diff --git a/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp b/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp index 142a66c9fc816e930d89f0465108dce810eaf1be..48bdd42967e7f500d7134e73de686f26e31df9dc 100644 --- a/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp +++ b/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp @@ -43,6 +43,21 @@ std::vector<EquilibriumReactant> createEquilibriumReactants( equilibrium_reactant_config.getConfigParameter<double>( "saturation_index"); + auto reaction_irreversibility = + //! \ogs_file_param{prj__chemical_system__equilibrium_reactants__phase_component__reaction_irreversibility} + equilibrium_reactant_config.getConfigParameter<std::string>( + "reaction_irreversibility", ""); + + if (!reaction_irreversibility.empty() && + (reaction_irreversibility != "dissolve_only" && + reaction_irreversibility != "precipitate_only")) + { + OGS_FATAL( + "{:s}: reaction direction only allows `dissolve_only` or " + "`precipitate_only`", + name); + } + auto molality = MeshLib::getOrCreateMeshProperty<double>( mesh, name, MeshLib::MeshItemType::IntegrationPoint, 1); @@ -57,7 +72,8 @@ std::vector<EquilibriumReactant> createEquilibriumReactants( molality, volume_fraction, mesh_prop_molality, - saturation_index); + saturation_index, + std::move(reaction_irreversibility)); } return equilibrium_reactants; diff --git a/ChemistryLib/PhreeqcIOData/EquilibriumReactant.cpp b/ChemistryLib/PhreeqcIOData/EquilibriumReactant.cpp index 185403dc8a2297ba970e77dac00907070fe94eb9..796cf2df09000ee3f567373f9d971f31b633cf22 100644 --- a/ChemistryLib/PhreeqcIOData/EquilibriumReactant.cpp +++ b/ChemistryLib/PhreeqcIOData/EquilibriumReactant.cpp @@ -20,7 +20,7 @@ void EquilibriumReactant::print(std::ostream& os, std::size_t const chemical_system_id) const { os << name << " " << saturation_index << " " - << (*molality)[chemical_system_id] << "\n"; + << (*molality)[chemical_system_id] << " " << reaction_irreversibility << "\n"; } } // namespace PhreeqcIOData } // namespace ChemistryLib diff --git a/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h b/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h index 198f5e672bc1ba315c43b683890b2fc70a089e44..99758a1ba21f4131616941b596859c09d9e836f3 100644 --- a/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h +++ b/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h @@ -32,12 +32,14 @@ struct EquilibriumReactant MeshLib::PropertyVector<double>* molality_, MeshLib::PropertyVector<double>* volume_fraction_, MeshLib::PropertyVector<double>* mesh_prop_molality_, - double saturation_index_) + double saturation_index_, + std::string reaction_irreversibility_) : name(std::move(name_)), molality(molality_), volume_fraction(volume_fraction_), mesh_prop_molality(mesh_prop_molality_), - saturation_index(saturation_index_) + saturation_index(saturation_index_), + reaction_irreversibility(std::move(reaction_irreversibility_)) { } @@ -48,6 +50,7 @@ struct EquilibriumReactant MeshLib::PropertyVector<double>* volume_fraction; MeshLib::PropertyVector<double>* mesh_prop_molality; double const saturation_index; + std::string const reaction_irreversibility; static const ItemType item_type = ItemType::EquilibriumReactant; }; } // namespace PhreeqcIOData diff --git a/Documentation/ProjectFile/prj/chemical_system/equilibrium_reactants/phase_component/t_reaction_irreversibility.md b/Documentation/ProjectFile/prj/chemical_system/equilibrium_reactants/phase_component/t_reaction_irreversibility.md new file mode 100644 index 0000000000000000000000000000000000000000..a5874f5aea1fe24616830c82d519551da9fa7a77 --- /dev/null +++ b/Documentation/ProjectFile/prj/chemical_system/equilibrium_reactants/phase_component/t_reaction_irreversibility.md @@ -0,0 +1,7 @@ +This is an optional keyword to specify if the phase component should be allowed to precipitate or dissolve only. There are three allowed cases: + +- Default: skip the tag and the phase component will be allowed to dissolve and precipitate (reversible reaction). + +- Precipitate only: Enter `precipitate_only` to only allow precipitation of phase (irreversible precipitation reaction). + +- Dissolve only: Enter `dissolve_only` to only allow dissolution of phase (irreversible dissolution reaction). \ No newline at end of file diff --git a/ProcessLib/ComponentTransport/Tests.cmake b/ProcessLib/ComponentTransport/Tests.cmake index feea80778882345875c347e0f23154a6c76e283d..9b364a8e56916afa778d40d9a009910bff04241c 100644 --- a/ProcessLib/ComponentTransport/Tests.cmake +++ b/ProcessLib/ComponentTransport/Tests.cmake @@ -1025,6 +1025,7 @@ if (NOT OGS_USE_MPI) OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula.prj RUNTIME 20) OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2.prj RUNTIME 60) OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption.prj RUNTIME 60) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj RUNTIME 25) endif() AddTest( diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj new file mode 100644 index 0000000000000000000000000000000000000000..3a5a7e2e8dce4e6b5ee9fc76e6253c0c88ff97dd --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj @@ -0,0 +1,674 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProject> + <meshes> + <mesh>calcite.vtu</mesh> + <mesh>calcite_upstream.vtu</mesh> + <mesh>calcite_downstream.vtu</mesh> + <mesh>calcite_ReactiveDomain.vtu</mesh> + </meshes> + <processes> + <process> + <name>hc</name> + <type>ComponentTransport</type> + <integration_order>2</integration_order> + <coupling_scheme>staggered</coupling_scheme> + <process_variables> + <concentration>C(4)</concentration> + <concentration>Ca</concentration> + <concentration>Mg</concentration> + <concentration>Cl</concentration> + <concentration>H</concentration> + <pressure>pressure</pressure> + </process_variables> + <specific_body_force>0 0</specific_body_force> + <secondary_variables> + <secondary_variable internal_name="darcy_velocity" output_name="darcy_velocity"/> + </secondary_variables> + </process> + </processes> + <media> + <medium id="0"> + <phases> + <phase> + <type>AqueousLiquid</type> + <components> + <component> + <name>C(4)</name> + <properties> + <property> + <name>pore_diffusion</name> + <type>Constant</type> + <value>0</value> + </property> + <property> + <name>retardation_factor</name> + <type>Constant</type> + <value>1</value> + </property> + <property> + <name>decay_rate</name> + <type>Parameter</type> + <parameter_name>decay</parameter_name> + </property> + </properties> + </component> + <component> + <name>Ca</name> + <properties> + <property> + <name>pore_diffusion</name> + <type>Constant</type> + <value>0</value> + </property> + <property> + <name>retardation_factor</name> + <type>Constant</type> + <value>1</value> + </property> + <property> + <name>decay_rate</name> + <type>Parameter</type> + <parameter_name>decay</parameter_name> + </property> + </properties> + </component> + <component> + <name>Mg</name> + <properties> + <property> + <name>pore_diffusion</name> + <type>Constant</type> + <value>0</value> + </property> + <property> + <name>retardation_factor</name> + <type>Constant</type> + <value>1</value> + </property> + <property> + <name>decay_rate</name> + <type>Parameter</type> + <parameter_name>decay</parameter_name> + </property> + </properties> + </component> + <component> + <name>Cl</name> + <properties> + <property> + <name>pore_diffusion</name> + <type>Constant</type> + <value>0</value> + </property> + <property> + <name>retardation_factor</name> + <type>Constant</type> + <value>1</value> + </property> + <property> + <name>decay_rate</name> + <type>Parameter</type> + <parameter_name>decay</parameter_name> + </property> + </properties> + </component> + <component> + <name>H</name> + <properties> + <property> + <name>pore_diffusion</name> + <type>Constant</type> + <value>0</value> + </property> + <property> + <name>retardation_factor</name> + <type>Constant</type> + <value>1</value> + </property> + <property> + <name>decay_rate</name> + <type>Parameter</type> + <parameter_name>decay</parameter_name> + </property> + </properties> + </component> + </components> + <properties> + <property> + <name>density</name> + <type>Constant</type> + <value>1e3</value> + </property> + <property> + <name>viscosity</name> + <type>Constant</type> + <value>1e-3</value> + </property> + </properties> + </phase> + <phase> + <type>Solid</type> + <components> + <component> + <name>Calcite</name> + <properties> + <property> + <name>molality</name> + <type>Constant</type> + <value>2.07e-4</value> + </property> + </properties> + </component> + <component> + <name>Dolomite(dis)</name> + <properties> + <property> + <name>molality</name> + <type>Constant</type> + <value>1e-10</value> + </property> + </properties> + </component> + </components> + </phase> + </phases> + <properties> + <property> + <name>permeability</name> + <type>Parameter</type> + <parameter_name>kappa</parameter_name> + </property> + <property> + <name>porosity</name> + <type>Parameter</type> + <parameter_name>porosity</parameter_name> + </property> + <property> + <name>longitudinal_dispersivity</name> + <type>Constant</type> + <value>0.0067</value> + </property> + <property> + <name>transversal_dispersivity</name> + <type>Constant</type> + <value>0.1</value> + </property> + </properties> + </medium> + </media> + <time_loop> + <global_process_coupling> + <max_iter>6</max_iter> + <convergence_criteria> + <!-- convergence criterion for the first process (p) --> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <!-- convergence criterion for the second process (C(4)) --> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <!-- convergence criterion for the second process (Ca) --> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <!-- convergence criterion for the second process (Mg) --> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <!-- convergence criterion for the second process (Cl) --> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <!-- convergence criterion for the second process (H) --> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + </convergence_criteria> + </global_process_coupling> + <processes> + <!-- convergence criterion for hydraulic equation --> + <process ref="hc"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0.0</t_initial> + <t_end>21000</t_end> + <timesteps> + <pair> + <repeat>210</repeat> + <delta_t>100</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + <!-- convergence criterion for component transport equation (C(4)) --> + <process ref="hc"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0.0</t_initial> + <t_end>21000</t_end> + <timesteps> + <pair> + <repeat>210</repeat> + <delta_t>100</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + <!-- convergence criterion for component transport equation (Ca) --> + <process ref="hc"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0.0</t_initial> + <t_end>21000</t_end> + <timesteps> + <pair> + <repeat>210</repeat> + <delta_t>100</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + <!-- convergence criterion for component transport equation (Mg) --> + <process ref="hc"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0.0</t_initial> + <t_end>21000</t_end> + <timesteps> + <pair> + <repeat>210</repeat> + <delta_t>100</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + <!-- convergence criterion for component transport equation (Cl) --> + <process ref="hc"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0.0</t_initial> + <t_end>21000</t_end> + <timesteps> + <pair> + <repeat>210</repeat> + <delta_t>100</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + <!-- convergence criterion for component transport equation (H) --> + <process ref="hc"> + <nonlinear_solver>basic_picard</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <reltol>1e-14</reltol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0.0</t_initial> + <t_end>21000</t_end> + <timesteps> + <pair> + <repeat>210</repeat> + <delta_t>100</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>calciteDissolvePrecipitateOnly</prefix> + <suffix>_ts_{:timestep}_t_{:time}</suffix> + <timesteps> + <pair> + <repeat>5</repeat> + <each_steps>42</each_steps> + </pair> + </timesteps> + <variables> + <variable>C(4)</variable> + <variable>Ca</variable> + <variable>Mg</variable> + <variable>Cl</variable> + <variable>H</variable> + <variable>pressure</variable> + <variable>darcy_velocity</variable> + </variables> + </output> + </time_loop> + <chemical_system chemical_solver="Phreeqc"> + <mesh>calcite_ReactiveDomain</mesh> + <database>PSINA_12_07_110615_DAV_s.dat</database> + <solution> + <temperature>25</temperature> + <pressure>1</pressure> + <pe>4</pe> + <components> + <component>C(4)</component> + <component>Ca</component> + <component>Mg</component> + <component>Cl</component> + </components> + <charge_balance>pH</charge_balance> + </solution> + <equilibrium_reactants> + <phase_component> + <name>Calcite</name> + <saturation_index>0.0</saturation_index> + <reaction_irreversibility>dissolve_only</reaction_irreversibility> + </phase_component> + <phase_component> + <name>Dolomite(dis)</name> + <saturation_index>0.0</saturation_index> + <reaction_irreversibility>precipitate_only</reaction_irreversibility> + </phase_component> + </equilibrium_reactants> + <knobs> + <max_iter>100</max_iter> + <relative_convergence_tolerance>1e-12</relative_convergence_tolerance> + <tolerance>1e-15</tolerance> + <step_size>100</step_size> + <scaling>0</scaling> + </knobs> + </chemical_system> + <parameters> + <parameter> + <name>kappa</name> + <type>Constant</type> + <values>1.157e-12</values> + </parameter> + <parameter> + <name>porosity</name> + <type>Constant</type> + <value>0.32</value> + </parameter> + <parameter> + <name>decay</name> + <type>Constant</type> + <value>0</value> + </parameter> + <parameter> + <name>p0</name> + <type>Constant</type> + <value>1</value> + </parameter> + <parameter> + <name>p_upstream</name> + <type>Constant</type> + <value>1e5</value> + </parameter> + <parameter> + <name>p_downstream_Neumann</name> + <type>Constant</type> + <value>-2.9976852e-3</value> + </parameter> + <parameter> + <name>c0_C(4)</name> + <type>Constant</type> + <value>1.23e-4</value> + </parameter> + <parameter> + <name>c0_Ca</name> + <type>Constant</type> + <value>1.23e-4</value> + </parameter> + <parameter> + <name>c0_Mg</name> + <type>Constant</type> + <value>1e-12</value> + </parameter> + <parameter> + <name>c0_Cl</name> + <type>Constant</type> + <value>1e-12</value> + </parameter> + <parameter> + <name>c0_H</name> + <type>Constant</type> + <!--pH=9.91--> + <value>1.2302687708123812e-10</value> + </parameter> + <parameter> + <name>c_C(4)</name> + <type>Constant</type> + <value>1e-10</value> + </parameter> + <parameter> + <name>c_Ca</name> + <type>Constant</type> + <value>1e-10</value> + </parameter> + <parameter> + <name>c_Mg</name> + <type>Constant</type> + <value>1e-3</value> + </parameter> + <parameter> + <name>c_Cl</name> + <type>Constant</type> + <value>2e-3</value> + </parameter> + <parameter> + <name>c_H</name> + <type>Constant</type> + <!--pH=7--> + <value>1e-7</value> + </parameter> + </parameters> + <process_variables> + <process_variable> + <name>pressure</name> + <components>1</components> + <order>1</order> + <initial_condition>p0</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>calcite_upstream</mesh> + <type>Dirichlet</type> + <parameter>p_upstream</parameter> + </boundary_condition> + <boundary_condition> + <mesh>calcite_downstream</mesh> + <type>Neumann</type> + <parameter>p_downstream_Neumann</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <process_variable> + <name>C(4)</name> + <components>1</components> + <order>1</order> + <initial_condition>c0_C(4)</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>calcite_upstream</mesh> + <type>Dirichlet</type> + <parameter>c_C(4)</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <process_variable> + <name>Ca</name> + <components>1</components> + <order>1</order> + <initial_condition>c0_Ca</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>calcite_upstream</mesh> + <type>Dirichlet</type> + <parameter>c_Ca</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <process_variable> + <name>Mg</name> + <components>1</components> + <order>1</order> + <initial_condition>c0_Mg</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>calcite_upstream</mesh> + <type>Dirichlet</type> + <parameter>c_Mg</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <process_variable> + <name>Cl</name> + <components>1</components> + <order>1</order> + <initial_condition>c0_Cl</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>calcite_upstream</mesh> + <type>Dirichlet</type> + <parameter>c_Cl</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <process_variable> + <name>H</name> + <components>1</components> + <order>1</order> + <initial_condition>c0_H</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>calcite_upstream</mesh> + <type>Dirichlet</type> + <parameter>c_H</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_picard</name> + <type>Picard</type> + <max_iter>10</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <lis>-i cg -p jacobi -tol 1e-16 -maxiter 20000</lis> + <eigen> + <solver_type>BiCGSTAB</solver_type> + <precon_type>ILUT</precon_type> + <max_iteration_step>10000</max_iteration_step> + <error_tolerance>1e-14</error_tolerance> + </eigen> + <petsc> + <prefix>hc</prefix> + <parameters>-hc_ksp_type bcgs -hc_pc_type bjacobi -hc_ksp_rtol 1e-8 -hc_ksp_max_it 20000</parameters> + </petsc> + </linear_solver> + </linear_solvers> + <test_definition> + <vtkdiff> + <regex>calciteDissolvePrecipitateOnly_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>pressure</field> + <absolute_tolerance>1e-6</absolute_tolerance> + <relative_tolerance>1e-10</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>calciteDissolvePrecipitateOnly_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>Ca</field> + <absolute_tolerance>1e-10</absolute_tolerance> + <relative_tolerance>1e-16</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>calciteDissolvePrecipitateOnly_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>Cl</field> + <absolute_tolerance>1e-10</absolute_tolerance> + <relative_tolerance>1e-16</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>calciteDissolvePrecipitateOnly_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>H</field> + <absolute_tolerance>1e-10</absolute_tolerance> + <relative_tolerance>1e-16</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>calciteDissolvePrecipitateOnly_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>Mg</field> + <absolute_tolerance>1e-10</absolute_tolerance> + <relative_tolerance>1e-16</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>calciteDissolvePrecipitateOnly_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>Calcite_avg</field> + <absolute_tolerance>1e-10</absolute_tolerance> + <relative_tolerance>1e-16</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>calciteDissolvePrecipitateOnly_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>Dolomite(dis)_avg</field> + <absolute_tolerance>1e-10</absolute_tolerance> + <relative_tolerance>1e-16</relative_tolerance> + </vtkdiff> + </test_definition> +</OpenGeoSysProject> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_0_t_0.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..fdf8996cb7a373f5469dd56dd7cfa84bd0578ebc --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_0_t_0.000000.vtu @@ -0,0 +1,41 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0.000207" RangeMax="0.000207" offset="0" /> + <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10" RangeMax="1e-10" offset="84" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="168" /> + <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="5.3" RangeMax="5.3" offset="260" /> + <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="340" /> + <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="412" /> + </FieldData> + <Piece NumberOfPoints="101" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.000123" RangeMax="0.000123" offset="484" /> + <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.000123" RangeMax="0.000123" offset="564" /> + <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12" RangeMax="1e-12" offset="644" /> + <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10" RangeMax="1.2291196946e-10" offset="720" /> + <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12" RangeMax="1e-12" offset="800" /> + <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0" RangeMax="0" offset="876" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1" RangeMax="1" offset="944" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0.000207" RangeMax="0.000207" offset="1016" /> + <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10" RangeMax="1e-10" offset="1092" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="1172" /> + <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0" RangeMax="0" offset="1236" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.5" offset="1304" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="2232" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="2532" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="2844" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF7TMntWekRR215rlB6lR+lRepQepUmgAbObX+8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7bvff6zfs1t213j9Kj9Cg9So/SozQJNAD1hWFVAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF4zNgYBUQfjUXqUHqVH6VF6lCaBBgCE/TGIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwAAAAAAAAA=eF5zu5T3xVBewd4dSruN0qP0KI1BAwCE7T8+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwAAAAAAAAA=eF5zu5T3xVBewd4dSruN0qP0KI1BAwCE7T8+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF4TfKXbOHN6oa3gKD1Kj9I4aQAHImRTAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwAAAAAAAAA=eF57YNk5c8qTB7YPofSDUXqUHqUxaAA/D+YhAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF4TfKXbOHN6oa3gKD1Kj9I4aQAHImRTAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF7TMntWekRR215rlB6lR2kMGgDjcS/4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGQAAAAAAAAA=eF7bvff6zfs1t213j9Kj9CiNQQMA7Kcwqw==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_126_t_12600.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..ab643a546d510e17bfb0bfaf7a0917fc3af1323e --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_126_t_12600.000000.vtu @@ -0,0 +1,41 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0.000207" offset="0" /> + <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10" RangeMax="8.3381367495e-05" offset="384" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="920" /> + <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.1989249918" RangeMax="10.365166458" offset="1012" /> + <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="2980" /> + <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="3052" /> + </FieldData> + <Piece NumberOfPoints="101" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0064809117e-10" RangeMax="0.00012307508993" offset="3124" /> + <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000001e-10" RangeMax="0.00022967022465" offset="4016" /> + <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0000001503e-12" RangeMax="0.002" offset="4948" /> + <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10" RangeMax="1.1265285351e-07" offset="6084" /> + <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0000000722e-12" RangeMax="0.001" offset="7004" /> + <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="8140" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993" RangeMax="100000" offset="8644" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0" RangeMax="0.000207" offset="9720" /> + <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10" RangeMax="8.2547846189e-05" offset="9952" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="10260" /> + <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="10324" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.5" offset="10816" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="11744" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="12044" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="12356" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA/gAAAAAAAAA=eF5jYBgFpIDjXTeKbjGq2HP6RXOw7mOxv23Ou2DrHS37lfNfrLBK1LT/azhp810Zbft89yefl/Fr2/s/uXfmpry2fYzzsd0HgDSf9TpjWQVte3nB+n1sQPoo8+EXkUA6dUmpphuQTulz8JoIpDcdPaLeDKSDrifPPQykOz7MPLsJSNsf9jP4CKQXWXl9eQSkLQKmSEkpatv7fldYygukNXM9ZOyBNGNCxFdDIB3Wd7QzCUjfPfHZIQxIa/cf/VYPpF2uc7WVAmmFXcvTZgPpaUZPdCcC6ZpV39m2AGmLFXserQbSWmbPSo8A6T7PiK97kfij9Cg9So/SANM67mc=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAcQEAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNvvOfJTQXu7iH2x0hUFrv3C9jeVYxaXXhex59qt6161Vtg+NsaoQ3KeiH00e8j+ifeF7flyZzN4W4jYZ24xXnkoVcS+9XHQg6QNIvbz49wV2eRF7e+98Mzu/y9in9ARd0e4U9T+tz3jm8cmovYhFSvMdQ+L2n/adt9dkUXUfqnFZssv00TsFTboyiz9KGI/yeLArDJlUfv1k0syD2aL2uf9Sfuz4LaofZbsxJ0T2kTt30U/e+WTI2rfVc3B28Yhav/D3iI3RVjU3iQkXvDD6692FzvPbWL5IWi/e+/1m/drbttuvWow59yhS3Yw/ig9So/So/RwpwGWEwX6AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAoQUAAAAAAAA=eF4llHk4lXkUxxPuFEldVJbGuZaKmWouLRhxCCkJPS0atFzaKIrhoUmTtbIUMyWGqBBSLrpZsr1R0kq6M6kY3RakqEhRXHPeO399nu/3/H7nPcvveS2G7cQRlqrM8s33p9g9UmE479Z03XCcxij3Mwp5dapMj/PVaL8hebR02LXfPwHQJEFJ7UShAd6wcSysj5zOuPZssvGv4TJaXpqaX64ZoJFhwR/x2gborP0swM/YAH0P/bq/73d9bJPsG1u6Wx9L5wnaFlvpo8rI1NNHnUjfXCsNnstlQDKgt95QH/NmvfD5/GQ642ZoWWldq4d3oixHdHTVmHHHlzofktWZXoFetHY3D89LNxuLTPTwpnOL/BMdday9MnpQ9F6N4fDNpKV31ZmpIbPjjk3UwzPN/B+mnOTh/M8h33IMeXhk7q2itGgemu7wTd+mysPtA6cu9dcDBoc4cHwoXrWnxrbgOOBX8fbheaSDmhpah1ZzmYVXvE3CwgEb7UHI9QWM7gxekSECPBUZOSchD3DTMX6MkiGgO9+jczSJy0xaJp8pKAVcOe4wYpIE2C1uckzcosKE3Iz46pYNOFW/UlL2G6BF4gXDPtKN9339ErPonLH4y4FOwAdaAQ1ODYC9n5ZszfcGDErZ3gbpgBlB/YrCCMDrovQ1mmmAC9NHqr38ASc+HL43Rwx4uE27Ies2oO6qLAUhxbW6rTf7Ux0Tozc+enoUMGRGhrt6KuDc3c1MHPkjtn1nbZIBRyualsyOBDw+oWvT9Qt0v3VxRxedmxxq61n1F6DH7asZzZmAF0+2hZ6NArzazruscQ0wJlajPpDmEJrNV4uNARyU5NmpFgPujYgRGFOe3A0WWT0PAEWKE46W3gU0c9hm3iEEHJNj+heVAfpWnvPUaAW0rePO0joDeKE4oGJXOfVft37P60KqZ/XJ3kqqM3JUGm1XATjzq5Po0UVAv51L6jGf5ru+7gWfoe9UnijxIb4w9O37+Q6g+PUvUdU3AVvnTK5mrgIWP07xMKf7jYH89giaU5mw29yoGbBw7J/D04g54h3pQvJt1hkoN1bRfA99s8qhuua6HuHd7QC0sq8oSaZ8g90tYQq3AKv8hl3LHwOmf+H1BzwFvFJ8afQ9zd00rHfrLMrnmrHYsrQFsMvkfoQC5RWr+Dg9p32Gh4rSFP4GfGMWP+R1A3BZb5pL1r+A5q+sJ4a/ALxtt53JoLz2w8Ww4Tnt6+EdOTniuPcCvqid9rtwIQQS11jmZYY9AWzxMXk9QPckCh+Dm4nSjamroBvw7cznaxWfASYW5JpMktC7ct07reAN7dWjSDmVGMhXn6fUC7ja8Kn89VeAO59Z1A28BXzvlXJvJmmP5DemM+gdHguaYFZD53f/eCZ/wWtAZS9B9oMemqtltUUr+UVKAfWuffRf0E3tWEP5RgLKlSWkD44K6voo3x3P2uz0D9T/m4/SkPeA2gFaT74bBMw0znMuIh36LHbfg2HAzWpWy5U/AW7pKh/qGaJ3L3l5QJH8guBaDYsRwO+TLnEGv1Df1udixokCN5fTHyieUOWtH0fx54p1Y8eJ9W7rkhuJDe6BWn3Ewpw0adlXwDCdRCcl0ioRP5keIh3eFW+VRRz7/FDi8Y36z6/pLCHNyVg6wBkFbArTK+knX3uPe6nKGKCOUrF/PPkul4N7g6WANzo0rY6Rb6+ZFLVlHDDlZK7mW/LjKkM3CEjvik3jbiPmpujqeBOXv5WTsH6u87gKqwunLDFiWbJTrZP1VzgNDbOsNVrLsKziF7WwtFQ7LGIpXNRezXLgz9VFLCcIu4UsXyY0XWQZZXC5gCVX/E5GF+uGfJb7VmAOS9P2lTI/PHZcpssN2mXMPO+Ry3LKfDMZo6xb81hyjq6T6VTO7zJ6HoqT5VPMFcj0udD/4/8BuFHfYQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAfAIAAAAAAAA=eF7b4n7zUtWq27bul/K+GMor2Oecv/R06r9suz9Hz8yez9xixxg9U7rYYKrdn3nPJBzWLrbb17hlvu3zDXbhllzMRS277Tb9y6xorT9q9zpA6nqB/QU7Fwd27p8Pr9vdO7XuxF3Fh3YMzp/tHvC9sPPVLJ55e+IHuyRWs0zbvG92c9YtWhfz9K+d2I+4ouLlzPYfDuzwy6rltJd5cVZ+vpuA/abVZ7dLbROxN8mTu3H9jpS99/Sk67c6ZeyFYj5ovRGUtV/3atK5yDhZ+5ivjjeeHZC1f3B6wckqWTn7DcF/dh0plrP3lw74/uOQnP0djywDHy55+xma9d8dPeXtdQ5HMm6rl7fP+uax/OJaeXvpdO6wf5fl7V8sk26+/knevtFexrOPVcE+z3vqlQt8CvYbk25LLxJVsH/U+E23VErBPkooVHK7rIJ9yc1m/hPA8Lomc8/zp4KCPdPKx696FBXsffLf/9gGpN85/Pk0D0hfUy9Znwik66oO+QkD6TsnXCQPAtUfO9ekWwyk048vea8LpGecv2fyGWjencerdA4D6TlMQXxzgXR81JnJ9UDa9/Zd70wgbXOB4WwEkC6/tOiiD5COu3XaxQVI6z054GIHpCuDTshbAekIsZ++5kB61tb/maZAehU7i5YJkL682D/SGEiv//v9khGQftM7oxZEH/Rl8QDR/pvOqIHospxiIRDNm6LIBqLjag7+A6UPO72UXyBazOTadxBt0BT9DUT3TG76CqJPrGUH014bD4HT04n8OWB6QVw7mD77oBpMl+0qBdOFaUVgun1JAZh+ezgfTNe7Q+iC/5B0+eQ5hF58HkK7XaIvDQC3+1C6AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAmQIAAAAAAAA=eF779uX+zfs1t23dL+V9MZRXsJ/zr7Nmcnm53dHYbCOhSxPsuKs4fvDcX2inPPNf8pY1G+y2LXvL8ObSHjutU0v4vy86brdAzPG37MJLdutWB1hNLLpjt14wcv0Rtad2bE9Ecqfue2e36Maz6l/Pvtpt2KC6X3TFPzuHY2eqdsqy2ku8esjLt57HfvKzBlVtO2H7JzErGVZXStoLXPI0LJmnYF+X+Zx93Q5V+60l3BUZHbr2MfelTEuk9Ox328Xtl9yhY6+3SVT19xpte4Or50p0p2vZh0yq1hNs1bR3nSh1YG21hv2UDw+4X9Sq2z+Z82Z9YJ+afXziykNS61Xt10bcjn72UMV+wT/1dXvUVeyfph3I4WtUtm9MYnh64K2S/bQezgf2uUr28wLKt0/6p2j/S5X3UMkCRfvO5NOtRYGK9m+mbSv6xa9ob9WpmJF7S8H+9UHRbv31CvYz+K1TtvUo2O+6XtI0uVDBvpYva0J1jIJ9iq6ZrpePgr2Y9R9uZgcF+0cG/h8umAHVd/bKMRso2NdPFz/Dqa1gn6FzmL1IXcF+92Ox6ocqCvY3UsR9hJQV7NOd3QPOKyrYT7GpW/tBQcH+3kuTrxFAeq3zj12fgPGlsHz2vHVAepPSw72NQJpPhLE+BcS3YFkaCKT3Ldg43xVIL9sWxmUHpM3Se/0sgfTCV0JJZkD6pEffDBMgXSVxuNkYSC/6wXjPCEhHhu6vBtHKriJOIPpc30QFEP3N1ZMXRAcV+zCB6IqPEn9A6aZz1sIfIHqf/rZvIPrfzBVfQfQpZTEwfdXpODh9KSnNBdMJ99vA9CftajDdqFAKpqN+FYLpgLQCML1xRj6YfmgIobexQGiee5D0uvg8hHa7RFsaAC4oSDg=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/OCq8dJNYmA/fr2LrZmXcT2mp92rk2FgP7d0QRE6YGA/0hbSmetdYD/cqMLVM1pgP0aC+Tx5VGA/WiZbyvdLYD+MTtoTvT9gP6cW7sqmLmA/bbgYlmQXYD8WRN00/PBfP5cuGp27oF8/bgKbncE6Xz9FTV7U1rteP6SsNBgDIV4/xZaaI8NnXT9unMcuP45cPzLWmdt9k1s/btiQl453Wj9sp7/YpjtZP+b8Sgwu4lc/qr1sibduVj9YWwwD5+VUP9QBGwJDTVM/TKewiveqUT/hd9ybjQVQP+oWXyY6x0w/5jbKCv6WST98+jS6DIZGPxhSzYiHnkM/33rfL7HoQD/Son9DbNU8P4JGf6owUTg/gxJy7nhIND8SE9C8J7swP1ku1TNzSys/TDWSVcYDJj9VBMllfI4hPwzNX5ndrxs/b9Fu48WVFT9Y5dUAU6MQP3gVl0gvXAk/VQAlDAocAz/E0UJiq3n8PuqloTJK+vQ+1jgyFh+Q7j7eu5rUHQTmPnLvocHtXd8+49G35BgZ1j4mAuEvWMvOPqmCXWzcOMU+zY4a3eLuvD6c3P3SmYKzPjLj7BeuB6o+Mu/RhuotoT4/VKnFsW+WPpTC8SyA/ow+DA9+Fv+Jgj6WNLLfcHZ3PjRBv3OVY20+Hgbc1vg3Yj6Bym6XGlxWPuWwUonYKks+qHXObSxXQD6HuVLptXYzPtVBuExm9SY+BFlB8ErSGj7msO4tDgoPPkWvjRqhywE+VdqaXKs59D2fvkn9ZczmPZYOdVfgg9k9PHQWzIdnzD20XmsCMY+/PeTA/Op/mrE9LPaMYHvsoz06KHOY4EOXPYuHX2vxs4w9v+atJ+k0gz3nGXOGHWN8PcjTH+QmJHc9QnL6eaVrdD1GOod8jQVzPXZpT2MHT3I9wgdIRcnycT1w3IPRj8RxPXZPcEmXrXE93tbEHEWicT1DhTBuvJxxPb7geYYNmnE9gvQ+IcOYcT3l0Wp4JZhxPfjGvtPal3E9orv3wreXcT0eY0Nqp5dxPfgoTNqfl3E9mxJnYZyXcT2MGVnMmpdxPX6RaBWal3E9cNosxZmXcT2BOXqSAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAkQIAAAAAAAA=eF6t0ttLk3EcgPEYVgrKFNMZLsjphUaWQc6mfX8e0IQOM22KmWDp1Av13USdBWImSm2esqW2ecBDmwkWOpk11FxrptWNgVCSxfvupDlRXKngsfd9d9tlV58/4HnC5/w2iqESETyp4qkFB07k9Zei0nLEz0hZsQaIUJhB0/pGl43cpOt6fUQaeh5fOFzrdQW5s5TMU16xCGerK1XRXLS5bgxftoai7bGBFX5/EJopX+jRJJxA9SebmCPgg1KymhWHa5ho86zGc/fHURT7ey8MK2CgdPBQlth3oedZW6kbaws6c+K6d945QBj1WfB4dBX+VMfPb+wvgbB65xY+uAjBNe9V/axFqNInWAJ7bODLkhg72TaYT1UZFpRWENoYLVNsK9yP+ml50meBCWytTBJmAW6MH1ZoNIOEgcnP3zbDrDyfI3Axw5wuROQ3bIKva+IlRZ4JtNNC+2SQCWQ7m7xLdgIaL/veMegIcKQd3FU3EcDZJ5KvFRLA53JmXZIIeCV+hPlEEIDB0uuZQAJ2BSozdowAmNwryXEloGKeO+B5gMNQ+4eh9S0cErQTCrkDh6p8IrxlFQffjFGO2o7DVG451P7CIRdCDfuLOJwxXry6bMMhqUhNBJOKorRBfVYctFLmeCLp2wtjW26kDxsONDjZLdE4hk2R6gOKOkdI82Tnjr8g1VV6j3eTbmc2eHeQBkyzQxSkDg9jRhvpg/r06FZSWXW2vIVUqvQ/TXnz48gq9UMvv/ETZYy4QktZzLsxQOlel9VL+W1b1EU5aIrsoGTYDrVTdvkLlJRHvm/QX2VPGmg9Zf20bFcFbZWkmbZM3EDLvVdH250qo9VPO78saHL6JdOpSvhv45Kc4rz/61+VvbglAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/C6t8dJNYlA/KgN8lpmXcT307nDPbWFQPzeEIBbNX1A/MhAAzAJdUD+i8btaflhQP6Zl2Fx+UVA/1s/6dAdHUD8iBgrB2zdQP8c727FzIlA/O/AJDPkEUD9B3OBgibpPP+C6/FK/UU8/RJmP0w/KTj8+raotbR1OPxfZPCE9RU0/+i14+XQ6TD9odS524PZKP/BGJ7W0dEk/gl30bSagRz8W08K2JzVFP12mq1rM7EM/PCZ8n+7iQj8ky/9zc6ZBPxtSP4CUX0A/EMAOMcUaPj/kG92GNWo7PxBtrF4EuTg/xPxUP2gSNj9GzCbXz4AzP1wTn9uBDTE/lBYUho6ALT8wO6UCXT4pP/re9IfbXCU/0Hh0WMfgIT/2X8m1y5YdP61ha+nNNRg/yQ3tp8uVEz8QpSdq61MPPwhzFDtIxQg/n6XI4uxcAz/0DXY/Wu39PjzSAQVL3fY+ul9aKSVF8T6ETn6XI8vpPjk2cXBOC+M+6BXTVyTO2z776UPWHxLUPiwwCuv2psw+8hnQcWQ5xD4DsluGMTy8PlM/ORY+frM+PIdpeyefqj6APutLOfuhPnjBVOJfB5g+GSweHTTEjz4IyfbrTsaEPgYGLfa/4no+Te0SHA43cT4NQpTEEdFlPoRwDmQCXVs+bL6MsRH8UD5pXjB/Ed9EProfvMvXYzk+jJiSj3yULj5YBT6LEDwiPqtvn6QuiRU+qqQSAoExCT5YyTqFQjP9PUwYE2nsxfA9FSJwLvEc4z0OrDinzKDVPeqtaR3hWsg9SnBHQsdkuz3RmoPlHvquPQ8RPr8EzqE9hFCgrvErlT2Qy8RmM6qKPZSu+K7kOoI9gHjnDIN3ez0wLKHSLbd2PSzbwoFHOnQ9+vEgoLfvcj3uZkGrpEVyPZW+Vt7k7nE9njai+AXDcT0Qnfk4Bq1xPVjCBcIVonE9jAuPsrCccT1h318xDZpxPU6h63bFmHE9Aa7KvCeYcT0rAPFt3JdxPQauVsG4l3E9Oke5/KeXcT1mGZEqoJdxPZDE04ucl3E9QoYZ4pqXcT27eQEgmpdxPbB0TciZl3E9wBLSoZmXcT1wa2eEAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAjAAAAAAAAAA=eF5jYBicwDPu/ZZoQ0n7Q6+rVH7Iadlvs9kd7CSmbX9tcpDLWXlte7FlYj8FFbTtRUNkOAOANPcqJssuIP32cZ3pbiD9oc5H6BWQPrT41n1hRW37qWkXOiyA9KzVMakxQNrCOGNfFZCO/ubqNQ1IR2ne+rIeSN+xn296EEhrmT0rPTJKj3gaAO2s9ZA=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2GneuTOSoEbU/U37yQNdZEfvIL2W3e7lE7flOvDXauFjUfs0e60t5laL2B2MVbL/yitrfi1PbzlDMbt+7XkDy1aFDdrv3Xr95v+a27Sg9StOTBgAXrgGDAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_168_t_16800.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..56eb37209268013286ba49f3528d493717a87f20 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_168_t_16800.000000.vtu @@ -0,0 +1,41 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0.000207" offset="0" /> + <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10" RangeMax="8.4876994077e-05" offset="272" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="928" /> + <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.1973309239" RangeMax="11.132504961" offset="1020" /> + <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="3056" /> + <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="3128" /> + </FieldData> + <Piece NumberOfPoints="101" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0010139095e-10" RangeMax="0.00012302309955" offset="3200" /> + <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10" RangeMax="0.00025508336044" offset="4216" /> + <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370224326e-12" RangeMax="0.002" offset="5272" /> + <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10" RangeMax="1.1335864343e-07" offset="6408" /> + <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0175046839e-12" RangeMax="0.001" offset="7456" /> + <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="8592" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993" RangeMax="100000" offset="9096" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0" RangeMax="0.000207" offset="10172" /> + <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10" RangeMax="8.4107365986e-05" offset="10344" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="10708" /> + <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="10772" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.5" offset="11264" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="12192" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="12492" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="12804" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAqQAAAAAAAAA=eF5jYBgFgwmkTjX5duG6ur1rvOWe3/fl7Ut8Ooz+c2jbR942tl52Tcve/rCfwUcFbfv3ejOvbJPTtrcImCIlpaht7/tdYSkvkNbM9ZCxB9KMCRFfDYF0WN/RziQgfffEZ4cwIK3df/RbPZB2uc7VVgqkFXYtT5sNpKcZPdGdCKRrVn1n2wKkLVbsebQaSGuZPSs9AqT7PCO+7kXij9Kj9Cg9SgMAhk/JlQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygEAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNvvOfJTQXu7iH2x0hUFrv3C9jeVYxaXXhex59qt6161Vtg+NsaoQ3KeiH00e8j+ifeF7flyZzN4W4jYZ24xXnkoVcS+9XHQg6QNIvbz49wV2eRF7e+98Mzu/y9in9ARd0e4U9T+tz3jm8cmovYhFSvMdQ+L2n/adt9dkUXUfqnFZssv00TsFTboyiz9KGI/yeLArDJlUfv1k0syD2aL2uf9Sfuz4LaofZbsxJ0T2kTt30U/e+WTI2rfVc3B28Yhav/D3iI3RVjUvmnjIs3ns0Ttv9a+8xL9LmrPckPRtSJS1J4/pZld4ZuIvWSVXnRnpai9yox6LtXVovYFCSn5m2+I2t88u2b5f3sx+z7Z1FdrgO5+3nla/tk/Efu2L6cWi5wStbfke805nV/Mfnpkadue0Md2dsYbZkW9Z7Tfvff6zfs1t21H6VF6lB6lBxsNAOFG6g0=AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA1AUAAAAAAAA=eF4VU3k8lHkcTjkiBuNoisnvdaS0qxpbmo+avpY+bXRQQsearklKUlKKyEZ0OKqlYqKQDiVXYRQvyWTWKLPK0aEmOcpRQzKO2u/+9Xye5/t8z9/7Zl9f6qkpZNBif8WHz2IdumrohTXrNYO2CXrokV7AoAezN1bdH5kGrIAJ8ffZM4E/1lpyJ8UKglJV3FfE6dIzG0fP8IP06Ar/B3lNTjPhzKz6sPlOVpDfuCTBlW8FMzx67hxJsISkuJTgGRpW4GB5qceGawXhJlYlImMrECQoLLZYMOlHrI/fltmwYZdL1tW2Fn1aTem+fyjDEk7OPGV0lG1AV1lKTqxvM6AlXRxj5XYL0FT8sc1WRsGTknlusSEWEJgtXhfXh3ElNUNfYki7XmhW9+ezoTbsW348MYcll0weGbIt4HPGktLwm+ZQpmse1swyB/rujrYDnRSYhaqyaZ45FA4PHcv9yQSWzLk1/AsFjvN8i7mzmLQ+X4cT20KB4ZbK8GvWFAQmuO1lX6DgRVTZ3WAFgU85oxWwhknTjC3yAjcDenFasqi70BRWV7o93/iBwMf+9vDHEiadyNMrMn1BYB03TMRvJXD5alzlzq1MerKPR0Z7NQFdOX0lR0ZAi1n8wnJIjy4Otnt7YwaBVN+w7WbRBI4wVd71XybQ/HmDp/wBgeHJAnZRNoGddLfj7HYCJYxUMx7GeRUaTdPdCSgWtwsa6gmkXLxifTmLgJ+beROdTKC6KJ8kiAhcSxsMmPiEgPxaCq/vOqKm8UXjcgKhRiGKus0EHn5tqKmvJCCh5w5U5BFYbbFANBd9ffICPY1aAmZPhR5ZdwicDnR2jygiYMugovuxLitZULqgkMCJkLD0+GcEahK1rAOKcf5AYT7BOi6O7i4izPt+KMeJKyUweJXlzb9JwHh9RNrfeAdt1SdL3XEveYxUR1hFwOA550GamEB96nKdtlwCjg7hGxrSCXRUj+5aWEHgqwlH3YLGeTMNpAqsr6bk7azG/h52NuFO9whUdNppRmI+i1HkIMK7Dw0WBqk3ELBu8wrkNhJoswyWd78jkLMqkzLBej9OrN0oxXjAuTJK0UzAdE5e5qI6AvohPqXLcT/ayqHU8xWB4PaK3JdNBO6v6+QIMS9TM/qvdPS5zstqeYZ3V3Wh9JMwPyzjoSAC77i1y1uihn7G1exuo38I7HZ1dL3WRkAq2jFxcTcBbozvqt73BG5PG3ys+pqAzL7Q5x6+q02UqCPwI4HDe41Pb0fdRDPONgLrrjIsp+w7COwR7t+2CeuM2a5Y2NtLwEf8a9S/GA82d2SqYB7n+KtpQ58IFOSelxXj9yi1/7JEiXmH+aPxMtyjz94jJgnzZErngVaMLxB68fbgnIuanyZm9xE4aFMmqHhDYP6ROr/TyNduGoq51Y9zLhJqNfXgd9HSkZ+Jc06t929ZinvUlyzftxD71c75ZeXurwT2SjX6GxFtGhMvuisJPO7ulY/jf3PUrz30EHK3IomM/Q19KhkJ/YjJ0Wa53BHso9w11jGKe4wf380exnfYcc8+A3mZ757AUvSt3fBbuco4gQiLSR7vsU6UnTgxb4zAsjcHmqxRNzvp0/oA9Zqe2ZnDyFvuurz0+knAIWjusVsqFLjcEvgVT6CAouvis1APGJk90Iy+S6qjT2uQy7Oni5PQt4/b6a+KXFri5XVLjYK284Fv25E7C/bHnZ9EQWS3a0EL6t7q275qqFLw7KPG7VOoi3g9MWmo/x4ysDd2IgUpxyNiujQoiL0yfPQc6j/rtfvu/19vTUqa32QKPN1Cp+oijpTXdUvQt057zPko8j/VF/qsRL7ske+5Y1oU2FW/+lGO+lm7Xp1y1OvSbDkK5DeZL7umYJxTNCiWaVJweLddaAly7cGRFWqIObUHjcoQv6uv7m3AuOeaKc03pmC/cW7cWcTNhaM6RJuCnYkJnsXIlzKOVcmRv3qbLo1E7PSONO3XoSBgSkEaD/E/mgbJOg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA2QIAAAAAAAA=eF4l030s1HEcB3BPYR1CTOnufj80M51IwnDfj1hI5SFjmKh5KlGuNBdTqfPQsjR3CZXF6rQR7sRI2805Zu3MQ+jMZs4fTBRxx9Gi7+/nr9f2/uPzz/v9mfOzTjAQzHCXGbc1pwgShIyxuKg3QajA7eDv7peJiKPjmKTFZqM6TayuqaYARXTwZvknypB/nlu0k7sQpSdGiAOF9aizUzMuaGhC2vgfrU+HJehjl6AshPsFBWQyROpNOWp06I4/uvYN2eRVOtRPjKO+5T6py/o0Op+1IfjZqEYZppyt2U+LKMLyxphjzioSBVVM1TVo0KEtpcpmfAfpoiw3o0L0YSfKMXDVxhj++n5wTjM3g0HG96qvr6wgftZSa5xsCwuX5EROFROqm7cFw+ZMUBitq/2SmWCwfV8T2s6ENLbsWKkhC/SeNC6YxbFA3pM8uStmgT25YnlSywKLI7ajdcAG3+zLnPwSNqw8uNLhNMgGZeqkq7s+AdapQzFx3gTEna11fJxOgMDLwE/xnIB+nmQhWkrAP6+6vaJRAgbUe4R0iQB+uFiSuUuAVWF27QsTEqacZkw9LUhQDs23JRwmIUuVojhnR8Jx2/5Kd3sSfGVuKeFMEoyMhOtyFgkS19IEGZuEJmWwSwruZ2hx91cvVnGNM7WEFRWrr+qw1X/6HDawjQEq/jx2Lv1ZgBJro06K/IzNc9xjv8V2BVaYlWOzu7xl97CFIwOpGdgAadtMArZI1Dcbie3Wc7YOw4atRdgFYScmlkRc7JTPO38/rGmL4ZAPdT9JYuCNPVN8U+aF9ehqmzmNrXlPcildgrdHPLG3QsQllHotwhjKploPT8r6bWcmJb9fZk6ZeyDHiNK6+c4utUd+tXiHMl8apKMc1io2Ka8vqbSUyf5htI8urtH75VzopR0Uv6atmi6nbVUV0fJy8mmZPXf380oe7WhKLu16+/4fPAzdd9p83//UC0l7AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA9wIAAAAAAAA=eF4l038s1HEcx/Gr1fzs5sdNfuTucz845M6560pXPm/y82Riw66lpSaxZcko+oXrx9mNsztSJyKL2izE0u7SqkVaW6qlG5EfV0o/tiNClOv7/fbX46/Xf8+XRjo8PH5mJHRr+bH5YBYCja7K7cD6RGzSMfQ3/2ZiJy9PJfNyIdadi46U+alw/Z7KpqiIauyX1lUg/NCIY1UrrGb7Viybsu13d7yHNdlb1OWLj3CYa0eObV8/nr9y+/jzvW+wwmLO130bwi1Dnq2xjZM4y6NrhVU7jSuwjcr11wyx/+Mq2bSIZVaRRRxgxfqf9uvjX62Dv0ohS6p2gIzs7xd3uriASCBb/qbZCC2n+0p2VDLB6XDbqljNhShTA54I8oO6nuGOmvsiiJwcj+vODAJOXcrIiyNCaPF0FGjzBCD2EI6pigOhNC8xI7p8MzAlm1hWfQAYHOL2r231h4bgd1/6nviBSTDnrJ7gQ9LvB6IYOz4c2DfrfCvUF3jbfNpXz/mAOrSnXz7AA7epwUX/QB4Yk6fOfL3KBWhelJYyuKCoLQy5cZ0DLuOXwh9s5cDjstNy+igb6BfSyzor2KB6eTK+OY4NmfxC70FnNqyeWOr1NSNoW52ZUxkRJHIs+37oEcx+vyZUFCM4KpHQP2YjmAivKTcqEPBoWRnc3QjSbXwai8IQlGlHPweFIHCjP/UZCEbgohe8sAQiSJCrDeH+CHILqgUlvgjMWu+qfB6Cg9E05RwHAS2n88N7NoIR5UO+EyGaS7UtRgh69Dkb3Alps3frXxFdvPWI9aonfD34THSKcEFr3HWIMDx4xppEeDaD7RBDmCsJMABh8qeKcRmh3XZD+zbCtBTnOimhfWdO5BZCZoF3loRwmr9mVEw4pq87TypelseTat5a/EkZA30M0gvd72xIf9z5YyU75cRFrJAmmHOXSLO0vQukqaXPf5E6KaSUXmsnqK555jbKkEEdZdO0klKxXEQ5v5JPWSLIo1xoyKWcNv3/xT9TykTVAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/A6n8dJNYmA/2t+XdlU+cj24X9snMGJgP6aTC5P4YWA/AHPnOphhYD+MNfjv+WBgP+4euD0AYGA/eIepKoNeYD/YF6SzTVxgP6Z5TxkbWWA/SFB9I5RUYD9LHKCLTE5gP1I8qczARWA/VMl4oVQ6YD/goeCBUitgP1beFG/sF2A/2jkms3z+Xz92Zbq1pMBfPxx19shNdF8/GEl0yG0XXz9iE7BqB6heP/fUdRRBJF4/BIbKnH2KXT/6zdqxddlcPwTl2FFQEFw/swQCrLguWz+ZPs7/7zRaP3pHyHbYI1k/th569vv8Vz9swZ6Nh8JWP21TJQtBd1U/KzTFIXQeVD8czXuf2LtSP2zaMgVzU1E/ShWfgeLSTz/u39YgCwRNP2j2V2GDQko/w+Brz+iVRz/AVsmJFgVFP8IZ1yP0lUI/mbAN/FFNQD+CprcrqF08P0YFSgXXeTg/VrQf7LrxND+GCZWyrMUxP4daa3Aa6C0/jhzZoBrzKD+Mo+Tv/KIkP0bMryBO7CA/etT8flWEGz9UmrNstS0WP669Fse4uBE/OfvKamwTDD8YNDeUOwwGPzbLQTcUKgE/pAC6n5N++j4EauN2jUX0PltEr7P8wO4+ZbgxjKwg5z44NHKHUT7hPuy0pRonftk+c3/w2gev0j4EbNWEbCfLPgyAJjyrkMM+nO/T2930uz4KNqFTQ86zPthHtyXy06s+fm9Lfg9joz4npdPL8smaPpyGRwsSW5I+3IFvAsPyiD54h9PP29CAPlkBMYMPfHY+D2Pn1E3SbT551nfQDJ5jPpSYKdODmlk+FC/4jFqTUD6K4Cn56UpFPrZqoyJHIzs+KugVFM0oMT6dL41zZIglPkDvCjOh0Bo+cOksdDCSED7WctG0kVQEPiRf65ayw/g9dqpm0vH17T0pI1SXuQLiPTqcaP7widU933h59UOpyT0xpVGMkYm+PcgzxmyTOrI94AAYn0X9pT3Wb2WSQBmbPbIbGM4bU5E9XLaKY+Vphz3YlUhJugCBPZaG9+8wvno99g6fu6Wodj2trobJMGF0PaPaubdeH3M9kHD8/xF2cj3R3XKmAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA8QIAAAAAAAA=eF4l0n0s1HEcwHEPcXnIQ0s1D2cqTefhPCbp871CE/OQp/K0JioPSyoSbWzNdh2tmCHpjvM0F+UpT0lyK6bOPI00ZL/fnbsT5pndCP1+v/567f3/O1TVJ3QtMRP5jWe/LpjFIPhs/aMsRgaKf/DQeXTzCQrf3Nnd4j1GPoNx/QseyYi+5LhZcTwRbbCu53eV3UJt5skzx1iRKDtN5B9iGYTuSZutExjeqJ7JbjY94oYM7AzptAgXZKVeJ/DVtUcrS8aiO2YMZBHXW6hjfxLZ2bydz+Abo5eFOyPdAgN0cautZbpUD/nEVRu2T2kgb5kQXG8eQE7VniV0dyWElhl1s7ANYwU6xqnRm3BqMuCpV9MqrFVmcvqVlyDrW8z36QU5SIbbPikc5yD+9rpbtkgOmrUB3JAbcmhkPtOMWZLB6Ofu3gcZMsj5UGRWqC0DTk/FbzWeFF577YZOM6VwdeGXvl7fLLTwzI6mR83Cfbsy+tC+BIIbWKmCKgmITYQZ6f4SSDHY/1OgJIHSyIlWqw4xLDj4dgalikEhEk7vnxcDd4Uh1FYXg4pz2CKawAGT7rI863HIiwpq78vBwfRJ5pXAuziExloNpAbicKJj+0fXBRxSNFx13zFwyDlVPjloRLT5mcoWXRweDldd2lDDQYQHsq33MKBlXXPQVGCw4yeOResYRF1oyuUsY8A+LltuXMQglx+9yJnHICCcazo/h4HFq68RrXIMFGkfa0ZkGMicyy5bEjL9gweapRg06iaGRRKybfVn6ITnvmyw14kvFldV0ThhEi3evYcwdkZnqomwIImnJSCkJancLSecEY395RJ219holRDWZykMiwnpRqs/iwixvcNqpAkerMxCwl6TIAtSzr7SGvmft+fyEGmabVcnqXtY9XtSQQ2/mrS7todPmjQ0xCPd0jnEJT1trPyGtN8mpoS0pUGdkikfpr4uPthMqeTEp9wwK6Isi86jzGe8oByLeU7pwsmhnKP99x/A1KlLAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/FOu8dJNYlA/ti/0B2/mcT1UXRJyKWJQP3bM1zDlYVA/9NULl25hUD8vUHUXq2BQP9zcOHB1X1A/yPJpgppdUD/L6Qaf1VpQP9KCTFDMVlA/lGRrsAlRUD9CST9p+UhQP5RtNILiPVA/g1rrJ+IuUD/bt8CZ5hpQP3hIz2GqAFA/1nvd0l+9Tz9L+sqoemZPPzZBqcqw+E4/vsjv6oVvTj9Q/e3J9MVNPwLD+pte9kw/IIoDOe/5Sz/s8m2KZMhKPwSCsim7YEk/+L01f4HORz+zE8VOcmtFPwo8bZfky0Q/86YQntDuQz9R6KJC7PtCP533atjP90E/htmTJiTmQD/owWlmcZQ/P448S2GwTj0/LuTGQuYBOz+PWc7jI7U4PwQHi7ZobzY/zRPKEWE3ND9SPrrHLBMyP2Z4JskvCDA/yOtJHtw1LD/uOyej550oPxWIGdCUTSU/NHmhxPJHIj+eiLuVShwfP6LvSxIfPxo/snnToxn0FT/sSMa4ZTQSP2zeIeFi7g0/4GhWrnhkCD8koN8dv7QDP2+jz0smkP8+MaSuyqUO+T5J01ltHLjzPsZBXpY+xO4++txgzfrK5z7m7BeUeT3iPp4iSjNkuds+71vVETfj1D6aRGrsvzPPPqDvcdXMGsc+947Me0T2wD5cL6fIKbG4PnDi7GPK0bE+hPlnCGWAqT7kJBRf+BeiPhq8iC2hdZk+/5TDIRvDkT6LKjSl3ZOIPux3wPf83IA+JoummCLzdj7GS4/HHfpuPlp6rCxNvGQ+6q2iRvqIWz5iO0StgCJSPugzZN8uskc+j98I2GG3Pj7Ul44xQcAzPuw/xZKGMyk+iutQaPPnHz5ObmgL4woUPvbOVJWT/Qg+WMpa5ETu/j3SEDWzdAHzPQYriJNWM+c9QP0FEb4m3D3S0q2L8P7QPXOz5YKzdcQ9VMujcKqhuD19//hTws6tPYTYL1zRRqI9rDtnuNb8lj2XY76wsCKOPTLY89Lg9IQ9TBLJkHNafz2304l61VJ5Pds+3eDP53U9bEpR7mT7cz3wJsVPaehyPaqKGK6iUHI92tnShr4Acj36BYtNAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYAAAAAAAAAA=eF5jYBgeoGWRRtbzx8r2z4Tvbbv0Xste/Gcx0xV5bftDi2/dF1bUtp+adqHDAkjPWh2TGgOkLYwz9lUB6ehvrl7TgHSU5q0v64H0Hfv5pgeBtJbZs9Ijo/SIpwE1auckAQAAAAAAAAAAgAAAAAAAACADAAAAAAAA7wAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2GneuTOSoEbU/U37yQNdZEfvIL2W3e7lE7flOvDXauFjUfs0e60t5laL2B2MVbL/yitrvme5h9e+EqD3XvCC1M+qi9nKc143CJ4naq0zv6I7kEbPfFSzR6skvap/AePva1Tei9ks6ffecPPLNbvfe6zfv19y2HaVHaWrQALkY9Uk=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_210_t_21000.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..4adf220c71edc3c9594de70cd547dc2500c7bc5b --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_210_t_21000.000000.vtu @@ -0,0 +1,41 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0.000207" offset="0" /> + <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10" RangeMax="8.4876994077e-05" offset="172" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="972" /> + <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-4.8350439509" RangeMax="11.365563808" offset="1064" /> + <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="3104" /> + <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="3176" /> + </FieldData> + <Piece NumberOfPoints="101" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0001781654e-10" RangeMax="0.00012300768477" offset="3248" /> + <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10" RangeMax="0.00026074630232" offset="4324" /> + <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414898153e-10" RangeMax="0.002" offset="5432" /> + <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291197201e-10" RangeMax="1.1337911903e-07" offset="6568" /> + <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.8985512166e-11" RangeMax="0.001" offset="7672" /> + <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="8808" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993" RangeMax="100000" offset="9312" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0" RangeMax="0.000207" offset="10388" /> + <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10" RangeMax="8.4118931391e-05" offset="10516" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="10956" /> + <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="11020" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.5" offset="11512" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="12440" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="12740" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="13052" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAYAAAAAAAAAA=eF5jYBgFwxnUt9i/yFkmbg/jS3y9PGVSnKb9Q4PDS6t3qtqv3p2vLSugbf85JUL63WMt+5pV39m2KGrb/ztVEVAvr22vZfas9AiQ3+cZ8XWvIoI/So/So/QoDQCUzaqeAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAANgIAAAAAAAA=eF7tzvlL03Ecx/EC07nqO+f3814MPLbsoMOiTJxkvgIJ6RBJNMpjDI+RqWWYMc1KtEQr8yiXKB1o2qGRYiRrLTMTxEgQCzfUtIZHFmoeueGx+qlf+wf204Pnb8/GycgGi68zrCqrcZeQQ7R1lfihUoixnGE99XMoY9oOw1MXeB3dpFnKcEFcbqFyzWcxCouWe2a0LvAouRQ7F8Fj69h3c4TcFeC6RB3trhh+4xFaO+4Kv/TtkxTAQ3osVTuQxeP1e6tsWzND2vpPMmELD5NXdHV6L4NQ7x2c+YxHTPTufOk9hiin8JaSQR5cSuWKwwqGxBc+T94lMFw1hw3FNjDcVwbLHT0JX8YOJhXZGFT5yn6+gLCAlT/Newjhmsd+3m2E6ZeDwXIHQo2iyX9WyyBr8Har+cVQqnhbcd6L8PzWucTWJMLpRfXigz7CKfcSXXEeYSJqZPxIMuHaBcHaPAHBAkVKPE/IaazaMlpBmLs4cYjmCQ5G+QHNCYIoPtdJ9ptBmrkjqiCDsKH8snBjHSFVFX+myUgwfax/ZIMEN90Txuv/fo8WfPAcWWbIm+2sZp0Ef+6H8x2RBJZu9VDccUKjj24dv8DQ3VX7LaidcPar2iC1Eeb3ntxfOUmYWfIIDblCCBCv9t18nbAcLjGpbxOcuDJLk5sEoXcHsm8sEZodW+uaWwUoDTJMxQQR0hxCIl9N9wSGVRmTi3VTgXpDr2kwq29fQJtAqtqZ/a/t2rVr93/+AVdZzwE=AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA2QUAAAAAAAA=eF4VUns41GkUtrlvDIYutGO+nzGu6aZUtjhSIWXpkUoelNRGYaNHoTK2WpdURrWYcpkRz0gKsST1W3Rxl2u551YpjZBb0Z79633O+d73Pe/3ne+yunh1+nkG/dTJkc97pky/MxjvVo5k0Mdl3LyneAz6c6FB4GEzPejbPGZiXKIH6WZ35cMO6sHpale96kwGPasbUHZhgkGrxjWH6x/Qg8IcY1Pb91y4LeEf6Kui4MzsyZM0Qw9STAQREl89+FE1ckdYx4VSjQR/724urKko+wHJqnT1Lz3gHcwF3vSDT0kaarT5xiJ2YyoXrEnp4f50Nbq+907Sn3vUaM3lu8UsoS5c2ROkwbbnglB48YKChy6AhtP1upNM+vmZg0psF3W6YdD1+YyJLrSN91o08TlQe3owdpTmgMa8kfayLA4kXKmPu3KJA36svdrmTA78tXYmipfHgSQGU0YkJUcX1QTJOFiibnXDaLkxk9bq3qHt1a8D+4LVeQq9OnBO6VZoZ4kO5PqIP/4bRYG6qKNliRuTZlKSskV71envi1fJejrowGyEcjebrQPJrSuPhI8w6bboJwHGlymQ/qQ7WzFHwXylV9xGdSYN7malx0x0oHiponGLGwVvL5z1ULNSpQ+snNQO8qUgOoNfIqApcDZtnDUOoeDDvemOaHsKqnpbLvoJmfSve7SHS/wwR8aGuWdmFNCC8oct0wTEpytgPIaAxgqq6p97BJifNKm1VQRy0zY9twkhYG97u3FJLYGrcZJpkQwF2QcdIkvuEsjJN9hwfSnmoyw877YTGBKFxaxrIlA/3Hk1oZFA9R19u1svCKQ4RNf6thK459ru0lBBQKChPfitj0Dw6yyHR80Ebhm5tDsXE5AqYD04UULAThCU79hGIL/5hYCLuYS/WzbHviXgVptpGlJIwJkzUK70EvnnDIudMG/9XWI1UU9gt3usjxL61ZzPGXqKPicePb6mLyTwrtwibHslgQyh0YhcEYH2YCnL7QUEGtrKrFsR4wLfj8qjr06ZmsCslMBwqJaJoINAmHn8kfPodzh0vesfeL+ZXio64A2B+Ci5lEnMy/OcyVZoIODoXcu6gn0OCdPf8YpAUdPrMo9EAh+UawVrOglccs3byWohsKAyUjwhIpAddTCAriPw4nh4qDzeo1WoeOAx6q0u8boqMKcp5fRRFef6G75sE+MeOrysxZo4nyfx2J88gu9TsEdGBTFH9Er8Bud9ZnGTlncR2Gonti1+RyDPZvnuxZj/jF29exbO7VFP8x9+T8ByyjGOg3uITVgVoThKYHOe57dTqO+KD8hioC422uPY5CCBskX7Mm16CCTapXUc+khgfNVXKyfUDcWkp7qgbqzy6A4e8vtl+dLyyLMRJZMkCQHb7XO+lv/PLVydvX6CQOUG8/5d2P/SFBPePEYgIL9sWQXuHSKbcnyGEA0SzjejvzG9bcwCfScTA62dhwnob72eovkV962wva0d+84n0l4bot+0M7d0C/7XGpNRTYdJAulPffr85wl428QHnv1OoMoqXroP+U1Si+Tu4znfedrceA732dq4qBjP5+YyMx4iqk7Fm8nNEIgQFFa/nCXwPXK/Uhiii1eNcBPyQf5ynCviRWWvswz87zmjPFazNAVT0t37gqQouDZ0SUoVfT6olKa6YB2RLKO1aQEFx25scw/8iQKmSNS6ToGC/uPWc+qoa503tN8lS8GpFVazM+hnUejIjsVajb8sxAn5GeXjiVFyFDywGtD89IPA2/286ENYfxxP6ndHXmehrMQG64XKvjdE8hTw3uzkdaM/L/joSd2fKWA3hvP/RqzItHm3lEHBMy/LR44qiAPXWI+Q/zo3O6FVmYKCLwPa+og3QcvJBvkthfs7VypR0Jb725QZ9hVluyovoN5DR57ds5CCGtamZGusY/wiu3qRtzKtNDYBse7m/Q2LkX9Os0jyBOtRNj9dokoBA76rZGN/PvX4Fi7OV5ntN/qB+B8rMr+bAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABAMAAAAAAAA=eF4d030s1HEcB3DplLhdyRLu7vf7UkLdxN2RPHw/lKLTw210lUo6j4kT5ip07liXWJnmQlPdVB4qlHFp0yMTq1VITUxtraerRE+n0dX311+vfbb33n+9P0tcXR4j1UiweJPdLx8aQcKVgemUdi6O0WU0ioQirF3YLgzZHYY9F93UFwuisE1Yn3DZQBx2GckPakVpWP/ayYZuUWKz+lbDSI8GX16sbVOJS/HyinRFYWIF9iz7gwptzuExLeZ86L6ENZya5PjFLTgrIGu09X075vmkDvXn3cbejxwcVpm6sUr14+ek9hEW+LjxLP0GMR48drdLP4yfrTa4/p14jfvkZS9Gfd/hdTERxuY3n3E33VaeV/cNrxXrzTuNJixMOdejPmTG0W+vOlKS2bA5R51lG2YNBrXsfGYSB5ZL3djzQu2hfr9Ec9/CEQwOmkH8lAvvLZ3idde4cFJqZ0wY58JLmtNfvZIHczI2shIO8oCiI2Jn7vCgLm/7vSZrPpzKjbbulfKBpWP56yr5cKa3hhU3yofYxoDDaooCL5EgM343BcLADUUnqyhwP/0d1T6hwDdcoYmxpOGTZk5+mTcN25/Xy0UxNCg3Jv6WFtDAztvVZq2nwZjan36ik4bOP4Y+NESD2Kszd76RBsFoRlXTNA0lU0WVnlYIkszJFQJbBAc6vkXZLkAwGden+GqPYK73x+t/HRC8HDeW7HFC4FZAt3hxEbh3l/0q5iFg38yVa/kIQuJD1wdSCOQtN453ENmRe2dsyQ4mjzq2hhAfFw3I9xDThgp7FcQSicKUzdxB2c1ZRGft8Nl0olbJvZhEnOjosmDysh1TR7YRZ3lUl0uJ1DargxJiV37DmnVElSx1gukPzLFSBBOVJkFtAJM7HJ7pT1zhvPeuH3EwaljpS3zo7FMgJvrdDn8gInKyg0MYiwxLx4TEIGVNJWOuJDGR0eL6dCijLCDYk9Gj1NmRUTAjYzPq0FYW40zOFzOz+/uRW6YZm/Z9nGJ89WWHifFCW/L/v/gH7BM4Qw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHAMAAAAAAAA=eF4V0n9Qy3Ecx/GpVRiJFNKPz3ertbSiLP2gzzuUy5Lb/OyKflkz5JySLjdT6dCRftCPaXVdoqYS65ei0FUikcyVxeTqzm9XtOVW5Pv963Gv598vy+bBtx+kw/4NJbq/Hg4IxCkRJbeGnHGFlagyVh2Ap5r741cYhDj7Uqg0kRaDt7e5XC6dPIq1ytKmZc4pOORRgbQ2JgPH+yhi35nn4IOTi0qgpQgnGN/9PltVjh3y1WJ+XTVevDKGY+XbgLN7Mgs1zDZ87sntx54tndiGrgvsYvbhoNYTe3I2qXGRLa/s8NgwzhPkFo3QR/FdnN8U3/gFD428tjixfgIrVRZ97t/12HX41MmkoH9YZvT11Q6NMYyla5JlI/OAx3Wr8+i0gJo5HTMv5VZAb/cLbFGuhNyej1H3qglI6Apb5tfHBoYuqkuczYVFgm2DRdYeMDMlCj7uvQaydjJKHypWg1plp0nqd4evzdXnHGbdQJur1Qk4bvAjrox1djsX7rvTFnckusKDQPaBb/JVYJ3wavxFhwtci/zY7zrOgZPWTmEVLA7silYfqY90hm6z0biKcjaYvqOtzhp3gm7vXgl/qxMY8iorT9c6wv5iyztZdo7QdLQzt0rOgrHYYtETggUmAaMR9Y1M2HHdZ5ixmwkMG75X6CwB3BhZ+2A9AfTI16P64wRI+PrZTz4EzBXeaxgxI2CDUaZiqRaB4M9Fr9ZWBA9rhDrzEgTtT5NTwzPI3mZgTBxD0EBL1vOiEIi639cWChH4nfI1yLcguK3w6en1RyAxz7ncuw6Bm42nJMgDgfoZb3qCi2BuVdTGfBcEhsyFgX/ZCA4TFW9pTghsf54/JmMhSO8P/xzORLBJVnwllUAQ/OzQRi1C0F0VnigmtdUMKs1J79xKe/6C/F1YUkR1GSl/AbvgDGm0gG0mIUURBZF7SfWT7JoQ0uyJVRmbqS0K1fqT2ttPTfuSpnQO7PImnX/V7oIXqeqXSsgjNan7nbaW6nlDU56kdOkNBeU+k4FoyiXKN76U0l9yRGm3R2xBqbrGMaW8KVxOo/wPBcVTrg==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Cyt8dJNYmA/NFz0QdWg3D0hHdC2SGJgP4J7VhY/YmA/nHL8Py5iYD9cW+1BEmJgPwzcRHXlYWA/HZBl6p9hYD9G4FayNmFgP8REBAKbYGA/+lHFLblfYD9bbeN9d15gPwAK5d+0XGA/iPFAfEdaYD9UDKY8+1ZgPwyeA1SQUmA/wkSw3rlMYD9oe/a1HEVgP9zzfZZOO2A/XBzYu9UuYD9ltV4UKR9gP4Dg/C6xC2A/Xuz7/5PnXz8wpakki61fP5x0/l/fZ18/4q35/CQVXz8aWNT497NeP3xZMngIQ14/QJaFSyjBXT+uIHv4WC1dP3x0AqbZhlw/h4CPHTTNWz8K8ac5SABbPyiGcxdVIFo/0smxw/8tWT/ozApDVSpYP2o7R7jJFlc/D9w+NDP1VT+87FqWwMdUP5DJQb7skFM//M5/j25TUj/DTUh2JhJRP6g4g4MUoE8/rqvHfyAgTT9ikMseNapKP3MjOyrHQ0g/hoDw2NjxRT+4J30Q3LhDP6+vaBmbnEE/gJAj51BAPz8pmpUdrIs7P8ZouIpnHjg/1YW4Min6ND8YDo/QMx8yPwhZXDcOGS8/8McuJw+AKj8kuy2yVm0mP83PmUpT2SI/VrupZ6p2Hz+FhTCz1RMaPwgQwSxtdhU/35xZ1naKET+ILj7ne3gMPxI7lWZ/8QY/TCbkRQBcAj9mgkbGIC39Plrxc885Bfc+otkNIzQJ8j4ifSI3OxDsPvLDXVkYruU+jq1s86+h4D7Y0DDh31bZPm0Dz9ssK9M+GE6B8LvMzD5a7gHxI3zFPnZYMl+T1b8+kvjRc/xrtz6KqqIAKh2xPnmS18mX1qg+slDtnLzmoT4RQ5e3t6CZPuKNSOhYOJI+zis+zGe7iT59P/rdVAyCPhdJIkbRJXk++ASUzCdncT5YEMnuKu1nPrin4BCzVmA+PELLkdEqVj5AeB5Rs+BNPvhZahLsAEQ+wrB52IqcOj56C+lPPJYxPjyuSGGxGCc+oDMTTrIjHj6CfBFgp4oTPlRusZA+Lwk+SXkSyiMiAD7KjDEX2JL0PUL/Q5TgR+o9QGqTBchv4T0KOmKiAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwMAAAAAAAA=eF4V0n8w03Ecx3HjyFSO6bQrP6LIr8r8OD/q/VFXCpXUTbK5UoRz3UlWKLb87Ae5dKU6ZHWSw67Dhn7opHXnmnBH8qPW9zubTe0mu1WLRp/vX4+71x+vv55cfUgVJ4uPnAIyG+4qCXCLyprfEcxHlqZh3/cDhUgQZpL/sy1EdgG6+AjVFdTu5Hux2uMyepOhFMs6chHLIT/o8S0e4tz8HOylPY/2M4zkx+xMZLBKFI4PpiCf1uplzdckxDtld8hTxka9tDt0x7nD6KQ+Y/FlbSTys7QoZV6KwP+PxTXOIUh1bZ0reysLOW38VC/q8Uayo+khfgWb0QRTkGo35oxm+bIue/v1aLfpAc3GkoGSPy0MDWetQX1dpcefNFshUSXawA83R8TfgFXFdSaIbmt73RxlhH3d2aHvbQ2wmlEzXC34CfvjrUhj2w/IsB0R7W3SgKPWzCOhQQN/n5o/+xatAclI3Tb+vBpOSNOW9VVqqCTyIvf5qeH8r4f08IFZELJzbzSkzIJE52IRuaKC2MyCXmOtClInOMf44SoomND23JhWwuTz2JLXAiU4ng51bdyqBP0msrNndAYusPuLkkpnoH9S3jMdNgPEl85X5wwK4Cy8kvqLFZCecV0ZlK+Am7nS2Jy9CnCfvKodYygAtSu8A9UklPAaDYl9JKSVGr/RH5Hgmcs9vSjAe/8o88tZEvyNNo7cIyR0NQ/buO0iIW/Sl/vZl4S4y5IlLxcS/JQ5dlIGCa5e7/Zw6SQ4/Z7qa6Lhnyn+YuoSAX1De5Y4vwlI9FmpZOsJ0CcEMrfME9C0Vhj/REtAFc38q+g7ATUHzep95gjgiC0O0DQE7Hox3u2iJqBA/j0lZ5YA91PBg3oVAYsHZ5bvYK/TRR6HsCstPHcmtlxlCtPj7siOP7JxrHUya/07bJH6kbUE2xX51qEVW+5p49CINSvXbW/A2pZc/FCLlcSF8R5id5QZpu5jA2Pk0hpszGEWnXJnxZmKe1jdifoQytCyIDPKfNbgNNV7Hc9aSqnLE4opbyu7WyiL57IbKUflL4SU/wH3EqDVAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/P+t8dJNYlA/UswfExnuyj3652h3R2JQPw4Tink7YlA/aNAQdiZiUD/IdalvA2JQPxZY8zPLYVA/IqHek3NhUD91qDxn7mBQPwTgTlMoYFA/OYyMTAdfUD+MHs7MaF1QP7zzkbgfW1A/20QW8PFXUD/kV2mLlVNQP4xDDcOtTVA/1GH9iMdFUD9qtDLXVTtQP96XiritLVA/6n1MDgIcUD+W70cOXwVQP/KYrtVK0U8/cqWLFQqJTz96zHpK7i5PP5Zg1iJuv04/IECmBnA2Tj8KsFrYNY9NP+7Si2dwxEw/OhHm5THQSz8ExbUE0qhKP1wqkEqsO0k/NI8DxHKpRz/UefiuA+9FP3rDLSWvekU/roUbfpzERD90cowKK/xDPypJZFruJUM/CxM+hR5DQj9COdGHNVVBP1n22DwVXkA/crhcvsy/Pj9PubJ3/bk8PzYfVLuerzo/C++YMaelOD8qTAUL/6A2P8rJoIBdpjQ/jmi74ii6Mj9a7ui7WuAwPzDT7T3SOC4/d08QtWviKj/GojTnB8InP/clKt7m2iQ/uh/KPAYvIj86/41nX34fP572VGchFhs/3mtT27IiFz9gbm8Vwp8TP+Lcq/SZhxA/XH4kVOWmCz/w6uwMgvcGP7X3fYYC8QI/YlGug+sF/z7ykJSg7zn5PuTANCMqXvQ+2MjezDJU8D4WVkKVLv/pPtI+WgNajOQ+tu5+0oIg4D7wT2jitSLZPmR+eYZEc9M+BERQO9/jzT4CWD1sO87GPv0+BZVDR8E+nteluKH/uT5uwHsbbWyzPlhJ+RUq0qw+nunGivs7pT4Mw99qwRKfPiA8H5g4lJY+tj219EtLkD55vx4sQluHPvh2/JM4oIA+pNzsokmCdz4NNjqAJ4JwPgOaswxnB2c+ub/VDdToXz5fYqW3sfVVPjJEmogoBk4+WGJwV6NjRD6FsTjlpII7Pkgmb6UccDI+hvfnCe2NKD4Wm/VGnz4gPqpwshdoWxU+9rnpDN7mCz6K7+9yGR0CPlkILDHIYPc9t+OvnTMB7j1G8jemoCzjPTxyD4g4kdg9lEnqPuJc0D3FBGqSAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPwAAAAAAAAA=eF5jYBhZoL7F/kXOMnb7P5O8Zdl71O39BVIWs/7Sst9rtWP1TAVt+zv2800PKmrba5k9Kz0ySo94GgAIKdWCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAKQEAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2GneuTOSoEbU/U37yQNdZEfvIL2W3e7lE7flOvDXauFjUfs0e60t5laL2B2MVbL/yitrvme5h9e+EqD3XvCC1M+qi9nKc143CJ4naq0zv6I7kEbPfFSzR6skvap/AePva1Tei9leYBGp2a4raK95gu6D3SNT+65zD7l92itrLbhZgP94var86dKeNAq+Yffljv8cylwTs8x9nM9tve2pn8o9563mjArvde6/fvF9z23aUHqWRaQC2SuO/AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_42_t_4200.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..a91ab6a73dc7639e62afed45ed37da9445928423 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_42_t_4200.000000.vtu @@ -0,0 +1,41 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0.000207" offset="0" /> + <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10" RangeMax="7.5325959376e-05" offset="264" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="536" /> + <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.0394216572" RangeMax="9.182848619" offset="628" /> + <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="1792" /> + <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="1864" /> + </FieldData> + <Piece NumberOfPoints="101" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0000003362e-10" RangeMax="0.00012420896172" offset="1936" /> + <DataArray type="Float64" Name="Ca" format="appended" RangeMin="9.999999991e-11" RangeMax="0.00020012832631" offset="2456" /> + <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12" RangeMax="0.002" offset="2992" /> + <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10" RangeMax="2.3719406254e-08" offset="3752" /> + <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12" RangeMax="0.001" offset="4296" /> + <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="5052" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993" RangeMax="100000" offset="5556" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0" RangeMax="0.000207" offset="6632" /> + <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10" RangeMax="7.3857242297e-05" offset="6808" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="6984" /> + <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="7048" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.5" offset="7540" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="8468" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="8768" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="9080" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAApQAAAAAAAAA=eF5jYKAv0F5ocsRri6Q9jF/3MvSWr5WW/Rul96ayE9Xtz8gvzrL7rmWv/HjCnqpjWvZmxrvi7IW17S0mzmC/wK1t/2zu248bJLTt3Tuj7nGKa9tfFXxUXyStbd/OK1gfJaVtf/JKsc5/WW37Q4waH17IaNsv6XsjHaqgbf+GNcY2TF7bXsvsWekRRW37/Pkbct0VEfxRepQepUfpUZo0GgAmhDQIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAqwAAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNt/qdAILipjsS9WuqLAtV/Yfvfe6zfv19y2jUvNPvx3xU07GH+UHqVH6VF6lB7cNAA3czzqAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAASAMAAAAAAAA=eF7t0vszVGEYB/BqMmJS44hKWc9W0lBktITKI0a6uGVEK+mmWRHt1K5JV0mjiHWZ2C1FZVuzskMWq9iTSpcpRDe1JtVs6LJZ3Vx21Hvqv2j66TPf7zxz3vM+5zzkeH24ZU3RcdyX6eqfZnQhbzzft5Kim6NDKmqHzOnebmFLxlc27jI7HX4+eg6WJNj0zBKycWdbqz+VSdGKr6dMnMco+oW0q5fdxcb6IRtlewqg8yeWwv4yG9G0gDd6HjD/9qOaKW2Ao72UxedMwMvnZlxzHbTB7fL0sRXHKTp5oi47Kh8wsdyWVVwKeOOh7GV8ImBk2vuBin2AYj9bWj9sQbdu9NTNigJMUD7O6qgEjA1zyfkWRNG/VBuNHAcp+mJ86fzNC6bRq/WVOo/9gEfSpjYZPwc8eruow7MdUG6XyfLWApY7uXtQZuZ0Y+q22iVPAN9qqUndfMDSjz/4kzYBvnt/QSDjAObVVVt4+wIOi/TR404DCtFDrSNzrOFOjeVucn6vZVAgySYw8HMHF3DER707dRXgvcQqlVoEGDE2T51C7rvdcb9LBJmrq/KyFZ4ErMw1zAzNIH29VKPaQc5ZpY94cACwxEHfKSLv3SqJHZdeAGg3eXXR9zOAy99UrS8g+7BqsdU+zwEU9OkOepO+7/VEn0Gy730NI/4phwGdLJ061pM+ln6qTc4CLIQNUX5SQIw/WP2K7JUrEmlqLpHnVYSpqkmvLehP5ogB3Zwkjw6fBTTkxX0JkQNmGvqCygqJga0BijLAbLeknmVXSZ5dXisoJ/N9owJdLaCLmBXDI/2DuZZyzQXA+owlCq4CcEJszCEH8n0k948MTSN5rypskRWZb3sVH9KgBJTxJZ7p1wADelzbOklWvm052l0NuGBEGedeB+ga06wwrgHcc8XPsPA6YFGaT9lUIis4746hEXDAyGRbEtFcb5ajUQMqgk9IfZvI/zK6V97QDNhfZlwcehMw2jTcpYXkbvsMcTPRfYud7C5x5dJl2YzafuExxhtZ3FJGaWr+VkaOrC6Jkc/zCfnTa+9HMvJej6xhzLeOCmfMjfRax/hsrTqY0XnOD39GySXzQEbrLZw/efH0v71Rfc9///vP+BvxWuawAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAYwEAAAAAAAA=eF4zuf+85EHNbVv3S3lfDOUV7CV6qwUzFE/b+a2KMm/d8MiuSeLWjfZFn+yW6O9aaP/sv12XIPOShDsc9l/E5Z7xlwnZp36fcE6lT9J+0s7jLVui5e2DCo8tKz8kb/9BdMdRCW4F+wTej9qu2gr2Qd82dinZK9gXmcTfPuSuYJ+Tfbl9C5C+lLQjRNFJwZ5t74JARSsFe5dTj39yGSvYq+ZnPhfRVbC/cYL3ZZWGgv2k2BvT1FQV7PlTGS/eU1Kwt7z79U6iooK9sHjt82IFBfuIbjaFp0D379ykN2sSkN4WXt6bAqQ1nlzb6A2k1fJcN9oB6RCFPeIWQPrKz6xrJkC6/nKfmzGQdvHb0G0EpNfx95iB6AKRjQIgWniCAwOInibg9hMUPoulEr6BaKcKo68g+lPALnC4Zed2g+lpNZVg+uDeIghtWACmo73zwbTND0g437gGod0ujdJDgQYAlLY8NQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAcAEAAAAAAAA=eF5bF557837NbVv3S3lfDOUV7Msm3GnPULliF2fy6ZfOl9d262ZMmcus+8duWt8k9gdlHPZy34KDlRqF7Y+s/Hk86ZWs/QHH1zPO7FCxV49cbm1orWU/T/zmglfM6vYB9ROU9s9QtX/jpdMpH6ZiP0/+c0Sgm7K9E+NynsOZSvZBe6clX9+jaH/r+VPjRZaK9grdS1ybbyrY9zvly+6YpmD/6IX+rKWZCvbOCZa7HHwU7E893RC32VLBfs2mpq3Regr2df+c5i9SV7A/vmHGsSPKCvafAvd+mK2oYB9TMPdOvoKC/RublvyLQP+ExumzNgDpLVcynMOBNMvcKfHOQFrld8FzSyA9pf5wgymQ3qZm3GgMpE/0K80zAtImpd3WILpjyRJBEH0m15gBRM+4IPoTFE5WErbfQPQHXvmvILrx4gZw+LVJtoPpsLnlYHrHw0IwffVpPpiepQOhf92HhHfVTQjtdmmUHsw0AEjaRLQ=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQIAAAAAAAA=eF5TWP7xkm9Sgr3gK93GmdMLbUtMlcza9RPsLyz9fsFhXbw9S9Kea8/mxtkv7hIsjpSPtbf/xHR0oW60/Zd+yx1aFyLs/QJiFQykw+yfLfGcMFM32D4s+OrE1ToB9h0Otae1a73s73O5VvtzudrnmbUvnm/sYF/H6nDFV8/C/lvSTF6vGkP7p8WrjHMbNewdKm7ffLFEwX7nuyWGb16L2tfcM9DPYeSxV8x6+9MrhtH+0IU30YrPvtjNEC/2zyp8YZfl4/j74qnbdgrsO1/27T1nd0152tK2ngN2UuyC7zWiN9rtO8eeJLNvoZ2oPmfF1w0T7fYULW6da95oN9HUcG9tbIFd3atz+7akx9kpvz35L2a+t51cQ4LF8T4LO6c97DEliap2Pk//qvnYCdkVJlnx6HT/s521OPbESYWXtmGbZ/+3Sb5ie4F1j++9wgO24WsctV48XGVr9Vfr7mGb6bZMVhw+n9632ZZLuz8J5qyxjW3Sq5mQXGrbJPvt3uTPRbYauhe3RAgV2bpYSVm4Hyq0zVIUarBeVmh7oNyvvmdOoW1SkU66w8xC2x2/vW+rzCi09TsccusYMF4OxaaJrgDSDDkfleYB6SvBM7/OAtIWmTe+gOLt1PptS0C0n/jvbhBddjy3BUS3b1VtAtFffpaB49fO0RlMxwmZgGnOlfpg+lKcHphewwmh936GpAdYuhjpNAAcQWo+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAdgEAAAAAAAA=eF5TV1l75UN5pN1Dy86ZU548sF36pO7ai1hFOzPXGYUzMyTsyvl9FvoycNtpLClzFXjMYPdH64/ePqbvtsckH4gcLPtgK5x7lyHd4KVtW+R0FU3Tp7a//FqMsrqe2Ba02M3yvfzYduUEaceHOo9t6xNPXrkw95HtfatOQ3GNR7bmCscfyJ1+aNuxafnp1paHttMmM10/EfDQVsFo5YZA7Ye2Mj9D1JMFH9pm3vZ4Icbw0NbAWsXp+5cHtg+qKo353z2w/cBZWfry5QPbT7lle+qfP7CVfyDBpPzsga1dgPrO5KcPbN9F+q74C/LPvaQFJ4D0VvXGo2uBdJVwaeMCIJ30c7/0LCA9+7GuxHQgnVF5astUIP3JZKkIiPav+X8WFB4/LpSvB9FNFp2LQPS1uZpzQbTfqR+zQHRBqgSYXiR4ABx+Kt/ngukVfBPB9BnVHjAdFd0Fpg8ch4SzSRE0vFMgdGUOhOYxgtAPLEfpwUQDAKZfyak=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQIAAAAAAAA=eF7buerjJd+kAHvBV7qNM6cX2op1L278rBFgb7H/taFRp799beDsH5MC/ey/t63Ll53uY6+t9bTF2dvLPm4tf8yCRHf7Tze5pxyUc7H/ZiF2ybnLwX5Otvne/8dt7F2MUudGbDO332PM7vvoi5H9qYKFlQIJuvb3/t5d7MujZu+pdspInV3B/skX3/LsSWL2THnHnnue4bOfwbxuuXksi33ZxZ6Fz2R+2U2bYV4pY/fBbpbe+fchcx/bCRS4PDrLeN3uz1yxdQutTtlx5GS9kBfda2cyvXetbdJ6u54dS2c+r11gZ7TiRVXUkwl2h54crl5zv8EugZfZTLS4wO5NxcmZykHxdqFV66ftVPa1+1WjE3u+ycpub/Wrk7Gz1O30bnx2qJoiYnfgenmyx3RGu4jezDeNbW9tkzZci/VJu2GrND/JXf/PYdt/WTZSfpUbbLle+QRke8+x3fDts8hvnm7b7T6XTvr51dsWeWpKia4ss41xMglckF9sW7NQKGy7Q5Ft0kvp+96XC229vnXtiFtTaHvYgOHQznmFtmeeMj1nmlVom/9xxpb0GYW2Saybau8C4+NZlfGS9UB6ZobAggVAuqBy0ZHZQPrqG2fzWUBapPLQTlC8CT2bOAlEL7le3gaiTdOONoHorX7LwfH6fVsgmP4RagGmp740ANON2/XAdIwBhF75BpIOYOlhlIbQACSKcgk=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYQAAAAAAAAA=eF5jYCAPaC80OeK1hdPetE2pY+tTDfsKxlmT79zTsjdP0tzczq9tP01YJeOuuLb9uv7K+mdS2vZur335SmS17T28lqy5Kq9tfybr9MdWRW17LbNnpUdG6VF6kNIAOuscAQ==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYQAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNs/zYuw8v5F6+9mb23g+TKk3a7916/eb/mtu0oPUoPJxoA7QUZSQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_84_t_8400.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..ae36ece61de78f3b6c874b66bbc9310f9ef1bad2 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_84_t_8400.000000.vtu @@ -0,0 +1,41 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0.000207" offset="0" /> + <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10" RangeMax="8.3017001011e-05" offset="336" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="740" /> + <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.1401951424" RangeMax="10.205405225" offset="832" /> + <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="2460" /> + <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0" RangeMax="0" offset="2532" /> + </FieldData> + <Piece NumberOfPoints="101" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0300404327e-10" RangeMax="0.00012327665198" offset="2604" /> + <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000006e-10" RangeMax="0.00022199366181" offset="3320" /> + <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12" RangeMax="0.002" offset="4072" /> + <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10" RangeMax="9.4575206287e-08" offset="5104" /> + <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12" RangeMax="0.001" offset="5864" /> + <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="6892" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993" RangeMax="100000" offset="7396" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0" RangeMax="0.000207" offset="8472" /> + <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10" RangeMax="8.112667361e-05" offset="8684" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="8928" /> + <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06" RangeMax="2.9976852001e-06" offset="8992" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.5" offset="9484" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="10412" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="10712" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="11024" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA2QAAAAAAAAA=eF5jYBhe4OeWHquHH2TtYfysW9NeH2jUsl+44nf13xh1++u131cv4dW2Z5UwTLn7Ust+27rvdxJlte3fP1beNVlK275V1sH7BZDfIhPjdwBIq53wUsqQ07bf8G5HrA2Q1rzvZngZSFfaz+vZBKQFvnxUNpPXtr+9SFZTEkgfz0jx7ALS7OvZ2guBtP+Te2duAukY52O7DwDp7ivpuxwUtO3lBev3sQFp5pk9UzgVte1rX/69sgLIv/nV/NkuIL+r6ZhwCZDWMntWemSUHqVH6VF6ENIASKQUUw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADgEAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNvvOfJTQXu7iH2x0hUFrv3C9jeVYxaXXhex59qt6161Vtg+NsaoQ3KeiH00e8j+ifeF7flyZzN4W4jYZ24xXnkoVcS+9XHQg6QNIvbz49wV2eRF7e+98Mzu/y9in9ARd0e4U9T+8oS2mEuBTPYhFSvMdQ+L2u/ee/3m/Zrbtoed4h5e4HxiB+OP0qP0KD1Kj9KU0QBPNx81AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAogQAAAAAAAA=eF7tk/03lGkYx0dSKi+NmTO0JZcxm8pbKJwme65qW28TNh1EXja9mDYppTpJ2+6cHUqoRdvQxsqGLClOsS0eWS9pvUyqaS0RSxQhUlnb7vXMb/vDntMfsD99zvf73Pf3uu7rvp+dp8U6+eZcBnKCHXvHdBnXgvEEnQQD5nneoc90q7nMRLRW5OgbM5zk5HYtl4pQOfBkf/xqMzwzPPQqktadftHhL9XkMe8CF/aULDbDpFCVLUiFuEhpkiG8aoLZI6IfS8dM8aBFf2empxC5UtVQAU+Ir96EZPlfNMUJxrkqZpUBM2iYzXN5Auh6IUca2cRlcpqT3g6uMMXSPe5DZYY8Rj+10js5mc9si540DRgCfGQyM6BAIcCU884Zjc2AuZzdHsXdPKbZ0jf68lE+s4efF1/iA3g+7sTDnUrA73M3jAh/BarvfXzoIWCQPH9QNsxlHO4XKQrvAc67rxwSfAkoP2Ynk8gBly61+yQoArBULDO2J3bthcyzVwDHjte9cP8OsEyZF7S1D5Bnu1r1lrTSZrOJpQKwKGfrrKt9BsyyXfLwQhmt3zxcKfAENKt1uCOy5DFVwbHt9TmAukV8PdsTgD/NeFnNTQH0N+6dOpkK6KVY2R6UBejiMN9vJdWTXYvqH4wD7NObXRaaDhhS4vBachEwY+6c6pt5gGG3lhkGRgO6HZ5kzoUANl/W1OFmAmbKl2jaUn3zk137Nv4AWNPkXD1N/ojMRtZQBBiV1F15sQBQk/9QHHoWcNb2CxPCTYBWFr1XttwErNKuruFQ/kHxvFMRl2h+YUY+NtcB0/haf3ESARe5Wq6rvQ2otbOb61MOmBCauMclG7DWI8hRXgzY0+hvf6SM+tRb9bXJL4B3F8jfxhBnVYjv8uoAYxo3Bd+7Buj33JozTTkHKhhHHerHIbr8U6dSwPlla8ULbgAqtrw7F0s5gi6vQq8qQEeXFi1bmsuSAw96lhfSnGrSt2fdAnQ/McPIvhbQ+YFe+CTl2xtbB89tBDQyOlgsaqBziIpUHhWAHqun0vj3ab+b9OmH9TSvYw3ftt4FHHVZ6baKfGXgF9sSqc+guGmJgt5JmufESIeK7rGku283vaMlAzeGk4gcv9HacPr+s8QqbEUbYOrIAcNF5EujDR7btQIuYIyySojl/c86Wh4Ahr6ui/NvofzpQUeNR3Qvzw2aWmlf1Prjm15S/smitsat5O9y1k6r76C51c/0LfgNcFowOr62HXDHmgBVAfkfTJRm7egGPOoU155MOkJyydqc/ptlxhGSli5A65S93jWkfw9LvprfA2ibVgGBxDlTX7WVk79Pf+b6XX8AzhBcdzMl6inSJcH0jo1vjwsTSBcm6g8/7geMXzzWBsRTL9aWjg7Q+eo2W6Y+BfzIy8ruFWm/hv0548Q1ZgKbSWJ6tryT9V0v533M6mSujzvLv0Wx5iw7ZvuKWW5wmDJguXhUYyFLp2f5Wiwt+hu0WR4NmOSwTArz1WD5+eFDam1tte4dmz98+sifLLvuVKt1p+jINEtVZZPa/yZXV627YyLUvFeRrabnmY1qajHZ//L/S//P9+M/L/kCNQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA+AEAAAAAAAA=eF77EaT9yDngjq37pbwvhvIK9he4Fd4e/TbdziN/w7ffvzbY+f1+wMO25aDd7i8Z9x9JXLBj+OB93uHDLbtLf77/kXV4atdiEtRxnvmD3aSK2g0THL7bXWv3vFYUwWD/zVu093gQm31G6qKoW0d47btSy7nWbxK212HgfKejLWl/TZzl6bmDsvYFIWn/+oXl7PkkO3f05srZPwqxUMu7IGevkequf1ZH3l6y2OP+/ip5e5nFCue7d8nbW03zmvn3jby9xlkf7SWcCvYGk/+Ulosr2B/TaNh1UEHB/rD4ruzXqgr2RSt+c35TB/rn+OSEKg0F+9frds3+A+Qf+sfY+FFNwf5ZJNfENUB1J9nDRFNUFOz7eH5dNFdWsM99usPCXEnBfs0904Npigr215by6h8Bmat1Z68nkC6JqPT7AAynrO7swxuA9C077gMtQPrSkY5faUB6W9kfj2Ag7WTzu90NSN/TuZdvB6StmeTSLIF0X6BlkBmQzl3fVWkCpDtMnyYZA+lVdRkHjYD0hrXRqSB6zcRdhiD6g52lKIi+dnknK4g258r9C4oniW3cP0H0rNgj30B0nd3MryCa6xkjmM5I2AaOT23tiWA6Q7YeTE8qLAPT88KKwPSc1AIwvaQ9H0yXK0PoVZ8h6eHGNQjtdmlk0wC5Q0Q9AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEQIAAAAAAAA=eF7b9kLi1v2a27bul/K+GMor2Kud4BJTsFxsZ7G7wF8jdLfdR/Y55+qWnrG7ta/F7pHNLbuJW6JeKGg+s0tZec7RcP1HO9er1ctU2H/bTXidVhv8idl+UoDNXYYpPPY+Ex9aeLwTtp/OsOGsgLO0/YSzvp8b9yjZsxWml+yZrWFvNvsFx30JXXuF07anvlZo2U/1UY+fZqdpvyOpfic3q4b9h2mx5VF31exPTea7MO20qv0DlX0smy+r2N+ZV6U447uyfVBk98S75sr2zTzTbf5PVrL/cFzjXBWXkv2UySf3b5qhaN+lz8JmZqNob33upDTrZwX7BZvNRBV2KdgvdT6wdlufgv1sEyMhozwF+yKDZ//dwhTsU2qC6v+7KNgfKvbi2GOhYH9B9+MEPQMF+2XWbacDtRTsz/3SrIlTU7Df4TEp/oCygr3D26bl3EoK9nr3PFd+VlCwN3kXzuYMpHeslI+6CgzHuFM+gZOANM+P8J+ZQPrGshP8QUC6OXuupAuQbshvFLQB0v8rbzebA2mn19U/TIB0POOCicZAOkZj9TkjIL1/h0kaiJZi/6sHoldUGgiBaIctscwgWubw1d+geDu3ke8HiFbdqv8NROfFu34F0btUr4DjlU1lHpj+vaAFTGccrgDThRbFYHryoQIwzbEyH0xzakDoVZ8h6WLDAwi9+DyEdrs0smgAkdNBSA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA5QIAAAAAAAA=eF6d0vkzlGEcAPCYlFXOwmZWI0capA1J6Xm+E2qyjtlES2z7JoTOt2O0NENIkhzZeLENRYQy05rt2A7KoDCymNagoQOFab0diqZjd03/QD99/oHPmXq6JyCSAOOJtWeLi0gUIWMtM+UTIPf4UnhpFwGyu1cM7nkTwDae1LdwJCBpW83FV4sIoF67lmdWCyBnQjfM31IAxOI9ksHYvbD8ZwfD7BwfFpiKNiQeiQDr9beFMptw4NtnL3asCgMfc8OFP2Z5sAU/7zRbvRuo32UhStdgsGoNd25xDoL0pUNcpTUXDuvTBcpN/sAJiDYR7twBbpnahiHXfOC94kZc4OatMPU2o03O3QK3tLMucEbdofnx7JNj7i5gNKolSEpxAtlYpW+j0g5sh6X0plIrSE2T243LmOB9nGPcwjIB641umLlCD/Yli3lrkrUBCY3Mz3fM4m5LJuu6hMbdzLqfnaPjuPhmm03ss2Ec2j/W8KGlD9sNZnyvaWrH3R7R0zDThGNoXUmisxTzyg2P5enXYovK9r74/DI81ZRjYdJ/GXspCwRixww8cNslWCwV4pMxR6V6UYexX6SXZUYegfc65E+OxAVhL6oqtYHtg2m56EWoYgM+YB3oJOHa46Xf48N18pl4+qPVQTqHgetF+yvyfOaQoufjHa07E4jDU9QMDQwgosObVdPXjiKHXiRmtshQ16O0lclztehMfO/TdQwx8vf7XFhnmotm3jQb+K5LQ3xGH/XNIQnxisa7Rr6eQl6l0izf3BMoStgz6nn6OEr4c0v7wRyJQqrv2759RqLyXooIrCURM7YLlZSRiGpdgn+VkMhELDikU0wiTilVxaZI9E5+ql6hemREZikkKv3DPj2sUEmvf0ldVenOTrcqVWnAiLQtUenZ29ikfveEKytW+3m5KEstK6UxXS09dS5VbQhRr/npksjXmM0HjQmebhpFq9gatzc4a5w2ndd1ev71v9//61++QXKoAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFwIAAAAAAAA=eF4zXnxqvkZypd1Dy86ZU548sGXjPppy9FSMnUV6nN8qVk+7D24qsxNPWdoJnVjkplSka7dt7yW/YiklOxtG/z9bp4rbrT2ZWLdHRsAuTeBm6Ys3bHZ3fm69r/KMwW4Hq7vkjm0/badG7yniFPxiKyH5cmvA5ve2853nzH77+qWtSjVzZciMZ7avXhxNuyj/zPayhI4aQ99TWx655RN0vz+x3TLb4F1G6hPbE+nLF4rfe2wbZTxLID3psW3aN8uTWp8f2U7Tk+K6MuGRbecBM/1c60e2t0o2vlz96aHtMvvVvA7bHtpu4nfZI9j60FYrsiYyLPah7cfMr/EvbB/aZu5W7e9UfWj76tir/czCD21NDrR8NmN9aHtg+nt/pd8PbJediw5/+fmBLdf7/rSr7x7Y1ryyUgl5/cB2l9utq59fPLDtWyI3Oe75A9u3zlLqoc8e2IotCTRc9fSBrcZ12zu2QPrjiXe+v4Dh6KQ/6eoFIP3j0YQj24H0grvJN1YA6av6n8QXAGmGbiPO2UA6/NRe9RlAmuffys5pQHrf34wlU4H0QT5rdRC9RP3cY1C8PFD7uR9ET3DVWwui74mVLAbRa6yr54HoGJ2fs0G0iPbOWSDav0MaTNd9OweOVxaJVWB607wZYHpO2AQwPXNWD5j2OdYFpl+wQ+hfcyDpgaMKQi9NQaUrcyA0jxGEfmA5vGkAIEXAvA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA4AIAAAAAAAA=eF5jW//xkm9SgL3gK93GmdMLbSOcPiToxgTYe7Eu5f8eEGA/i217iJ1dgP25SmuBbwoB9u/+1Im/fOVv3/u6rJ8/398+LfP1BsOjfvYGvq0Mux/72jOeX64Ze9DHfglfxfK7od72Pg8Psi6b7mn/4rFiTkKuu7204fmWvB8u9knHPJ5LzHCyT4j59Ug5wtE+Q6d99qJIe/tpPef9Sr5b21/1SF1SOs3Cniupc1Gsl6n9hZ4zDXJqRvbe/W71zcV69rOmqSbNUNK0f2p34/ChDBX7K1ec12z3UbDf4HRzx5tZkvZl6jOC7Y8L2395vumXBw+f/e8nQi6RRWz2rC8nJG2oZbD36uy0fXPlu92lX/u5BT98sONgfB3Es/653X6DIpNQrwd2Yh526pd5rtmJbdnrzRh/1q5Wa2XaTofDdkopM74vvLHDbs3m6Y/mTFxv16uysmfS/sV2L5yKWapDZ9iJqi5fq9XZa7ek96blxxWNdpPa18dEni+xu7H0i4OwdoYdg7hgguPqaLtt0uefhlj72x37KrTtZaKj3QbOB43bRI3tOCZaXtFdo2LH92PvDWZJMbs5NoHctYHsdu9W2JYs9v1hO+3p1Z8fOF/a9kxlUP7QedN2xqLGrid3TtoumbF65Uq1XbbB8xZd0N24yrb8KKNkJP8c2yX3ziX+T+q3PWCb6Nhd0myrJ//X1rez2vbgSTbGXbpltlqnF1gorS+2ZauTOm7UWWT7qPfs12zmItvQK23TTY8X2ppwXxNOX1Noa6MWP3nGgkLbg7u/JxXPLrQV0foYaD2z0NZjhvBVjxmFthWp1rGPgOmn5bZd3XYgXVTsvnspkH7F31c4D0gnmNhXzwbSKVwvPWcB6WsHxS+A0tu6+nfzQTRHHn8viL7HuLsVRFvVvGgC0WtnXgGny20OOWBahtEVTE9JMAPTiv8MwLT6Hz0wfcUTQnczQ+i2Z5B0DUvf5NIAwqpuAg==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfQAAAAAAAAA=eF5jYKAP+Lmlx+rhB177NseTxvHvNezfeYlwHPytZR90svf0L2ltexbZcz5XZLXts28zOgTJadsH9n+6dwhIl51uX6Yur23/vNv0RS2QvjY5yOUskL5aVLxHWUHb3sHxqMlNIG1k879muqK2vZbZs9Ijo/QoTSUaALryDGs=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAlAAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2+w68ThV7w2e/Xv/c/HucV+x2771+837NbdtRepQezDQAd5gPRQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt + </AppendedData> +</VTKFile>