diff --git a/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.cpp b/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.cpp index fc17f83128f7abd767a670060c7a1af9267fdb8f..48ccccaf6b9421bfea13a808565d76f29e80feba 100644 --- a/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.cpp +++ b/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.cpp @@ -112,7 +112,7 @@ PermeabilityMohrCoulombFailureIndexModel<DisplacementDim>::value( } else { - // von Mohr Coulomb failure criterion + // Mohr Coulomb failure criterion f = tau_m / (c_ * std::cos(phi_) - sigma_m * std::sin(phi_)); } diff --git a/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.h b/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.h index 80c0212a47c2ca8a7fadf3bef9502081cf86c971..0813a064ac28d9111554a14a3fa7039ec2aae44f 100644 --- a/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.h +++ b/MaterialLib/MPL/Properties/PermeabilityMohrCoulombFailureIndexModel.h @@ -47,11 +47,11 @@ namespace MaterialPropertyLib * the form * \f[\tau(\sigma)=c-\sigma \mathrm{tan} \phi\f] * with \f$\tau\f$ the shear stress, \f$c\f$ the cohesion, \f$\sigma\f$ the - * tensile stress, and \f$\phi\f$ the internal friction angle. + * normal stress, and \f$\phi\f$ the internal friction angle. * * The failure index of the Mohr Coulomb model is calculated by * \f[ - * f_{MC}=\frac{\tau_m }{\cos(\phi)\tau(\sigma_m)} + * f_{MC}=\frac{|\tau_m| }{\cos(\phi)\tau(\sigma_m)} * \f] * with * \f$\tau_m=(\sigma_3-\sigma_1)/2\f$ @@ -63,19 +63,26 @@ namespace MaterialPropertyLib * \f[ * f_{t} = \sigma_m / \sigma^t_{max} * \f] - * with, \f$\sigma^t_{max} < c \tan(\phi) \f$, a parameter of tensile strength for the cutting - * of the apex of the Mohr Coulomb model. + * with, \f$0 < \sigma^t_{max} < c \tan(\phi) \f$, a parameter of tensile + * strength for the cutting of the apex of the Mohr Coulomb model. * * The tensile stress status is determined by a condition of \f$\sigma_m> * \sigma^t_{max}\f$. The failure index is then calculated by * \f[ * f = * \begin{cases} - * f=f_{MC}, & \sigma_{m} <\sigma^t_{max}\\ - * f=max(f_{MC}, f_t), & \sigma_{m} \geq \sigma^t_{max}\\ + * f_{MC}, & \sigma_{m} \leq \sigma^t_{max}\\ + * max(f_{MC}, f_t), & \sigma_{m} > \sigma^t_{max}\\ * \end{cases} * \f] * + * The computed permeability components are restricted with an upper bound, + * i.e. \f$\mathbf{k}:=k_{ij} < k_{max}\f$. + * + * If \f$\mathbf{k}_0\f$ is orthogonal, i.e input two or three numbers + * for its diagonal entries, a coordinate system rotation of \f$\mathbf{k}\f$ + * is possible if it is needed. + * * Note: the conventional mechanics notations are used, which mean that tensile * stress is positive. * @@ -101,7 +108,8 @@ public: double const t, double const dt) const override; private: - /// Intrinsic permeability for undamaged material. + /// Intrinsic permeability for undamaged material. It can be a scalar or + /// tensor for anisotropic material. ParameterLib::Parameter<double> const& k0_; /// Reference permeability. double const kr_;