diff --git a/ProcessLib/ComponentTransport/Tests.cmake b/ProcessLib/ComponentTransport/Tests.cmake
index ee4b9fc8bf2f929669b4396228078bf40bd6dda0..3d014099242cbeb4daaefadd024d8cd8badf11dd 100644
--- a/ProcessLib/ComponentTransport/Tests.cmake
+++ b/ProcessLib/ComponentTransport/Tests.cmake
@@ -930,3 +930,4 @@ endif()
 OgsTest(PROJECTFILE Parabolic/ComponentTransport/MassFlux/only_grad_c.prj RUNTIME 1)
 OgsTest(PROJECTFILE Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p.prj RUNTIME 3)
 OgsTest(PROJECTFILE Parabolic/ComponentTransport/MassFlux/only_grad_p.prj RUNTIME 1)
+OgsTest(PROJECTFILE Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r.prj RUNTIME 3)
diff --git a/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r.prj b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r.prj
new file mode 100644
index 0000000000000000000000000000000000000000..f5db8891e8f194ea0521f8d647dd65ab50f22915
--- /dev/null
+++ b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r.prj
@@ -0,0 +1,338 @@
+<?xml version='1.0' encoding='ISO-8859-1'?>
+<OpenGeoSysProject>
+    <meshes>
+        <mesh>grad_c_and_grad_p_and_r.vtu</mesh>
+        <mesh>grad_c_and_grad_p_and_r_left.vtu</mesh>
+        <mesh>grad_c_and_grad_p_and_r_right.vtu</mesh>
+    </meshes>
+    <processes>
+        <process>
+            <name>HC</name>
+            <type>ComponentTransport</type>
+            <integration_order>4</integration_order>
+            <process_variables>
+                <concentration>C</concentration>
+                <pressure>pressure</pressure>
+            </process_variables>
+            <secondary_variables>
+                <secondary_variable internal_name="darcy_velocity" output_name="darcy_velocity"/>
+                <secondary_variable internal_name="CFlux" output_name="CFlux"/>
+            </secondary_variables>
+            <specific_body_force>0 0 0</specific_body_force>
+        </process>
+    </processes>
+    <media>
+        <medium id="0">
+            <phases>
+                <phase>
+                    <type>AqueousLiquid</type>
+                    <components>
+                        <component>
+                            <name>C</name>
+                            <properties>
+                                <property>
+                                    <name>pore_diffusion</name>
+                                    <type>Constant</type>
+                                    <value>1.e-9</value>
+                                </property>
+                                <property>
+                                    <name>retardation_factor</name>
+                                    <type>Constant</type>
+                                    <value>1.0</value>
+                                </property>
+                                <property>
+                                    <name>decay_rate</name>
+                                    <type>Parameter</type>
+                                    <parameter_name>decay</parameter_name>
+                                </property>
+                            </properties>
+                        </component>
+                    </components>
+                    <properties>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>1</value>
+                        </property>
+                        <property>
+                            <name>viscosity</name>
+                            <type>Constant</type>
+                            <value>1.0</value>
+                        </property>
+                    </properties>
+                </phase>
+            </phases>
+            <properties>
+                <property>
+                    <name>permeability</name>
+                    <type>Constant</type>
+                    <value>1.e-9</value>
+                </property>
+                <property>
+                    <name>porosity</name>
+                    <type>Constant</type>
+                    <value>0.15</value>
+                </property>
+                <property>
+                    <name>longitudinal_dispersivity</name>
+                    <type>Constant</type>
+                    <value>0</value>
+                </property>
+                <property>
+                    <name>transversal_dispersivity</name>
+                    <type>Constant</type>
+                    <value>0.0</value>
+                </property>
+            </properties>
+        </medium>
+        <medium id="1">
+            <phases>
+                <phase>
+                    <type>AqueousLiquid</type>
+                    <components>
+                        <component>
+                            <name>C</name>
+                            <properties>
+                                <property>
+                                    <name>pore_diffusion</name>
+                                    <type>Constant</type>
+                                    <value>1.e-9</value>
+                                </property>
+                                <property>
+                                    <name>retardation_factor</name>
+                                    <type>Constant</type>
+                                    <value>1.0</value>
+                                </property>
+                                <property>
+                                    <name>decay_rate</name>
+                                    <type>Parameter</type>
+                                    <parameter_name>decay</parameter_name>
+                                </property>
+                            </properties>
+                        </component>
+                    </components>
+                    <properties>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>1</value>
+                        </property>
+                        <property>
+                            <name>viscosity</name>
+                            <type>Constant</type>
+                            <value>1.0</value>
+                        </property>
+                    </properties>
+                </phase>
+            </phases>
+            <properties>
+                <property>
+                    <name>permeability</name>
+                    <type>Constant</type>
+                    <value>1.e-9</value>
+                </property>
+                <property>
+                    <name>porosity</name>
+                    <type>Constant</type>
+                    <value>0.65</value>
+                </property>
+                <property>
+                    <name>longitudinal_dispersivity</name>
+                    <type>Constant</type>
+                    <value>0</value>
+                </property>
+                <property>
+                    <name>transversal_dispersivity</name>
+                    <type>Constant</type>
+                    <value>0.0</value>
+                </property>
+            </properties>
+        </medium>
+    </media>
+    <parameters>
+        <parameter>
+            <name>decay</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+        <parameter>
+            <name>C_right</name>
+            <type>Constant</type>
+            <value>1</value>
+        </parameter>
+        <parameter>
+            <name>C_left</name>
+            <type>Constant</type>
+            <value>0.5</value>
+        </parameter>
+        <parameter>
+            <name>C_ini</name>
+            <type>MeshNode</type>
+            <field_name>C_ini</field_name>
+        </parameter>
+        <parameter>
+            <name>p_left</name>
+            <type>Constant</type>
+            <value>0.3</value>
+        </parameter>
+        <parameter>
+            <name>p_right</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+        <parameter>
+            <name>p_ini</name>
+            <type>MeshNode</type>
+            <field_name>p_ini</field_name>
+        </parameter>
+        <parameter>
+            <name>r</name>
+            <type>Constant</type>
+            <value>-5e-10</value>
+        </parameter>
+    </parameters>
+    <process_variables>
+        <process_variable>
+            <name>pressure</name>
+            <components>1</components>
+            <order>1</order>
+            <initial_condition>p_ini</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <mesh>grad_c_and_grad_p_and_r_left</mesh>
+                    <type>Dirichlet</type>
+                    <parameter>p_left</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <mesh>grad_c_and_grad_p_and_r_right</mesh>
+                    <type>Dirichlet</type>
+                    <parameter>p_right</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+        <process_variable>
+            <name>C</name>
+            <components>1</components>
+            <order>1</order>
+            <initial_condition>C_ini</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <mesh>grad_c_and_grad_p_and_r_right</mesh>
+                    <type>Dirichlet</type>
+                    <parameter>C_right</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <mesh>grad_c_and_grad_p_and_r_left</mesh>
+                    <type>Dirichlet</type>
+                    <parameter>C_left</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+            <source_terms>
+                <source_term>
+                    <mesh>grad_c_and_grad_p_and_r</mesh>
+                    <type>Volumetric</type>
+                    <parameter>r</parameter>
+                </source_term>
+            </source_terms>
+        </process_variable>
+    </process_variables>
+    <time_loop>
+        <processes>
+            <process ref="HC">
+                <nonlinear_solver>basic_picard</nonlinear_solver>
+                <convergence_criterion>
+                    <type>PerComponentDeltaX</type>
+                    <norm_type>INFINITY_N</norm_type>
+                    <!--<reltols>1e-12 1e-10</reltols>-->
+                    <abstols>1e-15 1e-15</abstols>
+                </convergence_criterion>
+                <time_discretization>
+                    <type>BackwardEuler</type>
+                </time_discretization>
+                <time_stepping>
+                    <type>FixedTimeStepping</type>
+                    <t_initial> 0.0 </t_initial>
+                    <t_end> 4e8 </t_end>
+                    <timesteps>
+                        <pair>
+                            <repeat>4</repeat>
+                            <delta_t>1e8</delta_t>
+                        </pair>
+                    </timesteps>
+                </time_stepping>
+            </process>
+        </processes>
+        <output>
+            <type>VTK</type>
+            <prefix>grad_c_and_grad_p_and_r</prefix>
+            <timesteps>
+                <pair>
+                    <repeat>1000</repeat>
+                    <each_steps>1</each_steps>
+                </pair>
+            </timesteps>
+            <variables>
+            </variables>
+            <output_extrapolation_residuals>true</output_extrapolation_residuals>
+        </output>
+    </time_loop>
+    <nonlinear_solvers>
+        <nonlinear_solver>
+            <name>basic_picard</name>
+            <type>Picard</type>
+            <max_iter>50</max_iter>
+            <linear_solver>general_linear_solver</linear_solver>
+        </nonlinear_solver>
+    </nonlinear_solvers>
+    <linear_solvers>
+        <linear_solver>
+            <name>general_linear_solver</name>
+            <eigen>
+                <solver_type>SparseLU</solver_type>
+                <scaling>true</scaling>
+            </eigen>
+            <petsc>
+                <prefix>hc</prefix>
+                <parameters>-hc_ksp_type bcgs -hc_pc_type bjacobi -hc_ksp_rtol 1e-8 -hc_ksp_max_it 20000</parameters>
+            </petsc>
+        </linear_solver>
+    </linear_solvers>
+    <test_definition>
+        <vtkdiff>
+            <file>grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu</file>
+            <field>pressure</field>
+            <absolute_tolerance>4.5e-9</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <file>grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu</file>
+            <field>C</field>
+            <absolute_tolerance>2.8e-8</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <file>grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu</file>
+            <field>CFlux</field>
+            <absolute_tolerance>3.4e-13</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <file>grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu</file>
+            <field>CFlux_residual</field>
+            <absolute_tolerance>3.1e-13</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <file>grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu</file>
+            <field>darcy_velocity</field>
+            <absolute_tolerance>5.6e-15</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <file>grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu</file>
+            <field>darcy_velocity_residual</field>
+            <absolute_tolerance>1.7e-15</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+    </test_definition>
+</OpenGeoSysProject>
diff --git a/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r.vtu b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..94a2f338020c7d080604f6926b09cb9e6951ba82
--- /dev/null
+++ b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r.vtu
@@ -0,0 +1,47 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <Piece NumberOfPoints="4004" NumberOfCells="1000">
+      <PointData Scalars="C_ini">
+        <DataArray type="Float64" Name="C_ini" format="binary" RangeMin="0.4937798938039462" RangeMax="1.0000000102426312">
+          AQAAAACAAAAgfQAAIR4AAA==eJztmXk7Ve/bxklJoaJSylCRlEJJpOFUpCJkqAyliEIyJEVpnjT5KipFyhgJqWiiJIVSSkKSvfa89mxKCD3r9waeV7D8cx7H2ntd132e93XfOD5ycv/7IdB/TbH90BADvsVeu4YGGFinzkw918eAhWPWGc1eBtweh+g/7mYgeZfLEfdOBo5OcUsaklLPOcv2FooZWJClpbJbyMD64J/755AMOCY8zZdxGSD3eD15zWZgOHJ64g0mA1ql3xwOMhjQfbKD5fOLgXMxWt5OPxmQz6p4vuYHAyX9uSPWNDOw5N61pRu+M8BIeuXn/Y2BXpfjJ/d9ZWDKJq/UK/UMpFwtfPLsEwNy7Gv1/I8MvHEJ79T5wID+0XptnxoGPrKnema/pz43LbrXU8XAxOcLVTe8ZeBrllJ8/hsGrK95G0+sYGB3RULXyVcM1PA82wfKGEDlrN5DLxmoPzZ9pcILBhK5BS8SnzGgbZsWNv8pAxkd3r6fShgY7+eWdOAJAyan9VUMHzNgntnyiVnMQHDB2l+ZDxmwZG5aGVrEwLJ2hV7rQgbGllooaRUw4POLHf0vn4GmpXKOovsMxN4zjWPkUXXMdpu05TJgVpRux7xH+QkXfpXmMOD6ZF7TSEqb80K36GVTeU2p97TPYqDRez4rJpOBC9PSe4ozGFBPd7/WlU7189OpXUbp3+LuxMt3GVAbkzPAv8PAfLdAeQdKLe0OPShNY8DbI0vOiNIqfcMRubcZSNJ3L1lA6b5yvk5ZKgP5G81s3CjdtDDJoDuFgbs5FZ9SKPXYIL/CkdJUR8WY0ZSyf1me/XCLgdc244OuU+q/39RgD6XhOZMq11H60GLVKhNK8cMtV4fSoZ/f/mpQekDZ3XoqpXpn9x2aRamd84tC8//VeV3DdKH09FirqQf/V+f1g83ZlIqdeeltlG69ZDesRfW9qXM1fBel6hoRQ88oNeVezptErTfG71pMDKX+JbH7+JR+tQ1L9qF8LQv17WindFb2mGOB//NfPWP9X0qtTarcblC51E/rzlhO5bVj6odlIkpjXyrrZVI5Gikd2eZP5Wu3nyszpvJm6CYyRlD5Dz9xNiUotToTyH9P7Yt2a+GYp9Q+WUf1pjyk9u98fGnmY2o/c/Iv6ldQ+ys2E+s1Ufvd+b0k5ze1/89e1RTrUPMwcGu0vQs1H8pHp0ddpuYl3jB4yTdqft60piTOesTACMfbVw5T89Vavs28nZq3XasfnrYvZYAXVXeygprHdcmnza2fM3BJtSG9lppXn/cP67ZSc+ywSvdlfzkDny/oRd59Tc3nqvI/G6m5t7zZ6aRMnQPbzbVH6qlz4fDF+fxt6px8Hll6MIo6N9yAOoct1DkynPJW2aaOgbr6ojLLz1S+rPs7Lb9Qz1fUj1rdwEDtnxN5mxqp/Vnn5RLZxEBaUJlCSgsDJ2o/vatrZSA6pjRViTrfsw+M/s+JOu/q5XPupFHnf1rIvW991H3Qbfx84TYeNd/eV199pO4L267gY7YiKq9FYw5XSxjwS7752L2DmvvjTBNxFwOLcvV+X/5NnZvYbCUr6l6ape0V0UHdU8nPly8spu6t0Pd35qyk7jGFUE8yV57Ag4b9v6YqEGj4kjomfiSBxowjYUqKBN4wq9TiRhNYGP6vR2UMgVcrDafeGEvg5bmaYwYqBLoDEo1fqhLw37xizqbxBHosY0N6JhAwdBktf1OdQIvdDf7qSQQEBrxZXZMJjPQvKsmZQsCuuShjhyb1vbEfpbrTCaRmxiZztKj1hGdlFeoQuCoYqXF0BoHkHl+Z6ywCpsRxswX6BAZ3GXJVDAgwi2aM7ppDrcfJLLVtLoH5a4zu1RkRMFf4Pq9yAYHbOSHzy00I/HoqyitfSMD15IXct2YEFllMN6o3J/ApJmIxYUHAY4dfde9SApn7q3jqywm0PQm7tnglAfukFU3e1gTGDSo9iFtNgONQqPnSlsBq4yr9bjsCiw1ffzBdT0B5cKHafgcCIaLhgTJHAj6PxlxU3khAPs6iarsrgW26YXnP3Qlo5yav0NxCwKX+9qmjngSWVAQdFXgT6NUXmHr5ENhqOT79yw4Ct87WfNywk4D6hpFPPwdQ61tSErA5kMCXqPpWdjABv1frNA/upfysm6o/IZzAwJclw4X7CNxJSbvvFkXluc9h/vBBAn3ZVmcLDxGwUXv1yv8IAc1VFg0zjhO4MND9nnWSyufJnzv3z1D7G7F2R3Qc9bxCMHbDRQIXy3gZs+MJaIxfZzTqCuW/Y+o9YSKBxwa7NJuuEwgdu/JM9U0CxSZuna9SCfBVYjzL7hDQGetT9TqDwN5qDfPabAITYp4XtuQSsCW3LZbmE5i8X7t2TBEBA/WJ4UaPCMQ7e893KyGQ4jJJ/sQzAoVN2zqfvKRyd3ccKXtF9ZefbW5SSfUb13sh6h0B/Xs8pcoaKrdEnUeT6ghkWFaf31tPwCpVObGugcBBv6lfFzYR2Phl+trbP6h1163pG/eLgG57Nf8sQWBOgpb2KA4B6e3Oq+f5BO4uLt84SUSgZO9Tz2wpgRFjphUv7yKQsHeGV+tvAtH3R3sc7SdQenBcoeEQASWLqO0/5Jj40HMkLGEkE3WBIUxHJSa8w2eVq6kwwRsuGfw5non9sSNzH0xkAls8Kk9NYcK2YMjJdzoT0x1Xu6zRZYIojaoz0WNihLbg7Yw5TMwPkFlNNWJCb+6vxRomTKQ9VSqZZsaEYnz529kWTEw+eMDLYhkT53wPnXAGEy+iDZaH2jARlP7jcuJaJv471BPz2oEJO58fCl3OTOT7iY2N3Jmo8UocDvZgIqTZ/EDxVia0DFfcHN7BROXbHeGuAUxIWmJ7HgQxITS3NR4XykT3gjkzD+xjIqL5xhfOASbaVMZaex1momhv976mY0zYbP8Y4nmaiSpV5YXsOCaU9y54G3mZidSlRQbKV6k87Ev9864z8So/NsophfIRruc3cIeJ5BPGxgVZTCgl6f3alUfVN7qwb04hE363RJ3SR0wEK3zzKX/KhLzXp7KrZUxE7wwaH/aGWtdTCy/X91R9hfqc5R+Z+Hf1rXjBFyYmLb5nbvCdiX3f1M7MbmVirvntdiMGE6W/OWuWcpiQXTj7ylHAxKDtzA1BUioX581dF7upPsU1T0r6mFi0UfsGb4iJTSY+mToKLHgZj/2wTYkFU9dgwyxVFtIPB+V2qrOgferWbrupLBhqV23N0GYh4WDg0VF6LGwsPS8MM2TBSi/kAnMBCy8it8Z6mbGg2+yd12rJQh0hb+q3koWSHSr9HTYsKEz20Tu3ngXjuRE39J1ZsPsWub/WnYX490cfRnmx4JPnv2ruDhY0Dr6z4wSwkDg+IjdnDwurc93Ohkew4BvXV73qIAs5e5MvTztC9a+IeTVwkgXOpFmHWXEs9BRcvf81noXcNWl7a5JYWFCU//z9LRaIma2n6u6yoJYdLvmRw4Lcrso26QMWZnj4Ryo/ZmHf+Z03TJ6zcHJuZrD3axb0GYKG+HcsLN8V1FX7kQXz0vRClQYWBLsnztvSwqL+7gzzzGun8inRXqjAZSEueXKjv4iFAf3Zcz53sqBzLNERfZTPvzyjZ8MssEpLuZaj2AgYt2r7G2U2JuzZW+aizoY2fyFTMJWN3vPvO8/rsrE5YhZroQEbybzObOZ8NhJieL43zdiI9rLu97Cinp8dcWXGKjZC+XoqHWvZWL2s/79qJzaKfpj8y9nERsu10GPxW9n4LZjafWQnG/bqhsejgtl4NPe7ZlQEG3F1Ko9jo9mIj7Tdd+kYG5MyZy/NOkv1nxBjXHWZjcuet83ESWzgXWGYViobF15WvHXPZENnr82Wa/fZiH09PLa9mI3CmU8VTZ6zURbBXh5XwcYJ7wd3BNVsjHHatMWtnqo3mbR518RG8NKhy2hn41KXy+RKLhukeeMIRwkbZ7b2mBM9bIyf2dt8eJDy+WCwWnckBzXN6SZ1ypR2XpM7MZGDJV5L56+czkFP2b02BT0OXslWdXydx4HOrUNXchdxYOvgn3bOioO7/2pWha3m4GRRiOd2ew7aRkVM8HDl4PBEB1tPLw7qL+6fsdOPA8eqhmtRwRzUefcnJezjYH4Zb/2TQxy4blx/hTjJgfre6BuTL3IwKqbB0i2RgxXjlTJupnBAYk4RmUnpWqvL1g84uBU/PCX9CQcZTi2xY8s5GLHjV37sOw6+qn9J+vOJg18OqQGHmzgI9l3cP5rBQbI248htPgcvxq74vKyDg+PmHVPZfRzsVFprmSjPha0pvDeM5SI2s9F73EQu5qn6Bv2YzsXGeQaRBfpc7HKfEHhhAReLuQrR4Uu4yF6xIHY7uNiT8SlryzouSpvKP3i4cHEgKFVnpxcXm+dJow/s5GKla9HYxBAuFu6e8OBZFBdzH+yJ5x/lwld53l3dOC7sZ2+r33GFi+XyEsf8W1xUdpp3D2dyYTlwtNO7gIs13Z91K0u5qF5R93BhBRcNxJzD92u5SBrkF8//Rq03dLfRszYu3KNVpjvyuGjx8QsVybjoMUpRT+znYoJq4TJbBR6qurVeD6vwEGhg/bVSg4c+89VrE2bwYM9t27R7Hg+ayuyvaxfzUG8f3rFwJQ9tu/6dmb2Oh6y142pmufLglLYmc+5WHkZyuxSsdvEwbq7hDPdwHj7tPfnx4CEeNo04uDz7NPXejfV2bfE8zJr9TVf7Jg+nC4ZSdmfyUGiu2PWygIc5T2N7NJ/xsCB/xM8TlTwoz/a80l3Hw8N+9oiwZh4a1dt29zB5WFQmvXJKzMOZzS+ea/3h4V17wsPX8nx8SjpQFKLCh1qt7zm9KXxoKpRHcGbyURc3C0Xz+dhwdefc0xZ86Ie6T9+5mo9zmsH/HBz5CEuZMAEefMw/MaC1fCcfpy/83WETyoeSNDDfPYaPZ/FHLcJP85EuNmu89h8fP6MXlL+7xUdV6sg3/7L5+FL5frptMR9xppufXi3jw+Ol2RFRNR/q45TvO33jo784TrmsnY9NnpXtZkI+DPVGdZb85qPhQ/Th1fIkqmZUpUoVSGQ61GunKpL4/buo034Mibl5ubP/KpOIGbXl8YNxJP4dc0jarkYiJbrt+8RJJJReDAfXapBIZU72Pa5Jwjd+TL6lFolNafabu3RIXD3xeFPBTBJCz8rSIH0ScQG2IXPmkNBSfXeKN5fE4m/lvTnzSUwevvUq0IREOe8vabSIxKOKS4Edi0mUmg3Yl1qQ2LOEffKIFYnTlfI6ditIXInnj5tgTcJR4L3z52oS8+zYqrlrSEzb4Kp1YB3Vz3T43BoHEow2Y3sNJxJG8p/CyY0krv1cJn3pRiLoSMSXhM0k0PR2zG5PEo+9luSu3EpiUp5a2pTtJLam7urv9KV8Hw1/8MmfyiPR8d393SRuXzdecT6YxGbmEtWgvSTG/Uq2sQ8nUbMvtGF+JImO2D/VEw6QGHXGWqM3msSK1usf2w6T8Mvs/1F1lMrj3lvnwhMk3t7j6dw8TWI+78OmM+dIDIbHSvZdIKHK62/3vUzC/P1rS9cEEsNr0sQ2iSRWBumOsbhO5d496rjRTRImYYLtM1NJnDE6dmvqHRILloesVMsgsT3GY4VyNgm3U73ZirkkWi8tiFDIJ9Fj13xDvpBE3f0XhvLFJM63bJs84gmJ/m3XQkY+JdHU8kNX6QWJz6GqK1XLSfRZpDybWEFi6u99adPfkogy7yL035PQ9tD4z6SWev90evqyOhKFTuvU1tdT+Z/XkmxpIGHK8DQI/E4iq1a3LqaFRMn21PpLP0n8ejuI9HYSGgd8xz1lkshZM8r+M4eapyl/2Tw+iXMhF0VyIhJ/jd08taRUDjnM2Us7qfwYiTu29JD4UOQ1cOAP5evX3RHJA5TPG+uDXwxReft8sm6XEyDphfxBhZEC6vdaiNa80QKEVjfNdB0rQLz7t+uHVQWQTmiNzJkggPU79+KGiQIoaIl95KZQ33+0Zq/JNAEShqeIt2sLoMMd+HhlhgBOuY+03ukJkB9Z+7nfQIBYT7Uuk3kCrK9WPLh7gQAzM8/vvWsqQHG96FOrmQD8XREJGhYCvFAf/87NSoDAZp2tV1cIwLbKDGiwFkAtmvw60VYA7Z7hh5vXCuCsPbv7lr0AXsticglHAVLFRm/muAiQ6RPkGO4ugH7OtjUvtlA6ZJA+ypvqF64Y4eojwObRY7Pv+lLrKz/u2OEvQPerYK9VgQJo9em3Je4RYMbT9Ep+qABBbQ46K/YJsKdxNCMxisrhoNNkcTT13s/Zz9fECtBk9vzD3WMCZOe+Xzp0UoDndzbM8T4rwNc1E069OC/ACfZyx+mXBThdsT/qSIIAu5dLtZiJVA73XM3sbgjw0efTswe3BIirOl8wKU2AeUtGyx9NFyDStLKRzBIgQ3vV1E25VP/9RR8r8wWoSQpvX1gkwBvTpfsyHgkQ8CzywKRSAfpLHUTnngvQeEKpYrBMgCfTbmhEVgjgLVzTLnwrwN0E6yn+1QIce/ToTfsHAVzPVNR5fRZgfNJtr5avAqQZRXlt+U7pqMi65hYBao3v3PFsE0BQHtDbxqD8tX5/7cumcnObPsjnCXDkr29+mFAA/1vxZX0SAYymu7ue6hTA1j/Ne/xvAX5uu9mS2idAYZzqM6NBam5u8LTK/glQbdzz21FBiNX2fjZMRSHUpvzqjhorhLvR+Xkq44TI/qHZlKkmxA+zl73LJwsxtPHmpeapQoiYy89Gagmx9ZXaaLUZQix7c2+oSE+I4xpGwRvnCMEfHL2sa54Q1/ewE68ZC9H02XSn1SIhgndr5RHmQmw+3BAQt1SI2nsp5xauEGJThP+iNmshfuXEusfZUnUzJ0jN1wlxLHKDhOMghG3fpgPXnIU4HLnj4Fo3IWZsSu4Y2CwET1n1S5EXVa9D22qXjxCFeUwtHT8hZGWno5sDhHB9YuZ4NUgIeYPWOKe9Qljv0t2oEiHEmHW9CR/3C1ESfNHhUrQQffcK9jrFCvFRaaWW+nEh5t9TX9N8SohzFh7k7XNCJEQuU9x1UQibJbsvmfwnxIivI+8OXBXCZ+d74+rrQhiXtVheuyVE0M/afP80IdJHDj0wz6D8HRs9TylHCImphl5bHuXD5NaZ4gIhxteZHowrpvoGuXJ3lAiBEfO/WD2n8ksUWmiUC/FhuHVMd4UQuo7sPV+rhLAr2uJQXCOE3tKA3Kt1QlhWLQuP+iKEavbfGs9GIXyV2u6gRQjPKWN/G7QJcVnucc14QoiH1qzRA2whEhfK/+DyhTh9b9bcbyIhdvIi+97IhDhkyzZ71C2EVfakEVl/hBA+H3K+8VeI1p8ftS/9E2Lygo0eJxVE2LYkyODQaBEWRsv2RyqL4OE7wTZ0vAhDAf2JwRNF2Dpxi0vgFBFEu10yd08XodEt9UCgrghFOwI+BuuJ4FOzLD50jgiL9p7kRRqJsF1WX3HIRAQNqYv2KTMRZKpLBi9ZiDBYx1ufvEyE7K8TjLMhQvFIg2uPbURwnOF+7O1a6nsmZEujgwgJg7W1fGcRvv1zXDnoJkLymIwl6h4iPM76nTZ3qwiPWvbcWb1DBKuMZfrb/EV4wbu6ICZQBJ0rd15eD6HWbRHyoiRchKipu1yb9ouwFHfC+qJF6HmwRl3riAh6HnYGq06I8ODv+sbdZ0R4PXqNUsJ5EequBlQ+v0z1e/ZjBPeKCIruQSVq10XIyBqtYH1LhC0Kp5vD0kRoSFcxS88QYX2Kg3xjjgjR4rA9SvkimC8y2raySAT5J/lNUY9FOP76yNvCp9S656k4Cl6KEFgj9JldIcK/32v7/aqoXDVctTJqqNxmhT9m1VF58beQ+l+pPPkHcwK/i9CaMiwp+CHCj/Hm93t+iaA2T3XUCpYIcqeaBWd5IkTkVXo0CCkfC4dcdGUi7Lx/v2JvtwhZq5Tqy/9QvqasChw/KMLE5lOX/OTEkMo1GTwdKUaKVrGv6hgxcqxnGQaoinFqgcehV2piKK23stHUEGNBwtGCqGlipMtPyvqmIwY3cu4cMz0x1N5KliTNEeN42qxXvUZiZL6q5XuZimEY/iCtYrEYbtn9rDlLxej96n4nYYUYF/wHhwdWidEakSLeZSeG/QjfwEZ7MVh6sftsnMX4vif492M3McrdS7UMPMSw1OQ23NwqxrVfs6eO9xVj8c/mpjMBYhw+VWk1HCRGx7MNxtGhYkwszS7u3ifGPPtxReEHqboDF1xlh8XwXu1/Nuy4GHaRtfadp8W4yBbc2X9ejMD1RFj/ZTFW5Q/xjl0V43K4v2z0DTHMFW3PX0kRQ3YjOU3rrhh1xzu887LE2J7unG+RJ8ZgLPdSdYEY/6Uy5TwfibFaqNkpKqVyTAy6cPylGMYrCks1KsTwOzPlQGGVGLfztz5aW0v5iryezPokBvXvufqxBjH2J7nP0G4WA4bp+WU/xXiiUsHcRoghOufyQI5Lfb7rjHK2gPJ56OI/eymVT933iK4uMUboKCWk/BFDd3mqjd0glev4yktdchLMrKlzvztKAlIzrdZ5rATfBxMa5cZLEBD+PerxRAlKYlIKdk+VoDp9fIC2tgT7l/p+aJwpwc4bVe8vG0iwoznIa52RBKvP+YSONJWg1XjCwsrFEixakHTxxFIJep9MO7p6pQTy9lc7R9pIcLMmZ1LtWglSzzt9id8gQVTTc/3NLhJYDk9V191M9ck0OyHwkiC8VCG9ZLsE9x55eJ3yl2D3sF+Ba5AE19U+ntQLlcB5X+2Y3n0SNESNM/pwUIJ/yR94d2Il8PIxXnHwhATbzF5qbDwrQeDIvox5FyXgzgj9oJgggcssp8ucJAl65g58e3tTgqdDFp+z0iRIyIrwP5cpgUJ98/U9uRI42RQ4uhRIcP9V7zPLRxK87xiumPlUAuP03gCVMgmW3B6X21chQYy/XxjvnQQrEteIv3+gfNz4qVhdLwHTfdPr540S+NcXDhX8kGD7r0Ndme0S9EWWn0lhU77i7z1NIiX4aBwc959EQp3XH4yLXRKsfdMiPf+H6mtnc/v8IJXHf/aiC/JSbL2SWXFZUYrOhjCnq8pSXLEJiU2eIMWYiR/s706Wwuy8TnreNCnW1X54+ERXCmfNEN83+lLYVpg9rp8rxZ+xbjkMYykUkyxmdZpJ0WR01WPkUinaw1pMNVdKsaRqWb6JjRSSnjFFa9dJ0VJsFurrKEXep3FfYl2lqHtb13hzixTZk+/EPtsqRdbT/MIWXyleepvdHtglxWt5fxOdECn2rA4LsImQ4sVMb4PgA1LMisrNunpYimrngOqy41Rf37fx5BmqTlEuc/JFKe5ubOqyTaB8bLXKi7omxe2biqNyb0kx1BSi2HZHimMKRklq2VJwHrsy192Xwl2W13iiSIqOW36hZU+k2Hx62rW+51KUvteLXfJaitUO+mMPVFH9xznhaa0UrRO/TR/4LEUCaXh2ZaMUMw53FZ/+IQUZU3Cmrl0K638X5TU4UuhvYiv7CqToW3yjpUAqhZzqKKfBbqre+O0hG/qlCF3Uqpk2LEWDZsqFTgUZlnDas+zGyBD6sznw9jgZ5jk/a/o9UYYLzy41OmvKsGPsx+v5OjIUCs8pjNGXQe7N72mBc2V4kCD3tsZYhtTD202NFsvQUaK4/r+lMqi8NlT9vVIGa62+2K22VH1Dy6Pv1svQe79zjamzDJWLO56nusvQ5LerdayXDLF/ei8d2i7DOhOxothfBiXFzgXbg2UgTS1HNIbJEPfBJsg+Soa2jDvJlYdkaFdrilp+XIYvHE35Z2dk+CC9bWV+UQbFnS9HP0mQ4YD5xrTF12W49bOcXZoiQ4a1RYtVugzLP/XsqMiR4YWTxpO1D2QQR7aVfimWwcD6UJD3UxkqymbV8ctk8Af3bVSlDJwJi8+NqqH8Nhj8vf5JBsusDt1536j3ZcdaX7XI0Kp13ndTO9WfNeKWhC3D6sMzTp8TUO+7FI3Uk1F+VHJcK3ooP8GtrtsHZLBrfz1CTq4DcjRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnN0mqPTHJ3m6DRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnN0mqPTHJ3m6DRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnN0mqPTHJ3m6DRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnP0/5ej/x+OvX1V
+        </DataArray>
+        <DataArray type="Float64" Name="p_ini" format="binary" RangeMin="-4.470348341500951e-9" RangeMax="0.3">
+          AQAAAACAAAAgfQAAZxEAAA==eJzt2f9fzff/x3GMFIf5MuezRJkvsZx3oWaGOiOOL5+jho+jsne+RCZH5h2NfXQoHzH6hNLhKMnWF6clX7L0zWGhbB2n2siySSrtjWTv5LC3qU/n9vwvPpeXX66X+/355ey8vNbW5eHpafvzs9LT0/jPue42XVKD37e5a/Hm0Tb7OuxzsRliOjHU5s8R3w2xGfF+xQCbjXX1fW0uPmy1s5k4T9bDpmfne29+su278OErm4PDFjy3mecS0mrz+a2tj2wm7otvsvmzMv0++18U3mVfduVt9i1/WIVDXlfY9KwYUM6+na6l7Ptg+iV8srCAfWlr89inicpFWaKR/d+fSmdfpOkE+8bfOoYPHiWx70jnQfaph8Sxr/v4PXjx4xj2aTVR7Bup3Yq/REewHnckHGeeXoevSlezfvqX5RjSGoSOPTWs33RciLs81PRTZs/B1qCZmP65N+sBsVOwf4onXjvnzvq28vfR495ofNjmwrrB3gn9neX0Pb0GYtE8GX6+vDfro7f0wLv73lTbPJj2yqbn7Pzn+LqiFc89eMT6mpdN6NSvnr5q5K8YO6UGp/tVs/5HiBkzt5XjpwdKWR+YcQnLiwowqioPPZtzsfm1EVMGZuCisWlo752MpkV63PTZIRyri8N7iXsw0RiD8y5HYeetrXj+cQR+1m0jOsvD8Nb4Nbhvxgr0XroMu/6C0RizEJcfVeOQ3DlYcXUm6mq90evZFHzc0wvThnqgZoIbOqjG4OVlI3DLJiccv0eOD1IG4pHzMpx/ozd2q+uB+c/fVNnUOvyJI13a8bbXM9w//zHOWPEQX26px9P7f8WQkzUov1iNZrMZYxrKccqrUmztZ8KTowpx6UcXsJ//Gby6Ohu3fZmBHgfTsCEjGY8W69Gv+hD2/D0Oi/7agxsG7cJR43RY670NDyzejLPXbcTXujDMPbwGV2evwKFXlmHVbQ3GPlmIH3VfgM/kczFD4YvLZvrgwICPsHyDF0bt8kBPgxs25o5Bw7UR6H/XCXv9IcfiXoNwk1M/HDvRHu+p3qpShoaGuhb+VWkzoamtUrk2NLTj7Ufk4Gn3yT+G3sbJCRX0X1/6Hvs/uohfvpPLerMyHRetP0Zv0h9Et9JY1D/djtZ3I3DVrHXst2xcjlOTl9Bnlv0nDmqbgbrhU1h/PNcdNZtH05eeGIruFQMw3mqH/37vjcVm6ILnFtv+n7Y+Qp/0+/RdP49R/roCY1xLWW9dWIBBUbn0ZafSya63jpETOg9ih9seDNNEsV4THYFdPzfpc39ZjkN7ajDWQ816W9BMDI6dgqZz7uh2bzT79PZO2MNrIIYv781618+3mzZV+c9v2vrzDx6hc7963DelhnVriJmsOVBKLi0qQPfmXPpjAzPQzjsZ//HZIdbrEvfg/MtR9PmPI3CkPAzjZ6zAVq0Gg46q2V92dSZOejaFPnWoB/ZRjcHITU6sN6QMRL8bvemLnr8x8965tGPs/MfYtqUeg0/WmHnvuv5F5717VUr/9ahC7O9/Br/8MoP15oxkXFR9iN701x6y8zgded/izWjVheGq7BWsW25rcGr3BfSZCl8cFPAR6nZ5sP44dwxq7jphfq9BOHKiPfviP+2o4L3b046heY8reO/q6tGnzx367A9uonzlVYyJK2S99eIZsl9jBrmofwq6Tk2gT1izFzsO6jCsZDPrNb+H4czBK+lzfZbi0LAFGJvki81XPsJFLR7sN/2HK7r5DqPXhw/CHsfsMfx6x4+8d3+0o2rYkx957+Y8QOeIO6hLvYmPf7iKmheF7C8dcRbd1Zn0x75IQbtvEvAflr2s1/2pw/ljttDnf7KeLN++khyftRRbf1pAH9rhi2XvT6V3XTIBU3e60nd8O4wceWcQ1vRwoPdz7/zBZm7gix84t/sJxp59QN/x6x1ycG8LmiZdo58cXIT6r87S9/8uE8PrU+ib+yaSVR9+Jc6t2kHvHL+FrC9cj9amlagZEMC6ZZof2X3tLMxMmEpvZ5pA1j1yxbp3htNrPh6M+esdxLkjnTd4PqUvbvD+PH1CDnVswLJZv9D7fG7B1ORr9PLyIoxsOyvODc8i+807Ls5tTqR3TfsKYyt20HdYt2DwSC19zYJV5MnbAjA33Y++f9UscuzrqdjsOpE+eNFYNEUNp3c2Dkb9LQd6a2dnOc91vBUtmpZy3ruu/8DbzDz9C71zrQV1Pa/TWz2KyZpl5zA/Nove/fxxjL+XSG/nsA9DvXbS1y2PJPvs14pz+avo5Q0B5Ph+/tg6ZTb6rZ7GetmBiWTX4rGY2jycvmPgO+RI7z5Y81k3er/D1jLeu8stZZx70oCx8lr65hmV5OAN19F0tJh+8rVzqH+WRd/fKRXDVYfFuU37yKrjO8W5G5H0zu1a1LmE0FvnB6Im0p/ecnI22f3mNMx8NZHebvQ4ss7fGeu+fIdek9kH86u70cvfWK/zfMY9vc77s7iRHLqjFsuyK+l9aq5javcSevnfzmNkwClxblcq2e/MYcy9u4/e1S4aYyd+Qd/x6QYM3htCX5MXSJ5831+c66Oi7z95Ojl25SRsjhuHqgJn1k2N75Cd3+6L+qnd6a1rXl7juR56ipaSxmu8d/+sxczBVfTOyjLUhZXQ1yWdJ2u+P4X5Lan07u8mYbzvfnq7jdHY9QNQnLu+gezzrxBxblgQvXzuJxgZoaJvTZ2Ofj9Ooi97MY7s+p4LpqqH0Hd80Zcc+U13rLG8vMq5fz+9yns3poncf+Fdcuz2KnJzVhkG/1yCpo7zONnNyD79khPiXHQSOTxnPzbfiaZXvbUVM93D0TloNeu63UFk69lPyJrfVGjp7U3v3vW/4DzX4PfJdvtcUPfdEOz6/Zt1H1kPzP/wVSnvT0hrKc81voncWngXQx9WYdmAcvSZfol9qWvzxLlEI7nr92RyzaMk9BsSh7kfx6Crdiv7Yo+EkztKV5ODW4OwxnEh/eTZc8i5n3uTu36fJYeXv09ubnMhq5zlaJono3fe0oOsT3v1Pc+nohXDXzZ9z/MZ+StZ5VdN7vq9k2yXcYmsq8oj1702omZsGn3+Ij3ZXRdHjjfGoN3trRjabSPWjV/DPp+ly8ipMQvJ8tw55Mhab2zt6YV+E9ywbNkI9rnukYtz52Xkjns9MNLhzys8H69nOHnFQ8zd/+sVns/FanJsQzm5uZ8Jgz+6QG9anU2efDCNrC/WY//f4zB80C7WLd7bULVuI33m4TVk5yvLyLonC9Eqn4uamT5o2eDFPneDmzh3bQTZ7g85OdSpH9ap3rqivGk2b29qu6y0mM3aafcv27IioQKHPbqIvynT0aw/yL64p9vJ22etI09PXkL+618zsGWuO+acGIopVjv2fbrgucmW1en3TbYse12Bfy0soC85lU7O6TxI1mqiyIrT68jDemrIvwXNRPM5d/o4eyfy9uW9ydPzn1/ie/Srx5YQM/5WVHDJti9lYAb5088OkdWXo8gyeRj+pdVgydWZmDPUg33aTU7i3I3e5GEu7SV8j8j6Ep5P1xH+eUYV0qu/zCBrqw+hYpyOvqXrByr33taIcwpf+rhdHmT1XSdx70R7sb6nvZjvUVdfzPP54CZZG1eIisYMevXUBLLskA7Nv4fRx/ksJeck+YpzLR70Ct9h4l6Dvbj3j/YinuucB0V8j9SbZPWLQrJMnYmKbxLoW/7UkXM+WY/arKX0ig5fsnrJBHEuZ5i4t4eDuDfwRSHnzj4o5Ln2tpAVwUXklguZKJMl0ptX7SDHFa4nqwcEoGztLHqFaQK55Z3h4t71DuLe0hcFfJ5jA6o/txRwb3kR2Tw8ixy3ORFzKnbQa0dqyYptAeSWylkoGzuR3hw1XNx7y0HcO956kc+LabjI96i1YNdjps+JzSJr7yVinNdOevV+LVnWEEA2T5mNLQcm0uc0Dxf3evcR9x625nPv44Z8vsfMSrL5aDHGPcuiV6sOk7XHd6KiXUvfMj+QnHNytjj3aiJ9nL8zWZ3ZR9z7xvod64sbsSW78ju+R/cSsjbgFCrOHKZX20WTZX/fIM7lBdLH9VGR1SsniXMFzvSKt/uKe9e8vMC9JY1oHlx1ge8RVkJWf3+KLHs3CRUbo+lbrm8g5wwLQm2Eil7x4ySy+j0XcW5rX3Gv5WUe945pyuPztleh9ucSeoWbEVt2JmHOnWg0u4eLc7uDUP2binMyT09xbp+LOFffV9z74avz3BvfdJ5zD6vI6umXUJZopDc/ShLrH8fQ5xwJJ2tbg1Axew62JHui7LmLODdPJs6lvTrHvS+bUOZXfY5zGZfILa+NmLNIj1pjDMZ12yjOLV0mzuXO4Zy5p5c4t2yEOHdeRq91+PMs9654eJb1/GqyrL8Jzauz6eOK9agetIteu24jWXFlmTgnn4s5G7zE+rUR4pxTv7PKFIPB0NR2RplsMDgmVKBBmX7G1tc+3U4OTF6CtXPdRbbaiX3p93M5t6gADZ0Hc23nHE+vQ0PQTPpaeydyYP7z09wbYj7NPQMzyIbLUei4QUNvGOqBjjd6i7ylPod7RhViYPUhkXVhOdyr8CUb7jqh4972b7n3g5vo2JjxLecO6ci1PksxsMWDvtZgL9bnPMjm3IvCbO75JgENn6wXucMXA3OGYW3gCyO5t8XIvRcyMXDVDnrDgACyo2kCGtY70Ds6NpxiX3kR1m5OPMU9I7VYWzmL3lE3nGwYb83iXK0FDbFZWax77SQHNgRg7YGJ9IHefbD2cUMm5wzFmXy+6jA6tmvpDSdni3V/Z/rAN9YM7smuxMCAUyL3ikbHC4FoWDlJ5Lf7ZnBvSWM6+8JKMPDdpHQ+//oGDIxQifURLmTHypffcM/2qm/IbkaR70Rj7e4g+kBPT5Hr+2JgfNPX3Dvt0td8/uMkNBwJp3ecPUfkNhesTXt1knv8qk+SXxtFNsagYekyesdeXiKfl6Hjiodp3NPPlMbnFesxcN1G+lr5XJGvjUhTTmGAdEL5YZcfp58gJy8R2WonXFiQauvzTq9LteU8eydhiPk4vSnqOPucPISR9SncU30ohazwxby97cnsb8xIJvssFdlgL3J74THxeeuPcT5nmMi9LQZctcMgPm8COc+x4ShuTjxKXzlLZDfrEfbvyTrCPQ0BInv3EflosZ797Vo9+/2dRc6uTCL3ik4Snzcpif2XGg+T300SRqiElpeJnHMzJnJud5Cwvq9w2qUE9h0NFz53SeA+v+pDaIwR9vTCvBUPD2KxXiife1C5sev/txvbDig/7zJlyQHyooJ4tHcSmqL+F7+oj8O/+QobM/ZzzmAv9F+/T5yzfEU2TRBuTtxL72bdQ24MEBqKY+n9nYW9ondjceP/4GaV0M24i/31fXeR9eEx4vOqo7GXV7Q4p9+prO/6ud/QtkN5v8v/KtDhlagoeoXvdvJR+/8m97Rsw8jErfQNAV+Q/ZwjyUWNm1FhjBDnwv+BPb02KS93vf8P2jYqr3RZGLWBfNx+PW5J/Ix+gXMoeYwxBB28Vip32gZeUX9X7rD9PScG4CjjYmU32y9sUQuUnbZfvIy+yk7bf9iMnsrOzs6JthmlJ3+kObqnNEeX5ujSHN2mNEeX5ui2/dIcXZqj895Jc3Rpjh4qzdGlObo0R+e9k+bo0hw9VJqjS3N0aY4uzdGlObo0R5fm6NIcXZqjS3N0aY4uzdGlObo0R5fm6NIcXZqjS3N0aY5uU5qjS3N03jtpji7N0UOlObo0R5fm6DwfaY4uzdFDpTm6NEeX5ug8V2mOLs3R10pzdGmOLs3RpTm6NEeX5ujSHF2ao0tzdGmOLs3RpTm6pzRHl+bo0hxdmqNLc3Rpji7N0T2lObo0R5fm6Lx30hxdmqOvlebo0hxdmqPzXKU5ujRHXyvN0aU5ujRHl+bo0hxdmqNLc3Rpji7N0aU5ujRHl+bo0hxdmqNLc/T/93P0/wO19+Yh
+        </DataArray>
+        <DataArray type="UInt64" Name="bulk_node_ids" format="binary" RangeMin="0" RangeMax="4003">
+          AQAAAACAAAAgfQAAwhcAAA==eJw13dMWIMqSBcDbtm3btm3btm3btm3btm3b9ul5mOh6iU+olVWZO//3v/8/ARiQgRiYQRiUwRicIRiSoRiaYRiW4RieERiRkRiZURiV0RidMRiTsRibcRiX8RifCZiQiZiYSZiUyZicKZiSqZiaaZiW6ZieGZiRmZiZWZiV2ZidOZiTuZibeZiX+ZifBViQhViYRViUxVicJViSpViaZViW5VieFViRlViZVViV1VidNViTtVibdViX9VifDdiQjdiYTdiUzdicLdiSrdiabdiW7dieHdiRndiZXdiV3didPdiTvdibfdiX/difAziQgziYQziUwzicIziSoziaYziW4zieEziRkziZUziV0zidMziTszibcziX8zifC7iQi7iYS7iUy7icK7iSq7iaa7iW67ieG7iRm7iZW7iV27idO7iTu7ibe7iX+7ifB3iQh3iYR3iUx3icJ3iSp3iaZ3iW53ieF3iRl3iZV3iV13idN3iTt3ibd3iX93ifD/iQj/iYT/iUz/icL/iSr/iab/iW7/ieH/iRn/iZX/iV3/idP/iTv/ibf/gf//LfxR+AARmIgRmEQRmMwRmCIRmKoRmGYRmO4RmBERmJkRmFURmN0RmDMRmLsRmHcRmP8ZmACZmIiZmESZmMyZmCKZmKqZmGaZmO6ZmBGZmJmZmFWZmN2ZmDOZmLuZmHeZmP+VmABVmIhVmERVmMxVmCJVmKpVmGZVmO5VmBFVmJlVmFVVmN1VmDNVmLtVmHdVmP9dmADdmIjdmETdmMzdmCLdmKrdmGbdmO7dmBHdmJndmFXdmN3dmDPdmLvdmHfdmP/TmAAzmIgzmEQzmMwzmCIzmKozmGYzmO4zmBEzmJkzmFUzmN0zmDMzmLszmHczmP87mAC7mIi7mES7mMy7mCK7mKq7mGa7mO67mBG7mJm7mFW7mN27mDO7mLu7mHe7mP+3mAB3mIh3mER3mMx3mCJ3mKp3mGZ3mO53mBF3mJl3mFV3mN13mDN3mLt3mHd3mP9/mAD/mIj/mET/mMz/mCL/mKr/mGb/mO7/mBH/mJn/mFX/mN3/mDP/mLv/mH//Ev/xX8ARiQgRiYQRiUwRicIRiSoRiaYRiW4RieERiRkRiZURiV0RidMRiTsRibcRiX8RifCZiQiZiYSZiUyZicKZiSqZiaaZiW6ZieGZiRmZiZWZiV2ZidOZiTuZibeZiX+ZifBViQhViYRViUxVicJViSpViaZViW5VieFViRlViZVViV1VidNViTtVibdViX9VifDdiQjdiYTdiUzdicLdiSrdiabdiW7dieHdiRndiZXdiV3didPdiTvdibfdiX/difAziQgziYQziUwzicIziSoziaYziW4zieEziRkziZUziV0zidMziTszibcziX8zifC7iQi7iYS7iUy7icK7iSq7iaa7iW67ieG7iRm7iZW7iV27idO7iTu7ibe7iX+7ifB3iQh3iYR3iUx3icJ3iSp3iaZ3iW53ieF3iRl3iZV3iV13idN3iTt3ibd3iX93ifD/iQj/iYT/iUz/icL/iSr/iab/iW7/ieH/iRn/iZX/iV3/idP/iTv/ibf/gf//LfQ38ABmQgBmYQBmUwBmcIhmQohmYYhmU4hmcERmQkRmYURmU0RmcMxmQsxmYcxmU8xmcCJmQiJmYSJmUyJmcKpmQqpmYapmU6pmcGZmQmZmYWZmU2ZmcO5mQu5mYe5mU+5mcBFmQhFmYRFmUxFmcJlmQplmYZlmU5lmcFVmQlVmYVVmU1VmcN1mQt1mYd1mU91mcDNmQjNmYTNmUzNmcLtmQrtmYbtmU7tmcHdmQndmYXdmU3dmcP9mQv9mYf9mU/9ucADuQgDuYQDuUwDucIjuQojuYYjuU4jucETuQkTuYUTuU0TucMzuQszuYczuU8zucCLuQiLuYSLuUyLucKruQqruYaruU6rucGbuQmbuYWbuU2bucO7uQu7uYe7uU+7ucBHuQhHuYRHuUxHucJnuQpnuYZnuU5nucFXuQlXuYVXuU1XucN3uQt3uYd3uU93ucDPuQjPuYTPuUzPucLvuQrvuYbvuU7vucHfuQnfuYXfuU3fucP/uQv/uYf/se//PfBH4ABGYiBGYRBGYzBGYIhGYqhGYZhGY7hGYERGYmRGYVRGY3RGYMxGYuxGYdxGY/xmYAJmYiJmYRJmYzJmYIpmYqpmYZpmY7pmYEZmYmZmYVZmY3ZmYM5mYu5mYd5mY/5WYAFWYiFWYRFWYzFWYIlWYqlWYZlWY7lWYEVWYmVWYVVWY3VWYM1WYu1WYd1WY/12YAN2YiN2YRN2YzN2YIt2Yqt2YZt2Y7t2YEd2Ymd2YVd2Y3d2YM92Yu92Yd92Y/9OYADOYiDOYRDOYzDOYIjOYqjOYZjOY7jOYETOYmTOYVTOY3TOYMzOYuzOYdzOY/zuYALuYiLuYRLuYzLuYIruYqruYZruY7ruYEbuYmbuYVbuY3buYM7uYu7uYd7uY/7eYAHeYiHeYRHeYzHeYIneYqneYZneY7neYEXeYmXeYVXeY3XeYM3eYu3eYd3eY/3+YAP+YiP+YRP+YzP+YIv+Yqv+YZv+Y7v+YEf+Ymf+YVf+Y3f+YM/+Yu/+Yf/8S//NfYFYEAGYmAGYVAGY3CGYEiGYmiGYViGY3hGYERGYmRGYVRGY3TGYEzGYmzGYVzGY3wmYEImYmImYVImY3KmYEqmYmqmYVqmY3pmYEZmYmZmYVZmY3bmYE7mYm7mYV7mY34WYEEWYmEWYVEWY3GWYEmWYmmWYVmWY3lWYEVWYmVWYVVWY3XWYE3WYm3WYV3WY302YEM2YmM2YVM2Y3O2YEu2Ymu2YVu2Y3t2YEd2Ymd2YVd2Y3f2YE/2Ym/2YV/2Y38O4EAO4mAO4VAO43CO4EiO4miO4ViO43hO4ERO4mRO4VRO43TO4EzO4mzO4VzO43wu4EIu4mIu4VIu43Ku4Equ4mqu4Vqu43pu4EZu4mZu4VZu43bu4E7u4m7u4V7u434e4EEe4mEe4VEe43Ge4Eme4mme4Vme43le4EVe4mVe4VVe43Xe4E3e4m3e4V3e430+4EM+4mM+4VM+43O+4Eu+4mu+4Vu+43t+4Ed+4md+4Vd+43f+4E/+4m/+4X/8y38N/QEYkIEYmEEYlMEYnCEYkqEYmmEYluEYnhEYkZEYmVEYldEYnTEYk7EYm3EYl/EYnwmYkImYmEmYlMmYnCmYkqmYmmmYlumYnhmYkZmYmVmYldmYnTmYk7mYm3mYl/mYnwVYkIVYmEVYlMVYnCVYkqVYmmVYluVYnhVYkZVYmVVYldVYnTVYk7VYm3VYl/VYnw3YkI3YmE3YlM3YnC3Ykq3Ymm3Ylu3Ynh3YkZ3YmV3Yld3YnT3Yk73Ym33Yl/3YnwM4kIM4mEM4lMM4nCM4kqM4mmM4luM4nhM4kZM4mVM4ldM4nTM4k7M4m3M4l/M4nwu4kIu4mEu4lMu4nCu4kqu4mmu4luu4nhu4kZu4mVu4ldu4nTu4k7u4m3u4l/u4nwd4kId4mEd4lMd4nCd4kqd4mmd4lud4nhd4kZd4mVd4ldd4nTd4k7d4m3d4l/d4nw/4kI/4mE/4lM/4nC/4kq/4mm/4lu/4nh/4kZ/4mV/4ld/4nT/4k7/4m3/4H//y3yBfAAZkIAZmEAZlMAZnCIZkKIZmGIZlOIZnBEZkJEZmFEZlNEZnDMZkLMZmHMZlPMZnAiZkIiZmEiZlMiZnCqZkKqZmGqZlOqZnBmZkJmZmFmZlNmZnDuZkLuZmHuZlPuZnARZkIRZmERZlMRZnCZZkKZZmGZZlOZZnBVZkJVZmFVZlNVZnDdZkLdZmHdZlPdZnAzZkIzZmEzZlMzZnC7ZkK7ZmG7ZlO7ZnB3ZkJ3ZmF3ZlN3ZnD/ZkL/ZmH/ZlP/bnAA7kIA7mEA7lMA7nCI7kKI7mGI7lOI7nBE7kJE7mFE7lNE7nDM7kLM7mHM7lPM7nAi7kIi7mEi7lMi7nCq7kKq7mGq7lOq7nBm7kJm7mFm7lNm7nDu7kLu7mHu7lPu7nAR7kIR7mER7lMR7nCZ7kKZ7mGZ7lOZ7nBV7kJV7mFV7lNV7nDd7kLd7mHd7lPd7nAz7kIz7mEz7lMz7nC77kK77mG77lO77nB37kJ37mF37lN37nD/7kL/7mH/7Hv/w3wB+AARmIgRmEQRmMwRmCIRmKoRmGYRmO4RmBERmJkRmFURmN0RmDMRmLsRmHcRmP8ZmACZmIiZmESZmMyZmCKZmKqZmGaZmO6ZmBGZmJmZmFWZmN2ZmDOZmLuZmHeZmP+VmABVmIhVmERVmMxVmCJVmKpVmGZVmO5VmBFVmJlVmFVVmN1VmDNVmLtVmHdVmP9dmADdmIjdmETdmMzdmCLdmKrdmGbdmO7dmBHdmJndmFXdmN3dmDPdmLvdmHfdmP/TmAAzmIgzmEQzmMwzmCIzmKozmGYzmO4zmBEzmJkzmFUzmN0zmDMzmLszmHczmP87mAC7mIi7mES7mMy7mCK7mKq7mGa7mO67mBG7mJm7mFW7mN27mDO7mLu7mHe7mP+3mAB3mIh3mER3mMx3mCJ3mKp3mGZ3mO53mBF3mJl3mFV3mN13mDN3mLt3mHd3mP9/mAD/mIj/mET/mMz/mCL/mKr/mGb/mO7/mBH/mJn/mFX/mN3/mDP/mLv/mH//Ev/wX3BGBABmJgBmFQBmNwhmBIhmJohmFYhmN4RmBERmJkRmFURmN0xmBMxmJsxmFcxmN8JmBCJmJiJmFSJmNypmBKpmJqpmFapmN6ZmBGZmJmZmFWZmN25mBO5mJu5mFe5mN+FmBBFmJhFmFRFmNxlmBJlmJplmFZlmN5VmBFVmJlVmFVVmN11mBN1mJt1mFd1mN9NmBDNmJjNmFTNmNztmBLtmJrtmFbtmN7dmBHdmJndmFXdmN39mBP9mJv9mFf9mN/DuBADuJgDuFQDuNwjuBIjuJojuFYjuN4TuBETuJkTuFUTuN0zuBMzuJszuFczuN8LuBCLuJiLuFSLuNyruBKruJqruFaruN6buBGbuJmbuFWbuN27uBO7uJu7uFe7uN+HuBBHuJhHuFRHuNxnuBJnuJpnuFZnuN5XuBFXuJlXuFVXuN13uBN3uJt3uFd3uN9PuBDPuJjPuFTPuNzvuBLvuJrvuFbvuN7fuBHfuJnfuFXfuN3/uBP/uJv/uF//Mt/gX0BGJCBGJhBGJTBGJwhGJKhGJphGJbhGJ4RGJGRGJlRGJXRGJ0xGJOxGJtxGJfxGJ8JmJCJmJhJmJTJmJwpmJKpmJppmJbpmJ4ZmJGZmJlZmJXZmJ05mJO5mJt5mJf5mJ8FWJCFWJhFWJTFWJwlWJKlWJplWJblWJ4VWJGVWJlVWJXVWJ01WJO1WJt1WJf1WJ8N2JCN2JhN2JTN2Jwt2JKt2Jpt2Jbt2J4d2JGd2Jld2JXd2J092JO92Jt92Jf92J8DOJCDOJhDOJTDOJwjOJKjOJpjOJbjOJ4TOJGTOJlTOJXTOJ0zOJOzOJtzOJfzOJ8LuJCLuJhLuJTLuJwruJKruJpruJbruJ4buJGbuJlbuJXbuJ07uJO7uJt7uJf7uJ8HeJCHeJhHeJTHeJwneJKneJpneJbneJ4XeJGXeJlXeJXXeJ03eJO3eJt3eJf3eJ8P+JCP+JhP+JTP+Jwv+JKv+Jpv+Jbv+J4f+JGf+Jlf+JXf+J0/+JO/+Jt/+B//8l9QbwAGZCAGZhAGZTAGZwiGZCiGZhiGZTiGZwRGZCRGZhRGZTRGZwzGZCzGZhzGZTzGZwImZCImZhImZTImZwqmZCqmZhqmZTqmZwZmZCZmZhZmZTZmZw7mZC7mZh7mZT7mZwEWZCEWZhEWZTEWZwmWZCmWZhmWZTmWZwVWZCVWZhVWZTVWZw3WZC3WZh3WZT3WZwM2ZCM2ZhM2ZTM2Zwu2ZCu2Zhu2ZTu2Zwd2ZCd2Zhd2ZTd2Zw/2ZC/2Zh/2ZT/25wAO5CAO5hAO5TAO5wiO5CiO5hiO5TiO5wRO5CRO5hRO5TRO5wzO5CzO5hzO5TzO5wIu5CIu5hIu5TIu5wqu5Cqu5hqu5Tqu5wZu5CZu5hZu5TZu5w7u5C7u5h7u5T7u5wEe5CEe5hEe5TEe5wme5Cme5hme5Tme5wVe5CVe5hVe5TVe5w3e5C3e5h3e5T3e5wM+5CM+5hM+5TM+5wu+5Cu+5hu+5Tu+5wd+5Cd+5hd+5Td+5w/+5C/+5h/+x7/8F9AfgAEZiIEZhEEZjMEZgiEZiqEZhmEZjuEZgREZiZEZhVEZjdEZgzEZi7EZh3EZj/GZgAmZiImZhEmZjMmZgimZiqmZhmmZjumZgRmZiZmZhVmZjdmZgzmZi7mZh3mZj/lZgAVZiIVZhEVZjMVZgiVZiqVZhmVZjuVZgRVZiZVZhVVZjdVZgzVZi7VZh3VZj/XZgA3ZiI3ZhE3ZjM3Zgi3Ziq3Zhm3Zju3ZgR3ZiZ3ZhV3Zjd3Zgz3Zi73Zh33Zj/05gAM5iIM5hEM5jMM5giM5iqM5hmM5juM5gRM5iZM5hVM5jdM5gzM5i7M5h3M5j/O5gAu5iIu5hEu5jMu5giu5iqu5hmu5juu5gRu5iZu5hVu5jdu5gzu5i7u5h3u5j/t5gAd5iId5hEd5jMd5gid5iqd5hmd5jud5gRd5iZd5hVd5jdd5gzd5i7d5h3d5j/f5gA/5iI/5hE/5jM/5gi/5iq/5hm/5ju/5gR/5iZ/5hV/5jd/5gz/5i7/5h//xL/8t5gnAgAzEwAzCoAzG4AzBkAzF0AzDsAzH8IzAiIzEyIzCqIzG6IzBmIzF2IzDuIzH+EzAhEzExEzCpEzG5EzBlEzF1EzDtEzH9MzAjMzEzMzCrMzG7MzBnMzF3MzDvMzH/CzAgizEwizCoizG4izBkizF0izDsizH8qzAiqzEyqzCqqzG6qzBmqzF2qzDuqzH+mzAhmzExmzCpmzG5mzBlmzF1mzDtmzH9uzAjuzEzuzCruzG7uzBnuzF3uzDvuzH/hzAgRzEwRzCoRzG4RzBkRzF0RzDsRzH8ZzAiZzEyZzCqZzG6ZzBmZzF2ZzDuZzH+VzAhVzExVzCpVzG5VzBlVzF1VzDtVzH9dzAjdzEzdzCrdzG7dzBndzF3dzDvdzH/TzAgzzEwzzCozzG4zzBkzzF0zzDszzH87zAi7zEy7zCq7zG67zBm7zF27zDu7zH+3zAh3zEx3zCp3zG53zBl3zF13zDt3zH9/zAj/zEz/zCr/zG7/zBn/zF3/zD//iX/xbyBWBABmJgBmFQBmNwhmBIhmJohmFYhmN4RmBERmJkRmFURmN0xmBMxmJsxmFcxmN8JmBCJmJiJmFSJmNypmBKpmJqpmFapmN6ZmBGZmJmZmFWZmN25mBO5mJu5mFe5mN+FmBBFmJhFmFRFmNxlmBJlmJplmFZlmN5VmBFVmJlVmFVVmN11mBN1mJt1mFd1mN9NmBDNmJjNmFTNmNztmBLtmJrtmFbtmN7dmBHdmJndmFXdmN39mBP9mJv9mFf9mN/DuBADuJgDuFQDuNwjuBIjuJojuFYjuN4TuBETuJkTuFUTuN0zuBMzuJszuFczuN8LuBCLuJiLuFSLuNyruBKruJqruFaruN6buBGbuJmbuFWbuN27uBO7uJu7uFe7uN+HuBBHuJhHuFRHuNxnuBJnuJpnuFZnuN5XuBFXuJlXuFVXuN13uBN3uJt3uFd3uN9PuBDPuJjPuFTPuNzvuBLvuJrvuFbvuN7fuBHfuJnfuFXfuN3/uBP/uJv/uF//Mt/i3gDMCADMTCDMCiDMThDMCRDMTTDMCzDMTwjMCIjMTKjMCqjMTpjMCZjMTbjMC7jMT4TMCETMTGTMCmTMTlTMCVTMTXTMC3TMT0zMCMzMTOzMCuzMTtzMCdzMTfzMC/zMT8LsCALsTCLsCiLsThLsCRLsTTLsCzLsTwrsCIrsTKrsCqrsTprsCZrsTbrsC7rsT4bsCEbsTGbsCmbsTlbsCVbsTXbsC3bsT07sCM7sTO7sCu7sTt7sCd7sTf7sC/7sT8HcCAHcTCHcCiHcThHcCRHcTTHcCzHcTwncCIncTKncCqncTpncCZncTbncC7ncT4XcCEX8f8A0Rgfyw==
+        </DataArray>
+      </PointData>
+      <CellData Scalars="MaterialIDs">
+        <DataArray type="Int32" Name="MaterialIDs" format="binary" RangeMin="0" RangeMax="1">
+          AQAAAACAAACgDwAAHQAAAA==eJztwwEJAAAAAqD6f7odgYIJAPCuqur9AbURAfU=
+        </DataArray>
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary" RangeMin="0" RangeMax="0.8000008119204767">
+          AwAAAACAAABgdwAA9xQAAAAWAAB+FAAAeJx1nGl4Ttfeh5+qxNSaT5NQtSneSqRaFFWRrSWUEkGPoI4dU816BDXWg0qCmqeIoTvGJmKoWSWxzVNPElNjPlsMbVA0CD0VzjrXtdaXd93P+Xbua3W5f//sZ+21v/w8Hp//c/Matwtn3oO4GZzS18f6wcg79PnKxz6xxL3+D8f42H887rN/0iQf/66XuCfdb6oPn2nErcTPpvvwjCPujFqY4MN/JnEj6tIsH7lm478bWmOuj7zzkBdvNN/HHBagT2wucjGfhcivj1/kY26L0T/yrSU+5onczjiw1MecEzFvSP9lPuafhHNIKrncx98FuVkybYWPv9dKnMOYyFU+/o7fI79ZgFz8fW3cv+4p5OLvnoz7uyuQi+dhNa5fOhy5eE6Q2x3NNT6eH+SOX8W1Pp4r5G76DeTieVuH62N3IhfP4XqcQ0g8cvF8Ijfyojf4eG6Rm8uCf/DxPCM3Oz1HLp7zFJxDiSzk4vlPxVyZ3yMXv4uNuH70P5GL3wtyu94naT5+R8idG5U3+fh9IXeTbiMXv7vNuD5qD3Lxe9yCcyg1E7n4nfJ6N3Srj98vcnvfEuTid43cWPqS9y/e6Eec58iByMU5gNzseBq5OB+24f51myEX5wZyy28NcnGeIHfdMtt9nDPIrfRRyMX5g9yTeBW5OJd2YK7YCOTivELuidyCXJxjyO3gwJ0+zjfkhv8U5OLcQ+5cz0cuzsNdmCujM3JxTiJ3EvchF+cncmtUrd0+zlXkbuRs5OK8RW6FFCIX5/AezFWiN3JxPiP35h1DLs5t3j/zvb0+znPk9rJlyMU5j9wYXewnH+c/cqfTEOTivYDcrHcOuXhf7MP9S4QhF+8R5NaNdcjF+wW5m1k23cd7B7mV9DVy8T5C7hnjIhfvqQzMFfUpcvH+Qu4J3YZcvNeQ2yWrZvp43yE3bk5DLt6DyJ3995CL9+N+zLX8c+TivYncGZOJXLxPkRsplRwf71nmAW2Ri/cvcufbicjFexm5t2ArcvG+Rm5at5CL9zj7ZwUd8PF+R+581JH5yIHI7ZSpyMV9ALkVsBu5uCcgN6bfRS7uDwcxV0F15OJegdy2uiIX9w3mWQnIxT0Eudk8A7m4nyD3pP7BudwyhzBXQB3k4j6D3Du9B3Jxz0FuPprDPDgFuRFzCLm4FyF3s55yLr+KhzFX83rIxT0KuZVqIRf3K+RG4GLk4t7FPO4EcnEfQ+48KuJcwYFHMFdMA+Ti/obczB6AXNzrkHvCliMX9z3kTmo28+v5yO3A4kd93A+RW3FNkYt7I3Lj8VDk4j6J3I1JRi7umcjt7PPs7/+QeVjpYz7upcjNjS2Qi/sqck9QLHJxj0XuxG1ALu63yL2PL7N/SCH79yl/3Md9GLmR0wq5uCcjd8PGIRf3Z+T2xk3Ixb0auRWUx/6dnrN//BsnfNzDmT9ph1zcz5E7fSYjF/d25N6c7cjFfR652eI35OKefxL9095ELu7/yJ2gKOadhiC346cjF98LyK0ne5GL7wjkRt/7nCup5CnMlVMTufjuQG636IZcfI8wT5uFXHynIDerOMjF9wtyT8JjzpVZ9mfM9eQd5OJ7B7m3by/k4jsIuXl6PvOSaciN8KPIxXcTcjftP5zrRuV/Ya4q9ZGL7yzkVkJf5OL7C7lRuBS5+C5j3u9n5OJ7Dblz2pOFuUpWRe4N/wC5+L5Dbm4ahFx89yH3VF2FXHwPIncSzjDff49zFfpnY67QGsitfh8hF9+VyI0zI5CL703kbvha5OI7FLm96QL73yzgfWb756BnSiXk9mEDufieRe79qxmvD2iL3GrwOXLx/YvcHDQCufgu5lz2DM61bwl75q7hXAVb2fP1TM5V9xSvb3WBc1m3ONeEAs619CXn2vbaacyVFYTcm18Hufh+R24ZLZGL73rkZreevH7kQOTGnNHI7ZSpnOvIXM7lruBcf6VwroDd7NngMOfqeJo9B13jXNPv8nr7GedK9zuDuXIrIncLqiO3yoYid+o2Q262boPctroiNybGsOfS4cg92yfw+qwEzpW/mHP5reFcxlbO1TyDc3U7yblic9lzzk3OlfoHex55wbncMmdx/fNA5E5AHeRmw4bI7Y4mcmNwB+Te6T2Qe5K/ZM/0Ucjd3Cns+WgO5yq7gtcHp3Cu1rs4V8whzjUxh3MlXuVc2+9wrqyn7Hmn+DnM5VcRuVGjOnK7eT1eH/0hcm9sBHLP3C7IrVQLuXtkGHLz+njO9TyePQMXc66Gq9kzcgvnGpzO6+NOcK7kXzhX+g3OdeEh53pUxLnKlTmPuYIDkXsiaiP3xjRA7k4MR24lfsbrt3dHbmYPQO7ciUVu+E/hXDXmcK6w5Zwr+gf2jN3JueYeZM/UbM519Aqvv57PuYoKOVdg8V8wV6MKyL2RbyF3B4cgt+KaIneSWyM3Mzojty/0Rm48Hsrry43nXCHxnCtiEeeKSeZckzZzrsR9nGvHcfbMPs+57uaxp/9DzlWziNeHlc7FXNEByK1RtZA7c99Hbm5sgdw+2h65kReN3FvUH7knKJY9G3k5V+RsXj8kiXPFbeBcq3dwrowDnOtiFud6fJlzlc9nz5BCzhXx6gX07FMeuTOpGq9fFozc3tEEuZHTCrn3bhRyT4neyK2aQ5G7YePYs3sc5xq1kD3n2Zxr4yZef+wnzpV3jHO9OMe5gvI4V6MHnKvTc841pNRF9Ix/A7m9+m3knsz3kHsvhvH6J+2QW+Wjkbsh/ZGbbUYid/pM5lzffMe5li1jz53rOVfOdva863CuElm8vuZlztXiN87V/QnnGl3sEuaaVw65J+1N5N5jdZG7eY2RWy8+Qe4ERSE3P/gHr+80BLkxdCznip/OudYs4FyZ33Oui2mc68le9ix/jHPVO8eeba5zrr73ef03f3GupJKXMdfOvyF3c2oit+7VR+6UCENuvt0Oud2iG3KjRz/2HP1P5J753/D6tFmc61gi57qxjnO92Ma5qjic64N/ca6oS+w59FfOlfCYPde8cgVzZZZFbl2qitx58g5ys0Jj5Ha9T5AbbTsh9/bthdwzeTB7Jn3NuXZ+y56n53Oue6t4fck0zvX2Xs4VfpRz9TjLuca4nGv+75wr7T/sebzEVcx1ozJy42UN5HaV+ry+cXPk3qhPkXuG/R25ldAXubvmK+Tm/kmc69JM9ixcyrkqrGPP0G2cq+1+Xt/vZ841+SLnSrrNuXY94lynPdcw1++vI7dLVkXuqfUOcm/4B8jdHh8jt8ZE8vr5XyA3Nw1C7hwfw7luTuNcL+dxrqqrOFfjjewZtYdzDTvCnglnONfaf/P6/fc41+U/OVeh/78xV8XKyL2hNZC7bd9FbvX7CLkzuS1yc/nnyO1dfZAbZ0bw+t8ncq5SMzlXraWcK3wt5+r5I+cak8m5Fpxiz00XONeJW+x5s4Bz/U+VfGb7I/dWfR25kVIJudu4CnL7sIHc6vx/yD1uKHsOa8SefzVDbs5oyfsHtGXPtR3Zs8HnPAenJ8+hQx/2vDyQPQeNYM+no3kO305kz4rT2NOewZ6h83gO+5bw/p+uZM/cNezZL5XnULCV5+DdzZ6vZ7Ln8sPsWfcUz2H3ad6/1QX2PHONPa1bPIf7d3kOEwrYs9Sf7Ln0JXvW8r+Oc9j2GnLTrITckxWE3OlpIPfm1+H9vw5F7hZvxJ4LmiG3jJbIjc1t2POjjux5oit7duvJc7gVw/uPHMienhHsOWc0z6HqRJ5DylT2bDKDPY/MZc/OS3gO7gr2HL6GPf9KYc8ZW3kOAbt5/3UZ7NngMHs6J3kOHU/zHK7ksuega+z59CZ7Tr/Lc6hYwPvbz9jz3Zfsme6Xh3P49DXk3tyKyI3+QcjdgurIbW8d5FbZUOSeFQ3Zs24z9txtIjdbt+H9z3ZgT6sre97vwXOYGMNzKDWQPZcOZ8/ao9lz+wSegzmV989KYM8v5rJn/mKew9creA5+a9hzYQp7GlvZc/MunkPzDPY8cYg9u51kz1s5PIfYXN7fc40959xkzzfv8hxS/+A5NHnGnkdesGcXvxvo6ZZBbg+viNx6HojcM7M6ciegDnLvunrIzYYN2dP5kD07mux5JQK5MbgDez7twp7Te7BnpRieQ/KXvP+7w9kzfRR7tpvAc8idwnPon8Cej+aw55TF7Fl2Bc9hxWrePziFPXdvYc/Wu3gOZ9N5DjGH2PP+CfacmMOepXN5DolX2bP2Tfbcfoc9W/7Bc8h6yvt/8YI97xS/iZ5jyyB3/Coi9y4MRG7UqI7c3Vwbud28HnLrZAPeP/pD9rwVzp6xEcjNVzrwHOZ2Yc83e7BnqsWeTb/kORwZxp5dRrHn9fHsOWIKz+F5PO8/cw57Bi5mz3XLeQ4NV/McDvzAnpFb2PPKTvYcnM5zeHaQ9487wZ6Vctgz+ReeQ/2rPIf0G+zZ7g57XnjIngOe8hweFbHnlOK30LNcGeTuigrI7eBA5Naet5B7Imojd86GIPfGNEBuPmjKnhPD2bN0BHsmfsZzqNOF99/enT1bWuyZPYDn0GsYz+FOLHuOHc+e/lPYc2E8z6HGHPbcsog9w5az58lknkP0D7z/7c3sGbuTPV9J5znMPchzqHaCPVOz2bPpL+x59ArPoesN3v96PnuOeMieRYU8h5lFPIfA4rfRc31p5J5GFZA7BwKQeyPfQm5crYXcHRyC3H72PnIrrinvXzmcPZNbs2f9z3gOGZ15Du27s+eF3uw5YAB7Ph7Kc5gSy/uXG8+eK73sGRLPc9gzm+cQsYg9zyWxZ0wyez7YwHOYtJk9y+xkz8R97FnnIM9hx3He/+Ns9sw+z569rvAc7ubxHMbms6f/Q/ZcVMieNYt4Dlte/RX3DyuN3DhVHrkbHYDcvl0NuTWqFnJPsRDkztz32bNaU+Tmxhbs2bQ1ex5tz55dO/Mc8qJ5/xG92bOoP3vOGspzCIrlOawfx56NvOx5MI49I2fzHK4u5P2HJLHnnzZ7xm3gOVTezHNYvYM96+9jz4wD7Nn+OM/hYhZ7DjjPno8vs+fUPJ5D+Xzef+UD9gwpZM+9z3kOEa/+hnM4Vwq52ac8cs/DN5A7k6oh95apxfsvC0bu1nmfPXc0QW593AK5kdOKPXu1Z8+7Uew5LprnUKI3ey7qz541h7Ln1pE8h7BxvP+pyezZPY49f/2O5zBqIc+hWBJ7zrPZs9oG9ty4iefw4Q7e/9hP7Nn1AHvmHeM5fJXFc3hxjj1nXWbPoDz23PAbz6HRA/Y8+IQ9Oz1nz2vF8nEOQ0oh9/5ZDrkR/wZyt3I15Pbqt5Fb7wUj92S+x57tm7DnxTDk5peteP8n7dhzahR7lo/mOaz6B88hpD977h3Cnm1Gsuf5sTyHPpPZ8+F09vzmO/Yss5DnsGwZ+6j/7v/1uKv/D7wHcdXrDusHI5e97rBPLHHV6w77j8d9ZK87/Lte4qrXHXymEVe97uAZR1z1uoP/TOKq1x1yzcZ/V/a6Q955yGWvO8xhAfrIXneYz0Lkstcd5rYY/WWvO8wTuep1hzknYl7Z6w7zT8I5yF53+LsgV73u8PdaiXOQve7wd/weuex1h7+vjfvLXnf4uyfj/rLXHZ6H1bhe9rrDc4Jc9brD84Nc9brDc4Vc9brD87YO18ted3gO1+McZK87PJ/IVa87PLfIVa87PM/IVa87POcpOAfZ6w7Pfyrmkr3u8LvYiOtlrzv8XpCrXnf4HSFXve7w+0Kuet3hd7cZ18ted/g9bsE5yF53+J3yetnrDr9f5KrXHX7XyFWvO/zef8R5yl53OAeQq153OB+24f6y1x3ODeSq1x3OE+Sq1x3OGeSq1x3OH+Sq1x3OpR2YS/a6w3mFXPW6wzmGXPW6w/mGXPW6w7mHXPW6w3m4C3PJXnc4J5GrXnc4P5GrXnc4V5GrXnc4b5GrXnc4h/dgLtnrDuczctXrDuc27y973eE8R6563eGcR6563eH8R6563eG9gFz1usP7Yh/uL3vd4T2CXPW6w/sFuep1h/cOctXrDu8j5KrXHd5TGZhL9rrD+wu56nWH9xpy1esO7zvkqtcd3oPIVa87vB/3Yy7Z6w7vTeSq1x3ep8hVrzu8Z5nLXnd4/yJXve7wXkauet3hfY1c9brDe5z9Za87vN+Rq153eO8jV73ucB9Arnrd4Z6AXPW6w/3hIOaSve5wr0Cuet3hvsFc9rrDPQS56nWH+wly1esO95ZDmEv2usN9BrnqdYd7DnLV6w73H+Sq1x3uRchVrzvclw5jLtnrDvco5KrXHe5XyFWvO9y7mMted7iPIVe97nBPO4K5ZK873N+Qq153uNchV73ucN9Drnrd4R6IXPW6w/0Quep1h3sjctXrDvdJ5KrXHe6ZyFWvO9w/mcted7iXIle97nBfRa563eEei1z1usP9FrnqdYd7L/vLXne4DyNXve5wT0auet3h/oxc9brDvRq56nWH+zb7y153uIczl73ucD9Hrnrd4d6OXPW6w30euep1h3v+SfSXve6av+x11/xlr7vGZa+7lkv2umu5ZK+7lkv2umu5ZK+7lkv2umu5ZK+7lkv2umv+stdd85e97pq/7HXXuOx113LJXnctl+x113LJXnctl+x113LJXnctl+x113LJXnfNX/a6a/6y113zl73uGpe97lou2euu5ZK97lou2euu5ZK97lou2euu5ZK97lou2euu+cted81f9rpr/rLXXeOy113LJXvdtVyy113LJXvdtVyy113LJXvdtVyy113LJXvdNX/Z6675y153zV/2umtc9rpruWSvu5ZL9rpruWSvu5ZL9rpruWSvu5ZL9rpruWSvu+Yve901f9nrrvnLXndtH9nrrnnKXndtf9nrrvnLXnft35W97tp62euuzVP2umtzkL3u2pxlr7uWS/a6a7lkr7uWS/a6a56y113LJXvdNU/Z667lkr3u2nrZ667lkr3uWi7Z667lkr3uWi7Z667lkr3uWi7Z6655yl53LZfsddc8Za+7lkv2umvrZa+7lkv2umu5ZK+7lkv2umu5ZK+7lkv2umu5ZK+75il73bVcstdd85S97lou2euurZe97lou2euu5ZK97lou2euu5ZK97lou2euu5ZK97pqn7HXXcsled81T9rpruWSvu7Ze9rpruWSvu5brf73u/wXtmrkOeJx1nHuYzeXeh1flrBDeZibJInkzY1KoJMOqGCLGqdeh2n7jlLO2QSWyKONQTiFjqBaSxnk7JmMsctYeQzTksJdBNXTQONXO4X32+373ta+rz73843J7rmc+n++s9fs9zz+3z+eLFDzeqqnvP3/C/tWH/vXvP/NA4y3IQ533Ifen5SMPTj2L3Lf0V+TezpvII5GyX+P667HIwzG1kAfq10ceahtA7u/fBnlwfDfkvgWvcM7sYcgj+WM556Wp3KvcfF4fn8W9mm/gXqlfcq9Redwr4yT3Wnuee+Ve45znix3GXsUrIvdXr4Y81LgOr+/yJPJgWjJy37SOyL2lHvLIzkHIA6dHcq/rEzhn7GzuVX8h50xZxb36Z/P69L3ca8E33Cv7DPc6epF7XbrBvcqXPYK94mOR+5IfRB5MrYc8Mqopci/jeV6/tivywIE+yMPn05D7S4zlXtWncq+kedyry2ecM20995q2nXMuPcC9dp3g9acLudeNq9wrttg32KvB3ciDKfcjj/RPQO6lN0QeXtAceWBLB+Sho92R+y8P5PXlR3KvhAncK3kW90pdwL1Gr+ReGZu517o9nPPAEe51oYBzlrjIvWrc4PVJZfKxV5cY5N6wmsjD0x5FHljWBHloV2vk/oIuyIM3eiP3xaVxzgZB7pUyhdcPyORe6Uu418J13GvLNu51LJd7XT7OvSoUcs6Eq9wr+Y6jmLNHBeTh0VV5/dx45KF1TyD35zVDHrzQHrmvZHfkXo2ByCNJb3DOrunca9hMzjk9xL2WreD1u7/gXgW7udfNw9wrroB7NfiFe7W7zr0GlD6GOSfcgzy08AHkvpxHkAePJfH6K62QexW6II8k9EYeaDEUebjHGO711nvca+5czrn+U+6Vt5ZzXghzr5K5vL7Gce7V5Afu1fUK9xp++7fYa3p55L7l9yEP7q6N3P0buXfzWeThuPbIA4/9hde3G4DcP/B17jVhPPda9D73yvmYex1bzr2ubOKcFXZzrzqHOWeL09yr58+8/q0/uFdmqePYa/1/IY/k1UDu/VgXebhkEvLAA62Qh5p0Ru7v1otzDv8rct+Mt3j98ne51+4M7nVmMfe6uYZ73RvmXo/9nXu1/5ZzDvyee028zDkX3XYCe+WUQ+59WwV5+MpDyAN3P448VOdZ5P6W7ZAHe76M3DemP+fMfI17rX+Hcx6cwb1+/IjXl1rOvR7YxL2a7uJe3b7mXiMi3GvGT9xr+T85556SJ7HXmcrI/beqIw/dW5fXP94YebD9c8h9g/4HuTexJ/LIoleRB7aO5l7fTuacV+dwr7sXc87ENdyr5VZe3+sr7jXmGPfK/I57bbjEvQ76TmGvn+5CHipVBbmv5kPIg00fQx7p9gxyb0QKr5/xEvLAin7Iw3tGcK+zb3OvW9O5V5WPuNfjyzhn+8+516CdnHPiIe71yT94/dYfudfx37nX1RL/wF4VKyMPJlZHHmn5MHKv11PIw2NaIg/MewF5aEMP5P5DQ3j9T6O4V+nJ3KvmHO7V9BPu9eLfuNeIHO71/n7OueIo99p7jnOeLeJe/4pKeaaUQB6schdyf1Yl5JHH70Ue2uFH7nX4b+S+SCLnHNSAc/7RCHlg0tO8f0xLzvlJW85Z7wWeQ/hFnkObHpzzeF/O2W8I57w2nOfwzijOWfFtzhmaxDkTp/McNn/A+z/3IefMX8Q5ey3lORSt5jkEN3LOu3I457wdnLP2fp7DxoO8f7OjnPPQKc7pneM5/HyB5/BmEecs/TvnnHOLc9YscRrnsOZO5IFAJeS+3Djk4Rf9yIOFtXj/1xKRR4o14JzvN0Lu+Z9G7l/ZgnM+1ZZz7u3EOTu/yHM4l8r7D+3LOX1DOOfU4TyHKqN4DlnjOOcTkzjnzmmcs8MHPIfIfM45eBHn/COLc05azXOI2cj7L97COevt4JzhfTyHtgd5DifyOWe/U5zz2lnOOf4Cz6FiEe8f+o1zPnyLc2YXL8A5PHcn8mB+ReT+3nHII0XVkIeCtZB75RKR++bX55y1G3HOjQHkgeYteP+v23BOrxPn/Lkbz2FUKs+hdF/OOWcw53xwOOdc+ybPITCO98+dyDlfmsY5C2fzHF6bz3MovohzzszinP7VnHPlBp5D4y2cc++XnLPzPs55Lo/nkJbP+/tOcc6pZznnfRd4Dkt/5Tk88Rvn3HmTc3YsfgZzRsoiDw2uiNy7HovcN7ka8nBMLeTBxXWQB+rX55zhJzln2wDnPJGM3N+/Dee81pFzju/GOSul8hwWvML7PzyYc2YP45yt3uQ55I/lOfSeyDkvTeWcY2dzznLzeQ7zF/L+8Vmcc+Mqztl8A8/h62yeQ+qXnPPnvZxzVB7nLJPPc8g4yTkfPMs5157nnE//ynPIvcb7v3STc54vdhZzvl4Webh4ReTBmbHI/dWrIY+sfBB5qHEd5N6+erx/lyc557mmnDMtGXngtjY8h2kdOed93TjnUo9zNnyF57BzEOfsOIxznh7JOYeM5Tlcn8D7T57KOWNnc87F83gO9RfyHLZ9xjlTVnHOE+s5Z/9snsNv23n/9L2cs1Ie51zwDc+h7kmeQ/YZztnqPOc8epFz9rnGc7h0g3OOLXYOc5Yvizwy/27kofhY5N7n9yP3JT+IPPx1AvJgaj3kgV8acs5RTTlnmWTOmfE8z6FWR95/bVfO+bTHOQ/04Tm8PIjncD6Nc74+knOWGMs5Z07gOVSfyjlXzeKcSfM4574FPIcun/H+363knGnrOedt2TyHadt5DlX3cs6lBzhnw284564TPIdOZ3j/04Wcc8hFznnjKs9h8g2eQ2yx7zDnp2WQ+xrcjTy8LQZ5MOV+5P6TNZFH+icgD/32KHIvvSHvX7kp51zQnHPWfZ7nsKUDz6F1V855tDvn7NOHc14eyHMYm8b7lx/JOT8Mcs6ECTyHz6fwHJJncc7DmZwzdQHn/GUJz2H0Ss5Zdj3nzNjMOWtt5zms28P7P3OAcx44wjlfPsFzuFDAc3i9kHOWuMg5Z13lnDVu8BxW3fE97p9UBrl/fwXkkS4xyEPfVUXuDauJ3Hd7AvLwtEc5Z9WGyAPLmnDOhs05567WnLNTB55DQRfef0h3znmjN+d8dyDPIS6N5/DpG5yzQZBzbk/nnClTeA4nZ/L+AzI55+8hzpm+hOdQeSXPYeE6zll3M+fcso1ztt7DcziWyzn7HOGcl49zznEFPIcKhbz/h79wzoSrnHPTdZ5D8h0/4BwOl0Ye6FEBue/iPcjDo6siD5atyfvPjUceqfUo51z3BHLvmSbI/XnNOOfLrTnnhfac840uPIeS3TnnrN6cs8ZAzrl6KM8h6Q3ef/8Yztk1nXN+/x7PYdhMnsPtmZxzeohzVl3COZet4Dk8uY733/0F5+y0jXMW7OY5vJrLc7h5mHO+e5xzxhVwziU/8Bwa/MI5t1/hnO2uc85TtxfiHAaURh78vTxy/4R7kEcqV0UeWvgAcu+ReOS+nEc4Z+snOOexJOSBV5rx/ldacc5x7TlnhS48h4/+wnNI6M05Nw3gnC2Gcs4jr/MceozhnBfHc8633uOcZWfyHObO5Tx/+vPv/5d9/8O7EQ/EZ/WMsr4/8jY9Xo2yTxpxd/4cEWX/kbjP1tGjo/zcIHFfdvFxUfK8TdzLeH58lJzpxN3zc2KU/JOJ+9t/+26UXlPw5yZWnxal73TkxRrMiDKH9zFPWj5yN5+ZyE+PnBVlbrMxf8r9H0SZJ3J3HpsTZc4Z2Deh99wo88/EOWSWmhfl94I8UGr5/Ci/rw9xDiNSPorye/wY+dki5O73G8L9a+9H7n7vC3D/yHzk7vOwENfPGYzcfU6Qh9oGFkX5/CAPF6/4SZTPFfJI9hnk7vO2GNenrUfuPoef4hwSJiB3n0/k7r62JMrnFrk7334W5fOM3J0HkLvPeRbOoWQucvf3UuyV8zFy971YhuuH/xW5+74gD9V5dnmU7xHy8JnKK6J8v5BHMr9D7r53K3F9+8+Ru+/jKpxD6cnI3feU10cSV0f5/iIPbf4AufteI/fPucX7F2vwN5zn0L7I3XMAeaDtQeTu+bAG96/dCLl7biD3ii9C7p4nyCORsmujPGeQe9nDkLvnD3Jfxknk7rm0DnulJSN3zyvkvpRVyN1zDHkoPnZ9lOcbcn+Jscjdcw95+HQhcvc83IC9tnRA7p6TyMMZm5G75ydyb1jNjVGeq8gjKVOQu+ctci/hKnL3HP4ce5Xsjtw9n5G7+yZy99zm/XMe2RTleY7cneeRu+c8cv/w27+I8vxHHm43ALl7LyAP1DmM3L0vNuP+JZOQu/cIcu/MYuTu/YI8klMuG+dW51nkXuZryN37CLlvRAS5e09twV7tn0Pu3l/IfYlrkLv3GvJQqSo52GtECnL/2beRu/cg8vDWH5G79+NW7DXvBeTuvYk8PCIHuXufIvdnVQrj/pFE5jEtkbv3L/LwO6OQu/cy8mDRauTufY084J1D7t7jnD83bhvmL9YAefiptsyH9kUeyhqH3J0HkHsxG5G7cwJy//gLyN35YTv2KqqG3J0rkIe8TsjdeYN57kTk7hyCPNB4C3J3PkHuW/or94qU/RJ7xdRC7s4zyIPjuyF35xzkgUtTmcdnIfenfoncnYuQR3Kvca/iFXdgr8Z1kLtzFHJvqYfcna+Q+2NnI3fnLubpe5G78xjy8KUb3Cs+dif2Sq2H3J3fkAcO9EHuznXIfUnzkLvzHvLw0gPMTxciD8UW24W9Uu5H7qU3RO7Ojcj9lwcid+dJ5JHUBcjdORN56MARzl/iIvOkMrux17CayAPLmiB351Xkvrg05O4cizycvgS5O98iD14+zvkTrnL+HhX2IJ8bj9yf1wy5OycjjyS9gdydn5GHlq1A7s7VyL24As7f7jrnn3DPXsyf8wjzK62Qu/M58nCPMcjduR15MG8tcneeRx5o8gNyd87fh/mX34fc/Y08HNeeebsByEMTxiN39wXk3pVNyN09Arm/58/cK7PUfuyVVwO5u3cgDzXpjNzdR5gvfxe5u6cgD9wbRu7uL8h9Ey9zr5xyX2GvKw8hd/cd5MGeLyN39yDkgYMzmJdajtzfdBdyd29CHln+T+51pvLfsde9dZG7exZyb2JP5O7+hdx/dQ5ydy9j3usr5O6+hjx80JeLvUpVQR5s+hhyd79DHljRD7m79yH3VfkIubsPIg9PPMR864/c62qJA9grsTpyr9dTyN29Ern/0BDk7r6JPNL0E+TuHoo8tOIo5z9bxPtMKZGHObMqIQ/t8CN391nkwT8a8fqYlsi9ei8gd/df5IF+Q5C7ezH3Ck3iXps/4Jz5i7hX0WrOeVcO96q9n9c3O8q9vHPc680i7jXnFvdac+dB7JUbhzxYWAu5u78j9/xPI3f3euSBzi/y+qF9kfunDkceyhrHvXZO416R+dzrjyzuFbORc9bbwb3aHuSc/U5xr/EXeH3oN+6VXfwQ9sqviDxSVA25Vy4Rebh2I+SB5i2Qh7xOyP2jUjnnnMHIfWvf5PW5E7lX4WzuVXwR9zKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v08v2/113ymNdd9jGvu/xc87rLHMzrLvnN6y7zMa+75DSvu+Q0r7vkNK/7n/m/ve6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY1/3//vwvnNK2FHichZx9eI9138d/lc1TIdxtS3KS3NksxZJkdlaMiBm6jepyzlOedRkqkR9lW8pTyIzqHEmbebg8JjMneda1jWjk4ToN1egqDVNXHu7vfR+f+4/7/rx+x+2fHcfrOPv2er/32/k7z3/egUDAL2vTNSFg/s3PLfvvn/Lvf7hnrUMeXLMZud1+O3L/wNfI3b4HkTsXSpBbaaV8fuAMe84+z54PXEIeyPuNe3jyd/bcc4s9e4edQ0+/JnJ3TF3kzo1I5IGZjZB7Ec2QB1e0QG63bs2e3lPs2cNmz1OJyK0R3dnzem/2nNGfPeulcg85r/L5j45hz4Lx7Nn1Le6hdBr3MCSTPa/MZs9pC9mz1lLuYekyPj86lz23rGXPTpu5h28LuIfUr9nzlwPsObmEPWuUcg9Zp9nz4fPsueEiez7zG/dQdJ3Pf/kWe16sch4936iJ3Aurizw4PxK51bgRcn/Nw8jd9i2QOwdb8fkpT7HnhQT2TEtEbt/RnXuY05s9H+jPnnkOe7Z9lXvYM5o9e49nz7OT2HPsNO7hRgafP3M2e0YuZM8VS7iH1su4h51fsGfSWvY8tYk9RxRwD7/v4vPTD7BnvRL2zPmOe2h5mnsoOMeeXS+y5/HL7Dn0Ovdw5SZ7TqtyAT1r10TuL70XuRsdidz58kHkgcSHkXvfxiAPprZCbv/alj0nJ7BnjUT2zHqBe2jWm8/f0I89n3HYs3go9/DKaO7hYhp7vjGJPcOnsef8DO6h8Wz2XLuAPeOXsOfBHO4h5Qs+/4c17Jm2iT3vKOAe5uziHhoeYM+8YvZs+x177j3FPfQ5x+efLWfPsZfZ82Yl9zDzJvcQWeUH9Py8BvJA3L3IvZ0RyINJDyK3TjdF7o+IQe7+/jhyJ70tn18/gT1zOrFnyxe4h+29uIdu/djz+AD2HDqUPa+O4h6mpfH5tSex58dB9ozJ4B6+nMU9JC5gz6PZ7Jmaw56/ruQepqxhz5qb2DNrG3s228U9bNzP5z9bzJ7Fx9jzlVPcw6Uy7uGNcvYMv8yeCyrZs8lN7mHtXT/i+fE1kFuH6iD3UyKQuz80RO6Mb4o8cGcMcm/O4+zZsC1ye1UH9mzbiT33dmPPPr24h7IUPn/sAPa8OYQ93x/FPUSlcQ+fv8mecUH23JXOnkmzuIfT8/n8kdns+YfLnukruYf6a7iHZRvZs+U29ty+kz277eceThSx59Bj7Hn1JHtOL+Me6pTz+R//yp4xley59Qb3kHjXT9jD0erI7YF1kAcu34fcm9IQebBmUz5/cTRyv9nj7LnxSeTOsx2QWyUd2fOVbux5KZk930zhHqoOYM8FQ9izySj2XDeOe4h/k88/NJU9+6Wz548fcA/j53MPd2az51yXPRuuZM9Vq7mHpzby+fu+Ys8+O9mzbB/38FoR93DrKHu+f5I9o8rYc+VP3EPcr+y56xp79rzBnmfuLMceRlZHHvyjNnIr4z7kfv2GyN1lDyF3HotGHih8jD27PcmeJ+KR26925POvdWXP6cnsWSeFe/jkL9xDzBD23DqSPTuPY89jb3APA6ey5+UZ7Pn2B+xZcz73sHgx+/zf//7//9mfuB2dOyjE9SOQdx/4Wohz0oib58+JIc6fhOfsmDIlxP83SDxQEDY9hM87xJ2sF2aE8Ewnbu6fmSH8ZxK3kr9/P0SuWfj/jW08J0TeucirxM0L0cOH6JNWitz0Mx/52UkLQvS2EP2THvwoRJ/IzfPYohA9Z2HemCGLQ/SfjT1kV1sS4veC3K6WvzTE7+tj7GFi0ichfo+fIj9fgdz8fl08v/kh5Ob3noPn+0uRm8/DMrx+0Rjk5nOC3O1hLw/x+UHuhdX9LMTnCrlfcA65+bytwOvTNiE3n8PPsYeYDOTm84ncvK+tDPG5RW6eb78I8XlGbp4HkJvPeS72ULUIufmZh7kKP0Vu/i5W4fUT/orc/L0gd1s8lx/i7wi5d67+6hB/X8j97B+Qm7+7NXh98pfIzd/jWuyh+kzk5u+Ur/dj14X4+0XubvsIufm7Rm4tus3nV4n7G/Y5bhhycx9Abvc4jNzcH9bj+c3bITf3DeRO2HLk5n6C3PdrbsDeetjInYLxyM39B3kg6zRyc1/aiLnSEpGb+xXyQNJa5OY+htyNjtyEubJeQG6FT0Nu7nvIvbPlyM39cDPm2t4LublPIveytiE390/kzvimWzBXWQpyP2kWcnO/Re7EVCI39+EvMVfVAcjN/Rm5ed9Ebu7bfH7hY1sxV8wQ5OZ5Hrm5zyO3Jtz5FZ5f1ga513MkcvO9gNxucRS5+b7YhudXjUduvkeQO+dWIDffL8j9wloF2FuL55A72a8jN99HyAMTfeTme2o75kp+Hrn5/kIeiF2P3HyvIXerNSjEXBOTkFvn30FuvgeRezt+Rm6+H3dgriUvIjffm8i9iYXIzfcpciu3nofn+7HMI7ogN9+/yL13JyM338vIgxXrkJvva+S2cwG5+R5n/6KonehfJQ6593QP5uOGIXdzpyM3zwPInYgtyM1zAnJrxiXk5vlhF+aqaITcPFcgd50+yM3zBvOiTOTmOQS53X47cvN8gjyQ9xvn8mt+jbkimiE3zzPIgzP6IzfPOcjtK7OZR+cit1K/Rm6ei5D7Rdc5V1jd3ZirfQvk5jkKuZPnIDfPV8ityIXIzXMX8/QDyM3zGHLvyk3OFR25B3OltkJunt+Q28VDkZvnOuSB+CXIzfMeci+vmPnZcuRuZJW9mCvpQeROelvk5rkRuXV1FHLzPIncT81Bbp4zkbvFx9g//DLz+Br7MNf4psjtVR2Qm+dV5IGoNOTmORa5l74SuXm+RR68epL9YyrZf2Cd/cgXRyO3SjoiN8/JyP34N5Gb52fk7qrVyM1zNXInqoz9e95g/4z7DqB/4WPMr3VFbp7PkXsDpyI3z+3IgyUbkJvneeR2h5+Qm+f8g+if/wBy8xO5F5XMvOdI5G7GDOTmfQG5c20rcvMegdwa9Avnyq52CHOVNEFu3juQux36IjfvI8zz30du3lOQ2/d7yM37C/JA5lXOVVjrG8x17RHk5n0HeXDQK8jNexBy+/A85tXykVsJe5Gb9ybkfv6/ONe5+n/HXPe3RG7es5A7mYOQm/cv5FblIuTmvYz54G+Qm/c15N7hQBHmqtYAeTDhCeTm/Q65vXo4cvPehzzQ4BPk5n0QuZd5hPmOnzlXZXgx5optjNwZ/DRy816J3DoyFrl530TuJ3yG3LyHIndXH2f/8xV8zqzwEvTMrYfc3W0hN++zyIN/tuPrI7ogd1q9iNy8/yK3h49Fbt6LOZf7Hufa9hF7li7nXBXr2POeQs7V/BBf3/E453IucK63KjjXotuca/3dhzFXURTyYHkz5Ob9HbljPYPcvNcjt/u+xNePG4bcmj0BuZs7nXPtmcO5/KWc689czhWxhT1b7eZcPQ6z5/AznGvGJb7e/Z1zFYQdwVyldZH7FY2QO7VikXvN2yG3O3VG7jp9kFuTU9lz0RjkgQ1v8fVFmZyrfCHnClvOuax1nKv9ds7V9yDnSitlz9nnOVfeb+y55xbn8mt+i9ffiETuRTRDbrdujdztYSO3RnRHHpzRH3kg51X2LBiP3C+dxp5XZnOuWkv5+uhcztVpM+dK/ZpzTS7hXFmnOdeGi5yr6Dp7XqxyFHOF1UVuNW6E3G3fgq9PeQp5MC0ReWBOb+ROnoPc3zMauX12Eue6kcGekQs5V+tl7Jm0lnONKODr0w9wrpzvOFfBOc51/DLnunKTc9WueQxzRUciDyQ+jDyY2gq5PzkBuZP1Al+/oR9yu3gocu9iGnIrfBrnajybc8Uv4VwpX7Bn2ibONWcXe+YVc669p/j6s+Wc62Yl54qs8h3mirsXeTDpQeT+iBjkTnpb5F5OJ+T29l7I3eMDkFtXR/H1tSdxrpgMzpW4gHOl5nCuKWs4V9Y2zrVxP3sWH+Ncl8rYM/wy52pyk6+Pr1GKuVIikDvjmyL35jyO3F7VAbm7txtyqywFefDmEOSBqDT2jAtyrqRZfP3IbM6VvpJzLdvIubbv5FwnijjX1ZOcq045e8ZUcq7Eu46j58A6yL0pDfn6xdHI3Y1PIrdKOiIPXkpGHqg6ALnTZBRyP/5N9uyXzrnGz2fPuS7nWrWar9/3Fecq28e5bh3lXFFlnCvuV87V8wbnGln9BHpm3IfcXfYQ8kDhY8iDJ+L5+mtdkTt1UpD7MUOQ253HIfcGTuVcb3/AuRYvZs9Nn3Oukg3secnjXFWL+PomJzlXh584V79rnGvCnd9jrrm1kQfyH0Ae3NccufmJ3Ln1HHIvKhm5/cRf+PqeI5Fbo97gXBkzONfyDzlX4aec60Q+57q2lT3r7ONcLY6yZ+eznGvQL3z9239yruxqJzHXpn9D7pc0Qe783BK5VzUeuf1QV+Ruh77Irf6D2XPCX5EH5r3N1+e/z7n2ZXGucys41631nOt+j3M98XfOlfw9e476kXNlXmXP5XecwlyFtZA73zdA7l17BLl9bxvkbovnkFtdeiIPDnoFeWDqCPbMfp1zbXqXPQ/P41w/f8LXV8vnXA9t5VwJezlX/28510Sfc837J+fK/xd77q96GnOdq4/cut0YuXt/S76+TXvkweTnkQdG/wdyJ3MQcn/5a8jtHVM41/cz2bNyEee6dwV7xq7nXF128PWDv+FcU09wruwfONfmK5zrcOAM5vrnPcjdag2QB5o+gjyY8ARyv/+zyJ2JSXz9vJeR26uHI/f2T+Rc59/hXLfncq4Gn3CuNqvYM/lLzjV6D3tmHuFcn/2Dr9/xM+c6+Qfnqgz/B+aqWx95MLYxcr/Lo8idwU8j96Z2QW4veRG5u3kgcuvIWL7+n5M5V/WZnKvpIs6V8BnneulvnGtiIef68BB7rj7OuQ5cYM/zFZzrv1TJZ1Y48mCDe5BbufWQ+23uR+7utpA7vf4decCPZc/Rcez5Zzvk9nvP8PkRXdjzsx7s2epF7sF7iXvoPpA9Tw5jz+Fj2fP6BO7h3cnsWfcd9nTfY8/YudzDto/4/Oc/Zs/S5ew5OI97qFjHPQS3sOc9hey5ZDd7Nj/EPWw5zOd3PM6eR86wp3OBe/jlEvfwVgV7Vv+DPRfdZs+m4Wexh/V3I7ftesgDRVHIvZcs5MHyZnz+67HI/Spx7PlhO+SO9Qxya01n9ny6B3se6MOefV/iHi6k8vnjhrFnYCx7zp7APTSYzD3kTmfPJ99jzz1z2LPXR9yDv5Q9xyxnzz9z2fO9ddxDxBY+f8V29my1mz29g9xDj8Pcw6lS9hx+hj2vn2fPGZe4h7oVfL77O3s+eps9C8LKsIfn70YeLK2L3BoShdyvaITcDTZD7tSKRR5Y2po9m7djzy02crtTZz7/2+7s6fRhz1/6cw+TU7mH6sPYc9EY9nx4AntueIt7sKfz+UWZ7PnyHPYsX8g9vL6Uewhbzp6y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBd9//F/xMw4b/1
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0
+            </Value>
+            <Value index="1">
+              0.80000081192
+            </Value>
+          </InformationKey>
+        </DataArray>
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="binary" RangeMin="0" RangeMax="4003">
+          AgAAAACAAAAAegAAeRYAAD0VAAA=eJxV3Hf4z9Ubx/Fz+96nz31638eIJMqsaFAaIimhpIWkKe3SMlO0ZGQ1kFVRNFRKaQ+kPYUo2lYK0U6U8Puj/K7ref55Xec65/Hvuc7547xC+HfIf7mu7N/84b9cXPo3P/kvZxf/5pyCrlygW19G92mJ7tWC7r/t/3cbyuiWlOjmFnQa6H4so1taonutoIuB7qcyus9KdK8XdDsFup/L6D4v0b1R0P23/H/3SxndFyW6Nws6C3S/ltF9WaJ7q6BLge63MrqvSnRvF3Q7B7rfy+i+LtG9U9D9N/2/+6OM7psS3bsFnQe6jWV0y0p07xV0OdD9WUa3vET3fkFXPtBtKqNbUaL7oKCrEOg2l9GtLNF9WNBVDHR/ldGtKtHNK+gqBbq/y+i+LdF9VNDtEui2lNGtLtHNL+gqB7p/yui+K9EtKOiqBLqtZXTfl+gWFnS7BrptZXRrSnQfF3RVA932Mrq1JbpFBd1ugW7HwbTDrSvRLS7oqgU6UbofSnSfFHS7B7pySre+RPdpQVc90JUp3YYS3ZKCrkagU6X7sUS3tKDbI9BFpfupRPdZQbdnoNtJ6X4u0X1e0NUMdCWl+6VE90VBVyvQmdL9WqL7sqCrHeiS0v1WovuqoKsT6HZWut9LdF8XdHUDXaF0f5Tovino6gU6V7qNJbplBd1egS4r3Z8luuUF3d6BrrzSbSrRrSjo9gl0FZRuc4luZUFXP9BVVLq/SnSrCroGga6S0v1dovu2oNs30O2idFtKdKsLuv0CXWWl+6dE911Bt3+gq6J0W0t03xd0BwS6XZVuW4luTUHXMNBVVbrtJbq1BV2jQLeb0u24aO1w6wq6AwNdNaUTo/uhoDso0O2udOWMbn1B1zjQVVe6MqPbUNAdHOhqKJ0a3Y8F3SGBbg+li0b3U0F3aKDbU+l2MrqfC7rDAl1NpSsZ3S8FXZNAV0vpzOh+LegOD3S1lS4Z3W8FXdNAV0fpdja63wu6ZoGurtIVRvdHQXdEoKundG50Gwu65oFuL6XLRvdnQXdkoNtb6cob3aaCrkWg20fpKhjd5oLuqEBXX+kqGt1fBd3Rga6B0lUyur8LupaBbl+l28XothR0xwS6/ZSustH9U9C1CnT7K10Vo9ta0LUOdAco3a5Gt62gaxPoGipdVaPbXtAdG+gaKd1uRrfj4bjDHRfoDlS6akYnTtc20B2kdLsbXTmnOz7QNVa66kZX5nTtAt3BSlfD6NTpTgh0hyjdHkYXne7EQHeo0u1pdDs53UmB7jClq2l0Jac7OdA1UbpaRmdOd0qgO1zpahtdcrr2ga6p0tUxup2drkOga6Z0dY2ucLqOge4IpatndO50pwa65kq3l9Flp+sU6I5Uur2NrrzTnRboWijdPkZXwek6B7qjlK6+0VV0utMD3dFK18DoKjndGYGupdLta3S7ON2Zge4YpdvP6Co73VmBrpXS7W90VZzu7EDXWukOMLpdne6cQNdG6RoaXVWn6xLojlW6Rka3m9OdG+iOU7oDja6a03UNdG2V7iCj293pzgt0xytdY6Or7nTnB7p2Snew0dVwugsC3QlKd4jR7eF0Fwa6E5XuUKPb0+kuCnQnKd1hRlfT6S4OdCcrXROjq+V0lwS6U5TucKOr7XSXBrr2StfU6Oo43WWBroPSNTO6uk7XLdB1VLojjK6e010e6E5VuuZGt5fTXRHoOindkUa3t9NdGehOU7oWRreP010V6Dor3VFGV9/prg50pyvd0UbXwOm6B7ozlK6l0e3rdD0C3ZlKd4zR7ed0PQPdWUrXyuj2d7pege5spWttdAc4Xe9Ad47StTG6hk7XJ9B1Ubpjja6R010T6M5VuuOM7kCn6xvouipdW6M7yOmuDXTnKd3xRtfY6a4LdOcrXTujO9jp+gW6C5TuBKM7xOn6B7oLle5EozvU6a4PdBcp3UlGd5jT3RDoLla6k42uidPdGOguUbpTjO5wp7sp0F2qdO2NrqnT3RzoLlO6DkbXzOkGBLpuStfR6I5wulsC3eVKd6rRNXe6gYHuCqXrZHRHOt2gQHel0p1mdC2cbnCgu0rpOhvdUU43JNBdrXSnG93RTndroOuudGcYXUunGxroeijdmUZ3jNMNC3Q9le4so2vldMMDXS+lO9voWjvdiEDXW+nOMbo2Tjcy0PVRui5Gd6zT3RborlG6c43uOKe7PdD1VbquRtfW6e4IdNcq3XlGd7zT3RnorlO6842undONCnT9lO4CozvB6UYHuv5Kd6HRneh0YwLd9Up3kdGd5HR3BboblO5iozvZ6cYGuhuV7hKjO8XpxgW6m5TuUqNr73TjA93NSneZ0XVwugmBboDSdTO6jk43MdDdonSXG92pTnd3oBuodFcYXSenuyfQDVK6K43uNKe7N9ANVrqrjK6z000KdEOU7mqjO93pJge6W5Wuu9Gd4XT3BbqhStfD6M50uvsD3TCl62l0ZzndlEA3XOl6Gd3ZTjc10I1Qut5Gd47TPRDoRipdH6Pr4nQPBrrblO4aozvX6R4KdLcrXV+j6+p0Dwe6O5TuWqM7z+mmBbo7le46ozvf6R4JdKOUrp/RXeB0jwa60UrX3+gudLrHAt0Ypbve6C5yuumB7i6lu8HoLna6xwPdWKW70egucbonAt04pbvJ6C51uhmBbrzS3Wx0lzndk4FugtINMLpuTvdUoJuodLcY3eVONzPQ3a10A43uCqd7OtDdo3SDjO5Kp3sm0N2rdION7iqnezbQTVK6IUZ3tdM9F+gmK92tRtfd6Z4PdPcp3VCj6+F0LwS6+5VumNH1dLoXA90UpRtudL2c7qVAN1XpRhhdb6d7OdA9oHQjja6P070S6B5UutuM7hqnmxXoHlK6242ur9PNDnQPK90dRnet080JdNOU7k6ju87pXg10jyjdKKPr53RzA92jSjfa6Po73WuB7jGlG2N01zvd64FuutLdZXQ3ON0bge5xpRtrdDc63ZuB7gmlG2d0NzndW4FuhtKNN7qbne7tQPek0k0wugFO906ge0rpJhrdLU73bqCbqXR3G91Ap3sv0D2tdPcY3SCnez/QPaN09xrdYKf7INA9q3STjG6I030Y6J5TuslGd6vTzQt0zyvdfUY31Ok+CnQvKN39RjfM6eYHuheVborRDXe6BYHuJaWbanQjnG5hoHtZ6R4wupFO93Gge0XpHjS625xuUaCbpXQPGd3tTrc40M1WuoeN7g6n+yTQzVG6aUZ3p9N9GuheVbpHjG6U0y0JdHOV7lGjG+10SwPda0r3mNGNcbrPAt3rSjfd6O5yus8D3RtK97jRjXW6LwLdm0r3hNGNc7ovA91bSjfD6MY73VeB7m2le9LoJjjd14HuHaV7yugmOt03ge5dpZtpdHc73bJA957SPW109zjd8kD3vtI9Y3T3Ot2KQPeB0j1rdJOcbmWg+1DpnjO6yU63KtDNU7rnje4+p/s20H2kdC8Y3f1OtzrQzVe6F41uitN9F+gWKN1LRjfV6b4PdAuV7mWje8Dp1gS6j5XuFaN70OnWBrpFSjfL6B5yunWBbrHSzTa6h53uh0D3idLNMbppTrc+0H2qdK8a3SNOtyHQLVG6uUb3qNP9GOiWKt1rRveY0/0U6D5TuteNbrrT/RzoPle6N4zucaf7JdB9oXRvGt0TTvdroPtS6d4yuhlO91ug+0rp3ja6J53u90D3tdK9Y3RPOd0fge4bpXvX6GY63cZAt0zp3jO6p53uz0C3XOneN7pnnG5ToFuhdB8Y3bNOtznQrVS6D43uOaf7K9CtUrp5Rve80/0d6L5Vuo+M7gWn2xLoVivdfKN70en+CXTfKd0Co3vJ6bYGuu+VbqHRvex02wLdGqX72OhecbrtgW6t0i0yullOt+Mj/g63TukWG91spxOh+0HpPjG6OU5XTujWK92nRveq05UJ3QalW2J0c51Ohe5HpVtqdK85XRS6n5TuM6N73el2Erqfle5zo3vD6UpC94vSfWF0bzqdCd2vSvel0b3ldEnoflO6r4zubafbWeh+V7qvje4dpyuE7g+l+8bo3nU6F7qNSrfM6N5zuix0fyrdcqN73+nKC90mpVthdB84XQWh26x0K43uQ6erKHR/Kd0qo5vndJWE7m+l+9boPnK6XYRui9KtNrr5TldZ6P5Ruu+MboHTVRG6rUr3vdEtdLpdhW6b0q0xuo+drqrQbVe6tUa3yOl2E7odxSI73DqjW+x01YROIt0PRveJ0+0udOUi3Xqj+9TpqgtdWaTbYHRLnK6G0Gmk+9HoljrdHkIXI91PRveZ0+0pdDtFup+N7nOnqyl0pUj3i9F94XS1hM4i3a9G96XT1Ra6FOl+M7qvnK6O0O0c6X43uq+drq7QFZHuD6P7xunqCZ1Huo1Gt8zp9hK6HOn+NLrlTre30JWPdJuMboXT7SN0FSLdZqNb6XT1ha5ipPvL6FY5XQOhqxTp/ja6b51uX6HbJdJtMbrVTref0FWOdP8Y3XdOt7/QVYl0W43ue6c7QOh2jXTbjG6N0zUUuqqRbrvRrXW6RkK3W6TbUZS0w61zugOFrlqkk0T3g9MdJHS7R7pyiW690zUWuuqRrizRbXC6g4WuRqTTRPej0x0idHtEupjofnK6Q4Vuz0i3U6L72ekOE7qaka6U6H5xuiZCVyvSWaL71ekOF7rakS4lut+crqnQ1Yl0Oye6352umdDVjXRFovvD6Y4QunqRzhPdRqdrLnR7Rbqc6P50uiOFbu9IVz7RbXK6FkK3T6SrkOg2O91RQlc/0lVMdH853dFC1yDSVUp0fztdS6HbN9Ltkui2ON0xQrdfpKuc6P5xulZCt3+kq5Lotjpda6E7INLtmui2OV0boWsY6aomuu1Od6zQNYp0uyW6HcVvO9xxQndgpKuW6CTTtRW6gyLd7omuXKY7XugaR7rqia4s07UTuoMjXY1Ep5nuBKE7JNLtkehipjtR6A6NdHsmup0y3UlCd1ikq5noSpnuZKFrEulqJTrLdKcI3eGRrnaiS5muvdA1jXR1Et3Oma6D0DWLdHUTXZHpOgrdEZGuXqLzTHeq0DWPdHslupzpOgndkZFu70RXPtOdJnQtIt0+ia5CpussdEdFuvqJrmKmO13ojo50DRJdpUx3htC1jHT7JrpdMt2ZQndMpNsv0VXOdGcJXatIt3+iq5Lpzha61pHugES3a6Y7R+jaRLqGia5qpusidMdGukaJbrdMd67QHRfpDkx01TJdV6FrG+kOSnS7Z7rzhO74SNc40VXPdOcLXbtId3Ciq5HpLhC6EyLdIYluj0x3odCdGOkOTXR7ZrqLhO6kSHdYoquZ6S4WupMjXZNEVyvTXSJ0p0S6wxNd7Ux3qdC1j3RNE12dTHeZ0HWIdM0SXd1M103oOka6IxJdvUx3udCdGumaJ7q9Mt0VQtcp0h2Z6PbOdFcK3WmRrkWi2yfTXSV0nSPdUYmufqa7WuhOj3RHJ7oGma670J0R6Vomun0zXQ+hOzPSHZPo9st0PYXurEjXKtHtn+l6Cd3Zka51ojsg0/UWunMiXZtE1zDT9RG6LpHu2ETXKNNdI3TnRrrjEt2Bma6v0HWNdG0T3UGZ7lqhOy/SHZ/oGme664Tu/EjXLtEdnOn6Cd0Fke6ERHdIpusvdBdGuhMT3aGZ7nqhuyjSnZToDst0NwjdxZHu5ETXJNPdKHSXRLpTEt3hme4mobs00rVPdE0z3c1Cd1mk65DommW6AULXLdJ1THRHZLpbhO7ySHdqomue6QYK3RWRrlOiOzLTDRK6KyPdaYmuRaYbLHRXRbrOie6oTDdE6K6OdKcnuqMz3a1C1z3SnZHoWma6oULXI9KdmeiOyXTDhK5npDsr0bXKdMOFrlekOzvRtc50I4Sud6Q7J9G1yXQjha5PpOuS6I7NdLcJ3TWR7txEd1ymu13o+ka6romubaa7Q+iujXTnJbrjM92dQnddpDs/0bXLdKOErl+kuyDRnZDpRgtd/0h3YaI7MdONEbrrI91Fie6kTHeX0N0Q6S5OdCdnurFCd2OkuyTRnZLpxgndTZHu0kTXPtONF7qbI91lia5DppsgdAMiXbdE1zHTTRS6WyLd5Ynu1Ex3t9ANjHRXJLpOme4eoRsU6a5MdKdlunuFbnCkuyrRdc50k4RuSKS7OtGdnukmC92tka57ojsj090ndEMjXY9Ed2amu1/ohkW6nonurEw3ReiGR7peie7sTDdV6EZEut6J7pxM94DQjYx0fRJdl0z3oNDdFumuSXTnZrqHhO72SNc30XXNdA8L3R2R7tpEd16mmyZ0d0a66xLd+ZnuEaEbFen6JboLMt2jQjc60vVPdBdmuseEbkykuz7RXZTppgvdXZHuhkR3caZ7XOjGRrobE90lme4JoRsX6W5KdJdmuhlCNz7S3ZzoLst0TwrdhEg3INF1y3RPCd3ESHdLors8080Uursj3cBEd0Wme1ro7ol0gxLdlZnuGaG7N9INTnRXZbpnhW5SpBuS6K7OdM8J3eRId2ui657pnhe6+yLd0ETXI9O9IHT3R7phia5npntR6KZEuuGJrleme0nopka6EYmud6Z7WegeiHQjE12fTPeK0D0Y6W5LdNdkullC91Ckuz3R9c10s4Xu4Uh3R6K7NtPNEbppke7ORHddpntV6B6JdKMSXb9MN1foHo10oxNd/0z3mtA9FunGJLrrM93rQjc90t2V6G7IdG8I3eORbmyiuzHTvSl0T0S6cYnupkz3ltDNiHTjE93Nme5toXsy0k1IdAMy3TtC91Skm5jobsl07wrdzEh3d6IbmOneE7qnI909iW5Qpntf6J6JdPcmusGZ7gOhezbSTUp0QzLdh0L3XKSbnOhuzXTzhO75SHdfohua6T4Suhci3f2Jblimmy90L0a6KYlueKZbIHQvRbqpiW5EplsodC9HugcS3chM97HQvRLpHkx0t2W6RUI3K9I9lOhuz3SLhW52pHs40d2R6T4RujmRblqiuzPTfSp0r0a6RxLdqEy3ROjmRrpHE93oTLdU6F6LdI8lujGZ7jOhez3STU90d2W6z4XujUj3eKIbm+m+ELo3I90TiW5cpvtS6N6KdDMS3fhM95XQvR3pnkx0EzLd10L3TqR7KtFNzHTfCN27kW5mors70y0Tuvci3dOJ7p5Mt1zo3o90zyS6ezPdCqH7INI9m+gmZbqVQvdhpHsu0U3OdKuEbl6kez7R3ZfpvhW6jyLdC4nu/ky3WujmR7oXE92UTPed0C2IdC8luqmZ7nuhWxjpXk50D2S6NUL3caR7JdE9mOnWCt2iSDcr0T2U6dYJ3eJINzvRPZzpfhC6TyLdnEQ3LdOtF7pPI92rie6RTLdB6JZEurmJ7tFM96PQLY10ryW6xzLdT0L3WaR7PdFNz3Q/C93nke6NRPd4pvtF6L6IdG8muicy3a9C92WkeyvRzch0vwndV5Hu7UT3ZKb7Xei+jnTvJLqnMt0fQvdNpHs30c3MdBuFblmkey/RPZ3p/hS65ZHu/UT3TKbbJHQrIt0Hie7ZTLdZ6FZGug8T3XOZ7i+hWxXp5iW65zPd30L3baT7KNG9kOm2CN3qSDc/0b2Y6f4Ruu8i3YJE91Km2yp030e6hYnu5Uy3TejWRLqPE90rmW670K2NdIsS3axMF8rRrYt0ixPd7P/yf+D9Xll4nFXLVdiWVbdAYZiLby7fuXzmAgFBQJFQQpCSEpEQJBRpJJUORRoBRWlMpEEFlLC7u7u7u7u73de1f0/GOBlHdzkp9/+V/++fl/3vX/z3F0r/+4v//c7if7+roBOh+7KM7qUS3d0FXRC6r8roXi7R3VPQVRC6r8voXinR3VvQlQndN2V0r5bo7ivoVOi+LaN7rUR3f0EXhe67MrrXS3QPFHS7Cd33ZXRvlOgeLOhKQvdDGd2bJbqHCjoTuh/L6N4q0T1c0CWh+6mM7u0S3SMF3e5C93MZ3TslukcLukLofimje7dE91hB50L3axndeyW6xwu6LHS/ldG9X6J7oqCrKHS/l9F9UKJ7sqCrJHR/lNF9WKJ7qqDbQ+j+LKP7qET3dEFXWej+KqP7uET3TEFXRej+LqP7pET3bEFXVej+KaP7tET3XEG3p9D9W0b3WYnu+YKumtCVU7rPS3QvFHTVha680n1RonuxoNtL6ETpvizRvVTQ1RC6oHRfleheLuhqCl0Fpfu6RPdKQVdL6MqU7psS3asF3d5Cp0r3bYnutYJuH6GLSvddie71gq620O2mdN+X6N4o6PYVupLS/VCie7OgqyN0pnQ/lujeKujqCl1Sup9KdG8XdPWEbnel+7lE905BV1/oCqX7pUT3bkG3n9C50v1aonuvoNtf6LLS/Vaie7+gayB0FZXu9xLdBwVdQ6GrpHR/lOg+LOgaCd0eSvdnie6jgq6x0FVWur9KdB8XdAcIXRWl+7tE90lB10ToqirdPyW6Twu6pkK3p9L9W6L7rKA7UOiqKV05o/u8oGsmdNWVrrzRfVHQNRe6vZROjO7Lgq6F0NVQumB0XxV0LYWuptJVMLqvC7pWQldL6cqM7puC7iCh21vp1Oi+LehaC90+SheN7ruCro3Q1Va63Yzu+4KurdDtq3Qlo/uhoGsndHWUzozux4KuvdDVVbpkdD8VdAcLXT2l293ofi7oOghdfaUrjO6Xgu4QodtP6dzofi3oOgrd/kqXje63gu5QoWugdBWN7veCrpPQNVS6Skb3R0HXWegaKd0eRvdnQddF6BorXWWj+6ug6yp0ByhdFaP7u6A7TOiaKF1Vo/unoOsmdE2Vbk+j+7eg6y50BypdNaMr53SHC10zpatudOWdrofQNVe6vYxOnK6n0LVQuhpGF5yul9C1VLqaRlfB6XoLXSulq2V0ZU53hNAdpHR7G5063ZFC11rp9jG66HR9hK6N0tU2ut2c7iiha6t0+xpdyen6Cl07patjdOZ0/YSuvdLVNbrkdP2F7mClq2d0uzvdAKHroHT1ja5wuoFCd4jS7Wd07nSDhK6j0u1vdNnpBgvdoUrXwOgqOt0QoeukdA2NrpLTHS10nZWukdHt4XRDha6L0jU2uspON0zouirdAUZXxemGC91hStfE6Ko63Qih66Z0TY1uT6cbKXTdle5Ao6vmdKOE7nCla2Z01Z3uGKHroXTNjW4vpztW6HoqXQujq+F0o4Wul9K1NLqaTjdG6HorXSujq+V0Y4XuCKU7yOj2drpxQnek0rU2un2cbrzQ9VG6NkZX2+kmCN1RStfW6PZ1uolC11fp2hldHaebJHT9lK690dV1uslC11/pDja6ek43RegGKF0Ho6vvdMcJ3UClO8To9nO644VukNJ1NLr9nW6q0A1WukONroHTnSB0Q5Suk9E1dLppQne00nU2ukZON13ohipdF6Nr7HQzhG6Y0nU1ugOcbqbQDVe6w4yuidPNEroRStfN6Jo63WyhG6l03Y3uQKebI3SjlO5wo2vmdHOF7hil62F0zZ3uRKE7Vul6Gl0Lp5sndKOVrpfRtXS6+UI3Rul6G10rp1sgdGOV7gijO8jpThK6cUp3pNG1drqThW680vUxujZOt1DoJijdUUbX1ulOEbqJStfX6No53alCN0np+hlde6dbJHSTla6/0R3sdIuFborSDTC6Dk63ROiOU7qBRneI0y0VuuOVbpDRdXS6ZUI3VekGG92hTrdc6E5QuiFG18npVgjdNKU72ug6O91KoZuudEONrovTnSZ0M5RumNF1dbrThW6m0g03usOc7gyhm6V0I4yum9OdKXSzlW6k0XV3urOEbo7SjTK6w53ubKGbq3THGF0Pp1sldCcq3bFG19PpzhG6eUo32uh6Od1qoZuvdGOMrrfTrRG6BUo31uiOcLq1QneS0o0zuiOdbp3Qnax0442uj9OtF7qFSjfB6I5yug1Cd4rSTTS6vk63UehOVbpJRtfP6TYJ3SKlm2x0/Z1us9AtVropRjfA6c4VuiVKd5zRDXS684RuqdIdb3SDnO58oVumdFONbrDTbRG65Up3gtENcbqtQrdC6aYZ3dFOt03oVirddKMb6nQXCN1pSjfD6IY53YVCd7rSzTS64U63XejOULpZRjfC6XYI3ZlKN9voRjrdTqE7S+nmGN0op9sldGcr3VyjO8bpLhK6VUp3otEd63QXC905SjfP6EY73SVCt1rp5hvdGKe7VOjWKN0CoxvrdJcJ3VqlO8noxjnd5UK3TulONrrxTneF0K1XuoVGN8HprhS6DUp3itFNdLqrhG6j0p1qdJOc7mqh26R0i4xustNdI3SblW6x0U1xumuF7lylW2J0xznddUJ3ntItNbrjne56oTtf6ZYZ3VSnu0HotijdcqM7weluFLqtSrfC6KY53U1Ct03pVhrddKe7WeguULrTjG6G090idBcq3elGN9PpbhW67Up3htHNcrrbhG6H0p1pdLOd7nah26l0ZxndHKe7Q+h2Kd3ZRjfX6e4UuouUbpXRneh0dwndxUp3jtHNc7q7he4SpVttdPOd7h6hu1Tp1hjdAqe7V+guU7q1RneS090ndJcr3TqjO9np7he6K5RuvdEtdLoHhO5KpdtgdKc43YNCd5XSbTS6U53uIaG7Wuk2Gd0ip3tY6K5Rus1Gt9jpHhG6a5XuXKNb4nSPCt11Snee0S11useE7nqlO9/oljnd40J3g9JtMbrlTveE0N2odFuNboXTPSl0NyndNqNb6XRPCd3NSneB0Z3mdE8L3S1Kd6HRne50zwjdrUq33ejOcLpnhe42pdthdGc63XNCd7vS7TS6s5zueaG7Q+l2Gd3ZTveC0N2pdBcZ3Sqne1Ho7lK6i43uHKd7SejuVrpLjG61070sdPco3aVGt8bpXhG6e5XuMqNb63SvCt19Sne50a1zuteE7n6lu8Lo1jvd60L3gNJdaXQbnO4NoXtQ6a4yuo1O96bQPaR0VxvdJqd7S+geVrprjG6z070tdI8o3bVGd67TvSN0jyrddUZ3ntO9K3SPKd31Rne+070ndI8r3Q1Gt8Xp3he6J5TuRqPb6nQfCN2TSneT0W1zug+F7imlu9noLnC6j4TuaaW7xegudLqPhe4ZpbvV6LY73SdC96zS3WZ0O5zuU6F7TuluN7qdTveZ0D2vdHcY3S6n+1zoXlC6O43uIqf7QuheVLq7jO5ip/tS6F5SuruN7hKn+0roXla6e4zuUqf7WuheUbp7je4yp/tG6F5VuvuM7nKn+1boXlO6+43uCqf7TuheV7oHjO5Kp/te6N5QugeN7iqn+0Ho3lS6h4zuaqf7UejeUrqHje4ap/tJ6N5WukeM7lqn+1no3lG6R43uOqf7RejeVbrHjO56p/tV6N5TuseN7gan+03o3le6J4zuRqf7Xeg+ULonje4mp/tD6D5UuqeM7man+1PoPlK6p43uFqf7S+g+VrpnjO5Wp/tb6D5RumeN7jan+0foPlW654zudqf7V+g+U7rnje4OpysX6D5XuheM7k6nKx/ovlC6F43uLqeTQPel0r1kdHc7XQh0Xyndy0Z3j9NVCHRfK90rRnev05UFum+U7lWju8/pNNB9q3SvGd39ThcD3XdK97rRPeB0uwW675XuDaN70OlKge4HpXvT6B5yOgt0PyrdW0b3sNOlQPeT0r1tdI843e6B7mele8foHnW6ItD9onTvGt1jTueB7lele8/oHne6HOh+U7r3je4Jp6sY6H5Xug+M7kmnqxTo/lC6D43uKafbI9D9qXQfGd3TTlc50P2ldB8b3TNOVyXQ/a10nxjds05XNdD9o3SfGt1zTrdnoPtX6T4zuuedrlqgKxfpPje6F5yueqArH+m+MLoXnW6vQCeR7kuje8npagS6EOm+MrqXna5moKsQ6b42ulecrlagK4t03xjdq063d6DTSPet0b3mdPsEuhjpvjO6152udqDbLdJ9b3RvON2+ga4U6X4wujedrk6gs0j3o9G95XR1A12KdD8Z3dtOVy/Q7R7pfja6d5yufqArIt0vRveu0+0X6DzS/Wp07znd/oEuR7rfjO59p2sQ6CpGut+N7gOnaxjoKkW6P4zuQ6drFOj2iHR/Gt1HTtc40FWOdH8Z3cdOd0CgqxLp/ja6T5yuSaCrGun+MbpPna5poNsz0v1rdJ853YGBrlqkK5foPne6ZoGueqQrn+i+cLrmgW6vSCeJ7kunaxHoakS6kOi+crqWga5mpKuQ6L52ulaBrlakK0t03zjdQYFu70inie5bp2sd6PaJdDHRfed0bQJd7Ui3W6L73unaBrp9I10p0f3gdO0CXZ1IZ4nuR6drH+jqRrqU6H5yuoMDXb1It3ui+9npOgS6+pGuSHS/ON0hgW6/SOeJ7len6xjo9o90OdH95nSHBroGka5iovvd6ToFuoaRrlKi+8PpOge6RpFuj0T3p9N1CXSNI13lRPeX03UNdAdEuiqJ7m+nOyzQNYl0VRPdP07XLdA1jXR7Jrp/na57oDsw0lVLdOUy3eGBrlmkq57oyme6HoGueaTbK9FJpusZ6FpEuhqJLmS6XoGuZaSrmegqZLrega5VpKuV6Moy3RGB7qBIt3ei00x3ZKBrHen2SXQx0/UJdG0iXe1Et1umOyrQtY10+ya6UqbrG+jaRbo6ic4yXb9A1z7S1U10KdP1D3QHR7p6iW73TDcg0HWIdPUTXZHpBga6QyLdfonOM92gQNcx0u2f6HKmGxzoDo10DRJdxUw3JNB1inQNE12lTHd0oOsc6Roluj0y3dBA1yXSNU50lTPdsEDXNdIdkOiqZLrhge6wSNck0VXNdCMCXbdI1zTR7ZnpRga67pHuwERXLdONCnSHR7pmia56pjsm0PWIdM0T3V6Z7thA1zPStUh0NTLd6EDXK9K1THQ1M92YQNc70rVKdLUy3dhAd0SkOyjR7Z3pxgW6IyNd60S3T6YbH+j6RLo2ia52ppsQ6I6KdG0T3b6ZbmKg6xvp2iW6OpluUqDrF+naJ7q6mW5yoOsf6Q5OdPUy3ZRANyDSdUh09TPdcYFuYKQ7JNHtl+mOD3SDIl3HRLd/ppsa6AZHukMTXYNMd0KgGxLpOiW6hpluWqA7OtJ1TnSNMt30QDc00nVJdI0z3YxANyzSdU10B2S6mYFueKQ7LNE1yXSzAt2ISNct0TXNdLMD3chI1z3RHZjp5gS6UZHu8ETXLNPNDXTHRLoeia55pjsx0B0b6XomuhaZbl6gGx3peiW6lplufqAbE+l6J7pWmW5BoBsb6Y5IdAdlupMC3bhId2Sia53pTg504yNdn0TXJtMtDHQTIt1Ria5tpjsl0E2MdH0TXbtMd2qgmxTp+iW69pluUaCbHOn6J7qDM93iQDcl0g1IdB0y3ZJAd1ykG5joDsl0SwPd8ZFuUKLrmOmWBbqpkW5wojs00y0PdCdEuiGJrlOmWxHopkW6oxNd50y3MtBNj3RDE12XTHdaoJsR6YYluq6Z7vRANzPSDU90h2W6MwLdrEg3ItF1y3RnBrrZkW5kouue6c4KdHMi3ahEd3imOzvQzY10xyS6HpluVaA7MdIdm+h6ZrpzAt28SDc60fXKdKsD3fxINybR9c50awLdgkg3NtEdkenWBrqTIt24RHdkplsX6E6OdOMTXZ9Mtz7QLYx0ExLdUZluQ6A7JdJNTHR9M93GQHdqpJuU6Ppluk2BblGkm5zo+me6zYFucaSbkugGZLpzA92SSHdcohuY6c4LdEsj3fGJblCmOz/QLYt0UxPd4Ey3JdAtj3QnJLohmW5roFsR6aYluqMz3bZAtzLSTU90QzPdBYHutEg3I9ENy3QXBrrTI93MRDc8020PdGdEulmJbkSm2xHozox0sxPdyEy3M9CdFenmJLpRmW5XoDs70s1NdMdkuosC3apId2KiOzbTXRzozol08xLd6Ex3SaBbHenmJ7oxme7SQLcm0i1IdGMz3WWBbm2kOynRjct0lwe6dZHu5EQ3PtNdEejWR7qFiW5Cprsy0G2IdKckuomZ7qpAtzHSnZroJmW6qwPdpki3KNFNznTXBLrNkW5xopuS6a4NdOdGuiWJ7rhMd12gOy/SLU10x2e66wPd+ZFuWaKbmuluCHRbIt3yRHdCprsx0G2NdCsS3bRMd1Og2xbpVia66Znu5kB3QaQ7LdHNyHS3BLoLI93piW5mprs10G2PdGckulmZ7rZAtyPSnZnoZme62wPdzkh3VqKbk+nuCHS7It3ZiW5uprsz0F0U6VYluhMz3V2B7uJId06im5fp7g50l0S61Ylufqa7J9BdGunWJLoFme7eQHdZpFub6E7KdPcFussj3bpEd3Kmuz/QXRHp1ie6hZnugUB3ZaTbkOhOyXQPBrqrIt3GRHdqpnso0F0d6TYlukWZ7uFAd02k25zoFme6RwLdtZHu3ES3JNM9Guiui3TnJbqlme6xQHd9pDs/0S3LdI8Huhsi3ZZEtzzTPRHobox0WxPdikz3ZKC7KdJtS3QrM91Tge7mSHdBojst0z0d6G6JdBcmutMz3TOB7tZItz3RnZHpng10t0W6HYnuzEz3XKC7PdLtTHRnZbrnA90dkW5Xojs7070Q6O6MdBclulWZ7sVAd1ekuzjRnZPpXgp0d0e6SxLd6kz3cqC7J9JdmujWZLpXAt29ke6yRLc2070a6O6LdJcnunWZ7rVAd3+kuyLRrc90rwe6ByLdlYluQ6Z7I9A9GOmuSnQbM92bge6hSHd1otuU6d4KdA9HumsS3eZM93ageyTSXZvozs107wS6RyPddYnuvEz3bqB7LNJdn+jOz3TvBbrHI90NiW5Lpns/0D0R6W5MdFsz3QeB7slId1Oi25bpPgx0T0W6mxPdBZnuo0D3dKS7JdFdmOk+DnTPRLpbE932TPdJoHs20t2W6HZkuk8D3XOR7vZEtzPTfRbono90dyS6Xf/9/wDI8Ntp
+        </DataArray>
+        <DataArray type="Int64" Name="offsets" format="binary" RangeMin="8" RangeMax="8000">
+          AQAAAACAAABAHwAA7AQAAA==eJw12RsDtQCiBdAz72buPJp3d55hGIZhGIZhGIbhwTAMwzAMw4NhGIbhwFnflvUb9t7B65uQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD10++BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz58/fRLwJARYyZMmTFnwZIVazZs2bHnmwNHTpy5cOXGnR8ePHnx5sPXz74EDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPnz9/EvAkBFjJkyZMWfBkhVrNmzZseebA0dOnLlw5cadHx48efHmw9cvvgQMGTFmwpQZcxYsWbFmw5Yde745cOTEmQtXbtz54cGTF28+fP3yS8CQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD16++BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz58BWDIiDETpsyYs2DJijUbtuzY882BIyfOXLhy484PD568ePPh69dfAoaMGDNhyow5C5asWLNhy4493xw4cuLMhSs37vzw4MmLNx++fvMlYMiIMROmzJizYMmKNRu27NjzzYEjJ85cuHLjzg8Pnrx48+Hr/74EDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPnz99kvAkBFjJkyZMWfBkhVrNmzZseebA0dOnLlw5cadHx48efHmw9fvvgQMGTFmwpQZcxYsWbFmw5Yde745cOTEmQtXbtz54cGTF28+fP3+S8CQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD1x++BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz78UfgDhowYM2HKjDkLlqxYs2HLjj3fHDhy4syFKzfu/PDgyYs3nx9Dxx+/BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz58/elLwJARYyZMmTFnwZIVazZs2bHnmwNHTpy5cOXGnR8ePHnx5sPXn78EDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPnz95UvAkBFjJkyZMWfBkhVrNmzZseebA0dOnLlw5cadHx48efHmw9dfvwQMGTFmwpQZcxYsWbFmw5Yde745cOTEmQtXbtz54cGTF28+fP3tS8CQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD19+/BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz78MfQHDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPj8Ojv//EjBkxJgJU2bMWbBkxZoNW3bs+ebAkRNnLly5ceeHB09evPnw9Y8vAUNGjJkwZcacBUtWrNmwZceebw4cOXHmwpUbd3548OTFmw9f//wSMGTEmAlTZsxZsGTFmg1bduz55sCRE2cuXLlx54cHT168+fD1ry8BQ0aMmTBlxpwFS1as2bBlx55vDhw5cebClRt3fnjw5MWbD1///hIwZMSYCVNmzFmwZMWaDVt27PnmwJETZy5cuXHnhwdPXrz58PWfLwFDRoyZMGXGnAVLVqzZsGXHnm8OHDlx5sKVG3d+ePDkxZsPX//9EjBkxJgJU2bM+T8Kyxz2
+        </DataArray>
+        <DataArray type="UInt8" Name="types" format="binary" RangeMin="11" RangeMax="11">
+          AQAAAACAAADoAwAAEQAAAA==eJzj5h4Fo2AUDHcAAAqwKvk=
+        </DataArray>
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+</VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_left.vtu b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_left.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..d4e5b24f8b96a75d869cc326b8a8de2e06d4df5e
--- /dev/null
+++ b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_left.vtu
@@ -0,0 +1,53 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <Piece NumberOfPoints="4" NumberOfCells="1">
+      <PointData Scalars="C_ini">
+        <DataArray type="Float64" Name="C_ini" format="binary" RangeMin="0.5" RangeMax="0.5">
+          AQAAAACAAAAgAAAAEAAAAA==eJxjYACBB/YMOGgAPewEfQ==
+        </DataArray>
+        <DataArray type="Float64" Name="p_ini" format="binary" RangeMin="0.3" RangeMax="0.3">
+          AQAAAACAAAAgAAAAEAAAAA==eJwzNgaBy/bGOGgAjsAJEQ==
+        </DataArray>
+        <DataArray type="UInt64" Name="bulk_node_ids" format="binary" RangeMin="0" RangeMax="3003">
+          AQAAAACAAAAgAAAAFgAAAA==eJxjYICAS+wQ+iUzhN7NDaEBKVMCjA==
+        </DataArray>
+        <DataArray type="Int64" IdType="1" Name="vtkOriginalPointIds" format="binary" RangeMin="0" RangeMax="6">
+          AQAAAACAAAAgAAAAEwAAAA==eJxjYIAAZijNAqXZoDQAANgADg==
+        </DataArray>
+      </PointData>
+      <CellData Scalars="MaterialIDs">
+        <DataArray type="Int32" Name="MaterialIDs" format="binary" RangeMin="0" RangeMax="0">
+          AQAAAACAAAAEAAAADAAAAA==eJxjYGBgAAAABAAB
+        </DataArray>
+        <DataArray type="Int64" IdType="1" Name="vtkOriginalCellIds" format="binary" RangeMin="2" RangeMax="2">
+          AQAAAACAAAAIAAAACwAAAA==eJxjYoAAAAAYAAM=
+        </DataArray>
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary" RangeMin="0" RangeMax="0.0011313708213176444">
+          AQAAAACAAABgAAAAFgAAAA==eJxjYCAaPHhk5mWPh48uDqYBAjsKBQ==
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0
+            </Value>
+            <Value index="1">
+              0.0011313708213
+            </Value>
+          </InformationKey>
+        </DataArray>
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="binary" RangeMin="0" RangeMax="3">
+          AQAAAACAAAAgAAAAEwAAAA==eJxjYIAARijNDKWZoDQAAHgABw==
+        </DataArray>
+        <DataArray type="Int64" Name="offsets" format="binary" RangeMin="4" RangeMax="4">
+          AQAAAACAAAAIAAAACwAAAA==eJxjYYAAAAAoAAU=
+        </DataArray>
+        <DataArray type="UInt8" Name="types" format="binary" RangeMin="9" RangeMax="9">
+          AQAAAACAAAABAAAACQAAAA==eJzjBAAACgAK
+        </DataArray>
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+</VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_right.vtu b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_right.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..c8a28692efc88bed0832a945dabcd524c9881a35
--- /dev/null
+++ b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_right.vtu
@@ -0,0 +1,53 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <Piece NumberOfPoints="4" NumberOfCells="1">
+      <PointData Scalars="C_ini">
+        <DataArray type="Float64" Name="C_ini" format="binary" RangeMin="1.0000000102426312" RangeMax="1.0000000102426312">
+          AQAAAACAAAAgAAAAEwAAAA==eJxzu7efiYHhg70bDhoAz3QMUQ==
+        </DataArray>
+        <DataArray type="Float64" Name="p_ini" format="binary" RangeMin="-4.470348341500951e-9" RangeMax="-4.470348341500951e-9">
+          AQAAAACAAAAgAAAAEwAAAA==eJz7//+/obGx8b7/OGgAOsMSFQ==
+        </DataArray>
+        <DataArray type="UInt64" Name="bulk_node_ids" format="binary" RangeMin="1000" RangeMax="4003">
+          AQAAAACAAAAgAAAAGAAAAA==eJx7wcwABru4IfRFdgi9mB9CAwBC5AM7
+        </DataArray>
+        <DataArray type="Int64" IdType="1" Name="vtkOriginalPointIds" format="binary" RangeMin="3001" RangeMax="3004">
+          AQAAAACAAAAgAAAAFQAAAA==eJzbyc0ABrug9G4ovQdKAwA9hAMX
+        </DataArray>
+      </PointData>
+      <CellData Scalars="MaterialIDs">
+        <DataArray type="Int32" Name="MaterialIDs" format="binary" RangeMin="1" RangeMax="1">
+          AQAAAACAAAAEAAAADAAAAA==eJxjZGBgAAAACAAC
+        </DataArray>
+        <DataArray type="Int64" IdType="1" Name="vtkOriginalCellIds" format="binary" RangeMin="2001" RangeMax="2001">
+          AQAAAACAAAAIAAAADAAAAA==eJy7yM4ABgAGwQDZ
+        </DataArray>
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary" RangeMin="0.800000011920929" RangeMax="0.8000008119204767">
+          AQAAAACAAABgAAAAIwAAAA==eJxjYGBYMHPmS3sGTIAu/uCRmZc9kjiMj64eJg6mAZL5Fe0=
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0.80000001192
+            </Value>
+            <Value index="1">
+              0.80000081192
+            </Value>
+          </InformationKey>
+        </DataArray>
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="binary" RangeMin="0" RangeMax="3">
+          AQAAAACAAAAgAAAAEwAAAA==eJxjYIAAJijNDKUZoTQAAIgABw==
+        </DataArray>
+        <DataArray type="Int64" Name="offsets" format="binary" RangeMin="4" RangeMax="4">
+          AQAAAACAAAAIAAAACwAAAA==eJxjYYAAAAAoAAU=
+        </DataArray>
+        <DataArray type="UInt8" Name="types" format="binary" RangeMin="9" RangeMax="9">
+          AQAAAACAAAABAAAACQAAAA==eJzjBAAACgAK
+        </DataArray>
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+</VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..760ccbbb742683df438f51080bf087199138bc41
--- /dev/null
+++ b/Tests/Data/Parabolic/ComponentTransport/MassFlux/grad_c_and_grad_p_and_r_ts_4_t_400000000.000000.vtu
@@ -0,0 +1,85 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <Piece NumberOfPoints="4004" NumberOfCells="1000">
+      <PointData Scalars="pressure">
+        <DataArray type="Float64" Name="pressure" format="binary" RangeMin="-4.470348341500951e-9" RangeMax="0.3">
+          AQAAAACAAAAgfQAAZxEAAA==eJzt2f9fzff/x3GMFIf5MuezRJkvsZx3oWaGOiOOL5+jho+jsne+RCZH5h2NfXQoHzH6hNLhKMnWF6clX7L0zWGhbB2n2siySSrtjWTv5LC3qU/n9vwvPpeXX66X+/355ey8vNbW5eHpafvzs9LT0/jPue42XVKD37e5a/Hm0Tb7OuxzsRliOjHU5s8R3w2xGfF+xQCbjXX1fW0uPmy1s5k4T9bDpmfne29+su278OErm4PDFjy3mecS0mrz+a2tj2wm7otvsvmzMv0++18U3mVfduVt9i1/WIVDXlfY9KwYUM6+na6l7Ptg+iV8srCAfWlr89inicpFWaKR/d+fSmdfpOkE+8bfOoYPHiWx70jnQfaph8Sxr/v4PXjx4xj2aTVR7Bup3Yq/REewHnckHGeeXoevSlezfvqX5RjSGoSOPTWs33RciLs81PRTZs/B1qCZmP65N+sBsVOwf4onXjvnzvq28vfR495ofNjmwrrB3gn9neX0Pb0GYtE8GX6+vDfro7f0wLv73lTbPJj2yqbn7Pzn+LqiFc89eMT6mpdN6NSvnr5q5K8YO6UGp/tVs/5HiBkzt5XjpwdKWR+YcQnLiwowqioPPZtzsfm1EVMGZuCisWlo752MpkV63PTZIRyri8N7iXsw0RiD8y5HYeetrXj+cQR+1m0jOsvD8Nb4Nbhvxgr0XroMu/6C0RizEJcfVeOQ3DlYcXUm6mq90evZFHzc0wvThnqgZoIbOqjG4OVlI3DLJiccv0eOD1IG4pHzMpx/ozd2q+uB+c/fVNnUOvyJI13a8bbXM9w//zHOWPEQX26px9P7f8WQkzUov1iNZrMZYxrKccqrUmztZ8KTowpx6UcXsJ//Gby6Ohu3fZmBHgfTsCEjGY8W69Gv+hD2/D0Oi/7agxsG7cJR43RY670NDyzejLPXbcTXujDMPbwGV2evwKFXlmHVbQ3GPlmIH3VfgM/kczFD4YvLZvrgwICPsHyDF0bt8kBPgxs25o5Bw7UR6H/XCXv9IcfiXoNwk1M/HDvRHu+p3qpShoaGuhb+VWkzoamtUrk2NLTj7Ufk4Gn3yT+G3sbJCRX0X1/6Hvs/uohfvpPLerMyHRetP0Zv0h9Et9JY1D/djtZ3I3DVrHXst2xcjlOTl9Bnlv0nDmqbgbrhU1h/PNcdNZtH05eeGIruFQMw3mqH/37vjcVm6ILnFtv+n7Y+Qp/0+/RdP49R/roCY1xLWW9dWIBBUbn0ZafSya63jpETOg9ih9seDNNEsV4THYFdPzfpc39ZjkN7ajDWQ816W9BMDI6dgqZz7uh2bzT79PZO2MNrIIYv781618+3mzZV+c9v2vrzDx6hc7963DelhnVriJmsOVBKLi0qQPfmXPpjAzPQzjsZ//HZIdbrEvfg/MtR9PmPI3CkPAzjZ6zAVq0Gg46q2V92dSZOejaFPnWoB/ZRjcHITU6sN6QMRL8bvemLnr8x8965tGPs/MfYtqUeg0/WmHnvuv5F5717VUr/9ahC7O9/Br/8MoP15oxkXFR9iN701x6y8zgded/izWjVheGq7BWsW25rcGr3BfSZCl8cFPAR6nZ5sP44dwxq7jphfq9BOHKiPfviP+2o4L3b046heY8reO/q6tGnzx367A9uonzlVYyJK2S99eIZsl9jBrmofwq6Tk2gT1izFzsO6jCsZDPrNb+H4czBK+lzfZbi0LAFGJvki81XPsJFLR7sN/2HK7r5DqPXhw/CHsfsMfx6x4+8d3+0o2rYkx957+Y8QOeIO6hLvYmPf7iKmheF7C8dcRbd1Zn0x75IQbtvEvAflr2s1/2pw/ljttDnf7KeLN++khyftRRbf1pAH9rhi2XvT6V3XTIBU3e60nd8O4wceWcQ1vRwoPdz7/zBZm7gix84t/sJxp59QN/x6x1ycG8LmiZdo58cXIT6r87S9/8uE8PrU+ib+yaSVR9+Jc6t2kHvHL+FrC9cj9amlagZEMC6ZZof2X3tLMxMmEpvZ5pA1j1yxbp3htNrPh6M+esdxLkjnTd4PqUvbvD+PH1CDnVswLJZv9D7fG7B1ORr9PLyIoxsOyvODc8i+807Ls5tTqR3TfsKYyt20HdYt2DwSC19zYJV5MnbAjA33Y++f9UscuzrqdjsOpE+eNFYNEUNp3c2Dkb9LQd6a2dnOc91vBUtmpZy3ruu/8DbzDz9C71zrQV1Pa/TWz2KyZpl5zA/Nove/fxxjL+XSG/nsA9DvXbS1y2PJPvs14pz+avo5Q0B5Ph+/tg6ZTb6rZ7GetmBiWTX4rGY2jycvmPgO+RI7z5Y81k3er/D1jLeu8stZZx70oCx8lr65hmV5OAN19F0tJh+8rVzqH+WRd/fKRXDVYfFuU37yKrjO8W5G5H0zu1a1LmE0FvnB6Im0p/ecnI22f3mNMx8NZHebvQ4ss7fGeu+fIdek9kH86u70cvfWK/zfMY9vc77s7iRHLqjFsuyK+l9aq5javcSevnfzmNkwClxblcq2e/MYcy9u4/e1S4aYyd+Qd/x6QYM3htCX5MXSJ5831+c66Oi7z95Ojl25SRsjhuHqgJn1k2N75Cd3+6L+qnd6a1rXl7juR56ipaSxmu8d/+sxczBVfTOyjLUhZXQ1yWdJ2u+P4X5Lan07u8mYbzvfnq7jdHY9QNQnLu+gezzrxBxblgQvXzuJxgZoaJvTZ2Ofj9Ooi97MY7s+p4LpqqH0Hd80Zcc+U13rLG8vMq5fz+9yns3poncf+Fdcuz2KnJzVhkG/1yCpo7zONnNyD79khPiXHQSOTxnPzbfiaZXvbUVM93D0TloNeu63UFk69lPyJrfVGjp7U3v3vW/4DzX4PfJdvtcUPfdEOz6/Zt1H1kPzP/wVSnvT0hrKc81voncWngXQx9WYdmAcvSZfol9qWvzxLlEI7nr92RyzaMk9BsSh7kfx6Crdiv7Yo+EkztKV5ODW4OwxnEh/eTZc8i5n3uTu36fJYeXv09ubnMhq5zlaJono3fe0oOsT3v1Pc+nohXDXzZ9z/MZ+StZ5VdN7vq9k2yXcYmsq8oj1702omZsGn3+Ij3ZXRdHjjfGoN3trRjabSPWjV/DPp+ly8ipMQvJ8tw55Mhab2zt6YV+E9ywbNkI9rnukYtz52Xkjns9MNLhzys8H69nOHnFQ8zd/+sVns/FanJsQzm5uZ8Jgz+6QG9anU2efDCNrC/WY//f4zB80C7WLd7bULVuI33m4TVk5yvLyLonC9Eqn4uamT5o2eDFPneDmzh3bQTZ7g85OdSpH9ap3rqivGk2b29qu6y0mM3aafcv27IioQKHPbqIvynT0aw/yL64p9vJ22etI09PXkL+618zsGWuO+acGIopVjv2fbrgucmW1en3TbYse12Bfy0soC85lU7O6TxI1mqiyIrT68jDemrIvwXNRPM5d/o4eyfy9uW9ydPzn1/ie/Srx5YQM/5WVHDJti9lYAb5088OkdWXo8gyeRj+pdVgydWZmDPUg33aTU7i3I3e5GEu7SV8j8j6Ep5P1xH+eUYV0qu/zCBrqw+hYpyOvqXrByr33taIcwpf+rhdHmT1XSdx70R7sb6nvZjvUVdfzPP54CZZG1eIisYMevXUBLLskA7Nv4fRx/ksJeck+YpzLR70Ct9h4l6Dvbj3j/YinuucB0V8j9SbZPWLQrJMnYmKbxLoW/7UkXM+WY/arKX0ig5fsnrJBHEuZ5i4t4eDuDfwRSHnzj4o5Ln2tpAVwUXklguZKJMl0ptX7SDHFa4nqwcEoGztLHqFaQK55Z3h4t71DuLe0hcFfJ5jA6o/txRwb3kR2Tw8ixy3ORFzKnbQa0dqyYptAeSWylkoGzuR3hw1XNx7y0HcO956kc+LabjI96i1YNdjps+JzSJr7yVinNdOevV+LVnWEEA2T5mNLQcm0uc0Dxf3evcR9x625nPv44Z8vsfMSrL5aDHGPcuiV6sOk7XHd6KiXUvfMj+QnHNytjj3aiJ9nL8zWZ3ZR9z7xvod64sbsSW78ju+R/cSsjbgFCrOHKZX20WTZX/fIM7lBdLH9VGR1SsniXMFzvSKt/uKe9e8vMC9JY1oHlx1ge8RVkJWf3+KLHs3CRUbo+lbrm8g5wwLQm2Eil7x4ySy+j0XcW5rX3Gv5WUe945pyuPztleh9ucSeoWbEVt2JmHOnWg0u4eLc7uDUP2binMyT09xbp+LOFffV9z74avz3BvfdJ5zD6vI6umXUJZopDc/ShLrH8fQ5xwJJ2tbg1Axew62JHui7LmLODdPJs6lvTrHvS+bUOZXfY5zGZfILa+NmLNIj1pjDMZ12yjOLV0mzuXO4Zy5p5c4t2yEOHdeRq91+PMs9654eJb1/GqyrL8Jzauz6eOK9agetIteu24jWXFlmTgnn4s5G7zE+rUR4pxTv7PKFIPB0NR2RplsMDgmVKBBmX7G1tc+3U4OTF6CtXPdRbbaiX3p93M5t6gADZ0Hc23nHE+vQ0PQTPpaeydyYP7z09wbYj7NPQMzyIbLUei4QUNvGOqBjjd6i7ylPod7RhViYPUhkXVhOdyr8CUb7jqh4972b7n3g5vo2JjxLecO6ci1PksxsMWDvtZgL9bnPMjm3IvCbO75JgENn6wXucMXA3OGYW3gCyO5t8XIvRcyMXDVDnrDgACyo2kCGtY70Ds6NpxiX3kR1m5OPMU9I7VYWzmL3lE3nGwYb83iXK0FDbFZWax77SQHNgRg7YGJ9IHefbD2cUMm5wzFmXy+6jA6tmvpDSdni3V/Z/rAN9YM7smuxMCAUyL3ikbHC4FoWDlJ5Lf7ZnBvSWM6+8JKMPDdpHQ+//oGDIxQifURLmTHypffcM/2qm/IbkaR70Rj7e4g+kBPT5Hr+2JgfNPX3Dvt0td8/uMkNBwJp3ecPUfkNhesTXt1knv8qk+SXxtFNsagYekyesdeXiKfl6Hjiodp3NPPlMbnFesxcN1G+lr5XJGvjUhTTmGAdEL5YZcfp58gJy8R2WonXFiQauvzTq9LteU8eydhiPk4vSnqOPucPISR9SncU30ohazwxby97cnsb8xIJvssFdlgL3J74THxeeuPcT5nmMi9LQZctcMgPm8COc+x4ShuTjxKXzlLZDfrEfbvyTrCPQ0BInv3EflosZ797Vo9+/2dRc6uTCL3ik4Snzcpif2XGg+T300SRqiElpeJnHMzJnJud5Cwvq9w2qUE9h0NFz53SeA+v+pDaIwR9vTCvBUPD2KxXiife1C5sev/txvbDig/7zJlyQHyooJ4tHcSmqL+F7+oj8O/+QobM/ZzzmAv9F+/T5yzfEU2TRBuTtxL72bdQ24MEBqKY+n9nYW9ondjceP/4GaV0M24i/31fXeR9eEx4vOqo7GXV7Q4p9+prO/6ud/QtkN5v8v/KtDhlagoeoXvdvJR+/8m97Rsw8jErfQNAV+Q/ZwjyUWNm1FhjBDnwv+BPb02KS93vf8P2jYqr3RZGLWBfNx+PW5J/Ix+gXMoeYwxBB28Vip32gZeUX9X7rD9PScG4CjjYmU32y9sUQuUnbZfvIy+yk7bf9iMnsrOzs6JthmlJ3+kObqnNEeX5ujSHN2mNEeX5ui2/dIcXZqj895Jc3Rpjh4qzdGlObo0R+e9k+bo0hw9VJqjS3N0aY4uzdGlObo0R5fm6NIcXZqjS3N0aY4uzdGlObo0R5fm6NIcXZqjS3N0aY5uU5qjS3N03jtpji7N0UOlObo0R5fm6DwfaY4uzdFDpTm6NEeX5ug8V2mOLs3R10pzdGmOLs3RpTm6NEeX5ujSHF2ao0tzdGmOLs3RpTm6pzRHl+bo0hxdmqNLc3Rpji7N0T2lObo0R5fm6Lx30hxdmqOvlebo0hxdmqPzXKU5ujRHXyvN0aU5ujRHl+bo0hxdmqNLc3Rpji7N0aU5ujRHl+bo0hxdmqNLc/T/93P0/wO19+Yh
+        </DataArray>
+        <DataArray type="Float64" Name="C" format="binary" RangeMin="0.4937798938039462" RangeMax="1.0000000102426312">
+          AQAAAACAAAAgfQAAIR4AAA==eJztmXk7Ve/bxklJoaJSylCRlEJJpOFUpCJkqAyliEIyJEVpnjT5KipFyhgJqWiiJIVSSkKSvfa89mxKCD3r9waeV7D8cx7H2ntd132e93XfOD5ycv/7IdB/TbH90BADvsVeu4YGGFinzkw918eAhWPWGc1eBtweh+g/7mYgeZfLEfdOBo5OcUsaklLPOcv2FooZWJClpbJbyMD64J/755AMOCY8zZdxGSD3eD15zWZgOHJ64g0mA1ql3xwOMhjQfbKD5fOLgXMxWt5OPxmQz6p4vuYHAyX9uSPWNDOw5N61pRu+M8BIeuXn/Y2BXpfjJ/d9ZWDKJq/UK/UMpFwtfPLsEwNy7Gv1/I8MvHEJ79T5wID+0XptnxoGPrKnema/pz43LbrXU8XAxOcLVTe8ZeBrllJ8/hsGrK95G0+sYGB3RULXyVcM1PA82wfKGEDlrN5DLxmoPzZ9pcILBhK5BS8SnzGgbZsWNv8pAxkd3r6fShgY7+eWdOAJAyan9VUMHzNgntnyiVnMQHDB2l+ZDxmwZG5aGVrEwLJ2hV7rQgbGllooaRUw4POLHf0vn4GmpXKOovsMxN4zjWPkUXXMdpu05TJgVpRux7xH+QkXfpXmMOD6ZF7TSEqb80K36GVTeU2p97TPYqDRez4rJpOBC9PSe4ozGFBPd7/WlU7189OpXUbp3+LuxMt3GVAbkzPAv8PAfLdAeQdKLe0OPShNY8DbI0vOiNIqfcMRubcZSNJ3L1lA6b5yvk5ZKgP5G81s3CjdtDDJoDuFgbs5FZ9SKPXYIL/CkdJUR8WY0ZSyf1me/XCLgdc244OuU+q/39RgD6XhOZMq11H60GLVKhNK8cMtV4fSoZ/f/mpQekDZ3XoqpXpn9x2aRamd84tC8//VeV3DdKH09FirqQf/V+f1g83ZlIqdeeltlG69ZDesRfW9qXM1fBel6hoRQ88oNeVezptErTfG71pMDKX+JbH7+JR+tQ1L9qF8LQv17WindFb2mGOB//NfPWP9X0qtTarcblC51E/rzlhO5bVj6odlIkpjXyrrZVI5Gikd2eZP5Wu3nyszpvJm6CYyRlD5Dz9xNiUotToTyH9P7Yt2a+GYp9Q+WUf1pjyk9u98fGnmY2o/c/Iv6ldQ+ys2E+s1Ufvd+b0k5ze1/89e1RTrUPMwcGu0vQs1H8pHp0ddpuYl3jB4yTdqft60piTOesTACMfbVw5T89Vavs28nZq3XasfnrYvZYAXVXeygprHdcmnza2fM3BJtSG9lppXn/cP67ZSc+ywSvdlfzkDny/oRd59Tc3nqvI/G6m5t7zZ6aRMnQPbzbVH6qlz4fDF+fxt6px8Hll6MIo6N9yAOoct1DkynPJW2aaOgbr6ojLLz1S+rPs7Lb9Qz1fUj1rdwEDtnxN5mxqp/Vnn5RLZxEBaUJlCSgsDJ2o/vatrZSA6pjRViTrfsw+M/s+JOu/q5XPupFHnf1rIvW991H3Qbfx84TYeNd/eV199pO4L267gY7YiKq9FYw5XSxjwS7752L2DmvvjTBNxFwOLcvV+X/5NnZvYbCUr6l6ape0V0UHdU8nPly8spu6t0Pd35qyk7jGFUE8yV57Ag4b9v6YqEGj4kjomfiSBxowjYUqKBN4wq9TiRhNYGP6vR2UMgVcrDafeGEvg5bmaYwYqBLoDEo1fqhLw37xizqbxBHosY0N6JhAwdBktf1OdQIvdDf7qSQQEBrxZXZMJjPQvKsmZQsCuuShjhyb1vbEfpbrTCaRmxiZztKj1hGdlFeoQuCoYqXF0BoHkHl+Z6ywCpsRxswX6BAZ3GXJVDAgwi2aM7ppDrcfJLLVtLoH5a4zu1RkRMFf4Pq9yAYHbOSHzy00I/HoqyitfSMD15IXct2YEFllMN6o3J/ApJmIxYUHAY4dfde9SApn7q3jqywm0PQm7tnglAfukFU3e1gTGDSo9iFtNgONQqPnSlsBq4yr9bjsCiw1ffzBdT0B5cKHafgcCIaLhgTJHAj6PxlxU3khAPs6iarsrgW26YXnP3Qlo5yav0NxCwKX+9qmjngSWVAQdFXgT6NUXmHr5ENhqOT79yw4Ct87WfNywk4D6hpFPPwdQ61tSErA5kMCXqPpWdjABv1frNA/upfysm6o/IZzAwJclw4X7CNxJSbvvFkXluc9h/vBBAn3ZVmcLDxGwUXv1yv8IAc1VFg0zjhO4MND9nnWSyufJnzv3z1D7G7F2R3Qc9bxCMHbDRQIXy3gZs+MJaIxfZzTqCuW/Y+o9YSKBxwa7NJuuEwgdu/JM9U0CxSZuna9SCfBVYjzL7hDQGetT9TqDwN5qDfPabAITYp4XtuQSsCW3LZbmE5i8X7t2TBEBA/WJ4UaPCMQ7e893KyGQ4jJJ/sQzAoVN2zqfvKRyd3ccKXtF9ZefbW5SSfUb13sh6h0B/Xs8pcoaKrdEnUeT6ghkWFaf31tPwCpVObGugcBBv6lfFzYR2Phl+trbP6h1163pG/eLgG57Nf8sQWBOgpb2KA4B6e3Oq+f5BO4uLt84SUSgZO9Tz2wpgRFjphUv7yKQsHeGV+tvAtH3R3sc7SdQenBcoeEQASWLqO0/5Jj40HMkLGEkE3WBIUxHJSa8w2eVq6kwwRsuGfw5non9sSNzH0xkAls8Kk9NYcK2YMjJdzoT0x1Xu6zRZYIojaoz0WNihLbg7Yw5TMwPkFlNNWJCb+6vxRomTKQ9VSqZZsaEYnz529kWTEw+eMDLYhkT53wPnXAGEy+iDZaH2jARlP7jcuJaJv471BPz2oEJO58fCl3OTOT7iY2N3Jmo8UocDvZgIqTZ/EDxVia0DFfcHN7BROXbHeGuAUxIWmJ7HgQxITS3NR4XykT3gjkzD+xjIqL5xhfOASbaVMZaex1momhv976mY0zYbP8Y4nmaiSpV5YXsOCaU9y54G3mZidSlRQbKV6k87Ev9864z8So/NsophfIRruc3cIeJ5BPGxgVZTCgl6f3alUfVN7qwb04hE363RJ3SR0wEK3zzKX/KhLzXp7KrZUxE7wwaH/aGWtdTCy/X91R9hfqc5R+Z+Hf1rXjBFyYmLb5nbvCdiX3f1M7MbmVirvntdiMGE6W/OWuWcpiQXTj7ylHAxKDtzA1BUioX581dF7upPsU1T0r6mFi0UfsGb4iJTSY+mToKLHgZj/2wTYkFU9dgwyxVFtIPB+V2qrOgferWbrupLBhqV23N0GYh4WDg0VF6LGwsPS8MM2TBSi/kAnMBCy8it8Z6mbGg2+yd12rJQh0hb+q3koWSHSr9HTYsKEz20Tu3ngXjuRE39J1ZsPsWub/WnYX490cfRnmx4JPnv2ruDhY0Dr6z4wSwkDg+IjdnDwurc93Ohkew4BvXV73qIAs5e5MvTztC9a+IeTVwkgXOpFmHWXEs9BRcvf81noXcNWl7a5JYWFCU//z9LRaIma2n6u6yoJYdLvmRw4Lcrso26QMWZnj4Ryo/ZmHf+Z03TJ6zcHJuZrD3axb0GYKG+HcsLN8V1FX7kQXz0vRClQYWBLsnztvSwqL+7gzzzGun8inRXqjAZSEueXKjv4iFAf3Zcz53sqBzLNERfZTPvzyjZ8MssEpLuZaj2AgYt2r7G2U2JuzZW+aizoY2fyFTMJWN3vPvO8/rsrE5YhZroQEbybzObOZ8NhJieL43zdiI9rLu97Cinp8dcWXGKjZC+XoqHWvZWL2s/79qJzaKfpj8y9nERsu10GPxW9n4LZjafWQnG/bqhsejgtl4NPe7ZlQEG3F1Ko9jo9mIj7Tdd+kYG5MyZy/NOkv1nxBjXHWZjcuet83ESWzgXWGYViobF15WvHXPZENnr82Wa/fZiH09PLa9mI3CmU8VTZ6zURbBXh5XwcYJ7wd3BNVsjHHatMWtnqo3mbR518RG8NKhy2hn41KXy+RKLhukeeMIRwkbZ7b2mBM9bIyf2dt8eJDy+WCwWnckBzXN6SZ1ypR2XpM7MZGDJV5L56+czkFP2b02BT0OXslWdXydx4HOrUNXchdxYOvgn3bOioO7/2pWha3m4GRRiOd2ew7aRkVM8HDl4PBEB1tPLw7qL+6fsdOPA8eqhmtRwRzUefcnJezjYH4Zb/2TQxy4blx/hTjJgfre6BuTL3IwKqbB0i2RgxXjlTJupnBAYk4RmUnpWqvL1g84uBU/PCX9CQcZTi2xY8s5GLHjV37sOw6+qn9J+vOJg18OqQGHmzgI9l3cP5rBQbI248htPgcvxq74vKyDg+PmHVPZfRzsVFprmSjPha0pvDeM5SI2s9F73EQu5qn6Bv2YzsXGeQaRBfpc7HKfEHhhAReLuQrR4Uu4yF6xIHY7uNiT8SlryzouSpvKP3i4cHEgKFVnpxcXm+dJow/s5GKla9HYxBAuFu6e8OBZFBdzH+yJ5x/lwld53l3dOC7sZ2+r33GFi+XyEsf8W1xUdpp3D2dyYTlwtNO7gIs13Z91K0u5qF5R93BhBRcNxJzD92u5SBrkF8//Rq03dLfRszYu3KNVpjvyuGjx8QsVybjoMUpRT+znYoJq4TJbBR6qurVeD6vwEGhg/bVSg4c+89VrE2bwYM9t27R7Hg+ayuyvaxfzUG8f3rFwJQ9tu/6dmb2Oh6y142pmufLglLYmc+5WHkZyuxSsdvEwbq7hDPdwHj7tPfnx4CEeNo04uDz7NPXejfV2bfE8zJr9TVf7Jg+nC4ZSdmfyUGiu2PWygIc5T2N7NJ/xsCB/xM8TlTwoz/a80l3Hw8N+9oiwZh4a1dt29zB5WFQmvXJKzMOZzS+ea/3h4V17wsPX8nx8SjpQFKLCh1qt7zm9KXxoKpRHcGbyURc3C0Xz+dhwdefc0xZ86Ie6T9+5mo9zmsH/HBz5CEuZMAEefMw/MaC1fCcfpy/83WETyoeSNDDfPYaPZ/FHLcJP85EuNmu89h8fP6MXlL+7xUdV6sg3/7L5+FL5frptMR9xppufXi3jw+Ol2RFRNR/q45TvO33jo784TrmsnY9NnpXtZkI+DPVGdZb85qPhQ/Th1fIkqmZUpUoVSGQ61GunKpL4/buo034Mibl5ubP/KpOIGbXl8YNxJP4dc0jarkYiJbrt+8RJJJReDAfXapBIZU72Pa5Jwjd+TL6lFolNafabu3RIXD3xeFPBTBJCz8rSIH0ScQG2IXPmkNBSfXeKN5fE4m/lvTnzSUwevvUq0IREOe8vabSIxKOKS4Edi0mUmg3Yl1qQ2LOEffKIFYnTlfI6ditIXInnj5tgTcJR4L3z52oS8+zYqrlrSEzb4Kp1YB3Vz3T43BoHEow2Y3sNJxJG8p/CyY0krv1cJn3pRiLoSMSXhM0k0PR2zG5PEo+9luSu3EpiUp5a2pTtJLam7urv9KV8Hw1/8MmfyiPR8d393SRuXzdecT6YxGbmEtWgvSTG/Uq2sQ8nUbMvtGF+JImO2D/VEw6QGHXGWqM3msSK1usf2w6T8Mvs/1F1lMrj3lvnwhMk3t7j6dw8TWI+78OmM+dIDIbHSvZdIKHK62/3vUzC/P1rS9cEEsNr0sQ2iSRWBumOsbhO5d496rjRTRImYYLtM1NJnDE6dmvqHRILloesVMsgsT3GY4VyNgm3U73ZirkkWi8tiFDIJ9Fj13xDvpBE3f0XhvLFJM63bJs84gmJ/m3XQkY+JdHU8kNX6QWJz6GqK1XLSfRZpDybWEFi6u99adPfkogy7yL035PQ9tD4z6SWev90evqyOhKFTuvU1tdT+Z/XkmxpIGHK8DQI/E4iq1a3LqaFRMn21PpLP0n8ejuI9HYSGgd8xz1lkshZM8r+M4eapyl/2Tw+iXMhF0VyIhJ/jd08taRUDjnM2Us7qfwYiTu29JD4UOQ1cOAP5evX3RHJA5TPG+uDXwxReft8sm6XEyDphfxBhZEC6vdaiNa80QKEVjfNdB0rQLz7t+uHVQWQTmiNzJkggPU79+KGiQIoaIl95KZQ33+0Zq/JNAEShqeIt2sLoMMd+HhlhgBOuY+03ukJkB9Z+7nfQIBYT7Uuk3kCrK9WPLh7gQAzM8/vvWsqQHG96FOrmQD8XREJGhYCvFAf/87NSoDAZp2tV1cIwLbKDGiwFkAtmvw60VYA7Z7hh5vXCuCsPbv7lr0AXsticglHAVLFRm/muAiQ6RPkGO4ugH7OtjUvtlA6ZJA+ypvqF64Y4eojwObRY7Pv+lLrKz/u2OEvQPerYK9VgQJo9em3Je4RYMbT9Ep+qABBbQ46K/YJsKdxNCMxisrhoNNkcTT13s/Zz9fECtBk9vzD3WMCZOe+Xzp0UoDndzbM8T4rwNc1E069OC/ACfZyx+mXBThdsT/qSIIAu5dLtZiJVA73XM3sbgjw0efTswe3BIirOl8wKU2AeUtGyx9NFyDStLKRzBIgQ3vV1E25VP/9RR8r8wWoSQpvX1gkwBvTpfsyHgkQ8CzywKRSAfpLHUTnngvQeEKpYrBMgCfTbmhEVgjgLVzTLnwrwN0E6yn+1QIce/ToTfsHAVzPVNR5fRZgfNJtr5avAqQZRXlt+U7pqMi65hYBao3v3PFsE0BQHtDbxqD8tX5/7cumcnObPsjnCXDkr29+mFAA/1vxZX0SAYymu7ue6hTA1j/Ne/xvAX5uu9mS2idAYZzqM6NBam5u8LTK/glQbdzz21FBiNX2fjZMRSHUpvzqjhorhLvR+Xkq44TI/qHZlKkmxA+zl73LJwsxtPHmpeapQoiYy89Gagmx9ZXaaLUZQix7c2+oSE+I4xpGwRvnCMEfHL2sa54Q1/ewE68ZC9H02XSn1SIhgndr5RHmQmw+3BAQt1SI2nsp5xauEGJThP+iNmshfuXEusfZUnUzJ0jN1wlxLHKDhOMghG3fpgPXnIU4HLnj4Fo3IWZsSu4Y2CwET1n1S5EXVa9D22qXjxCFeUwtHT8hZGWno5sDhHB9YuZ4NUgIeYPWOKe9Qljv0t2oEiHEmHW9CR/3C1ESfNHhUrQQffcK9jrFCvFRaaWW+nEh5t9TX9N8SohzFh7k7XNCJEQuU9x1UQibJbsvmfwnxIivI+8OXBXCZ+d74+rrQhiXtVheuyVE0M/afP80IdJHDj0wz6D8HRs9TylHCImphl5bHuXD5NaZ4gIhxteZHowrpvoGuXJ3lAiBEfO/WD2n8ksUWmiUC/FhuHVMd4UQuo7sPV+rhLAr2uJQXCOE3tKA3Kt1QlhWLQuP+iKEavbfGs9GIXyV2u6gRQjPKWN/G7QJcVnucc14QoiH1qzRA2whEhfK/+DyhTh9b9bcbyIhdvIi+97IhDhkyzZ71C2EVfakEVl/hBA+H3K+8VeI1p8ftS/9E2Lygo0eJxVE2LYkyODQaBEWRsv2RyqL4OE7wTZ0vAhDAf2JwRNF2Dpxi0vgFBFEu10yd08XodEt9UCgrghFOwI+BuuJ4FOzLD50jgiL9p7kRRqJsF1WX3HIRAQNqYv2KTMRZKpLBi9ZiDBYx1ufvEyE7K8TjLMhQvFIg2uPbURwnOF+7O1a6nsmZEujgwgJg7W1fGcRvv1zXDnoJkLymIwl6h4iPM76nTZ3qwiPWvbcWb1DBKuMZfrb/EV4wbu6ICZQBJ0rd15eD6HWbRHyoiRchKipu1yb9ouwFHfC+qJF6HmwRl3riAh6HnYGq06I8ODv+sbdZ0R4PXqNUsJ5EequBlQ+v0z1e/ZjBPeKCIruQSVq10XIyBqtYH1LhC0Kp5vD0kRoSFcxS88QYX2Kg3xjjgjR4rA9SvkimC8y2raySAT5J/lNUY9FOP76yNvCp9S656k4Cl6KEFgj9JldIcK/32v7/aqoXDVctTJqqNxmhT9m1VF58beQ+l+pPPkHcwK/i9CaMiwp+CHCj/Hm93t+iaA2T3XUCpYIcqeaBWd5IkTkVXo0CCkfC4dcdGUi7Lx/v2JvtwhZq5Tqy/9QvqasChw/KMLE5lOX/OTEkMo1GTwdKUaKVrGv6hgxcqxnGQaoinFqgcehV2piKK23stHUEGNBwtGCqGlipMtPyvqmIwY3cu4cMz0x1N5KliTNEeN42qxXvUZiZL6q5XuZimEY/iCtYrEYbtn9rDlLxej96n4nYYUYF/wHhwdWidEakSLeZSeG/QjfwEZ7MVh6sftsnMX4vif492M3McrdS7UMPMSw1OQ23NwqxrVfs6eO9xVj8c/mpjMBYhw+VWk1HCRGx7MNxtGhYkwszS7u3ifGPPtxReEHqboDF1xlh8XwXu1/Nuy4GHaRtfadp8W4yBbc2X9ejMD1RFj/ZTFW5Q/xjl0V43K4v2z0DTHMFW3PX0kRQ3YjOU3rrhh1xzu887LE2J7unG+RJ8ZgLPdSdYEY/6Uy5TwfibFaqNkpKqVyTAy6cPylGMYrCks1KsTwOzPlQGGVGLfztz5aW0v5iryezPokBvXvufqxBjH2J7nP0G4WA4bp+WU/xXiiUsHcRoghOufyQI5Lfb7rjHK2gPJ56OI/eymVT933iK4uMUboKCWk/BFDd3mqjd0glev4yktdchLMrKlzvztKAlIzrdZ5rATfBxMa5cZLEBD+PerxRAlKYlIKdk+VoDp9fIC2tgT7l/p+aJwpwc4bVe8vG0iwoznIa52RBKvP+YSONJWg1XjCwsrFEixakHTxxFIJep9MO7p6pQTy9lc7R9pIcLMmZ1LtWglSzzt9id8gQVTTc/3NLhJYDk9V191M9ck0OyHwkiC8VCG9ZLsE9x55eJ3yl2D3sF+Ba5AE19U+ntQLlcB5X+2Y3n0SNESNM/pwUIJ/yR94d2Il8PIxXnHwhATbzF5qbDwrQeDIvox5FyXgzgj9oJgggcssp8ucJAl65g58e3tTgqdDFp+z0iRIyIrwP5cpgUJ98/U9uRI42RQ4uhRIcP9V7zPLRxK87xiumPlUAuP03gCVMgmW3B6X21chQYy/XxjvnQQrEteIv3+gfNz4qVhdLwHTfdPr540S+NcXDhX8kGD7r0Ndme0S9EWWn0lhU77i7z1NIiX4aBwc959EQp3XH4yLXRKsfdMiPf+H6mtnc/v8IJXHf/aiC/JSbL2SWXFZUYrOhjCnq8pSXLEJiU2eIMWYiR/s706Wwuy8TnreNCnW1X54+ERXCmfNEN83+lLYVpg9rp8rxZ+xbjkMYykUkyxmdZpJ0WR01WPkUinaw1pMNVdKsaRqWb6JjRSSnjFFa9dJ0VJsFurrKEXep3FfYl2lqHtb13hzixTZk+/EPtsqRdbT/MIWXyleepvdHtglxWt5fxOdECn2rA4LsImQ4sVMb4PgA1LMisrNunpYimrngOqy41Rf37fx5BmqTlEuc/JFKe5ubOqyTaB8bLXKi7omxe2biqNyb0kx1BSi2HZHimMKRklq2VJwHrsy192Xwl2W13iiSIqOW36hZU+k2Hx62rW+51KUvteLXfJaitUO+mMPVFH9xznhaa0UrRO/TR/4LEUCaXh2ZaMUMw53FZ/+IQUZU3Cmrl0K638X5TU4UuhvYiv7CqToW3yjpUAqhZzqKKfBbqre+O0hG/qlCF3Uqpk2LEWDZsqFTgUZlnDas+zGyBD6sznw9jgZ5jk/a/o9UYYLzy41OmvKsGPsx+v5OjIUCs8pjNGXQe7N72mBc2V4kCD3tsZYhtTD202NFsvQUaK4/r+lMqi8NlT9vVIGa62+2K22VH1Dy6Pv1svQe79zjamzDJWLO56nusvQ5LerdayXDLF/ei8d2i7DOhOxothfBiXFzgXbg2UgTS1HNIbJEPfBJsg+Soa2jDvJlYdkaFdrilp+XIYvHE35Z2dk+CC9bWV+UQbFnS9HP0mQ4YD5xrTF12W49bOcXZoiQ4a1RYtVugzLP/XsqMiR4YWTxpO1D2QQR7aVfimWwcD6UJD3UxkqymbV8ctk8Af3bVSlDJwJi8+NqqH8Nhj8vf5JBsusDt1536j3ZcdaX7XI0Kp13ndTO9WfNeKWhC3D6sMzTp8TUO+7FI3Uk1F+VHJcK3ooP8GtrtsHZLBrfz1CTq4DcjRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnN0mqPTHJ3m6DRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnN0mqPTHJ3m6DRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnN0mqPTHJ3m6DRHpzk6zdFpjk5zdJqj0xyd5ug0R6c5Os3RaY5Oc3Sao9McneboNEenOTrN0WmOTnP0/5ej/x+OvX1V
+        </DataArray>
+        <DataArray type="Float64" Name="CFlux" NumberOfComponents="3" format="binary" RangeMin="1.1078611687528416e-13" RangeMax="2.1651078358963844e-10">
+          AwAAAACAAABgdwAAih0AAJsdAABrHQAAeJzt3Ok3l1+4BnBJUSSERIYiP4VQCGVIiWRWZEhE5jlFikyJMhOSOfMsY2QICQnJPIvMJAplOmsd785lrfMPuF9+1r2253vv/WzPqyvFpqrm84dZUYL/U7OXQkaK89DP0BoSJiWi39AhOhYchl5esk/CxRv9U9JTHYtH6LuuXXHStEB/dTsgUvo2eutu5VJ+ZXSyFMqeY5fQR3tlVsgF0B/PBx1eY0dXZ2sQmKRDnxeivtGxH91LXseuem0GXN/1ZVDOHPr6y8HcqCH0tnraluet6FYDuj/ta9BlqMIP3C1EZ73SzKmSgv7wPJeceAT6dSt9Uy4fdO43EV5HnNH3dn5N2muNrtN4+tOiHrowgeGPIVV0av6o3U1S6MYn/7GWnkOXusUnmXISnTHQWPclA/pyTYyz2wF0hZK1aKvNafD/5s6Waf9C333crPfqCHr/jfi/gu3o/Nc2j7B9Qj/4RFCI8h36+FsLtY00dPGUhgfTkeiR9H1BXX7ovw8K5310QZfdE/rtrS16kn3yzxgD9HVzIgpfNXTVO3q8jjLoeW22ckYi6Psams2vc6EbXhj2usiEXsYnlnqaAp3mv9f1DIToNq8yfpD8ngKv89u3d+kHOrOHIftIJ7rTkr1kSz1663TbnbJS9JPDfO5pmejPVC/FhMWgD8jEVngEop8vze21cUcPyiFf07mPPpVodlTOCF2azklIWAM96kDPTfZr6L8Jzz08JIqufF/mJQEPepppYsEsC/rmbcKOHir0W62HFj4Roed/sqYqWJoEpxRxOx0/gW7CM6jg34NeznbB6nEjOkOY/AuTcnRbn7R0tRz0Rlfixkvx6By/6SZ4Q9CdJ++TMHmidwy0cpA6oHO18VxdMUEPqP6j+0MLfaxYxbVVHl0sKzuuQhw9+A1ZVQYf+ky4yfdXrOiKXjz/PGnQk5x86O2I0ddtJ0X0/k7gPWB8RUthGj3t1ptH5/vRd6kSRHI0oxtK1ubRfEAvOcfaRpiHTsXt8vtnArrJ8X7q/lD0D4dFBBq80NmICeSLHNEfrWlbJJijt/565xuog35qnDbLWQndte9ek5kkesfXlrmb/OjnP4TuvcKOHli4yH6WDn0yXUmaZT+6eFym0YG1cfDQ0P1e/2bRV562xIwPois/4q5s+4qeYv186EM1+vrdcYLsAvQbWpePRSajZyjFXfR+hU4hYaTx4AW6oUDNQ30n9PJTxyKUrNAPsTiXiOqhm9P09pxSRW8iils4LIX+3791qj3n0J1/ap5d4EBvGy1SHaRH5+yhtmskQ3drtgl5tzGG36vl5zKS5tHP54c0Bn9HD0r9NePShj4ZrXDAshZdMiSdW6sYPdHdRkomDX3VoemuQCS6siWn53E/9FR9r6SDLugEGj9q12zQ1RQkxyf10d+Jkmx23ECnOHuXuUYa3ZijSjxXGL2ckVk3mhOd9tBjlxeM6I6EkuEOB9FblqOL7+5CZ59d7VJZ/IHn5PvNv+I/0Ds6C45wd6JzfaESoa9HD3jfpUxcij6eK2D7OwNdLDkoaDgaPTTy59umAPSZQLlvpW7oCq5U0yl26EkPrEhDDdHXzRo53W+iX9c7KWcti56h5ml+6wL6brkRH9nT6DcvSmSeY0HPEYz6wkaFzszS2EdJhG5Pc3J9488o3gP7PRlnxtHZCEZEu7vRHf+I69R+Rm+dinTOK0M/NfQ3OjYb3aVdrcI3Dr2rIW/QMRidp5KCwPgpumeBBcsNe/Sl6EgeSRP0ayF/FXm00BO81ayPyqP/c84L2CeOrmJHkbvEi55kYvF15Dj6hk7DrxZqdPXr/1GV70XPvOpxJn1lBJxIfFglfApdi1/s3tM+9HpGCzfbJvRjhxrib1eiO5D8Vy33Fr153X1EOAGdfXFo93+h6M4TomzUXujf+iMu73JE5/q2bDBnhu5Rd/1p7y30nrLcxDpF9DN55LUFF9FjI0Xb48+iLwVG/PE/gS7/bJnG6TB64uPrgqb70NdtctXUV7/jOTEit788i56qbRbGN4hOoFJXxPQV/ab0iS7SavSsC24rK/noe88M0o0lod9jIOf4Fo7eSGEmU/kcnW1vnXHmY3SHVTbvCEv01nnX1Ge66KfGBurtVNBde89P6V1G72gJ368oiH669s+pCxzoHqUq107So/flZJvRkqHLRgw47t4YBo/3P/96/if6ikd4af8wuoLjn96Gb+hJViprRR/R1wyyjyYWoatqkokGpaJnKJrcevIanVCq1sncF/2mCGu0xhP0HB6X8is26CxHsr+c1Ud3ICebY7mB3rjbhJxcGp3t78fTq0Loj+eOK06cQm8deWLVfhT9VHeffxU5ukuTcE42AXpXdWhL5MIQOO+7xXnvUfSnWUqU9h3of8KesBjUocv69kkol6DHuwnriWWg/7MPdeWMRleyWIyjC0BPuaNUtccNfUM98/vCPXQ1+f27h+6iZ0kasX5RR98rVHOp5Cq6Jvcxg+Tz6J9ple6FcKMfJ8sMdmVGd9i1P9+SEr15ybBNaze6YtezycCpQZxb1cVT5k3oaZmrplfeomuGF6SzhKLvdbea+fcQPd/iJHf7LfQ7N0cssi+iS3Be9PE+gf6TZrVRfx96JEHBAbHZAXC5aUsFuq/oq+0c/gv56AmV35sbw9Gvp0dSJD9G3xWqpuyqi57lQhGkdRldx6yhVYADfb+axyEKMvQZju98Uz/7wcMPRdrWfEO/unEjL7oI/c/Ewd8Or9GTvtXzqz5BVy13v8+tj06YKlpILI2eFry8NHwKXcM599x7cnRiEzOH0IU+8PeqJ95Zd6C/ZHfvlC1Bl6IUpTsRjb60unRz0xU9aiznVfdddPmvpj15V9FXS9kY/LjR05MGtIwp0TUCwyMl//SCkz5W6T/ajZ5nSMa0/B5dT7lW52ssuigbm1O6B/pP8oGyp8boEX/DNm7LocuOKouL8KKvNpG6UFOjp7z7WDm33AN+I+HJrvpedGJ/Yck3Feh5DxfdnN6gaxpkVqs/QydTNCI6Y4Y+dezjcTJF9BCyJ/pjZ9Bll4USKmnRV4YXRiP+deN3ZmPGifsD6EpFhoaKVegbcSzJJ5PQU3x6xnc/R9e0D+EYsEAnuaNgUqyMXixHkhYkgB7KbFhnfgSd9vhjTun1LvDfv7uvHhtGt1z+mbFag67QIP+5PQWdKyp9MtsHPSvmg9xza3RPW2Yzg+vo++8LNIkJoU9IB8/QHUXXlU1VXNzsBBdjJLb8MoJezsz4NfkTesSC40/XdHS6PwEq2v7o/z7NWQveQ++KkPOnUEdXi7qzMCWCzmVdSfGRCT3HtuNeDCG6nxR/0MOxDnByGdk/qg3oY/Qph05noRswlj8gCUKXnWd4+f0+eu0C38p7DfSEj/60YaLoLuGz/DbH0Alf7w6/tge9y0Kv8MRkO/5/tLY/QvAFXeRS+7meHPQSqemI/BD0ULqr7/wc0KkZbh810UZfmH0vckkC3Xa+NYqRDV2umvf9MjE6b6hfz9fpNrwHwhNEM5rRvcwItT3z0Iks6Sp0w9C/SzzoF3mEfueSjwTNbXQx2imdn5Lo5XQEVfXs6JHTt4be7Eenn7t3yXnuG74XlV/1braidwXzuJwpRFcLlRohi0A/bfJm17gT+luzdwYf9ND9xA67v5ZCp7jIPXb/JPrUoRdESgfQzWnjjE79asX3YnLjKVE7euU09eRAMXpauS3xu0h0t8CWE8Eu6BvBY14WBuhDhpeTpWXQdU009x/nQhe6UMyxdhC9XKzpRcfiV/xupORKy+lEp6aWPPCiFP33WAzn3Rh0u8kCP3F3dIX3hzKPGKHz+tt8XpRFTwl8drrpNLqPwQ+5FCp0EqPVbLelFvBRYY0m7R504wtWfOfK0SUPflGkjEcvoRx5O/0UPXpU4utHE3S6cTX+WHn0lXf5Ko586B0+VDbXadBTmJRTbi004/msIftBWYJuXC+UXuuKzmH1e9zxKjqdHUsWDyV615G+qZGuJvA+JpLc8Fj0yJrqWTljdJ/6n3m7eNElrNLnC5a/gBPQGHGbVqD/PhK8yPQMPadCgfebAvr7GselZ7To1qaCZy8MNOK5tbrzdz4RnY2GSTDRYhunl13TEEAfrdgjTL7+GXymhm+zqgY91nT2vL0Pui5FqgPndfTrNO1iQwzo1KUBj0JGGvDeq3x/8Wo6euNdB+d1223cNOHyWxF0LwpdV0NC9Mc0PtIMDfW4v6XSHs2B6EKV92Q9NNB/3+V5JnQMPZ90unpmog7fC4rDz+Ny0A0KW2tvOGzjpRs++yXQWfRK6suJ0Y8ajvnfa/6E5580vvG/MPRRiqagPh30kELv5gB2dJ/SgpdSc7W4v3o2rX8L0AmIuQ9mOaETkWm035FCz8mlpjp8AL2yUKLrc9tHcAftNWqXSHQXPY5efgN0DuLRw5Oc6LxkFANRizX43Z77mV6lFH2ocHlorzt6gnYeY6ksui6hlaYVFfpN4tcsbD3VeL9lqt3qikMneevG6muCXqcupnuRD71R25R9aaUK50PIrp9WuY0Tq5y87YUukXnA8JASOu9bYa66w+jz6n+MHw9+wP1dz0nkTUbPJ+w3+2GJbpwSnvJKEN0gs8ZSYaMS91fVJZ2wFp3lZoZNkS/60LpRltkN9BbCEDsWRnRe5Zg7qfUVeM61lueoNNADkiyNH02UY//Cj+ER+218TdRSnhjdRbpgvCC0DF35gB0zO/pQpMfss4L3uC9JfQ9/XUbXXVBd1GgrRV9Lf1Ktj94izfqXc7EE31PlR09fuqFLRC1srFNu0z9h4mAY9w7PycIHohZedAoxYWehymKcm0zg/nhF9NhgEo/9g0W4L1G6FHaW6ASTnd5964Xoizy0V3zRXcSS/bOOolvLbDLQZRTg/IMfvHQ5j647OEs+2ZCPPin1WkUTvYW/jLp0Mg/3XYwmju0husRzH3pfkm08ZDRpKewtzm1Qi+X2f+guk3kZdYW5+Hf5Odn5rmzjYu5vI9pzcP7P/3HuvotOkDEi2zmRjc9TEayfRryNq7mpPWLPwnNlesZKQSoT57nr2B1mgwx0mq+OC27p+HszKiyq49JwbpVWnqGVqejqOg+NBlPQzciDRDaS8V4iXPcgZdzGX03b951Pwvlkvg7I1kzE/svP3V0eJuAc1EUiVcPf4Do/OfzZiuJxnoTdycvtcbiPrz5F1P2OxfUz7fNeH0KX8G6U6zaIxv4cLucn8ZHYP7jP4NhQBDrZ+NVqxlf4/ALSj0y0wnD9O2x6pK9e4jovPIJyO4LRi/UcVKmDcN+HPqT+VQ5AZxRjPsfsi89jvuHqHuGN/Z+K5T/ReKLTPcw5FOiG64wbrmTROaNH9/oLHrRHF9O+0bzHGn0qrjtzRQ9d98iJ1dPi6C1jXcc1r5eBc9gOD4obo9++rGF88h76++rg5jOO4C6u/22wRrtg/1mj153HPbC/M6M5OPkZ9j9a2K3E9QL7uc7E7c71A5eYKJ0apA/EdSq13gn3B6EHOX8LiwkBrzRliv+lF4rrX7j4XpEtHJ+Hevh56tgr9LHdicSpr9HL39zTM4tCD6j1reCOAY/N/f2N3CEWnyfqcul5jTjwob1qdaYi8egLidlhDG/QtYre165t49LECYv9Ceg5dLnHKxK3eR7jcMXYJJznHsdEZ9dkXOdXvU/6nRRcR6v3Vc+lVHCWmpmkfSfS0HMu+AnuTQfXPaLw+u44OsueaLegugycs2W2/4fUTHwezc0Hc8+zsL+awoPRPBt/l3qOQCJ7Drg1mfD7C2HoSoTDPN+Ic8FbCk0KTR3QlcwWLhBOolvrReSEa7zFc07Leo63AZ2C7HNarUgensNKVT6ddPSAwtWE3wz5uL6ZB6ePDzqvHlfM8XX0HJqCEyUWBeikt14pDaDzVv5gnlAoxHNlZ5n0pAI9x5SWnpa3CPeROSY2Mxbdmkaa+jJlMf6uhuaIXlf0oQp7ctsF9AA7gpf79N/h+qYpJLHf0AmY+fzPXS5Bp+kmbMpHd6nX8757ohTPs/PUwfWX27hdkHvw3vc4Hw6G/Zz22zhTtdOHcXTdb9eING6W4b7UL9r/rENvcXq84Slcjn6PzZYxDV2XI3Mln74C58Z0w/zaC/T51v6F76voKZfyLogKVoIXiz174GWJTvDqs3BbEjpJSMw95kF0mbkRQbPDH/B9nCyyLlRED7i0dpbQC91LrMVCvhK9JZya79UK+kTwhOkobxW+v3Ncp3lN0JVkbH49ikNPiS/I/9SNflPsyF0qqmq838JvcejIos8vxE2nuqHzyo9l/SlBX5m4eltiEV3okt9xH84acIeo1h+d+ugty7SprJHoK8pa5lZt6MWz5UdLyD5iv/TuoT1S6Lrx0m+UndAD1l4YRhWgW4f/pJ2Y3aZ/4WzPWfZa/LtyDlFPdNB5k9/rfg5Fn5BkoaRtRheKMmjTI/4EbrycEpYpjh6rPKv51x6dIIOPSSoHvU76ZZP/BPpKXHdgL0sd3qtrjDf+00D3UrtDdy9wm/6Fj3Vl9egucvt99hHWg3clKSjeEEGn2BVMFWeLrqvV2T6Thk6yLOJ5bgTdWvnJVXeGBnxf0qvJmlXR5/eQtND7oFfGmbncrUGfWM2+lLuGLqT2e+86/2fcxxyhBhkLdF65SMfgRHSHpCHRwX70LoITuzhpG3EfNU1qHiigyxRkPqvyRKdQphQ6ULFNf/qN1ZvL6LF7IsoTeL7g3G4PuM4boQesXjxzPhZ94obnH88udLqchuJWiiacw/6Dj5muotcZqIqbuqK7EBT9zH+HXqy5+pZgAZ2iQPyB3KlmvG8PegiH30EnSR+f/B6BLrOHK/P0N/Q6HiGhsj0tOAftniMjx9BbTpHZkoht06+epXpaE536qZLA9QfoHG8XaB2D0OUGQ1ZistD5M2uVPjagK/UYn5keQ7cmJqWm3P0VPJI/848gM7oD4aC89nn0cB5XHjd19BptVsqUe+gz3h8XvvijkxQZtS2mo/d5vOI6UodO8PY8ufgoOsdg/08DglacG5nL1+dH0Tl6ck/mCKFfJ75O2nEd/TH/0syqNXqAXnjTMV90a54GdulU9EhtcxKLj+g53uRTQcPoLYU5n4vX0QlGVTIHjnzDueV67CESRCcYZB8/qYLORlZfp2iJflnYLO3+c3QO4ijC10noEvzio5VV6MZ6wx/HBtAD/NyTyVbR80tPeJ853Abu460+rH4Wvbjwb5WTInrXyOuEN2boMxRinvXP0NsGrAbm3qDPk1JVUleiswnnx4n0ofMbqrnrrmzTz+/V+5S6Heesd6osnRfdwK8x+qsculeppcuyMXrGBMUdxqfoLoWSJZJx6Ckjo6+Ny9DbKJ45+XWjz4uevJ3/B72FVKuom7ID+4XWwze50UkMYxxPyKJzBV/UvmaIfr1yRNTGDf2CH01oaDT6zdIi+/cl6A4TGhrfO9AjadZESBbRXUa4g7kPdmI/RYudKid6o6it2kNp9AlTaqEYffQaoSsBNU+26b87YTP1Gp0k+LkqRTE6VyWXgGAb+s3ZJlrteXTeUgIrV7Iu/H8xEa+UzIH+mEbqzJfL6CGS44cWddFdKI6Y0zlt0y9aKi/2Cr3S9BaPQQH6aNgmxfOv6CQf4xayZ9Fngr7Jtu/rBieqvM+1egKdd/Yw+TFJdDn6kp9XdLbpn5iWNnfcpp/G72RQKLq1JC9p8Vv0EKvWmf4mdHNRIqnd0+gBpknsJ4l78J4MkyFRZEXvq5matBNHX/nl8zlCC320opy10h6dYFZ3z1gwOgv97nHSHPQL0ol1fI3obDSdLOoT6HKSDwmdiHrx3rNiGI1nQfeJLPtYdwE9v/528tzNbfrDAjcP3UfPqDk7LByI3vervep2Jvo8k0PC03r0rpnUtbQf2/QfkRto2dWH38nScxVLjOgX7ALijoqgc0hW/b2otk2/lUGvkS26ceTeMl8/dK/6lOi8NPTIJVmX7tpt+msed218R0/5xVTCtoleyfThtSxDP87hmr6T9Tn0miMv21+qos9cOVdUaoVOZ9cdPvwCXSjukSNxCvrNJkZt7hp0/kjFfJWhbfrrf710WEO3Wwq2j6YbwPeRVVCjhh/d65dR7qQSeizT/uCDFug11zLsBLzRhxwU1LQSt+m/4pLl8gF99N7xgKR+dKK4GpvGv+hHmwxVF2gG8TtklUSA7gy6RL2Ir6gCutxSn6W+KboL6xMlb0/0EKVjZ7Lj0R2YVJ+3laP7XPtj9q8HvcYhTJ5lGX2qNfLwm31DuC+TFiSFh9HtWjzz606g7x9XT+w9ix60zhE6dxGdg/qf5y4ldNpVqrPUOujxlKOs/5mji3AUUIs4oteKee6R90LPPxGTezsU/coF63jbBPQOlYvBT9+i25pQeYRXom88GbFLb0KfMVxjKe9Dd3b6Qvl1Cp0sJJpwdAU9Ms1qcWnvML5fgV4x+2jQ2VI0Ao6youeUn3Ll4UOXa1+1kRRH75huvHNDHr2u9Qe5sRa62mThpqMJ+tzms3lfe3RHWo3h2Kfoxus2vnnB6BuHLjnXxqH7naK26s5Gp7v44/ZMGToFxwbp5mf0aLHmNcoe9DM3YmfZJtCrzGwGzi2ha7tJNssSfcd7w0Tr0S0q9JYnXObWLOjmoeva7qfR1zKa5EMvoA8Fj/9NkUV3SCueKr2JTvTBu7fJED2kU7Nx2A799Bxn2W83dLr2yybEgegZ0zSa9DHogoTjstyZ6G10xeclStHLN1vGVerRlWjju+52og9w3at3+IFud+lyyYtFdINTtwyjd42AL0mcVs89iP5cfVO6hhGdwrJFqJMTPckj7uSUMHq4WUn7mjT6cbcXtQfV0KvCtYuOG6BfzuZOEbBFFwm9cl3GBb0j47CUlh+6dvWEgGUk+lT3O3bXNHSP+eeHQ4rRLTvfVCfVohPM2eW/a0MPIbqS2PgdnYXhcOjgPDo1Ia/kwgZ6Ct2us3sOjOJ3IE8rKx0Dep3UG2rOk+j5XO8rRc+hK13yzVWSQu/T0InXV0W3tuYJfqCH/s+TwMPbCn3e4ghvpBO6h8cUS/YLdKrXpZRVr9Cjc30I25PRg8ITs8YL0DmyH8T8q0Yv/CgdcKAVXbaPzpVlCL1rYdLm7Bx6TTch05U1dO35b+Qa+3+Aj+1N3DSjQ3dmfDDvzI5uTOQfGciPvkav65sgif6cj8+5SAmdSYbQqkEHnYyHgaHfHD1SaoZ03hGdV7tsjdAbvcbWb5YmDF3O+/YARyK6pLXD8/N56F2eVx8pfEC/E0VvrteMPpc3rW3Xjz4VQbTv2TS6Y27731d/0QnrkqYyiMfAIwbseyto0Nn+yDS2sqLT9ek5/OBDz1o4Y7Iiji65j0iTVAG9ibldlkkb/f3euSVeU3RZxorxSw7oo2cDutQ80a1l9epNQtAN+BzvP45H/y19zdA/B91F56h6fDn60fuz0gWN6PEvyoXqetCDbDtHeybQubxT2meX0ItjHtYS7BnH81YoW3ToEPqFKH199mPodXn814V50DUb9kjJiaIvDHUI3L6G7raczG6rgW47UNnqYYRO8CewOuw+eiipfn6aO/rx4/yJZYHo9PvklVti0BOYmSRHMtEFBX+eWSpFb5SrZN3XgF5ytruZoQv9smxa5ekx9O+6j3Iv/kY3tJeLv044gfeYL2OwEQX6nJ2guCMT+oMXxLy+XOjk8V0ssSLo8cWplHky6H4xVWUf1dCZCoOzugzQ3zYaxEzbol8eEQjYcEFv/bvXldIfvWqImZstCl1teZ7xXDr69wNV5LLv0B3Zgje1P6GbkmakW7VvM+djTpFuI+heQgq+L3+hsykyO6dsolMLCp0qPTCJ96TcPoYmBvTT+j2kwyfRSx6mry2eQ0/ZyXX/39rJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rdrJdd+qnVz3rfr/ct3/B3YziQl4nO3c6TuW3fs2cEkREkJKhiK3QiiEMqREMpM5Eck8pUiRKVFmQjJnnmXMHBISEjJliMwkCmX6Pdvd/eb57v4Ex8vPdmzrOq9jrXO5vNkJCP7/emX+2uiNwSfR/2ECf7EDHi+k0CnPc4/dOY4+tf8pkdJedAu6+FsnfrSDy05uPCLqRK+eppkcKEFPr7Qjfh2F7h7UdizEFX0jZMzb0gh9yPhiirQMur6pNulRLnShcyUca/vQK8VannYtfgSPoOJKz/2MTkMjufdpGfrPsVjOm7Ho9pOF/uIe6Arl+7MO3kLnDbB9vyiLnhr0+GTLSXRfo29yqdToJLdWc9yX2sBHhbVadHvRTc5Z852pRJfc90GRKgG9lGrk1fQj9JhRiY9vTdHpx9X54+TRV14XqDjxoXf5Utuq0aKnMimnXltoxfNZR/6NqhTdpFEoo94NncP657jTZXR6e5ZsHir07oP9UyPdLeD9TCR5EXHoUXW1s3Im6L6N3/N38KJLWGfMFy5/ACegvcVtVoX+82DIItNj9NwqBd5PCujldU5Lj+nQbcwET58baMZza33j93wSOhstk2CS5RZ+SHZNSwB9tGqXMMX6e/CZOr7Nmjr0OLPZsw6+6PqUaY6cauhqtJ1iQwzoNGWB90NHmvDeqy4/fzkDvfmmo8u63RZulnjxlQi6N6W+mzEh+gNaX2mGpkbc3zJpz9YgdKHq27KeWug/b/I8FjqCXkA2XTsz0YDvBeWBJ/G56EZF7fVXHbfwsg1fUgl0FoPSxkpi9MPGYwG3W9/h+SdLaP4nHH2UsiW4Xw89tMinNZAd3bes8JnUXD3ur4Ft++9CdAJi7n3ZzuhE5FqdN6TQc/NoqA/sRa8ukuh+3/EW3FF3jcY1Ct3VgKOP3widg3j0wCQnOi855UD0Yh34RN77Qypl6ENFy0O7PdATdfMZy2TR9Qmtta2p0TWJX7Cw9dbi/Zalfq07Hp3klTurnyl6g4aY/nk+9GZdM/allRqcDyG7YXr1Fk6scvy6N7pE1l7j/UrovK+EuRoOoM9r/DJ5MPgG93c9N4k3Bb2A8Iv5Nyt0k9SI1OeC6EZZdVYKG9W4v6quGYT16CyambbFfuhD67eyza+itxGG2rMwovMqx95Ia6zCc66zPEethR6YbGVyf6IS+xe+DY84bOFrolbyxOiu0oXjhWEV6Mp77ZnZ0YeiPGcfF5bjviT33/txEV1/QXVRq6MMfS3jYa0heps062/OxVJ8T5XvP3rmji4RvbCxTrVF/4Spo3H8azwnC2+I2njRKcWEXYSqS3BuMkGkCYrocSEknqSDxbgv0fqU9lboBJOfffrXi9AXeegu+aG7iqUEZB9Gt5HZZKDPLMT5h9x95noWXX9wlmKyqQB9UuqFijZ6G38FTdlkPu67GG082z10iSe+h/xItvDQ0eSl8Fc4t0Edluv/oLtO5mc2FOXh5/JzsvNd2sLFPF5Fdubi/J/84dx5E50gc0T280QOPk9ViGE68Rau7q5+nz0bz5XZKWsFqSyc544jN5iNMtFpPzotuGfg982ssqyNT8e5VVt7hVWnoWvo3bs1mIpuThEsspGC9xLhuicZ4xb+fNqh/2wyzifrRWCOdhL2X3zi4XovEeegIRKlGvES1/nOEcBWnIDzJOxJWe6Mx318/i6y4Wccrp/lkP9iP7qET7Ncj1EM9udyuTxMiML+wT1GR4Yi0cnHL9cyPsfnF5C+b6oTjuvfYDMge/4M13nqGZzXFYJeYuCoShOM+z70Ju23ciA6oxjzGWY/fB6LDTePSB/sf1ci/47WC53+Xu7+IHdcZ9x4JZveBT2mL0BwnwO6mO7V1l026FPxPVkrBuj6B4+tnhRHbxvrPqqtVgHOYTc8KG6Cfv2ilsnx2+jltSGtp5zAXd3+2WCNccX+07defD7qif2fM1tDUh5j//2FnUpcT7Gf61T8zjx/cImJsqnBQ0G4TrXOa+EvwejBLp/CY0PBq82YEn4YhOH6586XK7JF4PPQDD9JG3uOPrYziTjtBXrly9sG5tHogfV+Vdyx4HF5Pz9ROMbh80RfLDurFQ8+tFu9wUwkAX0hKSec4SW6TnF5/doWLk2cuPglET2XPu9oVdIWz2MSoRiXjPPc5ZTk4paC6/xo9M24kYrr6PQ9772QBs5SN5O851g6eu45f8HdGeD6BxVe3BxHZ9kV4x7ckIlztsoJeJOWhc+jvXl37kk29tdSejJa5OD30sgVSGLPBbchFy4/F46uRDjM84k4D7ytyLTIzBFdyXzhHOEkuo1BZG6E1is853SsZ3ib0CnJ36fXi+TjOaxW5dPLQA8sWk38yVCA65t7cvr6ovMacMUeXUfPpS08VmpZiE527bnSADpv9TfmCYUiPFf2VskPq9BzzegO0fEW4z4yx8ZlxaHb0ErTXKQqwe/V1BrZ54Y+VOVAYbeAHmhP8GyP4Wtc3yyVJO4TOgEzX8CZi6XotD2ELQXoro0GPjePleF5dpnat/5sC7cP9gjZXY7z4WAg5XTYwplqnd+Mo+t/ukKkpVmB+9K46PC9Ab3N+cGGl3Al+m02O8Z0dH2OrJWCQ1U4N6arFleeos+3f1n4uoqeeiH/nKhgNXiJ2OO73lboBM/fC3cko5OExt5mHkSXmRsRND/wBt/HyWKbIkX0wAtrpwm90b3F2izlq9HbImj4nq+gT4RMmI3y1uD7O8d1ktcUXUnG9sf9ePTUhMKCdz3ommIHb1JT1+L9FnGNQ08WfX4hfjrNHZ1Xfiz7Vyn6ysTl6xKL6EIX/I/6ctaBO0a3f/tsiN62TJfGGoW+oqxjYd2BXjJbebiU/C32S+8c2iWFrp8g/VLZGT1w7alxdCG6TcR3uonZLfoXTveeZq/Hz5VzjH6oh86bUq7/Pgx9QpKFiq4VXSjaqMOA+B24yXJqeJY4epzyrPZvB3SCTD4mqVz0BulnLQET6CvxPUF9LA14r64xXv1HC91b/Qb97aAt+hfeNlQ0orvKkfruIWwE705WULwqgk65I4Q63g5dX+dz50w6OsmyiNeZEXQb5YeXPRia8H3JqCVvVUWf30XSdsgXvTre3PVmHfrEas6FvDV0IfWfu9f53+M+5go1yVii88pFOYUkoTsmD4kOfkHvJji2g5OuGfdR27TurgK6TGHW4xovdEplKqG9VVv0Z1xd1VxGj9sVWZnI8wHndn3Abf4WeuDq+VNn49Anrnr98upGp89tKmmnbME5kO57wHQZvcFIVdzMDd2VoPh7wWv0Eu3VVwQL6JSF4nflTrTifbvPUzjiBjpJxvjk10h0mV1cWSc/oTfwCAlV7GrDOej2Hhw5gt52gtyORGyLfo1s1ZPa6DSPlATU7qJzvFqgcwpGlxsMXYnNRufPqld624Su1GtyanoM3YaYjIZq50fwKP6sX4LM6I6Eg/K6Z9EjeNx43DXQ63RZqVJvo8/4vF34EIBOUnyrYzEDvd/zOdfBBnSCV2cpxEfROQa/fDciaMe5kbt+fHIYnaM373iuELoasRpZlxr6A/6lmVUb9ECDiJYjfug2PE3s0mnoUboWJJZv0XN9KKaCh9HbinLfl6yjE4yqZA0c/IRzy/PcRSSITjDIPn5cBZ2NvLFB0Qr9orB5+p0n6BzE0YQvktEl+MVHq2vQTQyG344NoAf6e6SQr6IXlB3zOXWgA9zXR2NY4zR6SdHvGmdF9O6RF4kvzdFnKMW8Gh+jdwxYD8y9RJ8no66mqUZnEy6IF+lH5zdW99Bf2aKf37vvEU0nztngREUGL7qRf3PMRzl07zIr12UT9MwJyhuMj9BdiyRLJePRU0dGX5hUoHdQPnb270GfFz1+veAXehuZTnEPVRf2C61HbHKjkxjHOh2TRecKOa97xRhdrXpE1NYd/Zw/bVhYDLpmWbFDeSm644SW1tcu9CjaNRGSRXTXEe4Q7n2fsZ+yzV6VE71Z1E79njT6hBmNUKwhep3QpcC6h1v035ywnXqBThLyRJWyBJ2rmktAsANdc7aFTncenbeMwNqNvBv/XkwkKKVwoD+glTr14SJ6qOT4/kV9dFfKgxb0zlv0i5bJiz1Hrza7xmNUiD4avkn55CM6ydv4hZxZ9JngT7Kde3rAiarvcK0eQ+edPUBxRBJd7lDp90t6W/RPTEtbOG3RT+t/PDgM3UaSl6zkFXqodfvMlxZ0C1EiqZ3T6IFmyezHiXvxngyXIVFkRe+vm5q0F0df+eH7PlIHfbSqkrXaAZ1gVn/XWAg6y6Gd42S56Oekkxr4mtHZaD+zaEygy0neI3Qm6sN7z5phNIEF3Teq4m3DOfSCxuspc5pb9IcHbe6/g55Zd3pYOAi9/0dnzfUs9Hkmx8RHjejdM2lr6d+26D8oN9C2ox9/J0vPVS0xop+zD4w/LILOIVnz+7z6Fv3WRn237NBNonZX+PmjezemxuSno0ctybr21G/RX/ege+MreuoPplK2TfRqpjcvZBm+4ByuGDrbnEGvO/is85kq+sylM8Vl1uj09j0Rw0/RheLvOxGnomu2MOpy16HzRykWqAxt0d/445njGrr9UohDDP0Avo+sglp1/OjeP27lTSqhxzGRhuyzRK+7kmkv4IM+5KigrpO0Rf8l12zXN+ijt48GJn9BJ4qvs23+jX64xVh1gXYQf4eskgjQn0KXaBTxE1VAl1vqtzI0Q3dlfajk44UeqnTkVE4CuiOT6pOOSnTfK7/M//Si1zmGy7Mso0+1Rx14uWcI92XSkqToALp9m1dBwzF00nGNpL7T6MHrHGFz59E5aP547VBCp1ulPk2jh55ANcr6jwW6CEchjYgTer2Y1y55b/SCY7F518PQL52zSbBLRO9SOR/y6BW6nSm1Z0Q1+sbDEfuMFvQZ4zWWyn50F+cPVB+n0MlDYwhHV9Cj0q0Xl3YP4/sV5B27hxadLVUr8DArem7lCTcePnS5zlVbSXH0runmG1fl0Rvav1GY6KCrTxZtOpmiz20+nvdzQHei0xqOe4Rusm7rlx+CvrH/gkt9PLr/CRrrnhx0+vPfrs9UoFNybJBtvkePEWtdo+pFP3U1bpZtAr3G3HbgzBK6rrtkqyzRV7w3THXuX6NGb3vIZWHDgm4Rtq7rcRJ9LbNFPuwc+lDI+O9UWXTH9JKpMk10ojc+fS3G6KGftZuH7dFPznFW/HRHp++8aEochJ45Tat9KBZdkHBcljsLvYO+5KxEGXrlZtu4SiO6El1C983P6ANctxsdv6HbX7hY+nQR3ejENeOYHSPgSxInNfL2oT/R2JSuY0SntGoT+syJnuwZf3xKGD3CvLRzTRr9qPvT+n3q6DURusVHjdAv5nCnCtihi4RdUpNxRe/KPCCl44+uWzshYBWFPtXzmt0tHd1z/smB0BJ0q88va5Pr0Qnm7Ated6CHEl1Kav6KzsJwIGxwHp2GkFdyYQM9lX7H6V17R/F3IE87Kz0DeoPUSxrO4+gFXOXVomfQlS745SlJofdr6SUYqqLb2PCE3DVA/+NF4OljjT5veZA3yhnd03OKJecpOvWLMqqa5+gxeb6EnSnowRFJ2eOF6Bw5d2P/1KIXvZUO3NuOLttP78YyhN69MGl7eg69roeQ6dIauu78Jwot0m/gY7uTNs3p0V0Y7867sKObEAVEBfGjrx3S90uURH/Cx+dSrITOJENo3aSHTs7DwPDFAj1KaoZs3gmdV7dijdAHvc7Of5Y2HF3O5/oARxK6pI3jk7P56N1el+8rvEG/EX3IwqAVfS5/Wtf+C/pUJNGex9PoTnmdv5//RidsSJ7KJB4Djxxw6KuiRWf7JdPczopO32/g+I0PPXvhlOmKOLrkHiJtMgX0FuZOWSZd9PLdc0u8ZuiyjFXjFxzRR08Hdqt7odvIGjSahqIb8TndeZCA/lP6inFALrqr3mGNhEr0w3dmpQub0ROeVgo19KIH230e7Z1A5/JJ7ZxdQi+JvVdPsGscz1uRbPH+/ejnog0N2Y+gN+TzqwnzoGs37ZKSE0VfGOoSuH4F3X05hd1OC91uoLrd8xY6wa+g2vA76GFkhgXpHuhHj/InVQShH9ojr9wWi57IzCQ5koUuKPj91FIZerNcNeueJvTS0z2tDN3oF2XTq0+OoX/Vv593/ie6sYNcghrhBN5jfowhtyjR5+wFxZ2Y0O8+Jeb140KnSOhmiRNBTyhJo8qXQfePral4q47OVBSS3W2E/qrZKHbaDv3iiEDghit6++/dblQB6DVDzNxs0ejqy/OMZzLQv+6toZB9je7EFrKp+w7djCwzw7pzizkfcY5yH0H3FlLwe/YDnU2R2SV1E51GUOhE2d5JvCfl9jC0MKCfNOwlGz6OXnovY23xDHqqbU3d+zezov/rsxdCR0ry0U/RGRMmJ6Ff1SM6EhKOXlm6R8LVB/1d8iM9y/voO65ccta2RH9+PTBK+jp6+07lMn5ldPJUqt4jF9BH+2RWKATQH8wHH1hjR9dgaxKYpEefF6K52kWK7i2vZ1+7NgNu6PYsOHcOff3ZYF70EHpHI13bk3Z06wH97w516DLUEXtvFqGzXmrlVElFv3eWS048El3N2tCMyxed+2Wk90EX9N2fPybvtkHXaz75btEAXZjA+NuQKjoNf/TOFil0k+N/WMvOoEtd45NMPY7OGGSi/4wBfbku1sV9L7pC6VqM9eY0+D9zpyt0f6DvPGred3kE/cvVhN+Cnej8VzYPsr1D3/dQUIjqNfr4K0v1jXR08dSmu9NR6FGH+oO7/dF/7hPOf+uKLrsr7NMrO/Rkh5TvsUbo6xZElH7q6Ko3DHidZNDzO+zkbomg72lqtVDjQjc+N+x9ngm9gk8s7SQlOu0/LxoZCNFtn2d+I/k5Bd7gv2f30jd0Zk9j9pHP6M5LDpJtjejt0x03KsrQjw/zeaRnoT9WvRAbHos+IBNX5RmEfrYsr8/WAz04l2JN7w76VJL5Yblb6NL0zkLCWujRe3s12a+g/yQ8c2+/KLryHZlnBDzo6WZJhbMs6JvXCbt6qdGvte9feEeEXvDOhrpwaRKcSsT9ZMIEuinPoEJAL3ol2znrB83oDOHyT00r0e180zPUc9Gb3YibLySgc/ykn+ANRXeZvEPC5IXeNdDOQeaIztXBc3nFFD2w9pf+Nx30sRIVt3Z5dLHsnPgqcfSQl+Q1mXzoMxGmX5+zoit68/zxokVPdvY9ZE+Mvm43KWLwewLvAZNLOgrT6OnXXt4/+wV9hypBFEcrurFkfT7tG/TSM6wdhPno1NyuP78nopse/ULzJQz9zQERgSZvdDZiAvliJ/T7a7qWiRbo7T9e+wXpoZ8Yp8t2UUJ367/dYi6J3vWxbU6TH/3sm7Ddl9jRg4oW2U/To09mKEmzkKKLx2fd2rs2Dh4WRur9ZxZ95dH/+69mEF35Pnd1x0f0VJsnQ29q0ddvjhPkFKJf1bl4JCoFPVMp/rzPc3RKiVtad5+iGwvU3TN0Rq88cSRSyRp9P4tLqagBugVtX+8JVfQWoviFA1Lo//xZp951Bt3lu/bpBQ70jtFi1cFD6Jy9NPbN5OjurbahrzfG8Pdq5ZnM5Hn0swWhzSFf0YPTfsy4dqBPxijstapHlwzN4NYpQU/ysJWSSUdfdWy5KRCFrmzF6XXUHz3N0Dt5nys6gda3+jVbdHUFyfFJQ/TXoiSbXVfRKU/fZK6TRjfhqBHPE0avZGTWj+FEp9v/wPUpI7oToWSE4z70tuWYkps70NlnV7tVFr/hOfmq+Vv8G3rX58KD3J/RuT5QixxqRA8s71YmLkMfzxOw+5mJLpYSHDwcgx4W9f1VSyD6TJDcpzJ3dAU36ulUe/Tku9ZkYcbo6+bNnB6a6GoGx+VsZNEz1b0srp1D3yk34it7El3zvETWGRb0XMHoD2zU6Mwszf1UROgOtMfXN36N4j1A6sU4M47ORjAi2tOD7vRLXK/+PXr7VJRLfgX6iaHfMXE56K6d6lV+8ejdTfmDTiHoPNWUBCaP0L0KLVmuOqAvxUTxSJqiXwn9rcijg57oo25zWB79j0t+4B5xdBV7yrwlXvRkU8uPI0fRN/SafrTRoGuo/UNduRs967LnqYyVEXAi8WGViCl0HX6x24/60RsZLd3tWtCP7G9KuF6N7kjyT63cK/TWdY8R4UR09sWhnf+EobtMiLLReKN/+hJ5cYcTOtenZaM5c3TPBrVHfdfQeyvykhoU0U/lU9QXnkePixLtTDiNvhQU+SvgGLr842Va5wPoSQ/UBM32oK/b5qlrrH7Fc3KLwuHiLHqarnk43yA6gUpDMdNHdE3pY91ktejZ59xXVgrQd58apB9LRr/NQMHxKQK9mdJcpvoJOtvuBpOsB+iOq2w+kVbo7fNuaY/10U+MDTTaq6C79Z2dMriI3tUWQaooiH6y/teJcxzonmUqV44fQu/PzTGnI0eXjRxw2rkxDJ4QcPbF/Hf0Fc+Isi/D6ApOv/qaPqEnW6usFb9FXzPKOZxUjK6qTS4anIaeqWh67eELdEKpemcLP3RNEdYYrYfouTyulZds0VkO5nw4bYjuSEE+x3IVvXmnKQWFNDrb77cnV4XQH8wdVZw4gd4+8tC68zD6iZ7+gBoKdNcW4dwcAvTu2rC2qIUhcN7Xi/M+o+iPspWoHLrQf4U/ZDFqQJf165dQLkVPcBc2EMtE/+MQ5sYZg65kuRhPH4ieekOpZpc7+oZG1teF2+jq8qQ7h26iZ0veYv2ggb5bqO5C6WV0be4jRiln0d/TKd0O5UY/Sp4V4saM7riDtMCKCr11ybhDZye6YvfjyaCpQZxbzfkTFi3o6VmrZpdeoWtHFGawhKHv9rCe+XMPvcDyOHfnNfQbmiOWOefRJTjP+/ocQ/9Ou9psuAc9iqBwr9jsALjctJUC/Uf01U6OgIUC9MTqr63NEehqGVGUKQ/Qd4SpK7vpo2e7UgbrXETXM29qF+BAJ1X33E9Jjj7D8ZVv6vsX8Ij9UXZ1n9Avb1zNjylG/zWx76fjC/TkT438qg/RVSs97nAbohOmiRYRS6OnhywvDZ9A13LJO1NOgU5sau4YttAPXq567LVNF/ozdo/PsqXoUlSi9Mdi0JdWlzQ33dCjx3Kf99xEl/9o1pt/GX21jI3Bnxs9I3lAx4QKXSsoIkryVx842QOVL4d70PONyZmWy9ENlOv1Psahi7KxOWd4on+nGKh4ZIIe+Tt847ocuuyosrgIL/pqC5krDQ166uu31XPLveBXEx/uaOxDJw4QlnxZhZ5/b9Hd+SW6tlFWrcZjdHLFW0SnzNGnjrw9Sq6IHkr+0HDsFLrsslBiNR36yvDCaOSfHvyd2Zx57M4AulKxsbFiDfpGPEvK8WT0VN/e8Z1P0LUdQjkGLNFJbiiYliijl8iRpAcLoIcxGzdYHESnO/qAU3q9G/znz57LR4bRrZa/Z67WoSs0yb/vTEXnis6YzPFFz459I/fEBt3LjtncSA2d9I5Ai5gQ+oR0yAz9YXR92TTFxc3P4GKMxFYfRtArmRk/prxDj1xw+u6WgU7/K1BFNwD9z7s5G8Hb6N2RcgGUGujq0TcWpkTQuWyqKd8yoefadd2OJUT3l+IPvjfWBU4hI/tLtQl97FDq/pPZ6EaMlXdJgtFl5xmefb2DXr/At1KuhZ74NoAuXBTdNWKW3/YIOuGLnRFXdqF3WxoUHZvsxL+PNg4HCT6gi1zoPNObi14qNR1ZEIoeRn/5tb8jOg3D9cOmuugLs+UiFyTQ7ebboxnZ0OVqecuXidF5w/x7P0534D0QkSia2YrubU6o65WPTmRFX6Ufjv5V4u4XkfvoNy74StBeRxejm9L7LoleSU9Q08iOHjV9beglKfqhudsXXOYwF/1P9UcDzXb07hAe11NF6OphUiPkkegnTV/uGHdG3851/1vbue5/azvX/b/vtZ3r/m9t57r/re1c9/98O9f939rOdf9b27nuf2s71/0/3851/1vbue7/1nau+9/aznX/W9u57v+ts53r/re2c93/1nau+1/fznX/27+d6/5vbee6/63tXPf/fDvX/d/aznX/W9u57n9rO9f9v+ffznX/t7Zz3f/r3851/7e2c93/1nau+9/aznX/r7Zz3f+t/811/z/dX5e7eJzt3Ok3l1/0N3BJUSSERIYiX4VQEsqQiGRWZEhEMk8pUmRKyExI5syzjJEhJCQkhIyReQqhTL973e5Hv7d/4F7Lfvhae53Pde19znF5sgkItqKtz7Jv5k1bGcH/ijlSqkrqSnQ2ofw44R50fkM1N92VbfL5PX88o24Hl9Q7VZbOi27g1xj9VQ7ds9TCedkIPWOM4g7jM3TnQokSiTj0lKHh10Zl6G0Uzx39utDnRE7ezv+D3kKqVdRF2YH5guvhm9zoJIYxDidk0bmCL2lfM0S/XjkkYu2KftGPJjQ0Gv1maZHd+xJ0+zENjZ8d6JE0a8IkC+jOQ9zB3Ae/Yz5Fi60qJ3qjiI3aI2n0MRNqwRh99BrBKwE1T7fJvztmPfEanSTYW5WiGJ2rkuucQBv6zekmWu05dN5SAksXsk5wpbF4pWQO9Cc0Ume+SKKHSIweWtBFd6Y4YkbnuE2+SKm86Cv0SpNbPAYF6MNhmxTeX9FJPsbNZ0+jTwV9k23f1wVOVPmAa/UEOu/0YfJjEuhy9CWzV3S2yR+blDZz2Cafxu9kUCi6lQQvafFb9BDL1qneJnQzESKp3ZPoASZJ7CeJu8Hzw2RIFFnRe2omxm3F0Fd++3yO0EIfrihnrbRDJ5jW3TMSjM5Cv3uUNAf9onRiHV8jOhvNdxb1MXQ5iUeEjkQ/8N6zZBiOZ0H3iSz7WHcRPb/+dvLMzW3ywwI3Dz1Az6g5OygUiN7zu73qdib6HJN9wrN69M6p1LW0X9vkH5Hra9nVA04nPVOxxIh+0TYg7qgwOodE1d9LatvkWxr8uGeDbhS5t8zXD92zPiU6Lw09cknWuat2m/yaJ50bP9FTfjOVsG2iVzJ9eC3L0It1uKbvaHUevebIy/aXquhTV84XlVqi09l2hQ++QBeMe+xAnIJ+s4lRm7sGnT9SMV9lYJv8+t8v7dfQbZeC7aLp+vA8sgpo1PCje/6+lzuuhB7LtD/4oDl6zbUM23Ne6AP2CmpaidvkX3HOcv6APnz/eEBSLzpRXI1141/0o02GqvM0/fgdskpyju4Muni9sK+IArrcUo+Fvgm6M+tTJS8P9BClY2ey49HtmVS928rRfa79Mf3XjV5jHybPsow+0Rp5+M2+AezLuDlJ4WF02xaP/LoT6PtH1RN/nEUPWucInbmEzkH9z2OXEjrtKtVZah30eMph1v/M0IU5CqiFHdBrRT32yHui55+Iyb0din7lolW8TQJ6h8ql4Gdv0W2MqdzDK9E3ng7ZpjehTxmusZT3oDs5fqH8OoFOFhJNOLyCHplmubC0dxDPV6BnzD4adLYUjYCjrOg55adcePjQ5dpXrSXE0DsmG+/ckEeva/1FbqSFrjZeuOlgjD6z+XzO1w7dgVZjMPYZutG6tW9eMPrGoctOtXHofqeoLbuy0eku/bo9VYZOwbFBuvkZPVq0eY2yG/3MjdhptjH0KlPrvvNL6NquEs2yRD/x3jDWenyLCr3lKZeZFQu6Wei6tttp9LWMJvnQi+gDwaN/U2TR7dOKJ0pvohN98PrRZIge8l2zcdAW/fQMZ9miKzpdu6QxcSB6xiSNJn0MugDhqCx3JnobXfEF8VL08s2WUZV6dCXa+M6739H7uO7X2/9Ct70sWfJiAd3g1C3D6F1D4Evip9VzD6J7q29K1zCiU1i0CH7nRE9yjzs5IYQeblrSviaNftz1Re1BNfSqcO2i4wboktncKeds0IVDr1yXcUbvyDgspeWHrl09ds4iEn2i6x27Sxq6+5z34ZBidIvvb6qTatEJZmzz37WhhxBdSWz8ic7CcDi0fw6dmpBXYn4DPYVu19k9B4bxO5CnlZWOAb1O6g0150n0fK73lSLn0ZUu++YqSaH3aOjE66uiW1nxBD/UQ//nQeDuZYk+Z36EN9IR3d19giX7BTrV61LKqlfo0bk+hO3J6EHhiVmjBegc2Q9j/lWjF36UDjjQii7bQ+fCMoDeOT9ufXYGvaaLkOnKGrr23Ddyjf2/wEf2Jm6a0qE7MT6cc2JHNyLyjwzkR1+j1/VNkED35uNzKlJCZ5IhtGzQQSfjYWDoNUOPlJoinXNA59UuWyP0Qq+x8ZumCUOX87rdx5GILmFl730hD73T4+pjhQ/od6LozfSa0WfyJrVte9EnIoj2PZ9Ed8ht//vqLzphXdJEBvEIeESf3Y8KGnS2PzKNrazodD169r/40LPmzxiviKFL7CPSJFVAb2Jul2XSRn+/d2aJ1wRdlrFi9LI9+vDZgE41D3QrWb164xB0Az6HB0/i0Relrxn656A76xxVjy9HP/pgWrqgET3+RblgXTd6kM334e4xdC6vlPbpJfTimEe1BHtGcb8VyhYdOoR+MUpfn/0Yel0e/3UhHnTNhj1SciLo8wMd525fQ3ddTma30UC36atsdb+HTvAnsDrsAXooqX5+mhv68eP8iWWB6PT75JVbYtATmJkkhjLRBQRmzyyVojfKVbLua0AvOdvVzNCJLimbVnl6BP2n7uPcS4vohnZy8dcJx/Ae82UMvkeBPmMrIObAhP7wBTGvLxc6eXwnS6wwenxxKmWeDLpfTFXZRzV0psLgrE4D9LeNBjGTNuiSQ+cCNpzRW//udaH0R68aYOZmi0JXW55jPJ+O/vNAFbnsO3QHtuBN7U/oJqQZ6Zbt29T5mGOk6xC6p6CC78vf6GyKzE4pm+jUAoKnSg+M4z0pt4+hiQH9tH436eBJ9JJH6WsL59FTrKtqPn+YFvnfPn05ZKg4D/0MrSFhUiL6DR2iY8Fh6OUl+8SdvdA/JT3TMX+MvuvaFUdNc/RXtwMipW+jt+5WLuVXRidLoew+dhl9+IfMCvk59CdzQYfX2NHV2RrOjdOhzwlS3+jYj+4pr2NbvTYFru/yMihnBn39ZX9u1AB6Wz1ti3crumWf7qxdDboMVfiBu4XorFeaOVVS0B9d4JITi0C/bqlvwuWDzv0mwvOIE/re71+T9lqh6zSe/rSghy5EYPhrQBWdmj9qd5MUutHJf6yl59GlbvFJpJxEZww00n3JgL5cE+PkegBdoWQt2nJzEvy/mbNl2r/Rdx83/XF1CL33RvxfgXZ0/mubR9g+oR98KiBI+Q599K252kYaulhKw8PJSPRI+p6gTj/0xYNCeR+d0WX3hH57a4OeZJc8G2OAvm5GROGrhq56R4/XQQY9r81G7p4w+r6GZrPrXOiGFwc9LzGhl/GJpp6mQKf573U9AyG69auMXySLE+B1fvv2Lv1CZ3Y3ZB/6ju64ZCfRUo/eOtl2p6wU/eQgn1taJvpz1csxYTHofTKxFe6B6BdKc39Yu6EH5ZCv6TxAn0g0PSp3D12azlFQSAM96kD3TfZr6IuE5x8dEkFXfiDzkoAHPc0ksWCaBX3zNmFHNxX6rdZD85+I0PM/WVEVLI2DUwq7no4fQzfm6Vfw70YvZ7to+aQRnSFM/oVxObqNT1q6Wg56owtx4+V4dI5FujHeEHSn8QckTB7oHX2tHKT26FxtPFdXjNEDqv/o/tJCHylWcWmVRxfNyo6rEEMPfkNWlcGHPhVu/PMVK7qiJ88/Dxr0JEcfelti9HWbcWG9v2N4Dxhd0VKYRE+79ebxhV70XaoEkRzN6IYStXk0H9BLzrO2EeahU3E7L84moBsf76XuDUX/cFj4XIMnOhsxgXyRA/rjNW3zBDP01t/vfAN10E+N0mY5KaG79NxvMpVA7/jaMnOTH/3Ch9C9V9jRAwsX2M/SoY+nK0mz7EcXi8u8d2BtFDw0dL/nv2n0lWf/57+afnTlx9yVbV/RU6y8Bz5Uo6/fHSXILkC/oSV5LDIZPUMp7pLXK3QK8XsaD1+gG56reaTviF5+6liEkiX6IRanEhE9dDOaH92nVNGbiOLmD0uh//dvnWrPeXSnWc2z8xzobcNFqv306Jzd1LaNZOiuzdYh7zZG8Hu1/HxG0hz6hfyQxuCf6EGpv6ec29DHoxUOWNSiS4Skc2sVoye6WUvJpKGv2jfdPReJrmzB6XHcDz1V3zPpoDM6gcav2jVrdDUFidFxffR3IiSbHTfQKc7eZa6RRjfiqBLLFUIvZ2TWjeZEpz30xPkFI7oDoUS4/UH0luXo4ru70NmnVztVFn7hPvl586/YL/SO7wVHuL+jc32hEqavRw9436lMXIo+mnvOZjEDXTQ5KGgwGj00cvZtUwD6VKDct1JXdAUXqskUW/Skh5akoYbo66aNnG430a/rnZSzkkXPUPMwu3URfbfckI/safSbl8Qzz7Og5whEfWGjQmdmaeyhJEK3ozm5vvFnGO+B/R6MU6PobARDIl1d6A5/xHRqP6O3TkQ65ZWhnxr4Gx2bje7crlbhG4fe2ZDX7xCMzlNJQWD0DN2jwJzlhh36UnQkj4Qx+rWQv4o8WugJXmpWR+XR/znlBewTQ1expchd4kVPMjb/OnQcfUOn4XcLNbr69f+oyveiZ151P5O+MgROJDaoEj6BrsUvev9ZD3o9o7mrTRP6sUMN8bcr0e1J/quWe4vevO42JJSAzr4wsPu/UHSnMRE2ak/0b70Rkrsc0Lm+LRvMmKK7111/9uMWendZbmKdIvqZPPLagkvosZEi7fFn0ZcCI/74n0CXf75M43gYPfHJdQGTfejr1rlq6qs/cZ/cI7eTnEZP1TYN4+tHJ1CpK2L6in5T+kQnaTV61kXXlZV89L1n+ulGktDvM5BzfAtHb6Qwlan0RmfbW2eU+QTdfpXNK8ICvXXOJfW5Lvqpkb56WxV0lx8XJvQk0TtawvcrCqCfrv1z6iIHunupyrWT9Og9OdmmtGToshF9Drs3BsHj/S+8nptFX3EPL+0dRFdw+POj4Rt6kqXKWtFH9DWD7KOJReiqmmQiQanoGYrGt56+RieUqnU080W/KcwarfEUPYfHufyKNTrLkewvZ/XR7cnJZlhuoDfuNiYnl0Zn+/vx9Kog+pOZ44pjp9Bbh55ath9FP9XV419Fju7cJJSTTYDeWR3aEjk/AM77bmHOaxj9WZYSpV0H+p+wpywGdeiyvj3iyiXo8a5CeqIZ6P/sQl04o9GVzBfi6ALQU+4oVe1xRd9Qz/w5fx9dTX7/7oG76FkS91i/qKPvFay5XHIVXZP7mEHyBfTPtEr3Q7jRj5NlBrswo9vv2p9vQYnevGTYprUbXbHz+XjgRD/WrerSKbMm9LTMVZMrb9E1wwvSWULR97pZTv17hJ5vfpK7/Rb6nZtD5tmX0MU5L/l4nUCfpVlt1N+HHklQcEB0ug9cbtJCge4r+mo7h/98PnpC5c/mxnD06+mRFMlP0HeFqim76KJnOVMEaUmi65g2tJ7jQN+v5n6Iggx9iuMn38RsL3j4oUibmm/oVzdu5EUXof8ZO7ho/xo96Vs9v+pTdNVytwfc+uiEqSKFxNLoacHLS4On0DWccs+/J0cnNja1D53vAX+veuKdVQf6S3a377Il6FKUInQnotGXVpdubrqgR43kvOq6iy7/1aQ77yr6aikbgx83enpSn5YRJbpGYHikxJ8f4KRPVHqPdqHnGZIxLb9H11Ou1fkaiy7CxuaY7o4+S95X9swIPeJv2MZtOXTZYWUxYV701SZSZ2pq9JR3HytnlrvBbyQ83VX/A53YX0jiTQV63qMFV8c36JoGmdXqz9HJFO8RnTFFnzj28TiZInoI2VP9kTPossuCCZW06CuD88MR/7rwO7Mx48SDPnSlIkNDxSr0jTiW5JNJ6Ck+3aO7vdE17UI4+szRSe4oGBcroxfLkaQFnUMPZTasMzuCTnv8Caf0eif44mLX1WOD6BbLsxmrNegKDfKf21PQuaLSx7N90LNiPsh5W6F72DCbGlxH3//gXJOoIPqYdPAU3VF0XdlUxYXN7+CijMQWX4bQy5kZvyZ/Qo+Yd5h1SUen+xOgou2P/u/TjJXAffTOCDl/CnV0tag78xPC6FxWlRQfmdBzbDruxxCi+0nxBz0a6QAnl5H9o9qAPkKfcuh0FroBY/lDkiB02TmGlz8foNfO862810BP+OhPGyaC7hw+zW99DJ3w9e7wa3vQO831Ck+Mt+PfRyu7IwRf0IUvt5/vzkEvkZqMyA9BD6W7+s7PHp2a4fZRY230+en3wpfF0W3mWqMY2dDlqnnfLxOj84b6dX+dbMN7IDxBJKMZ3dOUUNsjD53Igq5CNwz9p/jDXuHH6Hcu+4jT3EYXpZ3QmZVAL6cjqKpnR4+cvDXwZj86/cz9y04z3/BcVH7Vu9mK3hnM43ymEF0tVGqILAL9tPGbXaOO6G9N3xl80EP3Ez3s9loKneIS98iDk+gTh14QKR1AN6ONu3fqdyuei/GNZ0Tt6JWT1ON9xehp5TbE7yLRXQNbTgQ7o28Ej3iaG6APGEomS8ug6xpr7j/OhS54sZhj7SB6uWjTi46Fr/jdSMmVlvMdnZpa4sCLUvTFkRjOuzHotuMFfmJu6ArvD2UeuYfO62/9eUEWPSXw+emm0+g+Br/kUqjQSe6tZrsutYAPC2k0aXejG1205Dtfji5x8IsiZTx6CeXQ28ln6NHD4l8/GqPTjarxx8qjr7zLV3HgQ+/wobK+ToOewqSccmu+GfdnDdkvyhJ0o3rB9FoXdA7LxVGHq+h0tixZPJTonUd6JoY6m8B7mEhyw2PRI2uqp+WM0H3qZ/N28aKLW6bPFSx/ASegucdtUoG+eCR4gek5ek6FAu83BfT3NQ5Lz2nRrUwEzl7sa8R9a3nn71wiOhsNk0Ci+TZOL7umcQ59uGKPEPn6Z/CpGr7Nqhr0WJPpC3Y+6LoUqfac19Gv07SLDjCgU5cGPA4ZasB7r/L9pavp6I137Z3WbbZxkwTJt8LonhS6LoaE6E9ofKQZGuqxv6XS7s2B6IKV92XdNdAX7/I8FzyGnk86WT01VofnguKwd1wOukFha+0N+228dMNnvzg6i15JfTkx+lHDEf/7zZ9w/5PGN/4Xhj5M0RTUo4MeUujVHMCO7lNa8FJqphb7q2fd+rcAnYCY+2CWIzoRmUb7HSn0nFxqqsMH0CsLxTs/t30Et9deo3aORHfW4/jBb4DOQTx8eJwTnZeMoi9qoQa/23M/06uUog8ULg/sdUNP0M5jLJVF1yW01LSkQr9J/JqFrbsa77dMtVudcegkb11ZfY3R69RFdS/xoTdqm7AvrVRhfQjZ9dMqt3FilZO3PdHFMw8YHlJC530rxFV3GH1O/Y/Rk/4P2N/1nETeZPR8wl7TXxboRinhKa8E0A0yaywUNiqxv6rO6YS16Cw3M6yLfNEH1u9lmd5AbyEMsWVhROdVjrmTWl+B+1xreYZKAz0gycLo8Vg55s//Ghyy28bXRCzkidGdpQtGC0LL0JUP2DKzow9Euk8/L3iPfUnqefRbEl13XnVBo60UfS39abU+eos061/OhRI8p8qPn710RRePmt9Yp9wmf8zY3jDuHe6T+Q9ELbzoFKJCToKVxVg3mcD98YroscEk7vv7i7AvUboUthboBOPfvXrWC9EXeGiv+KI7iyb7Zx1Ft5LZZKDLKMD6Bz986XwBXbd/mny8IR99XOq1iiZ6C38Zdel4HvZdlCaO7RG6uLcPvS/JNh4ynLQU9hbr1q/Fcvs/dOfxvIy6wlz8XX5Odr4r27io29uI9hysv/c/zt130QkyhmS/j2Xj81QE66cRb+NqrmqP2bNwX5mcsVSQysR67jp2h9kgA53mq8O8azq+b0aFeXVcGtat0tIjtDIVXV3n0b3+FHRT8iDhjWS8lwjX3UkZt/FXk3Y9F5KwPpmvA7I1EzFf0tvN+VEC1kFdOFI1/A2uM8vhz1YUj/Uk7Epebo/DPr76FFG3GIvrZ9rlvT6ELu7VKNdlEI35OVxOT+MjMb9/n8GxgQh0stGr1Yyv8PnPST821grD9e+w6ZG+eonrvHAPyu0IRi/Ws1elDsK+D3xI/ascgM4oynye2Refx2zDxS3CC/M/Fct/ovFAp3uUcyjQFdcZNVzJonNCj/7hL3DQDl1U+0bzHiv0ibiuzBU9dN0jJ1ZPi6G3jHQe17xeBs5hM9gvZoR+W1LD6OR99PfVwc1nHMCdXf7bYI12xvyz915/P+6O+d8zmoOTn2P+4/ndSlwvMJ/rTNzuXD9w8bHSiX76QFynUuudUG8QepDTt7CYEPBKE6b433qhuP7FS+8V2cLxeagHvVNHXqGP7E4kTn2NXv7mvp5pFHpArW8Fdwx4bO7iN3L7WHyeKMnSCxpx4AN71epMhOPR5xOzwxjeoGsVva9d28aliRMWehPQc+hyj1ckbvM8RuGKsUlYzz0OiU4uybjO73qf9DspuI7Wj1fdl1PBWWqmkvadSEPPuegnsDcdXPeIwuu7o+gse6Jdg+oysM4W2f4fUjPxeTQ3H854Z2F+NYU7o1k2vpd6zrlE9hxwKzKh9xfD0JUIB3m+EeeCtxQaF5rYoyuZzl8kHEe30ovICdd4i/uclvU8bwM6BdnntFrhPNyHlap8OunoAYWrCYsM+bi+qTunjw86rx5XzPF19ByaghMl5gXopLdeKfWh81b+Yh5TKMR9ZWuR9LQCPceElp6Wtwj7yBwTmxmLbkUjTS1JWYzv1dAc8cMFfaDCjtxmHj3AluDlPv13uL5JCknsN3QCZj7/85Il6DRdhE356M71el53T5TifnaaOLj+chu3DXIL3vse68PBsJ/Tbhtnqnb8MIqu++0akcbNMuxL/YLdbB16i+OTDQ+hcvT7bDaMaei6HJkr+fQVWDemG2bXXqDPtfbO/1xFT7mcd1FEoBK8WPT5Q08LdIJXn4XaktBJQmLuM/ejy8wMCZge/oDncbzIqlARPeDy2llCT3RP0RZz+Ur0lnBqvlcr6GPBYybDvFV4fme4TvMaoyvJWP9+HIeeEl+Q/6kL/abokbtUVNV4v4Xf4tCRRZ+bj5tMdUXnlR/J+lOCvjJ29bb4ArrgZb/jPpw14PZRrb++66O3LNOmskairyhrmVm2oRdPlx8tIfuI+dK7B/ZIoevGS79RdkQPWHthGFWAbhU+Szs2vU3+/Nnus+y1+Lty9lFPddB5k9/rfg5FH5NgoaRtRheMMmjTI/4EbrScEpYphh6rPK351w6dIIOPSSoHvU76ZZP/GPpKXFfgD5Y6vFfXGG/8p4HuqXaH7n7gNvnzH+vK6tGd5fb77COsB+9MUlC8IYxOsSuYKs4GXVfre/tUGjrJsrDH+SF0K+WnV90YGvC8pFeTNauiz+0haaH3Qa+MM3W+W4M+tpp9OXcNXVBtce86/2fsY45gg4w5Oq9cpENwIrp90oBIfy96J8GJXZy0jdhHTeOahwroMgWZz6s80CmUKQUPVGyTn35j9eYyeuyeiPIEni9Yt9t9LnP30ANWL525EIs+dsPjj0cnOl1OQ3ErRRPWYf/BJ0xX0esMVMVMXNCdCYpm89+hF2uuviWYR6coEHsod6oZ79uD7kLhd9BJ0kfHf0agy+zhyjz9Db2OR1CwbE8L1kG7+8jQMfSWU2Q2JKLb5KtnqZ7WRKd+pnTu+kN0jrfztA5B6HL9ISsxWej8mbVKHxvQlbqNzkyOoFsRk1JT7v4KHsmf+UeAGd2esF9e+wJ6OI8Lj6s6eo02K2XKffQpr4/zX/zRSYrutS2ko/e4v+I6UodO8PYCudgwOkd/76wBQSvWjcz5q/dRdI7u3JM5gujXia+TdlxHf8K/NLVqhR6gF950zBfdiqeBXToVPVLbjMT8I3qOF/lE0CB6S2HO5+J1dIJhlcy+I9+wbrnue4gE0An62UdPqqCzkdXXKVqgSwqZpj3wRucgjiJ8nYQuzi82XFmFbqQ3+HGkDz3Azy2ZbBU9v/SE15nDOBfdx0t9UP0senHh3ypHRfTOodcJb0zRpyhEPeqfo+/Mdd+KnbnuW7Ez130rdua6/7/8nbnu/zd25rpvxc5c963Ymeu+FTtz3bdiZ677VuzMdd+KnbnuW7Ez130rdua6b8XOXPet2JnrvhU7c923Ymeu+1bszHXfip257luxM9d9K3bmum/Fzlz3rdiZ674V/7/Pdf8fveCSjg==
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              1.1078611688e-13
+            </Value>
+            <Value index="1">
+              2.1651078359e-10
+            </Value>
+          </InformationKey>
+        </DataArray>
+        <DataArray type="Float64" Name="darcy_velocity" NumberOfComponents="3" format="binary" RangeMin="3.75e-10" RangeMax="3.75e-10">
+          AwAAAACAAABgdwAAdwAAAHcAAAB0AAAAeJztyDENACAMADAsYIdkB+JxQTId+/ZjgfZs7nXnqRiP9N5777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++999577z/6BhRquXd4nO3IMQ0AIBAEsLOAHRIGxOOC5HWwMaOBdmzyqtl3W2fEe++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9/+gvrU21NXic7cghDQAgAATAr0AdNgThacFGDhwCh8fdyUuu1essY7c8vPfee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333vsffwC8qi1u
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              3.75e-10
+            </Value>
+            <Value index="1">
+              3.75e-10
+            </Value>
+          </InformationKey>
+        </DataArray>
+      </PointData>
+      <CellData Scalars="CFlux_residual">
+        <DataArray type="Float64" Name="CFlux_residual" NumberOfComponents="3" format="binary" RangeMin="0" RangeMax="0">
+          AQAAAACAAADAXQAALQAAAA==eJztwQENAAAAwqD3T+3sARQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADddwAAB
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0
+            </Value>
+            <Value index="1">
+              0
+            </Value>
+          </InformationKey>
+        </DataArray>
+        <DataArray type="Float64" Name="darcy_velocity_residual" NumberOfComponents="3" format="binary" RangeMin="0" RangeMax="0">
+          AQAAAACAAADAXQAALQAAAA==eJztwQENAAAAwqD3T+3sARQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADddwAAB
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0
+            </Value>
+            <Value index="1">
+              0
+            </Value>
+          </InformationKey>
+        </DataArray>
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary" RangeMin="0" RangeMax="0.8000008119204767">
+          AwAAAACAAABgdwAA9xQAAAAWAAB+FAAAeJx1nGl4Ttfeh5+qxNSaT5NQtSneSqRaFFWRrSWUEkGPoI4dU816BDXWg0qCmqeIoTvGJmKoWSWxzVNPElNjPlsMbVA0CD0VzjrXtdaXd93P+Xbua3W5f//sZ+21v/w8Hp//c/Matwtn3oO4GZzS18f6wcg79PnKxz6xxL3+D8f42H887rN/0iQf/66XuCfdb6oPn2nErcTPpvvwjCPujFqY4MN/JnEj6tIsH7lm478bWmOuj7zzkBdvNN/HHBagT2wucjGfhcivj1/kY26L0T/yrSU+5onczjiw1MecEzFvSP9lPuafhHNIKrncx98FuVkybYWPv9dKnMOYyFU+/o7fI79ZgFz8fW3cv+4p5OLvnoz7uyuQi+dhNa5fOhy5eE6Q2x3NNT6eH+SOX8W1Pp4r5G76DeTieVuH62N3IhfP4XqcQ0g8cvF8Ijfyojf4eG6Rm8uCf/DxPCM3Oz1HLp7zFJxDiSzk4vlPxVyZ3yMXv4uNuH70P5GL3wtyu94naT5+R8idG5U3+fh9IXeTbiMXv7vNuD5qD3Lxe9yCcyg1E7n4nfJ6N3Srj98vcnvfEuTid43cWPqS9y/e6Eec58iByMU5gNzseBq5OB+24f51myEX5wZyy28NcnGeIHfdMtt9nDPIrfRRyMX5g9yTeBW5OJd2YK7YCOTivELuidyCXJxjyO3gwJ0+zjfkhv8U5OLcQ+5cz0cuzsNdmCujM3JxTiJ3EvchF+cncmtUrd0+zlXkbuRs5OK8RW6FFCIX5/AezFWiN3JxPiP35h1DLs5t3j/zvb0+znPk9rJlyMU5j9wYXewnH+c/cqfTEOTivYDcrHcOuXhf7MP9S4QhF+8R5NaNdcjF+wW5m1k23cd7B7mV9DVy8T5C7hnjIhfvqQzMFfUpcvH+Qu4J3YZcvNeQ2yWrZvp43yE3bk5DLt6DyJ3995CL9+N+zLX8c+TivYncGZOJXLxPkRsplRwf71nmAW2Ri/cvcufbicjFexm5t2ArcvG+Rm5at5CL9zj7ZwUd8PF+R+581JH5yIHI7ZSpyMV9ALkVsBu5uCcgN6bfRS7uDwcxV0F15OJegdy2uiIX9w3mWQnIxT0Eudk8A7m4nyD3pP7BudwyhzBXQB3k4j6D3Du9B3Jxz0FuPprDPDgFuRFzCLm4FyF3s55yLr+KhzFX83rIxT0KuZVqIRf3K+RG4GLk4t7FPO4EcnEfQ+48KuJcwYFHMFdMA+Ti/obczB6AXNzrkHvCliMX9z3kTmo28+v5yO3A4kd93A+RW3FNkYt7I3Lj8VDk4j6J3I1JRi7umcjt7PPs7/+QeVjpYz7upcjNjS2Qi/sqck9QLHJxj0XuxG1ALu63yL2PL7N/SCH79yl/3Md9GLmR0wq5uCcjd8PGIRf3Z+T2xk3Ixb0auRWUx/6dnrN//BsnfNzDmT9ph1zcz5E7fSYjF/d25N6c7cjFfR652eI35OKefxL9095ELu7/yJ2gKOadhiC346cjF98LyK0ne5GL7wjkRt/7nCup5CnMlVMTufjuQG636IZcfI8wT5uFXHynIDerOMjF9wtyT8JjzpVZ9mfM9eQd5OJ7B7m3by/k4jsIuXl6PvOSaciN8KPIxXcTcjftP5zrRuV/Ya4q9ZGL7yzkVkJf5OL7C7lRuBS5+C5j3u9n5OJ7Dblz2pOFuUpWRe4N/wC5+L5Dbm4ahFx89yH3VF2FXHwPIncSzjDff49zFfpnY67QGsitfh8hF9+VyI0zI5CL703kbvha5OI7FLm96QL73yzgfWb756BnSiXk9mEDufieRe79qxmvD2iL3GrwOXLx/YvcHDQCufgu5lz2DM61bwl75q7hXAVb2fP1TM5V9xSvb3WBc1m3ONeEAs619CXn2vbaacyVFYTcm18Hufh+R24ZLZGL73rkZreevH7kQOTGnNHI7ZSpnOvIXM7lruBcf6VwroDd7NngMOfqeJo9B13jXNPv8nr7GedK9zuDuXIrIncLqiO3yoYid+o2Q262boPctroiNybGsOfS4cg92yfw+qwEzpW/mHP5reFcxlbO1TyDc3U7yblic9lzzk3OlfoHex55wbncMmdx/fNA5E5AHeRmw4bI7Y4mcmNwB+Te6T2Qe5K/ZM/0Ucjd3Cns+WgO5yq7gtcHp3Cu1rs4V8whzjUxh3MlXuVc2+9wrqyn7Hmn+DnM5VcRuVGjOnK7eT1eH/0hcm9sBHLP3C7IrVQLuXtkGHLz+njO9TyePQMXc66Gq9kzcgvnGpzO6+NOcK7kXzhX+g3OdeEh53pUxLnKlTmPuYIDkXsiaiP3xjRA7k4MR24lfsbrt3dHbmYPQO7ciUVu+E/hXDXmcK6w5Zwr+gf2jN3JueYeZM/UbM519Aqvv57PuYoKOVdg8V8wV6MKyL2RbyF3B4cgt+KaIneSWyM3Mzojty/0Rm48Hsrry43nXCHxnCtiEeeKSeZckzZzrsR9nGvHcfbMPs+57uaxp/9DzlWziNeHlc7FXNEByK1RtZA7c99Hbm5sgdw+2h65kReN3FvUH7knKJY9G3k5V+RsXj8kiXPFbeBcq3dwrowDnOtiFud6fJlzlc9nz5BCzhXx6gX07FMeuTOpGq9fFozc3tEEuZHTCrn3bhRyT4neyK2aQ5G7YePYs3sc5xq1kD3n2Zxr4yZef+wnzpV3jHO9OMe5gvI4V6MHnKvTc841pNRF9Ix/A7m9+m3knsz3kHsvhvH6J+2QW+Wjkbsh/ZGbbUYid/pM5lzffMe5li1jz53rOVfOdva863CuElm8vuZlztXiN87V/QnnGl3sEuaaVw65J+1N5N5jdZG7eY2RWy8+Qe4ERSE3P/gHr+80BLkxdCznip/OudYs4FyZ33Oui2mc68le9ix/jHPVO8eeba5zrr73ef03f3GupJKXMdfOvyF3c2oit+7VR+6UCENuvt0Oud2iG3KjRz/2HP1P5J753/D6tFmc61gi57qxjnO92Ma5qjic64N/ca6oS+w59FfOlfCYPde8cgVzZZZFbl2qitx58g5ys0Jj5Ha9T5AbbTsh9/bthdwzeTB7Jn3NuXZ+y56n53Oue6t4fck0zvX2Xs4VfpRz9TjLuca4nGv+75wr7T/sebzEVcx1ozJy42UN5HaV+ry+cXPk3qhPkXuG/R25ldAXubvmK+Tm/kmc69JM9ixcyrkqrGPP0G2cq+1+Xt/vZ841+SLnSrrNuXY94lynPdcw1++vI7dLVkXuqfUOcm/4B8jdHh8jt8ZE8vr5XyA3Nw1C7hwfw7luTuNcL+dxrqqrOFfjjewZtYdzDTvCnglnONfaf/P6/fc41+U/OVeh/78xV8XKyL2hNZC7bd9FbvX7CLkzuS1yc/nnyO1dfZAbZ0bw+t8ncq5SMzlXraWcK3wt5+r5I+cak8m5Fpxiz00XONeJW+x5s4Bz/U+VfGb7I/dWfR25kVIJudu4CnL7sIHc6vx/yD1uKHsOa8SefzVDbs5oyfsHtGXPtR3Zs8HnPAenJ8+hQx/2vDyQPQeNYM+no3kO305kz4rT2NOewZ6h83gO+5bw/p+uZM/cNezZL5XnULCV5+DdzZ6vZ7Ln8sPsWfcUz2H3ad6/1QX2PHONPa1bPIf7d3kOEwrYs9Sf7Ln0JXvW8r+Oc9j2GnLTrITckxWE3OlpIPfm1+H9vw5F7hZvxJ4LmiG3jJbIjc1t2POjjux5oit7duvJc7gVw/uPHMienhHsOWc0z6HqRJ5DylT2bDKDPY/MZc/OS3gO7gr2HL6GPf9KYc8ZW3kOAbt5/3UZ7NngMHs6J3kOHU/zHK7ksuega+z59CZ7Tr/Lc6hYwPvbz9jz3Zfsme6Xh3P49DXk3tyKyI3+QcjdgurIbW8d5FbZUOSeFQ3Zs24z9txtIjdbt+H9z3ZgT6sre97vwXOYGMNzKDWQPZcOZ8/ao9lz+wSegzmV989KYM8v5rJn/mKew9creA5+a9hzYQp7GlvZc/MunkPzDPY8cYg9u51kz1s5PIfYXN7fc40959xkzzfv8hxS/+A5NHnGnkdesGcXvxvo6ZZBbg+viNx6HojcM7M6ciegDnLvunrIzYYN2dP5kD07mux5JQK5MbgDez7twp7Te7BnpRieQ/KXvP+7w9kzfRR7tpvAc8idwnPon8Cej+aw55TF7Fl2Bc9hxWrePziFPXdvYc/Wu3gOZ9N5DjGH2PP+CfacmMOepXN5DolX2bP2Tfbcfoc9W/7Bc8h6yvt/8YI97xS/iZ5jyyB3/Coi9y4MRG7UqI7c3Vwbud28HnLrZAPeP/pD9rwVzp6xEcjNVzrwHOZ2Yc83e7BnqsWeTb/kORwZxp5dRrHn9fHsOWIKz+F5PO8/cw57Bi5mz3XLeQ4NV/McDvzAnpFb2PPKTvYcnM5zeHaQ9487wZ6Vctgz+ReeQ/2rPIf0G+zZ7g57XnjIngOe8hweFbHnlOK30LNcGeTuigrI7eBA5Naet5B7Imojd86GIPfGNEBuPmjKnhPD2bN0BHsmfsZzqNOF99/enT1bWuyZPYDn0GsYz+FOLHuOHc+e/lPYc2E8z6HGHPbcsog9w5az58lknkP0D7z/7c3sGbuTPV9J5znMPchzqHaCPVOz2bPpL+x59ArPoesN3v96PnuOeMieRYU8h5lFPIfA4rfRc31p5J5GFZA7BwKQeyPfQm5crYXcHRyC3H72PnIrrinvXzmcPZNbs2f9z3gOGZ15Du27s+eF3uw5YAB7Ph7Kc5gSy/uXG8+eK73sGRLPc9gzm+cQsYg9zyWxZ0wyez7YwHOYtJk9y+xkz8R97FnnIM9hx3He/+Ns9sw+z569rvAc7ubxHMbms6f/Q/ZcVMieNYt4Dlte/RX3DyuN3DhVHrkbHYDcvl0NuTWqFnJPsRDkztz32bNaU+Tmxhbs2bQ1ex5tz55dO/Mc8qJ5/xG92bOoP3vOGspzCIrlOawfx56NvOx5MI49I2fzHK4u5P2HJLHnnzZ7xm3gOVTezHNYvYM96+9jz4wD7Nn+OM/hYhZ7DjjPno8vs+fUPJ5D+Xzef+UD9gwpZM+9z3kOEa/+hnM4Vwq52ac8cs/DN5A7k6oh95apxfsvC0bu1nmfPXc0QW593AK5kdOKPXu1Z8+7Uew5LprnUKI3ey7qz541h7Ln1pE8h7BxvP+pyezZPY49f/2O5zBqIc+hWBJ7zrPZs9oG9ty4iefw4Q7e/9hP7Nn1AHvmHeM5fJXFc3hxjj1nXWbPoDz23PAbz6HRA/Y8+IQ9Oz1nz2vF8nEOQ0oh9/5ZDrkR/wZyt3I15Pbqt5Fb7wUj92S+x57tm7DnxTDk5peteP8n7dhzahR7lo/mOaz6B88hpD977h3Cnm1Gsuf5sTyHPpPZ8+F09vzmO/Yss5DnsGwZ+6j/7v/1uKv/D7wHcdXrDusHI5e97rBPLHHV6w77j8d9ZK87/Lte4qrXHXymEVe97uAZR1z1uoP/TOKq1x1yzcZ/V/a6Q955yGWvO8xhAfrIXneYz0Lkstcd5rYY/WWvO8wTuep1hzknYl7Z6w7zT8I5yF53+LsgV73u8PdaiXOQve7wd/weuex1h7+vjfvLXnf4uyfj/rLXHZ6H1bhe9rrDc4Jc9brD84Nc9brDc4Vc9brD87YO18ted3gO1+McZK87PJ/IVa87PLfIVa87PM/IVa87POcpOAfZ6w7Pfyrmkr3u8LvYiOtlrzv8XpCrXnf4HSFXve7w+0Kuet3hd7cZ18ted/g9bsE5yF53+J3yetnrDr9f5KrXHX7XyFWvO/zef8R5yl53OAeQq153OB+24f6y1x3ODeSq1x3OE+Sq1x3OGeSq1x3OH+Sq1x3OpR2YS/a6w3mFXPW6wzmGXPW6w/mGXPW6w7mHXPW6w3m4C3PJXnc4J5GrXnc4P5GrXnc4V5GrXnc4b5GrXnc4h/dgLtnrDuczctXrDuc27y973eE8R6563eGcR6563eH8R6563eG9gFz1usP7Yh/uL3vd4T2CXPW6w/sFuep1h/cOctXrDu8j5KrXHd5TGZhL9rrD+wu56nWH9xpy1esO7zvkqtcd3oPIVa87vB/3Yy7Z6w7vTeSq1x3ep8hVrzu8Z5nLXnd4/yJXve7wXkauet3hfY1c9brDe5z9Za87vN+Rq153eO8jV73ucB9Arnrd4Z6AXPW6w/3hIOaSve5wr0Cuet3hvsFc9rrDPQS56nWH+wly1esO95ZDmEv2usN9BrnqdYd7DnLV6w73H+Sq1x3uRchVrzvclw5jLtnrDvco5KrXHe5XyFWvO9y7mMted7iPIVe97nBPO4K5ZK873N+Qq153uNchV73ucN9Drnrd4R6IXPW6w/0Quep1h3sjctXrDvdJ5KrXHe6ZyFWvO9w/mcted7iXIle97nBfRa563eEei1z1usP9FrnqdYd7L/vLXne4DyNXve5wT0auet3h/oxc9brDvRq56nWH+zb7y153uIczl73ucD9Hrnrd4d6OXPW6w30euep1h3v+SfSXve6av+x11/xlr7vGZa+7lkv2umu5ZK+7lkv2umu5ZK+7lkv2umu5ZK+7lkv2umv+stdd85e97pq/7HXXuOx113LJXnctl+x113LJXnctl+x113LJXnctl+x113LJXnfNX/a6a/6y113zl73uGpe97lou2euu5ZK97lou2euu5ZK97lou2euu5ZK97lou2euu+cted81f9rpr/rLXXeOy113LJXvdtVyy113LJXvdtVyy113LJXvdtVyy113LJXvdNX/Z6675y153zV/2umtc9rpruWSvu5ZL9rpruWSvu5ZL9rpruWSvu5ZL9rpruWSvu+Yve901f9nrrvnLXndtH9nrrnnKXndtf9nrrvnLXnft35W97tp62euuzVP2umtzkL3u2pxlr7uWS/a6a7lkr7uWS/a6a56y113LJXvdNU/Z667lkr3u2nrZ667lkr3uWi7Z667lkr3uWi7Z667lkr3uWi7Z6655yl53LZfsddc8Za+7lkv2umvrZa+7lkv2umu5ZK+7lkv2umu5ZK+7lkv2umu5ZK+75il73bVcstdd85S97lou2euurZe97lou2euu5ZK97lou2euu5ZK97lou2euu5ZK97pqn7HXXcsled81T9rpruWSvu7Ze9rpruWSvu5brf73u/wXtmrkOeJx1nHuYzeXeh1flrBDeZibJInkzY1KoJMOqGCLGqdeh2n7jlLO2QSWyKONQTiFjqBaSxnk7JmMsctYeQzTksJdBNXTQONXO4X32+373ta+rz73843J7rmc+n++s9fs9zz+3z+eLFDzeqqnvP3/C/tWH/vXvP/NA4y3IQ533Ifen5SMPTj2L3Lf0V+TezpvII5GyX+P667HIwzG1kAfq10ceahtA7u/fBnlwfDfkvgWvcM7sYcgj+WM556Wp3KvcfF4fn8W9mm/gXqlfcq9Redwr4yT3Wnuee+Ve45znix3GXsUrIvdXr4Y81LgOr+/yJPJgWjJy37SOyL2lHvLIzkHIA6dHcq/rEzhn7GzuVX8h50xZxb36Z/P69L3ca8E33Cv7DPc6epF7XbrBvcqXPYK94mOR+5IfRB5MrYc8Mqopci/jeV6/tivywIE+yMPn05D7S4zlXtWncq+kedyry2ecM20995q2nXMuPcC9dp3g9acLudeNq9wrttg32KvB3ciDKfcjj/RPQO6lN0QeXtAceWBLB+Sho92R+y8P5PXlR3KvhAncK3kW90pdwL1Gr+ReGZu517o9nPPAEe51oYBzlrjIvWrc4PVJZfKxV5cY5N6wmsjD0x5FHljWBHloV2vk/oIuyIM3eiP3xaVxzgZB7pUyhdcPyORe6Uu418J13GvLNu51LJd7XT7OvSoUcs6Eq9wr+Y6jmLNHBeTh0VV5/dx45KF1TyD35zVDHrzQHrmvZHfkXo2ByCNJb3DOrunca9hMzjk9xL2WreD1u7/gXgW7udfNw9wrroB7NfiFe7W7zr0GlD6GOSfcgzy08AHkvpxHkAePJfH6K62QexW6II8k9EYeaDEUebjHGO711nvca+5czrn+U+6Vt5ZzXghzr5K5vL7Gce7V5Afu1fUK9xp++7fYa3p55L7l9yEP7q6N3P0buXfzWeThuPbIA4/9hde3G4DcP/B17jVhPPda9D73yvmYex1bzr2ubOKcFXZzrzqHOWeL09yr58+8/q0/uFdmqePYa/1/IY/k1UDu/VgXebhkEvLAA62Qh5p0Ru7v1otzDv8rct+Mt3j98ne51+4M7nVmMfe6uYZ73RvmXo/9nXu1/5ZzDvyee028zDkX3XYCe+WUQ+59WwV5+MpDyAN3P448VOdZ5P6W7ZAHe76M3DemP+fMfI17rX+Hcx6cwb1+/IjXl1rOvR7YxL2a7uJe3b7mXiMi3GvGT9xr+T85556SJ7HXmcrI/beqIw/dW5fXP94YebD9c8h9g/4HuTexJ/LIoleRB7aO5l7fTuacV+dwr7sXc87ENdyr5VZe3+sr7jXmGPfK/I57bbjEvQ76TmGvn+5CHipVBbmv5kPIg00fQx7p9gxyb0QKr5/xEvLAin7Iw3tGcK+zb3OvW9O5V5WPuNfjyzhn+8+516CdnHPiIe71yT94/dYfudfx37nX1RL/wF4VKyMPJlZHHmn5MHKv11PIw2NaIg/MewF5aEMP5P5DQ3j9T6O4V+nJ3KvmHO7V9BPu9eLfuNeIHO71/n7OueIo99p7jnOeLeJe/4pKeaaUQB6schdyf1Yl5JHH70Ue2uFH7nX4b+S+SCLnHNSAc/7RCHlg0tO8f0xLzvlJW85Z7wWeQ/hFnkObHpzzeF/O2W8I57w2nOfwzijOWfFtzhmaxDkTp/McNn/A+z/3IefMX8Q5ey3lORSt5jkEN3LOu3I457wdnLP2fp7DxoO8f7OjnPPQKc7pneM5/HyB5/BmEecs/TvnnHOLc9YscRrnsOZO5IFAJeS+3Djk4Rf9yIOFtXj/1xKRR4o14JzvN0Lu+Z9G7l/ZgnM+1ZZz7u3EOTu/yHM4l8r7D+3LOX1DOOfU4TyHKqN4DlnjOOcTkzjnzmmcs8MHPIfIfM45eBHn/COLc05azXOI2cj7L97COevt4JzhfTyHtgd5DifyOWe/U5zz2lnOOf4Cz6FiEe8f+o1zPnyLc2YXL8A5PHcn8mB+ReT+3nHII0XVkIeCtZB75RKR++bX55y1G3HOjQHkgeYteP+v23BOrxPn/Lkbz2FUKs+hdF/OOWcw53xwOOdc+ybPITCO98+dyDlfmsY5C2fzHF6bz3MovohzzszinP7VnHPlBp5D4y2cc++XnLPzPs55Lo/nkJbP+/tOcc6pZznnfRd4Dkt/5Tk88Rvn3HmTc3YsfgZzRsoiDw2uiNy7HovcN7ka8nBMLeTBxXWQB+rX55zhJzln2wDnPJGM3N+/Dee81pFzju/GOSul8hwWvML7PzyYc2YP45yt3uQ55I/lOfSeyDkvTeWcY2dzznLzeQ7zF/L+8Vmcc+Mqztl8A8/h62yeQ+qXnPPnvZxzVB7nLJPPc8g4yTkfPMs5157nnE//ynPIvcb7v3STc54vdhZzvl4Webh4ReTBmbHI/dWrIY+sfBB5qHEd5N6+erx/lyc557mmnDMtGXngtjY8h2kdOed93TjnUo9zNnyF57BzEOfsOIxznh7JOYeM5Tlcn8D7T57KOWNnc87F83gO9RfyHLZ9xjlTVnHOE+s5Z/9snsNv23n/9L2cs1Ie51zwDc+h7kmeQ/YZztnqPOc8epFz9rnGc7h0g3OOLXYOc5Yvizwy/27kofhY5N7n9yP3JT+IPPx1AvJgaj3kgV8acs5RTTlnmWTOmfE8z6FWR95/bVfO+bTHOQ/04Tm8PIjncD6Nc74+knOWGMs5Z07gOVSfyjlXzeKcSfM4574FPIcun/H+363knGnrOedt2TyHadt5DlX3cs6lBzhnw284564TPIdOZ3j/04Wcc8hFznnjKs9h8g2eQ2yx7zDnp2WQ+xrcjTy8LQZ5MOV+5P6TNZFH+icgD/32KHIvvSHvX7kp51zQnHPWfZ7nsKUDz6F1V855tDvn7NOHc14eyHMYm8b7lx/JOT8Mcs6ECTyHz6fwHJJncc7DmZwzdQHn/GUJz2H0Ss5Zdj3nzNjMOWtt5zms28P7P3OAcx44wjlfPsFzuFDAc3i9kHOWuMg5Z13lnDVu8BxW3fE97p9UBrl/fwXkkS4xyEPfVUXuDauJ3Hd7AvLwtEc5Z9WGyAPLmnDOhs05567WnLNTB55DQRfef0h3znmjN+d8dyDPIS6N5/DpG5yzQZBzbk/nnClTeA4nZ/L+AzI55+8hzpm+hOdQeSXPYeE6zll3M+fcso1ztt7DcziWyzn7HOGcl49zznEFPIcKhbz/h79wzoSrnHPTdZ5D8h0/4BwOl0Ye6FEBue/iPcjDo6siD5atyfvPjUceqfUo51z3BHLvmSbI/XnNOOfLrTnnhfac840uPIeS3TnnrN6cs8ZAzrl6KM8h6Q3ef/8Yztk1nXN+/x7PYdhMnsPtmZxzeohzVl3COZet4Dk8uY733/0F5+y0jXMW7OY5vJrLc7h5mHO+e5xzxhVwziU/8Bwa/MI5t1/hnO2uc85TtxfiHAaURh78vTxy/4R7kEcqV0UeWvgAcu+ReOS+nEc4Z+snOOexJOSBV5rx/ldacc5x7TlnhS48h4/+wnNI6M05Nw3gnC2Gcs4jr/MceozhnBfHc8633uOcZWfyHObO5Tx/+vPv/5d9/8O7EQ/EZ/WMsr4/8jY9Xo2yTxpxd/4cEWX/kbjP1tGjo/zcIHFfdvFxUfK8TdzLeH58lJzpxN3zc2KU/JOJ+9t/+26UXlPw5yZWnxal73TkxRrMiDKH9zFPWj5yN5+ZyE+PnBVlbrMxf8r9H0SZJ3J3HpsTZc4Z2Deh99wo88/EOWSWmhfl94I8UGr5/Ci/rw9xDiNSPorye/wY+dki5O73G8L9a+9H7n7vC3D/yHzk7vOwENfPGYzcfU6Qh9oGFkX5/CAPF6/4SZTPFfJI9hnk7vO2GNenrUfuPoef4hwSJiB3n0/k7r62JMrnFrk7334W5fOM3J0HkLvPeRbOoWQucvf3UuyV8zFy971YhuuH/xW5+74gD9V5dnmU7xHy8JnKK6J8v5BHMr9D7r53K3F9+8+Ru+/jKpxD6cnI3feU10cSV0f5/iIPbf4AufteI/fPucX7F2vwN5zn0L7I3XMAeaDtQeTu+bAG96/dCLl7biD3ii9C7p4nyCORsmujPGeQe9nDkLvnD3Jfxknk7rm0DnulJSN3zyvkvpRVyN1zDHkoPnZ9lOcbcn+Jscjdcw95+HQhcvc83IC9tnRA7p6TyMMZm5G75ydyb1jNjVGeq8gjKVOQu+ctci/hKnL3HP4ce5Xsjtw9n5G7+yZy99zm/XMe2RTleY7cneeRu+c8cv/w27+I8vxHHm43ALl7LyAP1DmM3L0vNuP+JZOQu/cIcu/MYuTu/YI8klMuG+dW51nkXuZryN37CLlvRAS5e09twV7tn0Pu3l/IfYlrkLv3GvJQqSo52GtECnL/2beRu/cg8vDWH5G79+NW7DXvBeTuvYk8PCIHuXufIvdnVQrj/pFE5jEtkbv3L/LwO6OQu/cy8mDRauTufY084J1D7t7jnD83bhvmL9YAefiptsyH9kUeyhqH3J0HkHsxG5G7cwJy//gLyN35YTv2KqqG3J0rkIe8TsjdeYN57kTk7hyCPNB4C3J3PkHuW/or94qU/RJ7xdRC7s4zyIPjuyF35xzkgUtTmcdnIfenfoncnYuQR3Kvca/iFXdgr8Z1kLtzFHJvqYfcna+Q+2NnI3fnLubpe5G78xjy8KUb3Cs+dif2Sq2H3J3fkAcO9EHuznXIfUnzkLvzHvLw0gPMTxciD8UW24W9Uu5H7qU3RO7Ojcj9lwcid+dJ5JHUBcjdORN56MARzl/iIvOkMrux17CayAPLmiB351Xkvrg05O4cizycvgS5O98iD14+zvkTrnL+HhX2IJ8bj9yf1wy5OycjjyS9gdydn5GHlq1A7s7VyL24As7f7jrnn3DPXsyf8wjzK62Qu/M58nCPMcjduR15MG8tcneeRx5o8gNyd87fh/mX34fc/Y08HNeeebsByEMTxiN39wXk3pVNyN09Arm/58/cK7PUfuyVVwO5u3cgDzXpjNzdR5gvfxe5u6cgD9wbRu7uL8h9Ey9zr5xyX2GvKw8hd/cd5MGeLyN39yDkgYMzmJdajtzfdBdyd29CHln+T+51pvLfsde9dZG7exZyb2JP5O7+hdx/dQ5ydy9j3usr5O6+hjx80JeLvUpVQR5s+hhyd79DHljRD7m79yH3VfkIubsPIg9PPMR864/c62qJA9grsTpyr9dTyN29Ern/0BDk7r6JPNL0E+TuHoo8tOIo5z9bxPtMKZGHObMqIQ/t8CN391nkwT8a8fqYlsi9ei8gd/df5IF+Q5C7ezH3Ck3iXps/4Jz5i7hX0WrOeVcO96q9n9c3O8q9vHPc680i7jXnFvdac+dB7JUbhzxYWAu5u78j9/xPI3f3euSBzi/y+qF9kfunDkceyhrHvXZO416R+dzrjyzuFbORc9bbwb3aHuSc/U5xr/EXeH3oN+6VXfwQ9sqviDxSVA25Vy4Rebh2I+SB5i2Qh7xOyP2jUjnnnMHIfWvf5PW5E7lX4WzuVXwR9zKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v0Mq+7rDevu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+79DKvu+Q0r7v0Mq+75DSvu/Qyr7usN6+79DKvu/Qyr7v0Mq+79DKvu/Qyr7v0Mq+75DSvu/Qyr7vkNK+79DKvu6w3r7v0Mq+79DKvu/Qyr7v0Mq+79DKvu/Qyr7vkNK+79DKvu+Q0r7v08v2/113ymNdd9jGvu/xc87rLHMzrLvnN6y7zMa+75DSvu+Q0r7vkNK/7n/m/ve6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY111ymtddcprXXXKa113mYF53yWled8lpXnfJaV53mYN53WV/87pLTvO6S07zussczOsuczCvu+Q0r7vkNK+75DSvu8zBvO6yv3ndJad53SWned1lDuZ1lzmY1/3//vwvnNK2FHichZx9eI9138d/lc1TIdxtS3KS3NksxZJkdlaMiBm6jepyzlOedRkqkR9lW8pTyIzqHEmbebg8JjMneda1jWjk4ToN1egqDVNXHu7vfR+f+4/7/rx+x+2fHcfrOPv2er/32/k7z3/egUDAL2vTNSFg/s3PLfvvn/Lvf7hnrUMeXLMZud1+O3L/wNfI3b4HkTsXSpBbaaV8fuAMe84+z54PXEIeyPuNe3jyd/bcc4s9e4edQ0+/JnJ3TF3kzo1I5IGZjZB7Ec2QB1e0QG63bs2e3lPs2cNmz1OJyK0R3dnzem/2nNGfPeulcg85r/L5j45hz4Lx7Nn1Le6hdBr3MCSTPa/MZs9pC9mz1lLuYekyPj86lz23rGXPTpu5h28LuIfUr9nzlwPsObmEPWuUcg9Zp9nz4fPsueEiez7zG/dQdJ3Pf/kWe16sch4936iJ3Aurizw4PxK51bgRcn/Nw8jd9i2QOwdb8fkpT7HnhQT2TEtEbt/RnXuY05s9H+jPnnkOe7Z9lXvYM5o9e49nz7OT2HPsNO7hRgafP3M2e0YuZM8VS7iH1su4h51fsGfSWvY8tYk9RxRwD7/v4vPTD7BnvRL2zPmOe2h5mnsoOMeeXS+y5/HL7Dn0Ovdw5SZ7TqtyAT1r10TuL70XuRsdidz58kHkgcSHkXvfxiAPprZCbv/alj0nJ7BnjUT2zHqBe2jWm8/f0I89n3HYs3go9/DKaO7hYhp7vjGJPcOnsef8DO6h8Wz2XLuAPeOXsOfBHO4h5Qs+/4c17Jm2iT3vKOAe5uziHhoeYM+8YvZs+x177j3FPfQ5x+efLWfPsZfZ82Yl9zDzJvcQWeUH9Py8BvJA3L3IvZ0RyINJDyK3TjdF7o+IQe7+/jhyJ70tn18/gT1zOrFnyxe4h+29uIdu/djz+AD2HDqUPa+O4h6mpfH5tSex58dB9ozJ4B6+nMU9JC5gz6PZ7Jmaw56/ruQepqxhz5qb2DNrG3s228U9bNzP5z9bzJ7Fx9jzlVPcw6Uy7uGNcvYMv8yeCyrZs8lN7mHtXT/i+fE1kFuH6iD3UyKQuz80RO6Mb4o8cGcMcm/O4+zZsC1ye1UH9mzbiT33dmPPPr24h7IUPn/sAPa8OYQ93x/FPUSlcQ+fv8mecUH23JXOnkmzuIfT8/n8kdns+YfLnukruYf6a7iHZRvZs+U29ty+kz277eceThSx59Bj7Hn1JHtOL+Me6pTz+R//yp4xley59Qb3kHjXT9jD0erI7YF1kAcu34fcm9IQebBmUz5/cTRyv9nj7LnxSeTOsx2QWyUd2fOVbux5KZk930zhHqoOYM8FQ9izySj2XDeOe4h/k88/NJU9+6Wz548fcA/j53MPd2az51yXPRuuZM9Vq7mHpzby+fu+Ys8+O9mzbB/38FoR93DrKHu+f5I9o8rYc+VP3EPcr+y56xp79rzBnmfuLMceRlZHHvyjNnIr4z7kfv2GyN1lDyF3HotGHih8jD27PcmeJ+KR26925POvdWXP6cnsWSeFe/jkL9xDzBD23DqSPTuPY89jb3APA6ey5+UZ7Pn2B+xZcz73sHgx+/zf//7//9mfuB2dOyjE9SOQdx/4Wohz0oib58+JIc6fhOfsmDIlxP83SDxQEDY9hM87xJ2sF2aE8Ewnbu6fmSH8ZxK3kr9/P0SuWfj/jW08J0TeucirxM0L0cOH6JNWitz0Mx/52UkLQvS2EP2THvwoRJ/IzfPYohA9Z2HemCGLQ/SfjT1kV1sS4veC3K6WvzTE7+tj7GFi0ichfo+fIj9fgdz8fl08v/kh5Ob3noPn+0uRm8/DMrx+0Rjk5nOC3O1hLw/x+UHuhdX9LMTnCrlfcA65+bytwOvTNiE3n8PPsYeYDOTm84ncvK+tDPG5RW6eb78I8XlGbp4HkJvPeS72ULUIufmZh7kKP0Vu/i5W4fUT/orc/L0gd1s8lx/i7wi5d67+6hB/X8j97B+Qm7+7NXh98pfIzd/jWuyh+kzk5u+Ur/dj14X4+0XubvsIufm7Rm4tus3nV4n7G/Y5bhhycx9Abvc4jNzcH9bj+c3bITf3DeRO2HLk5n6C3PdrbsDeetjInYLxyM39B3kg6zRyc1/aiLnSEpGb+xXyQNJa5OY+htyNjtyEubJeQG6FT0Nu7nvIvbPlyM39cDPm2t4LublPIveytiE390/kzvimWzBXWQpyP2kWcnO/Re7EVCI39+EvMVfVAcjN/Rm5ed9Ebu7bfH7hY1sxV8wQ5OZ5Hrm5zyO3Jtz5FZ5f1ga513MkcvO9gNxucRS5+b7YhudXjUduvkeQO+dWIDffL8j9wloF2FuL55A72a8jN99HyAMTfeTme2o75kp+Hrn5/kIeiF2P3HyvIXerNSjEXBOTkFvn30FuvgeRezt+Rm6+H3dgriUvIjffm8i9iYXIzfcpciu3nofn+7HMI7ogN9+/yL13JyM338vIgxXrkJvva+S2cwG5+R5n/6KonehfJQ6593QP5uOGIXdzpyM3zwPInYgtyM1zAnJrxiXk5vlhF+aqaITcPFcgd50+yM3zBvOiTOTmOQS53X47cvN8gjyQ9xvn8mt+jbkimiE3zzPIgzP6IzfPOcjtK7OZR+cit1K/Rm6ei5D7Rdc5V1jd3ZirfQvk5jkKuZPnIDfPV8ityIXIzXMX8/QDyM3zGHLvyk3OFR25B3OltkJunt+Q28VDkZvnOuSB+CXIzfMeci+vmPnZcuRuZJW9mCvpQeROelvk5rkRuXV1FHLzPIncT81Bbp4zkbvFx9g//DLz+Br7MNf4psjtVR2Qm+dV5IGoNOTmORa5l74SuXm+RR68epL9YyrZf2Cd/cgXRyO3SjoiN8/JyP34N5Gb52fk7qrVyM1zNXInqoz9e95g/4z7DqB/4WPMr3VFbp7PkXsDpyI3z+3IgyUbkJvneeR2h5+Qm+f8g+if/wBy8xO5F5XMvOdI5G7GDOTmfQG5c20rcvMegdwa9Avnyq52CHOVNEFu3juQux36IjfvI8zz30du3lOQ2/d7yM37C/JA5lXOVVjrG8x17RHk5n0HeXDQK8jNexBy+/A85tXykVsJe5Gb9ybkfv6/ONe5+n/HXPe3RG7es5A7mYOQm/cv5FblIuTmvYz54G+Qm/c15N7hQBHmqtYAeTDhCeTm/Q65vXo4cvPehzzQ4BPk5n0QuZd5hPmOnzlXZXgx5optjNwZ/DRy816J3DoyFrl530TuJ3yG3LyHIndXH2f/8xV8zqzwEvTMrYfc3W0hN++zyIN/tuPrI7ogd1q9iNy8/yK3h49Fbt6LOZf7Hufa9hF7li7nXBXr2POeQs7V/BBf3/E453IucK63KjjXotuca/3dhzFXURTyYHkz5Ob9HbljPYPcvNcjt/u+xNePG4bcmj0BuZs7nXPtmcO5/KWc689czhWxhT1b7eZcPQ6z5/AznGvGJb7e/Z1zFYQdwVyldZH7FY2QO7VikXvN2yG3O3VG7jp9kFuTU9lz0RjkgQ1v8fVFmZyrfCHnClvOuax1nKv9ds7V9yDnSitlz9nnOVfeb+y55xbn8mt+i9ffiETuRTRDbrdujdztYSO3RnRHHpzRH3kg51X2LBiP3C+dxp5XZnOuWkv5+uhcztVpM+dK/ZpzTS7hXFmnOdeGi5yr6Dp7XqxyFHOF1UVuNW6E3G3fgq9PeQp5MC0ReWBOb+ROnoPc3zMauX12Eue6kcGekQs5V+tl7Jm0lnONKODr0w9wrpzvOFfBOc51/DLnunKTc9WueQxzRUciDyQ+jDyY2gq5PzkBuZP1Al+/oR9yu3gocu9iGnIrfBrnajybc8Uv4VwpX7Bn2ibONWcXe+YVc669p/j6s+Wc62Yl54qs8h3mirsXeTDpQeT+iBjkTnpb5F5OJ+T29l7I3eMDkFtXR/H1tSdxrpgMzpW4gHOl5nCuKWs4V9Y2zrVxP3sWH+Ncl8rYM/wy52pyk6+Pr1GKuVIikDvjmyL35jyO3F7VAbm7txtyqywFefDmEOSBqDT2jAtyrqRZfP3IbM6VvpJzLdvIubbv5FwnijjX1ZOcq045e8ZUcq7Eu46j58A6yL0pDfn6xdHI3Y1PIrdKOiIPXkpGHqg6ALnTZBRyP/5N9uyXzrnGz2fPuS7nWrWar9/3Fecq28e5bh3lXFFlnCvuV87V8wbnGln9BHpm3IfcXfYQ8kDhY8iDJ+L5+mtdkTt1UpD7MUOQ253HIfcGTuVcb3/AuRYvZs9Nn3Oukg3secnjXFWL+PomJzlXh584V79rnGvCnd9jrrm1kQfyH0Ae3NccufmJ3Ln1HHIvKhm5/cRf+PqeI5Fbo97gXBkzONfyDzlX4aec60Q+57q2lT3r7ONcLY6yZ+eznGvQL3z9239yruxqJzHXpn9D7pc0Qe783BK5VzUeuf1QV+Ruh77Irf6D2XPCX5EH5r3N1+e/z7n2ZXGucys41631nOt+j3M98XfOlfw9e476kXNlXmXP5XecwlyFtZA73zdA7l17BLl9bxvkbovnkFtdeiIPDnoFeWDqCPbMfp1zbXqXPQ/P41w/f8LXV8vnXA9t5VwJezlX/28510Sfc837J+fK/xd77q96GnOdq4/cut0YuXt/S76+TXvkweTnkQdG/wdyJ3MQcn/5a8jtHVM41/cz2bNyEee6dwV7xq7nXF128PWDv+FcU09wruwfONfmK5zrcOAM5vrnPcjdag2QB5o+gjyY8ARyv/+zyJ2JSXz9vJeR26uHI/f2T+Rc59/hXLfncq4Gn3CuNqvYM/lLzjV6D3tmHuFcn/2Dr9/xM+c6+Qfnqgz/B+aqWx95MLYxcr/Lo8idwU8j96Z2QW4veRG5u3kgcuvIWL7+n5M5V/WZnKvpIs6V8BnneulvnGtiIef68BB7rj7OuQ5cYM/zFZzrv1TJZ1Y48mCDe5BbufWQ+23uR+7utpA7vf4decCPZc/Rcez5Zzvk9nvP8PkRXdjzsx7s2epF7sF7iXvoPpA9Tw5jz+Fj2fP6BO7h3cnsWfcd9nTfY8/YudzDto/4/Oc/Zs/S5ew5OI97qFjHPQS3sOc9hey5ZDd7Nj/EPWw5zOd3PM6eR86wp3OBe/jlEvfwVgV7Vv+DPRfdZs+m4Wexh/V3I7ftesgDRVHIvZcs5MHyZnz+67HI/Spx7PlhO+SO9Qxya01n9ny6B3se6MOefV/iHi6k8vnjhrFnYCx7zp7APTSYzD3kTmfPJ99jzz1z2LPXR9yDv5Q9xyxnzz9z2fO9ddxDxBY+f8V29my1mz29g9xDj8Pcw6lS9hx+hj2vn2fPGZe4h7oVfL77O3s+eps9C8LKsIfn70YeLK2L3BoShdyvaITcDTZD7tSKRR5Y2po9m7djzy02crtTZz7/2+7s6fRhz1/6cw+TU7mH6sPYc9EY9nx4AntueIt7sKfz+UWZ7PnyHPYsX8g9vL6Uewhbzp6y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBdd3W+7LorT9l1V56y6656kF131YPsuitP2XVXnrLrrjxl1131ILvu6nzZdVeesuuuPGXXXfUgu+6qB9l1V56y6648Zdddecquu+pBdt2Vp+y6K0/ZdVeesuuuepBd9//F/xMw4b/1
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0
+            </Value>
+            <Value index="1">
+              0.80000081192
+            </Value>
+          </InformationKey>
+        </DataArray>
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="binary" RangeMin="0" RangeMax="4003">
+          AgAAAACAAAAAegAAeRYAAD0VAAA=eJxV3Hf4z9Ubx/Fz+96nz31638eIJMqsaFAaIimhpIWkKe3SMlO0ZGQ1kFVRNFRKaQ+kPYUo2lYK0U6U8Puj/K7ref55Xec65/Hvuc7547xC+HfIf7mu7N/84b9cXPo3P/kvZxf/5pyCrlygW19G92mJ7tWC7r/t/3cbyuiWlOjmFnQa6H4so1taonutoIuB7qcyus9KdK8XdDsFup/L6D4v0b1R0P23/H/3SxndFyW6Nws6C3S/ltF9WaJ7q6BLge63MrqvSnRvF3Q7B7rfy+i+LtG9U9D9N/2/+6OM7psS3bsFnQe6jWV0y0p07xV0OdD9WUa3vET3fkFXPtBtKqNbUaL7oKCrEOg2l9GtLNF9WNBVDHR/ldGtKtHNK+gqBbq/y+i+LdF9VNDtEui2lNGtLtHNL+gqB7p/yui+K9EtKOiqBLqtZXTfl+gWFnS7BrptZXRrSnQfF3RVA932Mrq1JbpFBd1ugW7HwbTDrSvRLS7oqgU6UbofSnSfFHS7B7pySre+RPdpQVc90JUp3YYS3ZKCrkagU6X7sUS3tKDbI9BFpfupRPdZQbdnoNtJ6X4u0X1e0NUMdCWl+6VE90VBVyvQmdL9WqL7sqCrHeiS0v1WovuqoKsT6HZWut9LdF8XdHUDXaF0f5Tovino6gU6V7qNJbplBd1egS4r3Z8luuUF3d6BrrzSbSrRrSjo9gl0FZRuc4luZUFXP9BVVLq/SnSrCroGga6S0v1dovu2oNs30O2idFtKdKsLuv0CXWWl+6dE911Bt3+gq6J0W0t03xd0BwS6XZVuW4luTUHXMNBVVbrtJbq1BV2jQLeb0u24aO1w6wq6AwNdNaUTo/uhoDso0O2udOWMbn1B1zjQVVe6MqPbUNAdHOhqKJ0a3Y8F3SGBbg+li0b3U0F3aKDbU+l2MrqfC7rDAl1NpSsZ3S8FXZNAV0vpzOh+LegOD3S1lS4Z3W8FXdNAV0fpdja63wu6ZoGurtIVRvdHQXdEoKundG50Gwu65oFuL6XLRvdnQXdkoNtb6cob3aaCrkWg20fpKhjd5oLuqEBXX+kqGt1fBd3Rga6B0lUyur8LupaBbl+l28XothR0xwS6/ZSustH9U9C1CnT7K10Vo9ta0LUOdAco3a5Gt62gaxPoGipdVaPbXtAdG+gaKd1uRrfj4bjDHRfoDlS6akYnTtc20B2kdLsbXTmnOz7QNVa66kZX5nTtAt3BSlfD6NTpTgh0hyjdHkYXne7EQHeo0u1pdDs53UmB7jClq2l0Jac7OdA1UbpaRmdOd0qgO1zpahtdcrr2ga6p0tUxup2drkOga6Z0dY2ucLqOge4IpatndO50pwa65kq3l9Flp+sU6I5Uur2NrrzTnRboWijdPkZXwek6B7qjlK6+0VV0utMD3dFK18DoKjndGYGupdLta3S7ON2Zge4YpdvP6Co73VmBrpXS7W90VZzu7EDXWukOMLpdne6cQNdG6RoaXVWn6xLojlW6Rka3m9OdG+iOU7oDja6a03UNdG2V7iCj293pzgt0xytdY6Or7nTnB7p2Snew0dVwugsC3QlKd4jR7eF0Fwa6E5XuUKPb0+kuCnQnKd1hRlfT6S4OdCcrXROjq+V0lwS6U5TucKOr7XSXBrr2StfU6Oo43WWBroPSNTO6uk7XLdB1VLojjK6e010e6E5VuuZGt5fTXRHoOindkUa3t9NdGehOU7oWRreP010V6Dor3VFGV9/prg50pyvd0UbXwOm6B7ozlK6l0e3rdD0C3ZlKd4zR7ed0PQPdWUrXyuj2d7pege5spWttdAc4Xe9Ad47StTG6hk7XJ9B1Ubpjja6R010T6M5VuuOM7kCn6xvouipdW6M7yOmuDXTnKd3xRtfY6a4LdOcrXTujO9jp+gW6C5TuBKM7xOn6B7oLle5EozvU6a4PdBcp3UlGd5jT3RDoLla6k42uidPdGOguUbpTjO5wp7sp0F2qdO2NrqnT3RzoLlO6DkbXzOkGBLpuStfR6I5wulsC3eVKd6rRNXe6gYHuCqXrZHRHOt2gQHel0p1mdC2cbnCgu0rpOhvdUU43JNBdrXSnG93RTndroOuudGcYXUunGxroeijdmUZ3jNMNC3Q9le4so2vldMMDXS+lO9voWjvdiEDXW+nOMbo2Tjcy0PVRui5Gd6zT3RborlG6c43uOKe7PdD1VbquRtfW6e4IdNcq3XlGd7zT3RnorlO6842undONCnT9lO4CozvB6UYHuv5Kd6HRneh0YwLd9Up3kdGd5HR3BboblO5iozvZ6cYGuhuV7hKjO8XpxgW6m5TuUqNr73TjA93NSneZ0XVwugmBboDSdTO6jk43MdDdonSXG92pTnd3oBuodFcYXSenuyfQDVK6K43uNKe7N9ANVrqrjK6z000KdEOU7mqjO93pJge6W5Wuu9Gd4XT3BbqhStfD6M50uvsD3TCl62l0ZzndlEA3XOl6Gd3ZTjc10I1Qut5Gd47TPRDoRipdH6Pr4nQPBrrblO4aozvX6R4KdLcrXV+j6+p0Dwe6O5TuWqM7z+mmBbo7le46ozvf6R4JdKOUrp/RXeB0jwa60UrX3+gudLrHAt0Ypbve6C5yuumB7i6lu8HoLna6xwPdWKW70egucbonAt04pbvJ6C51uhmBbrzS3Wx0lzndk4FugtINMLpuTvdUoJuodLcY3eVONzPQ3a10A43uCqd7OtDdo3SDjO5Kp3sm0N2rdION7iqnezbQTVK6IUZ3tdM9F+gmK92tRtfd6Z4PdPcp3VCj6+F0LwS6+5VumNH1dLoXA90UpRtudL2c7qVAN1XpRhhdb6d7OdA9oHQjja6P070S6B5UutuM7hqnmxXoHlK6242ur9PNDnQPK90dRnet080JdNOU7k6ju87pXg10jyjdKKPr53RzA92jSjfa6Po73WuB7jGlG2N01zvd64FuutLdZXQ3ON0bge5xpRtrdDc63ZuB7gmlG2d0NzndW4FuhtKNN7qbne7tQPek0k0wugFO906ge0rpJhrdLU73bqCbqXR3G91Ap3sv0D2tdPcY3SCnez/QPaN09xrdYKf7INA9q3STjG6I030Y6J5TuslGd6vTzQt0zyvdfUY31Ok+CnQvKN39RjfM6eYHuheVborRDXe6BYHuJaWbanQjnG5hoHtZ6R4wupFO93Gge0XpHjS625xuUaCbpXQPGd3tTrc40M1WuoeN7g6n+yTQzVG6aUZ3p9N9GuheVbpHjG6U0y0JdHOV7lGjG+10SwPda0r3mNGNcbrPAt3rSjfd6O5yus8D3RtK97jRjXW6LwLdm0r3hNGNc7ovA91bSjfD6MY73VeB7m2le9LoJjjd14HuHaV7yugmOt03ge5dpZtpdHc73bJA957SPW109zjd8kD3vtI9Y3T3Ot2KQPeB0j1rdJOcbmWg+1DpnjO6yU63KtDNU7rnje4+p/s20H2kdC8Y3f1OtzrQzVe6F41uitN9F+gWKN1LRjfV6b4PdAuV7mWje8Dp1gS6j5XuFaN70OnWBrpFSjfL6B5yunWBbrHSzTa6h53uh0D3idLNMbppTrc+0H2qdK8a3SNOtyHQLVG6uUb3qNP9GOiWKt1rRveY0/0U6D5TuteNbrrT/RzoPle6N4zucaf7JdB9oXRvGt0TTvdroPtS6d4yuhlO91ug+0rp3ja6J53u90D3tdK9Y3RPOd0fge4bpXvX6GY63cZAt0zp3jO6p53uz0C3XOneN7pnnG5ToFuhdB8Y3bNOtznQrVS6D43uOaf7K9CtUrp5Rve80/0d6L5Vuo+M7gWn2xLoVivdfKN70en+CXTfKd0Co3vJ6bYGuu+VbqHRvex02wLdGqX72OhecbrtgW6t0i0yullOt+Mj/g63TukWG91spxOh+0HpPjG6OU5XTujWK92nRveq05UJ3QalW2J0c51Ohe5HpVtqdK85XRS6n5TuM6N73el2Erqfle5zo3vD6UpC94vSfWF0bzqdCd2vSvel0b3ldEnoflO6r4zubafbWeh+V7qvje4dpyuE7g+l+8bo3nU6F7qNSrfM6N5zuix0fyrdcqN73+nKC90mpVthdB84XQWh26x0K43uQ6erKHR/Kd0qo5vndJWE7m+l+9boPnK6XYRui9KtNrr5TldZ6P5Ruu+MboHTVRG6rUr3vdEtdLpdhW6b0q0xuo+drqrQbVe6tUa3yOl2E7odxSI73DqjW+x01YROIt0PRveJ0+0udOUi3Xqj+9TpqgtdWaTbYHRLnK6G0Gmk+9HoljrdHkIXI91PRveZ0+0pdDtFup+N7nOnqyl0pUj3i9F94XS1hM4i3a9G96XT1Ra6FOl+M7qvnK6O0O0c6X43uq+drq7QFZHuD6P7xunqCZ1Huo1Gt8zp9hK6HOn+NLrlTre30JWPdJuMboXT7SN0FSLdZqNb6XT1ha5ipPvL6FY5XQOhqxTp/ja6b51uX6HbJdJtMbrVTref0FWOdP8Y3XdOt7/QVYl0W43ue6c7QOh2jXTbjG6N0zUUuqqRbrvRrXW6RkK3W6TbUZS0w61zugOFrlqkk0T3g9MdJHS7R7pyiW690zUWuuqRrizRbXC6g4WuRqTTRPej0x0idHtEupjofnK6Q4Vuz0i3U6L72ekOE7qaka6U6H5xuiZCVyvSWaL71ekOF7rakS4lut+crqnQ1Yl0Oye6352umdDVjXRFovvD6Y4QunqRzhPdRqdrLnR7Rbqc6P50uiOFbu9IVz7RbXK6FkK3T6SrkOg2O91RQlc/0lVMdH853dFC1yDSVUp0fztdS6HbN9Ltkui2ON0xQrdfpKuc6P5xulZCt3+kq5Lotjpda6E7INLtmui2OV0boWsY6aomuu1Od6zQNYp0uyW6HcVvO9xxQndgpKuW6CTTtRW6gyLd7omuXKY7XugaR7rqia4s07UTuoMjXY1Ep5nuBKE7JNLtkehipjtR6A6NdHsmup0y3UlCd1ikq5noSpnuZKFrEulqJTrLdKcI3eGRrnaiS5muvdA1jXR1Et3Oma6D0DWLdHUTXZHpOgrdEZGuXqLzTHeq0DWPdHslupzpOgndkZFu70RXPtOdJnQtIt0+ia5CpussdEdFuvqJrmKmO13ojo50DRJdpUx3htC1jHT7JrpdMt2ZQndMpNsv0VXOdGcJXatIt3+iq5Lpzha61pHugES3a6Y7R+jaRLqGia5qpusidMdGukaJbrdMd67QHRfpDkx01TJdV6FrG+kOSnS7Z7rzhO74SNc40VXPdOcLXbtId3Ciq5HpLhC6EyLdIYluj0x3odCdGOkOTXR7ZrqLhO6kSHdYoquZ6S4WupMjXZNEVyvTXSJ0p0S6wxNd7Ux3qdC1j3RNE12dTHeZ0HWIdM0SXd1M103oOka6IxJdvUx3udCdGumaJ7q9Mt0VQtcp0h2Z6PbOdFcK3WmRrkWi2yfTXSV0nSPdUYmufqa7WuhOj3RHJ7oGma670J0R6Vomun0zXQ+hOzPSHZPo9st0PYXurEjXKtHtn+l6Cd3Zka51ojsg0/UWunMiXZtE1zDT9RG6LpHu2ETXKNNdI3TnRrrjEt2Bma6v0HWNdG0T3UGZ7lqhOy/SHZ/oGme664Tu/EjXLtEdnOn6Cd0Fke6ERHdIpusvdBdGuhMT3aGZ7nqhuyjSnZToDst0NwjdxZHu5ETXJNPdKHSXRLpTEt3hme4mobs00rVPdE0z3c1Cd1mk65DommW6AULXLdJ1THRHZLpbhO7ySHdqomue6QYK3RWRrlOiOzLTDRK6KyPdaYmuRaYbLHRXRbrOie6oTDdE6K6OdKcnuqMz3a1C1z3SnZHoWma6oULXI9KdmeiOyXTDhK5npDsr0bXKdMOFrlekOzvRtc50I4Sud6Q7J9G1yXQjha5PpOuS6I7NdLcJ3TWR7txEd1ymu13o+ka6romubaa7Q+iujXTnJbrjM92dQnddpDs/0bXLdKOErl+kuyDRnZDpRgtd/0h3YaI7MdONEbrrI91Fie6kTHeX0N0Q6S5OdCdnurFCd2OkuyTRnZLpxgndTZHu0kTXPtONF7qbI91lia5DppsgdAMiXbdE1zHTTRS6WyLd5Ynu1Ex3t9ANjHRXJLpOme4eoRsU6a5MdKdlunuFbnCkuyrRdc50k4RuSKS7OtGdnukmC92tka57ojsj090ndEMjXY9Ed2amu1/ohkW6nonurEw3ReiGR7peie7sTDdV6EZEut6J7pxM94DQjYx0fRJdl0z3oNDdFumuSXTnZrqHhO72SNc30XXNdA8L3R2R7tpEd16mmyZ0d0a66xLd+ZnuEaEbFen6JboLMt2jQjc60vVPdBdmuseEbkykuz7RXZTppgvdXZHuhkR3caZ7XOjGRrobE90lme4JoRsX6W5KdJdmuhlCNz7S3ZzoLst0TwrdhEg3INF1y3RPCd3ESHdLors8080Uursj3cBEd0Wme1ro7ol0gxLdlZnuGaG7N9INTnRXZbpnhW5SpBuS6K7OdM8J3eRId2ui657pnhe6+yLd0ETXI9O9IHT3R7phia5npntR6KZEuuGJrleme0nopka6EYmud6Z7WegeiHQjE12fTPeK0D0Y6W5LdNdkullC91Ckuz3R9c10s4Xu4Uh3R6K7NtPNEbppke7ORHddpntV6B6JdKMSXb9MN1foHo10oxNd/0z3mtA9FunGJLrrM93rQjc90t2V6G7IdG8I3eORbmyiuzHTvSl0T0S6cYnupkz3ltDNiHTjE93Nme5toXsy0k1IdAMy3TtC91Skm5jobsl07wrdzEh3d6IbmOneE7qnI909iW5Qpntf6J6JdPcmusGZ7gOhezbSTUp0QzLdh0L3XKSbnOhuzXTzhO75SHdfohua6T4Suhci3f2Jblimmy90L0a6KYlueKZbIHQvRbqpiW5EplsodC9HugcS3chM97HQvRLpHkx0t2W6RUI3K9I9lOhuz3SLhW52pHs40d2R6T4RujmRblqiuzPTfSp0r0a6RxLdqEy3ROjmRrpHE93oTLdU6F6LdI8lujGZ7jOhez3STU90d2W6z4XujUj3eKIbm+m+ELo3I90TiW5cpvtS6N6KdDMS3fhM95XQvR3pnkx0EzLd10L3TqR7KtFNzHTfCN27kW5mors70y0Tuvci3dOJ7p5Mt1zo3o90zyS6ezPdCqH7INI9m+gmZbqVQvdhpHsu0U3OdKuEbl6kez7R3ZfpvhW6jyLdC4nu/ky3WujmR7oXE92UTPed0C2IdC8luqmZ7nuhWxjpXk50D2S6NUL3caR7JdE9mOnWCt2iSDcr0T2U6dYJ3eJINzvRPZzpfhC6TyLdnEQ3LdOtF7pPI92rie6RTLdB6JZEurmJ7tFM96PQLY10ryW6xzLdT0L3WaR7PdFNz3Q/C93nke6NRPd4pvtF6L6IdG8muicy3a9C92WkeyvRzch0vwndV5Hu7UT3ZKb7Xei+jnTvJLqnMt0fQvdNpHs30c3MdBuFblmkey/RPZ3p/hS65ZHu/UT3TKbbJHQrIt0Hie7ZTLdZ6FZGug8T3XOZ7i+hWxXp5iW65zPd30L3baT7KNG9kOm2CN3qSDc/0b2Y6f4Ruu8i3YJE91Km2yp030e6hYnu5Uy3TejWRLqPE90rmW670K2NdIsS3axMF8rRrYt0ixPd7P/yf+D9Xll4nFXLVdiWVbdAYZiLby7fuXzmAgFBQJFQQpCSEpEQJBRpJJUORRoBRWlMpEEFlLC7u7u7u7u73de1f0/GOBlHdzkp9/+V/++fl/3vX/z3F0r/+4v//c7if7+roBOh+7KM7qUS3d0FXRC6r8roXi7R3VPQVRC6r8voXinR3VvQlQndN2V0r5bo7ivoVOi+LaN7rUR3f0EXhe67MrrXS3QPFHS7Cd33ZXRvlOgeLOhKQvdDGd2bJbqHCjoTuh/L6N4q0T1c0CWh+6mM7u0S3SMF3e5C93MZ3TslukcLukLofimje7dE91hB50L3axndeyW6xwu6LHS/ldG9X6J7oqCrKHS/l9F9UKJ7sqCrJHR/lNF9WKJ7qqDbQ+j+LKP7qET3dEFXWej+KqP7uET3TEFXRej+LqP7pET3bEFXVej+KaP7tET3XEG3p9D9W0b3WYnu+YKumtCVU7rPS3QvFHTVha680n1RonuxoNtL6ETpvizRvVTQ1RC6oHRfleheLuhqCl0Fpfu6RPdKQVdL6MqU7psS3asF3d5Cp0r3bYnutYJuH6GLSvddie71gq620O2mdN+X6N4o6PYVupLS/VCie7OgqyN0pnQ/lujeKujqCl1Sup9KdG8XdPWEbnel+7lE905BV1/oCqX7pUT3bkG3n9C50v1aonuvoNtf6LLS/Vaie7+gayB0FZXu9xLdBwVdQ6GrpHR/lOg+LOgaCd0eSvdnie6jgq6x0FVWur9KdB8XdAcIXRWl+7tE90lB10ToqirdPyW6Twu6pkK3p9L9W6L7rKA7UOiqKV05o/u8oGsmdNWVrrzRfVHQNRe6vZROjO7Lgq6F0NVQumB0XxV0LYWuptJVMLqvC7pWQldL6cqM7puC7iCh21vp1Oi+LehaC90+SheN7ruCro3Q1Va63Yzu+4KurdDtq3Qlo/uhoGsndHWUzozux4KuvdDVVbpkdD8VdAcLXT2l293ofi7oOghdfaUrjO6Xgu4QodtP6dzofi3oOgrd/kqXje63gu5QoWugdBWN7veCrpPQNVS6Skb3R0HXWegaKd0eRvdnQddF6BorXWWj+6ug6yp0ByhdFaP7u6A7TOiaKF1Vo/unoOsmdE2Vbk+j+7eg6y50BypdNaMr53SHC10zpatudOWdrofQNVe6vYxOnK6n0LVQuhpGF5yul9C1VLqaRlfB6XoLXSulq2V0ZU53hNAdpHR7G5063ZFC11rp9jG66HR9hK6N0tU2ut2c7iiha6t0+xpdyen6Cl07patjdOZ0/YSuvdLVNbrkdP2F7mClq2d0uzvdAKHroHT1ja5wuoFCd4jS7Wd07nSDhK6j0u1vdNnpBgvdoUrXwOgqOt0QoeukdA2NrpLTHS10nZWukdHt4XRDha6L0jU2uspON0zouirdAUZXxemGC91hStfE6Ko63Qih66Z0TY1uT6cbKXTdle5Ao6vmdKOE7nCla2Z01Z3uGKHroXTNjW4vpztW6HoqXQujq+F0o4Wul9K1NLqaTjdG6HorXSujq+V0Y4XuCKU7yOj2drpxQnek0rU2un2cbrzQ9VG6NkZX2+kmCN1RStfW6PZ1uolC11fp2hldHaebJHT9lK690dV1uslC11/pDja6ek43RegGKF0Ho6vvdMcJ3UClO8To9nO644VukNJ1NLr9nW6q0A1WukONroHTnSB0Q5Suk9E1dLppQne00nU2ukZON13ohipdF6Nr7HQzhG6Y0nU1ugOcbqbQDVe6w4yuidPNEroRStfN6Jo63WyhG6l03Y3uQKebI3SjlO5wo2vmdHOF7hil62F0zZ3uRKE7Vul6Gl0Lp5sndKOVrpfRtXS6+UI3Rul6G10rp1sgdGOV7gijO8jpThK6cUp3pNG1drqThW680vUxujZOt1DoJijdUUbX1ulOEbqJStfX6No53alCN0np+hlde6dbJHSTla6/0R3sdIuFborSDTC6Dk63ROiOU7qBRneI0y0VuuOVbpDRdXS6ZUI3VekGG92hTrdc6E5QuiFG18npVgjdNKU72ug6O91KoZuudEONrovTnSZ0M5RumNF1dbrThW6m0g03usOc7gyhm6V0I4yum9OdKXSzlW6k0XV3urOEbo7SjTK6w53ubKGbq3THGF0Pp1sldCcq3bFG19PpzhG6eUo32uh6Od1qoZuvdGOMrrfTrRG6BUo31uiOcLq1QneS0o0zuiOdbp3Qnax0442uj9OtF7qFSjfB6I5yug1Cd4rSTTS6vk63UehOVbpJRtfP6TYJ3SKlm2x0/Z1us9AtVropRjfA6c4VuiVKd5zRDXS684RuqdIdb3SDnO58oVumdFONbrDTbRG65Up3gtENcbqtQrdC6aYZ3dFOt03oVirddKMb6nQXCN1pSjfD6IY53YVCd7rSzTS64U63XejOULpZRjfC6XYI3ZlKN9voRjrdTqE7S+nmGN0op9sldGcr3VyjO8bpLhK6VUp3otEd63QXC905SjfP6EY73SVCt1rp5hvdGKe7VOjWKN0CoxvrdJcJ3VqlO8noxjnd5UK3TulONrrxTneF0K1XuoVGN8HprhS6DUp3itFNdLqrhG6j0p1qdJOc7mqh26R0i4xustNdI3SblW6x0U1xumuF7lylW2J0xznddUJ3ntItNbrjne56oTtf6ZYZ3VSnu0HotijdcqM7weluFLqtSrfC6KY53U1Ct03pVhrddKe7WeguULrTjG6G090idBcq3elGN9PpbhW67Up3htHNcrrbhG6H0p1pdLOd7nah26l0ZxndHKe7Q+h2Kd3ZRjfX6e4UuouUbpXRneh0dwndxUp3jtHNc7q7he4SpVttdPOd7h6hu1Tp1hjdAqe7V+guU7q1RneS090ndJcr3TqjO9np7he6K5RuvdEtdLoHhO5KpdtgdKc43YNCd5XSbTS6U53uIaG7Wuk2Gd0ip3tY6K5Rus1Gt9jpHhG6a5XuXKNb4nSPCt11Snee0S11useE7nqlO9/oljnd40J3g9JtMbrlTveE0N2odFuNboXTPSl0NyndNqNb6XRPCd3NSneB0Z3mdE8L3S1Kd6HRne50zwjdrUq33ejOcLpnhe42pdthdGc63XNCd7vS7TS6s5zueaG7Q+l2Gd3ZTveC0N2pdBcZ3Sqne1Ho7lK6i43uHKd7SejuVrpLjG61070sdPco3aVGt8bpXhG6e5XuMqNb63SvCt19Sne50a1zuteE7n6lu8Lo1jvd60L3gNJdaXQbnO4NoXtQ6a4yuo1O96bQPaR0VxvdJqd7S+geVrprjG6z070tdI8o3bVGd67TvSN0jyrddUZ3ntO9K3SPKd31Rne+070ndI8r3Q1Gt8Xp3he6J5TuRqPb6nQfCN2TSneT0W1zug+F7imlu9noLnC6j4TuaaW7xegudLqPhe4ZpbvV6LY73SdC96zS3WZ0O5zuU6F7TuluN7qdTveZ0D2vdHcY3S6n+1zoXlC6O43uIqf7QuheVLq7jO5ip/tS6F5SuruN7hKn+0roXla6e4zuUqf7WuheUbp7je4yp/tG6F5VuvuM7nKn+1boXlO6+43uCqf7TuheV7oHjO5Kp/te6N5QugeN7iqn+0Ho3lS6h4zuaqf7UejeUrqHje4ap/tJ6N5WukeM7lqn+1no3lG6R43uOqf7RejeVbrHjO56p/tV6N5TuseN7gan+03o3le6J4zuRqf7Xeg+ULonje4mp/tD6D5UuqeM7man+1PoPlK6p43uFqf7S+g+VrpnjO5Wp/tb6D5RumeN7jan+0foPlW654zudqf7V+g+U7rnje4OpysX6D5XuheM7k6nKx/ovlC6F43uLqeTQPel0r1kdHc7XQh0Xyndy0Z3j9NVCHRfK90rRnev05UFum+U7lWju8/pNNB9q3SvGd39ThcD3XdK97rRPeB0uwW675XuDaN70OlKge4HpXvT6B5yOgt0PyrdW0b3sNOlQPeT0r1tdI843e6B7mele8foHnW6ItD9onTvGt1jTueB7lele8/oHne6HOh+U7r3je4Jp6sY6H5Xug+M7kmnqxTo/lC6D43uKafbI9D9qXQfGd3TTlc50P2ldB8b3TNOVyXQ/a10nxjds05XNdD9o3SfGt1zTrdnoPtX6T4zuuedrlqgKxfpPje6F5yueqArH+m+MLoXnW6vQCeR7kuje8npagS6EOm+MrqXna5moKsQ6b42ulecrlagK4t03xjdq063d6DTSPet0b3mdPsEuhjpvjO6152udqDbLdJ9b3RvON2+ga4U6X4wujedrk6gs0j3o9G95XR1A12KdD8Z3dtOVy/Q7R7pfja6d5yufqArIt0vRveu0+0X6DzS/Wp07znd/oEuR7rfjO59p2sQ6CpGut+N7gOnaxjoKkW6P4zuQ6drFOj2iHR/Gt1HTtc40FWOdH8Z3cdOd0CgqxLp/ja6T5yuSaCrGun+MbpPna5poNsz0v1rdJ853YGBrlqkK5foPne6ZoGueqQrn+i+cLrmgW6vSCeJ7kunaxHoakS6kOi+crqWga5mpKuQ6L52ulaBrlakK0t03zjdQYFu70inie5bp2sd6PaJdDHRfed0bQJd7Ui3W6L73unaBrp9I10p0f3gdO0CXZ1IZ4nuR6drH+jqRrqU6H5yuoMDXb1It3ui+9npOgS6+pGuSHS/ON0hgW6/SOeJ7len6xjo9o90OdH95nSHBroGka5iovvd6ToFuoaRrlKi+8PpOge6RpFuj0T3p9N1CXSNI13lRPeX03UNdAdEuiqJ7m+nOyzQNYl0VRPdP07XLdA1jXR7Jrp/na57oDsw0lVLdOUy3eGBrlmkq57oyme6HoGueaTbK9FJpusZ6FpEuhqJLmS6XoGuZaSrmegqZLrega5VpKuV6Moy3RGB7qBIt3ei00x3ZKBrHen2SXQx0/UJdG0iXe1Et1umOyrQtY10+ya6UqbrG+jaRbo6ic4yXb9A1z7S1U10KdP1D3QHR7p6iW73TDcg0HWIdPUTXZHpBga6QyLdfonOM92gQNcx0u2f6HKmGxzoDo10DRJdxUw3JNB1inQNE12lTHd0oOsc6Roluj0y3dBA1yXSNU50lTPdsEDXNdIdkOiqZLrhge6wSNck0VXNdCMCXbdI1zTR7ZnpRga67pHuwERXLdONCnSHR7pmia56pjsm0PWIdM0T3V6Z7thA1zPStUh0NTLd6EDXK9K1THQ1M92YQNc70rVKdLUy3dhAd0SkOyjR7Z3pxgW6IyNd60S3T6YbH+j6RLo2ia52ppsQ6I6KdG0T3b6ZbmKg6xvp2iW6OpluUqDrF+naJ7q6mW5yoOsf6Q5OdPUy3ZRANyDSdUh09TPdcYFuYKQ7JNHtl+mOD3SDIl3HRLd/ppsa6AZHukMTXYNMd0KgGxLpOiW6hpluWqA7OtJ1TnSNMt30QDc00nVJdI0z3YxANyzSdU10B2S6mYFueKQ7LNE1yXSzAt2ISNct0TXNdLMD3chI1z3RHZjp5gS6UZHu8ETXLNPNDXTHRLoeia55pjsx0B0b6XomuhaZbl6gGx3peiW6lplufqAbE+l6J7pWmW5BoBsb6Y5IdAdlupMC3bhId2Sia53pTg504yNdn0TXJtMtDHQTIt1Ria5tpjsl0E2MdH0TXbtMd2qgmxTp+iW69pluUaCbHOn6J7qDM93iQDcl0g1IdB0y3ZJAd1ykG5joDsl0SwPd8ZFuUKLrmOmWBbqpkW5wojs00y0PdCdEuiGJrlOmWxHopkW6oxNd50y3MtBNj3RDE12XTHdaoJsR6YYluq6Z7vRANzPSDU90h2W6MwLdrEg3ItF1y3RnBrrZkW5kouue6c4KdHMi3ahEd3imOzvQzY10xyS6HpluVaA7MdIdm+h6ZrpzAt28SDc60fXKdKsD3fxINybR9c50awLdgkg3NtEdkenWBrqTIt24RHdkplsX6E6OdOMTXZ9Mtz7QLYx0ExLdUZluQ6A7JdJNTHR9M93GQHdqpJuU6Ppluk2BblGkm5zo+me6zYFucaSbkugGZLpzA92SSHdcohuY6c4LdEsj3fGJblCmOz/QLYt0UxPd4Ey3JdAtj3QnJLohmW5roFsR6aYluqMz3bZAtzLSTU90QzPdBYHutEg3I9ENy3QXBrrTI93MRDc8020PdGdEulmJbkSm2xHozox0sxPdyEy3M9CdFenmJLpRmW5XoDs70s1NdMdkuosC3apId2KiOzbTXRzozol08xLd6Ex3SaBbHenmJ7oxme7SQLcm0i1IdGMz3WWBbm2kOynRjct0lwe6dZHu5EQ3PtNdEejWR7qFiW5Cprsy0G2IdKckuomZ7qpAtzHSnZroJmW6qwPdpki3KNFNznTXBLrNkW5xopuS6a4NdOdGuiWJ7rhMd12gOy/SLU10x2e66wPd+ZFuWaKbmuluCHRbIt3yRHdCprsx0G2NdCsS3bRMd1Og2xbpVia66Znu5kB3QaQ7LdHNyHS3BLoLI93piW5mprs10G2PdGckulmZ7rZAtyPSnZnoZme62wPdzkh3VqKbk+nuCHS7It3ZiW5uprsz0F0U6VYluhMz3V2B7uJId06im5fp7g50l0S61Ylufqa7J9BdGunWJLoFme7eQHdZpFub6E7KdPcFussj3bpEd3Kmuz/QXRHp1ie6hZnugUB3ZaTbkOhOyXQPBrqrIt3GRHdqpnso0F0d6TYlukWZ7uFAd02k25zoFme6RwLdtZHu3ES3JNM9Guiui3TnJbqlme6xQHd9pDs/0S3LdI8Huhsi3ZZEtzzTPRHobox0WxPdikz3ZKC7KdJtS3QrM91Tge7mSHdBojst0z0d6G6JdBcmutMz3TOB7tZItz3RnZHpng10t0W6HYnuzEz3XKC7PdLtTHRnZbrnA90dkW5Xojs7070Q6O6MdBclulWZ7sVAd1ekuzjRnZPpXgp0d0e6SxLd6kz3cqC7J9JdmujWZLpXAt29ke6yRLc2070a6O6LdJcnunWZ7rVAd3+kuyLRrc90rwe6ByLdlYluQ6Z7I9A9GOmuSnQbM92bge6hSHd1otuU6d4KdA9HumsS3eZM93ageyTSXZvozs107wS6RyPddYnuvEz3bqB7LNJdn+jOz3TvBbrHI90NiW5Lpns/0D0R6W5MdFsz3QeB7slId1Oi25bpPgx0T0W6mxPdBZnuo0D3dKS7JdFdmOk+DnTPRLpbE932TPdJoHs20t2W6HZkuk8D3XOR7vZEtzPTfRbono90dyS6Xf/9/wDI8Ntp
+        </DataArray>
+        <DataArray type="Int64" Name="offsets" format="binary" RangeMin="8" RangeMax="8000">
+          AQAAAACAAABAHwAA7AQAAA==eJw12RsDtQCiBdAz72buPJp3d55hGIZhGIZhGIbhwTAMwzAMw4NhGIbhwFnflvUb9t7B65uQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD10++BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz58/fRLwJARYyZMmTFnwZIVazZs2bHnmwNHTpy5cOXGnR8ePHnx5sPXz74EDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPnz9/EvAkBFjJkyZMWfBkhVrNmzZseebA0dOnLlw5cadHx48efHmw9cvvgQMGTFmwpQZcxYsWbFmw5Yde745cOTEmQtXbtz54cGTF28+fP3yS8CQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD16++BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz58BWDIiDETpsyYs2DJijUbtuzY882BIyfOXLhy484PD568ePPh69dfAoaMGDNhyow5C5asWLNhy4493xw4cuLMhSs37vzw4MmLNx++fvMlYMiIMROmzJizYMmKNRu27NjzzYEjJ85cuHLjzg8Pnrx48+Hr/74EDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPnz99kvAkBFjJkyZMWfBkhVrNmzZseebA0dOnLlw5cadHx48efHmw9fvvgQMGTFmwpQZcxYsWbFmw5Yde745cOTEmQtXbtz54cGTF28+fP3+S8CQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD1x++BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz78UfgDhowYM2HKjDkLlqxYs2HLjj3fHDhy4syFKzfu/PDgyYs3nx9Dxx+/BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz58/elLwJARYyZMmTFnwZIVazZs2bHnmwNHTpy5cOXGnR8ePHnx5sPXn78EDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPnz95UvAkBFjJkyZMWfBkhVrNmzZseebA0dOnLlw5cadHx48efHmw9dfvwQMGTFmwpQZcxYsWbFmw5Yde745cOTEmQtXbtz54cGTF28+fP3tS8CQEWMmTJkxZ8GSFWs2bNmx55sDR06cuXDlxp0fHjx58ebD19+/BAwZMWbClBlzFixZsWbDlh17vjlw5MSZC1du3PnhwZMXbz78MfQHDBkxZsKUGXMWLFmxZsOWHXu+OXDkxJkLV27c+eHBkxdvPj8Ojv//EjBkxJgJU2bMWbBkxZoNW3bs+ebAkRNnLly5ceeHB09evPnw9Y8vAUNGjJkwZcacBUtWrNmwZceebw4cOXHmwpUbd3548OTFmw9f//wSMGTEmAlTZsxZsGTFmg1bduz55sCRE2cuXLlx54cHT168+fD1ry8BQ0aMmTBlxpwFS1as2bBlx55vDhw5cebClRt3fnjw5MWbD1///hIwZMSYCVNmzFmwZMWaDVt27PnmwJETZy5cuXHnhwdPXrz58PWfLwFDRoyZMGXGnAVLVqzZsGXHnm8OHDlx5sKVG3d+ePDkxZsPX//9EjBkxJgJU2bM+T8Kyxz2
+        </DataArray>
+        <DataArray type="UInt8" Name="types" format="binary" RangeMin="11" RangeMax="11">
+          AQAAAACAAADoAwAAEQAAAA==eJzj5h4Fo2AUDHcAAAqwKvk=
+        </DataArray>
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+</VTKFile>