diff --git a/ProcessLib/HeatConduction/Tests.cmake b/ProcessLib/HeatConduction/Tests.cmake index 03f4c7f7b4a53318c1ec332fbb6ebca95e656225..9bc052c54e091d77b9752a6150f5eb6aeb84caf8 100644 --- a/ProcessLib/HeatConduction/Tests.cmake +++ b/ProcessLib/HeatConduction/Tests.cmake @@ -154,8 +154,8 @@ AddTest( EXECUTABLE_ARGS wedge_1e2_axi_ang_0.02.prj TESTER vtkdiff DIFF_DATA - wedge_ang_0.02_ts_10_t_1.000000.vtu wedge_ang_0.02_ts_10_t_1.000000.vtu temperature temperature 2e-14 0 - wedge_ang_0.02_ts_10_t_1.000000.vtu wedge_ang_0.02_ts_10_t_1.000000.vtu heat_flux heat_flux 1e-13 0 + wedge_ang_0.02_ts_10_t_1.000000.vtu wedge_ang_0.02_ts_10_t_1.000000.vtu temperature temperature 2e-12 0 + wedge_ang_0.02_ts_10_t_1.000000.vtu wedge_ang_0.02_ts_10_t_1.000000.vtu heat_flux heat_flux 1e-11 0 REQUIREMENTS NOT OGS_USE_MPI ) diff --git a/Tests/Data/Parabolic/T/2D_axially_symmetric/square_1e2_axi_ts_10_t_1.000000.vtu b/Tests/Data/Parabolic/T/2D_axially_symmetric/square_1e2_axi_ts_10_t_1.000000.vtu index 9d73203d881d2aa4ae16e8f124b778f47c8eff18..ebdb473fa7edbc76458fd771cfbca8b640854843 100644 --- a/Tests/Data/Parabolic/T/2D_axially_symmetric/square_1e2_axi_ts_10_t_1.000000.vtu +++ b/Tests/Data/Parabolic/T/2D_axially_symmetric/square_1e2_axi_ts_10_t_1.000000.vtu @@ -2,32 +2,26 @@ <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> <UnstructuredGrid> <FieldData> - <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45" RangeMax="103" offset="0" /> </FieldData> <Piece NumberOfPoints="121" NumberOfCells="100" > <PointData> - <DataArray type="Float64" Name="D1_left_bottom_N1_right" format="appended" RangeMin="1" RangeMax="1.6753144833" offset="84" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.7337143975" RangeMax="2.724425242" offset="1228" /> - <DataArray type="Float64" Name="Linear_1_to_minus1" format="appended" RangeMin="-1" RangeMax="1" offset="2192" /> - <DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="0" RangeMax="120" offset="2320" /> - <DataArray type="Float64" Name="heat_flux" NumberOfComponents="2" format="appended" RangeMin="0.0080858455" RangeMax="5.8788475555" offset="2632" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="-0.95020414934" RangeMax="0.94129055242" offset="5176" /> + <DataArray type="Float64" Name="heat_flux" NumberOfComponents="2" format="appended" RangeMin="0.013990112744" RangeMax="5.8697091248" offset="84" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="-0.94928721315" RangeMax="0.94391540438" offset="2684" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="6468" /> - <DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="0" RangeMax="99" offset="6532" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="6812" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="3968" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="7348" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="8072" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="8380" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="4504" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="5228" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="5536" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9Y1NDfRTU80NjZIM7EwNk8FADKlBO8=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAANwMAAAAAAAA=eF610PlTzHEcx/Et0TA2u5hq1NaumhSbc0PD9lJpMe6jsCWsMXbGuoaoiKkcX3RJ2Y1ojCRZZUijY0RbznQ30SCWmSYZfb7H7laOrF+2v8D7l/dvj3k/3zzevyHg/ad92VuinDGZoMvtAD8tjEAZpJqg2U0geFeq35lNoHubvEVfR/BQmJpzaYjgcHhgefdSGn2xTb1L7tLwFNR2GJYxCBsnie3bz9rcTK3mpCyUYPGh1rpCiuCb3tPQ2kJQuvBBV5E3jc9G9okgicaXyraoHELDa6LE2T6OQU/GfLnzVBZNyc1lSSIO0bKGB9GxJptbH7ev2l5F4Hq/okn8nGD3xpjy0tk0nrOGP/mFNNLtfZ40+jNYNKunQv+CgVNW2eGgJBYhxWs2yXdx+OFyzxRPmaBqznRabjHbXMfNPu3VCQTSmoQzgdZOYfs79+0UDbmIu1Qgsjoj+YmKWgbyul88vdUTeQgft2/j8FLGyzqqNsGoHmEXmW/G1Um6j6y43+auMKipeusfHdYO6R7NoCEIrfQWttDo4Gd9OpHIIJgt81oYysI4UbphrrW38Dzl4+tsve+PpE0ZYIZGpXXrSrSgWJPLutgN2FyqXhzw9DZB3M7KzM6NNPaFlOtrnBg0zw6bNK2Vgf/evBUuRSw6ojsHv+o4XH1W1Rdw0wRRvuH+jTYzVrpHTPGT9qM7fLTLqpJhd0FMTbuqnOB0xIiX847Q0DY6GO2CGIx0e6VWjWfx+EtFi2iAhX/e7elCC4cLvz+lOAnNSFZHOmqXWxCZ0ZG8v6gfAZFnj0+ZOWhz15flhGTXEowe9d79ZioNlUxA39vKgAo/cy0ULFIVUWm9MzlszeB++gSaMFWz45w8yoxRHsEXHa5ZcMqPjzRrf0x3oZeQGnYrRQ4Rq14THAmULnW9QuNUcaZn50EG9fo5u/hKFt8Oxa8VrePgrmz0Xb3NBPG4nOBcyoy2IFQlNFgwNvuDa4lsABKKkzBVw67urq9jyhuCgpLi9RfzaNz57teUHs/gukdsAadiselWbo94C4cxi+YMKfaY8KPaaFFozTjm1Ws89tGCPS0v1lBhA5BCke7cMIi/xDur+w==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAsAIAAAAAAAA=eF5dkmtI02EUh5cmQVhUYlpoFysTVoiWkDE4y7xMbGI2MVJHDryETTTNG2putmW40GxiJm2gjpVOM1KGoZxRZAuzaYiXFI1ScqZltWwYjWrn/eT/yw/+Hx4envMqFNLKQLEAOfbIbcbvMuSa9036C1sxJ8RT0CTpx6jyiE2eGcMoSNg4n7l3Flf7uxa3FCziD3/tsHXIhurE+4f2TzmwRSrV62bcTIeFg2+HrHa0TBuqzVMS7JJyVdOjVZgzFj3B/1iD6s5cP92hJOTu+ekR19QCRRkKs9/nPogJUiWK6oYgXyANemaYBPmD6rAPoXNwRyjJDx5bht+WQv2gygZ3b1XKrldmY21qwm7LTjW+F/ouh7xuxGuyeGXqaho+V3oHZfU+gqWoy2Gn017CQJbuinJpHHSz+YHFL+ag8Y9mzZG8Aq4nr6ZnH7CDj7hd/K2ewy9jXBXjLjGuqIK4g4zrKiBuLeO2MW474w6EElfvGVXioubwNaxDB+twm3U41kUd4liHU6zDOdYhk3WoYx20rIM59tNmD5kNOP+/gGSec1eiaavK+pzrraSdaab/C420F7ppXXpo5Z3OrZCP8NwD0pMbOtNAT77wkHyhgnxhl8HpC+HkiyLyxSjyxRTyRQX5YjH54o57b6zuWTbMob6gob6wPdbZF2RyZ18wUl8cpbthO/VFPfXFNuqLq9QXp1eSjCVVHJOYcesYd47uBt3lxH3FuC50N3zHuBrGrWHcX4yryWt5cuMmx1TPOmhZh0LWoYjuBl7rOkSyDonrOrD3i+FrJktWrg0dDV+DWxtOwHiC79ls3zKIP1J6VDTfDI7j5ze0XuqD0oOGvAivYdCPcLd+6Z+BmB5r22PeIkh6z6TwOv69/4UJpa/RAaM+XgXaQTc+/6lIfXHeDn8B9V3dRQ==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAPgAAAAAAAAA=eF5jYACBD/azZoLAS3tjMHgM5d+0nwGmT9ozQAGUvx9C39xvAlG/H6p/P0TVBxg9au6ouaPm0sFcANgLnbk=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAyAAAAAAAAAA=eF4txdNCAwAAAMDFZdtatu1aWrZt+/N76O7lAoF/UY52jGMd53gHneBEJznZKU51mtOd4UxnOds5znWe813gQhe52CUudZnLXeFKV7naNQ651nWud4Mb3eRmt7jVbW53hzvd5W73uNd97veABz3kYY941GMe94QnPeVpz3jWYc953gte9JIjXvaKV73mdW9401ve9o53ved9H/jQRz72iU995nNf+NJXvvaNb33nez/40U9+9otf/eZ3f/jTX/72j3/9BxAkHF0=AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAUQcAAAAAAAA=eF49znkg1Akfx3EryZOMCjkzZVuhtrREyH6n9Igt51PODqlGcjbPImRSrogcUUrCRNaTmyRNvr9Uk6ZpcqfkaMqtkZkYYdjnedbzfP57/fV5fxg4ZNHYQ8cR5WmGlSAOGNC+q1o+AtnHFJdkiErwm6/eplO6oVjmn7+/Q5uLbaSfpUXtwehPO9SmJ+hDlZrcGwHUEDSIEQ1Va/DRfq/srw/KQ3FaMW1BJUaEXwMOryzSj8C5Aq5cBV+CcHkM2QdaIlF/PCQ9S3YZwdS7/7QvMAqZKQNsO1USEX08Vnx2UywGX7Q6Ni6rQFDCXcydI+PwgNm5ki9RyoSjJFlNYqgKEy0vb5tmngclxlm58EcEzrCeJLlMFeGK4jLrUj4XFTZly97rbcSnawe3OfM7UBzmy3pY2IXOpluGc4N6MP5zRWxa6BCO52QreUt+QuM3tU4KSkL8LZoefp4zgNVhipt6abNIa8vnxGaOILnpnJfiPUmCLLGr15rKR8fMdQlhR2WIasGKizy1CdTvVsl71EEigtKte7+TBBhm1zZRLKNAmM7rqHzuQqxq3KpQSInGPVt3BKxksZHCc/NKHc/F1lGPg+mvOxGOJefURtYgT9hR8Y8AHnqGukXkt7LQjeFftCZmCDXf5VWWR7di4EaheVIOH/vahVSyoBvDtjistzwiQCtvYt+kSz+e3u6VVuc3iWWSzLamj2MYHI2G+vRp1DPW0SVeCnBKVbZAKWUWnb0CX2s8EGHPg4e1oapilPnWW0szESNVUML0eoGYFsqxEFHvoLaT3BjnARtJyyxrDJoTkVZzw8j4aSd6UPcvuKYVgGWyY4+vNw/XNfd8v6b7BBq862RE9CEsL5zcy3/RBCUacjLSN/g41qcToGPbBctsPWxz3QSofv3NQITiZ3jke3P4kvcklhpu739ePAqkgUpH19BpTHat/NlohwCSy56tykiYxRol2rOZrSJgl+jUFCiIUTqk4saK+jk4Lc1/YlJUhbvuHF+P68twr+iMJjOOwAL26+Wf2A6gdJceRM/nYmvYL4OqHxqgh5PnLvWyA++3Jh28+rQT7Dl3PJrse/B68801rQqDsOWEZrj0OA83V9y8anhKAC8yf8h4XzOAX6ZYNnTODLTampTHnh9BbYZTYra7JEV7ddNzfWs+aphXZPkqylAC52RNYPkEjmQpz0+lkChak6YkJ/EElqdtfvJhaDUl8nWf8KKDMS5dZSuRFVmBHtGCCzstLNBTiSRSjo6ExPjyNc/8HbBkhrPxnxsboZxVKxNFccUEoyP17VK90LhnYl+iswd+np7wWfNwDFxOS6hFfTiOl257d813TsGOlqCsNAMvrP5Yc7ImS4Jy6WOLeMH9NCrnk1U2M6UpndL9x3r2++Ge2mkvMleOkqJeP3xpKgDJz6jz3/7TtxCnVZAViLFHv+xXOKFMmco9s1MytAoKs6XqHomLcVD2YryUBwE1pd0HtNyCoLCfEzd6iAti0vH0qqNPIanQfcg/owPaG9/5qi15B5SQfNuDpB7YcSfFxv+XQajTfVXGZPHANFx1ShgsgIS6IsXOuAEo33bSoeT9DFBluS5rfxuBex0r6k94SlJ86IMclhwfLuSs0WlXk6GorKrVezP8FRhv3cf510gU0sD3k7e6JkBynd2W66OrKaW04gulqQiaenkZmbPZyLPwtOy9zIYyhjo1YWkIpuUFkC1udcKvcTrLbYkiUIwSan+0+XdP3U8J6noN0LAuTHfJoSFI2vBMydSiGRDJLfIBfNDrNghe/bwLDEIqmWa7BVCf/7vwlc1n6P3x5TzXZhIS/b75FH8aBX95P6Gf2zS8Cp7/YOQogNFjNzc8ODUL/GDPdhMrEfirDsp7fp2Dcd6ClEnbHJQ8oZuuvYbw7drZc+pz/jDjSGheTmaD4+5mXa5ROtLrUytv5HSC59tgn2DrKsw87Hfbzp4HNt3HOzfYPkfGI97C5qNDwDUpfDn6sgWNmIczR2l8GBm3C7hq3o0sjQZGxB4BXNvHvZr5Qz+q6N1LPmo/CQ6HV1EfJ42h80LX0r2Hp8FYm3y1MU+AZhEPHZt9ZoH3N+psY6oIpesNn98UzkGi/P4Fa2UxaljNVcfEVgHrnaWkrFwOvJ2sZhj4ENB8wP3hdflc1Lpyf5PZGS40hITUD5ew0PDiWrJhfgdo6D4uSsx7j0aUDruY9T0QbyZLYs8O4spVP/3o18ID5T88/vX9rQCV4mfZURkD0Bdu2OpmPIs8Sy2fAtcROOOZetfsiiRx6BTZaRmZD+KWgG3dFjJE6lm/2u3Cr6DueV63l0kipEnqMh79E9BkRf3Cm1tNSPx3NKbXdcfM+Kp8+MsnmC3TBc0XXBn4lwOZbX8/2Btd9Or/vq09Wbn9SN+if2feaxU4ZVz5sugUpl/VyQvdIFr0LSbN3G6wiyOx+Hd25+7b+nfLR6QXXbhzwKPvVul3uUWnM011c3XUxP/r+4NJjN3VowUrE38CTDPl4A==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAApgMAAAAAAAA=eF51ym1Q0wUcwPFM6QY3Qjcw5UFuglOcnvagHST81JAwGAQEcjpUHgwMdCCPG7TjKWETdDRgh8XUjYeFpMBuMoru51g7wYTJAP9jMVdMZEDtKgjBOFYvesVdrz4vvt+M+FMHYxdFeDjDnKrZL8KmQpM9vvQLHHx+71ynrQZ5owvN5NP/2vbeMEMjxOj81rsH3YQ4PBBQQf3yKqr7fwK/wSr8vXrzWUW3AD+K2Om86XQl+s+7Gwy76nAfr2zoWYoAKcY3WZZLebClbe6maocUyLrQF9mogOA0ZnSh6j60u/eOG10HwKhEZ4I7DDFJl6882UuA5ww5VS0zQfNSIpVzcRLmPdj62qo6nNb7MLK/KsGppHLz3PE6UMhLCzyaOsGs1MkUaWqQHnolv4f9CCLL784yFkYhfKOafWdmAioIZv1ZsgUEPnuLZw9bwdPNu1lHscE8o743cbsIBVr5i587OOhVM8UPbxTDp/pPIqPe6QKN75RL6h01SAShobauR2Bs/MH3vOsYxHkFDSSQTPCa683eYXcLhG1g3oiOsAJ5Z2yCs7cN2LIAklh0BVekDOOGrnwMMa7uWIziw/O8nr4T1c2Q1NXaKk9RwpEi/odfl6mBtqjynCcGwLH/9jdaYhgarrfcSvqcAMWBt5LJf5mAM9WUKhZNAiv/115bDxe5E/byG7VcDEoNGWkJ4uIDUr5XkZKDHZonlAt/F2CRB+U4jVqAyd6BwuXVPKTHXPbfo87FdpJcs4eVgy0O/BW3kUtIyyg0z/lloYReszEongHxBSmyI0weVn9fuMxfaUARtS1gldqOUvnrDqFCFdrdez74zkmDTJeEvgrmjzjbFGMurtRjBjIlut0GtAR2iNdffYonFbKQj8cnsTOqxJ+QZwPbvlQ3Ps7DaUN5t/iBFDOCvcNHGpX4LN3J+XqcBtfHZb1UhQ1hZuTS/R5iDIWBtVxQm/C2zm5OyrLggu9E1DmJFS8KAyspaTYsDdavO0QUwOMT2lNVXRwcWdaufusrxc20FJpThBIrV0iG0X0aNI4Pvs+iDyE9WXh0UjuGVY3WzDMdJkw/Sld/dt6C90rsv20RW7EsJ9MtPdGGulx5yK1rmaCpdZx5lXUBix02bX2XVo86gjYXu78N/3C5diy4uRsD/bat4zX04eN+nuHMLw8xN6x628lYPe6e3vrGny8JPJD7do4m8SkO+Xhv36WdRCeBJNyf87DXcY2k/1zbSf/zr/UfJlP76Q==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAArwAAAAAAAAA=eF4txdciAgAAAMCQWSFbJCuzsjNDiuyMyo7y///gwd3LBQL/WtzqNgfd7g53usvd7nHIYUfc6z73O+oBD3rIwx7xqMc87pgnPOm4p5zwtGc86znPO+kFL3rJy17xqlNOO+M1r3vDm97ytnec9a73vO8DH/rIOR/7xKfO+8wFF33uC5d86Stf+8a3vvO9y37wo5/87IqrrvnFr37zuz/86S/X/e0fN9z0r/8AXBwTVw==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF + _AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPRM9E1NDMy0003MTA0SEyxMAEALCAEgQ==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAfQcAAAAAAAA=eF4N0Is70wsfAPC10Cg7SrVcJqWrLq5v6VW+k0ukYnIvoogynoyXcjvtSOm4XxJRKKRQDo5Uy/d3JC06K7wJIUZzKYsd2mpTp//g83z0X0+MddjHY5jDhKeiZi4EjfZ9WbwiFhUY5fvZYxVY1exoqHo4CqlX4/zlgpfYtlBRd9uiCFxu0s2xKxlC674lahWccJxQJrbOtE/hiH6Wc1JKBCat12L+fVSCWXt0k6WZkZjq4wIFfSQiLiyDH2B6Dp0+r8u5LlEinFTzjJ7RYjG+YMN0lCKVSN//SCZfFI+/0Rb6rCOrE1vkAYkZCfGoZqfTlh1NI4Z+OXDt7WAdUl9qKbE4mXBiZ85Yax2Bmk4Dnb3bytBCu0/PfIiPO6tP84XVz3FHoy7v0Eg3Tiywctjwyzs86VBMeJwcxFXHouDCtnGM6Z+SukkF+ODZYtrOz2LM/2rNy0Qh0o05noyDMnx+zXLb2qRJfGGqKQnLIxPn76/vS2SKMPSMXin9IIUQ3Vta8kB1Bvl7d/a9aaESZpvEDEuSGFflrU5nkNSJtV2nZrd2IcqPKNA0X3ji0PzoPW5TGyq42nVVeOfjXG6FzYPWHmyy+Ive6FePnU+0hatOC3Bf6DUlp2fPcPu6XI/BuHG8XDddGfi9E2M2G15YkStCzfBoES1kAHVb6l5ZeIjx9sYgXRfaBzSCHBeDk3NoXtv6B7vkE6rXBye/j5Ci7MunLb/eFSNvl8kM/4IMS5t+VDnlSzBWq6zYUHUeU4OlvDn6/M93M5MTiNgykLx3flcRqvBtm9X+aMNWdvSVkGMxKEZFykduD2qvWlYndLsDi9KcdpT6C3C2h5WlodEM1U+Frv5nx7E+Ubn+nEUH+N31torKEKHn6kIN0tN3oL8r0HK3qxjfuUZ2PTk4Ckk1nsbC43PY+IDee2r0I1juMbD0CpOii3lc/aSzGGL16BbbOTLM7TG+o2cvgR+ckbPJyvOYQrCsNr6RQ75xl6L2zTqc1dpm042VqCPnez7lEOhg4O14gv0r+HLMUjzz+Uhxje+fqn0KIrMsUQ7RjQoeB2YXbO+Fs1dafe1tBnHgXVIB024MYnKbfs8ZE+D5y2XGsxwx7BiidWVXCzFto87rrA/f4Ip3qfq+iEnsHTnyqiGQzKgITb8+bC7CQneFE+LVFEZ6vdXxLPIMatT12xMFVEaOgxFr89wMRq3Jdvx7ahmj/7br6gsMIyQNXJ81kdxHqbL/twqv3Xit1VTJ/VYK1Hg9nLIMsMfwhTcaNMZ50NKTxtfTdkaK0Nl3qf97GPJ5mPDmqxtqnLy1dmLsE7CsQl3ibI/gOUlv0ODnL3BT+PGw6+JjqPZZQ+tlOYmh8Jg5eHaTH8bCqwl+qxKj5rc9R/LSjqMz6VCHcY8qw+1Rfm3y4xOY4mcZfvunz8U7MXqftT82IlfmE0RjLOl3r5mKq4NHAe/dfMzvYmb8F089fwKY6dVKa6oTwfa7cku2Px8cfejuTGoLJGUGxBgWdAMrRDXG0rMXPI4fEuisHATn8x6+1UfHoAoVsbZdADqVqcWJyWJo3h5G/pgqhMtLS8Mvi75B4NiWZ4eZkyBrdNUSBJMZvCILV52VIjjfG7KuTY/CuG6vPpkgmoaGU3s3WxVRGZVld95mDc2A9gGPXQGflzFGwoOXn7yCkORZUd/yIQ8bFT3yZGltkCEh30hTtUXrdcMd64t6wKwy1Z1qVQXM4TtSFScBFNX5XWfxmqGzuTNvymccggsOPKnN6IBbwTZ2zWwRDN8qvctU64fBdh4RYy2GvSTYoMgehayzvLxIpzkYOayvb6T0CWqbK19Fe0uh3EVeG3lcDEmGVd1rWTJgjweYOLpL4FCUbIHsHzkI7L1vfx+Ww7Tc5HV+HgK58/8bFh7kQMZs6MWizDYIOnQpImEiDc/0KUgvlvRAJE03v0+rFlvNhxoIpgBOj04cePywBc1WrllN9xuHM8IPDwM5nbibfeOiz/9EUPg85Z61pB9980orv9qIQTNr89fX70dxB49N1nGeA5XQgOLCkE/oS53m2RyTgszU47/3s8TYYRExuDhUBqaVfy59kSDBqKA8nJmTw3uppUqCyjy2BeeEtFyqg+3R335EdJbAYJWXhgWLgHTF8GL7lAKk9OqmbQrnA8XtjC2Z3orKgj8HSsu6oU1lSZaDVx/uqkndHKE3CHbMWLsFvWP4/CV1a1mXAF6mqkeseS7Gi6lss/lcITT7pY4ZbJShg4ZKw7Ejk6Ch3p+eepFMfCtkapPWiEC+nDRXvptClLCalRxnp2G/pkuEYQOVEL8TqF0SzsB/NOns7q/LCMOjmnuydRO4ccrtTTcl5dBOMb9XviCJu4rvrS2kFaOveTXdzPcq9+hVckK2Zjs2XTo3Y8st4Prbd1csMx/CSssLrBHeNa7gUmSTPWsKvfy8apg9xdxOudEpKwMJ+kWYhp9beZ97lFKm+KGFRDC6tRX2+RRy9W06nXRHlIhN1NFhxsJoLnnF3aEcsSpRTSFvyibVcrsvxxm8/unzbgtcX3G7mPuW0fBPWDiN+BcozOepAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAogMAAAAAAAA=eF51jG1QEwQYgAVDQNNEnOjIgBIk0RUcBCjcKwiLO5AmaoLH+NC5JsI2OvnYRYLAKNaOz0ANsgYDrdZIaTBQeBmMZCMmwjZgsOnGaWvEYkfWKIz67Z2/nrvnnnu++ojP8xniYRbtdBsbKjH93zlb+B+f4PFQr96Tlgqs8sg/VLrMxfV3LK/Z/yxHueiLaxcfl6G/p4Pbfkkp1ql9w0IzLuNh+seXno0WI4vul6vpL8Juns87d0nVyDijmOXWXcIlPjdu4EgFELub7rkZhRBYKI+2eEigb3q5PzhTBoQK71LnHgV82TViclY+gNRfasLTOFOQ0yicbLXoYYv3+Rp7lQmcxuLrZ4w1GGHi7l9oYqPyzO+WRfM1OPijrTxn5DY4HpudpdllELtvj9Zz9Wco9gp2PRSmgYjHgr9eDtCD5imz/WzAPESpR548pJoBZ37dQDlghXGmzF9SWYUntAujb1fTcHu63mUzuwkMB9t2zfl2AsXiT1/YMwiknP7yXL8xKP0t3AESNOAduJN6P1IP7uzTJELwPIiUFxqmz5mh8Naae1WwFay6ujYimYsDCl2XPoaOxvhxzvv8ajjqk0LK2HEDtOs79ob4dgHXsnMt0SiDxL9ZzTFBSkgJUXxtcpyAtU/JlZvEUxD6D4OjJRqgh29bmBGaIM5D0EH+no3qvS3Rolo22loTVnhJbLwp/Dw7zsDC4dFT8kINE/08HTm76nIwLaDTJdwzGyVlWX3Ugiy86aTN6xUxUNwsjwEZHcdFu5Mu9NKw+NS7sZrATOgjvupmb8zHtzjGkivuV5Fqrg07+cZ3aHVaim4nSlHjXJAnfjCIic1Fi+IdozipMDMZzAns/bZ5OHbbNCa3qqhRBQZ0bGcdtqlMSE6WR1HiOdBwj7jteCQHUaQTDhNa8Naqy0wKWYK56Z81PgoYwvudP9GPva7CjIuZTVNDGhxTjJcki/U4QflAeJkxjw3F7gf2NZoxgvawvjrDiit8Kt1aVgRy59QStWs+RsYOXFf9IMCNEa1RrgQJ3tEpNjhsH8JnJmkPY5MKoxOFXstSDQZJV24ThP9/t66TS8/O4xbCVupArRlTakgUXqoVOaGsc5L0DyGboqjX4nk88UjFmBM34Fzekm63/RtMmky7qq7sxjevyBZD+INIuCFoEaiVGPRS3uaj701gTIH1yZGnU6h8ZTW+JNWAHeuGq2WDJtzIu54QzlHedX2OLi/wL+qf53+LAfyDAQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF </AppendedData> </VTKFile> diff --git a/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_ang_0.02_ts_10_t_1.000000.vtu b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_ang_0.02_ts_10_t_1.000000.vtu index bc993ffc31c937c11b3e77d0e6283f26fdae397d..53ea88a58ec4afb7e6df08e83816add446746fae 100644 --- a/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_ang_0.02_ts_10_t_1.000000.vtu +++ b/Tests/Data/Parabolic/T/2D_axially_symmetric/wedge_ang_0.02_ts_10_t_1.000000.vtu @@ -2,30 +2,26 @@ <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> <UnstructuredGrid> <FieldData> - <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45" RangeMax="103" offset="0" /> </FieldData> <Piece NumberOfPoints="231" NumberOfCells="100" > <PointData> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-0.00435057182" RangeMax="0.0043355890935" offset="84" /> - <DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="0" RangeMax="230" offset="1628" /> - <DataArray type="Float64" Name="heat_flux" NumberOfComponents="3" format="appended" RangeMin="0.0080534757772" RangeMax="5.8788017198" offset="2200" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="-0.95017130689" RangeMax="0.94119869316" offset="7420" /> + <DataArray type="Float64" Name="heat_flux" NumberOfComponents="3" format="appended" RangeMin="0.014037256601" RangeMax="5.8693430775" offset="84" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="-0.94923615268" RangeMax="0.94387999817" offset="5520" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="9016" /> - <DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="0" RangeMax="99" offset="9080" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="9360" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="7116" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="10484" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="11760" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="12040" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="8240" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="9516" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="9796" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9Y1NDfRTU80NjZIM7EwNk8FADKlBO8=AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAYwQAAAAAAAA=eF5N03lMVFcUBnApm1hkK5t2kVIoQogUTeMAk3cHJGwKWqPOiFAnLLUskaEhgWILtTUBbBBHUglQSQDZRghMC0jh5d0KlCIdKEPEsC8DCEUMMEOr4Ng2755bKP98Od859/eSSXBsrkpn5rq4kvc1utShKU5wWPLG1dUlzo/mIu138X/mv3UoYWaiYc+IaE7Q/ruJTqOv7ZuZTEPJT63MM677niB5XrDBYQt1mXfULnxgdpBkzjXoeVbWn8qW5ZOZ8V0he2T4FNKoEXoLffjBoo5FpnZODG4BdUfBO2AGfo5ixz0cnywsK6eulrrPqfs59K1T4IZf33/owXUrPL9q17/+cpMzM+gKyDM2xtxCJ8lEFfS8K3mcKMSe9vzM2HiSO7Q8Se6Q2hT6vbFxXlMqC2STT10De3DnwOM2IZM87Lddc494loPvMNY/g7dsDL5aB70+EtzKLzwGbq+74Wrr2TTHgz1cy2eV54dW1FzIybsk/3o8SXrebWOzhYM5Gn5mGoKr+T1jHFhFMi0CerU4I9/VzQ05XAG3wZr0XNtp8MJWK0iaOixsuy6BWWx3MPk+U15TTrxXseSOuTwwQ/oR6sr7iuoMO3zxi4fi8nCtJVK5v7cQM7IPaaSQPwgkpOfd3v0yYdQGucOPRGSPdQLI79egT3n93t3dPr5ombqbPvBelQfebAhk06B423XqT2E/tiJ3eFhG3QzIUlvoj1J3WNXYbhIVikUnwp0KCtyQcvefogrLIyjPGPLSOeh5d8VJLvzFl8zY3ozs8Yw1ZNin0Jv0f6XNMg9F/v3gIiG8b9rcAPcl5CdHdtzu7Jtsz0fw3g7u8LQWMsQF+oRBcGOyvI7XFJzF97WdUo2DAA1XXBavfHkMedyGHBmDnvwfy4JZ/xky4+gSssd9csh0DfTPDvUWc9Kz6NtscFv74P2ZXPAU/7mz/3N7tX6iaeoWgBdWTN1x6B95gftWruhJvU6KP2ydkLs/DUR971qNJq6cQoHOkHWN0PPs0uw37MCPZMahcIfLHSHFCuiPKpS5MyNSFEfdFiV136Euzbq2HfcmkyEcaIb3D2GPnd0gJRz0sXXgXkxf08e6JOD4f5pamjNPoT03imSvKSLRUB5ktR568jvM6Pzehjs8fovs8VIOZORz6KMfBFV0miSgq9St+pu6+eCdlkNeMlBuu6L68+zkK3h/IRe8PwohS03IHX6CwW0cf9G+qE7FztaLd4JOStD9hoh4VhGLjGjW05530wRy1teBzLisiezxVj2kgQ30fntGh707U1EpdWPsqKsEL5Bmg+2Oqyq8IWzfC+/vwHdxJtzhALjDx6mbauI5UXMiDue5pkh6OSlCx/Se10yTUI/tWNs5oyQ0ajlQ7NoiRQFdYV1rv6oZz3lZiV2lFF/w3uedvJ6It9qdz7jqErHoTUN9RK0U+7gXTs+FxCFTU3BrncG96A9uEHWLzcFt1YUS94oG3I4PwB3rAPd3R3C3qPsvs+10uA==AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAigEAAAAAAAA=eF4txdNCGAAAAMBms9ZYs23ba2ysWc32mpvZGhtqXrPXbNtGTd/Rw+5eLiDgv3RO7wzO6EzO7CzO6mzO7hzO6VzO7TzO63zO70AHuYCDXdCFXNhFXNTFHOJQF3cJl3Qpl3YZl3U5l3cFV3QlV3YVV3U1V3cN13Qt13Yd13U913cDN3QjN3YTN3UzN3cLt3Qrt3Ybt3U7t3cHd3Qnh7mzu7iru7m7ezjcPd3Lvd3Hfd3PEY50fw/wQA/yYA/xUA/zcI/wSEd5lEd7jMd6nMd7gid6kid7iqd6mqd7hmd6lmd7juc62vM83wu80Iu82Esc46Ve5uVe4ZVe5dVe47Ve5/Xe4FhvdJw3ebO3eKu3ebvjvcM7vcu7neBE7/Fe7/N+H/BBH/JhJ/mIj/qYj/uET/qUT/uMz/qcz/uCLzrZl3zZV3zV13zdN3zTt3zbd3zX93zfD/zQj/zYT/zUz/zcL/zSr/zab/zW7/zeH/zRn/zZX/zV3/zdP/zTKU71L//2H//1P6cB3J5nxg==AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAKQ8AAAAAAAA=eF5d12tYjFsbwPFE7UhJItqEJOxEQgdmtyb2JpvQ+4aIVJNUKsmhg1JJRUpTQjofHCKFSoV0TyNld1ZJSUc1kozppEkHr3fW/cHez5f17bmu+3f91/OsJTebM0F7ujfc1bf112ufAWXrHfpTV5wncoHlp8YHMqG8vnjwycUtUBTDl7og70Nexuz5lNYLMIuVeev9MROYx01cFqV9DkyntPUaNQFk9Q/sbLA2AUt5x+0lJ5LB9mVGTEF2JnzcXblOjrEF5F/Oy93DuA/OW6Kf3VitAwLrs398zyjPj+KZb7ZkP4Q1nVu4ZQGZJIztuitt3JCojGbp18xOg+3tQyk9t4GohE3Tv7/BhAgaXM+9mhMHHTrqJbvvAZmYlB589k8TwpiT8qZxyIm82/hppkFEJtHeLavLm7aFWBdsf3ZBNZ6IiR4XhmjxuszoKY8LaXl+g+T2xFby53lBkd3t6WlJ8mAwGqipPpoG03SPhfyaz4E/fr/GtnHaBTID3w2FI3fg8Me7ys9LSsB4hoVswWJLeNp/WuLrYAL0vK9dFJtXAhHqRz5mzLWE/KEF310/BMNcFwfFR0EcSOnatzx6+S7QastK+I+uMXFeNJzopb4RBBdeLi+7UJ9/0XeEufK4D3GO92/UYnGIbG+6v9Q3E/Kb9CQ3W62TJCev1ewru4Tce2xQxRWzJO+qa6sH17mC/OaoyLiIErLQzl1SaaIlqdFTTTUzjIBRrRqx3U4cEj7InPuX1C6y/o3fp+lKCSCa3+d2nmiJqGSkP9aJS7JOgt8+U4cQB+owCx0mo8MaHeqwCB0OoMMlaerwDh346BC/ijooCKnDQnRQ7qAOgmbqcEKdOkiVlIgctqODNTrwv1AHFjqkowMTqMMUdJBDBx6LOsSiwzg65PZTh3k/O4gdEfXACa5k1KEDI95sy1MxdzBPMKyOEpODmPKHTo5LKmC9k9Bs9ucKUEiQnju3lAUr5eIVU1tfQrWiw+PssnqwuyFoic8/Cv2hI8fq/LLhS/eXIFduPWx7vFjx7MOj0FASXOF48SZJ74ieF55cAZ6Ct24yMSwocFPPNXvLJfVWeV7TzIx/9MC9vl2Hl68Xt2FHzuKX5HzYo3LT/RVEK93+uasTi1Sdej3584HnZE5MjD8nup6YS1wL7fc+Ss49nKVVlHuH1J+QXqkQX08eBro8XnvuKEmpPvDG1ygTOsSTBRHOFeR9+4ZlR06zSKeTwELmQRF1sMgV9cBp+pvhnKGvnJVaCg9jqUOvHHXwQocV6NCRTB000aERHQzvU4c5bOrwCR1O3KMOp9GBiw5y/dQB0OG9PXWITHkuctBFB390OIsOr9FBCR12oUM5OrSig8116nAVHSZNpA68JurQ/LMDM1rUg2ZLIcMfHZwXpqh4sk9Bvezt1MXtU+GwYUv/1r5WWGqctUb3cx2cfqM/3GDqCFW3bV5rpTRCfcjmPYVO7ZC1I3KOXqQrxFpvWm/yugiCCjwmDNi2g5XavaFitivYrP/rNWtJAfmtM1Pt2Ms6aFtnaFS0zBEOvZevMOHWE87i0BV/Lt0Lk2rbpn6cI8hXu/bgy6WJLeTOPnNJhSt1ZDK/t1Gyy4Hctf2m3TmhgcSoEE+2UTvx+nN6T66jK3n0sKRtaAmXJOSUGIztaCcZm7dfqHF2JR5530KHdryA0a3FyeXJdYQXGrCg9ZsD4X457bA76S06cOj3YXsmQ3psTVKEeStUzKMOc+JTRA770UEZHbLrqEPzvxxqjahDBDqw0WF0MXVwQgc9dNDXpw526DCwkjocetsicvgNHVLQYeIwdXiEDrfQgUeoQzI6xKGDxlrqYI8O8tuow7tw6sD52cHnrqiHB3pcxnx0mHovfYmEnCssDRerPOQvAwqqdfGv5vIhI8V57e8nmkHV8JY11+s4xE3oVq1w74IY3YxDh891QZyO4lU5K29oncmxv+lfA1+cTaKtz3RB0bBds/k+b3hXec/Av6iK1M/3e7NgZzM4+8wqv2lzHJaY8su+yn8gtSkNebytFvDge94q7XcD+W7Fe+01c3tIxdRN65plmonw2dMDvzOOkw/FW9viV30gDUWhO2LMusiKuy5j9Rre5Fm3+8bvBq8Iq1wtu9C8i/Qvkip+v8qb8BwvlWSWVMNMRmfLxIXNRNZ6T8AZw+PEvEYySmz0Azo8oT3cLmVECXenPrn0GTbdpg5aC8RFDt8WUYd76OC+gTqkosM1dNioTR1mz6IOw+jgO0IdXqIDHx3Gz1EHNXTwSacOWlOpgy86ZKHDg0LqMIgOr9Bh9A51aESHk+hgvo461KLDEnSYgg47f3YQOyPqwcf9FSMbHdzeSctG7XSHBbnHNR+vlgNGtGmQqv8QZAnG5ZMmvAfxZ37lOiZuEKEozdKc2Q/VntkhxXF80B3UdRmN9AOXI43K2v1NkP4Xs9Aikg8Sj+yvvo/wg9lHA5oPbmskVRLb9t/kt8PR/YVtH9e7ge+5qpDEw31k9rdHBX/XskC39Lulr9VwvsDZ3IdV/5WUTKkOci5qJ76xN5NcpNyIbXeHreOpPhKZzBtmO/HJ+lY+f4GHHynj9ajcft5Izr69utzBhU9qY+q5kZ5+pPW+TqCmfhOwTm81Ua5uJ12Tsh8cUnQjyVZaX4fe9GEPeaIexKLKGZfnyhiUkSHoqqcOZ/RcRA6q6JCODhZ/U4dodGhDB0UhdbiCDmnoEJtJHQacqEMdOiw3og6e6FAhli1yqJWaYPV/h0F0yEGHAl/q4IwOt9FhgEcdpn6gDhHoIHeFOmSggwM6eCpSh5R/OLBFPVhoFjMS0KFqgnypWpUnRD7s7e9wlgffQZs3WXwxjsHk1pqsUh6sGG8WG9Dwgv2rN5BvLiMwoDrrWMuBPjAUZ0lfPxsI49aJNmF7O2GFMKFky74+cDmZZyd+JhA+NDOrrWd0kLy3Vjau2TwQy1Jvei7vBbanslkFpd+IrcLkhezVh2HBHu32joyxfImvByKMo8WY6WkOVh6BPJK1dnRtXJ0neS7nUS3+9hs5VHuFKzDoI3kt3U1vzAPJyhe+G0e2dZDq278rr/6jj9yVj9TMswwkCgfbg8omdMIZpXXDS67wiPCOwHpBlyfh121naeuM4L7g0h7Yl/Lenh6pfVYmxnEYmy5yOLGOOnj+y0F5lDrYoEM/OnAGrEQO/eighQ5O7tRBiA6F6PD0CXWwRwfJedRh7kTqII4Oj9DBdCt1KEMHO3TwbqAOG9DhNTqI/UIdGOiQjA5T46jDwM8OnBRRD627Gxg8dGBMeaC2NsUH5BgFC83/MxP0mcbnY6R/4ZwZ2G5Rda0b1IiUw2IJXyAzU+vmp4pzpqStVt7nOAgrIxynezpehNcxlVXu7T3QPC4lqW03CE9Y85RW2l6EpFtTj7imfiK7ol3gN+9uiPCctuDgoA/IeGq+XGomzqyPsvmw47A9WFxlxSrxxCBUiaWV/lSSKRPlYXx/Szcxne5qrFrjQ9ISXwyPWIoz3Ra3hHkYDZJJ8Ze87/9xkdjM9D8C7Z9IuJpG4tSdg4QHRW+GN18kqjYhla9CemDGaddUsrebyAdasJSafIiehG7QzEviHNpDFj1PRnUwLkYvmufRLcnpl6IOSfu4IgctdDiGDk361MEQHaTQoTCUOnSjQzs66FlThwR0OIwOZv7UYTo6bEqkDmfEqUMUOoihw/lfqEPuvxzqblEHT3QIQQfLVOowBR3WooNCJHXQ/4dDjKgHdmlbXhw66F77NePGLj94YLZKqwBmQ/o0g9htc2Q58TXFfi8P8WE3O6/Z94QfLGFGDPselOJszAnVeu8lhJ2zNXQf7w2FX3W0Lswq6QPl+0FFM9yFIG5k2cf+byjUVkQtcdXpI5ev7GR/MPzxHomNepJWfvC9tbO1bYYUUzN0872NNo6QIO1uIKwSh/0br88+Xy7D3Gmn42okwydBCxbntK73I8Un1AJMlaSYEef2CBX2CUn4wC3ZDvVQopKnGZVh3Ec84o8XCfYLyZqwi2XBK0OJ27WICQWJfbBpnCsdp8wnbUlGdwY3+RHu+O9nEzdKUQefQnrvtjjJsNLLuXtgWIaTH0EdgnO1RA7x6BCLDqaB1EETHZjocONX6rAKHdaiw6bN1KEIHULRQWZsg8hhHB2WXqYONitPixzM0eEPdFBQoQ7V6HAVHW4IqIMuOnijQ/5N6nACHRzQwes6deD87MCsEO0LpnYn4xw6CM2mT96tEQDCwbfe61lzwdndltMtPYNj57V0zyulXvgc7F4j3+kPf71mlj6tk+X07Zxl2BM6ApeimgYEyWEAl2UdHXKGwPrY/Ht2QSOg3dCrYp8QBnXweb76yiFyxkXgoT6lF+RsQ089r/SHFwVBSnvZskwOOaWaNM0ZhFkaX+RCJ8HiEJUnsV3yzOL2p0/CPwrIvR7Xmsm3/EnTyXeSFldlmcv0e1xZtiNkNJl9JDkojFw4GcW5s3mICJIfZvgeGSGelY1GScFh5Hwu42162BAEj644JdEvIANj07oWZviT4dpjn0PyZHFf0HO1j0snwyLkbFjHqDwnezd1yCpvEDnY/8vhaCh1+C868NDhewx1qESH/ejg85o65KFDADpYu1KHPHRoZlIHvvQykcMSdChEh7Ze6vDxXw4esdQhHh3q0CGhgjrYoUMcOgxKyYkcxF//5MCspP/Nr5kMe3RoXZGYv+NKIFSldWpM0lQGtUfqN9r8FDn7VgWtkJzWB+tqP01NnRcIUeqlrJtSMzib/6ph28wZA12x555F8eEgqb6sOV1vDMQtQO7ijDEoXH2sSDImHEgaZ0Dn2SjZelTjw7axXhDXa1w0Ihn4477e6xL4Y17NFz3732c6g3PI+BNjSwkQZudcz2QpMgNaTs+0auwlHXPquezGAHLi8LXJWz7JM8Nde4wUBKPENP/WchP/cLLOSy08sWaUjPIv5xr3j5KK4LJJhwPDyeQG44nzFcfASZs7srqzl3hc60xR6QogpralGg9/zEt7yBL1wNwq/2xc6Th71SlFzuhy6mBxlSdy0EOHA+iwpo46pKLDKnTg9XNFDqroIDxIHeYaUIc/0eEwOgRoUIdt6DA7nzoITSc+/b+DbA51MEOHBnXqwEaHQnQYf0oddqFDHjron6UOKugQhg4twdTB4h8OOaIeTFuln037lTr8D7bK9ZI=AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAiwQAAAAAAAA=eF51zG1Q03UcAHBgCBk9Ccf0QKcuGY8FIkdqyq+lqMRT8eCBQQYXYOrSieLGNkrJDgaODdxATcAZhrI7YDBCSL+boJeABMYYM0a45UkiM3FqqFjd+W0v/pevPu8+hfH9WTXOR8DrzuVnvqvlkFEe85VHrRyaUwbeUodVwHUz2+9QYwl4Fo91KUfyYW4nvXGOKoDcPzXqItTkkhWf1fW43uYR13fVBvW3u8lccXXMKn7PjxNxD0d61lYAa+cfzgyRGM69mrjeSX0AwhOMVxcY+LChPevu6qH9wE03Jxe25EPs4so1rdsKoCTIwun9swBOfLzqt/guPjQ99Zkd4HDgv3cKXz/KuxLfOMr7Eb5l+H6HbyvlbabVvjZVVg6MwgRdXkQeudEoE91bKycD44vqGssrifS8mllCiskG7zm/TKfng955LHHG6Rh88DNX7tmjBO10qheXpYT6sqqCh0yF/W3A1xdfI756yrsJ30F8I/E9j+9Jyhvc0SzQzcpg2ayPPIuhJDC/L7q9tpm4bDELkparyZbsh3cSi+oItyTUP03Phzd9lgU9oqugoVFiNVZrYK72aXFDnAZkPyUNTIWctb/++LLw7caXhu8n+O7Cl4WvCl9XfOWUN3/b76947ZJBuxNRbOxsIfPY7fW6bB1hiWsuqlU6cqY+pvBmhoZUTovS73rzQawYZR2XtUNS2oMnf23ugtAzKwUOIV2Q9riBmVn3g/0V4NuKrzu+/viq8K3DV4rvZnyD8d1KeV+vOugiGZaCtCxv44I2Lamo2XtWwOkjio6wjsdNfURijGAwD+pIyadtwsAwHhxlp5ij3LogIb2Ddju6HyTv3C5OZfXDdtHLYbuPXrS/b+ArwVdGeaX4VuJbiW88vhX45lDepO2zKe6BUvDeN5nr436F8BJGjJbpIeJHp1liPPQkvDRqZN3wFcKFSQV7yX5oWmLZZovthUGmWNBm0MN2d7Lw0iU9lM4Edgbf6LG/yfguxleEry++Yfh+ia8K32F8v8D3EOX1DfmwvKBXAoJoAS+JP0gO197MXDsxSthixz6Gq4mIHm3YcX14kOhNx1Xh5n2wPnuZWll0DXLqrLSFOhPseUmbx2wygQ+9TfR28jX7S8dXSHkj8BXga8U3Ct9MfPe+4JXUGNbFOh6G+xrBeGiQgYwOOczI3SzklHgyl+llIWzncyuzvzaQFs8noYnCvdB9TGk1BozA8UQGj3AtQEJ7HeM+/9eMrcnNjw32Nw1f2wveSHzH8dXiW41vBL5syrubN18vnRLDNy5VHm5KEwlpcQ/yeG+CLHebE18ZO0F8HMJGaDYTUWqOxCnu7YEn/kM3bIfHIHXprWfB1RNQY/K9Z1BMwNLGExpOxpj9PYBvKb7B+K7AdxG+O/B1DHj+bsZXia835W3Vcur1siLoPH1ray3HTNY8WCO0zbOS0Mnu9hiGlXQKi2PnVZiJ9iS9/O9ILkT96vQ+22gG/k56/dUcK9C+5wm9M6wwtqks19Zttr+X8b2A7yp8g/G9gK+38vm7CV8Bvk9P///7Dxf2wQM=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAArwAAAAAAAAA=eF4txdciAgAAAMCQWSFbJCuzsjNDiuyMyo7y///gwd3LBQL/WtzqNgfd7g53usvd7nHIYUfc6z73O+oBD3rIwx7xqMc87pgnPOm4p5zwtGc86znPO+kFL3rJy17xqlNOO+M1r3vDm97ytnec9a73vO8DH/rIOR/7xKfO+8wFF33uC5d86Stf+8a3vvO9y37wo5/87IqrrvnFr37zuz/86S/X/e0fN9z0r/8AXBwTVw==AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAKgMAAAAAAAA=eF6Nlj1rlEEUhd9GQTt/gLY2VloIFo5WfrRpLAyIEO3EUrQREQwSIfiFiq2Vrc3+hMFEhAVhqowMBAYCTm0hkmTPLHPOveJtlveZu+fse7g7M9P0f/Xh/X7Ngs2j8HMHNXf6k/DDyo5OEX7noHYd/Sp8e2u/9hzfFv79fkuOZ5tH4cjB7k+Ob3Z0inDkYOtX4cjB9m1h5/ipE9ffzcJKPnnx6O1bfZ05vm/zKBw52P3J8c2OThGOHGz9Khw52L6tv8dExXycB+ZR+DgP3J8c3+zoFOHjPLB+FT7OA/tiHuIin/s0D0s+zgPzKHycB+5Pjm92dIrwcR5Yvwof54F9W/+9ExVz5GDzKBzPdn9yfLOjU4QjB1u/CkcOtm8Lp9d/bJw/Ow+Pvp9ZPfbqQV9njhxsHoXDz+5Pjm92dIpw5GDrV+HIwfZt/XdNVMzH/YF5FI4c7P7k+GZHpwgf9wfWr8LH/YF9sT+kxf/lMe0PSz7uD8yjcORg9yfHNzs6Rfi4P7B+FT7uD+zbuv9kVqacZ9KPHJiP/0PuT8LHZ9YpwpEDc+TAfLxHsW8Lb1+svbn5ZyfcvfFp+9nDp32dOXKweRSOHOz+5PhmR6cIRw62fhWOHGzf1n0mKubIweZROHKw+5Pjmx2dInw8L1i/Ch/PC/bFeVEW++d6X2eOHGwehR/6zZ3+5PhmR6cIH88L1q/Cx/OCfVvXm6iYIwebR+HIwe5Pjm92dIpwPNv6VThysH1beHLt97dLa7th8+qXveefN/o6c+Rg8ygcOdj9yfHNjk4Rjvex9atw5GD7tv69iYo5crB5FI4c7P7k+GZHpwhHDrZ+FT7eH9gX94e6OE83+zpz5GDzKBw52P3J8c2OThGOHGz9Kny8P7BvC+O5uizmyMHmUThysPuT45sdnSIcOdj6VTiebd8WLmxdXln5uhdWP/48cuXey77OHDnYPApHDnZ/cnyzo1OEIwdbvwrH+9u+jT65GuU8k37kwBw52P1J+GFlR6cIH/d91q/CxzlgX9wnfy3uV6/7OnPkYPMoHDnY/cnxzY5OEY4cbP0qfLxPsm8LfwGHmV77AQAAAAAAAAAAgAAAAAAAAGAYAAAAAAAAnAMAAAAAAAA=eF6F0te7yAUcx3FJJHvUoWS1SMNOIidFRmUnhU6FSFtDQ46VRLQU2YVoiEpLciRCSprSQKq/w0Xv90U9z+/5fG9ed5+b77uk0r93AtbE0yr992pgI6yMtbAE/7/TGE/E2li0czpWwTpYtHMGnoR1sWinCVbFeli0cyZWw/pYtNMUT8YGWLTTDKtjQyzaaY6n4KlYtOMf/M+F2BL9q/++AFugf/FfF+FZmPb9k/+7GM/GtO/f/GdbPAfTvn/0v+3wXEz7/tV/t8fzMO37Z//fAVth2vfv9tARW2PatwP76ITnY9q3r+bYGdtg2rcDu7gSu6Cd2V1PvATtwC6uwksx7duBXfTCrpj27cAueuNlmPbtwC6uxm6Y9u3ALvpgd0z7dmAXffFyTPt2YBf9sAemfTuwi/5YimnfzuzuGrwC074d2MUIvA7tzO5uwGvRDuziRhyAad8O7OImHIhp3w7sYiQOwrRvB3YxCgdj2rcDuxiNQzDt24Fd3IxDMe3bgV2U4TBM+6VoF7fg9Zj27czubsXhWIpF+3ZgF/fgGLQzu7sbb0M7sIt7cSymfTuwi/twHKZ9O7CL+/F2TPt2YBeTcDymfTuwiwdwAqZ9O7CLB/EOTPt2UIYP4URM+3ZgFw/jnZj27czuJuNdmPbtwC5m4aNoZ3Y3Ex9BO7CLJ/ExTPt2YBez8XFM+3ZgF0/hFEz7dmAXc/AJTPt2YBdP41RM+3ZgF3OxHNO+HdjFPJyGad8O7OIZnI5p387sbj7OwLRvB3axBJ9FO7O7V3AB2oFdLMXnMO3bgV0sw+cx7duBXSzHFzDt24FdrMAXMe3bgV2sxIWY9svRLlbhS5j27cAuXsWXsRyL9u3ALl7DRZj27czuVuNiTPt2YBebcC3amd1txDVoB3bxLr6Oad8O7OI9XIdp3w7s4n1cj2nfDuxiM76Bad8OVuIH+CamfTuwiw/xLUz7dmAXH+HbmPbtwC4+xg2Y9u3M7j7BdzDt24FdfImfop3Z3S7cgnZgF7txK6Z9O7CLPfgZpn07sIu9uA3Tvh3YxVdYgWnfDuxiH27HtG8HdvE1fo5p3w7s4hvcgWnfDuxiP36Bad/O7O5b3Ilp3w7s4nf8Du3M7n7DA2gHdvEHfo9p3w7s4jD+gGnfDuziCP6Iab8C7eIo/oRp3w7s4k/8GSuwaN8O7OIYHsS0bwd28Rf+gmnfDuzibzyEad/O7O4f/BXT/nFuhFa4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAsQAAAAAAAAA=eF4txRuQhAAAAND7NEfRzcLBzlF0s3CwcxSGYRguLoZhGIZhGIZhuBiGYbgYHPSevI+XQ+hPf/nbkX/86z/HTpw6c+6b7y5cunLtxq079x48evLDsxev3vz07uD1OPTJZ0e++OrYiVNnzn3z3YVLV67duHXn3oNHT3549uLVm5/eHbwdhz757MgXXx07cerMuW++u3DpyrUbt+7ce/DoyQ/PXrx689O7g/fj0P8BDTDBAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADgAAAAAAAAA=eF7j5YUBHpoBAPDXBLs= + _AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPRM9E1NDMy0003MTA0SEyxMAEALCAEgQ==AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAyw8AAAAAAAA=eF5d0fkj1WvbhnFUpJChpEnSpIFGQ/nmRqaELVOFzEmFREU7IUJRpjLskrBDKJWpiXWttFoVpZKkzCuZirIKmXbvft3X88Pz/Afn8TmXvvfzdd16HC6VhBO9VZLwsvvvxbGHk4nCLYMiXn8RJN9R382O3AbftZdr3VFPIDYz9H6d6wJY+0rh53RPK7D6eCbt6ftdcEpB+de1dwDkkqg239EKpMPirR11roJszFju21tFYOm9MGTdhm1QZXXJx+N1PkSEuC6W1FkHRoYZx0RkuSw1t52RmsK3QVZp/F5OdBFR++7k3D55G7HMWTt5k0keZHplKqbmA+n5Z73sdH0rYup5Ou3jtxRIylXrfVUAZO2dbU9mG1qRSYaBwX5+p4jVl4FrQYlF5Nt55ZJAqW0k1DCp+FtnBolwOqRVU3GkbI6+mERMYDqjWV6dky2VQzTkuc8K2o6DmIK72MU4SYjp83SPF8qFspy1uvZ32bDo+bSYx3utwXOdqGKQRhZIql5/cflxJcQ9rP+1epEz2PqUTBK0/gtW1suJLSqtBFXJxwfOyTnDiOC09kJyAurPnfi7/TQbeGofP61Yag09OiceNlwNJrWgHuBkx0BTfQh/+bIa1rK7q3ZIlZ0jMv0vn+ntYxNlszxNrd9WRCvH6kFcRTgRWsGcE7tYSaR+yp8vE3L+9zPlCoN1+qCdfS30dlIliY8PU/Ga7Ez+rFD1F/ocA5MezipwPMQmVd0Ka9NErYkhR/sw+/xl4BockDT85l+WEfimQMHmLXNgzoJMmznpsGwBdeBIe0w4uKNDITo4PaQOPugghg7Z5dQhCB2WoIO5OHW4KUQdGtHhkzZ1SECHLzXUwbz3xIRDayl1kEKHD+igig6C6NA4QB16llEHBh0epFEHAXSYjg4zO6nDXHTwMXY3GJmSzQw4Kq8I7n3BBKLD6+WP8hVz/KHwL58vtQYS4O7jVHSQ9wJuvG2w72yuhs0u4j3CFa4gMP+KSsrNp0Dm/LilzK0HXn+HuW7pISCnjQu7nIpBvaVjlWtZPeyOPNh8P/cQ7GrpHl5tm0syo1Wri1KqIbFg8KFcoitILy8lH4oeE1MLzUVde7eBslxrt51OK6uy6sr16d3PSD4/+dJX12piK9BhsMPPlYjP8xxdNYND7P/4cS8trZ4cm+TrcDXsEAlKk0t5pH+DtEaxmn+n15Oogylz8yMOkbmWe0y+zC2EGeV10ad8q0l6a6xPdqArcZgZnFg8nwvLj9d/9hhPYKRfCurX5FcwxVz1Quu5VdC1lDpsUPeecLBEh3R0YHlTB2F0UEOHsm7qoIcOKujQeJ46qKLDNXSovkkdhNDB3J46pCc1TjhUoUMKOgxPog4y6GCFDuljhyccbqJDIzr4WFCHaeggjw6pHdRhFzqMeW3qWvDjJqNxKm2tEu8u8xgdBs1/rPSdcQQsGtJEkm+KgmLx0s0CGa1QZxRtJvGpDix8o7zfb/eCt5vDu9MlGiBtcCT16X4etBicelcX7w8tKR7zgjlPYGT3+pmWbjyQ/c1TbYjyhwqbuJHcORUk9/6Z8TXsOpDn5+5RXegFCSqc7DUqH0hpNrcjYL4FGO383Nqm0slqnP+dtdathaw/amlUeamOnHkekmrzzZPoJdStd9/9gbwY7DS49wePXHmnvOWEjz/5Z0Cxse1ZBbl3PH7YawePbM2pDs339SdlW8LExe5zIC79ZYxWVh3p8Um3uzfmSZYk13xu2P0RKhzsHz4Iz2JuyAQtkdO9xyisFV9bt7kVfppShyV7Micc5v+Pg4YHdeCiw0V0sDeiDqXoMIgO4b+oww10KEAHpV7qEIkOV25Qh295vRMO9eigiA5HONRBFx2q0CH0NXUYRIdidBgroA6ADlfRQdqBOsxDh2eO7x7Fu5cw0hk6FWKC7xgldNg4e1eseJQf6J3h2r4XEoXS5Lu+B6t6wVtfi92/txkKLedsTT3iB0M2JhwJ5S54Kd2xOehkF3w9KDmivjsYVMQ8hWvGa8DheMf53/5dYC6t4rjGIhhOHspruKb1hqi4Go9U6jWDitqbaDdHP/AJubFc06iT2DeNzIwbtgHjK72Q7dHLco6aJc7u/EqSy6qyr85qJumq3jM36viRdie10Hj7TpJYHrsrwqGL8A7s5V9YF0ymJ9Q0PY97Q4wT35SWOHWRSwkGg44bg8mbjDk1X0NqwO2wJfmp2ExiSjhqZdv8yGutfvnL9Z0QGrTeevR2OaMxTUrX066K0U2wG317sBfOyFCH3MYnEw556OCCDo021EFgJ3V4jg67PajDYnRwRYe++dTBCh1WooPxBupgiw4r26iD2ppvEw570CEKHeo2UIcedDiLDqfOUgcFdNiKDrWx1OEGOnijw19s6sBFhy0bjHZvlyhkng1obrQmhYwFOtTu2O+flHQEQldlcy7YToN0Exmem/0QyJ588W72Lx40B/EzBI0CYJKAvnFTHx9eZ/2xPz2xD2IEhJ4rXAiDO8O63SaeTWDC6vQYj+2D02agGR4bBm29zwOEHzcQmdmisYadPFg5mDF8Yn0AXBW9avLyFJ+YvTJ9Ga5nB5+OrR4o8OtnKcUK1md/GyTM+OfH7lU8orxf5cILiQAyo0JogV00nxQXrrAz8O0jf+dFxIQEhpHerq5iRrKRhG45pck70kdKtk+dtDoojFy7fj4gbbARMtVFdHa95RGz978jhuQCiLdPU+0bLh8Muc9A26WK4bzKWLNvuIl5Zn5b/bPKELw2pQ7RptcnHFLQYTI6XPenDgLowEGHhMnUoQgdbNBB0YQ6lKKDGDpIjFKHZHQY+0Ad4qzWTzgsQoeN6DB+ijpIo0MhOghdow7i3dThDDqcN6MOZ9ChGB2Sa6nDPnQ4drIo7IBAEjNfIfJW+LKnzHN0MBa0UZ159Risc3olUPtTDFY+nL/O/KMAO71SIc8IOsBycLuuuPxJkEu0EXhkMgrzxRUPj+zkA/vC+6PiJyLBznBHUrXsZxi8ckVkwIoPqhp3jq7xj4TD3HlG+abtZH/bF/tNNzvgwKAV8034JHRU1S3b/nmEmGVajq4SdgSW65xqpYYfrBvLBVMuZwtoF+tuTL54voPkJXE6vJoDyfY9iyW39I2QrH0+3I16fKJfn/gHyzmSWJ497d56uJ2s0o/bWajPJ//UJD/Mdo0kHdvXhLm1tIPsyP2Wa0kdpPN+1KBITyBZobXpJmvZKKQWTOp3HOMyHpnsnZ7O7xj3ENuFGRwBtv0/1hMOn/dXTjjIo8M5dKgZpw4S6LAEHeLSqIMBOgilUYfTytTBEx180UGhnzq0ooNGFnVQ+D57wiEbHa6jg9El6qCNDrnoENJEHfajgxI6XK6mDnx0UEGH24+ow8r/OLw/wxP8O4uZepglxD/7mPFGh69Sf9q36R2HNg2fAo3VknC5pP2O+pAwu3YGP/51ZA/k6FZO7hoJgbiGFMv5KUJsKV/7i7y9A+BUmaHe6xoNa/oefnia/hU84ZZLkssAmFp2pRY7RsO9NeWPtNq/ECfbGcva/HpgZsvue0v7QsCqO80tZJ+Q9uZgpeiAxc7gqeTivOz7AOuv11O7I7jC2l9kFlYNmveQ7RX7R1+8DyHmvzXuXj8opP3nlfaTK8wHiN3k7OfyRtFkeZmTb9+Ur4TlOGrxescAYc8ZFWGMo8mRXK9uGa+vkCWd5f7btod8vCXH12gOIZUf1WR1I4TYDpp7DDMtPzLfA+wDC389ZQ4tLZn+hCfM5otTB1Fn7wmHeHR4iw6Ptv63gzQ66D2nDtvRwR0dnjhSh5vosAsdNKupgw067DtJHQocPSYcLqFDLTqI3KMONugQgg7d06mDEjqUoMPpudTBEx3K0MG6kDpw0YGjXTKZH1tQ9rW65Kf51TrmJDokTBG0V10ZCN6iz3tvCUvDlG33U35MlmAnLj2SuWpHH2jINJ833xcGZw3yd98ymcq+vXjTwfNHfoGFuvsGrmksLLdrcZuVx4cHrXf7phz+BStHFxbpbIsF+esuWU8t+GTX6KVjRzX7gLvnwcaDu8Mg8kR6R87CqdrTj6jl+EW4wMymae5RpUMs5rHJxTfvxbXP7WjjPJrVR8p1vHu26YSRU0+XLQ1cPFV7Rrm1kPKeX8Q0Mafjw5pYEji3QEHfhU/cxR0WDjn8ImZ/6potWR9L5j5YIWaf8O+eB17+aQp9pOmF7NUtRmHkh9ncEENmKrue3+w3ybiFGZtVN7Iwt5lhi96sUeCLs38KUIfqtBcTDoNG1OECOqhNpQ5R6HAdHQQ0qcNadChDh5Ym6iCBDhboMNOLOkSgQ4oPdfDo/b33/x3U0CEKHaoNqUMkOkxGB+NI6hD5Pw7qMdRBAh146NDHpg7f0YFbuGSK2Os7ZezsDTzNB5eZl+hgskP0x1GpINjw7JdglJYMlLq2Zb8RlGGHdBlFhov3g7WI8kvx2nD44hnZZ8qRYB+rXt0adHoUtnm5ZKanxsMYx25abcoQtD5u3dkcMgpmTJyt2aV46NpSKck3GiIrzpn3OAj1g4ieLffpk3BQEJMC58sS2iEzhg833HKFMiuBY5obhlk9/T/sDvRKa6fFH5hr3/edNCda2q28EU58803ftaZJaPcpXHNoPjhK5lXcvtJ0Lp7cqVhwTHznEHHZyGK4XqNkJPli46yYeOJdbP1wX9gQhBW23F388zvZJPDIMq4onJxu+5xVXiLBDol0bNY6y2M4ix9nhdc3MocESxdHDUuzedupg0DO8IRDHjocQwfXqdThMzrsRQf5fdRh7hPq0IAO6mbUoQod5qHDdUPqMBMd/plOHeoKhSccOtDhHDrsQodAdPiCDi/RgYMO1ujgFU8dzNAhCB3kJahDADo4CU0TLd8CZXFpNy4yFc+YAHSY1DG0nxsWBH5V+Z+KImVA6KLIuw1/zmYfuC8ULCbAh1S7Xk7wtEgInekm8uO3NDu/y9OwXWwc5J5d+clJToB4NX9V7wXj4Ja66Z226DjcfOH+yicxARx7tC531o6RtNiw9cM/+6E0dYu/xVgEXFjz8Xziv73HJNN3PVFzA2G5VN/elmHWlBXW0bM9ZmsHrogw8mntJ417Nd1EeRFELj8va9U3ae1xW9+jrB9jJMhpPPVGZAJRLBfceqttjITKm/GKBsZIDJc523smgexV6iuUnTYOH311Ipw6+ome15E9f3dHkDPFzB+J//a+1U1neRxsZ5Z1mHSZtYiUKzkY6Cv6zWYrtlIH58XUQRYdXNBB3pM6RKFDGjqc5lCHk+hwAB0qH1EHL3SIQYfQTOqQig5rR69OOAT9FTvhIIwO5ugQtIs6LEKHOXbUQWc/ddiODkfRYeQVdbiCDg/QYeNh6pCEDoVaSZ8ereOWfcpin1vSLVUujw7/B7O9Mqw=AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAjAQAAAAAAAA=eF511P8/1HccAPDSGudMJQmPbclhvoXzLVfau8IjLVrRWvl2NPk2JN+awh1F4dFxQvLtsV2tL6Qz5UtDr7mrR8uNzcUD9ThxV5hv87AjfVH7odduj30ej/6B549PC8/LgbSMXPCVnWMeZOaDR+i2lm3PCmAVParMr5AHTRvkU/M7syCR52aofSkOmhe1VsWGhZAhvT4f7pEUslvA2Od1OZXsuE/3zUqMJ7TcKi9WSkdreJqRpHpLDhwVNFbvSEmH9TpvCw+cjgN1/tOGs1GhoGw9dz7SPAwSjD/vjD8TB1xl4jpBYTLMvWH/dN01BQZYZX5L6Mlg8LrI2UQUCf+6YeiGo2uC7jJ0F9E9ju4JdJXoPkL3Y4q7TMdacWz8NOzfHNtb5pVNgtskpnunLpDU08DuSSgnfq+S9qQX5pMXj0X6e3bGgfka//oPdUqhWVNg771GAKmy0mMFdT9AafQLZfWNYpWrhi4b3XB0EynuK3Tt0G1Fl4NuGcUF67O+nw1lg63GwRYLxSVCY1hXej6oJy7trplFZjfJkMOufsHaK6SEG23fKTkCV4LLwd24BpYM0NkKjwbgPNGeEOo2wB83bxi0Pb+mclvQdUFXHV0munJ0q9CtRleN4kopbjXj+HeTY1lwben42279BnLg4tjmuoV20rh8KoJhKiIzvsKQa6aNpHJrP/elKBaicga8ZgyaoXHYxodrJQZfe+Uu4WoxRF4VHkrOaVK5jejeQvcrdIXozqJbj+636Dahuw/doxSXzt94b3biFDjcPXOGH9JOZrNvpbm+/o0olDSDNLNO4sqzM4wZbifeUb52P3JiwLatKn5jtwjyxhfyxeu7QMwt3venZhdMJvxdOJ4nUrkr0WWhO4nuELqb0A1E1wbdHHR/QXeC4vo45UTLBk5CLdN+0PP2A7Lhfu0w06WXBDg9dLf06iVL93swttl3kOSak+umNKLhiXmexVo9Cfz8qflokrgX2plFuaXNvTDj8PyNY0+Hyg1F9zq6VhRXDV0/dAfRbUX3HrrzFNeS72nWdzUT/uLs1TDo6Ca8Uf8LI5YyUuHhbF2xRUaGNq3kdKpJSWQC83zM4Sh4rMMM0IyVQokNo7O/Vgacu1/PVFyUQWVTIO2DL6UqVxPdKYpbRXEl73HT3+NmLEnTe+mTAflZq92CUvpIpPsh9lYrBaHdSlWMOygIRGxXH67tI3S2Z2VseQT8qiat71nVD/67W2eZEQoIij8RFv2NAq70zGiPKvtUbhW6fIpLp7hzQf93A9Flo1tNcYXTBd9fFHJA7D8iLxiXES21BVlN4Bh5JgzdXnl4jFRIR3VLDAeJqfjgipm6MEhyyHO/kzwIp1K9HSXFY1A+2nQqlD8GuU4M1sqAwf/+RVeELg3dEXRL0Z0XvXNT0M2kuDyKy7rDt00WpIJ43aPcpzw5ser46LbWhmnCd4p76OY4TVgsnm7dJTn53V8xmVQTCtLY4I6rXXL4ZG4x3SR4GkaMQvSNA6bBVH95d4ZIrnK/QFeErgW6xeg6o8sMeOd2oWtEcY0o7j8Xdrw2AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAKgMAAAAAAAA=eF6Nlj1rlEEUhd9GQTt/gLY2VloIFo5WfrRpLAyIEO3EUrQREQwSIfiFiq2Vrc3+hMFEhAVhqowMBAYCTm0hkmTPLHPOveJtlveZu+fse7g7M9P0f/Xh/X7Ngs2j8HMHNXf6k/DDyo5OEX7noHYd/Sp8e2u/9hzfFv79fkuOZ5tH4cjB7k+Ob3Z0inDkYOtX4cjB9m1h5/ipE9ffzcJKPnnx6O1bfZ05vm/zKBw52P3J8c2OThGOHGz9Khw52L6tv8dExXycB+ZR+DgP3J8c3+zoFOHjPLB+FT7OA/tiHuIin/s0D0s+zgPzKHycB+5Pjm92dIrwcR5Yvwof54F9W/+9ExVz5GDzKBzPdn9yfLOjU4QjB1u/CkcOtm8Lp9d/bJw/Ow+Pvp9ZPfbqQV9njhxsHoXDz+5Pjm92dIpw5GDrV+HIwfZt/XdNVMzH/YF5FI4c7P7k+GZHpwgf9wfWr8LH/YF9sT+kxf/lMe0PSz7uD8yjcORg9yfHNzs6Rfi4P7B+FT7uD+zbuv9kVqacZ9KPHJiP/0PuT8LHZ9YpwpEDc+TAfLxHsW8Lb1+svbn5ZyfcvfFp+9nDp32dOXKweRSOHOz+5PhmR6cIRw62fhWOHGzf1n0mKubIweZROHKw+5Pjmx2dInw8L1i/Ch/PC/bFeVEW++d6X2eOHGwehR/6zZ3+5PhmR6cIH88L1q/Cx/OCfVvXm6iYIwebR+HIwe5Pjm92dIpwPNv6VThysH1beHLt97dLa7th8+qXveefN/o6c+Rg8ygcOdj9yfHNjk4Rjvex9atw5GD7tv69iYo5crB5FI4c7P7k+GZHpwhHDrZ+FT7eH9gX94e6OE83+zpz5GDzKBw52P3J8c2OThGOHGz9Kny8P7BvC+O5uizmyMHmUThysPuT45sdnSIcOdj6VTiebd8WLmxdXln5uhdWP/48cuXey77OHDnYPApHDnZ/cnyzo1OEIwdbvwrH+9u+jT65GuU8k37kwBw52P1J+GFlR6cIH/d91q/CxzlgX9wnfy3uV6/7OnPkYPMoHDnY/cnxzY5OEY4cbP0qfLxPsm8LfwGHmV77AQAAAAAAAAAAgAAAAAAAAGAYAAAAAAAAnAMAAAAAAAA=eF6F0te7yAUcx3FJJHvUoWS1SMNOIidFRmUnhU6FSFtDQ46VRLQU2YVoiEpLciRCSprSQKq/w0Xv90U9z+/5fG9ed5+b77uk0r93AtbE0yr992pgI6yMtbAE/7/TGE/E2li0czpWwTpYtHMGnoR1sWinCVbFeli0cyZWw/pYtNMUT8YGWLTTDKtjQyzaaY6n4KlYtOMf/M+F2BL9q/++AFugf/FfF+FZmPb9k/+7GM/GtO/f/GdbPAfTvn/0v+3wXEz7/tV/t8fzMO37Z//fAVth2vfv9tARW2PatwP76ITnY9q3r+bYGdtg2rcDu7gSu6Cd2V1PvATtwC6uwksx7duBXfTCrpj27cAueuNlmPbtwC6uxm6Y9u3ALvpgd0z7dmAXffFyTPt2YBf9sAemfTuwi/5YimnfzuzuGrwC074d2MUIvA7tzO5uwGvRDuziRhyAad8O7OImHIhp3w7sYiQOwrRvB3YxCgdj2rcDuxiNQzDt24Fd3IxDMe3bgV2U4TBM+6VoF7fg9Zj27czubsXhWIpF+3ZgF/fgGLQzu7sbb0M7sIt7cSymfTuwi/twHKZ9O7CL+/F2TPt2YBeTcDymfTuwiwdwAqZ9O7CLB/EOTPt2UIYP4URM+3ZgFw/jnZj27czuJuNdmPbtwC5m4aNoZ3Y3Ex9BO7CLJ/ExTPt2YBez8XFM+3ZgF0/hFEz7dmAXc/AJTPt2YBdP41RM+3ZgF3OxHNO+HdjFPJyGad8O7OIZnI5p387sbj7OwLRvB3axBJ9FO7O7V3AB2oFdLMXnMO3bgV0sw+cx7duBXSzHFzDt24FdrMAXMe3bgV2sxIWY9svRLlbhS5j27cAuXsWXsRyL9u3ALl7DRZj27czuVuNiTPt2YBebcC3amd1txDVoB3bxLr6Oad8O7OI9XIdp3w7s4n1cj2nfDuxiM76Bad8OVuIH+CamfTuwiw/xLUz7dmAXH+HbmPbtwC4+xg2Y9u3M7j7BdzDt24FdfImfop3Z3S7cgnZgF7txK6Z9O7CLPfgZpn07sIu9uA3Tvh3YxVdYgWnfDuxiH27HtG8HdvE1fo5p3w7s4hvcgWnfDuxiP36Bad/O7O5b3Ilp3w7s4nf8Du3M7n7DA2gHdvEHfo9p3w7s4jD+gGnfDuziCP6Iab8C7eIo/oRp3w7s4k/8GSuwaN8O7OIYHsS0bwd28Rf+gmnfDuzibzyEad/O7O4f/BXT/nFuhFa4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAsQAAAAAAAAA=eF4txRuQhAAAAND7NEfRzcLBzlF0s3CwcxSGYRguLoZhGIZhGIZhuBiGYbgYHPSevI+XQ+hPf/nbkX/86z/HTpw6c+6b7y5cunLtxq079x48evLDsxev3vz07uD1OPTJZ0e++OrYiVNnzn3z3YVLV67duHXn3oNHT3549uLVm5/eHbwdhz757MgXXx07cerMuW++u3DpyrUbt+7ce/DoyQ/PXrx689O7g/fj0P8BDTDBAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADgAAAAAAAAA=eF7j5YUBHpoBAPDXBLs= </AppendedData> </VTKFile>