/** * * \copyright * Copyright (c) 2012-2018, OpenGeoSys Community (http://www.opengeosys.org) * Distributed under a Modified BSD License. * See accompanying file LICENSE.txt or * http://www.opengeosys.org/project/license * */ #include <cmath> #include "MathTools.h" namespace MathLib { double calcProjPntToLineAndDists(const double p[3], const double a[3], const double b[3], double &lambda, double &d0) { // g (lambda) = a + lambda v, v = b-a double v[3] = {b[0] - a[0], b[1] - a[1], b[2] - a[2]}; // orthogonal projection: (g(lambda)-p) * v = 0 => in order to compute lambda we define a help vector u double u[3] = {p[0] - a[0], p[1] - a[1], p[2] - a[2]}; lambda = scalarProduct<double,3> (u, v) / scalarProduct<double,3> (v, v); // compute projected point double proj_pnt[3]; for (std::size_t k(0); k < 3; k++) proj_pnt[k] = a[k] + lambda * v[k]; d0 = std::sqrt (sqrDist (proj_pnt, a)); return std::sqrt (sqrDist (p, proj_pnt)); } double getAngle (const double p0[3], const double p1[3], const double p2[3]) { const double v0[3] = {p0[0]-p1[0], p0[1]-p1[1], p0[2]-p1[2]}; const double v1[3] = {p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2]}; // apply Cauchy Schwarz inequality return std::acos (scalarProduct<double,3> (v0,v1) / (std::sqrt(scalarProduct<double,3>(v0,v0)) * sqrt(scalarProduct<double,3>(v1,v1)))); } } // namespace