From 95edef5566be916f7c7b859d212915ddc626fb5e Mon Sep 17 00:00:00 2001 From: Florian Zill <florian.zill@ufz.de> Date: Tue, 15 Dec 2020 13:56:52 +0100 Subject: [PATCH] [T/HM] Linear order shape functions test --- ProcessLib/HydroMechanics/Tests.cmake | 3 + .../square_1e2_linear.prj | 315 ++++++++++++++++++ ...square_1e2_linear_ts_120_t_1000.000000.vtu | 47 +++ .../square_1e2_linear_ts_1_t_5.000000.vtu | 47 +++ .../square_1e2_linear_ts_20_t_100.000000.vtu | 47 +++ ...square_1e2_linear_ts_420_t_4000.000000.vtu | 47 +++ .../square_1x1_quad4_1e2.vtu | 22 ++ 7 files changed, 528 insertions(+) create mode 100644 Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear.prj create mode 100644 Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_120_t_1000.000000.vtu create mode 100644 Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_1_t_5.000000.vtu create mode 100644 Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_20_t_100.000000.vtu create mode 100644 Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_420_t_4000.000000.vtu create mode 100644 Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1x1_quad4_1e2.vtu diff --git a/ProcessLib/HydroMechanics/Tests.cmake b/ProcessLib/HydroMechanics/Tests.cmake index b56503ee898..c3857d07a35 100644 --- a/ProcessLib/HydroMechanics/Tests.cmake +++ b/ProcessLib/HydroMechanics/Tests.cmake @@ -4,6 +4,9 @@ if (NOT OGS_USE_MPI) OgsTest(PROJECTFILE HydroMechanics/Linear/Confined_Compression/square_1e2.prj) endif() +if (NOT OGS_USE_MPI) + OgsTest(PROJECTFILE HydroMechanics/Linear/Confined_Compression/square_1e2_linear.prj) +endif() if (NOT OGS_USE_MPI) OgsTest(PROJECTFILE HydroMechanics/Linear/DrainageEexcavation/HMdrainage.prj RUNTIME 330) endif() diff --git a/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear.prj b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear.prj new file mode 100644 index 00000000000..30c08b900b0 --- /dev/null +++ b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear.prj @@ -0,0 +1,315 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProject> + <mesh>square_1x1_quad4_1e2.vtu</mesh> + <geometry>square_1x1.gml</geometry> + <processes> + <process> + <name>HM</name> + <type>HYDRO_MECHANICS</type> + <integration_order>2</integration_order> + <dimension>2</dimension> + <constitutive_relation> + <type>LinearElasticIsotropic</type> + <youngs_modulus>E</youngs_modulus> + <poissons_ratio>nu</poissons_ratio> + </constitutive_relation> + <process_variables> + <displacement>displacement</displacement> + <pressure>pressure</pressure> + </process_variables> + <secondary_variables> + <secondary_variable internal_name="sigma_xx" output_name="sigma_xx"/> + <secondary_variable internal_name="sigma_yy" output_name="sigma_yy"/> + <secondary_variable internal_name="sigma_zz" output_name="sigma_zz"/> + <secondary_variable internal_name="sigma_xy" output_name="sigma_xy"/> + <secondary_variable internal_name="epsilon_xx" output_name="epsilon_xx"/> + <secondary_variable internal_name="epsilon_yy" output_name="epsilon_yy"/> + <secondary_variable internal_name="epsilon_zz" output_name="epsilon_zz"/> + <secondary_variable internal_name="epsilon_xy" output_name="epsilon_xy"/> + <secondary_variable internal_name="velocity" output_name="velocity"/> + </secondary_variables> + <specific_body_force>0 0</specific_body_force> + </process> + </processes> + <media> + <medium> + <phases> + <phase> + <type>Gas</type> + <properties> + <property> + <name>viscosity</name> + <type>Constant</type> + <value>1e-9</value> + </property> + <property> + <name>density</name> + <type>Constant</type> + <value>1.0e-6</value> + </property> + </properties> + </phase> + <phase> + <type>Solid</type> + <properties> + <property> + <name>porosity</name> + <type>Constant</type> + <value>0.8</value> + </property> + <property> + <name>density</name> + <type>Constant</type> + <value>1.2e-6</value> + </property> + <property> + <name>biot_coefficient</name> + <type>Constant</type> + <value>1</value> + </property> + </properties> + </phase> + </phases> + <properties> + <property> + <name>reference_temperature</name> + <type>Constant</type> + <value>293.15</value> + </property> + <property> + <name>permeability</name> + <type>Constant</type> + <value>1e-12</value> + </property> + </properties> + </medium> + </media> + <time_loop> + <processes> + <process ref="HM"> + <nonlinear_solver>basic_newton</nonlinear_solver> + <convergence_criterion> + <type>DeltaX</type> + <norm_type>NORM2</norm_type> + <abstol>1e-8</abstol> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <t_initial>0</t_initial> + <t_end>4000</t_end> + <timesteps> + <pair> + <repeat>40</repeat> + <delta_t>5</delta_t> + </pair> + <pair> + <repeat>1</repeat> + <delta_t>10</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>square_1e2_linear</prefix> + <timesteps> + <pair> + <repeat>1</repeat> + <each_steps>1</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>19</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>100</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>300</each_steps> + </pair> + </timesteps> + <variables> + <variable>displacement</variable> + <variable>pressure</variable> + <variable>sigma_xx</variable> + <variable>sigma_yy</variable> + <variable>sigma_zz</variable> + <variable>sigma_xy</variable> + <variable>epsilon_xx</variable> + <variable>epsilon_yy</variable> + <variable>epsilon_zz</variable> + <variable>epsilon_xy</variable> + <variable>velocity</variable> + </variables> + <suffix>_ts_{:timestep}_t_{:time}</suffix> + </output> + </time_loop> + <parameters> + <!-- Mechanics --> + <parameter> + <name>E</name> + <type>Constant</type> + <value>1</value> + </parameter> + <parameter> + <name>nu</name> + <type>Constant</type> + <value>.1</value> + </parameter> + <!-- Model parameters --> + <parameter> + <name>displacement0</name> + <type>Constant</type> + <values>0 0</values> + </parameter> + <parameter> + <name>zero</name> + <type>Constant</type> + <value>0</value> + </parameter> + <parameter> + <name>displacementTop</name> + <type>Constant</type> + <value>-0.05</value> + </parameter> + <parameter> + <name>displacementRamp</name> + <type>CurveScaled</type> + <curve>timeRamp</curve> + <parameter>displacementTop</parameter> + </parameter> + </parameters> + <curves> + <curve> + <name>timeRamp</name> + <coords>0 100 10000</coords> + <values>0 1 1</values> + </curve> + </curves> + <process_variables> + <process_variable> + <name>displacement</name> + <components>2</components> + <order>1</order> + <initial_condition>displacement0</initial_condition> + <boundary_conditions> + <boundary_condition> + <geometrical_set>square_1x1_geometry</geometrical_set> + <geometry>left</geometry> + <type>Dirichlet</type> + <component>0</component> + <parameter>zero</parameter> + </boundary_condition> + <boundary_condition> + <geometrical_set>square_1x1_geometry</geometrical_set> + <geometry>right</geometry> + <type>Dirichlet</type> + <component>0</component> + <parameter>zero</parameter> + </boundary_condition> + <boundary_condition> + <geometrical_set>square_1x1_geometry</geometrical_set> + <geometry>bottom</geometry> + <type>Dirichlet</type> + <component>1</component> + <parameter>zero</parameter> + </boundary_condition> + <boundary_condition> + <geometrical_set>square_1x1_geometry</geometrical_set> + <geometry>top</geometry> + <type>Dirichlet</type> + <component>1</component> + <parameter>displacementRamp</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <process_variable> + <name>pressure</name> + <components>1</components> + <order>1</order> + <initial_condition>zero</initial_condition> + <boundary_conditions> + <boundary_condition> + <geometrical_set>square_1x1_geometry</geometrical_set> + <geometry>top</geometry> + <type>Dirichlet</type> + <component>0</component> + <parameter>zero</parameter> + </boundary_condition> + <!-- This is for testing the Neumann bc for lower order process variable. + The test's result is not influenced by zero Neumann bc. --> + <boundary_condition> + <geometrical_set>square_1x1_geometry</geometrical_set> + <geometry>bottom</geometry> + <type>Neumann</type> + <component>0</component> + <parameter>zero</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_newton</name> + <type>Newton</type> + <max_iter>50</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <lis>-i bicg -p ilu -tol 1e-16 -maxiter 10000</lis> + <eigen> + <solver_type>BiCGSTAB</solver_type> + <precon_type>ILUT</precon_type> + <max_iteration_step>10000</max_iteration_step> + <error_tolerance>1e-16</error_tolerance> + </eigen> + </linear_solver> + </linear_solvers> + <test_definition> + <vtkdiff> + <regex>square_1e2_linear_ts_.*.vtu</regex> + <field>displacement</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>1e-15</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>square_1e2_linear_.*.vtu</regex> + <field>pressure</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>1e-15</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>square_1e2_linear_.*.vtu</regex> + <field>pressure_interpolated</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>1e-15</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>square_1e2_linear_.*.vtu</regex> + <field>velocity</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>1e-15</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>square_1e2_linear_.*.vtu</regex> + <field>HydraulicFlow</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>1e-15</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>square_1e2_linear_.*.vtu</regex> + <field>NodalForces</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>1e-15</relative_tolerance> + </vtkdiff> + </test_definition> +</OpenGeoSysProject> diff --git a/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_120_t_1000.000000.vtu b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_120_t_1000.000000.vtu new file mode 100644 index 00000000000..6147a90e609 --- /dev/null +++ b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_120_t_1000.000000.vtu @@ -0,0 +1,47 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="166" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="176" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0.049990859795" RangeMax="0.050009140205" offset="260" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0.051754364514" RangeMax="0.051773289794" offset="6832" /> + </FieldData> + <Piece NumberOfPoints="121" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-5.4695670863e-26" RangeMax="3.1326406103e-26" offset="13196" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.0842021725e-19" RangeMax="0.0051145946072" offset="13912" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.05" offset="14728" /> + <DataArray type="Float64" Name="epsilon_xx" format="appended" RangeMin="-9.9188209696e-18" RangeMax="8.1595487478e-18" offset="16184" /> + <DataArray type="Float64" Name="epsilon_xy" format="appended" RangeMin="-3.5375009945e-17" RangeMax="3.5691316231e-17" offset="17536" /> + <DataArray type="Float64" Name="epsilon_yy" format="appended" RangeMin="-0.050009140205" RangeMax="-0.049990859795" offset="18844" /> + <DataArray type="Float64" Name="epsilon_zz" format="appended" RangeMin="0" RangeMax="0" offset="19256" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="1.9164871896e-05" offset="19324" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="1.9164871896e-05" offset="19952" /> + <DataArray type="Float64" Name="sigma_xx" format="appended" RangeMin="-0.0056828568415" RangeMax="-0.0056807795221" offset="20580" /> + <DataArray type="Float64" Name="sigma_xy" format="appended" RangeMin="-2.2739917651e-17" RangeMax="2.2943247033e-17" offset="21020" /> + <DataArray type="Float64" Name="sigma_yy" format="appended" RangeMin="-0.051145711573" RangeMax="-0.051127015699" offset="22340" /> + <DataArray type="Float64" Name="sigma_zz" format="appended" RangeMin="-0.0056828568415" RangeMax="-0.0056807795221" offset="22764" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="4.6899779763e-09" RangeMax="2.9611355554e-08" offset="23200" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="permeability" NumberOfComponents="4" format="appended" RangeMin="1.7320508076e-12" RangeMax="1.7320508076e-12" offset="25136" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="0.051754364514" RangeMax="0.051773289794" offset="25248" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="26128" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="26236" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="26464" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="26660" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="27196" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="27920" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="28228" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAKYAAAAAAAAAYwAAAAAAAAA=eF6FzDEKgDAMheG7ZO4kTr2KSIgaJWCTktZBxLvb1UXH9374LhCtvDlVMcVsbSG501kgDtcrmi/sELsASokhQpEtEUqG9hxpYkdbcbaUTVlrA/o7/BCci+wtfCLj/QAlSj0gAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9I1NLA0001PSzUzSDZJM00FADQ7BVE=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAHxMAAAAAAAA=eF511Gk4VV0bwHEkMkZCj0qKJDIesyWHYyYc8zydhKIoTmgwZOpRESUNCpUiRZSeWEkDTTQnURqUkKRMUen98NqnrrWu5evv+t/73mvtY0d9vPSYABOumHr2cU1B2VWu6b9896aZE0MAirZ9nuRdZ445GwQaxnkGwh3TvRriRusSj8vnqHF61M+KXT1Va+kHA/2fFxy7PRPz3tJFPNpVPMCkqfmi70V7zJ+9T/jn4yETYr/Ve9SohccAknppmY7+l/GrYHyd6LFrbcZAA/GOwYGtnSUM+FQ1/4jNfCbmFu/dst7f8Sb2q15r56RO0oh9xYmBIelxN8he02PiHQGw/SZ+eEfysy3BJtE1d09v0cG82GlqpMMjGFC9KtqL19+laVlzetQXu7sL9zQHgyX3v59bYKgO0Pk/Uh95S21UhOeuuTQ5Ddhi3uNSNjVi5gupHn2/YrWaqoncRYDqUfcdYhSkbPGAuwoCPoZsCAOaiL84UKEQ26AHfqZ+CZ4U8cf8/A6F/qHVCpxeC/G6pA8hPs0qkOpRn9XqWSrSbwUXvLDOc9FxxeaHj4gKsptlgVR9vV2nvDvmfJNXA1V1/AHVqyMuy/Okx2vhMk6Pvj/PugkQvSIAxPTdVO6LNsDuhy9npA8cWg46pBNN+QINMe+9BiO7ak05Pfr7PBpk+GRRhRKnR91BV1TJY4spyNSestcKcMO+r0fKZaoRQ0vB+2rFa7ncHpjTcvc5p9a6cHp0v9Zg0bqnrbKcHns/l6R5rh+cwQGXa/KS73yw/SYe9H50Xj9Wn8cbzSww9MDcS7FIh9eCTuzlzDPbmUWLAKn3ix3iTx4wB9obo18v3L4SVoU6fk79+/wmxgvHvgXC13IKBuW7jTH/fMxUnP2ODqn+HOI7FfJYX7r/9KgX2J1b5lVKh66bTkiqF7qgnrTgqW7EjXhLqN+luXuroyvmwoV+27RmKhJ7HpOb3WIrrDj9WcSPW+f5hN1XgtrLO4ey9JigAvFzfu7Z46v9of6ks1LhVhPMddjp17tzfDg9+vzkO75f92UGcXrUbz4bEcySDYSz+oRuLX4ijTrXc7Uqje4vLNB0LMbq/nZnzEUFe7u51MIA1SPvx6WwLNrIViOM06Puw1M2GLo+AigM6MyN7nLC5htUnsl1vhAI1Z0XCFccxZ3v9MeG8AFPSOovSVY/Zdwk99yxI2b2wl7QMf3p87E8V1CJ+JsJrfJ9Poaw5oiAxD5uO8xtE9UbWG6ygOrR+e+1w+XH6eacHnVPusMFHnMZuIKRd1HPxxmb369fx2DnB4ARx/bZ5l76mHtEv1iQEqkMqP484m7Fn/p5Yrw4Pfp8H7vDZfNKFSFNad+n4lE6ROendvqVPh3zATHXdAVqWmwx71pTavB8ZySgeuT75NLQGfUXS/bi9GcQvyDxTXLUIQKo+1eC+mw3rP/2/sgKJUdT4HllcnbnqCPm10YWRzYV0yHVo9/XpvcOb0e7LTk96tv7X0d9+UcX0ny+DMoYMbH/D/+Wn+q4tUYZ9NTQhA2ndDCP5F1XsfOKNrF/6bkreKWbGbFXaLzvHd8yE7Q9mp3+ItcE3owa5m/4+/yWSnfu7ftWv4LBFSLPyyA6qXfQOjW18qQ4JPWUh/P9y39YiYl60uJO6arZ6cNGxVVfRzaFYvM5TvXNiOtWH5n96hkNkHrtac9Ze/CoRY8OQPvb26p7SrzXQ8Fa2QOGWXSA9j63zJJCu0Ig1d9GvNL4v8/HTkVyetQZGdYZq1VC4OUFsekdzR6ocw177HL9ZBkCQsJkg+fT3DAPEP1Zp3gjElD9XcRfl7OzfhSv5vSo2wX1fNWVjQRB8XNGZJydMI9+1Vk22BsG333+dDAo2RFzFZEPMilmWpDq0f1EpkpoNiLhnB51gTmy4e4hNKihU8r9/IcZaEE8+0bGsv0HdYGikpVm1npdopP69+aC2/jLVYk95eu/2fie0F6Gfj9cIYYiLKNRftAo6CNxPsAB89ooIddNXKGcHn2/tp6e7Dd5OpDqryP+1T/FdckgC7QPDQxaXrXE+ud7eFimN1ggpigBXvIXwbx9aUtW/BZLYn9eL/RRROAaYl+yurJEIs4JiPkqKI9OWUL0fCQfTe6qFVkK9KrG7uW60YhO6lMiSgX5O/WIPeVN51IzLo9qYM5qWWQUV6YLYt64GDwTtyE6qbcSMZD6bTOP2FP+Kp63XCUAwIjS20XCB/+4/rsrtYeE5wGZTflKxZ/EAclJ/ZsdN09pROkSe8q/f+JvrLJTwvplC/dYdTJMQFEnLWSqXQDrKaf6MMS/lH89p5LA4PRE94zqLmwwx7zcrYTH/N4aOMGUuLWzyJbopD5xTDWdbza5p1z34ELBgXwn7P0sl/flm8a5g7huvdoAG0MQhZ5/70RBwGAUoHp0voxXceZ4LJPTo+7d+0D5kM8GYC898+38BEfM+RKuFj49YgS9j54bzDTH50fQfKrWecdBUn/ENbS4a7chsZc6v99pq00cfHjM4YezpCbmxuXC+1pNaaDWoL/5HLcW0Um92uaO+B+XyD3l/iffKlaeZmLfH5xhc2Hz5o2A3Zj4qY5ujXleuLNO0dFwTo/ODwSR/clKmzg96h0dh4ovcK0DdFrbmZVjPUaoz5ONdeq9RwcPc0b5Ny80xnrKSf2IDH0JOKvF6VcjPjztIlPf999iaWPz+y6+FZ8wXgRW1Jz2VBnH96ec1J+QeaCw9Pl8SOopD7dh0Jwy7LH9NO97RK3VcAWekeaKaSwLzH+nrluXGhYCSL1O2gGa34QbsU8OFGr9Zb8GDLXu3aHCpw/CWo35wv/+Prh04p5LiAKVi0Kg2NqS6KQ+6mXuY2GxFcSeciUbu/L/hDUw93ed9exOsA7gMQSTR9tNMU+vVbsTbRsLSf29PtkEYR0TTr8acfVVr46uOhsDR86oOo5fNwcRiD8Sky3fZcWC7Xdusg3deCDaV9yL7xx96cjp0ee/c/w6K593DacPRHyCxTqzO8wNtl+87NZ3SxXbL9qj85jXmyhwqmuZGXyih81f0bO+ejndHZD6PZX7Xz5fFk3sj1t6nlzi7wGYNJ5fvyTw+1G/K+i4JywUxqi3zUinqUHUcz3z9bZreEKqR58/9/qdleUL1nF61P2s50rXFgTA3pReuXenTLC+kslrEuYcCJdqag6yuZmYn98fNFC+OJ7Yq8wXsRP/x5fYn6gpWVQ/tRmqsn25FRYxsPvZ9IM7w64hFqQ2Sjv+VKbj9xet/Ex0gQkg9a2Wijx7Pv/p0ec/yrvEmD/LFFSXpO2Vi7PD/JI8r+ZwtiZ86Dv4gq/fA/O9E+tpxzJiOT36fN/Cs8uHRs04PepymTZBb0xjwBbT5z98dOwxH0hQlHh5yAKy35htptlbEp3Uh9u+fGhVakbsKa/enh2zukYXczbt44TJhxjQ+P7iq5YuTYA6+LZthnuWJqB67Hz841MfLWdzetQnmU7uev1m4MAZX/P9C51BUcjoirt/+wyH+gWBCmA4ZVeKHG8g0Un9qs7sL9U8DGJPubCMSH/gkDHmMDii0L/LHGzXYl1nVklCkpP6xY/TdqeI6hN7yre6Grx602sKjyC+1V/zieC5xSB+92+bsh5XrKec1G9U8z7ULqMGST3lR2f9iIoLxvfPWLlXSFE3FqRU7d/Y9tAUnED8suWtSTjmBEi93TWtykVh5P42c9XO4w1M0Hcmd7fnoDq2X0NgSpvgMU/Yce+j/TO2OTZfYGZSioHcZkjqBRgbJjekMIn9YeMt9+Z4xcLVDlIKUiaOmAt1hI9r28TCuJ9++d9mKWLefGF5+XczJrH/3czM5vnAJvYFYXcE1Ks94Oz2KY+ijbrY/t1PE+Oly+Xhm4rB/lsbR+tJTuqXpXH/apL8aET1pxFPnvacLqun3QWeEL2fT8mXZouNhQKe9paYMmsnzF1WtT6cHE0HVI8+fzcj/5Ss4Fpif+XXTfZUQgYo2LF9XbC9MdZr2BrPFd/AAPQq9pyXyR+MSE7qY9tNQ1U/2xJ7yncdaUrdnyOL3U9ZUjPQWGMFHI1c+1WiHLD5lJP6Dwr0K4y5y4k95b9/3fD+d58nqNq1Nlfx0B+nJ0m4bOvxhdVhKwpoqxkQ9V77E4ultOIg1f+H+CV7es1H3lBOj7p2XmJpf8JWmHTJwgvK0LD+jmvXnFlcXjBzJkvD0d+f6KS+W/yMUFSYNbF/P+1nrJK1N751wfbToW1j7bKjQcbipgLrfG2ik3r+AxYbQz0VAKmn/G6GadOFbANsPyXHunXbs1VB+jW4yzpEDuvPp43R9jh7E/uWkPzEtfe4IKkvzEyZw5BxB8Va/gPJeVZYb8jzuPXVwc1wDs3zjbzIQvz8Wz37B5apQ1L/W/v5iR/tccQ+787Vb33XTWGjsUV9ocKretQTL0lpN+1lQO9hsQ/jFfj9Uk7qn69VM2yaY0zsKf9WMkd8p/N8zIf9R26MuzmB2j0/3HXnyWGen/ryyohILKB69PfRnNL5pmfrn/404lmrpNKqpGPBOycQG1Jqi/2+WivK5Q+8TAP2kso2U/PtMH/we4VPcg6L2JetFPLrbyf3dKtK+v1kFpCrUJLM1VuC37/d+5ttIYZwa/S2+Ue3cxOd1CsfY4c96jQm9pTHRUe91qc5Y9/nZ0vhJya79GEbX++oyHozopN6izOrlKIcZYg95Yn+d4VrTjvDsOsmKrF/+Uhl1JMJVTbUkF/gI9BginmksIWMcJsrpw9E3FNxJ//NkRhOj/rovVXPwt85QqMNmmcGXAIANn/mUbEr21bDll/b5pTX0gHaFxbtqVfNjiX2ycUyE++M1nJ61EsHWyrp6+NgkduReWkPh4xQb8/i8/+2wRJkDsV1HagZxlzsSvbVnbQ0QPXofoyphWXbt/zpUdfTNk01004DEXHcv7QjdGEU4kdrnJ9JGFhBV562Ly3pRtj5UU716H7/tPE/vpxozelJ/sDu0kfWwiXY/NYKhvHJsiD4PdfieFuKCubpJlx9w7qZnB6dz7dI7snDkT896hK+m+832GTCOvXDgXYnlmP3I+Ptme6/xwGq0457nhIwxHrKSX2kpe3700tciT3lcv6NMewEcYCev8u14UL3s2zQteRWjcG++dj95Gw3SJksTQdUj85nVpcYG7j86dHzEx0Xe/wpPh2s1l9T3ahhju2XGiTQlLPPHWrsF3yknDxZjz5/x7ST+v294oPBV5icHvW8aY/yOxQ8KSqA7d99yp01IeYIk3Ru0fQt8fOlnNTL7vumXl5lT+w5Ll1XmjH3NrZfspZD0PCQBUx7z1rXMcMJ/31PO6l/fMPntmHqMmJPuaXwhMisQXlQdK/b4txfnslk+aTKqoMZRyoTfjZ4EJ3Uv3K4k/1y1ipiT/mhii5JpQ5FiPrjG7YC8UmpUGritX6hoAXm1y95d4vTfSHVFyBuytdT8s+PPz3qx0JkPLMEA6Gc64GdKRelMH+kcu21lHc8SF94diihXh/zoW03ltJvBAKqR/fb89VBpPRaHKdH/cGcBu4rCgHAlPskf2i8IeYf+WcORRwLhrJxyv+1bNfCPO9B74smXjqnP424W4CI3Y1Ff3rUO6NvRUbMMAMyH6yihK7pYF6Y8c0z0S0Y3vS8fsc8hkF0qkfPZ7WrotF4KIvTk3xQSN3Est4F9SS3J6X6vCxBEKz+/cW4eCjRSX3RB13N+OvWkNRTHtdyfl6asBnmSlNu1VskU4E77c2hzGXemLNiy5dbgiWA6pH7SfLYGckMnbGD2CcFGMwKVzCAA5IvoxtfGKO/j6RfOoo8RW/94LvCrAn5VS6Yc+n+30l9U99hCcsxD06PPr952vcWeUu8Zthife35f8v9VjKh+UlNru1cLKKT+oDHDdDPiEbsKbf+PTJQzOWO/X+oLNw7e+2rvvqR+Zeb/O3JTuqD7i5PePDfPWJP+X9Gesu8/N2Bvo6fXctf7h1e8jTTSQty7Z7RHKe1FJKc1PNEK7ixpZjEnvLLOXLP3p7Vwzy4VWj3wTEmfNPR/3i4yB6bTznVayBuO+cCOznYhNhbT7vi2TznqZNLIB3xz7SK/H/SJeH1OSWuj/pssL532kn97K+Hd9zVNACkXnTafzZ6nczMUcb6ItHDZQtvmoH7xxNfrJdYgL2fQty8n/lfgiDVo55if+7huKs5p0efX3HaZWNgVhCsq/6dbivrgHlu6QxGhoIpsPVlhO5298I8eildr7FvLaB6dP/cPVzbtsaocHrUa80d1Xo8wsAJWlOf2sEI1JNU+gTOnQ4SAncME2psE9cTndRf2WZn3lslBkk95botq4Z8Jv3R90uq6y4KYhmLwVn3Xs86z+dDdKpHzj9J3u5ozcerooDUO01720m2VbWkF/p9JDUFlRyWs5QHe8QuH/4m5AfQ/R9OO9Wjz1/H5z6Wk63J6dH5UdOecLhuj590KDa/TVRI6d8jWuB2t3r98JMQopN61cDGmqaFKsSectCc8CBIxQ11rrka/7L7Ni8BdZdz9BbeZRKd1Kt9z/DxvTeD2FP+P5Kp+mU=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAhBIAAAAAAAA=eF51lHlYzun3x6OylBZEyFizZspWyN2qTSQtopSeUlEqaXmyb8mSXaRF+yqyxYQ+NLYRE8oMpVLJntSEJmt+Xd/nnHuu3+l6/nxfr/ts73M+H7XXehmXzcKL3t+48tnu19wiFdBPexjJB9rqC2qgm4Grgs5xGuk37KKboA76H+B9QM/3SDtcWawl9Ccc41Prls0UJboIfQjvCzp45MG9Fj9kGOom4JhvZWqfy26FTOgrpb5nr9rcS4Ke0I9wDdC6b+006v60FnpLiR/xJOd+zROTThz1hgd6ecEuiwScp5nEuxs1FO8fN5nHN5H4Pz8Mnv66zYFz6q9FcuvBuSvMWD8Sj/rHpNexrSdFTI1w1JF3Dz1Q/2kulZevn7f8TW+PThzzV2hYzyxYptlpP9hvYzkrnXnWuZP/GB+2Q/vB2PODef4Wst+WE3WLuzovEFQI5/6lRlbVHNFlSqA/AMd785y9UWQbNUKgHONnPoz62Wo0TuglJT5M/datzVfMO8XjfJW+DjfYVw2G+eh+tbafMh4nXswwP73fiYKnjK/sKNZDSvzQ7MjDH5xcO+XHeN341nfeFmP4/TeS/ak6HD6eMMiY9SYc/d9k0uzZFDCa+99A8jeuydz3rdiIoR/vSXy8/6gLj1tGsoFkPswXpbpj8NV3dlLva8D91qZmmcE8vpnk/7uozOzQr3ZsEInHfnbtEy+Z4/WpEL937A91g+vTR9cOG7DBJD/GG527tsz69//q0/s2jqs8tEd+Fpu1pGvzow7dPbf+ZFAHNwCdq7hBr1vZEsEMdE/gxqAvV2fqyecbCtLiPwWdMs6/sETA992Am4DWCV7hfsncUDAErQjcAvQvFZNyzgaa8fyKpH7G3wa7LslpCqZSeKGC4a47quaCOekP60cnByoN3DtaYFL6d1HZwBJSFwv6hGN+bcfyMy4qzrx/nA/7te79y33lZ+6d5sf5RjmFm96f58a5Aqm/+Z7Wg5dDPZkB4djvJJ+MFItv3oxJ4YanT15z+eHNjMj+cP53lqOiCyt8GfbfCzj62V216uZw9yXcH/QX8+2reTtclOMkGBGO+TTzX7Eh6/+L70V4xpbWONdbTpwrA0e/i3qrq4z/dxr3R4nEby/97cOqaA0mLf+aDPfKeF9THt+D9K/cqyFdqFPvNB/6Yyx/yMCxwJX7Q/1LOHnLStxtrFT+R/PV/ZkjFzJTKfVb2h+O+hmjye8TuRX692/diO7+zozeL+qVMpsP+lT6MWPCUQ8TKxlF6Cxk9P6wv5XGMcmagi8zI/HYn2PKwRFZq414fXlyX6vftX3yMej8/WM9n4uWSeyBGf+/oD94z1WDvlZGq0/l8yuQ+g4LZsYukhnL6PeB+Rw0so0qKyfz/xO9/3MfP947kmvM++9J8u9UHLhlbJksi7txqqKneXiRyrGbfU908ATQ92Y8sA+Y1FKYRHg86KXTJTyZ8ETQ+0ufLo5RUBUwXhn4MdBmZRKeSuKRL427qHW2qGUm8j4kv12MhKcRju8zSrs6GvSYzLB+bxJ/hvA+pP72CeYy02JXCLEkHudX/ObgFvZsqZBIeDpoF9v3v6xt9RNSQKuR/t788n3tRcOlQgzo/sDRzz8/fDx+deFShvVUgWO+xZov525WXsH3pw4c/WgbHbHs3jVPhv31Jfk3LApV2L/aj+fvS/LH1t1W1sv0EeJIfew/Ur90z964iQLeC+4X/arc1WOP6R8+fD4Vkv/etkfiltRJfP/Un7uOQ2qSdk9luI9+xN9HwHF/A8j8385tKDjeNp7Hoz/43ihfwul9o19p3Xu55N6WZ1hPiXBRz5huI996cX/7kPp52m9rzydOEdBfBXJfS/InXrMZ4slwXuwP/dGMG1hg3+bBUkh97Nf2VshHoyAzHk/vO/KR29WchV58/j4kf++CbaqxLTYsQ4r/zaJF+ldGjuTz432ivgkc43E/maADmkZUlZ/WZVkkP+qhwLNJPPanXFakqxo/ldfvR/qbABzr0f5i7eRdLqn17zQfvtezl/B1ds5z7Tp0xroXYd86uBi07X2fK2+r+7ENoLOBrwV9+56ErwGdCzwc9MbGO6d/eE9lm0DnkPwGwMMJXw266Z3vhZn+jOc/AXwj6HvAV4HOAh4C+vS5qhfPzpuwYNDpJD4ZeAjhoaDthl4X37noJWD+DDKfA/CVhGN814g+5TlKXgKtj/Xat0o45sP+cd52B6tX9gGOfD+ngeM+Fsnal+YVBzKslwQ8DPQ1s2J/vSJbhn5if5hP3OD+uWyLP1tJ6uP7771PZekOmsHnzyH9eV6OLcgeKRYCyHwYv6lCJvfZyOmcY36c9/6re+GmamIB7yGTxF9sq05M3zKp037x/W7gdH8Y/9vo1rF930/i94P5MZ8r8M2gs8l802a/TD93J4j7R3lJ5pSBS62X8fzU3/tPDmZl+K1i2G8a6f/bH3uGWO5ZzveL+XGetPWy62SjDNl6Eo/73gw8nMSj9i5UvB79dSLvP43MHwQc31P/Lv+1KKDeZzCPp9/HtYcSjvdN7yc7faLCDNuBAv4vMsn8B4AHgab3mxpWNW+/iz3vLxE43qs4W+7xbPFSfr+pwLGfVe9npbd9ceg0P9bzeD5dpt3ci+2R2Tgns0Mf+/39J2ft3KJdoE/+DBtTtVCR7QSdBHwv6F+7iP/H8X0Cie/f5uT5aes4tp3ER4GeBXwvicd6/hVDotVWTWH7pfDf333r+9ElRNhN8h8C/Xem9fZbSxiLBB1D+qvTviM3oCRYwPfpJP6ewdW26u0eAtaLJfVfmiVqrmiby+unAt8H+lrmBxstOS9hB+gjwLeBHh5cYGgvdhCwv3jg6FfmeNmj2qcD+X6Qo85Lyw1x1Hdk6Gcc6U8ucpun1qSVDPtD/9DPtQvzFOYZLuCc7l82+MjE25beAu4nkeS/ofBDNurHAs6xP+zna81OhXOZywXMd4Tw8y+eF7hfchVw3qPEP91hQ1MH5blx/5Hjexmt8U13KsQ8Po7w4C6+7aN3OwtbSH/Yr036enmb0jC+H8y/FfTNJMvjZjdD+P3HEN6i8HmdkhVjdL8437nztyxnNodwTv0v9X2yNLzNkOG82D++zy4Z4hzapMP9jSX5q+u9Lh84FMK/L3o/iaKS4hPMRKAc42fYqL0I9Avm89F4tfFP65UyZgn0vpA3jpPwHSQe/RkbvHW2ySdjzjEe73068AjiL/az0G3Pwk/twWwz4Vi/7tWO31Vf6fD7jSf5e+fXz5YbHcrnQ//Rz+Tsv6/LTjZhZb+yxB8d+lD+8/lXOvhj0McHdYl+FzmiE38IegfwctAHgT8CHa7ZFm1uZcIeEI7vg4D/TfhfoNOTiwblfzbl/ACJzwf+BHQMqf/v1cf6mTW6rAp0LOm/GvhDUh/rFT+bsPZIn2HsKeg4kn8ucPRrL/D7oD13bLaYsURLqAV9BHgF6DnAMf4wmW/NTf+8TVYhDOvFk3jtXg7sefk8Vkny4/t+mtqmTWEhvH+cH98nyum0nBg+n+fH+uj/k6+WlT09nXh/OD/6fc4jVJDvFiZQ/7H/2KKEmvpHtjz+KKnfUHkh1Wh5iID1Ykl+r83hKn85/8dxPn4P73LmbvS0FcoIx/pZiR61E0tDBZwP+0f/Uhu+e/8WtUBAjf3hvRzQCw0MrhsulJP82J8I+GMp9b/YZKyK/P5iJuY7BvwZ6BkGEl5H+sN76S+efHZFsTffL93/ehmdyUm12/h94/5qQJtFaNVonFzGakj+atC3ZwUYRC2K5PcbTeZL/DHvwp1cE34fdP7dwCsIx3z3bta4bV9r1YmjrgCOfqH/+D2WqBtPSzE35/wwqV8JXFp/cTcVT8aXjOb+4XyYzx/452rRMTuLjvefGx9o6OQWfQG9Tn37nFfmLkI74T9AP3pzo+J7e5jwE3QGcJmnEm0dqn9Z572XIA86DbgcaI3EnyM0XqwRuoFOBd4VdNWhhHrdy07Ct+r/z3sCfwhcjsRjvlvPVKq9J1oI3yE+gdQvA94DdDKpn2Q+K2VT1CTOE0n+PhYS3h3fA8d5Z6Tk573dOILReFnQ6sBRp9H59y6dElU7nmE+7A/ztVvHp7e+X8hwP8lkvhs7Ai8N2dVe2E7mx/5Nh1rV16o7MtxXEuHVllMGJIT+t980Mt8vD/NE5fYT+H3Q/UVl3Jj+W4yY+5NB+pvhcqp63yjjTveB9QxWu+g43TXh95FO4sXAUeP8XUAHrDY5PiZQX1AEnUL6LwDencQjt6xqaI7Ot2FdCcd7XHK19kbryBCGOp70nz2lsdXtqw37AHof8I+gl79NlnswIYTvD+/jK+g9geemPaiN4PtJIPk9tY1v69zx4PWR470rx2xsC6+OYPg94/eL3/vSkqA/HhZ6MPQP/Uf/dqZOCNjwcxq/f+qfP3Bp/t/1iG9o1JwpKJD7wvcDPSUc/U8k83W/MGPqp/l6gqyU+rvPS7gciUc/u5xL1xz2Tl3A/eF8mO/UGQlv8lNUjevQNhW9Jvt38GbQ+gUbyv8cFyo8Bz0b+BvQA+wCLEa02AuvQZsRrql/Yq6KUohQT3gd5r9koSf6Ppfnnwe8EfS+A5P9K1M8BXw/C/hL0O+nnvFaGRcivAU9l3DxkMIvzk+WCe9AWwH/B3TNulCt07pi3j/Gox+21Tkqt7zNGPZjQ+arPbF1xDCLCIb9mwN/AbpiwtU4syAzhvObAq8B3SijqVHcEY/9OAH/ANrYIic3cbC58Aq0IfEPOfY7h8xn1yM3+6C5hfCRcJw3BDj2j/6iflN/dlqMskh4SvrH+R7HhLr7ym4X0A9b4Nhvd89yz0Z7Uaf9oJ/H/jVo2Ki2Xer+pvjm5RjeniNgPWuSfxDwesIxPm/sg1dK8+x5fxYk/hLwNtDzyf673j66/3BiKGsB7UD8HVPqKS45uo3R+0Ld+DraJ2dOKMN+TEh/sXV1Ho8DtzG6P+zvzIXrhio7HIVPoBcDx34uA8d6dmQ/ooFO63YOm8/vG/3B79sHOP3+sL8xW6b9+GIwl98fzo/7Wg+cxqPfs1duut+mZi00gLYn8a7AcR70H/cp9LdMsvswS3gGGr8/nOcQ8DckHrmxSm1Ss2gU92cemX+3soR7lxZ8KenQq+42xWZ18KWgs/avuj3begJbCDoI+HLQvx2QcBHoAOCeoJ3++h43ytuaLQYdSLgVcB/QYuAeoIeqpF53St8qrAAdDNwdtK5H68uEU87CEtAhwLHfz4PL1pf1iRBcQIcBx/eypWEFq8a7Cc6kf5zn+l3fP9V6hTOM9weO88xI/qW/xdolDP1aBzwAdO2HLqc3bREzL9ArgaM+b7Qxo8XWleG84YQ3NK9ukW8SCW6Eo3+V1tluH4caMH8p9adFbl7ctkYk+BL/MN5h/oVuU0XGnfpHf+S8NlWX5oqEVaDXk3gV4KjRH/TzYvOmIQsyPHj/yNHPFOCovYE7gc47fvRA4/fuDPftR+4DOeb3Jfmd0walGm214PVXkPv2Au4qpf+qCfNc+5pu5f7gfeB7tzMRZ+ujhzE/0CGkP/2W8v1vrbaw5SQe78vomLyeVZWegBrvYxnWFyu6Tx2/mPe3hvR/Cjj6j98v/x4GdS05VryAx68g/fsBx/ehZL+tO4Nyh7jY8vhgkr8duLsUHug5//CddZP4flcSbgN8EYnHfL17qZ4Nj3hdiPVxPtyndg8JdyEc/XzZ5c7CzCl3ClHj/Lifv74W/49nW0aYvenQ8Wf62tzq4Kj/yYyusMmaKKSCTgaeADoQeBboWOAnQO8N+u54sLctjz9G4lcAP07iU0DfVN90dLfjfCENdAzwTNAlwJNBHyXx8mPD4gfsZLx+Epnv3hgJPwU6g/CgtC87tQ/25fEJwFErp0v4WdCpwHEeuWUDZwe/1mOYLxE4+lXmI+H5oDOJf6e2FBaLVEwYzn8QeDroys/t4yfME/H+jpD5DbV3yN5dZ8rOkfonQYs0Yi+OfOXO/cf66K+LesUaTS0j3l86iderXt64PHw5ywOdRfp38ktftbN1LI9Hf9GvRhWrF67DfdhF0DnAc0An69wo8XvRg10CnQv8PNafJOGXSX2Mb3ipNrRxkbJwhcxXAFr9lYRjPzFkPp1tmgbPtysJuaDxvnCfbjskHPcZR/hRVw8Zy0+KfH68vwzQBsCx33jSf8+gJ10ORQ5nuB/qL3Lcdwpw/B6O6NcXXXuvw+j3i9oOOPaTRubXvf3B3ufdRIb3hv6dAR0FHOdPJ/1vfX7qcn7WWF4fOX5vLsDRr2SS/6fWSeVBd4fx/EmEbwBO58N7PL7AS+lsexfefxKprwH8/wA1j7AuAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA9gEAAAAAAAA=eF4tkT9oE3EUx89JQYcMQitqCA4OSrGT1krhwAoiHaLF0ECLF0tKGkFP01grGC+2/gMbYzTJWapejcVWikYpeBSRG4SiOOgmIhIRXKxD3XRSvp9MH9677/u+7/udYRiGddBa+g/DnD8lGpm46LyzOlX7cTFYGqJ+0yN6l5Lo/5xAv3CIun0juvgA/a0Z/H8m4M1BeHJI9FrGmDuehR+H6ZfG5GOtGRUdP4XvSq9ons1Qp3Yxd/Eo+3ptMZhr+n42qRtZ6RtTl2Euj+/yGXx69jEfbvYrNv22fvIujlCHr8EXaei3od+QY1+og353Fzk3N/M77A3eOtTxYXLM3hBD6Snqxbt8/3aBeqUo3w/PK6K1f4I9TivclobHxtnb0g9f806R+Tvcf/sqdxzgPnN7tpmLdzZCp9lXuC5dY2cV31if6CT4/5Fqif7fGbF1PTSWE3zPkz/V4eF7pCB6ybx00aDMHe4jsd7HXe3hGt/Pk9dbO8ndA9xfTzZ1L6fFyO8Cd62eE+0KvnPuLPNVckVi6Lzv4/jvuQVXH4t+7Bnzv+rcMcJcsOWKcoe6yqJZvicW37viq+iMGCxA9/C0GLX5z+v2lkRnd1GM1HKil+Q9vjx5IBZc3mnHxEOxtKkmfh2E9g/8/Ry6p2nY/ek++UYnO/8BEFDbLw==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAQQIAAAAAAAA=eF59lT9IW1EUxoMd+pAObwiYocgjlPCqVoJFVHIhaevQSgYJoaiF4iB10Be1f2jGIEjp0qVQyBQpIsVWcJVceGu7i3Ts7BRph5ZKKXi+79p7wGb5+O6fc3/n3JP7TjabQ/X9sfLareh1//elcub8F9jGuX8OnzGrnu91V/8/X2qo9b4PzLq/v7Wm1ifwPeFLE/Bd+7rcd/bpLtYVLfZDI2jA8ZZICD8JDY0o9/e6ohXlGS+n4ofKZxAv0wqFLxVbtD9X6sNnHzVvwPOhWWjlEk+eaXiefx+e+TIe40+T3/GJMF7R/hE+8EY22np0kOyRN1LxXD1VfPKQt0DPOmF8lutV/r2S6CTPuSS/momFL+V8+C54+/IDeasqvr4/8nGe6xmfnOSpwrN+c1g3RH51HvNjvIc2J3wp538ff/s1s0te5herejB/1ndCxR+BZ33Jw3ypsxi/ofIfN75n/1bND+FjP5jtgcPFwR3y8rwpaAK9DX3MepEfPqu87lfHDT8Kz35j/y1inPvnbEf4HG9f/ORe/F7/30rYz/OvM+8WVNXLvReKR/cXPePU1H7e7z/9JHzu//amknxub+t+mIKynnwPeA55atAJVw/RvOIdw/46POOxv2OM834v3rNXwud4+4/mT9sd8rI+7j3UHsr8FzCfh7r3DJpAC9AllTfv5+I9gIcumED4wFs1V24++HKn475vGM9bfK/gQ9PwvPsewRfMU89nzQvP523i+cj66wPbVPGfwV8VvnQDfH8BAigf8g==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAIgQAAAAAAAA=eF51zn8w22ccB/Ag86uG4AwL+YGgpsRlpM3j986MxrCWOeNuumljbhhqzNi1W3WmtVWL0gm3dhHZsZbG1Df56nY2UzVj0bCl3NrOj6SqrauxM7vdfZ9Pbrnb89/r3u/ned402n+P8vW65z3iWAR2VVV43OMMN3BLxq6ransn8P7Xqt+RFHuBPUf7n2q+4Qnemtb+Jr4ahLDvJhY7n5WFgauSSZ9FHwGYnlDSlqXwA//fIfgKg76ilGTqTxSLFdaEmnKJomKpQeZLkJRpFoOuDxrpxDDlRkXnW/06BvQ7NPOTSXXmCOeWL+sOJgX6oeuUK9v0Cv6gAOH31M2H5PFPhyJ8X8lfysoVcpAK/2eyD/vVb39d3aj4kBxWrb3NyrEisNvcle0HknjgY2+cHiGHuEQm5ZTH10qJngURztNHCjv/rGUinH8/ziti7PDADbvNJLR4f3CZwwdJP+11QxmUrQUCZsnPt0XYeJ+po4kZtePAaTL0s/WJJn9HAvvM3K3jay88A9bqNHumxmhELOWFh+MOTRZuKIbyiSlxTXaxP8J5qjQ4/NpYILj1Ttr6oquxz61kkHVqJliy3N+iWzbmeJ+pJTWNNT6VZ0nrOx2ag0e2RNhFmnuMy4l0hH3G8bZw5Bwb5VOOHOULe5e4kLMT5g3bNiGQ/64brrswzwfvS+oQlXUHQv+YZbq0t8vb+H5q4UaerT0Y7zti4uquAo/plvPkumMZ92uNC3qfMpcrmTv8NxfhPPlU0Uf3ZV7gPnFo5iHSB/rEBqeg/AcPsJZhO2vbFQT9b6Tpz/lL/SDvyA41S/ZbElVRFn7hd48dZEtg432mbv843/vcQDuZMpX+pKAvCGGvucwqWFa7wb+U3fTNQFZgt1sTq1ujHuhzyrVj6TmR6gDIScuiR/Igf/BSautcU6kxX7YTRF0Z9EQXKO9P+2tZH8IB432mjh+snxboO8k3m1tWnG5wiBcpd9D1IZe2n0XYU7ydsepcJniuL9JaGeACdleJ19P2McB0+qc5F3cZ+wcOE7UvFbMQ/o9Wj/gDERbgzk12vPKJuTE32Yetr6l4+GXlRXJFo5fnGWgENlv+QJbtakYYKE8eXTOX2xlzXqMsJXPUGVyfy3xktukO/fGS6DCdjS+4Onf71GaEH/TLVTfznFU+4GBG8OX7xzlg033YPZVxI162MjJ12NK+WhiAsKPEP5pf8vIEL7BiY2cLHcGvXLfx3pTQUS9ldciW5fC7O0M4L/2qSs5LFBLYRw3RC4LOWPB82BW+aEIE3s5v6J43cMCm+7Bbz/975GRCBFPIuutEYGttXMJiBh0Q9mrX1sLMCA8cxVbla6d9wW7l1uWTkYtD2DMj3Z949+yF9wwrWVJyPQb8x54YO6kyHHzyO55S+54H2HTfP3eZbOc=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/A99dmHwiVO8kVsFFPBtPrylzJ5gcoEwPCxfYuxOfx68SpmnyRxYLbxRAc+dwRRcPBAOCyWM0GI8eXaeD0FzOjwuIUuuvwxLvBYi7+0gLlm8/hlQgjKWXbzXpejNINY+vEwWmOJzEUu8uIgFxtd0BDwwFqY+xs0/PGKHv9Dkcjg8/tZMd1cQVDz4iEM+4gFXPJtYJHwSK0A8h8bqOoFITrysfbxTmJBWvCI+4vJ6hlW8KO2sSqc1Pbz7n2PGKd5LvFbCRuRFHUC8ADuCf9ArTTx57OuN1Z9UPPDkERMvcUs8tDO3PAoFOTyH7AB6aDU7vB5rJwRSI028SxNgHkNIPrxuoKDx50ITvHu1sYK8MkS8L9HNpCwWPbyvFdhK8mcjPL7/RhxUjU08OQ7iRovmUTz2bxv7KrtDPNTx2szH/j680pqQDVLGQLxidKjXMHvwO1TsarcW90G8wiPi/lQkT7zmjYSlNYEwPMZKX1ZdXSk8PHG0HemaQDyYZ6awg0tBPJafGEnEXUM8Z/CjVCwMRTwkWZcWoQ8mvI+ittMrHES8hJQ1XdIxSbwgiCuH25JIvPySpVqAxkK8LFUSKxwLSjymagPRAb5HPNe2dHeZjSg8nbPb89KJETz864h+TmITvFxqm7+iRTY8ohmuJ4+UOTx3U5q7fZdRvEpVhD+G2lK88PR+gSExDrwHxjiPNFxAPHBD9hkkkGI8Fa1ny3NEUDwRUhz4bN1NvIEnHIOVlj+8VEgcuvLqSDz6g5Uz7/Y6PL6x5SpZBOe7pAAXDwpKN7zzfo1ZK6k0vBOIgGcPlEK84CZ65CZ9VbxBvT6l1z1WvODikj6HfkE8wBoPcrP9Uzzuya7l1ZEjvFKIu5ht5Cu8akjL19O0IzzMVEo4tMQxPHAtbvf6Bze8FOXW/WlzO7z4rov9JA0ovAw4qddjtDe8XMtmVIAnNbyAk+sR9VslvEBuowvReuE7bFy3N+oYLLzoMM3MWG82vIupz2I53ju8AftVdK2jObxY+9jTEP/nO3yWB1A7oiw80iyBQFjsSTx61Xod6eRVPGRwiJGdhl88R9C9ISczQjx7HB/ItUBFvLqHlY0SpDe8DdcAlYthPrzirqqgn8ZgvKxhC5jKDma8NrQLqWaUMbwhVgQzfK9hPEtiD//kYGE8vEUzlRdoVjyqTCMGJ51HvCiGzMHI0zM8vXwlDvAiVDxAJYYk6l5BPHb8heI0SE68t9Wl2AnfZrxUu990tf1lvOTkH/osqyM8Ete8qpVOYjyeelHPRqRdPDg62HFnjVA8qqnDiQ==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAsgMAAAAAAAA=eF49kX1QEgYYxjeiaaSUzqmImsrlxNQRiUi8nfmdlZmFlJjOD+SYMwqbjjTN1Dg15/lxuezzLul0A+GU08P5Lq2sMby28pyHxq4Pa8GpeK222fzaBt3ef97/fvd7nsdRyOIrxl1BtdVoqN0bA11ElRhCovC0U8SS8gUdTD3tvj3cCKhQTMovOh0A/f0H1rmfonEnhewSN8pASZ2J3vXUE6OTqLs7P+agHyNRf5b6dtBH2RNwo02C3syndNX2XOQnRAerr+Rg9vpaH2EOC4Srb5JK/uLC7J41p8K1GVgYt7/xZNABYJeZvhdl5oK4tG++8AYf/Kr9ZLqveHDT299DIuTBkM2XAM/ol0aGFpYGNV4Jl/TJWSj8MWQvg8REs8HdMBa2BR7yKE8czAIMvtX7zYVKFnYsW/atDT0C6QpnapE0D0SCW38ub6Vhg83XMvie7Uw65c7mqDY6A5odt2yu7zuEpPKGHXc0Ppgwq6ASX+aA33ey2LfHU6Hp2FRLP+tzGPMnMMdSCqD6vJtuojcCRJoon3xTFCRrOz3OJsWBnUscUFqOqgOmD0LH32ayKWMPxs/8sW7xs3QwPz5EmI8BnL3tJZVqpDjUb6yaKymEQkpsZvcRMTQVTKT156fi+MOgttG8AvC29VrxP3e4U1b3y9psDDtRNEe6k4ctruoZh4ZsoIY2kVYpuVBaEOi1TC/BOv71mkbul+j+7GrAmeIc6Flcjd+4RggNT9TVh+WbkOfEClWv7ELTJ//1QQE9O873SmYiZtx9mUFQ+SMnOnF04hED26RJ12j/cgwRgtjeL4qxhay8tnKdi5oYguXrR9Vw+cOx+9TWGghat0AlvN5m96z05aBtvxrsKyfpBd2lePyqappMzMXt8Suh5R1sNKstVSGTh4GYIq9IzQYIlHg8Tzsnhjfyg57nl0Uw4qLefC45FdNS5RtDuvehPb8rx8qw+77/mylRbJah4y7qc1FhJDgbW7vimSeBO2Wul9JOo9WF4H6zqhSDy3oVouYzoOfl+9eTKiGprIxm1grQzTDY/INjnJ37wGHAzicMGGemTwXWOqD1RMrP9/oiwVRMjCSO8MHcNXxZvhIGrhtk+Z/e3o/DO9jzj1+k46tMYvv0YjaaXml+nWhLxEbytiU92/fdXgs6+w/iJGxaZboqsnC9UTo1foyNd7UxreGTWagvmrknaUoGjyxtxe+vRfDBbHj70W9p6Kl2KZl0psEQvb5ZNw/gduEjsrWR8Y67FPkP3D+n+Q==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAEgEAAAAAAAA=eF51zL0vQ2EcxXGDzT9hELetRCRabYXEKBGbFdGhJLoYLBUUCfGSxqUS7aTjnZqYLHI3Fpt0JIiqXH+A16hHfJ9ETnLv8sk5v3Of7u96M3vs+VGMiRHswV7prQ52YfP0IFg0BuILPofcA7nrLp6r5qv/TOAApjApvWa7S+Nhx9REw1hCV/JRiEXJJfExvXE9WPb8Bj6J9/gg+Q5vRHtfLf9+nr+GeVzCAi6LK7Kz2vc632vTb8YIOhgVnZCdavebTv12vOL5O7iHRdySfh/XcRt3Zdd26Z65xo+LP7/wFdu5f5JbaP9rhfTZwsnouXEOZ3BB+lkxI85jDvsSk2NXxn6MYwyTOBySUziEI/gDymdB0Q==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAEQAAAAAAAAA=eF5jYBgFo2AUDHUAAAPIAAE=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAtgEAAAAAAAA=eF610N1L01EAxnF1uKRsV0HqDNQ0KtzYIlQsTpBvKDhf5tuF0IWU7F4cXYhEZm2UpnMgA5XydVu1SsFQUZsmlATDbiLZjVboJKzNsQuNit/3/Audmw/Pc57zu/hl1u7E7qccCL0Zq2tkNmFrNZ6uQofcq+rRWoeX5fsNuUty3/Q9dUXEj0k0TKBfmj+FJi+ekbplfzSOaWPoGcXk593uEl1YXPei4xmmv8b309g2g5ZXWPcCN+X+llQl+1iWPcOysy9COfg7D/8U4NYV9MlcqMfABXxpwM+XUG3Ek0dpjWWmkNCptYoVx9GTiNPx2BRj5/iJRTKfiOO+8Bh+0cjvuPb+/eevIv0xnrdjwyO8dg+Dsp/vx7keLH2AFx/i4AB2F1uNfe82RVcumn61K96Vfkul7yjAcwIjp/BsAt6Jsp/dwquLzuHKvoD49AFX5zHciwMy+5bR/AbXvFjsxCd2HOrERJvue/bMorBY8TBBr1ivQkMzfdSJ3n40f8RIEBcOcEXDO22yP6P29ohomX2rqN1eVrzhoj9sJ+/qlhQDc7i+wd7mX1EsN64qVtVg3H86fwG0k7viAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAtgEAAAAAAAA=eF610N1L01EAxnF1uKRsV0HqDNQ0KtzYIlQsTpBvKDhf5tuF0IWU7F4cXYhEZm2UpnMgA5XydVu1SsFQUZsmlATDbiLZjVboJKzNsQuNit/3/Audmw/Pc57zu/hl1u7E7qccCL0Zq2tkNmFrNZ6uQofcq+rRWoeX5fsNuUty3/Q9dUXEj0k0TKBfmj+FJi+ekbplfzSOaWPoGcXk593uEl1YXPei4xmmv8b309g2g5ZXWPcCN+X+llQl+1iWPcOysy9COfg7D/8U4NYV9MlcqMfABXxpwM+XUG3Ek0dpjWWmkNCptYoVx9GTiNPx2BRj5/iJRTKfiOO+8Bh+0cjvuPb+/eevIv0xnrdjwyO8dg+Dsp/vx7keLH2AFx/i4AB2F1uNfe82RVcumn61K96Vfkul7yjAcwIjp/BsAt6Jsp/dwquLzuHKvoD49AFX5zHciwMy+5bR/AbXvFjsxCd2HOrERJvue/bMorBY8TBBr1ivQkMzfdSJ3n40f8RIEBcOcEXDO22yP6P29ohomX2rqN1eVrzhoj9sJ+/qlhQDc7i+wd7mX1EsN64qVtVg3H86fwG0k7viAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAJwEAAAAAAAA=eF59zb8vA2Ecx3FFOlz8ioXFRDRIjf0LiojdxiQSjbCQG0xoCe0gJj+OyuXCIQZMLLeaJDaxiaGN1tXQVFOKR/q+4b6D6ZXP5/k8z9OaiVi3Ud1pw2bUsB2bMChyi9h14rFpjN79o4mWyJ42nuE5ZrceXwrKPLqYEebwFQvCNyzihhbfDg/pzjouYxxXhJu4hgmx9/q609zYkjKAVbvmJ35hyfaf/2BF7Ot5p6djYuFBOYi9OCD6MIZE3499Ik8m7o3QsO5M4zzOYgyncEbsY8I5LHZHxheVLr5jCfMil0XvinMvHx08N14rDTRFtjCN3v5E7PbE/Y9kV/pJGUzVLJM1cgMGUv7+m10l6c9V3B1ZjWb//sN93MEbvMILvMRDoYm/bfHzYg==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAuwMAAAAAAAA=eF4tkW1QEwQYx30rcNZJ0kCQYAwYDHDImMDgATaJIe8vk23Iy9BNnInGq8R7UxKDAzfOLeFUVgJdS2UBFdueD5Bc1OwQ8iWDgxAUIWoNBPJmRsfo+fL/9rvf/Z6597x+79xvDeWaygz1+SAIGEt7MLOdgSOXTs9+00GCnrhJSq3CF4i+03ZljGhwrnKQ0p4GIv62o1TwiQeaVGQn91c7kZU59Ezmsw9lS45XBt1M+syrW3t0X4gwasVH1vM+H8lfEwUTHTw0znG/HK/0gcLLBw0csz98anydkTucgh+rlkMSBdHQEeuhTb/Ch8mxhbGidxKgRiYXa/NiwdvzcMv1oFjYc3rd90Xo7WMcrbptSe8wzMl9Us5F1a76yGx/Txzs3E5MKHOFAi9B6J24FPTd10A2t/ugjXegvNcpFcxNbaSINQG8PE6ZVN/cjfEr675T+k3rJ+AwB4PWuiuG3MFWVd0dV5GIs0L1qySiLc6ee5NA2cYHRX1XsCiPA61FfdO6qiPwuHDC/fl8Dnhqkqq7aXvBuNNk71rBAGqwbJBADAEL98NgrdOio+iEPAYWkypyWEo2Vi8+nA3gJYNZ2nrN4E1H5zRxQw/mol2971+B8UfhnK7Zam+qEJr+/PXHuSwOZj+z8jKs5kCGpWvRBneTPdO/mFxX23IIHUayRyiSdHSpiaC/wUmDVb5wWRPFB1HlqHygOg93KEtMpZOnkHavSxJYyIMtzxMGSnTp0DyEzSORb2MOtTEi5C0Wti6u97CBM6Nb11iEcIw+yj0c02eHNcOhLp/f8MCxWjhrnDiF0Pv3hZuKk0g+n9lsvu2PH8T/Y/9tXRmouxT6zqJyuJbvVjfaQd3wlLGZJMv/ypGmkiXaUgqwH8RNlVQ+Jv0S+52dmIaLvLskWEoChfki+1YYHUzJ7dXUJiFYV/ldMjRlwRPpC3gYzkElUfDz/r5ItHAlh5gH/vdV2nOMc1vykZSdXiDO9YPxwvs8MT0fRC4rC7CtGHtPXjTeIhTg1B7Px7bKM8CjhgXK24ph2b+xMcY7BUtmHAl3B5gb3PlwpmWnWEzNsnjWxPpXL3FSrWoH/WCX0JH8w7sJcKCB8Zn0DzeQtH9UOt8QhSXOGXGPOpLxyImXV8cfpKH900d597jhaO2sYPfn2W508GFrLdsvZLa6XidldnORstmwcMOVhneUMza197mo0UyH+W6OBN5XPx07fjYLpi/oaqUHHTBgSZAbULMbWi9HW0200IHMfi31+xiPDS4rVPsfpdapSw==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAGwEAAAAAAAA=eF51zU8ow2Ecx3EuiClsNg0rV4Wbm9uuOzBN4bLDikj5Eyf/c7Cl5EKhhNPv5LKL0u8g9y3z7+a0frGD0jRy8Kj3c/nUTq8+n+f7/T7F25vKcJ/jlvAd39CT/kNyUebsXnkwN5I0VsQvyT+ifS9L/sb6i/jrnrEOG8RG0fY+2fOJuUwhem98wQI+SX6QPi97j/iMXZHpbG+/43ZjBHuws4rtGMaQ3Gm79s4zRj82Y5P0LdiKgSp90N5JTO2X/v/HMHZgCIMYkDntrXPeb010wHEXcBaXcAaXcRFTsjePK5jIr6Z2jaOoOYlxHMMJHJc8iWtDtZ9Z4zpuYxq3xA3cFHfkzsmVP3ZnPMAjTOMZXuKh5FM8lvwH6Hf9Wg==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAJAEAAAAAAAA=eF51y70vQ2EYxmGkGikpsZhMEg1SMZ2/oIjYbR0JEhs5g0UoojU0Rk4/0p7U6VASNstZTRKb2MTQlkYRSurzTfze4TyJ6cp938/TUTbss4jpdmMndmEvBkUfFHuPMJezps6VBeEh2kIHi5gXfzpXkle3dWUVa/iAdSz/s1dF1q4HYnvhcdPdwjXcEX0ctzEm7uIifzn306vKT/QXvVnvLfSv5CY28M3x7qN90eVL5RAOY0jkEQzjGOr/QTQwunlhhSZMdwHncBGXcFb00nlx9zJgzKwo3/EZGyI/ilzDO7E/YTZ14ztVWqhzCvN4gGm0hRl00L/bn7lWfif+/MB2+mbCu7fSt4n9B330ycmNSEW5j1lM4xGe4DEW0MaSuP8F1Lj0ag==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAigUAAAAAAAA=eF411Xk8FGgYB/AR61rHhNKmjURRiFCah+lYIpvaRrodK2nXCqPVRuSINsf62CJRcqRy5EyOeWWd4z7G0kjOcQ3pwtZGsfuZZ/rz+/k9z/O+f7yHDKNx3eylOtLZQWXmaRjRr3BWpyaW5oOW9nKB7ZcyolUSnkPNerROa9xzSCoEyyisXx+TOLqGVUjcs9E1tPr+/XvZZPsHeYEH4mZC/RgDpPMPzLsmJh0WGTVk0Q7n/Zlb8JkaUQ1nctAFTxSLntVxIZ6NfibK1A3+YRgWbdA8ubZPHzLYoMqbEL384Dt6uovCkX61VtBbQlfXfZVxdroE0gfQ8jnXKqoqa0lVGHo0vMH9kDmXuEei9Tcu7s7IbiXav6GZk/FiFuLN8KlMaKtHrxRNeyF2Bp1sUZymZMuFdwvou0NRuszyeqicRRf1HvAwnyqAiEr0lLa6hcmBTniafd7GKp9BL7kVIGtgdw8i7qL11Dz+Xh4xTD7/jNYF59M8Hx4hZ9EtqV27Rv+tJ2yhOWWFp1wPN0BTIFri4rmJzmODcDMBnbt4JM3zIBdsbqGDbrPcj/9VA9K+6PKjUaEJBSWEL1xPPXqHfUdYB7F2Rw/qJL3XM2gjYpnJ/yyVHqerybwzkEyZJPNhaAUvT/4hNz7RD0EbdJZ5VEg2khNZ6B6XLYUrToXDyqfoiPpTzha+w0B5gaa+2CMqLT0C7D70ivB0k2KVMjJF0J/ivY1zV3HJQBLaSXnrFi3TSKIajlZ/PPagO7kaBgPQD2T8xeymJ8kd26y8dWYO9OxpI1EGjUfoPugYqqNUaF8s6Oejh/y9bAcWukE/B00x7brYb8sDs0a0duXbAa+XY8AqRAclzz9q9vwFuq6gZU86STq0jJCKEHSCa87EPs9Rwk9HK5QnKwfP8chPKeje6Oeb1oSNkG1X0Q1q4bQN1CnwCDwxEdzsSO+45+US+3AUvilFz9D97E09y8FN7qTApTZZ8ekajfD9MjS9w9Z5x9Ey8KvF+qx9a9kte4ZJWwiaF3azraGphpi6oS9LXWqwrOuFVfno+epxbaoJ6//7gR4dE5n+GD5IjERwfppiKd/wxhhp0kHHMmIW28lrSJvNE+x/WaG9t3vqPPg0ouO+fhgUODwDvq1oK4PhSur8JCmTzRc4i8kINi9+T3SrMP/xsYRzvuEEWSbsT3WkiAdWjEPvBPp4mrgYx3AWsl6h76zYZMlXHYXZj+iZnf6bN6wZhajlOH//6aDDxjJ8MDJGz2nqFKiuHSIF7RmC85HRcPvJXstMiC9GbzArLr/KnQFNOpoyC9YLTA+wFtr4je/iXoM35MJDdFOn1MnVmfmgWY4217ZakqjtBWYt2iNaKfOa1zi89kebxWjMzRqPwTVH9K+aIvHqxS9AyQot09e1u8uwDwo3oueckowlItkQMuMvuH9ldqkSkVdGiKtUgMDKr5MSPU+Pk28l0NU73zK686ZgKBvrUyw/24kHDUOoPOY75aO6FT05xFkfnavAu9VQwiFuq9Fz8y0sF+UecmEQ+10PcWRzTBrJUiJaPCn0QJNpOwkNRetnFkRszeggA+fR1jfmezgqzVCsNyd43xq2hVvdrOaC93q0nMqCSYxWJ2H7ox08KR/u768C0QC0hoWGNPP3dyClgL7Tx7nnpNIGItvReVPN2TTFl2TcCM3vUup3S5sjzBNoqyU/qu8ePll5Bt0u1+qm0cMmmefRShbeklqBReRwKJpC0fM9GBJFY0moCf4PCiWWPB6JpYVxVIW+zuFGpbIy9n1xSPLmRBarxVlYX3lb5f7lKtoFMWEepAweT1JZfQZrhZbbHM1rZUlGCU0p3WXnFEejjnyZ56ua5nyddkxtndBFcj4DATSTs198/Vx/UgqNdQn9H6upqnc=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAMgAAAAAAAAA=eF4TfKXbOHN6oa0gGs0ABejio/Kj8qPyo/Kj8qPyo/Kj8qPyo/Kj8qPy5MoDANWzInE=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAcwIAAAAAAAA=eF6Nj99PzXEYxxP6Qax1KjN/Q2wuXNFEhLDOZRsVYmPW0vphmBtj0ZX50TmnUx05p9opsbkwtnZscWM2DXFQN7QK/TBzkSV8Nq/n5r19N1evvV7fZ8/n+c4NDc77C+KJ/MlN0UfFTYls+I2eh/uk58j8LN3nMZ8r/bv0VR77rU/LvH23d9fgudLX4vZ/GfGP/bWub69InRtxXghX0LfhRTBN+haZL5SeRd/q0W3emEkvkq532vvp9GKP+23e3l8dfuLrc71jaCCZuaMp0Qaz6RG8HebIvPVcmQ/KHpsPwXx6l+zRe4z2biduzKNH8aj0GG7v9J4db1hw/Zy/fK/f+WnYQz+D18MovQGvgzGZtz3ddPMamW/EG2S/7tGu99geY4Ruc3Zn+PHMj/L18cSVlPOlMefNMERvwe17WHqLzNvcZRiUedsfoNvcRdhKb/aY97qzWfYEpV+CV+9/Kht0faRgc/ui85fwOv0t/hpeo7+X3kp/hyfhTbr5G+m2/5Xs+YDbvgB9DB+VO22/7bvh0Tvmp1+s2xBP/BmtCvt3NiV+wwh9+dg/T4Ht9Ax8Geykp+Gp8Jbs0Z4uPUS3OxZhG/0XviB32rtLof2X3bcEliSzNp50ferEyuyg8wm4m/5Z+i76hPRS+iz+ReYn8XG45z/3fIVl9BmPrvfvl/vte82z2UC369XDD34+d14B6+mHpZ+iH8ErYSP9GF4te47iB+Bx+kHpeo99t3cPybt19CrZU0uvlN52z7fvqevRkgvFU867YIB+Gzd20uN4NwxJ74Ex+l28z77TH+L23d69g/fCCD2G271Rer/0DvqA9L9z/utNAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAMAAAAAAAAAA=eF5jYEAGH+wZsIJR8VHxUfFR8VHxUfGRJV6TVm62UvHoHmLVj4qPiiOLAwCPuXo3AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAigAAAAAAAAA=eF7NjrENgDAQA7MKS1AhZRtWoGEhBmGfjIAoaCyiiz9E4srz20lKNyWnJmp3j/9qx/WUt3qF+u6Oe1/zlPd6xe2Tp3yUV9x+1FPe65XouwrtKHTveoX6lLd6xe1H/Vf/Gb0z2ivUp5zgnX3d5mM6F/Xv9wrtK9H7mnd33HvXU/4Xr7j9ki9+Onm3AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAcAAAAAAAAAA=eF69jsENgDAQw7oZ+2/DCLyJqCwfAX+QnEvKWk+cx/27y4npjvWJ7U//M6GdhO7tTstT/tYntj/1lH/lE9sn33rX7th76yknbH/6bssn0/9J2jtfe8oJ6rd2dt7ut+5bOwndW5/Y/l+ecvYXzdN2XQ==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF + </AppendedData> +</VTKFile> diff --git a/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_1_t_5.000000.vtu b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_1_t_5.000000.vtu new file mode 100644 index 00000000000..3ba924f1624 --- /dev/null +++ b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_1_t_5.000000.vtu @@ -0,0 +1,47 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="166" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="176" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="4.1335466312e-09" RangeMax="0.020574490098" offset="260" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="4.2793638679e-09" RangeMax="0.021300286984" offset="8224" /> + </FieldData> + <Piece NumberOfPoints="121" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-5e-11" RangeMax="2.7103682982e-26" offset="17420" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0035754847097" offset="18108" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0025" offset="18712" /> + <DataArray type="Float64" Name="epsilon_xx" format="appended" RangeMin="-6.3461410768e-18" RangeMax="5.7981436356e-18" offset="20464" /> + <DataArray type="Float64" Name="epsilon_xy" format="appended" RangeMin="-7.7591526023e-18" RangeMax="9.0136555167e-18" offset="21816" /> + <DataArray type="Float64" Name="epsilon_yy" format="appended" RangeMin="-0.020574490098" RangeMax="-4.1335466298e-09" offset="23168" /> + <DataArray type="Float64" Name="epsilon_zz" format="appended" RangeMin="0" RangeMax="0" offset="23812" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0.035754844936" offset="23880" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0.035754844936" offset="24152" /> + <DataArray type="Float64" Name="sigma_xx" format="appended" RangeMin="-0.0023380102384" RangeMax="-4.6972120539e-10" offset="24424" /> + <DataArray type="Float64" Name="sigma_xy" format="appended" RangeMin="-4.9877722012e-18" RangeMax="5.7941972174e-18" offset="25140" /> + <DataArray type="Float64" Name="sigma_yy" format="appended" RangeMin="-0.021042092146" RangeMax="-4.2274908717e-09" offset="26492" /> + <DataArray type="Float64" Name="sigma_zz" format="appended" RangeMin="-0.0023380102384" RangeMax="-4.6972120826e-10" offset="27120" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="4.1335466334e-11" RangeMax="0.00029425509902" offset="27764" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="permeability" NumberOfComponents="4" format="appended" RangeMin="1.7320508076e-12" RangeMax="1.7320508076e-12" offset="28944" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="4.2793638706e-09" RangeMax="0.021300286984" offset="29056" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="30572" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="31712" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="32424" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="33156" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="33692" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="34416" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="34724" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAKYAAAAAAAAAYwAAAAAAAAA=eF6FzDEKgDAMheG7ZO4kTr2KSIgaJWCTktZBxLvb1UXH9374LhCtvDlVMcVsbSG501kgDtcrmi/sELsASokhQpEtEUqG9hxpYkdbcbaUTVlrA/o7/BCci+wtfCLj/QAlSj0gAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9I1NLA0001PSzUzSDZJM00FADQ7BVE=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAMhcAAAAAAAA=eF5113c8le//wHEpQpQys1eRPTPOZZ2OwzHPcRwjO6GI0jKSES0pWqJlVGZDKlEXGlaDpNIkRWgooW38Pn98z9Xvvu5H/n0+Xm/X/b7uczwciA6DzXeYQFhRZ/TNDYN6nv/9tHbtn00TnwdahLpiXJ57kPzChSnzFdsWggP/6z+paBA8baDoqdZMDdTjXtZaN+o0rQ0ui9hePyDrCSIEZAl+uEErcq2cHvhzeS9UX8ckOaAmhSd9t0J9t+nE1//v62ph745uUdTj3pItFVGabwT6YzY/EoxQBKnfeAjzR8wnNJ/pyEGaQVhl9F07kgvs6CjOGwaQ29+p1Sa4UNm6ruhTiwC3x12EXhX8TGkxzLsmUOiZ7wwu3hQhuDvV5JvFU3uwIevargOhDJKzP9JbTv/wBdw+Nngv4fluas99721BR/1mzHcHGd00WuILKjkNS2Kp/MBzOIrgGxKH635eEQAzXtzPy5ikQ9yfdD7aO65sCLl9fUAuwVsVK8ZHHU0gt8ddkqXg8sjWDnp5yiQf73WG59XrCG7lMbM1oNkUdkQKZPg0ypK8VlhwQW2YI+q7TH4QPIMR6K8h+5vC7XE/1mHWFRRKgckvZB3MN9JA5Evi/YZGdoTTZxoDHrf900HPhyi4v334+knEZ1vA7V003hDmi1Sxj9bIVFzn9rjzyNMezMzVA95tsasf/DYAmy+UENyZc81fTkARZBckxxy7KEfyjUl6RaePslAfGKBJ8HoJiZ05Xbyox709NTP7qQ0TWAb1t2VSAmHntCTBz6eHix2osYH36412BvD4kbw1+Xu/0GoW5Pa9oYEET22Oymv5bYF63FUCQNpgjhvcl12Rdf6DN1Ts20DwH8NUlZTHUtAqg/n0WRGH5H3n6o+q8vMCbu8ZG0Lwc2rls6JYfRRuj3tDo2zr6wJl4KJ4dovhiDv4AxPfJ0dykB83XLuitkAGxmnnK3cyl5HcIOL521dihpDbd67fRvA7PR66N03NUY+7phXj1VUWFboahn5JF3QDfo47Cd57VcRpwlUZmgVonRA9505y+ZzAwduVpqifbt9H8JB95Y/nXuVF/RTmE3Oij6sHGUCbBTaZfhluoPJ+NsErNvdM39Z3gn/qh0ykNTxIXpqUPlUkx0B9Vg1x/pMbEqIv2uiox72z9frc2loaPK79IWJxHxWIBxKfz5R15+gJGz9QOiK5v4ypDCQwP3j24ZB3wQrA7T8FbCK4nIlSXs9xb9Tjnq4wGR7fHgSMr1TE9u60g8256wluZ6A4+tOVCY9HxT67uVwL4H49PqvvRzoHcvtbs7YS3PqoT1RZNBX1uGtpWTBLXjhDAbGwmZ9dpMHGjhSCH5gl7zKSZQsnzD9Jt3upQNyPtzxfX7HNFvX6t4nOM7xupDXQDvW4C1XqSKa728ETJ66m5CaawqGFxPM9lDjEcGPbAna70qUVnQ4kp2j5vWugOwFuH7t4A8GVtEOUdh0wQT3umyt+VVyGNJBokP5G+PxCeFR/HcE/pTXmKS/kABWzOhnjIBuStz8Q4pRreqB+pwjxfqK9lH+nt7NQvwtz5qnwKyK9TDASeni6b8wTdvZEE1y70Kn45DQHpqyVTx5qcSB5IZ9qHKhhQm4/j7mS4OKODs3FV5mox32+v7X+7l46FGmPW3Rtig33KYcQXOO7qUctXRL8BAmDTXfdSb5Xlnl4UEcF9T2bIgjemqRN8x1QRD3u8ecrLHSgDKzeYhezQIQK3MEwb6tkEvIE7/IfRerKsMe+s3fBISbJRd1mrGDEi6G+qOkTwZXz1d1ny8sAbo97Wkrdl9R4NbBGVDXGeokb6H3wkeBQfHfYlgIzkF0sIXTqmh7J1aRPhFuN0VCvUPKe4PTX1UlOAd8p3B73tN3HlQYqDMHlpkq5VFUPMB1L9Jaq1XlGax3hml/WSQtXuYEpzDcYnpQ7tJMJuf2kIvF8d7b8/l7S44r6CcxHc8KcXBvcIX161Yp8W1XAM4PoRmcGRYNjQ4DOI5fJh1U0klOkDRtmbQwF3N5/FvF8+VJJnPMbQlGPe0lG60z3deGgdKnRypSepcDs2CDBd0TIFUY3u0Me/898WWn//R3C3PyLvso5cVfI7bXq3hFc6+qMk7HXPFGP+7LGyb2BU+7Q5oZ21YSvCqyQGiB4W82x6QYLDmwtujderSsNcD+6952q+7vlqB//NETwy1mdiRlsNupxT10pVyg35Q1dLeIND5Y6wjs04n5yy6sYaxc7gV6puLz5eVSS+8qy3nf5swC3jw0k7ucexUhSX9cN9fGYfwvZ73Y1mA30Xq9sq/mwDM5tJO7nlSefQa6iLwjuFGodXmMD52Fu7LO8L3luEOqX2/URXOSF76jQ9N/eH/O2o3w086QgsHmd3KUBfRp8/OYtwS8NH+LdccgSfv4avCq32Znk2S/8GZ7baZDb5zL7CZ5jOvxSVmIZ6nF3OcajptfhAD3lElXf6bOguxPRbQb9M0RGdeFA84i7hJAzyTML+l9fTRRGvVo78XxXZroVnaKqoB73gmHPG19s+EG0a+X3G1+Z4DLlpS/d6gzym6UBK+o+6EO1HxRNt1YayedIlzxv9zCH3N7Pn+hxrmmLRvisUI/7m57Qdh6zZdCj+8Fd9/JFgJ1FdN3nOsI9dfNBTPvP+rQmO5I/vHk7sIdugnqd70Rf5cLMCrtrjHpdzJ+X/3GpuyAGe4rZwTHJduDl/FcET4geEeyXdoTZzt6NJ4JkSF58L3Rt9EU66gux+VkBmmsZeSzU4+4kc3eZ/D03yH8rcEpN1wVUvyN686bId7brw8BhisLoKMUd1GCuIbg5XkgoHHD7+k6iRwqr8yb4hqMe97Z8gxzqWDgIjcpkhk+aQno70X+0X7i0brkbDAiqn5c5aUPyNIUFA2cXMiG3n/uE6O++Xtnw+RMT9bgPa4xMr/BhwRvXHT++reuhJDQSfUL/4psEPj+oqRgqIDVmCXFXspOOWtfojfrV2US3STC6DB4Foh73kH1HrQ0P+EG+ib2nRn1s4NLVRJervaXhqkgHxaPZTQZ0KskVtXsZFjwugNvrGRL9nuXNI7pL7FCPe1tlT42MkDN4bNw0bt4vDn9rE32TvWBeySYvoBG34ZfLKTfwE/NRez7pX0MeqG/kEP2w+o4N7bxBqL+NeYmbQNjnOH8gntVc3DqTBV95E12sh+/+kStUePfszm9GA2ySj1LLM1ZwLCG3Tzcj+t0/zTIzc+1Qj7u+teQhub22UPLY6eHVgAHbAokezhAKadwoDqO39Vis/mhP8ug5x1ftmklD/caPRN/f1qeXFjwX9bjLTpvNE/BdBnO+nbyiGU4Hxupln2x42pFP5k9xOhi6cP3dG/F9P9gkP6H8dA5FUhX1R5WJHpEgc6RAfibg9riPmb96/fubInhctfHLZ3kHIC1P9CU1H+7eWK0LMpiCCQ2egOQW8skn/YZMUB8qSXQxusR9mqAE6nH3WKTw7OhHdcDzRrjOjjZOWSVO9LqIvA9TOubQ+YyazV05UxCG+eqcfIeqKAvI7UskiE6b6hmJTdNGfTHm+ZyPZ3t49WDAzTkazdo0UChFdHnrsq+6xyLBs5rJ2ksFbrAI81tnFR4/kogE3L5dluhd81ZdSVYORX0b5glbu4+oHV8JcuPq/wg6GMAcbL9SGTNmKUR4w+Y5o8OlmssA7plK2xcMHvaG3J6uQHRxM5Hd6zezUI/7rvbsI5QiFjwUErRp+20TGKdE9PcxiQVZi1nQ6I0TG862BrhnDPG/Hdzijvr2RUQ/1dnW7ipjh3rc+xresqYb7WFTQd6Q8xNXeFSD6Okdy1MXfg0CK95uTY05Hkjyp07nXbqLgwC3H9YkuoC0fKLLHR/U435+bqP4E2Mf0F94oMCxmQUuY58v9maV5v4iL2BoSwvK+WkKajBXZ345khGxHPU5ckTfce6NbWc9C/VHMF++87xY3A4PEDDtXThe5gAXYO+HXmZDuXISG6YNKY6LbaQD3Evn8vsfpHAgtxdQIforh+0SSS+sUI97cJnbWpUhKtzKX/Fr70snOIJ9PxR01/Bdfm0NX+6BJVE/2CRfNZb5fGuZGeqvyRB9Teztcym/7FCPO3PbuSOhAVR4vbNkyrrREyzZXrXUQe8bclbWrc51wpqwlKVXIH6GQ3IasyY2sloJ9YfSiX7s4Glnhd26qMc9y+PoV2mjRXBqjV2BQNIyYIR5U2QUXVFeFKxSFI2qneSQfORkn0j2NgXA7W+kEf229uY5VekA9bi3vipTmD3PBvDPk/KYw6MOHLZh59948f6ojxjUv/A+SUnQDtpjPhjhE7vlpinqq5OILtUhO7sg3xr1lzGXtanst7IUgBubHFtEznpB2WSiq2TKOif/DAMBYo+fhliyoRzmyvm2Fj3OKwC3b8We74zZr5Yl4qtQT3Inxepdq0KAZl9O/E81J7AXu192zzpRjqI91FbxH5hQtiO5rPIe+y219pDbV2HeWS/yolPJEfW4583QmP/rmiM0NMu7/OuJOXiIucvu4ZeRXzzhU/qJ7UoHaRD3WzWGX90YXqifwlyAd8hozDUQ9bhvNdBhPC0NhOougssangRAZ8zPxAeKPytgApdJe+mlQgySDxnO1uO/4QG4PQXbb69Sp57mf99/3B53tRfxjt5D/kD1qMdDBnUx8MRcr/qA7BveYMAK8rxD1TYFXpjviddKeeTxtz+PnS8k9sSvA7f/9pWYf/tjA0y7AoBpdyWr1tgRzN1B9OJSB0FfNg3WetZ77WWZQNz9RpxirD9aQm5fjX0+4zwF0kWC2ajHHUxVv9SrYkI+mc+UhfeZcB/2fFIXoz8c9HKHDHj78qN2JZJ/FHI737feBfU3Uol+sWHnvPcTdqjH/VXH6ENGqiXclvNpJE+GAxIDu9oUPso3cF1DjMH/a7U6nH1LwnJdgwfJ+17Krp+rREH9N8xFQ08/ye/SQD3uT9PvPA/uokAr8SWSNtEcsCCI6GOZMyXeHZaA/jp0E+pJK5K7v1GZOinRSeH2/dj8nb9jtdbE26B+AHO3HdWHBewocF9UqWMdrxMUxeYHeKfRjI/YwxylwSOHMm1IvrrOpXX3Nybqr2D+9qLKR0U/Kupx5zy2MJ2+4Az1BVa9kei2g+OYt2yyCMwa8Qdf5kcL3ONYglHM9XjF52T0+wNu/x1zIXmWnP3uENSPYW7VZ7melhYCbFbeu9f0to/yB/PRrxKb/ceWwbCqiXiqgw/EnRGi3zVylQa5PX8w0Q/IP6mruuiJetytPN9GTYh5wbixQtZovxtUxNxfUevR429BsLjvyppOtgvJGSffCbY2B6PeHfOQE3u7Kk/97XF3k3MQOb0xGCo9Yypf6JSEHpivCZ7dNinpDcRPlltLqdgB3HnFBQt/FvkAbq+GeVXWhMRCyQDUq2LuQJ16L1YUCGY03qo5VWwK+DCfPzHmWTvgBTSD/vsn4tESkq+Q4DwXHvRGfT92PwefnypSyvJE/TvM+0dnLdqY5QWOpb9YKsumQxFsfll4r0j3dgfoceVM5moPW5LLDxY6/KxlQm5/FHN+nmazdH466nHPDVsCj4y7wlT77zpOWwzAM8zd/Ute32tZCqcFuqgdEZYkv+NOc7Z7ao76Efz9SzTlCHboox53gfWPb257bQQH92y9qZTGBLPbgY6fkt3fz7dxyoeWBBvIHr2ikKdnQnLpWvO47s0aqB9tI3rtMuZK3ion1OOes7Xn6df/9rLv9Y5XR25pgU+Yv7Eq8VtJMYMV9EQdV1tT8AFzj4+vVFcmWvyzj3okZBmyxwj1uL9NtpkVct8ELpq3oiJspzb8jjmVMvtY1FM3OHHxXOtGmj7A3aZu96v5KRzUC2P76ctcezDExAH1uIsO1D0TvsCCp2nrJBW224AFmP/OrB+Ljw8AJx82ZO0esITimNcuGT10+nkA4PbzMc9P1QTBxzxRj7u/QkD3nj+egN1ld0oq0Q/iv19ifPz+wks+MOWCdkDTf38HcF+2QsPu6ZAP/Ff/wLjbfXo565/9ZJHoPZjNgqaL47Qe6jpD7P1K8dmzZ9qsmQ0nrkz/WJvvRHLxlE6JLZftUT9IvJ8Ux7XnqoKK/va4f7OXTLy7xh7yKGk9kvlpAwYwt9w6ErORNxAkDOk6FK+kQty1fsvaHvzjBbg9L3Y+tT8LtWhanqjHXWUkY7zJwRUs0nY88nipEZDAXOep6ouxq/agXXS9/eLD9gC7/5SvjAPRi+WXol4X8ywPoWcPL7uiXhtzvyI9k5g5VHBRkB2vUb8EWmAu4nV1U3kBB3Yte3hflkMFuNsyPuV+M/WC3J6K+WT5y28zXruiHvdLLSoK9/lZ0PVEidQlljWgY++H0khx9LCqAVR9Pi8r6JAZyb+E9W1/dsgc9a6Ym3SOVuVsM0Y97rMYendTxwBcPvRwP5+6HlCOdxic0xWFfGhltdyaz/NAzpsRwS376CRnr2oIrfJbhHo1zOWMxZbsvGWIety929bfTfURBZmnv6bHfzMGizEfj9stnjZkDR4z32l8tpQguUR5bwhTjPrP/g5TRypdwuyf/bRW6N1CNgDSdKVjelR1oIF5zJrFc+vOMGFuO0eS56A1xPvFj/ziY7LZkNtrYn5G85SQjbAn6vH5y/c/3zT+3Ruau4brVfcxSF7/fk5kc6o/EF+8a4m9qwPJu0/Y8Kb0BoB/9U2X0rRVBv/2+Pn7w2tuv7QLBGYDh25UHjaE+PnbJ4wKO4Q5cF7Tjbch9+RI7tjGP1W9cznk9vqY64eZlm4qYKMe94qlQnx+sj7QOGfPZ6vDDGhE9BT9lSZxBxucoEbsloaf+2kk/zpbqdEJuqPeAvNyj3NBI5YM1OOuy+NnlrCFBW38Tv9+6cyGSzFvCVJa6T/bG3StW5zPb+5PcucS9fuRpQGA22PPl7LV8/V8h/ls1OPOc2Ig3rPKB+Q0tZw1C2IBPcyTB5IGldKswOpHnpVmZ3yAAeYJmpGl6jVqqMf3o5DqGpu9wx71xpj/qWS/FBuwAM7d49Yv5zCBKXY/4bvMvK6JucPQX9cfJ2/yJLnvjTVdzBls+K++erxsYUedyz/7kysXSE/musFTz85Ll/TqA2y/PLW8A7uLA/VgVA7f8sncWSR38Nm2W1tUGXB7bH889uLlf3K6lqIe97xjhb0aEt8pPD+qrsfddAYfE1eXJsw/jPyOlNx2po4+fKeRsSvxkyvJ9Q1O+14/Mgf+q2+5t3td3iztf/ZzaU/emyePXzczuzgjeAsfxP381bGvRT1aYGHV5Brf28okr27eVamvJgr+1ZfxVfgGn130zz5b4rrimslhintMhrifrAP8hPk5rwgNngQWdNt2cY8hYMAPmGtLz6EcnzKE3B6fPyxr3Gxy62//HnONJYZV6xWNYeaVn/B0sQNpfl2o6t2Yg36AY8acm6zjROotsoJ8g/MtALfHzy+4vc3k+ldf1OMeLSwotFPaDJiVpDHay2XBZ6KneEccvh2jxIZMgTx+ZWFbkufvTB6nLTeB3B6bnzKZsXkoeZMb6nHv6fB99V1EEZ4+qyjl1kw6X0pyiGh24QwGHE9vmTYCy0leCdKf+z5WQz22v5T5gmq8XufcUY97e11uhOo+W9je1B4jZOSP7zdl1+/k37osL8C3d6xj+1I2yWlbJAoGS1UBt8fnf8gZdoxx80M9fn5dvZvzt7ZZgrHzAxwZqj8YxryIP+nnvmV2YODOZf7hlwGk/f95f7YucoEB6vH5+crOZcHddNR/wXtFhuJ8ujF4qFVWNjOCgzuP8DbVD6aGDJj781OkjpMDyd89CGbKditCbo+dj6dV+mO0O4WFetxnPtp6XSnFAqbsunVrRY0E/vw8fwZp5za9UYGXZLbInd9FIfnb7em9jQa6qMfnX0nXHp9s/UXh9rjny2x8H6ArCv8P0qhH9A==AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAzhoAAAAAAAA=eF5113k0llsbwGFSZiJEJUJSkXkqm2RKkSFeQ1RE80CTUIYokojSKIkSSSqFyg7NdaRBRVKpZMpQlIqk77Tv21nre9fy529d772f/exna51TJfxCsUiFp7R7km6TxmTdUuG115X+9q+z7/l/mouS76pOzAMctJl35+QzL0q38ivSliWXo54wfyo2jXn7xyvMszS7lrk9VyUv0+yYOxioM38+IZf5dqm6gxu9p5JZ20czH0XGM19y8gjz9XfU5i611SD64rD+48eKzK1mwfMV6x/bNKsS8jKsT+Fvkyu/G/96b3oY8zRl9+2iueKkQvgym++142Hzdab7mBe+a9L5Xq1D2iWhY66KMH+iVcE6LDSdI3x8DJUvXzvhb6vnCjDvugz7F9Cfo7LQfgbNrLvKeuM2Y+Yxvd2s61yEJtSeVSFVcQfYvNxafebZ4VXMe9yu/qobP5HyHBZiztGTYh7cdoZ5mRid6J9nTeJ8zJgP+wz+5v555vodkh6313iSdQ0p7P10Wvay928yNGCu0rdymIiBFfl+9gHzNyeTmM+VNmG+rKHlruxFD2LaCL9f07GZ+RmluayV1/MrfQjiJ1Jvbyv/7YEtW5nrBQUxN+zUP9yzVZu+D/VmfYeTwXxecSDryjLO9hVeerR4Yxubd393mnmNSBpz6dIXmuNdLGnR9LUqf/vJi0rmVdoPmDsaXPeQSDOg0Vsr4XuOvM/c7M9R1jXKZ9XseGzpLZ5MNl9mIMTOp/7Hb/h+jyRGHin5YZJkMYw9f08AH3O7u4+ZB/HlLH3YbEw1dkWz87V8A993rcg55s3B16t26ugSj/dwH66uEWUuH/uUdeBcSYdx88xJRdEyNl+0vpntT3RGEvP85uSTHSdzSn6MhO+lwdvOvKTwMmve05Oyrl/RIP+M7GTz4dbnmd+tgvOzNvxs2mYgT4RDbeA+RVxgfiErlPX2jP4b3TxOZKrKNjY/Z5wW80lNA6y/Vh4vV5/AS1YlPGd9mqPNXOKqIJuXm2P9cmrCPGJX8Wvi314Xp848xCCAeZTgMNG6ZWa0XWQf8/WSU5nHb/YDz0wuLsp2pAHHTFXZ+6fA/Unjv8i8avLLPw0xxlTizTM2f1V+E/PzNlnMzxZs0ykptqeT47YzN8mNZR55Po/5JAXX2pYzMjRbfTTzbRoxzBNvnGC+K0CYN28JD9mVuoF5y9sg5u9uwP3qyzsaXLP3vYmAmQDzKb6wv85nyXhfgz4e459A6JWOT3+CVUo9jv5oUWzhlHpu2tL2t9uezEsfYSBHf5+ezto55yfzyR8jWDc/j2hUDdCm+a3dbH7l+t/M7bK2Me9PVZj6tt2Qfq4xY70kYoD5WJmdrF3DG118s82pnp0U66P3h7X+9T9qO1gfWvrJ0y1YkVZs7mXrl60BnzZnO/Pn/Zds1sQZ0PoJY1n3BQszP/t7N2spsdSX2/l4aZAdD2uF8eAvFXaxnrz7SHXCIS2q+n4M68+hosyD9u1hPSn6/Z8fxbb07O8e9nzXXyLMMw7AvMmTdhmj5zbU/7cs66IFsH5hPjz/5ZtAV5USK/ppzDc2P65OiPm7izHMO6ZuW7WkxoLajLJmvSORj/nJ8jh4vzmPWsee9ySCGZGsZy8ZzvzaoiTW5pJJQa87fYhwoT7rDNUudr7L/UJYJ8werynh40YqLANZ+/WCh/HCekYTAnTyExcRvV01rE1TvzDnM4XnH/C83VR3eh69HOIH32Ogk/lLd/i+Nyq+q6sludCTvO9Zv7b8xXxj0T7WTq3K9hdvmNOJX9ewNszuZW77FL6/mZr9dRWTubS0G+6TTTncn48DcH7Tz9bIBnTOpF+U01mra8H94Q9KZN2+auEfh+qZ9HwTzF8ugPkX3TCvWX4rxXOdJX0/GuaPKMH8j5UwL3giZtecJZb0jvBV1hMq+pjfcwM3clslqRc5k4THd7L2ioP3y7RNYa24tt7qW4Ut+TRwnvU/aXB+7XPh/cZPXlC+9ZgeORnRyHqEN5z/PRLPWtzN/ZjcKwuivRT2mzK2g3n/lXDWdu0P4hU0XYjvrHLWMq/AeQvh78NGJ1yAw5lPboyG++ox7DPzhFXwfbc6Kjwcp+1EvnbfYP3qBvj+ZXD/Oidn7T2V70Be1Rm1/21VTfi+YzvhflWcaY7I/uNCaSB83/d97cz7XGJZb1eSXDZzmQOtsNBk8z2+DcxFOOgPf0zXWupAz9XA/bqo+YF527Uw1muPTj+h+NCKPu2XZvNx1e+ZFyZHM4+6/8LPzlya6KiKMI+/BF4eEsXcWft6bFXMBJp4ehzzME4r8w0mcJ6VGR/e9fyRJ52PJJlH6IKHqcD9do9du69vnhx9Pn6FbewCu9J7p+J0Xt4JL30UE8zaRCbXsEJbkb7N9WBduxZ84eMg1tHP9kyVvixJOy8uZ+2vDt4yFuZr55qE2F+XJT/NYD7o2y7mW/xg3tYm7yZvmjKRWOXJ2pcHXL50M+ubhbUtHn6GpFJ9PaznCl7nC+uHW/nInROxJIkb3VmPrNjJ/Oi9jaz7/nk+cIXzzcTOIIB1rGIMc8/V8Pw2xec13r3apK1nHuuiEJhP2r+BdeXVNm8eQVsaKAjr/zgCfvwArD/6SW3IPTEHunCLI2t39Vjmw2Q2sS6eWnjURMKefoiD9z9sBy4hC+8XfuKpF6+IM1U6Aesd2wMewQPv96eu1dSjwJfY+/rB+88HX6EL+zd8YhVRGulH6FM4n1U7YH9j0cs0Mr4E/OvN+3xZZ88F5/OH/X2b0K9T7bCUjLy9kvWvvmjmulPAa3xsX26VdKZ6X0JYb9PfwdywB/bfmdvkn+ZhR7dIwv2RHBUF5x8E52e2l3f4jjOuNNUU3mefHfhxC1i/PlrjrZuVMzW+B96UAy6cCm5TNjs+396Fyg4EsjZKAE+5DudVEjm623ejB923YCvr3ER4P3/NLTAvbld8K9mZrk+G3//aAN7pBOdT8niMwpYrbtSf7GNdagz3w4QnlLVMqnfx/nxb0v87jvW6ceClMnAevHNq9Tz2OxKd6CTWS23hfARnw/vIKC58tMvDnlRY7WItqw6e4A372960Juv0cWcybjK4Qjy8X7Mo7O+CUchjrxwPwntwB+u14eDu2XD+ctanLmfqLCRbGnbC+f2OYG55H973/KELTuEbPcli5yg4vy7wwiXgsll1Bnf6F5JbT2Be/gj4rc3gV/1iqfzHGXTF4UTWrlfAIwPg+7jO5zy6mW1BtRViWRtKbGeufQtc2rdcbJjnLPqicS+cnxZ4B4X97+GtCitKtKG1xw6wXmMGbuwF7++slXrrjZIGNZ0A815q4IWZMB9RvmFdaaMQdbFIYZ2C+yvgAU+4/kkg78gEWnwngXV0BriWLewvmd8xUtBkOKEjJ9R/cNxYOuKDoEn91azSQ60qrG2HO+4YdVOTnqVKrPuawWeOmcjasflQ/mwBI8rRhPn1w4WYawuCXyppW25kZ0Kt6mB+mTD4SyPwAAnNT9eCZ9GUP/C8bVbgqmngU/OnrPg5QYI4t8C8mCl4ni/48O8XPxS461HphdB558Cz+qA/bRp7P75Jl1RZK7M2Ow0+rQz8YEFsVUqjJP2yHPzsTXDXWvAPBsvC4q7OpkdKoLv+Ad8xTpX1iicbFedlWFFtR5h/huunlMPvs1O2mq3740hrM6HHnAe/PQzmp2nFvdNptqdLrOD9BPaBWx6A38eQpCdvl/uTeg6c77VEnA8Ff2so3veqy59M1IP5jHDwETvAfVfcnd1gspSkW8G881bc/0rwa0us1tffWUoyNkxifW8P+HkZ2F+0tvSeW5H2VGG0GmvRveCv1MBrzgrFf7OeRyuCYb54P3gtns/A+uqT4ncdqK08zPcfAB+uCT6/oyJzZrwjnYfnrRsGPucdtOcGmUCPEE9qVgHrj98BniYL82XvvcYL7XCjP8/A77tng3+7AK0ccM0mpdObtqbC/BsHcNsW8F1veb5Z9XpS1yzwZWrg2Q/A2/RWH9ksb0UsPoJbT8b79QR87ofJlvYL5xKHjeCKn+HvI+MQuNWB+QOFxJKQAvAB9PTj4CctJXL2hM0hTXnQCQ3gnT7Q92OWZp534RBee/h+vc/AfT/C34tw5fAnbsNcSN9TfJ4Y7G9YDPTIrNeyPvILiex6mL/4G+a3CIHPb9tqLVCxgIyoncy6SAHmJX/h/eOMaNEYNotWHZjCmqMELioB5x9+/2heUe4MerwE5jNx/dw3MC+dnqa1JcOSrg6G+Vk8eH7d4Me8KkzsWmfS+DK4H09w/eXvwVv7U3YVHB5Fg1LADdGPvwYXOBj07IaOBY00g+efugDu7QP7+yn72GLLcRG6WgpcGH2/F/in5qTv+w7Pou5rxEJFbVJL9zQ6Cj3Kf1RqPVKc9aMRo7vadqnTD69FWSc2gHP+wO99/IWUBRYoUfPl0E/rwTWFYT67YWFcuQ8vqaiB+WdvwM364Pf5+vc/TBEfT5Q40Hx14DHDYX5S0l6Znix1suM0uOpr8GQx8OSxmaVRn/SIsCP4lOfgAQPQfW5SLQWKUmTtCWi7F+ChAjAf6lRa11qqShbhepU43ycJfXvOU74/DYZ04BLMJzwDFxYET3wUIpXJb0wjxaGlqsHlpaB/ahxb9r5tClUqhPnnuP40IfAkw46dajoadFUgeD3ubyIfuM90caciuZXEQm4k61t4Pqa64Kslq8tD01cQw014Pq/Av/CDO1ws+XTVwI+IysO8wDtwAUNw97hor3C6hBzyhTbF71euDJ3xqup6u44blQ6H9aXx/INx/9PPDK+45ulGjZZAd+G8jwr0xAmbJUaXO9LLOH8f5+XwfuQuWiNTK+BEE4KgN3wAX6kG3Sk9+XC1piPdfxzmN+D6K/F+hmmfiS2pdKLLt0I3N4NbakAb5bQu0taypGtPwnzzR3RpcMtvUtVPUq2plhKeTwd4lzk4v0IWzaxcRLSmSrAu/ALutwg84ErUqTM2i4i9Csyv+AwubgmuMI1PXWu9O7HXgPnRX8EjfcBj770bZfjJjZjywv6ScX/38Pvn3P/S+3gbh4jcBLfA9zMcAx75/MvjW3weROkH/H3p1oKf7YXfjx8VuKpayYl0FEO/w/sjh+f3bXyg+T8588mKD9Db3oILakEXHYwo2HrFmTb5wLwyrq+Lf5+rVuVcXDfv3/8/boFOxX8/vA2gt3vqpW8QJXQG/vswC+9fDH7/Ka5t8xS1Z9F7w+D86nF+mjF4yIOkkNZeQlOWgs/E95+M5yunEpkft9qQTu+HjsD9p+tA6/+83yDbZ0n5F+P6eH+OEnC+LPOB5gJzKhgy+vQsi1ulzVtrX8Xl9pSuyYRuF1s9wjhfjbpshf6Cno8+j7/7S9cSBbo9GNoBvTEDesyU25nBN9Xpw1Bod3Q1nHdRqDpw1VqFVuyDnosefQr6ptDEN8b2YqQM99cVCl6C64cnLeiJouPIEpx/gT4W50emqX4daJ9O3HB+G/p8nP9ZVpNyWNeUjE2HjgkBd8V5Oj+j5eAhSRpxDboJfXE29MJxhx4cP2xAXqdC128GH43rF7edKs8pI3RmMbRZELgirq/1Rr1ZSYif7qiCFtgCHoLrfzl3anTLe3+y6QF0K84Hn8bzlxfb9zPTh9yphn6C53ftLPS5DreP9xuWksuV0BfQr+RCC3uXLa495Ut09kAnbQN/i/sLNesWNxxhTd3xfE+jJ2RBV/Gfe+iRbE1dcL4InQd93PSe/LLy2TQE5x+in0ffyHthzQd7W9p/FPcThvvH99ssaFCfXetKTa9D70CPw/0f0YvvXqzOoap4/sboDThvGMS72TnImy7D+QL0ApxfkOG+S+i+N61ogk5GL8mHHlB+varYxIFwbkCLoifjfIL154/yb+aTTx/xffB8X+VBX/bTkx75779/m8qgO/H+XciBvn3osqWTthcxPwGdiu6I5+Oac87ne8ciIofnE4Oegd/n60yJk/q5C4gv/j3x4v4C8f6o/3y+c/IkHzLjGHQHnv8tPJ/vsaIOewW9SVoCtNzgPD7/28T0m/NDLajzJejj6CfOQL918K77qmtC/fH7X8H3N8L97ejaOkf0uDOVK4A2w+cvx/ePbuQvnenlQCPvQy/B+R5cf8OGXL7CPCcaiOf9A9//OO6/zHHM1Lg7c+nru9C78e/TGde/EvHyu/ZvS/oQWxG9D/en+mK63omqGVSHP0yrWret9HvBmh7tIwplD0ZCq/YFdkrMUaU+XP4I/dGqIKd7OcY0HX39JXAjCeijVnXzklMm0UdcTtCFktQjYx2m073oiej26N/u6ATuTpeiR8Wgs9FlJKFzRqXIlAU+MVmG84vRVXBexSUlTPibKd2A86HoHeiLknUa/f8xpqvloB+izx4F7eY0dofWBmtaKgN9E/0XPj+kkLfg8gsHyjsGevNl8Dc433+lVrfmgjl1HQ29Gj0ZXVHhho+39FzaKgt9Ab0LPe0I/+T7Rl4kSRw6Ab0Rn28xpvDAKw0v0obzBehfcT7l+WmadtOXJON8InoTzi+TDv866bovscLfn0R3w3Zy2qU6UsWC2ihCP0W/LwWd/mj92VsvLKgD/v48ug/2h7GGxvEZrtQJ59+gV+G80KupWxv7XGnGWOhGdF/0UOFXyqbVi2gvnm8DusPg84Ovdo2a4kMf4/yYQvC96Mc+V637aL6IqqHLom9D96lerVVJF1N/bF70Utx/2aitsl5NHGKB96cNnz8SXa6w1s/NwZ1Mx/kn6PvRM6J2WbR4epHROH8VvQHPv39ic2LDDW/iNfL/z18E5y9J9XSFXOOQa3hfc9B10aXT/UUiT/773484vx29A9c3PzTh7PgoV5KG87HoMoP7U066rbKaQxTw/v8z+Hx8n6jNaaKT7GxoDd7fu+jNOJ+7OZqzbKUDPY7zC/D84nGen+dyUvsIK+qO99MNfTn6NJ6jtRoT7Wkj7i8M/T2ur/9ARTKzUJ8uwvcLRi9CL5I3a3kfZkR/4fxB9B/ogpKKnJ3JmnQTziejP0QXeH1m+zBJXVoQ79BwQV+qzHXRlT82qdZlmXugR9ievBH13ZSuxHZHL8IeSEreEW06iabj/Ez0vejVrtfjgqbNoW7YFugnsdWmTpDWiJ5JA7AJ1/PND96N2iBgSGdjz0BPxfbLFu/+LWU85Lz9eKVbu27r0DlcnoYdqLlSV/qpHm3DtkUvxj6iYHDKr9uersO2Qc/FjgxLUb0U70L/YC9Gr8CWjry57jevDY3CXoheim2qWSccKeVELbGXoJdgV4p8dTa/7EVsEqBXoL9CzxaP+Jgn4k0ssH3Rr2HXbF6jOCvBlVji/FL0GvSLwT8vnvvoSo4lQq9CH0AvUrmgybPQncbj/HL0evTUQLHeVwnudKj5jmEvnaYlOg45X3hsX+OHz440G92L6/2+HVhuPaLPmWZyeS16zNOk/od7rOludBP06+gygqM0A2qd6U4up+j3ChsrT9hZU1lsA/T92HnFRl/vansTY5yfjn4J/VLf7MPrKjn//vcztDP6OezbhZvMOGquZD7Oc9Ar0fd3Cd3rjbUj4djL0G9jp9169e3bXmsigu3HdT8PFK8ViByrTw5gR6DXYZMbYUp6n+yIEvZWruevrvXUDl9uTibi/hLRe9BVHHVVOWdcqCd2PPpb7FW7yjYeGceh6jh/EL0ffeDBxNUJEvbUZ/B90Ruxd5OZgqN7HGgo9iH0dmzRGK0HolO16OD7HUb/PLjewgUjImYZ0e3Y6ehfsbXlnTUts3TpMewT6N+xrxdJPS5xnkG/S/RfO6doUqa232vDyeh1ZcMloUu8ng+zExAjL9EnofOi1yxSbtm9WoX2ok9FF0AfK5dGPovpkDr0KVzrF7XunsV3TYwMPn8auhD69mOCsW28poRf8v9dGDv9qLnG6XXmQ87vOt1XzNdoMOS8zcyNcf7l08ng+2ihi2I/dJJNTLNyoOpc8yOxVySLuys9cKZ82Dro4tjnHiztVhZxpdO41pfEPl+wIqrnohu1wNZGl8JetuVgsOSzBWTmED6ydAZtkfz3378h/NhCPndDLS9iiq3J9XzLU9lHxdZ5E2Wu/Q/6IunNBu3KLnQ0l0tg92vyW81R8KBq2Ebog7/31Ay+d6HGmY7jchnsn7ZC1WLP3Kgdtgn6eOziplPvK6bPobO4XB5baF7NOytBZ+qMbYGugn3RYEpAWLcNnc3lg+8r1qrraPLAka7ENuOaD5jC7zXpJYfsw56JPvi+sofnZ3a89SJ+2MZc+7d8JeEWy3Eme7Cnoytht9ouTHPwdicP8f4aoIugW19rPsl/3YTkSfz/+Q3e75gHL7b3vFAmTyT+f/3B+xlcJfdT3M+anEefwXW/Ax/ri43aZPzf37cp1/3ZPK86jD/AiZZy+eD3f5ufc5ZvtjMdap5P7EFLlpDdkPMvHq+1OnHVng6+z6DLYdcEWU+I3KlBZbl8LHa0t+86ZX5FMgzbkOv+Xp7y4KP0LX0qweWD+9uUoBBApL6ZNDUuvjBFza8s98PqJvE9B8rasXul9PLOrJxGG4dwjYEwsf0yQnSo+cLdKWHxwVOGnDcpEDitn9ld0sHlg1249024oNsU0jmEL7nLKRzlKUaGmo8KSV3165LKkPPRRQbJIZZtJt+wz6J/xnax8G+Pv+tIu7HPcM1XeCkJJFrp0K9c6w8+jz/LRrJtohPtws7hen+yeuNGZTvdIdd3yOxav7zPk3QPMW9ff/ntQz1jMtT+9w/fvNh/uSfpGcL9V9xMKW82+O98znH57etTJzn5OdO2ITzEIL6Hs1KPdnCtP7iepdI73oVH7OmnIbyALyrK1ESeDrW/jQveqeaW2NBfQ/iCLh/nI5+V/zt/7vMrqA3Tzutzor1D+N6pzQpT2mbSPq7zHXQFj00PY3U5/50f9/mnHg/UX1SvRH5xrT/4fj6Wn+MOUE/yc4j9e/SrSDTJmpB32Hlcz/+S83jHBVdLUs91/oP+LvTQLGNhrf/8LNf+5OdlRs16YPXf+vlc+3s4Yr282Tpd0sjlg/u7cyrl+otmm/++H7dn2lbqJPyQpx+59je4Pseq690BV0faOoTbJmvs95M1poOdx7W++idOg9hUpf/uH7dXVrdLSmxUp0PdX96O3jdNgT9Mhrq/QnSR3YHVYvR/ga4W5w==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA4gEAAAAAAAA=eF5dkT9IW2EUxS91kYIguDk52K0FERQrFZ4iBopIKggOVV5qQV301UaTaGi/xD/RWKMRxfhneKugoIvgsymBSgfrIIpIO7QpFAcHKRJBjIj97rkOZvpxzr33fPe+R0Qq87KlmoiMOsujSR/G3jv/Yf77M6RpP93u4/pl8xutN64r57RWdtTUTJe3DWtfbdYE2fect2pNLypM9heeWJzbs+Jh/SuitE69Xp/l3GxeRPslX90rPFd02c+0y5o0jcMw59PGM9aU8jVwXvP8OOurhgFm5riXGYrOc73qi5/Z+XiZ9zoy+D0arA8zs1uT3D+4zPdS2d4o03yEubUd5Kj8KPv+3RHWpQVz2OcWfSrrZnYV8x1kLL1iluy3QdeEwHQcfgb3pG+wj+EaZdJ0N/LKO1DvTcBf+4i7/8bQX+llTf4h0GgHLwJgowX24B2qjTHVcJznU99s5HpxL/2cAOn0OcM9BX09Cxa+Q399BDxbAA+C4N4i+oKSZ72FP56APpQ9lNxJ7UL8L7IVmJa+xKr4IfEnZQ98L1JemXcJZZ76hTHxZT8VFy6JH5G+VtH3eT5hICeXFGDm6Bnp++Q8rPurH+r7uuUkkyc/fgd3kuD3pCP8LMz1t4Qp4W5O3ZG8OwwZAJ4=AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAogEAAAAAAAA=eF6FlbFLw1AQxiM6ubSTIi7ZfJOE4KCQJiQFKV2lY0dBEDcX6dLNTg7dKrr6B4hOPskmOOvQURzcdHORICL37my+x9kux/Xucr/73rskPj4Z97r9LP++sr82oN+Q/CPxU/Czmt9MMJ7OiRfgt+v5tuX8mPjKluO77T7ms3VkQks2svX/mxZsUreSBz7bSKnj5xnoFwxviK9k/3QUrO/5vEr/BPoYZ3k+g3Vz+Lw5gTeyI+IrOf61+PC6O3MOZA08X9M7hHgIcbSYx/Uav0kq4hN9N6Y70wVPX21e4UPL/aBvCD7q4fF7+hriE97mR/A06Gj3AfsgJ56/gXyMa/fMuzfC3SC+kusPzs7HL5mqL3Ajj6antleoHz4HdYqYT/SNJktF0cD769VDH+8cWE/I0+6zzA992P+bb5P4ZN9W7gfxRXUo78l6PeqA/b29VPTH95m2H/55OD7R93qyXK2974O+2l5vaXopcdy3CObCPfXfh45P9L1bff68fGtn9L3q8xzWfb9krvR/P8nrvk0gfxvyC8jvQJz7O74ydXw/m/4bIg==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAAAUAAAAAAAA=eF510Hs0lHkYB/DZLYyaZSqjlMwws665NOMyYx4tVsei2Uy7W9M2ycZhd081K/Zoi3Ep1yanIpq2ErVxKqGVS/MaZNEiUSEbySZSW4ZuSNnt/b0znXHOPv99zvf7Pu9zfiSS9gxerFhVsGcJqK17KCQ8NttRY8t5G7jk/Q4a+zzPXyrhu2hMTfcozQ5w0/iZYpFOv/DD990PAwa43A/9t/xLV6/+8KGfssO1tm+QpfH/zanywZEb4dPVkvV5SXDPHOhDXbhJuXf21m2yhyvxCbi7Ds+xEImcQdU8hbtXbrLFxYkHT3RzHr33+k4DK/s2Nnx8loLnC/Vi2fIJDrilFeFm5lpmS7LYoCr+BvcGg7TUjiE2uIZNDb93WWSjnfVGBgj06/F96vu2pxzRcsYyncrGYpayaZ/u+RnyXDAKmI872Uzi1NzPAm995IMu6eXrWRxgCxfjjquPBeYYGyKGOyre+3ObbQXPtrqCM2UU93BCXoHPiDNwjefg/R0OY7LsKXvgCR/juZHbdTuP+E+hN6YO94+bg1R/i5eDo6oFt/q+nvB2LV8KG/ezWyVQTky6fXV/3AzoXz7HLW4KYdGlZlD3mQo3Sc65eSLRFuDES9S/m2JVl/HfeyYO4D5JrdrGT3aCVuch3KcbqmzOFa8Ef9Yo7hzKUVud5fZweB3K/Zni8kefWMGuwju4T5HFrDmZRpDo1Yf+R4zn2l4tW/UwTELPRikvNFQ/PJCpDxUsc9ySyCfdgjhzkAiRYzq88+ssGRDSjZw/HTHk2+YIpTw67kSVZz/P1xokPcjuo4I1aYYM4BWj/Y9N3bODVVS4+gXKw5f4exxn2oJO63Lc0waejpTahbCBbYZbfd+hTm3Hpt941WpzQjnZ0B5Skm4BJ48gcy4/edBSawmJOcjcHQ3cjMkVcOUK8rhsrkHS7gVAM0HO/k1PYbebBa+9kEMtDxYJZA7QJkV2yi2kzpO187+3Rr4mX5NCu/aU317VhrvJjZ9bXW0O+n3I6vt63mj7+Mtfm3ty/lCqmIUJjdMMWPkKuRIrmHGncaCNyCmOZfKo2zbgTTiCnt7SvGsxJA8jp8Z9vX/BWiZ0/4NsEUgTJv1OhpIXyOIDNeuObXrEJxN965f7XROtKPBzL/KgwG8v+c0LBakfWX2f6L629UqS/L1pT5VSbGNXlJQBXYQNBANe245YQBzhrSo66frbpeBZikwOqMyglVvD7SJkVVfPwryy1wpeMfKtZp/Od/mm2C9E33rPImHyrXFFC9GvzTwvq7jRoZg8h3y29Z00SG8+FnwBWfO+s9z3bcJ2UZpRzZmYGPqQ9B7/L8LFq+eu8LXRh5uEzaNP+/6ZsRj0NyEHdh+NcTB8wJcTOUl29GJ9/5SiiTBV6uOzrMAUe0D4p8rTZ7b32mJZhFdH00bj682wzYTjJjJ5pSUfYZnqfcQUzbKr8JheI8mjprasRlwYZAzuhI8xg6894xgDl3CwRWnYd29G+H6E4+mXosXRhpgd4VNeqTkG41TMg/A8pUUzdZSOrVHnC+R8GsMFcyQcunNGZhzIxKwIOw10mkzodvBdCKvvc57lGKOLvgO7Q2sOrYyIvLzFBNT2E6cGvBsx0ri2ccYsPrCKr3bW2N1cS2NjTG1RXpZP/f0xhdpBOiJRUZetJt+TcTx95xmOxmWRu9yGvEw1Dku2jRqMo2g8+75/AaLlLe4=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/JWaZQ6Rmk48oDqeYA6+Uzxb/zm/geBGPLvVtQLyMDs8dAytdC4PRDyAan34fdw7vDRqcB+qwSS8DutkIBBiQzxvtPkCee5KvPbKXnMzRF28IwpEMBUeWrwIrAmny1VWPFxjZ/JYWVI8CEP/rRCHTDzeOfGI00VKPBjOHptbyx687t0O3wwWOrzu75BIPQvyu5luD0eZYxW8Mn2owKQDSrzqUavqhaBXvKAQuDZyb1S86CXIlT8LOTwi5oq8vBdKPDS+c3EEzFQ8lYKvWhtDRTyDwmm09zgwPBFwZS9OsSM8IO1gchh+QrzjP1Ms32ZJvJ1/8lkuH0O81ITAdkzgSrxi+jrWDVpSvDj8AjTMV1M8lVy+dtMOQzwFBnsl8pY7PFBJFWwPVks8jVQckp5YMDybvhnUy20RvDFnQmo4rSO86oO6CI3LPrxUioR+ZIhHvBks8+Ni0Uy8xgpz7cO3SbwGNy1fcfg/PEZQ5k0h30U8I3AQZqtkODx6KyiSuOJBPIpNe5gsUTQ8xRCtQG6uQ7yS2iz5y8JDvNxmdlovMjk8EHQ7+rMcAjxAT06mQVZQvLgSEDsPcEe8c/fEfFwtVzx6oubc/nBMPJykY5QqFTo8ZMojtGuEQbyIdVo6dj41vOlXMfDNQks8xvgiRT7zSLwBGjG13+1RvIJvY6K0h0U8BOCPdA2dEry6BQoHLS1WvOgsEiL4O1U85KuRv4naVzzEGx48Mxs2PA6C9l/KhFC8xDbvo3dNMLxsqn5XlM0rvFuost+tO0a8xDhRe/BDATz2rOmLhbkkvDV5F2KxmDG8XKEbpMo5KjyZK/ALEp5UPE2gWVLHOkc8+qrhXo/7Hbzd9TKATqMuPNT/BUvZkkS8Ra7YG71kWLx4y9/IhWX4O/9KzBnCM0E82lISLAIFJrxweNZvpUP2O+Y/Xw+b5EA8ss2t008PEzwSVwX3mHMvPC+bFp+REDs8yJMVcNp+KbxNAA5gNOxCvJq/ZqygZUO8r9CEepJgTbywvCms+BsFvNpozqtRDEw8iWptlTA6Qzyf9viH3Rw2PO2h73NS9ks8eyx4eurAOzyS9OM7C+c3vBTAoyLCtUe8X/91ddk9ObzaGdwxO0A0vIbBJPt1HFW8OGGmx8a6ILxkgwBjPb1aPP1OPzAcJEg8kVlLILZIBbzsfU3QordPPFtzat59JDo8EX+yTxA5P7ylsB4TF+BKvBTFJRg+Uxi8uI+EioC+Q7x+Fejr/ydXvIh8hZdRxj88DQ0de5MZVDxRSKviL6lBPAGUmsjuz0E8kMW2Og==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/AAAAGZG55U62F00CZ7kMzweeJj/ZYcfvBu4/g4N8EE8AW+PlmX5OzxTHFGGkr8/vKbkdRkTfD48jGPGzYeqMrxbn6bWrOY/vNiLqGFVEjC8AAAAhtmuuTpHmJWltmsYPADdG+gTRiI8lBDuQereOrzkWEK1wl9QPE7KhjpNQ0Y8zooeOVowULwczQOI5WkDPC7WekcIiFI8XHuYwTS6KLxeayX9eqFGvFZLkMWQHDQ8ii27PJneNbzAvCcUdmwtvKxhvzXmGUe8GYGgNXr7UjyVhbC9Pd9HPOoKIIGHwFe8AKQ/U7sr0jvbeiL9WW9ZPN01d0BhoTs8WjJDnAWLQrySUV2Q85YvvL6oVoOZkSm8PFybJK2qMTzogdX/Dkw2vN5WJ+kYR1A8p4b5OzGNWDwjq+L3WZRgvFF4Jxx0Lke8ptwO/nA9XjweqnvR1hNSPEJu6fKimUG83JNLqzrEKjw8TCKgZbJAvKGn9cvXJzW80mD5tNw1Orx25BjUVK9ePKLgaofFQk88UhT/vtwwWrzAHGZjunA3PHh4XpegMlw8toyoOfcOODzeIcRFJsBGvF7EHxzICFK8FpD+6nqsM7xyWWN929wcPLNRiGma2Q08z3fpB1obYDwTvvBI/tBRPG2zdrs9rFi8sDw1fqB7FDyUK3Vs3DpkPIZ/GZUSbUA82zpdsfbkU7zqsUECIDxLvOqdP2VDciC8lVsyzcMFFLwgmRsj1y7ou5D4SBnrZ1I8Y7WIDy/vVTwYpWv8qNFgvIe9CesJI0O8eZRDHLnIZDxUwda1U0dKPP/7K2rjslG8LesFG+sPM7w6o2G98+xGvKy/cBs/ykS8Uh4qdTUGUbwqJ0OT6FFJPP6nefJ4Y0M85NVq/THkYbwgpL0RN1wRPEfKmIUst2A8ACbdWhEc1zueiqjtVRhMvGAAAMN9fTq8+0f8kPZFFTzQJ62OJaPhu66dWnkTeUu8Lp7o5c1SPjyQvOS6B7n6OwhSS0tA01K88BB3XiNzRDyxodnPyhNIPCl29BdA7z68g6tWaIcFTbyo3JaZ+OVHvGp2rWp8dz68iB5f4/EWMDwFBKBlgqNFvLqz02clzDg81h7rcz6kMjzNXmJZIqBcvLDoXr5EOD08aI3AaQPdWjygkx31uQE1vFOwB4XdMEm8PJXERu62JTzAZDVWpNTiOyQrqPihKxA8pFrvKBFPBbxYCvLPGjwSvM5wyYbBTCW8SrbTOxSUNTxigAviVmREvGAzi+CrmiI8mhBJsZK4MjyQqFRmDo47vGyZsND1bAe8qWHDeA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAwgEAAAAAAAA=eF5dy1tIk3EYBnBkILI2xwSvTPI0UQzLG09449XQxFM6vEhhooaCMsFgE0FNBRWrK4VN0SnmLG/qzov4fy48BAlKOkHmEZypeZiLsMUU2fs+Bn5XP57ned9YX6pvfy5NrBYlkiav9zLoD5FDubimirL46WBfqaj3vXFR3mkPeIMueyyU7S2VZFN1aN2sO0+sR4eTb7+rSbMumtQbF2uDZq+ckE63gvrXngPK6q3PZPqpIL91zpPDYVM3a7PNonQH2tmCEQf58GaclMYnyOuI92SSnvu8njHSaRkldxdYw1bmi0chVnERYF9mZJHKGlbt4j7fwsZ/Yb/+ziBjPrHdS+xeHe99/1Zyjx1O4Q+wJvUqORbGxsKnSrZXwdr9fO/6y25fsZsa3rs+6suKL45E/jSrmWJ1djbhAzsAQ2bYcwc7hH4R/5GTbEmHs9E8rJVssALGwaRONhua4EbH/b4BRsE/1qvQue1M6RQewMc2NgU+gQqYDAuhGfbDoo1nFu07o1QAC2EZfA4roAGWwypohJVQOVCqy1nu/e8DWQ6HKlmvku0amYdt9dOt2kHpGB5BDzyR7Xf3v+CZ7O4c3gKiAA8aAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAEQAAAAAAAAA=eF5jYBgFo2AUDHUAAAPIAAE=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAqQAAAAAAAAA=eF7jfR7RXOq3yJ4XSvMRSfMS0KelfD0eRGtCaS00WhuHOC71MFp8TnluCZAWw0Gjy4ui0bj0RYk+5skH0pFUplOM9FcHYKGTKaTfOxhyLfVF0O/Q6Lc4aELqWo5p1N/2xKSbKaRndG2qLjNB0DPRaFzihGiXAoWKWbsX2rtCaVx8ZzQ+Idp328muHYrz7H2gtDeU9kKjPaC0J5p6HzR1MHkGGgEACg55pA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAqQAAAAAAAAA=eF7jfR7RXOq3yJ4XSvMRSfMS0KelfD0eRGtCaS00WhuHOC71MFp8TnluCZAWw0Gjy4ui0bj0RYk+5skH0pFUplOM9FcHYKGTKaTfOxhyLfVF0O/Q6Lc4aELqWo5p1N/2xKSbKaRndG2qLjNB0DPRaFzihGiXAoWKWbsX2rtCaVx8ZzQ+Idp328muHYrz7H2gtDeU9kKjPaC0J5p6HzR1MHkGGgEACg55pA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA9gEAAAAAAAA=eF5dy1tIk3EYBnBrUYFb2OEzK3E6NVvmNt0aJbIGYhZzhFYuxbAwnUEHD+VVRIJIaZHxjVhFB2OMREFj6Y3x/zpAddHqwiQWNEalHeZKVCKKIL73fa66+vE87/POepZljmUnCSn/hF718lE35V22zVmqZ10/qU/Z22hQjdwvJB+OHKed0XGLclOtlKu6rtWXoxqv9LclOteKm3KMzDNkt6sOXSgln6fHyeF2zynVJfrlZFXJX+p9ry5RvtJRflp1ck8a+dHb39+Q7hTrd/tIp72LvDh9jXQ47pKjUpB85nxElkafkrrIOLnmzRNy58Yw+f6l8YV1vEmU/DCRH85YyAxzAdkmF5L+KSspJm1kS9jOBraRgdXF5PXIdnLThrh/sa5P2BLfyGoX5+Y01uRhre4ZMlzOJtu5N8js2yD3Uisb1B3YqhkcE2UWVrjZWDe7cI6dsLJzt9mOEHt1Bxs4ydY8ZruqOitCi2KipZL11bL3GtniQ+yfejb1CCsfZM+jv4PdsTr8bXEMJN9YqtQUsFozK5vYwxa2qIiNol/Avgd7F9yHe+6D1/ORGbOihb9C7H7kbtgHR6ETvsNeg5wBf3sVr763WtE0syuhBFfBFJgJV8A5/Ccha2F0qn7EmNegTMPEf36Hs3AefoGf4Gf4Ff4DQ2HTyA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/AAAAFz8KIw6KM2WGlGTKTyS39jNfUQUvNQwYa7DDzc8gSo6LoX7MTxaE9z0mWg0vPKAVC+mmDM8olTE74L/J7zwMXXUvIE0vEjHW2eWqSS8AADANHmCsDr6rMfagWUPPHx9uVNdfhc8fzkdIO9FMbxCIZWqIQ1FPPbVWLxMnzw8vWINaS7QRLy0bAaEivX4O9io07Io00c8LIjz0WvKH7xN795qYRg9vC7/Qhw/2yk81Pk2udQdLLxA7ZCqDOoivIb222Qysz28xaKcq5RnSDwVAFXD6LA+PPVVV7BsiU68QEkoKn5cxzuNyMPAp1lQPNBiodjwwjE8l35EpQDXN7xqZVdAfU4kvMRdJLurbyC8bzQ+q5K2Jjx1GofdjqosvKbTUlds7UQ85oSCnoyQTzyQlXWwvlBVvO61T1mfzT28lHEMEmNwUzxe7058xj1HPNmKdGuqoDa81r40ncc0ITx2R1Z1X3c1vMlbQhXfMiu8DjwjQ0PZMLxMYNsmmblTPCwtPF1gGEQ8dfjleAzWULxIp7sF1CIuPJlGvTNPIFI8Go7aJ0TuLjxPaflozz89vBgXYTCPL0e8dSwQ5SRLKbxM1XDHvI0SPKArlWQ1MAM8GK0PhC61VDxb6IfH1edGPJZEYph3uE+81JdzTHZVCjw8WHcnMgJaPCob3v4+HjU8pYTgFcOTSby0HUUK2oFBvKaL42HrJBW8fzM70e69CbwAM47vPhffu6B7DSbfqUc8LYJhXCczTDwH/OL3kJ9VvJ7ggVhxmji8DOyup5S4WjxkRQNVfeRAPDMoq3MhwUa85ugbVtyBKLzOEJodaXk9vDg9yg2Kujq84wL0HiDjRbxMQCGFukZAPMiihChI7Tg86CAspoUAV7xIc9YIs1EGPGfJZayDfVU8gEWLHfy1zTsFYG+RaA9CvHISfMROBzG8G5uHbJhZCzzwlY545KzWu4z801MIqUG8oi3AnR5+MzwAqQStlC3xOyQgPyvdM0i8YIKzbIxKOjxwaaOvePQ+PPS8Yduv4jO8Bso00OGnQrwiayHBj7k+vD2X+RGzlTO895vhHoSvJDw5Wszr3NE7vLwOj1p84S88FFtn4G33Jzyd/vP7s2ZSvJDfvax/yDI8OxOEK7ZEUTyuXgbu3QErvHWNSdV8MUC8ZJDsAtXqGzyUayjqpjXYO2Wm4wUdygQ8IKedv0xl+7sMXtDxinEHvNRKpR1UYhu8zCkaZga+KzwQajTDhTc6vDxFEkwf6xc8xDVYs5ARKDwY7aXjhLYxvMD0luv7Hf67zNbAxw==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAtgEAAAAAAAA=eF51y09Ik3Ecx/F0CXPoYw6VJahgK/xHiIqiB9HSJjHqkF7Kg/8PPuRUTAd6sAxRCQTB8Bl2GSIrh6wc1cXn8Q94UEERBprO1JxiDJng9BIs/H4/pwd2evH+fH+/ia8FJzkZeXL1dib5TXvtu9HofELtXaunnnS7yTujd2nP2NqlPnylJW+vjpLBig4yoettenbnU7mhYoT0e9mFLRsZ9a6SrNsQSVvke/LjeBOZq8snSzcfkdK6ibRv/EkMpHXKv6zHpD6C/Wn2kZ/nf5Of2g/Iwkp+L/bx3id5+d/UHulI5A5pSsptY5L8sIhd7GENEltlYHeWi8k5HbfZxD0YzZY9YMUVdj8u2m8XlmRXPGu/xwqprAWeY09PYV/g3yZ06Nn7WeycVTPZ2H8mB7rZ5DfsXwt7jvtjWNrLNqOt8Bl0d7GnQ/HfzyL0Ss4wq4P/sAfQkSOsCY5hv4UugB7srsvm1NdtxcoMdMALeAVDcBX6YVKQLYPPYa3HKJUE65WXKhtgHWyBTaq7CNtgK4yp+VE9UDsc1liV6nscFFTaj8QT4cO4Mq1yCn6BjjC7U9Wz8D/rotYrAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAwAEAAAAAAAA=eF51y1tI0wEUx/E2dcXaxPVgIyoJHywGTp0ljCglh5fysRiraTF3EbWbF3pZsB6KKLLCG27hjB7aRRYWXuH/RxAZIpqiD4JGDymtTQdaOvAlPL/Tyx96+nC+5xyTe+rMcO4hQfc4TJ7S9ZHmP0lSqTlB1g+h3yvZIA3+Z2TiSTbZtjdJfvvoI1cK11o2PceFwKM4afFuk1M+eeuB2tPzNK/2pMj8jHTqnpkYzXO+r6R6NklqjkHtTHjAdrJU6JXBKkWQXDQOkr/fBcj2DnTVgwj5ahr3P9rRr9jhzWiIjPQURQ0TDiGr3EC6+2G3HabuwmUHfD4Cu2pg2VW4+xRWy4pJV0e8V65+LZheQuUH6O6DWQOsALNHYfANtHrhhTHon4aJO+bzaaFhYd8GW+0w3QnfN8N67p0PYTk77oANjXDoPtTd8lz7LPsuVLBaK8yrhbdZF3ukDi7wnYW7n41xf5t/KXDUqxDD7BKbpofFbBP7i/dbrJH7dbaSLfgyv7OS0ItnWR17mS1jq9hq9iJbKukm9rBLdOa8uCEqWZXEzP+okvypJX1jve7TuTybGJP4ryfYOPtTMkv3SfYv1mHWKQ==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAVAMAAAAAAAA=eF511XtIk1EUAPD9NbKCzKRJD2wWo8hyFOXwskfWaiuL3D/5h8ogCSvxkRJYkP1jJIkueqwMgt4PE7YscN6yB72gohISwp7ONhOWYimlm2s795yPfR/2/ffj3HO+e853d5es3/Sifv5ZPluXv6ja98zYtUCrKS/p5+GoWRt3OBp//Fx9ohTiybC+gQ2X7YC4Cp7LhuEyDdgp4rH8B7A+IvKZ+sQA+J6ozwIfmhT1p2kT4nwE66nwGY9GIb+4yTUje9Vv1rWk89FETgDjHkNLqAcs4v28JTQGXjpnbuf5UCC2n1/g7brMGmPv3Zh7wZO4v3OhQfA4mvKdZz1vR8vcrDAlAtYfPJB/ZoOfF6d8A3/NivdbG1s/krAflSocHQKL/n6xSHRObr0+2eQU+2ORulQw5Xs/pYFdSTOK3uz38wPLU8AqfL/toog3vS847tjym3mLhAulehrw0QtXn75PD/IVSSKf+i/hYj3tLxLVTOlCnG+4zn7nft9aE86TNS8VFt+/lofNwpB8+JKh+XqCH3o7ctWbweV0HrAe9subB2zgsKjHyDSP3e6EevF51k3tMNaPDFlHMpc5TX+yhLWfhWk+T1M3gqmfwenCTuxncJ6wNI90YeyXRWbJ1jPtT2tinGvVinoZU9cjT+xtC73qPmLC3xuz7BHG3wObqJDbUilfH64SluZRLYtzS4Xc+2rk+UpTvrIeeXJdds/LhR783m0du3KFKX+lRZj2ewutx3nsxHyan5HWo7+bhen7n5THOZnOD62X9oum+ymQ/7fK97jHdB/75+hFrd6MK6f7eZpDmM5DI8XxPF1F0/w+omn/bjS9v1HhUwq3/McOuI9GeU7rF19VisosotcNepldhvXo1MA0X+Xidm5Bu+A+GGVr0NvhvrjG7Gi833guurTO17DLdZNRPp1fI9r6+nxxqu6CFM9rv6apt99hVrRm/dZjreYA27ysxei9rTPTfU4ec58rVd/wMzt6G/T3geWhxf35ndnQK+B+6pbcLO43Tg5mZb+b6RjiVK9L8T4xv5Bkcd/1SS6BeTzn/YeC6he21eZK/L5B9Dbo7wkLoAuwX/IGRbxMEfeI/0/JeTDfTjaApvvpB9oG8/WyoOx9TxjF/wFKxWRXAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAMgAAAAAAAAA=eF4TfKXbOHN6oa0gGs0ABejio/Kj8qPyo/Kj8qPyo/Kj8qPyo/Kj8qPy5MoDANWzInE=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAATwQAAAAAAAA=eF5dz39M1HUcx3FWiJ3y4+AYWiM5OAJMQCR0xvFDmlyUzNOCrSHDJidzwSAhEkEQ44AwBImgCAd2JqYcN1KC6za/50RDU5DmT9DiVyC/BDKgDMG69+vNH91fz70e3899vt+T6nyHvL38hcmfzrk2yyyE6KijLqYuuWRLXjtVQW6l2E2ulEjJ5Xc7yHvaJdSqsV8GTd53MJX23DcjdL4/oYQ8Uyt2M+0LlWn0XKcZJpcJLeSlWdfJN04+If+it5G2Q+SL1M/bU8jHLgfR/nprn9RUx5tKct9bD91phxym52fzc8i/it9M3hJWS/7Aem7YZThaMGzOGXuWIROiI5yoD1KtRkyeJCugHXVNRF2yZjn5Gk0R7U/nrajTrf/QPeI+NW1RfQw10HWGXBusoe1RWEidnJonv6EupZ3cVEwtl8ySB4TfoN12Fb4heYLc3rsOXvoJNdF3mLy1a+m4aedF4X61epC8d7eEvCoG/6Mmsmjdvcs5gix9X0RhzBYhwfd96rRdIbnB8WPaDUoV9dSuAvJtt9NoD4W+S9UkwsP8cV5d9QFVIcsjH17/Ee3bFnupf9ioyaO8cf5pejp1dF0++ZebjtCO12VQXw05RH4+KJ92ewvuU6hyySPvH6b9XhX87xR4xPdltJu24/4Nsy/Ie348KejF7j39yjQhd0ZKjU0XkXvp4GfdZNR+Pdx6Aq7Kh2sL4KqD8EOXcM+uMnh6mwftLtdXqEsT4NUG7Ijf+T3L4VfqcV7WBK+Zwnf6r8deKHGjHrDDeb3Xatr3Z/F8fA88a8STdvYqvKexTynq0HUIFy1tM60V1YK9mw3V8x7cwgrelgnvvAUvt4GH9sGnu+FyBbzSGX3uN3iSE7bHFM43DMDvvAyft0Ztp+Dn6+xo67fBA3vhH4qwK2JxT1wPvNMdfoXf+9+fIx/ywz2qQPjxrK7uojMzwtsap7qwN1qF0f3oQCZ8lF1cgPbvg/vUYwd+i8buhzt3Yq88jeoOwN88iR1disZlw/202M3foZv4vPQmO7+nlb9TVIcdVINq+fw4e3ct38PfX6fHzjiFvnYuacavapXxeXH22jv+Y0KuFapmP8ZusQx1boLvXIGd5IAeZw+W/N8vsP+8EtuRny+wq17CTmH/lX07/z6E31/Bbsc+Z4eKf4Ab+Hte53sK2O/yeR++JzJO/0xRHW48Ubx1oDFAYrTkytlree/gvsNu4N3MVbFf5d3K3cPuWII9wb6FvfII9jX2cPYm3o3cvWb3K7ll7I94X+QeY3/M+zOuV/mO1BN5yUZL+6eGBhe5cUSM+rAvY19gX8u+gt2W68ceytuBG8DuwlvCDWF/i7eUK2fP4u3G3chuzVvg7wlmX3zfdfZAdif2xd+d6U8csi2uMI4P7mxc7RlvHOIu+gTvR2b+mPeEmf9p5lqze8bNzv9ldv40+xOz9y7es7h7uQ1m9z80Oz9p9t5/AeQHzFU=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAANgMAAAAAAAA=eF7d0H8s1HEcx/GvLtdJc66I7VJiadgpV6KWH8Xa/Dj6gZEfC92KmVy/kIajM9UpuZSJ9cOvkR8jrB+Yui+jxI3iTszl15Df+ZG4tLW25l5/9Ef/9fnzsfeen/fnM8JgW/jfkdcQv86ULfH7cDIqjnErJsGNG46cphyXWyu7bGU4wjOTUavsXNdwgkZOw3wcfXLngsYC+La+jQcmDKbgXt0+Y9KHS0A/+mxetoJUtVF2sYgfVZBeAZ1gnTbtW6YSuJd+Ui8siScGr0w0K/Ic/Azu/uqqnhZzAfpbduff958bgvn4PHPnAvUecKGtNScyrBs6Q/3PkkL8xsBJxkDL/OIwdAiNUhot9wq4IEU1rdHGFzqmNFfRLmo+uGJA56DbSh10SIOJT7mSDpgfTgqa4mmTMK/K8R0zv9sIPljysDEo8TV0igccRkvmW8EryvzkLHoldLIYrrT4HzfAKRRh9W3pNfDHgbqM5nM64IY13XLN92nga9JivGcjy2Cfor3WnM7edOxURq8fdcvF/38R5DXTnwodbSvZOGUyG/+/6OM+odtN6HCHSDM6Pw7fm/BFnxSYgTOJd85a312gb1ffEl9V7gHzakbsjv6q6zDfPutCbw69DPNbLcUSj29h4Cs5jrLohFjoGO2z6DuRHAEeLOZf+tqLnc5lPr3KORCcFftcnNe5HbzZjDlT5mIK/dp2lcE2ch3M12rs508Qp2Dex6Eontd+GPcpozN6s9zBeYWtIW9Tj0HHSmDgy4rxAp9W1JdoOTpAJ0gnQS811B58Vt3bWrZDFT2xKcU4UgV8vK/bz2SOCV530sSwO5wN+5BL6RzzYvzPFc1N51+eYYP3LLn/aGhmQedDk/TRmwBj8Ge2meNOT/WgI0x6/oTfSgU/tGipH/Bg5KCyO3YJvrLDPoMn6yqmHS4sgrfwyjcb2ayFfUT295a3BhJwr5VM6FksXYDOMpVgzUepQCfX20eq/XiyWtkj3zNNnY4ooDMuUsvSv4j7rz5/97cdIfdyjnZAxyYvoZTqIod92CYbNEV1UpinCHTtXkgk4Lw4rz0RhV3QWX3+eEYUh3rfpO2f3/W/+k+87sqDAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAA9QEAAAAAAAA=eF5jYMAGPthjFSZb/IN9ql8BA8eRj3vR5Rv436t/5/uOJo4OCJtfnbFs8d8jrPvQ5Q9PbqxcOWOLLaZeVHXUFf9gL2OwfHrc12cY/m1aZui9kvsuhniPva1vRd4dNHd+sH/2eHNHVuwbDPEjgk/Offv5AsMcBr71HBxLqygMT2qJf7Bn9Y15YzjlBIY7n66bfyK57SCGv9Y+cXm17tt5DPEtG2Mf6PJvxTBnrqAfR9O/Ljr794P9GhNb3+v3Z2C4R3lrNdcr/6UY4q07kyM+PZ5EZDr8YP93zVWzHv9uDHNSnx3R429soJF/P9hzqhlde7ytk0h34hL/YP9/iefN6uZ6Is35YJ95uLH08/08DP9e/9PIv807iUL/frDfd5nx6aUj7Bjm7+OzbHzHkEC0O69v5Be8PzcEw5zCVeezTk0KJNIcXOIf7JPFm2Un5ThT7N+3j+7Ean2VxnDngSgt5TsFRpjlye8ZvoZrFTHU/xcQLtqVbkSxezbbz3nrtVqWQnOoJf7BfrLztD9ySQwY/rW42RO29sb3Pejif9gYdL9VMlIYv9QS/2B/6lrWtCUB1zDcabeseT2bzwMbdHEjLR6ByQduYKhnbpVw2HnhAoZ4YUOEcfmqW2jmoANC7iRVnJA8seLogFzz0QGp+j/YAwCFICZBAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAAwIAAAAAAAA=eF5jYACBD/YvBY1M4yY+sGVAAR/sfWdtCUzd8h5DXPOYWwpz0IO96OI3/78oD5sjaMeAF3ywxy/+wV7+kZDVO6UPGPZKPNI8Ep3KQLH5meKXRPu0L2C4nz9KNq+j8DCG+NY2vTVhTx9iiIfsrpEVkf6O5k50QMg9tBb/YN86gXXqCbsYjPDU5vCbrM+2HEP87xNxG///BzD8e0Tp3e2lF65hqH/RkfyhUPQImnp0QMid1BL/YM/M3LOn/0YLhvsXJkkInskXxxBX3nvngcDZqRjiTFPrIr9UbKRR/H6wF7W4+Zb5/WIKzQf6t/m1wpFWPQz3SzOc9hb55YMRXw5HzzVt2xRKZHx9sL/8xYf/TE4Zhvly5ocvhP7II9ocNTPTR8G95RT7V7d+x+Fl1xUx3HNGT/rTRh9tis2PdlnTVHjZiUh/4RL/YG/RqhSjWxeBEf4f/x5dJ+LpQqT5H+y/cEfa3lRlxfDvl7aTEzQrGIk0h1riH+zv/g75d+yMLoa/rpy8seBQoiaR4f/Bvqdjx6LG82wY/nL8aa6QOPvlHnRxz1utn43yHmKI90r8/ehS/BND/FzhJjE1OxYi3UOq+Af7pZHRN0QXvrdBl684K63t5fYXwz1vJ3POVSjBdD8DVoBLHB2Qqp9ccdzysyp92aZrXRok/qKW+YTkCYsDAMaaJK4=AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF + </AppendedData> +</VTKFile> diff --git a/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_20_t_100.000000.vtu b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_20_t_100.000000.vtu new file mode 100644 index 00000000000..2a853cc8c4e --- /dev/null +++ b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_20_t_100.000000.vtu @@ -0,0 +1,47 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="166" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="176" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0.0046914783719" RangeMax="0.15304753483" offset="260" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0.0048569775108" RangeMax="0.15844652278" offset="7524" /> + </FieldData> + <Piece NumberOfPoints="121" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-5e-11" RangeMax="6.5633227314e-26" offset="14464" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.017930631582" offset="14936" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.05" offset="15608" /> + <DataArray type="Float64" Name="epsilon_xx" format="appended" RangeMin="-4.5730205646e-17" RangeMax="7.8927933366e-17" offset="17136" /> + <DataArray type="Float64" Name="epsilon_xy" format="appended" RangeMin="-4.2888868975e-17" RangeMax="7.1522319346e-17" offset="18488" /> + <DataArray type="Float64" Name="epsilon_yy" format="appended" RangeMin="-0.15304753483" RangeMax="-0.0046914783719" offset="19840" /> + <DataArray type="Float64" Name="epsilon_zz" format="appended" RangeMin="0" RangeMax="0" offset="20296" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0.17488880339" offset="20364" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0.17488880339" offset="20728" /> + <DataArray type="Float64" Name="sigma_xx" format="appended" RangeMin="-0.017391765321" RangeMax="-0.00053312254226" offset="21092" /> + <DataArray type="Float64" Name="sigma_xy" format="appended" RangeMin="-2.7570009172e-17" RangeMax="4.5976288196e-17" offset="21588" /> + <DataArray type="Float64" Name="sigma_yy" format="appended" RangeMin="-0.15652588789" RangeMax="-0.0047981028803" offset="22936" /> + <DataArray type="Float64" Name="sigma_zz" format="appended" RangeMin="-0.017391765321" RangeMax="-0.00053312254226" offset="23380" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="7.6118090438e-06" RangeMax="0.00045560855859" offset="23844" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="permeability" NumberOfComponents="4" format="appended" RangeMin="1.7320508076e-12" RangeMax="1.7320508076e-12" offset="25172" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="0.0048569775108" RangeMax="0.15844652278" offset="25284" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="26292" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="26984" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="27524" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="27936" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="28472" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="29196" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="29504" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAKYAAAAAAAAAYwAAAAAAAAA=eF6FzDEKgDAMheG7ZO4kTr2KSIgaJWCTktZBxLvb1UXH9374LhCtvDlVMcVsbSG501kgDtcrmi/sELsASokhQpEtEUqG9hxpYkdbcbaUTVlrA/o7/BCci+wtfCLj/QAlSj0gAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9I1NLA0001PSzUzSDZJM00FADQ7BVE=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAJhUAAAAAAAA=eF511mk4VV0bwHHKlAyRJJVSkkKhEC3KLPOcTBnLPM/H4TiOMTOZmggZKkKJrFBJmqUSIVIaVCQpT6ne50NnP9e71rV9/V3/te917+3inXHtxmP3osEf9qcbDiqHdLD8/XEXcvyHfkwH6mh8V3bPjsK8pFfhrnq/K3z3t+fl+H//prul2indgOhR3zMy0Rwm6A7HW2DRI5NUwIP44U/bVnHkKoGTBUcEB4VwP+rumeR62xkw+9/IfDtvr2mmflEgetR51nNEB1k7g0fN1g8+H/SDc4iH9Vx7ftDKBogPZ1o98PUEqP+hPFnO2H6Y6CcRHyjw6tDjCiF61K+4lvfNcEeBo0cdxsobw8EA4p553tfTJ8MAv2yQxAjVGQ4iLnqT+7rfCzrRX0HcaS5Ogu/WAaJvRXzz1zsGgtr/PjelQCX2wT5wAXEDJXZPN4sDcOxw/1GjZGmIusyiPRRe64OQ2TchHrPu9ejuDmeiR92PPf59dqcblI0tv2wywYDtiJv8OE61VfSAfN+ihefaozB3SBqR/GgcSfTPEV/aq5XXeUab6FFXSoj4sVI/EHavVbNPFneG44hHcFiaXPGyADW1/3AqKQVhHlfrlMnG7giY/QjiYx8eHC9++mI3s0f97YRZ055QHRCd1hPPLxIOehBP35QuW7VgAepc5n9myXtiPlcXu/HHNJXoCxBfP9RTShVbBpk96hL0Ihebz5Hgn3WD74NMEiADcdlfVar24w7QgZJxq2EyCPNcfh4Xoxt2kNknID6zUqtNgG0fYPaoS81G+2/XNAYW3K2SDN1wGIu46blCkStcjuBolWf1Hr5YzPdSr/ZJ3PQk+lDEj74K3Jr0xYDoUf81ymvu9csZDLNda2ipjwEH7h+7uqc46r9edNvPmClnmFg5SxtVScD8br3Rt4IWS8jszREvMV937nmNEdGjfqtZgEVa511bhILIvi+nEoEV4o8MhQQfvfUFC2W7kyp6IzFXPs7ZZXrdHjB7d8RbBfbwbJixInpXxD0e36hy3qUJB3R/3JIwiQA+iGsEegzb8GoAnnZrAeHmaMyNg0edTk1xAmbvj/iU0WPWNedNiB718qrLSk5q6mD8/PlrjT6+0BlxthNL5+2iaIBm2JP2kmMNcEE8ls0goK8ujeiVEF+6+p78wAYG0SsjnkTnrjG1zQRjK2KiRUQsoCriHTosbe0rDCH3tlD+ba/dMV/cOzL3sT4SMns3xH/oNG9ndTtA9KjfsfXxnqukwHvjjxulkwOhL+K9mlGrV8sFQte3Ky+vyHLEfI2AUAm7gTPROyB+7vjrmYfgMNGjXlkqYkUtMYIlMtN8V1PDoQnib9O3BN32DAY5kmFljBkK5oe3L5qykqcCZo/ut2/dfdO7XgFEj7qnQodEEDUa0L44zMjL/GlTQHzR5sf1rdWJgN20RvtUfAREnUW9d91b1gSiB4h/tTLoVymNI3rUP9G1m/Mt/n2+XX7CI4or5lEdUWmaoa6w6IHXjMqsLeYC9ux784U2QGYvjXjnUqE0szdORI96kvo34WW/ZMEZ1e/9r5fHQAnEn4XmTiTNS4JdFdZZ6bf9MOfn1k4qatYl+vWIn19n+NNYzZHoUef1GbnQNewKitJavvLXMIDnsf3e5R0JhLfx9V9h5baFSdw5D1UbEzCfec/rv07fATJ7L8RZ+UNNbSbsiR71NXPWrFcEnOHuG+rz1tdCsPMnBJU11ruogvn5ocmrjpGYn9wRuFo+5DBg9g6I+zsv+7D9tCnROyHu7MXLV8zvC+Zr0jvzkijADvFPogPfNwBncK7PdIW6bTTmEiHVAUKHDhC9PeJKyUrFJaudiB6dL6lr2yqvJftBTPljDwsDe2y+QqVd2xdTs4DYM9kkGeAGHBEXM/V0na5OJ3pXxMvse+/NrMwmemfEex723ntonwG6bDIkreNcIOrnPqzRb2+iwsBNPsW6XwHeK41VaHCHQWa/H/EHoO62rm8k0aP+hP+VUX5iADRki18ekuIBbRA3GVHUzsmwgL1JYNZOnIp5s5LCBkeqP9Gj97ecLVg6We5D9Kg3rH2ms8cvEuZm7Gjr3kyDLogrzs9ECF+PBCYGKZ6SPgmY17TsrNeQYgBmb454xO4Td5pjw4gedQO7tIGcJDqQqZYdXF0YBveh3ydXk8RX+Thgqr1l4s5aB2CE/n76Z3kcEfyv10OcTv/efKIziehR5/OT5d6umgpCcyvtNGLdoC7i3pfroy5GxAHnc1/kqTbhmCuZDTK0+OOJXhPxgZsHlTlkooge9ed1rrcG+ijA0zVRayzRE+ogLuz+okZuxAtMcXLwi2oEY97O2tV528qU6E0Qd+A9BjlG3Yge9f3Hnm9LCZQFA/RvjeblDGB0o8DOLTeLcJ4AV/NZXSvYM5z/85FMCuYHOFZ9v3dWh+i1Ed+0tqKtJ2EX0aP+eZL95NuftuCsVGxTGhcF6CIeNyvVJVgeDA4+zgvOv0TFvNJVzZHtpT3RWyE+0NNUXvhPCNFbIP7H/uKnIyecQWPd5wb2O1HABvHwz+2ub58eBlOaO+/dD8HdZbUl7Bp3Je2bGIuo9XHk/an6gv70dFdQssX8nthGL2CLuDe7zo5c9WzAr7U0cml/EOYLMedYo5RziB49X8E+/pL42/969P5dfe8SuMZyQOT6W6ocoxqY2/bEKNs994Dz1qqCxjUOEHXDwjWP4uk+kNmj+3+t4a6VuTeA6FH35aJP2YUGw40Ck5qffenQDHFLKUH7c3fDocKQx1a7OwmYL/s8vGhgpw/Ro9+X25cMTeEtkUSPuhzjyaOz037wNO2ZguRnvN84IKL1MicF+Jl+0QpvjcG8bbZuwcAtETB7dL4itpS7BUNpRI+63HqxRJbzyeD5935G5gp3bP/GbSqKDutSQRJruvzUBXesrzyuNhf6798/Zm+A+HoHv5PpHAyiRz1SLcipMisZKCVJaLHRI6A+4mpy2zpv5nsDG/fFF+dUfDFPLI+4r1q2h+jR97uRXp3/diGI6FGfyy5PdGm0AzJSZTyql0Ih+n1/+1aU2ZKwH7Z2vRsR9wnDvGmSJez6J1tI1gvIScmnTNuS9g82Zq/MPWAHfatcY3ubMkD3VG2z90wR4Vo6k9ddC2zA8/c/1iw/nY/5qs+SCZQvkkTfg3jhVWPfKcUgokc9/f1se0KDB+hM+5wzYBaL+fyOb3WnFwcBven2ZhYjKuZ54rkpDRtCiB6dT+2Q4zWl+ECiR33I8p8SndJg8CnrheCljAjsfHX2Iyzew/4gaYVK4XhTMOa9cvsPv7llT/T3EH+WNsEoXORN9Kj/2s0TqCFkAURzhMJ57hwGvYhX7WwMFZ7IBklfxqymFN0g6o2UHn6xs1lE34/4QAt7tqx3OtGjDu56NYsZpgERkfmnwhec4ADif84/vpnhEwFpRpaKE3MrAOoCH0svBJQ6QGbfh7gbW+36U14hRI/63iNflb3l98EOD+0/vwNisX713I4TmSvdYddsc+TYIx3M5dI1PNd3hxP9E8Qr9d8YPoo0Acwe9TU51mPUfhfYbK10aE8hHdvP8msrCy+BNACeGbELOeRgrnjrVfmF5FRA1jcIvdHWkKETPbq/PtFGcxARDzosz+g1SYVgfamy3/mMtgzgNHqX+9hgOOZf0xJD8h9mEz36fVx+Ug4tH6YTPbq/uMH1lIgD2WDZV56xWh1bzI8Vz1n09OlBsW0vVOkCdtj7k7VI23KL1w4ye3S/+Slzt9wZBoDZo966oYi+XJcHSnJ32+edicTu96p2TkrLaaEteP7rzQpXGuaejs/ePPYwBGS9dMUH34k6M0jWO3wbO7TcSgIqhm2Z48wpAFfYbthcki0nvKzmGfvnaAAV4gtWrhHAnfp6cXGWiz9g9pcR51mxelgR6BI96gFCLRvGXHyB0N5vXfue08AlxCtzTilbinkAx5CVF5xckzGnH3m22r4siOgbERde+JykvjKI6JsQv9s+zxG4JRIYTdXkrn3lCZoRT3017n1P+BBkKeB60f6CC+ujd0ZdKlwbDJl9C+LXXqsNmUgHET06f2iVjj1NLRKOC76rVujxguh+YsSE32T6MwBt/1z4rpSVEJ1vk5qgZPgEDTD7VsTjpeEi3uxkokffn4xBi+bXf/8/oDm5JLb3LQZtiPdONWxWa7EGoRfpCj0dzhD1EU4Dn1V/FIgeIn7k8aGPVRUKRI/6p4Aj5cUn9eGyc0JBTuw7sP7XhzWNOabxUGkk+9XFigCsH5owqyxgoxP9VcQt7Sx71LITiR51eavkNk2dJCh4fZrV+noOtp8v07aWaz5EgOlNT4QpuYmY+zyTWi/XEQ2YPbp//s0KpZVTdNL+vmhJUr0tAwiLZFRJjYdB9PvxtrirNJOXD7Lvetb7i+L373Xf7jgemkv06PkXPbuds5yOkvarKFuTaXvywJv9spzPzu7F9md9g2ftNRtzoLsxTfr98XBsf/q555rf/bYhevT8It/31MWczpDZo67OvcN11MMOHvbL3ynAFo+dn3nvY/WNtH0wLzVSLMyeSupkfZhY3byKszRpz/QlW/JPHPmRD1rU28Pn888R3n+ZxehBjSd4s+GHtHd8Lub6A7IX7W64EH074ifU5ZfmpDkSPeq9n49Gj1X5wOHTwXr9lqmgE3FJdjWuw3QrwME34DwsmoL5qifDZZlb7QBZn+JWOfQbmJL2l2nBnFW61oAWvpstP84I8+ddmnwF03Q4GTZ61X5xFObTxXUXW8aTIbO/jrhE0iA1YhOF6FHfXGTr8SKRDiXsLPV0HfZj56fLP6ugx/77/0NoOWdbhjvoQvx9S/9ChzAFMHvUg7xtysJKEkj7pq1P5ypNqKDArcQ/0zEQ9iAuShm/e9DJEl72Dwt6WUvFvP8Nf4gMXzRk9t2IV+rfe0dfOET0qMs3q//wtqNB575vvJmLorHzzXml9v/hiYVs8U2U+950zPlYs9WWRMSR9jmCnyc02+JJ+wAeiUG9QDq88XvbpQjrGMyHU0oFT/XEg99KjqZZSQGYX5Mc05kSyQBk/dkyFmHpTwyiR99/z7pSiati2WCnu4XscsMAiL4fup9I4SHxI2B8l5DFJxCOuZj9xcCwvRmk/f2zatUZlFTS3rN4MP54yRFgYTEhfJOHhs1/7umH/DGZMKhPjayXqMHdsWhWSHBPDGT2DxAvY4mT3Xv7vx51sxtJ54OGYmDrRidxZUYU5jVBDnKfPqiCH4WtM6caQzBXsi1oLLZ3BMz+Dvr7scP57BYnC6JHfejyNJd7nDvoKTlvHVeTDZ44/nQcLL1IuP2SvKUWLt5wkevLkTMK6ZgvUjlMbX5kAcn63bZaj1nMg0n7E1pVg2k1bjAm5ehwKEcK5jYvJ0X2++iCWq24wXrOVNCHOKfXPl7NNhuiR73/yi6W7WEmpL1ezOlVNs0WMNRyk/ylJhroR9xMuCJviD8NNo4KZRgHxmNeanl8ee0vOtGj8+80O+eR1ZBK9KgnZlRMOJ6iw0a+Sa1aNhfMe3fmSt1pDQVj3I2WD1WkIOqrA3tfaPmpk/bf3unbtawMJO3tDAflijbawe5L/C4HeikQvd9kAzj0mj8VMuqdLbZMuGLe1M/W1P2IQfTo+d7PtXeFRDKIHtvPH55Ea1Ua1Hslu3FDUQLm4iqj/xiFR0GxpWovhjziSZ2s/+k8dZFDO4K0Z3p91mpuxtFg7H6RiePdaSuygaob/WqQfwLmRlFrQ2FgAmD26Pl7r6Y1qK06Qtqr7u/efvtqDJCb/Za9IjIC8/vs67hqXiYAdw4jxxa1UMx1P009gZeSiB59/u/OJdZ7LzCIfgC9X/WguBUjGaSYcWSFGMZhvizcN+ykdSx0qwrw25UaiXmAoKi56RVvyOzR+WjiZa9pX6OJHnVjr4TtQvNu8MTz49d/agbi31+HsmJupwswkLt5s9HVC/NlKWOcPNf2AbLeddGX/J0WHqT9fI/7jTuLrcDHdpGyP0Zp4OQf8Svcw5Dw0yozP6oVn7ZZmwPRBHVyJ+svT2xZPXN7lrRnerH500aKRwrmtOhZ3a2F8jDt6+2TojWJpM7sixBvq3xy40SdCdEfR7z4r+cuLDcrpdIwX9g7qFZBSYcspi8MeK2iMRcuL+a2lo4n7RlnpZcHbcokenT+E7wfR8Wf0qFtP8fQelVDiPY6pTITFfc9Ac337YMLo4qYvwmW8MrRtSD6UsQ12E7Nfur3Jnr0+d3WcUW/DxtBlvFMkdT7Uph/WyZM646JhSLHzzbkKFpg85+xsj9UGniQ6NH53rvEbnrRRyF61EOLFn7+7rGCJ858vDDZHofN3yoqHBLbQoe33kaK6z2gkDqzR89nl1bJsobxRE/m7mdec4lPJGHuSbGK42ylADk93WXvlcmd2ZcgXvD8S8SeQzFEj3rRX48akc9dmRmM7X865lKD6pt/Hdh9UJENwp7/iel/e9S9jcUTawqopL3vXz8UVj4ysigE8w79PWfMirXh8MK7u+x2HpiP6i+vWCecCJk9+n52Sf4TqBSjApg96uJHNr+pZkmAm9mqXG/L+WMeEE6ZHqizB19WLV/ioBpF6mT9LdGZP9Vn1Uh7phtO833PG00DfEpe3fyFNwhP15ce77krAWyuh3aJnkkndbI+2Lu1XOqwFmnPdD5t1uN6ygzMTbRr+Bz5dICYqn+HHmsCqTN7bsSr3otbQahE2rf/9a9vbd3Y2yLAMsQllz7rHZJNgvkzH+9a7IvAeoWoF/z5T90hs8fO52oM1zf4r+dBPC/AoEpXzwPSHptvSpdUxDwk5mg0jVsF7FzCJ+6QbIfdT/evk/XGW+i1MS/NiJ7MPbO8vnzdaozNL1L7pDN8jQkwu9hZcbDMDJI5WX9ejLdP8QwrJOuZbmvw/tPiCCpE51OVWciJaY+CwSzpdM55OubVa6Ku2g37kvaxyXlrF/2kkvZF7y0nG2uDoUjo/jqKRSJE9/t4X5DJ0XZf4GMmITCRnoA5ZY+SrMttbaLnQt9vj4/2S4lA0v5iSihfQ/BWOHeAPaTvsSc2X1gsq7BxNwOwbLx3LXxGCtvfy/Rl+xr9nQCzR88PyHkR/roumbS3zl2oah70BqWSTXCZrgtEv3+RVXXJudcZsPO9Oiy7fwjzE0UDHb861SGzR8+PyTlVxQhJJHrUc/oWj5YGGMA/W6s4Cy9TMTe22RlEM1IGQj3Kyi6DcaRO1jOar/a1zYuQ9kz/Hx0nL3w=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAMxQAAAAAAAA=eF6F13lYj9n/x/FEUVFpkUoLioTIlKJjqbSQpU2p1GjPkjaVFO37qpJsY88+ZYno5CORbRhrmFDWLFlixleifnNdXqfv1fG7r++fz+vhfe5zzn1/xqg/rdk2cqW5qHC9xfsxeyJEWaIfrWjevHn3Lkt6XcCtZ2Z3Nmp501vwHfAS+L1jTaUpw2zpI85L4ZNGZNc4TfOhcvDf4PFwicKrJ0UpRkSR8wT40W/RDsGpXkQcng+PgIufsM3LnGRIJOEFnD8+X1K/9YgnkT/zo3PhZfCUq2Zmx2Y7E2N0NjwPbWChGdKq6E/6Yj4Jvhk+zzI6fsGcMDIanQBPRkuGmewdei6KnMf+lsGXwGuW53+Ob40gdehQeDr6xtTGxNkjE8k+zM+Bz4V/TjQYqhPiSth57Ln1l5SHKz+ZsoJMR1vBXdn64kNylSRcqTd733APdMb4B5UPYxdSS7QN3J3dn/3V+C/hXtQPbQv3QmuIrG83/+1Na3B/C+A57L6f2v55zsaXToK7wtfAnYzk+tsNjqIN8Cju/WnVbFw+vN6COsEj4OvhvxrF6bhvDKaX0DHc+5U749PLuMaeKGE+lptvmSI/YI+3OzmHXsH9Pl7vfS0u1u+BmTy3vyK49I1FKn8nWBKK9+cBXwj/OzA+rd7CgQxAe8L90U3PPFZPN4kluZgfBTeAv4tKeVQ5dwBtguvDTeFtvbpC2g5EkeXY3xD4fLhi5iNfHQt3eh6tDrdAHyXDOiKcF9BggXmpsf8pfFxj3X0/qtz8hfMhfhYbZpGnaCW4OZq2v5gh6e9OhmF9ZbgNfJ7lwSGHUgLIX2gZ7nzHlUyP+MTbErUzPX0a3GJ97hyJZ15k3stddfFWNiKvNFU6zmCVSPvVj77QS3bK04teVAy+EK4Cb3e7kbTtrQO1gc+HD4Y/mSBxpV52Fv3S8qOd4HLwpltfdsyXf1F9C+4Kl4X/srBypLrNErIE6y+Aa8Hv3tqXbEvcyBPMB8I14CbBJQ9qpZxIFOaD4KPhJ985P3ItmE6z4aFwY7hFmrJEh9g0EsK5IfxO49GRe2slSB48Am7K9u95t3r8UzsSDg+HG8H3ludHb1ptRo696rm/2egP79xN3nxaTaaiF8Ono7vKThQ1mGeQXPRU+Ah0fHVEi+ncJKLCuRpa/M3qJtWSbGKJNocPRb8LPlUYuNWWRnTfR8/1Z0bLyfqGRdEg9DK4DfrPdrp1nJIrXc+5Hfp74J7eScNi6E10FNyNnX/WsFa6PJhmoCPhDuj3fhd2Nm7xpOfQ/tz9DVRraRTX9qcxnLPz+kvukPxTbBZtQbPvawZ61+8XpdxpKFF63dNnwsdkjNf8kLmK3OLubxxa667B7aq8ZaSLuz/2/lWs4td8VFpJBqFNud/P7oc+1/ZWJJMG9GT4GPS4NdF2OTaJhP1eLbnfr0yRZbHRmTjSjLbivm/N28vyOt5GkyXoGXA9tMv5K9oX6xdRJ8510ZfLZ63/I0SbeqAnwNn3VnzoaZuhykJqwbky+pGp8wtdy9HkPdoAPgwt5jSt691jHZLM7hvO7mu/yRGJrt0zSCtaH87++zBqrUf6zWJ3Eo/WgyuiHbxHKF/W9SbPds5r7fe3g2jIhvtSWRNSRDG7fvS6C3HGuX/Np61wDXgs3H7RP5LvKt0om9fkPKti+ButhW70LedxcLuZm2mCiSclu3p6Cvrm5kWlRh0mRH9Xz+cnodVf9YsKd/AnhmgFbv//LJ/S53vtbKKNVoSvRFsY9tfJTlpM5NFy8BXohF/dD2xO8STKAr5OhsztGORKBqLl4ZHomH15O155eZBBnEeh8+aHWtm2OZMgtBI8ke2v5nSo4bYcspDbfzx6iLjq8w8Dssgy9GDu/taXnXl5zSKXeKEHcfcX8kbNM68ii+xDq8Az0VtmqYWuEYul8dx8Kjq0Zvm5Uu0Iuh0tC09g+1ndYfH0lyjKzjsAvhp9r2mrQceeZXQvN8/ObzviTfOlh/b0E+dZ6Ft51/teOrGUHkOrwnPQxg+VJpVpL6ZdaDV4MTq81UTvvFEUld7dc74EfnNT4OPniVFkxO6e86Xw0oLqUB2nJNKBloano1P6tm6LzooggzEvxe0/tH61ffDdBHIJ3Qu+Cv1H7Q7TfzziiAtaHB6K3ueXNOhTcAK5iO4s7fl9j9+9rLd6eQpxRH+Hs+/ly94tqxXfpxF23m/wcHZf6krTvTbFkcvcPFs/f1XX2VV94kkRW6+05/4+ybtOMHry779v0O2lPX8fgaEWlfZ2MWQb9/wI9AnLkcmWyYGkinM27/h64/BtsbMJ+34kuPtLTKg+u1beh5zhnH1/HyLL0/3q9MnypmvDtx1dKOrvpaMkrVsg6t38o03i3E7LhDhSe7gMXAwup5GdvOKoJQmA94V/R3+1/ahpMXMiteX8Kzpupc/KyOMuZDu6H7wP1u8Mamp2aQslpZxLwB8ozkuesMCNlMPl4QPha9ysA6r0wskOuBxcDn7rzuvSKmMvchw+EK4E739QOmzcAX9yQsDTd+2Nmzram1QKeGdrrtK1hf6kSsBjno/WfvhgEXkHV4APgUueK74hlZlL7nOuBq88VmJYMieftHKuDne/HaWeXJ1HbnHnV4an+NCavtMLiEJzT2fzporfF9U//Pffn80971cbnZtpu9JGfDFV5pztf6yTcrLZ4mXUrLnn+dn8Gb/xcx7Vh9LD3PxotF3FZUe9kyso5XwM2692s+qh6iBahpaGa6GvHuq/9NrnSFrB+VC0grrfrPaJS+l+ztn+2tYN2qjgkkZSOGfn8x/+7VtmWDKpFNjfjXzNQZlLMkg+d78j0JYafWLE0lLJR+77VYGLFa19XdGQRmZw85roT1R7Q+K/f/+x989+n/JwzYt378QbJZFpaPb7Zt+P/MeAFPulqSS8uee8BjruhMJwPf0gMptzNn+6bcQ4zVpC4rj3q4c2VSXPrN1DiSvnOmjHI8UNClYLSBRaEa6PTmy+bhazaD5dyTn7PpRP70zcsM+FCs1fydDpND7g8tM8ez+eAf+xdPnblTrWypW1HgwQ9Tl1Y3JW0gbRabTL0Zqm4xnOZDhaHF6FvtSv3Db0gQ51RkvCa9EdIa/PXZwVQnS49U+h63cn2JdV+ZI8tAT8Aloq12e+y/vlZC3n9egnhcFFHv5h3fO94efQyVax4sbiy0m+gI943/7q8rtQshndF34R/en0xxuGsstIGff8S2y9Ku3BnuZuZDtaGn4F3f/c2LeWuwPJfnYe+B/o0WdL5iaG2JNqtBz8BtrrzQt65UQeecX5XXTnb/rO6pdzCLtvJfg9tKPol41Pb2eSd5w3oj+ERxv+0pJO3qAHwR+gPRb4PkmYFUlZq3DzVwr2fZ8o6U5foAdyz7dQv7SqYXcYvYOWhzew92+aeFqtxZoqne05/whenWjd+7OlD23k5tn5lWUGRGkcW0GVz/Y8XxO8JNSgq+yoHXmIVoDfR8/60neUh8kiqnu25/mfwqeWKoer/pVOAuGD4ex9RI8aMy/TOJ3w80/g5s9ObnJMTSCL4Wpwdt8fX29rS6mNJ724/bPzF06QVCjtm02k4Mqcv1KUvllRkEc60LLc/efH1p29Oz6LSJzteX72Pp8vvJD04WQuYedl98/u13PFBgm3vVaU/R7Y93cb/dVbakpIuSt9xt0ve/7J/RULZqjbkisCbjI3iw48JkX7Y3/s+3oMjzjqlCR7ub16CHe/zfCuwwFixi9tiYyAt3X8JTNj/lzKz7P3s+hwmufXVcNoP29ZqV9DwkR5Y8e/nrVlp8gNvfrwPAntZ5OoFOcL0Mf/VMtO+m0p6YPOgrugH3XkbKATZ1BJdDbnn9K8/V2vLiaEm3dHxz1umHl3gi8Zxznb365zUuID+oaSSeg0uCv6y/xQx+8KIcQAncHt/+UaF0nt/0QSJ3QO3At9PizjzkklP+qJzoSzvprzxKYzOpQ6c/fzK7rXd3O1lSYhlHUWt/4Sx2lLPKWi6HJ0LtwXrf/WLXtAURLx5va3CB2Wtu5kTNUaEoLO5+at5Q/Q3//9+511AecuL9RlH/37/wd+3DzrRR88zOpOO5HlnPujjxm/uNM1w7B7fi3nFr5iRhc+ju+eZ88PQNsXn2vb4W1Nfbl5tp6etGSnf0w8jeSczT+KaB1q6Z1A2fMKOb83WeN4wMZkGoUuggeit++TvP95ago9yK2/FP1JK+hu1OlIks+dPwg9pHGA7wn7lWQ/d74l6EuTT76Tnpj40/xitMfgHKPR8Ukkmnv/7Px5DVW3pSoLyQrufGz/hlnflrpdKCCrBO4391ZqGgkuEpw3SL+kkRO/tvv74O9vsKSnb1TaPBLH3R87v2t7uy1tcSY+Au9PycHOTVLHk8YJPL/ury7z1C5Xmoku5u5HQUXjorOpDU0WcDk4m2f7Y/cvUVAZrPFU76d55p35P9wscM3Gyx0xokSja28tzQ6JUtGH7py6fnNpALFEJ8HT0VVDOzz/0V1Ep6LT4dno242Za+Qa3clMzvPQsVJhIdN1FlM/dBa8AL1xT9s9ld2OJACdCS9Ev9GY8qH0kivh55kbWU763Ok/+6f5IvQHlaDCBFcnUsT5OvSFL06Jzycm0jWcF6Pnih2PbDieSkvQOfBSdPzeoPAjh1bSBHQ2t369R8nYyw0JdC23/nr071Xah1SvJxDmedz6tj6rwxy2rSTFnG9AH+yt7Udu/vv743wj2vpLbFPJrlXkd3QRfBt6sP7zls2bHGg1uhC+HW1i7exwpTyaHkQXwH9DN6Z32eQ99+ueL+DW3yJyNztQvZqeFHi+eLnZvB0OsbQOvRa+E70hR3bd2Y1xtIrb3w50yua5LzdoJtDznLP5OTKmMvp1CYLnS7xvpCfSTyDlnG9F69ZfcamNyCL8PNt/iJ/16JGSyWQfOhe+CS3r8NBt1LxccoB7P5vRZWdmjBHbn0GOcL4F3XtAr3UV67PIfs7Z/Ys9WX0hQT/9p3nmXgaTxxsOziQigftz0RJ1DJweQc8I+JSIhwuOHoqh9ehSeBla8maL6+RrET/5HvRbXcnKRrNVlD1/PedR54ilb4wpOcE5W99H+vtYzwp3wn8/7P3uFEtLOXzEnhxFF3P7/6f1/gf3HT7k20bzTefPJIkSr+2b+2hwpUht049e0+9ro3dHIBXb1NPV0Sp248bUqDtQfl4Vbmy/8d2pstDu+SRuPmqK4/qPTd5UQmD9D6O8u4q9Z5De6ARu/ffjlfqT/c60j5BLSli7VdgRIV9ucfblfXEHKodOgWugW7cGTHc6nE5lBVxytu3Tw5aJtD93viFomjdtxwaP9J+cne/O5KFWX94mUFXO2frZXi6fw+6GE00BbzkQHTxinxlV45z9ea2GTZEBFsGC80+r4jNn1LlSA3QqXBtd0KKlsv1iGtXhzs/8+tw9VtPfJtEx6GS4Fnrl4pQ9MpuT6HCB50dvVzk4P3E1NeTm2fp7hqS6ntKN7t5fErf+fvh4gfnQkNrqtSMiuz2J8+XwUQLnOzsvuDx0ai6ZwPlQ9n5Se5vNPZhIRgjsz6FOauy6HRnkF4F5o4/Twp5rryJjBLyloKD2s0IS0RdwhdkT55jsTul2/nwZ/es0668lda+fBmfv48iFoP2S3qlkvIBXNMU47SmK7b7/dM5j2w3UbWcHdTt/f9XGsR7jEld2fx/895W923D0gpE+VE9g3tvh9K7g4YuIrsD53xduuXdosQ0ZyTm7/+PjS8x7+fj+5Gx+VEanbqehIxG7UXs3gGSJpsicOvIpuUakgq5+H9AxwPZWdef1H03ggzln87yLWTXfDPjeJuiV8N4Cz/fRySkv7BhHJThn8zXw79ifKVwB/umQ8bL8Z3a0N/d8tv4NeD+0Gbe+fumwxrpnmbQ/52xe1lXFLdkkvnuera+KVnc5qtcYmE0HcPtnHr14yNd7molUnZtnLSv51SMwJ4CoCqx/On7dr1O32FMt9HS4Jvpi2dvfZwcEkSHoqXA1dGTcwoiWmzO7nz+VW7+p2U1l+olYqirggZoVL98VL6RsPX5/e5+Fl8y3i6EqAh43Vun5jOeOdIzA/n0jM2Su90mk+pyz8/rA9bj12Xn7XI7ZUKSVQEdwrsG5oYBHpRtb3fslhvwvH4eexN2votnvX+xv/NfNuP2pwnW5+2Xr38+4VbXPahUZyj2frf8XXEfAc8X6xsi+WEWGCXgefDi3P+Yu36Qnt5606P6+mLPv5clVvXU+o5PpSPQ07nx2DnqmaqNNutdnzt5vYWN91xLrRMrOz7//nUv1D5Tou5HRAuvvgetw82y/N1/VWem2Txacr4aL3VbdovvnWlGebI29tNQ5UX/0H+mPn11tGUa+3+rp0px33fr/50vLJOZt2GlOOgXmmffmni+Dnvnlc6mzjiURF3BrOHt+Frwv/PJuv/dFB4x+Wp/t7yNcCl0AH4AOGjovv2JUCpUUmP+z/Yhu5Qcfyp6Xy7mp1snD6Zb/nc/lzj+wzb184AJfys6Tw3mWxbctp+omkn6s4azD4ELztQ1ltdMOzyXSAn4Szubzuf1PvVRYf/hXOyLHObufsXA2z9+Pzp6/T0fJiFFZztn8GrgCtz+23pAriu1ugdFUSeB+P9P24nKyRHA+9/2VGhvz2O75HO75L8WN862+hHZ7Jnc/apZrem0duoQocM6+l1EyaqN+e25BFdEZnAfNNz3r5B5M2PrZ3PqdfS+UjpHRo+x++f03Kb8+fuNJEmH75e/Pdf2UjIj9Ht2ezT1fa6T8sqr0VMH5A/InSm8HBRF5NPv+2fsam135Prgpqft+mbM/L77j0HnLf8y698+//4xNov6zEpKpPOds/QMN0Ud9+9l23z/vj7W8TK0NjAnvbP9N/8Ota+piio4OIooCPgn+fyhAbS8=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAQQEAAAAAAAA=eF5dkk9Kw2AQR+cIHsEjuO6qR+jCA+QIgiBdiESoUIKoVGmLxhpr8U+rtljrohoN6kJw405c6VHEzPsJTTaPN998M/MNMfv7Nko5grqzvDPNGTacyYHHk213W3FWYo/bsvvcsfsH+eEW7JLXpS7ntggrcI26t9yL3IMWcx3RfwG2OD/BA+4xV3jqzBrUH/LOoeeXif9cc/+Q+IB+l+7Zlfv8DXk1yLxWhevcH3M/oe8+76aO1cm/wOPZvGwy+x6rQe2pz/kuHsmh6mvOPnlVqD2ewYi45m0T7+HaX0C84x6O8T3O2as18abmwXsFH+CbeAdv4+zf+B9N/9G5vNDfQof2o3dovyHkv/jfUwJHyp/O5qv+qNBH1H31W9Lc5GvuuPSUfn59r96nWc739AG+wjf4AlP4CJ/hHZxQ7xf4e8KHAQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAA1wEAAAAAAAA=eF6FlT1LA0EQhs/KRiGdjUVARcTmBEGLhZyNpLzyCBYpUlwhojaKiMRUGoTEr0RFbFLYWGipLl5hIyj5AxKQCLEQsbCxsDC4OyP7XlavGWbn69nZud27etB8e19PHXR/+uFMIeX8fJ5U+g7pomLoTv5vuy+rpg72WH55BPko/l7xRVXN10r0LZ01ttlPSSdPdcz1HOnSlOQXQDzm43Vp+tv9XhRfROsPteDysGbjZS5LXh/tsA/M44Md+4G6J+qKj3mD2cex5wnmhX1j/gD0//ZB9eMc4Af+lCcrM4pP87brrmxelIpl6G+sHxYuW19s52/Lw3MB/WjbFR/3d2206Z/0lPg/6RznAr8LddNaUl30TwMvcvJ+wd/Jryo+5p0/fR15GthKmfHEg/+Dz3lMSXzYP5vEvhMfzoMn5hQfzYPYH6xVhoc2LP1lHuKHdarvQj3XEo92Pi8ts6Qz967ii8h+nema7m3QvRuby1h8Zz02p1rmIN52b9jzXSk+noeF1k1/cWoZeEmG1A8t4/s3Jd3PSe1H8zSpZQh2/D/o/H7jFxWf5vXFR+G27J1n6H3T64LeH62Py4qhu8K0J+h94j6Y9qTYg3wYfwz+ZP9SfPS+Rd9LJTOhAQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAWAQAAAAAAAA=eF5103lQlHUYB/DliAVixDEWCbXiNKBiOQKxZ1hEDrnk2hVQWJY93GU5JCQQGKQ4BHUqDAOvRCUiYHAgB0K0XoZDDoccFAhrHTS0BKGFgQUCl7LxeX9MO9Pz32e+z/u8339+DMZ/J2qt3tFk0BdoH2gy6D3lFk/cobf1m+iDPOJXqOJIl08S1nOzJvZsupA4MsDUlDkSTuzz0ReLDyZCiQ+xF5TGnP3E4cHdlhUsDvH/jX21xcW1Hz0pxq7R4GemPhCKLupLu2b3Kh/eRjtZybpXUkWgjw6TWdb2G8RD85WXFu+/03jSjA/taLfcM11lNvtAD/cdg8OXj48FwTLmnqsSpn9wOKSgVa5vJlyMCAQ5mu4XomFl+60Yo5lwqs55jFlyJwzm0Rc61PJqg2hYQNsoG2J9LiQAvb/zrRWua48QfkA/ZvaYSjkCUKALRIU/n3/Ih8fo3jwnm3NPI2AInd2ZvnEvdwe0ogOz+PojW9hQh6b7VWmYqX3pRK9CQNUr+fY683vBEL2klWub8iQGdNFZc1cmUiyEoI32DTds9vAWw7TWSzOSQkMosQRU6Pwgr2jv9FjQwn1zAwfjw5P+MIO5z5cFLY6qCHiAzoj+EL4/4AXD9D2cUQ1/1urNupmXQjUOG5W5CrjwKZrlKZ6JixQAnU+r74a6v+hD50H93izr6ETIQPtT1DsWHlLIQzOCh+oVbnwoRB+lUnWPbuRCJjrH9k/p5KMAEKAVTuz8nqhdEE9/jyPU8OqMWbv+9SPU5K1JV5aLENRowViurnpVCs/R95Ib4r7lJ8Hf9P5Ax09z41JYRJcF8ALbSmSwhJaUMiLideTknvqs1Sy7JJLkFuraGu3vdsMkWlURm/LGmWB4hqb7aTpgvCP/oH4R9f7ab6nDL967P7pNuk+LPZQEvuibl8smy1Vy2INmbd7BTB9cz5V+zh53P04EP/SNwT7W0mYJ0PerZ4+w+TpxZD/PNtfVtS0KOOiS6ROShW1+4IWm+2naruf+HnbW55RJ3lTla3ax4IAWtlQFGJ+UAp0XGOcwb2xLhXfRNqrsuGOcNLJ/ussutr8iEd5DP2241qydmgBOaOvljiqWhE/26wc4Y4pSLtii708rro9sAfI/ut92DRenDpkqVyup532bDL7ewAParTUhiRuaxMSGgqhuUU8SlKAzdJS3/5qVwzF05vZs1WGJnOS94/bJH3SK4DiaLbIcHGXwSO4yn+Xu3xlI7seKeS1P3J2JNfvR7guDwPKuy1RyfWXMqRUu0DZqapT1dQiJo91rYGupFPrROlNsgZ9s3RLFaUOnFhnxeab2V/GHRDCAph4+UlsF8Uie+Xp7+T1OCLm/U1w742XrT3K6n6bPnf136qirE7qjgrQooJ3T/7velLWI+GoK2+DXbilxUcbiL7O5icTmhbe5wyYy4j+6ebO7qXjifqWJwOFSGHHc3CYtuW4E8dCSYUOxeSCxZr9/ACj6QsE=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/Oe9lTtZQHs8NA5mHBuCgzzjUrBjhD9qPFYECWAo+1I8bTUVqmlfczzhgTJ1t3h1vJO0nL/tMHq8usGqIBYJZTzwYnyeV29kvESe+PVpZ4C8rK+61X1tc7w60Qsgphx5PFB9JhD6xoI8qzd/7Y8Dgjzce+AJf+QzPPRNgqOI7WW8uNDYOI46ZrxgYRBeWDd0vOx//KxwPli8YNDpz2d2LrwKej/JWJ91vBiBs/yic4C8UD/OyWgDhTy9ML1FDAx+PIiW3x1CA3c8zh+0jvbgcDwnEQp2SUFLvF4oGg6AqGC8gLZuCsH7cLyUX0Boav5+vOlX4BsOmnK8CnOPlGFpXrwaFXZKyiJkvMVVe/rhV4M8N+EMOGQvgDzcBZy+sPt5PLcIgMrHRnI8ql9eEJdQYDyZ2ZKYei1uvOjS5Sv7RIO8n0falq64Z7ypOdCOVeJSvJQ646J7sne8kK6NC6VydLzRCRC0QXiJPJZNvWg1aIQ88nB/k0gCfDwEXKxj74t2PIaNP6EiUVI8OlihX8aXebxpdyq1Gn2AvO7GkPRhl3W8W6AYLIR7bLwL2PTgMS1wvFE+/N62rXW8oDgkgtq/ljx0zppF/PqNPMQe5OXv7HY8wGnolAGHEbyQYF3BYGVcvO1mfSBHYlU8tVvUxid1grxiK7xSllyKvG6ISp+oJ1q8ZfwRT4OeaLxY3lkEE9+BvL69m4pJ4pU80gDWAL5ikTzMGLKyXqF3PIAuk5fiteK79hdfxyEfTbxgN5Zbs8VwvISEZtLXfXu8MhLcdKgVd7z0WCD9fHF2vBnwmUFBpn28qKftfnGle7wojvI+rJmRPLSiBxzTbY08NAVmin0LhDxDhFKb+WF2PKV7kVi4oma8/E2Qi0zVgrzDMrdenPp5vGVw8a3y53G8ICycPag1fbxSvU8OFKt5vAYUKpRlkXG8NHtXC01SijweD6EDEtyJPGx6wS+WjYU8utQm7ZhEbzx0a1wpvH5LvCxZau/b9HG8VvOhskreg7y2G+AFFFaAvJhMwLeUj3S8/veqgmy5cLxwvaoi38VmvACV/a81OYo8ChzZgvpwhzyous9ziE2APNMhkNV1RWc8FuW4FqCFRzwAbOrPgdxjvAbnjM6Gk4G8FsMwzIpOfryJdKPRCExovOhPVDzkR3K8Rz0RKdHvfLyTHIYLeUyNPNR7oIgk7oc8l/Vyi6offjwyV04kIrNvPFixdqDn/Sg8Ku38NsUGeLwETvFN7rWDvG+IE2uQKXG8XkPNtIreUbyyrVeBhIV2vOTa5oqTUIC8CNLfwA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/AD0JBcMTte7hNU6H59NOLyhuRrMYfFAvGxa+Ks8yn48sAnoKX5nXLz4dbo07i1ovA1IaQZ3Ml48KloY/AS/Tby5TUptk9NvvKh+R7EbIWM8QJ/+Wyeo+DtcAaTYV2dwvO49lX5vV1Y8yxV920KgYjyq5JoIT1ODPEzxpxVqtHM8AssSuJ6UdrzsI0sQda9AvMKk+3y0QYI8A2N2h3skazyPSbwoIbhNPC6621I8Tmk80iCcEd49XryYvlz2X4wRPGAK42ZpfQg8bWj+gylqhzxlL4DgC1B5PKBBVSQef3e8mHujiFLKbTyIwnq2kDCDPIL6DhOCXYI8aO8eInHhbzzaui0/6IFxPO59wgJIE2e8epbs5W/EYTwOYn6hz/R1PIfgP9wk1Yc8iwDh4roHgTxZGQ6KgC54vJFGxCN7YGo8FpJsy1w1kDyIJz2lL4SJPCvzSdSQanA8q5rjGbZ3W7zTX26iGaRWPLtMPylgqnI8oT0QBr8AcTx+rmOz11SNPGzML85b2X08qwyxPNQWd7ya0C3m4YSBPD4P+0x+jZE8k4mMDsJMgDxdDPzGEV08PC4t7x9dg2O8EQ+bvy4UZbwpPwZpk45kPBCvEso+e2g8kugigEcDgDxzGd8wwY6CPPMws9qih3S89ssKtTJHXDy13iaUxu2TPLKRofbUfos8CwCZZ72VTLw5QCO7zLcivK2ACrT34X48TlmBIzPkczxPMAFJDF1hvAkz3qAYWVw8xJJRqpDNfzxgFfYtmu55vMMmLKmueGq8hKhtm1I5kjyAhPcP0HKEPOD3DFuWHmm8TbOnF4VJRDxQ8nmowK90vDE+1IcZzGe8pGrLp3W3gbxS71HW5A5svOuFWXHob2u8ee6fqEe5iLxk9oil/C18PEszJWpqnZQ8JPjOEfYhYzy4qsvqqMpvvCkTFrqe7XI8cTFHyIUbCTwPL4YtHGRZvMxhsU3+VIO8NGy27iU8gLwkRCn4HKF7vOwSIOynMYa8ePZO1+8CNDyAq6Z/VzKFPK5L4B4v1Hw8hSBInEQ3YTxOs6cXhUlEPAAAAAAAAPS4Zt0bx37XQDwsGt9GVDF+vInfBs8UXoG8aDJZIqz7AzyVxTNwz6B2vET3bUahRWC8+sqzRQ1chzxY3E8rTwdfvL0irSt8XoG8AAAAAACAEzkAAAAAAAAkuZTlbcVuZVE85yfdpgVXQTyz69jsCPo5POoQH0vkXl08x+seFmIlXbyFHWvuTA5yvMKKO/hw22K87xi29DvsZjx6azUmP7hhPAAAAAAAAPA4RrO3uA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAMwEAAAAAAAA=eF51yk0ow3Ecx/HasomZcmBJHi9umpiHtBwkB20Uu6GcNjmIcFnalYPykM1DSWkyWWx/42D7bZSTK2cuCxvloMTFYe//5VtOr96f7/e76KFxomNOWU0Fv+gnPMEzsT9iAJdwGsO+zhm3d0FFMIr67sVVDGEAx9GNfWjOrB829AeUCQ2o7z/pgkbx98H+iVl8R0/L4qTxeFkN4wiOCl3CQezFARzC1uZfu2tsU9mxDbuwB7vRIfZ20U6s8ttiU+F9VYkVaMN6rMU6rBGt/zVh/CCd9TwfqQTGUMOk8BpTom8wjRvO0/vI/LkK4haGcFv0jvjX9z3cRS1qtcymrtQFxjCOCXHXhPp+KcxVJ9dWDBmVxzdhTvQrvojOC4sdvrvy4K0qQQuasVTc5X/ZP/0HxEjmXA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAEQAAAAAAAAA=eF5jYBgFo2AUDHUAAAPIAAE=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA7gAAAAAAAAA=eF5bf7Bx7sGkY/brofQGNHojlN6Ext+AJo4uf1X9W+wFT9z0dSh9jYA8urqDQVsKAn8dhdMHcPBh9H4c6tBpmd4aiaS0o/bSaLQkibQEGp2Y90wnofyIfQIaHQelY6F0DBodS0Be3uwiHxP/YXs5KC0LpWWgtBSUloTSEmjiUmjiMFr2WJNbLOdBOC0NpaWgtCSUliBAi6PRdqksUtwNe+xt0GhLKG0OpU1JpPcpN9x1lNkKp/dA6V1QegeU3g6lt6HxcdFd148vPhC83L4TSndA6XYo3YZGN0PpVijdAqWboHQDlGagEQAALGqO8A==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA7gAAAAAAAAA=eF5bf7Bx7sGkY/brofQGNHojlN6Ext+AJo4uf1X9W+wFT9z0dSh9jYA8urqDQVsKAn8dhdMHcPBh9H4c6tBpmd4aiaS0o/bSaLQkibQEGp2Y90wnofyIfQIaHQelY6F0DBodS0Be3uwiHxP/YXs5KC0LpWWgtBSUloTSEmjiUmjiMFr2WJNbLOdBOC0NpaWgtCSUliBAi6PRdqksUtwNe+xt0GhLKG0OpU1JpPcpN9x1lNkKp/dA6V1QegeU3g6lt6HxcdFd148vPhC83L4TSndA6XYo3YZGN0PpVijdAqWboHQDlGagEQAALGqO8A==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAUgEAAAAAAAA=eF5dyjtIQmEYh/EQC6GyKOiGBV2NEml1aFAicKiloStmEU0NLcKZzIrCIZLE1AMVCIHQIA7pUOLXUBJBSmhLY0O1NBTRYA4N31PDmX78n/e9zHZ9mBW7WEeLkLoxTa+9ks6jmbsPbfQLtlpceiq6xoQNnegqSf2YQN2jVGFb8Q5N3O9be/K34Qkx3CZdRBUH2qVuTOAnhnAQnZi0N/hLU9PiGp9R55BacAdf0IOTGMMj9EZ/5l3byyKISbzCV+xVpVbsRAM2afqevWXh8WZN5NDokI7jHI5iBM9xBlc1d9NK7iGU8ogRdKGCmxjAKB5iEGOoYjjvezvLbog4ZjCPX1hXkOrxm17NrsEyvZLatIW9u/9WpaVG7MBuHMYh7MNezZ+SKRtm3/eFF7cwgEGM4CmeaPrfjuN3sf24v3AgKqgvSXVYi40a69Go6c34CxvWCt8=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0QMAAAAAAAA=eF4tjnswFAgcgNVYjwoZbGeVxCCmu6W5ddhfW6fHOXTY1bbOLbt2EbMbYR9pZy2Xd4muPKaUUnHcTEKx/Mir84hLHLZtUfTg7uTyNjrupuv7+5tvPoVKdmffYm+DcvvSwFMaGZ1eZSUEdlJw0pM68Ko7DjZJRFNeHnT8Qm9IYkIMQaLGuyUgkgGGPY+rLHceRMa6UY9IxMdx15X3C/ksUBR1MFyqZ6gCRdu3L4lh6IGXfclKH+h8vKznO3scEpN8v1aopGBDnvNgHYuE2HCjWpWuEE3Trkznx1GQFvLOtkkqgfNhmqDSWC648I6OVpIOAjczgRR8iAPtfR/IP8cwkOP8pqzogg5oWXH6PGTrVNVa3UYeSQ7iLhdi+uEY0KhM9AMoJ/FZ3lpjqB0PvHQVnoMVUtD2NhuRXZWAPyH5ZoicD5WrZbLdyeGwKm/eX1nOxjypIeXeMBPqw3KFPHcBzOo2/ThdIof+lc3dpq9FYGf+vvAJMRrrYja3lM1zQPmojXV96Cz805sQtCVCAd/AnmmCRRicDF9stC/zx5zDgzceWhwFwXHGsu96BBjFvnAjacKgmHFockSdDM2ZfbYGTnGwpF89uf+uEAn3fWpWU8Rw8ye/boPcVHB+YhxdPR8P9xqrruRT90KZpYPAkxiIIcUTgQXmQehY0jrWL/weXpyZ/vX06RA4V323nJoXD+5b68i9zyXw+/kJ1Rt+FKpTm3jpn9Phgbfyh23XM4DwvCal4Zck2EPSiAkcD6x6tsX54tbPkPxuWMtOHQfrI1MVHRcjgUtvtH9EZ+IOSX6rvhsdbll33So4FQ9Z7KSU+IoYHJ3pCv1Km4sfojJ8loRp4GjoT9/llQAbvhybQ1sO7nbNad9k5g6/dW6kJBRE4fptdp9PQTBqZnjLGzrE+MD6ci9TPxQV92mFNiVcXPRbXnPvSsQh0eIFxo5Y+K5hp9FbRSb0z2dXGxaywMCZmVUfzUdVbbG67dgJyJ8lXW230QJ2lHhASPfD1QpJbblaiqWvLapYY/FIlY7MtbeeQvHf242L0mWoal8w9Kl3AAeudmrwgTOQO9UsdUiPhfGFxI691kw48ulX6yPFdQLXSpFxKQUEsxPqwhNx6JXG2GceIMYck3mrhcoVas2yxcjZbULk9wxHZPwZgDpmXjM0PTlcsswysp9lYNaKwOraf/7HXLOl8v+unlKhR+s8xz4CjWsTowRvFyhwuv22t8oJdLL/usF4SYfmP8aHgpCO8uyHl0pdIrAh4GkLn8ZCx/DMQZmUDbTpAwRCJ/PTp6nbv5I4y98=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAKwEAAAAAAAA=eF6Fys0rBGEAx/Ftd22MmdmdWbvlJOugJPIPbF7ChnBxlbwctG5eLntBye4Q0ng5SVKcpvYkBz0pB8lhywUrnDelrOLG5TsOT01On34vub3O9+aTWXGEOZzHJPZgBtMYwzj68UN3RpzSgvjCb/zEM3zBEhbQwQO0MdFSLheOF/+swwaMY73UqxjGICq432TUDiUtsYk7uIvuvi25hUtooY0BNdN4c2cLP4awGnXUUMEwVmIETexeuQ2kWg9FF3ZgCvul3Oeh+xtAX9tPunfmVISwAoOoofpPNlDH0bnrRHsxL8Ykxz2c8PhNSj685X3Tg+fiEe/R7Z+xKOn+n6TfK5qKFlueuhRRNCWjkgZGPH41mNUvhpWqK7GG65iVsruvSr2rhRv4C4P+zzY=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAOwEAAAAAAAA=eF51zM8rw3Ecx/GLGOZHjbURh5W4+B52waIYIr7zoykTfYukFO2wyEEzmySH1fj2zYU/wJ2TfE7kNMk4oEgOI79DMgcHzzl8yunR6/V6946I8pfKmSaxjFEMYzNO4gYGsBZVVLA3MXx2rLUIFbtxDF2ooV+6r8JqVDBlc8QPDI/Isv9qQgua0YFOLMRcfOXPN9a7C5YS3n7hwkZsxQ7sQh+q2ICd2IPna6lBLTIirvAGk/iM7/iGH/go7Z+ouK1DJ3sTwok12IYqtmMfeqXdgz4cH90/0remhB8DOI2zGMTQPy5gGE/joeTm7py4wEu8xlu8l0ziHT5JuWh7vs4ILopitKAVS9Am5bSlUi5DfefLNPAQ/TOKq7gi7brUx9CQzEjY1ysOYyITzZjuszEHTVKfL+15+AOL/woNAQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAwwMAAAAAAAA=eF5d1H9MU1cUB/COFo1zIcprx4jKLEr5sSJF1/3wHqgajTMITmMIf1iHhAw3DEo0xkz+m2whZqKI1Co0joGjLgGnU5H3/DGErcCMimWoiHM4l83IspBKVoK49N7vJdL33yf3vXvOO+fcq9OJZ2zNxgVxw79lfvn1yc6+N03a0zAnZQlnPHrw16Hjeq0VPjhjpvPG7tna+3DOsgXqLxeGWFO28KYDB2e+u9hIiTnCTXdv729fGKHV4v30vZ+tP7pS0bxrhav4fjMoKfvl/WPpON5HurrxhD1tXef+zdzpPn3z2bZ+NgRnvWZPbZ64w6oswonK622eYUUzwMncBs0Pt394e+hJpULX4PEXoUdPKizimzQ3XA23wj/tK28uUiPoG7iLO5pK4Vm21b7yOV7141x7nC89wiHqYaA9sA7r9fBKi3VXxkCfWg3P+e77+MYaA2mwiDeNOuCraaHv3WrLlP2NWh+8WcTTRuBM3p9e9hjOO/ttTPmaP9jwlPeN9F9Nt686EOWQ9RiBgz3Zb3/uVyjZJbyY9y+azLBzJOPPuPj76kdwM/7PCVvTeb5sHbyu0J7b4D/D5PrlueaYkkIDbYWRPxXAsv/FrpfzUyjXWDfuDsY4PKXbA77revoAzm9f0X/WaaIieEvTJ6XPVsdTDuzk+8fSNngC/1sGp/B5mabtg1F/LR+uRbySMO+FZb67YHkeujMnXimuNDsWhcoRa6R2+J0W6zzTjmi6AY/xfOZRJ3yYz9986oGv8fk10U24Q8yj1iUt5lv7FZbx/bDsdy8s870Ff8H7d1Ftme7dftKT5LAi32a4c/CKqfuemU7BXZ7NRsv6WDoPF40G6m0VCp2Ge5/+vWpLtJ68sJ3Pn1+tg/PEfKpN8Bj6IePL/pyAZb7SYn6MVKs7d6HBZXO8WHKmp+ytyEl7Gs1XVwWj6Bg89thybPmTN+goXBCal0GF3LCM54JFtIZW6XxenwpWA4/bxHmU6w9xPo9M+V6nm/TzvKVFBS2qra28Uv+VXcR36ikVHsV5S4N5vp8aKQV2hub55yhKhH28/4ZJL+P1/YElwQf68g5tyAqoFng+P39Vqlx/D/lL58NWWNQ3wKzFr07fGckwb6MsFY7cWugK5o6yFPgW73eQJcON/P7/h1lgcb8+ZwlwGj9vQ2whLOr/SJXrc/l9OMES4Uu4L+S6vD/k/rIf95TfB/oHMhwl8MMwD4b5ASz6V6HehxOuhwb8RybXy3h9O9hduGORmAe5325e3/qw/b3qnSn7eyfz+x+k71n9AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAMgAAAAAAAAA=eF4TfKXbOHN6oa0gGs0ABejio/Kj8qPyo/Kj8qPyo/Kj8qPyo/Kj8qPy5MoDANWzInE=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAA0wIAAAAAAAA=eF51jktIVHEYR0Ui9KrTqIPMpGNpmpJlElagJmmUIJEVkVhhRTKR9C7KFCzGBzbWNEriizFJK4ISyYoS6689NkGGJUgPytpkYUTkIgqGFvf8Nx+4Opxzf/e7t6M1/+fSGyeUT8X/SqnIU68fm2ylV9INej29i94CS+nl+CpYQN+Bb4UuesOw6c30Cvo0rv8rn16Iv+R/YukO7mzkuZUewNfCknrH0PL0SmX/1vv07PoClTRlcg/dSV9MP05fSa+mb6O76CtgMf0wvhoeol/Hi+BG+gyeA3PpVfp/YBZ9Ox4P0+gP8FjobH8b6llRq6p6i6ZDZraoqR6Tdno1PR1a6SfxKBhDd+Nl+jndh9dAG30cbxT7yGum6/eC6F5cf/9vm9n7RNf7frwCGqVJNiPZpwKfRhd1D+xSO2E43Zg0/So9km6j3xfdQf9Ct9JT6PEwgt6PLxbdjydBC92O20UvwxNgNP00ngbnDI5ledztamhk3vXpWy6VDXV/jvtgCP0F3gsj6RP4OIymf8bfwSj6H/w9tNM3PDH9q9gH0z/QreK7mjF0G/tJ+oVlGd8L/T2qeK8ldPeRY2oubKCX4JmwkV6K6+de+gF8H/SJXgab6Qdxl9j78XLRT4m9vnNU9Mv0enGnLnP0x7rs28qzv7rjxb8zKg966M24CzbSW/QOeultuH6viX4X79bP6Y/xHrEfwK+I+314F2yhP8N7RX8ounv05qaP9ntqfmde5/Nhtwp0mDxHd9DnwBp6HB4B9R0nrp/X0lPxBWKfgS8U+2Wz9DQ8AdbR0/FEsU8Rd3LCBu/8rnmk7GMjE64cjwqC2fQYPFh0vTdgLj0Onw/X0LU7xH4J7hT3M/A4cSdxlvuLxH4tPVXc91oebTZCn6mwcYc/+VWTCrwxeZFu0IOh3ofjIfCC2Buz7MPFPlr086IbYh+B6/+9RLfiFvFdG67f+w811NtoAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAA5QEAAAAAAAA=eF4Tf+3+7ZrpVRsGMPhgzwAF18xqmp4+Pb8HXdyzf6rO5fqXGOJSZ1wNDqd8whDvT2be9f7PLQzzD8qdSjyW9AxDvK+KcYar8wkMc7qf5zD3bH+BIY4KEOI3HrjUHLe+haFeorA5da/HUQx7D5TL/J5YcI5o86cyzo8pdP6Lof5fQ1j8htTHGOZPz9igP2fLDQzxAJMieXeBN5jmfN33uu/wVwxx/faa1dd2HsEwh730dvnO+JMY6s33hpZdPHgMQ/1k1xy5z+mY6i++UltmXXMM017pDfy8y35giG97eIRhXdYjDPOLwnUyvXquY4j3Fk3/dJcTM/30LpU3XN/5AUN8z5+XR7exYMa777xDlUxFmO5EBQjxXyqHb6X4n8ZQX+ja1Xe26iiGeEmp3P12r48Y4jtlHWo7j5/F8Je5SaGYv/JlDPHr+cc/GRRjuv+IzZlq5jWY4qZhDzZ62xwh2l+4xJ+8efhr0R3iwyfkY32Wo+tjotXjEr//eIXFYo47GObwv2qrF2Z7QrH51BIv1rQWLH1wgWj3yFyLl9/TdAEjfuVPGzZP/nwKw5yvm70qb815QLT51BJ/EP7ovPwPzPIBl3pSxY+kl207wXAGw1/eRzp+3FhMfPk5Kj4qPhLEAUdfSbM=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAcwEAAAAAAAA=eF5jYMAGPthjFYaLf7D37J+qc7n+pQ12dejqcYl/sD8odyrxWNKzPejyfVWMM1ydTxBpPm57bjxwqTlufYtIc0gV/2A/lXF+TKHzXzTzP9j/awiL35D6GMNf0zM26M/ZcgNDPMCkSN5d4A2mOV/3ve47/BVDXL+9ZvW1nUcwzGEvvV2+M/4kjfyLS/yD/baHRxjWZT3CcE9RuE6mV891DPHeoumf7nKipx+g+FJ5w/WdHzDE9/x5eXQbywsMcd95hyqZio7R3b87ZR1qO4+fxfCXuUmhmL/yZQzx6/nHPxkUY7r/iM2ZauY1mOKmYQ82etscwRBnIAoQcj+p4oTkMcXvP15hsZjjDob7+V+11QuzPSHSX7T27wf7Yk1rwdIHF4h2j8y1ePk9TRcw4lf+tGHz5M+nMMz5utmr8tacB0Sbj10cHZCqn5A4IXlM8SPpZdtOMJzB8Jf3kY4fNxafG3b+pa04OiBV/2D116h/AcHj9UI=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAEgEAAAAAAAA=eF5jYACBD/bir92/XTO9uocBBXywv2ZW0/T06XkbBrzggz2MljrjanA45ROa+g/2/cnMu97/uYVmPjqAmYNL/IN99/Mc5p7tL4h0Dy7xD/YShc2pez2OYvj3QLnM74kF5zDcz0AUIGTvQIl/sDffG1p28eAxDP9Ods2R+5x+EsO/F1+pLbOuOYYhri+9gZ932Q8Kw5/W4rjlf6kcvpXifxrDX4WuXX1nq45iiJeUyt1v9/o4ZP375M3DX4vuYMYjLvUhH+uzHF0fD1n/kiaODkjVTy9xQvKY4g/CH52X/3EEI79jV48OSLePuuKE5CkVRwek6qe2OCF5YsXRAan66SVOSJ5YcXRAqn7aiwMAcajBPw==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF + </AppendedData> +</VTKFile> diff --git a/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_420_t_4000.000000.vtu b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_420_t_4000.000000.vtu new file mode 100644 index 00000000000..bb156d4d74b --- /dev/null +++ b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1e2_linear_ts_420_t_4000.000000.vtu @@ -0,0 +1,47 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="166" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="176" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0.05" RangeMax="0.05" offset="260" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0.051763827154" RangeMax="0.051763827154" offset="7048" /> + </FieldData> + <Piece NumberOfPoints="121" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-2.6089835559e-26" RangeMax="1.5379033236e-26" offset="13492" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0051136363636" offset="14844" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.05" offset="15540" /> + <DataArray type="Float64" Name="epsilon_xx" format="appended" RangeMin="-1.4649146341e-17" RangeMax="1.3280976278e-17" offset="16996" /> + <DataArray type="Float64" Name="epsilon_xy" format="appended" RangeMin="-4.0624767937e-17" RangeMax="3.70828421e-17" offset="18348" /> + <DataArray type="Float64" Name="epsilon_yy" format="appended" RangeMin="-0.05" RangeMax="-0.05" offset="19676" /> + <DataArray type="Float64" Name="epsilon_zz" format="appended" RangeMin="0" RangeMax="0" offset="19952" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="1.665170292e-17" offset="20020" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="1.665170292e-17" offset="21264" /> + <DataArray type="Float64" Name="sigma_xx" format="appended" RangeMin="-0.0056818181818" RangeMax="-0.0056818181818" offset="22508" /> + <DataArray type="Float64" Name="sigma_xy" format="appended" RangeMin="-2.6114589902e-17" RangeMax="2.383775374e-17" offset="22824" /> + <DataArray type="Float64" Name="sigma_yy" format="appended" RangeMin="-0.051136363636" RangeMax="-0.051136363636" offset="24160" /> + <DataArray type="Float64" Name="sigma_zz" format="appended" RangeMin="-0.0056818181818" RangeMax="-0.0056818181818" offset="24436" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="4.9794799021e-21" RangeMax="7.882225374e-20" offset="24748" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="permeability" NumberOfComponents="4" format="appended" RangeMin="1.7320508076e-12" RangeMax="1.7320508076e-12" offset="27284" /> + <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="0.051763827154" RangeMax="0.051763827154" offset="27396" /> + <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="28044" /> + <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="28136" /> + <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1" RangeMax="1" offset="28340" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="28548" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="29084" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="29808" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="30116" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAKYAAAAAAAAAYwAAAAAAAAA=eF6FzDEKgDAMheG7ZO4kTr2KSIgaJWCTktZBxLvb1UXH9374LhCtvDlVMcVsbSG501kgDtcrmi/sELsASokhQpEtEUqG9hxpYkdbcbaUTVlrA/o7/BCci+wtfCLj/QAlSj0gAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9I1NLA0001PSzUzSDZJM00FADQ7BVE=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAwBMAAAAAAAA=eF512Xk8VVugwHEZQoVESoQiQzIVorPM81COeZ7JFJE5lGsOdXMLpUGhIjIlDRaNIlSKQoOSeSiUqVK9+z7P3vfzWevt/v19vuusvfZea5+O3pGa8sYblvDK6f/9V3KXYelfeubfl0q/GcB3cqNCOYc0sK7h9Pa5bYY37F3yJUg3+iD1i4+mQnq0L78h+Ph5tgcMixO4LkP3BFeRvpIh4dicoBKYcbB84z3qgPX84o0Tp1fsJn0p0nt+SxkXpTJCwpch3biIATa5WcGcxymnY+KtsZ4wP9Yqfloensiufuwv5Yz1K/xKpz+d1aH0K08r8aeGzdRReefsNd1DwzthwQrjlj5Zd+z6/CpXzqt7mILgR/aVh287YdfXEOffNfLSExAeXd881xdrftbrkx7tR0Yde7v8PEBE55Zs+VRNiH4+t4pz7Y+UddBv6ohY75Qe1jsl1ur90LWGhEfn97ljLro7R5z0aG+X/VLsnW8DF1e2/XZca4atT0nBfQF2M124fTK4VEVRG+s1NlNHh03sSH8N6ZwK+xvz7hqTHu3DG5s85JMcodOvJqb71vIQ7Xz3JM1e/CUDJHeFOvAoGGH9zcKLvhPtHoDw6PUFvn2dar6VERIe7QHc91KeVrgB6UrVyTfdzrAY6UUnXvfxa26DYUWzpp/W2GD9BZ13vnzCmvSXkX6ou01Vr2GORnh0/5bYKBuWPrcHxVW69sHTXtj4C16yDffUt8M5qz+7l0m5UHYq/6M3R3qhgxdQeaJrvh3v/fFDBet+yisE3t3bAu4Xdh55FapL2an8RckdpyvorJSe6AxqzUyZfkrgDNIzmRfeePh4waR3E0k8V5yxXi/D+LLLUwcS/jTSIwu+hgYWO5Ee7XyHPjV5FIqCpn7eFtd9liAP6ftoTU+jJKygzHhOwxtHPay/5HPcLVXgBwmPzi/5qzRTdYod6c8i3fUAx0jjiwC4Sl/GRSfFCetbG0ucq+/pQdm0tIRsYUusX52Lzv37pCfpzyOdPXGPqpuEGenRvlnck5P2xRu2DGzqEPptgY3PFaLuvj7TC/hGq1YtagtD9Ppejminm0aGAsKj/bOoRyh7vgul11eNrWXsCQYfJxt3FOxThej6TgblbzS2sIblPl/9F0a1sPXPcB1ekavkRvrTSOeW7Yzab2VCerQfWplAu8DuBYrcIxt3dMmBU0jX5u+bubTfHVZ+7xrMzdkG0b7v4S2tcesASPhcpAudpFnwWnqSHu0G6jz59qqB8IqIXMEGTgOsP0w5wNp5wQsw/Kl/lPW4uw7tFs9PdY5qqwHCo9dnSzO46R3rQ3q0/1TNL6njMgbFf2v/yuCxxNbfspaR9VW9Nwiq5JbZWGKBdeboFanL2/dR+k1fOOuCu//z6Oe3V/LRCsb2AU6hebYS4ALR5y/ASeN4TLE2bBMMrdjI5431GZ3JyuwCb0jl5yNlhzhO7aH0XSsC9A+e94UbLiRt0pLQhuj+4LbkpHWu0INz3yb8VxoIY909Z+/YxzhH0l9AekrR7H3DLhrp0f7zldMvwy+2sF0r54DClAcoQvpreLmuJ3S2Lv5cjud9FupO5RVm+l3mmXghlSc60BDN0O9UAQVIX1e7z07OOxAuFFVJFL7fgvWxdBFW084QQHh0ffud+q6k6ASRHn0+knbudRXxDgFJJ+mNtmPGWGeeLQsosnaClflTl/4kqWHdYfgGo5Hofkh4dH/KLtfxzXN1JT3a5yPjGTZbBcMLMUAtEYphz29Ek6DP0KMgsIv1sYbnWTp2fc3HlZ+3a+oBwqP3N4svtni6OYTSQx4LmscuK3D+Y9y1QkUTbH29Q4P2iJ0xB35C7yT+zOlh/cToulUiV9wg4dH72824XKbOhE56tPdsajvbuccdPvqWFM18TAqiPWdrX9ngjCJ8EHZJuPakEuZnflXHrX29FxAenV9Nnt+siQon6dH+Ljaa6cVPX3Dq9rdo9tk12P60gXnh1me1waRENZu4jBnWP40NPrxuEEB6dH/2/50oatopQulbwm5K9l/zAXbp9evqF+nY+Z5wzX/u2lp3sKGMQai4xAgbf8rzjdNolh/p0fFP/jitUizsQXr0+VhWxZ7ff8YfZNjxfa808sL6YkGh1I4BR7hjl7RDu74d1sdStX5aBe2FhEfnlz5c4DxWb0l6tCts1cqWd/SAfEXjhY+Dd2HzLw11curwtIJf995iooc6YP19/vFxprs+gMpf2F53xMPMhdJ7aPZZgScegOYCd5dkOWP7Y+rk+B3Pl5rA0XjAzt/fBOvTj1dxdw2Fkx69fzGx0orf6n/TCI/254f7Mw3HQ0Em+7nFNQpq2PjmA6/95deHAKfyWT8ldVusWz1KbR6Ij4CER+9Pe5V8fBBfKOnR/npO5vrlhDDIQOdQbA4xwPbXwJrvAqzfvOD1DxfPfihxxnr4MY/isJ6tgPDo+D90LWjNEW6kR7vJ2+tldlcMgTLfw/PXP+Lf/9IucdaUfnYHLmO5LU+idmI+SGfP8A+1QEqvVc/5ks/BmdInL+qfdfjlB/zX1roKbVPH/PoQmy9uPN5QpPJWUU0GG9YXV79LLg7QhIRH7y+nO1vAysa9pEd7Z3thlMV2A7icp5LRN0Ef64ySChs0M/aCyR7mjQFlFlgvnNBX2mKiDwiPzk/ISbCPY68v6bHv1/Xf6E61u8G0CM0mpdkS2x9XdpuHH7E6AATnhDQcuvDzxaGN0XycYT/p0fkt61BcKK+m9pxdT2yU6/eDPVsMDaL5DLHOcUzJiUXaHwjueCTVtN4UG5/5n+prOy0BpbdcNZRfd9WP0ssnKbeO0lXABi+WWXZpa8yrlfAVrbKzgGdnkzMSvjthPfL+mFCcmD8kPHZ+TttMGmrYkB7tXYPpugLr90EGaVaVgwVuWNdkedL9uc0a/C6USkpgxfvBSZ3bn3sDAOHR+elkXs4c9LEhPdp/VG8/4bdtH3jWn5xW+e/5hI6fG65g+DTVHoS1tuht+wffvx8btfsa1oRCKi9XdbBIoM6N0pe3cLuLrQuBhtzuM7cm7LCeVUMrEG5zg5W/P16c3PL/jC/2zjxbeo5G5Tl61o3/XeBJevT6890fTjfTlWDa73W8mzZbYd5saGf/oVgL0Jan0uLYbYutf+Dea8k5ueGAyjdvT3RdZNkGqbyuZf+o/vpgsLm9mttl4jsNfT7vzlv59l8OBUOPYkdcpNZjXm918pnnL//z6PU9FYuJyfP7z2PvD7XS8pTsYPBVrn56pbg8fr69v+ZzqDUA5k3oT5vexf//z6cZpCgX4wYJj74fXs1Gjq3s9SE92nsrgoOiBexh6HS+x5kRK6w/TwxbPRFlA190x78sPIV7olN5kdVJ3cMitpSe6CHvWR036mlh68Nzi+kp4wpfMHaVtf1wBf77ScQ/023grzBAePT+CJR4H8gZ2Ud67HxIL8hPmYoA3gyizFfN9DAvnD8+XiFvAaaiP025NjNh879o9aapICmc9Nj5P3pzoq7DlvRo3+TD0ez9OQIcq1QRaKxwxc5Hdu4wO9HWcPjEWDKEwxjvwa0mExmjGpDKmzNv99zXQO2H/2w9JSikAaNmL5ZNZLlhvfDKJGeFTSR4WrjGdNUVD6zHjahPR/OFkh5dv1WxPBI+LyJIj/Y1vAI998+EwqlAueotP+yx9+ukkuu0/9NIuLpfKqRp6iu2P+3E/mS1WzpSenhsQmcnUwylb9TZ8CV+rResdB0tFFolhF1f2oqOIyedzcH0xbJ4YVd8fbY+43eREksEhD+O9L2qjgOun4VIj3ZT0eJMc+W/gJeEHatUqTPWcw+eHki28QGa2mvjBk/zY31Hg7H/c0VrSOV95GKOjzgEUXq6xUZjyUoADwim1zbpawC0n2q8sfvXawlQ5NLpE3zWHeuFS53KP+u4vSGynE7pny91enqZV0WsNXb/nFSSAjnjJOAFFgv9AC49rCdsywgtZ46DhEfHz84ecFLr1CQ92kPO1ZXu9jwE+0JobA4Cxljv3f8mdGLIGObUVyUe5dmGrR/RqbyW/M6TyXXWlJ7odN7M4+cqzLDrE/4wGnpGOhg4svgfduHQxfqa8iMcDzvCAeHR8d1jK1gmPwWRHu2iRyMF8/nDwaI+l2+HwAasX3OxNf4YEgb6DEv/tMbRsPkTnfDo/LoHj+jccQ+l9F1LPVC4zPOXqxW2v2wyOBJUml0hm/rl5gvrtLHxiU7lhSY4zpuvMaf0ROeQWd0zPo3vb97mG1apX6Kg3/Aa6XXe+PjKHjUhBvu1SY9eXz1/p06FeiTp0c7bcOaqwANR6DmWWD8UZo31yr+y2DJqVKBxWf0lhbwAyk7lU9aJsPetsqX0RDcPWvb4kKkH2uMd31y1CwtOBFsUPzjZ6NCxvmKfo8vEv98rCI+sT3w/77nWZzeSKL2x5ufZu2PO4PCOHB/LWwbo/YnflvpgKqcwAELltLbS41ZYj+27ULphczQkPPJ+iZ/UOOEfEeFHerS/Vzvim74yCoKqyNj5RA/s+0HLbBJ3apoHOHT+e2656G6sNwxftL4DDgLCo8/H/MXjpoyv7Sm9bTaT23xgJIhSvrB2SwH+fN5VYGReJhULd6mES7nO0rHe1rUyIn2TDaTyIsdkgiMVYyi9qdFtcS8zC7gYXhd1No8b6+2VHa8viBvAEx5OwYNaLpSdymeNfjMIWC4JqDzRhdmm9jukbcG61xMujQdcUUDL8H2KIZcBtv+ie9iOqH1VJj36fN9T/GRaZhhBerQbPtTySVlcC5nb7ncYz+PfH1PuZVrKPwgHMhUWR5W/q2C9ydfM5cFTadJj98fAxfQtfwTp0f75sJCuZ7cI1NksqXgvho49Hy7Mb2U3SW2FISfs6N4p+O9LRKfyv2OzbHsNNSg90QXTS87IDOhj1/d6465/bnxWg8fV73Q4B/6po+pU3r7VqWWQXYTSE/3m7l37G0v3Yevz7ef5T7QgRWAve2dhJMiZslP5hNmk8Q9clpSe6IpT6klyfdjvE/EXHLT4VQ15YblDdyRPK/b9Kl73gG5VrlEIpPLDHH3dCf1apEd79rGfEsOKofDOXp+fasXY/oxPaJnZLlebDE1ngraNtm7B/ISH7UmjvD2kR+f3Soh50HgihfRoX2d12YHxtx3k9WppmGfQBWlI9/WwkxzcmALW83wwf/XTEhu/JNgwvDPdAhAe7VEM8Xfz6v/z6Pzl3ZNl/0qzBQdoyWVJsfj1vy9mORabxQ30xB9t2qqC/b5HdirP9m230dbprZDKE73hgHjKLZoTdv4ImawPjr6uDzU5fhx93K6KPT9Ep/JZF3rbqqqcKD3Rv7tZKVUL62M9/a6+qTy/MXAzG3968J4CNn75+PHoMfFAQHj0fBvvU+I42WZFerS78R1VDksMBm5yqTUJ0Qs09P5dF/8VdPuZBUw36rluFWeGPR9VS53K2zR+OFauqU/pLZZ65aZLEidiDbH5BXzIM1X+IA9VLSuGDtHx/z8QncrfNIkT3z5EA1Se6HS2cY6Kf9Zg63cr727E3Qgt0Hjxy9xcvwllp/Ixo2cq625upvREH/K+6egziL8/Xv/YeF02XRHQ33p+FBDE9g/ZKb3ecOg3KUtqv9R/1p2w5xfHv//qiCrPKHknQk0exs/GT2yx3qNj6iL1Sor06PUttHVEsr5PIH080s3Hg2leU2qgpKzEIKrbFPMFOSa10i7OoNb7jM9uBkd8/OYbk90zCZDw2Pthjy+vKK8tpf+i8JVpQ0MiVM7vq4nfswc7Hz58fjrNMRgEdJqlrJdxaGLnL33EwuhOVRogPPr8T8VnVp7j9yM92tceZVTtVU8FBxcUNz9234F5+5rRrxYRXCCTUZhx5LAqZafy2l8MVQPnBSg90W06D3w32GSPze8ycyGnzBNO+K10cm1jnRdlp/Jvr9swvdLWpvREFzTa9VFbl4bNrz3Y52uMXCigNxWvfx+9Cf98k/zF6lhXQHj0fPH/yehzgOsA6dH7xxHB8Txz0QE4/3xolvvvc4L25UMpL+S4LGFJV1yO3wNHrLMvdcKj83s3L1Wuf4tO6Yme6qBRZPrMC9uf/MHzUqui6PD3m20m78U9KTuVL5xkT4wRtqD0RH88y+bPHaCH7Z+UyWWSf6fvhimGTfFGr/DfX4hO5ZO0fFpSSuQoPdFdFkoE1BLxv6/dupcFJuqU4LaPWzVCHPD3I9GpvI/YowklAytKT/QN0YeWrS/H9jfDvKT7/KsMS2ixGqRq2OO/LxKd8Mjzx6DCK3jmr3NbSI+eP0pL/bc+i4rWWhfs8x+LmOoE8afA8Q9aypcmsP3FUPO8uud9ohfp0W41Jpc48DqZ0k/OavXURntCnWds64ayLbD9NcRxRynGPRWISYwPzmrZYV1Xx2H4tIAKIDz6fNuNtKrcWf6fR/vkZukTMylSIK3B+TKT8Q5sf3Ds9O2oyeAGq58V2Oi5cOL7d6lT+cTvP5/15wtCKk90p1aV7to6b6wzcU10HnFeCWVltJJfm2DvR7JT+e45Te52y+2AyhP92eFulpn1ilhXvi6VkridBhZuJl5U15Kl7IRHzz9xlhsfr5WrUXrppV6cPTZQyYifTwvMYlyqpaqg7iq9lMcI//2FieX/OuHRz7d2+bjz135JSm+81MtEw4QfOuKfr6aQm5FrJwmnGBaHjgRjf78nO5X/wZplv92WTumJvmGYd6G0FfMMORKKvr236XCkr/qiu5g/Zafy4wOyK0w+K1B6ov8PHnXk2Q==AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAwBIAAAAAAAA=eF51WnlYjmkXlzDZlzIyJUpRtGlPTyntC9pVtO8plRaVZWSNGWoMLcZHMcYW34xdnsgyMqaiot3EYGTMDCXLh5n5/nif35nrOu81f57r957lPvt9v4/PhNDMRufllwyrevZ9Znjk0nyJLvy+7KXddWfRT6JNJBx07etXYt/OaHGRRJtJuI9Ej9rwZqb+RxZiEOMPkOhh2ds2uD2OEBdI9CwJ95bojY0KfrtmmQr+Em0k4QslepNfYW5VnIfo8y/ypz4ZdSuubYDoz+RHSXTCzgFKmzb6ip4Mh7ykLyc/qTIwpPMbsfN/1RjWk3bHQZwn0QaMvz5jYmNead+FeYwf/tiXNmfY5xfMxUDmf9j/ouHarmP17nR+E2b/0z8/6dw6OEqA/JkSjniE6g46dbrSSZjP5EdLdMCdpAcLqiME6Id9IRLt6LFuW2r0eDFYok0lfLFEX/NNu/kuwE/k/LD3Sp7tQ83N2pQf8G+oRC+rfz6yp8hfLj6Ib/bkkeGx2XNF6IP9sGen5dXErI8DxfmMH/4LGR8bqOrjJqcf/GkmqY8bFINF5BvPrwIfIVyteYaAeCG+iP9g3Zb3pz6JpPgYS3i4RP9W2vG8cN0Aym/I95VozV7nEb8Ghgmwh9ffl+9iZ+w/ridGMP2wZ/TdjevS/vAj/TOYfUPvOU/6X2W/TSzD4Z/2o271b7MXChFMP+IZuWXPzqnFxuT/WQyPknDYb8BwIdDxpN3zcUIYk4/88pPwRQwH/fvAvs/Lrk8VEA99ll8/Sjj0w7+oP6vufX8rmwyWy2/Eu0rC7RkOOvji28SCz6PEOex8zhK9/+HXB3eWO4hzGb+dRMev/PR63sgQOX5Bolcv+1AX3KEpgB/5g36U/VFQU4qvrzibybeVaM3NNk/L5sWLThKN/gA6r+vmgSeegSL0wX8OEv3Ny/6mQI9EkeuH/StS3uzKuO5I9iM+jhKtt+5deXddpAh5OJ8L/OP2a+5CXy/Rg+lHPbyzPlva9jxaxO9nMfnNV632PDkWJTgwHP43HPhmh/OJdMGN4bDfe8GZ47EtiwR3hkPfsIQx0S0VSwX4G+eHvRFfqt9VifIj/+H88Ndeb+OC0zmhgivDYe+GoO2BsW1u5F8DZt+jToV2T8soAedBfBFv1R7tiPMnw+XiA/ma61pKL7YniI5Mvo1Er6q77BH0RSTh+sz+1Z0bTGd/kUTzD/MD5wmpeVlTUxNF+Yn+gfqo+nVL27Oy2eRf4NBXt0Lv7u3gWIHHH7RptLqtxXeughezH/1vePXE521Xo0k+5+8bY+WVNytJQL4bMfu9NISYoV3RAp+/kDdtWcjlI+5JAvol/At5ETde3nB4bS/y8yF/PgqYfE75aLToy/jxe78Hp/eNuO0pIr48/nM7C5dujIwj/yN/8PtcT+2PNDQdqX6MmP7qgkz3cX8FifCfKbM/zGptUvACa7n5Cv9o9a4tD74cQPkNHPU5XOt6TMmalxecGQ5adZIM92D60X+zfgo5Oc1knFx/wu83dMvweQxHPKKeXbqmfD6J5jP2S8yv/X1fRC82T6P6N5dw/H6Z/55Ss3VLRJ5f0Ge10vllSXkq5Qfvf2YjH0ZaXQkm+/WYf4qeNmfvnZ8sV3+gH6q/Uc3asFiu/0Hf6t7QJttvU6h/4vzIh6aHA7Ma3y6h+pjJ9I+yqzY28XWk+rCQcORj0lllYdjMNMJhH+jHpw5q7I32FRAvU6b/++EvmuIUvMm/vH6mTDr7l5ZrmMj5kZ/3iopnvymfJycf8cm+v8hsVE44xRf5j98r2b3/2WCkKfnPmOHf6mfq770SQ/0F8Yd/5mfNEv7OGU71x/GKhp+fRZyJE0Dz+bTzytMki2f2JB/+g3/vufe8aaxLoPiAH/3rQfTh/ziVaZD/cD74z01bbW3DxljyD8c/t2kfrDMmXIA+vt9Z37qnc8cunuRDP/JVYc+ESz/lRtD+b8rOl3NLKarcOIH6H+oL/eK/sVNsJywKpvoxZ+fzj8l3mBcTQ/GDf0AHZym9Xd7nI4cj/82TX+35878RcvFHf1IZ4X/Dc7OviHrH+XHep5d2HYwojhXAz/uPYqP5qg9bF8n1T+hPvqc3T0klUrCU6OkSjn3nkn9lWd1OO4HPT8y/+IdaX015miFgXqN+0U8Dah4MWNP33gb8fL+4+3eBzxm1ZQL2Ob4/Vc0ImnxaJZX2C8QH8f15WoyyQVamXP/G79UyfukxD0kXgOP8iL/GD3pVPgeWyc0v1P+N3bub84ZHi1w//HuvVrmsNEFXgL/MGf85S811ts9DaX6aM/uev8pcWpzoQvvPDIb/Ep/0eYpXhAB/wD7k45f+ChdSdyZR/U1j9dN/VDv3z+MhcvmPfK+cq/dsTXk8xdeM2a/ZGXv5oW409Xf4F/KKL6t1KXbaisgH5A/i2/5Q46DmyRi5/Q/5W6rYtz73Y2eaf5gvFhI9YWRFaMnqGMovnv+Bh96FeTs5yfVn6L/3rahnYxhH+cP3y3jLxMLugZ7Uf+BfnDfAKNKv93Aa7X+oT8TDtSe7MNIomfrjNMbv/EXYzU1//zN/eP25Vaav2taRTPVrzM43MT+7e9DNeMIhH/nWZOc8blCNNZ0f8xH1MT+h51JMQDydX5/Z17H8znhFNQuB9yfM/x1rz17VOuZN/Q/1DX94al88qHItnu73Fky/r3fc5AJrf+pvwJFfep/tDHDdkijX/0AvLfoQv73Rj/oz3y+0jt7P9QpMpPnA57va8KklGWH+Aq9vxG9HT8bY6t2JAt+/4E8lnSdB+80XEs73U60fy8Z1BabTfsT7d319rXLOkjCB7784/zuHq7X141Kpvrh/S8JPjE7YEibi/m/K8ODCskF7p/fbQD/vXzrDt6jtao+k+kR9wT/nHGyPnYkwFXl+Ip9/6ClscGrwlpsveG/QDt2Yq1KRQfnP3y8rqtx0G3L1KD94/wmfbX840TGF+FHfyO8XP6z4teBeOvU/5C/qtXRSZXVR8VLqX/x+GnbttEPTgXTCdVn8Q8dNSZ46/Z/77wzGf/eHjVkVTol0/4d++Cuqqnur3ZtQeh/F+ZBvR1+Pzik+EUv8xuz8ISp923WbA+Xeb4EH/ZZ4//cUf5HnH/ypLuF8/4X/bW1NrL8eEkD6TRj/dAmHP/j9d1xRteG2jlg5/2Bf3/S/BVVKXy8TeP1iPpx7vaW4wTWJ3i/4+1pfpcUfhzoyaT7x/C8r8lAP2exN/RP2oR+pffSqrr0wg/ID/NgntLap5VkcDpCrP9T3KpfER7dbM2n/5ff3uW9nF/feyhD5/gl73lUYeHYNtKX8nsn4zdXOF0RdyyD/Qj/qcU3j6Ixn7oLI5wfs7U5U6t5kmUX+Qf2i3gu2HltgH5JO+g0Z3lm/9HroxUx6v53F7M/Xc01Iak6n/OD3e51tgatz9mfR/QHy8fviytsP7rQGUf8zYPqVygYHFG7Lof6G/YLeI5JdNFTnRsndj6F//SPrjd3bF8jFF/lor+Bi911cPsWXv++8iNb+a/ckdcof1B/yI3th9d8rPT+l908+HxeOq1oWZRlL+ynqG+9LM+PHm7i5+tH5EH9rib6jXO+fXbqE9hf4D/vooqLqs/kqs0VLJp/2m68mqupX6sjx4zwLd8twfn+GfR+mJmav8J8vgNZj538r4XTfZ7hCq6J5UogOvb9aMv0eSzWvB0XmiSaMH/63sZtZo1dmJ9d/YE+u4soxquUrRND8/nx98qv+lkw3Efbx/j5iigy3ZPJhf2nIb/aXLvuR/di/4a9ACefzA/431fRSKIxLof7H339eb+wtudGaQfcnxB/768UPaeqTVZIF+EeH8X/dv+5AkWEGvd/pMv1DAvvOji1eJiCfMJ/NJPpjCef3O/Bb9xz1P7wnnfIb8kF7Szj6Kd/PajpnZxc9Wkz7O+KPeHZJOPcP5Cl2uV5RGrZADsd5r3XKcFemH/q+e791hdeRbOoPiB/m5WZlhZf2V+zJPn2mv7ixZtcZzSwR/sP5Ef9XQ8NPuL7WJPngt5Lo1qYTR3ZmWdD85f8ffC3hyFfkr7lEn7x1aGVqvz+d34TxX5Zwfr9Gf+gvOXFsRGU+9R/+/+LUQ/l2nv0+tN/y/38ag6qdmpvXEv8UCYc/Dh1vff2pySKB7zfIz7M1fpUhUxLl/j+Bv/6qq1lv1J4t/tv+l378R8X7OvL/zyDej66uNO7rzJKLP+I3ZsnBt2btEXL/L2AeLlO1uDKpY7mAekP9wd/dl3c5iysXUn+D/XhPyVV2X3jCK4v6J+Yf5ukqp4l395flUn4h/xCv9spj3as0/Kl/YX6Dbhtxen7AhRzKH76/+zeoX3c84C23H4K/cPOkoW3DnUWqZ+affAl3YPyw71xkooNHq46A85oz/sNhMpzfH9DfDz4Wumq7s6h/wP/oP3bXX7yw7DKj/NFm+VGbpTxg7NxMen+ZJOHolzVdpS6tH5TJPw4SjnraN7uktaE2g+7ntiy/NO40n/jWRY/mA7/fdaTafZY/IVPufQDylod0rDhVrkH+xfxCPvvl2pzxujGd9nPkN/JrYLYMhz74F/EVH4/WvJkm0P8PwKFvkoSjfk2Z/lvf5J00Nreh+EI/fl8v4fz7Ecjf/uHSaSe9SXT/43jPexmOfRz9HfmTH9yifGW7CcWX/790SMJhD84Hf6wri/x9jr8P1S/kw54YCUc+Ir7I/7TXiT2maePo/PoMPzxeaWbB0lS6f1kw+0e9stea5WhP+yt/fyzPn5H0NCud/MP5DcePnPBYXEfxtZJw5Ft4+oIglSZPmi/oH5gfGrm/nbvVsp76uxazX7FNyyb8XKBoINF4PzOU6E8er04yUFsvmEo06gv11Gp5ptar01uAPr4/rgvN1AqrXE/vF4g/+fN95KammAC6HyN+8NfQC51b5/SOJvmoD/Tf2IsyHPw2zH9jSo3Sp63W/df6SimW4Xy+w5/2Bhk7dPc7Uf8FP/p9nb4M5+fH+UZ4pWQ+GR9C/uffJwRIuBfDwe/+6bvbDeddaX4Ap/tSbvLYnDVJcvsV/NcVdKBkY48v5T/fD2s3DDjsOmQpxZd/H5FecvbI4Ik+dD5Dxu8h4UYSjfxAf02ZM1aon+1E+aXB4rNSwsGP+sC+7JsQ3qN+zFCuPmCPjYRPl2jkF+Ll6PzL908WWwv/tp83Oclw+Afxw3wZ2GzwvKJmDvmHf59yVsLhD/gH9bVY8cCfGoM0KX78/SdikAzn7+/Ih7o698wZlSYC9jk+H9PqZTiPL+zT3PC0pH+Jj9z3A6BNJRzzhe+/pqvcXjVX5NP7KPyL+Gy26xn9ZsV0uh+jv86SaPfQITeHTMsXZ7LzI94OalYvyi1tKH9xP4H/VMufhJ88ESI3/1GfDo+Ne4/Z5FN9Yj/BPBjkZrxH6b0/8eP+ifyedzvefX9fPu1PsB/+tG1zOTbi42SaP5CPfvZO1Sx9SMZGii9/Pwxu6lLJaYyj/Rfngz1bSiZ6PtDcICDfkJ+Id3PenS71XSPIv2YMT14uwyEf9qGfuSz/0PJF8kSyj89XndUyHPFE/sA/zS69pac+DKf6w/yDvGvOMtyB8QM/bnj1WVuZPfGjv+D3NkYyHPXM++O3Uy54f0hLF/j8pH3xdlFBz97FVH+Tmf0t7ycaaS1Jo/sz8hvxbRJGDFxTEET7N3+/H5ZZc3evnw/lB/wL/53JkOHIR00W/8Te1tc+cfPl3tfp+zIJR73w77s6dNvztvTOo/2c5+9uCefvM/DfXqWhn5zJ9Sb7+ftqhISDn98fFXa41o7s9KD9xYjZ1/6lDIc8/n1JwkjV8Ydv6FN+8P+vXCSc74fw56qk6TvUr5jS+RE/9HOXRBn+b/+PnRr6ladbqq/c+w7qrUfC+f9T8N/tstTRvdd8SP5MJn+7hGM+YH9CPd4/2dyU9c1U0s//v448LcPRf80Yrr39/BKNCevl/t/Ee069uLgk+Zsoufdb5MehiPRZFR3/7I88fzpf2xxffipSbj+FPufSPDHIYQPtV+hf8Nez7pKnn/1qTu/XsB/yrJu3tLT+sV7A96uIH/axzpV2C38ym079VWD6fae4T63+ZTS9n9ox/rUaMhz+hf2Q134yrfns4E9E/v6KeMafkuGwF/ZDnlJZS9vR+0p0v7Ni599TIsO5//B7tbf3fnA7bCx3v8V8L3gjw/n7PObLrv2jWredt6L+zv8feLZPhlsyHPXT77H14cP3/3wfyL9Py5Zw/v0W5H9s2lfbEmBJ+uEf1PMdExnO3x/RP/7z41gPR8tp1F9NmXy/mzLchsmn+ex8S/MvzWnkf/59WamTDMf8QH+GvSm7jvTcOj2P+jPyD/c1bQnn3y/S96UKE90tE+eLZgyHfJOBMhz6cX6c91HFjMrxXsbUH/j73VcS/n8x0wseAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/DAG5Z3AtEg6AKCLdbj47DlsVKo7AipgOrRAeFLqomQ6KIzLQX70XrogMT2U+cI2Ou446Jj+kXA6rOQ++rOoaTqg36C+N6M3uoAJvWTt5F66MOKuE9lDWroAjEa7OEbxudguaxGVPWe6QLomFBw5WboA2kKV4Z8nuhibq1ouT1Y6ABp7i0u+BbqQ/wwbxRRTuhi58isCm1S6JKjJEb+FabrI8zuBWQ9eusBW18RaZSi6cA2Ic21vYboANs4i82U+uljMlGooZVw6ILRR7nPBdbqgO+iHvY9mujL4MSs3I3q6MDgAbNZkfbqi8IaAW3pxutxz1fhY9GY6QPtbiZX/IzpAI+wAScRGOnBOFwMkD1Y62BdP85fHeDr8C6Jcy7Z7OtacsMVDeHC6CIYEeEA7ZbrmlzUbAJiAOo6wQVSZ5oA65Go3duaRgTrcdjLwiCaCOq8JNLm0Lnc6ALxsOrljLzrEdq9LTDppOhiqkw8tHV+6hOM4PJJdXDo+SlIXK9uEOgT8UZIzYog6yvv8MSJLhzrksP1ESlF1OrKMOWEqiWG6OFAUR/iuYDrnVd+dqGuGOttQmdLVtnY6YDTQB5i2XDrLKlBUy3eCurJcGiXpE3O6ar9fGKKWhDrochscfLdYOkE1+HKw5Ia6kCPa2Jv+e7rUohDl6k1funnHOOHVhXO6m07wMipegrpfAT0xwGJrusn61LUbv3E6TJZelolRiDpZAWwLzG6IOpgSXbPUXoM6DnxlFR8LazroYYHe4vFbOnzvfxIYjmc6iveTj8XQUrpSfF1LD3uQur5Ix7FdCZC63lskpsVrgbooKETIA4Z7usinAhCo+V469qPMbo1ch7o1J++g1WV+ulXcQkpIiXi6Yq0ACsC0UjoglQ8wvBJQOhw5bOfsimA6yQraMVmFcbrEX4MIpRJLupQgsH2oOWA6yDqVQVDGXbqWxnNsv1SDulXnUK07IJi6CG5sdhkmoLr1/dm1VN1bum6e/pnddUo6KDFN8wQyZDp1fNDiDlyDOnJw12fPCZM66UzVKFz7fzqEiqPCADkzuh1897dld2k6VRDjHVXZazroN/Pl5s6IOiGvEHZrxm86wSJyvl8ldDo8ni3B+yQiurc9om0yAFa6Ds1GXQrqe7rVtqqA629tOhjIKkT1PXc6Qr3WTUAhUzqbPat80/k8OtSnC0aSCzw6HBd7fJAsUzqfxT/qwgpHOnvfkHr0wTc6GKCbrSGWULqRPyW1l0xaunNP0ODABWu6kpXJBgDqc7qCLsMr7Ih4uvSjO2VBW2m65C7I7A==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAA6QEAAAAAAAA=eF51lbFKg0EQhFPGTiRFCotDRKKkCFYBD4xiYSEYJIWIiGgKH8AHyDOICIraCNqIWKhNDvIy1hJF02ghePP9sKumGea/293ZubvsYOJ5dulyfnF0HNbH3rqLpfzrZX5Y8HfDy+nDrke7PlywvJTcen/k9jvefxVPWd/gTfqefviy9oVI/gxNx0u9DOVo91eEDfaD2j/sW152+Tyyv5Ees74B67dGr9ezorzj4i2nA70zrn5FfFVIffINFzI2iCO/qxfSg9Eb4pXRiz+FX4qfdPmoh56qMAjxr6O4Qu8//hNf6O+BD87fe3sf2C8kP3maXp/Wp1w/VfEt9Ecb/+u+9TKQrybcjndGbyte/6l3Wlj4p/i265/8rK+5+nD85vzKLh/nGVz8Xroyetvpwuil/7miv4z4R33uQ3B11lw/He8nfvj+9J3zrIu344nz98bqdfpW4Yo/oB/hrvNvw3Hiub+8V/rl/eH3pvi4MKQzo7eRzo1e/Kk5n4gn34zyU4/z3Hec+0Q8nPvWdvrxvx7h50ZvM54avfjB/xHnPCmOP9TvivP+dvCXfoh3HP/Jx7vx960Zrb+tdKL5ludVV9+rSfNFvBYtrzPPxCvpy/BqGhleii+GF/OM9fRpeGAeDo4034bS9w0jcyn6AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAIwQAAAAAAAA=eF6F0n1Q03UcB/AFKjoGCo4UsSEgFARj27HBtu8YgikZGnMgFg9BqVyRoBYecsmDDAKJLjPuBJOJUAScBhnjYb/2A+J4aJ5BMKSUEuIg2IMPhZQeWYff74dr//T977X3+/u792/3YzD+ezL3Dh6elnpRxJMDjT6TfA4iNhR6nVM6csFHfIdj2ytk4Ju61lZTkwR8eHxnz4QpDLz+TnJHtHbZcVXVPXdeDwLvdzv3ak7t31LG/5xC9pWdE9nv0g33nDwm6h9oi7GThr7avK2Yg0qwywy3emLSgtBpbOVft0t2uMgR6XuOHvv0eJQE+smsOrPXY4RKsefWLaZHakTQZ/ewHT9iclER9vhwP6+k2RlM9lk7f8kqeiU3vTt1lIuIX05t1zPfFKAC7H495+bslRCkwm4+q3TVGYLQKezVlWeaJr+QwH1egnfPqHsI5EVpDfmJ3WIwxXCRb4oXQP/iZuaeY02DWpKTfQVW7uYUGhVtH9ITg6wUTZQ/Il6VaveaQ1YA6sR2+9V/v0nPQ13YLVMXatRhEvDH28dsbSJC4f7vDHaiZjQM8lK1XBcXK4bnlTV56gK+D0I0dviCQKP40w9yso+28pP3+4RWP+yzKX5xDcrDjk447zVcHoBInrHnut4YKQPPt5u3cDtk0EeNMawu5rJvMF34OdfCwdVSbXHrLjnKxd6be2nMLkUMVnZ8HXFrly/0yb5cK1+sWDp0uuADiXS3P6rGHpV5dz1v5IPZW080b3F6LCV9iv/lW1lzd6VqbPcDV/8QFvggkisOnilynhGAI4QMp7QNEkT6ol52545FKarCfjpd3fTSukAw2ae28pP/u4pONO6bs/V0oIi/u18hsAkXUt9gBzsPGoYG+ODo28cf1T41IqWwkx2P5q9NtEMkv875oS3WyawltsRk3fuFYYNIf9VW/pRp+pFWix3isz41r2MjIib7rG1WtP37SzXtx/zNfXyllCLWcDv71pSFgnNjbXRTLCFlwTb1p8hHTgkg35754zutwd5gkezsbLzDBkScfNLSINSbtdDXZfBngldDf9JeGDmtegC59T7i95a+j1qat8lJ3khzKGJVfcuY8CchdRLb0VXzSl2fGJx0d2SBp+SB3XrPiy6HBIDTwhLilS+IwHXFURFmsQCe72lo9+uI9wJfaHxD3nDtGURsvY/Y/kbNERmzjg7Mnu+bz3sWER+qz2QE/2wP5udJs3kKT4qFvTixuzm6KJAi+YoDOQMuD33B7leHDpUvyMG9os88lOxtYF6ru4smSbR83yPQWOPBAVvvI65c+pzr6fiwjfrSSx4UcaXucvTRFa6IuMFyGr3twILc1ijOULH9wRkWc1ze+1ywEZ3o+rxFAna+v3YkjonAoc/tK/efDQLPRB4s+DY3BGy97x82OkvsAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0wMAAAAAAAA=eF4ByAM3/BBnRAngCli8Jl4rWC3fQjwmZ7hDZM5ePK5EMv+QkFs80vUeTWcoTTwQ1679MkA1PDlOmdhD7kA8mqPptIjUULzBOW/5t7djvOgFyrWre1m8DRGf+M4mM7wEblZpWVQsvNLC77EoFUM80HGpjG9LWzw1VmHTA1BdPN4C7jWpZT08jkFDGlrdJLwc2kzj5u4xvOTUQ+BSeFG85ZJ9q1+MVryL+swImsZSvNQI+3zrXUe8wtyE2QBGYzwgwad+TQNXPOxDw/BGKUc82rsFCAE/KDyGDnxWuMMjPHfqGFZ7cjA8KKIPqmcCErwpyVGZrtc8vHiczY4zQ2C86EDazuDxVrwkpIzhjtwEPIgCqPzxr2E8YaBkWwhrUjySyoCMq3cqPPZ6QWJ+y0w80TmWFtvUUDz9SFm4AJBCPCA5+1tTpDi8q6UGu84VULy6Wd839Z5NvK5cqy35Alq8iNrfETPbYLww+XkD6ps/PLAZQfajfVI8cVEpv9RTYDzCDuiyFatSPP7/AtZbbfO7TOUWowOtQzzqowHcoH8mPOT30lfji068ERaZwJtOV7wkH8vOSblfvObooVSTnV+8g5+XBEWwYTxJjW6x9mVWPGpRdO3chU68a90YSaUTVbyFTyVWVklHPMIO4L+FTlY8AyRQHESLUjxAcsiPgrdGPIo7uQ0tZkq84vsMOEx+YbzOpGNOL2pjvB5TdnJCNUK8eG9Av4KSWrz7gaau9a5RvNjBKfiK9lo8/MB9t9DiWTyKeRgiWWsYvH6f28/tzAq8jBm6idK1ELzCuuyJlKgzPJq2ng5UcCE8xu/XgCDpTrxZBvEzquNwvC8d2BwmGGO8XYd86dncPTxx/uvUhRlOPCQDNoqWGko8ST44CLZXXjzIMHUfxTFIPLbxbrHR+UW8EoHanjwOA7zQrcv94EUuPOROQtofJiw8VbBqB8s3U7zjE+NOw1BbvCJHbqyrnVa8uJ1jZBijOzz6hgTcSexLPEyQpPGruj289Dv5R/ETMryWVv6up3pPPDZo9+MuDGA8akpotagySDxES55n6p9SvLrY8jkzYV0864lJYOJqMTx7nF7pVyNavLYP4warDli8hTknRj0mM7yocrVRiEFUvG0KLjaCdlq8xPU8TC7+RzxKJ09NJqRgPP6kZ5pj9ls8nnT9cgbVUjx4UN69LgtWvDwu2aSNRT88xMvl1fmNOjxufrouNl5ZvHL//ZouZU28gbKmWHusT7wmcz4ke/BPvDRnr9xi/jw8sU1Vk+W0MTxMsqu6dyNaPCObPmS0n2483APPzg==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAwwMAAAAAAAA=eF4t0nswFAgcB3CPsEbuPFrW4i4mxbrDdpG1Pwl7NpNps3msXWVX21nsEnkc0W517CnhenjseW7dKe5iSzt2+6ncKObmTs41HiU3W6NFhXLllOPm4vfP97/PfOc7P0XHtnWd7t5oYlgvG+awADxnTzspzEDpO6143kAD5Tl1eHXjNuD3VY2UM4bpZU9nJg2TmfhTD6HTWBCF8/xWqwk3Bp655UrVy74Agw9nruFwx4O0plloNpupHg04iBIyJWPcMApPmcdUl67EwmHGkNHi1Fbs04nq3ycJcVRRwHsxFA7suU3Jvp1pkFqYnNbzMRc23O74LJFHxH4fZl+R4yI99EPfTzG3TE8gnErBiehAtsovG9Oza9zoc3wQHqBf+7k5B8QRW4q5Ht7g7DYsOO0iwPRBiXPPdS64nzfub9zuB71bFoM1qhQc7x2k2b5Pw6j1vp9fXd6F3DPCaLuKTLAKuVFw7ZUQSGq7eN5oIsq1wo/gYjwOpHCtxSMbYcP4BC3DMg9KAuKYoxW5kFy8AA+yOPCv4r6KvcwEdHKxTxOK4EoEZzJfLYUneXu+Zz/0xUefKEcyZWkoeUY26qGkAOu3PWb+lTy4RHmntNbysF284w9PFQe2BlpVOdjxgaYWsZ7cPIzi1qbBIIvd4Nyqcv2h8iTMHJyqLSn8BpteC+xbw3MwJYH34LtQEdRbDIgeN2TBwgni3QpLAezocbBosfXD+nu/35pXC2DMuuofopsU/Pc+vXRZng6V7XVx+l25SMpdiXFPlSOZ+v/ODhAhKWuZ1Unh7eurVEXsUfj1ppV8ibAXTRsY8fcd83DoK6m0KLUQc1Qeb7A7E2IZncVGrBPw9VlbsuNmMcT9FWZTZEtBdk37wBtx7Npf2NCGwhIWrDOoOPUL0fjY9DE02O5Qp532gglz6Yud4TKIyZcP6kO8UCJyelZwJArHOB4/lgoSsHHGx99My0bh8r706y+t1zwXzWqSNUeGDdfV38nB9PzdbcKLEjQoeTxo4s0Hqu3f31LDmEhhZTMv/LkRI2PiTMq9DsF68lL5vGcSxHTVkG6TIrHl3WwV8bIvrnqbaatpquG8TG2nrITBcccreXNZMlyKJjzSte2DyDt0Sg6/CEZe6ZddpUYoukCVFun8wclSCAHH7aG2udtY9zAUxf3dVf6B8Wuu1ZrrTiMzCJMsr0SsI9Y4d9vsBCUxqTR6jI9tM8/vBusPYVdQ8/4DJB/sqBXfq6wMAVJX4g1t05dACAjurVVugrfV54+aL+9fc901/wGYQ6g5AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAArAAAAAAAAAA=eF51kksKwkAQBQ/vQiRoosYk4x8jQk7h1UR4tSmYbIrX3a+nezJz+X/L9x1+RMcXxV/hLH0N7+FTJH4THX/IdxansA+LOIijfMx5Celr/yRSN0h7LkgdexEv8qG9l88dpffhKTxI19hL78I27FTHOeSJ4yPPvEfluwrpQz33RZ6+5Klnz1Ya4idPn3W4qeTxl3AVNqr3PcFtyLzcbyfdiP4v+P1u/S5+nNta6g==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAEQAAAAAAAAA=eF5jYBgFo2AUDHUAAAPIAAE=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAhAMAAAAAAAA=eF61yv1T0wUAB2AooA4HeVx14ngRYYoOp6NyTD7KiywP5RTQtrEX2MbYvmON2wt4RIiklDJ0JJBMUEGu4xwF8jKZyDoZwvToVELB4xpy+YKGBjIGIe2k/omenx/jLYWf/5IMmbUB+gNaOZpMcx5lW3Jguf/y9LnkHGiPKL9KGJfAHl5EyjQKMGYs6P36Ah+HvXbyvnUJ4MxeDp428THWcUPFXM3DulcFneZnQjgt8x2GcSkolLadenI2rL3oot+UouZwWPGJVxLwZ6um8uhiGK379JZ4IQTrv1+bMC0EnUZmTW0T4WF5TDG3OQujq8fidhwTo6xFfL8vOBu+dVGrGh7IcT7i7cKxi1I4ffrvXF0W461zs+IPmxClKRkr1rv//Yr5F2w7AetcctubXwg0m8jW/hI5qKU1Hxz/VQ5Xnbt4KVaBG2votR85CMSdLUty1ShBvhwZ0zSpQmuW56F9LDlm+yaH7AUE2htDl062Exixjx7MGSdQ+UmjhhGuRP/HzOYRqRJrQhaKcp/lQrLpsvdkmxKcvN60KbcMYRGq33sMX0J9ZPc020MFdA7Zuz3VMHnUB1qidRC+3EHaK9Ai80xpz+NpJe7SRrcfJcuxfvzq4otmCepiq5yUITFcXexlUWoS1E8D1bOkMNQOFypaIvJwcmOC2RWlwe1rVnPrGS0oCjFtZpUWQRkW1oBGDUb1pcyY50r8s4uaokuTYaK6gUuziSGY2qB/PHwQbu5534igTVikZ/s5N2/BAJXVVVGYi8GSZBJ/jECamu4/uJgF3+3M7w4ZlRCZxLKwPAXym7pk7noZds/46MRnZUhpHH5yMUQE/0fv0dzhsYjyNM58SGFj3ak9uSV/cTCQz+OSOj5H6zdFzx1bo9H+M2GrqAyCRaPqj3+SDgPJWxtKzsBrVvc9lr8UnT7qtcwcKZLy9yaMvi/F9Yw9g2YqD0/nknque6Vj25+RK+VkDrQ6R8mtkER8yjw+/3AxHuaBgFNVLSLsl1yJ/ruSAyHjQequQCGuOYqrE8Oz8GNsgD3aWwIno++R1w8ELjCSgwuPquB7yfD6hFYKtf6321tL+bhnqx0frTmAOn7vCF2XgtplSf1KOQeNxY3dVO9UFGz8KSTXwMW7V7jEwh02/IIckYnvfIEIvU9coCYVTpHM9ll6FiakbygbborgaqiYkITy4PE/+Rcn9o4DAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAhAMAAAAAAAA=eF61yv1T0wUAB2AooA4HeVx14ngRYYoOp6NyTD7KiywP5RTQtrEX2MbYvmON2wt4RIiklDJ0JJBMUEGu4xwF8jKZyDoZwvToVELB4xpy+YKGBjIGIe2k/omenx/jLYWf/5IMmbUB+gNaOZpMcx5lW3Jguf/y9LnkHGiPKL9KGJfAHl5EyjQKMGYs6P36Ah+HvXbyvnUJ4MxeDp428THWcUPFXM3DulcFneZnQjgt8x2GcSkolLadenI2rL3oot+UouZwWPGJVxLwZ6um8uhiGK379JZ4IQTrv1+bMC0EnUZmTW0T4WF5TDG3OQujq8fidhwTo6xFfL8vOBu+dVGrGh7IcT7i7cKxi1I4ffrvXF0W461zs+IPmxClKRkr1rv//Yr5F2w7AetcctubXwg0m8jW/hI5qKU1Hxz/VQ5Xnbt4KVaBG2votR85CMSdLUty1ShBvhwZ0zSpQmuW56F9LDlm+yaH7AUE2htDl062Exixjx7MGSdQ+UmjhhGuRP/HzOYRqRJrQhaKcp/lQrLpsvdkmxKcvN60KbcMYRGq33sMX0J9ZPc020MFdA7Zuz3VMHnUB1qidRC+3EHaK9Ai80xpz+NpJe7SRrcfJcuxfvzq4otmCepiq5yUITFcXexlUWoS1E8D1bOkMNQOFypaIvJwcmOC2RWlwe1rVnPrGS0oCjFtZpUWQRkW1oBGDUb1pcyY50r8s4uaokuTYaK6gUuziSGY2qB/PHwQbu5534igTVikZ/s5N2/BAJXVVVGYi8GSZBJ/jECamu4/uJgF3+3M7w4ZlRCZxLKwPAXym7pk7noZds/46MRnZUhpHH5yMUQE/0fv0dzhsYjyNM58SGFj3ak9uSV/cTCQz+OSOj5H6zdFzx1bo9H+M2GrqAyCRaPqj3+SDgPJWxtKzsBrVvc9lr8UnT7qtcwcKZLy9yaMvi/F9Yw9g2YqD0/nknque6Vj25+RK+VkDrQ6R8mtkER8yjw+/3AxHuaBgFNVLSLsl1yJ/ruSAyHjQequQCGuOYqrE8Oz8GNsgD3aWwIno++R1w8ELjCSgwuPquB7yfD6hFYKtf6321tL+bhnqx0frTmAOn7vCF2XgtplSf1KOQeNxY3dVO9UFGz8KSTXwMW7V7jEwh02/IIckYnvfIEIvU9coCYVTpHM9ll6FiakbygbborgaqiYkITy4PE/+Rcn9o4DAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAygAAAAAAAAA=eF51kskNAkEMBMMgC0CIW5wLLKc4Fj48yAKJ8IiBjPh0fUraV8k9Y7vtmV3j9f5tPt9bWIbX8BCew1X4CCvF93Ct/IP0U3hRP/RKJL8TLsN5OFF95sDvLtyHhXyPw2m40b1C+aVi6p8Vb2t8oq/FRcg+6MtejrrHXmbSifvqy5zUYY+XmvxS99j/WHovHNb4Ys/UmypvpPNSOv3w15Re6HygfPoNFbdEfFOfvbc1D3PTf6VzdN69Kx1ffp+n5sCv/yF+eY8/bCGi5g==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAyQMAAAAAAAA=eF4l0n8wGwYUB3C7+pGwhrLsnC0dSdYEOb9mZ5FHMToygow0fqcRFalYSmxpWGviyrS2TGdzq9woXf1onbaToW/SqkZWW60/tplNmCv1a7hVuaGs5f3z/et97t33npxibdtgQ8c+3VaMdl84EGTiTIJwk+NPEYnHVT7Q95Gd7GmZB4jS1wfsZn/mzNp6rU45ByPpxMwH+9/gYl/tqC7oERv1PSOn9zq5g8X2uHWnDLa1eBpyMIIiySJ1C7HEnq2d74pC/fQmK3+EB99RZblO8UzcSDcv+EMyHjjW+iunLgR+GBm34hkyQZ1Nftt4PQ7aTf/KqIV22PHEpa6ftsQ5++rze19CXsUNabr9IfRxdSxdiTiCf9fIWszGRHCs+iYtyVUOxab+EiKBDp6NcZvh1gKUukqy/DzioaeKcZGrZYG8UcadYD7bJypvRc1mYqx71f7APSGo92oxakazQU1c44X9kwy8pfEuPUeIpdpBvytSPqrqLCvCmskwuSTVfO+igKIM3q3XovPgwJKGEHg0FrR69zrzcDAIdec76KkZsCChdt4QK6Gp8mZOojMLi51CNwrPZqL8Ct3X7Z4INJdjGP3X4qG2gd87dC8eVybVvnd6Y0F/9RQxrz0BIl36H36uyUJL1dOpPHEoJHWuZjl6HwObtGrq3EE1hjZ+61F8IRf5nQL1pG8G3KYpGbvLZHDIh3y4Zv5ZH9Uv7CKJWSjMqXmcbBTARt+i17tWSvhtIux8c7gErFlzpvpFOdZyrOpbXzmOm8vPe3YAZj7jv47jSgjc4/aj5sxRuHvVSKjWhWPwF4LpxzQFKprHd+XP5GNdfCoriSIFwuZ9yh+ffAhft106F+YsBqZ0weR90xW7lr+cW6fwdv7CQcA2kyzWS3P3YXqA73D9WAGK+Gs/DYzRIFrzJtFvSQn8LUPEVAEN/8qIK9/icnFxyy3UnZWAr7e2N77vFImRKPDvfdFmx6tIZ29nfTRbyfwsJSdEjqfMzQWpuzNRE9BjVN1JgBxzlIk+H4T3SeIJ4jkyRnxqOPwxJwVeNhx5kH07DQrDQoVP1iJQPOLS1vu7J257lqIdd1rUfbfIZPNAGwQWJ4sZqcxCxEihriw2CnSnLxhaioqgtEk10zWweu0RNa9ydcMbhv3JUtu3SHCxJ2Z58CQbJWsLlXsZ/B33l6zu7QxRsH0eNimGMg5iuUk149rqD5grJXMvJeKoYFm6wkzFXIv1TuFlOqqbrreMTQaAX+SfDmeGODAUdEJRU+4CJe5f2Te8896OW8Jj/w+eiq9fAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAArQAAAAAAAAA=eF51k7sNAjEQBTtB4nPnsznMcSAyKqQLQkogoR3KINlJRtpo9OzdZ7+1XD6/17O/vz04B0fxKDbtT8EqnyZN/0n7sEjju0jbl3PPSb+1fbe6F7mq9JjUZfOZVe+87qN+kuYc8h2S/Wzu+A1aN+3bxUF1zM+5F9Xhd5OPc92lB5F7ME/ezXPm3Zr6uOcu6S/SVWSOzsv6VT5delXfPrgJPoIX5V617v/6B6w9KEw=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAyAAAAAAAAAA=eF51kcsNwjAQRMugDRBIAQLGCZjEQABFghtdIFEeNdARl5nLk3x68n5mdtfd5PX+pc83ixexF5/iVbyLI/gQj+JBPIsn8QY9+2TUdahPyDdigJ/1IupyIe99N9CxP/1accC+LfrsE9Bvv4h+32MLvVrcF/bym3dbIe45etB7+84zxJtC3xRzrsWdmBC3nudZinPR/xNRb/2AN/W8byX6DjXqPc8Cec/hf7CefSv0883/sr73CYh7f97R9/XdE/ID6hz/A3mRoyc=AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAATQcAAAAAAAA=eF41ynk8FAgfx3HkatpNiUK1HRQSybh/OZJSsYUoIhHlTNuGUqLDteHpkoyjciSsEWIMPzEIQ3KMmTEzjnEMIjnKEal9Xs9rPd//3q/PN0i2bg3pfgbSY2yf7X5TB/dsIhUvnyqCR8ZqLjv02JDo8NWzZiMFooNiKZ9F0mCdjsmtN9xSYHtawjiRDmzXquoRQTvU3mB4TH+lgdB303T/1kYw9N5vSppMwthTEUl6N2/izXvdH1bElSJt0LF8hHEc21a6f8qJqcaCSlOpjBQyWF7fEpLs9Q7pwvRsJX4W3lHhnNw0zsZQzuGAPWm1uM9u+4OokywUzWNw9TqrYfyugxjxZRpaX+w+/fO5H4y6twsVf62ARGK4v/H6UBCSUy4+7EoD0pFSDDhUA9ZBB16t92oD4jyznS9UDwHVr7QtbF+CpE71N28BBZoDYl7YMHj4m9YKo3tiBbiz7Uftyp9dSGu3bAytTUPVQ1hSI9uJZa2OgdeXcpEllR7pe5uL0U/Nl0R4NCSKFQyvM+Lj3J6eYbEgGnLE6YvHz3LRTDPrOfFyG1BzTI4NQTvS3Ewljs1+gOa1V2NI97twaXjDHW2PD0Cw2DGq8LoMaWeOKTkphcBBk/mzxxya8eg9qchb9ly8UXji8bBmB3Ye/dMxmdaOUdpGCalqPFRr0nRv086F2VvOssc1+EhInrHMOp8BjQ+sTAfI3VicorXva0sh5h6NephzqhsHyuaPHG55iQEcebPBVTwsFi/jCb9+Bg59eSF/M2rRfoawkXS1ARupaiEVRDq+2Oaw7a10PYjbhX6wCWThkphvbkLpezAxPFlDnuvH3Z2BXDUpMlrX5IOhwgQGqw7mtvbdR0Pv59r/0fmIU5LnpPTXluG3GUU8tIGG+hmmQymryzFYy39R720BzN2+al9SfxdMr5xfu7KZDk7ENVKEoiiMPnrC7feqFvhj8+bcTJF3YLdzbGdm8yhE68vJyBE4oMwbs2AFTIDSN/uFZPV0HPMucAoxLMfYlvGIvMJqvPbMI3l6vB4VjTq8JH/lIM/EOUGG1o+EIyJTLgp0bMA7VkMNPdj1Dz627uCBgt7TuEs/mLidoB014tcPu1yB0n+wCn0+5H7ZT+0EyehAiYE8Osg7yM8rGL4HlrlPhSqZA9OBhBu1Z/uBxtua9rpyCD7HzPls9hoCrW8/W69RpqD5bH5acQwTnshdHLDe8Akog2u/h8Ww8IdAK1nYpQS87bZGqH1sx1RdgjPbpg4UsnyzwtmFqBKkwNodIQDXjUMW2dV1IBpssi07qwt8m1LcLswzIemsrVjsSDeMXguOeyTVBZvM5EUfqr8HuZnsqcVFLoh7UU0uWz2BSLLWqGIdHy6w3qXfmCgDlbhYUnypABac5hlpFwfAjfCqM76ICdFPT1ieKWhBD9+i7fn18ShJeiNlPNyFBoTY38zLacCUE9Rfsp2EpveXhVbweJBQ2nIxPWoG8m+6s9WNKnDavdr8utY8EAsHN/3Yw8FaJf9ew9XT0HRcerQ/shHGw9wEmRJjUDRuHqCy6S1ECg4yR9Yz4bXbcUe51DZw35Dl7lXwBgomqsTrHn6Enra83ESHUvRgXWn9s7MREvlb4nLMaahgUMI/NM3CdMlfIppWdaDEp/jG7P1F2F14qkp9lIPZgR2nmJ7tUHk6reih7Dh4rzMUqgimg+tc/r4l5zHgaG/2NHFioOn4ib58iRTcL2K98z23B68ZDAYNGAmAIGAdSN3VhRy5lWIjvC6QFnbdnrqOiaMWut8kxBmwNZNyaZBrCf4CzNY91wAcvbKVJRQGOPZZMxdzWDh8kMoJN+gGtbT4RfmSKRwxW5zrPfMaZjMdohf+6cRdX8LJ51Y3YWvZrI6hZRGK6jdcrc17CvQoXd6KGgrGqrBtk9fyUXwyNr2ino5ER03hsN87UFnGr/Q0pwv5pFyHx+QS8EliXxM6QwYl8dUiiR61GDIpFuZ9NxKYbKLy3bpq9DQYztupzIaMer0rY9KdeOCdopiqLReiSZp7F9x68IH/6ONdxr3gbOXhGahWB32MBue3LuX4ZOK+saqKAAThvaa/cDtQkZTdP6vUDwSPkgUKPx+Fd0X9dUGyALxEK/dm7G2Ade13bs+zarHvwf5FNqUOZKz5OpLn0tHlCS9Q134IQj6ihi0rHl9tswkdU+kF3ncZK3WXatxhVkcIfz4AgmMaTjWqReAinWeS/HkQvm8NKuw/QoNOvUdMwZoR0BAxeHnoQhOSZy2C11ydhAiy1FJhDwutzJ5Qpvq+QKiZj1N7ajkkDfhvIe4eg0q9OL+FLwwQT0jSoJL6Qeh/u/UX9ZnsPT9LXcG/FsrWd9N0TDbWGVjuL6gaoZbqFtsmlnuO/nkF2fSw2///39Sv2KdnneI/uexLVLvELYcTND8vO5EqnuNbpiYYW3aJfleUx6WXq4b+9Yt0fRlZ0chXq2aWexK1WKG85O+A2WXfojY0J5z+XDoF/wXZYM7IAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAMgAAAAAAAAA=eF4TfKXbOHN6oa0gGs0ABejio/Kj8qPyo/Kj8qPyo/Kj8qPyo/Kj8qPy5MoDANWzInE=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAxQEAAAAAAAA=eF51lUtOAlEQRZfhEjTSQNMgKmjzaxFQBD8BSdRVmLgId+HQJThhDe7CZTipMznJG1XqvuLWfbfqNcXP39dn43u/OXh9/7362N9HzAN/jvwhYjPwx8jvIjYCf1M9PLvId8K3kW/Fjx76ZIG/CG8I3whH/5PwYeQD9Z0Ip34a+ThiS3il+kr1xsuItcBnkU9Vv4h8HrEe+FJ9c+HwFIHfRj4Rzrw5z6TnWv4shcPDHiyEr4Vnqr/RfcHRk4tnJT3rBA++l+LhXsy3LX84rwtfiJ98rHp8HwqnnvOa+JljJ/CVcPryrtCJD/ME7r0qxEP/mvR7D1NzT83Xflrnlfoy90o8a9Wjh5x9zqV/onr24FI48+vL/1HkvYitBJ4JL4XDzzn7hg/46f0cC6cenZ6X7zsTjv/4PBReqR6d6KPPYeD8nvueBc47nIuH/UFXK1F/ov3xu6CO/twXf5kv/l9Efh6xm/C5LR5+x/v1d/socOZRENW3I52l+NHp7wY87Pmp9IxU31Q9PnTV1/7wHeTc7yL1P0h9XfX4nAu3z/B6n71Xx5pXX/zsFffmvuyx+4IT68LxtZDOgfh5Fz3xoB8f/gGSzYIMAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAJAAAAAAAAAA=eF5jYEAGH+wZsIJR8VHxUfFR8VHxUfFR8VHxUXFixQHzs3ZdAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAeAAAAAAAAAA=eF7NjrENwCAQxNgs+2+TEaK0lpAxoYhLH3fPGC/3NZaYvTNvubG7Uz2xvuVfPdm9S6xfd+r7mbd81ZPa3/WW/8UT+z+p92y/erK7T2rfvOWG7ZB6z7zlhu0Qe189sb7lRu2bP3XXcqP2T9+tO9UTu0vm9x4ZonZdAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAeQAAAAAAAAA=eF69jsENwCAQw9is+2/TEfqsGlH5DNf6g+SQwBgzzuN5vuVVn1C/a8d6ygnbJ9/1LuUE7SR03+5YT/lXPrH9v7z9P+1VfWL79J9kdafLJ9S3O7S36xPq2x1733rKCepTvuuT1XcT6lNe9Qn1u3ast+/S3s0FzdN2XQ==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF + </AppendedData> +</VTKFile> diff --git a/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1x1_quad4_1e2.vtu b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1x1_quad4_1e2.vtu new file mode 100644 index 00000000000..e7199f0955b --- /dev/null +++ b/Tests/Data/HydroMechanics/Linear/Confined_Compression/square_1x1_quad4_1e2.vtu @@ -0,0 +1,22 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32"> + <UnstructuredGrid> + <Piece NumberOfPoints="121" NumberOfCells="100" > + <PointData> + </PointData> + <CellData> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="0" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="3880" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="8152" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="9224" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _WAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqZmZmZmbk/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmck/AAAAAAAAAAAAAAAAAAAAADMzMzMzM9M/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmdk/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA/AAAAAAAAAAAAAAAAAAAAADMzMzMzM+M/AAAAAAAAAAAAAAAAAAAAAGZmZmZmZuY/AAAAAAAAAAAAAAAAAAAAAJqZmZmZmek/AAAAAAAAAAAAAAAAAAAAAM3MzMzMzOw/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmpmZmZmZuT8AAAAAAAAAAJqZmZmZmbk/mpmZmZmZuT8AAAAAAAAAAJqZmZmZmck/mpmZmZmZuT8AAAAAAAAAADMzMzMzM9M/mpmZmZmZuT8AAAAAAAAAAJqZmZmZmdk/mpmZmZmZuT8AAAAAAAAAAAAAAAAAAOA/mpmZmZmZuT8AAAAAAAAAADMzMzMzM+M/mpmZmZmZuT8AAAAAAAAAAGZmZmZmZuY/mpmZmZmZuT8AAAAAAAAAAJqZmZmZmek/mpmZmZmZuT8AAAAAAAAAAM3MzMzMzOw/mpmZmZmZuT8AAAAAAAAAAAAAAAAAAPA/mpmZmZmZuT8AAAAAAAAAAAAAAAAAAAAAmpmZmZmZyT8AAAAAAAAAAJqZmZmZmbk/mpmZmZmZyT8AAAAAAAAAAJqZmZmZmck/mpmZmZmZyT8AAAAAAAAAADMzMzMzM9M/mpmZmZmZyT8AAAAAAAAAAJqZmZmZmdk/mpmZmZmZyT8AAAAAAAAAAAAAAAAAAOA/mpmZmZmZyT8AAAAAAAAAADMzMzMzM+M/mpmZmZmZyT8AAAAAAAAAAGZmZmZmZuY/mpmZmZmZyT8AAAAAAAAAAJqZmZmZmek/mpmZmZmZyT8AAAAAAAAAAM3MzMzMzOw/mpmZmZmZyT8AAAAAAAAAAAAAAAAAAPA/mpmZmZmZyT8AAAAAAAAAAAAAAAAAAAAAMzMzMzMz0z8AAAAAAAAAAJqZmZmZmbk/MzMzMzMz0z8AAAAAAAAAAJqZmZmZmck/MzMzMzMz0z8AAAAAAAAAADMzMzMzM9M/MzMzMzMz0z8AAAAAAAAAAJqZmZmZmdk/MzMzMzMz0z8AAAAAAAAAAAAAAAAAAOA/MzMzMzMz0z8AAAAAAAAAADMzMzMzM+M/MzMzMzMz0z8AAAAAAAAAAGZmZmZmZuY/MzMzMzMz0z8AAAAAAAAAAJqZmZmZmek/MzMzMzMz0z8AAAAAAAAAAM3MzMzMzOw/MzMzMzMz0z8AAAAAAAAAAAAAAAAAAPA/MzMzMzMz0z8AAAAAAAAAAAAAAAAAAAAAmpmZmZmZ2T8AAAAAAAAAAJqZmZmZmbk/mpmZmZmZ2T8AAAAAAAAAAJqZmZmZmck/mpmZmZmZ2T8AAAAAAAAAADMzMzMzM9M/mpmZmZmZ2T8AAAAAAAAAAJqZmZmZmdk/mpmZmZmZ2T8AAAAAAAAAAAAAAAAAAOA/mpmZmZmZ2T8AAAAAAAAAADMzMzMzM+M/mpmZmZmZ2T8AAAAAAAAAAGZmZmZmZuY/mpmZmZmZ2T8AAAAAAAAAAJqZmZmZmek/mpmZmZmZ2T8AAAAAAAAAAM3MzMzMzOw/mpmZmZmZ2T8AAAAAAAAAAAAAAAAAAPA/mpmZmZmZ2T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA4D8AAAAAAAAAAJqZmZmZmbk/AAAAAAAA4D8AAAAAAAAAAJqZmZmZmck/AAAAAAAA4D8AAAAAAAAAADMzMzMzM9M/AAAAAAAA4D8AAAAAAAAAAJqZmZmZmdk/AAAAAAAA4D8AAAAAAAAAAAAAAAAAAOA/AAAAAAAA4D8AAAAAAAAAADMzMzMzM+M/AAAAAAAA4D8AAAAAAAAAAGZmZmZmZuY/AAAAAAAA4D8AAAAAAAAAAJqZmZmZmek/AAAAAAAA4D8AAAAAAAAAAM3MzMzMzOw/AAAAAAAA4D8AAAAAAAAAAAAAAAAAAPA/AAAAAAAA4D8AAAAAAAAAAAAAAAAAAAAAMzMzMzMz4z8AAAAAAAAAAJqZmZmZmbk/MzMzMzMz4z8AAAAAAAAAAJqZmZmZmck/MzMzMzMz4z8AAAAAAAAAADMzMzMzM9M/MzMzMzMz4z8AAAAAAAAAAJqZmZmZmdk/MzMzMzMz4z8AAAAAAAAAAAAAAAAAAOA/MzMzMzMz4z8AAAAAAAAAADMzMzMzM+M/MzMzMzMz4z8AAAAAAAAAAGZmZmZmZuY/MzMzMzMz4z8AAAAAAAAAAJqZmZmZmek/MzMzMzMz4z8AAAAAAAAAAM3MzMzMzOw/MzMzMzMz4z8AAAAAAAAAAAAAAAAAAPA/MzMzMzMz4z8AAAAAAAAAAAAAAAAAAAAAZmZmZmZm5j8AAAAAAAAAAJqZmZmZmbk/ZmZmZmZm5j8AAAAAAAAAAJqZmZmZmck/ZmZmZmZm5j8AAAAAAAAAADMzMzMzM9M/ZmZmZmZm5j8AAAAAAAAAAJqZmZmZmdk/ZmZmZmZm5j8AAAAAAAAAAAAAAAAAAOA/ZmZmZmZm5j8AAAAAAAAAADMzMzMzM+M/ZmZmZmZm5j8AAAAAAAAAAGZmZmZmZuY/ZmZmZmZm5j8AAAAAAAAAAJqZmZmZmek/ZmZmZmZm5j8AAAAAAAAAAM3MzMzMzOw/ZmZmZmZm5j8AAAAAAAAAAAAAAAAAAPA/ZmZmZmZm5j8AAAAAAAAAAAAAAAAAAAAAmpmZmZmZ6T8AAAAAAAAAAJqZmZmZmbk/mpmZmZmZ6T8AAAAAAAAAAJqZmZmZmck/mpmZmZmZ6T8AAAAAAAAAADMzMzMzM9M/mpmZmZmZ6T8AAAAAAAAAAJqZmZmZmdk/mpmZmZmZ6T8AAAAAAAAAAAAAAAAAAOA/mpmZmZmZ6T8AAAAAAAAAADMzMzMzM+M/mpmZmZmZ6T8AAAAAAAAAAGZmZmZmZuY/mpmZmZmZ6T8AAAAAAAAAAJqZmZmZmek/mpmZmZmZ6T8AAAAAAAAAAM3MzMzMzOw/mpmZmZmZ6T8AAAAAAAAAAAAAAAAAAPA/mpmZmZmZ6T8AAAAAAAAAAAAAAAAAAAAAzczMzMzM7D8AAAAAAAAAAJqZmZmZmbk/zczMzMzM7D8AAAAAAAAAAJqZmZmZmck/zczMzMzM7D8AAAAAAAAAADMzMzMzM9M/zczMzMzM7D8AAAAAAAAAAJqZmZmZmdk/zczMzMzM7D8AAAAAAAAAAAAAAAAAAOA/zczMzMzM7D8AAAAAAAAAADMzMzMzM+M/zczMzMzM7D8AAAAAAAAAAGZmZmZmZuY/zczMzMzM7D8AAAAAAAAAAJqZmZmZmek/zczMzMzM7D8AAAAAAAAAAM3MzMzMzOw/zczMzMzM7D8AAAAAAAAAAAAAAAAAAPA/zczMzMzM7D8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA8D8AAAAAAAAAAJqZmZmZmbk/AAAAAAAA8D8AAAAAAAAAAJqZmZmZmck/AAAAAAAA8D8AAAAAAAAAADMzMzMzM9M/AAAAAAAA8D8AAAAAAAAAAJqZmZmZmdk/AAAAAAAA8D8AAAAAAAAAAAAAAAAAAOA/AAAAAAAA8D8AAAAAAAAAADMzMzMzM+M/AAAAAAAA8D8AAAAAAAAAAGZmZmZmZuY/AAAAAAAA8D8AAAAAAAAAAJqZmZmZmek/AAAAAAAA8D8AAAAAAAAAAM3MzMzMzOw/AAAAAAAA8D8AAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAAAAAA==gAwAAAAAAAAAAAAAAQAAAAAAAAAMAAAAAAAAAAsAAAAAAAAAAQAAAAAAAAACAAAAAAAAAA0AAAAAAAAADAAAAAAAAAACAAAAAAAAAAMAAAAAAAAADgAAAAAAAAANAAAAAAAAAAMAAAAAAAAABAAAAAAAAAAPAAAAAAAAAA4AAAAAAAAABAAAAAAAAAAFAAAAAAAAABAAAAAAAAAADwAAAAAAAAAFAAAAAAAAAAYAAAAAAAAAEQAAAAAAAAAQAAAAAAAAAAYAAAAAAAAABwAAAAAAAAASAAAAAAAAABEAAAAAAAAABwAAAAAAAAAIAAAAAAAAABMAAAAAAAAAEgAAAAAAAAAIAAAAAAAAAAkAAAAAAAAAFAAAAAAAAAATAAAAAAAAAAkAAAAAAAAACgAAAAAAAAAVAAAAAAAAABQAAAAAAAAACwAAAAAAAAAMAAAAAAAAABcAAAAAAAAAFgAAAAAAAAAMAAAAAAAAAA0AAAAAAAAAGAAAAAAAAAAXAAAAAAAAAA0AAAAAAAAADgAAAAAAAAAZAAAAAAAAABgAAAAAAAAADgAAAAAAAAAPAAAAAAAAABoAAAAAAAAAGQAAAAAAAAAPAAAAAAAAABAAAAAAAAAAGwAAAAAAAAAaAAAAAAAAABAAAAAAAAAAEQAAAAAAAAAcAAAAAAAAABsAAAAAAAAAEQAAAAAAAAASAAAAAAAAAB0AAAAAAAAAHAAAAAAAAAASAAAAAAAAABMAAAAAAAAAHgAAAAAAAAAdAAAAAAAAABMAAAAAAAAAFAAAAAAAAAAfAAAAAAAAAB4AAAAAAAAAFAAAAAAAAAAVAAAAAAAAACAAAAAAAAAAHwAAAAAAAAAWAAAAAAAAABcAAAAAAAAAIgAAAAAAAAAhAAAAAAAAABcAAAAAAAAAGAAAAAAAAAAjAAAAAAAAACIAAAAAAAAAGAAAAAAAAAAZAAAAAAAAACQAAAAAAAAAIwAAAAAAAAAZAAAAAAAAABoAAAAAAAAAJQAAAAAAAAAkAAAAAAAAABoAAAAAAAAAGwAAAAAAAAAmAAAAAAAAACUAAAAAAAAAGwAAAAAAAAAcAAAAAAAAACcAAAAAAAAAJgAAAAAAAAAcAAAAAAAAAB0AAAAAAAAAKAAAAAAAAAAnAAAAAAAAAB0AAAAAAAAAHgAAAAAAAAApAAAAAAAAACgAAAAAAAAAHgAAAAAAAAAfAAAAAAAAACoAAAAAAAAAKQAAAAAAAAAfAAAAAAAAACAAAAAAAAAAKwAAAAAAAAAqAAAAAAAAACEAAAAAAAAAIgAAAAAAAAAtAAAAAAAAACwAAAAAAAAAIgAAAAAAAAAjAAAAAAAAAC4AAAAAAAAALQAAAAAAAAAjAAAAAAAAACQAAAAAAAAALwAAAAAAAAAuAAAAAAAAACQAAAAAAAAAJQAAAAAAAAAwAAAAAAAAAC8AAAAAAAAAJQAAAAAAAAAmAAAAAAAAADEAAAAAAAAAMAAAAAAAAAAmAAAAAAAAACcAAAAAAAAAMgAAAAAAAAAxAAAAAAAAACcAAAAAAAAAKAAAAAAAAAAzAAAAAAAAADIAAAAAAAAAKAAAAAAAAAApAAAAAAAAADQAAAAAAAAAMwAAAAAAAAApAAAAAAAAACoAAAAAAAAANQAAAAAAAAA0AAAAAAAAACoAAAAAAAAAKwAAAAAAAAA2AAAAAAAAADUAAAAAAAAALAAAAAAAAAAtAAAAAAAAADgAAAAAAAAANwAAAAAAAAAtAAAAAAAAAC4AAAAAAAAAOQAAAAAAAAA4AAAAAAAAAC4AAAAAAAAALwAAAAAAAAA6AAAAAAAAADkAAAAAAAAALwAAAAAAAAAwAAAAAAAAADsAAAAAAAAAOgAAAAAAAAAwAAAAAAAAADEAAAAAAAAAPAAAAAAAAAA7AAAAAAAAADEAAAAAAAAAMgAAAAAAAAA9AAAAAAAAADwAAAAAAAAAMgAAAAAAAAAzAAAAAAAAAD4AAAAAAAAAPQAAAAAAAAAzAAAAAAAAADQAAAAAAAAAPwAAAAAAAAA+AAAAAAAAADQAAAAAAAAANQAAAAAAAABAAAAAAAAAAD8AAAAAAAAANQAAAAAAAAA2AAAAAAAAAEEAAAAAAAAAQAAAAAAAAAA3AAAAAAAAADgAAAAAAAAAQwAAAAAAAABCAAAAAAAAADgAAAAAAAAAOQAAAAAAAABEAAAAAAAAAEMAAAAAAAAAOQAAAAAAAAA6AAAAAAAAAEUAAAAAAAAARAAAAAAAAAA6AAAAAAAAADsAAAAAAAAARgAAAAAAAABFAAAAAAAAADsAAAAAAAAAPAAAAAAAAABHAAAAAAAAAEYAAAAAAAAAPAAAAAAAAAA9AAAAAAAAAEgAAAAAAAAARwAAAAAAAAA9AAAAAAAAAD4AAAAAAAAASQAAAAAAAABIAAAAAAAAAD4AAAAAAAAAPwAAAAAAAABKAAAAAAAAAEkAAAAAAAAAPwAAAAAAAABAAAAAAAAAAEsAAAAAAAAASgAAAAAAAABAAAAAAAAAAEEAAAAAAAAATAAAAAAAAABLAAAAAAAAAEIAAAAAAAAAQwAAAAAAAABOAAAAAAAAAE0AAAAAAAAAQwAAAAAAAABEAAAAAAAAAE8AAAAAAAAATgAAAAAAAABEAAAAAAAAAEUAAAAAAAAAUAAAAAAAAABPAAAAAAAAAEUAAAAAAAAARgAAAAAAAABRAAAAAAAAAFAAAAAAAAAARgAAAAAAAABHAAAAAAAAAFIAAAAAAAAAUQAAAAAAAABHAAAAAAAAAEgAAAAAAAAAUwAAAAAAAABSAAAAAAAAAEgAAAAAAAAASQAAAAAAAABUAAAAAAAAAFMAAAAAAAAASQAAAAAAAABKAAAAAAAAAFUAAAAAAAAAVAAAAAAAAABKAAAAAAAAAEsAAAAAAAAAVgAAAAAAAABVAAAAAAAAAEsAAAAAAAAATAAAAAAAAABXAAAAAAAAAFYAAAAAAAAATQAAAAAAAABOAAAAAAAAAFkAAAAAAAAAWAAAAAAAAABOAAAAAAAAAE8AAAAAAAAAWgAAAAAAAABZAAAAAAAAAE8AAAAAAAAAUAAAAAAAAABbAAAAAAAAAFoAAAAAAAAAUAAAAAAAAABRAAAAAAAAAFwAAAAAAAAAWwAAAAAAAABRAAAAAAAAAFIAAAAAAAAAXQAAAAAAAABcAAAAAAAAAFIAAAAAAAAAUwAAAAAAAABeAAAAAAAAAF0AAAAAAAAAUwAAAAAAAABUAAAAAAAAAF8AAAAAAAAAXgAAAAAAAABUAAAAAAAAAFUAAAAAAAAAYAAAAAAAAABfAAAAAAAAAFUAAAAAAAAAVgAAAAAAAABhAAAAAAAAAGAAAAAAAAAAVgAAAAAAAABXAAAAAAAAAGIAAAAAAAAAYQAAAAAAAABYAAAAAAAAAFkAAAAAAAAAZAAAAAAAAABjAAAAAAAAAFkAAAAAAAAAWgAAAAAAAABlAAAAAAAAAGQAAAAAAAAAWgAAAAAAAABbAAAAAAAAAGYAAAAAAAAAZQAAAAAAAABbAAAAAAAAAFwAAAAAAAAAZwAAAAAAAABmAAAAAAAAAFwAAAAAAAAAXQAAAAAAAABoAAAAAAAAAGcAAAAAAAAAXQAAAAAAAABeAAAAAAAAAGkAAAAAAAAAaAAAAAAAAABeAAAAAAAAAF8AAAAAAAAAagAAAAAAAABpAAAAAAAAAF8AAAAAAAAAYAAAAAAAAABrAAAAAAAAAGoAAAAAAAAAYAAAAAAAAABhAAAAAAAAAGwAAAAAAAAAawAAAAAAAABhAAAAAAAAAGIAAAAAAAAAbQAAAAAAAABsAAAAAAAAAGMAAAAAAAAAZAAAAAAAAABvAAAAAAAAAG4AAAAAAAAAZAAAAAAAAABlAAAAAAAAAHAAAAAAAAAAbwAAAAAAAABlAAAAAAAAAGYAAAAAAAAAcQAAAAAAAABwAAAAAAAAAGYAAAAAAAAAZwAAAAAAAAByAAAAAAAAAHEAAAAAAAAAZwAAAAAAAABoAAAAAAAAAHMAAAAAAAAAcgAAAAAAAABoAAAAAAAAAGkAAAAAAAAAdAAAAAAAAABzAAAAAAAAAGkAAAAAAAAAagAAAAAAAAB1AAAAAAAAAHQAAAAAAAAAagAAAAAAAABrAAAAAAAAAHYAAAAAAAAAdQAAAAAAAABrAAAAAAAAAGwAAAAAAAAAdwAAAAAAAAB2AAAAAAAAAGwAAAAAAAAAbQAAAAAAAAB4AAAAAAAAAHcAAAAAAAAAIAMAAAQAAAAAAAAACAAAAAAAAAAMAAAAAAAAABAAAAAAAAAAFAAAAAAAAAAYAAAAAAAAABwAAAAAAAAAIAAAAAAAAAAkAAAAAAAAACgAAAAAAAAALAAAAAAAAAAwAAAAAAAAADQAAAAAAAAAOAAAAAAAAAA8AAAAAAAAAEAAAAAAAAAARAAAAAAAAABIAAAAAAAAAEwAAAAAAAAAUAAAAAAAAABUAAAAAAAAAFgAAAAAAAAAXAAAAAAAAABgAAAAAAAAAGQAAAAAAAAAaAAAAAAAAABsAAAAAAAAAHAAAAAAAAAAdAAAAAAAAAB4AAAAAAAAAHwAAAAAAAAAgAAAAAAAAACEAAAAAAAAAIgAAAAAAAAAjAAAAAAAAACQAAAAAAAAAJQAAAAAAAAAmAAAAAAAAACcAAAAAAAAAKAAAAAAAAAApAAAAAAAAACoAAAAAAAAAKwAAAAAAAAAsAAAAAAAAAC0AAAAAAAAALgAAAAAAAAAvAAAAAAAAADAAAAAAAAAAMQAAAAAAAAAyAAAAAAAAADMAAAAAAAAANAAAAAAAAAA1AAAAAAAAADYAAAAAAAAANwAAAAAAAAA4AAAAAAAAADkAAAAAAAAAOgAAAAAAAAA7AAAAAAAAADwAAAAAAAAAPQAAAAAAAAA+AAAAAAAAAD8AAAAAAAAAAABAAAAAAAABAEAAAAAAAAIAQAAAAAAAAwBAAAAAAAAEAEAAAAAAAAUAQAAAAAAABgBAAAAAAAAHAEAAAAAAAAgAQAAAAAAACQBAAAAAAAAKAEAAAAAAAAsAQAAAAAAADABAAAAAAAANAEAAAAAAAA4AQAAAAAAADwBAAAAAAAAQAEAAAAAAABEAQAAAAAAAEgBAAAAAAAATAEAAAAAAABQAQAAAAAAAFQBAAAAAAAAWAEAAAAAAABcAQAAAAAAAGABAAAAAAAAZAEAAAAAAABoAQAAAAAAAGwBAAAAAAAAcAEAAAAAAAB0AQAAAAAAAHgBAAAAAAAAfAEAAAAAAACAAQAAAAAAAIQBAAAAAAAAiAEAAAAAAACMAQAAAAAAAJABAAAAAAAAZAAAAAkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQkJCQk= + </AppendedData> +</VTKFile> -- GitLab