diff --git a/web/content/docs/benchmarks/creepbgra/CreepBRGa.md b/web/content/docs/benchmarks/creepbgra/CreepBRGa.md
index e37a04734bd2a67c6816a496bc5e6c5f1b591841..570caa189a66a3460582696b9d2ba94a0a05a436 100644
--- a/web/content/docs/benchmarks/creepbgra/CreepBRGa.md
+++ b/web/content/docs/benchmarks/creepbgra/CreepBRGa.md
@@ -98,7 +98,8 @@ with $\alpha_T$ the linear thermal expansion.
 
  To solve the stress, the
 Newton-Raphson is applied to .
- Let $$\begin{gathered}
+ Let
+ $$\begin{gathered}
  \mathbf{r}= { \mathbf \sigma}^{n+1} -
  { \mathbf \sigma}^{n} - \mathbf{C} (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I)
 + 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
diff --git a/web/content/docs/benchmarks/elliptic/drainage_diffusion.md b/web/content/docs/benchmarks/elliptic/drainage_diffusion.md
index 9f0f031b9bf02f39815d115adce90cbcfd5d5d35..4695fbc4d5a7c7edbd003c356864ff76a51a70bd 100644
--- a/web/content/docs/benchmarks/elliptic/drainage_diffusion.md
+++ b/web/content/docs/benchmarks/elliptic/drainage_diffusion.md
@@ -6,7 +6,7 @@ project = "/Elliptic/cube_1x1x1_SteadyStateDiffusion/drainage_excavation.prj"
 
 [menu]
   [menu.benchmarks]
-    parent = "liquid-flow"
+    parent = "elliptic"
 
 +++
 
diff --git a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.md b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.md
index 603b3f694094fcfaee8a519019e2b911f2db9edd..89856f1a105e9210bc94bc7e1f17e802284a782b 100644
--- a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.md
+++ b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet-volumetric-source-term.md
@@ -18,13 +18,13 @@ weight = 102
 We start with Poisson equation:
 $$
 \begin{equation}
-- k\; \Delta p = Q \quad \text{in }\Omega
+\- k\\; \Delta p = Q \quad \text{in }\Omega
 \end{equation}$$
 w.r.t boundary conditions
 $$
 \eqalign{
 p(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr
-k\;{\partial p(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
+k\\;{\partial p(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
 }$$
 
 where $p$ could be the pressure, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$.
@@ -36,7 +36,7 @@ $$
 \eqalign{
 p(x,y) = 1 &\quad \text{on } (x=0,y) \subset \Gamma_D,\cr
 p(x,y) = 0 &\quad \text{on } (x=1,y) \subset \Gamma_D,\cr
-k\;{\partial p(x,y) \over \partial n} = 0 &\quad \text{on }\Gamma_N.
+k\\;{\partial p(x,y) \over \partial n} = 0 &\quad \text{on }\Gamma_N.
 }$$
 and the source term is $Q=1$.
 
diff --git a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet.md b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet.md
index 6f749ac875a3344efed0307f76affdab9a6d28d4..bba369872603937e123d206f4a360d61b8abf7ee 100644
--- a/web/content/docs/benchmarks/elliptic/elliptic-dirichlet.md
+++ b/web/content/docs/benchmarks/elliptic/elliptic-dirichlet.md
@@ -24,13 +24,13 @@ parent = "elliptic"
 We start with simple linear homogeneous elliptic problem:
 $$
 \begin{equation}
-k\; \Delta h = 0 \quad \text{in }\Omega
+k\\; \Delta h = 0 \quad \text{in }\Omega
 \end{equation}$$
 w.r.t boundary conditions
 $$
 \eqalign{
 h(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr
-k\;{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
+k\\;{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
 }$$
 
 where $h$ could be hydraulic head, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$.
@@ -42,7 +42,7 @@ $$
 \eqalign{
 h(x,y) = 1 &\quad \text{on } (x=0,y) \subset \Gamma_D,\cr
 h(x,y) = -1 &\quad \text{on } (x=1,y) \subset \Gamma_D,\cr
-k\;{\partial h(x,y) \over \partial n} = 0 &\quad \text{on }\Gamma_N.
+k\\;{\partial h(x,y) \over \partial n} = 0 &\quad \text{on }\Gamma_N.
 }$$
 The solution of this problem is
 $$
diff --git a/web/content/docs/benchmarks/elliptic/elliptic-neumann.md b/web/content/docs/benchmarks/elliptic/elliptic-neumann.md
index cba6dc35986b7bc95acfc62a4d275d8a7219735c..0d4a4d9ece83f2b5d99b66880100a47094a198a2 100644
--- a/web/content/docs/benchmarks/elliptic/elliptic-neumann.md
+++ b/web/content/docs/benchmarks/elliptic/elliptic-neumann.md
@@ -15,13 +15,13 @@ weight = 103
 We start with simple linear homogeneous elliptic problem:
 $$
 \begin{equation}
-k\; \Delta h = 0 \quad \text{in }\Omega
+k\\; \Delta h = 0 \quad \text{in }\Omega
 \end{equation}$$
 w.r.t boundary conditions
 $$
 \eqalign{
 h(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr
-k{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
+k\\;{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
 }$$
 where $h$ could be hydraulic head, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$.
 
@@ -33,8 +33,8 @@ $$
 \eqalign{
 h(x,y) = 1 &\quad \text{on } (x=0,y) \subset \Gamma_D,\cr
 h(x,y) = 1 &\quad \text{on } (x,y=0) \subset \Gamma_D,\cr
-k {\partial h(x,y) \over \partial n} = 1 &\quad \text{on } (x=1,y) \subset \Gamma_N,\cr
-k {\partial h(x,y) \over \partial n} = 0 &\quad \text{on } (x,y=1) \subset \Gamma_N.
+k\\;{\partial h(x,y) \over \partial n} = 1 &\quad \text{on } (x=1,y) \subset \Gamma_N,\cr
+k\\;{\partial h(x,y) \over \partial n} = 0 &\quad \text{on } (x,y=1) \subset \Gamma_N.
 }$$
 
 The solution of this problem is
diff --git a/web/content/docs/benchmarks/elliptic/elliptic-pde-with-dirichlet-and-nodal-source-term.md b/web/content/docs/benchmarks/elliptic/elliptic-pde-with-dirichlet-and-nodal-source-term.md
index b0a81c5803d8a843af273eddcb65944eea73a9f1..95c0c939f6bb4236a33c6d0c60cc4cb84b85ffc4 100644
--- a/web/content/docs/benchmarks/elliptic/elliptic-pde-with-dirichlet-and-nodal-source-term.md
+++ b/web/content/docs/benchmarks/elliptic/elliptic-pde-with-dirichlet-and-nodal-source-term.md
@@ -18,13 +18,13 @@ weight = 104
 We solve the Poisson equation:
 $$
 \begin{equation}
-k\; \Delta h = f(x) \quad \text{in }\Omega
+k\\;\Delta h = f(x) \quad \text{in }\Omega
 \end{equation}$$
 w.r.t boundary conditions
 $$
 \eqalign{
 h(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr
-k\;{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
+k\\;{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
 }$$
 
 where $h$ could be hydraulic head, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$.
diff --git a/web/content/docs/benchmarks/elliptic/elliptic-robin.md b/web/content/docs/benchmarks/elliptic/elliptic-robin.md
index 9f3399a7d611d3dc819b2c35a0b05b4e7902ab41..531c7cd9b4d386672ddf8a1e2788a2b383798482 100644
--- a/web/content/docs/benchmarks/elliptic/elliptic-robin.md
+++ b/web/content/docs/benchmarks/elliptic/elliptic-robin.md
@@ -18,7 +18,7 @@ weight = 104
 We start with simple linear homogeneous elliptic problem:
 $$
 \begin{equation*}
-k\; \Delta h = 0 \quad \text{in }\Omega
+k\\;\Delta h = 0 \quad \text{in }\Omega
 \end{equation*}$$
 w.r.t boundary conditions
 $$
diff --git a/web/content/docs/benchmarks/elliptic/poisson_equation.md b/web/content/docs/benchmarks/elliptic/poisson_equation.md
index bac4ee84302dcd660255e12d69363edc983e8b3f..dfa4fc2eac62730fc8f4698648d7f7a9f0999e1a 100644
--- a/web/content/docs/benchmarks/elliptic/poisson_equation.md
+++ b/web/content/docs/benchmarks/elliptic/poisson_equation.md
@@ -18,13 +18,13 @@ weight = 102
 The Poisson equation is:
 $$
 \begin{equation}
-- k\; \Delta p = Q \quad \text{in }\Omega
+\- k\\;\Delta p = Q \quad \text{in }\Omega
 \end{equation}$$
 w.r.t boundary conditions
 $$
 \eqalign{
 p(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr
-k\;{\partial p(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
+k\\;{\partial p(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
 }$$
 
 where $p$ could be the pressure, the subscripts $D$ and $N$ denote the
diff --git a/web/content/docs/benchmarks/liquid-flow/drainage_Liquid_Flow.md b/web/content/docs/benchmarks/liquid-flow/drainage_Liquid_Flow.md
index f602a40da3957211a584fedcbb65c942cc8f22ca..31f7965a09b5b434c0183d61f7697a55d143da49 100644
--- a/web/content/docs/benchmarks/liquid-flow/drainage_Liquid_Flow.md
+++ b/web/content/docs/benchmarks/liquid-flow/drainage_Liquid_Flow.md
@@ -1,7 +1,7 @@
 +++
 author = "Reza Taherdangkoo, Thomas Nagel, Christoph Butscher"
 date = "2020.11.01T14:39:39+01:00"
-title = "Drainage Excavation"
+title = "Drainage Liquid Flow"
 project = "/Parabolic/LiquidFlow/DrainageExcavation/drainage_LiquidFlow.prj"
 
 [menu]
diff --git a/web/content/docs/benchmarks/liquid-flow/liquid-flow-theis-problem.md b/web/content/docs/benchmarks/liquid-flow/liquid-flow-theis-problem.md
index a4b08929197471346652cb11f7212bdd035c1a4a..9b578cd0c92dcf3826a9701abbbe62febecd40c2 100644
--- a/web/content/docs/benchmarks/liquid-flow/liquid-flow-theis-problem.md
+++ b/web/content/docs/benchmarks/liquid-flow/liquid-flow-theis-problem.md
@@ -81,8 +81,8 @@ The figure shows that there is a good match between the analytical solution and
 <td style="text-align: left;">Solution (<span class="math inline"><em>h</em><sub><em>a</em></sub></span>)</td>
 <td style="text-align: left;">(<span class="math inline"><em>h</em><sub>5</sub></span>)</td>
 <td style="text-align: left;">(<span class="math inline"><em>h</em><sub>6</sub></span>)</td>
-<td style="text-align: left;">(<span class="math inline">$$|\frac{h_5-h_a}{h_a}|$$</span>)</td>
-<td style="text-align: left;">(<span class="math inline">$$|\frac{h_6-h_a}{h_a}|$$</span>)</td>
+<td style="text-align: left;">(<span class="math inline">$|\frac{h_5-h_a}{h_a}|$</span>)</td>
+<td style="text-align: left;">(<span class="math inline">$|\frac{h_6-h_a}{h_a}|$</span>)</td>
 </tr>
 <tr class="odd">
 <td style="text-align: left;">0</td>
diff --git a/web/content/docs/benchmarks/liquid-flow/time-dependent-heterogeneous-source-term-and-boundary-conditions.md b/web/content/docs/benchmarks/liquid-flow/time-dependent-heterogeneous-source-term-and-boundary-conditions.md
index 5e3456313d7aed8676582f15acda0ca2912f363c..18fd18c66e34fd2658f626e830dc2cb06e2a3408 100644
--- a/web/content/docs/benchmarks/liquid-flow/time-dependent-heterogeneous-source-term-and-boundary-conditions.md
+++ b/web/content/docs/benchmarks/liquid-flow/time-dependent-heterogeneous-source-term-and-boundary-conditions.md
@@ -55,14 +55,14 @@ This simple example should demonstrate the use of the time depenendent
 heterogeneous parameter. We start with homogeneous parabolic problem:
 $$
 \begin{equation}
-s\; \frac{\partial p}{\partial t} + k\; \Delta p = q(t,x) \quad \text{in }\Omega
+s\\;\frac{\partial p}{\partial t} + k\; \Delta p = q(t,x) \quad \text{in }\Omega
 \end{equation}
 $$
 w.r.t boundary conditions
 $$
 \eqalign{
 p(t, x) = g_D(t, x) &\quad \text{on }\Gamma_D,\cr
-k\;{\partial p(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
+k\\;{\partial p(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
 }$$
 
 The example the domain $\Omega = [0,1]^2$ is a square. On the left
diff --git a/web/content/docs/benchmarks/phase-field/phasefield.md b/web/content/docs/benchmarks/phase-field/phasefield.md
index 27fef57fa3ea6dd16ceddc16ab45235c461f10d0..7b98dcf33508f5245699738a10d8bcff195dee34 100644
--- a/web/content/docs/benchmarks/phase-field/phasefield.md
+++ b/web/content/docs/benchmarks/phase-field/phasefield.md
@@ -48,4 +48,3 @@ $$
 \begin{equation}
 I (\varepsilon, k) =  \int_0^1  \dfrac{1}{d (x)^2 + k} \mathrm{d}x
 \end{equation}
-$$
diff --git a/web/content/docs/benchmarks/reactive-transport/calcite.md b/web/content/docs/benchmarks/reactive-transport/calcite.md
index 1dc3befae607f9478bfb959e5c7e639d627a8a4b..27d1cf952653e0028663ba0a918737b41786b8dc 100644
--- a/web/content/docs/benchmarks/reactive-transport/calcite.md
+++ b/web/content/docs/benchmarks/reactive-transport/calcite.md
@@ -43,11 +43,13 @@ $$
 \end{equation}
 $$
 with $C_i$ (mol m$^{-3}$) standing for the molar concentration of component $i$, $v$ (m s$^{-1}$) for the pore velocity in the fluid phase, $D_h$ (m$^2$ s$^{-1}$) for the dispersion tensor of component $i$, $Q_i$ (mol m$^{-3}$ s$^{-1}$) for a source/sink term, and $\Gamma_i$ (C$_1$ ...C$_m$) (mol m$^{-3}$ s$^{-1}$) being a source/sink term for component $i$ due to chemical reactions with $m$ other components. The Scheidegger dispersion tensor is implemented in two dimensions as
+
 $$
 \begin{equation}
 D_{kl} = \alpha_T |v| \delta_{kl} + \left( \alpha_L - \alpha_T \right) \frac{v_k v_l}{|v|} + D_e,
 \end{equation}
 $$
+
 where $\alpha_L$ (m) and $\alpha_T$ (m) are the longitudinal and transversal dispersion length, respectively. $\delta_{kl}$ (–) is the Kronecker symbol, $v_{k,l}$ (m s$^{-1}$) is the fluid pore velocity in direction $k$,$l$, and $D_e$ (m$^2$ s$^{-1}$) is the molecular diffusion coefficient.
 
 ## Model setup
diff --git a/web/content/docs/benchmarks/reactive-transport/wetland/Wetland.md b/web/content/docs/benchmarks/reactive-transport/wetland/Wetland.md
index 9fd478a748c6c70fdd52068eb431d4e036373d7b..dbbaf41da5eff49a5d945bd3400bda6914795888 100644
--- a/web/content/docs/benchmarks/reactive-transport/wetland/Wetland.md
+++ b/web/content/docs/benchmarks/reactive-transport/wetland/Wetland.md
@@ -50,14 +50,14 @@ Respective material properties, initial and boundary conditions are listed in Ta
 |:-------- | :---------- | :---- | :--- |
 | Influent & effluent zone |||
 | $\phi$   | Porosity    | 0.38  | - |
-| $\kappa$ | Permeability | 1.0e-7 | m^2^ |
+| $\kappa$ | Permeability | 1.0e-7 | $m^2$ |
 | $S$   | Storage | 0.0     | - |
-| $a_L$ | long. Dispersion length | 0.45   | m |
+| $a_L$ | long. Dispersion length | 0.45   | $m$ |
 | Treatment zone |||
 | $\phi$   | Porosity    | 0.38  | - |
-| $\kappa$ | Permeability | 1.0e-8 | m^2^ |
+| $\kappa$ | Permeability | 1.0e-8 | $m^2$ |
 | $S$   | Storage | 0.0     | - |
-| $a_L$ | long. Dispersion length | 0.40   | m |
+| $a_L$ | long. Dispersion length | 0.40   | $m$ |
 
 -----------------------------------------
 
@@ -67,7 +67,7 @@ Table 1: Media, material and component properties
 
 | Parameter | Description | Value | Unit |
 |:--------- | :---------- | :---- | :--- |
-| $p(t=0)$  | Initial pressure | 8829  | Pa |
+| $p(t=0)$  | Initial pressure | 8829  | $Pa$ |
 | $g_{N,in}^p$ | Water influx | 5.555e-3 | kg s^-1^ |
 | $g_{D,out}^p$ | Pressure at outlet | 8829 | Pa |
 | $c_{components}(t=0)$  | Initial component concentrations | 1.0e-4     | g kg^-1^~water~ |
diff --git a/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md b/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md
index 0c44e845856b8bb4be704c6e26835a3153308aad..cf1fd7bb4beac2c53bb2a34dde81c6bdd1a8f0d2 100644
--- a/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md
+++ b/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md
@@ -17,7 +17,7 @@ weight = 70
 ## Problem description
 
 The problem describes a heat source embedded in a fluid-saturated porous medium.
-The spherical symmetry is modeled using a 10 m x 10 m disc with a point heat source ($Q=150\; \mathrm{W}$) placed at one corner ($r=0$) and a curved boundary at $r=10\; \mathrm{m}$. Applying rotational axial symmetry at one of the linear boundaries, the model region transforms into a half-space configuration of the spherical symmetrical problem.
+The spherical symmetry is modeled using a 10 m x 10 m disc with a point heat source ($Q=150\\;\mathrm{W}$) placed at one corner ($r=0$) and a curved boundary at $r=10\\;\mathrm{m}$. Applying rotational axial symmetry at one of the linear boundaries, the model region transforms into a half-space configuration of the spherical symmetrical problem.
 The initial temperature and the pore pressure are 273.15 K and 0 Pa, respectively.
 The axis-normal displacements along the symmetry (inner) boundaries were set to zero, whereas the pore pressure, as well as the temperature, are set to their initial values along the outer (curved) boundary.
 The heat coming from the point source is propagated through the medium, causing the fluid and the solid to expand at different rates.
diff --git a/web/content/docs/devguide/documentation/introduction.md b/web/content/docs/devguide/documentation/introduction.md
index ca118ef3b239693593a507c68823bfbd251f3034..721e90bb8d55422dce585f080a34af7502e97331 100644
--- a/web/content/docs/devguide/documentation/introduction.md
+++ b/web/content/docs/devguide/documentation/introduction.md
@@ -112,7 +112,7 @@ Possible size values are `one-third`, `one-half` and `two-third`.
 
 #### Equations
 
-Equations can be set with typical LaTeX syntax by using [MathJax](https://www.mathjax.org/). Blocks are defined by `$$` at the beginning and `$$` at the end of the block. Inline math uses one `$` as the delimiter. For more usage instructions see the [MathJax LaTeX help](https://docs.mathjax.org/en/latest/input/tex/index.html).
+Equations can be set with typical LaTeX syntax by using [MathJax](https://www.mathjax.org/). Blocks are defined by `$$` at the beginning and `$$` at the end of the block or by simply using a LaTex environment like `\begin{equation}...\end{equation}`. Inline math uses one `$` as the delimiter. For more usage instructions see the [MathJax LaTeX help](https://docs.mathjax.org/en/latest/input/tex/index.html).
 
 #### Files and Downloads
 
diff --git a/web/content/docs/tools/getting-started/video-tutorial/index.md b/web/content/docs/tools/getting-started/video-tutorial/index.md
index 1d9ee59573d32289fc08e10b126349d431a036c9..e3cd07704a2865b87433f1fc17b6cdf1671b0f53 100644
--- a/web/content/docs/tools/getting-started/video-tutorial/index.md
+++ b/web/content/docs/tools/getting-started/video-tutorial/index.md
@@ -4,12 +4,6 @@ title = "Video Tutorial"
 author = "Dominik Kern"
 weight = 105
 
-[menu.docs]
-name = "Tools & Workflows"
-identifier = "tools"
-weight = 4
-post = "Helpful tools for pre- and postprocessing as well as complete model setup workflows."
-
 [menu.tools]
 parent = "getting-started"
 +++
diff --git a/web/layouts/partials/header.html b/web/layouts/partials/header.html
index 64729d173ed00fda4d414339371d3dc9f91bdccc..a889a1f09577dd4f05c8fdf74ee82e7e9d37779e 100644
--- a/web/layouts/partials/header.html
+++ b/web/layouts/partials/header.html
@@ -17,13 +17,19 @@
 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/slick-carousel@1.8.1/slick/slick-theme.css">
 <link href="/css/all.min.css" rel="stylesheet">
 
-<script type="text/x-mathjax-config">
-    MathJax.Hub.Config({
-      tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]},
-      TeX: { equationNumbers: { autoNumber: "AMS" } }
-    });
-  </script>
-<script async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-MML-AM_CHTML">
+<script>
+  MathJax = {
+    tex: {
+      inlineMath: [['$', '$'], ['\\(', '\\)']],
+      tags: "ams",
+      processEnvironments: true, // e.g. \begin{equation}...\end{equation}
+    },
+    svg: {
+      fontCache: 'global'
+    }
+  };
+</script>
+<script type="text/javascript" id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js">
 </script>
 <script src="https://cdn.jsdelivr.net/gh/alpinejs/alpine@v2.x.x/dist/alpine.min.js" defer></script>
 <script async defer data-domain="opengeosys.org" src="https://plausible.opengeosys.org/js/plausible.js"></script>