From bff0290de15f9cd9cfa5b3da28edf79cc24e1be4 Mon Sep 17 00:00:00 2001 From: Thomas Fischer <thomas.fischer@ufz.de> Date: Tue, 28 Aug 2012 15:18:27 +0200 Subject: [PATCH] changed implementation of class template GeoLib::Grid and added a specialization for pointer types --- GeoLib/Grid.h | 376 ++++++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 351 insertions(+), 25 deletions(-) diff --git a/GeoLib/Grid.h b/GeoLib/Grid.h index b5c5f0f7cbe..3936e982621 100644 --- a/GeoLib/Grid.h +++ b/GeoLib/Grid.h @@ -32,18 +32,19 @@ class Grid : public GeoLib::AABB public: /** * @brief The constructor of the grid object takes a vector of points or nodes. Furthermore the - * use can specify the *average* maximum number of points per grid cell. + * user can specify the *average* maximum number of points per grid cell. * * The number of grid cells are computed with the following formula * \f$\frac{n_{points}}{n_{cells}} \le n_{max\_per\_cell}\f$ * * In order to limit the memory wasting the maximum number of points per grid cell - * (in the average) should be a power of two. + * (in the average) should be a power of two (since std::vector objects resize itself + * with this step size). * * @param pnts (input) the points that are managed with the Grid * @param max_num_per_grid_cell (input) max number per grid cell in the average (default 512) */ - Grid(std::vector<POINT*> const& pnts, size_t max_num_per_grid_cell = 512); + Grid(std::vector<POINT> const& pnts, size_t max_num_per_grid_cell = 512); /** * This is the destructor of the class. It deletes the internal data structures *not* @@ -77,7 +78,7 @@ public: * @param pnts (output) vector of vectors of points within grid cells that intersects * the axis aligned cube */ - void getVecsOfGridCellsIntersectingCube(double const*const pnt, double half_len, std::vector<std::vector<POINT*> const*>& pnts) const; + void getVecsOfGridCellsIntersectingCube(double const*const pnt, double half_len, std::vector<std::vector<POINT> const*>& pnts) const; #ifndef NDEBUG /** @@ -136,15 +137,14 @@ private: std::vector<POINT*>* _grid_quad_to_node_map; }; - template <typename POINT> -Grid<POINT>::Grid(std::vector<POINT*> const& pnts, size_t max_num_per_grid_cell) : +Grid<POINT>::Grid(std::vector<POINT> const& pnts, size_t max_num_per_grid_cell) : GeoLib::AABB(), _grid_quad_to_node_map(NULL) { // compute axis aligned bounding box const size_t n_pnts(pnts.size()); for (size_t k(0); k < n_pnts; k++) { - this->update(pnts[k]->getCoords()); + this->update(pnts[k].getCoords()); } double delta[3] = { 0.0, 0.0, 0.0 }; @@ -215,7 +215,7 @@ Grid<POINT>::Grid(std::vector<POINT*> const& pnts, size_t max_num_per_grid_cell) // fill the grid vectors for (size_t l(0); l < n_pnts; l++) { - double const* const pnt(pnts[l]->getCoords()); + double const* const pnt(pnts[l].getCoords()); const size_t i(static_cast<size_t> ((pnt[0] - _min_pnt[0]) * _inverse_step_sizes[0])); const size_t j(static_cast<size_t> ((pnt[1] - _min_pnt[1]) * _inverse_step_sizes[1])); const size_t k(static_cast<size_t> ((pnt[2] - _min_pnt[2]) * _inverse_step_sizes[2])); @@ -224,7 +224,7 @@ Grid<POINT>::Grid(std::vector<POINT*> const& pnts, size_t max_num_per_grid_cell) std::cout << "error computing indices " << std::endl; } - _grid_quad_to_node_map[i + j * _n_steps[0] + k * n_plane].push_back(pnts[l]); + _grid_quad_to_node_map[i + j * _n_steps[0] + k * n_plane].push_back(&pnts[l]); } #ifndef NDEBUG @@ -309,30 +309,27 @@ POINT const* Grid<POINT>::getNearestPoint(double const*const pnt) const return nearest_pnt; } -template <typename POINT> -void Grid<POINT>::getVecsOfGridCellsIntersectingCube(double const*const pnt, double half_len, std::vector<std::vector<POINT*> const*>& pnts) const +template<typename POINT> +void Grid<POINT>::getVecsOfGridCellsIntersectingCube(double const* const pnt, double half_len, + std::vector<std::vector<POINT> const*>& pnts) const { - double tmp_pnt[3] = {pnt[0]-half_len, pnt[1]-half_len, pnt[2]-half_len}; // min + double tmp_pnt[3] = { pnt[0] - half_len, pnt[1] - half_len, pnt[2] - half_len }; // min size_t min_coords[3]; getGridCoords(tmp_pnt, min_coords); - tmp_pnt[0] = pnt[0]+half_len; - tmp_pnt[1] = pnt[1]+half_len; - tmp_pnt[2] = pnt[2]+half_len; + tmp_pnt[0] = pnt[0] + half_len; + tmp_pnt[1] = pnt[1] + half_len; + tmp_pnt[2] = pnt[2] + half_len; size_t max_coords[3]; getGridCoords(tmp_pnt, max_coords); size_t coords[3], steps0_x_steps1(_n_steps[0] * _n_steps[1]); - for (coords[0] = min_coords[0]; coords[0] < max_coords[0]+1; coords[0]++) { - for (coords[1] = min_coords[1]; coords[1] < max_coords[1]+1; coords[1]++) { - const size_t coords0_p_coords1_x_steps0 (coords[0] + coords[1] * _n_steps[0]); - for (coords[2] = min_coords[2]; coords[2] < max_coords[2]+1; coords[2]++) { - pnts.push_back (&(_grid_quad_to_node_map[coords0_p_coords1_x_steps0 + coords[2] * steps0_x_steps1])); -// // copy pnts -// const size_t n_pnts(_grid_quad_to_node_map[coords0_p_coords1_x_steps0 + coords[2] * steps0_x_steps1].size()); -// for (size_t k(0); k<n_pnts; k++) { -// pnts.push_back(_grid_quad_to_node_map[coords0_p_coords1_x_steps0 + coords[2] * steps0_x_steps1][k]); -// } + for (coords[0] = min_coords[0]; coords[0] < max_coords[0] + 1; coords[0]++) { + for (coords[1] = min_coords[1]; coords[1] < max_coords[1] + 1; coords[1]++) { + const size_t coords0_p_coords1_x_steps0(coords[0] + coords[1] * _n_steps[0]); + for (coords[2] = min_coords[2]; coords[2] < max_coords[2] + 1; coords[2]++) { + pnts.push_back(&(_grid_quad_to_node_map[coords0_p_coords1_x_steps0 + coords[2] + * steps0_x_steps1])); } } } @@ -471,6 +468,335 @@ void Grid<POINT>::getPointCellBorderDistances(double const*const pnt, double dis dists[2] = (_step_sizes[0] - dists[4]); // right } +/** + * this is a specialization of class template Grid for pointer types + */ +template <typename POINT> +class Grid<POINT*> : public GeoLib::AABB +{ +public: + Grid(std::vector<POINT> const& pnts, size_t max_num_per_grid_cell = 512) : + GeoLib::AABB(), _grid_quad_to_node_map(NULL) + { + // compute axis aligned bounding box + const size_t n_pnts(pnts.size()); + for (size_t k(0); k < n_pnts; k++) { + this->update(pnts[k]->getCoords()); + } + + double delta[3] = { 0.0, 0.0, 0.0 }; + for (size_t k(0); k < 3; k++) { + // make the bounding box a little bit bigger, + // such that the node with maximal coordinates fits into the grid + _max_pnt[k] *= (1.0 + 1e-6); + if (fabs(_max_pnt[k]) < std::numeric_limits<double>::epsilon()) { + _max_pnt[k] = (_max_pnt[k] - _min_pnt[k]) * (1.0 + 1e-6); + } + delta[k] = _max_pnt[k] - _min_pnt[k]; + } + + // *** condition: n_pnts / (_n_steps[0] * _n_steps[1] * _n_steps[2]) < max_num_per_grid_cell + // *** with _n_steps[1] = _n_steps[0] * delta[1]/delta[0], _n_steps[2] = _n_steps[0] * delta[2]/delta[0] + if (fabs(delta[1]) < std::numeric_limits<double>::epsilon() || + fabs(delta[2]) < std::numeric_limits<double>::epsilon()) { + // 1d case y = z = 0 + if (fabs(delta[1]) < std::numeric_limits<double>::epsilon() && + fabs(delta[2]) < std::numeric_limits<double>::epsilon()) { + _n_steps[0] = static_cast<size_t> (ceil(n_pnts / (double) max_num_per_grid_cell)); + _n_steps[1] = 1; + _n_steps[2] = 1; + } else { + // 1d case x = z = 0 + if (fabs(delta[0]) < std::numeric_limits<double>::epsilon() && + fabs(delta[2]) < std::numeric_limits<double>::epsilon()) { + _n_steps[0] = 1; + _n_steps[1] = static_cast<size_t> (ceil(n_pnts / (double) max_num_per_grid_cell)); + _n_steps[2] = 1; + } else { + // 1d case x = y = 0 + if (fabs(delta[0]) < std::numeric_limits<double>::epsilon() && fabs(delta[1]) + < std::numeric_limits<double>::epsilon()) { + _n_steps[0] = 1; + _n_steps[1] = 1; + _n_steps[2] = static_cast<size_t> (ceil(n_pnts / (double) max_num_per_grid_cell)); + } else { + // 2d case + if (fabs(delta[1]) < std::numeric_limits<double>::epsilon()) { + _n_steps[0] = static_cast<size_t> (ceil(sqrt(n_pnts * delta[0] / (max_num_per_grid_cell * delta[2])))); + _n_steps[1] = 1; + _n_steps[2] = static_cast<size_t> (ceil(_n_steps[0] * delta[2] / delta[0])); + } else { + _n_steps[0] = static_cast<size_t> (ceil(sqrt(n_pnts * delta[0] / (max_num_per_grid_cell * delta[1])))); + _n_steps[1] = static_cast<size_t> (ceil(_n_steps[0] * delta[1] / delta[0])); + _n_steps[2] = 1; + } + } + } + } + } else { + // 3d case + _n_steps[0] = static_cast<size_t> (ceil(pow(n_pnts * delta[0] * delta[0] + / (max_num_per_grid_cell * delta[1] * delta[2]), 1. / 3.))); + _n_steps[1] = static_cast<size_t> (ceil(_n_steps[0] * delta[1] / delta[0])); + _n_steps[2] = static_cast<size_t> (ceil(_n_steps[0] * delta[2] / delta[0])); + } + + const size_t n_plane(_n_steps[0] * _n_steps[1]); + _grid_quad_to_node_map = new std::vector<POINT>[n_plane * _n_steps[2]]; + + // some frequently used expressions to fill the grid vectors + for (size_t k(0); k < 3; k++) { + _step_sizes[k] = delta[k] / _n_steps[k]; + _inverse_step_sizes[k] = 1.0 / _step_sizes[k]; + } + + // fill the grid vectors + for (size_t l(0); l < n_pnts; l++) { + double const* const pnt(pnts[l]->getCoords()); + const size_t i(static_cast<size_t> ((pnt[0] - _min_pnt[0]) * _inverse_step_sizes[0])); + const size_t j(static_cast<size_t> ((pnt[1] - _min_pnt[1]) * _inverse_step_sizes[1])); + const size_t k(static_cast<size_t> ((pnt[2] - _min_pnt[2]) * _inverse_step_sizes[2])); + + if (i >= _n_steps[0] || j >= _n_steps[1] || k >= _n_steps[2]) { + std::cout << "error computing indices " << std::endl; + } + + _grid_quad_to_node_map[i + j * _n_steps[0] + k * n_plane].push_back(pnts[l]); + } + +#ifndef NDEBUG + size_t pnts_cnt(0); + for (size_t k(0); k < n_plane * _n_steps[2]; k++) + pnts_cnt += _grid_quad_to_node_map[k].size(); + + assert(n_pnts==pnts_cnt); +#endif + } + + /** + * This is the destructor of the class. It deletes the internal data structures *not* + * including the pointers to the points. + */ + virtual ~Grid() + { + delete [] _grid_quad_to_node_map; + } + + /** + * The method calculates the grid cell the given point is belonging to, i.e., + * the (internal) coordinates of the grid cell are computed. The method searches the actual + * grid cell and all its neighbors for the POINT object which has the smallest + * distance. A pointer to this object is returned. + * + * If there is not such a point, i.e., all the searched grid cells do not contain any + * POINT object a NULL pointer is returned. + * + * @param pnt a field that holds the coordinates of the point + * @return a point with the smallest distance within the grid cells that are outlined above or NULL + */ + POINT const* getNearestPoint(double const*const pnt) const + { + size_t coords[3]; + getGridCoords(pnt, coords); + + double sqr_min_dist (MathLib::sqrDist(&_min_pnt, &_max_pnt)); + POINT* nearest_pnt(NULL); + + double dists[6]; + getPointCellBorderDistances(pnt, dists, coords); + + if (calcNearestPointInGridCell(pnt, coords, sqr_min_dist, nearest_pnt)) { + double min_dist(sqrt(sqr_min_dist)); + if (dists[0] >= min_dist + && dists[1] >= min_dist + && dists[2] >= min_dist + && dists[3] >= min_dist + && dists[4] >= min_dist + && dists[5] >= min_dist) { + return nearest_pnt; + } + } else { + // search in all border cells for at least one neighbor + double sqr_min_dist_tmp; + POINT* nearest_pnt_tmp(NULL); + size_t offset(1); + + while (nearest_pnt == NULL) { + size_t tmp_coords[3]; + for (tmp_coords[0] = coords[0]-offset; tmp_coords[0]<coords[0]+offset; tmp_coords[0]++) { + for (tmp_coords[1] = coords[1]-offset; tmp_coords[1]<coords[1]+offset; tmp_coords[1]++) { + for (tmp_coords[2] = coords[2]-offset; tmp_coords[2]<coords[2]+offset; tmp_coords[2]++) { + // do not check the origin grid cell twice + if (!(tmp_coords[0] == coords[0] && tmp_coords[1] == coords[1] && tmp_coords[2] == coords[2])) { + // check if temporary grid cell coordinates are valid + if (tmp_coords[0] < _n_steps[0] && tmp_coords[1] < _n_steps[1] && tmp_coords[2] < _n_steps[2]) { + if (calcNearestPointInGridCell(pnt, tmp_coords, sqr_min_dist_tmp, nearest_pnt_tmp)) { + if (sqr_min_dist_tmp < sqr_min_dist) { + sqr_min_dist = sqr_min_dist_tmp; + nearest_pnt = nearest_pnt_tmp; + } + } + } // valid grid cell coordinates + } // same element + } // end k + } // end j + } // end i + offset++; + } // end while + } // end else + + double len (sqrt(MathLib::sqrDist(pnt, nearest_pnt->getCoords()))); + // search all other grid cells within the cube with the edge nodes + std::vector<std::vector<POINT*> const*> vecs_of_pnts; + getVecsOfGridCellsIntersectingCube(pnt, len, vecs_of_pnts); + + const size_t n_vecs(vecs_of_pnts.size()); + for (size_t j(0); j<n_vecs; j++) { + std::vector<POINT*> const& pnts(vecs_of_pnts[j]); + const size_t n_pnts(pnts.size()); + for (size_t k(0); k<n_pnts; k++) { + const double sqr_dist (MathLib::sqrDist(pnt, pnts[k]->getCoords())); + if (sqr_dist < sqr_min_dist) { + sqr_min_dist = sqr_dist; + nearest_pnt = pnts[k]; + } + } + } + + return nearest_pnt; + } + + /** + * Method fetches the vectors of all grid cells intersecting the axis aligned cube + * defined by its center and half edge length. + * + * @param pnt (input) the center point of the axis aligned cube + * @param half_len (input) half of the edge length of the axis aligned cube + * @param pnts (output) vector of vectors of points within grid cells that intersects + * the axis aligned cube + */ + void getVecsOfGridCellsIntersectingCube(double const*const pnt, double half_len, std::vector<std::vector<POINT*> const*>& pnts) const + { + double tmp_pnt[3] = {pnt[0]-half_len, pnt[1]-half_len, pnt[2]-half_len}; // min + size_t min_coords[3]; + getGridCoords(tmp_pnt, min_coords); + + tmp_pnt[0] = pnt[0]+half_len; + tmp_pnt[1] = pnt[1]+half_len; + tmp_pnt[2] = pnt[2]+half_len; + size_t max_coords[3]; + getGridCoords(tmp_pnt, max_coords); + + size_t coords[3], steps0_x_steps1(_n_steps[0] * _n_steps[1]); + for (coords[0] = min_coords[0]; coords[0] < max_coords[0]+1; coords[0]++) { + for (coords[1] = min_coords[1]; coords[1] < max_coords[1]+1; coords[1]++) { + const size_t coords0_p_coords1_x_steps0 (coords[0] + coords[1] * _n_steps[0]); + for (coords[2] = min_coords[2]; coords[2] < max_coords[2]+1; coords[2]++) { + pnts.push_back (&(_grid_quad_to_node_map[coords0_p_coords1_x_steps0 + coords[2] * steps0_x_steps1])); + } + } + } + } + +#ifndef NDEBUG + /** + * Method creates a geometry for every mesh grid box. Additionally it + * creates one geometry containing all the box geometries. + * @param geo_obj + */ + void createGridGeometry(GeoLib::GEOObjects* geo_obj) const; +#endif + +private: + /** + * Method calculates the grid cell coordinates for the given point pnt. If + * the point is located outside of the bounding box the coordinates of the + * grid cell on the border that is nearest to given point will be returned. + * @param pnt (input) the coordinates of the point + * @param coords (output) the coordinates of the grid cell + */ + inline void getGridCoords(double const*const pnt, size_t* coords) const + { + for (size_t k(0); k<3; k++) { + if (pnt[k] < _min_pnt[k]) { + coords[k] = 0; + } else { + if (pnt[k] > _max_pnt[k]) { + coords[k] = _n_steps[k]-1; + } else { + coords[k] = static_cast<size_t>((pnt[k]-_min_pnt[k]) * _inverse_step_sizes[k]); + } + } + } + } + + + /** + * + * point numbering of the grid cell is as follow + * 7 -------- 6 + * /: /| + * / : / | + * / : / | + * / : / | + * 4 -------- 5 | + * | 3 ....|... 2 + * | . | / + * | . | / + * | . | / + * |. |/ + * 0 -------- 1 + * the face numbering is as follow: + * face nodes + * 0 0,3,2,1 bottom + * 1 0,1,5,4 front + * 2 1,2,6,5 right + * 3 2,3,7,6 back + * 4 3,0,4,7 left + * 5 4,5,6,7 top + * @param pnt (input) coordinates of the point + * @param dists (output) squared distances of the point to the faces + * ordered in the same sequence as above described + * @param coords coordinates of the grid cell + */ + void getPointCellBorderDistances(double const*const pnt, double dists[6], size_t const* const coords) const + { + dists[0] = (pnt[2] - _min_pnt[2] + coords[2]*_step_sizes[2]); // bottom + dists[5] = (_step_sizes[2] - dists[0]); // top + + dists[1] = (pnt[1] - _min_pnt[1] + coords[1]*_step_sizes[1]); // front + dists[3] = (_step_sizes[1] - dists[1]); // back + + dists[4] = (pnt[0] - _min_pnt[0] + coords[0]*_step_sizes[0]); // left + dists[2] = (_step_sizes[0] - dists[4]); // right + } + + bool calcNearestPointInGridCell(double const* const pnt, size_t const* const coords, + double &sqr_min_dist, POINT* &nearest_pnt) const + { + const size_t grid_idx (coords[0] + coords[1] * _n_steps[0] + coords[2] * _n_steps[0] * _n_steps[1]); + std::vector<POINT*> const& pnts(_grid_quad_to_node_map[grid_idx]); + if (pnts.empty()) return false; + + const size_t n_pnts(pnts.size()); + sqr_min_dist = MathLib::sqrDist(pnts[0]->getCoords(), pnt); + nearest_pnt = pnts[0]; + for (size_t i(1); i < n_pnts; i++) { + const double sqr_dist(MathLib::sqrDist(pnts[i]->getCoords(), pnt)); + if (sqr_dist < sqr_min_dist) { + sqr_min_dist = sqr_dist; + nearest_pnt = pnts[i]; + } + } + return true; + }; + + double _step_sizes[3]; + double _inverse_step_sizes[3]; + size_t _n_steps[3]; + std::vector<POINT>* _grid_quad_to_node_map; +}; + } // end namespace GeoLib #endif /* MESHGRID_H_ */ -- GitLab