxTYRGB2oBI3HL9sJkztLtiNzYUKgMpC0Z5eeh+vRWF1wI3z+E+0zfY4T255fP3bfj9p/535Rh9ZjYXBsnFizmC2zdBE5IH2JKwoncXFfCIWn6PpMoDd6O9vY4a6P1KiWj8OsGE6v/VbBHqX22lekk7ur7g1yNHq0xeCSz7d6pWPP5NBU7KNRraQ4v4tyUnzt/SJnAtyQOsKsvtWh8VSLZmx64KWgUeqSn/Nh60gU5G6aWwtJXAEgMpzWj/sPcVpPfIvI0Hsg85mh4RWvZXcX9Bj94X+QLZOhevvsUZ222k9e5rQAeSx7FExp01aD6b31l/WFbhCy5JZ90jvM4CqgSzCjG6PyYo/EeD6VD/2tb1my6CIR6vjb4Yz69Eu6I+DzjOovudKsfisbu9CM/TZmhwzVaDGiSPUzoFEino/FoNZ/QfZZbjBr5ZPvSaxpDCIbstlPcNjlFOe6mh/NqN4fQbVbOIzdyaYW/TpOH4AP2C27f7Ohh29Mcg8u84kcnipVJF/MgIHkzu2gATSZ7AjDY800H1v+3cvfuZFfXEoYdvWyXoNeC5FgE63+HvqD+f3G6O8jeZYR737UQ5Yf4s0+GhktKK/aHP+zXqn7pQMafLpp1okWrCOLeowPMkT2CUg6E/UP0X1Ny0lxLuJ34ObJirC1CGY/VTeZ8LMUAp/C03gOrHQtywNW5vEyFpbWWetHPDsv/hwh4/lP9jl15SI+OmCA8DY1GGA8pwmuQhpngy7zz6/dUlVJNCfjq4gSHetLxDBp7rkeRwbVuF3u8BM3/mc7/y45M1mp1E6xO5F5xWK/pzp98eblQ/MwuGBVd/08DDO5TPZRlsgEkkj95HqV+0kD4W+EGlrpcDThfEdrjaSUKDH31DPDRsaH9pYpFG9bPO17Jj2+ZOYsHCvX/rrhX+nmoYRPl3bGC8e5WHFmYM0RSOVUhDWZJH80PwUiqKD1u2/jZeVk5YcqJt9Qjneihh+LCzyIkGUPaxNtkjXirr4EKccjPBS7/Wm8Zq5f6z3vgW+n7XXC5RG69pYknFT2aiUQquJ3mIbS3bgqPzHR/3okS108F709r49gQWyO25aMdfMoBjtsZXjiF+d/auX4lcT4mHBeaPAzh1lv1tGWPPo/xz7VaoqdTrIi6X/nD2uyEJB3b+5QksyJGxE/WP+hT5YMuUEUKYp/sAj38f7lFhenmxG/l3FvEbo/y1rA3le7/5KeGa4WzOl73Cf7TTfB/6Pn0ju4B09y7CVXjiRqSzMtQkeQLjxJ23of2VT2iyPK1hhNhyfFPr99XMsABkyYpfoEH9bz+vPzrfUcdnliComZAhWivvja/YH9K0lP7EbzKJHVe9PU3cv8rp/nqnKswleYgNykrNI38en5YSOSF62Hp0zb0iZUWYz+p7e9MelN9OGa50VD9e49wyN052Ep+YlrAoS5llf6MEbgPk32Mc8dXKgRY+2vGk2HRCHT4gedR/10zc+rPfd6dmhG/khGs2WRltStCFAYaJGa6rWJH/k0xRlB+r5KHyW7YdhC8P78u5R5Ir3hfa8Q/Q/R0pORH37B0GU7cIbnjopviPR/VTtmCI5rvV+wa7gBZ2iMlS+T0qtKCASfLj/tghHBswVWdA5zt527Ln2+UqYhb7nu5Ls2K/zb9/mAH1t1dn3S/6+3wj8u7U3uK8Lgvnjf/yBMVRZuMS6j9KTh+0gx1GiXoV47tZD8Uht/756DcpMyg/DbX9qP+cbjC9fSK4Dp9L06ujdAAY+bH27Z6H3TpYlZKPM/JXLN7ZLx80gkdci+R84SABMZLHsaDU00/+zN/pafXfNHP44bUuT+wBD3hdP/KcsRjd79FNKY9Q/fTR9+Nn/ZrwrVkKeb+8DVfUZ/l0Kqq/afb+JLmzU3hu5qU+uko5WEfy6P5f45RC+ZMePiCfJkQH1HeOT+UUrwVBffnng7UWCErOofY/9f2Gpop2J/YeH0gOl91ZrLeifiJfnkXfdy2M/rTtl3H8GbFlxwlaeRhG8jh2/+duTdQf9MKK8jYRGAhwtrverDKB22iHXW5h+0VgKoVS+9DvOywopeyRbcCHo7iDT8Vrw4oE9y8sLiVlWCN+kYJ0yy8i0YcURvFbr/I8E7yV4GaSx7Fsw3JTVJ+p058tv5XM468381WbbuWDX53MTH4moPtRHDLCj+LzfbhO5EjvE/yKfUpvio/2ivqcOkWLzm9QsJ7BR6ILtwupz9dxUIOdJI/mB7DdgeLn12yY2+E7ggs1F6YdCBCDnyw+Wr9kRPn51WjojPpDoypb666GWuJY0pf0nPsr+o9ROz8L0s0c058JVQwT3VtDKz1bVf/xBMW+SFgBxff129KTwZ6/CaHA+pMDPeIwvcNnPU0hO3pfbEj6k7+c1Jit2Ru7iDCZgESHrhX+KtV5HCg+4808N/qk6CDYHbNG1kAdviB5iImuH55F8R/pkkgLW0D368qrhTxxWejt5kef6cyJ+rOyzyj6fq59CxXXGLoJmVEDOuHuFfVPEf8Uic7n8FBhgnYdA+TPLXcv1VaC7iSP/K0lmhG/nql+zqaMGxq54s/Gz0rCV5839z3qZwbY5nc5S+j7Z3lMw44vtROUQ/lmT2xXxJ9T+MJv5L+N455XHS8Gf8ac4P/QpQifkTykENftXyD/+iMtTrln2OBR4oP3OxZh+Hix6rWmJOpvokHfViO+yflCyOuJJiJjJE47M3zF+71qnVkkyn9W8+4cGbFpotpPQnnvvAKEJI/249njD5H//n7ux3dv0MGE479/327ngkr1PBm7jPrR/pLkoIz01fl8QXt2VxLe4s10F7EV/dkofuo20ldlsh2pRPPt5BbHL88vSEBVkiewqhu0nOh+P6OssRgZGiI2fPqxTc6dCfKt5v9eJYr2N7NwjiWUv1hmTZnswTb8woNDzHIuWiv6/z3lV8hf1LZnJP/LAi4fGEjvKiUF+UkeYAdYKkLR9z+/u9CvEc0KhP1F8fRba+HlU65rGywEUH9wq32H+uPxSu0WxbQRPPZsmlKUg/qyf3aLTyfyDyaapP1mOIFOeHSAP70kLCB59D4KCm5Fels09uCDoDCw+H5IZstaUWjtObSF/q0Iih94/xmdn8PBUC8xdhx/ML0lGQivmO9Bnaseov1clOGkZu4pXtAKdE++Y1CEbiSP8gf3HUPn9xUwUHbQFgcFDOEGehyycLTKYhsbkzik6M8qPkb5o+5L3dQ4N4l/sBFt83ZeMV+qpvvp0f1Y6x7gjZnxg54XjqHtPIpwkuQBZVrxjRnin5774nYyVxI8li4o0TitBsvsMqPWyKA5IvrwdDLKT2HUsA3nwRk875pp8/UGHli1qpin8FFXGabCXuOI5gNbiVOSG70A8E8brjiQqgAfkTyaT1lybCi+bDQRp8r4ZMAqVutg9modWOmgxzomg/q4SkJQEtI9Piwa8G6exotGN+oX2HOu2K84A3iQ/yaW3+umK9YCOH9YgDdMHVaTPLr/b9XF0Pc9UBZIDh2TAgK3pNt2m+nD+vTUhQ1agpCyketLHopvTIr526NFP3FNoRCrhvdNxH/+idvXZQ5RganhxbS8RC6gq5q53jFMDdaSPMCiOkUEEF96duflpwoiYP+3/NkzbIZQJL7sR9R6dE6jVNMnP6jAJDZJ+H3VN/xqTJ1g2Zc5/D9/o/wX4mg+nRvYrny/nh4kbuWJ1VJC9UXyKD7jq3iGqYClIp41LYwbRPZrVuaZGkP+b9O7rBbp0Pv3zqQkSwfIqNBNTzFtxUevNfoLnllc9qcwNEwxdoACW1OLe+9+4UvjZm8LJNQgTvLo/WJWaDWH4r9OuGX+ByP4cihs5myWEayaPPTDJ/4SQTmb0/smqANgSfEet7h9ceJOYBH95lfL8dHRJt4HIz1dwIDr3Vl8WOICY9GUMjRa+MvjlKgHKTt8O0CVmWUyLErD6Wtup5k160I92h3PRfPR73tmtgV8Qu/3xKd0ll0fiRxzivZc/+oV/c234E57BzD7sZku1PMXcUuCcnupTREqkzyKr2hUUGsHGJ9o/mYZxwgbxRa+jjNrwIc3FTf5a6L+WWW4VimrHeicoXtbqNROFPeynhrxW+FvJEj76Vo76DtxZ6bVaIkQr8h19DKT+Mcj/8+0wtntYB/vcJY4sQpKr5vdHhinAsV4rLufMaJ3+odzzJopzeCQ78uTAVtbCZ5hMHW9Y82K/m/m2XCpGfj6z8dltf0izkezJp1H+5c4yUNKXddbLLUZDD2VeHhvlBFuWhoeTGRRgesZmuiVipdwrKp0LIL7DaiwPGWoFvyBCCzeuCt/l/CK/tN99AT/GzDkYM3tHTZJ+LLlFMhyS0NOkkf9s1nzNdLDDrjVAmlayFWyvukD6wY030yp8lbTaD9isBT+NQh4MHu5trE3hMiN7v6MWyIr9p9ejjSkF1/N8Ln+aogoLe996sEn8Y8nsMMhfd6zg8DBIEh87+lfxLZhrdF8e0V4+tbmo2etK4jOm4P2dTms+lVXHPd6ZJ7H/VV42nNDxJb9t8xsL0C6LeNYvOqvYnzK5lGEu6sYrMn9y+PFVv4DgkjPduG3nBF+gi+5vJ6vwWVgcOi7zVdS0P4zXhufJ8WvX/hAaNr0ZQP+qfFxux6HGBR7eYlTaaSvDPP67RaOdLEghe/hsaP4pW7VDCkNQbiX5HFszsOfA+l75VJWmW5ewNftqb5xU1QUVpUGuBwOQfv1971e81+FKuWTxdfYne/EH754KVYsKbp8fjoP9XikR2FVwY3baUFuMu8mt8UXuGXZXx5g7x+v5+kUqly6M2fDaM0JDi/EKbJHYzDu7hXNkmQxOFonZjsBrSvXATHCM2wSN3rNRfA0K/7nb1FOwUeQHrmwe/ebe2uAmrmc09fi33gUyYPD7YNnmCutKx+1YFv0xSTBe67DN61khQDbPSHHF8yKMGjH3JmJDtfKC5fTDtbbYoBbsiDvwMHl+WL02SptCuluC5Pml9aKA8sNt77BLj5AQ/KgOFDUhemra6XSgHH5kdUq4Pjh4l9ao2qAYcnT4uJjJVjV1EDfGuKtX+2j0jJmRQPmZG+mLOYv71cqt3l3vEe6V/rRdEZlCTCGNkU1Hx7IQvIgCPjN/9HlEz565NOrgrir40f9clVAeq076zkGOahsOn79En+Svt96D/NBkQX8XRRe652y/P/DfMdZpj96Xf66kWppUdD6XbbwBBsjTCJ5kBjVqfVHv3LOPDS+QBF8beUM2/BTFsinOtWfcJCEpo1W3o1V1/RdfN17xgtm8AtaCqdwFv7//Fn4bHreId03yP8ErSGa59brP/7gmSUUSR44haor/+H7aL/JvrCUAWnCshx7qlH8QY0jt5E45J0cGH94N68ymirIrGIwhYOd9ifKJFj/8x89aDT1R3dRf+d89QI/yNnTW+B1fBhfTfJg031GwUdIdyutc/rUKwkOMt54e8tUGEQL8uFFqSKQj/Ea7Y2O5kpJ2e+Jbl7jeNwGPpb0a8vzka9Eg+6Pfre1+tmQNy9IT4EtlQs0wJ/kQUioDvMffY9aXuB1fnEgDmG+hI40qH+SXqt+RwDmOAU9eOzdXZn+fbs6K/tPXFao3nXXZZ7//EMLOv/q9EfLFHAdLnDg/Xnh86/YQQ3Jg3XMpx//0b+7MXC1nBcGz6Z1UgPTlEBEbZSZf+EamOai5i73c0i/xDtk1/ddA7hHhFGNyq/l81dx+bv80S29267+MGEHmQqlQWK+DOAMyQOXh1vd/uhBa4rGC6bXgec7E36ocCoC9QdtpTWpq+Ch0eeMMdHrDIwWAg3DV3fi9iK7M7Kke/6bj3yPD//VP7q8GaR5RwN+6PjFfpViAmIkDwQjqv/qX0sem+/N4ABTccSj5A0S4NKN0Jf+JRNEci1HcMI9GQMD98cH1w+9wk/q8yl1avCCf/5Ez1jQHz1Vt+tbmF8//tYvaWzGjAE0kjxeESX8l3/rL+8wdn4aD+EQVVzVyA2eMptbZBuM4i9uc/8SLFJ94nwlZ29C33Nir8OPKOl3bKBxKFk5d3CNrkopy19dfsPorurZHsJKxvVeWDcz/D9P5BwjdedMwZaSzHFiT2nMe270zoz7dPBkOqcAGN7xIyhGcueT9AO7GJ47jRBSLqqJLjzL+8kx2e6/etG6XjqpJk5o0+3mFeTLAS+RPLwk/u2vHsAg/jr4ixD0UZs68tN6Br824xf1klkWrGF+MTY34veE81MC6hxzxOQhv8YCtx/Eg7/nZywPG3v2Vw9RSsxUZRKB7s4sRrCPF54jecg4VvVXX0qKTpg7pQCbEjWDtvyewO8pqicJH5UFNbavWiJSDxpsaTMomIiZJ/Zwy7gVbOT6L/7F9a//6qLdsUcEr4hA2kC7hVNMUqCY5GHV75q/+j4md0YhNkUYXbd9rQCrEDCjUzrDyykMnnhvvxfMcNMgPuFILHPMGIEvBZw6XLscn09HSf3Bbs099aivrTtlHkYVEAO7SR7yJJD6l/HvDoPaYrD8TcbMUCI/AG69X1u3MoLaxSUu1qISA5m5zoCDs5+JU3IPdTrCu3AdjrHJ5hK6chUM4/6jL6Zdw6ca5onaOTNu6qQIUCZ56DNP8qoR1ed+nGeBUxvx49bYWkBXUn7d0Zcdlqlz9Z7wqXhS8fmyxoJQF36ze76xY1Liv/gE4aTu+5ZWWH6eFry0XC9EG6kP6EkeUBRIffBD4KH9nzhBwo8ymvI5BXCJLbedUUETdinw/OQz7n3yuPliZPZNZhCwzX3r2Enx//wPSpN6mrH13Ii9AhC79cQpsE4XPCJ5YChM6um5s4ORhjqArdXUZG2KIDgUHB8b7LARJq29kZiVMfUk+jNNc2fMGpDPbBVfHDeKu4SFLgXqiJdLcpN6bW98qe+kDthklpQW+GMDOEnyQGcVqesXsWb5S5oBz17C730BL/wfO7OQDQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAASAAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KD1Kj9Kj9ChNRfrvfxB4j0GX/sNO8/7EThOyh1g6/P1csHnotFaF+hVstNrZNVbYaABsbgBWAQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAmyMAAAAAAAA=eF5VmXc8ll/YwJNISklWKKtUTwmhKM9NKSGzyEiZWQmZ2XuUvSINiRA/ZTVUhzt7hZKVKGUkRBKV4r0ezvvxvn9+P99zrnPOdeb9PDcuF3hXxvUQYsVJE7cUW0lxc7e5CuBbfBYUlqSziKTnMKz4P3733yMbaTzw1ZbRWuIS+j1S85cEFsf+4KTRGI1LNuwodXc6gy5X2a988PAVoWMrYSrOC/FHyzP+A44cz299O26NNr3rSKTxKez5/8i25AFnPAyIParvilrvdRfm/h8vXq4RQuODe/XqjSUs0Oi5KVGdiTvE5JHUeyGDLSSdgtoRdeAgC3Xj8eeuKLFofYc28Bj21yeeTND8789FP7yLfFB1X1IOjUewL3WPrlUD/o+Dv2RLOIyvtJu1z+BamcPtg/Nuj1vILJuK9jFg1t6RHu1OFzTgPh44AWyPfeYp//ZZ4MwvlIf7xF1R011Li6/A1tin5WYcpdU/GUKXq2fujE58dVqd3htW9vGrSv+N8y1k/rGiveXAj3Mmb+ts8UJs9iZsCLgP+5gsOdZmYO5Yj7V7o/xRYyP33zzgDuwt+uNaHwLf5lDuabsciFoYEmzE5PTLtA8YVJHsLeSOl/+it1P1y2Z1FlhuHA5ABRZis13g1bEPEK/OMwfvVn2Obx9bGGKPFvLaDF4Je2Pbz2UywFMroonRlghUXiZ81rhel9ju+42vaLCZ5G2qPuxcp0t814/KfvrYD4252LM+qV32aopcq/YBP/06pYmEA1GfwV2DgRpdQgh7xRFtoxpgt87W5hDGKORVubqWNUiVUOhaWOhIbCbHHrJbhQWoEpvWufx+ZxuIeORyfhoBE9hXpm1T9fNXJTJ7ZmutzoWi9vW8WjrgD2L/ZITRQAg4zz513V63OKS1Lja7emgfYbBv4+c5xWYyI/xQktbAPsKU423p26AQJLp5ODEZvC722vbS3NKD+wiP2ULDKKEIxPLuU3f5yD5CC3s6prdTDsDyx4TLO/ITUVCalZz9jBChwZx9aJy9mezYda54fEqIGPx9qFjCLBj5aw64Ba0QJpSxZ7AyO3J1XojI77ry+YO3D0q5Xir2uUeI0MFegyjXvARsvOHua3vJOOTkuCOj4JIIEaDydCtb1StSJSrZugWYyunQrxEUjR4GPErj9xUhfLD3+ftoRhxY0lvWzsDCE0XK3OTpPiNCXMVea6MofS/wj3vkP1nREPSWOrzmx9guoiS8nu6A8ytSYrx1S+HkLmJtVsPJPKYE9KE4tO753C6iEPuZuDV5nf92EZop7wRytjshiTe+DC09uwgS+5UfUh8rv99FxGxrf0ofeB5JRBrOhY5TiIMGxoY7j74iGULWMTBPUQjl3tKaEZUU1F+SvkNsiEIQ2P8qlFv97AuFaN0m7/pVIRZNb2tcbfyJQihirymiib4D1/Z/2W8u7Yz6edbopD+jEC3XHanqP5rINeGqI7vKKESdpOQ1vpYkdEfqEddYKYV4gz2nFaV95DmF2HZ+JmCHfSRiCVaMKXtBIdqwb/Uac5FAFGJqvCm/KsMGXS188t/zMAph9S5AwOluE8mYEP5K5SqFYDBjvDWdlIiMS+pW34+iEJbYS/FxZ2yOoRDvOPaGV/VeRRcnn3NuTaYQFtin9l3Zcwl4P+uG+2Mjlig9V9tKPJRCqOdxeZg7N5E/mYZev4T2so8FS1Azk5Bi08TFU4EUQhN7l/CAdOkgCtE4tXFU+VQcokjFxy4ELXsZDcGofcEUgo+fJd5R2wkNt6t7sEC8N6M7jcKFmsihc1uHpaC9T3qFtqtrExHb5cn720OWfbpZc1oe1FfzJDP374hDetzJMzXhMB/Yu1sEuuQBN22o83x03gWVDqpEfIX4unsOyue/biTNr5/+mw31n3ZdmJben4Qec3wfnAV/CvvMvby3BaF9be35B+HH49EdnptG0ZA/DezfpHw+sw24orziXkSeF7Lp0aFrhv7J/WtJvn23kSy+dOoDB+TDVpBHylk8Hullht6pAS+Lfd7xNK4HkA8HnzHr8FXBqPYbkhuNoBDS2AunTao5AVumq+3N/OuEHOpnYw1hPl9Q+z0rtcFLJ5hchv6e31751H1DAnpyWK3UAfg59m2fQstboL2duTnFsephSFw7q68A6j/F/tEOf95TwJnyMUrFmd6ouSRVYDga+u87dfbLikZy/Oeb/neRFGJV+fhQrlQC4vyw8Q33FQpBxX7Ox97qO7SHFsy0Z4SuIMnsaH+3K8v1P2Zs+CoJbMZhFlhWFIAMep44f4L2tmmGP+5+3UAqUoUFp2F+gi4Jt5f0JyBh15IV4n4UYgf2KaLZTpt9KcRYbtHaHY9ikX7gyHwSrFcB7PXizKX1gIN3b74rtiYcxQ9vYYiCfGXHXL8+799APukVShKD9rffzGG0K4lD9pcj2IICKMR97CNGjw2L+lPgvDpmMcYcj7IuSsTFJVCIdOyfn03PPQqcqpyvdaE3FrHTBV87APmgtOZ6C4s3kK4RQmsuQHzbtq9fLLtjkJmx2bYOmM/d2O+MGjhzBOY/t5Tv9+GaBFRj4yEcBftJCPvvBz/w7wOevRG7roX3GvL6vif0EdRnS1doZ6drIPv5Tv/9DP37uPq7wlx3NDp9rmnFAuR7A/b8TPQ21rA+Rfs9tMTF4tENXhXPzMsUYhP2dYpRb5WB2TfJfo+WvYbUnIf7zaF8Ur/2U9mCejKKbfzkJLRX6+PuJG0Qj+q7zn57A/MTj71r39SJSzC+12/55oez4lGmX+HvW17L9V+MtitqADMLBXnWyCWibevuUtmgPJeQ+Y1zxvUklT/4/l9ob9hAlo5HMAnZmE70ZMF+Ycf+V8WnvZ6Qz2i7UGu1P/Go4utmj2Tf5fq1qVuLTwGPXksmc3njUf7rnipBWJ9zU79+aIrXkxGCC3FaUP+0I/c0PVMSEpDnZ6iC8fzDfuPfix8R5D/c05kSOByPTBks8sKvUYhp7C3E+hLVgX0bRn3Ni+MR4avgtBbi+Ugyd7p8qCOnv4sfroV83D1WVVmfEo/aYk1c22D9+GN/4QF3DR+wqpT6s0S+RBRCF9iHEinEZewX6ugKE4F9hyebKyKTkQ7XPf6fkB86F95n16PryE8PzCapwMflfDjd+2OQ4dv0wU+w/umxTz1ZmecFrHl39nAbdxIqYL+z8Uc8hfjrvOTTPba/6gEWvFrPqSF6E4msv2T9Gsb/5WghW4RxHbn2V1NaAfBkMr95jFwUitpNz3cJxjOEPbN7wd1zwGXnRjcV3Y9HHc4+ShYBy/W/CnjzmQCX+qypCm+/gcL3rDPWgvV4IaTi58P1dWSxfbh9Nvje1J7kqKOxqPfi/GwG7Gdb7NUNjqich/GFysl2WhrGo2+VXatPQPmL2N/TH0h1AxYaOW3xX+x1lKOTrdviTSEmqtu63qJacvOEIvU2jD/Nx/HOEZ841J7wu60D1tM49gf5305cgPa0fFtfXL0Vhw7ySNVLQLzv2CdcU9scBXx7ZEJEvu8aSsy4XXIf5rf5mo1ETXQtmfhntzgRC/GK9t6/ezYOHQq3yBGDeG+wf1rjxiMF+dlzU91x9k4c8myQdA+C8bzF3mWy4cMs8Bnf4H0tjNdQa+/HjxW0+6PTk32UWks+4u32CYX29vAeKKoejkKb37cMxkF8Hex/3B7feRjOq1mDtpVDMP9OmnXVe+E8O429QvLah/XA3xhebwtlTUIT3MIs72E9d3JFzm4YryGfUEMbmyFe7kDErZGzV9CM2CFh2nnahb2ou8UBDWj/eOGVAv/GSDROGrG/S1z28RQ13xtJFCKZq+f9evlEFCaQuFMF1suLL4JadGU1pEDx37SDMD79r9EhrpwRqH/c+RRt/l9iH9lz5uF9KM/0aZr7k0MiEj29tsMOzkuE/chtJ8690F7mK+lHRULJqCDPbaAb7iP5XZKSIhdrSBnrxo5kyK9ljWFM25tAJMk//okHxncU++suKdM1cD/b271if8GagBTleGUvQTwF7EMpW2zXQv+36qzIORCagkZEDO7Ywvhf2hzlPMFXQ5qwpLL8hPx6zwcZyrx1Q/pHLJ0Gob/V2HssvJUdgP7UzT41XMsfjwYYd990TVqu/zC1Fn0Bvr3u44CEXir68ynD6hTUv3/wnb3ceDWpF9hHtxbW48gZJtdocRdEzzk33RK+7D3vq07owfjYtj64X7IqAT103zLmG73siYUApU4a2z7eJqN+A/1Ca1+wQbw9XqPapjeryWwFE6NdsJ5yQ1WVezKdkNu30Refw5Y9T/zqcn9obzi4n4sjJx5xEck7hq8s+4crPSOYoX2+SJWmwZlUNBngzPoGyj98/lcq9EQ1OTnc//g47f599TTHmtcJjdS8D54NXfbPPKui7wOLfza5zxAZj7roNpprQr4KsPegd2qlAv95vCdZuD8V3k+au9YAX4uMj3LnqyY/rZ9w4oT5Y13hs/1W+Xn0SCRvdAu0l4j9KhV7kSQYz4sz55xeXL+K3mjx6yWHLPtjNxmCLgPT75wv9M5PQT/GjM8aQn+4X2U43mysIuc/tv5NB2881Dv2b+4iIhWNsjUhPhf22p3OL4chvrDAwa/zhyOQT5Vj6v3g5fpJs3vF4oGZYsZYJTVS0Otmx7g8KJ/K8ujUS88q8gUqChUF5k1klrku4oRm7VnMAyD+DewbnD2MDgIbpm3SdnOIQBb7K3qfw/q4ib2Atn5PHvDWY2eHgwrh/A9L13OC/vv3qf5XdKKKdOO/4a4M3LUw8NWuzAGJ7H9Twx6y7PntF0T/Qf/+PvhTxaIWhlZwSXe4wP4LxL71W1KwA7CinsKHSM9r6NCDDdJ1UH8Vv1FM559KUhLpyoXQ2pva/CZOzRGpX6DLTw1b9l+2D0gwQP8FL/T6CReFov5L26spUJ4B+61dmbVHgHO45ipOVCehL0982LZC/FDji05/71fC+cNKVwFesctWsrHMEaU/EE8QgPUWgn3vaJ00C+y/YAs+ag5PKDpQz1HyMWK5fj8qZuaE86lX6uOOIxuT0PdvFuLbIL6dOH3juGclGd414ugM/R2jWk96VNkhukLFsMnwZR9tKVpChfZySswNGLMC0fPGiRVh4O2xl1cneGjrnfejBUk3kYA0JCjWZhB/3JH9ARulkux59s6XC/bLbeXCuZxEKxRcG3aaHspPYB/npbyTB+LPn05sSVXzR0odRVb2MN4p7N+WBE0P0d43H3bpxh6KR3e9JtLuQHyHwu1xB7oryB33GiOfQ/2sX6df1j/UR6v7GrdzwnicsE+KNb85A+0XMdv+GvhwGSVXujbrwny7YS+2UNc8B+y3XoeZLioGeQ0VVG+C8/F04PORnbkV5MOt9ydPQLzjJhQRxpWWyPFW5fPLcN8ZYi/h1/mfDdTP3/9B0UwlHP3XmsRimbBc/9eZ6qoNcJ5WKCCKP2M8yhUiPRmg/10VTU3qBhXk5Rp/dTno332WPXWH5I9Q3wWKSs7Aen6P/d0zUgKnYfzdgg/G6Y+HogkNw+MOcF52Yl9glK3xC7gxOc7d6HQCCj7SIkb7vjpD3/fQiamCHNXWz90D66Enf9sZhU121GPWybnOEO8c9ptk4hKOwHyk6RNBBFMIaviwNeAyvJcNsZ93uNL1EfjXeZWDDPD+CxOt8vsN74Wjb52ZLLpfkisJ0xtxkC+lK27rzXUcqHSmCbt5oX1F7PP4rljS7mOvwZSyNzHBaObHfEUovGdVsG8xVN/SAxyo3GQRdTMR3du545cp5LOWPWQ0PPwl+WtQ83Yf5OuAoxd1T7kllXdcs28a8lWNfUId07lGmP98szGDG6sD0VY+joLX8L5pxP45x7k1K33gfbdtlchDuji0iueqYwP0R0X3WnP+gZekRDCRvhviyZYNP3jzSI/KfGFdXDPsFyXstSzDdRngPf1WMOKPyCZ/9GjX7lt88F5Ww579sf3PncB3BMg2C1M4/+b7x4Ng/sRF9uxIY3pJbhO5/DMGuKeb6hbCa0iNey9y4hv0VxR7GcVQtp/AqznGX/SdckIDuidUUqG/+7CPmHNuvQHceyd7HbdeCAoR2D51D/JTZEllrnpCkj3b22pzgG9yOZ6I41ZAR7xSRrsgXgH2dgUhwe+AJ3+WF9/1dUT+oaMh6pCfR9j7jHJ9ovHVyL9+VR6+iHuH9Uwt5FsqW2P8iyVJ8jPvTX0JXKTyg6hcaYH4dzJHVkI8Sewbd4fMlNPuX7rjkiGH7JBlVUTFCphPGeyffnn+Y8GTQqyYy28vKb2ErlVWSeVA/nkuDxx7d4AkCxpCZmjr48hllYW3HTZoWKE5gBHWz2bsTWbX/f4N6zXiiqHmjz475HZJQDAY9h8f9pqd79UDgIdqD6mI/rBFCk/CVr6EeAcvjWrPvyon95QZmPrQ7o9RA2+LugtIx+7MycX5xr7AS24/A7Cq2QGO9glbFP/FfboExnsI+7MrrM/+Bzw09ULPVPg8yilRbe2GePJTLNzKe8pJq+eiTdbAG4UOZcvuc0SbS74IacF+k8P+NJ+dMyvwxlvc4vvzLqDvLi21g7Tve+z/I37YdQKnC4Q+Z583RReeG9xgg/lcmyhbT2kuI2+Jcv65A+uHq/DNkxYlR+TJVMfQSrtPsT+3B/2LAc5Z63xiXsACRa7WV02G/cmKvXBvSE84sMr6+2uz3umjqw4j0qkwno0cRjEue8rIdW/De04Bl3/RFD3+zglVW2WsL4J8s2JfTp9pcxXYdy2bfq22OfJj9ntJ+z7bhP1k78fXDcBjVi6tXWlKqFrIo1UQ5o/zmq9u2VVEpnjMvaDNp01Thq2lpisaeurLlQj52oT9TNPV9mDgyz+Dpj8cM0PmW7JkWGnvB+wffDtUtw74vbfGe8f07VSVq+cV4yBfHw/kMqbvQWTVj6N/XYHFu2s0bja7ImSmJDUM5fux3+gj294J7J78iieszxZ9vsOdNQvv/R7sWe34xaaBV7nNBDBrHEPqjn/8aN+Lw0+bmr5efUG+3h2sMAP9W/ehQauw3gG53+/8eRfifcWefZps8QQ+//VquX+1PWI7mTVWAfE+YV+/e+JDKfA2luz9/6atkdbpmBcjEG9MdiJeauQ52WdeGewG/Drax1g2zQJJTFo/OQfxJrDnuqDcsAV4sqvlQ1XuJTT1T1IyGuJ9wV58qCzWD3jzHHdiZZob4pRq//cH1svTHp6jXBHPSUdXU6044Cm2nRr79MxQ9szZEkHYr8XYL/iH7BiC8XJ/Nir7w2uDtOLPhg/A/kXYZ50X4OsEXvjXftNLwAXZ3QtJnYL+lBlRmU1HnpGeOv4P2oHT0rv9VZ9cQsYe2ZUkxH/2v/7YRXfa72Hqq9O+eLacRx5z8sy74bypxv7OQOvZHcAlDGHvEmNNULTY/gNfYT1W9Bq35h5/Rmqqpa3jgfW3bovlUGGsBxofn3xjDPvpJfYNczq1nsB9M5cpVltN0XobochLEK8J+9XWAWnuwMkKv7ormLSpn572VtPeIxF+EQFRI6Xk70vrvM8A1/Xwl55o8kKCgcWDKTCeGOwLVXNYyoETpf0XvjVYosIkJRXa753R2JdepPtcDKw7sr9WqVeXaqGsUyECnLTiwfHO46WkrWoqoxnw98kQC8e77qg7QPWDKoznGvb1OvNH7Wi/L82VbPJmskJPdszLr4D7Jh77uEb+2tXAItUKsYnz4tRrxQ1l0rCfrge0sghmPSWj5nfEWQPvUBKXf9Plgiyd+7v+At/C/rGWjvdmaP+9glNoEKMtYsp5tF83DuJjX8RF5J0BZniZJve97yT6LfrtxhiUtxT+W0av/JR86V12dTXkp7U66nFfqQvynmsapJ2HVtgPjHFsegGsXiyzQuaQI9rzS3giCfJli71k5KDhdeCA2WFVhw/n0L+E4HIK9M8+c2uIetYTkiFJkon2+9WLmJCnk/udUegI1Zr2Hv5fv1JpI8dO2vfIxxvep647oMthDq2BUP8i9tbyVv3ewO4W49cNn5sg1q88n62hPy7bD59IXvWE1L+VEzIJ7Tv5JnUomzij8/UPvnZCPGfsZ2LXcSXSzrstCSmmzJdQHOvzQgdYrw7YXxj7YmUC3CjZVnPF+Dx6qiTwlva+J2rt/npkPSZnA7Skae/NNBsZGYqfE7LV8n62FvJ3CHu63NF5EjxPfEdR0QcbtGreKuUz7Ed57H+4cpJvgK/fsu/4JWGGBpO/OitA/aPKMRWVqx6T5IOSsz1Q//TlFs6sey7oDpFx9g74w9ivmVhnZQUcLDu7kJ5gg5LrRgkrGK8S9lFsP60MgT9d7bEsv26Idk6WbBqC8sr1heEs5o/I25+4Q2nxwocKtidFuiExlYYV0rTfy7C30drbwgLsynUj373OGs1EOgx+hXiq2E/ntG34BCxcyFhVfFcTrdnl/eU75J/9Qq/s5KpHZJQH/Yku2vfGTM8Bo8OuqJg//PFqyPcm7Fki9Y7/Bj8Y2x1076Qp0mq4Z+IC+WbFPvAk4qf9nrZOaGT4w4OjSCk3J1MX8rFlbGFB1ryEVN731LsYuL1ivi2o3hmNO6vE3YP4vNh7xKx1fkd779a0v2otNUO2U3MGahBvM/aB6Y7H9IGpQvvyfNt0Ub9Au0kp5GPrRaGaoJfFpOlHuwfRMH4+XluLnVsvIZE6ZjvFsGU/GF9+m/Z/0PaN51bMlJoiaY6Tp7ZBPH7s940KX5AH1pwplQwIMEJCSvlSBTDe0fUa7pbmxeQx/1catPv2x+sr0TZrHVGNHNebyqBl3yRuo0j7XhEdKld+1WqNjgjOUjThPBjAfneL5w8H4Is3tRR0Nc6jioZPHqugPxMxjtSCl0VkZvTCxl0wnqiG4PHwPAvUGSG6kgPan8L+V/fRz6XAA3wiMUSvNco2/HbsVjTcT9gzSq5wrABm9bSaV7BxRBnHuMv1Id4MawL9H/4iUilBoj0N8vPg9JMGhyvaSGFWcZ8ljOcX9l5pAkFboT+BkRN/d9pbo4+ZgyajcF9NYl+cHTLGHgv59NWcTBh3RYGTj3RuQHmyqKzk/ctC8rrFAyrt+1Lcql4w46sa+rpGQHozxC/H/tuRi9Z1wCwKd5oFD15Clw8vmPhDfyqwt5JP78sGXr2VoBSNeSChV4eHIvxp+7nfU0SgkPQmVZ5Zw/vl5hNrTsGojUhMk3qrB3wz9g4+gSz64N9+V7mfreeI2iby09ihvXrsf+mL/7f4fx1HSHmvrxcyS3rl7u1BITpK6A87+haQC6sH9y8A3/9oyBqWJ0N1STRkuA33aRv2358kFw0DN90LtTeZc0S5hUZ9OYHLnjG03KMU+N4xNXm5ZF80t+7KbesUuL9Oi02dFCggOfRDykqBGzuqBzyYD1G7jWxRInyvXcWef4eBSwWw2IcXTQdYHVHI6t2kIcxnCvazWuvWnwd+4rdNzO+iD/rLFCk3MU0h7j7IcJT994CkjzUcpbE+W7ZUZRk9Kq+cUuj5CfnC/tAGlwwa6z88WnHL9gJS6ZfZZfqNQmRgf/C7nTyNXQ/vkwz/4IaEeGPeuWrvJrgLvvxtKs0nOfrEuEWAGTb6uSmanEDzSl5Vgjq7CT7sH26KeTN9ajcRG3zdKTnKBnmVK8VbaewmeLEfTXrleBZ4bp57bgZdQqJ+a1xIvV1E+oy8cfy//0jHdH3Zc8Cne0I8Qr+roh2vdSRr9HcRmdiz7JnpigbOcv3WkLvRFNmpx+zNh/I52P/8GFhyB9hZJMCO4fBFxCz77JaIrBBxlj5kdPuzPPL8evMz7TJCxFhO2lyKgg66+G+HqN5BIfi+XvKiB3rNdgHLHYy+/vq0GZJjDPllDfXPYG+aqZR1Dpju5EmKtZUdetTXHr1ZmpPgZm1wL3XLJW9NvPuTIsVJxK9hu3t12BCVO8yotx7gJDZjP3UnvDsMOEqPwSg0whytif4ZrLKfk+DA/soHdnFZ4FRzzvf6PhfQ9Npck+pqGWINj+A732f3yePHTlU9AN7fm7PTltEIvV4pp/gJmAn7p2tdQ9qBJRMOyCgOmaDs/xIvBFYte8GQs5F+wGxHp/oQhw0S8R6v3puiRxw+cd6SzT2HXGubJi4GrEHf1Tc+dA61K2aKsAErYU8dqDSjseX2m4cFn51DYc+a9K8l6xHK2DuxGFrSOKeUt50zwQIdPNC12c3Pggjwvj91TzKbnP7Hru8BrNQ6ktK5/xxKqZDr0wX2xn7gMEeRHvDB982cQlz66PQ2w7WMwOHYSxo1u9B47vvR1GOxRugZ26s3NS62ZT9FGHQvuGeRgdTZG+XAka61BpeSjdDjvdzBysDfsEd7zJ2PAleFMocrJ6+kfvu2Ny4HeBp7STI1Kxv4SGoY9xNpKpJfu3KFemxK2XEew/55yXtkTlt8tSowt8ZFNbcwG9QeqPlUAfgw9sdLet3kgS33dw/13z1AbbXnlNMC1sJebc3dH5rA6JTwwJo3BtQvsu3xK0ayylJZHl6Mn8wg7xm3Nc5/ySpLcrp26ra+I2JZsV78L3Ai9mkB2WJzwI82WcrcMzlFFfKnL2aA+tnYXzkr40FjwU39DEbVjtS54qw6RtlCIkW5oEVPKoNsyawtXQ3swMdien6vM/qldJuVAfg29hnr/FJoXDf4FpXu1UbXG54NMwHfwH7z+TOMa4B/GPtvlPG5SF0f+Is/41gfwVeEDEcn08kI7hcnaRyp/0GoJtwKNbwMJe8CC2K/ql+wl8bDx7wCwkMV0Tqir4pWfgv2dENajYvMyjqVw25JHcj7rBS4dYyI520c9M2/Qx7fFnSGxvXkEbeTljpo2y+nrTS+hX3O/EYKjY227R+6fFIaBQ4MZdM4BvudHiG5NC6vdt9sccaQmnLj3HDPr+ky6XqrW+Gf0sjEb3x9NB6oCon4tP04ypzjq6exDPZ3swYraVx+9OG6R0IUqtNLagON92PvVMW6WJ5hurXoRbMh1YxZ8KaEl1B5/obQwYdnbpFmhQI3aDxO7yEseEkdqdqLXKdxEfbr/ySl0LhJx+vpsV556uxW7tT/6/1jZhfLq/m/S92Zb071E8jrzdgtUb71dKZo59tUUvMTschMXBV1FgbaSOd24nsa82Jvk6a3yO94mOLEz6lSC4+4LJbfjv2aIMtF/lVmKmcgbUt9yGdt6ZQmK/9CL/a7idF1Mo29apF5hKV6mjdoIM6d0udpXIv9iTnrRTa2mjvZ+fMIVb1E0JrGpdjXmokusnG1ypX5bmuqcmlAU1yCpXxv8W7r4PZrpPXT8EXm3CAbJtclSN1qp7/Iw9jbnzVaZN9pMd2HfkephzcUL3IX9i+nlnhXh7K3+z8TqugB3qzU3y7yCxtq+7I1EslXbnyL/P2qq2bvgDbVcjPDIjOxLvnAV0u84rz2o2udR6iff4gv8m9c35tPYskLN1X15WhRCw4NaBeq+ZWLsr+hKnXEk/qKg4tcq8potTlIhTo927nIO7EPi+xaZMHgi2+PMSuheome/+ePn1rieZ5VihlF4tTuMJtjHIl55e9sunVLNGNJ4zO2i7zHfy8L558DVJaEJd+BvTzzkr8dd8JE6PUJVBp1YZE7sU/OWeKR0x07LNKlqA2KJ8RV00rLx31f9hyNjyDbGdUWueKModLzRmF0YdMSD2GvE7DECl+v9ggHn0S23eqLPIa9+NQS7/E5njVfIEHNYLWUWNhSKc+f82SL0e1wUjX//CLrXWg+UZKgQd3OuOQXspf8ruYlf11ks55Nmhn1yeMlXo3rc+cusUxKW6f6EwNqcL/Hy51dk/J6+3esaAsJIge7l9jcN7VN4aYMVaB3iR2xb+9aYh7r4JXOJ85RF1r+v2fEfONU0FnvPh2qIF3tzTi1Bfm0K6LVCe+8SfX5mkVWftx+5fy3rdRnv5c4EHuhX0u8tU5MKlXNiLptZIlLsK/7ssSp6g70fId1qX2dXS7jpqtJ7TOFnp0X3ckVHUvs+8ZbVOw/U6pE1xL7YL8Nl7fp2HvIiseTGle5xEzY62L2VGs72VdrTTXVu+5VlyxF+gcKkRt/XiTXnF7i3WtTbwtZm1AH1Jd4V8CSF8K8VnL3THGnG/Xb4SU+47fkKzD3D+TP7L+gT22tP5F5X1CR/O9mFccInyF5rW6JOTWY3l8+LErtKl9i1WtLfidmp42fL7bJ21EdHi1xauySP45Z9FuvqZ3aSfQ/oEJI6g==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAFwEAAAAAAAA=eF7jk+RM22AjsZ8BBBqUbMA0w4XdEPoFlGZogFBfYHyoOrY9EPqDNYT+A5X/A+UzQeV/WKPSMHUcUHmYeTB9XHtQ+TD3fIDSAlB5Pqg+mD1CUD7MHh6YOaj+aFCGiDeoQNVzQOgGJah6TQgdUg4WP/B1D5ivsJ3RFkSzz3Ldy8CQ0Lg+4IDt3f/qT9bbSNiLgMORAxqOglBzD0DdAQu/B1D+Dah7DkDpC9ao6mHhDgvXN1D+DZg6KP8NlM8Kdfc/HObA+PB4hfJ/Qfm/oPxPaHyYfpi7YfYx70GVh9n7BUpD4++AIoTekg4Jj29rwPwP2z6C+Arss0yB4ejQuj5gg+1HcDhy2EP0/6gfpUfpUXro0gAEZR9zAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAA7ggAAAAAAAA=eF5NlXs8VOsax1+mka5GFCKmUm5xRBftvGPI7lRb5dZN8Rk72i7b/dZBWZVQtpJEUjunq9ql0lEu885MyKWhxmnnUPJBVBiRS0hx1ppZa03zz3y+6/mtZz3v8/7e97m1us33xIg7526Eija/xZdrWGtmPaK8WADw36Yud0GsY3bjHsc2SDDQVedIPgVOvGPly3laHcrPd7hwVqtQzqIkqGLxNcyt/IGcARetTw3v1q6kmI1qpjQnnWtohodv/wwOPKUYYK3g/iL/Zwr9UW0rTn2Fgseat3v10vlYEESobPd+quDLs8q6muj4KtT7n86tOVWK/OXC71G+1Yrvu9rl/tJBszHk22gn3qL1LCRo93vhrMiPDJ45vDBWvI9+jfOLnFutyL9v2WTBVcX78FrBSE3uD99TXeSVXvpD/nAeS3yvVhHfltr4tr1WEf89TLLCSNEvZNoUI46uUcSrnwY6vaHrM0bB+hW1DtWKeNranUVuApIxd5i+TneNmje5X7xs1Hd84kU9PC/nzBaYsbAku7D1k4wPRiwWBJi9VvMOWkn4gevg4stJ23DWppAXxcE50mvmbcFOUWqzWLcUj7MDvV70c7aEnVor7JziAOz9pedB1sJrsDajJXaDEEjM7J+XxdgVtq/ME4qT7bD3EuNLDCRUS2/P1tFCwh2Ry/rrr3YLAXDmHd1Zzsfzny9mHhAAnveVkIgeW4Idu3wEGOPo/aWxXwgGmrqLOUBymS1M7if0wJLRgsDLIYu87ClZHPRnQW5uZYYWUiH96YLAxSS/odi3fHl/tCG20yVrzdJhkr/ZAqnxOZ1Lc5AMMUOEjf6kZnflqzyOLUVYv6SfZyUl9QYIuxPhqbt9gGYuN2ENkzUo/z6+H2xnnfgqPWVyP9r4YMPqWYdPTiNZDYLzuhlowSdSr46A08ghN32qvkk+WGDUpWn/iox32oIPzuOJQ2QcW4SwA4czAzwZ8noBXvdn8cuOhM9kXB0C68GUO53/I/MBCOqWf/viJCRZagtWjWCxvzSQeg2ENa777nKznYzj9SZtjLUvfkZ+XxOBv4NT5k3vUdT77O7G0oj/koz3xa8vplafTzLet4JvC0EKGWezERgJv+ohlcjzD/8KQcB264d9RTLm+dxE2Gudc0885f1zzZBCILG+OIsxQPBYZATuQ67YLcOPifcP83BwIXz4XtX10nycB8K8ZhI+bAMtWktxLsH9OEX4NP2UqTEETu24H3EfArB7fbgTlDyyxv2YbEcsUtyRgAJNTNz+ZNQTcZBTfwR1Gj1a9+rscyEQaZTlNIzzlydY4fdjFHcsnT2+p2s/kXdvMTMJ/18edeTGR6L+vGJmNAcsWHva/JSObD+6dyVwrEzA+djvBsT5Ya+Y7iAAodtqrU6qy+Irp1sJWNcvSO+baMg4L3+dgPmn6Py5ynaZP+4c+w5F1w2WHdPQlsXbjvbBmuJpRpsSjeX7rTwCHzb3FrkuEcj0eTrFCBgZXuiCpF9t8xFP131XjoT0G+sBEucUtTd/eCJnh0gIpi5676uYR94PPhCczsodt58g9y8Y9uxPCVeqIvV5axAIMOnW+508XwD3fZP3XfbIIOUvrDk5treS1ltBMLOneceHL2RcFbKiZyz+18Ai0v+W6NQradmhalIvMkEgqvHg+ktM0s8AYakNHjwt6vxwYaqJuOAZpedaQsAw37ieoUPqDSHwO5KzmjlC1gcwteUlpmOUHsyAQO/abwmto2ScjUJv9hloJ8xHVP5em+O5HlT9IgsIto2e7F0xTucTdWze0fBoGl3P5wdTGUZ0fryP01SH90010Ot11qkIixw2IuM2cLdp/uPfKij9HIg9mQ/nuuiTPMBnt206qGGvTjIbTrD1me5UPUDC5x7X19iWsYDkJUgUGxFxvXIhWT8b7dR4dN2ghtIzIIjev+6jXTdVP0r/uOqgZYce1V/sZbx6ix+tx+/B4bNrss5R5xm/H2/MMYs37SbXw4a3M7++n06vF98nn5KbdTOp+28BMt5qMuOfoUsglb+80d2jo5LS4z4wid5ioz2T5NmQfVnbe9E3an/ZMDk3/e94qh4RnidZEP5HAOUffShi/ZVptmoWWb8lVFJzMTOk9Fy8j4GZd2rQCO1HEBQy17zvK71/VhbOzReo+tnLEDAOSn2r3EfXzzuetlbqTtXHRiFXLisZ0f1v4oP8nEGPn1vp/Hmje0/cCJ5BrxdaDAc00Hr8edN7cZsKdb+P8ds+FaXB09R9zYa6TSGJc2t/WK9Ja83+mWNk/mlQtNK81Dv4G93/aIvF0uN0f/B7r2NOyV8TVFwVcp0T20WVSnT+sO91JQx6f/G56Ri69UxKD6kfs+XG+LKU/WfT+l2eyTNiaT3ehwLzQ9LEd6R+NhSdvpMQUzZKr//eHuVsL7qfuG/TmWl5KwrJ9X7kc9PTNvmups4bC3XFvogLofqDfeZjdYY9riYqlL9tea/ulaUJNEm2hUtKF6qnlZN6ZxsIbI8p5TpOyvNh5lB0qZ/hRMw1Gccj46T1Rc9Z5TLmOiYisLG+Q/M16R+9SASmP0nIsmyU88knMDA584/gkGKZXvNaDQS7f7oZw6yR5ceu4s/7zO0GLFRl/ckLYgoKuhxyuHn9hB4b0puLz6MNG60i5f2R6E0iwLpywlFDrrcw38I565McHBxtSdz/8Xt9XPF50fQ1OrueyJ/u4eOAc75e15sugkPfjZ8WdCy94vVmcyQxXxgpMVn4e7wqx2rZ+e1JjknC2S8orpOYF1hjVfJLzhmtFWWip8X488qBxrA3xHu1/3hKzP/0wcYwMc5YcKHfClx/X5L0RkvoHlfkq7xhkgN4oX2wgk3MO2d/KT7XwWacWQTX+A/ZIyB6KS0y9LRrWN6c9ijOQQgyHsUrx/oQ8xKTurEQuFaMszvB3OcgCIGBrvuv6/4tnFFq3TIvM8lu0EfJP5hxSzZPnT7uRuD1hF8wI4dgbPRIAhQ9GFJ9XN5lZ8JdXeB5QSw0haX4vP0ky+9bcgY2+j/GuZVgEMe5AqNqTl2retgp/D+ybyfUAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAHwcAAAAAAAA=eF5t1ns8lPkewHFarUpi66iZpV0H6aISZop53EJKq9hTxiUml3WNkRnNTuOSS0fMGjEu4zKJOMiWcm3rqdzatlJCUxJKSZbNrQtWYZ9Ox/y+9nWe/96veT3zx7w+3+93ZGT+/5Nbn9DCat1gMmdd0XckLne91AtP2kb4JiMnGmoxOenIYyHCmpgc5O9zGzdE5SM3JYb0hxcj/ytLXBV2HnntoyxbTiVyzE0vVc5lZJJVmwarFjnsbX83+1fkR9uLNTlNyL78OvfQVuTXhcoKIe3g/V923WN2I1tOzBQye5E1H0tmgweQJcoJakEjyFdUouT93yOzimIbfD4g71ExKPCSRb+nXdZwnqc8MqU68CRDEZlfOkh1W4E80Tj+0YWMbKxtwXP6Frm1ds8d+hpkxUNbFtB1kFfLaKrv00MOvuds5b8NuW/xzz/GYcgVw1Hn1vogZ/kOZi/LWyt1Gu/4qbA0S6nv5I9PFI1FXptztdo2yn+CGqWfcy9b0NZUyl+f880mjcmBt7amcyYXV515XJEi/fzvz7sdBqo80GN7qcaoAPSYPfao7QTo8e54jXYy6FFZb+pJOujRT9Ibnw56FH3zwiQT9Di9zFE/F/TINlpVmA16HLLcmHwa9HhCS107C/TYcrPCMRX0+NIgb2sy6HHLBSMXAeiRMXB3mg96LDV9fOAE6FF7jPT+GOhxJ8fqeATokXrJzvsI6PHNb6JOJuixg/7cOBD0eGL/4lQ/0OO+bVmLAkCPysOlZ7xAj3KxoTQv0GOe016eB+gxUaxbxAA9Ol5x+Ycb6DG6iKfrCnpc8E6yzhn0aKbl6RkEeoyzi937E+jxUYscWQf0SD02bKMEehTdu+gCe7SZeK5QDHrUscs0gD0e3rlrXo/6N+f3qJ/1uUfazBrNr3lDuMzfnoM/ZD6Nl2hJv0/xS+0RPuH8MLbBnpfTOMvJrJkDeq14dim6vhH9/jZZ4qL7hANchWFrY2bxkPBZ42jQ8yvhJrJ/AnKtiHErlnB0YJGcWtIbPD3E6nQo6N2384b2eSFy9NDs6ruExTkH7K/Hv8UWishLE8A8VNd2n43KRG7WXE5JJ+xgsKnDNvIFlm7l5p4C5oXTGf5FTC4y5a6NfRrh6Km+aQ3NUVzh++pXSWCe9qxrHokoRB6ldHuICAfSY2W7vbtxFdZmjgDMm+6FD97hpcitstqXsgnvotAU8Af9OHbQQcAH87gN2/oL9yKyeUqss5iwlUI230a1B7cdj7qRAOZ1tdaMIacGecnu8tBThHXslHTdVjXgWKBRURyY542eaoqhV5FNrb8dFhOeaqaEOLkMYtM/kv2Og3nf3tG2id0A5n3vCCWDsNXC4D/O5v2Jdcrfso4G+4AeF0k6cgvZ0Gg5LYXwBrWk/YtnBrARC/XycLAvbDx/9TjSjHy251ZcEmGh2U9mznEtuF/FR0ce2Ccm7U/iWRLkOrHPgUTCJUfPPu1owPHdy5YLuGDfVP57qiX4CfJTnyalBMLr+jq+sJ99ipXEGtM4YB+Z5CjTmT3I5T2DfscJk/u6vkphjWPU7WkmbLCvfucznYJfIbeYs3UjCVNqJywV6/sxe3opFd7XlLZ9R5mvkeV7yke5hO1X6lkUjwkwcqoSDd7fxkX8yYA3yL6UBIxF2Py0+8B3PjF4Tol62yGwDw+9Pvan7ySyjM9O9SDCJInkjZdyHf61nqpqANiXaieTFb1nkK+nrtwbQFi9NO1BSYQAd2+pf+gL9qmxLd3ASw55ve0OM3/CHm65WOXuOpxUIiJ7g31r/7NDiPsS5ADLV2M+hKtWCWQsusoxprdNFdzHhqoFcgxlZNbzUQUvwu7nBKSXuSVY4qrCrR5gX6tEkpxdVyJ3rpZMehA2FWwauqHQgGdaKrUxwD7f8Y1fsbMa8jv/8RXuhA2nOK5+V8twaq+OnBvY9+3cGh9HDeSGD2wVBmF6pnyBvPA+lmVEFbqAe3D6TI8VfR2yfkeTyJVw3+TB7Nvsh5hz65ZUR3AvarqmKQ6bka0fqF5zITz5kpJ9OOcK1tVLrYD/b5gyC1IcKeBeWVNVXQlvH6dlsC2u4FV4/ZEAcG8K9i+p/miE/HFaqC9L22BSZ0qKKN1ahjffzj8UD+4RO9Paptwa+arwYV014ZbAdv0n9y5iKiNi3npwr34fsu9l3gb7KkO3OoRwkaXr4WNLe7Ckrq7ir8A9C3rRwKMP6kl9/22l2SdzP8z2mWc8wFrK+AXw3nlrx3Ofze67Nuejj2MvfLK6w9I88xV3sH6dlfP+n8kXcGvaisXS96sWG5T/1xllt62dU7GYFZ3z7uXGtMFz1xnPpe9T1Jee/2T3Z2YdC/7ZhWc/tJp3Ty0LypJUaGuk93Qz439Wsl6OHyjG23rm39uLrZcZSe/90T2++tnmmbKLTonGsR35n+/xX9aIXQY=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAQhMAAAAAAAA=eF49mHk8VN0fx8e+JUsSiuxbstNcc2hspZCRJSVRqVBJetoXop5okYS0/dKTSgtt6pkxX0JJaVXSOvIoLchWKKLfdc+Z+qPX6/363DnOPffc9/l+75vy/hDeCg/UkTDGaUrhAVcW889MQP/HHaXk6OIx2Zx7uXg20giUFrad8ytjYq4S9XrXSu2EYieo2MgpCrsShE49mhoqt0QJ/15fj2pyKDl5I9YDjsk9kTllNx11HXb3vWJVj5i8SZ9qpXJXt7rNgK0piR++xvnA8msOtSpJjTiP0RfcWep+PX39ApicvEGlSXcKpDseKjTvFeG8Ql1wsM1kSumVMDDeGFnWNskL/aXj+ruiheRd2lRzrpSu/OY58Gtsj/75SHvkGFBnXj1I8uT3fPu+cc11s8IgtFL+0bm7ruiMUmW0oI3kXEWKl7q6NlEvANQzuF/HGzqi4UEzkaz473MH2VMy/BPH9M6FYcNnmxyPa6K60rknr3wnuao01fO/RyfsPsyCCInKaes3cCEm2rmh6RfJ8xUEhfnrQwx8Q8BnsYlDnDQPnsb45JsrkPvnWQqMe0tEhiW+cKzuZX21GxdcpuidzZFoFN+fgCdzNqHt6XPhOpX4/Z1njdHdm9oBXl1kfGM1avjH/sjzLrJIvd1i0t25amhWbMTnyh6Sj5KkTPaot8THGYOjTYxkVqQD2P+toGDfT3KWnCB6xSGuW6kFROgFhzqp+IFoo7K/thz5+5ftBKy9cTknVsgA61JvNu+KK1C7947XE69v1wTBrBv3R0e99EJbihaky//bLPT6KtUT3UFynx72xdoZ6ZcyHNCYGv77xt8NnE3b4gtbu0keXc1H5puGNS5bgoHC7s4tGhrokszbpZ7i+0MsSv3WTjuJ2w7g3Ip2pMc3c45pSxc/FM9f6xnfLPr45cGTrlD6fadiVIQGUtY9G6srHj9BiupKW2JU8VAL+BGXk2cHyQK70yHTT/x8o3v5uZOlz7tHecLscVf0jt8ZFnoV/AsuP0iu/53fbva6oGWQDbu6NpjfyNBEf53e6/5BPD99WUq2IE/+iLYzRMyvpSqdpFCOisaN/m8kzxtkm5Z9FAT0uoLVzQ/VXkIjuFHWW/dqQLy/lQVZ8asCWsc6w4T+fhY8sYSLSsb7dw+TPEpbUPWgxN5pyQOhlcrCKNOTqjBvRmdl4ifx/Q3z44wKf/yuNET/vfrgmhariixy7JKUv5HnFyxJ1Yd9DTtrMyDkmNlkWDZLIumXp7v3LL6Nc/l+trbVbK/xpbrAn77vJk9CBoJuZdx2kdDB7/flJrbiY4njxwYNISt4jd8JFUdQUH/tLh0Rgf0QZiK4HbgnpOM+gtkDSRPrNptD37/fn2+V/Af/vklLIFz4PfxT7Chwvi4XLe+nD2MnDH26N9yCf6+vLjjx5fmrjT664OKisyXP5rMQ9d4rWd5o6cbkPr/4kWaROY3z9FFBW03NyWw75OFwdKJDbEI5k+ebUm6iHUqVN39xrh540XDOfohz8+5cGelRJfj3o1Up//QaCUkDZbAelpi5w9UP9AZOGDRs/4F/z/USPGyQmnGyYBJ8xH6Eq9tXpYz4Ucz0VTs630x38cR+hILnseHLaD+6E2afj/pRvm8ylGM/ws+/wh43rVByLSUskCvZ1a01G45gP4L65aOvH/vXoyzCp36srlp/Pxz+xn5E+etYC+5OaUTxhEt089Pe9OiAKfYjUlSIg4IvIqROOOVXiJzaLnk0EfsRErd5b+NrNSJFwqpLGxwlnluApCbjRzjt3zGlSKkRtWNfQlX4tMK1pZ4wB/sRHs95YRim2IisCYcmvCnq3BcOGtiPULzGwfE07YfufZizRa9mzNgQBF+xH8EmJsNpI71/ywlvGRP/sctmEYRjP6L1biq8wDcixCXs8I+6FGtjOMzEfkQLHrF0d38QIVPC1u3B2lbb5kI29iOy3+Vd94N+vxIJ8y5lGvRwo2A99iPoTzhIzaf94EV4uONnxcUvkTAa+xG2b9r2Xo7209M2zFGi1g26zRHggv2IKs4X/1L9KkKyhHtnnTnRtikc5mM/oiqus/f81yIkT/hA9cXNwh/B0FfM+BGFdvh8+UafTwWEIz3U9wkD6fW7yPiRE374t1bWfyKUiX3J2eKQE+2zdRY4Yz8KG9qbtte/F6HXdzCzi6D/RZ4NaGE/grNM6+Yk+v6fymPu2KEl6Z+kB+1fGD8Ks6RSd3XQftHEvhSWvtF/and/DALsR7h5p9ApiPZfLGHvWj/llqduUIL9iD72dVTLtYqQJ+Fst4JVeRWWyB/7kcM9U1dzmh6/RRPzmK9OodbLNSAb+xHuylFSKbQ/TQgv2jivbMpVY1iA/QiLmsvuKo/4m/CP1e7XEmvbhW7Yj8h0u7IDl85flmO22uxgWcQ3BD3sR5R12bHDnc4z+zBXJXWWF55zg3HYj2iLfY2wqFmEKkdjTrD5/A7d8YR32I9gV+O1dk9vI8oizD+ZgGy+2YM99iMomnJl9y69je6aYjY9pbPn6i1bmOXD+BHll6WsesXScc3GvkTT3r5J0EjVgz3Yj0it3vyjNu1HTcLSUeffvYqiUBD2I4pa/9/lET9W/cSsLu3zde8eA+SC/YiutdS0jvjxSQnm2p60cw7VDqiOYvzI2aLxjvHjZexLTrHMzh71VlV0GPsRmvTzGD+aE44LDEvJyNVAWdiPwpLr2I9HCN8LWXistlMVeWE/osiP2I97hzDzyjXXRhQ4A+NLlrPgrjBy/YgfOxg/2kPMRSdL1W57KBtlvPzlB18kox1a9akqmdSXGlTJ47SvWvvGQzHOoUSJFdhO51cJ833ql3ZuVsLjJ9sITGf6r7pK+9WH8asHrDqg7f/yOoL0Z1fWSdsGoTO8N9G531zw+cFiUfu8wisU7BFswTkY6vlFrOlxKfuL8EbOnU5nT288foWxoFhlYUnLMiXX24yfPcHuROdGUdV0yN9qZGs5MwBdue/k7tY2ROqjURT32rOWrtnekIZzuL0mbGH4jyG0nvBaL/NnO66EkvXRpI5skH+gyatH+Yzfp0AAb9uknet9IKzYrLUo+5tQ+kSAc8nMV2T8X/w5qzV9jlaGQlURk3NYw9pRpyxeISt8PWfGCk1d0ccAMn996kZG+eiyVY0omTkf2Mjs04rzWeumA2/huL6OX+6g/1vPLM6VnP+s0YLzZkdWfl8yD3xwjjLmGPF2TmhEUwgXs/eoLDCVw9cnqwnG8bbyDen62Ig5X8zQg0tFSsfSA8EqcdryfsoAWX8R9XqJ6xuWJGVl2HYrVxQKejiH0Ou2mUto/ysSZo3TUvfxPSXE148VqJZ+ziz9KUJ6zPnkCJmW59PntgSAzY6XDyvCXVFpTOGSS53i8TUoP+Uh83sHw0Ab57C2NbE/TbkR9adi5kp7HzVtQ2T/KAiGvLknD9Pzk2XOO0NYMDk4ecxKHlxfvrXfQoON/r7m9kJCXH+x1KmDt/oLEvcHQSHOIUnpqs8d3UaURnhrEc9DMnQ2GX+UINV/bsRo2j8hzPk4GawQ74zwfAgIzhaIFvWy0UZD257+D+Lxx1IyemX+IR+C4SrO4V1gfQWbPn+yCXeY1EX4np5Dnm8/v7AgKKmRXh8V5rw1hoZv2gfzHEPgTWivUuw9C/T83pVuhd/i/kaaWjY3z0P1SzA8wDlYz3eMPUaf//8QnmPy9OJ+g/lk/u/Zo/vkx3Hp9WlizmdZeGhy48yDQ6Eg6fIw/uSMSTA0sMbcpF08f3mBiejj+3+rZ8MvislRuNriW1/fidAdwj3bct5WW0SR8VUoCTm/1jK6Pp7HnO+2KM4z03+7bDAMvd/ZcJrrA2nNK1aclRfvTwvBioada76tCoQenKOAlZNE/SP+JtyusH9iV9g8Mv44ipcT4F1K1z9eTH3ARcv+F9gTfC0ItB4c0H1o5AMr7u+C+Upk/GQLwT4jHddqTxdQxTnSWmJwah49v3f3Mb/eH8yTO0zWhyVN1StvTfOlc1xv2KKC3H35Tj3BsPnowH8HLUwh9XncNjtx/5EsK2BZjtsaEiaBFuIcFa6J+X2F7j/cCc9f9p+C3M9IMv4AP4/t2BLeJ0LLmfpEAzS3eWdN+hIIqTJSp58F6yLN4zsyg8T7P5lFad2K7bPeoA7rcQ65TYZNdnT/aUH4wqKkmgsTyfjJktSA4ajnmXT+k6lvJECnbfqEAb4fpMVwOqeq68H76oVa98X9K0taMBBqvW2yghmsxTnqiz3PbqDrHx3CvcNXYyOLyPpwx1MfXsVNPU3XD85MfWSE5LfXPjlkNB0kx9+elPTOA6zfU/ud/+xPM8HscLPiWcgE+nWYHDUkbPEcpuunSsKv20dJyHWFkfVRpFRDPE8P0c93NlNfIcS7r3jm81wv+L5p2ZOONd5wfH705Duy4udrKSg1LvG70e2IWnGOPuYffnWf3t/nCa8r3rvO4R55v5KVqQSJ/J3/o59vD1OfTUY3CgVPTzZMh9wC7iv56daQEz9+5/7uP34QvFNbsevJ9aloJc5RXqEXe8kLERpF+MCni1fPSYbg8ROe82+smtC5h/aLdPFIffeUM81arcCLQvC3hcKC6LcgXJek9SxX/P2BlcuPGlzsFHxTGiXgnEOdCooJoN8vN8K1KxNs16zxxOPzGvjTnLo81tL7x4SpF+8IC3l2nOZuG9iVUy3atEMGvT30TO3sn+fbwT58x/zI/cPWkIJzCNxYu+pjD70/CXsrnjP5/cWYrH8Z/9HUQ7kp9PiqTL0pDY7l/q8zkibBhjNq+rMWyaKGYMuVi8X9b0UX+/RqqwN7H7NhPs4hdOX3mmJ6/4wiXPzRPkrLrh/7P/kpv6Mu+kw1Pb9lTH36VPjIIfmEL98c1LOUOXYXZNEjxexz3//4uYct2/1tuuVRO5DAOTQNrHzsS/cf5w5gTnzgtUrC3YLsz7f8iqLsJ7H0/ixk6ltpeLh76P3VC3bQuSc8e+WyHk5qyp51hX/W/yX7BsdAr8JgCrTiXFhUcyBMskmEUghDb2WJSZUh2T/v2EsHviEXevz9TH3cx/nrgoJ9aKMJFP8lncZ7IwnxxbVruT/F69PNv2eb0ABZbnAO50iT/7mzb4j2I+EJ9taid/yx+HpuO18+UYsdTa9PKFNvd3C8eOUHG03tYFrI4Urd0iFOkGkSev/n+Xayu7/f1BX2O8EsnAvtZK3cp9J+EgVjzgtzkoajWnj+TV38iJTTjS/p+W9m6nNZmJ/dvdpolh3EqFxadF9DFX3wb9uQKD7fK36xj9RV8Txof0bgHGZmBy19Q78fowmPXbvyjEb8OLI+XWxRj07zSXr8mUx9/00YJ6cwd1DHDBDvQ0fhG2WI/fKbyvzz/WmI73ClvXzIlANTcI6O9me/MKX7hwsBmJ8vp9xeKGqT/fmb7ZJpL3ec/vumTL8wBnlcuP3k+m4zsA2PX8yaZgYlRmErx4m/v3G1BT9nvr3VU2UK5jhHA7XHTuwaFCHBPMyKlxUv6bk6kvEfsV8fHJpvN1I/MP2GDoo5F1yzv9EWIqZm553NNADpWV8gR+wHul4aLzl6lZWyFgrEOarflXqrkX4/frhh/pbgv67rOZeszyv+y8FRwSUf6feD6VdY6ID/vy0r1jnAk2wdN7XHR4VwQFL9erz4fCxhD8uU3i56oYFszzI5Z4ZZd+XEJY0o8xBmvUlWT9o+c8j8n/BtUgZTp/5sRK+Y/oYF+/KGTVe/NIO0lb92HH+tgNT8rXNZWeT7LHeQvUG+dEKfuzpsxjmMD395+lhOPepegXlzSVrN5Pd2ZHwWa8uM1b4vYm8jI6Zf6hHqVcX4fKs3hmTZ7t12PyuEncPFMpUFiqT+r+I7pl46IThsCOPlmJwz9KQrs/GUoutYfD0nrCXK7K2aJR5fVYbqPtWlmy6h49rP9Fe9nD5j8/gd/8hBxlB09L1LpnBv2n+XBsCX1P96gjZZs9/6Kk6QgnOkYftOU7PMt2wM4Zv1dg16L8bj+21Sp6ZbeFQr0/3ZJqY/M0ZIsmH2RfSR01io3XHL1BZmz93yPWcc+T7ONRI49B7exOu2hmc4R9c3esSN5OsJ37ydmOlaY0feF1nq2YmQwpH+zp3p97RQT+DiS9vTXgifvLhV2b7YGM5u85H6p7Eez79inEByYUBfEUcTynGOshRTFUdyb8JTNXzY2/ysyPgsSlW0lOkPjZh+URW9GOhXWvdMEX0Ju9cm8VgNYv7+Lpu0TRt//7KVEYikQzd7C79wmnGO6px7mXwt4fKW/hs+FeZ4/B1q1OsaYPrLqZyR/vIlZ0PX5cYL0x4KQfuTlMkzfXTk+qeEJONI/P1spB6bx1GsOTgW8XEOUlObmTyQ8M50vsrecA2yn+v4HrzDTH/6N9OfGoBlev2n6WdlUV2005IHy4xQ+rz5l1bLnMLzz9eiFBcMLR09kQVPcQ5HM3A+jfDWmFzZnfcUyfpIUbWkvzXJGulvvwrNuRznOKE9euTuO9gRxAH25DGdY90/kfnbC46pZoRueCoBHThH+eNxPsjF3JBxzdPJdCzenxX2gn+6cH9szvTLCKX+b/vu3w/N0P8BHncVQw==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAIQIAAAAAAAA=eF5jYICATzfaZnxY8mLfeoYtX1WTnu+LTNsUsLLo+T6+fbGTLhU+32edtXHXXSAdJih08Q6QnjflxCwQ3z840wpE7xfcfRNEJze8nQOiv8ZmV9wD0gr36qLug9QVVAiC6I7zxvkg8e85p+tBdNzzWS9BdPWr344gecYl8W9BfHO+GiEQfwprnA+IPiTKwgWij3O5SILoOXZ1aiB676YFE0D0TKUrJ0A0g/7TDSDa/tWjgyDacc+XTSD69Hqx1SD68ZF3Mx4A6WetP9lPAel9M2bGNBc/3+csc2PXhcDn+yxf5zfkPXm5LzdG0V0r5YXdjd21FYafbffrntLY0nOp0b5k36W4L2eO7o9aeG0lw0IuB+Y/c57ecws4AA1GhizLi8s/AsOxdE7WHzVgOD6d1dq6ChiOS+b5nroAtO/GQ3lVUPikOn7XBPnz5ZH0UBD/T/yhwyD6+9ZSbpC4lt7ftyB+aMB6eRA/vWG6OIjWuHx3MYjWLOMSA/lHUSJ4CYgvP1/0I4gWu/yeFUSHPp+5BkSvF5kZA1LH8bbBAkSfl34LpoMfcP8FyctOnRMB4s/dGV8AopNOVKwH0YlzU66A6Oun61+CaJuPIj0gers6QyyILr+7aBkoHCVTXsmAwlHfYV8KKBxtPbKfgMLxotL2H7nAcHx+vMkFFI6HHReWg8Jxl5spOBznZF8Bh+Mmd0g4LniBGo6jYBSMgqELACyuhMY=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAApQQAAAAAAAA=eF5V1GlQE2cYB/BVwWJSFTIiKtgIw6EoAkW85ZAAtWMtheIJsUpaMKAoEIm1hhRRHAyDII6BhqtmQOSIplQl4hIRSgaYagBpsEAFjwQklsMUrTjt/jf90nz5zfPu5k32v8/zEoT5M6E7Kx2TG0gFUWdyOagn93yjDKtM0pPzyOi8zmN6chP/hqqfcqcNS9tHWZyvKUT9ecShjbDR5k4vjBEbZdAUHS8coFw2INr7B+47KrSB5x74JGJ9KqE9DXL1hcPw5Mi7QFyfId9vRL1u3ncs1PmW3O2wydaCAVsZnMVQ5idyhXeVpRdggVO3BhKez69D/5GhezCw4bUStisWVsGnza+kTyhfnHn7QRslKS2IOp2sJ4McdKqHX+jJDS8TxUeeDZOHoxxD3XkGP92dU0LvyS2NHm3L6ySd3/unkJ3c1x0tjXvLeiqJMkbArGnZ84GQMPV/MRL8DdqKcSpHgYw/7Url+LzwzJlrVI7y4s/aHlK/pxtkuyCfrwOnVuA5h5tjI1FP72+6D6d+FjCx7r76vRF1ZJiCjTpWfNkOLu/qvwJXHGcsxPM4LoqQo2aX2I7DhV1/WsJIfUE1VCwoiMJ9VkbxevjA3kgb8YT5HteXXpLtRl1Uv/8oPKgRKuCBIl43/K09bRhuHl8ggbfciGiY2v9jOXJczBtxQI6eASQPOW75JP4ZctQ63XpzmMpR35rOQY73A8tSkaMqxJfOURbfTeeoDDXnWGr4f47mftSR5jx15Oo5q5Yh14cJS0PPzzKQYyNLwyWUeTvmn0DOGT4+V2L5erLG/o06jrKEcHiJ/l3DOje+hbJZNlwB99RG1mqp/+ucn+mqo/RT35zqoWSUGxKRt+buYDAszj1fAbmVGafg3+FGX+h2WtEIm1ctEsK/JqV8mMS6JIHlvbZpMPNjVhb9PYZMD3+PkU5Am21f3oHWSfXTMGSXoAWuSqxm4H0E+PfMhi675m6HjI8E9Hxw467YQ44nsx6ur3jni/egqVRFo25wrHoMR9k71fCq8+s+qHMqaaL3LU5LpfdtXd0PJVvn59F95v5THSzdV9cG/YJ20/M3Gtdui/2X1KefRK0ZMNF959daY4f1tf2cPairWqY7oEOv8R84U1RggevJuVnr4Is5hz1hH5H9KdxxInErrJrrvRImWNyi+1EjFTpCjrWcPidsRNNLYLbJjQmVzoNseHtjtzu936Fsf1gtzNkHo91EPOixViym9+erqiEROJoDRQLXBthxtY92SPmKPh+8XsibYOmHvHooWzMxAJn7bjyCAV3xKpjFbaMlezJK4OyblvScfCvJSoH34pkZcJdqphPm4nK6dgb00GpKIM8lJewRnrP0lwOQMB1jYW7Cc7Ypy6m+dA7vVsPjo1VfYY7Ej28zr1F9vbY53xkGKMseYK7IWfIi9g8GMtM39wi0zLy4GeeVetSQH2QhJUtrg4M2UbqzOoMxd6brHFdrL4/GjJWnXOCvovn0ebajj7d8cuiof/VmIW2KlSc9l1rvCxfbFXWNXna5tFaXuug5TRYMx3hz3vq/IcyeTTHP7Vi2TF3z1E/dkmA2fMI8x/8Cmni9cw==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAagAAAAAAAAA=eF77+x8E3tszMYDAh1EaB30PGk4pvyH0la1nfoPoUL3In/+ANCOR5ox0GhaOSdBwvAwNx0BoODJA1TGi0aPio+Kj4rQTvwXNlxX/IHQplE6A5lN09eeh+VanQv0KiNaE0r7QfAwAzTdGEQ==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAfhMAAAAAAAA=eF5NmHc8lf8XwDWVykq2kuRbV3ZL3IeMrMhIiKwQsvcoyQ5ZyVaykkoURfXhsfeoFC2SqFA0pYzfufncVz//vV/nPh+f9bzPOc8F9XHfTtVBYqTUMd3qUA+57oXdjw5gBvh7XOMu13Neu27SKr06VG1Kb76zmxzKy9VmsE6vVix1PrlHxhPpsO6qK1U1JpTi8txk57rIz1YLD9JVjIltejYHFXWC0aiTQO2KT5sJZSGzeK8dXaQtb+K+4febCR2zpHll0wgUpXX0o9kXCtHsxlFyy7STVDr3ob3hJ4VoKbMbG/udgaSk7U+1nKEQb+o6OsaiO8hD1SXxRiEUQmetg7b8wEXkk1O8YU8khejgCB/fer+dTKt++bwG4h7nhn5wtyejnHCHcMcLFKLUjspk9bGN/D4u9MIqkUIc0patL4i4iPq/U9/OR1GI3Mof27K428ifR13e3A6nEDm12i+r4mJQmvQZS8Y4ChHLVKLWp9ZKCg/n9nfEUIjE+Vm25NkU5Edh/zwBz/uZ2dmx+7aQ6lNdlQeBOYdOuWwxjUEX+Z5qmoZSCOuSjeHahc1k+LJtjQww3+8+TqIHXiahN6Jo6QjENRj68qKeNpH6h4aSZ6NhvVFj4f5RUcg51iH6Bvx+t358Xf3yJjK++iuhCv+f4/iDsXCD9cjlnVV5XASFEMlXG5qXaST7FdVWOcL852oVdWxvKVPjfePWN0Gc+efCguzxBtLRgXGbFrCb+OSoJoc1Mrgt5tIL+zWrVrnRO6meHC1WcJ4Jg7jn0viAFjs0s+Pm+wrg4XQ3amltHXl5+SWJCZifHTfHlslfSii5iUf3DTz/eHyb2fhULblWX+XhdhifO3TiT6F3CFUzcZfvgbMUoo46FCAiWEuWe35ebQS8zEq4vEzPncrK5a9IG784Ph3uH0nqr/Zmuw78stHmnnjuCdSe0F3YBrytnna/qsk/L41s5YGjK/r2fgx2R6Pjr/fMn4P529HuDyIvsxqPfAIOKPC53EkNQDnGjvWJsB/PmGj34wFpZn7x9BLg6pzNO9dNGyIjLWHlIphvUQnt/O+TK3xYjaeBmUbXCCRvO4vu5+/QiYbxgvVp51tJdjSy9JDAsXoZFWObfFCh3FbyPIxn9vMZnN9dMiQ2/ssnmB9vget1gSRPxHPUtFMGzk88g3Y+FeSbttTaSRg/luWLTlpkAHrBoXNcFsZbSdD2/w6pzs77Uxf2N67C79vzOE9keXjviC6c94sh2v6WkV7xrc86YimEUJ7iMvWtq5FK4wb2KX8K8TCctn+lpJRy+pBtAIVIUTuzwjXLkjrkHNlS5CBK3NWj7c9N8p3A6tCdwK03+uo8Jfegvf4Ba+tZ2AmGCtr6i0mx94KqVODGAlFXisFRpKhpckyD8QSRMNQL6ysk842eLNMBNuRVIT27LZHinVcutQzF1SsNBmH+eeT8XcvdNcDla54mKAT7Ixsn/i23RiYJYbasFKtDOeTK8ba9NH6qlZbqtl0DCf7QF7AIkKnZPfckO4s7gywMHuSn8d0jQpTozyZIjZm1Y0+7r4Kxbai0U9IFMq1qkWMHCLcT02bUonUMT1pYUU1GocXXXzzRZP3KJX/54TeB1b7estRN1UqqJeQSxQO/t248OuxP6qJFjouxL0pp10D7EisNntxRJVNOtgUNHNAli+MXeW3bNLU6wB7tWWibaAUfjmE/7sYMehz4IBgux+SbOzwPfgzAfqSz+p333UOijui3NS/rhLIxIYv9OIPZOOdTatXKBJRbpdOsOrSZUMJ+zMdsWTrYL5Sdhggfp9FTrylEP/YjnRuVB1/rvjZC7qP50cxwX15jP9J5QMZl3qtSlerj1nXqcgK8f9iPdCaPsXqJvbFDO86IysiBD29hP4pinrbWOuLtdxa197v4PIT7mYX92IbZYiwtrMAuDTHJ+c3egvsYgf24BrOKfsHdl9REJE0a6ScDe2I/0jnQPFqciy8H3ZUsft4F/rDDfqzEnPROk8p3OA15S/35LJNFIQ5iP3phjh6pMVO/kIKSBCNFbdL++ZHOdvfXx51uzUJm3wxPloFfhbEf6bx8JresTCkLsYemitUEUQh27Ec2zN4bqnzTfDKQtNtpgeUx//wohXnVSG5Kl2EaaioTGWiF/PAB+5HOJ1k2OOgkJaHo7a4XneE8erEfIzHbV8nIG0qloYOSPR9cfShEA/ajOmbD2myNJQwxiPN93ZExXwpxA/txA2bLy948An9OIrPA32O7YD07sB9NMb/oPdLctsQUMcqOPFWE/f6N/bgS86Vr9dJqkXpUo6BARppf6X40xhwQp1j6SCsQPa7uOiAC+fc29mMP5pmrC8ZdpSeoDUkF8dbnKcRp7Ec6U1R3uX7n0EeP10h91Ab/GWM/PsJssy8545WBNUqXMOPs/j8/pmEul2C2mgzajkIS7XsbYT+XYD/SeYj9poVYsiVK8Lm9G8F9fob9GIc5SMIzWPu/QOTyPEXVFvzYhP1I5+VvBAKGQ84iy8s34uXsRYk67Ec6/3EJOzDX7IYaKWwL8szsxGz5oh9bMO+4rP6KtcwZfeatteD+Pz9OYQ4jVYK2rDBFXaVyT+vAh2zYjz2YrzqdkNTz96F+MRyNo/lQEPvxPWadbZFMjOstqAMHJf/6cB/2I50/GE1m/zrrTnUX2PbXh7rYj06YO6ZCv6/6oU2ttV3614d+2I90XrnGrvWYnD61pXDRhyrYj62Yfzu6Km9f0KYqeGI/miz6kcCsUj6TsbDWC60wVh1uBx9+wH6sE1yWS+OH98VN+Zvc0PoTDUdKbnUSRxylrCT5esjtV6PbbwDP8jAbv7c1RldOKbIUAxvgOJ0/6fTllh9RR/xeidIL4NMz2K8iC3J+jFB/MgtKZ5U6+aMv1w7ZJLyOrB4Z0xjKtO0mx3hXWd4GfvvO4uH0tB+Sy+Y+dwm4F8flMVsZ8NxS7g1BEywMswPgYwL7uXrviJ8BsLiwQ00FUzi6sp792WCoJqHSv7DwLLmL/P6C6YxwiCZx8OuFd5JvQ5C03tdVuWc1iT04vhOz8O4vqQXcyYhZ4TVf7/RmQhb7vXNDar/Sj82Ey2GvrNLicPRW8cHRg7YiRLRG5Ub2hk4yaPfDVa7AEXNmd9+JJCOFIOV7PBoiRBKOE5ilg+scdirGoqBHmkWOM3C/cX4wm0pM3zhLIbjYHLeKNIehiOC0njMPoD4DP2l/6yA9RkK0AmugPlvV/OmcZSrS1MiJ3lcNfsJxdcy3j2fZbQpWoXb1yoUIQ702gPPLK97BNU7gZ16TxKWpLPHITasssyBq0W9RQh1knKBzZBm8v5ECoeY3FJLR8PWYxEHwXQ+Ov8PM8MhpzRLOoYcBy7qCmOD3LTg/RSeNvukC//gsjZJ6TcQi3Vj2G2bgKxL8WK/XTkZ2RVbyQ/6xZpzxr6y/iJrS3nHS6qFKHKfzruBV20cy/ZG8kWnJGhivHOc3O6ZKY0bw49IwXtdCrvNIQNLiVQ30B0Xg1/ngNtKYszd8A60/KIkJNNdPRJovNpTyXKIQ2Th+ELN57uy+TvkEpPJx+nEf1H/ZOD8e5md9LAX/jzL4J3RS4gKSKuYUcYD9SxvSq5QtbSVjKxSHCiC/CBKhb6nBSWjCiywP9vwXp7OoqTZDxFQyYjP2Wn4C1huF8+tRyQhSA/abWV/gkl5zEtIxW51/Ohl8J8PU5zXYQgal+quywnqGfjQpuoQloTCu+1P3LkP+xXE6s6gy2Fl+TEOB6kHPhWH+Pjg/21x/Vd1Lq1/t474OLElGIQ65x79CPekaXvfjFjPEFSkrvU9RiIsbXBaqLicghpvSc7uA3XCczoycqi89crKQbEHjCyk4Xyuc36V5JlOXw3pki28wdD5IRKdu/HmQDesx7AvgGKc2kxLSe5RmIX90Bgcd2vo2DuW23DklnUQhjuA4nQ+7JM0tNUxFLuusupxhvtq4PqBs8kydgf+n+fC211aPRPR4H/crTsjX1O0yMiLOTWT2iMuCC+QHz/2xqipKvqi3/pLIp2wKIY/jdGaXPPJW1CAdCQsatdVAvb4X1xe7qzKFY2G+vAnW1yJjkxDVfHY4GfZPPHBczyqrkQwrkPnQBb/Psa5R0KskqLcPh2ZGwH0Xw3E6N+VxiWnqZqG6Qn0BK5ivEK5Pfh1WbaY9HxDkmvqsMh6F5ym/vQ/r4+vMc8tqbyCvtXlwjsP9nWguuMVqqovu+32VjIX3kQfHH2K+edZpZXd8JtpYaG7k9X/9H9OmzKHdwDuuzFz1cT2H/rvyCeXB+IybzOL7fteTxzjvNPvBesR2+q86YGeDvk7ZzwqF/4t/wXzo2OspCdt0xME3vno1rGcG10fmXF7n+GC/g1my3YpPhyE9hn2CvTDfz+Andko96WT/oH4Jbf+2Pmvf2mWN9v4R5ReH8b7i+D7MQ1v7n5zYkIIObpMQb4Hn3+P6amPyf/rDMP+Ja5dai1aEIPueVRe7Ybw+8JO2SR05c5bTNR7uT/WK3+85Yz2osQmjHAzwvvbieAxmkzk2Pn3Wi4g9885CVcSin2j1WdeblgpzGM9p486fu/nD0dWiTwsE1Dtt4KeoqFoyxcJiYTwY7od/x0ADxymqaIyVaqA3hejCcTrfDNYq4clMQpX9/hVa4KMqXN9NaDybNwBuakQd5vN+yDfJpvgr+OAu+KnhHkm2zxKvfgBzrHo85WehREUi++N2eIHfcPwh5iQB5kMXZM+ioBfTrEkw30JcH2Y98Z6h3c9Nlq3FPzWcEHP3cNZ7uF+K7uOQP2vIhk8FNpm07w97Vm7Zz3MSFU//TPgF+0vg+HXMg9yTHfvDrZH9zcp2HhhvC64vGZ7MFj+G5/PQqy8fTewR6y53fgrcH64NtPxWTS5z9nj8Ap7//kplKv+XN/LgPe6kCfvHjeN0/uJLOlw+txPFESp310X+69/HdJecXwGcWjmitu6dLQqZO9kYBec5WknLPw/J+0mE/17gnOW/20rEXZHdOtG5bxeh/8Fxe8z5c1x1AsfsUNtmjy2bYLzHuL4tyo9k6IPzPlK/Zde0litS8pq/6gzzaTCj5Yf7pN/aaBZt4MtNZNWqU17o852TrNyw3204PonZ+vwat4QsS3RQxt+sN/Lf94M89cnRP8D3LfeL5R47jsIU0G5teD+SGWj+riKPjwgvTQDuez24dcn6QDTLW/0rHnwUh+NzmCPW9Tt4yxtQP3B+UJqH+Ybg+tr96vNQHhj/qG5bf4WlC/qovFHiGbB7Ps2v98i3sw1RV4BfXFnLs8nLE8lZBL5Rg/NzxvF9mImAOc+6NkOU5M7+zR1+b4Tr82UZzWuEgO92hl1QKnRBLZdZvNSA1dVp/rtLZjEMRzyF+XTZzh/u2e+LVKYC4w6F/IsrYT7zrnwyp+YwUjxuvDwbnhfD9X1ups98APCO94bKTD42SGheItqEdl8naH4qJ+V2lWvXAz/omy4OXOOHethEGcXgfeHB8UeYZeUyT4mIHUFPHltHOoAvluP+IPZRi+4P4HOZsrp/+m3QZJoGF61f/RxP88dtUnKX3/MV4Cf7mLq3HNtsEH+4aE805MuPOL4RM0tGixplwh3t5Kz+Qft+8wr3F9V3Ij5/AY4es5IueOOMdnxSGbCE/N4jQ3u/y8gbGt3VJrR+VoLrUuhBQ+q74V/Pw2E9rTj+FnNazM4Oi0en0RSP582NgfB+4/5ktH/nRRNgj9Cevl3y7mhLkkop5zcKUVxCe/9KSP7tat5cwOm1FjyrvfWp3+MdtXPGKMQ1HP+Juc1R7Peee35I/pr4zsPOokQ17m/kz7qy8QLbPX+p/EjAFq0u3sFkv1eIsFxGez+uk7ECqd5rgQui51zWiuqiGFvGcgR8FMejMY+ELeHYV+KKImOiBon17MRS/P0oqu7lnz/s7ESDqPr5Sx7WyERzl+zWNCPigJYt3N8iUiTGq4zG2WsW8hv8LJEUk4i7ZaoRoY3jdG5iqvZh4zyBxM0pJldo/RTur97anLiRB2zTmO/M+lkFCfibtBsmpFXr8B6F+1VALn3lrW4AHKKxmdxS6IE8dGx/mQAb4bgn5o58rwivq8ZUlsNZMyT0Y0txf/bR0Pw17ftVfnuP646yLdSfU0lBeaoDBPdtdHR86grpINF6j8Yz51OGau1OIv08L4P8/4vTuUj7Q2X1KVdqi8fq7bR+Thz3d8K338jQ2NLyQTVjHweKTn+QLRUoVFPGEjFyyzSbZC3LyKKxeXyihFapAXLl5sukcQWOu2Beq5EsaMviQP1Pqujv9zN53B+O+rj85ahMV7nQWjWqe0RhR+IFO4X+O6L2YU9TyPUOJX+5tKvo2vFWEeqNPaN/uRvH6Tx7QUNfcNyWqs/K+LefPIr7y3nbRbbk42P+MrEaKQ05qG5Ivl4z4PDcsPxQAlnY7fiXBarqvDL5DKi9p53+8nMcp/O3MGMZfkZ9akHG4ve7ANyfSnMtfr/zvqaek8yiQuUf8q/d1j+lYL37P4Yn4aFkWP8if+xqGvY9L4+C2xY5GMeDMD97yhxQUalG5Sxe7GcjcH9bem2Ri7ncJDNS3KifTNIDW1J3ko9ChEi2H86ko/EiJ5tOKOUmKCAFYpEfBC3G5TGX+2n3X7ivj1JDFvvhNKvF/rj77CKbWXbnJnLYUv8HYctyww==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAdgcAAAAAAAA=eF5d1ntYU/UfwPEld+FBQEFExeIm1MpbRO5gkIrZIFRgykALwYqLEpJgiL8lyBCQmzBBRe5DcGyTi0Psq2s6RcCBhIDGg4QXFMhHpeRXBmr7fs/nUE9/vp5xOefs/f18DovFajZhGXH6Kj6NN0zpVora8p/6Jz5Ar/gLBNiaeG5mVu991Hk8TYj93XjZ4qsbH6GeLxYT/95hceEjt3FqDp9NPFYRUZJ6tI86YE275XlO4ajRGKqYT3vkSMvg0d+vUN+Bf+od1HW42INSwZtXTlw3MVKiRPCNP1izNftaUQS45mPXRl1NO2UBfq54PXMoZISKBDf5dsUpMruoIbD7/3ZWzl32M7oCdrvm/NLNrAntAa9TL6nqMM9Dn4OjQxo4wQOPqGPgPVHr/VNy1NQpsEnAVMTp7S3T1zeYpzYvfFVNFYEzFAbzXHkXUA3Yd3KXjqdxPXUE3PzVF8o1XkoUB7Z9uyDeOLGRCgc7vT6Xwi2XU7ngbj/haGmMAp0Arz3btfD+43OIub7nrsNC+b5zVBm4euoDzjPRNcoPfOB1NL8yqwy9aQd/v2n1sibv08iu+B1iufAnw2BpPkpQu9LXk91at3rBeZQc9k0KdnKzT9Cngh6KUyTKx768dzLIZ2MCasjKjTLQumJTw45lVXXUoZT39Gzx86u0dyh1UVKqZuFnO5K7lVMPRa5vuHWhppzj1QvF3Urjbey1Xua/osM6dg0HzLqUo/22HvN3zXX/7HLtvTMN7UoWi2WlaJ7JWQk93skuJz3KoUfTQF/Soxp6dImtID1KQ+gefSzNSY+l0OM96DF3Lm0Vp5T0mAHPZ4bdE9JjM3h84g7pcTs4AHo8DO7fb0Z6zAevsnm3AfeYCS4LsTHGPcaCXZJY8bhHH7Cg3IH0eBz8/p1A0mMV8/tsdSXusQ1sueY86VEObvfKIj0uBds9LSI9RoNj+y0tcY+VTO9Tkda4Rwk41XGA9Mj05W9x8CLuMR683PbqXtyjAMweMT2Ee9zHfK7kkh7TwMMPdEiPZ8DcuIxU3CNz3oaWLSQ9rgVruFVbcI+60KPfjNgluEcH6PGtFY8McI97oMdOX3vSYx30aLEmnPS4DnrUHOSb4B7zoMfbwsHlS7U9FkCPXDd/zzJtjwXQo9Br/jE9bY/u0GPnw8JxS22Px/TpHsegR/mN6R7DF4lMOenQ4w+bR574J/agTrD41RSxC9jHr4302ge9yiQ2yhjnB2iV+VNyP7Xg1WCrBIr03Ao967CG+C75w2irnR0xC+wBvmUqJr17Qu/6E4fKY6gWyruYfp6XFffKsOeV0g7Vn0POwxY4D1LJ5bCygYfUwBzaNWA78Pp5G8l50Yf5vZWnyPURdCDHBbTDwC9saA+EJ5LzVADfL4ulWqTb0YMWgf96/SOxNfz+C34/OW+F8Hmzqv/thtSz6CaY7+HIxg4Ar/a018PnkTlPgTzLD7/20CAOcz7BO5mf/+M3cl6TwTKJxP30j2p0cT5z/7SZ81A7q8QCn+f9YKVEMuNqejJlCX4CZvq3NrtN9o8vOFo25HZ39i/ULOb/vzT6ELsY7DD+G9lPzPX9398mrNh/iGoBz5TqEa8Bf+/dRvYX8zz1WaqgK+vr0STYFOzPPO+GLDJPmPmQaiaucFR0ohxwwtOiSuxBsKCiZQrPG2aebeHxvq4VSVAg2A/M7NPHp2rIPMpjvh+esEPjfYva8R87wffb61VL5lU5fP7xy/QN7qoB6jo4QhZCvBw8m68i8ywK/KzaQ+F8JHX6+5PKLOuw2eA/J0Mi8bxj9ve2KC+xTmjd9PyaGM2pwpYy128im43nYQnY2Gpp1iivDF0CS0T7srGZHpUxp6z/vb+3Jymcx/ILEDMvswXcd7AvgJuG2sk8zQbvTFLEGuw5gZh9Lxdw47CZfeISKiXzlrn+nveup8WIjqIgcKxTRi52Ojg4UkTeD/7p/+i221/WU3vBm8G7wbucZWRep4CdAlV5Y9+nIeb9ReI3VojNPN/9nrUjeJ4z92dk9SzpkrwJMfcjFnEOYjP7bVDtbYvnPfM+p5Ipkh2zfBDz/pH71/PFTlrfAM90zST7oA7ct6FNaX/6EnUSvKQunvgseOPJdLIvuNP31xt6aHcjZQTeBO6C+bOK8y15v7GAfcLn9aqlj8WI40J7C3gFOO6XxiX/fv+ZxQ65NZ5bjozNaX/iMvEztjmYlbXdGO+jeNhHoVHC3XwDORqJ8yR+OXojFvsm+M8cDdlXx2FfBXg4bt0dfYFauKnkIPYPqv4g7DSwr2kw2WcesM9kEu46w3na9+PhjErsarA9eH+7yRt431XAvjtxc0Nx3JslVOSKghX6Wn/DruNiJ4LH4hrleB9mM/swLElhGH6OEutf63PV+vxJAddY6zNgtvvaVql2X0pgXwbzeLxh33p0rNbzSt6BbuXn4JVgXk1yjfiDLpQA+zTz+mi1w5G7aNNJ6nDNtW7l3vetAidz76LmItohyfc1W7X71kyP3rc62gXLMtR1/yQvIKJeu291wdJS2g9hH79opffx36FqGSc=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAIAAAAAAAAAA=eF5jYACBD/YMozReWvvvfyB4D+c/SqteD+IDALToOOs=AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAA1gQAAAAAAAA=eF4t0ns01GkYB/Au2mJDdHHpbM2OY9SPtTRFds3PZeWSbEepkNpxGwxjx67NyXQhM8zIxJiJtamtUFp2hMol73gZ14wS61q5JROzi5hxrDT2tfXn5zzP+b7P85y3ddtDRnFJO+5Dtw602t4Bu20MC4uQ551sMzdrMkHVo+/Xi1+lSF5OeoxcC30GbaexdbXI+0s3W/MCE8BVjRw/ReJB3L5veblH9BTi4VvF2shFr5hLp+g8gGt3tfKjSfglj8od+g3tcCO3i/A7MtCqC97XyAaj7kVHjR5jeGcOk+I1J4PHWQQ9A4DhWeMcBu9DKth9JneDOhnDnyt2BXCJMlhBjVcnIX9tFvfXD3w+aGpeCLrAw/DHlJF4qXcbfB1OjhhMwfChCZImkHJBrcsN/nAqhhek5+SoE57AlxW+QZdRf53ezSMxRQJwfm7pH1c2hotGvCvt7rdC838Fnm8uYfhEmdLWaoMQ+GoEZvMuY/g5slZv7FALfPel0dtOlEeNdo1q+FMEaD/Px9KTMDyKU68q0WmBPae/aTJHebNZ9nf9FUKgvbrLMhH1+/TGb1FQmqFcOhNjxcdwXWapk+5pAbh75+KxODSP024ymcRogtpLWJhJGoZblve7uD4TgCOeA6lKtI8FS+EdmNsIVVOqNAEXw7fL+6479mUAlVpnXwy6h0F7HjO3rQEmZ5IOayKL1hh2vrp5GYRZ6PPZyBo7A9J7F6VwrVypN43c4wIKWDIuKHaWbcxFnmFuEetjUlg1nzZYhvInDQ0K+BuTgP57g7smaP6BepnMy68e9nXtECWh+e7tLRUTrNnAj9pvUYn2b97CUXC5dbDj28ziK2h/4dDbsHmPi4Dx+eu2KVQvo1G0GiogzHbsCJlBtg8JM3IzZYJ8rVbGMNrPLkbhrW6vhWuM//CuRh4fM6GXW9DBaU+/Ew9R3qatAemxFhLoK/cr4yNfC00x43WEAI2nnYQRdD95pUw2mVoD8wxrFiuRF9MINvQQBjB6eLZdid6TBFC0AieqITnRIXEMebTcVOlvEg4kc4MqU9QvXCV263WrguKmzJNuyDUNMfuL88OAZ+GmwkV0n+j8HRyvOxWwWWPMZxg50nrBQVMzGihHz68zRPN+555eL9V4BAOEcp0hVGe5JcPxK3Twozh/wADd0/jv5WW74AdwqZVWcwi50ey4wOoADfiLlq/KkafSmZT7dWWQNbotLg29v+4z92FHVQRw9wt5dAH9xyfkkXgSoRRyU+6R3iPXRe98cz0qGjROytN05jA8V5zHtPsghs42EdMrdhxf7XCOGQFuRxKdbtsR8VNrOQrT6iIYVNB7JhZZKezXC5gOAhGdsVGz2SdwF89Qmn5cIXz+k6hwxXJpFHE7jwrE94hLHhm/StyN/UfU5AJIeHG/2h25nsplK7u/AmbmO23zDgzixmXAXzFzC1IPVh9d8fqnalL48F4QueeX36xZxNpi3eQ3JSevQ0vJWM6KvWbf+U9sdqXU0tgygZDmMFRuHs7uzoK6vtz/bT6wz4jz1ovSa0s/sFVUVNsV0X/sweEMqFny0c9sk9tf9BkA54Gzdbv6ZhyibMxWdXGS4Hz3Rwc3tC7eaPGhDB3KYbVk74WzCUSop2LALz55YdutPV5GoZT/AEZdgzo=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.vtu new file mode 100644 index 00000000000..1dcedeae552 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_0.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="408" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="1" RangeMax="1" offset="504" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="47.057242047" RangeMax="16654.467758" offset="596" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="2320" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="2412" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="0" RangeMax="0" offset="2508" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0" offset="2580" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0" offset="2660" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0" RangeMax="0" offset="2740" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="2824" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="2896" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="1" RangeMax="1" offset="2968" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="1.4779288904e-12" RangeMax="16701.525" offset="3076" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="4.4145e-06" RangeMax="4.4145e-06" offset="4356" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="4496" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="1" RangeMax="1" offset="4568" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="208.7690625" RangeMax="16492.755937" offset="4636" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="5164" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="6380" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="7112" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="7284" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAIgAAAAAAAAA=eF7txUERAAAIA6A1s38bI+xMYAH4kJyd2LZt234vsa+qKA==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAA6wQAAAAAAAA=eF612mtMU2cYwHGwDIGsOEg3nCBSHJeQZsPAJIBEjGxFCCg6NlFcQ8rYcLIxYDQw6YYMbLhqERRBQcpl3EsF5KLcQZH7BCtMMExJYMhlMIJDJDtmnx+fpM3zJu+nX/4fzpfnPW/O0dD4fz1gtyxeOzjUqgEsdf3dSn6ArTGdl+fkFcZPD5K5NGTvZmQdnTPPN5X9lerOQfzKwvHOVg6dx7QsmCimB8hck9nKS3T+q6vB05cHYY9T04MNip3nOXT+3Kfe1LCzn8y/l/ZoOoTTua9QcMLaDfbP1HSlLNTFa6WPzE8+izULy6dz11qjKGG46r4f8c5Va3+JOZ1/utdpf8VwL5nztg5dvp5P58x4je7wofM9kuVTMxp0buQnqRsbvk/mV7OysjZ/ofOd46Vnd9vS+ZYy11GOJp0nzPnUO8p7VPZ4xHV5wuwvBaq7DuKLGy9WDtuq7guI/+Cip4x4co/M/4kxbsxKhX0Fcawf8642TBLAPo441vunta9W6cN+CnGsfzL44NHInbtk3pUXvKc7lc7dp6I5cy6w8xHH+l5u8tq2+W4yly9zj2g207m9nZ2dZQid14W7vedpQuc5buPf7ZvvIvNdzIANyKHz/K4N+wRPOj+fKU0RmdC5HvMCnNPbSeYpRrXH2qJhT1XTw2Y8yhWedL5m7Z+mXO8g86jgkLCNEjoXOLF656PpnBmvlYY2dB7YZHHRYaydzA8lN81al8LugTjW9zHLyw/2fsSx/gh7sipMh84/ngzXCRxrI/MG0/g5iYTO9wkyByocYHdW07m2PKtcHTovCHXR67zVSuaW1d7zM0GwWyGO9exzzz4Zd4D9bcSx3ow5nzf7W8jcQlt/uzuPzheKHXtsBppBf474EuKrzPkTwaPzlyVi3+bEO6D/izjW3/Us1b7Bg70LcawfYObrX4m3yfx3r0Wp/WyTyj6CePbiDjejJDrPZ+ZHwGwjmRf/LRgq5cNeoqaHpSfFpsw2qOwRiP/EqeQr+XT+c8YQm1tUD3oc4ljv5bDRzHKH3RNxrD9WbxrvVXSLzI87HvC8rEXnu/84sxFVVAc6F3Gst/FPa+/Qgt0acaz/cKJawhbWkvkL8YTjkhads5jtJKwBXUNNfyvWvDuu7SboLMSxfsjcWxQkhH0A8T7ER2WhLvI2BZlPfpDOWt8F+2PExxEv7m6uedxWDboMcawv509FW5rBXok41ivusQ6EiuWgyxGvQVx8+qPlo2awn0X8HOIGSlmo46tK0NmI6yJuODaz0ddQAfoOxLG+wMRVIH1VDnoJ4hWIK5j7pUVjGeh1iGN9i9l9UUNkKegdiGP9iUDuuLixRGX/HHFhUFCQoeg30L9GHOsjvilbLrQrBv0M4qGIs8q3+H4rKgJ9K+JY/w4zYDbtCsl8pzw5RLokA/19NV2+8nTwC3vYyxHH+i7mgjm3dAP0NsSxvnctZEZckQf6IOJY3xGZmCH5Mxf0XsSxfiKaU1l18hro04hj/aL4evfDkatkbqHtlRTgn0XmDnpKmWQ0k8w99ANuV3lfInNRxrZYp4dSMn/9/0XA4Qtk7ufMDzS4mETmBYcK5i3zJKCnI4719T71pj9K40B/pKYb11zJTdCNAX395psd64eHjiqqrUSgLyNejXhk+6p1zvbTZG75+gPheT7o3OQ3O9T/B670QAQ=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMAqoBwAGWAABAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAA+DQywAAE=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAA+DQywAAE=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAHQAAAAAAAAA=eF7twTEBAAAAwqD1T20Gf6AAAAAAAAB4DBlgAAE=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMAqoBwAGWAABAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMAqoBwAGWAABAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAALgAAAAAAAAA=eF77+x8E3tszMYDAh1GaRJoVSjMSqX6Uxk8zQGlGNHpUfFR8VHzoiAMA3Hn3MQ==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAngMAAAAAAAA=eF612F1IU2EcBvBTeVEjJaaFEGgIiVlEsCIUZt0tAglJimgEo1wWFFKLYkUIKi5DrBnipoK1FCmaszLnV+k2tXJ+XGSni9JWotgigjDBSjrnPXfB0xMND+zGH+p23vM+7/OfJGlXrcvlshwY75PAlVYWzVsaGYO+VvYUZf0ahf4jw1xl24Z9xp7kbT06An08HA5/qghD70kpi27uGobeUmTUWeZeQncG5jPqk7FfTfKaZNML6IVWq1V/8Tn0Q/6UstzmIeg5OtnjmBiEnmmuCgTjsG/wmiJLhgHoq5RX9vEQ9C95/pQLziD0N54io68/AD04n2GOfu2H3mqK2NM3Ya8Tz18fdO35egpde356oXeK56MbepVY/y7oBWJ9/dD3iPV7Aj1JrE87dO3+P4I+IO5vG3Rt//qgT4j78wB6pfj896DvFZ+vGXpUvH8P9Grx/hqhXxf/3w19Uvz9aujl4vcroF8WboeuXsUTJb3I3DHmYzzJx0WSj9MkH0dJPnaTfGyOMR+vkHw8RfIxf5nzMZnk40optnyUST6GYsxHN8nHeJKPH0k++kk+Okk+Wpc5H+dIPgZIPjaSfIyQfHSQfMwm+ThD8tFJ8tERYz7aSD7m/EM+SpId5qOL5KPSTyw7NmJfTzyV5Ku6v+sKsCcS15F8jlNe8i3sK4gvkHxX80UfwvkeJf6BnA9qf8v9hs8HmfgYOV+GlP3nSMMeJN5Fzqc2JR+Dedi9xJvI+dagPL9LxdjdxG+S8/GasoBZPnw+lhJn5+t5o062TeHz9RxxNr8cUwpyawJ2M/GD5HzfrwRw1Ih9H3HWD3YZDIb0M9h3Et9C+oXa/yz1uF+kEmfzW4KyQeuHcT/REVevv/UbtX/Ki7jfLBD/TPqR2j/0mdgjxNn8qfbf3CPYh4mz+VXtzw4H9k7iXtLv1P4d6sD97i7xWtIP08X5+Qx6GnEd6Zc/xfmG/Tvx96SfvhLnTw/0EeIdpN9q5wPut3eIV5J+rOV3J3Q78ULSrw+LfO2Ank/cSPr5dpF/2LcS15N+v1pS8+kxdIn4LJkPtPnsIfTXxPvIfNEm9jd2L/EaMp8ki/3nhb6G+DSZb9rF/rgP3UfcSeYj7fltgX6COJuvEsXz1QR9HfEpMp8NifW/DX2QuJvMd5NifRqgvyXOvj/bLe5fzX/7OzJfat/f3oDuJn6JzKcB8f9LoM8SLyXz7Vnhp6GfJC6uinLjnz/6Dap4hVg=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAARwAAAAAAAAA=eF5jYICAzdI6rRwtl/ZBuQzbR/mjfDryd6Pxt5Gof5Q/yqcmfwcafysaHz19biHAH1U/qn5U/aj6UfWj6kfVk68eAFeU3ho=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAEgAAAAAAAAA=eF5jYACBD/YMozRZNAAxay9ZAQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAawEAAAAAAAA=eF511D9IAnEUB3CHJoMIuSAIRILEoiG4IG5wvkniaIpuOcIbgsjBCJyCKI4WIyQQr0G0CIrTQtIkUs/rr1oRxS1BNdY1BGVDkPWOxvh+189w773fe+dw/IXReGmo57rsAOnS+KdE8Aq6HTN2Cf1VKLhdRgO6mQr5A+916EbTJyq92Km8SFWoQU/E4/HW/AX0JUsocNlz6CG/0ww/nEEXo3oz04GdymMs/yn0YZZlvdMn0N2LliCpx9DbaYBqzYD+6ROj5lcV+mOE0VwD2OuUwLgOvUAFKkoFepoGaOTL0D3UX6tRgv5B9YcHj6Db9b0sH0JP0vel5yJ0ap83+QPoY9RgYDMPvZ8WoNq2D/2Hwk3moN/S/mcre9B3aIG8nl3o9vtz3xr0HL1PX3EbelCWZdfcFvROOrAWuwG9RPdpvSWh39OAMxPr0EecZkq5W4Meo/uVRleg39D/ZXZ1AfqM3vSp3VP//Bfk3rS4AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1100.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1100.vtu new file mode 100644 index 00000000000..5d9acf6eb3a --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1100.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="2.7424139053e-06" RangeMax="0.0021489021492" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="11928" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.96842331244" RangeMax="0.99999998738" offset="12024" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="8261.5848843" RangeMax="16646.829735" offset="13272" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="21568" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="21660" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456923936e-05" RangeMax="8.6501489359e-05" offset="21756" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.44334297245" RangeMax="350.66615469" offset="22548" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00097309942186" offset="26020" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="7.8807959684e-06" RangeMax="0.0021577025438" offset="27944" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-6208.7020503" RangeMax="0" offset="33868" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-6208.7020503" RangeMax="0" offset="34552" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.96808628748" RangeMax="0.99999993933" offset="35868" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="8260.9758183" RangeMax="16679.584196" offset="37112" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="8.1634184475e-08" RangeMax="2.1283434745e-06" offset="42500" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="45636" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.96955734772" RangeMax="0.99999920873" offset="45708" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="8264.6390819" RangeMax="16534.352926" offset="46196" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="47668" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="48884" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="49616" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="49788" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAA5CEAAAAAAAA=eF5d2Xk8VH+4wPGRpez7Vsi+r9mG+cZQ2ZcxdiFLoqK0CiWhkmjfbBFJe0hF89QRKUWSlJAoS1oJZSl1u50v7v359/36PD1mvnPOGfl+NJHTNWMiKBKesmd7aNFke3W3pokKCBZvDVHsG2fR5fes3fPiKTX/Feku2wuIij22kOpmWbbq3FzwI3sI0hX55x7XP68b6fIAzvnvN5zePh+4h2vW3hlyQ+rzt+wlbAfvZnhJDLx6qwynb7Qe1uhUhaAqt7aS4kZqGg/pF/c+KjLUsAXqDtf6JbuNgYvswWh48z9vgwep4+keoI6S+pS/0qF8glHpdN4NrS/eHzoqykbYhyU47M1Qhg2RR999UacCPUjWtiP2CfVZAelzjw7tv1pvA623jgi8375sugdKDul+D/ILpsw8YG/TYGAkFwNKnTfvlN/IQEOTwnVBMVzEqpLJ1ARlJciSE62XzTcD6+viu0/a8Jht/kH6o4kyBTptGVSXD3nW9y+GErIHNEr67cKjjJKXTCi+4NqZxmQAA3bGMBXskfoE8fV6pSBh2GOZYEGXhSSf4PGcZhvQqlQL17CaZ8b1g/T97Xt5S6l06CzsNc1kLAU7sgf176QXVNja+j1ygs1vcjY7ljLAtFNiKDTQCpX+vJnGniBG5IalfdxpKgavYnMywvlcQIwws2fRuMweT5KetbXy45JIEzgXtHm0bsoGjMgeOHH/ViPii3vfEjgRxbF5w1ZXGDrU5F/+bDGy6/q8q0dPksiyrDdm+QkDrUzEkl+YCVILJkSFFrRQh96QHiDV8TPV0hDy9Zf6iQsyp3vY3El6WInCcQMxK4iPFO25d5sJaOtP35pohNbt+Fq26dkCAq15UM3MEIKPo5fEOu65gXxEWsryyZdUPuwXPK8F3Fy+CBzPa6d5fHMHE7KHtHjS/VK9OPkc6GBun+B7ut4LdixX9W4WpKEG/vFvu8zkCdBIzmvZKQjJE0sDJc3dQArPP4X9+5FkoifGAPLGgv/EdnpCPNlDAx/p56skPjX8sQDBlR+W84kvB76H6T99rE3RZbqmT9YRBaL/z+utt0V4QV9eJXTsLgMcQkvi1fzmmb2yJH3e3KWZc+fqgnPmD795N5jAT/ZQhZ0jPMKh5Kw52Kb/UroU6Qdw4Qp1QEkNNXTorKvsUSLelFI6HQcnWe53/NOS73uAI54fgV3/5Rc9VpcsOA5p5r+/6w4VZA8l2AcI5/JnuzRBMVdnb2ecDwT5yHZVR99l/dpqkPLKSJUQ4lT76nTrME1Tc8Ucw0kvsMHzh7AzoqQuGZ27TpPw1KyON3CHRN9/PS0nhvSSdHd+x/X3aLcraui2Tp5wneq3ot2LD4Z6I8r0DqgRaZrPoi0SumlyWWPGWu3eQGfSdE8tyaRu6yP956q39b8c5qDdtBov3ZXeUEn2SB97gdXDKSOaEKo784Ozb8wLtux5uUx0mA8ydn7kftqlQRzSVOg+9qqbJkKrytLn9wDKFj0fUZNj1K/YOzNG2nWvzUH24F+R4ewNcWSPGNiTIgYtZI4JoZO7Hs6xvOoHJi1MbacMfqDOjwxeZ6BNnNDc4Ppp0Vvai2avyDuubiD0b34KlYH9bjnnxyBRdnTxecBVGScfMCV75CNNeshByUT2L0JIyZPSX9C4AoornVZHPZ8H+i7VjnL7dYgX7xXSj/a9pv384vWBJ5oB3pV7BwvS31YkYn+cqam6mouCdOOvOoqH+MJ5skdD2DN+NLUvjOZD8fq7gu/6BsG8J60Ovz4MsvoqFDqjOvWI+T+brVuPVNP4vsH6VHEGuOP5r7E7F8n/uJ7ZS+PuER1V/Xs+fjT862mclaR3L3vA72s7TFNbY+T1vXAFWJ27t/cNfKNVHabfeiNpQMS05R7ZVnSfxej3lnZjusGv447ho8z2ivPYT8isvoz6+1kQZPt03l0fcCB71jHsy4PFszLcRlnUqKzXG+1XAHVTkd6pbdU0qZ/u84fvGxDU3m+5kzuPs8xPuzQm/72u72hxdRI+3k8dmiQ9/5NC64lXt1gFAl08Oec8YSD6X89Sx/28a6HJJ9VrWVuNDhpIdwTAogG+1QLzxaGlXOtRxtdFxMdcs4KugwO0Qydcfz9KY8KFf/N/UF9jv+Ka7cZlwYsyny/lTBX1BFOyR9w3SH+9wCOAR1sKTTkRKznnLgeOhPpHQ6EqcH4d+zYNKSMiLqw0vatvnNZT5Hx68QMG1OP9q7D7t45djshdgAqyhfZ8U/EAdrJHQ9hPXQxmXU5URxtC9glvzvABYymDue1IA+qsiEv7ao2IN+WlZfZBU7SQimSjUj0m+JdHpfC31VCHsJdXfzXb6iCPImVDbh6J9AQTskfd0+6yd3HPgDaibFPRDcvxhaJJ//Gjp7XALVXGtHLQmDhS47v1jwgFiV79M6Dv7AyMf/OfUxOxG32938bdooCKc+o8DJM9p3u0Bnv42pEX7oV6KH7F98lt0f4g0pn6wZmiC1WNsdUD0qbEzct+ou1b2JBi1wpX7iJbWHngrM2x2k4q5Snp16WzY3MDlBCn4s8/jb0eIEH2aB52/vt6pu90DZCdV004JTEAtq2/lfSYXw8O9S0vufDQlLg/nnK5RGQO+tktLTxuaQ9Br4x4hfoaqXTsH79vjzzMq4wk0e0lXBoeEEf2iNJPerXXZy/aIwN0e33Tz9DY5ZCf8LNYVEUfpphGBw4PU4m1Rm+tnj6egwrqAo1zqG5Q0vfE/8ap+9TP2CvrN2172KqMzj2WS5ofz4QCskfJ7qTLFJkeikpYhBbfnBS45O0OycuyBaxr9OFQFV9krKw5IRK9uPVLEjviuVIXvyj87/UN/+Rj331mTcpUoQo6+ubG2se6DEghe0S5R/r6kaRHeYaGKGnCfmnvWhtofBp/sU1F9+91WKW0tN6cUEzfMKd8PxtKDant3f3GA36FqHmm3ftYcQj7R4f2F21blNCVvGPn33S7wVOyR/nYPaTTPUOXGiCI7tDbNbQMtqhsUhFxUQBB56dy8WM0QqjcUnCX8iiNsTfDICKfgedPVjhhjxRZsnqRtwTyLj667dRvBqwne8SHvXXBctuCZiW02rDnWtkcZ1j0+cIuzTY2qLKNTV+qtJjYYrlhVcSDFpqez6Vfx+7bwSe8/xB2EWSTfZ9njDauEPzkV44bmJM9SsTOL7btwNgGDsQb/11yIw8TFLSPRv7hf8SqGi/I529eTAiWNFpUaeTS3tuauSc+s5l5/aedN1Lprql2FU1ZioisK3cBWbKnlWD/wRa12fR6A602Mvrm51o3CNxh+WKD4ita2tuut/2/LYhQxpLUI5KXWSd5rJ6X9jjPzA/CvsWNEeOl/pS1X1RVKR25wlayZ23C7vDeVnVlUQercNXZC9/imLDVbmXJt7CvNHrYAeFucTphmPDTka30Hsv99/lKlrMrSN2+vI0udZ1KwX6X3UDLLK+HtWDOMav0RAasJnuWFPa+o6Vs0qu/sfo3opr3Qm4w2PybTfjqZxa9vXpxdhSdIJ5FOFJKq2hB4+1XcqkuM/tHY+/JbTtql/yOliHeEjFy3GG6pzGwZyZHpqlHDdGKODY9PNroBM5TAiE8VguhakJg3wUOK4JhssQxRX+YFueXHecyYD0zvxu7vtOrJee0xdAaVc4GlbN2YE326A12l771t4/3K6Av6z3v+OxhwEKhQTeNrTogL7285Va2FWF0Id1mswobChxeJzu1Qnf29cfOLMu6vYFDCakYrFEMCLcFGbJH0y4i+8igpksfKTtmRG/9+3xWNad1z50Rbciv1FvbNmJF/PHwHklvo6AVsf7Ch5pps+cHe56XFcW6RBEFPOFr9DFxg1qyRyXYP6x9GSx0XB8xD895I071hsxjCXzPWPNhnWJeW9F+a2Jz6dAQn9wg7bPUZOqicpWZ+SnYY4MClC9aCSP2F7ynRTwYkEX2aLrPuZhz8UieHPqYcPqWsrcvRG6oaQ4lvtHo+wXsNiotIRzuD14JP3+f1fGf+UHYA0Ms7+740M/yxPtHkz1LH3vF6l110R6jrOBV61KoWv5g3JhGTCBRNOQfeoV3+xJi7I7Dl4Mr+1ne6a+yNQ10YP+CW6o3k0ep016+o/O27Mt58Dsylb8pkAF2ZA/T/lLF6M5+bgk4oL4o6m1KIHSsqNdzjVFCbsV5KTfElhJ7vynKbT3/g+XwScVAREgezeyPnSrjcStSQRrCIgZrjvYzoJvswQH7+zsHRwKcVIF9Hltu3OUgyPR5tlOBoYOavnUsX3FlKcFt3aTIFGQD/X1hK4ODtGbmV2Gvgxy7vk+KUB/qFee9zg2yyB4SsUeWW3P8fKQP3WzGh3YGB0OZ1Y7tOVU6aMjmQVYy1zICJV3eWcdgg/u/S040cc6dPf/YA+9pBCYaKUF2D8/vPWYOUEr2IG9L+qS+kUs4jwGs34PW/l4TCJ5G8gPua1RQxPfTFJ38ZYS5xP7HLl/GWeKxziaRNK6Z/enYmyeqs4qLFsBRPJ9J9uCAve/EhntTe9Vh7HTk6Y8nlsM75z3FEurzUX5hzKqXZjbED9c4LemNX1lh8VrpIiHacHtPZFpk4DfqtH+MXhTr8k4IOOrbH2fxO8NnsocS7EUnvzf4/pCFUTxfXJn1soCfC8kXHaVlHbUhLu1mKYRdamOd/Pji5A9N1dnziX0Tp+bC7dt+saxtR+6WmDuAGNnDdH/k2HCc4BJuONltzyVs7g9FtIAsUUcpMDdeaROha0sIMDR+dNp8pul6elwcWf2ENj2fgX3fwfeS9f6CyGBpBtXw7/Utn+xRAnavMEXfwecLkFtL6ef5ZwPgAAcfY3vj3/en1sjN5JEtwZJyyuvwYUOTp7QfudwQn9l/2jfOaxPcslgJdR1K9tly1wryyB4FYbfYPZjtK2KAFk7Emk2F+YLxuu8KE3aGEOSdZFiiZEdk9NFH9mzkQrsqkheoiI2zZt5f7PuLa99k9akj17vhfM+TEBiSPcrHXpYWQHGQNEFx62/YPqtmgm19E79bshkUdciMPybsiOgmVOlSxo/YNYOuFBfJzOx/HvvFP4KBwzH66B6bdmYOywjsyB59w84XNt6bZbYYLdi4v1orYyksV788cf6OJVCCbkHfcnviQkCOJW+sCFoVY1rRrUAFB99wNumRiQp57Ae07jhJ7jBCT19ZGUzqy4I/2SM69lt5j3q/61ijsbJBbqVCDfD2NIx/J0mDfGuuPp1b9sSvu7eQ6T5BtK7P5518reXs5wt7UoG+itQOA7QqZ9mZZFN78CJ7VIX9o9PjEG5uS7RRotJuQsYctiWNrs04KgomaXJJVR4OhKJ8yIjno37aKmXHF6bjmjOfrwjsG3meDLxbxo06SgVdhu/YTPfIArv1gyDNikgJtFAjp7U+0A7mi5nVLnAxQJRmk4Xuww7Ep6tcS9KVOYD3T8qtI5stZubLY39MTL6w8FaFYwXCVxOS7ECO7CHoGel1HzKdrzQbQmQZ/8IbO73BYF/1I/4lZqi7TPpAsosjUfmrqmlXOD8Yzcv2eHzYAWUtHO6yX89pVoVdbeWEXIyLPtyjjO8cmFCa7oF+nfSk8+3svwcRZHluWD/vvAc0HnJpoERYoE82ksbwxZHgeZIsbFQmDFdNYgSLFxnOXj+xn6WlrsnIN4TwgYdOv56oQjPZw3Psb+95D9issQIn/sJL9/44g7lT1PvYB1aou13s9Wi6E1G5oNi8uEQMbv5n/rTLiEreLBw2gaHdvHTvv+fLguyhu430HXrVjQf8l4LgYisks90bzjVstP1wxwoFNSwL1PjoRGywnRC8dk4MCnvYa4RrrGevn9i3yW3gPf7eBD49P6yn560FRWQP0x78fYMGwVwKQ1K5covfM4FivO0ym4wFKp5w8DXb70xsnfy0amK3MJz+z/x87OLSY3o71xvCOMfw8bnXVICD7OEI9rOZ0uxVFlYQY/DETUOUAZVNPI/1gYroagwPe20XYszvTvzex3zA1Khjthibo6yGhxyHV/6okMcerjZ5vvmr3sz+t8geKNjr45Mqd3kiGMT7ly4WDBypNUaJPCG789JcCM9LRlGj3tzwkEO+dsM8nZn9Kdi3RPjHDi3QhguCLx9N2RhBGdlDEPb25hufvg1RIenVVvVnVx1AoFiiVWxcH5lfNzdn6bgSWhNBgmuq2GGTUnKccx737P0du0PfVz+9AZWZ+fxkD0bYJ2vnSCtGG4IprUPn0B8mPJFH+ZEe6ijIX3TwZZMrMZUxP5Rw+8U6/Z/9p93o/pzY1xEL4TqeX0f2II/dbGNe+tk3WlCqeGmy8LknSNiv7048JY+6PWRlTaUYxPbNL3o13EZYtsz7qtft0Oz5xD7/3Fnf+khx8H+5tOhXviqM2/3rQd6TdP8xbtlzc5SgXOD06t0hTAjK/i3pM/iQ1fTl3bH+NQwif/+ZK5Kvs2mifmJs7vkSM/PPY+/+s4o9sP8urffs8WDJAi6g5P7raS3Y6Y1l/B1r6mm6NbFtr+wQTCzWO/PTWwHy95znO3GHQbxKtC7g0R+lbZf9WP8hX2L2+yl2yTeE/e9QCWRdSM7nsPjXo0TsDRkx3391KqFlKubn9v19X5pCOS+s1pWBRPpUh8jXv/3QkM2NVUM0Q2/+D7EXls1en7F3f7FQfacvgjQ2O4g+yV8Gk2SPpvubT4N28CrLI+tGG3/9HZpo6qTCBZasDGrxvYvYrN2IMnNnPUrAEEv9P/NfYT82f2W3rKoIXA4vm3jJYwvjZA/TvfimuPYd8+Vh98bstZ5lRtCm3Gyxbb4x6t64M3fwuBtBlNU2+x2aB1vtH6jxqXjNvj7Ykw4njxyw0IIQPP8T2QN9E+kj7ZqZydpUUD2Orh7s/U1rnNyu1NRqgigFq6X0HroRVzdXxVWe4AGzrVED8zcxZ+ZPe5ekTlLCDh1oXRkaEJc4MN2DPHY+7hfMYk1z6H1QEFL00wUlpveMhSb8fb5oMTOKl2ESTTedmBaabLBLlmYqYOE6M5+OvWck5dA9biV4H1Pv+MJnIYonewjA3uVPexDbqw/DeH6CTZaba9Z8ROfiYTzcwCRe9IQW8419ZZ1wyc7tP24P4T631EY7KWZV2OvyKhdzawtDgNvoxEYjfThF9jDd11Xv6dePlYOot7JiP0+IowJNq0urC4UQfdWPto5CJsHnFXj2dUAPiyrswF3Uy5h9vsI+v8qnpTuOE0Sq2r77cBnCObKHROyq3xssVQRFwfliy+a+QRNkr7brYsJBfrR1w022c5NMIrCz7vIio7eszBvly5430WfmH8I+9HgjpUGMHR59VG9t3SsKLmQP073UtbaLy74KAd/IhS9WdTbIYWLnb41X3Ch/+1aNaDd3IuDRqjXC4m9Yzk80fLzdTGBcY0XmvbG71G7sdS/StW9dpcDDycJPLgNqYE/2MN0LNTdoNWTxw5PAFnuhOapAdPi9CGkRRfKVAnOiUtyJc0Za4w1i71nvTwifLek1nz0/2O+fDxM9kckNHzMDKKtVDaGK7IGOfcgqaPOvmxKwLNL+h52QMDxJWKkUcVMVlQ24TL587U5cEZNQbl0/yXJebbe7uNpu9vxj/8C+5nMAUxZ+PegwXO6hAvVkD7uxC1i9nxvKoQkN3Z/V0/0Xoa6H/Otc7xkgeamDw3RjDyLZlre/8CIHpDb3fC8o9Z49n9hvZh4KH/+kCt6MJ6vOFtDgK9lDtyTpB/Sffiz0MgIHvN+bgG9bnlxZhORfFiiYr/Yg+qLC4z7c4YS40LKsvnWz56f7BenWZvtbbGXVITW0IdozzBJayR4ouLdztChKCzOGbbi3cnxwuGFAF62u2DGwqsaD2Jv6fZnGFBvE/md+KvZre4OySkaUYDT+V6HVYQQ0socM7OEvz2zgLTcAe4n6XN84Iyhvv2D6e4s66s7yuXZU1pNwt5mr1Pz3+49nsKFezwPq7P03m3Sjy2urFh1bCBQ586vHDdSARfZQhXupGp7tUpzaIKChMmd7xjL4wP/ieW+sAqLXvfuey/Qk9PTH/ZK9R1ljtWfac+Jm71/T3id99GLtQQnw6OG71JSphr6QPSRiPytqZPmCQxkqfkRp511fAhTLQ0dSJc6yrCq+1JVe9SQoS6gx9cExtPb/zA+adkZg9M+vmTQp9R8sJXsjlEj2tFXTbhvDVj2nmHa31H8474E+rNKd7BUuUICg8+PZtTxexM38/m82e0ZpT/8zPxH77pebzhTWSKDjb8IUV9QitI3s0XRvOMe0pn2RMvqsltY0ES6JTh30bXQ9qQBVV51TftC9iIXIzvJe7CjNXFNFlnfj7PV52jed1pKruiGBunUMRWz1FGEd2aNE7OUnrH/sVVVGmTd55j48ag+Jjm6fRgsv0ba/DhKWzPMiKBwtLfISiazwBDMJHjXPmf2jsVed7LyY1HqGVc8+4Tlf6O/ne/G/nrUEe6LuHvkdF66xLPB+wwb6FScbFZA8z+bTplNehG56drX07dGZ+cuJ8E931ouYTftzsVZ1uSkJeMXIuW9UYg2NZP/3+Y10nsLkofYwZTiP9z+cFBC/4rg6qlL4vL7IyJto6S+84pP7i2X3Yu7cqhqj2fOD3WD7g3M3YCEYpEbGXEyzhVNkD93ypE/9Fj7Mo6ENK3p/nZwi/IHvZk3mpJYu2k5/HTtxzJt4UnBdZtlBNtCI2DrW92Rq5vsvA/vVGoFjjbFK8M5h81hHjgtIkT2swS7rum2oz9YALvg2nhIxCob7o2KvHd4aIPqKhmTn796EHvP4u86nHBBnc2fl1fVus/cX7Nb2tz2sxdVA2ZtPuHmRMzwhe0jEXnk6/JRNvBEE4v0rep8uEbiqhRIvScsI6voQCa3OsWwyFJA/ZvO6EqnOnk/sehG0xLlvFOBLUpa0+DEpGCF7oFwmXcJPqUDghh78sna7uKOLjnp7w+crlnOBg7EY4+4hH8KDz/KiQVQ7raDn1lASh9rM/vrYe4vHUta5TtHe4vnbyR4twj7vwTXXOjYeNHaU3O/gp13nBVP+3ifuCqREjfgQx7I6e5xvcSEH6on7urt8Z+YnEqSrMWMVegw0kFQXX5Vvlhokkz2i4z799NTKCT8TdKn7UGeDnhOyjj3Fci0wharjabQsHV/C5lNZblQSL4ra2JUTyjd7/aecIH3SkFPpU5Iu0vMdP7jOzRZwjxKxm710WZ8rQkP3z/Ofcv42yUoy8N5SssAY+ssP/2w44kt0R8TQHhyeh+IKLdnRytn3twr7WV5jDkW6FuILtNrDfGkOuEdfsRvJPUAfdKgI4fn3P4jrCR9fBFXPT7H+jPkSCf20NrkznEgjVTDCVzd49vXB7tqzss9nSg3d2KBe47djKVSRPaJjN1y1mMfY3hgVFpPz3ZgxgwsTdSBRdrv1NUM/oin6eDldiw29WH7TtksgcPb+iN2J861yN48SOvuh8M+8S06AezTdj3u5CGzr00dZmYzWtWJL0BAvof42Sgi4bC1DDmT7EQY1eX3pC3torzuvfG/Sdpg9P9gv/lINuW/MiYabNjXI7HSFJ2SPBLCzc2yqbX4mgt7e2Sp26C4TbqdHZ+xQ/vt8uGFOUhT7cqIDScz9EPWVVb/zdQp75WJI29zzm6YtYTbtX/iz3//sEgIvvP95sodpb3F3v2o+LAuP8H75pu/OyIcroqqTcOUWfTkBVj3Pi9Z+Z2mrG8uHBs8+n0/797kdEjzVkpBuY261pckMjpM90E+Rvjkv0P+4mAro4F7/VPPlsm45xChJ5Iq8tJxI59J32Dj+jfX6KbdKYe7gzN8Pg7Bfcf4+sOWrKEwpqI7trmZHVLKHaOxnnK7lhV9TAP5Q0RGxhbZI+163uPKIFEqsW7pCXsKfuHViInEHzxeW6xcv59JC49n9sYcdFWS9nS8Eam7fFzhRdACRPUz3qSN/ajcdk4G4RA3RMlM3xGPezxZNU0OJqGtSxtOfGJbJXXON5yeLWdd6bfvo7OeXsph0nV0Zrxf8loW1UzkfJ8+4Ax/ZAx33Wp1mg7U5mjB+c6iWd9wKlkZwVX45Zom0mxoNnlb7ExsHucu9gkXgg4f+hJ/d7P9/MbC/u7Z7X0OIERg3oBRFB19gkD24YL+2geP6GQlrkL++/1tYQQhcbUuvEH5gjygr70bs0g8grpyMzGCjyIHJspzimm+Ws9fPUNLhzwg/dyEdzm/WfHFkoT1cIHuowr14pPlH4T3O0In3i5Zcfa3A1QnRX92i2G0IIGgOGxfwxsmDdLv0W8NttrPPV22km8odlvOwsQa9J/ZTKqCENpE9UHBf3qLIEjFlwIVH7u7XhidpXJq7Yqz5HBHcLuOVfxdAePYMU6/FL4QJ7DPvL3bfb28UT26xgsWBYseutAqhCY1/PXRjf7Y7L7Dip8tMn4IyLd/V2aPEnCsS48xAwnwRG82OXQ6KPhtceG70f84/9m33tdXaz9LBO6XXIETXGO0he6Dnkm4RMmHjuM955vevu0lJSBdyQpTUdUV5xwP/Pr/Vd7l7ysOY+1DG64P02dcHu4j2iEm2rDWknigYU/zAh26TPUz7lpqJ20MiDHgWFnMlfSAQme9be6b1GBNpX5xUvs+9ghATOtrRka8Cbnm0kLlL1GfPJ3YVZ8YpgSlb8NDWcbvUIAeI7GH4AumNHztlRuw8wRz3krdesq9W8EZV9XvODuxYQah3+rWGftaELvzvT49PxG627srErtfOsFiE05SveSkIkT1M9yoi1QnfE/xAG8+PV3pXMEfPB9FFHLT2Vq8g9Ne9fbZI9e/zi0buMpE3f8+P4edHDIpgJQV7X4Kf90GqK2Rk37bYFvqWhnugi5JewpCbqru+HDZ9k3whfSEImKX7WZ/o3uiyaYOngGwQ0ci0ZQoLawF725tvi1vZZ/Yvwd67W1ZIn9MFLA56reN/IoUYZP/3Oke6fHZLH3+hHyCX4L2aoctA0dK4pYXphYJWjYi3+QQR60yvNA/+1JiZ373of/f/Q532d+nddU3PnCDELWW30HIbUCF7oIeRntaX1sg84guOeP4Zk6olyVzuKKjFRV53exAR1b5HT0tFFYQfHIlYfZc2e36wK3w5I9h40A66zzXJFW5chHAPVdgThEsvqNd7Qp7YDal5Ia7wwkck1tTCCrmbhZtUVwYRR4oz2/lExGCk9v/Pp2M/W11x7ba1CSS0xRwsD7BFY2QPgdiDMsLEYquWQJjryowPlkxk0tl5EVJkIOj0TievsSCi6cTq4uFTQzQpvH/LxTLf6svGlXTscz3s/2RFiKDneH4C2aPuXNLfy/tf3O4pj3Lx/tzv1yXbKxlA0B+l6NsLgokSP7Xo8mF2VJQVv86RunRm/3zsl+5sy/uxUBV9ERC7+VjVDXjJHlGwz2neJJx/xhBJKycqXzcPB/a5dSZnWpQgM8+NUF0eTOj8MTsmLj5GU/XsTtt/ZPb55BD2qj0vs/szpVHtZfcP0jH+8IXrX4+yscfZuH5Yckt1Zr4h5VHWnTROyLfcKXA0K5joUjouzy3aNjNfJFBHhl9KwCwR+2W7r+92Pv1Jy3FJbY4qcoKWP3X/2yN5OumPCzvuyl2Zhzy4ZatOWovC/wCrD6LJAQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAhQMAAAAAAAA=eF5t0ltMk3cAh+Eo0VALyiKtwuSgG2rAmFGBUdlE5zjF0qJRRMFySosiIhUE2RAskq3hoGIQASsKpGpKaQC1CHQeUBEtcjQ0CigWrGysFIZiPwrqLrYbf/+rJ+/9K65iU58+GX3FXzgh/cOCpNyhzHKWYHyuypki6DhY1zFJcDLE6PmW4FjuVcErgvG3vMY7CBZlhUY3EbQSJicqCLL3xw2dIaiQ00uTCIojfHPDCfZc2cXdQJAbPtK+gGCvZ4hm9COaVSDIqCdIZ9XHpxIUjdjcCCHoJuLS6QSpjZJ1d+bQ79Yw6WcIutXV9rIJLo/TUgOz6DDr4e0qghGNPz71IRhr8OtuN6PXtEldEoIZnhVma4LZS+c15M2gwa5hW38g2GB3lF9DocsqRTImwaHdKutmE7pe0aVjEgz0d8uK/4BOHxxcNJ+gcqpsV8A0WusROy/nPbo4udFgTdBpFTPU5x1BeaoqcgpVqoM39P+DHun4KdA4iYb96jpKTaCihBe2QoI6vy7/SCN6pZBfyB1HLwzEpcsNqJ1TuO3vf6O8zRR3zxga9CFDX/UXulZ9lx7zJxrI7OExRlFDatvh4LeoUMNbMvYGLaZitx4fQT1ycmQVwyhnrzR1hQ71nqYH5A2hOwL2iMteofaCphnjIKp+fK7bewDt9Mnc7t6PcvnSy/zn6FKXbmmmFhVX91bw+1AvF05F1DO0c8Fw/s4e9F2rbJV9N2oVpeAZOlD/I3NFde2oh+Be/l4NqnYVmmfa0AdBDqV5rWjJibRsxkM06NiFrswWtFwWzdHeQfudTh7yvY2aOIqbCc1omki1WHILNTgqwzUqtDUz9NuG66hzfVDL6Vp0N4vWI1ei69boTdxqVBN9qvjlVfTZc6/zT2Wo/SHhpm8qUdNEWl9MOWrDsBOvlKKFkW4m5xKUMdtQY1mE1uS8//5sIcq9vEzHKkCPldroGyVobIp50vI31KJcv3aLGFVt3ybdl4F6FOSvTkg3+np+oZMD7Wv3FPQ+7eK4NvHf//7z//7FSsO+dBDlX3rSPiJAzScdS2lRaCX7NSM7AuU0Jik3hqKVbTcknTyUo65untiGhrnwl1v7oT9Hn46Zvwldf9byUQsb3ZdMe+zOQm1NxeajruiBr/Svn7igF/lZvHQHdNDCsclki8qyV6zsW4JGUClRyoWovmRKt2NuHPwMjucu2w==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAALBgAAAAAAAA=eF5d13c0133cx3GVkpL25IpEUiFJSX0jpGhdGSU0hIxSRslK9h4/exMhI6Ky+9THzNamtLXrkkQl6+7cv9f3Pufuz8d5ft5vb+d8zynhag1ZmofnqEw73sFTvOUOnSfH9fKKtQbVU9eRuau5FkTPk+Dah4+8d/+mTs5u/P/zIhu4FlDP6Ek8vZ+o8ejE7by2ka5v5UmJlLhD7/By/a4/M2+HsinRGc/1WvRu9Pqq2eZVgvYke1j7f70afeMI1/XaZ4w2D58j1yevalVQ3k2NZFdstOO/Q3uncD1nxorX883OEH10Q/REfq5PTsnIOcDnRebzcq2Hbgzr8txe32EcTEL/PTGw/K0O9b46z2lZXzuN38t15fgPYfuLHIgiuid6Gxx8rIohzs7kHd57ofNpc93eptVz6UMwud7YYrBugRE9PUff+015O/Vs4nq6lI54v4I3KUG3R1+BvtJr9RKrEQ9S0cy1Dfo9+NXQ4vFOnBByKm3eyzSJo/SoQ3xYukc7LYXH1MZCpiYFknj4IDqFu8/Zb5M18ia16VyborfA6ue/2GU9DSJiiVffhPibUrGvWjZvj7RTY9i/eNFUp7Ewkg0vRW+CqUZG7PBQGFkB/4O+Bg4LfSo6MYZD5McnO5xKt6CCBbeTMpe305Mw53OfhoJ9GMmCZ6DXwQZLq1MEcsKJEDwFfQk8MX6SfbVsFNGw9Ju898YJOnJCvdGst426wYvGVISqPENJHvwbvQnuT+2XfmEUScbDP9D54drrA79ih2KJ0ua56d4ip+gLjv3+3PY2agkH8ivXXckOIeYM10/QvWDeJa/3fudwyKu/+gc4dNb+by7HYolY4XMxnmRbKl1tIHoyto1Kw8ck0g/OMI0gfVe4XoE+CIfp88wycw0nhngvg856wivOj6z8aLK26mo/k2tP3b5v+Sh3uI2y5runazL+QBRZDjuhs7bIj+QsH+OQKtgPnXWakIu91tMIcn5E1GD609NU8WvcLKfNbdQVtntnXqkvEk0+wwz6J/hmoXru05IocgFeh54Km6XpfPm5L4qEFLXfuvnRgUoeOSmjOqmNBsDz9684XVYVTjrgVegPYIFnA0P30qMIA0uhs550UNUn9EIsyTZzkzj505GK3FXTmtrWStNgCwumaEFOKCmEl6AXwDdyv7xR9o4m9aZcz0Fn/UNn8QS6IolMKdMSCZVypq8VwsT25bdSPnjuQnLyvXAI0YDfoKvBl1+u9rJwjiEp8Af0VNi8ZBKP5UASmRFVF/l4vSstVZwXtuxMK2Vt56IxHO8aTCbC19FZ57/z3z7xz/chARejS8IDjboP+nmTyOgplckSGm7Ud2Py0I9NrXScDdeKF98K5OSHks6/Ous24zM6Yh+jSQXsgc5azGWhUNv1RBLkF6RW4Hie+ob/rtYQbqWsP8g4JOhohBF12BOdtZdaSen2VZEkG/ZHz4U715XXGNskkPRNYW7dNe70YPHNNtE3LTQN9jLakxR4nENYH0ZPhY93Fzfx50aQW3911qr0+eDKr7Ekpli/61SzB1332PPJ77wWyoEbM3YNhxeHkDhYET0adl3rLJ7REU6uwBvQWZ+PU/4ofDOaFF0VOf/L1JM+3Gs/fm9QC82GhaKq658v4hACd6CXw5qeEqT7VwSJhzvRWRtPvfBrakEMqXhp0sJn7UUv/6jWXa/TQq/Bt8ZezyntCyAtf/UGeFTv9PH/BCJJGpyDngr/9nCu3iIbTwoEsxfOP+NNzyfOuvSPUAu9BEfOkvHY0etNWmAP9EZYIHjnpRz3CFL21zxr25OreopFEkjg7MtmA4I+tKOl4ZHL72bqCR8ozqteY+RLJOFWdHE4oz85+dCTcFICv0QvhlUaZ9TZ68aRzN3L/rs035e+9wxxsK1upilwZUlRxBL3UOICv0J3gJU21+ZnHeSQ13APeje85/oN0UHRcPI24MJpA1E/OqCoPc88sJk+hW9fOLnTemYEeQh/R7/Ddhef73o5wWRaINdD6KyrNt/9NfzEiyS+tDyVXuFHRz5aybRbNtNI+FFx3rUFLhHkNjz+E7dXw453LZYuzQ37831wPYb5MjhK+tDrMus/+2/LlwjX+lPJBSL+HXLNNAb+yNfAz7ELIRRegc56/zYVH+OFocQJFkd3hift4zG8VRhAPApGhmNaA+gejfuvXgw2UXdYPEPxck+PD8mC9dBZK3SFTfsoF0a2wDvRleGzbun3676HESnDTWsPWwRSq58xYzqPm+hyeHDk6qxfa70J62Po7PvEKSMaknJBZCF8FH0R22dPEbFyDiPWM9PWNNkF0ZFsj092aU30FHx8mV7Q6NlAsh3+jb4NfszzyMg4J4gcgIfRDWHbS0Menn++rye3J8opnAumyQYnHoZbNtFO+Kaxqk18WRCxgMPQLeHvgaO/xZRCSCQcjR4Na3cKK7VvCCVz6LLOmAUhtEE1X2+OZhOdC0cZdh9eUxNILOB2dNYflMXKpwT5Eem/5llriP5wjvUMINKVr1aIiofS+1PcF+ye2URXwoyHk6LhTXdyAO5E14OPChrdVLjnQ7b91VkvvUekLNRDyPSSpHM5smH0yT3tLr/HjXQyHJi4WX3GOytiBr9EN4E9nQXWFZR7k53wG3TWPxKyanj//P9M9V2zP20Oo+ozBoyEyhvpRrhXJVHz+EVHchTWQj/Murr+qIhrKFkJb0VnPee3oNCdsCgy8kt1964THPqm6kXRaY9GOgTn9P0S3qtoQqYOcv0BnR8WV0ypPfg5mPTi/St01hPu29mV2cSQp6Mi+hV9HOpu3zSpTbORsmb3D8I+6KyVcP8d2BWddYLmrk093+KIV7nID9kt4dR0PY/1GalGylp3nEHn28eWxBc+hu4Ph7ws3WsyGkyCYDN01jeyssoqJyUSQYHemcYN4fSw33af798a6Cx42p2EwP/sjBhx2BR9GTy11fJcR08IWQgfQV8E7/rHw/ObXzIpPkSlI/ZE0GMdnGTbigZaDpupln7ZtdmCYftR9BLYrVwoZ8eLUOIPG6EHwHH6J82DG1JIlsWeKs+UCCrhfHfm6oQGmgOP0luXdpiok8y/+iX4aS7/kjUb/MhnWB79EyzVdU28/WsCMZpmvSpmWSQN0vwV13m0gR6BPbLfD8woVGPUYR/0rfAD7NeDA9D3wTGmjw3iT8aRrqLA2JyCSPpmgYiox8oG+gx+n1Gj6CFmSV6xRmd9bMmbT+YVAWQA/oLOmt2/Pa78nORoJB29/my2wdQGyro8anzEuTQT4g1PK+Z2T/iqycG2DUp+ZCc8hvld8NNzPU2zx/78+27/afpmvyiatVh/jfyD2/QiPH/i9rWyAlOYa3Au+lXY/Wqc35FAP/IILkJnLVredaVAOYHc3y2Urjsjmir73/tXIPk2vQPvOy33cOcGHVIPM+i18MexxFerrc+TPlgTvRfexjdn3PNzMWSxErllfySaqhb/cJtw7jZdCEucWTO1UFuB9G7geiN6Dzx26qekp7ITWYf329Dl4bQWxSPLkznEu9fnZ+GnaDoQe+7pbI3b1A2epn1hr8GhA8QGHkS3ht/mPN8kY2RHEmHeOG5PgG/f1Z4oKO9JRrN2y/acjqFFzrxK4tNv0x/wjKe+ex4fOvN/vRh9EJZ7ovar4vEBMgaXoI/AxyYo/ct7/Rgp4Q3+WVMXQ1e2SmQzX+vpFdj0iFyYrpgr6YDXoN+Hcxa4TS7R9SUX/5pPg6XsXYc+iJwlzrE7eXfvjaXyUonWwWX19Cw8adYX4RmvzZl0eCM66+7e5z+zlnoT9v1adEf46+zlmc1RPsRqxbSZnU9jqbrPDPkuj3p6Cva/E9Wo9cuZiYZ3o8fD0134Yiyu+5DfUlyvQh+Gt78ZGdzUHkX222YHusjEUSd7+zVCR+upAfztV3SAoZ8fswe2R9eBE6brqWUWGpNHcBB6B8yJsCvq0Prz99Pd47oulXFUcN+BqYUr62kdfPdoT5Icjy1zHeZHL4P3+8pO65IzJc//mn8J12u5bOzkBJI5a2QXu2yPp2mKym/UB+qoMPwY++XhDHRF+FNnT8ThP9+XrRzXrug28FL+XS7TWqLI50sW73kT42lKe9iswod1dAAe1NN3Nk52Z3rgJPTv8H+d5hJS6yyIYDbXGeisXzsYSVgSDilYvnFOllQC3eo/WSYytY6WwgPYXwNrod+GKz9fDSfyJuQOrIl+H47l4S095hhMKnOmbdlWlkBHVDw0HSzrKIUj72q0flY4yxTDv9BL4E+4/zI8gF4Iv8T9H99NjLg7NZEaJG8Nn6lVR3tg6yyHOY+KLZlAWB09FL733XXlh35b0g/ro3+HT7wV+TY9zY8Ei4b6qyYl0nwLTvqOOXWUA4fUB81LLdRgbsDX0G/B97H/4l/zmXD3C/Xg7/c4JMRg3vlrq5Ko4Nquaz7PaykHVsX9cfB09Hj4EfYfh3nRrWCnfSL7pHQjycoF7isMPJKoR2fUzn23aqk0/HLhcTl+ASdmLXweXQEuNjKvHTfFlBTAUeiX4TZTnZZX2zikt9hpZsvsZBrzrj+wN6CWsh6NOhh4nF+XyYWD0Flf0RGTGJ6iTn7Aceg/4Q6prMgVAk7EVcf+F5OVTDP7dRsDdWupE3z4gebsb/y65Ax8Ef00bKTN3b8WjkNXgNtTHDuzBE8SATsdq8XDyVSjWX19jEItZf1fLn/8PRkvUgibohfB+R3b/lsq6UXGwerorGu7hiT+OWPOiHtbiddxUqjsYaWDCTy1VAJ+hf1r4NXorGtmKdy7ae5N5P6aXw3PT1Pu/qFjRyqjPZ4fl0ilw32yXinNNbQKrr3SY6+SFEmM4C/oxrAn9gfFcC32nduDYX6lLeUOhhuZCRmXFmS6ptKwd5djPl2uoVNgo+wsq/B9HLIAjkAXgm/a6RulXpVgzOBUdFNYo1V6/odTQYy75qSULv4L9NVs45dHHWuoBxxqErelNDeIWMGP0U/AaYWz26yrDZkguBudtR72h9CyK6Z6Fyj/lrkrutRqaChs7tCdvyPbl4yv4loBnbUKn6O74bUTJArvp6KzLjGUyrRdrMNcNk0eJB4XqHP7kVFriRqaD5stUt16/HMICYdt0CPgsR/TOQOdNuQDzEH/CPckNxW+3nOa2fxI4FB82wUa/URI0uxbNVWGWzM15uxtOEf2wcno++FtcTIu6Tv2ElU4Bp31Lqn28w2rvJn6ba7Vp4XSaPbbR3uMSDWtg882P/3iVGNPxuAqdJ7tXPMld8k8X2lGGtHz0FlveP02cOs5E1IX/bE2cXsavXtNT3NT6p/98NOR4Wl1d86SXLgOPQ8+meCw0WDAhryFn6OzltLUGixW3E3yvu81eR+TRgPnt/mR49X0MrzpgEXBhv98yAXYFz0dPmzdVmnbfZSEwW7ooXDy8dywWFUbxn5vxTj5t2lU0UWjfrNiNT0L901KGbUfiiJx8Fb0eFhmdGL8kKMj0YQl0HfCSrjv3cFMpw2z02mDzYMgu0XV9APcFju7/8WiEFIKX0dnnSmnUXy+1YV0wbXorFswL1D3afcck3T6u/SFW8D7KioI30WXhSeWcftq+HvF8c+aO52IEjwFfQO8rf68lomYHTmwarX416vpVGnsk+2F61XUAJa8KKkz2HuGcYHV0VmXvIs/IhhoSrbDMuisXUlOy+R5XuSasr/d+1fp9HDHq/cysVWUteBO9eBNik5MCWyMzlqKzy3V8J0p0wc7oLPmtRRabW7nQa66OsXYyl+kdaHWce9Nqyjrvh3c/S1wM3orrG++W7r9hy1zD25Hv8/uU6oXUymxJk3lVhVD3heptMbg9gtrqijrT9j/Bl6P/hpe1vws0MbZiamGV6GzfmhUPaBYocsInbHu+3X9It37DyeGM7eKCsNKoSYVF/Q4ZD68B5318ssDje6LjpCu03iPznqZ6sFdVlm+5PCTH9U6kzNoa/cDv5/dlLLu/y90z7+VEYwu3ISuA8clLxT1mnOWrIQr0FkzuC9A2T2ywDCDquUudDp0ldJg+Dv2h/3VWf+srFqaH+xOmmF99CZ4De4f+rf1VG1wBr1qvJO3LJrSEVih2EbJxMSOCYf90DlwqeJRtW+d3kQZtkJXgcuN0y5dPhNPVMLEVWa9zqChB9zmPjGlVBWu/ymrUWSqRMRgT/Ql8Gpj3hs/hYLIZjgInfXr3fs2LnBMISGtLjOOrM+kp/YWLhuWp5R1leApnrxXocQBNkV3hF9LzO8w6gogD2B/9IdwKe4Xu9txJ90yk16+aOFXP59ScdjmW9YJxSITRhLOQ18Oe/hcKx+q0SOp8DN01q7Skj5ar88xC1zLayZVZdKEyf80G7ffogthAUceOfGjpoQH9kUfDztiP2tv9AmwJu67vSyxxGpBFk1qtPBbd+oWrYUrar4/6IuOIZaSXAs3cbs5fDdJjffhO1OijvcqmFeD39uMWA4P+DOt1hZ8X3dk0bwjMmdurL9FWVduvj5jsWUUGYUfoQ/BWSs15VWzvInZSa6XGXM76zJvMcfervUktu3ai+DMLLrNKiB50+ObNBoWuTg6aNoaSqxhaXQrWH5h/KuptWdJEKyBHgIneHH3C8uOla4Yy6JF9m/qbjjfpIvg2QsXKw5Yp5AuGa690Z/AM4pPWgpIeJJEeB96PHzXk7u/bqFt5MS1l6i7T2aimvpNWgMfdqodUkpJIL6wDroPnGovPmGxSQApg53Qy+G0iUbCJ966M09UCx3HcS5RbbPSXYHvCX0Mp5js8OiV9iPDsC0661mfRlt03gSR57A+OuvRFIMHJvEcEnri68GRz5doxtbGsTuBhLI+O6vm2hptZ8KB09HDYX3cH/HXfCQchvs84qVfqIllU/GA7nALPUJZN9yTir1yN5L4wJLorL+0vS1e9tSB/IZd0If/mrc+83Skyj2bLpDl/8r5fYOegLv6eh8Yjq1kzsHi6G7w9dh5ZvHntzCh8Bp01q6OkjfznLwZnr1Bwiovsum9BzI7y1Nv0HHwYulVNtek7Mlm+Bc6Aw99+CmcWmBJJsF30CfDD7XD33q6hTL/CPjr8c3Pob3jF1jYHr9BReGph1w4gsMxJBpWn8DtrL+OC2m+fTScfJvKdRPme2F5Azs92fvnideV0byVjjnU3232qZhZN6gP7MC39N7JngByBb6IXgj/7NlyWN4shlTC2eg34LVJfV127hcIn86Z8f8+zqGyvwUdKssr6TQ4q2ZybJemK5OvzfWHQW4vhDddfZjpqexLXuJ9FeZfwSdwX603bb08K5fuGHft1kXfStoEjwyHJ8U2eDN+Plx3ogfDHvmdq/udjJmbeK+ATmGVKY2lUs/WM0vGhG4lOOTS+Yuf/H4hW0kl4XZ+bt8IL0VXhu13VkqcfrCLOQkro9vCUtjf6Xi20P9JLj2mNG6d8OMK+hL25/Rf2pAbSZY5cR2LLg3/XP1I+W6VHVMI96OzHsLvP7lL1Txsbh59aLa1V+1SBZ0Ol1QNb1HVO8eIwi/Ql8EWR2L9hRM0GSX4IzprsbfaL0YPJTKdyvuXW7rmUcc16/mKtCvoC1h/j17pWlczcgc+hv4AXl5ueGC3hiF5A5ujv4N1Mf9PxvGPqt1/7h1dvnjxaDmVglfj50+HE9Dnwl6btXwFbDzJKfg+ui0sj/1lt5Un84lepmsr7d9FtpbTOnhJcvjpVjEfJhcWQi+Cp6pLqkxpWcx8a+Ca5wa398F1CYe6BzySyQwHxx9fAv70WyoiWi7lVBjW93tu2Be+hVGFZ6Nvhz8sf9R38oces+mv+Y3whpa5UmG9nqRQvOjNve+X6e/qafo8UuX0BjzOn7u/A+av4fZnsPQxHaV5LV6EZynXiVXcPg7ehv1aQUeyjq3Jp6XfXJ/cHSyjenC35aoJkeGOTHUg11vQG+Hcwoh9kvtsmPXBXO/p43bW7mtnCkc2BRHVi3YRDqn5NI83P/x9ThndCndgvzSchC4Hd+aEJIkWeTOn4SZ01i39az9slOIwZpXebr4CBbR1/rPtIwfKqCncj/1ScAr6Slgql7v/XAXXS9BdYWfcfyvSyez3zgL6zFDl/bpVZZS1zb00szfvPZiVUVzLGnG7FJyz3ycn4kgomYT3upjng7dIizaKRmSQazH783eTAjrvsGb3reel9Cos5f7IykoklaTBAugXYDHfVa6iCvEkH16AXgCz+3fGKwykS1+hc45qv9geXkpZs/tnwW+NuZ21ktWduZKHAsiqBK4rMc96ZGaY5h7BveR/AHIxLGE=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAMQIAAAAAAAA=eF7t0t1LE1AYBvAHNNPQiKK16iYEQR1UdhEF9Sh+kF1oy2SgWNNlahpMc6Zo7cNSS0k0HZWRmSzSi0XCiApEwwgLKiWr0YIiujAQCimxiOh9R/9EsHPzwOEceM/vOf6v4yH/HuME8PNAft96AoEfsU9MxKSp9UX/LqLU8ybPlUlkVLbF1O0nZpp3etvNxJoblnxfoZwrCVxZXURsN9zJfHyYCLY4grYy4r5voHhVOVHlcu59V0HcjR+fnDtO9Ew9ffn7BDFSNh1lqiX6ywasi3VEedxs3Nt6Yjpn8VeogVioTBmMbiKSrUdChc2EceZb4uxpYj4tq8XpIra8SspN8xDDc4FPj1oJy+vPPsc5gt+vpza2E1v9SVEPz8u9okBwqZMwZ21YW32RGGtI3ZjQQ0z02rM7eoka1/OE5D7CWlOQG+clnN2duesuE32Jy8F9V+X9KZ5tD64RFbf+1DsHids3bfHPhoj3BaMfGoe50tCSE+03pI+FHWPFcUkcVxDue+K4WVIdk4khddwhqY67ZR51zBBPdcwmatVRfEvVMY/4qI4HxVMdxdmsjhbxU0fxnlfHEqJJHUvFWx3F3ayOR2U+dTwm++pY9c+xmshWR/FfUEe7+Kij+Ler40npWR0dkup4iihWR+lhkzpKD7HqeIaYUke3zK+O0kOXOp4lbOrYRhxSxw7Cq44X5B+oYxdhV8duukfUsYfuL+p4icawY0w6wmvZFclIRvL/zb8qabLrAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAACgoAAAAAAAA=eF4t1Xk8VekfwPHHcrlkJ5WiO7IWIqaQh8eSLTNkRsyoHGv2bEUoR5ZqakJSTc1gmpH6TYWfGI1O56mpoRTa1OhaorJWqFBUc6/n3P/er+dzvue55557zmBds5xl6W8Ou+6Udri3hiN+X90F87RHLNC4b6tPCdl7C9TKEkaHWLBHQdgULGQ/uVuNSyi/ZYGVzf2ZMCFr+eJOUIfRDAvuOX+YjhKyF1dryWrpSmBQPR7ITxSyK5vCP3dUS2NwzrUxK13I1u1Y4jiF+Bj8Na7H5gvZM0GS14T35mGgYPTVyqNCtsD7heNUhDIG7Y/80Vkh+++oV3HfblUM3FN6I7GQfVN2WGd4vToGPwtW6AuFbICCzqqnWvMxkDRKmpwVsvl24apLRzUxcN3iFrKsi22c8D4qhRdi8LW/1IR3F3tw44aYqaNaGDyOhatyutjSG3UwNnEJBhoN7v9nuthbFf6DQm8dDKTO1UiBblYr178lYpEAg+S1DZc8u1nXt5OvwxW/wOC+3rXI0m729r/NsWukdTG4+ZmtmOlmgZF94YpPIt+tyOKF9rDgyu8xx2aWYaB//9nihz1svKzK7Qezehi81KOhcS/bV9e1wknSAIMBrU+P43rZnL8jTjopGGKgHThU0dDL/qwnWwYXG2H6fPKtPrmn7JCV+q7SlcaYtvv2RnPwU1a/zdfngcdyTEfZ3CzBT9lb6lW/+EavwKDqS6ccgz4280ClXWGRiWi/u22Y4j72SMnMAxlsiunjJc/D+f1sib302lWTZhiozIfFuf3saLbeXTctcwySfM568J+xUCbMuJURuUe9KbP4GWvFi84cDrcQ7VfhmaLBc1a4a4Fmp9oqDNjUnVfZ5yz9atrm8fVVmE5QzbWmXrAvaow+L8m0xOBASumozADr7rlmgdDaCoMXTnbGtQPsTFzBRjSjh/e3/S0PznpjIPrQVioQPHtu2RgkZMXGl/SgeUqjizk1OmfwSADR6ZK+jmDOJhKwt8m2RTGcs6o+w9+QH68YTYyCKQaf1FJemsit33GA+zoGDh1P59arwiHlOazcmc+td38DC3NC/b2Ocq51hiquiceDzhJTayIZ917NXT9gYnppCEOVmwV4CIlVlu6B1SZJydofiXvHaehT7JV4cNlL0it8A81roi4v9SEGRx2Y9seuICyHWHAllfFJLjg9yBBTDhkMSnHycwCvSB9mwhyf3B4140kseJ4Gex84RteUEuPP0bBaqjF+cobznVTGBFskBoW+Ju7ZyUi78vfTD4mReRKjEHNYYofxGDlfTR4z6jlWuTCeuHCgmLlFXe562UCc0FbInFqyLsBKfpx8H69QpvBBf4p+CDGodmOWt+fHfMbEAsdixqDPe2LGYII4+jjj65IX73aEGPhowxMBXjnScm/IvKBd8HZGUKVHHucLIYxJfOWjxXJviTO2MXbnjkVtO8LZNoURmj7JMjB8R+YN+jJjwlcHZa5yltgI4/V/r6sJniQOSYTfH1v3/hR/ihwfnwh1Fo4lGtYRg3NRTDVzdfiiwiBxL2MXWnuv6MzwdqQyJgg7VXiP1e0W35+zDnPHpxhA0Cv2KHGbJgQXZCYN3HlIOv+Ov8uDCXY5v8ivgiI98P0CYlmxSY/W2EE6+/BImAcPBVe7qv+yB+BZpxPb+KFcH20DgYvYpAeDayDIjO1oXc9DRekx2qMnZfFh7ycG6lu5vtwU0j5ic/0NQ0hvfLeywJuHyqffmOTVK2FPR4t62TiuL9Riyimxuf7QQgYY60wLv+Wh502pu9OG1PDBV1KRq7dzvYLo/ANic/uf3gzBec3y6UAeeliXv3ggTRMrsS11H7JIjwO2QnBdbO76ZDtD0HnedXk4DzW4Nc4OyWnh74Fc9KUfSV+OdkDUzReZ6ysCGPBwUS5O4KHuyb7ZoZ+1cXPjFZeeUu76J8cxqF1sbj83oxjgnrFHOYuHstO3Llj5kwCbL9Ib7anl+sp0RqAgNulxUxoD+t+7JBTyUObld34R4br4gpW80pd3SC+QzGfQUzmRSR+5M48BAxGKqIKHDnnIV4Rb6mGdJt9Tm0e461PvB6m/xCZ9gE4eQ+8d6uhheOj8nnk6tJQBTqs87NKl9JH0kh4MXVYk8ss5j8XsZ2jV7T21nTykbHbaW7XDEPum8EvXWpOePpTI0LtlRSY9pkIY2vLI2mWzPFTpy8vc9YcxvjXS0ikVyfVhGZAyFJvrX++AQDCScExXBsXk8tosclfgT6ev6l8v5fZjL3oetl4Tmevbd0P8ktLI/FoGgcD6g79Tpjj95iZDxS7Sl2sUMbTGZpFJj1YHQ+T2KNKelkHySXbWfo4r8WV9w5zEZZ/I/OPekDpnIPIr4uQQBjdunfFqkEHaTPJ3EcXmWNr5undeEunxxGGIbcXm+n+yIb50yWbBlAyacMw927rPAutN4dyuW6QXXCuB6BArMukFMkcg+KbxkwKURf1N/WkW2atwSEh9gLLp57l1yqIE9rr8KfLrOTffLYJowk219AdZxOrEpT4Vvb9o7Qv7q34iPXhcyJjzq0Qm/eOYIohV7xfY9MqinWnrNVZnWuHe2+bXz/ABmuu9ApnBMrHH5nqVowUQeag6f2XPR2nd5skHsr7ELl1v7J09uX5fELSe/1Zk0h+POQbp5rvtLhV8FPQp4TunvauxvsGoyqsirtdJhQnfik363CvlkBbe/GfffDm0hApWxcVr8PI/DvzvZQ/p8QQNy6mDIpN+0OQXSFtsWJ9aIIc+LPIE8RXWuOrFR16GlcRcj87uhdVPxR6f66upIgjKdPZGqMsjhfMVGy9dtsFua272txWQXsAeg9OPxCY9HVQGwci2idpf5dEmN88w9U5bLJHt9MZsgvT4w35I17mITPqG2F8heJvjXG87D21X8fMf/7gWu5zbNN4cKEn6H4sZI2+xJ+Z6H89KiIq8UHX3PHRbzWdbixHEVM35kRu3SQ+uHIKD34tNeqpVdH9Mtap3/KiAbPXNopcE2mO9zGEt53VSpC9fB6fTR0R+Q+7vGBoiDctqD3dFdHr4RgtV4oB9xu9b+tzg+q5MODZ8T2TS97LZoufP6U41JSWErB8OysciXE9lZAx4Sc/1dEge5CeI/Zb0g3sg+Ktim6BHCa3Y+dpWqOqIHXIu+k89IT3Ykg19OmpFJj1FFUB6YbWia6MyWq671DTksiO2XiR5xi+JR+Yn7IPt+WK/I/NND0OkVmSmuUEF7aZmZf6NccJ3U54k/qksQ+YvToMqBWJPkt/LLxVSZ8qO/HZTBW1RrN2eLnDGkqOx7/+o5fqLouexWpzIpPfBhQyoOnN3wFUVmeXFbc7sdMb/nNR5/9NmWdIbZjHmm8SeIvNX5jGCRT26m5tV0d9tmjuUT7jg8Urx+5ZP+oVeDGgRe5r834ShjO21uNATg1vwf0t0Jes=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAgAUAAAAAAAA=eF5t1nswlQkYx/GzKutE0cilyxpMnVSO+6W8FJLkfpmdqJZGSp06Emkj7JEturm2sZSNLm7HppLNvHKJNGq0chqKzeWIkkhhz0bWzqz3fd55H73/ff4xvPN9nx8O5+uPnUZ9i4n8r1W0hd/cCh/Iqwa7bOyb78GVgFX8BzV8I3vAa+qlyzpbBsGqCf7CQacxcLP51TNnOibB1R7bPN95ylXTDtw1+ZuV+7fgJOuzStr9SmDFffbx588tAhs0FedIRxeD84WZRoJCTXD8uFdsUsly8K3IFt89Im1ws0uhfuszXfBFA/ExgctKxoek92KGVoGP1wV9PHpvDXhDoXdUo5gPblSJ7I/aYwRe+yBZ7yHXhPl7jLlqaXWm4Mz0As66dHOwdotVsFqkJXjqhLJbasR6sOT4iYxlpwlwwZEmf36ZDbj//ojjVtlG8GeDlIGY1XbM+8uUSYZ224OlJWe7HYo3gfOudTx5Me0APloymTk30BG84IA4Sa9lC9i4tkOvyHMr2K03Tjb6yhksvhu9NyLKFZwVMnQgj+cO3v6kQHNU6gHGz/RQHavHiU+lrB7vWrF7LN/B7vFmLbvHrpPsHu+ZsXskUI//BrB75KMeW4PZPXJQj5GoRx/UYwbqsRr1mIx6TEE9HkY9mqIe61CPq1CPZ1CPaajH71CPMtTjM9RjMeqxG/U4jnqURz12oh5zUI/hqMeFqEcz1KMz6vE66vEi6tGX6nGJYd+jT2/kKjno+dnIZOuLrGDoZSDL+H+nbfrBroEnVxmiwL6fFnea+ZZJpeAP12ccum/klbbFB1J7gt2zf+fz8ffVjWDj1hmLji6IG00cJHfYsHtfy9s/3B7UDnbQocxTtdZRv0+07mR/D9sSrpoe8+sHzztJ+Yq/28KyKsKkjv29xD08JGj+NAL+vn7GIsvKV4ZhYjL9FPt7ilgaaPLnoAzsumTGonSOTazfS8IL3f/1ghvbNZU48P5L9lPOilALudNFJKHvsS5mme6WyrlgV8q7uoKWJ/7UQ6xA+yET/RUqkZ/P9ERbabqmfSyB2IO+54qDmzVN3iuDt9F2bhBXh+eRI+h7D1zd+vZHC1WwMW0FVeMx5x5CC+9T+enPL+vVwTG0Q5Ul6f0kmYPuheNwbk5u7lKwOu3kxX3vLneTseie3N6ycpddkxb4BG3nP1ZJOA1kMbo33qLeMq1rOmBLyiOKr9dXKEqJJnSPZILyhIvcFeBByjX6tfr5Ph+JNHSvGh3C9f0zeOAGyqLE3V/8zr4lL6F79oXb0Njqtho8STn0qZ04W2eUjEb3zk/O/IiQrw/2olzTH5AfMPyGtEH3ULe7fiLbwhCsQbvI+vlhm1byMbqXwqcG7WNmxmAB7fnv+WZz2gg9dE99vOJ5f/cy9qAscot8HCv/jsT3Nih63OlagRnTE+1S4cuFVbVkKrrH+afCLvvFW4Bv0E7hvyXSK0h8r61ucl8cO7JutrU8wkvtX5MT6J4/UA/bLYy2ApO0VaauWPm0kc/RvS/p4JUVZ1uDf6csstXgVES3EUVoD2zcAi/datnA/D60D15ReHa3jRxAeyGYE+wzJ9WWeV+0m/lyge695D9oT1KyOw21HjI+T9s3oHzR2gFCAe3NuhU1TrJ5zN6Y0x7e4VkVIiXwHp3TPVjR48PsUSLtzSbe4j4JmYv2atryco/5zc2znde1KOHLIxLvWcYCtWAvTWbPUimLfDn8+JwpUhntnbnKND8j2WmWbbt+sefbTpCmaA+jo5rtDqkxexhL2ah6n3eWHbfSFe2lZZxioWORyyyrvNa/cLtBvrII7ano+gXtZHc35udTFiVkeHV09hKZaG/3yk+RVXLM/387add4GIYlphP0Hv8HaKbXqg==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAOREAAAAAAAA=eF5VmHlcjOv7xydZWpQWe0XrVLTRNk9zyzRlIi3TvkhlOaRj6VgKFVP25VAJcUhHabMlyYy5jj3ryHJIKCVJpAWnIsn3d577cl6vX/99Xu/pet09z/S+ruuuXvtyTcefoaTk4rnwL5sbXDnsD1fGiZ/YnW5cyE/IKn+YWBpCgu03mB6pVL7EYslAZv/RI6VW2U4gcqvY/jjVnRzVtMhuqh6BvIv35b46tCYEgEZckV22oxsxIe+TlZoNKb8xjDnsaTQgWsUPLvfsqHxsrQOwf9zy315xWS7Y+UXaXbLTjhwOhwGmszq32ukC032szOqlFf390tfSguxC3nk/b7hwdO/72TeViH5M3Y7QpZMo5/TzbiRX5l12EUOMVKCoO20LSzf8pnl9qQPyH1KTTde1GrrF4CpZdM/0gT1Ig98vPBXvTHnDZ2l4dlVu0AoBOI1aZxJX7wj2YpW/Vq50wd9Xk1m5mOQo3w+Bo1Wuv2l/qpMPz7myLXXtFMo7O3gf2ov3Hq9xgwO1PftPa/XwVVSVjQvcBJQbKzOGgixRvJI/cO6ETjlz2BHkCSe6Ttx0ozx2tOxRxCBd/2xj6Dz2bp5+vDbxvPnoWo6fO+UPqnn6ReC4M3wIXC0Lz/ml0oHU2KZ5K555UJ49gom6sW5y5hcnslX/2MchqXrkSd59+H2BiHLeQEY6Z9G7g1vHQZPm7K2Fu5xAoWCeCbs9KQ8bKTM8UKqU9/0l/1Pix570omlQ4J9nFLhtBuUWk2Sq/fVSD18hHIxLTrI75Urer69ttzacSXm8IdPv/FAz8nogURcG7B/w3pMM8Vy7zUvuTbnYknk9KN/Tz11EljY4Z/S8m0IgZS1jMcsXvz/jmNIV255McnIl6Y9nzqhSTCRifg/XnCOm/PIoZld9aoVFkhvZO3Qho3TdClr23tYoeIK8xUi29OiJwKg8F4h7sMN1mIeAmIqWrY485U/5aCtGP1naZdsZCTf0bu/OtB5JxCWK/gPbA/D9N/G6c6zvemgHAPcfXqPal2Fk4zrFiLK4QMpz66SRx7aRq63mkPzGOD0ykCHllVc+ffMNwvNxmUFhIW3eLhHQE0hmqFpYk9iSRV0PnYPx/YxjdEyvpDaM8CWXtQwEb2dZw6GslPMZZiH4fExkXfD0xuuFwTB4yy2vaXnWJOPj3e2HRodSvnos86L+2aOwH8Gk112W1mvEI9N3nP89RDsM368Ns31e09t5rdPhH+sek+pVU0EyP24KVyuc8ho7WU2DeppGxjzY8G550xI1Z/gytad1xYgIfH8TZH/rPq07obYI+NUXF4yqtyDts2fqFhvNorzJgHmUcG1hmHY4TN4eWl30zYDk5WS42jpG4t/fJT264Ypjc10AeDkb9mlvCCDX8+6vWiaejc/Xg2EuZ7T69gWRjccPz9CPFRPjljmchyuikDNM/gSD2CtuPjCgY8BbTmY06ZN0SM8ficbz+TMfjhcPWftgLtE04DHRqyOJicFhLbe4GMqf+zPvVbZ5D5kznSQs+m6WWc0DntnMYnfVOZQPcpRd1T0wT7cqhDDlJvJdcS1yU/NN8iEnkZd+500/cPeP3a3zoZH6ETJaqB9/Zo6D4tyaQol8OfUj1HKpH3/mNv0H1aPtg8CN+hFEGtSPrphXujwRZV3wh6HUjyB1oX4cjDk2JSbZWhQFCupHkpZN/ViBuZKTNr7jWDBwqB8JF/34wYRmj5s12R4350A29SN0R1M/ZmJOU3rwpLcxBqKpH8k59KMz5s6hYw5u2xAOU6kfiUMI9aMp5juCpd/m6sWAA/UjuYV+1MZcL0940uxJIJ36kf/kMPXjIcwWb0V+0qsBEE/9KO9UoX50wOzUGMAb2+QHP26zfiR96Md7mB8llmn0eYTB8ALWj+CAfqyjvoTJX0PkIybEwGXqR7iLftyKOS3zVdGH1rmwmfoRXqIfrTBv/MDxqJRGQRv1I9G8R/14CrNNkGFHWWkEtFM/kofoxxOYVWd3FZ+ZpgIF1I9wEP3ogflK7rl3xjFRgH6EoSLqR3CjeYu6tbVfdhTEUj/CfPTjEMxnp14saegLhIXUjxCLftTF7GuSZ544MgrOUD+S5+hHNcyagr7yV5oOZCX1I+SiHydhHtmfmXQieAapo36EdPRjDmbewgWGeXd65RbUj3Ae/bj6M81zd1u/nT/fBdKoHyES/TgU861BI+bmf4mE79SPMB/9GI/5jsXOu+1qAVBM/UgS0Y+amNXX8Nren3SC9s2sH2Es+nEBZmG3kkHlKU8Y68H6EVrQj0nUl7D0rGYAf4ADdFI/kmvox3DMD1PjT9YX+ZJk6keyG/3Y20KzZaiNa5+PP7GjfoSIKOrHsic0K586ZLdmVjhEUD/CcvRj/TaaF2wqSldoBhP0I9jmUz++cqK5YlCsFbdvEpFQP8IL9CMXc3zW/prxH2NIbzvrR6hOpX40xxwvXmtYfSEa0I+wXJ/6MUifZvssh7d34yMhj/qRrDalfpTF0lwSaWihXrEIwkpZP/K/ox+nn6bZ6aHb2+TeAML6UuImW6Kgfmxm/egJEpFtSIpbP79sy+1j9pahRMdg1ZZLnh0X2c9zxjGu67juhbVGcJRyWP9uJcsLMXfLJ4f9+lEItJ+YyDStqV/XsH4VwQ9Hj2CvV0LIeL5F/QxPTFJ7L7WflQ2j/uZwmNdujlkJiV6wmXII66JcgnnF0U1DTTWCaH3OCNkn9PNM1s/2oJnXsP6SkQ+cCT49u2KWkASltJeteKiH9VUYhaqGqJrvD/mUw6u1lB/C/Em4quEdhNL6Ta+k0Xzqdy3W75NgpKnyYhVREDhUt9nK662Jdq31UtlrE1p/4Edes3j59JETQ8CKcmh9QfkYzHrTlvr2dUXQ+rYDGIv/1x8GEK81r8qvOAVD4++fn9uc1oEZ69+r3q+3xPM3Sl1jYw5NtQmEWsrJl3WUKzC/v5ySZvLXLFpfclOaif2lj+0vykTfySDyQng4eBwz7D574B/5B6lR3ZI6W6yfLi3IKHfdVeUFrpTztWWUM5i97AanT78YQ+trdfNqsT/9wfanj3LLPU3jo4WhcNbvD//Brnrwunzi7d/bJ2P9L9K1qtPXL7MJgCLKCfcc5bswu0bOi71hPJvWF6gxBdjfZrP9bTxZ6/Aqav2yICDt15+pPp4EU7bqO8s6HLG+mmyZ8Uon7xUzwJ5yEolcH/OFxMEhZzdH4fNRYzJwf5jC9kcTciHnhdg/Mwgu3V2x+uZTBzAPdNiV8YmH862ubMfqzl7dy2I4Tzl5hDwHs4uP8znLlEA8/2feOuyvk9n+akaGJvWpbs4XQ5KO+6LJoVxo874/LqmHj+cfIPtan/CtstsXfqOcNCP3wpzu9G7zweQZeP7rUn/cXybc/7c/3+NPiDU8vKHDDzb7ixNDLOr5J1/Vv2rud8X6F3mdEqfGajdv2Ei5fCdyT8yfjzb3zT8TQOs/4DDt2N8D2P7+Vs7cmDH2rdQHhN417gVWplDwVXNb8UC3/55/m0/21wQnIdhSTu4gV8P8uXVulg3B+qVfeP04H3Sz84EZGV158lxirQ8kx8w2LXEzggjjI8+O7RDi/MiRqSjumYcOHUdWU05+8hDMHI7iWGIwfv+1eqSROF98Y+cLJTju0lt5NdIfhPpB5xcbWRLvwiMbzw3H/YujxXhXdgnMlVyJK+UgRD4I8z37549cdObh+1WWXcf5pIKdT0xhwJgPikA7MbR8vXqw8NhEIunK4VjnTsP6w5h90+z+KuZak1rKIQT5HsxHNkXsSVqG/1+CwYxGPp1vYtn5Rh007BWbdub7QPnut6PuRo4Hc8f5olgb3P84A2UrLfYsOlVoSPIpJynIp2IOzQmZZGA0F/05ipHg/tjMzkdcUrGkf9z4XAFU/BgW9SlRAGUv9L/cuTQd65vKYg7Ed4XGGsNpyolOLeXrMLfczbx/Lc0L63dLn+J81cjOV44kr3L4my3bBbBe7V5L47QxMGD7uLTLQV6Xfn5eaBUxsUnmRpIpJ+rIjTF7KqtVn44X/ef/UpzP0tn5zAZ+zPXeqS5wg5P8rXG/57qTRtEoR2jD/VYygSELBbdqpTxSRDlcRr4Mc2ihrbvrHPz/lWjLPuJ818/Od84wLX1OY14+D0zG9NiuX+ZOyr56hTM7fPD8Voyh16dflizzJHqUQxbyl6NpnvF3mIqvWTCe/7vUBefDaHY+tIa/k++Xen21g5g37RG2LY4k/KyLi9zaD8+vxxg+Ti3ji0xIEOXgi3wI5vzNHf0nudi/OH28QJwvF7PzpR6khLf/eNhpA519C5SjmqvkT9sas5rjcP/mPJAaDnE5W9M9jGgpLfyX818gH82hWX+QsqfgnTs+n8/S0H10Po1m51N9op859ug+S2eoGDu/wYBrTF6EXyRKQtzfOUMZ+2fPUu3MhFBCOTxHHoE5N+T4yd1ifayvK6uYRufb+ex8awdvnB05TQsY+Pp5Y/oVVXsy5THjkKSP+z/HgNmjEdXaJwyGT5QDD/mfmHuMBo/c/xbnn//rd/twPu5m5+PBsFHHMHvEdAFw7i7nKIbrktW/VSgV9GJ9iRKTfF9vz/B3ntB7h+WQiLwEc03ZvNBqx5k4Xw2Vnf15/8DO2z/kszysas5MEMA35bgPswOsybkW397qWryf4OgzCbr18+uFAfAP5bAW+TrMvekQt8LGGutry7JxPl/MzueWsOzeku9Vu9zh9paYg6Wf7ckv0pSWBdfwfkNixJRfbQtogyAAyiED+SzMQn8zPf4WHn5/OnjrcL5/w873BjAiftTeQzuUiKE4Kv5be7F8irTt1plTwf99f5Z/3xp5L54hDf4s5/+KXIJZJWpgXHWKAN9vl7Qa94M0dj8wIB9sI1JP5WoQu+K6krSnZ/hbamO0Rx3B+xVOO6+1vHDW+q8RJD6f5XI+cq1smhffe7rrV7MwrP9Daof7RQu7XxhA5YRoS+FyL/jrmmZW1Rp7ckhQu+ZrFt7PSEwZXnCXVpDzWHKRctiAPBxzc++pSZ9H/oLPp0bauJ3uJ83sfmIBNwxP+YWGCsC1qGfjUj8N0HIcLr6YHvafn0dOVX3T9sYIBIUsJx0OlK/C7DTlupnI3QG/nwOZkF/ofvOa3W9syVO351zFHSFcU3ccaCzgw+fyjG+KTLwfEtjIZJ0R+gUeIVBOOelFbow55LbONp3+bjmt/5G3D/ejOHZfMifHG562boyeDtDHnXvdcQQYeE6du+sPvF+SKMvevbaqXTfaHXZRTrjIhZjNiy3Kq56JsX9pMl/x/smU3bdGg7ijNsjkhRdc9elqWdVuQnxLJYMXH8f7Kc4YxuZSZkCfwArklEMCcjHmXqt85X4zEX7/h8jSj9D9bAu7r2lA077q6NPtItAo3bRNMdeDCB5UTbp/Fe+3OAyjJ9qxw9PeFQZRDouQrzlNM/fp3pQtc7A/Ssxlz/D+y5Xd94SQm/nQ7fS+Pv6Kjy+N96/yJ0kXytQNG/F+jOPBXO7tr0uZOA4WUA7HkPd30lyOnH7eUmaH++Fadj8UwInKJu+SldPITB9xtub3UOJd0mt6XRXvzyR+TBV//YKcXBEhlEN/MeVHvWlWIKeft5GJ8f6tht0v/SApt2gD508O0d5soGU3KIr86awI1jTA+zdOEMPT8C1NTB1MOJTDBuSCTTS//+Z+2KxqJj1/vAlTjfvpJ3Y/9YbBCQsH/tufb1+Vnr4gFJHVzEKnq7Kf9V0Yn/pH+3YmWcAzymETcjPM/aZZn8JHedLz39JiJHj/58LuuxbkhvTJuMOeSlC9ufqP5gOWsO+I/yXurJ/3f4ayZCvNOsXuOVBEOdmPfALm4/MMTSLrYvH5j2TOcOl+PJndl2v4CzjrNcbf0CH/A6+yIhs=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA4AEAAAAAAAA=eF5jYICA+0/yrPoOxB/w/z6PR+Ng/oF79/fYn71YfsBxHeOzmCP1B6Svn68pvtN8oKq7dZnIjfYDV+QULeqvdh/oEj8vZ3C1/8CS/Gcdt15PPCB1IvD8tXeTD/wuqRN89nnqgZvOuTHZv6cfOH+yg+cK66wDXTPWWs8QnnOg4HGJrrXqvAMru3vuLpVdcECzVyrBSHvhAQbN40emWS86wJ7epqzrv/hAvtVfh7C0JQc8A33OVDYuPXDKjnMB28JlByaHP2ErPrr8gEhMCYvt+xUHzhjNXvRKbtWBh5EfnLlCVx+Y8k0lxWjSmgP+Jn0BTNfXHtg5d8s0ZZX1B3hXL7ykYrvhQLeBg7zk2w0HlL1+/AhatPFA+7HDvjaxmw7kafoed5HbfCB6mljSo6ebD/Tpde2ZuGXLgX2rW32vdW09YHRs/xqrzG0HzM5K8gcGbD9gJDNp52aHHQcY0MIxGBqON6Hh6AANRym0cLwKDcdOaDgugoajLFo4XoOG42loOLZDwzEfGo4rCIRjLjQcPaDheAYajhOh4SgIDcej0HB8AA3HGdBwDICG41ZoOLJDw7EdGo4K0HBsg4ZjLjQcY6Dh2AUNx53QcNSDhqMRNBx10cJxFIyCUTB0AQDHnFQBAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAuQMAAAAAAAA=eF6F1H9M1HUcx/HL8cPYNUOoJj/OAiSpoOtirA6oc1iWk3GIiBj5aywh48e6W1ZmThseHEhxwoUaCBziyYGC9+WQonoxBY6AgfFDIezUiDmJtEFBMFZ/9PrCYm19/3n8//y83l+J5J/PMZquzMdOxEyXSte2ZOBHR/PL3Vf3Y935B8aSrhyC97WejzQjn+DD3Kwqz+s69MueeOHQQC70j/XI5AOfojJjLHt4vABe9tiewV+PY077sfvYZBGGotKS9s19jp6ObGm/80noi2vDiz2+QOZP2uDwNaU4l5t344xvGYKOee1SPF0OSVD7FWN4BVz3HvUPjjEhQzmv2vpWJV6P3dT1weEz+O6lB8tcyqtwPGHURdN6Fp5JWqfIe2Z0KU5V3JVV41bi/Si3eAsK/whIVhhqEBOar152rRZNJYLRP+ACHrKUfx8QWYdcuWr1qok6+G+cmdlcUQ9d2+XoiDcvIj0oun29zIo3jI/uuf2zFfkh+uYCQcA3lqzoQX0DFG3f1ihTbQjrXrUiVt0IhY+hyaq6BMmSjnHsOMSOKnb0WtJxgB1z2LGCHX2XdBxkx0521LFjBjua/6djGju+xo5d7FjAju7s2MqON9mxmB3V7NjAjq7sqGPHx9nxKDumsWMSO+rZsYkdQ9hRwY7B/9kxBv92Jxyh44WNvXtxi8ay8+VgF5N8SIMWOsLuD29wrHyk8wCkVHwHWcKdabXjMHyp+C4b66vd1w9nLSi+05Pxcfc6BnOwlor7f9b7fUvCwLEFxXsQ5gM3vTj+GazUxHd1ePvUbJsw4Cb14TvrZSmZO34rRB4V3/3tkd9t5mkjUuh17qDf5YBwWnICvbSbu3jmOe8Am/QUgmg2dzIfWSCk+pRgjor3t3v+VW2U/DR2UXFHqXl9sncqy5BCxV15/pBpSLYuKu7MyR44tbt1UXF3X/Wuu9gybMKXNJ07HGmtdLkzWYlhKu7Szf5UmMq9asFO7jSk872+iOfPLmjgbvsTa5y3bTfjKl3JHWe26/o8dOewj9q5661tr2hmm6qxmYo7V5rdtpROWhBBjdz9u0WJ20+G1kJLxTtwSi2fNBw8j2W0kXdx98+5krCeC7hN3XgnXRP3Z2RFdWinObybhEgfqW1DPbZQP95R/PIdpva/6hFHxbua3Z+tx9eLiv+rUUd9oceRRcW70+5Rr1BGC9DQPN5h4ISrs7C6AX60mXc5c8nv4PLZBkxROe9U6PjlRuuIDXU0lHcrTMUnH7E3oo7Kecd/A330Y4c=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAggMAAAAAAAA=eF6t1FtM0wcUBvAHLwMLzhgGbrPiDUWqnWUBHYSdTKPMUVsnQjZn/tYOChqYN8ZlLiXTGBLjhRAf1MEETdBIRdANLChTEiJ2rMFBWAaTS0G8c3AOLQVlZ8nXFxPjgz79kvafpv3O9/XYUFrX2BjTjJpbVR6x8052Vq+Y2ehz9IJ42nRylUXs9bPve/qcydBc1/q1GJq77s6pZ0wdlbaKK6NMo5NU2rIRJlXvN0lJHiafSVn6u26mPr/UhsinTJ8FnclbNcR0oz4uaMZjJuuRiKqKQfn83Y6EZw+ZAurteWP3mLqXOtLP32bK+Nlyekof06GYiuUB3UzunrYTVR1MSdqdmwfbmAqaCsz2G0zhObOSfZqY+uv0ES0NTKl7MsyTf5Xnnjvnnq1m+rulQVdyjqkuv2ZveymTI6InPLZIvt8HkSEtBUza7sHOlDym8busCx98J69v1fyxPJ1Jszp+nlFhst1PPHlvNVPcO7XpA9FMhftPXV8UyrSlejgncyrTl9v9p+V7BqgYOQYjxy7kmI0cz7wkxzDk2P6GcgxEjq4XcjyIHIdfkePt18xxAnL0RY4LX8hRjxyLkONm5BiPHIuQ41Dh5XH/+w98D7nOvFnpfCSqYQdy3noxcsAppsEdyD0mNaU7X4yCpbhDW2mC4UOxFXbhLrsPJH9/XsyFcbiTdrtBpRI1cAHutriyouUjUQP/xB1N9pjfo8UN0I27WiNKRvzFXdAHd65991vl7DDTRfgW7q6zNbsCRS10oQeVj48lxD5hKocr0YtZswMTo/+VnKATPclyLvuUH0kfoLc3/SuaV25kph7o7ZE6+KuAvAeSO/TuU3Ppisp8V/YPO9GzLb8Z375/S3oDd6B3n68vzJzukr5Dbw+Dk2s8fJNpOnyCXq5VCouVv5iM0IyeRoXoS0ytTEtgPno7xWQzPnQy+UEdenw1zDLiaZS+wj702pD9Y7O1Xu4KU9DzUb3tl7RauRPchN47rIlzqy8wXYPt2MHi+f1uQ5nkAS9hF+p0y8dzTsjvgo3YyeGNGvfMI/K94XjsJr44yBV+gGkNDMOOJv7UH/rJD/IcHIddzVb7vq/LkPyg9//KfNzR1JfMpMBQ7M5o31YelSi7g2XYoRKiTPNfwfQFjMUuN+30va4Ll/fhUez0uJJrzFHL/x+0YLfKcIapfKL0HK7Bjv8DZW2E3w==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAApw8AAAAAAAA=eF512Hk01nn7wHEkISmitIxMtqZkshTSN9K0KBGZFi2Y1Mi+h5Dsu9uN23pnXyJLqyUfXWRLyMhIklQSMpJoIfzm/L7XfZ7zdM7z5+tc/78/1/VRKxl/5rdns7Zb1bKYAd12qM+mzSW0orDGa2BHwYLJR8f8DCGuNO+6Dnc7jPDSfre0ck6Fx4VMuOZfEzx2Fp48ZJfudnwMO9xoC8lvc544wSBbzLOtOv+xhd8W9IYu6m8DOzRff++AwqVwMiI5JbVitwuc+ZpW1qnfBoPoIMsS0+ZiFhnPumb7J8MD/GA8p4S0whB6xQaRu1qioaSuQK7p4EsfqBwbdGcrtEITWkF4xCOwOoJobV0l9bOEH6S3aslmp7SAKjrm05KVdxZHEbsvry+P1QRAo8CngGbBFjiPXvanq2rlem/i4f7N3Nw2GJovvrCU8HwEDujxtb2adcpxZKQhQrR7dRiIJUnns4abYQjdb/DSiZ1ymYyeSzhZ1RwBg8O3NxucaAaOQ9Y/CbOSjCJXX/DzBnhHA+9LNd5DDx8CCz304fbJwItmRHD34vTuVTFQ5R5jlqrxEPjRB6zkRZ2KfiM8/6wOG3ZjQlilQuGBgibgR/Pmbd0Xc8yFmrAZ/FunKxYuqK4JOb+mCabQToYF4vyCJ0mfmZSRhno8iFtI9s1HNEI3ul3T5Gyh4xrqZ41juRvYLIiaS++Vn28ACXRQYaL7xFZfst3rJ1vnhYmwzPsq10fHBtiBrp6aLdG4EkP1Ju3e7++YBGGTthL2b+thEK1qzp4UKvOnTo3cGGt6lQyMKZO9ZSfqwQx92qLp4pIaT6o9T1ml6mgqzFm95+5vq4MO9OF1Oivmp3yoI/tVFvS2s4HnedZK7j11cBg9INMaPMq6SJjdv54qPpwGX4IX56lUPYAUtHruwkmT9CSS3LV4jZl1OtQYpkkyVR8Ax8zgizbP56NJ5zed0g6lDHh9WG+renEtdKDH+85YjiqeI9rKAhu+z2TA1y9j/Tq/1IIOWnGGuvBKI4EYzxmHKTRngtVdf5n2nBowQi906Zuxyw6jPp6NqbybmgUOxUbi89I18Alt6bGAt3qSSf48uv/duHM2HEx5zDueBWCD3t+cVfjCM5bKb4uvUDmcA3rTFsp1sgC56OGn+1h6IkFEP/X9p2dKuZA5MX1I88h9OISO8JE90nwkg6zYNv1Fa1UedIW6Ce80rQaO39+vm+LanEtu5jpsfsCXD/I8XLe77AlwrBO+Q2xYmUUiPHUW10znw1vetmMHA6sgGp3FZfJC+g6DfD6oHceaugZNC2fvvUq7B3NoPmM/MY94JuVkNUKlfSmAK9pF7n33K8ETfb7rK5s1FEqsIsxdVbivQzdV9tL/bQV4ot0M7Ma1r6VTgwvC3+eKFoH+TMOdZSIVMIWWXB9xq54VSIWLD9XsVSgGQ5vZJ9U65RCCHkkPvfxBKY5qCNTsN9IvgVPZChuqPcugCR2obWKXHZRJ7ubQPbyMfeSYK77vjdhlUnWNh+4hA/tYgN46mSN+4E0MGcIedmAfh9G8zauFjM5Hk0Qzuoca2McUtNBlp2eqj5OJ5zq6h+bYRw900aIwVsmmWFKFPfTCPt5HE9XUzY+80gjrhz4momWqv1m7D7HJLuxhHvbxN7S9XNZ1/kQWiccetmEfWei6oneiX4NSSSn2sB37WIx+3b5Vx3ixB7mJPRTEPpaiZ66b7hZlM0gd9rAX+9iEFp6Psq6lIkgd9lAI+1iPTiebV4x7x5N5HbqHldhHjtfo3z3MlZFKJLGHDOzjWnSEpf+f0TXphN8We4h9FEQrPc3XLVFNIZPYw9XYxzH0gciyuMrMBDKnTvcwFPs4jd7beHWY4bOHyGAPF2EfOWZ2/USUBpPJEeyhDfbRAK21BLTGV6aQndhDf+yjNrplqspu760YsjKf7iGvNd1HMbRltIjFZHYykcYefuuh+yiDNl90ZlbtgSOV+4zu4YYQuo8cL50w3GNtH0R1Yw+7sY8cu/eW/n2zQo3wTNM9/Ix95EZXPcqU2mB6kfBhD19hHwXQVVI/Fz7NSyImP/SRY8knrSWZk9GkDnv4B/axHq2ys17FVdyFCGIPZbCPQugzj2d+HvkaQPY9pnsYhn3cixZckK/OW+5I7LGHzdhHB/Rd9R7HFLlwKncr3cNA7GM2+tkNcdnZnChqVR7dQ0vs41q0C8t6aZQLi1hhD2uxj9boJoHDM905TCpFj+6hIh/dx1S0f5/MHecee8rYmu6h6C66jwbopf3d6YHcV6nUSLqHiTvpPnLMY2J9VG1VKlmCPQyapvsohK6u0FYK/zWJSInRPdS2pvvI8VmDEt/aulyyN5juoXMO3cc9aNWFT7+4tDGoKjbdw0vYR/9E2toSakuEH22nts8ZJerd0gT1Vq6rsbLtYLLgyP+7I7jTsjDTlDC/0XNFnHP8m3XzKtsGXyL1w/4J6G++SZky5b5EornFZJvEKfAUOx4wUPEYuB/RnvU6I7nYIZjcaKHtiPObaH+l5t+LamKIDfb4L+xzFPqDRo3bzpZQ8pqb7WafaQnLihtTczY8Bmke2odbJ9O6A6MI4FwQ5/fRsoFHAxwWxpOH2HNN7Pt7tMlry9fCkzHEuLRvPRfbEbbVmkjZJbSBGXpd46bMpIxYkopWwXkyujQiZ068P4Go43tggu/DNrSfAuWk+ZBJjG88vl897AayZnaKOnxtoI++4PpM6eB3BhkppS2Hc44rlPZccGIkEsXs/96/FdA2BrJneJxZZGVcfewzNS+oUl8RLefaChwrMrPlNpFgooi+jXNldIfNImnPPDY5g+9ROb5Pp9HX3Zrn3yfGkZs7on3ePPAF8zvVbVIDLXADfcZs9HXNKgb5G22G8y60x3zcfvnWJGKE71kuvm/6aN1nyVyNEkxS0n+2ZZGtPxR9rjVWO9ICeehmI1mxvNAgEoHOx3k4+nPhbwbH+VPIL/geVuH7KIeuVHv7MFWNSTr15f7JWxkE436Rbo61j6AZHfeusz2vIJJIGdD+jPP16JiUzl2bdWII64f7Ixr9YGWYf49HJPFvVLm7ti4E5CXWhTxVegTe6E3vLJ0SrMPJ72gpnBujExPi7g/EBJF1jfR7LI7vsyS6LN3C48W+CBImkqHc7BQOC65dGXHKaIZwdJP3zPuphaHEDs2Fc0f0Fm7e8MrI/7zvffi+P0CPVVSGrjIKI1z3Xm2UkomCDkFfCX2RZuC4eurFuj4pX7Ie3YVzKbTL5RmNMVkG+YD7wGLcD0bR+ydsNiY6hpEPX3X0D9kw4E3NyxsuV/6do8uHUvhnU0yoXnQvzjmuH1YbzlJNJJJ4bwHuFxwvU02w3gBRZJHQuIh5UwyYB+8P/PSxCYTQRTK/D4gxPSkxtBnOOR7KjdO79Cad8OI+EoT7CR/6lKxHofD1CGK3xFaBJRcLDN2vid1/NIETepvM5tuJ7Reos+gInFug+2yvxwyvYRNF3Gc8cb9RQDso1+1frh1GEpxHlu4MjoMcyePKKp2NEIfemL5f0+nyaaoTXYrzv9FOfwn1Ty1JJ0G4D/HifhSA/ofP+qqwkzdJGA/8UjoSD18TvHuX722EaLTdbelagUNm5CZaIJGec2yyqUdziWcwkf/h/lyP7nR+evCvg95EP0GPV98wATb+kmIbUd4Auui3V47IrD53mdL9H3PfIO0lO176EyncxwR/2M+Eei4n6kX6kNK/rI0v3fv3vj16YnHppga4i66LbXgSOeBKdaGX4Pwp2rgtodX5lxgyjvtcOO53n9HOR9nnczpcyY0NmmK5vySDbgi/YmxaPVSi1xi1bO+AAKoHrYfzF2jD27HLGyuYhAf3QQ/cD3nRBv1bqr8vtSNZUlEhOqkpcMuSkXlQrB7y0WXbmmJDRMyp6h/mgHawWbblvG8cef3D/c1x/7hvv+F5azJzx0OkZTkbkgcnw8ZD6+AbusYjs+qkvh7Fc/e/59zoghXBS99mXCGCuvQ+Ko33uwB67FxP8jc/F7IlwEqmnnEVlE23n07mqgOOS7eEP4wR8SU70Uo434HWGjA6Ny96gow+pffZZ3j/T6DLpILPFPi4EVNdvqvPBdKha7l5/x/uD8AcvfFvT/1lnUxig+7GOccHnD60lxMG1fPDfsyxw0kVpfVdXkS7S+hMUls6sHrWyJ/7WAu70NLFLmqRCoFE54c5x07qVw9lSIRQ3/G/YQL361l0CdXWJpbpRa5/Mjz7jpUBESvbgol1LXDsZ+jE+3wTgwShPXHO8dLzX7b5PL1AqeI+PoH7+Va0fDdEtRpeIXz1I/piZzNhuuylT+i7GhBAm/600/b4aSbZhRYup+da6A4Z113J5a7ECvd5R9zvOWbZtNStX65FlXp5sBxVsqAhyjbxnUUNlKC3COoecwx2o7rQf+G8G225d/vao1u9iaQFfQ/44H3Asdj+pzG5Ow5QF3o+1x7hz4aON53BX94AcJxQ7Cav/CaBkkaX45zj72qpp7+bx5O1eE9sxPuC4+fCJVvsrYOJSbSMtujrbEg54SPeYwFwGj1aH5WupXaM+h0dj/OjaOEmvbZlRZnEGP9rNuJ9chT90PV7tvxHLzJwqeIBX00OXOT/6ZH54/swiD6fWiKz6pYpaUAfx3kTWrUm3oH90ZHiYdP3jOon+r6Zw/umPsjYWSPbl2S33XoZkZMLh61C2TueVUMW2ttDNHJHeSyJRevhnIUefKzv4HBKldzGe4iB99FNdK3MRJh9fCAZ0yl152bkwdlzZYfC3hHguHToee2iYV/yEX0O5xPooaqqNI3uSFKN/02KeF9x3OJhn2TQFEysXHtna3zzYfWvAh8Y01XAcatptanqwguEiVbDeRz63LKOjBVsf8riEn2PuS+k7zOOreXiJNr1AwijZK5wk/s1iPVZbs8SrQImWkIlmuVe7Um60fdwznFk5c0PXPvSyUa850bx/+tX9PeH+3wlDDWo/rk195PdCmD4p57pl7/eg0G09Me65bFlJkRnnvZqSXrO8ddxep6C/2UJ+H+WiX7ScmCnMJc/Nap1bMMFr0IIV1ZbdMOoEibQt24/0S8WCKC+oZ1xPoMuxLkg/rf54P+bKDpCL7Wd7UxR467un0dDr8NYtfa6A5cqYA6de71gt8TYbkrOjfYozmXQQbNBW/3SQkgM3qPTeJ8mo/98nnJE89/32T/LiemWVgS9vEUx766Vgx9aombP7K7ic6QKzbOQnnMspu6w/YlTAMWzgr5nC/D/jxttocbWup28kxSzjhXpk2IQMdV9c7+vDArQd0NOvY1cnUay0KI4z0E7FUu+esmbS74H0PdwZRZ9H8+iV29kmoinH6b+D5YLrzY=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAADQkAAAAAAAA=eF5dlns8ldkaxytqPnFq+JBEymgq3RuXpGcil6Sa6SIhHJU0CDk5kiYhqUgkGyG53233y2a/WXu/iO0WSTuli4QZ5ZZKqcacet8n53PO+9/3s/Ze77vW+j6/Z9U6anjXbPWHqyPjGlGPaLLy02P5+qhAUBrcvEzjC+tn+622DvGlAguXxNR30uStzrMDNftTYI3S3Nt/36eJYgD/rPfOQOjoDslPu0uTkclJXVeTJBi12sw/1UQTzyJ9F799ztS9URfQrKGJqdKGhmhJe3Aw4jqFVNDkZdRpwfjWDKjdsnz2ulyazLRM+Ie9XDas4xmN18fRZPBD0TEZtRIq9RPP79NFmvQ3ULGOA6nUbNeHlcfcafJxeRZUPuKBWs87fvE+mrg5PBkYuE6gWfpFo6smTbwX1p9YWF8IY6mzLq2dS5PiRVZKKcHnoLf1+ufgF0Lyvq9hg/OnUIpvE8WfUyIk75jvSQU5qbuPjX2EJECSo5WnnUeVb/KQ5ekJyd5lBwO58cng0C3WuvtGQGy5bw7znHhQvWt+bKm1gPiIb66I2VAG+eYrFsoVEaKoWHOgpbuQumi5NL/7XRXxkV0b+0EnDap+/slVSr2KPHFtq8ouEkKso0Sll8kt8vYHG9d/bmiBoJEul5l7KKLxROOl67MbVO/Q6+CbRnzy+c3Rw6a8Okqtz27Pq8WV5Nao/fehl0OgU8+3pe8Fj+yqWfYwYks99MvwFuwMKycbA7bHieOewjSpCZ0XKmUkt7Zp/pHP92FZ2oIZJ6+VEO8eHdFuv0ZoEzx0Fv1RRI64BUfU9ueCk/8Z9fzFhST5wAG3NMiCHq1g2w53LuGfMRo/aFBCPVUxtnlgl0VMeVc2db0XwyxvXhRIpZHRlyvjv4/tgMFfBOvXdCeQleOOQ+45d+FRrs535ipRxMvS8rmPSAhCmRSH4ogLZNa0r08HZG4UVXcNnCT3o9W3u06eg0j00SvGtGcALoMC+jga5HZqNucsdQV9jCrhaN7elgI/oY/2Kc0aDUYXoBl93M34d3PKR9t58t4hfvZQjT7ecZDxC3T2ouzQRzN5b4XYghyoRh+9dMUdRRGZMAd97DeZV6w7v5yKRB/DnZrTrXdmU7Loo+KnknGdeTmwEH2s8ClLjMrNg0b0ccPBIce+ldnQhT4Kqt0kvUNioQV9/G39xZI4OpaKRR/7rAd2RxsnwfBs1sdf9JekzdH5HeLRx7HKbTdUVC+BIfrIT5Rtv6hcABnooy/jGxfe72N9HN6955RH2S0qEH08XmLwPqOuEF6jj3Vze5WthJWQjz7qNh3q1FnaCIboY26T5F7PTD4lHmR9HK91D0+crKXCe1kfj3ae85GQDgJFfdbHFZslnq1YmgIdsqyPBubmV2nlbjBHH022+L92GG6Dq6msj1uY+qoBEWF9dAjvqy2zKIc+P9bH+OzsXoXXpfBWg/XRv8TLqU33EixaxPpo1R8gHVjYCcqnWR+VWsgrNYVWSNjB+jh8xspMz1MMd3JYH4Xpdsk9grtwXJb1cQb6qP0z66PRjmNb5G6fhwj0MfnDnLF7iRfA9a2cauQXnlMcXyGWOj/Fi5r7jRY9CQBF9DUp5+tjDSOjkvcaH9IkDHkImduoHPz8zHYIQp8LmfEYMDs8uKbqwX/5ELKa5Aj1L81EWI++P/FQCZ0pjoSJ0s5W3Y4v46E9Hh9XJMIbZPvvxuasPsSZqodApt4TQG1M1D2zlSaaIo8e61WRoIpc0bdJSZobCmNYL6N/f3384PHG+sGn9V/yGrkL2TUz02rk7FUQYT3FGETLPbA+AUHlMTN8CE3eM37EQDCyZlraLK29ntQBrDfb/V+fC2Chxj8dVkwTS2Qn5C5mfREgxHps1wlVSe/IhOrWmMDqVJpIQ7j7oek3oBM5SPp5QzwnG5SwXv9i3p9E7WvJShJco0mpz73OvTvOwo/I68tDPLfppVAJWM9SzPlnUQ9vvB9S96GJJPIYsg9xHlRPP07JYL17NZ3UUrAKAXvPyX/ftKfJMmb/kyEMufdGXZjZy0xQxTyQYOYrh6ECF8sK42/zl8Mb5ArbbUfOlRVCFeaFFbMfRZDo4SUhq/Ztf4ogGvmyikin0D8PnmKebFO63fd2Xwqk7M82hY9CYtuuvjYz0YOKQTZmxuOm+p+Ws/z1e7tjKc7qMo/6ZiHhaF1uGsjkQgqyeNfuoqefEiAa8+iOalOwS1448I8WWRjGCrH+uVCH3CwnMPD9yKGmYf90Z743inLUX2qjfVBInJF/Q05yV4Id2amQhnl2iBk/CZLaxmeWLRKS/ciqyMVMPUSAKeadKbO+ACp8R2fo+lwB2cmsrxim72S5GX1Jwzw0x/07K2FRLSclwPmLYDXyO2Y9pWCF/ZvP1EM6lWvPmxyyJGQlc75lFAf5ztKMgmt/8Cgu5inrcx5kzAgTF3CqyFFkTQmWZczMJOLUM6AP85b9fSUI/9ylYHTrFrFGlh9geb6D7om8eRXgj3nM5pMIwnNH+i63UWQ6siGX5T3NhxOa7OrADvNa77Vyb6Z+A8zbuG6WQysf56sFeR2W2e9JAQu8XwwHP1PV/yub2rBumm06r5I4M74nwKO1LCsxv2+k7mPepzPnx6MgyfyKalAFsWPznxIhpzHjmdCP95NI7A+6hkKtVH0eSWX/D+pGLKt4qT4TziBgif2Cy5x3O/w6sr94/HHZFLuMspzzA++NauljMMN+ImL6VyfIq2vv7bErJX8y9fcEvJezXMOMt8EH7DcWzH63AKeBo7+mtniKPZDjme9rBcNv9yOmHwlBc/BHy2TpIvI7k6ftkPSK5Q4bm4mm/FyYwH6l90zLK9KsAApXBdELnPLJKNYHfzXLE4xvFbBHk+1nDsz700HW/WU0xzsH6z8dht1YPj8xYROcUUaF4/1rLeNjCxiYrLH2Nckg3UxeVoPsdpa/rWcS72esP81A9yha3m1NnuLnL1hW6trKX7L4ETj+yvZL9j4gBt8r07JOLY3D/eyCwBCW1zH9oxEKsJ+y98k7YJuTIDyuHE5WMeO1sDeXZeZ109oh4P/67Sv+/YSBzydxvAPcBP/LD7XZfvwfGu+ZAQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//rR0MFf+/+8/fj0dt/D/7z/3QLyRzf/vP/zSTE2P/+8/Ncp9jDH/7z/JUc2QsP7vPzIwTfkI/u8/JxWKnTf97z/gnW10OfzvPzdgBoEL++8/tExqwqr57z8cbjslFPjvPxzc83VE9u8/xL9sUzj07z98Vz4h7PHvP1TBrflb7+8/VWnpnoPs7z+UmFprXunvP/kT1EDn5e8/50Zkdhji7z8O0o3E693vP2Xqoy9a2e8/LPIA8FvU7z8XM8VX6M7vP+WdwbX1yO8/gN8mNXnC7z9un0y7ZrvvP0fFxMCws+8/cD5/IEir7z+iEgfkG6LvPzzQ/gwZmO8/fD9fVSqN7z8JzLnnN4HvP7LmEBAndO8/nLrm39ll7z/bk1fELlbvP0wWMxIARe8/NP/igyMy7z/3e9ajaR3vP6KxgSGdBu8/gfCvfA==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAALgQAAAAAAAA=eF49z3swG3YcAHDMkIoaYqhHo/PqqHbspis2J9ehJSdexVad10aLLvGoZ9CKSL1CvImW1qv1vBZFf/JNUETEdqcd6ug8mqtrO04Pq1PbbT/78/PnB/a9Ktwf2MOXk3K1PNNfwVPB+18bv5pRO1Yah4LFksCvdH8ABsk/a6VvCqaxPaoccnvGWYimwE+4Wh8BxPbRmgaLKWBgFxuNvaHPFyGTzoVjcnw6WIkCyTHlUrDC7nY/25LSX4w4XVOCwVcJYPljjLWzkhSysbemDdV3Py5F2iUjvFm7VOg9/WmhWfwkkLBdqD9NJTeVonaHQubyUAYEdQ9KySsSaMXu4VWdio/koYcvQiXK0TegdUvkY+ctgS5s1actfNpqMeqimr1p0skG2fX8BLpoAlqxn3WHfPQ9kYsqRm17DIZzwFz3aM7vX0xAKbaoMFyP0p2HLmrU2YgZubDXnLnGqBNDEHbQwxLDDb085DTwx+dkkwJ4eihDl6ohBgdsWkj+YXk9NpL/y5nqEcWFFeFiV1zmOOzv/OdFA/ty1excpENc1wgeK4IQtitrc2MM9LDtfQz8XAj5yEst2qrMjAcct52KmZAx8MY+HMhttC7ioIbYNfVv2CXQYORvYzs9CgeuLGL2HzHOQZx11nbnWinslqfNa303Cixsf18JaSM5HmWXuytSaeVgd7w6Ou/RE2Bj8wSsVXpbGur77YpPykAFqPoFqHZaPgGEPVjlf0IoYCCphT2p8XgVuOeoWPNujcA0dsDO1z+bycWgJnJBjnNNNbRHcOvPk0bgHvbAodFf3honooXuJA2JFh94L9/dXOcMwzy2Q6bPzHOzcKSXddlkhFsLlpfOXKySGwZ97JcGSyWfGaSjKDel2ueE2zCnFfwiJHEIYrDfEt+ZXlsIQK7PiEGV0ttQPqdvHr4hggOnk/OFk8QwxN+khcrK6oClI2WjKyKoxWZ26J8v3E1ChiNrVFJoPXzoXWRyZEI4sOeZ9jhXChONpyaV0W3vwERBdIUsTAhi7M1Q8RH+Uoij59yWyFvlLowtT7O3lwFo2Kt7lG0r0xhkWmjipLl0F24EMLXnwgAOTPBv21UW5yFiat+QkrABuCqGE8FTAlDDTl8s7EheoqAU6YPFvIZGsLvM4TvMDkISdtrp4Nn0yixEpHQmynObICW81+OmDIEqtvrrc5EVpH/K8fN7woxm0D5J+JP7/jEcmBwovVavE4E6Oj7ct0xsgTqm1tUyzcfQie0/E9Ga25OPLPf1BVUJ90DbaO794skBOIXtSzjhNzFHcxz49oJFZOp98LWxU+7y6gcBtk11tr3L9VhH84TErdecVtgfdDp6LqUPrLHplZpOFO045HSHUZxwqw2aFduKZC2P4MABEpJh7CdRjjVlF9qoqB0Il9yWBQu98L8VGxRySKXob7yHpTw=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_120.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_120.vtu new file mode 100644 index 00000000000..38ecf7b4902 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_120.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="9.2846315418e-08" RangeMax="0.001053869941" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12172" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.99475446462" RangeMax="0.99999999986" offset="12268" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="4066.2946418" RangeMax="16654.726403" offset="13400" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="22000" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22092" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2457069277e-05" RangeMax="9.1520087321e-05" offset="22188" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.069769838556" RangeMax="349.96346909" offset="22972" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00030892808121" offset="26592" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="7.1579166612e-07" RangeMax="0.001063216668" offset="28504" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-2977.7198107" RangeMax="0" offset="34476" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-2977.7198107" RangeMax="0" offset="35172" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.99463967854" RangeMax="0.99999999932" offset="36524" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="4066.2946418" RangeMax="16699.531115" offset="37712" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.8981067051e-07" RangeMax="4.0547234297e-06" offset="43172" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="46332" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.99513228124" RangeMax="0.99999999112" offset="46404" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="4066.2946418" RangeMax="16500.757464" offset="46860" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="48332" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="49548" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="50280" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="50452" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAmyIAAAAAAAA=eF5l2Xc8lX/cx/FjZ5WVTcfe2avrm002URHVT6WSJJVUKoSiKCoiLQ0NIRTJ+eSSREZZiVQ6ZGYL2d09ui7cj/vuvx7Px+vd13WuznVOWfd3nVZO1UP0rVEPN/cfKzodH9/2ayMHbHR/t3dgkh2OiU6OdlPqCygJkf98L49d8ENdNbjpQy//9ZsVbIgeUu8S7jEvPN/z0xC+vqo8Il2VjRWOtgv0duujHu7K39OC74pO7l53M6CBE3qfxznIgiKINwnk6GyqKxAerfjnbtU66O3X1XD6fl7ca3URyCd64BggPOp7jKLbDgxO8qzQbM1iRPJTrQ8fqhuiA8Mql2yeNRUFoXn3AWduOKsUtiKlRQ9Kr2geOP2ktqDyO+HSFitCR0w14LVnRSZoygPZQ3gL4dnF8y5vPyN48EbQsS+XHUko7JGqVdBHtRNre9ROtxYxdhhC0y8O0LUZnvwopQ96e2bObRufMTjWSbh46hGesg41KEjtfF4cNIKJET3UfiU8eeegsN3ZNSDQUTU6e1kKfeMLLLasUkMdG1IvZkt0FtHf3uua3cQAH7hP1eznMIG62Yx97z9MGax0Jrx9ul1kByYD93PFwlbUcUI90cNNJ8Ilw5efCufRhNMP55WU1aRQX5b2yU8XRJF3lpRS5fTPIubbehbRPYO0ugPX4i5cMQO/y9sc0KPfBgcyCXd5kmo1K8ML0e+2FmW+4YEOoof6bMIhvDCy21cSzB6x6g0cVUTdqTzXEgJWone/rZqZfAeLvOTfjyeO9dD4XxjPPLhhBS6NdR7iq/sLwqYID/kZIViYyQkfQmu4L0XoQx/RA530DMtKN4U4YVD63H7R5KUQstAIjmE+LI22Jc9WrFYbLTryrPr7yePjNPELzWJBPy0hpfuo+2bR4QJP0iW37n+zs04InPPGG5nd9MGM6OF5EuFpZYcVdKTlQOMUb/CbS/yIl8evskhNGdU/b3zoKTdeVNiQW5p1bJ52AB16YDZvCdfI/dlnhJ/aUb12vJMKfLPOUVytBsBD9BCQS/gJX8Z7H2fVIPM1u8BuRQoKbX4dkWGohCJXb2Pl7pgo+q6zqeLqljla8tXuRKNEK+iSDHMsGpgweKdA+NdcTrG91lRI0p86sUVfHsKIHgJVCBe43b/FuFMV+Cy/D5+VUkR/VCU6vQPEUcFjrrjBn1NFe/TKK8QuDNOGvqoWJtxzhm5y/04a4cLelF3HPfnAhzptHcKpALNEDwNPCLc4Vd7XaEOFbccehyvZmKB391o43uRNYRQ5mlDtyGyRN/56PevAe9pmjvm0+6kboJ3cD5AhvPZcmlN48jBNbg+fw6ceUXhD9DR3VcIffeFr3Hl4jnbLJrKvfrkD0thdJNye9YtG+fHSLL5wvsh+prpfrrcM83l3d5Ve9wZwMrSyMZGcMNDoJJw5beSKyt5e7Lr3lScCVhJgTvTY5HfCL7K4f2KNncAuhrCz969xRNuNNntv6FkJreV47oOfFPy7XdbtydBezCr89tpzfetBePs+tvc5IwbCFYRvqbOIdbHmQiPtjDHWwrLgR/ToehnhdWxOx1yFRdAB293lH4ItUepBU6ljh2TA4pa0BcsxRjwwQ6C94e4ENlFYF3s23gGk/u23GSTfJpx2o0xETUwEZU6zsRn+ff+7R/RI9ibhVLbIm/VW8ohfxdX6/l1DpG+lKDdzRxaO5d95P7SDCTc1LKkRY57EtpSkBgW8todandzpZ3vbC4ZfEB7+UViE8Z4oqqlg3t5koAcGRI+GCwh3vkC9HXJXAUXtt2h1bNdE7qy9a3L0qCDz0qemZZYZF2ahOjh/H8WuujOfMdK0hWpyv4j0m2yajmcGBZDOGR2z3hXaQPaonfQh1gsW1y9LoztdrQfGMrXQRKzrnQ9XheARTb3u7VVW/MudmQT2I32YiRfTxklHG9B04py8cOtLQTzpu49cZuUNXI5+jqWc2iWsDaNEj3oKCRdn+NVwgEUMsU2ZXe28qIHC1H+IL98oCQYabdOl59hwi2EGVrWHIxjVIomu/MwK7JJmu6Qyhg2S1Qn/wD/q5JLAjybOmQRfOssOCUSPskkvbNR86vefFNJcnTfJKKWHFJs2Ww+pqEMXyzrPHi12vPR5G47JMqKtb+ZCqiqsYN+/fYrhc1bC37jLJbCukkVXPjFcjPSbpakQPepjI1xcWkk8tEUTMSw/O76lyRDZcUq9fnJVH7K/ZNA4v3Lg3gdLZumBnIj+RS33xbg5RJLnr/1G+O2H6ykdh1ejM3J6rUdd+JE90SMNOuFbNr+kr2PB0NyOhDgVflN0z/qubvceA3C+HSaa28yJR1S1Pdrnw4V+Rcw+4/C1AuVnBcOu9zsL6KmEn6a1rGIMV0eVexjxpAZFSCN6lHqX8OnTReljYxi66bc52sDBCJXffRVkqKcNgW3hOyqucON2zKxGz7ewopjbl/cHYuYg+W9/vGC4nfBmGeOzu98roq3XI7ttZUWB7NGpDsKxnSHzNQx6yOJGhcOIghmqnco5IMSuCgEyZ9LpjivwlWuVG2adKcj1+IuPhrgx2J89P2aEUV5S5AhXj73XXyksjW7Tb01wbvlGayJ6FC9PeIiFkcuT5RroEMP78S5jSzR/J+1UPk0Ooi9ddd2lwoPbNXx4x24/hYm+vddfWmEKy9O+sNRfZ3hZG094w6bPQwXLxdEum7VnJQ1nsD9EjwIuE+5yEs/X71REo+WyF7rmrNHuuAPevgMCULSf6+16fl68mDk9o9ezB3M516qel2UNGl9lt+4P/l1gQXoiT0qNNzMnyijbb3SsQxD5ED0a8Ce8p4Y5pXtSCA1oadFFFVxQtGuJfETFZ2zSJlzPaIYXj667FsnEnEXLcu0MTW11BAr5q4D0+Z1jTGZptbSCMytulK+RRz5ET/OxI/zRhY1JTOe/0dwot/MjZt2Q8clzXRovViB60/L+R2f48K81+/3XHWmntcwEDtza5gTb5R4YpUf2FTg3E86rRXf8eYwZPKotTh9tkEOmRA9hZM98jG+7qTIfJMs2P6285Y6itFMfIxk55My3O3rPcX68ytrfKi5lkrZNII0ac96e3J8psCA9/y12gm4jBnxs7T2J/ZIoluhhjofwM7P7L1/UU4QC0zuqv8w2IjbmmthNqpoo3v6VrPx+Afzjx3rftXNMAPLs607uswVn8vwGpGu9jOhOU5GHTcvol7fT6RgT0UOALeER25TWzD/RBm6fGyihyRn13z989vugOtKYjOdpmxfAa4t+BT1NZISVPBJtdglWi9ff5DfhUiUTqV9uyAKFIXVDtZsh6iZ6GJ4gXMdWOFfOVgt+Br7V6kt0QfKZktUvvgqgHvb0jUN/VuJRVG7ZYOsemlC7NMNIm93ivj3peuNSGz8NckCv0M3SqWw9xEX0kEU6+/pUnvJOITjZr8pQf9EVPRp6HOgkKwi1Ym9S5ihCuHrh8ysVb3sx1nc4h9UPR4ive3WwdddEQQDpwpJJn18nciHJ+ps+WR76KI7oUYA44QVnqQ+XbRVBy5p2bNi5bBM6+KU56GKVNGh0xtb/TBHC6Qo2YTH0cYy2zO2jFIvz4vnDugjfLte3KcdcGLnS0qePPJZb6JEX2TtQ2rtuR8kh9le1X8QMNiDG0r3xWz8pwE81a82P6cK4SMXRq8z4DOa//67PlL/l4r61OuEm+Wz5kmWSaNP9zPPWzoqImeiRy2rCJ8FAxshRBT14o7l+9pcTupox/Vi1TRVSg5jiXxWK4Mq6rp+KPlBQ3WW19dse6i7u8xwjPE7mMofVfWmkG9XBTc1QQclEjzSOEl4H5er+5zVQiIgH8wtuKxTghB1Q1laE7B8NbeVbRfHqpqfL2VVmsRvr11XO/VjaN+kg3NuyO7d/7So0/uD3rpxZMThM9KiW7C1teS/FFKigvJ6i8IADRijhbcj6ddcnafXdMjUKIWJ4GK+kn8H9auyI2bq24F1Ki/uUHsJ5bM/6bSwdwvqKk2L3SFAhmeix/i7Ci6MY//ugPovNO9ttEffVQitufUlx55JGlP7DEHVLHPd1ffRrmmGc9sPjqMCeS/KL+6l9hNNz37o12QsBt4dRUPC4CvARPVB+Er7xkfNUUoYsPFo9FNApyIuOxvF7SaxXQKnm+b/v2UngDjw9r3/KzNAqi/8YqyFmoJZvd9+q8LlgwcOvXOARFpWESeZXvyKtfmPHiB7opoS7XHIuSMlTBqvbjNeeSbTQoIFN2NteFrV59FoqhkjiHsXXG0+k/qa5GXfP3pj5+3ORv4Q9Ca9+488doSMKbxvLv4pyr4RCooftmwlPtaNdPmyiAIomQoqiRfpAEZ6tSV8nhbwOiSdkZK/CfQKcerkkxmhNNnZV/N7ai/thpPOOOXEMOgpC1JVlk/wpssBA9JAaQHgXi/x++yoZcHKw6a7xtYTg/OQXvNzSiGe6PXS/DhVf3iy8r55xnLblytraNpelfWfSg/u3uZQ5CMFnGxsRhnItCCF6oJK+qW6G2S9TFt4wLUs+m2MDSR/lypUKFFDBz0DLe01UfP5O0/jX6zM0hx3f9rLPGCzup5LO8eo6s9RtSYB8u0vZszqQQPSgRXrqO/quNBUV+NR82OjxfUfIGs39ZLpTDZl8YeX8HCyFT+jaFR8WZYB3Npl6EjUYYnCVump4q7uASvoHK78vayelQeq0S9t1VQzSiR7CWgj/9X3HzqGPGrCt/tOjx64uMBfjdNFluxrK9tvGTfkmhQvyRYe5ijDAdbZT2A0PbOn6kH6q0kZhfkIayneaN2as1YVZogcq6RLvDF40NGiAQyv7rQuTLjDQ+vZIwlMFZFCv9FMwRhoPxt9s+H5phjZqcYTma62zuE+vIxw+TNhyJUhCgQ29lcHYALqJHsZIv71pm1etlAr4dzSmR5u7wFdNtPXTnBQq1h8vUzOUwd96HH0kNDJGc3mvF2VlILm4b0J62DKPdeJrhOCWuUA965gBNBI9BJDOImHnMnVdFnKH95eGfHYG8QDu+uFgITScW/x+9I4Mvjtg1+y1DX20/SPf83o/yS3uL7hMtfx6IeflUGqR+ZLddDWIED1oPCO8RyKFN7JTFNy+Walqn7CHAoGH+15pUqD6x3WGLk9ZXFDJ81rs53qsj52nt5FRZnG/mPSJ1rlL1J4xzG/n46nhF8pQSPSoh/SM4/Xzg7GMqGgo3UV2iy3sMmuRdPskA6kCR3U/r5TDcXu6Lb/Qb6ztgQmLLvdKFB0u6rf+EOVlNumxGy+PiN0QQWu9zA8f5lMBH6JHXqRX2OlFG76UR6yzZn6io9agLyvy0UZCAbLTuHgbzsjh998+Tk3qnsZ8myW3ByXxLF3/B4THJ5qDepMEerk5Y3eOuBHoET1yJj19y+p3KFgZqQhVUfrYHSD7M0/tvqvSwMzofTPTXh73rBRbn3t3HDuOuSWb2Got7keTjlW7eQv/EUI/j3/Z67Z7DeQQPfIgvdxFR7TEVg5pHmfwYL7vDBskeZPFVomD1zaaUjS/As5Xc4Hh/dZhTPT9fM41ZuOl60/6D0Y/LgYFPlQQ9cCKq+bv9waiR1TSO6zX+K0To6Kq3Te1+d+4QPrP3E3rznNCWJlFiFuMAv7pzjUBdTY6dpJj34q+WkPky21KeTwpYEglveRbaMBQGQPax7VJLM7fZKFH9HLCG1w+i/HHrkDPd7aMj6W5wLcsNdXsEFEk7mG5R89LET/JqfSn89Mg7Tu701qPvXyL54/fTPjQ5EyjjigvpDumdWllroF5ooc4steu5euP3Sz59/eNkoddLeCrzgDlTrYG8hqwdF6pq4TrDBaWGu1ngtQNQidM/n4/X9inkr51WCx3OEYONjockglsWQO9RA/0fsIPXo78bC2pDYOYtttxYUN4X9HGLyWniegMQnO78pTwG678Gz6PMcEnQXvv8QTBpec76Vm3unzcpOXBSzTkcv25bqya6CGVQriAjrcR3NOGoy1v7e6OUsG8au01LhspVHDtd0vwNWV83WRv3iPJMdqCL+wnk+5iU1CW7ywIbJf+W+f8hQcsiR6cSKdyzDxtq5aBR/dcYmPHNSCARskqGX+NFWs2F8SdUsGzN7r0ZXcn0E6R+76eVRVJ+Qwv6Qu+vrEnS/0FbWG/+OW/nrbgw6z7qgoul9KuHxqVe35TD470BL8O38gIxUYnDoqyqeLLtgb5y7o1YhtcltE75mQWz08n/VGo8De7J7+x4OyUHOnTGhBE9KjYmPDWZzZOeygsiKfc/J6pky4EjXmL7VJjgK809y1ZM6o49dDQpmPzDVi1YXPGZN3S5xMqED5aS9VkUpvAVrwZV5/IkVvokQfp4e1m8jqZTAhfdsyKGqwKRylOR9axUIBqqLfObFgN14vyMa5Oq/9/+yak60srnSnMGsPExzZe/cBOhSCiRwu9Ii+ao3gwomp9zV8uTELw7YoNW0PbDM0rJdH7Q8RqPFVo5wHpNbXYn5DrThut1ZY+P5NeHndq1aE/I9jkwzIrm3tUeEv0WDHpmzdL3/Mc/oNxZs/kqaUqQL5pT4rehyHapPxOK8vz6vhD5/CwzPASTLTNU5x1Umpxv5j00ecJmWVRHVikz6vikEOS8JDosW+kP/WNnAvQH13sb/mP3xDfWUPL3iwssM1aA9d5NxXtbnH3/+2nku6l9DLgvlkpdj9xB9W9RBqsiR4LIF19+Np/ItN1i70q/azcw3vjWHb8wa/xSRq41UTlwWUaFbQH0mVKdxw0lz6fXyL88c0p08dDfbRtGoWrfyhoQe/3fz0tjOzvGxVrP6qYpI3zibasGxeCuD2P32zzEkY6wn+Whcpq4m2ubPMP/uun7WrOOFt1d+n8zqT7IpUI62MrQF5tw6Nd4VpwnuhBgfRH633vufaLwZWRXW/ejevB8ZjJ1t4ncij7dqzu/hxNXHT8/VCa4RTN/f/sh5H+bFm/h+u0GORQ4eKBfm2IIHpY6JtsRm9INihCeDHL1uGbCDR2xeAFbQoozN7QMpxVC394wvYkqp6hFQasjlYVF1jaJ52Z+VZr+UdJOP5S9c7gj1ULPRST7vhcwMnEUwUk1tht9HDTgOHqD+475+XQOW79L+M3tXD9pKoLademaM+W+9NO+K1a3PciPSvXFKq9xaFc4UxUohL/Qg/3SI82juZI1lSCCvJ86Tp8o9xissjkg87BvbraeGWu/e3le37Tysn94d4Rj7ijNQZhpK/f3nmtbkwEWuq2fGxZIQFPiR6opBdVzrwdYlOA0rRvjwuTGCCMsWHqWYY8om83UW+L18YPtsffifGepvn/Otnfc15n6f2HdGZMv/2TpQRoa9FeXLm6GqKIHkx2EH5IksXfckoJAnT6Z+OvcMFc5UZVllwNJDta/axYWwdnDT3n9s2fCTo5M1c15v+v+5P0p8oG4XBBDuY2RTAHuSvDLNHD5xHCb0xbNdFX/X3dzflqn2RSUJFAiWc2tx7yCt9skPpJB6+PtW0NfMIOzuT5U6KTLW1cJwqopH99seHKhWOqUOzZ6Xliqx6UEj2kniZ8elfMb0lzQyi1LkwLf6sGkFUVpM1pgIpXz+9kM9TF473cD0TOcoJjXHK54/jS+cNIryy7c3kDhzo4VVC5hkTU4RXRg4k64X6F+cyl5zHICRvxdExRhO072vyPnjVEfk8k+516dPGSwlcbpvK4AW0z2B50U39x34D0EJ9l7dPHNeAUxSG05O/z2YvoQYP0jSLHr+mtXQv8uSknjDL5EKvg7900BgxRFY0Dk5P08DEBmTX+B1YAXmxuK3DOeun1VSA8cQAPrvLXhBTt7FWrdHVhGdFDGOl6x7DVj4eM4AF5/s/VlhfPnTdEFMGuhnMM+vj5i0835Rdyw4YO3+DDrUv//lC8knD15slL10/+/bwQJZOgGqUA74keqGRvUCS2mW66FlokxA2vfhcD/b5awT4WbSQ0F8jvUqSPx644szxYlhUShhkT9gZaLO4Lk05RP5TCHqcIk7ddy4WfyYIO0YMU6dWxd9yDK3Xh/eb2Kw+286Ll/AVG1xiVkFcHk6voCQOcKpUXe0J8jqZlXjYWkbx26flF+p3MUZ6vslSIJfeFiR6KfxBene+YrfhAFS5HH7b9PjNGu+c6fcuYKouK17xNMhkwwEUvvdoouv83bdN/3BDtbrL0/k9604u9OmdnRGD1Go+i52dWw0OiBypG+EGW3N52bgVwyTYVLZn7hT1gXL7miRcVzdQ1OkCBIe55SWyPKs8vGj4U3Nq7DFv6+1VP+GDXR9d82ZWA7SuUvfBNER4SPTCTHhs4Upb997nzoWbwu9odXnDcaZ6uZiaCwvZ2MRlErsENZH4Nn9w9QPto9S36hqr50v1POqOgyeEuBx5oVyu5XzSkDg5ED8U+hFuXb7eeGxSHTyz6Ml1/fy5Tu+qt/GKCKCzZu9PpzxocXD0+stN6aXjMYMclBvul+4d0YXp7feM5Ljj3fKz03gM9QEQPJqS7JbolB7qIQNVaSQ09Pj3QczsrdLeUD9H1ODMaWjB8cvR16MnmTlq18aup9xFyi/u1pPc3BOm/XrMMTkYkbKtyRGBM9BBPumNiyMOc0JXweSArxyzHBILKwu5u/7ocURpzDrnlI1zrspLK0HgbrdJ8JnZutwCMXR+55VH7pWDBi8o5bmT0McFm9a7oQCsTiCJ68CLdKDEtfzCDF5wbQ0I2nTGHtS+OfXx0ixHR3XVYtbC1uNby08o2GY00q7Q/+PVM7aXPb5sJfzktvIrGPkk7nd93+1ykMVgQPSz02c3vpjQ3sECY8fcMixpbuLIpfCroLQUst+44p69ohCvt9/cOPdOAPc7A7Xs4VJee76T3j9ys//RgHFNo7P4eMIPBc6JH7qRzyPJ0yesxoVPkvm5u0c4qAVFI3R7PtXalMW42ljV1z3MQMwy8vfnNRsOl+5/0+/orNVsaeZDtl2f9+6ww2Ef0iEr6f/Fj7cZ0CYRFGcvkY86wgj+tYfa5FIR9DHUvuW+MT7vkMdrfGMOCI4b6JQU5lu5P0mGPy8cVXwWRhH1+hKevAbAQ/d/Xj3CxVzOuZ61lka6qhMWOH4ZwPiudTbFTESr4vh4PcjHB8z15dutNz2IdHuZPBP9+D1zYp5OesyOptoWXii7EBfPI3dNY6FEP6fEv/T76R6oi/l1ZtOZrZsAo13zzMYcGeGHHymPqTXDD3DxvngxG9PTXcrqECtPifirpEZdYXmTmyaJP5q/2qy5TW+iRCemUL/7pKl5ayIE8vy2jiZOBggZQBw5lyFJNcT6zHLrDe0YkQUmpe7GKYen+If2Vi195TIssSgwrl/UF/YUeFZNurLyJsz1MC9G5pmwOcZjBVYuupzHtSjBhnHI+L90Uv7jLqldeah4LP+o9EynFtXj+d6QPDorl+eZR0ba0uIP2IdoLPeonvYxnxYXsB2qo1NZlGvyMICnS/vWDIBnwuvzax0rXDJ+yUubNfTiBlZ7I9UosNVj6fEW6mWCS5RWqCFofqM4ZKG8IF4keUUgXeH+Q6aadPDJ745OdedYWPiW2WHm+lAB6xppai3NmuFdh0u04+xEstB6z3fdj6f6nZBJ+yNA1pk6dHwVxxD1esREt9CiM9H5TryRjVimkHLW1mbnEEPLv2+j3trFA9glR0w2rzHGeii+UsGOfsSsSXEbsesxL14f09qth+uwms9gpU5r4j9+6kEz06DnpfhK79Kd42NH+7f6312tag0+pudG7rX+wVNvpnJ155vg2t4cnjUzraWc3j17U5mQHhk2Z64rjmQzDSGcssCvSNh6jFUjjX2fC/t4fRE8zIf1Tdf4g528GOHj5A4vyOTOwD8rI7945jhXLBn/czWOBV6Xdmf3Y+Y52cng6qHn70vPRi/T+1o/jW2720dwYPV3wOzLQGvivpy303x+bbLobNkkT6dyybOdjJ+Dx6G+PZBAEIwpbksAzC/z+EY0o25u9mLVn0X6FSyO0hX0N0r2PFkQ2+XAhX9GYM0/eU2F6878e6ZC+1adee7WuCLroQjM/x6sF5T2vPzNkKULYlyubSzZa4v+ll8qzFM5it+oHTXuYxZaeL6Sb8x+Wifi6CokUVBZMS6hCPtGjhT72VEqImaUqCiX72GcnaqI9FYBusY5yosASZyvCkzg1ZrDmyg0nvzEsfT7xsiR8/O6+vBgFScTWHBnxO84a4okeeZF9bfphs/OvldH7a2MrWdJtQHR+oDI8lhmWpbM5sO61wlO7etUk+5qw4tAEtroLGov3jwHpHUd9NtlGTWMe+AZnTm87aJn71yMh0vPXPInvOseGbOrZY3ZNeUC9D/vHi8p/319XvLt2SWQdHpCYyDAVOEh79Y39hX6S+dL7z3LCmfbon+/6wQNNy3MmKrXMoITooZjse0TRmNqUBLSIpcgqn3KByl1WGhk7ZFHq29TMN5Hr8JQmGat9hb9p9hohZa4nLJf2Sb/mWcOwbr0ozBQJUJtbtaGK6IFeSrgjnePa1GYFSB79Li4esx6q0+2H95mpoDN2A2UXLKzxEvdOl8LCP7TKvRFd73RVlq4/6X6UCLMLyVLg/qCjvy9XD8qIHhZ6242P17wxVAdjQWoqj78DtBxVal7Jq4nC6gzpbsw2+KRfw9PIb0yAkb6wTyWdw1WS+egyeXhHnr+N6GGhl+uU8S+L1YbKFzyU9A2MUMI5yR12ShsVc4t8+HLMBmef9m5Nf8oKjU+LJPb8WHo+Lriy7aW3vkpK0GG8bc7iqDYUEj0seGJ66d4jrnpQ70qZ5Pr7fCoxbKJmbjdAz6+/lPG1scV7oo3UVbdzgUHqzEvL//V8jCe95csD1cnj6tBJ7pcSPdwg3ZEDf1A/gMGHcckSRjNrqNiTr91iuRZRlTyOT4rY4R2cXMWb2HmhbFdou2yW0eLrSyH9rV5rhVmnFjz/dlMjodwISogeFnrGvK8jQqUmi/u5nhPhpa7GiK7QuhaS7XAVgwN+vhgfNOyRH9xnbIJmT/IWr+BjNDQhvXrm6lcw0IHmMyflMxN1FnoIUyQ8VIA9zmnEFLYMYWh2w3pwy4uPO4SbILkGgbKXJ+zxq+7hO0JC+KHackTmOd/S88WE9N12mop8t3Whav9LEc4vags92JDORmnzNFM3h88Hk5+czjGFZvTgG2OjKaKH2Dm+2OaAMx5PdL/8WgAO3qY2eUr9pnX8O/9oASWU8D8pVYf3sOhDA3n+JqKH1FOEx/QVKOrut4BHTjvbKiKVID/PQJZP1hhR+Nu6i3oc8Dpq1qpHq/hAkMNHO+/Rd2zx+vMRPt3OJvpLRAdKoo9PM1VpoAKih2LSUyT5BOf//nmJMz/A/Z4cnMyx0XD8ooymOy4pzn53xCnt7weemf2hMZ0U5em4qbD4+g6TPpDQmji3UQrY7E8H637TR3lEDxydhIvvZ8q6/2Y19CAr/Xf6pkiaF2pWyPBC2AuzvYZNTvi5EEOrg6M/sHbOrtqh71aIIydB1eOw9MsFDw2wlcpYxYoiFV6quYohZEL0yIR0T5OIya13+FH29ZxLM1J6oNyULJbgLwpU86fKNXrOON3XJlOudBArm+OZbw5c+v+vMNIp1468+bCCFxWrmJ256mEEq4keLfQyzGZ1wuskUeuPyl8nklzA/s6YQM2vZYh1SOpZ1CtnPP+E5nkLzm80+YAX/i7DIov3zzLS+0OLxZzFKLCn+VHJSWMrqCd64Ca9p2bNA/1ELliXssbjBb8niINVsmbO3++nKQmYicV63O7wK7G87jnaF4980dN6FjDjGLq72FzA0IT0I1zXD8QlUqE6zNdgfaAOrCV6KCad1bcIU/RXg6bjAx92VmvC/wB3DraCAQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAALgMAAAAAAAA=eF5txW0s1HEAB3CWyixSltNdlspUzqLW8hR3WaXyVFZuerLaLKXowUM4VHqQp8sKMUs4J3kouq6/x+GQh+bp6OiYPEW6SM55pvf9vp83n5on8pWVlQlWzX+najKX0CPjyQo0J8tCjo5PXSVFL6gdodAidZ90dGlY/030KMNgP7rt5FUN9FePGdEyePf9jtPo4NXtOmjlX17CEvj10No1aDG98c0iWEdFqFwAn/IMM0PbVx4snAeHauVWzoHpLyhqFpxe+FgbfUIzv0MJzo/NDp0Ge7Xt4ivAdlZxmlPgjlZnziS4yemy3R+wGfO47TjYdd56kxx8dE8qNQa+983VbBT8NLyKOwy2+fK8YRA8+FCQ/h3cxxw42gt+3LSXKQPLLwbYScEmb7v1JWCuy1xEK3hDmXdRE3i/DzOlDtzzY+aKGGwYdCG0HCxU12d9Ajto0898AEe6XaTlgflWIQF8sIlxdUEaeIflsjQR3Fl6PzoW7CwJpJ6AhwufKbhgM1sh/xa4qDWEdw3MtmEHXQBXsLzLXMCG8pXt9mDOl2y2Odhbqz7JCOxnWWS8BRwVl/JTHXyE8b5UsUxe3n2AMQqmJeU2toJd2BwPCtzM3aCXAx7kjQ3EgPnBVed8wb6qHgPnwVS40WcrsFDJpdHAjE8JYhWw5EV3lHSJPLIm40Ye2OWS05148EF9QaYHWKEtj2OCh5aalBpgdrtqXfMieaQfR8YD+58tv+sF9pM5Fm8Fl/XeLJIskJ+KXkfjgxfraNscwZsF9eZ/5slzZcf4IrCYXmnhCKb3hKj3zpH3Sxzck8A2/rWhuuBab2kvb5a8oHHytjW4ZRvrcNoM+Y5kLb1FJXlGQ6IoAfwgJ820a5r8ULnAeCO4JDv9a4JiglX83yKn65HvpsjdzeMHKv6SF8/kFOwED1Xkea6fJJdWD4WMTZAn62Q77gOrCONf9fwmF2dSwYFy8tII7ZLEX+S33AwDpn+ST8a0mB8aJc9KHffbM0JOM6ifMB0mT+x+qUUfJFduEjxq6Cf/qLeZ4vSRX62p1W3oId/tpMYwkZFnnHgYxewiF9/OPLm2k/wfueHQQA==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAADxkAAAAAAAA=eF5d13c41u/7x/FSEm1JkfaSqA9pGG9RSBlJVrJHVmRv2Xskme2ihSQkycVFyshoaUrDKpWUBkl+Hd/36/7j58/H8TzP87iO+4/7Pu64xMENK/nvVmqU7AvM33afiqoO/c/dhaelRkZVSXQ62zXRx42yfrnszchEA2WSvWL4f9ZBH5Rn/SCrvke+4rO8wJ9NrVJ6c6h+7hTT/xbcp8u5Nv/PqzzvK3v22JBTg2zfg86L+V1CdOtTTX2yi5ed10Wfw8f6hdj4O4FxiswzIXP53j/LaYmid6D15xbKt4B1wC67tTyMB9kq+P/79Hmsb/vekgq8aEXKRVgXoS/HPu+Mwv/+VqkyHmoi2R4T1lDxwYEdGbSFWquzrvA4LDk/wIMYbWO9Bn2cCmu5pLxtkn1rmX6V/993qbJeXxGnsn6xGfNHNvn65CIpWvWyZdU59xbaJ8f691V5yy92AWQSejX6YXjffdtbgufUyHt51hXoPAzuadxd3uZoylTtFhQy6NxE9StzufNWtlAJHdY7rx2113QPJhawDvopuGr8dOPJ1zTJM33Whujd8ErzhoqpuTZMgN6MLV/7ZOkIX/vurqFm+hgONdAWWjMpnEgasv6LbgVfStd6dvGhBynZy3oUvRruK9ntI8Wlx6j33Xp7fp4i7c58ODic10zTYK2UrDZTuzCi9YX1e3Qf+Mn+ZfXSuR6kckyvg0ufPfN21N3NPJLsX/bo5lZ6X7T2NL95M2WkWCckiOr1+IaRaLgRvQa2OGszJ4Dbi5wY03PgxH0qLRNOyTPCVX5aNirKNLb+xB699c00GM4ROVx+fPTf/XLWEejVMI9umIxPnhVZO2ZfHjYJCG+OMf33+b/bY5kxoEppi3pYUHcTLYaFJB4sWueTQM6/Zl2GfhcmuheGdeysCVc362p0Pvi7UGE737MApm+ChNe9szvoj9bfhZczm+gwXHUxwV5DOZmUcbH+ik5huw3+G10fG5AGPtbjn7C9EbaLf6oTcCuGKRGkVGWjOvUJG3d76EATzYN7p8+yaAhNJqHzWPujB8Daak9EHT/tJXQ2a1d0ji3aH4gxd2KZthSTrOk/NemGAps9CoubaAGcq75Xg4ccJs5prGXQdWGe631mcfcsiMMR1tLo1nDEqF71Ie4wJiZmpPqjkTb91dbQEfqokVrCCSkB3w3WxhLxWNbD6IJw+CKh01H/vv+8olh/RXeFy97vnplS5MW0Da0uGxDbTdeuV9XtvNBIC2HnM9ECP7xiSPpv1v+hB8FP9Yqraq+4kx5YCv0dbKYtvv1q3kFG2eDFj++pOvReOJ/cTqNGuhwezD6m1yYZRYzhBvQdsI6KVI7TWxcyGa5Hnwi7Zu6ryY91YeKLYyV/jtOlVk+alxRMa6Qe8CezyEh/+0iyFLZGnwNXPj6s/vW9C5ErYm2GvgnmD/nyPH6PE3NJWo9v5TNdWj/pC++qt/doDFw7Q9BwvnA4ubqe9V30U3Brv2TVjWOqxGj9/9/Xh29cnR12JcOdaZr5tPSstj593TjF/HrKPZoI+3RYT1qxNpxcgN+hh8ObxJPWV62RIW1j+hNY25FLRPmdF8P32dB2Qb0B/ZUsWrJN7R7N/cT63YFY+S95IeQU+m90O9hKRmKHqchuxqGP9V90U7hg1XeRh8whpm3Cy6znlwzp4l73bY/n36O+sH7x72N7n4eRbngpej5MN7qcl/ljQ+ZNZL0SfSqsGHEnzrXVj8kuktoiJ2lESyQN1JNbGqg+/KWvc+4ITwjpHNNL4VL3QXHrlQZEuhhGF4PPvDH6NF4gmFGzin1x4uY+ut1Xdo92WAOdCUtNtHIRXhBAOuGd6DXw86iCzvZRIRJszVoD3Rc2erikSvdBKCP9qbhAJ8uY3q3Xafqr30AnwZfj0pRlQoLInl7WVeiy8Lr193Rj5m9mjmH+HnoqfHu4vLdgSSSz3Wt8/RwFU9r7JW9ogK+BSsJv7u6qOPwygqzwZN2NPg+et4tRqlHRZRq9Wfeh18MzHWfzKs9OYizHab199syM8gnyrPxQUU+t4J05r2w36MeRn6Oa//NkdI5d49ZJBV21Yga52PlZ6EPw+VGboWomldkXbXd/dL85Xery8tvN5HpqDZ+8+qE9oTaOvICXob+GFQ3KBsbrWjEK8CJ0RZhv6/d476ZUJnBni9RzBQsqKSTX91m1nibD42VmzDFUjSEElkKvh79lLHh5xHIf072D9Wr0Xli2VfEKz+NkxmPqxtRCQUuqWH3sw5LhOpoGTzPPJQdtosjpMb0Qvj6DrmnvWMBETGG9CT0G7vxVsm374wSG64RkT2W6JY30EUkWaqmjS2Eal9xc8zeMnDrOOhj9GrzhcukbDVcvph4ORG+Cryk0lNt4JjHvouu+W/pb0SNbg7anhNXRT/AssamXea9FkwA4CT0UHnzu7y42z4MZHNN/w14GErL3dx9hPnqacU0ys6ZZU9/9mb65jr6B56iFt+gYxZGD8Bl0e/jWtHvT3fM9GDEv1tnoorBMUOPO16FHGSdJlwC9Hmv6WUlXSmpqHTWC18sONySYxZM9UqwH0NXghEWPF7SstWL4Mf8JfQa83a1KuaznCLOq0tt68TMbWnW19ckwraXT4aARHsGJw6GEh7KuRf+NfrVvZtzXKBvmRQXr2+hP4JbggTWP1OOZNo0gjY91+2n6AgP/O561lMKZIaurv4u7k3JN1sfQ8+BD+2ocLELsmKQx+/Ewfev1IS0qjClOt3mlsdeWyuvqLBDaWUtPwIlb3gplW7qTdlgR/T5strFwR1mdIVkxZn8pbKVj96diwI/xif0+kmtoR937VsrJjt6lnvC8gJKjDoH7SRrsiZ4C/+jxHYyNNSZpMayd0Dl2eBFleUzLhdkeGLZwiqE9PR89bLiv+C7dCwdwt9VL/7EikvAFdHnYqSbopn61HeEKYH0SfQJ8W10k1lFZi3H7uumIwVd7qpKiFNAZfZfGwMYvtvnpflQiNbAq+gPYd6GMVsYJaSa2n7UCegIclCE6lLB4LmkPK46rHedIpankqI3CXfoNth1aN8ejxZzRD2ctg24Jz1g0rdcwW4cIY34dugic9X3tUOAkTxIsKBm5aeYBKvZpSWjPwB16FK46LqD5c40r82JM74RHWxcLBChYkoNzWC9Dd4OTG55F6P4KJdVvFZt2Fx2gD+Zb+uTW3aEPYb+CTfPLRVwZt3esW9ED4CD3nKhXZ1yI8ZhuDvN/S9SsppEkdK5rp8VjJ5oR+PdW2qE79AR87uSn/FWLvJg8OA29DF632CShJdWNMHAKuiJ8XKnJ+c3SODJV8+yw6w9nuu/1sdEQ6TtUDN4sUOtjcsaHkYeN0TXgixM+bvSc6UOiNVjvRY+HH1S0m9yUTSKHeqNz1LIO0q8LdppH8v57PyyldvqBpIwPowB/Q9eCRfaKv9nX4ka04S/oujDfpRCTisYkovwmoqzZ0YUGHBRW7KqsodowXTRiuOanK7MY9kVfBQt6Z0867+NJjMd0ji34pnx0EU8iauq1i4a4Xelf2rtI2auG6sDpohlSXdVGzK+drIfR/8DVAvN9v83zIlsxP66K7dtg6VNyU/OeJpAzieYnqKUrnV5l8DBRvYZe4Fg+QHKGgRVTPKaXwiG7OnIvNjgQrsOsZ6BPgMcFt1+u2hxDio/zvHDkcaMSTzTKHblqaCHseues7fNWcyYLXot+DtaUSz64/LItqYSl0CtgwYt+Os8NosjtS/lz5+a5UfWPShfUbt6mpbDy7eUCLtk6TD6siX4J/h3TJKo+ZEuUYTX0rXCLY4KTwtxIovx883bFGe7UdyP/59eJt+lmOPzno8hSS03mGByAfhSWCe9c65PjR4LH9EMwz/Mfy5bfiCH3Pv5qMax0p88c43+qqN6m1TBpWchlLeXCLP7Euh1dGI6v+5H61tybtGL+Jfpj+H0sefj93/9/o78lhq4HPajc2Unj8kaqqQ5s0eU5/Ym3P5MGK6Enw2+7HHTXD3qS/hHWm9D7YJtT1dTyZBJZGtwZEPvcg25O0YpMe1RNF8IJEmcmH27zYqqCWEuhV8CZb6urVIUDiVIIaxV0RXjqg50nM8OSyJ5XwSVT0zyp0OrZ4UfiqqkRXH+/269PU5vpa2M9G/0bvPev9Lyzp71JD+YXon+AM154BfWPhpCNsgv6E3W86C/yNCR+WzVVg8NXNmxO/Pf/XAb+ib4N7j//0KO41pvIw9/RFeDnouWiMjJexHSYyP9X40U/zOV2eCBUTV3gte0WH41G95BpcBf6XLjOrXS21LPlTMVv1h3olXBW6T1+qYmm5F3Zortiid50/+fIKc4Pq2gvfAa9A7ZFfw+7m02M6HyhSapgK/Rq+EVWeM0+XmeS6Beya4WhD+2pnnyFL66KcpyH+3nwe/RcmHN/bOdYYMsvTyEeDzLAW6n77YEPjfB6dfaaRRXth3/7ureJF1uQSXysw9A5Nv0w/oCEnBO5Ayeg18Da6Vmpn9vdSEb6xhPROb40d7da0ohwFeU4ql/zguUGa9IE56M3wpNnZCjrb7QiQ3AB+iB87RWXbPMme2K5Ir9jYZgffSRedGjHY0ot4HDc94Yfo3vCF7fdtWi1NSa68EN0jk3E60YELXTJ+1+Dq+u4/WlaUMpdo1xKu+AVEz2a7fvsyV84Ff0PvCFhyaHL3ibkv0HWmegcDwpWyv79aE08mz6YbOjzp/P55tRZ21DqAZ/eI6C14pEZUYSF0RXgi4Lbi91/GhG9MV0fvoT9Z+deHDn3JICeSUmtd15E6RM4Bb0MPoV+Cz522kOQnDAn1nAmug18BPv6WtSpxzKQLt7zvbT7cyU1hOWnS7TuO+9MuHexlkDnge09uR1/zHYhUzAvjD4V5isqnLpvkx5ZWnn/YYjxIVpmmjSYZlVJV8G7EkSkpeTNiD1cgX4AFqpRXC5i7UI2wjfROVbxUD8kpOdBXq97u0lEP4hqO4hv3v68gvbCW3C/ANZAL4E3jUrw3sh2JWv+Y62HLg47WozjjzDwJcX1CW2Nn4JohGydz86YCkph5cwz5iPNu0k7HIneBScFRDw4zhgTvwbWKegBsM345aPiXw+QRbUFDeEBwXQwVaH/5rgKugIudueLfvxoH5kBD6Dzw1/3r72zelCbmMDj0thuCqvgfSKXhVdlcYVQ06/Ftqt9CF0Ml+C+LeyE7gA/4s7l2V++lywfs8/xj+EXnRmiW4iyej9/1p4QeuTsvDnyqwndCft3jXOeJulGDMd0Y3hVblWsraAjqYaz0Wtg9y8z0/W0dpBlKSnl7R0hVLmfd8qRc+VUHC5+paF21ewgWQdvRZeGNYaGXqbp2hIRWAF9Ibz2u/i06bEM87tt835hj1D6RWF4XPf8cjrpFWtLvP89eh/6F5jrL5eCbLM7OQ0/RT8Du/WnF28zcSCVbhKHFe6F0tbyx76Lmm/Re3BI5upGveaD5BrciF4Kc3V8syiLdSQR7qy/oUfDKysrsw/V2xDvhSrZ3vvD6NT8jwNhO27RcLjnZr1v2gcP4gVPRg+EpQxr941/b0NOjtk/BbeeHj43LVab2dhgfLNgfDhVPs3l/L6mjKrAad/kdjBlEUQCVkDfAF8xza+pq3Ujk+H16HywMN7f6qa4LtQsnOb3q9lY+pTRd7DPrevzy03CSAN8Af0BfNx405XnrdZEw501QdeCpe9ovhrINySSMjKHrk6K+Pe/UDZn4s+bVA4WC67buGRBKNGFe9D3wtldxh1ZupYkEP6CfgjeoFYU/KBOiykdlWxquxJBlzFrvlxwv0kr4b4Vq1QdN/iRInghegmsgvuGMC86xze3vpcRTJUiJU3rSr/xR9I4z/3lgaI3aTksHLQyVXkggOTCUej58MKS7BdePI5kXTPrM+j/wbJ/XWZNL5ZktBberl1eG0mvp3p0JV0qpTrwjyOu45/3exMXuBid4+91X1SncO8nHnAROscCvX0pejK7iOhB/af6/lG07Xro9GzRUioGrypxEnj2O5isH9OlYZuvRypnqR0gyc6sKfpR+HPK+XjxRxbE/M8kfcP3UXSZ20GeX+03qCVse0u+e0pTNDkHi6NnwxUHVVQnzPAgsvA8dI7re+T0k+PcSfkDvTvlOdFU9JbLuSKLG7QC7hDONvGaZkVKxvRSuMf493PnWb4kEhZB53hR9flA+6RA8vpCtvQSpxgqOtGNceksoW/heSEeBxRm6ZCuMb0bvje9OnrLowCidJH1BvSt8AWDK9EOO0LIXrUM59p3MXSTrr+Q5YkSagSbn7z2dbaTK0mHt6CnwbuyL+Qv+eBPLGAZdEt4c9qvokYSRYavJxbkFcfSBt4/LyctLaG/YSfzoVvarXaEq4R1M/p4WCBJz+1UrQ/hhhvROZbE/dRlEd+ORMZRk8qAU7kXr9MkOD52f0TQQS8SAxuhR8NO39pHtVf5kGmwGvpU2DYsb/tmGk9+2qqa53DH098n5TstLa7Tb3Co9Nv9T4W2k274B3oHrBnbnDH5tCdRs2M9+xTbt8ObXl6V+/DJi4SG8z8Mex9PzayvH9zQW0wDYP6Wjb0ukcZMCmyJnsxxtOM+e28nkgCbo8fDTS/iJd/4BJPVZ9u3mdxLoJVia4d53IvpYthf+u7GiCFFJgBuRfeDvZ5k5WVctyelZ1jnoxfDWni/UtcjsUbdRKpZf9H76tpiKgef1ks3m6KrQFbCWuiL4WWXhvePTvQky7tZB6Nz7DBxk/jdgSAyLuJ40Madh6la6VWJkbIiOhzO+lTFy8/6H9SYY/Bm9FR468/1pWu3uZIqWBGdwhvnhmYYffUjo0ckHe4vSqILLt7o2Lm9iI7AI6ubJn7p8yQ/YRH0H7BDx3v1YypeJBP+fYHtHH/qynEPD4wiW685Dko6JNHzAjJi/NxFVAnO//TXZGqqPTGEr6IbwJff2sQOC/qSavgJ+m24UNte36TFiwg2Tv0m8CWJlo7+miaZWkjnwNNif5t3dikxonAV+iq4WF82fKuHOxGAy9A5zg499TDiQATh7rny8Zf7EdrWW/J114pCynFne568j4Qq6e1m3YTO8WOHOHon1YsUwmXoRbBL6gcFYYdgIrlUPyWp5ghtPbfknWPXNSoFr+1dFjye24+0L2F9A53jljIN7qOWFkQa84/ROc4s/8//Nm88WRlYJ3FGN5n+4G4JueV7ja6Aw3jtiwZE1hEB+As6x3lRnV5l1SZkNtyPzg8/nFFmKDbOhXQ9la292plMJ9gHLJky/RrtgDtaFe9ofDYgs5+xno3ODw8uaLOU7rYjLZgfsWP7fbgB+6JXueeJyB+lkfO/u5TcL6ArYe0Dwouv3Qghh+Fc9AS4oOPoDX0aQc7mszZAPwcf2ttSJFIWSYwT1ca7PztKlQsON5+xL6BGMN+TUt6s3U5MOKyDHgYvM3IOiVeKJtawGjrHV0bWqM/vSCchTnG99R4p9KfyGvE4rgIaCj+a8ezDlr0hjCDcgs5xrKHdtZMLgomwM2sJFbZz3Jt54rOvWRKZNP+C+Y1HKTSnRenRtKSrlBcO8+yO/s4dxsyEC9FnwW/iu5uvZLgSZ2HWkugu8LpmMfkt/IdJk+MO58TAVKquVXWZqzGf3odNr0XvT51nR27CDHoZp0+oyugQ8iBdsB56N8zz1vPSoxmx5EL5J3+bVWl0qFEx+BdPPs2FJ6BbwBXolvB1vP8OzNXE9hr4yLdHpifkFElro3Xl0cQ0Wioilboo8wp9AcsJbI76/O/7uxuuQP8AL6+3lv4h70oG4TvoHKt9nFNu9u/36YCJX8u27el0vXqUxKY3edQNtvqz9PbQv99HC3gpug3MuR8KS6GHwe6d3B81/SNIzOfDrwdG06mub9sdrVV5NAk+uu45o7rGn4mCd6DHw7ZZzfsalfwJge3QKcy5zxT6FWxwyaAu9zvCVSpzqTIcUunm3XA3gGm4xpofvRle2Sy0OU3WjXAVsf6KzvHtn+d+WBYmkhyu5W2bZTLpk+Ye1+P8ubQQXhF+StN+tyd5C39D7+S4ql5Nz8WBTJrAemIL2zn2M53sqagfREL3NPHIcx2jQU0fTb/a5NB4uPFn3qer/tKEwOfQq+FleP95Hda3G9nOsfcee43lmfvJDT/1LO+AY9Qv/62nFXcOrYQrQkTjVvOKMP2+rJ9cYft3WEFp68dJFU7MdczbYL8EJi5+XDarrciC7a2q9gbH6V3eZnnx/ZfpYjhrUPz4rw/WzCK4EX0pfHzHtj7epZ7MNrgDnWMuSQeRnEOHmL+zzXqNpE7QYJuyCT/uXqJ/4OvcvWepUjgzBPuhD8M3h/lOvujwYSphXXQCF/JfvBST6U5OmDelxdw4QZMsrW1POl+ix+HY7NNvnLR9mK0WrKdbsV0Jvjx/V8/2t34kCfOR2E+GxbZGnqnzSiJ5I3KJyy+cpLZG8hIr2i/SfNgkx1vfdFCfFMPO6EXwypIdB3KKwkgF7IHO8fvzc/7a/04nNZk5EZUpp2jcboGBPM2LtBZuKv8codUdQtJgM/R0uMv/YfaUBW4k9BjrWTpsD4eLYmb4vYo4SP4PIJYONw==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAKQIAAAAAAAA=eF7t0O1LU2EYx/ELBW2KOCpSmrpjTZsjYjmaEXp50q1h6VomlRUyRGIQTdOSCskhKYYvCokCC7LIol4MH1DEiFR6giZKFPgiQU1CKUN3Qic48Xev/RPBzpsv57oPF+f+ROtXznbnJr8l8kxVNfTkEXUuB0reo+o198IXVL69rJ1CJ9LKR+bQ4T2ag7/RpV5Vhx812vxRAfGd42TrBmp5udsUzUQDlsf+WPRnotabgL7uWijeij61Z97YgdZabbc0TB55MMMnoYlHU+t1mI8amqf1eL9svp69j0l2/20vyWYa/tb2McuM81Rt5cQhps7TQy8OyExScP7z/UL0uDLyyoamzz1/UMx0V6dIR04wdWdVbJspw/zRukkux75fG413KrDvavOnpkrsy6neW3eBydhfdqzwIlOr05Vwrwb7C9qU/VeYfL6iH8+uMamt1Yp0k6k0bm2grgl7dzpiulq4/fwbaTyYlK8KOW4JOz6BwzQc+1GC4yhaA8cxMYfjV9QDx++ork/VMYumwHEedcDxj/CEo4IOwXE1759jEO2FYxT+2wvHGNQFx3h4WeGoRuPhuB39AMdk1A3HNNz3Ehx3oZNwzAw7GsKORnQdjiac2+GYg3MJjrlMzgw4HsZ9DXC0YP4QjkXYuwhHO5NeOJYyLZnheIppUjieYzojHJ1M74RjFZNOOLrgaIGjm8kuHGuZGjRwrGdvyDE2n0JPoDHSSCP9f7sJfSqdqQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAeQoAAAAAAAA=eF4t1Xs8lNkfB/ATESKKUBlNsdYWIZL8Ovs8P2tj2y7aVBOVKfULpeg6W+LRRUrtok13EcnuqkSLLqdzkksuuRSRS0aGTCXXIrn8Zp6z89/79fnO83zP+X7nNQ4935/adXg7U5Jyw6W3bgs78t8pUe4G6RikHjQ58e4O1sjb9nKv+mMMorHlTMMM/JtqkdhNWIxB1ya1THEGjhCVHT2bWYkBK79wtTgDa6y9Ebt370sMiJbvZs9MvPpYAVuyvh4DUdzMcyOZeGpl+lpfZykGkkuP2ovu4sQY7W7f5jcYOAV3fpv9D97rdsbJPrUVgyB41bUwC3/f57kQnmnHwCO4f+XXbHxZ19Je/8Z7DMS935z1vIeLnc4ZBLd/xCBt6/t9VffxyeUL+mfM6cbgQ4RmfMhDPHy8MapWtRcDcDHtw7JHuHZQaKc70IdB6Lb9+RYEd11akHNFpx+DyOKfJfAxdneMt4pw+4LBySbBwPZczBVIZIOpXzHY0d/bnPUEx7ln+m+ZN4JBXivWEeRj7cGlVvMlgIDPgvC4xAKstsF4lmrnGAJGpge3LHqKc6+mTXEKVyXg5QTPDN1ifNy6aJGFnRoBwmQ1s9ES/OiDl9/KMeMIML8hyjMuw380Gqof7tMgYPcpqxW2FTi0q6r8ns54AkICv/4VWImP1pYNe3joEDA0qja+8DkObT5S/hnrEqC7qXgzU4XVvpRc8bGdSMC6TLFOXTXmNLQ+nrs0iYCqkZn5F2vwNY4d/625AQFJ2j3k2Cv8tKV/Xk3pZAIS7JZkXK3H2y9s98k9b0TAGiPwrKMRL9ZMPecVNYWwdSZrZYq53dVP2bsrdRohgvLyjvhm3H86fsC1T0C4mNUhqyxacOmJ5bqPFggJiTBuP1slw8lGaZEXz84gbNpIr+PNNrwvusCS0zMjRCOiKSmzHU8Z3rjZ/6YBWah+YoL9NoYAxccpwwZyM2pTdjbcwUqbOLtD4dEm2xPvHvN2nSiCUv3/LJppmMu7rmQTFMYzVpli6gqRH+QmzC29Wkyd9iQQChtVkjd7PuGttyMASqcU7Ds3Qs3FbYMsq2klL8rjLZZtgeyKSaGW2fm8QekvUFzlu/bHwgLqYw6Q2xj7zvNrIa2fvRwl1BzyjfMsovnISiSVDZyQVBVTty5FYLy/RUJIKXXuz4h1QIGdy8ro+6fZIQ+f2y6FFhU0P8XACq9ziQdgJc1THSDZcOjbr9uf8xb+zxdJP31ua816wZttDkRP+/ubJwmqad7lCdv9u62uJL7kbXtbAgdSdAQfFtXSfn/cA50eN11EunW8iWgtjM5anmE3Wk/ft4NFQU+N9tUYv+Yd7bUbaax8kLTeVkr7C/OAJseFrg8Cm3lbeV5GQaBglbDwDe9kt0TkoFWNOEbGO0FnG3pY3zF9bl0r/X46B00OrTvz6eJb+r4Wb5g7t2wQRMhpLvdECWMaHMYlvKf9mkfBNgtpD/zYQfMMX/jg+FC2zX+66DxvxaEcG82Hv1zt5m085Sa6ELhKr9Gil54/9xp67eZ2aUl1H++x5cmIS5pcb33rM+8KWQy6cL9/Xc/dAd4OXjlQGGawwSmP9lPhPwe9WhezIaBpL3tgrHa+y/k0zOkr97OS4fvpFSJgovRj3ip7RQi4hr941lTHnPy1d9pFvSKs0dN2/9oArRe/+hEB9bcK03od00AEggwl9jPqGW/ZqUsbzlRjofD3ykT753zOjl+DgLvSubyv+EsQqH1WrR1Tz7ydYDTv3pPX2GNyV0TeaVqfHuaFOA2laX1Q8K8IhOws6bRpYLxtk6KOGciwn86eiQfHveBzLuMHxPF+wnuX9yEExJzhuZEGBjyM8U+Qt2PppRjHZYm0PiFoAwTXlab1aZZhCEjZdS3DjczgwYYv7vIOnLp/MEvqXcXnnu2HIbiidB5vQsIRYEsGGuc0MT9sdLzecrob631vmtg9v5rPDcwjEQeVzuf9njmCwOC8wxt+kjJxW+P+KHHtw7Vb1b19HF/S++8SQOCtdAHvb3o4BHbE2e2Z3Myou5o55wj6MSfKXzNbVMPntk0nEPer0oW8N6eHKPr/50PYUDNTbLlsvqVgEEs2+RwKja/lc+HcI4hbqfRT6q51CAyBqcGjb5gzNa5muW7D2LLp8k+3tOro+WSbEbfkosLFvP3EGyF4ZVruNV3GHMgVsdYrAOGyPItd4uvpfdbvg6Ba6RLeoqJACGzHJUvWtzIZU4fYYWMV4qd96PCwVyOdl74n5MKVfkb7Oe8Bwe04F4cHbYysDzX2DqsSS6dhUbNLE+3HXozARKXLeUsPKvo5klo027mdMbn/5+6XKuqkyrypVpAmpfX3dkLgp3QF3dfCpRDM+kmwoEHObP9TrztmlgZxdV4eUFPWTOtvBUGxldJ0vz1Kj0PgocUeSHrPLPJ6GMFKtEjX/r9lpuNb6HlfBUF2l9J0n5yOh0GwrOuFV2wHE7XnprltpzYJsHORp22S0fNqrYfsSaXpPnFrfCG4M9QS/3cnIz/a1yiP1SWLRTfrJDWtdB9We6OEHKXpPg3IgxE3+Oep+V+6mOIU/e+u2E8keoX2YY+3vaXP+7gRskMOCv+7HysCEHcrn7Wf18O4BE68KsiZRNIH2+4bzpTzObtFAqVipV/R+zRaCbnWerXKqF7mrWOolc1aA2Lq9OrA5uF39H5WnYSss9J0P9xL90PuWVuX32gfkz3/8vOFUwyJumOhfAR00Oedj4LsU6XpvGfOSYZc9EeflNjPDLydmP5u0IhE2AaopNt28nneokTITfNT+N95e0dA8GnOnVj3Aeb2Ers3gjFTicUzZpHv0y4+H5v3FwSergrTedsGx0FO9JtWovkgk6Vi5q1mY0ISe1Vc9PV76H2G70IeAaoKv6Hvy02DQBpp+WDWELNRU7fGLNKUWLpF+Vsf7OVzSeY1ZHv6tMJ03kseJkHWOsxwuc8Is1tltcQ6UkhidU0nVal+ovvldh6lxwsUpvP7pTYRCsNJ4S1fwG6f3p79tXUG2YfuW0enf+ZzkU4qjD78QOE23g56SVAaGb/Y9e4Y1ru+2L/Jx4w8mw++eB0boPN1i4Xnfx8d8DrWTj1GBFmzxY+izVXZcIvZ48IGzMm1VfFDKRGDfN5Vew3m+FxRmM4vfckBxHk/T5yaM5a9Z+iaWpphQQqypwVuvTfE5zkZN6DwhEDhD7S/7liUcLQ+o3iXOmufW75kQqwlGXvkusTAbJTeZ3cyclqYpjCdX0jydSQ29v+hQ6TBAmNdt7YLs8hhUbJ9tQywyrx90w1UFXJdYTo/D5tUxM60ip6zU4sNCPQRe5dZEQONINeKtSp8PfgNoYWVOxWm8ysdSIbsndBNv9/XZpuzwGSpvQ1xn+7cIO9V5euFgTdRurPi191L51e8NQNKTx9xWcbqskFzCgf/fmtLGLmH1+0sNb4+0hpBccpyhfn5cZrCCpi+zsBUqjKRzf4YINdeOZeU9TR4p10fR58vuYUuL2xUuJ9/vuMyBP1uG2zRjJzEyiys/D6/tidDIbqK/1tNvv7DH/ko/Tulv9D7cg2Fs4xSIzvLlpL/A9PhXkg=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAeAUAAAAAAAA=eF5t1n801Xccx/ErjJ3KJCJXuX6LlMiRvks3UpJ7+qWuqGxc1Vz50U1LqZzmui11EilSJJG18qOSts9oIkxFCUvoXi4qs26uu1mL7v5wv2/nvs++/z3+vs/P630ZjP//tI100zN8BFW0t5YV5cvLM8CzInNsheE/gMdXB2QR/QqwUJB68LL/A7DYSvSktqwR3BvCF+uHtUz6pHBrJOcFOMLcOm7EQgxOWiWI1tsvBaf7ZiTGdr0GKyvyK3c/GgKf6iC2QpthcPjCTfWWLgqwmaPWlf2po+Axi8JLPT4fwX+XOz7zClSCR64NnVEOaNynndVYOEWbqwVOHbG5Nar8DGz3fMFxWf/n4OUntLu2TZ8O5hq+fSdapg82HWtNYpkagN/cvBjGMTcEv0yJXGC5fhbYvmCH82iJCXj7niB+jBcT7LnV/pxw6lzwqjL5mYciFjh4gLjnzLME3x/ipUn/tALP+cBR8n+3AQfdaNoX8NYOLIxZt0bXzgHcX8u4vubsfHBcQPrNpW4LweOvD+9x1VkEjnYVRu9McwEnf4rSUHguBuPPaERHrUd+vnqP0Tz1Hjk+qMdY9R59LNV7zEY97jyl3qOIpd5jJeqRoB7Z99R7TEU9LkE9Njmo95iDesxBPbagHkWox72oR1PU40LUIwf1aIB6fIl6rEc9zkI9+qMeWahHD9TjRtTjXdSjIepxHeoxEfUoQT3yUY//oh6jUI/HVT2aNAlKcz8OEAb6hE3a1j/L/OH3YPImzBbPlGaHDxKJQr3XtKM/dTslisBavAknZtQcdT9aTUpQz9zC7+P/Cc4DZ+VOmN2408B9WzfZHK7e+02TmtLyw2WT+2dIOyE7/qQdqViB3kNQ6HleVOXkHnJVNtbKcs1vp/zQewndUW2w2q8O3LlN5aSvP3bdeUh9slB/T04rxkv0hc3g4uUTZn8V1hNZO0hZoffGtF977SrVBvZQWbJWcy7V1kElo/vwo7mPoiqrExzFUvls8o39klJyea76e539pGdlg6Bn8vdQOTFzya9X70mJA3rPdcGei4oy+8F9tC/L2iL6n1E66L1XFVt1hngNgodVltw1M03niikpuk9vzjm6XTwgA9ucnzC7UyOHOf6CnEB74bzS7xtZnhxsrLLvmd7uY++fEgHaE9cS9zs17X+BlcUTjmEGLpimIyHz0f3TvHIsUBbyAVyYp7LhCmbDq6dEjvYojcGLneE9Dl5Geylblkd1UK/RXrXeepxgU8OA91WqcuLAp4b8jY0Uo0h9z9z2HYy3MtEE29C+E33Jw7uPnEZ7V7yR02VxVRucSptnFBTle5tKQnu4W17cosfXBW+hnSRU/OZSSlmgvSwtSclxip0KLgSzQo4M+lNuaE839YmT5xA9sBftIKFeAtVBtqC9vVDRL3lvOwOcQbtWuiHTpZXMRHt8aHXRl3HGM8EHaI/tumYY9oaI0V77bGoSfeFiBPZU+Rehf9q+LUPkMdrzsxce9SvijcHf0Q5sHct+20aYaO+Tg+1PXZHPBh8E7xLHtdWT9egeODx46NefawY2oM0ulvd1VxJXdC9eNXM0eoXm4Gra1htGs1lPKW90T4bE13NPB1iApbSnlf7RVdBDBaF7U72Yo+mrM3lvCG2TOu0p81sogu6RXlH8u+Zua7Aubd0y67oEQszQvRI8yJ7D6rQF82nrjpz8Nqub2ozuWbtC6/ahKfPAdbRfhEaMjLWQFHTvct+v5B7gOoIzaTd4lDcV9ZJedA95w6EaOq+cwCG0M93Thm/LyF50L+vuGhR4cpzBtbQlSm/rKjkZQ/d0R0LKieaGSW+nHRPhrDzynML//54UFzADeK7getpLjrW3OEsIfY//AxFr3Y4=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAXREAAAAAAAA=eF49mHtYTWn7x7fanY9S6aTzUbujDnvpqXZUOuosU/KmcQgpYhoSEqkROUySaMQQLxpJ2Fs3JQoxFaWS0FA0TUNSSQf95l3PPT//fa9Pvte61lr789z3Onzn4Imsm4QUd2tmFnLPu3HYf8qi9ITYqu31212y1/av27lDQEZHtX1yZ764zeJ0DlPO1XP3O+IKnakV/5F4rUYSTrh8PXa5n3LBZ2F2qfdf2Sm+sNItfe3p7+zJqDD56EGxEcqVxZndq1duOKfpA/ETUWIFSdtcVHmtewKaJynXf8C/vUvp5dapaLit47WDE8CDmmvE8NxfYlUs7/oqFCRd0T0fHAKT3cxcVUNtKMxtTlNUlEI+yU93S9pocS4QzHReyd+7KYCnkRpzayLlKOeoi0h3nkRCix8sV6oZ9DSxBeHjH3KaGpUoT+OIis9K1pTXzIMR/vnIPA0Jss24yrPSTYXy8A7hEvWpM7+SCDh/23vg9xI+Wb77yOMZFaqUl2kwzbvrNRIEwcDNXptTu9QUeIZpr+v9Z1IezxGJq531fLwwEnwGQwYq8+fAPinN3S9ltCjX1xB5XiGGuvUMKIRmZMYRG/LL74e1kwd1KD8/nbG/E3/69jYDOOwYfeRXnglxiZvOfOTqUy7o4ueOnNpwr9SVBBh+YBqlHUj2LN2wyAsGlPPVGJ7R1Lgb35tIfTfdMFXdhDS09mW0rjXC65dnuBNljaUjFiTVR3nt3r02MDZ1JGPY34TybDVRecTG5BM3ZhHF4JMxJRv1Ada5Va4INKOcqyzSzL9Xl6DlT6aKH3Glwxli+j5qptRGC8qzjJjOpSlL9BhDGIfCgZ+0pEEuePTXD1WWlHdwROuy6v5efcsYJHtKNqS5c6G3rUs70dmact6A0Oel9NKq03YwT2zTeK7K6cpcoZ1rbqIt5fJ/CbeXL/rtY4gVpJSZqkTvtSEfvtN4kdRhR3mxOlNoUckrb9eAbxVLVrq5W5A7rlfebl02B+/fNKbH7pzX7gU84I57PHm+1Y34zRI/ICHpSHmTCXM0YL1yvpkt5DcnvZC+7kGyb01FFtY74f+3ZjpjIhSM5gXBwDqZCbHllkTh0rE3MuV8yttVmEP3z6bc7vYAbrUgsrl+FmnYEd2cWDWX8mAuo6G1+W5yUSiMvr808/IFFeLg03eOP0IoXyzFXPx+UlNOXh0GEkyGa8yNoXP79EKnKHfKbZVEeyy/vlV6PwfGFU+Yhis5wYwfN9Y9+SLAfhPRbZ54do8bh4j94pwldsMUgs/8suVYzDx8PzVErQGFr+X1BGBy9kPruNV0ciTk2DylP+ZT3qLKcJ7659+tEPzzfGYK+3bYw+djtnO1Mr0oTzcXBYleaDryPGBo/7inLZiRQjuJR4MBCygv0GbiCfeFjFIo+cxkx4mFORPhcW6EBfHF36cxA1diruzQDQVuVdx4StN8siTN7+bFRf6U+zgyO/+jcT5vQTCZbJsKL123gHzalfP2QXEg5bGuzJJhCWvfInMiLZ85cXupOWTvWJRcoBRM+U0zUblgNadtfhBprzXcJ+XqQOz2hDpsWhuC77818/C/z0MWKYbBSepHaPHUYv1YjFlf5tKai2/iKvdQP4JuK/XjbsyGUSvcX57XJ+3Uj7D+FPUj+hJg5ZzvAqRsCfoRDCqoH5diXu//SefqZyOS/pL1Y+UVG+rH4rc0bx7LzjEURJA71I/k23Xqx3OYE5mTe6eFuRK5HtaPRGY/9WM/9SXRSayPiFefS9CPZG0M9aMKZql9zyT9M71IPPUjedVI/RiGeVH9ETd5/0Aiy7B+hDUm1I8D1Jcw3hQ7+/TiWPIL9SO83En9mIx5rGTuUElpOOFQP5IH6MfOLJpt+ct2v6yNIuhHYi9N/aiNWbVjs+LPWQuIKvUjdNVTPz4IoVnwMGzTUIweKaB+hIZl1I9xmLNJ+SnFdwHgQ/0I+TrUj+qYtS7/zfGvXgRji1k/ghD9WIPZ4aZ+iWFvKKRTPxITTj7rR13MG9IaTm10DAIx6keyLZH6sT2I5ri56StCpiJB9hTrRzjbQ/14ifoS4j9Evf4j2QrsbrF+JAPox6vUlwRUS1d5/OAKX7pZP5LZ7dSPVzHbNli27VxmBMFSrB9dnNCPgsmNbC5+/JfMrvRalwzqR9CJon7kYl7/qavDaIKAzDXWj8B1o37Mp76Eoln9nlkVUiBL/Qju6MeUMZr9pIrJ86w5cJD6EfTQj/Mwy0pkvHZ5PgfGqB+h4iL1Yxpm2VlhEocDxchoFetHUEY/JmIOLchJdNCzBvFe1o+Qh34soL6EKN7nZ4o63iC+jvUjKUc/FlBfkqrs04nJs33/9SNJRz/uw/y3y2DQxD/3d6iI9SMpQD9uw7xKWdNlqssT7pxh/QgL0Y+FmB2U/ORqjobAt27Wj2Qf+jEX80RJmeurYQ4MUj/CSvRjMuagCYu9V4OCYZj6ES6iHzdhfnZ3/2br/a5EjPoR6tGPabdpzn9xJrzPJBzGqB8hNYP6MQ7z1bOKafFLPcCe+pEkoB8Xy9HccGJ2zyQnGL5QP0IX+nET5pW9lSaRf7kS6mtzUW0s9WMJ60ceJESUa3irTIP/PHYgtZ1uxEer/suY+gM633G4TO2xMXOZIEvwpxxefnzI8lDMHlYyorqFarQ/nSuyfk39SudRW/C7vz8t02kG9I290YxzmUN0I4tzy2b1YH8L/2xz7w/8O17QSTkEBlPegvnbiV7vyEkD7B8XlhRRPw+zfpaAy9GVw4f3W4JFzLq73z8xI64FEw+trQaxv5dver4129TSB2ZSDrFHKVfEbDS78utWAyvaX/xZuLOc+p363hBs2ng9EU12oLWcs2JLtCHpviR/4EPfV+x/yy8Le/c8wSwCVCmHm5cpl8VsPWh8sqLUC++/OJOH83N1///Oh3WVskpHi4KPqkHcE899oT460FRXVV7Sx8HzdVC46fi0Qf/GRfAd5cS6lnJPzMFLpnUFLgug/dWf+AZCer4Ae77okHkjjUkli+3htJTdwswPxvBSGN/YMcHF/gFhldb0VU1FC6GAcvJURHkO5saThio3Mtzw+uWYm3g+0fNKjoj8vO56LzSF+sUmeZJ6DlAnsSC6114G++VFqo/1P0aVLoQ7lJNYacovYT4Wu3wktf3f/unMj1H0fDNhzzdbMl2sI2hOsAy8MnLfs/J3Pij/kRH38GcFnF+URSeshhPi2rzhGeVkpJvya5jNnC33kHW+tN92XBiA+8Ma9nzUJ7JuvIYlSQMu+cqFjcu52uCXKF8bMmM67V8/LMzJO/Cn6pkgQE6akihPwkxWDXYp7IvE+/9NeAH3DyX2vB2uPLVcJ6syxJzcq3XZ2uVrSVRUVmav2jID7480k6sw3pYfEAoVlEOUMuUHMWvGmGkcORyN7/9XYfouej4fYc9nc3ijHNBFtlgQ72GDiNYPWsRH9kLExyk17O/nX5C+td7qQDiYUw5jMpRzMZu3OonplS3C+/+E/wrP91H2fFcnfqGXM0/H2pHg61LXdeusQcXKx67lggb2K4vuaZ0yLJJdCPMpJ/nIJTHLrIrYWbo+DPtbha4ydD6Yx84HRmS8LCJ+9WVp0uG7JyHi3lRlwXujRrPt2thfxm98ZWmzYcgIPlLusuYd5Y8wGwoaVkfb4vtTzRVl4P7FZecNPZDWjrJpE2hB+91EhV0Os8n2qD+9zLfr4vujyIwWfLvy6Y4FqaccchZTno+55sbFN2WSbkD7xUWFuL/9zM4narBnz5fmZhlr0L91nGtw0pqU9G3y+rUN9zvODOZeyn2R2sh8Ik85jPxJeR3QLHnDY+m5zhDslxQ54v7nyc43xvDDifmSofYMPG0Y8ZPPsyarn1r0qecY4v6iwnjMbwmatHcntygHJeTJmNtU1EttwhbR/vQB/nycjwbZ+UgNot2cjr0VdwTu68lD+r1cqH17fNq7aGO8/iGhgRM3qpUzm4hRTt4jv/2KZs6hDY42z4JpP6ebH4fzVSI7X+mR0do/f6o76ASBjyOXa0yZQeW05UWlAabYryCSvyxQ+mOhgHhQTszEKB9/RHPSF6OqeJcw7P/CT8H9lc5rymRBe363ro0bdIyOP3PQMiDxUV6rnGLNsV+OUfeNGZsrtCX9lMMY8ruY7fhax/U6PGm/ar8w5R2d7z6w850FBG11lvz80QIW+wrrrgebknvHvnSkHptN+4tlGb24F99XzLWEhZTDXOTKmNvFZbSvHOLj9RcInXE+7Gbnw1GXurSnXyPnmQD3ib6duJUkdFUuXvLbOO/f36+wXMr7YN/vJvC1ieUkAyi/jPmV2+LWLdpW2H+ar4Hz5RA7Xw65tGwdv1/2QA+Ur+WV1mUNVY6Zfu/ttdcG969XQj2/6N2uY8YwVMFyl2fIL2D+l7N/7zAufIPzadj4/+bTwy4HA1SvqsbyIJ9Y7vLZrEcMNaakdxjj/s6RZXi6x19OVivDNspBAfk0zJkheSUmyU54/VzRT7j/J7DzrR5ACL9zwT9zSl25BzxeziMpCs4vhovssV+D4f3XvKLhuT6IKId85P6Ye9/yOrdrzKD9AiXRZ/x+8JmdjzXh9ZBEd5maJdybzc+A/Y7EafDx1eo5DthvwpRcvb/E4YsdVFIOLZ8oj8Vs6NS1jLtMF/2sLRrXofN1HztfW8PmRwrr1/QwkBsv/WZsi4AUXdTtD+rF7xMcW6Z8lmZgb5Ub7KEcApELMGs+l/I6qDQT/SkrssT5PJudz+1gzYF+2G3jBMY2yYUyB/jEcHLTjNDbzthvyuhxw3972OkHMygHa+SF1jRb1ZYEHX+kgv0fhPdwvv+Lne+1ITVcJLEzxwrE3reEXTc2IaNPngWCkMF+VSb13c+zxk8IYOwdy4HzlPJjmB9Ub83pVlTG59sidEyn+0Evux8owEnvFn2rN04w1pzifGeuBulykrvU3OFC+6ulGb+MzJ0zXhvCCOWwCflPmIcaMhPehs7H5zvAD8D9oo/dL8Rg9eUVbx/qzf/nuRU9bS2RAK2YuJ+czd3w+v+ZB36bdL7cbgPcQZYTW+SH6N+TJfknTzXVoN+qxZiDuJ/Q7zmqZH2R3c4fjAnciTva1DHdFq6rdG5JCcXvN+kGoqtOX5t92+zJDcrJS+RrMMd7BFgX1OP1pw/xCe43/ex+Y0p8KnzFFnOdQeyj9rU112xBXFC499oFD9rfZSBKfUo+//yrGhn7wHIy4k55MWaBXGOYi8O//S387bgf9bH7kTqxz+2ffOPnDt/y051lBPIAW7U8wvXw+xFnQnjIRk1ZephHmign1cijMadcCrhRc9KX9q9XY6xxv3rH7lfTIDu+Rkqm0xFSfxTubovXgQCO1FHVq554f9REbnL8ZLkqfYijnLghf5tCs93F0Jw5Pnj+dikzvYV0P+tj9zNDoljybSDpjQB++TF+kV+WLChdkAqUXO39/89X41lvlOIML5JIOdFFHoqZU/uxWf5UDL4/YiJZ3O/62f1uJixbER175L4d7Obsmre/wI5k+/9dt9/TB99PY2abcG2qgGMAqZRDFnIVzEk9G46bVuL7I1AWzcP9sJfdD83AyW9Zb8OgPsh2lvBGt7iTB8dFRmt8/fD+ODCzqg6HTgh4ZPQFy+EMchvM47wz4t9MvPH3JS1K20r3yz52v5wDnw4oFMnGWUOmv525ykkvYt+sWifaGoDXT5j5QwHf6hztYDPlEIN8wI/mk3Eb9vY0ueP1KzAB+P2um91PnSE8POK5ob8CyBx5dWQywo4wPYfMJ14vxPPFmKnQD9MrHVAGTcohAPm+PJqLVDc1TR/jo3/e88XT6X7bzu63GqRiluoi42mSxCK9WjtYW5mIfTS4mnULvw9ypJibRV/cG77qkh2UgzTyvB00p20PbVv191K8P0ZMUybdj9+w+7ExLEnI3cA5O+7yf6qxoNw=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA5wEAAAAAAAA=eF7t0E9LkwEAB+BBl2FLc06lrJVTU0EG2ihhEkL+q2BWDNLDSgXbOxW1IpZgbqucjEmYaZmMspkMVBgqtDUQf6KVoi/DLkLgIdICy8O8SDXTw36nfQNhz0d4JJKI8u7Dli/hszi26A69kpVAs3xtUtTq4NX8fO3X6VHbsXBi4G01TopTD22nbsGoVFQEhTrsTqsMnpp6SBtUG6ntAtR2xWYSGmEbsmf781vw8btmNKfxDlZ7KoYnqu9BYzjiqDLeR+7i+6yMl2YYVwJLxb/boEv0Go42tOOD+l1+tsICWchlztux4tDsXGlNxyOk3M4o3Uh/AtMnbdXp9U5cffxnfOxzF5RxDv3NoANdmbM/9P+d2L3sv/7vxlP0jjyQyFp78K1y+1yT+AzlzdbJlrLnkDet20bX+uBeG9eH+19ASKg1D94dgLdz5+tx8yDOhC6orB4X0gIBV5n0DWzOrXBhcAhJbu2YeN6N6V979j0Mo2hF8JU0jyA1QepsvegBGyWVfFTyMYuPPj7q+Li9HHkU+PiXj8l8LOJjNx/n+SjysYCPaXys5+MlPvr4mMjHeD5m8rGNjyY+qvnYy8e4K5FHFx83ox6Tox5NfJziYy4f0/lo4aOcjzN8LOSjPOoxJibm4NoHA0ZMqQ==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA1AMAAAAAAAA=eF5d1GFQ03Ucx/HdZt4/BUQYUgxmDIZDud0BS7kgjrsUJtRQbpejE5gkY4DgVGqYCBuwKbFEAUFg1phMDvUipNxYKF8yUYPJYXmcXD7oxNlZdjevC7OZdbfP6o49eT/e6/f5/lks3y/LtLL+tjeZXr1p9XQHbCbJ9PaLrlQZDUkefuqQyWlX3Y3IU335FOUaOaxfW0SlfK50Rl1Mzy8LCgaUJcSUCx6E16pJbOQ+CqUK0luM6xyJe+nafck5UcU+mjsuPTOcf4AkBYHNitIPKP7mJWFMl5ZKZ51TGb8eJNnqoYLg8loaFfcnruPWU4DHrE1Y1BFn4uoWZV0DrVHFbHkQ3URlk6mK1xYMtK3xzwvnrx8h/opmeeFMMx2JnXDL/26h59mOvL92HKM2Ww0rQHOcfsp9snGP6wRlVeku7s1sp5A9C/pz9zrIeu+C3Huyk9Srdml79p+iIcPifIS2h+I86QLdgJl4Tqc5k/mM9C2PvSkzFgq1pp53bbLS5V9eGF/QGUqbVds3V9kofBXTonlrgMDIyoUjH45CONrhKIPjk2mfoxqOz+AYBsc0OJrg+C0cXXBMgiMPjiVw3ApHOxxXwzEIjrFwPAjHMjiK4dgGxxU5PkczHB8tcQxb4lgGxxE4xsMxGo71cAyB4zgcU+AYssTRt8cYykVz4JrWKkrkrEynTDQSzmezn80mx24lK5oA992BzFjupe1Ugo7gHY7enSsQPX2XGlAF3mVcmO4yKXeSBWWw90NsLUfqVZIG9b9bUlVv3tcL71Mi6sU7sjsEfUW/qYhBg/CuvJreh2H8chKhr+OdFe0uxl1TSbtRI96dE+EtZDdo6CXUvwOZ80pcZfF+kqK3sYvli+vXGJTVxEKTsRNxaPHcm/UfUhwqwG6kLsfT4YkaykBV2NF7ni87RBsO0Q70bexqmWXwOm/8MLFQB3YmadrEWDJ0tBENwu6Y/C8KJ516CkYZ7NDUfuCaYFsjdaNR2GVG59AtNsdAMnQfdvpjfw/bfcdIHnQndmvPnGAZpo7SNBqHHeeF207fdX9MStSEXX9jH4sUbfiEbqHLsPPgqR8GXza3UjTahd07P/qKN8Y/QVdRN+6AWzT6++PmNnoF9d9FQmVSRGBIB4lRLu5kvl9a8f3oyX//h6/+uzH8sVyV09RFRtT/PTJlJwzOV3fTMXQYd1We2lv3TmsvVaEi3JnlTm3R/bnTZEP5uLusapvw83gLSVEd7vC7Tq68sbGPbqD+u/x5Mqpb5f2/V3CntYWStdau/v/6Bu52vSalb15xloQoF3f8D8GONc0=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAWQMAAAAAAAA=eF6F1H9MzHEcx3ExY+sHJRVCtcTkFsYo6nNKRh3zY8tmdc38CmlYjtKPoSw3SY1Kv24dyyyWSEWn3UxlfiU77lKJ/CrSp+76RXV5f+fVP9/N/PXY7o9b9/y83rnsUo+OjnK2ZXp9t+Cb9j23BI+7W7oILlp2YLmZVJo6DcOk4ViP8TdZkHxo3yA5LUxt30d2mx80dAufr/Y79IPcUb2m+DPZqw0OaCabMupbGkg7rcS2hvwY6Sy/R55MDPFUk7nXIrRK8mL6fhZF+qjk+cFkS6A525WUrY4q6TJzNqP1lE0p+Si95cxeUjJ7VYQVGe2lT1aNcOZkfDE4i7wjMUyKH6bvyY0yaYbo9yXUV+p+c7ZXdbem6hdnOVWF2fsGOaveXLH+WT/9vlJ519tezmwCKz4rjJzNV+9szOCcGZd8zbfq5OxKoVVx9TfO4tyCAmLbOPOXuc6Z2MzZkZ5tWQ46ztxFHXXoqEBHiahjIzqq0NFO1DEfHUPR0YSOjeg4FR3b0DFW1DEDHVehY7Ooo5Oo4yJRR0d0vP2fjtmijuf+0dGEjjnomCDqGCnqqLL2HBEsgJvQNTNvgl4wAzagszbh42HBKhiN7k3hA+VCdwNciHcYMqZdHiEH4Vm8i8O4sv4hchp8i3dKtCnW/iLjYB7ebZP1LV0/GQRt8Y7rfC5Ym8gA+BPvutRzg18XuRiOvXPyu62L28nTcOx+2pOKCj+Qn2A3dsDlCn892QkN2MV0zcE7z0g7OLaTBTFh8Q/JefA9dpMaIne8SSrhCezIw9uszyTdYA521VF6sTdO+LtgKnbm7yuNCSOl0Bu7C31+XbqC3A4N2GHahZyOyeR5GIRdOmcVP30l7BM6YKdf0r63nSfboBa71SR61PmQ9+FC7Fh/qVGpp/3q4FHsWjq76Go46QvtsfPA1xa1L2nn/rAEu49pkt2fSyrgCtyBRZ2jq4wcrv2rDHdRN1O7UkY+hrtxJ2uO1cQ7kH4wE3fz2pWtVQ1w9gpqcEdnb6i8DH2cJcEU3NWDjZEpJSbOKqEl7qy9+uaeKT3UCXrg7iaUpRc0/+RsPOzCHUaHuCv6Ouj/F8zEXc50ecK9vlB/GIs7rXSaUbm9lbNyKMXdFgUlKT0NnKlhBO74D/7K1ls=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAA3Q8AAAAAAAA=eF5d2Gk4lev3wHGVQ4PklORIKmmgqFAJj5SOTIlIjhCRTJmHjJlShti2eYgScgxRhjLcLGQqB00qU5JkiJQoZfif6/es/eJ/Xn6u9W5f1/7eaz0yJyybPx2dOiTyjmv2nWY7tOyjzeY/5mF6tEK+dlbQrn1uO8y28frNdbSBDduG//nTvc08DElPsvztBmnRCwfBZSy0TZmnDfTRBZEhX4LCg8mueB/RBz5KYHxeQPieaivkoR+x880wTl8hysd1kz2s1MDQw2fgeOA/8Ceaq998VvJJAsld9eqldo0WzGtr1kqQFvBEy6zLMXqYE0GKFNfyJVjrgrdxY9H5708gAd33x7ZssyOhRHN+9Ezufn24Ia3N9ZvkE+iYo51g6MFtVHuVhOz+KvxkpyEIJRqHbrz4GLTQS2Ua9Vfe8CPpdr0H9uwwAX71Ocum7Ga4gz737vwyx1YmqVt+UCLg1DnIr/RyXvOhCcbR7PwWYoymcBL6caFC6ZY51D4IXr9WuAk80VUGF9eM3Y4hTWEdK+e4L0Dw72LM/rONkMPy4Lq/QjrcyEzb8c8G6VawdPfOgajUBuBrp/3y6Ebb6J/GhOdpg6j0WVtY0DsiINtbDyLoafesjZSKJ1W+3fBWpKo9jO9oMpoUqoe36BNdIf8o5gdS6yf6Ml9KOoJ4j6/wK5NHsBW9c0/gpYU5C8rNVJpncbcTWPNL6bFl1IEFuq/PvuyblgFlHGnHLEh3AV8RjviwoVo4hZ5ce73HgO0atXdcrNcqxA061dQd4yVqQRXttLE5Q2aLCYlP7rw/yrwEQ69/ZR51qwEm+nKNdX2D0TnCdXsobGutJ+x83udZWg3A8qJnKrmC8vbE/M1JmT8FfCBj4921a1YAsMxx+d3zkWkrIujueqkq9TL0b25v4LxXBTvQL6QuRlax6ZEEl+smOaL+4KDCs95Wi0Aq+lDGqp+zy63I+y4H4TWpAZAR2TVb8q0CvqAlD3SbR6fYEgEhCaluiSAYKbAf004tBzF0YMy6IN27YUSZo6gzoPcKHDmkav3geBloogW31lYsFF4m7jECLQ0FV6H2+Jy59ZKHcAntM32/iMebQYYiy3ruZ4YAQMWH2epSGEX/ChD7sT5Yh+glSeVn1YXBNeU1nTxBJXASPdpzv/VbmiOR3C+923RlBDA4B1YZaBWDGPpAqZVdd708RUS+rwxWYgBX5IO/bm4tgkp0n0mchOt1b5L11H9ZRlIUgJT3yxr2+3AHPVkVNnsjzoe06DTFp3BHg4nKMZWS8UJ4jFb8sU9QzNqXdEznNqumx0Aps3OCv7kAOtFuv57JDv2KpHglzsQ814+DXqXquk+t+SCILjDmXchYwSAR07EVxfsSYOAWl2DAl1yIQR8dNHpBvQyndp7i+kzkkyCiMNinRCoHZNB3oh6ICrecp1qe14+sdUqBHeukpm4nZEMzWsy3jNlREEZ9eHdNR6IzFdz+zqpK33IHRtGvdou8WtrHIK9fX/hfD6Wxjz1oRXajE0ZlNys3/6L7OId9FEbLmi3EhvobUQMf6B56YB+H0OPHhIbMzGypr3F0D/Wxjyzzpm1t2JprSrlr0T08i330RG/g2HYl5CmTkvxPH1lWEUvS7/nuQTEU6B5ewj5GoCVlflnyC7hTjAW6hznYR5Y3DRS1NnIHUsF76B7uwD5eQ0u7Ku97OhFCJdrTPVyPfUxCf3LISnOcTKEGltE9TMM+shyXHRzz9ASTYvWwBvt4Cc28cXapR0k8pfafPqqg82y2X5TuCKJsW+keLkjQfbRE7x85PjTdcIYabKd7OI99HEFvWqRpcy4+hOzCHn7CPoqjq1Z6jJZvjSHa2EMJ7ONJtOHZTZbSVQyyC3togX0UQytWOlXz3w4jrdjDAOxjC7qTJF1RUIwl0WN0D59jH6PQY2Ocj9bxWhONFLqH49hHlj897H20l8+T7Mce7sI+yqB/356fWSBqSppe0z1Mwj6yrGUrPhi2fAnVjT2cxD6y3CRvkT2R40EWu9I99MU+slxksS5myfxRotxN9zAP+8jy6nuVD26rOxJ57GE/9pHlLTO3xkqiHYko9lAG+8iyguBtGd19itRANN3DbOwjy4ZWh9Pu5f37+zDoHrZiHzXRVRrbAtRiAgk39vAq9nEl+oe6Xf4W1WCSjT28j31kWaFgs+qrf3/fYezhRuzjCJpX1ydC1SeAOGIPs7CPTuh2CbnvmTsiiSb2cB/28SS66aypy6dlCqQSe5iIfaxCs81o1qa9DyfS2MN+7KMk+u6n1DemOz0pqe90D1XS6T5KozXMWupvvIoie3TpHhYU0H1k2V5HTHtNnS+5gj2c4KP7GIS2EA6+JqMfTmTf0z20yKH7qID2NpHurvP1pExO0/viDuxjphpt0Zm+Yjl5BfKeTeal5Km18FfuCuM9G9qhlJO2wAPxri8SluTH77R1cf4TnavCrPTrPUmFfqN7Oo99NZymncsZXJi6RJvMyzFLlhZJQkNX2/Z05zZYRdFOqIr1fqMUSDwUaAPOWd7WocnL6D5L6b2je+yMffZFG6RNWepYWJL+sYp3mfyKMJL47MevvFaQGadt+2aLy6oLV0jtZ9rDOK9B524Yy1ncYkV5RtM918W+V6JPBlxx7gy3JzwfdM4lTCpDc5t64OXBf0Ab/fZtev2dCiZJGqbdhPMUdOPenvNRkoHUQ9yXT+P7wHJDBNOcCOkQ8Wij29zTx0Gq8LyOwqZ/YIZJe7wyT4VdKoaURtDei/NiNEdiCffzzSHUPA/9nrCfpN+XAXREy8vfRA45kB2nO6e+xZ6E1qDlcmoGLbAEvdtlq2S7YBh5o0e7Cecs79H4o62d3YsKP/T/36fLaO7QdOE6MCOTPK8e3tLSg/6WFSYlMU8gF31DUfZCtFgYWfw77QGcc6CXlHdM1ml5UU9w/09nvW9oETk+V6a1Mkkukjwkt9cAyveeVme2PQYltEVWaau4bBDRKqZdhnOWq/VkZlSCgqkjEvR7KIjv4za0BrvO6qL14pSe+6LmtQrG8PVz3szk8scgjx7tin3M81s4OeZB+xvO1dADK1ew7eqMobrw3uDD97UXfVTKYLVsyHlqj1qb5BsFU5D8Q258TLkZjqEbFY89dpVmEBtV2ttwfhEd+sa6rdY6gcrGeyUH32eCtv6QVDIcYUFJhDR9O+dlBvFHLh+LCWyCA2jvE6XDL6SZRAXNxDnLxebq5ZbrYqhufM/r8H1/hq5+6j/C3mhH+Ve5m296fR6qC152/IJGsEBrryeJrkmhRBANOGd5ZFDptdCBKArC6X3gGu4Hd9Hl4vl6u7v/pJRDv83l6luCy/g2OdmFBlBCL32du64115QIh9C2xvlmtMuZmDX9FZ6UNt5bXHh/maA5DHu48w6dJvaBxWGNbDawH/YunFdogKtoLTZ+U402C8ohgPYunDuiOexVVGbjPAn7M3ofWXya3k+40bbJM7p1idZEdZ3jgOmLi5DsM18R51sPFuilAUf8j+T7U+N8tKNxPobuyOpIyE2PJKW4z0zgftOAdpc9nCCo5UbM+q6Ut9o4gJ+9gOKH6kfghJZWjWOM3PSi/NGeOL+MVtpiLSVYH03qP9P70Hbcjx6jj+4Qz96d4kQKkzk7bTidQKJDo9Jm8SPIR3MNy5rPc1ygCFoK5xXoPdfPBC9rv04S/3N/RqHfe75KzfrlTGJGv7fpVzvDK5vw6T+V6yAUDZ4NM2L93lQa+g3OU9EbPhdVf+WMIktwH/PA/Ww+gvbMvobG5nJPwujxK+WKcwUh0TVBUWG1kIAWPyhypyblInW8l/YWnGuiOZN+nJByDyDjuM914H73E53jLf9m2Q8LMlC+sUEswh2sxoJX2D2rgTF01S3D6glBS/IQfQ7nLC+e0KvvqXElpXgvD+J+WIzOHHaifJ+fI7fi96dcy/GAu9oqjDmBGmCZmna9te6EGRFMoF2Ec360hslgZGGDFZHEfVIM98s96Psv1vB7bzUkbv8MG+0b9wKh5WubzP/9m7qgQz5XKWVEnyMaaAGca6LDcf4D7/Vs3E9/ouekJcvIJivyo6r9mb+hLxBjxo84s2qYRw8dt1mpnHeccFfTLsU5y1NODWuv9jmTNDd6n+3A/TYTbeX6YF+qgxVZ3lj4OMjbD6ZiFSbK2Krgd/TPysq0g6+NyGk0Wxw9/wudP9RVyzmsRTrxe4Eb7sc96NOpaXmisxeIWExMZe97f1CZWLYiKr0S9qN3bzv19N5Te7IJrYBzYfRbP68LM4MG1Av83pCG+3U3ekdExtuScTcSK/RnhrtFIPDfHZ0MVK2ADPR8jIrsIjkvUofmxfkjdNVU5oMxG12KA/fxbtzPV6Gn3c4fDs50JlIHD/oWcFyBYT7ZHPbpMlBAL+8YSqlvvkqY6G84Z1mS2TA4kaFFCeE+fwD3+03o9fr14R9ErYmyUF2jSGMwlMW6fGBkPwR19IAJ721fWx/iir6Pcxe0zqNYtVcOGqQHv5e0433Qhzap+KpbqeRCHj49VV+Zcw1EKxzSi0wfQDk64QDkS5SaECc0P85Z5unXukYE/Qkn3hO1eF9woK8Vftzg89mPdJREFOYVh0LTstkuDuFSYHmhQO1LppQt6f/P/B36yMbuKr+C62QR3iNueJ/MJ9K+++mw7pfRS+RC0OpngUPhYGReYr9vpBhM0FenpsRUCxwoF7Qhzp3QjHxlkepgf6KD90wG3jea6I/tZ3fNm7qQTVeSL+9Xi4QTDwvE58qLQBA9KsrhlCiqQz0Jon0Y5y1oNg+eG/GL/Ek33kMCeB91sb4fyX0V4C31IptbuL7yfmYAWfi+cm/sfWBZtKRrc2aGFSWErsI5y7wTAUMc94KJFt5TyXhfsVy7+pRDwhlnIu3TJH5Tlwk/f2vzr/C4B1Lo9l0cGs+zjYgA+ivOWXZuPpm60O5JonXpeywL7zOWnQqnbAM++hDTCJVFzq+jQaUwsvWmVSGYoBeyPnKl/h1AWaPVcc7yF+dp/p/yScQM7zlzvO9YrpRVPWTgY0+e2KjaRfjEgoZmzd+LW+5CO1p1zTMvLUFjMoTWxfkwumJErnns1nUC4vQ9GIP3YS3aa3BirT+7MXEx8mxTOhYPlPpV8QN9eeCFrjhbdVb6NysqEi2Dc5bNeZ7d4rsRSIan6HvSGL+/jaPLDranvftoTe4uFumWOZgIPa0fHZNX50Ip+qTUoS0bvOzI5iW0edvo+Sb0k4t+drDLm9TiPSqB3++a0LqDNQc/TKgS3WMvla1OJ8Pkslb5XRZ/gz7647K/HcrZNEkAmm85PfdDb7iaZ6Mh5EalvKDv2Xr8/sdy8e7VCS7eStTNObkIkawbYGogL7619w5kopvGX7xVtjtDlaLtcf4QfTFitlbdLJmo4/fCr9n0fayB1neODFjtJUP9H3sVjJQ=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAHwkAAAAAAAA=eF5Nlnk8VVsbxwupZOxVoYleKSXqptxawi3VbUAXIYUG0eRKIU3GI44kfIyZUxlKhhA9LMcxDzlbSlJRqUjeBslNSTf7PNd913/fz1l7nbXX+j6/Zy9aayg6N8SKHKoq6Soe30wH6qRa/YMMgelwbAsc10y1Z8gzlj320CN2MOjRMEMLV+RnS/IDSZSOnHzwIEN7HaZOufHkJNgvMH8b/T+Gini8/HDKN5Ycb4082v+cobAy2FIuLpMYfDd/GtLC0N/f+5ce9TaBr8WVirZ8hp7rbHvHmIeQT2oD3sY3Gbp0rtz7kpF4iBlfH7klmqF7I3wNJ21KhnmK39LXnGVo66WqWpqTDIk2U5wn72aoY9njSFsZV+IZUcq5qP9zfaWqVwNm6URP83Hn9ZkMVbK18f+kwiWJ+wrMDvUI6ObAsoBy/Vwia6cq+iVMQOuYt58vpbuQK7oxv0UsF1Arzha1ESku0Q1yq+Q3NtGM2/cXmw87kjseDRs/72qiEo2l8y/uSoXKb1xRbtddGmqRbjkxtAiUbBJqKuzu0rXbbss4ZxTD7+2x+QzTSAeYyVqW3XyY87DZv2RFIw3iJOydpSUADXu5PS4XGmhC6O65+4rKwcJlZG5eaz3NubrCz0yfB+7iUROnydbTGN2AXmO9crgc1dX1XaeOjkSd8g/6UQNFUSE+0Vtr6fvTVqZ6+TXQZqjl37ilhuZ0Hu2RDPUgpT29mfrLq+nljj7OTOMseCEXyV03rorahow/ttn3JDE/vET6XnYF5ciAupa8Gwmffk2Co8enj96ot57uzAXbnIWHuOk86reldG2VVwEo+4k8XN9SSvmzDvda1VVAJrfZZs3XYjqksvOITWEpsVXI78uDAqqq+Vli2o8wUIpvPxAimUu3rlFReF1xA7RVj95S5KfRsKdvaUBEJWlXldozIz+Gxm1wWfU9opHkRJ7a1naSS53OmtzVkLMgTuijWLZ8ea2XCQjQx3zieFbngcWYj8fGDeZb7+OQCPRxWsYHmWHiAw7o48D7pAoHw1hyBn3sypcxF/fLJLroY4TIgax7R3VgAH08kfNi9sL4YPLuHx+r+eF/nEyEMPTRdVaNy6yA//Px+/fjbcFJkIw+9jn4vTO6EEg46ONJu7BnKkuujfl4fqtW39c3gSQZfRSt/1lvvdlEEn20erc0YN83A4hAH603QWGCZBxZhT6aXLsWvrPSjySijyPxNeavU1MgEX1ckKAYJjYfYBL6+Jsrv+FBcxloo49OWyJUVybxQQR9zBNRsZObIYBF6KNF2zddv4l8cEcfs9HHAPRx6nxJ3697eMBBH02d3flSadWQjj6OnFvn6G1YAT/QR0aKfQBa0UfZcM0zfPlMeIY+KmgNMulFYbAefWx+TZ4l7o8EN/TxUHFItcjhDFiNPtrSdkH99hwo8xX6eKhmWqSoKw9eoI/x0Xx3UbEiUok+HpBd0mLvmUkq44Q+8gezO3o0AfTQxwFHTv7zDTwyT03oYyz6+CZK6OMbbqey/horcgR9VO0zoD4TZAntdu0c5XBnJbI549cxbtu9cm5/rSk0oa/jx40OC1Aa9uRb/mDoOGRF5MJsf4Z5aTrm8wOdC7Ov3vcgZuKn1+z8+tNnEuq8e7wT2Y4sOySaptnlP+b7jczRYU0u5ksxJf0MjUEORJ6qyVlw3NgT9mM9TGD/35d0/xr+6lgPQ8WR3yO3LNRMSwqPIR5YL5bbR0cqyY3/dM/lMUMtkG8j52nuKjacfX2snnriqkNMe+NIltPTgusNDKXSL2da8aJIIvKkwGEfs2gVGMR6C55dq5Pj7UbWKmYYyBb/rCf2/b2IIXL3uL6DBeIh5APWo3C/QfDxVqF7cCpDJZBfI3vmhTstC0mCcKzXQaN9G9U/J0Ooi7i1xHmGVrD7iYeLyMLzSwIVrGcX1rcEmBERyD3qzNDNqUXxnptTQAHZaWmczEnX2LH+I++u3MkT8QT1rsamlG0MFbD7D4NlyDLs738Sb8wDEXa/ySTXdGnsGU2GiiIXIcezPl0jupgX2ez+EonP1DX27ZMYmoHshqxdWhBZ1mdN4jBPzrPnmUDSAhdLzSkT0F72PlIJD1mcsb76PCSXSGPe7J3YL6WxO5lwdzxpFNgL6Cf2vC4Te+TLtwv7o228yCXMI68XOrUmXpfI5E0eyhYiArq89tgL68WhRB558Mfo8COrMa/OsPMTyZ8pTy01opuoNjs/guxF9h0a2sm9xiVZmGf7Ql9VFlgEgp24RuydeU3Uk30+CjYhq05vVecop0Iu5p3w/vLARfbDYrMr//I25K61Hr9025fCFMzDDra/Uajz3+igNfMuVWPXuw0FyH4aC24WiPBAD/OSXW9RBfQM6C47cu5f7kDm+rtJqEyqgGmYp2bD4kNvBLUg+6hNQfxVA520w3jXYf8aeNYm5K1THJzfNzeCOubtH6PzTRpguuzbx/dXNNCJo/Mn1MMG5NfLFUue7+WDPebxTfb9eNBBYp3Pnain15H7kZscf/GoWE/hBOa1NVuvxQCONw/HptdhPRfDDeRe1TvrnzwrhRjMc+m8+KJWiQpY+EXyoUVNLU38ItXfklQFUsgM63c93MS838GuVwX1GkbbGppr6HbkJuSXrH8l0IX9QMF+lUvWtCKYczYjqqyqmup+nPkyTb8UziBfWd2luOE/p4CP/UJMWB/gYO3LyUmu+qd+QB+5qMXsxl/0FnzBfqJ24cWxr+opcNxjXUq1XSW1a3DTnm51Hs4jZ+6V/rRrMIhYY78xYvcbCStfHbx49wefmiEbIPdmZQ3vfxgLZ7AfWeDvNu5DtYvPltNdyCuQ89n9FIAh9isD9v3KwWaqY0lhWhn6XwQpyJJsvl+H59jPrNj1suCV8/3guhHA+8qCHGRp9YzxRvLlwMN+J82eRyjJVD6fcufzbTod2UpFyK9H+9f3LJKD/dBcuF/SeSShpdXnFt2KfBM5t/yI3svmDKKM32/G7Pd0JtGe+deQsVYWbY16e0Aj5xyZrCRk1dPfxLp1AeL+K+ynpux6/iCm2i5mZHGZrkNerSZkbsR9b7WgCqIwX9hvhffLI8ceXvmY683F/sgjB9qEHIX92BW/D/8GkZm8sA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAANAEAAAAAAAA=eF4T17H+/f//e3vvQ1cvg2iZh+dzQLTrbsFN/4B0zJez/X+BdNLVf+9/A+mvCg92/ATS9/Lmnf4GpDW/MDJ/BtKSF78bvgPSR5ueKr4A0qs1t0x4AKRN5zToXQfSDpdvzToNpK0rqhP3AulLpoHfVgNpnq0HNkwD0qXTXh6tAdITjmx3jAXSi6ZX/TMD0uILV87iANk/ISPnwr/39tK69kU9QPqLepiDFZC+FBX98trf9/ZX9L8+jAPSfQcT7579897+SXTdQjkgrbLi53mv3+/tr3+4ttDr13v7788WTRT5CXTX9f3v53x/b1+e+iXq6tf39jN33hdd8/m9veplYQPuj+/t5SoDyq+/fW8fp7RG6f3L9/bH7+SraTx9b88eqCPjd/+9fQtzynL5G+/tAaSFxRM=AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAALgQAAAAAAAA=eF41x3swG3YcAHBMKbpda9Otrsp6dLdqrHL1DGlUGw2miohq2Qgpl0M86jETzSVUyaWqwZzt1tF6ZqRe9fotX/WIZ2KOelQN9eiYx0ZDp2p3u5/Pfx/fPZsRIt0AfCr1As8aDUKbhu3/TxDGbhi/9kEepJz6g7VEgBfKL4pilTCK76PSNB6gXUfH11pmHn9GgcWCoe0diQKo+DGE7FH32RhUP+sd/MMGFUDpxk9dGIARfJWHJFwkv4nsxAHFH6m+BitpqDfZZABM8Ev1GVdEJSxkzZh4s5nrBT0CXZKrfz+Y4usmvit+z+OgnsOjjb94+sJMv9639eI+KME/CLVHnSneaLmWeJ5k6Q9PLRluOcpekOFbTjkH2PztjMLj1XsMyIGwtCZ5u6HbCzfwP4ih+Jn2Bjn6uyqJ4+Qg+OoYaXWF2gMsfKcjroafmzMdFRndm8HJTMi+kOoi5nfDMH7C3dGztqwIR7osIcRkLBQ6qkee74AcaPi5N1+5BB1nOp7L3Nyt9AuDmNVTJPu9LiDiz/7cXa00c0Lt/LosuRobzoHlXii5C/rxucXanulZdJT1afRc0HAE5KW8b8njdkI+/tjhpXLf3mhEnE5rVrA5kBhlSJmXdYAdfmfwoAOnJx5VFWpPsLVjgPDcvZWt0QESfIuR/EWVRzSaW95S+sliYZItVF2itsMUfvWSdtkLZjyiv7zdcCjvFhz78mPB/axn4Ifv+ofb6t2MODTebNx1WpQArJV0vcihNpjEP/BG+rZjOBAp8q1/zKhIgl+vXs7eNWyD/QNtu2E0KxRdG/gzwGo1GQx1DbpDQgEY+M/S1FaoF4KQlWxwiHeDC02B2dt5TBnY4e+o92UaMSLQSbm0V/D9bdjKJa83qf0GZvhGj8jIyesaMhOLW6de8YCyrqN3v6gVzPHDLK48mekLQ8ITlx4lsPigV7W8wae1gBg/lEnUL46IQu52dtxqrTSYP2pfoalqAi/8f4OFfJ3HESjsRLvcVJ4ONblx89lljcDGtz4CvAfcSFTzO72ztSIDTrVwimqDnkItftWORZ9FXiLaqBdJJXWZ0KPz7oXWyQZYxx/9RnOljJaKcgT6Q/zXQggOqY+yWqoDEf71cfO5eW02qhQUplq73gP7xmrCbnMtlOK/5JFnbfrikGn/oX8+WcsG2d7Wh5a5NbB/upcfZ2EmFummdBMe+uTAXweUvJakJ7D/Bj0aRaAVhQJFl9Vjxx7ARek9xcNwKQTgi5L4LlMFPCRj0yJFKblA9mgr1+ivAsBPdow9Pb11C3kGfKd0dskHA7c7BJtpCfjgFzlcnQteiUQjGqaTtnYFsKhYjC7Ur4QJfMacPTcghIPOuIxQwxmFMKyjcDjDKgcCvo73QqDwfLgjd5ckMi35CS76OxDMpkph/wJNX90wzVT0HyFssQg=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1200.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1200.vtu new file mode 100644 index 00000000000..e321b224cb9 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_1200.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="3.1413829761e-06" RangeMax="0.002198333406" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="11928" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.96646631872" RangeMax="0.9999999861" offset="12024" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="8450.8358868" RangeMax="16645.718807" offset="13284" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="21668" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="21760" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456909286e-05" RangeMax="8.6122479831e-05" offset="21856" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.46135028646" RangeMax="350.68472252" offset="22656" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0010044603494" offset="26056" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="8.4884714252e-06" RangeMax="0.0022070834583" offset="27976" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-6363.7367124" RangeMax="0" offset="33876" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-6363.7367124" RangeMax="0" offset="34564" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.96611687015" RangeMax="0.99999993317" offset="35888" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="8450.035493" RangeMax="16677.893445" offset="37156" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="7.7625930763e-08" RangeMax="2.0354858581e-06" offset="42540" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="45656" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.96764274234" RangeMax="0.99999912842" offset="45728" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="8454.5259717" RangeMax="16535.241475" offset="46216" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="47688" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="48904" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="49636" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="49808" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAA4iEAAAAAAAA=eF5d2Hc4lf8fx3Ejkr1J4tiy17HOB8cWwrEzT2Sk+qaoRCG0ZDQ0tGiQEmkQzjs3ScOIFopKSgpJVrZf1/e+8bu+/fu4nq/rc9117tHt5ZcjfGsMkdZB1gwBn3rTHcxzs6kt3MDpricnasoHoWXZFSKBv8pLTuPOc5ikEj+mCf4BcTtjsmTgDt4DUxHuH5/S67f4IqiySrlLmheEtNJ5+wwDE9S96ZbD+eFfVWL6dhXLmAXgAfctxck+aYjh3S9/lTxYnrwRd4fvL904OnWgplClN+K8GhzBeyjxx/3w5wLoZVDhT92fNK0gJbijfftUVysVuW0tqxq8xIxFbz4+UpstBHURGim7DqhARmh4phb3z/Lizbhnpp08QXtIhqa0O1J6fOSFHm5swn11oIzwSntL4Gyg+ZnO6gL3zxkuL5o5YrIy9wkwXo7tt9il7awsDBKdZ2YNYrSBtC+aNFjfbHiYinvhPp/2CF99sMzb2nT5myZw4T1kEO5dqjpMb7WE3Bqt/apvtOD12QGyCIOKDj9WvB79Dz92dCq4ZdMeIYgS4+xjrrCAxCit5g7vJkPeWtx3nGG7uS2bDOuTSxwpH8jQjPfgTLi4+OQ2CxVLKGlJepe1XgZOW3UGvpanIsFeNZlKMxHszF3atpR6QbgYUfQ77JQDdG0a2Pf8W71hew/uRndK4qLb9MDs8v63io1GcArvwfMb7t2xT37KxVvAJ8mNzMVnRiiukatn1dtMUdaTSZPTPOKY+ldPle/DApBUL00Tzl0HV/RfrB661284U4e77nb5FbTvulDiXfL01jJDIHpYRnhB1jvW0RvmUOSpErmTkxvtvleifoKTgvo6/5DInySxrtEQ7vI9fKA7zii7/8cZ7rfobRa88cuQRLibeIh4YrQ22Pan+N5daQaReA8T73Gf2W6i+XzSFA4cjON1SxGHzHHLgHETA3Rpcoo5op2EBctIPc7h4YKAoYllVw1pi/vyhH+Ld3AOYNYAW62nXr86LCEd7yF6Avc7lU89b+YYw1CsdZHSpDa0qc0ccdHQRhy1tXFxZrLYuyPH6KnzrLDu5rWfvw47w0auD1ZWDwWMch/h7uJMktXVUIS38pGQ2aoP7XgPwoTzm/K2mhfrwruOP903H2oC9ZfRpc3rayn5iToWZwrkMarF+c7CA6cZD47nYPYqLhBK7DcQXl1FP9U6Vc4QexY1JKpkDNTBf3vGk4Xes2mljMoTxk9s//FYNTKQrJM7+rq0wMX0Msc9ASXshaTUnag8ViRrfdl6KtIRgoj9IcLdG+uf2tYrIHW9f/xYBckgj/co0gz3uxzXadkeusjrVc+DzTy6MBe36SzbgA7kKq56Ox2jjEXsl93jwc6ODn5x10CZTnC8jsehiY+zolwJd2/Ju+PntiojGguq+M7iDEx7/+3Rd6KXbky3bblFRkpaDk7x5dZQIAEZK9/IgOCs28vD3SqYlNCzp0nVoxRh30/Xfev+/m5etnFsf7esoozwMOliqvEyMSRdtY3kl+AMl/EexczgPi5Z2rtmizy64r7h3M6rrvBNpPVcdfxvyrHXaU0ijurYq6/5Iqr+jxmVo/GvtN8ogM+/+6Pl1YRLNZvRuU5/YxQ1vv4BH2kgK/pvzxh6iXvMcOpsCOcoo37OsLfyiB/UHFnW3fdGCNHDdIyL7mlgG+PG3DaL9DL+nE55EPmYG/jrCgOirfvLSYSf+s78wPrcCpDj0k6g1jrDI7yHEsKljJIdzz4QhUM65txhb/zAVPYCC8suEjK+zO7Vn6GFpbSuGmdZM8KQKBxST/BQgBXEPj/hH8Tkqi2oIrDZNfiS/YATmOM9IMKZLwZukO2QhZ027WOih33g0jw5K4NZCVXzjvIzPdbGPH8hC5enUwyN3pwS8RADePKayVYs+mt5GuFbKHXXgu6thlMvgsu2+jtDDt5DLuFRF/ddiPFRgffeSJJjkzccvZq+Hz1UQvx8ZQymGB2safBm/uPL04yY5ri1pr+NoX3jRATpSYthCy/ueoGGhUV5UiAwYyRIknOAZLyHCcJtmYNFd2qrAj3cRDPxlSeU/b7qn1cmh8LDj4/tLdLFroV859McHmfoN6f/vutIhcl/97sMfQgX5bokox21Eg5MsTtvcHGAu3gPEYS7zOWa9Wcpgumef07c7XKHsoToKEm6NPpes0VzslsPi+tU2JNtMcwovHlvxlfTDARC8PN3ET5Vxnr2PlUYmve+jkrgdoAqvIchwn2nP4ZvmJCBE4e36ChKukFRM3OJNn01askPKzI9Q8ZEL9oEFYr/ZnQ49L2tOGcFiWq7eFbcuFqeS7hE5okSy3FBOM/y9fjxBke4jffAdB33TYy1VhqvSRDXrRVwUtgVcu95SKpnSKGvCSNFZk36mNQTuR2bn/1mvJBI3fbZwh4i/92/V15OuHvDvQjtCiEITN43MnTfcaEHjkTc97tum5FLlAGFmXTNqYZ1kHnmxmFlkEbt3gnFVFZDbM0vpiTVmGHGgh+z0M5K3/ewfMEzl7+Vl94rDLuERMZq39nDSbwHu/W4n/uRdX+luizM0Mq67/dYQubKvKDD2pKoBKM6fnhgiDUM0UgHw4cYWl01m0WkaVCk93v9bMeooQvh0xxhFT06ghDH/mBnJsUGjuE9tBD+ut5v7I0CCa4MtRer8RnDl0mm8a7bPEj5sUtxyqARdupM22Eu288Mudsb2EyeekKgzcDumeZ+w9Fa3N8G6fvfW8MKjw8nnyv6Yw29eA90on+7bdXASyYBOFpotN3Z+Qujb1kV+UhPG6XkGZ1fTYGCqby7z1/UUsgwSGkqDKz0BSbiTy7h8pT+PfffvWAkkSS2GBtbAgvbvz2ji/BvOW/aLgV2MDrkQ2iBSaao+5qTjWLj5N/r4XVf7z0F89l421tk+QtKbC25edl9X1jbn5nO4PlgSCV8wtTkxVj+EGVwoFLK1swciJ5CJ9zm+MbfHOmzlKDpOxqTMhYo02uHkmKIMFSpGhQVCJhgqqWrddY97KVceM7cOT/nQ+z/NHxDeOvjyag97pwoaDgvMvamGWThPXpGuARvWVOznxjKW25v9+sBFU0nFQRcVpUB0m7RfMm1pljus+WHImZGKPLd2nwDKt6gT5yfTvjKnRFMoCKKCv9I74xnocIE3iN+wofijtzWKJRDbtTR8bKnFOSoQe8sPi8LQ+1d4wVzpthxP2Pqq4Ixyvo/Z7tY9L0Xrz/1He7hdf9s+cImjqRs0l8dDLeEtXiPSoi+ak+Y/HMXBcS27PBX26eGKK2Fc2jbSRLIc71Ym7qKirWsIq21chihxM5u/Dmb6LW4r0Z4TJsri3moCIoyzWBpsreCVLxHkoR/f62xp31GFt3xuxJgRZFGZ3silgeJroauG6ri1Q+oGG8Hm2vZzyGKtay6cZeFG+jw7Liz4Ve14YKn/tA/e+mJIAqiKO91zrMCokcthItqjDf1FpBQfVWQ6lifEJJcxpt7TUsG6KpCvm8FzTF3B3cylWWUcmu0sVnjk+vi+Y8R3icaXKSnLYrUBw66JLiZAtGjXMLD08vzB0rk0P1RB7SnkAd1J9wUHXZRA/uoRI6c2+bYzfDvTi9imZAOzyzLKi6Xxf2NhIv48OWo2coiw9W9ZV6FhtCF9yiW8D5HnbevDLSQ2HnXJHWGLHqz7+qTnHJd4Gf8LA13tMAKCxWT946yo5ng1JypbNvFfRfCS5W39lbtXINsnGxXa7Hqwlu8R3TCpdw4vDTP6KO1Z0NecilKoOwQ9a8xI2Sg73nW2nHdAmsJzP04lLYCUR9LSCXV2C3uL/ihfW9XlXqqIR8nkVYwI8NFvEcLHrGdmUlMwQixne7ubP7Bj3KS6uVW8BjCFM2S193aEhtjHCFdn+NCtLHYFJ+Vlov7yq64Z/0e6L/LrYkc9tzQPOeoBZfxHkkRPlTRsfxjGgWhrqP5LKHjlNycsOBsRWMoUamybuy2xFaJRwX5R/KiF/tEkakxeXF/iPAWHZYA789aKMouTvDXXUW4hvdowSNZyvjyRk1Qg2UnrF4uAMeCdOXSNf/+PW0aP1lkaoXtUTLjeKPIjdgOZaz72m8JCcE2G7dsZzFa8GA1SwULI020TVjo4t44ChzFe8QfgbujLeVa2H0KymafIbNJKYGKsqPFkZsakPJ6693fnVYYS1tK3UA7M3J+GcO25bzY4vkLCG9Ze+hVQoMc2msdxerxmgxyeI/uEt5e3GoUdEwbaVw2eUH7pA//iAbvHepfCXSTnhZynDWmIaHCJao2SGHZznLGQE4RLewnEr77xen5WAY/Stz1epO6qtZCj6iE713/zCTqzmokFPkhbM8hBKQL7QWXa54xWhof6Jxps8aOVX2t7my5QAnIF9xNfcS+eP4Fpz4ReNc+hlHCAgV0BNP0IDH7355CasLdRWOM+tC3kZLVY5miQVODAY4vO+yk1qDBMSXvp7tssJRt1T330Szjcku/x0w8++L5WwjfeGJNa6X+3/eD9dYKYuZk+IH3UE34TdHzfJ/q1OBBTU1HVYsuyFXqlTU4G6EWqbP7/ojYYkxGFjmeu3hg+YlKO94hElpdcnrQ7zhnxYKrXmO5XeKpBdMrfsR77TCFVXgP1YSzM69OPT2HoDyQmY9Xxuzv92XB6OQ+U0RdbrJnYIctJt7K8m62SgD6VO48KxnkXLw+JMILfmZFwt/vq/CWIPEVxYYLPVSz4/7kRHRp5y5zOJQQ8W7DdQsgv5FP968zR07Xf51WFbLD2s0rzPxuCwPlxFiPo6fe0j7hF+SFLur91gdRvc05xestQAvvQYdw05lVImt9rYA1zDh/Z5w16EeOSVc5WCG67ZX7EffssNNF2/Irc8RgGeGL+4Sf8D3+/JauMWQVnmtQHEBggPdAJbw8pDa61MwWRLXIKy/km0HmdV6mZTcsEZ3UsptDYC2m+uVKCq1bFDIzepHqeq2l+w/hDnSDDWc3GEHLfEdN4spHlDS8ByrhVaxXtZwO2EDUoxzFSDlhQA0V5h3fTFDq7+e+e++uxardaZc4wwQgyf9Qqyuz/uJ+IuF1xtvttNbpwiuGpdM//qMME7wHOuHc/NdHnUjmUPh8em77jy+UYFvP5OI4PdT1qNZsyM0eu5U2v+1Q23JQD7n38uteS4idnfxsm8NaseDxKp6Bx7arQF8b3z6NQXnYgPdAJRwMPbfn7DIAp4RMm+VBCkAqfKDeHquDmEzS89bdtcc2XSHzZSexwXfDk+++xCzd/xe8SOjA9vgOJdgZWBe4pt4SpPEeFtwo8JKzqioZhjeNmEGLOYReGTlYwEpGsgGrWaU9HDBTp4ADTTs5YI583XENzXBx35DwH2SH76tkVIF/3QYjwx/WEI73wEf46OYcgyBBQ2hfrhvFJbMOirM1u2LSDBA9oYg+9McBE5w6OM28iQsm/7OfSLiMt0BgRagGvKA+l7Zws4UivIeueNyLY3KlsyeNYePmTQezN9LAg38ndcWEIWJqvjWm4OWIeV/0X6PFzwNlbV6N81p/9y8K7alJGzHMfYH7C0poHqeUFshbnLj7uYm60EMi0TNqc635ziGo8Oa6N86/DoynjNafd6GglXWzEYnTjphMo72eSQMfPDmyeWVz+NL1n3iM+3lPRbfSy9rgaBeAdYpTAeE9SBL9TrfaeRZ7M3hM9LJf57ar3zBBJIZT1/ucddiu2fPSCpYC8LKyIeF6tfnS74vwkO3fmOgKuhC6uj5knssalPAe6JW4Z/0e9pueocLrkx6KmX40UH6y42i7ozHqesjWw8LkhG1chQl2X+CF3ue3fQ8XLV3/XML32Qgc5pjSglcPCuJfDxgu9JBIOO1GfVM0yRTaaA+mjJ3Xgat/ud/+ZmUUcjlmVjjfCSv9YdHB8nmG8fve7qf9c0vnpxP+4ejjFZ9ZSeCYE+PQW00BD7wHW8IdK0nllzerQcgxVfs7cTTYkp7fv+PtHwb1QL+IkqMz9lGidvfIwwbKCLHPL/Brw4Vh7go64d/dzjz/9XiQIvKYevZ5kgHU4z1lobcbuuSjvW6a8nH3tGidszs0BEUdijZeBSRT7QT/ImfsdL5AQvSdX5Tc6V27r7OZLf2+CNf4dv51+EkBZBmaxzg4ZQFNeI8SCXc44yF2VUsala2aHpR9bQ/RDsdvcgcqwqFK8fW3VFwwZbYNGcqcU5TC/+yfJbw0bc2L058lUa4Gl1XVNWPYjffoIuHtm/2BlrsGPXf09ZhWsYa0nnCBTyRN0Go9O3wj3gXbf/7CPw2rWVA94Yv/fgi/kO27sVtMHt0k9jPxHvETzsZ+eFz5jTZqIHph1hZUGqYN1WXG6h23XbDQEyQfb4tl6NB0cQ/Zfen9KpfwK0rebg4xiojKbyk494gKIniPEglXFBG2YxrSRZf6yrDjVxwgKZhjjuajC7FXVJJ7l9Gw/EpZ1vKD7CjpP/t0wiUEX87NTysjrgjRquoVRhCP9yiJ8IzKLXPKqvqo1HF3moUrFYZqqdigIxlIGRLvRtbTsG/d8rfEGjjQ/v/sUwk/ObP25v0EVVSf8ZHzaoMeDOI9ohM+E1h3nxZqiO4T++J1b/gPK2kDdWf+4/qjNMyGorUm7w8rqv11J+86u+PS/Y3w9tck3+0Kimg00JQW2mwHcniPmAg3b5wq3Zuvi5qv67aI3VBCTCqnwlKLBhmado3RzN00zCXuc9it9zUUYMu7s0Fy6fllR7jW6KN1kU1fKFc1Pval73YCoqfoEn728ZNqiRO/Ka9oO3Z4l1Gh9GvZm4A9Goi0alje0NAV6+TSu+AMzFBBEuRODLBZ3O+SwN11ZzittlAOJNzyDSKN7OEj3gOd6ItHPvsbRWuD66eCnLA2F9A7s2/EPUkH0YVYqXURrtj3rA9yLkfZIL6rlGYczrn4/kYl3Hcmeka5RwlczMqaevdxLPSQSHja2sk/VbpkePMJ712nPDmyVqsi+Z92zpaPXLFujvCGtsx5RsHqw87frpounp+DcMP4s7OPE2VA/pZAlPx+EnLBe1AinGO6ljmTTxO+3BuYumWsjhSf3F0Tr//3++9JRkDNSjfsT6+wM9+KUcarWoFXmewkiBVrzdx6edSwi3BFppjZGkNRqPoimb5sYA1o4T0kEj4WdEoo94Ec1BD92MFdyeFBsihRxXpcZJ0b1r/91jml0DFG2zD54ffhpe+vBfe6KhMxzBCDDeKX77RiRjCF91BNeLdw4y51PgUIxOzE+oolUGT4J2shZS10Kkv5yWSeG9ZqvxxzfMEC3OWlpa4nBBf3jxEuQrm8M79DHlgV5YJ79ZXgH7yHbYSn0qo/dO7XgcaUZ3zuTlYoIp3VfljKACXOcZ3+MOeGPfArLznwgxPgxoCQrjUFNvzqp1xeNlueS3jiNe0yt3fqQA/j4F4hZQ478B5IhF88K8Ekt9cYaom+48R2W0EVY1Q9Ef+AS9cdkzfJ5QiP5oWPLb1rWcb+7/2BcPaXjfKnv2hB0OeNByIb9OED3gNpEneRcwfsciZM4B3RB+zIkCwoMEErHgd9jE53xw7muh1ssxAAl4O63i31S893DsKtZDp/rfj7/JV9JdL9zUEM/PAelhHOXiQwX/z3+fs8XzTZ2FEPDRW8nbh0koromTZsH3vdsThZL444ByGY15yc+PjBb+n8hO/f3l+5L5QMfR59JhGX1GAE74FE+Gxa13reWQtgL7BaJX2VBWaodb0usuYoUbY1dELSA2Me9eI/+VsI6p5l+U8Vey7d3wgfMOkoLJXSB+HWg1RZPz2YxntY6HXNWtYm51rClaGVqoMPGhkDvWxNG9eZo7i+oCPL93hgeq8E7R/8fa+u8bjp7vlw6f6QSHjYhdQcV099uDhYFsV7WBu+4z3sJrzb3K6s46UlfFu+JlUjTB+9zbC5GxNjjqrv/ioUfeuBRZQ0JXd4CMODbW8teN8v3d8W/NOU0clf6fpw8qEnj76WAbTjPZAIP2tVLavHagV3R/HzHyw3G6rnNkOJ7VsYWlye2OQNzl+rBAVhW/T6YtYplaXnO+H3DnZHDXDqQURHcm+CXiMlHe9hoadqM48XPDMHKdY8KSNbWfTPuOVKupc2cjGq6V6+yRMbZ4nI9tBcBo3/2V9wyd2XEsjBimDisDo0UkAJbcN7sCM8WX97o/0HXVg5/VaqhdcCblwxF7zJx4Po50Q4Pz3xxPqfTrk2/ehicGSLuEoHrlu6PoSbJH/yt3vEAhk/8PO74z0s9Hwqifd48/iBfSd+vmeGVnJl2YOMXDbLAe45T8xGVllItrmG0rDli+vboaX/v60mXFphy+mr1V8oh0wPGLQJW0Ck0b89JZHwa6Tlf39EvykjtcfudFDJsOnWHGuGHAdc2EfWaPb3wl44prh8EO+kjBG+sH+M8EhM2rtuzTxldHT0ouBxewjCe7Sb8BQyX/GNfC70eX4598MhayArnDbzchGGxDGlyOMPvTCKVWWDcF4vJXpfr5PqzBhl4N21t8zqv8vphCuUpey4YMSJqlY+7Bt1tQFFvEfUcdxpW3neTVqJoZ9Ef2Zrx1AikgAqjdTRO+aFnRdOjuo8MkihJzk9mz+/9H294G4rP7Lv/cWPkignfvYP2sAlvEcLfr/ZIQF4pNDKT6FizpesYaZ73lVSTQ5e9fzUrPDyxiy4j6UOuoxTxAhf2B8inOnb1TGvanGUsWXY7bGNOSz/8m+PBL7hrvOVJm88roAWek2+E+oTRmsgMZaRklrhjRlmBHQM+s1S4k3dFJx3L/3/ZDXhnu/0hrPtSMhqC1uHwCltsMB7tNAf7prlON2jhiSIfb8n8iJvrZSAapyULzXijTU1dH68JDJN8e4rby/mFFi6PoQbTnY0Ik4pJB+5f4+JXg9lJ94jJgrumwKZfh++roKC4HrVmWZnFKyu13N1UhjI+oOVcl7rsY+Od73lI75TNhO+sO9C+IFq+rSaMBfK3lH3yPbvfWsv3iM3wi/tso/8zi6ODkiFH7VLsEI5T1MSjqwfpjDp+DQrM9ZjmX/ctN/41jHsdxVJ2n8xXjo/4dl1747Gl/QyzG0dXKn2BsgB7xlUbdw32txmW8Y2xtAsGokZyfRAbyRPfa7VFkaJIT5a/OPrsYenOPr27e9lnH65KqisbOn5u+AaFmJ+coKc8CRxejPTAdWFHqihuKtptl4akRGDrBrKuadrrVDM5sDKPhll1Ghkof6Pnw+mG/fdekx0hpH2n/1jhKumvuMqUJKGl3d8X7V3KqBYvIf7hIfGSgY/v6YKEbYTTUPD2mit/FTNHhFdROVRUWl85IPVeYQ2nNJnB3Et9nkHJ8rS+Qm/XPFaT/qq8uL5XfAeFvrswdA4x04yIOJ8SC5g241OMqqe3ZYsOe+DXbG1/RS8YwV07y8vsnT5v+c74dxjmmEWRmoQFpdLvpe0BhE9LPQ1XLb9Y5xGYNNXIlyq54msuPV8ZDYaoptsVaUTYb6Yg2rIluUbuSGKnhXlPjXFWNjPJXzGcx1Zbp8mWAF6Ft3JD3Z4D7GE69+ptr0yRIGWj6s4t8fYgvPYCuvsfmPExMv9/U2LLzbBmzx504MPXoxZS08O6SGmfoep40Jjhgse41fKnETXhnfnB+dOapLBCe+hmgf3q57G15xaTaGe2J/y3uVzMMQAVe/eNH6V1w97OS+QcovCBX7DKeuvw5ql60N4ZXts3HY9DSisOZZ7O0kePcV7WOiDz070TTcag+T72zTd9vVQvqnskFqKDOIVijkqF+uHtbo7ZMcGjzLcD+yJOpUit/j74if8o+kKDa6LouDwqIGZrcMcvcJ7kCSc6c2n9+f55UHmon9t7X4HVALz9mEHxIBafJB0tccPGyyUKHxK76c4/Pf8hEeHPSFn+/OiHfOHWK8fJyN3vEcLfkIgmJr4WwIduegUt2KTG+qu/HPoZrwwME0U7GVX8McOmL0Cpo5eCs2/IMhWOfD/3g9xL7ZXexCxkxPxcmZUzHo4w1e8R9XjuAeznMjhjBVDOVn2wlwzf7/bmaN9GMbK6JE1C8XppD+2ISPhdJvuDGO267jq5cCl77shwru/ClHv2EqDC0Pf0ljJG3LwHr4RfmvYcp1+jSooiMrHG4QHgezQ9pkQHxOUeNJ38hRzACbL977bQUQAVH6Msa6ucVu8/kyEP437NX5gWAdYjfzf8TAQSOI9JGbhfs0oK7azmQp5p7dcPv+ZimjOkoWW7/++Hz4Xa79iEYAFnD9z8/ZTYWh6oh8RE8ex9P5Tj7uI/qNTmtwGIEa5kCowqo5c8R6YiN7PYluuUZQVxBD9xHaBsVYFK8QuHJfaei8Aa23so1+IEoOy/+4TLqjgyFPFYgwhxP5vvAdlwqUaNPbbC9vChuaOT9/ErVFGFrtZxHYbRA34iDgVAjH3OROxI9IS0COqbJfGEra0Tzi3cGuK4ySCRwM/A7Su6KGTeA/VhH91G9zgW7oW7tJbU0pMQ9FbmzZzKT47lOj2TextWCCmJTd2Q4hZEjT960/FJW9Y2nfHPSnTXS2YzwzUuln3lwJCLXgP1UR/r0/kATXTAbZK6BnUPNyMnn33/mNMc0CvmjlGRTsDsfuVX+fGG6RBalYl9U7j0vddNeEFXEd8Ja+Yg6HQxt50YYOFHsoJ35tAbquwdwYF3xtvslI9UFXq+1teJ51Qbp5IuJoyHVu9pm/N1gYZSN07yrpjK33x30814ZnNvaRDYAmf+uzC9x1WQpV4Dwsum3ozbmUyDeJjX1scjbZC7rvSWNIP/X3Olvsmx9rTMYm88Yz09bLwuZd6S/+iDWKKSGNztMszrH6Au89X1p41PlZgGNbrhxmghR6oRP8Pn4LuBK8rlGY+JLFfswGd0R/ZBWnOKEdUJV7nIB1LK+nOPOgnC/cIXzh/CeGK+T+Hdvpbgch5y7iRX1SkhfdQQXij82+pHgFXaBegH+m75Im4dthqPz7ujHJ3TsT01dCxecaLYwmBsqAjnzP80uQ8Az//qfJEwn+Htc3U0Jf2ufEeuqJxVzz2kPOVsCt8anP+eOEPHTkwr132Q8cBdRWd01TpoWO001YWtwqkobxD9mwIj97i9U8k3F9oK2dqhjl8D/W4W9zuhRzxHhb66JPH0+aUnKF0+FDjn6u+SKfC/1oFzRBV5scWHZLdgPXF9Iifd+Je9MW/X8KdxM5E0EM0QUJ/zKE10R8F4z08IrwqLHZ5egcFzM8kr3SQ3YQUzX3mY1eIQW6Oj2pP4AZMsX/C/khLH4VB7EfuLns46K5ZUU14Spy468WHPMiI2PfGe0QnvMS/QjktWAI1u9tlF7i5oPLZK3U7V3NC9c7NoVIpG7BnY4ekK0M+UsSzJxx2abos3d924Z4U/0hxRwcTuh/I3J+bbg+A94hO9I2zJ1eo9/GgvI9s+58I+MPGcqOR3DvmiNUk84167QZsonK1bPBZYXAd+BJ0Ya/u0j7hM4o1jIo2ffgTMtTBVesBh/Ae+hHuNtv2eRVZWYF5lex7Tu2NYNkSejktyRV1sd6zMGEJwvKmVo4cO6oAd6hP1u2uoYE6fHW9KKNnlEt4t5P6x8geWyi7fjwlRMAC3PAeqMtwJ/PVY3O6HlBKnO9/tcyOeA==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAkAMAAAAAAAA=eF5t0u1TE3QAB/BxQoAo50M6QDE9HrSYhoF4x4HTnE6RhyGPA6WBFpKCyQ0h4dy6rRBBJsNbRZFYJrMEeRAkFAlFj6cBihOcOIXmIRPYnAPGwzZ74Z13fH+vPv/Ap7c4x2A2a+i9cwzOclGbCNKi8y7MEBQMeKQYCN6hWcZpCR4T2FapCDbrBpf3E/SNWqJvJbhuVhVaTVAz6TP+B8FMmurX7wnGOugXJRAspnQ9DyDoyG0tXEXwEcX52xETypIO5XQQjHsw+e9ZgtbUeReCCYYyIla5EZQuK+D2GdFD58rGhQSly/iOoQTVa6a36GbR7BsGhzyC8z6+6BZEsEo2I1fMoAniilYOwTxZhNVygvoYJkU0jd4fL+02T6GPE2O+kxLkFx4Q2hEMUvC0XxrQfNe+aAuCM5lHHYMm0f3eTx6JJtAIm1ufORMsLuqKZo2j+3b62Z/Qo6utr4kMb9CxYM+KxQStpuZrV+vQw8aVN0WvUUN1WtgZLbqEc0jC16D+ex82KcdQ++GADY2jaPq1bNm5EZRaksAeeIXmchfJf1ejGfdDLNnD6LbZZIX4JbomXsv1GkIPbl3o1/ICvZW2wWNMhY76DNw+/B+attQ00T+Auo9cLR99jvK/5gzveIb+zOa5FTxF6xOlG3P70SnqX9wbCnT38ZLFyj600+eSvLEXbQn71P+uHFWcfLLrZg8qEodNCx6gYYwPWLHd6AqnvwUunWiL5AfXrg60s8Zazm1D94eXn57fgmYb2wd/vIfWvGHorJtRfpKFY2ITao7bc7WnEXXPOVlm24A2f7irYX09alEb2X28DuWZUtuTa9DTByuvh1b9/3uOyrpYb24F2vtV35/uZahDxvXW5svoT3dKtzaUoinBO4yuF9F45wS79BK0dkv1pW2/odEsm/aoItSPfuqfSAna9vkvnppCVCx3sbsiQvXTvsaQXPQe3Sa78hS69nw+b4EQVX8SdCWQh+Y/DNEey0I31+9Mjk9HX9cGWnqnooJnSbbUo+iCj+JYZ5NQr9ostvoA2sakpAo5KO2ykyAzBvUfUtaxwlHZ9swjRaz3drzTK3Bfv0UAarNCL2RsR52sSjI20VF23jcM02a0p0lied4T5X2hU66noeIOni/T9b2F76S1MQe9V6KvwpUeUVSU+7KAWW6PVkbIJHIrDb1ijl7pKRIeBc1Ki+SYJ8ZA1azubsAo+hbAa0DkAQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAbxgAAAAAAAA=eF5113c01n/8//EmUVoa2pF2spN4V0plNGgglJJI2SsZ2St7r2SGjGhnvHiZIaRBkqgQJaHo0+7b+b0f1/ecr3N+f97O/fl8npfrHI5rUEVx70SN+dvP9Zp3mio00WuKrC/wOewqyVIliTtZm6LP2866wXG56VMhPWKrwNocPQtdXm7Z05AnasS0ZHtgnIo8PZYur1O/sonuoax/l5ZPa92pS4RhXXTRMtYvvVoclI8Yk5Ax/SGs+Hzr5gV3DEjtntqv2tIHqMppnufreJvoCyXWLRIi3RZORiQO3osupcxaR8UwTyrdipQp/d/9bvjSvj1Gsbcsye286beaQw/TxNgDLhtGHlGFfNa3pgx+qh0yI/7XWV9Bb4P/mtd3/d1mQpwwn4IeCDfz2gczjaakbLlj7/yFx6j9sj9rPhQ/oqqCrIelfEzsI1zJn2Ws7Tgd85byYpkZutZEVYi1LboO7PBJrdO78Dj5UPOFT+SxPj1wNedJhtcjKlLL2uJyz6cdpr6kAF0J/RV8nKfbRqPVjkyvY62GPhc+KeOdlXlUnBmK4FV/s/c0/f3nmYHL6UdUPJK1Uedk7qXyl4hi5P/tRvAl8wmjvxRtyQ74O7oKbLIjflL/MyXm1GhejHqoMS1bFvF+68ZHNB6OqN0YtvRAALEY0wNhayuzVM9LjmQ9TNDFYP1Pn3W47x4hj48ceV3WbEp9tx8y+/O1kY7XYK013JAi4hpEEtHd0Qvhtzxbdi6MciN8sAs6P+wo4LJmVbM5id59wrxtjQW9H9Fp/7ylkWbCXpVDc7kH/Ik9fA/dHXZT/r7FWtaGbIZvosvB6u29qwoWmZBux8r1GqpWtMCnak1cYiPtgj9I3910PDmATHZiXYTOsf1er50da86T8WP6ONgmYMBUkFqRLTfW9D02taHEIbtV90wjXQs/erJW4baoH/GHS9DdYdPSpss3Mq1IOVyLTuHUW37zZDstiMQ46dO/sm2pZucS0c1KjXQ5bE3HL+6d4U964ZPoHbBI4bsUDTt/MvBX6v/5EPoH+A2fzORl8h6ECgTrtzeep7+1ZoT9ndlI78GZTsMPxt92JpILWE86ynYROGp3zBv/bn/yfT7rH9j/BvPsu216yi2EaIu/1ysevkBznowbrX7RQLXgvmC5z+mHTxFfOA/dD3b8pheimx5MhkRZx6JzPPejWH7irlhyXjrIeYOYI63U+xF0taCBOsEf36wwTrigTNRgin4QDi88typ7eQB5A1ejd8HzrKLmUJ9Ykliqyxt9yJmW779qYe3eQDNhU+VAVZtufWIFE3R7WLPz4sYD+v7kFVyG/ppzbzjiROXFaFKqvD56/HkXWsyoHVRQbaD18PHCJRI592xIAFyIHga/Hc8T5VLtT9rgAvSX8BMBcZ72hEjyfpZeaa+2K20bourC6xvoILyti+vD25fnSRXcjF4LNxmXKsyY4kv+wC/Rx81mrSAXkN4mHUGky4/nfjNxo91rhR7++FJP5WDjpiLn/R1OhOMedAaWm3XsipCYL9Ees68DF/JUZ092DiPpVsfjeVzc6bC+h+Lj4np6DV4c2RhzK8GR5MCf0a/Dc6MswieP+JCaMfu1cIJLAp/ixxBi/mXILXepB+0bvPuj4HI9tYCtC6y+Tt/mTtTgbvSDMLPn19kBFz9yCx5Cvw0/Ezpo+HJCCBnZHDRJStyTfvnE5RB/up5+g5PSV19yUPAh7fAAegfsY51b3HXOj4jLsh5BF4NfFNpX/9a/RPQurvcp3OlFvw9ofHfaWE8NYE43hb+hW8J5czdZCDzwIR3wuE9s74TrFv3yKLviRobyRyKyu7xoXLxMv8n0ejoCU/WK0v6DQSQDDkXPho/qJG8Qy/cgq26wTkLnuCS/IDuf/zwRzrE1q/rqTXO+5GzRff6QroZ5o6Ks36yPIH+yWV9F53jT69uC/DYeRB/z+egGcGWuxcmwBYLkTMbXPZ08vrRQVeiSatJDynFIz7OIv4ExRBu+h86xFrOWq5fLjUTAJeiR8IRwzQUekxwZRzrzr2iWL/0Z9NZa0fUhdYC50yb1HfeNId7wL3Qv+Jqowq0h/4skccz+FXhNxar8+9NdmZF9hyf/JX6UCl8qVVR+SIfgU1xBtrP6osmvMf03PK3A8H0hrxP5AJeg98PFM6yj5C47M7tfRk9tfHyJuhWKT901+yHdATcG38p+aRhJzGBfdBP4LXdKyhttJ7JwzL4AHC5UMqEp1p45e/L2sXArf/pXxqFL6XMdNYBL71jE5lpEkiR4/Ga2X4Hn+Ah8fyfqRmbAn7HPsficQbeDw7bMq2D7fMYngD5v31dyrKiOvoTnCfxYdaIpgrTDregv4BX1G2r2fHMjN+Bm9Jtwk4TCom2ZOox5ifzEvvhAWugmGGvlWUeNYTlDCfvg6aHkBHwXXQ/+vPCMm5mSO9kE30GXgTW0nn8xSlVnjMxkzGWZILrsaUu4h8G/zweO8+Fq3303hFyHV6Fnw1I65y3GvXQghWN6AfzykcZS6d0qzE4ri4z3B4Pp73Miv/JF6uhWeIqQlrDQ2QByFB5nwvZDnG5W3h7RaksM4UnoHBsG/TUziDrBDBU+G9wrFUKbJ3kadHytpR/h3SU11a7vPMn8ItYv0efCb1z5lNe2WJA5HKNzLLcj8u7wak1meGpmlZJXCO23ER/90/LvPlx55OhL6Y9epGNMb4eX6Qdbiz62InVwHzrHcnyCwmEj+5iWwvVWRTNDqbxhvJZyUi19BEefSdtT996VfIB3oPfAW1empAl1mJC6Mfu1cEB+XNaDZknmqXHe0o2X/1lzcnG4cS2th+/yrHumXm9FRuBI9CFYynul/rsFBuQVHIreDhfN0q6xX7OfXLvR6+U/EErf3xmNrlaupSnwfzff3JNLcyNhY3oI/OL6yl/7NexJJjyAngHL+NouLLI3IKtdHSpuXgijQs5hLRL8tXQlnKYz/92D3sNkC7wWfTN8v8ziTNchayINr0Hn+PiVtNtSCjbkxX6+8W2Tw+k5RdG5ie019Dks8UbcIznuFDMMm6EPwr8yz18bTDEhN2BDdI4v+R9VStp5gayY4Pw0UzOc9nNtke4trqFCsLtjw2+71Yr/2wfG9Jb3S67PkbAixvAv9DNwHv+e6QH8xqTtdd+c5O5wKukWnObgXUM7YPmBF4k9/TuZelgUvRHO8olYrv/EitTAG9Fr4fHnW+PEAyzJ8dLDGrGWEdTsZzf/dLUaagBvzKZLk/8eY2xgK/TzsJJf3JDaVwfiBFujO8NO6jvKp4Q6ko2CGzs+VETQ7KAvd8zEaqg0nLYqRDLpxZ7/7TnoYvAn6Sqt/9psyeflrOPRR+ChWs2Sdk9Xsqrp95yn6pF0PFVdIfrjARWFtetDyuwmWJEl8O9StgvBwy0Hv/NtdyV74YnY3we7bZfwnc3lQQRdGlSLOiOp+nBqyGDFA7oBdkefBiujz4ZLegO4ay5fIPvgw+gc56X/6NvH7UTiWpVVUiSi6O/Zw5tN0h7QNNhwVpOBwYgJIfA4frZXwJKdTaabuccxVfAv7FfC0wu+rTdpVifHw3qH4suiqPq7bf16Zg+oIdw5urg6wcmamMNa6Dbw25gFCg+mSBAzWAOdM7+47fm8WSmCjNJer+hItWh6syAo4dDmfz8ffKMjYfuQghvRhu+gH4OLpEV9v/rqk05V1vHoHC+RMWQCB/XJ9SvzVFalRdNpdYnzhwQe0FswV6itpWStJymF+dDL4B9T10065u1GmuAZ6I/ga3vcioIDXcjivBPnjkjF0NSBT01LuqrpcljTdH7EfV9bsgO+hr4b7usO1Nll5EFE4TR0cVj04rrJiQ/9SFJpVoBnZQzdNmvrJdXcapoBH8D9x7Ayegsss9xx++sMT6IFi6Brw9rnOmN4G4PIJK7c/GcCsfTogYj3U4OqKRc8N+ypLmNiSyoms1ZGfwDf9LY9u7DCmVzBvCV6IhwR4mt8kviRBXe7PuplxdLOpsFeB61quhQ+k/q0ebTQk8yBX6ILwBaqvl4u7k5EBe5C3wsbYX+Z4cK1/XJx9NRB1XfvharpStjWhPGcY+lCZOHT6Ay8x3ZC97FUd5J1Gka/Bpc4M7/rS4OImuCn37NC4+iJlhrvJxOrqRbsrfhI0+vf3xdRWAtdAu5aabYobLYdWQdro3P8xJjLyGvEj4S11wYICcfTv8qpnpcaq2g0PLBU1kW304XEwhNU2B4P211W6nkQbk8C4T/YD4Z/axT9GPoaRIRiri6SvBdP84iz+47YKroc/oT7DHwTfQsc9cF103+PbcgSOHfMPr/Q5j3Xf4WS1RUzTynzXaZp6eenaDlU0ZXwvIr1I5X2jmQSHI/O8VNbJse50ZVYwjfRzeGuIpdk2TIfMrLx/uypKZepnqq9/MldVXQYFsR9blHW+uhc8IFZs8SFY86Tyf+fXtBYx9dY4k4E4vXK6zcl0FVD9hZnZ1bROXAp+qc41svR++GDuF8JC6BXwEXYLyATSz8GJtBLPqY1N4Yr6W24NyzuplqXFbGCHdEtYGFxP9nHec5kPWyGvgb+OdNkTr+9L7n66uJgoPAVyt0R2T2HVNIk+BXuG8F/X7HdANZq+P5SdIMdCRmzz/Fu00ltq/uciOnv78tEi65QN6mScfa+ldQI7sD9CNgPPRS2XCQhonfWihTAYeiFsBjuXzRLCLXhT6TxWSnHvxpXUkd4TfP2nIDHvuQ1nIveCV/N/jHT45sXGTRl7Y7OsXfv59VdXwyYOwsUN6zKSaRb1t8KKpb+9/nDkosU34ZHWJM3sAL6azgsJi/t049LpGjMfiEcOJrLcy7Wmdjr23adE0qizdkVJe7jK6kD/K7XX0DwkQfZDVehK8HG73pHl8j6kBJ4CJ3jneWj2749DSSLhpZ9Fj2QRFstX1xmuiroUtgu9apsoP4ehhtuQp8C/ykUW6+Vv4sowb3oezj3Uth9g56tGVmXk6jm/hYPi7wKehqOb5vySFLIkajDauiH4KXTZviKyf37/w7WRuc4YAmToP7WmDFrO6a78kMSJeuenk11rKDmcF30s3Hz9HVJNvwMneMLJlXBQSOGRBu+g87xXezrzFvCHzc/mS6+OeSTdKyCHoP/e/NCcHS+N9GDl6CfgEUlT800b7Ajl2FJ9ARY5K/t5FXJmkydrkm0umEy5c1NlFdZV0Hr4flnxWM2WakRjnnQG2CvSmZrZZABuQePR+fY3KfB0einG8OfWrSI504yfZexf/jL13I6F1414/WI3Cp7Igt/RZeDO6I+m85Uv0ieprBuQOd4LfbH8dXZbe1Kpr6vefbKviinE+AV20zWPl5gR55MY22D/gx2Frz8KlbUhpzD/HV0E3gp9ufEyFbsl0yhkqOVqgbp5VQA7vm+rLh0lhcRhDehC8OjRqN+usmHyQZYBn09vG+dnI3/d0tGZsW1GXoeKbSLx1U12LqcMrBN5cZYoZBYcgoeRj/N6Y4Lxg1rGpNF8BP0pfD+Q5XP5rltJyIn1iWfvplCU9XTF67QKKficL6oZ/jpeRFkEhyKzgVvmdYhmcxtRfbCuegcT5n49YSfGQ9Z7jT+Sv/EVJoq7yvftuLfzw/fy5JqXbzCk0jBGegy8I713M9appkTOfgaOsdxNbPkH7dYM4diWuMsj6TSgtVnj4cOl1FNuDAp8qS/vA05xTG6AfzM/f7vFl8b0hPN2hud44W87PszG/Wjtb1S6a/6W3MdnpXRbHjFkM6RjC4jshNuQd8FS8qoV638MYUphyc0sJ3j5RdUle6InmBOiIefsWlNpT4SMhk1KWVUH76I+4awJ/oZOPh7X0+UqQFjBHuN6T05bt/dfrqQ/REVskHr0+iymMLN8y3LqBrcnL9OOGbCJZIBb0dPhzV2sO8/CAuic5yN91mTT+fP6aZR65gkX53DZdQW/nXKNVe2JIYEw07oIXDplCbH+RNdiQZ8Bl0TFiM3HUT+ff/mnn9SdPONNBpQ6CS2b0UZ5Xgj+s95rP3Qf8CuJnov7nv7kLewCzrHnzZXdA+YehB3i6fvJnFdpYntWq1bP1PqAbecn7GDz16SOQ2HoxvASYXR6/oqPcgaS9bt6Kvh4/bsvrLMAOmTuUqna8Uk9zRTyvFxl+3xotutiBI8DX03nLRm0/3JBzzJTpgPneOpC3lHPwl7EKcs7k2+QVdphcctde+rlDrCPOiRcAN6GNxvN0FZKvYiyYGfo3M8Cfu1S4Sur+65Sj3yGsevtqW0Cj42Yr24em0g+Q5HoXNce/zBoq4V5qQYdkcnMOf9li8zOoUF0qlvxte9MkcptYA3zAj9W7txPzkHe6GfhW/fCRke90CImdnOug6dY76Lii0x6wOY+Y9yw+5ZpFPTFeskw9dSKgAvQBeBbdBF4Ztz6pxJ2kWGY2t0Mbg0te162Sp3Jr781i6V2nR6cWuRRMeXUsqxR0tVkM+j86QZzkHnWGPLCY13iTbM5zLWfxi2D8PMhud/ZATCGa1S8S7r3+n0+bHJC18Xl1Id+OhKfiGLMDVyDG5H14X/M6rkKj5+huGhrHWOs50X/u9AqMqJ/9yYoca9BQu1MmjQuuJxq/VK6Wd4H+6XwefQKfzQYYa1mu4ppgf2QO+Fc1sSAoTrzJkHr4yCy25m0LtfrXpNx5fSWnjEWUtTZaM9mdLBuhudBx7B+1sxX4z+HJ6O901tc2he15dBC5o3BOo9LKHT4djAKPkBH1vS/oJ1GHoHbHnQ/LFKtCGzDPOl6Mth2z/64UuzwpksjbIWrl2ZVEJK8fB+8xKaC98OFGn/1CVDsmHJMf3z8ObwD+37SBS8GD0aFhK8U9VQ40muPeVufZucSX+G6Sxi+EtoDtzycuZJc38r5jb8C/0unNnjxfe63Ip4w8/RfeEFuL/eK5UrsTWTvvvuOLihg1AR2ExbdkpCnSH57cmaov+B29x5+avW6jPbMP8RfQf8p7NtcHxXFLnhuHnZY5lr9KHkdKV2D0Lz4QkzzCJLlU4yd+BG9LvwYlPJlOpEF6YCfoHOscVmUakOHV9moVWDzMToazTNNCnJfy2hC2BTvP8QXIOuDp9bPJhfsMCa2T+mq8HGfvW52mKhTNuibrOVj67RoulLfvqMFlOO74loW5hFxxOVxaynzWC7MrzBY5Pr+1J/UryQ9Ts+thfB0/QCzNK0DUhPWIdoo1gWnWH8U31mQjHl2K7e7qzmcj8yK5y1CDrHMlezlkSdiiTT4XXoHNsEck8Y2JtE+nheDNmFZdHDFS8yYxSLaT9cvmZC2dGLoYwnzIvuBc+zE720z/ICeceLXsl2jttlTxryvnNmzjwf/m9WfRbd+VczMW9WMTWBVx0tXCZ2fRd5D6egD8AKw0/8LnqfZebDv/6wfQF8XYvdF5tozq8ulk0FTwoUrikqotKwAu7LwcLoW+EruG8O70S3gpfOaN378Lo7c3Pjx40hEdm0trz1WbJBES2AZ185OMPoRBoJgNPQw+Aphldas3ZZMXtFWa+rYLsqrPrwcNDozVQm/Wnz6ruPsqlK0q1xbySK/v3+sh602y1AJiWSDc9YZ6KLw9tMY+9UWl1geGBvdI7fi3jO+hOSyWzM2vn+2qYcusm9L/pkRyGVgJ09e8KWfPUiUrAE+iaY37Vb8KiFDaMIS6Lvhmvq63Ls+MOZXpcbWQkJOdTv1BLRt36FdBBelyH1bJ9AAiPvypqgb4fzVEdHJj43YDTganRNuLu7jHfbEndmzZa5RK8th058zG+mcbSQisFGD620srg8mSeyrAub2P4cDuVPm8312555gnlz7HPcnyC16+Y0T3J6v7uJsGIulResufeFq5CawQPoybAO+lW4eNzRdMu/zkwjbI1eD8/cnnpow5QI5uCpwUXvc3PpkKXT+NDbBVQb9vRT5r61rLVYCm5Cl4ULcF9an/UUdI6NFvI5TuS7whhtaZuv+TGX8krHiO72KqAWsLnZ9JO9ZZZMiyzrUCm2v4Tnd86u5F4ayURjfhH2OVZUm796jUMME9ridpDr6HW68tz9k/zSBTQcVkZPgzehZ8D29Q80rZfHMXdgBp1jR/fRLf0K6UyD1drAO1XXqU5ya/jr7vu0Ht6P+xOtWbujT4ajcV8L85PRNeH2fu2/yR8CGJ1tcravJufRiMuzJN/cvU+PwR+s63W9swKYBrgPvR62uWA2PcfDh1zfynomej7sK6pgvqAk9t/3S10m0DaP7pi679GnM/fpdnjOxeFF+QqWjBKshK4CyyRVG5zfFU5EYXF0cbjf84iq/ZtkYnDfeTLTk0ctLvie+7XwPjWD92RdD/a0CiZzYGH0BfC+OZ35vONciVoBay4HtqvD5/C+/wEX+S+aAQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAANwIAAAAAAAA=eF7t0d1Lk3EYxvGrHZQzikyrYSlhVPbCGFQQJpcaJlQbjCxJspZtWYohNZ0iq82MEFksX5KVGyomCiFErxLCLEEq7CAhMrIX8jBC82CoCHXf0j8R+JxcPPDj9zx8vukRe3t/pikKrHXeHdpA+J9GvXfMxJB7VX3CAQLrEn+cziU64+6vNFiJzZUXcy3HiNueS0eeFRDf56LFwVPEePPCr6KzxEBa/ZdkJzEd2ZhjKJH7UlzBpFIiztM7lV9O2E0DGcMVhNXy4c+jy4Tp8ddDnW7CNRaYf1BFlIfTkj5VEw9/71jYWSvnXsyHerxyT+zdSZuPiPfmdCTWEW/XbKkJXydSu9JduTeIkPNwdPtN4prVUHqugTB7bOOBRmIw4ZtxMkB4R2c+VgSJSe/qsU1NxER7yZvuZvnfsrpCR6t8/1Wfw9pGZLz8PFwQIoL7jf1t94hYbXxKcoT4+X5fbLqD/jyfZ8LXRdhc4YY93WzunplqbVmfZV50jBPHBHFcIW7PxTFVtlIcdxHZ6rhX/IzimCmebnE8KFstjnniqY5HiVl1tP9zzJd3dRTnGnUsJF5XiWMR0aeODmK3OhYTFnUU9+PqeJ4IqOMFIqyOZeKujuI/qI7ib1BH8R9VxyvENnWsJBrV0UOcUcca8VdH6TCujtKhRB2lw7Kr4igdRtRROjxRR+ngVkfpsFUdpUOvOkqHOXW8Jd3UMUh/tjo20X9CHVs4sui4PAuLz6xvaZd2af/f/Qsz57JiAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAA1AkAAAAAAAA=eF411Xk8ldkfwPFTdNEURioSLbhEisiSeziW0CqusWTpEpGMKCGRxzQjlGyhZRil0EobaTw9p0mTQkPTOj8XiciSLctE9evxnLn/vV/nc7/nPM89r9ctlo2Y2LvkvGXrO9T0Y30AanLX7QyyeMUAi52/KR8WM+UL0oRf27oZMOsJn0oSMxKTP/h/+PsjA1zkfO2PiBnRRn8He5NJBvCKT59NEzPT0d2Ln+unYSCIy3+RLWbUZjCp9gkzMKhxnzTKFzMRURpVT1bLYDAv8ZjyBTHzJIs/0NszCwPelQdd5WLG7qPbcUlneQw+1QXK1oiZmHUpaONKBQzKo49NNomZokd7I+VkFTFIl3iiMypmLk7r6cv9MBcDBe3ouYrNjEnjQn+TxvkYtHsPCkyambYVi17blyt/269QQVPUzDzcFVytm6+CgeJfmS5pzUy0aibanKyKwXW3vS4Pmpm6K+4r1KMXYZAsDCmd3sKUKR4szrq1GIO3DcJB+xZm7cnLOmHXlnyzXGxRdgvjHJcX+aF0KQYFDRKevS2Mr7Dfc+s1dQzOp8ls4rcyvY46apLlGpiq0IyP9GxlFrR99Ud3NTEQPVHvy25lUhpjNIMe8zEVkmE+9LyVGfa4mfDqHy1MLbUcvKfyhqkd3eI41K+NqYzu0+mBbxj5ctEZ5Zk63/Z/Vp5T+YY511/aUL5MF1NNHSazFNqYiKZPoasdl2Mqebf6wvA2ptjv0AOJA3qYMpc71PWijYmsvOeQeWUFplxsJpJs3jL2XQ97nDtXYrBJ5hqv4i3DbwiU8Tquj6l/RxZ4GrQz13+xb1M2M8Bg39DP4dfbGb7HyiCVNgNMOcQZLVrTwZzlLTqUm7YKg5fT/FVqOhh9s89lf1gZYnDp2Z5Jz3eMhNHIaP24IaaMEu2NRt4xe0IsccdNI0ztX6clldXJDNf97KYXqYm1VvzqmKK/BQP24ygH0y3nbb2fKGamfHOwSumqox3/cB/nn1To8eIAn4wkYt48+oTd+RHPI8Rh/QJRebfknTRieTMYdKcwayCbMzVjI3SYsd/NKZ+sU0OCLhBvZXqBWCQHxz+teC5T8d+6CjwhqfreoIb4qRPdKnWiaKmY2FQVon0V14SjxIm2cMAqN8RK8QNnBz+6YVRjU4gJ8REvWvsvV0t3EXHZZqg/Z1T2aBrxhAMtLfvoWfoDzrjWly5RXbp9cHo/d35nfxr9/eiKmQNxrJAOCmzXHs0m/s0HinZKLLjRyxk0B8CLPf3dcfwBztgD1oGVQ5c9iS/vprUzq6fp5BB3+tGvdodSxi84ozlR0DU6mJFdOMitK2yAEQWR1p2BnCmlYFrhQGj1eCVZt4X0wYHbUQcUhsjvZ0wr7am8dCqcOGkjzd+R+Uf0S2I8UfXM8kaNnu0wZzReFRwRt/V+BfF8Z3j1Rlm84aqPnHdug8eqt64KvkF8aQtMTFOOheYjnEG1oK4pOyHgEXGdNd02s6piv/co51oR3dZrIewb5Uwd3k+r/eWjwsse4543IoF218zSW9LRSebVCrQ+n/rtY/c+dF/fVX3m6FMGQfZ+frac+r7fSkhNuW/KwG5UAHz2NW/T5CFl+tYd5YRhhq+RvCr5MNeDP7XogimTXrpdQGledwnn89C94omx8qXTsJ2edcrJZNIrLaDBctakl5eCYLevaoo2D6VJFz069Ys0/sdL2lctlfR31WGBN2vShwEIRoFPoy4PqWlH2Zx5L4fzZetLfsgkfcxq2CrHmvRgHgQhkr0x+jzk/XtjztniOXjH9piDR06SvtwUgilzPfVFn6Zq/JSqjXkoeSxv0RHP+TipKEp/fiHpny2Giy+wJvP9zWngJBYPWvDQmAbTIJZXwec8E509SkmvYUBTXqxJr25BA/p+oeM6HjJ2reVNPFTDopyXbnfukv6mAy3KY831ONKVps4uc1zhykNet8IDS9AS3BvjF3OhkfSTP9CiMNZkfosdTf3v35/eBvBQw3r46oqaOj6WW//0dBfpHaxpkMmaPG+fDQ1Kjb/URPPQSHruVeEXDdxgdCb9O8kvXN+qBQscWX/g3LkGUstSZQVpPBT6AJzvbOFj58WpDlEapPcyogsga66nRrZCEFAvn3eBh+J9lE4x97VxHV3l5Lue9L87w4J81mS+vDekfrz6aXMND3VMK3xkdlEHJ7UNLHeMJL3SNiiSHPxmMr9+B6TCrbvLe3gIpBROVmUtx0HCiYGaEtKLVtHYjjXXY4toCF4NVZgrSiEVs3tlt6kV+G5hzm33NtJ3IRrTrEk/dx/EirOT1lpLId2eA6efmupjo7ors1PUv3L750TT2I91P2dlF4gEz91hpBRyulrcnmBogJMKOza9D+F6UGIOgT9r0t/xpdGG1uSjZVIoryJlQ6n+Kuzc2CYhwZD5a2KhqJA114MFayCKkPP4dVAKybhv335O3xAb6CicMJgN0NT6Ex8aLGM9MNUjQSxNlcx3em4mjVbGI+NSQyNsFVgPH1uSfkcALItjzfUgWB8Cy9pz+cnferrSbOma1di2Jb0oLYr0x3fTizNYcz2uDoD4+Jlw7zfSyO4DX+Bia4yPR497Vd/keur9QRrHsCbn4YfROEDx7V4rGaRqNXddgbMJRiNvC0vGyHx9Q1jymTXXF3yNoLHv6kTBRRmUFerpFRBginNqBv6JQNO4+dl74Xgh60Hu/PGeEG0aM+YtnImkH5p3z4gzw7o2kxc80rgexHpA/VTWXE/Fh0C0a48eP3cm+rG3WLvr5Bpcvqm1Obed9KI5dLQ3azL/+4MQiQ/+PaDyHdIJbpwVWWWOK2CG/DY0neuvRcGytayHuP7WLojn/L62+OJ3qLJZ8+eFHQIclvbG7sVZ0t8Ngqa/sia9nxXEO/Ns4mxmoQMuoX3rFS2wmdDGQmWWBNfLC2ltS9bD3PmfBkOqtXpO7rtZ6GGpZ+ye9ZYYq6oLUSzpw0zo27qsuR6ssoVILdJL4vhslGBqdnW6LcKPM1762g2TPiQUJqWyHv7vvtLU0XfhlRtkkeben97ceYfw8ubkvMXhklx/NASK6lh/JPd1FwTOgrOnZ8uhV5cOpp5KtcI9tO7DGyOkX+wCwx6z5npQ8O2+OX703vVaDjFyPR6vTa3xCwcpg4fUDK5vCoRBm1mPcP2ACi3anl3i4yaPhIfy/73cZY3DijSeSijwyPmd6KQk1qNcH7cFioZ5p2P+lEeX1T7rOeTZYJ08YV5/CekD9kHtXay5Hi+nYIGft1WB2fdIK3te6WtXWxztpiPTYyvF9X8chq+CWY9N9fKqGbA18aiTbdn36M5LqjZl7lqc7s/+35IeHINUJOsx8v4PQU1cm91zZhv+P63wDnQ=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAfgUAAAAAAAA=eF5t1ms4VAkcx/FpMeWSSlFRRFTr0k4rzXCEVRiXREhPE9lI8XRV86h2y0R4FGVr2UI39KRGbptFh8YltpnSZisskuQaM2FzXat94cx/nvnb8+7zYl7N9/z+h0b7/6fMZyC9/eK1x1Kvsc87RvctBxdl326bKnoFFirvNTys1w5+dsiLH9bWD/bxz+aL5g2DoyRux4WSSbD6k4GWBrqCQGqD4tovFzbMAduvtv3URlcHNyUllRhZa4DdF/4o4Vdrgtllpb7bby0Fm5y9mRPzfDm4eijG0ddIHxwZxTqclbASrBF5jX9WbxX4pOpvY8zmNWARK22DSYUJ2DP3Ym9N3Vrwcmbe6Qr6OjDHaZZN2KNvwRMPNRm259aDC56H6J4M2gA25M6OOMFhgYfI8KfXQ6zAQsvUUs9L1mDv+JwSpVobsOqqBKWUn+zAsUcFixjC78AqFfnhF+ZuAuuFcwJG/TeDU4wb/6gqcwA/8a9LdjB2Alu3j7rVZ7LBx+pdrF6buYDr2zpM06tdwd25kZZ3D2yR/R87uUHuK7eCHylztRS4HmD8GDnL9+hpK9+j6335HjPmyPfofVC+x+t+8j2+EMv3KKiS7/FdkXyPdNRjCeqRhXq0Rj2aoh4rUI8/oB4VUY/7UY/FqEcb1KMW6tEX9TiCenyAetRFPUpQj9Wox62oRzrqMQb1qIZ61Ec9XkU9VqEebVGP4ajHBtTjR9TjOtRjGdWjtwLrZp9lD0lDj9Au7r5VejD0oqI57Rc22h4d84bIEA/5Xr322E/Q1fLByX7TjvlVIlgfMUAWoJ71G/jL/80UgUNeTVtRO3iWqKWL1ObL957HaAlYsqsZPGk27TlnJNFN8V3EArTPcSPBDCajGxw0THlCwHaOLycvoP3WlXBUda4Ogg+IKY9krnF89BepjfY98vCCxz4NY2DRoWknMrW650/WkhvR/jMWRSTq8Gmy/2vhtANGJhQeJL4k36L3sSeon5t5XgmcKnWWX2BjxRWiCb2vn+a6iVJVVMGFUlf5Z2x6/YpQRO+zTkFnVWHSfPBkPuXLrjvb654TAvS+iz2f/S0cWQj+k3Jba/F6C5UuwgrtwdeaWVP1WYvBSyn313NaCzP6CDu0FzvyXS2Y2TrgbZR5WvGBq/XLCQbaE270G+X7tBUzzIszEh4fF5M1aG+61QfqvbwNwC2UefMEycHFw+RptEcZZps1dtcZgtOkDtWLpXm1kyporwruRl/SObFa9nvK5dsEeqaavSQX7ZmiaNWdD2xj8Jhw2rxK/aL87Z/ICrR36jn64mWbzcDjDygPhigmNNcQLmgP09lro5ZZMGT9UA74bCn6J/A9oYP28mHuO+PmtzLnUOYNn6q9ntRF7EB7mlY3vicxzRycTLntnrZpdkoHOY72dmS+p33cUYuZ7p5Ss06pJfEefwzv8dP2Y85w3tHh4vdjveQKtNdbXBcY3NptOcNt7a4ZrDuDpBjt+WwnJ4OIkwRYgXKeyxhnyZIh8inae/+XiwMN+RvBHKk1dm3/PjGW8ED3oNP+Xp7SsC24iTLPZkvQOu7vhDK6F3cqG4demsjuxW3KvNDsjIR3zQT+vpGEjl0uD7EHD0mdpcm0aygmVdG9id3nEZPyUOY4ykdipvbfqOsk8ffRY8c3e7PVHGY4/saHaPPEfjIV3asr430p7DBH8M+UAxp1KyWDr4lKdM8Kg0M5NZ0y51LmtVYGXhIMkvje+ZSwUs/ucwb7UmYkepw52DpKhqF7eF5P3Nc0KnMC5TxRBN3PiVaKv9++OefLZv7iBjanzAubPGXqTivF33fvWUeEXxzcwT1SO5v3Ph1/S6xF9zZ2ccctj69k338xUht8dtunRC8tpe7xf12D2zU=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAJxEAAAAAAAA=eF49mHlcTfkbx4sisrRp0aJ935frnu63/bartGhTSQhJpKyRKyaE7GkqO8kMMhHdeqrLKPtuGkwGIQ0pEcqSn9d9Hr/++7zep+/r3HPPfT+LttyQtakB7qzkgPp+3vWn7jLSP02x6GJhk1x0hUB0Q3/6o+1+TOnVmatl6XKNyDv4U9vaFRuemEBq8qtu2b1CJg4JtiktV0fuqcCVhzw/KpsbDqJ9jau+bmdMuLDm4MsNBsRVuGs9FaqF/0TCGt00M2V7BrmaWh/9msyQB2iIr4FpyyyvcFje110yuVKNyTx61njluw3yW6/5O/TGtumcdWDntWY+mKNmz3TyPGJ6dB2RJ3/h51kucsgpdIDTbXO3FNQbMmPzR2UKbi7I9z3lp63l34mbI4DeU/3C+6eNWaec0aVFiXy6vy98yaGtzTluE6FX2WV5aFVH3coDfbu3rRQgf3KZz+welr62mgpNWbyNUZfNYW395uaGg+70fGTFBX+8yKtdmADugnlLbAYbgsL3Wy4uLzyR63fwI9I/rDGsmAQ71F+uOr9RAO31bk8VlnnT51MSG6slHav3D4aI1P7fwv28QLhW0XuvkpDO1xUX3dU7M+6qN0TozGOZFmrQW5JhKTzqi7xmkHhE7EWzzBJr1rXw7LeOOm+m1JVfGCT0Ry4y4IK+BvVLvjqz5LsZTGQazE6WuBwd0RaAXGLDSdyfavkOF8Ia4csKyUseS316VKszL4j4KO5t0D7juIEQyDCrNFsc78H0ddf3h5tNQG6vydUU2GkkZNjBBq2FKnZFPmzn7qTXJ26GIJez4GpW/9ZstZgDNneN7/xtOpBbfUE/Z3kY8kXDxM0tAz22e4WwKPMSfAYXeJZUa6W9ayLy+9pi14ZCeYVOb+iseuApL2Dwp/3o9lMLwpH3WYj7uodt0/rkA/5RBuNjznFsS2yzUlh4BPIoU25EovCK/EF7mDRx3LoZIkNmGKS9e7xTJD3f1hrRmNlhHsUeoDTzV9VNAk+27e9XMqAZhVzBhDu2xrekodkRiv7Ru5Y/yo8Nvht1y2bQJOQdDty7fcF3Q7SmQ0zixwV6e/xY7VF+/NNu4jtcOIfOtSLBAmcoUXv/+9LsR3WeRU/zbduika/7UvPZLe3Ga7vpoF+YXL8iQhf25m7/MO9BDPHB4i1rL8GCR86s4Hxwfs0cB3jstmbzoJZY5GWG4sOHBx8oKImEJ8r/CJVGjmahHkeUfe/H0ed7xpet+ddOp30CjDJ3HzzET8ACz3nn7HoSj3yLOVepqxXS0RgKJj4nnPQferEjz99axndPpufvxG09de3h9XUWcKiwfEGarSUoP1lt/0YuEfkFS/Eyry8RXVvjQavoFMuy82MbWO7OSoMk+n+OO318+e0Bp4nM8fTzRwotIeyBfFfrN98p9P4wblTTkvR03gJIqh8X4BwXxfp285kml0z378elrHyn0bBvBtPZXPfr2alRLKVRWybkLnFJICcs3nWz8I4t2zlSslUXHME+8OHh85lTkYeNFxeEW83KZ4ks3tJB/1z+ZLYnCzqK1FKQK0Vx0HfSVv1SMlihH8HyBPrRmrKMJPNvp2NqdbnoR7B5gX5cTln3rF7jjGvOMB39CGkT0I9TKJt2Dfv7zC8WLAf9CEez0I/ZlEckJ5hNtnKAjehHVqOFfsyinHIo4eboF+NhB/oRZFrRjwsom1au7it5nwz16EfoXIV+rKRc2tf/umhpPNSgHyGK/LifcuuF1EBjh6iffoR4efTjA8r+n6bF3tNgoKEi9aOgkfwoS/nanMRRxVwIa0A/Mnfy4w7KG2t6+elqfswT/cisyI/GlPMarY4nGlmyEvQj029AP8ZR/uWD+vpeeVM2Ef3I8smPFpQTVoyZ1uo/GPTRj8y0FP34UBuz3jnrvSr7HaET/Qgn3qAfGyi/VP639TS4wWT0I8wjP6pQLtHL7vnV0gly0Y/w1xP0oyvl5mcublbzXCAd/Qgq5EclymZXSjS7WyNhI/oRysrQjyGUR75ITT89cRJkoh+ZhPzYno45PSwutv73aFiKfmTryY8WlM8ox/6oABPhLfqRSciPcynL3G4rFL2zZ0noR/iX/NgbiTk89S/FiFA/SEU/QgD5UY1ysOFog/QN9jAG/Qjl5MemVMzPM3a8zs70h2L0I1y4g350pOxw9pzrQxUeJKAfwZz82JWAOedIXdqUeid2RUvqR8EE8mOsOubdba0plxKMYCz6kfmtRD+u24R5r5XOm+QaHitDP7JYd/SjI+W3277eGl7F2EP0I0wjP2ZTPvbstWqvRjxTRz/CEvLjfDPMK1/mv+lqimAK6EcQkR9PemM+v+X5X42zpsJc9CMzf4x+vLcJ8/2FNy5NvhTNNNGPcIv8WLIT89ZHVWntx2KZA/oR1gxBP647hZm/0j/zt4wsloB+BNc96Md7gNkwozDovsEE0EY/QlkD+rG4ELPCxMgZkumJDNCP7GgA+nEs5SS/3v+qVX0gC/0I4dnox/MWmCcFijQ8bqQw9LGNmB1BP/KlfrSF5oqVX8xrdSG843akQqs3c5hzLLj0XXcDXj+cmxh+9mvfc2XwRQ7Zk5EHUFbZGlkQsM4QpJeLxonD2tGvv0j9yoOzySFvTm12hGW75H+b96svm9BkeiQ7Q4nqQx//iofvkRE8X0hHDmf+RD6N8tw5R0QFemPwfImGOJf8PFvqZ2cwyzgv2xbPhwTNGZqibC+m9uiTvstjHTp/EKc1pbgu/2wEhCGHwofI/SmLxh+zmtt0ow6vl+NKs9HveVK/WwMkaciNnuwBovrknS2fLwmKRY7euyqM6fx3NZc37IrNL4iCfRIpr2skfguvr7tvWvXpH3lXvP9LclwX1YfV0vpgzbYUfoku4YQwf9wJT1c5M/jla+TtdW2WeL5nd03Ag+Jk/1gXmImcwRfkYZRjXc3WHt4WgeffkhX3UX3BflwOkrQvbVi9NBxeaBhJvD1NWPz+ITGvC+3p/j/yd8yEjs/eY1grcvjJr/zMKsrn5HIS6fv9VlNH9alBWp/04VVUVv9q1xAwVdxj4JBlwUSztn5YftyJzh/gqw1eH9pa7QpqyOEn/zQc81sWnNmvHYPny3yo+WqG9a1WWt9U4FDFJIfhEcGQcPVUmoPYiCmK3h/3uM77//nVKXOuy/YEQBRy4BMXULZr4sXlrArB85Ob+FtofngvrY9qMDB/tr7rVX+4n8JLPGWhyqIvTDyxpouj59/FPzX06kKHrHhoQQ6lxIFybkWXaqKmKf6+NN/yM6i+Gkvr631BRWkp78saL3h2oT9radRYqLAaf7xC2e3n+1/zcYPbpMWByXAPOTtN/CTlQXlvivYbBeH5oo98mQasz7XS+qzJGsy2pU7V9YT8vyMGeaWagIrijcACbZpffsw3W4ybmrevj4fFyNkQ4lGUDcOc7vwZwuH5P+ZBHarvXtL6rsIq69/VzYj1Av340Xut/R2BlyVS2FvpheeL1MRhcSuvQlAkqCNn2cTfxWF2ntWdHNnkQP5R5ZSoP9gi7Q+s2FWzlwPjhjrDwZ7O11UjPKAz3GdUlK8P3b+B+MbGOsWjmX5QhJyNjUAeTbnzgMGEaV2adP5obhb1F6HS/sKB1S43WvUX5wwPA9feWXnVCZbcnVvV0/pzPlMXJ19UWa8y0FJ3FTn7g3gF5cq38TrlQh75R16sSf3JUGm/Isd6dSrzil0dIX2bRUstz57JfjSLvbjI7+f5nHySXFrLCnuWiByaPiD3pLzw27qE6/Mt6P03EQ+n+Q/7HUdI3hDk0SoSQJWx6m7nHj8Wf6S7yEqV5j+RFZef9Zte1nRH2I8cnIlPp6xfsVQ79ro/na8hDqf+KEraHwkgVdTu++2ELdx1zQywD/FhWT2XJy+vCqT7N+UWPQ/TinjgCVeQgyvxrZQLT06eXdajTH4YLg6m+XOZtL8yBX0tn4+hOxgMuAR3aBsImEKS7uBxk4J/fr/c/q6VvOuKzvAWObxORH6A8pOyRXN3dIXR+YriKzrYn6VI+zM70Lf0Pqi2XAjl0aaR1fu9mGPTtzTRF5pvRebcOG0Pw1GpQbAHOfzk6ZS1iEuvT35ak0Xz72ppf+cEG/1vBVQf8oRnGy4MezrYns3av+SbWnko3b8aV708rDTQMgAeIgd34icpGyr/eSZnGPnN8z1fRP2hvbRfHMFa21Vn33H0hOaNFjeKnlrD9lrNuGOWND/LjBFPM8+/t0zBG8TI2QniSZS3TikeOzw6kJ7PaK6G+ssMaX9pws60zKze+tkTnFVuD3z/woecA5arX8rR/C0yEhs2Tt9cFj0eDJGz1cQvKGNuLLqw6VGfN70/z2tMHLA/vSztT61Z0szHavce+UDl+/Mh86+/r7MPuJYt20bny0hqwlxdj3z8Zg4HkAuciV+hvG7DucdaYwX0/JXEStTf+kr7XQtQaV9hHa3vBsG5xd8uiByY1puAMJ/ztB+Q0eVkEiQzbGo9wQc56BL/ugLzWlnlGeP6+OgHyUhxCPXHcdL+WAVSV43S6jrjATaC/QvL/3Fmm3aYN/cfpv2CyIRzn9ae90pbD/SRQxzxy66Yk5U6LzYuCCQ/G4hXUH8tJ+237eFjZ2PV84ogiDZo7R5m4sN0LqT8m72J9hMiR26R6uPpj70jYAJyUCP+VR/zpy2QlmVrQ34zEHdRf14g7c95sCdwzaUzxT/6k7KCvRHRfmzZq5T1Q5fS/kLGmdNKtvUSdIZAJnKYT3wo5TEtK5o9rwjo/hXFPtTfB0j7fR5sHGU8f0inLTgs3rPSZRqPTeHOtQ2dTfuP+cbc2aD4y+7a48ECOUQQlyzC3Lj99tt685+/LxnuO80HctL54Lrg94sm7y5228LvjeNimyxGQ+MKF9ubibQ/kciKBwLGDN+1xAKKkbONxLsbMJdLjoYK+4X0fvbzM2j/MkI6b4xkkXuFFVGf/EGp/eCHGIk5VL94YyeOof2LzFhxiFGYU1V2IIxBzoa0I9/xAnMAcbz+Pf8B7W9ypfOJAXtw9PvQHFs7KJYkf7FW0wY9XletUQztb3748OCWPlHb8UjWgJx5Ex9B+WnVtYXlkgB8/vvkxQU03/RK55vvdcU5Gbypy01YWMEDxQozO/Yv522TkUD7H4khp4P1BbyRAxAvXY85FOsLvT8q4hk0H72XzkdWcDxwgWSvGceMY0JcjFZ4MIl8Q3XfTNofyThxto3bIr56WjN15LCC+JxozAPWhwYPmPjh83mixuXRfCUvnbcc4PeS7pjaURYw4D7MVnG3KRurumSD0bIEOl+TY2EWQ3k/PEkcLIkvoGzuclrtgLMv9Seq3GfaX4VK57Wx7KF6dmJ6hxq4v1D1/MPfjlX7DhKEbqf9lowRl1szZ5mnjAMIkEMbceFzzNkvMktN65KpvhuIJ9J8N0I67/Fg/L728J1/ODGeyYSRDYOCWI9qTkHLKdqPiTy4zpFHc8cUjgdj5KCphrzAGPPVSb2xjvO86P7NxDdpf6YnnRfdwGXth2GPuj3ZecX1k3UOhLPKmwq96q20X5Px51ZrDIRO9RDCWeSwkXgA5cpxi3P/up9Mv18jcS3t3/yk86YQYjJnD372qzcTlr95uzAxilWoW+Y65tP+zTOYm1/tlndycxjwkcNF4mcOY54zP3Ta6mEJ7Of31Unz6RDpvCqEpMoRCREpQpansSsteYYHay5fdnytIe3vbjlyKXNKRt6cFMlKkMNN4mXqmJUP9agM8ZtFz6ev5jTt/xZJ51tDdkWhebr6Jhdma3auTvy3H1Nw23zP5s+p/3/+L87kecU6hrAI5PAfQ77MFLOCXcfQI//NoPor5BRofxgjnZeDoa6xyWdTvyL8DzFerIc=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA4QEAAAAAAAA=eF7t0NtLUwEcB/CDwvRBlhPFojDQSS9plg9loYWFu3AmA68o4R6ESEklQra5Lt7awBk2Ryg2Nd1Rt6WuHdPImt8i0z1IL84JXl60FiibD5UIiT34ezr/QbDPn/BhmGOfkv8OV7ZrMCu7Khlsb0CeauWW3KeF6rTNmmh8gpZdn+Wesw3KpLmNmG8msJqibOVvM0KcVeZ/1oXaOhFXZrfgZUgRr521Qvf+aXfH8guI0hyBvXAPFntOWOLFfWjaNIVuX7Bh6+DwT2nxAB7tMA8/ewcRPT+l9fpfwT939Ks+PIQ23jWdEWeHvKhqv/g8h8vqlH6FegTjEpm+UTuKRN/jZhU3hlNWRiIPOCAV2S8FxS7YH2SZefY1pMrO6tzn4/DYzPqUjQk4csQ+w0k3vrde03z86sb89dafLt0bpLN3yscuemA641xKDntQGMgOVnt4VIyey2MMU6i72WXQsG+h31b1R0mnYVvi82uiZzBZcpCVujODNTaz98PaO1Ajs0CPXnq8QY+FgscCelQLHu/SY6/gMZYev9Cjjh5/0GMLPYrocZUejfSooMcr9OimxyR6TKDHs/TI0WMaPfL06KTHID0uCB6N9Kimxyp6vE+POnrsEzyuCx4jIiL+X/8AtE5X5Q==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAvwMAAAAAAAA=eF5d1GtM02cUx/FOZ60LQRkoLjPMKGZZVER0EzGWosilabEJFY2KVKwbY0qJY1i6OhEQEHHjUrnMFgFbLkWg0EqrYjluCjQLW1hWcHhZJh0lKSnLBjgSjXvh71+SPm8+77/nnIfFevPuB768ceSihO7GRvjVX8wkrnAkOs4mJ+H7GlVAUS7lTdkqTusLiL+y7+nSX4pJIEncxp8tJbdOFWv/toy+yGDrDmorSO2OXyG/q6KcO4WVl3+rIvb61tG/p2tosGZ5xQrfa/T1s2J38hYNjc+/mksSX6dvXKxzP1jrafFDk9xqbyB73+sZ2XQjFRjbejb7aCkuMeWFeJOOdoiC6uJFTdTuF6vIljdTgO38BaGuhd5TsfziRlspmK0Nc/q2kTYrtNQouEnB/CvS3eXt1K0pVQQ97aDWnb425WoD/ZW/S3Kv30API/Mn23K6aIPgs0MtW7upeI1+KHC6mxJGtzml3UY63Pwhl6U0UcbeMqVEcIsUDmHdouAe0gwZ96QvNlPngfnQdS4zPRaE1PY+thAysgbQ0YqOPHRM8OoYg44ir46fo2OtV0cOOj5Axxx0nEDHPHRko+MjdCxCx3h0DEdHAzquRMd30fEDdNSh43p0NKKjHh2d6Djg1bEIHUXomIKOZ9AxBx2veXV84tXxzT6KaAA+QFd1Yvi4cDCNGmEvOiv5nI1ZzVl0Hkai+1QUx2xxKckNmTlM5hv979fkeWTmMpEbbbnTW0gOGIc5/RRxifPR8xKPCZhbQBL3uGLZd7QKMnPcVCLMrqot95iOuRaEtIw5OyvpAvwecy4RTw6/NXiVLkFm7uSu/pj7vNrjUuyBM/mJifW6liZgP/aicZeAZw5SUx1UYE+2nPrxzFhUHYVCB/YmfCbyZfb2eoqAudgj3qMxBY/fQNHwbezVqT1jn1SnNpIMjmDPbt62238+d4MMsBB792n+koNRai2lQeaeadjK329dkNnLfwxhPhJHE83ADuyp5PT4qz99WygVMvdfFcKz8bmtpIKrsMdBwl8bAr/U02q4Dnst3Z2eMtTeRqmQ+S+kfxyT/+dekPk/XP+WTm/e0eGR+U/yisVsn6JOKoDMXQw80wZoZAYahBO4E/vxFO32tV00CvtxN7P7vlqrt3fRHGTuKMnE8ZeULcj8T675jMNWkZGm4H7cmbivvSIs0ESH4FHcnXT2SHKow0RpMBN3OOMvu7LVcovmIPO/+fyem9lT2UPvQDXutKl8ZGfMWTPpIHO3+4b9T8pOWCgGMnf8P+DuZCg=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAlgMAAAAAAAA=eF6FlGtIlGkYhpOik7XWQIRbaaaWTjrrtlF56smwBmKzj8yx3Em0Qqh2WonRIktbG38UlTplisnaETpYdEA7LlmY0Wprq01oWNZ28EDjM42pNdbYE9z2Y0D6df2Yb3jf77rv+/Ms9Wru72eayfnBDqHXEZ35uXDrssKms0LDAn2F7uvvKp/qZifTtkc7ZoYJQyIcCRs/M62bYXX8/olJVaDUhvcx9UREFD36yJRT+b/37A9MjpfPx8b3MNmj/NtC3zMdXN3t1vSOKX7KFUMIM1XkzesMf8vU8jS0taeNSX3Jban+NZO74a455QVTY05ZocdTec4xy6w0MilRpz/6NDC9W7fbkPGAKbtGKY69J/czmSYdqWQKiijRx11jqq4/np5ykenPN17OqlNMOntMU1IpU71q7diAAqbAbVNzhu9hulN0+OHrHUw3reaWslQmP33reVrDFB3n2565XM7bX5mtjWJqGBKp3axh+nlUoa7Bk+kv2rQvdKi8lzPIaujoJG94DHbxmO7iUQ2P6YN4HOfi0eTi0ebiUQeP5fD4zMXjmO94tMGjCR7V8BgMj/fgcecgHtXweBseb8Cj7yAe6+ExxMWjFR6nwGPsdt8Op1AB1fBaHTQs0SasAifDc2S86v19YRhohPesoFclOcLt4AbkMNl4/4CX0BOcgVzW1PdW5gkTwTTkdHZCvrFRcjoFapCb1ccx3y65dYDJyLHiQZ/lieR4GRyPXD8kaIfkOpi6wG7kvOvAWpO7cOcAkbsz4w/Ppb1MfWAvenC0uG6l0i3+wE70wh4TcmF8l9wLNKMnjstpsftscj4Yh96o2pdoblmZPMBL6FGucZzlWAfTXrAZvfJPthl/aWWaBk5Hz+xzXtzZ+FLOBUejd6YNSe2LWmSH4GP08NPEM8YbT+Q+YDl6WRv7U+Rdi/QOjEFP46KHK789ZFoBWtHb/8pHWIz/MP0LZqHH17qi7SOqJAdwoNeBuzPPjfqbKQAMRM+znZtrDOXyf3Dg+9GU0nhy+jm5N5iJHaTGLPrsd0J2Da7ALhKUkTXxxUwrwTrspMDi616WK7sFA7Abden+rDEm6R94CzsKv77YkLyFaR54Fbvy8E5U8tbLrsGp2Jnm9I+7MhLkOwguxO7m/qpvdlvCNBtchh3q96ZGO+cyrQLrsMtDtVlhWj/pDajBTre05WvP/yC7Akuw28w0XVJ/T+c3tmHHXwAK54CcAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAApQ8AAAAAAAA=eF512Hk0lfv3wPEIpUFEUikZkwqllOFppDIW4UbKkE5kPuZjyJB5nq55nko0ukg+bCJkvPeWJJUbyVB0G6XU96717PPHr7V+f77W9t9Z3p+9nzADsWeG4Qr7ayT5Vb21+kBOn/b+nCbCHftK3XO50sc9woYgvsImYCNnHwjz0a54NRV9z+Is8bttWv6NzwY0/y0wSfbohQ60cIGr5JJvcaT+PGdVmaAz2O1O8Z8c64Fp9H213o0tqYlkTWFgwsAyDwgOHnyodbIHFqCri/RUauLjSPqmes3hBBbcyBU4/kdHN2SgBweNLeUtnakzi9JmZJYGgsORb4nb1brhHHq8U2dgt4gzETZf4/agJxgO/7mIu6WiC9guNVH+l+uoNxm+JZCbkxwKJ+3bZpgbumAMrf7+Q+2pezGEQ3TvkbemEbD+9akwzYRO4ETLLY95X2aXS4aTzLv4JaJBXij+6yHOTniCvtC7Qm9CKYMEJ+rmXngTC3OvPoV4uT8AFvqUVnZQ4bZk0p5ferrKPAGsjzI8Jsc6oJltv20ifrIRRJ5RGdPckgjHX8yoXzbtACn04JQXM6Q4kMgP8XAUySfDmS/erqSrHeTQPnmxxx2M7CjVrW6KeZkpoJW+6snu/e1wAC0wdUPoeSqT4rumwbmI93dI3SHtLFPVBqJoYWbxRYnGIJIrHj2hyEqDzXWqdhmybVCMPjyz40t6fBQZC7o16zOdDlJOD1QLc+7DFNoq4uCk/yN78nxMZ1qTkQlzwfFpJwTvwxha0jF686pYTzIpHKz6858sGJ9PdG+KbIUxdECSPovjUDDRyLj4Xdg6Bw4OXFnEwdEKe9GpBZGFZU2BZDqq7TPX61wIKDvWKuvTAhPoOY60bNlrQUTULaO+aE8+XFrrZ378/T3YiJ7/GvVlu5cj0Q9zy7u5oABKlA7fSHC4B4ZoF+GbE6lzvuSpjWDev50FwOMz2LNwvBmG0BF9g8WF+S6kfT7o69XMQtDT8OttsWmGHvSIyJYmZlcBkZqO/22LYxGY9fncnHnZBDLo5WW9HErrmKS2nzuJHCoGX9MNpQXWTVCP1rVjrWENF5DxxnUTtzaUwODLgNbZEYBJtPv3nbzSLCalXPSm6PSPEvgRqTkpeB5gB/rM1ULmdvNEwqnQUSYwUgqVG/8Rkh5oBC70+9PGDk5pkcTI0/WLZHcZLJlbwbd5rAFM0LMpR1U51KLJg1D+yYn6yxAw4dXkNkugC93Oszf/VjaDaOQtT6y9dQUuWMp811hB4BCaFWBv5xueRrgiQleNXiuH3vfvhp7K1cNitPHB6dbYWzHU69OiNg03r4JIjeEjD527MI32HH/R9nDjDfJCVbk39W4FlINwkZ5rHUyh4xpfXBbeVET5Jcn63u6qBBUZf/HM7DsQhl78RM0gVMeekrp985rpq2sQWpjCHdtdC2x/f7do6ONIBsUJ6yOfc94AkfyKbj2uWuBFm3LXve+vzSHyOnQPm9l9RC8ITHgXoW9YL4k9lMI+SqCnBzkyltozSVYV3UMN7GM2usglT/JzBoPyYNA9PI19ZKG1S5etvWzrRBywh2HYR0d0lDJT8YesBxmQoXtYgH1kO/qPmcBJ7lzi8EsfHdF/G3/f/NY1jVhgD49jH63RylEX/oz7J5EwbtM9PI99tEW/cQ1XbB72JirYQwns4x70jgs/rcz/iaTcsYdS2Ec3dCY5lxYeG0Jl/dLHXHRq8xuRJOnzFLuPttjHB+iWoA33awLPUnLYwxPYR7bDKhRSvq48QI5jDy9gH4+hG//itjh80YVIYg81sI/SaH9K5KmXMYvswR7GYh93oK1dQ6z4v7qQI9hDfuyjJnqEUams+I1J+IL/bx+XoX+Y/mz4/nsi0cYeDmEfD6O3CgXO7BpOImtW0z2cwT6KoCufTTqFC6aQgHS6h+uwj2yvtOGsnMyOIdXYQ0/sI9uil94YfF7oRHljDy9jHz3QznE5G7shhPhgD6uwjyw0v4NC2Dk9R8Jzju6hMPZxMfrgPEsnt/kSqcYe7sc+1qA9H7VnSsa4kQdv6R4qYB/b0QfSAhp5fV2pFuxhEPbxPjrq4IesQGkr4gl0D/lG6D56o215y2pqN7hTcdhDuSi6j2w7MNQiDe18KBHsYRP2cTX6jkXJkOe6NOp37KEC9pHtq3YJ9ZN5CVQL9vAC9rEdnZv6B7/No//+/3LpHt63oPvohD6w2uHci60plCP2kP8D3UcH9EiP5cynJ6lUzRm6h3nYxyp06cWQOpNdN6l8NbqH4k10H9k2LFWtyp+IIDaJdA+1pek+WqPtv3RppyzKpDbdonvYWkD3URb9MmMNR+doIOnDHkoU0H1k25I3+7cjZfmUvi7dw3rsY5E27dxrwSnKJ8zILbI/NlNbHSxK1U91SfdBWyPth0rF1udvHvvv96NthnMv9Nb07ERDO0tSuIzuqQT29SM6collyqizC4kX9329eu1pCBL7ITtZ3wtbJWiXXRBbn9UeTGIlaXvjPBr9iaFe3XHbkEThvrof+3wdPVYv4GWU6EGOf7qebpBoB/fFUib2yvdCPLokwKRINjmB8KAbcM6Ffnc0jzG6bykxw33XGvvuiR4LvGPIaPElA74tW0x0mFAf3iqbmdcDj9EfY9QlqhWTyDy6Aeff0DJc71+4LPUi87+8D+/RWYk/vi6bCCJ6IvHWQz1e8OXkiqSf/D1wAK08Sn2fHGMS7dW0P+D8KNpARW3mIjOBFOO+fRXfF7aZ1QGbVn2IIz2N5kvSTvjDff0SF7fgbniCFh1sCON7aEitA9rNOF+PnjQI0NRdl0mk8D1i4Pskiy4pkdHb9jKSaDSfqZx1CILxzRKdcx+6QBdtfim+TrfMi7ijR3HONvRuPDLlmUI4f9n/F6J5DjgMZ26PIEIqcVw7t1+CuWkeVta5LhBBH0g58UZTOIxYomdxfgYd0W8axC0eRQrxXjiG72MpukVMwm79ylCiU+Hh1Po5DG5/qFA1f9wJeujGYsm1hxzSSCa6GudsV4i++86VeJb6sI5+T9fi+/ovWnmgP8pm0UUypmfE/ZNEQrNUVKOGVie8RJ/bee92ykA26UfX43wArd76Wb1HOpzamUy/x8r4PiuiRQSqhQKj/EhzvPcNKjwGBob0Gk7ffQANaCsZ8+xVgWkkFP0Q52HoiaeehhdsPakkfM9n8X2PQ99ViOJ2qg0gckyXsgnDePhhv+37jW0PQBJ9U9Loj9BVicQYzeVAz43QcLkjxszHmXqE+4AN7gcP0VV3CiNM611JX90W5l3+RFBnZJ3Uyu+ADnRfTwYRGQ4hDWhVnDeixyX9N30UNKHY95cR7hdb0B5xDWcOTLiSjYGse7d8kkDCP6l/h2AHbED39eq7uJgLEUW0LM7ZtvdZGate60a0cR+xwf3kCPqUsXZBmJQLmRgeFyoYTQaVoPhiVlg7vEW7H1YVNdnlSPWiFXHehxZfovWbaziDGOM+cxz3m9/QG66uUBA45U029c0L/W2QCgtBR1Jh7r/9Bn02uWFBmpYLMUFz45zt/vX7T88LhpLxSnofCsH9aAZ97HDwM+6t9uRg0ut3WU2/g87YvikLpzbQRt9wPztj/tifmKANcW6EbrHmq+xoO0aycZ+Swv2KfY9qXY/5a17fhyy4bmlvvDMdct5O960fuQ9c6Ob8rfX+4EqE0bk4F0HnxZ2/wnskhlThvSqE+1ktunizUfaUZDCRrR55Y1GeAWN9M69ZJ+/DVnSfoe7NfMtwwkCP45ztLpyP4D43+8v9a3a+W1Ge5U8ShjpiJKSyYKF20aWonlZIQxsVmPXqMEJJBPqHFj1nu3PGWC+akULY9/II7ocjaN01PTU+N/zIMoXalUsLs4Gh461updkKS9B7b8z5a7+7SMTQ53Eugd7W7LitwTmMjOE+qYj75Sh6m5fr230rA0jFs4CZWKlc4H2eOipEWqAEnZZZ5DpQ7k5i0ItwHoe23X1wE3d3ILkUTe+jGbifBqMth93C2tKCyJ01GltlKvJAbcvtuPpdLVCDFrgssK1RnEHq0So4Z/+90mU7N4EF3qSaSe+zVrjf1qJXlPv5/3jgQ0xf7S0rz84HI/3+EJfr98AMvc8s0nZnvj9xRJ/EuQPa+fPXJcminhTr/9mPHa71NzWt8iNN5g5pBowC4K3MU9eWuwct6OcOinztV8xIGXqugp6Xoknmtxq5yDDqb/zewIn7dT+af6pw8Z9Z4WRjuso9faVCUPnUomNT2gzS6GADJtfTLQlkL5rCOYXmZ3xRDnhsR7G/X2jhft6Jnt/Aqv4550vW+HHkTi0sgmL1CPVByWYQQx+ISxyKvRhF1NCXcc42c0jcfUW2N9WN+7wy7vd96OffurtXWtuTC9uTbd0HiiBmx+6y9sImcEQLmD76punpTpjoCJy7oSsDOweN5MKJzWP6HriD9wHbYkoJmoxz9kR6tZXCnpvFkFXnp6gn2QRs79QVHDSJY5BPwrTDcf4RrVJ2LrktKZjU4/eWNvz+UocWOyLWuUUllJwrX6QcEVcCJOS2QVgJwFn08S3XREajwkg++iHO2T6Mcym8R2bx+40kGkaeWr/JtidcvZVJNS6lYCspp5S8GYAHzfuoNsPQMZESRzvinO3RRwkmblOhlCreM8/xvlFBRxg8lxjhOUt979G9s/ZkGWTJ1S/YZNEIC3ppR9PvC3mD83Cc/4vmo98XyhvvIQm8j1hozT9OVBUd9qRqTZr6eTQvw96dGkb6zg1A0K8tGix2cttRuWhxnLNty/9XgXBOCKnFe+o83ld30PIPX9xOU2SQOt89Yn/uvgKPlPiODoUQYPv1vHKzjLkD6UGP4rwP/WJcidesLZjiy6fvsS/4/Wo52uGK0/pnIYbkSdJzhR7Fclhk982AP6ce2NYW/Mv3uKgTWZpMWwbnbMOkWsfbghwyEk7fc7X4/WsMbWT1mC/DxZVas9BZ0EDxKvBbidTJ3r0L69Cqd5fJzD51Jwz0Hpzbot1TPfV6hwOor/i9TBTvw5/ol4XtY1o//anF5YcmrihXwPrg8TSr53WwDK2Rr3hdbjqISKBX41wSbbJ1yb7A/hwqHb+32eL3t2y0mu9q3QnvQMpRP9hBSqMSDou313zgqQNPdD4rs5/jQzR5h47E+Ru0wj7jq0IP06levEfL8T59iOb6vIdLdHkwVdgfZMhjeg2U7WutBHfdgWL0VJ15xgmxRKoPbYjzLnTe9vgrTwNKqMVV9D2rUETft7zoS1KMvmur3Kj9fuZUrMd1OLpUr3fathY00Orh5rPvBiMpebQ8zhXRIWHlvmXni8jvjfQ9fCqPvo8z0S3Pfsq/bz1K/ge9qYotAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAA/wgAAAAAAAA=eF5VlXk0VesbxysUDX4iKg03LVpFv5TFFW9Rt5ukQamMlQaEBhkrM6nVQMkshQ5xCHHMHue1jyGHbjmlDCkiuhpUV5N041d7P7e7fvu/z9p7v/vd7/N5vs98SU73qHYw8fprtfZiJRHdw8xcodN6BI4K/OSbFUXUjc+fe1J/LyzRPiZ1ZqqIRrUmv9V6F0yCf9du/ywvosmFEiUZla0Q9MqheWCiiFoI2+X0r8SSA+OWNyyWEVHxslWb1y9NJ/8dq8E/+o2hp29Lb/XKjIHT0O7o9p6hDy/XienSDMILrrnR/pyhck8v1bySKyD9MinWdq0M1Sw577XOKI3kD7X3JdUyVNEqefI+pTww9QwuM8pjaNfZrnnG36KhW81737NohvbbvVTWHMklApjZquHN0ODxscwDvg/p9c+MTd7K0GpTzzp12UIQrfrY2LOQoQN+1hZGH+qhOdukTfZjFTVYNrRTolUBOg/l49XDq2j41CWJQ/piYBz3WyxVqaKv9ur3neIJQcV4MHhlFKXdcgmKkQ8zIS/ElG81KqRMRVWQfNJeQn2GvcN2Cqn5sGXW011iGPG+/6SGX0n3ptrUjP5SAaoP36xWeAa0slzH2HhAQiRGMdm7JwLVWe/iGzTpHilSO7khY04FvcYcPL5lhgAErss7hbPK6dSkKRX6eqdJrZXSm1SpMros0X+qwCOflG5uvrbkQQmNvTP+SZJqJvwx4fNV0/Bi+qWx0v4rrx7KPvSrSDSL6JPYE1Wf1hZD0vDl6Zl5AiofZGI66wgF2dDIlDKVAurbXTdXVTmeOO7RNYKaPKoQ3p3jdLQWxHVX5xnMvUEj9kRlFDvdg+AtBZHdhpn0jURO22pdI/RPDGzqnJ5GF8Ye/7IvPAVyDzf3jjhdpWSUJ+CbSoivk2T7nRkxNHBfUMtIBg/CxSW8d6fC6FO2flkg3tMhcWnxomEu6Zvs1UOIG/p4q8v/wJTprnAIfTzxjsZtkT0FS9FHh9dNj7q2e0EQ+tiRbVAvO3wUfNHH81HWukG+fsQDfWxAH+eij1Rc0dysHQs+6GPJlGc7asdfIynoo5Oakl9vQQ7pRR81VOv6PmyLJDno413NwTKb+zdgHvoYadh6ee1GPjxFH2V2veoQluaTYvRR4+bKLqunN0kp+lhkY3M4nWRDMPrYZ6IsMIhvAjP0sVnwRWZJdTGooY8K2p8k/DIhRKKPzlZW3f7ibJiPPlpc7B1Ru1oAb9BHrfuJU9dv4ZFQ9DHXx1liMCEfxOij1tLThZdFicBHH9XVdw2FLWoiBsacjz5/W+vJ3qsm8uhjl+wCF9uDGbAAfRym80VrbGtIHfoYY/X826PpsbARfUx1nhbfbH4WdNDHzQvsw3KulIIr+nhhI5W1MRBCGPr4Z82RxklrC8lu9HGuhYXU5YXV5LQ952NPAyQeeHELoIbzUSrBb8Pc8noINf9/HzUncz7mXf2PiT2/GN65cz422OvZ7Na+TYb3cz5eOjLTu+RtDfBrOB870UejnZyPacbeT7WGTv7MR+sdP65DJMvv7RSt77wJOQVZdX4u3+9zwE9fj/Xoi82DfOEshB3y/s5aYo8eW62jP1kjosdjeJEnLEafB/2b27aa7YKtLjPkohVEdKjWLTJlJJhsQdbt0vWJsXAjgei7GcvH4FNEP3/bFBHu350MI29kfQ0k/tgP+TMcDNxz9UiAo0pTgKyIfmTXjyEhyCWDJvuGdnsQZ+yX8j5D1Uk5l8gEGY8LkrEiuoDdbxqZjfyo9Tdn58E8Mh/76Qu7XgJRbHrJk/7CUNfVcUqttu7k9V2OPxD/dmVZPvhjv6Xonrv9IjOMqPu16N4ZYGgox6CDzHNTJWZZ8T/nw4QxP650wheburZ1fe8v5AZkXsjYrF1xaeQl9qs2e96pxOTXhtamuwz1ZeuRTSyRi5q35Xym+aQI+7l/9Md1kQgiOtutK/7l2H/YLi+tgLGF5djv4bhfRcV5T6bxGHoB/0cOeaHfV+k/V9yEx5gHQez3M8jKdt+Ea6cYeiiyr7bYMoH4IU9jfc8mOZgXedk/LgEpUDJckejA0BzkFORrLJ8jjZgnEez+fMHaujI+yoihm9j6l4AicvgcsX5+cC6kY97sZP0VQqumg76aEkNtkAuQlxkHad3TrYVQzCNbvB9nv34ou6aKbkf+grwhrexKoJkIFmFeXWS/J4Rtw3/bndheRV8m3bpg8bIGNiB3eMyJkGkpgXTMM7acYyphmkO8cnUr/cmGyI9eLGrx6xL9nL/s53cUw5hFhdejN37PP+TDyHps/QWQjXnI7debTNz/LetTgZBeRB6H7IznJ8C85P63HPS8VgwNjBdSO2QjZK5eFJR8uDxd9XoVDZG5AuaOZYyPWSVNYf0FiELu3Gxe0Pk1GRwwb7nzKScaTpbCM35AX7PnIyLHD3AcJQwI9Uz+g0hjHnP1aSCDs294qiRWUCvkHOQVf83qzTSuIg6Y15wv2WRL/UCAAq+cZv/DtziWzPyRBzuII+Z5i1LV6sDhaCIdEzdqFVtG17D5chNOIi9jOYU8xrxfxXIVmV6g/HeHeym9z76fBt75HJ9hfReQdJwH9/Uj5lx/UA/rW9Y1+/9aQpVIpNuesQAnkNXZ9TIhDueFFFt/BtxcryjM7imi45CPI9fJ986yZhj4hPPkPZs/lSB77BftJM9CWjHv9tmDuakwHnlP4Iglz+UWZOC8CWD3Vw2FYtczT14U0P1sP+aDYiPHk9+/L1XcFE3aQrh5NMKtTyo/Bz1sXJNPb3PrkyFkRfZ/0mAnzisufwWw+blLXfqYXPrb/YVLMlNCyfU+jiewz1dBVC03zzLY8tyF820VAU9WZNEbyG0tHFefeudwt6EDOnHetbL9cwsOjFHI2mZ4nUaauBt8i5HAJ+QyNt8eghbOw3i8368+unTd51T6GN/XW8hxJJtftUTdjZuXPdx9MrFnppFlbwKN4d4nRs847mfPI4ckOXDz1IH18Tpc6nu1TD7zAnVC1nnOsbgtxF9q0nGSU8vN27FsPfPh9zzjc7YvvKg0Ms3iuAPncb8dN4//B4kazlE=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//hwmEyz+/+8/kjATKu//7z8Mwkh0yP/vP0AUBeGD/+8/2dGRpBz/7z+SMPajjv7vP8ukhi3W/e8/XKZ70O/87z8Hg8VB2PvvP3BfbEeM+u8/5PFppwj57z+i8WAYSvfvP8VNQzNN9e8/B8VPZQ7z7z8nW/7hifDvP5f6jJS77e8/B6LrEJ/q7z/sic6DL+fvPwtAr6Fn4+8/wDqFlEHf7z9Up/vnttrvP9Ct5XPA1e8/VFCsRFbQ7z/8immBb8rvP5VzW08CxO8/TFRbswO97z9ZCClxZ7XvP+6HTuEfre8/JGUawx2k7z9u72sOUJrvPxmxqL2jj+8/8q32kAOE7z/nwUvLV3fvP0A8bOaFae8/vPL9OXBa7z9Zju6Z9UnvP2zGN+vwN+8/wPw9qTgk7z8FMb9Yng7vPzCjkunt9u4/NBuy0g==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAALgQAAAAAAAA=eF41x3k0G3YcAPCaY3W8zhsbxZ771sYRV5ewulZRtmgor45SVVcjjbriKGKYs6ihrjrCpAyzopKffN1XGjqq7RxvXami1W5eV7NW98d+Pv997gi+KrhJIYFfM+mcUHcWBuH/X7pgdCFCFIIkNJPWlVT8IV5932CTPwPf4lc/ECqMs2IQ7U1HBbU4HED9xobd8Rlg4jO85X3HT6ait0kjxt5uTOBljxrcrBPBLv76M6Ku3I1U1KRcFLwkiodDvp+UfJAXQS2++rDsRy6nclGTwE+m/EwKDHhwGDEZ96AV38I23upzUS6iDAW070alw5qh1vTejhBO44dpKy7OPcxBEraFEkSzTPhrW4pVdVEIkvgRq6v7dEoOMmmLpY/+nQW3d9pO+D2cBgJ+70WOFtGPjV640yQ/oO9BoJMrcHKdhk18ZY28nk3Va+hBUUInOTsfHi+5D/jzpmAev+med62iczo6y2S0bHgWwX7ksXedx6bAE99AatFEE8Wj5X5jJk++GOxDq3xcb03CY/xH55+s+E/RkU0aa/jnxBIwTClZMFeYBEt86a+7UlrlGGj+9+eK9aulYJZe1MTKmoCDC307xTIDwpH+7HvFOWoZvBO4aRP2xsEYX0/Z+RIxloUul6y/rhr8AWjP7LcC6ePAxD+8eMJ8PiEEmXScj/QiVgDn5fbsF0/HwPTgdTUkug4bHe15+iKQWwlLs6/WWT5joIafbVeQ+0SDjVqWJvO1dKpAgtKYmSsahVZ8fugZRcpcBpIj9H0q21ANwW4JpCDnUZDF75aT4a9eTkPfLae+KtCpBfGVslVFNAIZ+LSoXzuD3yYi3lEnE722OvjSuLuQbzkCfHynMVaF/ZUM5LVm18KtvgVUjwU2o2MYvPHHl43yzfUoCPyiyqmh9SDZXkeiGA3DID61QdX6tX0E0q2wHfawaACrNyNuIc1DYICfUOxwVTM8HhGSxWq3xBuBQ8oh/aY9BGb4pGgfT3JaDIozKw27+qgR8sytWyYaBuHgRIZ+XFdiKJJWCiLYdDVBYX+yqbv2IBzG72UUV/5jkYaucz+2yinkgJDdTc3iABz8g9L7+6Vl6eizmfaSXkYzRGobWZQaAhz87N7Ubhc/iTwmOn1XxacF6Eb8Q/qBAhjH575MIlSueZGHvQcXpJx/BAeiE80jegBG8KuNtHR3Nk+i7iQb9fvWrSC0OHJqiY3gF3yHhLgr12cDyZslKwSRKReOhP9Lla/hwxa+QMwxwTU6ExHFoxWoprdBLUi534DHA0v8O38IKTWpAWQ1ruNGq1UbaGQ8Lw9a6QcN/OMyji4u9HRyuUdGlI5TO9A0J3p3pPqhGj/zm54tCXISOW8h3VPK9yfQiuwLUrC8C4X4f16DTua5crJ0sh+5ILYDVGTdZ7bD+kAOv13VrZ7Jy0T/AfSzmmc=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_2400.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_2400.vtu new file mode 100644 index 00000000000..4b55886cd35 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_2400.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="7.204363252e-06" RangeMax="0.0025681452902" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="11816" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.94885109151" RangeMax="0.9999999736" offset="11912" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="9866.6881096" RangeMax="16634.409222" offset="13220" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="21484" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="21576" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456766801e-05" RangeMax="8.2691439971e-05" offset="21672" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.60085513696" RangeMax="350.77185265" offset="22472" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0012439045765" offset="25892" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.4168325823e-05" RangeMax="0.002576424406" offset="27792" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-7567.4096965" RangeMax="0" offset="33672" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-7567.4096965" RangeMax="0" offset="34356" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.94840034493" RangeMax="0.99999987307" offset="35688" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="9864.0935366" RangeMax="16662.097645" offset="36972" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="4.8521389457e-08" RangeMax="1.3161039111e-06" offset="42328" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="45516" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.95037335428" RangeMax="0.99999834467" offset="45588" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="9876.4084651" RangeMax="16539.411585" offset="46076" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="47544" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="48760" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="49492" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="49664" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAjiEAAAAAAAA=eF5d2Xc8le0fwPFTRpTslb3JynZwxTGy9x4RUiSjRFM9J0k0kUqDpEEqKRSdr+5DRUpFIYpCSIqIpFC/fs994fV6/Pt+fb735V6uc6Q/XKqdxWkN9hsv2+cZvjPN27FO7fqVZaj7gNdFpTXLQOTcyaWlqzkrJ11J/yn30cRsC0J7ODyK70vqQjrZI1M10h9u2Xlng6kdGvEa37NRjwNarOr3pF5eCRztwoOaB0fvb7BXU2E350OPJiQ+eLJ8Nin4XH/JOIqjMrODdNaE2Ho2eV10znDA+0K9KLwge/S9h/Q7SyJZ+37RUOyLzz8e6K9A7AuGDZpiNWFTysYxOTc2ItSgx455ZwGiRjdp3eGgIKrJjEnNrkWVpdgljn69kX1ZHg2N1hWsj+81oZA9Ckwl3dGm9BIzRhsRajlK+7kRchvrlKe9koHk1BeKablcxIa3+paHToyZpD1vNXK+woc2aXTka3n9rlDBrhJ5bTy/QgiJHN+tJiilgBzJHhUeIL2i2Orw6Cp5ZHlNZEz+GQ2pGOk8H0/qNrnE/XjS5oQgofJpWQ1PaBlDq2lL8De7paihVEPm3Z+pisvY80or7m8/28oYuVh81FpdDgWTPSML+6atCbUGPL2Mz8wPoZZKNLTd+FJVLos8YvcrDHJ4K0YcFd1h8kx2gvG+9vWGrFR+pGz8T86hop8VhthP05O4+A+LwhF1u3287PJoJ9mDG/akQIF1bXWK4LS3RGBMjIYkUS+43NNEYWu56/7slSLERISlxXsWgDMbu6EU90OT5/2nHZwCWCu3h5LectHwSnGLPKTY1NtzTgshObKHCuxfujwtNp7Whm3bbupVJ9OQ+PItXkMHjJEW26P8hWFyRFTg4MyVbm5Yyd1O+1GvAj7qFktrLRdVlrCSTu3aelBNRhsoAfx/NBJYkSjZQz328ngtfbkwU/Dz77+b3WWJ+MSM1/u1W6DrbQtD2Q4oEp1ua2JOjwiBjZjNboFvVPDG81Ww7x9uqv7HiwrIY++AEd8og5fsQR27JSt7VtSpVZBd49K/JNcaFeuIGRY8sUTx3dL2If7KBHviVN12ThEQfZL3KbvTCKKGTgM1bYxK7SK9hG/ZBrYjRsD7rq/loJ7+bA9a2FXyl7m2XrOGOKVH5jLszuh1SvPNvXHm6HqhhHj4blUikMEnMegsCNOf+anDffYQg+c/KSC9+HubAUoxAK7K1MZGivpsD+K4N77vPRY0bQnvJ26z2di6o4lySbcKPVM0ErvsS1SeBlHyS3lTQBYf1D0uzJm66j63fk/sV9qzWbf8owu8gXcZHu3K6BfZwzR2+zfHT350NAfhl4MVYSneSGZS4ixXFUJtk32CDVtWEJ7U0YyKSl6QK2Cc1VrlCUxbPnPWlCrqY+wKTxbHjR/WgYsNr5P+9HAjZbIHLez8FxvWVCXQYGYgLmxS2Rtlsc4E+4ci9Hr1oG2Ugzbhubu96WsyL1jeOFColu4B9OiCZxty71Jrsed0jytscNcBNnrmyBo3Fsgme/DF/ulWpepTcxq48MTEnwY3xMrXqVS4CCHPqpAD3zp0CM+aaj5lV17ouCXzLZzDA/L+nV9AVcEu9PPd604RHVj3w0gi2FoFcA90IL2GeeV721IaFO42WLF+ny2K1c+zGSs2RioDciqXa3UJTxcdPgEeHvDYvWNkcsAdbBVXnnzzbJRKwZ4bNsG22kgb0ob8g/rfy8Mmsgde7Fb/1F5tSTeFzi+uZmZLbZGpnFoV7wYDlFx8fEDbV5+Y9o4RbBJaDNuibI/UvvGEVXi+/azftV64f1gdlj/8WVd3WQVwDzTsS4cq3j+5ZgSM/mQdqxpbxM9zR0dTXgc1xrNevf/JgLgUVCRyTIINulxvv1rN6Qu9dwO668oGqdnYy6/kTbpFKsOysoWsaXnawEv2kIq91f+aELNWb26+yBcfuYQwVdT2QPTW1leGRMaI++vAit+MW68pRovX+0L2yu5U1x2/qHnYhTyFHa05ZUFktF0rU0P073Pybw/Z2BfaW3TSTTQhk3lXb6bDHo2MnM5Ls3lvksi+bYh7nRFRcvSCraPe7bn5T/6dv9goCzs9IKHntVYz4+pTvt6bGyWg5Ou/PeMc9rzlIX7Og92MTfc+Ky/MdEBiTs6p07EqQLNrWV4wYUxU3jd1bt48beI9Mb19tMMTvuH1p2JnTHee3XxYGqm0ZIUE8bMCP9mjQuxPFYT5DX+roRXFHtxc047I9pyG9aPLWkBpXykR0WVC/GjKNTobzIJs3JFtJN0LEp8PRhh8babKYK9xPSH4ZbciSv+8twnYtcGO7NGsb9kacqONTxdNCjbdXKBui9SND9h2qeiC6epD4/xxKwmplZ4Vqk7siBKfy/3inBvE/Du/lxqPPcbu3IQqqCCuV265jW90AfcIYb9TnXF+/zd99K774PsYWRPE3dZlP3VNH4LftzVUsZgRNoWchveMOFG82oKi8DgHSNcPzmla/5Wah13M4mLbhl9qaG2Pi6mVsA7wkj2a9WmumgydV1S0WU18h+5lHXSqVUfJaq0+pIc+Sjo8ZEYc5qacEe7jQDRDkF2daw+uBrsNdJ59r8jDbvTmdkPaOTUU/jAi4KUOFbLJHvGuJd2tLe5n/z9UFKLeAgY7tNHtM5/9rfu1QY43seYqQSMyczJTi1pY0R2pw8OxcU5gPHbFNptvqMIYu6AF70yJuDLa9f1xddFBHSgjexSM3W145toUXQ/lOL552Eo1RyerbKUzXqoDJfaE5ZFUc+KUuuI201oKqsDzKfhHBfvw1WiNtjNyyDV5z4P2cHnIJntExe7AmhbEm6SFnHh6rDgcbNGlvFueC4algEn7WbRnxpy4uOr7Fy3KN5PK2PNxeyWdQDK/d/8qa9bKWS+TPdnH9UMAJXFG20UyzOAK2aNG7MPbf9Sx35VFQV81lV/8sECN6yNy3bYqI9a3+au31loQCUe+PqC6TDEW3Dj1zWWJNZ4vWMmF3cA+7IW0vRSc3zMoci+TBt1kD0/ekB7l23+H2qUKWw4Wlwn8fe8IvMgaa9I2Q1oJjtwxxywJeVH9nEJlfqA3S/ehbyuBF6+fhj31hojsKzk92GavoBZ2whoWkz0w40nftHjz0ned5nDBoOvW0AUd4OBaUyKw3wKlex7aGc1qRRT+2CORdFQI7Feyl7O8N5o7/5uwD9TvMSwbMIQE8UeRbrJ6wEr2oIW9Y3B47IPBKrhneoRlg6QGpKwpbGpstkDjPbF99GdWRK9n9kH3z0JgXaI6/uaq3dz8MuwV8c7xl12oQDyNeJjhvnK2hzvYF0ZOyZlkrgImnr+odPTbEQVLFLzZ0zXr5CpC6vatSTlbYTD858mRhe4uMCLwwOvzgzIqBXuKtNStk3eoIGwedWL9RwtgI3vQwq72aZF75tAq2EqvjQ7OesNwXpzPFSNijnjdErKuLLEmfDbfNPrYKwCH3D0+1Xe4zK2fgv1c/9K3BbwGELCE5dz3cnXAPYy4kh4w+XpscZYl2But3id5gRdVPM64oL9VF4XKide8a7YmdvQUh2kWsEP2vlKXfD37+fOP3XtvlfECmeVgsyWngHOnFjwke/DG/umScoy4gwHY4vmrx3YXoAl+lDfG/Cqca0Pwp035GPH3MzSfWX5aX2E+N5+JvbElcebJTg5Qjm46w73i7z6W7KEE+5Gw3S/3VQjBPxqFbD7bdeBet1Lc6eRfJl2sxQ/MBWyJ/uyGDXWdzxnJyreKuwvnn18m9gEWpytsUqMMkZOu1c2jNnCf7Bmz/aH44DXuwb8Z1laWgTMcZrCeb+2hODkR1KG7xPlqhy0RaRz6KXtokHEmbfOuTF+Lufkj2MfPMx61dS6FbYVlHx+9XAURZA+z/T7fY4WKdDGY7TX0pQLfN8n/ff9FtPFesSOcC1Sm3/P9YPBuNre9or5qbr4M9l9BKqt9Ti6DoWPJZe1XbEGb7GEklPSvdhdXi5cpAR/uhXZ4XPepVUF5tq1d/uL2xM+hJym+rdOM0LKmBZqEEzjaGgkJ2n6jznq6HvvzoSlpoE3IZhxfbgvSZA9d2Atb1avkQtQhtk87gl3EFqIqzd+urdVCEcE9MzO99sRjI0Gp4ykssFM48/m7mPnzswl7W11tPkehIiQvvFeURlhDDNnDTuzJNFYzA0NdiMLz7e/4dZ1dro9o24fFLhQ7EFnTNZM/L3DAt5mQs98s5s8PBfu6hINBYu5qcJEj5W7yYmtwJHuY9WKhOOm3K6mwHs93FjlU7Slv8Pf+/DHMp+BIpOzLf3j5ISdw9+4grGyt5+YHY5evKNXZk6UOwn+Gki8bW4AL2QMTe1q49M5PAUZgfzhe9PNXfeDl3dVgI6aPuJd5bf895EjUWFXGyKVzQMpTu8O+EvPvny5R0nVClke4mqrBzS9pQWV+VsBN9vAWezzVXcxRnQqmAYK3+bNN4DnHxtfGfHqIZnp7wee7TsQMW6Po+YBFMHN7mV/UiAOUyC85n2TeRJ11y8Xnc+QGlsOHumq+l6ds4RnZw6wHcu6/VzxtAHZ4/SXvuY465+ki5gktzUMazsTzX1Z7NNvYYbvH4riJD67zzxd2P6lcDX/v5TCZUW1tpuEAxWQPNOzte1oCPXcZAAdnS0nONmsIt+GOdlTURRPvv15q/OFMiJ0oL6bYscO2/8zvwp53nZF9+K4KrLvx5JP+I1cIJXvox976szcpalh/rhe9yeNoX6SDZFRvigvXuBBhK5Tev6xkgw1yRUukDnvPz19O+kfjdhZCVAXK9i/XsDvlCCJkD7N9a/x4QXKIPky/jrd/JO0IWQIpp5dWaKDgb4qZP8RdCY9Sj+hnDgvgskiP7GDV/PuHhv34hIjKL0158Ex05vEYXAnHyB5csS+hR++ks2nD6thDQ5oJ6mAluX75B5GFSFh0ja/LXlciQip5ZgNPC6PgP/MVsDcr1BVWBfxgvMnaY2EmbDLbgxT2jjzhDY2VrHDWi62o/6ARfGR9xSpxXQG6VmZLFfS7EnE+fW/7eCZNXMaYnRylbtAL8jdaTBdXypiSft+/YZdQiRg6XGl9TLbNAIbIHjFxf/GmC1O0WBml4fUrRG5RWyKgCLxZGU7lsm5EJsSx3DkwaRJl92nlnnH3+fcbduNlrtcn9cQRlxGtbGOJG8iTPaJg31nd/XmBggoaGc+0vZFtD4VhIhybB7+buNc5JDsccCNco9MHo5PqGTOKY8X7R6zm5kdgH/mHkcTl8IUxO7+E7BmzvWjchkf3xX4yNuL1OVnuiC44oopKfrExur+4EX2vhfe4DfxmqPOG/4ii6c7f/9jPJP7T3ykvCzpmXNXrp1zBlexhE/Y/kijnVqQm+Iqmvb58zhdSeQ9tDDv6d3/aamAvouJO7NhaF7smlhVedluLCXXOMFyDDyRWeP6g0rCLDyfaoCIl2DXxJe7v4mZ7YGJX/rPPz1VCD7x8Bu7xi/pAWfmC9VIBeoj9mY/CxBF3oqMhNzTv1iIQEH3Mab5adf79if1DxNU9KTaqQMfz75A9zPZix7zi3N0MISTVVvZz7N/7w397cJuyIaI/2P67ecydMJXf6tU9thiW/Gd+CfbLH1rKG3s1wI9g/hkosoNPZA8y2DmklQ95phgDsdRX1jlrDTwaY1z++xcB0TMsl1FXeBAr3qcPvu/lhBxv9SLeA5podj4N+3614DxU8Xff0x95s2x4FTwke5j1KB7ui3m7jCA8/OrdHw4BcF/61zdNdy2kFx+bHnnCgwj4Usfl+mchjEeWcdef5pmbr4W9QUx9YiG/ImR8W1hflGwFBNmDJnZxyePjord15ubHntpEv/1EAVF8zi7KmfIgeMZmAum6k4xOPD9lLFFAsWSyYtaVBUdOZb4WgwCRp0JHrGmwkeyBhj3TS+uwXJPy3HxlWd1zDc9kUN7q7+Z6hp6Ez+dDfTrHxhid6LLm89oPJrPrD8b+Vfyk1+lbQuBc3eXw/pg1qJA90LEH5fZO3jaTh3ZO95npSx7wy7rgmHu/JDowmPb1UY4n0f5DmZexfpTBNpC1TztMce765mEPv9C5pM1RAGLrrvu+ebMKJskeZnub/LarFBlZaGgbPang5Af5DgP9S7TFUN52qRwfVi/iFkdqQkriMGOQb/H38IUG8/Oxdygp1ggP8MKScludTz9tII/sgY49xPF0+TmKFNgwq9dSZVdD0dLBG/ZTYoi+rLNvOc2LEPTfqfQ1/Cvjxdv4K/sTFeaubx52XveHJhcj+YDroeSk/BFruEX2MOvHfSszbQekoJ2/y7dCLARaT7Jue1Iqg+KOXf2lVOBF5F26NPFl0xijrbnj3KZY2tx8V+yjxI0ytnQhaB/os2J3sYAWsodZ11BrFxqQlQfCW0bU7shqaFcSPPX1kzySYdvKo8DtTRhKcPn3aPxgPFmykz3zqP7c/Fl/qXFKI6J8GXAcr8pw0Hec7YHJSrpQkVfPtRdK8AavX6lJYXxq63JEGVapptp7E/0bGofGLs4wagynDDq8teefL+wPEhq2TcfKgM2nR5InpjxBgOyBOUQ6y7t3m3eqaYD/0Av+mxdCICvG11y2SA+pcS+2Kb7lTcAzrz+nlnLAs//MF8U+1K1hfuCGKhx7Ut95I9kX0skefi8lfUrZ0rz5miE4QOz1VrtwSI3PTX2YjZCM5ucG+WU+hGVpN8vZS7xQbcZyMnjQZP7vuwbpSwps2NISdMDgvvbDu8N+cIzsIRj3iZueXvoeTJub/2RBW7P2boRooiw3krx8iHWb6oaOZvHCCvXtqXfkhefWH4z9a0fnZVirAw/M9iY8j3Wc7SEPO2NY4bGqGw0Sr50V9bMJBsfRopBnK/RQNEuHxZ4qH+Jd4iJW/X8WQb1WyMMSEe259btij228nn+GRxUOnLiqkpZmAXZkD/uxn+lSW1gmbQgzB06dOtjvD/HVUx1ND5URbbisbYeiL9GvTfHLLppiMNTI9Z/ryTnT77DAaNYnnpmMbbspBeFHVgtOeLvCfrKHvCHS4+vEBxSM1YCSSs4/bhIwwB0gi+hsO2dUQ32JvX6cC8/rjjPq0p8rP6yY35/nYf+c0Vk4ES4MW4xzhC0snSGb7IHCTnrK+nOPk7rlYWV5bVdbcwBob4np6nktgp6GBlTfe+JLCAqoV9UzPzNeZHR9cN9EnTv/Xdg/bqt0EXrMDcVJDsFFG1YClezhPnb0XUB02kUc/EQO3EhL/rt/fOfY5TLGiZgE2m+v60dY9x/8UqT3jlG4RqjVZmraZOo2Tdr1Uj9Vhkn6z6d3nVYyKTDt/sxOM9YB3Mke6LhvNn63sq9yKRxfzrI4K3MtyEgr0NOjWIAust3We5MfITzqEjJ+ttUkg+6hmhGoNP/8Yh8Q2559ROCnSUZ/+WjMuAHIkj3qwn5AwpmLh8aOqp/qmX9p9oAn8g++3tfVBcuv0URqux9xu7mwqMmPHT0JGBQ35pz/fK2F/YtvtL/uExWkdqvomdx4M6Oe7JELdnFTUcWfv/XRU9y/7WZ+/D79d07dWgOGhT+R13I8jH9EELXi48+tHzt63Uf/RTVE7/v9jnd9FYERskezvetqD73JM1aoEfc0bRb7kTBLYFrZK6jS/Ylb9flcgseFkRjzUJLTH9v5/ckq0k98UHMq5zRCxwaCfrKuNAcq2SMadumDp566G1qjWKvs3OlAE8hq6TJ7dcMMJIKvi3AP+hPMs1HszbH8KAb77PhN2AsyDl14F6eHpsffSR+S72YcJXt0B/vETJVMr4IF2nE3zv6ruRU6Zcv4/CiDCpRE7iXfPAKIi2+jKCqnuVDmY9G4mGUBc9d31iP/af3MU7ECDYysyRsopaFcskfMXaRf/vD486ACQuFyYV3bv/PDyz1Dbj0//+4zjww/bsgIIFq/sh6Loy1C5Scbo/O5XObmMw+Tfude8fff9ctRj734e8keG9RK9oiO++0Szy+OdBuglvJ8bo42LbQ0atW5BWeUwHJkkG/zdABBtYuPeOz8y+TBf+bTsNvsCb1TqiGJZCNOxNJYPBAP2aPN2JvHPa6++bAc2XxSjsxr9UfNGwj3XxQ2oHh+9BcKX03wPd35tDiuzeQXPv7c+cFOl8hluyI5ZRIcr5FmcNoNnSd7xPQgvbVGU92VhwM54fkbzw+JTBawIlq2V07Y5dVEha6UrOCSNsaEU9SHt3vnP1/Qsdeo68tUFf1iLLLMrREfdEFKef/2QMG+aD3fOf+ri+Cq/zcXIxEvdOz7CUHGGWU0Yldi0MYbSMhS1lSd2THFyF2e+SmY8J9fvz3pEeVDD2R3SIHs5aBjDaet0AGyhzbcC7aYRw1zqsHBHeuMmo9YomTzbD5g00e0qcWNDomBxFUjEyPqdg6wm842f6gbjDh/d52O1RcwomN/xvNR+om8GrzLrk1oZbFGW8geaNOk2xUSog8EqWCF+6TK7xYHKSaI/nvYQZQRSKDw11xLYniAI1fe0KzKc279s36uXmgfe4w2GC0cUu+KNkdpZA8U7COX0y85DJuCC+Xxoq52CzRVfuRmqKol8s5UXhqpHER8qe3a9cVZGGywz84Pxn714/7nkvepMPHdU2DwtQVivfNvDzuxpzznNKONrwKN3EUmK1SdkcGxvJX0ZlvEVAp+zjgeRBi/8dr8ql8C2m8PyYtrms5fX+xvFk4dFltEA5k89eAV9x2RDdkDDTuv/dNr/psdwRuvz70ucFDoqD2iNwkKcb8KIk7uFVj28u/+LlsyZSelx3X+/sf+wsONqqhgDiMLqLejfnsib7IHykvSOQ3pGlobnaH0etIml+q1iL98Q/f2pv//HyxmlyNtDXHG+XiruaE0nP7P/C7srlYHrl1yMYfr389nb43wRiJkD/exR0ohiZAKZzB6dPuiyVAwaspPaHsr6IBovPXdB2+sIXLEBbJu7ZcGrkNtFYJ357/foGN/oVclpbDLHOh7gsO2tjmgFrIHGg/ptWyTizPZXObm6yVpbA+acETMI5kmG4fWELltSdmCb2WgVvjjojepMnPzZ11nm2Ho+C0LsI+s6vAwNZ3tgXKU9AFx5RcZJ11h1DdJcd+xv+dPKFOyLcsN3Vd9z/NSI5h4W6Lzs3urAkhu3d8bvmf+/inBvrP63dn029aQc06TsXLMHPmQPeRgF9tYsbpM3hMm8PxTG5b+oRd7Ihnu73uHw/56Wo/fTX4VWPuf9dOxP1iS0qJeag8/KyfbWrZKodNkD7O94z27wdYSHzgrlVhQecsXeBIY1FpuL5THYV64fH8wYfX8bFtVkgq8uqr8/qWtwPz9jz01oqc4YYUDjGeLrrtWro1wD3Ts0cPPxySlfeE77rWrXmz5ZuaBFB71dddDMDEifymILUIJLlqfWZxsOP/9BgW7aO32p2PttjC5S3HR8SsfTXAPPx6S7mp+SXqMy3uu92LrLZba7Ia69h4UjxwPJnJ3XO91dFKA0ULy+JM/biTWy3JXMrEXyvMMbE62hgWva+gdp2ngTfZAx66ZtcPh8S8PKMHzp5mnUqb3OyFmb1D/mGAIEWluzVGkKQtaRzwMRlTC5veH2BmbAh8VclvCoZvX23eF8KJ6sgdKH+kehZ7JrwZcISkx3ChjQSDYuMs/fR67EnGIG/RJOoUQwSX3Cqpl+eDywgsOT/fN//+IF7umF/2FD0UXrkUMrp6pMEahZA+c2Ad/p56R7qCBwtTJ49fMXBHtfEw8Q6OWQXNb2muzP4RgCsiJVDeeNrnxn/lzLmZ47/MFMOlYZq97cHqSkZfyb29CwU5rcz/1KrzeRAvPT40tzQj7yAFdu7PPy18JIexpni8bpztMIrmKb37r8pvfX+0hnTBTWOsoQEGNblyG4T6BcJDsUTDuOX7MXPudwoUW7d9ql79QFd4m9CgsXaeFYhKML3a8CyEa2+XsrYVYQL1l62heduj8/Y9dRX3j3SBVRYgVlkuoeRIMA2QPh7AXNCoNl9fpzPUPrs9E7/v7HMpEd1w5IRJKvJa09RHoE4RkfPy56xtFukzZC8vH6oYgnP0zmmO9M9wne8jDvVhJf5tiuhWw4H4Dg8qc/m2LKJlxCrXUUCLzJz3BRlQSptc56Wpaz3//Foy9PbHB+YAcDTgFQkunDcwgiuwhOIN0wTcDxWz5juD7g5/5RtYVxtb6lb6o9EBJDgv28seFEnnm4tbvviuBwwn3seVxAfP7Q+xWel1WNtvsoESzZAdrmRuMkj0kYL/3VCLxULY3hOH50pEn2WXH/VEXa3pn0LVQYgf71qbsNSsgY5ndcRSydv79ib3l+44clvVukH1l5PCzz/agRvYw20epPpIR7AqCl3y3TnNPGSE5z7MjBjsDEf2+sW9/Qyhh1HtFpVFZG04FHumzauaevz+xc63dlsSzyANOnj7r2XDGGGTIHphVpK9KCd0t1BMMwuuVRP1LrVD8eKCa6pcg1Hflm1U9+1rihhfLXak/2nCCr62s58j8/rwRe/qL2Acd3z0gaU3ulLS+N8SRPVzHnhV27MtkeQjY5Sd01W0JgVB73lLuFcGIcqxI+zptLSFXt2ZVdKsOTDW6m01f9ZrfX2EXRBGsRb2eUGrcWrxyi/9sDzTsHywgoCMtFFZuFtr5VTwc2GLuidpZr0HM50zVw6Fribvy7FUZujow5vIkjifdCe3KjbQ2v65fScP+jsid4tDyBMV3cSFHhe1me5jtZaZmHpz8FAINo4rbzw3HgaB0kksZvz9SmIrYsShnLVFSf09Z308TslwiyvxDzeafX+zXIyoa6M2uYGs/+iGs3hV4yB4MsF/btmP8TWcgNGyNkq/pDQPORrsU6feeiK7M9zjp9Vpi3GFDi7WDCtQ8uvTFW9Qfrfl3/YpGTOzf5C6ZjI7aQ+kjC838QQfgJ3ugYOf9ORGcOuADP275dfWpeIDScO/bE6V/9/nVPO8ZP9cSZktMTTS3yIHviHL+EN/891dMJunPflYnntxqBcZPP6WPSOsgFbKH2V6K6l+upeIO7gdaVV1WOIGKyKX8R6GaKMwnv/KFXhgRkPW4ROXmArD+z/xN2E9pJc+o58gDw1ihJ6nDET0ke8jG/khy40ebcG1YctKD1drPA13qyVysm0QDyrBe1ofYMEI+qfSRrqEAEsCeHx7kxCJhVDnr7A/+TP1x0UemXctG4+he6CbZIxr2eHe7fcs+WSAJzUC+B8aq0JCoNYT+7sfozlX+CZlhxPMkm5YORUEUDBO6S9nmPx/RXUg/FJgkV+ZrgLyj3f5EdfrCM7JHs/27qPYDk68s0bVdD/6sj3GHmk1R3cvVZVDQ7t4h6edhRCg9/Cf3q2+Mb1t5dNZsR/PvH+yJrrXnh7oEQdc27fZB8UBw3/xvD/HYFYJPMw+lyEGRarVj0YpI4Czv73RbZ4fo15bsfcK5jvhtMeUWdkwSzuHjGwtKrFlsamBEwd5bo7PjRBgNrpV7PFW2tgVNsgfKddK/SihFmIo4gTf+/f8HSQeg8Q==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAsgMAAAAAAAA=eF5t0n1Q0wUAxvEhCJiCmXloKuI2E05mOzG7FTAEA8x482ByDDi6ajktLBwvKS6Il9jKnAE6LETqQHlT28aaIGwwI1kMCVB5CUwkUCS2FWxDEOKP3e1uz++vz9/f5x66ssewuKhj0m31DNE/JzCB1ik1EcgRy8oMBF7e+ihihEBn6Z/bOghcn63sbCSwP6YnqYRAs911bjKBfINhbxSBVeGsq24E/idK9utdQDeLOwKvEPiAM7IvmsDh292hM8/RHUcbf1UQSM4TCEMIHONrozTzKH2yvOUkgUkz2aqJObSiw2HgXQIpAn7/xDN0Im/w5hsERghjRtNm0QPk97aTCIwaX9XkaUbPte7VBprQjPgaN7kRpaz2f1sxg6Z8k0armUaNFO8wJwKVvlLHh/+ix3kbWqsN6Bw3XjilR9kKrqZUh7LE+bG+Uyh7d10p5x80JJWR+OQpWvrZlptxE2iCuibiyBP0x0FeTvM4mpIYVkEaQ3kBPgenR1GRmj3s9ghdZaZWeT5Evxqj0hcfoBnLJ//WDaFdxkAv7SAaeSbYL28AndvW0BPQh94yFwc9vos6f7CYl9Vr1cliL0dU6NCNHhrtazl+BzVTbjRPaK2aLIZKLkp2/462137tzL2Ncg/X72pqQ9e86hKuUaNtFP/lLSpU1fmpRN+MqtPtlzU3LvXb6H1/nztPgX4e7Z9zSo7uqKf1OUnRb6+s8zhxDQ3uij/ArkMFCfn0sipUOfQDWVOB5jswTFk/oQqfF6pPlKGatJLUuO+X9rXxy1/iKkfFaNvYDRdRESpMKxF4iNBJ8XeFJ0/rmE9t9Mhdt6e3AL1V3HTvxVxU1vnRHCMbZVA3zbyZiTac39/qno6m78yzW8tDrxZKZuXJqFeQU64vFy2OaC8yf2i1yOI0c8U1RhKqZ/1BYsehRtr6/YMslH7efoM0Ej1iJ6/ivqNjHrUxK6x1T3UweuFY7c9rAtDMSc4hFgMt/8T37sHXrV6yeDE5NyhwJ/qMtIXqst3qrMXhY5U9KjJ6Wlbe9NrGpd/bSNLueitjLUoWrhwfckVdJJuWqR11TFcbddmyy18sTIHtZ4bEZ2dRXqNKOqJH3y+J3briMeqz8dxLLSNo5f3VCyn9qKRY2WW6g0bSHf4K16DmmlPRMSrU8axgpbcctW9IrH7lOrqZGko7XIHyS+ddcy6g7peCDaQi1LlsTJZfgNby6+vuZaK/dXvJB1KnmG02vuwXm17ARQ0f9xvn463qLf4P5lk2IQ==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAExgAAAAAAAA=eF5d1Hc4l+0bx/EGoTSktFGJiqJJclfakaKS0SARikpWWRl9kewZIWTFQ0bLuHLZsxDRIpX0tFRURuH3HMf9uf/49efreJ/neV9ff0hIt/ijVbJ009k8A9fIDQ1UOZt1gE1Uab39QdKawtoWfTiNdbdxcXXGl7OkN5K1E3pqFGvnuaqtW89sI1av7edfm7KRCq63udYi3UADX7GeIG0Y+P6TDLMYXQh9ZgfrujBJCdNebdL1jvVE9FR4rlL7W4Mbpxg5z10NER37aHSh913RyQ20m8d6BXlW1mmiwgTCseiWsOhi+TjxeQuYFdi/jr4UnvEygHg8Pc/MnXDpqLCuHm39kxq0cXQDHRzPumsC02W+eS+jBT9DZ+BxvyTWZDQcY8yFWD9FN4GPMP16NcXOjNvmvFgVZSOawD9KY+BxPfWAq+p3R7Z+3cV4wsnoXrBDmZ7y0xmGjCMcj+4A3/T54r8+yomxvagwybrKlIaKZNpZ36inPvBIzcqSMHNNpgsOQf8Kz3WYYnbnqSGzyZV1ODrnMfdiO1Z4OjHDYxa5LOc7RYNi3q6q9aqnkmNZy33+0u5TMpqJQvdHT4d7Y68s+Gq/n9mA+QD0zbCRyy7DcFVnpmaiqfGqXWdpSvNts2269bQLviHVtyq314TcgxPRy2G1rfIy9fM2M3KTWKeiL4cF5Z5OXh/lxkyNKri8d4o1LZrgGVO0uJ4qw76j7uxSmmFHpOD8v7rB5433DJWXk0yYoufAnY+Oy5oKXGKE7QtLl2fa0FHvmyxmTKyna+Dw9Nfm1e/tiJsd674utkfCUuvPWm+rPMfwY34AfQK8TvTOaqdwH8ZC4W2chq09XdG/uSSo7RH1hw9djNjV3uhFJGE59FXwprRbHw3rzJi38Er0LrhwQZF6okIg0/xByMVCxYGaCuXMEM58RHvgvT6/NJd6BZLbsAF6Jcxft/ZjpLgJc/cj6zPo+XBEs+egTU8Ic2bL6cg9zx2pm3+gkHHwI+oLD/8RLN/bG0QqYHf0Z/AH0XH60/TVmRTYET0NrvhZOqk1NoTZGTnZwDrehY4zeJfUbvSInoB1DIL3jdkfRIJgAfTr8OqkV8Yn5qiSFTA/+lp41Doyrss8gEmw1526+7YrDZNX3qy36hG9Bc80z1Opeh5IMuBQ9Ntw4NOfxrIXTcgu2BNdHXbK8L+65g6PKbst1rTRw42ubXltkz3jEW3kXLVCrudBIGmAV6O3wpOnR0jERB4jE+/8//5kOFlLZkfobh4jIqo40NrlToMkPK/J/fuQzoPJQJ90pX0wGQf7ogvDIkSxM6XJhCyC/dEXwxu+xuS9/sxjtKx0JM6qXaJdZktLUu4/pPrw4qKJaQt3hZENcCf6Nrh1YGnkCqUzZD/8Bp0zdz9FfuZNs1k8mqieZjoq5iHNhJfEfqlbcy2M+MJx6IFwSYv9itXm2iQaTkC/Drel3Gd6q72Ye1OyBsc7e9JN1cfcnSwf0vswd/8RvAX9IbzSe2MHn6weaflrn7PHNvmsTSe9mXffd+zO6PCibdtnxfQzD2k7/PFydGDOhWAyqYf1W/TxcKCQqeueClUyHX6DPg2uc50b9iLtMuO+c0lBxi1v2qE4bdS+BQ+pHTzfuH7AdnwIuQi/RneEU/vzJR/KnCbH4Tfox+DF9008G015THKug5ehqA+1nq2RXN9TR6NhmTGegldXBJDb8Dn0W/DnHkX9uWFWxAg+iW4Iv/3VmRAw7jyTI163X9T+Ch35w9utUVpHU2FhFct5W/d4k3J49BDbi+Eqs8mF+nxnSSw8hP0YeEmI9rZu97PMZqfvPRLbfWnqHoHmlJQ6qgTHSEaJOgd7kaVwMro07PYwxfO5pS0xg7PRTeGa5M3ifj2nGYVMvqxPN/3oy0OPG2TO19ElsFyETVuOqA/ZAL9AV4R1Onp6Tp86S47Cr9EN4N7Zm9Quu7owiztmWN6bGEAnmMc8TNlZR+fDK3FfG56MrgVnH9K8ryF/jOjBoui68Lc1JfPUPXjMAQu1p09eBtAZfRtH8S2ro5pwblLCbaeqy2Q7LIa+FVadEeqTP8uJcPvT0ffDm5Vf5Uyvc2WUL+WnG8UF0g1rGR2voVqqAq91HqVix/Mg6n91DfjSPrcz2vrOZA68Cn0u7Ly2vCNn8llm9eO9p/T3BVFDW+XM8Y9qKQMb3Cz0fHXJgRyBT6Afh9e+y+IjIx5ECD6Azpm/fp+BoOtZ8uON0IRfeUH09JLS1eY5tXQIrgyXzBr/wY4MwGbow7B8hqTflSYr0gEfQX8Dt563FDGtMicb/a/pjLMIpuPz5aW/u9dSNXjI0NS4L8+TLIbHoC+DwzOljzj0XSDq8Dj03XAF7oeuW5YoJh5CM9WiZ1zYX0uvwSv2zO03KrxCDOBYdBN4idChNj/iStLhf9Az4Iq2qJdJl2eQ7Yr3ekt4IXTR7zlFzxVrqSbsVXX2+E5FX6LzVz8Mz9c/E1hjYU5OwAvRzeC9ZnVyjdYaTE03/6NexVA6eXhOrZlgLW2E9V8U1L9c7UX+hUXRP8JjhBU3XltuSd7AU9Hfwi24zyQfSJX6GEp/jJrb+utpDd0IL/uq22lndJEcgfvQDWHtHVJSa8+cJtrwIDrnVBnlJasPnSXFw5Pud2mFUZuSxODDpIZyFpdzd/uwxYckw1boqfChO6/4NFbzSDlsi14Ga951lMxzdCSJG+09VPnC6aKAZ449fjU0CSZaM/WnbnQlhfAS9ALY7KVjhvF+D5IJS6Fn/rV/3/XVnui74fTZoUkm3kdraD58sKpn4U7qTurhNvQGeHDfQfuoZh7JgJ+gc9bBfkPoi1EO4hHU/ezYvb2ba+hjWNZMwSdVx4c8hT3RX8Ie6iFRaSY8Ih7GOhB9HjzW0fGXijaPPDsc6ifU+N/+Qfu5IaI1tANu9qswatznSr7BPui98MYpyXcmL7pEBI6w9kUXggcc2Ps/pTRmR3pcpcEqnz6s7KymA7AZX7ycQPN/vw/2Rm+EQ87Jbym55EFew77onAdxf3bKVpnIT1fpc9uvWxOrqqkELEfCFloVeJAfyayb0PvgnDum0sFSruQw5t+jc04p1+lfZWlNGmUX55nHRtLNBoe2aEZW0xa4bNXZL8kqnqQQVkGncJx/rbMDvzuphhn0WrghR9j3+pnz5EDWBHVlrSgas7NS9Y95NdWHddPU7r0k3uQEfB3dDHbfFCKnXskj5+Eb6Jzv4P1/BHS2GedF0e/r1C/Y7qmmowVZv4mfNnHtRz8yGf6FPgXelyv7gV/Em2RgvwM9C/avTHt39J0HqclWivCwuEb31txdryBRTevhDtyvgjXQuXnJDTpfH+T6kXZYC51zG/Z9D83+kCARTZP0Fwx//FpFg+BZGzZGefaFEGP4GropHNk981Gc1mWSCd9Ez4ALbhtcqHnvTVZNvMGMeEXTZ3VByZbNVXQtbPNjfsHlgz5EAK5HF4ILtB5fbnN2ICvgJnQFeGBYKdtylTmJzVrk5rQ+hv65oj5OOamKxsG2uH8fFvBlez4s/aKvKOWPPcmG+dCz4Hd640b5x9oRuQOpZQPdMVRWnf/EOLsqKgsnvW7Z81M3gITBm9BD4aVLFERalW3Im/2sxdFfw6tH2PffTa3NC9KJpZ8LglRC9atoLnx16/C3RdWBpAb+il4Jx0RPkD5wIIB4wZ3onnBjZnC+jZ8XuXArOsR5wnWau8xB11a2itrDN4vbpIWuuJN4uBA9Ab6G+w7wbXQnOBzvs7hraWledJ1eum5kc/BPJT0LX3/0fvi4sBUJgf3Rr8J6x8RV80T9yVTYCl0ULlqReymoNoxofmsLWDgtjh6caXr0e0cl5fyuI+/KwnPKRBlWQ1eBp2sIuS+b6UZyYHv0XHh19Jg2O+tQcmEvf4Pe6TjqPdcr8mN2JXWEn39Toz06psQF9kS/CM/C/SvwZXTOokevBYu98SfOmXJTAqviaIZkSvNb9//24Se4nwMXoufCv1pXe3flexIG9kdXgX+OBCnP7LtGzjT4bJAZ+u/3b4hr9zOtpOfg4aipP9METzGbYCV0VThV7Pb0+RYeZBe8AV0Nnl5ONZTlrpIfhwR9UnTiqUTIqPYEpUraB/NF/r7a81ud6YcXog/Ah15UKHjKupPhvzpn7n7ge94TmZx4Oupfw7Z7QpU0CBbC/TB45D3bQ+GBfcNjTzU5kcewGPabYFHcf1WmI/elK56+PsVba91dQTvgr7EJMsYe85k0uBqds0w/aX026EFq4Rb0avhl/81CK5MgMrr8dlWxagI957uuOaWogo6Ba3z0hM9/NyKz4Qvoc2B3/R0mvvoeZBxshS4I83cd1WwzDSd7y0VMwqMTqEjGF6uXgRVUCybXw5eFOFsTrb/6fvjMqvRCm/U8sg4eh64ERx9eN1v0w1XSnjNRMLAxgQr3xZum21ZQzhM7nLL2Shkxw/A0dM6bH7z0Pd3vQUbl/n8fDUebC6qtUI8lx75/paVyN+jwJMGssTsqqBGcLzVVpmWOM7Md/oW+EzYWnt4es9aVqP3V1WErp/13y3dGklT5xxf6vG7Ql9Kn+w/NrKA3YUO11JFhMWsmA25Dz4Rt04Mknw96kyNwETrnq3i/eMS0z7LkBg1uf/l701A5lYSthLZMunPnNHMYTkI3gGVLjX2aQ4PJ93DWzuic+eYsNVNWvk4G5XQ1amYm0h32pluKH5XTIdgb93thVXTOB1vvVOjcDSPvYGV0zumD1ZXe1xNJSsm1TDObRPrv5B4f1bhymg77d/LE3O+fJ47wU3Rnrk+9kd7zK5wMwPxT2N4P/4P7J0u6GttvJtK7o8oUNvLK6WlYad+FLyLX9jMhcBl6GEw6ftC05ZfJM/gFeiv8acBEp7k5mgiOM/zUy59Ew/KNhj4dLKfj4X30Y3LTttPkFz9rf/QB+IbqeZfTJ12JAubj0DnfE84uNXscQXR2PeMTMkqiB2xG11xdXE514R9a7PuPwAfRD8P2wYVnHL/5kqadrOejc87HfcNe3piqiCQ6xHe/OHtiOeXszbe947CKB3GBhfjZ7gqbzen+E1vnQ57BS9A5V1erylolXSUGuakHDH8kUTeN8NKAV2WU85dpX2W1Em0ZG9gb3RY2EL+g0T3BgejBF9F14c72WwKrVf3IVOva5H7NZPouzKbcMruMisCBY+82Lktbx5jBAuFs59yQKLrKXN2btJ1j3YR9zlMfay+R0o4nIkKDbwW8kqnwq9/NieFldArcJxXgp/HoOFMgyPpTO9vz4e9m5pve77chRphfjv3jsFjD/JjOgCCyU91CTaEzmR7vt2+/b1ZGt8ELW1+1rJFzIfLwIXTOo0UsTVT8p5ItsAk65znYd/Zrz9JVTaF5Ij/e1ymXUQd4Kb7vAxeje8N3eUunB6/UJofgHPSjsDT2Bbq0i4rsU2jDjV/vpCTL6Bh48JVBbfcCT7IcfoO+FB7tF0i+ebmQg3A/ujasOeHzDnmV82SFu9I+3pMU+q59bod1TymVg/egW8JD6KfgWb5FzY364iQGnvaK7VGw/uUdjy2/uTGN4nPeqa1KpVKztzwvKSulD2F5382JF0YimEp4PnopHBv4cfnsMGfGAxZE5xyof6xzbI0mEV/30kLkZCrtOlCctCGtlM6BnXnzzHpdrjAvlFg3oD+Hc0eJXjaS5jFOmBfWZjvnVVtkTKY9sWT0th3c51aVSsfod7g8dCqlOrAX7u+F/+ixnXNDqixRbAlk7OFJ2Oc8N+b8C82yCOaPVoPid+mbVNVgROfw3lI6DDvh+yPwJvQhePQLp6x1sgFMKSyLzlkS90VeGXWLH71JpywSfjK8upROh58P3l6YcDyQ7IYXoGvAJx3Hjohu8WVetLP+LcX2NnivG9O1JyOY0bLWO7md3KSL2yI9HwuU0v2w6+meC/m3IpjjsAK6MTwtPrJVZYM7swVegL4VHtBIcf6q6casFdDsspybRqXCZJSSn5dQZfjmoZSJ0jnRjCO8Hp3z0Zeeha0uHoycIGsHdM6J2LeU5rmNP5BGH2h9VztHS6gVLJa3sifuSDDj9FfnzAx8Pny+3YURhSPQp8NXSFBYSLYroyibcP9XbhoVtskoCQgpoSqwC7o2PA2d87/3jou23nJlHGAJdM7PIn4Xnrzrw3gqFH19I5pO/cPNlTNOlFAfWPiGTvHbPAdiCDuim8CDBzu0RW0uMxthC3RVOAjvM+z8zP9LPZ12+WgWJO0uoaawed+usaTLj9kAN6Grwm9+r3muGxHMjMDzrrCds4KuipmnSzwzi7+nLvefdJp9b2y1iGQJnQ9b4P4C+Bb6Yni54sKi3tYQRgJOQZeElUtLVeIHY5i8RX0hVhP/oZadd1uce4sphV1cNbyD54WSCdKsL6NPgluSZUoTU72ZcZhfgM6Zu+85Kd9hzPZ/aHzdE17Ss2IaCN83qf7ZuvMIuQGnoCfDYvYPFFWrHJifcDF6P7xP3L5eck0wEyqbPi025R8qeD6+xDijmMbCg16zNUMMXZloWAA9DlY0tq79p+YiEwGP2LOdmz+A++U7ojPXCWVQiYWWIwvdimkDrID3h+1kbYIeCT8QSr+hPqjPTIaXoU+Bx6orPFrfHkYidIaO7t2cQX/qyTg4mxbTePiKF33eJKrFqMON6FrwCY/n/dePnGHS4S/onOuxHzmsfrQ5MYPOmPVLJXR9MU2Eq284Nq1670ac4HHorrDZxvolqd+lGP+/eiDcjP2RpKgjegKZ1PBp2Uja5GIqkMy6xZP9/jv0vegfYdnpX1f3n3AmgZzRQ+CnuJ8w1HVwcFMmXaDWekfpF6Wp8Bj5PWLqz+PJJXgquhe8Zr3SCfGxGsyOYdba6OrwbY+V/EW3IkmjbqOOdWImbbLYNJBWQ2kT3L3e8dnmq3bkE/wCvRvuKYyaMzXNnuH6M/TPsGntB4X1lb7M69wC3c8Ct6hzwE2Vedcp7YCHcf8N7IDO2XVH+2knybXkDKyJbgVfxH1RO7Fz4ptv0ZXmxUdf8yjlfMbvLV/xx3DiAR9Gd4dtZkxaUfI7kijYsm43Y/tyeEGFS1aYoCn507iFhibfoiv+WXg9R5/SIbgrV1qszj6OzH/MmkHnrFD95FUwiSEq8DZ05vH/70+JUPLi8WfRjV95rzzkKZ0KX8T3k8NZf+9mewqs7xty8eQnHxKM+WjscxbBftir3IQPC7LolbX3d7uKURoBl+qMiXMSsSI/4Ub0Prh+2vtmm0RHMg9egi4O23U0x1oE+5LGoYJtKdpZ1HGORPOJ1iLaAserNdtN3HOVPIat0JvhqVUWX3P0A8h72B39AxyI+5/nlP1r7J1FM6ofTnroVkR7YfupEnvPLYkn7+EQ9E8wn3FbkEirF5k7l/VDdM61IklDr0bbMzdSCoXFkrOoMNNtu06ziKbDFWJLtgppqBMeXKfCdh9YNfZUnHaAPVkOr0XnbLgwKL/tgDtz/UIBn96zLCo0MCnL9PcDmgRP2S721uUBj3AejX4TrrbevcE5LYTEw539bE+As1uP0i//xhJt9fw/14SzadJt+Y9hyQ/oUXiKRQ7fdvkQxhrOQ7eHExdN+6JhEUGq4AV32M55nF6n9Ru7RGJ41NLl2tJsOtzzvs3e9gE1hzVK3jl2L/NhJsCn0CfDQo0Sxz0VPclVeGkv2yNhoz8HL34rzSIJ11+YmhzNph+fyLufnf+ApsGaezy2vKxxJPfhH+gFcPXqW1SmwI+8gRe1sJ3znhUBW2JdE0hHxy4t+eBsWnbfXtr8IaHvYIuCwyaP5kQwS1+zlslj+zL4zo5BucL73iQY80rY5zw1U03Jvy+QbE3sJc5Z//39R+IdiqMJ3QUHxdyMVLRzYubAuuji8JbWYymfhM8yhnAeOueUqMcNm55eJpsThsijzmwa6dxEL+0ilLMr7u+Bs9E1YfOlabrd/pcZe/hfdM73VJsnmiwIYk7HCTyQmJVD3/7mE9j5q5BawMXopnAbuhn8nOlLdB4fwkTCCn/YzvllxG8BNeX//n/N+ZRbqJhDeS38S8QqCmkSfGLxLl2V81cYt7msm1rZ7gpvHdSp7+YLJ+GYt8V+BDwwOFPNdF8gcR91Ty7EIoe2LNdPjLcupB7wAfdCn01rL5AwuAedc2u6hEtRRSS5CvejR8GDW2UN7RRSyL1O9yTz+By62jNTYtn8QloAd+P7WnAAj+374DuVoz0HXHhk0zvWn7G/AdbF7/8f7KQxew==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAANwIAAAAAAAA=eF7t0d1Lk2EcxvErwxBy4YnLxCyoLMKlgQcFdRmuoFZpuqT0oLK3qZQpzcLSerQ1m46YZb4hoZnlC2U6wkIraGVLRhlhSS8QBEnksmgHO+ig+yf+E8Huk4v74Tm4+XxXRHat6t0Q8wRaZEtXRQKhZdxwYCOx9JUzq3cbEZXVH5NuJpKdy732XGLrl6k/KXnEpelbOdYjRFOV8dTfAuJBcO3oyyKifEeEzl+ivn9yxTVYifzFTYH9p4lnvudfTWcIZ1ha+54KoiElqdOoEZsn1vT7K4m4Af/3ngvEh2xPWflFIuE+nh6qJoJDg5rDoe4W99DPWsIW7plKvEw0psNtdBHjukWZlXXEN1/867ErRHFt4cS6eqJHbzf7rhGWF++G8xoJlprHdc3EsmNew/sWYnJu0ry3rUT/9IL8yevEoDuY7Gwjdv62BB63E8aRNwPzOwjD5zFLwU0i42Nf9I9O4qhtTlj1bWpF3SOJW7q5fWHUkt13olNXzzhGzDrqCexSjgZikziuVyuORrXiaCIixDFT/fdLOWard4tjDnFPHPepDuKonFvF8TBxQBwt6i6OhYRXHI8TNeJYTJjEsWTW8SQREMdSIl4clX/ssHIsI6zieJZoE8dzRL04qg4PxVF1GBXHKiJXHG3EI3FUPeziqHqsFEfV44Q41hBD4uhULuKounjE0UXNJI511PaK41VqseKouhwUR9Xlrjg2UusTx2am6cUxPBUzJ3g+tKEN7f+7/wATpLqlAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAA4wkAAAAAAAA=eF411Xk8ldkfwPFnhJhc7kiknxqVMNkjle7hyDqhbjFkKQbtDTUhWh9KlGvJMqZNwuheqa4WijnznLG0TFNRKipLr4sKSVmiNH7P7Tz89349n3Ne33Ne53VdxM9XJhWUOdSa83U769bDkBbbOJPCFoaqvlA+007G5PJLTnQovWeoSv+ab1lfyPvOSaHwE0N9Tlg3ukTGOKT0vdPSV8AUddOnm/VA8CrrK33KmNr4577XrDv+1c9bj6ZgajzRR4ldv33lnvKZrnxMGQT7+rEe+aZ3yR8XNDEVCsdGWA/16n7xmzYNU3FmXyYLZExBrf119306mGouqygCMiZgUltCWqcupgYsLr93kDHzC2P5Liv0MOX0zHiqk4xpfeXYLqqYhSktSaG5m4wx1BBK6zL0MVV6O2OLp4wRiL0PLrw5G1OTQ9rfrmbX331SajY2B1O3rPPbAmTM7o0/x91eYIApuit7Q7iMyYtoqpizZR6mHsY9EEfKGG2LPaWBBYaYjjoO7u6VMbYzRseynxthWtfeuy9Fxpzwli3+MO0HTNdmPTY7LWMa+yLw76vmY9qztbFEKmOup6emStNMMPXtM+rwTRnTtHxLWNg9U0zb1yx42ipjPknSU17wzDFNV58uG5Uxs43qU9yFFuz3NWlzdDqYrUUK67Yst8T0Jv9L5os6mG3SqtVP37J2ax194t/BaL+Q6iVkWmFKZcRC50AHo/jv5/3xixdgSnz2fmsxu75a9UpPG+sWKoHf0MEUr743/DjZGtM2U8YOfulgNEsS/HysbTA956lIybSTqd7gvCSujXXN/LMrgzoZ/ct1lT6pCzFV4XFANa2T2XZFOH9QYIsps0+Jt3An4x24NeLnPtbKrf1Kg53MqVGJUcHZRZi2dYiaZ9TFNDNnOst9F2P6b5uKTf5djPHqouhc3g9Yc3//O0n7avYdsX9BSmjNrqBUG/Y9fLVgBoJlhoFmdgPErTOQ4H/HlfUnfFsXibQcqzQn/E4AXoRFa0/m3K4XDqBbg53KxHe0CJQ65v5jxBmeD0XJdi8D90741zA0cu1OnP5SYjomAo0wI2+sBNx6aIeMM+7oNADiEJUYYPk2MUcfEvMf0aDpbk+JsxOx1DMZ6SVl9oS6Edd/Ools3A43nPXk9l+3E8UqxPgbexPr5x4Ba0o25s0MJLY8cAz46NjuFIdzfbUIGD9ePdIXyc2jIgCKPy4y1d7HeTQKCHcXZNqLiDPiTwDPzfsUD53mzme/FwgdVaWTy7h5O0+ixY2KAd03ufXDkUDqWvPRqY1YHF4EtP2UXhh9IsaqeaB25v3oQp1Bst/cVEDT57KrFhHnf0oAaqq3NuwIIJYm5KD734e14gPE4rUFqD+1uez4OWJaHIksT/febW3gHBaFtPL3W2z6j5iaEwN8/EQJCmZDZP+hTHC0aFfGprXEVMBWpPKT2XfL0jkzNKr/aeHrudWcY13BrHmn248OEetLMsGczy5rm4yHyXlajoOm7ql3VgZyPvcbgN5WXoKoLrLec1jw96v5Cf690bB0fbCDrKGR6fz6PifBr98jdUF+rNwDDl/dNhVQCcPPPJ6qQXHsa41LESNMRHe/seFEP6INhD1yc72mKqACEs/bsX35T0nuOxuVsJeHY4fuRC8wAO1fzfU9+oCSwFvGbH948tX3OTs0cOgLmDllom9bDkKey831HpaAupWkoMv240fFk8KTtLBjr+SEwkS/0Af0v5Wb67XnItq71laP7eHwQKCary4OLx55xpvop7gAqkhurn9oBKje7m5Ptp/kczCu3mAW1nu8sNJxond1R8JOuUlPv3FGtDRT7R7b29aG/voybjbWPi76Us71tOVGJM2Vm/RwzypEK++Mrm1Sg+Fe1Tn7X87FFQ3Kw0eWcv3sEGRZJzfXBwQB6mrA4+BnatBCpcVH+KMhXlbU3dIsID38ZzcIOSg36fnL4wFdU/nowQs1mDItO3drmTF2eCVedduem9/dGgn/kpv0+PCvgPIbWOXergY1/TbXvNE1wc0PQ5tjHbl5GmMR1ApjzZ0XxyBqcNPf4x1qsDe5/P3rBDM8f2PUXr4L6bFDBhK6y83d5/EdgKrwSjTvUYPJae66ol4LLKmUBlz7kZunXIik0kusuXkU0wG9VRygPsCeN/Rtzj4TK7zuRKB72kquzzBC+V5BrLn973kAOgtVN4+x9z+jPsvq5wXYIzJ9S7UvN0/pIQTPyU36jOoEQPdf3XZXhQenJ4ar78m1xhVm9g9jg0kf8qYQYEu5ufNqbUH0pdGTM3V48PdTwVnR923wuuXmWk2buftXSwD16XKTfntoIqJrXiWrGvNgtGSVqYOyLR5fseuFUgzXbxaBfk25SW+pmoQo3bM3bi7lwQfe1itG7BfhLs+PewwPkT7fIRvUN8hNev2cVIQfFX9OXM2D34+eyaqJXYzPIy+JbzZ3P9lBiP/7Ctakbxr6A9EPrGbt2MaD1wt/iaq7sgTvmnoxuKyY9Pqzr6L2KrlJ755YiOijeUM3jvDg1MLK0wb9drjKO4xaV0X6eqdLiO4JZc3dv+giwndOXjlWwoOTf1PrUzUX4PGw4isxD7n7FBaikMEi1tx5m0sR5Bn76j3gQa/eGz1nfgE4K6h16Xe93HtzPQdgl9ykD/HOQ/CIyZuYjzxYrfLLfs1L9rgo33SvvYoi6Z1SwG2J3INknkhfAGMii67NVYdpk0az0z44YL5GZKSKEenzoyRgZKbcpMc6NKJjChravNVhkfLbB/qnIL7f134jwp307afOghHbl6xJn381HdHzzgg/JqnDNZTpRVPoiF0yLk6N2kb67UIpuh4vZc3N02sNcFW1wTCjDhvH1WviOx3x7typEl4W6fubalCT53TWpPfxv4zwYMBYzWd1+HL2E5GtaBlek/tb5bw/SS+su4aS9+ayJv32yxJENT7xXbhUAyokzbsVYuOEMxn7ltxXpKcaotEmsYA16aHhRUApDYao79eAnw2P6UxrdcKigar4xdOUyPxj18D0b+UeIvcTVwJwcKm9Qq0GnP78r/INR5zx7jz/g/86k75eWAHgwkDWpM8XpYL88yZiH2U+HFdW7dpg64IFQ9mnFWNIT1FrkdQ0hzXpoSQGQF//MsaEDwvevQw06HTBJa61hw6ISU+vzAIZlnJz81yMBZRVhfKHVXzonFFyuSTHFXfxznncfs7trx0OsEcxa66n0wF8sz78SCwfzn/4/MI37m5Y2yMz2ktDmfQfwtHruizWw+T3s+QCyp9iS2mc4cNH8XvWm4654YBdH53DlpGethCh6X4jrElPp1xFtMjt5FAtH/Y3nFlrfNkdr9kh/39LelgsRvo6lqy5XluMTlyv+q/pcCj+P0obLAg=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAbwUAAAAAAAA=eF6F1ns0lHkcx3FKLmWZGV22LblG41rEYppikDuTbGFPm5SuJ6vZ1ER1bKkUZnNEqenm2EqWbWMrngmrVhcJrdvSMG0JIZmJnSL2nO15vs+Z7+mcnv9ef47z/n2+1NQ+/eWnmzMCGOJyyg2Tp7F3vbsDFpZKss2KW8ETrvXfm8hfgpOvsJq0N8jB1kRQzI2B92AWa340M3VSBWW/IffqolhtcESGIKHCRB+sp5cutgo1ALOadDZ4Jc4Ch/P0y7m6c8GiiFzH7APG4JoxF7WZjmbg37ouC36dZQF+7mtxcPdCNtiw5Py6I/tswFVXEv8ZG7cHFznJdu5rWwS+bnmrt7HOEWxZweo50+kE3hd0+3S/jgs45Pe82BfBbvTvm2vCyytaAk5edjWFz14GNnoSVJLS6U576rXNOi48cOqYnSfvnCd4au1NVhDLG/zWNirT+8RysNNA+EY/c19wZ0uKurDKD/yhweiUPDYAHBzbOtrODgJrJmQIwhXB4IdqkorqGD548JvROn7ECvCL+z+MrQkLBet/NahUX70S3Fe6/Tv+ujAw/qxyVXsM1VTtMaRMtUcjN9UeV6AeW8tUe5QzVXu0Rj2Gox7VUY+KRtUenVCPe1GPEtTjOdRjHepRB/VYhHrMQz3mox4NUY9xqEcu6nF8jmqPu1GPc1CP5qjHTNSjPupxFPXoinqUoR6VqEdf1KPWZ3p8hXqUfabH12SPI6u7tuUOKDlq6DPNt7xiY7MC+mGIFvzvOIWjYvGdZo7hCdVefW7ZsxYsLQEb3iZ9fo/r2yl/Exc1VHsOyzJ1yEmpB2/K/uj6mrWT7OcPE8vR/vqkb7KwW/oMLCBdWTgizXowQESgfRatCXTdHj8ATiLtbh54qqyln7BF72WXwFusHT8CdiVdeaa8oVjwjLiO3pODzaovpz+eALdbf3TUsSkXeHEyjhS9t8KY+Fx59BTwUdKVyW/5TmbdHEv0HjVOOEt9iqaB5ZmkH84iagraOVz0Xm8Ir3HTNjDBNylLyzxytBWEFnrPMW+U1ZKIGeBgyky29xKpgniH3nuP1FN558Zs8H3K7gWGC+xFBA/tQfIlTl9J4jzwRsoW+laLFc3EIbQXGrUTs8MaTcDDj0jLxKZtNt3EXbQnq0RPIzvOmYO9KZsKXulufUFcQnsTFpLJTTtrSb9H0rJUY66W6XOiBe1R2Ka0+zvrrcAelHVSJ7P7n3KYaK+W7t8WV/y1HdiKdJJXqyja/xlRjvZMc8iAV9K7EDzxhvSHLU2X/+ghfkF7N7NFWPO0wQGsS9r4JyPx4d4G4hraw4729fLNjYvBTZST+o0vDT4g8P1+/Gr/yh1DzuB7lCvPM5xTmoi9aE/9K34uZrJd6b8n5Tdrq836BolAtLfGGQWOWxI59O+hnFKX2Cb6i9BC/x9UHVkjPN3DBROUoww827xKiB/RXns75HfFuNB7zaPsb3rYc/YwxxDted0B8WmDYx7getJJO2TWetxujhna+5NZiT7be2lfAEfGPirZyklH92Cwedrd1FVedM+Ub60VixN7iC/QvVCuj2o+2kB7nPJD3Qf3wkeJf9E9qeVl2CVH+oCbKXu1fJugO0Y4o3uja/EkMmeINpM037Zz0VV/TQm+R2fnvbzem+0PFlP2nJEQL1SXjKJ7VaAo5570DwTnUz7u4SazfMLxQ/csNC0g/U9d+p75UjZ56XZVOEzge7cnuCA9RxoC3k06aVcl/+AkPQm+h3UTtnniDto1lJmlI4deMySv0b3MKtWo7WqifZzy+/ZG9vhkyXN0T2doBfYRjbSnk2bUdndEByg5+N4WMi4WOrTTLiDtfvxMVWGommSAvMf/AZP0yGc=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAGBEAAAAAAAA=eF5NmHlYjVv7x3chVJpUJyoqkVJJ4352S5rnmeZBE5mikilkG45OGRtOQkhEqEQOe+tGlEpSvU5S3gYi0pEhSSX6nfdZN9ev/77X57nua7WeZ3/Wfa93RR1iEtoeoOp6uvPQ9T4LDvs3QVh+q8diGuequfdHjoFogi54fTtS1vx10h0WW77gqm9MLrocNp0IxFoc4hzmk0NmNbb5xSrIuwWun3VH6rpVyL3bX+8lrnUm1Rtuv7waO4dyvixTH5g+s/WHBaTr3rz4/YQ10QkbS1ZO1aec08rVt5kkXfchEAqy5p9qErMmN11Dumu9jCgPm8D0Vz5kXu/3g+vW+lVhDSZEzd5d5GioGeVqU5ihK+Giqq1LYfSdmOPi/caQ3tvdt2e1OeW5EsKenZfqj2oGwfv8Bfmi7wgoy9ZKnd686Bc3cP1673SnKyzqeL9kqcsCKAmxnTiuworyWEVh8vPKmtO3PME+Uzv9Tq0DOej2sOztAxvk6sy6p9t2RBgYgLXPet99TY7kj0qtaUr/saP8uSZjpnK6PT9pMYDYPrkt7V3mVpeObchvcaC8Zryws+abX2WrM8R/SDcWKdElI4KSBUXPnfD/G+Yu6U0ulX7oBmO/2V6SGSLkXMisZve3Lrh/CkygQ0dxU7YD7LgoNfvwHoZwjpzVKu53w/ejwMzo0fH7HO0Jz4pXSKb0mpGzLScNPo96UF6uxjTyu+Z21/tBTrdp3tGphrB8Q7ja7PFelG9WF+5qNDx8qsgPTvocNPyWY0LUVcQ/xYl7Uz5Jicle27x0QpMuIdsqa2X7LcgR/6TwRNnFlAvUmYs/1lZsljAhr+O1bHoi55DEkqW1gdOW4Pcxxh13IqB9y0tt8qMho6naRI1kxoxTX6DhQ7m/CJMi/aIgJW0OiJZUZ9r06pCaWv0uFV1fymUmMpK3FjoMF9sRzuC3oMF+G1IXtLNskZkf5UrzmZ76rytPxCpC28qK6Wnxc0ld2sP/go0/vh9x5t7BN/w4LX3YYtbyt4zvZJKeBTcFXgGUn5RnPgypJQoDeCSx7WJ05lJn2Bqz6Zl/eCDuD1d4ZtvZAZMhH2g60HLdS3IhiDlKr62ID8L90RGOLD8wYcOVcHLJZahyrKS8zDCbPJ6xN5jyFcMCRRFrFdl/v1/Rc5sqdh+zIO7KzmVpx0Pw/9Nk1k1I2/+xJZLwfpxv3/abF+Ef9tttXRqK368F0x/8ODcswQSSUpdvqUv2Igs79uf4PlpK+UeGMbyY/k9ETCicG/K9vaQ9iGz8XNgzlBBGeY8TUy/4R3dJ1AJozDjWkt7sQ/KuRXw5Nj6c5XxJeyYvvzEu2jUcnAf+49hyZQ7EnK3oz/2TcoOP84XJjbLq6RwbML5w6kFTszPRcwnZoDQ3Ar9PHiMf1+kijLQkYs6b5dLvRpDL7X9flQTkPd5Mlp/GhZmXfID4RCdo6Swj3qZLRfd6RVI+159JKuqY/KwvisQNyTlf++5PUuJPqqf0IPf0YO7LyPeMDkQRr/LTWeah7pAnvzdFcWcU7o+T8EawqVyDXShRT7A2CoheQgaXy3hrKS/D35cH8+lLZV/anHAYoH4kOjOoHz9h5qTX8g/uSTO3oH4knuhHgrnqm572oKE9uUv9CCvQj+hL6H+imqagYkfKqR8hMYH68QbmK0f+TlnE8yRHqB+hZyn1Yypmd9nXgsz0EHKe+hGU0Y/ZmF2lbgg8VNzJWepHENhRP2Zi9m+JCdq/xJMMUT+SSf9QP3ZgDpX9UCdx0JugH8kV9GMVZmHbwlB9VXNiTv1I3qMfVTFvuz/8tuu4F7GgfoQhV+pHRcxKHob95qML/n2/rB/BG/0oh5n7xniG+FcNIjmR9WOZO/qxHrOM7ui5xSd4sIf6EcSE1I8WmLf9sL7snWULHCXWj3AS/XiN+hKcGwvDTMIsIJH6Ec5lUT/yMBsT/1eVInrQRP0I69CP6ZgFfa0F885wIZf6kcxDPy7HXK5RIlLIM4Oz1I9giH4Mw7zr7Q3zz69DwIL6ERTQjy1baZZzPU8siyKhg/oRDqIfszHrtLpfnG8XBJxG1o+Qjn68T30JrS+2Xy3JjIJPl1k/QhD6MQezReupZzGaESBK/QjewdSPV7/QrKGyPvfhbyvgHfUjFKMfMzF3TdVx228cAQHUj3Ab/RiLOWBf5e6uw8thL/UjuYp+FMM8j7tnS4FEKLRRP5IBB+pHb8wnD0Q67vGwB10e60fztiPUj6ssaD7vO3Z31olgMpjP+hGK0I+RmOPf5ysVekQRa+pHCEA/dn+n+aikW+yu+cEE/QhV7dSPmpgfS9m2ifDDCPoR4tGP4zGvqVo2UB8XAleoHyEV/WiF+cj67ebHH0bB88+sH0n5GerHTZgzmJvP5/sEEFPqRxhxpn7MK6C58bucpBR3EpGkfgRx9ONJJ5rb9k6Wbc8OIgz1I2xGP15dQnPgwW4lLYeNsJn6EYbiqB+ffqV5jdLnRwfbAyGW+pHUox933aHZvXNcy9N/+zN76kdoiqZ+rFhPs2ZBqsbV42sJ9fkcZoShfvzK+nERWVUyySREjAuTNqx7MGGWDexvUezVT/10mz4/Xjhmby9eeVyNfE9gOQntpnwM8+5LI502weZYf6KwaoT61YX1qwoRnH829M1UiVwsFdzefPy1eZ5UzZDDn/J4vjznqpSK6CvWKpDtlJftR16IWcF7xro/TexofUs1IQf9XMv6eSasWF397bqOGrF8vjF1npoViZtwP080SgPrizHiyt6JHYraYEQ5vB1PuR7m3HXRNTWRLrj+mcLl6PdK1u88GLr+9XSK1hxS+qXFlOy1J/oXVJSjt+tgfRnm7jLBfZd73lBAOcQWUJ6Luana502FsS+tz5cRXsXzgZ4XhrDmwBbxKxXqJO/FgOZKb2tSF9zruMZlAdaXZYaiuLkZqgGQQznMQX4A8/vrDQpPJvv92v+9eL7Q88YQMpbXL1w8TxtEBPaiv78nJLc4o2eBvwnWn8gkDz5Y9dfWQBi4wXJwQN6F+caUF54Dqz1x/SJMJZ5PF9nzaTaMlUtOfnJfCxSDN3Q9NXhlvlVsU5/UMgbr9whKVZLzqmTCIDOI5WV5yG0xq5W9+3tY2wvfrzzzFfv/QfZ80yTcle8uKLirQKJTzqAOcME4eN+AXPzCn/sjvJnl2Vvh6QMxlBNd5O6YU96XvVkdZIv7I8b44/nYx56PusRe7IVO1IgxKFvLfC9RNgM1mW33LtyxxPryQoOxbCbN1AvkKSdrkQ9a0dzn+Opg2WMn3J9xwkd4vpqw56s6+dwVlWzYbgSLnKMaZjrrk+FnecEbq6x/fT89KsH7YpNsYB7lUIxcAnO+3KSNswpx/Xx5YS7OLzz2fDaDujVWO4uWLYKqBPeEfA9HMvXlum7+I1usP4t5MnUTz9ndBW5QDuVdlB/CfHdc51+VaSpAn28TaOD5zmXPdy5sUytQlOfyIHDnLZ6IGkNCNZTvdTTZ0/phU5mtSWvGF1p7QSjl4I58NubKder+dm+kcf29XEvsD7In/a8/eFxmpZ2rkWZsDeK5Zfdb2lVJp5GE+4U2R1y/KNO9dtZ/ZoIljJ5iObQhB8wvkbOPW04UymN/kcj2FypweaswxmnIGV5WV+VNKjAhSWFd37+/csb60xlrjZvVO25ZQxvlkIG8CHNcQN0UaQlnWp8vK3TE/mSQ7U904YxihUEGYwuO4dorPC3MieE0n80/+lxpfb4aI5JXJBWy698+iXL4oET5lzCaLaLlJmyvN8L6UkI1nP82s/2NNrwuE18d5OYEfxWWZe+/wSXDnR/ONn51x/WrMsfCHEr5Ed5whnJ4hTwKczZy+nwzd+Ap7Y9q2f5IC97ELpgmucAOXmtWF9wKmkjGKy3199jpifU5HHHeVMkSb2+opxwkkadg/p7TuS9qy0Jc/zdBLvZX6Wx/pUEu6r1Z2m/hANP5ZbskXUbNSbXLHpdknE8577ir/jALr21aBCM7WF7GQ34b80vjlTtT3uL6+RLCAWXan/3J9mezYZzzbuV5oW7wccWFpL0OPDLukZ/m4AGcbzkaTFRMlnpT6zx4QzmIIM/BnOcXVqp2ywe/HxHhWezv9Nh+Tx9qf08tnzrJBf47XXdQVM6EuCasO7zqT5yPy1UZ2+WxIrxwbdJAOVgjP4Q5Y7fioceXwnD9wwI37A/b2f5QEfqNRNu0B61gy+l2iRbXWSSzN+XD/RM4X3MmM2HXKq4rFfwoW0s5ZCDXw5z+z6yt7SUhWH9UUIz95QjbX8rArpKiT1k1TjC+vOjahMOzSdShCyNzzvv8Ol80jCb2z33tQEbusBxMkBdgzlzORCffC6f11eSESg9pf/qV7U+nQ2Cay4nRyYtBqkvPKrmIR4ylxB2Kr+B8z5/NcGxv8fKOOpORFyyH4SmUZ2L2P5+nm2O6Cr9PBWEizv/9bH9rBLr8Q9vdGxZDamNh3jFpHvEd12addMvvV/2wtX8cKtX8ULaDcliPXAHzsb7oHXsTcH84jYJ72B9/ZPtjJWj2HNtgRZbAt01CD4WaGaQkIujuzVq8X+BLMM86H2ft38olQ5RDDvL1mGs0M/sDfvPD+urMMeyvb7P99XBZ1Oya9yl/eMKQf0ygUS0XVn6IufNHK95P8LWEi/rf17WqeMAA5WQj8gzMXOTs85azmBrsz1ez/TmP7HF3qZ6cuAjupe073RH/7xwVVvibVC/eb1gaCo83Z3H3WlrCNcpJBXJPzCkJzaufHMb+h/+Jm4v9fQ3b3+uROWaHvW0cLUlkUsT1Uj09CP3YKxs3ivcjfGWhLY93fvC7I/GjnGQjb9hO8659dzunTQ+i9Z/LCU/j/UnCov/NByXmj2Wypz7e4UrO/NVXob5Fn7xzKjFtkcH7E74GM5b7Y8PrDUtJJuVQg/zdNZprBw85xE23wfN9unAlzhc97HyhD+IB7dXXGgm5+eb3etXbjsQyXWvKKi28f+HzGHN2/VwClMNq5Asx0/X/7A81hOWH6HxiwM4rVvDUs/NESJkribBNvnTWw4u8/Lh2q6sl3t/wrRm1C5vyA6VdSTDlkId8PGbphVvS9YbCsf5c4Xq8/4ln5xsryNlRffwKT51k3u04fviqL7mk0yn9WA/vf8qdmOcb//k0c99cso9ySEIui9myPTx1VyH2VxxdYTbOR6nsfOQCjlbNhxStJIhJ1eaHn1v9idn97hcP4Gd9V2bxkstHU+tsQJty+FZJef59mn2Rs89bTGZicb66yM5XdhBXLTinuskS7Hz4DX4cG6KobNqt6kbvnzijJsw6K1f97NrFPznII29eQvMl0+G/nZ5as+u3dJrFtOP9VRM7nymS9BHfxbm+zhCuu/pGqI4J4W/gnWnrwPocbaZKfCanyjEYQimHs8hvzaP5J6fPGwp7cb7TZ+c9HhTaOjLqh9VJpPFzW4dNAcTXRWSnXPzP+zE35tGqncdTOkPBn3KwRX7XiOaVo8HSq2090c9EaIrz4Sg7H3qD5flXT+ouDpsXNayraPsSST6c67d9IIb3Y/wAJraU+v805XAWuSbm/f/f/7nWwusmdL6cy86bPjBsr9OwvM8WqlcI6vhNYUTz24otE09gfY4vM0FqvFvpsblwi3LgIvfAHPtabGJAfPTP/WGy8P4ugp1XHUGq1KqZZ8yFSoM933VPGJEkvzxhg3HUr99vhrh7yaadYjBEOdxBPgez1qjNidn1P39fU5hiBTrfarLzrgV59mGZhEBjAen3rDrV91yTOG5/1TezHutz1BiPIdHazeftSKkXyyESuQx9Hopn1HSH1v1cvy1zbhmdjw3YedkWnNfq1odqWpH/A0UeLGw=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA3wEAAAAAAAA=eF7t0F1LUwEABuAFCrVORuUg3Y2wPm428RjrZl5ZgkrmzQocZqhoo2IK7kAogmMTNYSJosVotNRQSedObn60ZC9sEiokps0RLRiBkmgJmReV2EXvVeAPCPb8hEeh+Ott3RljvqMGu+Jtt8khQSXFFus1LfiZF9f9crTieKYm8X39IY6cUjfOnetCzdn5jOZoN0KdkZPh9l6svputDhke40NFd6Hnmwu5ev0D16Abd4TJiFXnwXK8IMvc8QxVWScs19b7cV97bLz46iBuasQvzoHniF/pKypJGYLK4imYrh3GRLo7qFwcwYBt5bRdfAGj/Gan2jWKQOXlqt1UL7JzS1U26zgqDO8/6xp8KBFM8rZORk/hUpp3U8Zaf1fk6chL1P0e1e/dnYDHrohtZPtRatCqvT/8kMsvSK2hAKJaddlY5ySktrIO860pRJ0XtfviNMrTMhf8yhkM2a1NHzdm4BPbz8/Nv8LXPMEW9gUROOqtzHG/hlL5KWF2zoKNimU+7vExg48HfBT4mMJHMx/Dhzxe4uM9Pq4c8niDjwk+qvkY4GMfH6/z0cfHHD7W8tHIx0d8jPFR4uMTPhbzcYqPMT5a+LjERxMfh/k4xsctPgb5KPzzmJSU9P/6A7K+U/w=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAxgMAAAAAAAA=eF51031QE3Qcx/HpEQdz4VXDeMjiWs44hzg7okDzKjWYI+zEDpePoEDUIYfQmYU8mpgYRjIFYQ1GIAhjg22AyPFBpghaPEiDKErylLMLUHF2JGZ/+Bnddefvn9f/79/nKxA8ej/sfibirexduCvfVqLKToF7ytClREk6/l4x4nc/+wDmeUlGp258iTlPee87/9JR7PLo8ky15aMt1zq/I6cAA/2t0W3BJzC8NT9EO1mE5QEBe4vKSxArsliT/bToG1njE3eoFFE+TyYob5ThY5lrnWJ1Od6XyG/m6b7DyNvq0DCnSrgnaNc0xZxCg7ikRXipCrqMK09nyU8jwth5K7qoBuYdr0bdfUKPpcvD3TOS67A1+MdrfnsMCBOpjON+RnwT0uOm/8OIwbKj1m+r6rF7pibgXnwDtFmCobGlJoQHy7z1dhOMm6UpB9rMsMm8N9XmWpBycNOhuC2NsOUtlj2QN2Gzm1e3SdiMyqzkz34Za4ZBnrPofNcZTKwQZXQYWmB20e9YVnIWQuGvo3F5rWBGQR873mNHT3Z8yI4idnRixzh27HhMx1fY8SN2vPKYjhvZcZQdvdnRzI5qdnyXHQ3suIwdY9gxgh2Ps+MQO6awYzE7KtixkR2H2DGBHXvYUcWOp9ixlh3/ZMcWdhT9r+OjPW5EH+1l14lk07WVkkRMUjs7z3fL8dJc3wcxfZbdXX4angkYyISIzvAfMpekH/wrIAdfUMe/OGtq4ledOAIhnct/ahDfCS1N/RoWGsN/y++/INb6H4OatvMfu/3bX3/zdzUuU8e/Dnq8bKsrKJzV8c/O3dHbFyqKZ3Xcj6CyV3DuoQZO9EPu4Dl7alLCz1q8QPu5C68033eGA8tmdewkVnr4q3UFulkduxldvFA5PlWOq9Rxj0UN0YUTGypwkv7GXU1HnuzMNFfiH+rBne1s16SPelQhjpq4uyXrXhtbu78aUlrMHX5e+H3G1PXTSKLvcZfZrmm+svW1SKP13OmdrnMtQa163KL+3G1Q/BuBjQsMWEWjuGOb7nj3kV4DRuh67jqxWnw1LNeIT2gBd262192UKurRRB271/U8/0AhbEAFTeIduMDmPHn5PzW8i73b1NOKfBP2UCXvRKD0vVioMs9q4t1YrT6xnlILLtJB3pFUFXRbaLdAQpN4VxWHMVzf2QgN7eedefb43I/UNEFMP+DdzQ3tLAv5tBlzqOMOa1T7e3sjz6Ca6nmX4YGKDatXtkBJx3mn/S9uuT0tPYsB2sS73e56oVS5oBU76Tze8b8etlt5AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAoAMAAAAAAAA=eF6N1GtMk3cUx/EIiJeIioKEDS8jBSoMZtAVweoxm04yFEHAgCgpXqdRmiwKXti8IVQzFQVHcEolVgQVqC26aoWS4eK831hQ6tDRAOLlOWCAARP0/+LXNyRGX33ypGnz5HvOqe1pvfndOya3rMXtHUKdb0D0VeGvyboZKuHm+AnGqn6me3mxmXV9TBctYbkn3zKpirLVXv8zhUUH+Cl7mBSJtRP7uphiorX/JXQw3Tl2PmVBO5Nm/fcxD14zrVRXqm2tTPJn+7dsa2LyGTJ+0JFnTK+Oa5L9rUxjS1P0X//N5OS0tFR/h2n7c6M+9xpTr09Tfr2FqWhyjGXr70zrPBOs68vEc/aRttM6poq7ySHeR5m6coKd7x9gKonzMRXvYupuVx8+tonJ372mpGAN09Lo5WZtPJPnSE+Xg+FM+wa5hi8JYZr1W/6i1zKmnxXLJgS7Mn3n7ZE2+q1Ecr3y7oYmiRQvAhwDb0uUGRXlFmSUqLzfbFuQJ9Gp+bKGVVsksvw1sSwiQaKWj3RMG9CxAh2Xo+N0dAxBx0XoeA8dswZ09EdH3w90dEDHHZ/Y0fiRjpPRMREdP0PHLHScOaDjnAEdZ6BjFjrq0bEQHU3o2IyO0+Tz2vqEwXAMup79wrawUVgMC9H5SdxDVb7QCnPRvSxycZmH8AxMxRwaVzfOiRU+hbcwF789e/fNE8qgfU4rOndWvxBzUsEkzE3aY70S0sv0Eiowx9iWEZXybjFHGIy5+o2aNdfUKX4fRmLOfyiNzv++YbLAW5h7kmntjeMsusMM7EHEptCk1pdM4TAZe6Gzbtxd1SK6QPu9Ha5JbPCwMR2C3tib9MGvmvgfpm2wFXvU73P54exHTH1wDPaqbnV2jtMDplpo37MIQ4Fh2k3xPjAde+fu6xJ5o0Z8H/ZgD6+lOTpUmZmuQh32MuhC4KMhRqYv4Rrs6S/LMqdoS5j2Qh321jx1+JmtWiYTNGCPrzdfcsnOZfoTvsFee2e4K2o1TJPgaey5UubVGZYu7hB2Ye/1OYaeiylM5VCOO+imYeWhKqYOuAR3MTXP0dMYxTQFjsOdFKjPnXedzXQUanA3J1Iyvv0mSHwOlbijQxWFlV99znQApuOuRhu8HGqcmVyg/c5SzdXGxjaJNkL73RXXjer/8bFERdD+f9Z79qfYuGqJemAG7nKSLDzwh1MSjYeluNMR2uaKTI1EQ+EJ3O24mfFpmrUSuUH7Hb8HJARojQ==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAjg8AAAAAAAA=eF5d2Glczfnfx/FEC5KdCKEY7bnQor4jbZJKTiMyIVvahBYtQguVaN+XUR3tmpSMDL71bdG+iSxRKmoiQsZeXP/r+r3P/4abz8f7zrn1+n2+J+flhmeiFmt1U3dNSAg0bGMLhzn7Odkecu19o6Pw944rvAVWjG8yLktevI19vs45scP27NPft5HHE8X8LewcmPG4fMu0uFb2FWbmlhtWJFiT8PiTFb8+dWOTpFz8hua3snLY6u3h8WWux+nr7QWXbSYfZ1IRFqKa6S1smjXngogzkimdCXQKmbbgtrQ/i+K5bDizrIUtglVSfo8f6oylljedXrwsPs1MNQ++u5vfzHbCi4cmKoqtTqVqYYMLFY1DWDeZPHuZWjNbCkutMa7aOTGRFr44KBzffY55+6lq+fzVxPjwhN8+NhZHnaWzJJtc1ntEsLY10x071jYxSdhpzdQKXnYYnaF4I1cuKIqdNp9opMUa2SJ4ntO+khUFztR8isPUwS0x7KGjsHieYSOzgvva9gye0I+i1R++xP1YGMd4gx8iVjQ2MIFbVBtrpWqDqY9Kr0/gy3jWHZvkcMuigQn8l/zuxSp7Q6nZ+Q/5EaWJzO761jsO9+sZD46N+OTt23+aqht9btc/k8wUwsJL1W3qGYFnRC9xj5YMoy6aGvZVlqksqECvUr6vjrnBpnntX2xmx1Gxu7/krpG9wJykP5ua2NcxUdi7OUl54FMsXWh0Nfz2+zT2qvKlXfpwLVsEr+huiXMIdiDx9+172/rSmXyifetqj1qWCMdZKuQP8F3Jvnv7dU42ZTADh3Vvp43WMDvYWCNkyfdXdmTD9qHdIqV8xlcyufVrYA0zhqe2/eJgObqPPtImKgH8i2xg1Z7cukk1rBP+N1BpoGhVINlzz9BnRkQmEypPffZ39G12EO6+8eKW4lNLKjFewrnDN4s57v2xYJH0bTYZHnghwRsrcaSey9vNh5yyWdq4yiPjMqvZMfg3x17Tv7Z6kq63rdYeNjnM5VSS5RHlanYf9t/zveecewxVt3xtG2eey3Tuj7p7llax/4GnJ8+XVLBKI+K73tsc0stjOs4a0bJ6VUwSFjobnDG6KpXOqtSIldHMZ4X78s74N1eyBfAxpxAtt5gMYvBGfaxZ9RILtauYfMG6khnDoqn5Qs0/XKls0biKJPkCVsf6Y84MVDAlWFP227nX75Kp4z8uUfxlfzI3sVohA/cKdgxeanDqdkSzC12kXWgtKlfIKqUSQp8LV7Dl8B21wVVqFy9QkUfJoT1yl9mTZbnHj0YzNgEe3DXt64O7fvTL89pEuVlFbDFv9OH7pYyNwo4VX8XniJ0gq8f5zVJIKGLBrmMrBuzLmQ4sVF04y1gthuqOs5AOkS5mrnOyj7wIK2PmcNrb1eWXQvjExGrkqV5GMWvRmtTx6SplFrCPdefZsXA+ya8ObN6x4gqTG9/xcXr3LZYL8/hHSW9LMhmeY1VTX3SFeSz1z1OZeIt9hBtcF0up2F6gEV1cD4vQR4GFzNTGZYq26sSVcj3MQh/j4Yd+N5ujcwNJ7CSuhyboo8D71XUrUosDSDd6KIo+9sJK6x62p9PzhKKHc9DHMnjrytpBebVk8l2H62EA+iiEPpZFlBcuyQ8l+uihEfpoAE8Se7VnzavzxBQ9HEQfBRZdPfW7s0skaUIPA9BHgaMlU642CnsRA/TwPvoocGu2UdMH1QjSo8D10AV97IXtbr4xSO48TF3Rw3vo4zH4k0+6+sFGW3IXPbRCH9thr4dRXdFRnjQdPRxAHy/Asc+ntK7QDqDH0MMj6KM7XHdo/ly9AR86Ez1cij7OgXnHbWteXXagjuihD/p4EL518Zr29jse1K+d6+Fm9PEkfFN6r+f8aHdqgx6OoI874a/Of0T3+CTTteihCPqoA09yPPVPpXMG9UMPTdBHgbPdyBvN5YnUAj1MQx/NYa8Y79xrWnwagh5Wo48Cu4gYOPRPS6dj6KEG+vgZfrc+MXVoaxYdFeZ6uBd9FFgnWTVFUSadpqOHJegjH75uKnmg/NtF2okeeqOP3bDQlkXb96YkU0n0UAV9nALPWiq55UlFIGU7uR4uRh+r4T6lgN5WqyQSiB62oI9B8F/DcssSRzPIDvTwPPpoDVf92OB/40Mi+XyZ62Eh+vgVtvje3KWs9QepQw8D0McaOOlh6ma5mcl0PXpYhj4awQea+HrbHfm06QHXQ3v0sQFear7s9ahLPHmOHoqjjwJHBs/t93U1JANCXA+7j3J9fA6z2SMVvCOJ5Ap62IM+Chxq9EPZ/UYJ/Xcr10NV9HEEzlRdo+zekECvo4cG6GMpnLt6V++t/9xnnXO5HhbJcn28B58M/DL6Zv4lYjfI9TATfVyEe1K2Urr/uJEH9e3zXJIybR0T13ZPub+8jdn2cBZ5S4q2Oe4keoOcp2LXhe+06XzNXetFnqGnmehrA6wTf1019OhWclLv7ws6a/eyXBEhsy/trcwfDsrxci3ZZEmOwenYBfbMeHx2ZV0AacC9aoQ+d8LfLZ4NLuTbkH+mHNy/auMRVnjvqr3h9lY2SZKzzqnNW5o17OgBuAD7flh24434LetDyCz0XAh9V4GN5/O+uF/YR26oPUs38/Bk2p/1KqO6WlgPbC5ftuxKaiT9bSVndexb4HoHVqKYH0NE8T2QwPdBCj41sTbd49huMidp6m63jJNMbHd/VvfeFqYJG3dojlASTz8lchbG/hFWsRs92mkXS5bge3IO35cVcKiHXOXLjXZ00UyNLw8GAliMTFCK0mAzU4LDFtVEN7slUA04ErsmbJaxoClvdhhZju+RAb5PSvBar8+2VlMO0GvTir5OOhHE9Or3BPgeamalcFv50sXK7qm0C16PXWB/qVyeul04scX3bADfNxtYonP4bfM0a5pZ4hNsOzOUec43y24daWKJsPrJkBz9nmhqCjtiN4ED473+/iEaQIp/ej8UwBcnPTtRE+NK1xROKBrKC2PPfm9v+8WriSnAQxt7Nwf6hlNneAD7YZgs+XW3QncQkf/p/SEHNx6QO6aZcJSqnL5xaW96JCPqZFvwWCNTgydu4hWZ6/vTCbAKdlHYZXTuYR/zAGKC90owvs9b4Iev0oqbm4/TzeEp20Sdo9mMG6rL3wU0sp1wjltsjbFKCN0NT8S+C9Z4oDlGTa2pDL7ntfi+y8FylfsKXmh40sphkZb3GrFsxnfpRnvxRlYPL1xVkfo+Kpx2/7QLXPdhSmmkrim5/dP7qRaOCRd9pirjR7PXeQaunxDPVkQ8Oj4S1sCy4F+PD8vnXDxBi2A57JdhHex/4J4Y/Om+uJLxoFimL5gO2sSGTbyTwM5beS6ImdnA3sL1H9yKXRP96NKdnKOwC3x39/O0ydOC6SzcI9txnwg80qedJfrCn75WXPG3w4UkZrL7d32LpHr2Hva9ea3V5OoZ2gPrYe+Dk1ou9a8MPUqdcM+sxn3jDJdund89xT6INhZrJgQ6pzBewzVtNZl61g7fE5ZI79oQSft+2nvgO9gHNLh7aD/uo5dw0D83FyhXB1DfomX+vtp/sE/nNomuzfrPfQTLK6zjPdGKpPHwD+zR8HKlHVcez/Ohu/De9MJ9tQPuM2iLfxZ3mlpcTo05MTmNFSj7bPdQrGOmcHd4v+oqNd//7pew8+B7wvyVruWRtMuQu8e6cZ/1wZnD53vKx4VSj80ibdYu6ezsguCkl8W1TOAbtte8O/Ps6Vk4BHswvKlj80Ut3Rh6GfecCu67IjjAvWS/9NtgKm4jHpqzLYPJxwh18zVrmQQ8KejqlmxvOzILVsQ+E871/9ZVG/QH1cM9uBL3oS58LrOx9VHrKSpx+2pdxXo+8z6vdS+nvIYJnDjDQXdomTadAXtiFzjRtMrum0ky3Y97Mhf35QF4snHKa5WOIPrbuzesSuki+yYpXjR+Qw0TeEeH/fJP8mfIGngYu8DdRtk+du5pdLkOd49+x30qD4+MvUhQeRJJfyhtN2uQymRmngf1K1puM2Flzlt5Fplm4cGkD7sWdoFr6/prU9VzqCLu2Vdl3H2rDPMWzj0wFBpFR0Rsh96LZLHwG3vHhqxusw/wkdVTDunHKlI5Uc7J2GXh65UpuudnJ1NR/F/ggPtYDH6WK2NrNxRFjUtyf7P9N4t5m8VXRTytZhvg1ArDsfWFHoTAHth14H80jqy96xpL/XBP83FfC2y+5ouUiXEYddrkbKL2PJsd/ezZfd2+mtnDvlL7CjaHnaP7YVfs/zV2sXfcPR6A+1wE9ig47drx9DidF6DJO9ORw7q6F/S4jVSxOfASvubhsjpfmglLPeV2PuyoKLpb3SGEtPC4e34u7vsm2NE+TsXtvi9xNbTi+dflMokdPSebfauYwGK505XLlwSReHg+9kR4Za6D23ShRHIY/5fY4H3gAic+9lV7pHOWmLpZOxrRPCbflRTULlbFNsPPfKR2Kj5JIerwIuxasLZ3uGzFSz+ii/dEKd4X6+Bz0a+kfU57k4WK/OsfS/KZqPuflRExlUwO/przf7//GDkCL8QusOr///4QcmWYe4+Y4X1yDZYrylOOPXqWiImMNJUUXGKFpePrpy+uZNPhW2+dm3UfhZApcBr2qXDqNbH/cbqbRrzwf08/3jfesEKbg3F74C5yUPHSrAs5BeyrZ0bl/j8rmCt83bBTeMqtA8Qefo39EFyj5fXVziyC3Md7KBrvoyewpsz+/oSlxqT4+6Zd9zL/ZLLzPurEalewMljy1y+nvUL86QVYAns6vAT78FruPZWN99W/8AbvQ24u8ifo8+13trllFrInzrpf8hsYG4Bj/zSSKw+KosLWnHuxT4ADPnxQ2HjZj9Ti/yrZ5dz7rAaWO3x/6CMvmMq067PY7MtMp0A27coOxgTuygjpmyeRRJ3hrdgPwz3Y6/Ce+76Fe981wOaJmeay0rtJ5thNw5ytRYxIy9yze1DOLsFGRn0d47elUAbrYa+EVz8XHrnYep4O4j34De/DYbjnl+MJzTfUCd/75gTrR0Vs2hfJooPfylg2zKZz/c+Aez5zu8Bx6H+PEPeerJ7NvS/7YG/LE1cNQwJoatrjgwd2FbP+DtWAI0vKWBZcUu8i/rD+AB2CVe5zu8CPFR5usq/KpE74v+4V3qcu8OorCmzeYQ9qzR+jLc+LWdmJu+z0Rsq2wQF5+fpSw/o0BV58ktuT4OqxoDUBaSEk9Db3nj05gXvfCjy/hIz+bu1CDguVKsU4X2HXVHZkZrjdYgLP2uS0SkI5kJyFe7GfhyM7BgoWz8yiD2dz7+Gyxdz7+BFceOIqNbY5Sf4X4yx2uQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAANgkAAAAAAAA=eF49lnk81Fsfx0OKEk9FuUQ9LbjPRTvpTOqmlBayhFytt7RJeMqteGTJFFkmpLKVXWgazAz61mmsTUNZm6QJTam4LZKkSLd+5zyd/96v3+/1+53l/f1+jkjlwoZh3XBkrVIadVlTiONuxEQmzA5EKZbLB5y+8/Sj3MVnLx5DF8HzlvZkIVa1kngpv0iCKXOETX7/EuItdirsz7wMMB2wWThLTYhlZxe5bAg5AjmSmohqZSFOzHDXgg1c+Jyc9L+hYQE2jZu70vk+F2LO1Wu6vRdgpVE/RjrMzA6s9pILsNvmHyMc7asTLRfVC3Ds0NBL3i/BSI2rr1NfKsCCsQnsfbu40Bfiv2dKigCHHfFYNSm+DPwGZPPUAgS4b2TEwtMawJKvpjhzswAHd+V/LXCPgoHuXOtqQwE2m/cpgeV7Hs6N7BJt/8DHz2xF8UEFidBvkf/WpYSP/fXE5rwgPghV8F8T/8vHIaUdrCjfJtgdJo99M4ePbVuSUrwrC2HOp8tH19cX49gf64t8gt4ldnNivYrxZ+Gr8tSjDSjEbXW+olIx1v7oYSjzrkLjKlT1NCOLcPyzJdHPllRBrvdeZR3VIizr/lXq3yGH1uBD7d7HC7HUJOP+wLIu0PnCO+En4+GVbmnb9FY0QrRh3f2z83n4QF6kz9vx2bA4dU/PjF4u1qrP1/V0lkLglLTgtm3XsJMNCFPUHqA7tX6zdLn5+My+uiy32sdoDpLNrJZdxZXbF2/ZNrcd9EZ/ZNV35+Dx3XVnZhsVwqtbWxeYtGRh+V24tLf7Beryye9TTcrAdTu7cvfufIpiby8curgsDbf9u87umwdG2meLzZBfCm796uVyYlkuunilTLLc4CJmOTnFlCdVoIiNQvXAiFj87Y127OtJd9CV+smBRqvDcQRzXp2QmqRfXHvjOLZVUnIA4zuwm/sh9YbaAdwrubl9KJ3908f4oFHP7rqHoQvUR2crr5e/72MjNvUx4OS3aWYZqaBCfRysOsy5PJIDS6mPJT3sWc0J5yGZ+jg7R6mzyL8IblIf682j9LJa8iCQ+tgky7inzokBberjmYZNbqzYDLSb+qiPpkfiTXFo+Brx8VJurn6oeRIEUR9HEk6ERZwUgT718e3oDarinkI4QX3kKG+rDK3YgYapjyzq403qY4aLy9MAMQc2Ux8nFCWXSiNE8GIs8VHxS9G8TN0GsKA+9g5aHR884YW8B4mPsoODWlnacuSWRHy8cH2g2FerASVvIT6aODreNZHfQUblxMcbvc19pqgExhwmPrZTH2dQH1njl9nvaHwGRdTHLwtXtnlnPIJxRsTHng/SVT17ed/3k/g4qn/PzrV/dcIX6uPEX68qbNRsQb73iY+7Xa3WL7B7jHaYEx8nBa1Rv27YAToKxMfhdaO98iR3YVI58VGq58l7HdKJNI8QH2OtfSy+araj3pvEx68WMVfr1khQaBjx0Wzb6zR7n2I0NY34eJP1yODQ7Vq02474ODN4bcvKpxWotIL4uFXruMx4/yPYFUV8VCmOT4tszYEgEfHxI+NTBLKhPnqXRdcoHgxG8qwpVcnfmZlPPBs9pHyqX9/sT89jKJ76atZkZJpzeSUssX1v/+27rzY61V39jr7IkrK1SvtfTz0CUQT1OegPbkahaB2Im8POT58kxLbM+2zIonx4XpLG8SOJoEp9L8r7MVLBwufv4RJ1IeZSRpR3BY44p+9Phnm0HlyY/noOCtQ0/I+qCrET5XuUB1sfGy55uR+l0nqRMvWRAX45CUu/KAixNuIc3qEQB2spk/VngoTWU7uvXpSyNBveftSw7PgkwHHMcx4MUFZk+j0XTtF6U2W+lwSausvYgh4Bvsf8LweUKMfQ7+vTenRm5psGZnqJ/WPaBNiVMocy+/PnP8Kzw8GL1quug4NSolE2ejI0oORSLcCnmOfn4B3lyuHha6uaryBFmi9fmfPOhAqjY3tmFQjwMZ3dFj7XVgOP8oqphEtpvbcw8y2B+etuRTyPEmAtZj35cM2G8H3muQhYtB+kH9ZB667ehrY3fTPVDwjwFL8ZHSLFbJj+lvBoZn9ugDXtF4PffowYOBXVHq2x4ns/ofyOchUz/wLQ7SH95Bsz/wJwVX1n66QhwJIZteEHr3HAgfLijkV+8Q6XUQztN/LwjhnLv15CvS63Dq16yMdheP9ro6xomOxKeP2EspSxaSkoj/ajbMavdHjRNa571QU+zqMcQrmk2bHgExbDKpqfD5j118Km5Km6pbZ8fJrJ13KQJRE+E98SZBAhASfaz8j5lkFQsKbByHAxtqd8PoTwNs+p3dEBfODT/H2TVBPt0HMHTes7/ufRtGIsVn+u6yqqQFv7CfcoHdlZ6dOJTGk/7GHef4hWKB8q8UfFWMS834SmjibMHLdWM5pE8ztAbi62O1mDJnI2Dh2QFOHNnK4qgXMpcqdM6qkaiWk/Xc9wFjo9G3LSNhbh1ZTjZhGODTAINXf/Xi+035LzboW3rQst/asKf/K0h4Qf036cTvsxqR85+O+VtDmZFmIFyuWUV687sGLy6ufgSPt1AXM+LWAV2rkoKoKHcynfoUy+J4V0er9oZs6rHmz4uww0Cq9jNnNe1dArJGxjGVeuayqE97Tfn2T2RwqmDtf7rOZysQezP2LwtCO8dJ+Rib5Nw8/7CbMdm8uhNnS2x4XoAtp/ysEjgnAp488D9KqO5AXxqwGJfvn84Om9PHyV8nodwm07zKb3vXqIPliQPAlgvnceXrs8Yam/zsW5lMX2hPMuVrIu3GoHqSLJG0fmeSP8J99OSfNVNvWtEa5wCZP6rYQGTPJIhdmvBlRmvPbd6PLMn3x/PmE1Ju+eoDO+JK/WGRc4qvwuRZwvJ0Vj/NL/f99DXUOELd/rPs+53YkQJnnGpesrt+Sx3cdc+bleBRbhGsbXGiQ6TfIukPrJeXzKWCpPxLuon46thDmGgaHD/TnApnm4iMmjWKRsVLX25KHzeAOTLxXQaEJ4AjP/JjSX5qW52Ffu9psY1cunazi6xuDlP+a7vBEt7iT8W2bmmEX2pSikhuSpLOHvfca8bIhec8jHb1kozS8JfFxKeJ7w7JE1ljLwO0fylvjXADUL3MdWGR/AI0x/q4dXzoSt6P0wqojk8T8f5rvYAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//pWxTYf8/+8/B88mB+D/7z+knWuIlv/vP7JFkmQU/+8/Se3VmlD+7z9leluLQ/3vP2ePDXTm++8/HjPlKDP67z8QROXlI/jvP1n9Hy6z9e8/Ypz9sdvy7z85PsQ5mO/vP8CzrJLj6+8/Jf95fbjn7z9cqeadEePvP5lLcWrp3e8/BDoyHDrY7z9lOnie/dHvPwSB9n0ty+8/wJBV18LD7z+StD1GtrvvPxDm1dP/su8/2QOA35ap7z8C5Z4Hcp/vP0dcjxSHlO8/ROYh4MqI7z/i2Jk7MXzvP8UBFdWsbu8/1EzhFi9g7z+Fl/ADqFDvP4c4RxUGQO8/FJ9KFDYu7z/OpdPuIhvvPwvqnoW1Bu8/3vb8edTw7j/Zgsz1Y9nuP8V5rmpFwO4/NSnhTFel7j/y6aDGdIjuP0TUc2F1ae4/37OxoQ==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAALAQAAAAAAAA=eF41x30w22ccAHBFUFvNDrtNGTXDVTY5eqWNXwXNFMtt51rxNi85byE652VRbxkSr0ErqS5nJd7rPWirVU99vVW8xctiqsXa6tpe6XrCOtrp7Y89+fz3WXzCPVJl6Ab61JSq323mYPzx/3cLzlmflzoROR63q11PsqCOpMHYW5gF9TWZ5AdlSfHE+qGYSCfvRGhWXo+lB8yCCp+YFGfeOBNBpFHWpYxULlB2PYYvrSpAiG+2OZZ2/n40ESj5KCy5Nht0w/5sXGMpgI3/rUG7jeAiA5kYOe8tPcuFMov8KvKLGTDDt6Z21bSaJyCFoeytflY+eExE5GYmzMA0vrnpckS4CRuJe9MLwo2KIdGU0TSrmoZyfENTx5LCrUTk1akt22gphZXghTnbtGmg4R+/7Bg34BiLKPz+Npb0IlCPE8yC/SlwxKf/UOnFs0tBrmVVTB1OBej2O9hs5U6BB351zziFTruAlv4iKbadxWDw/vBUrN4UPMDXyfOxDK1PQX1u3Dx37UqwLV/OUJVOgvoirTMzYJOHNkLEpQfnr0CRP9dMZDQJm/gPrVhR7H4+GrO3u82ulsCpsGDP7yUTIMe3UmRnbFrnIOh2uZLHqQLfyZtUisUEjOKfWvG0vUwWok7ZlzmZ1KtwQOirc7JRDu342tbZuVlLPMTv+lWU9UEN3PgqPSDVXg4CfNrNKh0OVYh++o40F3heCgKzAsnL7nHg4q/rLcWfey5A/wbrFTcza8FapLFW5zIO6qcM7KgODPHRwbHr8iH3OkgSnlA2D94Dffznqcp0hiwfeW29hhFyPfxtoCfT8roH3viN0rf32T356BU5gDH5aQPQuDGeQ4oxeI2vkmh9wuWJ0DYpfGOb1AjCftb+hv8Y7OAHiieOLVkWoZDea2fDdxqBx6gcKf9jFNTXOibnXo0uRO6+HB/K0yZg7XLXbsWOAg3/hE+CS8EzHkrIdfETLDbD/prZo2TVCMTj00aOlnXIGUQG3d8vR34NDgU9yp7JHAH1lbPeFfVPSghmcmDcN6gF7Fcl+Qu6IxCIL/HJXOHJS4gg+7pbb3pbwSSlY7hcNAwh+HkuU5oD+TmECUk13dveBi19WhMfWw6DKf6MYH9Q0+sSkWHfZlzd3A7vuLXDkR1D8DN+26KjAz/tR0L63jdU2dABxp+9cRVTh6AR/5+oz5klr2KQImCemdzQCfMc2l7rJMACvnbLRPXR+kRkvOAJ4qYucG7/oqYnCEB9q6hfnKzyKtDU/h168zkZRB62UEYvDcI0vvTs7kBkXzEqvHBHO3BZBou7BrKYd3dBiP9hi++LSNsC1FTzMCYqtBtWFh1yE4/chVb8x7t039MvhSikbh8pnnbDaNZvwPdGoH6I3aifICmbYGv0kUWcHuj5OqihNnkA4vDN2wr1latF6D/sPa5vAQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_300.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_300.vtu new file mode 100644 index 00000000000..ed7178411c8 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_300.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.4829624263e-07" RangeMax="0.0014481128207" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12120" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.98847714907" RangeMax="0.99999999822" offset="12216" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="5575.8762994" RangeMax="16654.880873" offset="13420" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="22000" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22092" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2457049186e-05" RangeMax="9.034754429e-05" offset="22188" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.19772281208" RangeMax="350.26404011" offset="22984" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00054084992362" offset="26608" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="2.1433270881e-06" RangeMax="0.0014573750439" offset="28488" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-4107.8222399" RangeMax="0" offset="34496" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-4107.8222399" RangeMax="0" offset="35196" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.98829321572" RangeMax="0.99999999146" offset="36548" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="5576.1206351" RangeMax="16695.555252" offset="37768" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.4476250958e-07" RangeMax="3.3949181908e-06" offset="43196" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="46344" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.98908964542" RangeMax="0.9999998886" offset="46416" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="5576.1206351" RangeMax="16515.120395" offset="46892" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="48364" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="49580" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="50312" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="50484" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAciIAAAAAAAA=eF5d2XlYTG8bwPFp0SJp31PTvu/b1Dxp2ov2VaJVC4lCSZKJKCEkewiVEoq0mVsnQkpSlmgVSimtkorqdTknvdfPv5/re7udmTnnmWH1InHvgQpdIJUeOBzRt79q3G5JfHD9EnQcJi1r9DlAm5T1aDLvGYUegvs+aZKflJoy+ilyra0mnA/Z4D2i30z768Gx2HBztAHy4nGjDU3IoUlB2uqvZ/XA6rSzw9HX3VURycdrM16yIeXLutoff2j+mc+xy/hBLYXpFO68hvKzLxxUUPEe2Xm/ZHU0gfdI6Abu+xR0c9q3GaKZizcrA6WsUc46JhHHXfrQlkaJqSocrfqESQg9esOOsk5WPzo5TP0zf4dWwuunFCPCLzrYZe3ZoooU75TeNpSnLPToQSbhb3J8ercbIcoDivbceTcUONu14eo+HXhzh1O/N/5HVUKS3duiQFZUtoRnYtOMOXRdvbFnuoK5UrkM96oVOmuXX1BEPuP90v33ZZAf3iO/ctyPcKf6v1+ujz4pektofHdDYvtWFPo1iMGOC1ZjNdhs1WO5l7+92Iep1wVsbrbVGsOK3seP7OyYKq0u4Z6Yq2wgfp0XYdV3VnM/VEEceI9GL+IeG1qeZn90BbryHdmqhbkh/zGaaUM0Pzr8yMzblZkFC63a78sX18sY0lkZGnBOF8qcqni0i+YrtGtwn+mWyWx6yQ6flM+LKp9SQ6F4D6ZEr7zxTngjWQjURTx/ePO7Ium1/s8o5vKoo8YyBkUswXo8PuXvPvmTscQYCzoYoAJfnVsoO+t+VxwhfM3ImbsiiuLQeUNOe8MWLSSL95BVhfu9nN2m+XpKkPxzp4hkryMKiGsw+r5EF4UfXx7/9jgn9lS/je/QDCucjl0fcr9EEEzcdNKlt5Mqvx3DPX2JZcIpKyWIGNmTIO0sgPzwHhrTcP9Wxb7WKlcffgy+nFO7vBLdtNzItWrQGH1b15q4pYwbEzezdPZQWw7vedyZ1eaYkDEx34Xwcs6Lx3gY2oDN90mxDopDId7Dby/c9xW6nrpXbAqvkhPiRBVbqYeu3opeyfzn/eS1v6WNlxfbOWw8KflsKazMO56QZa+FBHNW5Z3K4TcO98BdTQoVWd/TgO7egvlIVVOUhvdwxB13j+4dvBa+JnBg6+/3L35LoraWr6a0bYIohyMliKzIj1UlHrI92tDHOM3FplDgzo6EiPlOhNMNG44FhywFSx6u00c2UFAT3kMf4ZfY2r80R4gA37xU2RsOBWS3JToXZaiAICNtOIQqiOn4DeTcrJmlitnP5ew0JyE+Yr464D7A7NV3MomMOCfigpIpZsgV7xGqwp3l/nKTu6s00DqWb2eWt1CQnsikxKVHmhD1UOYotk0I25m4Pnf0CxOq1/2wzfaOLLSlvijZE8xeWfwId6MINyOudjkUryBcdf3VCjDCe9RPuB8jT1bjkg6SdC3fPqiggpL7zoxvOysGtINhtpGHRTA+NtOKvvohqqod6WJ5/DzVwyRaZa6UufIL4YmZ7lGnD/AirYvZRrUcvBCH9yiGcOXUy19fuq5Ad22/01z1pdFoVVzuzXxWRF59i0kiRwyLav9p/4XrPWPHCaF4o8o/n/+/88crRAl/XjpplFc4wzD7sNzrnI4ILMX+9tBvj7vr/fItKjfY4Za/sOg7sWUQNMA+43BREkWZfoiq7BTH1ss5B668Psrg2Z/purVVEZE59hiv4/hdEUA4a5W3UGwcP1gyFyiHneBd6IGX8IxWDfv0YDKkVH4rGH8sCLczWq861qihlobpj/UzkljOhxyyvzIJ4k9N7Qy4L4/Eifk7CF/JdPpc1aAMuBSIj2i+EocSvIeh57jvrWeOCHmhBU9IzKdqZuVB+Kz3hpkL+kh0naB7h4g0dk7jKq/0LDvk5X4cWe8igQSerlCzZvtRcdYX9xg5urLFBVVI46wXz+RXXOihey3upZ0RNpcuGIHHS/IGTiVtePI5RGzTdn2kfG73tKoqGTPZnDHT94Idvr6e3tN3TwopTzya0HAcpricxb0ucaloT6gq+E08qzl9Shbdx3s4TriOToWoUqQRJJtb7cvpEANu6eqZQF9VtM39ocomqgzWdy7rwYtbcwzSb5+JreoyEPR3/hyFjXC4KlC6iUUGinVlZcZvSyJWvId9hMve3X5XQkcT7nVuyN3zmIyYh8IPfLgsgt5zs68tcJDFysqUl53ZO8iwut3kHlerA+nE/tWE3xffbvdk73Lw762Xk1srj/jxHujLcX/BMhz6ikcCol9OH8Aem6Dy9gNv7Rz4UEVnl8S1b7JYsgz50WbZHob5Qaqw0z5TyOR5przqUmMFnXD+Hm62Hg82qHhsMJP6gxUq8B54u3B/9aEu8nSTAJTGvipz/WyKyqq11+7KFUUSQvZv5ZnkMVWfnGjh4m+MuByZ52arLCDp7/yuijlB3Kdazk0mNvNAlY3KvnXPPjGIHuhEf391iHICVRKied8mPe+xRCW57V0Fc9IoyqEkPU9IAdtkl8nbfWmcwXTMW6q5xgoyuE5fKp/8UrHgwz0Z35ddFwSDdNLB5kPLUCneA9kR92Zf+pi2uyzwNsXu3uu6Gn28zrVVMUoB0QtSyHfKFbCAfhuG0MQU45Zo+b4Tm+1AdTbjuNAu9koy4aOBnZ1qtyQg5c2esJRJfviE90AjvDF5h2JBujLESOx/8PGCA1JbUxfyy0QX8W5yPMDZpIg58M5FWVKWgPP7NQnWrc4Q9LumWtJhvuLsRtxRB4fFskNKMJE3oxhvIQMaeA9HCZcV//qa5ZM+CHBKnxm974TCO5Zlfn5gjI6rCgwE9ithETfXsCZMcoO6p5ZTzEk3IBF/yIRj+0+senhRG9o9Ix78ylaFjXgPTSq4vx47I1iSYApNu1R/0M67oA/KUnVKzAhlVzkvbTmijG24H7vpuwMvcEQcmm4T+DP/4PPawdSrFQGEs9SoYy6CurAtqSObZVwQuvEeAh7gnjfY6Xp3KQ3Cu5ueXvV3RtKeNnYe9gjZ3NcZulKggq1c8i3NP5YXTHYwjrizuhLz71ZQCG9T62KzsNCFgByJpaQkdSB6UK7EXbaQLhSrR4OT1j/Fmu9ZoqCkLbX04whVlwo0RT5VxSRcAgufX+aFdQJc25OFHP/tTyrDvTjzmJNelC4IpKzK//3VEPzwHrrv4Z61Sa7VeB0Nql+uZOr+qoYEbQQmytVN0GjFaEJBpBp2Pu3Tm4SdyyGrMMLQ+eTqf9efRrjXRG7m6l5tWKV86ImVgirw4D1kl+NucqYo/fovUwiscDi6K1YFtfgrLFUq0kHf6Ds4jx1Tx26yH7ZJOsUKBvcvfzSdcvk3P5zwCplnvilvFOGRC6nlfas+NOM9aBBeWD2p+85cH5aFxotr5Agj5e9baOrBsohkP3Vqxx0NjM4ZFsUV9oPBdCfS6Qm7G1y5XIQsi8cqsu1wP1iaKjkCIsCiTjk0KWIMWngPTYSbvdl9m5tXAeaZOhVXzpBR5NkhsawLwogeSNre7quJabq9NshzGWB8ZA47xZzm/m//bsKHNwddf6LFDc2usS/HJGlA9EAKwv0wc353ca8YdLqxFkrViaMbs+91k9LmqQP2Ux/T9mthmx2686x9XzEM+UMMYp+4/ptPWYX71Al5Fv51EwzBphLGXjEqvMV7RiLhbql2TgW8zOBZ+zC1654y8gplZd7i84tBFotTvuipjbGINFD3vX1J9Xb2e1x3xmnx9SV8qHS3Xdj1MWr45O3n5NuGYIH31CjCG/r32Et5zFMbbp/wHE9VQxuEk1S93rHDaK3P0gs3tTHBz9smFKrbqR4lCenq7YuvbxPh5JcXr/vXzlGTn3VyBiVSIRzvUTbhZ7fxfF3rzIViyE+OdJTJI9kPLJ3mntxQ/d2KUmqpg+ktezPgyP+R6vmf+fcIPzduuFF/hBnxlQis//7TFBTxHqUT/juqo3CggRdxv7nhYBEjiobda2pPb+SDYmnt0JdtOlhX3pb2VKseqlWxMEeRweL1ryY8e/bSXEU8G9KvP7z8YDUNxvEe0QnPV9b5rDQugB5macxrfJ+laq925njpIgQBHgodL/V0MWxDYeH5l/1U43zvq+WjrjDB9MrJ2vhLxXHC18mblJQmcyHTmxqz3PUITPAeNRF+tfzx+kebRNHeAkPX6EOcqPnks0v5v6TBS1e17VijLpbpnu1HvjhOpSfxFNoaL76+yYTX+S0Lk8wVRBGffaI+bjaEFrxHxYSbelB841xlUZ4c1aJ7Mz+iDGeLm7srQACv1nvnjXpY/cSmsO2vpqjs58269EIW7w9RhPsX7p7oTJFAa5cP11Xt0gGiRwv9FYf0lGORyujEi6yU5e+00KFWr6K0Khk43mWblv5YD5OvCh/ZdH2CuvbZ9FsG2/9df8J/cehEhPQLo3GT35bLKmiwH+8R+QPuQmOW3HHu8uii/80VsZqKiJQqS415d4PhYmE3uz5YHyPN1sUYr9xL5W4cVLP5terf/H9OX9WQ5H6Fuv7ApNKRQjMgeipa8Or2jQi7Tc0l5idkdj9uT5VB3bl2URrMBpiy6p6E4fAJhlvbfmt0wh7ednXcafNnrlzwma75YJFrwuCgoRPm7WwBUXgP2YRnGkdlTgvJg8H+1jeOIITYtF89fEVRRN0FtS1f/Q2wlpC86YLOaYbdl1Npvnr2i/cfwqPqqDTTYkmwGS/uI2lSYAne/3m+437oNxtT6g4V+G7mrHnDs5u69FH8i/piefRW21bXmMUQ+/Bhl5GP0BTD5j/zKwgfN/aRkCkTBx8PXiUpTxqw4j2kEd44u3EipkQJ3o9v3l0Xow3sHnKtj5TlUHb506OpeYbYFx/HGA7HSQZz22xUyMXF6x9FeMyN2ElWEAV71xvZ2UU0WIL3EEC44HxDX/C4AtgWdHxkHafAfdVKg8geftSd2GjOxm6E0eY20RJnexnPLtSsrXc1X7w+hBsPvH7SEMwBamEncrKMyFCG95BN+Oq0p7OSOUKQ+LTISPC2BpxTPVT4MFQRzHIzfRyLjLD0HxXCMgIz1JJztvus3Y3+zacTPhpmNHZoUBL1r51Oy7siA+fxHtkQzmUf0KhQoIKuh/dJRP5CYBXzc6pDmgrZz9dGZ3pTsBWlr/PoGTyo4ifPpW9LlIHX40aO12neSloD7mY6XidW7tNBE1qfhQakhMAW71E10WcPNnNr8JuhjGNq5m8YFvBDUfpB328qdH/xOSjBoGBdHdy6vfa8KGqXkPux73r/9g/owz1/qYDaEK8uEm1q9658ZQ8TeI9ohI84NScXs9PQE9arKuu0nWEbA8R5eDWho6hDqy3cGBOxsfRZspcJBV3/Qj/MKowW5lOKcTfUKvr8LEwOKQ2sdNrQbAM78B4JEO729CCl30gHdXzN/mi+2Q3Gr337ZnKOBKRd/q1nhU2w9JNe25ndXlMNtOy7D+Tq/ZtPIxyze3SIEfmD2jpmKiU1Yg0deI+y43BXj/Wm7mZhQa7NUbc9aZ6wp9d9lfwGdkSaUqDF7jHB3gT+3MBr0s4ooeqmBjogtHXHhVsjp5mMs3/i3vPgRHC+7hxDibr/wCUHo4Ue6EQf1zzuFfp8KazJtGg+F+gGucanH37OlESP4p2XGOhQsZT4FyY+V0cZ9BrR6/EP2P7tH0X4zt2JWhzb+cHX3Dnj3BlDKMF7+EQ4W4M8xwM/MnCf6Uxt47ADHxpTURtDEQXMxtV/76Fi5yXXr9OMnWHU5E+NpJurL74/CY9KEbUJ9VkBGgblcdeYKLAB74FEeMHnI/HZS1XhWBE3PNW3BrauoTTnZFlEM/pUtcsZYSf5VV9cPPqDcVDK/vELH+5/80mE3wmizJX1/TlfLRcfvWzTRyV6IBOuTz5pxWKoAJXHww8UX9OHPLOWzJpCJvDPfHitntMUmwlsyDh24g1V+84mvq7GeerC+DWET3gf2qXUNEkNk7HR+inDhHLwHm0jPO25VsoPU1aU2+ua8yhPFjpm13jqrFUD+lh2qsRjU+y45fHTIS3zVHFpfH8703jpz5/ZK6sJ90xJXN97XQaxhbjpHFz/53OM96ib8IklahxzHloon5ifT7L1nxPUAvKbyqVXdVdiR29/qf0ozIz6PlfXeftrLH5/IXxA7eIVI155tLZAL06XSQsK8B6R3+I+6Zkd7vtCB63JZjvaO7MU7iVvWNU/KQ9T266HyUysxGxN85dMhk5R6/4zX3s77iMnG5/n8kogcnu4nPJDXijCexRDON8RMa5aFmV0V2ePob6uGgrlY43IuSMEZP5Tj7NLzbBuE7afLrSv1Nc0euJrb/3F/QlnzX6SX8G0DM2LZAgw6bLBerxHJMJ3vO85dLtVFDWHdd0zN9dDHQWkYLmjApCdx8NjKUjDLp0+kd/18Au1XMM5dX/e4v50wvfyKHBfMOVEc3nL+WPtVNEI3qNiwmM7+Cn+IcKojs9o6+snFDTacv25tiEZggR7aofiaJi+ZFjj/a5xan1I7fqNuxf3tyN8/KL53g9Dguiq8vai9SK6Cz3aQTi6v0OBI0MWtXlTXfm4LNCPNS97X+b++Xzsq6Cf7aRh4pEH7A6um6He/M/+2oTL3RvdOYZWIFdhnkObDfXRFN4jXsJpbN23A8ZUkIcZl5TCByv0O1W2rGfjn+fbWXv1SDFz7OHP2dj3Zyepu5oEffTj0eL5h/BWtk+vxXnFkPi9J6FpFQ1U9kN/e0Qj/IYt85N5pIj8eHZky7I6o6g7kl80Xg0xqNeyPq/bZ47pU4LHmHwfUg/ovlXoVdFZPP8QPqEYtvWd2Wfq0B1t0sPGIWo43lOtCK/GTHR2Co5R90TrR74usURrex+Mm/pLI9LtkfMOg+ZYiUrujIjFOKPAee20Bt/i87f6Fu6SphxT8jRB0MwaXKa0mQOl4D3QiB7OlEx9/CkD7GkbsrEPNCQVYZ/MckoOVde1na5UscBabM4Gcz6fZESE58rXqmotziccS9DqfGIrBjNK7RUGxwwXesgm/PZ2KN6wRRGWhYVcdJ5xQLv32RScfCeFjo/6TDqdscAOn4nykvs+xjhcHzK2s01u8XxCuECY2Y2MfgH4JMNz08TKCMXjPYQQPukebaZ5QwZWnH3Couxmi/I1Z+zJB4QRWaTVs4fVEktuOpERbzjAMJK66zKoLomWsX7wjfL6SKERXnv10nAVPzfYX/MTNvqz1z28h2xh3HeEO2SNPBeDVUSv3Bi2W01LBNE+XOGUt7HEVBhKA2G/Bxg5UY2H421/Mxb2DyC8DcZirIe5IXnJkfsOFt8YWngPC73mk5txFeni0P9uG+eeuyuAL2ug/HcPGem0YctqKyyx0ufCIdo3vjNWPyNnBFVZ/3t+uRA+7KTdnPpSCH5ey67/9VtyoYebrbhbxxx9bLFWDhyKOk3a9tkCn6vM3WDdP+f0t508m9SssJZKsbfqLdMMCb3iT2tSXFC8rfGDdyJfKsiER2FhfcPXJUE671fGlA8NRPEeAt7gPpzy2EElUgXaeGoaSQkBsLv8TeJpUw3UrV/nzdhqhSUIlG5JYWUCDp2t1VbGbv/2X/BD2SISQx9kwVelQr5+iy0k4j3QDHAfnKVprMO0wTeu5KbUziDQ1hr02sJPQVspsRPtfVaY3EbxpmHWZXBY1OzoGm7Pf/PDCQ+rG1t6Q0ALPpr3e5edtwJNvAd1wqd3D2svO0mFXYl7K8UeBYI7k2E5Rw0NVVPlTvz2t8ZCPmCihfsEwPTkyr7AeqfF/QmXmQ7ZU3LNAJymvKvGhB3BD+8hgHDSrKO4n54lKJmnGK9+Ew5ld/iSFMdWomx7JH/tujV22HN5yhJmfnBufnVhbZvX4vmKcKUtDlcFp/WgZE9EsvZhHTiF99BNuMW1TWOvK8zBcU9kSJlYCMSn7Oo/glTQ1POy+UoFG+y4bNbwiP8sozNUsVlY0HZxf8LHbXm3Wa0iw9OEIqsDg6KwA+8hoQF3Cpfjl7R+dXhw9NfsDxMfcCoICAp9JQx0J532pms2GI8sc+Lm4wPUsf/MDyD8qs7HpKRYbtT/qmV96E8NpIf3qJpwkSHy+HZ5cfTanBI0l0wDfjFlww2rJSC7TKZCaMTmz78vQlbtyQj14gVs6PLRmX/nkwDCe+iBe70v8aFpsWnmXFkKiOI9opfjvuRozHlOK2k0vTX6Bac8Dd5VabD6XpFC7pzvv+Rst8Vs9r2fyHw9xrh86T/zCR+dd8AynghA/6eLtRvJU4w2vIcOwreN3CGTD8tA40bHhs8N5uhWb/axg3KGiLYuXUh/yhYTjtj+4MNjTugg/v6F+XTCA6pnE6sy1cFo72GNE1lyCMN7CCC8xM05RXadMTxmPzqvu8IRWUcoeY0N01CAY8yPEFs7bO/FJcNPSwXgWXcLshFfszif8Juv8vmCOwxgWmPjmo+sChCO90Aj/LFUv96NEEvIrt7qHutpjwZ4L5nJv3dEh6K4H0+/ssNsfgxbxPvJgKDupSPDhv/3/CK8+ElacbGlJVh/PppwxMYcvuA9tG3FveWLevhHEVdItw6gOS1FSM83LbMwwBPRT+ZmHPWzx55LtC/n+6QMky87MdMUBMKa5Yw3varGZMI5Zc3fa51bDey7ma51r3YEJbwHEuFmVSFlQwlrQJ2YXy/x0zwq1AvRhRICmO7aYze7z7o/4leFJ+wWcRn3LBbPz4R/cu9sIQ86gHmhWG9wgTo04T3QBHGPN9p05Fm+D6gVqZTdf8gFL/XtncNi3NFdznZZHetVWCn4m67MU4RbuUmFH1kXf/+JIrxf7krXpJQ9lHIcVM+Pt4BXeA82hC9V/yGstcoL8qOtHrwVNYE3jhfW+SW7INqccW/A+1VY1VlFpfvGclB7JWDr2Rsei+dDwoe/b/jS4GYN2qOe0wwna3iB97Dg58j0K6cG3QAj9ltm1+ZT/sEB0dx3G23TXo39PggZvS/I4Czsvez03OLvewtebp3F53nNAupKgzMnJKgghfdQTfjVe1b+Zw+5gNDp7HCZVEPEk958pzXGCtmfGxP9+Hw1doM9/s2DJhHw+M98MuF9PKOKnJtMYOmjX7cG7hiDBN5Dy1ncrzcGbB7bagu2A7ldswkVDM38EwJTIpQ/z9+wGecwB+wu8yRbINcysL532qzXad3i/oSDsrNnk7gWzCZznjHbYQtmeA+0LtyXhUfpbzhHBelUFHS2WREy5RslHhaoIdL84cOBjx2wgwY/suhiJNj2vvm4/NL/m094lr98Ka1dBs4PvDkIjs4LPVTP4R4VzWUpU6wFQnnJMvufrwYgS0XsjuSHeM2ZNVi4Izbj0eHHtb2XaviuJ8VXzmbx80t4v8Fbi5X17CjHawvLTy33hR6NauBOKpxu6ZAQQiWvKUKKrQFwRzbW8hKXEVSvD1dcwe2EsQYEO7C9XoqCOayH9XYv3n8W/MRMeot/tQZq18krE9ziDc/wHlWvw10nnZl7PsQEZUfH2cWobIYPrWdTTDqNgGShZntuqxPmZSORz1TLhU6s6P518cDi/AVfW3h5bKZRE7nX5gfM/w5a6BHJEncdiywQ96KiQlXbu2KnI+FZ2RbfrHgy2MQ3KF9b4Yy9KP6e4qf5nco6lyRLfSu/eP8hfOBqxKyejRAaaryuXSkeBMV4jxDhx9Uj1cO7ZVFdwvdc8uVocDqSXxyXtgJV341ceuu5M8aj5kyz0Rlj3MuiP/523wA003/onrYhGy/4B97w/qN8AiD0sMOd9W4w6OM90Ai3UPMjhwySwUOq6KwcaStoBAuqhWwUQ91c/iws4i5Y2mvdEtnMIcYL+dvsWI/1v/2zCa84PDpoGMYLDuXP14U5rQXVoL89VBN+HuKTvkqsgFNGV+5zkrZDlq6E6c5rKtDTceCoZawLtu1J867772apXh9l2wZ3//z3/OonfLS5dujuETIau3Wubni9LyTiPWojvGmT55Etfhoo9qbJj49DW8BpdXdK06wZdN+6KZL8ygVTNXU+GXiJH135YDJIvrN4Pifdxr1roiafnqePGm7oWUZX+II+3qMF/75sbew9NwtU81U3prg9DM6vCFW8tpMGZP8pxw5OVyzatZLeryqA6m4WdHGPLv6+HUB4b3SmzXoLAyTapfX8Vk0oXMR7RPfDfavtHkNSpwWaz1PpupIVCbr9Dj0/STpg6Fau9STCFZur36z2qJ4FjS3fVFh1efH96UJ4v7jy1vzvCujEsxApM9ONIIP3SIPwlUn3VVzi9dDwoWTPI6t2Qr97K5xRHWPQrWP5br9wxRp1tnoZ/KqhFtd7DGu6mi+e3wink2P4Q1S+UMl9gX6K90LAy+NvT60mnGRyPWyu4Dt1+9V7qXGxO0CR30pxBPFC9/qefds53LDMU9ErM798ovrUlwR3+Tr/m0/ywz1+Z7dB5iQr6hVsjf2m4APKeI8CiH6fFf/th+f4UfIjjvOypdtAvljz4S/aSggtYi+Li3LDtGe90xMv8KEX8WuKd+UL/rs+4YS7eWskr0/RQ+XMMS6/rHxBE+9REuER3kF3h9zNURIxv1EjtGO98Z/nA0nt6573btj7z1GrhCLJ6EBNMpPioPfi+4cJ91bnl7QJIwvEY3KlprHPAz7hPaIRLq+XdMZV1QXlzzPpf7IOA/dPlMyj2x2BLpBnPynsjk2z+uePyMmgTI+A+Be3lBbvb4R76urfe8RsiarOzigdlA2EYLxHZEHcY1yVMasuF5Tt4xkdZhsCxx95HAzIsILGtf1vMw64Y3x8e1XGx0RQ+3/nE15x8B5vZ7oJOhTkWdaTtQ5S8B4p+OJOyUl+fum4LZIwV1i5WyIctlp/HA0NMoLsK6pBWhPuWIA2nXUphQvNy15y23pS4d/rSyc83ZVp20ZtTbQiyXXyuYAPHMV7RLqKO//qaJ3wOhOksO1Ajvv2INg5GZb1+5sm0GbsgnIMPTDh5Qe1z80zoTWPBtgldlmijElpnh9lcsbZ07jfT/Q8v2FSDgmvsDesFXJb6FEA0d8Bqx3RZTqIcjg5x/vP96P3qK2uaV4EmnZwvvS56YHx+VKbLUcGqema+XK5I4u/n3QT7iugUnXl13JEjRh/FbrfCcrwHrHF4H74OpNV5R4JlBBXJxSgvwa+9hmuKrrHhegjdVQeWU/MYN8V6U7pbsZOYv9df/cXqCSN4k55wzLk9IkJ6PkDbgbRthCJ90Ai+kBb6Yw84AEzYj+muDkptTVCiCxrsKIx3BPTdqCUqr3vZ7w0W7/HMJeyeP1lcB9Jc1hmmM4FfToeGrKndIAZ7yGA6Jcm5Z7S3i4KDUZXnNmy9IGrOlPNYBczOrMD7Zf74onVzTd636G/ZTT8Z3424b17U5MCW38yfivd7BnVEER6eA93CT99Od1rtcoSeEH0PzHHC0U/vzBotZZf44K9MErwqsFXjPvUF6bD0QNXbRFF992KSOPpigUPX0P2ysnrpI7QDcy28qghmeq/PZVEeCZX+ZSK8wB1YX/WLInbV9fMUUkde9ubb3thPXBmh0VBM6NWzffopj/f6xf2X/BU0Ju4cvo7Q/mpQeOlRAtgx3sGvR33q4+zc3cFMoF/y2vBsSk3CA6hlL5sUkOXJr0y3fS9Mbe6d0VUbRK8Xh4+mXHl//5/ivCv8hlPYydkoCM4hmm40RHS8R6OE/7TS/NKV4cWrCPmHyv0SrMeNEYkPk3H15Xe2JILknzOasvh3JXW0ZKpQJBU3Lp/aomYMZ0Xd/JXp+vLGNoQNaS2cfimMeTgPdCJfsPK+M1Fxabg+ipNSj7bA/0PLfZWZw==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAZgMAAAAAAAA=eF5t1P8zEw4cx/G66xPnU12Ub5eSk6gQXdJll5QWjr4pn4++ufVVd+XKpaxvQtbXk92MWDrqdJU+n4/xqZYztDLS1gjbLFypWbJ8C2Fm9YO7Ou/XT4+/4PkMr/vTZDJ1+4dPcKzvTDOy6KrFcaS9ws8cycjtNxmBOQUbEkeBWruCgwaguHay1TCwiN3nNgg0tRs8+oEBTrKAHmB+PPt+J9BP1JD/GTjpiuX7NuBGG3VEM1B+XeSqBjqxXIJrgf6z3nKrgJzXAksJcL48XPMUyI7wfvwImNGnF+cDW917v9wEDlWnzb4G5HGLziUBtRFaaSyQW+MzyAJWhHB4fwHD+IoHgUCRMCzVC5gSqfFcAOxVbSqZDqzK9R4ZGKNeSvc5pAMmtXj8IQd+E8X6CYFBNu6+uUB3/aL4RKCb4/llLGBjnvZkGPDI/JDmRcC5Y49uTgFa+E9VfjVSuXXxipfAHbz04SzgqEDWkAA038UUbwYKLQ4VOAJPtPiUTgY+kwiUr0epu5y9pDzgilU96ceBZgcWmC8H2nEK7fsN1BTnFgc50DZxSTcHaPRPc1oNlIvUJZbAQs/bsucj1C4x73sMcCUn5hgDWJdWH/dhmHrjbMy6ZODRO1avgoGe9x+ubRuiCpUlrqeAxmssqQ8wXX5yqPw7dd5KzhImUNGhqDYMUkf4dsI4IDfzhWPnADVKMPtEBrBclCA29lPN9r01RQFHlsemmr5RrUMfJm0B7i10kOX0UW3LVE1LgY1NUzYf7qWajNm7b/VQ/YqztPOAoaX1Hoxu6oyNMq+tXdSgaWtVkq/UbR1T75Trqex3+xf+30lVMe65zfxN5bjRguTDug6qiyTL9/FnKifOKnJYR7Utu+yc307tWpM0h6mlOrB0qTGfqMXukXpdG/Xu+hTNtg/U3MoLC3e/p3pEV30UtP7sYYLSTO9QWTM1rCln8X/vqDsrMwUPmqjSHs8zPBV1RdUbYYiSyhzojh6op2Y5Lv1yve6X2ePa6W7Psaylxqf58vbIf8ke93RFZzG/hlobtd21tfrnXyZoMNNHllVSba78nXBRQm3URLVwKqiv7Pk17aXUxoTtAW7PqMax4ED1E2qxtcuevCKqOuD8c+a/1IxACyW/gCrRHNzyzz2qNSO5ITuP+gPkiLm+AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAAhkAAAAAAAA=eF5d13dYzu/7x/GkCJFSZDWMJCIVDb1TKhooiVS0p/ZUUkp7D5VEQzIL7ZKuXKk0KEl2Ngkh2RQ/x+f9un/H8fXn43ie5/m+/rn/uJ9ofvmuU3DjksZYaetarW765svn/yx6tiM13VOHqAx/+s+a6K6trPfuqFvmemsTY5757T8boFclsJZeMvBldYkNMxz/02JhpywVeKd794pEN/WPZX1Y1Oz2tV2uZHwYa370glDWu++s7Hii4cKcP8J6Grol3HFx+NDxiv3Mm6rp2kXRDC07e7PgzK/rNLeS9Y4NnatU6wOJRinrcvSo86xFmwZuv7H2Z3Y0sK5Hl4eJiPfUF0GpTK/aSG46rxZ97TTf/E/PdboO5ru8s8b2zj5Sp856CN0Zrvk8K6nf0Yp5wLAeRm+HrdZ12v1qTWWo5S0j2e36VPK9xkKJpOs0EXbrlFGM7Q0g0dasF6G7wMoh3mL7uxyZKCvW89BDYe9YnZA/BqnMNo07Y+xvGVEzP8shjfXX6S5485wTR/0DvYiMJmtTdEX4qbKX/UR3Zybjn/2D8FqnSFMLtWTma7X9ycpvxrTw3QvVQ2LXqUQN6+B7EZrjgxzJmpr/7dtgCd0fIlG3XBnPCtZZ6H4w98xHZmuC4hmTm/2jXce20eDKH26X73bRXLg/ehu3wlZj8hIOQRfoZb0tvfa108zNzI5u1l7oDvAcA3FuHrFg5swHZ5PXhuZ0a/CU/LfpXVRoiPXI9hDh8Y/WMCmwMXoH3PZh8wqr26ZE5x3r9egmsPq7uYp6OtOZK8f0Boz8dtCt762W6e/qoguKWE/0iPs2XOnK3D7K2gidv5B1OG09/P5mEHMQfQP6Mbj38FT5mGIzZiBSb5WjkDWdMOl3RNiCLjoMB0x0D159Spuh8Hj0K7Cz6KI7zw/5M65RrCeiu8NyYTd+pRTYMkNKHt+PvbGhDYuO3Kt+1Elvw14tmby7OtSYRGXWFD0UPrrHq/T68WBmnCrrLnRu2LC2w8D5tz/Dzxt6yuK3LfU1NQ4Tq+6k73hYJ9x0sy1IsiZ16EHop2DtKrdzr5zNyT7YHz0YTjDfuE1Sx5EJsKatuffsqaiU+JCjV+ff3w/rixOU7DyfrGb64Dnot+DLjq2D3I4biAE8G10PzhcWzZlRaMEMXeR+9bjSkTZ9fmt1XqaTfobJlce6A3ZWzC+4Gf03fPi8Sa5gvAnhgi+iczzjtNj4+Ge65Pz47+8PdThRr6gy4fncnbQBrpgx7ujv1fbMTdgTvY8zPyi/cNR0I6GwB/pleFtFeIuPvTH5eDFE5tJpF7psYNGd/fXX6OR61k3qhXrTLWyZ3+hL/+nP7DYn21BT8gp9MfogHDu9ckZTli2Z5jXW8UWsKx3Qzzv0LOAaVYczl3IVisttZxTh1+gG8HKyNfxlgh2ZDz9Hl4Zbh+auyTnsRqSU1w4tPOpGQzO8gx02XaOG8ApJ7o61KywYZSXWAehGsJVr3LdZ/tbMasyHoGvAq+YJ/Brq30ZKZq+UmhnlQU2irwg+47tG2+D50Xnb03dZEn14C7o5vMQ3Ii3D0YyJmMPaFD0G7j/YdyCwfCdT/mfasmhFL7oscPYpy6artBbu07G4JhXiSThdFr0Kbv5SltnHa8t4cwn/55XoPnCb9NiW4MrdjHTD7B9yl70o14mV3J9zrtKlsEmdtASV3EPGwb+Ps50PvtsrlxGUspZkwuOwz/HvP5c9Tu/ewxyyG3N4co031T3zUO3A1qu0AHb0dthgJx9GsmBtdM78mpJ5ywQLJYi4PWt9dI4jr+ffHc4NZ/7wvVJ7U+xDE85F7ZafepWOn8B6wSGenT52+8nsCf/bJeCYdeq1FTp6zE04Hb0X7lkXMlFiRSzT9uyKsctqX1o0Ktny8FUH7YFf9K69MVoQRbLhAvQ8eG99iv+nDiPyAD6O3genmofUlG+NY+ymXl1couBHN3mt7zhe2EH9YdkNEmOXKCYSVVgPXRt+o9tocDjNknj9033gGIWnUw6vSmCGmOtcH5b40+Fnbtfdd3bQieqs13259l7JN5UMoL9H/wqHb4zsuZ7hREbhd+hc2N9oESZ+ximJqWt9/y2V+NNNy7Ivya/soLfhs4o8c5S5U8kLeAP6Z/jHxWRbi0RjYg9robvATx2Ufvm2JTAlv1a9aL4QQNfcqBeUGWqnbbBDatGTmPnJZOwIa030afAHQdHsF4wLCcD8KvQ9cJ1a+qwA33AmYPm+7u9Vu+lyv6d2ksXtNB1+pOF4yaUxjkyTY70SfQE8X1hl3El9PxKE+SXoIbDbkUHlqbXOjM+H9S+n6gdS0XNeD8dGtNNE+LTm1QIn11giD09FXwvrL7fx0VzkRLjhCei8cPjK9q27Ex2ZiwqvJrfrB9F2BxfbFerttBP2vfb1hMSUZBIJt6Inw5079Yo+B/gQjpvR02CD9gntvfwmzMzA6FXhBnvo/rm2ryx/tFFJ2Om4+W++DynkxW7WIeiv4XIBwS0tygFkOebD0OXgpGO+Q8WClkyWucFxp2d7KO/ixZPtbrTRI/CFs6n1SRvTyG94AvoYC9a6cmredXF7yXJ4IrocXFW345Z5rSnT+01CVGMgmL50OyLSldhG78BK67vVsoNSiMR31gPo8+AdKtafYv/sJo7wO3SOm5VE03meOjDcmV/jRd/vpa2lAmIqun/fB5d8S5u9Z0YCUYRb0DkWfvLzVZGIH4mEO9E5Xndu2ELV1plxmDzzo0xsCDUU99xiJ9FGbeADqm4ax+8nkXnwJnQJ2EP/bPLj7YGkkZ+1HjrHk1LVd/wwtWVULxUZtR8IpUsGfxZO62ulq+BU3Bf9p4vAij4b8t/H7SGtDawXonPst91y9PyprYyet1ypU/4+ynMherjpYCvVhlXuPisf3pNMTODx6MawZ3TuA+/iENLrxZoLneOWtb/5qqJUmbHt4hcjxcKo3xqHJ6JerZQLVpMM2Kt4JYUsgHejz4NjgnNXZIUGkS3wXnRjmEci1kYrdx0Te2tRX/LJMCqpmVI9fWkrjYQFFRsH2priSSEshV4AXxryXvLwgS+5CEujc+w+Gqg9ebMRI/5s+Wi2XDi9tfZCovDAFToLDib9YgfWxpLZcC+6KOy71kk49JMH+fn0f/sPWENh6kdFeTfmzgx3e8fwcNrYPSJ1iF6hPXCdD2N3dVEyGYZb0D/AgiIJbz2OhBAlUdZd6KvgjoW9OVlFdoyrnxfPhCn76WebKXrv9l6hHBvoH37T/CKGcDz8TxdOsN14dtJeYvZP5/gS7vd2+xYV5+ynEp/EXTVVrtB78BiBc7wyRdHkBTwPvR+2cTeqebkqjFz8Z7+e07N6+0PXbGGs+/Obz77bTyf2X/j6U/AKdYBv8O++MH5zNPGDBdAD4G/pOWpZLv7k50vWXOgcW6qkHF7+fg6T9yAucENoBE0VOV13rquFFsLduJ8FJ6Mfgsu/Ls5RereXhMFx6BxLiNj8mLbInVR3+y59OyWS8ulkh9omtNCLsKiufV5hWgzJhcehF8CmGQX8UUkhpOCffY53vF9jvmRGAPlcqPBsp30kPS6onL3NvoV+hXW6lJ3qSkLJyD/9Nzy5KHT/l9od5Bqch86xscS+5gjdXUT/u2ir7Y9IKtXTMOQr2UK14S+futY8P+lHvGBZdHe4YpbZhiWqVkQalkHneMHTiJubzgSRYxt/FzslR9FT6Tp6aY+aaSZsqtAhJ7rOgYzZxLoK/Qf6mnZhC7FKY2IFn0TfCQcXxol+zwojq+KFrsb3R1F1vZbBlppmKg333b8hPK7Ym+yGtdE94JysWS7Sj6LJYlgDXQrudjT0y8pLIHP+zBNxCoumVcJtAab+zVQYLtb0Fgjct4UxgQm6IZwVWLj2sWIkmQHXonM8upibJ9wolUj5KVhpzYqhCk86uF7LN9MFsNlRiS9vHLwZc1gVneN0hWTfULcI0u7LWga9A04t6OusvpFODoorTbTwj6GyE1zS7PmbKce3bUdrDQSCmPXwfHSOWz2lFv856keEJFgroXOc3OMhI7g+lbgbTz4WIxxL/Sy7Cv07mqg3nF4fxM3M12bkYXd0RViu53x12Rg/cgwOQC+CQ1OidUt1o8jCqOerKytiaW2FQmV0bBNdAt8Wz19ZzetCtsIX0c3glMm5hzes9Sc/IlmXof+EH4qWhO5p3U9u3XPWmSAURxN5zvEa2TbR+/CbvYtdno3qkbNwLHopvPnXZ4XSIwsYznzqP/sy37T4/qzzIZN0ZwePr4mjdn9ayaBEE50IG9395fxZRo3hgh3QOfaW73Iet12dEf6nc1yiUtloGGlN1lZ3lvLuiKfMz6f+cY8vU1V4Qwj7fjtYE90Kru5YKr5HzIxxhLXQOT6B+6e5T47rJ3/vyUTePnnhMi2AFd76Luzg3kWSYF30OPjd3d64Hj9XsnUs653oxnDvvTBzzxfrydfFXzZouCTQfQ1L5R4GXqbDsCDui8iwjkCfBvOn8QymlmwkGnAMOscntufmu4g4MwmbtQ7kCCfSGuNbcULKf98Hn3/mcaJ7rA8J/6fvgzWqc5ovnNQiFnAFOsfhhyLsJCZ7MyGhDZVmexJpz/nkziShy3QPrPFkZl235i6iBl9FV4UXNMaXuK5zYuLgm+ixsFDiyxK+IX8myfxYUNHSJPrVXqTCpaeRxsHrHzYObZnvQ4zgT+ibYKnSiG9beL2YVPg7Ose7HA17H3/ex+xcFav+4VESnT7rSLZOeiPdBsvh/XnwHPQjsFTcq01q/d6MESyCvhnuWsxdeTx4P3Nfa2tDv24y1Vggu1DKvZHegkULYrmeKAURX23WG9G94e9fjS5O85zA7MO8KjrHW2fa5brtTmD6RqW2NHKnUMUp8tE1so30PmyTwJQLOnqQ3/AqdI7Tfp5kfB1kmIF/9l/B3Gt++Gf6hDNVNd9fHa5P+fu/ZNUr3feUXoBlk5gMA9VQYgzPQt8KV7bFxucX6DBatayXo2vDfanM9kvPQpib/LKjmSKpdNWbqMaD7ZTegutlL/wsOuRK+v7pD+ExswZKtH76Mm2wPDrHi+pcxhifjmOK5BXaCwJSaffmu2fex1N6AnbfYnizM8OGpMBX0VPhMzWW4mk5fkwi3IHOMXdnpXv/iUhGbbtKZvGdVGp9QSZDZwOlDCy7u0/H89N2xhJ2RLeCJ52rXHDc0IK5bcp6A/oteDn206OmF/gKptEW7g4PfmlKM+Bz9jI7P09UIZVwB3oVbO1ett5y3GKSC19Bz4MbN4o5um4wJ32bK7m/B6TR5RVlun69l+hjOMHmTfE2zQjmD6yCPsaY9Y/tRU/PF5uRAPRx6Bx3jycfeXsiCZ+YscPevr/fs75ecX37JToJ7l9tclN2XRKzDO5Fl4ODNWcIdn/ZS1Lmsk5D51h/tNl2unwukYv3njMimk4lr57QsxW8RBVgAQf9RrP5qYwaPA9dHVZuP3xKk0aSPHgdej5ccsMtRdy8gPD/2rl6Z0Q63fPVJjj1YAMVgs89WJCQUpTOzIb3oovBhcaNjyat2U9GfrJ2R+eY13lQpcg3n1S46ps3vEunDZJzzzbMbaAX4ckPH79fr53ADMJd6B9h+2ojtbOX40g2fBo9Bw7ckZ15d+Q40VzdWblC9gC1uqFS4HaHUF24VahhtEstg+GDtdD54QXzj1nZCXmSMjgMvRw21fcWijhfSE4uPex4/8gB+jpxwulMK0KL4Tdep0o+eEYyefBz9AL4yv08yV2C24i8LOs5SWxXgKU7m1yaTLOIspiLaAR/Bo3QvVfW8KqeKsEjuC8KB6BPhz2iRy97x+1inOAD6ByfmJ5Rx702hIQYWtXJGGbQFrXGNQWF9XQPnFQgvaw4Qolh4PPoarClrvH8GCt/omTEWoBh+yqYi9eiST9rL/Hb7iKX3JxB5cMXGX9YWk8D4LnH2PvR8Ar0GHjG6tfrk3auJD/hHei/YLWZEotp9D4m38b3xEeVTFrYkmSvXnORFsFNPOz3B+E69PewaNLt4yM7bZincDX6M3jMqx+rldrimLpFyeumhf3d924qc/e9SJtgj5/S2XO3Z5LPcBv6D7hPYNbOqbm25D58Af0BrDT9keFqz2hG5dhIw9lfmVTQRsBBkOsi1YVnPg85JB3iQVbDE9G14bffNtreyA4lfBxbs30i/GD3gFFbbyCTIOaqpLs7i1oaWYhWJdbRo/CTq9J+rlpBZD9sgJ4Mf/Qdb5D0MY6U/9Or4HDc919Xw7e8MYuKhY/dvkm/jibA07hGB+NTw4gJ/CeM7dacPlV01mkbF/Jdh3UP+ggcEvd8bkSGLskUvx0VrXWQJh0QfBd47wI9BbvfdxS2zYwn+XAM+hl4x6MP7po7w8gleD96I9yxMLVcfc5uwvvjM/ejloN0zgnx/cecL1AR2Np8IHfOxnSyAJ6NLgsPmXQo7X60n1jCMujWcAje1/k1S+LBtGwqNN5ZrGXRBdoHR0c2qO6cmUy4vrGegc4HL5eX6K0aE0iOw9vQT8DX22+0/P7ky0iILJcMy82mQQeamksu1FIZOBn3Od0LXQp+8VX+w6zGADIW3oHOA08SeDsm7vyXegeFVsmFiw7RHnFx1wyDWuoCn5rT3hwleIgEwvfQ98LTaxOXzmiJJCXyrCPRi2HNhDvWk1fak6u3i3+kBB2iT0M1ZK34a+kN2EHxtOOx3mwidIf1KPo0OEPu08Kc2gRSgvle9HPwyyvtb5bmxpK4LbxLxSbl0JJk7XXqR2toPNx2T9i0MSeCJMLn/+mRJfqG3aOpZDwcgs5xuqTlzyl3colot6VlyZEcap+nazV3VQ2dBvvcuxRdLBdCxsI26Fywo6XQ74JLGYT/Ouvx6BxLvc0ushw6RZI9PaY//5RD/8zek1n5vZrGwZ6mXxzmaoWQIHgEPQD2q57w5mx3AVnnxdpgDtvXwwq33VrWK5whNnV3RsYkH6bTZvIMt6dWUyv4g7bWskc+tsQWnoFuDZt6f5m1ka+A6MEC6Lrw1iZJs4qV54kNr+ZzCekjdM305E2PpaupLXx0b4L6OnVf4gSroTvDXCZhO355HSUjPKyF0Tl2FzQ/88y3mPwSayyPjfx7rzHunfO7KjoKLxkhKoZ2ESQV3oOeBt9KDu47Z3CQdMFJ6BzbvX683OpmKdFtrl06uCiXFki4jPkeW0V14DrBmsJnVxUZLfgo+lp4cbAs33y1bCIBZ6GLwRvPzH1VY1dMYlxKTxhezaV5+3RFYhZU0X1wUM/enyu8bEgRfBo9H37d7tyol5hNouET6Jx7veHBHmUSx8krvZ+ztsrm0YRbAj1L3lbSJ/D+kif8cSSWqOmzLkFXgtUnRu+vky4iabqsRdDT4e7Hk9KnqpwhfjNnNZL7edRVO/T23vhK6gF7F73rsPMOIelwIHoKPLxi4YF2sxNEG7ZC5/jMlswTiwsqiflrFSep2HzqWDF4v3NxJTWDw4OSJE8WhzIDA6zV0Tk+Ord32zrlY6QD82noHE97WNf3Sayc3HRJj2GG8ql1lIryheEKyvHvtKqvc1sSmAm7WO9G54MlprWunqeTRV47s56I/gb25h5NmZhWSv78eWitZlJAy/OWKM7MqqC/YJ2BNSOrDYzJJ7gM/SOsOShzYKJUNhmB69A59sT9wY7hUbPSAtpfM1cuSKWCvoTVKg5OsV2WSfivsh5Xy3Y+ONPmT+LmiHSyFJZCl4G/VFQt4ztSRJ6OfzO35FUB3dW6NugeTwW9B1+MSrs95bs9+QMnoP+CHZ6cKhhrlkdU+Vg3oqvAQdtsfX7cKSQrahW/5+sdpWc3zJ2fU1JOl8LfcV8IPoIuACt/+sSfve0QMYfvopvBUzrV1JabHSfTnPf1HCg+SvNufLtmbvJ3Hz72XKR142w7ZtCJdRT6W/jto8Ju4ZVZZAvmb6GbwE8fx5xq2lZAlrk9bXLvP0pDvi79ZD3v7/vhoeGzvpnq4cwhV9ZC6NnwmAiFsYNjUwmD+RR0NfilZ/dzQb988nZtT8qZTYX0oKi28d2uMvoG5lMW532SH0S+wfnoX+G7ouU+brwJZLoW61p0ETgi07Fe1TOTtMxssnhVXUgbVC3KDIPLaCs85RP7fuVZrEVWs51jsyGBnw6XI4kp5l2xvw1uVGLfp1feFJv0pZAOblrPs3xDGdWHlXPNVRfd9GcayliHoXP84hEPD9cCTxKFeVFDtkfDi69tsFup4UMii4Rex9sfozm8x3uqR0spxytxPxEuQk+Ct4joKFx4tJnJg8vQOVbE/pssG73Ym8eodz33UfXzpZTjr9IHm3e9j/z/7on+Fl5j3GiS/9WJKYfXo5fBC/H+2z1Mpeb0Iro8YYvt0ohSegeeKcX7suGFC3MXlkPnWLzr81CTdRhxhO/Gs90J/iKg4DO9M5UEDbQJBCcWUY8dYrKSqqV0D5yuM1K/NTOGmMIm6Nth/VOWoocd4kkg7IrOufcJ9/tHt7hWch+nwhY9H5Y8O09fwwF3Nsua9eaTfbCbOdvDYZ7GfXWl9QHE/Tfra9j3gLXdLh28r5XO/B8BV7YHAQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAMgIAAAAAAAA=eF7t0N9LU2Ecx/Evm6MhTXQrPAWbov04Satc5Gjm1zIoTynoXLZMnY7CIGgTRg0MZy7EysGcNxZEu4oCwWEpQdAP7CKqixQMwTIvLMKLWluk0MI+z9g/EezcvHk4nwfOeX3puq2KHZKeE5FrevZbFVGxrHqwjvqVZN5GJmqLRmybUfUrt9eI6uZGmkqZ+v4MSz4ZfRh4WrIH3dcsV1iYXmx9PRE7gN3Oe+ZbB9GPRXMzVXg/FYwoR5gO25/lxY8yRT9r6r8eY+roPLloPYF7LYPWRD1Tw96fAX0jU1ixWbubsLvk/FTUjPPxnpmyM7h/enkg2sq05HiZqO1gcm5Zab/hZnr/XVVmPM+kbRlW6y+gOQad/yJTvCBld3uYvDct48luJtlTmQj7mKRNb9+NXmFKPYoVmnqYHq8u1FgDTKzkDqxfY/qwIzT25jrTr9VWY/4gU38okpszxGSxGIOXw/gu9e468whLUvKvabyweiXtqIXjWvv07Dz8tsHxB9oLxxTqgqMGHho46uChhaNBuEYkn4Teh6MJLYdjScZxO/5XhuMu7BfgaGYqnoRjOXYOOO5HF+FYgb1wtOEsHOEdF47wjglHeC8JR3jn18JRyTjWMT0Rjg1wEY52eArHU9gJRyfc1HA8i/sGOLqwC8Gxk2nUC8dzTA49HLuY5ifgCO8x4ejJOMK7VzjCu/83HP1Md4TjVaa7wrGPaUo4Brky7bihmtLPWiDbbLP9f/sPAnqTuA==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAewoAAAAAAAA=eF4t1Xs8VGkYwPFXKam2kHti1DbdVKxLSm/nrFBqs4M2itIQS6nU0k27jXIZREhtLdlJhYhElD4d79tFi6RRDJU0uZRWIZdcGtrjvDv/fT/Pb87MOec5M8bdx7zD3SKo9j2xykn1vvSe/LbhyZcfIVCearvLtQK1XHOV9Y/UI7Aj2DBWWIEUGUfrH29uRqCR8t56pAKZpg/3mN5tR0Az2cAzrQIBrxOLVRZ0IXC3JlqrugI1pO+9nVXTg0Crfv38yZXohqXdBkOdLwikvs+yc61ETuZOfyf6DSHgvvksP7sSbbvw3Y3yewoElC1tU6Y/Rnn7Yma4aAEM3GO6/wh/jKTqsisJNUoYJANRqWoVihFqGeSdHY+B8vG77pIqxLcQ6FT4TsCgapbydscnKO96h7YGrYJBp8RaMaEaaYYXtlbxVTGICQC761knXZ3nMnMKBs2DTlPRUxR5OmS2utF3GLTdvjDfS4r8SszTE82nY2ATmhDQIUWRv0F1m1w1DESbIvgRNcg3tEgLVapjoON1U7D4GVIctj5o16uBgfjZhK7WZ2hqk96MqnmaGMjuLOXlPkfV55rSAgK0MPD4sdMgqhaF7VAR2pdoY+Cb5LQiuA7xXGeqpenqYpC251tHiAyte6DdUCnWw+D9seRHcfXo6VUQAafMxMDBLD2MaUD9p6Oehl80wGBaY8zQxJfI75yszGmDIQa5J8tNA1+hB1YHL1lO4mEQHbBT0NWIYhd+on/9wvpKsmdmUhMqCNl0w7HHGIvmvRp1NZGjGND6blQxG4NUYcpn47dIJSZyVanO95iuEOqLFjUjB3yKV7d6Lsb2Kbfc1rWgpHjdBZnH+RhL+NmPj7Wi8LUVabl187Do4c1P+k/akOFdtfshqxZgOjTedav5e9Tt4DBwoXQhBqPZ64MK25FG4lBIlZsB/nArO7A22B4D9uV+zx7i78oWfHVi94l9Kd57QFPPcZmBri84373jA/E1uWqckFgQ7wNNVw3d8TpCrPZtC4O3P3i9LY34TnYyQy+5fUu3mlgy3w9Kz4+Emkx+yVkclwTlS17XrnUlljoeZuh4622LsokDfxEzCX/mY8n0V5w1bSIZ04tFDhHhxNJEb4j1Q2Rlqo2cw1eeZ+QbH9oJJcSKhWcYntuM4QDH15zp14FwezxuU5nYxNnzRgojsd3JHKknVnvxNyPQni42QG846zomMttfOa74wUtO3s87xFjMKR4J7iC2Hj4Hd7xQ4VtEvOV8VPc0DBQNKgkXN3MG712Z8hfPz4xr+99dp2C4uOTOstwWzt2qUVC3Wua+PKqVXM+Oy4z17rM3PYPbOJvoFzKmM63uax14x5kXcpiZ2rdh91Dce875ygnQ/0hICWLaOcdfLWIkNkvP2qv8yznrciVjSqmZxQd2kPOpKoUCi7zfH3R95KwurIPu2Trxlqc7OZ8qKYPxrmX610y6OcveYgjKCwy9Zn8m579+H5wW2ZQ6yaSHuD0WuieUeIxb38t5djeGQcXNJy+K+jiX78qB8qCkwnnV/ZxNjXKYTJtbTdctBji3915nNk15nTmzaJD0f2CmXCMlpDn0A7lebxQrbZ15x5e3htDnF+x31B96gNorHrL7+YEaG2NPW0iXj/kFZ8naJRDwPWSJoz2UcMHGjJHMt+jkB+r7JjfSi3p/grhzzKSvnbUdgqjVtgtVe6lS5wL0yL0TDYaEddnsIr2psj+k7cdMetPffmePH+BdPrOX8ln3j89oTD8SGO2LPBFNerrwKBT1BbEmvWJGLARWabJ/rHqp5fV501J7vqJkqZblikLSP8xIgjh8zKQ/MOksBH2rfzm9pZdaq3OLr22uhKsitqwYaCf9XbtrkC4ZM+nF7xMh+PCjQ3pUL9XZXhvmE6yMV+amM8JF/3Lzcioa0mdzWL/kvLI4GALXS9kHS3upEE2t/vpSFdz3s/7HpaH/98fSGfrwmEk/SfMABNfSb1/81ksJ6hj+Ys0pONnITcp/QXqg/yMj0hsz6QtwEgQFc7pL1vdRr+e67bQ6MA0Hd025oe/Qwc3ly45DesJU1q84H/ocBoEsOcb3Uh9VOHDFY1+vGn5oL2zsuk/6tSZ/McDSlzXpjyolMSA3xGqTSj+1q67Qy+imBrbmi6Upgo/k++rnMyLjaNaNnGfsvsiAyjSt9Yf6KbDf5JzNH+z/gcW32/xu0tOBOyE+NMCa9OcSgiAI0R1SH+inUnztznxy0cap45bY5KZ/IvdfTcTg2DG/5nw7g71ffufqxeFfKH/DhNC95rr44TvnBO+ATm7Om3GY7QWsmzhv6b8ERXucfv/beID6uXnfienG+tik8fi/SfZd5Pi6EgZcDGP9hnPeqRx2n5yDNz8doOZGl1w0m2WA0/SqNVwNusn1G0GMxOUJaznn2cwNCOwy5krjB6miEXqb8wJDnDC/SKieTnrBtAyYzxsz6XPXFUCwzMjcUjhEpQ5d6wybw8M+2VnnGyw+c/PgvEoo2JjB+i1naVASFMX6q9atGaYEN3eqjdgY4wu7AwtO1ZH+9k9FUOK5izXp5aNCCJ6gq3p2X6knXkX3lbxm41sw1vmHiB5uLvE5AfMXRbNuJvuE7RnRJZwV56agvsZG0+K4OVhSYfTymV0v6fMiGUEOj3UL6UsdoSgveeubEyOUfHDN87/Kv8eH97qkpGr1kc/POQPByjG3Eu8XQ+AWv6K1cpR6OLXtkJs6H2+s99aWDZIefzwEt3/2ZE36m+LLkH7azXPSAfSGzGfXP/vPwwYeUpeWrn7SewRD3t4a1m2cS7WvQKCy9f5fDYB2umcTcFM6Hw9fSTFbq/hC9k0nlMG701i/43x/1R0ITJeVR2Ur0Tu3KBsrr1uI08vGX802GuTm2+VihrfmW1a2UTu5f/3hDIhoEXjFj6Ovn/bSE8oW4Z3DLRW1HkPc/OPVGkau94U1+b1QW5ULQbG/eVTEeFrRKS4KOLgY5/j5eRcXDHPzk2U1jDTYkzV5njc7VTOiYx9GwxKV6TrQ0NG4ZCn+fD3vmy9fwc13mGAmyDaHNXl+vJ4+Z0RZFj5dhRPo/bZhQqdjptjfM+4rr2SEmyuOY6j29k/W3PMjCtj1khEVfSyO7ZxIry/W3OEebIY/rk7nrdv9jeuzFlUw2CmVNfc8iLY4PGPP18BqyepJtN40kdnlgz/goF+t5hamA3qsvzbrEaRDTViT/XYpKmZok/y9ZYWq9KP1iqBtMea4ts9Md0q6EtcHHaqGWVPNWZN9ddfOYHg2YSbOtlPo3D9LwityLXBpQpTxxOJxXI+V8pnGwUTWZF/t3txn5EczXjV0T6Xzyjw6YYslrlRvPjP6ZjzX027nYP6Tt6zJvg4+vg7B1gK7rfem0ZpBMYYLTZbhF85vTtgZT+D6nksyWGs8Zm6fRL1qUpgfOntQvkWNVpY1u6nHWGN/M0HL5NCJXK98pgIKup1Yk33CEw5D0VdpdMOv6vQar+Rd0aPL8U9xhi83dqpwPZDmM9ZgKesBsv+uVxmeU1cyJdag6+yWbVgWa4Pl2ufZ/1tVrs/yfsAkl59lTfYJCCQwXmPUvT9rI/4PsRprCQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAXwUAAAAAAAA=eF6F1llQU2cUwPFYWSxqlSW4dkgQKmKESEWFiwpWiksLKFgsqUHEsqhsalFRLGUZGZFFVsWiwRnEwYaJWKn0ShRkKVUKaBQBwUASgZQgBa0SMfSh+Q6T0854337P93/O+RiM//9O1io+Zw6eEhPnWVSZXDpZBs7+2TOhrbMa7FZ7d0EAtwXcNFZ5we98O1g0kj4efq4XnBs7q0MTNwBexDPXON0eBq9Yc1pBeb0CF+aOmy2JVoMtxI+jb5kybhN7ZkWmxDlPBXdkiLIjygzAXoxK6x3RRuDRgw3iVckfga9Mv5DPjjEGB3hls2IkpuDtDRk7Rvjm4HDWiXXGc+aBOzd2ex3QLABnGEbOfGpuAW5N/iHEYjkb7NdYKuf9ZQk+mxPP3dxkBQ6yVctt6z8BOwXtj/PvsgG7GH8b52O2FDzeLWwQ7V8Gjipk2nD77cFNNuMp/huWg49GUb9bX3EAB57uqc5lrQDP5WxTdpU5gh1qTEy2+K4Ca2TRXHcTJ/BIZ/H6rUpn8INrj61Mu13A16OsfLxerAU3tA25/J3hCu7nju5U33QD4++ISrfH3RzdHntRj6moR65at8cS1GMe6tEV9bgM9eiNenxWpdsjG/VYhHq0Qz02ox7TUI/uqMfPUI981GMr6jEH9diGeuS/p8ftqEdr1ONq1KPRM90eg1GP1ajHENSjB+pxfKluj0zUowz12Il6rEM9Ct/T4wDpkT321M1ERjHQl5BwqFT9axD8/2TJv453LNlaFKqgHGndXjfZWvbcOSEAP1qptX1H3xZOC13I0u057UDimeJ9N8GcGK1T5Q92W6loFep94q2ZfUHOb+AjxOvHHCJyeyk7NA++e53DswQSsIx41+V8o8N1NBvNi+93NY3r2M/AWcR7DRKLPPvoGjRP5vIDNZH9CvCYTGtBYM0m79s0H81bqORL/ZP+KnAs8YbjbB9BK/3WX3cew7ozvS1fjYAPEz9ZOEPZNkg/d9Gd14lYR8+WptdgCbFn14cVuSr6KzTPgylpyQVO78DHiAWpVYvq79EDaN53npaqzhROAdsQD8+Kef2mgrJE+0BelMK+odQDlxN/XeEzvbmGuor2hak5Z8nz5GngfqbWqx80lAjaKA7aJzmDb4oNo2eAjxKLDtusDGujJWjf2E9IQ+b5zQabEUtlP97zeUjno300mzl0vOuiCfilmdYpNzx2Bg9TfmhfRaRfvjbXjAnmEUvrNHy9n2ge2meH8p2EK27MAYcSR4n1PfU66BC07wT30/nipPngLGKRus8uq4d6hPbhB7HhkaFJH4P1ieO7koe33aHw/c48NvWNAY8FziWOEqawfNqpZrRPh6Tugo6Zk/v0JbHjxPSMo49ofP9f8/ZcbOxcBJ4gljpEKqtr6Ty0j/X3GQYY1luD9YivxMeVJz2hw9C+DvMaWNzbtBgcQLwhMIxHj9BuaJ/vO1+5vO7lEvA3xJnKC1n3H1Nr0b4XKUQ9zi4ccCXxxnkJqav+pN+i90mex1XnF8V24ALiJKvwVr1pt8LQveivynBtP8cFdxEvLM2s5DBu1aN7Un7J2Ug8OukS4kyr8MKHMjoC3Rt5+ri4IvBTcDPxDKFvhZ+K4qF7FCtRtCvlkw4ilgql3xc/oU3R+2nCtsq94MRKsIyYdXaADh6lbNE9Yw4Z21pwV4NHVFq7zo+2iKqi36F713NwT90L9aTvas3aItVoTjFcVOge1l6av1kgpcDXiRPvGAS29FJ/oHspkV0uk/euAd8jZqX90lfWSJeje8ovushpnOL6X8d/0R68t5TC91Yj5DR4W06+/9TELdeMNbuGaIX2Hv8DPYfmpA==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAeREAAAAAAAA=eF49mHk8VW33h4+xeGVOJRlKpswZzubOcMxTmUpzKU1UhEqUpAEND2nSpBJ6ip40OicrVEIZQoUkKb3SYAgJid/z7nv167/v59pnte1z9nWvtSw3WPrX1VtCh+bUhEfDD2047D9xhrNRNaFNJ826VVgu++kjKzgptAv+K99XyGI7MUHzwUmlvyJdgX+/5v1yS02iGyM2xcdCtIh+XsB3FzHZ9bTKHFrqqx8/sOCR6hG51kVfpZFPYRS3rylrW6FNYlLzi55aWcLcBVENx+oVKV+oKEjc3ubR16IFQz+T51S9VCbnjvwUONspUx73hOsreUWs0dOUHBAtb3ObPodwgnql5t1Vo1xWjhl3c3TqxiZt0iGya4phqgLR2/WwWv/cdMpT+vmmL8tr7DpsQXT+m8/rxmsRQ/fGtyprZ1Ku/puvk32i+LWLB4yKp7r0ivNIzSFDowFGB+9fgtE+vmTvY8MAKPHWKz26i0cWb5r2j9eUWZTbKTJbk11G8428YdRh+4L6JRoki+u1vkbMEO+/k2sjOaD0WTwApL8d8zPPlwJtj54bGXHGyDv4j7LrAmad9AWz7ss61fGToGpA73GZuCn+/xf5Up2zrNqOzgfp0lJBbaIB3NNy6Q84ORv/fkXB3/dD/nr+2hdEzp24tdfBgKgNyksGGZvj/ckz8/VOrfb47Q6ijSr7CnV0SO+zSSuk6y0oj5rEBBlfrd+f5AmjnzNO9+92hIGavEWHE7mUdxgIMv+S9zl2wAR6c6xXFMQLkZgL7VI6blaU6/RzNz9LkBm+6EZ+iZ16nMczJoUX1MR5UwjliapMILc92VBYF0aXDF26P2AOjuNvevgNz6E8TEPQ0e+ToiClAyPv/K/krlMEl0GnlO5OW3w+TXxrmb8k+9IZkKlsvNZxxQhWJoc+bxu2o7xHVbBVf2HgiUBbMBQeq+5t0CPtvmuF6iV4lPdPYoaPzeY/yHGC3lNjkmt6p5CvLsY/yzQdsP5nbr2LzDu3LhGQq2tVeZdlSLKrJU1KPR0p9xZhjJvuTc+Zs4QInxA4mAa7EJdNRs++xztRXmzBtJv9OuOnsZRMNstyzt+tD0GrJT3jy50p19ISSN04Lx1znEdaKueZ5AvbE58OlfQyVVf8vBxT+2BM7JzuUuBkbSoXE19OihouTNBPcKM8z4MZ2podrmRjCiKXX/Z/svQn6ZurgixEPCh35TGNfinBgdsWgvidTeX7yrkkVSRA7PBxT3y+eozvjylnqo8EwT7tb/21C3jQeyi5r5fMpTzSUlCs6/f22BYuzF74uvFdtSEZ2CDI9xudR7m7MbP+webmE5U8GK8z2hZs5wpfsjhRyzq98f2xFUyPPRt4rEcBRtblZSuslSepfalGBl98KDefycT3Xb0q834peb0srbDwuj84ZDqklQz4Ut7oKnjWE5tee8AH0i6Hue7YZwnGhjsTAxX98e/TE+w+1p4SGupHNM34dd4T1In31pJrvo7zKb+nzCy/X3Z9ae18Uvr8uUtcPAd6eHbKPxIWsDxul5zAIUxsd+bsuaRdQ6YifYRH5vTdTMptDaCfL7diuPwF2VLPNoIj9SMxKFRm/cjDzFk590piSHjBG+pHoipF/diI+dDttWnOowvJY+pHWLKd+vE+5glSU8w0ls8nzdSPsLif+rEe86Spg2KRHxUhnvqRSC2mftyI2b3br8jghwWRGmT9CJsPUz/2Ul9CjOziA4ke4yGK+hH0VlE/Lsds/t9ZZk4RpjBM/Qg96Md2zPvSGvXMDvMI+hFOox8/+NMs6alX94+QHxmjfoSog9SPHzD3hlyad4YTQAqpH+FTCPVjOuYMuMO4aJsQ9CN0oh9bMI8E7FhrYWFEZKkfiSr6sfgrzd0nCrvLHlkQR+pH0oN+lMRsHGv24JyDFuFQPxIdberH609oLns8YvMt25oMnGX9CDt/Uj/mYTZ8kfBDaMJsMtzA+hH2oR9vYU5dbSh3lmf2x4/Evpb6sRjzZt/YyylSnmCay/oRItCPr6kvQTYv64rq2YUwSv0I7ujHMsxlMmerzgw7gvhS1o/EW4L68Q71JeELW80oXqYFQq2sH4km+pFPfUnqJA6vPnfTnChTP5K56MedFTQ3NSzOMQjwJS7UjzCGfmwQojm6e1tR/aA7EU1j/QjZ6Mej1JfguyUkoqlIHaZSP8Id9GNULc1DaU8g3GcdDB1n/Qiq6MdUzNFz3vgG2IaBFPUjkQmifgyfTbNOYc4lm2VOMKGK9SMEox9vUl+CTOKTR3W3/clwJutHOFBP/RiIeXi12/VoPw/CoX6EiaHUj8cyaJadX9xvbm4C46kfoVCY+nHrbZq7vWz6dG4YQSr1I1E5TP04EfOVmR3tu26HQWYA60eIQD96Yrb66Oz81D0SfmmzfiTR6McQzOu3SVwKO7sGPlA/ghv6MRqzypSB89ZjkfCF+pFMz6J+XI/5Cfe7mcuzIMigfiTh6Ed1zGG/1yw6WBcEI7NZP8K3SOrHNMwv2mzr8m6aQzf1I3FHP0ZhHmnQT+s74gWD1I+g3E/9GIt5amnOjzPt6wnrS84MRpvQ/tGN9aM24R6rn5688qe1koXm7ypPBhrPzPM88qKV9o+cUb710gV7xKK4IE452XiH8v9g3lJUpXdNzA3rt3JjRahf37F+1SMQ2pTpJmdC9mfpmCtfUQfZM47fHxf9xvo13InhM5SuhdpBNOXE/jzl4ZgD3ZnKxc0BtH6rkqAe+1fqa0X4ED240XuGMTkt5rDzhKMlyU2Wjn6VIoH9lzCzZappaMNiRUigHMISKY/FbLTi+RqpFMf/v//iIer3t6zfTUFR3L3/VawW2WlRmbx6jTLpGp+wSl1LHuvX8AMDW5qtJmjCAcqBJ0H5WszFjktmRJpWFNDyIozJQno+7GDPB22ickFM9OlzXbL3uF/Yyf3q0LJ/ncumQ5Ow/je+UHTaguC3U8kuyon6AcpDMNdV1+bkjurT+y+WEpzG/luEPW8kYe2rnbcUf08EZ6GTpwu/mpBPlUPvnw2rYH0hpnfzzMbI7yaEUA78CsoNMavviOlXGtIA9nI7IYEVnk/R7PlkABcb/NKinD4XlGco3A0WMSGlfg91g601sD8TYkq9jS+V5RlBAeXQiPwK5sL+HeI69pPx+bfwO3bS82286P/ONxE4OtbparhNgYxvOD0QW6tG5k50e6UppIn3P8BNT4rRt3zvDIP1LIcq5DWYvwTv/jYv2J3Wj5soaHXD+YE9L5VAKqYl16Xup7VT83ieVJIlsQv22i9Ro4X1JzERh3yaX/b5AkM5nNhAuTrmWnOHC7O2zMf6coIlOH+MsOerKdgl7/l074IafJzVIs7j8cik+yadl67qYn01plczzsWyzh+aKIdMPuVFmDc8yj24Cjzw+5UQEJxf7rPnsylEWd72GXfcGEo1ypckvLQgmnsiJZKT9fH5SzMHPO50jfvgD/mUg34c5amYwcbyb68aLaz/kZ+B5zs97+Vgw+5xo0k1BLqOaorILxUlL9wG3x/ca4T3/5Lb4Bv7Vt1oPginshxS3CmvptdD/qpjL3b9sqD1V/ZxlbA/6Gf7gxHrgrt9au+NuZDRa7HBrFse7vc5cu86mGD9H/z4+ktr7pz3g/OUk+3It2IOjVgzGLnDmNa36+MOYH9B2P5iHFGYls//NtEOXi6XWqeSpQmupnpNydV/5jMJQVinzqyIKb5QRTkpQH4Rc0vSkl4nfW38fZZwP+L89o3tT6YR1S6XnJ3bGLCLd6/c43ezwJfn+nvZajOsX86tUGlT+57mCWEHWG5tibw4lmZl+/+snfDMCn8/UgIuzn/9bH8zDU5azbIr+WQDElaLpmrc0yPVxi6mjAjOfxxpJp4vpT1a5AkDDMshBPlNzHc9FvrZL5tF31+OGHMR+6MOtj+aDJnRMV2SuWYgtt7ye9JXfRDPOr7I64Yl1lcU3KkceKnhaA9D61hOJiDPxOzZMbb98xdHrF/Ir8L+qpftr8zIC+5T2wiPOeBgdKOtfN1sOHmj2ahpPUPrr5wkWBVSXmNoxyXWlJPmPxzzvOwJDzfs9qP11Xv5Ktif/WT7s+8FHE9lI5lN9rAtJtZofMR00hw9T8zcxBrvX5I5fMTr5dpp00kU5SAUQ7kT5r7jNuI58z1p/bgBbgb2d71sf6cOzXfOtwwMGIDZwqQd2jXiEHL84eVnEjj/ckb4PVvWrKh4qPjv/MVysgf5/QCa3zz7vfpoxWxav7iXuxnn5x62P5xJcgXX5A+9UwPp49UVWbKzQC7iyjqNfht8f2UFbSTnNqfKCEaOsZz8g/w85j1b94t6njfD94vD/PhJ+0vab4qSrqvNDzrPyhPhdPvd7zo1YZXix7LOKJy///UV7+QT1+YGOxg+z3KyHfk1zHm7TkzsyXHA338evwf703a2P1Uj/SmnkhNVNMldrXWhDbZ9BRaXz7UtjbfH59PMf3+mbfuKH2aQSbm1PfKzmPc4b8hQkUA/24kIdmJ/O4vtd5XBP8G6c2WUNtFaZ3sttWMGiehZNDD3FO/P/TP2113SvetNQZVysEJevZZmnzmWMpmT0Z+c33wtV9of032CBIjEx28zXiUCovOMaxOfzyRKTUVSZfw/+wVFRv6L8J1x/3iQ33NZDsGvKU/HvPn5XzvDC+fS7/eimqAd++vvbH+tCiV73ZoMd3hA7NPvktcUbEkYd1v/m0+4n+AYMr5+pz44mC8j4ZTDFOR95TQ7B8ts0vu8Bt8vcYES9udf2f7cEuakf3dNyXIGZVfZcEd3Y6JTeW9MMBP3F3HTGJvxEWkerz2JJOVQgzzHhWavLekPCvevxPqf+K2raH//ku3vVUhu2vbSw+NUQYjjVZT6ZAYJkWhsz4xw+eMHJq9MPkl+tN16bMzzfxymSlKegfluz2KVbEdn7N+MBU04H/Sz84EJrFfVCD2fogzVTw7m5Tn4kQthE0qG6nC/wnFmEjX81K73qEMJ5QChlK/CHKgYWSM37Irf71SBGu5f2tn5Yi50tb3ttLZzBlHNSy0DqovIQ4k3002c3Gl9O3emxXTmrtaZfjA8g+VgjDwKs36xgo7Cajt8PlKCTbi/6WLnE0codB0KVbroAKMyPVoS//YZzqe/T35fgfudOGtGUSjGpivQH8RkWQ630igPp9fDJ5f71kMhf/ofaeYT7n/a2flGBzg7JBsems+D3+aveDbPJoGz4fDCovVe+HwmCqZ7nZf/POYKwhYsJ0cNKN9JrydXH1bUTH4ThP6ZyPTj/iiYnY9MSZJE/xtyeQWMZoT8nu08EwKjK3UuT8P9UbGS4Fp9ya//6jmRJsqJN/K9mAskC+V9HCJo/VZD5j7OV/XsfKUKS73GYssOroRftWWdtw4bQ2/z/iMO23D/FKcjyE8RU1LyMiVdlJOPyDMxCwp9LkT1hNP6wrpMUDadz9rZ+YxLyOs33b65K6FbWSf07z5z0PXNN3oSgvsrjp6gxPtc0pwUHmminKggj8T8tiTlRK3sDlq/WYvxxPnuLjvfCcOBoA1PlV8tgdUBBvuWJTiA441x96LCcP8VZyFwtLT1UODpkkDKyVrkPQtozmQCJYR6t9H6KSbMYdyf1bLzoSPxXVYSo2+wEBoO3JF9+5c7fFzc8Sp1vx/WtxOcFj3btnmOI6mgnPguoVwb89mpq1a811pP6+8zZmwM6Hx5hZ0vtYmo0anRDGNvuKygW3jplyo8iZR4vigX93MceUHkhuHdSdmKZDflRGIr5f/I0zw4amHllO6P5+8bvg3u776w86ksfD1n8tZOmQHpuMQ9ga/HkYpIsndGO+73Vv7iuvd2Vb5WsSUzKIevyFfupnkBcvb6i4N8ngOdb4vZ+bbHWr77aH58gjxIz0wt3dZvQqoGFhz3NcP9X5w203Wrcmt2sSvMoBz4yOM1ac5OGYz7cB37B44uY95L5+OP7HxsChdTM1fv3zxQ8H8lbQYJAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA6gEAAAAAAAA=eF7t0EtLEwAAB/BFNBvLIh+lK0IEoYM4FngpLC9SLmU6apubmDYfkW4QmvZSczQda1guWxNXzGWJIjZ80cDwP6zABwlFYYKCkYek1iHmEg097H/aNwj2+wg/gSCsZvB4QKfMw0xj5mu1uhg6w2Kr9FwFtpp6nCcMNXjkF80EP1zDuLAzuGS8jmnzZrYk6SbyRZ5/trk7mHC4syVn7yL3s2HIITVBEe/VLqbcw1roT0Xi0Vb8kuWsWFMt0JRlXLRnWrH81FXbpbJBef7IZlpbO8y6gz+qyx9i3+y0d6y9Awe8IUnJlB2XM0ZC+t2dKE0af7ugeIxdy/aWb/0OzMZe8L2Jc2JYPv9+8n4Xcn6fLCo61I26M+9OJ4+6ENyzcetV5TPI03PVfw+7IUxbX/u5twdVjSkyeYwHNqtUk5XwHHLLbeN+WS8+tRg3Ui+9QPeUeEzgfomGkKq2INgHs9IUu1Laj9WrMYUD3wdQ6YBz3jSIaleH1pM1hPp1RdNHsRdsFBj5uMBHPR+FzeHHJ3z08fELH/P46OdjAR9VfAzwMcBHbcRjIR/b+Cjmo4iPxRGP20vhRz8fe/l4jI8aPm7xUcnHBD7W8fEBH0/xcZSPFj7m8/EGH7/yUcfHK3xsiHiMior6f+0AUC5Qfg==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA1AMAAAAAAAA=eF5d1HlM03ccxvGCgjQcxg0nglOCmrCFgRA1OAYjTidglVLHzTgFDUc3h44NFQeTGyqXtdrK0RYph4IDVBKZDwFxqJEd2XQkXA5MJMCSjXMy3ZI+3RL6z/vvvr6f5ycQ6H/JTY7T4RIR7p/ecSs4OALhKQM5Lj7xWMqoUbilJKO8S3h/9tEx3DCtmB2UnkBf9gtvW5svcUCo/rvo4Snclld72+77Cr4/p1yTu2TB//WWsAH7s5iY/zN+7YYcTLnuHS1wyENIjHNg2Y4CDF1WpV4MKoJkv92LrbkyZIeveZ50uAQWD/pa2mWlWN0ybxvZXYZY59b5uBUViLa50fPE/zyMhsoyn9bL8cDyo47O1xT4xq+/907hRez9/d3Q0DeUOP7+Xa/1bSrMmiymNydUws/JN3hhXTVMt85NTJrV4Mhpe1e/VWoUFbiEeFpr4Jd3UmrlqsVPmdJFh6haKLvN2wXVV5A2H5Qqnq1DtiTLcjS6HuOJqwIaxhqQIIeiP6sJSarSMLXnNXw+55/xo3kLyCiQ0vEJHePoaHpG73iBjh10/IWOIjp20VFMxyA6TtNxmo5hyxwD6JhLR3M6CukYsczx1aDesYuOWjpupGMIHZfoKKGjNR2P0/EcHT3o2EbHPDoeoOMXdPyVjuF0PErHtGWO+nt8D1I2ha6CCe3j3d6BMGN/oLO9PP36VEcMHNkoujvNda6+PnAU21kjvkOe9zuF94w/RTF7nu+yZezR8PPKVDiyt/hO3r377E59kAYf9nu+W+G9g1WH/khHKWt4x1jlsTvRVzNwhP2W72q8MzctxCMTZqyI7yyakZ11d/wah1gJ311lIhlJ25gNNTvJO5isUG0Wb8rFtKG8C3XfLqWVUz60bCjvRHkmfmzth4VQsYa7UcyE3xyWFv9Xwx6djaqevaw7h21sDu/Kp3zqYcliCXxZw15lnSPjwrfKUMBa8O7cPwkUxsSVw42N4h3GaLZHVtZXIJI13OW2k1s0g0v/V8C9PzuR+qY48gJG2F7erVfTGnj1K+DGNvKOlzaYlFgEXMIo68a7jlgnEO0aV8KDTeCdtzkMRxwuvowGdoF3v6f5rrV4fxXE7EHuQKfbVPNZSTVaWUvuYmeAucwurwZ7WCl38tcKXU93sRrGK/WVcTdJ+YG/1ao1iGd3c0dWJrOtNt9psbBS3x7u6qaD5+PSV7WoZMu4s/yPXSt0fnVIZGO5u5faZNg06vCUzeAO24f+/WcODdCxw9zlFcHYzO3WRlxiow07XV+/6B59FbFsInfb1KNo1LzdjEbW8D38B7YaS/o=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAcgMAAAAAAAA=eF6N039MzXscx3GGe7vrtMmPOcxSaCNKwmw077LmKk3n3FJY0iWUrS1Ry2/J1WV+hCLa3NhYp93rR36lnUrEvVI6pKwUznGUcvQ+1Yl+OLpvu6/zz9ns+uvxx9nO9n1+Xm+1Oa5/YIBpVMdO/6+e8XLq6xeLFvf4dItRCeTdJq5pmh/UIC7zMbwsFzcfXB+oEQMW+TTuF38Jq34RKW7J9NjmIU7Mfvak/QtT54eh+jzx6RLvfRFixcdhCb1Wpmj/PI/D4vC15iHOYoE+XZH2mWnJptOO+n6m9iRd4hRR+16lCu9jmmDxW7Chl+mNU1xIRA9TS2hEj9snpmZlmKWsW37Xqt1nWpiMwbXxsZ1Mjzv+SFttlu+ZlXtb0c7k6xlTGvOeaamxJXTlO6aMOdNam4xMKauS5zS9ZtrrcvrSwkYmzfXiNksd027jWX2tjinzxkiHuw/lO3utC46WMcXkmo84Fsr/p2su9P/J9Fu6Qjk2l2n5/3RcbdcxDB0T7Tqqv7PjP3Ydne06Btl1LEFHV3Q0omOzXUcXdHxr1zEbHed9o2OyXcd8dNyDjie/0bEaHfegoxodB3dtb/zql87/HIGulGsZsIq+0Nb5jm7wiF6xGBaie4Bbpb9Z9IOReIchB5xfG8RBMBrvMvlX90Cd6AZt7zSpKrThlugK4/FuhukdbdniK+iHd3wX/vZBomiEKryrKqtaEyCGwES8c9fzkCInsROOx7unN3kOqxL3QcYOvE1TU1JFT6jDLhJcgxqnivHQdm+ZT1Kqy8VjMBK7UUQuKlaJP0EFdqS9m1P3SHZ0G17BrhzXTXaYLTrAQOxsXOo03i8qoQm7K/A6W1kmu7sMi7DD2oyaJL3s8Bl0wS598vIXGmSX3tC201NVyT2lstNMaMRurVnKq0kfmfqgbcflhbuLrbLjO3A8dq0Mzt+r7mIaDQ3YeX39UFVcB1MdrMTuQ7Q1nr7MFAxtd7C89YfzpSamcDgXdxGfkxbX0sq0EQbjTsaV/D7pQjPTGHgId3Nz+gpTi4HpOkzCHc2I/ftNzksmL5iKu4q6fypHU8+0EubhzgK7Oba7hulnuBN3tyNj7omoKqat8DjucOBH04qS+9IN+uMuK8dmVTRrmR7CaNzpzdHuUecKmK7BCtztg4b16r8uMt2Du3DH/wJkrccmAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAxA8AAAAAAAA=eF5d2Gk4lWvUwHGpaKQ6CCklQxmaDEWeMh2hEhIdIXNEtQmZz86w2dppYxMZKlIpSsiUm2XIlCgZSikNSmkwNDgaznuu91n7va63j79rff/fa92ZzRP3f/aJ6inUlwS/3HkP5LtoCxxUKhNx79Hd0n3/4qJXevCwduiQ9ZtOYD6gHf9wPtv3cgwZXFotKP/aEjznFjwZ2dAJM5bRrme4206ZHyW3hEN+Bjvvg0WnrX+mRXSAzizaOt+Z3aIlblT139MYov4uMBRVOsez7S7w0I8dN01/rudG7i1+sEJ16wFwqz3d4y5xFx6jecl2kdc1GFT/h2ZNKzEfsOhofnjWpR1EPtIusputkSTrTg3c6503GsIARmSfmfz1OzCItqmQ9jyiH0bal0wqq0z4waDrP2sEf7TBA3RmdfUX3qo4UrOwQVnNPwBstK+7m5q2wRP02PnWxwmxPLJUc8s5+3+PwXuLt2TO6VbQRYf8MVA+dYVDTJZcjdBMDYFsIiK8d6gFzNFada/nG7nxiMcT25tmOuGQsspW3kijBVzRm7Nj47MDuKR6MHx024e/odigZ8XLqGYoR+vN9Z3+SSqZjCg9qA/eexy6g09sN+tugiH00ssDv6JvcEmFq6dpWkMk7Gl9bsxVaIIadNinvtGE17FEMhuuCmhHQ41T15q7x26DDFo0zLKY8Seb3Hvn/aaxMgb66+RKpO80Qi26eZBjs3HOEeI5+tFk9rZYMLf/V4cn2wju6CDNyWzpYhZV1Zo5Q+hFHJyZ2jXXNqAB6tGlJ3gRoQoexNincmoWJx7qvkv7RrbXgw5audPkVfx2d9Kw3uPKMWMOrGFuH92oUA91fLM3CewqCiSDrQU29xclwH6G8rGMv+ugF/1sVn6MWlsoua5+yenG+CnQ0O1KffAYoBTNPTg2r3tdFNm/Pf398AQXvM/2wWwdACe0h8OChfsu6pNTMo8VhKcSQSYxTaxHoxaS0IZ3/r7MlU2jNjtJOJfMS4Z9h7cOb58iYIi2WSmuofI2jdIxsmBOU+NBXrO777PGatBCT7w6XCXrz6SqLpf/I22fAlrrHXT/5d2CevTXkzITzNE0IhHXmauXkQpPW1LTV3pXwTr0TcEig2wlBvncE3CqfeQ0DLa67+rYVglCvbTffbLcei0/haz1qXylvisdBJo6d5xQqQANtMTVT9rZ6jmE+0i+eFbzGegrNrEdkyiHePTFj8Feh/ICSNz419Tv1pkgtjzuSs6cMohHS0SON3XkMUlvmIzSwFQW1PcJRewUvgntaL2LexOdL1sSpv7T/uyqs2CvMOhYML8UotBmZeFdX5LSqWC15LzVd87BjS5vY9ayEjiCjoyuvJY35xSR83Utlmg5D+b5QTuv6RTDMrT2o06zmVqJlI2q/diWnhxIfLSyStD1BtihiWpDm7xVMrVvJ4vdN5ELqhKlXt5pRWCHjrle97qtJp6yCnYPWqKQBwu00jTyy6+DLXpiznTBlIh8IuNB93Az9lEcLSAZ/uPJrqLqi310D99iH/lec0lqcqZcKnVuCd1DB+wj36MPfN2k3idRJjPoHgpgH/neIlYh8RfTitQfp3v4GfvId/v3wY1ca39KDntoh33ku4B9+kZ11J+kF/tohn3sRnPHNZ+V2TBIwX26h8HYx2toOcXBPXd8mFSgDN3Dd9jHY+hvqw0luru5VDz2cCf2kYMOMbQVu+bIo/o16B4+xT4+RNf8rFl3xPkwdRt7eA772ITepNGufTvXm9LFHvKwj1vRf3kd+fJRyZ/qxB6WYh/vog2PNnMsy12pZavoHj7FPi5Fm7cpCzeFBVEO2EMr7CPflX+WHn78lEG9yKJ7WIF9HETPfbZrdOaYL4nCHvZiH5nowCO+kS29ceQg9nAH9tELvTuuQ2pjWwrhYA9TsY8n0Nnir599TY4kr7CHXdjH52gtHSPFYx2uJAl7uBr7yEMbXZKsFdI6SsVhD+2wj2z0upE3+3spLiWiQfdQF/vId/aUZl/mi1hqDfbQGfvId9Dulvf6VxxIGfZQCfvI93BB49CfFy+Qg9hDB+wj39GHdk/mNRWQCuxhP/axHB0oIwsWI5FENJ/u4U7sI99/LX2TYrInieqOpXuYgX3sRd/eHrvu+YY46j32ULWN7iPfBx3AQCbkMMnypnvYeJvuYzY6NVvEYFDEh/hhD3uxjwFornbGagdeIVmHPXwnS/eRb3a4TbDR5A1CQukeemAf69CZBuMcN7lcMg97qIp9FEFvOpK6eEFaMZnAHio9oPs4jrbiKCmqeOWQbdhDBvbRGB06ulY7jJFDBLGHFtjH6eiyQyp9klpHSfMOuodV4nQfm9ByxiNeC1TjyaYQuoeGG+k+8r2eHdMtOv8iJbDk8//2cBX20WQ5WpWVfKlEg0pJmdqncFcNFn0wedi0/B40JdGeC9YGclcDSGgBbQmch6FXLd0qmriKRX3tonv6FPuahjaTG0oJ0zlMVTj0WKjtNQP5j3oKy0/+t5+iF7BejW2WCSc3Hf//vAwdePmlscmKFEpYlu6xB/ZZCi1ZUcsQTPGhXLte/+zItYHQ0n986h92QDn6Oa97S5iQFUnooO2Ncw5aaGmK3RnNSGoe7r/zsO870cNe5TkNI66UbIyplsciJxCZ+yuKKd8BKuhXUdXsujpn0oyeh/NW9OiF9M054rNIHZN+D97i+1CIlmZOrEl47EGpOEFz1iM3kFCUHfVg3AVZtO5SqXThwr3U+H7a0jifQFt4WW9aW+hF/cD3xBHfl+mStDvy7n16HLSbvLoVrlyb7wVrh5X6IqvbYUY17fZfMulRzUeoHpwr4rwPHS0L8bN69hOJ394nNbQn65HEImdFIi+jqSgVcxjsWE0LX8xqBz20s2RVyK4FPkRzKW17nG9Eb2y5t5ETsocqxn3fB9+3EvRNPz/3X5stKXCdljG/3Bd2XBnQTd5zB5rR44+TWC8MoslBN9rmOPdELx99We/uFksV4L3wBN/HIvRymwtW9pKaVOiCO6sL1P3BmrGtLS+nDbhodfGPY6dauCQebYZzvrk3P33+8uO/vuF7aoHv6yv0o2MjtzZMsyce37VeNVYGwtb71QuVR1shBl2mtih/AyOJLEOvx7ks2oYnHNt8Ko6K/u1+4aFnJ7pk5dofIgPqb+a3mgVDp7uXy/otrTCGdhF69lU9IomcQzfinO8/kv2Yw+pulBu+55n4vh9A1ywu3WgdHUzIt+WSesOhMOyTKd7BaYE6tJ7SGqmQ+iQSNEl7FOeB6Ka/9fcq2flTFO4DCbgf8PcFg0ppdTmfAKJRe8GiNTkCVN5P5fzxpBnWog2Pt7F/OSaSMzW0V+I8Ey1eLfE2We0Q9Q73iZu4X/BdHfkhfXt4GDneo/Qk4RITVuqfKpNQbYZwtHq5rruqMJcAWhnndWjrDnUDuxg3auq3++0bmqfiKxnCCSQ+/owZs0Ui4YuziOmHsCY4hC7Z9Wuz5G42sUaP43wPmi2/YMuaymPUMO4zjrjfjKCphXIuOx1DSdJjdtCOiCjgiudXXeu4Dalo/VZLxcIANjmIZuHcCz2mIujD3uxJhnAfKsP9aBgdk6hZ5mbuR5ZNSja7/BMNK7tqRo+uuA2L0eNz7xayeRFk9BttBZyPo2feWma+kBVJTEfofWoI9ys99BPjPB/VsWDy+pec+AEmC4rFWgJtAxphAC3KPBZ7PTiAeoouwfkztGHyVScVo0QigfuYMe5nfF/ztt0oNBBBmFbzc2PF4iDIsSMnoK0BotG8j2BcMMeJavxtznfVeVPZmMVsUo37XBrud4CeYB4QEmUfJBImS0KFy9ng8W8zeb+8AcTQPNaPp5ecrcgy9AGc89315Wx3RqwvMfrtftZDR7K/PazQtieiyl926HmdgOga1XUDQfUwF/1gx5LCnat9yGE0B+c+6Ok+F+7v0fej/HGfXIX7pR/aZfyiekWIBZVglxt8QfUkTLqJl3h11cEJ9LMM26dN3eGEi/4H54noQCMh7XTv41R9G72PHsX9tA69z6rpmXmnM9XzU3F3neAp0BLZwCpXq4N7aG2WQJf1KT8yiNbA+VP09s71W61EYql5eO/L8/db9DWnN8zaFjcqboN667lALty1fHjlYzzACbRZYWaIzzUG8UQ34vwA+vatlwebfsVSZ3AfPor7cQbasfeDiZmyPqm3LBWcDEwExZIbJv7dtdCElrkM+guj4igK/amYnvMdd7l+fZn2CdKN+7QW7te96E0mKhVG1nFE6LvDZoeoJAj76hzKPV0DImgxJ8/ZsQPp1NgUbS+c873vRfhK7QO5ZBPu4xa4n29Bn9H2sBQViSYdqhke/ZnJ8J0zOz9lP4Eu9Ev5S9vEOWwqQo22zkl6zkSLywoftDXMIhWGuM/jfl+GzmyonVZ72o6w93qtS2jkAXVcyeqTajXEoyU7zBkMe3lK4y/afjjnOyJ40UndiijKGu8BD7wP9qJNvjX+YcmyJVtyf9QUfk8BKWdR94UCt8ACbTU3n1El4Eh+5tAecqLnfL9jFXjvWMaiJvCeqML74hdaYGdO2e7SKMKR7Y1hGZ6GpOSFH4IeVcJ5dC2n1fb55//6j47EOd9+ZVEtn2aGk0V4j/Tj/400mlmo2iDtfJyIia9dwcxKg9DkhsaCygqQRR9V7t3XMC+JfBCjbYXz9+g23RvfAs/toRLwv2cV/v8komc2753mmHuCOO6eqbps7hnISDAy3nK+HJzQMZsaTwatZJFiK9r2OC9Bm72wFFgQlEN88R7qwvvoCDqt9HWg5YxMElLV92NaQgbISM0Yb+WWQRDaQKJc4VZNJPUXejHO96ID953xmBC5QVzwnhLE/yc3tHXe0Kj+jizi0lih+l4pCwqWe02bjLsJTmjpu/uDXmswKFV0Fs5V0MOKa1el3i4irHD6HhN8SN9nTDTzogR1NTaLuEpJ15H+bPAwiugNiy8FB3StxSTDkcGkVqCtcb4SXRolVOS7oez/7rsNv913Koqv467mpZGhfwecdK3PQWa2ioZUagkMopXDTxgvcPSgnqHzfps/+lERDZalhIf3YDf+nyWgdVkay/s9U4hphcbkWdPzULNj6cozBcXwJxpEI8x93x+nwtGfcR6GdpGX89jmmkf0GPQ9mX+Zvi/57u/c9/FMAYc8N+g6dcU8BxIljawedtwAvv3PbkqJNrWipAxpV+BcAm1Y+vP4BoMkYor3aDTep2ZosTsdnHadQFJ8YdHbeLdcqJ2Z11X2swiK0ExJ14JdJ0OpLnQ/zu+jWTjPxf8+F/z/u4B2+1HokutpQc4Pt4iGci4Ax36Z2gqdIuB7oodrc3QkhmSj43B+Fj2/pyLd6lAiCQ2i7+EiDfo+Dkd7TswStRxQJ/8D3H9pDQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAGAkAAAAAAAA=eF5dlXs8lGkbx4WWFKlXKr0isXR429o3ad3aWqWsEoucXqptS0qLnCokgwyJxjQ2ixRybpCc79zJyGkmh04OSUYOrVBMJWq0PM+V/Xze+7/v557nua/7me/1u1rLHFYe0nZFefa2UmG+AvJWqSjthwdOqD2p3WL2GQFpXqwmZCWG4xtVD/p0vQTEuLxtjp4DC3tIPXG66yIgn1fOveOUEYN529p8fA4ISNOW9kGJMyx8/36IxiozATkoLb3ErC8Uu0Zur76mLyDCTFNHS1E2VvYP8rq6QkBWx8o5+4fFoWyL7vldUlPnd7LENuZZOMrAZYO6kE/+a3c9Njy0GDvIT/YqlvJJu9Tu7Rs35OM3UR+ND0TwyTW/grZZo3H46Oyfvtyy4ZPjv74RzUuMwmkCM06GKp8YTtebEI8VE3ml7R31ZHJkdCTgcgSy5Foea+HUE5ZNn7h9MQP5Xjr+aqVRPWnkudbPNYrGrwr23tQfqiN7SkYPK8a7Y3kTT9ULF+tItUvj2KLT5WiwcP9mT42pffWFheanMfJOZMoZ59SSi8PNTjK1N5FOT/ock+9qyYiJ9y97/NKRhrLjjowbNaRhVxXKNatDceEcl7PyNUQv5xfvZLsmdCTZsvCBczVxftgSUfSyD+lwF8aHFN4niux1/pVWnWiuh9lpj9EqIrBKCNS/XojFhv4LTJZXkYRrd2OcVR5jjsNBxUQ9HjnbanomyViIzRueh3caVJKsn7TW6w68wAfWMLOs194jB+avlW+uKsIT2jYFq6UriMx+XnCl+UvUMJG2kBtSTnbU8Gx780XIUq5krX1dGck4tdg+V+0VeiZ2W5HfXEyU3jtpd3R9RF82De+4G1tAJp7xteRsupH5ica83UtvkYJxhZKjf7aiVwqJHcPxWaTDKXjYNLIVtfiptwQfSiYkzOxH03e3kbLEnK7AMTa50crwl5obhoaqlgRKuAaTDvCxEHzUZ+3e7LLeHT0FH/lVqlaMcga+Dj7GGjAH9gaw8O/go9c8luVCAQdXgY+tHqqRs5+G4mrwkRNqmq/FYGEH8FHphKe7hW8OVgIfP0edddLKvIG44GPCpbBT+6+lYx/wUZNrnqugfgvbgo/8x1YeEafz8Dvw8Qr46Ao+VixK4fzV4IuzwcfuPYcYMTgJLwAfzyn7JldoXMYO4GPGNs3jSW+vYGfwUYfyPxkPgI8GW9ifmF6xaB34eHW6PrVKNAo++h6I7lrBLUc7wUdX2YEPwv94Iwnw0eKZvbLkwxRkCD42gY+F4GOUVHr92Lpm1A0+ek3XJ9mP3MFHp26FrIrlXUjzJO1jB/i4BHx80BPBihE1YynwcflWa3lDqy4sAT4GbVog/q20C5eDj21Uv1Xitzq0j4b9G2LGjYXISEz7GN3qc2X9KhEyBh9/7lQbNlvTj1iTtI9XBlgh2dxxFAI+qhuldFxtfYkGj9E+qrRk6DevbUEN4OP3d1q3p3Q/Q5NnaB8nHB3Pi1ako42fZCkf2eDj73dpHxlvOiI9dU6iIvAxJ2t6uSLnpB/vMac4E/gIsDcvm7Mk89cZXyUlppcHTuVq5jFOCchs4ATgj6pkUE6aiZPAZ2lq/wI+Htzt98pdQGb9Hw9olhl1dIVgd/B9zPS3Xaves3FQbLMdx0lADsuMyq89yMIMYL3YB0yDMjaugH5wK42qlnSJxkP7nppa2woIe+fJH8ScP/Ag8KluvVqzcxdm8luKOp+NUy01jowbfb0PG6cB2/VGVr0tP4wPQT99oOpJwnvl8nZt/05AahR6ltlWJOJNwJWfP3N3PMqe6Tf6vnF40Jnn9u5fAjL5ZXr9iRWP0aw5KrPXcScbZUE/UttfmNhTbPhtrYgP3zMM2wOXPLK8OUayMQP61Z26byq2uhBm4dXAJ5ep+2bhPcAnqf1cbA39XE3VewtHGO/Tykzhk4H46iiLgSLMAkYjy3rSt3LxW+h36niJLNzTvzhF0ZMP9WXiCWAR9T2S8QnIg6/1z1Mqmb/XgE/GgRcBl/fqq8y9GY2TIS8+Uvtu2FPUaSCerIfz3PFR4JwVxSL1glQsC3mS4qaCTDKv4E7287JbZfUEUT474xfATL73RmVbv5m8YZBjgzqpAbhJovj1e9d6MhL+Qn2rOBw9Al7gIGvWl+CPTkMeXd94gf9Xegias//A2M/L6kkUzfiDI81NWmm50f25WAh5pUDVG4hlFgxc07hbR8ao+5zDy4F/pL5nKloKeWa7b3rdQmV7td712/3DEmY0HwqYtE4+dgf1Qt4NUv/PPeT9UfKFaKCWhKvW6uUFliJnYM3Ibo+JVSXIAvIwlNrnooIiXTbrZC3po56/jfyBlY0Tik0LmEgF8pI5Pv6/8LRoXKmVVP9hsIb828JCKk4nDfUCC0OkPy3hpSF9yFM7qt5y9L1r0dBuhxpiDxwEHIhCNbG0AGVA3lpT+3xkEHTzyzVSPcPngH3im9rG+hpRMuQx1X+BXSjM4Knn64X/sPsWmvfMdXJ709yH9kBe20y/7slLJM6wbp9ne59YAUcBRw5pPI8260J/QJ5Tv99Xh4742J+svlhFzIGXetOstM0lJhQRHAh5T9+vDjMuq93Aubyvz2N54C9hoqLwDzXYAuYBnZ8dWC++k+l6t3KGX8fRXOCS1hZaLMQqMC/gfth+TY7rlrJ7tP9T7ALMme7nqfkSB/OEzrdGbDjb+/bBxApinFKSEGDyEMt+QzOPyp87OBzmzW3q/AZk8+mZsPkRIYXAypM0CxpfmGw0FaKeT/Q8oupdPYQij1Y/8tO9Q7jAo8doXr/13JrmjaNoPcyrm9T+IFqdfUZmi2MpPS+m+EYmzYs4nXx+dT9CMM/o942iqGVleTt2FsHzo2hgOc3fNNmnCofH0R2Yd+fXaucUSo6gU7om2n6v84l2QPDnd+kjSGkDzUeXtvltNX2OHFzoeUjnWQeKaS01UL+UQ3hU3rWgNGBqHih1Iqv59Lyk8/M52m8im6edlUZMqO8pRGrAdP88QcW+9Dxt1otUTX3ciKx3LZQz0k8gQVS/3Uf522mOs7VNVwwqQSvF9Lyl88x8s65M0GOuTzDw+ZLiWTR/ncff3qPn8d/wB8BLAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAQgEAAAAAAAA=eF5jOmpw5P//9/ZBcbU3/gLporKuBz+A9KKrohwfgLSe7Kt5j4D0ztCnDBeAdMIvru7tQLrSt2rKDCC9zvp9RhGQnm7w0NkFSIu4nfTmBdIrk917z/x7b9+d8PFrA5A+/WqenyaQ/tPNZnrk73v75wx1IgFAWs9xtezpP+/tjye+sTEG0ve+GfG3/Qaa38N89cCv9/Z3blslP/j53l6aW0Pw4Y/39ta3Sxbv+/7eXi7W0rjk23v7pEnlAn++vLevFhCe7//5vf2SO+q66R/f27dPyTho+f69PfvsJ/f3vHlvX27s6Pzk5Xv7loucHQufvbdX/eh4/PEjoPmOl2Wm33tvf0H/jOiSm+/tN81bwvj+8nt7lozXCuFn39t//XV31daj7+1rLkosvrMH6N6iJWVTNwHdJ/cneP6y9/YAjqu5qA==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAALwQAAAAAAAA=eF41x3k0G3YcAPDqpK4626wxr465ijDXvFekzyoz1DNHNdpSUWdW8xwRvKAixBlUGBVXhfXxdKXM1fz4KhJxxNiqVL3ubWvHinldtzqq9kd/Pv99zvJ3r5rOWIPWhueixPAnmC/+cPfNG10k+1hKTdhjP+tgbzDZdDM15M9CBv5f7x05xI8SKbz5l/ty0SVI7dmJe7Qoh058Zdmm0hw3nELI83KK1qGDitp7braJHNTwX8zKrXj631IK6CCtX4oEPTODreiEGeDgT9s19Fl47Lm+fphpOdzGAPKq+ZMc8TQcFX94ofr3XcGj7mhZ73Mz3bx4uMSTaP+mPA2v8AmiIPrwgg9FEqEgVO9LBI/2FVdB0BRM4d/OSG7VWXKmXNaasuhwYIJ3wleTrc2TEIEfcVurgRrpge7vOf0xNsACypxY23JLBoC/yy67PF0ei5oc/lSXeaeDNIpx3e6cDNrxQ4QRdJtQFjq1bUhyW2XDWlwdUV4yAbr4+aT0fE5xOjo13OInE2TBmfXd5hPPpEDEF76UHj9my0aNj82fld7NBtMvyno/JkuhDp+2F3PM9GcWimEmKKpo5MA/4RpeGxkSOLzXSrLkblAaurlcmOaTxYUiYtvgD/Jx4OBrpniK8zQy0IVtkvT6Ti5YzA9tJRuNgye+0fJwLV87EdkcfEqMyebBwMkJFi1lDKzwQ2zTdyrKOSg2QF2Uf7IAkq7Jm1MmR4GBL/FnWvjSUpCmpx5bqa8Qog6kaN1wFDTwK3VIX3J9LiBjy3993BjFwB0i266kPQID/Mz4fvVguR9KuiJKbyHz4U0ksZsxPwLx+Hy3ybc6yZGUX/fNAkeOloGjhj2vz3oEDv9NBTP5LYtGybV3kDWxymHKf7F9swggD/+ic6Wq6vM4itS/5+g26xaYdHd5Mn8ZhsNbxV1zMWLHoON7oS6h3ApI/S+cXV49BBr4s3zSq7OpuWiaLIx+WieANyUqbVVhCGbwje9Hp0vNGagnmGFbOlYJ5znmAX+TxXD4W757J1pDnSl2ondD9/aqgBCuGaV95CG44q/Ft07kh95ADwwW8nju1VAs0N5IWxoAMf6g05GRjt85yIT4mVF2fQ0kCEbHOgb64Qy+RzbNhN6YjfwCCWR9tVqoKaV6nLvTB774V1wIL5QbKlHK4JN3CqVC0NdVfC0r7wUmPiGQJzUTNSLbsX7yunk9CA0ZCtsFP4INPimKSnfiCxFT95MR9LQB4qhZCxlFPZCEn/t1VJFAXYS2Dlborheb4F6DlaPud92wiS8ApQ5qihCd7nfcbvS6A60+p41rOx6AHn6GarXiVEEV2jg/X9bu2wzVJGrAorwL1vHHM838JM1cxGvRWSuKFEEjoXW+d78TDl8aYup983kY5erqhCa7pAVoIfrWRs6dEIIvoFbNEaJz0P92DZKpAQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_4800.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_4800.vtu new file mode 100644 index 00000000000..8c3010dd0aa --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_4800.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.2449621329e-05" RangeMax="0.0028781724539" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12128" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.92898804646" RangeMax="0.99999995818" offset="12224" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="11053.651843" RangeMax="16619.818834" offset="13736" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="22404" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22496" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456591633e-05" RangeMax="7.87947784e-05" offset="22592" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.64895898059" RangeMax="350.75710604" offset="23440" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0014524933936" offset="27044" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.647448812e-05" RangeMax="0.0028858980592" offset="28952" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-8658.606983" RangeMax="0" offset="34940" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-8658.606983" RangeMax="0" offset="35640" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.9284382587" RangeMax="0.99999979893" offset="36996" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="11048.943771" RangeMax="16643.487465" offset="38288" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="2.4084892031e-08" RangeMax="6.6972037676e-07" offset="43760" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="47124" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.93084871409" RangeMax="0.99999737775" offset="47196" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="11070.548358" RangeMax="16538.705754" offset="47684" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="49156" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="50372" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="51104" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="51276" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAeCIAAAAAAAA=eF5d2Xk4VP3/x3ElEpUlaZEaJUvKNnYfGftStrGPpTH2fawRMRLtUoRS2YqUEBJ511FRKUuipNVdtlLSSmn53df9Ofhd3/59XM/X9bnGcc4ZeQ/96TBjOSGZNtUPj8XfbVb6cvnTkIY8WHzKHDrLuxIKwq2eRmm8rbd+gV3ZK/iAgZIVFL2RmVf/WBp8cQ8Lv2C/d0btonErA3JU1CVY9LXgu+R+R6epM1Ib+Ut1NPl0PeSljYSw4UZQFwx6Ll6rAfU3+w67m43Ue77AzrVljViWszVkWQf7hWfTwBv3YPAAu4pi9GflB66wz7tIJu+aPnjRcjocN7kgXXHLj1va5xPnWkfNdKw2wYUumWa7ShMYWeJjbOIyXF8vit1vRcCDCJoNyFxJYAbWWU73wLsIe1ZDrcbqXjcwXcJVlpVrA5/K/P5EdjghxxiqHt1GiNAlQl52XJYHZ1GTgIw1JnDwQMYwmhLROhOBnVjBXTfcaAXhyfcXeH6lwUfcw4NQ7N2eak83GbvC4cHn57MptlAXLTEkTqUjquD3nUaDywjVHaIRKxTXw5MbN7UaimzA5M3wlshUYS20CLtuVpHB60RTuBkh31WTsRWqcA8UAexj85iif5/Yg/Xb1meJMk7wdldJ3h5Fc7TwXD2o71hDOAXGCNy1kYAiwZbRNUCHuTp6VWWCQlpdpdivLTbofK5Pg+Yx4YVd52xgCPfgS7qszdJTBX1bQTLCN/NHtws8bAn/ZLLWFJV3reEe+CRJTLEk5Xw/rIQfeXuNve66gFDpzaeRjD/1dx9gP7z6anzBC10Y36LIYBS4T/fAJnuZz8fqviRZwKFfn4tX+buDo+je0PEtW1Cbh7eSFqwn6ie5XDpa1oDCmKeNzmEmXP/0nGrgPKfhpDv2zXLec6tP60Oyxc7JL3UeYIN7mCTdiXpO67yRNbSU2a1druwMD1inR49HW6OB0XPu6WlyhJYp20jcei3IWlB96uu8Z/Yj3mFXNRy9nWllBPHxfa9+xDOhE/eQQLqZtrtH1Tw6JNy/PJJgaQ/R38cejRCWqOmpRpJOozyRYV/xaZuNJLQsVnnwmd8HKG9bjta/FdUS6sPOFPLyW6hqCPtuBY+1vnWEGNyDEumtxpsCuPhtoVne0VJ70AL+vK8/vqbOEBV4WF6ipyoSC1mEW+YnMfgkeXpuqXogSJL7Ku7YOS0j7N0RWuC+GfG+YrjAb9zDSdJV+2x46FkmoJC2zEJ5Ow1+3eZpLHemIrPwS59qS5WJd2pG5e27eWEuhBVfzg4FCXK/iI09pkdMuv+HLJgX9HqX/GTAb9zDJOlVlulsEzl1MC2V908ZWge0zxqVi47f0Tn4XPzstxsqBJdu5VjJ9rzGDbt/7it+EwxDeuvGPrdt0qonnXbjTeBEzPXGjtMuDkE9tsD58F/fePIZdk7fokNz+e43nhr7UzZ6nQcSF5g7hd03gTrx67XdJarEmys3hW33rkSU9bfGzokFQNbxXddle2W02Kuwx19pyEsJ0UVnu2Wsdq+ygwO4R1/Ins1MjotbZYFeUm1reT6YQOJZykudXkcYZzCbLx1QJziC2oMLszegvJeNaSeiWVD03/4yLZobdje5sGVEgiVivYwXfP7MGlJwj5RIdx++s+O3HAOdcVNi1O6lQxzPHvX9NY5Q4OT3sPusBnEx2uQlJ3gD+sOwqtLL8IF+4fD42seyDU+csb8qWh563soSbeoNj17ZHgA7cI/6SZfosaavnMNACvE7awb7PGHSwXhpQ7oxdFjfHYzar0UI7l5858KyFeijbHoG66U7PCX3d9lgn/rON/9Mjw7qKn6s1+TkD59xj76SfbC0THrFJTNU9ST5gGSPD3BNrhQVsRRBI6ZyP5aG6RDjK5IibS0HG4PD6ovLwAG82rPc5heubZA1w+5x/Sfbt2A+VJzip7YsDABV3AOF7EWe7TeA76JQXCq53jwhCJSk13dd2GaAmqqDNYX2IaI5fMvcSdZS4GpJ5Xl+jQFzKakDxtsoDf2XsBfMre8KqNeAoTVLrSRPBoMJ7qGf7J2zQrv4FxqDMGO+9MmVISC0mLEhetgZiS545uMdspkoXXJ+3cCvjUA7p7TglJg3SP63r9QwMB97gnnRCqclNnDlyWuFZZEhIIp70ODDHmzTWSG8xw2U09tFPi/zg73NQur7rb1RU+UZ8+eyNEJdY9k66TMa0O0dnND9Igi0yPNPVmC3Ofr4eqYmA3ZTShSMl7NhD+7hLumOFyJ/Ljbyg2flrfS+dC+g1ydu/qnog8ZrrJ80XaYRPbv/VniVacKDu+woIUYQpL8SUnujJKp1rhr77uObN9gxXGE15WO/arAr2OMepv3xOY9aaWN/kGy+6i/nYgf2X1zvhzsx0SM/xRgo1SfOSEcTYTxUMCymPXRTiobk//altPb7Yp9CWo3tyx3Af83A1U90r+ke0kgXy7W4taaeBUFL7030h5pAiVtE1cPfjqhAXFC0/rgBMZLxKH/i5gb44mNGTzdIgI3WxzvtzRW02Cuxv2nyy82osAQisu5vrZs/lOMeMkivWBxyRtmRAejxxvg7u7lhmP746+Z5Vuhu9bB/krQhEcj/x259rCS8TtSsOGwcD3+Ygy/mNehoMWuwi5QHdsoyDeHVaHty0hcvGMI9jF/CXvfunZSUsi1ocEubnTyiCpO3Lo41vVoPaWv8co2WGxFCSjayv6N/6Eg23CvtPxQFN2hjmc7xKlpmFOxcD25o0nRXobz7pxP7yvzgF+7R9dXYB1qvZHIWy6EDArsOG4f6wfYTYnWCO+yBdnDozgJ+YyJMTOT0mUcySOKHRID9oQDgIv/RDmEXouS9iA2zQFvVdNgC2oHTPeIcwC7/4ol5c5QTCqjwsS27Fw1LJO840WMZ0LRZYGtltjFxWUv/bUKnAhLoDqpebegNXCHXlybfntBs0sPeeEWgdbmYLRLL8iveoBUForhH/brYJc0+ftWne6DFSivFfFKTQITT2lRDdwf10WoD9b0mRG/hTp0uIWW0vy15bb7w+0a8P19L6j32HbJGiukf6KiExX1lXCcGluAe/XmLXSGqZ37UfSYKcjYbalm+Bw58HMzaL8aEjByG1rU4U6KnhDF3oEEFhXdKR03xe6PxYHx+Ti52zeMJx7hb7FFNIO+ihX9jYR/uEVc2dnMj5aV3QljIJMcmceXJdIAvPBzOqCdkzLkfjXjNCPrH6yubnqki+WdM/4ysQDT9+XPNxb638nIae60TOpTxfXJjbzQ04B4xubHv6XJPmUzzRrTd5/Ve96TDZBC/2ECrL1Dsa8t2TpgRy6c8uVLTtFHPD7dz2wX8ZvY5pNe9W+uYGuSO0pQJdxX+CJjCPdJwxK56QayudmUg4iuLONicvR90BhaXm54LgqqSUy+uj5gTYSlzv5xZTkPf/spejnD0RZYW1/LMzUUbuEqxfxa5K2L51BPFKy3W5ZUJAnXcI6Ey7EO7O0fYFWFoXm9w8BrzVOimKb72/hkIBS3MtCXRFsT4IavyN756aDRffzQiy23m/Bm3sa+LKBxaHOiJ9sg6mG3YEj3dI9od7CyRBif94VDE+LzVrXBPKgiHD+dG3PaCe5GWxHzfLUTB1435mfM0EI1j1BkXP/v55EZhV6uo5uTscUEDzbu9vvBEwErcI4to7LsF2xfylPoiaa7lWo7jKVBooJfPtd4FxiW1J6cctxKn68Sk9hhtQhfVa9UuT4TN7FetxS4Tu1ZVWMcGpWme4issDYULuEfsdditV9xMOdLuhkx4B4xtdVKAsheV7/MwB+YfyW+Sb7YSqxW6QpL2SCDZw6EfInNmrx8a6c8DntxSZdKQ4U52mDGKAincIw7pbRe/H48TtESd27/6iV9KAbizdXtZlDXy/V3ucrPbkshWcrY7bLUWAo5p/wx9HTCzL0v6ZFhCxqSlEST/RVlek5FwHfdAIb09QLhE+t/322c7GGO5jikwknpZekLYFxX80rjOarYiVie0KYRVacH5Nt8Qg1Sv2fOTPnTG/7NIohvUf+3V3agWDaO4h/4p7LpLDy/kMQuAbQmHLjnJpcCU/tZIhzuBiCKaoOxoY03EPCt/ECWvB/Lf5YRPKHmhX/cP7v8VKaRVIILdHxrtVph7wgaJOXfyt/57/zP4rwcm6eovPBc1l4fCaAu1WvkzB34Zvy5vaQpGuZ+cZa0oNsSfmi+b3zTSQPXogpfcfeYz559H+k9BhRLXwyz4J1j7pvTLUPiDe+AjnXXcevOr7WwQaPt7faMuB36bxw6pXQ1FSn1fNMJzbQj9nxlLF77WB/ParL1MIfOZ+3PVE+x7vQomTz3yAnGZNTfyqeHwB/cw7VJGY9Fux8Mht0rxknHJTjB3Vwg8rh+MMp64vrB+aUMon1314lU4DWy1+y/YyNrO7I/3Yh9y8ig30mWBZ3T+Fy46E0xwD/2kr791tYpPkQ160QKjhyeiwcLO64jKPU/Ef4nSauBoS7zl7xX/VasKKtl+6Nha/5n9qCrs35a65IZPOMJhvRLD98m+YIZ78Cd9u+pL0YdMb/CK753YbxANK9Z7vlbYYomY+wZr1Tpsif7stz/ZCyVBriDfKGReOBB/SwzFOtS0hEinTb6rrBkxgLWrhK/ePRoIKrgHCulmLYcy1t+xgZN7woSTn0RCEXNH5pcxKuKkR+dMLKETbX7cr+up8+GLr57541eRs58/6Qe0p+7/0ygHJ1YqFNnrhUMB7oFNemD71crAR+pwkVGq2G8eDQEyRe7O8rqw6tzH7CsH6ISHJE/s2x9CiB5XHHanKXxm34b0764PD0r3qCBOYaZQZSQbWLhHGaRXXOlyf1tLQ/eZkehZVhS0XqhcEnDEDppuBGRv57YjrKdSq3pvSyN2UljCTYHZ/XHSczd0/V1taI6qYyldEVcC4RHuEfMm9gVBTQuMAh2RE3m+XdWKXhdEnIHZGSorbm5H9BsLvlLj2Yg+B0l8do0Om9nnkD6S8uXp5BJrVCtbqb7SOAyScI8ySP91QngNPdMV1ZfFvLoiFQ6JlOclBqauEFwzfP5skx3x89sBWbcmRURkDG7erBE0+/mT/j096Ul5ni1aobPEXUA6BJJwj66TPn76g7yV3raZ/Z3pe9/1xXsAO4e5SUnTnuC3m6d145oyOnT54gHKD19Y/u7kS/06/oZx0iddUw3dL9ohEbpQu2ZSICTiHhWQHt3lvepstCd6WmnwvjqMDem7LIq9g92g/6jjRM1Oe6J1/9GKO/uV0HFn19Xogc/M+SmZ2MffmOsOONNRRKJVG/+SCDiEezTtsUe3mx4wZaIcty5/jxVRcOTEYpbKOjrsjhfn8H6zJ66oVX3PXLUevXKbX/yh22lm/wnpX0qvbnMKNEW6B1eUEfFsOIp79IB00cKB/ubb9sjeRsvaPyUa7O5ZpHD56wHTu5/PJdiBuHohhqJsKoJ4Kj8aL91mOLNfQDq/0K19bcaq6JGM8ufPKmFggXtEIz1Su9Zn6Jc+GtV9JLu9aDt8jzr81qeAAkwlvvLGSw4E50KhA4PxRae62fVivN1GuHvghiJjmKo17fdeTST+ilmK5Pd5SStLBE/3qIB0jfOGqpcE1qH2Jas19DRjwSJ11Yn+IV2ktz/9T7esI7HgW83VRX7C4EvuT59fk/Tveo2NVEsqKKb9zq/ZHgyBuIeVpKve8J5Hp+jD9D5Dmca/c74t4hoQtX2f70jEbfDncXm4Dm5OCN1SvEOdfX6R/kHnxJYlv4xBgOrXwbuMDX64B84b7DHqHzbcTbaDuMfrr7AtkqBOyv8fnkz7f7+fbsvaOOhI3Kn5UFj9WQYaNKmMhDtms+9vpGcfebOv+rAFnI/u6rXMCYFa3AOF9A9Pz6q5HXGCuODyOdyHkkBlbp/Eb6oTijpXVsvn5kRssk16zD1XHtIUrdXEkOLMvibpwY9jlyR+tYSOTVfYtlvZoIp7mE+68PtzubpZDJCnsn9yS3Lg0itzxtceF0Q7/aVn4KETkTUmJOAgrAB9rxyrlYt1YW//HMuFIzxaFNKLFu3pOFNuA73Fo/FxEeFQg3uYduXfF6ZW57iDuBJ/VFo8B65m3VhzpNcFcS3beWrOcmfC7HbIjm2iCuCguDtoIkhx9voUwy6eopBkX2EDx5qtO4+JhEEj7qGJdFVLQUGJE+4wseZNoWJFIqDSHRJZek4oe+TX5fx0Z4Lv91XXZEF5yP+ffSbpwb4BUVHcVjD/sWCH/Rf2dA8Dw9iP8H42213IgIYUlyuSNzhwrYEqnlNqj5hXEzp0eVyIZiqfbjG/LDz8bH3126D9zD4X6SdvR7/TO28Bd6p3GCnPi4ZG3AOtAfs40bNr9JwTUIPkdqsdSwGV9sibSzhbUT/TfKm6hQtBfyvig7Ip0CT3W5z1d3af4om9uyDxZ66PAZx14PKyuxsCY23/9cAkPdnweUgX3QaERbYJeeWmQHlqUYhEmSpInsoNyWpyIR76p2UELORD/pevzouusJrZFyL9/ZrmLo3yDeiVn/c+o7IguI17pEV6Lr0m//x5DRQpdUvdPi4Z4uQEcnOznIGrb7jlszqDAAnHTeEnN6KYZfFd6z1m7z/TfruK+aa20Rrt8sxNMPcIht24R9N+//3la9KybjP7Pr/ZFSJuTKAVjh9uiWcQewVXjj3kp6JzvuIsEV23mf0m0jWSJwLurHZA3kvfS399HQHbcI8opK/QU10Yco2FnCZXu3BNcKAkU375RJE3rD3RvOP1JwbBZm9aos+jidrvPlO49d5mZp9N+sWP391MzzCQEsV2p3xJOBThHjWS7q1/RDu/2A+pf6Zv5SlPhn65oeRnb/2h6Wiuz18/V8Kli6ZZ+Reh3v/Zn3ZhxanSN6JM9HLniR3rtYPhNe4RLQt7reGYf9e+YKSxIHTw/YokGB9WH6GIBALFZ3/9hXJXop9TmbXPeTN6f5hPt9Nj9v2QQ/oC70slkj1MdGPXu7PnPYKme9Tki72yt22lyosQZBr7yX+zVCxULFqe5dESAPp+C5NS17oR1OWv+JT/6qI7yV0m1iGms79fpD96KxN0rIiJUsYkVI6/dIUq3KNd/tgZ49TLRqkhyKo98/S9bl8Iov7QOxn773t8QLrxtlw3Yl/l4p1PzuqiYnKf9phvxPj3m3oO6afDTisuCGcicc2K++4sO4jAPWKSPmdBnrXTphD0yOPc4++8TnBeIqZB9KUfcFVflh547kYE5gQV/r2jg+ZuyhqQHZ19/tJIj+XuKhR94IESsmsKJ5+6QBXuEVcNdoOM4ouiTkEonKvb4+49Hbh0qEJG8BwLBtL+LI+juxNSZYpLtK+oIQrp0/tKe7B/2L6j/MVSZ7Tp0/Bz+lJLqMU90iU9Y5do4HcPH5S4XT40KkYZsaba5ZcMMKDJ1VRg8V13AqKHF7zdqog+kj7VK7o/uG59A5cbdtb7dVdKXG3RgQXLhfT0LcAV94hD9pff8ltWtXugJxJlrBo1c/iR0Xcu9b4d0Kj8OwIXehA9/kdq4vllUATdSere2c0zzxcu0uVGrx2TSjdHI5VPHnLszWEK94imir3r2pY1j8od0RyFqngnfgrSry1f+NtOA95N8bbVJ3sQlmEvhQxlBNAqRezT8w9IH7YeeNAuoYBMdY0Tue7Kgx7u0cJf2K8k3w0drNdGxULHPgpZeKCmEF7jxYY0xGnmXj1/woNgsIwcaz+IwIVus/NFH7fNXv+kB6TlMOL/qIKQw9GzOkx14An9rwca6aM/OjqbCwygNcIBbvygoy1q7g6bT1kiTnTQHG2dbYRvjfBSKpIE90VZ3GfWes7e30iPnf/l4wUJQ1huMaBk4MYPfrgHGunPHtgcWv/dBpzbNmSbdzDRWRWkxmp1QvdMWBV6VdsIs2gfk5FKeehPGOme/Oo4e38gfejwIxO3y1bwVtrk6aEFFFSIexgifaSfb/M2PVe4tuvEr90WAchucCBfhMVEzIPlF4tEmER23vPGDmEqsGhSq/g+a8z+/pIus/C5VZq0AxyRwvv2uAcu0hNjmdu3NrOgo+Yny73ICzk66Z+8V81EXLncDSWqTCLqwj6ZW2FUMNw+ZXlKbPb678/BLnVznW9jugMoKBgj6vNtiIF7oJD9zoMqc25RvMAqRXEd79UgVJ3+j//xYwz09New0LwwJiG9vpjryCcFKPif/Sekf5ZP7fnz7/fiwUPj/IW/magG9/CM9MHP3/bej/SAVWV+L8UusVFNKO34qRY71OTZ5u9ZxiR8v6hU53HLwLUVfxqMfd1nf74s7Dvk21N3p5nDLZPosDV87ugS7qGA7O+1pQkKlzjCo5OdzRTxCDRXeEhw+01LVGDoYm99n0kEGNtVP7eVhKsvHHJL80Jn339Iv963p7ZazRBO76ylXPF2Rz1C//XAJL2frbt6u4At3ObdO2fh6TCUbtu/uCSVimI1gx6l8ngS+bEaY9INvJC+h3FH6r317POL9A+Kofc+UuUgpvt5d3iiHarDPTBIz6GVvr/npg7P/c06wNIbOScKzC2KUwXapp2OoOdJsKRevpd6NB/tyqm7sTBHBX5IP9j7rUe1gUn6uvmGuqOhG1D9q6gPfqJ0xIt71ES6hUFpvkmUBuolz+/ol/+PW6cBFMTWmGV6ehLjgpE1PwaWogtljj0FrR6z1z/pBvIJVnlmmmh1v3Dd3716yA33iEM6V+ui5b8OGKP7QcPyo3dc0NaJXmVD461Q0NrhVJjnSZiFy5yZE0VBFf+z/4T0sd5vc4r0DNDXQ2aLO0W3IFfcI+572I++ZbdLKtugDjtqq5GqPyoy5LuR9YIOBSvf+VY+8iSyGcdC076tR7cFlhXaxtnNXj/i2HVOXHT7zjBDpe0BQnEXmOgS7hGF9KKxp+nGJx1QK7lf1Y8ubNnqCEx9H5fQCU/CS8XI0v6rHGqJf/iq9d3s851COvXDoevM1q3ovnzv4pGUYFSCe9RkgD3Td1D18X4X9GzeZXflw8monIsWze/uDg6TIdx0ZRaR49Fz7JGYMmoX6DGSi4yePT/pY8uWFmh/pSO7rc9CFK/HoIu4Rxt/YB86wPiwrYuJNPc3u2fVHEZ2GYX5A+osoFTGXFQLYhFTxbw8yVQ11Flc9ujNgrTZfdINtN70N6c4oUBJU1H6pfjpHhWQnuRt0GT/whvtmbI9xuOYi3LyOAdz7X2AU+zj/ewgi/jZmraBu0cTpel9a+Y8md2f9j+Wa52O73NFHu7vu1skk6d7xDmDnR3V9Wl5mD/iEax60bk9D2XpbITU5GAIED/kcPQ2i2h19r+yJIeGrq/cFHta7MDs853099Tx+3t8Weinxd6LPbQUdAz36AnpJ2W5Hc7asdHO70nn32w5jdo+jEZr9Yb/+35Ya2LO5UXkbD3Ut77ZCP385i0P9of/3/sh9mc06/cGfH5IQtvJokglFXXiHlEysf/NllC+HhaF3o7qqyW+K0Bl2xYuGjaLAErbfJMeSS/iZEhQ1HYzY5Rc/6uYYKXP3n9I/6Ut825enh9y5Q27rXQ1ebpHXO3YudqPT337FIVMp8SdfksXojLlCz3LtNhwXGr3RVdXL2KL/t0K8dcGqP3b13XpNntm36/WY3+n7950+pM3Ghs/s+Imdfd0jzaQvktrt4XrsQi0TND/n6G4fOQ4P0vzCD0YmDu5lr7J+vd8ouvfEvE0RMvRrjjSswOuyiVxAhSUtbgSsT81y8zWNGOh+S8WKYlw0pAz7lEB2c8pCT3epMlGOktVx/5pPo3Gn9tZyu/1hSbFw0ds67yIbw2Zdjza2ghKd3wZrkucvT6VsGvd1ywqF3NHfU2J+4L37EJXcY+m+wK72xNBnQGoRbH/JNXwBPLQNabK8m4Bel4hf8lHL8KryOdOVtQa1F+SXXO1Z/bvSxzSP9IPV5eE66OpNrFilkQyOoZ7VH8C+8ZPym1Xv1ohHhRbJ9eXi+wTWH4K/HTUxFub8lPWm9jTdeNV9F8pEBl5fkIwfPb717RnjtNfCViYgtmLTw/TI3cgKdwDhwe7aB1jncR5e/jgu1Bo/lAmarPxE9DqdENN/uqOFhbexLlVz9DWZiXg39sSqrFq0+w+6Zywd1mVuXQ4mXbxz9qEBPQA99Dki71CwHqRNIcJ74bbA7UWZKCNm8Tq9dd6ouxOlYd+Kd6EQ9QGr+RPVLi1vyR22W/6zPthE+my9/qFilY7wpbu4tU+ZyORPO5hvAM7PT5+ILzACyZbYoUnqYlo6FLsu6HnXqhJXdEqFbwJ3ra4fXWrNWDuxJPtDw7Ezr7famB/INV7MOuMC/A1n038FBCNBnEPHNJ/vittvNbkC5yX54wGtsWj+/9UvebP8UO0o49f17zwJjrv3rpiHa0DSXcyT1W9n92f9qHuwgceUR6wa7HYxUGzMNSBe+A6gt2XUdZXyxMEEsJSGtFsNrrtIJd69hEbBae1ph0T8yHccjdoOeQagprduZ6bmkEz+xTS705Fdl9t9IGP7Mdx2ZNe6Bbu4UUq9shzVhurzCLBYDefTl6GD8rR/pnb8ioa0XbAhu3WPgR9a2T23Bhz2LY96IoKl+Ts9U963qKczSa6wWAYoLaoieWM8nEPHNIvF98dTV0cB0L9tx6cXB6D/LWkkpIf/7tvnxSWzPYh5AwfpGgFmUNrQv4usWez/3837WIWy/utlYMhKV+g6ix/DArHPdDssNP1T1eOcMdBl+E2/THhHShoU0/dvnI2MvF2iJMs8yHM9isS8f6G8PUacTp9qcvM/rgX9iHBgpJzaT4QdC9/QcqycOSDe7hKuu3qqwrHV0TCIHm+mwZ8L9bx/PvzjZJPufGPD9FRJPEt/r42NG/RW7U5JWRmnxOJPfSC9dO59e6Q9M7vdpOZP+rBPUz72e8XXDM9AmH44t+RMRUWKuv9laB+zxPRdBJ7iuf6Eo+m5pRzXVaFyVU7y2yEfdH3A31Fts+sG2ja2I84/i6NmXCEj7wb9M18Z3rgkP1tsZ1HHzO9gdNnWHDlrTAk5lO8X5nbI+d1ZyKntH0J5V3ygYdOyUBlXEq/FvH/vv+S/k/ShesGyhYQMPZjkZu2D2LjHnaRvlnQV/iIrhN0jK4yjG0IQrG6q7VMf1MRR+CeiF2kLzGssvWTj9F86CX3O/87v57WtIdbhF9mdsjB0teeX33O+KIXuAca6ZdvmU50D6pD+ZIOe4FNcah24MbedfLUf3//Lq9fkOVLhP3Y+7XNmhfd0oqZatzFnL0+Sf+6dqBFjJBFx9Y+3syTFzjdIxrp4dx2MhLf1JDpmW7/4pQEJJe0ZR1bygk2cnc5CrX5EjajcsLvPm5AmWFPKTWtRrOfD+mvfhwrDey3RKOT2sHZkmy0APeIQ/oCYPuE7GKgkw1ayYNLk1G2AbVagPAGWuf7Pcvm+RFr23Ijxtdrou+FtgtED/77niOdkO4lYdgw7QnRfR177jKQw9PNGyvPR6I83KNpz3ZNa2q95YfuAffJw5Vx6JDfcwPJ9yzg5LLoJ6X8iG01n8ujedXRpcY5aQ2HDGY/n+PYfURXVFwPcUbiEqn+l26YwmHcIxrZn762Y/JjuQ+6vuqjf/eOcMTlwLSd+1gHnkooVJu7+RFSLZZiBlQhxLOSIxc/PPv9mms19nd5hhVdE8pouTjeV7X/r0ffyX7e7S+PH77WQ8V5p087nfVD/mf43PU/OCGu4h/CE5l+xKnCHMOyPnn48GybwmCeD8QwWc4rxWy0pr3/4NjFC2+swCAlkhXroYpO4v7f9z/s2rnxqTH+rnB/NH3u1Nrt6P8AwZGlXg==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAATQQAAAAAAAA=eF5t1XswlXkYB3AKpdEW2iib61FjMskslUW/CLvZmhLrmoY2OigS2tjIZWq3te632g1dbHuOknsp4uxqLXaXUjgI6ahcOu+7FM7KZc8fz8w78z7vX59/v/PMd77PM/8fRxcXafKM5Ttn5bo5DsvGFPomOXQ2mrMa5TDsyEPZYw5dOpufl3A43d41m8Wh2bGCU74cih9kB6zjcEFvo9X4Ata/3FAtncO8sJldxhwq5e4oHJzHJvE9BN4chivr7n00h9Uujr5wlMMbfAXv8g9YtXyn7eOzWPPT7v+GcihQ3VF48T9sY9GwNE2GFe4XKU7NYNPqr033THOoJdopnMLeO7SmSvoe+5affeXyO2x2fMn1LZPYYYOwqwcmsPt3a/iKaOw5P4mmNoVtsxf2fCxlbAcHHe6EO41j/27VoX1HsS4v1rVbjtDkIMuAEw8Dea+xQeNPemUSxmBw7eSAhfAltqzNXNn1BXZVakTFUD9NVrOsd62n+c+xti/Pk796sOINWyPVu2nSw3LmXtDS0E6snWqF/oUObFbv+a0J7diTmV6J5f9gb3WdrTvbil2WMzVr8iejCjjQUBVn+gdjP1hpW6kv+I0mFSwPj8X1KdVjLWNs5rprsfcjDn2hWIMtjeM1rqjCCkOyh2+XY5dK6lYmlGDjfc58ayHEZp1wnr5xE7toZble/zpW5uWXF5OPPWygd7f6J+xGa764KwcruWIY2JmO9bEzPdKbgm3WehSY/z1jCzif4vDKJolxAXzSkC9RjWfsABOGj18MiaFJIssvb/5aIYikyV6Wubb9Iutw7Bte4JUdIYwj4GbL0oVVAYymoH+n5qpj/oxHwPqZp4kfvBkbQKcpXnSQG+PnoMWrkcOJBxgtQTd+TU7xHsavQEHRavtb9lhnw+6SpJ1Y49+bsq23Y0UJS3pbzRgbwB/4W9z9NmMPzk7l3DCS7xPL93nm6g915H+a5eVPo+fVtBgvgYaSZxNdH9HEgGXE8uKJKBWs54OMuFhFbJ9NslmLjCK9LLNaXEpGaIpkghngPuW14qIxiuxl2edRPXl8COtZbZy8TEwRL9AHTO4s047qoEgKmAq6+8uGK5sZPUANY4W2xnqKaLL8rOG642AN1inpl4LUO4wOoBcvtHBlkTwX6A4uOdni+DSfIoqgAqi0zzD9bSZFVMDl4N2fg2eefkeRWlAEBmidbiYJFAkGT4K+m3zf1EZRxA88CroNBMYrBctzgJ5gjouvicbXFMkFL4GFcZLIUXeKXAWvgZ+EZ8cmO1NkA6gLppqEum/bTZE0MB1U95Sk+m2T3xXUBHftmS12NaGIHWgPHhC4leYaUMQFPAjO6tyfWLGGInPgPJgetV7PSUXeHzALnOI1vtZZkJJpUAbGzrcXPKal5BwYD37T5LHJeUhKzoAxYFOQ7sBtsZQ0g62gTYZXTV6LlNiCBDw1WWfk+EBKIsEo8H9/ajWCAQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAQhkAAAAAAAA=eF5d1nc01v//x3EtaVIqEk0N7VLykTdKaUilaCoKRfmgzPiklDLKzN57u6yLUr142XuVJpJKJPrIFvHr/N4Pf3w/f97O/fl8Xq9zHee4Nqo1vG9dvENh23DFqW6ZGqpwmHVmkE/aipknSQK8HV1NmXXvFbev3n/pECmV/+3mh1jrn4k/7POXFjm8Y4S55itHEzuyH8StqqEWDOtrSYbmkb9NScRfrOPQRdDrnzodade6SVqwH4meJM1aWrPfmHP1FknbnOHVLahOl3xIydaaW0MPbGXd5l6XzV1gR2zQxdB1t7C++CuT03LEiShsYi2MbgYbLU12TddxJhFexW+ffNGgEhe1PD14a+hKH9a+oUc1dH3ukrOerFejS2JeP8JR5cBUG/LOg/Vy9GmPWK8JExTwVnchXWfd36yX0KXyC9R/eHyppvc0WI8lfdWIN3cmOzT+tzvBjHXO8QplR3IO3o5uBB+si125xNaTzOjM3v276Spdo/ctned5NTWBx6wURXb6uBH5H//bLeDpLXK/TG2dyd5/Wa9HPwprn7oxqtjkTXhHBW/uLzGiZjsaq7Ujq+klWG2vxroJr7xJ1m/WxuidcP/3TTM1ZP3JGp55/28r9O2w4oaR+S7T/clZo9UhBvImdOc7M6Ea62rqBbe0tXPE1YKIALwNfRPsY3VGTlAygKwwZi2LvhYOuVj77ZiBF0lsKhjj+pvTydazNWWPV9MfcPCxHyffnQwne+BBK7brwwvcty2avjWIbPzIegxdCnYf29Mb+8ud2ASVyee5WNJqt8gTwTur6TPYokh3hnF4OHkRyDofvQ+uW2QvYnXQk+Rgvhi9BH4gzd8vV2tPToeuJC+/WdNr871n8AlW09uw4mp9rWipGBIawloX/TEsyS1xnGLqTZww/ze6K2yhZLLTXeIm2RVxW6Zlzy0q5G9Pr7VX0RNw2oIYz3sLEohmOGtedAP48KpUgx1ffIg85hegK4zfu19yyTLkAkmNuvlRN/A2bVp7tbX2RRUd96UpeRvkvOLIW/gT+nt4TqfOtAWeruRDJOsi9HFzRGUEa3YpEp4DLcpFB+7QuOUudTviq2jbftYzze2+Bu2IJuroGehKsKyphI5PhxvxxHwiujv8Q19d/KSKHTnbcejxqoG79JZIam6QbRXdCIsZG7wqPhVKvsCP0Ethr3Or88ykHpJtsMN/9q83VkxP03cjJ7omvxntsqMF6xTODetX0TVw/nmpm9bCEaQMfo2eDJt1i0pufBdNNsMV6BKwjJJrSWlQCDkw4buCRPB9+vm3nIzGrioqCcekyr49aOJPAuB2dFdYRYXPwsUlirzgYd2AXgt/erfcwVctgkjMrY0/ruxAf1UzQkS4iq6DMwLbJGvkHxF9eEIN26/C3e023+o3RhOnOazbsO8Izy5+s2jyyVii+fdsJ769jtToQq6O0IQqagI77woWusjxIe8MWGuhf4Hf5ZAJ39XjyCjmLdEnGLLWVguW6yiMI8e9Bt//+OlEuV56TdfeVtL7sN6v7eUCZWFkwJN1JPpc9FUB8UNK8+LJv3AK+gB8SZjz87RJJNEgn9a9Cn5IR0r5z1QkV1IO7EgPZ+okxRIhuB1dCRaSk5pvYptIPsMd6J3wxsnnMl6rhpEHmRyH877OVPbpqUfLfSvpB7jFpGhapnQsMc5gPR89DNZUHu4s2u9LgjAvjh4N64hdfKK83J148P926t7jSkWOh50wM6qkdXCXHX+Le34a2Tybdccxtp+AJ0s8kCwTDSNzMd+LvhAWmCO6JrzxLpHiRinlW7rRf79/W1iiVElV4MtJqed8ebOIVTrrfHRHeM8h4UndHlGkFa5G/w5LWJ/+/H3/LnIm2FrQsM+NPnnbarlwUyXVg7WnLex3XvWEzA9hXYe+BLad3T93MD6MTMZ8KPpUeL7N4hsjUtcJhwx/tC93pwuX2G7V5q2kiXDOpjQpjmQaOZbNehv6EXhe2ZcEl95I0v6cde9itn+HT/yqkq/IiSQ8jdacsDAPaqIr0pHYWEE7GlgrvNzqww2NJv7oXuiusFXhiysxf8WQwnrWSuj5cET+hJzth9LJ4k/qjhsXP6JHhLKSBgsr6CS44QO/rdXPMBIJG6F7wr6eM/jj21JJwEfW89H9YDmBmVO/fHtGBk4Nyc7pfUSFRy3nSgdV0DfwpD7V+t31a8iF06y3oR+FW748PHQ/JZ3MPcm66jfbZ8PchHn2800LCLc6sKun1JN++CJtYWH6531wr8zp4fycMEaohvUwOi/MlU18yV2eSYwrWTugX4HT+hUuH1pUTnq2HGw5r+RFJaWTG59rVNDqcUfcO13jGMO8hrej58Hpa37kHjyZTty2stZCfwCbymwI9FQpJ6uC+V5MEvWmg+vFk7okK+hQEOshl21iKnqRTD08gE7h7K0X+tR6kslz7G/ZwPZM+JGDbmf+g2JybnpxduxPb5q/zO8f8RkVdDl89CeJHyuOYBqnsX6GngNbJe7bfHdGLOnE/MTlbP8Ky7R/n3vrXR4JLdgy1vm3D/Xu2117saecXoXlNAXjxY74MY/hRHQfeJmcqPDh+jTiAXPRneEHxpvj3wnkk0uJx+hhRV/qfsHprWNZOVWAp6TyR90sj2Tc4Sj0G/CMg0aV1d+TSRj8GD0Ifu0cpbcuNpes8TSxTRb2o06VtU0pYeWUHy6dFzJxyZFE5gYcgn4VHnkTvcd2ZQIph5+hF8Obujb2N07NJcsY7b/LPf2ouEukaatjOZ0HrxhbJqv58M/fjyxrUfQX8PCLJS3631NJC7wUvRl26MoS3mCcSybar+9u1venTg8D3HgulFMBOPBCQumcjmhmMnwPfQZce1Ly/aHkVCIJ26Nvg1PDbDR5l+YSgdo+80G5ANrr5JG4ULqcysJvX9/KP3UgjDn5n24MR32/c7GuOI0Ewz/RI2DFXx8n9gxQct+1Laz1aQB1b9reuG9pOX0GC1xoTtcaDWU6XVhfQp+NflHMLf3y5WhiBhugW8GPN7pEXZmUTWamiElxXAPphgVzRlQHyqgyXLFBIvjp5/tMXTLrOej98Hupft9S9QQSjfmV6Emwfk8orc57Trg1x8pMdYLoq0MdIhpVZfQnnLxG8tGsrfdJEpyNXgULKu97dciCQ+xqWb9Ed4ar/ynq99v1lAgtdBqT/BhE91n/o2KbWUZV4ZKoycf3aruQQmHWq9E/wwbNsxLTWwOJEeZ3oJvDr4f63gyapBMTnU9Ho7jBtO1AlZG1cxn1gv0yutfe0Pzz/1WbdS76CNz/0vPWrR8R5DDmS9HV4K0at3QTXqYRl2SZ8AWOIdRaeKmHmU4ZDYGD1Yz+zljBIdtgHXRZeP+H7FpZhxhyD76Ofh/+uNTjtsCjVNLscM9EdWIoLRoO3OF+qIx+gUUd45td/FLJfEfW9egLYP0k1XC+hxwyPl+A/hXWLfApknifRhaLvJ10ziCU5m6tNLZaUUZF4SNazvNUriUTebgGnYEzy4q0zqxIIlfhFvRxk1XL1Br+SiPaCWs99V6H0iz933Hav0rpaXhYPHRT2mYOuQLnouvCp1qlH3NjY0gC/Ak9brzjfS7bN38QnBdG/z6sLmf2qZTawkJ3DdNT6hPILdgI3RK2muJY3puSQLThK+gX4JSh/Te/anDIV+EAga6bYXRj5GHuoaxS+h6WqY2e/HFhLOmGd6O3w47rV5rOrIkj1bAseiWcgfvSI1MUK1rDaNfQvrXibqVUAtZY0qTOfyqSmMBzfrHdAD51ro233TyGDAyz/o79Xlgv+6yvsmgSUQ5frHd2ZThdNq148zrLUioLnxJ+tGulagRRhSXQD8BTGn/m3pqQQpb8Z18MfuRcbWxbkUoOzqrk43UNp/mpCwW6DpdSOdine/1o7UIvYgI3oBvCob2VPBFb/rwPrkEf94eS5+qis9KJhaV1XMpgOLU6Y/Avd2UpNYFPKNYudFptS8JhN/Qw2P5K1MXm0AQiB19Bl4crwpYmTf7BJdb7Z5osl4qg2jd8e1JmlVILODBzVZnXfH1iDl9AN4OdkhZ9sm2JJbGwOXo8zOsQYBR7PYPIDAzd9wuJoMb1y20ufimhsrAW7u+GjdAVxz1yIiB2exyRhPXQx82H+x+jWv0FpkVSMyaJb96zEtoKC2xb6/707jVGOpr1Q3QZWOLJ3m3ytxJJAuaPoyfCFilMGyfjGdlYmtGjrRRJvc66hU+O+LMP8w5G9N/+eY9ZCDuiL4E7lD5Hn9oWT76VsDZBb4fjk5pKw7uekbGpfFlRyZE01iR0U/iNEjqDj/XcvHk/BmOvMt3ooehD8Deds5VhjYlkvHujj1tV+YRsl9tz0qJ0xqZVOIoWP0h5Ln+0hPbAx/mCVn2UsyIDcB76KLynRcM26CuHiO9jXY6+Gu5tq+AwWwgxdG2+uuhEFG0UOu0iLl1C/4G5fgEami+vkv1wHroKPCwcdE3aLoF4wm/RH8F9WWfyjqx7Rk75Fe9elRNFhQN57iTNLqG68C/cV4Vnoo/Pu7pa7DScwiEz4PYAtgvADpu3P7yXSIhxRNLCLWui6YWlsWZSLcXUGi6WSYvm2HoQeXg/+l5Y/kWLkWlgGnkWzpof/SncMLvP1fJkLnllNCN9j2407RDLXc1fWUwb4OsHPmzY6utBJIxZT1rM9rXwiq7ovlzNeHIDFkO3htPc3vMcOJNLnsffmy9UFU1tttF/70T8+XxY48mxbc7rHpBI2Ao9Cp4ppBj8ziaW5ML30ClsbdR5LLc7mxxpGbP4JhVD+w7mPO6/UUwV4eHGtpmZq2yJONyBLgr/w80SWL0kjgx9Yf0VfRAev5+V3/qh3iSGKvJ39OddKKZxsPG2BSJkgh/5CWuit8HBpkFPgrJSyFp4GfpqOKFn6Z4fM7IJz5eKo6YNMbRxZ/rkZdLF9Ptn1orcUy3lQ85kFG5D/xf2yg3QWr87mQzAPei98NDG2RKOh3LIzMlpeTP3xlJNPau5t2b/6ZNYq+E+Fz6GHgPv8xtqXTkWS1Kwn4ueAC+8qWT1xOkZSf5gvrDRNpYqzPB/INdfRD3hYdk1h0vzXUgsfBTdD5YUdNEplY0ll5tYx6FfhNP3ZnN+amWQS/slFsi0x1J9SUOV+xVF9CB852L2qu5sO7IS1kYXgj/k3C4X5PiSCjgVvQQW16raMyYVSYpS6+f6HIujxmd381eFF9EEWBP3m2An9Cp4qcbPv6+vdSeXYUN0bThiRqnMUR1PUjbB2nqPaxw91S5odNupiKbA05fPDdLZ6EUS4fPoIXBpodFc8xZvMmkia2d0HrhNv9LePtCSxGvb2ukMxFEPV3v1VK0i6g0noyfAIehh8MfXM14zuY7EFPZHvwbbjKWvi+80ZOwK7Z3tNONpybbhnZ+kiqgpvI6H+//9IfwG/S4srrVlJp+CPflewDoCvR2e43r0u8jx+2SeY6H47MB4Om3T/g32i4vodHjeetc9H1dYM1kOrDs2sj0dHjHhabtgeJ+kYF4N+8lw3YfO18V6GswNBW74v5MS6Ilej5DQ3kJqBhd9ZPspWBl93KkFtUvm+OsRO/gc+l24/daAZvQLf6ZqIHxp7dUEGpjVOOdpWSGtgxtSqgYH9wWSRjgYvQmep2TZGVdjQlJhJ3Qu7BflLF1d6cYMrEzp3B6bQGusT+1QTSuko/BRjyN3pE8HkxA4Hj0CvsYTVthzch/pgUvRe2HyYN2VF/lBjNyxrgVv+BNpT0Wz4zGHQnoQnvKk5cwFNU+iBfejX4YHv7x+evGyBpMIz6pkezzsJxHl4aQbzYjd2qxgaZFIlRdfbTh+vpCuh5XyFt2y2mZGTsJq6Ofhwo/s/VYb1mLo3+Brsl2ji7XDGNdF5qsepyfS99POljfsLaShsPDRZXzDIxbEDa5BD4TVEz735kkFMowoa97pbJeHr/44r5ziHMvkzXJtnb8oiW6JeiVVuKiQVsNWuN8Jb0fvg/fZ7TuUIBTMrJjNWhFdHHatF2xa5JbE8PLExpreSaIPFI6GJ/0soIJwHV+DQCefPwmFn6FHwOXbpq1zzvBjhOA76MKwgIRFXSxfCtPj/1zzYXYSdSh3blr9roCOwj7ZbjFfRRLI7ADWTujz4M+rH89/ONWfeYx5PfSnsOr17alPxhIYoYUTT0av5NDji07f6ucU0EXwjdW9F5v3PCQCsCr6XPiNg8zLI4ruzE9h1oroPfCoT7lj868wRtRn32H6kEOFroovKbQroCJwaovCmkvmxkQFXouuDDurqPzgTnRjOuHL6B2wLt6vUt2ollzCobPdt4psNiig++C8scjeQMUAYgGLoV+HNX37+Od3WjM/q1h3ubG9B25XNKjxrvNmXiUtj7fdlEx5opjGz7sKaDVcgvviHNYr0MXgO9E6yReG7Rk1WAb9GHx0JMR1uVEUo/Xw8thx72Q6+GR/qI9QAT0OG6zcWVko506+wJuy2N4Mn3NP0JC4H8T8hhXQx70P9w2NCu2EXyTTiTnN8d2j+VQb5s2eeZ77zJW8MmRdmc32Svixpqe5hUIc8/Aa64/YfwBf+7LZxmphDlNWNPXTEdEUWlfG2etUl08LYCXNj0pZo2lEB3ZDvwAHP3on3LiCy5woZq1SznZ1eGW+xuayuRVM1qtE20dHUui919Yfl8Xn0xT497T3ZZJ2+eQmfAndEl71WUhm+N4Tph0uQP8GHyskZrzOr5iy04IGmn+nUEunD2sM3PNpLixfdOXCup0FJBo2QA+Bja7vGOWczGa0z7DmfcD2cf9tXfR11vG3zMBJ0WvWoSnUyzGT/+ulfNoOL7fcKjAyUkwewVroTvAaj1uvc2bmMr3wc/RxT+wOTVGse8+Eq68093mZQk86uPRryuZTd3jq2l/ZFdnlRAeWQz8Fc/L31noW5jE34Evo5rAMb3dHUV8jc6A17bHyzxRqdf/wbd8V+VQKbrwz+V/btjJyA85EN4L7w9Jqw3RzGBf4A/oDuOpdh1qH1gdGK/BlBCOeSmsOW9Z1D+bRo7D2mYvm1lEF5Dm89gjb0+BCS8uhps+5jCE8Bd0A3qk990FmUz3zXLXXddPJVKohFL5GpSqPcuBY8/LLNnmPifAx1qnoAvDKoRtJ9R35jBvmz6O7wH6FAcL68vXMWZ+ZHmWmqfSGaFne9Yw/74c3C9j48Uk+I1dhb3QdWGvUMNtVjzLT4bPoM+Dh6R+O5O96w0zjdmu7xqRS++59iglOeXQK/FfkNIml6hFkFRyKLg7/uDcp/duRbEYvnbUQ+mU4qbrrypoJrxmfmrfb1d6nUpuSwvzPmnnUH355PeGx2Q5bEg3bosfBT3Lai70MHjMB1azTi9keDIvfTjswPaSWMddXFqgbSKUzH27h6VPKo7dhpsHV7FSxPnGH56N7wucfDk7z/iuLab3MutKJ7S3wwXlWmyovVTCebyU2661No+0hEsN8onk0AF6RtUwhv8aNeQXzh7L9HVz3bkNPpW4qIwu7YJ+Bnf0y2+blPGUG9vEdHdFIo73py/pFf+ZSnv2stRInqMc9z2COwZu5bD8J8+iccHftT2O+wW7o4/61vGFxE/OEuXXf8el5qzRaYOK7WPhtLnWE15xnpE3mZjKx8Cv0ZHi187R5qtwEJvMe69noWXB979mMCLEk5l1NYj1JTKNz1tudmZyUS7/DYVNjlkkvimVewH3r2F4Pi6SHdNxIDmNq4Ab0OthMpNu5QjiC+SpSMyLa9Of7/mLk3WWbS0fgPXslRaVFz5NhWBCddxFr4/ezJh3y9WKewnfRn8N+rRcNGfd05uoLZXnNkTSaaPMp9KVeLr0LLy3ZLSKxNIrJgsvQS2BR7lOzJrt0ZhUsi74anpqha7NswWPG8vfx/XYb0+m1pqyDnkwutYef1qe2REh5M7qwCrohvL50MPbOXg5jDCugm8A78T6zNRqqcVrpdKOCe6/a3Fx6B1bPGEjyXB7P9K5m/Vye7cPwoMQ/l5RsoxgxzFegL4Yn1TvfJ2KhjOvGz1tLbqbTCPVD5mJDlPrBKY8U5hU7RTAVG1hPQa+Fz151vC6lHMpM3cS6FX3c9kxJZFXWEcLcbRFJSk6nseqaUzmVlCrC7/qH8v+Z6kVk4WB0ObizWVvWoCKccYBfoNvD+bf7Yrb++X3++03rRI/mdMpVv+4rF07pGDyI+zxvWWeij3udmOqyqbMimXLMu6BXwAH+OtbGypnM3bX7Mx1H0+k/Om6PvzlQOm7du/yqE+WCyGxYHJ0fNsxaPdXBNYbZBR9GHzcRr0uQUchimjck66zezKU3Ww0b95yj9P24gywmx+rdIQ3w/f/0xugG/x73RGbSRtax6BPh1jmO8tG7sxmfLQsECy9wackVlUmhWyh1hg/RCaZb3nsyJvBTdCP4+eWcaTevpDJH4CT0w/BazlDz5JxMRnDK12XuNlx6WGTs0lphSmfCt1WTl4kb3ibasDe6Jrzf/+KUxGn3iN9k1nzovrBvzP0Jen0c5niMuVJTMpdOjxsqe/Q2hx6Dn51L0KQKgcQY3oluCN/1Ze+fgyXQtWDVStH3bl2RzMUDU69uaOZSGbG+4he3c6gezBvolF++PIJYwPvQreDL3RnNadOuM6PwxMVs/w3P2WXpueQml/k/WqjEHA==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAWQIAAAAAAAA=eF7t0d9PzXEcx/G3DfOjmaw42ZraVGNrdqY5LvI6zdIOnUyLrJPR6uBEWaxaVtOnOimOfigiP3bUUCGUzQgrjaXamsVYzixNpzJmskrsbLy+/Re2Pjev7X3xuXg8w95uDm4M17WLMtnauvWQiMym9okoSFKqozd2JyTjc8F0+V6I3E1xe6yQ1wf8lxgOQ+7bAp0TGZBHfbqFxZmQSkurYWsOxMcynoU8SF62eY9eQX70GyMshZDSOkdKrR0yHPc05/tJyLISd0rCKcja534jLgeksSS5r6uc97i2jneVkG3BDV7GKsj+0dsFD6ohnWcma8POQ9KHEnt6ayC7P0yl2i9CqlINq8MuQXx16frxy5DJj4ZDXVchRQODrmdOqEDHz9aBa1DR/euHB+ugXgZFmf7UQ+2YdHuvuA7Vk5+1PPIG1JaWYGvhTUiufY7rVQNk4pfZFNIE9fuvqqm4BbUodMrsfYf/+7qT65qh0LJ4LPoensSHe940+Bg3zjguaBfRHAMhHZrjBnpqjpF00By307WZjnRttNIxEWI+SMck3rvpSF/7LjraIEsT6JgGeZFDRzrbBuh4DPLNSUd6p8XQMRsSrzkeh4x10jGXfg46noB8iaUj/f0D6Ej/oE90LIJ4SuhYDOlz05Ed8JWOpZDQLDqehri86Mge3e/pWAZZOUTHCsiqMjqyy2PN8SzUugA6VkENjdLxHFTyUTqyz76HdGQfazUdL0CNzIsxhdRy5xfUVLBT/Ro6XoHk+9GRnZJa6ejEkU2a41yjzLzp/Nmd3dn9f/cf/4zK4w==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAbgoAAAAAAAA=eF4t1nk4VVsfwPEtY5nOQUJdr0qSKIqI9rGKTGk0JcItqisaNEmlreu6Za4oJcKpjEUpibvsJd43pZRut0HScXAOFY4Mkend9rp/fp713b/nt86znoeLqz8k1Aw/so0/GzOZA4PApiSPS8IqAU1smjVauUpMD2tNf/dyvJ8mcj54E4yL+JNXq9MnaeI0Fci3FtObfw1ZdeKaLCKGjy6LsRLTEY1yibHBiohwj5hItRDTJOq+3ZvOQcQVubVPzMT0t+CHe/XPqCOCnn5T3URMn1zhLXq2WxMR28DN8IVi2tX3WdkzV21EaH5vGdIT014F//2paDYHETXVfue1xXTKoSOXjmn8BxHTvA3Wc8V0qNOJ+ydG9RDRmA1NFcQ09W65tU3IPEREiBvtJkS0nvnLUwea5yMiu7cpsV9Evz4W5qLmugARX5qqdTpFdHjsGm2tSgNEeHhSko8iOmbXUZWIRYaIkC8+M/OliP4pEsSZXl6EiNba8aRqEX2Jsik3l1mMiDHgG1zKfF/qS1EHjBHRvyCu6IaIbuAsdlRpNkHE3dDRbaki+l23/tP3DksRpSUKPvaHiH4clBEWutUUUeE2DZOHRXSWeeEdeWUzRGzviuvbKaK3Xo2LtqpmnH1wvtMWET10Usdi/PAyRLmcfz9sK6K38P8s2GK4HFHfZE/1G4vovQ0HNlp8XM7sMydTX5uZXxkon51gjqhq74ZDMiLaM3pOV7KtBSK400bpng56xe3pExMSC0TFdWkL33XQ1yVpC9uzVyDqk2l9Id1BH/Sj6iy3WCIqsyup/WYHHTY3LLJXygpRq3b2ucR20MKnZS0TJVaIWPRX0IWQDnpstbqyl/9KRCyYtNjh2kFT1JHfRErWiHjdlOW+qIO2n+U5K+0RY9Wl3QPTOugNlkWJbkE2iNh5dl3V+3Ya+p/oGlE1Rhe+XntUq+eBCIKgpB3Ok5xBwQdlUkwzJgIf80nzKsfuD6t+sDYozyTznOVmLPrXKc58ciAoSPi3NbbC0ltk7cX9OtAKOyQlD3JKi8NfW7CmQudWQxkHZ6SwDJ8P3kUwOl220tsEnx9MaYe1fa+UahayRm0/+6BT05LAtXNZg9tz2iF6zRW0aWNHS4lgsq9UMp+L5w1Ut8OQfSoz4hTwPMETCSlj5yWfMzE05SzlrQQvYEurUl8/a+ro6XYy/sEL1ahO1kRn7AfoLozk+jRjlzl/hu6ZsXHRL7G9X7VBw7cRSPox/t53Rx88m69r3FaKrSk7CtH90Rqjm7jXS7oAEV9zxudUfH7HrpPUcD5XLxWDz42URuB9g7XTzx9hDUxNhqF+XoptbCA+/5z0hYw+6jutawu28IqEdI1Vzs8B2OX2QtLY8YJmrgn2nt8q4Ioo2RGhNnbo/Vao1bPuBymL/eOyAHre0ZhzuXeQ3WddpQQ+S1SLevIee0/5GNTUlxZlIdbEkgkJ1JROl3y5hW18bxDm/bbBJzAO+2FoH3Tozq9GodhyKQKy5bBBQe56bIlRHpRUGMWUGv37/ae3ZJ2K16f9MthrdHvI4Y7Ti7Y2DbB29W4mSyofX19b28467/UeeN3OevYv346A3mmp+7dFvaGTfm9h3qc8mDrPd8shqfwp/7Cdsol/KkQqZ3oKQrnA/0u0O9g+Rlf1lhC3VuG+/FIRmWV+lzHu5YLSIXiY1G/I9H1LXPbVPZ+OPmf4qBfZ4N7+cQ2JSqbM9pTH8RJIqLtOXxzCBeXutiKTB2pIrvPE3dGVuJcdr4MCnynj+U4+aZDY3JiQHswFDZfPPTvzuxYa7f3190hL3AsMw8iSoSnjfi2gIXBQGwnZwwUR1783m2/WRWV8Yp+BOe796htJQfRoqIE526M9x9+QVL9y76UgLlB88D+pGarzUJ5cstrXpWxPHT/eTR44l8oY7380s4lETwSNGju4gHQrzPwxoI9CThbvrDP69/fRaYFEWwFjtn/VWvidJP6JaGvfzgVfI4tqXZoWorc1SmVQH88v7fkCA24pMMb7nyRHSWLppSJ5by54unfpxq9VRmh1VLrai1/YHjy8MQCpKAfGeH/ruAmSGvE9e9qNC6SGltHVOSaIk7Xx9s+ZeJ8R7U4yK+YkY7YHhVpjJJhc77BpPRes8jeo/LjGFPmO54S5KuN9pN37oSQ6nDHe53B8D4ncLjZFOnDB38cvh30sNUPXvouznkrjfaZ5aPKyhI2Mcb8rvhMiYqs615YLJgiTdx76y5GX58J9ESNy7D4lCvI8Kn0l4yF2n38KxCTQcfRUtuSCP+wM/FenmKPVOZ2Fu3tw3+olIk3NlIp297C9oLd8gAR28v4RS7ggnsg3TpVegdLV2g5dFbI9lXtjHJrKyR2+KsTzLQ4KSTSm2ue3gAuCWoNUnMMskcMLwZ3Zb/F8FzMRWaLwijHbo15rAQQNb4zo2VzQNNfP0UNghaTCavZ01+Hef7KTNI3yZMz2xMuhj5C4s6H6OpcLVMRv0++tt0ave4e1dCpxH6/YCYHOIGO8T8LuIRKJvqUoyDN9c0bqtgobVNAra1tUhHvXkSGSuB/MmO2pTfwJEn1KzJ4c5YCyU/G+jgYk8hS4O+dn4P6941MIxtUZs32WS60ST+Bfsu6shAN27fehDp3noSeK359pJOL+uM4gqefmUK+RiPuEOiVelsoLCb+dA14eu9fwYdQW1W4ted5zCvfG+iOQem3EGN/X8N4kGSC1debm9xxgJhqLq7gHkNQVRYflobg3rReSr05rMcb9p5i3EHx/1JxQzwFBa/7Q0Nu9GlVsG7Nq9cE9pV9ESpLmr2z1wfc9YSlTlSXOGvGs4gDdv8E7ndlrUOyuY/USZ9xbX5eQHKkSxnj+gdAcmJVcG3ajhAOqAx505TasQbmAF+Nuid+DpqI0L3kunzHuPTa/IQOKgi2Dczjg13n2QzVRdqiyQTp3ZD6enxIhgZSlBWPcWztUk4KMXY1XLnJAV4Wc/l5ze2Qma7vuuSqerwClqgRXVjDG78dmVj+k0h5Jz43mAK8eXUmayB6pxQbzi3/KsvOb6oSwzsKH8SB73+y6Lhhgtf4X8SEO2ON07Ytj2loUVtmREtmO+5CbLTDcUcyY7Ymx4jFS8DzlZ8MODjB90nf2oLMDGsj3D+W8wH2EthAGxG9gPIjfg0CDJ7gj3/9gEweYPFncrfzTAek1FPiZ3cd92rV6aBqcwhjvI6iayQOmqc8PkhywfOPxy+oFjiimOPzMjSu45x+V4wUARcZsH7CDUuBRbqczGw05YKDRe+4xbyeUoUKa659ie4pcO41H7PNjzPbIbUCKhz5HGl5T44CV5zaKjRScUVrumY3b/fD89K+TUKBvxBjfVyLsgCiixUp3UBWszzAp1C1zRkPFtTLfV+G+YVzA/L+Vzxj3au2vIIizr/wLqYKRD/wltjtd0C0FG/kjWrhPlh4my9P3Mca9TvYYJMyW2Qf9qQoOd+2mj6iuQ+B+YGmwRIbtb6Q2Q4F1COMBtl+QMAGBn6vJZidVELg/siK3Yh1avKKM+XuLe2O5IRg+dJcx7sMHe+Hdebr80heB6P/OkoOhAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAdQUAAAAAAAA=eF6F1ns0lAkYx/GpJjON+6WkUcS6MzESxhtTjFuFbuqki00qxWQldJh2tRItUru1Sh251dlW2FkHNS+JVrlsdZJzaGZp2zGkTWTVqVX2j533mfM+Z8/Z97/Pf8b5vs/vZTD++wkZmLFoKi9upuzae5cdfLYdbDc69C6rSgEWcEUOHydGwRtiZT/clE2BAxt9S7iTM+Bnjl21Yn2t25S/WDpQtdFCFxwmiYjK+s4IvHNQ96H9AlOwz7jbZ0dMzMFGoz3NpfcswfFz+DyPNmvwBUZq3MC0LTjplGTniWRHsDztRoaBIw98JpMVJ9VzA395LVHf3c4d3MCVHknf6QFuHTy9KaPOE/ykrVVl4yAAWyc0TuwjCbDtgu5ON7Gf5vf7tzh5W6wCO3de0Mo7vxrs1OSeyl4cAA5/+tKvUioC7xeukG/dEgTWa89PNNMOAT84bNWu+DUUHHz1mXNRyVrN3ztVul/4VRj4ZEdnh9IzAhxqmC0x9lwP7nvgk165cgPYpeZs1LdrNoL32HHYvdGbwI4OJRc/l2wGv5xd6LWsNBLMWDI4zO/eojF6eqroPXZ10ntcpKT3WG1K7/F6DL3Hunp6j4MO9B7bLeg9+mfQe5w7QO/xwGt6j/IX9B6dUY/LUY9DufQeE1CPMajHKNRjPuoxD/WYg3pUxNN7nJxP7/Eg6pGHenRDPUaiHg/9T49y1GMS6lH/Lb3HatTjPtTjK9SjN+pxL+qRh3qcQj3qQY9E5JXfWSQDPW942dPLj+7wpVx56uS/TtvO+FnEIYvv03stWB/fkWReD671VTvr+BNBxVtZyiN6z1U1QfmhjB6w73XKu/bODDDIjSp678OXSp4+t1WCv7mg9riO1phSLktcSH8fGjvsstqiJsCP76m9JzcxgaVNxOyhvy+Rhz6N9Bd9AL9IUPsZ20ih94esq4H+PvkP8/oFQ7Ph/5msUrtlqr8m0pQMRPe/J7n6nnXaPHDKYbUN+OX8XiZpakl/H9lprSPpxw3AxqlqX7EJ1knnECr0vmZVi+Ju/2IC3nZD7YqWbTu0DYlNaF+y10nCyBNm4Pi1agtSzxmylhACtD/k0MDlsNYlYCvKlosq7pTPJVzQPumkXl5/baUVuC9F7UflolUGXFKC7oVH0/3C4K02YAWpdlHARW1HS/IYuifcAvHdyVp7cHE+5ZoO46oJmQvavxV/Z5sWBjmDqz6o7aqS2atYRCW6R0HJRWWz9FzBJuD+3e7eBsQxdK9yK8r6F5rywbvBIXUuRkqfo+ieyRteC2d8l4NvURbKL2UeYZJSdO8iIhRPKk+sAFtQVkpHTNK0yQZ0D2OFL3Q/jnqBnSi3THkm5TPJO+hernvu9fIvsQ+YBTa8LfPSJ/TRvp//red9hqEveAPlvQ/DTJhcgov2P5VDOq2OE2p6o2wpEcd4LiLi0T3OD6jum+7TuICy0O7Yp3I24YLu9etZLmVDW/zB7ygLPy21cX0vw98XQtnEgckhjQMp156J1BUZkfj7w21e82PzrwPBAsrRlrz0XbPJWLQHQs+3TluXBYNXgcNvxZ0b9+GgveDlFh0qHtXYlbLw/pvhYSbxCO0Jm8lxVtStAdtRvtKkdXnQmPBCe5NzvlusX7AOTFKOGGvlZFoTJPo+2hHy6rpDSji4ApxZbTbHnMhBe2UmPLr2dL3GfpSD6yvtF+uQ4WjPGu9uz0m8qXEn5ew8Xtnm+aQS7d3Y+CXxT20aT1OOOFxqy7Un+WgPS66xAkJ7Nb5KOVp18MGPJmQs2su87xsL+GManwaPRDWbSWX2aE9VN4WT0XqaPX1FeX+d1GrZQuJPtLfPRWM6XR6a779RyoXd3h4zBiRTvcf/AC25n3Q=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAaBEAAAAAAAA=eF49mHk8V9n/xz9USAY1RY2yRLYWhSmXU4jssn7se7YIH7uofLKNtGnfRQspNVp1eZOfatoolVTTVNKikaKyx6dfc8+7r/9ej+f1fhznXs/zfp/+77ejpf72J/rtSRlWr/qW8LgfXZb36aTRlqRKE94dpm1rdBAh35NFvEUyVzgsnMZYb0p39edbw4jG0Q22jg6koPnwh5zHqpTznly+XZBiIx3Oh5Er/aZXFPjk/dDErx+LdfH31ZixVQFrHveEw/CUm1cnxy0gXVm5H54Z6lPePJPZzR8j0fUxAda94IcfexMELRKfTt6Zuojy+oXsphkKp3Jfh0Kv4kaFHQ8WkSC9CbbKIyaUa6uwXkclth1rWQy8+YnNvnNiiK5jtxs/zozy+RZM203tYCvVaPi8Q2SfKe1DUjTelqu3LcX1L2QkJBqFeepZIMpWPN2xKQjcp+/YE+a8jHLBfPZu6L6wBzvDQbxJcNZweRjE7h4clai3xr9Pi929q1tD7GQqMc+JGo26lgAOsk5hvfPsKK90ZO+8vFvtpi4gn8pUfzkn4wuxSko6SoccKL9swS5WHNOW2pBORoLz7mh3CkiCtP7+ldJOuD57ptauzn3Lr4lkbN0j4RbDJGLnWbsxosYZ67szrUtaJzE6i0B05TeYqmhFbBS6ZJU/u+D+TWFWNU4+tfFJMvTXvOw899IfZPdWabloulFuZsrqyjl18GckAM9sq4nQOhQ659otGvZxp7zQjnWtUZzS4x36g/uqsQoMDGdWPpi0lU95mxp7Tu9C1YVNTmSs/KSx7du9yZF7Lw13NXhQ3mPE+Jld/+bRFEyEd+Mm/jI7mGSs/tN0TZ8nrt+CSU1ca121wJzIz/96/W6lNzndHmN0Vcsb69syHtGbZSdecQbJ4ijP5OwV0Dzu459h3j74/u3ZLXfnn7kHllB/2PzspnYBLH/wwS2wwJfyfA+2InCKqPaQFQwbyM4qChGA8OBD9lS1H+VBnuwNGYfKW/nO0Cl3doaoMQAcW+02WHX64/djw1qc7z63er0Hab23NmreGifyyjVfbfa0QMq9TJhE6LA9cDsCeNMXVji3hhPtP/7VOqkeRLkqn9HL19FpnklAIe3EkPeABxGNMuMCqpHzLJl4/ujB3YapIF3frn2t2hL2h008d9o5mHI/ffZs9L9Lhtr40OeU3v1KzQdmGplO2PUu+Of+sVrrasTcX3jBsGSMTc7jSBB0XJSWWxNCuY0Le/X+Ds2Wz9tA/E15omNwGkh5jzs7ZeIKym9GsKW7H7QnLd4L8sXyv/Ssj4cjkXwoOY5cdQX7Pltd+OZ2Poz7uC2C2R5MBNkzY04yoZTLeDK3Eo3H6yX6QUqZXrX0qShSV5vvOKsJuZcXkxPyt5vaxUzSq95s26O2jgxOOfRkXFAY5e7xTHH+fLkLL6Th3cBLiYbWlWRqtfbvi78gH/RnQnSXaJU3xRO/b6++zC2WIJW3pZvZ7HDK07QYo/M514tbI2FgfXDgB+NYeLC8SBQ+OYJyh3D2k9OqgNl3XUjtedN8cdMwErBqCqt7DDkEM1ndrSvW/F8cSPDu/OdH2DP00480B2lunPxO7ajJ6G3Oj1DaSf04gjm8TXRUztMNhqkfoQj92IdZdc7sns7WgJ9+hIYB6sd+zNKJ9Q5vVRzhC/UjvF9P/fgac/kuA9W9ngYkm/qRPJWifozDbDNDetPUIS8wmsr5EYbnUT+OUF/Czt/22Aa9WQUjepwf4Zg99eMTzBo2UW2z2j2hn/oR7NSpH1sx+ye5v9f+5kB4OZwfiY8S9eM76kviEWIRZ16/FkSNnB9JOvrxGeYlbHEW320HEOpHMihP/TgDs9GzHvMpfvnQSf1ICqdTP7KYZQpKLopl5oJ4COdH2CpF/fiU+hICLkodq5ubA99rOT/CRg/qx9uY48p3Ja/9uBZk6jk/ggz6EagvITCpYMWlrykgDpwfSQ768Qz1JXGvuO81d04CiEw5P5JJ86gf6zH/+VBDQ9wwAf4x5fxIxITUj2WYeYLAIP2OdJClfoT7d6kfT8nRrNGi8dfh2ixAP0I4+tESc6exZE1E33p4p8f5EZzRj/sxz7mm/yllez5IUT+SY+jHC4dpLlo+8Hzj5+yffiS5LdSP6zBr6r+O6RkQgoj6kdgdon6sxixmNVrMzLCDNupH8g79KMDsZfw13uWQKZg1c34ED/RjKvUlVJSED+U1+hBx6kf4J4/6sVCJ5mMWM0sOr4oifamcH6EB/bgVs2ZvV1N2bRL5dIXzI2lDP+7HPBAteS/qfSwZpn4kAob6MQXzxOb0CW0HkskI9SMpeE/9KMSsbTw4K2ViMRlL/Ui+oB+TXtPcnPUxdOuE4+TzYc6P5An6cT/mHqkD/F8/FJOeLs6PMCikftyHWfKiUXBR526STv0I29GP7aU0F6UuO7HDIIOIaXB+hHT04zLqS/iHmSw2ry+TdFI/wlGW+tEZs8LxL5lK/y6HARHnR5BEP57BPH/LUoPr8mvJuCzOj2QV+nEe9SWpbFxurZORTnqpH0EzhvoxFrP2B69kJ88swvlSaM3KdFE/TuD86AjHtj1+/+a6Ioy3V1HY6RVIuju/G3hYfa7jnudpMvz1qx3KDxpAnx3HQbKR8mHM06vOOGyPNAf6vB6b00f9Ksb1o85QGLm/qE3VGmx2Hlnavs6TXJHrX2v5VhHPz7EMoyeR/z3WDRZSDmukKZ+LuWnO9ZLAp75YX4sduEf9LDXrPz8TWO79bv8UZU+w0gkVP1fkQgSBofMZmIX1JzF54x6clM0NAoZy8A2gXB/zF3s5k6psPtZXZlej33n1//l9GYRdGBin2+EL2dffC3ISbMmqQMezrrl6WP8Xxk5fzeX5hDjIoBx+C6B8FebDfGeTuVqGtP58AyYb++ce7nxQA7dJYe45r/iQWcUeyI5xBFOlugsPSw2x/kzWccX4Wr/rcZBGOSlAHoK5kZF5+1TFntavH8u04/mSwZ0vzsReQm7kXUsQDPVLSR5rsYcQp5tvkwoY7B8nsapuJ5i0djfooZwUIn+F+aGfcXXD4xBa/8lith3PJ3nuvNKCRV8fHGR1okFoe2Sa569BpGb8s7DQmCW4fiPmXVW2oTP4QTrlsF+K8pWYLTZkLPIzxfo8E/Y4nm/D3PnmD180/1nXtDkcRISpaZoaRlIj9VKgzBzrE+Z1jmxKi8dqGKQcroVT3obZYervs+ZWMLS+0IRRxvlhmDsf7WCT68Sdo3LhoNP8f0Zmi+fAE+WIvZZTLbH+byy0Hi6bczIN2u5xnLTOoPwNZlG91c6h9VG4/4aMrjI9X0e489WZFD0M2zYmRQC52pZ6Wz6GgFfnuaUL861ofaEZ6+c+TXaDhDdJp5xce0+5H+Y85e9aGWUFuP6FTOEeej5/585nPhH/UPpa8rc0uNE50yM3Ogbs3C+Urx2wwfXbsLqnD09XSUgklyknAx6U52DO1jV8u3hcIe6/PDOA848xd76HkCdZMmcCNONh8Zlzwj1/rISNiY5XJMPtcf1WbIBZzoIONpkgJ6nJlI/DfPhbj0JnUt7P/Wdv4/z0mesP7Mn3r+tu9FXFwy+CNYWDju4kZ7TCu+Gh4//e7972sNf7tFf/OIc5DprIW+JoFury6gprc2h9M2t2EPuLYa6/CII3pcwft5oFIC4/r9R3awJ5+dlLe7kqzl9CPhOT0HRnQXUwGZbjOKgjf4h5p9rCBtOirP99n0nYnwxy/UkonJ6mlDc+KRLGK3jvjR8IJw5nVW8t9cD5TWjHPJce8qo2WAU8ymF1JeVXptCspOIjejuwGusbMb9jfzPA9TcL4dHTmPIs9TiY7Pdgk2bLUhh3ont31UZX3B9t9uwlpY6bjYkgTTnZh7zRl2brBxoFhYmpuD9GjDz2R31cf+RIOostrw5sWAVjt2Y+qTgQDKbnO04er8f5UriMVS6ITHbSj4bhLRwnx5HfwLy5LNOqRCcB16/ARGF/1c/1V+5kacGHUZvtcT/WXR3oGeUJnhlKQok+nE/rCdtVeyL4y0lTGC7jOLmE/BzmI0cbNYfkUrD+iJE09mddXH+mQxoum514PjcWXpvW1Bg4WhCtgi2ih9o4v/L0GNnqoyWPu+xIL+XQt4Hya5hDK1pl3BvS8ftcwNbg/PuF6+9sYcKx+6OjEAd5rWm/ruv1J3knyi9I+Xn+/P6Zbyo9LY6yXmQ15TBQRrkiZuV1i9QnJPz8fuawmtgfpnD9oQvECoQCjW4B5IWvTEoaE0Cq3o9cPLzFC+tbMHevbnVz+9WOpFEOzR2UT8QcG2Jy4S//bHy/+swl7C+7uP7SFnT+nHz1qlciNKtcu7+owhhUDu2N2VmP8zlPl9Xqlrp5W9wOZFQ5Tgjy/fR5cqlU/3TKxVz0mzXjJUH7036uP3Uj1ytTtvV8EUBTd7+f9bEoUNl/Lb39M873PD67+5l4SeKdhXCZctKO3A1zybzqQ8fv4P+v0JKZhPP/Ja6/DSJHds02/50fA6/+1YredUQAMyNkMnNn4vzP82MdctbvmrrCBJ5RTiCS8oOYp7W+eyPPX4n1jZi/8f6gl+uPg4j08hfq0SU+wEtLr3g+JRKa80RTV7vi/QHPgw1Uc1M53aMKQ6kcJ0v+oHwH5qTJSc0Th21of8UzZB2wv+7g+uvl5KqdXJLLoDvoO79pbpqxBGaMSDReXh+A71eb3XzvF4v2qNmERzmxQi5work3PMBt5+AKWt/Mgo3C/ryH689NocjRbHx5uyWItj6y8rsYQG5ZhZwxrcT7DZ4DYyNddbD3oB98pBw6kYdjbhRsXtOyU0Dr15uwvdjfd3H9vQeECTwjnhvYEfE5uS0i7WByf6RDfmwc3n+0OTMC08MTVNZ4wMhsjsNPXoFZuOJh2/gZCbh+VcZZROeDLm4+sII9jzyXRkb5kXN6sbe7DRiSaRT9KHcc3o+YzWQ0He88sun0h6uUAx95DmafmOSvZVvCyM/nAeeLHm6+MCQyubmdCocsycjjPrEjpq6QduuuZ8kBrF9vwSrVVq1Sl4oCEeVkAHkRZqPrN9beUFiJ+7OAGVhE55MP3HxiR9jvQY0limFEfOqUYuPeECgdjBnjugDvb4Tu7Jfy3TnVb4UwoMhxAkOUH8Q8MpQ2dqR7O9a3ZEzw/qeLm2+8SA4s1CzYl0nGGPbc+SM8AXYrbeZv/wvrm4WxhV5nffoO7IQhA44T9emU78W849+5WYWiEvw+bRg/nI/ec/NRJHmRZ7DEQjmHjFnqX1/0OQn4GjmnfX3x/kgYyR50CFA0jN8GQ+YcJ3KzKM/HrOSQojdV5SitL2TYyJV0vvrEzVfBJGPZtEL2rxwi7bb1XGm8C6geKJEu7cb6PHNWeXEZf3N7CshSTrz3U37IleZro/NUU18dovWLXdgGvL+i85oL8K+K7Q3+Zw1xuN0mf0Q5nITe038QkY33V/U+zF+Vk+qGHjgQU8phy13KL9yieZFWwdBZE5yPeK6sZB2d72K5ec8HZta1aa06kUrefEt8WF2TTGLzbuXtUsD7LV4UMySpbHzcIp48phzO51Luhbnuic68GiYav08ftgbnwxfcfBgLAzqlRDwsnojJF5eeyEsm7qH81WrlWF8YxTzMqNZTTHQh/XIchwMrKI/HbFchpnHSPYLWT/JmIy/T+fItN196Q918lbe2C6LIROGpuqULfEi5+rHEb8Z4/xbpzPS/lWzwdAkDUSbH4TlyV8z+B1O1dzTF0PrO9kwAzqdp3/+bT/trNBRXVvqlRxLx4V1lUW3+YD7mvod8I9avd2crnK7MjdgXCo+HOE5OITfGHB9o/6RqF+7/j/PLzonOt63cfBtABg994OdFh5CrByzO3B8wh6oZ887Z+uH93w/fnk8N6tT44SldysnfyDMwk6Nlxl1PE2n9Nl9GFu8PX3DzMR8WToisqG9wJ/8P/jU3mQ==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA6gEAAAAAAAA=eF7t0FtLkwEABuBvSk5QhwmBGiHkAbFWjS4so0ItE2HYYUQYdDDwQskhsZirzM8VlSgE1nKel5nbRNnMXGXTF2kmSDMYiFBBshVYELOcbUOwi71X/oNgz094BCGixSK1VUqqkS+2N1RJdHhfWz6UKupxWqFXP5I0w9o8s5Be+BDTKf7QPbENosy7smPagP1rdV9/xnTA+NcWjD3Wjc6Yic/Ooj74wu6t414T7j9rXAve6Yf8wMVFQ84AihMssqezz9F3uCZ5b40ZS0cWHqhkVmy3VtbuGh3CvH7nY/fZYTzRjF07vz4C3Tkxs/6UDYrE1ZWKbDv8gsv3LWSHzdKUtGd+FHlxeXOlAy+gappNUt4cg3lQUXhG9RLxBYsnNPJx+IPGW26pA/KUxB83vA4sXcqSd+EVeu+mact7X8PwLux03H4Dz4UGU/DyBIy5xxvzS95i5HtVa+duJ4qGP7mU2yaxpWAmuV6YQrg/4VDZryl4fp+M16qBq54eu3IZYKOg5qOUj4N8zOHjdT7q+HiUjx8DkcdqPur5+IGPdXzM5mMWH7v4GNj0OMdHIx81fMzl4xc+mvmYxsdiPpr4KOPjBh8VfPzDRy0fO/gY4mMGHw183MfHwMHIo4+PLj5e2fQYFRX1//oH11dbDg==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA2AMAAAAAAAA=eF5d031QE3Qcx/FBGeiQSO1OrM4HwAcSiaNLQYsH0eyBB5WwA66QOg9ZyRmhg4AYLEQO4sFY40FgMORBJBhr45mPFOppQCdF69IL2iAQwilOBmfUH/t03fn75/3/6/f5CgSWl1Nv0xxtFYudEnnqMaskXD0RfHGtJAOHPDLivrLKRkP2lZF1fvnoW2VcOCM5B4m9/t4LfTJ4Pjw5Om1dguL5ZvMTAedRat15q9u/EobFwWc0egWylGkPzdJquO16XyfbXIO9wnr7qmsXUPmqyMFdVIex10bOhto34LmG6BMvqi5iKGNT0WDYJXydoI6PeNSEpHclTokHm+Fh9+BeuEsLjIJ+w/hCC5rr01fuGFLB9SnXGwdqWhGafm1lYLIadbUefodDv4Wtt+71BDcNjObilEEbLdxW2d35TK/FWJSzWxnaUPGFozi4oh2y7xe7tZ93YPi9VIX5aCeKt+5L27m/C00Tx3JLt3fD/9Jv/YHP9mCZ9xWHREEvFquFu9+c7cXw/RBbcRzw8XB5S+AUQEZBHB1t6FhLx810PEXHJDr60PFHk8Uxlo4ZdByg40k6utDRmY5ldDQ95niDjsV0TKDjVjrepmMdHR3puJeOCjra0/EfOnrQcY6OYjqW0HGBjuvpKKPjS3Q0eVkcDXTsp+MHjzla9hiOODaVrkuuQdNCSTx+Z9fTueWXQNO4bxqKWC3d7UKO54ZdzsREsKV7+A+HnbLsx/1ysZzN579ogiJiDo4VQMyW85+q8qdMNzcWIZKN4r+Fp7tOSaPlsGWteQ8TpwpmTleX4jybzn+NSV39a6+hHLvYPP4zlgLmvVYrUMfq+O+aoS3SI+oqVLDJ3EH4bNyfV99R4i12G3fRtlEaXzZfAyX7MnfyiXN23mRxLaLYcu7Gt2fDwOU99TjATnNHqZ8+/8hntAFZ7H+7Msn6rFKkjZhjB7iz1mTRk0XbmqBi5dzd/nMRty8MfQN/Vswdhqk6VsR2NiOI3c5d5mdGiirzWpDOTnCnIT87LZz9UAV/tpG7/etI2Ee7vVsxym7ijn0CEmeuO6ixg32bu15ak7IlZFKN+6ySO9cZpQEG/F8hd5/s2P6HokSDTNbMO/hy2bBnTYIWctadd3HGSy60O9SGQvYO78R3rvymyb0dr7A5vJt1LitKM57uwHJWzjtSF3S564wduM5O8K403405rP2pEzlsJO9MaTOSeby9C+FsFe/O/Iai/kFlN/SsF+9QORci0mf3oJD9m3cpuDtZc/R0L2ZmLb3LO42Jni4M8gQi2R94txv087eiG4E1bAzv+F+qpHPqAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAqAMAAAAAAAA=eF6FlHlM02cYx5FjimFmGu9riMX7PpkojyIxntGgAexEPEjtpOqGQ82GE8c1tyhKqAdBFKzipqKCMoR24wqCJF7DxgPQWSdM6PvQIawix95k399MSMz++qRp/+nn+XzfnMtuSZ2dTFvqar4WkveH+0akSaZ7TWh0lOzc7eHp1ME0NXT9FH0bU3Kprv5SK1NosUvIQjvT62LDjuXNTJteJp8rsDHtCvu153Erk2GoxrGijmleh8rb38Kk04boR1UzrTKt6rPAzOT8aWFx8m2mqOmVxgmlTEOzk5wajUzDv6+Jrc5iKl8ztofIYKqNSuw/OIVpWt4k+9oEpkbztdNn9zMVRf6Y/jqcadau6BE+m5n8hj0x7fGXnystccnzmWLXHXx1fCLTRxH7DNpBTHPJkNHuxLQg/qbbMqugqGhDp+8DQUXPzQZzviCH/kEuLacFmavymhNiBIneZW+OaAQV7laNr1skaOsf8QP3egp6XJCT8YmjoDVHx9ucq61k3Hd5VMl1K+XBo7aLxzPw2NHFYwo8at7jcQ88noNHH3jcDo/+XTzu7eLxY3gs+x+PBfA4Gx4Xw+MMeIx+j0cfeIyDxxJ4bO33r8daeGyCxxJ41MHjU3hUw2M+PP4Mjy1LXYxtkk1gKLyGbzLZ70p+Dt6D52lbUsODJSeDSr+aqx5uh6X3jWAb7hCvDTyvbmeKASfhLhlaB/XVt7Jf8ATudNHV69SBN/J7UOk/8Ze0lkctTAmgckebNinlRBOTADfgrqsX9gkuYLkDcCfubPHL/GJRPdMzUNnPZ9tMGtVL+T/AOegg+/ZUl9XPmK6AYeiCnsdSxSN5J3AlOvFzzXKPuy/7B7uhm0xzpDHyFtMFUOkoZ162+/lCpixwCLoy7Vy3uFsuUx44DJ11txg/3H9J9giWojvnOTMHu6czOYBKh+O8tQ/NeqbR4BR0WTGgRHPyO9kt2IBOY17oDoR9JXsElW7rVZoUrzCmV+AMdFz492/fvlXL34G+6DpQm6v/aQlTADgdnY8pKk3yns3kCSrdB7Q268+MlHsDe2EHKkulzdyLaQTojV3UzP1hcrldvhOgspOawOt/6X4XVAUq7496o/1FdpmgIFB5j5ZEn009lCnID2zDrj5Y4XG4IVGQK1iFnYWMDq7NjxC0GWzA7tK+sXz5Z4CgdLAIO+wbZDm0YdY7Ku9b+5Abtp5931F576La76TeZet/DMJu6cja3GPlVpoP5mDH/wDZyITbAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAA5w8AAAAAAAA=eF5d2Gk0luv3wHGHSKZEGlDkoHRQSVK5JRlKHUUldTJLUpmJJJFMxzw1UGQeHw8eQi62WTIlhU7mpzmSSnRS/7PWvb34/15+1l7rfvm99r6na5XNNSz3agXPGJ8f0OqGjGraHJ0jyS9lJzQqPqT4mv0wBVcVlTJvgW4ImaTNs6uOkNxAEt2//XfF3gsgK3/RW4XZBbNor5UC5eKfY8ku0a3JDfEX4WUEo+qCfhcEoa+kn+SuPJxBPr4bkXSVugrT0Q8t04Y6YRb96ka55tEGJpmNfJAm7h4IqtZCBzs8OgHQRk0buIL80kip/DinemsImDm0/fFe4L85OudLn26ewyVy+OGvJ5kSERB7bk3ibHoHlKO11ZRFQ7lzyEldN6bU/WhItuAXn97ZAa7o4q8RoauEgZj+1JWeGo6F9aoP/ux93A4a6BmebxO7fqWTY55zZ1R4EyBW8eVAkn07KKPFKyNai7+wqEtNcgZPN92AfR3c13R/PQI1tGvvYwPehAJKK9NPp9XkFqjMMTZ3JjyCDWg7h6Z3niX3KXH9ucJ/LydB9GrlzyqKj8AY/dMk8XM2m0mdmyhst0y7AyUGOYtd6tuAhQ4XLYGsAHfy/dT38bfNKeD8qeb5ddM24DWj/WHczMjftJQ4hniu0f2aCkJNjUucJh+CJZrXM2v/HT4m0Upk8yfxpMGGU6+sNgY+BGW0Iv+IeRF3GsmQ/0vIZWU6aMr+XVe2+iGkoivGkz3Mpv6muPoHeOvXZ0D5rIrm0qJWEERH3s3ZGB6cQn3jV3AL3Z4J8j9bZbfptMISAdrnh4uZ792uUH0C8msa9LLAfLPWuNxAC7DRLRETuwZzIsgi44jV545lg5JGCsfIhRb4akRb4dMvRU2zAFLeXRHva5MDoYPBgtacLXAb/UqjSElmcSC5+swjc8Y5F7KWBcfmJTaDJbqqXWHRg30RpN61wrXHNw9UzdXXVmxsBibaOtuOX3wyjlphdGhcICwfwvYqrA+taQJJtJCSNkQvyyT7JttP3UsoAHem82cJ4yY4iQ7Wq1O9/M6LGCdaBoWlFoKlFfg7vmwEW/SP88qH7oezSGJCKVWfx4DZnu3Xr3g1Qiz67oprs98s4shd6afKe1hFwFF5SnM/fyOEoWcMM60ecCcS2R6unX7mTND9sfj4ozsNIIH2rDpzWrG1i7BZk+UXx5ig6uX8hGNzA3SjZ2OcvXUvPiXLN02nctkVQ8fp/FF2XT3woL/esDl4/UsT8ZzqU5d4WwyDvIdLXI7Ugx9ad8ch65wtt8iOF6q7ys6VwG3+TuNUdh1oo+Nz9CsUlldTIrdexzRPlID2uXBXe4862ISeCsgfuvhInyTp1q3QdiqFqz9fqwJ3HeShw/e3lqwJKaICHUN2rJoqBb6isomkBIAgtGhXbs3bn5mk6i+xQjVnFvSUrByfkAVgonm+8B5ZFBpFuelq2gZ9ZMEBe7PE/WdqwQ+tIsVuFZcqIBpVdA9jsI+70JY/Ay7/9WlEY9FbuocO2McFb4ze5OckHUOe/UP3UBn72Ie2kw0qszqURPKwh8+xjwXovSeqQm63hZJ92MMB7KMeWtMx69QbaReKjT3Uwj4u+MQqA4bTmkTCwB6aYh8XzBQ6d+RlQi7pxx5ewj4+QxuYD6SclU8gS7CHV7GPfOgb5hKOInmhVPQPuoevttJ9jEFL8yi4JptWEVUPuofu2EcV9PYb76Nk1jwmjdjDQOxjM/qu8PkI29gmEog9NMY+XkX3F2nnqy1pIAbYwwvYx33o9pKJkvChOnJ4ku5hAfbxCDoriHtL/tUqMoZ9PIN9ZKOv9Rx/vPcIi5zHHkpiHx3QF3nEX9etZJKnCXQPl2Mfe9GGt/7dU7yWSWKxhzuxj3HokYYq0/me+yS9j+7hNexjBpr18hpP1E0g1thDFeyjJVpZ5Ld5/85aMoY9NMQ+DqOZtfe+hNc3kaPYQ07s44KH5WLvULl1pOYx3UPpIbqPVWjqwrD3DcEaYoA9rMY+7kMT4/iZddLB5Dn28Cj2ccEvHC/7iP7yId2H6R46YB8X7GU3YWjx4AZliz08hX20Qb/JIrUudtmUJvZQF/uohR4b9ywaNCuh3mEPJZ7QfZxCixspjY6Y51NhMnQPu7GPkWglk3XbW2RKqRbs4TD2sRXdyJX+3cbjBcVbRvcwEvvIg/64OoX1PW2MalWme1iDfWxDV6c78XfNDFJBk3QPjyym+7hgkz+4KLUDvZQb9jAD++iKDiQt/akrKqgr2EMK++iDjqx7PDx6sJqKxB4exT6Go7XH7U74WvxNPlyge5jMoPs4gRa/NRe3jVRSsyfpHlpjH7+hlX1EvI3c7lOuenQPQ87SfXREe9yYPvCFAsr9Ad3DcOxjRyVt9jGGk63gMTKy7QflclMTGB9q/s6V74ZuDdqCQaKcIuYuJEeNdjrOc9Hs2GsOok+vEMv3dE+dsa96uI+ypnQ7tX0CSd9fMX2KCqdBZ8WxyVh2F/idou11/cjytG0xxAatinNLNHPpykNuuTfJ2gG6x1LYZ0P0szyhlIde8aTEaX3K+d1uoD/gsbLbpwu+ok+ap8ZIad8hpc60tXG+4M8zJjusBeMIJUL3/DH23RbN6fw2N7fsJmGnypEnb33AVyyRn1e0C4Tu0R7odXiucyWfyKA9cb4OnVq6puJBvwth4nswiu9DObrszprf3SzjSOG+lwea9wdAmkxk7/a8TohBFw3oRofKFBBp9D2cLxiq3H9T4A4hg1H0e3IQ35catNjvaUmhXXcIx2/vtRTuBsHgvObOU3s64TUH7fBMruLxpBhii+7GuT1auFd8F6solTjhe3QU3ycPdK6SkvNrwRzCSph9PvkpDOoS7Idd+jtgAi3p9JnjnOst4pNIuxLnvmi2k1xtzYZUsquVfs/s8X1zRLdLPSlYNJdOLgjPh03rRMG2I/dMPJw6gIVWj9hp6eJcThqX0ubEeT3aRP9JPHe1JzmL72EMvo/uaND4s+N2aDpZRf4dCX4UA79J+avY8HSAGLp529HF4X1lRLyadvdaei6BFpAOlTvpnU0Cf9Hv6Rm8PzzQbLWqgUvrC8lh0zmNZV/iYG7eS0T9TjsooSXnLJxNFBKpoWO0b+J8wZdcTIaib7eQGrxXmPg+F6BFa7KtXh0vI5fu8vZwSSYCr5Js4dTWdtBDzwo9kbdTL6Z2pNA2xPl2tMJxhau1Fu2E73/unzeNtOU98o48sWAQkwJjMNx7EyKswvpD2x6BInpabEOSOVVKpaJrcJ6G5h446Pp9rIFsxn1A7X/uJ9+QsesMqyIiFKw4PXr2NkSGJ0VzWD0CSfSLwRY1f/1yygAdgnN9tMjXy7JvzepJhR69TzjgftGL3rRcv2d3ayExZK5RY0Qlg/aKZT+MvrVBPFrlcHJq+ukUSqSYtirOhdFtOn4azZeBLMV7LRD3k03oH9v8OZOyM0mD7djhTNZd+Lm/08knog3eoaPH23o853JIDLoH57Ho9WtffBD9VU64zP7//bcYXb50+Ny2uHwiJN7PZXY+FapUOpwv/d4GAmjl6KXFRSHFxAn9GufOaLUm/Q2XG1lkB+5DHLgfqaA/X1dMeKqbS9pWJQlP+d4DmQxD1sHKh1CNNo7ZD/5iOaQAvQXnuegZvj88rooxiT3em1q4X1miowX26hl+zScbBTt4eaLSoKJ4tfCU4UOQRA9ZmUvL8V8mf6Cbca6IfrbkwWhiaCnJwn1MB/ezHDQj9JdhYWUeWfdtLuhWSjo4/CNzxZrdCnJoda5Jlfm+YEoMbYbzBW/6umXL8ZL7RA/v3Rbc7wzQOnYa/NISBYSbl7cysygDGG6pm9K8W0EEbV235eW1PxOoqcW043G+YOdfDbWpx4C8w/tZGPfDKbReYvYXzp+F5NytFm352kyQTeYIKBRqBW/0GwOpUrOVwRQ3+lUSPedDG2gY9VjJ1xEhQXqftMf9UgQ9ItzG+rSumJC862IrO7PAXxU+BqS3QDW61z03vJI3mNSjQ3DegF70wG+D844GsgPv9324n25G39lBSqsXMYgIu/2w+4tsGNtVumidegt8H6e9VlrxbvImd7II5z9wzoWuCsxyt3KoJ3x479vi/f+jizbD3Pfv7rlcYrNPYcXOdzlgs9Xxz6D2ZtBGuw2ujizT8iLj6Bqcs9HvvJf7jjpmkZO4D+fjfrywL2v9ttFbJeEGKbTxD7T9lgvRUcHHii2bIRGtxJ/rXMVhTmzRiTi3Qf8MKjh3cG0QFY77tALu14Hom3Mfrk3FxJIcLVbaR67/9usvsSmpX5ogAy0jxRZO0renWGhXnJejNx5Yz+1VdI9qxn3cHvfzdvSKvWfu1V8JICrGUyv6lhbA5/bRUOOQJtBCcyT5rcsyuUWq0cs66HkFmoctPi9kXkjtxn3eDPf7hf8hfO4WzsqqwVSmYNRrMYlC2Jj5VK1JoglK0Ktv++w59TaOrBGivRvnUmhN18iZE3xMSuQGfQ/cxPtgJXpyjzcZU7hFSa/mPJ4lxwBTiRN+M4xGkEMz5od8en1vk/eraGvj/AM6Kk7bQWRlOtWI9wQf3he16Gqzs4/k9wRQiYUyef6biuBtBjU4vqcRotCiwf2RHoLZRJ1Be2smPd+G9rfYOVOxPYuSxP81fRX0fbICfb7H+UJ+YRol0bJ47JAkE4QfMXTDehtAFK2gGF5hMkFIJzof5x3oxgDO7vVN3VTbY/qeEcP7phH9Uy5uvOrfB5SyqaSLTyoT7oeWL31l1wDSaEaOgoW8Vg/ZgH6Dc0W0WwTprxoapp7j/6KDeB91oVcdZLKfdddR25KfpFOyxZBn6NU7PVv/X4dod418UzFjdxI99CTOddE7kw1heHKECsL/Tep29H11BZ31UiCZ266eGimdtonKLgb7af29+WH18AIdmLo2eJkOiyxFP/tEz4XQXGbJG7g9n1ND+L9Kcgl9n42hmVIDg92RlZR1v8Jm+40l0Jqi8C+vZD2cRZu2rU24HBRKTfbRPoTzj2ijfzpH/eSAysV7jo33HQN92a5f9sBnFvWwu+AfUlACAoqBJxcV1sEwmtHgNl8Qx6Cq0c1/0PMadNwJrqXLJXMoA7wH9+B9aII+LZEt2NjJoNzmj+wLVC4F9+FKg3iqDgLQQ31a3azXkdRp9Facn0HL8n0SlsrNoAx06HvSeZ6+L43QmXmO9q+2ZFNXr70ULyz673vHLBYzOgCC0Q51dXHNI2lkCC1iQs+H0fJyRp/O2OZRu/B/XS/epxpotc3Xh1QLM6k5pSLb9ZtZEPnacVDHDOAT+o3BbuFxKo3IKtNuxPmCeYIGtdU9gJrC/31CpfR9+x69/iLXx+eHUin1bE+94SIWjObMtcX114Iauk0nLG35jniyF82ZS8/10KJjr1YbxxdTJvi/cPYMfR8fR7eMKq72t46l/g8P3a3cAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAuAkAAAAAAAA=eF5FlXs4lGkfx+VQXm8Hb0orKtU2WYe0LUm/kS27OZbTKqwOJEWpKCVFKWw7hrWihBwaMxtZSavk4c4SKSFnSbGUYUwxB3Lo8DK/57r2+e9zPc91P/d9X5/f96tuERNbeSAO3rP68jqCecTuVf6MBH4hvPIXWOdN8YWJtAiGcj2cdwg+/fcpHjEQiSu/sm+BksIKtaQgHhEPnzp0yOwlBL/LDegK4BFnvvvdSwND4L2v1t7kMI/sCFYwtRWNQIJcia+RN49UNQZwFg9JoPfylnlebjyi89dNbmvuZyi7kGNjYcsjkf/NszFmC8GqwLTG2ZRHTsrzFL1bBOCvYJ6rvJJHknPC2Zp+fIiLDWA0zJraH0R9TT0ahDPbbI0W8bmkS+9e2p+lTTC3+EfD78u4hOMQwdtoJwG//s1+f8ZzybilenCtQzkwYn2eleziEvZPY7M+hw5SG/j9MU+0uUQ/1CAiivELjGkUe5q+zCJ7JzSW+xcFgO/10dNm7CwSHtGxxWPXXUrASNzt9F0WeVPIn1RhtkKuXsfG8noOIYWJD4Ub+cA+rrv3zV4O6bZ857bJQQpNBmc9F/bdIC1VtRzWUC8kekWu4u2+QVghd9WOFImBlCh6fHmSSdqifZwexIohObzjRfjqTMI+L9f7xOMF1Nap1Fw7mUGOaD0O0LJsp15JM8+5+6cT1XmXEhJWiKl+QYvx2brr5JzRZF60ays1IVCNT5qXStbkb+IOPpBSc5ui7CsNk4miWWh6tkiJ2WDwMHHjmiTS97NgoW5YC3XFs/2xg8oV8tykLHV2qmKJwIu1yLfiMlEeXvarJF6bWfA0SHud2+/ExUJ5IFBjEo7Ni1dtuhJDJjfcn1E9dwx0AipC5htdIjmWgV/itg/DB7OV7FDWBfL5Skgky3wccrysnV8ZnyZ22vMLHcY+gVz7lmVaKb6kJ3BJjFKrCLwXa6Yc6HQjlrmft7IEMXAmGn3kvcx9Zdr4F1QcQR8DYddM/QX1cMIRfdxv4R3l29AMJ++hj7nbHtYJxS9g/jD66BNhy/hcOwS2B9DH11VnxJG9I5A2A33Urbx/6O1BCUQnoo99bKHVA4Uv8M959JFt7+BpfksIm/LQx/6VPdfbZgnBlPaR++LUrkc3BsGA9jGh4qljvbwQbtqgjw+Sojx2DjVCM+1jHVP+x497RJDGRx8Lgv08PEPugFYU+vi/8GX37pYJqKg+9HHteaI/eyAWPJagj77+X91esb4EglPRR38b22u/LbxJKa9GHzuiRLpeF5vBZQ362GNVOcPiP70wGoQ+OoS1bFDzHYWZ+uhjI+1j6l70MVh8pM8tRAwbCPpY9T6oy8JPBKph6ONzA07daGk3lFehjzGf3CZTVNqo5Lfo425taOpqF1NraB87yeWstyqNlDsffexOi/bJUJBS0kH00fVY+MDpU0pMhjH62B+yk51T3EppGKOPE3PjRw5bK5aE8dDHkm8XrS3maDMb+tHHIMOoX4z8J0Al/XeZj0vtY/TsDKVw4SD6yJCXZ68+PgjGm9FHI+PEzhVpI7A9CH204hSlhtmMg1Ex+riuOrDHXW8Evjm9WOZj/oX6oV+V42A97aO7y9QTeRP0KWel1il2pZmiOe7ZfGN35UJwon1VkJt6yh7BsydfmR+bYnmal9Ygm109drvG7Dl8oPPVsK3Bde+fDZDqWVYmPckjTTpr/kh3agQ9L+RZbts9Dq1qgQW0753hZxX+m9QGWveZzxed4JGwpnZHG7N2UCtC1qVqtUzkO6HkPc7Dzun9LuRDTzCjN+zoVD7THBKKXFvfZWM0Zwh27Md50Q27+FFqKYFDkdczKw7ySIT+6rzCG2Jwv4Rs82lfg7vWKCyj58ltej3jEVC4Ois/aA+9/hRrXEE2OvvEVu03CRQn4LylDB7Uz98xDveFulJNZx7xW3C1yT57HMZFyBWRw951Gp+hKBznUXZ/cqOwPOlevLEFj8jRHB+HvP8H5pojIUJwzMd5lf2/5R3kWzqXbzTkEReaV1ohcx09tpvvF4IfPc+y710GQXdXWMR1dR75ieZuD2RcbxDW0/O+J49zp6xDAD99vWX70zEuyZpeb5UQ/qG5Je7laVX3Kf/sMA8meXc4CSFvwFWV/YdOC5fcVhifqb62F1bNRr5keJtb4d8A4XReyPxy4cOXGEml5q1/WT4RuXz6fn4Vwbd0v80pSC1qVekBsyOJDIUQLkkdmyNuSn8DHj7IwT0m1fbnqmETC/Pm8dw3mq5lzynlZ2+/gc1c8j6lKtZJ0EJlPUJumdVfHsUZoL7QeSTzx6WVWrlpX8BSOS5xpPnwD8jyc2ZbvSvIoIw0Ma+2y95zwUazWkXhXhZxonm3FvICJyeFZJ1yWEr3K+foYrDJfgzWB4ZrNntlEa92meCwxAc5N6qz7uLzYqqS7t92k5gl3OYaGGzfk7VWMYuwl1Sb5J//G2w7kXNkTyO4GmAevpb1zWtQzTf3YqRwyOWtAaafEt4AswB5tuz++BB7AvPS6ePM8YH6YYjbKp0IYXDIXNn7Idi8DVm3b239/ttSKKT7Hf0UQY+w2o7FvUH7KYK7fcgHB75bvryzBzI8MW930n7t9bvVfmvRvxx9DNn7aHp36moJXCjFPM6VnUcCxzKNF209m0lu0bzsBjL73YpXv9eL4fI5zOsiD8t94YUCeLwj0aa0MYNsleXdO7ByRL6W/jDxYHI3PHmKeR5MfIU63DT40jHjddjiDDKf1aVt/imbEjUjz/4me8a2Ba+pQ0LM+zzZ//lU3SlHow/cNHp/fIrlj2yzuPKttGmI6hvAPsDv+6i+fS+1DnxIJdk0hwYiBw5ZqJqtq6He92NfKMnuT0CdcJM7sEsnhSjS/L0VsrDHIDSnXEqpdmOfeMjuTwCph9fbfjC5RjxpLriFXJd3zUczTImptw77Bu9bAq7+ovTwVVdpnyWQaI68dXr/zm2UlS32kcwH+1HqQUG2psdwAlGezmOlEaovGtl8ckNBaalSSeNF7Kv86eMJZjJ/fjzsOCcpntyh2f+0SMbC+0+fninVZjJeYJ9ZXFFrc89UYzpuuJlkqRVH5j/cHDYhUWO+r/tDxidL1Imq+gQ4t2HfYR6MgkW4qrRqnEXn1SjsOIH89juNkn9WSKD5KPYhSzYfQ+BgZz0iOR5JBmTzLoVztsgzp88TKYbV5tiXD2T+iIFSVk+2tj9HrGX+jID2KuT86fzKH4UfjmKfom8fYN+cjHsf9Y4TW9n3E2Ckj3wpofk8g/UJsgn2LfowBiLXzOjdSu60z2NwuStDxlGy/Urgr0bs4/8DFL962A==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//ifdMID6/+8/BMmAWs3/7z+rUAPxWP/vP1LAateK/u8//Kvk21T97z9E5eoHq/vvP962e9SC+e8/7GELvdL27z+8bMf7kfPvPzuXIVu47+8/KcZ7Ez7r7z9gaDiwG+bvP5xvgflJ4O8/nMYm4cHZ7z/uM4txfNLvPwuq7r1yyu8/UE2i053B7z80JD+t9rfvPw6OmCR2re8/hACg4hSi7z/M/Y1Ry5XvP7X3Zo+RiO8/4BjmX1967z+MMqYeLGvvPyKWWa7uWu8/EKaQZ51J7z+7zIoJLjfvP5lTx6mVI+8/DrVSoMgO7z+Xlc9zuvjuP4BbUMdd4e4/px7jQ6TI7j/yzDyBfq7uP0DIHO/bku4/tQm+uqp17j9ywPGz11buP6BDGTBONu4/SRO46vcT7j+lTU7kvO/tP3ykET6Dye0/Miy0MQ==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAALgQAAAAAAAA=eF41x2kw3GccAGBFHZO6qotFa6qObEOZSNX1V8RZKanEOTHEakRHqIojNppxBLvIlqCusGE37GGtI5nSvvWL27JoUJu6rxiVSVR3iArpB2+eb4+X3WsiscIZmp7/XsA1mwBwPL7YfVdUXXETnbpUPGNB+RYcdQJflKyNQwa+0TZdKX+jCOUkmNfFfZkE9k+TdSdo48DGl9K48XoXqhCFZYomN2kQRyo/oaI9Di74utO+tkvkSrTvve474JMFQuM7U1/wxuA5Pn+hUdJ1oxw5vbPlQqnNhZVDZ4dLrmNgjT/r8e6GAr8exZW9+uvFPwwQll1dTJRKgI7PWZJRM/Y5SKZ+yNhxZ8JRwP2g5AQJkDWOP5mh7caoakAN6GApb6QYSEaZp6lKEqjHNyg9+eg9Dhclhew7acnugupR2vt290YhCt95rWxlIaADudaqPFEwLIcTlibN2zajYIr/0ZJhjdvnrahQEAB+ZyuAfZkhpYtHIAWfGb9LNh3iI6M8i53l2CqgF1b/JHd5BMzxS0sgsmCDj0xFH9oKmTVgrKP1+ps9MXjhX3szHB/xjItcolfOczpq4YnPWAKtSAwX8SdJFjN233GRk75UITyOBaOnJd+nfyIGB3xpim5SF7SgOb1qze2M+3CG7ddxrnMYpvD1PviF7FvMQ6FqEhUlZj1MtJI1t/2G4SJ+cYKNLDaTh+z39nMr6xogbtb4x6i1IXDEV6ueY8XkNSF5FZVOTgsb2Eksq/obQ6CK34v6fEZOCpB75aCbWTcHlGvksprVh8AXX0AxP7AyESEB7zZJd+wB3DwDL7MaBoGHr1pQ0xSuI0Kbq6Pnr881wrJju+LHdoOwgF90SxJoRhWhMG+KjsPfTZBsE/917ugA+OA75jSk2/vXolJqZk70Hhd+ZuYFtkYOAAP/imF0Nvu3LJTq0lH/UoEPQbKSOpasH5Lx/9Q/4geuehKpAds6MxoCkJMs0wPy+yEDX2E+ZCRyL404UmNukAyawYkzbdtv0A+K6sePaVrz/M+tgjAmywc/MBVCkEHorV1hH7z9bbPBrVxZEaEsNOZlWrUAmUPMr7r2gTx+bL1XjLosi5gZUF7xNxTBuljowZjqhUn8X5v3aU+724jeYMNEGksE2fRHGs+u9EIX/sr1osQFajdRVjPZQJi0gpp/2tTOqx4oxNdMje2rDO4hxtp3qMzGVojY8TrLZ/TAKL7nuSpO1D0g2FKK9dVP22CzjnKgYtgDTfhG6Q8nxDUPif4JwSwStMHWqZwwxebHMIHPFqkbhFxrJEIPL3jnfNYOHoudX5USj4GKf0dXi0aScgkie12/uaUdWIERykIJgAv+9OYfP5RZVhPLli3R5tYdkL8RP+8eDrCI7+XcxQjT5hFBjSmeiy0dQOLui+9Ku+Ht/03e7NR4k0P8DyFDtJc=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_60.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_60.vtu new file mode 100644 index 00000000000..d0ccc1bfed5 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_60.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="8.8435522448e-08" RangeMax="0.00080903854972" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12340" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.99725607924" RangeMax="1" offset="12436" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="3129.9693292" RangeMax="16654.221403" offset="13504" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="22404" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22496" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2457071521e-05" RangeMax="9.1977553786e-05" offset="22592" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.016854951712" RangeMax="349.82992932" offset="23368" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00018249561957" offset="27084" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="2.8378574987e-07" RangeMax="0.00081836397257" offset="29040" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-2286.1395398" RangeMax="0" offset="35044" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-2286.1395398" RangeMax="0" offset="35784" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.99717830074" RangeMax="0.99999999998" offset="37248" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="3129.9693292" RangeMax="16700.734471" offset="38404" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="2.3168762276e-07" RangeMax="4.327585416e-06" offset="43944" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="47336" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.99750886201" RangeMax="0.99999999972" offset="47408" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="3129.9693292" RangeMax="16494.379757" offset="47840" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="49328" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="50544" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="51276" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="51448" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAGSMAAAAAAAA=eF5d2Xk0Vd/7wPFrHpN5Hq55nmd34xKSoYSPSgklKRVKpVmoNBBpkAqhohGVcJ/ukUQRISElMjeZMhb169c+sdbXv6/1ftZe5+y7zznLJxgfeDjmAM93s2rZPN5t42oQtmVjkCQ6+HRP4dcgKgj2Zc22hXKXtAbOav6/z8QLVbxaQEPGKl2cHDWG8An3qPjT8F8fzYpttmdxRnbbfPSatryl3bq4P/AVOwLn+pMOQ4nZzDPBVYMHlwoijXT+3Hd1VKhfeV15aRxXCV3k1F+PUgvfwiVuhA50p5s2veOBa7hHB+0T/vp1ywuJ5vx09PJ4zSSUWKPJ7TJdG+g6UDGprf6U9yEz39K2SyeCgp5fMkj9ZaALSTV5S55c5iwJ+IS9/9gVzYNICV29GNs8ulYMDeMeSS/X+et3M/9LWKlngB5V7vxqHu+CZCnXeDPl5OE29w95uRsM5p6v1qc/Hx2hlZUtTnmobAhBprpvSotmizs7p/+61k/FvBPhIijvxLSvyT49JIp75MaP+1RrqxV3bBXR1VaR6YWuHmilj7iiyNR32uVML/YXCU+Z9HLTzStsqhiqzqYPf5+yghmHqorUrT+LP53BPlOZ/TO36hNjURTHyu/WBigS94zXd7HfFvAT+NAxwQgOOCdoreqFroul1jbxq6AepLWHzfkFk8evZlO0zySD3ffIKhYTOzjrHfhgl8p08UZT7H1feQciu6RA0yHkrl21EcrDPRxYgZ1+uKEtZ1INPBXRT5V1PujwzuJ94Xk6yMPglNfx2y+ZWtelPi+9S4GIuy3ptBY6dI5uPl8xOl6cq47dJWfdlGu0ElgQepvenzBDcbgHlemTfz06TEEmZrMBDBat4V993weNXnUU/rDKBO0yPrbxgHsDM1pEMl47nwu64q7EC3rTwSGWf3y72HTxDw3stdddxwYctaDqjIPBDVMdNIR7OMWH3SvHObZ7mTkARSbqpqUnkuO518fmb4XKlzqrFjk0Md9Ei6txFwqAXNPyy+0+drCInK9igz3XW3qqnMMQVirpxu68yf6vh/3S2HXeRnxxMLWBxE6PjSajS5DUMwiskjVHQQ0ZMs68zcyn69ZW/+7jhVW5y2VOrDQHXsVT1LwhIUs6E3udn7f3sWZdMP2yULxE0g5J4x6e52Hfmsy9+sYeK1DYFks/cMMNNUuvDVdOkUBxTyR5yzTfMivPrV5XEf6F8emCik3JEAI+cv7Cx9jplPF47zAB2Gm0hff9OA3V4R6sHmHfm5A3Q2ORgW/vCo3emi9Bm8NkvEKvq0FZQfKU+ZL3zHL9QCOa3w+awu6hEYoeDbjI+a0M7L6M+wql1nJISN9XtoDXGm3HPcqpwL7i3MYS4VFNpNr1O1NnyxJ023mDXrWCAYSfMx3arfWBaVFb0HKjghUlvt1mleZgByHRFI14x7riqHTsPxjLVcbqVRBXgNQ3jstDtHu4R9Tz2JfErNb0jzJCHKc8r7j+skdo3Ta5tBo9kG141rSxrJP5NMXZUvsrC8oxyUo4/cMKyoIp1Ezz58VCr7Ev8OFpb+lURt15V4zqN5Qx6LhHS15iP7Goc6dntiHKX7BR7IcMQnLGwh8yVuhCfMtwQUpoF9PdtyPtrggLOko3U1T5Ygr1f+cXF/c0Y6cOl51jDCuh5ZYS5XH3/+wz3KMttdhr2TeUO9YZoMPfe+9wuOqjdK36/XcGNYB7k/2VoG3dzGPSKSddOWZpYnHuPvrBVpBaXJd79uRMcXQI9itRbfoUSSo6wSG85sFRHcjAPYqOwP4uwX7Q57QOGuuWF252V0eUWu0RkV3i0PTplUwO6mV+bi49OqHymZYpWrEp9AIdksn5sn3YIabtzPLf/OhN17XKd27q8OPl3x69+IK9Xp2tvLBUCvW5fLJbesIcvf2q5Pey4jstabNfWjdvP3NMtlwtl7WK0Wyxvpw1xxG28F46eC9kvDh/PXb2yNfBu458YowtHEvoStCAcdwzNIKx+xj8DFS8NsHw6vD/1K5FR0l6ii5v2T7TDF58ZN+lMsB8v37oyOfFTMYJnsN18e320Nq/NXKJ24hFZwX2rNi68U/VnYzpB7nPPLRVUa7u356Rz8SeL92R1vzyG4M2014ULOiIMmQvbmsalwMuZ2GNN3Kfmde7O/Y9CRuhyR4euBzWvAim/85nsXRzwk475nC+zUcEvWrerqGhIo1u4h4F22MvPvE8uEtDEbmI290RWmiPUvRpbMLn9WGq0t7VROIrs2LtwnrKOlb0OOfw7bHNi0BkAK8/vwr7rrCrpsfXq6BuvUYVtiIRlIR7pEH2CbEZMkskjFBl8DX/sxp0tH/3WqmW5waQ/yTj8Gq3b0zZR1VmW4+zIfHfH7+U8DvBlbfh/puCe4qHn2G32yC40eiWKqoc+5xHf2MIB3CPBB9jX7rNvIzdyhjt2RAd0GlmhCzr/Oy/Vv7ZB5z9a9fvGWJSzqzg4rvzk9ae/O5briEdkv7OHyuu4MdeXGjMrl8oj1Tqtuw8H2cMZI88ObAHlDlnJyBt5EGTmqW950GjvrPZ3lMywK0mkW76epj54qHCVdriYVpTi4C8w28jcHDSXJh+8VdxvSb24TQnq+kFwkjEzOsQ5agxzOAeDZO9Zo5SpRAHFcW7Zz9zfqEMA4sHWa694gMD6/f3VA6OMIVLS1sT9DtpXw6cq1981ARSa0PX5O/kLLGwxB7TqDr58DsLqgg9MRwQaw6fcY/CadjXT8hGxb9biBKSDl5o6VOHUbYPcqfvLUDDYfHhvPdHmXGbBvveOX1k1JQX7w0ytoO0jVb76KOzxb9Csa+8fDP+oCYbMN6NDiastYQp3MPMVuzSr17yZVOEYAunPc3l7AxjOmXzq/waVdSZZWI43P+dmVDp+jpr7TTj0JGyH+ccnYFC/j1Px556xDpulbIsdJUkbogKo8EU7iEqE/td/ibNI5MaMClwl/vZEypKN7v003lUAwUILrSdvjbG3PVNZc9BnlnGwo5eU6lSR+hT6jY1T6y16BTCPm0x6uYtTYVtxVOis61/zh/cQz0fdvUmojoqRQf21jsNSaxQQ9S9oc0+waqo4qX3GcVf40yrPmGXmwNTjMWnnB6IxtLJ+e0WY7XYc4yHQw5nykCl4kDt/uXGII97CK7CXtF8R2FLrAZsry389uygEqQ/phUEtSkiyvG03iU+k0xKB0WmuWqMEbLtoUyPgjk0/Vs/6T7jP819+SVg/TLGfmtFS7iCe+iMwR7w9lKk/w4VqLk7vGtypw0cNRidaT7KgyiJcRNrtaaYGq28iSFF7YztlK/GXRZqc9c/6RR22x1WSRZ7KfBhYfyFdIMnjBjcg0EC9jUn7wvkWC+AXq5Gm9EZCxC4FLCNdlAXpJvllnPfmmZ6sT8oVdNiQRaNPy3F/7wn/Zt/tgn7xaXtG27wKCMHqdrCgY4hhgruEXqDfab2aOK6nj/vjcohU6vrTOFC+G+1kyvoECD/6FaB9k9mc8HZRQkcIohXg8U+1ckU+PUlrrjfYy1JksXOcqVn96CkKfrJ+cE28OBvRhLuUYAc9vuc21+hYnt0edGFnyySRiCU9ywgTsUJwt0ur/klOcMMM9+oy1UphXiX54cURpvNrT/TFXvPLgUdzvMIVYZVdi+tF0dkjzo9sL89vd3J0W8Jmj0olF54Shk2zuo/rk/wgP0nEta/qpplfnigJFHioIzMhY+oqpZZz+//49hTb06x/l7riMZDqLpVMSooBPdI/jT2Li/Rzo0TnugmQ409QkQWLVabXeLP4wPRzw9uztz1m8lRl3xh23VNRHzSGak5ZD83f7gK++OLH4d+bHdDEq1+kVNvdJEz7pFHLfZm/yFZXZtVKEx5oJ1fxhyxxFXvM9++AgStvvI40ymE59JN27a7aCM+rqaYpQfc5+YLWmI/3RIk0eSwFP2347JIWL05sOP+z/mDPePOhRdH3vmi/qDd6qNeBmifw8RYYZ0P7ImfUGgwZCHUbus/lDulhWbuZXDf+O0xN3/qGPb9+vbrSiPc0cnCmvd+ZiZwAPfo8gnsTZaXb5lRfZHOl8l0z3V0NMKutE1P2wcoLRQzX2VW4ifPxM/ntZpIKWPbtcgRz7n5nc3YNx9TuJOZ7oYO/RhlVCbrwTjuUf1b7JyVmQn9QatQuVyIXMGyJejcz/GEs++8gSJ0ynh/MSsREsuqor5YA/H55DqVdHjDkovyuxfIClqWCWPfeHnCZ+03F6RpJLcwWv/P9w3u0TDZt7ru2r6nZwU6oL4mT2CLE0p86fK0btYDevPf7YqoYiNkKKfWiFYpo+DRlsCYtOVz648uxJ70cmtbypAjUv/0cBNnIB3IHu0qwL7d7f3Sgl1eSLZe+UMt2CEhmu2IEN0Fhj20S4Ob2Yn0aS0ttkR51CEmqNV+av7+0j2xF830+L0YoaO+1THalIV0IHtUT/a8aXE+jUJLkeJEWJhPiiX6sl+nx+jxn9+XSHF1wQEOwv9mNSuxWxoVf1EovR85f/7ni2KPVO/IUVptjawqDYruuZrCZ9yjfGHssw1HKrT4XRDrg4VfRZLNUW3M0adVG//s8+fjAdl3OAmv4i1+IVvEkI/8/W6XjPn9H0V6U/7Hto/l5kgqhEU96oUFVOMebX2GPVfK5JW3mCNiuit2u5WKIm+hJ44lKggC9htPnm3nIpwqBYqFAgWR5IGK2o8N1hB05n5higBrCZV0U6sewataRuiXbpiu+mFb8MU9io7C7hnY9fagPB29+Mny8PuwLqCPkZl6MRYQ7daVa3iRm3A5tMqS9Rg/2mb/rb1uxGr+9+uCnc2uRm8oWx+1WL1VzBJGQMM9GnbGPiCY2S8gglDKrvvVKkMmQC/zPGBxzwSaqcsdf3zjIViyewbjRLiRzYnpXyUK9Ln5ZQrYvw/wlUg90EKJ3UOjs+x2QMM9SpfHvslbXyavwBw5WzJcfFgQ2GUY+Nq//3POjxMfy+35iKLKsByuTDYUvOf5pWNC89c/YAx7d5LbIocKVdQjflJj5V57QLhHnd+xf73AXLrIwxilShO8YSdsoS52lXNNqQFQzz/n5RLjJ1w0Ip6K7GFDy3L5bw39tJnfn6Q31ZpaCl5URbt0Lnq2fLKAl7hHmaTn5VaVfdM0RuvebhF67mUJfC3nn5RJm8A6xeRtjWcWENXnj1c+COZCkXdbH312mp9PVcJeiCy/bx3TRO6sBvnjQWbAj3ukqoz9Fk+I7wUuc8Q7FbL8XrUpuGg1WRXtNYfM26sarwguJFw4sl78582HRKu3RXhL0uD9w7zFuQpfi+l3sSfcQndqlumhPO1kJ9EMQ3DFPYq+h71wM/cYvdcKRa7VOs7xTg/yb741XeBsBgGlVgmCMwsJ+R7d/PVDPEjkWD+frOn8/iljYs9V7lXse6qDgqMvPxxJs4F7uEeUMuzjwR23po9YIkPGnakIIxMISrV/HntWF/Yb/bem4LUgYbRb+6K8OQtiq+l87pglNf/8MsY+obnlBI+kMrrs8CNb+rEZBOMe5ZA+VOr0SHXEAEVddDVaIG4BTUXZS9oM5aCMa8F23zwhIknUk/3+7DDtwL7HV+QXS6G5+8uNPSagr3dVqzDq9zjzWNDLFGpxjwTJvlFuzZHsYiqqvppsq/mLDue37G8dzuCGaNX6GB5dYUKl2j/vWt572ueTO76JH1FEAsJeWioWCyzDSRf0b7L3rf5NK9J+eofNxfhfjzLVsF/YkJugasqPogIU9wn72YHQG0nDwT0LkcPhGN0BGRHCddN7h8zlXQyZW1wCj4SE59avQfpE3FNN/+XsELp41catMgZgh3voIT1vUl1Rm0sYphSuoJUV5tBw5NbS7z2qaPi9SWslryjRtNrkHs/+acZ5U2poBsdP2r/5lHbsRZejSscXyULsVfHxGgk96MY9dJI9r9CZuEhRTYiwqA1zGDaBetqq9TNTmihTriq8/4ooESGYesWR9ovh3LharnkZ/9z6BUn/muHf2/eUClG/m2MN+RbCK9xDAOlJ1vwSG8p0IW/2gmMPtwb8Cl+30mfiz/zonIqsXDHC/En8egOLX4w117LuBY9Q5vZPCOlXPLIsDMupAHxhV9SvLgBKxN8emkhviX8dtOaxLvC1dq4QvyIOetdD3fO/a6Ky7sOSa++LEzMRezRlTH8xhEmnhA/5rRb2Ka4nfSlL78l9ZVSwVR3aulN1hqGPewjowS7blFboVaoLrdVTmcy7EzTD2pTRI0KaiKrWEXZqhQQx4G75tE13lrF1yjqcnS45f/6Q7ipYsPygHhV69gQuvJdFQUa4h3rSr078cLF7pANnTA2e7jggh+J+36wc41VDl4We9HEcliR0LT8lO+VOMyKr2nl0BuTm5oeTznRXDeXcKQvbza7E9G7iRjG4h3WkB6gNpM7aasKO9ozAL/Wq6I1hedp6dmVkMJvld+imFBGmcjGgUGmCoZ22NnR5uPr8+/8M9s69A0aCCZKgaffqzj37Dloj7oFCurLPm76S56pgxRpyt/aMIhoZFo9NlJBDmYU3Tu8LlCZEJplGGwaHGYygmvWsjzTnrw/pGma0xIAqYejtEWm6KCWBKnAPmQXY5VZ096fkUWFZ2ESoZao8Klw8Gmd8Y4Sm2Md+7s1tGaLT8Oq07akKRshKYxd+Re359fdiH07xjV1U3ceQHdxkFiM9SYvDPeNzD/aYrWpxDIsxxuG692JbPvymqdZeKRtbJAoBUuvS9KdkCbP/7oTcPN9Pu2QcOqvprz83n0K6l9IL3wxNXlSWrNv69exCMMM9okhi37n7/oJqMwmUzNxdZaMqAUdnLFyytEWhc7Cj5eNTOaL1cOeI795+2n4X0chN9ubzz8ch7P2yBZyWvLzIozRqKioTQSruUfRX7Dv5d+Z+k5ZASpsEH3iUGANr4na5Rp/vtO2KvJnHTBSIy/GKtGsxlQyZVXmHTXrm728Z6V+HrLbsmxxgJJfSvaNc/jyfcc+oVsB+ndlcoaY+wWgvKnidsNoZVi4aXcnXIoeGNaUfnPekEiLZxVXNfiOMVx+PWb7i5Jy/PlrYw1w2rv1pLwKpPXkTq145wB7cQzjZ95mGH6FLKEJrrmOZPpsn0ISWcWScVUABuuMH3zylEoq3Xfo0AkcZrEOUkD6f+fNzWAd7krEVXFwnCoF2K4Wpb8z+9dBJ9h/bwzMixZXAtk7pO8sxd4gu35vBIseDUBH7j9tJisRmH2KvBa2dYZci/9JTTnlu/a0PsY+7inX0m1LAfMvX0NmPhrAd91BO9s23G++GVPCDp0E3UWhmD0m05Rd2fphmlNmI7ozzUyLWcq1cvEG2jna6f+nFqQ8m4Fi+W4m34btFPenb01MiqwqHafwUrlu+2voQjHsa3Rb7PRqis2bN0kQoh1728BrBvoFV1+6AENQfzFdzf6dENEdSb9te66EZTR4KnNSe/z4NP4T9LMe6pNleTsTfJVvVfl8FonGPKNHYKyba0/5bLooKuzvLNRZSwSxK2vlYsRIk81wqKmIqE2oXohM2VI/TUE3+adStNDefmxf7tyt7b1G1JdHYwVrTj6+5wQT3SIL0Vyeqp19HqKJczRhP1jpRMJ859vjRGR2gnz3iRM1SIYb3RGWJXaWgTQoNtk8022k/G5dmnD46ZpFJerzsusVXI5TQvXIZDhWunww73CMP0mUWiKQc9DNAxpuGy08a68EXVvOerjN60BkksfyBripxk7rRSLOGBX15XOSbFDA793ykb8B+bslDJg2U0dGffrOJ+YrwDfdIMBj7sg0hqc0xhkjvfejekwHGYJb0IrE8VRu0ErgFvmuqEc9/8+dcXkhBOQ5mrfE5KnP7M5x0CndIuHO9Ijp5421iSysbmOAeeZBe+urlo7zL+miAJSTxnYMeHJBbY5mVrgHRD6erDdXUiZrHG7SpuTM0NR3Oa5ej1OfmJ5HedMrU4eZzBXQ74vaPUiQGkbhHnQ+w1zY9t7lurIME996605ZvAw9VtUxfamkA5bWv6ViZOtH97mSCq+IM7Xv1twrPlPn50Y3YU2UTJBWMFVCx3+hGdVZRKMI96iS9JvPd9fG72kjvaX996CsaRM68Km87rwl7pA/PxLdqEGk2URf5X8zS9E/C8Y72+d8vlXQK54WxxDgq2q5WOeblLw3bcI8cSW9k+/3fzDJdxColGKf2yRA0X+/0+MT655xfd+Op3LAm4XU16Fpt+G/akd6G2pM+H+bub1kg9sID/WsSwxTR+cmXdPpaKujhHtFJ7wxW4mAb+XO/10dvU9XSg6TA3Vc03HSAKrrVP/WSFhEgdUOSI4qCTgvFKsSP8szt/0wR7KK7e8+KOSihvMEUX/FLcnAB94hC9sUp9SOipgboZr8+zXtEH5Jfut9KdNUH133FCa4N2kQD+wOdbDNWVPQ/8z1ID+t/TQ03VkG6XBUJrFXScBb3KIz0zGBrxqWvhmixYVmT5E51qJI5s2avqiFEd7HBL05dwm64jG43zoYY45nvS0fm3x8o3dirVpTfrlZSQzscYEHDAxF4iXuUSfZHLW/GKeUYo8Ylw1wcV1XAQz61JXCrLtAbk/8bqNAligyKHFZSWVDc+SObVPznvy/+ucWl6ZnKX0oodFuo6J0aM1DGPYomfbhp3RijzQBFjpzcclNOD27f1arXCBWBThFRtzcy+oSui0PR8rQ+mgjPKtuNLtJz84tJ3/KEYf1YiAdpr3v9o8j0z/cD7tF10nvMv3PusBFHweT80g9tAtvZRVGmlqtioKUBsV/P4/pjt35GuNLXxpidGsBy+kAe9YSoZTTpAp+3RV1t4YH7bjxLne9ZwWbcQxnpo905T3kGxaHOy81yda0StL0z7ko+qooEm0ImYrIMiPDCD556AtOMG5srq/QvzD/fqaQHxX/ZJVctA8McctE6M9bwEfdQ9hr784LTt1fkakD2JTU97iFDOLw5ctPaAhN0iuB28w4wJOiiLVwc4tygGTvxQ+apydz8KNKP6m++1VGkBSnhN6VU5ewgEfcgQfp9tzBehQfm4MAee4DYYQcS/XUfd2TYIOqt3Kuq8kZEzkaFHXsahUDB8/zZRaHz97fzJvat7vfcV1YYQ66jeNliQScwwz105mGnB7gq8Jywg7ZzWhck9ZZCd5lDzn1DG5RPPx8Wf8aI0PUdJC6eEYLO4LVy+gUL5t9/SB+akLOPPmAM4elp1/g7dOEn7sGD9AhtKq+uqx0c8ndvPbTJDkK4+m/vrDZCThcGSm8GGRMuAW63HDo4IKFh8Emfxvz+MSA9RKG0xcleA7glr3YUupnCLtzD2HnsMike9muPmsKs2GMbRu8SqDJXbf5wSg6VfbPirDUzIcIlo+7cMhphbPBkdMe3Gc7f30HsA1fDfaRFRMBlOiej5o0FjOIeosk+O/1JZ8VXKoiK4/kguCauZTMLylxbJpL7yIRonWAz+OXYxDjrbViU901v/v2N9LUCfoIr9k8whHqWyW0Ysf3XA8Ufu/3pNS4XvrOB/pXsb79G3CD1+6qHzW5C4EL0ZntmmhKnIi72Cin30C7+z3wN0j8tK9O79B8nOjItVf16tzWk4R5tJ32H4oJRiwYR9Pjha+oXOReomww/f+qGKgQo8JnMxpsR9mFpEckm07T/9hRHzsibzq+f9OiUltH8MRlEl9mfZHHWEj7gHv1zW8ecCvk6DWRLrr9IIvtpjLIORLeyPsmXMCfGdAtY/AIoqKSzTfLZg/n/L/xz5xbrrFZNJfT7SfvmKVXLfz2ivsXuWcDFWitngGZZxK4zRB1B0lIwe9NDIxC3ueAXLGVBnDhzV/ZZJQeq8W4OEomgzs23IP1GO+2ztLoGYrbvUFk3aQryuEfWpC/gu+5kv80UHfnUs/3VwGJY0be0R2iVOXRma/+QkbEklCZvmevq8qFRvq3nW5LFILlBf8MZb7YSSg52zh5LIz8VPaT/LaLijZEJ/Id79K9/GuRw8hHTCjWO7z/17KATCOtV9FT2WAJdhjPFvMSSMG3Y+pxQFkCr8izs/+s2nj//SVdpCAt9V2SAApKa+S6+NQN53KNo0kv7G9pt8qzRz9waK1OmOzTy6F16QLGBBopCb0OzFVH9LKtFbJcQeiE+Ksevpjg3f4D0pUWHnnb4GSOuh+kr910yggbcI0kW7Gv8TnLL6dsh8M/NTfJHUDVao7FcwA6ofebmW8ZoxHSWQI1rmwhi/s/8aNJ3XTot08NuhiqIDUEFHtrwHPcok/TaSt2stOOLUMkDw+Wrd+lAXOOZiuhD1kBPSs5+mI0IJbRSuEdLCH04/sX9dIbF/PVJxm4V1RG8h9cY+cbPtL1PdYXjuEedp7HvDj/bI9tLRwMp5+hDk3bwq1PR0k5IGXT7bx6L6LQm9nXHi9w2nKBdjjRgX3dZfm5+Pum9Uuw2t69IovTsM2edNjtDG+4RxwB2pdkzjF0tquid4ZsdNs7u8KHro/ih9yqIalMRqitnSyRqLlOycJ5ijKG+ar7vunPvVxTSFe/sVEgYlIYo3uvlg3++lWpxD5m22M9Xacsc7VWHiVLXBxsnjSB/VH+zTYsx6jzqz5rbYUtoiCbGUiW5IND7Pp2Lx2RuPv0Y9mu7RU46XdGExnb5wzsOTDEKcQ9lZF/94Ope+1IzGEMZ6bFx3EihPNdhmwwdJa4wVbyYQSe8eV6NnCWEYSnNX68E2Oe/X0gPjJM97FVjAhwZp235eSlIDvdwlfThrK6ugB32sELZq02vwBK9OWHpbe3qhKK/WNmtXWZHpHK3XJX6LgVD4qaVB8pc5p8vpA+63QO25wh0jpkftTssiDpxD5mkHwiNjM88vgSeBDd9SoPl6KNPdc6ajMUo6aQmWsmwIwqzjz78dVAGKLF6O5btnn/+lpGe/1vbU/aQDbSyzZYMAEK9uAcP0hu19u1DC12Ba7OX8qjWCoReum8LpDghM13hX6kH7YmApieLJy9JwWKFcuM2R4W5629BupmdDd1/I4JneskilS/MkQXuYUoHuxOn04pO4yVQOPZq1bcXFijJrsE8ONABJdX9IN7aLSKEOGbfDhVLAOPQ5O1Vx13m3/9JfxzjoZe1zArODNv7il3SQ2dxD+GkF38UNI5buRiy8qOMnk3wwUATXfDYkUWoc9Tcsq1kESHXeaCNtUQcNm264VyxwgXJvk0Xq9DhLIkm/Y1bZ2WVsSUETegk3400QGQPlO/Y9yQlhd5Y4wSFasceBYnR4XEoGv5iYI/6TnnKD55xIJ7PUG4m6IhB3RY7If0Subn1t5LedBN8F+43B/vhgLj7moaoFPcwSvrAif3XDjQ7AGcF9y37dTO046wW9R7v6YiuvpWNdYsjESkVt0cyUwRmzr/S+ixgg2Za/3/9ExYBpDdwXxz0qTCFOCGlMNtbOugU7iFADbvXkZAOL49FwD59ejKNaYT6MySGjaYQCrCrfrR3xJFQabS0Vn0vCDl17Fc1xazmf7+khzj4VindN4JnMazi/E/s0ADuIZP0bp77CukX6JBG9mnSxHr3ND0UOchf9qvLiXBs5pPe+4oF6GZKm6HQfm5+FOk1MessOJ4oQ1p4+pB05yJUiXvYSXopl+K42DFDYMiNmtUfdUTbb+62uqH4g1Z2adnzmKbFhEYcPe3S5jqGJUc5W4+vMypuGGu+u0e2JJP0kd5YQfUPw4wicr4k7hkBpHeVEnd+DM4yJD82THVd/rNOyePLP9EfMDofrPZbsMmZoMg4aSmkHKNJR9xT9zaxmz9/HmIvuyUtW6B6k5Y1rXeDX179X0+j/+sHGszcjR/R0szv8T0JcoI9McWFxxvk0TnxdtOPO5cQBiOFaRlDI4yX0qwhdwbb574fk0jfOMtddrtHBG6PC1jtkKNBPu7hIOnj6YUvi68rgoXn4q+X7npB0tnVR/h+6KHM3WsFHsa4EC7m7SVGXKwQEmQrAdEG0Od6yNnbXNAymnRhSdWIxl/K0C3o3za1RAVu4R4CorB3hH+S+vrYEF5J/T59/4ko/B/nAXFHAQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAA/gIAAAAAAAA=eF5txXssFHAAB3DyFjFmizGPwrxOOnpwJbrpyrLyju3Qa8ofOUXe6WRteYuLunldM68xYyerVQ7F7LKRN/MY8hjnjvO6Q/72+37++XAjDo+I3LnHjthahAvpPLhhLRNeVtF4gI6jNu2jVz6K5WjGoZ8M7djnvYs+c31qGy1sk26iVXlsMfrKrI0ITaMlLqNbpgzn0YK91Bm0g/79MbRwMLwfrc/QFqKpn7kCdFTciVZ02qhvI5rpf7ccXbfcnYtO3Zx4g+6mFj9DX2b5BKOZkxsMdI+WsR1aR7lIE93UaSc9AMe+K+1FD04ll6JfZ/enoYciA26gBTq6Gmi65rnpffAdX4N8NL2Y44amVGYqobNMaR/kYMvqBxboF5KFQRmYlcbwRDs4M3h7YF5XsBvaI1b9+S54ObDg0w64PGrtFJpv76mwDa5nJU5Kwcq/JaboyKTm5g1w29aQvQSsN8aiiMHzLa5eIvD0k3nXVfCtqs6FFbBCpihkCWzVvlS+ABbLZ8fnwLI/s/Ez4NARv9FJcP5tq7Rx8FeatdIwuLRJ6WI/OExd17gPnGBSS+kBc4VWYwLwfkuG4Ds4hXJVygd3BSlUNoCN83o8asCKJZoqZeAVTqtRIZidTNPNBttm+dS9Av89e/iIBU4/XU2NBNve1GsLBD+9pmJCPzrq2Modj80vge2dF8PM4SU2GuAOgVPR7gF5n7aH8gQ42efH+2/gkIHS0GpwbM6hIhtsFS53vwfONA/QcgdrBQwxtcG/KMySkX3yKrXqBj64RhL3MA682Ftodh580uWlhyqYM1Fg1Cwnj653HA4B+3sJjS3Alv8UOXwZ+aaOYRIdHMnLMZPtkXcGzZ2KBqus5bEndsnVqhLKUo5WPXbMnkVdzw656ItWpybYSbFyPXebfGzkwnzVlsh99NihKumNjVJyjmV6pi7Ynj0SPbtBHlxuvVMhIXeK8coaEJP/ZKgneK+Tc5UG3tatkfsaCOLLVskVfBZ1KlfIXTraCzOWyP8DLn7neg==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAA8BkAAAAAAAA=eF5d12dYzu0fx/GEWyKJpEElIQ0SUfiRBinSUNHQ1t57Lw0l2otCmtKeqrPOpjSJJFKhUlKpjDT4/4/7/PbA/fB1vD/f87oeXcdxFWZb8lWubjzplWcncFPqGe78Y/Wvb76tdD28VhvZdZDuC539Juk9mRqHbPytkbKx8b8OhR4YSfwj1Cryiz8Lxa4vwvtZabpGKqjhXDzHM5wnQ9w+9YKzu0Eb7T1KfAr6Ln7i7Ab+ALGR08juI7Es9J4BYo4J04lXym5U9/HHr2RSaDFdtWCf9KdOnC1KfBiL91f3mqJNW//uazcTJ4n8pnvxRZkavUzMAJ0GXDBnHfHeK4jSnj5yYdqDDne86S6uK+/ENyaI05M4V23XtEJPMXEb9JRq4qS4Bzv5f5tRo73Ez6BbgCedmuxM3t6ghq2mwocVmfCvN8rr35p04iPWxKHBDfLb/Z1Rv8Hffb0hsWV2quf+Bguq0JN4HnoVePu02F3Fb+EU57Ckm7IBC975ttNglrUTZ34i/nhGP++XsxfSBnNBbxslbm9oeVH9wIay3CD1r/dCx2Dv+DuSml1R1GjWKk07Qzas/UxnxuFzBw7JIX5ztUrx4QtPNJlLrAV9IZ943c+VT0x/2FNWkcRq0EfAMfqhNKfZo6lD/Ct8tqVx4qM0l77HJHZg7f3El3zebNYY90CZe4nFoEcIEvfzvJIUWDChbq4hPgBdlI5Yac/rl0U7w6mT3V7KH2d2YBZhxblSuQ4c95qYK3tXUFmJFzrURbwR+taXxHNP+/OXzklSCtXEa6BXgssPy+5eOx9IcX9YEXfj2k7MVajz9cS2DswwTJzBleob9sgBmbwl5oC+4R0x05aTLRlnvKhrL4i3Qv8Inqjm3zOvc51KnLIpCpDdjU/feato2daONb4Sc04mdU3fdUVSk8TS0PPB124848mpc6FKxokloXeABy7NdKxQDaQElwY6vdbvxZaB6gW3PdoxWiDWP3HSrIDJBbGvGPzXVtDlaIhjZ7SiXpS5UoMrie2hF4BNUuhELvkHUkEcLFzZpfz47rrQN4IK7diTjVjk0++xKzFeyGAb8T3ox2F/1dz108SSANXHQJwIPRFcrPiC++VzH8ryH0GV49lC+NJLRgfL323YbRWxski2yM4hZ8S8kvgy9IUVxF0uRsZP6ZeqJL4K/GtV6CvAsmXIzGrIhSqcu1c/ckEYb0mKZsjNbcMNP4n5NEJ+zpnYow/fiJmha4HfqGzPoBOWRyfHiNdB3wEOE0/vEik1p1o+Kg2xih7A2TN18vI+//988B++cNZqXWd0a5A4CzonePWv20+nJU1R4zBxLvRscFHxEsPmB4ZUR1qSnW2HCF7x5cSBB8Jt2A5suaOQPU3fE0nfJ14aJ30TuFclw1g0xRAxwP4P9BXgAmbT23dfO1B1xmM0LcaHsMpwBcvCYCvuAZtuyI9c2OuPZvWIlaAvgd3z0rBXtREyMSRWhG4GttNe/1Y/xYOK3Gc3waMniju30dplFLbiu+ALAvd3Py/2QVP8xK3Qf4I/FYyVstXoUym7/u6p4M7Pc8LSGX5UgdnKgmzuI5iiT1/gMGjF4uAN0qtSj0X4Il/jvzsFXrg0YiyzW50y0icWg64Gjk1YseXHgjc1mh7tcGhQDOf8PBsQvrkVf0ojdnjFkMkg4ovWpxI/gu7xgLgq7w9ngIMSJXKXOAs6E1iSvqFdNdmDYkt6xjY/LY5DSzhELgy34DV3iHl/7G8uDfRHu6CHQb8BffPNo/23YqxRRARxIHQrsDxridOxHTbUznMhWyQHjmHV2r3rRmJasJ488enLUa/Ncj3QfYW/+yFw1ue3rljWFhnLECtAvwC21uOyiB45Tf2Zl2IKaaMwW/uRIY/TLTgM/IxxQji/ywbtopH+15zQh/6Q3teDmVfI2SLfX3/f24F3N5hzxgbooZbGPQKyCydwD52evBJrC44AS4Sazs4K2qElRPwceh84uin/uGeXA9pVS/wSOif4TgZLZwS/EXKp/F63/5YE5tb64b3x6VMcC16vV9v70en/v2/lxOzQHcCOvHzXZZ2dUHgF8Xbo0eDKhJ0pvxTE0ZFodZvKe6ewSV5ocafrU3wLTNvrZ+TiFYDaIogNoP8G73+c+OKhvAvyhr0R9BCwnB9He3qONhVsnvpq1VlJHDl71B3JP8UT4HMbdo6EUP6IsiKOgu4E3rvHGXeGmiIJM+Iw6ApggfG1ixHNBtRUvxB9i6sUPuXHFpi92IxlBojlgr7a3z3hiQTeE0tB1wI3Jgd/8+awRTf6iI9Cjwf384rFjujqooPKZdSth9J4euNceEJOM3YHS43aHzBwc0DfVYhnoXNdJLbyOuO6KOGEsALxGPSn4NehtCWBv9zQHd935VeuymCu2033Ur2bcSn4e7qn+vMcA1TgQ7wNeg34RMTErXnb31XxsGeHngSWyWKJfM3thCbOrpamrTyNz8bxuTYLN2MncNBHm/WamyzRzGniM9BzwfmPGevWHRVEwzLEp6H3gFs+0jB6XLBHRpuEOtMYZbFrVIjSl/dPsDYT8e2JPb9O9dghQQZiB+jx64klzcTLcj4eQzL0xHbQecG8fJuchlfboBO0zmwt72WxzItbg6zFT3APDXGT1ewt0wl7dG/R6V9LQH+1QDzqNxQ3dvAipQNdCvoBsG6h2JqpC3qousyV6byOHO7ZuoXOzegJflBCnHnioJH/JTfUnEf8DHpCLvF266yJ3r36lFAO8Qvoo4+IMUeU+UDfJUrE0mPtsz55bKqVuP8tyxNsbEZ8IUg8qUPPB03rE1+Brq1HzJC7S6rH3Iya1ibWhR4LNjg71cTm5ECJqwacV2w+hzOPxjYLjTXhk8rEmy7ULilvD0GbzxLfg371DPH0hajOxyyOaFiSOAl6INhiMluGd9yCar94wJnNQQELLRldfpnYhMeUiJk8HMskOG6i52eJ90DfJ0s8ui1Icf+ILTKQJt4JfTXYs5mjOXGVJ3XuoZXiNKMizq0R/ex2rgkPZRJHTfmoOTaFo9NpxJnQPVKhr3osumeTOZpL+bu3gL3M9uzlMgukRnrDVtJGK2LeySGHOc4mHPWaOJxp4BOfRyTqfkXMA50FPN/QwPzH2gt5Pydmg64CljzZ4c/z1p+a6aLF3/yVcGSYgPDEs0bc/5x46Os3iwChWyjx2d/9TyexjlC6sQKtJ/rSSnwd+lMw7p57I2nmTXG1OXt8slfGq4Tsxt/7NWK5VmK8UqKXTSAE6bYQr4A++pTYLvfzETpbD3SwiXhBkHQ2cMVhj/h/0p2obENGEQY6FVzYwFdyS7URzxgQp5qOVR7IDECnwPnQe/WJdU/USzS8tUM/rxBnQR8EG8ln9yX3O1ApB8p7RLdcxHf+8G/qW9OIGcBs3bGthZ4+iFaYOAF63n7i96Nf0iRnHdEZAeJb0A+BL/F4zqzSVKasfut6XuFRxQFHhaz5Khrw0hLxVxFFIzETN5S5SHwNugk4u07FiGfEHX38SewGvRv8Pph/ZZW/GaJv7Az0a1bFNeoDB9eHNeCMBmIfjsgZ/T5ndL6OuAr6FnBszs3DfH0uSLCGuAg6Nzh84H7as+t2qKI0oU/uhxrm+DFtXXGyARuBPzxe155x0wMlFxNvgW4NLvVWf1TC64VcCokZoVuCF9dIc/a0uSDJTAORzbyXsFX0qkcmM/V4KYPYbcO593w0PqgxndgS+l3woqFE5LyWDzJMIzaHrgU+ui1GQ2PSHXFnOM2f7r+EVZJn7gY31uO+dGLXnxIDe23ckSJYCTo/OO3JZsMJRidUlkZ8AXouWIn+hny1pRP6peh2U1dYA3eN1XQ+cKnHGeBXl1ss+jrdUAD4BXQ18LrD5z16X9ojBXAPdGkw64+jjMfO2aPOeU8eNz9NrCwa9qdaoB5bg52ji8e8fzujWbAadAR+wnHZOknUGtWB1aEXg+NfcW5apWKO9pX0F88ra2FTvje9O/7U4RfFxJPK6kmyos6oq4zYBnoyODjjcYwMuzsqBNtBTwdPsRgrln6wRUOXR44atWvj196eiyWFdTgDrK7ioidRpIZ0NIkHoJ8A5zAoL37icUAKGsTvoJ8GL7nOyuhedEQ3fk/gzjM6WL6Hm0vuah22Bh9aOdQZpK9G0f0hVoT+E7p1l+HW8x/sUNAi8WnofmAaNpvgO6xeaMX5yv5rrLp4leSjXT/F6/DCOeK3RjH3YtboUP1gWui94DV/uJ68Z7ZF3XC/FvpLMA64HFeCvVAnH9rB8EUX54ZdOMo0WYt7wHbJTsPKNIpUF/jRf7qDPXMwfZAFitpLXAA9Biw9z7939XpHFLSqxjCmRg9f6p1REEipxcngjUwH5yYnjlAfwZehT4MbE/OFedLNEPPqv++3gqP8FXU6Q+yQDKuyw8ApfVy4bcSA36kW64I3n8hk0tx0ltoBLoAuDF5iii595CmPGsFl0JvBX+h+fSqXNUKZC32bmfcZ4JDkYr/X/LW4HnxN7ffWlbQnUBc4FPogOPlV+nMmSg7dXCS+AT0CHDUiVRb2z0W0Z8C4SJbdEBty+98PHMD4FDgcegTYCPo9cE/05x8vvoghy0FiU+g2YIWJTTnCLIeoLT8O9T/KNsQva9hUBosw3gd+5eNJE+KqikLBXdATwAw72jXjnSjK4CfsoV8Fnzv3eN5+uwb1vi9igr3ICCOhoJYDphj/Am+wEon+7q6B1r77u7OAc9X+sN5LlqHkwTXQz4MTOn47YiUDqr5+cjG44irOuv3tlD8nxr3g1sTMPXdqDZEbOAP6NbBnj/v657kc1AlwGnQJsJG41c0BLh1qxVoelmgtY6wpIVXhO1KDN4LtksZtkhqvogE6YlXoo+D6lU8PPne4SAWAL0IPAm87NLrQt1WTimX2EqD1M8FfmK5m3VCuwQngR69fq4r9Y4I4wZ+gc4EPlFUuJTseoiI3E/dDjwJPLSkVV4gdp2a43kjYZJhit4/B8XHV1fgTODjk3qq1zebIFewA3QHcUWT0JPWnPLLjJDaFbgseiFf4w+19EX0KkErs0jTDG5yGhydNqvE7cMxLrV3f4x3QoUBiRuj7wR3vbtnVX3ZFAf7E3x1JvwZWw+vGbJ1tEWO0KD6TYo5rLnTuDXyF8Eaw8bfhhWN8RkgTXAtdCxy1a6d2jIgPyowkzoWeAR71Xn33S0QA2pKyZ6Rq1AJb7H1suV0aYV7wwSZja1dfKXQVbAPdCsxcNiadZemHbt8nNoKeBGbMeuj9eeQW0rAcq1cosMRVg2e/X52qwmbgphvm0nGUItVmQVwEvRv8Pa0kVUjMAeVYEbdAzwf7S587/HlXCKL34nvBvs0aX1fbea7wShVmAnu8VZZQmNBF1p7EftDtwfjR5D9cj6wRrzdxLPRl85p92LB5hw/a8OSgrb2UDVZsW0xZaq/EDGA22agzXu52iBV8EfpWcEf2ePKeRHPkCNaGvmy6B7YL4d+sUe1VwfFXhTaYGcVlKLlVYgQW3XFhTjfFHp00JuaCToFNeFzUlVX1UT5YEHoeWOiUwDZFWy2ky+haK+5hi8ctnxd4jFdgdfCprV973j3WRVngWeip4Cz6D0VuizIoGvwN+rLpjGu/uVgoo6myxrg7Mna4gnNdVYZWBX4Pjujhva/6go1iKidugk4P/kfvK+uZqSMoHvbl0OPA6dOX/xRXm6ENjxVljtTa4bRm9wlu+gr8u5zYKLr3a//Ko5QQ9EzovGC6Z7mpkRd1UB64AnoumG3wtVs3ny1SDeWrirtnj/UC6qo1PR/jM2DOefGE6jP6lD7YELoGOPTsClbtqFNoC1gX+mawsRZP/NoOM5SuTXNwztsBb5dcGx77tRzfBiMbZoNvzYbU9f90P/AOb7OigA5lVKtFvB46BptXSKY8EnJH/ZeNXFetdcQ3NTuMle+W4y7wi4Ts8duDhpQk2Af6MfBKZprYmTIlZAkOhm4Olsvbxvzgngsy65jakkjjhH16kg51MZfjK+CWiI5v20sUqal2Ymfon8CNyQJ3sjXU0QewO/RBcAC3xIP2cmtEK+VWuH/OCTuqWK5QDinD3yWJp1IXE4vesVO3wRbQI8Eee9VTDJe00Pwp4ivQ58AqB0MZ9UvN0L23okr04c44LNTtgO3RMhwBrtv+8KzK/Gm0+IbYG/o3cOe+o8qFRzQQN+yDoHMu3xeyjructUBXHkSPyae4YJWp4e22haX4PHgM3hcAn4O+A3y4XCfYo1QdMf6nM4B/KlwP62k0RLzms75hxa54g4oSvS1/Kd4E9no1q2NxTQNpgJmhK4CrbiFGJ3sl1GhGvA56A9jydW79fWl9ZDbjzVCp5YaDd0TSsPaVYA1wm3yfr6+GMxIF+0MXAh8QMvDq3O+AxMGB0MXA3B+Hii9mmyGZ4toFkxvuuKKNfssbtRIsAWY5cmN2p6w62gguh84A9jBRNDCzcUQTRcRF0CfB6+H9T44rP7NUeeBxZ/+9d54X4y/g99/37xjLNEIYPAq9DnwyfMre9b4zknIinoS+7NVr3cM803WR/4G2U3JOnvjc+NjD2WvF+CZ4lbRb9ZohB9QEPg+9DexuJrLmUZgbkgRLQZcG38kJURWrt0a26h+vuDV54fdxTbO1tMU4EGzefvfbc307FA/+CP0BWGvbfInHBS8kCn4JXQyszDk03D/qhRpPLFGq63ywu/SD4+E+RfglOKHiYjBl5IzqwA7QW8FF2sc8+q77IxawMnRWcAPvWe/3j0MQmqcRvGrngwMSrNmbRItwG7go+2yBlLwcyga7Qi8Cdw8fcXpvb4a6/nP/Evzs/A2e8ldeqPpl5A93QV9sZR/2Y7a0EDeDL+VvoHHlV0dtYAvoXeBKzzO1WX12qBxsAL0C/Dik22ppMhBl5fLWRoz4Yrnz2V07xApxDpiR4W3H52RrRJ9HfAU6A3goIn5J8LcjCoH9KejL7oD3+zjPxudc8sPbGoSqTKcKcD9YgH9ha6CBOVoC74K+bF6OqP6gsx5InItYGPpR8Gep4alv968jl/gln7Ld/niKY0Zb1aEAO4OX31cBj0NXBuvMzra7sLqhMPA36DfAmu30u2u4g1A4U6Fp7Td/nGVf+kfiVz4OBav5Fd7dV2yHusDl0J+BFcONX3ekO6EacDH0Zf+E739QPpmN2/4altHtt+0uzMeCYHGm/Vn3Yi0RB1gKOgt4WivuuaCME7oF1oB+EzzVm3KYPdsPtbaMqaurB2DRtXlRY8fycR24OYq7r5JTGzWDxf/Ts+N8FZ7Z26Ns8GHoD8ERip40ioIBKFJONPbmsUBsaPjHbOF6Hg4AP3pcWjzEpoKuga9A9wSnM1zO3/DRFp0AK0KnwBe2hHOUjPujOkG96YgngbhpWxCjJG0eLgXv/IosM+7YIi1wNvSL4Dbbmuidxx3QPfAT6MngXYdfH2tTC0Epm+ofeTQE4VXdG1NytufiKPCimiLbKZ0ryA+8AroruKPm57Cymw1yAq+Fbg8eUDnfKsvtis7M8ZoY1wZj4bDEQ2ziOVgMPAnv64JPQr8Eth20u24qbIIk/tNPgj+u3lTsfMgUbVNVP3Nf6zqOKUqVYy57hDeAxy8HP9zV4YiiwA3Qr4N1s5kjlW2CkfZFYh3oyz53aOb5Ypc32i6p4rPdMQSH7ZO1eNWXjVnB3HLpKJRDE/mCC6F7gnOGf2/4kRyAKsEd0Jcd+E0/XHXyOuLdf+FxQlgods8aD4unzcZ7wSulX1bHBphR7GAX6NvAHVv4O6lDzihJmHjFQ9KX/cTiBUtFqw0Sthx26RK/gS9Lc4jNBj7ER8EnVjf/s7balsoCB0DPAQ84TQpN54n+//8bsRZ0LbDn5FltkVIZaizroMIO2zC8L0n7onR5Fp4H+7prS/BrS6IJMD/0n2CTLp44SZPjlNdDYiXo3mDTGY9EB+xEqY347rTJvImHvt+1iRnLxBbgGdriqtL8IGQOfgfdeXkvkv+P4bHzlMAn4i0/SN8H/iK06c6o6S0qJ8dwW47xLSwhfS6fyTETN4FtxxP2FXLZIbVcYhvoBuDYp2+YZuxcqSHYi0IfAa/e80FN6Fo0tbuAu7VaNxyvopc2UynKwAfAQ70VnckFmpQCeDN0VTCT252vLzY6UhT451rST4JpvRisH846UsLrGOkyGCJwTOcx3pjpdHwMPM3YyvfBO4g6A46Hfh58TZB9txG7OaUNvg1dBzzH2XvbvV4WrV3iKRh3jsA36PRXbwhIx5vA7/y0nH+pBFGvFok1oL8FD2qGj3DusqTMYF8F3RzcPDBYruHhgUIHNdP2iEXikyXPgzuep+FosJntaenLyhrUPbAk9FTwvjjP1sdGVlQPWAf6a/DcTEt3No84dbkhOsFgLhLv0D+1/hZnGjYA/6M0fFc62Y2KBktCjwdPZzUfUTAwpTrriR/okb7sZCd3F8sEG0pULvRtjFUUZg1h4p6vSP3/7zexf0mm0G9WZ2r+LHH/ddJ/g3lG8x422XpTKbBXh/tlu8L9UsfDH47S0Thvfy7+vjUV03QSj525/vDzTR+KAVwDfSNYtL3yUWuCL8UGroO+bJ9qAwfujf7Ud5UWJjX2GOzeLac37fAAL5tD9MQJtYgA6g1YH/pb8Hl4PxVMQU8B1zf+Pl954CRqYtLJH0yKwbYZERVXOB7gJ+BEkQz1Gy5e1PZNxIXQl318Pqmg1sUQicN+BfRj4JkPnP0PX/qj18Xpll9DY3GLQRuzV0gK7gOfGTDRKPdlp5bd+p/Odp0mj26lC+oC10Jftnh3ctsPywikoj7JT+MWh8u41lgn/bqP1cE0smZFzkctkQw4BfppsJdf/afQn3po6yViCW7S2cD2u4WeRuopo/8B0r2aUQ==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAJAIAAAAAAAA=eF7t0N9LU3EYx/GnKFo1tgiUE4iORBNiYGo1cns2i8jAcNCiiKJNLUiQWUl04dY0EMGoswqSihj046INK/qBVuRaXbhRgSNoTaiFkl04XaJiltHnGf0Twc7Nm8/3/ODwMg1+aHpgVgaJKFPf77agMxe9Humczt0t9UwmLkm15tHrUr1SeFt6qFINSccd+sdoOGiefY7amgOHX6OGiP9hDE29f2KPo5lS34pPqH1dXPNV3nNFlXE0wK0VU2ir07o4g44lleLfct9vjC1loguN2iUrUcP29OU16NEe4/c8tCp1M1nA5Cvb6fqxHn1xd/htGVO4Y8tIeTmTraphMX8znjvpf3e8msmZ150aqsGO9C2s2oXnXwY/x/cwZdpf7du9lyk1Ufp06gDT/LX7+UVOnNfeOpVsYur1dFX/aWayp+8F208wDTlMb/pOM9XV3Im2efjqQtf+zgLFask6asQxUd9/RP5/meptkU7r3Gek3slEZ9bPPNojXa0UXkF9DZXqDdnfHHpx9YXMs8F/jo+kcHwmvnCMoCoco+gQHIfl3BlVPoozHL+gdXAck++NKMUT6JxqjE2j5+H4Ey2BI8GhEY7L0Qo4auGxAY5r0QE4KvA7B0cD9jY4lmC3wXEjk0EHx01MgTAct8I1DEcLk9oBxx3YaTjWwqsXjna4iqMD2wvHg0whcXQxmcTxGGqDYwsX/RJHjZWy1/zZXHPN9f/tXyQem/U=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAwAoAAAAAAAA=eF4t1Xs8lNkfB/CTtHa72lJWoXGpVKsL6abHM2qjRBfasrWVFCGLii5smShJKpJKpcYtw7iOa6bTeRoToyj3kGEYWWpXbrml/M4cvz/fr+/nfM95vs95Xk8BvLZnwYM99JjEkDJudGJrn5n3k2pTKAKse+nqLuHIJfJazavRxwhwDG4WScPRiHUyspqdhIAsvU8v6RYy6O9qFttl4vzBB/zSCHSnNj/oq1cuAtx7he+3RaKdIQ17s4aFCDBg0GjpXRTt82jIauILBEDryDKvKBTcV6bTbi/G/bMoa52HyHVgnsbjKRLcTzluksVj9N3qrobrklKcv/iX26kY1Ou8yJLvWI6AfUxVVFAcctPecb9xoBKB7kV2b1sSkGPB2/0672vw+kK6LISHEt61z4jQqEdg7d8WTVf4yFbsb6MFG3F93+rG5jRE71KZLXGRIXBbdZqWTSZK7to0qyGzFdeX/371UBYKu2yrlcH+gEC5u/4jfg5yvr7XsUSzAz+PdffK1fko2ajHwHL7JwRcjqjdUxaijwcKBd+kXXg+lafyNJ8jmVLSQrFbDwKTtfwiRAyaeHReasbjPgSejR3mxYrQpRyDB/6zBhCQTIt8IxAjjd0rA/xKhxDwdp5UNViE6i5Zm0VUfEWAzXu/7kwJ+m33p+8nl4whEFMyfHhNKZrWOTC1wnMCA/ZI3qXSb9HPsOdXu/MTGXAh7R976wpkb5QjnFM4iQGRB4uNF1ah2Pu/p2tb/siA1uUdRsY16HTLAamJ6hQGlFsYTfN9h/oK352ZvnA6Azof+VxUakCrotcHCSSqDFC72+5R04huzz1pMCttJsNJMdnbNtqMfO9EaryWqDHsmHz+dFELesiPS1g/X50BvIcn0oVyxPNofH0zX4PhzDjxrKznA7LqGa0oe6jJcOd6rKtz60AC+RQtWD2DeVjxx/RzFmsZAAATIXCiQHNgkvvGcPzeAdBZeJUCvUYZ6i4xxOWlERSHMg4rkhJzBAvDKVBn80UvKZbY/2wwxcmtj+aXxinMVvXE63P/Kn6/LUFhB/1tdyiwdWTUaGki6Xf2QBQFDGyVl3slkbz0Bu435mptrZNC6u5dARS4L386ySJ9fD/ZA8ipsfF3O5WpMMtJOw9yciZ8jgrKUpiJacuD7Ab5329bcsh6XaN7kF3o4l8Wkk/qUdviKMZZP7HpipD0+2IgoLihCySNzc9J/peduZSD8TFfLZsXJB80KRubHrp6qJDUX3ckUexi8zmP+S+JTw5EUDs1p/5uvFpCzFY7QjlsHpt/X/k1MUyPgrLaIq8CzTekX83+bMi2c0qMFJWT/eVThJCzouQKP7aS2HpzLsxQNWRVCarJ+uWlaVA1y+pm/WAt8e1Vt6EkI9Fs05n68f1z4ykD9qi755rG8edtSqNku4PVX9DNxC5eAdDstJjvbN1C+kdPfwlHsn89a7lQTlzdKoavJm5X32H8Yfz8KfvhilHWXRPff4hDzNKp7cMHfYRKH4nrVDjU0cPyA6Kaf4mtd8bDo767xH9++0x8Ly8RukXolDiJeogdlodBpdTycsNnfcTcIwHU0cCgc5d7vxAzgSnQPsxBJD8+RBwmTYRb/L2btQs6Ff7RYKsXXHB46Iil1Idt4Xo022LNFcT4cvD9zKQVy02jvCEIvYQdo7BDdAAXghWxwXqaBfSRzg1/dZokIk5VU67o+ng+9EMEBC6fsEk+2VQogGBnZV1SaQE9ZG47u+5qNuI0XXF9ZSgg/Vaq3YbAwA87VmGe1bEECDhMd843Id2g0US7NUEETOdcPK+fpagDeUMoBLma2HEK21tNfwIBS8ljQhak818eNnZoLUQOFx4X1HtnK+qcpacDIbgdgR2vsEzegPdjzUwt6UG0bdh+z70mJYjjuq5aqptL+ifV3oAgYBv2E+KWsix8PjPa2eEFLWiKjdcHb5EsIXtBsHE+qfs1RkOgmoXNU3hFXls2BGfvbtZTK6T/lJpf/yWtEnG1+1prUgpI/pv7HQi2/4udTM7DW8KHwOvrhuFfXtIJG/yjNxrVInaNPEcUCUn+j0XXIdijcCqZb+qqeHx+nV2XvIvp++xDGsrzGhDI7T2o78eQvJrVGQg2dmNnKMyde4FHAUZSPN/wFW3R9LGq+UwTYvHzHmccF5H5VO5Ip4BlJDZ5H17fi6sp0M/qb99aRv9sm95dmNKCOIH7zAJjxGT/T18QBZbYY5P56vv8V4PzOrz9ruW0E3ds5LtLGyr3dxDO0y1W1NnRFzMpUByAnUf2g5/5FEgOXD7XpZIuqhSb7MPfATvrwCb/vhJy/lEVfH/ijmM/VZilm8ZA4BEy+5+EanpbUcgy+08fkYwjn2ymWUby/XtTIRjuwCbzYokMSyEYuVXwYdE72nb6eeGe4i6Ur5opgrvKyf7PzXMh05uDTebFPRJdCUGyhUdKXz0dtLVt1q7rPcilRdPo/JZK0r8xNA8y/hrYZF6yFJ23EGTLN++YIaX7OxvVNw/3oewpR5/fOV1N+j95mgmZPw5jk3l1R/WJ8f3Xv57HltE9K3XRs7QBtGJE1yNRVkv6LxbHQKZAE7uI+IWcB8EPg3VPDFrpds9rvwXnDCOJ45ApulZP6iyTUxC0DWCPz+tsIbZ/+1zvTW305hNL3HXnfENhD39Q9jnfSOrAQZXipKpglxK/M0mgwKY3EaGR7bS+AF5ocQeMwalQ6ZiwmdR16WSKST+P/Zbc51a/CgqErwlv0euky7cOHlt/WYnpWPOjw9LEFpI3/FVIsVgq2BXk+bMu4PvgeqtJqf8TPRZupXOvXpnhSK6mL30kJ3kP/TwK7AvFriL3SU/6hgJbar+YTf1MR3tdCPnmqcLsVi4P8y3+QPKv1j2huIzCNST/n3oxBe72lLWt66HdrmnvU9kxmXGUiq+vNeggeS73NAR2L7HriGNXCCjw+mmxt0YfbWedPHvihWnMaiW/zzZFH0l9Z2sQBLWB2A3k/OcsXkHAC+m6s/gLXZsvoC8HqDJM18mPYbz/SF5m601xd3pgS8fPd/wZZBffianxHKSvmPvOunV6JlNSsz327PFuUg/t51FM6A5sGfG3cPx/Q+lybu8w/Wj5tfZVXDXmqBeds9uwl9S1qkWUQ/4a7FaFM35qaaXAxtipPk9H6c6t52LmTlJnxox0TNfP7yf5lNkiyh4twG4j5zfb1EwxSTcKlMvG6EVuSxcn8zWY+FLvviOWAyTfJMqg1mb7YbcTlxc8gIz5LSvBgwls8bOpQPeBJhMslaxXSR0i9eD1ObCb9QabzJdTqFEDZTeH1OcFTGQza/oDn76fz9iNfUn3tP9K8vF+ebBuRQ/2J2LG7xQlazCNd+ZOYg+5SpIchTqMi2n1lNl238fvp48v7DhRgd1F+ucWiSmOx6U0ve8qbCl/QZOHUI+5mX7MrLIKsBXxNpunVPAyJ+zx+RYmv6JkK502iOMmswc9bM4r9S9gOPcb7YYzlEjeq51PKfdJscfne9byJlR9X9UReH8am3OIxWs7bsDMbBHZOBYrk7xs4TVKU0uM/f/5mvIhd6Xb5JmnVdml5s4jqUuWMu6u2xJ4WiokD7QDYXXvVuxBkp81IqZYW5SzDXfNZP+9Q2+mZO0yRnX3Gfy//YnkOa8zKd04H+zh8fksE1Exix1Z75ItmP8Ba/SncQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAmgUAAAAAAAA=eF5t1X8wlHkcwPGVYi8J3TJo8yuyl6iE6h7Ojy3quqXphzT5sbJJd0gX2kNnUVHcqe7kRxJFCqMSXdfT2T3FJYpCWW5ZmtSulLWy4qqbOc/z2Xm+c89/r5nd2Z1n3p/Ph0b7/8f7clWU8Sa/etLco5MSzZ8PgvXmzIrLL0oHsxbVKz7154D9Q0NrAy+WgM/tTBHOtqoAR78J0rD/uga8wirLpzznFnjMttrClS4CW8ozn3lF3wOPDJyqPXSyGTz0IeH+l0fbwC20C99OOXaAf/2joK7C9hnYqSZvd8u1XvX/04seXhkjVf/+6aQJ7z3PwQvbRV3tDUPg3LRYvmOOHJzZPv3EXP4GfEkzmBP0SgGuMOXriavGwXfl6yNvtKjAVXHS1Z/5TYMtDPKzpzw/gePDHu7e3a0hJL3FpNwwZttsMFsY6XaKqQ2OHS8JVq6ZCx7luHWeq9EF+8qcw5qa9cGRSeEeEcoF4JJZgc8DAg3B5rJKaZSOMbg1/6m2N30h2JrPuMzbZQbm6s7TZmlbghfUJcSIDReD08IHbwpDbMCBqfz9x4dtwejzofQqpcdSJbXH9wuoPbaaUXu8EkLtcSKA2mP5a2qPH82pPfovofZo85LaY10ftUfJNLXHbUiPbKRH7Dq1x+751B73Ij1K2qg9CpAejyA9nkV65CM97kJ63IP0qIH0GIX06IX0uAbpkYv0WI/0aIf0uBnp8TjSoz7SYy/S41qkxzCkRyOkxwykRy7Ro2By8oUxrsJoyMOptzdqmm8B7yP1pvOMB2Tylo5OrGCYuj9HVybe/CqVB85QEXYtTbs9LcZDf6D2fGAw/m2mJBl8a/mh/yw45sHP1RnBGSoNSu/+Bov9Y2JOghv0CVvwPfX6pdi7z6nz4OPsssjAphC81IVw1JTYvk+ChQdT5+V8kka1ZnkZ+ARpvkOjcfVtXGcbdZ643AkzhclVdW9BhOls1YFHg9iGYeq84ZKdge821ak/30uYGb4igvYXRrekzqMnO7/fwe4O+IzHjK9Zb9+S39mDL0LmtUA5m0u3aQCHKgg72L2NCHmMv3xFnWfe5V+6M4aawJwywqUbfmo6rcTWSqnz3sZ0N5u7vxXsYEpYyKx3iqC73kf2Qfn493lO3z0G9ypn7CEaqmTVarkmfiqh7IuH/krdroVd4IOke081pzdPYs13qPtk4/l7cYUBYnBjEWFBdfYX8XKsEtk31zV9PPMc+8B+swizPq7MZ0sxF+Q+yqyT5fv6BsAupLVU5ofZMqwY2VdGsUWrPbVegLsOEmZ1NyTaNGL2yH1l2sl4ZwpfgWmkjS+0Pe3owQuRfTfX1y3hQPVr8BhnxoLNe2qaWnvwRGQftniI7jLLRtXvl/Syi6fZ+BP8DLIvp3Ll0TJ3JVhCevP2E08CWrFMZJ/GSjbu4K6YAFuS7i60rVvagf+O7NuwR31BNoL3YH3SxTmdli23sB+RfYwncSY61n4A55LmtaX4uUoxI2Rfi+N8rmfW0oSoucMJDzZkdGOHkX3OLBBjYbqa6n1LmuW8znTr35gvsu9dsmltKdVzwCzS/DX9QtYg5obcg4qOopFr5+ngItJWniJfdjsegdyLb3h/ytJlOuDlpNf1la33VeDPkXuSwVj14kiOHtiHtH6dc16bCGcj96Zq66oxxjMDcBbp+z3igfU9WChyj2ykPT7Z5gzwfNKO7qNaqTLsLHKvTLPExZUVRmAt0vVVohxsDDNB7lmac950cbIJOJ60k7+ss1GKi5F7t0Vx5UHSJSaYR1h0LFW5d3ASX4zcQ++9XiPmDAswh7ThwLwH2eM4D7mXnhvTWMnaVurvExb8k/xbiqYCZyD3dMdThaHGKmtwMOmYqnnuwTewdOTeLktOj1QVLgEvIZ21r3p4+yAeQtzjfwF4xeIvAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAdREAAAAAAAA=eF49mHlcjfkXx2/7irRpUd32jbpa71Pf6t42pUWlSJM09m2ojF2LsmSJhCwxE2JGyyBbTx0kEcYyIpGoTJSkhZT237ye8/Xrv8/rXafv63m+933OuTlO6wwazgVBTF7M50VKB9x53E9XCa/x+HLX69GunrPz3t+Qt4IFAt/Re6ElNzgsahc6LOWv3hdlD4lnfLPC3QRkj83b9KIvD5DzUoRZF+70vSz1g7HhFgXu5p6koXyXYp5hDfIQbaasOOPWq0c+MGT+YvwzTUcoTMtQqJ/yBrlAkV0/nN1nK+0HRlvJn/X5dmChfCWvqeUd8jgptjhIrS3djgF5JbdNTwpVSEhkbdai/S3IDyoy91uajhOlAJB6oLZmbKozSBs5XffKb0eeq8qSjV13879Ng9ZTySS1fCJUSXikiE266f8fLZFukF6YkGkO7U5rnjVUCsisQ5Wxz8Q9yP+RZR74xDum7QmE9P5vVl7XTAl749XtVaV9lKsxSdubbBJs7IH36Jhg/To/GKiLfpubM4i8XIK9KfJpUagQA3Sc/ixOjQHjv+62Dn8dRR4rZCfm9jd+bZ0OQXGNL+x+joYvJccCTi+VvMlxvh3rq+7dHqUZCRWhvWUfB4PBRtv7lIepDPJMQ/atZUu5v0UQjIx71P9qpwhK1/UYyDnJ07/XZX17RKaCAGeQKk5MSg53gEXHnZd/PqOEXKTI5tbu8YNQMaRU9SyOPugB9SueJ1xLHoc81piV2akW3GTrDiNT9l6qW6kDbwNHR7e3jEeuxWMLdWdEyoY5Esnpd8SL/nt+WvWO0f4h6shLVJnA50ttHLL4ZHpYsu3QTQGJdPlsM8SbgHy9GiO9ZLh37TI+KPcFrFNfZk6WPVt+cpyEDnIVDWao4d2byaftYWzYmuy0a4bw78ePe3Ii9ZCnqLMqyq7bD/Y7Qe+YrfHzvpmT99se1jPpfOSNmkzQlTYX9wgbMk2+zL9teCwkdEpO5B81Qs5rLAlgSstj892A5+Y1b36AA8AuEhnUbII8ms/q3R3SOEHkiMtZ7eGofBuQlzB7fGSVOf17DTYufkx3xoUpZEh4clnXpSlw7qcOZoPYCnmXDvvinObr9/+0uKpmy9Z2FjvBeZV1fXo/T0Z+xIxNWiJ5a9xMIexaFhpnFG5CLopDYn2XC5CnyzO7pyiTj52W0Pc8YlztSR8idv4ePC/CDvkSJ0Yr9tkxqaXWoB5u5JUkpUG2ZR73+7ragb6/EWHPvGpyRNYOeNctLIqWC0BhU6Sg+KET8hBdtlA5LcZ2hTOsHwkuTH/nAdrTd1XrLGLo+zFnVYOObJvZbQupn2sFmx74wvmpKbE7pxLkL11Yr0PzfRXMTOFLeYHxtD4HcrJpll/UBg/k7abMzEWZleJCMYmxmN8loTudFDe17t2WKkYeLmIs1K/dO2kdBiRKOxMu+RO7gAbVoo1eyC0I492v0X1GM5wcG5xrOs/bh/D8VusJCnyQ/8UwrRPqXHfrehP9PbVPHjvKQ95kuPdYxw/5aTU2JTvMe6lBIGnokDq26JMT8Vj6t0fnP9OQ7xEwM+/p2Lx7JIZc9CPpXRrJ+fEEzbyuSycmLndytUM/ktsR6EcBzW3TJmnuvTODpKAfYawx+nEjzQU7UvKTsucQZfQjXEtEP8rQXBwhZ+WRHEykLTg/kuLD6Mcu9CXh5ZZc6VWdRvTRj2SWEvpxLM2iso0LNz0XkG5Fzo9wNBD9+IHm3BN24XY+/oSHfiSt+ujHhvuYH/infnht6Um+oB/JUerHapoHa0V+n3KNf/gR3mWiH6tpVr+YtfapF0M2ox9BtxT9GEKzslnM6zIrbxh5yPmR8N+gH1/SvFlK/7qEC4Fy9CMpL0Y/rqd5+I5u4icDZxKIfiSpZejHsTTnXnfb5BI2g1xHP5JXWujHFTQLRaFn037zJdSPZG0C+rGa5vorqU5T3CbBwEXOj6Q9B/14j2aR9+T2GFsCSehHMnE1+lGfZkHUh3PxetbQjH4kr6kf/6TZyOpvz/jV3qCIfoSzr9GP94Mxk+S4qMZ3dhCCfoQ4V/SjJs1d1hoR54M1SWcv50dofIp+PEvzIr2qRKlufaKHfiQhLejHklDMwTHFSUdv6oLsWM6P0E39eAp9CQmBwzegORxC0Y+ksAv9mCGH2STTbXXMOSuQRT+Sq7vRj3kEs/zDyl2NSS5gi34kC3jox/wzmJ+/fOykJfAFSYbzI6mPQj8WoC/J2O9+965L2sHIIc6PRGs8+jGTZqNLS5qXeJvASvQj5FI/6tM84qSpYMWTIONqOD/CgCP6MQN9CXlhoacmv5gGfPQjXKF+3DoD80DT6Pyqz9NBHv1IWqgf8wCz1upkUeHXIEhFP5Jp1I8PhjFLd6g2qCSE/vAj2U79+KUd8+W08q+3lDSgG/0IKe/Qj1tp3nBvson6YhOyAv0IudSPF8wx11xWvjZr5Vzihn4EE+rHA7Mxy/Znu847NBWOox8heir6UZXmcMHAzIxWS3IM/UheTkI/Ru3GLJnXqFS4Tgy96Ec4sgz9uIDmFW/nLAzYICacL8tNGcXxczg/nuX86EYcLKc+KDB3hkSzuBVymp5g+3G3d+fe03Q+lGIf2x3zr6pQhQTkxLAqg+O/0pwl3rtljbcv1hfJs5M6fTi/enB+1SH5hsw+6x5TIl91evDPqn7XZYUzpO9n3Kb164XP9p3nr6gTw6e7HC+rvIF8iGZPfeG2wZ8isX6sFis0Rz+ncn7mg+ypimkCAyfy6mxAT6uPC+m227E4Megprc9jcpP9VSx5vnAXOSwf3c5xoNm4NFErcfwsrM9rFN7/A/2O87AdJEHrznnSdoTwvqWHr9In2RVaiuWWr37U521O8phYPOAPvsgh8ApyE5qvBkYqrRL7Y/0UDSbuEPaHYa4/mJK9/NiskixbojpT4U1toz20Pr7zfHF5I60vzS7JCST/iMWghJwU3EM+FIE5RHP+u4ggT1q/piSB9hfsN0YkuDRib4WEKZSk1mWFjk6Ey+1PdPPIe7ofNJeU62iE7FvlCUXICdOJPJfmL8KytIeTaf0LfcLI6difOrj+xINGrwV1C/Trytx3eGfXzTQGaz9Vixq9Nnp+CVa4gt+vqRcIQuTkvQi5Cc0pOQGvkp940/spw7wzw/42xPU3c1I+L+Aq30ALSovtpW2LbaBGsiVm/oZOrJ8izeoMrfW5YiCGYuSkiId8H83n1h717txgTusrsm9pf/zO9UdlsslKt+AnDUdYfDw/PclSjQgT0uMUL32h5+8VimIXJuQbiSEMOVxahdyT5krNV4ULZhnQ5z9Q8vYA9tc2rr/ywWK4IPPQfge4at+1ZEuuNRl6EJ5lOPKNnl+G2fjT5A3Gjz3hLHIYU4l8E80DOZGjRud0Ac/TKmyl+8tKrj9rgLNm+DbLE1aQF/xm4R8K9iBTqxcqX9BPzz+eVVz4eHrNFlfIRU6aa5An0vykMaCz0VWM9VP4zJKX2N+HuP4uJGmKA0VX5na75uV/lxyNiYBnuzPmP6kapvWFrEhb4JVf4wc5yMnD/chX0rw7Jrhv51EJrF8uYPgFOB9c4+aDYLKZudzV0a0Cu20955XGzwH3nb0GT6dI0PlcxG5UtjZSdA2HFORkdDdyL5oPGsHt8wf96OfXmpEvxfnCh5svAonu1cd6O2YJIefhL3UHOiOg8/zrtfFVUnT/YFjRqttqo5/CYB9ycu4C8gU0y/wW8LBtSzCtr8Ps0sX55DI3n7iTrG8T4oYTXaDlQlNdU8VUmFr1LfZ0kSw9/yT2d93H416We0IdcvL1NvLjNOcvav9F0nsKra/AlK3F+WaQm28E5MFi09lO/W4g91GJ1b7sAvqGoT4DnxXo+fXZX/P+vlyV4A49rRwnHvrIz9M8ZtBNdPy7kN6fMUwDnY8GufnIhCgOHzhxR+wBdwnz9ZceBgwN96+szhpDz2/ANvd3NvFbRFCCnPxsjHw5zbyTlXVtr5xo/W5hdDzOVyu5+cqWHHwr9WSwRQhSVit2KWjZw/0pEdEXn6nQ82uy0Ouw4dmYL65Dlhwn3vbIK2hWOLEwLfWiI63/r7CZzmcd3HymSO45LZWccNgRnm29bTk3VJ1Eb0md3KqrRs/PY7TWuRWFaliSbuRgmYq8nOZ5kbDDuN+Z3n8J9hid73q5+Y4P+65963D2Nob8kFPCKRUC8iIlr/LUnxq0vhbTeN6zb+am4bJTyGHCFuQraf7oONJelqtN6w+WbKP7sx83H/LhQrEgaO6EM2Uvg0yXy66ZRK6Pv/VBZosWfT6qzDG3cWzMXjO4ixxWUr6IZmPLxXsrP1pQ/3QIL1bjfPmFmy8nwJBCxapbd2TIjINRaV4Pel0nfZA+VFOo+2N/Fr4v4hPfdw7w8gDHyw43Iz9Es0Fl9S87fv9Yhr9fLYxuw/m0g5tPxxO3ouqg08oC8OpyWbGp77trB18xd4eDAa3fLMy0//ttdqIsOCAvq9JHfq4Tc/aHP8Z/MvbH55PbV7KMzrft3Hw7AeTPm4qeVIhAJVCjocVRhfx6VXqgMNMQ64v6hBFletNrnvBBCTkYXkMOAZjfX7Q7ZrnHB+uL5Jh/6fcH3dx8POK6yzRuMPr7JJD/bWMB39oCYhVyrl69Yfzj/bJzOtxXeir95+ETHCdKisgP0JydY7ztkyaf3s9xzAw6X3/h5msTknCm2fv7az6oyS+J8/tnCmhnyI/9ammG9cv57B2m2ss0zJLIIyd+lN+Qw7z29RLtL/YOtL4ck0/ncxNuXtcn6na1kf0KeqAme7hn71YB/K6zZSj9pcX/P7+jV1PFkXZ6RA45iaS8VAazlG2r3B8f6ecrRYVpo/N9DzffGxKXHJPloQFGkNbyjB/33zn8NpVkBDy1ps/fmI0ZV75xjq8KbEZO1lCuT7N7Ufa+eiUb6v/ekhl0P/jE7QdmRGfk0ZUAX1twuFXmdn28NmirqwfW6NrS+y/J1i8eSN55ttnVBzm5p4ZckmatUScXn99MfpyfPUX3izXcfqEO6c6bHO3+cIeDtssKGq66kF9uygeGx06h9ScxLQ8zZ9+ttIETyOH5DeSqNDt+HygyqRbR+zOeveiE+0k7t584wuUo2SC1Pe6QZFBa6+spJI6HW0vzF9hjfb4lI91TK1PRpgq7kcO9bOTD+pg9XkvNPnRgOn2/g8JWut+0cfuNDCSdzq1JnuoOvJBym5wITSA3358Oy3Wk73cMOyled8fFCAGMTOc4WUX5Fpq7PvktbvtA64sUmWC6H3Vz+xGfNF/f//nXOBeofOPapmMuBCP3w3MWaQv/378cKiFmv6Mm3EBOwil3ovmv2RNOms8MpO9XhVGg+1Ust2/ZkoHfNYr9e5wh9mry7YY5XtDIM3j/9IULvT8Ma5xv5v5U1xRmIScuEsi/XcGsv9tS8fxYT/p8tJknfrifLeL2NSeiqzVbbYufCB5pS7sXnrAApZb8HfGNbvT96rAxO23amvkC8hdywm9FPpfmoksuvlkP/Wh9DXYz/f6ri9vvTEDu6vo7szt1YePWiVtm/O1Nds1yNDz6u+jH/MCUm1RGTdZqK4tHDicp703DvGRDxYZtr+j+xbNif3x/FsLtix6g+iKx1F/FiUSL3UVzFwcSs8mqI0eSPLF+rifz89u56ts6TEkQcqiZhPyYCHPsNHub76tEtL4Fe2Qa7pfG3L7JwP4rNWZhUkLyPR+ixm2eSur3hOl3ZHnT5+/OKDy9H7dH05h8RA6fKA+nuXDXoaxrnyWwvkCKeUz30+3cfuoIPU1RdQNpzuRT6jyhzC17crxDuXzknS+9/+bMmeo5huUdruQrcsihfA7Nn6VLLpn/9uP51JTo2+B+W8Ltt99dF1anz7mx2Z5kDcuXFzYbkwzNN45Na/zp/dRh4nd1a62rsCZ/IYdllPcMYa7fZ5hlNmEm9YMBc3MJ7sf4faIZ1BoOGdrkmJL/ARgq524=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAACQIAAAAAAAA=eF7t0N1LU3EcB+DpopsmC0wmaEyJSNamFLPwouPCgW5upaOaGzrsRSOPKGqOdFFrFtlGK1xR1qIVMYNFiLSoVPqsF43kEIaNLiSIAtvpTQORoWnQ93fVfxDs+RMeiYQs3h11dFVlQvXV7wp1b8BYw++EP6zBlvgurqxQi0B4Iss2UwKPUTQ5ZDoIHv1ZaWsZis7L95WqymF3zHy5b65EMlqwPkPcjROCkB3ptcBqWf7Qye/FU2lr//RADez8yztqQy02vdJzbzT1eDB+vajYeQDm10HLz1UN+HGzlhv5eBh7okfnV9bxaMxJZk4NtMBn2ngkw9KG7tPxSaO3A2K6W+1Od0L5NpjIjh2D9VfacL7gQpWhrqa+8CQ6+cDqR85TqPR0zM6d68HBksEb2+NnsGKUJ737exFtvmwd2upDltxaYav2w6Xboc75dBGKpRcL14Q+6KuHpO++X4I9HPnGGa+guV0+Wiz2Q+mefaKIB+Fbmxa7tyYEmflZW/n0LbBGyYXb9ChL0GP7IXrUCvTIX6XHnQZ6PO6ix5CXHj/X0SP3mB7nx+lxSkePuQstfx8HG+lRfE6PeWP06J6gR1OIHgse0uNiLj1uY4+KHnrcLKXHYfYYYY+lFfQ40kSPeezRxh7n2ON79qhij1r2qGSPMfbYxx6D7FHDHgPsUfHPY0pKyv/rD8piRow=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAJwQAAAAAAAA=eF5d1H9Q03Ucx3FgkPzGEA6IjWElcRMwPIRTY4JgMH4kLAyYsvjd8aOZ/JjIJOagVCBEUFGYMroaxDqiFaj8iDcEg0MWWIhcJ1wmwVhhmBkgIt31fv/V95/n/4/P+/U1MMBvrblHeCJqC3B+r5QoCl8BTdr6QqXSE7wn3+IGeflAjfKWffz8bpCF6SOElgGglQWfZhwNgh2f2LyzjxMCAuG8rjUyHFbb3VlW+oPwoVbrqDrDh1j+85n8rEPQyzh65V5THAiyBj/z4B2B14aDuWOeifDtUP2OXeJkiByR8/80ToOHDUe43fffg5j2vCcbdlmQ7ry6ZaJJBOUR2zKs+MegsHTydlhZLuiNpB5SIzGwf5QvOPYVQOxfhl1btRKI4iXEJXoVQ35WzQs3xKcgXJa79OhsCaTsbrvqN/kRbITZrJYlnYH27Iux6p3lYG8TGxofXQmSAH8P5wdV4PBsYLlOWw3B0WrGncULIFCq/uCG1UJ2jk3PLv0VYEuXOh0m5VC+2bDvSwsFWEb2Hwu51wjEaHDuU3S0XEDHnFR09NGiY9ZldAzkoeNJCToqytBxNgEduTfR8ckQOk4EoCNzWfSfY1s6Ouq/R0dXDTpKb6FjhAId3TvQcY2Jjr7k6FCCjtsZ6NhFjipy3BeKjt2Z6OhKjvHk+Igcp8iRQ44+5Mgmxz5yrCZHOTl6kmMNOTr8zxHvkQHoyYDBz9G1uXeRM/0yC2I6sc56dC5w16hrq9yh1w3LpPstG1DGD0q9oaMXq76N75DMteL8YO4H4zuxxQ34LqOs8bvmBv4gtsf+Su/UnO6gb+sJBGEy9tVifLfnm1pEjREHwJqB1ZXjOw7kS9jLe3mwPw/Lpn1wzE0ZM/WRcN4CK7+O7+xv9/VPU9xoCLPFdo7gu+tt5iSbn74NqcbYSzy8AwuV7xtfmMXCSj1WtI53UeH3UkNpgQDmvLAmGXgnE0VNVWl8Iew/jjXV4N08DFnyNeIngckBrJ7uyIDHDKzuSYHxUOwc7dOl/eTwodx0mKOy6M4aW3ROQkkG7FFhv6P9Jug6jDNnsqF6Afs63SF7sermGv8DEFAT6S5luiKWhygHlPPYYbpTddD24jRNHmylmtPdlmZal48mHYfH1PfpjvcmH+SzQgrhG+opuuuJq1+Z9RUVQT51mO7c2jTJ6e+PpSDahHWk/8cv4pK1GKkMRFRf2sHd6ReH7NpKoZsqpF14978bft/5NGyjrtBOfj7Mb3YZOQuzVA3t5jf/f8ZM+ivAkIt1pR0xUn10D0yqYDYFG0e74rkY2h6eOg8cqjPtrFXZtX59ugaWqDLa3dia14oZ8xJwnmHFtMOUiumYPXWXoZZaSrt8c3Wjyy2xHlKpbrTTuqgT126Ir0EL9RztdrQ1yenpYwXcodrSjv8F5M4wzg==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAQQMAAAAAAAA=eF6N1H8s1HEcx3E/YiZhpEnkx1rW8quJVJcv1kqFRcpKUaKsZaQcYsLqH8lOk4gSa9n8SOvqlh+TUUtLp9qS2tXKj1wyX+E4P871/vC6f25r9ddjs5vv3fP9fn/PGqrUajXPZcVdXrTeOkLFXBtXoWS2vDk1xnxkfrqfGR79rZu5+mW8mBls9iCPaeq1LpRpLC/VYZqP14gWyB0JhlMq0sIy05H5o7ptYY4ciP+QPEvObpk5rCRvNetfUZDDkXqS3+SN2IGyEVJPqugaJP18ep7JyExlTvtbsqOlf7SNLBRut60jT25N7BKRRalmKxPILw3JGb5kyXxHjy4pETtbiBd47u60w2gQ2elhVd2pot/psjzHjoy+neTmN89z3k8rDZzm6HNZM5MNM/Q9bL0d3k3znIOXjkmcgueas995+Y/Tc39Lx1xHeS42tDW1T85zSVodH/6l40N0PISO1ugYotXRCB0t0VGAjuboOISOfVody9BxBB2L/tGxHR1F6BiDjsXo+BUdS/+z43GtjhXoWIKO9lodReh4DB3PoWPslHzREzATXasqGxaYFbAOnYPVB+aYe6ENur9vVEwypbAJc+AEF4eZAtiAuXhYxnxmusL9mNOWe+XtzM1wFeYWEx56lxkFgzDH154licxOaIK5dpnYblz8OzTEnNPz7rxmcxZCU8y9N/7gbuYH6IM9CAuzKmSGQlPsRYG94OY8mQ8HsScp2YEBzGTYj73ZmWJ0fob0h0rsUaNLgM40KYEl2KszGWLxBHkaau5V/njbLp49D4o0e3eVP/KTVOctqdlDne6+tO+kSrqkAHvZKnDW/0i2wDTsaaZdjdsrMh22Ym+z3XwVEjILXsMeG5YaG1Sw50HNXrvnh9ReIl2g5n3htsei8RC5Ecqw95s2y6Md2eeh5n3yfoX/Mhntfzd8grtIK1Dr5pIX4B3cifnBnqgVpAl8jrupHxfGCskauAZ3VCq7biOmOyqGR3FXG4Z0iyV0V+uhJ+6sM2LANGmW/i8sx92lzTrVvlLS94Ga95ms13vw/hTPfYJ2uEv33N6kvgn6vbAJd/oi0Ch93xjPtcF83K1eiNys6hfNN3jJSNzxH1X35aA=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAGhAAAAAAAAA=eF5d2Gk41OsbwPFIklIqjkMqLaeibVD+hV80SUKShJKyZYuQIUuWxGihqCzRckrJUmqQFh5uooUhZEtjqaRoUTpJiH/Xee550Xn5ue4382Ku73PfPzP7Pi/P1g6dQn0jkeWba8C5knpMR76xls9Z7XvVr0fXHx0HfuFBrLE1T+Gfx9TBgnePj8zzJmPMK+csapWDZUtV3uWIPIUkS2oFv8CWzV2R5KD+BM8j+XPBjx8pGqBeDSGG1APZKsUSmw8TE+3S7+EtylDooHrRbk8VDK2mNnO84XFCL5JUvNFuGiQsOKj5ySAgkQ8POqn/kHmrvsnUjxSwPkq9a1sBF2NPylc9qYTvaAX3STff9kURzRXjzD3tV8MxTmGr23AFvFej9uXyK6vao8gazkCjzM418G44YZXd8gpo9KE2+zS5bkqbI5EIcFDY9nkt5Gdse1Rs/wSC0QZ/GAb8YXCUdBl8+rFm7HpoMWrVS0x4DBobqT+J3Bo8MOxFRqrkTpTvN4DxAp8bPyoewVU+dfIQd8URn1CiNvf1mXojY3i7K99+cPQh1M+i9hynMCjFjibwrHrJchNTOPdY1jR75UNYWkf9w4GncNU8nqiWbN96/54ZWBaslV7iXg7mQM3fHjZjQt1RMrN+x06e1zbwl5aViU4tg4xn1Hs+DOTf/5tDotPMbDqDrKBtY03luxcPgI02PWoSdOl6CHER8QZBpzW09fOe7ZJ9AANjqGu7bb/4FgSSIlZ2/sfbu8FizKa/pExLIR3d82V0md3L/cyFWJbrvJ92ILPXarNsdAkUoXVNNNa5bLdhRlYvBbHdjjCcrpCf8gRAQZO6Xm3QTny6DRlYFThTdbwzCB6Ltj+SAJi8mrpdin++ycGbLB3dzDwbdoXnmv+cOXq6CBTRip8CJf2sOAScqgwKN3jA8eJPReHyBJrQ7FilldECN8ZiYChH298Lmu3I85epBbAVbei6vVB7fSCZ7KjaqBG2H8rGBx2TU78PQw7UPWPZ6XWn9ZjlTeysAeCAm8mbrxcf3YV56C2dB57EmnsyRnbfYrR0D4DazQQ/Mfs7oIVmuFNG58r9xSjNvmq1UywQGvjjH7WK5sMk9NVtPgemxPgSw2kLCnxlgiEoKm9PY2YebEErvX+1VGTAidTMbY/X0Q6DBV65kTd25EIn+g9Ra9bX9S6k9O0S37uK4dCeLuqhOT0HytHr7pws+/rBk9QFWt7NZ0WAscFES6+GW8BHW0lGq34lHNJ/fkhjIJgLnD2+d8v1bkIXWoHr2Be40Z2I3LYKFZl4FCA+IDu+/zp8zqO+sbXytft9e2J5bc0EzfbjsP3PqTZyDzLBHn161Vr2P8ahTMHa3B0Txp6EYfmQBO8b6VCP9pPv3qwvF0vGZCQE/dCJA1godX3lvTSYjC77uCz7z4o4JmrT+zQL1mmo6/EY79JzBU6hrWJEj+2rPsTMKo04nGAVD+82ljpHrE8FofO8rYf83x5h1oTN8dUvToTVSs+bOE8vARvt39GfE34klPxc8PnfHjZgH0fQY1gpi41bfLTzS2gPQ7CPQmf+acYzCI9j4p1oD5dgH5PRXsreyy+pJzMqi2kPHbGPQqfz2iOKRI4zu7R+76PQ+s2l2RPlohi+gPbQH/tYiX4ikT+5stqDWbGI9jAZ+6iOHt5p2/rMlstMXUh7yMU+SqOllOJ358mGMYVetIfd2McC9ALFKJ0mOztS6U97yMM+8tGmi0XtU3b7Mas20B7WYB810dlrs5VevThEppXTHo68oH2URgtuJq8VH/UnehNpD1uwj/pouHThvmsgh/F9Qnt4CvvIQYu9vP1hoWIcI3mf9tAE+yi0WM83jdrxEUxlJe2hO/aRj2b1Mc7NIq5EkEp7+AL7KLQF67ZUyjd/whlLe9iFffRGXylPNR4/1oWMLKc9NMc+DqMdFR6YrlcMJypxtIfy2Eeh12qpsaLveZHXWrSHYzJoHzvRCXllhbNLtjJrsI9N2EcdtFGaVV6wkzVjP0x7WIh9dELD4BLjv09ZkTBn2sM47GM4WnlwRvDZsFPE/AftYZ+wj+iljpIt2uecyU7sYz32UWh3I/e2FL8DRK2R9tAc+yi0FJ/bIpF2mCjY0h4qYB/l0alv+FeVujyJYNbvfWxFK7z/+e7Crx+1H3voj330RXdEryhcpLiG0cceimMfhf6bE6Dx/kEUGcEefsA+jqLnZinKmetHE5sg2kNX7OMutKyNYdN87jHCwx46YR9z0LWBMas735wgDPYwFvuoi55rrR64MNWMOKfTHt7CPrqg3b9VeJhNtWf82LSHfyrQPnLQcz23SAY2pDCm2MPn2MctaPbN22KeryIIG3sYgn3URbdoLHh98IsT41RCe2iBfXRGNydmTa/rDSGnDtEeKs+hfUxCW6g35PH6QhifS3RfLBX2sYHaXLeoV/8Qh0jEq83v2fKleH1UmXHSjBoQ8aXmf+7gzj5vSsS11f+1Ic6FnlhnGD717mHmbfDv+6d4ELVX46bW714OjHhAb+wb06kw2mI26YXLU3BEc7z+bLtzIZTMjaYewfk8tNPl4tJNp+KZTmva40XYZ54NdWZiFyOd6MNMni8Spnh1FmiPsfoWn1wNbcrUJySkZRKCDhPT72P+9TKcb0IndBnNv+xxhrHQpT33xL7vYFN7NLq1TOj2ZPi9v/6YBgvA6NwLUw9+FVz5TF0n/kP2hEgUKe2hZuNcaO9Lz+pCbLhMPvv39+HYWurBgDRZ3re9TKjYkq3aWUvBun4Kx2OED8ai1GrSDTv2xYaQlreL/7UZzl+gnetPf5+1MoyZ8PL39yWyg7p2/Nefxsn2JD/9/H7vajUQ/7BGNZXFBxN07HMxnsfWMFJwjXr0PZ3fR+uWep5QlQ9j7irT9ygJ36dGdNhM0y8qc+SI8d6xvCyl/wFbMm1ohkMllLtRe8o+zHV7c4ScsaVehfN4tIZIfG2FRzhjoU7fs+P4vmXj/j+ofa7ddec2ornxmCy7XQssSpQndsVXwG4D6u438QJx8xASpUttiHMuesWHrLVKFY5M1X76Hr7F9zEJnSvv8v5a1n5iR76VLj+pCwt29odKP3kC4eifW0TertseQtQLqZVwLvRZ/aFdC0usmTN4b+Tg+1qD1sv24PZr7CdirUslKwLWATtcnps1/Bgc0Sp7fF4tuxZGPj6n1sD5J/QL1ec9BSFWRN+QvsfP8X12R9+q33DCI86ZaBiN0xMt0AeTxEUBj1mP4ZYh9eWIg0Ufrf3JGH1qfZyLovMyig+9jwwhxg9/f98v4fteXDTT2658GTO5IGDqpt2G0CYnKxG45xHw7lJP64nZP2UkkrjdoG7EuSt6UHkap2qxDpGc9vt+YCVNPSK23O0fURMyY7vqAXmOCaj93LO9PvkhNG+jztSPvWHWE0e61lHPx/kbdFCq/62IskjGo5ruE4m4X1ytoi7KedlmfcKXsJ6Jwj+Ht8CZmMWsjzXl8KOWWonHz79YEktmVVBzcT4bfbZIsmeG2HGmqZjuI9twP3FDX2ryLqnzPUASVe82rZQ1h4ujKtME48vhM4ta5qL6oEtKGLFVpj6O893oD/cfTTE7s49xqaX7zAHcb5ahWRJxVyYdDySb75wVGPZbwMz+L573dcqgN586ybXPJK8/kFTzqKVwLvSI/KxzIjP9SO8Vug89x/2oGq0/1Fgukh1EpmwJPGHL2gF13cVPU/0fQK4ptYF1hHttbzBRRTfinIVeXPhC3F2bQ9Jwn3qF+9VetK2pvLHBZD/y0qpLc0+VDTSEBg/fzimFc+ikBqvw0h/LGbft1C04F7o2YlJD70ofsvc/96sNWsZznt2xWT5EsIjMkfpgC7yYzZpTP5VAF3qJT95HDw0nplmZOhfnz9GNzZa8ck1fkv6f+/ce2slBpql4ih0hQ4LpMssc4MSFvPBmlRIQoPcVTpoeP0OTdA5Tx+Bc6C2rBEmveRbkHN7Lg3g/Z6GlywOOed14VfhOEPdRIXcPFC+NqlD9tfaJtlLbXFtoEPnDgbijAece6OWSueWCKU7MFdwnm3G/vI7W9l+c1LphHXNRJmSxaLgL9E11yog2K4ZLaD+rb3P3huwnxtOpBTgX2jRJ3KXu1gJigfd6C+6nJmgte3Zvs7s7STq9EjZc3gtFm58qcxsJCB17iEzN6FlHyuOor+C8DC1gTUiyXscl2njvh+N+q4+2PVtjHHIzmDiFLHqmoOgJpyzmGefsKgRPdMs+M4OTD21IbSj1eZzXoB9t3Da7VeYwuYXfC9pxP85GG1c5eCVdcyVrpgSUrD7oDT0etbyD7+/DCnSZXH/Dhz5nEob+gvNDaJMvyR2TQ3cSY9ynn+J+zUb3vwidNFlgQ8yPLypM/NsHHCNLi6yD78F69PxLEr9WcCdGBG2Lc6EfR38LlOz0Jmm4j+/E/fwCWsmqtIl1ZztJqu6VTR7jB5FN51fUydyFaLRJ1M6Bzy3bma4q6mCcC83lZgZdc/Yhjv/Z763RCQ5FKdvUbYl76pluo8v+YNn7ZqZ3Tj7sQNuPc8n945kxGYvehPNx6Bidxf6xKW7EHr+XtOB9YInOsFhlPjZnLwnKKxlyiQ4C4EvKtljcBl+0yoVV8REb5zIS6Ns4F0fvyPt5SI1tT7biPRGI94UFmj3BT2n2X0HkL8vXuwIfhkB74sOvJaJ5wKANRsSvm+rsJfUW1HycC735iGJmWkUwOYf3yDS8T66idRTXVSlIBZG0+lP9QUsOgYdPTP/X/Jxf7zL12JTeL1wwJSnoXTg/h85JGU3k9B8n89/Re2YA75sFQq98EGBbE0g8kn6G3VlwGD7N6LPZxuGBO9p6X/oF7U/uJAr9BedC7+AkLtPVjSZf8XuRBd5Hn9FaXvJFja4HSEdFt6WlZSRoTrh5ulvrFjSgz55xuvYycyvJ/89c6Jb1fge+yh0l2XhP7cb7Kg09W/frYICGLyme9uD6wbIomNQgffnGzGzIRluoTtS15dmTcPRUnAs9OPGk/YahUHILv1+JJdD7LA3N7cqK6Wg8SMTYW8Nm+h6DyGUG7o2CLBhZS22iM27VvVh3phrnjTgXOipm4JVIfySxxe9du/7z/Wue6srY7kIrUpOhbjLHOwaUz9uY693NgC7054I98RkzFpK4TGoznMeiozq51rPPhzIL8R6UxvtQDW1ulK3ddtSHkeIpVRbZxsL3CXpuW3OvgQK6u9flY/9eB2YRuhPnKmjV/HHsh4rBTFo6vSfd8L68gV5qnTX6ZJ0vE9BhfXXhqlOw8nbtkeraqxCO1rRStjd5a8u0oHfivBl9QUlPpRN0mHC8RwvxPuWim7UWHh33jMPMfJrZ76t3BiqWZ8M3uSswG83+HnDIrtCf0UG/wrnQO+x6PAfVQ5mj+L3vf4b0vhX6SeJU9eq13gw/L83j8/EEKHXgy4Qcuwx1aOtkyy/K8S5MKTof5w/QP0N3ifWdPE3aQuk93DGb3scdaPNFCpnKcx2Y/wOlV0CZAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAzwkAAAAAAAA=eF5Vlns41NkfxyWRS5LFdnENLd22VMSZQtrd0k0q5dK2apdCF9SQSm1ZEiPbKl22REV5XItqnHEIMYyY7wyNGTaXZkxhp5ktYqr1m3HOs8/zO/+9nnme8z1zvq/P+/3VuOGoUzO2DPzqp59VPo+HgkZrZyfbV4GEEb78rT0PXZoi0shMLQNn9WyuH7TlIcmbA6xy7XyQP2Ns2MaKhwJaduZGMSVg3ZOsy2MzeajEX+eyl7kCzGsDGb1GPMQWMT6YL2GDNp9TOc+0eWhleuEjcZEC2OxdZHBSSaHXPAOdq70doIMxUvH3IIXOh02axy0pBbs9dV1kIgrtcAvPPHCzG2pkPLq7pYFCB38O9rJ9ogQ5RxpZr0oolGybHdPgYEorcE5k7c2kUMGyBR9nJxrS1i3zWHczjkIdVb/FuCSMAF2jF27eARTKsJ75IDFGi9bj3eZv5UwhrtXKY7MOy0CdKFnCmUYhE3p93Pp5Urjv0tHRjz1c5NT4J/j5djN8KtPN9yrmounmp/Urs7ph+msLyXexXCQ+HGqQvEkG5anHey8ALpJ4zgmg9whB7D8dQXaKVjQyry9vvEgJImDdsau7W5GjRXDWo5N8qO0hS10MW9DcBnZt3RYpFGz6ZWPM1BZUvltQ4S8Uwpcp89NavF4gu8MPHgf++gEUT15R6hPejHyXP21cbfQZ9IUfNWk5yUGZSfYB8wM6wTlf/T9Yx5pQ9qGuDHpwBbCbRX8zb1sjuhRqYS7xZQJvha7y2gw20l7nfiVoazvsZzgsMiqsR9cRdPihvwlyjniATuvn6Pok62undgyDB8PxkYzQWpT55D1PsKAGbjy09Gtx3DN0dpqZt/E9TVYSlTkenodQvnbKns+T5PBkwiHmSz4TnfFxCjMfHIJG7jvPGx4oQ/qG3rLqiha4+5mJ5/d5BaiMvp/rmsSH2/uL9ym+3EQ8F4bFvTYhZE2u6WXOvIhis+cadjguB3eIj2t1lZon5laBNOLjkyqrv2ISysBx4qNs++ET9Tr5YIT4+GHktnFkuQQ0ER8zyyosCi0UQMrHPoac7X99fRsbdBIf0ySaum6FCuBGfOwiPvoSH+OIj0Me2EfnqGXSNze6IUV85GonfjAvVYLEaOxjYbKlYdk3prQqF+zjpqGGY78kGdL8lmIfA0IO3ks+PQJCpmMfLZnTJrtGa9FyiY86a3PM9CJlwEaIfdTfcHrVal0pbP4d+0gLYRQJE5phO/FRy8jFUq+2G35LfLzJL0ZtlTK4l4F9pI8PMGRNQmA6jH28znnT6dOpBA8rsI/ZS0ejJufy4dVV2MejeXMdzt2SQhbxsQAkFrc1CqGIgX0sqrQ5ciX6A2iegn20LUn3k7/9BEbDsI8PZ+/488wbEeD6YB/tg8Yjp0YyQcdM7KNru/c3/YHV4LUc+3h9xs4nSU/bYTrxcf3RrW+W2bDh/ijs49UjMV/BTcPgPvExIeqbjnzfOnglDPt4UieK//SxJqu+FfvoW7pCLy9CDv2SsI8N7we0bwwPwWYP7KNWQvxFJ/02GFSLfSwnPi6R/L+P7H+fTfhY/ekCN8xvJcggPlal1WuGrygG3rl/3FLzxkjXLxluxSCUMC8+JUY+pwqcJ76m9UUpHQVM0EhLW2Op4mgLxpSXzUxQSTj0zuRrm26UgZPE56aovoAF7BLwPFYqZ9nwUJ8Le8tpXglgEa5bGDcmFTwArcT34TniPPdAAcg5LhlLNOeh/a6RhaZ+AuAVh9nw8bZSWYUEnCfz4LPvB8fhT4PAPZz5bYQpD+n9M23hT2OD4Dbhwgvi7EWzFECb5Pd79f6OYrDy0pERPwMeClbvbycGfr9jlu458cnuZzZoJ/OkpaFaT8VAvGrDhoWTeEiTMGc15vyCo/a/quZtIZk3vx2qJZGCM2sS2Jz3FNpOuNETc3GGt0TU2AEyyDwW5quW2wuguP913nQxhXIJ3yScszR6TWZNKZhL+qNE/bseB0bO9kLNFIUeEn41C7NP9qVo0eVuuJ/Mc4akrtyvuQ/Upjmd5rEo1Hw4Pevfnj7wdzrmJd8+Mg5BSmAShefdV32fAn1aipnNwMBdChmo77NdnzZ/Nub0mgJFhCoPnEkeBG4OCp/ibEy7NvoxVpRMoc/aY2+3uBjTLD9i3vh97Ywjqv7a7ITzQn19GlItWkqOsXJPOIXG1atfi2ZzG/NIW+q5ruMj4DHJEze1vnAclNm6b1++nkI2bJeSM6XjQGiHmWWfzbyq6r9nJG8mfDP5DE7d371Az5ZCPWrfLD+D7lzMqal0/8F4GVCQPHrhsDgvi1cJ3omWBDJGuWiqgNr106JKsEaIWXzir7P5y6TQjPSnHSc5vNDoFXS8aELb28hFSd3W7l9cX8H7hC8u9n3ha9MM60meTfhiLYBxytg7dpe5aBJhJ8IHtC+vgKq8CyJ517OcnuG7Rwr3CjzTQwK5KMa6u1rTWQqHXmIO+WFXIbNcBh1IHrqteh73rpOCYQ/TI4vmcFFljdtvRmIufPYIs3AFP6J2gQiw3+O83Kn28ZQcDFW6DLzNb8W+qphejXlzfK0du1gJjEm/m1Z5xiu9+kE82+DSWqNWtOrKV4IAhQQk1GF2OH+7SS+ED1tW47ztVZ9/vAc+EMbEmoa04PO/7IHcDszyoJrKxaelsIHk8cTzd/TBgtSNW9rzX/zHfgzMbXbrBdY3hJCfivNaW31/1V1gScw5k9quZqRH+Fwc5i6vdr1d2R8ASwvnOffYcrNd+qOg7FhTQscYBzlf4LzNWz4KsumYNxuHImbdJxBGvj9S1O/zuAI8HrK5zRpvQtbq9+2jABoDmLfXrOWWW3eBnK24DwImztsKEjpzrMoGG9FWwmIR5nHPVPbSV+VglPTFhA8alcD6ghPnYgUbz4OKFxN+uPJ4UkAgAnbk+wbvXw6f58jh1f0N6EfCLdmYx+kG6+nJ7bCe9M2PRXdKqwMo+KonsiVO8Rzd3Rq02f0eD9r2Yh4de2ckduTA3yNxH03kz/zXYMaUIskinzpUTNhqKuaJvrIfBgWkrybez+U+kLjhO1p3fA3+vyq+sg6zKEHr08zaGhgRgfusSL1f03uoQ7uj8Re9+j++4oI5J5T11XSRJusWF/edmdq3R0rYF+RlZRTMQh5q34KVcCAYc8Y56O9eLIeaibgPrw3uX1jiLIf3stP97n7/BB0wyeRvSZbDnTmYQw5n9fyZNwgNSF/6qgOqtRfeci1g5KaUIi1/VYD91gOn0zD37UNmGhl8qFmD+3TivPlt8NbS6PS5K3NRAeFUwqE/eYRlSig4IsZ9O9EXGh2wy81fss3yIp53Fd9ywdxC+pgzCX8f/g9BN9G2AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAIQEAAAAAAAA=eF5zMbn5////9/apWlP/gejSCoPfIPrP/eNfQPTOEPtXIHrqN9FbINq6zPIQiNbjOD8fRF+9+zoPRAv9MtMC0av5c0/9A9Jx4XtdQbT7n899f4H017PJU/4A6U3mtXa/gbTL7d+5P4H0moi+n9+AdFLGlVWfgfScv61W74F09e9O75dA+pDZ5pSHQHrJvqMvrgHpS7+9eE4C6ex9005sA9LhU/VOzwPSdSnNCfVAmt1sakQYkFbYueixApCO5kpLuf3vvX3Q6w6TRiBd0nMjjAdI73ljLVj6F+ieKRlpG/+8t1fZvyhly+/39gKLw6xzf723PyP7mOXYj/f2Sl+LdRZ9A5or0Rh45/N7+9tTElqcPwD9n1S5Zfrr9/YADunJVw==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAOgQAAAAAAAA=eF41x3k0FHgcAHBrs+VIaKaeYyybdeZsVY6pnh0r44iEXGXXscLsGFdmTBIP5SqliKzWlfsYMyXrl69zJzGi2SSkt5Zdm/uYt5th94/57ee/zx9XLXT+cl/tpGT0Oheqv4Tf6ZJ/7lurRc93JutHLd+adVOGf96eVZgIGwZPfPZ0rNIBmVjyZc1PkjUqNcFS6vzm3SIBBGpLLoat8TLKD+SpxajWtNO6YP9gwo02OASOS5IXdzbXU7ujyPPbRh62dcbgI9wXS9sZBIFYckir59FCSUi2oiSaIbCAnQ8nzMvNBmGsXHKX+yWtDiv+6H3opy11WsfAVq5qSz3oBRTjJ6xnR6j1WZERNZNoN20DHl0G8nN3B8AVf85AJiCVF4H02je7TW+eApK/6KrS8+dwHL9QzTq37lg0evPOWG6A+TWcTFFNrxPzQXZacmrWEWgKjUYlDjIU6Z+/AccCfSbfjA9++HOR6dV5W6Eot4Wp7HKRCq8OEvewQn6BwGbJw38ilWYtuSCOk/ll1VhX0N0O8REW9YMKVfKGQlby+TU6Gh2Who1Ud7iZY2S2+LIPjuJzd/uOqrjGoo8mbWOWxHNQ+K+hyuTuPqjCv3GPKnrYzEAZ3PuTVJEXEESr9PaTveCDb+/RoDIvn4iK3Vi5gWa+IJzvHC5P6IFIfE1xqkypbRxi+85ZhwwFwOTVK2Iepxv88I1Kf1vrKGMgBQOkvXchEJpyzlgrL3WBEv6fpuO8hQehSF48uZ9gEgTZP3JT3hh2gSq+4vK3Pu9YDogwlbeo1hoCyDhjwPwSwBf4Hqt9u3KD9MiKhCQj6ZQwmFUOrck+2wlK+O6p2uG0G06o4o4lOJRFwNMzwwbprxE8wpcykD0xrsxGhCT9V2oadMjyOuTMudABRPz9W3YbradiUPY+ZpcVmwHLtJEW9od2SMefWgDvnYsByClLv6PgYQwEp3U/87vyFCj4/bT+SgeBF5ITLBOLpOIhcazkq1FCG+zCl7s08Wv6Hh90uDx/3qksAZyXZ0kMzmPQweflpfA5a36IxO3aCstOhCeDcsS3XjxQx7eySCCuG9KRp/fMBVZ/EkwU9K93SXPhO3zVSJbGZz1s1Cm8LUo8fA3CYnJE64850IuvmCVM6guOR8GF28lPdFNhQX0twDO2Bf7/9RqmDu1oEhIOzHt7e6eBjWzTnXmbZhDgi2kd1cSZeMRU6aln92bAjlCprIHUCAx8R0XLRb5GDPK380gmxWVCucnpyNeTdeCDb9++9KV9IxMp1B5x1WbkgHlJwDlKWw0Q8Q99H1f9ccKXbNii9eJZ4C34W5YS7tH6CMzxrVuCgT0VR65/71epd/w2OPBGrgtGKqEZf5jfuDk0E0aWH64VxVHyocO0ETYPVsBe/APSy+kbK2wyl1tFW8m6B/VBg4SkzDLg4SuqTxRXudPRf6irnBw=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_600.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_600.vtu new file mode 100644 index 00000000000..92c7571ff24 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_600.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="7.4872433251e-07" RangeMax="0.0018081454202" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12124" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.97981767751" RangeMax="0.99999999419" offset="12220" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="6956.5758577" RangeMax="16652.382142" offset="13596" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="22208" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22300" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2457002138e-05" RangeMax="8.8697576335e-05" offset="22396" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.3221413875" RangeMax="350.50082715" offset="23200" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00076027142907" offset="26792" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="4.4823694122e-06" RangeMax="0.0018172252147" offset="28696" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-5167.7596679" RangeMax="0" offset="34668" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-5167.7596679" RangeMax="0" offset="35368" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.97956017877" RangeMax="0.99999997206" offset="36720" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="6956.5758577" RangeMax="16689.042552" offset="37952" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.1048836888e-07" RangeMax="2.7533374119e-06" offset="43396" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="46688" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.98068056849" RangeMax="0.99999963559" offset="46760" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="6956.5758577" RangeMax="16526.443167" offset="47244" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="48720" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="49936" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="50668" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="50840" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAdSIAAAAAAAA=eF5l2Hc8lf//+PFjZSTp2Ptky97jvHDsvWekkL0S9VZWlMQ7SRlRipaijFQiz1ySkJbk3URIQhktJPTt13Xhdvv8/Hu/PZ63p8t1rnO9mMpGc+xjsEBdPsI6yWLlBkK5zVLHHwjCzCAfuuJNglcs23q76Ud1aFIif53dbuDE+5v64LI5g85XhAmZ4z2QLuFerifrcm2LNfwb9a2E//47KpntzeHt9mZIOXDrQKT7WNOaLt2TDx7xw8+MD0+HmVWA/3VNn5zYRx1JL9zJySFf81OpELxp84PHL4RgPd7DbhfcN5huxBaCLeHDp867ZWNkePPJhNWyyASJWIp1h4rNN31hv85B18ULbonSB12PIggop3+XQh3RcTLBna962tbSThfCJkzfiJopLfdQScN9t52gvGWsOfC4uPpskN8I716W6bfoGqHj859IcvMk7PRdxcRedm6wvxaR9uszDazd/u0W6GHSdZzB3dSydstPpAWfvIsLH7txQB/eg/As7hw5Co99Gk3Ad/3uBp3vb6iPEz7a6mdrIk669WI/bzBjSaEptUJ8rLBWmMvs7ElbULu2T8dQmlG3cYnjr0sXHNJl7JEH841HU91rhaAV7yGM6McztO9RrulATcrc0okdqqjiKL3+Z6eNKJtZTf/BDg7sYIn16wXZ7422ETK9n1ScQXDd7jMBe+h1JQlP13aLld/CC49uz/STfBmgDO+hfi3ux97Lv1r7UgIi8t0dndnNUFT7lg1rlXjQwveU53GKG7CRV2oOEpdGG2VYFj89snCDUnre0lPhz+vnCL+YJPfhucdaMP5pFnSxVhuIHuoJTxU3SZgy5oeJo3xyR6RNUXT5LfnqVEHkLqK9s+4wN2YzsHjP/81kY3L5gxfqFDdYou+KfKH6ot6V8KYc70kJ4Q1QpWwhnvRYByLwHrgIDwzUTvu1RRRUiquND4AxCj9MNnf5TwzVmE1w/Bjjw17FBgg/S//aePSqss+1+66wSMy/QXi5v/i4TxY3WLdV1V0d+nMf4T2EEC7Xk992gCoOaVcqh2ZmaSg5vjwrOpINUaIlzRUGBLAX1roO3S39jT8he3ZfijNcPuW+4RU7WXc0CveKEWoOeT0dCPBRmx01mZZ72EP45PmcF51mHBCfekdw8Jg56uF6JVzOrgCCeuuPtRuKYKeCWHM5XUhoR2hr0767rlBOzF9DeO52pev8QuKouIDt0j/k99TXeI/qCK/Xelxax6mCsiOlVVX7LZGMSaSSh5chcNMvRl5zoGAWvxZu6RuSkdBVnzy7GFe4SMw/TnjAgCbTL6SBXg+ppdSwiyJFvEe7GHD/TtOy5/phhHy05u/4UB3QpiM2SWcvG8GjnAw2S5uNmPehB9/HjnCj0LcS5j9Z3IDTTFL9nvW3epbjuP+eTJoXeqSFnut2fvI10ARFvEe9x3Bnaxpu3KpnigwYNePOTViiC0+vfmY8bQjOZR2D6xbEsdsTF0TZg8jogMYZ8rpcGyiMKhVl6p+sD7mEu8H530lMIRroZLTTQiK3ApThPWIkPJFJft5EyBh12d3nDN5JQ9NpLf1to1QYbmRpeH5VEhNwTbFUMuBEOt63zrzQpsLlv/P76zsA90SPVLopBjXkpzVUGcAqCVN4j/gJHywainaeM0S/SwW19qyTRY8mzo711alDSGVbIblcCkuXujAY/XUN8izaPLxuvyHsn7gWxhcv0NBFuOwsm3h8rBz6KpXNH65hCkSPRqtwj4h5waSQr4X6HvRMbbGbpibP+kr7/CSj1rwaR3FvGUxlvatgH89I48Td9lNPF2mQSMyPJxz9+hHRk8wCB4wku3uYjKAY76GTcMu9Vx7wAw98PG137B9mZfRvaHdilro+4kw8yaK2Tg47yht8q3qJEwISTmdkiFmBcAxTzjEhrgZKAu7b540VYl6rAVZ+hGR5zwSO4j10xOOeweeuWdxAA8eaCpYednV0UNzcs87DCKlYBCIbtk1Yaev7hQZlbtihz84gW2sCW/o51l7x/6hTao77Ra59Ly9s1wJl9m87eioZ0D68B5oZ7gynhk5U9plApFoRJUdNH3kpnX5UQtZHmZva1H7fkce+jug5pn/ihByTV+slFo0h4+/8WR1fwt87+sSrtqoBj68zn36mJLjiPVjK4T77za2muYwG+9Z22JeUcKOzfFWj3bu1EYlDRu76TkXsX7KkxUX7taA2Fv15plwPqoj9KYSbCMfpJVopQVu4zend4mpQhvfguA733qLjxy690wMVs8CrVzlUgGfEIz8uXxt1jR9m7t+hhOWu2WsZH7sWaqbda/i1jcBRJcqmRWasPofwGzL/yLjHKME8pflVMYcp8OM9UAh/tCa4f4SBCucmpuVOHTOCfJPWbfQl+mjm61uGx2QVrGdRZ5Oe/gYY/JlhckyGBrS/83/W9xJO9Yu+/VRUHV4wzHrvCrNY7qGY8Bgjud2yszSwq5krf3TeEjIc+fPNe4xQyvQXhisTKpjvHk2VW83cYMRufJsjQR+kLhyvf9ZH3xBNeHGVlN8uRm2oiP75XKLUCv7Fe7AkPPm3aIJPhCkcOKziMz5oC+0xc7bRr41RTarkw+BIVaz63l7eG9M8cNHhltopGyPoijF8Ue79qp5CeM37AufTbjpwKNqe5n3DYrkHEuHSV9qfpp8wg9pvLTEfRmxgyRw+SLuboES2NS0pVmqYaPfiVF8qL1wn/LLtpmEh/a56bsLTGhv9zszowM0m1z0SsXZAZ/G3h2FW3JXo4Ly/tDnYDG61/c5kD1pCKcl93SbIMfdjfZGUOpY9kPqAmYsP6JzVR8hZzkAiflgId8sdiC45oQumT4/fbspzBG28h47juCt51MQZ3DSHyuX928VM1PaYIJrvrJ9YmTrmWlYXmVzOC1U3UgXIz5zANfcUy8ngXh0K4Vk7j/QfE9eFwEVL7UAVh+UeSIRXFL/g9Lczh8xS5bJZUzuwbH2ye+SeEXKI9S2uPqCB0dlcK7tUyQ1ZVTfZ+dKdifmfdfgJJ/ElbHOc0gIr1bIdipJOYIH3UBGDe9bEhbBTm02h+JpQbp68M+Q0J10+uZ6GaOkPXhj6aWJVU1fedV0jg9fFA3vP5LsAIvbnJHwXhAxwgAYE55ocu1jgCkfxHnwP4h5uENvaE2gMrZkTmEarO1yXdp3/5q2HanQpYteHNLGtMd8r46o4oJrh7XWBDy4r1z+a8DNnR792MKjCYIXN1gIXR6jCeyglvOsGebpF1QCyFjkuiZ50BZarP/KqJyQQuT49e+GuFlaQfK/FUG22cd+jKpq5sdfK/K5buJccLjtoeFsAYq4mb3STdoTvV/72oEP0tUL2R2afS8NnR3O6OTsH6B7fm7+hQQBStCYWzc5qYwJP7119Nz1Bnb2evM6L1weubt2/ZZGLroFCOHWHW/OFk5xIJTB/S+mQPVTjPRogPCaAfFgxTgSdqj6tybvPEDDPtp0+z5SBElRGeiqhg20R7CYfSKNHR8qko+sNtq3s70v4dO2JpKeZkig+R1NF7Kvtco9KCT+6Q1/IUFcNKa7b+o1fVhvylPVez7DRYBz49wsw6WJMfHLWYVfJKP7Z7Qf5NqvXx/MO7va7W8M31Gkg/8YHmQtLFpCL9+gK4a7O+8TTfI2RpkHT5i/7VGG+g969YKMl5HAdZggY0cX6KGNsubzCKGzBXiLW021lviM37hIb7vBTZQyR8HfZ5uxdRss9aia8//O2WyEXbNDBfpSSWy0DRjr5Nu2W1lA6aeSvFKaHxYf/4pYuFEVyNf8o7M7xWJlPmsI9izUsJOTPe2VaQob2f4y2YI73iEZ46kUNjkdC9gjr1ytwFVOC1g7r506FVpBjf5Ghw46K9Yse3HS3UwTxvmVLdz69+nyYI1yXZYYj9SANna22l5SnN4c2vEdUB9yjI07NlTvZoafv64432gmC8WaSd+9HS6ipYrnop4ow424O2pZFYZQ4EXXVJNlxZf4A4SNr9t8s4qIh+tfVt62QEVjgPXKsxt1Lnf79oUO2aM9LMeGOrCWqxuA2CucXC/AV4KgprkNYx9pXfXz9QsjL6uljVwkn8Jra91Ku74fOAOEiw//xFYwaoP13vfrbBYyA6BFNEPekIUHh5xE26MiVA5b9pnSIZ+t3k2AnM5DN+fT9dbE+RtnzqM+mix8ZBFR1OXUYruxfQzhvYjA1/iAViX7YnUl7rwXceI/aCJ/+XIlFh1uiScetPUEO4jDzJiO46dqf7wfmB7p8BwywPcPNfftaeBAdY9LuZHuB1fuf8LXcP7duFddBe7e/cmYSUIBZvEcUwrfM0rZzhJmhN2JLkdmzMjDYL1Ob+YYGpFdB/DOshphq2/bba85woZZ6qfmkl5tW5xPu39Xsu7ZFEz28o/zlWKXsco8GCE/02JVpbW+CpAuzvDiauKCN0Zv+iZ0eRA3bGqp9M8S+d7948Ps0Bzr0bmeM0gEBtDw/hfBbW0Lmy+ZVkBltIOHgbUG4h/cog/Ch/vxfRzYaoKDvRfbJb0nQYhNUmjGiBpQ9AuraUTQsXWBE9OtvJtTM0/tU8JoqelWZEDnzaqnel3DhbjHZg0Gy6MQvmZ2+pzZCG94jR8LbOEyG08s0kQexf7TCb7+QLkXoUrgvlldLw550h5DmN9MhgYs3eX+Fqq3sP0D4cKfAtVoDCfR78dBl6UsSsAPvkS/hkTXsO2O5VNGhbss6o5d6oBZyLiZZYSM0c8S0DskaYTIRSW/DF79Rv2Z0ftG5ZrQyf5pwzXupoa/ledGzdr5BTEUFlPAetRCezUOelL8qgcom1d8y5NjA4lHedc7i9FA6LRqqWmKE3em88Cpb6D9qjzSbVAad3cr8LsIzWwzvaYbOUmXYKC3C+uLQgfdogHAOOfnRe/cZ/+z/rFRsjTMc7hvQ0HTiBprC6YSiYSOsXTBWmq/sI5WL5WDg/nMuq/vL4658IWnpth4bihwzbHR+S0MZeI+W+0patcCcGR96/pmB/hTFFCrfCAwe59QEbg7FuMdbjDGGvcVsL9JYEIrpPHHzu83KfBLhg3PN2ztU5dH51rioaAEzVIX3KIzw46GR5xQ36iCujdI8gowfGuebkvQi0o1hegpi6P4zxsp5nkhx5fAgu55/A4Iu0JAS29r4jjLOBso07t6mXxh2jmsj5zSBEMl0W7SA9yia8KRU7ZIoHTOkRuwnFRr1uIPZDKJ9RJPzhEyw/sJU0ql4fpSjdZirykx2ZX9fwh2eZh/ZIU1F5B70WXWv6XKPaghnKk5WFOazRBGs/p9Ya22RzEfnqqqLZsA7WOg3km+CuYe0ygeqCaB9/zOfQrgSnelPi69U9K3kn99vE6yRLN6jJMK/xz50+fXQEok3UrbQ/nNHcoHaR/NMzKE5gMtMh9MUe6zN7KE8LoDoKrCuecdx6vL8AcLXqv8MoDQh9Fbt6/77RY5IFu8RKRD3YRv++DcpVqhMLbGnxccXnT24GL3nkQlQ7Ip9+D1Nsfp0C5uCtXyIX2IiKqJNFX53Wx6xmRLXXXbT4KcMW4/qItePR344W9gs94hmj7vxP0F6nyrN0fNypt93Lf1RxDrmc5nhmnC5b/Jqa48p5hyjZ39rkgVtU64LO6huuvJ8KyT8XXn+bu1L8uhKh9rGRwXOyAfvkUY/7gHeTw77ZuogUa9yT/r4cKSTUMjJ9YUVSFFGC9FOZtiJBiVlTrV+auMHqWfN1bar37+Et3GrZT9sIiHDBo1UT29XlBb/t0cDkbhvdE7mdbu1DvXZbTBkH45AmtR1vMNhomggeCm75aQZtvVhuMvQ9S+Np4P9H/gsrc4vJdwiZ7Ak7BwXKAk6PDt2xgVp4D1QQnBv4N3lNhm+EfyYDww0KUSjxWcKSrPX9ZBTov44q6A5xnfv9r4x7vXQSO+U7C7jujKfk3C3u+vaC5HqynxS998eEOEsmyS35hUYwMJ30duPbWJQ0abwKydHzNFATqKZU5E5Ztj1bnz6kiCcLc25djFuG2CjTDwzw1y6voQXikqMFOTog6HITY/1pi7oDN5DCuGeku0dhVRreDPpXNlNikWj9YNZYkU2KMW1V4U6bI6Nf51s6V5Pgewun0Zsi9/K/jTCJYoU4tK6jMDdirlJ9YorGsN7oBBuv/u0PvdpB9DkfcUSzbgbUX4cCt/L74RiJ/X3+QdZYIqvvKJFRyRAuuln3pOE7SvzdQgXv3KGmY5sDn1+2l9EXjqhjXgPPyZw/+KQq6v/59wQKsZWPPo9FnWtK+HcHuCKSjNKHmeOWmCRd9pEwkAGvItULT83BK/uT7jwHc7CJBdrSOB6mPEr0Ro9w3toPoQ7+uDhOu3tAVlSLy6/N4xFZ1JtG4z13BDpGHOCpqYlVprT1+N9UxbkKPetPUdW5zfn4H7zw4GqomAbiL8QyzNy3Q6dxHsgER6sPqo+6egJoVGSd89jO1Gyy0it82NX5LIYzZd+2xJLj5fpzNb6/+dPL+DOoRYdOPPGGgwMOjatETNECXgP7oTvN5bPkuzxgL515aNiLyPRNqmUq/6+f65P6JvrLwytsLCAndjdWzIQoeATYJ8YtHp9CA9M3iLsYm8NFw76dk76p1K34D2khOBe6hQ17OXhAQo2Z0MmW4NQ87FfkMPmilIYuNWis62wbQas1D4XGaDLbj91pzRs9f2HcNPBO2sz3lnBZ3+SyZs1WnAH72GADnfjhi0B7D/cYf2zNUvHdwWi5hkFk3xHF3Srf4Rfh88aW2KqPOSfIA3rMRn6grmA1c8v4Uo6/B8ipyxh9vCv9q+C9gB4D3V9uOucEM+jo7jD6+SmjthdTqjFe+uDoj/PKdLtht+/S6yx0seOPR/PScGT2qOjJf6r16e5AXfeozFNLr8toDaDabhCzB2a8B5SCFfdPXpvxtoN7uxrnTX4vUSdD2R2MxByQs2BsyJ109ZY79sHhR5jEsC+aLCfqWX1/vclvL9Xl5rHYw5Hblo82ybqBEQPAwG4a56lWIYWusB8+94p2zkp+M66WCeeYIXIt3OELJNsMJ34vB8dl0Ugn2fHzS8Tvqv3TwPuWtyq8RUxNEg6ZPeFMcIdvuI9OBP+prD6P6qKHZgcOaOdd9gdhiw+3evA/pzfOTYJvGG1xZpQfsNQMhc4Eo6Vrw/8pULWTSGcfMIxJrVEE9oLyWJScr7wCe9hgB136ykRoYvKJvDvMIeDQEEQfHezFk4e00Q0Rtr+/i1/en1POZdUVvi5LWIj11HP1ec/4XqBpSPdVgrQOvv855vFrfAT74FCuLvP7tTLArpw7q5PxRBdKFDSw362KfQ2zvC5+R2fsMVoo2an7gbWUM+UL9x+SV49H5H4cSdB+vvnyt1UZsYIrme5PjBw4G9PvUj0zUsiNUISA9RyYr5eBY/rcKcWNMuH0cyT7bCCU+wm1YfYUCUxv62id+q0JZ/uAOHzXa8kuyIU0Y2vt8Z2ZfuCPd4jGuH6+nHojZAeUmpR42Fji4axl7rUl2qG0HyzLP/xcztsZIpcSZMlo9ZXworm9xxW70/C310a7EiQ0EB1nAE70jr94TPeo5Q63K9ZGV6P7TdCEKj0au+vHUCbONo80mcMfNudbUmh9pgyj/HAhx88aMhl6/u6m6vnUxrhiTGlOr7eOuik53enXu1tYIj36Cjhp5ULE88Xm6F156U9LcdC4Mjk/vd+4uZA41yiV1+yx+L0dnIdvieAfKlKNZ2Zq+f3ZsIF9LddNs1FqC8gK7z7sQ/k4T1a9jSeL2bPvazQo4JsA2eXMGiSBf/XdWZAGur5scvdAasei9/vay6A5B/dnCpRW71/UgZx53zvdWDnn9ffUzV+nhGb/OAG3qMUoj9+cG3sxXeWyDCn1jT/dyCUxvG395CMIPlqw9OMaQeMrVLFtqiTC4mdcstsf+OzOp/wJ+ckBRO+aaKlGjGPQonNcBrv0f5K3KezzkzLxJug/fJZ5AcRDvA1a8y9NF8HmqlPXe3NHLHHA4/kL5xmR1L/M3/ZOe/3+rHeUUb+k3wvgzY4wzzeIxLC/aLs9l5XOYRc5y8YFXqqoMwxmUnGEFWgGGayjsc4YsIpL4RvGjMi+VodYaPnW1efP4SnZvpo1u6RRk4lv9QmHjpANt6jZsJNGlqOeU+ro7nPNkqXDxuhlPEdCmQrOhiY0gwvbHHEPvtIqFeL9lAvdoY4KP72Xn3+LPtdnZ93HGeoqPNoVucra0jDezRK+JxbD3n0EQPimMDnd/XxtaXIb0KlpUOPzMlOmImTUCn5n6VGgf/Zf9nXbF5/a//wn/eXB9eyfp10hEm8BxLhWRZCgibzijCAVD9vn5BFWhy/ao5V8SLahQ0WiUZOGCoIrboVNN5YceqhWmPw6vPTl/BzMfnFhpbrYFyyFqM7yYtK2f/2MHAe9yzDjrKQXwJwVSbeOJaPjHK/aqmzHTIC1Yr4R0x5Tth5pTW5XUHciFQ7kH9XUG3180U4R/KcR1OpFjpae3xGZF4FDuE9YiR86dYJs2EuU/Q4b4fq70oHcDtvbv/tizNQat47HR358/t3fF6H1kmjwvsi2gl/zkFmxutNOLU0G5Zd67+7Tsa7LZF++4eGz+elwRjvkS/hU1TGrpPX3VDRjPJStY8piHBuXzNZ6AYpB8Jo+/icsSYusvIRCTn01D6v8ese3ZX9Bwifz5NxfjZog9zTL3vf7ncFCbxHNMI1nM2ubrvjiXTX7/dIdfnzfimXEPTkkCucT7OOFIl0xiJ4BW0ufJBBHbJhG6w71FfOXywHcT9UZbRXO9UaNRay77+COQMj3qPXRB8V3j+1P80Dld3/cgeehsKQUW5b1T8uMHBw08nGFmdMSEA8uPGSNGKb1XXKHHdbPd+l487d4V16mmKF2qI2pElF2sMg3iMS4ZfT4tTLbNwRa5MKeUFqJ0h1l6QOXXACX5l2l4wfztiIbEn9kUxJ9EU2W46B7L8yv5Rwh+L2KbN2c2R9lOfEAMUJVPAe0WRxn667rsOt5Yoq7aPP6yqHw/rSPf6F45Yw3WeTGmfvgpU9Ob7hMEkERXJuneEdCViZz9mP+7PyqFwfHhq6c83Gz9rKCETwHiHCY35WtJb/a4vkg0tfSHmHQI329gMvefXBN6+rKuiSC5Zk8/Ha/AQnmv+f/Ze9LEo+arxNDV3Nm5WNHEfQhveIRDjp4CSffPmfc38hSX+p1h92Xh/QOZCnCbS2VCWNXhes4qrP9xBRVvTQIM33gkbQyvwUwtNE53aL9MqjX4e0pzjfUZZ71Ex4SUiEh2O9DnJzqihJ0wmAmJfCXzrTVGDz5P3E6zqumOS5ikwdPQZkJu2qWM8Suro/4eP7DnFtdpFCdU6HKno3bESxeI+yCQ+Qd6Ynf1ZDLsT8jzPXnKXGpaGZh+2hWr4rRlOe0ue8Ok+9u05y/mFv+Op8XtxLWxT95fJF0A0eCfHAVF30Bu/Rsnv37vC6ZLgJderERxSy/3m/ly62OTQ33EgTLMiTfuSKRWtycb8OqaeeV9mjMB4dsTJ/2WnfSnPukN9S19+4desULysieipFCHeVLNGoc0yj1Fgl98igC9vhvoqGTVywIVKPNSyKU3DDgv3tTQfNyWBgdXnbi+LV60MjfLymcibWTANKRr0yBjKN0RDeQwHhfsMST04sGMEoRXGX0mVH8DrrH7K50QGlPBo93ZHlhj3P+GemNk4cvOJZ2qq+b0fCuiMVRbUqusve/fXJzqIEU1DMVftPKtoWueA9+BIet5HEdV7BGbgZcxV4yd+pYb8VSI6Tzohi2lbP2uaGTXVrsJJYpaHjdGDA2lNeK/uTCOfWiKfPibaEp34lFofGvdBOvAdfwsOLXOiiq92g42lBY/lbQRgVvzf2McYNPXVZC9Gb3DGaVs+w9aws2B48x3/3QeDK/BrCg1Tmzt2usQF1qx3cp5p80Bjew13C7cp9zJ8d8wSvOvp9RRt9UZD55uf7Zj0Qbbsj9jLbHcstim3O/yAPHoSv3D+E1yn8Y/Jh2h604p/Gx/J6ohC8hwF/3EUagg+r7fJemX9yPtLVTv3PdfBnrsnudMfotVOOS+9TgrUCWQ83q6z+/3DZKYyHEg+POULzGm3zG4um6AzeQ7Mv7hOkJmk1hq3ATvStVW/QDe9tKGCh2t1Z3QPT6y7qY6GpwexH+cDUV56r+xP+5uFzt159VxDUSDpR/Jp7uQcxwu2PUfTe/vCD3K0xdO85vSDy2vnj64z/PGdOeC7yFHtgMxnfdibTNKH/2H8fjkLw6v1ZgHt+LkVZ8bgHuJ3Lxr7Q66IIvIflXk58yFdkPACC3kuFvlIxhlo1nrF0Fj+U4pqUEfHGAzusyZKU/VwdJtMpz0R+Ra4+fwinp3lkhC26gabxthO6lX7oOt4DyQV3Zt26+rn920F0rN4tW+bPOV+vbq4zyRWZvmRw+8/CE3vLPJa28FoGDnTVhA0lr94/nIRbJE4LWO+yhmevRwYVd21GQXgPD17g/tXLJZNtrweEmyS2TlJdgMuAJYlSQUU0r383Gtz0xCytDojVC3CCv8LBisXQ1f8/kwgnfwkwT36rCqZLVUqcWm6oW/9vD8v91vVjadk1hrCj4KtpcpUh1Dzp3M8l85FKqk9e2jrjiZFmq5QXvt5ufPJQa1xCbvX7ZdlpWXXZ3e/7GhOfCO8N93FCNS/+9o3Nt4i+spkl9uB444CPn6Sukhns4aDzj2k3hv7AbS11IZuxbzYvRlre8qAiWYnd96R3rv59g3D3PlsntN1AB+m1pG3b3e6M0vEeCRKe/vJt0/h+M9QQH5xIa44C2QtrMpt/OAONi5bO8XYzNlSu+e7yBmmkfrszW3gwaWV+M+G7OHqaN8Vbosc3P5vtU3VFAniPaNy493lOXPhxyw3lFYZ/0T8TC7+sTp6QE3QFkqbhkqSYF8baPN3NGCSDTr6buzXmkYAEtG6vPXBQWzdFA/fxve6PKr5ZIWRafanzgyQiekTSwv2I35zq+BoPdM1rXX7arz1QmB32+PeYLVyuzeWtK/DCep/vOjv4nIKucm4Wbanevbo/4ZsSyQ5z5caIedczPz52R3QE71HUddwjBt8LJh51ROzHH8647w+B3xml4VdLjCBFZVTJgsMb83365V3iAW4kNyf76b8De9CC5v/bX6aBpIp710Lx+cPNWmib5O5GD/3NiJz5t0ckoj/WcoZZWMUUyQvsmfjY6AoxxhU3OCv0gPRxqCDZzRtjQAaR21nXI7lPO7Q/NMet7j+C+6XRhXYNLVXE83mGuTM+AMXiPUoZxd2d1Vlc/7ABWuR75nM/mgxxrxOutWHqMND/ufd4tzcmWNV9+enCGnS+25DxZ178ynyVd7gPp9Wcmk+WQ8WX1RJIxhEoFe/RLsJblQrKfEu0kM2mc5zH97qhDwMnt/yskIOUFzPilxy2YAG0Jx1xA4vUzq4p+xzRFHT3ZoG/Rhe7Lukl7jE6wZcOH6OgL5laVIGHO9Ag3qNmot96+YYbS7Ai6vjBtj6SUQ3R7yVLnCOZIJLbfxqbTm7BCsfFaC6ivCCtxcMs9W11/xTCmWIFv2ll6EATE9uBjGYDYMB7WO7dd/Mejmg1A5sPxz0HbEKBOfMubX9DKCpUuN7BKuKDHWm4/sz/iz4ctTfT2yC2Z3U+4cXUE/ETJ32B+Uzrrtwaa1DEewgg/NDv2ZNVcZGgeEPtK/P3KHihu20hcnMcSmE4tmWsxAfTgerQQkUbcFa5cumK2Q7UKurcSX7tprvsPbIPeXsko4BtjvXv/qN4DzRG3PtU8lk3YvHgPh3E97zMEf4PYtwvPA==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAA5wMAAAAAAAA=eF5t1H9Q03Ucx/GL6FAGuC6wVCh+juTIIWZyp/jN4EqIQwVtQZwB4a9ERNul9ONAyAZOwPjpQJIfATkTdGy4kRNUbA5jwMaP8IShgALb+A43Q3Cx9sfn7nv3/bz/evz/et/7qfnokcVqJQkNzecbNXzIjtm9gUuAw++2DVgAXS7Ff7sAeGn/9yVmwL8aziwaARNbu5OnAfvmrk1pAQe7F08OA57fbWj/G/B0XvuQHDA/wttdDDie/llmDeAVUW/6WcAMN69XMgGvXrzetw9QULdkigAMuBV+NARweY7PsrcA9/i1ysxLuIYml9ujgFYV71QrYB37ijcf8OOqqPh0wCP9MVUEoL+qhc8AvFzBLdL9h6tRF1y9BhjMSAzjAo45FIujATfN+FscAX9KLsq6Y8HNaZ8ylgO6VzbURQAyN4TGzb/EvfFAtPsuYKNBX3cYsNrsJHMG1LJudfQv4jJT65VpgJsYv3PsAe82l2rvLOB6rPJp3AnIeri96Z8XuMJTfavPAa7ddTLPBdDyToaeN4/747ik8APA0Pv81Pp/cVneEp0LoBc7y078HHc032h4HTB2TZvX12bcsKjkXnvAIv6HW3eacEnFll9Kn+EKt2m0voBPA0TMhDmSmKLp7yaXnjXilubPFKwADPmqPDeIxP11h1dm5Cyu/bK0i+0GkniN5pPIQ7739LgHilo9lDrKg8jo0UBPNuCnPeZ69xncwdV+DnbTuAG5wbGcKdwjxYHzrKe4NZyBLsMkbq1n5LkgwC3RTIZ2HNe16T1zzmNclul9H9Ej3L0rXm3bPIa7o/LFRNsorkg74qsewX3Do+d88EPcgQKWkPfAtgvN/QuS6NPDuMHeJ5TXh3BvuC4pRwZIQk5TPRGuuNlv6ybNtYW9nXI1bqhjo2NzL+VW5OOU3idHe3AFCtmajd249xzUbF0XLres7xlPSRLf0BzeU7jOSYErCWc0ZXZSipG+7E6V6TZJ+CC9kc6JJ4bXdVA6ITfYJ8Rw5La9kOuRXxxKqKn6kyTikXHImKpFt5+llLuQ+yLZY3ESyhSk5UBgWmoL5UukRMrLm2+mFCNV2zaXHP4Dl/WdrjhMiBvQIrSmNOBu55RVpNaSxCc0h7irCLtqykHkcetI/+VKymPIN925x0LKKVciZbwURXYJSUhpltUKIn4rtPWI5qRz1vr6MyQxQXORKZoT8CgXkM5+n8s8s213QjKQxthMWfYPJDGLNCCT3fSuKzNIIgn5JTLYM6pFf5wkgpBspOlCbpsglSTmkCRyWqryuHnQ1mPkJDIpp9pwP8n258gEZPfs2xXCeJLoQiqQ/wOwSX16AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAGRkAAAAAAAA=eF511GlUzmvbx3EhIkW1SZO5MlWbTaJO2plVlC0ZmpAGkmieR2me50lzVCRKVGfORkkaiC2VENpljETGZ6/7/7uetW5r3S8/63scxzqvF9dfW67M1GbdyLqAYmnbmevbWMqnK//xoqD3z9s/q9HHf3D9NHqEBOcpjx1Mqi9pEDqOcxB6y3du39XlxlrtedJkv6RIwAwbZeZVUm6ZNL+NCctwDoxnb0+YWtGx6O7oAVKctTxWsaV5e+hpzHugP4LDlfgkQq7r0NC7yoKi8zYzu7I9JtLj29itDs4i/BPUYrc50yx0e3R99EPee3/f2HKEZt/77/3bMPGotJS1MKJxTXWu/iLbGfvt3ebIvlZWdItzQbFfgdIXd9rTwLkC3fkG5w873BYL9myjM5o516Kvhlvuysz0fyRO2gTjzSx+7GKrbV0l47Nb2cIpnJ0Nlr2K2xVI303mvAp9HuY1nxzqfOK/h/oKc1ZFD4U36mrr+T6xJrsuaYYLDe9jRe0TXqccbmUu8DaRnKMfpSLoSbgA3Q8+WqdduW/hn/TLFc6V6D/hbcWbdfOyfEjpfsniw1ZGLEJ47PZP6q3sFvw1tX/HXw+i6Cgcic5vwPn3rj+79nyzo3d+2e+Atb3PflJ44E0EO22P1S47yMTLImL4xrYyCditoMdIozSKqsAS6OqwxzKpR+0j9lTxl30lePymCtHoeC+i6rdv7C6FwyzNeHaXYG0L04TzDTJzpA5HUSc4Gd0b7rtjYr/llQM9BqegH4frHGUHMoU8yPRQax2RQTN25WxglmVaC5OGBYbUJlkfjKAzQzhfRpeB9xStKxu+oUGagzkXod+Gsz2ndqZ/8yUyneMK7r+wZHyW5XKuxi1sDBw8UfyF6YEoevYB558WXE+ApZz7N1/sm0MeP/jv/W547BiR0BR+f7JKNpE/pc+KaS16eS5kTgv7tIBz8Lxx49dLRVHlX7oofKfBUF4rZR8ZgPegP4Frg9Si9c4Gk/2DExX/yLBmd6JsQ99+vc3E4IrkdIOL6VE04iXnbnQLmNa57vvaepJuxXwHujp8KkPWdKuYPynJ8hR+0GrDvM7MMhKkt1kMXBxfLaxwNICqZnMOQl8I+9CGq809FvQk5k+hW8PhrkuFdGa7k007v56aseMkW1l4U1He4999WK975bCZpBM9DxP0VHiLW3XN/qoD9IIu52Xo+fCUzLHXGrQOE0WDbClHRVsWbXlIOHLvbSYJy5jXl7x54Uo3wDHoKnCllmyG/TNvOgKnoQ/DrjGGka69S8lo4aTLnRfs2BPL0IhyydvsO9wTZlr/XdyD3uQZ/RYcLTxbbbmcB519nvNj9Llw2szpwsYuR0npd+ttakoObOmRMtFnXc3sLmxgMOG08zp/ugWWR98DKy1OXr3Ry5sehOejm8GR6ftrLz2yIRniEauMpjqyrY1HxuqXNbNaeK7qyhHJE940Gd6EXgTPGHdnwaZjf5LeGZzV0J/BfhtPn5zX5UxGtWZ9XBHpxDQvG41EOjUzcW3OTqlVvrfbvKgavB1dC7bOdw6PUjpIC7CvgX4B/qwn8dV0/U5i5VN4SVDMhemk7RxsXt3M/OAYE7HHtSmOtBv+C30A/mS94IncVBvqCGuiu8Atm9V329lY0YRDpz/PHnZhNcWKyprT//39sJBquaqtuwe9DFejM3hzQ+LYrzXeNPuXngdffPD7BSbjSU8tu61a6+jG3q0yZ8n3b7FsWPrg7mdBKW60Gn6NfgcW/0P76ZFKP3oNHkSvhJtjyltftJ+i1j9FPc2+ujOpqjPbXsXfYlGw40tXST0pF9r6S38GX+n92W9Q7E8njBH7jyXQJ8NnN/l4lEUHUqW1GvJZPR7sbb24q5PtLfYXXHq8wr4hw4OWEM7P0ZvgiwEyid3f/egYzA+g88PRw21vrUoDKFNfN6d8mRdL7dRf0rfiFrsLR6CfhWPRL8PhW+d26f4WRGt+6XWw++0Vm/XigqjNwZ7CzGEvtul1fJf2SBPzg3+4vOw9bxVBHWENdG+Y8E+z+8cwlPLm1dFPw4F438QK4+cnzbyZ64jztcH2JiYJzz28qFE+LJwqwS7oa+BT7WVOaWnBdA/sjL4P3vHwe7X1y0C6olGwNm+xD1PZ81ekXXTTv/9Tzit1gncfMI+gf8LK6Fo813poD+0Po7NhJfR58EE+ndQ14hF0872y9O43Pmz42lLLH7uamD58Xo343NOPpHrwR3QjeEFm9YqTqlH0fQfnf9CH4elj/+JfviiGdj/K3eR5wJfVfdDhK/q9iQ3CfM/Pi6ukRdI7cBX6Q/jg5pRS78EQuqSXczW6IpzjsyDo1Noo+uzvew/XyPuxxORNLobvb7JBuOV4p8yQejytgOPQKZz22eTbvqQQuvABjL4YXmXW3N5yNZh+bht/fOSVH3Ncr/ZBsOQmew+bvbjcL1eTSOPgY+gxsD61FWd7g+mKds5u6Dzzlaz8pP3MlZ7xdJgQbnKKVVaOT7obfpMlwMml+j+1C5JpJXwd/Sp85fIOb5HMQNoJ16D/DR9alJuU521HYyfUDE9b6M/6RI4VFOreZP7wDDOJR0pb4+l1eAC9FP7dVMTkw7pTtBV+h34b1nV6KuT0w5pahQr1Rb31Z5PN71WeErvJdsGRM7oqRfqjKINF0Evgd4civmgPetAWWAr9Fjw1zelF+qgpzZi8feoW09Msf32kiMXbRuYPX+78bYvooxiaBF9ED4KtBSPOvG0NoHa/9JO8/e7umS2FR6jPq3qHewoBzLBaT/lkcSMzh5cE3Zcbdo2gfvAhdDvYuvXMTkN3X3oIPohuAtsudquYoalPw1rIo4OfAti0dZL73Wz/3YfdDz5PE1cOpca/9J1w+vYfUjn+HvQoPB3dEtaK5H9ZLqRKRhyPnjI6Fsge6Btouu9oZD3wpVPxZ07sC6OiTpx70flhEVlRk9NbPagY/BR9Krwm2uLk37FryeVJvkRjdRAb11J0+rpII0uFm/jFf8rLutFH8BT0O3DttrMqFzfY0Tx4Eno2vDDT3+SDsgl1T076KMsfzFZsGFfH13GDHYGXHMlKnGq5m0bCq9D9YJ3fK9a3PbGg0+Fl6KKwWbjqsNHqw1Q4S9s01i2YNfeMhslevMG+Z3L+ljZn2vR6cyqPfgddGq5P8usIfXiYGsLd6PtgmaJx+dmuunQwSWvNHM0QFsYv5ZB38gZ7BC8pz/pQFr+bNMMh6HXwFu+V+44V6NPsXzrPp/8yn6zcRSiJ0pxWIBHK1imoGS5aeYOtgK9E5mwJ0jtOQuFt6Kfh6Od1ZcJKxlQH3oq+HU7E+50n3pC5HhXK5kdOj7cTucFs4FGtqpdu222IK7wQ3Q62uuU+2cD8AHWfwHkquhtsIz1Q3FvnSNWWnxLbYhrGLuT8rru2o4Epwza/9eRe1/MkPnApugfM96RjRkuhFZ0LF6DPgef2qjS5WQTQPoP1k9pXhrOl5ZqCAvEN7CkcYvrgy5WiQLLCkPNKdJ4/h0fIVsuZUG14DboW/EyjUX7Wq3AaOi1ZrepiOHtZW5zuadvAgmDxyEX16w5FkpGpnHvQeZYTEO7556E7ccV8P7oLLJWQMH7wjjeVtok3bdeIYH29794lKjcwcbhj88DBs9UB5PNxzk/RR+APpdtlNhb5kPWYH0bn2cfnfr9xyjz6Rf9J/vrzEezxV6U/S0br2RDc//CHQ6azOxm/h/ML9B/o2gpLd5zUCCSL0d+iL4Rv4n0D+vITal9GsLpXT10M79ezR7COnk5lqMdhcgWuQC+Cz9xdYmM414f8DTeg34PHNPVTXctA8jMtSWn6nkiW2HStvj2xng3DG3H/KZyA3g1nTZWmb21PE6EznLPRp8Bsi6/aNpUYIvFCaK95XSQ7cTZi2ibDeiYEZwg0/T2iLU94tkcXgNcP+Li1moWSsbAdOh/c3P/Tw/9bChn8uypLaHwUu5grHy+3pp71wgrXZu7Scj1OG+B8dAY/yOuNl1kYQDIfwOgZsJKO4nKRZenkWPj2zfYno1hKZ98/P77X/fvd4xwtYKOW3+dNteB49K2wyXzF10sdIkgNfAGd51jdFWPH6J0lDZseDXY/jmJeU9LX/F1dx+rgTVY/EzXNA2nNL51ny/O7g99MiCLZsDN6FvwsZG5/Uuw58jO43axpbjQzcbGV/JhWx8aGcL58SMhwoDCQtqDro7fCngNb02qMI8kmzJ9A53nL/KJLV3IKSVS3wnWvqGj2c9IMRbVDdSyJ5zRVjccPIqkN/AXdFvbC/Qvw2MlcvwjHHKm4WPvHRbJOIUh81bgYlpd49U9f+bp/v8OcdzvnWJb1JNORpZxj0L/B55OEnydPjSRrMJ+GTuDVAsvni3RcJDatZr+HbYxhI42f3jwbX8fc4XOdsQLzWRo1h1+j8+Zlv4yYZGtHETf4zS/7FWY6/IUpl8jFLVM02q7GMOVpe1bm3qxl1XBN/YWuUfUMehVejl4DS09crdiTEE6uwUvRK+GNLmmdqwqLyfya4r9El8YyT/2rruZhtUwFznR0CGoam0PFYXv0eXAd/x9Gb+xOkzfVnM3Q38Hp3fLmg4LFZGNabOmn47Es/8nZ+2JWtWwfLGL8XWzu4hy6B85GN4VHti2dU6AdRL6kcg5G/war7n/jsuV4ERnI+NNhwotY9vDgQ/f9y2rZT5h3vxu+i94PSwy3GqqFu5JU+Dp6OjzVenV/t1U+Ccx5rTzdII4JPROUzRqpYalw/fxpSv4DWdQNHofOm/8hXnF7xq0qNUl4oI/rs+CEjfHW9xdlk0PqHc+LMuLYtyErj4yOGuYE67T9cTshJo+G/dKT4JRzvit9vW2p1zrOdein4Myp25NGf2YScfnfDrdJxjOmsM/ZLamGLYZl+zxWK0Rl0k1wLbourGm/4fyrs0G0Uo5zJjqFf/Z3rZo1GEYeCu169i46nvlbbrbTN6lhr+CTs6xmNd7Jok9hP/Q38PxDG1rd4qMpb94T/S38ctatP2baqhIPrfG7jnTFs8WbWiKL1tawcNh5cmmWvGcGNYNnox+Hzy2cLJ2vG0aXwdPQl8MrXCPWpNsdoikaB589109g7QuGzizhr2Hn4Cb50st9X1NpIdyGfhlOu+Txj0RXNNWGy9F3wCe0NUOmfIqmySrM7kBHArMb99uFvFvVLAt2Qx+CvdFH4Cjdr4t3n0mh6as4r0M/A4t5hx8zHJNNVQ70pz+XSWQjS4ZaDuRXs7XwzMhcp5DrsVQMfoU+A5Z6d/lD94lkuh4eRt8ILzPK36Iim0tfPP48ZnJaIrMs4fcLPVHN+uHb+xSV7zuG0Le/dJ7bShqENZYl0TTYAJ1nFdzPMZl8QHFWEutSk1x9TeXf3wcP4P55+Cl6Pix2U1yzfmcqnQLXoQvCF/21qtdaFNKuIb7nLy2T2Hcna8lH4tXsDuwS8V7h4pwQWgV/Qb8Gd53nHxrNSqfa7zlLOHNdi+cYss5+ZyGds0TbXPBNEiMdr5839jImDndW3X0cGhlB58F/osvAL9p6u9bkJNMtsCb6JjjraHKD9dRcus40YWDxyWRmr3Ss+HIeYytg25UX8mtFo2kA7I/uAyfFvh85Y5pETWAfdJ6HcgMKJunkUS+jueJ/sWS2qSgkSus0Y/bwcTfFx+ePxdIBQ84K6E/hOdY7ZPnM02gO5nejZ8MbeqKXi7lm0QVPrW7UbUlhzjMLGyboMCYNp1r22UrYJFEB2AF9PHzTaque6Po42gKno9+GDy9byy/REUyJ2VVH5fYUVu196wubydgqOAP35eEq9Pmw6Ya8bsExEdQHbkP3hXWWtIuafLAiNxaUHf0+N5VdX6qhUTR0ndXA5/iElOdrJdOFspz/QZeFt3nOLNm7MITWwHIK2IdnDcbuWCXmSTqVepRkilLZp6H3Q8/8rrMH8KTg5VavmxLoe3gU/QNcp/QwSrXhNH0Kf0Tvg3Vx/+WaccNqamlsVllWhuTM6+wNnIj3f4Zno/OcVc6fOGwRSp+v5lx+hesvYMejfnyiYmakQfRzXmd4Gnu4SHPGns4qxnMPmcGvJJxKx4pxfos+Hs76qmN8d9wuIof5FHSel/5mL2rOr0M+SlzfKzDvDAvRnmlsa13FXsGVx5WDdgnY0LdwJPpL+NTLH69PilhTM/ggujnv3qs30Q+EQujsuf6Cq0rOMPUTz/PCxlUxITht1EZMQNCJdM/hvBy9HV4hEtuQPMWUCmJ+O7oA/F7klBXfJB/652Hh4hP86SwkKnB0qJ4yZfjrpAVCZ8Mc6Am4Av0IXHPPbtFm1yhaacp5I3oFvD+7/XltURq9ZXjs+HrddDaqbSssYUhZNWxk7BtR4neC8BlxXrad61/R73ybdscoKYJegsegF8OvVzrp+HblUqvdzQrTU9OZ8yTD+erDlewAvO/Mut7jFtHEB45Bd4MV2j2XlA0F0fWwA7oGfCFx4oUFxheosZt4tEhTOquc6D3ncVkl04eNP/6uGTcmnTjD99Ft4ctpQ99m7g6j/fA6Aa6/gMfZOexsED1LD1dNWnh3ZgbTXrN3hqpuJTOGPx0VnN7snUms4D3oFvCBCzm+hake1B0+gu4Gm31PDoiIzKE6Y75VxphnsGqrZVPiBiuYJmyO92vADF0d3lX97q16sjN9/PPrf+yI3gsvn9Y/vCA8nVqLzlqtH5fBFqQ4JAUVVTCej+YkNk7NzyJn4B3oqfDrugXvA58Y0hbYHp1nY+0/BMX/yaDnqzWD1f/JYAkmqkbrNStYIcwnbRe1cUku4fVU9AJ47t7dX7xUjUgLXIbOsyHub7dx7lm0JpPFLRgz79uLcqYFJ0ZtN3AtPEvuwz/R78HNhiWj8+IcSDv8Hb0NflcrdE/LMpuGmcqcu3skkyXQF0uMzpcznnUdc3/mKJ0j/6tnWucsj1q1iew6zHlJFdd5zrHoMn9lmkH37zjfPItlsquKpVrpmuXMGL49pnmlzYVcYgc3ojvAj2dtfVRxxIu0whOUuM7zC5UGPj2vUOq0hryznJ7FpNJ9jz0duMY84Qti4pnjCzNIDDwPPRHWqqqf81kxkETBM9F58/q3BsOEG5aRdX3GyTJbspir+qTeW8XX2BbYXTDDKTQ8nmyA7dG3wn5z0rPe3Ysn5XAVeiUsZ+ac1tCoTzuP8wlMzMhiw4PZV+p2XmN9sOtAr4SFZhbh+Q36ADwx3uWYnH4SmWnDWeAl1yXgjM96U0YjU4jqt0y7d6NZbGusehj9cJVthpPRfWFL9AC441x9Z/mu2P/fl0NfC2diX1P8yuN2xWxmFOyis5VeZfvgvmPaN+V/RBBX2ArdG459dDiwNM6HhM3gfD6I6xHwU+yvNnCWTQjOZjJeSk3yB/59Pzxp/1jD6DFxxApWQLeDix63bLvusJNYwjPRefMeX/d2rJgeT/Uy1I4Y/ZPNRuyerZ/Af5WZwZ0TX96bw59DXqVzjkYfged+KtRfKOdA/sb8QnuuP4QHzR2WP5Pyoj91ZGKiZucwnySn33TaypiILueDrcU7K0PyiRqcgr4Jzt5mqViw/QxZgP1LiVyXhyd0JpR+FQygPvsl+u29ctih+Q/2bHAsYyFwxtF5HyUnZRFHWAfdA15V8OqldVAcMYCXoBvDSXu9rS0FIukKs+lr9j7JYRaFq1JVZpUxFfj8EaepKlOCyERYHX0yLDC6gKQ1RhFt2BqdZ8vvhtJbhd3ol9bsj/xSucyvR7jL4OUVxrOpj0Wv08MMMvo/+vbaihV/VYeRGngfejVvPmvG88JqHzrsn1y62SuXMfPFQ/GxV9hbWO9uYdspkwtkzWnOo+ir4PfSmp4bMiKIANyJPhGe1/FBd4dqAfUiUfaBz3PZuaGNE++uu8Ic4I2e54dL7MtJG/we/RYstUfFtPdJJJm9lvPq91zn+X1ytb6TcTG1uNIpfm9uHpujKH/yjfAVZgRLW9fvalG+Su6WcmYKXG+G58eN8wnwPkjGl3Euxv5Y+Np8v+qY2Veo0LDS7LLgPHbEsIlmVJayCfBHr2nVB1dcJpPh4+j88HQt6VlPjoaQYLgTPQCeK73vyMaSHPpomb9c4sc81hxybJLekVLWBYd/GgxKKC0l6ss5S4dyncBu8r8Z9+6NI9qYt8K+Frw2bsl7G4MoOiv/tXD+irOssfGFhZ9qKZOCHa6WLv8kUEo6z3GOQ38Au/DJ/t0wL5PsLeBMb3KdZ7UntzW8dunQ3Kmba49lnWXv9LRGHr8qYVmwoFLEt6VBZeQpLLub6zyH3yA1khPOEfFpnHXQeU67n7vNbHw0GbZLd1wmeo59elrsS9JK2HtYWXpjREJIJTG257y5j+sm8M2usB+p8oVkHiyDznOdk7qb9MBx0n90o5vCrnOMb+1eldQTJew1PCdM8kNkTxk5asXZEP0Y/MnCWDJc1ZVOggXRJ8Pm3UUKVWa5NLMxrVK08RzLrat6c0euhFXCx8XVFxkYlJIBuAL9M2wekliSlnmaLrrJuQldEfa9aVq9yLKAsgWfv31SzWdd2xbkCHRfZm9hS/MD8fbFBcRUlvN0Ta57wncNuPeXyHHuQC+H43duaHrtHkr/D9DEiqM=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAOAIAAAAAAAA=eF7t0d9LU3EYx/GPFriRi4TQCQUKaRChGyu70WcDCaUCHTFnaeaWziRbTnMYWStiIR3pB6atolDK0FwrrNC6aGAgSgQSQoOCNLyovNDIC5HKPl/xnwj2vXnDwzmc7/M63qSI5Wm+MQpsjFh/rxNg6u1QfzrbpzMMZ7Pz5RVbzeyR6aLuPYILdS7nKxH06PUBWyHn9tyAv4j1ai9xQFBdEtN8pYLrM3PDKQcF07v1kVmH4NnMWM58Od8fcC7nVQoW1jtnR48KbFMh/3uXoDU0ZJo9xuc+ays7PIJvTldK/3FB7NrPc+4Tgk09DbVur0AH55VYo2BzdOJWuElQeX+X7/lpQdg0Zlj0C0oH99X5zwgeHi7uLWwTbLkczPMEBD8y/qa2XBRENEvYe0nw2m7Wh4P8/rs0j79dkFj29VOTJviQMP7lxVVBR1Z3guWG4PtArmN/p+BOtGvnky6BIXGxvi0kMD4o0PruSvqfbaM1tjRr86qjjo7JdPxVAHyko577PqJjKqscM+lURcftbC0dczjfQEeLIKOUjvSdPknHfM6Vo00wqRzpPKkc99JBORYLGh/TUXkrxxL6KUe7wKQc6b6gHMvopxzpPqIcK9Ycq9YcqwVLb+jo5r736FgjSDbTkf4jyrFeMH6Ijg28V5COp+ibSUefYKyDjs10UI4tgpsTdGwVtDvoeFawrBzP8z9l05Huc8qR7reVI907lSPds3rpqIlxRTkmWbF6lgLxxhvv/9t/1YGoLw==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAYwoAAAAAAAA=eF4t1Xk8FesfwPHHTlFEWRKnDpFb7klpkceZSnWv1FVR3KJjK1KIlO3HlJMW6mrTnoOEVJSUytM8kuq2kl3EzRJJkTWJ35x58t/79f28npnnOTOjo6inpt8hURhav227d5k3FUm11VWXlTIg3PSISlI54xyz/QiwamKA9bSfWSnlzPLnmr5X4jsZ4PbinmtmOdPcoSku6O5hQHzJTp/ccsY17dg/BrzvDDDYcdeosJwpMf8zO3jtCANqA1/3vy1nCkyOb297LIOB/7Ma+/ZyZkh2Y2+upzwG1hszL8pXMLG58RW2ikoYRNq2bjVmPShqXHddBYN47ejZ9hVMZfSC2VkuqhjU1i49EFbBNDZUqZiojsfgsUrG8PUKZmhJxdp3H9QxODf58m+fKhhztQ2xN5ZOwGBb+c3b5pVMf7ZWr06mJgaWRxpsIiuZuIivs25qTmT71/17yiqZK/GyPTriSRg4Hr+lZVnF3M9oT/05pI3BFUqmNLmKMdD98UAnTBeDgTGrA/WqGbclpX8JRvUwMLd7gZKqGS+Nace0j+pj8D9xfrxFDZOlFbghe7oBBl4h5/LLahjK6/S11n8NMQidtclYXMs4FT+67lrAw6C/dCVj+475HG4nnHJuKgavTzaFT6pjhjS/i3HUNAz05610HKpjPqWfmP5+Gx8DC7+w1d31jDE/0WLiZiMM/h1fs3P4PfNTbdFKtU3GmI5N5XuPa2TsXNoLd3tMx/SE7qm3MhsZdaXGs2OCTTAtXsy/7PAfsy9xzqbDR00xSLmzLU/uA6N1lG/I5M3AdO4ie9eiD0z+1tHF4e1m7Pp16eMTmhgPu/1bTprNxDjj7ztm25qZByr2nR1hszA1R+LRvaaFoS+NLvasNsdgQU+EeEUrIw6yWBrAF2DwLUiv0u4jUzvf1YzXxDptxvpLG9sYG69Ck5ysqdhGty17c64dBuwf9ubDkmjQ3n+xnJEavO2y/uNlnlAtqZmz4OR6lN8crHIzhdhNiUbKintfeGYSA31TtGC5mU9ALrHoYjTMWVSzf2bhr7nQHYoeOe4afUtMXVqDQqOiNq9v/2WvKNQlq2yYId/CGcdtQl1PT3kGGxPTnVthTl0E38aeGCjZwjZFw/mnwogDPwfBM/FLJ6veIG50E0Mfk6a31p+I89v2Qp83NU1PzVs5qwtoxOuJ2+YYSbxA+xQ686GLSigjxp5e8I+dOywFlh/J9XQPwZKGvau6kompQwfQTLf08Sf12sj15geix1c137QmEScUHEKBW2K+PbBoJ+d3JhbV+Q3N+lpGLPkZCx2so9O8xJ8487L2oerNIx3Kyzo4d8lko1CrZ69LJn0m+/cLhKb+R2vzh4jB98PomlUD/bi7k+zf4AZSru/Dw8NfyP4MEuEkQ13tu+O6yHp0KnzukTVB8ypx2+5r0Mq5aaL2mm7OB/0kMLSqUs5G/hvnnC/nUcr0xzLgMXGJWgGS1xW1lib0cK58X4yerVLS1vTrJde3ykH6FdFdSuv6OGecQbBunL9S2R/9nB0OpMIrDgPnfewHyPk5RUOvh047Y1wHyXkUn4WBT2/meLeT86P/0oC19es85dpCKJFeuHqw5mumbpf0+ewVSueiG/aoMUjqZs745BwIXKryT30ZEWp5XG35zP/M3DDyS+RLSM+LdUE0X2rS09stIUhfr6XaOyK0GfMmaJ3nIFObFBlpk0Z62n0LotOk/rV+9XwENurf1xkZEbrvSKxW2iSDL+zYr3foOukbr3ggeovUpOf5uyOQF3DaTG1UOG/n8tjOg4r4hv6bPKd7pMcnHBHPWGrS5yR5IND3I/vJ1FGh24GayX/eG4u3OTQ5yf1LevDeBzWulZr0AoVdCCzauTfGelQ4S8eKp7FHHa+2fXL8Rx3pBa9iEJgiNelBJx8BT+21im6jwi3i7eartTRxqIflzJt9v86nUAwl26UmvUPSbghoD1+ZA6PC103ZHsO3J2JbSa1GkmYfN6eW+UPqutQtnHvfxUJQOrbcIn9UGGS71fmliw6+UOaQt2I+6XkFuyEPSU168YtjEDj6HfD8NirUya/fHy03Ga92unJsrjvpJW5xkDoqNelD19KQDjHdMmcyoOrr+Hrtt6bgnAOn6/qOkR5HHoai81KTPkE7DNLOi7vjlwDqLPzou2cuD9f1fXWZ9vzX+iFxkG6TmvR0BLtfp7r2mwGAStRY8cn2xFSsHl65csOYfm7epiqBvF1St5LfayAU0Re97uqlAqpEkb7v2T8Nv1doiFiwjvTUq2jEy21kTfoFMXGIzk6/ZVsPqCzvUjVvNyP83mihS2Aa6RMq0xFusGJNep/UIwgvhUtvGchQh1CeassLY1zufsU0R2aA/J5uyyBPXuqP5P7u7oO4/KVyx1YZSmdUbkWc0AT7JFsuyfEhPd0fi3jB81iTXmLgDSm92WqR92SoQtdss7H3TfH63JfOgneklwQchyBDatKLFh5BlK/x8ICmLKWzPzPayNoMu/yz78mAyyC5H8utUKIlZt1G+qI9EBTZbhrYI0uZXpvQnvrkN7wjL62qooX0+PZJRPVKTXpBVRzEEaLHOq2ylPaiSD/Pv2fhaVNc1VKiv5PzUUiG9LfNrNs5GxndgnS6u5LMZjnqXMehAbtBc2wQdW61tekQ2e/Rk9AhJJH1J3I/q7IgaA5ZvbFJjlJ3fhaR4SDAfeZ+w/GNpBf8d5l9frewJr1ywUMILJV0a4LlqQKBRgD8bTYWPDrxTpz5g5tXP8BQUHGMdQdn9AxD4N8w0UJDgepssazxV7XAmaEyj/TFw+R8Yi6gLm9l1p8580LZ99caP+UXKFAgYNLKN70WuOyOao/jzp/c3GHmHUS567Lu5NyccxnixoAPgSGKVHlMYdL35jnYX/bSuLlBI9x8U08x7Lp9lvUXzl3aDyCdk2/XCJWou8uifj9WPxdfa10fXMy+z9L5QRWESo6KWH/lrHUnBVE7XC8smqRMyQjkehc3WGIrtdhdcS6Aks6fud5FZ1Jp1l1cr35OjPAyZ61Vo8rU5eyY0/jTPNwS/irn3BDph6i3MCP+BWvSjzMsRsDXVK/uuwrl56Uieg4W4P380fAT6TJc79N9H2asl404kd7N9eKt7PmrO65NVhxL7ReNXDCathAnf70b3yaS5XogG4gG1XNZfyPPw0QEaStf1zXTVam+kcGDF/6ywm4ONbu1TeRI334cJuytZt1DnoevDyBeXj543kWNSsELjZQOL8LjSvqd4odI73D5KUp4+IU16TWpKigJqn+rnjyOmtWd8FX41hrPmatbffadPFnfNQSJ1CazJt/T4aLbCGTl/q79czxlvzzXwWSGDdbf9UF593MFrqde34YZL/5jTb5HGR0SKAkLbOu+o045hlUdkfwjxNrfehUETxW5/qBqMQTLvrMm34tGuVOoRGHDxNwwDWpH1Ix9K2IobO2hYpFcqsT1tDgdCfDQ7ORS8j5HRRZBdcOKd+eXT6C+KF519l2xGA/4PmT/3ypzfcnKIiQuyGb96/3kvYLFIo99Wp9d8P8BBNVduQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAcQUAAAAAAAA=eF6F1ns0lHkcx3FDZDppldtsKi3apChC9AwxDJbaarZsyKa2tFbnKKTaqKlhlWw5w7oUYrdF0bRdxtIzm9uUrRxEtEOlHaGpMzWuU1Nq/zDPd858d8/p+e/173j/vh86Ov//ZV0/dNWWnX2D8nILTm+iYTV4VYhhrk5CM7ijXPFijlwCHrh9UC/75FMw4+xYCDEgB98/1/mMd3gUHLVLxYuVq8A2+nnCKVa0WsrNwpmG4R76YN+EN+k/3aKD26Pen+M3zQAnvGTVNM6bBd5jPpoiMTUDG6sEQ2J/Bjg3h39lk9AS7Bn13Z0jW63A95MaSdvSz8AtW3ryY0gbcJzVwe0eQwvAg+toXr6BduBf2mpL19Xbg9es8TzPjHAAj1xyPn5wxjLw8a8fdTdwncB9LMFjXYPl4OobF452FbmAZcdz6vqD3cCpLvSNA0buYLvyzAMF/R7gcC9GcU8HAb4Zy1+SJvEEr34bbJ2lXAWW1IfuPGrhAzayS6o+4M0Cn621/tZvny/4akpZDVfkB2YOOpZ0GfuD+QtK+MqEAM3vf803sUgWCMYfu1y7x4lZ2j32fqXd42iZdo/tqEc66vEH1KM0RrvH6inaPXqgHv+I1+4xEfW4GfUYi3o0RT0WoB43oR5foR5VqMcC1CNtvXaPhajHhajHdtRjFOrxNupRgHrsRT3uRT3O+0iPLajHbajHPtSj6Ud6FKIeg1GPlajHy+oeFaHC2aaBr0kd9I00tQyNHY7W3Kt9k46kL4jee32E5Am0ex3zoMksis+DSxzVTiTC6P5iUm+mds/i9xnZSRGN4LR3amf5tLl43iMdUO/RcxqeGJ/rAOtZTrpg8Mx45N1hwhm9h4sbMzZcSX8CTqZs2BQ3p+oFUY/ey2Cs2PEbXRnYbPekvauyhe71w2RtkfZ7MjfgPV9WOASW6Ku9jFb1Jn2A/A29t+umbLb7aSWYTfn7gWeunBHSCe3DRrcZEZwD78HFrpP2HmNzm4pGSRl6r7z9sXnSuXpgI8o5jCscEwWZht5z1Y3Vx9L3TAXbqF1XYZsRbPOA6EPvfWVAtHuq+3Rwg7/a4jtLk8LeEqfQPbCzpum+rDEGT6WsEOTLeW+ILehecIIero7km4ADKHtmvu5MGSbwvnnNa7ELLDUHsyhLs3IKg/8hzNG9OVJzsiNm/FNwMuW6rT1mfhlEJbpHGWvvvbjAmwvOU9u7sE/x9NgY4Y/u1SXbmkXcsvngRrUVua8KRx2UhATds+bFxbMaKq3B4+DLd9bJfidb0b2bcD3d69ZuC7Z3U7t2RR4/VUVGo3sY2TahSGcsBKdSbhaEuhsZiLrQfi+tCotP4i7S/L0pry8KrH4+RZSG7qmM1Z36cNoScCtlunWoWKUrckL3NjMlbldmtSN4K2XxofNOoXKyH93j9Sun7/zipsbOlAcrfN75vCSS0b1O3hB/WOXtDN5GWRnRceaBkuhG99z29it7RavGJpSfcUysTg0Q+N6vIhtv3Y1z1fw+lE8GCPgMKfkE7UH7Q5oF034FuJ6y9MSJkGIDJhftRRkt9MPEuMb5lFsT3XT/0mM6oT25+MjS65Fk5X/dJuyc3TpIRKG92bYrYKGwgwneQTmycsm1s/eJLrRHwzcXhe3p9wLr31KbO//Qj3d1RZvRXqXGx7hMPeYNzqLsYiDffZQueoz2bOaXRr5rLmhspjZ3S3RlfYmJyAztXXZuuLFlt8Y/Uzby5Cw/8jf5K9rDVsuopdMYmj1soxwSz2XtNWDWob0sCqqo+XM7G1xOOZP1WlkoJ4LQnjZ8zomU1mncTVkhddkR1kWUor3dP/ZJuKOD5v+/U5T3fZi/1m+xqEK9x/8COYDM0g==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAXREAAAAAAAA=eF49mHk8ltvXh6UQDSQiCZnHQspzZ8tjymMo8ywZIik8RBQJSaFBUafpaDz9kEqlcrNIlIaT6nRUKE2Gk5OhiVSqt/feq9N/38/F7v7svV17rRVaETZresASstxvvcfrOw8WinD/FNkM8cKG9NgjFlXOsY2ypQJSoll0tUTyex2HM37whM7xY9qu2ECm5+2KfN/pJGxlyJidpjJXKB+sGpN3LuF6hT/AJ/dxWdu0SFD3osGOLkXKRaYy7YYxtfMz/WDjSxszJt0BxtlVHPZrVsPfl2Xf/H7i3Y+vgSAaATf+creGh91P9Br1tSivn862rGo47j92HrR0fn6VE+9Aik5v25CZr4frqzCti5Y0LvvLCYZTMzWqjAgJy/MeSHtrhLy96qsELzxXgUD6OLXwRm0BYUpHCwONTPD/l2ZEx/k+T5CeBzsSfEPWNTmS/ZEvPvwRMRd/X4Y5fCQ593izJ2TXFAfrKNqRVh0TR/boPMpfKDH3JupKB8/ygopHRnEqfYZQd6C51eqVOX7/Q96Z42fi7h0Jg/TqZ79vV3QHpw4lkw86CyiX0WVHFsp6FbkGwJdTSiK9Xa5gWPno6aE1hHK+JuuWLBdrN+AFfJfKtRO0HUDX66acQtNCXF+JVbf4p0dKoA4b23mj2cXzQOL+Ola7gE95iAxrsE5jMbPCkrgqzizdXvayxnTJ7Zbiq9aUF01lJFqbe1X/9iH52cpGKm+cYOftHtXRTza4/mw27EVYttZRBfJ6w6rr8Z9d4P2Zm2X359pRPmLCmruF9iY+MIOt/KXfTmiIkZzi95erkuwprxJhKxblpHQe8obgx+qHUwvdyOEAKZ3AukW4vyZMhvVvq5XjokBko5IwpyCQfNnwb+fKyQLK1WwZTVC+Mzo2Huy6rwdEagWQpzJ/+h+LdMT9sWYMH0zqkNARgkN+dFwS60tGvUp7m284US7kM8PXb6qcnxoNUQsGJa/42pCHrZvCGkxdKBcYM8sky1tD9nhDtHBCqWWvDdT7C9aFlSym/KYhu1b0xvTCDluoT5x3M6t5Mdw0WW1ZrOdKeQnDfqnyuxWZ7Qkfj+q09pgSsNsi1sgGuuH+G7DjjT6V6UWEQGt8m//l4vlEzkNUL1nPnXIzHsPLGJCRnbASMttjZ68WBMF5x77cou/I7zuxXcZiYTKbjUhdltw10Wo/yPjRH3fyiQflUQ6sZ/f4/oGACCJup5H/ssESblsFVwmuelKeosWO32td2DM2msinPDY/ekMPqpaUx6pUeFHOm832nop48aQtgYwcLpkZle5LPpq8/HK/xBvPx5bJlh7ZfWJmMPlY76A7qXMZcd/Qd0Wm3Af3bzHzvxl7do5LCiABlzcpmOZFEWFh6MKial/Kxy9lIiO/ai44KCSy7ne0M47OJqITPjRPe+iHf3/aTKiQNxjx2IFsMShQK5QNgsZr3rN9R/0p73Nno4vO8La1bSI9+/W+VmfZwF5ljwJ5k8Bf94fN2mK2YoP8RvK2bEbW97cGIL6otV0mMYjyffaswdYkuXG7NxHnssOJ56QyieH2lMvfry/F80lh3CwivOJmJ5A46kco3kn9uBqziNzHH1kztWouUj+ClRL1YwXmj/o7FOYMqEE89SO8jqZ+TMFsFvhIq8xgCamifoTyTurHM5hrhpQ99/AdySbqR/LYnvpRiHmKy4JotWRP8mM550ei9g/14wDmIPj93kifHrlP/Qjqp6gfqzB73fC3WHfannynfoTiXOrHDsymnm13d45lfvkRSkqoH4Mwd6ZfXn0/2+WXH8EU/bgcc7uCT3aFmROkUT/CbPRjAOaBnsMBn/b7//Ij8TpI/ZiNef6UpTPCFppCBvUj2faM+tEPc0uk8uEIvgKMUj8S7YvUj5WYb5891NmZZ0oWUj+S97/8iHnH8k/vBLeUIJ36kbTeo360w/w/rYubT+urQIIC50cLF/RjKPWlxcinlqC3cd5QQP1IvqEfLTFPfN/HO2HgSjqpH8mzs9SPuzEPl8tGzncJJ+7WnB8hF/343orm86md+asNEshy6keQQz/qYbYp1NDUVl9HRtM5P8LJNOrHg5h1GRuP1+OTyULqR+idTP3Y2kWzoE9r1vyHsYRP/QiT0Y/deTRrHX7afmKLKYmhfoSKx9SPczDPWzu4SGxnDCRTP5Jh9ONEzK+yWqxUtBOhmvqR8E2pH80wVx3b9vl32zgYpX4kD9CPiZgFdw1W9M53J+upH8HFnfpRCvPu7jGzasYsIGupH0kJ+rGvjeY6W9c6CV13uEb9SAxFBjg/EswVp0/WidxaA5OpH8lz9GOYLc3Xb9VHRzpHwo9kzo/kgyv141LMxvEX+ptsYkHkCOdH+I5+XE99CT+en6nLzRHAF+pHeJdK/cjH7BYjPqK5LoL4UT+C4W7qx9uXaNapa23vL3GANjfOj/BAivoxypXmTbw6e7FnfEikfiSaTdSP1/RpXjkdPimJZcIo9SNRnkn9mI1ZdST6843wAFA6xfmRLEM/vqa+JMJ/axQmigWDP/UjNO6gfvy3lGZTQ8lsEHoSzpd8M9YvlfoxnvPjQni971C8yq1pRCk96v2eTGeyYGXwixifXlo//qyfnnwvkkgemgvjKQc/D8onYXaNXDLxW7I8cD9eL8W6o19Zzq88cMx6W95Upg5z9m5hxrVYkPOi0qqfKyXQ/628pu7wpjwDT5hJOWiPpVwWs/71ifHWZ+fS7xfpqzLB+nUf52dJMO6w/+AzVgeaCgIHNJRnEeeZ5vGX8uVw/S7eGdfwu7/7+UM15fBBmfLzmEsaT08eknLB/ZFj3Luo3ys5v8vDoJh7eshsLTgQPvuC4gxTcFogveuG1UxcfxyroPHbqiJhEORRTqZYUL4Vc+w66fCP93H9DBXGB98HWk+bkznPtuRJPlIEu+M/NohF2UH1HzdfThpVx/Vl2I+BtybNSHADQjk5fJJyQ8xbxE7Vugw64PqybFsPfV++cu+LCUnwWj2vdnABCL8OrW5JVySjRRVu6oE6uL4I4zi4r3DCAx74UQ6ieyifg/k+0zh+cZ4t7s9MNqGcvk93uPfJHAIew/f2ERMYcFu63uSaDUnQbzL9UWuA609j0o5tS8nuc4BXlEOzLuXNmKM2NsnF+qvi9yuwG7D+F037//fNEJhLdm1neD/rslBh9T0VW/Lt/ZOxzbLGuL4y81Z4s8FyMwMWlMNW5BqYrfM33h665ID3U429ie9jGvc+8mBKc0u39R8OkF9TE1o8/LN/khJvyHA0xfW1mRLVsKtPRJwhi3LolKR8OWavjyWp72oX0/Uz5Nhl+L7mcu8rA7uPCvvYHleYrJC6zG1wEfFaE3Lo7CYzXF+DmXW2edq8rx4gSjmkJ1DeMY3mU/mr1YNyPPD7x7HF+D6ncO+zGdwOyDP6luIBZ/NPbraq1iMeVTk7Rq/Ox/W/8945JvXZqgZDEeWQhVyIOUF9quPjGDf8fmkmC/sf+t4rk/vlFd3/7lwMgUnXVk25ZAeNoJg1XYzB9XXYcGPDi8mfl8ESykl1LeXamM1aDI2WrzCi64toMrpYH6zn6gNrkqzWf9FM1wFsxg9PztzsBhlL/hh7c7HFf/Vh9YZtv31t9AILyom/K+VKmAs2HCvTcJbF+6PO7MP+a5irL6xIV2XyuMuV1qCetsJi/WZnGNr55mPbIUusX+ewX3pOBHdv54Mc5QQKKH+eSnNTroRujKE07o88U4X1yXyuPjEnooP5enF39KEpKOrLyS988O1ysTL9YIX9jRYLjVl1qokGpJZykoS8APPeFONzN4zE0W8ZPC/s/9Zy9Y0W6Y+0LbO4MgusGzNXthlow8nJCdde6WL/Vy/BJo9Gto/scCRzKCe/+LcGmnOC5U/Vx+L5HpFhhhfT+miYq4/+suDf0feJG9InQyP14TdNLEBvslFyc5DNr/vJMsxZcY9dzqSXcrIP+QHMSRd9z37sMsHzlWe2Yn2VzdVXCwj/z+32+7oExG6M3WeH984w/eW+0J49tv+d74uf7Yn458815pSTg8i7RGi2SzodsEvHn+6PnxrzEPvXp1x9Rsi9UuvBnH3ORKZsT5L5/yygvmOg/FoL9rfCWWxT3sEffy32gN5SjpM1zyjfhflL6vaVW1YJ6frGyqwv1ncqXD88VHMOci/uDfUgUVcn3dhHrMnuNMt/JZV+9b8GzD17vT0F/wRDKOWwFrkm5rkP6p9IRa7F89VkZbA+9OPqQz6ofpcXL17sSUxOFUuMkfUhuQOWG8MiHfB+WjIBojGMutkq0KYcuvopf1FG8y41vamqtSm4viFbgP33O66+dIbcxAcvllS6EH1TYcRwewDx/iZUyKnG/lzEnnmw+P6hVTOEMI1ymDhK+TkTmr144m9HixJwfT22HPt3Y65edYKWRNWH0KALTjzF7phBP3LyWY8iTwH79wxbxuaQ4r++lithPuXg00F5uznN76V25FfMDcC/Xy3WE+tbE67edYDDjXp/nR/yBHs5k/VlCW7kCVswQ7DBGe8/w3jsn/638HQYWFEOr6ooH51KM//aZKXGKz70fvKnMi9wfpDA1cem4O7de0lyViicqM3p/HvOq5ohBe/Q3f04XxAZqfpHX1H6nLoryAHHLfKQv6ih2aliVD7gXAz6eTbzFOtrD66+NiXmX6LJxLPhsDvhCC8kUADy4R4uIiuX4Po8dtFxGX9Y7g5bKCflyNUxL1+5wKjkxmr8+1JhDuH8ooSrzy1J79LUkmf6ofDmmKZS6gd7qChn7219i/ONn/WekvT7g8YzgqGDcvLtNOXxmK2kctuKzuP7KDJc5Yf1fQ9X3xuSY+JHX3r2u8G3q7zPtW7i0Dw4b9W+BpyP/KzHZIYbNGzvBsN7ykkL8hzMp4QXNF6UutHzDTFgXHB+Esb1B9rwDTZ/mLTQCgTpI751RxaBftn6O2JFOD8RIWz1ptv8mkw+mFNOBkopP7+BZpuKXMPRJ3i+ImrMCPYXUVy/4UIeRPf+ucDaAY6fsV5nnhkA4dlOMTNjcP6S4cwW9uqsaDW0JwcpJyeRy2LePn2X3V5e3H/7X43zmzKuPxGQ3r1dyrXr3eBZaWzhUnk3eN3hnJm8BOc3IdbsqUdpE2zexJAuyongGeW5mB++ktPiZeL5Zoxh3mB/85rrb4xI5bu+IzKS82Fsxpap/p7zgBm4nnaBh/MfvjarHrYtQVdMSEY2cpykIc/GbDWU4qwXFo33czyrhf3RI64/mk7YWM23/3QpE/Fzp4fX2NsRwRqr/cmGv+ZHDLNIY8DeMk5IpCiH68h3VNCsK6lu0tDtjfsjxTZhf9XL9Vc/66r8foXKha5ko/HIseqKQHLPcwII9XH+VO/O2GW0Bh8oiCBJlEMN8p45NBvu3mYyLSeI3p96hi3B+VUP15+5wpj9msYS9zzIlz//9n5quZykjp718ZiL86t6P2bX87ez7GrCySDloIo8HvNekwbTTNsAfB/nsfXY3zlw/Z4fPO25Xaa9L4ikpb2d7pQYQIwej/V+6IDzL74rs0362OAf4hHEn3LY9ohySKX5h2rDlAGNcNwfA/Y89ocKXL+oAqpvLlfqWfqSHUcvzQhfKIC7EcsaLkXh/CzDmt3rV/JUpDKJrKWcKEVS/ugIzY3L+cPDjol4vsZMBM7fgrh+04WcEQsIkbV0JY5psq4jpR5w4nzhtEt7A/B8Bez6eGG375tUQignRy5Qfi2VZrcLnzdI3Pl1/z9UVeP8rp/rT01JRp7jj1VnlxGpzRUHv6QzIPq87+nuBzjfCzFmV+zdnLgtJp2Mo5zUI/fJpjnZQip2v7eAnm+BGbvIgfa3Aq7fnUE0Tl+5O3NKMKm1+G19/wEhOWB44abkTJz/ZUQypRcnhHZUZ5J7lIMHcoJ57Oz7biEev74/kpHD+aGA65fjQXKNPNNipQb/B8P0/0w=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA6gEAAAAAAAA=eF7t0FtLkwEABuAPyWVoOR0jZ4mkhTohS3RCRIeLpIuaglGgOCQvAiNFBw1nmKNoYRluHVcrMvvWcqmbhw8RypdAWEFI0rBlR9tCTTRXUaMIL/Ze7R8Ee37CIwgRa+zBH5WpR7Al4X3qTcUxHIx7HjKWN8Koa2m9qDJALZ+Ry76cgqh3h85UmbAzM7NttvQspjumgx+LzSgbce8qyGuHJ7jscm7qQN5epWaDvBMnhv+e/Gq1QPRVNE2oLmNI9G6vFq8gLXA1rkRzDctSdkrSi+toSJcl2+psGLN2Bp3JtyBb2mZQPrZjn/5Jo1d/BwnhkEqXfhdjZfO1rUIXRk1246uFLigHyqXwh3uY1CtWW990Y+uzG44D7+4jMGHwB2ZFqBOPI+ufA15/yo63GU5ok5p8P/c/RP3GXF9tWw9cl9YW5Y+7kD11QTia1otV8eeEwpY+7D5UI/kX+zHl+P7g8KgbL4t/hRPNHpgs8WatbgC3N1ukhT2DUBfamp8WDIGNgoKPaj5W8PE0H0v4+IiPpXz8xEctH3v4mBX12M1HDx/XRT1W8tHJx2+LkUcNH//8jjz283GQjxl8fM3HfD5O8nE9H0f4qONjHx+X+NjAxxw+1vPxMx/n+CjxcY6P56MeY2Ji/l8rFXRUmg==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA1QMAAAAAAAA=eF5d031QE3Qcx/FFgXQYIGMFlImQpuCJkeDZJWkG2IGDkGbJsSg4wYiRjIMDDEEIRjIOUHlGeRqO523Q5LjSj3UZkEhwLUMEHwLC8iAQzhDK/tiHuuP3z/v/1+/zFQiM7+mK8blDNgexwXzUpkwYif0mvbPJgUeRLE1JzbVPhIv1XWuziWNQyTWzGSHpeH3durRJn0wMK4fHb3tkI6BT4+W2+Qtox2ea1OuV2LxH5Pm8dT5ivlxK+KOwACrDgbh++1PoUHW/Eqo6DbuxMyY7PIswo3des7qvGLEOZlalH5fiUmH+uNqqHGbT2xJFX1fAW37xaLf8LMwXZu2lDlW4FPB7eKqgGl3pFck/3a+GSBeoX7hVg0G5cFXhjVps7Smp9x+pw1h/4tDYpAouFtFw+qce3UNrXru5Vg3x6jjD/L4GyF7YZAhPa0RT3jPbXb9rgvP1k4KP7FrwlGmWwD2lFW8Eh+mHptpwvf7BeUmXBgMeDxcssrVILzDNFkt1qHypQH9/dztc3EuTvnHrABkFQjq60PEAHY/TcQcdm+noQ8c7dBTTsZGOTisca+mopaPlCsdDdFTT8c8po6MnHRf/Mjq20bGdjmvp+AsdXek4SMfn6NhJRykdW+k4TcdYOr5MRxkdf6XjPTrq6XiPjooVjsY9+kLIWtJVFK2+Ei7+EA7sJjqHme1c8r3xCaLYQLpHaGo6n/SIxxH2GP8h6EKrb8/jJISw2/gvXSnrF7OuHUc3q+Y/fdoTudNz4ASS2D38t1zJ37qIi5/jNDvKfxQ5+9go2hSwY5f/VRDwzny06iSWxMa28p9NtlvmTlfl4eGrxm7kv/stKiQZA/nYxy7vIMdbHR8qKYSCreMumndZBhXdOoVGVsedTLzl5tAbcwa3WSF3k9l3M6f6iWKkscs70kza5g+Wl6CejeCuiiV+jxx3lSGd7eDO7iJs6wcT5bjKLnJ3G7WJc7KSSghZL+6w0X0w6M3gcyhiTXjfEXVTXjJlFd5lL3CnX0XtjW1IqIaW1XO3k6UJdpGHa/6rPXc8Z6Mb9Q6txSPWwF2nvfizZDqkDifYLdx5jr857MJVSGWHufvsmJmrGfJ6xLOOvIOkOK/PHivPI4oF78LiweVVR9r/r4R3IrXdb2gea0AWm8e7yTWUZX7v1IRrbB/v6Dedf9kVWTPc2o19m3dlO6UQ9Pa0wI99lndWs0U+bOrRhl5WwrtLmSy4fOc9DZTsCO8wWDYfqHXU4jA7wrtsCE/d3TKrxY9sBe/UKuSHs5X9OgSy3/JuI1xFJQc729HJvs87/heh2V4EAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAegMAAAAAAAA=eF6N03tMzXEYx/GJmXuH3Gly50iMIpd6ZDZlRrW0WCPKKLEWYU2uUUdTuRYx11ySI7eUueaSCqVSStJO6HaOp5JyVI7HfM4/bcZfr/9+++39/TyBkYZag4Fpc1JhdKs4b9X74nrxkEKbXiL2qlT3ThUz83cX7hZ9Pni4OYgdNAs/Vf1kKinwrAkR/f3c0ppbmRJW301eLqotl7ZcaWF6Z28aX9rMRIkuMXU/mOZkhIZ+1DN9zPEtvfmdSaN6nLWsienFqsJBmm9MuswDtrYN8j+3FP2W1jMlpU8etbCWSXmxdXrHL0zDTGcFh9QwuTtZk7qS6X7F+p/Rn5ie9k8ZYa5hmuKXWOtYyhRe12Fu52KmyvDP21zeMG1drLI0y2Garn6dZ5fJZO2z+tz9x/L9S/qB2+8yNTq2O+l7k2mP0s5k2WWmLc17v9FppvJb9r4Vh5n6zF6Qq1Qx1RVFuxYFM8X2c3h0x49JoQ8/EunBtKFNR6c2Hc3Q8Xmbjh3RsRgd1/2lY/FfOpb/Z0c1Olqi41B09GjT8Rk6TkVHFTpWo2MIOtqi40R0TEDHhn907IuOWnQ8gI4m6BiEjnqbvIjfNsIgdO15aclGvdgDOqLziuSXK6pEL7gf3Y+56R68EGOgAu/wOcB922mxHBrf5frJ269XilehF96p+67hnfqLXaAJ3s0kO2xHsmh49ce3eMeAfNcTJK6Fa/CuBbmRSdfEPHgR7zytenRLF9EWJuLdLeLOn3USzWEBdpCg055dI16A9tiFmX98xjpRAR2wE4sBwy84i+awDLsZ77JZ1UNUQuOOHLIi/OMb5bswC7vS7KvV9RRLYQ12djhilr3zV3lPGITdVSuvKzzrmKqgcYd23jHhE1nuEY7BLqvm+Y54rpX3gUOwU+fshvjB1UzzofH+Aw5aNo2qkM7QuGNaoOj6oZxpJkzDrr1N29+ZUSbvCm2w877m2bGTSqQfDMPubYZtyrhdyDQJVuAOxkflPLmXyzQWBuMujqenDrJ5yRQHp+BOShZFWXVLl33ACbibXl6biqweMnWDibgj9xM/+uxJYXKF9bir1JQwVdNVpmQYijuzupFg8DnPNA4a7y7I8D7/chxTICzDHcaeOep0LkreDfbGXSpGeqRa7GTqCnW4U2uL+Te0gXLv8CDu1mfXKV3WciZPaLzjX/6isSU=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAA0A8AAAAAAAA=eF5d2Hk01ukbx3FtQk1KDVHJIIxEadHILQkVKakoS1FUCkmKqJBdlAfZky1lKUuWkpvbGrJV+KmpNEUhpRQ1pek353w/zz/z5+tc5zz/Pe/vdd0t+tNbJDJldIwU5U7obm5ns9dyFhCTaP1d6pnW4TW+Sy/HG7JRgyLaO9rGGrQ4R57wmB+U4ENde2aZTcy3YtenZ7pv2t7GwuBfQiasl2AxVETWvTxg2gFW96m+4E5+K5sPf2rcs8Tg1iUquyk7Q7HaiSV5fEjUmtHK2jdyDnngJL+gIY6KtoxuTapwZY6mYTJPjrSw4WbOCTT9dHGiK23Z7jZP4spJlh3ZKpDY2MxGYRsLjbnZlUG0KdSuw9TPkykrqg8FKzazv2D7fPc27xcedDDWKGu541lWYtwXfTPgPpsVx3lGb8A6x0xXWvTij6MWS3xZtO+8aoneJtYE19u/MD4WwqPL3+ZJjSr6Mc/e1zYPdJuYHiz/c2FlzCMeTdhgdcVHIYBN3ysaPZDayCLhtYbve0S8U6jiTo2tqb8HsZWaejVHJzQyYTivUHTfnc2x1CBqdYaweggby/qc5WbbwJTg7tNWY8IhkdT9WMEzT53zrMRk5gGR6ntsHyzUYjHj6FIb+vuuf5LrdoYz7e43gXpy95gMHNfHamqFPUm4JI/X5HqRmQxZz18dUM/CYKuNtpKHVkWTLt6kQNIcwZZu5dV/f1PHmuHH54ZyHw/tIOaDj3qGXvFYYYFM/TWjOmYIb1BZSxxcXGmnUHrJD4EoZvZ44S9m+bWsC26f4P8pVy6Kzu8UfDBJPprF/NVkIitey5Th50tvaGmnX6VdRgsqkowvsXqHL/OUz9Sw9/BDwUrN97I3qervQWtczsYw9UvLX4b1VTNd2MfMKzQ2MZdmZekmLy2NZctEj8523FrNymEnp9lXCySu0YTv8iTxaxw71f5R7W1ZFUuD3fUKrQQXRFH9YzP+9FifwJz79Z+qKVUxLVjIUvl7eKwvbXqrPCM5LpGZ8qI+28YyVg7faffUjdnIo9pRUSlvvyaxjHOVyTlCjK2GpV/NPpkmfJnKBjv2bbFPZt8mVxW5fq1gi+BfXAajLJZk0jh9sfGq51dYe1uelFsvZX6wpk5vzDL5w2Rm3rnxRbdSWFfSd/GKznI2GQ6316/RG0gjI6mf3XzOprJnJVWqt5vvMr69DYyeFQlfI6ezhxoFTNOYnO1QTmtjGTsFlzi9fHOxIJ8Mn1UTIKrpbI+8qJhryx32FQ6fUhy4NSeBzLj/xvDB7AxmNiE0SKL7NlsI25S2V7xwiiX574s37J10lfWvvaS7erCU1cNm4k0n9jvcINNLQp6F/bjKVO/Y5ZtMLmUz4PxpQqm98wPIbqmQLxMnXWPK/Tt8exRK2BZYYUbNnB9RVWSOTf69I3OuMyuBVxZ2psWMb2v70uGmwLuk5fArSxf1LKY7dGrqnqAi1grHrPe+kbGjisgMW0QVWGezrOX+qvr1t9geWGHaSHmVZD75oMP1cDv6yLeAzGXrF4X7yqUJ18Nv6OMCOPuj7BGTcWv6/CXXwxL08Rks8NHAsKw0lMj+xvWwAn3kO3DAfEqFVSCpRh8z0MdauEb4YXuHFo/ooI+u6ONa+Kb852cHRg+QD6ZcD5PQx/fwzzSxVit1P/IaPVRAH/vhP8/KmhQpnKRr0MMi9JHvTsFoLf11IXTmX1wPeegj36d3qtgNrAiiyuihM/q4GA6dZb21LyeGDqKHs9DHAdhAs0L3L0UXaoIeGqCP2+GglDW7VWJ3UF308Cf6qMPvo87b0NQjLiQYPaxFH/kelL6h73PbnIaZcz3URB/5tlnFi3pSYkFvo4fb0cci2JH9Xf/8eyTtRg9XoI//g5WcHlUdSjhPGHrYjD7yLS7QM7dDPJU8Qw8t0MensEhFl7KERD4RRw9D0Ue+8+vtfJrWlRBH9DAJfXSCtdLl7gkdKCKLlbgeDkdzfVwK36+U7n1unEPOoofz0Udv2PJ78+WqQy7kyTeuhyboI99VtdvrJy7JpivQQ1f0ke+JP55X3v9fAW1AD63Qx0b4unqaWEZeDhWJ5nrYij4Kw13qCqcXnrlAXgdyPfRBH/nuPuw73jDVnVTocT1MQR8ZPGio8nvtvgt0M3q49DLXxy1wnUP+TrOAAjqIHvaij29hz2KeqEZFOvXP4Xr4Fn3kO0nOYmhZczbd5M318Cz6yLe6tumyH6UBdFMT18MoAa6Pm+EeDfObUyanEz1+D9FHXXiLdO9P+smfDhdzPRRDH4dgpZULXuX1nKFq87gefkIf1eGx1RdmDchXUAf08Br6eBiOzolUurwnlood4Xrohj7yraZfdjXoUgJ1GuF6uH8l18cj8HGNpXIqGjzyahPXQ0P0MdCA8+pFkvfOL9lB1OfNChZ3WcX8isocEuTa2RppzkoCoV+Lc49Ro4WcvTHfBLdH+Kb8nLidlmpwPR1BXw+t5iwVIyD3PMiGDkyPPXDonx1M97iXVGxGG9vyC+dCoYjMvr8jqP1MzjqYH4BFVk61CXE+Rjywr15Dn/1gc5OsYClbO/qp+7hTzbJ9TKo0InrCxDY2+THnXd16toKuMVQG/hXzhfAPA1khq85gchg9Z+j7cVh6xfyKtqp91P7xpJyu1w5M0KFMwWtvK9ODbXJURC3U4ulseCLmYrBU/aWjhf4hRNmQ+x6k4PsgAJebOT7c/89OapLuPaO7zYWduSK9ZxptYYvhU3FJHRdkwunXNM4+mPM9KlOhLKoeQE7/5/viCHvJ/XgT/sSdKtwQvvX4pht77RAeUSb17+/D8nU/2598O0HN4JeYm8Nn3uVktxn7Ejfs6+n4PgXDD1fn7kruOErrNkuPruB5sM239ozxPJrZazhxZZFDnFoA3QMTzPnOGKuWGq22JBvPc98zFXzfTGFdj3CFJz88qNuyljU17qfZiMZBlth1n0XDi7/RwdD4k7QAHsS8EFZNmvqnskAAbcD9cBPfx+dw99uyy2c++NNHOmtlypb5sIzH5otfrbjPBuBcW9nekoEg2gHHYd4JO4eEkQizUPoU90YEvq+v4ajxeTq/6oRRhYZpNdeUzzHNXdt5blFNTBPmGS+YPbctggrDKpiLwMMGq/yTD0ZQA3yPT+H7vBWOsJ9jfM8ygs7t7nyiqejP0hINPK1HGpk0bPpok3ll7r99gK9i7gy3z3VeOkEynBriez4R3/cN8B3L3AWtS0Kpv2D155lKgax3llNO7rZGdgzu6z/46YZJEm2GRzC/D3s6p90dFD5M3bAPaGM/sIN5Zn1qzNefXhiqO9m5JJjtrdq5yrWggbnA7oe7/o7dH0nt4P2YH4BjtG5ILFluQtSxT3zBfrEI9lguqzhs6U0Thf2I7h+hbGJrXlDlrAbmD39KFJh5b9sZGgoLYR4CFyZ9KZBKNKKZ2EfKsZ/EwTfHS1Yb3j1IXyZs1pQxCmMXp8w7ec31HuuG35l6dDRuPUSC4FDMQ+BM0yT58fT15CLuPWPsN0HwyV12MhHOe6mYesDsjXYXWPbVpdu0O+rZVFi5zWpQKS2Q9C/jfBXzQdjdVyEkWSqcymIf0sN+xPe5W35K8T0HyQqXWLsHuhGsv+fDh/hV9UwVDmpTL81wCCYH4HHM7eHIaT9q9hYcpWnYpxZhv0qA7Q3Lpm2cFkimX0lQ+3UXjyU13al7EF/HJsA+xVqhswU06AI4C3O+XXxsPscYxBAR7GPXsZ9Nhif7XPcSdAkmoRe3bDjhGvnv//dV/z8/apkv3M18XoStjKCj8B3Mx+CQCfWD/XNukHzsc9uw3+XBkcL3HGZsiCB1T5dU+kRGseki4qpa+2tZC/zX096UhXsSaR/8C+b9sOVZs+HWzluku4PbB32xH/bAM/NjI8Tm8sitjdN1229HM82Zu1ZmNtawWljo2wTJhRLXaTm8GPMyeFDN2Hx7fzF5gn3yLvbLPvhK8pFVO46EkK7UdScFX19ij/c9OWO5rIa9g5XaxyynBuXSY3Ap5ny3XkyoiHTLJ3txry/D/X4EbiVPwje/s6cjCnPs26ViGV1icep0QjUTVuT8aYVtcM/uTOqFeTTmnvDo8OMSwRWx5BD2WWnsty6w6w/3wcFcHt2ru6+3zzyONch/vLJ4SjVzhqfdj9DQDE2hY+s4Z2PO90CVTqTuomhah/eC09iPG2DtphcPbc2S6esXXwVEkuOZQ9EU//BjVewNLNDk2eoVeZ4GwOaYB8GVH4YrHIyyqfZ/3h804WLeKl0L51SqtNj44LT3CUyn411fQw9j0vCcn4X6G1sv0N2wCebm8KlXv6WePJ1FHbGPr8d+bg8//1Ur8f7BZGrx0vFe7cYkFjA3t17QhDFT+De3+05yWQl0xSvOxZivhDs67ZYbjvtTQ7x3ZGK/N4B9chapNH8Lp8Vqz9QW5F1m7z6OfOz1r2RFsLbvRe/SDYm0Au7HnO94m5j5O/3CSQzeS6SncPdBHKxanjalNNuLjkhW7haSvcLCjOfuPe5cwfrhXcGTr6zROkNXwdsw14B1x1JrdbSjaSHeW/pxX2TAyquOygzE+tMka6ej67elsG7j4zMkrSmLhOszHQLd2DniBT/D/DRceD02sOdqDhXHPdKP9xv+e06H4Frxx2rhdH+FsNKjuanMWHO3+Jpt5WwPPMlgtUrB2WziCztjzneaiNEGce0sOimNu2fGcN8IwBtvC1Z7+B2nkVVG53X6U5mfzZo9643uMh48Ip3kF783l5TB1zG/C5cuezO8xPoa7cJ7kQPuow7YXeXmceuY3eTg1hvN0iyN1asWb04xKmNOcEOj9x9e826QcVhBjZvz7WCvX7bCLop+wHuTCe6rMXif7yEFw5zzpPXoBKGpqens42BGSa3pHdYN/yo/2nR/bjqZ78J56ltuzvdEN+E79rrxJAbvVfF4v0qCU9Z2hny9FkG0rU4tijufwZR81JoUbW+zLbDIqUxVlVOpxBOWxtwLzm7InCykG0udcM8l4L7zgG2Pnx2xM40n9paSb074XGUmct279NxL2TF4pdF2pdTkNKIOT8F8Oaw1Lv5F8VMKbcQ9+O02dx82wV+vS6ltjY4mA4GJxRt8MlnpQeWPsZdKWC+c3fr3wkWrb5GJQZw7MReAjaOmrwn9UkC7JLl78ukb7r5sg/1DpUh31nki+lltYen5a+yIdRNNLS9mwvA6z3Vzre/cJgXwF8zzYNfJ1eMuSrl0Ee5RR9yncvCbx1Wp80STSIPohhqn9OtMxGzz2IuhIlYDh08W2SE2UkbMZ3L2w5zv8WK5vMywANKLe3b2O+6+5fs3b+NqjZQEEtyQXC7WkMWSaiveP1QoYhmwmZhgwKMDlWR5I+cGzFfBntclBUrKc+g43gsH8X4o9YFza4yqqt89K/p/p1lVgQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAhAkAAAAAAAA=eF5Flnk8lNsfx+1dRQmh0FVJSNr8bstB5aeUq1KGUFos1W26yEUJRUSbuBlTWZJ9CY0p63k6jGXG7SqUlEFku0LL1WSPX55zXv3Of+/XnNd5njnf9/fzfQonJ3PNH3mDnxYObSlTE6CRtTBzeN8pSEWpN46rClBh/LLWrKQ/4LDOY33XBQJkLqi07+HGwDN2e11jFQTIqlKn+VY5C/pmXEh2lRWgHZvXL5W1zIUMTpp68DQfhT530f/SkAN1bZSS04f4aFqpMeHQBwhZCy9GXu7ko+TuTYyzQ4lw0q3qcM1zPspLdWrZIxMDuj++UlAu4qNfB+uE7YxcsKpCmvlTHB8ZXWH/tq6sBMjEOKlsPc9HPpRyobqWJwz9916qNYOP3C2pgLX8PCCSeBX4VJePbD9sC11QFge0nL2KN45UI8txu6wOp6fgynXPNq2yanRAzNjrnEkMHLRJuSsRVI04EkuOzD/bAraUHHQ6sKkaaTAkbFJihcDAPWjgz/4qpD984oNHvxCIVjKbNaOr0CJvz8gi6wYw2vyz+JF1VWiD1ns2b6QDsGLe/MMRVKI4xdVHbuS/Ay94p9WP769EoWvjX8kZ/gUaR+uvChoqEJU1ofUfr0boqdTapLS9AiX7nJidvvsFnFJ5WHDhAQ81zZlzyWEsFfAvJVutkeKh+uzJ3pqBHvCvQ1iO+Z5yJOOw5xBzeS/4nNZYy55fhjaL+TvmJr0DZmI742+6PUEKKSZmDX2d0DhFYuQQG6K/di5R1mJJUnv0A+NfJZWgrRwjcyUoRS2uFgng5SJUwExvDguXoTpL2rfd31KARprsprhMEbTyV85e/4yLotxmPZfjjkPfO94dEys5yPLQvjydoT44vvy+p+yjbGQqt2DMtX8CDs62jhWkp6IVdUml0Z/kKUffC8wVTvHIZ7OYIdygQjEPDO2zUYtAMdpahudiFlGF+z58fpQZiNaJOuBXNT8gRXw8VW/taMw9CQuJj45qbwoeRJ+Dn4mPMTvObPqmHAmZxEfXep7JW7Or8BTxsbaR4XX9XBa0JD4+qSs0SLvBherExzzVZ6lemkUwivjIJj7OPY59PGI7s8LBMPHR/eK0xi/LssBO4uPpJyt32DrxwCAL+xj+rC+l3T8MuBAfG1Yd/1j4MBgoSmIfZa18VTuMHgAz4qMV8TGA+KjBvj3K7c6Cygzs47mbh6NBTwtIID4yPHwr5DNagB7x8fyQe69DqRBQxMdZgyudUxQbwGwh9rHzafS200s7QDfxcdjEQO/nzV2ARXzcnps8YLDkBWgawT5+/ChQd/71BWxQxD5aaSkWWI/WwpOq2MdFETZ28cJMEBqCfbzVNoDCG/8Bzo7Yx+d17ZZGq/rADeIj+64XX47dCZy/WdA+uj7+HKSR2AUNErCPhu9gxlxKgjLUwT42u/zX4vRDSaq2EvtYo993INhfhpKnsI8lzqx1bc0ieCoQ+/jwmrE7W3kSWt3FPr6dUDCPlOuHjsTHXdZF8zxkJ6Hw217ax7IQebYTZy513Bb7eHipp43tBRWqdTn2sfZYT+aJfHWqUxb7GLBxyiB3YSCQIT7qRnR6jWcdA4smb99F35nxt4+Riv1uoEiYx7FR/abi98PXaXr9AbWjDr9d/52/EdYhnJpWFxrq6QGHiM9BnRtq9l68Ao884RlEKX33P6qnqsAuANoR9r76ntntx4Inie/iYjPrFjQOUQxMlP8/mxG2Mo3mqRvegJ6kH+xonxNgvnzE12XSAnSAcAJh+vyxHGhN+iUne2ZxYPaw0vPXY3yUSziTcL926fbWjiy4mPRT6SELl+CCfBhyNIjpPsBHlinF8RcsH0N/wga9a+rcVhfDGNJvC103ncldkAOnA51UY5r5KGFUfuhlIgcqX8Dc+l6vyb89G0qRfrzjsQhYZkVC7lFw/kslH436aLWXS/jCZsIeMjKpvg6+YJD067oar07HlamgkZXVvzKbj/zp+80DQ4S74/g39/dzwCbSz/oz9dUrA8K0y7Et178/30szQrrpMRgjvKbwureFaRkYJv1u9q96d8aWIlByzSQz9iQfqdD/hwu8CP9y+w7acS8cepM8cKHrGQW80kNUJ7fwUSD9PskghPCuRdU9Ipt7QIzkRSF939mg+EHFo4j5fJRPGBE2EjpYu6vdB4YkTxzoej4BlUWittet1cie8BRh45O6qxbvqgGXSd7QP9sWAD5P28IpqRrtI8wgPPlqYd2a2KNglMxHGdqvp6D7UPGd2MPVSJowcsLcFNXipyB8AzxJXo2n56ewzreA9WLxc2SUv89XyTEZlTVCsIfwR5HywBOPNrCC5Nl9uv6toCEn7NNcXhWS58YXN80WgreEWXTet4AWknfDu10s9L42gVZ33jJNtyp0bNaQvMHRRhBNuG/Gz6P14AuZzwrkvM+xRiFR05U/nucYh3kX7WsHEJC8nJx5//EO0O4r2l4eWYmc6fPbwc6zmN08EjviV3SBPJKn7Jn3Y7UDzW6dg+PKlYhZcpMvwRQC1y7M9RsiNNMa64Admf9cupzJsPDrILp0swKVEy4RYWbUHrv39+GXUJ98H+B6voBBUrINtyZ4pJ9fwDTCnmvi5vl5P4PrSV7PpuuTCYvW7+faH+ShCTp/MuApI8zR9vYZCpeKgQbJcyl6/2tQxC/lDOeUIwnC4jWYw1iNQTrXeoAhyXs6H/R7QRI387Z0exnKJlxO2HSmP6bfg0tkHuA86QLX3JopOXOEsgibEY6yrX8oodoF+qfwvNhIPz8KBjgwxyfCKBREuImB2cBDO+xTTxe0uo/nCb6fEdh7R9XkUVrpD+b+iTm3OGfnFgVJyk8Xz5uW4ADJORslqamlGucnE4pR4Ms3+yzbJKlnhNNGOAtdXKQo1yo8jxp1DTMS90tTb/Jezgv5vRCtft1gfzRXiuLkYo61UZnWWjyLaivF84reryhOFfJkj32Y/xitmtn/uxilW4P5uf1LcRQigtoBeJ7l0fcxAhfcf7a89ko+ekB42z3MGSWySzg5E7CDfH9N0H6KION4cJttYi7uL84XyDiNedWoqomfxgBk6+B5iOs7DH21b19bW5NB5sUw1FuMmc479gTcL4W/3+j6l0tT3ueeAmZ4Et7/nX1PYBbN9J/PPErBDc/T8t8GddNMlairVWElcvkxaHArCpYeVKRCH2Cm72NoAfXZFM/bipn9SI2KGROl1sBA9GFm/2k1SiMZ88Xw1VBCXJ3yNMDz+H8uiMbWAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASQEAAAAAAAA=eF7TOxtt8///e3uDjNavP4D08nzmQy+AdJBlL+sZIJ2gcnjdAiD9pujTmxQg3VIRLyAOpFufZJdv/ffe/st+6UY7IG2todi04e97+3vHJHdzAmlrfRd/jz/v7UOnWFpn/X5vv90kyjv313t7FvPVgv4/39u7Lnt9i+fHe/uvs5YvWvztvb20Bx+bwNf39lO7vEz9Pr+3t9MWexz58b39uSwzI7337+2PL2xZcPTNe3vVGeLvJV+9t99XLciu8vy9fcCWplu3H7+3d7+/y8HiAdD+Zrezenfe28sI7Fyw+TpQ3RU7o52X3tsfSDspYHD2vf2a1MpZbMff2ysY3l2hceC9Pat0k1H9jvf2Daf9b75f/96+vXFnSswyoLxBpc6i2e/thTLqs2f2A+1pvlEm0vTeXtvN4dq9ovf2G5L1zfckvrcHAJw9q6M=AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAMgQAAAAAAAA=eF41zH0w1GkcAHBq1tkYb3WyOJRDxy22QYN+XbcZ7y/pEtJ6i3PuOC/rNQ5pUejsilnWe94SpSZa5OFrd7HWu3A0NbYjuTiHkG7mzN1Mz/35+efjqqV6Uz3aCtLausJ5+hMwpf3JkoRMO3+lABShyP3+h/2LYM1M0eTWjUM5tl/9scEHcmHIYJ4ZKaQFw1E+u0j2wDhQsT8EKW4xafFoce5g8+xyOMiEdxmmBIzBFHZc/fXcSzN+aLg2XWluPBpyqnT8FdAodGAbzHkJnOTD0G4L+cn8wziQht9md2mOwkfszNALE2qaTLTnqrNjwUkCpyf+u5ykESC7fXJeEjF15u9Q9Ig2aitMTIW1U2FQNjsMAuyRdWMdzZxM1Hn2G70uWgZw571NFi2GQYR9lXQ4Zl/+FjIXKwgbjTPB0uc7TtwdCdhiUw+mWrSeYqP132Ze2BixoKzM/hpjawg2sKsW6vrn4tmoTU6wrXIiG/5QjWxu8RyC+9hHHGt8Cv/709b6E2aoNyGwz8sq9rEYorANa4uU8o/fQJ3kGwTdOhfkx1pzelXF0IzNVer8+vEVJhrkudroueRDPkkroTF2EHqxP5a8pi9v2SPzk1mHHUN+heZ6c88z0wNgis1a0//JId4faUdzQybpbFhZ2NgotRoACrbUV+hOUUkn3lfyzD734UC5pLN/srQf1rB5jOJnjq+zidgCd4f42EKonF9c2f9HBBHY/Ms51t0kDlH0ktqbUXgHZA6pm56+KoJS7NWsax1HXYuIbkdF+kRHEZxU8bFsGBJCP7ZztRrvgJRNSGq+TZBbLobR4Be/+NGEMIvN6nukK/krgSAZHQmd0OQCn3o5OZUnADVs+wb6sv5eDoqgBy+98S4B0ZebVSYkAcRh02R2vS1juGhauidzqLIUQtpIrNsxfTCF/TAX3Zh/X4moJm5hCus8oE//+Ua8APAVtoTBcSPzqtDF3yMGRY7lwNJoGZA7D+CBrX66ehD8itFbs1dmX7RWwIfNrc0lVi/8bz8lZ3etimw0Run1lT9eBSw3jQDmzz0wjN3c6DmeppiEJIzIqHOe1UByZypRGAhE2C0h2mU7FYUopId84rlGDZy38VW39eyGQOwhLw0nuaBEdL/PJe/sSg2UBdr6n3N5Bk3YBrnao1WeYcRdjwcjOnAX3pm2u1a7dEEddquGWor7TjaxFCUr/1lNLWy8q3squtAJq9gGmQHc65YlhP2VZIOSvDpQzjCTGAV1gAc22W5Cq/vHTCLZj/I2PqMePPTnfOwS+ZCO7Wym9ZLpUECsZ5e1O2Q0AIQZb3KLn8IqttUxFfvK8FzCYNtMl5/XCCyGBNV0t4Me9vMBfo+AwyamlB2EkbX3gHLJdVe61gaT2LLmBV66oU2EVFzZrSZugnZRz/qUYRtsYG/fe5WnHJNF/AtuS5bUAQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6000.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6000.vtu new file mode 100644 index 00000000000..0563552ddb1 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6000.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.4138049086e-05" RangeMax="0.0029572746488" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12012" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.92294408588" RangeMax="0.99999995333" offset="12108" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="11356.501098" RangeMax="16615.124685" offset="13556" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="22060" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22152" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456536558e-05" RangeMax="7.7604783995e-05" offset="22248" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.63264112413" RangeMax="350.7366949" offset="23080" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0015072168245" offset="26588" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.6124647677e-05" RangeMax="0.0029648286876" offset="28488" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-8953.9736167" RangeMax="0" offset="34420" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-8953.9736167" RangeMax="0" offset="35108" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.92236634539" RangeMax="0.99999977558" offset="36452" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="11351.137424" RangeMax="16637.717795" offset="37752" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.7772791116e-08" RangeMax="4.9641161591e-07" offset="43188" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="46544" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.92490029823" RangeMax="0.99999707331" offset="46616" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="11375.631315" RangeMax="16537.728823" offset="47104" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="48580" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="49796" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="50528" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="50700" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIyIAAAAAAAA=eF5d2Xk4VW378PEdpcgsZSaZ53m8sJF52uaZbVYiVEp1SyqVVJSkDElKhkpKppNFKpRKMiWZMxNKd0n6dTxr4X1v/36O7+na11p7Dce+EMyvLquljL755xda35nWtabfMGLlQwcByPtKLJULOtjzHDc/GCxv3YP7YEFWcWyrBKTScDxTfcEOSXgPzwJxL6fv/epEpwbmKY7W7VIkFLZuMSFsUBU9s+50DR2brZH45qvIG00PPUvdrGZ5KuCVLfp7+PdAuaIF7lE1ds6lZBlI7LtLDlLmhBC8hytEP+stNpfMpgkFnNfEXlTKIdPrHb0PEjQQ6W7d+nV2mzBSX+3RsSRGuF5woX1ZUx/GZHNzaywHynfdwZ2+lW55/L483DtftVe4cgsQPRgTvciTsJlmPgS3B9wnXJx1kLvbxg3P9mmg5Zqf419fsGLXdu0L14pihPHXjFL+dQYwz5ybrckxrFFbjXutishNu2R54CRZnxAWm9N2w3twANwTGjjtz9EgOMU0uvCjjYweLwj2VR9VRa3iHz4/KuXCNh/rqq6moYeGGlarmy7GoKQ6smfk9KCGJOERnKnWodXScJ1J4HWoMj/cx3uwFsP95IaPqZyZGqAg59nUy66B6JI1KspOKSEH055ZTTshLCZFZ7P+xQ0Quv9QHneCCYS5S2heXurXMCV8+/eNS6fHxWFq6PfgNxsxWI/3IEJ4omF29w11VZjumWW4dl8JCXe0Pa4TU0ZtYfwxwjeFsZlEKZlH5nSgfLFn0EvDDEgiSrfGi+fL+wn3jO47FlYhAVWFW7jrjmqBCN6DCOHl4m48XLOq4Fj46ARVWgA5jo5fUzDRQFudLt93SBPDvp9Te+1swAiKdz7YJSYbg1FkXOUhj4XyDYRbJaiff+EsD0Za31q/7yGDLd6DiiPudeVJl4+81YacuVhFy0UROP5jOeZGkA5y0KHvi78ohcUYbVdf5mMDueqOpxUThqvzlQjPfG1ixfJLCRqv/ihQCtoJsXgPGgj38Vy/+L2dZJit1xHUcNWDcn/r0Zfl2oikH7nJslcGk7bOF9MXZoUGJ3tmN14D4DFhPPK4kk6zXw/3sVO21QvDisDgJ1DMvV8JKvAeTMm4o/IfCu51erBXselBE40qNGW9Dmt5q4Dy6Os1ru5WwPStT1qdS6aFrWGKp3sFKcBLzDci3KVEzkD5sSh8ZqiS/YRUoRHvIZvweImYrnUGyrA/kkYnv2lA29RP+YNz+jbUNW8ZuilQCcsmdanZHp6s6q1t2TTk5AhbifkZhIf7jYtNRTPDunQ7+WIfZSB64PqKO8WPmZTDwAuNyu++H/fUQgrmr8mF15lQv/dyvvV5ZYzBXO/4I62Bqo4Ht6dy2VygxJXj5OKeuXIhKu7XDz6JpeGjhTSndTwfugwB4T1oEE65cIG16BsrRKlUdBdrqqNZnYlHnvJ8aBn8Kk+eUcVan+VYGwbNVtXXow6H544gJ2n3PmlgslysGne5lsx7xxTZQWvsVe/uFn1YxHtgJzzhYJPhVREh+GU5zpQZoIKCJ58MlTSKIAWeppeVJ9SxG8O3e2QUf1Rte68V1UhyAN3/zf9YrkH4ef9+nuU2Hijfrry9NskAQvAeurhxn8qzONb1RhxkvexL06WE0Qxt7I8RXgnEOn18vqtAA1v+kblxgWWpKm+y8NaJBjsQkrz19VLlUDkX4eJxQVrDgoKQJKijahZtCF/wHrqmcP/1dN+1z5nScF8i6nJNNi8qOqOmw9Algx7s5CBht7Ww3EzvkdAmEjTOHSyOYbcDHmL+BcJrpJXTqFnCQL+RicbTyhiK8R5ECf+jHvRR6ZQCWKbcGi9tlISy+O+1W18qII2MXKbb2Qhr1J01HUighZQxI346YXu4U70/tOfqp3IS4X6pShxvi0TBzCW6NuehxUoPsem4x17YMhGprQxVUtx3PxrrwQTC2uUTpRBpY2rahQYdrNMy0yZjZLnqurYsI4u/LTxT6Q7exLOsUUyH+0bT9/snhbeDi7xbz0SCLjTjPbQQ7jlS4k27Sw5MvOIVOHZoA9XzrW9H83yVw2m6NOanetim6g+K9IPPtQ+p+vzh4LaD3/+bz6wZTjjptdEDF6Mx7TY116LcuzpQjvfaNwk3vcJwdtvZBe2evK0vO+8ogeOWfWEBevIwe6LKwqSXjDH20ltflKdBMY/t0qZKLUBaFV8/10nc76yDhFRpEZR/hLIk81gVbPAekQnveL6YnftZEdWLe7gLu/ED+8lK1lvqstD/D0U1PUIfczQVaWFdtw51Lw00vy1wAAepzRSrBzQVs4QLOgQCZ48wMsg58Oa7qS1w4D0ix+C+8ZVPztcqBcTCUnDtXIQKZHO27lC7yYA2SARBRpgB5tHaqMj5p7dqZb7Z/+azV9ARviQiXP6PwjqIdh9j5J20WelBg/AU+c0vuY4zQzWrY+Cdxs0Q0WDLJrhTFXG1/mOYFWKIfTmaytdRuwlKv3PWtnk7ghvG+uMrHV+FEOGZgQfTHPZLQ9Khh2cNL1pCGN4DlfDx1OE2TQ8N0C8Zbj5gr4COHOJZzPQio8YrZy++XDbEpruZ6JqYOOD4HfPqcB9nkGUbe/G9SagilnCFL5narMKqYL4jRsO7xAaO4j2EE16n3MPjXGsAvSf8htwmpBHt3il/Cr8FGv5weeD4r51YwdHbrGcvCkLakSd+lx084H5dgleW79aKYsI5RxMcrsXqw96ZfHbGCXugw3vYRfhRgXWn9VlsoFIo+euc2AbUoNQXtG7GDgkJZClr/jDCVC5mnc/dJAbuEmwbPt6iAon46+fHPbnD+JxUuCmQLO9PmAw7QyPeA5XwlPWXf3I+cIRdT7VO0P8Rgwmvnxd/qjmi8EaP32rnjLHdRqTqMw8lwOjQM2nm215AEU3Qbyz4Vk4mXCdcE3P3s4BFVh8qX60DTOI9CBF+MOhanpSVCwzbtw/srVMB18Rb/r0PnVGY3j+yaadNMHZRfpezKdIwrVQcx+xLJeavr5AhPLW9oJJ01RoUptI4tJZdwA3voVIX9y6FvIt7RdyBcYdvp8gXM2iusNKsl3FD5CeZnj9PmGLV67W+nj0oB3fEuHZxNfvATmL9JMIP8jN/tPtMgcDi905SQ97QiPdALsVdbfHxwce/PGHXg9msARMXsB0wChDuckXZzwYK6raaYT3Oypc2ccrBhXluhq+DPqv7r0B4pvv4zpL7FBAeb/ulY+gKFngPJMIFLRMP1l/3hCj7xMXEzc5wNX970m4tJ/T0HcPDWnZzzGDrv3dO9kmCV9V0qiA5eHW+KeECe/sqLEosofPph8mM+55wBe/BlnCNRJKoe5Qr/AoB2Wh1B+iL+F1ZkmGHZnuVyzBmC+xuW2UVqUAUklNFzXVi9sAF0RNGtsLL5eGE04hPjSttNAWe1pn27nQq9OM91BLu1Ly/dd7WEVLsdrlfNDcHruod/iX0VohkG3HC4qYFNndTWdthRAg43nyRlKkNXV1/CwV3moZecliNATSZnSsLGXJa6SGb8GK7QxW3blJApTCue1RWH6Rv08xdMFZAaVZhVj0ZlhiNK93mxjkacOo+bSjstGd1fhLhh7SffSXRisJtQ6wgPM0ZTPEeThKuG+4335CrBErE/A55gxHjeE0gm4dsC02zwmra6zpqS5nQ0X57Cv/NkLXjS3ii3c/zH6MV0Cmdr5kH/p7nTXiPVlxtN8+6P0gH5frMk3cUmEGVLvnymIYJkB4e9yiVssa2zn94V72RF+2bj6LvPLJ7dX424SpVTzZ2LeogF7NoF86r7lCD94hKePPRI1b918wRA3XmnFGyFVQ6qmyk/L3PWtm4fnwlaoNxaFfMxhuJIVa08Vb6n7Xzk0TBPSrXt/7hI1PUHNk9o/zOCQDvUQvRfz9q8Zk06Yj+fa32c47LDbYkNj6TvusG/VFcshGsFIz3n1M/5DbKI+Y/qd4vwx1W55MP4p6/sL/ul4otGk/U+dz71h648R6xEh6n/eEW21kvpJYfVsTi7AVvbchdneHuQF6fvjnclYK55qtMP52VR05Kw76F1x1hQiCliUFwi2Y24UzVL8xOPrFFMWdk23lO+cJrvEcr/nR4RHU2zBuxlz0czuUPBAXO9parGU5wNSNbpLyDgilHmSi/spVCyv1WlxkH+VbXP0X4k/k7mQyKVmjoevKvzYFUkMN71EL4K1pd9XcjrmhDvG1M8/MQuNS9q8m50RZYVe/okBxsMUZDt+j3JSLoQhz7hHcKBa3uD+FWIbV5jAvGqN9uah853BMu4z2aVcG9WfiKRomXA9qdd+nUUbYIsJ/19ZJXtobiacyjI8MWG5nbgUVd3o5+NFuNePatza8lPG3/oteBGEN0jH/uxTpZD7DDezRLuN53ztN0lraore0EXfVyOKi56e7MDzGCxwJPXNq57bAKNW+hnhku5HGi2vKau+vafMJbxZ0sqXnaaFTmS+CBYDdQxnv0hPA2snnjybOmq/N3nFF2MDbVhFibIoe2VDvMkmP65JVQJjSUkeo6MUlFlhe2+zibs1cUEx4VWNbdbquAGnZUv1866A5yeI9qCbeTerf+5wJClxonp14ER0Ln/vuj2/7eD8PFi/Ri+v6u74p2/FzuT20N2dv83vHeq+unEq7npmPmEMGHYtKXnDucfKAD75EQ4W6jB7ieIEm0DyvVkAvaDxk6OXV1+1RQ2jYeFTkPe6yFLY7G+s1GeGjUTrEo8Vidf4bw+ToDA8cgKSg5r3hk+4wvpOI9XCA8+dj88XOh6qD4iF9Q490BKO8+X9WwYIayN56R6O2yxwz/ZfVPUBcAea8NJ9V71/Y/lnB9RjOp9joy9KT6MV/v9YEGvIdawoN+smyqACuwqRiXVuY7ALsmnj8Z2myBshsMQl22O2AcE3dmyEcEgTqmW7NbhLp2fhIe2qr+0/WAPuwocbj0cY8xBOA9UAn3abjeZvHLGtRLf/UfvBcObQr2J3Zv00Uk1YKQR5kOGEWr7JDVCTbo/JHx/MoP09X5LSq4LwR23jizRxkyrol4fyGbQQfe//3+4J5wrHZWAOkDzePT7o97gyFJebe/mgcXis1h283M44iFOKCtLW5TVU/rDO8+mFWENEdKE5XEXUElPNb0566JSBa4/PLk84Y0QziK95BEeHW1YlDSKC9c/71t4dDf5w+JNy/604d5UDZb+hVHX0fstdp1yTNWX6oyP83E7HGzWXu+InzkXurCsjsbHPjY9tCaxRvE8B5qCS/bsvjZ8o0AXPC5vKcffMDHsjbbdB8ZmSRQih17HbHvhraanaIcsNB/rGPT4y2r+xNMuEPmlr01f9/bmyZabZ+ae4Iv3oMl4SX7J07TdhnAc/RKcHkxAJZqgp7/Pvv3/ktL98rRzQk7m132ZFlhO7AN/P/zVzy1wSdJl80QsNE9r3be9oTfeA/ZNLgHvk+oEJikwFEFZbpNAUEQOIyevBixQ38vAAcCc5ywLvJPXy2SGJQ1mn3r4DBAo6GL60M+y2vWYrgnqfyybg80heBNPXI8hR4rPQgRvTVjBs2bO45gk7hfslt2F3S38/2JvuCGihujBjYIOGMjjsxXjcfl4FvfFj3dU0ar+x9MeJ5qeGuAiC0Ef0WP3UyoMID3EEG4U/byu5wQL2jLzfV44RoIxX7Lt7by+iChd2+sbl9zxg6XJgdIjitD93/mrzjNO9/fVE4nsHjP9PDxbz94gvcQ24K77PXiFu00PzgsXtO2QSgcYhTjseZ/qCjWxpzn6MBfZ6x/uUVJGVKWs8TJwjRr91/Cj39Tm7c1dwTYyGVP028O/+A9xFrj3nGp14Vl2BfMbkwra1fvgnAjctBHHkfk8f0qR6mHC/Yh4oHOmyQJGPVwfXudx2B1PivhfduLvjPrWcBI3tVdFptdYB/eQ/0C7pHK3+UWZFzg2GHRUZdfodBiM5altd8AUTM/M850umBFqQ9ffT7MCZ2LaTQTu63g2yVdj4EaiQoy4ftL29i+taoD34m3fLvMPKAR74FEeEScl8vVHUYQlfZS7KX2PhgoeSYbelwU1VIe3Twt6IrBTd9SxU0/qwIi+9Kub1/7fmUTjtz506PreSElkQV72+kN/XgPQra4t9NF+O/LkYDZY/V7ErPCwav08AaFLD0wOjjg53DdFfuW2qFQGciOsv4zP4nwfaSvF14Eq6Ds6r2id+XdIBzvUT7he2S7TL/wGqCfCqN6cykhwD134K7RMTsgZbGIbed0w6Qm44JqT4uiov/MFyK8q9DpqeqACaqfeXsu9rQD8OM9IhNubB1YqqPgiP4Q8y2O1cbkPXYCoU5vscMebhiUSM40h0ohh1yh5ZKD+qvzYwmfmjSv5KFYoficLf5PG93ABu9RP+FOpaf4fGjckKdl53xWayhMh29kcrnsBu3pBYNtHW5YvQX6MTsjh4z/M7+f8GH9c6IJ4rZIaj6cIe6qLUzgPTLNwH39IrOMWoQX2nf/KmYT5wvJvtbpmyK9QIi6kCVv644FRIofZyhXRFJeh2/euyWydv8lvJVpbpouzx5tCtktdzXbEJLwHq24u2Bz5oZwHzRz/uLngx7eINHX6MjT7gH9d37k7Exzx5Yb31uWNyggzcykgGluzdX1U/Nwf+HDrXvk7/vO6Y9zRjd1vUEa7xGJ8JixGJWTJ6hoe4qh2LyuMxjlltj4hNhDbtunMHF2D8xtMib68nUxlNEdGmQjrrK6/lnCWbzZ5ejYzZAxo11RdKor6OM94m7Hfc/xwZpHuk4oOjY5+jGvP0y0alym0O4EMk29FkOiBxZ1tqhkj8U21Paf+VTChRaGMOkOTXTN/b6dZgAFXuE9EqLFHfwuSNZMGSNavyGMe/Tv9480wqv4CUFs0JO3na0eWDbbg4Ohzazo4OklvQB/47XrP+HYs97JRzeVUEVmXWSKiQYielRLuP/gGBI7Q0btYm76l/l6qzqGPO+ekkDwY7mxFFl6YlKc4zkmfqwoJPfkI1Zu9dX9LyZcRn0ctsgqoRjqJvsdvaaoC++R2h/cvf++UBQKkVHugM7743FOaPBFu0r3Pm0gpX5Mv/ncEwtVNM4w/MaCxEXx/5+0l3mzfXxDeSzhqflfzx/4e341Z5Lez73SR+N4j1b6+4led30j9dAzTPdE8DgVxd/veHOnQAPIRgf0RRi9MJarD3T5nzCiiwWfjvIloLXrszHueilxAnJd8khLdK745R0ySsR7tOLsN4uidusjdCR+qMONxQ/psV1ye58mDxi2TmLDKS/sjpweJd2PBom8FqIIlSmsPf8QTm5zOU4JEEHSNo9fpfNQkBneo1jCtWco2z5xKaEfoY9uhQ0FIEiYlisp54VYzQvMI7+9sCOJmfVKwrPap9ZT3PsKDVEx9+iGgmiailrCYyW8Gj8Ps6EbRTlyxr9VUTbeIzLhZ6bb+nTrBNGxlT7z98I/cW+1Y918JHl2emNCjCXd6U45Vecuyk9WL9uvPX8Snm1dOPfZ6VnVw8TjV26kaqBavK8iuePez+gYxc7YWtXu8083LYsoGK5/2WfCoICyns9COHhjtp1Xb2QV0kCc7F4BJpu15/N+wlkWH5yWLxWB50cVFM817EQGeA+WhC8sw6MqbyUw+d4ryZpCBjumu/UJ7Xoolot814+HimnuGwyai2eHioBOifs2AWvrJzziVnPV8UQVCJ+ddFBOZoIovAchwrscWi7c0jYAcX+LDZ/VwqFLN0QvedEI9XOGXXTQoWJW7vvYlK9wg4Gar8qU0O619ROezdlI2+uNgDMgSSKs0gCm8B5IW3Gfyb92U13WDLg6q0v8GCNhim+KpmO/LdofX0BVj6ZiGt096tm2IlBvfSmoyzJo7fmQ8FD7IVbds8bAthRb9rhZD8bwHsIIHysbpWf4Yw/6fR9f3QgPgz3XhQP9ppwR6d8RRZ5SKtZMRxq90yUN6v9Z/4rTZQwKnh+0hgLXH8yHRHZCKN5D7XfcP12nMTwU5A66xPwff7bE/7R0QSQXzqW+Tirm8pw2icNMBkbXNW1dWhe2Np9wjTnO3breNpDnyWHmUm6GlvEehAhHhzh/8Ha4g6DMbb6jVUGQwbPNwHm7Pcqd5O2L4vDBSPIF1ICdYtD3n/mxhFvc0b8eXmIK8lGGR3cOG6MsvIdDhEtTZWaGxh2haGe7TfCoPxzZrbS0a9ICUY8JP2Wy8cHy0iiKZXpCsF7q/WUGDre19yPC3dxDX+ZsMIDboknVag/E0SG8h9oY3GWT4hudf9lACTG/yNVNYUeeISIFi3veifDBrnOZftrevxUat1YD6zaNtf0h/LZ3UZ60tyacEWyHGTITisN7WHGKB+0e8RPG8FpNPG7zTBicOdEos9uTHi072uZOF/lgLjzFTQrxn6qA5eCwyy+/tfsX4bNG1+WPeJOgRlXk6VtTXTh08n89dBBuembZSIGZCQbihs5zW0TCsmndxIEjZOg3PDKpMuaDWXOyP3OX50Ar8+cr9nFsaFWqqCVc4s3zj5Ymqqih3HZL2X5z6MZ7JLQTd/I5Qz+fAQP0Muj02JDRLhA9HLT+3GFjiI3qF8pi8MVk2h0YJKV4UMvT34lfbdfeH7MJ93qwZMy5QQf9HiAl8Uq7gSzeo1rCA7eUiLZgZuhnOouE5dNwyN0pWpOw3gwq9bU+JBv5YqYnyNk1Avzo7X/mtxD+sIRHmV+MjJKlkyX779vCPbxHmw1wz3SQveR713J1/g6WoYMJFyygnzEl+VSsL1bCtZW3gF4ISYaPBdlxbl47vkyEM5U9fdCkjwrVjD8YHtYEWbxHQoS/S7m7/C3JBpF2HXsS3hMCYvozZza0mEH/hxlSdY4vRo2uEbu6WQCZ7fM0ONi4dn2uJbzki3X+gXwy2kBX8ta7SQ008B6Ru3H/wPIi9FCyFfLeybxds04M8kfP8CWZ6IPfvbFJl09/9+fyn7Zpvi1ImS3zwAuutetzOOEhzY3Jr6zVUGZOkV/pWwX0GO/RZcLrP0h0yr4yRP8a4vN9+EyoqjGKIHR8sOPbNj/Mze043VmP9SiH8JX5ZML7I0dvOl8RQ9vyuFN4bcRQJN6j/ljc7U22HX9Br4I8ic9vUsrJkbTEDrU0d6f/1fTDaHfzUVK5R7R3NPPQsrxXXHu+JbzkLV/eQtwmVK+yN29MaUSb6BGZFncpA+5PTzFOVHam/Ha3tB3KfTZ4LPLvffSs39EQ9f1+mEv7cbXzafTA+5/5FMIHNU+8vuInA6zy32ebaSXQbbyHUMIHlkvETipowgtivuMRo7j1nqaotp4yHnXfD7vme4pU684HRTcZx0QT1t4vSM9w73ofGPdtnx6oOCbb6ndzgD/eQyzRC4s7xR0ds4DXr/D19UqzvufJMEfZ3952GbT4YULWQnE7fgrALCVhiUVIYO36RniuYPMHRVl90GPdqugqoouIHmIJ51V1MNQ7Yg2zp1gDs/3NUR968n7b953ozNXIj0IM/lhYGh2VNpAL6P4zP4nw4cGywjQWbViK6PhN36aEevAeogiPZynT66IxhU1E35BeflcyWxf1a3H2Lhv6YzWDUzpDrWzQOzcdmNFjANuZLf9hPLutQkgb99j4zluvnymDho271CSzAHqF97DST4xzo4gEfajvNwm8EeeCTN0cL6zrUUak2uBLSQH+2O1BxeRC/o1Q5V34yeWu5+r+12K4P2i9GbnnliRUHmvZm+5JQXOu/+thpd+ceoRUhqnBh7qQAnoXOwjfGBM86bkNlkIPnNt4wx8THsyitCpNat+4WNwzLvD/PH+G4T6M3V66IcWMOvhZb03cc0cCeI+4CTceSi4xesaDahokvFhDw9AnzxSDfxP0gMQXdzKmyx/7mF/rkeDOjr6PWs3aCSuuHV/CKa6HNbw8VNCydTh9/QYnVIH3aMXfGQ5OTbEaIHeL4V/pDJEopLpcch7Th9ikzrTWn/5YoyiHB1P+FtRVCU/uLa79vkAm/GV8dazqhBoieTrWp2fRQxjeo9qLuD/frt3O4bgTNU/fPBqUFYC6Wtk8bQPUQTDKya9HKQCLENHvCNPejD7+Z74Q4b28OeyyKnJoNn/YcX+gEbzEe+RG+MT3D+pYsxZ6RsuAPb1qgGoc/V8fvfL3OuPRLjsSEoDdXywbO2W2qD247xvT4XzztePrjruDwyWTXnF+pPD02cxxaQpqwvu/nwf3bIcjCfd6JVFzStJcnGAU+jl9gT0nmBuRLXf3/0gMwIyPDWboXZ6usmB0eDNduPb7DtkK964XQ0vlgaxAn/PGKOa7LfqF91BL9G460nQMvPywucr/GMPeg6io1vrhbLgFqglKuXfheQBGf9bxQ9+sIDT1SKjplHmtrZ/wPWyt9ilP9IEvoOP5g02u6DHewwTh5IjoIsa9NrA/ou2z0eQxBO9EkwK7XRHpRM1hkeUAbKvP6b7CbXLwI5L+cah1zNr8ONyX22ifSRRTYPYfup/pKk7oDd7DSr+neiujR6YnzHMI36lVPokqh77GF3z4+/7dGX1jTiAQI3k3yFBfKsBzdVcBz6K139dW/FxToXXoDTt4P8T/Jsk+ANXgPdR24L7nE7vZ9ngqtMCZ8vuep1D17pyBvevdEeL+8nGzcyD2I3hCPyVSHpqDK06qrg9cnc9KeEgcc3RCuC3USC4Ftzp5owq8hxYu3FFZ366n817wXucSA8azH1XMUZCq/N/9cffnErsYiH3hMJYKpshCGLVSg+88x9r91w13S+2IW3n6FKiM1tQoA0tUjfew4tmPrukb/P082KfhAbnPexDTx/Nur686o9iSUfr8B4GYQTQHh1KUNIxcZYosjbZA32s0N7VYylWsuH6FXZ/rAWuw0bqstnPSZqUH8iPc75nNZlymc4feXcZTkkyuiGvrENvSN3tENfi2U280EMvZV3irRkscXG+GTtp7hq/uz4oPzL+uLKw3g+Gkh+uKvG3RFryH3YSzn3QZse9xAlcN2/vXLkcgFluNJik7CiK3kmLbBYIw2jBDFYs/wlBZ+C+H70lvaPnf+gU0Ywk/JmOW+pvNCK6d5B4rbbJDW/EeYt/hHllTK7+lxA6MNs6Z1GkfRIrZth+/PjBGsbqZLPR6Qdgtm/VT9sE88PPfAizqVdDq+mN1cF98ZNexyVwHHOckbx608EVKeA8kos+WbHVZXjKDPJmz710fHUF8+umZWX+EgOFhYw9bVBCW+CjLWKHpq/a8+YGfg+cj1s7/YtzHpg0eTMxxone/6ypDB6jIn/y/HnUTLrFt751nh3aghIiljJfb4tAbsqBUvfzf+7jIt3yee0FYaVv+xigxYbRLyejFd5/9sPdAu508C6qo3YF7FOfi1mPbdyKvLY/vNsx4oY94j1Y8tXu9U3GPLRLc4podejoGbe73mJTmcQDStxKmn81B2AFn/zMbA8WRzO/4enHzqLX1E/5y4cDre1/NkLO7LV9r8jrEiPdopT+8e1fPFJ0zCj18kJ7z3yjU6CxX/VXICVqmTT7vog3G3jjXD/bXSSLBZjFPm/kja89XhGfI9i2EJFuic/dVnB7V6MEbvEeXCFd7Gv9B3tUVWatR5w8tOqMTb/9cqBJ3gdqRHujWDMZEXYR1KvllkBAxv1XraJv0EGsFaRT30ABTAam/+7GZbUHYP0wF4vEekQlf4M7tiCx0R4cKO/dOW0eg/wM2BbFTAQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAHAQAAAAAAAA=eF5t0/lPk3ccwHELA7TiYIwIGFaoNUxwQJhbhmH6RUQ5dHQMBGSg46qIM+MINYDIrYAc4So6JsdEKA7KuBHlUAlHK9ABm2WOIeOahOepXHKMY/7wTZo8n+en1x/wzrtKe356e1uOqijapr713KCRDHBxnafR7RODvGkay5oZCRIaT5/KdymlMUMzLPgmjfH9zTmONL4Xfa14awvqLTPQldDIvxHoFkCj5GalEbkJTb/UGlxMYwSft0edRhTib+2/AT2ZUX9h7T/o69a3Vyxo5AkeuriuQ1mmQWW9a9DsWkZX7yq0naVhUrcC7bbx4qrSmFQ3lyRehhZyWZn8JSiLw3C/vwg1XbdcMV6ARgVztfLeQPMDnULvyqGi5kTmGAGdse/5U2UOOmrVPTU1C40uUD08/i9UEp57o2MauvO7GB5/Chqa4eF4cAJa392r2foKWr0jjGE3Bp3LLomo/AuatOP448UR6EvNPWpfy6CCj9yMeL9DOcYBDO9BaOGuhLUUKfSizuXxr/rkKJBi2l729fleaK81J5roliMxxXMNlh5endCBMZuZig6FUuz+PrZjWBuUGWdpl9oiR7spln9htHG9UY6EFK3YkYba9XL0JcVJ88or0mpolpgZeekXqI7taEuPEBoUGRrzcSlUR7dB3bcI2lge357yk8ImrK7zkE5yvkI97L1935zwyVZYiq3ojG3gZsrRA4qCq5+JZlOgSz3hiRcSoc9flKxqxUGH0wxS7aKg1846K50Nf/cnxbbZlipJCNSSGGkSXIaeJm5VHwmAOh3TaArxgdYoT6wPeEJjap+Yq7hC37wWlW5wobY9Sh2z9gpPYvl25ySi41D/ok6h31Ho4U+//eDvz6Hm6y5+pmbQBVOLW3eNoX/YZKYUs6GGR9b9rupBsx6JCoq1oXqyBNuD6tDtxEP18crQMj+TEt8tEhgX6yMNWoZyzusLbeeguasDz2XTCnOwzYxRA+9RaM3Q4ELNEIlqKf7D+u3BSp/CCaxDulvE4jNosXNGTttDEhVR7H4k1airI1EXRcdDhjx2hUIHrEfoZpd3IYncKQaq72du5ZPoIpaHfXZ+uGQkjURPKZrt/XEpLk6hOVYkzusXR0K7fK3V3v8BqjdXV6DvB331QnCf6UWiMYqqToXR1VyFKtjhaLE16wSJhrCDWKUejqzKikQM7A5snOG+ySozEsViY7C3z2S789kkEmDzsLUrWXfu6b3rif0V+737sY2V3VC1Vi2zD7cItBPLxL60CFsYWSbQKHYM65Dn6RI1Q6AzWC42uSh+eFxGoHRsNvbnCTXhUSmByrGV2EllfZMDTwg0i5Vja6yZKv01BGrEPsZmEu2cFiGBcrF3sAulm56jtwm0jF3DnorX3/U0mUD2WEfs/ysDF+M=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAyBgAAAAAAAA=eF5d1ndYzu/7x3GKykoRRRlJyUrKjHeRUSKitIi2pNDQUtpLS3vT1NAeUrnqaqdJ+iQkGX3MDyFZxc9xvF/3H9/fn4/jeZ7nfd33X3ebm/zb1J0KO7wUeDWbtt6l4a6soz/uPXUw5ihx92DtjX7XnXXdzRLHlSka5LkD60D0Kthz3tZkzbTtTNcZ7l2LPzPUoDtlzRmpu1TOmvVd7oStMmq2RMuS9XF0UcyX1f/evqv5CFlzgfUJdH342mit84VNZxj9aP4kx8CjdIOpAo/g3Lv0Nmw0ZJUV7XWJHIA3ovvCkgfu6j/VP0IOxrFWQD8G772k4V/+y5n5XvP4Ye9NA2o2ybimk/dvr2UtaFY5YzjRgyxCN0fXghWP32qwOCnDjN7+3/0/ME/aJNucbjfmne5sn7pnZnTldEPLf193U2E91tfIL60Pd7zJB/Q16Dzobn629N/HeqQRXRK9DR5+FSsYdvgCc6xHNlHktRX1mzuus76+m3rBqa8keGz6fUgH7IM+BCe9jeHbUW9CBO7/7/5cePBCd8COoPPMUZ+fVlru52mp2/Q5uTe66WlYqldDzumoH0mHy9Hz4UXLQ69W2TsSRbgAXRn+pG83z7lCn9HT/m2hw2VPZ71/J/LFp5tegEemCDUdHfcmqbAAegH8paAyw07YjSjB09B3wu5Vr5SLI43JMWkuM31fR2qp37lk+4lu6gI3b3ygI5/uSTLh0+gV8Db+LQ7Wgl5EDjZG3wQ/5V1ypKn+ItExOLXW+4oz7XjTYlSq0k3t4YKmqLDHfB6k6jjrBvR22MGhY5qdznniiPlm9IvwhLo816ZEW6Iub+atNNeNago8E/mxtJsawOnzH3q8Dg0mj+VYH0AfhuW83cfTu2zJLcxro1fDNmFXt/F5LmFyfYrfT6h50KebfnYr/uyiBfDno7FWhcMRxB3uQ/eCzST5ivpX2pAf8Gt0jpVHH3zm13NkmpL3b3bW8KTiLqEVpS+6aAu81NxiqbNGNJlylbUUOi8sUvnxwolITyIOL0dfBpc65/FvD7dnltQ94UoX9KYfrct9R2//7TAdNrdyU4kkGvAoOscNp8rj/wS7k33wd3Q1eD13z24eAVsm8OW5ro4eH9pmNKC5MaaLXoHTjyl2Vd8MJxlwO/p12KzaaX7PeQ9iBNejG8NFh+8qnJhvyNgomCQs7/elhCv81XX3LuoER/k7ix9OvUJC4Rr0cDj7qKhujaInOQNXoFvCvcpmJ9UddRlRgf1BvPH+dP+fzYLPdP/+PvDIG65C7slXyHx4D/pCeHPHV/HRWm/SO5u1Inof/OeRkr7aP+akcFjO9a1eIL37a1BBVK6LVsCn+8oeOX66QhLhLvQUeLdiTa6yXwBRg+vQ98HqI6s7vUoukuqJrqK5Jy/TsbMm5wNEu2gDnGKSoj2vM5Rchj+hh8EnYov2Cc28SCg8il4Hm/faPeTmcyIf+ON3Ji0JpkKpvOJVo530P9imu3lRP88VMmU2a2F0bnjTkSSX0l0uZC0sgi4DZ51/edHY5zw5vNSkZ/lQCN18/8a9d52ddB+8aNvvJ/yXA4gLrITuCPu9HJY7sMWOZME70DPhbXpvD6/9rUfeFV7tnTscSsO3OkZoVnTSZ/AqlyOZ6uoR5C0chf4azv0z010kOZQYFrFORTeA2yq8t8cutCW1dfpDMUeu0JHk3BcuVzophTn3G+AP6Bzbyd4VHNsVTL7Ao+if4VLPFTMyElSJ02rzvnS5cKrCNbgh7XQndYM7hO8IJ/4XQSLgfegxcEyDmJyfWiB5AmuhP4UfJ0rzqr61YhxOpCp/Lwun1e9rjLg1/96Hje7sOH6uLIpowkXoenBY1VmrW4LBxBAuQzeB17/pne52y4JZTWo9G6Ii6NSnmYaL13RSBfi9iLtbyPx4sg4eH2T7Jrj1lFFAfFo4WQJ/Q18Gn+2ZMqJQrcz8ER2kofaRVP1e8MmtUzvpHDHWrhbk6g2nZDINVkEXghOubl+jLh1NHmFfAX0Qnm7tL7XfwJTIvLWcqByLpIN8bvcjPnRQZfiLvXT3VolEogE/Rj8G77ukJr/KMIK4wgPoHnC91JuH2ka2xDpTfGxLXxR1DZb1vdbSQb3hZ+rBUsumJBNf2BE9EpaWnfP8p3gMsYfPoDvBoUukdml+8yNehv0fKsqjqZDAy015KR00GT7faD6i43uNZMFz0CvgdcXzf/+3PYkcg8dns90AFn073urhEU3GS0Y7SzfH0Auyh+6MB3bQ+aWsAyUEZ/TkXyNf0M3RudAtHRa3ipyMIZKwCbo0PDyr6vdJiyjyOLi8//H8WNoRbyrzw7iDfoajxMpmpDlnklqYoLfDtNv7/rhqAhEKYd2MPh8+GPt0w6pX4eSOucML7rFYuprbJfLrtg76EHboulhluy2HxMIi6Onw+Ive2R6WyWTpKdYy6MvgrCcuTiqq/kTQfr1Mm2McDfl3zsLtkn87rBLBkxSom0vE4CB0CVhbMetC3+4owrEP+gp4xpaGhWusL5GjsecTrmjH05yJc+ulfrfTY/BP7QUVH4RziAGcjX4CHn+86LXEcBQ5+f/2jeA/m9n716sKeXQ2JtAWoU5VgQftNAXWrUzbneqYTbzgWnR3OM05St/GN5pYwXXolnDNnxHLzVV+pDyyxOfZzQRqeJY7fj9tpzlwULu97ju7LCISxdoZfR5MZYTX156NI5WYP4XOuXcmr1V48rrLRLOXZmyLTqSTjgkbi8e3U0X4Wnfb18iha6QAFkZPg0v9HKzKNkQRzjwv+jY4VvZgqY5YLJkzr7sx2i6JpqmsXv3Npp1+FWLttCt+yfsFEcQAvQpdHb5t8XvPmaBwkoP5FPRM+NLzecbSgwlERdVQeXA0iS49ckBU6lg7XQlvnHr1Wbl4JAmBFdDd4ZplDuOe5ilkHbzu/+2PDWwRKYlOJ9rn9O3repLpmPPt2GH5drobLrQ50PZPpB65Bs9yYXsknBK5XE1+RjIRg39hfwG8uO2/G4viskl2jNb1jKKrdDB1jVDmzHYaBRs4dvntMAhhauFX6KVwi5SNZYNgAhmJhtE/wO+1FpT0KRSQqO6q7xnrr1Gr5I2uzV/bqC8sGemoPOd5COMKn0O3gZ93Tlnl/SWOJMAX0eNgbv51u9IWFBBunZPa3rwpNCuWt9i6q42Oa7M+sLb9Uq59DPNT+3/7d7h310BQnXEsGYRT0DmejPvT9xrJbnBIod3hD4eFstooLzwzXH9g//dkZiX8GH0FbCAbWrFRM46shZ+jr4Y16n14rNSLyOLAkA0hN//u//pzbcWVNroIjktVsKl7m8jMgPvRp8Payvuzc8uvko4A1rXoXbDDj61+pwVLSKnj2Tnfl6fSgeg9MWUWbbQC/rzKMCvodDyTD/ejF8JD3kXR3g0p5Db8FJ3A9RtWnJlypJSsMT80YhyZSjvXBQXv3NlG5WC9Mt8nR1/HMFJwE/oquFZm4v7i69eIA/wMnWPR2KLvN4tLSNMJpfrw+6n0/cQju92r2mg77Dot1X4sJonxh7vRg+Ca90d+PHjsTW7DT9AJ7BGzeE5JYD7Jf7DPpHhnGq1frSFfztVGS+CamENPf4n5MWFwFXo4rGGytmGWgR/pg++hc9wgF1YmwHOdlGhoTblXmEYz9Zo+Sz6+Qzle+6zimFTzORILJ6PHw7MdnNal6XuSZjgPvRGedvVP/uDf/x9laStiej7+fc/p6c+FG+/Qcjg5ROhUX0MQGYFN0DnmTfI9ftgzkTyA9dD74Jc+3rdMLK8R9SHDqlSDdPpuabGtZdIdehB2nqHq7HT0COMEj6O7wG8EDWrCRuKJNfwZ/RysaT8tiMsxnXxelDB4vj2dhvbrcBP7O/QnnIf7sxazjkGfC9cZxjne3JFA7mHeCf0+nFQ4di65IoNIe71crTwjg04Pe9OfZHCHroMrXMOCN3B5MALwj1C2z4MP7nupsNYknnjDS7Hvx5mfOJyx4sB1UqWqUVLtlEGnKpgc7N54hzbBXn+M3W7ze5Nc+OtWthfDF/POyz7oTSJD8GTsP4PN/B0ffWpLJ/Nm396y8d8M+uHlQMNk/jtUErbEfU34K7oex4Ir1nOVpZJJcAc6F2wiNSomE5ZH3urUq9yXzKRLBOcZd4210gm4oLYq8Bv/DlIKT0Yn8N7Fe59d6/AnbvC/Amx3hw/M/2dsSft1cly7VOhzRCadXjypZ7CrlZ6Cr9pVycvxeRAGHi9i+2747v6YzIdq0UQcfo3O8brWpMyR4FzySSvjmcCk65T38PudH6+30jF4Qn35sWmzLpNhjjXY/houmTDQyp0ZT27D79Br4a/zYibv4ysmUwMCq5yUrtPZ8/qDssJaKQ98Uyp1k294EPngz5oL/T28RjVrxpBcEjHHvCy6KTxqr22+51w+kR3qL9mcd52mzuedGXWqla6F3+C+KXwT3Rie0P/saC8bS87AVehn4W7/1J6HVtkkeIv0jTGRLLpTZFOwh1Ir9Ya/4b4/vBfdC35pzbzkk4kgPrAaugfcj/s8xSmakrpZ9Oj8HyYS0q30VxFrVTVJo8GPl8hGdEv01fD35K+Lpt2KJYawFzrH4b09L59a5JLh28VH3Bv/3qsu4nn7p4X2w9K4T+G96NXw1K1PEzdIh5EP8En09/DGnxaEzzSFWLTWH34om00XG1rkFD1ooXqws+IU5/G9xowVvALdBE7My28KNvIkm+El6Bvh7byLXmU2JRJbvaam9nPZ9PQK9/+20xZqCsubJaR5KTiQYtgfPQeOn9FzceuNRLISNkRfATcZNpm8iI4iu76cDq1+/Pc94l3Vj2Nb6FbYYsqsXw/7bRhzOB/dAF66eNHrzuwYcgouR+fMiwvZzo7sSiWfgvl1bqjkUCq66LLLuRb6HxyP++NwG/pPuHWLjGzNtBASHcKaV4ztEfCwusu3g3HxJMnyacAJvxzapGQ076NOC42D+ZY/itTr9WYWwfHoYvA03S6b7R4XmGq4D70SXqPd6mqQu5Bsd1XsHfz09/OkbgqZrmuhm+Hxf5obdeztyYeLrNvR/4NTdiruuTLVj9HH/Fd0PfjEe+1P3B8jGaeQ5CUnDXLp4KwZQg95Wqg9fOsQ+/lDMB8/2wfgQ3Jb4uf6ujNG8CPsn4RLm6nI4y/JjIG239fuxFy6cFX/7Q0fm6ku/CK1c+HYHmfyA9ZF51hidvibQTc3ZgTWRuf4wiSXoI9DKUwPf9bxxzw3aFth9L9uzc20C54bVjq1M8GaeQR3oT/keO5PtVjfYCYIvol+GZ7hqHVU0jidSWluafjX5gbdulFToCW5mSbD0jV9FpfPeDK9sAb6ffjNhhX1vM52jCEsiW7EMfZFJabPnFN0g957PTmDz6+Zcmz+OUfgv7JwRgzu/n9dhVY1bGu+wATDv9E5Xjjn4Kdp142J87WO0bSFefSH8PFBCYNm6gK3dczd0liZyFTDs0XYTuBXDVZKteZezA54CPtK8BXiolJ63I3MEwt7Iu+bRzep3BRR2vD3fXDk/ZpC9adpjAS8BV0KVpx5bmxERo34irL+sZftAXDID8f9RRV5JILv8u75DXn0juxbHTOxZhoLh1/dsNFCIovJhDvRs2HeXOtfVdEe5DP8Fv0LrBERLrH5WyGp9bnZI7U2nz5bcuC8xpcm2gp/XaF/Ri4tg7kDP0HvgtNPSZlMX+lKvsDv0EfglZkDYe2jueTJpBeGm2Pz6Qh/QcC2tib6CvbD+3knsx5DnwnP+Vd/6GifJ6GYv4deD0vj/g2nZVadvfm0Pu+i5J6SJloBn1jpfeJeRC7TC7ehP4GDC3Q3djT7MVucWb9C3wrXp5cmrZmSSRKVxdx1FAvopPjc7omAJpoBH8V9N/hdHNu94PHNl87E7PFhIuCP6BzLr33YM+aVRkpmzo94llVA1XwfOt882USr4aSG1r2LhGOZOHgLOscL6t3qDv4wZTpmsH7tw3aON+G+a/u1mBXDBbRqYplQmkoT9YHfPDohtvfoBSYUrkaPgNt+D/IPvNrHXIPr0FPhtNLikgGTG+SIRlru8oOFlE+2fFBycRPVgt+k5V56V5zKKMCT0bfBawuNRgPvuZBZ8Md1bOeHzTTkJZbLF5GvvRk14hWFVNVYJSdntJF+hv/F/UJ4HXo+/K44QTzJ2p+o/cP6DPo+2Kx5fLGN0XVyoGHDvbmjhTRkzf3WCwONdC98YN/TgjOBvowdnIhuDUtIu6yyXhNLIuEC9Bj4WY7C4piCfHJD/6mdokwRvbdCV6i+pJHmwMq4fxMeRC+FWwP+iY89HEYG4cnSbH8CD+F+iubyP7bGRZRf4slJ/sBGmgin7auc1PdLhSmAxdA5XpbNHdMT5kBqYRl0jitv+15elZdNdOdfH631KKK/90SdrzzfSLXg+9l20QM+4YwsPIS+Fj4bOCO3aa09iYa37GU7x3YnJ7WHSJkStak/aq6XFdGqSpMz7XsbKcervZ/cLg1MZA7CBF0d9hjurNVutmYs4B70U3DJCfa+7ej+wJDXRTRurbz5E7FGagPHoAfBBeiX4cfTTePc60wYOdgKfT38BN/fMOaRRB5PMf3yrbTEbEojNYZFTMSX5IefI67w9O9s51j0VvkDv2wJ5i6sit4Dqwd8zHUSvsJMXzoitFOhmJadjFZTeNRA+WF53B9cwjoKnePVAodub9ptxozD2egTMOe+fM5Unj7rYrqgxeE5f1ED3QLvn5UUs+BDEHGCVdA5vjkxYJccdZgIwmPNbBeAA4zZ9106LnunIaiYOl21CrGNbaCe8AwzMtM+X5/ZAG9H3wy/3WJYqFTswrjAVujOsJLRmbvHT/ozqZvnneKqLaZa3m/MeawbaAa80pS9XwqfQOdY7sSYv0XeeYYzfwg9E95mwu5Lzf05ZefnYupmYb4jQbmBroR3823v/FPqQczhLHQLuIRfzmvP1b/fD3ZH5/jL5WthvmXRzOGdvJt/zS6hv0X9FB+sbKBH4PuyH3XP70ogYvADdI5Fiz9V7hgPZnThyWJsPwZf0PZdH694hShbL40ZVP5r5m221J96uhM2HbGW5nvlRHbDDugczys19vnmFcfowv7oOvC3u+tsMj7lMlvjt36tu1BCP504ONeht55ugps/2b7N1j3LnIHnn2S7JczdnD8S5BHJmMJC6OawRM3LKQKjhYxbfFPUnsgSyisbInG5up5yzCfUO9r/4BpRhB+tY/t2eFRn7s3JRXtJSxxrH/RGWNY2IGyKZDpzS2Dp7tamEvpz37Lp4VfqaRnMuV8Mf0MvhE/b6ac4ffEiQ/ACNbZznJB7/TCvowcjHeDyRe17CeU3rRiJNaunUnBzzaQDR5P8yXt/1q9M2P4O/q43oO+bHszwBrK+hX0e+NxcmXN6saWMt19vXtS8UlpdqhHlcaCeesLj0303eF7NIub+rE+Vsf0U/FZ80eFzd8OYMcwLon+DxT3+yXShZcyFFYsyi1RK6XerOBsF8XrqDGsYbVqoJZ9IvOEJdF+4qVJWXHF1DFMCi1qzvRwefGHKLbb7NiPXapbc4VxKZ0oNHRz9Wke3wr8PGB317qsigvArSbbPhZ12aevw5UYyhvAC7BvBPRIuRYMv6piJjuKa/phSevnnWVowUEd5Ollzu6+8FOuZTYThKPRF8M55r9xrnqcxP7Fvi/4DFlX+zVX2rp75qOWq5t9aSieL6wbPL66jo3BPuP3b1e7p5Cn8binbn8OrNEz7M2kiQ+A29Fr4crd0RWVnMWM7sLdv489SukJlp+4l3zrqwvHxl0EHNA4zGjAXuhasJBik0GwbyJyCZ6JzfKvx1d6kmBxmXcZu5UnCZfSh9T+evFZ1dBOsk572ulorgNkDP0NXhRMjLvku3B3MTMlkffos27nhaWuqRTeui2EOOUm+3qpaRi+oH0oV3vH3ffCJ+3dm1//KIybwRXQzeNE0vUMaTaGMGxyI7grfUCseUBUvZGwP8ITaOZfR2Wvv0BVCddQRrhTWzvn9OpHcgpXQK+GHtfEzd6VfYZ7vZ520hu0vYZeIWVwCkWWMmcBA/rfoMvpOQ2m9609KLeEPKaoimnMySehs1sro4bDHKmVbR/kUhhfzSeh88M3VXW4t/reYNwft5pU1l1HVSVzGMl2UvuL4YonSKuFCkg4vRM+A2wZzFlYOJzPV8Ep0jm+3FFiXTaVMS8h0t/PfyuiXwsaIoVRKG+GtZaVv2maWEC+4Ed0TtrLo1vA2TWQuwLXo9vChtGyVCb5q5vrq47I5c8vpzooHNuP+f98HW0oqDomRUqK0hnUlOgOrBKv+EV+sxPhgfj06x593nSZK2mWMh4Yjz9Nd5dRY06183zFKL8KRc77YBdTeIq7wKXQn2Idnn3a6mCtZAq9BXwY3fVo5bXRbNHPFPmJAyL6cfvmw7EeMDKWX4RjcL4OFPrK9EPZe81SmQ9iW9MGb0Xvh0HwLzeysAub/AKDTSt0=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAATgIAAAAAAAA=eF7t0c9LE2Acx/EvoeAiKyW0X5BQWKHoamnk8jO7mHbQgpojaaxyGQ6yObFWNh8rV2n5o5JyLZu5nAtNMXbYqDz0w4qgKA9bl7SmB0uadvEg1feR/olgz+UNz+37+mQVKLZ5dq4cprzQwemgCmRQh7d3FoI+pL5I7deCIgPJa+IPgwp0CX5TOei4zb1KfwJ0OjA/NVXF/4m+5HANaLnDak46C1pirXhmqwMpLb3q+POgIq//o+UiaClNGGftoE3hgOnyFVBfrb0x6yoow/CoMrMFZLr2Pl3VBgpaq2uHroOOKjd6cm+CNo9UTI62g7Qp537W3QL1PzG+K+oANVm/ZCfeARVnaE+NOUFJ+s8dI50QMT/W5RtdEG9cFb6yLog+peZ15X3QUGT/fGM3aHr1XnuPGzSjdqd8egDR8vJkmcIDscffnVDYy9W9LXZ4ISKjGPv1EDTxOzJu6ANt9deYQ/0Q5oLWA8YB5C0rjd1VPwhHpk0xV7JCk7PgGDdMJB3Xg4R03PHPMZ99BtlxH0gnHUvYQTrq2UE6HgGlS8djoDjpaAJtkI6VoCrpyM5COlaDJv+EjbPsPfeNHa3sIh1rQT3Skd0bpGM93ycd2X+xdGR/yyt2bAA1S8dLoMdP2ZF3KD/Djk0ghXTkPdIOsWMzhPc7O7ZCqLrYsQ3Cs4UdeZfSGXa8wV3LjrzP7lx2bIcIPmdH3sfpY8fbEItK2JF3+iodHRA5NDNucEKEAux4FxRbyI73IC5IRxey06RjjIYW3lxdtNFG+//2L7cOvrc=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAJgoAAAAAAAA=eF4t1Xk81PkfwPHvrwNdzExyVZuzQ8mg5JhPPs5cMQkdNsdGTSlN5xbSbFRSrbLS8UvRdmALRe6P74cOlFokx2Ipx4xl1xHK1e7XfOb73/PxeT0+3/f78Z3HY/iKb4xafy6yKgw3K11eGAQ/FH/f83jVR5q6cfjjhLuEfjvHc7dn8RBNvU5arMw4vXLPxfZDFKY+O2z5fqOENr4lstU5K4epToVzj5wltLN5yfr063MxFXw0RuIgocM2v7PU9mJj6sSd0nFrCW1rHbNi0w5lTMUovqmzlNC3D/xZjQNVmfugQcgaCW0Tg8w3Bmtgqjb6TP5KCV3Vt7+mWrgYU7y89qdaEpr3wrYl3kITU16qbt4qEnr7DYVR1SItTD0b2Zo8S0Lf+7mopJWng6m9B97EjYvpicMW1Y1Fuph6E+qq3yumBUOFbZ8tl2LqmJqyoElMt/XI/76wYBmmTOpnulSI6acdpSFW61Zg6p6gr+qZmP5+/barrln6zD4hXuNJYlo0PzfSaPUqTI3cBZUxYvrSPp9LzQ8NMOWIvG0Oi2mPwmp5nqYhpgYqH23fLqZjWxWV77hwmfnROSUoplmjtrsFckaY2vYn20dXTNvYqbQIsREWRUZcNZUX06GNdxZnnDDGlG5GWYKki+bV3DiubmyCRadU4veVd9G3dl56c7+bsYpy54MHXfSgU8NJp6Q1mFraM8SN7KJ9HPa7jHqtxaLA+KG+HV10l+n8RamzTbFIu0HrpWkXPVtPqd+lmHHvX+YX53XRSjMHE98L12HRtB2LND510tnPrqdxtc0wVeAcCrI76cfXKtkeNWZY5FfGQpGddEjb8ml6P5ljEQwP3MLvpLdTRnfjV1tg0bb29hL1TtoiCBSf/4OxwZPKh60ddK1PfvhfUZaYmvv2eGpyB238sZ26acDDlFKYgo9fB505Yax8rHYVjtSLCbmV5YWpqefqAiC4YGbox5fQUjvqoa0nrzYu4X+VOukvHxQo8E2ydSemhBrA7tD04fiNMje5oyLtiNu9zjJ/sQW3UgcWGW4gzqy7Alh9Q9qONsTQ5iBQO5EfvpxH3Pb6Z9QGt9S+WCM7DxCAorP/+1N5FTGXjgJztblFHG1Z/8tppBASF1WgInvfJl/genqgYdZs4pRdd8GM7pyL/45/IeeKB5BmoZ7H/3uJRRcOoSF/w30tTcQ4Mx5MTLtQ9qJCdj6ZDPizz/Lcc4i36hcgV+V5fhHJxBKLDJTd6QY8LxAn6WUBmLcq7vfDxPx3N9E+x9Yjf2+X2ScV3Zv0NEuBxPv0MkG5TqXamC7x3rEScN1y9f5medk8+38EzVXUV9vuEalZaWloRklctlYF8WW9NFBER9wNfEic9DQTKf+D5nyNJKbGIlFRWb1JiS+xr9sHsJrSP5S8jrju4Qewyvb4tSOKxGrbqkFlht1tpfZhqRtUMRgZPLHZ+hmxcM9LlP3M43JVFDFLrhwtGqgcD9tEzK/JRbuCNi4d1SDGe+6jVzeWHfvcNkTmTUgHvu75IXN+JfZfUQMc8y75ffAnFgW8BEnmjjeur+8g83PngJd/J4gqeo7CY3Le+R/ZtXR39NTvUwFK+wxjlHRuyl+tpB7kAVGCWbImjwO/k0sLTvOcpC2PDka2ucv6xA0ISi3rTZwAZTJyPcKSA5uSDwnm1czGJjteFz1wk/WHvZCm75RJT23TQ1SXUSuw4EC1sHHbyPD5WP8MzyDSlfRUMB+JIqZMeujGuLkw3NqMA02C+pIFsepYp5xW8naS9RNGiE9PWXa/00EEoz3HjqzlwFIOsDqRvARfVNfRV7AnveaTK0C4YcqkF9qfRDhxo3GFEQf6NrXcN2/UxjvkyxZGW8nmTz8C/HWnLJun40eEHw1XGBtwoMCjZEDhox6O9E1vKTeTzXPmBBB++Y0x6VnRpxHkKTilLuPAADp8TE6yHA/enPYGc0nfH3gXCVumM5bdPy8AiL67E75UiwM75MzDlP5ZiZuE3/oFy2T3158E/KNTlu3bxUc40mb6A3UOPPy8t3BycDUe+3fnuaJFpK8KvYv44T8wln2vtcmImjF3QJfNgW6zRoK8x7lYW7fkpzwW6VmfkpAwZcqkL6aLEVyQczpZngOHNlo0hIUbY83tOlyf6aRvqMtEVdFajEnvrJmJqMzmRo1JNgybtfFF84QJ5q536f51SF7aSwRPEMt5yl+kfZxDDtPPoC8PsKFlUd77XeFrsZrTREFcB+mvu+UDuH+cMek1Y88j0WfD3dM72fCfdFGN/Lgp/oW/Z/Hy96QXGV9AeMkuxqS/uOUxoMZV5A7Vs+Grni03Hh83w4WiJwcDMOk1fctRpl0WY9LX5hUgTKdQTeVsGLPAesJ+2Bz3mHnIg0ekF8aXoKqzmxmTPkWeRqJzD89b5bNhwB6hHC20xJv/xTl0AumpZfGIm1vMmPT+C88iKqHPIDmFDXs11KfJ9/DwMrPG55JTpOfTpegybmZM+g7DUoCXHJv4lsCG17KKbecGrsdlk0f8c3bL9n2cDaquHWBMejPnR4Bqu1/hHcWG9d5pLNRkhXNWwPO6bqSH57NAv6cDY1k/9hbgT/7e94RsGFVYlD89FWL1Pj/xShPSdzxpAP2RXoxJ/46HUdt0P892Hzbc8n4wcd9Oa7zomL1zuYpsnjM3AT/HkTHp74XmIf97lWWKDmz4eMfrr0qLbXBWi8rl/q9y0l7TPgPBbVMekfY4MQ75Kys5fGfIhoJzKx06PtjgoQfdftcaSU+degiS3CWMZf1ELoKjsbFyqmwIb2bfar1kixuzrGY9yiO9/7l7AC9Yz5j0bokYiMKsuwsmWZBr1nz7i50dDjGttFycQPp4g2pEzXvFmPTFla8RLDv5bmU7C44scPTVGrfDa4Nym2oOynqVOsT98JQx6bN1qpGma66pfRkLnv9cvWpTpj2WKxJfyHAh/WWrl0DE7WFM+uevG1Bb2rMV/aks+HvK6YjQQAeclr5z6y86sn1ZwUBt/V7GpKfOdiHNA5+j2RdYsEAfF8eqbsDeu6LqvEZnSvvyP8qQWmgM4+GpXpTOEyNRw1LV83tZsEpgvfB0xQYsv3YsqKKS9G0ZCCT5jTKW9pSG3HOEPT4NGTmyYNCvWz2tQx1xvJq8dX4i6fMEJUAU+w3mJ5K+R78J+D9Udf2ow4Iz2tacKlzhhHu/XWsVB5NesrwFKCimMib9zZR6QB3cY185pgRjF+x61VzvhDdfnKXGWkf66NpKlOKuyJj0W0vfAmrD0+3sVCUoafHUiY1yxqXb7qz59G2GtFcobUSU8BrjIWnvmvUCweHRmfM9lGBw+Q9KBYYu+PKl3NwZz0mPdQpRuW4GY9Ingd8QfqeiZTOsCIXeAYY2jS44zrVGjxNJ+iSNCsTNKGZMem5dGYL67y0mryhCe5WSIYWfXHHcFQfm/5b0VMQZ1G/mxpj0/fdrUK6d3ty7PwTh/wDub03/AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAcAUAAAAAAAA=eF6V1mlQEwcUwPGAROQUQUSUIioimFDkSEQSRUjKIaJUPJApFQijoKMYPAtqFwEjWi0FDR5c4glIvSG6EeIJ2IgCVXQUD0wFAbUF5TCm9gPZt5PXdjrdb7+ZZCaZ+b/3lsH45yd2bPe1FLNDVZRXipJEvk414DMltUekx1vAfT+e/y3qQyfYsVyv+UxuL3ibTWeDexGjGj6/f9wVr49DweqT1sXHl5iDtyxz3uqw1ArMXusneWg1GlzDbWn5ZfYXYAXfKqo1dTzYhJX3g6DQERw+Wx4dr5kMPppWfoydxwJH7fh+VEKKG3iuNP/0d3fcwRnGpubzNJ5gD1mc2C6UCzZM3+1UK/cGOwsWa7hzeGDJOE7gHPUM+vsnJr1+HzeL/v0Ev7vvsR94u6b4YEGsAJzr07qmuV8Ivj9S4ZpVEAC+a7mh9GJ4EFifs/VXz9GzwTdXr8j/0BlC/59XXu2q+lCwxc73SR2KeeA8penT3udh4MqyRnFH+9fgFX9KBf7988EJ94TKd+YLwCP6Bbkv2QvBt2PSJpvNXwQ2beh5GLl1Mf1/uQZVl85GgPGjj3qsj9HtceCEbo8jUY/kKd0eWajHi6jHZtRjMOpRmaTbYyDqcQvq8dEU3R7dUY8ZqEc+6nEm6nED6nEM6vFpmm6PJqjHFNSjJ+rxBuox83/2eBv12Oul2+N11GMm6tHyP3q8hHoUox6TUI+WqEcl6tHsX3q8Z2HX5jz8JclAT0B6y6jhrctmUi7OHLRDeLyYPamDbB+h26u6/om9f2IFOFupdd4CU7sZreRPqGeeF/MuKW0CG3sOmlg3LfFt+zuy/qRu72FNOT7zXqjAEY1aJzMSX0sqSAM0DzLXtgcXDLvBkZT3JTowk5vJ62heJNWVaQdK1eBhWhMphNTdrJUMQfM0RTwmNfXUELqPNVpbHPaTJKt4tWjektKbBgSZxnTvlOcH7boU2UnWoXk8P6HvQQlnBDhb61lRvn8ETGHKF6J5dQwW6XmUWINVQYNWsJhN4TUm8j40z4dzlhqaF44Bu2lNdA28q5qgL1+F5j06jluYYeIAtqcsuPI6eEMPLxvtA8fpm6M3DZsI7vQeNOFRLbhx24zfh/YFe01PpW+AE5ipNdEZkmHbweBHon1itr70k+yGC/jtOq29bZ4dvK/inUP7ZmrpZnFVmit4GGWDq83CnZ/JeLSPiFi7YzlXp4JXg0PuXNudzwtG+8r5/Kb7ohceYFutiXJhGeGtJ9+O9ln8HfZC7/EccITWiv0bY9waLOUstO9E7a/c+olpYD/Kz7Nkqgdt5ADah3uTNT07GD5gMeVGW59dwUP5DmhfOtWsOFdfyAdbaU0QK5lnQy346WifFlc+U5d96ws+RDnLdl8j8y2Pg/Ztru03bwh7et/maU28GRJj5NjFq0L7mFOR0LY43x88g7LS2V7Yf5UnQfs6oNG1tY5F7+tQykGyReq73WQh2ucxvun6N+u+AsdSrvU3Uh43lregfX+huiybuzEQXEHZ/tUJ7uUBsgHdg4KTyj5jr2DwPsoWexs61vby8PuLy46SI64M+l6Mp8zes9J3uoZXh+5JtOOAfubjOeA4ykWfXWyfP+JJ0L25zFmeMPTWXLCC8pmLpM2XGhK/H43liz7dWhr2d1u8SB7H7yLxvdpr6uM/JI6+V7mUg1gTpU7veRXonkV+NJGVJtL3bAnloiXWBab3ePj96+c8sfD0tnBwJeUwdUpbhLl8ObqH1jmKLr182mMpy5SritYbyYeje/lEWkFmV9F+Co4uV23/TNageyo80HQ0rI12IGXp76cMJxvwDdC9Nc56JHKxod//DCkT656I9xjxU7X3+C9Z7MvwAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAPxEAAAAAAAA=eF49mHlcTWsXxyOl63YrFUlKNFIaNJ2tJ51m0jyeumlORyVK0khFF0lCkjmZKySKnYVeQ9eQJBlLKCUuSROFvPfdz/Ke/36f7znrs/ez9/k+az3f5TtU+5vMSFDOdxlZ6a/zRbiPFJsxKLvZyb3SvM/odZ25L5+s9y2Z//OT5FXK+3kFvsmrXdc4wPdrS6XD6k2JheS61+eTZyB/zsutHak2UnCGhhNZYjs/2xD1pQulB6t1KOfLMVUFCd8aNa0gvqj2TscsSTL28xrN88NzKZf5cfFGwuSBhTcCgKRsFv4lmENsBU+yvBV4lNe+4U3bfzw2TMUHluxR/Z6eb0rEb4WXaxtbUJ4vzyREr/CcpOsN4l6/yc7azUDxbKHviJYV5bdmsHwdp70r17iDvdEfX85NsSI1NhtNLKtsKC8WZWUWZ5zcUekNecZbTz1N8Ccf+iuKb1jZ4/VPY6LWv3w2+1kwBJh3hBUEhJCnLwvro+8toLzXiMm1HAz/wy4USiK/lsWW+ZCMdQ7HJwkW4f2ZMKq7IOtLQxzc3aEb3uq5APwfyIgdfu1MebAM+8ws90uSVhzkrfUtrTkQCsL1mSEjxm5Y35I9Un0xPrHdC0K7DnQdVPcG64cpvauS3HF9dNjAnRF/OAmDibj4i8Ixv88Dia/3bhtf8qB8oxq778tKuzvLYkhayVPx6GpP0t2ZeFzrhyfenznTOZDXmKwhJOdfutTuTuq7FPORx1jO96a8aybrIrNxqKPYGV49nfS4+C9v0hymZxizxgd/r8eUER2rzVd8SM+aR0xqdiQRh7H7Dl72pVzVlYn/sLNxWa8BGVWo6tpfb0Ecq8QL73wT4PNTZ6aEftIu+uIIafbFEj0tf0LWZxuLNp4/5Y1WbMm3vN+rjtnC8eA6e+WQcNiwLbDgbsKflE9zYwWmHyZXnDYhKiP6+w9ftwYDi0KfdWcCKH8lz775ItJS3LqQCBNKWrMLraB5irnaUPdiyqfosNf+PnHjwEJ9ODVaqeGdOBmEqjpEfkYQ5Sfk2HsdGsWVBd7kk98S3ZF1DsR2ov7xLp1gvP85zI7Oay02tSvIKNzOtjwRTM7fm6u2sQ75LWem3s+07btaPGlq+qQdKu9GpmxrORIRHILPdz6T52/wsCGRAQn54exOGSeQL0s9vWoYeZI5u6f04UOYEkbSWniH/7bxAO3Lx6RPbwulvMCKXa90ZPxAkjYRv2FZI61rAIKmrmbRWWG4vprs5DlZz42POcLYPPdHDcSD5Jwflo6+ijzAhpH1F2zKHOMOSqX15TuOWpGOrdOqH3uFUz5gzHwPOt1w80U4SEwdKjM3WAi5xpFxvHfIp/HZLP15X/zD/v29RMWem9LqMLsnOjIjLYLyCh325P2UkAsuUdA3Mf1U/pdQUny1YPx+qSWUp3kz6QGWC4r6smC403KTxMMgEvNu9GbKQeQGHoz8PyONn7YGkb6ff35wOe9JSrtOtojqR1LOc2Q8Z0lKBEwMhU2XdItuG/jB8/ldX6ZfRq7uxl7ckqjy1iIdfhzc5inVFwRqipILKhcKKRd4siVOg4Ot9etBYhLnR2jYTP04DnPxqai7hm8OmX+mfoRuT+rHXzmQeX3qQYs9GaV+hObfqR+HMJdKiwVpKjKknvoRbkVSP9ZhlpQVPZM51gpiqB8hGf0YhflAz8fi9+L2xIr6EV75Uj9qYZ7/rSMz/Dcz4k39CK5/Uz/aYC7SWtUj6OfDqCfnR6KtQ/34HPPc4M5o7x0TwZb6Ea6iH2dhPqA4LtHgxEKST/0I1ujHCMzyvJhybYXZxIf6Edg26kce5p1ENVzztR/sp36EaejHlZinT3B9ov/UHBqpH8lq9OMWzKbDC1SsFznAVupHcgX9GIY5Vyq3dtziMAiifiT+6EdNzOWzx13dF5UA6Ecijn6sEKO5kJHca/toFWRSP8IV9KMD5ltK4vcVRxNB7xXnR/N09GMU9aV53cDC8ac1gqGD+hEOoB9LMGfJ/YcVCKKhl/oRGmqoH4sx5zw4ecQlOR7uUz/CAvTjRswmL2YorgxeDX9RPxLdPurHaZhDV7klWa5cCceoH0kl+tENM3t0X+u0Jm/4Osz5kXxHP1Zj/iPoeX9UtxfEUD+SzYrUj+qY9/yTHhKwJZxkUT+STvTjJswfZbaPkbGaD1P9OT/CNPRjEfUlVBzqKuztSIGxlzk/wl7042nqS9Doeqc2rykOqqkf4Uw+9WMcZousXRfvv1gBvXKcH8l69ONyzFWq72vny8TAX9SPZCP6UQVzXftxoU91IEhQP5J89OPB6zT3dJ67t/1MMJlA/Qju6MeiLTQvyDukIhqvRLpPcn6EX37chZnRlgrMUfeAIUXOj0QS/SjEPGSld/nQ2EQiQ/1IfD5RPy4bT3NLiduOa8czyQ/qR9iEfszFfKdC9ImwfAsZoH6EPvSjNmZt/rsOXrc/GaZ+hKJO6sc0zJDjWFBrmUoKqR9JPfrxcQ3NUuJvXVLzMskg9SNxnEr9qIG5belVp7VbUwjnywxNdiCf+lGK86MWqN+9s7x960RYc8XDt4pPiKr7E79l3b1XuO+LjGNkp+xSl5vJg2WUQ5cb5Ssw+3TkK11fbErri8izS72oX4c4vxrAxoiJ4bpJjy6lTyp0WXbZnPzUetZ5rmoK9bdIN8/rYv/v7/ydIIpykNCkPAjz9J99tzMl+LR+7RQ2BPtXsev/87MmPCuScnurNRcCcsy21PlakgHvHae9ijSx/ljmWkpunSDEAewohwYvys0wNyot+jndQgS4r/PFWW0h9ft9zu9GIBj3Pke2zQL8K/Wsjc6bkPe/XeftijLA+n28iM0ZE9X0vMCbcniF3AHzG2HK6FSlCbg+zRe/99L9YS+3P3y/1H03SHbyeQswbNx/aq3hTNIFYTXrN5pg/SGec+DzBlEHP9ClHEaRq2CucP2aervJGtdHjA3A/tua21+UYXTrhOpNY2zgho5RUfCBueS0rZzI1aPzsP4Y5mzj/Tcl/75nlyiHERvKT2MmIz/3+s0YQ9dHZJRXiPuTL7c/aYK35so/Ppy1g/P1dmcEdl8vhW4QL5K6Zon1ey+K6tzTue/rA+8oN69FPoS55uCGndGjRvBrfRqw/x/g9rdZ5GQzK3RotwO+xsyL6QYTiZx2JOyLtcb633nziq3Oxxp7wR+UgyfyT+o0N6z7KqoUY0LXp2Ium4P7I5/bHw1hslxe8arDTqD0Nsdrd4Y7+fJsx+vMb7ZYfy7j8+SF69YjASBHOfj+4phFx6/tebHNCv9feuwJ3F9zuP3VEcrF0w3nZPnA8UelNSK7AkmSZfqcog0OWJ9hZOUfplWKh0Ah5bBlPuVCzEP36iVefuPT9cnQZlfi/OLF7c/ukLJkxGZgZQAYLH/JLqoMIKJNE87WyjpifVMm9Pju08ddokGZcoh9QPmnWJrr5z0dzVL0wPWXYHqz6P6+m9vf7WHW5genflsUAELzG/0ioibkgHOsc+s+p/+vf+O4RRtOnYiDbMohG7kzZn7azB3dKla0frAxcxH7gxquP+CRm5dtd6/e7w/ZR0Kvnz0ngG4Xv5a7Gq5Yn7DC4B7DWZXhkEY52epKuT1m3itycte+APz/GjMD2F9s4voLD2IacyFNOCcAbvQd2z/BcDHE7CtWv/gY5zM+n5V8sN4xT8eKVFJOziNPxdzubjKyPiIW11+FScT+RMD1J3bE67FCCl90MbzT8nEKPr4IqlWqBY8UcX7L0GcFcWqHxXQiSBvl5ALy7Zi/RSXrx+SspPVr1Vgz7G96uP5mNvGyPFa+rSoQpl6ztvaOnEeOKEw11gvA+U9kBlN0reil5eqlRJJy2In8wn9o3jzs5tt2NgnrK7FC7I8SuP7IBkZcOv1zq31gXOSTgxtjbIiaSWn0uf1etH6xOtP1baBsd5Eb+bqE42CCvBbzjrNLdRzaluP6q7BJ2F/1tP2vv2o3t96z1qJtpjdE7JdffoXYkdk5bhXebTifiugyIx3+B9vGLiD+lIMecmXM19XiV2SbROL7qcGmYX/2lOvP7EB3Yq6s/tHFUG6yoilCPYRcupX4WkwF59cMeybAMvzc5r6ZUEo5CJGnYM56F7PlsQLWr53BVlyi/V0719/5Qv2HB2OYiD/h44zyISnLP8mKoV1yVQE4/76yYtgJn8mSQAd4RTmcGKR8K+b1yg4arv74fEXkmKnYH77l+sM5INn+QrG/IhhiRfrz6oS24L36dZjXHj9cHwP2Wl1bsvR9d1hGOWlCborZZrvC7jXmcfh+mjCtOH/Hcf3lIpL0OHFhdqofDFpt1sjRCoEre0vbmx/jfC7izMpMlXtUxljBe8qJyz7KT2JOc4tXd89fgtevwyhvp/3pdq4/9SIjj5P+Lor1BLUgWT1xWT/Y0vwiVksW53cRW/Yyz+Jp3x4PIkM5UX1E+YVAmsP4s8uvd4dhfREmmdD+lva7c4l93BFVzy4VMDd7B/JzrGF09FYVccL5n2/ADh/cdU/upAUYU04cf1LeY0rzgM5g1AbFxejnYV4X9sehXH9sSLy2qP9o/ptHnJoFmW4RxpB7dYy2WHYgra86k/VZNm+vvNhMsohyYoq8/yHNPyP7r9SdiaL1+TNZFvvrNq6/FidXfrSENKuqgMLImQ36Vcbk8M1eWAF4PpGhzlxndyzVtw4hkygHU+R1wzTflRIo5O5xo+vzyoz1wf58gOvPzUD7cNAS8XM2sNazQ2b+Jh8S/1dpsFkynl+I2DGl+99YZIwsJ/GUgxC5NGYXszfLtM/F4/tjxB7B/r6P6+/doDFzdmrybTkIPWa1Z0WlgJT8o/QyUQ7PN2rtGYnBmoZKqzjiRzlEIn97lOYScb1nh02X//Ibo4znJ2e5+YAPXvkhTfGtMvDBdo9+apAMmerjfuRjeciv/eWifspho/s1QmJix3Ho8qa8DHOrz6Yb4Zrot4xJjBzOF93cfEHIttRa6SezfeBq5VQjZU03qLCa92ybHZ6/ZFixDRWNIYeIG7lMOVGwpnwp5sGCu9OcM1Zh/SnMKND5JJabT6xJmqRC/+sQAun1t7bddbGHsFPd/wheYH0RM7b9a9QcR88IsoFyUoxcAvObnat2J5TLoj+V2RScb95z840q+TJ6NMp5qjqMm7fu3s4wQlLC0qLNEsL+35/MdFAc2jbAhxGG4+CJPBCzMUOUBy554fupyS7F+egjNx9Zw/uiF2/HKakT0Y4LZUXSi8j2XfEtqhPwfCjDkokdGX2RrqNH+to5DsnIl2D2RE6/P5npxfnqAzdfGUJ+Un6W7mld0n716PeDs1VALHbV5vEHsb7INPZEz6lh3SEBnKWcaCEPwnzPs1DLzmc5rd+rx1TjfNbFzWcMmfveuvmHiDMZViqRnWM8H1wSfcJa5+L5VbEhO+SXFrJ+KBheUU52I+dj3iq2e1ncWgGtb6DNsnj+VcfNd/Ik4fushddeeZKUiU2eBdXuJD+y4FTezYj//7+eerUe+udJFCRTDnXIZTH3l93KTXmWhf0/YZ1xPvzAzYcekNh457Pax2CSlSWVnLMihLgqfmr53RfPzzJ8GL1SrzGG4v/Wpxxqp1AuiXnFczYjVSsVny+flcf5spWbL13hjke2btnHACLRf6+m7LofcbQesLV8i/Vr3ZhPVT4Dg2IJ8K2P4+CN3Buz8c7JFRF3V+P18xgFPL/r4uZTGxh/ubHozW/B5M1H6zPvP2tA0NlbrRMT8fxORJM9crdNuaU8BfiUk+nIV2P2Un37Y8Qvm9avNWCyLel8G87NuwuJQGpRQc4CX1I35+Vg9LYA2PvRoXOpKJ7/1XqwZcpGKbqTMuEK5cQR+ZAuzXumSwWLuYTh9c9lhXh+2MzNx65k2fWNG9wr3ch/Aa2iJo8=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA4gEAAAAAAAA=eF7t0M1LmgEcB3DtIDLwUIeI2ipc1CJayHiMGqwOQVQgRIcOJUk7JNtchEVWajUk1kYvUvY2fEYvFGHoXJups/oWWPRCIUIFaxkVvbBDNCwme2Ad+l0W7A8I/PwJHx7vxu+nG2od8xKeo6J9PdOEQOLhvWSlAbHthrUh5j3eHJSHevhGyH+1NKuUvRCzJ6bKzX5Uyd3nOukHHE/Pta2bWVRnPD6yRgyjzugNDDtGYE7LYFdejEEs2uYkCePojTYrTv0TWJzJW/7zdhIrqrId7TMLvPx8ty44hXN7ERNlsaJUKBM/knyCSOs+ThHZ4XKklprO7Ojuzq7QL31GuwB7F6PTMAmtB39bv6C+OM7kUnzF5g8mU5LrQFd9Tkpj4gye/4wWTPKdaNSHxvyHTuyqrILIZReagwOtDRY3mF3ZVLLxGzgfW/NE40GCLyvGo5jF/ZiL3L3CORgKAiGndB7C11tyaRSQbw96RO+A76tlJcGIBag7NB857QKokcfRo5ce9+kxnh4N9KigxyR6VNPjJT3W0qOGHi30+JAedfRoo0cbPY7fepTRI9f07+Pgfx5f0aOfHvvoUUmPenr00WMnPebR4xU9iukxnR5Zegypbh4f0KONHpW3HsPCwu6uayNvZfE=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAzQMAAAAAAAA=eF511H9M1HUcx/HDMSIXNXBjkAjsULmGoWCHqaSMUWZsFDVmyQ9PWXppUB0YIByE3ghSgUPALDkliPh9nBzccRzniwZHoAiM0iYklzIkcypCxNkx+4PXueXW95/H/8/P6/0VCJa+ha1XUuTiQzBORlqyxZmY8L21fK1UgRcLFJe+ER/H0Ztx1lMOSsQ//CInSVoKoep22b6h0zgQb7gvD/kWU62mvMsVKnyyPnCyeVklDit7Jyrbv0NFwHpV/8FqCF2u2YJ8alDqXiGZHv0BP+oi+v7Jr0N/UuyvWdsa0OuwwyCfa8R9TaTYraEZu5yjhKKgFrhkGab8XTToaH9pV9kfGhQXb9mTbb6AAifcmKlqRZlz883HuVqkRa8s65C0Yeg38aagsHYUpW33P+KrQ+Kf7k51DnocybZWj97SYzyp2cm1rwM5c1/nZjQYIB6Palyr7IRtRPXZxnQjfEY2exglXfDymAm78ZYJip0TVn3IRTgnX40PcQN2aOaMLl8BYwOx780t60bKyfRztqxuMKPAxo697GhhR292VLCjhB1Xs2MKO/7FjqnsmM6ODezox45ydlSzo5oda57qGMWOtsz/djzzPx0/ZsdRdixnRyk7ZrPjCDsWsmMEO86zo5AdX2ZHFTtak5Y6rmJHNTtKn+q4tMdY2Ogjdo3L9Rz0lqZiHwU7qwoUXTKHXFRSe3fbzxsPWa58icfUi+/wgr/Pnr1nC7GCHuO7fHon2ShoK4GMJvCdwt7ULp9eWY5w6sd361kcDn9w9Awu0yS+Y01+6NY1d85CS+/xXTU95lMDovPQURnfWWax7q0dr8TndvnuBQmPTG3FVSih1dyBxOvY4GLE9zhA7fc15moIPGmtwTDN504Cbj9YIWuuhTvVczdmt+G3jYn1UFMjd9S3KXqn3LMR9bSdu7r+Qf/ffUNNGKBPdvb7bKgmT4036LvcXXC4wlF0rgVrqCPvOdHzoSohU4Pd1L7Lar/gsWffv4A6Wsqdnohc9H5V3Aolte+26BmdZcFN+0T7jp2aJjvjZrQQUBl3XXVatP/wcBvO0xHuXF2/RR3T0g4tLeHuM4Iayl2VOuTQ/byDe6/kx5hkeszSLN5FwPxojCymAyJ6lXcSqPGLeH2zARtoHu9m9/Ss+zvenfiIhvKOPK7NP9/kaMQqauVdFUbf7Um7a8QJ6ss7U6WWrRv8pQu1dDXvbniDtOISTJiiSt7hgJv5eknTRfxEBfy/1RZ96CKMAo7TYN6p6zaRc64ZmHptyV7erf+6gxkL27vxHE3mHf8LYlB68A==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAArAMAAAAAAAA=eF6FlGtMk2cYhq0leACHzmCzTqI4pkwSnXhIncuezQMyVmRoBk0Zm0qoB8aco4NIIyIUXFGnq4IIQWdiojLReEBRh8p0pjpFcGioDtQxURnf9wAKxdrq3h/3lyVNFn9dP/qjb67nuj/DDOuGly+Zbt6bndEpeOC5yVIiuLrt+JYHL5hyf90e7PAyearvVE32MKVGBUhBbqbo5t21yS6ms8Y3/YKeMjUsVKdou5h2fZc1POsfpiHz9CdGtzNdmXnVoL7HJC9yfvSWk2nZQD82NzKVD6pUdTuY3u61vLv1HFNfSdqsT6qZ4rraW7WVTHe3ay+6Kpgi12Vm3t7KlKczJ57JY7K5btvtGUzhc34eaUhhOjbTz6xeyGTtWN+9kZiuFz9b/CiCaVScKjRIwzSrrXFw3wDxe50tyf5Yph7bV6eaG2RK0DgCa0/IpIs/a4ksl8lgHvpZRI5MwyuCvaVfyvT6j8Y7aSST3tM/Z1uITDWrB6d4n0nUHTEgbEeTRKMeFryhr5JIUxqQ7m+VKAkem+CxEh4zfDx64THFx+M5eGyExwp4DITHqz4eTT4ew+CxHx4XwONfr/A4AR6Pw2MuPNa/wuMTH4/T/sdjEDxGw2MtPL6Ax3HwGAyPBniMKuozegTngjcUrzWq/N8F94H74XlDfc22GEEr+A28ZxcuT0gVzARzcIe1maZhgYLZoBt36aztS5/ynOkxuBR3Kj6qunS5n8kORuFutmOdBVd6mQrBX3DHSLfO9U4P0ySwHnc9UmMdeldiOgSW4c555f5T7z8S7wP9cXfzD4aY8DaxR9CBDti+Z83BP8V7FaKLspCE8aabTCVgKjpZqUm7H3uNaQW4E90kV+sMn19kMoLj0NGw9br5RadFf6Cyz/bJB9MbDouuwFh0tir723UT9or/AVvRXUj8H5rvdzBpwSnosCxr2qEOm3gnmIMumzeNKZpvETsCC9Dp+5LzZEkakw4cr3SrbnNfNzIdVYiOox0Dz3dEi35ApesZkUkjWqeLd4BK587ZW2w/hTLdAkei+5Dm/LnhgeL94HvKDnKXNKzslSkXzMcuzqhaxiS3iO8F2IWd6DcnrHlyQaaPwXjsJjZirCn0gEwxoLKjS1807XFukqkOTMSuLi/9cNBrq2T6DVR2NmTBrrWH42TyA5XdFY7V/l01SaYcUNnh14kfeFwB//E0dqkvNi6yPJToU7AXO32gHj0xrE6iHlCL3T7d6zW2lErkBkdgx/8CgulgHw==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAyw8AAAAAAAA=eF5d2Gk4levbx3Hx32qrpBJSGUpSiQYJuW2VSkpJhaQM0WRIiRAaqLAlQ4ZlCplCsliG5OIis9BuVIlUSmUrO5np2cdx/9aLZ7/8HOeLdaw33+s871dvB7JW7dysa59o1n/kj0d0NUybGi8kaXzXVtZf9Ug1cT91n5bjfHL6I5oAp28d1hVo9iOKi+X9HX440d74p6N/F7bQ3bCJrVzGp8oA0j8vW2w40J3u0FLQHjJuoZLzWeuW/VUVb+VD3jSVrnzQdIFqqKSNDPc20w6Yt/vInHMeHFKSHSDku+8ynVIgP+dbYDOtgc0u1Twxjwwnh0LKtIPaAqjemPrMJ4rN9Bjc7z+jprY8jOioZzlk2wTTQm9HtaTKJqoKr7BJ73syGkwsl6rFvXAJpSaBf0TuPdREbWG9d87FnerhRHGZivvdgnDqVKqu0j38kOrAbhu3OEi+iCcxOgZ+lQMRVN1YrcMk4iEthvWu6CjVr0gk5iFvtX+qR1OnJ/4XYlc+pE5w4rzqTsfAu2SVjNdkZbcY2rVLpyu3sZEuhqvGq7fVWueQyBvHd2/nxdHRJU86Q480Uhc4XVngWYTPv/+vtyJtXV8CLRUJMtKc1EiVYS3iFKY6I54hKeqdJyITaZX3GfHk2AZaAiu+XJbSqXybEbW5s/1yfhItMZk7r3ZtA50NvxJJHp9ik8q0har6vmlJpkGeyTtvtdRTvt0/Pup+ph1IOqdpjdh9vUUTSiY4q47X0y98e7cdV1G4wTy28HaZKZxKgw1WCjsK1tNu2N6BGhkIODHF/X7lj2XTqK2rfZJRbB0thft9sgovdV4l53g2uXEa6VTlm5vnizV11BkeOCe0OGvbJdKQ0vXL2iiDahwQiBprrP33/7Hu8Vwk4bzGhdEbv6U05+htultUoKvkcC3VhZnlz8r+/niFcf/kFpThlUlnuS/ZNn20hjrDwdV1Y/08e7J6+Vkt0dAseuS9bEBvaA1Vhcc7vMUd5oczUs86ybqUbDp1rZzmfqUaugCW154UP5Z5hxEPChucU3iHxjV63tlaVk1l4De5Cw5cFMtlrEJmSXFqcuhC2cND+XuqqT0c2Wf2sjLIjSR8XGKU++wutTi16GFUdxWNgXtDxpN1PicyA+6CDSmncunF9J22PV5VtBd2zzL1+pllx3zIUC/PGMylhxb0emaKVVG+Fd+3dZ/kXCXefcNuL724tK7LfVHDrQfUFxY52jc/QCaY1Hil2C6flEcV5U7xNqo/oHV8lxtznDyTScmkXc9D/fJo1b7jGSJ1lfQe/C3/oe3zxmDizhGqnBDOp+5zP5+V3F9Jz8A5IQ3FP7enk/q19Rwb/3xakOjqfvBzBX0OOxwaij5bS4n4h2Oi2VN41KQgNafFvYLKwn82BH/U/BHLOJ378rz2Ko9WapTfspxcQd1gno2+gaBAIok1mGSf+FsB/V+a/6rxG5Ry4KTKULUVXffI6o0eevMvFdDkPvM1EfKUKsMKDfOWu9pXkrY2tofe6GMrLGD5d5Rwbod2JHp4Hn2MgKftGVs4T8ePyUAPP6OPt+HDrvMOP9Z0Y1rRRx308SVs5TindqecD9nTzPZQG300hmtKe/JDL/oyMejhCI/tI98LXA5RtyNnGDH0UAN9nAY7prkGuv7mQ/5CD5vQx2Z4g+eNwRa5XSQOPbREH2/CDWeTC7yLrzD66KEN+rgDFhX0Kq2UPsrcQA8l0Ee+bdy8mnu/RJJE9PAY+pgMz1SX3HYkw50MLmB7+A59/AHTwZNJDYl+ZCl6KKDE9lEJXnF1yszCxUnk6d9sD0vQR75PJ1256CKeR1LQw0r0ke/iWhX9mH35RAU95KGPfOfcW9bpZsEjPf/pYzf84YrP5DWcODKCHsagj6OwecHm5JXrMogNeqiHPvLdne50aoZFLnmMHh5BH/kWe7K5PDifR/LQQyP0kQtz1dZcstPkEhv0UAl95PvE0t9Gm43DyVP0MAR9fAzbzF/35rVvGBlBD/XRR771ymtma65JZqLRwxD0MQZePb1q/Z0GTzLwlO3hoBrbxxH4UE7gqPSjInLwP320gN2eqkirhdwl766zPfwow/bxPXxngCeyu+MOWf2J7WE0+qgBW8k0NIm8yiCKHmwPC9FHJThw8EHh1dWxRPQ220Nf9FEMjiopDXG4Fs84oIdZ6OMJ2Cq4afZXQzPmKXq4DH18AU/P2nV7QiyEaKCHR9FHdXhL/XOzGu98xieG7eEmabaPfFepTbIc1ytnRtDDEvRxGH5kKm/4+9YGpgo9rEIfK2H/z4v+6noSxXA82R5KoY+x8KGbf0w/Ll/MHEUPP6WyfbSFzeycp2lIlTMCm9geGvzD9nEcfXyxLSh3z+Ui5vcPbA+d0Mei96x1I+9L86R3kWAnoU0y/zDUqiVR2V7xEZV1Zv37bM7Ab5au5K7n/5/nwI65kbUezS6Mxla2p57oqzNs9X7dtaVCs8lHsxl+FZ12VFnE6sTH7hY6dz/rMRnn4KXzA0ge5oqY8524Pe3nVTsvRliR7XEP+iwNf9Iymz0825ksNJk4Zip4hor1fJX64ddCN8JvNsQsMuf5EQF4MuYT+1gHJf6hfK9SmySi53roOw8eyxEfFXLxJHlr7Hz/mO1NzcU6pYblWmgVfLpqZnJXeyjRVGN9EPP1cEPoCqcNMluZNuzLKngf3sKtXQo3nxl6EuGKN4K3ZvrSPseCy/2lzXQK7M9znOVsE0m04AHM18N3rhjxdmRdYHrxnvwP+/c3eGLYWjP/6QUyS2z7n5M5V+mOX+tmdpo103nwtfVrVQ1dQknhDNZamBfBzlsC9nwz0SHyeI908D4pwnNthLYbqvuSIVHOhjjZICqZNFm+pL+J8q1wX1pXrT6cGMxgPRdzfbhhTGdJCu8UOYT3rBzvmxmsJiD0QdbalzRWmL+NNA6hA/GZ7z1DmuhD+OfKhU/cP4QS0UrWg5iLwNa/xxOPodOMMd5DI7yPJvAv+7KoYxYBZAUpv/jgRhid3pFqJaPcRBl4QeIGEZuDHDIfHmpn5zKw+sRwr7rMecYA7+lxvK974cwF8r+Ke8PJwVT5AY3nN+iFoJWXb9Y+pG6w/5yCpyVLEogtfBTzI/B3/xz9YHEfUor3WBnvcwN8JTlJxHQ1h4wHFbS+loiiLzi2KsM2D6nUNdbVvQX+sSoZZDPcjLkeLNeoeVxrcghRxntujvddHba+90hjniiHmEU5x4SYcGjO+MlVihON1AoOkM04H7/lLjkM38bcDr7UZWwcZ+xDzHAvfcN+sJfvCW5eXmgUmf6UpqyPiKX/mEvayHMaaf8T1st69O+17Ekm3+FhzHvhPBnDv/aYcMjUCHafkMV+MYr9wsAkWqb9RzSRPWl+puJxPO3xKI3qWtNIp8Ktm3uyBI/7MI+cWH/HnG+lk1KSA18yyV7ca3XYT7bCP85O+6rN/ff3TS1NfCcn0jtRk7mOzQ1UEJbQ4a54UZbMvDRhnYj5KzhQokj3qyGXvMI+8wT7zUu4IiDH5+WqWFJ61mnWkEISfR+xOZJ3rIFSWCnw9k/Fa2lMDdyJeTUcbr58u0V7ASHW7D4UjP2IwnnZSdVzF9wgdS+2HeZuSKZNy43WFAg20CbY4/n3k6W215gxuB3zEfjZTCehGI1s8gH7VDD2K75VAqKyE4rCyIq3ViVJB2/Rd3Lc0yfi6ulKuPvOQO7hTZcZE74xN4Vfjvk2BV5LIcXYx/yxn5XB06QXrr+lG0MK9I3y7runUBGtwztb1tbTB/DztntnHGqtSBc8CXO+p7bFhW1wSSEvsM95Yb97Bwe5fs6K2hhNDpvki/8TlkrFuAKP25vrqBPMbXPsJ1w/MgfuzGXn4vCWTJEXuxZxSSz2QWPshzFwWlrr5bbr8WTj29a8ddlpNFNi8rQbR+uoDiy488Ge6MDr5E+4FvPrcOUWT1Pmcg6Jwz6pi/0yDPZMLND+FhJJ2kq5xuer0unm+7nCX37V0hbYxfX3NMFLPuQjbIU53+/XvcrQGb1FpqSy+6gJ9lMBuKpATWLr2lCy7sfx4PuvM2ikfPP911G1VBlOsW/+3yuPEMYGLsTcFj5/2rzILSmJhIyx++xs7LfX4Y2WyheFDx4gel46T9v7btNuxUJxW9VaqgMHiAy/n6PnSY7BI5jzXd+yRnWwisOYd7P78DHsx2bwpk2FZ1r6XJkM0XSL18JZ9N7diI/eNTU0GX6QPWn95i+WzDY4AXN9mHvB2uFzUjrjhn3aB/u1Kxx4U3RIPsecuN982J8snU3HJS3aFx2sod5w85ejPRKhCcxK+DXmyrD74L5Vqseuke34XiGJ7xc7YdclQh87Tl0kuX6FjxVX3KEdsjucjX5UUwLrbWlZG707m+mDv2L+N0z35uw2uJ5LVmOfj8Z+rwVnt7brVlzeTf7cOP+8qU4OnYjObBn3r6ZRcHCyqLZWSA7jA3/C3AteJtW1WDEliwTie4kCvp/wPWRuLf2pzZBcMUrOVNh5l8qsLGhfLFNN+T6g4KG29WMqsxQeU2XnfK+/8HP6S5sC4o/vLXtxX1zmf38ZLU21TgonaeYdLjoqubR5iZl4ZV4VTYFFrJx6WiuCmC6+ldg531vSRxUsRPJJKb7X7Md9ch/WfH1R1WShBzH8bbgsjZdLy+4dtm/cUkX5/rn7TP/5d8nMKfgV5s5wnX/8a/MAIzKB7z0euG/4rtFTl9rXZE3GZL+Lb9Di0tuWEQZarx5QQTnW4oYuP25O9iGfMI/G/DMs/uxD6TmLMOY07qFC3Ecu8LehkIjBJmsmbd2co4LlXHrA9/MRYccH9DZ8pK9qdnjRCYZv4//Mi76z81bcU6txX72Gh6saQ7rsjjPbHOUi2zfm0XPMlwzFX5XUAO6x25r5UjqS2MGhmNvCfvU+FUo0i3mOe+wV7jO+izVP+mjfDWA+iMnp1VXn0bkGC0VCQyppBzzk2MqbNTWBSMxkrYu5JBzzLrOMx41gfuB7Vzu+f/0DmynodVjGhDL6Sxak5m7Np60O0ae05CvpDrjEYdlyt+p0EgkLObJzDizdWlakyaXMLdyD/rgP02G5cOvNZ0fimaG9XgZX6/LpNHmzIAluBZ2Arw4sVimdmk4K4Uo5ds63yg7TKV+nFjMf3rP3pALuy8/wJqbip2wCh9FwX9ytqc+jRw13JUnqVlAdWO2beMzu+1xyCvbB/CRscO3a2KZZBcw47lE73KcC+H53ZHD6wbGjcczqXS5zeDU8eklA0EalmdJV8If0fQf23CwiP3eyNsV8AO5d9LXMobuSkdnO3rNO+P43H067aMq1SbjBmBmdFe7YVEA37vEu2HaA0j2wou7+Pw9tKCOtu1iPGLPzN3Cme5iEk1QSY4p7uALfD43gZSZey7eFXWP+D8PYtLg=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAsgkAAAAAAAA=eF5Flnk81Vkfx7OkTdKIQosWEkJT8dS5RUaTmtRkG1PqkaWirGMQZUvhEdmunfuLMBWyDDV9czIYdF1L1pLETZdM1phBloff+c3znP/er9+953de3/P+fr4/MzG5C9sv3kbqERJ5236h8Bq+W5TFN0Eo98lrqaXzbK/vlNPSTUFDisYH6ywKO+ovu0H5mEPwuK7lmwwKO2kmrbrqdheuxMyVaKZTeFboJ6cXW4PA8KjYF3kOhUXHbM8bPM4AI6Ph+uMJFDa8gGaagzMg6qfsrsuRFL6ZOz7QeYYLksJ74+WDKGwllHGwATWBfvRvbRNXKdwPe2ouWNaA30x5aJIdheuuF9vusK0ANtWwK86Uwjo/vihel9UF4cfHTLwPULhhiWJ6ZX4aWFBSYs0KFHaWH3qx9sRH5DnwKcNkloO5V7I4ci4CZO/te31ZHgcPzrV2O/v+iUZV9gsLTDlYPL9CsvHlZxTpDRk5g6lYL3L5XOnzaJiesXfOuJqKXddXuaw/8gF9K/Kl4+l4Ch5wf6/Sa/AZpZ7Rnh4+n4JVV4obDBTcQ+0jFdbflyRjJQc3LUFhDwwqr2O3iCXjxeMGg5sa70OqN2uSfSAJV3wvXRO2i43mAo6F37VMxPUxnpNWxz8gT8Wev9Y6JWCTA5vXCcrbYW2N3bKll+Lxqk3PC1JLuiHb+UFj4bE4nNX5KVD+RCM8MPn6hYlMLN4sOgTOhQ2g3H3IU5Ubg/frOWzOdexFhqv9AinbaFz6H9vbitIjENOPDHf0ReJ008nayLWD8CaQO6lzKgLji07mImveoult30WiQ2F4V7Ur/7QqF6oPHzAYeRiC3ZfIq0HXKDQf8nvhz7+JS6enc/Sjp8DMS5s93uOPJzLz02P2z6Itl90u377ojd0MhHknz0qzOtzZ5lYcV8w7vs9aLFSaVXg+16e+1wo3WGYJx8hOoBaJuhlzaWN8lvFRnPFRyDVu86ZzniiA8THbJ62+8884qGB8DM/S+tmw9g6yZ3y8a1d7eVA0AViMj0oGqs0PRYJBg/HRzmfWLM3uISgzPqpFPey0ue0O1a7Ex291/UZsHCuhZxHxUbNMUWpO7CWoMT4eTfJJef3hKcTPEh+fyl4f8z7JhelU4qPSclYoz4MPMYyPr8pnBHYx90GQQXw8quGiaub1CQ1/Jj5+Ua8tkPUUoLZrxMdxc8WDHaL9qHMn8fGoYlBHlvVn9MyV+BjD+Kg7SXw0Fhs5Eq/0EVWsID7KdD3t9uKOITkz4mMoJ6BImZeHLLqIj81rN3VHnBOABeOjYIz4+N6f+HjR4NWOyhEKqkKIj232Co6Ubx/K3kp8ND8KxSnijWBUSnwUl26xHr7wCmydiI9Tu/XandNbwIbxMTLK3QHJloN6H/HxBDf/RFl2L3JaTny0jN9UcTppBCzbiY8a+mNGyouGoTCc+OjBFQntcmhDMprEx65vtj+z2FAPKqrEx6ULcdM2BKIqxEc92PF0Z/805D4kPmod5k2pJUwhwfc/0z66KOWXcg2lWYIe4qOX7F5ZrcUyrPU/5NA+9jhrnn3GnkCOIlzaxxGLshJ1jwgkw/hobjq/WoLROinTJwrzbMywEMPBBVEOu8I9UCzjq1IY33VqRxjgU+emOuZ9feu6IWxxawD4MrxloV93x0Al47PnK/9rIivM4ee59qWNmRSmnOTQsftBkMdw+q2OuhsNAega47tuo7J6FscISd4bPlx1j8Kn5P74MGYcAKIMG9AcC/9i+uEaX7v6pG8a/NVYNu55l8K2ER8qiswiYFkT4XrtsA0ZzdGgwvRLAP37B7Cxie+fmExhLToPKJhtJFyqUBNyOScYtjH9tARFOFkKRUNR3FBdG3s+r+n90uELw6v/fe67oDeJoMTkf86DhVUMtgd46q23KZzLsAiLcF9SZbhRfzV4CZF+3E2/nwfPdBI37PWfz/8R+Z4snSbYzbCmjq/qyz1NYMf0q9CihcWDpgyXd+Gu8/NpbmHVwK+ZhOVs9rnkSFeBBNPPZP8yWBWxdcVVy3/qxQPdf3hso5b1lTKo45B+T5tYOdrEaYX6+JxlN49ReFVB8pPW5c2QwiacvMTh0uu7XVDM5MGYofWRHeMNwFcLvKOrSeESiR5581Ie+GsS/qsgeMvt1UVgn07y4vSCX6ZvUVWwrZTW6v/z9gjCMbkbxR07+pD6MMmT6YX89fqIonSFQ9tfc3C+yKSYjGYfKjlAWJf/zCHtugD9yuTNL6csTugo9qPaiB++arvJwWdy0/NL2/vQYDThLYp7qRCrQTSuRvKI3Ncw0hf4IDtFDs5m+I9+wq0Rb65Kto8gSQ+SV+J0PbpRh0nxcvbjVJxE1+s92qNHWGPyuJjTkzzk9oXk2Sf6vl+jTOfAgbMoFVfR9WlGHdcJJ3Kesy/JCZDuUpJ39+j9hlB4nXFS5aMUvJJ+3wAKbCMcu1Afi88o2ZzkIfGhB72UEM5tlErB07QP75H7lBDNP25/uZMv9gipfSR5+ZE+Twvs1Ch/GnohGVfS52kAG2XCmsWhbkcO9kEEk6f/PK9KMREfzkzCPcz/K7MI8/MWLiQCJnxJ3qbT/f0YFNiUqWxzIran+z8YJOII+02Mnt7fcQvF3iJ5LE/72orsW5YckR1IwLq0/28Q7iYsY2QkkvjLR6S7jeS1Ie3LCxSkkf1aYiQe6zFssIEwVzHzUWRvPXj9QfL81oZq7Ty/Jni3Wk9t07s43ED371tIWEWY23nw930n38N+5vtjMV3Pdhi3WrMvoDgWL2J4wJrwHXPzLMmACqgzJvPgB/r9bbAyHE16u7P/x79HEu4JeaegM9MIvj1kXpA84KLitSmHLTbG4EKGs5QJ1y6c/2If4kqQeXKO3u93uOYfzb+TE4UvMSxvQ/jgwvfikWFo5ZN5U0D3xzB8pZVeFb01En+h+2cEErUJ/10kKZd4bRjWh5B51EvfZxMcjeuMnZsLxx50vWqhvpywYNEnuyKxNpSpQubVJTqfo8Co6Ma6r26G4kN0Hpehm/cIW9H5Ww2z2mSekXq8h/MgHy3aGkTmzTy3pRB22cxK+OnrUZDaS+bdBJ0nf4OLgvAkb/QGtloyulLNchzOSBAWp4qOladMgWgcmYc8qeeHfKYKYdmdJzMnHvtiy3d73GOM6pGS7280fxpb82fJ0BxqfEe+3x4tlFtFgtXpFhxvs8WD3Mc87zcOoblbz/PrXn1p1pv7ZJ6S+SjN+jtkyDHt1BVsyvDxZ4T90K1tYCPD4r0l89aMfr6C9WNdZFDOXmNsxPBsYBjNeXWet14GfkbFszX0PP4vSPPKrg==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//vVWvtz5/+8/wmM9ecf/7z+wHjiMRf/vPzWiEYdf/u8/FxvYlAX97z8y9nZgKvvvP3n/KDLC+O8/ThfNdsL17z9CL4N1IfLvPw7OMx3W7e8/DG/L39fo7z8OkuCVHuPvP2Axx2ei3O8/3MdCulvV7z8yva8dQ83vP6ec3z5RxO8/8oHV2X667z/ls2WtxK/vP9ycAW0bpO8/0FuNs3uX7z8SVw743YnvP7TosIE6e+8/wEFgXIlr7z8p/DtLwlrvPzlTrrrcSO8/l+57tM817z9O4+jSkSHvP+SydDEZDO8/wsDiXVv17j9V739KTd3uP+6pPD3jw+4/zB36vhCp7j/J1dqKyIzuP4UILnv8bu4/6Yuqdp1P7j+yEfBbmy7uP2RZ9uvkC+4/PiJws2fn7T8XuGTyD8HtP/IGnoLImO0/xP+zRQ==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAMQQAAAAAAAA=eF41x3k422ccAHBTQz3WokE3G0HLs7az7EnHWH+OYtpI1VrC41g9jmqpo2rjMYaFqTaOVoI46mpQOjkk5nrnm4jEmfQxxcOmrFtr2nkMTevpyv7Y6/PfJyVxj6flOgFh6vpj8XYPwDnp/9e5aQIRwwctBu/Pky7FgL1BRNyTZTW8xGfGftU0zwtFsYztS0HaqWD4/NnBjTw1fI3ve4ubfbYoA9GpMUy3A1kQYLR0cIushkB8C8urU3tvpCFX6W/aTcZMeJEgyd/sV4E7vovaPJ80lo20jHxv6nELwHvHyXgpWAU6+D2CrOtsPhMZ7ed61Fix4N0GPevezQkwxvcsnRMWhuSgKWnIYvm5UlirbXucUToBu28LDZxcNfoBHUUDuYPs27C9wIuwPDYBx/EpL3NpYkcWSuRZaz6bZkMqi5JfpxyHTPxeHeNR92IOesaSzM6bVYCSG+2wFTkOGnwzN1MblVUNCqhIriplcKHlTdIndttjEISvXUSa8xipQolTcPdzTjUYhJpHWnPHIAqfIjjhwe6oRBFJIanSyVrYk9Ff8Sd1DALwadPNM31bVWiTcYHB1KsHXoWeMEE1Cmv47zxOSKU4clBzWqLJq0MN8JDjXS6+NAqt+KISauWvFtWIP3M6SujRCLKj/lSJ9iiI8Hlr7WWsfSwUvRjR2xDeBOtkYUpczQjsvvDEquTD0nLUdcpf1Jd+F147R/mpPx2BfvwHB4S6K79XIS9GJ2n9Ng/+FWhNLqiGgY4vdJjRfHOxGgUszoqc7jdDh5meITt2GL7Ejy3c0a/rrkUT/cJz2fIWoPUJdFd2lKDAl10pqPslugyd37hc3DffCi3Wqr75CiXQ8ce4M7by6RJEynSdWvjnHszadZGiP1aCCT593ZDWnZ1LiPe1hM3rtoOUz3mSpVCACP/eiyadMt9CoqhufLPxvfuwbR62YBuugGL8gdf9nSZlcYQqr2vS7qMfYdGKnuy/MQRT+DV6FtM5Td+i6pPvZwe5dsCryjb1m+tDUI8vM/j+DpmXTLj6N7Yd8uPDWxTJwmHLIXDH5x+hn1nJK0DdIY+uuToIYNE+mCQTyaELvzXRgjpjy0Hhb2/93CwWwEhPVPzYF3IIw6faxHqnaNKJ51ZrJA8XIdy5wKG5zA3CKn6PvlZ/moJOyJ1MY7UHhHCF+ddF3YRBGMI3btd3fLqcQtATyOULJ0WQSay02u3IYPerMYm9GkoRITciew0PiUCHZmNwq1QGg/hKz6Cg70bTiDL7D3gCn07Ym1B51cVaBmz8nJgSw6qnFQQEZNIKhjvhITmYZSaUghz/eLHBT6aptcTl9MPLzqfEkHPmbIO5uxTi8SP+PlJMWS0mlH7XTMUKMVC1tCMdVAC7v/HH+hSJWU3Q/NN0H3lKwOt8luR0KIAPfqZhFOKzb6L/AH1KqxY=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6606.06.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6606.06.vtu new file mode 100644 index 00000000000..d1763ce16f8 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6606.06.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.4830543394e-05" RangeMax="0.0029876243237" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="11928" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.92049942546" RangeMax="0.99999995135" offset="12024" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="11472.69734" RangeMax="16613.199763" offset="13472" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="21940" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22032" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456514118e-05" RangeMax="7.7122985666e-05" offset="22128" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.6260136029" RangeMax="350.72674844" offset="22960" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0015284032138" offset="26516" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.5954168476e-05" RangeMax="0.0029951086534" offset="28388" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-9069.5646847" RangeMax="0" offset="34364" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-9069.5646847" RangeMax="0" offset="35072" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.91991061239" RangeMax="0.99999976607" offset="36464" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="11467.067243" RangeMax="16635.373741" offset="37764" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.5324949454e-08" RangeMax="4.2882546745e-07" offset="43216" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="46660" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.92249348822" RangeMax="0.99999694922" offset="46732" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="11492.735992" RangeMax="16537.252778" offset="47220" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="48696" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="49912" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="50644" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="50816" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAA5CEAAAAAAAA=eF5l2Hc8lX/cx3GkpGXvEUKEsnP4pmOP7L0deyZJVKIjJWlJS0pJw2gaWefDRSk7JLKqU1GSysqKunt0Xbjv392/z8fr/fie4zrXuU423QZPisAHpP+sducV/KGtWRbYjWbUkefB4Vta20QRf/SXnmU3xjReDOKexZI5vSzGGfGf8Gv8sEIF2eE9Mq7A/cBIhHvfFX8k0vdLb/uAClKzaPQ18PeFNZOMwnnlI5UFNLPjVyq3opp0c0WFShm0sm480XtkVMNjFnexWFGjYXsXFNc9uvHdUUOkjPfIiJXpn+cNTHTwewSgh0f8wmufWyHOp1YsnWx+0PFTv3BL/EpsU6UiaTZBAwm2DlY9012DRvh/K1dvH9U4P4F7xtjVC68UXdErNf+tPQ/MFnp0eRr3Vz1RFvZigUj/oNYXDnFnZDtX/XHKyg8e9B9y+j7GjonzI82GFg0kNafxSU9aESjFrkN2k50aae9xd2Wyjhg64opU7If03WeMF3p06wPudodY5UaDA1Hv/l+2t6Tc0GTkRKfmMT+4mnf9ViGzAHZvVnhubB0JrQm9nO2cbgZU0ZI/0sodGnezcc8o/HVhqsEVCXtcLmxSMECjeI/e5uCOuPepC+QGoil6OlZq5oXOf5NuiK3wA6NSz33ohBim9Wa+QsiChFQpt8QiVJwgM5GTZ2Znuwa9GPe3vnfKmDnckLn/rtGkbzroHN6j5BLclXI/6eh8DkSrJDWEBrN8UcjcuTePK32glOkKv32/BHbAgoM/9Zc6qrl7nSS93wd0r6wcd3gmW1bKiDuLVZpPeqwz8jx314xb2AqC8R7ZEb2S9EUxmWv+6H6h/dmaOC+U9fPdGksXZ3jwcu3U8m/S2AWLeqNzhxVQa2HWGR3kDzvzq3ja9iiUJRF+TTLox353KyR/NOkr+ykLuIz3aLQdd7f13XtvrHJHt1+dzFTg8kPQv6XCN8wQrmZRO4p/bsK8GOiVzMKCyGHNqrR3/AEQQuzb3cS9vf/zsN9PhC6fKoh4rmwIJXiPkm7jXtW/2n4g3wT5rJR3+6IQjAT6aFKWH7Th0R+fgRwLBazpG6+T9wwHuqr+WKXwizeQ1wYuz6MxkmQIP5T7UYb6QwXxvJC+YD1qiwTxHj1i8v3nVY30N7aPdNCAcnSGQFgEOpE7fPxegR7U3KoKiL+riLU9jD905hsvMp2Bwv5fQaBD7F+9iTuVpzmIPYyErpe6DX4IdkAn8R4dIPqYd337PVIM0WFWXpZfKtFohd8vqtKEEZSatLg9eKiMte8evgPvhVBoS2zvpGoEaBP7mUa4H4gvzssc1kYHX1YIvblojVbjPUojXG28iycofAf6NTLQvm7lAbT3va8pGiMDpTcjfGWfCmZVvlb4ahkX4ijK1Q36EgVN6e67RyOUy+g9uLNYBVrfpKshQZG2/PRqM4jAe1TajXtR2qfmXUF6yOZQ0qjhqyg0/JKRNahOHa2Od3w+8U4Nm5cLa2w8sgqwSV3+relRIO2x5fDjIwpliPBZ9ze/rgQpAOuD4VvREjbA2v6vh2Iq7qFpuw4zCWgCE3cZctgdiTRdCnNt3tiiLmkO4fcft2LS4xXjKus3wt7na4NcGiJB/d++SFnaRtwZX2fdWX/bBO5Gfx28zmINZLyHTMJT+OVkSNUOUCkqeu6U6h7kejlVcb7eGWl8trBgYydh6k2Us2eZN0OfgHfKuR27gb6j87Vpo0BZ3SDuSv57G1JuW4G7ptzF02oM4Ib3ME14S0Gl95lkdwgWqw3gMohE6Yd79tXOeqKwYoHpm1xamMmjefuMq8rwJEZ8St44GHqI/cgS3N3vD3OcuGUHquOP29vZlVAG3gMT4SZT8gFTVt5grDTdYGAbgb6pnaXX8figlKP9NzT4tmFRs6YfR9XVwe5BkVhNhC/0l9LF9zlxlfEn4n5kwsf56E0n2ErsEz3IEL3shVnh7D4/eHix+PD7m2Gos47jxLrNPohdaAO7gp42preRZa+yrTp8Nnxk4LCFAuqfe4NUuFlIKYK4X0u1lel94gT37FS5fgU7oha8h4X+zv2C7shpP5hcrifClBOOikV4MziDKOgk19rnMhvI2EMZODshoAJfthR2yHR6g/e/fT6SC+G9G49Wn9liD0r8AaYyyx1RId5DKOHFWeZbrJu8IeqAvl/Ir91IYkDVQ8HYFeVcXslMk9TB1Ow+uO2s3gICEoPTe3b6whHi/IGE81cUu+hftQbFgDTS8A57JIP34ET46S1trK5kT2iKMLiQ/yYC8e5a/qppqxOaltRjPVuug+VtNvm9U1EeVLM+bnKTCoS12frOnI3MpCrCK8ov2Q7qWcLP42fq8mvtED/eQ7gU7m3nX5zrqXCFP4L5eYrYHsT3c8JcT9MWla3i8nxL08XO2opfDfCShhhqvO/UylBg/LfPTUojfNZkXjXjpTGsHZYfktV0WujBaTXukev364SvcADVyUF3i/lopDBZd2bPfjMUPvKhSK5CD4vZN0PyShWDdq+jkuypuyB09tPRK4rrSfsI39rtzWvjpQtSW5uvRNp6IFW8B8oo7gJ5G34st7QC9brvseOmsYjtpi0D31MDFN7B8KPDRh8bbpuZum4nAGh+PIK/fTdEh0vb7IuQJLETforP5rc2P4KuWwUKyd+9ETveQ2Yn7qQ3Nn/yvhmDa9bKDpYWKlL23fxuncvf6/jib6E2WwNMIXpwLlKZGXraU/tm0qKgmqzCv0NPiPSK8N/xgaL3/KXhrZaosVBuAFLHewhNw51lT2OcO10Fpvdla385fxQd+XX+iNgtcbBymjNusjPEGEIMhu8mTWiVFtd7tk3sBwbiXxrhug53Du14zotexp70/9YWhqh4j8guuL/IEWFSV5NEWxu45jfPJCP2FY2f7vWN0BjSPT/pDhlimSxNuQmZT7UCzbOZLrgfBHHXmu32SUJlmYTTWbTbmmsGtKb4to7kR3gt9FrhC57I7FZhNa5lPLv6Q4pZMqoYihmifjZBI3o1dm+HjLA3rWN6w9KicHFn53Kt7H3EvlwZvz7uByxhPqOUDDfWq1eFpFBQHd6DFNGX689GeNwzh4SUXSMecAwN8PJdG9/kglq/yTzd/9UYm2NItwnbuxni4nf+GHKJAjbi/FTCkxs9Lm/st4LzIgp+d3Uc0Du8B/pX3DscggNvzLhD4OaXLz6ZHEG7pd8rfNvrgSjW4bVFVBPMsibnkEW5Eujd6PhyLTBy8f0nE65f06OenGsL720csp91UlAo3sMjS9xz7g74kyO8IFJZjQaTh1HYCjk1pz+eaM/aYzc+UE0xiUvDiQbXlSEyjyWWz3nP4r4G4dM5Vgdjs+0gnfPl7j1i9gs9jK3GnYF3T+N5W28IuXv+eFVjLNLYo3nNq4aCMuszYtjjd2A/gxRPoyN/729Ym2ziu3AY3N7yYurqFw0y4fdPPa8Ov20P18Yc2KtTdJEa3oNiHe4uVAbFL6o+cHdAOoGDOxrZzW3clKbmjij69xpYeM0wS4+rsfQ/ipBvptp5bH/o4vkVCS/hiVGt6bEB3YYol0ealIUe6Lq49xyvlawrp8DPTHKSRvtelJnHjjVfM0HrLD+tLucxx7a8mTU0fykClbHnEaXNf3FfhvCZRwFJj46TIbXP9IS/tBMqx3twssBdasVIAJ+zObxvfPWehx6O4k6VO9kWy0Oms5h5KI8FVh471friMQMaLap6qBJJWdwXc8H9u9QVSkaSBGr98447mccOmeE9WuhF1Q8mftytiHpmglL6dvmjF5kbD2X7koH8eqKQL88CS8kKmWnh5kIXww0vV6Z6L+5XER52/HBsr6waOpAeeM21Tx1a8R4xdOG+jMc+TqdWF2FDYqqmg64oM95FPTBRG+6P71Un51piRXNd3waecqBm11hlQUbHpetnAvfpQzcvKhSpIAaOuz4G/N9pt/AeLbgpZbDrUYzO4v71ar+weD0EYkkxbqp2Vli3g+GHXxHsqMpUKK2C1Xxx34rww1E1Dw9pK6M5v4NPt87LoFt4j8iEn7kboyKmSEYGy6wD1LmdUdZIfq7xd1UgI7NZz2tWGD0o2nfYbSVyjb31R0nNAfLGDURe9fORrAhnbWx5krBcDgW+PhHjxKwEZ/EeUQjPe0NW/zSzFZnKlat89LFGw28Hls2sY0DpJ5q35YhYY+TI82Xc+S9p7yvr057VGyye/yrh079MlbVpEzSHWqNNGapbAL3718Nhwp128l8R8mMCpUxmxhM7TJFj4N2hFWMaiL3XIn7kqjU2ktiXqsS6FoJfzzTm/9Rd3Kf34L7MID9bVlARaKd+vT9HJYET3gOV8LnpFSIK5xA8ZU6+Ej25DQnXlEiKlW9HmXNZH759ssb8L+6/PRfFCb0+qn7P+XQW91sJzzQq12o5oAo1lTECpzsF0Hq8hwUv5l6d/UNOF5r0N72wiDdEKXa9USxryEhB1oTpo58NVmldcSX7Pie08LXX9olsXPp8ET6Z0+C+u0QVmo9JmHdyCsBpvIdpGdyzftsEw9/v594/k3Zpli00tlqX3t+aZES1/yHe1W+D8a5lTLXp5wSYx50yTWHaElVamkm42areQ1wTqlD9pnbGdgDBOryHcMKTB9MVjl/ShW7i9Z9Jq042Y9ZG4TRh4ZubbbGT+oJIYR8HHPo9o5xcp7h4/gX3cQ84r0RRgeNNx5Xzh5TgNN4DmfAi7v5hOSUd4Ap1+0RzM4HDsH/bZrIa0jg99nXbfVtMEb3p3Q4rIfQ/+4qEH169W1V7lxwURHkdmmzVgli8B1PCX/r81Ch21AAGrblDH5ktYbzKh75+WgbRKXW0Ljk7LPnt6kOm7PM0vask/+6/zyGL1w/h2924yAKiYvDha5IPpZob6HgP7F64xyIDRdl0efAk+qdhOsdTboshhsuegjv32mEF2V2d7pRxmlxV732pEeWl+xvhN9OmfmfH8gAbqU01QVAGVeM9UAg/kSCsf5VjA+wqkVjPZ62JUn+4xl62WoGGGExs7ozbYdkfpxodZrppM31Cz54lrEUL+wyMuIcPOiv+eDFH6x7hU23q3o4u4D0IEl7/tceh5gwr5G5Ski1s1UWtveab2H4uB3qgcvK73fbYvtcRT+tPd2vJHg8fcj4kCpU18/Fj66ZKF/zB2U1Xqp3mtKzHtq/9eoOMevAeZRJ+Rh28B6VZ0cm6cDcmcQtEfSixLmLwnhZD8B8OEs0eo87vkpp9SaVJsr9alqkuufj+LLrjzpSpnCxap9pNVByyAYietuBVjtiOtNOPaHltry5ldGxF2ZpN0V1hm5H3uhVhrCQH7P6s/dEtxYzQ4+7MM245rrUwv4/wyStaItO3NkBvtcWYmchyyMF7CCc8ri9FXjlMCZICNtVfXSWLLGSfaftStBG9YE1Dd7ED9kBXb+Xz+xxQvzXZbzJVZ+n9L8Td2G/PjZtXVGDWWDTu1+VxmiXeA5Xo2+eC6UN+OnDQEz+fr6TknQSkh6jhanoTfxyw1lfGUSt8eaEima1Lk90YlbyjlPt5CZIW/KRzsd7RDg3gYzYRjQF1RPSQSXi99rdIZlZD4GbQzpT/IAZuvlredmdNkPKn9Yl2sY5YyIviHdeeiMBz2i5trkDdxfPLED594vzsPJUMeTIcIe5xysgL70GW8MFtBXI5Juawktj3vGUjKvXJEtFdV9UXzTpiy3xT2a+kSECx88Pd3qXmi/tibrhLfzW3JV3SB4YyoY9BHtNagXgPFKKnXtMalTKwATPuEoXWQXuwY0hj2phgichcIr9O6DlhAkXK2347SIDFni987kxui/t0Ttxl76ex2zrqQzzL6/IqN4Rs8R6ohMc7jBnvWWMDjV/748c57cCJvd5OuscIxTcFvI2s+utv16iHPhWCapey/vBOj8X9FMKHjcy8GRu1wd3fUjdUTBy54D0oEj5wN7n3nM0OsJb33vj4qDe4i83ekVL6+3yRWFDtvs0Za7UrGu3t4gSbg3OrKVx+aPVgkmzXEFvZgiepBdx0+6wKlfZYSh3DCnDFexAj/HmeopTOSV3QaLjhwty5Eyh+zofyM0mI/L5g57ejzlicsI0L9dVaYDskLilgErB0fRKuNjnZMJisCInnPnp4aG8GL7yHhf5Gzs1kHddtwEy/t3drUyAEaldeGSlXQmVs6zIcmVywsCeXckg3mUHgUXzyaKbX0vtP+Ojm/uXYR2k4Quz74T3UEx6l3tbqaKkKy4n91s2G4Z55G1CmdlBTdZwLVtZa/m3g4ySN/z/7Cz74oeirk48AVP28Kcf2XQLq8R6ohGcmzSv0JUoDtfag7o7MEMg1Nw0Jvy+G6Jc4spfXumBXncnGSUHjNK5oXZVLZ32Wzk/4Sl+X2JfHeMAwQzH9dIAGPMJ7EEvD/Y6TTeQNwQ3w5/MJ/7KEULi7+tByXVVpFHxePf+LritmdvzZJeeuGRrnf/YphA/vDA9xyhOG/i26qo6JkpCH93CE8ASI1jDfJQtrBIabzvb6w6P6wutcNDlUleJKa650xWLdbu+5sIEB/rsvdhb3Qa2n8rs+icN2yeVM7KGcCz3Qid5PLGNu+ukWSGSAy7cfBkHYii+FE6vVEcPPe4HVK9yw/pLEqPBcVsj75q2vU+K+dP0QblOU3GYVJQ+OISH6R+tMwR7vgTKBu8CbsicSOiTwjqnYRNKhgKbRSpc/BUboorooxnfYDZO3pT7sviAEVaJP8wTYnJbeH8K/ug4+25umDTL7tklERtmBGt6DI+G61tNnyqV2gKHAvHvS2RA4t3ydApOiDaJHn+EJm3fDVG+/PRsrJwWwRVu/6DPv4j6V8FcPjp59f8AInu7ezbNfzh7S8R4o+3D/3W3ybneHHViZutdQvvhB+8hEhxmLLaLKd8iuNXDHwvScW3ikpWFoHG31frl9cZ9M+BWdRpOXKcbw5xdn924lnoUeqgif5aefYWuyh9p5z/zVTuZw55Jri6GsJUq9d0DyBeaOFUZ2lj6UkACW8Jgbx3wkFvcVCR8P/GhvKaIP8m5q91WdNiKih0OEK6bXecx0WQMX0V80bx4b1zNGDPJi689oemBjO7L1z2kLA91TLA5YdMH7ndVwAm0NiUr4SbGpp2m228FETlKvXV8dMvEeqHK416l7uz5v3AFFxPmr2nxkghKNEHnsjEBHvAe26jGpbdxLCMTvbV1ZH2Kz+P2+4N+1C4Q/eWiDw5HWnC3RZvAc76GK8BUrT2Rlj5lCsbbofvt2RRR3JrTHk74DDYd00qd/eWD7882CTUli0KFBt/288389vxHOGVl/7PBvHRDLTfvJQfp7bryHLMLDaX8iC75bQgvRZ97RNJQTsULUAeEc4ShPbGfS3Nf0agloGk94vEGND67ytgwkiDOVkQm/V0diTG3Wh8e/bxq9YHKAm3gP1H7cg7eW3/TYawPzJtFa/OAO5/kcmV4JWiGGW5s+MVd4YoVmEz7vKyVAwwcJkx/qLT3/EP54k53ryQZ9KK57OBMtZwIX8B7IhA9ndmx+FGED+6/N9/C2ukD4kMmF9MYdyLcq54GOEAW7Sip+qaIgBub/2Q8kPDXBZrvgqA4IbXvk7JesDWF4D/qEB+6bOv650xJOtrjr/NhoD8W3B6ROeRkh+ua/j6BOFGyV+cjhNVuFwOk/+1WE95beMLTaog25lyzPXW+3gFy8h0zCRx7oFYf9vW9s3FmZ6VIaCH1s9o0udQaIuqnymV4MBbtxlu1ZlYsANJfJrDk6uPT7kUL4lom0uVXrEVgLnHscV24PPXgPVYQXMk59LBg3hmeHy/ruGgYB3az9qWqRPuJ6xSZzr4SCHaaYxNoI8P+/fRnCh25J+Rwv1wRn03EhR04r6MN72Eb4mX0HuTxLjMCpySQqvIEC3cetYV2mHqLHeiVzT1Aw/y0Jav2veaGloqOqxMlo8fNbRXimfUE9iwMJSp4ZXks8aApv8B4yCY/4wai3OsYQXIj9QbvjkcqfdVBm6LE7G/i8sJ+pBs4Vndzgxc2sF3LBZun+Rvj5sp6G98JbodjCao7SogTDeA90wmdXFKxfdVgfeAWaz87JUqAD1CXzxDTR3Hv/dkVbL+wivWPZ3qB1cLlqlGX0+dL3L/sH3CMELxYkvFEExyJazk99LvQa72Gh378vv6br2zYwP+8ykrvMHrpaXDx/RCgiqqMhg/YZL0z3ipj9LqllYPzxZl/qtqX7fybhlyezVHcgKcgizv8K74FM+OyH3yYZr5WBbTBUTvKlH/j5pY5FHJdBDJJtT3kLvLDt9Wlp0WfmaBZta/OvdtkvXZ8bcD97qbTL6v56cOy8u/NgmBVY4z1QCeeLuz3gJSQPh+z9pZ71h0Dqi8MfwEYUtddnSNZ888KSg6Oetd8epZnfGRHKDHRcPH8r4SOM173bU7mASk0or7ZzgTy8hzbCQ1VHvvB7iAOJM8Ez6nk4kG9XYxulWFDmruCju2W9MbstVvXYSA9NUCItO9rNC+335yrdlLSsbME18nkKHN/P07gauOwS/97nU/EeKOG4T+Z9Ld2esAqSE5+fyED+cGasl0N1DROisxeqcJh5Y7sSZ0JbGTtojdENm/c2Giw9/xAubCeokGM2Rbtk/0VjItQWzuM9ZBK+ZkPM+rB7zNAUGlo02OEPWrIBt1cyc6FV1PlR52PeWI/gJNVY4hNNhpo2KX17lrZ4/RA++PDWs/STK6HHK95miMkGTPAeNAg3Hj762LqOZ3FfyZmuM8Uogig/jB5lPfHGtMtK/F69H6G9yHBmUlm99P9vC/5B0KM8vIwTeh02dLmv1QNrvIcFP7IhW0E9QwwaiX72tN6TntPrEb3DwHfFgDfmcNiQ1uw+Rmuqyqwtvu+w9HxCOHPgeAvdgxua9+iSWs5zA+OZfz0s9HGXkvk3cklAM9HP8q7PPmsniq6KiXgMrPfBZnRaL/bfGaV1/2HVe6LYsPj7NJPwb1f0ZhjPc0HjdZH5o3c2Iia+fz0sePS5IH8pT3FoNngi01JuiH5dmz1hLCiCqCETjjUuPtgVRpeIXz9GaE1K6NbORMP/9f2Ie2fLOYkN9ZzwYhmc23mPHzFe/9cDmfCdZ4yLNtwVg4XXr9W6SvK5oQgiP378a/CgD5Zl5sFOZx2laVHvc5Gi2xf/vlTC1X8J8/YOcMLkuzQnFvtBGtHDgocqcXBfr/m7f/FO18laQ9Dk/hg7LrAe/f7CU+BU4oPF/JjwrREYo0n+Z7+K8K/PNncFc3GDc6vOUIOzDmjhPTwiHNuYskO5VXxxX/Tem5CUKDHEIBoVWDfqgzmknijLkR2nLfjC/oLfSCGnz5J54PK1lF4xWWtYj/dQJYI7pyhbwrNeCTjJybrMJc8fjoS6dPCm/X3/91++n8fli8nHv5VSIY3SUsLvYEcKGZeeDwmP7ZRUdRLkAqmupl66vOVCDwwHcBdeEdSiNC4GrFlU21ZnfziWlmGwx5odvTg1oHXb3BdrXbvm8t7fH2hNWfsLOmlL3y90woeu0O+ycywHFWI/Du8BCB8VwKZ18jnhT7jYtynGUIiTXPEw1mFQi5Kl1HD9mC+2vaFLeaMd0Ex2HTypudkRpayLDDmU86tUjPBeB4g5FvKO1utpYXeAwRry8J5Gv4G7yjavC0zvv9LWEecvDXl/e/QiC5AN7MVRri/m6ZPoqLy3V6v1ucAy93VL92cGwseZn2ppR/7WunXzMsuosTUUhP7r0UK/SePlyKXlq9EVthWRn86FA/NrEmdzlQwU7z8nQ/vgi73kkrcYaJnTapIyVRB/ZrL0/Uv4h94av+cT69GVAZavD5K3wWTnvx61Eb7K+Q+t3kUeNRPni8+NffO9WQ3ID9q2aAr7YQFGWsu2e7Gipkf99e+Ul76/FlwvxuyatrQ8kskd703VMYIovEcLPs0xUME7q4HqrYuuCx3Ug3sNKUl5aQpANvaqPLnND0tXPCd0nMSIfNTLq7sGrBbfHyrhoUoKJ0oEN6AdDRO/TYJ94RHeI7IR7gKN5QGJ44pobRIo+IQEAShc4uwvUkYr/t7ajkf5YdEiAbdlny+Hzd5DJGkH9cV9McI/TYzEhEnLwIoamTGL9X7Qgfcgs+Ds+ka5O9UgatZ8flhpL5hRaEXrhEwRw0GRH0cf+mG1jxVVvnuLguJN5i7u1dZLzycxuL94/lRsoJsMSet65hUfuYAB3gOZ6COjxGNCP5vDwvnNTDnN5U5YIXLu5yPJrX7Ydczq7C2dDWD2nv1kWYjf0j7hGw747z7vagA+77XzVjZsAwu8B2oO7p+90DvP8b/fOxe/kRM6AqDV2b2vW9YOZQVGycyv9MdKz/ffNdq3EZoTs/Jfqdst7qcQ/jHOofYriyl8lD5D2/73ubYB7yGS8Imv3W0f+B3BudY821XBG3SDckKS6v4+J8gsb9ql4491Bu17PvRADuwJX9iv2oh7VoKhiF6RBUi8+S0e88YSTPEeqIQzR0XX+Gm7QsVtjValyB1w71KG2ifpv9fhNevX4t7+WLtb8edqYXnwLVFIPiogsHR9El69+cRD3s2WUJ5TxUHXN4J8vIcFr/Q+HxGX5wr6pXgfZpH7KL7JHlXVqVgwpftjGjpTExc8ZaF5rIav5enS5yuF8GuinxUCJM1g+83kqrtPhCAY72Gh51Y33hU57QQmlL61K9jsQXb5YzmRCFtUNcbz7EObP5YhpcEUnCUN2qX/9/wLfnCd3r0SQROojqbcZflmBpvxHhjGcQ9hnQsJNnSAeeL1n8j97hda9vf3++8XBtvG/r5+fclHwT+lQY9yvKYkWxzO3+bdwHZRjkQmPL18iqM2ygROHeI89kTbBogeyH9wz1EapwmkOUBbW+0HAVoA7Aup63m70hFZGQ+eOiwbgJWP1p9ob9kEzwLYPS90OC3+fcMJr/tcXtEO5kDbz7NOwtkQ9uM9hBIuk6tj1u3tAs888fOFK2RZWju5IHIqY2ctJQArvLYrAOVthnJiP+Lf+YXKqgiPWYWphjNaQ6bx42wTRjMIxXugnsU9SyylL03BAwY88P1il36jHRWOiJoRa/mMGoA59ZK6O27IwZEjqo4kF/LS+38V9+A25cqq2xZwp0KJXnjVGhE9LPQXL6xelqjkCruJ/sX3mZPkcUNEpzQk+JUEYCK1pIrcYkHY8999wvdRjOeGMrfBsduM92vD7dBPvIcawmU23qjhMTWFlXECnLRmD0SOM3d31GEFqiRf6fLvARj5GBM1we+NFjvhMmy6aTMnSWUMUrjvY8sWdTNnQKfuP5UmnzVHg3j/9/cD7inN5s0s39egvcT5AqRMpKX5RIH8aq945tpAzEzC4qFUwqhWRoGt4vVxq6XPVwfuWULTcW6hXMhC3+zVhIwnBOE9YiB6dsd19VNa4mgPwwVG0eggmP8WQVNK0kQuh364pegFYhT/TVcm368Dnmd5VzPM3ZauH8LvPhXNdxRTgljWSfXTgd6g8f1fD3GEs2h2nQ731QY5y+D0Yp8IOM2JqLw7LBBVNiiNuj8Q2zcVt4xyQxzYiP09a4yPZ4ASacFFa+fJH0/pwbZK9OosszXcxXsgb8L98+dT5BJna2iQfNA1V6gO/wOQp8owAQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAGwQAAAAAAAA=eF5t0X0w1HkcB3BWda5GericWcnqJkmtPFyeBt+TUcimRVe4sClmwnV3YupUylOqixM5bo2HkEOuNZswnjPILDJ5rtvp1KrD/n6/Oq4Lu+v2j+/Nz/w++9dr3n+9Z95vG/bk1PIyhWwY5idF2io0aEl8XvdOgx4LrlenNDj0Pd+rV4PhacLvijWYljPvn7TCa9gIfvOr/Rpsf+pZP6eCilxbl1s0aEQpCf8VbsX6SHbWjilpedgtba6itBUaYO0l6TpyBdQ7SMx2UevFcExqJe5foh3Fcn8y9lYu0u7B+lHfDBmskI/NVZw7mLZAoTsMe2JuZyd8pFA3Q56FnWXgv9AnWvxV5R+gqyP0XgX/Q7sKa7Z44NbCHO0OrLZqXaKJWi2Gw5wlo5z36r8Zvixr5JAUtJmXoi8noclk/DibgKYeyGvkzkJTLDbe056Big0HHd++hb7mc397MAVV9IxUH5NBd/r2Dr6bVO/AsDa9uSTqJVSS3Do9JYW+MUhK3fsCqiPeVB04TiEWw8zmmdiyUejqWMsU4ZD6J4ZWHiFrfhiEEveM8m4OQHPro/dwJdBit8Nf1PTQFmE7Vc4D2V3QrcGxLGkHVLdp8GedVui2P8uq6pqgtX5pd0vroX56ze9jxNCCzpZn0yIKCRnK2gMeXrgPHex/RMoqoBeNRaR5OdSrL1R6rBha0iHYJRBCi2pUBVF5UM9HQXV22dBfZYnWL25B3Q+NRlbdgIp+tGpan0qhBww5H8svHEqESiK7GqUJ0KK4fd7jcRQqZGid9JdP1VnoQ6MTQ8oo6FG3LZk3T9MGYAX6n3ZSIVDilKqVFQz1j2cncAKg1bbW4s08KEfW4C7zhHaZbm/IcINKnXUr9ZygAp/G5/n7oBaZ6wv7uVBfI/PnwzsodJihzuUjZWxTWhZ2/3lPs2FDWjdsh9Maw7AN0H7xtcAT62j7sE+PTkjzWBQaYFiZK3xcvkACHcO46Pg8rQO2z8ljYuMsrQSrtfmzFuEkNJLrwdb+gzYC62fgVPHlM6jctyrE/gn06zNxHN5jKMv4tNuHeqhKfzY8poZWiT2ZmD9tVUEiAcO1nhUq7wLomfjbk9ZZJIpiePdbx5PFN0hUii3DjpTEJZslkmiU4WJLh835WBItYRVYTlRWY0Y0iUyx27E1V1NqE8Kg8yh0xiaARHMMAxr+9iN9oDWhgl+cv6K9j/WvnGj3t1XvzrDXdrdYtBvaPpcSErSNRG0M9x6RJ0k20Fpix4etznbr0o5hLyrlDl2LBPCgpYnquhwa7h5kaCIj0CmGzulXeNEjtC5YuzeBxKVuAtljHbAJm9rNK1vUfdhL2IWMrFKX3wm0yLD3kyuvcwqhbXUFBP8O1Df6uJ5ZKtTi8lq7pnME2oX9P/8HExMgJg==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAArRgAAAAAAAA=eF5l1ndUz2/cx3GykpnfDz8jUYlECi1cIiMlpYESpTRQQlIkKkVDe9PU0t4l5cpV2lsKkZ1UREbZuZ3zeX3v+xz3n4/zfL/fXd++53QKmv1zxWOvNes3vK/vVFVsYSFinIXuMUHV6j2kVILzJnTT5Zw/iunFHO04RpaIc96BfmwR5wInVQP96OPEUNNaVfAqYUfkb1eri7ewMZs5B+QneSn3mpHuFZwPogsu4+y6sTp3+IMrWSrB2RL98SLOHg7s34uFPkRXyu6DUt5OFuxUnKv5TwtLkeR8lmy2rR2rSrpEOXujHxDh/Pu7samTuSeZN4/zJfQaIc6nDpx+0b4+lJSkCFQUjTZkt7ZsCFbmb2H81ziLWHnYr71iRVuvcM5H336Z81PTUs90oYtEKYhzNnpXIOd7d/rP/XobTqZ7Ft8qXGTOyKQqCa++ZnbDnXNa2ivn3bqetMCFsyj6R2fOt8rNHquXnSd85zj/h37vLGdD6YMrWXw00aBHhQS3H2E/vcdL+lU0s/clnLtt3/MdtA6hYws5P0QnBXDzpuAA5kT253JuR5eFZ7Tc9dm+JY6o/CjdfK/4GFuTt3KxbWYzu/ads+0hy30x665S2a+cRdEffuFc/0RdeIWHN/UZ4jwX3QH+NVCy88DPaJJUY220e7st2y9z+j97j2amDK8v8+pqzI6n86o566N3VXG+z0fMfky6RL/Chui9cJjdrtIbKXFkOGTe6QdP7ZlXVim/g0kza4VNtCZsXWqbQEeFcvZG70VP6BT1OZjsSvXDOMei68KhRdEtPVLXyPvLieNHfz7NYtpmW+1T/3Mf/u2nMS/sViwVgMPQv4VzfuVhNEIgJYCURnAuQi+Cpa8Ol4toZ5Mzn0JFFC6eZdpmu9le8WamDZ8oGgiN4rtGuwY4y6E3wMnZw1NnPQwizz5w3oz+BFZXjXFf5p1PPMUrhOS8nRn/UNC/e0c0s+PwY/H4L57C2dRAjHPbINe3wzYeHeemLvIjv0U530cfhp/dOq11YNJ1YvCg0lE61IVFvBfsXtvXxNTglrJxTmJq+TTzPmdf9Gvw1cfWDrPtPan1Pc7H0K3ggZVa+47I5xPTPnlNQSNX1vT8cadcRRM7Bt/r/BTJNzqfFsHt6Ddho+DtGYun+NNDcCu6Ffzs6YgfFrNziefPlAUfF11gk9tS7kpHN7Fc+GlP/KK1h3Ip+8V5Ifp9WNqxR9dIwpfqDnNejG4Aj1LPsXk2MofoVJYkVMpcZLWaniMmezQxTzhT0Gyg6Gomtarm/BH9Eswf7tCkVbCWbq/h/ANdB17wLrVH9lMOaRTvuKv33Z3ZaI3JHmHSxCYt4rxz54n3S7Zco2GLOfuhl8Bj3sm+SVO0JjMkOAegC8OXb3b171+dTVZ6DPG9LfdkM3VcjD6taWJOcCmb/zttThwt8uS8HP0VzLs/BIuiD8MrSIfvcpE08rX0hKF3gxeb+zyV1S9sYptvcX6oWJqwPTWShsDC6OXwtMx4qRc3g8nMMs5y6CKw7vAUh7HOGcSPb6/czWBv9un1N+GC342sBZ7xNkJJNTOWzhvFeQh9I3xocH10oUkwWTSaM18P15fD5xvVXy/uyCKaWzZNfrvXlzW92+oU3dHI3OGaJnGXLzPiaDTcgk7hde1K9789CiSbVDi3oqvBzWnFyoP52UR5/gMNdXM/Nj/y7eNjtxvZUbiz2v/mO+NEegFegJ4AF00Xt3puHkgsRThvQT8GL9YOYImOOaRJWGDyyDB/Fua0pkEjqpE9h3uXCOWG302mn+EQ9N+w4q7F3/fYhpCu+ZxL0F/BY0frH7VbV0COL0/+/MghgPEf8Cpeat/InGFxJet3cwbTaCo8Eb0AfmZmMTj08ApJl+Ysh54JG8e1qpYM3CBxbl3qZr8D2CvXtLtf9jeydPhueWc7DciiNvA9dAd4zT9V6s9ux5IfFzjPd+P6MLz3zZa9opWU9LfXH//yIpCliCYL1axuZJ9gj/F+Wb18+fQ1HI3eCztpKa3u/pRA9t/n3INuAtcKVdhEzr1NxBblhXpWBTHD2wkW4f82MlF4t52yn/7PQroXtkDXhwu2SxsPqaWR2sWcc9Dr4ft+3j/6XlSTgY27V79SC2YZ+r3v9gw3sPdwTd7+de7zbtBzmzhXojvC78wGz458/ef/D/gmuja81+Ke4mS1apJUWREiIhXC3ESEdeY8aGA5sMjX44kDbQV0EPZB/wW3PWp4qrQrimyHD6JrwK8sexwGR1cSVZUVH4wEQ9meN7rXH+U0MHO4wv7Yh8/1edQE3oluA88U6xe+XBBENLZwnoOuDRtJdr8986WM+Eq0N14MCWW5W1T1gyMaWBo8QdtyTPa0XNr5V++H5++dY9LRGkW6F3O2Q38Dd5HXmSL1jLi/Pih84FQYa1mddEn5ZANLhoPMbnSsEcmhVXAj+gP4Rb9xrkNBIJkBx6Pz/MDc4UadSTGJSvx5TMkgnA1JjSod0GhgN+G4M6sC9V9kUJ7fobfCKavX9bUecybKcBP6FniVzz/f+47mEyo3R2/J03AmWPJuQbRCA+uEO7JerlGRT6E/4X/RJ8pzvq0ddfVgaSRRRH9ezHUCC/hnLa/TySMGg19kL5ddZtuNLjfJT2v483eXc2a5VPKjVQk0Ft6JngRbhabFPjQJIf/ACugz4HEuL+bqvcwgz/La/uFPuMLOj9p05s6bevYYLj86dtNmsSiqks85CH0j/OGSi4ZQbQCpwbwzehWcl3Rq0PlJPOlwSCrPWhTBrktc3WTTXs/uwJYGbSKhNrF06RnODeg8p3lLqIWss6Xb4DvoKvDVgS+dyYXhhE/heGLC+EhWcERh2mBmPfsmz7nLzFRX2CiYmqDXoO+Dv+f53vBJWkI3w5XoG+EE3N82uMbj8ptIlpvT/NTe40+HdUan9v8o9KQX4TL08/DpM3wiMxaYkx3wdXRNeIKD0D8nZENJuWZbxpB1FPP5xyZLwKaeUbjQw2mFT2oQrYdD0Ovg1vOKUf6i1vT+X70NftH9KrO6wZfs+fb6m+mOaNY5qnq97bZ6th/O2ys5w2qbKzWBn6EfgK0mGt3dE2dJZeH76Dwru+7SEld1J0vif2y+KxPDyOc5rY/F6pkMPK97h7pcnTN9F8dZGp1n8YVL0w+F2FE9eCo6z9+1OnSiPRyIqcVj9yf5Max31kQV48n1zBIOPEEGv20+R9vhYfQOeFO+51vv57vIR5hvNtcH4EPlOlM+97uS1uhPtZ1qsSx8hdHarNd1rB0uOXtXPeyUKe2EL6M/hYXiWjetWbWL3oJ90Mtge6WPTkrFE2iZ51dNtZJYJr8tV+YXq2MVMK/3wsro/bDsPv75NPQ0bYJXozfCV/H5Y2bZa8T/jGWTAq/3Hk2tY3FwaqbUkYQbR2gqLIieDq9ps0nxKDlKveFR6H7wkhOH76WdvEhTK2IeMqurrHia3vMY1zqWBcfgfgZchJ4JS46XCxsRd4o2wNXoTbDOfuHDM09dopFHa8yfdF5lO4O+PmjeW8eiYA+ZkYYpz0/ROFgHPR4W0/ZcoGqsTVvhg+h34BTsR8aEjh83L46tLoywlt7y5z7c+bouX73yGC2GN6JT+MHbZyE6embkK7wb/Qt82qWzZ4qGPdFLEJJo8oljzuFOv5SE65gBvM58S8tEUTViBfug8xyY36sZt8qRXIRD0d3g+8tEPU6kOJP5KQlbQ37FsSaHA96aX2uZMLxJzk323kgDynPzX733/b1V5ORZ0p3MuQj9FSzH75OllulFxs672OK5Lp753+8Pi3xey/jhuwJHXh3qNqY8e//Vjc8vE7yx4v/6pb960Hh31x1zThJDde1/P2fEs+MplrqexbWMZytN2W2is2XIafgsugN8szLBKTtXmdrD9uinYFvD1UUfl5qTOod5eoZCCWzfmd6pdkG1rAUe2TWQumi+ExmCrdG/wyn3T2bnGsjQAFgZPQhu1ODe15TQxD/HMIGN3VsmmelYy+7Ah+5OdFTQvEAe/9WfwhPFNYv2iNiScYmcZ6ALwJknnqyc8HofVdEqHSfSmMAUzlplntxZy7bB8t27exrUnYkuLIeuB3864T7ea/8xYgWvQed5vC13n/7KGCuxNpEdip4pQ6RqWSUcysqmJGh5kRnDnJ3Qp8O3y726bYNlyQXMb0a/CCsvlFfoNQ+isZ+MRVMd/+y/OfbZcGYtS4XTx3Tdv9UYTixgM/TDsPXw5w31QqeJFKyJzrPGwyi/1qoAWu0wy0rlTSLLGa5qHX5f8+f75azkWHp1UCOC9MIM/T3sO/L9J7WdhiQDjkXn+c0Ow0QBi1i6iO9Ofpd+EvspKJQTXVPDpGBVyWDT7pQ4Iv9XV4TLmo/piDpupMbw+GlcN4PXSdY0PLdMpcr9Hx3ErySxcRG/85JzapgKfEnBYuBZdAKZAb+/wvV/4Zspoy+q1Rym+2AB7BvAh67Nts8ZTKQvU5/46fBfY9eUe8/N86phXfCNUNMbfQoxZFIa53z0yXAO7g9jPgOdD/0g7r84WJfgbHeNWfS1qgab1LBXcBHud8MH0Xtgo+Yrhidu76fN8D70JnjkvMH1r+2S6aNZL7c4FV5jab9khC9sq2Gd8J6P65U36V4lz+Fk9Mfwz8VGJT6RJ+nc2ZxvofMc2b9+ocb6FDpRotZfViyZPXH9tq9JtIZNgnn3x8JP0SfAstmywSOXmdBl8Bt0Kdh6hHfAC5JApyhkPXwTkMzGCpRFzvxZzabB+rhvCYuhH4Zz0sI6dHfsoIqwILoCPM7e3OC/W0n0m+Qpx/g7ycxMjq+1v6ua/YSzJ9/+Hr/jChm9lLMp+lh44tFZv1qvu1NnzK9E53mxyCjDH7WRVD5XSa1zXQpbp7qOj59Ws7Ww74LJFgoaIWQeLI0+F656KvXl/bxAuvivzrOlpeW9tkPJVEph3H/T01PYbwOHFSIh1UwRPtCU5Hp1qy75Ic+5B30E+sqziYfIrUD6Albcy/Vn8LpzhcqHLOJp0OEdzS5vUlh1TL1m59lqFgGHP93qJSjlSBzgEnQXOLjTV969QptOsuTchz4ZZt/OP9D56Uk3yazSl9NLZY1qgd0VO6uZGuy6s8+uaut+wg/noU+Epy2we7gh3ZQchu+gH4KzsW/8ZebLvopUdmVQ72zGsmpmDheuW2Hy7Z0T7YPr0N/CK87xeZoWnaBz4dPos+GreP/o8DF5/KPTWOmL16PUZlQzfpj1rf09fYc/nQmXoc+GXSXOlq6U9aQx8Af0WNhfs9CxvOEI0dqyatyKY2ksOsHLfLi/iu2EozaoG/1Yepru/6ubwpH2BVMOnLhAleEg9PXwZex7fzYxMOhMYyfNl9XmVlaxAPjIyhcbVvnoUmv4ILoN3L5nd13/2SD67BPn5egvYcHKJPF+3SvUZd8qCfE56ayk9IOUdGYV84Ktfsmv8LB2oTHwLfQ4mI2vV52gdpF+gp+gD8Jrqla3XSwNo/78V/6jF9OZqXBtWsaFKhYKO+J+NmyJXgAfaI+cHD3hDPWE9dG94GkdF9bPuRlI6/J+j9P9mM7mOMcultxXxe7C/rh/DR6PngJ3Dzk9tlO/RF3gz05cd4VPE/eA2V2J1C/zaEi1dAbj11x/z33zn/fDIXodWUnmrtQK/qLBdWs4smx2TRcJoouzOK/DvgRMgt9Li5gkUf1d2/MqIjLY6Uy3hPq5VcwQvoL7gbAHehD8KLn+4Ec7b1oDR6NXwqOMWdJIGkUvDC+5UzY2k02YXGsz5XMl84LLpjb1F6S7EWP46ySuG8HXSma0X7R1p4pwF/pqmA/3Bd78W9SxKZPFhw2VqXZWsimwiIvW8c+2/uRpH2d/9C54YrRb9uJLR2kE5tvQr8Bm7QLsbmwkDeq6sE02K5MVy2r/3JFXycLgmK3Hlso7xpAKuAr9NkxDNz+0mKpFMnhGT4Nn/ogN/xkRSI2fDD3xn5XFeu9myOl5VTIzeKP12DH77UNIEjyijevxcF8U9/6RcBn2R8Bdu4tPtGvH0127FlzYujuL1QUEHbG2qWQGsNTUMFN/vSD6ZifnGPS38MLmnvSFs33oWfgUujMcpXm43ysvmZZ2siPfWRbLTng2Tk61kpXDMvpTFRuKg0kJnIPOm48d++E/Ta0wWgbn/rVfvlbYZaggg/rKSEvump7Nwq4vi/slXMl4dlvpsD/+VjThORzdHy7afNvOIMKPKq7gPKOI6zxbmRToC+fE0/H7rY//XpnNDCRt3vePq2Q8T5YIVOlTdyUCsP5f3fCDUErrygDaYsR5GXorHDYzYcdThQQqmn5VxelgNnvfJZFn86SCicOfbGV6nMPl6VL4C7okLGll7HG024/ugKe+4romHIr7B7+2Cf2OzGbXop/bfcmvYOawk4Ot9tSDwdQMTkDnzccnKDcufer8//Yt4IvYP6TLp3KiJJv52+q/uxVZwSzhaZXfxqhMDybfdTjLo3+DSxY+z76jqE1580Ho1vAE7LsJepwIeZ/N+viabYZtKpg77Efnq1vLjCNef3WexX42REV+MCV+cC+6L3y2XZg+ne9GqpomxV4XzWH6AZu+rFWtYDXwQJD7M8ePrlSomXME+lzYZmPVW6+OncQf8zLoPPPeb6UcO/BpQw77pbDV+5F0BTsKR7feuNa3VpAmw5KKXOe5WS1Za6H3wv/tEujpsMJiUbHFS92ou8KZkLyTOWxK7q8lLWP/fH74xwPuvg7cl8N1ng3v1MV2F5+jW+Bn6CqwHu5/W7Zr9YmUHJa+JK+2ovM2+wXrow/DqX91GWm3CYWmvrQaPo9eCUcELKpQn5ZAixJqK2yrc1hcsLCafMVtxvO5wejrLfpKxAW2R3eFBcVeLXKJuESXJXL+ir4UrrYzzfheF09XLhid2vD9z73cubOeXL7NeN6e7t/mOPoC2QxfQt8Ii+H+QtgGXRz+fmDWBvPGZPo6ap2fmFQu826Z1eN29Dbj+ZR0bsB092CSDRuh58ClV259KJzrS+1hOXSey/H+oqFzS3u25TKBrpihml1/fj/w6b38K+wSA6kz/Owl1x3hesW2jZOjfGkePB77N+CeF/ctDu3NoMMe1Rmt53KZcuC1YqGlf74/WNLssMe81otkjCdnFfTR8NwvBWclJRzoFFgLfTJsh/fpzpm6nObkMo/1WedsRt5m2nDfxBjL7iMhRAs+j74DXm10eK58uBtVh13QNWDV0WT6ug0u9EPL8ZNKzbnsqv5k7ws95ewznBz3aYt3vw9dcodzHbo4LJ78XHHJv3F0IuaH9LguAEtkP2pIPJ9EtR+qnCwcmcekF4zIcqXlTAse16k0UFJ9glrCG9APwemb9dLt8+OoPbwF/RT8aM2vjZ8rcmnnS6GTy1blsYc9H+64BJazJ7DcGffEc8t9yUnYB90Orhg+d14lLoxKdXGe1Mv1ZbAk3l+SJpZ1WCuPJTdPnGF8upzxLDNj1xHRr3FkZDrnh+ij4ALNCzKbjR3oMsyvQl8OL9PRklack0j5B/jcLFzz2MHbFeGjNMrZZDjD/sGl8O4AIgAfQJ8Im0/QHtqY70ZHwNroo2A+88jIxv9i6Y5Vz/VMC/LYguuOc5JEytlueAy6FPyrkOvS8Ffr5zqv5L2pAPwQnedEqbq2Dk0Pqi6b56DXmscq+Y/5aIwvZ7vguS6jU8VX7yKR8BB6LNyTtSFMNMKN5sPD6Lk8Yz/jlOvju6PyWfOZqO9+j8tYPvxy079in1ouklC4EP0y7OS7MVAvRI/ehR+jt8MeViu7JiQF0gMlOus1ZfOZ/rs6izs5ZewQPP089/Nt4X3o9vCiqKElflGetBT2Q6dwMd4/IGnQOaiVz9J0zAuUwsvYd3hRzc3VfZuMaD3sjt4EFwS7Jcot9qflSznL63L9FvzhSkps+6hE+tuzv/X1+XxWtMdMcLZVGRvtxXmui9PHn79C6Ar4Hvoq2P9Bhf7+OleqDD9C3wArVHPvW9LjVNuR96cbmx75rFTGpOGpuJ8LK5pwPQ+OrzzdX9/gQdNecz6O/XT4ViV3v/RH2yiplj99ZPEHMfEyVgXXhjlUKQ85kqXwlxFcl4EDNE27LGT8SC/sgn2e7bEfNF6g3mdEAds+cWVqwDfGQuFidGdYCd0Nzo+eeLN3ViDxgzei8xy0x2aEkkoEiZ6pFNgvXcD0ZqabDDcwFgNfQZ/8H+dM9Knw2QNZO35KeZFlmOdDXwrn4X3uis3T+tQLWMbIzDn9uYx5wEumWHz7MMaXHFzNeRcf1w/DuQpH+fnDI6g65p2xz/P2+pdf+H2SqO+6O6MzHQvY58r1n7su/Pl88L3nn2IPTL1Mk+GxVVxPgVumTWtS3B5LC2FB9Bu83po0ZWBrNr2ufHfoeHoBi/C829Cpx1gp3In7VXAMei2s1bRTakjUl57dyHmhF9d5tsl33to+25b+Dye/gow=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAATgIAAAAAAAA=eF7t0f8vFHAcx/HXTGUzbcYQWmtTP8j8pInxoi9Ts85KNVZtHdbljGWpKWM+acXIwnVdKbo4pFZ3pdJMUaaltZSssvzQZrkms7QWZar3x3/R5v3L88f39nj1JaW/aY0L6gGmowecUUTvs6UzHcnEjoi1vs1p0u6vf/oziG/Bd63mbOJTa+nytsNE91Bde2cBEWV5WfWxkJh8/mUwtpjgkiEPsyL2l+fFDJYRpuwnMymnidd+j03ucuJ45dyYrZLINaxwZlQTqZMsM9QQGzIOjo3XEmHXwvcetRDrA+/f8bHKv5Iu344LRKEzOqnwImHpM+031BNtocuMIVeIgeSsEzMNxJQhYuTnVWLf7PDcvJ1ocLQ88Gii+rXR9CKomfBticiMclA1zgf83d1CpHlnFle0Ur0fN1Q9aqOKse9a59lO9X2kLD71BrF62r3ZdZMq1JJ3PegWVXOs0Vx3m2qVdc1vbxcTf8TFl35wceKt16umaP+E/gVHrx70usUxTBy7xDGWSAwXx62Eq1McdxIP/cQxnch3iuMBYtuoOGYRRps4HiJGn4pjLvEO4phPRGrHI+KSI47HZIcAcRTv4GpxLCKKtotjCWGbEEdxNxvF8STh1SSOpwh/7Sj+tdrxDLHHJY4VhNKOskNOiDieJT5rR9nDmiKO56hWascaKrd2rKMybBJHC9U9hziep5rSjrJPgXaUfQq0o43KRzteIga1Yz1VpHa8TLVFOzZQObRjIxMDtaOdCvHiaGfwsHb0TMDCzZYudrGL/X/7D8rTygA=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAASgoAAAAAAAA=eF4t1Xs8VOkfwPGjkFwyhqJ1mxK5haxUePQsykT30tpVGkqqLbSiCzEWJfdKLblENj9UmqZcwtN5XH4l0m9otGlLo3WZiJ9CKLV7mqfz3/t1Pq/nfM/zel7nvMiDLkPZaNXRs/e4ZtUBsOx/iyqbtnXTlObOudtqpPTE1IRYVWmcpqbj5vxULaWdA1oc04QUptYvy42sktIfy7nh5yWKmDq5t/hsuZTmrk+1aVdTw9T7yA3HbklpXfrMzzNyNTCl3e2pc11Kn0q/NRQs1MJUqPiy71Upna3WGaf8QBtTOQYrnXKltFU9jip5/h2mfJ/Ov3peSuds5tgbDelj6k55ZVqClPYfti0wieZgKkU3ZixCSu8p/8fri+JCTGnh8NZDUtpx8UvlmalGmHJ2E8/1ldJlUduHDbSMMVUdjR+uk9LD2ZHaTlkmmNJZM9G7UkoPReUluembYipE1zPAWEo7xExOLcg3w1TDiRhXdSn9OrXG4N4CC0xxtlZHT/TTey1GmmdcscSUXkSrdlc/Pf3J+3Ynx4px8/lZDf00df2yv2WeNaYs/D9zi/rpzvFghffJNpjaNfCr+HQ/3SN/on5s7VLMZ1vnXwnsp38YrL3BVrTF/Jri3aWr++n81O6GVXWMnxX7dC3op03KhL8HR3yPqcqBAavpPtrUMWjzBTs7TKVdoxPFfTS7/NaFwreMd/n3/1XaR2crmG1PLlyGqUtvPJWi++gtPgvr4E/2mAK/Bb3f1EefPinQv6W2HFNxQvWjnD76dl/nhUeYcY4WOjTUS1cYRenF/LoCU/PMQHFlL20yJlxSs3Al5u9r8nkX1Us3rTlwJaCNsVWVWNW1l3YdXx28P8oBU+GhrhUze2lRaU/gDTNHzOd7pOTjHvqPON7Y3CeOmFprN3jkeA+9Nq3hv3EnnDCVoDzdtqSHnh1pk/PUcAmWXK8qHB70whRzcUy8ESsiSR8x548hj6PZgGx6Z5gfr5n8ako3XIImUwODk6pl5h8I6kWmy+ZeraqSGXoqDKGEUI+cjnKZOUlGo6ipdpVhwy3Sp0V0I9HAHrj/OllPbetroOq81Lb8Krl/o34QrIhoUMjMJes9se4G3mF0h0IG6aFeAYA5j83HE0jfZvYS3cnu/M03ktzXYj9CB+Od3joGEYuu1wEWSCpL8CVW2C0GIevmTMP1xCM3moFTqXK2nwMxqysXTI9SAb3GxJahD4GUN3tJkzrxCXEDSKAqDGZPTshc23EXbXvr+11RF7GSixgJNpXMzG4g7jFrRKpdTuLuImJOZQxwEh6WC00g5rsEglq5H1e77yPWyr6FsGrEGa81xI3DtUhH8dzR9IXEKzRvg8Y10bHS6Q8yW+0QAZtw+Mu6DuLJUwjYbfdbW3SN2K6sDglsd+u+iCbm5ZYjJYO6MNFmYtHjfFB9zMact4CYshUAh22hr/yHx4nPnkKLomNCSquI8+/Vovxlto1yfOLapxiZz7MWWLoRw8lMxDtwd7hPnpifEg8+uB2P+7tujKw3GIG6UENrywnipjMVgJLGpjpbE+PicgB/f3NjvVKPzIb1VxBfMFWfPxgGqyQd+Wl/PaF/GU1mzqcSlD1veyESLU1lPLnq63jRmo0AxpYs+iOZDVNeG9iECD/Tivej7Jd96zV/aAaslsOMZf2xS3qfALavsxhPYkPLUPO1F+xV8KwUr+Luu6S3UO4CPIuvlvUCbspnwA9tOZmVyIavH7Tbnn2oiRe9ExekVZJe+fRdwD/zJ2NZDwXPPwK+i7nt4QQ2fAq5QtuJ+fhwUM1F3TukZxVXApaqkLGs36fVpeAM719SCYhnw13R50vHNTiY++r0fw7clPX4WcY7INAsZSzrRXZvZzjjN2FLdscw7/sobd7dxUZ4yc6eZ4Elsp4/tXwUCEZ1OgNLZD1Vua8FUenrE3dGsmGk8TVL5GSC1TK8kmZcIfOYpUlAiMMOxrJe4vFgClHFcRPccDZ8cLB3vHOTGfa03sxfkkX6cz6vEWXmyVjW49CCcQQPuqfpBbMhnaW6sW+3JX4QDi26UknPr0gDPA9LxmQe29LHAJuKndr2sqHPK4elVWHWeCgo1Fw1lvTejo2ApxXGmOxnhvIgoKLO+PvtZMPQxd+Hs12Z73mwy1+CMNLbtWBAhXAZk/U7nnQC6tn51KYtbDi7d/41frMtDnfX+3x/L+k7GodBOmXFmPSC8mREvTq3cqY7Gy625E6wNtvhuBoTnsd20kc1S5CAY8yYvG+xVT/CA3LJcxzYEEhSTt54ugyneChlLncj/aUNXWiToSpjMv/cpAEEdaz1pRZsGDiptw76LMdPZ6nmJdmQfmzHI5QeNY8xmScn/SWCcpCdrMeGcwvtwe2uFTh9YNhile63/aSOAqjwkTHpxftoBJeWrZtQYcOsg+cUR3gOOLGHY7VZnvR6uc8BT7SIMem5u8oAvGViY/ZRA/6ZIwqSdDviiKGD6nWDs2R9vtsrJMoOYTwh60X1xYhSGzPh9GvAzG1PVgT5ATxq4mOc1EZ6KWT6Vm/GpJcElgB8pMygs10D/uO1VT72lTO+fHWqu7Sc9Jv2VACO+jvGpA8xLgawZihjI9KAhVufactbQew6kXBfJ5P0Evl2xHl8kTHpeU8yEKdV0HOySAMqtNrwQgchrkvwcmo9RnrVyyIkAhsYk55angc4Fdxc31QNuOys5p2ZxT/gLR+8N9T9SHpRbxMI0d/MmPSRHTSAvyaODBzRgIlrIu1KdrvgmX6FjW/svu3PtkIw4lXEmPSNFfeAZOqKROdnDWhasqDkRwNXLCw6Yr6cRXoeqgbpryIZk35FRhHiaDc2vQAa0F6QEDzjmSs+/va3F1lvFMn+3CwHNkZxjD/I+tfzGgBs31JjxtGAKl6coJx0N3ywQuHjF/yt1xeC9IlPU18w6cWaNYh3/ejG/1PM/EKlEW3uahyR2JS5/iLp4e/FgOfTyJj0O9oaEPTxUfpOwoJ3jWD83i+rMU/nY+6B/d/68RtA8LN83oH9pHda3IjyUxc8P49Y0DPsmPTY7TXY/5/Y9fYOpMfxGehZfQJj0rtZISSRc9/rksWC3Vkr2p0D3fFDjxeKiUqk5wQx3/v4Hsakx71Mf8AuZFYoC2aWfBAVzefiUws1qhzFCrK+6X0LYml99bis54/cAbDNzg97sGDsn6Z6ec1cfHhwzHR+Luk5co+Qd+YEY9Jjm4uAUwAOreaw4G3Fbb6sE2vxKf9Duwb8SU/JNyDJtV8Yk97SpQ7gvz+Nt/epw8FR56j+xR44x3qQCjYmvWRVAeCav2VMesG9OwBfomven1aHQcLZPBWxB15eFP/Ct0de1rMMq1CV6SnGY+R8NocAeATUhxupw5s/pRT4RXninncBlvsuk56yTwCCuj2MSZ+vdxPx5YeMX1bNgZnnfDa2mqzD1XsMg623k56/Qwh0nugyJn26xx8AjlGGGe5zYOvQjnNWretwq8oA878lPQ4vQdy7X/+/3+Z5wUdpKnKHWrMD8L9bl1UuAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAWwUAAAAAAAA=eF6F1ntUjHkcx/FqWpe2aGzKnEx3JF2l2pppukdppOvYlM2yTrlkVhSGtIkll12LXGcLbVGoXWdFz1OUKFaUxqZoGhWJMBU56LJ/7Py+s8939xzPf6//6pz37/MdDY3//5KtWPF+1UcriKdTnOi5sTXgY5c7T8V9JgcPnbvSW7ygB0x7JkoiegbAedPN6M0KjSvEwuGK795EjgbrJ+5fKmwcBz6UsylMeu4L8IsNng6OKZPAN4t3hdpc44I/Tvipatotc3BEUYL9+TdWYH7NvtGsxdbgAi0P3tA4WzDHVFtbPOwA1h04KT5oNBOsiBPXbpo/C2xkrTf23hlX8OXXm8NTLd3Bz7JmtoeU88C9tzP1nFIF4LsZXG76aW/wr4LyFcFTfMEn4uwLO37zA7eK14xxmxcALsrRy7f/EAhuCx3+4cIfc8APSwp2nUsPBvs06YlYC0PUf++e1sCj/vPAlQHRtkUm88EPdr8as8ciDKwMj3XqsAsHu6dt8ZV6R4D96l88PxMTCe5y5t0fkESBTRq2/yjOiwa/jSpdrSUTgbndsWuzdb4C4882hNljRAWzxzSa2aNlMbNHcwGzx2HU42HUYwnqMSiX2eOKjcweO1GPStRjDOrRC/UoRT0aoh7Hox6foB45qMcLqMeOT/T4J+oxB/V4BPXYiHrMRz22oB5lqEfvT/RYjnpsRD32fKJHb9RjB+pxMuqxH/VoSnrMTM1LdjDga6CviuXbJQtaLiC+Yezzj9nbNXL7J/IdbZi9TnoyJYaddRGs81Ll07o7wzMN+S6XmD371ci7uHcbwb21KteOLymNfskrL2X2vmSwiUqwfgIOHlb5QfPyCu0PvD1FzPfws52ioiyoD9xCvP66s9uNMXQhn/le2vj69UYGg+Djnir3HwqdnmdAr8LvSVqzZf17FrgPPHtkwlYd+t0Q872NDRW5d/fpgJOJzVzl0oQP1NEE5nssfHwq5XMJG2zWrrJ4Rl/lewXPH92Pryv9l0RrGoInVKlsfSlg1cg4uhjdlwwW+62lrjH4DvEBgShgN5vegd77ugyXOqnQDCwmTj//MDCgl9eO9oCzJLfKXmQJNgZL3tVn9PCEaC9aLVpDTpycCn5KvGxGl3mkkvJAe2JQZel0x8HmX/+vyr5b5sQ3KKl8tDdh2eVbs4bt1O+HmNu4rS1TRhmhPTqvRzdEjHYC/06cvi/t9lAlD9/PMtuoQ+8dnMEVxArNtU8HeqlOtGcxPvT3xhtcwN8QK02zdq7UpCejvcu5xT5xvN0NfIz4aos8tamHuob2UK6ZYbVopQe4mTg+qDDd7C7Vh/aSpbs42svQE6wFjlVyhHJqEO3pzYWOB7kKL3AVsaNkf2SJNl2P9jY5b/LU50t9wGuIlRu3mQ8NULlojznX2Sm/dKttSLzOpKR5riYtRXtdkBG72ijNH3ySeIeTm8e9Aeoh2vOwxLYyLwv1ngcTpzfVyXr7qbNo7zkfBT0af80GTyLWv7mm2voR9RjdA3bz3hS/I0HgUWC5VZL/GeoRuhcuzfukr1bMBduDn3mZS+opX3RPqgP1v30mFIKvE19NcrMpqaPwvXFfZrt5olco2JVY304wGNhAXUX3aIos8uDZHLUtwAsWmVlIePj305y11tnBBWoHgg1SY2K6ea/RPdtbWlsXeVHtHcTVwV+ajoxQfHTvak5tWlp2W+0bxK6HV1/MH0vj32dik7Kdic/VTiKu1dWLimfRneheznAxiQsdr76XNiorUsNeO87SpbnonopnRchEPNF/7b9ocJRmO+8Nurct00qlq5IWgO8TH8jmUM5aNLnHfwO3456uAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAYREAAAAAAAA=eF49mHlczekXx28pRaN9Q2gTibQo91uPtChJy22P9n1VSRsjriT7EkpkyZKKkC3dOqYYSwwGYRiVFGkbklTqVr/ffJ9j/Pd5ve89r2/P/Xo/55z+sNzdPPNoaDpkdwa+Dlpw2H+E4UT1XjKafM18UW4xZ1tiLChU//lXjvGkGso5jGHuydoBcRPgPHfRi5wZB1HxZ8c/vaFBeTNXwP3TzTnuZggMNUx4YuRlDXfibLKI5lz8/jRGOL78gPaJaBjRqRMdsObBkzeVjz/YGlPebiBoe8Rd5qL5KwhfVnDuDgQQy8s3+sXWcSnnT2HEXO4/+D00DW5/yTht/DiaiE0I1rO5sIhySyMm6eAO+9/DokAYuOtdV04QGY60mFSeYEV5kC5TsUjzZaF8IgzWvz8XsolHliTr3vtFcgk+nzbzaPOjofctaTC6vCLeiGsC5S6ftuSesKP8kbEgZbF+qH/HZhCbfGD5mcBQUtL9wnSW6TLKyxcwZur8t1oiGSDGSF/w+hJOVIIeTz/+x3LK05cw7VrcnNQZqSCvfmR/fp4tfIjVk3oV6Izfny8gL1sv9UREgXhz2ZHbz6xA3Pwt47mWh+ejI9Bcs9hlprcPbFjcHzQnegkpb6xwGL7lin+fFiPv9e3bRBt74MufWFkpbks2xH+4/XCCO+WyM5keZ2aKp7ksuHxYGqlyVpcox+pNv8zzoFxdnCmJWbBi4Qx7GNdscnxxhjKEfHyytyDPk/JrSoLvKhpx4Z6mMOotKleYbEd2nBryTHvrhfU1GXHbjq8n1FzJaFdx9/n7noQ0x9QazvDB38ec4a0yrXHb6EdGb9h3nRtvTUjoBInK4BWUP1VnJn82kX5Tm0A4DatieMlapDDdwWLg1Eqsz2FuXzu9reRmFBFuZEwNeoxIxUsJg4YWX8oLh7n2maFPeiCSCIdXVEY3rCAZim0r3TX88fddwtRtPWViusaA9Jx/0xYNjmTX7jPD9gEBlBvoMeMXDs8tO+wGFvI6ak+PexLtksMvSg4H4vtnyXDGHNdVaf5dPb5z5E5dtiPprGocuhgdRPnsBcxvdiUFxzusYSjQScThsz0xmgD+peLBlA+aMPfPZd2fyllJJM/dvL/usCEZJ2LuVlmI3FKFCV3y8U60ggM82Kh0cXvumLlMwGfOU7MQynntlYrK2hn7l4aR72Pv93Yc1iZ7F9f/01qPPEyBCQowcJNrkYTRhUUhU/ZoEucvqn+3xYZSvk2KaZfxOrmnYQmIelQ6VefPJHWr/sh7KBpGuZgq05t5fenoa2uIG+438/j+tNpn04vPG/ORvxdnjn4QERruNYApnDeKX8sXQ6ti8Or+ueGU7+MKtuQttBE0OZP0Kv3Na8bcCU8s01GtFrm2HUOu1z1YdiSKVGnUiBtJBhEfOTvlJtcIyiVdGdkrdiEHQ8Jg7IcLL4brQz5n5R7WaUFespTxylJTWqmqT7o79+ceLwwmHnviDzUlRlI+14uxGCs5qpPFBcmXKdX2m0whU8Vqa/cI5fx8RmAfVNfc5xJNGrnCd6W1XmReW0OF0fYo+v0+HqP+NnnPmF4YjAtn/UiMoqgfRTBbSh66rWl/xpxQP5LXldSPP3NYg4Zc74g/ET5j/UgiV1E/9mBOM5VIfrQvhvRSP5Kc1dSP6Evy3Xa3QtOEZCKkfiQ1r6gfezCfvWwkaFzNJ2KvWD8C7yr1Yxv1JSh8f9yubPYrqaJ+hBOS1I+nMN+xy5KP35tERqkfYWIU9WMHZgvjDS9WBqcSIfUjXEyhfmzHrHw0tldtfyYZoX4kOa7Uj88xt71W0NeTyyGjqqwfQb6T+rEZs7N8s8WxY9uIkMv6ESYEUD++wtx4Yn5vxa51RJb6keyIo358OoNm5f2JiReOh5If71g/ktnox3rMFUl+vn29foRP/Qhp6EdHzM5D3FoFX2eygfoRAtCPdpjF3LT5Uu52YET9CKnox75WmlWXdI2IZMkQDvUjmYh+vPCO5t64lo85wY5E1If1I5ihH4H6ErSk2lfPlzUETjfrR+C+o36soL6EPm5C++lFQTBI/Qh+6MdbmBfcbI3x014DI29ZP8Il9GMVZsW/Fu3ZcHANtFM/Qgj6ETBHXgs+/zQhAkSFrB9hgRL141HqSyDW65epxAbDKPUjHEU/bsGcGKdQmT/TCiypH+FcMfVjgxzN2SfWZ9dZhEFvB+tHaEE/rsdc4rSo7NjGNcAJYv0IGujHbOpLMG2wye4JjID+UtaPEMehfjyHOXZuzGNlvwRw5rN+rI5AP3pTX1Zr6h8NyvIPBklOy79+hBj04wHqS9j0a8nkVXp2ZIz6ESLQj8cx1/bXb/hsSgj6EXTiqR83u9PcpjFP4rptPGiIDfzrR/NOPvWjGodmnoFumOyva0CC+pE0KFA/MmOv2ay7j1QGPnSENOpHKBtH/SiJ2WCRd3RYegTUUj+COvoxAHOQ3kXeQIEVER9i/Qh1W6gfA6gvIe7y7nEO9YHQTv0IxbupH1Mxfzht2C2Tbg+W1I+kSZn6MeIFzdar9y1WXe4N/dSPEPOJ+jEcc3zS8Bah9wrC+pLjwXRvo36cyPpxBcmNjpFzrtEgszKmL+32jIEH/SJq56p6fqOfNxI0b9nBl9vVZa5COSmUEWX5VMySRZbfk9+70vqWSxina9Svtqxffcnm9Mvh2eXLSfHV4dyBh7FgVXbizFWxyXi/qwrkXVaYiV7zhIOUk7FSyndiHlEwLK6qCMP6RoxvHPWzKNvP+pGG9ISjZw7NhSLt6C9r/YNAvH7SgPg/Olh/ikD/rdacVc8ioYBycvYF5TmYLz3WazX8JRHPR4r5G/tfqcZ//W5EJrn3x4jYG5IspcfRsvHLgF9UG7npvAHWVxSMu3PKUj4vCdIpJzOQx2Oe9uD6WgPt9VhfV1D+F70fBtn7wZJkJbS4tb9RJEP+jcMF0YvIO773vb53Jj/Ph+mqDFt+Nnsd/KAcEpC3YZZoffzPVqkMrG8umIX3yyh7vzhD8yep2E3B1hB+oVtu55kw0np98uBpBXOsb8J8sU9XG7mUCL6Uw/EKyh0wy0x0epPwJY3W5y8UjOH9VM3eTyugPrd571vT5aRt1pZbe+eHkysKk+7N1rLE+gxTWxEkIZ0dB28ohy3Ib2H+9u7GwFm1FKw/W3DwZ/8f9O/9xgO5NN0zJSc9yMiykQXHnvuQnokKgU3V1lh/PuOVt3ruObtk6KccQIryN5jTHvkkJT7E8y9UZ+6soffjCHs/WsLbQm+fPfOCydCmqOllEabE9tDo1GfutlhfmrnYXr4z+yAfOJksB6PDlDfRz8PUwXxzh6bttL66uiCMR+/XVvZ+nUkO+dasrQuIJpkuMHKskkcqbO54NHUuxfr6THz1luI7MXxIpxwuWlMegjkiTP9GmdYePB9jQR7OL0L2fnaHTrezlQHX/IhEKW99RnEYcZ+09WQL3+G//teBdzHjxYx1MFTCcgiQovwvzLkDWycLSzLx/VFiagLp/T7I3u+eEFv5//7xuQfpL4/cVr6dR546t0lVKTlh/6vJiO50uVyllQRjlEOLE+WvMX/ZJnVBLigJn1+fuYr9QS/bH5gQ7bq8P9/ZGBNR/um8eddsIONbiqllqQs+v45AUsV5uMvdH4Y3spzo91H+DPOr7nM3pY1D8PlFGWPsL/rZ/sKQKEFo4+lLyjA67GBkUS1G8nc+XlQyDecvjpD7qfhudMLAUlgtZDmkIW+hn4fDeZ0LOia5Y/1pgirsT9LZ/mQBKBftOvyjTAfESx/6r76xhGjoLhNtDXfD+nOYDbYvTDtdteBHCcuhYTbldZhT9TtuF9Up4PlIC05hf5PO9jcmMFfqkUqsAhdypVYvsEgwJwv39HYtuoDzIUed2eV/c4HhtIWwkXJwQm6B+dZd9zcxIR5A6//FlcX+yJTtlyaD3i/W6c7S0iSrfYXBlye/kPecZW5nv+F8yenkKl4RXhwXPRnWUA5TRSifhtlFxttvd7U1vv+TBNbYX71m+6vxZGRU/7hMlC6RPGo+bfCMMVkqPT5+AuP108/MDYeVDyymziLDBSwHb+S3MVcdeNZzc7YZno+qIBX7s362PzOFdznufxbI6JCxnQeHRvg8Itc2I9sjwxvfH1Pm1PJCm49Hrckw5TAO+UPMRpqupZeMTOj5cNQEXJx/e9n+zhYmyTilmp3XJWNLHUNE/nAmeY8im5JrcT7mmDJmv8vuq80IIb2UwxzkuZg7tvopFrhHY/2JgunYH/az/aERbKj0z7+8TwOk5n8Qr2k1JX/ISB/zFsX5uXYq8yzl6aGw9ggi1Gc5NCA/j1llduV3p8YErD9OcAj7y1G2v1SA4rJtJ6aCCUjGJ8b6nJtLVh40vdxhjfM3R4XZGqUsPJwYRQZWsRzSke/AHGySlKPqGU/rF84SGL2i/akI/9/+VBP2FZ3jNAUzoOjXfjcl35n8Zjq9RiXTD+tzGYtvt/w1H4SSYV+WQzTyLMxKe2/uqvPE5+frC04q0P72M9vfLgM/q7Me5fcdQDy61dNlmgdJL1un/aQG9wOWlgwMjzZm6I1WC6NYDv7IL2JeP0Q5ra8l6MH+mO4TCFwxu3DwaoUjaCY/2Jo56kqEsa+aB4cD/vPnFMcT29puaoMa5ZCP/Okamicip5+fKdDC/YMB22/bQk69/uacNk8o2uy2eMpXV5JYW3LRairuH2otmXi5Ttfb15zgCOVgi9wFs3za5OsbU/zx950qqML+vJvtzwnY7dfvsqz1hAlFM0O3VzmQmS9kZpfdCPrv/DXXpSQmPLWBwTMshxXI12Fue2QVZbY3lNavVRYMSdL+vpPt77lwyctKs6h1GWyakndlc6MlGXsfUW/gjvsP/nxmd8oWMcdjYeRXykGIfB7mOnL+KudxIK1v2cVVxf1JLzsfaMAUm03DR35xgc8iJ0Lq92uR7w+Oad/552d9BWbKMv8hs8ogghy+Ii/EbMqdUjDj72Rav/lbJQfnizF2vvhSrfno/jylLDfou3Tm7pFdqmRo48jXFVtx//L/fq9t3p4+CdAko5TDAj7lGzC//zGWv35iHJ7/YOUHCzqffGbnE0WQPdTX0vCPHIgctfkhclCLHFefFvBxBu5v+EqMqur107+pLybCApZDIfJ8zFHX5EycQ73Qb32VX3C+6WHnG3l4WJpX//yePBG9p/86RkGbDHQoXfG58bO+MtN85Pq1sYkG8OMuy2Ev8t2YlV+6rm065obP311ZiPujTnY+UoLzanMeLAxzB87R5vOyckpkZPdH8yIn3B8FSTL2UhEmsaWepLuA5fAReTbmGs1GMfcNibR+nQyjiPsnN3a+qjWvLy1uXrveA4Rv74Tf65sPdWsPzK5uwfocHcHZm04HPI47k3bKSRdyF8zOcfdWGmb64f8vWWahEp3PnrPz2XyiWAaVI999wPR7z6/xOlzyI7jGa3tq+H/9octVq/jzUksJl3LQDKE8vo/m2h1pEpyLqfj+Gwqe4HwXz853NiBvP3OdY4wtSGz0ut8lsZKkRqXOHpHE/RbfhRGED0uaKPuS/g0sBwa5H2bF4MY3lwcj8PyJYDbOh+XsfMiD8QOqie9DHeHO9E/zIrX9yO06Y2fRI1i/2ZXZl/wq9uU+X3KdcqhFLo4551UeN9uSBz/PMwn3b+3sfGkPjtNtD7o38eDrp6qb9eBPGPv23Zm6uH+z9GC2fSpI2qkbAC2Ugy/ymZg/ewc7/BEtTeurT2ekcX/3ip1PXaFEY8LwenMVKA2yF3YWOpGPQQ83h9/A+qpWjPFV74yTKXOIgHKoRf48kObcjh+n062DsL+qqxxTpfPtE3a+1SEcv1wH5luu+Yvfp1/2Vrciyhu/+O2zwf0fZyFzdX/RaV8hD/ooBxvkDpgn1U9KMfk7Cc/Hisn/SOfjd+x8bAcMx66Ye96C/A/uRTSqAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA8AEAAAAAAAA=eF7t0NtLk3EcB+B1tZF4MRrzJiTEiwLnqZSEXfjiReE2kTykaEJKiQRlZoiFeWADKZi2QsrS3PZO35prlpu6rdpnc5TrQOhKSjMheSOpLiw8xIy8+H2v9h8Ee/6ERyJhQu/0dt5xBpGBuUKb4zL2DIkpXFAPTsSy13ENzsHidF57HeHFv02Xgjexz8B11h++Bd0I19D88A5eBYXs0dR7CFb93mXUmeF2XbCuyqw40PhdPB/iMdyftp7ZMYz+Hn9xtlrApK18sWvrPiI1qm+ZbjuUur2bmiYHFgJZOWKGE3xe6RtpyxheKiziufJHUHVH5bm5j9E2X19yWjmOLpnYm7g5jpqKk+68Dy7UftFa/njcaFWtpJ64O4FjzzuUF9sn4RRG60rqpiD9lxDdfdQD35XoV6fKi9pERelxhQ8Nr/MNSds+5Hu0a1LxCSCz5XBvn0J+4+f+Je8zdBvlHzdG/BhYsGjKNIBU+LR9dRqYfeD9ZVcHYG7pOzIzEQA1SgpC7PGgiT0WWdij8TN7dJnZY+sSe+ylR5PAHgum2WOYHiP0WEiPAXocpMf39PiDHpPpcYUerfQYpsdD9GigRz09VtPjKXpsp8dKevTQY0LM41l6rKTHDHp8QY8KejTR4216lMQ88jGPcXFx/68dRyZqJw==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA8QMAAAAAAAA=eF5d031QE3Qcx/EZeaOIbIVUFOUlFxYRAwNE8WR5lsLGISipIKdiAYUyDQ9RwWFDpyUgeAsfIPYAjIc5Jhtzm8J3c7ciyUyEQoREHIdlnmBgNsu6+33wD37/vP9//T5fDoc9xxVpk1r7GXVXXY6t1e6mF2pcbwjsUhK46FeL9kvSVSe8qxYeoc7+f7bvsh+lOcWCoowFlSSqF2TlnjpBF+yasOaAb8iecm9GiUhBRsPnqlueKnpL/Ltrm0NNdcffmeBL6uh4aUdCWLSGTLXJ/fv+aqDutOBRvrGJfEWv3o/brqWrttBwV4iO1FGrfuDmtdD3PkpXTrKegmVuXkTEaSrozUj6xLeV9nm6yrzvt1Lamo3GqF8MtOmGUPnAbKT84OGA9SfbKNEp8d2x10Q6TXN6UvoZ4j7ycj+93EzWQveILthCm7x9Vn3kY6WsrpjiFx9aKcYsHOO6zhJ51oYLfjxHvIo/5g1Y2klWwuubrO+gqqvKuNVxRFzNtYeHzhP91GgZb4q2kSJP/uF3bTYCI2epgznOL2eO8UrmWDLIHA0K5pg/wBzL4FiuYY5LzzPHTjh2wzEWjjY4VsOxB4634fgaHIfhqIJjJxzfg2MxHKVwTIXjx3DcC8e1cDTD0Wua41Y4roVjCBy/haMPHMvheAyOnGmO6mmObI8pxDxTSNrFXP2ksZcW2XPp7V2sHpXMuTAv8OZBYREZdrDyFcy98f2kGf9GymhrDOvoEPuHBF5oddHcUnI/xxpWw/4lenF9Qim3guRLWBXX2D/ltrz+t7hATlI96xr8W4RcMLHl3jHifc16F/fwTPiEqCyrin5DufjXo4Mq7/GcGjKiTvxztKz18qIgJcWjDvx7TrnOoR1RUQm6EDvInPnVlpXKWtqPGrCLObMnlaFp9cRHT2InGj8v+Tq/BrKgTuxm2RP2ob7eRtqAXseO/uxR57RXNNPMXlY/7GonN1D+0spTJEEHsbPlhyfnF3BbKBadut/IwN191pEWikCn7nnPxYvuRKeeClE+drlapw+LrztNqWgRdirJeXPcvP//vaJfYLdi/lyVKsPwuOux4w3+Pze9vML4uJux6zvcyvSgoDYaR/dg5yMP9P63vE10G03G7iUm38Wbx0x0EDXgDvqTUkN0PWfoBvoU7mKo3WPbgMVMw+jUnTzrPFDlobCQD5qJuxnJbsyOlFnpJroRd3TF/oG1VHyWHOgC3BVnaGdFwLpz5L7O6sCdjYpWhMxa1k530Odxd11ljzifhnZQN3oYd3j30uxUzSyiMfQE7jLRtiRAfIBIiD6JO81uuJD3CsdGmejU3UYdmedvybfRQlSJO/4PDnV3Gg==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAArAMAAAAAAAA=eF511F1Mk2cYxnFSEFEpGWZjiNMxR5hRECJuKrLdgoqlCFpBhtWJHii6AWIcZIIgq4BMUTNRKPjBBokkiM4PJmYY54jUsMqHhVWYgUQNs4G+z81CnK58uPfg6g7exKNf0qPm/1z3KxXsNrx+zXRQM7N6WPb0jfmqU7Jbq/PL+yaZqg3erlcnmEaG3ePdx5msBt2Rzn+Z2sIvBbi8ZFr0bmDN8VGmza9mr85gprebi4eNQ0zxH6W8cBtkEsvH/OsHmKa7qnMLHjF5ddyPLehkqvpyydQaE5M91ocGbjM9WiEqgq8zrX+W/kvJRabk+4+jbZVMX+izf19dyhSm82gsz2OKXtMcY01nurJn+vmxrUxuqxLyJrVMHtuj0q1LmaKyNMacD5lKhce9J2qmzFtBq1QvBY3odEMPBwRF+G52iW4V9MDSGZJQL8gz3nFAOi5onzo1wCNTUFhdV/2ZDYKMszY1HAkRdPervX92eAoyzQsY1Nsk8syuSfVrkSj/zjmLo1Iic2zGDtteiUbRMR8dy9FRr+gooaNF0TEIHfWKjnHoyOg4Q9HRqOhoRcd4dNSj4zZ0XPyGjip0dEfHleh4VNGRFR3b0dELHb9Gx8Vv6HgPHb0VHU2KjucNqWHjslUwB1179+li2mS7YRk679Hdfholuwsmobs/T0gJsnNhFd5hhbnE1S6/wzJox7uEls7RTjiYFsJuvJM5/VRZ7ismk1O827Rd6qdbXsjd4EK8Y6//2OzTfzP1wGS8a7HI7vWTmA7Dt/DON327lj9/ztQItXj3BevbukaeMM2HduxgyMdQFPKY6S84FbuYtn9R4dlu+f9AT+dOmtKCgs3yLmEFdvP+lv2q/t+Y3oM27KhxY3FNbRPTNdiDXdnuJjYeaGAahOuws7gHKf2f/yD/b+i8X+1N/c+flDFpoB47vJET2uxVxHQdhmCXtVkfa3uzmC7AKOw0KfKdk8d2MiXAeuw2Kdsv1z9R/h26YMemD+bdOhHJ1AqnYNdBJ70utAfLXeFn2PnabzSBPb7y7uF32L1lU1+/UcXUDjNwBx3ha/q8hwWZocBdJPmE1y2xCNoIw3EnbnN2Rv7TJMgV/v/90dRNas8JmgGd36O+H7MOBx4SZIWZuKur3xZey90u6DIMxZ39lLKjImKloAZYhrtrGS3cpp8r6Fd4B3d4aMK+rNUh0UHovEsqKYhL+0OiCOj83o2f+L720ysSOWAe7jYxLVkdWCTRBtiCO/4PQgRbHw==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAA1w8AAAAAAAA=eF5d2Gk41evXwHFJUqeBiEpKkkNSIsNx3JKpk0rZhKKUJpmKKMmUKUOGkCnJnMxzqFsL28w21L9BSCdpEA2nOqajp+v6rf3mefm5lpfb917rl1i18dioqIH2lWrBM91a3aBQy5jnj/dVhzq+aIZlKObx9x8Ej7AfSq2Lu8EnlfHW+PB3/CkuNDrDJsf+2Fl4JBP340p1F/ClM1b/muRyLCGV8h0Ndpt87w6Xwge1Hcy74J0146S2JYMexdn0GHBS/xS6Ah/7f9ff+50DO9EexTWHzeZXUSvhOVve5gdC4ci2S5IxHEhAb0+as8+7spzyFw1ltu0MBZUtUx+GFDlgjR69tm6nSFIW1RPc+bngVQQorWJbhHA6wRP9/qnetOvFfMpb0aAqT69DqKuGrohDJwiiM98oKgv+XkGPHrxZ2yAQC9oq9tOXF3TCYbQ5ffxkNq2O8rA+eV0xiYM+/bmFNdkdIIWe8AyUP1JUTcstzXr0biVA7PsjDm26HfAM/bjt7CWj+DJqYFySO/YmCS7teqacNdQO29FsyHs9JzmLPn61othS4RZ488f+o+fVDm3olvGBHfMibtD2xngTp/O3Yev6b1EZK9vhEbp+3GNIzTOQ8t0Wd+HtT4V0y7YPNRVtIICWNvS1v/ZwD60R0dnt818aVK780hdg3AZcL1vIGvWyCqQLh/culViTAUeeK6yf/tgKXGuHaygLNZ+neQ0/1rWTTJD1eRMsFtwKJWg/jf8NRRlFkPO7/H64W2WBznrW00dSreCDflpx08lWM5EY+kuMLvfIhoFcdo8cbQFTtKdzunTomnzCHonQuh53B5b6NW8RNm+BZnR7jZ9Q57ssIi14bex5SQ4ENayJCvncDLLoGjntOxfmZRH2mGLpYPtdCH0X6x4U0gw96Lv6QaYBUo5EskVrUcRwLlg4LDs4V6oZpNBbhXY/qHKPolYmgkufTOeBB+u5+2R1ExxHS864xMzZIEav/VygmClUABN6n14fM26COLSbRMqrgIe+1EwhVv/NhkJYYnvfTuVdIxxCP0j+KH+QP54kWZQcC1QvAuXc2RgH70ZIRwssHo92FrtKj4qWNd6TLobc9kN+P4Ubgespe/k+++9p5Lqc+COD/F+WXzf6JocNEWjtkHtSvy0woIt0968ZVioBHuMdvGKEDYLoEs5TActLfnTDvA9i/lUlEPBtk1VIdwPIoZ8NBOW1F/vSrP8d/kuUlEKXlOZLpeMNkI0unvdMVsTUkQrUBElGQinwSgqnCnyvh9/QfWGFB3abhZHkpeHPBnTKQFypu2U2sB5S0Mr6fgkerVnk2ehf2780lIHWmRuuAqL18AY9UyTkabY4nRaunLhWqVsOwRLXw8Wy6qAGXVVxf1Fqth2BA3flV9aXQ4CVUcZq5TpoQYdSXZ6hCjcqUDbkzbu9Aiy2nQN+AFiA9rPdJm9pl01Guy5oWNRUwLT4c/n63QATaFU6r4VnII0K32d6mIZ9XI729a9PHv3+SlMvhOmhHfZRG71EMK2IRCYRoxtMD1Oxj6ZoGfFV9zyC7hC940wP07GPuujxPfd1m2tLSNsDpoe3sY/t6NI8GRUpSUreijI9fIN9fI/O11YwPLm6igSXMD00xD5ynZKmWJV9tphsXsb00BD7qIAuOuejldNTRiormR72Yh+r0ekLFs3wuwAZOMT0MAL7OIxe88o2zUCDQ5r3Mz30xT62ox/+c/OmQ0cjWYE9NME+cj2rHNjf73ePRGEPI7CP19BxrnIiL6zTCLeP/tjHXvT0hcU7OemJpBB7KI19zEf35Rl0Vr4KJfzYw1Ts43z0qvPmG2fY/nTVcqaHPdjHFegHYvbRd9/tJjWvmR6qYx+5DpnJ3r1UKoRcwx6KYB/D0SmNNc3B6k607y+mhzNSTB9foPP7xTrTG5JpGPbwA/aR60udpCjkn2Lajz1chn18hq52sQt9YlZCPy9leuiAfRxDx1SMOVwYzKDscaaHg9jHerSso3N9yPMUaoM9tMU+HkWL/O14z/WIN1XFHp7APmqgjXnGbDLG0mgp9nAK+8g1n0LtoYN6JfQ49nAh9vEUesRlxenT3Rn0ljnTw967TB8z0Clt6aP7GvNoPvZwEPtYjJafOLvfpy6FOmEPh7GP59CZw13+I2n+RBp7KIJ9lEV/c/4hvnfGnfhgD+uwj15cb7RXaOPkUh3sYQD2cTd6In/ZWWPtErqimumh0Vqmj1yrdkpGD3qHUEXsIWxl+rgZLVG4ZGjJSAbl9nAT9vE1evzTjvGVij4kZRXTQ9k1TB8T0TtvHOsa3JxMj2IPZbGPXEd4TV2WzwukzqVMD0eUmT46oQMdHMKzUmOpUg/Tw/7VTB8V0WUsyYiLznGktI7pYSj20YvNuLvBsqrYyZooWjrtEkojcF6toXmPTDcE72M8RN4Jzp6QJSNyjJ1w/gEt58E5oJAXSY5dZ3rqgH0diGRctm26zyAwmIyH1Tys/P0U7FvcJBf6oQtOhDJuC8g6IKMeQ297MV6F8zT0Sskm8xfm6aQqkelxNvZ5PIHxvY6Api/GZ6hlq5O1+V5XsN96acXF4C742MJYfMWTniSxLLqlmfEJnCugRWIrlwo65JNE3Hddse+h6KjAZ3+fvOlEPn+Lk1IP8gLbk+ZgJdP163fGOF7FhRXs9uv/+ytjFs4H0BuFtiqXj1YRwVrmPSjH92EuepO1rSXvRRZR/qC2T8jaH9pfDfSrsjmghe622/PWy+seVUN34FwdbTOzrOt6VTV5v5x5T17g+8KH74tvjlDktIEvFZR5/shi6irYGs8r5rHhgBla01vouWxEAZ0jxzgU5zzoHxEtOzYrVRCHYuY90sP36SZaNWIgNXhlMAnltVJ9EHsNJt5Orq342QmP0bl2wt5HdO7SBD7GAu+YeTzap2PEX6K0lLjgvq+I71sUOtfeNVtJP5p8XLtwyZz4KEj1+bPD6FYn8EgyHr70dG3KtxLKWse4E+d70b0ceZsx72rSUs68h274Pj5GLzHRjQl3SCGqT9qd//07Guj6HIkWjU7QQquan/4acJhSkWeMF0kzc1H0zIPqc6feNZGPeG9Y4Pv6Dq0U1nrU82I2OdHIviG1+QZ4SK01EX/WAS7oaaidihSm9BObsRnOP6MbdQu+Zhe3EXe8V17i+xyKlnotrGVjn0h2vbVde9w9Hto1ssN03DrACb1GJ/zKOal7tHKEcRTOS9D3874s/CsIyFwr5j2P5L7vaGOeigmFc9Fkxfd/VRLrEkHfOpGjtqwDZNEGevPqDASLadU3xjI4r0FLcja9rdAvJn24D8TifvAUzSkN7HRe6kyG1JyzMhckQ7Gj+rLvhb/2A/SG1pxv+ROJdJs643qcK6Jb3bMqn0ukEv6/mX0iAvcLXjRhmRVMi5pS1uTbyRP7U6B/brO26+52sEI7Jt331P0jkEqie3HOdfr3n6o5L6MITxOzj6jhfjIHXZvn5X1b5ARlp/zT2m+YCglK1ppFb9ugCf0w8d+nQ+LHaC46COd5aA2J2IZ5gcZECfeZYtxvtqH9npga/8Zyo3fYt/vA4dc+s8zi1W3/NihCp7+/avXzoivtQbfi/BE6ksNbvnVxNK3Ce7Hg/92P5nv/ra25ZUj2ZUrIccLTwTPB57/ta9vAGM3X4v04zNeMhqLjcR6I3niybn91nC/5iPuUEe5XXO8RNykt8zlF9PawRL4VZIDdXXvTkJpW4Hr+wf9N6184QWzQTjg/gb7u295nuvEiKcR9bAPuZ+Voe9a0ul7IcSJlXDtfqjMTFL0cCt0OtIIs1zO+J2Mu+5L96K04Z6EPWVzJSW10oQl47+ri/ZuIjmtblL/5/inS67HSYedoFtTMNvXOfmqBAfTkuLDUT+tUUoROx3khOiQ8wjXOMZtq4z7Iwf2Q6+iiP+asX21Nv+QORpoI3IFCnffea0Jb4CtaiKV6l+zKJIJ5jCtwLoa+2ipiQtXyaQPuk4twv6xD54gEnGNtP0+nZFujVKRz4IX/5GHO+haYRRuy1NZFZf66z+UYv8e5DHpfq/ALu/5cegvv9TzcT1PQhWEy19Q8LlCT0u2G/Vp3YfcuLV4B2gwH0VvqQNw1MI1sR6vhXBNts4F1puZhHt2M974R7reqaPHUL/ai967SDVu3HVS1yIUGw+gR9oFm2IgO+MoWjrmnQU3QzTjfj170mZnH4D7siftxHDpOltXu4hhCLQy2zVc6lwfpmaGnZseawAqdczJeQuWIDdVBR+OcoBNw7o37tC/u1wFo4Q3bWR9PxNAUgaQVNCgfHNa25hUENkEGusJRVtbJKJRGoa1wHoueWfj9s61oEjXFfbwf93Nz9GMfM4NZnRjqbLa3jH2zAIIKAzLbVzeBO3qt9RGD0bAr9D90Kc65/mbvXriJlUb5cZ//cJrZ7xeitV4+cJEeC6LXhwN3qxQVAlVhzewva4QktIBDZs+BHemkGF2L8yLu3+8RL9grl0w78HvJDvx+wnWM1mTXR+8wOtUPjlNQBC2ZQ/NVdzUC7wDjbX9I36lLvkWmcd6M8xk0X9LEPuWLpdQU74lUvC+4XnLsp0HSySgqmp+208e2GEaG5cpcBtkghuZfovRqQ/xRYoRe+oaZ70E7XS20/PI4h07IMvdIAN4nXPdmRWrL1O2j/kLB5298KoZx3i6XWRc2hKKD/mhxrI+6TCLRoziPQt/4m+Vu8yiGJOM944z3DderJrPDy1P3Ey/1yzfK3EpgQel/G7v52RCA3uLX3vzljAOVQ7eXMPNNaFu9vuXnPKMoP95DtngfzUf/DLm4SXTTdWq1ji+3Y6oEbpeuXjmY2ACW6JwXErGNm2PILnQkzrkujYjpUFItoPZ4T6XifWWHbuJN0tWXjqZLQ5oLer1LwTj6To3EpgYQRMubzBB9iTCyHm2D8w3oj6zMf79qJdL9+L1KCb9fGaHbtjf1FK2Ko/p9O90q55TB7+t4ivxpPRigHz7W/uFhG0DOo3Vw7oausKh7fXV5OdXAe64X77s/0cGdf64f+uFHX3ziDTjtXwZ/NbAT5hr9uu/Q0lf5SlNm4kk3ehPOe9E9nC37CswzKQfvQVm8D7vRL/d+khKXDqG57v4Dj+aWQ/flW1ORA3VQgnaR57dWPZNAnqOHcN6HnkxTP1vbco1a4Pc2Tfz+ZoW2EaqI0RgKp8MhY71v/coh59BJoVUOdTCKtj26rOx5RRJVD2Xci3M19MK5YhsfjhvSdLxHD+N9moU+aqga9CjalMYtWNgezlMBJouUc69PAiSgZ54OVdo7nSYRaB2cc23QcEtxa0cyYZUz9+wBFea+NUXzaKaz1p17pGmi1cNX6FkBzY3a34YDAbiW7Jk/abc8gvqjR3EehDbmzNF8WVJMffF7YQp+PwxA693Zk1kke5n8H1tbnPo=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAA9QkAAAAAAAA=eF5FlnlcTfkbx1OJMaNNJdEyalKpxFCac43J9KMak5apMG2WRogS+omKKEujXNJ271VICyotGvQcX7fckjYmrZeK9lUrKdGve577ev2+/71f57y+55zv834+z5GomjzdLc2mCjY0bjN4xiN1BkfuGX/SZklm7x2bKuER36E9g1eWGLKWdLQZ9hfzSMSem5vtjyjTVmbxN5yf8kiFx/S+o0YmLM7PXfyXhEduTshd4ugZ0VMlDuuaHvBIopn/GGeLFs03Lz4/lMkjg/qOMc+JBG06Xdjlf51HUlIK8p6sUqV13IL7CqN4JGu4eRH39Sz6tMa9hJXHeOROj1XwtGwN6EXM/Wu+K49cKwkvtXQaBcXoWMUEcx5RZx8pf3tiFPQqJcIU5Hnk+tE981IrByE5cu/lzGYuGVgeSA74FsJwYWVN4i0uCesY+bl45TCsDahPU9zBJWyvOVXfjQzA6YOOey0XcImWndcrO+9qyB2XUtQt4BDvd6aSdLEQvpU3WaXgxCHdlwyHODf41NuJTr1FbQlk/JtlK97rFFAjVVrPd+5KIP2hKd9z4l8DnaoxR7M2ntCsRt0D022wvczD2MUsnkjfyyqaYD+BvHvpMS4X4kj9ePatIO+XlLuSi61VWSxxX9OlauHRCAd7zKX2TsSQoa9fzX1KWmDZwLKILuUYwq7NedJ6rxqidH/v1Na8SpaqHb5dV90K9086Zx1ViibHu8Pi7mpXQ1yyX4bJh8vE80xZyZ3rvhC2wPRGM59NZlXdcWpw7QOl74X3JN9HEb8o92iqY5gKHUzP9TO+SPSOmRolJA9T+v2pw4EbLpCosUyHQqiDAYOdcjn6Z0lWFvvCupF0mPxxy/J57adJyW87YJZkG6iva9io3xZCZD0G9nQYlFMPDqs9SUj5L3nfzP7iYjdA+dcWX6uT9yPzC7xqGkkaTLd45Pxm60kKp6YyLV81wDV+gn/wETsy1L9mZ+HVSMqhFX20jNc7OjyhzXLQ2sf4WFUr77L6B0OWzD70cYmN8qYTgcq0mxX66HnJovBXfROWzIdOxsc3rOzocS0jOl4afRy5+Mx6yEqLruWhj/PPhp8175KghbJFjI+GY6sOTOqo0rv/RB/Px2ToLZeSpLdtRh9X5nkmGnz8F45dQR9piT1ZKzRGwTUCfXy7OHd6Xu8ofKpAHzeuIZM5zUOQEoM+KprmW/+0qRz+4KOPUx7Bq2/pj8BmP/TROvNmn6HFe9h3GH1scZYbkhKUQtYk+jjbre/14we18FwRfeQtcY46rnKHIlPoY2tn2dTU/UeUZRn6OJXNHdlg3wTCJPTR2mBKalq2G9or0celaVJvcz+/hHX56OPvXs8dkzTKqWpF9DGiVOXPOKNaeNyGPmrY5p/Z9E8r/N2NPt7NHg+UeSEE/6Xoo05cRWH6qS5wCEYfK8wi1VNqKuFgKvookV+e2ESuwXtZ9HGPcd8T3w29sHkF+rhWjffMy3GEYsndZnwkhjfn7ro1Snn+iz72WUulqygIQUUWfVS6pdxbO0sAoSvRxyU6bp/Cbr+D87+jj+7xmoLt0Erxb6CPOV3LbP7wGaDm8NFHvluiT/Q/J+HROfSxSOyjiSP6yB/cajFLlU0duYI+emzaFeokocQycf6qpD3DaQ95Ib2SSqxrH5BVLXZtNPiozVLvxvwcXdyetv47PZaUjUVs/gx7mR/KVJ6jx9r+N/KpCsHzb7QMWalp6LOL08zyUmBZPjys/VHAI/Zi5oT6M2z7S+fgj4eU6Yz16DtLdLzJyqy2j6ULTxfyiE6pWfapBGWWjV0ZwyGfhzM3/mjCqluE+cwPDZL6tqGHUnu+/Gwb8IjBqwZ7m+BeSq5Jn+GLwe9SpTWN6FYv7BdN0X6PdOmKbfVrY/J4ZK3oeU916WA+soSeYczICi16wX7sp1JfdtLXICX6qm7wvNnpPBLVIch39laij51DTpWMW5tRLEGrzMF+k5KYWZ7ytJbz3oiYeB6RFHOVMnLs3LJfbGxV6bWu2I+VR1erbOXK08Lq3HVJYTyyOqK8J00gTxfI5zFcf/i4V8BSSdp5DfbryxctNqvnfwA7qWVph/bP5IGwzCNAfRS0dZBb1KQnL/m8gKAo7Gf3rOQcvrATVo7KrPhj80x97V1t1//QDTodyHJqNn9vUhwBOgr7nXlfiVEI+sd68qwuj8wSs3E+sml7gEZY3SjcFOeB45TMRM+LYWi8XVvw6wSXyGyzdd0fPgRLM5Hlmf2H4f5lzAtnUf2d3oEF91AIecoljmJ+mI48dUb18i66HPrFefIlNSf56mQH3Jj4+ZRuOJfcl5qQUcluh4Be5Dc9+nUnNIfh4GHMmxBR/b8MwUhS4Kc0Fpc0ivzYOgQZN5FN4yvPsY73g8MhzKOMO6LVBtcMtx3x7uGQ22I2XYtsY5jhONeiBs5MYF75PYoqkdz/Lzhq0JbsCA65svGQ+ZerdaCmjnyi1ax0y8ka2KGAeYbf+xh+Wai4/1dNDrESs4sG8k6fhT1RQdkU+zPmncSi3TMd5UTlzlPwSE1NIGMCkYD3qWwxO688F2h8Ip96U455WMfk0QsoO1kS2KyZQC6qiwQvhpMByFXM9dewKBnzUpqpZweEFUVbLIiIF9e7A3Y9RT5gwpULHGuFMxWYpzLM9TfwVXvORt/2OCIhZjt95DCL2AX122+DTB7mbfe0aCVB22Ml6aXGcaRNzCcFyAsdHKQ4enyKI85jRWa/bMgQBsTs+Ov/bFSL/Ey2ffFWfikkdWJeG0S2+k/qN8IqQaf33osxhO74Se3bjEoY5yPbJM8EmE0TSPZhnvdwS6IcelvAXrC8LDTpKili9hNCpJgTP80feaXZCgt/wLwvcJ0JxPx3MM+r8+PnxGjxfu0g3InMZur9FjLE86Cb2b8NLOcmZ5pGXCHhzPk3gbQispKonMol4JeC8yKX8asMdr/xNrrueZlki7njLXKmoOincPlb4KKA88Sf8a0eFgcT7YLv2SSWef4b2Okr5siGZU6Z3SBrgPPGB/2iLMcnBrU5kSRIzD7mkwwrnB53e5gwRBVM4/+Rg6h/t4xRDdbnv2YLIrB/Z49SdWJ+Gj60u+rCMMVpwnmlh+dPrT7q/pRbdI6k4vlT/7FBvng3VskzRwgbFuM8O870Qx20bptzNy06jLixRQFaCk92IqsGaLXwJUvAW/z/FcLc3wwd9QW8arNQsqrUv3X78hoILkNGf7rg+gach5NMfwhgdHfC5TL3E0RCRXTgXsB+gGylVtwx5thONUfivLQYFg2wHup5eJ12x4fDRJWpTzv1iIuM9/dTxc9wnr5k+qeF6p8d0pp1wJucYupbSxlnBDNcMCEKKA4I83DeYj+9BLaq/cDCy3Y4D2ZYI8OOYSKex3JXcB7/DzqErvs=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//v4tIJr5/+8/flC5E8X/7z/kkaikPf/vPwlTod9N/u8/h6HTROX87z/HHTnw9frvP44xv61z+O8/+8rhe1P17z+QlpU+i/HvP5crMYsR7e8/B4evgt3n7z9HNcm05uHvPzxvxggl2+8/ldEnqpDT7z9iNfL3IcvvP6Sx1XXRwe8/tWqiv5e37z/FcJh8bazvP3eO0FFLoO8/1cKd1imT7z8H6o6JAYXvP94focXKde8/JCQpt31l7z+krxhPElTvP5dr9jaAQe8/9PxPxr4t7z9XEDX2xBjvP2w1VFOJAu8/VY/X8QHr7j/i2w1gJNLuPxzdQZflt+4/nBTx7Tmc7j8lmiUIFX/uP+sOJ8dpYO4/cEAPOSpA7j+S0t6GRx7uP4lVFOKx+u0/nJARcVjV7T9rOJs6Ka7tP2c1VRARhe0/Ymyshw==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAMQQAAAAAAAA=eF41x3081HccAHAhLtuakxmNKTXrNvMaebjiR2sv5DEPlUtMK5xXHsqNXBHmnIdDnuPKQ4rJ03k4p1devvoc9+hweehBwyuX5jWb2Rr1Ytj2evX1/u/92aFYd3ItARfsB6Re5o/A/+C7nxr/3bojKI1YSu952P15BFA+kFA4C0qwwDdQLO8JpqcTxdLY0EDveAi2umKYmK2EQHxRkdByceAS+uj1DTNq5jVwCQ+EYHMlbP717jGpg5SLWYVE+oL9cXIoCyZmp6fsRCPAwQ95fNvQJfMKOnBgcpy2lgVsv+3taudGwBuf/qzza9BiEl4awXa9pXnwz/yqqeDfYWDgv5Lt5DcqC4lDe3R2bisvhDupDkM+VcPggr9Aonx4taWECHuiiHurKoYH++6ZyA4PAx3f4fyXJuuqu0SNWFRmZlkGKWamAZ88G4IG/Fd/2BaFu9cSSfORpueZ5dB/+KfcowlDkIe/QVJ3ChGWECdW3tpyhVxwCeWO2OsNwRn82GSFUOdBLuFIjauv21EJEEPVW+EpwA6fH+1GFoXZEj6r86thvtUwrSE9Eu+pAF/8F/q3Ul3f+w5NVP8tn/K4DRXWoY5t84PwFD9CFhox6XAatYhqnkN0LXTr0WZrWIPQir8rLZ2j+ycTRdWZUEby70BOReqGs+kgbL2eYyB1KowjLnj56y+33oWExqgTOT1yiMK3vGwguSEOIGh+fdpmw3VAvRbNSzgphzP4St+dLye/OUuMXjWKdvutHvibkrHNJRk8xi+hXazsGnNFWs0zBQGkBug4+mvKpxwZkPDX8zt1qJUMZECRF9ruvwcq1mrIyD4ZbF0z+Ww84zgDGXc6e0w5NYKVu5M6CUnBFL/WxnmW9CQHmVnZnLajNUGvR/EvopNSMMffHvS9+a44OnJ3tdG2vtQM5XWciM1FCXjgW9ReV/k7s1E96aYhymyBcFN5cytbAo34i7oNicsbBej6KW++6FYrZPEy6hTGEth6eMlodntlEeqdY3vatvFAbOu/7ssXw9Z7vN6YkwVhqHcKYtagDTrqXmjbuYuhD592n692bqoYWbXUuqVGtsPaHIXPmBHB1u9TtVltxkUoj5z9Q9lSOyyoKxmbDBHk4v+cNTphtjuZ8KQmlfETOuBlx8YXj7RE4IWfuT4jVykykMNezaahtf/faWw0wx0AR3yH4uRE9scFaDNb2jqW0gnfFjf0mFgMwAZ+uXoiM9IoC/k/d0vo3sYHi71qbSzUD374pbqOglxeFXq9pJ5BZ/HBd0BUoeHTD8v4X4WtH9NSZaByJmt6XKMLBElVawXTQriJr0/aX/2QTkcUzuLYfHoXjAaFk3dHC8ECf7FJ3Of9Jg9V7NBR5KsJwOf9g01FqwBcfOLYbKn+Sh5x2WlUk5csAJX4yPIcG4CJ//RHSlq2Hhf9ByyJrEo=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6670.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6670.vtu new file mode 100644 index 00000000000..72c95953037 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_6670.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.490306538e-05" RangeMax="0.0029907401669" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12044" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.92024427993" RangeMax="0.99999995114" offset="12140" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="11484.626604" RangeMax="16612.998186" offset="13588" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="22136" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="22228" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456511769e-05" RangeMax="7.7072696553e-05" offset="22324" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.62532173311" RangeMax="350.72566371" offset="23176" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0015305840353" offset="26776" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.5935576482e-05" RangeMax="0.0029982172194" offset="28668" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-9081.5076347" RangeMax="0" offset="34620" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-9081.5076347" RangeMax="0" offset="35312" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.91965431791" RangeMax="0.99999976507" offset="36656" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="11478.968692" RangeMax="16635.128872" offset="37948" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.5068749012e-08" RangeMax="4.2184305899e-07" offset="43356" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="46692" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.9222422703" RangeMax="0.99999693623" offset="46764" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="11504.760117" RangeMax="16537.200863" offset="47252" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="48728" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="49944" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="50676" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="50848" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAOyIAAAAAAAA=eF5d2XdcT/8b8PGP0FAqRTuaopS2xtWe2uPT3kNbWwgNJBUhRRKSFRVJKC6dymqQlTQJKRpEJSm53b9zqvv++vf5eF0u78/5nN4wGbjGHpplgJE3jt9crPdNW2SN0OTCeh4I7aiaubR7VHPn8JsjSrXjlQkXSbcZ+8kWZqgOi9KYEwajVqEp2UPqOdItIl4dDA01hsqREJZeQy400xg67Rqvi6f5lONLbo5Ud90aWcglxw0tL+7lOzUrAM2Sy+zbj7HKVmHSaUGfV70zUoFXpT1vfHaM3jUle+BeSbqEbcg7oR596Kt+N8ixaRUeXW7rmf1AA+MX5/UPpzATchnpwrprOMAilZbW900H9pRYMBRLjFVuZyL9Wme7op2JAkRffmqgs5kJjpA9jDOSPrqJwTf/sjYc4pNnMjgsg5dfl3KlS2piUpZHYdAEJ7F1tw6T0AkOuMEQvtrvnCFMcx/9Mu46qTZwhHTxTu30zykK0Je48uYUXQOukD3cofqxhzlHS/l0QP9Sd6mY61J8fWWrQYStHlb3m4g+YeMnSiv2+oSuWQ7y06eOMt7QA1qZxeClwAk168+kz7xpE0x3UwUh9ahdxXd04CXZg/YA6Z56Rdd2thrAntieDWe5pOFlSO4ufk4jTFzJ/5z3iAghWhRMmO7lg46hM6NZWw2AZsE47BI7rua6ivTWluhSGQVN6JDs8EjnM5ntoVuE9KdnUnIKRUwhbb16g/caA2hw3WzVOGmEdO32t1qDYkSgHCSbZ/MDo5eO80YHffDWvsbDcOdFZQ3lvgEo1+0JoMhmfWpUyhAayR726pB+sCe72n7dRjir8rZWWtAE2D3iDyl5GuFAiVfgvfHVRMvvKwEK7/hgy/MOfpWFhkC7eS7VXL+l0qWU9HuCkl/+5mhC84dhxtfDprCE7EH8KulOaI388aZQOWrxa9VNKzD3Sn2eX2eIOwX7vgFNhtB5zG/BK80H5WqGpkU1xnPzf1PO9+LgObGnGjDVf+CE+FtLMCN7QCHS1+YuufPusQlIOD9QkdG2BysGxY6EBXpYr75pBbjKEj9NUd+riRuS/qTVmSX+Ox96mF1rPn9VkgbpmcvfX3EcUwGB6UAaO686WJM9BFEekpFWNxBvANnpuVmBtdbgGZja2NEmhh4RbiMK5fJEoVgPB+PIuObLUlmhjDJz8KXmv6acFplo1UXng+0LWByXduiAM9nDh9k+dM+BzmOSwHuu/qH9sAVka1S9MqLLQZfeolaj24qEZUTulsqLC5BHUvjR0uP24E7N99YnXbhKn+nFUXF0dzq3/HO5IZwmezxA+briQ78mPRUw8ea6IcNmM/g0tPiyp5gu6F5Nk1ndq0Sg/cqCosdc2OS+371I2g44L0QNq+mvriooJb0leekL0xZlDPDn0ByV14AhssfDlNvfZrlnv0Mfv0os5I8fN4Hmim4fy1M20JIR2vbrswqhbtzVRjiKY4SWkkWAqBGY35b6frRZtEqacvdHy53/RBuhxH7GR6wb5aCF7HER5elak+6SzPZoy7LZi1PCHGRj1CJC17rAtmDLlKbhDUS272Wf4o2yaL3s27FP5qvB8X/zl1VVBpHev+mF+KCWDbLcLSwp0m7UlCd7dKZ885nNnQUv3dGUkak9K8EcFpfU6vYmuEHu4PfMRAF1ItY7Yn8mTR65L+hsX/9THmirH0nTjrxXez5AutDVnXU5hC0qhXvTVwyYAiPZYxLlbHu7PzAleqGf7+MHv5rsYe/JWxunJlxBW/Jq1eRKTaI/VbV5uf96bPn4VZf/hTjOzo+VIP3eykLtpCBbfJ/wbocUrw7sI3tkpTwsbNfHXb2e2LH1SFSgnS0wZhTbcUW5Qo1nSG+MuBbRZ5WZwfZYDgdl+tdWbjBCmvpa3SSXDjU+yt0PPb4TsswWP5nLKdSel4LFZI9lHqQ30oV7Rzd6YoHAbSi5bgkPWOyPuGq7QM1Sybxha22C4+BqcxZfWWzlcDELjrbAevsNNPfBP2o1bKQnOLJHh5vb4GnhB5cVnFXhLtnjYcqNO2/fOTngjnGRmcoFcjbwoFSWTfOSA2QGOWhPrdUlJmvC9isqr0UjTdWUHxxOyED/v/OXqitS/rvb9KrJmDleuvcoYESJB2rIHoUof2Sk6VH71Bn/uD5IVSiyg2pb5lRBTjuwMcu99ldGj/gwVv7QjVESjZbCheMe7ihHJ/fnpPwn+5Zt5bYmaLH/zd+Ym0JYR/ZIo9y0rPpvXxkdG22zxipv20PoPYNlV1faQK7ijSneOj0i8dt3cY/7Ylju9PYG1wcvXOYSp15WNanmTflGdV3XlGeGGJf5VOZglRKGkT2OKJBuNlV7k3+rHQYwjXzSUrKB9rFPkU2cZrAv88eL1vv6xL4WxVXTjitxRYh+x8L7Hrjgf/NZ1HdTPk13AaNXuhgaVf2B9b4BUj1KUG5h/WTsSqclfrlQ23gnQwnawg0JjV4DCBpQKMp5aEBwNSb/1JLiRYacVqX3z5yxoo5PxtCcW72Acs/3vbDkqjr6ObkNeT8wxm6yx0jKmYqWJ4g1GGP6uEph9zleTGpTkzNcrwG0z543k90MCedTmxli49mxR/53U12bA77jD36e2iWtfrif9O+rQo6P9MmjRNmfnsUpMrib7NGbcoED+65mzWjhBenw70oxK7Cxue2q7yYR5Kp7tW/Y3Yh4+aCn4/KKUc0VbIqJPTyuuABH0l0/i6ozUz7997DkU+kVkBh24LCLmAY+IXv4UUs6vV95gLdeDPLXnFwvVCqPxa/2h9ubGaFuvqmzi6cxwaNw6St7PR/Ics1kdPq4II36FUn58BlFaaedmsCQfcevKk0Fr5A9zPqNKg8LBz9TONTrmFXrI4KFfOk/n4eYY0/bqOayMWNiV9QgK/FlFeipHvs8Le38717EtNqVf0TNu530nfF17gXleqCh4dAvam+O58geCii/vI+pjTnIGvQjQpm7LZWx4F1F64iJNRbWGBsLjZsQlXU01/3KYvCD9ZPw9lFLaj5Nna+W9O0FHckCCoZQnM3Ty/dJFwvJHuQo59yfF5c2YAvlkp3hfI2Adq8i3PZn2aJu0QkbqZ+mxI0nrHIKsRLQlXpSs2G7AsZR+9dQHvfox8Xsa8Zgd0MwSP+9AtqQPcx6o4VCMrsoHRzjtRaJqOvhTNLS4fh7tnhYOGy0MGMj0ToufkruogTYpN+bqspRnjv/AspDEhyzGfuNAc5fPFkqAjhF9iC/kvS8v9drdO3o4Eb1wyrxd5N9bbBxsk9e54AZkV54iMOGSxyS+DOPB/Jazc1Hyvev9CRWSBnBzqOOA9ZcYjhE9rD9N+li0mH3mh7YQZaRLsOXP3qAr59yL+OwQs5Wn/DOA+aEtvVUclSCKPzqn0l4sdEeLdSGej8e61PreU36xepNAxKBBiDVe+nDkJwMVJE91FB9CX31HccNttAWsmFBmoonaF3hTLstaos1IsbHucQsiA8imzN6RsThd0VijYed3dz+NFHSw38MFn8TNgYun5hxzWKn2R5qKAerhLxXZ+whlpX3VYVHIDB9KHaTuuWCTY09zxTELImSqKIVO4ZlQbeWt8P+s83cfM4m0pX/pnPez7WB6SXOFu7S3rM98DwhfcmId3VrjAcQTkfSEqcj4csB8ePmkj5YE7uD2VbMitB6//3ZknEluHDjkEDSGou5+fJbSF+/WMQ8U8wRyl2PmHy8uwkGyB6840gfrBf9PnTOD+6vPX5ZwiwOHtta+Ddn+GBPSuQmzdtWxKuEG+3uYcpwYChrSOSa09z8mn2kb1Ooyvt00RH2VqelZ953g0ayh6RU0nfX7v7rwu8P+da/H/xxjwNLHQOLuwYeaIH28OyWNfH7i1qDALMCPO9TZQvS052bP0K5aEeEc+9HO1hbnOAc1esHNmQP3vdIb0LTvz113rBGQ57vUOs2YOwcftYe4YSR20+mKbjZEIZXdkZdN5GBbPFuP78H4vPPP+VHFluue6RnBYrZyZ8NMgKAheyhjHLRSOGZZ22uMCE/s5enbzv8YFTt/i7/7zmJEBTZecGGCLl451D2Okng3GKX1flOAxcYOcTrh6xVl6c8uUxiAe9OE3hv6a+YQfODAbKHMsqPu8lG7G2lw6EvD+3vf9oOv28OlddNbMB9hmyrJiVsiYczesc/fmIFFc6+9Ibm+f2zKb+gci9X87sc1MqfvOnrHgCfyR6eU35xvEUyMVYTfj9dn+eyfBc8ujbDrt+iBiICf4TjztsSgvkBnBl9bOj0n/kj/KR7yhwI/sEoj7Gip1Z8EwmCerLH55Sz72GN4o4CvFd7PMkvIQHiGMMzhwgjKOjj7D3y1ZbgTp4oGLHhxw+yIdesM1Xm5h+m/HZf8a1/f73ExkNOk0v8wmEH2eOsh/08ULhkwBRd+Gbq911MgvgfBwfDwi2Bz9z9+p3NdsTiifCKURFRFBRx+EXbKTE3f8yM9J+3PvjG/NVHqcK7q6YNwiCO7PEe5dNv6EP0ThtU27ju4eS2BIBvjufjMu0g8tqlhI9DdkSSrC9fxAlJHKH2l0tmqOuhcVbZUJ4VHxHycswEresGxAoPBoEG2SMn5TXKfqnn9Rxwu8ODt9/Y/52/4m96eKc90DonVZ+o2hOKS88o0YSl8C1321WNqbVz+4tQzvLzvc/Vwo04o9O8qEkwGB6SPR7uIF1zebgbO+GI/o66hh/Y48GsM70wdCcdejuPpZy4aU/09Kpl+bVJ4cv/zH9OefRy/tS90Wao4+eX+XXJJjAie4yn/OrEi+XbtjqhTXLLKUJwCzzaIzgSJOwABV1KLQHKdCIDX448OroGO/xWr2QwFofZ+ZGUdyvalLjqmyNrlFzouRg/eEj2SKNcrFOl+f16Z2w9sehFsUk05C0ZE7302A6SZnJV+RLoxHdbMUtalyQuKuBTF+feMDdfhHKWM6BySdsUY9jsi5IsQ+A42aM35efpuTJSexxwSy9bx+39saByakX7qK4hjOjcObl7mk6sknkdKnOUF31ZXS4qn+3SnDsfyn/0L6moltTAvRxVcjM/gmED2WMf5d76h41dlEzQ7q3uU9TaAszS/NFN2byQlNxJG453ID5lyQ5ejx68W52m+Mct0BiXaZ3cO8ooVjXr6Zm9Q1uj2HHFsqHv+DAYBtf+r0dvyn91JlwTXSiIg01dF5vct8KO4Q2JKe1/7upeunPP94ED4cG0qt3E64Xm/aKYqu1f53/+FlCeVvnxZrbhqKZAzFKWqgkfiCd7zRrKE94Qd4r5FoDsVZHpD8e2QG7YWhtWKz6QT+V86avvSOSWWuvYmQ3d5Ro533hKdsXcfG/Kvzr9eXfGmwNlveJWsRj6Qx7Z46wz+XLnOrwRRLYi+rd+8zgwDuGkAcs6EAkM6POtcSQqbzcJcNnSMCPVheEMN9/850s5k/jdfR/4xPC8h4G7WZQ/mJI99gSQPlrsY1DDLo82FUPMb9/HgkAOY3vBSlVIGj9clsviRAhEckevI1hw9+L2Cd4/OtCXvOTg9jsS6rO+PCpjPDRzHdZF82/oHfOf7VH3J+k9DBsD9zmq49OBX5JOvFtgxsuLLYzBCPrD/3BKpToRz46kS3rE8qFwr9mVjful579flEcvqnPYs0oT9Tys07eEBwKj9/96ZI8gfUk55/UJTlNc+Ei+PdZhO6Rs0SxJHbf6d/8Pjrq5yJmov7mYJWuRGHZ+/P/ni1Aus8bL+fOUAQYFJAt/9QyAo2SPSf2kW0Vp8zretcWrvev43Z9sgeNb5V8+p9sBrfDT5EVLZ8Jl60NbB0dJDNrDwhHd+evu7Pyas6S7vz67OuCKCdI58spfNmyCY2SPPZSbrA7eefIvHZlWt3U8+b4VXmTUKXCvcQL9umA1bHQmrv951iQ5Jo38Yd5FbDj//uGkXDbj1nmhT5ZYtDLXznixP7SQPb6uJV03AwaP73PFtevO9z+GrcBZQD/iMOUGPR+G416YuBCL9YfFpkzlscXx+OGzHJYYSM/4+EVguXoS5YkFm4584bBDH93ffMWi3sBN9kijXOgXk2wjozdeM2wRqAiKBc4o9eXhza5QkGgdGH/YhZjenE+/rbQe90zkMciuMp7bX5dyLeOysVJLW1zbffc624IgWEb2OOu7Zp7M9FZ4Imel3/ZWgW2Ql/q2UPi7LRQ4FjByLHUlimUk+0w/SOAzs2GB6tvz98MayqNeBnZdW2uCp3+keO5I/Xf+ZI9BlDevO0cEHKRja5fMo8quGFACJr88KX3okf1+4VyaK3H1pdu3CtEV2PCf/WlypDfIvz3NFLkBb/2yDY176Q8yZI81VG986wftRZMhai78LKmqFQGeuyQmTQKUoCchOe/vC1cip5SV93w2I0atF5GwE1g5vz/lhUH9M5Gsa9HugeGKfV2+oEr2SEskverH4p1daqpowDITPuoUCsoO0bmqjEtwIj1whtXKjWC+Mrmi2Oyt5pDKlCi9W3/u/dBD+ZjXr6uRT2ggVFkydcjYH7aRPQxR7p6uMJXxbCnUjjzVZFoXDre49M687lfHnmOWvnyNbgQfX3qXlRQ7jPxnPu046RZPFIpbKuUhktr/IdlDAdVbOryMJ0q0oFlUrvDdniCYoEPn/al/99gsnj4xLndC8FvtzRsPuOFZTEdBprXp3Pwkykuel9SPDKkAm/Bl36BJd/hO9lBzhPS8rDFb11gDUK9J6czZHwE/1zxUXLfbABMWmDucOehOrCkxlxK8yQPtzEsHvj6znZt/mPKv3LnT0evVYSE1/wfZQxjliqevHn/mbAz2YsZFxmr+MDZtmZ7N/O85iUp8IMjiQWwIfp27+wI/NPx3/0jS5Zz2yI9HAfCIb4nwM3SHUbKH2f7J5aBuQ62N0K4R16no7wNX6iJDRGQsseaxpd1zGw8ioXT55/pJEWhdTsRZWDrPzZ/18gNaEQwt+mDMG7g83CpwtgdaPemdPzXsGips4Knus7PvC/3Btpup4nm2C0ZG/pmoaPIg9rnmfCt5JAvdlM/Np3z8xM8JrT02cPNXSMu+NyHgSPYwRLnt/t+2Fy09oIvqr5eEnmA288UavtJTJ4w9ifqFGTvqN6pAu6PThpKn0WAz3FEu+GW1eg0/6Yc2W1XG5zvBni9hytz5YVBO9kCjvIetu0hv1B+aqD//jljt3fnTPpiUT88bPehJsBi5Ol75pgxpq6fDTipHzp8/5bcWv+ZNVXOCu+zGtZsq3CCR7EH3FOlvkeXpkTx/sLt0Po/rpTksPFjl2f7JETOP8kSpMXsR9YKNgxyXpMFGwN/+wumoufkFlH/mLnE5dcgSorvYUx2e+gIb2UM55dLPFd3varjCqRoFgaT3nsDoOxQ1et4Aa9LbTHbt9iKmXAmHY908wMP+RP0acwxM0ku+XteSqZr1J2ruTC7u6tD7NbrU+Ko3/PD5Xw9JlK+zPA8Xk4yhXuxHn/wRe8g31H3c0KuGtPSP41sbvIiG8lXX6yfZ4Dg7zyNMip7/fNNIz+d7MHlqmTyE+khXJ5wPh9NkD7QM0g9r+Hcz7AWgl1kQDCz/7i/ZBemhdzTx1UJVl3RRb+L+LaWzSuKccOw/8ysp/7HhVClDnwK0r+qdYjOMglyyB6T8bfJwtNp9HWgXuPqunCcKjvXSrJYe1sYC/fjbzp7ehFj2my+7G5aBHfX7z32+lJs4xfkE3lECMzfP63tcIuAk2YMu5Vn+mos2JOtB03GhAzzdAXC6c0FM2l5dLLhlO3Yu2ZvY32BmNaTODcSxhtac2rD5z5fyHwez9y2yV4E4d4XENz3hUEj20EN5hnLT9KNBfTC8NsmyezgYzogv2BHkYoCuKkv/8Fd7E7FHSlSKUnhAI+HEucs5EXPz91M+aBK2/+VvNbidE3Qg0TAa8skerlO+9eatZGFpY2gvV658qxwF+aG0PSZyxqhbUb/48G9vwt+FXdj/BT88TW6xZeyOmz8fyt8tMEwvKAT4mnrqWmNnDJwhe/CmPFi1kDE2aCMcu5h/+vPpaGAuNDS8wLMBe5y/nr4o7EPw5Aupdr1bAvfCP2Rtdo6Zf34on6hvss1vlgWGNLsX6lUhsJTsQdeF9DUqzE0F0RrAsCO+xO9rFAybbdg40WoOGVHabwkXH0Lwx6dLz5VE8Ol/5hdQPiKa0xzxSw9XeFZvdS+JgK9kj6cpn34kHzP40Xquv6UuYWnT7P3v+5Ep3J7jQ5xOuSz35JASvvrP/FlnP9nsbFDugIGRYqctD26GOrL/9/0hXTxk8uVGXT/0TOV65LI3EooyuV6IOQRATehoaGWlD3G2VDPz9Iw6dpyd2Hwx1Xv+fChnjz8b29jijlcusRpfdg2COrJH2qwv6ij8mR2MNyKPMzWvD4C68e6Hx+IjYJozRSlyzIfYr3HGh8FOH/UdWTeoBs1/vkWURzY4TjXZ+qPmYFlvw37L2R7HOUgfeC92LYMpGodeWEno7HZC76t0j8U2sdBzk2dKSt6X0D4tsvPmeRNsCNcMEcuOAY3aS58Z2Q3Ukyhvfe2Oiuoh+NSp+WDWMTq6kD16U15X28aWb7gVR14zeh2rCsNNDl7suQPRkMTio/zUzpe4995rpniRMXoxWB39yBo/f/6UP7CcWHo/NAj709+vOzMTAqFkjwXMpJvaymTKFm/B5oM9YUY+kdhX8GG9JK8f3Nm89djKTF/ioDKXTeq/+1HrF2HviXc75+Y/p/yzbP9CkwvOSPSw9Ljw+UAX2WMw5Vz9vfyqbzehGPdIWFFKApYRF2oPGzNCz4uDvyIafAmboLXtRcPtd+1eDK9jrUicv/+8JH1k2cjE79rpu/kdWq88n/oArfx/Pc764d7GLqO9LJjVxvt8amAv7s57lKbiZ4zenXzSbYO+xJUqYVYahwDUCFUn3W+b31+X8jbmzAPjfQAZO8qMa0PscAfZQw/l1rbSGSsubAS7Jq/2jL17/r2CNY/wiluig5Df8L3VfsTIlfE3guMioLYo0/JNyfz+NpR/FT9Z/bJZH/IviVcU1KrO9nCCcrfwfIP1ZTbQ/vEQ27ayJNSSdH6y89/9WtejtOycjx/Bst39yu0PEmATYCWw3z12br435ZEG325JS5vA8IHh9TlCPED1MNuzVZyrfXWQDo76nPwHIQYPMo0pGfRZom6c8O2mPX5Es+HoqvIAUahPWTJW7jI/X4TygZafos0WBqC1RiprjZvDbA81lPOF/eqeWGULbd9H29L6t2HZdOeN5hPL8Yn+hJFutR8hv1RHL/d3v6bNaQ2pMynzP9+TKO8hZB7E5i6BKcFD2xQfOs72cILyke6FKHqCF7rE6Dq+OjEYzvxn3zPCFGrYX7RU/PIjbB4dW1/dLITdz3KSH3P5zr8fKO+o+sCVOKqDAS9n3m7W88JMsscCyq/0fLO45GKBD6n9b/SLB7SK2UDSqVv0EwL+xMrUK3+V6sWw2esxa9i7gPnnh/LgNPaAjy2GmMciVNbFrDXbo8hp0o3U+Pu6dtihnT7rY/HSGNw0cWyo44kVPJbyrThG9ycka72/fhoSxfaEPWe6eefP5znlg8Ufv198b4AV1PwAsseHlGcc5VVect4Wn6ztPLohOQ6DVvWxsdAtIal86fLsTH9Cboqn+/gyUayWC7xwNDUMcjnkDtP3/6rUpTy8uXJXyFd9PFnydtvONbazPdZcJ73564rdG57YYLur5m+O9kgcttZMFD1oBLqfHaMUyvyJ+Bgttxcr+PHuq61bjrF6zZ8P5ftLlrTmvNTE9jfyR9xMJOE42SON8vt/Cq90XjPFR73e00xy8VhWG7NZ5bQwflJPlr3+5V8/HfSxDr5rNqZObRZoDZmbP0L5yKrsCPOV3JABar6vzeWBjexhknIJmhT3jZ8iQJf7nvPkehSq6eZ2XB2zQN2M4i/y4puIt7+2BfB3iIBX8dOFojrz99saynU8Bx51l+mDGVvb1PSoCnCTPcz6J23BvLwcG6iqLvy1kTsIuS7YHt511wZrFAq19hhuIhbaupp83C4OT89IVOvRNs0//4qk66qv8f15wgh06F0Nfs4euILsgUb1bV9hskraHtrvsIleqI9CycI9cs8qTFDskYFrwq5/PW9D1vhxQbBl3G3kPj1/P4yk/G2/ytEnedrQs+08j7GACwqQPSRSnvmgq+eplDl0cP/8edA7GR3HHm8z/qSJSa6f4rbf2kTsPtB9TAI44S5+Lz6+bcf8+5lybQ9B35IFivD201oFbxMh8CJ7SHIjvdcx8bT1mA7YF3YNV+bHYpnEVFwD8iBtT0fKzjebiJ5tv8wNtw5oRukkjTwe2D5/PpQ/159My3NdCl8Mys9dk1SZ7aFmN+k2SvG0clYBEFNL6Ip1jEFO8awD1of/3bd4+oIHOQKIALxUFl4rjMsNkuO/K2+ePx/K2Vk88x2SdHGNWDbDw4V2KEz2eIDylQKXfHeZWuIaar756wUSQtOukHT5u6WraQAxYRA4/iFoPRq4/tw58k0f5/anXPxVaaR0qC0Wxe4P9fWyQm+yR9oV0h3vXd2t9sUTlzTdiTKpp6PBrzfxN7b7QBJn+A6W4ADiRErMwEYnZfSvXpl7Av6f9xvlR9tjx1MOOeJYX3FKyTF1VCN7nO2zg1ZX5i/yx23jyerch/XQriKo7A5HECQ99u/+WBBA9DIbEw0LAMeTdx5de918br485aGqGiKynF44cNno8hETI3QgewTKe2JtP48eCsUcVd2FRUFeuDly8lPthXCo2eWmU90WQPAbszVKtOrh7v/sn0R5YUOiZEi9H/YmxIuyp9PRj+xxts/R1T5w4WAUplH7S9ZqixcU/LvnPwhMXj4ZQCj7bQqVDNJH3rSi4L6HQZBrtFdq0UuNqqT7pFtUbQtzCfFH1tDfrLYndIDqUZfq89nYCLpwNO786uDnuMMfbZ4mrawICoPl9pzWtvKBxKr7+6bO7tdFi7PrvNkd5/9/tseOdFdesczdjr7IvkU8vBcZ0IzssYLym9rXrcKNIvHo0oob0zyAge11/PXywaD7oVIoMzCQ4DW24dWy00L91hdhcoOusO1/+0ur0ygP2tJ0rVjfG43P13IbSejjZrJH2nvSc96XIEdnGAbqhB31uOiBagtNc2Vfb4KaM03DKamBxLmm6J7SYHXUkF0m9IRnaP7fVylfeMuf88R6d9z73jK2NVwZ1MkekwpIX+fuSPdjCEZFz9szTW2OqP50Uf0aRjcI4ppREqwOJJYFpMXmxK7HE9J+eal7538+RlJuefQo16UoW3z06UfwuuWOYEf2qEG5y2RO3N2xf8//BLuqgbwxvJcarR66bwi0FPn4srFA4lawq81pGT7MmWRQvrYuDFZd19xd4aBXNesmdSz2Lc0a+KCX3L+F7LFmD+nXYmf2ezeY4KD7vb85HTGYNf5sqdVFSaBNDjQYLA8iLA23lq5Umrx7v2vJ2Uvvgue/X79IZ34sW7ViVBCvqy/fItbhhUfJHmsmSOd9m/Dx+pM1qKnR7qt3OR6Zj5y7bSIKOPLYJHe1WRAhFtd3mdOLE6SYPVo2/lKfn0/5l03mjEFrFEHmsU+q46tgNCd7uEN5zzH27ylCupC7FxIq1iTh6scZpzY/tMGkY+cDWJKCiGLPnMTYFHFozBuVyfHxw7uln0snNypXzXrjyqh7jReNYIrzh4igkw9uIHugHSf9fHSCrJCqPdxRU/LqvR6O/wd9LY27AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAHAQAAAAAAAA=eF5t1WtMk2cUB/AZ5CKR0DGQIbCAMFc3hiOgGy7xGQiIQ4UV5dJsIgIbWlCpc2wDQYeZwGBgwSEXBZcCcrGYMShMiFLABp1cAjJu5RY66KTvC5bKRYH1w2Pe5Dnvp1/+ycnJ/8NJzkJxm3J9nUYLhI3cfTtfsWjTIRDPsXjS58tIJYu5h6tMOliMqYk1KmFR9I3m0SUWb/6UY+7J4n2TPtHzNai4obmkicXUr7625rHYO/Fh8NNV6N3f9NZSWHSY7b498wpaKv9ugzuLXEexXcdL6PS7NX2LK9C1MdMIDoueTaPuycvQ7NipiHNLUNsrtTL/RUYbrIFC21fwAuo8aHUoQAvlc6PjZzXQX18KE99ksfyH2JjL89A677jyERp6sfNK0iAFncyQ+Buoof9KZrZaPoPmRXbJVCqo/4qc82QaartmtDVHCRU0Zla6T0HnrOY+6Z6Axhwa4vmO6eYIPz79++IDBbQlMb3CcBi63NnU6jwAzVZQ0vh+aMSqIlXQCx3r96jY2w1VRz90DeqE/tUR67LwCHpT5H/6rJxGxdjXmZ9wYfRIOzTI2sWhoAUabKW+0dQMDfWR+sbcg+ZVvrV4VAo98ovmH+taGgUSVnabW1y7C9019AXPrhr6uVAt+7mcRgcI7S2HVXIxdHlSOzBfDM1PFa5rC2h0ndBjvDVyNQ963j5kW6uI8VuszJJveyJTdweETnaBHOd06I9OLpKMy9B1/6Ts1iTo8ERZCC+BRkOE8rDZQZ/zjA+x3ia5ZWZnoGcmPr10QkCjs4TcqvynqkjGHdjs+j0J+4/R6Cqhl/LW9SC+bi/WB1vCCciLDYQ2hhs9Cz1Iowbs6zztXCvY7gvdLOR3dXwGVVdLUz3caTRLaHTRLKHDjXETlrf5vkLrpLszwifN9SKtI406sV3YkUK/ud12NFJgR7HbpnraZyyhZX1vK2NMdX+CcJNhfFaUsa4PYWZ/sl3+BhplEPo2XZ29sUQB604VVfppoEFrxzmrKig/ABUmjUNThK5bxoagDu9872bcw+iIdevMDd0op9AuwtD0KiuLFmgS90B+XT30g9uGSw7V0Im0qPDJUgqNExq0e1ZpCiikT3gnU32rJ4uxGlv5YMf8njTGCuzxnQffa7hAoTDCukzO328IKfQn4b7HeWZmAkZPrIqSG784RqEZwpNWR7eLeYzRWJlQ7sP3o1ALYbu+IKV4L4XaCBP7pGl3XBgTsCG8567670MHwyWKUhsKDRHaRmVNm5hCnSdLcvUMoZK5AeHykhoY8vjU7rr/1CgYG4SVfeTt6D3J2ILdsqa8ltarRhZYc+zGuP1hojZGPeyKxCuj4R60Jq4k2ata14Ow6JyUm1PEWIgdMRk47JcD/UOb7m6ZAq3R9NqLhdD/AQdBP3g=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAA6hgAAAAAAAA=eF5d1Hc01v//x/E+lfiEZJTSNBoaIirhVSopqZTS0kJZlYRIRohCQ2TvLdm79fZ52XtXilJJKUJCaPDtnPfj+p3z68/buT+fz+t1nXOdK2xg79ODKcqqwufrelXW11PR76zX04GgqdvkSP1X1qLo67+x/jqxbWLcC13mNebnoMsMszZ7e9o9duUeJmtHz0WlQEKnd8rbaCyupyHbWb9btypN2+M8SdjJWhDdTpP1c2p8J0hVjinfypof3RUOSl2waHONLrNZglfWMk+HTjkROK4jXE+fibM+JSQkvGa7PfFA/xd9Nyxu0TzyPl+NBCxkzY1+C/541PBxtrExc+RD23A833E6n8vLdjdPPe3tYM3MEnN9pO5C6tv/f/eBdZzembvstSGFsDh6Oqwe8CN45ZgGs9grla9dxpCeLbm7MqerjrbfZi0i/0i1/9AVkgGboXvCwW9u+wrOtieW2LdEN4VHvsWN/jfTiEQknQszP3iOBjv9a1xTXEc14IQYtw1KxJn8gEPRy+BRmxe1by1diX0K6yR0Kzg9/8LRWcNO5GS/ZfggNafVMkd9mdQ6Kg/zhXpcllZxIkvgGnReOKei4/SZl85kDVyPvgqWVVu2UcHalbhYi5wX0LGiHkMKD5vc6+gh+Kq2gem7B85EE76NvgauvuC2zFr4GjGFfdAN4Cb9uBoruRsk4mf2xmWfbejuJ/xtn/XrqDV8ZKjXjX/xn+8P70I3gF98HJ0hbOlJ/GFt9LuwtciJo6emepM59WvE1MZs6dKAd2df7Kyjv+pYD9YfW3dUz4lsR1+Fvg7ecZXXaHidNXmE+SXo2fCrV7cO8yy4SQyK1igK+jhQ4eYjPV2L6+hB2LDRgFvTzZ3MLGY9D3063Foa9LtVwZ7wwnPQ+WBFwyyvxjAPcrhVbHmfjxMdm/n03O8JdfQkLHw/p0TssDf5DPOIsr0HdrxxrujSfhci/Yq1CLosrH1LS7HryXXyqfGE2ckwZzrnxINTn7tq6TC8bprWeZOZd4g3LIQeBv/ovJgYJGdD8v/qhXCgjsuN6+vcSFebtTK/0VXKlE+y+15cS6e9YS3yJqFgb64LqULPRW+FDwv2z/6vwZTMw/x/6JLwN7HAaR087uRX1y2eR7Ju1HS1lvekiFoq2836vObLlIR8A8IFG6CLw/qLDWwYwk1OwifQz8CfTJrKph52J0FRjOBk5WvU3L6gpdu9ljbAfSsD9tlPNSNJsDF6JceKK3dJTb9GFkWzNkSXgSdaxJ4cvu5NDinVOOhPdqfq8oMB/fq11BteGhGR4HxTjzkNK6FfhaUXCG9Sc7cj5TBBb4DNfKdG1qfcJj8aX32mNR50ZtdinWGVP5/fxDpG8E7mjEoXZgEshE7glNQPMbxfTxFnmB/9GjygVu2YqelJ5pdx7Wxu9qSvvb+WtiyupXvgbe4/1EZlPZieUtYN6FPRhZZbXrpRYUkuws/QHeFT59pkeBNvkp/ttYYNkTfpr2TXuc0TaunS96xTv297qHbWl/mGPojOix6yvNzIPHEfMYSH0E1hm+PT7vm63SG/xwKcq0xu07nlsyyaWmqoxDjrCX4Fdz3mBzG88Bz0BXCCtG/FwbOHmQuwGLol/HkHbeKx9iaKFcekoiy96JBkf0N6cQ3dD1ebdOt+Vw5lNsED6Ifgc3HyFxNsLjD95aw70Qdg9S8rRBUzbpKFyq9/CoTfoXkiTYFR4TV0Jdxy5/rkabrBjCaci64NV1yY+VvAyZlZCiehL4EFzmfeEda6QEK8b5zWcvGm57lyTvhcqqFxsM4mjfd9I35ML2yLPgy/9boteVjalfkMX0DneN7X3gWb+/Yz7o17eIS5fahjY52hsX4N9YJjyuZIZh66yyjDZ9FVYQG+D630uDGzBDZBXwoXM/mPCse0Gc0n9j083T705e6XpzRVaqgGfN32fYOLWACjDNeic5y5c1pBkpQNIwHXoYvDp0TkkwU8zjHL4+81jtXepTJV7foyM/90uLn17Ik1l/0ZGXgV+mI4TpP3cLaQJcP9V58CiwQtbQ+adIwpF1qu5rvPl1pML6A/x6vpY1h2hUVAl6EfwyvM2gl9Amz2xfKuz2p3hh92RZ8OC6zKFx77cYHZkxB8UWGdH61REU2pfVlNVeEYnRe3h908GSf4BboNvDFVxVrxiwNzDH6GfgSecHfXhQhHWyZHeWrCUzF/KmFyLigqq5rGwysulN29M2DGdMOr0dthtfiImqb755kUWBb9PrzFaSIXr7Mjw9M5gVGI8Kcyl8W/nwqrpgMfWYvYnfCLUrJgnsFS6FVwtJ6UQuCnS8xM7K9GnwFPx36aXkOdhUsATWp4aL/IppqGwek/72lVxHkyxnA4+gnYzWXLlpYJJ5nn8CP0RtirPGOVz+sr5NSrqPb004F0pbT2pI97quk+mK4KPZAj4s1MhOej/2pl/fujwREXIWPig74Z3Ru+1t04ZEODybI57fuffg6kL7n2/xOuVE3nwNt3F1y4u/4OsxR+gz4P/vUk2rt8yJf4wUPoPrB38vkXCzNiyfrByIyY6iDKL1BRoiFSTcXhkUX3Zvf332LmwgLofPDS8jpNh6hQcg9ejR4Lq3/Wv3V/RipZU3NimmVaMF0/a4PnUE8VFYY/KA64ufW5M+LwBnQ+2OP3rhsLN8aQTNgEPRX+LbRcXIzJIqLGKY7a8iF0uXV7WWRzFf1mxNr0Ssp55VFf5gS6OvpumHtCtZG4fyC5Ax9C94D/2Rw2paomizw21ToXPyOUrhbNNFqTUUVDYe/qvtO7K+2ZD/Am9CaYW+X5hJiwKNIG70B/CZeaqIi2jOUQl3P9uj+GQ6niA2fuSs8qagx3rlKUUXXWY1zhTehWsDKvsFnJ9xiyEybo2zg+0Lt5d18u2aw85+htuzCadmLBQiOrKioD6yu993KotmH2w/+ha8IhRxyeNzRFklH4Hfog7FkvHDD5z/1bqtL8R46FU4VNBgrtu6roTfjyB/fEi556jC+8Ht0bNi2Tzd1UE0M+wZroH+FRP2kxPfqQTFRfl79oYwQtlUjYfmzJn98H7If7ZVtZP0Ivhb32Ht4/6XgciYJT0GPgHQ0zx39OeEyMixKeGhZG0GW8Fs+6pldRSziQS0m1eKYlw/Fy9Mtw1upNccWf7pNgeDU6x1o302MNHRhi9as7q3ZvJM3RmTuo0VVJbeHoA5FyLZL6zFk4Hd0CfnT49a5X3IlkPxyDfojTZzxvkf31iIiKuv42KYykypGlQolFlXQhHIv3i8Hy6OLwtPDe7K35cWQyvAx9ImzW8mnI7/FDUqtFtV9PiqL6U/YlLUqppM/h7PIt3NwTjRi+Payt0AVhP63LgdIq8SQF8zvQ0zjerldiJpxHFN23+S+xiqLCv3KNDK9VUjU4Ffc1/+pa8Nyte9TPRkcTcXgi+iK4aEQidk9GJnGltS8vdETR9H4xqYQTldQLro808NcR1CNX4Dh0zryxfsnk/PVRZBN8A30zLOuyvUVMNp2cm3NQJntRNE3uMDgqqFFJL8EvvpsOiZ63IoqwN7oq7MOv4NW+I4Hche+j+8HvtF56z12VSfxXaLXE+0XToOXfNspJVNJQWORGfZzJkdnE/a9+Ey7IH3n2+Ec8SYej0dPgqz1ak03rMkkr2XYtiCuG3rVwktz7s4K+hGOF3e1Gn19lON0P/TV8UlTX9l5jPCmCPdALYcvSLF3t9GySMVLHk6AeQ+94/HsroaOCcnzRt33nhlM3GK5R1snoHC/ML60KbYwg4nAO+kI4+4Wg1tH5WWRgWuNt5dwYauyjKxHLVFCOC3zrtCULtJmFAqzt0SVg0zcds3d8iyKSsC26FKxr7V6QmJ9F5BY9FalfFEu3hKTkRfpXUAU49GnzjvXaOkQJ1kBXgRuuuVgfE4sm3LAsOscCyiGvpjlmkpLpa77HGsZS5+KyjndXKmgZPLK4a/T9PntS/VevhWnetuTO29HEUZB1Mboz/GGzuLZJSib5MtO76umzWKpzvTXvwaEK2gu/dL28rd/RiOmCtdA585fefHzy/b9YslqUtSG6PFw0+GmC0vlcUju3J3Ly1jg6bUefp5dcBX0OO+P+1HmsxdA5Hvqm4O1SF0MCMN+twXY/+NbbgOLcXVnEbKLR9DC3OMrXoM3/SKyC2sIu+ofer5y0ljkAj9WzXRceTlqSbqMZQ7xhIez7wIEBr7nUFXKIfWplpN5gHJ1l4RFvPFBOPeESuoFXpNKQuQTPQHeBW8XHBXMfRRELeDI6xwOjhndH7maT10dk5BYbxFN1YbpRtLqc9sKdp2L2yj/xYB7DMujFcJDDB8VZPqHEDuZDd4aPXb1ZUSiUSYTGTA86xsTTI1HJ8dI55VQc1ij7oMMfcJXp+c16I/pX2ERHbGbZpjiyAPM70DmOS2nTDjuUQ1TlRyY0CCbQmmfaHim3yqk63BCl5dARcouxg1+jX4HjV9pxPZgeQ3bAReh74IKfM2Or/TNIjLHbfUmnBKo9dfSMnGE5vQd74P218HH0JnjUa/JdU/NoEg/vROf44d3wruHEJBK21jh2HU2gFz9t2bxMq5xGwIscms8cv3eEuQkbo3vAATG2/37JiiTVsBN6DdzzQbrv+dp7ZFCjLVFQ5h5dY67X6bSknA7B80sOOUdnO5E2WAad4542w95rg1HkE7wanWOPo5Mf8j24TySO7U/rDrlHvww73mweL6MLYc59efgruiychfc3HWVdi87x0fNai6Jy4ki3tJ1nXus9Gq6z5WDOpzL6GfaTF/+087ob2bOMdQH6bnjtVhXidi+IBGLeBd0fXn4pVzvvSxKxdnstIqSRSC9cWi/zipZRc7iP/4aA1E0vYgNbopvBnPubYX10VbgpbOfyt51RZPztxoizuYl0W8gqrklBZfQn7I3328Nz0S/BVxNKKtfxBJEWeAv6c9hmd0fh/ppw0jGp88iXoUSqNFtKrdi5jDbD8yNEPu908yMlf/Ui+HB43v2gmFjyAdZA59zbkjW7cZt6NPnvadNlqn+fTl8qk/XgcBlNg/ehv4Cl0OvhhEyezrklCaQOXopeCx/A/pY4Guxbd58WrlWUSJH78/uATUmoekl8OvkA861j+yv4vYqcW5tOIvkZy7oA+0OwCL5/u3aaRPG0JFrqXrZrj9ifz4evOB+VislKJtHwA3R/mOd6SUG2eyDh38e6D50X5j38UOZXtDtxtc5nptol0UTrsfsC30qpFbxoZG3vC4U0cg6OQzeE+YTFXS7FR5L9f+3vhuda2TXSQyFkR3DNob2dSdT/1BqeuopSqgob5vEc5W5NJ2thX/TV8G6ryzoLb4SRriDWDujd8NMgwaTP+7xJu4DZ5RWLk2mQntEt7cxS+hZO2KDaHqOfTiJhZ/QwWPZgbtUjiSSSPp11D3oqXJGj9y9XfhRx4N+v2OadTBXfpYq2eJTSSzDn/kZYEp3jDY82F5zyTSUqsBQ6xw+nxP8QVEsl03iVvnv9Tqa1J79H6emVUn64BJ9fNpX1A/Ri+Nngig08RUlkG+yGrgEfW6HSpLQxlsRM1tAVUkmhu+ouvC3SKKXR8MfgxJUzbRJJEKyB7gvnaG6/uvxQEhmFL6L/gHdL1Rm8HYontVQyfklCCj050++/6eKlf/5BWNsLug5rjiSRaQWsbdH5YItQxxuaK9PJVtgffSPM6368wNk2lWxyGPuqIpRKPY89CD82UkKV4NVyp6xWbMwmUXAGehC87Mq/NaN+GWQf7I/OsfaV0BJdh3TCY7Rgjv6eVDr/mlhn6NsSygU/MH+iFyeeQYoMWXOjc/xepS522/0EEo75I+jBcJtp+KhIYRpR0RCa3vQolV5unbI4Oa+EbobLcN8OvoFuD5vc5C89zZdMfGBvdK+/9vuXc3GpLUqjU+QGTj2+XUInrWBdjS4LC6Ovg42zEs0clt8nHtgvl2W7O3xxsGjVG9UUIrbWfRO3QRrNX6Q0+My6hMrD+z/NW5anHkaM4Sr0i3BJ8LX1Et5x5OQa1sfRjWHld0VLy+JiSIPEWv+q6jTKHcFnE7urhA7AI5VVjx81Z5EkuDOc7RQe3xkx6rDEk7SJs3ZFb4dtdQeC7Rt8GRtui6Ftc9Lp3FlvRi2kSuhNWH9/f7/rgQxiCo+Ksv0SXC2pe1xP2Yfxh3+gB3D2Lwby/GOeyMi+1pT6vj6d7tQIHDLkK6Fq8IPf/Y1l0/OINWyA7gTP5hNpftyZQPpese7czvYBWLEr55/8iSmMfLd0lINZOt0ssse6v72YEljTqjr0t/dDYgLro5vBc1pkpMfVw4kMvAxdFh7buuDbGe7HjNQo93yumHS65g33sN3DYioJd3TFG8oLPyHKsBq6Kmw4Y+604OsRZAO8HZ3AineKb4pfK2Tavqze5FCQTt9//G2yLaqYtsJjMauKQm88JA/hUvQcOLlF6dwKrTuMYg9r+U62K8PcTJxI3vYCpqh1n3ncUDr1bzEy97QppoWwt9jUW418T0gW7IGeDi8T8br6ebEV8xnORu+C39/095voxTBxlVYRNdIZVKW2wbpmVzGNgtepRp7+yZ1JMuCd6GmwwLqPdgW++4grLIvuBv9U1o4d4slgPH+59fFtz6C3Xa00zdYUUw+4LKRcxZYrk+jBNugnYB/Guc7msw/zBm5B74CDatpOvufPZbLmvW+rt8ugfWG8Eoa8xTQXNtjx6sM1njRiDuejc/xmxCxbaJkv4wo3oLvBpm+la2x4M5j9G1RrfdMy6EBu9Mixd0X0MPzdhVmm9k8k0YcH0TmOPjommJ0SwmjBH9B3w7fw/oomSe3Amj/310kONpQX0SpYfcygX3NTLAmDq9Cj4fC64UKFXFvG8ilrI0W2c7x3dkZW4tkM5sy4TO63CZl05UuV6MvhRdQcDn1RM0tSPZVchdejc1yJ+9dhBfRrcJfXDYc3PVmMxXIlsV0KmfTB5QN7JK2KqDV8tnuWW96WRLIN9kbXhCcsvvjRx+A2834Z603oHfC5rSlNnc9TmIt5ERGC2pk02GqEz1i3iNrAvHMKxKY4hhBHOAKdY+bj8t7eZn2yA7ZG14a3br/VN2lVHvOcWVDwyzWTfngorcHIFtFncLtRpUJLUQJph7vR38Ibiv1mlL46+3+9H/09/Lv8p2TJgTRmpCiivTMvk46PHXETmlJEv8ECOlfKt5Ymk6PFrHeOs/0YPF53JbzW3JJowRro2nBUr/evnr1xTIPWvCGTZ5m0bKT2zKKeQvoUXrdhkuJIYDQx38NadZTtZ+BPFSOtUb+CGAHMb8A+H2zLNe2W8pU0Rv9gcuwb7iw67HjDR6KwkJ6AX0/0tp1Xn07C4KVX2B4It4nKrWxQ8mci4OXoUbB6ZZzz29J8pve48n4dpSwqzrX94YKAQtoNBxsubM7f94BYw9WT2X4R5u6NnfJ66mFScoJ1CfaL4f22eneaVDMZh0dLFLwPZtEcsbrR3w6F9BIsa7dxlfVALvkC881hezds/s+Gq/MeWTAbYA/sq8HSvUZmHxdkMFyh2nmeHlnUwFV1PEy7kHLDKZuSBDa8TiR9Iay10HthieW7Wr51ejHTMa+HLgSvwv1+ewcl18dZNKQnY/KGJYV0FF6zRiN4XokTw+vAOgZdAN5HAtWvf/Bk7sL/9LLdD/5mdXvwtJEPMzX5cuPFF1m0OWqrVwd/IZ0J9+saje1cHElOwbzRbDeBxZj0vh/3rJmd8Bfsa8JWJfpXp865wtiJ3W7s/jebyl08/U28vYC6w6enfNdtdnMnJ+Cp6KfgXYVGz+a/cGF8YHF0f1jMMLnPvD6E2eQe1ain/Gd/u5vOidwCugcWPMq+XwX+uo3t2+DJTrIpmrI+TDIsh32O4/H+CwGHkycfyqYHpE43VIYWUDeYz2CP3eyvcUQJFkXfAp8s3qft/tOOLAhknYg+D9415aDEFslo5nrJ24V97tnUpKz1RoR5AQ2Axw+2DDWr3GFuw4fQ/WHBA7sXfA5QZYLg3X/tZ3wvWD/p7SUma8DI7+XDbOppqq1upVZAKXxIsCbB9XkAuQefR0+BB5OFdxVMd2L6vrFuNWF7P3xrtdq8tE3BjIWaaM3S59n0d14ST9SyAnoF3mFWJvfizVImBOZ5wPY4+Mq8r6ZysyyI6VbWIegch29ZN35O2Zf5WXX2o+OUHLpwPuM4ZYzSSdWsN/ZEWdd+jSGzYFn0hfDBupYZWrfuEs68CPpE+L0/X69M/FViva9w/OnaHKriWjt4poFSW/hsy4GpSgP3iCO8Gf0KbLGQff95bcxfZfs5uF5c6MIn3wzG7lLW2irtHNohG/RdJ49Se3hmhdfLkM/xRA1+jK4Om9g+y+hVCGUMbVhPRz8NRwcsmycZmsf0LhxSu+qSQx+m6XaoeVL6Ba6Oeatzdtya5MP+6E/gDl2jkKy2eCYVvoOeCde4vkm/Hf6E4apYu085M4fukpnfKH+M0skwiRQtptJRzEg5623ow3DO1zQ7qdxw5jDmA9CPwMGXnbsDZJKY/wFm+CFQAQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAXAIAAAAAAAA=eF7t0d1L03EUBvAzs6hkRc1cUklsQlbqRY0skccXWEZBbxBqSSa2JmilRTVE6et8QUKHW7pyW3PmW7WUxSS7KFwZWUI1y0hvtE1KL3rxRkhq1fn5XwSem+fmcDh8nhUJS4a6UtYPkChM3vdCA9o83Rkxsh/k8+j8j7NAM5b04+P5nEbF1upCUNwmY8Wr86DiviLl64ugw5MrS+eugGabk/Q55aDnml9PywTo3bPpqikjyLBxOKirAb2UL1sqqwOt+uLQ9l0D/YkyfKts4P3EUsWpRtDc6jz3vBmUc3+Xo+466KD59Dl1M6hXNpg5bAXJQ/lnzTf5rqG4XW8DPYnZsTbJAUrMePM10gkhN+3eEuECxVJrQN4GER/tL1Dchhg3e7O2tUOMHdv5W9sB0R9UV+o7IbTB2Rh7F8Qj15oyfzfEAfUeh/IuxN6GQ7W6exBxuS0fBt0QKuODj9t7QB0t/bbOXgjZ+6ET6zwQCT1HLwc88N6JH8vQRKbKFxyXD5BPx46x7DjDjskg4WXHTPZpYscjoOxqdswGpW1gxzx29LJjAcg/wY56kEdyLAY9lBxLQEHJ8QLIIjleAn2SHA2gKMmxDFSiZMcK3pMc2d0uOVayj5sdq0AhEzuyf1gYO9aCWv+yI/dgKGdH7qFIxY71oDMp7GiCGK1nx0aItyFnQG6GCFewowXCZmVH7iX3JDs2QcxPsSP382OCHa0QRic73oD4rmLHFlB6DTtyT9HZ7GiHmKxlx1v8p4MdnfB9HmVHF9KGJEcXRrolx/BUWpifVxdzMRfz/81/VUjDnQ==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAawoAAAAAAAA=eF4t1Xk8ldkDx/ETMirLddMkJVuRfS3C0VNJQpOm0iajRT8joqK00JMkt5FuRIq4QnOnhJbJejwnlHWIKFu5ZLltlrpaNf2e7pk/36/n8/q+zrPc15VrWjJ1ShFasu7wHKFyiR91b0/77x2behnAmzke8FDM+PDd4gQq4wyQ2Toa9EDMZE2mNOcWAwwMecfPVoqZ7zObjAZfymMQGD8zDYsZhYi6vsFZShictwk+XCZmNILTAwKzVTEIa+tVLBQzdbLr5exK1TAQTuUuLxAzO6aYRJo1z8TgjkuyolDMLNTpKtIf1MCgdt6sbeli5r3r0ZgPnzUxsDpQbJQoZmjT3LDFMdoYrF0dHxQjZsSrFAyLlHUxmJWzVCtczNyxCN+yPVkPg9f6hfb+YqY94/HzuZrzMfh7ASr1EjOno6fs7byqj0Fs8q305WLmmIK8MMJgAQY5ZVOfm4mZe3/mN49dN8Tg0hWvMHUxEx/fbq9taozBlP7dO4GYucHbRb27aYKB8t3cnMEhpkFp6ty1pmYY/J5yz7Z+iKFqH4vm3zDHwLVy7vS8IcbMODM1N9ECgyWt8yzODTGCgydKX3paYtAicjm9d4jRM6vzdFKywvSmxxoqHkOM/tgz1fQaK/b5Gs8qMRhi/qxc7DYRZc3uySSETxpiVszv63R3tMGgp0dvcccgM/taldZxiQ2m3dfUD+QNMjLmb++fvrEQ01EdJ3ZFsa52EnptX4Tp7N7Bi+sGmSPuM1q6ZthiWk+u21t3kInxmj1PvtYWA+de6z+GB5j4/F9XVx6xw6C784ukcIDJEmyM/W60GNOw1NcvcoBx0dQKyelYjMG7R6mCpQNM7vKc8isx9phuXfXPjkkDzBaFvapNlg4YYOsjv6F+ZnqveoZmlwOm+9wvUGH9TPYNl7cBUY6Y5kcU5CzoZxoyElITDUzxOiO50ntjGzAAAGtYFsGQk9OKWtnvj7WATquEnv1PlvEffvphkKr2F4x2f5wueEDsHJGCwmsbXtRWEkvWJkMbx8YDIkzsUpkFR5+duV1VRqzndR8KPrxZ61NIfLmuEipu3b3gcgHxmc8FUPib5bC/kLim+hKUzObtLk8nnrPhOuqOPV/JTyQevlCIAtEyk/YY4gXtQmSxq35jfDgxzSmCVdeHFub5E/u+KkKhN+wF1huJRzv+QqEX9/+r4UzcWXAf+u/a1+RjTpx7ugTZVBfe/KJObLG5AnnM5Rx8C4jj33ShBko1y2boo9R3+5phnKi7ob6e+ODmRsi/VpaSm0dcYJWDijLH1jSdI947owpOUIVRJsFS02oLRxAVdOBRiQe5LlSvRe06KkWBC4gbeV0wW9Mv00qG2OToMDqmnmv7teOD1LvEwzDu2PsTBflSU1u8gFPac+cku5Pkuu+1C1A5c3jWwfXEoqES5A19FFz0iMv3NKOQS1Pd6JFxqTmBN5FPvfn3D0XEvhPV6Oq4b2jYceISWzEq8huXMMuIW88OoITolZUJMsRPLrxGAaXZJzLLJVJ7WmB0e/TM8uSDxHNODcKrfYZVHCPi0ZEXkB+oX3xVpv+HsW5nNjT0jFub9jqMapXbz8lqe8x8N5YUtj5UoNjr9K7qF1B75B3rT0t+9EK6EeJu/qnxC1zKwNphiWLZNybnYsk/7qQXrajtg56N1aylvcDA9DGkD93WXcH23ccrJg9T0/CqhR3B41XSHsiUFkPPA5NCxqukPVCqeIhw4uuTgwlcypuX9u1E83QcqXV/Y3oFOY/w1BCymF3BmuxnBogQuDMSVMznUnK8aL/BSRq4ht95Tpch+yNfm9Fo8DPWZD/I6iWiLlZ4XTvLpRLGNHvy1bWx6yH7tt0lZP/1exHCQjfW0p7euqoP0XPoWak8LuW6vcOwxVwPj/ESGjfcJfsPy6tQyG4+a7JveeQOogZEO3nRXGpfON/G2kUf+36xjHqeS/o3T25Bi9mQNem1Hx1FePxKjV8kl9Jr4J27vtUQV+wz2vI+i/S0diIUKBizJn3I7fOQzl6sbXCIS7kfs72gHGKCt70a2M+79F9vngiB/CvWpA/vvQPpp+YzHu7lUj8/a7tpc9Icd25zUEs5S/r18ZVwNN+ONenLdEogLs+vcfRj35faaG24myXeDNY7q9OkL7hXieiWjaxJ75lLQ7pn++mYLVyq98j/yuJarHBEstMeuX2kT6m6h0Q7KNakB358BHbPic34hUtl23nOxJttsKN8HNjkS3rtTaWIzj/HmvT4SDgEdc8LopdyqbBK5cyJnoU4wLFricovpLdYzf7+Q5+zJr3v0ygEyjV/tbbmUk/Tkiab+NliH3UVpG//3/P5VI8sytRYk37oF4yoFOTxpx6XKn3lXGj70g5PWlXfmzyP9O3n/4YF0XWsST/PGCH8L2fTMy6Xyok+BqYE2uNg3azDPkqkFz0tRng0jzXp7ZOqIG2/I60VcKnJppdteW8dsHAibP8xyU/k/CE1qKD6MOuP0u8N3n0FcUqb7R9vVanYnWJhZhDESjj28ZsO0pvItUPAy2Qt7YGZlhjiMbueb+2qVBuvIdzhjRNerVf44Doi/VWNQehrP/vhdUR636W3Ea1355FBpSp1asOJigwbCt/Q27onL4P0H1S+QEGgN2vSnxQ/gdRnrZWyuey+sMXA/R2FXcscF44el/Z0QodCuaj6q83ocXJ+4w99CKzPLTiTqEr1B+nKqOUvxVu8O5v8fch+fq9sOT3N/ZG/D9n3/OkjAke5UwoPq1Kv1ymYDgcsw+rVV5sUHUiveLIVCrwdHik6kP2WknEk2DpiGemjSt0KDTT8Z/5yvD5YXdAwg/TPz39D/AlJRsMMsr/Gahj5vpCNaF2qSrmXnlXK7lmOG83zr6YMy0v7RQ1fIOdvL9YfpL2c5yQnXPN0OFdPlUra+eaQX4ozTnSLatj2QNpjt1iOk69LLWvSPyl9AH3VO1Q+yqpS81Vk9sh6rsCST862spfJ/j3nAagdcou1tKfTj44iwaW60Iw+DnVN/75ZsLwL3rB15fugQNKLEyog55k5a2mPj0a+Qzh7vzaf4VBXSlYtulTqgiMpztJIR9Lfl59A/h7KrEmfqilBYNmZ5rzLHIpJyXgfErwS+9Q3NClNJT1P7TPyL65jTc5v8a0LaicpRTw7wKHOKV4s6NdxxQNuG6retU6W9oLxYgTeG7EeJ/er3wMFSbH4sxuHqr7wbXtviyt24v27+Gsa6X2WDUDR15/tv6aRfl8b+/1NGZjdrcWhDi64sv/XqFU4qiI2b2Q76cWaTdDuWj5raY9PzVNwAnRVan6/CmUQ8DJOx8INe2RtcuDrkX7g5RgqEjiyJvsRGv0QhAZqhUarUJI/Mr0XdbthXVkV96ReOWnvXNMHRyeNuiX1Ssj9hmch3NW8InGuCrWu6qn7wRh3/GmfpPBmKumnn5ZA/yj9opup0p7WdRmDdL4GjLutTNUHXLerMvPAb6IUmyLXkj40SIRiU6exJvvoQS/EOhP5jUuUqY3Hu+aBNg8sOuLC/t+S3v/KE2S3X4c16UXJ9UhpjZZFbqYf/j/WpYOuAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAaQUAAAAAAAA=eF591mtUzHkYwPGZmtYtpW1Ui9p0o4suKtJ/qCQzqGkilxIpl6iERJSYZDoSTrvCLntW7m1KorDNn1xCuzjpQtuObSZRpkZSM1lbk90X83vmzLN79v/uc868mXO+z/P8GIz//ub0KBy59InbxFlLi548iHkE9pc3GrCNW8BVjBOOb2IVYIP66rARqn6waLMP07Ljn59pvrgTkSH8lcPAR7+wSWqSGoEtnYbXl1eYgh9nzTMNF1qAPSa0yI/UWoLd3nfRJ+sman/PV87OUNuB90TllfISJoPf1p1JbBznAs6xSMv7ZOAOvt3l1zDj66ngrS6SzDERXmC7sLvTYq5NA+e9fnxmtOsMsO87SY6qhgLLue10f9YscNJ8y5ztpf7gc46Wbs0us8F6ZdVexpWB4DVlbZv1lwaBFRsenz2lzwW3GvlsfFLFAz+67+y3JXc+2KZiOj9lXTDYNeHwnkoBHzzRpeQnU3sB+Cb3zVq+Yxi4/pZzodprofb/VPIejuEtAl98PsV+e2w4+LQ02Xb8vsXg2AwGU1G8BBw89P39hpdLwRkD+ha0aQQYfwcGdHsULtftMUuh26NcT7fHEtRjLurRE/XojnpsddTt8TrqkYt6XIN6tA3V7VGBevSr1+2xEPUoQT0eQz0Gox6LUY+hqMfPqMcdqMcK1KMF6jEN9WgYr9sjy/j/ezRHPU5BPVqhHstRj7Wox3eoxyLUYwHqMQr1GIR63EZ6XMWNr7FTUQz0bTntyM4/Hz+LmBWn8R175xm/yKkDg7q9ytn7GZcPXgc/tdBYlu8+urWfio/Q7Zk1pcVf1tgAPuOmcbthi/1sFfVdp27vnrtiQivc3oBH7NbYsMPMe3SHWMXUnQeTT6spkaAX/Bcxm8nmHTakZ6J54a9eEa20GgQXEb/1yRQ5jKLj0TwxkqVh65gs8OstGvOe12QfYdIWaN5uDNzZ90Q9EhxJLLwQO+1Kr3gBmsfa/Z1bp+41AR8iFsrOiScNUEo0rxKbgNbEkWbgm8TKReqrlXqcB2ie41It81ebjwevJy7p+kHqO0RZoXmfFHShOCncGjxHY4FsBCPk85ccZ7QPUmfxGoKjbcEPNZZFi8r9U77gvET3a6O4KnBysQP4BXFNc/e+SUpxPtonmQ5SbrOvE7idOOV4370wFt2P7p9p9u71XqNcwcuIZffNTT4b0HloHx1sUnmKjDy08wYOHmsTcJeqQvvq9xST8WwfT7CauCcsaPEfMnE62mei8Lk7nPd6g8uIu3c6pKUzaSe07/yaj34oUUwHryO2K0oTRhjR36B9OKxUErAr1RdsRSzM8VA3dYpnon05dt5er202M8GuxAWONmNreqhutE89GBN+3PbODzyXWHhs1Iusj1Qy2rfHhclOLokB4PPEPedeFBxgc0rRPrYt38FO/6A1BY6wqZC8pYzRvhZ41Hd9mz0HnEDsr9cV5d1DbUL7/NozV/UK57ngWvClxZH3PlJq9P7grR/c+UCqdRJxYfqwHgGb7kPvk0WDg4llZ+eB1xIPf6qMi3Sg69C9UNpnXxqeugAsJxZuPCQ1V1Ee6J6keHVWX4kIAW8ill189ihXn+OL7s3VnfXdhxaE/tvCs0vev2LQtugeCURN2wMuaM0nvlO9jNWsFovRvZKMs87wuaz1b2Ch8coqPU4jumeDT73rTt7S+k9iYfHUtg/tVC+6d+nuQwsjG7XO0Fj4a4FZuckY+hK6hyGvzDpierUOJV5lUtj2zJrG7zffFeroU+bae+lDnJsReNHwK3oVuqc3myavGQrU3tMbxAUpCdZt7WL8/mNG9Qk2pC4D9y3XWLbn50w/Fiddc4//Bg4jrb8=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAATREAAAAAAAA=eF5FmHk8Vev3x0+uhMTJlEqGRBNliGwtEY5jjCNjFI4xDeRGyXAPzdKkORW3W6gklWTXE6KbilsaSfOk0iTJFPrdu5/l+/Pf5/U+Z9n72fu8n7WerpmP1vYudSGZGulVMXI9s3n0j7E90WVEPpfOGtjbdbFmnC1Zs0F53mKrEZUclUgxmQWnJ0vnCqF/1MUUz/1uRH3nfX3TCl3KbZVZ4uPre79lDqRob/c5ne1CHpaVODobGVKuo82yB7I8BB0C6LmVF5TRAOByXDOt0t2Mct5w9gwvqGXl8ED4o0ii8LkpFMRWd2NM11pSXqXLOM0sOHG2YRpI7aiJU+kOgbZhl6yusNb4fT0mQ3aX8tNnItK7Xz45utsH+OftO9VWzsH/P57ZmZWW+fh9GOnQ9vxpHyQES8GQmr18B8pfTGR0Y2y83Q8GkgEPBeGDbk+ysOb+Qvvjjnj/uuytY275C8eFEOlvhSR4kR8ZiJWe88PWGe9/Iquzbod7f7kK0XJTqa5740X2NMebbWp0xet7Y3m+dm+I8vaFROyvYKtTGUXUZ25Ja14yl3K+PVtx2Garzd9i8vhC/kvPkUFE2KAkI5Z4Uh4yk+1Yc9OkWtqDdDHbp0SaOENvy9A522+IKC8xYOS3qZ1wE3iTAc/UErPIAJCeVDXl7ch5eH/mzLWt2cXKDt6E11S64EFaIBQq5HxwD/DG/2/LWP+Ww5NnbMnVX4cPxOxQI9Etdn4Xcn0oT9FiXfhZHqJKMeEtyd9zQtUcMtIO+Cq+9cX7u23J0+swOKH5YdbaRRol/s0+IH8t44HNZH/KC02YtNyhgg4vZ/KH7wm3ti4xbCz4esxySQDlTi7MGLZNddXnIKLY9mP2wDVbsNKQxL89NZ/ytonMJzXez8ihAUROtjRmTK8DeT9s8h7TL4GU501j85qH7F/XpgPt2ilb68LdieNjJV0FowV4fWrsLv+D43MOGwPPcK6C86lFxFhh2ZMFMQuxvg97VBydlbQvAR7ZfI05omxDaudYqarkB+P3X5fPcH5kcNExEfpuV+uX2jmQ/odjjIfHheD6GrEj6vrL9eNDgVel9rHtrDsplI65O0khlPKNArbYLyPpuFYSvNkxX84wYhEY3J783bcAeZw7syxn6/WcFWLoc+a1D/mWDJOGsKmb5og5LolcwvAN7Y9EP14N659fj2tc4ELg6Wv2XDPyOEe2o05+eWFsOvQ13rnKLvMncswqw+vxYXh97qzipl0R0+ckgXSIm+HJsT4QfUhxSblcOOWlQkY6/tv6T+MiQKN79YUjBV6wqShCPiH3/3lLb/WSVJMIkOWF7DSP9SPilPTgz2YRlHu7s716j4snLI4DxTy/X4HFQMoTrCKUapFnzWSffcy+pCbMAMV+J01d9XBQDbCQ1PpHUl4vYjTn5Uh8Eqzht3K1bM2hCaBceN2d9wF5QxRTsbdIJdAsAco+B6ne8YiFd232EUdWRlEOYmbby8AtZ6yC4VStaP37HIAvl9NH75KOxuc7ncmacf8qI0yAxsbnE8UeAcRUqfXghW3I47zY4VFRCxcdXE6GWHJ+BO8R1I+/qC/B89B7vSeTDw76EUrQj/2Ys69ZCFpizAj6Efbspn7swKyx9Nyjni0CSKJ+hO4L1I9xmBceKl1rc+Pf381tzo/EC/3YSX1JahumvUw+6AES6kfyyZL6MR5zqSQt4elpH+jbzvmRpMpQP37G7Bmafsz7rCcMUD+SpaXUj68w5yX+0/rPnwHQQ/1IGhyoH5sxy+S+nG6sPYrwPDk/gvJV6scW6kvYGqqVsXTuBNLfxvkRyuKoHx9itr2WLrtfJBj0I+Q+Rj9idj9jb3DYMhLCqR9hPkP9aIjZNKLY3rByNdRTP8Ir9GM25hENwsAZh9OAZ8X5kZSgH2uoL0m5zoyTRU5r4Cf1I0mbSP14EXOF+aaTJdsl//5+OD8SZfRjMebxw13WHW9bAXxe7n9+hEL0I6G+hEKdEuh+kATy1I+kCf1YvZjm1c8aesuKE2Ej9SPJ+pv60Qqz6qP3Hd5SSSChfiT78qkfZ2PW8hLVPb2TBK1fOT8SB/RjBebWURPTnj6OAQXqR5CgH08No9nV/FHOrMNx0E39CP7ox52YzU4/mHVjbAhIUT/CC/Rj9lSa9e7FBw3UqMMR6kdYY0f9uBTzCjMdh9wzniDVwPkRHqIf/6K+BKNtc0/KlAfBQCXnR/iCfozG3LHNOqduXzyMyOb8SPxvUT9uor4ksy7+HHZfc/mgH4k/j/oxBvPC7mS1ya/iSNwLzo9QiX5Mob6Ew2/OPxtul0V6qR9hI/oxGXP/87ik84JVRJ36kbSjHzcG0xxtUfP3P1+TSUsX50dScpL6cSdmfoYo9XfHFNL1K/g/P4IC+jEe89VpcTvKhkYSOepHcEikfnTIpXnKhNa65bvjCZ/6keSjHwv7aH7945Ha4bxp0H+B8yNZhn6Mx6xQeenCDocIcpH6kWSiH798otng5djSAtlYspz6kTy9RP04CXPDwcCHf0hLSCf1I0jxqR+9MD959u2J3YFQwvmSZ8Q8VKR+HMr50gpOFY7Sz9w+gchEv9d+LhAQQ/UZq4vOt1XQz8uyAU5ajn/lM9AdxXFgxlHeh7ne43jv0hfjaH1bHWYF+lVm339+NQbD+uahfurTQKapaWxmoCNpfCfUrVcYjftzd3mI7tHKZbdtoauR48D/SPkXzLZSukkKQ1SA1tdnWrB/ldb4z88A6t4a3TvSHOHGWP0Pv3a7kuai4KjLPwywvgI7XuP5JKW3dnCBclhSTPkJzHC1SPpRgCetz/tRfgz9nsr53QpCG1i5wCIB8OL+mPvEexIxig1sMzlrjPWbLD3u9h7Y2SICacqhEXlrLM1+DUcdlc550fp8c9YE9wcFbr8wJA9L7LdULbYD8TVV//54HxiXtbip+7051p/AHNUZ+OtUjAcEUU6UNlPugvnIZcuvmXvm0foSE9aFoftLGre/iIj0y5viK68toVrryGxJdChs0S9me7RmYX1jZlTC8GM7dGeSi5STfj3KizG/fd03fGQt1udNZatwf+rn9idPcq58Nuw/Zwzyz5yKhR2BcCnaZ/bPybb/q3/bPknpcUYw6XzKcWKAvBHzTBX33foBvnj949ga3N/oficgtWY3CooaJxCeTwAI7nlC8tb2Ow9r7Gh9iQHT9K6wdPQ0Men15jjp20J5C+ZTay8JSy/b4vsziVHD+aGX2x9nkt26J5a08xmiztuh/88UfaJZfW/95yABXj+f5bvZiXhhoeTLr+3/cWi7QvlHzMpy3XUP3jJk8Hl9wPmjn9tfbYHfnjPw+bgdWZvXnD7GxJvEVzk6av4QYn0T1mzctggyWkRWUQ56VygPwiwQNO1aAID19Zhw3J9/cvuzEFYumCYnHWNKdmstrFSb6EM6e1qMbbJcBtefTc7vURNaichGyuFhL+WRmCdvLCg4d9gVn68pE43zD93v7aAlU5S1TskNZv/K5NfsCyF3b764bTLeHdffll1YMMdmokkoMaccVtdTrorZMVmvQHAzntavsmDe4/wUyPUHflAftiZlmEcoTGqO9X/zWkw0yDy4XeaB1+/Arizjq/TM8ibjKYeky5T/fETzen9lp5g/U/H90WVSsL+g/YYbKD4u2DX+QxicNb+8b9a32WSrg4J2zwScv3gabPsLx/vZ75zIesrhI/JQzLfFJ1u1DqVjfSP2BvYn3Vx/whCr2k3CpbsXg/SFV+Lff3mBvmvQmYtLvXB9LJj6P3Z9P7BWRDrLOE6KXSivx3xjg82RsjeD9c3ZMTj/dXP9jTOBvY8YQfQiyFQdvWFt/Hy49XjPuv3ncT7k2TA2m1Zb9rl4kkTKiR1yU8ybv0fp1jOr8P1XZTWxP+rg+iNXIn9LWqp9VBQMfS9fWqHvAnK2F3My+nC+tJ3GXGr0OJi514t0vuM4+WlD+QnMQwNKcjtJIq2vM5Rlsb+6yfVXQ2HJ3jW12ffCQcG//3luiDaM2sC/K7YbnD9lmM2/yxwzZdxItx/HiQh5HmYPxcIa9dNJuD481hP7sz6uP9MnMfdy7VfqhMEK6WqfNdqu8HpZP3/iBj9c/xlM1dT2WmVFL4KcqMZSPgmzR+modhN7fH+qjNk+7O9Wcf2dgJCNJxc9VooA4eayo5pvF0Bw9SJLchPnY4mAKbwXbdt5ey6xopw0XKG8KZPm0Z5VukemJ+P667AyOD+v4PpDLxK3pTr7c34YZN2NenJ6sh8U+ebJKI3A+ZlnzTy4lyzQbRGTFMpJCPIpmI9KlITb9yTg+oxkBNhfdnL9pTHpd28st3gnhqvB3cVx9XzSmRk1MHwuzt88KTarrO5Tr6cpUQvh+L+/d8rx87AuvXzB2+xlWN+AOSBL+9MOrj+dAQc6NfNPrQkGedV9ffHTncnqIa4+uVuCBtef7VAxylmy3wM6VTgOocj3Yw469/VsUnok1p/OrGim/W0n199ag6NlSafbZjH07+/ssl4TQnTi+rtK6/B8QOLO3l982eWIeih0UQ6VyC9jbkBOn+9kpgP7409cfxwACuvLEzfMCoefKkUBh7YtIH/uVF9uKYvnByEubGbsTk+BdQJ0Uw51yJMwfxz3bqrax5DB9WHz8fzhO9dfT4e6TOcajTFhIG156JRUyxzS/ptFQKZuyP/833X5x82E0jjonclxuI+8BLNPyKt2veql6OcJzBvsz79z/fkM+NlUvUWUsBiknJZsvNvrRFzNR/SPrhisP5M1D+gI8969DDqFHIdy5BmYwy+m/aaotRzfT1P2BPb3TVx/bw2q+w1VeGVxMGT87lux3SLYsXz2s8oAPP+QzGHe2wyLbZuYCP26HCcFyE9gHuTc5/M82WV4fvKJmw8CiGyOxtwXWxdD5g3fn3WiFaA4cp1ZXAfWr4pkxpi97vF1TIEMyslFJcq1MJ++8vV66+oQuj+W6jBSeP7yhpsvFhN/OdONHywdQWPau9+Ex6Lh0NKVe7S20vMXXocf49nqLtTpSYUuI44TU+SrMe8pslTIm7+B1lewYTRxPnnBzSdW0D3v7swRaWYgNSGn4u4tLyLWDPt82QDPbyQO7N/ivm/u69dClx7HoRx5DuZt8z+9OL5yHe7vWiwf55sWbr5xAt3kZLkvZC5RrZp6dcW+MaTNrktgW4H1eW2W803361o3r4TmSo7DKeQhmINnPNVvObQS65uwzjgffeTmIwEJZ8dr937wJ1JFr7/lv5wHXyaKS/d44/kRT8gcfSg3/o3aSug5yXHyEfk2zMUnE67LyKXQ+lUmTDSeP7Vy85UdERskhatpO5Dn2rtiXbX0yN9MutGZD4P19diMTaqX8+qWwlnK4QnyHMw3Wh8dqXFIovUl1sy+VDqftXDzmRDa7jg3v+RZkN535jvrD8wlI67Zz09LxfMrnh1rdcHiu61sKryhHDKQ22DOnDJLxclwLV6/LpuI5193uPnOEPxfrRlR0uQGo+QWHvSReMJq9ZZFH5UiB/sTprpoQmiqWgKMoZwsRs7K0hx82Mn+2aVEvH4LdirOhyO4edGbSNwk7YkXnlzKsbDSMeLHwuba8Kev87C+JJxZJbhv0SoKg/WUE1Pk1eY0Z077UH3s+jys78iKCuh8+Z6bLyPIkJpff37aYQmJo8ZvzfCNB6t5fA+RMZ6/VUUzSg9ESc8OeZEYygnxovyHOs1HD5wv/SVvjPXVmAqcTw9y82owMQ3zh1+RQhK1c6dywfJQWKA8YDa2YrC+D+Mst9kjOy4MFlFOtJB/zKaZ/ypI7UmVGb6fKsxLPP97yM23hkTr1Uj+mbteRD3SVSZ6kh1pqxXuM3DB8z8ew0bfNHz1dZcvWFMOhcjTI2i2V/j2QEl9DT5fO/abIp2Pn3DzsTO0zB4y+84Qb/J/JkTsJw==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA5QEAAAAAAAA=eF7t0FtLkwEABuARpUkgpaBOwmmK5DAEHVrJKlZNktC2TBQ0QrHs4MAIdKwZxiA7YSsDMUTmnOjS5vyy7GvWO7PpWgvCgWMR5I1moNRFCWbYRe/V/kGw5yc8Esk/s4aqxljxIhIrAz9jRQPy26V77vlMsOh9U+nibRxXd6vrysz4XNI7M+3rwNe8O6ZDhzuxq81YFRQfIS8mOr0rtwdRf9bPHDtlQW1lsaN+hxXmhsCE4O+DMy7hruJWP+I9qku/1AM46jm/NWqzHcnKB82N7scQLqyuFV0bxrzf1tyldEAap/igbBlB8elNnzaqnbgiDdWmHBiFc/9CgS1FgL5du82yISCwmGqWzT+Fd2dIl/NmDMonablfbM9Qrk66rLr5HBr/yuy5hnEsTUl+12hfQP9eay3aK+Ljvhs2uewl5B0nl9OiXTD6Mx8e+e6C/eCPoD00gav313frPK/gFSoyB4XXaJLr5go1gCarRWfwAijtb+tVuXFiKHsNLjfYKOnm4xY+JvExyEcTH1f5uMjHLD4q+BjDx7N8tPJxnI/bwx5T+fiWj9/4KOOjlo/X+ejgYw0f5/j4jo8ZfKwPe1zgYxMfA3zM52MrH0f52MpHNx+NfCzj4yQfS8MeIyIi/l9/AXcFWIQ=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAzgMAAAAAAAA=eF5d1H9Q03Ucx3GKwHl6y/AU8CaIyGycKQERaEtAmwrFjwmenGQGImiwoLMGAkNsHFM0QtAK4RTWMAcNxlBgDHzNhEQaZ7pLIk3pEpG7rLzCDjT6g9euO77/PP9/fF7vr5PTzHcjPzlHaH4P7kn2v4XmfISUe7706YAadXkDl33NZXhTVitLS6jA7Zj6K98OVGEs6Kg6fMPnWK4pTB4yn0LQ3Dm+1YGn4fr0ya4tiXVITYpqznhBi4ose7fJ9iWMbouPBR9pwMK+yMwJ2Vd4o2+vwPU5PZZIK3NzrI0w7Xs8uanoa4zYdLnV0mZ4ugUPSlUtiNr57E/Tbxux33M41ev1VhjXjr6q8zIhr1w+r27aBPv9ZRXeI23oFw0r1nxzHlKDT+Bd3QVsk3l8EHm4HfG2hzfSszrw4LLTVIq8E3nfybWbQs34PqxU5+/dBf+qrb/5zLGg0CY+sfEPC/Tr/xzSD3ej4PiTFxV9Peg3bRefM12E0l9xc108EC9RKfL7AcQ2aOojrYhrWjUJixVkdKqlowsdPeg4REc1HR/T8T4dJXQMpuNcOu6ho5aOHXRcMMtxGR176ThOR286yul4iI7NdEyh4006XqXjCjpmzHIcpaOSjnY6htCxmI6tdCymo5WOhXRMoOMlOsbOcpzZ4w7Ush10PRgd4V42sB/7WCGdR24/Y49OKIaNXUn3TPWjf36M1CCXtfAdRM7OEuXL5chmM/guVVdPly5eUIkedpzvlBLxmVhdehLvs479u/yszp4//QUErJjvqN98aX3nR7UwsI53vRYeHhatPIPrrIDvHNzoK0gKqkcou5vvfiC1POST37VQs9XcgU/4h35/Neqwmm3jLlIymwpOZJzFbtaNO1kl27ZW5XcO/qxjNy3FKnT9okcru5Q7Gt3a25l8pgmPWAt3FVUzGJaz04Dt7Ch3VlKwoaRE2IIjrIi7Cww9Zfd62IJQNoY7vLNO4f38oBHjbD536eZ/1/auoRUebAt3uiitxse33AQBq+BuG7rCYnZlt6GG/YE7jjn0tGil/DziWMeuP75XeK00+AKUbAB3HjUpkle4t0PGvsPd2w87+yZOteMW67iDpf3K9Ht3OiBix3gXxiuS2MTeThjYXN6Jn3PWis5GM8Tsdd7Nv3uytogru+CSPtMA3pE9QBphyrfgFlvEu6pynd+uTOtGNWvgnS18MHHwaFwPlrAq3t1yrf7sPOlF+LC9vMPVkW+9olkErGEP8C5/lUzU7zgGjLFy3qnmteNTQlcrylgr71ag2ms1Fv1fx//wPyWvTmk=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAqAMAAAAAAAA=eF6FlH1M1HUcx8MQkUCu1M6nNcPwoZ0hE4Uc+UFwtswUPXGXgqIiW9PTCZaK8mAwp8eJQoj+LjdJiZKjU3GWChMNEE9nQvSA5w6nkiDx+34kOwQm2PeP963tNuZfr39+//xen9f7m1Z4b8+LF0x1JY59f0sWxpApX7LC52Bc8wBTZoIj/Yd+prx543q9njNVffCZ/Xov07Gw5YbubqbN1gBt1lOmtMvBUfHMZLlfbd3TIb8PdNraWpmGX7R57W1h+nlmftnyP5n2/hra+fFtphnb22clXWO6rLeOLqpiasweM91xlinyQUvQtFKm1yfHF+1SmMJPvDr6Ri5TisU3MCCdaZE+4VakkWn1mowNS+OZvJuSyqMXMh2Y5KXzDWe60nNzjBLElCzmxHT6M72n6fLrcQk6+Uq1vsIpqLRgyBeaWkHz67JmDDslyFKQ/LXJLGjlsQVv5m0WtO3DyDneSwRddMTXt0wXlJsXXjjiNUHmoavSsh+pNDv2ZIzuikrbKrWHu4+oNE5Z2/qLUaUMeKz18HgOHjPg8ZCHR4uHx53weNTDoy881r7EY8MgHmfDYyo8LobHxEE81gzi8QQ8fgePUfCowOOn8Jji4XH/SzyOgsfd8Fg5NSbkueQFsAZelcXWALtkEZgPz998+dWoaMli8Ay8H0hIHr9M0gTuwh2mdDZ83y7v8A5oxl06gk//9qyPqQ28hDsVGlvXp/bI+4EK7jbzzthPYl3yDuAm3LFsp3FTThdTKbgdd31kti3xUZkegkW4s76vXnOrjSkWNOHurrFPIhruM/0D+rg72G06Neyu7B28ii429Dv3bWxiSgJz0Eml3Rj67w35P2AIujGMD51kucq0AqxCR5aykc/ifpIdgu6uIhxLl00sZ5oFRqCz/geu5q7jTH3gCHS3421DUE2B7A4MQ4cZulCbOUe+G+AWdGlf03lnwedM18CF6PRdq/L74ySmaaB7/yWa2CNGvbw7OAQdB6asvG2PYvIHTeg6zr/a6dJJ36D7vQhubaxr1zIFgevQ/aE/MicqXky5oA47MAwkavofC4oDi7GLyW/tCPNr/J8l2EnW1I+U8z8KygTnYjfD66KtTy2CvMGj2NH6kEVTLqQLSgQN2FWHqPfrXi2oHdyKnV0fujH7+FxBNeAl7K5lrc357QRBDtC9w7NPmlN6e1Syge5dagf+Ory/SaU3QPdOz20tzpxfrtIZMBW7Pe8yva/NVqkC1GDH/wHQv2XcAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAtg8AAAAAAAA=eF5d2Gk81fn7x3FtCoXQoX5I2mgbRGn5GFNaVJZMqyYTNbQnISHKEqXFUlosHZyQItmpr7nsa7Y2kUqKohLRSNu/x+P7Pnf+N5+P6865cR6vz3V9hYvyM9tmLjd+uao+hYzqSIHx1ninah4S2Ls41Pg/N+WXm2mPwcw1DWPqSBV2Xz/07udOPyavXdqSu/cADfF8VFWSW0vxWrz1bVasvJ3hzVo3fXcv/ORGmlIaya0baykNtrWfeUP2oC/LcRitr6NynGJF/Xp9/TVEsHt34G+qny6y5Jwzzp2Z/qQjyCsbCKuhD3Bmxtak56Z7mLued3qT1Snykdm8t1O3htJgOUt3/wvx5zipFxVLyj+cpcStx+qKau/RDHjh33ZNQTExXIHW0rd3ikNokXXaDu9996gSttm1aIXNoUvc3aALwzaMPU8p6tY7lWXu0W14U6CNgcepSK5vUtaAwtZwKj89qt8/sZqewh+ODpPVOryWU1l4KLsh4RLp/ek3smRZNUnCkr35lSL5CO5x/Oc7zj1X6IjpuICal1WUBAdc2nDA4qqQsw+LmtO4IIqoY83qSO8qWgm3jMjq+nI4iDMJFX5tPnaVAitcNLRUq8gKbthvH7XzUwhn3C3j9FubkOhIceWenEpaBQvie4KtekM4yosrnDgilr5nZ460XVdJ92C2ZOCy5x1P7tRay8HZ0+Jod6G5x5CPFXQCXlmm3St75dfva++dabpcRLNGi6qXB1XQLthyhIlu9+JpzK5Iy3nbP9foS7Bj/IxpFbQfnpOx6+7QfSe4jxsfPLLzjafYhdpJ8VROIzfxVlNQyO6NusxluA4z+F2YQLKGc/dmWJdTHqw5ufXceq1wTuPdfO1XdxJp6Dxve7O+MhI7mg1zdJawYYll6TLGj66T3uDUwd1nykgIHxDJO/99YB8bKt3Vb9ydRF+HpztKTiujt1K8Fx5o2lg8MZ21luwIfSB5k3Z8V+lUyS+lJtjR9mG6Yl46i9yi8K5DNZkOOzitilhfSlGw+u3w6VLt0cyyXfWAg24KbU82X3jiXQmtgNt9xv9MN8piOh81CoxMbpGKb7lyg08JrYKFQelG7RuFbNSzrUY3Z6TSydamp64qJaQJb7LePXC6PJvpCfaMsUhLJUe1FsHe5GKaBU+JrXYRtuYz1bHeLV8Nb5PPHlF94h/FNB7e6VjjsnxrFpt1ZH/XtfzbFLy6zn3ywyLSgc9btNWx9Fjm4yl75velafT511+q3qGITsBJxfJuIcWxLHqL7dC80jSaM/5wReKXQhJb+oef7EKlZLay33L9CNN0Wqe+3T7yVCGZwAv6vvdc+I3YhG+ftOQr0+lQ5sO4qxMKaQbs+PBb8FKBO7vUNuNMmWkGSRpkm4muF9BN+NyrO86GpWlMGKdWJijPoIHw14+vzC+gFHhC2QFlLiGCWTx/O77DJJOCx2XrOxUTWcGx40ZJ1D9OY95bJk9Sp0yK8mu6JLAkOg7vVrv6oU3nFrcTPRxAH3fAwZUn8nI/Ni6ezPgeOqKPmvC8RQXtEnoHOYsZfA/l0Mf18LSeNcxN4Mv2oIca6ONesV9bWvevCmOTdvI9TEAfteDlJoVbNvwIYpty+R6qoo/bYM/huv+564cxubl8D93QR3k4Lqks1Tz0DFNFD4Xo4//g2L+WLXqUFs4y0EMd9DEN3nm872nRkXXcU/SQ0MeX8NRDV4Z7fbXlutHDBvSxF75jXG0r0erDeaKHVuij2BveJCpeSI5jJxP4Ht5BHwPgkoKTTUG3slkKevgKfUyCSzveZGqp3WGq6KEb+jgBdu8aK5mmWMA00EMR+qgOPxgv9zF3A8ci0MNG9DESru02atMKSmP56KEb+pgHS/nvmjeqNYsVo4er0EexX0uN6NAWZLAl6OFz9NEIVu3K8IqamsVE6ONO9PEa7Lj4zbd/WrLYM/RQEX1sgrdXhDr3lSew2C6+hw8M+D6K4Lezh5hk7U9mPuihAfp4DJ7hOGdWckAke4MejhvB97Ed/mpi1TxEex3bVcr3MBZ93AlbVM5xGhNyhhmgh+vQR0M4J3Kj4tX9l9l59NAPfQyDh6372tJzOJUd7uZ7mO7D99ET7lPu1nhvnsIE6KEx+ii2Y1H7++EdyZw/esihjwFwzWZB4xTJCu4v9LAcfbSDl0S5mp73yuSq0cP/0MdKeL5ku6kll8M99eB76Ig+dsAvFDJ3yUjncnPQwzcqfB/Fdn7y7fWxY3FcNnp4E33Mg5t/FC4cdE7lOtHDj+ij2KFRJvmrJ+5hfq/4Hnqgj15wxIWxZa4PYzkOPXyDPubB0e7Dl+3zuMGdbuF7qKfE9zEANsie0Lbf5i4n+xffQ4E/30c5uFhd473S7Kvcc0O+hx/Qx8gFvJd652ZKzbPjPFa+d1l4idHYjrmHTafV0ZTlvJ/Y+Q+qZbsyrSW8R2M+E+7I2bxlgos1l2XE9/QA+noMfjYxtfuxaDc7cS5l9Ms59uRcEjY7s7OWDOHxYRJxT0qOsg7YDfM38IP81LUmDyxZL/ZVCfQ5D3YWbd4f0OXLol2VDsitd6az/fq59wNryRG23pIr7XHnGPOCL2IudmWb/+xL/adZE3o+BX0vgYNWW2/9W9eXCYoMDMeGHiXBY+v3ndNqaRT8yfxirFHGOfYOnoD5B1j6098y+ueCWQP25St4H5rE+7Q35ylreYyNeu66aIyDLxWVD/P4XFxDunDAb/1WixqC2Eq4EPNVsJTltDfxm0JYGvZtdbwvdfDAzF87ibQrc1h476jd8EAym9t3sceuhuLhibcXhT73cOb6YCPMP8PDAga3XvUNYZuwrzvhfXKFL7klhp45v4+ptdXY1wtPk0Syn+pjiRqyhM3knu8QdURwcXD/TX4uttzPqCPbK8OYCt6zeLxvs+DuiTJqo1zsOJlFLV/looMpS+n+pZjoe6QC3++uf+syXsgpwtcwl4UnJer5Hoo/ysrwHs7F+1gHry4aKD6r58ptuOv5flRXKL0wf7Jj9eJ7tA7+ff/RRoOqaG4iXIu52JJm03uVul25b3hP8/C+9sKSJt+N1QOOcboJV1z051+g6sXKyTVPqkkTrlx+S/aQ6VluCdyAudhWy/u+qw45wg3iPa7E+9wDq9coNfqZO3JvbetrnXwuUl59rufUw9XUAGspRESP8z3LqdjxLsdcAAcf0ljj5RLIbi7g3/MpeN+vwWs2b6yyfxLIrPuEt+OqL5OCXEWJqVI1GcMNw7svvnOK5t7ARph3wOHV2psK41LZW9xLp7AfNMI196xdHyVEs+TdFvvix0XSLOU0B4PbVRQI75g8sGxaVwj3CF6N+QNYqlu5eQ3LY9uwT9zDfmEF+9xaUFQZE8NijLXHWG+Npnl/bNd/aVZFQlhhxuj1XWNOcAp/8F6L+Vg4MWHWkal6/zIN7CNe2E804Vc/HBNX7EtkHt+60mvWCunuetU+085K8oQzpDeOyZM8x5nDsZhbwMr2/7b0pP7LvLHPVGO/8YODG21ntnnHs/8Frgif7hxDMt+yHOxPVJIWfMvwm+uy5tPcYADvT1/5+Q/4P0Wl9yOdM5kT9qF67Edu8G5B/cvNh0QsYZZFU/yFWIqZ2fu7rmYlJcPFHy5EPHQN5irgJMyLYRUFY+VyzQxWjX3KB/vVPVi+d+QO+4Ox7Klsw9lFWXFkG7pFU8RVUDOcptb31PxHICeQ4+2MuTIcMWXys8v5WcwE+5g69rMV8PfJIfGCj0LWJgipevBQRBsCmrNzNlVQBzzO+Y9YvcFz3GJl3rsxZ7DqXe/Bp29zmdf/u3+Pw8vaRz4sj49lp1IqhbZ910jT6WT8zk/lFCl2oVmdoWkQ5w5LYn4EDpVe16ypmMMKsQ8ex35YDl/w0juq7RDDlswdkKgfm0D1D61OJp8pJ1O4239X+b67Qs4MLsL8T/jlT62xiurprAb7pDz2y1o4RF3SYzsnZJ9Mn10fOyeRDB1tO45NL6fP8KwPxQs2GzpyrbAe5m1w2O8FUlMVb7Bk3Ou6uN+T4Jl/3m61eRPBXP1blBRMr5OT24I5T6mMDsAmZsp5wq9BTAe2wVwXdkuwl5nwIY41lPL77Icv/H5bA6e0+V/8sUfIAh/cdye7JPoyfU56zuYyOgS/Vvknsm9pNIuABVr8/DLcgfk6fD/Qwn5sCjvW6SQVdP7qg2s+J+1xg9JdfyTJ9ZZSMOywequ+RG0a2wanYf4XLL3Cbk3D5yiWje8NG7BfZ8F54SJy6hSy3DHrDJ+F3CTz1hTlppOllAFzy831lcKT2TZYD/PtcOpYAbfCOonZYh+3xX7+N/zGSE3UaJnIMmly/PSEZNoouPCv/KRSSoXNnYWFa8bdYGsKeEdgvhJec71xwfi1KcwQ+7wN9nt9+PW27f41l5KZkamC/P28FDraLDntZnYJmcA9Qr+hddHpLAm+iHks3I25TA9/D2zC9xMB/P3B4BV3h0R2X3NeeFX1LZK9OvqwyKyE+mGdfde1e6VyWfgk3nbR/Pw8/Oi85qC2ThRnhnviAu4La7gvbtTDx8m+TL5LO+bo/lSarWTp2vOymCbAGmetxn85lcdGwWMwF7vl9ZSN9inF3HDcI2a4T4bC+asb8z4vOcgamv90vNafSqImB8dTh4tJ7MVq+rZfZhUyiae8KzAfDueZNHzJHFrESeOe8cV9MxKuTjoy18YwiGtQa3tW53GbRkbLaNrLFNMjOFNtyJWdEzNZGPwsip+Hw7VhTw59eZvBTcY95In7aBrsMk7RYLR8OHfq55ysXok0Wvlkcax7dBGdhYNXd+oGHsxgybAF5kmwTITWn/H3czhnfG9qx311GO4TSvwIrj/+6wKbWPDNL43qc7VNOZ0iEvvG+ejgFLskVgY/w7wCVvs+4fHBbVmc8C/+Hvso/n4F7zijlrPA8xBntfGm6PnIdOr0CgrVLCwkC7hAurUxKTOXRcMzvfm5CD7hNFXij5YCbjjuuVm478TWKK05GRR0kr2NsMo+dTKdLPyMf0ZZ/brv4NvNpSUlN9JYP7wa8wG4SthcVzspg7PGPRiC+9AGpqtr7k3cP57znHC2oUsqg+a5/NM76WUBBcAll/97/OJ/MewirIG52FJq54tG+IdwC/G9LVafvy+XwuaJyz0VCl3YpZIXGt2BGXS0rDnoqmMBpcA7TJrGOXoGc2JvxvwG/PJ4VVnPrr1cDu7Rd7hPCdZvGCG3JdeP66za2+4lmUnK6pyX5A+iXnhgqGGR5PwYJvZwzD/ARk0VxhpeB7lV+N53Ft//xJ45r1Nx/o1grkej38TXJ5Pu3NryyuQU0Xv4ylqR9IafYSwS9sM8BpbN+Cb1op04fXwvdMD3Qz04dKPnyvjsEO7/APM6ts8=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAowkAAAAAAAA=eF5Flns4ldkXx6PSSDKVqX4qZBQNmgq5bJW7UKKHYlLjd9C4lciIRLqSppvcz5FCI0Iy7svscR8S4Rgk45ZbqCQJodG73nnm/e/znHP2fs/an/Vd2yvHfqRX5iZZZF/noLqPR+sqkv3GskqIzQXBn4XnOCupt8HWIp8c58qYfN7LoxrpF8eE6/mE45Vj4GPKoxLhr0bV1DrBaSnkLjbiUaFJK2vlsyNgeDPQgWjzaN/ucgE94RcQ/FLgVeB2Hi2X7N8+73kCKVr+odRgE49GtA9fXGOWAEuUfnn2ahWP/jD8rLXDkgcb/VTdSwV41Gvl6fgiGYCMSzK3pPu4dNfWCdu6h1WQfsw13KiMSxWbJjMOWfZCRfTEBh8ulx7ROZc7IVcJtZlVQsMuXLq3kRt7ovQ3oh31bU/zVi5t0SzvvOLlC3dT1e3d3sbQxgzjHFlzPhjNrjrRFx9DnWo4Dj+2dMMF0SNS2qYxdNUaGeU9Is/BX6N3rL4/mk4p67aeSGgDuZAQ46xT0VT8y+dXu2G2U/eU2FQUHfSz3r/TaxjqanObVx2PokfK5OI2TpWRwPKAyNaGSPqksoDPfzZNJGdSpZLkIql+79ccM8NKGCi5sDzZNYJqr5zZJfkwFbaoqNvJ3Amnnk4JQdUhn0jRdc8aQxpGj2qk5ch4jkHwBr027+rbdLr3R8uV31whOlEei0TLQ+k3YsFhYbqNJCl8nR4n5RY1OZVRnCmSQx6YJigI+N2k+lUnH7zpKQEfD450q9t1ev0Hg2ab80MgpqUscjvvKh38s9ZZMrkepjP7fe61BNOxxl/TkzV6wPxE7/64p5foc7vtUqMDdXBwq9e7wLDzVJPz4nCJbCeJEjN7UmAXQLfkXPUy2jkI745dUz+qc4oqRZ9ZlunZBpu87d4tinanEtZxDR+eNoG33lWjnK/s6ObERCEVi6dEuQbefb3ZnEovuVX83PYaWe6IPuZYHnfLFC4hY6yPa2IUuHKmQC7z0McY5xrXN2F84uWOPlr62i0rjG0H6/noY6iz1Lr3gSPgwvr4MOXL0w55Q+hjRi4nbNvfNjAujj6Olp84oJzHgzwF9DGgQjXFTMUPZFgfSYx/s4FiOtSzPubzvm1LXl8Gd53QxwzB9T8ui+wB5Uj08dD6FX497+pgTx76ODrqwM2aKSXLY9DH2XtbI12UwklmMvp4ySrp1skDz2H6I/q4cd5+LcniHoDF6GNGRNMSsxk+PGF9tLgS+X3FRAfIB6GPRbobxytfvgSJF+hj8MVYztpnI6DORx957vtST669Q7xb0cdH0/wb2aOTpHMSfXy9QfXp2+1PYPdv6KPEQaVNRZxqaNJFH1MurPqoGjlNWs+jj7UK7wNeD72HBnH0cXuazS/DIkkk8B76SKSWvS2kjUSV9dH+ayW+Q0AhkTVGHy/X2n/33qIB3h9GH8fVOmxKvxmECVX0sSzXQGxcsR5esz4yedDdBREu6ONFbVmXeyM18FQXfcz5M19Ue/wlmZrdy/io03vOYGR8COr2oI/fsT4WBaKPq1kfF/yEPqqzPq6xKmR8PH5JTyzrxQ2ywQF9tLGae8KzSL5O0rbNc2zNcoEecrZnkrzFthISz/paYGtkf06VEn2TR52lZjx638LWbJdjESk3RubIq4/q7yskQ2y+itiY2boufEJ05kXHLp3j/dNCk6/2VRPOfOTB04EpGof45J0H+l78Zf3sXOgL+PtKmvFcfibk8QJMCsDHE7lz4OnM4hWdsFgY+6FJfnNSXOgAOD2oKFDU59Hvm+ut7V73g/xd5D2PCzRXzPXLebZfzvJbLEx+H4CInZ7rhLV4tPncmfkiqwcg2gjZyU7bJbL3BcT2Yz8dz79eIehaDRE/RxZlbuFRQ+Z96kAkALlPRW39gohYkr8C+80jKcn6rf9DEBo08bq+fu79yY7y02/9iPgAct9yfnPl+2ywVMR+PPil3lZp4HZ5qdhHUR49wLJOMPJKb+mOIsEIiGD71fFmb1n2gbtQcqvaf+cHLj3TrVa572wmTN5Ansc8WRDF9nMakw9FwDuW+lt6038cxXJ6rc/l+ouFMOWC/X500aiool0LtGlVXQ55zKUf99obbfrQCotUkftSNiy0Hu4F1yjMA9FMXl7T4lZQqjQ7v/QSl8ZMiI7y49pA6Bny9K+PE8Km+CCejXnxgNk/E1rELbI8zLk0jmXpNcj7twb5bvZLI0ejMU92dah4h+1/RHI2C5zpW86lzSv+0AmYug2CSsgWzPfvE5WHmDcLmP9fBkFThv286v/4zDhyqvKd/6vcq4WtnzCPwg09NGbC2uFb/na5Qt8Y9ryfw9Ea5ELF+K/sy/pgVgTz6s+lPWusi9ogEcyzPdbG0DGmPp3wuRh5vOnAbOZQI7ixeYb1boKV8hv9ezKjaQrLx+SQHZh6t8NoMOZdGpvnV/wXndHSiqapLE/5Ikv/HlSzmtsDA39jHsYz9e6HJZ6tofG5UXQJcx69oOeKfGwLV8zXawRC6jEvBZh6dIKkCL9aRzaKfvr85ekAESlkm5+0Sp10y0lXHeYpkwdWQ+Sv5PEtu8/9x3HFyAqHd6xum5giiZ8wbwWZ9ftJU69bykBNBJ1h1u8jkVXIa5n8rYJpwDxG/4thl8SH+YeFI6gVy2fXIgc8PpxIRvMhkbD3B+Z8BshRy/T27m3hNII5v9ckyAP5hJiVgl35JyIWjHk+y+xfTbr2xmRXGIfRzn9ZCvnz69Whww0fIGYd5r0p09/d8MZZvdB2723qyOzXAW/8kX2p87D8/SJCuTgPzJn3vQRRtt13Fu4IpVksd3GQvZjf1xDLCJwXycx5lhBLn2kN5dW32H4oIQankDkBswfincuIAnu/eeAuQUyScyGF871FQ+ENGt/yJbCC4dBBZNm4qk7RVaXAccZ5g750gelpl8/uktdYn7pA3xV53qklxt5XBiFQDecR1r8LasauaiZahlBLlkOEfmFYnlm/Ebof47x6xKzXAv1xUeWjR4LY/VqAz0NufbWpya/jBUS74TxrULu27n5jB4zOCFyV3XGRBq+rVMsI/AscFwgyjPerRtiiifNussz9ZtxsGXGJ3a2p+TaQSks4aHikORLdHOTjTL52Esev8H7WxKzPh4WLhfYtGDpNJclNdzuBUhjPX8iwlpO8kqRxP/yPg/PyX//Fryu3b7x3kn5m/W9NQHZk+rET/vLFeYr1a4BrTXuaQxc6sf3bAE8+Ip9m8rcBckxx3uL6RWA4YqCob2JOJ5n1/wAnZUOGt7HzOEAN5/E/dzXDxA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//u6FJpP5/+8/JGx808T/7z9Q/cjQPP/vPwCocAZM/u8/fsPD4uH87z+wuMty8PrvP6XlfHVr+O8/hZ/S3Uf17z+kk3CFe/HvPxeuX/j87O8/V3Q1T8Pn7z9CYB0SxuHvP/s9oyH92u8/RTtao2DT7z9s7Cvx6MrvP646iYqOwe8/aynqB0q37z+5CRwOFKzvP5IrwUDln+8/fAjSNraS7z+Miatvf4TvP6RvYkg5de8/ZBaw8Ntk7z+LclNeX1PvP6LEQUG7QO8/DG4t+eYs7z83HBKJ2RfvP/XdgomJAe8/d+i+HO3p7j9Jymrh+dDuP6tzqeOktu4/h0mHj+Ka7j/pKYKhpn3uP9ybkRbkXu4/V8T4G40+7j8bs7r9khzuPxKKoRTm+O0/RzUms3XT7T/EhokRMKztPxT9vDgCg+0/ERSxvA==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAMAQAAAAAAAA=eF41zn0w22ccAHB3nFG14BQb3TRbmSJbh9VLnrLVrtId5r0r1lIvPWeWM0K9VqjGa72WqrcQMRpBFLX1Z1/vCREvoYoK06orS1sZm7uZbncef37++3TS5LH25QhI61ZxNJNJyHE58DLTz1fNDSH92/yjq5QwiBoqtuzcmIA3+QeGwq+DbL0S0DWG7o8knxjI37HukbImwA37pUyPuxWXiWYGbGy1i5LhvblL8g2TCZjGTvW++qryyU30WsZw0AxPh1+Fyol/DUpAefnAzJDex6k7qSjNfjw5WIUFZ622y7aCJcDG9jc/1SkwSEAnn0nCpmpz4W9ehtGckgSo2PfCCkOkNV8Rpx2W/iFVF4BAV1rOrh4HW2ySrxgC3ZmE7aMkudpmEUy6zYd8Qx2HM9ithiTpsTdM4nJjRaz1mVKYpeq3SObF4Iedbt2b47yeRjQETU1EM8uAP9WTdDJODJXYRttTov0JD8Jru7a9XnwXDEiiIZquGJyxVZqtel7+W45WItx/4B6rBEd9QbhN+xiMYwuFK/IkVIfuO5lpXgqsBscvr1qvuo5BE3bxEUV/XhsXhe9tdkg8aoHvY7RN2xiFSOwnlp9HlYmbkBnr/B3TGDao7HWFh2WOAgXbolQnx4Bcjyot3Be4pXVQYa5wPE0ehVrsecZe9ZIDB71Lms536KqH6CJ/MocQAQlb2u3oFTbIRgq9wrGZWQ543lrsfnhRBNvYXDa9spfEQSz+aG3QdgPoR2dxr/0phALs5AB5sblRHQqw2lWa0m4EyaxnVkueEIKwpQyPCPLFWiSjyZq0KT8DhR60fsNUCIe+0hw4bmNfhS7fXNLVoTVBZLwd5SmMQAC2l/NarjG1AvFmpAkQ3Aw6n1A6Hn43AlzspxEudoJX9Sie0UscSbwPPMZ+M0kxDHTsc9YexnaR//80vW1lhTyw/J2vv5A1DIdOS2e1CX2akVbfR1zTxhZI0Cv9TevEMGhgsx0XvVxK+CiJpqMl/YUPeYuqJrzuIUjBbkti8T5u4qM48hd3xsStMFN9NI7jOgRZ2JtMw5rp0BJkt2nGTo5qA6T7LWNrdRDOYl9/sS8yE2Qi0aIXvWGnDe4uhNOz4wZhBHtWzGcbr10nUo8/k00mtoO4SoMcpjEIN7BDvEt2XckFRO5bSpdCSQBO89S6hOoByMeOUdsLcFBOJ2aJD/v2MgTwvMeMRnw2AIf2DbR4PHchnojx43GW3+kAtdScInJ/Pxx6/yc5S/34LWLjnmd3dlYHXMhwelvl2Q9/YDNFpxjnTOKJ79/Pn95UfwDqsaGKE6t9EIodSUvOqGrfpd4aWjF+zXoA3iOLOTX0PriNzfzUsGXn0RVifyzyRYpqJxh+QKSo7gMoiw/cs2XpZNdAR1zjHed0Zidktvo/d84GaMBeO5/WUpFYT/wH2/u18A==AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_7200.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_7200.vtu new file mode 100644 index 00000000000..2a52c06fd0c --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_7200.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.5457522202e-05" RangeMax="0.0030141567584" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="11872" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.91830124392" RangeMax="0.99999994956" offset="11968" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="11574.27897" RangeMax="16611.457127" offset="13304" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="21628" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="21720" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2456493874e-05" RangeMax="7.6689576487e-05" offset="21816" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0.62004186284" RangeMax="350.71702967" offset="22616" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.001547015933" offset="26124" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.5787591714e-05" RangeMax="0.0030215782645" offset="28016" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-9171.7294877" RangeMax="0" offset="33960" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-9171.7294877" RangeMax="0" offset="34648" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.9177025818" RangeMax="0.99999975748" offset="35972" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="11568.408745" RangeMax="16633.261585" offset="37276" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.3170792565e-08" RangeMax="3.6921640114e-07" offset="42684" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="45908" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.92032897614" RangeMax="0.99999683726" offset="45980" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="11595.136707" RangeMax="16536.787642" offset="46468" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="47936" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="49152" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="49884" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="50056" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAuiEAAAAAAAA=eF5l2Hc8lX/8/3GJaHGMzGwys/d54xjZe++sUFEilUqdUskqqRRJWkISDeG86jpCishoD6msBiEUqX59u974/j7f/r3fHs/bu3Ouc53rkA9PboxebAMNfQFPvXWGjTdWjdy9u0IMHYjtlx1yEQBvXQPF9Cs/q0reky79SQodVqKhgE3HHp7TlwAFskdvHpOue7pXwrLcHuXJ2Wp4dgmgdMvlXTdEV8GJxPxF3zKG73j7uAc0HxFCotwJIgnskrDl58ZS8UtTVc/ppHf7b7opT6OiPKtAy81B0ugg2aOHGaTfaL9nM7TSGj2PLdfzoKxCn1dUjP1UNoUfMS3xZ4o4CdOpyu+d03wo574jh6a8AmQxC9UqCiar1GNJ39GbP6qurItypEVl3yTqo09kjwy3ka62oCgu+7I5iq8Mllq70g3ZuUYVPuEygB/31bzOCvEQ9cb0nGqlpShX9VTHJ3tdqDQv2yrgzV994wHp0+rhC+6qqKNbjXaeUvwLkSXZI5Um0kV9816o3EBI4IC8Zbq0G7K+spU13n2Ywb/9epuNjTDR/Vn90Pi8OmrihynJAi118Lu/RmtrI2/1BewsA/PDR/l7qVWKbBKP45ej4dJ/PbUPe0yT0Y3rN0apyw1f7Rg84YYK/cUWWLHpodzjonKTIElYS9X0b29aBPpC+y/f4ZSHP/ZiX5/p8lQ/wD7Ws5jZW7kSHEpqwkFaBhWTPbRiv1fAH5odYAhieF/vkeOHq7dM0f0f8xdxScgQuSVjoTFn+GE5p1hmuYYMTAocrP80Tanu/k7660m76bS3umAUtjBm5LoSMiB7iJwgPSms5etpOwt4p8TnSV3tip6fGR8NWmiHniXRfqnoyROK2YX17tskANSEvV+7aMFE8qlu9XV81T/2kl52jpuXEWcKLy7GzY/ZIABPyB7oe0hPjU1NW//DEcLaBEr5ci2Rgb7jvJSVrqibK3HYzkmZeE0rzcpTkIOWweRD7Z8NYRzvc2HfYD0pV77VCpr6vDysAvVBn+whcwnp9szzR/M63EEt72WYv646avc+kNjY64oGlAW26FWsJDIyEp15/sjBse1ZHgupykBrz2gV0Wc1KFIiXQcutqetsYbIgSINpQkJ1EH2QFcgPXFR9qXiix6gc/3Vmw17lRD/oxQNgUpnFGWlkbazR51QE2HnyYmTgWuDUWwNrbqz+5zYC5Y1x09nrYLrGyYjhYrVAPcgYUm6S2yJW4qsG0g/Qe3PzxnAxVSR5gdLHNDwNi+/gGFN4lFhervkgCSs7doQ5nJUH4zxfjl29o3DwtFMM5BwsD5wfJIGxWQP01tJl3t550/keWd4+8Q2Vva7A9gJ7FI7zWOL1BULnmlIaRPhx5LMhr3EIeR4SbbHZ3Xgufs2estxLgMK9opE7oKHnTS4lXLg81CUOTiTPQzIk954sFXv1GsHAL7b44sWeIDrpbUxfpoW6MuvU3ItKroEo5jVTXWvILByLxkbqaPAvtbdI0e2chp8wg4uSuz9vIYQODUx3pVlP9PD82nSt04/MDwrbQUhbb3v+WSD4UJMSYhWIUJVHSfiIvX1CW5iT2hUKQWirgy78rasREf/7f/Qv4+dv0inSXuXJjiIaJ376egKBWQPVe2kK8Y0GF2KpEGMkCTXuxMRwHx3XupJhCGiCXCULF1rQAiJNSTZARd07vaqLjORQo7Ky399aR2uksROP2Y7b/NiDeAUPX3M9ZwP1JI9nMTutH95VqCJMbCfkVKtbVoL18v2fDgYY4x+Cr+Ltd1MJTb6eaop3+KB1vN3WN+GjzFs8X4Zdu0N2UbchVogJD5ftM3KByrJHlqwM85dfqa40RR8yiRatRdEwuPbV13zkSkqEGNQk3cbEa4KTXnqFH5IM36V8oNXB77QSnaE6n6sUsf+wep9QglNF57wrJ/3ssJ3pgch7C2sNuEX7pjD/Erx/CGZCNh9bzhVbTUNFTwr5Bm6akwsou2Oj+XiA8OSlMxXNlRQ177nL9Q0pq+OPSHbWeGhtA54hNbeV8j0gG1kDzP9+rKCF7/+Xr+/T8lq3hJYAw8beDjr63RRUVBhi3cAjchSlugI3b0IWOP2/UTj1uD9b5/N4AD2C5k503mhK4G3x1fpYIIHNJA9VGMXu+yxt5zPEMSrB8ve1gSD+K+kMZcsRXTSIyGrJsSUkCzbHdtQ94vBaz18dvWAA2zD56dj9xw7UnR2jySMrGOefH/FHZTIHoqwt412nmuyXQnpVzvfZIT6Q9E3Wqz5vGVIaIt8670pU8K5+MjA/LgBxjWu37/SYpxhuzB3wMmjLAY/4klfELgmik18MbzrXcZl1ukKxWQP97HfV3D7ep5bCJwKLgr2KgWAAh+hwusmB7v3+vS++WNGHD58oBF1/KDGOvqHDOvbwaZ/+xSDPOyTlQWBZ5NF0Y/2XbJZEh4zPYrDPtpztcEnWgElVTy1SxMPAYqz08LQo4bQfShteozNguibLKn9NcSFZIMNAs3aTUCoMDst7I2Qgfph0o053qAj8hrom5+t8LpJN+Ame0TDLn11X63ZJmPkUnShilc1FDLzP77r3YSg+/jFK+15FkRtwe3nPzMoSLL6jaRxlRm8PrEraWHR0uph7Al6sv2b/DXR5ymH9IoD/nCE7BEtm3SXpCVR12xpyK3HeuB3dhic6KrUjB3ThAo9rYTDZ1cRuQ+mb8pQFiDKwcSaNUHWMI/yp9SvYX41YJ+m6Eru2KaAtDn6Ll5a7ge5ZI9eYa/auqV4S6UOqpoo5RreGgJ6Rpwcvwalgf6CaeFQaEmEnp/efIZzgvpoR2/BxiYbYMH/MrEvCrfqkY0RQlVZPQHGD3zAkOxRDPbU9kvjlKtyaPGCy2Wh14Mgb1+Vi+ukMLCMXqgfMbIiVMZ1zhdTh6j652pSe06YAGvQfR5hzqoqCvYhFvMA8XoKOrtUnD1kpyecJnvUNkK6sLnEgUamGLr/VjPfNyQY8sNGu3gEBcF440t1KzNr4uCvR2d8uz9RXyy/nLonTgPv368Kwz4R2ndA4dFSVJLkSkk95wWnyR5RsCuFfdEUixNBQ7fYmqem1sAZC5Wodm1+CPrCfTrP0oboYV+Xt3h/P/UF8HFHJaqj0dXk+cuxc9+zdOMXWITOT0ge15bxgXyyRzO94f7qt7Fygog1I2aT2NA6WJccPzCpxAnO69ZzsHTZEAqfzAm61GsqLUGu9d1yfTTz+sdgH9hjKeSr9YfqI+v1VtTPD8LJHtGwH2ALZFG6uhhp2Uyc0Q9bD7tsjTZWfViIlhRJFLx5Z0s8W7lzcp90F6O8sllHLkdxdp8T+5RS61OVShZYJTXinX/TD06TPczHLtQWxfX3eoZW3awEq6RokOWAitxpadTd26nP6LUjNvMcLj0nPMFQtW6IWNhghGxavPRdeT/pF8x481v/+UlCIC0qZ39+nT8sJ3uY6VU/OnA8IuSAx1zpqJFwFIiv9qx/yi2AaHwVWx7vtCcKqgUPjl/5yNiDttutNjWePf+M73TwX+G+YwlcjJgaFo11nukhBruyp0/88VXCMFgp+Ov8p7XgbHJRuLVDBcKsNmxTojsQ1+q0xoLvsaBd/9n3xp6S+TblT640au+XXSZLcQRjskdl2KcFfey09qqj40/4jNKCwyFjfUBv8N/fFzE7lLfTkxyJ/hrdi5J/f18k5xsKUUY0Z/cLsOuLXOZap6SLgLd6wzwxG0gjezSM/Y4Z21RviTkSHTKP2ZoRCq1hI0N57uZAS35payniRCw6T1vNRxdAk6f73qpXS8ztY8/IqL13dkwfiS8/4LbH1R3ayR51Y1+a8ML3jKwl2ie3UwKEQ2DRl53XRJpp8EPIznsvlzOx8mrcS+50PhTA/4Ktrm/u+lwuTHrbM+Fi8TIdNJ3a2mki7ASLyR6pz3hw85U8ZI4aNfgNrl0Ngr19lC/qSQiChhTS3h12JlwYhR5LTlJQ4H/2Y7DzSsemnYrQRBmFYRnFn+zgINmjTOyZtrdZct1piG+n90XntECgNPsYHC7QheF51MUCr5yJwZWDy9d6LkKB3HvbeO/xQCbrZKxhJrdBN/ZEgeN0Rd2VqOyx0brnq1xgAdkjCivpuTHf/f0/G6BYicN8Go8C4S61l1drQAx6OiRcpfxdiDgnj1sdESNUy2tjXqrrvlFnzt+NvWbESo/LkQ9ZPeZWPXTSAUrIHgl0kn7DKqCbT0oKMf2Tj/4BLyi5kUc8rRBHw+fZclTeuBDfQK1Z5c0I49BF+ilvLdnZ+3Mb9hSb3CzdNj7oECtodF2+CkrJHmb6NhftycxjUiCxZnXG5it2YJ4wdSD1wd/7QPbO4ZUKrsRGaqzIErbfjBavTsXonfqz+93HSV+yr/me5UVJ8GgOHuh/oAnWZA+SuN/OtF60JHUlqDFNdb7AL4Z1y0TbhL8aGqoZXvamyJVY/8Qxt57GCq+2p6gG9pnOnR/7hCj34VJjWWjZ0+4oY0kFC7KHeuwqpg0/j05oQFuc/CDVWwnOZyZkaGzTROVvw6jpim6EeEaYfNJudnhoo3h//yErsAg8lXKS2l814++uu3rxPpeHedmPHbSzzeAs2cOMi0iHj0op6MArvP+tiW5Z9Er97+cjLs9jsxuRve61vfuZ+XBX8dkRljA0e37Jg6Rn9t7ySayTgzVh8w+0SlNnemDifrn38rYsJy14FJr2Xv6lOQzst41PoUihiP1n3ArG3Ahb/Uard6+/MSr+sx+EfdwNNdZyCIBVcvTHlH1m8IHswQ17U5R5vly6DLhG3vRyWusKMbvehJ2IaaKW721e9HmzOzH8Ijw+8V4+o/A/+5nYI3NEg0V5ahkjdp2u7yeMQHL7v55RgD3IK5UvwqaV4Yn3LU00RTK6+IHZfO/YVsKdsCy/G55nO0DdFeG0MofJM/f6PCTd9vN7Le2RRSiBYs7b/1wZzMkezbjA8UWXuvsFUbNPymiKujnkrn9tUcutBj09v8M9TDyIu5w8lk/4WNG1ZZ0V9RTq7P4A9vGto9+eLJFF54783sL43kzNI3vE2kt6jae6nV+TBjqDz3f/ldNvsecGwPJb10CL8CA2r9kUO38ZF6r+fl/uBd0RjtUzH+/eyV7N/EV6msiW6Ktl6ijlFLnfRPaoALs6Z37UnVwjRPxZ59hIN0LRAhMuvoP6wHRj/k5c6Em8X7Skjjl/KdLO/sXxXddt9vwF2FPT/U3lBNVR77YNm++Jr4Ioskfd2JNOeK3ryECoWWXpmKGDMrqL9nZVfFkBdy/die076EnEaKQ0cVydotIPMV7ni9nNfX6xU1Jk2+NOiqF1US0DisII6skezSsivTyk81mWmRJ6gPedWvJPmbOzIOZP6HPk9CLozQL1jRc7GIcIUfOt8avm3t9p0lXoF9Jvlo0xjP+80gs3XQFhZA/duD9VKHVs2ocVZD+aDZ+WMUM8J1zYlsQKIcn6mnFXVy+iJUTJxnDzF8bCeWOZGnR5YDOPkFv95In+jFeq5WWLHOaGTetTGwgp05ke6NjlP2xxOMqyHDa+2KPzjmKPWvuuJjVQRJHwSd59Ru1exDW/ZaVf6V8ZXHh/5vzq2J/l+96ib+OBI5s8O2qiaKiN7EEA+/QRzYQPLBKz+4d1uebvviqGutev41Vw9ibslejJHZYjDJUXFu2P1XVnv7+Cokhvk4uQ2azIB3zsze8/DqqgLLIHOu7XSG7tyGGRAi4ETSV0e6DkfOhJWSWNJDkMNnTneBMhm7wFMizGGc9kuus5hZ1n91mwu95MULqSLQhvm47Ub+Z8xOAme5jx6cKyZNEhWXh5s+txzzMXYGd/ZXHtjgqKcP+0zULIhxiNV5q8UsMCzcV0z7vvLOaef7CPSVQVsB2ShmN1S1ZeeKiMOMkeNmHnb896V7ZFHZoE91r2SWshuv5a18FTWoh59lRSUbYPoXNdIWJZ5wJ4gH2B1FDjnfZx/Rk3WaNVes1ZEcxtPD+sqVFHSWQPLOdIL3J0/OO0RRdaV+884CluCMSX2vjG7TqoYJm3FKXbhzBfKDC6mWUhPNzQGDxmaDn3+mP/vcHqWk+NMhiMeN1Mlvz7OSV76MZ+8Qob/9NcffA5kNR0tsEZgdvHpIbLuujGw9ivPQG+xHTedp4toYvgp8m3lXvWfWTM7LdhH5yy4jxvsRI6Oj9kBLeaodtkDw+x818SstT+YTC7f7uGklX3Wg91J2Xcrn7lS1xTf6u+9d5iUKX9//sz/vSAdWBwqypkNtptXq9vMdPDjO8vUNmW5UEFX7wvaFZ51LxOD0nmmu1qlvUjOC29mfeLFsPDcf36rlyd2eufBft+t4d18VdU4ZFysmwN3yrEQ/bQnUP6Xtvay/76VGgNPKe3S8YKCbywl7xgqIte+XmqcJ7zIwofpVxqfLvw/+yXY/9ir7Yo+5oK+Fjc8io0MUN8ZA/3sVfxGi87vcUAfH/H3OwzcEFCMR9K2a5pI5rYupcWEv6EuQ/j0D0BTphcHSY75Tc8+3xVgN3dMsu58pYSiOhLGJcXmyM+socg7KMva3a9uaEHPni/qG/AL7fRAEle/JXyM8KfeC7Oe7RpHhdoUb5pyRXOPZ/QsEvf8qQvuKAOJiH3aV/fCcExsgfmBexKdmWdyUaQ59Lw56WYD6rMn6d2KMwSqZ8pW3aix5+o0vupdYQiAnL/2ZfEnh7FsvPaAALX06ZtXf7aUEH2MJVPugf7Ho+CQhs4Vabe1PNRBnE0cak79TohyZzVZzWDAwjWct3D4pnSMCpn0BIs4z73/XKS9EnKE+rVbAuYyFQYKKCZAoXsIQj3rYZDay9buEIV3s/p2PSdLdIJMdmlvx8sDiD6FrBXaVlJw5vz+rB0p+3s/ox/U6pZ+2iVBXy1fqYYXGkz0wPLAtK/pFSPDky7QFnyOUbfNXc0tEdB+ebf69hO8ILOdrlAIo1D9nxWiiD0ScJW1T7XudcHOyNppFNY1BD69391twlzRl/IHkKxZ7Jm7O5XtIJO3k3fc+cFIZ+QO7ebeDURTWHF5vVnA4mTrDtLdyxkh294PyTS/BjVQdCAjp0v9E2Rooc83DzwqFjtghlaR/bAlCc9/b2D1tR1bbjiaebB5eeLbnS+4giVUkS0nJDF/h8DCVWZrw0utF8M987atCgtr7nrB7t262Vg6EuC1/y08o5tKxCD7IGO/datHFr0AxUwiHv98vtNPzS8JTH0wDx15D4/IScnbDVxnLHnePRZ1r+fx5SfTz/PPZ/Tsd/vfXP/XbEs7BuSlevWRjM92GOXLVspcMNDEwzx/kK2peZ+sX/vz9GH5Z+9XU0c7V1sfe3cAnAbdi2q//s9zTwxz8q89EsVHbvfL+4nHKKKEIbPz0X2QMO+ls6VXmGpCw1LpkRZd6xCzkFfxzwMdRD9+kvDMr4gIj+0Sy/2JieUF3wteZg9PXt/o2GXmezbey1CGQSKvtysWkFDLmQPTOzRKp+pbC76YJvYqWWu6okcno3LJgzoIRGPUdch5yCipuSNvdDjxbDsP/sU7AOmK/V3v1EF+yTZtU/DLJA92QMrduv0I6rTIVTIyUjRsiGCkK3jtHtetiFi+b5wveqhIOLZyOvgO6NcYDellDPJO/f+dk+Q7tFQPXFRUQMu3ftmNF6sipzIHgqwi3zRkxrbbAxNOqoai9fpg2Okl/s+SRpiEUs6WlURRPyxe5xEb+CFvuK1Q0/q554Pu5eTbrnDPr6nXRtW1K9YHnlZHfzJHmi4zxxpD9NOMAP/AZclkyErYJfERNXZ/daodany/ONDQYTclWrJBWnLYamQ+5alH2lz+9grU2VNQ4tM4A//ycT9qzTQdrKHCezV7ksTWQXtgfF7zMLksRvyWt90aHW8M+r+3RG7STmYkE9+1LVKQQYqsM/sM7FzO+xasMlkFYR/0BO8MqiLvMke6NjH/C7YRr50hROrSzzVvO2RaF2E7PBxF0Svk1RmOgYTLF/5P8tvk4WAjbdffHjmObs/482/VSSmrluCgNyBuKUptkiC7GHGy4OapMZl3WHo3E97RW4r1BCf+p3D3AX1/0lo0koLJuinBeMuCcqC/3/2u7ELBDg/HrG2hDyjysLJG1boHtlDM3bltYO90w1uMNYofKb63GdqlMKVJolhZ0RHnWsvNQb/fX9Ffq64JQO52GfPj92fEZfy8c0q2Ggy2Of+QB9tJHuQxH5+E6WELcINonEfTTixCn10QgXNgudufQomMtYvi3DNkob2ixVSySf+1/0fe7LhYK5kjgVwibSp7F2zEoWQPQRh705f5PjU0hXu4973V59WR4sNKvdR5b69IoRw0P65iWOhOLzQs9zI+it49vUpwq7Vq8m5qIgGd5eLFrmImkEk2UMU9v2hK6S/HXKAcvMR96f9qyGYumtN+jVzRO+32Hk3JITYfaR52bpBAWhtt798s9gbTXQsfH1uk3D1jFdJjHzqizYA9c5UrowTthBD9sAyQLrxFb0ig0xLqI8RqufNWwPX7TtszteYIDrVg/XI/hCii73wh/VWXniS53Ux2tNu7vrBXn+J94PMDm0QqTQVONxhB7fJHoKwt/b9qjNUMQP6aKS6q+h6eKBok6GTo4FkznTlS9eGED+KWC9O7GCDjv/sq2P/1Jmiq1W1Yna/luzBCHv6ro/BNxS0Qa3YdYo9ezU81WU5YHxnMWKyRlJvTIcQLUK9IdFy3YwV+4J/omfSc9cndq3g6lPbB+aBthDrB5O9NMjU+dfDjDfvqO7KaeSGJHz+Y1dbwlO3LoGgr4ybRhKhRPVwVKrFkW5qu/zlx0bfbWb3JbF/4WP1FAhiRSVLkpb86NcFfrJHTOwF8TfqBx0oiHBy+/Hbxhxef6tRPSOnDLVOIic9fEOJjSc35Wjn/KE2axwXG7Lznrs/YB8uTVOa2C+FKo0+xLaZaEA72SPAvmHFx9oGITXUgvf7jN69u5KtB5Ll27ZHHw8lTP2fbvmweTF6s8l9pFU6aO77F/uHx9lEX5wqOo/335E9YsHOthCcbdmpqBr//41NLLbtO/X3e5bvSlDZrVDiasKXnN0XlqC2kN7quIfWc8/P2A8FEIEX6tVQ/b7WJKv3//P34X89mvHfLXvW86sj9Bz3tCaeXWxCmjCgxWNjORpKDA75PsjkZv8/+0zsA/sjywf85FGOmES86VW3mR61YK+TNzoxUa2NnJw0KSmVXrCn5A7HQkV5kHSP1+hSCSN87meNmI9PUR/zC/M92Dz3+46Ofa+/DJtvnxjy4En2sxP2gBiyRzMuNH9kf0WyEkpt8GYcVY6AxM5fLgSSAnqX1L0OxzAis9uc3YsyRr3LSaOwRK6a3adhz2h25HtCE0A92yw7NJe5zPSIiV3fqVCz6Y4MOszJPd0wFA6/zdhzeDv44J3DCv6eg2HEN63GfFHefurD/+wPY+/lvkXPyV6IeN137Xd284AxskczvYhi1xLPGwKI/qzs+GB2FCzfSdXPLRlj0G8rhYzfDSMkTok8lOW6T+3A+/unlKO2JP/WZ2JnSputlyn7RD0aVVaFdruCNtlTZ/pFj+60B5Z+p54w2BiSbxkMG24r1nQ18wLT+klJTk8YsZPZ/2Wgu5fKe3es8hpl7v5Mx951JXRcyIITZe3XSVOzNQDDO/96NOP7bt579jN5GfrQ4qPQxrIeBm0eNCfyaoPqJnt7MfE1hMaoBatgAAf62eK2M2C37Ozr44w98oBvet1HRbR1pf2l62Mc6D3ZI3fsT/p5SiV/6yIn63UcjXRT0OHdNzav2hSYOXWDBV5rCOmpSz2TBfwo/eZCgVR1n9l9llzSL1PKomnvdNG90fumS79rIRWyRzMuwiOsIeVggdzUjjXEM+1Q342gmNoLxkD7urpkeNsaQkI35ODhJzzoQ3LhOpsC57nP1zDpn/qtc+sbtZBOP/M27aQ3fCJ7xBwivacAFfNmmKIB3MfEpjNvV3yj9klKc7+tWEN0o1WHEr7cY9S6CKldcHaZPT9FCjshJvs66iOj72aQVyQtECQ3/+sZC7APC3qM2h+eYPjJV/vG28fCPimDYzszaIju2hPX8mkNMZRiKeVlwQcnv3qFfCvwn7u/uZA+UJfqnxWoA8F3Q3Yw+i1gF9kDE/dho8HbOCbM4OW7rIG4glCwysvoOhFviWj3ji6rXxxOEHGEaLisCBDXWZJvHFo/9/nFLpaQuKbiN4KopUEymRFayJrsgQX7qlT2c7I1NnD/I8O7lt8b7AvNb7J02KIVzj9Fl1mEE02/0fBbPQloecu+17vKfO7+j30wtth72skUbsQd7jIutUUWZA/u2NNW2V2frnKc7Q3KJ9PWqjohlpch0uE7//YWAe9L5aQBgo0SnrFGz93fXpBuo3js9xlJCwg5K4i0lJyRGdkDHffr6dYhn165gK+pM2XDqRi0e/f78KZQF8TM56n9nRdOLKK84H1gJAsmeVFvtnvLzd3/z5C+vu7kZRRnCcuzc1mH/z43JZA9zPTiZ41Skj67weDTo4dfjscj5uvwmOAwD/TS5sLF4sfhxGi/emlInwKo/me/HHu+QJzo1Gk70P3h+6ggx2Kmh3PYTSa/NKzc4w2N/LJXd9uaInbDzwk/wnwQbUw31X1JBPGaOLhq+tBK4I8tqhKwWzP3+cL+8UZhg1+YM5yyodQdA1VgIXuY6QNd8lifCwTAEnw+xerwNPsDvog2fuRFikoEse9Y7avat6rwPC+u8gjr/zy/CXwVPva2igU772HlPeISLkA0XTPp5jVCuAcmdtHPXfcsQgLh4Q5VpuY2S1BRLGn9GeGL9gZvlNofGkFYVnsd3Pb3XA9feR6NTPecfX1isJcuDvqRvtgFXvjX+/9SckFKZA8F2Cslbr5NNQmEF/h8CjmDPJdtfBGzxX4tPTeC4Owa1FbLUYUI1iCFTp3HVPL8j/RpraRbHDy28ed3Z8h2VjHnOO6KlMgeWHBv5572o2353/19xab7fsUgNZtl7YsIT0TL8Cu1r4kgWj54uPYkKEH/VGrQIarS3P05nXTWuyW9SQEO4L1vrbxzcghSJ3tgwb0Me5CfFZfv399Pr3xyV8SggadnohJDVyE0zkc5NBxBeP0GC59eIZif6N9aw0Ob+37EHizw6HZnHhVS8T7Xs389WGDX3KJ3XIFuDdHNtswn57YhLjkvq6dVy4AZ8DDu0YpIwt/r0Ity649Ur+1XWnYUB6KDSTHvr4saVLMEku5YU5PIungJerH67MvohnAUSPaIhvupoYMhX94JISfch9xhTysq4gGWW8RGFctIQlb8tNJoRg+1WVAgt4Ddfu76xK7AcWWZ3MMF6I72w+hrwTwojOzRjHOF+rSFG/Kjtbjnf/7T0OOCFfIWF6sr2hFJfHxW96NxnyiIBA1o5lH/19/fsL9sUTFI3m8MFq7s9rfqncCM7EEV+1pXfsMhfjug4/1erdK6t3e8EW3/dgG5ikiiuTha9FKLCrSt/7Y7yng1OC1L45YdNDRg7iPdLj851WbUCdg0NVenvhWFabIHOu5PDQhfOubtD7dr2TIWnItG/w/GQ4pyAQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAxwMAAAAAAAA=eF5tx3tQ0wUAB3CDgApPd52eDJKLgXiJjqcHgvZzjmjDoJjUhMpNCIIdKK9AvVAPLDFvCrQkeUTzdnCcw8SEgdMDAnkcCkEBQYDiRihzL5HaeIj//Lrf3b6/vz736WjQaVdXjUSHjU5/NK5fppHRLdliopEVJCjS0hjoz3u/m8Z6wZChksbqD3iqfBo13I3PwmiU+uqmnrxARbED7Bs0DutHQsJpFB3akd6xgj7NKs8+SqPj5VrXgWV0f/vVbiaNWeN5kTVLaHFD9Z7+RfRKKj/2gRUdPJf5NZ9Gl9eL7Xda0L8DuEtO/6Hc+s6QqH/RJeWbzpbn6Ow//q1F8+jb66SqmmdoM8t9eq0ZlaZxTgiNaF925fJ+A7qteaUv9SmN/a2/SObQNbJoZeAT9FLmosJhFt31bl9qixb1iCJ0sRrUvtddPfoQlYqU7mFTqCrZEl47gcYUPlaPjqHzV7kVsyPo2PHwMtYw2py/VL0yiPY06E1N/agm8saa1nuUWtK6xPJyTi9a5TmUJL+L2hXGDeZ0oCUD250rW9EE8aYvq9XoiKokf3cL5SjpPrcNmQ6NlFxSqc/v+XXXjcQFGxlB90rXXUONv64V5dah3WbV3mYFmtgWWqeRow6dwiOzleh8l5nXWYZqxzbE3ZShklDvoJiLqJdXydauc5SepFUu3n7Hv0XHZG8FK0+jghDnT5tOoKcKEmq35aGW3GMzpgwjYbXxzA+m96QS9PMH6cz2ZDTxWsR3m8Ro/7yaxY1DlckBTUEfoxkFNzku0eh1xaxlIAJdiIk4lr8PdWa2GuZC0czDj0t9AtGBM6+6fc9GS/OS/M96o7cVeTlR7ujEZBIjnUk5SSp/+Fe8loGKOE73t79GKSbd4yHMtrNH/aWcw1arAcxMcUxvM6H2nCMrfB3qNJYyfHua0pHUc+Gk+sWogWDZqDTaL+8aQjuzGCNePah8tax28o6B+NnGs/oKTo8KjV/Q2W2tRxfZAVWCK2hagdp1rgI9wDyf0VyMlgZO5Am+Qf37UvfKThoIP9L//6OSW34/i/Iyadi0R85gMqoMvtB7S0RZT3pLnBIbfwDtclOwOiLQL3hTm2MItF3cdCcmgPI30jieVei6xUActLHWKJ3hb0alCcu+NetRz0ex7r2voOMCzeIlqx785OJnfnwdpZBUYEpTtE2gJtn4wXf+1BNmG4/Kvzrkc5cyg5Sxk73D3Ih+qOl8w6zUE9E2zlR7J+6uQovO/7TCl6K+8Y+Yk4V6gm3jqdyNU5JsNPj5R5EtCehL9pYl2w==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAQhgAAAAAAAA=eF511XdUz2/cx/GkfpIiGSFRIjsSIq6UrawkSZOShlC0pLQl2omG9i7tIbp0tZdUWpSssndFVrmd+/v63n845/7zcZ7X+3U+3/4p8T+9yP789crvzSsnd61pZi1jOS6Y6mD3p0KD2gpy/AF9sxDHw6m20W8TdajEsO7/+ie6F9wpf7pXU3k/WaLVufWJOmHtSrxTlsk0M+f9HKuOP6i3wFCXXtPguBV9+j6O+86VKghvNSQrDnP8AL3bkONtaua5K5PdiMoHN9UlHZqsUFR5isekZpb3nuPpM3la/YyOUnO4CF0Stgn9Ubw724Z0f+K4FP0ePN0sb6PvrwAy2qXvttM2fXZBuOB2kkAziz3P8Q+/t6P9S0/Tj/BF9CK4+PVOC8NVW4kRfBl9H7zJ8mfKxy8BZMqROPvTxibM8Jx46Ld3TWwS7DpyYOLLnOPUFz6KfhnOXdjz84+8NimDjdAZ7KQl/+ypdiBZ6LFv0oJES5bbczc/urqJacKJmnl9vUeN6WxPjnPQV8MOZz23Te83JA1wEXo77Ix9MWXJyo6Pp5jrRknZvuwmthbmSbHR0PpjSOs3cOyE3g2PSfEZG554jHxT4vg4+k/4WewHse+bA0jkogXPRvmfYTzPfadeutTE2mCPhjD/NnErGvJPL4ST182UUurRoILw4DNOHw9X9ocq9Y72IDOmLB9Zssyeebn+GpEzaWLGsMrbybOmdNrRw7Arug/sNGXOrgMhNnQS7IAuCfPt1Nt7p/A4iXphN0VN7SyTy05hZ/Y2sU8w/9fD39dJmNIAWBb9Dmw2q1S+bJcuye/jWAz9Ntzb2cZb7nCMiMtU+kq/c2LF7np1YoubmC48/Gv13csrzlAtuAj9HDxBdpqJ69jjNGkex8noOXCa9cTQ8jxbul9eYLRzlQtT0RK9f4u/iVnBYl4G5rsrbKg7TNBD4AdRi7e7ijjTHfA6dA1YYUHVEYWLPtQvasLVk62uTL7Lu/nnp3ssBQ4v3m+0eciS3oVXoz+Gy1snDTXKu1JpeA76Ylir6N1bsagguiLLZcuseHe2KX9w0rX6e0wVLlwTvsg1Zxc9C29Dd4c3W/R/Ktp1kTZmcqyI3gKvrhAXrtSJoq9LvwzctfZkOn6GWqsS77FvcEauftdXI3OygHFsgL4MXtfxyzpkdQA1w/vt6CfhmcoCtxP6EujH67PTQ1y8mGjGHDMr/3tsGN7cnSeXclmf8EZxPBFdELZetLdQLS+UhsMz0CPhrBrhkumdSTRzbWbipz3eTE4tp/U/83usDNZ2/2koPXEFjYUXoqfAUd2Th+cahdL+f+6H4FDyQuLg1kSq274+RnW2D9vxdoNS5OZ7zBLe/lLgtk+qNZWHt6IT+NVU3uel8VepIayCzrX79+bdQ04J9O3F4zO6l1xiM1eqzmmVvcd+wMuD+L/rLLKnd+Ap6HXw9pSilcemBVNdH44l0Q/DFmKhGd0ZcdTq0MTC+l+X2eLX/Y76Y+8xF1gr/rg0/wwvqg/LoB+FI9pMvfT4gulzWBb9GbxMsyqs0ySazl9cqH6r3o+RyIj2N72NbCnc0Z+2WfqcD50Ir0efAi83ij/6394gegZWRj8FlyyRlmqRDqPys44d5X/gz96MFlwz414jk4PX250UuivhS0ckOH6Fzoe+4FO/Q1F6AC1Af4KeD29q8RM92BZGVy9u0V/TGsAKWwwXh6U0slWwiM8te0Nxb7r1n861x8nBpXn5QXQGnIk+He49d21L1rgYurfmo+CJW4HMKbpo1jT3RqYGuxjExokuPUedYE90ro9mDWisyg6k9rA7ug2830zVSvp3DHVKFnF8oxzETOs1IpUtG5ktXOd1blxDsAu1gs3QT8HG0Qo7P20Mo1HwGfQY+PZvtX1l6+LoEquiSc3zg1n5Xr6S7G2NbD48clouenWoJ5WGb6FzPc9Y9dh+3mt0OVyJznW79OufDw7F0C5F/YzC8SFMpDO/W3JOI3sIb8ma5dHS4UWfwhPQH8EBv9OXV7SH0mJYGJ1rQ/nzxbIh12lYf4Q2z5UQZqlYzacs1Mi45i8+4L3lpyNNhI+jx8KhHWUBV98EU0NYH90EbpucYyBSH0Xn5bd4+DheYWv9vzRFvbzL5sBHm+fKWr0+QVXgdejKcGloufmUjyH0Sx7Hi9E/w9KXuq/+sY2nITZjsicfCWU8fTMjhtlddgVO23XgTthKS/IQFkbvgosSR4aLN4ZSX5gPneuMrunFEg+T6baxQbfmvg5lUdkZXyem32Wb4Ii7kyqOH7IhevB1dH14KOjpw7i116gcHIi+El41yic2XyWFqq3+Urv53lV2ue5kt67nXca1ep+GwuJ0E6IKe6Fz3fRMPLju4jW6Hb6IzvWirg/fI+ekUVOjvZ3G+deY2/MVZckGdxnXgcW1Bx7oniUrYTv0tfDJ80H8YovCqA3sgc71syieybzPU6iVrusKecUwJv78WX3Wjr8ddtLIsB6oP0ts4Zn/9G1LRkwCJH1pIjwHPQG+uU9S+8BAEq0UtJDtnh3Odg7ILu2Tvsu49sX+DXgHehqcWyB9/VC0D30PH0B/C59VaprZ2hJP+Yr3L3Lnj2C2fOf8p400sN83OZ7tsFFtZvUpIoruiC4ErzJ54bieeNE1sDf6arivZnDf9b2xVFgwKGHMpQgWsH/4jujrBjYanvY2S61cTJcQOBp9HbxpDDGc8SeQasPx6JrwHKl5PJZjYqjQsIb+wlORLLn/+eDS8gY2CpYuF9wtL2xLZOEb6AvhjXfWKMz2uUTl4Fx07vv4hpOrE3yvU5nPU6apaV5ntwJqF+2IbGDisCD2F8B30KXg5u9z8stv/v3/AFejb4Fnal45fkIogh7wEjns1HWd1egJf5H3amB74M/TA8JvnN1DpeFKdCn4VMU8m6CrftQEbkE/Av/RU13psz2Cvnp3yF6wNIppBZ7bLm/YwN7Bc2Jk/9OXkyOP4APoPfDg6VcaZ1b50NXvOTZFXwXbr0q57c5/hWaoJ/pfjY9mXyvfRa9QbGDZcORTYT+33sPUGf6A7gDLiBz8dj/Hjd6CB9Bvw41LtPr93Lzp4wHfKIXJMex7yxgzobkN7Dn8UC/vkUCWDa2Hv6Bz3WQ3oHEy/hQVGORY6D6nj4EDQ372pGgq0p3OPCFLvGLY4f/mLvgwXM/UYIU1EnxP887T1bAu+ho4s9stR2S+PV0Ba6Nz38uPCTY32n+MBgmcvij1PYZVKiq/auysZ4GwysWKKzqPPOg1uAI9Aj5M/zgk2bjQWLgBPQpeg/0Ycd0WHcVY1mjdOONKWT2LhrXGheSvnutAH8N96E9ggY9FgjVj7Kk/XI0eAD/sH/ngFeJK1Wf0dwylx7LO/m/n90fUM01YB/t74A50rgO3hieNMnGhW//pO+DlPX5tfbsCaMs070fBEnGsxlryxSSbetYKr8d+AXwbvRAuMg5q++19llbAVejl8BLs71Z8tOmaQRxb12zTV61fz3bBD6c7y/w6tYdGwdrosbArrbgkkGpKI2FN9OvwzFQvy30jLrRc8FlXa3Mc63u8QPLImnpWCj+yi89rHLKjxfAH9Jtws8TaHM1KAdIAD6DXwQbinO9b0v3CasLGeBbwoVtneGI9k4Ed3T+HLBx9ib7s4tgB/QVcJ8vZvwObo1O4pMFyoonkWSI1Pi7ioXs8u6o+zSP8Vx2bBY87sJ+M5gukP4U59kYfgrOOeTeO5LlRGbwPQ58PPxj8eengUlNySWbSphuD8WzDr4Gq8e117AJMW5Q0lo32ptHwTnSuzzjfTf38zJ4WwvvQb8KTv3L23yh5vHU5msBeJzSNcc+sY2/h4L6LpRU87nTjBo7HJXL6JnjqCZ0enQIjOhbux/0YOOyqqepSERciOd3GRig5gcXWnM8XuFbHZsMr6aul6U3GlOvof7ptqfrmBC1nYgOXo9vBNLoiLbzLm7zKq4k+JZbI5HhPzdewqmO9sAH2h2EF9BF4kYexwVgxJ/IalkV/A6dj33X3jPq2C4ksa71h+HXVOuYBH83e8SQr6TT5BXegf4NLeXOctaLMiALsi74a7o/fNSOMXKSRMkVqEnWJLPxxgLTgyjoWA/9YKOLU6HaZeMKB6F7wolv1C5Udx1GuQ/7p0wbNT5Jwfzo38oiW4NokJm/B+26+cB1bAKfuSdL85uRGxOFV6JLwDLtnz5ZEmRICr0XnOuqtva5S/ylCJ443GkpJYq1Dp3O3vKxlDA5Dr4bb0OvgNcahNtdiLMl/ohy/RReGS51lVWZJ2VHhvcuNv79JYpNibC2uNtUyEfi+1KIHSVnu5PEejn9Fc3oXLKM4SWdRgwPRwfuFuNeGl/0O/uOU70sezW+5aqKdzLzk+mI9U2oZ13mFxmk9rjJ0BPZH51nA8eBu9UdHk13IaNgXXQBehX32x6qhrTaZDZerPzjtWsvKYbUizn7dP/0evNlHqYzntStpg0fQ22Ep7Hs8WlJxcWwKS09qFE41r2UX4J0RkYd7pU5TGzgG3Rp+IuG8dHWaGzkCX0PneqfKyapgJw+S61qywco+hUlUhZQab6plRfBa7IfCE9HD4C3J8UY8C11I4T/3XGeJP3xv7uZHQmV2lhx8lcIce3WsJGfWsnDYZGlvkt6PJWQQvob+DY56HrA9wsyV1MCe6FwXYH9A98d4Oj+VVaX0myrw17IfcMk0JSWpjeephB7Hd9Fnw23rTw69FzhAb+J9KnoR/EQgU2aYhJJ1aRO6poSmsg1bl1yjPTWMwGHYV4EJ+gb4xGzJZdsFrOlyWB59GawRe/+Obdxhoj80L/EEXxrL6T1as6mwhpnC5wx/2Bq0B1JBOABdCC48aSyp6edMW+B29Cb4KvaFB/sSnDanMXWN3lLF6Bo2HvZ7mForfuYCnQvroi+CWy2D08ZXeREH2AbdEZaJex1otz+IWK9TjdmQm8au+yke9rarYWfgnw/H2juUBFA9OAjdAD4eukp6ioAvSYEz0FO578/tK96tHUn2uGVFjJJMZ3l1gbwde2rYXnhUF2c/AK5FD4ZvbvkiJ+DmQj65cnwZ/R1s6H99Xu+Bq8RtX5NroUE6y/A+LZe+poa5wlWfbh7KuhRCveAb6Fzv/LLf+9RLI1IFV6DXwDUm8R3TfK6RPd179R7eTWdOuu0yVKSG7YJFYk2dcyfa0vOwD7orvEF5x5+zP+2JFnweXQOuwP4J4/trfq/NYKbLFWY2va5mlrDrkeRzUsrKlMCa6Fwfx/cLwpvRhWAXpbEKGfzuZGOcuMQ+h7979qZpLi3VbCs8s7340gr1tbQ7lmMt9B74wu+Nh8ZFnCO1eJ+DXgXrNCZ4mCUEE+FlNVsbX2SwZuEZVCO1mo2HPVo5+6Phu+hjYKnlb3QOTHAjQ7IcV6FzXZw8PkM59ToxKLE+tX3fDbYnvqFJxrWaGcN8kbzTB06EUDl4A/oKeJT5dqXA+Rak/jbHIuj34F/q/nZlUTZ0Q8TzLYqBN1jjMYsHuWZ//z6w6qfPkYmugXQ6XIQ+DbYzuao5zsuSNsF/0Fvg9UqB48VajajOWPKRb/gGiwiMurVJpZrpw280ZnasHXCiAXAqegjsVtgb+if0BGmES9Fr4M7LoyzV/APJa7uroU2mmSzgdktk27Rq9gluRm+CXdC5HqyRMXi36wxxgA+iO8JmG8JyS6dfJO3fvWQOJmeyJt3Di9eOqmaP4OL+cIsYxRDyGe5A/wafPhyUEnX+AhH9wfEjdBG4fvkR7yALD+Jg8mGxmWgWs/rP4ZTHgyrmCnP3L8PW6H5w79uix6YjHsQbPo7uCS8bE2003mEBsWvTkDvrlMXkswMKmrL+7sNqozk9DFZEj4CnS0WekB6wIcLwKHRBuIqfc/+sxHpCyO0spjLNukzwWhV7A+u9iRhcuz6I/oI3o/+BP43p79sgYE5iYWn0FFgb976PcgY/i2YzzSLSIXSyigXC2odsmn90RxN/WAs9BN6RajW7TcCFmsBy6Mfg5Ar+mRNVIqn1obRnYtuz2ZYDY9+N31rFbODf58elzum8QhxhNXRneIzwKCebyxfoIByFzjVPU5HU4Jx4+nbRjvi3JtnswqaO/bNkq9gH+Ji/W5nTKm8yCHuhf4XPaRML83hv+gg+jf4YXvzuEb/MqBR60KmTJz0im7WpiDq38lUxbdgS+6ZwLzrXztg/A39Et4VTpF6WXP8eQUubjupbNGezhcq7k727KxnXQha360mWIemAFdG7YeWRpAsyxIk+gAl6JyyH78+tXvaL51M22+rjuMq8opJxXWvMy3t+xIuchaei28P8QmN9erafoaNrOL6Azg+H8SVG9Ex2pTajPl/WlM5hj7898rwXVsns4EIhi5SpHleINfwA3QpuJCnvey+foJZwG/oJOAj769Znz0rTymEnjZQ6VpyqZGtgQYWkmRIhkVQd9kDfCydjXxQ+gD4JTsXv5+kvt/lj89fr5yzv06pkvPBl1fj2l1896a8vHGegc90jVWBmpX2JDsIJ6EPwcdwfFB7OfZ6aw9InznYdWFrJdOBAdHnYH10Ovr8xzujiiUCqCIejc514fl1Q/Z8QKrpA4XNVTw5b/1L8Pi/f398H98ziq7WRcCNmsAP6UXi2s//2uVlB1Bg+h34Enhd+4VSJRwLVsyjJ6fyVwyJT2x1d31UwbZhNviHSOehGZsMn0aVhs5SKGjMVPxoMV6IHwrm6erP6difQT1+XlWxalsuEgqiJQlkF+wxXY38YFkP/DU/xSg3yfB5Eue8F0bl7T3eI5u5RT6XFLvHVWUdyWerZRPUPoRXsJlyO/QG4FX0QtpvQVLvncMD/3aeg34I/Pd475cu1KHrRJfv4WZdcZjKuKmm1cwXzhp9+vlTTWhlI98Dr0XfBOdl+r5WO2tIdsCK6Otxf2heV8SaZhjkcGmWWl8sKqzUd/DQq2FU4apaSYpvMEVII16Pnw2m+TU2dq7eQHLgRPQueeMjbpf+PM62z5gvVepnLJNxeqr1cUMGq4Qv24h3eu0PJT3gT+m/YtnhagUSmFfkCb0T/ChuuN9IzCvYmMldE9TpH57Ha99UOQxMq2CJYdfyRC9rWvrQR3vKB02vh9Hpx2Rs1V2hmCMcncZ8GK+P+FjOsU1mdx343isq+7ytnxXDBhOlHc9L8yGN4+j1OfwSHFzWXTasPp+3wePROuCRo+ZyDK7OpyvvMVRmmeWxOlv7zp8XlbCM848i3h8sOhZHIdxynZnJ6NKzbn+mg7O5GvfFeHfdcv9XbeNHycCxdYms+ucczjznOH/W8MKacLYSFlM91aBxLIZZwBjrXR99u8RRaZkX4YC30sbCa/XsTRY0rdO+agbklRX9/7w/7iZtsytk+2HRp3KxQW1eiCV9H3w93lZQN10ZdIL4wRfeDz+De+Kfjqog3eSyz4bNy045ydgxOG33l45PsVLoO9kZfDy9Isw1cGXuZfIHH3eX0flhhqZx5qdkNEpsa2Gr/Xz7jfTq12WR5OUuGbV5cCZn26gidk8bxIfR58MpbdcofNl4m5Xg/Dp3B3vzLfGys80j1ksiqSoV89pw3O8WDr5zdhY2xnw83oBfAT54YTJ+q5EZuwnXoJXCXra5Gc7Qz2ZOVVCRils9U5+1wjXtQxjTgYwd8qtZ3x5EFsDS6LHxlTPzcCWssqAOsjW4HC+H7YviGjUI985lc4Wzx73fKWBrcfLJ4kYVkFHGFRdA9YF5zg0+ipQ5kCz/HV9A3wjMHul88f+FOE9yP3d9amM+G2nnUY4PKWDrc0aoVXjsUTG/AX9Bz4bEDKb9HmfqRT7B4B6d/4N7j+5J47ysPvcxnxV+feama/N2H8zufOua/mEhkR3M89Runy8Ft+Sq9EWcCyHy834v7hfDx84577cUyiYix38vZowvYjQlVOod2ljEx+ElEhOiI4jHqaMTxCnR3eLzxuwhb0xgyAgej8+B+ffukK+3hGeTNK5GixfIFTER+jbj37DL2ETaM0A7psTlHhmAx9J/wKuzzv+ZYAp1ro93TFwi1FJANx4MvKBgVsKYD6V0F/YwpwefF3+bNmx9BzsC/0bleMTVPdduiBNJowbE9egPsifsdZhZxw84FzGmeUY3jA8ZU4Ralg7fjm73Jtv+na3aJOb+s3f1/947oXOvgXtdY5vOhzAK2N44lyKQzZgC7akZVWnk6033wZvT9cLSI7vghqct0B7wOfTfsgP3/DJ6Rmz0F7MGsWW4tTowJw5NVf5UKpkfQDH2OfdCzYUPLCP03mQepGd6Lzub04/DhylTSSdLI/wCGaSDSAQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAANgIAAAAAAAA=eF7t0dFLE1AUBvBTGoRWFi2QIZqFWD2E0IzK+KQVZSxWRLEpBZmCRa42qjFcW1dt2krXci6b28yZc21qKQWJoL3Mh0Cwh4pgLw0iekgItDl6iO6R/RPB7svHvfecl99ntZy2jBwufEc0nwibKkFfdb89LzWgzYszKaGX91OfPjZfBn3YEo1qr4KmkFhqMsr/EycNxlugM+VHEtMWUPrJxqjaBrpu71eubQXFA1MaeztIlbDOKDpAvwYdbfH7cn5hMtn1EHQnZ0++xQVqKPEvLLpBAZFX4OwBdX+Zq9nZC0rcPt703gsa0JqLbH0gzQ+X0PlAFyOj6gq/3LO9FXlBUNiVVqQGQEedzTntgxBvSuv2dobku9Lk6xkC7Sj8XjHxHEJdsG73/DDEpq1D/uUwRMl5+8quCMhWFTpX/wK0QZ+ajUUhWtwGTzoG0VA+/lc3BlqTPBCcHYf481m1VPkKdNCaH7kwAaHqaBwpm8S+Yu23LqWiunXVcX3GsQy0XS8dqzKONdKHHc/KZMdakJsdL4GOsWNjxvEKaJkdDRlHE2iaHW+CitnRDMoNSUfp/ZMdraBhdrSDbrCjAMXYsQ10jR3vgczs6JAe7NgJes2OTlAtO8oetrFjt+yDHWUfdewo+4iz42PQKDvKXvazowdCw469EEXs6M049kE8YMenEEmddPRBHGLHflCEHQMQXnYMQjxix2cgY4t0lH2tOKRjCHOl7JhbTasnfTeb2czm/5v/ANqGwHs=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAJQoAAAAAAAA=eF4t1Xs8VOkfwPHjssgl4ywVukyLShe5heThkUvSzS9tiS4SomxN7STKcojoYpooRDG6oNLmt6UGPc6zrYgoUdF2s5EZ6VfaVS6x/c54Zv57v87nPPM9zzlzJu3D7N9CRdVuGr0rJ3hWhMEA/9WjL6L/Yqn+Ftk34x5WGx0SRvl8Zqk2m7r+ST3sWvOavaHvKEy18ZoHJvSwU23rgtWtNTE1Dc9t/76Hdek98eyhUA9Ts68c26Pfw0pTP9HghQGmLnttuDKuh+1cJyoOGDXE1EjT+ijVHjb/8pGM41MmYarnhfP5ITnbQJeqlbuYYmqnbiP8KGezQv+6kxs4FVMrhvycOuVsTPwJaVoVH1NWweMSnsjZhMHoTf0+P2Bqwd+NOrVytmn61Np9T8ww5VhS/vSGnE0szBs/HGyBKdHO1vZCORt5xlY/pHcGpoBLiU66nJ1gdHVdlnAWpphMalu0nP3d5ulA3Iglpsy+FnVtlLM5c6QDX5PmYMrX3DDRQ86aP55lP6Q5D1OV2W0OM+XsaqtRz8CjVpjapO35TUvOevW3OiZpWGOqwgs/ksvYVZl1i3bWcv6n0fNirYyN2lIfvDXFBlPCQ/2CczLW58qOPH8PW8zcsxdaxsnY3MSXh60pO8xMkZpifxl73vNSQG8V54IN78wtZezIZpUGYbQ9ZgZXaHmPdLM/FunQaP4CzIQs1dVr6majnOjr12Wcl9RUB+d1szURedFL8h0w1bog0XxbN1sZGeMW7u+IqZW/5DlYd7OqX+PlIxpOmPGeYbr7y1t2ddWv5gNSJ0zJYvNLKt6yJzcn+bpFLsSM/5y+K7Fv2Q2CTKvqic6Y6UnN9XB4y0ozH8gCa5wxFfRN3+ZjF7vGLvzs8M5FmPF47mN1oYu9N1zlyUx0wUzF5Kb3a7pYw/JjwY3IBVMXI2yMVLrY1FTDd5Vb5mFPK+k4yylrMcV9xBOWAjkK695p0sMqbH0/CFibj/TOMBkaM3bdBjboGddbGhNTQjOk1fnLkMNEYvHrBCC90XZ5miHx4E0xCNi+yf13feX5k2NBcn35QUqbuINhUPD0Q2F1qsr1nCC40FbHqg0PjpknE4OaAykxRR+Jg8MPoOSoru5zncTJ7oUoOW9r4IcnxH4nRajU0kSaUEs8yaUQrLnVY7GqnHjQrhB0xGdW/3iOOC2mBEy+9FwvPZ2Y6bkCpE9qZe+jiSnROXCs0sZ81ybl8YX5QCB868nzJPZ5cwlJsha8aZhJLPAqQmkR0oCcccRYPR28VwucKOgZGDOcfgrMXdVrtrSOmJpyBGD5ilKT80rnCoDcYtfmZ3HEuDwaYZNDBdFrlMc74xAV4Rf3xlK53uYUEBpw2VJn9As5vkuA1Gv2+v7ZpHTQfjD5jHqlwxli/tFsoPtboEwtgljSeRKILKrm8G2Im9mL4Kn9qZKwgc/k/I3FYPXDUr1LlUr75YG4ixagYj8xP/E0eBHd/2STo/J4ZQ5YmVIVGtTXT+7X9BvgzvHe4YiLxDA7Ef1tOQAWriXmFd5DGzzov4SqxGUmjUiiEqIV0tZJ9nuHEXC8adof07sXaniA5weKWllpieL5HAfHvm/W6G3+mIfcxjxgC2CY5t9FrTTMKNF4+0ztXzb6TManV8bK/oM1KpMoTHpmwAkxkuXZ71toaLd9aEWuSAf7xxdIhJNIz3wKQHDMyvX9+m7jhNjvYh/R8B2r42GvZ4gzhoNWDxmRvmNmJhB3K6zsYwMRFJYUWD6kobPKuuHI1SZ4ZqK/mjdN+uae80AsVpj0fdt+QVSVXX7XfRr6VfoKVi/jY1lwZIKLnnL+2gAk+WkHZ9LnVB9ElP2F0lN1NDzxk/rDhigzPNNbNa1GQzmP7XnkN1th0kt3ixDMolfNvUPD2jkt+sL0Gbj00ziPhn+1yPr2EPH/VXiQ7E95LsKNvE+5VTT8vu6C6w9XLfHrliQX8Jn0xwqvA/6WFM6kF5TkIwolez29TsPCPaFtxffn4gz62A39d8r1NW8hydmjnEkPH+0DeG5Ry+PLNIwKSh//VD4ff5O6Gju8JH37iyoU7Kow6amfdwLKVTtHJKEhNa0vxTXJBu/ZkZJX9ID0+DsJwGXJnEnPO50NcN+rmpGTNGxY9UDXQd8O35X/+jigWtnXHwZ+065xJr2nioR7fpgY4zQaSmf1djnl2ePwP832eZWSXmJzCvSZKEx6n2t5iNlw8/DrWBpqpP48zmqGA966Q00jPIf0vKs3gThFhTPptcBtxDx4YOa7nYZGwk/zRq454uqMcqMbSaS/t68KSF7e5Kyc/3A5oviFM/3X03DVtZnnDjstxK8r2yssdpA+eOg86ih7xZn0EQIW4fS9w5+9aZi9UWPPbdYZ5x89LpL+h/TLVeqQuO0oZ9IHg+sIzn7+bb4dDUuOjx7f7+WCf3zn/HWbA+kFUTcAT2cRZ+X93ZiJYIDf3NEpNFxyZMvNS/UAY1XH+nnGpJ8lqkESVyfOpMevDwPq+1upAZo0XNbe7j9/uRtu4NvJVYc1x3p8+yQSqDtyHhjrO2QFiFrnU7zoowEUwVCHmHCID06M937ZruyvX0X8RIVJz9tQhuDUipaCJwZQN+JKg9zCHTM6ASrl5aSHf2QhftZazqT3O3sSdbTM2RVfaQB3RHrsD+pyxynpnusYMemZ9WlAbOvBmfSSpkOAvzFE9eFZA1gzcGz8ncLFGL04vc02kvTUrQLQnKywcp49EkDFZOUcSjCAd+s73utt8sD/M97dVulGesnLItAhV1i5/sQcJAmpdD+92QB+EUh0rY09cVjL/Onahsrr7RAjv7PWnEnPOHL7P5RVPAQMYGHOgHxSqycGUea2ut0aZJ6Pucjvd4W/jPX3RiVIsn6rZraJAUwZNN4oPeqFTefUhZSUk76j+BqSHFCY9H6+JxB/0pojmz7zuN3/RzS62BtX2bob3E0iPX+Qe5+MunEmvTisFPH/1K1zfsCDguTSx08HvXH2NiFavEI5j3k4SAvdw5n0pe3/Rfym58n0RR6Mez4x3ebqEmy6XzV31FDZC0SgbEiFM+l9dMoQs6ZxS30sD+runv5taLMP7nKedavp2XdjPbPxIIrRUfgzud6ha6jDSK/bdTkPBsYlzTc1WIpdltmEJucp+76zAI+35kx6a78iJBkwcV85mQdfDtdej8dL8fuVphM+rFf2GYkowG0yZ9Izd4oQrr3wKq9VH3aH/Jqou9MXa2c2nnpoqOyj8gDVojDp242431d8jPvUSH3o2+0jvWy8DB/pLLaT3Vcf62N0mkGOZwnnfvJ+a0YIvol7VDk4HppqvwoDfyzDkiTnO+/iSc8E3QWzxE6cSd+s8xjgzO1GI4njoaz4gHfR9uU44reGitR5pKc+Hgda8A5n0ocmvATMIqHlZvXx8LXDnvga/RX49oMt3P+t2liPxfdAjmY453/IPH9UgHhJVuL9pjD8fwMcRWU=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAagUAAAAAAAA=eF6V1n8w1Hkcx/FdV6pbm8ppdhOZzq+uzWynJF9JfiQ/sopE0oljynDJj9t+2HY5lK4fmCuX6vY2ue3HmTodub47IUqlxC1JGRXCZpVbjLsk94f9vHf2PTfT3P73+G//eH5f7w+D8d8/64LxWRVphTeJ6/d1pjodrgPzn1pJf9ncAWYlB1nHXVGDl280O5TgOArOeZmw5jmHWUmcSIkiz5yfBo51ad5k52oMrjxu61GgMQGHG1lKih9wwPl1RwynLrEAhzRdH/ljxkKwelfktObV1mCzQocD8go7sGnYeJ9hCg/8cuUFnxdOfHBdYLjzo9Avdf/nB9mca6eWgasSi+LjxxzB9+a8udwmWgn2sDUZfWzpAj4fXWbv2u0KjlLOSBrqcgNvkfXbKmPcwX3e9efkox7gFeai2WGnvMDjU05va/D1Bp/8iW0zwPIB267Jl59q9wUbb0i9Xq7wB7semV1i/WsAOKPlvU30pkAwc2hpOLV1A9gr30CaE7cR3GuSx6MkQeAFrFpnl7PB4J0XklTC6k3gtJ8tFj9Rh4Bvxqsvey0IBSe/LCmTh4aB8U9Wod+jUqzfoy/qsWq3fo8Tgfo9dr/Q77HFWb/HOkq/x72oRzbq0Q31uBz12IZ6nIt6nIF6bEM93kI93kI9VqMeG1CPfqjHy/+zx9cf6dFgqn6PBajHBajHT1GPK1GPYtTjB41+j56oRxXq0eojPYpRjzWox72kx/HIu0eNxigG+h08+KwvPzbBlfjQ308n/WEgzO/oIDVcqN+r046tjVxpObh0t9Y/Pmvv/vCG7tyv3/NYcPjt6gkleG3IpCUbTP2LeVMUA236va8+p9JsiX0FTpdpvSu/xOPqe/pEkv73oPi6JWrPdxrwvWitj0WV2Rm/ptlov2UZtQE5ie/BwvRJDxq0TcvcoaEj0L67CXk+Ey5TwNJvtc690SLe2Uzz0P4v7E0SlghY4OQerW/sD0gwH6Qc0X1QB9ZMZ1bMBhcRN5raevxWT8nR92q6jJPYGDAX/MBB68YtvgWMWioYf88rutjG8Wbgt45aW0lft2xrpXPQ986ymZVRedAS3GM9abfHRzPMbgxTAWgPzsyvtUs48zk4m1j5CWexup/C92tX8/3NqiEb8HbiwXerjEae0PPQngT7TqenH/sC7E/ct55XreqiZ6K9EdraV5+OswdHEVdlFxYISqkOtEeMv1y9r3suBY8Pat03kX/y/gCF90qctifVKtUBfIC4/PD+31Pv0jfRnt251GQhvLMc/JD4Bf/R+qRHdA3au9GG57eOOTmBx4jvVg0lK1/R9WgPG3tz5evqncFPiPlibi1DRa9Fexkt6GgSH1gFjiPmxObeVnXTxWhP2VbtIsNFuj2dqbUkThJj3sNUbEd7m5551avr3BpwptaSUWnQQGcrHYL2OD0ixrOKp9vjLOKUf8ZDLV7RvWivC+1E3tl3PMFS4q1ldkaeatoR7flqk4b2+YlrwR5au/mF5IrdDRQMtPeXZByfuEXrwFeIRRE1O2OYCnwPRq4ZpwVpdH5L7BsQyc3Q0Pj9kn71ElNx3w+8j1jSUNuz7gQ1C92TC9mLNVml68HFxM1Zcvev+ikXdG9auU0deRcFuj6InS5y+MxmCr+PykcaIp636lwKzlhS8qeIwu+n7UpuV0qnzpHEgemL+GeHKfy+mjshWCYc1tkEXJ4n6xyh+9G9q2IIjJRs3b2rIa54mNdezVBYonvI8p7DTbHX3cOZxIaZjHnfsBT4XvLVdI9niO5eOhBnd15zN2cp8Pvu+3nqOvuszeDjxI1hRfWcbqoS3duizwQ0l9a5mNj/XdrU3WxFivYe/wuJDb0mAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAARxEAAAAAAAA=eF5VmHtcTen3x09Rk0oJpXsdErrQTbXrqU43dSp1uuqqUsgQugxFJZEu0hBjiJIKMYlxSUdLYkhCiHHtSkiTVCplDr7z28/yx6//Pq/33uu1X0/n9V5rPWrFpOjZOwHUKUd94tSN23LoH8Ppsuu1T7lkvS11lVHxWSc4rnBl3dc1k6+yNF1euK8qSPFwpzmIbCdJe4U7krb4sECZfi7l9QM1l+9FzFtXpg5tx1SPNFsEkWWLg1280g0o56gz0gK/c7fumUFo5mYPvX5vkm+XUv0w2xTfn8y4M7dOx+YshLoDYXHJfB45Min2fuMDS3z/a41b0GN1Tf9FpMrx/qRj4i4kzvC+290Ztvi+IlPfo9wyum8KDJnOu9OxbR7pt+ncdafKnnJXBaY55sq8UHMBpFeoljbqOMHPruq+AwInyh9oCd946lUrp3CBUxo7dtuTCyGybhfmDy2inCey5GUEJO72YOCn7YPqVzgq0Dgt7lp4AZ/yCo7QMXb8VXOugEh/WLR8p7khuftMrSDE2APf5zKvegZ9S1MFpMXdOKq0hw/Vkrvixps9KTeaI6yVulfmO9eGdEWJfyxMsAe3msli2RcF+L6m8B+BmHx1qQ0Z/SN5sZfJAqLgt7TysrgP5YKpTNbyT3cV9uuB2LLIjcbdlqQz41z2d09fynM0mNsmUhZbVzrDzXVzt6a+lgSr6c1z7Av9KNdpspxsLsFfct8Evg10qBUXO0CLVsmZVd3+lN/VE16+8OXNshOBsCEqtpC7V5M0fs23izJcQvluGSZxgbqBRLMtSOalHV1/YhaJCDvcMuOXQPz/9Vkq1hxzUKzxJd/Gzw4IXK3J6YgT8+Jqgygf0GTeyO7LDHzDJ+Kidq0Rnh1pyZhTH8gJobxRh3F+tZmXKrIFTvGWYXMdK1I6MLH8kmMo5esVmIwI1QcVt81AO7Ozrjw8gDRUZ+7dkBlG+Zg9Q/78a2VRbAgoj2RVVLw0JC3B57tTby7F7/vbMqEn4Y+fYyJA/OFGm4/LrchPCROrXohFUF7DZfSeawhP2+uTpKC4g1mn7MnKMsfvYiXIY3SZsbSOOYVWkSDXvjpR61EA+X6QIz/XJpJyS0emjlubkXY4gji1mpndqPMnZbzkfLvnyDt5jM+n0zMPVEXBhtbImiMzXUipreJBq8RllKubMbvy3PfY1ISTaRriG7QP9dY+dtxXJS0Xhb//zpoW72P3PP+xJCnl5yty1Owh40pQXslx5BNNhDbtKxo+34+Cb5mPNFPE5gHnSLRCn0005XNVhBl1oXYNe5aQu0wcqSxrqW12SJ7V+gi5jyoj/uE3jbA+V5At7zJNucGHA7lXM5bGLMfztxcWnJcaJFI8MrJl1ig/xJ1U5PJPhf+LXIfHlJ/WXXW9L5aMzrav9h3yI9z554ua8lZQvsaBaaiaHhdpsR6ub/PhPdCJJE1jn+uy1Vfi+fgwTp9CYhOXxBHYG3uWPxRB/im4uX/rKeQZ/kxMc2pj7SdCxh2N8r5pMnAhp72o0DyGcjWe8MicuJdXwqNJ9Dr1tWUrlpG1rzM2XaxHfiCYWSlyG68XRQOX+pGMc6gftTHzVBNbVCLLrFOoH8mrGdSPGzF37D26TDc/mHDsWD/Cmjjqxy/Ul8AjH18Hnw4mrdSPkMunfnyM2aeI3ybnwJAw6kfQtKV+9Mb8ouBb8ftCP7hM/Qje6MdzmEtSHfaaJKyFE9SPMBH9uAdz/K/BEUGPVsEo9SMA+vEx5vlB2mGHs8MgjfqRSPOpHyMw5+0aMpUuWgGio6wfiQH6sQuz8qFTUSXhkSDaxvqRNKEfmzErxFq13uWsh7E+1o/Qj36sw7zu991KqUrrAf1Icn+ifizArHvaNtEzfzm8pH4k8ejHCz9yyBnee99I4FSyfgQj9ONF6ktYfO6dw2MFfRBFsn6EdvTjZczv0+I2zFtrANrrWT+SRPTjC+pLolxZ+mbtDZ8ffiRp6MebmJVf7FYyCHUiv1I/gvY36kddzLxAE0U3ZzeCfoTRUOrH+p00P5LduvFkVySIf2H9CIqR1I+l1JfAOfjPe9M3E4joX9aPUIx+zMO8MStaZkW1E+kpYv0I29GPxZj52lsmbbkbQbjUj2B2ifrx1naaX/17xOd0kwOxon6ELPRj2zDNM2dOtcoaDiFS1I8gg37MeUBzw4cTgbuPLyY7qR/BDv1ohPlC9cIO81vBMJX6EQrRj6VtNF/7I8Lx52MCYkv9CI7ox6cvaU7mGWy+K+UEO6gfQcaO+lEcc/F4pu82yTWgw2X9aG3rRP34TIvmpiuH+ZoTo2AT9SPJRT/OxhyslOX7sNuN9FA/knL04zrMHu9K/Ed6V0ObC+tH6z3oR2UezWO7f+kYVV0H38tYPxKCfgzHrFPwbIvh2VAyRP0IO9CPoZjdJPqeZmYEA/oRDqAft2LOiDMc65uRRq5SP4LVOPWjJ+ZLSYVntKRDAP0I7/ZQP3phbtKwvVE6IY6YOLF+JK7oRw/qS2Jma7eFn72IJFE/gmQ39aM45rw4N1uPJ5sJ60uOKfNtOvXjbNaPPBKzUj30yTw9eBsad3EOzx2S04qlP+0aqKPPTxE2TH6n7jBbB55QTmL2Uv4S88zRez1vfd1p/fRJwtGp1K9prF/NSCDZOifMeT4ZezdhxdD0kdrO5PMP+HwV7N/DljGl/fqcnwxAqYfl1n2bKL9An7cO81z20EMihNYvWSBci/OrOOtrU2j/ZYlExSRDUl0qP7U2wZuItvG+GljMwfrKzBmtS/Vf9I3gJOUwmk55GeaEeaVt+o0C/P75Qm0P6vcu1u98iNGxzTksqwblind+ERX4k2QX450p3UZYn8scMKrbbvzaGg5RDredKd+DebbHrTnjOXZA6ysI43F+Xsr2h//6/a6up+uP28MNbz2Jd1PdSO3XQ7PvGZhjfUXm2XNRre59VVJLOQSIKC/H7HVo5ERIUTStz5kmPIP95RrbX4yADGnki1cHgNXa/Tbyxx2JgWpXvFuiNdafzrzZVx3TM0yIMeXwUYVyLmZzyR3Lfjdajd8vLaw2oP2pgu1PFiAt/1TW0y8QLu0+KDocZUMaIo7fCwzjYX1ZJpof3HnntROUUg7PkW/BHF+w+luqHH5/uixzA/vbCNvfVMDyvWha8Ekf0L5UsvRolj78khH0pu27w4/6wv18Xfetq/ggTjmJRv6smuYGTn972siP81FganB/SGH7oxnhtHoMRdxYAhwFc+3NSZbwp4Vp8q9HnWn9dEXhol3fN1SkWoFoCstJN/I2zMua5iQt5Udh/S7LJOyvtN8qkHiFocwa5yUgFf12x9z7GqC97oWRi4Mrfv/nGsH7uVpfhjXI5yiWk661lDdibk9eVH7vSAzWL6nhTaf9eYDtz5PITF0l7X2PA2GCfvMTg+opRLlCq6Styw3rD1oeU11bsmbBYjKRcpBB/kqP5ji/8jWh69bT+tpKTDr29162v2tA6H3zl2Gf/aF4d0fO90ITWOWyNkkvfTHWVxWC6O/lr5NdyA7KSQPyFZin1Bc32fTg74enzWjjfHCLnQ8YIvVgq1eRrzc8f6pyUrPKGYaU3QMz5HB/Sp8rbBL4HTwocCctlBNGhfJjmEcqe+W8apfh+UxmbHC+eMbOF8Yk+/nR+S/UBXB90MVCznMWjLRo+XBDvfH7xYS9vO6mBk0zcoJyYvqI8j2YfYKnW3wUC6b16+WFrb50Phlm5xMtmGqRuPr2FSuQUJf/tdLWjEjWDii2VeB+x1FhfDuO5euvt4dRNZZD82XKGzFnZclMj6lQovXP/ltjtI3ON0PsfDMXfptyTO31Nhv47ktuXftJlwRlHvEtGcb9cLcUM0n5Ylmdth18oBzskNdhjrqgsNAzKoDWb5BjluB8NJWdl0atS1zXP+S4L4QJSUOf/pY1g2fd31b42+H+yFETTn54e32ekiN82chy8hV5PeaK3N8KLn3g4vn/XeOJ89UwO1+ZkFjXxZtabc1BJ0fnYcIBQzh7oi7+bXYArS9QEDrG2Pp0fPEAVcoJp4Lyumya4WZY+VilDfUzT0w4gPvranY+k4MYud6/7lvNIq+Kgy+lJ3HJ0O9Tt9s8xP2WI8V4NGxQsp3lAC8oh3+QV2B+sX10l0YVH/ujhPA67r9j7Hw3DXxszCN8hvVAUrumZGK+CUny601yUsb9N12NmfG3d3J7kQP5qsVy2Ib8KuahwosXvktrY31p4Sbcn4fY+VAfVg++2/Lq9wVE/F8XqTInG9JyN/5jd1gw1p/FSOZa3VDpmgLDX1gOH5HvwzwoGlp4+IUf9i8pYTXOlwPsfLkA+ucZTtks60KkFy+Q3n+OkIaQAAOpUtzP63WZjwrGWSsVXWDYg+VQiTwX8x3fs345f3jj+c8SWgzS+fQLO5/qgW99w/lRA3Py5xpOyrkeDxJwpErx927c79MtmCetrso25jZQSDnIItfDfIJyWr9+tlAD9395dt5dBLkvDz9NFWqQp9sGH6mouRGDGeULN83G/T/djKmRnP+8zDwc7lMOLsgjMH8bvtx8zj4Sz3+oRiyEzsd+7LysATVxSkNj8jrk5Zu2xq6TZiR6QvLBg9Hh+PvRYULl+22uGDnDI8rBH/lmzEK8H6Dfoyy8Fk/n6w/sfK0HAufzfd0ds0HCwdByS5stsfIf8ukX4P0DZwGzAusP27McVJFvwPz/6nMMhDycz5PZ+dwYXl59P3o1mwfNuTr2URVe5MVk/Qm/9WP9dBumKN996ar/zrGOcpCVo9wIc4XHwjMz/ILw/E2E7Tjff2Xn+0UQ0ZjSUHTOnuiFCR4PugaQ1u/JTaY78f6D58xETOm7dTU+iMykHKqRXw6lmRv1NqNXbT76YYawGfcDQ3ZfcIa84ciqWDM5sH5jIiVdISA3g+bLX9HF+5NOHiN1uV3ksiuKMJTDGuT93TSr78k/Mc3pR39sqKnA+5ef2f3CAk4bjYx3FQfBtMc55qY15kTpSHvxzGtYf0CXaelo2Z+32ZWMPWI5mCPfgblJZ99Q0IyVtH6JHHMK72/Mtf9vP3lhreT/pHOXvydInN6pN5ppDM+9VA/4B+P9DWeWcFrEfHvrvjDSX8ly8hB5OWbNJ6kNvCZ3nH8+W1bjfrOO3W+MSVF4UmV7pCtM2BFztifEAtpMFfiLhn7Unys8vvnyghkJ//WXTJYTIfJNmM0qxXRO+S3B86m2VML9qJfdj1QInBvbf8zeC8SnXEo/uF8F+hbrTu/OxvsjbRmh+oQAnVuFAaRXnuXkB1+DuUmHO0lkj/ODrg7zCverd+x+dd26cO/h8Nm3XSFlR3DeX+8Z0I/z8NDQxPsljomw4NNTieu9U2EN5SQY+UAmzaYvJwT9ttcLz2cmU7KT7med7H7GEG3Zp9c+DlpC93UNndY149bPtWfKd/z5o77IctBhzwe72Ejy+C+W14pxKS+5SjPfOp1btCUR+ztXKIv73Vt2v7MGmVUyx6+kzSWSCScDRV7exFDwr5qiE95/cZyYxNCrp+a/dCDj8SyHFcj3YU5BTp83FrrgftjL7odO8CRhwdZD9SHktlKC2peiEPKAX37s5OMf9X0YvpXVidGvrqSacshELoU5bee1DhVV3I/SjYSiz3S/rGT3S28IlfCyblBYTG7KRIzlyUSSyMh13MwovH9LD2BImj7hOgQCUA47kHtifuTnXF+7LIbWP8BlCvD+rpLdTwUgmlTV2TgrmPyqdP/Ko8PuxHVk2pT8AazP4THS+xa9v57gCkcpBwHym4o020tr196Ys4nWj5AWWubS/fYGu9/OIwKlnOyrYX5Es9mAycr0JPs1Nf6q2Iz3fxxnZt/N416H7swEL8ohFLnBPZrlJvpV3W4NxvNxY868ovvxCnY/9oFsyfqDpvkLyf8AVf7kjw==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA4QEAAAAAAAA=eF7t0E9LkwEcB/CRI/PQ1ES2JjP/5B+QqA4KgYclDsSDKzW1ESShK6xWiCtmShSJEuI2nDWmQ+daii7nzJmbrb5rMImNEH1kTpOoETjR4UUPiuGh3+l5B8I+L+HD4fx3It750Mh/gLGn3G4jvw1/NY7TruQOrGk6yyf43cgLp14N9WgRlN5J3EjuQ514YyShT4/v0YMJiWAAKcu8Z5b+QeQVadIMahO4uS0vnl83I1Bn7nqdYoH4rO2Pd/k9wsaKu4X6UXizdjM3ZWNIas6viYqseLeyJpH+/oClglfzaRYbWsou86emJ3HN58kQvbUjTj0+vKKaQu2qcid66yMUo8WF98XT8DYHntw874CjXqr2nZpBmTySg+0ZtFp/MdVLn6D+F0rXOWdR3/pG3jPkRMC9x7vR5cIVk0Cx/3gOcu09Riv7jKbUb4aLEjdygxeEkUtfIFQMuxnRV5i3/IfckwBT7rMvtAO9qtIK2R4gdpmLbI882Hm5ens94gE1cuLp0UqPYXoM0mMOPTL0WEuPAXo8Q4/ZrMd5eiymx5/0OEePcfSoo0c/PSrpsZL1WMV69NDjJD2W0KOSHnX02EiPP1iPjfTYQI/Z9HiOHk30uMh6LKHHKOsxJibm+DoCjXtfwA==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAvwMAAAAAAAA=eF5dlH1MFHQchxkcYi9SqLwHhXjYVqRZuLnd6kBpzJxgJOKNEk9EMiJikBxCJsMgQ+7AgxA55bVD7uCOEw443j6AOwcSujhCRBdGFmAd/pFslVptfg62+/3z/P98n8/PweHJc3Tp/ETlmYzGo4JClWc27iraVpncTmJKkb+j2bMQG2bcQyeLijERKX1u1q0UseJZ9VOl5Riy/tMc7lWJNeOux+rPXcCGLQrfCnk1BEHpJ47vrsVIbG3BqTX1EHvrfh4c/w4zql2HQ8obMLjuQcC8pBHPp70cY/XTou7GVHjknSaMvZJ3xbdeh/SI1z0NrXpEmftf8vu2BU5yTc0NmQF7b2bct8ZdQkqDKORjcSsG00Y+37e+DW3xkXLzSiMiEueE+MOILO1PlvfH2iF/POmv7OxAfFZZYlFVJ0Z6Fl33FJiwtdor5e/ULiQWJ1mKJd044j5QsTG8B0ETwT5zm3rhk1LTY/HrQ+3vVx8JVgCWHeaW6znAGdn2XZJFQGyq3aL7tB/3c2/uvz3XD2p0cKFHLT3O0OMEPQrp0UKPe+lxhB5X02Ognccr9Ciix1v02EWPTvSopMer9JhBj+/ZeYy289hPj3p6DKPHDHpU0uMhehy183iIHhPoMZAeX6THanr8wc5jGD1a7Tw+6TEOLqSAXstyUgOMbhkoJzX0/MGvUx9dLjqBOPIXep9W+L/aqizAbXKSd1Bq9iXqK+RQkEG8y3FvUUN81Blkkz/yTl4R9VOZY2XwIG39KzzTNOqYCpSQw7yj9YBz6YNJFRZI211jr3+TbGyuQgwp5J09XssdLUytwVrSdvekvmecT26uQyI5zA5WbL0Yov6zHo7kW+yiZOpx3UOjGoXkNDuJnq6+LJddxE6yj90cGXYVJYs02E8+zY4kQsfR8/9qsZOsZFciR/1XIYPN2EReY2cbdbJHF7bpEUza9ivN/+vcb8IWJJC72WFjo/FO1krDEm1dNrUqhg7eM0BD7mGn0tDJ1U2jlxBP2rotPy2IkRqWOcCOu+dWOSnK2tBBGtj1FwcrJduOGSEjw9n5ga8Tck7FtyOOzGT3eeO3ZOnvdCyxhDvIFHWEuQV3IpuUchcelWbTZ2tN8CG/505ydfm96ocm5JG23USdFQeY73YhkrT9R0nRpe3T1/7fE3mYu4pYPCp5tqsH28n13FnVutl7H6p7UU2+wN3pA1VxC8pl1nCH3b5DE/OhgIkc4y7flDp/6W4CNpO2nc57pw8I3uhfYih3W+7/9rtm7TIXuOP/ADIJcJM=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAsQMAAAAAAAA=eF5102tMk2cYxvEE0wKWYWM04mQukAUP04kIOkW5ZZDNQ6KRGXEMFGUE5uKhXQfoBgLqZNAKYqmx1jAnwaAF5qFIOKhLYOIJhMUiW5x0w8LU97kVD+Movh+ufmnip9+XN3mT/3Pd1fpbmWNjTDe1lgePZH8w3BgwyAaUV7e0vmbSemxfZR5lOpl3YKB7mCl0ecQ3JYNMPrqeqrOvmDzDlzn8njNlKy3POgTTizF/3Z3/mGbtic/26mHKXZF1VHufqVqtLlTamX4yROxtuM2035ZwQd/EVBKz2rKzjqn2t8rmhGr5f+lzr609JX9fULk4wsSkPvOXNSCPSX/UbOnPYPI+2JtSkcrkXLw0OiKWqe6LByEV0Uxf5b985QhmuljRoeqexlTwSZ/JrGAKrslM8BKCyrUr696/K6ikMeWQvU5Q3AzdwsBSQacvh2b+nyPIGVmvX5UkyBR21eEbJWj/+nfCFwUISv9FU2Ablag9i/r23JNoZPPs3ennJHqy25lszpOoU+fd2p4gkQ0db6Hj9+gY+JaOC9DRFx2V6JiDjs/RcaZbxyp0zHfraHTrqEHHX906GtDR8y0dk9HxEjrq0XGeW0ejW8dyt45GdMxFxwx0bEPHIbeOHeh4Hh3H/2GbMCLrCW+g68L5Kz67JhsGM9DZGTW5P1z2X/geundJ9o+jZe3Q9Q5ex06/2zbCpIA/412M50qXtQ4xHYbBeCd/76JxYQNMfnA83u21daJq4AXTMByHd6wPnO7weSa/B3Tdx0e1oze/fsI0Gz7FOx/TDJUpeplMMAjvrrw+vb6zm8kDZmMHG/b11Xd2McXAs9hFY+Zw6Wi7/J7wR+ykMslsjrzOdAbmunbTNkdlucJUBIuxo+hpkzQKG1MUrMGu+i/4bE6rYGK4Azvzaord0WuRe0Irdrd9SVDoukKmbdC1w/tG/0XWbKY/YT52OZyW8fDpLqYhqMBOU6o+zZ+SKN85/Ae71eVejPRbw7QTXsKOfadeEY+WMKngVuzalJ48/2AQ0xF4Hjsv674X16OWdwDzsPsQQ+SWwUFBC+Ac3IGqK/Vug0OQEpbhLlq0avsHLYJ+h8W4k/iXjz1mVAr6Em7E3WyYWrCrtkhQDDyFOzpujTLf1goywx7cVUNi6vq4zwXVwmLcWXNiTeO6EEFN8ADu7vDWkXnlEwQZoOsONxbGB698LFEsbMVdak9+t+nDZok00HWnztKgpKUnJHoIe3G3OWmT/972rURZ8A7u+A22iHrAAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAtQ8AAAAAAAA=eF5d2HdYzu3/x3Ejq2/RsLc0jYoI6ZSU9A2pRFM3SiokhUraAxVCS1P7akqlpE6dpT0lu0QZua27TYTf9zg+r+uP3/3n43h3XEd/Pc/3+8N7mzW9pUFr89tZOve0Nz1g/u85e9maPZdvHFRVEL88/GqqKZO53uMyY+oDFiHGOVhgm4LJlpNU3HjWBZfy42yx5QuNipIWtgtW9Pn98qC5Ce3tFxPRJq7soNCC3t1mLWzHAOcHQqsEtx51pIP1ZeWeO7xZ36lNvPYfzWx6A+eVspo7T4g50ZM7N/4qHfFnc80D/QyjmpkvXGonJ/yw2pcY5V8/K5EayC6fU5Ip3tDMbGD7hyaN2y120nE/x8510r/MVtzIfjT+eRMbAx+5l9FDC4Opa/c+zaJfV9jEfTX+8i5NzAG+/jZWmvfNghqlpg990A9lOW/o0OpZTcwUNixvW2J6+DQN3XtbakVKOMu0dskWLGxkIfB/kxsm7dpxkSjLbHXf9y2S5d6MFrpp2MjWw2K2iztG1lwknzyVe421o5nyli69OQMNrBNe8KesQ/ShK9n7q6VjJCKWpZoNR2+50sC2wUt/xqc7bjpD2hZLSc57H8/Ukqd+X6rQwLphu+j2RKmgwzQkTyRu+5wENrxFy6ywsZ4Fw2E7XpZYD/pQm1cTZidvSmQF/nfT+m3rGd/5UhNd1HgOVGv67NTxlknMKbM4unViPdsCP1PSGxJ/HEZHfyd92BuQzA6esh7YnlTH+B73/Fi81zY3qvi24a9AXgpTp00Wpmp1bC1s3+d6xfT0FTJUpGwcWJfKohbmnBl6Uct+wGWGouNSvwYQkTUzurb8ncZEXhU3zjhdy8Rg0Zorm9Mc3GhoylVe/KR0FrZRvTBfpJbFwGxjb1ecjSMd0d8zM1gyg829JOFRk1HDxhlwFiibu3qiTiTt7y5YO6CWyawL47T/q1nDeuGFTWcbD02LpfpTll4pM8lihXtvTFn1spoZwPPlBsoXLLUh9mreU9pPZLPPo26nTp+qZi5wQcSTezzfOKpiK9Alfz6H+XhMmCAqXM02w6GzS/oTjsQS21tf/ZNibjK/zLCub0lVzBG+UTl6YuBYAmX1IfIhRrlsWGxs6xKVKlYBf9dwf/xxZgyxLelpr3qVy/Zfv7vKv6WS2cBxdPv7DaKniaKz87Z31rfYjDsLu2ZZVTK+n8xS1fUOSqCvnetlX3++xS7pPJZt+XafdcDhX6xqVF+FEsuAQtO0E3nMNO13Vnzgfca3/OIELTmxAPps2bSCZUN5LOpksa77/PvsBTz58+8JUw+dJY7O1Z+MnfPZkNrGWWbZFcwBjlArDZ7glUFORukdXfQ9nymuMJu5nFQwd9i03ZkXfCeLmo3skLdzLmA6VSFanQ3lzAoWMviZVFGYQwx+rDu3dKiA9RuNHLYyKWfGsGimVZdHkish7cIjSiduM3cxsY7Md4ypwo/7xs5rE0wkWnmaSV6fbrMKf6czNxwY04fXfsqd3hmWSCM6uR6Om831MRwes9v9/G65LtUF07kerkUf58PDXSVqEn4RJNWI6+FM9DETlvrS7V0ZH0GM0Uct9NEEPh5nbipkcZpkoY/d6GMhrGrms22D2lUajx6Koo+p8OL1+/rFvmXQKPQwGH3k27ikf3FhZyp99IProSz62AzHmf9M2yMTRcvQw7noI4WV6YRvPhOT6Vz0MBV9XAJXy04o3VgVRwPRQx76eBl28X53s8soi9qgh7fRR74fjRjobPfIonpeXA8N0Edd2H7fYrn7M5OoBXqYhz6awYLSdv+45cZRuSVcD3XRRxk4coa54r3vh2kCejiKPsbApz6S3rUrbWk4esjQxwj4wZyxvPC4EPpCnOuhJvrI965rd/9On+RD9P5wPfRCH7fDT5x1YmM0zpGON1wPF6OPL+AsU+89gZnx1O4O18N76OMxePO0lp274tTJbyWuh386uT6OwlErntiFGPmQCPQwEH3k97I5ZXRrKosl6ejhXvSRB3/MMJRemOxFStBDXfSxGH79MX63Z3kksUcPGfp4FH49dZJ4h3og0UYPH6GP22E76zEvMwoj6BMbroc70Ee+S7R3Ftu7XSST0UMj9FEIts6W/PmIetNVDVwPVcW5Pq6GL8Ur+xxt5VGGHqaij+XwHSErpdEnN6jEv/ooDR9lj/50PThH7F24Ho6gj0fh4zvnPZhQzKPS6KEi+qgEv++7Mz45KJOeQg+N0cfTcEuv37PMw9fJEfTwI/poDy/zvWP2xDWCTozmehiEPvL90C3iqFrqXTKKHvLQx2F45deL+z71RdDEEa6HB9HHZL6NHat1JXLIsxdcDxXRx0dwws6vWyUGfcnUfK6HmwK4PorCfSW+k++m3iEPP3A9/Bv7Y9XfnIO6LOR3Lj9MHc2ear3SJ+z5pnEzFKQfMFtjzsJ5ns2Tnx6gx2w4t2NuDceqC09RVzpPBLFvLkdfq0U5h2zean622Y78fSDRxcnKmlmenRc+/KmFfYCTfXpE2lttaPVBztaY18LTPp19mPIlglhhX12IPvvAMXMHH34otCX+y2S7xl4+ycZ3X5wZFNTCquBUV3kjs+SjtFaO8z9d3LwSPuUhbPrrzkWiin3XAn23g8vd7xsuGjSiH6UqLy795M7u+u6rm7W8hSlJc16zUdVDKs+F6mOeiLkhbOFwcqjvixvdh335K94He3jz2e61aVs8aV+O19aFSb5sc8GgeGR9M5t6k7NLj45iHjUi9pgrYu4AH33dk2GpnkhL8Z7MxvvC4KJpC+7Fzw+lDRtyUv7ZdZ4pb7/VNtGumb2GTS52zbmQ7EqWqHBeg7kk/Fw4R3BUnEfH4D3ywfs0GW7uzFPxDgqjUaaihfU/g9nqD/1uFlOaGQ+uMHZRqPT0obJm/38uBWccW537qiKB1v3rfWuE7eQmakYHhFCl5a0W69tCWFHr/uXXeU1MAX5qe0Hkp1cAFYazMJ8Cp8uPT3C4nEgj8R4K430Mh+/uz34lJBRGFU8UiT+Qucaq9QRKc7c1sWVwxLE33udOOVMluArzNfy/3/PQddf0BGqH9zQb76sNPFWubuub6FAqWNDqF+gWxpQv97XEvW9kU2BVCeK145wpqcrnLIl5NawSeK7TvDmFDuM9Lsb7/APuqd8lOedXGN2j3Fer2RzBrtYdbzf3b2S74aAcvR7TZxeIPt+Y74Kb5oUfypuXTX9Jc+95It7333Dgkac+jU7XaKPgEfn2RVFMf0B+5duljawJNluQc29GvR8ZhU0x51vHcv6r2EIenY99QB37wRxYZGTIfujmJSr0a7eFnEMMS+vvHlxZ0cBGRzn7ebk6GyqeJ+sxz8d8DbxUPFPSJ/wGXYh9Ig77xSw4+sDsyJALwXT8Z1MXwbI4Zn7lrLbS/gb2H5iXSiy3t54gNrAD5nwvN7k0/9ukCBqMe20N9hM/2PleUJx+jjM94DEmdEXADXZsoqTsl1/1bB8sKi2Xc77bgxJ4P+ZbYJ1vsa3XRAzpK+wzohrcfvMalhzVaJBeeoZqzO1/8i0zgT3uH/Y0jK5n2nDyhtpjFSFudA3civk6OKzbwOVg2zXqjn2oCPuRB2zgILhfrt2R3hXsetH2IJG97pRdfHB9PbsNyxvLHdTt8aKVcC/mDN69RHPZW/YXLcM+tQn7VSks0fjGbX6+Ez0rLa6RPZjEVH4OVE19XMdc4bvWAxqt6RdoHqyH+W3YY7lFyvltZ4gU9jEn7GfSsOxrf60jkw6QyvyaeIdZKUxmnIPM7hN1jMELbzyzeTbNi1bASzCvhs076lZSGkBCcO8exH53CVbW3tsS03mYKsYcNBLckMpUjoz7JCNcx9bBDpovZjic9SK74M2Y68JaPg01fbbmpA338nnshw9h5TyTYo0fR8iwTGuEtUkaC131NsGfV8v4zhrndUjy3U4qI8s5EvMVsPwmKV6C81UigHtbAPf3BFhOZejRals/EuNdqnbChcdmV4WWWWnUsiT4WBp9PueEH42HZ2J+A16cXnU9e/tlIp3K7aNl2E9l4TB/eTGNJCdinDHtxYzwdLZTa0UkfVnDTOA9vPJiy05XqgVvxHwbLMPNSSDu/8GL3H57Ce5flDsx3sCUGGzUuaGWl8GuXVI5cN65hvGtNvudlHRyNA2HkzG/BnskTlVVCYkji99w+/AJ7Md8K+zZu1Wh8gAxa9fb97wxk/maP5amIv/7/+FnNc3beu77UEvYD3ML+Aq+D3RP5vZpP+zX7+DYY4Nbx/9lSTUVarSa3mWxt8Jz6e70arYFfo3fXwo/xlwS5v++CvbxVuznqvD6Oasa0rXdqc0U8lXgVzZLvhJ3V0O9mjnCLuVfCv9p8aXf4VbMB+GEVSWNAvbhRALfO5yw38vCTX+sk9YZe5L91l+W24rdZHYTXR38nlWxw3BZ1M+iZRfCyXH4wL/m3kcVp9am29HnuAdScR90wOHyTdPcy3RoXMetwV6xXGZZRJ4IHa9iSbBje9VOJ70EYgevxvwoPCGhQ1vCPYW24XvLGNwXj+BDdeFv1HLDqa770zGZ0bmsWV3Mo02giu2Ai8q3/lLP8ScO8GfM+X67zkGlzTGZbsI9ooL7ZDOs6+ZHH3YE0sCxvcF7lt5ifcMd/s3XK9lFWO3SlY6LnlHEA36DuRds17Hk5LSY83Q37pmNuG8MYGZ0/JhfhD/VFf6V151+i6WILvIeWFnJ9sDXnm5+UNDjQaXhYMxl4emCfSKL0kNpL/97Ee4jvj9bBdi+yw6iP4cUSjUU8tisq9R6Xfl99gNWHF+6wkcglPDnoph/hwfPaHoZNmTR07inbHBf8T3bpM5opN+fhruajrXNz2O3q/e4Xtp9n4XBpVH/9AUwPXobbsU8H86I/hNxcjiI3l3O3WOap7j7rAS+4yGdMnvWaZrL9tepK+ezgSYx+c9vK9hN2O2kaLD5yzjyABZs5uZtsMp2Gi4kk0d7T3P3XDTuu37Y47NO4Ixbh4jB+gHJ0qJ8FjviIqpxqoIZwn4zzT6X5HmROLgW8wQ4BvMsfC/Tw32YA6908KzxuxZJilfEVFWuK2Dt43J5fgIV7B4swBNdWbYkgCTDdzBPg1fxbJ1Ex0QS9p27J+srufuyEhZv81s1594F4ul7+KFWYQF79XiMfsLVcnYODhBZ9sHGLYx2wv95ws3bYQnBBWu0I1OIBL7X3cN9KguPWqRN6pOKIP09IkXLlW6z2Urr551f9L/7FlbzdDtjnuZPp3/gLI25CGy33nGZi1wRycD3vme4b/nuDQtRmDblKgmxku41zbnNXBNZsnQmY6Gw8dXq973J++lp2BxzN/jr4w8xVXUR5P4t7h7WxffDatjy+sEDmTOdyP8BDeew0Q==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAUAkAAAAAAAA=eF5Flnk8ldsax2VKOalolLFRkuRK8tDgpEER2ol0Oo7oEzKmokimzNqyt73j3FRshcosvFoZNsk8Zc4UKXXcaJKpq3et213/fT/rfde7hu/6Pa/MVf+pz3ND4dWDxKFlz7koNOpN6EE1F1CPdjIfK+citzIl24IsP2heHh8rMcumlvfWZny/DaK/vQnuLeUi3n63H0yjBNAN5/uLF3GRl2emYcfVPFhxycFvTQEXOco8d5V5ngTGoX4L0jO4aEl438MzLinAqosXVU3iIvuFKgsa+AHUeIvr6CIOF63LSDdSFGbDjVG5iVJ/Liqw9VMqaMoCtX8Jvkxx4KJrTPc+qaQMyi4uLWi1ERfJaG2N6TOrg5wlxuv8lLno3pXs9jluFTBTuTNwlQAXoWc+EnEm9WDNGR+HWg4Kn7aYjDNohrzW8d7NLA46sPvaqI3TK2CsYrWCCQedGfJvWK78GjpGhq/eEuYgAVHDOsvEWvjww3A09lEMqi/pHlqpcxdOqAVzvA7FIHefHzKaa/iU8rug7b6v2CjTKyeenfoQ1LQUjo9Zs9HLM/4jhhF8YFslWAt3stCmL19+1y5KodieTf5S+ix00Ghuke23KjgV8+Ki3Z1odDiEs6Xcown4BhvWWXy4iVZ4LFg4v7QL8tqNPHcr3URK3qmMj069IC0oZXP9aBQacUZZ11M7KeFQzchYRybK+FT8VnxbA6Wx9Wnz5/eRyFFEpLs/voCqFlKRdW4LR2ojvjzFWHNqTO8SoyQ+FLmmrIo8bJkCxuKabQ57gpHcfaHezMlmkI/W1R0sDETKQeyE24HVkL9KQm9ssT9SSkwU1TCppYpU5Iy8dl9D/aVOleL6rSA6PnHOPuoymurmWWgKUSDNOTRPxMwdZbTF5zxLTqfM3/YeCb/jgHT9Dsa2xPZR66+cdXosdhI5O65IW63JB94//b/nHTiMDkiXDX4+fRNKiI8leRtWNMkEggTx0Vfyjp7qvUvQSHy8LluxPf3a3+BEfNRmqYkNByXBVuLjXgbjRnHcfdAkPubOOMtKfLsFzBDso0LxWkOHmnuwvRb7WBLYKfZxmQO0Eh+tj/1sCcAYwz42Tk+fbwsvhhZ17COj1qh2iXw2pUp8zJwbc/1sfw34LcU+WseosxZP5oNWFfZRUFrRMa+hGqq42EfHffLT3Ucb4W479tFKUerKwNYuuC2DfVwjfT65RXIQSt5jHydEsI+949hHjR6NiyzTBOq5MvZxhrk5V9WST/HfYh+fTk4Opa/MB2XAPg5LNrVWnJ89L+Kj+ufP3kmiz6iNF7GPX8/LHb11Ix32cbCP3aZpxqN/NkD5Yexj9fFJi/zKToglPros2txkM9MKApOStI+TiXMYYWLNVK4v9lHJ4g43RPQlZaKGfRxzbPDXfV9GHZ2HfZQ6ObxUeSYarPZgH/fKL/5P4c4q+CSBfUyGNqv2wA54cAP7eDKU+8UisxQExbGP4rILT7OrWii7zdjHQeJjrdAk7eO+D3UdPYxyOB2EfeTLmUvfC6mBsTLsY6aNr/V66UrqqS328e8RK3/b5RXgk/Ga9pFjfeHC+t4oeEt8VIrod5t4Fwo9IdMHFs1yu5tshEjMNbhDuKu0pb5ungVoEl8F6LZby2CpdmHuLzbRCiDskh9ZLugQ9Stfg2mf2RDNe5yws4yL6rdHyPKa42F+Emad0VUD93clgjLx/QTtZzIkr2ctP1rCRccJH96A2UktbqGn+yNQIfchjB4/GVSCXDwjn3LRUFx5pOlwBigRtmIO8nPMEkGO3JcfdLsP5gFvurxz/89vCKcqPvmkkJ0Pi0i+VyhUhTg84kJUKWduwkMu8ujfXnHEJx10CAeQ9X0k9+0b35kZP5MIyayAzgvxXMRcbrPD9ZE+BERjnop5f1Yl/SJkk/t4kl4fj1o2UehqGzk7X8LzJjEP0M/fhkZSPxrp/XsG7a9iRNs9/pcXOSDdi3n/z7w5ygcTUl/M6PXfAY9q0Uq1U1zkSs8/EzQqMRfFMa3kT58FbXLf8f7nwHRofny57uz7hIVvYC4N/GhT++IFnCJ5kJbys1UAb2Vly8gyLnpIWJLw2mUtGwMUSkCJ5IU5PV4NOB1A3eNvOeR8ayDNAHNd0bVm1aoKyCP1zYLur4P9Q9IzW7I45P06UCOcaHLSaBevGf7dhvMG+9cKf0Q2Hutz5yDWPtcd06wu2BKFWZD2tQdOkTzC6+uFs8G863qbOegYYe0wzH16HupDA6/B9h+cV6n0+rpB1NBPO6kzBj0grHUQ8+3xBWNN8U1wbgrnGd6fEtD68in7oE8MSiacOop5eOzTE0nDaEpgM847X/p8KqndT0NXOy+PQdsq3PpPbCqi5AoxG9DnW07VD+E81KPzMo0yS2aIWSaw0UepZ3uuTkSDUyrmdPp7KVCrjfPyrrM0GCSXgjHcFzNaPdtPT9iHqtyNeWWnfsEa+SZg/IXzVBiYzlZzsoC3Q/8vVjQLVdL+lYLcNszK9P9NMph54LwNbfP1EhIPBpEItwGPr9Eoif7eE1jCxKwjJGRKqWTBSZLHc+jzqIY4nryqsUE0EiK8PwVz57uNLVd6WiHzEM5rNjlPEwNJS/vIm8iJnPcGwuq7fDY1aHTB1zac526kf5+fwfytJVG/fNAnzKd9boLVP3Dei9HnHwjJHLdRiUEmKmJg1grDzMH7R30IxPUA+9NKfbSUezz04Qbxs5Xq+QNzMT3+S8qL1AvsewNlI10z0PI+grzfQCkrYhah119B1c7F9QTnq1WevUeB+cLyMMJsrREvzIp2SzhNR25Blj6uNwqmpkKxSiVQOFkm9+pyCPL7/t0yJCmfeiFUTvOfdB6kz/7v4npke3XG7J5dBzxZ6pmbOy8IDT96NGXbWgYcOcx4f1ohPArXq7xBbWnxh2UwuNdgjpZbAFr7s35sfAk7CVvT41XDtCSuZzjP2HDdSEpQN9sXGRB208G8gp5vM6WiiuvdObqfB+mqJqs58d7Ik/DUccz4ey+geRL/nxnT/WVgfV6nzi70EjIlXH0Zs1pumPv+nR1wJArXSyUyX+F+xcHflF1RDlmPfT3mkZAehV3T+ZRAI66nty0fJ2QUxVJ9mpZp3gK2yIi+fy1UmApmPP9yytsF11uc52zKPjVKSurKYXSE8N6EmzS/pscvhheSuB7/F3oFas8=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//kkZBF75/+8/Vz0k6sL/7z+w6sKCNv/vPzLgm/E9/u8/vpmkHMj87z+M/MqexvrvP0CXwdMs+O8/DGtYVu/07z/MifmwA/HvPwn+HShg7O8/8Guxk/vm7z87J65BzeDvP6nctt7M2e8/HuO5YvLR7z9km18ANsnvP1LmiRaQv+8/4lQnJPm07z/snYW7aanvP3RugXXanO8/e73u5kOP7z9C9xmWnoDvP/6E7vDicO8/hYAlQglg7z9EL5qlCU7vP9Du+f3bOu8/YOD16ncm7z+gqmy91BDvP6AHNWvp+e4/ZFrHhKzh7j9by44oFMjuP56w6PUVre4/cJoLAaeQ7j9VyO/Eu3LuP7nmiBVIU+4/gFAvET8y7j/HZkoRkw/uP9fwjpo16+0/0CMqTBfF7T8+WoPOJ53tP0zswsBVc+0/LKy0zw==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAKwQAAAAAAAA=eF41x30w22ccAHDMKJONmHZXNq4sogmpeed+RbXa2XW0dFWHaE6jyrXUy6Ktt0pRIl5LtEZQinh/Kbfl4esliCJejr6gG2fdi1ZTTOss7f7Yk89/H59zjz1/PUXA3GE1AwZlCmbO/n/nz+lJnjkXiThWFScmlA2sG4bF22syiMWvYpLW+bsxBPsgdVk1Nxb+Xc7Zm50tg3R8xulYObPQn9CkDOWYriVCZ1qQdB9NBlb4P2QEciqco5FFS8qxr6rTwK1zS18wNgl2+GZfxmorxnmo16m55rV3Jlh91zarcWkSpPjHjfLTBv2KUWmA3sOxXR7Q/9y4Hqw1CUJ8HXhQeptchGxp08GOs3nQNR1CK62bABt8M9Fr8+QnhYgW3a0/ZV4IvT7q4tbjE0DFF0f09Ncwi5Fh5zQ36/odsMt9Iyt/MQ7KO8vjZX0LRcjb/s3o0ckSyJZeWQi8NQ7KC4M+KnA4WYImtCOsFozvwvebVparpuMwjn90zMxZMz4XMRS+wRZRZdC0sbJlOfAILPD3REYxdxqy0M5aAEe7rxyC8m+csAl5BG/xVYQV+Skp6YhIUimipwuBqWFGfaUYA1fl1d2MAjLjkOv+jfm3okqQbWwn+90bA3d8+W9TlyM/vonE2svPZqeq4MVzqgnLcQyUPxBjkNF8LQyVUPQ9mraq4djupuTTOSko/5NQ3FK7fBX91TFSEbWvBg6pRZn7RktB+cYvvF0KRZcI6zLWWW2nWrCPUFszJ0nBBj/39KhQcDmY2DCfLmGfewDZ1quVt+pGYQv//Tr3UOOJVKIyVewazamDvZKivlCPUajGjzRBTaSCBILR8Nkzg+J6cPKkC9DSCHyDv/6tjr9An4X8XLyEru0NwOc7n8/8cQSUd/M+IF+xu0ZcXPAJejouAm7gHAXpjkA4vuCXoc1yhxjCjDHiOfF7I8yT9iPf+mEwx09OXNEkjVwl8rSIdXVFE9Tnl//s4T4MBfghsgzDzDtsooz9ihZObgGORkIU94kEhPjPl5xNpnmpBHexbUtOboWT3cS8zhUJZOBH1PinVB1JRMzExyqie62w5E5OmlWXwHn8r21fLjnJeChOVc47Y9oGi9uLtyZLh0D5/CWv9CPV/ohOUrSv1LcBX884ddNyCJTXitQtvUDlI61thtiD0Q4mBYjt0D8Ie/CpPFVrzX9yUU1CgGp4RzvA8JkEvu8g1OJ/8o7vxY6OQj0QInW374B3E2Srl6sD0I2vG2+/c5fIQ0zHTTNxdwdU7XD0POIGIATfbvbphkrYTaKSXiYZcugEsVprHVd9AO7j97Rk9R625RPitLAZz4ed8GFO5VRlQT8A/oWVWBYS8Ij3f+h202y6wMjG0TDTuB8+4JMVLr5aBysJ+1CKPKC5C6yr4D5FBOCC/7eLRt2MKJr4D0qBpd4=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_9.06.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_9.06.vtu new file mode 100644 index 00000000000..21b216fa7f1 --- /dev/null +++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_QN_t_9.06.vtu @@ -0,0 +1,44 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="8.6908395919e-11" RangeMax="0.00036567395851" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="12708" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.99960320517" RangeMax="1" offset="12804" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1434.6210187" RangeMax="16654.41814" offset="13568" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0" RangeMax="0" offset="23312" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="23404" /> + </FieldData> + <Piece NumberOfPoints="203" NumberOfCells="40" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-9.2457071795e-05" RangeMax="9.2394843635e-05" offset="23500" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="9.0642864921e-06" RangeMax="349.79499517" offset="24140" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="3.4778045727e-05" offset="27688" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.9434748144e-10" RangeMax="0.00037466101823" offset="29864" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-1044.1270124" RangeMax="0" offset="36032" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-1044.1270124" RangeMax="0" offset="36804" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.9995791496" RangeMax="1" offset="38368" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="1434.4264554" RangeMax="16701.473815" offset="39260" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="4.1165142958e-07" RangeMax="4.4144563735e-06" offset="45100" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975" RangeMax="0.2975" offset="48320" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.9996766139" RangeMax="1" offset="48392" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="1440.8134678" RangeMax="16492.711702" offset="48704" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17" RangeMax="1.0049875621" offset="50264" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="51480" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="52212" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="52384" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9Y1MzXXTTc1tUgxSjIzsDACADJCBMY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAKyQAAAAAAAA=eF5N2Hc4lf8fx/Fjr2wilC177/vjdGzJqlQqIqSIb9KgrVRIg1KRmYgkkdGp83bMrBZC9kiEtj3zy7nFz7+P6/m6Ptd9jnPf55xijHHmizcGGXUeOTaJrcS4o/6Jm84JIIy/itBmJQJX2brPz5iwvJirnpFd9PuS2mb9FF2Uqex0O/e8BpzCe/T5ThPNufi96maVzFCHl2czxC1Q1qa5r/Wd04HL/QMhHas2E5M2hL/dfZcNecd4C5y6ygaemdxnfL2YX0gtdNGcfryCx9RdGd3Pz1Sz/iEMwniPam2raM71lv/uDjUDlHFrh16HhgY6c0GRYf95SajVOVXuOmpL5FL2AJLbGJakoxmsaS4C2CZSUFc404vrPpdpHmxrqhkYuxpJvW+McXCZpQTiPTrAFkDzmS+FIoc4ZRCnvECjQIIRojS59gav44PqiauJC42biOvujPivFerHjORaqi/bC0D4ozfROzbXkw+4pdHc5FS8kZUnC0pz2Vl5f1DzX4+SS07S/JT82RuepQLot3yK/cQLC1TdebXoGx07GJtk7TuZZ0XkX5jSfmLehQkcGjHR36sFrWXEnPtT78kzBuU0L7++jymrhoBqkOLLVBcdVIL3CMnfpfmdeSXPlFpOlOSWLtyg6IBkJPL9n15boJRce608HmVO/FG/KkzcpQErVVRZz/GIBPGan3Wj7d6Sw/h7aR5u5nJPfM/f65eaqi2tpo/W4T3WciOP5paZux+d4qNHcg97N9Zwb0NBseu4qgsHsRzH7wqFM6ZEfReGp1gFUA65WOXebjaDjOBaxRryPLlnvo/mn/y7p5u/dFMM6RyHk/lUUTbeU1iFa2muzbQQYm//jRI6dPucP8N21FS584t7qyRS0agZpKQaE+l673BkVo5R5PXK8lMvmcObdsjsmSW8+Db0hub85zb4cHIIAYm8r330nQZqxHvI5C+h+VDKG3n9ABnwPqYWWlO0A7E2DD7M4tdADqLW9iEJROLqynWqYT0M4C7P3vOw2RJeL+0Tsg7SPCLE/9k7DjkQ1GZPz3XQ+NdD8jpfmpdnZmUV3dCC3+1fPRXTnRB94aGpLXJaiKQX55u3AREZrptaalozw2vb3Gdys1YwduyAjZRcvX5JKYvfoofEkq50k+VhhlxVLC9O/NcD4fsIrYf1TsaxP3WA8jJV6yjbbmRD1A0ZXqeJtm2rKqip0Sc6V3PsixFiAozlvMv4yc3wa2m/rly4cNE91U/E13muhyYH5UvXthn+62GsYZDW2z3/eKOzVBtmmUebmKX2oJuVc5wXhDRQ8JHRP91bdYh59I0X/nxmAPA9yHM8advyfskrhYVFJ1blZpfyyEFV8KTgsZ8G6DbeQw+5i9b3WuzokozWgiZ+y6NUtr2orrBce6uVJpLYlKf/9KYWMTOq3eW1JRNc6n0QWj+3Derqb9Q/fDxDdss9THPDOMNVFvfWQ/XAmISapgpqxnuQmBUyWPQZ+XPJNr+1gfXLTFt9iyvqaDz6C9uvh7y43uuPEzSINsJq7Y+MOIBuJv1x35QDDKSv4hLfPk6Wj3xO8x/3SPsf6qrCNXGbq6dyV6NPeA8HxkMNFr3peZvS73eGULmGqfLynu1oeEQ2S+YyQiUPmg4f71ImHrc3Vq6I5YGZ+xFJyRHWMErb7ycTumZo7mArvTfEWxMMsYz06yyS8A3vgdD988ii75SOa7feToIj9OOvy+UsUbby0WvpzEaI1LxT8jtSJIZp545d/8wDo64saRsmzIDg+LKQ3uabfsn7fTQ/5jEQEgiaQL50Py+oZo7yFO8hmPmg1KJ3Ioe0/iQSpD9+yEsN24DI6XRXXe8boF8bTk9WbpMjnqmx/G3dxAl88XO9lkomMLUV3ydVFdKc/a2CzM4IdfjPNTdg9e31sNRD9dXhqUVvTFYcZnU2ghf3Fdoo7UKoQurGFSGki0iPEt8m/ydFHFJQmQ7sZYMxfx2vskYSzFA52OgN+vVLqCzvFt3Ary3sWL4y3NMXWvDK1YdyvAcSv8/7Rf9elR9uEWQAkRsOMNSF6ELYwgR3RNPf9ye9+rNUNwliga9Wj3oZI2gnSaZYkxCMuHN0OP83pU9S3EXzx20MVkLM66HqRRfDdIY6nMR7ING9ojmz37xSvZ82XP5Kf/vjJQR67zl7X/sJI2c9PpZgfxEiYb7gueWhbxTviOwSzyuGIOmxuM9qEPy2nnnRXexm3yWEc8N593NvWf5oghTeg0MZ3qdeZ2zJnxWFsIz2i98DjKHRteRM9MnVQPCueFQoLkCsI+/l1VYcxupcjjyjqGqDhQd+foLlz4xFH30rfEGSiRM9qXheb/dEHSrxHgVfiKN52Z1vC23Fa1AsHbWR3cEETnPvLNCNWw3BYtw+c7E8xDfmv9XVHYaxGg+F6w/2bgCmKvr1Y1pT5GDlZO9FH3e7XWqixonSc4WM54ut4Szeo+AbmTSX0w+koP41qHAd9681GtZghTUdZ+wUQiU3D6fOJTERx3PKX5RVfqV0OMX84ZgyhMnKxX3WFyWbOGnut95CtuAdFyilnz550n+5h5hHcTTXy+V817FNFJKOPY7urdwEF3pLBu1vayBCW/gQQXjM6KfCOm+/QEawne840nRUH5QFTdZOyvG9IJzNp/nYQVZTpTw5uH337lsFgU1wHu+B4FPxddFTH36+bSSjDcapzyit9nZg4iFO+MahgwgOTidT+j4a1ZVGfDp4jhWGml6xc47oQU9IdfuwL5AJ5Ecxi56/tWyqUkkJXozJKkXWmYAZ3gPBSvvGonu0+59uFdWHUN8Gk22uG6HhP/JgjqMO4kkE5OI1WqQf4XRJvJEVPu5yk6VrswSCk7qR5egzMqEkWHfRE6O4asnhSsCz2eluXbEZNOI9BMfoGi66VLBHq/YhfZCUKr3S4WwMe09urj+W8Pf8j1iu1rszU5McZeU/yLPBOp3uBSONzUD49zd1O3zRL77fFZf5RQkoG83HorebgwfeA0F6La1vkdmuG1mmD86Uu3ytDOpw/myf+TdBXUQ4vevGgwEu6sA38UPsBWwwsC07uuHPZpj62eyfqVtJJlxiilz0vBOPe1VDlEG181TwzzcWcAHvgXCz8+qiz5+qunXNxgAchlpaeK6rg29Q4jHxg3rI+UbV70kQov7RiktUN+EAkwLTqJlA+6X9ZjLJ9TXNPc3NEx5jqhAxu/uW2feN4If3IPy0/+ei13QdDt/3wRCGLV/s281pCrsDdqZtKdFHhN+/OO0ZJKjCp1a/2/5+FcS1rBWSNbCBwaXzl8zX0FyAt9tJfkwNGEJLjA472sEOvAeSdfaqRb9pLHbOaBcCkQLFG1dE7OGg2XQ9mfz3841X+KPeghT1hOwx+vAAdjirXxw7w2G9fP1LRqObF5167Q7f7m0qcOj5lIDCWSvYj/dQsiqU5qODliNsLIbwUOJondwGezA4f2Gy6YMySrR78+qGqAI1Ve7EpdlKAvwO2eNrUW2/vM8TtY3mxCvinY/ipGDPXdX3lEhrUMV7uMjuSPPt+/x9ay+ow0I0KYCQYQtyozJ3jvoKI8LV4PwvempUk6QxSbLfN8ooe0d9ReQW+Mxiffaj3W9ysOpqmk+JpCR+CuUG3/WEfGuSDWjjPZBYJWn++7LHPaUZUeBn6C9serIJdhSoJEnST2KEZPG+t581qDyM9d6zVbWU9ONX7zOObFk+v8RXM5o7TNw/IZH/naJYUJLEUmTzr6cE77WjeU7T/lWSu2coM+KK9OWbN4Gmvoa5j+oaeGk/dyQoR5fK3k739ZT9d4yBy6smgLTy/m+5tf7ooh/+OJUkY8yD4ub4bmkLbQJZvEcz9Ho0dzoSVbazRQxRDS75GHlvgs4fq09kcykDaaGFUfo0Rq2cX5tl5EhA5tUX9mtQ7Zb3gxE706I3T9xM9xKTQmpxgYofeDdCO94jt1RxmjPqcY908aqj7rUKRA3JTXDu3HbLa3OqEOn7OihaYgMVzb3Tz2ClRzavQjaY5qy8vj0yUzR/86cr158gg/TKWHZd8XCAi3iPIgu/0lxJ/FXm7mINxLFGoDlF0R6yEkTNCXcUIOqbdlySrylVX6XXkqt6Hpv9zEH34eKm5f1feWY0PzEW/pXuogR66Bu7k03IAbLxHr36okdz6XIhLnp7FeSkum6EiW8zfKD0mBxRk4FBKcaZMStL6tRemXVvzk5iC4ldDXNKVsv7bts4aW7T6G0txy2CjCs6ZD9qOcBHvEdWY9PTi/7NMq3SRnw9Gtc9p8A5tQUcntwPbeeVhF8Nn1r+GFpTj46/rvHpGsWumLy0Ui6yALIztbVbdEBfOGqU5mmZAobH2Vajnl1NTdyd9mCH9yjmJUvroncotfdkXJNGLGcct35R3Apvjs3lTF8Wgu7z193HiA5UNc41nPHuXzG7jIfubMfNl89vx3uT5nwvTPKTXblQXEasxTV5O6jGe2S2/S7Nze8madqOiiCe11weo2u2wJjkwbSgxr/fc+89dvJ220r9vUeb8xVPF8YmsWFjs/vKPuOuTJo3iDmPOWYRkGBBEPtUui1M4D2SeI973BNey6g7nCjQisdwPGUz+Df9bN3ewQWGtpekwsq3UY1lIj4Pjvdip9T0Vqk+M13ev/kqhOb1eSIP074yIMnPIyRDAUu4gPdowT2S5sr24eGDWbyI9dVZ+3wLe9grlkz8vEMSAtwdTdWad1Hv5LP5/FQbwzSn93zN1LVY3s8atqf5uXCpNT0eq5HWhoNd17gtwBXvUc7dnTR/t6VX6VOnNLLjW+XfQrYGT9OKymdTihAfKO3ZPOhKZfv4du+w5wLWqZgjpRS4ERofJscxcI/p93CL0fxqR9zTiQOS6Gg3ae/3SnNwwXvU+EaK5gx/5vkc+lWRWL3QMP0XC3B0aCH8jFeHmc85qxQ+7aWmDE/Ob97OgNJ1+faTe1fen1d3kmk+Yb09OCRAFu0WvZR1n93sX49S3wLNz9neJb1g0UIvDa6jHVLmcECe250SoQtWPI6Pbk7vo47e+jGpSGRH8wFON0UdzJb3h3p303zLW3YJC1EVtPnwCVaVaRJ44D3anedG8/SZVaXBHwyQrWTPn1VRpuBLsCgPPYngHjZpPsfjQ72fODJFd4sHre/WmpSU2LC8L+mzQPOW9G5XRndN1HeiXl0nAIPDeI+yYhgtFn1wa6lEqj0JnaPn2LCm3hjW79hfdwAzAh4e6WEPRT+q9Fasy4SBF2WWfSu+6k9c3o85okzzLcFl4pe6NNGoyQFX/3RTkMZ71BOrQvM6wdlyMSoJ0bfM192nmkE0e4SJf58BaNvCp5KOw9TqHUyT6lJc6OIAyXxQWXN5/2RJMc2RuhzpT4E6KiRVz2GpxnAH75GAIO6mBQf3FqYbobhS/o0cbRbATM3OD/x7/Xfx7a+zlzlGtWaL1ugwYkcCsr/tCG8lQP5ss5VQ51d9C0tvmm8s4S/9IaKCjtA3ngvvJv3rkbAL3v8k9hpq/b3+09jQyWkta2D2lxzO3qgNcwImZ88kBFJrb+jMOyawIAGhvSz9XkzL509ebUnzrx/+U2DUUESyxvsefa8gARPeo4ybVjR/JVkdvtNID61ew0DpqNkEwrWeNdolavD5fbJsS9Npqs3DwzGXT9Kj/AL1rHddUujf/i3PVJrffvfu78OFDFI9EsKhfOLvcwjeo9NHcH8UW6J3UE0TpdyW0NhUZQNy+ZepHN/l4OSrc15rWM5T407s3u//dAbjff7EzDlXc3nfpjWY5idvurR8iVmLssj1T7NMDEEa79GMAu5C0gGvp00UkTWbXUi7xt/7E+l4dkizJGRF5V5NmbtA9fC2N91SPoY9sOU5vFVTC4VFGx/KZ6c30A/E3U7EeoMTixA61OHef9pV/1+PHIj5NJ9T7pn4/p8MUhheV+uZagtCX1Ag324+8Lr2WHdWNJSa9VExNsGlH3v8OOECN5f88vldRjNp/ik+tPPEMxak1Dd5bZhJG9jwHvkYPqF5ubG7YiWzIMp/J53jXGAOq3sahVuj6ihTYWk9W7EIqk2NH8Vn4wNMx8JrPRpjXt5PPZRKc+ctOVVanq8wVtHUJwmPNQC6aD2GdB/SnCfWxJ95tgGLfLtu5/HrRvCDI8Ole8N3rDrSQy7I/jo1OY+roZ2plELK6QgYbhnB/u37c+Pe+mzHA6/eTxSnga2KTgZS8B3vKQcueNLctENQ4XHJL0pLazrFnKANvI587yuy+rAAryoXK/ebVM+zVT1PBwopPG9Vx24b8C2/P5U1cU/RMqvy92qldHds5gwSFwN+vKeMT+KeYar0+l74AGXLzMaHRjoy4KM/Heyo1YhdZXTJaIy/TeVW6jN0CEmnlO2YcH31Xhqqh55vDRzJI8d3ONNchuHZDXmBWsoh1v0nHI35wAPvKeRsvI9K2BZGlf5Iyez8/fSdYCWm+zwnt69/FvP/3H/vDX0MNSDFSigY1VGyd4ocGzytsvL5M4O7ysXMLl76Ecq9g9SO724KoIf3FCeOAZqf7b7wnGF8gRLTq+cw6PiG8uuPg93XN6JI7uYXOTnmBGo+paR2UuUXZSSOpY91cGW/7QDu+7JbYkd/88JuC5YcorwiTOM9uBrgfkeFzti7RRxahKSCfHyHKEKDIi2qDvKIJ/loazHjfepru6c33tvMUX7E29jVyWos7x89iDuFwgzuHuLQf0H57qvvqiCK91CihXtaPU9tdasSDJWRGatm2WH06tcv4T+UUdBJU55nXSnU67usJi41EyDvntvRykcr+2HWuAt0hh4eyJKCcevmEP9cBZjCewgzxv1ePfWZ4E11qH+ZB1gpIyS+STKb09BAaeAYSXnxkPpsV4BWHQMjhGnKSXqU6S7vTxzCHXmc3vxLUw7WKFf0Va9Sg3i8B1Vr3AuEuDYdf6YFHCft/ToLmKGiYePtvG9aiPxnH8+r6Exq0654fxENFmjcFbpNO81oeT/6Nu6eQ/4aM2QFcHgjzSz49/1djvdQsgX3BheXvuYGXVAwuluWmcYPyQXbz8nQa6OeREmfAO8nVCcJNh9uaxawaesxNB5Ay/tB/rinzLfszGhUAAX925wORcqQiPdAYMfdrfWur9dXXTCte3YlvYkPZKSca0WjNNCeUoEet9Rc6qPHfE1hAYxwNslqqlN25f7I+Qh3wtvkhaInctCq/MfpJL/W3+/ptB6kj+G+K/DPZ19xbXAo22zpUKkAbmvLFeVIqgjlCUewRudT53TFSPRxdGBQ9aAvPnLl/p4Vi7tz/IG0D5elQbrrRNtgvx444j2gfbhvE9zncmSrBlzYKfynXk4HpGYPn1MiKqI68q8kb3IhtcqHOPYm4g9lzY4FjqRi0vK+UxTu7bWkPTd+SYBLIt+lMD7dfz2UFOC+unp6bRq3KuxeD45iYVpgODPOF7RLEh2XJkqYyFKo6PWA/0/NMYqhR4XRmNPK860XA+6TWWo/tfavhrJ8/dC8Gh3Qw3vYqIa78wc+uuYeaYh5rmbYc1MaTo2M2oR/50HJ1yKSRW4WUw/sWNcund9HeXkqZfju4Y1wZge9FMelEf2cY7h7hlFMb7YxwS+tscCGWG24gvegnoG7RdGOak5Pfqhg4G+pvD2MBdx8JyZ7hw7xzKzKuOJRSr10Y/WtfUGNlINdB4aTVq98f+9h5qS5k270eWL+BGVO9MqlEH89CMR7iBzBe01PjfcasoyQcNLinp9CLZZ/sPPJ1nXNlOy3DpvLn1ZQGb+cT2qgPsKYjwg3bq9deX6u+IC7RH/RNtbrb7A9p0ckrhoZgD/eY+pk3OfS39Kpbm/FSplOPjn9QxoCvpuzvlzLAur3o2dmZ6uoVmyThiKDbZiSm1rl411mMLEjTZ9Rq18/LBn35KcMd0s+zmP+b53FJN8juIT3qOUM7srvUu2LTrIj1Uz1nkJ2XYCJ1SM7m3ihRPV+aPDuWuoX6zP5k6WfsWCe2yVtN02Wz19ijLvLRt3uj0wsqG3qqd3aUQRFeI9IJNyrkx4OxvgJoJL55ym1RwyB6bzdVx6DtfDu0q18er33VKcRT+in+41pKIVfb/u/50+BW7hznSn5TNfJhxBdmP2VSxgw4D3quYL7nS4tlVcggfzjpa4J2hDhEZPpiIedDBz9UeZvwtZANdoQkfg+ZRLL2uHw+LiDwfK+9gjuB5v6W4X0RNCPKLtO/iwMCvEedQzjbuYnMFBksh6lJ1gmhM0aQ/nTQlO6EVkYnI0s2vvqA5Vx72waFjGN0aGtScwk/eX9DIYomv8M1VGpcxRD/acPvM+RJkEZ3qN/fln0OPmAtALqFbL5flDXDM6ObyDKfZKFLvahhFbbj1QfeMBWFTSNtZX3h3K+X/n83y6A+4XPGQQnkhgaYLHqKx83gpN4j+IFcX/oe1R8A68CaqqOjbdnNgc1rEZ/U4MsEESMz25ubqM2Cdn4bfGaxhyqJNlTB2SW94VlcecxFmvsVhJDh/geH7ceMAQtvEf663F/WxRwWXBBHmU8eFvDkWQOAaF6JueeSwIPkXBo745O6ruLZ2r0ksYwkVdre7L2Kyzv8xjjfmfwjrZt92o0KPhJunezCRzHe6S/EfdSvf2Y1yYZFJyYV8BraQkOp1y0PdznKTpNuQHj2r3UBm8D1ZE19ZhH+bDYj+iV/eNLziNcJJs9OYK9LvObvLLJ+F+P1X7EPXV4vPtQIwFlOuQyPFYxB7SZNPymSAAFR/SpGFL7qK+TSj3PyAxSJuUodLJtyiv3lyu4r3vhb/qtkh0kH5fE2rEYgxPew9SS91xsueNcJgTpX5+u8xo0hRCDgr2HMkXR4MR4Ys7lfuqT+RK2gTW/KHoSoxeKRGVX9sdwX9dhrZXbzgtdiWbk+h86cAbvoe4H7keDZD8P5oiDjrdnpy+3Cez1NLuZ7SqEtvH56XOuG6LesQw81q39lcKWOuJzL3Pl9UU8uBvpphwaUOaCzKufHKN6DMAX72EVB+5zNqPB1pUiwLfrACHzoTlsufGh7LsAPwpT+VzvXfCNWnfL9+OIzgBlMvnqZzEmWTgptd1N+lMv+ZcS7ob52UE+KaygKO+1g1nRCFzwHgjyuJ+QLF2b1S4Iief0d9rnWUHp9XhlqZFVKGcslM1J9yeVlXfj1YSWHsqEbKj7Fj6plc/ncdzvRLid0H9KD6eCqo7xrcagFu/Bf6k39v5YJRPNAx23LhlZBm4ExgRuiW7vL5hr4Pf/KsRGqH/Wj/99OKdQomMY+wdsRZf3GYNwTxm4ysNl2EVZX6Py1Zweg7J4Wk85sdTbGNvFTNQPUz6zvbQ6lGANJiXR8ZpGdBA0trrVOXGMynv9rl4nTyPG3606paLMv/L/NY57+4OTw97GE5gte/S8Y48hXMZ7ZLXUt+SGmtoVM6CjCZTtkpw2kG3i9ctwDysQTmcYvtk5Qc0xn9um4NKBGZ3TmD89zLtyfZac3rHf/NKxBcyGRfKneSzxX4+Sz+L+u1ZWtGeIA53jcZ7XorOB/IF0PotKNug6pKPC82aamnNc5QyR0IWp2xUnv3jAvvL84I+7TMp0i+IDAqo/fmk/79/7ywu8R0yHcRe8bfvJ9jIn+h4zpmrLugngypD2ZlUOCPMoE3ckzlOz0/ekbn3QjfkqTG792Mu1vD+45Jb3CNy3IuhQyOPNCSfMEFDxHukvuabrsUcUKW70QXxXQjqyhmauwYq1Un/vX7YP+ivvLVBZt3dd2fG7D+MeUvHays24vB+85OapSelH1jGjwg/3Tj8M0vvXo2D7JW81LbRK5kf3uc9YOK/bCHQv3Vta7onBsNO3+BYp+uLsw+F1dWm/MI/Y+uJbJM7l/T9L7vJia3LPcT506UPMi/E0HaDHe0S3C/efV0wuy7lLoDWylqO1qRYQ9+zHeA2bDISxs1TZBjEW7yI/aB/fMonZhvrFprhyL++TOHC/m/zRN7RrDTLYNeeZxKIF9/Eeya/C3VDBI1d+TA4VFfKSnePNYFvhAy3O/2RAIu6/Lm4u5uLbGX1jj6omsbxXDDm/fguv3N+X3D25I2fSVQSRZdqCK2IN/vVoKh53ghIpgH7/evTW0+L8NhUzYPM68w2xS4CrtEnxnCJbcbt/Qk/U4xHMJnjQVTRu5fcTRRncVctSPSULBNCqHjb3Zn9dYMF71LfkTfxR8k9dpZD2965n/2mbwnmlbOtWGyEoeSyYPGS5qtgyIDtmdN1XrJ1gN/Zc8hHFyq72zHXrEf3ILNwnqlrV7whwIf+XBmwanlpwEe8R6xPc7afLi57niKDoBZNWV0FjOH48MIpeXQgcWlP9Qt24in9NKJm7zw9jM/czJXnFv1D+nd+tBXfZo2VSu39yIh/WHQnxynIQifdIvQ33r2Nibdk3RNCVrdGHqg8SoY3t/dGw6L/fJ3+4JjZjvMW6Nf9ViO4dwfpeWn12iRJYvj4vl1xFL0Qpwl0AmepuPjPZJQEf8R7l/sS91mX82f7VUqgl34Dv+UsViLfjVw6dk4ZB/++XvC35i8fvWHpdNp3EXvOoNviKSy/vqx/G3UI77dWBt2tQ72S5CzWdF2LxHjkE4M5r3DE1+VkOeTWwhw0d76U0j9bu/nZdCkpMDzCLpAkUz5fuXTsVO45di7qn4r1/5fs12Qx3Y09pD59xIcR1UreuP0UJWvEeCS95rlKgq5KJLIojGg0Rf3LCyIduLHSQDxzij3UZbBIq3sb3/qgZ/QBmadSV/sNSZHn/15KfieHfKezNioakNao9KuWgG++RfALuPQUnat9nCKL2aTkWQXdJYGXTZyJ7VVKmxi4U7vy9pthttWO7IP897IIPc9lL5p7l32fqlpyVm/P0ma+AlfWev8X+7O/9gZ3WY7/GcR+MSCkReVSDxSydP1vdwUfI/Qsmwf4gsvWZaLHiq+gjT/QoFEH3BwVrZnnR8vVf8q69OlX06l0UHi+3uSJNXpSD95RINtwbq8uEOWuGKfv6E7MKCn5gpesThU9kD1A+dx2rPyAoXvxl9jZnnNdLrJhl/+wtoZXPH/KSlzxk6BC36sScPFUMFlx5UTfeY8rduPcMOJy0mR3CNqw6Re/aK4roJfq8ytToIGenDNscJllMVMvp06drxCKkJJ/ty1h5vkpe8ial90k86hOY8BqfjlNsIogP7xHPLtzTZHeGDD1lQKNuXaMPrTRR2MJuZdEkJnDw2xGGdkoVl4bN3StSbMX6nuQUv3YXXHn+WfJESdFbtUOzmMnNr991ZUVRCN6jsCVfH0npDqhgRTKtXgzCaXpI91GVxC0nNii8NVOkdVqmeP3225HXgzuxQ12DvoqdH5Zf34Yltzt33H23MwFdeeJapFEq8a9HP5bcc2vbSCorJ9L3Kbwcx6+IvmzREuTg4wTyi4RRxSS54ipeoXK1rz1Y4HG75KhHK79P9iz5Oz/XU/Xl9GjbNfWXEYEy6BPeI/mXuNtHzF04+JAHjbus80s7o4Qu5+UcnW+epzis+YLWMskXn2VjevbOpR6j5Ced6b6/DvkPsYKbmajBL2Hc98W3eo2YjGLVPMUDBRcZ/vWYhAjuv2ZiIvWF6FBe/0Lf82lh9LR+ja3Pcz709Jn9RdUcxeL/Ppz7uKamn9JzsSjxJfH/3j9LfrlyuixHgRWC1OpfSDEIoAq8B4483Mtfs4Vd8xeEMN/HDd3ndZHL4NPZjQFySN2G/HrDbpXid4J0F69JzFDChdysIzfzI1va+TleOCx5skqOs9+MGPwnbZCs7CeIrPAe1DfhfppdPWt3oQLYKnwxX72RiBqeTxhkn1FAkWfVMn8IqRVn+g3bFj+ep9xbe+ZppwP9yvU/g/vVR2Rm+6MSEBIXXKKor40a8R7+9SOM+dJyWirQaPYg/9wBYzSS7vo6qFMOOXTxvDyqqVGcfa4i2z5hhpI2m5DaLyGyvO+05CVVPM/fXFwLZ2NEDJ/c1EYTeA9mS+6qp18qpaEIHBLt+xMemiOOmGpnUyMZFDbPJj7SolmcF5XI3XN9klIUd52pzE0emamRzIp6+8mRS+6CctxmJUQgLXHAIqNT618P+kte7Q17xNXWgw2jnnd8ljZyWq/l8MNTDglryoY9G9Yq9jIKF6bjnaEE9y7oVcTILp/fbckvHt92R3VIDK6fl1UjzdCh3XgPMRq4+9iZHeFKV4DpQ6XdF+s5UcqI+tkgXXU05lIi1vJLp1guP8uEq5seZOpZ+2PLvy3/fxH24H5TvIML/ZCBW9tk6ON7eSEL72FhqaeGXbbYdVMTHp95t/fqaUWI3GzVeMJQB/mH786dn9ArvlsjMB1XwAoKd/5EB2Wshyi3vVFMA4wGDkveE3KtoWe/ElRbpgiFSAqhWLwH9Su4bxz22aqyWR/yipMKwo+qo/8BWtiyPw==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAGwIAAAAAAAA=eF51081LkwEAx/FBHVZu2knWtegww4xKB2P0SrAizcII2kHHZolLoYbBBJPoEqs0c2aDZhpmFyWLiFTK3lhOoxULTXyhlrJqyVpbm9ue57G3m8/v9718/oKvQvG3HzsUy1z6V0SmQEwR48QF4hfiJ+IH4nvia+IL4jDxEbGf2EvsIXYSbxDbiS3EJuIF4nliI9FBPE2sIVqJJmIZcS+xiJhHzCHGJOw08Q6xlrid6Bexh4ghgZjBDqWxAymsIYn9P77crihWFcYmgti3U1i3D/vxPra/AztXje3VYvsiErT9GDbuEaHdCQFq2JeBqrUp6DtjElrd8BOqtn2HejUh6LPWSejs2RFo5PYAdH6rC3pFXQkdtBugk1/HJaTbfRSazg2LyFf6WQH6tCmDrF20p5H2I0+SyKo6cxypL3ZFkd6skW9IZ581iDTPNUwht+2JjCL1hV0PkQ8863uQxWZVI1JXYzuI3GjYpUV+Hgv5JeDLy14LsixQmo3UlviMIjBr4rhJAI5fLL+VAVZFi4QUMM/vWLkI3F9ReC4BDAQTmhhwS9iVEwGuvXpvKQxcY9m9eR44dKokfwZochbkTwCvd7SKPmCzzds2CGxJejbdBTrHSk9cA2bvHO12AK2Bw21WoOVAxqgD6n6tVq4A1q2qXzcjydUo68svAZ+f8TwuAMZUbzYsiHI7/cqTFX+8uczc5srpYUHubxH/YEU=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAahwAAAAAAAA=eF5d1nk0lV0bx/EGDR4UkogMyZxSaeTuSKYoU5EiUyIyhoSSKXOGFAqFSgNFGRJtZ4uEBipJxkqSIkJF4/vY+2qtt+fPz/r+rrPOH+de99nmJSFVPJjJUpv38M7pjY046f0iYo4OD8Vq7e3Idt4C4vXQ09PEiesHPfsTJ7sjZTYXsRZ0ByNu4sZEsSVXf6qiG6LlBReWn2GFSkfGKok0Yt4CTMyIt0qOntVGwinUIdBdy6uIPQ3K33fMMUM/hK4QR0DXfUSdu5RLVMnbjSk1WSny6uhp1nHH8Lygngb8OXo18WST5eURG7cj99/axAnQz7N0iYOS+YeTVdegs4Vqf/UH36mFv7RYH1jrz/T7fPNLupDKul6jYL2/pAFPTv9OvKPxyHzfH8Zo7TwB/wnnQx+8TS1R3Pj9fIUHI2sxTPbF0IODqLVrVhWLS4QxnTvnL6vrOsnqGjW+l7KnAfcriRDHGSgedpP3RHnHlxG3Q0/nXE6c8sxZPvfDfobflYf4FfSXEdSodXBgS3Ys08Ra9+6XcBKLR8pvKRJowB1s6pU9+d1twYeR+CxD4unQNc2oLV5uM0px9mF+BcoR80HfEE89cmR9bWnOcebzc7zb4noiqzb96v1rPY9w4wVqz+qUOXzeISiv+yZxPXSXe9QHVR0T4rKcmSCtTOJH0BeyqMX60jwPByYxmZmGO7NY8azorpn8TSce4WZhfeLFgSvWzpsditKdtImjoKe3byR2C1zi5BjtzrR0ihMfg35Jn1p0XeTxVdNPMmaJCwZiRGNY+gvtzcc3PsLT3wkQr5of7K4qehR94KJdG7qnghCx1II6Vt0VN6Zk+e/+CW+CPkf4F/HrwJIPr5pOMilCAwv4OKJY6Qe0ut8LPMKSdt3ESdE1GRvEw1HwZkWxCZ+AbvVUmnhwuFr7Yp4/EzL4hexPQS8o/Ewc+OR28NZPKcz+AwZd0SNHWT83d8/mrX6Ik7W0iHMaOKTPf45DYgEHiMega27xJDbd+j5hqokv8/Cj4l/3I1UKxLwzru5Yln+asWvKz+ToDmFZSwWrrfR6iCXkLxKLDQ4rjkonoczLlcQW0Gfdu03MwVtucvrrAYbvow3xHujKTdbErCVFahJKZxiTLaWqaqbBrApkWyaj+RAfmJFPXLyk2TvzYBJSbNpFXA3d/7Q58egyHPug1Ym5UNRIXAJdIqKBOHcoMKN6RTqjNvvLqYQFgazMdp4m/ZEH+JZxJ7Ho7f262rPjkNAxP+Ic6JaLXYhXX++yyRDaxiyrSDk94RTo6mUniM+sc+WRbUhiloUF3L6U4MeK+H5rwCP7Ae45YUXc+VzJ/m1wBPrsuZo4EvprKVlioTavu+ryVugOfxyasA/0vj3RxNOW7Qr0Cwpj5FZtzVdR82VxMVp2dl4PcGD1SmKP+rXbRRJCUOPvL9cmzA1dd+9b4pgbr3/yBa5FR4N8yX4qdNEqL+Jp88s+tvYHMGGZYycc73mx7s9vdItY+ABfyuwk/jYoUvhFMAgxuY+J66Cnc1QRb98t+07xtT1qd404OeEK6D4SYcSLuTOOlkuYMrH/nPE/beLBihjbGZD3+D4+fCiC2ES6oEG34TC6bJZHHA79Y+ZZ4g63oLThDh9kZZESMOGD0McOnyA+VXzgteKQF8qaW2mWNdmVtYhV05eRfR/z9KYTs1cx01I4/NANh2N/dbmpfsSloq+ryoNd0STdB8RS0I/k3yPOrezWXqLhhzZ/CDv+0smRxeJw+HjH+D62ijhIrLCqIPdRkC86mC5BvAH6rCxh4gRpPCf1sQea2bnkr3tpfSXix0OzOPb1BqJt/77RxJ/Ysizqpo30Tvr3XnYb8YbrW+67dHmigieFDydsBd2JVUZclBm2wynKFTl4JxJbQ5foPU48HPojLWx1EEq38Lyl7LiL9b7GxOrF43qsoBdJPHW50px19QHo2siP0gn3Q6/r4iR96dKv/ZoFESjbxfrW/3d9Mzti2a59Q+XLItAnta079slsZSVul7H5FVSPR2aoEkveT9Pre+WL7N9dMJ9wPHRTzVRiO2OHS21OEajQq4E4DvpJmwfE/eVK3HNORSI3xnlY//4G1op347ZSyvXYKrbt04TNNsWfMrzkg+aWZwxNWAV6jskW4jxZbfOGbxFo/Evg0P/fL37uQryR60bh3efR6MxVtetlstKsyXeNHwpMrsd6hxOvTViuTq0jUMUHXVKqvjPh8WraRZdvrJzw04ubY7ZdDkKxq/jJ/S/o9e7lBRMWiZTkGfcNR241Gbd/KG1gZ78VfLK2oA5zv9JDE/5Wti5ghfhRVDPV59aE06B7xDcTP+fLEOy1DkF7z85n//+9aLoy8XM7ldlmOBB9sbzLP/pkK1tjZnuzlXUdjuZbMGfCxrxfuwW84pBV9EO+Ca+HnvzlFzGac17HuScExfeqzZ2wNvS9XLrE4+1GETq7XJDb1NiyLbss2BJvebWNlOvwg8we4s74xZ1Lu+LRYkfL2xOWgv70bRzxxRhJjgHlMLT8RR3Zi0KXVH1GLODZwCtg4orWj/OOH5q2h71JUdHUp6sWyx1SJ45OKzk+pTMGhW8oI9aH7jrjGbGFwPDny5/DkeTsG2MT1oA+XaiUuHljVLZCVxDq+9QmsNXShe3toWV/Oq4Wc8vPmjthdrtcu8avSDTdUJvYC/qkNDtile5bV5vbotGsZb/nTNgJelfiNPJ5J3c8FNKMiUFNBvuNLzzxYF+bldgeY12LTSyiiL+9vr+qnTcCtVwzIL4C/XGuBbFYR/94YsFRpNF2nPgS9NLak8TZui0oPzcGRZ+XkPyseoD9nvv4pOuzanHqxqXETeui3i2QjkVmse8lJvwO+om6YeI7N7vH94VHoB/qomTfB91ZVIx4cs5M7oUbo5HGt0dDmhcC2ApcSYua0T38WvEZ8e/SUqbZIwF9cgonloHu3RtFbL6Kd24KRxS6lnOBWBa6oEcOsW+iys83IZFIJX6AW+T6EbZNT8nVe3H38DmOQWJLJ9mW0ZoEtLpIhWfCu6HnhK8krtWyc+PxikKhcXrE9tCHEbXVr0fNFssi0Z2bxwZvzgtj3xYv+tLP3MM7w6OJ2cLbPKfGxaGhV5eooZvMvUjM42H8M+hnBIpzyCXG0Mt+XSGuj9S3k9GOROUXz5u/NotkC++8zuIfqMEq0RnEnM2H4w+tjUElTjeJRaBrOhYSjzlsqTddEY5qj14nFoXucqaAeLRebvaO6ZHoxB4rwYyEGPa9vIKeqRU1+HWUGXHB+wRW6+xY9C3OmfgBdGtJB+LLebxv7kw/huRENf+6Py+6kZh3xsunYadi0LRzR8siViSyF+e0u8i71mB/+xDi/sv+j5KsIlGfTiTxUug9XuHE9gXpxRuPxKLAM57E8tAnraRWfnBdsF41Dm2e096Hz5xgx52dOWogWoN5w14Qry0eWP3Q8SjS1W0jjofO85x2P7WVoTo3YtHHJZXEMdCL2jCx45T96ZsfJCDdXpGxwHUpbIk5T+rUB+7ipUiY2NJcJv3rwjDEuViKWAr6gxFJ4vY3xobhq2PRqK8SsTT048uoj61b/27beAKqEJRBX+6ms0/Wct50SL+LX6cuIu4c+SKtNTkUHV8qS5wM3d6c7mX56zPGiqKRkaEicQr0RjHqNUapQxkzEpCKlNCGm3JZbK7ADedj9e9ih7J5xEqTheI1h0JQ2Km5xJzQva2oT2eGnp7/7/OpliRAzA29/yh1Q5z97ENq8cjEwnR/j9Y5tmNW7b1A0btYpHMbcWhHlIGEZzBS0zch3gM9j4PazEt11myPMPSo0oLYGfrb69R1Sds+W9+IQbrBdy/2V11kj5wU3XnhfjWud6wmFl6j8r01NxQdLEbEn6C3CFLnPA57uToqFPF63CEehW6wmXq5z/G9ny5HoGUXV3aMbMhjH4n26L/vX409Pq0gDt1imipwLBzVi8sTB0IXlZcjFo4ZWNmrG4pKxGgP+tN7aX+3OsGHQzcMuRTO3uySl8/+GjYSW6FfjWVSeYjfTi63vz0zHKXHziX+Ab3UUoB4etVcf292MLotIPhXX99I9093/hCTvRmCLJSMrmKfQvbwlTzZt9+qsBvbgDid1dz+7UcwEhU1IR6F/m6LMbGrkunq2tmBKNWO+jN0MRVqhfofnXVbg9GU4FQV/bk32e8a99zhuVKF628kE//MCM5fnRCA6j1PEX+AvtWV7o9sn7JvnsFB5F+WQjwAvfoItXL4QQ+VuCMotqXkas/TW+yLhwblJwdU4fm/iog/nB69XjbqjzQLSomvQO87f5N4i0G+cYZjMJJQK/zrvuP3DeIlzOiXVqsQxLqeXN+SzWY38q/eq6BQhfl5ThIP8PC4Owp5IDv+FOKn0NOk6d49YKyuYv0RdFI2gfgx9FXD8cTBryezI9XC0GfN8pGe0jvsb5cCc7a+uIMnxZUR82LhdTGVu9DOMuqf0DW2UmuHsf2tXx9GjlElxOPQFfZT57+12KKjEoGkVrrUpPdVsz8Uy+jqXrmDgxL2Ece/kXFpH9FAynvciAehO8+krutZPra+8DB6csD1r/7OlrqHo7qtJC0SjbnOH5oeVcceUdk+33vHHbxwQJh4xnThW5+KbZiO5yLEX6FrxlPbaoUOf17lh5ZL0fvP0Jv4qWP2bN606FAU6s+pFfaUe8T+URjRf3bmHdy7ibqkROPJjWMezCm9OuLf0JcIUh9b1PVUf4MvUm+oIf4O3aOK2rk2+WPf2RiUoMcutmhsZHv9DvdLflGJrWWoW7ntE3p/ezDVRRXEnn96JvXNlHT3vSd90Pw8THwQeshF6n3pysJDrGjEselMS/+BJvaJS/pGNZGV2GEVtVB3ddHmLXuY5CMZxInQhXyodYOKgnXKPdEbjbPEydAj1KlrxFoX7Vgbikx1Dn8/vKCFXWzMK/tldSXW1aY2t5HVLtuqyUTqHSK+Dv3TJmqdmD3nHuu7I7cXdF8EfTN411IulbDF/khN2HaT+/NWtia3/9XBmZV4WJT6vU+hSFmBMnOh0IZYA/rtYurvKx2HnaVskCinHbEu9BNg2Zo7nLolnsj/NwfK1XnJvtO5sVS6FOOySdOIFW5/u5wlZYSin9FeCZ3VTN3dqzQnvNcccUfRfTV0FXB9hoCgco8tstm/49lZqW72hus8VRaOGHN4UTtI7MvbFmOL1I2p1aGng4fTTfUPKxihWJ6dxJrQs8DCGTqHK+OmMnHWtre3buxhm/W3vtixBmOh3dSfe35ljIk6o/Aj1NugHw2mHtvZ1m3n54BKTlObQpdPoy6w6L3eIsiJ1LdplTws7GPb8iawlzew8U47ankhNa/mAGf03obaGnr7XuqHxRsV3sg7ItG9f/e3TtTNblaf40Jl0JJN8gU6iz6yBXWd719XYuMWW+oc8xKF51ZuSEKDmh/6DCPqIwsVa8/s3odSV1LzQS9bQ7271YtjdY8Oqv9lsbuleIgdPxbyrLyhAvvyWBLzi+Rzx+u6oxMzqGOgv5hN3SOniq9hB9S6nPo49FIV6hc64XlythqoP0ow/4P4KHtOkvex7UsqsFUa9c19ugUnZb1Rfwg1H/TKWOqQ4PW+c4/sQ7ZnqHmhp2ZSr90m2BEoqonGBB5/+xX1lZ2i5KA1EovwEnnqD5Gfuy+q+yP3X43EidCbOGnnP2TSK/rv77sZ/Kc7cFOXiz06w+VgjKa0dVbc5vrGzle2lOBfirDBILXe3lnr4lP8UP0YdS70dRxdxCpOyse3eDmh/jd/96BeatUHWbj5qhF6MTJXfBLrN7urpKGo5dhtnDdNkPhCs+xYyg1/NHUGdQd0Hj5qRXfDDclvPJBeH71/AT3uA/Vg4+JhhacOSD88hy25dgrmYTZuOttfjr8co06MjFB4OhKAPKP/7tVx1A2NZ+0r5H3Q/QPUM6Df9aUeL3uZLVa+H8V1Ze3DYhz4y4KlMzviyvGqt9SyX++WtFw+jFqeUn+Cnvqc+lXrDFZbjBcy4com/g5dkZs6f4v4wi59TzT/lffjYc6ZOLakuvf1QBkO7qF+u7+FN6w3BPE3UUdBj2umtpf8NtdS3wsZ/ONDfBx6O3iRxo4sR1NbtOa1zmrpz1x4oeHOe+82l2HLN9QyyQMliyLDUVgTtST0W8+oF4XMmaOxfj8qn6lLrAB9Mie1+J1ZGt3RssxT7S9tCg9m4czHJ+q2Dt7CQzrUjsUrsjbNj0B7banPQ59pR20tPHi0ttIbbdtAfRb6QfCzK8VOQwozmEfaXPMLjPlxScvNvmKDW/gmeJG/mVPmkjD0Wp+6FHoz+PVyn7s8Ow8guRXUBdClwYvXfJ4VmWOLhJxFavSYufhuVyun0LVSbOlEzdEwfsJ0eggadaCuhx4NDmuWOicQ6oeualGXQU8GO5hvvvYxzAs9EVTX1t0+D5vGC/pXG5XigrnU5y31+fL3B6EbUtQ7ofOCh5LTo4ez/ZCL2N9dG9x9aRu73sUXCbxUlPE/L4JrZg4szy24idd2UsuUjaf+/vf/564e6jroxm+oE//xWrjK+iDKek59F7oDWCz7Vod7kz+yvTxvet4ncbwqpOpDIu9N/CiHel3VApFHzgfQzIvUq6GfuEAtqW981iz4IJqZSK0MvSiBusppzUXLF0dQmtXXfZIhkvhy0+GTaYUlePUu6oLK5MEYPx+UbkN9BXqTNXXIs5fSV08eQtji754EHuAaq1Z9G4x4fLqXCZ5bhHGNypz1AiX4ihe1esCDVyei3VHKQeoq6I2+1DFtHEq/I/zRS2/qu9ALwd81XUq2nQlBOTENX/+plsXPSj8kvPQuxprR1Gr1EVM3hdih8wnUrdA74qnX+aWNL33ii64f+7uHgX/umDQ7WToUzXK350ff5bGeXu4MV6FiPOhKbXZw1QbLIw6o3vXvLgcOODdVSHptEBLypDaEPuxBzf6uOSqQEYYcbsdOueK3BCf2BbPm+hdhRfAJ8aYM94sOiBN8DHpvOTWn/8aSy1mByJxNnQDdGHztuffMpZUh6FvYTr/7Acvww0hzX9RWiA2OUp8rXdPwLNYJrQLXQ3cAq/GMmTTIBaJH4dSPoLeA9xTd65TKCkZ4M6c/B+8KXK08LfDXkUK8fAt1bNFAjcF1OyQBHUO3Af9e8/b+OhcvlKNLfQt6EVgxbkZyyo8jqCJ95Kz8+lVYPfFlAE/3DSyaQT3l+G5rsS12aMl/uj1418vdj5zfH0AvU6nXQO8HZ4prC5guDkWR/R13DVzW4spP5X6i2jfwM/CTl2eEtDLskBIYQzcHK23wbTz+1A9V9FHfhF4L9rvYw3eu6yjiW2Q5tfucKu5o3Bhl8uE63gxmLZvv1T7JBvVL/925ZagX8N6fE/TDF+2H3gXdH3w6GgcoHQtHvms3+Ir+o453cOk0ahpdx4fBg/lODUNK5khsHbUldElwl6B22tf3vqj0P/d/XKlXaZqbGIG+2DS56Gho4GdaevNWFxfgN+Bfp+cqHvhmhHRsqZugq4ENXzTM7Xvgi4xh3wzdEPx7nUaO7vNIJLHjJPfX+o04UsH0eaFFAZ4B5kCfly0uN0QJ/+kh4ACjFdX1QgGoZif1CehVYG6XV6j0QSS60rfXXqNFG0dv/vVLLzz/3+eE+nj5oC2TooPKwBHQr4I9+XzLpv/7fhn/T/8C3rQ1UN1gKAJN91e7faxnEx7YaGK4xPQafu9HHeR6k3fWDn30Hfz5Px2rN7npz/RDvw5S90H/Dh56VSr+VTUCcc4bsHv6Qx8r5SZuPXLhKu4VpL45npabXrUBmYOXQtcEG3oazP9Z643Ow70q9Eyw4syOLPf14ahg1DA2cLYRlusUau3yz8NJYInvWQExvZuQJVgR+mbwy2wV92JFL9QOVobeAnZ+ySTa8IShgF3yjkkSJlicL9NG3SgXm4DNm6Y99arVRwlgGegHwYK7Tc8JtnqgRrAs9Hrwsja5d8HqIUhiyDK1J2IrPsXWyug4fwV/HaSetoTvoPA8M7QAehr0aWCnN046pbkHUBb4HPQ08Hfsnrq0MxipWxXJn9lkhu+37mw8GnIZS4D7bp3iEV64EYWAn0H3AHc+7V1q1eWFisDN0AvAype4Re5ODkaBD7jKzbh24Jlf3KcusbmEHcBT5jb2793w9vYb8AzozeAxfd3lvIs90XcwD/RxsP8Z44hbGwLRJ35ZHP12J34bxNG8tuwifgFOeH7a8pLfInSfj7oD+m3waJuk/kj2biQwh7oP+mzwq8Kd/4QM+SOpxbvVXhy1whLbRHm1snPwVPA/WG7t3VUmKFCRej50Z/APf6NXlq92oTuwV4JeATY0NNlbtNUZxWUbtifx2+Idsip6RtEXsD84ld+6UGHQBkWATaEfAtcPxbz/rGmIWOeo90FnwDef3k/0+yiG7iwYkGfp2mH/JU/KF3w4j/PBU5eGyw9yOiNLMeqj0I3BxzUmha/024tiYe8HPRo8an1eZW2IHrrUunlrVaY93qgwlvuz6xzOADv+c7tyRGs7Emij3gx9NjiwhneOpKI9WgQ2gb4QLOmmL36yzgqdS8k7pDPugKfKiKV3NGXjbDCvTx23nZ0oE/iffhh85sjHtDPh5uhQKvU86H/85/s/SS96ZxqxF89VSDYfZbLxH7vyha1LbTFkesAi0P+4sOn92G0fA8YSzAX9j8fQgPX4MkVGNI+vuDR8H07omSrnp5GFRcDTkkXfqVVtQkO51MehD4KXSsnc6L5rwJjAPhW6MRhfrLCOLDBn5MrdgkXC3fDULM+vP7UzsRTYRG5Oa16pA/pRRv07k/Zv4HOi6kk5s7YzRbDng/tCsE7YDta4sgfjj9uGLrE8sInb2R5177P4IHgsWmOd6pAJOgHeBT0JrNKi2PuO05w5BbaB/seV6W7h5kPezOEOLDtj0X6stYttwnUuA/uDDdP4Ny1L4WNiwHrQI8HTd28fyMrbxaSCjaGfAovhL9kZ8xwZmW8XrPbM9MaCm7vYzx6n4YXghjDOiinP9zBqYAnoqmBp19PxveJ2jAd4NfQ/dv7eHbHGfC+TPss9xkbLBw+t21G8vvE0PgUONwnZtVfCgmGBG6GvB0epjhu3625gdGZTq6jSrgnW2/Ow7scCM8ZG+ICxVrYvluiWTlVdfArvBn9YrBf0rmcT8gXLQPcHZ8QULXpcasw8BmtBfwLeEioS4P3Ri2EtOjxP4bcf1osZ9l8TmYINwA0HhVYlihgz4WBL6MfAIveyOF3GTZgCKeqp0P/49CYVh9rH/oy9Q9250cgAzOQyKu7nkrEnOLxezJS1Rp0Z3UM9FfpP8GSWsM+9Xk+mAvZG0DGYW2k0YLgpkHk67fsaVZ9AzKdfVq288iTuBNcsvrbHTmo7wzmdWgn6bHDHsW1LPq7ez/CC5aH/8d7ayv5Ni0OZ+yaCvbggCC/6sMp0uCYJN4ArhtR3RibvYd6AZaH3gtWGOsozUzyZS+Cf72n/44Xt+dE9BvuZNs2RocXngnGXrL6kAUcSfg2WCqz0nS6xm1mqRS0mR/sKcMWP818Fn7OY47BPhPsksGXRqPBbRz3mw+Tw9mluofje2tD3Kc8S8Qh4+e/QxV0H5Rn+KdQvoAuCj26xP7I/1xAtAb+BvhTcZ4sHY7wd0fkKodrONUexu3554aucBJwP1vvQI202Yo+ugW2gF4JPJCrlPwnYxpxiU3Ntpj0N7G+ueLZjkSvzPzzHglA=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAvwEAAAAAAAA=eF7t0M8rg3EcwPGnpvWUww5DfhUrRDktavXwNYp2sGysOFCP5zAuNHJwm2zloJQLmYtCDGXaZvkRDxmK5Hcmh/ltF1tEOMjn+/nun1D7Xl59Pp/v6a0QeaunLH2TgxeuOy9D+4/QXO8uKl/IqL58BeVWvcwHD9r3zpQ7fMzZdVSMBtEJ+wnqMd+gL99PqNP1hu4rflFJw5dTh0Q12ibkoP7eIqq8ZyylhjWuKupxW7WZaqgXWql5krUbZ5vbSa0VQqPU4prAPChnKmObYOxWrTqlrkQi92Chb9DyAZpmSIGSwN4xZkgD5+dS1vIJp2/sCg6XEE60BKejVYQ7ftU1/ZoIl3slJR+2kCznUoNDl17BY0ceO8p1O6yfYyPecZn1u2SdOOJmnQKTbH6eYB3fmPrOKbZ3L7B/UT+727fY3XyI2n4u0WbXHeuqeEUtmi90RFRgP1FQob7eDPTAmB/vqMW5vbqSaqoXsGeSZJWoOpu7h9oihAaoJTWBcdoxVRlbBMP3atU2aICOZ2A2dHwEO6HjJxiCjtCzLwAdU+Md80AzdNTGO+qh8zV0NBItduQrOHxf9oQJE/5f/wDksWc/AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAARAoAAAAAAAA=eF4t1Xs8VVkbB/CFSGleJx2XIlFSptRRasrY9knNJConSS7hiHKd5sh9mBzl2msayWUyKR01Gb01KkXYZ21ym15N0mi6IE5olMkhFQnvWmu/f/l8Pb/z7LX3evbaYQ5aHUah+vS1NV5JFR0HhPtBVvhSbVMaAPZWjEgDWkW2jtSmGCAL59jVArjst3PVc7znIku/Pz04JlcG5pi+MtZEBk5q8SPyY+LYx7o0wN7Ye/O1vO/JgMNQ2qgdslp7cZ/8zsv38HJ5H/Y2WaZC7hVbI6srh9j1QfkKeZGfsabzaJcc+cP50H65s42oxk0yiq28/c2QPGixwCMwVw2i9YQ/0h6TF1xOslQxm4sMrvqvUoMaz7RL9ceNcN2lXl0bKgLYNwr+cmTecJLZfKj4vAOkta5Fbt5Jicxgef5o9F5LIbJ4r5WLAHpYnn0baeOIvKXtzzk2MDV7YoPewj3IesGusi2wYPZ9adNzMbLry7j1Imhw5qihekMIsmpdkr0HVDCTN8zmRiFX+cNEf5h3KXemabgU+aRlaus3UNFjmNEuyYCA3W1648doaGAusAiRnoLAxNwt8IUURpcZCdt+LkSOPps1lQ51tI3Tv6d/gUBwePj8V9nQbfXdqw0ZZRA0O4k6fQvghfio2ivOlRB0nEoraJJBl3CbxLKSWpQ3VsT6lEJZ5Tp7/t7fIQi5pOFvdx1K8qi+428fQFA399X6rkpYHWawo2TBEwjsU4aOX2Ph4KS/4QmXHggu8ATyeY3QaWxxtk3+SygtTl/6uqEF9kQnauXcHILC0lPW+kfaYNv+oxerZr+DbPXzdrfYvyBdn9q/IH8CStV6D1tFdMK8yg9mIoUKmyVMzSh3VMBH7fGM9bAGK7QbnHUvuR+G79ibsXnpJBxRf7lIIjNn0T6Cr6vv2AKQfb7z21l4X02OhH+sAcAXzaMetrSS14Ncg+aRh100yUwgP044PaiJ7R4zW4l+L3ZUi1fFPvh8LY8CoNK29+YEniMxkzmI8hL19uJ32Ed3rOhHdtgqyxzBPvvfcXy9WBiUT5z+Im8E9ROheXyPLd19qgO5Bs3jNDaoDmxD+QA0j+T6Jk9lk6hujeZxHjZrETyKXLqrXn0RWX/YQYUtYIVoHi2I051Ga4BwAM2jNTZgS4ZtQZE3mkchcfDnahQQbEfz6Ejs4Inuv0wXzaMr8cpHaL1z9qJ5FBMLB1B9gwaax2BiafZUDWiDaB4jiIHTdA1Iv4zm8XtiE08VBmgdR/OYSlyUM14j7cpG85jF9fsaMNKP+kVZUz8RS84aMMLGyNHzX8m433cZM8JVSs9O31Ku//a5TLfridMFTde5+ynjU8o+DaM4nyri7mObqOXrA3397eq4fvruVNDFM4NfdDVz/UwDKPE9hz2Z11qJNzjspxK8N3XWzntE3NrvQWnGRXuNNnRweXM3auNlxcbFRxTc9Xc5UjWqbqaS2JecG/mUr0GKf3DEP9x6GF+mfGtegNJxhFhQE8+YRQ+5bEt5z9VXRTE7787tir//N/EPuQ9tmxY93V7ZESU8ptdqbkpZ0wDcR/Npgf4C6aeoMbT/3cjzsYscfPF+s80eNQI6+aJ6qIaLJQ3YqbtzrZbgere3mhoDwCjyPJKvK+xBeZN5naYWtIV01d7AYTMaSBPP/CkzwnUQ04znaQx5DrkeHdqILF0YcW0xPSM1riUpbCHKf+Hts16X1PviRtB6RMjq5HpN2X8is0PJlYZ06vXOT9Or+Oj/N78VJWqTev/p2ej9EEhEidP4HGZhXjfKg1WhzXw6O2c04bNjs1Hu8qzYwZk4z9M/MYaun4X8AefHvJPx+8jeeW7Do0fCtC2+2o/7nAZrvNRwvsRmB34+RchvcT6v/OIU7h/6tk2L/rHYnr/l8gD6v8oJHbkKzv/tFT0LPR8B8jDOF41de4fyUuOFL7ToiphXvsYz/0Lv3TGlXEL6NzADuiivRCb9BbazXqC8MO52K49eV/LHkRDLTyj/96fkg7NwXvP0PD6+38nkg+MkvzkCPy9hpFO2Ps3fbl2Rfe8ztO8t4TFVOjgvcn6jgfIGh2OqVMl+xT/A5wevvVtrMb3jB8HT8jcLIJDekKw7sBDXhVGX8f42I39G9s/eqRzlxSm5DSvp7w49C8381zIIhNPFK0uXkf0abAGoP+/CylJ9YmP7NjwP1O4tX9BNf/zjV+GAvlcmOdNXBGtJP3O3AdTvDDKZJ5Bb8RDllZF+z+zpZ8c3x449pSEQv1DsMaDJelQD8Pn3CHk1yTcn4/Nr33uv2J30bV7IhwJddK6I/f7jzN9G6ukH0HqkgcgbidnpOpTXUXOMd6c7FLvW9a9F38PRjMc2C1xJ3UfzQw2QnkTeQnz1/jBaX3nhuQx/uqI51GP5Qj8IDFRaDk37knp96DTqNwPZmfjjyVE8H4VH3h6iE+a5FbocCoWg5POw4S3BpG7sPp8B7ApkD2LlQDv6veqzW7ti6bICq50H29D3tifXIP5uBKmX+bxG52k+sj9x69QHWyBN3tUzfJT+5PCy6OHGJAgmI0PTq46QukElOl9FUciHiDW3o/dBKtM9R/9A9/cV+90YPw7BioaTNrI0rr+/JgUMsGOI884YUUC8VRawL4+26w9ymFDmQLD9996g6ZOkDjah834DdhIxzxj1563zaHxdRK/drowOMSpCz9PRZ3LRz6QurFVlQD32vzlfGrcFZTqqhnt+pXek3LU2PlECTfaDqfvrL3D1JzMp4IOdQyzaiubb/bvYQfl1umF8g+uN1OuQLVhtv6vxCreeaBUKpGMXEs9ItaJAmEB5OKiaTvHgRST/Wg0lLQ+2Gpbc5Pbf0JQCV7AvEkcu2kQBx06N/qY7dErkusrbYfXQIPNfh87pQy5fakaBC9i/cdeTraFAs8tQ4IoWGiov+aa13oPL9+smHFBr5OppehQrxr7FebzXFvgkvnja+JCu8rzmq0hshyv9xqozb//B3W/XEgZEY8u59Re5MuDBd1/mej+jhSHOqrrnumDL8jYxMGkn9e5TTgzrhN1AvORqOCN1NFhT+ouCPmv6W/b8tD74k2pg7LdnOrj9qRYz3QLsFuJifSkjnXl/ze7ZA3TplbjViuf/wCc8nzfd/Bdcf5NARqyD/ZC4yyaRES6hdrWdUNL51FW73shR+NMtsxaZzgC3/k4fRpKN/YTYNljCmOzgZ8flvKNPTi3nB/4yAYMXBLyT2Sr///w8GGtL7G7igEVRDJsY/2QDM0FvkGnp1B1WZdfY+B05D0dJXZrlwvDNsXuJTQbcmSJeV6hngYpQ02GZ1SuRJuvf6lhvZ/WR6x9PMwmPsV9xedFuRqTbolGopyFsPRG5r+OKNjvjmq/KXU8gJHnhUiqhBJtbn3tUBOXuGZycKtESDlUkWdYG89nN3S1Nel/OIHnxGwm1pA2bW1/Rl9lUq1ckT6+XJyyV7cuw01rAbjPSQd9bTZJnA1Opzgn8/R3j1hOaRT2/bXZBmr6W/R8Ftuv/AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAPgYAAAAAAAA=eF511nk41HkcwPFJjtBuJJqSpLQbKffVb42hp6airOToUI6MMW7SYBFDW5a0rmaKzYyrGq3t0TX1q2FEcpXKtQzrCLGZKFmi7GNmfMd3nt3ff6/nmeOZ+b2/n88Pg/nvq8Y9xLKGMGO14PqnR6sJZ+VwC47KZDlPZ34L/F0erfXXKmVglm7cRR5FBXiE8pd6RfYq4O3Gp6iTOFVgBe4wSydJ7PI962I0fcSmyvT0GTWK31/qMY19lSL+/I4N2fjp3eLvv11Sxht4pgBsEUV9S8kU/x6nlL6Aaw/4jxeMs++yYfmrchZs2Z0oL4/RAfbZluPBXWYBPBaXoVdtuwv4QMIcf2DGEXgytdLwE80dOI1sFrCy3xe4cTj5mBomHHjuSrBfXWcs8BAV52xscg44/4gLaX97OrC87v5Thbo5wKdHGEsOUAqBP2sT7ZwSS4ELO7uvHo+/B9ygEe02R6oAPm4TVreRVQM8cmS3G6urCbh2NI9GrGwD7urbH9me3AP8NsKnxYk7CPzzPm8tqY984KZsbtXYiwlglO9p++7WDPD5ENcLzYhUOeZ/rnZ1fajHH/AGUI9vXKOhHk2aE6EeC3BUqMchgxmox2tjF6EeT+rJlizuMXHECuqRbaLcv7hHWyejNYt79D/zFOrxfrdK1+IeTfONhhf3aPqY5r+4R+ZcBdTjJlok1OM7Mg3qEfdTOtTjlX1wj75b4B71vphCPZanwD0q7IR77LCDewzEwz16qsI9RvbCPZpj4R5/bIF7fL8W7lHFGu5xi0SPpyV6HJXoUeE03GO1RI9yl+AeRyV6LBL1aOMQaj+rN4FgJK7QQWP/EwGj4P5R8p+T5y1bPLPDEF+FkOtPQr1aXaUnrJiVAve/XiZcYMa0SdOhEBZi30+EevZxkPd+fVgRuEGlzWveytRcZKfaGzSygw31bvZEPra7QAlYX3kyZt5b6G5uba69qPSdEug8GKqFqYTeXglMZhMFnszotL88x0fleL9A56Vn1g/DVxP3zv1AEZhowPqYOD6AGl4ehc7TbEXvKPEfsX2zMfx5x5zn2Gy6/gpBC89A500qJ5ZwNlBsXX+6wIzRrJiK4gE0WuojtB9CjOPZnASxHWWYAtd6UjMbSYPo776m0HnteK5ZRNAVOzWRIPBQsSapZHIYPcOehPYLTSdiFXeX2PEclsDPB2aJyVEctKgNC513+cC+NTLp4v9zqSp27bztY8J3qzf1ICtiSqF54KF3Q1l66wrgFx+WrRR4b56hn+Vr5IJaJ7S/HiRUu+CxMsDOY+td5516wi3a3f4O0khpgPZbLUfLoy+8F1gjKthz3lm6zNq35d1IM90Y2n8u25lJXzbLgf4LFY8KvD7+G5Kq0XukaOIFNI+mzPca6EhpATOdrQQevx1AjyMMIhqeCdC8kv6AbO2iGQLfZZsLfHBbMueibAsypZgLzTMTjbQDh9TxwMdaUoW2K/tNMYWBuvjC+zdeo53WXWMHXHGsTWD8YedrNuZx6EMCPA+fvUlLtdZ2BQ67KfRd7qbkCCseGoWD52UrZ5yypt0LmBYptMX4kvEpnwG0GQvvd/3cl19T9IOAv10mdHp0/bqgp11o6D143u5Ntwq/1UkB5hkL3WG6lJ9JYKMkR3geL3fdZ7aikArc+73Q2LpKevaXx0iNNzyvpcaa67pepgJ7PRL6umqTnPQfrYiDAzzPMxkPOXeWXwIuOi/0kDZuGk1qRay14XlfSd2xOa6MAXwlSmiqGZb5jteIJg7B+2DDzVgcQ/YGsBJTaIbT35QRciVqpgXvi0+BFlz9tDJguq/QFav91+Vy2Ih+B7xPIpRW79xjjgIXKAgdv3Ft44O4R4iuxPNPUFssOfjRE+DaZqF7AqwvHPRvRarw8D6qCY6s+9OuAXgwUOj4be4TUwHVyCuJffXpknRByPJmcc8i448WfN0+1IIkSewzcpiXZrwKD9hywQVN52zn8lHJfcc/cTC2OLAf+LPI+Kx7pFVmd5EeyeezOkultMwR4PsieyzdmndDuxzJkdiXaWnefsypcWCuyBMZGU33NTrRDonnu1Idx1P98lPAwyLjVZwP6Wg0o3US+5bHWGJGfDknfr3IeB5pBz1oCM0S7eN/Abs9ybs=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAA8BEAAAAAAAA=eF5FmHlczNv/x1NRUhktWrVp37So5tOcMiVtKm0IUZIQpSypJLki2XKzR0KEbIncGfNukSQuSUgIISIXldIi9fv2eZ97f/57PZ6PXk5npud5nyObvyuMx/WCFafVK3NuBDmLsf8GBGJiRaENZS2OmVk3Mp381eBsqscOUuaDPFyMCZCsbNp/XQWUNHXF7baKASdRki8464Y8rU8QtTnu8fkN02Hvyc0yTzQY8sf6p3obXZyQN4szJ69UWlxa6w/mZbGWDy7aESmVF55KgZPp/18nuMHvP5PmFQbPeaPrysOmklN7vwZcCDNDriPFhOxyutVm6QtbYV97SwyPqM9Qz307XRf5Hg6TKBMi+eeQC5wxtVQwDzSC0OUfHxMvBeRdysIi7bw/vmy3h9EmN47EcXjkycGVGwZL2pxYzpdj+movv+neZACO/RG9YhKEbNkrfNGkKFOG6+vi2ocX1Wi2BENwjaKumSOfpN/0EYlxdZFXKDORP2pdu0Z4w4mxC5q7xygSOTexpVkbrZDH/eLe0UuKaNk2E8LmcVT1JO2gNbtr48K3BHmjkvD+txHb4t38wUlDKvWWlDG0y89I2L3Uk/b3C55MCpt+3MANPNd9a1wTNhq6jnzIPOEVTHk312XHIq0KgSvk3JBM7XCwhdrAmakLroQj54wRGi1U7zz/2AfGxUkv9N04FRatd3lS7bIcucBA6G382C1m1hRob85wXvCcB36vPOYdU01A3q4tTMlf+HT1ahlSkGh2ydbTFGTud/Zsu7sJ+T9SQtlZxVqqqq6k8ZXWltqLXbyNjsFrY2J3Ig9q56be+ZiR0qhG3s3eL535rp6Xs6tBbO6uA8hJl6DlnVtqbqwZyM+5vnZZgTUBk5WGSeUn6O83nol8r65cdckKdse4WqwrdyQOejr9v6+eR96sx1Qcv/N46Dcf8s2HHkketSFt/oOVlbEldP2qzKM9rXpMjAtISKR/TpwjT3IaTpQ1x1RQ3sNVgJXybmr+sKAsaeOGMgUIfVn5/nRHDfJPPwT9foGHV+RPA1mNqtG355pD65J1lZPK6pEnqggVlt32zhTngvqlXT1tBuaQffx34uZXL+n+ThB+WedRDzOkgaN3uUWxUI9Eza0wNlnfQj8fRaaO7xpYtE0L0ow/Kp8eqUJMvx/x7Kj4Stc3islqSzEtXqgMma+2TJz6TR7WCD14nDndtH9IsLvcN4q7/jdv10wrnckPx8HTUe0GnCmDyI3bBefkiG5yhTTR9MyyMhplDi9FD6xNDEeWs/yQpvCipUjj/fJ2UWPiGmuHGnWIKKlfXjdJDjmnV5BcOCv3NaNIFG18yvrDzcBzc/Sk228UWZ42SkdYrcyMSn1gAWf+rjJRLO/hqVfPbL90XR1//s5vbtPgbo2TP1TJZKblj8ObZcAnyPTvcTd0kfN/CZKOlTxXfm4Ng2+TJdoSFCEwOff8LGcj5GsUhD8Xic713rMiLUfmvcvutCJbZo+Nl9azRF6kz/TvvWhb/pcWUQiJPrda34SEloye3xpkizxEjZn5PGbswvxJxFlRwsvZ24lc0pesr9rFRZ5oyzw9/PNJawMPFNGPpPh51c1hP46l+X+/pcA9XJ6XgH4k2Zv4rB+TaS6SHuMeN8+D9GuwfiQ5dxunDPvxE80Pd6w7/D5kHtmHfgRnOe7EYT9up/l6sXi137YwYoN+hAlXf7B+1KNZ7fu8dPMni8kL9CMYpUoFD/vxHs3ZY3kru5Q9ySr0I9gn1B0b9uMCmleHTo0+c4YPOehH8troYP2wH9fS/GljcOuiJR4gjX6Elba3tw37sdkY87HSuoqrBn7/+hH0lxU+H/ajLM23Mg72TktrFvmhH+FDs8yNYT/a0Bxn6PA0AwIgB/0IgVeHlgz7cQ3NnIu+4Ssm+EA4+pHUT3ZOG/ajOc0Fvt8XBlv4giP6kdivXsj6UerfvPh9rYFvMCxDP5KonV9YP9rQLLCznz7GNBAOoR+Jn0Yo68domp35ctlrmtyBg34knr8CWD82rcR8oLng2pVrU6EN/Ui2z/Bh/bif5pTKdVclnvvCUfQjmVzcxfoxmOYV6xsNXFcFgsVr1o+iXtmZrB/T0Jeio69E8ctuOoJOCOtHkZH1M9aP1Jei6O9yN63PKhEl9CM0lcayfqwLwWxYqPcwcMo33nb0I4h7abN+1KT5n02vXyoU1ohy0I+wSg39GEhzRv3IVyd6HEAV/Qihr9GPNeI0l6gel2vRI8vRjyT3IfpxoBRzcf9VhZt7GVBBP5LHS9GPWeqY+bOz9Ap+uoEW+pHUXkE/HriIOeLpgltzp3nCBPQj2AajHwW6mC+9//n5oMpU2Il+hPNf0I9jaP4YU50QWOcDdehHYiNCP8rSfEbkVP8pzB/2oB9JqhT60Z7mcs+c81c6fUEP/Uj8y9CP6zwwy2uGJzR8cYdO9CM5eR396EnzUa8wmXkPpoI8+pFEpaMfo6wxRxY5PfQ8pEQOoR9F+tSP5jSHfEnYOudRHc8F/UhuUD9e5mLO5hfYM45O5A36kVisRz9m0yz2ukNh+kl10oB+hMRZ6MelNKdM/vvm9yhXwkE/woVr6Meo2ZiVvl5sMDlqQdzRj9BugH7cpoD59LO1D777uRL0tTZz6dMA60f0JUMiDxmrWMvbg3R3FWdqBIE8x4+bm2QD6HzXK1im7b1AyWck6etiOYmKL2X5AM3tncsKK34R7Bf7JGhQiWH9ms36dTQRXtiWHX5Yh9zbvXjkhbscqPp1aHHyVU/aLxAULuocueumM5QjJ9WlG1guoHng080c6bgg7OeMFl5bO47//35u562Q0h2rF2JLtDZOiZYbY0SuDFV9Ep1yof3/cFf8LhJjGn1ABjno8YQsl6T5gH9UE2gtwP4KBWFOojfr9wOs302gehHf6ogdlyy1SjpaF+lALGcdLLl7l0v7B7lPZKKzAveFwALkcDa7kuXBNLe+25L8d3wE3R8l4ScLYM8HW/Z8MIDmVWrp1cF2pCuHv6TA3plorB7BdItZ035Z5tn3PTOqns2Er8gh2Lid5fU0Z3wSkwjvDMX+tLHC3/GP2Pm7kT1fbGH3jD33v09Uh7EPTPTn7OCTXumcnuqZhrRfhll+y/vE63B3kEIOll9X9Q3zgfuYHa+3ehhfn0jX/4W7ed8qdn5PZM8nMxDPyPZSlbOHDX6/anMztUmKq5NUWpw67W/hZrln3eVn8yEUObzsRj6JZsvkPJVpPdMA198iCJzZwJ5vO9jzTYWM3jE+qNTbBU4auRuU1GoRQTCcGsgb+d/+l0hVZbnpWkIicvhZ2Mny6TRXKafee/vLC/sr1IQ2Kx5mDp+Pkux5aQZLFK7vOiJwh4I/5e8JMnmk13I5f37Uj1LsV2WkJk7jxV/1hKPIwcfcxGmYJ9OcvHgouS2QT9cvL9y24y/2fLVnz1dzmBM7UHXwyjRYM21a7nmeM8nYFN3RAyr0fqLBFIj7a82P9odI5KC5dODbMHeg+clhx379B7SfLylc0d3Mns/T2fPZCg75qc5MezodvLZrvzp3xIb80SxZnaVhgv1psozbor1DNrEBQJADL3fZ7WGuRXN3xw7fN/L+2C/WxgXjH+z5jue9BBzKHu+365MPbHrWm6fvogPeqW2rE4vs6fqlhJlBB69vkA+CWOQkwt1+zTAPoLl/Tc+F/i4fun5ppvk+YeeDEHY+MCDn+LHOUyr/19+V+WVEuhXI95geyVsxld4fxgkv1+TFV5zxgvXIyew6S5aH0Cy4pq82UT2A9vdx0yGCnS8c2PlClbi/Gry43tcfdISu146HaUHTvV0RXc7+dH+GBJZLBh5kxbrCGORE3Powy58IMGcJyp/4iAJpfz9Xs+8tO58ksPNJHy/4blJZS5437M7UU2teZAjxs0OmTmqYS/dHVljoKVeTYeIBKcjJKU4Yy/1o/vlhrPefv+j+pKkx/ZKz2fkG552JxLDFXFgzfxqseCCj467hBFuZgHPZfYtp/0Rh2nLdOpsod5iLnPRlLmT5GJqr5D9k7FhJ/774iox0tB87H8my85ItUTrxUyQ8wgcvK0P+YAkfJLbeeFfRFE/3Z6Iwf0OIxue3RsBHTmQmlLFcnuZiw88Pl5V60O9PP/fMNF92vnrHzldm5IxRxGXTYBc4XVsrA6mTQaCRZ9D4NIX2qwmHSI39VW17cgQ5iajNZ3kYzc2d13rsVOj3U7Kbe8rjBzufHWLnM3Xy5dzV8GBlR1DIzXiVVKwCf7pdsP+lkYH9234JygruBT/qtydfj7KcRMdeYnkezXYBK+8c8/Gk+1MvKDweyM53hex81yJS2HyT2zHCDIps3e7ERX3mFZy6M98zIhv7wx9x84ozp3sfHgv5yEVp4TUsn0OzfqsNN4gxxH5Ol2BNEt6fPdl5sVLU3tK/vkioA0svNR7+0aFLDHNbDQ1H5dLPdwxTt+KYrOR4M4hEDttMkU+i+VP69ICkDgXqf1nhkxacL6XZeVMXTD0it5t0mIP/opSAdht7MulF8B6RsID26zGXpcJSbBodwA05LHVH3hGBuf6Fbm3jz9887JcRWpTifLqGnU9Noe7W0qTKmdag/OD4UOlFe+J/S6k5/NQV+very2RdjjDhGrjAKOTwIRz51fuYvylZch5JGNPvz4DgDx2cb3ez860eBFsEucYWOMDYi5O+2y4xJLWOzjquBqJ//cA8PZO+nM/1glHIQd4b+dkLmBeG560i9dr0823lChpxPuax8/KgqOxrzC2t83Zw+EPpTOndTaLjt/0Dbl2uovvTKOg8n/umkucNtsh5zeeQV7Vgvpfv+ezlDzXs15FiLP/B+dqNnbfFyYtnQ6vaO51Ac0NFy4hXetC7Ye81cYeH//kto8khM9CWD+ORk03pyGtSMAfp7lt3QONf/0sz5nH0/YKd1zXJ4T5OVXe8M5xoOSsWwjeHbaM+5z73fUbXry6Mrw6L8/nTHPYgJ5FKyGVoftEr3C92z53u/x5BUSHO91LsvK9J3p3Tas8UTAE91VKDSz3ikPH0yqruyW9p/1dB8cHBN1sE8qCMnLxsRA4qmK9tnlDjMIL6R6xLYBxC30/Y+4ICDC5TfHh5Aw/87E+u/GiuRdYrxHDltD7T/RnLaD9qjbyooAbeyGHcaOSVdph/ytdazommf79iDdwo+v4Sx94vpOCHyubEMRcI2Lbu5Mg7fuN9TvgaW6XZSdf/hJugpOpS2jgC8j+yXCS9DrkSzScdEpPOjZtB54c2bvgNvJ9ks/eTQd4B/8Daa9pOYHeyr9E0nwOXVtpZcO730X5xoVZoyK+wOg6xQk6M45G/PIG5J782tfK0H/V/L3cnff/Zwt5vRpCTmeq5PGtHWCUMOt6coAe/Qv452qgnTt9flIUVyV8WL7Su40UjJxFzkUvTrGU1Jl683Jv2D3DLAO9HA+z9SJNcsNq6e1WQPXhUnorULdGHyRNdywdMR2N/hYqwRPYf5QFVDmGQE0MD5A9uYj40sLz4wuh/z5dRzCj6/nSPvV/JEKs4McYp3RKmOGw22xGhD2rfw4418MbRfnWh4v3glV9KlcEeObFqR15rj/nNJjfNuwPW2K8lzkTS+1knez/TIPLijQNeQzqw5ZDiHNVlqqB/dO1rZroK9hvLCQfSnuUfuSIFMcgJLxf574OYvRSlRPoPxmO/aQf31m283+1j73etouZrP5WslpTxoECiSdvzq+jb67WPliprY3/aW0GfN3HOeKkBjch57m+QW9LcHugzw6xNnc7Pb7lu9H6I72n9vFt3cg4/r9IhSzYmRMwL5cCVvf2ltin6dH9GCsN3h+bcN7/Dm4+c9FLenYrZveTVz5dHrbC/SIFpSML7Jb7HSZDqeXuPKe3XJQer+yqLTFRJcfGMdMsiU7r+cUyduoJK3dRB0X7kYHgVuSTN2RPyTya9m0LXLymUou93Vez9VAdUxjWpvBwwJG13OH/dT7cgEa85N9bYWGP/cT3m6P7yAe7eZtFr5OBP+QSapexqyquSPP7rb6Dvf/3s/VYNdn58mZrcakSuaTfJk2+TyY/5FZqN7XbYL2bGqBf99X1e9RjyF3IYolyN5m9GMRF22Rb0+6/K2NP3Q0P2vmwBWw11ZtjamZH/A8Ce0qI=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAIgIAAAAAAAA=eF5jYICAMMYd8hrlPfvXZYnkTf0xY795+LN9+2oX7N/ywLc+unTx/qaVWlMDVi7dv0Dl8LFVocv3f+biN7XdsGL/7RXrNr96u3L/rkXh//55rt7v5qWpcUpg7X7rIKOI4vXr9x/YZ8bC82zj/sdrP6dXmW7dr/15r/b9ybv2x0hYSxUtPrifP/Qm6/zlJ/Y/86sV7v58cX96eYiN+fNb+4O/JXUmtz7ZL5FxtNR6xvv9XjLHlj5J+bG/1P4kl9h5pgNy8jfuCzzkObDrUrugObvYgaKj3HphqxUOCLGtKDv1X+PA1muSiz/0GR1g8Y/fcsjR+kDuw3b28pPOBw4UnWP4kehzoOGHftgXyZADPzb+2y0iHXNgpu6Weu2U5APBk+pMX6VnHdhy4kHm432FB/rNfI6w9ZYf2Ja3mcHuYd2BT1u3rwhiaTlw65yordK6zgPiyT38TQETDkCDkaG4fhU4HGdL8oPD8UPVU3A4Xt4cAA7H4m964HC8JHYIHI562ZBwTOvfAA5H3vuR4HB8slAbHI4/WUzA4VinYQ4Ox80mX8DhKJuwDxyO7kZW4HBkvH4DHI4xWyDhGHoDEo7vvkDCkT0OEo56upBwtHODhGOrCiQc065AwrH9CCQc2Vkh4Rh2HRKOUgGQcDSGhmNXMSQcW6Hh+BYajoeg4TgLGo4/oeG4GBqOW6Dh+AUajuLnIeFoixaOo2AUjIKhCwDcDU+ZAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAcgQAAAAAAAA=eF5d1HlM02ccx/GiQCdzcrccmzhXxlEoBqXNKCi6Dbeqo0OosDHuALLQZDCOMKFCyrWBEDsWQBc55S4QWkDm+jyWY8AfdAPBthqOUbkSFGglxXgseZ7nr/3+ef//ej7fH4WCP4HJkIt7djmQptoJq401gHNlVaHIqweypUuibzObQGG7ZzW/vQXUM0bGO8Jbgd7C0i+wtw08bpP2b261g+HGK2/efNkJgnke7lNW3YAb6huR0dMDoIJteni1D6x065Nz/eSAqf+TuSgZBlEOXKf0pgfAMlxjdqd1Aqx+lWf7i/4fkJwdFsBZ04LLe/FlCUU64JAylsmteQ5474+36BKNIPPMpAVNdQAedVEvWi0fhsMzJdYcKg2mj73LEnQegzbmbVlTb92hfN6xafuGLzQNiZEpz3Jh2nIJNXvyUwjTpynGuIvwutFHYHAMg8a+N3/YOUfBWm+ZiJmYAC/fzPfbTE6FsomlqyuKH2Al++KoeUU2HBD2U04v58Nd+WBbqKkYaqftA49LyyA9odyykF8FCSMlQ9SBHG85WiLH7dynyHG2n48cM/ZYyHGGpkSOrO+xY1JlL3J8bzESOeoamMhx3/QUcsx35yDH/lMG5PhBrAI5nvf1R44mj9TIMUqGHcPV2PGZATtSo7Ejyxs7ng7GjkUM7Jj0EDuWjGJHqhl2FDzCjk587HiSOP6cgR2LiOMWcVQSxzriuE8cm4ijjDgaiCNdhR0D/+eI93gNYM9rIDGoD7l2+RkVdnUS0OG1i8pQWiPnG+XbmYde3gYK6haq3QZ233N2cqnYbwDxdGfUz3gh6B2cPw+wEFQ2g4/mzqC+VHmhd7Fe2+vOE90FjcVG1Hu/43eaom+81h9oA5QH66hWXPxua5pog21IO+C9jkE9drsHveOU60GN4VYH8OeYoepgBHrX61lBkkTvLpADz6HaZ3midw6a9oZHY6VAOOuDWsc8id79ud5N/e9CL8irdke9o8f3FMq2Z49U9IMaKe6FHXxfJX+rJ7t0gyCFp0Ft9sA72bV26o3bUgBBvCNqaAvezQDboqrUdQw0iw+hvkPD9yjcv/rbN+enwROXVNSGAryrj1fW3eLS5kFE8AbqQive2cHacYno1RIo78Wtf4F3x/b5VaQ6sglyPXCtEvAOmSlhJwocDMBRiHufgXdZd6nru1KTt2AuCld7Du+U18PPtFVTYbwcd+ZDvFvGzj24yLWBYXrcqlm8Y5VUNbAjdYbDpK/IrpVPI0Or5hjwLx1uOdm5QpO2MHfEB2pJzcnun9y83xm5zoZDEtxK8j/JGX18wkseBOtJ+eQuaJ5M8aD9FzCa1JXcyXbNBWaO69fQtRa3kNxNQDi9TOwUAT8h3SV3xBvRPNMOxcIoUim5q72YWq3FahJkxeJmkTtbsK4Xq3eFMNgGd57cXaOIRn/R8iOcJq0ld9g4I4o/zvkJdpHKyV3eHSh9mDNcAFtJ9eROk5Sr6f6aYlhMaiT/PzGPzpK4VcAJUk9yx/8BQptVWA==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAegIAAAAAAAA=eF511FtIk2Ecx3EzCqEQy4tEgu4kB0aUKEg004gZZnVhQqVmgpmJmIaUkIFECBpGkxQFKy9KCyo6gIKdZMSmohDiYdgBydRZLp24cu9ee573/T43A3fzYTc7fPn9X21NvrxWHRfQjQ58iQ/QjjexAs9iEv7STfNwT5D3q6ZHfaZZ301znpp6ok0n8oKGkxV/DdfOewyXXX2GV7OzDS3pCbq0rnZXQNo7ddgnjUl++E3a/X7lubS8ZswqbR6sT9WFGydyIzXh7p6uAr9QG1ro+y0sju1tc8v/7Uh58kb+jsadNeXCzXHXqpZ0rzX12Ieq7cLBkc6LtzWvNTxMvv5YNf636jiOoR078C6qjpWoOiaqz6Nf/jodM+h4nI6n6DhHRzcdv9BRX6djPB1vhXSMDelYRseWkI7xIR1L6PiKjuN03ETHNDo66RhGxw2o3quuflxGD07jFKruQziAffgWu/EZduJjbMdWbMY7WI91WIs1WI2XsQSLMAdteAT3YTRGobqnLnyEufiZXQyjBecDprN4ht2k+k0PoI0dbZs3jcRMdtXmMm1FtbOZEtOfOMvu2k7rhi04xg4PZQQMD6KbXZZdXzIsxQA7ddgnDD/iIrud2d9kfi9eYceTc6PGjt2odt2f8lWTfkK186rsd35pJfawe9cWp0fqRPU8SU739ksT8TV3cbJg6w1pFpZyJ9MDM8PyTn5gE3eTkOWyBYUWVHd0aTFJ+ycsxjjuanRqJcYnHMFV7iy6MG3vtDAKi7i71nZ70CVsxhfcYePAiQv3hA04wl0WZQZsycJCDOdOYyOq8xuEO1A9/zqGI0rPBb3W++jgjv8DyeuvxA==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAA+hAAAAAAAAA=eF5d2Gk4lW3XwHEZKqHcQjIlaTeghBAuuyiEhGQmZUxIxohtmzJEGZKokEoJlSFTzvZpHhrsulUqUSlDaVZp4nld19rv8fR8/B3r+/9c68w9tXDdiYNn6e4Bf6xctrPxR5XFpLm4Rhn8u+R1lbxWTssG59INry9P/XGnBz+8s4r05pS7Iw+mrdGluOk9QaaZdIY6g1vjz11cN0mZll+jqmeXhMbk9r13HE2mn0vJWhqodBff43YlXdn/5swQLQ35nNnNrp+KobssUJsqd7yDJXjtSOvJ77B6Un0KqQpWZZUTB+nDJaMlYym38Ycb6aTpni+GRx4lI7bNLGWDIn/6lSO1assbbmGjZrbSjA28qmkxz6ORmNPiyah1rvTeSNES17FuzM2zhvTDmyK0sG9BaFllMO++i5p0S1WtRacluvHEhq/cM0Z3tUx7BdxQnWHvoUeLbFkTeV9THxl14alozcgZn8lxfSDAzETfClTV50f7s4pvuMosDOvEnyV9SQe8DDr+a04iik3rWOGmFcVSd2kZMi/uwFOtt0iHRXvVff8nCxnf1jbVy0pmbX1xnv/Ig3YsylhH+qCYtPfVnlRkftV2e8CZbBb/PlF2B287tpm9k/Rw3Ln1To9i0HiVX7be97MsOdr0GT71NjzfgXJSZ9pKveNMdPQBf0NeejmrmU9bfItbK/5UPYf0cvoKd8nEZFTDdeyP2rI6lrjFkg2JmS1YvS+V9O3sMCMzfAgpVDTf0stoYUU8MM+509SMn7xtIh34WPZFlK8RMXvnbtEeZg/L5viuM5KfmvD7766kzXzyhH/wMQkV9h9aoPJjVmmjJk+gXBNu7aWskyHdpj9kQ9ilMzzzJ4dYx7ks/B5vx/g5+EIw68eoiTeqrp/g++P/gXVYlnm+cuom/tFHWV8qI2DqiB9a4SH11C5pkhXBtzf0tzPCvZGUPQ9/V9whwUAbVwVU/PuTG7e4aXypRjdw5DrK7LrqeItnDNT7ecunfxYL4fJpq35h2QbMnKDcZbCWoRGXitLPETqPxMUx84z0d4foOny4iLLWCr7c0FVxyHuRfdL8XDksvA35/3pRg/vEKBcWuMlJGISgKH+ppzLlK/F57rJapuF1/N6Xssq0CjskcQviqhoQlVqmin8W2HaUlFfhJPAT100CUvMc0eW2Q4pa9trYb62PygGJSjwJ7ncbGNj0wQp5FZs9OT2ij1OiVwZIJF3DJuBP2wtmRUhpE4x7KRMjnSa48UaPjMfvcuwEbrfrFjV7u4UwCZyzMrnBCg9LPTzh8OMylgD7PpW2OiKmjEan3hlW9dljFdXVAhUCl/A9cFuScn32bEsiyfJpY3Tubpz+wlfisdYFvB+8apSuvdPdB20YMNg055IX9v5WaySfWIQ57hnYsjVXwobwrUj77OOxH7N3BGgU/irA3mCxMY1L9qf3o5B3dtX22cF4+LJ9c6jJKRwAXh3c8/wz8iP8ChvbVK9G4NAzZ2Vnzc/BTHDMJUPNDjVHwl9Rrv6cTAzWzhB7sNspCweDHy5qTjjA60vU6vTvc7+ZgIeUXlvcMk/HrWBn9Sa2wcWDaL3ZhMpMD4OhjxxzcT0MtBw20VXwVSZ7aAx95PhZq3Oj7NV4Ijqqn+xhPPSRAdby0T9TqnmSmA7fS/awAPrIFUHZ5eu9XQfHTxFZTEWyh07Qx+PgCK1EepH1OaL9VeTxmR4+gD62gtm3nOxMrBOIazXxa2Z6WAR95JhZVfbQIzoKhVzJ/j7Tw37oYyi45PE59er6eNR3MJbsoQX0kePbwmnZgZUpSOTDn6j/7qMwOH9rYHTxBhmk69aqNtPDPOijHjgw8CW7fe8xJLB1lOyhKvRRCDyozLaueZ2EzI5RPTSDPpqD73NXzmE+TEZ8FVZkD+dBH3nBCr933Hf8mYHsVwSQPVSAPtqBbbSbbAfE0pFGLy/Zww7ooxa4VaxtT6lePFpuT/VQEvpIA++fFt/mEBSDmkIx2cNI6CMGvzF+tSPZPwWZdFF9tIM+moEvbKwOvbczHalenSJ7WAZ95JhpkLk/sSIMuSyPJnt4AvroCt7tyTT+bWJF3Jj4u48IHH7g+m/5rtWEyR6qh4HQR0Nwd5Ht2pBHfEhQ++8+ciw++GpVwIYQNGu+IdnDaugjFzj07NpfJxpciYF0qocM6GM/+O6JiDkexaHosgDVQwHoYyn4/Z2pxaHpscjkANXDUujjVrDMCcGvBowEdKmC6uEE9LEYfPrNiJ7OKBNJQw89oY8yYCEfS4Fl8clI9CLVwxPQRzHwtLJujjVXGhKFHnZAHznunXj/wTAhBb2BHn6EPo6B3Uva8kzM4pHx9N99NAQH63dKrkuOQa3QwxPQR44FdDrDXutaETbQw73QR47lhqWe6nUJETyVVA/HoY+84Lo/FRJvX4QTYu+hh6VUH0XA7939OiazbYmpAqqHStDH32BD0ysd3aZMggt62JlO9ZHjyXJlo2ItH0KboHr4TJnqoy64LG1gMlmDSQSeWkDui97QR2lPEdKKh1t4eJKCUL5B9bULqvn0hOVJqcpSbGyS2kD6wvx/3WT69Qlvs3zSKTD3APsE/bp38nI4EbhtO9lTfehrO5cFaUFVixppT2eiOHDuuq7BbPrIhGVHjkcPjnXlJ41W3r8donsIXW/6rjLjUZhXg3WufmanamQQE32CbjM9Psjp80Ih0q+KvGP3LD1A9N82czhLP0ZPG5wr0nv8Ln5ZaUTaM2dMWv5IMvJfvoD0MZhznDJi2mhUlkcs1i8me34C+i5QVUjacPlku2VACGFhpjyY8iWBzrttaIFw6x2c91GeNDf3E5pqazZyqeOiDPNdYNRBc/XeWUhY3JAj3wNXeB8uvpcibXr2Zwt7KJBw2u+Vly7DoOf3C/WafrmNR8rNSAtKFLazbbNQ32qtUzNOhznHQmOjoyZFuUTFC2Fy3x6D9yWjfjpzxpf7NaMX0myRvK9ytldHEL1bku2fKH8bP5cVJi0fL6WvfS8OBXe8Jl0P8xCwBJ7HXRy8m5B3fEru62XwPg0It5CeX6dgPy8xCPkX1mY+3+tF1+f1fN9seQsXlJSQznF/dIJhH4VakoxJ68H8/72r63hNUBwy5jtEvmd98L4huwTSvkO7oolCBirgv2K/j7aDnmVLc51iduPYpkzSQZU7tydc8UE8IzykU2E+G2w29zf3Ke5EVCzpyz/zHm6F9zHVpWzujNUW5hSNy8YjRqYK67fyJtblYfH7G6514VslX0ibi+gtbBpMQKuRZ/OML8JcCWyhOmFoORaJTpZGkvfGZ3hftYyvkB6vHrzIrRGHMkyOTkbyebCMFRV3hgx2YteHLaSnpWVP9YmkoUdNC0nrwfwh2MyZR+l2UxSiFdqT90oRvM9FzqGkg1ujQ/iKk1DuC4OlX3VCWR8EM7kq5nfiRU7WpNuLlgkJDB5FEpp6pN/AXBx8d+PArLsBqahHvYl8z1XgfT9q0UJa3/LxdE5uMvqyJuZD7aJ4FlpS/W2c6MD12VGkq9Vu1Cs+T0cTzIukMcw/g6tOfjXMPZ+MHJJ3kvuAOewH+i8tSL85IKZaFpaMdGSYDYlqGSyl4n7fVX7teF1IJGnBf2XjJOsOo8gtnqRpMOd4eOPXLytNjqLIgy7kPiEI+8UsBWfSrrVbeSsHU1GBDQ19azvNyu3kr/U83YY3XVIgbZp52/eIFRPJiCqTPgnzJWCJV1iReSIdSYvuJfcRadhPlEa8SS+Kz2nqy0pEu+S6L463XGRNZks7XLjVipcOdZIWOvkuaDw2Hl1c3U76O8yLwYOo5Jn/5WQkZg37DOw3HQY8pF1U2fy33saiPJnt5TikivX5ctmK4Z8tWC1mG2mdtXKWnx/EoftlFqQnYM7x73nrIxN+xaL99zP+2o/W3kwnfVkkZv8Wnyg0WyO7u6+IxWKLaHqvXt2CI5yySL8J0ehRo3kgi7ZU0j0w51jufErPC74ENODRSu5TDNivtHkoy8o23v9wjYEK/Rd/nJ3cxfqibisZbN+M9z2TIO0vrrQmPieIEJtPzSdgvhCsuNTnRmZ0Kkq9Qd2r1rCfcaVRNjw3NFdhcRhaNpXfNx7ayzp5ydSiPakJK45RDvfTzTlqH0zUbywknQvzOvCy9D2SVfEJKDPsN7nPnYf97lk45V76tryyN17IdD0fKjV6zmofMKhbXodxtQblqcFK29hfpuj1MOU2mL8CL/yW57v+ihvKZVL3cibsh/1gB1svJdsCZ1SyfUvNnaoxlrdwOku1h4WP7aLMNeuRRdBvL2S2l7IrzE3A/MEx4eHtFkRNI7VPMmG/tLtNWSU5YlLz7F7klCl+9e2SCZZUVnCa7ZqbmK+Y8vgb3bZcmRDUWkZZBOYtYNpqludEkjbh40PtowdgP9UPpez+7OeC5ip/pPpabAkXfZr1oqanui+tERv9oCxlP17V5cxAaY8o98H8KPj+mpY92ps9kN0Sap9FsN+GLqO8r5rIS/wUjMw/Bd/7zD8XZ9a0jrx814ANvlEO5M3UdN55GEXRQkjnwDwSPGGuKvFR2QkZ//n7/0BmirINsXmrkUoQaqELSF6zFMHVfbVj183rcQl4POT8MSWdRORGo1wKc3fwwNU9csxfNsj8CrVPp8B+3V1OueH53CRGQgTifapIizgvhdvnvlMtvVaLx/sol2UeOO9UEYmk2JSbYc7xt1o3/R2JkShY4u//izL4z5C1FfT4+TUC5QcOrRM/p4Bxu/pCPdEaLHSAchV3wKEdZnuRG8zbYL4HPPn0Br/1mnikAfv8JdjvAwIoOzHYoWsWRSI1lMp9OXwNzh6LoYtFVOOPjZQNswZoYeqmaApTzoT5NNj7SvLi+7mxSLzq7/vADjyudal+k91BxDj9pWCVngbelPH8kNBQJR4FF6stElikboMYOZQ1YM4EZx7SSJpdkICWd1D3hD/cF9vA8/LNRrjdw9GcDZvCpOdtxI4CRuzNFhV4Adii1elm4yk6cgDbw5xjzR9vV3jFHUFd//N/0wh2EhXJ2d8djnLHvN31+wzxMbOpKZPDV3EU2HxEeii+YxvxB5wEc643lOnb5kc/XnYE3WTDfw/cN2Vgf67e5sfrwtDAxPZUxgILrDQg8WQwogw3gpm0pSvHywUJsa+UVWEuynHChnueVxMR5/9oHO4jFfDJ+D1+tm1BSMelelX+Vht854kDOyG2BC8G6+91mF0ba0b0gB/D/B5YZ6Xyxu1nY5E2/DcpwH2lBHb4YbZ99ex9qEbJTfdxggteaS0tvKWoGGeBPQaPKb7buAMxlSlrwjwG7Ojks/X40/1IwYq6x7LgPpMAhyfyjZ+SdEGpT8x2tBS6Y4PVk6V/Bs9hJhinCcT5/dqMFJ9Stob5KvAXjzUrpNdZo8lnf/9/fQdv/HTEImD8p6582T/X6w7vw5mveVaG65/FHF86G9ztWGqHPMF5MPcAj4c/XFfwwJYwgf+yTrgPjcEhJbQAqSpnIuoZXjFHIRCbOLOsBM6dweHgPkfBmHsJvEQ+eAfMC8Cd86dCjXz9iIlx6p5sgP+3z+AJ9w9co8t2ES6LQy23FIX9316y/KSOUi52BWvx8yHpO9roPXgbzD+AhfK+x1rqRhK68F9nAffpZvD+l/XnnBzdiVd8v7R0QhhYzrShVWV9Nv4I5uqrVNZwlEGqsynrwnwNWOxLRt7PrnjiE9yzx+H/bwL8em3VP/KKHsSLWYf7+fzjcPOGuDc5DzLwW7DVjcbK0yeNCQ1uysMw5zhvKPbQg7U+KA7+CzPh/zAR3OA4+E5Ywpv4DxVxDz8=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAATgkAAAAAAAA=eF5N1XtcjGkbwPEpiqUDKSuS9NLKopBKT0krp6RIJb06SBSFpJxqGcVSKa3SeafpXEOkpgOX7g6SNmzNdESrVOSwEjKi097TXJ/3Nf99PzOfmWee53ddN4ud3RNanG1UdHu47G6wkIQW6sTIbC1nrgXqLX1I/UxqT/TlvFtM7NoBw6fUkR3VfU4pXGbJp/GNL6kzhQc1RzcBiLZ0h7ynVtseyQm6XwWWboG1n6n3riyYuts5nTmi/7T7K/W8xmOGHxTCYaYGZ3CQWi8qMzrdKR+4SXb9YmuNEyiRhEIYeFvnJP58U+WaDezUIlhlprX+E3W/lW6l5r48YAUdGumhbn66Lul+bzJcCMrOaaQmHjE3pvw3Hf55oJ3Jp/arXpEScoQLwSfWXGZTWxQyGS+cK5iPL1JbF1EvkZu4T3NiAaPXvutcVpCQzOVJ9ZqkEXA8UDmj6YyQdPbeuWK9thRM7yj3h7GFhD04Q2nHAi9GWa+7K/yUkAwvG+7U3xrHdFq5Lj8dICSvpLy9c1358CQ3MOvJUSEJ3KyS/Kd7Hvj94FPz/JCQvLi9J3fCcA5sMJNWDNkjJNMnzNihMJQMH2PXf3axFxLd6WePnz6YwjxK7UjzXy0kpyLURWdEaYyxhoKs8VwhmeQ88+fyuGywbAtw8/4sIPdjzMklPT7Ex6/v+FAiIJ2e8cZaR7mMb7GZTPteAXng3Mp+Z1UGp+5V2/p+rSdLOWFGRtZsUICpdQv31xNjE+eB+TZnGe2/PY482l1HPDKTlgbPLgGR0Prq8O+PSGajtP6Bliro+4Oz97LVAyKdE+0rM9QIuov9Fv59vob4rv+S3nWND1O085unLbxHyuR9fTWbo5kq+SB/a/UKsnB00i1v+SjIDg/pKo4qIZxsS7lMv05YbP024zXDI7oZG3UEnS/BYLahpjo3kbC4taVhSVeNWrBHZaHSRXGPt7HHgN3xK87QHkOxR/NY9+FfaY8q2KPPrgo5GUuANuyxtSjMLJT26Iw9Tp4aOSuD9ngeezw+3rw8UzEcJmOP65LjRTm0x1jsMdGgZ38O7fEL9qjx2sw+gPa4Gntcw1IkZrTHidjjgrSXR2TfJ0Mo9iin6n91+3c9/vTxY9k52mMS9sgpaXo0SHscwR6fRlkt0aU9KmOPgmrRzHza4xrscfqera9O0R6tsMeUJ6xFV2Z7MfOxR66pW9bnDXFMI/aosEqmw8WFD/XYY3X44UuN9HpPYo9vrFx7RYo8sMQeV11i+a1V4MIw9vjxg2pLhHcK04w9NnQd2dTyNI1Zhj0a3/3Fqsg+G1ZjjzILZZ+UyvIhDXsUGrHMe0O4jDf2+K65WDbkVRmcwB7DFlf6n3zHBnXsUatQ9cFU5bOMAvY46jhRfvOzEqjGHqNUKop9u6qAjz1eq4yJfUcawRR79Hg8JP2jWSG4YY/18bqes352ZBqwR7mhCR43OxLB6aKkxyWMR9ub+V2w0VLSY5/u+d2DW3qgdib2WH76WN3Zm0bV2KODnd1nxa15zLcjEu9Az/ST2OweZ7I07TUfe601yGObapcyJMYrVdxDxOyMxo3UhWidYxN6I2jPkdiz+PPxrJvMiNS5uufUF+nn06jfolennhg6R3vXxN7nMBY51oOpUNR7tvUtdcwhVymG+jK632KBk4ju51c4D+rdWab39Sug7vYaRtyv0eFclUrqMrSyS4TxZTovtjgvJjMnX3vkcgPkFQt3DFCXvujf1km9Ch24aMrEO3SeAnGeRumrfUUoI7tLykc8PwPob64SG3ltunCZztsUnDfbm88Gq0czwKLD6PwQdb7V3PEh1MZoge6PDpV0HhNxHqPE/2+oAKq3++wSW038/6kr0W2bqmxLvpvX43rTHQLUi0A6UMfxi/h+PnidlU7NQu/ueKUWROfZBOfZNzJ5pPtcAciNqOmJ79fLqkL7emoltONRueXz6fxI47wbHI22GXXPBvkvFTUd4ufRXi7dTK2CVnZRaW7/7nzq1DAdVtVOhff9EaE11A9DvHL7FqTCG3TmhzijfXRfvMF9sd3Ozk7GIxVyT1RVcKnt0DfQJ8OCmgR0n0TgPnGk7xcG85i9+pVurtQ70RFobv08/j9033zBfWNIr1+n6zYTpR1s9ZXuGw16/bLUwWj3/pcmwXQfaeI+En+fnX4s+PaY3rGj9kSbov1ktyyenE7ACvfV49atFk79pbCqbY2/LTU7cNzkkk//t0hu84kW81JYi/vsKo/HW3jgGvCau3zvnhaSDPQ9tMkGmXSNaV6MGu47pe5ZDuWcMOYw57mtw6/0/1VH2LxJC2P80Z7l+s3stXHME9yHsiz6upgEPu2Pp2aeoPsZbYOONHhfZunMhwbcl9L0bfbBfNAfUTFR9BMSFnol2ttUZd6N/Xngj/uUI/79HbkwOrV4G99LSKaIr882F6SUJA53t6gaGM/73/kv/n6WZQYsc51X6+QimZ/RTRmgj07QiR9+oMgFEe5jH/H9ttvBXOyV03DbLCR8dCLa8bhjxwaPFEaA+/oavX88mzQm84cWrZDlkvv7vb8JlO3vKqYz+rjP+eL39/tBq5phV6+CkPyJrkDXGr75rOKfDetw3xuG0oGyzAOfzX1tr58KyEN/OnD/yQMP9OOMZ3sPNRfAH3genFv00/XCXxLAMozT+vWKgKifCh7q70kATzRn3aTi5VeTmYN4XuSJf98iExqcolWrDATkJpqHFrj11TVsLINAPE8aFyzJSla6Du3hB3dqQD3RbhE4uB7IhW/o7jntc4q02DAdz5sE3tgNAS4n8bGeaj1JQaeiV8z3SBT99SszHc+jsefF4kJVw40MnSt/kXHoC2j3Q8kdSVm34AmeV/uVYxusN1YCu2V3T03EQxL31nNRnqgCHNGq7isP5zZVQT2eZ9fH7ncdPB7NNN+uUEty0b+hLw3OC9BqaoQVeN7Zjz3/Gkiek662U+o+sUFP05CYe0Yqx8m+ENbheSifn1TSHJoHo8uW8ypt7hLOgPzHhjkFsGy5xHrmjlu/HIxm2vC8dIl8QTdgJHN9WUZZdkMpCeg0qLE+ncr8hvasTlDom50KrXiejt0PdhNcLwqc9XBbARmP9uJL7KUZf7hbvRMObJact01jz+sFvJXKu5uQkkiWjD2vbvh99MaYG9rOTnEQvYSRWZLz+F+HyQEVAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAyAAAAAAAAAA=eF5jYACBD/Zf/oPAe/sHUPo0lN4JpZdD6elQuh1KV0LpFCjtCqX5oPTSf1Dz/kLo678htNB3CN3zCkJLnoDQOWkQOt33H5j+rfQbTOcJfALTZ5JvQOjvEyD2Bp37B6L12E78Aaub1vYdRLeEO7wCu6dk/UkQve+ccQ2I/mC49OQ/kDuCGqz/gszJY334E0gfTXF4/AlIfz9z4OQTIK19R9fhJMgfjJOFpwLpf2zF302AtPSN1qyOf+/tLSszz0f+fW8PAK3J6T4=AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAbwQAAAAAAAA=eF4tyX081HccAHAsIZSu0chDDx5Dw1QzfvfLUxpeHhejTRZFNXotdy7HrOQ8XorcZHmWhx2rK9edp2+/D+cxFTXtdZncieWlpAeXZTNt+93vz/fr7eElFtQ5VeCZFjlc+00jUBrfTrpdtfFe/K4NmHzAxHFQxsPliuD+ksPDcA83JW0Se/8WPpCEadW6RVbj5/F8mSZttPgeaBt8RlpYXJbIrUjCBnyDZHkLHHzZf2qdXs9dmDf2I52hclqLJ2JhnCS1ny6YpONV47qjfgt3YIj2tvR/00LptPClCGwM28SL60/C+4xGErO33gGXEh3SsNe8JbTsGCq/s7dIfjQOd191ZL47eAh23sdJB67xjeuMSkacnBdfHrcMxQvCLaNXTt+GU9My0pJfFYOEZybanRLbuWzvTlQ+NXjgIhgE+ao+0qa9J8Y6p8+gQInNUpr6YWKfre1+pmwAduZ6kTadTnNIeJ2F/rTQ3fLWNZmY1SlSub52AJxj9EkPOdd+vzKei8T8qpfijZnELTPh4hzWD4YTFaStBVb0azZ5KFX6Q3v2J4WEXf34tzYJfcBclU765e/sN9+8zkfjjtZosbeM4A1oiY+U9YIg0op0aWy+fYxPHgp50tUwJ2kgFnjGkXVDPSD0VJrxSuCcYcdB/i7BvwCzhVjgN1s9/UsChseDSKsVXLFPaT+NOmqLb0trCOIBbXf89u0SUIgukl52TMljqaYj/l2jV6tzBwmFc7gRI6Ib1nOUvuFRmV2fxELbIiqkc8mjRHGjX1BfThfUBSgdwqI/tMg5gb4yU0dNPnKie8Kz1aIVQG+z0pVFMU186whkfNBbdLdllojWu0A4DROgG6f09P7Lm72dDqGjBQbXnpspCNpFxrnwHbcAu6T08wTG5Kvwo6hhUd9MBX9PjIuGhdJznSBUMSBtnyvXm4k6ieKfMe6/0dIErqhn5smLdpiaU9qz4GpbcD0TzbtrGwmCadAiFc/eDGiDScrnM31UhqNPIR2ZrSX7yibo13zh1CQQg9qE0q71I9Ea+WxkkzzlaFBrDt19zhvoH4rgEFPp1nnbG1cD2CgAcdX4KTvg3OwZXJ8tBFvKM2tfZlsp2Cjw8kKlDX0X0AvlqbpTNyCTckV5h6gjjIU6XdxZxmv2QKS2z4hX0HVAlG+GdSwO9aSg7tn4WA/pXuD4r6z4Zl2DFsr9MXvcfvvvf1QEctPXBYHtxEdjMnYzcCi/F9NCErsZKDNKaFPxeRiMjkWOcDJ+BgbljVaDj7nVJ5GhXYzbI04UbP3CWM+7ph7UKWu3HPOYlUSjmTH/UElVLHhvf9f0j6wWnlCe3DJl+vjjA0ijef3N1qzjcP6PD6xTPKphNWVdLrercZsPxnwMVhrmJ8HrayJEu7YckijzJ/SX2QeiMbZhcrB3DQs2T1lccrUrhTTKFryg91LiILak/venrsx0MPdr73HYyYMVynz6o8mGru+wd6pZ4+qJZ6HH5eyzkoeFsEx5MXWlzSnEAfsXigKcKA==AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ + </AppendedData> +</VTKFile> -- GitLab