diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs.prj b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs.prj index 1e4364f0468d0edd3811347f6b652a79eff2e839..4b8c74da71d42ace153f44335390eddd2508f2a6 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs.prj +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs.prj @@ -172,7 +172,7 @@ <timesteps> <pair> <repeat>1</repeat> - <each_steps>1000</each_steps> + <each_steps>10000</each_steps> </pair> </timesteps> <fixed_output_times>.1 .2 .3 .4 .5 .6 .7 .8 .9 1</fixed_output_times> @@ -254,7 +254,7 @@ <parameter> <name>dirichletLinearPos</name> <type>Function</type> - <expression>0.001*t</expression> + <expression>0.0001*t</expression> <!--try also 0.001*t for traversing the critical state--> </parameter> <parameter> <name>dirichletLinearTemp</name> @@ -369,13 +369,13 @@ <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>sigma</field> - <absolute_tolerance>4e-13</absolute_tolerance> + <absolute_tolerance>5e-13</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>epsilon</field> - <absolute_tolerance>2e-15</absolute_tolerance> + <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> @@ -388,31 +388,31 @@ <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>ElasticStrain</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>EquivalentPlasticStrain</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>PlasticVolumetricStrain</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>VolumeRatio</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>PreConsolidationPressure</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <!--integration point variables--> @@ -431,25 +431,25 @@ <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>material_state_variable_ElasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>material_state_variable_EquivalentPlasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>material_state_variable_PlasticVolumetricStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_t_.*.vtu</regex> <field>material_state_variable_VolumeRatio_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_restart.xml b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_restart.xml index 3e69ca8b7b6a0651d900eb19a6dc65047dfed0cb..239d6fb592f05371098c697be83e022b29ad8f4e 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_restart.xml +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_restart.xml @@ -34,70 +34,74 @@ <remove sel="/*/test_definition"/> <add sel="/*"> <test_definition> - <vtkdiff> - <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> - <field>temperature</field> - <absolute_tolerance>1e-13</absolute_tolerance> - <relative_tolerance>0</relative_tolerance> - </vtkdiff> + <!--primary variables--> + <vtkdiff> + <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> + <field>temperature</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>displacement</field> <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> + <!--secondary variables--> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>sigma</field> - <absolute_tolerance>1e-8</absolute_tolerance> + <absolute_tolerance>5e-13</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>epsilon</field> - <absolute_tolerance>2e-15</absolute_tolerance> + <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>NodalForces</field> - <absolute_tolerance>1e-7</absolute_tolerance> + <absolute_tolerance>3e-12</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> + <!--internal state variables--> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>ElasticStrain</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>EquivalentPlasticStrain</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>PlasticVolumetricStrain</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>VolumeRatio</field> - <absolute_tolerance>3e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> - <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex><!--X--> + <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>PreConsolidationPressure</field> - <absolute_tolerance>1e-8</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> + <!--integration point variables--> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>sigma_ip</field> - <absolute_tolerance>1e-8</absolute_tolerance> + <absolute_tolerance>5e-13</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> @@ -109,33 +113,34 @@ <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>material_state_variable_ElasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>material_state_variable_EquivalentPlasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>material_state_variable_PlasticVolumetricStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>material_state_variable_VolumeRatio_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>square_1e1_2_matIDs_restart_t_.*.vtu</regex> <field>material_state_variable_PreConsolidationPressure_ip</field> - <absolute_tolerance>1e-8</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> </test_definition> </add> + </OpenGeoSysProjectDiff> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.0000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.0000.vtu index 5e351c09fa868ef3b6fc0c3bee741d9d2d584243..e9c55903a3aa53dae4788a9acfee7717cc3e01e9 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.0000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.0000.vtu @@ -50,6 +50,6 @@ </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAADQAAAAAAAAA=eF5jYBgFAwkAAYAAAQ==AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAADAAAAAAAAAA=eF5jYBjaAAAAwAABAQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAEgAAAAAAAAA=eF5jYACCLA5HhiFKAwAuYhDJAQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAEwAAAAAAAAA=eF6rFlnn/rDqj331EKUB+3xicQ==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAADQAAAAAAAAA=eF5jYBgFlAAAAUAAAQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAJAAAAAAAAAA=eF5jYMACsjgcGaE0E5TGpgwujk5ToO4/CGRyOP6D0gCzEBJbAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKQAAAAAAAAA=eF5jYEAFVSLr3B9W/bGvhtI1UBpNGUMlVLwKjSZXXQVUHJ0GAN1jMSg=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAADQAAAAAAAAA=eF5jYBgFlAAAAUAAAQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAEgAAAAAAAAA=eF5LSwMCoUKHtEFKAwBlfzcVAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAEgAAAAAAAAA=eF5LSwMCoUKHtEFKAwBlfzcVAQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMNKIBIzERlQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAADQAAAAAAAAA=eF5jYBgFAwkAAYAAAQ==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMNKIBIzERlQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAADQAAAAAAAAA=eF5jYBgFAwkAAYAAAQ==AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAADAAAAAAAAAA=eF5jYBjaAAAAwAABAQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAEgAAAAAAAAA=eF5jYACCLA5HhiFKAwAuYhDJAQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAEwAAAAAAAAA=eF6rFlnn/rDqj331EKUB+3xicQ==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBIBAAYAAAE=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAADQAAAAAAAAA=eF5jYBgFlAAAAUAAAQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAJAAAAAAAAAA=eF5jYMACsjgcGaE0E5TGpgwujk5ToO4/CGRyOP6D0gCzEBJbAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKQAAAAAAAAA=eF5jYEAFVSLr3B9W/bGvhtI1UBpNGUMlVLwKjSZXXQVUHJ0GAN1jMSg=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAADQAAAAAAAAA=eF5jYBgFlAAAAUAAAQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DgAAACgAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAEgAAAAAAAAA=eF5LSwMCoUKHtEFKAwBlfzcVAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAEgAAAAAAAAA=eF5LSwMCoUKHtEFKAwBlfzcVAQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMNKIBIzERlQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAADQAAAAAAAAA=eF5jYBgFAwkAAYAAAQ==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMNKIBIzERlQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.1000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.1000.vtu index d2d26c4115b7351dad199544a0373844d8b03086..9433c03ce95b77aaa33f5f0418f932d2e8541d03 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.1000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.1000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00011463428161" RangeMax="0.00017831971733" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00011463162994" RangeMax="0.00017835443407" offset="1640" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00010913778027" RangeMax="0.00012026753425" offset="3148" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0" RangeMax="8.9601404917e-05" offset="5232" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="5.0086259437e-05" RangeMax="9.3371370328e-05" offset="5804" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="166662.20336" RangeMax="181280.42832" offset="6120" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7799996427" RangeMax="1.7800803374" offset="6436" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="94702.011411" RangeMax="111213.56728" offset="6708" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="9.5839252729e-05" RangeMax="0.00010382831321" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="9.5830261906e-05" RangeMax="0.00010386223951" offset="1244" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="9.5830261906e-05" RangeMax="0.00010386223951" offset="2272" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0" RangeMax="0" offset="3424" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="0" RangeMax="0" offset="3488" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="200000" RangeMax="200000" offset="3548" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7798090705" RangeMax="1.7798481977" offset="3616" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="125094.8563" RangeMax="149389.06079" offset="3732" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.000108440644" RangeMax="0.00012422734431" offset="8784" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="-4.1622738007e-06" RangeMax="8.4687165666e-05" offset="9696" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.2703898139e-07" RangeMax="6286077.3132" offset="9968" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-3.3979250239e-05" RangeMax="3.3162424707e-05" offset="10120" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.3659645063e-08" RangeMax="24165.944497" offset="10392" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="0" RangeMax="9.4641053841e-05" offset="10788" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="184791.56216" offset="10988" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7800813557" offset="11188" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00014142135624" offset="11368" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00011810573128" RangeMax="0.00017717506017" offset="11720" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00011800356482" RangeMax="0.00017538568986" offset="12424" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13196" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13256" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="93394.568619" RangeMax="117635.18617" offset="13316" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="270.4577004" RangeMax="283.15" offset="14228" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="270.4577004" RangeMax="283.15" offset="14332" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="9.7505675356e-05" RangeMax="0.0001057898139" offset="4868" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0" RangeMax="0" offset="5460" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.2700987756e-07" RangeMax="6286077.3132" offset="5520" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-7.695161353e-05" RangeMax="-1.9028804479e-05" offset="5676" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="9.0949470177e-13" RangeMax="30606.451533" offset="5844" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="0" RangeMax="0" offset="6092" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="200000" offset="6152" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7798553737" offset="6244" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00010049875621" offset="6368" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="9.5839252729e-05" RangeMax="0.00010282933862" offset="6592" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="9.7505675356e-05" RangeMax="0.0001057898139" offset="7056" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="7608" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="7668" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="122190.70315" RangeMax="158551.38515" offset="7728" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="270.4577004" RangeMax="283.15" offset="8300" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="270.4577004" RangeMax="283.15" offset="8404" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14436" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14504" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14572" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="101465.63661" RangeMax="105660.97672" offset="14632" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15204" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="8508" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="8576" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="8644" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="133319.23693" RangeMax="137086.02509" offset="8704" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="9060" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15276" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="9132" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15424" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15580" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15680" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="9280" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="9436" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="9536" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAlAMAAAAAAAA=eF5l0mtMk1ccx3FEaaKA8LBJGCjSVkBRBJygFTwHsCI6p4ZaoqiApoGNKV6iyFp1zgsibbCgEajFjZYyVxHbolzUHhCHRYoB5BIKQQmigEqYV9RI2F70eY45nLeffJOTf358ISvL5qwzHHfpu9az2r3Gxvoutyz8puZ0HEoFm/YKqyd7+fkHnfKN+Yhv7eGh5Uc7k7EXGU7NEB+WA7onnSOP3v0SpSN1HHhrN5eCO4/G11TIsGueXjg/x0UOhFz1n24+FEwk3DSRa+nep2T6EJ7tUkkz9h2+iQWe1blgs7UPJtzpjqnN8qAANc2VvLHx5sIPAaI5DS3YHw6wYh3t88Bwpmq21siB7wlXNg7WvfhBB+heam4LzMnBrmMHZ0wPvYqGrL2McDimvvZClYnyZ3po7h70gilDthGhsdjvl9nzHMq0SLZeqRfVesHdhN8bep4u4Z4FdB/kZvwt9u13+P61VWlnXqcAuv+e8N/FW0xTBHpwk/cl/dI7Z9jaZK61XeTBuGjWhpGwiBwk26RvDUmiJnmi8M2AbtUCprfMF7p3UNifixWx07YWALonvX6FJUaUpAGsAJGFN5WCCZ7la5pY2B8KDG1/7ZIjze3sun6lM4wnvPNpyZR/xFJE9w4tH+LbbbHvMT8OurLzKtPbE54dtzfazkmLtldKPr8UcuC3E5mp3E/4vknNrokti1XgcmhPcXsRG1KE641reWeu/w3onp80vraoH3uV2f7xWGkVovsowisEB/YrX91AfyhkS0Y92LDD1zXK/6t9pWr9Ri29pUjFX5ksamTDLsJ1IyFiiVzN9Kr1lX6rb2C3k2YNO6wxALovIfynn6fNuzNSAe61Ozq4lFDQMHwlpnEJ3kdCp6Q4ZUwAurz3zX/VP9mlu9ynFpp/ZfqUhaYF437Ye+f5bIyg8pme9DAbzTM9vxDkd8zO6hpxhg3+q255U9ijL2q7nxgVQNAzeCIhyAXeJzz7WVjhgI+e6SNrty3e+siNcUWepdjpRB3T8wkvrOR8rDeaQFpqX66ixwseUSQHG7uxlw9mKfvPNYGG6Y/YkQOe8DjhM7jSAPYv9eCQtdflnYxKC8T/Sx67tI61QYPo3kC46tSPE6f/rULldZEfg6P/30916IrwY9jD3xfLvnwuRb3H1aPHXnNgOOEXM5ZltDbfZfpSUZ+r4zj2KP9Wj8BwPaD7MsK9fLfFaJzOof8A5o8dww==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAASQQAAAAAAAA=eF5F1Pk71HkAB/Ba8eTamTHWMo5nDsc61rEtnnb1+SKVo8xTjpLa7GQ9SyxL2jFYS5EMNQYxonUfM8LIteEzOuw4H8lmd/SsnmWIcpSU2SK7P3zH5w94Pc/7/f7hbWtzlBzHJ2KfuhSYhrtQJCFjtwp0ZtPAzYfWZEn6SRivuXmIfJ2IrR3Y89g4nCLZlySoJ5eXw9t5AxM8ZhG0wX3QzaXXZ79BvrzlkgbnJx5Qeqc6bpU+F3k6zzPyBWTDbIcrSezPSFh8DdnJ4yLyVTP5ecY6PHD6JTNh4iMSFtQsnlM0IS/d4ssmY0pgFu59WR3C3b8jH2wRIjD5jQ+CcW8fGRDcs4o8oVs6LhsQQHcu1fmOJQPTDjLID5AiPyhXC9TWLARRK4rd6g107AWrw0NjDfmSwWf3nvs0A6WvWMusNclEvpnmmKH+tQiew336B/MT463IY+uVt55XZMKPOb0LnAQqlkLq7Og/jHx/o+ZerUYhJN5eLb3fSMXCDAO/T05A/v78HDuRcQUovadb7NuZBQO0f2/nhcuvIoDS2/oQa4v0kE/lnJDu9BODZPnoefIqEVOjKx5k2RpKBK31LJprKAz9xHfJxS0XyqeObg4vkLAEYF0QWUeRqAyRzvfF9oKugFV5835LkIJ7nZ9TTU7rIi/nFAfuChIApU8tbl0GV5Hv+0p2LDSsGozJnB+Ld5Cw/LinPv7qyI/4tYzXsnjwnZfdMptKwtR4OkZOF5GXzdTsfMDhwlHce5gxzp5SRT5qaMqh7lsR3MB9m1vgHpCC/NWT0Z6qBCG8m/2dotafjnn5t8WK3lO2fdioXshD2wrQnya68+sMDeuMmXfPiUe+tcdr7+WmeqD0nC5LX8tZ5DuHNKfWGzrhMO6X/zxlonkG+Xa/2B9LFluhSswFexGFhmklu3u3PUL+B6HViuzvBjjK1U6206JjvwjiKYWHkW9acuIk8iq3vax8xnakHXlVbtaC1qEWMIL7I1Bvq9Ee+fDwXabdS+1AP9q8QFJDwoKZvAGjLwwkW4PeZIb4APCbSKyKWPcDc+2OfOEKAdP78oPDP8aGktAa/zdR4imYyaKolA4lAAruybmNZUwr5CdNzZlupKJt/yjeSF1XD/l9O6pnxR6lYDnakZyxTMTi8qwc2ETkna8LJ5/2FINFHr/S8yARs2EXCVw2KNs+d9alVG4uBou4XzLbXy0a09/2pYWyKkLavW3foCHWjulBvqyDrujrkYKKrsjjr55QMYsdzAbCJPLNz7JKpq8NA5Ykyd36XyNMLu/W/aMPeQ0G1452rg+U4T5oM6Kn3w7lD1u/4a3mWw2VnjL9l1mOIepfcenIVvrLTjhFGO3O9vz/X0wYYn4y8q5vqrI33jVA0RNFyuv3NKxGJdfgeDjy+RnOGWOjd+E07gMGpTlnNpA/+PmYob2rGCi9bpPjW8Y88lSL4GPVhGvwPwCz4H0=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+AUAAAAAAAA=eF4t0vk/lHkcAHCJkMzzjNVcJUeppk2So/v5OoqIUkkXVrSxk0qK0mElNEV0EEk5a9VMxj3o5fM1hSasMrKWElNNSKWdZGanl3b7oT/g/dt7s19S6u+faEjOnZPcHc/GxRszw1N0xGCytnqv1dhuqDZ8HXZ2KoFsDnmd2VnNxlkeXb8VXGiAKqt6a5uTeRDYXtD+ZpCGjLgnTSry2djJhnfuboIYJk6YLJG7X6UYgRF9hDaBQpqXWrl1sfEq4eHU4dYGeDrg1OzVFAdty8f7TlkQaObd5lvWMWycf4kqinnYAJqdL9Ze2pVBCTXvm6ZzCUTEbTE3lLCx58EBvv/pRri43G68XbcQAnOtheZ0Aq1v/XvSoyo2dmQ+YSeuk4BaVHuu9nkWJbOYNlHAIpA5N+Wnigk2dqixnSTUboJ9E58tHVbmg/Yds2Oj9SSys4goVEgYuKUxNMDQ+SvMLna2+FyYTpkvW6jX0UmijGR536+mTLwteO/PLQoNLMGJs/vellFrqiF9vIZE2el5myJTGFj89XC8mftXGErmtmnNKoU422tV8U9ItKtlXOwxyMC5gqgQ/xENCGWC9cMeqUB27o94LSXRQMXjreynTFw095/ecE8VBLgqjq80KIMQ/REurZdEzf6uRYUSJnbc8y168pgKJBtLRm0vnqO2NybkOEhINBRrqa0Xw8Q88/uTk7aqIO48x7y8ZR8ldt6v96aDRGoO3yppHxMzGgUjV/9TAY3R5vzhZSVV/U48nD1EQ8uPno/qWsLBw5M8g4Q5Eki4dKXnun4mjFisUiimEWiIFRM6zGLjEtE0U5pZFcTtLCpWpZIQ/2LimNEoDQ0lzt1jPIOD90XWb/8YJoFA9SWG7H0e9ep855RuYwIFhfrYzpnExlqLHR1lJZXAWxQRYBcioHx7sV2wmobS+G2Z/QYcbLrNWJwtlcBaZfgO754MIP/t2ugDNHRB9/6Mwh1snH2mqvranTzoOO77zX7BZSD+ejQw9t33/nHI0moKB9tP6M2xeiiBzWeTTLOcy4HH88z5+N2/VHjxR7aysbTRsuvklTy4cnVRhnB5GTBuxawStpOojuqWunsx8d5np3itCzTQzen1X9NeSH2L9ewrzyeRxYWztJvbmbjAyE07rVANn/bww1GigFJWGGWWtJHI+uNVHS7FxOZDAQNCGw2IZHzTxdH1EN29Wu9tLokO+OzR9/ZkYg244+BiNaSneCuCRXXAN3Kwm/KMRM+O4IwCKRNPt/fbZrNJDWULqMV2g+WgYy3Y7ZtDoq/hr031lQwctiHzs5dMDa0FHquLc4Xw74o65XwZidzkmbUOYiYG2y/X0/3UEN6p5JMGVdRR0fQb+tkkWpjwS91ROQM3CaaOj3arYZ0zcRC51VBV2bVHuu8RqIK+aYenIQvzhm4uHJQ9ADJS1+yZrx8lr3a4fHeUQEz7b7Zy0xk49Lbvl/1lLwFOzK+IWh1PtbQo6DdEBNpgZtAzT4eFl316rt3T+ADSH49GjmnnUq9/+M6omQYmjBl4+w+/N2B9sWV5EbXyqejuMh6BlMb19DduLCxQFQlq1tWBdGoS7ZVWATV/mVvJChaJEjerXbz6OdjnTQUqvdYPl+3veeQwayit2Cc35kcTaOqF6f2Z01h4dG6VYWBKLWxxiaT5fZJSG1i3TPimJHrvcrpxpJCDRRCLJp/qh6yZrieaRE+p2WWOrQeEJLLVMtP1zmTgsfDru19uVMMH265+SJFSaSFpuSUH6OiQYrCn5zgLZ79TXlEmq4AuapWMNzykKmeHujpVkyjfOjvYcICBk6zTkunOaviSSmNXBJXAyjR5rFM0HRktivbnNbHweHLdLG6sClyUJbO+zGuAoV2hUdJSErm/j6Or1jGwS7/u4FIfDczrSjm+v0gI5yO3BHFD6YjJqS01DmNiLW+jE+32E1DaXul6L/EBeB0TRdTdJ9GaneSfD+8wsOfuMzqplAaa2bKoLfJy6klCmEIeQUdBHavFd77/0nv3oCFrzgTczu9YeK0yFf4HXsfz0Q==AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//rongluTfN0+e1seymZ03D6XVH2qyvXdPozK3/RF69w+7uVd2D045T6Rn70ODw/jPu/fi2fKreU+K/YWHEaE4z4gQD/QnnsXPwrP/257VRY/hIxJagx9Fz/oGY3LWVYWPyB4y0fnvhE/y6NLeEQZEj+s4NwYAcMRP8k+89yZHRI/oYK4bfP44z6eIXpFsNbvPqbarsrFyuM+bP/k1Y+q7z5RIDB35UvkPrEP8eR7j+c+Kzv/JsNH5D7OVTFKF4vnPpYbE/zKqRU/5p97z17+FD8bvzX7PqsVP6WvHMiz/xQ/dQ3yTTYPEz/zSyG91loVP9hg+nMtDxM/Pj7j/CdbFT+sweCiddTnPgAAAAAAAAAArQknYerH5z4AAAAAAAAAAHpQif+vMeA+dbp41RjUsj63wB7dXLvfPibk5116pLA+rybZrIukEj/tDkg4UiYJPzQ4ODkwmxI/egcLI3sZCT/FkE2sTqIVP2j4CGuGBBQ/kIznyLCeFT9WSwwylQIUP0mwrbM=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//779HGbKaRg/BjV2B81DFz8P1oHtC3oYPx2xsq2aUhc//+MrwXCJEz8zBVQEXqUTP2YM5ky3nxM/QLKHRjS9Ez/EfubgarMWP7603U8XtRY/Fr0VRAS/Fj+6JJMzSsAWPxYC3koBaRQ/CCBkBKXZFj+z27cbs3YUP09ncUGx6BY/vzvyXVbdFD9EmX9b0G4KP4vpnfzWwhQ/ZKkjxXZCCj9Xo27ncEAXPxZkNPaV8RM/EqpwUhQTFz/wxGwsmsUTP/6mTaY=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//xASsbmcWgRBsZwZbOyGBEHkTH2gMVgEQWY7HLyyhARBtWRTAgwZBUE4aVOjxxQFQa41BWKSFQVB08SaaBERBUH3nEuWoZwEQT32SvfFmwRBfoQv/NmaBEHyG7lADpoEQQqBDJNa9gRBj400T2WWBEHJGDZeO/QEQWftl3MclARBZANTyRzkBEEDESyxWx0GQSsPPnY36ARBmfQ0bQMhBkHs/8QcIYcEQZQWwVqSCgVBFNUS9fmNBEFv5QZlYREFQR1+Rt4=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAqwAAAAAAAAA=eF5Tr/57yLj6j72Qbo6HFpB+zy3Zagqk+TTauXSANFfpjEcCQLq0/kCMIJBeUL1nkTCQvjbxiYwIkP7AdkZODUhvXyjorQ6kXzMI7AfxfReFvgbxheMUTosC6XvRERtA5m+7eXmiGJD2yOQp1wbSh3a/zVUA0vy3pL0eVwH5q/u55YD80BeHnj8A8gMOPNQ0APIn+Ij0gNyRc5dtMchdz4JtWXmBNADVtVubAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA8wUAAAAAAAA=eF4NlPk/1AkchyOSDdFhk2iX1pEpR1ha9NGx00UhHXJ3iE5XKIPGTYc1tNHSqBwlTJE02vpo7epQGY0ZM99hmmbUSi3SfL+mpPUHPO/X8/7lORH5tcotkQBX64TzPrYULrnPTj9CdmORn2bPuXIHvKtHv1VtSID73hX5MxMoLMy/yCr49BJFIYLJmgXRWOhkWX7ZhgDTFsbuUX8K04Lummxwe4mySke7YOMIcBAsORj4RAyFEbO215VR6ESLW2Oxko9/MNRKk/f6oE571uvsWwQIBYkRl2wozL3qm+SV+hJPmFmv2GSxH5azEwOH5xFgtm68/FQehXPCo5cKU/mofkR9Ipgbi/S+QZ+xRQSM1GQScVN+PtmU9jxtPnZ+6cG6jkhYz6RJVqeKIdAwWhgioDAwRhDsod2D+ryj5u390XiO5WR3SJOAZC0b7bdOJH7Xr5eXpD2Ar6xtlvZH7IPRM5eUGkoxKGrZNIszJLrI4tS26A9gWHddyuMCJvxs16pooBPw+9vWXSmflajFqwmnyxUosmRWTTSnoU8FZ+2fvxCw2Xh/WcVWEoXNtXPr/lXgrgD+wsjIEJxRbrR/yJgAnatRHXGTJB4Nop9dWyrHpfx005Hrp5BDX7a6dYrv9x/WYoyT6L86pLpFJscDW+fbCJkBINnW67AllwCDeEM7dhmJVW1NLmGBcrxf+DErpdsNNh/xclOvJKDMJENrZgmJofc+eQZUytH8n3SjmZWZ0GWUv/HpaxF8jb1r1ztnHC/uiqRlzO7Ba4b2Lh7yCMwN0nrSwZDAQ48Iq+vXSezjamlt1OjGqLlX/jKnyR4oJjappZqIIc814IKxksLRen2dbBEfDx+PnZV0JhredNIcz96RABbLCOo0ifTytXfmP+fhokijfdYRyWBXeG1f3SYxNHp500JeUbj2i6f9szY+lhVX3OfU7Mfu72eNZDQQYLhcL1k2QiLfwXXM9TEPH5Sc/I0tCMeq4WMb7/qJQfPbdl0BQWFZT8uWBVw+Srn29bL/mCib39hffYeA9rn3Pu98T2LzMDue0TbFV57TWtZ3Cs25Q/69EjGEdTR967xJYoPZsSsbuhRYfdz/xzV5cfAl3Uizqnzq3wV/VtQ1EmtXqUxVJgoM96tlJ+YlwzO5S+vjQTGMNRWY4GUSBx4vK2l4pEBqlben4MxZbI6Zpy+8IYaPGgYtOqUkmi6idakZKjCIU2lWfyMfX7c0azCHxHBUqh8PuhSKPCwPWJgrUHXUuY5dmo6O0YspKzMCKnaOB4a4Tu1Li11PDsjxT1/h7IAGBk4bs3BmToqBc/pnm92fSdxu2vdcsUCBJ10NdrV2ZcKVRN28AnsCFkjaJRxLEg8N7kw+IZHjtCtSXg0tF9ICmxL+8ZXCTfeBlbejlPid11fhqr4utBxYP6PTyhIE0lDHuB29cGfP7EepTBXe6GwtHVgswYdv92heeOcLExYOrJE9Usj6vvhiT5gSm0ayV+x71oX+bYU7auYdA5use/h6by/YvxezDiapcIdFqF7CHAk2BmbsKDoeD9teqUXPLOsHK29ZuF6tEv2Wt5snX+/CxiBh+N+1MZABq5nTPUUQY/DESmWvwpi67dLRBwTatpVObpzIAV1p7FVPMynQ1iV6he5RImdp9ZjZ8i60k+m+0+0rgV9/UVlN/0sEZu8+POQNjuPJPnUdj/UEhhnrkFbeFfDC1vZ2kqcEUgOeuPG4Sux/iENl7nIc+Nf50N/xJVCcVn8prU8CoTnK80QGhb7laZnX2uXo7ncAEpKL4KlLymbvcQJuhvEyq7VJZGm86aAdlKNJ0WHnWadS8ZY7p3hTlgRO7G3UUEz1h8UdNdpKylHvVUn8lrYCDB7mrDeYJoEUyxfKwSIlipzvM879oEDeZb3izU0MrEyYPzRmLoFIkpu/UkFi54sAxyrrN9gR/ZMBw4mFbBE9VskiYJy+Uv3TpBLrZZc+2IUqMLj1uH1uUTostF3oILtJwMGcydm3vSnkqm49+xb1Bqkcl2rd3hD8HzAwPes=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//TXKZ2Uj6g4/z5bOgLNkGb9Aid/11SOzviA9CTwZKgE+oxEWTuv/Dj9ykx+JZ3EZvynuo5uqNbm+WaxVbn0TpT6wZ7GbBB4QPwR5TdPAMhi/Yig3VbZj7b7FsXcukjCkPhJfIGkTuhA/7KHoJo4mF7+rDBOnrTn5vpUF+cjSsb2+psEhpFu4ED8SvDKu+F0Xvza17fNFG/e+wDoKY3bQQD4klSPzA/gOP0I00ipNMBq/GKLefMBJw74WLP4/k3Cqvu1dg2gRCw8/35JepnsfGr+t3gHsysfEvorymLSy1Xy+51ZS7sQzED/wWh8yzcQYvwcvTN0Oku2+mNCmR91EkD4KPc55wd8QPy7FQLmoiBe/fr8uFY12+b5wwL6Eqs60vnURLNSC3RA/cG7AARKjF7+qJNw8qDX4vnBwvzP2UcE+eEuk9HdWDz+/d01wKdQXvxQTez5Rq6a+f8qeyUtfh75gBT+aQiAPP8O+kSOm/Re/RvAHTOHng77I9NbjOSmTPhxgYk3L8A8/xZ+0VL9RF7/zYYa9NO7nvnBiVD+KxsE+m0BNR1x9ED+IUYDsBX4Wv9WBjyhDufi+Ty7ewJgyvb4Q8DZ3F4EQP4yVrKa/eBa/qWGkqNUY+b5eBo8q/q/DPjnN2qP/AxA/KPyec7xAHL+BwnUNSz3jvoAzzWVZQCy+ak8pGQwfED8rEEVclQ0cv7Y1fn2E0uO+dDDo/NAarD6xQDSvXfsQP8nDFmqSSBq/vjOjxzO58L6+7GvFFALTPqzrn7/CshE/kj5WCDmgGL9gnDeRw736vnSYug8p2c6+6TFQW5W2ET/wEHtPAFUYv4Ihy+R2Lv6+AKByBfTI1D0YpzQnAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/7Lt+nqWsN0+jN1U3tSM4j5MACgXHrsKP1fEEIHvwhQ/GrzBO1CjET/deHCbfqbdPjALb3AqvOA+aBSfl1lICD/SmxkvjhEUP1NPug8kPBI/sGIR+oY08T6+in4A36PsPrvz4FNMqAc/KlT1FVV/FT82m35tQjMWP3nTRhw1ddG+Uob7lZ6ixr7/X2yJWfXzPg6inW7WwA0/25WVGUFrEz/mG0iDAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAUQAAAAAAAAA=eF5jYGBg2FIduA9IMUysSATTU6D0lmoI/akRIs9QUwehK/sgdAmUroDxofI7Cu3A9IpGCD0DSs+B0gsK7SqucIfs/+XuCKHDcdDujgCdgS6uAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/1Yl5Jqp5eO+U1KxTkMz8b5fcIy+9hbXPqJVIPzuBO8+9HYYnKntwz52qxB6I3Hzvpih7SWe0AG/ApGFb/0exz4JBKP1CKD9PlqyC2hPHOU+xsOVMXR18L4abey1l4oAvz5SvQxReNe+eIWQPPxiAT9ICbib5wL4PrPGZ62/a+a+4cu5B8sJ975WGjXLKsrhvheXZFr93O4+aqJRRyP76D4oDlMzAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAABgEAAAAAAAA=eF7Lc179l0Vm04GDhy+KPIs47sAAAnOc7SYV7Q35kH0dzG84V2jna1Qtn//3GpifYJa2L0kr/71I3zUHW2njV0dlNzkYnZBk4Vl6zEHIo/vW+4cHD4DNkdHeB6bto+3AtHgcmN9glQ7mL9AuAtMZO1vAdEJ18T6VY3sUkkUOge0pkFpoF9p9/O2a0MMQ82S9IOaxu0PM03GC0Dl9EHpLFZgOCKsHqztQn2PHXdD5eV4OxDyGVzX7WOQcVs/R23jgDtua8hstxyHmFvywVT21uKhm5nUwv8Osw26eWds/vkPXwPwPep37nvQvzltade3ARPfTaoKzNjlcDv6xYsHuYwcAhuVsWA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFPx2Xv3E4L2G/TFSu8KyhmH3V9M0v7s4RtkdTxrAiNunCngNi9mcWsb7XMxW1Xzbp2ppVmzHV6U9gb/hmJG7PsqTWim+RuP3W69eDF7FKYKirkvw8deoTFnuxhw4l6lK89oy3H+yzaBCyBwBaiSlBAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdAAAAAAAAAA=eF5jYEAFKfpL7vl6szg2CH85lb2RxfHfjXdPfomyOqIpY3j7KnLRkVksjjY6G/ISr7M4XqqYrx0hhKmu9d6EZX9aWRwjD7VmupSxOHoEuTNaZ7BgqDtx26d+Tx+b48F8TqfaZ6yOP5JKv39zZnUEAFk/Knc=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZgAAAAAAAAA=eF5jYEAFsktzpplV/7FnXi++WgVIv7xxsFwESKMpY/BYcfuCKlC8tOFopzSQlvv0w14IizqvIP9p+kDxZW2xZ42AtPXJDA1TLOp+dHefOFv1x75LbsvX50B6W6K9BgNQHQCe8DD3AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA5QAAAAAAAAA=eF5jYEAFux137fMv/2AH44vNram4f5LBHsb3ebnweCSXEJyv4yzz+pGZFJwPAzOChBTnVjPu/xE4x4rt9Ae7CbHBy24uYty/P1v+3K2fDPZ1hU6Bn94z7q96b/X4xglB+xsPHj36vIxxP8y8CfJz5x4yYdwPM29CwKxzq88L7ve0EBQ40//RTrhF+Z7OFcH9284ZLJ3DzGj/ZlPXqrwfgvvtlkuoHTYUtGeX4Fr74Zgg3LywlKrk3bWCcPOg4vuDDuWoGP38aAfj87ZPqK4LYLKH8QP36thozBeA82HmwfgAH0dvUQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7gEAAAAAAAA=eF7b7bhrn3+5gP2T6tkbsy2l9jMggxsLd0vMram4f1LAPoqnttKtBCE/RexYSV7KfLs9G5+t574pbe+w6nHl6+cIebN6XlmHfwvtFn25q/f5oqK9S2DIldwqhPyfdXOXhU7Yse/g5i9uQpEK9hHrs98on5dEtf/B9d0/AudYsZ0WsL9W8Xxr43aE/tPVrQuc5i3etz9b/tytnwL2sm6mvs77EPIhj1jilX3L9n3dqr5ST0faPpnnwv+lXxDyi75fqL40c7KdTy9Py9edivacKv3MmasQ8tdUhK66m23cl7L8EL/IHQX7hmnmojNtEPIPAwsCA3v22HlaCAqc6Re0P7fsTvs8U4S8Ac85FTuWpn3bzhksncMsaD/t3mtlQwmEvFdm6tn9p/rtwjdpuCyYLWm/oH/H4rh7CP+LnqxyMdp+0O7i7eYZIlsV7RVtGspkRRH65xyc2uersnPfHXP2LnsuJXvR3pKsQ1kI+Zo3b5KDfA/ZBR7KUTH6KWh/8Xpr6FJTtPBl2Lubu31CdV2AkL2H7Ss1JQ2EfMhDzYvKhxfblUkqp213lLA/tGHLwZjdEnB5GY+fEjqm5+2W/A9eu5hP0T6r0WzXNX+E/rA71ne4a0/v28J9P7ZUX9m+cc7TaWXaaOlL4IU1ANO61Qw=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAIgIAAAAAAAA=eF6bnSkbIj9RwJ4rxEJmjrzUfue76slTz8+0YwCBGwt3fzlyn3f9YwH7mieST8qipPa7QOWniB0ryUuZbzf7pqfr7U/S9ilNDU+kzyHkTep5ZR3+LbSb1NH/89Y9RfskzY928xIQ8n/WzV0WOmHHvo3uywR/pSrYV7VzhIdslYTLg+0/cH031zkD9vTpAvYH/gS9VHgttX/314NbZ55fue90desCp3mL9119vnmW9TEBe/ZTCxoefZTavwsqH/aIJV7Zt2wfj9Ge0v4fUvZ+E6yNXTWk4fILvl+ovjRzsl3I6bBXqgsU7b8t/2XGcQ+h/5qK0FV3s4378p7ylLkcUrDPk1rsYVGAkH8QWBAY2LPHLujrh6xKFyH7Qy//6HxskNwfs/B79Oqpx+z0eM6p2LE07TvQLcDgtUPQvluR52RzsuT+aKi8fmbq2f2n+u0S8jnm+wZI2c+4dMNjoyZCXuxklYvR9oN24bs+u2bzK9mL1C+QLkhAyM85OLXPV2XnvhSxcvNpKUr2nBem8Ituk9wfBZWve/MmOcj3kF3pqgXPzLbw2T93WcS254r0/ksZjzu2/niyDxy+CXt3PzZ+MeV8Er99yiq2GxbHEfJRDzUvKh9ebBezhm3rgkWi9rdkLxYVRyHk5Tx+SuiYnrczmNS90qBO3r7jXVD223cI+ZA71ne4a0/vU7sawPrqvqL9LE4mj95TMqj2X3huDQBaLzyGAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//TaXk6MIuNtAyj7UPe8G98CoESLkzn/SwIA5q9YFzdE/sqLafQ6r20DO3woNexv3wHwCnljy89LArGmBM4vbdUCAVQ2e2QnbQCwbbf8DzvbACbDpq6gD38ACdt8LNvB0QPZNC5OzJdtAS9khUNF09sCs3sccPjXkwKk3Wfuuy47AioJC2sKn20AvGGZVrnv2wAkxK1HQKuPAQAUiKxBwEUC+iSaO7/PZQCUXaTZaEvjAJdni0k481cBSPv9Jimt7wG0waaSuKNpAIX+IetH/98DIHSlhhkbVwLZSVntl503A8NgukKxp2kDB7+14HHH3wHEG0o+h9N/A/PmVAErfYEB1g7Nf/hHbQDHczHNR3fbAGvNI+K2M5MAaS+sDK5SFwMmWY6kxZNtAjL/LcX3a9sCvsfafoOrjwEgghC9d9pFAXi+HY4ub30CaCm1UDRD1wIhseisyv83AZWoz/SQ9WMAGfXti3hLfQFE8SbPEPPXA/Ql/BPJhzcDlyY8YGt9jQCFkn4/iCt1AE+iZiCqN9cBUngCD25PawEIyjslDb5JA5cX1aYJk20CaUOizAL31wAo+MIW0jePA76DVUb1HjsDo5uqB0lXbQNasCfSKv/XAAilOWJC948CpGX6S3WqUQMiYNiXVxNVAMo0pNF4F+8BOU5k0ziHgwIDqi4+CTP2/fuD3LbN61kDsOtudOcb6wFAViHXmCeDAaPkE5JUlfUDC42vWmZnaQKzWbULcE/nAUFHBxQS94cCi5hdqgbajQNx6TqkNetxADMPnqAzr98BCIl/EGIblwPAmypX4/Z/Asr+9WkeS20BaD+5wovD3wKBNH6mCQufAAICoSj6OpT/WslgnAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7Lam1kt+cpdMgiQM+9bK+2VY4wXftk2d6g5wUE6TQQ2FRIkAYAR5VFQw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7Lam1kt+cpdMgiQM+9bK+2VY4wXftk2d6g5wUE6TQQ2FRIkAYAR5VFQw==AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//t4spNg4IdtAsPTMNH5m98Bl3BqeW5jTwANdoRUEHEbAhbZFW+sY20DmI1pu/YD3wOKWJsNdRNTAR2awTU1ES8DvsdCTdx/bQKMbOkuLQ/bAHQZ3QG/55MBp8gX3uTQ6QKoG3QV+YdtAAGG8gWbL9sBYaBAsbp/jwCQnfasNYlBAQxKEEmhN20AnplZz5U/3wGmbsb3abtPAfhsWoTb9YECsWrffpAHbQLxmG+xbZvfAXAJ1OqdB08Ajv2CF8ZV3wIwjlMmHxNpAC7YrGgGm9sBGV/AKPXPkwAt4GkIT2HDApO8Bb28P20DjzoH2Kpr2wFZiPTuA/+PA4UGc7CwWWUAOhwSAw9zbQM9YmIwdcvfA5vEmbUB31sBHOx2IlH9lQCciLzDUMNxATwgDZ45K98AOMq/AM/jVwNRuc6udaJNAkt3ADWVn3EConpQXDsj2wGaKwxTxmOPA/aMdaapQdUATJUn2dtrbQDq+72SzcfbAZrtdm1lF5cBT+jZ4zNVywPUawfM=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAbQIAAAAAAAA=eF77n/G4Y+uPJ3YXZ5d82zhBaj8DFGTIJ80V4Wix/o5D/tMG8y98pYet/0PlL6DJK7Fkv5m4ddPu7zjkr0hGZHRu3mj9DYf5hVKJkSEFE3f/wKF/X7+WtsCCE3D959Hkc6XXsb1+sA7u/nNo8nlBRqsdN523foND/0tfXkerC6d2P8ehf8fL8JRvgQ9349KfbHqX12/JWbh+dPffeq9c+HHOg93PcMgrG90zVZ3Zv/sFVP4Smvw2nzbrdyoHrZ/hsL89jt9oVclc6xc4zJ/z6miebekZePgxfY+MyhCXhsvLx84NeCp10foHDnmGZhaRCW8u74bpZ0aT/2y9pGH/vhNw/ejyF6OYUtbLn9v9CyrPhiY/e17m7HVXb1v/gcqzoMm/1U+/5Zd0Gq6fHU1+6tqg9qJzD63/QuU50ORzTULbZsbt2/0Sh3yH5cIZMfaI+Ee3P5/zBq/voVvw+EGXlzt34X9d0WW4PLr/2vQ37ubf2Wj9Cod+H+YyW82iE/D4RfffynCf6mNdO3e/xmH+NLfwzw0TV8DjnxNNvnDxpeRwjofw/LXBrK2g748EXP7bsY8OM39egqcPdHlFM5H5jnMz4PG7BU1+6l+/tPTQs3D96PLvgu6kut6dB4+/TWjyRx5zm77lOWP9CYf+RZu29Sxg3wzXvw1NvlzxvtHDnTvg+tHN38t/eg03wyF4/KCbf/VtxIU3Gtusccl//dnmyi11BK4f3f6sD3VnOJL2wfWj2y/YrrdvvvX23bjkveVUVj0UObMbl/95klilbHQvwtMnunyXqeN9e5WjcP3o8TdDQHz25uLtuwEvw5ByAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA4QIAAAAAAAA=eF510P0z03EAB3AXlQ4hq/gqWlaXEtdY4sPXw6VLzSqH6YFqFrpujkX9UCeqI113cp3Obh5L5ZlZHnaf2kpo2cjIncjDztaSh8jDnZ70Q1/fHz7X9w943fshcJt3b/BBPT7R6izwy8QU5zTVuRv0N/F4R14BzfQ2cNcEc0qHx3Bl19ut81JM4XtdVG5TUiL/Xuc5vz7lDQgk/BfEbze5NJnTUA9X/DvEf7CLjM+SSoAP4Q2IT8LOnwxLzIFMinx59u49VsVK0n9GvMC+Zs3EaA3wIHwH4hNCmZUB9e/BPgo/HmIR4N3dARkUvmmcy188oYVUPoY1ZMEp7YTbKPp//OaUNJs/Cl0o9jsxh1k7RNmU+Q3sDDDNeA1cKP7PjLZkViQXgJ2EVyFe/LUtwTdFDQIVaXEpOh3uzc6InrGzV4iel/Po/ny5Y1TBcT2mAc2DBn3sxnG8Ol7m2vMAUxirrJPbhK9wo1smtPuTvdCfws+B0jSFXEnpNadW8Wsdu+BhwvsiXlx4UVzTNwgg4SsQP+UWN8DhqUjvhfjc6tBMYZcWvCC8BPEpHuEZomg5dCc8QPwdr5K8M34dsJzwVYhPWNdvEdIyQHp0v0NX93KqsJf06H6pmwRaytKBJ4VnG1/xdRYqwTPC1yG+lsu+1n5XBlmE90H8w0PcubScMkqf+LgnhmuqhZWgTEP/o8NP5wsMoz9tFcsdR2ycJEH4Yvusv2ipB1hxdQd+3GjHN6UPHntiwBT8p2ELAsmwnL6fVhRQEA+ofO5vTmxceCfpMcRPh366EDRUCKsIH4X41jEz1pS5GhgR3hbxj+ob7xWvlZL+LOKv0keYWlkz6dH+Ly1VVWZGLVBM4fumIrsndzWC/oh/fgviF5YygsywVtKj/QUzqWpTnpz06H7rTFd5EWiCeRT/HXVgVGhparjSH803563GfPZqSI/mZ7ECRvwYbfBXxP//y7PaLJZeboJ/AZ1wG2I=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAPgMAAAAAAAA=eF5l0ftPzXEcx/HDZgoRB+mk1DKldVrKJT75MnPLcmxYSWgMZZwfTmIIuR5zL3YSikW1Wjocdag+q29aB13EuVlzWtI5XY5blvstps/rmL7+gMeer8/7E+I9yxgxv517UzNZPueYhNfqi1Sj2g9xIp/CnaErTxFffYQsp8XKPWx84PmhWMIP3HuxQJydXem6qVu36Eg9mQZvh7c8Yf755YC03TvK6UT4B/Bh8N51LSfPOpWRIKE3MK90in11uCCDegt8Kvw5Z+2K3C16IoXvgH+LfvPsyYOumrVECt8AvyuZ+bQ+/5T4w1vhRz9mfk+c6GXFR8Pffi28H/qKopltafu7aKDAK/p5E3UT7Nf0853UT7A/EO9vzdxeao1Opz4Cvx9+etitS23cQxIo8I3wqVPu+w435RAP+Dr4u/Ae41ctVUwwkRD+QPwOm40Lj1Sue+fuwSvzCjb4zN1YOXRfwGVNcBO5Yels3zzGzhUllAUZzkt4Uf3IJF1iFZde9Ov7YmkzDYafBV9SzDw3wskanaInhfBq+N465iXyHK8fkWY6VdAXlTDvpXILv6K2Eq2g74W+/ZhyqfNaIw2HnwlvUDPv+ccH2clteA38a/TbzkS17tqto0HwM+BPUObfHzJvlJ010Az4fHgbfM0bS7ftVRudLuhLC5nn330en3/AQnMF7/8C731lW0mc6/G/958GX6plfsAkeUBwhJ7kwd+E/wn/6UVwTeaIahoIHwbfW8p8Y2tAbUyc5r/7D8f9mrZfD0ka20VzSL7ep9fGrc2Ud7Z+H8f7dS0R+2oWcLoYaara/Iw0RNnCvqXc58YctCzL7ZTwCXkrP8o1LZWirTXhBfEKcg1+DbzLW+brZn+Vva8wkUZ4T3gZfEZifNMQYy7NEvSzTP/2jcQM7wG/Hj6yLHTbUXs5vQi/zrG/lHlVck9WR/I9UiHY7+jnNbvfqU6qpSr4WPjrauZd47Vzy6N48gFeAr8cvsplYc8leQO9IPC0kPn0vr6OZMO7wSvg7/X5KnoafjW8Xcv8pC/RZ2QWI3Xsd4dPge8VK52zlzTRc4L7O/wC/3FXxR2P6ODo/v0Yx//5DxPPU1XR30MWKFY=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAADQAAAAAAAAA=eF5jYBgFAwkAAYAAAQ==AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAADAAAAAAAAAA=eF5jYBjaAAAAwAABAQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAEgAAAAAAAAA=eF5jYACCLA5HhiFKAwAuYhDJAQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAANQAAAAAAAAA=eF57Kb98hnnVH3t7lst3jYH0SxL5R5X23zQC0hls9lx2ZPDfc02UcgLR4nnCkmTwAX0CWDk=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAMwMAAAAAAAA=eF510PtPzXEcx3HdNJeJiXK2bDa3LVlFE9tHObS2ItEmnGyO6EgXhbSztpBbR5jKLZ2czumbOiV0O0KffJJKhe6TTk6304WUiVlzKL+8ztn6bv6Ax17P97vSNyFo4/0eVj+4WyTS/GVvdl74JD2tZxOta2yWiA+QgYX9lzwCetlHn/NRuvmTbMRuwPqs4wCrihA3xMrkpBy+Br4aXtNl76CISqJ6+A8873/4daDTLxmh8NXwr+C9EqOvpqeG0kH4Dviv8MXyo0tH56lM+1XwVfCeS5ul3dwlYtzXwn+BH7RKbT20OcfkGc+rPcciS9VZdAi+k7fftu1gzwLJM/oC/iWv/8qGKf/C8mz6mdc/Bh9cF/gt9UAZreD1G31+VnrBhKPkv/e3jdYIZq5IM/W/gq+EF8q31FemxZAvvPu/wx/fnXPrhI4jXOYZaZGwl5k3WXLisEmWw537PS4YYNplf0L8FqvJk8su5h7eOpYhbl7VIfrLdLUC8x5DH3MLt3Gh7gU0G94MPg/edn+wMmKFihTB34fvhd/lYqZ0tHtAjfsW8PnwP9Xn7kSFlpBceDl8F3yvg5VPuy1HFfBTjdP7u/2dvbIdnpNSeBW8Hv7XIv9cP6/bNAt+snF6v1vc2jSpRxYtgb8L3w2//G2NIV5RTJXwM9D/AP7ZXgEtvfiQauAVvPtjN1WovSf3EWO/oXG61+YN67aOKslT+Ez4PviWNWNDc16kmP4/xev3jQ/TelgmkELe/4394Uq7UTtDGfUblp7PadAxiz+rHRq+G9jaiQqh7eZ+Vu6buONIWz4JllTrBU5DTO5W8CiyfYodC6s9IrIaYarxYmfdXCHZCW/G8xbXbZa3J2STUHgOPgLezba0xVV1mgbw9p3hc0e2a34kc0QCr+L5lVv6pBPDSXQ/vBX8evhTsoDH2mUppv50+BB47ec9suCQe3Qvr3+d8f5t71vtPW+YfCZ8KLysKaUgOi6DBv7Hu8fGnGz1vm26XwEfCS+0dhJfmZVMRTzvCh8y3mxfd4ejRq+Ej4LXLL5mvt5FTYN4/zPu33zd+a7bTEHF8BnwEnjRy9l6tWsy/Qc9kWZUAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAmwEAAAAAAAA=eF67vvyPsdHxp3Z/igUTH5VJ7a++q5489fxMOyldbb8C34m7b0Hlv0Hlme9B5F+cltNqTzy5+wxU/j1Uvuk2RJ7zcVJJWMWi3RfQ5FWh5lf9fFru8vPw7htQ+Q9Q+XNQ84Uev112knv57k7P9re7ox/bhZ29FL2GXXr/ri8Ht848v3LflMiPApdMH1q3QOVDoPIG3yDyd8w0PufuvWM9BU1e9StEfqb4zsOWwsesYeYHQOXnQeUPbXoxY1f9ud11aPaXQ81nnv+mKkr7lrVn4MN4hXmv7C5FTuDyC5Xcn7Lwe/TqqcfsEuQ0O1q+7NgNk78Ala+AyvMUefhFHVy92wxNvwpU/ppHYu475Yu7LaDyl6HynlD5RdXLDmvO2WdtjSYfDJVnffMxjmfKy90MIOBwy/rQ4kWKS2dL77+X8bhj648n+1Qmsuut6zgIkT/w0PoKVP4MVD6tovBP4YdTEHmFV9YnoPJ7oPI369ILsuuvQ+QZEnafhso/h8ovM5//yv/ZNYh8w3e4/gNQeY+me0Y7zk23BgBpglCmAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVAAAAAAAAAA=eF5jYGDg2lIduI8BSE+sSATTU6D0lmoI/akRLM/AUFUHoSv6IHQxlC6D0iVQ+R2FdmB6RSOEnoFOF9oVXeEO2f/L3RFChzsWQ+kiFNrdEQCxxS6xAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAWwAAAAAAAAA=eF67+nZmDeOXz/uugWnm/Teg9B0ofRcqnyuauVxJh2V/OpgW2V8EpUuhdB5Uvu7z3Ef7mpmhtPD+BijdCqXboPIqMbF6kVzf9umBabb9alBaHUobQeUByfBMGQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAmAAAAAAAAAA=eF77unKFml/0NodLEq+fznl81oEBDAr2Qvh3oXyGBlR+B1z+I0T/gctQ/dqfHrydu+IYVN2KvVDzbCH0Dii/AY0/AUrv2asB0X8Awl+zN2tubsq6A0cdoOqg+hgaINQmW1T9MLoAri4bov8AhLvAVj1xl9XurXsczkHcewCm7gLEP1B+x96zqHzbM1C+MkT/AZh+APBscqk=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAJAAAAAAAAAA=eF5jYMACsjgcGaE0E5TGpgwujk5ToO4/CGRyOP6D0gCzEBJbAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAOgAAAAAAAAA=eF5jYEAFqp9VvllU/bFXg9IaUJoBHRw7s8AAJI5OowHHllsLPIHiTmg0urqWF8z8XEBxdBoA6QEvFw==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAhgAAAAAAAAA=eF5jYEAFjJmPO7b+OGIH4//KAPGvwPkFsqG+AqX34fyPYPkncD4M9Agt/nl6K+P+rxkQ87qh/O9Q8zqh/ByoeTB5mHldUD7MvDm3XQo2PxLc/xNqHoz/G2oejJ8PNQ/Gh5k3F8qHmafrLPP6kZkU3H0w/ieoeTB+OtQ8GB9mHowPAJdZiso=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAOgEAAAAAAAA=eF5jynzcsfXHE7uLs0u+bZwgtZ8BCn6EiErpVHTs/pMBkb+EJl/xfp5x0aeDuz9D5S+gyW+ZaS39UG7W7lc45EtsmPsd7PfsfoFDPoWPe/lx7wW7v0DlMz3TNXivIOTXLFufezTshvV3qHwWmnxEsgdDbdAV63dQ+Ww0+WZnDisui/3WL3CYL+ZQ9uzphKNw96Obv8/jVJNG4yXrH1D5G2IFqb85EfIBQk3WsUs37v4Flb+FJu9y7K2N3YLFuz9B5e+hyceleV+vsD2x+xkO+UmpeTyMS7daP4XKP0STL9/NHaMt9mj3V6j8OrO2gr4/EnD5GXWKjz+f3rH7A1R+C5p884QfH1p5Du9+DZXfgCZ/wPq+W/fcC7vfQuU3ocnHh6Tddje8ALd/JZp8QuIzkXlXJ1gDAJsvDOA=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAewEAAAAAAAA=eF57sfyPsdHxp3Y/iwUTH5VJ7Xe+q5489fxMux8holI6FR27n0Llv0DlXaDyFe/nGRd9Orj7DlT+A5r8rpnW0g/lZu2+CpX/hCZfZsPc72C/Z/dFHOYn8XEvP+69YPcsz/a3u6Mf24WcvRS9hl16/+6vB7fOPL9y35pl63OPht2whslHQOV3QeUjkj0YaoOuWE+Dyoehybc5c1hxWey37kYzHyYv5lD27OmEo7v7cZi/x+NUk0bjJeuAwIfxCvNe2V2InMDlFyq5P2bh9+jVU4/ZBQg1Wccu3bgbJn8OKh8NlXc49tbGbsHi3Z5Q+Wto8glp3tcrbE/stoHKX0STn5Sax8O4dKu1FVT+KlQ+Cipftps7Rlvs0W4GEHD4aH108SLFpbOl91/KeNyx9ceTfTPqFB9/Pr0DIh/wzvocmnzzhB8fWnkOQ+Q/PLc+hSZ/wPq+W/fcCxD5A6+tz6PJx4ek3XY3hMozfLA+gSYfkfhMZN7VCdYAn/lL5w==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAjAEAAAAAAAA=eF5dzFsog2EcgPFFFsuFcCNMTeFGIjU278gpKTeSaLWapsiFnMlIOeSslo1IpslWthrTQt7P65BYmsWIkayGUc6ZkI8Lfy6+61/PQ3FVLx7xBcm1nUUJlF9kkzday090kfligVj/JMVm8AzwFXD2R1plVf7Yv6eAY/C+1JFpbXTNv4sYfVjzuezUPIxNjH4JvD4oIqH3qgFbREJ3y56TGL9zWkvaaLKbjsop7SXpPC56iD2ZQ1aG28Grp/USgdWAdhhuAz+0aN7WXSr099eDW8HR9QxKnprEdvAF8GNwTnhoI4mcRYUd+zzbjYO4pXKHm/okCdkVipg8JyloMQTLnD04H9wFHg/urwtkW7fluBT8GlwIznv1a1VvTeESxj8JPPPgOc9MDSEpw/ngY7K+2KOuZcz6Vk94fG6JqW0g617NWvP11nD553ckxOulPyxOgTngy+AB4Jru5I2ox3FM07++AM4CVzb1D9ZJdNgf+kXwIPD6kwZKv6rF74ye9vr1x3aabTKWoR8cFXF7AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7Lam1kt+cpdMgiQM+9bK+2VY4wXftk2d6g5wUE6TQQ2FRIkAYAR5VFQw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7Lam1kt+cpdMgiQM+9bK+2VY4wXftk2d6g5wUE6TQQ2FRIkAYAR5VFQw==AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAA6gAAAAAAAAA=eF67tn5T4Z4fDw5ckXj9dM7jvwfubN7y6c+FJwfqrPgnqnNPsr2KQ37+33nBx9U6ba9B5S+hyfMy8s5JLFy59wqa/G2o/C2Vx4/Si6bb2hr5/NUwfnDgHFTe2cyvLpP7yYEFtzdN++pZvNcaKn8eKu8Cld+rW5of9HjBXpj+M2j6hXkutS40XbjXCip/CirvBJV/N2VFWOzsObbHdB2Dyz0fH7gIlT9r6Hxlu+LzAxmXHvLreM62PQGVv4Am/yr4EkOh2cK9MP2nofJnoPIbNgRb8KlU2B6Hyp9F0/9ya5mSoFWjLQBb4+U+AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.2000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.2000.vtu index 7f5397af0caa2e2afbb909a84557062d3987110d..a0f26d927a519c023fd46fa26e4705f0b2fc8853 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.2000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.2000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00024148870731" RangeMax="0.00033215701371" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00024148587466" RangeMax="0.00033220444597" offset="1616" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00012497402167" RangeMax="0.00017575989704" offset="3156" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00012466743193" RangeMax="0.00023897051664" offset="5256" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="9.1000508392e-05" RangeMax="0.000148246778" offset="5828" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="149626.72115" RangeMax="167252.64624" offset="6144" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7799768281" RangeMax="1.7801112191" offset="6460" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="139907.88847" RangeMax="203584.4489" offset="6732" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00018296720982" RangeMax="0.00021387576367" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00018313717239" RangeMax="0.00021394286102" offset="1616" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00017942603214" RangeMax="0.00020871776363" offset="3152" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0" RangeMax="3.214101669e-05" offset="5060" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-1.0448544806e-05" RangeMax="-8.8604051549e-07" offset="5400" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="200351.03875" RangeMax="204192.12905" offset="5716" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7796231591" RangeMax="1.7797112804" offset="6032" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="235757.44716" RangeMax="298693.52511" offset="6300" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00012463480434" RangeMax="0.0001846414919" offset="8816" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00011948428929" RangeMax="0.00023101214778" offset="9728" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.9394792616e-07" RangeMax="6286096.9341" offset="10000" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-8.6404596777e-06" RangeMax="5.8210784501e-06" offset="10160" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="5.5077086367e-07" RangeMax="41761.763445" offset="10432" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="0" RangeMax="0.00015024063353" offset="10872" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="171675.77249" offset="11072" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7801156306" offset="11272" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00028284271247" offset="11452" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00025055771838" RangeMax="0.00032743991156" offset="11800" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00025070374513" RangeMax="0.00032522999813" offset="12504" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13296" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13356" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="139841.59139" RangeMax="218663.32995" offset="13416" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="267.7654155" RangeMax="293.15" offset="14328" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="267.7654155" RangeMax="293.15" offset="14428" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00018042401734" RangeMax="0.00021262126086" offset="8384" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0" RangeMax="2.9790253248e-05" offset="9296" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.9394792616e-07" RangeMax="6286096.9341" offset="9500" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-8.1673466755e-05" RangeMax="-1.7736571451e-05" offset="9656" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="4.0673839567e-12" RangeMax="61478.403503" offset="9928" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-1.415451014e-05" RangeMax="0" offset="10296" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="205685.94431" offset="10500" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7797140303" offset="10696" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00020099751242" offset="10872" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00018265142556" RangeMax="0.00021035730457" offset="11228" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00019371901679" RangeMax="0.00021262126086" offset="11944" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="12732" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="12792" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="233406.06037" RangeMax="316528.90439" offset="12852" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="267.7654155" RangeMax="293.15" offset="13764" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="267.7654155" RangeMax="293.15" offset="13864" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14528" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14596" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14664" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="146758.36841" RangeMax="183210.1526" offset="14724" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15296" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="13964" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14032" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14100" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="250312.08615" RangeMax="274718.31812" offset="14160" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="14732" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15368" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="14804" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15516" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15672" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15772" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="14952" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15108" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15208" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAgwMAAAAAAAA=eF5l0GtMk1ccx/EiiFQYQ4wdlsuGLQQpKe0jF51wjuuUzWLUIorMOJyCVjMs6mLo2BQGktRAI6IMKlFR66OCELRScXhgoLUVRKxijYrOG6iLkhUWy63bG57nmNP/20++vxd/tcHpq+sSwE+fWiJlayNbOZPnHTw10K2gEBXz1yfXD7q6MC/K8fl3DUg92ff9t2rUsRe71/jS5jrtAcD0pPfFmlI11An010lTt6ZGCM+pQuLv0djdX9i2tf1QCNqCQmusVUJ4lvD19sEXHScMbL97pT3S7R126lnMzcGFKrYn3fDNyM6gWU1IOf2M4gpfCit4OaN9H/mA44211kcHpJ95z+d2S+BhwrV7YxP9LC2A6Q/oK+Q+tdgnDF+cBrAJMT3ppe3UVo2OD0qOrRMNxYvh7P1mEJqNnR7p+jLr5kXkRT9e4bgkhoGEH7OGK5z6Ora3K4/OsHhiT8wU/F1i0AKmHyacr9zIGRtpB0+eexQHhgth+kSRrlwsYt0RVjp++tBZRNkelTf/7upvt5gSHpdXIabPRvH7NgViV6l9Y4561gCmJ/34tvn+aXfOg/TGeZ+EKIWwP1Xx/boQ7KYHSZmZKfXoN1MWl/taAF8RztmS3K2RXUZM39sVlkUvwP5vc8ZPZRUdbH+X8OXGXbJEgRmFlZnnaAskUDV89Yzvt9gVhxKRqLAOjJVkZFSORsNswo8sotOc6lOA6ft7bT8GpWLfoePpD9b+iZj+NeER4hZn3/kORK2h78bKo+HG3ACj+aP9Abd9mdPyqtGUfwbSKiUSuJnwvOq3Q9TDasD0DcI1neZg7HF5CUZBpQm4TfYXCPdXyad0tt8Cc9IP5zY8FUL+u6nj1uC5rOfviKF5caXIpJN9OEeFufibkh59UbGG7YG35atlXOyWfJHN0kMDpif96w1xqx2tF8DE0K+bonyE0OHxSqR+EsF60S8zr12t2o147hFl4+9dPaBR2mhECDgne1ldgpSzB3tqd096k/YaYHpA+J7QJX45CitY/HxzSq5VDItQeEjLduzts1NmJXnfB/LpStNwY5SLawWeOfaf77C9//J+br4ee2Q0p1dgq0VM70f4XIcN5vDaEL19DB3RSqDXjV2d6D320riAB6pFlSCJul3/wV3q4hXBfxQkS6+zff/CDS95+fi/Cy4Z7XKuhe1fEn7Qg2oVO9Xgf4zvGxs=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAYgQAAAAAAAA=eF5N0Y0z23ccwHEPZZR2YhWdh6EJJSkixbni+00pNm4prvTYeivhQmmjOGq2iqN2iizClMy0WvEcXUqpzr6Jpyha83BKd7NTmWtxV6bWxorb3fzk2z/gde/Pw+cKSanxUwr0mjrS+BubJi9vNGfrLYqAkbWepXZuHsrTTWYkP6bAA28eBuRn0+TROUVXDtTKECX7mNom+i4KIbzRRmtmQQZNHlu36w23PutuFQjBNcIvkAPMvO/Q5Fz+rp/zUJ4pZN5G7Xcvhm01U+E0J7Mjpgb3dVUzFxQxeUChxygQZlBhU8GH4eRR3D+3vqrqv92BZISXnAppFKhw3+G5+8iqNw8gwmdyVQH+JnRNvyNoM9XKrBOFC9+J0mzcYO/+4cykv3BfpV6abDEWA1mRiJbQw4A/OMeY2ZLomr4gx8PXZLgHnCE8qlodqqrF/a0O23oAO9HPhC/r+S6ePYb3L+ljJhaKLQCnRact/qQL9Ltq19PGwf2mzccn4kfakZFwxb1T5AIta7ujOEK8/81Jh7AdSSuIIbzlubeCyG0nTd83jrJS3CEAhoRX53x/zIiG+5YJsVrvNvuAheLU9TIKFdraBlRYutHlQcfJ2n/CdLRpX7JVX96EpLUmzact7eECMzR/u5kmdzhdpexLHQfLXKXPH2VV6DDhvZ6/5a9Y0+X8I7uel3XQvUa/Fuz59dc6vCc3sP/pgpfp2QkpKBekkSriqbA5kxStssV95WxgXFx4G1ILxTY3k6jw4nWrTwfF2GtxQ8YK/R4gEeGrVxfPu/rg/j/dX6WXVvSjLcJH6/zNJnViz+5K8/OlPEKKnJfUYD4DMs2v1lUE435YuS+i57WCB/SRE+aQAdecCkVXBt6bn9VwdierDgwQvlV9I6EuEvcvi8kSUUsvekh4ntGdyIJx7B1denbmpP0o8fiLGWmQK3T6cfZeaAjuv9C+FvdBdjViRepwOKkMuCxV3WIOYp9dvfya+Xs1SCJ8ZhB5KNQW9z2yfboolUoACe8ZbXef+d79THnBOqN9T4BdGf3ll/NUaNHOK7a3dpLP+bKG1qURgH/ZvYHsWYJYueak8iAKvKXvtrBkQJcnVcpiL8leoeXicUl+QSGgEJ41wZysMXCS9/0L//fDfPrM8HgD2PMD1I2jnA2axvuf94xQy++BHedDU8+MqfDNCLtndM5R03/0zUcDv1ZloNKlreZFXQrkf2JiKhzG3lrmJutCCGi77PrA1Pre8G8dNf2IsfGoTsEA2PMDg1xz80Tsc+0CTFLCJoG/1Xav/ZQL5OcL2w5ewn3Fx+FmgUZPwdCaz/yckgb3z4btm4rCvoSin7L+9QQIJLzxoVDxZB3uH3XVmqbMtKA9X8klrVUIsXdUz8AUsgLVFykz1gUMaFAy9wXpFe6XeB6e5bEqQb6k2zv5IAMK5mtk08+wL7P+JTfEbRA1EX5BeyQ9MQff3/N+13qw4bDGJ0cUjTgn4f+J9jHlLjtZ4D8Fl9WgAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAABgYAAAAAAAA=eF4NkHk41HkcgHdmJGl+s35LKs0MZrRlRdRgVvX7OsNKOiY1KUmHfUrOss2wa6mhossRdsutjTzI0ST6fhyj0NrItNKiooNCri7HWH+/z/u8z/PudNjQ4T6jhf5cZeDPZ/PhvsknRciqGfz5ZISbb0gUjknuGnDXJBF7+yPxol18WDCT8vWqiQo3Ri2dWMEtwOF9F0ZfftFCmr9SxU0UH5baWdXmeM9gu0qJ+J2ljDpWPkIOzCNRtUBcXCPlg3g8q8Vrrwrvbb49ZHI4E6fc//2B63ISOU+0LYpR40NjXqDNpFCFX7/QSInwDqFuJ6WeyTMmUXhkk7x0Gx/sL2S+8tSfxX8kKra2NpfgvRofeTIuiRo/HrqZZsuHmM4ba+XJKizy6nPrXv9iwx2azdpCHolOM5IZ/17gQ8Q+nYq30lmMNETXIr8pxR9915nLbJhoYX5CuM1jNth4fbA7oEUHEblJJmg7RTnKULN0PxM97pydZXhy4HPMAdPRjXTgxqY6hK68SXV3/XhGcyMTPfEtF8Xks4FlkNntSdLhkkIn0sI9B9PfWBwaDGAi8XGJu6YpB8Y/Dxl/cqaDd3916ujOYGqRzK9Oj0OgEwbdidiTC61ByiaJnAZLRIvfpwly8I4eXesQNoHs4uebSuZ4qZXA3mA+HSaWPBgJ782i3OqPxGZaEWjy8d/17dpcqKLObpq6Q4PNaywqdm85RWnbBNztFRDo+q+i5w/n+KGquK33Neigu56n7tdVTuXTtir3TWqhD9XFlfEKPtRHKqey5Sq8eYX6OeM9eXho3Litn0YiD6tJNUkpD3aFcYNWbprGDVctnLYtT8FJw076TtNaSGR7xnqojA+upZ2Wwmsq7G61OHcsO40aHlBTShkkCr5huWMoiwf6TqI7R82ncfG4S/TDtlyqzlTmH8YkUenXRWvN0/ggrX3WeqpHhQMfDAqaiHycH9jm8We3FpKXrAtVG+GBd7NWrlXtFJZ5R2lbW1TgzZ9Yqybnk8jBf41syy0+NGQepOVNqvDhgHZuvG0NLmd9ko881UIT6h4tOhp8+K/ir5N6PVOYPtkX9vqYAt+03RJd7shEgpaOuIRSDnzv/KPXB2Lub6rvmxsdiVTcz/07bu1gome9tR26gRwIuidoarejgTLu23S9BH/MqJnpijRjIj23gmWSWg6UORIt8Uw6uJl8Q5G5hThfz/+Qvi0TcZiSbbzfOOBvbOby0pYGPyTvv96bW45rfvAcNLvMRMSyE5XJUVzYPfjwoPNbGoQmrUzfFyylPFbnF7paMdE5WdzTDCcOeBO8d/1uNIg6FtrIUuVQrRFhTkQ6E+1rNjv66CAXnlVcmxie82PCjRU+lpUU9mlfkDrXF1y8/OTrSg5YHg/VkW2iwcYx9wPvh4DqNXAuOS8mUXf0/lX1WYbAapd6J5ydxqLoUXu/nrO4iTHe/KWKRGVOokurS4xgnrMkySGLAfM+EoG/rYmlXgcrswu9SDRwuvF6y0VDmFX6lIcHTeO6kc8GTGEOdVWOpLswiZYUJz1kpRtBVJB0WP8KA4IbXMeOrLhFZb+RVBZbkmjBXf6oZ4MhiP1/uRlTMoXf0t67DIijMWPA/x+PEhJl/LHUsSzFCKZaF6ad384A5XxZ5xfdKirR7I3QC5God7e2pmGwIbzr5Gm/Fk5hr+rDmoUV1dRwwGEn87sk8sy4sifX3ggURcmiDC4DTq/LALMFj6gndeqj9xQEqlVN+JRlsKHSJaHsxCsavPCuqGGL6qkwI2H3QC8LRbUXWp+zNgCT/vLtaZvVYOSvVwUBu+uphQtPtpxtIRCKtbM6X82G1COsruA+GhSEXwvpr0vDHUr5Uec+Fhr02f/yjrMBVB79zk/mrgbvi2Oja12KsP0XpjnNlUAZFefXrX2+DE76rKlKZNNBpp69oXEgnzqmI8/2KSKQmGuclWPEBT8h98HyMTUoajPLjMgrwDW+Ct3FpgRKuVjUIKTY4OjwOKpzKR3CttgUrodqqri/c+yRjEBvSd1U81NcOGMoxF+H1OCndLljj0s89T+WOd/vAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//vHGKrHHoiI/dwiLBCuCIj8DQ25F7KoiP88r40wxiiI/sTOjhGnIIz/yb3WxN3AjP1Tw3dZn1iM/JLo90UB+Iz/8JX4bhVIvP3nL718NhS4/bJjlbTE5Lz/vW31gnmouP031Rp6E8io/1Jr3lXFFKz9Dq68v+8kqP4g+YubBHSs/DpbkOCEuIz+5WVrbuawkP0i+LgkeKiM/aTNubuSoJD+FArrNtYAjP0JyvYFvxSM/6icbWd+GIz/SZ5Eg5MsjP+R8kUxxKi4/jd6b7QqjLT+EkfPZtTQuPzLtjZAUrS0/nRTh4uNdLD/TMpNDlAYuP+afFoOxTSw/jXBJrdD3LT+KYrLCj7wjP+j1P5Y3zCA/euqaqa64Iz8ehMaMeMggPxIj4zubmiI/+UZAejtnID/L57Jxr4giPyJNBRYlVyA/z3/15SDUKj+cey95SHUmPxyrsK0n4So/PY97T3qGJj89Yc3ReV4tPxND50O5Xiw/f9piVPCRLT/cCWFBL5YsP0lhpyk=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//0l0C/OCQiM/KMCbvc1oIj/zVGIgVm4jP3cCmGwHlCI/HwRSgCA5ID8r9IvZ+EQgP3Ji4DQCeCA/N5jcwkeEID/C7bilDf8hP6L+8wHgLyI/0+pRr6f/IT89IBPXfzAiP2ZzJiQmkCA/XMP59mGLIj+f/HE2takgPzzpiFSipSI/nzIgJIy9IT9OBxgW1CgYP7udCTbBkiE/m+xw1PDaFz8k+dVB/1QjPx6pV/kuOyA/Xg/05XX5Ij9+5j4LbcQfP+ivUPU=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//16RmSTATwJBM6lQ3R+LAkF7tuvE1UMCQc/MFuQ1fwJBwjpNqG0mA0H47ZTnMSMDQbLT3qB/FANBJDkOSSkRA0F2xZ8EDKgCQVrYZhzNmQJBT3ay2OSnAkE1sU8dpJkCQZjC+rYWDgNBVtBhjsKAAkHqsiwF1QYDQXPZXBGJeQJBKPfE1N+4AkFM5yalxl4EQUepJ9PQxAJBBSN/K6VqBEG5G5vJ10kCQYd4gOrmJwNBGY+pFMtiAkGr4GeqWEEDQeQWTyE=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAqwAAAAAAAAA=eF47ldre6lX9x/60fEC7FZB2jhaz9QPSn//dsbMD0vGGX29LAOlippUZINovKblXDkgHyYhLgegap2tlRkDawWKXIkh/JI/+aUMg/fyyUJklkBZ1vPZUEki33k47Yw+kY59re8kA6VUb9hs4AWnpVP4kGyBdVxXDfqbqj/0BZa0wkL4dts2/TwD5c2WvPAsF8m++Un8iAKSv3GS46AuktewyznEAaQD4I1waAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+gUAAAAAAAA=eF4Nk/k/1HkcgL/4DspYKlfTlK1tEqXolGN81FZa1xYihdVhGFQS1pBNkxxRyJF2XTPKq5wx6XC9P0UvUo4IkVSKQszhipj1FzzPD89jqZCvEbY9CrlMYlslHRL7vWxYapotgjrjUwpzmoeAc26bSivXH0Zon6Iqg0ksWX+aDNUSw5sq/wJVjVDQNV6+VWOjMxo1j15MsScxK60+LbFJBDK7Ln1iSh3R4NLSzNZvcbCivSxCwCdxNoOTV7JPDFurzV+1y/jDA8PvMuFaKein1Ww1awmJ25ZIdV/Xi6BsUZVnF3UPsvM+HL+buhfUp4aPdSzwh+6Ms/bYiIE22RW6jR0BLSM8s8BMP6TMPaNc60riBPXLz0/TxGATfE59vqPEnL6e7SjQTIKcwZG1qJbEfBe1LwWZC/58Uyv3/EuQ41ABPpKLCPW40U+7SOF6nyDGo1MIAa4m+nbxDoj+omCG9oIFN9YILulMSUGprkUnWEcEM89M+CZ6YUgtd/h4z0QcerChwqphvRR2sp94jj0TwvFeeRqLPA/v/ZkmAyVsVLRo//XGWin0Ka61iFomAtmis8cSf1ogNUFV4s87/uin3pNwRz8C69fWq9FpIrCuvqc1MBQA3A/VV+nGKqj+oBG7NZDA/fVzJqGWIrBUSnzMjDuHnrs5CKsuXEOiQc/e5j0ELrhZmVUyLYTMjN8OFik4oDNVvGE+KxKFdg05JVoTmCniGoQu+M+5vhn05kWi7ggZzW4VHhC8KxbfCQrOre5kBNwWQwY1h/5tXRAc+6E9rvAuF/XvLzIis+QwY8a1UVFWBE7DpfoUGS+gL/eorLDMgojPf6XAMIkvj7b+yb8mhs0KqX0HUtno5PlAVotZHirfwT06GiOHdab3xisNC+GtnZ/AOy0Qddbd9zS9kQqzQw2f774kMa+uLf82VwztfR3pN2dDgKOCp+3upKDgZVlzPwbkcHFYcfLOVSJYSl0ldZuJhAtRExW/t2fAVy5pYLTA73c6OxnFE4NGUU5vc3cCaPpIv83nxyE6J5wRSyGxUezhMmezhT6PmPs1b04B79qca4W0OJj18jl8ahOBuVDEtd8mgvle3msi+SQ6pb9Yw/cOBz2W76oueC8F6omY9J7/hFCTT2u0yjGDvVMnJIXNSdCkEnPRdheB/bXMosqZImBmEt9Hyi5AMjPjwLCtO3rBw2uyxqWQ2zhZ7JsnBPWKpoQOr0hICvxmdlk7DV7fNXYLukXgp4susDmeIgiNlTN187VChbvtPnYo/40Cr3QyjzyUwr+G3tW8NCFAT5x+W8V59K55ZwvPIAleETUZrGgCr+RPMQVOIriee3Iqb20s0la101rxayQafBtPHbkhhYTRHRT/GCEo2nwSh19LQOvCCIMg1RoUO+C+SfOQLF62c3W4t5wQHA+JO8VtLrAh41PWqGM5sBYnFTPc5bEC3facUfoE+AZJ3Yt+cUZWemPRFvqANq7d43HcRBY3mm2v4nSOgZZhABkyGoAWPwrZXrzoAdhzlRycLOVxj/7xSPqlCXDoLqMxX0SgIN06i31EJQpj+0iig2Xx3dnTq+9+HoMxRu695Yr2oBKcm274WgCFtUrpL03lMWvDoz9ERycgeWrLoRVacYg13Ku6nILREMXallSWxSGR+9SqKGPA/FrTtul5POp3WuY7mF0IjU9vFs61UrDNjIdp/tg4MNr9qP2a2YhvfcWmn1WK9LTXTzrgefgqlpQa2wtB7p2zYrJSMjq1Pf5+5WQqyDdp+wgrZPDtlaMROqsl8IpTPrZ6aTL64BvNT5m8j6iBNEHjh3nQrc2S6LoKQdU+TOnMQzYEWDYYdjnegp4vo2UZTTKY8ejjEo9NErhhRnPZ4fUPUNQ7bTwcStEOmFYmFedh/3xVTp6JED5oX26v6eMgRgnVu0LtKtg+1su+mE5gBQml1Pq5GN5SnAa8eaHgXOBnM51aiGSDE++TYfOgHIIqf3gJ4TD7szmtJR5158beMjiZAfn7ysPOtBN4fMmuB9YTC383bLFydnRF/wMR6xfdAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//VCqBO4q+hA/hnxlXIT5Ir/DamDVnrz8vqDUsuo0SyI+bKxVPFEMET/fCqFQuQMjv3tL/IIya/2+fSf5CoSDoD6Cjw5nsy4PP3zBu5ovySC/HsJoqgWXAL/QwRw3CPiRPkxq7I9ypww/7tKCZ/JsHb//5RzOvMsBv/izj+faYrO+qBLVX8BADT+L/bAZUPsdv4aVa7NOnAG/gCp7d4vvMj4UnZXqxQMRP2UDeeMlyCO/1UENLF4N/77HsY9Yl9WyvsuspbYfFBE/9bzD/sS1I78kn2yAiWP/viO1XU90+pe+VGqP6ehIDz/CSQPHyVkhv5U4aaYAMAG/zm9m3g97mb6mgp807ZgMP2xU+L0OJx6/IhNtfps9Ar+uxoRPK3iRvkxMPlUuAQ0/nqA9XaNkHr8X+1B71SMCv8Yuxelrxr8+dubiO3YcET8Yx44YEG8hv+I6rjETDfq+JtCvKlHLo75Qdq6BmwQRP0bwfo7diSG/qRxGlmeK+b4L/0My0A6Ivk487arKXA8/CXMdUv+uH7/zDRmIB2/9viGf1zpCPKE+xu68FUC6DD/dy8pQ1SMcv2p0pGJhBwG/0kdi/Yepmr4cbq869JIMP5nvPeWoGxy/qc6YkuwRAb/ehBui8nPFPjSNX70X3xE/8Jc4BzvVJb966jzNg5sFvyAj8ziMw1C+MhjBbHXeET8mgR+Jibolv4rI69BgeAW/vpFtxS7quD5uWvs1j8gQP3hQ1AiwByO/KMLhJ8sgBb/3YQS6RmfSPuQaL/37lQ4/5ODDgz42IL9FQazJZZYFv8Q/qqLOHcG+R8cHfL6VDT/obKs7Ynofv34le65N9QW/8Pn8us/iYz5W5Tb7AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/6rzd3O4qyI/7kphB71OIz8k74xyUdEpP21ZektmLy0/5GtskV2cKj9zErI3cosiP1RQVDpy8yI/83nQs7XbKD/+H5ldhu4sP8imNjfObCs/Ajg4x8IFJT+4NNcNgFIkP8B9wouQQyg/kblXA16TLT94vUo9e0cuPwhelv9idB8/4NKjdXRSHz+7pLJAbywiP7VQ9o3NcCg/gf7NM99OLD+nw0UPAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVgAAAAAAAAA=eF5jYGD4mlRdtI+BgaF0VlUTiDZNrkahv36qAcszMLBVQWiOLigfSrNAaQao/IEsCL0Dyj8BpW9A6QtZ+17GnLA+8svdEUKHO76C0i+gNEweAB86NTs=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/55NhDx0hKk+0nB01uJYvz6wO43hl4Omvp4Itp7GlMy+yKpKSSoyu77sxzJyxaCzPsp4gA0risc+Oj7zU6A1x76hQVG8zx7ivrdIQKZAWtG+k2yC7121yj4G8krcVWrYPseEgZ7l5aU+3YFSXUH20b6qLMZ+JVbDvliXmugo5Zy+OuYtlclDs76ei/ivG1bPvgKSloGCKNm+ploi/X3Xyb5Ho1gdAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAJwEAAAAAAAA=eF777OtydY6v1IGqrGqbjugrDgwMDIKXPh3cJ/tNJc8i5QmQn+D/PVbHXv7gfo+lao9A8hVS1pr7n2wTZlou/MDhCNsJq6ktPg6CH5bejAu84GDAbZB/TCIPpI5hT/mBfUBqwqz2LSCaIeHubiC94avMfWV7EL/1Afd+BoaI95LLlYA0wwWRFOH9+86HsWf0JR0AydfVX9s308664O+WSWD+h2fzwObkSS2yA9ENu2vB5mdMvQnm6x+7CuK/cZr4EEQ3MHLc3SfcY9OoI9AEds+BlHK76DOXd60tqHHwPsCltDb+CsjcAzZXJ+xzmWceVxL5BMRXWJO8xM6M0epxu9UjEP9HYfgEuzRRWU9x4wcHlDZz3TRPM3Vwqv0yx+LH+QMAcn96Jw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAcwAAAAAAAAA=eF5jYEAF+WFnlgk3Kdv/UTsrIflN0b7/k+Ltyi4FezRlDMUsD49o/1a0Z/OeleIloGjPeJsvt90HU53VH7uUKwLK9kKcHyT2ZCnbTyvhNbfdqIyhTmfHvI5yeRH7s6zFbyayS9o3GUSc3O8gaw8ArFAkYQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAcwAAAAAAAAA=eF5jYEAFti9ZrRLtmBzbbvJHf17N5GhyeftVbX5mRzRlDPNKXANdVjI56tanzFr/ismxoOFZ02wFTHWFgcHh0eFMjhxdi/5NcWBydJL7d/6kHhOGuh5eAb17X1gcrxuF+U+3YXHcs3XnVP05zI4Ae7QlSw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZgAAAAAAAAA=eF5jYEAFG/5eZPav/mN/tT3MyAxI5//mPqsApNGUMfxQvTjbECj+ZWVhsRKQfjJbYYU4FnWbLM2fBwLF1ZNNhMKB9LtWrvYoLOos9r1mWVL1x966c9+qM0C65lPmtDdAGgAKSTJGAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4gAAAAAAAAA=eF5jYEAF1/iyBQ7vZ7aH8X/56LzmNxKB8wsZdlnmbVGC83WdZV4/MtOC82EgsPSETXWb4H7NAx88W/8w2/vKf7sdtkVw/9Wqr5WHPEXsjydkpZqzCO13Kdmw906tkn3QcZdi/u2C+2HmJbauEn/kILgfZt56RoEK6auK+1/8fH/e/yCL/SPDPs+vDxT3K8xzn2dtK2IvcMRTYoWE0n5Ol1Xl/KxK9nnCUzdw/lSEmzdXZtNU+aWKcPOg4vsZfz2fzxXIag/jx4V/F27zFIXzb31csTxnviKcDzMPxgcAUMhpWQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7gEAAAAAAAA=eF67zpctcHi/sv2P9Tq3d3hq7WdABgfWWP/x0XnNb6Ri/03vo2dTH0L+TZ3SpKsnltlVVdq9/tWhba8zUV4imE0bLp+U8kjs9dGFdhtk2r7ekjWw/6X1XGf6JIT+uxOmNPeVHdn3iavz6CVOPXuRE/XKwQ810exn2KNx4INn6x9l+1YmCZOV+xH6H/29Mu382237rlZ9rTzkqWJ/ySv0Xf5FhHyAv/CFBPW5+4o6Mq6V/dWyl1qWp/JHBeG+mKRg8T0LyuwOtiquYxQysFeee7+j7ytC/56z70NN323Yt8R6/VaJJ3r2r7S6E9aXI+RjaiY8C+s+a/f85/vz/gdV7I/wiHwu10XIV6Ym/Fm0efk++Xnu86xtVew9z260FuZGyH/xsLnNMLd2n2x3DHv5Sk17vTmzrmidR/i/wbNknc3Xg3YyJT+kXSUM7D3Pm53i4EToT9L9++3Y0p37PP49frYs2cB+f8Orc6sSkdy/Ze+Otl9X7Bh/PZ/PFahqX3pEJTJMFS18HS7tjgv/LtzmqWr/wHjVkxOMCPkKloZ/bJ932W16Fvs/eJqGfUhtecWGKA1E/MdWcvxWu2n3U8/xkL2Kvr1V/9T13TsR8qsz7Bna+S7vW7LoWdsbPUP7dcV2DF5b0ewveLkbAJ+B4ck=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAALwIAAAAAAAA=eF6b/NJ4xqSbyvbWV5ODX+pr7WfZdetE+/mVdgxgsMZ6i/rXovveKvbWIRqHNpVo7TfaAZF/U6c06eqJZXYGIezFpxZp25duC5vQ/AYhH5fySOz10YV2Al1ZOw9pGdg7BMgtPV6BkL87YUpzX9mRfaueBvouUtazD3q7bXbzcc39iduQ7D/AsMfp1l3NZyeU7TNeaIV4fNbaH/+piHPC+Z37Hv29Mu382237Pkx5FKkspmK/xyCDj59Ve78ZVN7fX/hCgvrcfV2LQrddP6ll/7e70WV2BEI+JSlYfM+CMrt5qgY2KR/07bmbP63Q1UTI7zn7PtT03YZ9+0LnTK3coGd/TWBeg99qrf08UPmYmgnPwrrP2tW1l3P9LVW116vv2XGqQnO/+uaPAcunXrOrSE34s2jz8n1btc/fePFRxX6DvRZjWpjm/i+bIPIGnja3GebW7tss8cRRJU7Lfjqf8KxaKYR8nWfJOpuvB+1eWNnsnF1kYL/BcX1/dAhCPlH377djS3fuEzuq3vJ3r4G9wuekKX/XaO4/CJXftWXvjrZfV+ye95x+93mjkv0EQ0eu3CPa+99lPO7Y+uPLPnD4Klza7fTqVlL+KiX7/wuOTb2/QHv/S6h8FUvDP7bPu+xmVDr62X5Xtc99NVnz+E8tuPy72EqO32o37R4cVBHUbNWxj/yzMWFRBEL/qgx7hna+y/t0bmyIObRP3/78g6iNCSE6+58g21/wcjcA6XBKXw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//V/LrpLAJpVAaJUkY2n5A8E9DFHYPmPxwCC0MbnZ+PI/RV/C/ueJk0Ao5WnZxgoEwXl7P9wCl/HAdKYwc0MgcUD1dDqfBah/QLCmZCTi9gHBgu61CoZk8cDk0yeIl6JiQPRicwhIu4ZAktLqYUTo/8AU0chxltrwwFVWSx/eGoTA3F72LyrmlECQIZpkXzEAwZiGbEJG2/DAAMDqKUijA0DPxFaYLDyiwJIhWUe0BwXBaFM0xnG98sA1OUaxXYiDwElhgXtpE57AkuAZ927zBMGEqtm9p7/ywIOjhUQO3mjA464QlPGfm8DqMxtzzqwCwXfwBY9hNPLA/LOpgexsasCHAvQUbOaQwA3lvDI+bgDBiz60JBRw8cAkOSv1/B1iwNQdnpJ25XvAq+CKVBWEAMFuLC+TJmXxwLyvQ8EDepBA7m8Pso/QwEDfnuec/QECwbUeqhfDce7AcCXh7jOHdMAoVRrgwVS/QNKXhBtJHwLBkr2C52ho7sC+/W5mK/NYwFabsGK0G7dAn2tzdA+lAMGKT4fJD+fuwAN6jDXb33FAr00wAlkKrkBJVY039Dr+wPZmhvo/re/AU6Isp5uma8A0tLBAnVarQGwV7BYrPP7ARbnG82XD78BSBiX6kz+WQBiD1kbGLcXAarvm5hjjB8H4KGUi86z3wGCxEGurYiHAMoEbLFk/xMAgcu1lY8AHwWU37FfMgffALC9+OKzWiUAJxqhgBFy2wA4QL8jKzgTBgE+R77lz9cCZDO339RWjQGjAtYecwanAJ3FhpPvlAcGkgMx1Ve/zwJZf6JFGwJHAQuEEjt71sMAmxOjI5H4BwehKsbp+9fPAeGgsgZGfNEDkTE8UAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKgAAAAAAAAA=eF7jVpJcL85W6MBNgPZcef8OszZhOmV9sIr9ngKCdBoIBBURpAHWADmfAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKgAAAAAAAAA=eF7jVpJcL85W6MBNgPZcef8OszZhOmV9sIr9ngKCdBoIBBURpAHWADmfAQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//nisDGV14VbAH+ubWGBlBMH4RitWfvPxwHjzSsgKj2XApDljjdswWECVPwuT0GoEwYBeaE/MM/LAkLe6MCByccDspe/xeVF3QPANjKLKj//Aaa4q2JP18MDzTjzschFPQMpCjNQNbH5Au+kbB+JcAMEkZNnHsCDxwAduzRcMdGdAUgUjLUHLdEBkbnAaaEUEwV52s7NKyPHABLqtnUlkB0BAd/CHMWtwwO9m0o0ZaQTBiXuEem/g8cCvrDyJWsOLwINriKN7PnjALiJXclYUAMFB+XmV1O3wwAL1BfJrBXDAZeXNnKO8eMDRp1EoIDIAwT78KZvQ9/DAuoggKpXVgUCvtGh8WwuUQM9wfaQ9TQTBRsuW9J7C8sAaahQI0mhrQIeV8RzTZ5pATBPz4dUkBMH26mToM3DywOWK8cs0941Acgl9uVMLmEAhAQSd55YAwbB9lk77v/HAb1ElWLrsfEDi7dnMOWSWQDJeuT761//Alnt9sQ6Y8cD12gPwt4xwQMBjxY4=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAgwMAAAAAAAA=eF5ly2lM02ccwHFG5Agoh3OAV6LFAkJsdWOLkeTXgHMTpILEOrDpxgxUBaobVOU0Dm27MRVFKtRKQKQKxmqBFg3Kg0XlkmKmwaMU5ixXQCNpS0Fh4Jv2/yRPv28/+ZrSOX1nWSb45wRP2pob2upky0eXduq/P4+hQ/DtBcVGR19gtwRlFJcik+1/3LwpXyvCfmkwL37vmgLqJ31fiTYpZkqKXN9lBlROmyCVKw4XnMfednQFTX6gGA0lVI8LK0yQQvjXbXxa9GMF9V8OWzLGvoadcVFuiAwpR0bbLydc9mHD9q0LdSgxSHyX+a8VOph3JkM02C9mcr9LbZChNWHuM/pZK7QTrmjsN3TO4b9FvTxhsBO7ZCE06ifnMupHhE/mPHyrralFQjqrILtnGn7eYOzyf4G99xGDWdFzHsWOKpVvAmYgmfAfhX65I6+uUv/HiSblyRHs4Rtl0fXbRNQ/R/h73nD4ou+rUKxE0yFWmKC+bUuWbHEY5X7aCd2Tv8VITcuNaTObHfwMnzfipDhM/W6BxuOr3LCnqrK5t7xLQWP7STcPVdMtyXLgDtTmKx+YoGGyo1C9DHvEbB5rU+MJ9OWwNcU3zwwqwoVPF0+N7VAh+1+1nenJYWFn59DjiliFYP8rCR+P/N01sP862lMcPEA3WCHuWHygNh17S1TNvf7BNDTZ275Nf8AKbMIfTvtE9311j/p7lpaggmbsy+lLdhk5p6m/l/DNOZy+S10tqPO2m3N+1TTkNbmMdrzGnnTQNdrwqwjcdRxGiKcVjhNeFHVKfziAC122v0G/Tyh5g53hFap+v1OOPGy/hvDRPwoFocHViHXTRVO+YAEn8f27cavXU/4D1y/OXZ0BMTz3tavOWB08i9vkMTgkAvvfPMFq7/bH7tXgKz0oqKF+0hONupLklbVQNnYz6/RvFsgscPWQzIdQ7r3ZkmFmXUFzWfyZZ7utDt5dFCQJ96uDctsfzwnodWnF7hz1kZGuE4H930l491/vftEO3QFxTrvnnltTkEljK9FJ7JXmJAnzeS268Vzg5b3O4uD+r3idvvvV1D//RZ0qdi32ecODxsjrGur/RLjv+AXV04RrwJcu+7D3kQVuDKf7dFmCKecLaNlFEaXwbF41+9JgcvB+7f/1PufqIMX2G5wjKisGsCeqvkm6ny1D9l9PeF+ZNCbt9hH4DPpKVBU=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAXwQAAAAAAAA=eF5NzY0/1HcAwPFS1Bpz9OowWpx5unshI3mNvp7prNi8aCRqyinnyOXhlMlwHmt5PB1DiZyYXG7qNfO9HfOYGxa92B0SItPyfNw8bK/5dd/+gPfn833XzRlC5gLYiGxQPRlB5Odx1NzlJ3OAqjAkeSwtBkan1DTm4edBd4F73c4SIv/09UyG0l0u3DrZpB96Kw/GY36hNmPNPY7IDyzf9uyRa1+e1v4WBmO+vY9QsKuKyA9O2PaBOQJft+V8eN+t2tjccRFkeYxypano3xz9MaHo4i04W6ix/0LSPKDQYzwe8tD/cDOFQG6tgIWY7zxECRL9gP6mrCKxveFtOIL5EodNuaxO9Ge/NT7uuFUFV5OhsIUoAQu6uLCGavRn0f0sgx6xIenKde2usWXQ5cL5kDqI/hX1InHHehWcxfwMh95D5aN/6hbR4Wu5AqiJefh0H017Fv3nYlteCso58EByTI6i+ipI17FxrehGf+FvJqbF3dnQ21Tvec/mCghw6p/wXUN/10j81VeD9+AezOu9UCapDKP/kcNsMteZCZ0xvynH6Wj9gCT7v/GftNjtdAdqRPBeu2QvgPhJaZiOMonvao7fOWIbCfGCv4RPM1NgXLT2Oh23CixX5f13pRP5+h7stmZ6L7hJ8X+1oyIcGmL+d+d7V8v/6ycQtn1QHcOvVjkPxGM+y6f2YkoS8vMTZXpL54qAYXtlCa1mATD2p8XbqKG/9T/XbM3qE+CwVTG+uUACrPRzQz/JRj6yR3F5+os6+DnmL1DfKgzbo/+JWD2PDNtEMIR5g3jpEmxEfsY+QkFXVAl1Y/W3JttXgHoh7hA5DP2fOJQ3ikZCYCOBJslgSsEfNZpKpGnkWyQ48sCBRmiB+Zwjnj/LN6G/hp7SV+PeN2Te67g/Z8qSJPNHY70HCjubIIut8KnNDQlwHmp96SFGf99LCmTxN0zQo70+OmggBXtme3vNTiGf4ZD8Z7i6H6jAfNQG4bLyOPqbfETkvXEvgn2YP4ozCZg/g/zUd4k0okEZdI97bLZbfhnsOKFPLtMy4g8fs2tf+NEbuPjhPfbyQsEZJwhz+8QgpXSqhLKXxKfe5gaGcf+GV/wa9o1MMIEd5iG36tRBNSN+s9T2f6/8SCX/Eq1c5u3kqTVjcsj7jAtzzmlyAOdJwJwkagnQHS8XDm0Yyv7KVkuhi7Z3oXqppVb4nAissszmil8TZb4rQz/VAl8FWJj30kwM8IGGsr+cw5oJVcgE73x/mCNP68F7Pn32rGDiMWCRGWmC+mVAn244ppKE/qWLvqmmzziw96BX5FnjZ0BqzcgdCENefdC/QyWYB5iY32xXtS/VRv9N8a/19pU/yXyiZj/rvCLyuJncuh7P+yA6qI3a1rkEHlQP3NFcMpD9KTQCI8M6D7zIE3gq6HSDz7ZYK6OjRjIvEmxwcVlV4DzmBzvKTefEBrK/T5257y8MNnznA7UoTF4H8s8L8t1CHkaBfwGH3giyAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAdQUAAAAAAAA=eF4t0ok/1Hkcx/EHQ6W2k8gx2njkN80kRymJLyKJIjkfKm1CJQlJ7ZCEFEoskXOaKOMoRnYL+Xwl13QZllCOaB1T1jHEOFuP9fsDno/X4/F+vD3f3PmmEi1EP/3/WnfIl44nc+WsJHv/QO09n0b3ZIWAY0R+WYLsKKpPsioUy6DjquDoKyvZXIi9xmOmSKfDKdKPPY2asgqi408PFz3TZ2Spz/1wsCA9r0EliZJDxx+vLXpXs6YbxStZEG2Rp77dZAzFWXdxp2/SsTzZL5jfQYvTSYQPKfLSbmGjyN3vsnVBMR3zSN9uayXk855CIOl5Gz3cP6fRMZvsm8dt3Dwkw4Ya0mfunReP5dFxLOkHinKMZ04WgYbpSf5uyUHkIzle1ttO4GrTyDo1zxZgvy8Nfn6XBYqNaulDDgKU6izhTBsisAWL5f3hbTuEvbm36sjFQjAOM4htyvuOjg83rbv4hcDUw3aP+ztawNnA+sHfoWmQU36a6fdzANXozXmmjhLYPDnYyWFPB7RH+SGDIwWwsWd6qHtsEM10JzYbdRI4Zbh2Z9zJVjj66bWXqOce5OdrBnxP+YZcEw6slBgmsFvJlLNORQfkTTcrPsEcSJrh/NvDGUS6/7SX6HQTWDc7WV29qhV0qnGJWUQUFHHvNDyy+YZ6Ngvm+hb6I9gLupU7oSukX2HWJwvGfIoFZnFCFNw77b1pNQMvUZMV6zT0h+zzCh53eu6CY8Cvs35rRGinSPI4JZKOd1sn11T68dE7wxEzs98CQNJ30fP3ZTKzpBjYR3HRc4f/pI25pCF30sc7PT0TEUbHCqTvjKZsljmWiZRqszPO5wtRoPStYH25BU8s+i9vzETLMm7Ca9102cqkSaSrFu+lHEfHMqSvWh9RIVrxHORI73ZueEmHMQOvoi16lykz/ZgPkegV6bcET49DGR1rk97h+Hibe2chmLvLU/f/MoB2eVUqXhCjYeqOwlAP7Q4otreLmuAzQXHttv16V4ZRSEOuVXgdgStsW0vtLN/CqRIQDax4BVp6H/UZpX1INeBs0eQqGt7vXCVMFHWClGXrI5nGeJhIeskSXz6EKMZZs4wWAgcfNfQ+YF4PRVSdkvcxlSDVV9XQ5t+PiPtFhNZaGhaUr+Z187sgIn1fRUpVJFr+bE+kU9sgylBXTtPoInAdXy/dz54P5qjEldLhiC5dVRHYOvaj2Q1tibbraNjOviQkaLIL3Otf9c0cZsP26T79qJJBNCs6+/uJhX/WBJ0uRdf5ELxpzlpTPhu2BT3XkpD8gcQOqh14qLQFizsZ1Qqf2CNO/evxFkt/9NkEIL6hHYWz+jM8ljHwsftcV2/uEKzPuVzGnIhBaqQv5+Y4UOW24EiDRV+eJH/r+td8VEB6Q8lz+d3iDOxMeuVwjbTGFVyU8MJlZPLSOAow8Ulpm6Phew6LXmmp7PwGdw5EZuxUujDyGYkStUbSBXTsQfovm27baJRzUQDpbRVDXZyAhpV+GP7vrzcmn7FpjkHxpG/0NilWyqVjL9KPazTPa/dWIO5ezjvhViHiFViN2YUQ2MjeXO7g+0o4oWr0lc0qBF2Wpiiiiw16nrsUAykL/0j3dPB3E4IFJZMhrVGKTivrFnA0xxD7WLowxIvAdqFXBEPPSqFpqypNJaAcQmyWaUsYMlGb4MwaxjiBDR1NgU4Rgv+NJOqDhX2OKpuqfe8UorrHnqdGzhJY8SVW2JhYDP68bt+J6lQ0kZAmfS6DA5I/ll99MkjgrxytbfuaRoG5tJbqm1SIbgVVsqaoY0izoq8BuRO4KE6b+bifCy+qK3TnbrPh4yEGRSYzE6RSW7xUBQR2Esu1pJWPwnyAU/d8XiD6D7U8Il4=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAA3AAAAAAAAAA=eF5jYKAM6AXU/61j/2n3pW1dZcj5n3bfF+r3807+aefh9JFRK/qX3RfnqQ+nq/yyi5hZXD7h4y+7HR+eWsjM/GW3ImwLi0LabztC5hMCUgdM+H8F/LPTvxyz3sz+j13NC42cf/YM9meKJEIycv/ZqV3XmXDqIIP9Ez+Rbekm/+26Xix68+Qmg71P7BXLhyn/Kbb/pUnItZcuj+y8OMNiKgK+2M00/TRdc+JNu3MWkVdtZn+0a7xQeXjb7Mt2RRPjD0yJ+2C36M6Fs21MF+1+7N62dlPpezsAUzdjzg==AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA///iE4Y8Dody+E08o7r8F4L52WQKCeX/dvloKFN2keuC+sjsWPT7E3b6r4CVEsJbgvvFCWDWEet6+sDQMoaP24L5EY1nOZ9nivoeIvVqzttq+lz21/3O35L5wkixbZ97dvvYRZhJcTuW+CZAKxV4r374qE1mxWnflvnCMXxHscd++PB23vvR/wb7GYDwQhenlvo95HfLy0ra+ZgYWm2/M4r7KQoF3E3uxvuu6JFnjqeG+kGnssge7rb7ikGJ/vO3gvsaFbBY=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//1iCqugpvwhBMuc2QGzJCEHC7K6ax8EIQcxogKgtzAhBwi48xJbCCEFqBmAR18wIQZfLdPm6xAhBmlsYexnPCEELIxsabNoIQQrLdHpluQhBktrqJbTlCEGlDq5D3MIIQfFKlRtF6QhBJS39gMTGCEF8fbFYPeoIQQDmk6CYxwhBWDBo+eKDCEG4IUkIAe0IQaNn/ubbeghBXpSfRCzaCEGLR9Bv53YIQT+s9RhU0whBrpJbT/h0CEFckZCI5c4IQdLyVF8=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAqAAAAAAAAAA=eF7bdknXo7/yj/38s7tYO4C02+Ip+n1AevtTxbdtQNo1ZZokSD5ktYQOSF7lzkmwvFiMj1M7kD4YWyXdDKQbPuxbNwNIG1ZV7aoD0r27d/tOAdKJcplRIP7j5/UvJwLp9SWhv2qBtMGf7E4Qnz/T4s0qIF38w1IpDEg79d1M3QCkpS+cmh0NpEuOmtpvBNI6yRbnQXzz4+Kdm4C0ZruYZCyQBgC2sGL9AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+AUAAAAAAAA=eF4NlPs3lHkcgGutS14zo5WUUKpN2ko0bVti39gUoRRKsiGXyAxFZWhmXJaidRmXSEi7x4git5I29fkamtwvKRUVodI0Y96ZeUemnNYf8JznnOeHpy/q6dBaTwJKGtX9DzZTUIlfpVFBlQIS7NsnLe3c4M6Shn1JNBkcirhV+68xFen3qJq2B5Kw6Ip8KN+MCR789ZX/HCOge/rG/ZU9FLQuW0Oid08BJpJlHWJvD/jdSdf0+xIZpFXtwyLXUVHJPPeMeiYJVltdg6wNI+BN0li2KZ2ATP/xqN5+CipXmJ92m/OHJpcf9NUKhpJ9A1J/NRkQk317N1hREVNNfQXGIGErPtxPlXDB7SO7yNCBgGCval8jEQWtONQS6wQKaH2n6lvYcAoW1TJV3voy6B4p2spyoqK3gdfMf+SSMGERbxOtmwgHw9PW31pCQOpy9+OT7hjS4SRypA8UoPmKJir1iQC+JT+YUU3Ag+2s17NpGOr7ErtR7E5Cg3JX0zlaPFwPGvnj5S8EsP++MTrfB0MaxkLFti4FrPLxb4/kMcAosJe/XECAbeqA/nAuhnI93BY3BJAwWBOn3moTB4TTkKNwVgpBfl7VgQcxZJgz/N1OMNf/qGNeQ20QNL71PFJ4kQDTv4TDGSkYYq6Zn/WDJwlZXwsW51Ww4Et/3uA7CgHDXXzexiMYCs3JqlDrU4COcClgCd4QnMVY7ZJPAPGsKWxdJobKetbCgeMkTHFn/dQ2nwFnXnF32nsCihzMYp5yqGjnjbT71W4kfB67OL/goi+U3PNbE9spgZHs63muPhT0zC6B5FPlEO60/GkFfTeY1lR4DowSYJweERURTUUGT67YTTuTMNti9cQ2jIH7fWH9qiWQAGPoE0/kSUGN/uls8QI5NItY2oN6UbiVeHLy+gQBHsdP+HQmU1FOpsj4kQcJn3YTt7dwDsMlrwKNihVTwMTO9lszKKh7REOreKUcROfatP97fwFqubk/uWvLINnHZiT4HhUtWpXncCqGhMt1ZgGJgiN4Loc4RA2dghvqez0GiynoQGTtpv275XD5sMPHRE48PNhUXz8qJwDJhOZ1VRi63x4x08ohQTNoIzuuZy9EoRntEHspvHbGN3WrYeijGj1F7bEc7naqazZU8mBN5M2gqR0yeG37JKesC0NELDuT30RCY7hF0db0AKj9aOOilS0FrbvDxjk/Y2gJKblwFlOALfe3tQrbbGjtu7Yq0VwGIeb8MNNuDC2bWT6Et5JQb3Ux0rLxCL5628Y96h1SEOQ9Dzu/DUMJvSGxfAsF3MyoG0t6tBY3b9sR3W8hg/Fs3VuCXgyVpDZ5lrSToHSrKvAiT4H1hxrZiz4pdNQ0fti3A0NcE3Y5b4sCvDlvqBGKc5BzYSAamzcFSwnecKqBDmo7pnE+xUsOJjfHqjk6u/BxelN56VMlSPbINDsmaCiGJuxfoFTBJ8dkh01UX3xyfMHjVKUEmCdLU0wW6qDT1Osr29zl0Cq2P9ZAsvGMsUP7J7qVsFOgfufPtzS08qEfy5FQQYvrlufXKuNxk81HS3ebTIHfxNVvIV8xtPcwd4rhKocQNzq9zJkFHaHjVUltShgv6jb+3kJD3m3jlvmjKjg9RqdlBibg3o69OFEtgaMKVVpCDYZOHN/W1GwgB8OYN2e+zRzDh84Un3+VpYQXtzbcNoiloZMDxd8/V6ignaFeyEvi4Umib0JWgATsnrt6Z3C10dHCfGYWOfebZuMNYTbxMG0wOuvXq4TSh8MBFtM6KLyQS/fVV8GAZUNsodklPI/1bHtVkhgcyqxyVrhpI2nn0KOeXBms0w0VCtPS4cy7HQrOBSXk2xue1RjUQel6hrWVL2dgkR7NYHCuj8hUf1XLVTGE7W9kOrhoI93DvGAxVwYLPsWJcrvC8MqANpr0gRIEVx9ZdMzx/f62mQWvZyCjbX25mB6Ps8frCpsDxSDQ/FZsZKeN9oQXhRefkEFhYh07Z/NpiKn3nddzUwnJ+3uiHHt1kIuZnvWlnhlw2ZU+UlbrjP8PerpIpg==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//Zj4REqAE/M+9K4joehcKr8wvNrIh8+pPgAAAAAAELi7TT15JU598z4219lg+W8qvzy42siHz6k+DAveVMBka77x5OvX5zvxPkMhD1yzNCm/cdK25QQNwr6nd4LIRyGWvv0IRHxxOO0+AoaHNUHZJ7+TDozi9SvWvgo63IrA2o2+JMIEpIpo7T7caYEMMdwnv869HZQV89a+ACCt/Z+q1j0eWPVbN47wPgKTBg5J9iq/kfFyCZDPub5o+hI6nfmhvsFdBk7ZtvA+dMn1sxD7Kr/C8XIJkM+5vrlyxofEzo6+VE2GtpBx7D54LI4dNJopv8NYf18VctO+WfujMGiwkr4zafX6c7bmPm+SgVohDii/mCI+Uy4y4b4M4z4LEP6TvjxHGHILWOc+dnO6BgoPKL9/bCBQHXnhvqL3mMoG56e+OI/fiYIT+j5QkqwRS2IpvzKz8VCnldY+XEYWkaoGkr7llYZ/G7z5Pjl+0bHCWCm//bLxUKeV1j743hc5cLKcvgBzaPrVMPc+Q5jvDe5kKL98FM2gP3PJPicT3/h64be+NIwymdoE9T70/Bho6YAnvxKnGDhTna8+NzJTdePWtb53alFjAeL0Pjb4qDjQgCe/VvOhvEZ3sj5uShF3lruxvlnvO7w0L8E+YNyJlmu+K7/kaOOItfj0vgAAAAAAoNK72AUZZxfNwD6Ib6tK3LQrv+Zo44i1+PS+plHBvzrStj70wRKWeDvGvhIISACtvym/6v0XrNCq9r5U5eI4CijIPgBiwK97Yt2+TP9tpD8fKL9tJQ7Hu+b3vtrUkAYr6Lk+qHMZ4r8p377qFZETRhgov4K4UnerzPe+MM15rHDsTz6JM0eVAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdwAAAAAAAAA=eF5jYEAFk8//3OnX/cJuge71/sdTf9pVMffYb6v4ZYemjOHE4yz3raJv7LSa7LdvmfDP7hFD4dxDNv8x1N2NWOcnGf/ATmNdyl2H2vd2mdveMITkvcNQd772dsbUlJd2s9pWbpU5/MVusvi6lp2bPtsBAMG8M7g=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAUwAAAAAAAAA=eF5jYGB4mlRdtI+BgSF1VlUTiFZNrkahn36qAcszMLBVQWiOLigfSrNAaQao/IEsCL0Dyj8BpW9A6QtZ+37HnLA+8svdEUKHO/5Bo2HyAPurNUc=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/ycFcy5tSPW+xXZbEq1lBb/ykC6qRacEv/Y67Qwr7wO/wqqDdhMY9L567MEpK1MFv1w1g3kDaRW//vWUakHFFL9StK4wam8Uvw8QPLi7swS/TG9Xa4UlBL/A1JeOSCcUv2g7LRulGhO/98BvVMspEr8mDvxGqkQCv+4kniV1LPa+rFayW/7fBb+a5cC+CNEEv3aOAU1jNAO/1a+/6B+Z8r4W80t3AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA8gAAAAAAAAA=eF6b0bJWizHpuMOFozH9Od/vOjCAwYS9k+/UvTzD8g7Cl3Gwk3t41K/9yBsI/3PAPgm11Ya5ha8dbO4+kmg9dewAi2TzjFXZtx14Ngcx8zZdh5rD0AClbGHmgqmpDnZg2shpH5j+FgKhHwfsk0kwsNDqu34AzOdxsHui3KL8+NNVNPNg9BaIeZyOEP23IiHmHvWE0A5a++49X7ppfuK1A2D+v2C76fJ/yn6lnXH4cqjyAxP3PYg4wwzbWWY72da/fgvhX/Lf90Iuev3hZW8g/Ju+dqGm3A7zJ78+UHXgOMNhjjMH4p6xyRc33j4AACpHZv8=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdwAAAAAAAAA=eF5jYEAFHpszy1kFb+/La85cbZB+Z5+fV3nplYq7+9CUMUxSfJW50e/RvmXRXj0//Z/sy+ncd3PJuicY6oSjZ70TNz+0T0M6+Vgf35F9CyZGz5n/+DCGuqPaTfyq69/uO7Dtjtu68uf7rqpyO7PIP9sHALIjM/w=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAcgAAAAAAAAA=eF5jYEAFm1Z3O1Xs4nB8yN8wpXYfh6M4D9+PzQc5HNGUMSSI571Vuc7haPtULN/9MYdjkHEWV8tTTHVywm+X7GvhcJTLsuFf3s7hKCGUcrmgHVOdZMqn3vXSnI7+tRl8f75yOO58YPfh1lsORwCxiSaKAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAYgAAAAAAAAA=eF5jYEAF/b/lwydV/rF3OLvVZCKQZjwUlTwBSKMpY3hgoeXVCBSX6mqdWQukW/yZO2uxqLvWnSO4FSjuPXVeEIg+F+ycvRWbed/cJUyB4jckfINsgfTlK7I+dkAaAJ6ZL+I=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA6gAAAAAAAAA=eF5jYEAFv5T+cbO4XrKD8ZelGz2/uO4RnH+PqWGaluQ7OP9jxuOOrT++wPkwUMj2+WjVEsH96e09MQbal+w8FcVnG2wU3P+/Z67fpeBHdjx9C5R8Tgrub5Wa/v3ftbd237e84uR7ILgfZt776IuuLJ8F98PM23vi+2fp64r7Zykt3iqRd8Vu8/Q3271vKe630PRavVHsiV36CsdrX/8p7r926rgwq9l7OxX1X6ZnzJXg5sXvYdut46oEN0/XWeb1IzOt/e+fZSnMkbtuB+Nf7zxWGiH0HM7PbDc8K533Ac6HmQfjAwBcp3/lAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA9gEAAAAAAAA=eF77pfSPm8X1k93KzjcaO8q09jMggw0bdq9IN3p+cd0nu/cbF7040YmQ/7rBZOrhuOR9KR8bJqz49sVO6OoH409rEfIG/1/MfsM/cZ9t1hStmU7f7Yr4H/CJXkDIX1cMnx59oWMf17zebw0bvtu94NyV0fYGzX6GibvT2ntiDLQ/2Umv/fx25SGEfMo6U49V2TP3/euZ63cp+JNdz+NHkwuPI+SV7aYXnzzRuu/itYCTaQe/2M2pSTpY8A8h/5dv86MXDl37HrloHp4x97vdVqvvAZuCteHybJ5qT/zY+/btzIs3uWHyw26CVJfE4XSEfO/3Zc+svy3aN1Np8VaJvC92b+RNfH6IIcy/v758mXxd5z5zTa/VG8W+2J3hjnyTz4uQ57sVlLrda8q+DstvO378+2Jn+WujW/RvTbj85NMXpaU8N+1buaImbeetr3Y8sVY3PV8h5J0dD02U+7Nhnzjfv9+ny77aXYn31RG8g5BfUK4lyXVw1b73z7IU5sh9t3PPz30aIo+QBwOHU7uvdR4rjRD6bpfH1D/zqChC/vjMdQ0iyhvsombrdr30+WoXdKHf7vhyDbj8LudX+148PWjH4cEwR+j+JzuxkDR5l7/qcPk3+u7+cac228m1HX+XpvXJLmOKwwSlq+qo9gsc3A0APk/x2A==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAALgIAAAAAAAA=eF47+MPFq0H4s92ndcoLX8Ro7WfZdetE+/mVdgwg8GPD7hTbSlW/2s92JtdvJvzM19pvtAMi/32DydTDccn7VI4fP6dy9KtdxC/1NUpTEPIG/1/MfsM/cR+Dw+0MUcEfdrtMxNtdtyHkryiGT4++0LFvf/EVk791P+x09D8+2HZJa3/iNiT7GSbtdoj4Gm3e98GOcTIbn+c3rf3xn4o4J5zfuS9lnanHquyZ+27Fsvnd3PbBrvjk180Cv7X2m0Hlle2mF5880bpv3fKdJ3JVPts1J5U+5DfShsv/49v86IVD174DopMOzWf4ZjdDgaswsB0hz+ap9sSPvW/fNPsTxvenf7MrYZhrkTRbez8PVL73+7Jn1t8W7Uvov9/ZJPzLzn/SGkHvJM396ps/Biyfes3uwfryZfJ1nfu+TW2rl97z08687uLGQxGa+79sgsjz3QpK3e41ZZ/zMqPepCW/7JbmaPGsc0PITz59UVrKc9O+VNGdVsoNv+1Kz2+aN8cUIe/keGii3J8N+45VWV0wlfltZ3rp6Mdkdc39B6HyC8q1JLkOrtqn8cF6j4n+Qbu0O53Tsvdp73+X8bhj648v+8DB63Bqdx67ZLr42QN2Hfmrve5s0d7/Eip/fOa6BhHlDXZrZvcEMfBOtcuzXfP+rhtCfpfzq30vnh6044fo32d2sOlC1BwtuPxrfXf/uFOb7WzE7l8oKTq2r4Mx1tGyRGv/E2T7GQ7uBgDooEzeAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//WsuBSXYDvHAir7UuzacDcFiYACNSWj0wAAAAAAA0Ii9Yv0WdnkA8cDDNHRotawNwSIY6IxQbfTANLWEFMVoPMC0eXy2bu3wwAos7+EPhwzBlAetbCuA9MBNP6xkVvNmwIYp7ztJ4PDAYq2utyBEC8HQSF1xIZL0wJlDrjsh9l7AmhwDnizh8MDx3ygZ7kgLwYj/teCNoPTAAPAXRcaBpz+ehorWRpHywIa4OSbBkg7B0vesHfzl9cDoe3iPO6RywCIJMOaRifLA09UdgyGWDsFJUaktuuX1wIUNL2gx81/AKsEjquxs8sDqNA+mjkoNwcMCH5iN7PXAShvqlc1hY8AS2Z2YUFTywL9LiGWP2AvBr43WK9T89cC0RVB81LtkwPKD4jdoQfLA8K++0S3XC8GxnGdSPP/1wH1oUVfoyXjAKmiEhdVQ68A+99Sxe9ULwV5A4MlBZ/HAxF9YysSxYsBmAy1pR3PrwOeb3I4XzwvBAiSbsHRo8cAUptRQ1MJtwHky7cA70uvAfE1RClP4CsHi6NjNN5TxwLvDueAnxIjAvzPiIAEG7MD3wLBgFysKwRaXzfscr/HAB8mI8S+mhsCENjkq9RDswPImTiaQKgrBXP9+BWem8cA5GegL6GOCwPTP4pvpg/nAL5CGT1+mEMFBump9+sD9wAAAAAAAQKO9z2DdR0B/+cAqE0u/I6EQwW+IFJARuv3AVKDZ89iqh0DYaMfT6mn5wBPm0piVVQ/B3FBcj1MP/cDtK1/gVA2ZQLz7q7uWefnAw9Nelt7ADcEW5TUxkYL8wIlhOksT3opAU6Mit+SR+cDQRzhQeb0NwYcqbjM6gfzAuJMZkrqNIEDNDVgQAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKgAAAAAAAAA=eF7jVpJcL85W6MBNgPZcef8OszZhOmV9sIr9ngKCdBoIBBURpAHWADmfAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKgAAAAAAAAA=eF7jVpJcL85W6MBNgPZcef8OszZhOmV9sIr9ngKCdBoIBBURpAHWADmfAQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//ozccf6Tt/HAtLOqNmP2DcEesABWpw71wMq5vuDHamTA5Bopx76k8cAXIUHWpA4Owams5M2qFvXASARrUpDSeMBUJvmfBG7xwAGfEk5xdQvBkf4FrvMQ9cDvVnNVNnB4wPbZDegkS/HAa1/hotNxC8GsQib/ZhP1wCgPDU3eRXDApsbt9Aik8MACEgmG3+oNwf4FDhzPLfTAtEtrExSfV0BaU/GKVM3wwD6wWdnREg7B4P5Op4dO9MBCt0GeSo50wPbN5ZzQQfHAUkorQ29pC8HpScSmecP0wHbGZxN3LoTAMiSv9Yx98cCovVFbLIULwY4UsVVG/fTAgS+1jsA6YcCTG2GGdSfzwHTay8h0+w3BPhG0emkl98DTZELBZ/5yQIZQpif/EPPA2c7k1UC7DcHWG493rfz2wCSj8Z3PZHZAbMThPD3T8sAuIJ5yuacLwViHQwWcXvbAKuhAta+iRsD4sgOcYLrywAYWkezdjQvB+x2gaGwl9sB1TEVjsxlhQHtqzew=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.3000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.3000.vtu index 04802bd4620c49e8f57e70f36575421813f6e7f2..9f07b285bfc28e7a801406d6e10b9b43294e8750 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.3000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.3000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00039143901283" RangeMax="0.00045795104802" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00039143853984" RangeMax="0.00045797989186" offset="1620" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.000129864355" RangeMax="0.00022377195598" offset="3136" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00028934495577" RangeMax="0.00036613811469" offset="5224" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="8.3807851687e-05" RangeMax="0.00015415267544" offset="5796" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="147861.53567" RangeMax="169653.26143" offset="6112" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7799126964" RangeMax="1.7800877871" offset="6428" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="159679.2132" RangeMax="285093.18728" offset="6712" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00027719193111" RangeMax="0.0003180552867" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.0002772773522" RangeMax="0.00031815925415" offset="1620" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00019425808938" RangeMax="0.00030807981628" offset="3132" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0" RangeMax="0.00012429118767" offset="5188" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-7.0955530745e-05" RangeMax="-3.7993558206e-05" offset="5740" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="215666.80106" RangeMax="230309.52717" offset="6056" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7794242854" RangeMax="1.7795494675" offset="6372" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="294529.78636" RangeMax="439375.0198" offset="6644" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00012938340502" RangeMax="0.0002374583143" offset="8796" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00027905461286" RangeMax="0.00035617849739" offset="9708" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.0922862526e-07" RangeMax="6286116.555" offset="9980" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-3.14304715e-05" RangeMax="2.8059450102e-05" offset="10140" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="8.0882693978e-08" RangeMax="55224.357354" offset="10412" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="0" RangeMax="0.00015607236518" offset="10828" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="175977.42965" offset="11028" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7800919139" offset="11228" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00042426406871" offset="11412" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00039982816832" RangeMax="0.00044803067021" offset="11760" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00040254297094" RangeMax="0.00044798505247" offset="12464" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13236" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13296" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="158807.51517" RangeMax="308290.56596" offset="13356" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="265.07314532" RangeMax="303.15" offset="14268" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="265.07314532" RangeMax="303.15" offset="14372" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00019477777748" RangeMax="0.00032037144335" offset="8716" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="-9.2623757695e-06" RangeMax="0.00012115696647" offset="9628" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.0922862526e-07" RangeMax="6286116.555" offset="9900" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-9.2330459014e-05" RangeMax="-1.5336369887e-05" offset="10060" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.6379788071e-12" RangeMax="90247.055896" offset="10332" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-8.2923644316e-05" RangeMax="0" offset="10668" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="235651.80493" offset="10872" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7795573391" offset="11072" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00030149626863" offset="11252" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00027691930307" RangeMax="0.00031297161906" offset="11608" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00029039532642" RangeMax="0.00031653434695" offset="12316" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13088" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13148" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="290741.14607" RangeMax="464267.11576" offset="13208" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="265.07314532" RangeMax="303.15" offset="14120" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="265.07314532" RangeMax="303.15" offset="14224" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14476" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14544" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14612" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="170628.93179" RangeMax="253588.17031" offset="14672" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15244" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14328" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14396" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14464" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="309640.51198" RangeMax="405525.44136" offset="14524" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15096" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15316" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15168" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15464" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15620" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15720" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15316" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15472" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15572" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAhgMAAAAAAAA=eF5lz2tM01cYx3FkE6EjCiIQQDNBIgtzJr0pkHKOSFUKKSlBijhhg3CbJMpwq2IALUPpBCK3MgoDOhBioIzKpThxBwobpUghAxXUWhkD1LLgRM2aGcLe9P8/yenz9pNv8nuqQJnf4gQTdhQMC+Z07EE7642mqTMU5ddRhWxowX3B1iPK+d3RKg2qsvbZ3zBaXv2Fffu4hyLWvhxQPekeza5AeK4TxW6+wruUxYIPMrweizawF5x2krt6Xgbecabzy5m27jke4RDq+yvd60dXHbfs59AeL38dVqzIpnvSfZ+N/3bVGyFLx4paxz4Au08wja1M7Gf448eGnJvBPwpeiKuRC28RnjbDPsbRDwGqf1ldMTXjjJ2t1CY6m/oR1ZsJT/xlZ610MA20PRLfyg/iwKWacxsxZvwfu0iuup7Sh5ZjcvfV53Pgc8J3KabMm1fUdM+75NL0VI29Rpi06T/fSkD1oYRvSzB9xMj6HfwU1zyw7MCCXpcDGvSpeJ9WnleElN0o027IP1Js6xdaPiuci29FSmufkzGc/PgE9pKXRw2ugjZA9aQvBDkFfu7VA1zebeXpwllww8d4Up6IvZuRz1i306Cc4atdb+eZcJ3wfy+GP+kXjCCqfxpocvhagj3OfsxkKTbQvYnwnXnp3ooX0yhyMtgNVXJhWV+TxLMEe6GHLMrndR0Q69fu7fbjwmuEZ5w0/9Bcr0ICa3/cYqhra8cuMT97kzCoRVQvJlxTGPVBOn8Claq/0vB0HCizV0TfUWHf8UlD/bcu1SAm1MdXEMWF3xM+ozvy89gRDaD6ibedhtlK7GNOqDeFf4/uDYR/eePAvh/X/gDBqX8uGUtYMKnWvd04yaL9/s24WMuOGtQv6Fh8OGnrmUJhr8pODoKs/aEBVmkvwg5b5yXS2h5A9aRPp+hvmxMR+PTUVkXLKyYUuTFO1TZif18fxlM+KEICUWNX1UWWjd942Le6WjZK9wWtLKlDPHZtR/DB9sExQPV5hIdPPqrOFc6B0l1C6cw1DlyW7QdagD2XIfZJFs2BlKjvJG5JbPiC8NvcLMels7OgzNovOin3fsjHHhLZydtw7kJUv0D4tGWT+axjD6pc8dQeb+RCzfra4ZxU7NKQWU2faAD4LRZrAte5sJfwpS/+DigBd1GFtffeE+av78f+cfDp+QvZU3RPOkoIl40cbQD/Az0FK0w=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAUAQAAAAAAAA=eF5F0Is31GkYwHHXjpHj7MRxV0ihUmbMIPG+O26DTKuscVsjilnZPdiVnS11cGZRLqOYNOuSiLZtJOOWdr3jkmtLK4RCrFXbuBROwh7ZPacf7x/web7P85hWCTZW+ylQR63pm5Yma+mkWzcpzq8AtIff54qyBYjkOeh3q4MCqY0VAx5/WUv5KWDmcuxDxMx2kRwT1yFTwo/Kq7SPjGKv2a0l8lHIBtsJvyZ5bxn6EXudEjJgfV+Bpn9I1RV+R4WM91rr9ivYXzxDEpK1E8EVraXZuGNU+FW5UniLLm3La3W7b3M0bkRThLf5cnb/wl7alj8hXGCkimKAkPDeys9zeO7YG73sfpSih1DazvnMMXsbuOvVwQ3BPuyjXLqZTWolIDLoeOWNZjq0zzPganthH95vzaR1NYFswvubCBYblbGnFDcHq43XIy7hY/sTAl3NsA9uMLieJA0HR7wCsnIgDZ4wjTVxmML32/CFYkFYLQrRyLppcYoGowc5l1uVsDcUPZEpz9wHtoS/rabe0nEH+2ssjvya8VUQSviWxn8tvniM/08OGN+uGtUGSCG72+SUqVASX55TGUGTJqZGvuWGXEStwgQ+Kpag9XZ22doDKkxsyDbQVaBJU8qq9hiJhwGv1DJ52K8MbXp1DsO/KRD79DduPWSPciDf8cmPFu+ftFi23vITdqR9QbrV4NxHgeskgwrzdgQdPx+CvUT1guq6XB1SumRoVeZMhV/7uj7/ew37D+ecX9R7tKJ4wvOMg9fZPOzZCp3jK6k9SIXwzNPMlCYNvL9+QoSe6J+nqGLoocFwNh2aiHd+u56BfbJW2lH9hZ/BtOCSVx+fDhfnVZYjzLEPD5TlleSLURXh5+a9rmSIsefJXi4FSJvRHOGbKbZ6y0zsq5OPKka4/IHmG2RSdhsNGq1quxbfw17TvDD/7Ge54LWi5OZqxf/zjyj0kjyx7+9wvdfpWgcWCB8+c+BRYy72XSRUE+byGMwQ3u6gNsvMCnvOLZsDBYt94LVHzCtOBhWKJSl3Anup0hhG3Sj585Ng4BdfnxXNa2g6Xyb5iUOBVm7PXlhCmtR9TNVAQ/kD4rJYNWI5IZARPnOwNJ2KqNKpXZ+8Q9lEfNL1arDpNSOXGpUPYT8Y1vVAFozAKKNQtOcdBRZZng/SKsJ9wwKGQ/EgH50tGbvgpEqBJs3dmW/Usb/9rHZ+PrMdjBG+R1qayGfjfuvdw7a/SjvBpvf2WZL4dVhveffekdwfWcPATnE0yTedBqmlNxwhwH2eKls/1HsYZBW2uLTMUSCyeRu9oxL7GnqUynT0EICEP2RK3pvsjPt0zwqHDbVKtOkl9Sf9fWuwf7oiL4tWqUZOfeXNz4rocJvOaad3p3A/yX6ortb7N+Bt08EfyaDBtLvVca0D2I+FzJqlg98Rk/BcR8luZj3u6x0+M8GLebLlZ/+UZ+uZ4/+hAOe0VrdC8B+aV94VAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA/QUAAAAAAAA=eF4N1PkjlHkcB3DzyDMYo2YelEljDNMM6VpHrp5voZRMjq2UXIWUVFsStRVNdDkSUZmyxbSmY2Wc5Xg+js0m6ZRjs3ROzUo6XCux8we8fnofwT3NAbvoBLLiJNsOVwhBt6QLs8SYIP5j31QxN4mqYXC9pswg0J66d7N8DEXgYCRzSqllQszFcc0nPtcpvfTiEF2cQIGENPiUUgiXP7xLXm3DhKRu1+7Qh7tJx7OeR3KMCOR+8OTQB3cRyOXTS9Z8YkLk59EwXKuAqhma2jAmJNB/50X879lCmPLk3p6kGCaEJvjiMwpcyJtzc5xD7AhkWES3j8JFcHboSNZSO32wSW7H7iwupnrdVKufziYQTWBiL30rBJFixNyrmQk7uask8U0cstTeuv+HDYEUZQGDFmtF0HL/yZpFp/RBkLBWNbizmDJTtVvOCsWRMmVcJ2zUFLb/fa7sRyUNfLv8w1c3Hie9CqO/JW3BETXfrJxYxYOHbftLGWYYsAKf+00OXyG1OnUN6oJwRERoFBzvMIXYL5/D8xQ0uC8Uf9RwyaI+zV4/TI/AUZQssCHeiQeTI92nmzgYTH8THVyWspMUuzp6Be2gIyxtK1/jJg/eiZeYm/AxqM4Xbz83kUUNjWLcOH86inFw9B2t4MGGFFXfoV0YJDMWLm/zziaXS9LIg2pfbz3bV/sMD+5OKBiJxhg0JxyW3lXtI38yt+0Xqz1/wwxr7CIP6JJ845ItGIRp3iaUEYWkoWcsYjEJhG2XffNWiCAvtz9bvlQfwu9XF/o/u0q9nv4+rnyYjSLrb/h1CYTwSN7VHsjQg5v8eeJ7NCll5zkpDFT77EQjZ9dLIrBa8vaV8xx9iBI5rfTYnEMqp26OK1J7vbPfjD6xhCD/JV1pOMiAK/gZvv2WK+QPy7wJi1kEuprDeZkQIwKeZo+Dh5s+9PX0uNsmX6MWLsm0kPSyUeFvv29w3ieEjJKBEzDJgPe11Y6txZVU8DOvf1kcAuFW51Kc80QwK7pj5No2fagZMBLOya2n6r7cvurRzUYSzukx1WUhpI6OdfTM1oP0j2WahY+bKOPGp7c2LsdRcJGdw6oDPBgPX3rddZAG1B2vXCn/LKU40lJf24wjr/T02DQhDy4lSMraDGlwoNGmr66pnFJaWxmOMXFkEHC33TiNB3hep2nlAA1eSJ8rUnZkU5f+ScrcloWjY8cW6/Wp85/Js9b2Y9OgP1Qr4oR5BSWdm6HoPYejo/KFzMSXPNgyWhjAFGCw+La05+iqq6Ty0FMUvBZH0a7fU4rn8cA/yc82bAoNjohyLwS53SKz/aqShFIcnc8MUZi18SCixGfklrqfWy+eV5SVF5NJT0YCZP44kh4/yLjA5wGn6/OUcQ0a3DHZy5W9LSNj7B+6NzoSiD/SYHo4QwCM5M2PEuIZEPqs9XF9w0nK86GRW8hHArm8S9u038AK3Net3EuMs0DHlpGfJkslXdxPyBc5EUjKubx7QawAlPkyN/dABswdMS62m1NIstH82uB+Ah0qkm/tGLWEeRkfbNYOsMBF0jpzKKuMVM4L3xZrSqB9OaXLVtwRwEQBrclHyIBDlZHd018nUoUFcR3W7QQy2B7Vq6NjBZFu3EX9dSzIDbouNm+rIf9a77DB04xAyRu7HW8sEUBnxFP7KLkudBKaYYaCcvLPdY6bn3cRaOw52etw2hJOjLy+FnOcBaGpVeyQ1Q/Ir1+9099KtFHAhcbhWB9TcLscvaljBgadgzXKz/QKktVSajIRr42WV2u+bNbkg39dnozjgUNk5gsq/kMDabnYauv8Wm3E5uyq4q4whWVTE1sn1fv1/bU6tTkmg8J03Re0VmgjLjPO4i7Gh/Y3LbKAn3FoadVUObzPIV/p8Wqqpmmj+pbiV8p0LvSf/JZZpKJB6RlvUt+wkvQVVNjn29PRd4vMPrlK/R9VwbUP6rVAJ6jPN+H6JdL79c18P7WfZvDldng3F9j+HfPH1f3lyL94OmWWk+yeAx6UNR2ZaDjiqSwzkFD+hxe1akHDRrOZwoEL5P+fN74LAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//iERDHJqBTU/zobenJvmND+0sFNeoQo1P0Mlh/TB6zQ/wqNJ7BPiNT8bXnP18KM1P7fFIyOu6jU/XpaVR46sNT8FYno6x/43P6MdelvOjjc/bEvN9pbvNz9kN6ZAGH83PxPFdVLjzjU/7WVTt676NT+eD5eoJrY1P5r7nihi4jU/fmgqKXdfNT8kAPOb8ng2PzG3u9EoXTU/d90oIb12Nj9cJgqU4641P9ApUf/H3DU/UdF7hdSzNT/YAzj/+OE1P76GqSdMgzc/6c3ekh5UNz8r+efz5Zk3P/YPhM0sajc/KDgn0tLANj/00Qs1SpQ3P5rGk93EtTY/u0a/v9eJNz96gaZ6gcs1P0MiS+rgnTM/eF9Q/svINT+tf92HRZszP3RzGw+F8jQ/Pt+3spAkMz8XePpieuY0P/v8GKGPGTM/Y8wl9lhPNT/G1S6SZ/0yP1tdBLk7SDU/eiFPH2f2Mj+C7QuQs3Q2P0sM/FNz1TU/QTDT3g6WNj/MwkYFo/g1P9hJrwA=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//zXYMX/wACM/dYa33+LvIT96lnxWJjkjP5BrkPy5JyI/24T/aQogID/j2zod4wQgPySwCpfMdSA/CB+CEK1aID+7wAtprmkhP9oca+DIOCI/ttpOQ1RKIT+poHmPvBkiP0JfPgDZ2h8/LGGocbJnIj9y2oLYKRMgPxUCXqD0jSI/cYO/OeioIj8o1UeQHCgWPw2LQC8ujiI/Ree27T/4FT/+gjBmgTQkP5oIxJP6Nx4/YRrK/H+3Iz+sTvObDEUdP+mOTp0=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//2SuU0/8YQJBB3FF6iutAkGR15pYmVICQZuMuoegnQJBSm//iMMtA0FLpWso0jUDQevcpv03FQNBCCNXezsdA0FcIfz9YdICQbyOYExglwJBMXRF+FLbAkGIYlbpHKACQZr6Ipc1PQNB1fOCVdGKAkGSMjP+WTIDQd1MXMA5gAJBPV2W5PV2AkFsAxksUq4EQRYHweBAfgJBMrRoF6q1BEEvMA9JrAwCQWvFUWTGewNBxFrtp3QuAkE27sU7R58DQU71S7s=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAsgAAAAAAAAA=eF67u/rEdZnqP/aKNvefsAPp61nlHxSA9MHvXX+5gfTK47Hhb6r+2M86wnP9BZD+2rV+9ycgvWNfrPV7ID05M+jXXyDN4pnKKgxUH6PaWP4LyN+SM7GJH8h/FVo14zGQ37Z+zm2Q/IzOtZXPgPzKI1f2iAH58j2L7isBacdDSkFtQHFhl5OeIP6bjT57WoH8aXtuhNgC+a/Lz584A+RffGLFbwLkb3YOaz4M5AMA3EJqnQ==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+QUAAAAAAAA=eF4NzQdXU2cYAGBygyJJUxSIslwMV0U9SKlWKR8gGAUsHFHigCJGbUFQVhVR1iGhII5CHY0bGUUjSosyivB+iAJVRhJWwhBCkR4CNOQikMQb2ucPPD4h8ZHfsCRg2rpB2HaPga1s39/NtqKg8oY01bMvEDK8Xnp5FErhdJjTly7LmPhPWfiRx2IK9BF2QuHuRJibMKsZGJTADZMkwze9DJy5K/NaWSgFvrr1zbwzHuj5g6sJLefaoQLRTdYeYuLobWJhwRI9pMlmNJcrY2GRXwKr/pgYrt/LEN5PYuA66wDK2okC/1l8ZvR3Fprq9zscHCAFaVGX82kzJg593TPSR1EwFKqcHOxKgW0MOaPmlQSokZ25t4YYOI0yH3L+jQJQRffdrVe6NZrO2hg9awc7Obsn+SwTJ7bJTEWxeth6dPn6SUYqhKzhe7d/JQH37ZSDkRWBK0am3CPcSVjk807Rm89FuYMtLCpHCsK/7V5HpxD4TcRkuRkmwYiVKU5/EIMOfl/h4j0nhpikVP9z8wlMmwl+abaJhIIdG4Nz1Ueh+P3OlQNBUti00lUnPEngecYNbnFPSeCWc5/mP3FDp4bu8AYvSKA7ofzfRR0EjrWZaL7aS8L2Ee5gaDUPmoKszF0tpcAZ5inTxwic4+dbVLtkCvYWrmtcZnUcBeWnm++1lACdHWVeW0bggZPccH8gge7O8fZ8tRPl3zHbv/m5BB4aV+a5vCOwyH0wLk5HQsj6eJLyPIts3i68ZMvrBCX3sx8C/2ZirqhrLLtYDwaTNolpeT8CY67PTOnQCq9vL9qle2+Mzyf1X9/C/gSLF3vlryROgv2OCI9wRidU3rm/Ov0vJq5qOKSwuaiHhIl+eY3LCfSwTSUfjWuB7/w8vvV7Y4x9DIm0rGkdlGTTA4OZMejq9OawLq8OcLQIHbX+lYlvRjpwD0fpYRdh4hh95hw8T7/YCMZiWGIkCvJyZ+DUf81rC4I/Aa/EyUz080/QPs++kbugE/oFEe0PWpk4f0XWrZZHethXh/hu7jmgcDrCPtUsBt+DyfLuMwz8Xrz07EXhJ9jS/bObS/ENsNLI+gcOtEOtm3JkwQsC95e+ZV7vJOEggxyvGuQB3zDX9pmPGPz5eQOPNxKY58auLppUwxqcjOKuCaDm+6MRU5YdkN7i8SFZTOCwXhlzh4qE81/Zeqm2HIeHzn+wm40l8M8xncsTHwLXB2TINUwS7NmHwkQfBfCO6rG2WNUBZHzVUNxaOq6Txm+P2DoFFsV3IwvYPyK1vWO0NU8CnHm2kfc8CPzE/Flz6XwSJk6Z3/7cJQWJnl5+Matqh6CgTdNcKzpOUC1JtF4/BWM/laT4B6ai16fdY9ycJHDARp2n2kzgkoSw1jaNGnY23dz88REfIWmh1EEMwBlTEPRRI5xJpd5Te2lBrtNqvcsPgqKCjLo/vxc6FgRUzEywcLLxuir2CRr+RKsbjywLRvF2qsosqIWKkDzSssEIP4oVd4uXamF2nDy/wugs+iOp9cVQdg+4tr3kyN+ycEVXyqMre2nYXhjF5QTxUVX3YoHj3joIpTzHTyxegDf8Yr/c4f9fUfilnpsWAGs1ndLqgR6waReNlclYOEw7V8TfQcOjDF+vhuFLiM05bqUJqAZ+muIDlWiE24w5nKc5GmDNy1791zgf0Y7EznKaZJD/WGzZ9A0Lx2RkFfeMG+DlcsE+1qE76KNdjX5Y0QhtiBfyIYOG2cMFV8V/qkGrLKE+lwnQxaZ+z9WoG1Y7clWCKkP8EIk27HaegW2ZBnvUt3JRpcb5gn9jA/BuO6v6LtCw5Vypwc1SNfSY5xeTJkfAf+HS2sDyLmAp0C6izBAv1/rYujrOgPOVyNC7cAKVCioK7zMaQXFlf1riMhquXqF0zTumBhOKUbdKlYGmv5bcclJ1wsa0y2+zBHRsYWqh3Lp1GvasjNey66OQaZHBbfG6JpCtSvDu8KXhpFeDXxRdUoP9zXCWLkSALOrjLI8JuyAnRaNF5XR8QKnr3MebhsM5jqKA4XD0H7QDNDU=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//cZH0hTfARM/SokUowODJ79FDkI1iasMvwCrKRwqiSw+PAqgjHkREz/AnF6ovJInv9pmVAv+Bg2/cLCBuaXhmD5HlZaM+1AOP+GA1Zi+3iO/UVs4xAmbB7+T66KnHzyTPmSxfFSz5wY/2Hq1dmk9IL/uyY/32MgBv1BaBVFJ36S+RC4Lpa91Bz/6/lekJIMgv+jCx0Ue+gG/AJ3TxjJhIj4mIJ+D2xkTP9QwkwPstyi/TNvNLK2EDr/UmH9ie4GyvsiU4/hiKBM/9FeuJrGcKL8zk09KfacOv842jHbICJi+wdHRPQxZDj88wMvUZakkv7rtoroiswi/LotxwwVtp74xJeLgeosGPw5ZVuWKuyC/nkMamDtnAr8CRBgVUheMPqj//yUlAgc/2vaWjVrTIL9vrwaJ64QCv+6lKWyUpLE+Cq+xjm/zEj+a3L0O2UclvwIntZvJ1Qm/Vj4V4ayTpb7ut/aXV+MSP7UBPi9YZiW/LlcJ7nitCb/v0kNuhZqIvhIiRoIWsQ4/fEVU1hJpIr8EA9PxeAYFvxws4hdrCqa+e5Y0zjKIBz/ldnzxML0ev0lnMizZnQC/gDguPFXAJj6qdpixL1IHP9D5UcX1vx6/tJvQC3WTAL9+2f8ZYFq5PugujEJPLRQ/Eg0TScDFK7/8L9F6uo4Tv2CP0zKPiVy+MWYVKm0jFD9+87NcvK8rv9jENvYIaxO/1z7Pm47hvT6301sJDScQP7y4NZ5Y6ya/4CYt1NLhDr9aRlnsOBDRPuv9HrKg2wc/L498xG8qIr9mjXX2OIMHv4g1QWrITWS+C8T8fI3UBj/RAWPcyrkhv87yvSuqOQe/QB23SDdOZj5vFCocAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/4rQuGPGDjU/aNo418KGNT+qCZ3J6Bg3P67qTq2f7TY/hA3lCNmcNT91HJ2+X+k0P9Aq1IR7PzU/2Sq5MWONNj/WQmADuuM2P1x/c6vgJjY/QFRO3LG8Nj9a/KWzKj82P7yOdqFpOTY/nkU18QgCNz9mm3L/rlc3P9rXFaK20jI/iqgrltCmMj9w5p9vwkkyPz4Zx2hE1DM/RZU7DCTMNT88ckeZAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVgAAAAAAAAA=eF5jYGDwmRCQu4+BgeHMxIBaEO0zCUorBUHoS2FgeQaGGTkQelYNhJ4GpWdA6R6o/IFkCH2hGEJ/gNICJRCaIWWfTnyL8slf7o4QOhwH7e4IAG/SLzk=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/26m1Lpik9o+NK9JmpZm6z6wvVbst8SqvuDIJiV16O6+EKHyugVQ3r7kiQ3YnM/pPvY08bLOZ/o+UsvnSpSyyL67WgzHhnoAvzi/euzxP/C+Hte99YsL7j64WIG6Jmz9Ptg7q5Y3Tqo+jwMcvz+r+74AkWYE4yXsvr/1/6d/p9U+yEm2YjPj5D4k0lyPNarNvppQ1pHagPG+cjfM00XF4b4PzVwaAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFwEAAAAAAAA=eF7zWz9Hz9N3pUNt/dmaH+9vOTAAwZfU9n0qKwryub+/AvELAq0+2Lnoz7kQsO4ZiP8ged6bfU0uRzaf7H7kINhaUfVs94oDLxyqBW4dv+SwTSPD+eTPXWBzGDLj94GoCX2lYJphm4sdkHT4zv3BDsxPnAcS33Bv3luwfMGMXft4luy7Kxqz6wCI71BRZBdl7uLk6r0ZYt6ccLC+O379YDogdRKIbjj1ZSPEvGv+YHMq+2+A+ceOH7ALj638vM9tG9g8g8mT7VzqZFNbF693kP6/ILLm8y2w+Af5Grsvoh/K5jx9BeYLyU3a55e9e63z4WdgfvP163b7hLV967Y+OtBvadASXbn6wB2n+eZPMy8dAACtiXxKAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFq4MN2p0ClO0bbOxcLe8p2j+8HnddZr6CPZoyhn7R5d8qAhTtl+bc3VSfrmD/5+z+71tXyGOoqzrzvWIDi4r91jdGPPmeKva5JVMyXpeoYKjLyW70FVkjYP96/89TN2eI2huqzBLbbCJpDwAPwCp+AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdAAAAAAAAAA=eF5jYEAFH+I/dwn7MDkqsHfdWLGJyVGg7OhSP05mRzRlDFOmCs7pusnkeCJpyc2/UsyOz2r2z4x0xlT3YvLchHmCTI72R5bemM7I5Jiz/H9n8ndGDHU6O9/me1ezOrqUeSVW72NxXKQqN73BmMURAIwFJ9g=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAaAAAAAAAAAA=eF5jYEAFRZHPmJSr/9grlz3ZyAWkORw3RX2r+mOPpoxh/4GTKr+B4memJEa+BtJ/krYLP8airtWBw9gGaM6D52Fv7IH0FJFFKxyrMdWpRc2w9gXql1p5fWYlkJ7htOPNNCANACnLMmk=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4gAAAAAAAAA=eF5jYEAF9S/ldJSOCtrD+J+ru2JPSSjB+ZO1d63c7aQL5ycahRporTSG82Fg2fJruaJBUvuX3dW7ef2loH39HCvlr5Ok9l8T8at/qqFkH+xzIeHqP6n92h2bVjxg07Wv+dBx88xKqf0w89h11f1lVaX2w8zb0/JpWdURrf3JFcbskcVC9pu331mgdF1r//uPa58JAN03d5r/o2Oa2vuzT93XaZ2iY8998cLszcracPNmPeI2qzisBTcPKr6/1zTycNRzIXsY33n3u0Upp5TgfHvxpTeSnXTgfJh5MD4AoFlqQA==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7QEAAAAAAAA=eF6rfSmno3TU0H7v3wShCXuN9zOggBXWX6q7Yk9JGNnHf82+Zf4OId8k8/20Y8dqu2vbVk3WSjCxd7Ccw6FgbwKXFwhLXbpJY4XdhRfyzF2WpvbRW9QWR/5H6G9zv5ukUHRsX1zRg1xDeRP7Y4mxv6/ORrN/BeOe5Xf1bl5/aWjf89j0b7Qwwnwms78Rb80P7Lsq4lf/VMPI/njn0h+Rigj5DQdkQtO5l+4Ll5Te80XQxP7Hht2aofEIeSkW5Zkv3k7f98Y/5mGepqn9iTl3thyLQsjfMLc8f+XM0n16O9/nP59mYv/lZYfGLCGEPE++hc/HqRfsUiqM2SOLjey3+Pjbf5+HcD/nd6NXP5dv2vfu49pnAsDwe3jBM3pxG0Jeb+Vhk743HfvM+dxW3ogytv+0ztBFPw4h/2W34SN99212F4v+VDpbmdqnFb4pE6pDyF8LNXhc3r5t3xqTqenzqk3t10td9LqyHiF/ZY514U2+G3ZdppGHo54b2XNcmDzt2BUj1PBteLXbcfe7RSmnjOynNm+Zf2oHQt69XNg9+MBRu4qaH2XbzhnZm5l22F6xQci/uC+07Ob2B3Z1K3fvfd9uYt8X66b+0RUhP8GAeVr9mXP7WGdzCTyUN7O3PPzW3usauv13dgMAmKHiYw==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAIgIAAAAAAAA=eF6zv37weO0NQ/uf/PvKTFYZ71968O2i2dGb7RhAwGGZ9bZM3Z+qOkb2s9hP2t25Zbx/CVS+Reb7aceO1XaTlvjqtxWb2Fd7/8w5om0Cl+cJS126SWOF3Zxrh+Y99TG1n32smf3fa4T+Nve7SQpFx/bJJjRz9hqZ2DOU7Iqv6kDIg+3fwLjno/LifoXDhvbOcw+6CVuZ7P9x687RJdGH9zGb/Y14a35gn2L0IVM9JiP7BmdDJ0EPhPy6AzKh6dxL9y2M7y+yfW1svy7LvZinDSGvwKI888Xb6fsMpl2Yvp3J1L4hLONfbSNC/p655fkrZ5buq/ifrGZQYGK/crFIUaAlQp4v38Ln49QLdgJM12/d+mVk/+/Q6uxSceP9ZWaFJVYfHtixfTd69XP5pn0LqgN3TZpvZK/nvqxd8b/R/iSofMTKwyZ9bzr2PZ3+sibqkbG9jWpfwdprCPkvuw0f6btvs2v9M9/36EFT+w3PPRZP+IaQPx9q8Li8fdu+jH0W1grMZvZ/JuiWB2kY7/eDyl+cY114k++G3a7Hzfs4PxjY31TMnC1+xmR/mmyor0Dp/33g8L3wandepuQ84csG9llXO5dIbzDZnwiV9yoXdg8+cNRuiZZyUep1A3uB9lgnVROE/Iv7Qstubn9gtzr82Y55E4zsE9ZL6zjZIuR7DJin1Z85t8/A05R7goaJPa/oYZfZZ032xyDb73BnNwAQKTK2AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//TBUS2SxKdHA8JockzxbCsGHJWzf0b38wCCSyW4GmP0/I5weJe5l0cAoQhhwBHQKwTrGQuna+fzAKOQyKNLNaUBkZin9Vi7SwFs2OuzbZgbBnhjWMQBR+MCQdDk8s/JjQJ64YFRW69HAoGnFaSZZAsEsnvbtMGbzwCIqkJJnpXXAsQfUAWW70cBMpcy9UqACwaGqUfxUoPPAgNa4U6gP8z/sVCa1DHnWwFBdyA978AvBs/LuPbvQ/sB0TbdeIzGDwPoXSuee9dXATZnxNmnRC8E5rI0ZS8f+wN2bqW3q7GjADqW1QYTG1cDVkqFv+G8HweL2lRK0oPnAZBiKQWFLeMB95zXZpvzUwLivjPTmBgPBhbjhpsdC9MA+98zN9SFdQC9S86QBVNTA27LZrwkZA8Fwd7eIA0/0wGhN9ZwLTIJAPPVV0mM1vcAM2m3KjHcHwS6mxvEKMvnApqklYXtgdsCEEQauSHq/wB+nh3cqmgfB8uNqxcM7+cCEWpO8DoRZwJ7YELiSHsTA8MmKB5NiBMFK3h1iRXr1wKSOjbKg23bAm+qseUDqyMAY69ywZiQBwU4GDuja1fHAgHS7kEmY9z+imnTAUt3JwDqU18q0KgHBJN+u8J/c8cAiD8J6BkuKQCPvKX3HsOHAI0YKQ/AXEMHqQJUl5v0CwaCu+kRvmC3ADahLtiaD4cD0j4LWWQgQwZa+huDH4QLB5lFA5C/9jkAEm4IW6VDewJg449PzhArBrZjZ7VS//sABJErpL7KhQKBVsyijQ9vAOGXfSXQaBcHUifClXi/4wOhGv46BDjXAvxerob3k28Csc3/uwasEwWIvFQg33PfAUE2ja/AhN0CyvFhTAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57YKEb++F/gcMDAjTfa9euIPNCgrTGkZxZ2hMLCNJpIPCpiCANAAkwR1A=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57YKEb++F/gcMDAjTfa9euIPNCgrTGkZxZ2hMLCNJpIPCpiCANAAkwR1A=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//uIXl/oLRNPAEaWyeH39CsEcuS2MJJn9wJmnFfBG9mjAGpI3pLkK08Ax2GMPi/sKwU0nwrb20v3AW4asiBffcMAgVhvsfcjSwCV+041jQwLBzDjjvYF488DOsT+STMxQQN9lpDhpmdLAtoCLJKPQAsFKDhdVBezzwItgw0JF61tA1rqb8f3O0sCMQTlKSNUKwVZxAjobUP3ALe4lQlrzO8Coav4BWInTwDhROfx2CAvBLzO3CleE/cDaB1kMlGiOwKyl7KBUMtPAKdV6ebiAAsFJupnrHnHzwEXgwrrlKHzA+G+d7Vqr08CD6IN6l64CwXLSLFWCmfPAA9WRvgmQgEBqRnRvDvvRwNwf4L372grB7tFj0EN2/sB4xNK6Pt1wQAYpcrUGetHAazen9riqCsENhqHCJQ/+wMYtIj9YFotAWIct0EUT0sBEWAtiEx0DwQi1kTi88/TAYENrI4/ef0Cwcic2VMnRwHEG5CNHagLBKyIISzZk9MBtVEzYvVx+QDUPxSw=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAhwMAAAAAAAA=eF5ly2tMk1cAgGFSUVFm1KwqItJp3QBBWITJuHi+AWqsWAQvKJaJ5aKAiBFsaKuiVCyxQLUWU9GQ0ULBAulYpV5wOy1rrSOyiyAM8AIuhiEiimJtwdufr99JTt+/T15mEzvsXjSNWHObE+MxEmxwIVvsGvUweUk+rHZvuK5kOXtXm/XPu55yyCT/Og7dUPASuazj9ar3Hw5QP+4p/bVeLV0yqMnVf8k30ogiZSdv2wTyT9nq1XulafDQHknL21EacRLzx6/k656IFNQfbm9/FPYe+axlXLGbogDkkj/ufCs7rC5RCjkplmGDxA7ceizfz6OFUB7LVvsNCHJAn3F8vGfc5uQRWdZY05CM+oM2CPhes5F3px85vqb8NHT8uAtVr0PZ3tVQN1iiG4ueBN5+8xKezkW+f1TI/M2lDGoG7dkRvEnwFebsay8SB7YpqZ/T4rmgZhFy0ZindPd5EfUnY775oH9a+asqGGRsyy0S0oj583ePDKQjZ2Xlc8fulMLohPqKULuzzxLeypv69gQMJP+PZeHTFanIJ6ZU91N+PQViyB/3Ru2NY/88PwvqC9b66J/SiMos1Rv3TORZneH8+Bvn4PDpj6ONShpxCfOwPuJqw8afoePPMR3dsVaAvGSFW7r7pir4P/nj/uEHOd38hw4K7/lpJS9sYEbnWdOzcuS+G+RHLWoNtPrHNeiFduCK+Ymhdq27yAQF5B9VZJAF65H/5Tag+X1mDXxH/jGYb+lJbpX0t8FTIQEclu8k2PmFkdVoRj6SkkmviOTBXZdbS8xMO0jCnGGNuybgSaifk9CsqrmD3IVn/PfirSqYRP57MLeNDiVe7FJBS21ut2f8NOKhkZUmblpN+aBaPMyIPAgXB9BTLdDZNwf7L3qyNQ84/kJtc8chDXKpxMat85ABx497YMD92v+2V4JCJbPL5S6NmF0m8WH8hDwxY+5Kk1QNC9oYl98WTnNyXXxGr7xDAY6Tf2H/zR9nipHvUvyiiTKIqB/3qfruxsjbTcC7eHnx9VQ7WPjySkXxAeQP+nq5K1h6GJfk+/iT3AY8MD/sw6czSmupX/e3RRwYifxqv3593rJW6m/GvDr2WOUM/QUwmT5n79YIG9Byg6xj3yCH+wSlSx8Vge+izMntZitowpztOsExGVXUnyML6Qv1Qj693vsMK/ASdPzZmBvyMjbmf50GPgPjmED+AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAASwQAAAAAAAA=eF5F0vk71HkAwHHGDIZnHZutiKREjd20eNYqfb5jixzLY61VLZbJOY5NjpylHOOmWXkcmx5hxJqlcmRHPkOO0KB17AzqcbTryX3lmhG7z7Nf8/kDXs/7l3c1laZ1O5qAPXS44k14Z8idsOgmh166D9SIZm9cDoVAvwP27p/dkMQapS72phCNuAkMMJt6nQP7W9Z7Xqllw99xv29aeZL2Hnkmb+WL7Y/+MAD3egW7VtNk5H8aKVWvHWBCQ6kukc4WAVs89Trv3DzyJH+WgXumBzT2O+1KVyVg5PEmiXYF5AVL2Rcm4nKhMe7LGS8ltNeQ3zlCY8jmhgMT3LcY1/lW7kc+YN3WpMwpE4YkzzdobG+BCI82Z6EQ+au2rJNjkQHgmuDceWi9AbJVnrbeUUf+LH3dpnWKCcNx/2Dgxq/SUkZi3+MZevOrjEQYhPvaBE+pTG3ko4tXjG0PF8FX5Oq4b2uFIKX+k9BeWeS95qKONUmkwwub5s+P9m6Cch/R6A8U5G3r553Gvn8o9t1mB7/OUEI+fkEt88df4sR+fIVUpGKAvF2gnkfGUiH0k+/mfOdPwCplhsfbvY24t5Poiz5ut6AVPYS28DINLie65jcqSGOR1q10fYIRl8F6cvwIWwDIUY3BotOx0Bf3+fF/iGI8kd8VFQ+6PY8He96noyRhatdQ7EurGmJez2aByRfmIYlDBOxLd62ZZTry9P4zEfYNd2Eup3ZZ/xkJI5XIhziTUN9kGKv5zbIa7nkpjtDmWDTySdqynvLWhWLP3/57MH0/8h+p2SptnU/his8ZC72+TVDYqcDpy0L+hEV2dAerAl7K4dQ0sXZBoPzWNyZ6yMdOdVXJx7XCVdzzw0Gy6jPke2XHKl7IlEBn3FdxTijHOyBv+5cLJ3WkBe50m65Ok4VgmYBRmR3Iz7j5qtwzDYM1RF0mz24XtJmf7BLSkNdct6uPDEuFQtyvXtTPT+lCXiKsmZ/XWAgbcd+Zqnp01RP5jbkpp7yBYujU/88wxVEKo4xyrhLZBtwgs/o3ylR3MM5ivNc0DYSzURrlkRFL4PHPcjn8//63fCunvo+0AR0M9Q5MOAQDe9z3dGrx5ssNuO80//fM1E1a2UEm2POOLtd3mlWRp3w+WDrpmA8U+wr4Sn0EzKVMpFP4APWdvBQprZksaG1DN3q8vAjGTWyuBCkiz7b3EmTzcgEJ930fKK6Jiah/OfdJhRk3Tuztk6OyLq8bir1k+VClaTsbUMeUMvh+W8CbrHaP4I/6o8MCmrZVHXRt5mvxFhrA3H16x9Ao8oG6ESqaaaVAH/eSM8YM9lnUrx2pMw/W4oh9ws2khlg28iU2MfnSdTlAvVnkG3x+E2xHF60F6KA+9I5M03h7B/CIj/689uldeEtxSZeai7w18YNza3MxkMN9YyVLUHcI9WUeHU6xOlUA9zzA1uRS0pHnBntZhhz3AP8CfyT4Iw==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA5AUAAAAAAAA=eF4t0vk31Hscx3HHlhSFmEJRWs7M1WDGbe+jo7KEsofSLlSWDEkN2VKJawwSt4lK155uskzl/XFnWnRjOpabmyU1zGiIysx8J7rG9YM/4HGeP7xesU8FVzILCaTnL2KTdOl4mbCjqq9GDOY/ZEFP4Dx01287WrqNQA7CT7jNiY55JtmWjgs/w2Zl+sZ712+CBb+X4GURKGZnbfUbfTpuin1hsP25GHRtItVlhdFwoiIorcWGQHxBmEqyGx0PGkUHxpp/hm/5cT5n/PNB3Sjkw2k5gQ5VMHjVi+iYmli37zJrGCRx+sEF9mdA0vNEjdREINPPrzzXzvapObvaLakSiDpA9buZyIHh1W6fpCICefUdu55vRMdRJY7sgJphqDJWPT2vIgGNbDvTe6SaQPFMfXO9fXRszX1t5u4qgU2syrGL29mQeFfAYZYLoeWQlV2SjIw3NFH9zufIwWyL48oSrStoSmHXqbNCDLISbmGPDgV7yzQ1fhcQEBE+47O5IQZxz40yE1uFoC2QUB8pyHjilwZ/jSI50G/dj0p8GgZdrztCDe3FMNoiQjOLKfhLd8cmxx4C6PHHG5afS4Eha0PzgNtCkH5eHmw125f82ne0vkEOhskd6lu1U8C2tTWvanIILtKY9p0LKXhns2V7pIIAL6urtbbkXJi/uMunulkIzQMZahtn+zNJD529+XKwLDb5cYwTA2PrPZzBRASN1Gmd/kUUnHZW92qvqgKMd/H2rtVlQV34kd7yWjn6KMiwsEmj4+e1Bu/NzCTw1vpt5teKbEjdjQoe7VYg94lSXnwbDYvW3Xk30SqCfc5KGmVFKvSnO5ZtbJSjwK0O0TapdLwnPt3Zx0gC9XWylyn4MopIZ5ev3KNA1yufkxLe0DB9JHBgmi+CceOcO04GLBR06H1spC6BRuH7Om4yHZ8y9eqpEEjAItPaSn//DdCxaydvIAgkYaY0+/9Dw4yZPQO6x0Vw4qT3mt6QWuC5lDoHj8pRuWea2stsOg7hvmVP6Y6AjtaNsC2qJeDXdY15pZNA6T8tKo4P0fC0Q7m8pkQEX7IzFEM/G8CIVfQ4iiWG51mlA5hGwSGpZ10kXAKyAr1nRnyrwKuaodKY1guPjq0qjBKRsTAxO2vcUAp9+rlkMQGwoNGBpmE7DEmMhPlJ9hRMPXPjCUlKAMmg1Mo17w5wPPKpUx/7wNXlh/uP2X1XLWaYFnlJQS//KCckjgssdsJfHLIY5nO+f3i2i4JvjBiFU0kKiFzR0x7RkAEtS15R3IL74elSq2dDSjLWKgyN6D4iBQ+2Wt96l1xAb8YLlm8Qw5JLrP1juym4wsR9WZyJAnSWemmuE7AhrUA90yO5HwyNz/cuUKHg+OpYJidICr7FH2LkQzfhkjY5y0ZzCnUdtI6ulNrgptPjfKf/BsHZsrnzViMDWBeWl8Wd/4YehmvndZvaYud+bVMDDQXc/pLzaFgSh7ZrYT5z4RQqc1UWEd9ssP79o8Oyb4NwQDmPcOPlouQ573nwrLJ5mS32mvOVB1rvJknuoOnOZBJUTqKaON4x/tfZvrFs/QH1QYjL6XwQGV8Fv+0JtX34/Sv6sNnFP3KRLXad8ya+3r7GXcUo9PZoasrAJFrjlif7+70NHksnvZ4qFcLJ/Qu+0F9mQuOc33v1QpYfQccOc96sPnGfqt9jtAFNMyh2nbC1UXZEFkHGVf8mhSYrJyBMp+DeNX491LFKHpwiyyDeXU8j/BAFuwjfXHzXrYLL5EbJ7JkU0FQdSdi/ox3s/lyx1+gwGQdU3rxsXTYBe4fP9iWsrofv3jvPebZJgdnbxt/sQsG1Bc8GSFwVnJ5mUZpXxIAAh2Bzzo4OCHdqWjgeSMbudcoX3NAJcH/dQwnYGgSTPZ9qGCCDj6dcWVtm/3FlbFTs+4cKFqhqOgx6ZiAd/9LLeS3t0B6mPUULIGNeoP25bT4ToHyc4VizNhdCZuxHD5fLYHUxzXLMjoL7ivMdnYpU8IRGW2HNPA/4H6/jMnM=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAewEAAAAAAAA=eF77MTvqUtSkf3bfJOv/vfj6y25twdrlZ1f9s9s3TyI6gu+3nU3NCdaqS//tAs/tivTt+GPnEn9ycfa3/3bPtnE+Ul3zx07clv+P6zdZ+91zDNyFNOXsD76bN81MQM5eM9bRxdpZzv6dz42lElZy9iFvU1kjiuTseW7PTrcJlrM3P2Qyva5bzr5nU2iKpTyD/QYNbg1mLTb7KdeOprJIMdgH/Vt17aYKm/3Dukxl1lkM9hlaz/4XXWK1D/9RXW10kMHeXlkn8OhPVnu9Q8/+sZ2Qt5fz6jhaaSBvX9J391+BsoL9te4pGivWy9ufzXHfs9lVwZ5nhaXe5kvy9u1SyjqtXgr2uqGuZkV35O3LA7KF9zb/smOAgjeypy9dKEXw4wre73uh/BPOf+Cjc3P+xh9w/s5V7NeyuiTsj3ccnr4gW9r+boaTUsdrcfuZroXbVl6UsheY9aBrfYe4fWvB+VNxDVL2NkevyoeliNt3f315MyJWyh4A97adfQ==AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//4RAUMn0Wgu/maAR8f/rDL9AmG6PC4ALv4DraV73EA2/8o+XIW9fC78V2BdBudEMv8sw1g7jggu/2E8Wa071DL9o4NEPB1oOvxIb1IjO3wm/QY33AtUPD7+ktsSS5ZEKv6bYH5nSFQ+/imQ2rgP6Cr+/0W0yjiMPv+zMxWVmBwu/7Di9zqD3BL+qFXC8vpkSv91Xm/trKwS/U3WOYzQpEr8FbQ269RgEvwdZjVYaIxK/CX84uGjrA7+miqfrpAkSv0yEW5c=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//xj2afhfFAtB7x/4osc9C0HeDuQWLxgLQUB5c+CZQQtBBtNIBdIUC0E3ADQsCjsLQbDyDcR2GAtB6QOV57c+C0GqEKH6vWMLQdFjtWVv7QpBPiqfp6x2C0GkE5tapf8KQXGyB/xIdwtBQ0cFL1MKC0EhejwMuHgLQd9fiAGzCwtBN46ZwVpuCkH2XqI3LB0MQd9b3hfyWQpBCYlkUTEFDEEeUCKSIFgKQbRi6NzxAwxBbKGUaJZTCkEd0GToiP4LQUydSEk=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAqQAAAAAAAAA=eF7T/hUZdb3ij/3WtxFSp4G0U7NZ6TUgnXrT1PQUkOYzSZQAyU9K+uN4Bkgn3bhtDZK/FlWeClLv7F6+9TBIX1CVwzMgrZV3J2w/kGbXufXwIZDmntV7DsTf3r637z6QfmzztxLEtz6jYwXiC/dPlWCq/GNv/KZ8ZiuQb7QgPoYdyFf5oXW3C8hnXrp5NYj/6d09RhB/x9bTdziAfMW9H426gXwApbNmrw==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA8QUAAAAAAAA=eF4N0v1DywkcwPHvmoue18M2OZmHQx6TC6HVdprUUapNlsN69Fh62FROIqXNQ3VS0oM8Th2irtOD5PNJJWEnKnRXURKjPCRa3+/m+gteP7zfau60DYXRJDy/wa3z72Li8jHHE6PaCFTd7JfkFrlDcIdepUqfArlzVcGr2SxMJqT8wJk0XNsucymQboOG9ivd2gQSnN02yYN7mSi1+cxJ+4/AngerCxWbBODYmPlopiUFkox42cACFr7Rs8zcO4+GcEHUZLJkKwycyp9ruJUEa6svK+6+ZOJt5dVbK3oI3Jux/P1TTy6MrymKe/uBhPydBvszRn2TE0pS50DD52Vlrmezw0GttDeesIcEH97q9EtqJjJaqWiP9wQ+TIw7zn7oxSt+fyePrkeBvQH8Iv2Zheku3cMUl4a8sfq/n1YHgt84RpowgITSA+4Vbp1muPKp3zj9M1oo6dyrWtnjx+OG38y+ZU1BtP5ijqsFA7tOk0oOXweBGUtXiJNX8toaz2i3bSehYhznamqPGb7PL+2lF2rhakpvYkWrM/AFX098mkrBvu7Vd19ZMXAiI5mc5a4Dy0y72qfzhfDihKRFFESCqOsimdplhl3Np4+WFGlhsq/FmKEaXyiu1KaUfyYhgb7Pp9WUgZa5eguDnHTwmG9QePxNMFwa8FDZ7SRhnWEfce6VGT7524qXUqIFNt9AeWz7Sjh4IlKcRJLgfdHz2UZzBrKMyjfYuuog7QGz+IhSAkO/Th/66RIFBfOlovI4FlJ2/SknY2iYNV5ged4nEDjvXiSFN4xAoYp9P+koEzlB13w4yQRW7ZP6czqE0OFqU953loLgA/5LZ8SwkOTXF1BSGmZTnqGfj63j6R/I/rYER2CVS+3QoIKJZY8siYOJBIa93lLdeVnCeyh5qHFIp+Cv6nsup2QsrNk0EBq/l4axb3dt5szZAjahSm5w7wh8cMwxDMhiouSfxITdcgInKQhf9pQkGBD5qerLKbCLWVr/Ts5Cv4gvy/TSabhbUbV1BkhhxZrZj/uMSZj0mwG3tIiJDY1lMuM8AvdsJk8e7ZJD3JNvBWo3CsKiLfaX2zJQY56v/0OADnR5jwLUQfEwq86k3lc8ApFrJh4pl5vh9Nd2F62zKLgxGEFuMU2HHIlMEBZNgUNI24aCRQw8f9Crb4xcB2bMIu+FTlHQcKxDdPDQCKw3D9HiudG+/OW1lTUU6IVPTVu04zDMWGBat8eHAqfGWncvBwZ+KNUW/3hIB8+sYzfQGzdCR2tUpkvOCCjk3oZPrpvh9RqPrVUqCprDs9xVRiEwFFmT0SiiYLawzdh91FfKdp0yUehAI159R7k/CNTyww4V+SOg1/9ccK909I+LYou2ZgpWOTv58pu3wb16I+eIbcOQp54ifCKzQvaRuaJH9O/gyXU0UUW7gmvQx1tTbAmcdiGymp3JxliJQ0RLAx3XuhhLX3R58PxDCk+tCxyGweMmpf5RVtivaee3UDqAl/4ccUoIb6DEyDZuOoHhZyOuJfzBxqnXvNrn1NHRXI9rmZIRxRvXkOV7fdcwdOCrEkmEFX7vPOmN3TrosRlb0XEkHpidqQO2dqP+HYOcfjkbS5oEWba1dKzSSq+0RUfyEqalClsWDYN9u3/OXKEVJhcK178r0oFdmCCt+cUmyDUsHky1JtCILeqp3MFGx2/BualX6ChvGkyaaJ3MC3eInZfgp4FeTClb3G2KbYdb+yZ9IkGtCQrKy02BZW6KwNDxBHp6O3rUNTEwLEHMqRfRcMZTmVvILSGotaJI+QQNIM8py/yOKaZ2KRQ1N0loaVqmvfz1EHAFi2T/6r5D6JmMd7KbDOxLV/6Z40LDL+XDXs/FrmA62SBeOl0Dvqvuv1WhKWYLPrJir5HgEvDNs3vMYqhvedYSZ0Og21gx2VHNwHVuMTMnutJw1umwLdWbN/KObgx748nWwOwGo7e3q0zR/uSqxebnSfA/VL1mqDcYYowCdz1gE2g/J/n29koG7hkbOtNi1L+SeS9dVDQF/gfeYCJuAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//ZqfOI7cwPY+WkU8b+H2Mr/R+YRt2SjmvvBGD2xLliY+LnM/9PHe9j6QAJrGwPsyv9WDgXr/nOa+YNM3nen+XT7WVOORB5HcPlso/gF6+S+/EFtBqdlW8L4Zsfl+7UiUPlYS0tf6pOG+YrT7hdXsKb9HmsFiHzf1vrQunzXgd3y+3XbHo4nw4b4YD7v6TO8pv9Ch6hGnUvW+AKA4m+2pyT1OxCTFjJ71Phho19uMkzO/cJTMdvlu6b6ACXPGOnmfvkassJm66fU+uZo1ta+QM78XL9eXdADqvgIl2ku8VIi+VMeYV+6q0z4YfAKeKFswvzIjofdmhPK+iExSfmAslL6PGNKDbDjovlfaikirPCq/xdrAlazh975ss12tV0SMvps9FXIZfee+GiEi3Pg8Kr+CSWDqTvr3vt4qhVByUZK+fWAUYL6s+j7LCek3YNoxvwftJdirEd++7gJXaqdEkb6CwACFlXn6Pk+IU7pn2zG/XkFBRi/x3b7VQhJJ3xCivgj3tCKDFeg++BE9++CTLr//75Ql89nmvsyr8ciyR7u+24rg2hqywb6gPzWrN3Qpv2pOKOiWGu++JJ1qFYI7sL40O5OZEfHBvrY8CczadSm/Npwa6WXj7r4/SY/ZOlafviLYyCo/9Ok+i5P5sH/oNL/qdclh/Mj7vmDoGqINdkK+Cn7DDBxp6T4YS4ZteeE0vwJ88erA3vu+IqXMwK9LqT4sYN3aFSXbvlZMVIeQCDG/3qf3C3DMAL/FOLM7HgmzPl6U84l1Bvq+sPUI5z6aKr92rrMoK2MDvzf5Wkovwpo+1uWMu0+S+r7K+ld1XJIqvyR7zvS+VwO/5rymmHzkRD5tXlnBAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/18W0z3G2/8+jlyCY+w/AD///BHDFxQTP2LjFfunER4/eizMHNhHHj/d6Lh5Rbj6Pq8bFecwhfs+SHOC1OMVEz8ZbSLbVpUfPx6+sNW0wh8/3vk4ZtNABT9aUviUdtcEP2ibUw3GthI/Bt/t7eUUGz965/0mYu4aP5I/gDuzbOO+BKqpc4rw4r6CZVb9hHIKP6bq7E5Xphs/indsLEFnGz9/SUsAAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVgAAAAAAAAA=eF5jYGDwmRCQu4+BgeHMxIBaEO0zCUorBUHoS2FgeQaGGTkQelYNhJ4GpWdA6R6o/IFkCH2hGEJ/gNICJRCaIWWfTnyL8slf7o4QOhwH7e4IAG/SLzk=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/7hmTlDTFPC+1EtNCCsWAL9rp7U1yBMEvxmTXmEd7we/CbORBCHN9776slbyLoMAvw7mb/BWbhC/7Ic7Gz9ZFL8k/CI1MTQYv2pitk8BEAi/XN1cZ3Xo/75WCgNffNEPv93dmOyPcRO/K3AqPx4QF7/i6v1Z5BoHv/uZVAXMZfK+0FemE8eaAr8PItu1gK0Fv6pnBKFl5Qi/Kt+NnU8++b7WFkscAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA2gAAAAAAAAA=eF67vewDy/3MSw4p+w3leDieOTCAwQrbip+fnhRwfIPx9z4T/dS0ie0zlD/BNrA9pyiB6YPD1TV32GLDLh1o46kTdfx/3+FJ4Od3G3c8gqpbYAuhN0DpI3th5kHoHXth5kH5tguWSHIUznx0AMJnaHCQVzufteehA4S7AKYfrh6Vz9AAoSbA+SEL3CcduPfwAEy/pLrShtW5VxwS5udMeMT+DCq+wfZCi+sNv39f4eoeB289/O7XpwMw83hORuiGC3040FS57Ctz9ZUDegINViu4HxwAAEq5Y1s=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAF3Y7LKibt4tr/5pKqyqtHXPt/CT5Kc+bg3o+mjGGD1e+q51P59j+qvb9uryL/frey2JRrkvwY6vQja478X8K8/7vM6jjrbcz7/x113pWwjxlDXdDkSTEv94jur+8TLGbjFt0/V0+s6tEXkf0A7AQv4A==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAcwAAAAAAAAA=eF5jYEAFr0qldl5m5naMEQpc9JWd2zG362jeKW5uRzRlDB3r7j45lsntyJ55oDy/gttx15Y8qbnlmOpEGj3+zvbkchT4XLGP34fL8eS6y1PZfbkw1NnMqC2QO8LjuMIiSLRqLo+jk3yKxrYZPI4AGYUldA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZQAAAAAAAAA=eF5jYEAFToEiWncq/tgrTXn67xaQfvtt8aObQBpNGcNUS/tz+4HiFZLvb+4B0jeipubsxaJu0Z+TsoKVf+yveomLgOgP0s+YQDS6ujt3e6TCgPrD4hjTYoG05sT5i0E0ADpHMuI=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA6QAAAAAAAAA=eF5jYEAF5x8+2hjk8MgOxpcxKv3gUPEJzn+44P3bdy9+wPmZsqG+AqX/4XwYuFV9Pe1al9T+L1dF7BV8Htl5s+77aDddan/gBLWc9Us+2a0t3ltbu1Jq/yzNKFX1yz/s3Nln5AnvkdoPMy+69Fvet7NS+2HmeebvNe6/p7W/1jrkyAz1x3ardrlKKDzS2q/3ffX82Buf7K7K9yyV/K+13yl22p+vzj/trtZfjjtkqg03b/5yuxuKTtpw8xKNQg20VhrvT5qqV+zx/LEdjL9HydyY78pnOJ+l5P465Wc/4XyYeTA+AKHGdSs=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA8AEAAAAAAAA=eF47//DRxiAHJvvHcxTPKrww3s+ADCZssJYxKv3gUMFk/6vZzzT/I0J+mvm7U8FbEu1+xv/R7J743+6ImJ+c3H+E/LPg5qS8lRPsZl3bv3Pez592payfJvHxmsDlucokC66FNuyT/zS1ttXglx3bDYvLFVImqPYfOLH7y1URewUfJvsy4XNpr9UQ8nMfCJ0VvThjX9AEtZz1S5js/3ubCM3QRMhnXF0XxvWxcZ9D7Xxuvaj/dg/ENW2C7ZHsZ9/7X/r8pH36UrGHDi74afdgvtzxwAyE/IGYfZXz0ifvsz3/ev6S9l92W//qJc0sRMj/Es6LY3i8cF+1dciRGerM9gp/3z1c14nwvxx3tJNKe88+ve+r58feYLKf2nljLXsrQv6Y6vddcp2z9jHW3zAJTvhvp38gwtKgDiG/cof0p40zdu8r9QmKTrX8aXfjBNt/83Kk+Elnee60YMu+OQy/nTKP/LCbEP/4XlMBQn7BZP9rn/at2JcyVa/Y4zmzvWlB8uHla41Qw/fBi927lcyN+a4w2yv/n5bjtwIhvyW7IqXix0K7JUETXv178t8uJX2txI0ahHyoKM/V3hnb7SK/WpuwOH23Swg/xHRbCyFv5bIld2LGOrtJS69VbrL+Zrdx9sIz3hJo9qu92g0AD1DjmQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAIAIAAAAAAAA=eF674/+rT/82k73s+jrDo1eM9y89+HbR7OjNdgwgkLDBWm1Bz1lZYWZ7i2mrZwrfM96/BCrfY/7uVPCWRDuOeaJFi5IZ7Bk1Vzcdeo2QfxLcnJS3coLdlk3viiP0f9ttEPf/vuknQp6hTLLgWmjDPrNzR8zt037bebyaai7LboKQB4EHJ3Y7c2z/lCrGaK93NnLDIl+T/T9u3Tm6JPrwvnkPhM6KXpyxb8GhE/Jf8xjtt7EeiPYPQMjHXV0XxvWxcd+9h4+Ldr77Yzfj4pZWrjSEPDv73v/S5yftu1K3UNPX9Lvd1MhVApz9CPnDMfsq56VP3nfH2IDdQOaHXcb2XasDZiDk/wjnxTE8XrhPorMgcXkyu31WsTefLpPx/jKzwhKrDw/s5LmjnVTae/YddzlhkyPCbv/kv8mt1r9G+5Og8kdUv++S65y1T6q3w9ziDbN9vdnW1HXfEPIrd0h/2jhj975LxUe9Dt5gsFezT9be9h4h/y+N5bnTgi37Hp+daec8j8H+3lV7bsaXRvv9oPILJvtf+7Rvxb6DUgJGjJsf2HEfsjjxY4nJ/jTZUF+B0v/7wOG748VutQAjI4m0B3Z/AnIK58832Z8IlV+fXZFS8WOh3Q//s37Lf8+2s9jZJKtZgpCPEOW52jtju50oRP8+k5XT2XWUEPLWLltyJ2ass5v6/s+y3UWP9rW/Lbs4h99kfwyy/WyvdgMAWXw5lg==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//fSFQMlIOfvAbabN1n7BFcHeg72PlbYAwcAq7LmwbPc/9pyUhis/+8BAdP8068cVwe6w962bwQDBEunIiaEbL0BwN9zJvTT7wABlm0dJ2hLBZDH+2MOC/8AsHLuNeAllQCGE8M7kKvvAIyFwYGDJD8HqZqVQiXD9wLCBx20Yhk3AQlAKkvg6+8A5ghvJws8PwdnrhBG8fv3AALCEGIedmj8wlZYjlcj8wEraG2rnihbBwTvEDgmKAcFio6XV/FFwwKW+Z1KbtfzAojCsaYGHFsEj33BJG44BwY1+CTOvO1nA4kKPDQC5/MBdGUglfWYTwRdU0xlqggDBjNNSjNzrZMDsBQsn9a38wHljOPElPBDBjrVsWGvW/sC284u+plBdwNqCGo2elfzAfGSosXc6EMHvZM64xNP+wPgoc1lS/2LA4OyMhSDQ98AKx7UclUQUwV7hBIWWIP7AchIHFZDoYcBluyzSBdn3wI3xzGg3RRTBNDXW4uES/sDuBSZiWrxywKiDrZmPDPjAenJ65J7GEcEYtYUv91n8wA/9tMOjSozASDpKm7Y6+MDCfcE99JMOwfYYoZLLrPrAr/c+/5XVgMCAkJhrcTv4wPoiPFDMlA7BwJcb3AWn+sBWYZTD1j9wwG/foyowmwHB5bHaC/q6GMGfuGORulcFwYBuNSNJJRPAzKKVrm6gAcFYyadUQrUYwXy7g16XWAXBXf97tMo7ekBCoggUUHUBwTiztye+6BTBgIkXIHjqA8Ewmcarzb2DQJHx0RaXUgHBvoD6Rf84EcHzBt2Kxn0CwfT3wPYswGtAG3rzvk9iAcFpWmSZjjcRwd7RjkWVfgLBgKWlNsyqFUALQlSvAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57YKEb++F/gcMDAjTfa9euIPNCgrTGkZxZ2hMLCNJpIPCpiCANAAkwR1A=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57YKEb++F/gcMDAjTfa9euIPNCgrTGkZxZ2hMLCNJpIPCpiCANAAkwR1A=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//pIv2jFnw/vAAvR0mCQIFsFIyUIe+AEBwbcVDSbbtl7A7TrPUwS1+8CRcsKlnQoWwd7TjImiEAHBoeZRbOqcVsAqoZhuG8L7wIrLTQYFAhDBCski5JT0/cCC5sI0tgYdQG60BmFwr/vAacdE6pIAEMF2S5sW8fb9wCJI1SCehFrAOv8uyiy0+8B7L+qT1QEWwXJpnZ4N/QDBHMz/HVrL+b+GWv21kc77wDuyKROmDxbBzpnGpUAMAcFFkpp7v5V+wIIhFsDLZvvABMQU0An6D8Fo71VVd4/9wIxK8PcEloTAOoByyA54+8DMtauf2QYQwUhjxHDuq/3A6sl2A25QZMBeFesov1n8wMhwhFyxAxbBhvSBpdSiAcEh88TvtSReQLyuJxu9TfzAkJ1nMk3uFcFrQahhQ40BwXsZhJr9YVZAg4FF9muo/MDCfMuWNxYQwcTiV0HnNf/AkYVGT8k3ecCGD3v706n8wG5uEgkkDRDBnN68ejkW/8DgjuJ5kSI0wGX2yHU=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.4000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.4000.vtu index 5f0050f5257aa5581d7d8b531045e18ac848b38d..554758b511e9c5dd852ec2cb2557431d063410e6 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.4000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.4000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00051100531079" RangeMax="0.00059300787188" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00051443503974" RangeMax="0.00059300662756" offset="1636" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00013634736684" RangeMax="0.00026630197686" offset="3156" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00039274665374" RangeMax="0.00055508770566" offset="5236" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="5.4148524243e-05" RangeMax="0.00013901467166" offset="5808" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="152362.98641" RangeMax="179939.59425" offset="6124" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7798130087" RangeMax="1.7800297016" offset="6440" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="178902.18642" RangeMax="357110.87681" offset="6720" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00037243114962" RangeMax="0.00042276553783" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00037239215588" RangeMax="0.00042288917496" offset="1620" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00021461928541" RangeMax="0.00039491303466" offset="3132" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="3.1728375043e-05" RangeMax="0.00020767266702" offset="5232" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00014128017802" RangeMax="-9.4966598465e-05" offset="5804" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="241536.64958" RangeMax="264921.79219" offset="6120" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7792017526" RangeMax="1.7793593701" offset="6436" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="353089.56906" RangeMax="573820.3684" offset="6708" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0001359800539" RangeMax="0.00028477499739" offset="8808" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.0004048144751" RangeMax="0.00056038746015" offset="9720" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="1.7724232748e-08" RangeMax="6286136.1758" offset="9992" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-4.4478252349e-05" RangeMax="4.0853209283e-05" offset="10148" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.0258670676e-08" RangeMax="66485.298395" offset="10420" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="0" RangeMax="0.00013981789245" offset="10816" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="188779.83076" offset="11016" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7800331893" offset="11216" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00056568542495" offset="11400" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00052232817477" RangeMax="0.00058658471327" offset="11748" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00052684217449" RangeMax="0.00058655772148" offset="12456" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13240" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13300" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="177143.31418" RangeMax="388323.75765" offset="13360" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="262.38088984" RangeMax="313.15" offset="14272" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="262.38088984" RangeMax="313.15" offset="14376" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00021456628595" RangeMax="0.00041390528482" offset="8772" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="1.3867571471e-05" RangeMax="0.00020333326311" offset="9684" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="1.7724232748e-08" RangeMax="6286136.1758" offset="9956" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-0.00010027188715" RangeMax="-1.3417150753e-05" offset="10112" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.1082904553e-11" RangeMax="115999.02051" offset="10384" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00015815741928" RangeMax="0" offset="10716" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="273470.73988" offset="10920" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7793740492" offset="11120" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00040199502484" offset="11300" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00037228203634" RangeMax="0.00041748482281" offset="11660" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.0003867174477" RangeMax="0.00042010120659" offset="12368" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13148" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13208" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="347318.84029" RangeMax="605727.47301" offset="13268" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="262.38088984" RangeMax="313.15" offset="14180" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="262.38088984" RangeMax="313.15" offset="14284" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14480" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14548" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14616" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="194124.93633" RangeMax="314638.99426" offset="14676" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15248" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14388" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14456" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14524" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="371622.00048" RangeMax="530902.92717" offset="14584" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15156" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15320" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15228" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15468" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15624" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15724" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15376" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15532" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15632" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAkwMAAAAAAAA=eF5l0XtMk1cYx3GdOEW2WbFCcApVKeFS0ADavrzuHEqEKc6WiCJZ2ABB7ZxSVCyRqc0SDAh4CR0GCmqgQ9paNBBKFeWU26jSWhQq4yLKhhDmJpuisi0Y5x9v37Mcnn8/+Sa/5AkOktl6XWl4aF5XUJ4swjyHOUOZbW+K8QJykyRKDT6znXPRL5mf2oyCmV6zrv4Jtwj7Lln3B3e8c4GzJ1192iv61VojKjpp8YgYoKFfjYeipxb77i91jemmHWBZUmL+L/005BN+3iXmTGdjG9sHtS73ODKOnZc0fIHr2Ay4TB9I+KacFVGpljZ08Gpa/GevKegj+E128XfsusJke+ZQNfBu8W09raKgN+HbCwO0A1XtwNmvyS7M9GrFPqWQZV4y3kQrmd6X8IKxvp9G3U+BYtPw0ch5IliZUi6oVWNPHusIj7eaUFZV+dIsqQhqCN/GWZ7G769j+7Bi07QwCfuCZttdH54KOPv1hAuWBkS3rLeADtN2zuVYGvZVVWj+DqVZ319yzNx96gZ68pXYskI/2+dP9QJhwjXUzvQHCw+U/OWLfZHMtUFXfAU8ZnrSc+O4/y78sQFUPvPbWlxNw2DF2xmNAHvUdy5Xalaa0Tu7xnjb6/1/CY+72h37PbQiZ3/kcfr8Run/9hutz+WjDrY/THjsgXpd561BtEQnfzAUR8HmjEfmhsPYOXNnDp3YVoq0hqastBkRvE34J+vcU1RCC9vfGX+xH1zHHtkbwhGPtLG9lfDxljmp7nm9KLI1T3lSLYJcy2vlklvYP5J01b1104OQsAdNkk8p6En44CpPbWK/GUCm582Afx5ewi76U1iwSG8HAqb3JXyXYuJGuasDlA1OLJBO0lC0ZvKFvyuF9y2eUGXkV6CRKMpv9ZaNs3w6vmbum6EKUMr0io83fKGZErEe4xF8c/HzJuDsSa/L3iznajqALl3u/5JHww2GSEloF3bPAouk8WUu2qPtLjvW8n4f4aqtP3xjEt8DWqafDHhYrczA3hPBG6bUNuDs/yD8jPL+zrMlw0AamJF7dJ8I6kPOlSbEYLfT+R8mHB8A1gDziBtfOMurkT9/y4lHbF/x7c9jceHYxWLl59Fv6pGzVxPeNfAqbPRuOeJp9NOOdAraKtu5zyTY5cefujT0dYKqaa3bUwMF7YRnTZxrcpyvZftw+uv7ah1278DYX9sFPWwfSvjC7LWbcnK04D+PdiiLAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAUgQAAAAAAAA=eF5N0Y831Xccx3F2tJD51T1YLaFDk19NjO/3y+eTX6HG6VyyYnKRJhJ1EBe7ZqwiUhdL+f3zXorjHtfVbT5XyI8oC3OomXDJ0cTQbYq2nbMvn/0Bj/N8v857htflcGg7BcVpYU2MAFKyfv49mpOWgTv5fadZwjwkCzHxCFsjYcormVlPBinJVYzWki99gNQKjQIMA1uQlPaTAmZYWQopkUb+531D+z/q1k0Fb2kv1hmf8KnHvuDKpy4rFkLkvmZ09c4kBc8ai+RYFbgf5MtvOiXyBluiTX4sFlLQ+ppTHOMp9tkKhzI7m9qQA+2jnO6XyI3h/pLfWB5jyA0o0Z7iu+oIlahN78z+zDGwqw0ZGLd3138gYHDdleV9k7hfmRHwJOp5JVAZeYtcowhoydAKH1fFnplhzBstawemtA9dNXlfJcL9xdjQqCLhPbThrQKaL/hJ8f3p08MPpzTTwBFr+1cCFVs4N0mJyOv/2z/dYeXVK0JB4nMalqa2sMmt23yhBXsP9R3BhiMNwJ32MYzjKQ+ZuL+1pa9ntx4XhNDeiS1djedgb7Hd2KXVugvELYYZartR0CAsNSvZmpJ8d4oEX8NUFJEbL+lPa0a61UUCgZkd5J6AzUH//u/NXn54y4UXYMvyILDxqUOxtEdM7+S4vdgrhyo18m9UgZ20t3BUq/Etxf6Ho4x3ihWNwHsPZCmXU5BtP/3SxAJ7xwSFqupdEkToyJcyCyn42rREQ5WP/dHa/sPfw17EpH175VeL9kzsw4W985FTQ8ie9pa5W3fo9WHvelbA77z/DKGJSzNengRU+LKjxi4Ge3X5tfNJHjeR9I02a5VDwHhDzpDuAvaq+zVZXJsu1E57zbrRY50N2B8cNFd3eNGG5mifWZjD4ZlQm36qVS5Q89IgWlwtzpH9ZAv9s8bC8luwV/F81LC+rQZEJJpXSYsIOJh0MyfBBvtn+tq84yMSsOGj2o2k/qXY2y3YpCvXPAGRtJ8RTHxycCf23rGzzbeVhgDfn+289pqCe0q+ESYoEpLF7KD9N6pDwIzaLPfc5QIkzgyy3HaShKyRjmm4QkpimeH2kQ0f0DuvannZ8wJQR3tWeoWabMlW8iftnbTM7qnNi8GGL2pTOSj+nZTE0L7+olsko7wDSF7KhRTrU1DfuF4jrcd2s0+kd3k2LaUisPxXZdCvBDwZqO3oLsR97pGcMyKHx5t+uMrpzEAE7j8l9caIW31gw2uO1+bnncD9PM4vx7Jyx0DA3b9bDUJt4fXadT++C+73Upc/9kkcBWXRs3+sENZweCrkasQXuF+EPjd0T/oNnKZ98qwLv/wA7ts5cFxdZAK04X/Wqxv9djfuPxpdOTDVcxtZGdlZpYQQUKRrOWLnifuRiVKFxuFOkOg4oP34gQ2U+dxSlCdxP3j2mngo+y4iaa/b3Med5+H+rn2HJ9tNBza996JVR0MO7itetHBms3ngHxxo7+o=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA9wUAAAAAAAA=eF4N0fs/k3scAHDPSBehy/PITshGWbZ2okWp83yTUrEuyiWJk6K8RHrprigilZajIaW0CQfJNcRZzydznXIJJSu3pJLkUpiQ4w94//TWObds9s0qHClHXGduCWKDsbxSuqgHByaPrt74VziV0vHJ+kA7juYH6N8zVOLAjQ+OJsu9CdD6ZVK9rz2N2uLSLGyqxtEeqfq++qdsUBu9h0s0CKCsT/ilM49TK/RkFwWdOEr3t9UssOCA+dW9665GEmBbdYD8MC+Fim2eCsM6cGQ6JD221JEN/g47ZiVrEnDLhj12UxRAPaV5p5SM4qjVSjY18YkNNpGf6WQ8AWkN5xavTc2ijC5Ya2p04+iH722pKJcNL6nNrCs7CBjPOL9GTe8olR5rbxI9gSOV524u8VYc0FXaYyxqIeDLk4d8p42Z1AXvpLiSIgxJLxPOZDQDVtj/muzjYxCED0dm6oeTXh2ivc/EGLK6kefq+YMB/sHr5i5qwsCF6633+6eYbLg8hJ5M+4qw1tSkYAb8NvmQYbURg7f3arQx2Q1KbfzqKvNEDL15tWBWTAcDFk7lyzxlGNySf7fodA8hC3e/2xnzmoYedjUp5VkyYbzujzm2gxjMa3Za3u4YRV3hO9gv+o+GnqXV7690YAKHiVR5tjT4tcXu+EmPq+S2MbPoIzU0dKiePnZnKROcKotXfu/AQP1wOGNkiTeZYpTLa8qloR7J7ZqEtUzo94uTCyxosL9vKDjaTkRqRQ0wwt/jqMl3JKqkbPpXFnLIoZYA4/5ibJ1VCsXzv5IVIcKR+129+rvVxhASyW2wYeAwsoG3+1rNfarQJ0zm/A5HjXMs6PWPOeB16GyymCJAXnLRS684jCzzXxO/4AGOAv37dd7kGcPGB/Iinfk40Pea7yqzjiGrCs3klz7jqOf28B3TUxwYTmjvy572/xRopvj6ZFJTogMGM2Nw9GwOTcvTmA2HF1Zc463FIUnbLMJTXExVd+asjJ/2irYv1nVZHBAGJTqJOwhI9R7eNJBcRtXdV9+qMu1DcwiZwoMN0U6SMzkuODQxrK+5zqimctN9fYqiMHRZCmpnjJjg2MofRBkY7Kd9s+rtekSdfnXQSfkMDfVWCUfikhnAPkQX/itSAsVonYRsk1Kl5wOXb9uOoXVy+3zJJiYUNTaUCB5hoKbxMVLiEUU5NB8J5a6mIbeTJrFBpQwwTUu6OV+sBJsGkkILWRJqMj2e392PoR6FILQ1lglJ6yMCbScxKH3bEuWXlUL6GVZ0aXdiqE3ufiyOYoDW2+P4aIQSaG0QGQy8ySCFgrfmZ/swREzdHp5xnQnmEz8tzUYwGOnu9BkvTyNt/+QcXN6Goec27UpGuQzYqbAV0cOUoCCI79HFyiJZmwMe1lfgKMKdf+VgNgvGVgxd1DmyEL5Y1DopssKpFiLE266VQKVCVd3oBC7cyhLc1zpMh/5EY2er3pvk6UJNy8EyHO1Y/byZK2BB7NMXQ2q7FoLJM02UsTaV/Gna77b+PYFA0mrYGsAFBta7Zp4dHWZJvYcVVflkGc/W+mg+jipbOtoi21hgd0qhEE/7+q+75to3+lK9NxY/9isnkJlbul6kiAsaZvleGSw6CD2+qXYNSsiEzOBJjcc4iuanB6tsY0G/5EUA9W0BCJJzFn9szyb5k4Y9K54TSGwpnrl+NheSPBNrHWq0YUntSRebWBlJl8cNqa9SQXbDQ54zaAwYmjJsK8/B4I7gVW2mxiNyc8jfKycsldH4sUvbS7sNIE++IV/HYCa4cl4XJUVIyYiCric+F1SQ34ncycBhfRgtjdr6kpr+cwnwmlshpHhGc3Y4RykjoU3L4O53BlCTUm1UwZsJL3N1abMfZJCNJL0nr1AZWaYuUyMT9KHbVbXwoDsGdI8sxAkpJqOTF+ma9mKoQfvl1BMpE/pcVT7rclUhJix7wkk7m+xMDB+LL1VGhnVPdwaW68PS7c6md85gsPGrY6sbK5f0DN7iuWoAQ64vzNNOf2NCQU1l72drVSj31R73DU0g/wco++tvAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//ihvu8/lSEE/ZHHubyowQT9p07nM8EtBP/tMEj4tM0E/WolXVOrZQT+V3UFzibJBP4cr4QbD3kE/WlB8cWK3QT+hRP9zFVg/P9wyTQ9v4D4/pB2vJgRFPz+yX7rf2Mw+P/0fw4S7JT0/kWcMIs5UPT+FeDP1Ego9P/NQwSOcOT0/iPJLgN16QT/4zmfFaTBCPzZVUPqWeUE/0KbeBTAvQj/VEr3AZbdBP2OCLByjz0E/JoDA+Jq6QT+ErMN+BdNBP2wRMpLH+D4/8vdUQejePj8Z/MHeoCM/P4lLSYPKCD8/asopmmhdPj8Qw58OTTM/P1t5jyMUUT4/eFnu5IMnPz/RsJtoMr5BP96CA4GmS0A/OdyDyI68QT8IFF3qE0pAP114qcalLkE/O9wtbtrTPz/1jrGBjidBPyxcHljLxj8/UTTnsLI+PD+gRIs629Q5P6zubgOSJzw/0wWOCDK9OT8DfLTeikE9P3vRtbKYjTw/7s61dU5nPT/HkMzEyLQ8P9F6qdU=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//zDeOQ/wiR8/NNgH3JD4HD9OzAYKvwQgP9BohoNqdx0/UMZMhOskGj+8ZHyUoJ8ZP/8BiLl24ho/Pf6Xw/JcGj8LsF6dbrYbP15B2+bFsR4/ERLuTbIgGz8m2APhiRweP8JL/hzDkxg//i7m6Jt+Hj9K8oMGrugYPy7Fdi+w1B4/iwj9owCoID+K8UEgsWMMP7yGNItusCA/vp9CnGmMDD8iBdnvjjgiP01nE1K0GRY/HBzvVwCtIT/qMMoUWQwVP1bnUEw=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//54qSY71TQNBNC8kqXytA0GSTE4jmDsDQT9LlozamgNBRwitiM0VBEFn052uTCoEQax+Qohe+QNB/LnVrsoNBEG90g1Hx9wDQV6YuHPZagNBLJubbF7zA0HkHn5G1oADQfhNcd8AVARBB4GQfQ9zA0H/Yw9mFEcEQb/5qFiLZgNBs63k40oIA0HsSgjBHPcFQQwwBaKtBQNBkgppB4nzBUFO2ijkV5kCQcgA1lfUtwRB9u6c+0fAAkFoOj14xOEEQRsTTms=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAsAAAAAAAAAA=eF5L7ZFhO1n1xz4tUdZmPZA2TPpw4CyQPvzuzbfNQNrY+OaCWUB6S3+3/hQgLZQ1dfJCIK1t4qY0G0hP2f9t62Ig3VH8Veg4kH7Q9OLnHCDNeute2AEgXeu3OL4dSAfprCk7BKS/Na1s7gKZ83THrKNAWjX2uMFTIC1YO9VEFkgzXOU1eg6kjz44ayoPpK2PLM9hqP5jL8uTGJgCct+Pg6HfgHRi7yarKCANAB4HZgc=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA/AUAAAAAAAA=eF4NkY0/FHYcgHF3TrmdcwtbMyXZWH1IjZtR/aqJiSh5H3lN01zIhzQ6Jztvu6GYMWXKWkmkVJbJ93vbcletQnRude4OafIydnfExfoLnuf5PBTWzFslWgVsyJceGjNgYVPvzrEd+RRc41dRxF0ZAikXcyvXslQgmK00HgtlYf2819dhNCqujxUdmHp8DJy8Li47kq6EYwa33MR2LCwKrxAPXqegwERU3NNOYD44abl5qQoy5bKxLh4Ljayv0p9soqLL/QZOoCodKEFyvmmNAtoXUzujZCa4WsTIjHrDd5/8M8P39C54qBTYBfcrwf7+XPKULwvTRO819ZtSceG5nB6emAOcbc2djfFK2L7k8IOrPQs5qesONfdQMMzBujt5lTsEdzX7ef2kAk79VA2tiIVt1oFk9gsqerYnkpJoHoxk7TNuMFOCXsXisqNfUtEykcIpj9HA7eMSrrMumMRcrn502kQFPwRUD+37h4rCO92Nu420YOh3vyK5NpWskWa+bTmtgGevgt2b9lLR+Hmh234fDcTZxsW4ySLg6l8pXNMxJejsF5zce6goX0ZOSKY1IFho3xrBCiBPzQoFne5KSL7bujnzAxqeqWs5nbZSC+KdVpC2EA2GzO+LBuqV8Cn39UyENw3TJY2xongtnOLxvtXtCiXb/C60S5lKsAncIx+m0rDjHfpZ/rwG5H1PdFMWbmTmaVpI95s/w2lFYy12NFxqcJz/0UMLTWv3T2SOJ5PgOrY2r3MIfPu31yY8YeEHjaBTllMx6bc6ebF5BkR+69zTMCwH7ZTbtRC2CX5qPFTr+cAA9/j8VPbVCy4w/t2Rslk4BKRQKssWszA+Y82tVblUjHRSPwwtCCL7buf37+DLwZ8f5d6sZqKy93hHdLsBbu7g/NXGOkBOWKztyzcZAhdf/HzreRYeXSg/tz6BiqN131g4C3lg3eZSeX6nAoZX5jakFprgH+z+A6N0Cn51JHdx3ZliSLzVNHiobAhmfr7rsXiPhTZdsTTrN/5ZjGqHyS8rwGXHY4tPJAo4pf75xvI+E7zATpt1dKbgkfjm6TBdNdRUWZljogq+bz3OiLChocJMLz7eWgt/fNNo9st4FrhJNkSufUsBDNMHA6IgKhrsUUYVD6vBqHzSNbjsFCR9cf0Cb1wFrp4hczd9aJgT/1nASy8t7I7mYt+yGMj3XJpIECrAjR/Y3JRDxYG/O9uuMDTQbeUQofexEOKY9lXSQRU8Wv6OpvIcDa9+PTfjWKOF3vURJ34XZJAEiUTS8UwBhZeSVov4b7puJKz2Zmqgao7b3PQim1wbKbyYK1FB0dlpkW05DcdWDB4sEGrBwf/Gptpbx8g2PYOsLrECfGrremSpVBRF5xtx9DTQ+vsGaYBdDmGOb5mtb+0DaVsdr/kwA9UTl8yMU/VxhWmVz8PSEHhUdtL2YMsozN5vyzuykY2XX1Y87SR0tFgnDd1vFEX6l4Thhy37gOI6U2C3nYG81vCzg4H6+EvbMY8zqzJJrH/c08C4UTATjzMF77Hxw43djlG2dPyPJwjDSgFJmbH6eyK7HwanS0/vq2dg+L+8kIosfcxQtXlwJ7fAceK/peDmKDS8jq0sdWRj5R5Nur4NHd8PaImso35HuGGc8peaXlhi2iRVqYyxK73AaZiij/7e0UGsHD5ZmaYnrEp+Du4Dac+2PjDFvnH6Y9llQ/St9ku1L6wm4pLAyVqxDKRMerq+gIIVQ+J7ZpVqoM/bV+WaZJGb7PKkTx6MwMvXAZaik3T0vKPjF6TOQ4Rk0P6y2yniGlnbP/56AM75sI9OJlOwZm9QiXmeGoJX+H3UwY+DF/lXErITRqBnauLgHI+OEn8ScTtmHgYNt020NmUT2xJ21LS3DEKH3+3NNacgfSPnbe16NTy0U++9m11MUs7fvnNycRgOcuVRpd6GSMmbn9iw6RUMpeusrFpyiJMrP5YnkYFNgs57lwcF25f7O1uGquFiJMPg18e5ROgfdtdv1wi0yssEn2cbYp7LvRVZca8gxWv3lnfPHyb/A3mWH6A=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//Z4LgQJbvxQ/GYBalFI5K7+HZXlWCawUv1BYGjb8szI+wF/enGXMFD/cenFn/k4rv9Nv1J1v2RS/Yv3JhyQ9ij7zc54upL8NPwX9+23Liya/NnkNwF7CDb80mz12M9SOPpTReK48UgI/DqKMqF7OIb9giDlHnnEBv9LYrS3CCKG+0THuSibUAj9W6F9n/xMiv5ReHNMsugG/ALt9+6UkFD42a/Px6OwUP2yG6qJW0Cy/gJPsoWj+Fb+qlz7ckX+xvo+NsOEB+BQ/3kBnoEysLL88pcQ1vQYWvxcrC5csrZ2+SBqH0GHCDT9gAdmjnZAnv/QelP5XVQ+/AP+xUa4Yr75EGmid28gBP4qszxZUcyK/mntEoz4/Ar+pAzX3glqXPsymOdkoTAI/Np74TnWFIr+FMojd9WcCvzdtjkPEOqk+Li9VE2t2FD/M9mbAk1Uovxl0bsgcZBK/PJQ25IE6pb5fjVmyomwUP+ZJkmImdyi/NikTj9ZcEr+KtnzCicONvpPFgEDOMg4/rA3zyAeXJL/QZybZrjgKv7roApMxc7e+bHtKuKhlAz+VPlFm7a4gv6CeFRwZ0f++ANhZ4/UYaL4cXCISsiUDPwPyBCA+tCC/SHwjwjS4/76Wi3Z7WPSxPjSoIyWMQxY/RAcAaLVrML+46+LwWZ8bv/CWpwxteWK+1jx0iVc2Fj9b+uoXPGMwv7pGnHhjdBu/nKvOe3O1vz70s9rlUYkPP/tSJqlFciq/vkZ/t2OwE79vbExsqMXPPqmgxbdxTQI/Y2VyXpMxJL+S27/3/5AIvw6ev2Qe16s+EihlUwZGAT92yPIOwcUjv176164DEwi/8EwCiLMrZT4HLixGAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/+khigfVUEE/E4RIyFaeQT+ck9jjK9pAP6hwf9NjRD4/6FWPLX3uPD8zoSGYcy9BPwGuwChlbEE/+oFCNS6NQD/iXhFDoVY+PwJyTnCPnz0/1HA/6N5cQj+7FscwDA1CPwabRKEfXEA/EEE90tJCPj9Vfd7QBZQ+P2zRZ+MsiT8/JlQokEo3Pz9kYfowJ+g7P8m1d+6ohzo/pzDanPmBPD/Wr0KdAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAUwAAAAAAAAA=eF5jYGC4oeQbY8cApO0CcsB0bDCElvOF0WB5BgaOYAgtkgyhZdBoBaj8gWoIvacbQm+B0hug9Ipqu5237LnP/XJ3hNDhjrug9A4oDZMHACHuKc0=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/xwym72JOOQ+tMpZLJSX9D4AeGXkSqmrvuL7YtcdTPa+O9zYaxn15b5mN8wF777zPhrpJUrYDQQ/JCQ3j/CzyL4ukiEdxVEHvzYF8tSOEve+/QcDfPuz9T6+aBuVOWsFP9Ana0DyC6s+CRJHRvqQBL8x5CTt09D0vg7ApesEeOE+cH8eTTsQ8T5orl8JFZ/NvjmzO2jhJPi+rntdaQN16L4XIU6NAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAABgEAAAAAAAA=eF47aRHB/zBxu8MdXgUTG8sHDgxAcEAoZN+tZstjIdYfwPxHq5fb7frx3GDh7FcQ/ooV+97s/Phc5OkThxM954XqObYfYObaNXue7FWHb2/ULwp0nQCrY5jgvg9ENTwLANMMFh5gumreEjswX8ILzA+5tgIinxSzz2ziduM+hhMHwHwDa7u20l3hrJsPQ8yzMIWYN8MJon+BOZhuCHWC6D+WCBHPz4PwdyXt64nqcxQuOwoxb4LPvq6jXvEy13Y7nOaZJ/Pb/AFEXMloX8mdjthM/Q8QfpC+3aaGO/OZNrwC8yfsL9m36ez03OtiTw+4vmc7nL5n5wFNDe+WtsNXDgAAY3Zw0g==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFTaFPuh6pKtjvaGnK2zlH1v7ib7vLeyOk7dGUMQjP9Cs6FC5tf3DTAv/DdZL2HMoPLrItl8BQ1/w28G+UkJL9nf4nEU0OSvY9spy9TcFKGOp8Xi46rrbqj92ptJgkvW4Oe9lnJkFz7vLZAwBVDSo+AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFj4rDGdYZMjvWTns8OW4qs6NuU4RK/XNmRzRlDO8WparueMXsOIfh0ZfvBiyOYTMX713mz4KhbuPjhUf3Tmdy/PL0+Oo7fUyOETZT56p1M2GoYz2VvjSOm91xd02g/ixLNkeDsJu1ejtZHQET+il1AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZwAAAAAAAAA=eF5jYEAFv9mzdl+o+mO/xpdv/U4gzfQ3tGoZkEZTxvDr//Ol80DqfrDn9gHpvoVRazuwqHMRvSLIVP3HfoVAJCcLkL7OcE8ERKOra9i90PVy5R/7zNPnzzEBzQkvfJ4qC6QBoKIyAw==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4gAAAAAAAAA=eF5jYEAFVjdEzlxhlLaH8aOSMpZNz9WG8399PXSf29YEztd1lnn9yMwKzocBLoHF58MnKe7/v2C1/2p1aXuWjKje1N2K+ycdZzc3a9C2b7srfeHEH8X99y3Fr/DImNgve2IotvG04n6YebZ7o8InNSvuh5n3lLl32/3bhvsXl7xoFzgrbW9ZNH+rzwvD/XwL1E3PR2rbZ5fbnLeVNdqfwN+92fWJsb1uW0v7UnUjuHlN21aEe342hJsHFd9/dYXlsoQsGXsY3/Qrh/N8Ix0433PCjYeCR43hfJh5MD4AZUFsqQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA8QEAAAAAAAA=eF6zuCFy5gqjtb3AjJLtzdFW+xlQwCLr2KSMZdNzre055rCHSMxEyAdPFtv4KGGN3e366kjdn1b2Pmc0LXR/I+Rdr4m/v/F2tR2zygV9PQZL+x/XvBZ2bkTIy4iePeCx/8S+CyapujHPze3vSnM0R7ui2X+Bec//Bav9V6tb219pvTzx/EmE/Jk/q2/fazuyb9JxdnOzBmv7cO18geI7CPnWq0Wcs6zW7bNdHMHgssTKXmHzrW13tK3h8jbRfCfuKq7fd3yfwfz+txb2TifdvCusEfK3LItVJz+dvs9CVSQmItvC/rBgLfO7Nwjzo26d3Lqe/ZLdkpIX7QJnre23S3xomaSCkL+2/I7Kv5s79vEtUDc9H2ltf2DaMrMTrAh5KWuPy4kFk/flPFFUZn5kaT+/buqRvVcs4fIbnF7emlLSY+fzTGDhN2FLe7efLBP6fyLkHVztpPe5b99ndN7lXomXpf2tMLX5y/QR5q+9+vytuN4tuysrLJclZNnYX9y7di6nIEI/GDTc223ylcN5vpGN/Z2isgWHXlvA5a1OWq5nrT9rp+IzpeBziKW9S/L84Pc+CPkHv+V9G4Of2ClN1J+sZm1h/8/suNYOXYS8VOB917tpx/f1neZTdTluaf9vadSuM6csUO1f8GA3ABtZ3E4=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAKgIAAAAAAAA=eF77rbbSYom0tX2E5wOvLY5W+/32+03JOb/TjgEMFljLbfwjlN5ubW/nW/zco95qv8A+iHzIZLGNjxLW2PWf4z/2R8javqN26unYhwh5+2vi72+8XW13oihlzl9JS3ubjm0mu6Yj5GVEzx7w2H9iX3vzz5najBb2YmeLxXq0rfZf2oNk/wPmPc+ee4bxfLGyf2ln2p3312p/S/edDTXnT+4782f17XttR/ZV8S2zne5jbV/45AKnkID1/nyofMvVIs5ZVuv2qb/6xra0wMreIsdmQ3U8Qt45mu/EXcX1+9aynl/6YaeFfUTTChfxfIT8K8ti1clPp+9TzNmUtNPcwv7WqXt/ehSs90dB5eNundy6nv2S3Yr1+xv3NtrYr7gr0f0033K/X+Jzq/lTn9ldXX5H5d/NHfvEbv/Tq+Gzsd8Wfd5GOtByvy9UXsPa43JiweR9ZfI/ZTZMs7Lvd953SkABIT/D6eWtKSU9dhGKL2YtPmFpb7VPd9ojF4S8uaud9D737fvcuGRuKP63tL8k7b/0Z5Xlfh+o/Mqrz9+K692y220t+9XztKX9R61TfgobrPe/y3jcsfUHy35w+B64u1ui483EjsmW9r/uTwq82YWQNz5puZ61/qwdx/3y/Xe2mtlnXNjNwvbGCi7/8Le8b2PwEztmFeFH/HNM7SWXPL597gxCXjjwvuvdtOP7CuI+FetqmNsLCZdnP8603v8W2f4HD3YDAHOOP5A=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//QVOFQ6wYODAKf4NiWyqD8EiB6qTCUgDwSDENpKDZQNA1fBDX7qO4MCQ09Scm8oPwWOa1b/5aAPB0FjUXzM2W0DmKahm2AHhwPrlxSI/PQrBFn2JjqlS/sAxc1Dp0/hfQGO50zcV2ODA96qgSKegBMHUk61MJon1wByN6FFyqnHADqppwwHY4MBiT0LogusEwbhwIHpZ0/XAABCMrdjj5D8qJOakt9bjwJBFHP6N4RDBhNO4+VCyBMF0EuLAqSWCwJ/91JYChuPAxY6lXEnMEMEvG/5PQ6UEwecCI6jcxm7ADBSNGitt48Cpzq2y2JcLweiQ8cKKDgDB5oF5Y+wfgMBJmUqWeuziwJkM/u2IhQXBj4v9DF+s9sBB99PALjhoQEKeuV9qhOLA282+wOKQBcH2fMl1abf2wKwv7Jw+KnpAFL4BT0c01MC4imzekd8LwRkqP8+NxQDBdkZxAwIEdsBDqYQa5sjUwKu9bx0uBwzBAnX2luDRAMFSNqgaDt5ewFefH8+fL9fApKAm8aCIB8HuXWRtynv6wPNem6THUYjA2UZpYvP+2cCVBrHTNAoDwTlFU4O1cfPA0OSzaLH9OMCa+95BapvawNUcNI7vFQPBKpb8As9888CslqHOxJ6CQMbvoCXngOzAXo+KrbOvE8GAZQ2j1WoJweAFRZHIKDPAgxeegnld7MDOlipko6ITwdK1xfVhTQnBboi1/zZxkEAPEp84NsjpwAZatw/0ng/BFgEQF0RyA8FfhbxinnmgQNllosTSCujAtXVCIKwsCMH48v33U737wJZOkbZg33xAeOoqP4NN6MB4XdDF+70HwY7VanvkT/vAsGBLHaf0NUALOlV4AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rO7ZX8OTPAoc6AnTfnCK9hc6FBOk78p/kJdIKCNJpIDCpmCANADq3R+E=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rO7ZX8OTPAoc6AnTfnCK9hc6FBOk78p/kJdIKCNJpIDCpmCANADq3R+E=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//n21Yi5Pw+HAtVWBJ1lBEMEG93VNld0DwcZ5bkmt6mzAFltwbhee4cBcDXTBlzsQwYozqnQ38gPBcpc9g/laccD+r3xXHYDhwBnv+9btnQTB3hCp6EKq9cAdASJoBuxVQJPzTMnQWeHA/hdjfpsnBcFmzGQnFTD2wA07qF975k9ABgPtbu5/4cCxUnpc2igQwfc1EcUqqAPBU2E0TU/gVcDKX/eYNOzhwGj5BxBfSBDBzbbQQRnOA8F1gl4ZK4aRwIKVwkJzfOHAROZ+o+HRBMFbw3k045b1wJAXJvPd04XAsF0fIvjT4cCCMcaqFgsFwRSZMWEOzvXARweGRa4efEC4MNcKkh/hwG7V+2W5KRDB3YwbsYJLBMHliw81xwtyQAr+vqCD2ODAN7iM3lEQEMEKbUF1VRQEwRKk6Enk54hAfbnvDT9m4cC229acaoIFwUwQl84cfPfAsWgYZgMbf0AUjri8BjXhwCuxYQHqyATBYTTT0m/H9sDfW9TwSbuBQD3PwVQ=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAhQMAAAAAAAA=eF5l0G1Mk2cUxnEjoCLOtVWchpVVUWyFupmxyZv3QwcRQUHRCplRJFhCaOsaCMYxmBEFrNYwIFgBqcEKFkzVFqwvZZ5GIKJoYETFdUiXSYFiZ5utyozOMT88PLe5e77+8v9wHdlNl6tWwaESX+VOrWyPtsyib03vXp7PpmJYvzhmsyfB27M+yczguo+AjO7/StEEhHRgzxg7EHa2X830pMdOL/g4vLAeVFIfa8MeDvV4odZ9zIi9NGzUI2xRwUWJ4kJWI4d6RDhP2vzR4644NNNvDSu/HKrH/ka+lBuuOIra6J50h/u5IZ5Vh4qFed2GXDuSh/INca3YaxUTY/mFZej5Tb/uA6eeIRnhnrxbVM4m3PfuUu19q8VuypWFLBEdg5n+LuH5Pk2/+u/fh5yiWJXAbEcgiMjf/oHvFrTrhpxqmLdwZEO8cwxZCB8fzFFpA5tgpt/yUBPd14Jd+EVaVcKGUvCj+1TCB9nfXGfZqoF97a1wXTCHiuqqkZujYhivOJ7/8/CWSrDlpSxz29hezv8zLvHQ5lpg0X3iKvP21hjsbfq+gQbFeaYnfYUl1Tdk9gV4+d1ryXgJhxow9CdMi7BnO5W86Cdt0HEvdO5yB5v6hfDK+o0Pd6y9zvR+EZ70fWnYgzzOYa7NzPS+hDcEHNwqreoCql+u/efKKHK3cjoFEuzVf3cMrblvgZNf6y76VTiQk/Dy1cHzxSP3AdF94SvXFEuJPdbsC7OSjHCc7kkXnbjzDjX2wKU6vrh59gSKC9jdXqDG3lfu/tcuboWpzhe/Dz5woHjCk9bx5vxo1YOB7i3u7JVD9dglOefkus/PwGu67ybcmlVqkX2qhQC5bWCo6/1/OLsy792IZPx27remuf8pQfGS+2WGydvHn34VqR4sYPpt6e+yR0zYP/vJqrVVVjM96XfPF+oPK4/Cmd6R4YgaNmX3t59cbsQeVMNrrirTQ6B4vCYm1tvDxadtnvSzTB8pfdoZrMNu4cYLdGnXmD6CcOEOo2Z98hXYJm4omJA50do3y9JRHXbdhGq/YGcPBKtdmabDLi8XPbttyEJXYSPdpxb9Jm0s+mCff9CSSZmF6ZMJ/yPqxJMX0y1QpjHfWnRwElXU9mhGZditkkAjX14Pj66uml5waBIpCVekSoFfWQLldF8yR5w9Lwc7L4XVVLQU998T7nDv/EFOFcP/dzA+eQ==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAATAQAAAAAAAA=eF5N0f8/1HcAwPGKWkU4xmrly0ZDCj02xeH98aUV1pLvVFOWi5x2OzQ3rHCW4zbu7Ojky3z/8pi4833k/RkPTjHf5kvky1QkDpfI7Cy2x6NP994f8Hy8fnidFgS3+qaqYuzwnTGVJWT8NX0dzk3lgSPtF3XkHCLhSmi8nbiOhHmN89auDJLx1J1hGltzm6Hve75empJY6EB4y17rNEEpGZ+ivfHnpq8bZXenyfzWYx17KEPIW24qKh8OS4df+cWU+zNVsfe5dhHq/+vfNHq6fKSQDSmtjVneyqrYzGr30oMB5OeDCvYMttiAt55396BFdR7qrwTv1TxMY4JAwvupVQoCe5BflMwJ7FX4gD/lTdtMnQY1JffJ3dmoz6fNTNPD4gCL1icNOjcGopU8KmM7kV+92oRRHPggivDK40ZzrHTULw+g6mrYxsO3fsSu3s9ahHyYXM7wrmuXwe6/jY4znk+DzV8G1v/ko76PYWXxkDgNzivYrG1jPgb9JL9QXhvy030Udp56Dpxae+N5HqDNKxP1jU1dOCesY6CY8F80dlgpPkC+l2RXpzLBhaP8C7Gkd1WxhIQILzsrS/yGPxl4YXGQlUC/N3o6CY4mtYhOLqhhUoZZjF4tGX+lX0ptCpkEBvM2p258xoMjhE+fz7U2BcgXlXX03KHly/yOsQsBqvXI6+Jn5HW3FUHo4vOrKOS//4xak/gTyF8Ws3TID0uhcDGjmrGqhqUF0H2uQuST00/2uxnXybzz+iNbsRvy+5bFo5oTDbCC8KK5VGpXF/J3FMKdgzgtsGwq9FOp71Ng/rW0UHgFec7LqqFDnTi0MTFg+0WtgLsXa3p+mkQ+Vl9rt/t4JxQQvvHe0GN+IvJWDfJwi6MQ2hL+kzKuQqS8pczbJopeg8xWqFdh8leR8Bng/GGfJeUj3/G95J8p9xIooXcWtv+8Ara3bIjGVJE/dVRnx3cjZVCb8Ip1Tsq+mchTKLnBxSYZ8BXhE4u2W9hoID98KQanHsiD5xl6Lew2EraUdP+DA/Xm+AvOl6YpxRTwW4BPzTsbLFiA3WpfJcljxu2mrpP5ZPwbV6o1TbgBJ8fMzNP6QmTeqp/6kWmNOb5EeK3kkbyJJK7MMxQGPFdyyPh1wnfnh5VFs5hwoV+3e5ZHwgZvuZ4NE6C+RopOASeuDC5uaMTj2nKYEt4QbZ6J+kfdb08se2bL/IczTjfpRajfrGlvWOxSK/Oe2lUVZimor+8mzDruVAHHazvkk2PEQDuctY97G/WLZtjXDD1aYZfS8/2GTxahd8ULRw8m6ts9aRZcAtVwkPDkVQdjCQP1e3ft15il4vB3wocYC32r/FF/0iLx4cJmIdTaInZu/GEWhJI+9jtGRf1H/upCg+B0qMgYbgp8uQTLHTO4Uk/U//FMEDRIioJqhA9kthw874/6Op+r5Hy7F/mcxkOe2mdR/5nEIyIYi4T/Ak5pFUc=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAABAYAAAAAAAA=eF4N0Ik/1AkfwPE5zJKEtDbWkX2WyTETbZlD/OwudvE0I49KrxWrEqXWa6xJOmalJCmEiAo5FsM4B5no+3U0jnbXU3Q4IlQeT5fWObszZrY/4P36vF6fWX9m79YRBcF/9oubfIKNn4taOrd0UpC5esrwQGQ8pLZW9g+aKoj4NybmpVs5GDJfIL9nSsVzOYsOAwsJEO5yQtd0WEGU6YoiiibZ6O5S31rdRcEAvyYPh4KbYNt79lmxiYIQ1DsePuPMwdRbJy5/ZUZFnyJg5TbkQ3DBmraJJgXxf89ui2NTbJxyPbL/dS0FnS7Xtrh7ZUBXz9oo/RIFESWOlTfbcVAv/tWH8gAqqqZ2xLa1xxA9GU/9KzsVBNnqDa9ljI1F4uH7NhIK/ne17Z0DNheIiSHtA5m1CuJUyaWgv6w5yKIlhf3uR0XJWfHD4blbRGmJLen9bjIKT1HeLxQwsEBv2/mrRmqQ5y70jV5MJU5kTkcNeFOwL60r262PgUaR6tf8cA2cqg2Xvw0uJ2oky24NAWSsL98/+cNNBrqknGlN1VODcIXkKJyOhG7XrPrA7yjoLZOePtnNwH5t22XGPg3kWXjVC6tvEr3mj8wrTpJR/rb44uBVBprcyg5J+tivSz2qat+SDo5XuYwqFRlH7FIeyO4yUCdxzzcFP2mgWnVYJatJgkU9Xh1DRMalIPnD+BwG0gs/4Y4bq2Gw2K9M6n8IWp58T+dpyJgV454bigwMcs3r3RStgd82DHaPFwQQnYOjklb7ZYIQVcwci+VgwlAoN8aWis2qyXvlI1fgkeH8QZaVgrDwG9s5lsHG7LB/m8tSyThY+bJulpULdAv+nCt9mRgoEt+gx3FQX8fzqdKOiitOfwRbW1WCrUmH+IaZgjAcaulPzWJjzN/O467pZBT59peVNdVA/kbukbV1y4TpHVev6J85SP6PT1yfgIqMkYueCqwFwZLzxp22CuJtM89w5hobm68PFloXk3Fn+QajhHcyoDsbSGoylwnd27zqqXgOan+YuXvxDBUrX4gfBDa3g806g2G91QoC3R7/GfArG69QigleAxlfuKXxtNvlkHjaAPr0KWhWQl7SX8VE0V6+16f2Ggi8RnpXtu8uuE1NSz13q8Hg7097rlxioEDhcX7rN0qQBReK7LW64HVj1ZNoOgVfBsiNjcyYaFf4YZUvTwPx/o1Vft4SeLimM3/zeTWo76z4B+UzcOYHyfrKMCWkxG2fXfN7M1A2fvVj9AAZtSI2bcoxZ6KZaV7CyEENHPFi+CXyqyDT9+ivC75q8PdK69CtYCCz9fglI4ES4oytJ3RSqsFj12+69x6R8QsLp73bLZnIOR61Qj+sgfXyfp13PYnAzLduRb+P3mx+220xA7ev2XItOUYJl0tHD4hs00Br+rjvwM9KgvKswGXRh4XjQu91dCEJd/RPzmjlpkEJ5xXrybUlwnZVy6H3Ei5K3TVt7n00fFyaaXNMEwfqqOgoXpySMODfrTj4PQvXQ/KXXtEkdNotOK2flQdfJs5bvs1fIm7fcM4OruSijlf6A2k3DZd80xfL9qSAvcdSsZCrJMSKRemKNwv3XZJxQ/kkbP/JkGQVVgfx55W/3B5eJM7sSBJ2NHLRZNr4r8gIGoYeDdkW/q9S8AzbnNXkoyTsDCOG2F+zMGGzp89eDxK6566ziX3WCs/fPDZ2e79IWJa+ES1UcbHTcNxFGkLDV7teLo02NoLIZL4mR6aCvPtHAh6DA372fPeSYJ0KxqRJY08/tINzNp/unk5DTq9Oj1kkEy0PydSzkzTM+ixz4xdG7XC9qXB25IIKys9+G76t3gGpksmJP2aV0EijazVckQKJv6FCcJyG9EMnT08HMZFsPudk0E/DtazW/Tk+9VD/v0AuqUwFc48yNgkbHHD481MvYgeU0Oxo3bVzpgiem9xSO9I+QRF3URzx0ScnhxQZdNCwzfhcEnWoCJLnjjEDr6tAYLyrKabWATPu91na3FcC4drxyvLkBRBZaSff0Hz89aMo2WMPE6edtcNS2mjosN3eJXT0HPwDqAEUPg==AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//kfoVjerphk/YzBe2Gc9GD9MB2kK06cZP6IsGhSPPhg/4fgGJKGRGT+hIFe+kZ4YP5uxWV+mixk/ihg6XJ+YGD9b/bJw6rspP31Xon6w1Sk/EvixWK+zKT8H6kfas80pP1yNqgUQvyk/S5ys/5/dKT+j7MeKOMQpP13HgwbW4ik/DTtpho2PGT8sF0nNp/QcP+09OwfHkRk/q1KTEOr2HD/GEGMSxwIaP+5NYTnRCB0/WaFhCXgUGj9lf3J0uRodP0+ggEfo2yo/Yt7VnTuOKj/BtqedihErP/af22awwyo/S8OnFEQzKz8+te1mv9IqP8WNUKBWOCs/O/HfxNnXKj+gzFpsRXEWPySiQ+QW2QE/MdWhBwVuFj9BcTVXkNIBP9LbEfVbMhY/cxZfpaS4AD9axinLXCcWP2PsUqqCogA/CklPyvZ/Jj/DP22i8wIoPytbD0RJUCY/864VU7rSJz+/Mao98CsmP0NaMZ1nsSc/RTyV0ikhJj+W/XLDiaYnPwRfoWA=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//2iDUSqpNB6/AcKgBPRkH798GKWU5ycev9KB7M/qVx+/FeqZWQoVHr8mp6ivyB0fvyb6oq54HR6/nGoNJyUmH7/s4j2Pfyogvw6jIVLf1xy/t3R3KPpVIL/eb7CMTi8dv9Mktsr8TSC/c3q9NVJWHb9UQGFGD1Igv3h3ssB2Xh2/HmYYA3E6Gb9MggJ9k4Qiv/gXn+V08Bi/f4UPxHBgIr/zbjAEh/UYv8sqqpB4dSK/IocMvRnlGL+D+zyobG0ivyN8WAA=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//4Zaanjhsg5BsYfQxFP6DkEIGDDr3K8OQZinok039w5BdwNpyHSrDkEnBROUgOkOQQMc/etnrQ5BGXOavnPrDkHM8oOKEjMPQc6Nv0u5YQ5BC6sxB7JHD0FCXEl75XUOQRM008PbQw9BK5R1cuh+DkEBHQGmy0UPQVm/BYjLgA5B23KPxP+ODUHdbjQrZysQQREaFOB+fg1BrvwOppMiEEGAO54VrX8NQa6cJezNJxBBKpNZMgV8DUGNjklv1yUQQQDXTHo=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAqQAAAAAAAAA=eF7b9q+r63/5H/togc2M74H0QZ8ZCgwVf+xd2Q9MB/FPNx2oAfG77GUXfQLxg9mkQPypDsn2IL7+qYlMz4D036YkPnGg+OVjZSyPgPzt8xwEhIH82SZX4h8D+dNmn90qCORzNsT+B8n/9wwLBfHPGrdMtgXS3UePOc4Biuenz/3tADJ/9ZmV84H8ZQs2HQHxBRrjdoPkmxc/bXcE8q3le+vmAvkAfW1kiw==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA6QUAAAAAAAA=eF4NlHs41PkCxs3vZzTTOE5+ozJmjJYcEu2uUOjsmbIlysoct85WE1ZyyyXETG4loRm5rUu1u7Jaj8twVCoh31ery1aj0562Z9eeDmo8JSPlIKs48//7Pp/nfd/neanj7yYU0xQMXiuOvV8lgk1rXRej5mBScaLQ13cXucPk/7Qygobp+/oQuVIE4RWn5wIBFy6/OVNe30lJ67ms6FMzFDIo14vm1iJ0r12R7dfKQeCGZTMadTxxkr+zX/MVjZvXvc5UqkR4eKZ0r9SCiw1bhF2K+4eIVodfJH9Q8GG3xb7R+/eZ3Bm1b+agdL8Jd93LMGJZnjQ6tYPGP18oHT/OFiHB3m6FnZ7PTa++53H0c8nbFu9bL6YoPP1T+tIRkQisaiWz8wIHfiV7tq9khUpSTV7N1W2lkRos67LKEMHcVqnZxudib2MZfb08SaK7tRYH5ync4OX3/T2SgdvkV1L/0xQ0n1vXb6rbJylYE6HyOkDjtPHcwPIKBsEJo+enxykk3bGdvuaZLtlkm+lpNEfhC93yNfIIBj9oTaxnlRR25ntY/aT1JJ3cmn/z9fnvXkt/6lLG4A1b8RhjFEZcOjMbe+IlxUhVJ7JoNPSvSvxHGAMvvvG6u8X6PhX1rjNO+0nhZ+9zTunzR8SYLSoKGXjOGLn9d4hCW3KI85L8EHIyWXaGoWkMrK/drQpnIMlcDPcqoVDBq0HhRnci2Ms0ufnReJsX8LC1iIE1kaSGj1AQ3n7QINy9WiLTeidbEhomvhqXnUMiLDwJfaEN54KatfKrk4eR4qPzf4ttpqAr/7a/pFMIurqhMUrAwWlxc89tUTQp42R+HdFHY/+mh0+OjIiQN3mxaGkkFzt486+tzBXkmca897KaQnuhaX13lxDvP7ngrBRyMLTH1Mr212wy1HNxI6+dxsvEHDfdoAjSkw2n/OO5+Nl8zr85LYfEPv7A/b6dAm/WwU4OIR7Ga7eJVnPga+z54eyzIrL5SDC7Us+XdjpnuepEiN4qpYyzueh3XNkyF1hKvCfyAz65qd9HPDdEHgkhU/T/Z9KVg5qM0Afy4krioJxQn42ncXmywEh+mUHxsyDzOP2eNpdu2BSlF5OFxhYnpQOFUfe/POqyZ6BezOzYMMLC/bPB403XysmuVZYymywaRU3uaU5gUF7V/OMTDo3uyIaDPwZmkkSWJnfSg0JPqjjMz5WB7Zbu2eI3LLzI3JefVH+SKK7xtrdE0egKGkhYf4PBouNL1RJDGtrGMOpKwFFSu2RY0rqBQqTjz6otHgw2Vq/4c9v/WEjp8D4QW5dFLKboYK9oGn3WbHF0LwOpWdBiFpvGMwKVkyqIGCzVDm53pxCvMe5M8WRA99pGOcyw8Ne5jpnebTLy+EFMm2DWAEEbHUwmlltgs+AdScg2QmdFlWXMdRnxSayV2a1hw/sHXl1fkhgRFnHcf7nzQB2JLuwe9yGBNrNjd6cMMFYs677AWCDOujVHcNQIlecchzUnYoiqoM3+ri0bDZPGXhmHxJgJDRYVufFgO8Ibvy79kqgFAXuVfxhA2mF2b5eZBQTdh+WX0oxg6JyV3LGYQ5ILDAcMN7NhGYe8q3Ix2n1uqALW8dCPuIrjwymkN//+luTXBjiiTMvlcy2wOFuoMY01wvREgdOr50oylhTzOs+VDWZgwi0lQQxM0UILGx46a8dzojJOEBup2O3yeRbKj5VW2LeYIsFuITCjjIX4PIp1obSU+N4bPKw/J3RFVL2aPszHh9rBPWOhbNxiiF9LUwn5zFmiuqjXl976tOrteVNwSw6n9eWxwNeZ7T7om0eWcYU25R5sTIYU9oVE87Hjm9HYFF82FlwVw2pdLmliPm1fUsnC0mGX1a11pujX1rR/f4wF3aFLPP+yZPKRYcDT9eFsRI3+Lp1P4EN9PCT3ShAbz3kvx8Nzk0lNzNfm1Xo+X/4oPLLWFJVyn+xj2SzMJzRenQkNJVfR9l3PPjb8czx3novn48DthfkkKRvRLvvjBqsCyf8B3PfdAQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//dUnXCwEIfk+vhMNysHBN799CGKVmqECvwBVyrqO9CQ+br3dfJnr+D6oeMWKrcY3v2DetjvFjAK/7I9zTkrxob4AUojC9WHSvqQWLisOBTO/oCGASJSdAL82HoyH9qiHPqVpcUHhIQG/QfhClZ+ILL+mpa0264/9vh496oE6v5W+x1ZYeXNOAb+YXOXxJogsv5ZFR6Pvl/2+gGi7FYmv0r0aOvd8L1P3Ptw3ue1Ejji/DKiyXcN7A79QQ1R15A9avkZlw9G+sPc+HJFj0f+IOL+ud5FdhKgDvzhPlrNb+52+lyJc5wVl275Tk3Pky4UzvzNsgT5t/AG/wMjtfc9Co77zYYct+LQCv//on+fRDS2/blzX0vEsAL8UXCtIUdaRvgjfNxkagAK/RXadjEUMLb+YKOJxvzMAv5Y6USaz3H0+Qapb7M/Z+j7RhXY+kSU2v4b4ZJNreP++RmTs8jFyi76OIyfh18/6PjliGwASJja/1kOqeNpu/77cVmj6vHOwvkCC8gz2J5w+vlgq7XwFMr+0cPL6tMH7vjrBR9v628W+YeRJGxbB+b4rLUBXsMYrv9TKz+FaD/i+j43rQXt7sL6d+Rm82Kf5vkK+6PtDySu/QqWxTbgF+L6PVLWE9yJiviheh3iQzvQ+9GUNkTTrOr/e8JhHzL0Hv7hKEDt9S0u+cqewechZ9D4rJXBApe86v6AuxODJgAe/Di8CXdGYir6+5fmsE3Tsvu3kyP2U9zS/ZdvtLnEBCL8srCAiNnG9vo6ZqN38dAi/Ir+y/HP1Lb96XBQGP6MIv3i0SOK0RKa+oCxWKtTOCL9UZ7ValvItv2vFQTmfmQi/AKLSSpnUOD5zG1BUAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/9MU8x56Kho/ZJy8ZKIMGj+LV4bOXVMjP+gnsUOOrCk/5bPAW+W6KT8EJBvgsAQYP7OG09n/TRg/IomZDU1ZIz+wAYGlapQqP6KVMm67pio/5BJxQY7LHD+6pJK1dL4cP4ElKseORiM/ugixzMMuKD92uTHhjiIoP57BmKM22O8+RHGXghgV7T6KPdycq0AaP9Zr1zIzSSg/3XFqyRExKD+fwETRAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAUwAAAAAAAAA=eF5jYGC4oeQbY8cApO0CcsB0bDCElvOF0WB5BgaOYAgtkgyhZdBoBaj8gWoIvacbQm+B0hug9Ipqu5237LnP/XJ3hNDhjrug9A4oDZMHACHuKc0=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/4DgdihHI+y+rNkV9wkl/L40q0beiwoEv9OFIpYQ/gm/QiiCH3H7+b7yDrv3Abz8viACig+Ipwy/OodN38lLFL8N5m7nIUkav+xDRVZ+QAq/fCms55Rr+75KfkFquXQLv4jNU5Q6eRO/Vj9g1tk4Gb9YSAzUrD0JvyWmb5n2JPC+49dNgRYuAL+EMuccLckFv5bK06JaXQu/hiJZEANn+75+EUysAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA2AAAAAAAAAA=eF4LT3Riscy66fBRmXerRtQbBwYwWGArsoch5EPgHyh/gm3d/imzEpO/w+Vr1mv6OVV9crgUxbzfN+fmgcthqWtflDxykPuccFfjyUu4Ogi9Yi+EPgPlT4Dyj+yFmQ+hT+y9+kjNxXraywMQ/gbbpVrV0bNrXzhA+Asw1EPoLWjmr4DSB/a+NTntkDPpxQEo31bLOfrGHqbbDm9PdK4QcXwDFWdoOJX9cma23R8of4JthKKBXnzyd7h8QO0LL+7+TwfWh+a1Piy6fUDgcxJvZfejAwBRc2HsAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAFZzOuPn15UnZ/h9fP3y2bZPe3Bc6v3bBfdj+aMoay0MXXAkMV9nttPKvRlKywn1n1576PEQoY6gxPXa9QtJLY/9UnbvqiQIn9i8w5c2aFSWCo63nA9vjhLpX9LtOOCh6cpLJ/Ubun6vVZKvsBkVQxTQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFzpKNwZdm8jny/I0/Gz6Fz1F98trdGdP5HNGUMbzo99e/48bv6PulqOuAL78j2/a4oP0e/BjqHJoYY/j9eR0fb8mUVwzldfwnLlgUFsaLoe7Jq0Vff20QcHxie13rwjIBRwWu0D/nVwg4AgDUmidbAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZAAAAAAAAAA=eF5jYEAFLHs+JbBW/LFX6/vEzQakQ4V5OEB8NGUM6jqGivfL/9jvXhGpfg9I57xcVw7io6vrcvN6EwDU7/jgAReIbmB/yhCAxbyc/1O+xQP1TxKVVU4G0irfoncnAmkAbU8t6A==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA7AAAAAAAAAA=eF5jYEAFkwNdZ+nXf7KD8U9s8LB/kcRkD+Mb6jzbxbuFGc7/mPG4Y+sPFjgfBsrTlJfcOq24n7/myfwI009266UfsDOcVdy/eG7r3MgSJvu9W59sO3lMcf9GAf8utsnM9gLeL1ZsPqC4H2be902LT245orgfZl6+9B7j9z8M999fnLL8+PGPdpVzt/DM/2W4f3mfns2uPYz2eoecN6YxGO1/Fm2mkpvIbL9u7g9LMSEjuHmMW83ncIsZwc3TdZZ5/cjMav/sPdOj0zZ8tIPx89Zv/DMljdEexr9WcOjh6gRmOB9mHowPABwueS0=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA8gEAAAAAAAA=eF6bFOg6S79eyH6DpOm34xut9jMggxsHd5/Y4GH/IknIvkPzAnfDZoR8t2DAk7kbZu+7xNZ++/ULFvu5AuGT9FYh5H28k6N5tbrsfA5e9cla98RuekFMLe9ChPzFBSGFKUdn7GM7c/l+jdcTu5KeUj3+5Wj2r7izm7/myfwIUyF7dc1ZZ9O+IuQPVAeftg4r2rd4buvcyBIhe5M3fJPffUfIb5Dbz7PYcca+oKU7S7Z8YLF3X/yUcxaDNVxe6ZjoXMc7i/alRb2Luq/0xK7lzZcwRWmEvPKEF/9jL83a96XZ9eX7qGd2Df3BWYKKCPknM+e/bWKZsO/e4pTlx48L2r+43p9a8NMSLh8zV6Gj/2/XvuV9eja79gjaMwYcipryAyHPVFhftjF19b63whwLhX6z2JfcqRO3/YuQD3V9r30u4cQ+t0vLUm/df2lXofNn4VlGhP+EzikezIrdtW/dhQtebSUv7frn5Z888w+hv2Lmrh+Cq+fvm7NnenTaBkF7k3IFtds7LVDDd8ud3XnrN/6ZkiZoL/PRbPbpLQj5vpK1N390NO4TUH2b/lGA1f5XU+faksUI+ahbmc9/q23YJ3amN5Fl4hu7mg9Zwml5CPkjbZz3rOSc9q1u5C+a1fDSrmHV2jetSWj2c1zaDQCYnuvKAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAKAIAAAAAAAA=eF7r6Znmk/tMyP7NqQWdP6Zb7ffb7zcl5/xOOwYQeHJw977XMz+qnhKyP3XLev6GmVb7BfZB5PsEA57M3TB734kaTYf07az29w4eUo2fgJB38U6O5tXqshOYGX8//MVzu0uKJwTs2hHyZxaEFKYcnbFv0uLYoqyW53a7bR8etO+12n9pD5L9F+7s3jw9dtedNEF7+0e/j7FqWu9v6b6zoeb8yX3Hq4NPW4cV7XPd+W/73aWC9n5LC3p6ta3350Pl18jt51nsOGPfnDurV+4JZraPi3FntjRByCscE53reGfRPtX8vFiGuNt2c5eGBRzwQ8irTHjxP/bSrH1eh2SqFM/dt5vksTV5Q4j1/iio/JOZ8982sUzYxzbhYF/1LBH7e3N2ZB92sdzvl/jcav7UZ3aRcxU6+v927Ttf1a2c1y9i/0vkdcJzZ8v9vlB5hsL6so2pq/fZvDmYX7WAyz5v4XLZCR4I+RDX99rnEk7sOyXpfmGP1Q+73I8qKxR8EfLi5xQPZsXu2vdb4s4hIdYfdl3JM87Le1nu94HKV8zc9UNw9fx9MxRmxOhd+GMX9sTm+scI6/3vMh53bP3Bsh8cvhV3dt95/f/BixW/7Wzign0eBSPkV5Wsvfmjo3HfAYU9nPetO+yEPiyN63ZCyEfcynz+W23DvgsQ/ftmxLYfqeFFyCu0cd6zknPaxyq4/4as4d9988RPzZ3DaL3/LbL9By7uBgA/G0ymAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//bHGrDL6zALButI6Rjz5G8FJ7Wu5FIUIwYDD+ON2u/U/fXLnAb7WAsHm0uo8R/8bwe14DkQhhgjBahM9oZmbcsC7Sd7kbtQCwQACV+PkJhfB8oyRQmd0BcGaAIn5iolYQHu+F/pU2wLBfDcLbPZREsGg9uoq+2wCwTpzy2mmjWbAHJYIJ4foAsF84QtaTVQSwYIkdqG9cgLBAChNNeZgo78ER0IEsdcDwVZYwkFm/xzB4+8n3XSNCcFwptTJRQcrwHUMyktcygPBwo8cUSj5HMGQgxAV6JAJwU7sTOPxF2/AhaNsr+q8A8Gc5e4xHN8XwcY0trBWaAbBhlc0i6L5c8AIJJkxWrADwbQAn4tcyBLBfe6DlIw5A8HM8L6UoH9iwIjHOGoJoQPBPiLab/vEEsG2p2dQLDUDwSq+5VMm+E5AiQlw9zzaAMFM0crDzOUZwVAf47TTMgbBayRETrZ2XMD0gOpHm9sAwVh6/V9l5hnBeqlxlmcyBsFau/yf5g+BwDaJReJ+8QDBxiBCXBi1FcGVGkoaK4cDwabrSqt3q5bAD8PP/CP/AMEGl5X0nIARwT5BT+Bh1wDBC902Z+4XgcCPu2pGD/wAwcTDu5ssgRHBWDlQWbvVAMGKW8BeHs8ywGqTg2aGswbBLHIna7EFIMFlRmWwCfYMwSAeQjGSThzAhKmLOMXBBsF593TLNAggwcyh/Ltk7gzBBV9AYkaVW8DMUYu61bMGwVpJ3YYsExrBajBG96LMCcFcLlAJrYiOwJCI8W1uqQbBRvYHFOYSFMFWg3d36bEGwc7r+sETGHfAgiYU6kzBBsG9FpIUjBUUwQACRMWLtwbBwH9E3knACUDkgDieAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rO7ZX8OTPAoc6AnTfnCK9hc6FBOk78p/kJdIKCNJpIDCpmCANADq3R+E=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rO7ZX8OTPAoc6AnTfnCK9hc6FBOk78p/kJdIKCNJpIDCpmCANADq3R+E=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//ipr/RLSLAPBE2qmiUlXHMG0Ch4fs+MIwTjmwV3Ee2PAGo9ZH/AfA8GS1ISXCE4cwfj8gbc43wjBCqGVKvAuUUDaR6mXsS8DwZpvgybGexLByVL1ev+8AsFvpIsdYIJmQO7zuFxRJwPBNLpJpgR2EsG50RSPk7gCwY1zhkx50k3AWE62Qeg2A8ECqZNdBE4cwWAk1hM5vwjBvXochT4PdMA1fmMmHToDweXPNW9XVxzBei2pLJrRCMGp3QQQTMiOwPiVIe9O1ALBuNIBLOx0EsE8746ignUCwQmHx+0sDovATG+1rnnQAsHSHC311HwSwSKm3gAYfQLBw89xMkcKcsCAeqwIdQ4DwYyX6OszQhzBwivaGfnaCMG5XixEyENfwLImoxciGAPBPt8OAuRBHMFi/G88zMwIwf+Iynqyc4PALlaV1i5uA8E0AXk22ooSwXD9DKWmbgPBTVQFNi6sisDI0PFRZHoDwXbwh8kqiBLB3GqOq5NqA8FVbM9A8ydowG6UtG0=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.5000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.5000.vtu index e0018dcbd1db60710257f5cbdce8c25ce781a139..813c05dfcc68d6fc77f446f8beb33a671bd95e1b 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.5000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.5000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00060957657192" RangeMax="0.00077786999721" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00061649532272" RangeMax="0.00077785647019" offset="1624" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00014498019011" RangeMax="0.00030536956001" offset="3140" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00048790079101" RangeMax="0.00078369160025" offset="5232" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="1.2269758064e-05" RangeMax="0.00011151009539" offset="5804" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="160904.89467" RangeMax="195543.48907" offset="6120" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7796920977" RangeMax="1.7799496068" offset="6436" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="199469.00051" RangeMax="423085.25296" offset="6712" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00046670723128" RangeMax="0.0005325812226" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00046666283688" RangeMax="0.0005327265492" offset="1596" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00024088681663" RangeMax="0.00047486351052" offset="3112" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="8.7391454153e-05" RangeMax="0.00028457147339" offset="5200" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00021534524689" RangeMax="-0.00015849083855" offset="5772" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="274075.02622" RangeMax="307024.2768" offset="6088" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7789635831" RangeMax="1.779158883" offset="6404" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="413587.18866" RangeMax="708040.86987" offset="6680" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00014464021309" RangeMax="0.00032862836045" offset="8800" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00049901103418" RangeMax="0.00078999386249" offset="9712" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.8053106032e-07" RangeMax="6286155.7966" offset="9984" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-5.2572618182e-05" RangeMax="4.8919462203e-05" offset="10140" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="2.5575405005e-10" RangeMax="76577.964056" offset="10412" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-2.0126808242e-05" RangeMax="0.00011156745173" offset="10796" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="207034.13879" offset="10996" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7799546011" offset="11196" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00070710678119" offset="11376" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00061921226145" RangeMax="0.000770115093" offset="11724" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00062881111202" RangeMax="0.00076983467657" offset="12432" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13208" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13268" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="196686.51547" RangeMax="462291.91982" offset="13328" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="259.68864907" RangeMax="323.15" offset="14240" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="259.68864907" RangeMax="323.15" offset="14344" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0002404009727" RangeMax="0.00049865969952" offset="8756" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="6.4638946523e-05" RangeMax="0.00027931436618" offset="9668" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.8053106032e-07" RangeMax="6286155.7966" offset="9940" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-0.00010364928861" RangeMax="-1.2559889737e-05" offset="10096" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.4551915228e-11" RangeMax="140701.29749" offset="10368" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00023609853088" RangeMax="0" offset="10708" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="319085.84617" offset="10912" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7791791674" offset="11112" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00050268302396" offset="11292" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00046656771855" RangeMax="0.00052641164049" offset="11652" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00048291402726" RangeMax="0.00052939634188" offset="12360" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13132" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13192" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="405776.78038" RangeMax="747939.47022" offset="13252" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="259.68864907" RangeMax="323.15" offset="14164" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="259.68864907" RangeMax="323.15" offset="14268" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14448" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14516" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14584" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="219454.46212" RangeMax="369683.68811" offset="14644" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15216" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14372" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14440" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14508" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="437072.30483" RangeMax="654208.47105" offset="14568" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15140" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15288" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15212" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15436" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15592" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15692" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15360" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15516" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15616" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAiAMAAAAAAAA=eF5l02tMk1cYwHFilaJFHWg2MbEqQpVLy5TM2vJyDraCUxEVvE0wcWJIHSvCoKgxqdNAUVAJAkEKQSpKwAsiakGBIwURq0u5VVNk2prKFAoEIUKwivND3/ckh+frL/+T8+F5SriJ3L3ZEniK9Y46khHyyMkx6yK3xo/7laC2AJ1ZfWm6K2Z8uLDtnA6VOHrn9c6pHsXYXe8bmnKXxDI96TN5rOUXeA3oQ2pC3Z+zpXBopd0svI1dNrCFH2RKR0LOvNltHCkcJDzCWr5TdPgJ03tb5Yl6A3beyMZH+/sTmN6L8OYN7YuiM1qRndK1Nlop+NFaoPLvxO5zLML7ydFKYAiOac46TsERwtVpVd1lP7QBus+PXnViWR32lynrAt/8WI/onnRD3Kd0D3Eh6Hk/z2vlVzFsjdqlqb2CPWzTL8Iu/kPkVnyRtXR7EGwjnCt7PuT2Rw3TS3NF2tBT2AVrHshUDbmA7jcQPqEsMJ9ueQpi2KO/1ldJ4Fl2xYTJaT3jbPV/izz6G1G4cPKL7e10fyr0ZbuV3UV0Dx6qk7wm8fu3aj6besdLAd2TLqgXTSl0NcCgsaVxbRLot/qn90lT2IXPhv4K/LkVKaOTejK/75c/4ZSlcbjrayeie65zrXvZQvy/hgWHLPqWXqYnvTjjRaYu7y1Kuz3s+w1SsPruwbXl/thjC0N3KNu1KIQzf2rclYJVhEe+GddCfyPTu199tnv+Xuxh6pyLGycfM/0CwhdKh22sTybEibB21JcEQQlb1RN+ELt7uHY0PuQO4CytHDzrScEwwrlp2mTxQDOY4+hFSkPX60jsiX6iAvmNDuDq6MWEe/bEGY90vABj3eYxl+/3Y+zLOSMJhvj+7+xOcblWiqrRDv69kOme0+eT4DugYfoDs2See1Zg37zvinxM2wTonvQtf0t4Tfv0IFiwzbv8vATWbUqPPTkKGM9rmihWcJXom0iTN/fddBcIGgIWJ3cyvczngG1ShT3pxr9uLxXtgO5JP7M6OwN2W8Dy3uzfnyuD4M1/7h3lR2JXBDSmRgW+As6Kij4ZXwwrCI8qXCzm+1jAMkd/6UvL1mQ+dt/MzqLS2vuI7knPZ6V0vFqhAjGJl1mhcRQ0hY7Z9VLs+6/Ha05aDOBE/xT/dBEFjYTL851qE/ZkoWhHP2IqNGddw24PqNTb5UamHySc99uQ64xz1eB//94tew==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAUAQAAAAAAAA=eF5Fzf0z22cAAHCltG5SVFf0Sr2supRETU0k2fMkoTOm3katbLpV16YMq2C67dhccW3Vy0pzXua8Ja2XakPRqjyJlxDNTYLYZexUWqy0oUZY9bruly/PH/C5TxhPUAdLOVDZ0tKZ9wtLUiMLH99TdRPQwo8nrLlWoaJ4J2FxNgeK5NnpGb+xJFePyKp8TAdQuuGzgpD8HhRG+NAXqpceN7Df1j4svW4Xh0oITzcR3HFqxd7YxcixwKUbVSvqPoow94X0MVl0aAP23IVPKQxNDtrxcbJSrOdAe12ZLVuGffBTYYTP+QFUSfgLBbTnWjn2Hi/9JV/OJ235yFtmjaMz2Pf6KW1i8mToxJyrKn+JCVmFp7cdU2B/MCP44MD3DSC+zT7k4nEmdGz4UOr1N/bll1rG6iwGwdeEf2Kyoqe1Yq9MpXlO7X2Ikgnf7zB4jzyM/fBZfY4tvQwwii9S13Yy4J63B/arKrEPDPDyHqV0oTuWkUVm7zHgus3qhPQ+9vZchc4yvhXQCV8ItnvE/og99YMH3Nzu62DTX/hcsxTMx34jk/84u08Ovus/E+NymwN5gV6ziYZsiUsXVa0JvoxI5XM2tvNi1EW9W0s+6gvtLJbDKlpYkhuT4sTzhTNA7n14h2VdG9r01DeHTj3YYEkOEf5264Zmcq0a3Ce8qvepYk7IkvAJT3no819aTyvQxsbyL89z4Lup9WoTA/x7P9KleB6RoWfh72fJtRzY4/MV+2gz/pnT4sXRNyNo05MC/Axoe9lbv9jqzPRQ3yRaJHzLLoPEb3rxX5E3fqWnRIuEZHXIOJMJ+WtLzgwq/uPKjoVlKjuQ9cZPASkiJgTdTUXcCfxHTK11QDc1aiT827kov/qT+P+kvPhX/1f9yJbwgmYr0Ygxe+u38l18bqTXIHe5XF9cwYCUQKtBbRz+dwd1/JPAEoEnJGua8SATasyVnuYW7K3f/lIHj77QCyiEJ/fESFMi8J/i6sNPbFKBF4RX5FpTqg3w7/DnWXWyahz0hAyR00x9oc8i2h/PhJIp15XYH0gJgCY6kbpTUI2EOoFKRuLAlb7V6sIRlqTWQvxolmokKZklJx1eqNnyg6TSjkwn7IOiaxNXOqRAQPiusce6sn6WpJHwgT9zXKTRQ8C0kRazu4AD7cJb14XLYMtrpOuVafaZ6F+u3vuAiA1n0pJ2UZvxT6V2u+/jjQAzwis8rmU55mL/bdNfln+kKcE64dFsTHhCOv7zPQrz4Ng0aB89/XtdFgOSxrXvRIZhn+IuTv/McwIsjYa65Q96w1PeuTbGX+A/tGwfnUKeBl2EX9++rC13w975ykhFdWc70hE+QnnN6FYA/kuNUlUTzrlg9VxKst05JmQHOxQtc7CPbkyoyZoeBlz/m6kCLzrU8wTRYxH4J5cadCZFXUWvCB+lHeC11WP/2r1h6HWiGsQTPlOcEXQvB/8uJ3Vmhvl3wf9VnvIrAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA/gUAAAAAAAA=eF4NkYs703scgLfVpIiUbVgSWxOyzSly6/srXbCQW+QUIUSSI51CJ5fcK5dZNEmJ45IuYpp0+X2ESTR6KvWIkzx6Kml46pnSZo5/4H2e9319ku8QkQ0Vs1/uJDYZZYMzrXOJQ4IB7PrhEz/JOof/3lNo3OVLxYrgdX9cDgf8XTvfTqylQ3OlqaySVYd/Gfh+l+tIxUyeRgyGMjjQRz/6zK7eAP5g3Bnh0PPw2Y4GPv9PKrbCSlsIPRywN8/1KvCmw/WeJb1LZXV4o0lWS+MOKlbuK7w4fY8N9qPhOjO5BhDsF7C3bzAfd3bjTPMOU7G06oTq7DAO6Dk9HEzbRofIeMKyXXp38BMXvgpi9lAxWrKMZWHAgfO8kFT6OwOYvnRhpXZ7At64nCR5FUfFJonE3s/dHOA/Ct7G5NMh2342ftHtG3iDo+Ptek0lyqWo9pH9GCArqejq9SNCoOat5zuxHER65lmRVa9AcYGO+ZJuBpga3NAJ/UkEUunxQiypGg2KPZ47UZXINrybm4YxYNuDQnMXVyI4JCJygVk2Li1t0pI3K1CS7ECJvJEBo3XPDVvHiRAVs3TITVCEVMLf+hE8FRqzW2X2iMwELUFw63INEtQXGfcXW/PxpWNbJPZaKiSnXgstYzLBsUr9n28nSXAlhCfmZqWgcxse50msVYgWl6fd8okBO28o4+VyIlSbrWnOfhGMUsP8/C/NzqGopjfkhAV+cNBt/1MhJKCfddd8q1uGfmxl5qUt/NGMKetL3swFsu4JF2kNHXRfO2+f/VyNj3TH2Jn9omB0redTPG02yFvKRIZh+qBUtJRoX72GExQBV1X+VKzWJz3A1oILuYclM3YCOgw8LhdMziTguoH3LSPkFGxw23vm1IwlpFbaROt46oPn3eV2Ys8QdCxD6RJ0kIrh3mWl29W50DtBleem00Eq5Bs3vG7CJ96NGjXNULDMaicvhyQ2eL+RkRhCfTBMOV93aRmO72Q2CNYeomJBc/8eObGBC/6RwjhFMx3SC0ihuFo3vtHX+Oyh3xQsQ3vz+9J2NszTvI/wevTheGXpUdVGKb7o1/6LHa0K1NYfEta50OejfzJF/IoI0UJlweozYtw10aO9zEGFhi9vNe10ZwDJ+26VTgEB+GrWqeKkblwztfhr5hYF+k9qyY1lM8FZpORbDxOBMwQ8vocQPz3a0bxPMofabU12XD3JANcv5KN2QgL0Vbnl+Ya24dOzQwXiWiUKCvy7K/ksE9b0IfXSzSQ4Pc4w7tWpRO7567PCdOeQYbjh98RTDCjPqQvanUGAd7yb8VHltWgi9kixb6USadg2SX/EM2GLTdPkejYJOkKwl26D1UjP/zhxr9YcCjz2K/+vKAZIX01H8U4TwJq/6vjOn/XIPcJa9GqegqnXqpW8jLGA8iVrNyWZ6wHrZN39xV/TcZvrZMs3qTSMvNipoy/YCjTiv4yOqIwgeVVdxpNlBSj2wsdNAgUFs5X9k1m9wwJqBisSRcv0QHgt0/FeTi2aHe2+lXOGhik/P/UZ220FU8zwoapRI4htZ7UtPXYPfXSVrjFb+DvSSKyRXbOAMpc29ZWmepAQwt5ytMsbTVkOZPtE07CVNePt6yKtIG3Ky/H3MyNgRT491HLiIbq1Lz16YoyC3e5crVEpN4eAmvkK0nUaWEaNUATB9eiTGlU1e4CGJc8HbH6nYwUHz7QPHPQwAtOb5783srtQrOTwh7kWAjYu5XVtTTQBl/A2S4d8IqwTrfyRPHsdkaPEGhksFbJrT4mRLmZBYivIRMbq0FE4cNLG6QlCnS8Za34RsMHz95X9ESZgYWZmEFNChC/Fb6QZQgFum5hHqhepUDSjQ+L2fR10eJgPj7PVoT99iO7NaUSKorPccWMCxu0pHmpaYQKRk/Oryy2JAKe8hpoFC35eey6LkQJhMyL+i34mpEhazd1n1ECH8EGG+YrQWAPr9BSHgA1TyI4XHEygpzhIfIlHBB3f3VeKaI2o5OA3yaE9CuRX83FxiooJ1P1Xh1frLYFvmwhTD3ZUoP8BgUjgOw==AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//j5owbvkpUg/YfeDchOBSD9DjexBPKlIP3bwZJtjhEg/43TaIRpRST+Q147DYSNJP199zdVBVkk//I0NBogoST8onx5H/gtDP2btT+ShzEI/8uTYIOH/Qj82n+BeQ8BCP4JYI+H270E/tTlLUPgIQj9Pl6PM7eBBP56VciUu+kE/a3HurCbWSD+V6IflFK5JPw0FUgbO1Eg/q/20kMisST9kbIBceydJPyytE7A7P0k/Y5B0BVMrST8kdu2vTENJP1Q1u7mr60I/C08kmErqQj9jarPL1AlDP2P80UnUB0M/NgHwIbGuQj/lN4YmPh1DPwVPgHzDp0I/PV3zV5AWQz+OYhy1qh1JPz3Tns5UTUc/i8GAdNIbST+yW23SkEtHP5uV1ciUcEg/rKUsMCLJRj8XMVYev2hIP8hESxTjwUY/yr5JWNxPQT+DaaH3yw5AP1VXgOkQPkE/gBnr8J35Pz+KdAjVqcNBP0xzC4jaX0E/mI0HRJ/YQT9nOWaNTHVBP1p2qKA=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//zQsQ0mN5xU/3HAI64fuEj/qgYd+vXkWPxQnP0HYfxM/8gjpqvnqED9QXLDu/xoQP7LhGNEasxE/k9RJ17biED/op9Khx3sRP1KCE/6b2BU/vOzbXiOVED8RrCTcK/EUP5a2Yz7dcgw/N1+g4YgZFT+W3nuq4igNP6tt5LfxdRU/xsCR6DwaGj8ueya1RrvpPpNfr9FMbBo//MRyQw1F7D43h/7ZUDsdPwnhh1RExwU/pRegM3YRHD9rFywgaI0DP5BfVag=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//yLlrwj1wwRB9cT+smg7BUFyMSpTRq0EQeuRDjdWJAVBL+pWzMuJBUH93mjCDqwFQQCsyLKVaQVBDFMhKLiLBUHzfJUtXHYFQQMznscywwRByZMOwQucBUFSaB+uvucEQYb4pGt5/AVBCgflSiDiBEFVpak0e+0FQb5xV6Kv0wRBnkQKBXAZBEFg7Jrpu94HQYNc8XvADARBrYU4u9DPB0HxEEooR6QDQT5N3JEBjgZBXU/jijbQA0EZBx5tWr4GQR8xTfo=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAArAAAAAAAAAA=eF6LUzwnGVf1xz7mU/NieyCtJpS8JhlIa78VMnMF0pcMbvsZAennghMfawDpLwFb91sC6V+7M0IMgPRR5TmdIPmKNSfPpQDptZG6D0HqHlz1VIsG0tWhK1aKAOlOuVxXEP960CoJCSCdOb98C8jeUJc0sYlAutnkWPa8SiB/XYTOVCBf8NzUxkVAfktiZMEaIP94s4rFUyDf1N9vwkIgf2JLasQtIB8AEARgRw==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+wUAAAAAAAA=eF4N0H08lAccAHA37p47Z8Md1cokImR62yWV9eBTnHVR3ZzTQrhGznbYLk5pXmJbepkW0bxFL16a5kxv4veb6UNqetG8FnO5N0WIO0XW39//vo8VuRk0TzWUWQhXW8WysOqSaPiOhkDTo/yDzkv3wA+gKfCo0oD5ZMcv/Kcs9BgtbQ87Tsfdphu8BplJYKTPfOv7QA1kodv2/WdZeFH884XFtnSM+ka2WboqBJaRAfzyjVpwW//QqJTOxpyXwXC8hY5Pu18Ene9Jgsgw/yGf5ypIvt5F8Pks7BPL2ZHPCDSzcJ4texcKjV1/9gWHaKDibiZnoo2FHM9+y+FsOn52Yv/VUc4ROER5UtvXoAa3G9/5W+e+93qPn/s4dDRoM68yvcKFOfpWAcdNCxHMk41tTDa21zhKVz5/75elG2+WyMDfn0x59o0arN0GXTR9NBR+usjhwDUdNEbvfCO2F5Ilj+O4lbUauOeaesAwkcCPM2XF69L0kObyVb3VNimpN+iblG9WQ61X9e8NTTQMQ89Ltud0kBO4wuEANQhOyKbjJEc0EHJ51v7bPQRSNjPYKSI9xBRn6wu9I8hou/4w+0I1DI+vCnz5G4F8W0FsZ5Ie3IZPx41174Me2YvTt+004HtGYSrvIHBUaK250KOHFyWxAX8GBZAVtr4bKw6oQb/XvafyIIEn/ipcxfpSDx7Zv9rYStaQnKZ0muqVGnbsEmR4VxIYqQ1WnK7Tw98iT99hSzHZFrNk14KiEeDVTtC2xrGRZr/kHx8PBv5bLR1RXZNCr6sy/0eZEhKLRa0zfeYoaB9Jcpil4dRkg/ECkQS6z5j2dkSNQCTLRm2/j42sBwmz/SsYmHst13hYwYUPu+3vNW9Vgnx/g814uzlWV6etP6ukISU+T2A+tYa8kpRacOehFn5anCCb5bDR3+Sq30fzdHwkX/JMnJUORyq7xN3hKqB0rRt6vZSFM+m3e5t9CYzhHo5vXHES5vt3UtZLRmDh8eXjRiI2DlrdM3DZyMDurJNz97RnIag+XUb7QA1ZmwYmzPxZmCf0ucXLIHAd9xS5mlsEiZV/LJIaaqFugCUPvEngw+VlgQElesgRH+3M2ZUFCV49YwktSvg0pc/9dhEN97oPmk3MT0PnmOOQeUQ+0CzmJ2PPaCG37Ei19ziBhlJCd/6JHsY+XHiRy4mGi4GxrGN8FUTHP6GWPqGhS8f4BWeODpYoK6a7505BQniTvFGmBVHZiIGES0f7Bi/nz1xmwKf3X/2O2/FkTu+e0Kg6Fbh2tM4YPKNh6urdpUIPHQhC13qeOpxI7okuKr8TpoWaLtusNjc6+jTXF7YsnoFUrWTt1ctS8teWRI/n51TgR5vLp92nYfq819srLjqwMqs23KRLJk0IA4nz40HozYlYlrnGDO97OZZY21IR1DEq40t8qOO9PsMSvIJTKemx3naWuH/pTKg+wwQ/KE5WyheFkW2OubwHskEQNA59UbDADBWU730fvTNCO6vijIVRiWSRfG1ZgPMruCbTX7ahW6IqDbZVhJugfFg3H++eSdafiOic3/wfnPa9Ghjsb4ZOKbXdrW5UtGEUnDufaEdumDosnBG9gr1ftqTEOlqi35Z6qV2cCVKqiq7sTsomDS+mM2oLB+BYayGR32SKBaE1vK/LjdDJgdwyEZxMTj0wDL4rHIP2Kqj9/LoFlh3aKTQaYuLBmkuKLZQ8cgJdwhlqBeTcck1uzKXi6/OOm9YenQYnqoWTVXk8Wfc9d3snjMJegbl/YL4x2p87FJAHc2DdnDZFKH8hV461GK1OVcAG1zf/eSdT8e7v4RQ/8TTcHXAQHd0VCSvf3PLM4o+CuC2ztfSwMZ7NmuI5VczB9WGmr+RRKtnC004vvKGA5hvHeI/evzcx1cyt7GnQ5fF4B/OzybrdzsyW/peQxNqRetydgZbc8sSYoFkIcYpKv87MICU7ZNbUeQVoHOtGvgikovNk0UqDbdMQ6mcb0nEjlazZ9Ilybs0oyJ/qC4viGeg3y/A7lDML6qGRfQ4DEvJ/u3EW+w==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//UU+0oHeKBY/F9OjbaeLLr9Nn4BkIygav8B9mDW3SzY+zHPD8KszFj8soyF/3qcuv4L3xp8qVBq/m7i8UnqNYr6yS6QEF1INPwnyXY2MGSm/7AKug36iEb9M+m+4DzOHPl4bFp2fUv0+rrZGZpeJI79wv/Cqb3oBv/YX/SqfK6C+fIKyMEBE/j6/WlDEHtAjv0FDYIzvxgG/AHWbjZ9vBT6bSdtjnm4WP7bb2ff1QDC/ihtBmyHnG7/tzxDl2Mmuvp3kUDbadRY/TYaE5s8qML//1AbV2uMbv6QeJh2QOqO+FyLYXoVWDT+z4T6byloqv4EI+/DJqhK/HLQPuW2Rsr5EM4BRPg78PvYc1Mk+XiS/OIJT/H99Ar94VUrvNrGYPggRKLp2Kv0+z7BZTLZqJL+a0moAXqUCv8zPkc+FhKU+Kk5B3uWkFT9ELZfT+wMrv94OhwA/+Ba/4yS0brNZo77urtWmLKAVP8v79SyXJyu/sFQAeij9Fr+YHc97PG2UvizJN58GzQ0/8eW5bJyjJr/47bvKR7IOvwGi8dwpsr++7m/iWzMkAD/36yv3TBwiv1yzYcrXIP++QPMep3isfr57ZU5b4bz/Plg9cmNjJSK//oaMtrEN/77g4nNu3aGvPtLYQ3fXDhg/LOK0mc2/Mr+O3H6KcnMhv8AJClmn5mS+6S+hJi8BGD9aisxGB7oyv4CwuwXPXSG/4ilVsFtAvz6U1WkQihEPP2KjoDtj7i2/4oVB7wyaF7/HZ6xT60rMPqJSXZrDjvs+ZEDvuaB7Jr/MiNJO2dIJvz/mPO+Je7M+RavUzmx5+T5Y34F12xImv1kYTcLfRAm/IMhfZgA1ZT6lbjzBAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/1u5U38kskg/bm7c+/ILST+0ivGxO0hGP+NBUm+Of0I/3c72ZCbSQT/2E/WqAH1IP5xK7W/iykg/MvwVLCr2RT+u/7vOmZZCP4Z8iSpXPUI/CmrW5vLiST+OCGA5V4VJPy6xfBJGvkU/UFmm0ux5Qj9i5FVNpaBCPw2MZyACpEY/0nOzhdtoRj9bYyxyNuJCP+Q4PAkCWkA/SUNw6NtYQT+OaUdZAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVAAAAAAAAAA=eF5jYGC4ciY5cR8DkD6bXAiiQ85B6bhUMH3lbRpYnoHBogJCW3dAaDMobQGlTaDyDGkQWqEMQjtAaQ8obZC2L+r8r0+Xfrk7QuhwHLS7IwBzhTfiAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/742DA8nreg+MdH/j+L0+D6gQg5wXoKsvgwReOlBnPq+siFauexC6r7OmLCrFRv4PgiSSXWhZAg/sKE6ap1hyL6kCPRnLZALv+i63dNqTPu+eF3pjdbf+T7QIiLs26UJP0DZs4Li0qs+kKLBJzPSCL8O1A6qhQ/5vrGl0CZTk+U+p9/YLhUx9T6oWRhRcvPNvi6TChB9dvy+G+SudGTU7L5QulSmAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA/QAAAAAAAAA=eF5LvCzJZTnvgMMUwdB+7k2PHBhAoIB9n9auoznymz5B+D7+djZT55pEB7wD8xvkAvYZJ/5Y25v03GHxei23kIIDB7jy6+KFZ1x3yE/fy7kv+iJEnwPrPjB9gdsOTDP8sgVTvX4QfoAoWL5BOgSijoFvX5fxJGWZbxcOQPgn9vL4Hwg+/PAMxDyGI3sh5j6FmMPwBkK/EYToL1CFmPvgI0T8AZudzcOLMW9un4OY1/DX9tQetfl2FYcdnDiEZzmteQQVv743o87HXmPxJwif4YQto63FpBlp7yD8B4r77klcfRI06/mB+0uj1OzKDx3w3vzjWo3z9QMAE0hmnw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFwuxfllWdELP37Pd9zRwlYl8WJZm2wUPIHk0Zg/YaBX3ptwL2TNLvhJUM+Ozfdild8BbgxVCXoxhdnCIoay/XcsNSy17WfsqRA/O3WchiqDv3U2T3fqmv+x7YP7x9s2vyvj0hnTeFC5/aAQCjNSddAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdAAAAAAAAAA=eF5jYEAFviJLlGoWsDi+fJEwy4aR1bHT8K1rYCCrI5oyhhXSTaHne1gdW9YsLPS/weq4vT/eaNtbTHXhmwsLcmcwO6qsf3N0zXRmx0XxscHWs5gx1PGp2spcdOV0/Pb9ssq8aA5H4xULGcweszsCAON8Jk0=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZAAAAAAAAAA=eF5jYEAF/wKZzNKr/tiHlU/5FAikWy+2v7YH0mjKGATE+/m1geI3vhy/IgWkN4bM7RPHom5FstyUjUBxthksa0H0Mpsy9Q1Y1P1x7pJyqfxjn7P4wK5SIJ3d51DUC6QBzQUwxQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4wAAAAAAAAA=eF5jYEAFUqz7Y750K9nD+Ilhif5Op4zgfN9phkUveazg/D8rP17yTXKA82Gga/PS65f/q+738Sxa+G+2kr3W3+divfpq+x9OLBUIvGJkP01wycqSCrX9Kzas8f/zwtL++Fu2dXPs1PbDzJs1e/ux+I+q+2Hmcaxst9oYbrY/5mvFkhVflOx1o6fprkgz2y/Rs84xfKORPd/Fx8x7lpjtZ76zreflekv7crvU6A87zeDmWcQbLa9vNIObBxXf7z53R41IqLI9jB9R+Eg7UccYzi83XfHp9gxLOB9mHowPADm9fnw=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA8AEAAAAAAAA=eF6TZt0f86XbyX6F256H9+od9jOggJm7k8MS/Z1OOdk//Kt7ceVihPxrj2c86fwr7A4JX3J+f8zB3ojXuj78FkJ+W8MmG2eddXa6v5nXbvpibR9q1Nr0dR1CXsl2zeObH0/tW/3t2LkT96zst27hvMpeima/AMMeb8+ihf9mO9kf2/f09ZGDCPm+8yoL5985vu/hxFKBwCtO9glHDJT+nUHIX3lTInmOZ+s+pp7P//7McrA/fecVU+9vhHwey4Sroha79um13Naa+sDa/sa7bpcSbke4vMiDVr2rqxv32ffeiqjNs7bPOp66V/4hQv+b7iuXLf0v28V8rViy4ouT/bLoHu/WYIR8kmeK7LO3e/dJ9KxzDN/oZM/VcPnyfEeEfIaCUntM17x9IYlVVlNNHeyTfpz546GGkHfabG0rabNx357+zBMdajb2F5+q//5pjZD/1vlK8OXtHfuu3N+YciLIxn7BkqcXP0Qg5KPn50tGWdyxc5+7o0Yk1Nn+AoOw0343e9TwbXiwO6zwkXaijrN9/KtnGbckEfKPqt93W4hcsltydnrG4jv29rs6/j2dF28Hl9f5s+vlbcHndvZHGb+UGFjbNzlU3WdUQMjbv/zTZex1cB9L1Zsz/9bZ2FvdE/oTfNIO1X6F19YADnbsRw==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAIwIAAAAAAAA=eF4T8pf+ITrHyX7bn3i3vfkO+zM/e8bMVjxgxwAG03bHLdj7KvmWk/2LzRdNOyY77M+Ayr/1eMaTzr/CblOs3n2B6w72dofvPTY9hZBf27DJxllnnZ1E/57HX0Vs7BNfaDy/PA8hr2C75vHNj6f2TeiqZ+X5b2W/L2ut5bMUhDzYegmGPZf61gTurnayN6pcbc3xyGG/tuXdR8sVL+ybdF5l4fw7x/flXl9/gHeLk/21um+Fjm8d9mtB5S+/KZE8x7N1X+9F3fU7q4Dum74h6IK0I1y+gGXCVVGLXfs8+QO6+RZY23utDJyyXRsh7/KgVe/q6sZ9oRL+O7/pWtvfa9TmTWZEyL/vvnLZ0v+yXVBKxpopqc72GTct242O2u832nv7N6P1G7skzxTZZ2/37uP6PdfTWcnZXlfpxPT0hfb7LWDyCkrtMV3z9nldyHRqXOZgf0lo98udWQj5gM3WtpI2G/ctzfW4kcBha7/jbcEz6WkI+U+drwRf3t6x7/jeCSULTGztQ7PfTOa8YL/fDiofMT9fMsrijp3ITTa/ZRsd7We67D5/1s1xv6KzzOtHZlz7IfH7YLfqWoO/nzoc7RMsVZOjDRz360Dl71W/77YQuWTn5GrCfXyqjf0kjo0LbS87wOX1/ux6eVvwud0Nm3nTZrw0ty9+kieXvxkhb/HyT5ex18F9iz525CtlWNp7G+/WkeBw3G+GbP+CV9YA7dMuQQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//VAg3B4HiOfA7SAV2jA0EsHpPkzdQZkHwQCd9JxYHwdAOjmll13F58ASuTMUL0gSwdxKODOyvAfBGEctLJQ9M8CYDFcHF0bowEuClE+j2Q3BvvFdIuvoAcGljW8MRQ9YQEJIhjJVGejA7IhrRjkKB8GAS3PzeNX3wOn70UkcxXDAF8NGBBgn6MCES+SMiFcHwf66eUazJPjAABpJ2Rc71j85TXdFP8frwPYMmQ0LgRPBZw52PohmCcFnlxARF+5/wE6Vs4pSZ+vAKJsE9SJmE8EgABeCAFAJweF2T+EU8XPAS1ibB4tN68CtKqp744cPwaZHRESADAPBzmiqEq1Bg8CxfFOhuLPqwHHjHNwHLwjBRApYxi9G+cDG8iyll5tpQAkl0tr2NOrA4DLidIkyCMHFzctNiEn5wAvHrHvEUHZAdi7r8+nR38DUQkSHirkPwUUAKZTxVQTBlpVLwl8RdMBuTCEFfDXgwChcWm0N5Q/BVFa4CCVpBMGuDTUuIC9lwODkreeJguHAGPtmw1ZxCsEwhTT64e/+wMei9pWCb5DAU/y11I0Y48D43llJnQMFwVBaxl9WLPXAYGdK/Z/PT8AX6aBmQ3XjwLJ+MaaqFAXBnSgaWZo99cCEVHEED2eAQMc+87JgTvPA5KN1b4T8FsF8h4m3fkUPwRCytogLrTXAPsufi7NB88C3/FgSnPIWwfIZ9OdHKg/BvlN2YX80kEBDwFw779jxwImOOy/PSBLB2KusAf5FB8Ew2PzReFedQImwK4IJ5fDAMoQaW/F1C8FQc4x0WGr/wIr28XJ3NIRAqFVfT3UH8cCAXnICbwkLwbJInZ7u9v7AIGXEQkz+NUDpjTj5AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rOn7qzMLPBQ5VBOicg6kn3/sXEqR79j/ewmJdQJBOAwGjEoI0ADydUIM=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rOn7qzMLPBQ5VBOicg6kn3/sXEqR79j/ewmJdQJBOAwGjEoI0ADydUIM=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//iT21VvMPenAoXbMBN66EsGfPLsFtFcIwbz8BbJKTnDAss0H8qwN6cAlkdiSC7ASwaKEfQpUYQjBghXT9/xCccBCCmFLa/fowHeYAhvGGwfB+HL3n48O+MAio9Qz9hdgQOkUZc0cx+jA3gvpsKOjB8G6h1saSJf4wEm68MJUl0RAhcCNpMzx6MBKMg12lZ4SwRZbv974EQjBEl8HwRSdZMAVrcvgtmnpwE+uKtCBwhLBdkFg+JJBCMGeM5u55CKUwEHdvcO4rOjA393QJ/5HB8FJKh8BxOr3wMCC7LtumIzA3JZMffQK6cCGE/VGEIsHwfrqI1lALPjA8OwInLJ2d0DkC/lLMJTowFqS8CDhnBLBELnVoyTCCMFLOnwvZe9xQBZIiXllTOjAvUsBw/SDEsGwZpr91YsIwRdav8fLHYZAIgg+PaUf6cAZQzCdPgoIwTRdvzbPFvrAXSQod/btfECYCqsBuPHowFK1IZZSSQfBKFGNPgtR+cBfDfOXpLOCQJNpxV0=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAdAMAAAAAAAA=eF5lzH9Qy3Ecx/F0mWO5fpDSNlckTH50SbVl32/OrjIqKUexpHJ+XZcfSybTMvRrqU50q2laP5Ta1RJXePvVD/Pr1OmylEilQuFC6PDPt+/Hfb+vfx/3fHHK/db5WHGw7HN6bmMtfseE2KmC3GP4wmT4LLY92faETXPFRPCEd0wScIg+uFXMVf3nkkCtrY34MtnTvCzYc/aIBva+lP+aY2Rj6+PCfGQ1yLvHb55wV52HhJ9i0SoPDs2X261VZcmTBZO9cXeja/9V5MKunRXZkUrBZE/19HpG0DthqcDfR/fAwdgPksGC6wNlyL/n2JdvwLIEilAvD0bgIByh+BObsUN7RKh/L2/deKEIueHui+ShzDSY7KkecLj5+zyHTIFl3tukQ8wBuHAkFXe5jPwmM610i+klMOfX7ZsS1QcXKc4fFt5w7ymCyf7DWKyi8L//2xEfPGfxFMAk+k8Uz0s4Gj3PmA2rtnfMSDzNxqw3mb/aY+ZD+s6QQWHftxxwd3TrMptGd4M/NuQvzSd78Rd73RQG8l3qnriSvGpYTfRUv7atzgj1emiww5S9ZhwMN2UcLJmOXFUW6/xcUwthGotyEYeNYRSPtvQ603MPyH5mp9L7jxXysR9xTdKrjRBO9FQfd9kiMfV+BE/Xy4cLZQNgEpVdIWQjjyzlH1ZVtUAAN541sug1zdn7C+6P7msj+2axi7XpSuSySqcgHqsefIme6tUKC15vnQFal8Q6Oe/uBX21A97pgXzpsg16K20tzE9d1n4L74ZrFD+ldhY97q+DNqJPCdksyvBCnjORPl2i1QBO9KkUD+/F+YOLS4AR9eC97UMWpuG5DCR0C0i/dNCzK6UqC177gapYRfc3uqmj/tbJZK+Iv47ndyI/4GjVs6tLQ/ZU55YeMEbOVkGln9vZ4VwW9nLOUEZ6B/K5IW7SFscaCOjOjChm0n3Hdtx+dKQCdETvIJ1qY96GfE202jXcDsieTfERQdo6ZmwD8C0XW/wOageTmI0rpE3ImdrNrfYyA1QVe/iq/7bQPCbwjTLj3h3wJvosns616Apyc0lFkpf8PtlnUPzrV+VHQ0sNJAobEp/pjbC1JvRzUz5ypwhNWE5oMTRzdeqolA6ax7u2py7puwgyojfbuzD4eC7ySNa4VFuZT/YmVF8wtzDo8Wn4B9sLMCY=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAUAQAAAAAAAA=eF5N0/sz1Xkcx/FJKZIpl1Ict3GJXIa1Ghzz/R5t2jEJq1M7lnWJXXFoVaw6E6sTnRC5E8dxDh3HfXMbHfL+IhyX2W1Zx6ycjXHb3BvasMvYndnPzscf8JjnvH54iT3WI+MYuuRbpziRvJZBCXu8ZZp8MZHEy73LMOFAuL1hwyMajexifhHyUz+DSrXp4Tsq98KDbe9t528SQIx86T1zUcMeH+1ZpnXcXwgRyHPydoLL9vgYsbeD5ooA1uMsjS8r6ZK5OiYv86qxH99si7MvzIG119fjFx7SyDj7LTZXij395LnCjPscYgt5E/UnNTsi7El5YFVmUBrxvz9sGcxa6cQ+TXLQa9q1nHiv6fM9GTADvdmhtrtC7D9maVe6kxmEWLjAZw4tQ0Ut/f1qO/Y/H/9w6/rFcmIR+bNWvL46HvavOkY48+kpUIW81udR3JIX2Hvc7v2oZ5BONLEe22VmzsCkPrPtfBH2TSop5VcV+GDM/XbYc3YeBh3N2PYte/YvuLbYT5RCG/JOAsfdlj19CFh00HBKBCPkdVtVoWJPv+BObIjeWCb8ej6SP3KHRu7Ledq3o+hCmbZaj/zmkQzXmO9cZ/7MgmfyBeW1Aj1S5HPF3qKBQeWNt0eGPZkh+tzIeTd2EciQv/RpRVHeIRfqNPL+xRNRooLnIEJ+cStYqbuRQeUj3+jTPAaSBvhyn8yAvkkjLV2z/Z1UcL9IfMP0F0EjyHylow4/6pEjhz0HQ1twP+SY48OJTgA/5P+i6ZzJ1sD9tY2oHnZ1Nwwgz5sazeugcH/T8mqMgvMAvFAcvjQ+PQeLIr2CN7q4H1ROv11YK4XWUyoJ/cs9RDbrzQGlAdynsXhdq+HDUI98g1Cym2eL++waYy8nHQksIc8MjYno/h33axOPOk0198PzGeAGDU6BcL3W6jtH3Lewcm9QK2uEJV/eEcuXUuKCJKyQN4v7icWmFwdnm0GCfGz+pIMhHfezt1OVY8oEIEde72ueyOMP3PeZYtDfmYkgzOVo/t1BHVL5Mx+2QE5Qby3W/dmqLIJ/00H+qDYD0joCmm33q5O+K52vq/79R+mx9oFZ6/3UZJ3iqps6B1jIL8ZPj3SNYR9uqDZxTS6AZOTdjxzaoQsYVBXyZ8ojxoI0C0H19A9n3Z/qkK76JwwbR7HXYtqxpYb18DfThm0brUbG+hkYNfFxP9CPob26UgUayHM5n1TaDWHvHFJs63sSYAP5E+nWoR+KcH+JSDmvcqMV5s3DtSe1ZRAZyX4l7MZeuezykHZ8Pyyl2JRM1B2gUh94R1fn4n6452Ta404K5pDfODfe0y/GXi2mKsHxfhesI++9wokhubi/tpa21C+tB82AbW7jvTHolHASlwuxNw0QfJV15RlsyW4Ra/oHqebKUeZQAu7H28qSzWfywQx51k3vudIc7AN1NtllNUWgMPqfT0kCxZo43Pc3OlXiNZgE/wDiQBUZAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+wUAAAAAAAA=eF4Nkn8803kcx7dx2viaLcojRXXLoR/zjVNL80GO8iPJTddQqdMpv45UQu6qUamVH/28CwvL5UceftRC9Xmz06TSdYfyqx+acpxQZ8V2ttvfr8fz8fzj+YosLE2QDmjQ47zsnbRUPnT6eu/RECw4qVI+NXES4ZPhc0Xiz2qk9IzrPTPIB89ViYsLvFlQbl2dojM8hAfN2o8JlBpEXSdNupnCh+8NZqJWmrKgvXJpftXfJbh+jsMh7rQaSdhH1nno+cwJ5cxjPf/piGpcYV+Mt294YH4jR4O+Fb9U9h7mgzCCMrps1AzGW1RNAycuYXd5fmOSfr+NVjQMdfAhY0vV8t93saBtq82Bv2yzUZAyXhl+XYPOnyTlun18SLK18aYqzUAUk1pE8c5B7u8fCnp+0yCNxa23xg/5oGGP9y/dzoI/s06F8doq0ETk57klPAKG92995UwnISAgu/iRAQ3W/sC5svJ+DtLZmqyu2GwK7WUPpEH2JOw4netLb6WBsMPSjh5fgdKD4xdZuhBg0qez1xqSYL/VfI2Tjgpczrlw/6oEzOpwq24MNIUD+4OtDWxJcBTD5GM5Dbq7Lu3eNX0VFSXcrlRHESAuucl7QCFBwaf4SLRUkJmNvDSW5uG99xwMmf8REN5tV/PchoTq/gOq6RYazBsI7AkhxNjK8ukm82gCUgxyruVSSRhlXy1X6P3lX3oJ676Ix7W/vTNy1xLQUz0MhQtJ4FRZLOUraOCVrN7HlgSgoYgTY22PptH8Vk1+tpMbPMkcn3dM38fqTLT/irBzOGUgcCC6QI0OGDy16LPig22JSPuzkAmtu5l+s9sLsNGTw4J3LdPoduhfaWEubpCrYXWN+LCAJ9+yNs3mJr76Kikn9qIaBaQmepVa8+F13povtoQzYSDsx+bGGRl+OzLp+XKPGn2Yv3DL2eVu8M36f+3WJLLAiJds1uQlw/jGd7xrtWrUnxci91jMB1bhdN9MMhNCRexc+3rAGpeJyFo/NUqUbztus9YNiij+dP9UFsyvYyxZWtaKIxu3/pNxXo0uqnyWPXLkg+oXS5vzp5jgZ1YYuGLjYzzBTPWLekeAs7z+z9EQEt6o3zgKL9OgzCfI0axdjh3uB0nOJjPgyB6foLhRR1iQaJ62LIwCSzJ0HebDCryxWHyhXEPAr90juYd2kuDNPmsXdZ0G5Pro4JKfa/GLwwYUczEDuAGso+f1faKTRyOU0RR44R9b8FNPI2YbyVzqrxCwsDmtskvPy50Ou07V0CBZlZLv3laDI7KnHqgSGRA06y6xfhYJzZxWbnAiBcYEwjZJQi2eDnzIu1VAgMdP3sc6d5FwvNwuR1BHAzoMhsVMnsYRLr8uH0piwLyP/w146v9dR1mgKNtHgYOfjmU9mZ2LY4sUay+c0iJT3d3ImlRX2HHwwneGvQR0I839ivQ8zJzYLEl4PoW8rMwlPfUIVlv+rVX3s+G6cJuXcd1xPGTi/nFnthb5SXoduIdcwSqzuWrqGQGr7mm9naOvYeuqpqaR/ikUlXJpUCBDUPSBUybtY8NqDv1VBr6KjaJtTBtDtKh4RfLlvWmu4HgHGjY1EDDZHyzyaqzBOoOiDb3GU+ge747d6xYEIrrFR1kZG4aNNlVs7q7GQX+0PeoP1SIxp60i/6Ar+IUQ1nE1er+MniNTNeE609mat+ZTSBtbOkhvQpBhGHPqn1I2jK3Psura34QXeogVdxcx4MLgpMD5Nhc8g1/xn82lAvNK9i2T9Ga8Qeqq0lWxoDN58cY5hST4ElTDSpoxFMdT3uS9b8a+L1ZFfmXKgKmQc2P861w4TU0PlTCoYOq8pt/7Vh32pcyk75KygDYumxt1kQThhyfnoj4wwPBT1tGWiTqc1SllpHAYoD3rHycu48LXz0WD31Ko0EEpVOTopLiKeqTDYIQFHbUbBDGXSSj7KPSkDjNAlJbgtGR1KU7xuNGnsWGAIHPB5+BSLsTcVbSHzlDAuNSz0mI8E4c2OJSLh1hww4P3/r7e7z/2OozzlgGJixoG3HecwP8Dv/cAmg==AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//vswrz1tmyY/0Bq4fhuwJT8/wk3aSZsmPxfRlpn2ryU/X2kcSJp4Jj+j75x1UOolP5uvywt6ciY/eCrBrzrkJT8KUx4Hpc4xP5FJAeQU2zE/QY3FLRPHMT9xyIPio9MxPxv6SOT9yjE/nduSxjLbMT/CkGQzDM0xP0DSt6lH3TE/RDcDqhtwJj+DjUXZ7XMoP+we/FPxcSY/RBYH58p1KD+1I1ZXmb4mP7a7B93ehig/J2AQGTvIJj8+vvnRpZAoP4QggvqYdTI/gIR2RRdRMj8EspETXZEyPx8XYsTKbDI/iCwIw++jMj/QntiuUXUyPw587CtRpjI/SVBU1bR3Mj+ix4YkxFEkP2HTSDROmBc/WoLZ7DRQJD/k6jJbK5UXP7UsOBbyMSQ/w/yOhYXuFj8PNIdyCy8kPxJxCcC96BY/q2B5EA/sLz8ahwTTdcEwPwj7Y2lZwS8/UXOO4amrMD+7yxQvpJ4vP4VYFVLKmTA/7T+6kD2VLz8gxfSH/ZQwP6/PpEI=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//3r3GzvPFii/jvWfxyvWKL+T0qBcAgoov4iaRipQySi/CsGc/VYDKL8SzYprXqUov6njjTHBBii/dC7Gj8CoKL/W/IMJcmApvxAurn9WJie/qVTc1veOKb++/ZxafVUnv/23ZBCvgSm/gpowCytnJ7/n3Gs7o4Upv6Gzu04raye/xnNSmlHrJL8Y8OSVyTksv0+ao1bLyCS/rwUn3xUZLL9PrckkkM0kvzu9/nLiNiy/DFLF7xHGJL8ndsgSyy8sv4e/Xk8=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//xcAT6n3lxFBGF145pDLEUFbET78gpQRQXF04wQOyBFBdBZDuLqSEUFI/GKDUL4RQSPgY5qhkxFBJGujnDe/EUF53wRwKvERQYaXrFPpVxFBEJIkkNz9EUEvPIqlVmQRQUhycf0y+hFBPg25J/9oEUFFEnLAR/sRQZpKjSAOahFB21Dy38zDEEEZp3EbQb0SQQAlUlUSuxBBbXDQbAK0EkFOnC7iT7wQQZ/l+v6UvBJBginZGmy6EEGnvelllLoSQUG3Tyw=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAArAAAAAAAAAA=eF57tWq1n2z5H3vGb8lVHEB60jSTWjkg7c/yZgUnkJ4w/esCEH/Vl64yXiB9xzrVD8Tff+qXMojv8+rx7b9lf+y7zNkSbYB8k8MhFT+B/JU5uX/NgfxXb1PifgP5l8xWLjUD8o+y3P/7C8hf3qLkCuIfijr2KhtIr7bby7QYKM5z7ZZ8PpAvJb7bfBmQ3/j5+6w8kP2pS1sWAfkpqwT8QPLdEjvNQeoBBFtldw==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA8gUAAAAAAAA=eF4N0o831PkeBvDLNd+Z+bYYmS9aJzMjanWzdrfaalcbqk30yzDsLLZCJVQMpkg3mglRYShtYeiMZa+lu3N3VW7yeYSbaLWJ1PhRtszE0VJIYrvzB7zO8z7P++kzhG+secGGjTJl9ZSFCFuC5anerjzMvSD16wz+ZOCv8RhNPAfiFInfEn8RKmdL24fjeFgzvVIxZ/AmFk/+er3K6PU67nSz0SvWV877h9GTarV9ZXkC+TXOVORm9Orkdw5vxCJo1c/47UZvXXxyzKlLRuqu9C5694qNrGj92SSeCCFX9wdTS3lY1fDTp+77IkmrusoxSMLBsta/e854i6B0d17jcIiH63K/zhuLd3n4bvKX84bY6LH2rF1Gi1Brw+/qWMRDzNKpHw8O7PJw1TUuTvTm4LRzqFe1lwiN/W12hkgePnpUSqbupXgUmJzmSF6zobZO5omcGVybETN+fArdQaYHdkXs9hB+a3quIZGDOmEoRxjBoOK+ljbJoBBlOz4XIUvxcAmMaqP/ZCPpbHrhhJDB+drPZF2WFB6/8rpfusWTGEoa3S7EcdC6p2LD850MRp/q3hedoKAIz76UejHOQ7r8t69cZthY3vTqo1sODFymy79XWlFoPmqvnwkIJ9G74x/KAzgIF6yNDQtg0CsJG+YmUrA8FrklzyaUFKQ75ajesZEbPC15LGDAfVB3BfMpeOVLfqlyXEfKmudsDcb+oug/i5IkDDZPiMK3yymoitxr6msWelzoHn2ya5AD+wOmLJVShCebHEbTL/HQNV5Zpp8fQTqOMLKfzrORkzpGPesQgmZVLFQXWiLA8rJgXH+Q1E+3+NsOcZD/77fa0HQRVMFv4v2LeSiTTYbH9ynJh+J71XsvsuHT3tZ65XchXi7JCfrikiUSznzQO/kwg6Ss5oubOjjo8Umt35EmwvF1W0MOlfEgVG/TMbYZxPStg3ZnERsmWvUj5wdChNy1y9NpLKH/XhteIsslYr3Aotx4f8GQt6EmS4T+gz0RS6qM+zIZOU5OXSC+QTK7r6+wcWlqX4GiTwiVTZ903zVLzNTafXlPWky620de/e8IB72ObS0juQzEO99XOp2jjH+wOK08nk94K9LKzV5QCP6t89D+Tj5k6yqWR69l4b7pDn1WYyHpXfAy5HIWB7a/67JDSxnYu2y7TP9AoWH4wd01bgpSIRi4IZ+hUPnJssHzg3xwmtjWs1tZGDREZ0t7sskfWtpgGcsBt2Kzg1MRA68o/up7JRQO72V658tOkOa7LTnyaQot/511czHwwQt+FPXaj4UdaqaxQqAggYJ6nca4r0nx647kYgY/COprN5VSMO/Ja781F0ImWItdzYz5MXeGg5Jf8DGl+aA7wp+FU2/kFv2/7Cats0fHRhNY2KAa62/LFqAlJtunNtscJltvnHNzDSczA8m2F6tpvLnFznqa6ojB2wFSDbGCc9286NSsIKJx8lHVx7HQk+exrSBTgIHuz0v2ZZpjeaur3ZGVcsLbU31A+i8aDwrS7Dced0Ta/aUnWQ1WSIj9UZIQGkcGdEmjV5NY4Mf3NfueFsD66GdvK0+aY3Xnw/TMsBNE+jKyvOYODaFd+RcDGY4IblMujLxhheFV+6nPj6SRWOvZk3PxxvyWnlLndAFYnqOmk/80h9bKYfTn83nkaHLx7IUmGl/eqjx2W+mIvWP/Wb/huhUUGywWca3yyNMdTd89/o7CVUXiiN6Jj1Nc9bf5z82grZrUzFukIiPy22V/dNDI3+PSn5Npg/Wp7+8Wy7kQOg+P3ixUkfFyM+LjR8FdP+hz6EM+Dm+u7f74kRnMq3eHBcUqiZ+n1O4r0Bj5m3/MmWM28BvK9dRGclHwaSiha5Skpzz3mjSIwubOuInn9nwErlxjiDP67PH8mKctiSS2rm9j4TCNxutdmrF0Gzzbbi95a8yvys/cbkofJr5jBa6BARTYN4t1JQv4WDERrfi12wwb81fc+bohkNwMa7ou1tMIXnDW4ozSBuKVDXVD8VxkuPtq7NZ+Q/4P72P9mQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//UrPVouzNvw+SFA9bx9TPL+3Z+uRWPAPv6Bzo1XRZiE+MH4rvdrg+z7yVKTPmFk8vySaTnaJyA+/wINPpBsiqr4gTX5BC/Xrvgj6aFmSJja/1vmF5RWnCL8CH5f7K+yKPgTtkRTT/gu/2IXRupntL7/3DFE+vbUBv7o1EjGYyJm+J6ptf5g0DL9ZG56jt+0vv84UwheLtwG/4DmAFzdb4b3RGGm1axH6PkxlBSbKUT2/pTRCiwSDEL+fJ+095jt6PsTa/bWhfvo+QByA0xVKPb/iURLNB50Qv7l5VH2z+6S+l/ZcVal38L7pVUDPpcw2v6hbYtyGVgq/WeKjPxc6q76SMhcKybsNvxB2Z24gWTC/g12ULLJGA7+yaDkU8JyZvjmImLgSfg2/5dOFMKBXML8F4O/SIEsDv0yAvOx3NIA+VfOMSdzF/T4j8ZKnwFA6v7q9aLf28Au/xByPOeOhhr6YhWqghcD9PrgzbmDjUTq/umJdmH7wC792d8psM3W0vg1hkZClq+C+Lh9wn3DbNL8AruqmNlMFvzTNojZWp8m+uh7ysv0kB7+41WfrXcEuv/njIwjpXv2+E/csfZyAsr4uQt8Uwh0Hvxm7xKqWwy6/gIuWNgFa/b7Ueu/OeTZXPtY2ANJCv/Y+KA7iuaojQL/MuTeDiR8Tv2BBRNvdq02+WETAe0lB9j5f9u9+1CZAv3QJPx+e/hK/OKGMwXkgpL5iJl4sQ4T5vlBo3Thzszi/vSSk50LBEL8m/RI66x/Evv1npf0WUhK/qvAmOIIMMb+uRKeiKS0Nv/zYbu1mf6y+vodKpKh9Er85Yx2xnQwxv6A8bMoPJg2/QDUb7XUFMT4Lmj/3AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/5PmXgCc8SY/IXN0ESfQJj+Eq8okBx8tP7bhns7/wTE/6Q8J9drHMT9604cbVYYlPzK7BigHtyU/ViiNAjgiLT/MoNi1vEQyP7ouahEeTjI/OPEMSnRQKD9KP0G2LEwoP7IjWEVFHS0/L/49HJ34MD8cM0UyLvMwPzwHemBnXBE/WjY9pdjxED/e+NBKpDQlPzo4QyjM6TA/EuVn70rdMD/Djz4DAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVAAAAAAAAAA=eF5jYGC4ciY5cR8DkD6bXAiiQ85B6bhUMH3lbRpYnoHBogJCW3dAaDMobQGlTaDyDGkQWqEMQjtAaQ8obZC2L+r8r0+Xfrk7QuhwHLS7IwBzhTfiAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/zD16RkKV+q+0nPNZdVa+r4Hre/CUwkEv84JHhbK3wq/o6gjTo3c+r62+e/A4vP6vhGY8oyW4Qq/r03sXFxMFL9CrSU4ySsbv7waYITOIwu/jLumtyer+b7d96cpP6wJvznAqF9KeRO/VAnXC8geGr9c8bl+fiEKvzfl2lChj+6+Nrjg6Zur/r6+rvya78gFvzowFBNGNgy/1Me87thD/L5dKVdaAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA3QAAAAAAAAA=eF5b2OCTaMf2wIF/d+ISMeOPDgxgsGFvkIdj4isdRkcIf4GtneW+xydP/IbKL9i71PrG3HX2Xx0Y5Ttzt3I8OPCq5ueNVRZPHRgyb835HfQBbg5MPYQ+YAsVh9IMDajyR2yn9qy/sVn+wwEIf4et256oy8s+vHOA8E/sRdV/A8qfAKXPQMVh5p3ZK/aqwuEO//sDMPEmFhcPKc6HDpbJKTLfFD7CxG2F2U/e/qTAeBDCZ2g4edZy6YOzvw/A+C2bc2POhn09oPLRLvyv78MD2yU2/4sLeXoAAOlnZH0=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAF2/265hVeVd/fI7silPuw+v5f7zjWbTujvh9NGcOqIlmr3gWa+9P6JdI/LtfcX/IphWnXDE0MdU6bJ93+4K6yXyK4NvleuMr+iotKAVJRKhjqVuxj/qD2SW//5u6vm92v6u0/+cT11N3HevsBr5sx4w==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdAAAAAAAAAA=eF5jYEAF93ZtWx7WJujIlXbweFajoOORvH/fGVsEHdGUMZwrfRqoySTk6KLjIhXAIuS452mYgDaDEIa6zG1qbnOmCDgy/89+pjdTwHE3i3DrCSCNrm5Ta3XS9kphxy3bVr6VKhR2PD31frh3qbAjAAMTJuk=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZQAAAAAAAAA=eF5jYEAFkm7r61XK/9hrTF99UhVIq7QtqQDx0ZQx/Pie0PCl7I/9mb89yiDaa8qyT1/LMNXpNMtNbgHq9zm4VqMZSLuy7uRuxmLezksXfCKA+rdMNtgaBaSXhh0/CuIDAEqIMx4=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA6wAAAAAAAAA=eF5jYEAFK4NeTfHV+msH4++fsOVpxQceexhf56DVcf+F3HC+rrPM60dmXHA+DHjGH+aVclXbn7q1VO/Y5j92k84E8+10Udtvcef1vG1svPZzlmt1nzZX2x9vtN03tpjbvtNa+EKrttp+mHkqgb1m9/XU9sPMO6ewSju/ymw/y4kpO3bd+G134NuFvWI1ZvvZ9h94v+ACt/29ht/hzvVm+x8uKrx4gYvb/vFHxbpX/WZw8z6EqyX1TDaDm/dn5cdLvkkO+x8+fnOSseu3HYz/SvPhkRZDbnsY/7farKnn3nDB+TDzYHwA/Ql7+g==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA8AEAAAAAAAA=eF5bGfRqiq+WrH1Ze1DX5c0O+xmQwY+Duw9M2PK04oOMfd7Nfae6kOSP1dw1TbZctm+LfvfPQAku+21/41fcWImQD5ld8dJr3QS7STmHrqw/83Tfshy+mCULEPJZvaET31ot3Pfj/vODZ5c923frz8sM9cVo9i+4vDt1a6nesc0y9rNm7E+4fBsh7/Nj7ZPb9hF25ndez9vGJmsvsDOGT/AuQl4oyJffKXzRvrD1P3K+GHHZL1/wp7HoPkJ+j7vaXfuja/YlnaiZN7fu2b6s0pn33r9GyOeZxVdUei/ep/R5neay44/3fTk4x3PlO4R8x7U1F4xPd+1jOTFlx64b0vZ21o7fuywR8qyq8blKlV37WPcfeL/ggrS9kxB3+Hok+YJHJ9kTT27at6fW79UzGy57hQarjA47hLz1278JZi/O75u2193rweyb+1Z4JPcpOSPkdwic2GZafGDfnG+rT+2pvbWvr+Er+0NHhLxyloGyAv/cffcfvznJ2CVtXzNzdV7rPTvU8GWYtPuF5sMjLYbS9svEzXf03UTIT+z5WhfZOnefcJZ74mx/Lnufyu0vOS4g5K2/vub0uLp3X8f1ORbWIef32aq5lAvPQ8j/fTPn4ZrGafu2Ve7xL917bZ/QF7PTupPR7Od4uRsA5Xb12g==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAIgIAAAAAAAA=eF5zXHQmP2q1rH2d7bd3Gxc77M/87BkzW/GAHQMIRBzaHfVg2oHWQln7qv4k/UygfAZU/kjNXdNky2X7vpzzX58txW1/eDMz7/aZCHm/2RUvvdZNsNv0fv1fjyMP961T2nSgaQJCPq03dOJbq4X7dJKvvkqb92jfq029Z1knI+TB9r+4vPvcQ/cNqzdK2/MHt24Q++OwX9vy7qPlihf2/fm+9slt+wi7RRz7FOawyNi3FivFhfx12K8FlRcI8uV3Cl+0z5BjbsF+PQ57qehDF7f+R8jvcFe7a390zb4PKa/7C/vf7XugH69nzOMIl88xi6+o9F68b1O/rHTVjdf7MmqSZr7hQ8j3XFtzwfh0177l9gI/pBLk7afPWHzPdqL9fqO9t38zWr+xY1WNz1Wq7Nq31sxGnzFC3n6Om/m8NqC8BVQ+/9FJ9sSTm/Y1b1u05fJSAfsIpWkHLGYj5K3e/k0we3F+3609+WuVb92zS9r8nCd3CUJ+l8CJbabFB/bda+bWdf9x185CmYfh1UL7/XZQeZksA2UF/rn75rfsXaFwl8f+0wT2ZxuEHPcrOsu8fmTGtR8cvg0Tdy8TWDZPTYfHnjXgbJepgON+Haj8nJ6vdZGtc/cxPFPTLtvRYXe1oXdxETdC3uHra06Pq3v3LYDo3x94PfhV+ScHuPyXN3Mermmcti/rkvDUiXy8+23sfEVY3zrsN0O2/8aL3QCouDT0AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//QtrnV9atwfBig/9JRL2IMEoAXbwMxQQwUCwO0j+C/I/wtJCdCHFB8GBRar86/kgwYz2AgyCExDBpjqP3ykae8AdsIRQQMEHwShtFq37ehvB0HtRKT7+CsFyDCMyuOtbQKYNfb8hywfBsD8QG5EJFcG2gpq0Z+gFwTLJzcNUvWrAX2JoNgXbB8F410D9nwwVwflK8TXE7gXBwEus6PX/sb+oFAjRXgAJwf7/bU0dmSHBbm0Kt/24EMGqAMlI6TRLQMyvMhBz7wjBHMRr4o+UIcHSk+oUTroQwQaZBnXfwnXAdgVjdVTbCMF9vG61m2QcwcQHbK4DLQzB2ozREIc8fMDq1bcaYcwIwfvx/ReCqRXBIjWc1JXhBsGjkcBDDpBqwCPczRScuQjBlOx5+K2kFcGmvCcm8doGwcwSjARJzlBAtWJZDV1UBcG9Uu25vVMfwfvf5zJjLg3BtSGvkbZ4V8AYN080EVYFwdZmtFsuVR/BSLejDYQvDcHdpLy4YjeFwMogT7xddgXBenPEku2kGcH/8vu3nJsIwb72CBvXmprAPOrxQ0mNBcGJPMCdZO4TwbalYp9GAATBY+2sNTwwg8CgW+TL34sFwTI0VCYq7xPByJxff73/A8Ecgr2LzxIoQKQigJsOmAzBEvIAB1GBI8E8+QUAbtgSwSBBFYOBxR7ACEGhZL6oDMGw9mDC64QjwVDIx8/21BLBCGwL2ITfdMDYl1Ct9ZQMwQmRPik7PB/BcoDShHExEMGKKLAH8d6UwITUCRgGegzBfkdKVsZhF8GULLK7rBsLwTpM65XmjX3Ak+nbL7SSDMFGAa23NGYXwRQYDe8TIwvBQFW6wwanAUAluTT7AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rOn7qzMLPBQ5VBOicg6kn3/sXEqR79j/ewmJdQJBOAwGjEoI0ADydUIM=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF6rOn7qzMLPBQ5VBOicg6kn3/sXEqR79j/ewmJdQJBOAwGjEoI0ADydUIM=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//mDO1XFuLgjBvNU1qPYwIcHLDmmbik8QwZ4b/lX+yGfAfpzn+LUdCMGGWyJykykhwVa6myB3SRDBDyU3MzeQYEA01C7mbTIIwShKQb2GQhXBehmFJHFLBsH/ptrawEpqQD74WK8GKAjBYtIFYx46FcGURbnl50MGwbpINIuRa1LAkKYm1WI+CMGjGi7iICshwXwu7MaRNBDBZVsquA+6fMAHXLHKgz8IwYE29ERqLyHBFSioDc4+EMGYZxeDbniUwJuOjmy5uQfBvrwpadI5FcH6In+kpfEFwbPZ/0d2sZDAfSkt4Au1B8EMIImd0EIVwXzi7Qsc+QXBgH+tTVXPdsCdmfvBpw8IwbZ6CK+VIiHBTC+4NG5CEMHRI7wpEoZrwAkWX0U/HwjBFD7qGnglIcFzJtLX/j0QwS5sZiuNSorAw6s6tlGQCMFdNDUgXVEVwWRuOZCEJwfBUaEf0v2kjMDT7HF5Zp8IwRzZ3KBAUBXBr+vf3sEmB8HSO97L/UdswKgnssw=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.6000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.6000.vtu index 5129fec599f1e1b03314fbb7aa451da8fb749674..b707ca0ae044a1859838f7b20c1203b755b6eef3 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.6000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.6000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00070511704405" RangeMax="0.00096972433487" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00071621107945" RangeMax="0.00096969760053" offset="1624" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00015577095116" RangeMax="0.00034256100128" offset="3144" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00057745735797" RangeMax="0.0010227936269" offset="5252" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-3.5854644321e-05" RangeMax="7.629155425e-05" offset="5824" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="172553.71031" RangeMax="215163.55581" offset="6140" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7795578632" RangeMax="1.7798548945" offset="6456" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="221652.30515" RangeMax="485760.0251" offset="6736" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00056176370486" RangeMax="0.00064371184401" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00056175722937" RangeMax="0.00064387772021" offset="1616" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00027230858579" RangeMax="0.0005542524292" offset="3124" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00014584099268" RangeMax="0.00035597091437" offset="5208" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00028839385317" RangeMax="-0.00022321412405" offset="5780" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="311739.70631" RangeMax="355097.96417" offset="6096" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7787206624" RangeMax="1.7789537706" offset="6412" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="477533.93451" RangeMax="841110.89543" offset="6684" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00015536107793" RangeMax="0.00037024337171" offset="8828" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00058766507874" RangeMax="0.0010298728852" offset="9740" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-3.4156255424e-07" RangeMax="6286175.4173" offset="10012" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-5.7749587262e-05" RangeMax="5.4157743342e-05" offset="10156" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.1767284229e-11" RangeMax="85980.137213" offset="10428" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-7.3308826159e-05" RangeMax="7.6548947919e-05" offset="10768" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="229634.44172" offset="10972" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7798638373" offset="11172" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00084852813742" offset="11356" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.0007133075932" RangeMax="0.00096080400264" offset="11704" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00072896771289" RangeMax="0.00096025126012" offset="12408" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13176" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13236" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="217721.48243" RangeMax="532343.1947" offset="13296" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="256.99642301" RangeMax="333.15" offset="14208" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="256.99642301" RangeMax="333.15" offset="14312" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00027128953554" RangeMax="0.00058282510677" offset="8760" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00011821056993" RangeMax="0.00034979841315" offset="9672" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-3.4156255424e-07" RangeMax="6286175.4173" offset="9944" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-0.00010500563868" RangeMax="-1.2214360387e-05" offset="10088" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="7.2759576142e-12" RangeMax="165033.70925" offset="10360" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00031192964076" RangeMax="0" offset="10684" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="370740.76242" offset="10884" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7789791889" offset="11084" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00060426083035" offset="11264" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00056161526505" RangeMax="0.00063662173592" offset="11616" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00057983390204" RangeMax="0.00064002769812" offset="12320" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13080" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13140" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="467516.67821" RangeMax="888956.83009" offset="13200" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="256.99642301" RangeMax="333.15" offset="14112" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="256.99642301" RangeMax="333.15" offset="14216" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14416" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14484" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14552" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="247072.06686" RangeMax="421049.35538" offset="14612" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15184" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14320" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14388" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14456" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="507247.26771" RangeMax="776195.65878" offset="14516" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15088" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15256" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15160" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15404" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15560" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15660" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15308" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15464" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15564" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAiQMAAAAAAAA=eF5l0m1Mk1cUwPFmuoqCFjIwwiobVQiCKMtgdBvcS5isJb60oLwJLIooGEs7ZRKl2CAZMEUcVTelLagEHMEWBZpihFwpdLzDKNA6awmUCInMZAQQhDnnPvR5bnJ7vv7yT05Ojri13d9jkgf15nG2yvrNE4Z9zH4fhpjGqtEBt3+jomYcPXFwse+PqU4ktvdMg+LHIwvYJxqcmlM419F+e0+6rOLQ4rRcj5jRlnf8E3wYvGpLeLNuD+236/QL5dkKtMmnMu2SyNEztQXDa6p76f5vZrYxdwf2Qi+deqRRRvekW4PFvMmYbtSw5tR/YXshXOa+1noHYp8776kAIg04E3+4t+sZgEuEB0te6+Lu9wGqT7mWKvTbhF2sDFk5NNaKqD6VcJXbQUH6rVpw5qpTSNrpCNhRERVRvYTvM8gXNT3d0YYsf3qdW+iNgAbCZ4RcVcBEE90frCqRpoxit+Wj2HVf3QBUH094LvuyW4dzH1gqmp1n/8ODPptt7eIsvF+jq4tyY6oeBVrgyZdBfAf3efLlSi7zEaL6BElz0ckj2KE/V/BqfSmgetIHjJfLOn3VoLY/fagymg/n5d+r/TOxjxbpfzD82o8Yd8LznUw8uEC4VeHe0qAyI6qXambkqovYT58zDD/MsdH9ecKvZ3izEq3TyD3+xbPyegAFv/je87yNvTmvd/aveQMq3f21mqkEcD/hyuSzG94WWuneuzuD+4UJu2dxQd6YtZvuPyV857gwbm55HD1WBPjt3Qpgctcnpfop7NN3j+b8dLUJbJOcdc6s+/9/CJ/b5apwfmAArfZeGMaarDVi3xVnVcIGI+DY+zjCZxgu+7alPwVJhR89d0/iw8j6yOYcXRTtopZX7LbD1ShW9PsW2S1HHyjZfvT4mxqQbO+7jjUWa3/Dnv9z/sc95Z2A6kkXTDCk5ccHQdaq/PPiAR78wFlTlnYFu/wBr31nlQS1r3gkWn35kEF4UknYW27bKN0/nrofdEqIPTQWCmYLhgHVk87SSkd2gylQLx2PV28GcLLnRei3n2GfOLFxSKe0ANcKH1jVFu7gj8JzNGUyG9DY+7oI4MTZgr0jFR7ITmhBVH+PcM7zmL6Y72qAeetFluQlgMywyh4vDnZLntLFf3YEmIKMx96xIFxLeJE44Ep45E1gsvcF+qzQCwnY01bZizdLzHQvI1xX4aofitaC9x+3KeQ=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAUgQAAAAAAAA=eF5N0Xkw3GcYwHGtCooE0VEh2ihmsyNxlFjK+0qX7Mq0WZSoMhJHJJRdoXI4wkgdtbG0cdQu4thWKgjqHOZdWxuCtW7GFXeqaxPaSEVI0s70t97+/cxnvvM8j13z8N/k32nwxVTfmdQxqoBkuk6jeFeBCVMl67HRMsRKeDoy2EeD+WEytsYWVXB56vZ+1uVedLZ/s3dgsRPZEd7uYXrTaRlVcJTwszUqv/oa3d7z896/PBvScN7zCQWemyvfC9Gkk0zsH0GHwa8H0hcVnPf6d+4Kn2VHcNHHmZynuh50qMrZeBBqhP2lhqRBxbIeNEb4w2q+igH/zuX9tENNVcN1N/a8mBvntErF/pEFkzbv2o1sdzi8IB8IjzsuPVYxxv0n1/W4ILwatB1zXFviAzggVjTOdsHegvW8yeNeL6ARnpN3OllTGfcv8qy3PUfbkJDwJ0y/FuSTsC/U+oIR+ONP4O1Us8H0REe4XWTBurWO7z9CD6+fONqOyHWvCjRzHWHRMfeqg1rYP3ajFJLn6sHrlP98allMtYsY338hHrkr2+cAuSdb5UnFT/D/rhpkaP2m1gsq1/wP2G7TYEhtON8zzFmQxee3Uvw5qEFTnafhJ0T1J/itBdl0WNwaH4mUnAX1R3T1dKpWgaHAbvvKvhYk9+WqMJQR6CzIJjwkURgyVTaoIXyfNsOm9RV1z/cMZWR2mlQBP8sJaTOVDu3NdrP2h+L+aIrwG1FeH0rcLRG32NJhpI2637V3cH+Gq9NcUziO5L6bFhWTfBP3WddEg7XRC4hN+HW35JMyQ+xzgw0PeM+soOsf9ms/+BnAPPO6796U/G//2B7p2l8ilLuq+PnF8xB2UYReoQ7Yl/rEvLubPIMSCB8UsKFvMIH7BqlJsaMz3SiH8LwwhdWUKOzNZt08NrZmkVHIwXOJegCWn7/HrFjG/ZXSgOh0Tj0gk0BVdwSE46Ft9lpJ2G8c1+Sq3ReBDwhfPMTtZI/gvqXHDA/WDAEbwvdMVWY9Z2K/pKD+2UeBE8DSxLEs70s6DFPWlf3Z+KmAo+xrvUKJBOHNMoP2r8qQZ335hBmJBh2DAzdFps6Cyjv62jpKygJJmnHAhRd8YE14aUeawKoC+7iseP2H2Z1A7jsPj3QrvY89Y04hLvtCP/ikqO2lcj8Nki/d7JpmY69XS+swK2YhMdx8j914Cu6IJJKaXeqe90mz3aW0j4BThJ+HySF/MLC3cocMadIgkPvGwn5mewf22g1xw+ZgEXgJLZbv6wKoYtrGFFlgPxeiIWniTYFDJo/ad6bt4GTyvqv5pdg3OERXZ95YAH6El3B1TpboYt/iB89EnG1Gcl+0dc41Oh17o2nXXld/Pvg2aLQoSgqgVU70WwVHsJ+M5amTpMNgvjVzwdfcAb7ZQKrhP2BfwSTfcnDKB2zC3zWEzB0v7P1fGmzmp42DZcLHxGVckXRh31SgKZS4NIB/ALpv3fk=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAACwYAAAAAAAA=eF4BAAb/+RsFyju9Zxc/nerQKtUGMb/eTX5HQGAfvz6HyBHcNYy+oTiLgwyPFz8SlU2+y20xvxEgBjn+GSC/cEHp48PFpb7yjTb83HAXPxvfaqd+KjG/C/Ic8cecH78It8OBp1GYvsXrdkL9lxc/BAE6h36RMb9RxfsWDTggv+rNGjOI/Kq+AR/fssxuFz+85AQmYvEwvxoC3hbOXx+/oxOw7U5Ol75Cl/zf1JsXP+HOy+GZVjG/PBCYvBwhIL8y8O8pLC2svlp6IscCfhc/QTAG3EklMb8VexCFOb0fvwBKbMKShnu+4GRvQOKqFz8iOquOkooxvyUzOxuXTyC/xgZvussUpL7CFHrVY0f2PiRjNxl6UCW/9CaUwIfRAb+mb71TgsyLPhteHcb0ufU+NZQ9Y2/aJb9mj/afeYsCv5YeqWXJR6k+tmwP2IlV9j6gBOzJJDUlvwO9CNcYwQG/+8n18Jgjgb78ugmh8cj1PuyZR6OuviW/g24Jlcd6Ar+KmhXqCG6bPvQR0LPBgPg+LZLW4DADJr/SVDD9U4cCv8Eo2rPyrZC+MEh51G01+D7QOuciTC8mvwhes1KDBwO/qSaeXqdudz7oJPEVhmr4PllECj+j4CW/I6m5sv9uAr/YTbE0reZYPiMCr11NH/g+UNLZgpEMJr+LWmRLuu4Cv8gBFfFZBpg+ObE6NsacFz9KYqHBCvAxv+Nzab8EbSC/3Z/MRasapb64fLxlYhYXP2zPrn0RkDC/jL9zIu0FHr9py+A7Kn6gvsOKHR8smRc/Z/L+fpHjMb8nzkGUx2Egv8Dq7LWZRJi+m0Nd+ZUSFz9uqGzyr4Mwv3tUhcoI7x2/n/Hfjevlkb6OufRmsZsXP/9/BPDaujG/NRjnsZxRIL+M23Hf8qW2voHpkSwcHRc/w14OJ07JML+INPexLFIev4lefcTHs8C+zF3myw+jFz/L+HkCKOUxv90FjBXocSC//6xGnffWyr4xGAWheCQXPxGoazud8zC/0WJdMJ2THr/0X+l0brHPvoIvpV1w/PU+k5flnoQjJr/pjPNYvWsCv3aWrTQRZr6+Uv14r6Ul+T56S1XSmCslvwlh8oa45QC/wYCGQwU6zL56w/1XHZv1PuKlBatfWCa/EOCHYS5/Ar/jbX5phsKhvl58wvWYy/g+NG8uPedfJb9GnO3eEfkAvyZCwcDWv8G+H/5qicsi9z7O1Omqn64mv9PPDPHB3QK/+suUanXzlj4bsxsw2yH4Po9/w8pOZiW/jtAnQ0zpAL9HiucEDDCiPsTxIyXXIPc+5ZEnDZidJr8p1q9XldICv/TqwZfr+6I+hGXCRUMf+D5l9Ctf7FUlv0bzVg653gC/q6epRrFPqT4ZQCf3Y/8WP9YVCON09S2/7DxvUnpEHL+8WTTF+AuAvnPmxGTK6xg/2lyT4RdXM794EustHfsivwxdBotQKY4+3X+4EAr5Fj9k/TUtssctv880WojyHBy/Ox9STXQvpj4r768jduYYP+tQwPnVPzO/NvIddMPoIr9VS/jmEmq0PinWzuDu+xY/xdfezWEpLr/VMBMSy1Ecv/T36NdrEXA+DJ3sa/rZGD9IbymrbmQzv7t+R3FG5yK//9j2QwwYuT4pjl/vUOEWP++GkoTwby2/Wz6xbE+uG796sUs150iiPkgRck2cwxg/WWXmTmgGM7822rPzRpsivxfbQfOQTsI+1F3YC4MB/D71IsCcQRkkv+nu+MXAyAG/pv9w3VFamD6N+rt6qYz3Pr1SKJlJbii/LcWVwYd/Cb+qlLG+WH++PotfcszeX/w+NCIgRUsBJL91PKAJRskBvy9RaWdqKJC+USzP4E/59z7i1DXeKlQov7Mlf0LXgwm/GVBkykhssT5+88Mg0Jz6Pm5yB1hyqyO/kHQ9PiteAb93ZTUAJ3+7Po73qq0IZvQ++w/bFRQlJ78iG/yq0zMIv3G/G9iiGLQ+kkN2T/K2+j4myoW0Sdsjv17r12PUfwG/YdhMj6DpsD64C6qZa3X0PkLi84QtWie/wOnmFWxcCL+s9yVXY6igPnIz+S0=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//m1I9lCtMlA/KVqpXjsZUD9VtOdGczRQP1pwyhj+GlA/jRVMJPCQUD9+e3yS4HdQP+VgCSaZk1A/u4tEEoh6UD91zqG9GDhGP7BFFXkc9UU/NL71U3kpRj+7sHS9PuZFP0kQZz/cGEU/2MAP7NcyRT8spalO/whFP/flGKE9I0U/Jfz2bHVHUD/fw2ZL6MFQP4R39+nFRlA/MCRunT7BUD8DukrTA3pQP7iBcvgHhlA/lPtEvTd8UD8Yix7EXYhQP6t9Fac4J0Y/BZ5T14YyRj8hZdV25UtGP3Ggn3yDVkY/+4XKNSL3RT/+rDCam2tGP7UkVlA270U/M447MeljRj9rcSSaXmlQP6WbdrC2ok4/xItLXV5oUD8gipb6zKBOP3K80WxIB1A/9Zbq3lv/TT+/6F8FFwNQP6myjjiT900/bmoGC+JRRD+oYpIZCQJDP974stbmO0Q/kxfROxDsQj+AJOU4wrtEP0rxrOTGS0Q/0fSLB6/SRD/vvLZR7GJEP54bqh8=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//5VsGIqp6wQ/6ShD5YV+/D4tR5+rWDYGP7yL4YcrD/8+cEM5LCaR9z4pLgocYDTzPsfYJ14ky/o+j5cqu/Fr9j4gcqfQ0gb2PhiR3ArzaAY/O76RAE5y8T6FfiRHwxgEPwqZqLQCqOE+q2GoksgJBD9yXcL/qbXkPrLvrlWy0AQ/xJG9LS3zED+YkbkyVMwCv30QX50NdRE/oA079o/UAb92pf7r1v8TP+kEKNhXb+C+yqi/Rb7GEj+Pa9BFwLLpvgGaW6Y=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA///DjZQJ5pQZBl/jcpC04B0F8CI2fc4kGQUGnLtqhGwdBW0ArVR9qB0EmtrnlJJwHQdMwUMD6RQdB85L/MdB3B0EbcgCfXIAHQSKCsdxXgQZBbynbXuS0B0FeOkymG7QGQQahrVUbFQhBRYUmbES2BkGZnL0OdgMIQbs9/nhZpQZB6J2o4JiKBUGuzU5y3EMKQbssaxw0dQVB7hbT5PAqCkGOLrauTRAFQeiEQ8pD4QhBLrOjwOBBBUGIPJIryhgJQR4uTUw=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAsAAAAAAAAAA=eF4T2/yz6knlH/v4CIWag0B68pdnb14BabN1rO+OA2kxi/1Fu4G0QOyLN+uA9E/L496HgXTG6zdHtwFpOUHDC5uAdMq8UvMvQHoTS+OxZUD6yuuVui+AdIR4Ds8UIP1og9HyZ0C6eOvOW9OBdHZkdynIHilvbz+9qj/239hrVwkC+ZwZps+MgfwSG30ncSD/4DtTBU8Qf80Bp3Ag/8DxJRW2QL5H46TZ3kA+ACDIZpM=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA/wUAAAAAAAA=eF4Nko071AccwKXm3DnNubtdzhKa5OXJsq3a8PQjkpawagixvN4iIQnJXXlreLwkFRlpmbfQy4rr7ftlFXKIK6WVwmmu3P3OXYbzsv6Az/N8ns/zyfYbZdhYyuGEkFVrU89CkxLb9rI3Oihu5tdedAyA6tIcPsaRcE695Gj+BjYmndn+/WIdHd+Ljw5EFR0Bn/k8jZdtclB4RBObXrJQ03xyqNCYjvsmOi1SNvGAP/7vmSYgoYjccaoslI1nxA+72t/Tsb9P+0bjXDKk2BmNCnpkUC0Ka/i1kIX6j5f5Bnbp4AFP5nCGVQQIONQ3+ltIkN7e7ic0ZKPl0CPH/DI6PoiMdi/flALBK3QvOjbKobApsc1+gIWdT/TmVlvT8U1tWvbz7B1gk2JnR79OwhG1RufZIDZGKyvWm8/TUc7+Sxnefxhytl/a7Bwuh9Eh5bP5dComY7u43WsWko7+TQaK/Yme1V3L8pNJ8GcyR9c60fBr7uvqqS1qeHl7fvf9jUnE8YWJ1LG1cpjLOrTyz2Aq2jZfT7CymYWAmK+fuT70grV3NK/f8iOBQ/nF12kVDc9LJeX3jNVg1GzRHhobSbA7pn3Hy+RQqRBsG9tOQ1Xi7DuzFWrILJ0fct7xC1jxmZei1pDQO3XekZlPw74bOQ09+WrQtivz0XffRpheNrs0HCKH9YEua51NaHg59+Ovl2SzMHOKG0TttyAy7n2eUUkl4XTPyvvrwmj4ur/iwlCYGlKlm/tDpBGEUqd4hJ+tAGEs+37mazZWeQ8IOxJ1scCsyWZ+OB6+cBfEx3w1AeFRB9Txn7GwZQTUAa00lBR/eHGTGwO2E1EO2YcU4PCiq1gtYqNasHT83n5dDKtojVda8sDGK6lZIfsAtwIY0YsqJu468o/w2zoa3ql+r+zO2w9yW0nhOQMFhNaQBoMlbCwRPKN4W+ui4Oartg/HMqFb851ZuqEM/IhjTrkeLEwY9tmZZ6SDWofv7vD6qQCCa+ZUVfEKuMbJarXvY2PEsYVCOKyLKc3TucKnpeDHC26LEMtg+DxzlJrJQpY5XkkM10ENh/QIk+gKoEVvee9eQcLo56OSjZ/6Llg7SR15amDEa7lcyMiDWp7Xg884EyB282es51IxVLue7PGdgcUiLb9JlzIo7gsw3ikj4WLcR9HypzTcHaP2yK5Xg2t+zoDBgVhYYvaDffeVCdBs9y+YD6Di4+5XnM7ST/zo6UbPiELIXMczUg2S4LhVW5G17pMX78eDV5bOwYhrGcVDFE7cHREoelgy0IpK5r6NpOLBjO+ZIbUzsK3mkVbjP7FE+d5kWnwnCbYPBtJ+N9BBndsdd1tkn/6pkuLKpjhiwjR4f97HCXDln7Pr9aFig6Atllc8A5IbBcTk5iQiO53m6BY8BqmPjj8dXGSgmC8efBGijVc7Io66/eEJnN17UiWVKjD19N5iMM5BVdHPXguNeqgyNp0scQ0keFy3EGLJGPAFD9yr3zIwQ/SnPM1OGw8ctI+jaiYQN1s8jZxiVNBw/xuL6k4O7p5dPvymVA+/wcGi51bpRMfzm1G2vWNgfW1EOLRKH+kiedLVk9qYGsZxIWsIwtviMO/kXRWc/XjlnfMUB7nq5RcN6/XQ+MtePQet3whR5fO3Jk4S+LAhsN3hMgML9hnyEwcpaG7qvubIVCwRtSrE316lhDUpQ9OSJA4mblxxvM9XD39sMr+8Z66QcHOSUnKnxmFpgv2T2ccU9Hl1IWuhchpUQu2HiY484r/IVq60VgluDK1r/H910bA6x/5RrQaesKxo7a/IIwac0jhlxePwgtz7u34dBeNkm2Qn06ah/s4ZTgcGQRX31My9eCU0Hor+ruVvXXRJW1WiKNHAsJn8ihrGCSK021Bi+XIcTPSCzMd3UXCyi7pUbD0NLT8N+axJyyGCGg5dFdkqYdhlBY0TQ0e0Stig6FkExRJWevBAGvFlr7D8ibUUqpaPBYtyKbjIfJzUETYNJsb231r8JiCEA6W+D0OU4G1X9zTyGh1lvu1ED1UDd9Z13uFvjSH+BywnNMA=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//dDERZP8VRc/J/Zj4RjUML8DivctivwevwB3Bw+uVzg+SL2QKVFfFz8S3hwTmOUwvya5N4koKB+/QW07S702kb4B6MC/shANPxShvJkrpyu/P3j1/z8rFL/9Df1nmPWDPg71MvBFmfc+/tdn/UJ8Jb+kq+HxM+wBv6TrfchMv56+9lrKnud9+D4E3ich78Mlv6LxwBtnNwK/AIblCBKw8D3GAVsRubQXP7RstHju/TG/+GFujrKVIL8oAl6qhcCpvqdvA6s2uBc/brs3TB3kMb/3abRk/I0gv+9NmWuF8Ke+4FNbFqAZDT9eMXA0XCgtvx5VpkwecxW/W1eiQ8D6tL5uMYcnsDP2PrSCZu+1iSa/m5ri05cpA7/CKNHN4c2VPvd68oxiX/c+KgMZuo+PJr+1FSBT3EwDv5wODUTPdKM+Q5iwtR2aFj8+TrTiMH4tv7pOJlIh5hq/LmBBsn0gob4C2qzaTpkWP47XdGKjoi2/IkkvnlP1Gr9o1hdRHXSbvnXjFPqvjQ0/Rq7YmRWpKL88D1ABb1oRv15gk7nkqMK+tcL8VuhS+z71INFeMLEjv6ibzrQuN/++RID1JJDHg75GbNqIwMP6PhB3BjxPviO/nqhCCzws/746ZiuwNG6vPtDefNDVoRk/UlafSkb4NL9bPNk+1cckv6BwpI8e2mW+nzauq+mUGT+HYI7WYvU0v5gzZo/hsyS/2gbB8FDRvT72MunX39wOP2fyiLsvvzC/0McMFeRSG79ueXBo2/zHPkz1vIQcUfQ+ROGgiwMbKb9T22eQS38LvwK+J/PM+bQ+xktBu2kv8j5WeCjT3rUov/7Bme8q7wq/AOXAzEAVZz4S4j3rAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/w+n5P1WO1A/AINRIcdrUD/YVnkRt8hLP5yVMfT5qEU/zWDy5Iz5RD+eeoGgFRVQPxytLYCkQ1A/mxRMFVpzSz//dTCkyctFP1LIEIFedEU/xDkXl5nfUD/0lTIezatQP/MBbg9mN0s/6jvrDeuiRT+9RRk75cdFPzpFbhlr1k0/B+LIpSiKTT87BF0bmuFHPzanpyWxQUM/wumog4RCRD9VYkWUAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAASwAAAAAAAAA=eF5jYGAwMI6K2scApE2islDokFgIXZwAlmdgeN0God9Mg/LR6FdQ+YB8CB1RD6ELoHQCjM7fV2O79db1X+6OEDocB+3uCAAsJTQfAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/45jtKayles+2gCUuNXG+z7A05JIlz+tvhi9CN/YZ/2+kAH1XPcR7b5pdUSG0PH6PmUvfL0OMws/tOZcx2IbyL64eIy1BEcOvxEtatwaAv6+1j5SbkiP/D6Ypk/k7WQMPzDg5Q9zpKw+K/8bm3SUC7+W9XmFXcz7vqKp3ofSM+g+7Z34hGfZ9z4E2EryREPOvgsJ0WD7Tf++O0YbhZO0774jw1ZBAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA3gAAAAAAAAA=eF7TcYoXveFx1CHBcE7m9v9PHBjAYIbtIX02o0N/v8D5C0vFjgn+/gDlb9hrKPsq9K/EK4c9S+cX6sodPXD6mHbpFO9bDvMOS9ewGl6DqjtgC6F37IXQR6D8Nbao8qeh9Iq9pp3zjtavuXoAwp9gm9JccmfbsUsOqOasgNI3oPQxKL0Bas5ZmPl7LRI9Zxy6dvkAVH6vW9a1fVKHTjj0XK/cFPz1CUzcts25YdnP11+g/AW2RaFTtGexf4Tyl9iqWcjIyoW+OsB84Fn4zqvHD+iV6byV+nvzAABxfGXnAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAFx3gdhRc8ZrM/I/Ro4sF+Jvs7qekHSib/tUNTxhBWr+mcyvzZrtBm2maBl8/t7h3h/X6g9CmGupWfElbU84vYe7EFv5QRFLF/pJ686ftjYXt0dd6J8txrzIX3P89tOMYlzbNfanlD6v9I9v0AnNsrGw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdAAAAAAAAAA=eF5jYEAF+ta6375Wsjm+XPyhOPk6m+OeOJsfHWrsjmjKGJYW9RYHLmR3LDhr0Wjykd3x2skH9U/+YKo75/R0ft0XFseuhW6hk/6wOD67ornPnZUVQ53qv6Udwhw8jgdSFbhN2bgdPz+8Hr9uKpcjALsFKw8=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAaAAAAAAAAAA=eF5jYEAFlZ8t3r2r/GMvYJ6+4DaQvpLQf+AUkEZTxnDPPeHMCqD4qk7lzzOAtFFLKecMLOqEW080BFX9seeImXshAEjnPpN66VuFqa7FmDl/ecUfe5HWz3y3gPSSrdUX3gFpAPKUM9k=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4gAAAAAAAAA=eF5jYEAFm37V5l+6q24P4/sevHz5hYIFnP90sZWHxD97OD/RKNRAa6UznA8DD7fOjo4r0NrPdcn+T8sLdXvNw+urPy3R2i91w01gjbaF/arJO1N8PmntP+0t6Lfnur19fvXm7ynrtfbDzIs8zxLyNlZrP8y8Mw+Ctkhctdov3vcqvtFBw56zK+GZ/DOr/Sd55Zy1vpnbr/Dmi4vQtt7vWH37Wf1se/sb525aJnhYw81b+b/M+DG3Ndw8qPj+yQnvJgtu0LCH8RckK9UEVFvA+RG7l9Se7bKH82HmwfgAc+Zs0w==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7QEAAAAAAAA=eF7b9Ks2/9Jdd/vME1uOuF1x3s+ADBwO7fY7ePnyCwUP+4RLh+9s/Y2Q38d0WOky9wK73mXVAvr8LvYH9Lq9d5q6wOW1zBatuaWywe6V21rJ60l29lPmHNvZzYyQ3yPKNP/3kTP7Spn3J34IsLVvmc38v/AYmv0VPHu4Ltn/aXnhbj9Tw679kjxCf8ViNi4Br1P7pG64CazR9rBvSz/xZroOQj5yvnla1tfd+44lfTxf+djZfv+OLremBIR8c5Kgq+iSQ/u8JY8vCPC1s1eMTtb2KEPIb/hytXHlfD+7W8kpXgmvbO0P2M9Me+WB5D+21a9fxF6xE+t7Fd/o4GEfk676bPZkhPs9bFfyGrEf3HeCV85Z65u7fcoj2agn9Qj5bRdebX54ddk+E5NnZvbVzvaGJrsWPUpCyK8X9fNqdDq879NaCeuQHXb2XrVzsn9WI+QnBCns+mi7ax/jMuvngbft7C/9/evRNgsh7zkj3bDZ7p7dpIR3kwU3eNh/dG1uurnbCS1+mfbMS1aqCaj2sBc6kbfdbxFCvqZs+wHO11fs+LrXbj5i5Gy/QvUVc5UVQj5F4sIGre8v7JyYBE6yr7O1v/3AwuodH0K+9Lb8pbncO/etWirWIy1nb79I/OzhlZlo9jOc2w0AglXeEg==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAHgIAAAAAAAA=eF6Tvt36Rvejuz37izXurw84709Pe8BeG33YjgEEFA7v3rfwdoCLiYf994+746NeOO9Pg8rvZzqsdJl7gd2ntubeLiUX+xC/5nOxSi5weXWzRWtuqWyw28u+V7iv085ea88+G4MPCP17RJnm/z5yZp/pkXPRy8tt7SV2/24U24yQB9tfwLOnL9L63tmD7vasC52Wdrq57F9lbcPUH315X/ViNi4Br1P7FsQ7ffrC4mH///4ZLv9ghHzMfPO0rK+79/m8erPx0B5ne0vD/hTLdiT9SYKuoksO7UvQ2Jfy6L+t/dTL6Z7/5yDkGT5dbVw538/uRVE036c5tvYWO+a2LMxHyOuxrX79IvaK3ZkTx18xnfCw36jjES3F47y/Lmx5tOGHD3Zutit5jdgP7ivx+H12da2H/drlDueTfjjtr4XKb73wavPDq8v2vck7fPAAk4t91c874om3EfL7Rf28Gp0O7wtSvhwQftzefobT/gflXxDyvUEKuz7a7tpXKv3tT8gre3upwwr7WISd4fJuM9INm+3u2e3gk+w/sMPN/sT0iHatzS77U2VDfQVK+feDw9eCac8ZQd/y/81u9m8kXfbMnwmMP6h8Vdn2A5yvr9hZWd5YV2ztaF9bvp/jtCFCPkXiwgat7y/spsSl7k/db2m/wYjP3p4NIZ92W/7SXO6d+xiYcpoq9a3tizIXnfiV4LI/A9n+hgu7AYf6Jjg=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//VkdoAz2Tu7AvMi2uVJoFMGLGay1vX4LwVBn5ei8PglA0EDxFQub7sDQTEn2X4AUwRxVqw4tpQvBvHZo4iHaYcCvi2KjBybvwA8UWcR5shDBg88rHcqCBMF+gO15DLNUQFQQZ5WG+e7AjsdbFaOpCcFEuWhxo2L6wABVJNcm42/AlA2gG0IQ78CO5DVF1vgJwbpkijN+s/rAAHpSWnhOwT9GS+fYkKrxwFqRIzXf9BXBpnFLXu6vDcGLxLed9bR6wGKQBkxqc/HAH4AuucrUFcH4Sj4K+48NwRjlvxfB03jAJLnaBYpm8cCZFxvgaLURwSyfdr5n5gXBGAalNuPBhcBdMzIkEBHxwGEVIUCaGAvBGHrG1sEp/MCmh9nM2JxmQK5q0hV/xvDAlao85RQTC8EmtrrNECP8wLrlQeh8LXRAdPnXrg9U5cB7jJibp58RwQl537BzewfBX1ENGw/DccBZAfajxqHlwM1Ap7KVthHB9kWIAiiUB8G4vHrks3hswDy8ZgURAefAAL7xw9VADcHn3VezKogBwe7EZc0CWpPAWvfExye56MAe/Ut8TyAHwU5NcOz+F/fAfKYqR0+DVMBcW2MnsCDpwPiUxl+xNgfB2wqym4Iv98CmkvB4RUyAQFVS8rXsKfjAw3+Q2ygeGsHTNA6kDVwSwYB7rbaJqTbAtl+DctAi+MByD9cL5RcawaKc6kqXUBLBOnzHEFjsjkCE8sQezaL2wIRuh9TWxBTBy8ziKKT+CsHYcRQsjOCYQFYrOXaDnvXAnTcW3RsVD8GtBrfWirYBwaq6ouDmwIVAogD1iTDH9cAj7VwNQa0OwYrv1n9vfgHBYHNdMFvwN0D/Wkh2AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7LsQjpq3pb4JBDgPaJlY+2iykkSLstcIz8yF9AkE4DgUslBGkA2V4/vA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7LsQjpq3pb4JBDgPaJlY+2iykkSLstcIz8yF9AkE4DgUslBGkA2V4/vA==AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//mPs68fdKvDApb30euUIFcHKio0rPmYMwU3UwSJxn3HAqI92N2AN8MBmDctlfvkUwd6bH7LOZAzBY7LncNFscMAt4eVF1wfwwNggdgzE0gnBox9QZWq5+sAu0tsfPJplQOE62RO72O/AzsVfHJtYCsESZIcnnj/7wNN71j4qnT5AH3IAbm8B8MDNxRcwvukUwfAMntaGEgzBy/U5n4ptbsCexCGfzUHwwNgmwoDrEBXB5sG7JchJDMHY32tDMXGWwGqEMwaDeO/AVKWkVV33CcFd3bHQ2YL6wLs2wOgVA5HAToZraUzV78Az/vwydkMKwQ6LhCzNzPrAYatEo9ksc0DU7ic4NqPvwDDW8yNR5RTBN9tRTAfODMFhENi+o0BxQEgD0PZ0Xe/A9hb0GJLNFMEwZFbOgZoMwXPkpZwwoYJAhrIAic858MByOsPVEckKwSCJCwm97PzABO5mxzTpeUBh9V2T5CbwwAJowppOAQrBJjB3Tcsd/MDHMCXcPOKCQAT1yGI=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAhAMAAAAAAAA=eF5l0H9Q03Ucx3G+G5GOHycJpsmv2KCFXYamHcG+MwWTeaNjXUWjSAX5dWbdHJC7DTxEUWAMEWfilB9OwORHDJBg8P4SHQNTEbXoSEeOW3QXAfJjouKG/4zv5/rs9e/jnv+8bnWKNnRv5vBnJx78+ptHJOVkXw9v3d3FL4/DvHgw3sB09HZXdpLZIwtu2fuwCUvDkDty1bYQg1tZLd3jrhZxE9JHtZBnHa+/R3D4m3zlW3gs5L0lx9yVcg1E+vBuG0hHz1XsZko2l5LLvdPjui1yAvmDXM+Wm2GnyOV+yfJ/v//hjOnv+SYykJFZlZdOUEGuotKPF3fQLt6Xnr//z9OkzjeCoeUwKA7mnKCYOOoQ6gdiy30/mEMer84If7qmGJrt/XXMy/yzCjWEhsxM8ylQnCWoLtUf6oZHyKUPU2qEodVwJvqC9CNPggLMLT0ureZZLSz3sVflG6/NINcVzZ2cOnSc7kWYi/Pf2xPUXQJHQqWLPw6y+fX1T5NeOoD+kcZLhDei1QDJaycrv3b0Og/WnIRZDTn2fknweOT7g8gbz5fmZfS10z3uU676kK539VB8LVG334/D37bB02qSIK8yk+Snzp3QkR0Y/fwE28GndXFTd9b+QvcBxK4Fphz5zw0RVjfnG3Tvj/n6hffHP1cOwbGd3isf5RNUxEW/KFY+8uBzYz71ykFIrTqpStxhgzDM67wvHO2KGqb7U69nP3HRILcOL5Vt5fZAmr0/jTkj5bMcZvAgrDBbvnszzokaeUcgS9UiF79WMDnnq4dXKrTtzOtWMGI+03wm3Hilm+6VHZFpsTXIJ6LBPzTpEt0XYy5V/K5nyusgtdBy3iWczc+zcfdqj2yn/fBfVT+ZrqqhMSJ0aNjT0WHNioevthbR/b97Vq/0zkHenzEVZez/ge5xv1xYsXf2Yg2IgtP7BVw2vzVGkvBVNvJ5P71+1UwbuFGB4hNtgXwd5llmuan3mza6d6n0SLIpkI/yVJrezj66d8a8PODbpvWyPhhTCu51blwEw2RxR8Bh5Mm8/wyUaghyGavKBWULDp7wRu3AJ0cHwLTcs/+RbT2A3H2EO/a20IB6zBWs6TDWPj20eLGMwu3PoWjYmJOajDzbq8UnRNYEtulx4Vu2Z1CA+f2XrZKeylpotfc7N5FPMhORz37hnnJ2VyXdR2JOVDTK4kdL4AWVyDwvAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAASQQAAAAAAAA=eF5Nz/s3lGkAwHHTKHLbqYYMSjWDYc86US1W3jeMkl1q1yJJSo05x57WpZVd65Iuxv1+OWkyaGIwa1y3YczzWnawaR0VTquZXDIOYcatC7H2l3c9/oDP+Z6vqqr4CvksDaXNP1kDGgyMbq46Ze8nQDqdKM8/BSaBdO18rloxFf07YcbhpCUDixjO0wuLeAKatalXJ/SigQr3Yao3I607GJgl7nNPWHXp5FeCVNwbJqjvc6FDX/gd/WLoax7gz1orrPbTUObBUJYFEfYl2Xd1M2I54OXTbXsIg1RUqz6VV0uDPjnua2LkkVzkf2+7WsgKWXXd7A/f2tX41CEHkeFelvKYN2cM/fCphTHFshBJdfNtt1hRw4I+O/Gn07LrZv98cCibOZyHXAgwW2rtJWIE7iWCVB96upnXOey6EEnG/bpP8pnPZ2HftzDKccUgEwTi/qGCn96gC32+aXQah8BB5II1/gFzAqbKk/YUTcN+xCirwtOmHBxnJzFDRNuwYurkdlNt6N+372iaWOSBEdynCEMvl76F/cb0pRTl9SSA4P4LNK3EQgd6P7bdJTNJNvDucbtG6aaiH0/edZ+5xsCyeLwW+4uZ4JeASM/e04Vg4GWVdfBHGmp+toDss5OBNRzcSyELphC+ntZSJLF803sqEiXx4QwsG/f8+7l3oqSPwTPchylzUqa0oZ/WFlu1HRWDK57HaH0GNDRDyhnt/gn2uRMI4qveCl7NN6ZK9pihf/QJBDYk6FUN55TPDDsBE/dh918MT8fBvvi34+s66r3gOe4LeG8qvCnQm3z4atI/ox9YzPQ5e1UQsFv21fT5ZNg/dG/cRJDRB7JI/97yn1sADc6ty/60Lf/6D263uQ0BOu5l4p2y2Qewvzq0kf8lvR2k415LSuH7OkBPYPklEM37AD9ZWM++oYaZ9w4GelXA/nmj1LmlfWKA6FFqViIXgO+AwlLkDP37+gJHeZUECHAv8+7/xo4P+29PA1Obqw+BPe61AkcNy1yhj4gbFBNj+eAvA45I14mKCgI27h266YJlagQcVdiHI9EjZaKxmkKQVPV9EbXMCE0QeZS/m3fFqrnGu8nbNTDMQHN0b1M6kOKeBKad8+Kh74hSusm7qze9wuiYR4gK+kdp3MuLJRWgrp408a0VFR2vcS+Sx0G/vF8sJi00A0atXU3SFAUVauZz65TQx0zEjnWENYMm3B9en+DEbvFypyxOR6t006/4H350ZosvOhAuNI6RArmtgTLR9BNY9GAulvwMPdNptgvL6gc3+nOEHNYurLOybjViGvogi8oen9s94BXulTcljU0/QE/6hz5u7dkFvVyzjS2D/lctlYNWsBhUtgx+INuugd+PNIkmmdDHkxtNrGKEYCCNbaLvshtLzN5obxmCflxjPbK9tBLU4/7HLLLNu2Do5y/osorcSze942yQQ88L6NW4tTEBr7PBf+7q7QA=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+QUAAAAAAAA=eF4N0v071Xccx/HTOaRD5+L4Ol9HzXG6UlvN0vlu3Qx9zlcUsRLjkjXlYjoaJdmGdpUsHYcjYZV7i8wZisTpCOfzNkWdsWYlrCE3R5JyU2Nyc7bzBzyu5w+v14qPhwzs63Vo0LW3Nzuehs2n4qXMShIObLf98yQpxTmD0RKiagm95Wes2dFEQ13qJrPlsySIy99o97GDsKxPwXAAHbo/VrCv+gwNs94PIOEGCZ+4/MQ32F+GV6rY2atrl9AdX+s+P6Dhy+LW0PgZEsYKvrQ997IEB+Y7marFOpQzbSzJTaDh+m4Xjy+SSaB5cQKXykK8Sz2Zv2avDpkM5J/arqTBZydqIswsYUBxxTfRMQeVG/dPS4J16ERbypGROBq+vTHuqkwgAXHG6x4GZCCpcSw6HalDjEe95A83aFjfa9z2zQpLqOJ8WhQQcgspM+NSni8j4G5tWFLLagoiF0fPTF40gNDRVq86r3QkP5G4ZFJCwJOGc40p7hR0D8wdh2hDMGFQr980VqIiq/mEZQwC1nx6PH47SYG2u/psWbIBEDUZeftjvsEbPVVmR4oJOCkkjg7upKB6dHZec8wQWh1mDhSySpC5f0o6ZUNA2ysh6wKXAkkV02F5kgEkeTJc/lx+Ge+6Z5S7LpYAj29tf3J3oKB97mZfY4QhBDYm2jhap+HastQZVyEB7eaCIoE5BTW2Umar3oszo8OqLU/gw0JB4c44Ak637b7QrfepduUO2fq+yN5x1p8dhFoZy8arPRYRORI0JXpNw1/yqt+SJki4+zpaht6/jIXf04fXTS6i+pteRhvdaThSqtirlPIgXSPd9mNoMc6dUG9aRS8iGZX+e/QkDXfk3VnDUyTY2w2XyvvrsWG0j/aEdhEdTrjwUbgHDVZlac+sknnQ5e9o9LIL47OKcddDc4toXxh/uXqMBjXT5t+nQkt43jkg6StrwMU9FXMrNywhpo1C3Kn3A2Mz/4QX8eBqZuDR8zHNmOfI4pr+tYguhtRE1Ezr/xndKnH60BJOjjgO7+loxxMujep29hJa6zY5fd+HhntBEGxynQdCUeqj2qsduH2L5u7TLwi4KSjI8DhPwYqJ5/t9txkCz6Am74OGFux+vnlY7seFF0VXku3/E0F9V5/iWR4TTKNjx6NiNLipgV0wGUoAqz+0cz6Tgl+fXPOwdDME52ejqn8nlJjcs/uuURAX7MIbHyhWUiB/Zy14U86EV6e+MrKuUuPHXX7ZASICEt8jt8j0fsPfS1tL9hmC1+ebkw1+VWKLtUkfRHlwwSre+jGXoKBZ29WUVq33C0KnPUdv46ipWxpfioAXmk2Zv/9IgU9vSgl7vyGEfxaWGlqcjpkpxyUhnlyIPNwd4G1Bgefrs20vbzEhHDX0zAkuYdkZU2FiA0NsplIM+GUhyJO8o1WXLCC0P52T1ZOFE07xWCL7BXRvg5nNuh5ncFUkrnPo58Pm4ApZWkAGVo5zzcfVDHFld55VziUEsgsXm3WZFnDoIfvoQEIVrjq4igefLCCjCllHS5czLATGet3u5UPagbqhy+MV2GNiKYV1gyFWPeZMlev78pFjkgC5BWzkx9yKLVLihpJ/8nK3zSP4LnXWbdAZ5iN0778o4sPNJ2OrK7R3sOxkob9VOUP8kGM3ukLvV0uuscTJFvDoq+yu8oj7eG4mN8Z8yzzyYi9+NjXgDNVrD+m0V/lQPC383mlKg3d0UlFpe7nQ4Tc88+pDEURgt/W8LBbQpmbqkuYWPLQjQpdHkrA2+F2IwRgFL7+u3St4xQFjn53/5Wju44A/hvJWuXKhNOOYIN9WBLZWpdvPprJAqnVKKtitwpG2niKFCQkLTwsjrw9SEGaSfMaulwP3SjtuXwuvx3RRcM+Uft9rss1b+etFMJyvqZNIWeC9qd/RJu46PqhSXmoPJCFK8fOQaoQC7luTlqluDvhvfds/X1yJHYbjdI/cuSB98HlIuL7PLDF+b+YcC067XbH5JV2OeSkRfr4HSWjJ9zY20lKQ1ZRbHdzJgWds79aFjov4fwY7Ajg=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//mB1R+w7bDA/1mvB4y21Lz9ZY5Ilt2swP+B2GecgtC8/5AO4yaJMMD/x0u5Tb/QvP1gDsWfpRzA/6ADCJg7rLz/yud7LmGQ2PwZtfS6lbzY/21/6ItpZNj/k7XwSC2U2P83F8SMMXDY/h4LJTH9sNj+qx2dJfF02P70uU4v2bTY/vzOJm+1EMD9L3VxA0W0xP/tL2QFkRjA/Ixy3vk1vMT9jJTjAynYwP25gc0CvgTE/s+divg58MD8FYl4JCYcxPyMHpgtrITc/lj4hfyUCNz9kBfFteT03P7Y5pY4oHjc/sJbfVK9RNz8xtU749iY3P5udf28zVDc/W7BnH34pNz9SJKZHvdctPwGQFuT9iiM/8dGvFRXWLT980sNxUokjP5sfCWjQvy0/eLqJfrcdIz9vbeWjo78tPxqahJacHSM/BAJt919WND8O52g9SyM1P14VB6TTQzQ/gVf0DB8QNT/ChYf77jI0P19WALr6/TQ/6ja+A7IuND8caWq4nvk0P5iSn04=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//93Wgso3izC/EB1/ld75ML+HgvTq4YEwvzfOMymL8DC/ce0CnI1/ML9Vuj0VRNwwv0n7/pywgDC/zN3Aq2PdML8XOfkTikcxv5RasdI09C+//MFnohVfMb9t9UhKGhIwv09u7VaGVjG/CFxaWF8ZML/H68Bdp1gxv1hyhp6JGzC/aWG/fP5fLb+OOD52PuEyv2stHFdWQi2/Gt52Wn3TMr+AMWCek0gtvy7k7ypy5jK/5j2/udJBLb/7F0XGT+MyvwVMX/s=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//yydqlJhKxRBt79+M99vFEEPpgBLnCUUQV8MMvYHahRBfwFU6C8kFEHZSy0Qal0UQa//DYXeJBRBlxgIqhheFEGyg4zMbaAUQTicB7jb0hNBAjv7vDOvFEGQrDd6UeETQfediMjHqRRBfC+YFrDlE0HFAu13HqsUQWlTUF7/5hNBaD9gi4kPE0ElN5q6xagVQS43RGoHBxNBjZIUZM6fFUF5Iwr63QgTQX4eTttnrBVBRDdC0+4GE0G3h2LMXKoVQW0ySeM=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAqwAAAAAAAAA=eF7rvsJnbVb2xz75q4e7LJD2u9XDZgGkIzOOCskDacutxj/NgfQ0sa8VykD65YfYfSD+8hp5OxD/GF/eYQEgzT7pX2oMkL5Sd1qCB0jHzPbfHQ6kY3+WlvAB6aslb7aHAelb+/exg/gu6ibeIL7u3PuBU0HyVxm2Li39Y7+2UsRwBpCv2io7ZQWQX7yOf/J0IP9Hr+yZxUD+4ob5ViB5vqPLi5cA+QBFoV/lAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA9AUAAAAAAAA=eF4NlP8/1HcAx8PMffsId6cTro2TLx3rrGnNuJO1TKfClJaK3bH5nvNlHbtcZYcusyhRbZI1rnoUrSbKer9Uq1wkk8q3kpH0KIxK21y7P+D5eD1/eL1e0mMDWrvbLKTVvxxvNxHA2vX0TvVrNt5QSYfnj64jr5qolktZFKyvpFxQfy5AkF4Z+1kIBwFBHWs0VYuJ+T2LqF/bWZicUi7SzREgwCHkn60zbPgqagRBkmxyoqZzyYYMCgVeYeYbwwXYZ+Wj/FDKwUiu8zSzPpM43f3ilXKABVUIV3rbTIAhWVNl7xQbLse+zMi5nUqeZ/zVKg+jwNz68Pr0pwLE1VoK313JQUcvo818UYKkJvXH9rxWFswGIwpnXjsjtbvO3HqMjQ5ZtqfaECN5kvOGne1P4XD9gjZ7PwHajh1YscGPg9R39QeHrHdJEoMbYrV9LFSY7l3StIwH5kifIU1Hx5zzHuw9Y9GSYMmp6b+VFKL4RfoCLQ9C81+y3D9g4LiBeeK3h7mStUe6GbN3WLAZlTxo9OaBt0tomXqUjj8D42ZKl60gdZk7qpTpFIr2ptYq8nioU417vu/FQBdfqTmADMkay4jv7wyxMPSGt3vHYh68MuZObfyZDuWWX36Pa48lqad9xNHhFGS+Suu7mTzkM83S4xwZqHxk2mXju4UkXiz1sRhmQRZouBcm4sFswNxNeowOj4Vlm9LqJESY69dc/jmF1t7IhzVZPMx2CGs28xnoCfdoKK5aLPkjhp8f85JCiW/EOz5FAhT0HXWMzeFg9bPkWxYTscQhSTc8mMHCNQdX7f4GZ9RzudFL1Wz4fVq+xpuTTv5Sfj2w9j8KdgMl++x/EEBUS/des52D4bfXa8r6tcRwuJDdnc2CY4v47ZwmZwwlMTwEu9jo67Pz/fnfYjK+OOw/wyCFORWalOJCAW4UH1HKdnJwsvAbT0XdHlI50Tykz2Jh80rQIi8449K2tLzGAjZk2vX32xeWkvUKj+TtRv8P3B2T2ksFiIxcZGFfxAEZWxd6Y/BHIghc1R2qZcFvbNT0wFVnzN3ZuUVdysZZEXd1oX8VkU8fgauKwrczz3rnX+NB3fne8DtBDLweejKYXFhGQvXHgx/uY2L5bBEj69Y8CHuDpO7VNGBMt0wYf5D8wKPCuXsptInkYez7PPg/7aQ9+sLYD2vzy26XNCQgvbtKVMvE0/F7G9mD89DZnT8Re46G6Is69YPr35NZjeqrJwoKFk75a0P+5MG7bGJ7dCgDiraapB3FGmJ/I7Ggv4qJVeOraktG5uGmm2eR93kafLV9oWb++eR51scLmoz7Esj5H77s4mF7cEK1bTgDzUuj2MGSGKLYITOtrmbi4hYq5P3ReZDfEpo9aKThQNkp3Yt+ObmbYF0ZOUxH/OPlUfxMJ1wJ+qPAP8AGJpaqkvGmr0m88iOH+LlWSCg9/h2/2QXSBXaq3H4u7FXTh/wMMST5fGT100E6qlY2bNic7gTvhL6aVLENWl+3121bpyaTanGejrLC5kMe9ZsuuKDnZOhMYy8Xn2XuVx6c/pZUiqXP7jym42RjaYO3MX/OVq8VaUae0sQtbE3RkElH1lSrkxXqupLY3ddcoL07EaHs4WJFXImbomc30adcPH7ayM+cctqtz3BCyZkF9AZ/G+iooy9MV5WTnknP5hIjb+bmcifByDfQbEan7nPRLzSNSBs5SNyWu1+Rv2BgP+esMHDEFudEk2d0S2jor7CfK9pbRgK7dPEmnlaQbbteEW2wA6eiKuqtZgotNBOx/EQ52W0pfJUxyoD4skHt3meLRVGKfIk7DWf1bll7nAtIeY5g/00XK6Rd3hSln7JD3lmR/sxpCtxs2ePEOC1J4aactHzGwNXEhKXSAVtMr3P76iMPGtQCUZAsX0Ueee9a5iO2wsD5qX8cTOajpen5uSOXjX+qa3K8fjWXfPyJ603+GANpn0gXzvbaQq6MDf/JlQYzm0c/hZRFkV+TvUxK/awQ3OIfUGf0P7OeLz5EKAytNu1Q5UaT/wG1QOaGAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//VmxyMkaGv8+u2XqkURoQL/HnB3/1JMWv4CuD+gwMBo+AODd1nmo/j7sg2qCHWxAv6zdCIvodha/zDdjIZQfsb4E5zGAYVn2vgiRj6Diajm/WtPK1YM2EL/YNai8M/GFPm92FtcL4RK/2C4qACUDMr/EMfPoQDMEv8q9vD5QdJ2+dlVKThUAE7/MzKCAbAMyv+hvirHpMwS/gGcE6Iqr6716Q2xg6q78Pu5b3HuAAEG/lR9OHPpAF79GFH+mhQaQPpKoJOvxIv0+jtFNrdH7QL/T07D0rFwXv7g+pPKEb6q+3wSUbeQk+b6ufuHhRDk6v3R01ZVxOhG/epJeYTUnsL5WYmPzGeATv1F7wiwCiTK/k0OScAsBBr/iwENglsSfvgaMN12WvxO/8bZWNnGGMr+Ki8GDwQMGv1VOAvRV+4Q+AJrbE0o8AD9ejZpgR2g+vzy6sdPjAhS/EYscsfqYhr5Ua7n1uUQAP24cd0S0aD6/N2zaEEwJFL/H9l98/S65vjr7kdYjy+++SweMu6LPN7/ixWvsV3MMv0OaHMwBrc6+VJHaWdYLEL+pRjHJjzExv85yCr3avgC/zk+5vmmUtb4ANuZXJwMQv32SBWgKMzG/3aZZ1p69AL/f5JUIlb1pPmLomQuM4Pg+RqvslXjHQr+4ohybeHAav0DioxuELU++jAzInhtD+D4mqM3cTcxCvzrhAHWWRxq/ND2/b1dSsb77YhAB5/QBv6YF8/k3mjy/MpmwGMZ+Fb8waDOyRxDOvh7fZX+6ABi/YJSkowiGM7/hmPUzBM8Qv/hXliGm0rO+DPrO/qk1GL9ILZwPPoczv2qmpymzzBC/gKrq4Q9UKz6YFTzlAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/9vhoYq7oTA/dWoBDbCGMD+ghnEza2QzPyT9gV6nUzY/Q6LoGPpXNj+cCAZGM30vP6dfFF7gty8/P9PMcANjMz+tI96yt+I2PxSGob6k7DY//KiHtFVUMT8gnlSsVlcxP7ylmfDMbjM/iAVclfWDNT+MLacE1n41P7CFkdz5jB8/g/CpIPr8Hj8dpE7GBhItP8qxpabaTjU/8gAVn0hCNT8vyEb5AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAASwAAAAAAAAA=eF5jYGAwMI6K2scApE2islDokFgIXZwAlmdgeN0God9Mg/LR6FdQ+YB8CB1RD6ELoHQCjM7fV2O79db1X+6OEDocB+3uCAAsJTQfAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/6n4reiInem+TMpUmNui+b5AhZXzsAgEv7ugprSgOQu/q4CC3v81+76nPIsAKD36vrjAF+ndLAq/RyVrog5NFL9TF9Miz4Ybv0JYNS/Jfwu/8LL8vyT6+L4IMQxs8PMIv6+VkkIfeRO/YlaUPwN8Gr8UG+BpoXwKv5zyYu5h4+2+viqcktIH/r6YhzaTZcgFvyKn74/Xhgy/AU22CQmX/L4TnFNhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA0QAAAAAAAAA=eF57vLdtYqffYwf5VAGXLN0vDgxgsMO2qaVzja8qiyOEv2HvVe2ClFVqDFA+Q4P1gklvaqN+OKxRdVgtFPT4wESxMwL3A1849HlXzHy+6rMDTB+EXmAL04cmDqUP2MLED1cfjivP/XwAwt9hy83n3b95xScH/Pp2QPkXYObAxX8/V/HS2/rpAEy/cvNz9rqWJw6yrl+Ey0S/QMV32H5eniKpK8ZyEKZvqdlB7mxthoMwfSUvfqa/L/1xgIf9ydv7j54c0OJt1UwpeXEAABR/YQQ=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFPJn2PUppBvvv9KtkTYk02L/ial6WbrzBfjRlDJ5m866m5xvuX/xtu/smIC3HeSNnbpohhrofT9QvfVyss3/9aq12q+06+1/vWjnl1A4dDHU6ji6xP/JM9meu3/TfJN1k/6pz/LP9C032AwAhODA4AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdAAAAAAAAAA=eF5jYEAFYll2qzNFRBx92qS9d/GIOEozXZXWERBxRFPGsEc+m2XFDhFH5XPdvOw7RRzlhWLyIjZjqlvT4vBj1wUhxyMZV/ieXRNyPCHE/SXyuhCGuhnfxY7Pni/mOP9vsIvMLDHHHPadPJcXiDkCACQ2JCI=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZQAAAAAAAAA=eF5jYEAFK6O/brEr+2Pv9cVtgwOQ/tB2SdMeSKMpY7B77KjMChSvcXmbAKI/rlXuYseirs7v2MNNQPFD6vuVNgLpe57TVDZiUbdLaeFnn9I/9hVO3Qp+QNr1ckGZN5AGABlbMTE=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA5gAAAAAAAAA=eF5jYEAFzVvntnm7stjD+FkaqewZEiJw/tsZnBWzPwvC+Zmyob4CpfxwPgzIbZRn+LBPa79dQjODxSdm+yKJJd7T92jtj8q3/bVMWcT+/OpHb+NXaO2/u0uptO+aoP3hqojlu6dq7YeZ56+Zu01uhtZ+mHmHJt1lMvhjtZ/BgvOFpBezvfJ3P6W/f632Z3w//d3IT9h+YkeUbO4/q/3/Mk47ibcJ2juahl0L47WGm8dr6fhhj4A13LxEo1ADrZXO+8UmyLYcZmK2h/GD7vP6qx4XgvO3HbFYy5AsCOfDzIPxAacMYW4=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7QEAAAAAAAA=eF5r2Tq3zdtVxf7aEXEGE36X/QzIoGCrda5GKnuGhIp9uNDuikJehLzfr/ueQerr92398erSNWd++3sMWZ/c/znD5auys1xy7k2wu5L2qqm+nHG/YEzTXp8PCHnhXjXdQyeX7jsU+KNr1gnG/X/uXeQQ/+SMav+Kx7vtEpoZLD4p2wvoqTGp2CLsP5V69M7io012Ufm2v5Ypq9hHWe6+WWuHkJ9heanOunPFvm9aLZdPlvLb5z1jvnYRSV4p4tUxhZpN+2Y0eftVL2Hc/275AQVGL4R8TdX5xpgLK/a5JR4sNnrAsP/MK4MtvT4I+YaYkqUVEs37/ptzvpD0UrZXe1nsoVqGcH+UgJvY94s9+9K/n/5u5Kdsn+ak1MNWjpAvCm5UY9uwY993Y2lrzRZ+e5XTXv6z6xDyb925OBp1ruxb4MrdGTb3z76OuftezmhFyKcFuBua/D28b84S3kMfd/zZJ3pH7MjmFoS8b4pcxHmD2fvEJsi2HGZStmew3txj1uiEGr4sf3cH3Of1Vz2uZJ+j0nm3qQ4hn/87riL1wKp9az4tX1Pdxm/vfur7k1u1CHm7liWL+4NO7nveIuX8MuXHPjv3Ov+adIS8mtlv3Q8Bq/aJJDzO6Gj/ta/n4FyN5CQ0+zm+7QYADCreiA==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwIAAAAAAAA=eF4TM99btXOSin36E/7mG7+d96enPWCvjT5sxwACBVutmVe1/L6aqmL/znDzb9FfzvvToPJ+v+57Bqmv39dZvyXwuI2AfZlCUumbVwj5kuwsl5x7E+xyEnI2HXdk2L+0usrh4x2EPF+vmu6hk0v3JXhX7Xo0iWH/7H8nu3ffQ8iD7b/yeHdSXWFHdLiyfecyLYXbyS77V1nbMPVHX963K/XoncVHm+wqe7WbTnUo21/ZuP+7SSpCforlpTrrzhX7OhfbfA7n4rV/GcfxpQNJXiLi1TGFmk37eLgm673lZ9mfqXDUbkcBQr6q6nxjzIUV+/a84AhZ4s283zXZ9JJLMUK+MqZkaYVE875zSnXCChmq9mXrpu1d/M5pf13Y8mjDDx/sYgXcxL5f7Nln8shB2TJH1X4Luytj63un/bVQ+fzgRjW2DTv2Tc8v/6LwT9i+YELuEcnvCPm37lwcjTpX9jnfOx7lFfV835Wkh3Hi/xDyGQHuhiZ/D+9zm3PmTMPE5/uSFlpaGv1FyNulyEWcN5i9r3zihIf/vMTsb/R0TGyvcNmfKhvqK1DKvx8cvhx/d3/SLyw/dFnU3qUs7tHlUpf9aVD5yt9xFakHVu1jcLkaFJ/daCchc/alNpK8TcuSxf1BJ/e9hejfLzIzOORsHEJeyey37oeAVfu2pT12yIoR2x8nXKy7JdJlfway/R++7gYAJ24p/A==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//YmxA45YlQzBCrDfyfXjI8Gs2f/fONsTwUC4VdDEKOs/sS1hWEamDMHpwBnnaOgjwSjCHxMt2RPB+rMv4RzCgcD0gcSMDZ8MwfRbh9T17B/Bbbw47zdCEMGkEFn9ecFWQNMODu5AqgzBFvv0pYsUGMGIAaGXNXIJwQxkmZfki27AZOKB7p+8DMFQAWzuPhgYwa9gzjtSeQnBAFRomi+yvL91e2teyRoOwaUGA4jEpiTByGgLZE6hFMEmmEefop5gQPb9C3bOBw7BhapGYz+hJMF5roxONqIUwe7i8vZxanvAnEK69L7wDcEUigX8LYYgwfLZi5Ts+RDBFrVNnIjAgMD9nXM8mOMNwTDhSEqf5BjBScniJbGiCsFCFRlIEHlwwNm8lxDCzg3BthEoaUjeGMG+fDQrRpoKwZpr3HN+wlVAfovv4XfCCcFSH2lmUFUiwSRDhphoCRLB6bSCenlvV8Ci03I7wsEJwYZoJeitVSLB2UfsdgALEsH6T5cNCB6KwA5D1O053wnBJ5ngrSyrHcEfjUJtc6ENwX4pDTgu0J/ASjqnfq7wCcHEHzRGBaMWwVIGif9nIAfBwot+Pz9hhsC5AjbsxOwJwcQMyq+9oxbBoozgmnMfB8E+/vsT6bE6QKqWX3WuMxHB1cTGEznxJsHZ20EfcTAXwZD7fyq6KiDA7iae3+Q+EcGiT276w/YmwVqyIYDxLBfB2sN1BsL2gcCdej6KjDwRwamoPTleSCLB7ndTWACIE8ECust4pC2fwFJnOxcUMhHBOsj7hr0cG8Fk6cfN3sAPwTqR2X3OjoTA3mI+HcBBEcFkG30LmCMbwbpMg5T0yw/BgPunN3ZX/D8oGzz1AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7LsQjpq3pb4JBDgPaJlY+2iykkSLstcIz8yF9AkE4DgUslBGkA2V4/vA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAKwAAAAAAAAA=eF7LsQjpq3pb4JBDgPaJlY+2iykkSLstcIz8yF9AkE4DgUslBGkA2V4/vA==AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//vy3sXe5Ig3B/mUM95QqJMHMB+vW3CIUwZp6cZK5WmvA7A03aXcODcEL1NqadiAkwSJixMWZGBTB/cRTPOYnZkAsaK9B/ScNwaam8+EbXxjBALtnbM/rCcGG2QbeMDhtQFY+V3A1HA3BnFY61ZRTGMGtS1FNW+EJwd7/k0TtwVPAMnmul5o4DcEkvpOR2CMkwdMBc/ZD/xPBhh5Gd9W3gsC9deHIpjYNwfF8kzmTJyTBufhDGe4KFMEVJ2X3eHeYwODSS8DTkgzB3UUu5S1UGMHu27SK5H4JwYfOWo+n7ZLAH1JiBEmLDMFMtX9fwl0YwTo2rSyihQnBdIXjVoqqe8D9hddgWgANwXTXMzs+GCTBxl+D6XkOFMGUB5uciL90wIQzHz6QFg3BVxmSyk8eJMG3QBRjpQwUwVoriJyE9ZLAGnw8bt2gDcHqRPYoJm0Ywd+2jVio8grBkLI4X2RAksCyJn77L7QNwddKeqaFbhjBsrjmK4X1CsF/X2ltnyxzwLvru9U=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.7000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.7000.vtu index 1a6720d00076a1016752d318cff9491db355cb4d..c91f9f74a5ff55f27355c59849e8f007c6a6ceb2 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.7000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.7000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00079927378691" RangeMax="0.0011662430012" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00081174034691" RangeMax="0.0011662026268" offset="1616" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00016862730764" RangeMax="0.00037834367369" offset="3148" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.0006627147841" RangeMax="0.0012686739892" offset="5248" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-8.7137044249e-05" RangeMax="3.6382091966e-05" offset="5820" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="186782.60039" RangeMax="238248.06843" offset="6136" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7794150314" RangeMax="1.7797505825" offset="6452" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="245503.22662" RangeMax="545966.85842" offset="6732" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.0006573643151" RangeMax="0.00075556079572" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.0006574376807" RangeMax="0.00075574686277" offset="1624" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00030786383709" RangeMax="0.00063387866748" offset="3136" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00020492793906" RangeMax="0.00042266481935" offset="5220" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00035826492743" RangeMax="-0.00028645199342" offset="5792" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="353518.51066" RangeMax="408069.6353" offset="6108" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7784765743" RangeMax="1.7787472193" offset="6424" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="545390.04625" RangeMax="974439.70351" offset="6700" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00016801047066" RangeMax="0.00041041803434" offset="8816" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00067195495236" RangeMax="0.0012763656447" offset="9728" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.0667292116e-07" RangeMax="6286195.038" offset="10000" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-6.1059165506e-05" RangeMax="5.7546264548e-05" offset="10156" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="2.3925070196e-11" RangeMax="94961.411727" offset="10428" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00012908398661" RangeMax="3.7679675792e-05" offset="10780" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="256021.73015" offset="10984" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7797639602" offset="11184" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00098994949366" offset="11364" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00080625049201" RangeMax="0.0011562621608" offset="11712" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.0008286621332" RangeMax="0.0011554282012" offset="12416" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13192" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13252" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="240320.91344" RangeMax="599870.06538" offset="13312" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="254.30421166" RangeMax="343.15" offset="14224" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="254.30421166" RangeMax="343.15" offset="14328" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00030630053779" RangeMax="0.00066698082278" offset="8776" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00017251988337" RangeMax="0.00041557120087" offset="9688" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-1.0667292116e-07" RangeMax="6286195.038" offset="9960" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-0.00010522675974" RangeMax="-1.2151997655e-05" offset="10116" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="2.9103830457e-11" RangeMax="189274.64974" offset="10388" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00038425772676" RangeMax="0" offset="10728" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="427797.90623" offset="10932" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7787773598" offset="11132" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00070597139833" offset="11312" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00065718807586" RangeMax="0.00074752606154" offset="11668" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00067730580915" RangeMax="0.0007513461122" offset="12372" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13140" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13200" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="532981.71671" RangeMax="1029824.6969" offset="13260" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="254.30421166" RangeMax="343.15" offset="14172" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="254.30421166" RangeMax="343.15" offset="14276" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14432" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14500" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14568" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="276843.18105" RangeMax="469896.08267" offset="14628" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15200" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14380" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1e+299" RangeMax="-1e+299" offset="14448" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14516" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="582253.53626" RangeMax="897907.67609" offset="14576" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="1e+299" RangeMax="-1e+299" offset="15148" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15272" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15216" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15420" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15576" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15676" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15364" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15520" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15620" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAgwMAAAAAAAA=eF5lzGtMk1cAxnEdY/E2gRZRJgyiVkjFGxh1Aue8CAJS36JSUS6lKKFdNVUukokGwwAja2ReEBQQQQulQQQUkcbgQUUULHQVZVYsizBlTHwxiqkZDrcv7XvI6fP1l/8TR3Hm5ybQsKrpYD/XL6xtmmUN+XMbmJ/UyGHb5og7iba+QuiZd6anA8VZ+mrgGhgnwC46kmHydFOxPenPZh2OrDDfR3tdNYfejtJQ6sTPHEjEPvH0PXf0STUaiFFkvzTbunt8njY4rZvtg8TnpDG52NfnhzRmnTvG9hThV1ec0N+J7kQdI3OU9vUUlN8ym/6b4sxi/hJ5QyMY+vt59IY0Cv5IeOzHD649PD2w9oUMXxuRhJ2yn7dx0rsVWXvSm/PoMtlwPfDetm5DxEkIE2qmcf7YjH2mf8akRn8bna+r4h99C6GE8FUtogqFbxPbMw6zg9x52D8FrKkPKTwLii39GOF/ZS17Nc7RgX9WiuXT02m4xEuRs9KAXThD6RP1SzvaWaveq7ps619nt+mU8a3I2rd4tTNLO7E/3HrPYVmXEu2y9KQfcEu9akwvB9+pgtcWPqJhseqwj2TK/4jT0x8+rnuMqK+u+xWH0rCI8O0l3NDO3S+QtefvqdCYxrAvdD8de/3zKwQtPemtLxsTLzi+Qfe71NfeSSjIm7vTZcwxnHXexkzX1A961JMaeuWunIKLCdfFeiQx/CG2jztrN5kbid2XKs1qCtahbksvJvy3817/BsJBFCose120iILt090msiVTfGKgoP32NaDtDma+V1DwIeH276RJWzM7gLV/Tq8WlWzBHuPnELVI3guaLb2J8AAfwaWYm0bQJ6ir3KenoXJH+BZD9ybWw+ryjFyNCnkaI76RuQhtfN5gyH6n2hrwu6U3d9FHT7di/5QSxQtyfgCsPem+b3L8kw8agDnjgqhjLQ3jjxyze3YRuzb1iXdptRi1hQVcPHGShgmEH1L3j/Yq+9h+LGW8ZECMvTJH76c9bgDWnnTBl5H4BQv+BOrKpras5RTslJmaef7YPRZy3gsv9YNixWDv7C/Axm+Wb09PEwyxvbT+83iIO3aJeZipEmmRtSdd6qgzJNs1gJr84Z/3FVBwzfFvy28sxb4qeX22R18fSHEe1XiW2bpvQWS0c2At2//ay3DFCdibSzmPXWRGtj9FeE3Fqf0yaQv4H86FKEU=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAWgQAAAAAAAA=eF5N0/kz3GcAx/GZiGMS3bBLJQ1DW0lcJUOmjo3nWRarZbE2TUqXMGodrZQl4ogSXVPZoKRJWxJ1laqJ+76edW2oY93JEpFgI4KtsVUtQduZfuvxB7zmPZ8fPvw/Lpn0cpkwYc9UNGzEENYwQ28ZpVaB6lRSpexaCZJ+sVC6aMeEvXem42UshtDSYC6wYEqMTN30+LeHRIhP+Lib42e06Axhset/nh1/dUZPuwgtEH5QN3H2XChDaEX4x0fi3PM2e9BdsSz97AYT2nKkAdkf4/72xDplZbwY1cUoP1OSMKFA/s1bjYm4r8fhN9F5gyiL8JRSFkszHvdtUh2qEr5P2fefg11li0LcrzJNE3dc7EPLuZ55HzTQIF2xurc1HvdX3jXSD6msAi0qUfV+bBrMvMf5cqoQ9y9vyE8MnRIDOeGDrF4UKn2C+1aKmva7Bm2olfBCcaaXfjLu1/OZ94IWKwCvtevTsTwIqfKWnWw73CdRr+6WituR67LkZX8FhCmp3NrGYNw/23ghL8y8FoQRvstbZDyljft/nj9X4fDtHeBGeLX18PlNOu6vJhhLfycPACXH37L6w5lQnTzjxR1jCPtuXLrW2pCFWCoCE/bNbqSV6OP3UNMN8jwb0lR9GEIP0/qw9r5VoJAkHBBw2pAK4R+QzUU+/dj3enQdM/5VgNQIv+Wp+pfCR9iHaEeUSyJzgWHThC+njwlTMl4pfHeg/0p9wnrDchStPQo2bG5mwjlx9/vnD/Q/zKY49fk/Qf97HSYpibKOvZZOlnfNayn6m/Bh6Us1zfHYtz2v8ruvtoyGZy2nm3xokLwlkulTnPe9oX3siQi5GN1w2s2XztBgiHW+3kAu9mJv3QCZ0TyaILxzIm+ihYW9BS0noZY+gFIIXyh0VfafwX7ohzM7tnAOsQJMSJf1aLBhVTDa6I/98PbT9O72avBZwfa83XMaJL0XeNh3FXvFNW6AR6wIsAk/bJVvPOKGPcfiGPudkDEQRvi3Y+N8o6ewtzZxKfBqkIDWr+rlh4aZsFQHblsNOgpt4nZO2y3zAOMBX0IpLUKq3buzNcGuMCf0biQ/jiEksUaj7J8cEWrMOVxRL/sZdBCedNvBZLsV+81w9ik7jYfgKOGVn+UUO/77/zcIb7acTA2MGgGPy4tLOJZMGEO/Xg1/xL6XN26QU+yD6s3XoiVzLjA0c8zolivux5RMr4wJJsELwitZLzOcfLDPTRZbNH09AuoI/zqF1pl1FPfd95Y4x48vgFRJm7qmKQ1KzcYDMmyw1z1JXncrmAbhdAa/qJAKH103fDq15LTfr8v1jOS5zIM0widHywvKtbFnby7KfrrQhCIIH9HtfHKr32m/z1UbGAlUqASCjrXxQxk06Ol+2EXnNPZmgVZJupOToHOPqjA1bQsd7nv3BE/gPj3d/aKGbRnIIHxZjrRTdGB/Sw559M0gCeghfO5LG6q6Kt7/S17mlSBuI/gHPBYElA==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAABgYAAAAAAAA=eF4Ny3081HccAPDuLnH0IMv8iLtzOnckcedpad+fLHkoLVeThzy3VGRFusw5sywP51Iq5OXkaZ4fjjBxfp+IMFwzJBS1lFpSF0praXv//wbPlRcbTmL4nugm1QoJF7zzRsbqnxvCaATzYHKChLjbHLoUVYDhwnqHum1qPNDicxrsjzGhfZea5/XAIkI0YiLwF2J426B06lM9F04GsPUsNZggfpqUNMnIJ9Z3kfJmqzC81fFD+LUtPOgM3TGTIGaC/opnL+M8qgh/q4h/PSMxvEfXbtWhGC4seukqGx4bwmffg2/cC6VEitS4Ta0cw4fMJErjWS58WhKfCghlgks6Wzd8VwWBaGGKu4kYHlNUUt5VzYUbtelUujYT1EQaP0uosYTvfG9RcCuGu2lZzUkZPAjr33Q9O4cJX03u9VRpkBKCfPIOhzdKdLPV74KWmA1ZeZ2qjHIyyCXb7kw5piOXIusxxXYl8pk63H1vKwes3Jbut8dRQJ6SII0/UIVWfp7OOfJZiaxc8gK/Ps6GA9465nFXyfBT/8PfN7QJiDWNI0Uze5QocIThdWotB+LL7oS0HaNARlxb1hVeAeLaLUeUGi6g+LtoMcCBA2FPUufKfClwmeHtnK1ykRAZRZ7U75hHKQtZv7gKORD71DHrgZIC0VNm9U/3R6JT1afdqtUX0PGB868+63Ig5G2e7bADBWYGYpNGj+xHV8Z1U30q51F09ahj9XccYP1WwD97jwJ+82c/lvZcRRcYP9Z5NmG4ZuyRwOBsHpScp2pG9jFBQzd44MOeYoIM7RPNazH8yS0/WS6VC+sXeFqvNxrCriKn+i7TAkK4n+X1ug7D/RNH/mKn8aDo1mkjZ2BCHyuZRRMVE7+o2N82U8fwTZ17Vwg+WcLZdt+lnHWGkLI6mzFsW0joTaoe/6cWwzNjQi+I/Xkg/OATxi5lwvD7NzZCRgsR+6wvd3ojhsfz16Q5OHGhm5excnq3IVj2z/qOOnYQdsv7Wm60YPhK765nWRd4kE+jLpYomDAe/Ipdd7+fyOTJxiuNMTxj4hsTfjQXXs9n1zyKMoSocu3di01/EFkWrdtqqpVoH1UgbkriQGeJ6M6ZIAoovm0MPFrTQeRvPFFmGraI0mjmhu93ssHvXEbISAYJWtSDkpp7FQRPyHreekSJtgYnOOv0cuBFw7aUs/EU0HZ2XmU8W0r8GjC2z3rLIhp40cOcT2TD41mjmJlaEpiuqxi3vdxBBB2VRyWrzKNi4w6tKYYJmDu651RPUqC0z88ksCsBFZ+Uy4MuL6DlNDP50EU2VAktJlf9SgLN4WR8iH8NDbg7n9u7ah7tlB23HF5tApq0sZCHgxRIpG+evB6Wj1LMCpYP/P9dtdUP5cSxIXLafe5DNgmoqiJcRCtDXiv+7c8c08FplbRDS+YWcLVe29T+bzocsKHWGn2MIb5/LDGws9DDFZ7huw8ja8gl2VVotbGgWUXfIFWZhn5f9G8UDurg9v11wTZfWkAkloCpy+mwcXsJv0JejKb1BT+yTfTwn8xLHmxnWUNhabFpVCkLJG9fhfc43UAj65zsh8Z1cA3LodftLhZQs9w48BWZAQahcaf4F39A56vH3L5m6uFXIMu70MMaJEPrvSQyFpwJqHK18W1CJfoPTgtu6uDXBF0BWP9WqI3Skce60OGQa+boYfkllFx/tM5GRQ9369bG019ZQafko1usFwtqm2hm+73liDShlpz9/j1KrL2dU/qcBeqbRtylXmRYQfFIteWnoke1Bsc2xL5FvETM3JmzGXS+FWROOGhAiELmp+9xEz3iuhYuWy8hqz+3D3n3sSDeh/5G7EGGRiE5nS5OITRy4+g+vW+R03nNki9UN8P9ni2DGfYaIG4rVNx1k6EYal95+bF3SPT8YP7aMywINUgYeDlDgg0Z4866uS2IogC7P0zmkHqKnn90nwlMdkpPJExRoUx/QtQju4GM6BE07Od3aFDq6VlZyYJLiydqIteQoXLNBn5vhwwVDchIzd/MIdvEaKdRVVN492Koe/VadZhO3ql6KTsf/QfCXeBiAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//pUZ4/RqMlQ/C4ZAt1YRVD98ohhpQzRUP7LlsUwsE1Q/Zul/gNiVVD/bF3YRKHtUP9UI1FmLmFQ/Doyv59h9VD96kS19Az5JP8QRlbMS90g/YaYDxzItST/lYcBrCOZIP+ni3aapG0g/DEBNiwc2SD+pfu/dUwtIPy7WCzv4JUg/FzxcezxCVD9kccBSNMlUP9h5xBqOQVQ/ihS0iovIVD9naGs++31UP9Q4M941i1Q/aRvIfXGAVD8LgElr0o1UP/Qu8UE1PEk/SDbhF5NVST9aTdTydGVJP1syDNohfkk/gwT5od0VST+KN1G0lJJJP5I0fGDzDEk/CslLhNyJST9Gk/JBaV9UPxXVkYHNFlM/DifUklheVD+VHBkkyRVTPxFaZJas9FM/8AnkOs22Uj/ayBDbQvBTPwoNBA6xslI/Gg9CRloyRz82qCP/m89FPx3QdaHAGUc/zdqCKUG3RT/feOJsD5VHP3bYRuTPFEc/RZgGZqGtRz+wqnLhTS1HP5MMn6g=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//6Uth4a4rN++3ZPsNeKM9r5V0YINfEbUvj2elsuKufO+guBtiuyU+L7gRCsxkwH+voZZyfKBTvW+n6Jky2G++r5fP6axaaH9vgRhrlWBY72+hTZrZxVzAb8pDXtt7cPcvq+cXwGUWQW/PbG3VW6H375xzktmeIgEvzdiVOv72ti+Wfoa6J6C+j54PXIFq9cWv5BRTxLAB/0+WCy51kFBFr9CzEUpHxMDP64pw8gjyA+/wznXOVqIAD+fBrEYiRQRv4cIYxw=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//0VXPPGq4ghBPQIp39yTCUGUkfcaqsAIQQpi3SwwcQlBYkEbdZSmCUF/N72JxeoJQd/vF5RifglB/aatwFLCCUGvuNOJG+sJQTHBxrmxlQhBKiYq+9AtCkGmMnCR8tUIQVh5C113jQpBLKbVO0LfCEHelkWjoXgKQYvf4eZZywhBgefR0P1KB0EX6CSMQBUNQcvRMJdSLgdBQ7HQfc7zDEExFpnN9MwGQZRjPlzNoQtBdi4kIMQEB0ExCOgkLOELQb7MUok=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAsAAAAAAAAAA=eF5TcO0oT6z8Yx9rsZXfCki7pejuywDSF10DwhyBdIPDDDVrIJ0252SmNpA2S5kW7Aykva0PTzMG0luT1h3QBNKn5nQ4VAFpZrOVV6SB9BvhmJAcIL23t3UBF5Auml3YmgmkbbcKXeUD0k+P8ezKBdJL8jffPgikWQ1inlZX/LG/FubVeALIZ2Nc3tUE5NezGe6/DeS/+vF20X4g//6LmNjzIHekTnXcDOQDALlKYMo=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+AUAAAAAAAA=eF4N0Yk71AkYwHFGtYa5IjOT1bIiWTnbQiU/iRh0badx1oiIjCJXIR2OaENEjq6lqCiVDtX7KiVWppJSHj1saEdWM/MbpjHY/oLv83y+Fg8MKuYOS+EK+yb1k4iNK6Ol/97NYeLsV3XmJcUBoB1oLtYiZTCu45z+NZaDkQXbys1dWLj0W6xfDnc/aHuHdCcvlwGNf741kcLBtDLyRfIbJoaZRhXK70XDw/80xzJXkyD4dbllbhUH362+NULuZCFjxuZ2z4CDoPQcWOcAUqiaoyo62cDGF+8tubiPiaVHKjoLH0RBzMQjxpp7MijXKg/R3MTBEt/GTsvFLJzbq5r5xjkJ+jHL2dFWBntE6S4XJtnokzqd8eA9E8OlxSU2Wt7ge3ji/bbfSLBrOyOYX8LB7dHTl4tCWJiJoYKx9ih4qx5gcZglgwOjM9QoQhoKKxlyNbtJCJu3zL99SRCxTODA36BGQsSysSO8DXS0vrrYoW/tFFhEv9MMCz5IPB0Ocy/94WddltDVu4aGkpV3Rq5rTsJwwTe7sHIP4N3Z3Zj/QQbGB/z+CzWjY7N/pCGYTIEftcnuY5eQ6D5WkHrVWgYXQxoD1R3p6Ot8qznn+yR88aXsu1oWBDVXuiIDK2TQWl/1u2YBHU2DY4M7cqfgqKn1VI+6K4EkJfkEUwZ0DxPFDS06/lHc+ymobRI6n0sK1QxNiNaAPJ+eQzJw0vi0PCiEjh3n3tD0gqZgfIgMjCzaRSwqtTyQuFAOwsKHlHwbLiJVkGxwh4WDNg0eNfRYuFYQczTlhQQ+0uSFNXpsNB/06X+7ioHGPUM37rYL4e+UJ3q6DDmMPDR6bWfExVqvFV1O1Sw8FKecc4GIhbWRVu6utRIoysqvD5jJxpSh80kUCwYGZyZOw+cY0J6T5sK4RoKe+8wV8wc5+KLpr50tGSwUixRaSdxsSPB8tWE+TwqttTUq5U42er65PNushoERl941LfqWB/N2hz/00ZODA4ufu8uUi6n1Tnpe9Sy0rG3ZniouA5g7Evz8phTyovt7/S+yMdNzb+ljNSYWt3hOlm4+Dy5bG/dRTUlw6Z2c2Hudjm4DYUrxwSmIP9fXdj8wH3K1jUXM0xJg5qz9OeuVNgaHL2rqlk2A1R7zVPlIBfAzPFvC40lI7aklTqkzkNwYttirYwoST1rYOnTEg36P7azIzxJoPxN3Mc6YhjGO8Dp9lQpWSjttMlzzYeuSrNHWQBKWmj3jVfIZWFCf31BhOg32uYsqGVEbiQ32J9ay5krh5Umuu8Cehr5FisKxLSqo23RfbusaTnhldglyvUhIMNXJH/rxRb5uK3bSpuHp4GBK8k9CgisWJ4zOlILhP3b37hnSMKunjxfmrIKXnz95RGkkEOd9VmyrqRsGY7rcP69eFynCYkp+gDY2KgZmgYQHQv5+PkukADe5d5T9aX1cXc4rL/2ug4aPxQvdZgQQHl8dqw+7D0POy3GnK3m6+KjENcvIRhu9r86Qp6TFEh8njFR+JQoQHOvroO3Xx9Zs78yxfh3kXCbrGlTpxAD1htB83ldgn/jg5Napize5bk1P0rVR1PLadcyfIDw4l61qxxSQ8ZgeGVGtj7KOComBSgdvmwS3hFsfJ1RTGqfYsWK4/bxxS9P6H31TH90zLVqIS7brPhLsIA71OddtM1LAsSOZ4UYL9LHSnuomPqeDl7jrQ3fvyiGeBfXuGakZhb3Hk8gAKy28qAxs7yOVcEtyKoLhzSfik2ZtUu8dh61rNlclNrPQL1kjDisoaGmv+TLcJYuozKi+YbhxFGJ60nIXaGrhCZc2ZqdICRrPXSsLDvrCHDNqdvqVcRgznG3cXMtCyTz9zQ3ZFBRZbZnYP5BKtC+solWXjYLrA+Io7yYVxWe7vyckKYHTnSu8diabCDy7l3i3YxxGPPjzRZNMND9t1HbulTrKjvJCayOOEH0GzV+GJkahv+vZ91AZFY0NHGd1NSoh/rgtry84jfilmaucXTYOMSuIk3YmLOz2ePxnnEIdzdrSnblLhcT/fg4b+g==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//Ur8VESRWhg/pzn2JiVTMr/UZKw7/6whv8DFAK4T3Tg+NpqTmjdjGD8cXRfb92cyv3hHjYxowyG/ICFK9+qnnb75SMz9vQINPzlHuy1ERC6/gInrALiPFr+ehEcIu22CPkthDeibSfM+fM4Z4VOtJ7+jcEC0i7cCv+iLbXMfMJ2+9fvbxCAl9D5j8LFCJPYnvy7vA5ZPAAO/AFCIXn7b0b2KaO76M9IYPwki75YeqzO/dn9oB8v8Ir9MiwrYefukvkTd4eFO0hg/4kzqBimOM7+6UOgZUu8iv5iTaQypTay+85OYkF4RDT+42xRHBQUwvyZeCMFnFxi/LJSjQjnctr58k0qolsXxPifMqypO/Ci/T2wpbs4yBL85d2XK8d2QPhmBWk3F+vI+jARe4G76KL+aAWGDOFAEv67bB8Dz7aE+dsk7FlFqFz8YZqeM6Nkvv1ZolJmWYh6/dVJNTx9nnr7JRsU8cmwXP4QIdcr2/S+/CI/kG7B5Hr8PubvGGYqhvtb117aAfQ0/NKyh1BC1Kr94DKMJFTYTv8gxQwhE0cS+brx8uu689z65QylaunMlv7YkJsPu8v++KKs2lkY1h75Q+57kHjL3PhhkvKExhSW/AtLoSJPw/75MoHnTq/2vPk5AW7PHDRs/EE/VIc8hN79DSGH+feInv7CbYvE15GW+AD2ymQMCGz/0aL1fGSI3v43VJR0l0Se/60e9ZLYyvD7Uzcef2ugOP0Q8k1YxmDK/tOjTV9HwHr9p/zQBOSrDPsXtQO2cTu0+AKDQuqUXLL+fh3K8epoNv/7QRgpcqLQ+3iPEXNfj6D4YbQuJZbcrv3xjnYIiDg2/kFMUm45aaj797DZuAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/1hEsDvZPVQ/pkGoydZvVD+ox/O2LalQP2oeTiuTrEg/UbATXI/7Rz/mWwDr0gpUP3Upc08SQFQ/VRaskkJ9UD93xhEal9hIP2M+eg7pgkg/URDsLHfpVD9eLU3Aa7JUP9ropWdNX1A/FFlN+bGpSD/EBJK+As1IPwCc0bnjnlI/8I/NiolwUj9/JsPwT+hMP9XvukXEBEY/OMw7sEkHRz/ufEa7AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAUwAAAAAAAAA=eF5jYGBIaFyUs48BSH9YUAOmk+aD6QeNiyD8hUvB8gwMNUl2YLqiCELXoNEdUPmEbIj6jGoIXQClO6B0Q/a+Gyr5h+78cneE0OE4aHdHAMOgM2g=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/9MFEe0Wd+0+LqVB4H+W/T6QPWCwoZmtviaymeH5Mv++/X325B7j7r7819KAisf8Puu/jYtLAA0/uCC6dl/ux76P8dJ5nAEQv5FmvHO4wP++fkHkmjFI/j6DgwuYuisOP6CLE7JQLK0+eQMRQ4ddDb+8LGJu1o79vtrhTIWv4Ok+0BnArriM+T4UYG55H37Ovsy4/deukQC/cXAjwxnG8L7vM1fCAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA5wAAAAAAAAA=eF6bzqE+s/PkSYdUK/uCK0bPHRjAYIHt3tr8aWL636H8GbbTvLxTqy5+gvAb7to69N9bky741uGmsdqJn4tOHjj5t7LjrMNdB5uixVVRd29B9R3ZC6E32ULoExC64RaUvwcqfwtKn7IN6BDl+Gt76wBUv23z5tSI6M/XHCD8A1B926DqL0HpXVDxCVD+fSi9Ye+u56cmK/PdOADhn7NlcdMu2vrorEP9X6+9XirPD8DUTdhgzzNZ6juUf8F22YWoa9b3P0H5O/Yu8z/AIh749oBDW+3GfKGzB8KFFRZ3/bxzAAAiVmdkAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAeAAAAAAAAAA=eF5jYEAFBXtDzlo8OLPPqShpZkbJs32WXysn7Jb9tA9NGYNM/rn/27Yw7Ld+wmc7g51l/6OkbpMIQ5b96OqiVQPPuh9ktp/zxondpIzZPs63dWvBbSZ7dHXufeUM4a8V9l90Oag77bzM/lvVb6NMT0jtBwB3ny2zAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFt5b312qt43AUmPnO9z87p+Pqh90froVxOqIpY3jRYmWRJcHlaBDYdmpNNpfjGsZ8Xr1cLgx1G21VE1/PZnOMVjnrrreWzfHt9b+sD3ezYai75BF5fa0Dv2OfQKsOiyafY8qUdUl3D/A6AgBtcicxAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZgAAAAAAAAA=eF5jYEAFpZfUrHIr/9g7XTx0PxpI/1sQIuIDpNGUMfyIvqcrCxRf9Vb1Oy+QfqK2y4ofizoTXctjL4HiZ+bur34GpI+tj8p8hEXdWUYTdaaKP/Y2q9JfmwDpj7UvdrsBaQBiDTMFAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4gAAAAAAAAA=eF5jYEAF3iWnPDbG6trD+L4hKVvOLrKF86VOFn1MYHKG84/v2tHL9sENzoeBric7Lr5+pLdfXnaixKREXfumOJbFf6X093PrXamwWmdrz2q64s6CLP39e3SSZY3fOdkvCNV/JS6vvx9m3pF5pvrmp/T2w8x79SgwpzvYfr/h3qLdQlt07W/OvT7DN81+/8mJGst0Um3thVkFTEM22u8Xbgo7+eask73DdSfrK5ft4ebF6C5u7Z9sDzcPKr7/aFrL6/0GevYwPm/8/mWpH2zhfNOeNPe/x53gfJh5MD4AfCR4Ew==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7QEAAAAAAAA=eF7zKjnlsTHW1z5jtdddAy33/QzIYMJF64CQlC1nF/naP3JztrILQchXvvuy/J5Lu51IRIPdy1B3+2PqdUt/9CPky+ceW66mvNHOSZE33d7Wwd6iYfH7wHCE/OO+LPF9Luf2pffqP9LJtbcXMc9IXimOZv+H/9YKshMlJiX62utn2U5cUYeQf/F7z9IXHGf28ehdqbBa52ufsm2h0a4ehPz7Yjebv7sO7ntxqlZvrra7/XnmM+r/jyDkn25XU/yudGJfs/vcRZcMHexzFYt07t9DyE/J4Hy3IrPCTtci7KAvu4M9a5LVktXrEPLntuXu07O4amewt2i30BZf++JD71M/XnKDy6e839Wqc+jQvpMTNZbppPra7ygp3v5qL0I+q+fZopniG/Z1Lf1scuGgm70Hy7VG3gUI+WnBWX/lP5/dd+SxR+mDKgd7wYjDdxL2IOTjeCX7BHt27zv3qEMwvcPBftGfB0qmdxDygpWv0nUFH9gdSWt5vd/Az/5z9Pq2Q5dcUcP3wFdr7vj9y1I/+NpPOPzMef42hPyP0/7MlQnX7diecs2cVe5mv11jUqSoG0L+b42bzAapV3b/dVJe+t23ty956xoQKoSQb5r18HzruY373HZ5SKoucLD3y9masKcIzX4NGRsAs+TgtQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAIwIAAAAAAAA=eF67lCC+xK3E1/7Vvr+Ns4Xd9ys0v/GJnnrMjgEMLlrfctjIn7zT1z4m6tu9Fbbu+xuaIPJd774sv+fSbjfR5ezMuhx3e3trQ6/kSoR80dxjy9WUN9qd4o06dCXYwX7b5LApexwQ8g/6ssT3uZzbF512ckb4LHv7Hi9pDhFG9/0PGpHsv/DfegqLimG6ia/98qZVFZdXu+/ncurZVjz12r7Xv/csfcFxZl+baPpE/kZf+xfn+KSe7nTfzwCV/1rsZvN318F9CZsE3Iv+udmHyVjya31CyN/brqb4XenEvn96BruXszjYf7K8L8zF4wGXV8ngfLcis8IuzP7SZtct9vZdVcu7r9123//VESJ/ZVvuPj2Lq3at+9UPagb52ZscsEq4ZeK2f5bngm0PDn22S36/q1Xn0KF9fFPurnZm9rPPKtq38bI8Qj6i59mimeIb9t1fvsLqeby7/Q9GxZpvjAj5ZcFZf+U/n90n8Oxv1XcJR/tjoXzXPeUQ8kG8kn2CPbv3yT+1Fa9Tc7QP+qUtK2fntn8GVF6o8lW6ruADO7f2boGep972GdYrEr/Jeuw/9/vY9XmRQvsh8fvNelL9sdOGS73t2Rbfl7vMiJD/dNqfuTLhul0Pq9C+NB0Xez2ObhPPie5w+X81bjIbpF7ZceUVGT/3sLZ/ecZOuzMWIV8x6+H51nMb983bOr/m0Uob+wPe66w/7HVHtf+HtA0AMwI3Rw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//Wk2UAy3bPLA8cZUjU2CFsE4QyvJoRoPwQAwrboUyQlA38QQGsuZ8sCKK/uobZ4WwWqaEQvHRA/BXTrGI2nBbsC4MTwZwuLywAVinux2ehLBnb8w/qsIB8Guds6JpxxTQECw3nWfzPLAISRWt9eHDMEYe0p2uDL9wO7xHIksRW7AtqaTXhnb8sAsRvlxmdgMwbx9lycfhP3AALDIzP6Eor+cByoDylL1wHSjddX/TRjB7s0wKeTXEMGYFZGso8J1wPpswpY1FfXAqh03HGMpGMG6dhJlk8MQwRSRcI9QWn3As2EQHHoJ9cBfrY8F3qsTwRIdImFUrgjBpq0EVDa1h8AHskoega/0wPd8edpcSw7BWw6iwYZZ/8AcjRKLC35hQHjvnh5FWvTADF1DxbY7DsGIDUKKwkf/wNxyZ2MjmHJASPVWby9/6sCoDR9Ok0gTwTCb/JvNWQrBrh53Y7SHb8C3xmYtMczqwKgQTdnPXxPBOAZYMU52CsE0ZuWglTBywC2DxlCEM+zAM+7aUF0FEMECA9v2NoADwfU2dzTdlpXA2HqdnWn/7cBKeqOWHmgJwcQ9HlpANfnATD7i7pARWMBQwA+Gv23uwGm+TY3JgwnBngCE14lS+cDeotbsqZaAQOCJOM+A5/zA/C14gzImHcF6eI7CivEUwZBoxuEAtDbAUDswAcPm/MAMpDFLESQdwYjlAcvW6BTBMAMEHl4+jUAQI0vWwlj7wFIOZGVLThfBPgzA6VGvDsHprHerIuCTQFLfTbeZSvrAtMxia32LEcHcv2mxieoDwXYxwu5wbIVAXjxRyQd++sA3ru6EJFsRwdAr+mSytgPB8IxJprRUO0DPmz5nAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57LRoVFvy8wOE1Afpi8fzHPRmFBGnTOnGpPSfzCdJpIFBUSpAGAISWR0s=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57LRoVFvy8wOE1Afpi8fzHPRmFBGnTOnGpPSfzCdJpIFBUSpAGAISWR0s=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//kEVLdbKl/PAhmkzITU8F8ELGIBZbhUQwShPqdLMdXLAaqLKXUR188C6ru1o1ygXweCdlPPADxDB4eTp2u/CbsAcQlriwHXzwI1PdNJkzAzB2nuZTpSr/cA/Muxxrh9qQAohAC5dV/PAJtkZ8kZPDcGl9vbE9Cz+wACe2mtQ+DdAd4ckFtRr88DxutkH9BoXwR4ezECjyw/BFgXFwzHAc8AReKqs0a/zwKade6m4RBfBK+H7s4EEEMGgFCwniUSYwOZxlkS8BfPAK7jcfgDpDMELd6/w5GD9wNi4SqJBMZPA9Pc1R5Yy88Dl70j3aj0NwdddsdY0sv3ABZyXtgPkbUASHTQWgTnzwNfVhvbfExfB+2uBO/tIEMGw+RIocmdwQEqfEPgJGPPA8qUL22T9FsG0iVxIzTAQwQhiYoxxGn1A6wWV26LB88CpjHJFQcgNwR/ObO6UAwDBzxsEgVegdUDToE+NLLPzwATVOPD5+gzBBp30rR8z/8BUN7OQUoCCQKg9x1I=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAiAMAAAAAAAA=eF5lzm1MU2cYxnF5c0UsuopELGqkYHsAHWLVgqMHhyDOwYCpKBJthMlcENAoIqBGMVHUSttRClKlAwrSTFYEMZNyn1pGM0FNEcHw6uaKi6goSDREgX05nMc8vb7+8k+uXE3e6cBPBNn5YOAk8fNmahY9RXNTBBF0AY5LVKkOYOviU2efjSbug1y635aji/H6CXnr2wjfsac3mB737VuM7zOPXYdLo6p3aTcJ0lT77fOJfcinZNYAXmE5BN8dCJB+tHUrPyH9yKpS8Uy/Iius4sUO5MZKhSKlVi6e6X0wj8p5XRx5ukG81jd7aL2FTXle9VediUY+Yid0KEtTiuO2dGxuUrtSXMx36jO0un/qmT7ey27htTDkG7uWH3QYlsFMj/uZzEaOo6pSvJs0BMQvcaWk5ICzhUQeEbZSHrNAC1N72tNluWzqMuYacvnGif1VMNO7bFh24PtQ5EKrZPgP+/NMz8Y8si9AlxgrhfIy6eXbmQQZoRyy1nUil1zX+/T5lkAv3029ZExg40sT1a4hj6uY/t5U/eH8J8g5msDQQj4FfXSPe0PsnOkTPBNwJ47G/9dFkIL0bPuifuSWsknW718awTDubz/iQ5AE5nHlV/9e22Bmer+nzffznyP3cHyZdy7SAk1074/5AaemN20lnXDxzrwQn342Nf+SiL9yDPn9bSGq0q2PQL2rzi/bzoVyxXy8lGxW/dIDF+j+X4WO68SKZLw6eZNZeKwFrtD9EOYJWd75RQ4d0H3PrN6bP5fyuB1lGpyP3Lo65sPjTXdhTTC3oFk+h1qMeck3NYZDnSamv2k4ekO4APmyWD+lV78WAun+FuZJVwp0SvffIO5NBm9aJyBFD/aHixThjHtuHfwg4l+DXclmt+8O2vrXhUkpsuxCphc2tg+lyJBrfx2dlHDrmR5307tHPev0eujeHp1mqRSQqZwfjXmfublXbXT8wQAj0uFbzuN8Mg3z4Gptq5ZHMf3sHkGQ5rN/Ar+aGp7hIdOzMK/6y909mGOBoIeZqa8mWZT/F63DSQXIu/d6aDoyuuAVf3U1Z+dsGw93Cl2zo60DNtD94pyTWRlnkX/VK9Ocn2pjetzfew+a5XUtYE2J9tx9xJmqDZruTz6FfN2fRu2K7kbQmBJaoyQsSo85UeHWsmhePQzQfZFIqSjIRe7kovNmt1cwfTHm3vIKeHa8GP4Hlxg4Zg==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAATQQAAAAAAAA=eF5Nzfs3m2cAAOBpONVoXMti09atIek4qkxQ+RDEio5x2tWyyTBGp6sqaVm1qlV0LkmlxGWuQSg1Ko4m3i+jcxz3NKULZm1GXUatmM6U7Id9x7s/4DmPXmLxuOdBCiIkFsXMfslAWwNi71AyW2icLrEP2TkbTEyqXpZ6kpGtZropLouBOlm/+KpSMQxcr91UvmaGAx3M2/RGuk6HMVCB/39+5E8fyupvTeAXzKczdVe3MhgoFfPBH0k3ktj1gNTb7HtNTkaKNtVl7aHwV+XP2FkUVAHeCZ9G0nUyMp/XclueBv8Fq9BvL9mW0Cwxr+rezhGcgr+4hsuNbubQ+JgPOiv06kmEf0DKcpFv2kPa4LNDnA0/Aro59zKN5gP/ZTUHXPl5Hm2p6d0HFG9d1CeVS2XGwf/TlguChhdtNBnm7ePEqrOu8EfGzOJwi/lgGfPpuGgROxz+N5JE+uqFNbTlJdaUIZ+ARmQXrt9xgr8H3YYTaCAAGfHkDEqsDtppSm8UfgH/SsTMYzOqFvyD+dlbimAtKvypM6zFzj2ZIB3zVJNbeHIY/OmTdg3MoBygWJPZTcWREefrIZL5MQbal3aGLRZxwNf1LUcmKXzQkbxyUQgoSIbUdiWXxUADbdvjuvqWaKbMUm23p7VgHPNdC+YnpQrotSrs3QusUNCJ+T2U7e+iIqFvDcKrrlp0g+CAR5taQ2TkvdAFxeA09MPl25oP9KRAyNBUXFmlIOzinv0JMdB/UlX23PFhLziD+cP9H9RI56E3Uv8j/bbvKCjFfDx+77OoBOhjNMQr/Xw5yInZaeOqCOh2Ut1OxDr0fSFuhSV+T8Beba/RkyM4NKQj7Rj+GvR/lSBdhXcVIAvz8qvGa654311fG+nV68Du2fUksHZEWQB96GXLrHs4GRi/3G4wdH8/ql0l4RsaQD97LPDNU6+fQPWrpuO5YTiUpbw3KC6Dnu8plMTLu4EC8411MzfPGUJ/KOgoz3xKAEoxrzYPOvQqoGcV5zXwjO6D58O8c8wma+Q07/O1Co436pL8luSxeJFm4jf9hmr1Azigy2WniMwQf2XbN0sIA9UOkl3ynMSjrgUR0fnJBeBXzPundt8dzYO+pvL1Nuv9tl3vMUAkmNAYKAHzj9eeKD5saQHhjgkimzprhDvx2fml//nuiVKperAECJ1FRGc3M+SGVeucEw3+HnWCnwUWKIjCPKny8JwmF3rSUaHQQjIMGjGv8yqRFeIO/5o+IyMX/VGw9fHvfux1TdR3RFw0mAu9PMy4QnZhDCSfUMtt4BNRFxN9faIb/L013I+f7peBt5in0hNJinToHSbyKzJ3+ne9Vf5AuaU9/Nctp3s5P/aAqoVHW7Ox+9BBtY3soVToHR9LBaRxERjfZ3Swr8wYlZzyVze2gb9N9YEeok4bqMd86zvfu/+dAr2GVoMlYaB611cGKDvpFPibc6qB8koR+Bf/lgfMAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+gUAAAAAAAA=eF4N0v0703scx/HtNBuRbrSbNos41NF1ldom3X1nN+p04/aUqKQTkSILHaTk7khEpWm73CTU0MkqUcQ+b8ZUiOkcVwrdqIncpVLumrM/4HE9f3i9ckoGuAPROK70m/+MCviQNsi6XGXNhKmgz6pFomTkzJqaZLXPYni6RYrKUADrhXOTZ84ywWxQzA8o8sfOCh1znGJx3DJNjGxSwYembErxLismBHewrlSfliOcwuSUwatZrOK4fc6kgQA+bTNOyYhhgtEDi5YomyJU1rWzx3oljjtoaELYreTDQ0Xj3dhvpqBvVJDw1rYQ2Yr/+f7WDsftOjnv8mYtHzzbUq4XiJnQqZy4dMYgH7Odutf8lofjng6eCH7wkA9P3xj5nx0wBZyl+5N3ORex0m6rVaFOOO4e5EPP/coHP9++5rvnmWC+6nGu8W8PMK9L61cmJFHBySZh7UwMGzbLitcpJ4mw9OimdEbJBYy7TC6hONBA0JgSX1jFhgyK34bMX/ThlpcXYaT7LtZ5oHXl+kQqpDUPHIW/2KBXm6O8NkaE2iFBrFNrJGro2eOHw2iQaMf4IbzHhv4s+ZfKKRKkWQlP/B1chJWmJo9FlVAhKJM0X3yCDaH2y1dIhomQbcCLiTeVoPFVXAOMTINrFmE5/TfZYPz8++vv30kwwTn4tMg8HbX15jUX3KJCZHqJV4POi7MOjA3ofNSk6S+uJiIkDe8PEVFowKUTvckyNqQbGy0L+EECGfOm8FGECDOfq/jKt9NiXRstqBmYAH4k2nM2nWBC1m3nnOTgq8hw2daHvxZrMVWDUFIQy4dxvalYRiUDUo8fvCg/IkOW3TaCWWstJneh1H/mCUDfkTSqDmeCq6QuWltRi8REmTNItVjEjA8Rl8gH+sXX+XXVDLgzeaHNSFSP6ip3bBgc1WKGAUllzI0COBLW7ZxYwgTvO/GZIk4tmrhOuU+kzGLL9yntLeP5EL6V7pDby4ANninblnQ2oN7kQs+wNi12I8sjskkggHfyLvr6CibMf68u2OKhRi8DUg6VjmuxpgyG+FkKHwLKZu0yRxjADMRLI+KeIyszWYNbHxXM5WzTISIH5qW+P+VYRYL38sCdI9rHyIwh9re9QAbiZ+l1Bw/dfpMSmX8ZAfJKAgOjtjcjE1caLfcLFQTTuS8CKRxQ4etklk9JMJPW2HK1txK129cqH0jIcK7G2SP2MBtcTox1b68jQNfJ42tGPwL6dG9fxNpHVEivUFE/L+YAQV/2x5o2EsyJDi0erqlCP7huaCyUDB0Ujde1IDYMKIPl2scE2GkhGbR+9AhtaXrWv7Za998VQUdu6/q+vkuXd6hJsDqjyLFMmYFMDtvc/RRGhozz7kWux9ngZWR3LPcpAUoFrzRbjaSofhF+TqMGz31NJyhS9/DAYONHN5yYDt47O9Yat1xDN0N690poPzEXfIaG5SaEKsGZZ1YqMwgqPKBkzpeiaYVmh6gfz6XdeaP+upsH3S73eT8v00Ez5BHSu78C3dbbbV2/9Ce2YWzhqywXIYQvTA/yrjeDc293R/eM30fu5dmPIwfw3HLChPqGBw/mWq1+lqnrK44scyT6ViObuuyhyN5pbNewk6HbASHEEXxHjKPNoLMtvzJtnxJNftpSSHmH5w6begbEe/JAtKjcUabzfX6q30c5ahRCa81b9N80xtO0BlgfFEKt5cHGJafNYG7A4m4T0r/ILO9SMFVKhqjNIZa+W1hwZqO+yL1PD1Qx0v1XU1uQ/2jL6x4rBpCMFF+TkjmQWV4qGhpeAKdKqhoH16nRmFsEYXk6GUriTi79wmWBY0O6QWOPHnQUpPI92Ao07R26kkpnQLI5314Yz4EsnwRhdN8CsOzkedm216FjwhHn+FQyJIt8Mm/wWVCVJmjVvNSD1v4/P+w9fx+FxnjJ7eIYUF5tnx2r6wdNxT1Zp/MaNG4fr1eBYtvn1ew/Twby0TyfDw4sOKSGonsv9MCBcyVMybiCHhrn+92KYYC83e1bTRIHwps2uSR9WAA1TpoIGM1E/wNfcwHtAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//g1qgnL5nzU/QQnU9APyND9GS0iV7p41P4JDqxn28DQ/kG9+YrRwNT8+vR3RDRI1P/+58EFEajU/31AsEqoLNT8f2t6wY606P1NoIuMOtjo/wrT+O7SfOj/B0o5Fiag6Pww5D1kwoDo/XG8PPxGwOj+C4Ibp7qA6P4QUuPvXsDo/wT31HfVlNT+S8F+Rj7Q2Pzs6ragcaDU/xaOql8C2Nj/P/RXvW6I1PwLdWasC2DY/PeovZxOoNT81ev0Q0t02PzQXoVyHfjs/npfDmrJnOz/cEziPapo7P+M0/6KOgzs/eER2XkGwOz+s3z4Eaow7P+HOhZMjszs/cyoyE1OPOz+1nMazFcEzP9Bwele5ays/5rHV3iTAMz/IXJXL0mkrP9TKYsPLvDM/rA+2lz3cKj866MvZKL4zPzL3iyIf3yo/OLfCd+huOD8fFgljOjQ5P1b0UdpaXzg/UX/Kd9YjOT/VBXIKxU44P3+y2AW0ETk/XdOEn9FKOD+ikCfyoA05P30SqqU=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//3CdH2ee5TS/8Njzj7pfNb++T94Yqdk0v4uz2CzRUzW/uCjBCQ3YNL9JaXXvND41v5tk9u2G2DS/tG95S6w+Nb/B6fHFfrU1v+hQjUIeQjS/K28UWaLMNb+0W+VX0Fk0vwFmvKTPwjW/8Lnu1MheNL/1bJqTSsU1vwgAwklQYTS/GSwNKsbRMr+b/KKOiW43v/RRj/HdxTK/sAlyXbNjN7+kfW1OB8kyvxawiCWweje/URbi2OzFMr/Z/1qo2Hc3v4HhZag=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//+4pAn3aBBdBTMDB9i5bF0F3gEFPbfwWQcUjkHSqUhdBJh9O8077FkFv3aNFTkMXQUdG4GSf+xZBuXsBF55DF0Ho7MeygZgXQQ/DuFMlkxZB3Ko3ShypF0G14y+EZqMWQSt3gEf/oRdBbS7g38imFkGoeWIeyKMXQSvTKAWHqBZBTLfHMHKbFUFb/XG+oN4YQZ/O6Qq6kxVBfJOBpIzWGEF1vuCs1pUVQbSYjIoW6BhBzxgOW9OTFUHHZ6uP9uUYQedgVR4=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAArAAAAAAAAAA=eF6zP/BkhW/pH3tNn7RdBkD647k7IgFAevqTaDVjIN3RKHzbH0ifM/r33xxIz3l3cB+IP3/7mscgPp/rBVklIN3vNbmrCkj7/JvqJAukT73xXF8KpBuOff4vD6R3SnG7gvjdFqzVIH7OP6kDJUBae0WZ1F4g/V3CtW15yR/7yrJTnfuB/CPqjV9XAvnzxZYxg/iWc4xvLQbyv/e/XALiC10sqF4C5AMANlhmBA==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA8gUAAAAAAAA=eF4N0Y8/1HccB/Aui+o43+9hd9fddUX3g05lkRQ6x/JjsyhbkevHMQqzhoarZStpHAvVUH411IYV+mFGu88r0g/RQ4ZqUiS0RhmxUW33Bzwfr/fr9R5J6bzE76MQ0uAzgTEJWL9/udG8gYMr+3fazNsSSPJbuNOZbjSKl2oipjZKYSvvY4WJuIgwqnoVfcBRIX9QtfdaL4UgpvPNhBcSRETaX3xSx8Hc2rDrwsIkkirKyHNaR2PWlZj15/ykGBSUT60UcvGmMfW0yjCB/K0ozzn7jIJ/Evec/YQE9W39jHcuchArS908byiWpB7t1hE5jYnVoylOSik0u7ff1VpwUWTQd9a+4gsFq/Lz63N6KCQNpLaXDkpwgGs9K/YMByUecm1i6A7FlHL+8BIRjW2ee3f9ZC9FfZ7Pk/+MuNCM35sfPpOiWHU39zFviIKRWaldfSEfeSfViV6hJng9t9tcWqdSbC7y9P7eg4Z3eZzAYY4A92q6mY1MFjJ+cbd6u/8bRX3jjVOx/RTMOype7D3OR/pNv66AIBPEbTjrd7XOmxgyJOoJff+kn/dMtk/zEV194b27DBb6V3hXPP0gQaGWR/Pv/0mhJVmZ65zNh/X8gdG6YBMcfGDQ2DcVTspmW89hLKfxke2K5tnP+PBcenZaPmqCwijRf0Wu28ma7qzLXs8pNN2xtMvT+2vp2zRrVSZwuTClHqxQkNwD8fGxei8OOv1Qpff5/2zmX9b7bxM9bswzd1MU6mIT8lJp3H88FNqeLUVuc/ixAX8uGKdUBpHKcOLh9GrW5nMUtJrdew7lS0BNfj0+bcOBwGVsWO0ST4ZyzWfeZtBYU1/vaJWj/8+JLuN1n3ARuURhVBCQRcIDzZp1NRS6aP9VncUSrJxODwhazsE+h7XrM2THifMYO882iQZ5HPFuwFEplLnzD30YxEUUTjz1uZNJvrJLMXaspFA9WCtjF0kgvZ3gfN6Bg+G6PP/xghMkx8x1t0cajY+XrM/86qQUJ718m5lhXNi03ireMlZMAg5H3fSrpdAZ9auhc7kEkfcSrJLcOKhydtkjsishurI3O2950nCL+uJ+mr8AL2P++rVUzAL7hKuupj+XNNd7hj+ypPCNmMnZy+NDVOvgdsTGGLN/iLiS7JtP6o4rc55s1O83GOmk+1QA8fCfPS5rWHDN+m3p7bZUkj6y1TrHlsLrFE2pqy0fHezevnhXYziWLYsJ1WYS0+yyOBsljSwDvx6vbQJsEr1yz1nGQmCrKGltdRqpNmct9JdQqGi2/mzUjo/gXoLTen+wgxF4r1ZLPOWegz7uNFTaxQu/3iHA8cpSzvUVLPCiTd+/FhdCLBkdLRFSCgefq8a59nz4RjX0XlMYg3R+Smlf7iIX/xbuf7VNn8fs/ES1WIyQCwWr/6ixAG9VZcDOl5+TjB9LGH/dYmOVecVvmyZlGOheINo+zoNk8mrXvvFdxL1lppWxlYWCxJH0AJEYhokTB1BlgdzaqZ4fpSlk+RnfnqEbbDQ8SnvmPSHD3OCqyxvGePAdfSEIuJBM7P5hFMUFszCydUi+bpEY7pF908b6/DNppHg6LJ2Y+FxKahlgY12WuVHzHGvIZzZditF7zY2F1a3zjpGDd1w6F6pZ+OVJaE6ZpRiH3Vp3LLpogd7Tmg/a7hQTWcOZkG+H2OAeubpCNtcak7uHMmv19ztUto2cry8hQablOU2HTPF6LOb281Ee2s7vDC/JZ8JOV3Qu9WQBOS8l+xa8YaMi3u51TKsQ2auZ/yYLaWSQd0ofthcTj/Cmt8nxprCWj698+pSHDS83aeOzmbCYdNmi9f6OLBimkpdNstHobqDmNgkR038qIpRD47o6ZeojTTbxn3j0oF/vFzd9dyRtmAdF0Wgh5xgTzmJdeosymWwsjzLsftcMDx0XX4rsEqL3j5karpjGe7xoL2brYZIZnJk8EGeKo4vioqWDPDxWp6j2ZTLxw0Rgp2V7CIl0kq2UWZhBWLFL+axDiIZmzzdZVjSs1hg9n9KFkf8B00jwPQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//TE7PNc5sAA/sJjZTp2kQr+qH8l9jwYdvwDu3sE6NRA+CEm1JStrAD+UL1X/5KhCvx7zN9UK4Ry/xlutuPUZtb76uqmH60D+vux9uYEo1Dy/cpGPvF/8E7/k94g2g6V2PqAO3D18YBe/4lZPcFdeNL9umec99owGv9vH+4BZiqC+ysjDu5iDF79iFDtRsF40v6pFtk/XjAa/AEaa98q49L1mI5XVIrr+PpimT1SNVUO/xL6mwUnZHb8aRANPuXqaPhx4uQY/L/8+KUS5d2JQQ7+EZbC6UvUdv1kSv6OVkK++sk+KnUG0AL+kiQRzLs09vzKrQVu3LhW/8rua2Vy9sb72TMexLYgYvwGdCrrYCjW/3ph5nY6hCL+FBBhW24Oivqiu+gm0Zxi/wvUCuB0HNb/e5yc/+KIIv9tUSdLsS4w+3yNr/DlFAT9oNdfgnD1Bv/oDJGzI4Rm/GiYwjab8ib63gOScf14BP9tPkA/mPEG/fW3L8+DxGb88KlFwymq+voSIcNYY2Pa+4s4pfBPlOr80MA+JlagRv42tRHICStK+IBepMEUPFL/cgX5SOEwzvyrVzICjkwK/Rq+97YR+ub4zBMYzjfwTv0Cm64JLTjO/TzqNSjeTAr/qO1RSfyVtPhJwMaGAovo+fu9c7JJoRb/fmaeqItYgvyB93BE2YVC+pXBIXpvW+T5akclGr29FvzTdv8PCuyC/5TwPeg8Fub7SqokN0fgGvxkHDWz2VUC/jC4oUME0Gr+8g3coqrDVvkzuUP/0Zh2/oOmf+eZYNr8ijbzlkRQTv6P4bzvvOru+/A7invqrHb8ujw6bD1s2v2jlmUlcExO/AFOjvX/GKD4atkDQAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/2DRUR0H4DU/FGPSi/i5NT8l5VWX4xw4P0oRpUHGmDo/HC+guGCbOj9a1o0Kt840P+XISRT/7zQ/x/uXb5QWOD+uWO7ybzE7P7PNh7cgPDs/JJoyJf2SNj920+gWrZ42P9h6Vj4YODg/mmQiLZTHOT/43NYkr8I5PxoU+cnG/yY/xt2Rg86cJj+cwW/D1lEyP70XMlkaYDk/gwUyFW1TOT+lc0b5AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAUwAAAAAAAAA=eF5jYGBIaFyUs48BSH9YUAOmk+aD6QeNiyD8hUvB8gwMNUl2YLqiCELXoNEdUPmEbIj6jGoIXQClO6B0Q/a+Gyr5h+78cneE0OE4aHdHAMOgM2g=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/weoHNcNfOm+1Gb89KKC+b7yboTqKggEv/U2EGvkRwu/2aSPxfJD+76gmRtNlx36vop/T0UeDwq/UItbx1NNFL/tRIn3pZUbv5g40hd5jwu/3IjOUDPf+L4gPUvMvNIIv85/c2/ueBO/zIbrDYqNGr+qBU+DaIwKv+9xWzGJzO2+JIAlxbT3/b4jy5BgqsgFv0o0wHP4jgy/MHRsIQih/L6XlFPRAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA3QAAAAAAAAA=eF6TmF2iyjP3mYOwtJ/XUZXvDgwQ0HCLb43RVSl2Rxj/3/uEpTuqmaD8BXtV5C6FSR/77VA72cG1cOGzA0uMd3ff3v3aIWiG+0EuTpg5G/ZC6CNQ+oAtKn0JxofKMzRsSzVKOXro2wEId4HtvnI7bt37Xx0g/AtQdSeg+h6gmc/QAKE22MLEv1z5kLvr0dcDEP6Bva+N/rz8yvzC4dmrJyoX2L5DxRfYpkwNfXmWnf0gVP/eH/Hef0qamA7C5PWMFTN9n/8+4PX06z6G1hcHLvXPr+599voAAICvZho=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAFQZe3NPjtNdnvdmWOedtak/2N6pG9AZtN9qMpY5j36tuj549M979VqV+i+sB0P9fMauWYa6YY6qZe8mE4nG2033iH7veEMqP9wRmXG5OANLq6SStf7e1RstzvcGjKxn+KlvunlS+MO6ZnuR8APU0x/g==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFhwSY5wS/EHP8s/LipIC7Yo77Dx+9mPRQzBFNGYPJ7nlnf20Xdzz3VGKq7TZxx2bJvvl268Ux1F179ceH11fU0ftKatKcEFHHHYb9qhOANLq6ivPHVocISzm6GphrzBKSchT0/D0/XEbKEQDmYykwAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZgAAAAAAAAA=eF5jYEAFqmffxYSX/rFXun9UPApI20XszY8A0mjKGHSM7yeLAMVP/ykzEwXSl+5rzhTHok7s2Vb7+0Dxb0V7Iu8C6VvyBkvvYlHXNDuYw7Hkj/2aqT/nOABpq9ZyQVsgDQDgDjEQAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA6AAAAAAAAAA=eF5jYEAFd68FeX8V4rKH8dfxtRQFXJWE89XXLHu0REUMzr/0+9j1eZFCcD4M1Gc1bDGx1N8vpXVikcNyTvvtC7u2tpro7zfwPjLtxD1J+4s2HWtWSujvd7f/ceAqo5h90aEtjxv/6+2HmRdl9pFrBYP+fph5H1Xvf1Sos9+fPPdm+5SDHPbdueYalg32+yv541b3XJawd+3+LnSy1n7/3R+CU05PEbVftVnYPK/LHm7eLIecrZt77eHmHd+1o5ftg9t+j22xG7aFcdjD+PY8t5jYWCXgfHGVjebskaJwPsw8GB8AzXZ4ng==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7gEAAAAAAAA=eF67cy3I+6uQlv09/4T251nu+xmQwYKruzfytRQFXNW09/qp7pGSjpC3SGWYdd9wy76yxl+VIWZC9vN00xzrgxDyOh1bD+Rk9NgVe3/JOvaOd/+1icezFtoj5B+tvOgUKb1q38qmv2EGEXz7D78w4ahzQLP/wG1rKa0TixyWa9qXxKRvnTEPIX9OVfn6792T7Ay8j0w7cU/TXmOS5j2tBQj5m+K962S2r9tXGqJxPytGyL54heW5MCT9zWYGOWcubd1XY/v19zIRvv37j/mtvLQcIe94bM+D2+/X7lsn3eW53ZF3f4mB4Am3VQj5khq748VJRfuS5t5sn3JQw97iwxOBaZvc4PLxZ20ObTo4YV8Ff9zqnssa9q3SjRvCtyDk2/QTLvGb7t8XEuK1gClDyD6G8ZHxqX0IeflqnmVJh27sW+gX47f9Oed+B39DecsTCPlVpqyS604c3xf+IvxR6k3O/acWV104dRwhL9GRfuST9qx9HttiN2wL07DPKI+2ezTJFTV8GSp22/HcYmJj1bBn5rn+Zm8/Qr4rxDp9BueWfU8msuwPjxayz7u/jSdtMkLe1zfhzPyYy/s2OPqsmbOWbf/VRT1heQ0IefVT/ksWZW7bp+IU+N/pN/v+gvPskm3VaPZrfLYGAE8u4Os=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAHgIAAAAAAAA=eF570NG2wytXyz4iWVgnKMR9v0LzG5/oqcfsGEDgx5Xd2w9sv79UX8v+EM/tN+cC3Pc3NEHk7VIZZt033LKv/WliyP9XQvbyjpLPXloj5JU7th7Iyeix82hW3VbQyrM/YGkVP48mQv7OyotOkdKr9k3Zpbfo1jue/U5/nq95AZR/0Ihkv85ta44TwqxTP2nY/yi5Mufwaff9XE4924qnXtt3QFX5+u/dk+zEXvL/lNHStN+watrR0LPu+xmg8hfEe9fJbF+3L2zC/sXCnwXsfx9YtrXxNEK+3Mwg58ylrfvuJSXvXFUssN/t/u4Jf68g5F2P7Xlw+/3afd8v6j4w4hLY/8+jbn3hdff9Xx0h8lE1dseLk4r2TVy2dt4HS237N2/1uetF3PbP8lyw7cGhz3ZJZ20ObTo4Yd8aCaNDL7y17c0lz6xyEEPIN+onXOI33b9ve9qns7sixO35/uvobVZAyCtU8yxLOnRj3xVNns9ubAz7P/rUSCppIeTXmrJKrjtxfJ9COz/f6/f/9zUtPHpqs6bb/hlQebGO9COftGft21PwpeNcsJz9q7AQSbF77vvP/T52fV6k0H4GKFgj81Y3d4Osfc3r88c/3kLITwmxTp/BuWUfQ0fizeK+aLs7+9Y/n4mk38c34cz8mMv7lkD07/dsajVcdBohr3bKf8mizG377s7JD3cIl9t/bx3Dl53H0OyP+GwNAKprSFg=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//Qh23iuovhDBZCnnbgPPJsHEdC3chpgXwQA5BhMTz+A/Snm/lFnIEMGYo8de1dMmwdyRaegClRfB8+9J50DihcC6AJ81hsIQwYDJf53NQSLBsDzqPYsJE8FuBxb3eHxHQK9fjhIiyBDBJGbh4stuG8GY3/UoWCANwc0rA8dZJ3HAQx2fw33SEMF9Fjji+HIbwf6zayEqKA3BAHAQ2Ht9xb8BKJP//J4RwQaUdSNjsSfBVCVo6GaAGMHmA6+tEHZrQHhBieUJlRHBVs3WiU6rJ8Geh0Gl9YAYwT8t3RsZXoDAgIo+fGqJEcH2p+yjDO4iwULpLV+V4xPBpk5yR79lgsDqpQmPEYURwUwmpjwGdBzB6Tdv5m+PDsHQbvbcmTNzwCjCKTAXehHBslQUsENsHMGq9SzDpYUOwfKMutyDWF1AJY8t4Kk6DsGmdy9E6v0kwXykVKxRcRXB5v8uPVHzWsCFnG+mizUOwdkXnypF/STB8XVABgd0FcEccadWgouPwLDA0SqzRg7B8gLwByjoIMGZBstVFFQRwXRSwuOb96LAsNzK66xIDsGYkSkmq50ZwWNxAi+fVQrBCNP0YYJwisCfh/M0hj8OwVT03dgLnhnBqOk1rEFTCsF4e6iMJzo+QExBfi2rHRTBVrlZiCFeKsE8Lu9ii4IbweDM8tuv/CDAX0XQr/EsFMGQFiWGT2YqwbacQOHNfhvBUSqADIzyicBe0u8meTkUwW8Fln/wCSXBXpTCL1TsFsGSpAHTi36mwPoKzCLyORTBBY/wrEw5H8GR5peIg1USwcgduQ5nPYzA0qAGd9NOFMENvWneG0MfweiAObWEXRLBABFee6qx+T8KKDVbAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57LRoVFvy8wOE1Afpi8fzHPRmFBGnTOnGpPSfzCdJpIFBUSpAGAISWR0s=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALAAAAAAAAAA=eF57LRoVFvy8wOE1Afpi8fzHPRmFBGnTOnGpPSfzCdJpIFBUSpAGAISWR0s=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMNKIBIzERlQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//g8Ty+8qEBHBGOycGzghJ8Ekok2DpOwXwd/sFmJLQW7A4O++wWQEEcEIecEbbxQnwZt67a0A3hfBOfLPFZv2aUCUzfMJhhMRwXlPDQ3OzBvBGrKPowyzDcEmvXi2eb5vQDYhqJMlDRHBALdNm829G8G0btAftqUNwZ8voHSUvlPAzDqkziseEcEeitdQ0xknwRUTEzqewBfBR64RNGgah8Dp7hB2PhsRwSbWiPXHHCfBW2FSquHNF8HD40+Wi6ybwPL4eCLJuhDB5r+Yc3+/G8FCybpuODINwTvJLYHAqJTACnUzUcy0EMFGUL4WNMkbwaTFBX+xNw3Bdbxf+5lggMBui7/gM/wQwToe/uLTCifBFlhX4xLSF8F6uGEi+ol8wIT6XmfnChHB/9UIvzQUJ8F6hHro1dIXwXxqBN0RlZrAxhLCcjtcEcFltqYXl9kbwYn1gG475g7BiKeTZlY3mMALQ1O6mGgRweoxY7tB3hvB1RE/FzrtDsEQxaLCDlp6wCv4uXQ=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMNKIBIzERlQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.8000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.8000.vtu index baaa116ed1196ac7b1a66dd900c74dac23ed652d..49c2fa404c3abb5c0958e748d6e700ff50fe7d52 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.8000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.8000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00089294848156" RangeMax="0.0013658146456" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00090475735251" RangeMax="0.0013657604602" offset="1612" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00018341620996" RangeMax="0.00041323238462" offset="3136" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00074441633776" RangeMax="0.0015188616855" offset="5232" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00013963037513" RangeMax="-6.1520503832e-06" offset="5804" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="203244.58128" RangeMax="264445.94887" offset="6120" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7792667811" RangeMax="1.7796401248" offset="6436" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="271032.94273" RangeMax="604598.54155" offset="6716" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00075329713223" RangeMax="0.00086770025986" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00075348581173" RangeMax="0.00086790658407" offset="1628" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00034690717759" RangeMax="0.00071385840458" offset="3148" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00026359725357" RangeMax="0.00048520015108" offset="5232" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00042415186347" RangeMax="-0.00034707635449" offset="5804" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="398808.51548" RangeMax="465207.37429" offset="6120" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.778232976" RangeMax="1.7785409271" offset="6436" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="617078.04258" RangeMax="1108266.497" offset="6712" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00018246288353" RangeMax="0.00044969164575" offset="8808" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.000752537935" RangeMax="0.0015270497471" offset="9720" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.9121292755e-07" RangeMax="6286214.6587" offset="9992" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-6.3120682867e-05" RangeMax="5.9685597611e-05" offset="10148" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="7.3670867354e-10" RangeMax="103690.13416" offset="10420" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00018553181821" RangeMax="0" offset="10800" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="285841.72397" offset="11004" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7796580337" offset="11204" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0011313708499" offset="11388" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00089891707704" RangeMax="0.0013548352309" offset="11736" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00092854738208" RangeMax="0.0013537164651" offset="12440" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13224" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13284" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="264507.04891" RangeMax="665808.76547" offset="13344" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="251.61201502" RangeMax="353.15" offset="14256" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="251.61201502" RangeMax="353.15" offset="14364" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0003447819751" RangeMax="0.00075142253927" offset="8788" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00022642717232" RangeMax="0.00047718158728" offset="9700" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.9121292755e-07" RangeMax="6286214.6587" offset="9972" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-0.00010483396064" RangeMax="-1.2242226148e-05" offset="10128" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.4551915228e-11" RangeMax="213570.73163" offset="10400" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00045209242568" RangeMax="0" offset="10736" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="489260.30194" offset="10936" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7785754948" offset="11136" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00080771915346" offset="11320" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00075307731604" RangeMax="0.00085870610377" offset="11672" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00077512744331" RangeMax="0.00086294177447" offset="12380" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13156" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13216" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="602127.1715" RangeMax="1171079.9932" offset="13276" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="251.61201502" RangeMax="353.15" offset="14188" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="251.61201502" RangeMax="353.15" offset="14296" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14472" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14540" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14608" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="308710.6248" RangeMax="517078.48403" offset="14668" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15240" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14404" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14472" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14540" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="661797.30912" RangeMax="1019893.1116" offset="14600" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15172" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15312" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15244" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15460" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15616" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15716" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15392" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15548" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15648" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAgAMAAAAAAAA=eF5lzWtMk1cAxnGGE0m6IJdhpBE0CqjovAwEy/CcvqgtAaO+CaibKDWuKEVBEJCuQrgYlaK7ELGvom5BZ6CWDioq1XqoaEspWHBiuSiIELQDlGgIccTBvrTvMafP11/+eQQHnkd45dGw3+W8dL88ttHFPnHZtWRmohqBwfLoKZmz7+lInNic3IwE9l7ksXf5g6vY3VWhEbm8GrTB3pNuPF9gy4swoYa/+vUXDDQs/qiSGLXYPXXWQOqlGv2wNiGm7DENiwhXHrgtDh2xsD2j3Tnz2wvsBVHC2TespWxPetrKZ22Px01ozPW4ZEkFBZlD4bM5n7mvT1bdl5kaYON2F7YkUlBBODO3veJKbQdw9FnzbCrLHey/jEtbUmgdcvSkR2zaOsGZuQkszwu2e9/jw7SYyIw/L2HPP6aK/QAbkcLc9HX1KB+mE159ZANHJML9rB5paE0Odq9CbkXxo3OAsfduhIdv2nVFa2sFfl7yjMRiGgYrJ+We6+NYt7pTsypLDci77exPvzPOXld62WVjgh45+tf1mZ/AGuyFvKdfHBZfZ3vSBcvis+Y2HkQ/jynkgbdoqA0QtkzzPvvv68vu0HWiqAkgTZPQsIHwE3XJIRkLBthe8HZoOjMRuzTvsqxUZGP7zYQv5fumngt4hyjjVJN6GwUDufGio0XYsyfDUofTOxFTYkz4TkLBxYS/6x02X28eZvs9/U+ZJ83Yc9UuZp9RC7po75MID5K3zpHGDqGguG/f93IpeFI1nqzuwT7f8iFS2K4G+a5e6WGpFCwhXKzXCwdSDMDR5wRH0v4G7JaGRYW1I38Dmb2XEa5ElffvGHpAzlSZvlVNw/wAky5sMIb1+5fAiLrxGtrBqylfYHX2Kk/XnHiOku35bicqqjqw5xUs9KvfYgKOnvTpZ4rcuzNPwIqQR0mVe2m4RSM6O1SLfbVecWQnV4z67u0T+Zc4+0DtVuQxamV79WK/h1dTsSe9kczvOtUOHL2ScG+l5rji0BCgmLhXp8Mo2BZt3h0iwL4ya+FkU3AvaPiXExdziu/k1T6V3W4XBkG0vb/dycjcg7AHefO6fkzQIkevIdz/1ve+xi4N+GbFMXnwGQr+2hnyT/wq7K4p4Q88VnWD8mXC7PZyZ/9Y9UbXekMDVtt7D/MfUf0HsReNrTPd/a+H7b8iPL1+uFs2ogX/A4gOOPg=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAVQQAAAAAAAA=eF5N0Hkw3Gccx3FFxVQHdWWjSlsqbSoJUdSR5/ErSnZV/ZyRasaEJUtMUUGSbpGQnVqaBKl15OjGqvuKI67np41FFutmQ6QqEWapJEaMItXM9BePv7/zmvd8vubFTmxJMgk1EsWGz5OYVF6O0q/1j2sBO7MwVLBSgoz5TscCwkn4dpUdU1TBpDQN/L3mbw6iYwOBKy6hXcic9pnpGVKPPCaVS3vFckubBNsK9AHts1oV1xW7sL/3S9I816Yb3Xz25ZKXhIQNcQ80fKpxX6d1zIT4sxI5TCgGPW95dS8i7VWnsC8Ja2BbyqWogPadNrxCo2Hcv+Dg+mbZGB8B2o+GbfYPb2EfaTba2/e0G91JcRdfLSSgVM4uFQzhvpZ2bI1yTC2oPGVZw7MlYK/+5Kj7Di/Q6M+/Xj0A2ml/I3u3V2Al7vOenrnHIVtRFe0rOtK5mpPY2zh7rKht3QaCb8mylA5HWNTJ0bPMwv3z8eXMZUihYAND57BuRyhafUjMUTv2Rx1WCwrC/oB/icwuEvffSdbPv9CRDdi0t+EZKj/Nxd7O+ej1pvkeoBO3lM44T8KD0/t9BHYsysC7uukIyEYyVUJJyBejxM0Ql/AJEvodcXtxto5J9en31tfGPAM1/GsKTr7tSIv2q/IScech7JNth9+IZBehs7R/y6cjtKScSUlp//3HPrEa1En0E7kpmr5Nwrs+P2ZedNjRn5o6PdA6gm6Z6DnblpNwoU1gyWnA/cSa0H3RBtPb3s/43e7149jHca+d4wfNo2Lac9KtOFMy3N/rqBuRbbiELC7f/cf0KwKaefI/2UjBPmH1s4jZ70ZQmDx2YeBvAro1iSRT/+L+8sSspKhrFtnQPlRH7USAZIevVJBoL0hRDO1TuR8pOTiztvvGaT27zjAfIV3djb3eDAJenTE1t36APUO6bOfaXwm+DqaUJUsErGIRgww/1naf3d7uOs0Rg920Tw2M1hd1YT945/3kavkQ8KS9UMxv4RG4fwsJ2xrF9wGfMf7ph1UkDJyBT3h/uVHBiym7BvNOg7YCIK+kCpGvm576lWlPGKuw2sPqY1LFRg+Xo2rUqRuainE+aqXgEu01JRsdG/1u1L6X/3tuktGeOvduEEB7u/maUqqFSYlovzGak9C8NQjs3VR71o6T0CRO1mBdjfuN7TlR/vpsNCuRyK5keULn7J8L1vNxf7LaA6kvjAEX2ic9uby4Go59wFw4Y5zXD157obLrULMf7uuW1v6Qc+oRCBkZbrSyevUflS9SuS7Ym8Uarf5hOgHiD7bGn/j8MOwwWQsnLHD/N22hTCV3BkTS/pJAU/SNCd6vr2U7HuLbhF774obONCNN3H+vPkC3c7wW+IdtBQ2nEzBcINQq3o/7Khzr39UPyIBlxqHeKF8I0xqOrkXswX2FkrnWnrJaEEj7xxmMUIuT2KcuWnU3v7wP7GmvWC5lvfDG/ei6Wdk5eRP4D8HlBec=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAAQYAAAAAAAA=eF4N0vlDy30cAPDalg7bcmazkjTtEk3fNVKfb6F6nlHi0XQQuZ6iQxQiIcoToShHlzKNRrpGRX3fKXkilVCyHF2qR00rEkUef8Drt9cN7ZNeib5MvLJhoU7fRAwWBW96jH0zh5HQXqsk1zPEemHCF6PLTHxUsZdmn4KByqf6BT2BDX4f4yZ4OmYRtgV1V60CmfisNcebvBdisMs+vXfMhA3UhtflS2xkhHLlJvtYORMfdGreVlKBAfta0NyMO2y4FPdsGZefSyz6aqe9bz0TP6eQ9Dh9t4b6CRF/3Oo3B+d5HnpJblnEewPXS8w0Jv429E14fgQG3c9E1Z0xbFiaKc7lxd4gOh3IW61DmXiOXv1kL0sMlE+DT/LN2VDEMnN2Sj1IFFksc4N8Jt7Gevj0aS4G/pG8F3ZlbBh8V7ZQykkmmu+1LA0tUiPaFeQXo8cHTGPzz71aMmxUMyUNZxKQ28ySOt2J/Yht7+d1tpYPtza6dtWUUUD/7/uJsqzbKGx0QfuqRjU6+M43JKWdB+GGj8fuKMlgUyt69GjHLuLx5pZEI0E/WmcX2NMv44OUK8eWZ1NgcDTT3+KTDLkY5AWtIg2iBYMmM24CHyhjWGlqBAXInpvWRG04S1geprcsOq1BDr9K+7TpAsgNWv4jlqMD7D0BBosbd6InmS669D4NGnFUj0uS+dAVJCcU6ynw7fifk/pXuaKY6GTbFXs1KCfHTuXRyYef9j6iPn0dOK/iVjZPTUIMmIy8lEx8oMGrtkwsgqGVXL8UrbmgREmR7nkyYl3GNNmwmoGXZo/tf3LAGspOJOY8pJvDVXrLjhndWYSePCoyII+Je5lihYbzRGD7fMOL0c9sUI3srxR23iTgtE2qupeBW1Kz0fwQaxhq1SrRJ5nDytgTp+75KoitvbstonOY+JS8T9K/RjF4OniaLn/JhhfrVDqfJpUTAyYRA2ZaTDzw3PfYf4utYa+L7tFAZ3NInGZ6XaGoIqSrFfbuxb//FEs8aVYiOBrqpyKR54K4wW96FKueqHL0baPRmXhV9HvjOLU1VDT+SJaGm8Nc2/KyKOdGYoJjxWuPxWoU0GGc+AoTgEHyxn2bZRSITNAucMuuJuo37iW1q4bQbMHH8VlpPPBtPLk6PYYEUQEJX+3WPCNowbefjDT1owHO3V8N0QI4p8l//e4JBXie+WbWbbmEMXWLrbZyCM0ii8KaenhQlzoBW3uTBK4HuCUhgiriQpV0RSRLg3oOGQ6saBVAjYsE0nk6wG9eWvxMHEacv3Lj7FThEMr4kWVM+c6DKYt8OqTZJHila5ZdLjqFxmoOxY0ba9CnkPiCr1UCuKxt9NacpQPKJDv/Jv00dHGPR0XAb8+VBYUXdPAgzbvrTMNFEjS6LRzxTpIj3iAvNiCVgQ9f6x+XeAvhQzp1TUumGcywLM2r7gsnJFt3XDrqzcK1r+pnEyZiUOsPH7wj5cKNd10/rK6cQj7BIfFvExm4wWOL2924EFi+L691x5pB3pm0+k6pDLnO1NMaW83CC7ke276QxFDwfOV0hLhQXJZ486dVIeJ/wY10Mhn4lOVa6R92C0HkT83ZVmgGFL/D5dRed5Rvcfcqw52FO15wIuuJxaA7s9I7fjUXPF8vUd4OLkJJhwdmO0Uw8Lsxgc8NJwohZNaUn0hiBmmOMbRoWghROtX60hVLFi6P26l6WWcDvX7F8c4DHKAfy5E/UhahMAXF9SxvGFETmo2CP3LAtCYFo1mRQXC0W9O1dRWx3aFyt/4xNeIMi3S3Y/PBWPB9jFhPg/PH2g9IvxSiurfp4mi3YfTZQXOQUcOBLbs4KcfnkKEi1sFA5H6CGL2M0oQDalQuyGp7QJ0PqfbXSaVuNDDUFvuwdtxCS3zso6JjPiP2EV5kxx4OTFt7hzt+nwT/ufgKj+iUIqNbjeRWrBsJK9ubyqrnQWerraKkbyKEVYdF1yQXos0P+F5GGZ+Rbthh+d08DpgUz8ma9IEExOQ2/15JPpodz2yqXdGNbI36O97oWwK51UrVY0qFigVFGeXGmeh/+OnhKA==AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//sWmtyWdRlg/4w+SGZAdWD8Md/33gkhYP2cq/1FzH1g/CRDCmK6sWD9VpH6dkpBYPz0k0nljr1g/5+qxQUWTWD+WyniM3CVMP8hM4ph+2ks/vVrfmyoTTD+BZ80imcdLP/fPyPaFAEs/DONva6YaSz+aEABo/O9KPykgYERnCks/+NrlgHRQWD9pHA5RkeJYPyth9V7KT1g/I2i+r+zhWD8JzyRBqZRYP1nw48NzpFg/fpH0Yl6XWD8uu0AEU6dYP+u6yB2TMkw/gsDys5pbTD//rvc+8V5MP8BqlFtTh0w/ONKx0bgTTD8G48FdDZtMPwxv96YDCkw/achXIIKRTD/xx+kU1mZYPwuw6iAH7VY/nGuFPLdlWD/TIHxL9etWP4BCHJfe9Vc/C0d4PHp/Vj+3Ogp5RfFXPxB4uhoue1Y/2AcRVe34ST8il7PbPn5IP6kl+5DQ3kk/2Tyj6Z1kSD86ospablZKP/1pe6SrwEk/K+SCZTJwSj/bQcewCtpJPzvLrsU=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//8IGE+gUyA2/07swfxXUEr8/VrBedz4Mvwex/9A7ERK/uJzUUlCuEr8lrplTlUkUv4jr37j22xG/lzanBD54E78HKUYlqr4Uv5KSLszLTgm/QdcGGYEtFr9GAXq4rjwMv3etKeDO7he/rZ0p4LXKDL9OfScujoAXvxrqb42h6Au/WVzZCWNp8b4koBfKN00iv/Lou/SvL+2+FvLScJj6Ib8sPpW7ts3Zvn7SA2uaEx6/4P0NastY57530sxua0gfv1vZXzQ=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//xY+KaumcQtBwXN1AnREDEHZfTRRKEkLQcax6S8iGwxBYBrZDQE1DEHuZz6D6Y0MQWOBzLSlCAxBfAJY0TthDEE+UxQKC60MQbs52gAD9wpB1qFF2mP9DEEK6ocnLEQLQQBgUFofXA1BVx/Zg/dTC0EQPjvh0EMNQY7/JOLLPAtBdKgv6SlQCUGwV6XL9yMQQSZXCuVZLQlBxX3Hh5cPEEErxHamZM8IQUGharwjxQ5BrZopWs4NCUEANicBuwwPQRLnRbE=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAsQAAAAAAAAA=eF6bPn375BsVf+wLPMserAHSFu8VFz8A0kJOV95vAdLlvDOugWjTOdsuLATSz/S2euwF0hyS55xWAem0taYnZwFpvfc/9H8B6XQPx+huIL3g2oWDr4D0fUmBRdVA+qEIL8NzIF0lqWnaADInxHzyayC9bckkRf/KP/Z1a/cUPij/Y2+vmtwQBuTPdda78BzIP2aV/SYdyC9q+/FSEaR+9r1nUUC+0D+GpyJAPgCUFWf3AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAAAYAAAAAAAA=eF4NkYk31AkcwEejkXYwhmln5EoM0hpHGpPrt+UoazeKJdplnU2baowicoUsySyVLpG1rugg6tHi+0Vb66hsm0fpUEgh08QMmWH7Az7vfd7n8zj4RmeWpRQa2Z6rKkeZWK3fGdCaoYkdKymPNkYHQ5w3yYATKoP9a9pSq8tZeNz45/00bToOcfrd1owKYHDU0SskTQoCJclOKouFp0M2DfRWa2LXT2H8s5NC2KpD8V3bKIOCxmYfxiALzVYFFary6Ch0TW+SOydDVFJ+kYQiha3LhM/qe5lIWuvc5XBYE7dExI49lQigxn18xRs9Gbz+i3B1S2JhXGK1y6MlTbzOv9vycf8RYLFJdaFxUmD2EiY9Wix88vGuquEVTfxnJC1je6kXxLSbuv2UJwPhvLg6rIOF3CcDjuW2dLw65B9oKI6A1+cofT27pOCtMhJeflkDQy9mw6F1JMwsejc6b/ELceIt/YqPUAZuHaKUJF8aysLejc0+JGHJzFtGeGcKkbt218WlL/2uD+tYah3UwCZfx512dBJKB7yCLlK+BTfu0L4jHjI4cV/b6o4DDaO5241tbpPQVfz+wc6aWOLaCd+/9I5KQbnmbtcvdjQ8+zTBmJ1HwhuzpPkLW0Ig325OSlWRwUFjqtGRAzQ03OJV0jlOQtWR9Igtg46E2bqe8+sDpGBoQdboXk3DhagdeS2xJMyb8JOzI/UJG7vnnpdeS+FDU2nbFT8anvlDYLT8i79WgdUY/99wYq9DCiOjfg56ROJcpxgdPGdWbMAvpKOCMiM03xsLBtwHffBhBtZ3JAvKVjFRNci8R9RFw4gbjgK5KAba7F8nep6fg4qolUfjQnWwt2/SpCCHjg35/JtjE0fBx6t5uurJDDzu/a55isJE8/cG7fWtNExtLOCs2JUIhxmBy0ScOfDq9i5MMNLBqiKOZ34YHfekWFIeG+fBnoUrwZkxsxBb4jz9RxQT5S+nFp3IX/46/5nqH3Eaal/ImeNlX/gk9mQyXwc7uWrenNN07G4/tc2NVwIbLr6M3Px2Fs7V8rZ1X2Pi4jx6WG7QxIZh6+H496XQemaX4FiRDNb9FyjyyaWhvNvLBqdIGHJHcbIzphDcxQXeK3NnIMQn6anzfXUMSBOXZHUvwoFbs5fNpi7DQP8PaWekMvidvUKf3ULDqc2W5AQ9JTyZM5J1byEZPptcMih/NQN+CeTqNLYGRuvGf9XPXoLsc41vw4dPQeBc/UPvQRkspqlwWO9pSAyrnX/moYTMiv/8m2SuUMlr8XfSngXltb8ujREamDVBtXcgliDaVGW9sv1uwmDgANaiDK67VDTefEZDDsmqIJOnhKE/eurOa0UTZ69VhJMXZ6Chb4YnNNHA8bsKm9UmS/Bh+tbQ1b1xRM15B5cf94oh1yQrbLU/A+N/tur8wUwdS7N0IwfuuINTduTI5gk53Ha7r7C30cNTvfeUzC0YmPIwMSakfDcx1tAaVWstBldnhle/LQODaQU84awarojJFR5SjyWaP8UuW6qTw+8Osrx6dT30O80L2E5nYGorp6z6+THC6RVfN6ZYDL53urOXxzHwRYmax6S3OgbeD+cf/20N8cTje9d4fQVsO3tjoGq7Hn54ahJsvoGBWt/e5hiZZhCjTSeLNyZPQ6Zzjq54Qhul+pG2NcfVMJ5TsmmNDgGRXBvuc0c5VN6reNPVoYuz/hpb9/RpI50cdOjxgQzi4xvRhUyRBPqpgzuY7VTUJpuFdR9RAFC+3iPwMIRAjTayrYocMkcvcfXa6ShXZRhMtimjoFSrlqhKJ3aOnwj7PlwCzUHcsrpCKtI/J0hCvRWwOrFLOeWbAJjg1R3d8e8C/OmnX9lfRUdBV0vzi0pltHApGn4Ul0Q0U1o7b+ZI4LtnwjqXzVR0vzCYxlfIobi44SPpUzahui+91ip3Aawt7KxoEk10/PtgKPUdGcs+51tbu6cTxhZvzEfbJGC/G4bmcqhYI7KrsnBXwLSxTkreaCpxS6450vxgAQLcWGJbXTreMmL1TWsro6npoaSrjQeJ/wGmCArRAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//VKgztUiRBk/bUV8KcPJM7+gHzWMxLIjvyDlk3HVRjg+GEr6zrVMGT9i9FHJwuEzv/oeKJR7yiO/DRRQfBDCo75PSI+zDyoNPxK61IODfDC/dOG/JxHeGL/NoaGfpBeAPuNNoWJ8OPA+YE9Pb2UfKr/e89TeYMwDv/3fJSYtN5y+aLPufzwN8T6JhSS6QWkqvzVl3p+/EgS/AMy34tbW9r1WlNcjMNQZPxYG3piPTzW/QFop06w6Jb885oQhJeOgvmwAXWVW0Rk/Lud7D/gvNb8k7pNBBSglv3r6arbdCrC+vRuXNn8/DT/AnIkUT4Qxvx/1nGTjpRq/Sr5OJgdAuL6TRerNIyvtPm2el8dXuCu/D7ccKoiIBb/JEMVKAIGGPpBFsl4Inu8+Rzhx8tetK7/t8HNGzJ8Fv2bl+TWI0KA+6NKwG3IiGD8aFWAoAhIxv+rwXVh9ySC/iPvXBDh4m74WJa12uCYYP+IkmZE8IzG/ouGAqM/XIL/46YEh2G2lvjqKwRCjng0/zIhswlPPLL+j0uuhiPoUv4eAY9Tsusa+NOygFSFa9T7EXVvZtmYnv8hxLqCXmQC/kDz2iyYDjb4qwLnZWtv0PqzAbve+fCe/vYgBZ6GcAL+8eEq03AWwPjRxCCLXXhw/lwALHqhDOb8YxsGEP9Qqv/Br1LhLg2W+mX0ei1tUHD9M2O85g0c5v17au+wAxiq/SjyItGasuj7abvTUxzMPP9JSsjuzhTS/Xh5dxcVAIb+gihisjsm7PgAIK1/UvuQ+VFSAAoZzL7+Wc3PSqQ0Qv7h0g6QiZLM+TjyU1XQd4D6aBRtcaxkvvy5KMt1alQ+/UKDHI3VIbj7p0zLwAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/2Wy4o3xVFg/jQNQohuHWD+zSgDvZm9TP/DQHgaIkks/naIjeDngSj+000yziBRYP4rTjhKYT1g/Jsu3OkBCUz891upqV8VLP4BLtkOBcUs/3qVFLukEWT/mp9xgIsxYP5Qw3zWpJlM/xu4+4l2WSz9MZ+HeIrhLP4YjhwUgY1Y/lLejjaMsVj+3/k9PmfdQP2jt7+i+qEg/gc6FmlCsST+ULEm+AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVAAAAAAAAAA=eF5jYGBo+Pm0fh8DA8OBn0/7QbRD1hMwzfALwmfoeg6WBzKaIXT3ZDDd0A6hGTqhdDtUviEEQm9IgdAP0OmQfVNaNVY9/OXuCKHDcdDujgBonjjtAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/+758DGIpu4+2BV+qde4/j4wYNotUZitvlL1LlxJKAC/1biV0c0D8L669a//lO/9PlkLapSyIA4/cBdyBjrPx76zpQ8T9YsQv3TbqTwLbQC/yFm2tpVb/z7AkKyE3UoPP7Ash7heYq0+RbWYCgt/Dr8hoiaFcqn+vhsFha016uo+olOGJa6a+j4Ybp+X1azOvi4pfWxfJAG/hw87QJdX8b5s+FBcAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA+gAAAAAAAAA=eF4rEu0VPWxwzmF1uWLYvdCXDgwg4PDANsSuRXVRwE8I/57BPoNL+i9nbPwC5jdE5NkdOTL18yr1Dw5TVlac7uc9d4DnU+rUqbYPHLJY2PJuFdyHmsOxD0xPELQD0wxcEH4DJ4ROUIOI7wqG0Ck+dlKv3a+d3HXvAJi/w87uhonLvLdstyHmMdzZCzGPHaK+4ROEbyEIMe+BOEScQxVCL5CxM9h84Md1lTsQ8xh+2m7ZcPV+RulFh2nORRIbnV9Cxb/sVZrLeyvG8ieUz79v1v8/v4UOfIHwY0ztjoRttjf1/HBg8hXFQxryFw88/6azxkXuwQEAJu1oNA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAeAAAAAAAAAA=eF5jYEAFOjn50/aWce83qn51V/0U337XKxNc3n0X2I+mjOHatPMX79wV3X/l7mOnDRni+y+ZTff86COOoa7lccOutLLz+z78WBNRoXplX8TmnFMl02/tQ1cXbPxULytQY//xBqmzV56r7j/HdkLkA7fqfgBKLDVmAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFMwQP/zc25nb88b7eVr6T21Hn18EF7De4HdGUMeS8VLExfMHjqMt8neOnLa9jnZZfJoMpL4a6P2fnPuVo5XBUNvHfOGM+h6NMc9wb7i0cGOp+5EY8dSsSdPzzYM3x6XcEHOdcnaj6b42AIwDvJijBAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAaAAAAAAAAAA=eF5jYEAFvH0u859W/LFnqqxQvQaki2pmhx0H0mjKGKTymHZ2A8UPHO1wqwXSYiyFNQ1Y1B0ROL25qvKPvfn9GaxlQPqGXyZjYSWmuk+PLrWHl/+xX3et/FInkM5bl3d2BpAGAIiIMkA=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4wAAAAAAAAA=eF5jYEAFn3e8DSqvNbSH8V+86pUQXuAI54etejBhAo8bnK/rLPP6kZkXnA8DG0VmiKSvNtw/cUKz+pRqQ3vlBVwRG08Y7k9e5bKSY5mj/Tvtxe/ufTDcn/2JLaftu6u91DXpDvbjhvth5hk5xEzQn224H2aeYMXkt+EvHffP8plyJH2BoT0H08PSys+O+6dv2XRuX7mj/apJN2eVSDvtbzugMGn3FVf7269t503Vc4Kb5y3Ac+0kjxPcPKj4fqPnqyc2PDG0h/GDIxpspu5zhPMfG2gc6bngCufDzIPxAY10ckQ=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7wEAAAAAAAA=eF77tONtUHltoD27/JN5Uo1e+xmQQcJJ6xeveiWEFwTam33gZ+Fai5DfMP3JT45lbfv2zL58buVsL/tnB7+k+r1EyHMX2alserDRrmeDzNL5uo72Ggc1fbpXIeRrHk92M+8/vy8u+V2G50oHe6+ErojjGWj2n+DbM3FCs/qU6kB7KZPYJ8z3EPL2hd1Fzl5n9yWtclnJsSzQnrv5ooHZW4Q8o4NI+qGFR/e5hHRtqCj2smeIcXuhp+kNl7+6nTnXP+vsvomG65u3KDraH38Yk/vAFSG/x/NCAdO/Ojt259A/hX8d7AskhA7qCSPkQ76cuv/79VW7mT5TjqQDw8cm1ELwuCDCfpt3wrMFnI/sm7Zl07l95YH2K3MWxZ3/7QmX32r15S1Xx9Z9eSZr4/k5vewvMm/QXXsXIX9jvfCPmMgr+3RkL1t41DnaG7ZM3cX3FyG/ul3W+JPC3n1zuN4lz+1wtF9skrrlgyzC/qATbyWePH1gZ/B89cSGJ4H2Pomzfix44YEavg2fdgdFNNhM3Rdon3d4Y7zNKYR8x4+bL3w6b9pNrFrybcYeT/s2wRMfvIIQ8lvSZHUzJ7yy23TVPHb2Bwf7j6yznz2XQMj7Xou9fFli5T41zwuzI2Y62i+dYWDvXYdm/wOePQCg8uNXAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAKgIAAAAAAAA=eF5jLGR+F9cVaP9t3Y4M73Sv/YuFCrTNzp+0YwCBA8esfy1avPnXmkB71YYnZ60me+1fBJWfNf3JT45lbftOcP9nqdzqZX8p8KR+/XmEPFuRncqmBxvtlih43M5zd7QXCvwnumcCQr7q8WQ38/7z+3IuS86XOOxgr/EhTumHH0IebP8Nvj3Bh5ovHkkMtO++EDNhkaD3/jb7c/9Dz9/cZ1PYXeTsdXaf0h2XYMueQPtO+Yt3rigg5DkcRNIPLTy678j2LpZb9l72LT9cp5yNQchf2M6c6591dp/Q1PXXRd852HvUxUjWVyLkczwvFDD9q7PrWhYacPmkg/37LYK5Z92893dA5aO+nLr/+/VVO+cN5xn2/Qq0Z+w7OEMq1nN/zMsbfP1Tv9lZvxOeLeB8ZJ+FxDsu0UuB9lFLtZ8puXvuz4DKz7P68parY+u+vb+Vb+ze62VfY2O5lUHTc38cVP7eeuEfMZFX9lU98dz4xcjJ/skeOackD4T+ye2yxp8U9u57fTHljqetk31I7jtrl0zP/QlQ+YATbyWePH1gN2eDrOXXKQH28ee2rdze7r3/Y8bjjq0/RPaDw3fBp90nFD895swPsO8xOCcQnOm9/wNUvu7HzRc+nTftynk7XJtk3e2X1D1ZmPjRCy6/LU1WN3PCKzuFi2YRnItt7HmLt0//tx0h73It9vJliZX7xHekX23+Ymu/m9X3Q6Ks9/53yPYz8O4BAEpsQGs=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//fMhI7Gcn/XAoICXUZCMGMEEWXEvtUIRwYBoR2RELQlAhC7oLl7T9cC+kwNfrKwYwW6G+fvpWRHBWLQUbZt9dMBdGkJTWh72wBPihhb6ShTBs1fl2CKGCcFFvGobZLBQQGrGiMyUB/bAPHJc9XaoD8FfY7drnyEAwZ2qaT7/Qm3AwkrPgmkY9sBgFLG4i/oPwXSq/+1wSgDBAP6e2KCvx79+ApjJeOj4wCpQsHEJlxrBhvWPlAe/EsGCIjk/cINxwDNoBHhWpfjAGKyxSZBuGsFCArUx4qYSwXab2eojo4DA+J5enkKc+MCgMtPA3a0VwTT+0PMmcAvBKKQ5fzUmicCeMUseGEH4wNu7CRpb5RDB9PUE/2dpAcHkqLp6m1ZXQCjdXoje4ffAxowo6BDYEMFWjRuayloBwSbkQKcicHFAcn6CHImC78DLAjedp+EUwSKc92p+CQ3BAq5zjfV8bMDwsWRUkczvwOz584hT+BTBQT12VBIoDcEjE1aKPzl2wO0mrjWYmPDAx7Sgl3htEcEHlo+ymmsFwct1ONStkpfAhpPPZW6B8cBIxFRQ6d4LwUPz6Y21gfvAMJyhwYgWXsDCCO1T77nxwKC+UeGy/wvBFpKzyhWk+8DXzXFp852AQCD0KAb2yQDB1FXhjbAPIME4QMZ90G4XwVDmnb9+TzbANVAatD/NAMEaGMDq9hAgwRLfvkZQaRfBrBw2nJWpi0DiA3DI2gMAwag4Aw7N6hnBR/TGvJgxEcEIcnpEUNGMQMhwAxmX9/7A4uaSOMu/E8HE2AKCEFIGwZ5/HwMyHIRARqkvP6A5/8Bczam5GZQTwY1RozExJAbB8EFzJudnP0DEckRDAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALgAAAAAAAAA=eF7rjrmjovOwwKGbAD2X41nS7ZJCgrSuUcuCqcX5cFoPBz8NBITKCNIAqNRD2A==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALgAAAAAAAAA=eF7rjrmjovOwwKGbAD2X41nS7ZJCgrSuUcuCqcX5cFoPBz8NBITKCNIAqNRD2A==AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//qDr/KDO8fbArn8tj1xfGcFG722N6d4RwZV/MMcA+3LABmjoZqXK9sC0X7n7iUgZwRqZIVT01BHBNQ4EYQP3bMDYqNPg5dD2wAj9SD4lBhDBBp+/x/RwAMHSCSG2cHJtQPey/SV9r/bAvq3dLpRFEMFFzyJdq64Awd+eNyNROjJAYHu6FA7E9sCzYDGNkTwZwYUP9XSPqhHBJn4NMsXPd8DeYHi4Twv3wBHku+6ZaBnBGCs7OMvLEcFUhO0DfqGZwNcnttjxP/bAJdnI+zUQEMEG2cuCGkEAwekHZSZb+5TAob1hk09r9sAEcleAPj4QwafSMBgDbQDB/6B3JdoxZUCDcHUjUY72wM33Fk/3MhnBQ6U4VhYTEsFBBuHk0g1vQNwPzLk4bvbApFarWJodGcHAxBtZV/wRwVLUh9W67XNAxwKjH1Yz98AUHXE21oUQwQcVKYE4swHBg7ewdlsdb0Alpc0fYSn3wDol2hk4HRDBZWAksvFHAcE4vUfYZZ6BQJh6vPY=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAjAMAAAAAAAA=eF5lzm1MU2cUwHFUppsyh4V2IINCfRdpw4QidN5LhE1ELNrgXBUsOESKUiXqYtSGQkBApcqgpYqbLYh1UOiKUTbUc9UiCjrnuuJQrCLyFvQDDEZkxLkvl/uQp+frL/9zjnyJwVF+U0C+4i4uN9+JpVzocfjVPHf8VAyij5TC8f3OHr9tqyOgN5mQ073tE/X63NvIDW/OsiZYDUyPe3vtlVMr6moh/krzxpQkAbk9Q7yq/tqU+8PnU7KWGUHhuuFjnkVAJmE+4ha4cJNvJTHZE0SieaVpyv5DE5U1ytPEZL8a84HEC6/v3/6FKNKOJ4vmsakZPNPf2QbkPme8EltTNcTh2enJpUfZ1HTMqx7aVSOWRtTffZByoxS5qkuSKXz2PUz2uOu6Rz7bFVVL+GdHd3StZVOc5zkxF9XIw0ynDkobjMDN/HHGb4OelBfmGp93kSvERpjsA5aoG1VTPJtvkR77txD86J6H+fDrtII/5AUgzIpt7/UWkLK+zqcK0XrG20bnbH6qrQD20nZO5j6+k29e5Zj13tUEoXTv2a/Oao5E/laqXxT0tZXpcY9cPnaupKcFtEPTyl8UCMjUJ3nF1V8hL63r6k2fZoXL35yr3Wnlk99ifpHkNsqWtjE90QjvZZuQcw5ePrL7qo3pScxjQNLTt+4xEPmRPTvd2FRIBik8koScl++dqxq2Q8a9OdFlCg/qc8zvFwb77El9xvThDbPH/9yPPCK4KSdI2QJyuhdh/t/8f6S5FhtozrY9Eid4Ukm2/BdsJfIm+67SisFmSNes8xVxPKhkzKO/K/s9/GULlNF9PLvrwSwVcuk2RfX1mZcgje4lmBf1+2tDX5ohj4jpNnrwyTVWSfzxqhi039oe+teOKhgIqSk3UUFOXq941+kbXcH0eluY6w4D8jzzSV3Rvl+ZHveoZYYDi05fBcuASL2Gyydb8nMmEiqRx1XcZPWP3gLNq1Q/8YIg8h7mE62j3XruHfiZ7t3t4Sy2Ebnj+IG7A612pnfDnFepNn8pewzLvfmHOwJZlGS1XFdXPeX/6Z4J1YGd4LFVf2Foi7uTu9Ts/WBQ3MH0cRuVaZ/+gDyg8JZEGPKI6WMx58giPhyrb4PskrioxVtYFMt7w5k3OuSxPu57IIwC3sqhKv6JeU7OD3BR645eAxXdexX3feGvRb792MOxucGXmJ6D+cmS+ghrkx7+B8M/Lck=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAUwQAAAAAAAA=eF5Nz/s3lGkAwHESqd1wxqx1v2w4ucwMdqWV3jenLDOs4xLlsknZEAo1jtJskstkzQyRa7s7I7NGiFFY4nkwaNlFHGmtS7Qus6KDwR4h+8O+evYP+Jzv+XKof7kEz9Bw0o8+DkebGLAwT0FQO1WDjek/HB8r44AAjznZ0gwV1+rtDl2SMqCa7ikvKb8feAX4jxlNn8U4hFfkNi+qNjBgAeGF84WkDVINOE14FWCj2z6NfH95Lc+yshzcbFJqMr9Nw7lS1tiRGtR/tfRTcIxZKWC7NnZrG9PwTE2Z8uI48msfWxh76hVjO/5K0/cnW4tRvy9+o/ghKxPb8dfn5RKZfcjPBZa8+a3tF4zCZqaLOsjwMH8kb38+6usUaAZ2hdzD7G9wpgW5GtDhuYektR15Ye9gokxcj5nteKdNJdd01GdNeEUdGr0LMMJjzBib7Trk81/LdEOPl2MwukXefZMMXQLFC5+noL5VBY/pV1MKJsYl7JHdGtA7w1RLKkaep7N1zNK9FOx4b2FzoEoK6idTxX6p79hgivBBL2zYbf/zc28upPWHpwGFgqjqTlUaHqWrXrJ21BXqelc30LEcMLDykc+fuUXgsc+zumDcCv8uheI0XM+APdq/19bELmKnDo/t2d5dARQJf0Cv097tOPLLfnwTiq8E1BDeInVihNrMgL2Ex83X7mdNdYIQTZPYFhYNj1Ft8qXQkc+qnJgOk5eAvW/N5cfDrPDs+KF/VCWoX4Ib1Acd7AYRhKcvrP466408mfk4IaJuAMgTPsRX7WJ3D+p/BbymZuhDINv2HaXE8BPowI/b3nUWeb0UraTEpUEQcdua0vdABZ7em8WfHkb9Hra1TmTIKOAR3lHq2BYQh7yDdeMtCqsTRBHe3zPwPLaI+tvaq35J4gHwNyNZmxNGhuHKzaIfbiL/dDA0u2iuHUTpVb7Sle2H3JiX9MR11HeMy+n7crITzBL+nOunubwk5P0DLgmblEQglPAJT6ztYjdR/86sYa7tZBX4jBbuEKBBxQ3TuuPHil3g+fnkPf2FTMxF8sL25bkHYL1i2d9D3RR3ECaeEXAZUGQwvhwtVoHll7ZG9E4UAX3Cx+dWUWr5LtB86z+fXJWRfye6AWwRPufJt+rXMhhQSHhnM8FVk8w68PVwoHTViIpX0NeNRQLUdy5qIc2utIKygMrJpTgTvC20al8kB/U3u1Ze8w06gCfhpXniI2E/Iz+afvWZtGvwg39fG2pkeRf19Yu5VU5BQ2DJbr4jxpQED8pPtsoJkWftIp8UWowAabiqflm1AXQzyCttz0T992WXFefc/wALhD9AXuVdvI/+TditXoe+eP7BH7MpZ1LZqE8Ksldee9QNTlTv40FPEnw72t6G56M+XUctEthBcE1QxZXFGEKljesihWTUpxnJcfNvPAXOhF/2OHPhyj3kv0ntXVOxFoGEHX+Z7GZ3C/Uzsh7ZSxr54F8doBAaAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+AUAAAAAAAA=eF4N0Ik3lHscgPEZIiYtJDXNYMYkKkuyvGN7X2WG4rbYSZRoQ9akTsg6N/syyVayliUkSqHfV40spbJERW7cG6UkWiwhd/6A53zOeWzL+q2GTchE9vdJMT6ZCy17wg2T6pjwrev0EGl3HPIJ0B70yicRn7dWTIw4csGiltXs/5UJ96WbY8efh+Pvle84WZoL+059JcEfDnB/BCTb3mNCcumY7e571Yhf6D49cpNEyPetSZSz50L9QJW53jgTmtfb25dPlqBoPw9no0ESIbj5/EnRMi4MLJoF12cwYbgq+neE2k2kkd76unKcRJxeu3hDbA8X0NpNuUY/maD4S/YbsIvxnxmmervmSITtPLSIzXCAtVk10juFCauc9G2ufbuEdxQLPiRIkAn1q9cdPAy5oDnDwOeFfpvHtbLjPg/wRelcY/NmGhzTy/S9r4LBi/5c8wJnSahOHhNrrufhn7acLSu4Qoco+2Cetj8GnSn+xdEJFLBoVz6uuf8OboBFuO15RIPcG5z8i3QMXvbs9bhgJQn2Q4EL5TmhiLZORbSTTweWSvyT7mMYUGrvL12LpED1YICbsWY5nl0292LtVxrUREq9b5HDgNw1q+/4lyTweR0Niyuy0K8MrXdOPnRI3ViQmuCAQdpM49X4EApI6eftlCtMQAwnWcf9E0IfM3E9LezttSk96sK+x48ctDzKB4moHzHI9aUD86knpiHsrfspmhHCXvwk1ZfCCsEvVdSKLvov4SdMT9acTeWCj03yYMi/TFh9oPdgtlEGOjiojrwrl/C+DekGXfUcCB/IPFz6jgGvUElpdWMZaixhjLq4LOFa2uv1lK9woXjesZc8woRRPEcz5IsAiRiNXyjKWsKdRd/3hQIHStiqp4zeM0BJdqYukNeKfNvu8ImNJEK0WiPRLYkLWmqiSS5kJXD9csNz2vkxSi2N79ihTiIaItO3FQj9QNM193TmGXC4T5F7l9yKWJ8TaHGSJMLbAF/dkMGFB1H3c/qXK4FlW+LjyI4utEXR0iWTTiLc3xRenhNwwJldResjM8FEvGe2fbwHPS94eU5Wgw4KG6aHnDsxCJPiXNykR4Fz21dMZb1tR4ZBGs+azlNhLEzKtn1KD2iNzvk/6sVBjpVytDy/A8V58ZqHDOmgZmCmZj0s/E+uXVIyo0CwgnVsE68BeaktryjmUeGjTFL6RREMuotWKte1i8POPP97tN4mNMwLnttBokP45Tthd//BQH6pTnW9JQX6ikyiFFsfIvbryrA1+6hg+yklRpKCwaqc0wvRneLgmNZ9G7MDxBjITCLIdNhS5bKNLvQ93f1clfZSIH1bfxZ25jIaLZhq2LCfCpjuxOYjUhjggoc6/G5xQFPePrFJV9FX1TLFzDoRQiFKk7bsmCm8Oa9rEaXFgNYEybC7XoUo39Xz1OSJP3h7GudD9TMzuEH2i/LYxYJQZXNpB7vr6HqQcW9VvQhhtTTvquBuCrkenFCb7QxYlvfyx9ZTDchClKcv6/sHN32zo+Vpuxm8iE97abeTBfK+XGy9TT3SxdscyrpECPlHLw4dOmoKCY0rNz3GGLDfXCI0VecRCj0/n5U0uoBfDObdDBg0gx+WYqWzsiygbrDK7j7Thnp+z54vF4gQk3q2mX8fN4VpWqXWSn0GxBwyH8Kye5HPZ/mYimcL+GSN+1v+sBmkWdnJ3JJjQVuiQ9TCun5UMOdvXJpMhYVfci3n8nVhet5vz+xmCbAs0TCXjOtGRu8SBw78VARBi8g+3J8N9jkSOuzvMsB4bt3Zze9Fb9sOvZKOoYJb/63bcVd1wSQnOsKNIQGnjKxuK7s/Rl78VLMHHxUhdgxXAG82qDCbJA9+kYHQvOHSsHOtSDb3P6ujQVQInhfLTsnThdVB8hx9BQlYdkQw8l2iHoWEffLL12GAzdZQmfQgNqz5kKrSMS4DmRqGsRcmGpBt3KqYbYFUCOgJy6vN1YWkphgrRboEYKsvkXfrZyODoyp5B7QZIB7XM1gTyIadIfJtykI/fcIzXtX9Gvof5H/qdQ==AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//vjY9oSr0zo/SNBUDEUJOj/DN6gwCtI6PwudgDKfBzo/QpwwDJaTOj+hLo5Fzyc6P9Q7NE1lizo/2BtlVa4fOj+DRST2YrI+P8gbKdS+tz4/qw2Jr/qhPj9QJ0W/hqc+P9fnPmm9oD4/vF1BMjivPj/2Omzfu6A+P8hrCWNArz4/3IAuylmGOj9guQ3itPk7P9Qju5RPiTo/Jwmgf7j8Oz+eTD3TAs06Py8k36D6MDw/Le4ZqyTTOj+wPd2zNTc8PzqdDl0alj8/kNZd29CKPz/npdjncbE/Py1D7rYipj8/asL8M+TIPz9AkcvvGK8/PxX+58dOzD8/NkmXC5CyPz+TqSd1/pM4P8qHqKcDozE/qi1AG+aSOD8VHWfB56ExPzLSlhqYmjg/HXJZlW1GMT+Nl3O0h504P/R9RkN/STE/tMi+ghdJPD971pwIFv48P47KPoOsPDw/Z8Ona5LwPD9iuR9hbyw8P6Uhn0Vg3jw/CfKraqYoPD+kiB/Nedo8P4qzqC8=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//6UIwBRiCjm/2EiL20KNOb/pOcYUGvw4vyCjQ/kPfzm/uMknzP/6OL88TYE51mg5v+XOo5XE+ji/Os77p5loOb+Jt8cNmeo5v67tZwCCWTi/rHQSZeEAOr/NfpCba3A4v3kZYghJ9jm/kHN9v5pyOL8rI2yqQfk5v6P0eSKkdTi/EQSLKQLINr9WeCUjAbk7v+wdYI48vza/T6ziXjGxO7/3Wzll5cE2vxmo02EWzDu/jqd7l/m+Nr+K2O3dcMk7v2FJYUg=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//6b6kjxfGhpBqkgvdFmDGkFZ9oEX+A4aQZIinjvVdxpBLEYDqxoOGkE8juZi6GUaQUnyq8flDRpBGHR06bFlGkGLCyIuJs8aQfTaV0cBjxlBEHRcE0/hGkF70hsOy6AZQYDOEo+Y2BpBNE3WcnGiGUEx0ZiIBtsaQTYPfADQpBlBxCvkbOJdGEH1cETZFFQcQZ9Pbk2CVxhBZwXY0X5NHEEo9mymhFkYQT63RX/dZBxBEf3ZD2JXGEGX9SDEnGIcQUw/TCQ=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAArAAAAAAAAAA=eF47tyIpL7Xkj/2/8JWLXIB09r7S2gwgLfZ8x0Z3IC13Ml0KxH/9POGBD5COXHFQCcRX37/rBYj/JcX0lDGQfpWhtHsGkPba03hJD0jfUYg9PBlIf35v8tAQSAebMWtOAdKOC+dYgvg7lmQ0guRjOHYLPwXSvgH58quK/9ivqs/98wzIP76Mh2MNkB85t20riD/hzPHsJUB+gcjJkOdA/gdzZu6lQD4Afy1lZg==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA8gUAAAAAAAA=eF4N1Hk41HkcB3CkSDTHz1hmzGGZ7Ew6THZFGyOWVuVoQ1KxyWoqmmKmEcqZHE0mbdSuaoUi0jFdaH3fHTpkqaQVbWxL0aqolE3a+f/zet7P834+zztHeXvtqzUU6DeNueufiiCNhHObkgPZhOgWpUcYkbou4zxrpeBu4LxB8IMY9Zer/F/3c5C6JdMlNiZQOlixYHFgOIXZp0Jk7U9EmHydHAmN48DxRLQ6enUaecVLvujdTOFz1ZKTef5iiAxt58f3cfCUFxP20+MEktuqobvEUHjs0WPg1idC8U1vbsBGDpYfVFglGKuIj/e/zQ2XKEx7fyUyzF2MN5E2Zx26ODgmCAqfZaCUjn0ImtcRRqFkTtntjjYR1Ev757Wt4GDPodVBfl2h0iXVwdt+Ok5hzbmRvpEZYgiVMt+LtzlwO5AhaArPkf7lYpffuo7CoxI/i8LFfGStaVdpS+mYO74uLX1viNRwo8LHtJ1C/cXSJrtbfNy3mk8tNWJAM2D8YXQsTZp9rDxco+vv6J+5Byvc+JhZTxTUITqqvNpfnNP6Ea187EVTC4W0gNOD9Do+3FTdXdV6DPQ+cp7j7ZgktTjAqtFspBCxWZUn/5YPz9XB4wWH6aipk31RPyojCz0EXjG/U2iccrbWspwP328aew+9o6MOPiXPz6wimRE91dd0fp7eDdpXOn/KTOiRrfNecfyYslJ3Mj2wRVmi89Eh+t81l/Fhm+ReVajzrsYTo7kzl0j7ZOEfTW3MkaHaF2p0UIztM7SpVwXWuLDXWSq2Wkd2k7u7d06n8POxzm63dBFm74qp1f+DjZI9vc6JtYlkYOm8dL69OT5y7++adESMk2bD+a3TrJF1z9M3//g+Ej/kpCp21P1Hhv+L+dkirBB+scWijQ03ync/iSoizJX/mfdamMOuUntHWChGt3qq+E+xNTI1z7xcTQpI67ukhlghhaC27WH6GSIss+dfHX/EhjB1k61FVyFZatbsc/1Lc7h/amTMOCqG/j8d/hpnazx7EDYaryghldn7jQJ1+TWBv66enC/CnImfm249Y+NX1rW4gYpSoicXVr7upHB2otFX45QA3Ueri5WWDCzZunbo/R8HSU5dQOnVNCaq7lUEZVTyIDsX12jSQYNgV6ef/HQxeb7h5hnuc10/pxgmk/kChLpOiCqwZeBW06ChcV4eSR9d0J6iZuKm/dtLQsLD6SjvKzte0tCk0RT2xGtIQ23H170PKJygkulytgB/jWtNiTUDO6Vn/r7eoyaexnPflacy0R3lr5Vc5cGsrzj19gANRzzcfwxwzyfdTzKp5Q8prNws9xjmCBCS0lfiyGOA3rx9z6pvokhw27tWRjoTjiM21naNPNjmWrYcHqShYVFuQ1FxDNG++vD2B4Xu/nP/kFuLPT7VRf2otraCoaENMbWLJ1nticFlahZeX599QeTogBU9pQaSCTxUyiLLI9zlpKs7zOPTFgbyn1+pvn/HHqbhLzvpbCsk9XsdDo3JI7xNNk0L8lhgbo3lXp7pAJXy0scGPR4kBmWRI4tzSX3q3fFCOQPn889GCnT+jeHs+BRd/nDmTlXPQw2JTD5iOesUC6E7aCk8bwfYpo+mrjfgYbHeKmpk5QGye1rcjB1KBh5uCo7aftceBsUri4psrGA9d3miV3Q5eS/JWks7zwK94omLapEDeAWDzBojHtgNd2sKzU6QlvvltSNTmHgbkJrAdOHi36d3XtpNo+GGyQ2FgetRMvrUrNqxkwXaUA7bZESAOeHCkZMq3Z4NKC6WRJQTP8+ynuhJTGzeJ5A8dOTCtmPvdC2XBqvfHtdXMwpIojaU29nGwqsnl50jhgWwmJQ7NSqOguxBv6lPSBGJnfLISTGBiUNDvcMXnLhoZX/sF+n85pe1gUy9XBKb7JuXMs7CFM+ErPxxARSxQbfUmbq9Tm45/Mv7PFIsn5nUp8+E+S9xlk4SLk42+1QlsGl405ItkUg2kMf6J8Yaxlg4HnZGPf+TABkJb74fS6ew0Ek+lb0tlvwPJTrpRQ==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//Zc1JSPoeAE/rcffH6TiRL/pXRhJR6QhvwBedFOSBPQ9E5Jm5qMoAT9glzs9L+dEv3yfrbxajSG//BwKKzX8uL7K7AofbvkCv2Rd5gC8MEC/fsKd7c+nF7+eUgVWc05ZvirZW1k2mBu/pL4ONGL+Nr9OXdGgj90Iv/h9fcwwZqK+tSyHKG2/G7/DDbi1mf42vybWo/K13Ai/AM0ThLGv/b11sZe+LwsAP9339CYarEW/zlaFuIMhIr82XvQ+g+KiPutOExZbRAA/hAGYIr2mRb83K5WiOy8iv3I2O/DAObK+Fhw1HUrABL9TLyBpgcNAv9hEd4XqCRm/yyvetwyqsr4iiLw4Ee4cv/qw/h4q1De/v5jqRW4/C78XW25x79ikvhJlcgLVzhy/9Ecu0U3PN79j3bhp3z8Lv5Sh6rEc25I+gTc+D/PyAT+4e/rBx0hDvwqq0DiOjh+/h4b4ZGGDj74Iq1Kg1CACP0wO9+avRkO/iOlxBleqH78OoD4M8/vBvofYmhVkef2+4/YdwG0bPr/o+C//t/oUv4TF1q0Lh9W+xvZDcRi9F7+W3cNpU6c1v6jbCqoRUQS/UGK0Lk8Avr6znV46+ZwXv0x9LzgCqjW/vyShqExRBL/qGwnfRQhqPgsWY3mg0vs+Bq98KRULSL/5owRdDGIkvyBuXKr3aVG+cXb3i5DO+j4rjOpZ8RRIv8ZrO9Z7QCS/NF4UBnqRwL6hqhqQVOwLv3wcQ74vc0K/ibK4k1ngHr+ejCpf5qLdvmISnKi7SyG/8CwruzV5Ob8jjLLm0G0Vv4q4p5rkEsK++pIAHHh4Ib+NlZsRYXw5v/PM1waabRW/AG3mip+7Jz4DqDjyAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/8U7WhRZHjs/5Dri1MnsOj/2qSDGIrM8P6XCeMWumj4/OlTrqmmbPj9wBH/5kd45P1RUeqbLAjo/qAj8LAumPD8Dt2JANTo/PyHpxk/HRT8/2hfCzqrPOz9m1itD/OY7Pys0jZtB5Dw/HDixfN7MPT9DbVCFTcg9P82RdDIBMi4/M9qcmaKtLT94NvT7sfA1P3xJIFAjJz0/gzX3GB8aPT+kp0VDAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVAAAAAAAAAA=eF5jYGBo+Pm0fh8DA8OBn0/7QbRD1hMwzfALwmfoeg6WBzKaIXT3ZDDd0A6hGTqhdDtUviEEQm9IgdAP0OmQfVNaNVY9/OXuCKHDcdDujgBonjjtAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/96C+79+rOm+OkvwqB+0+b5lbEAysgcEv9J7Px1/LQu/Pd7zRUUp+77FTqXmU0/6vmMj2ad1Qgq/0o6ITUFNFL/Dwdi6SXsbvxbER7/IdQu/KFMrqqMU+b52Yj/oBwMJvyCxygfCeBO/2xyyqjh2Gr+L9XbFvXMKvzKNWVmLBe6+aT1dlcQ1/r7OUDYUiMkFv30oNaVRcQy/y2FsqrmE/L6cvVAhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA2QAAAAAAAAA=eF4rj5jMsf37S4cDT45VHJT95cAABgdsG9Yn3hIV4nKE8Bkalpd/Yvj8mAXO9/h8Y9bdqv8OHAYBk179eXmgX3P5sg957x2eCdT9yi2GmcPQAKFO2ELoDXuh/L2ofJi6DbY+qyfnWKr+OgATL8h//O6y4k8HqD5bVPoOmv4rMHug9I69+T5mq00lfh6A8Bfsfbn0666svtcODiacOut+wsQ32G6bZP1qwS/OgzB1MrPOJ1W9YYHyj+zN+rLtwqVF/w9MuZ9+5Y7FmwMrCrt4Hy96fwAAfy5pFw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFq3gf1W+/b7H/Qc3M6udnLPZXM+5qr75ksR9NGcMTaatf16Wt9rM5fnyVIma1P9zJc24ZjxWGug+nItjcY832N0SeaffOMNvPJrq02iTdDEPdn3TH0oNdtvt7vkbH9ky03V+84p7erQW2+wHQGjANAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFd/lEdKV/SDoKGDl/tn4p6fgqpvHM+reSjmjKGLq4WRZc/CrlGM5/9eXKj1KOagsavee8lMJQ55E2O0aLQcLx0p0yxRscEo41htdDX7JLYKjb1Lj2396Tso6zPuUn55+XdZz9WN904x1ZRwCUnCpPAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAaAAAAAAAAAA=eF5jYEAFl2rOBRSU/LHfI3DzajGQPqLOKlsEpNGUMVT9lBVTAYqvEo+tUgXSN6fd+a2ORZ3ZoW+TuUv/2Ct/SFzNCaTVvu5J5CrFVNczeYaKWfEf+7aEydeMgbSLk6ifPpAGAL7QLxI=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA5QAAAAAAAAA=eF5jYEAFYnFbgxff4beH8W8xPUtZ1ysP59uwnlUxCpaC8z9mPO7Y+kMEzoebk+qr/+ym4f6+SxkH3obz2/MJNAhZXzPcH/bJ8MrtyfL267Z+bI8+Yrh/S/un5CdaQPOst7BWbDHcDzPvgizjUh8gH2beooKXEjIMTvv3HtumnWrEZ5/Td/pbFKPT/s//dJw/hMnZB+nfvDXnn+N+nbBITc2FkvZX1Pf+nsjsBDfv3EWRyfqsTnDzdJ1lXj8y89q/fo213/sFvPYw/rMFMgFMJrJw/r01NkrXPSThfJh5MD4AeMtzCg==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA8gEAAAAAAAA=eF4TidsavPiOvv0C8S9uN4957WdABjcuW99hepayrlffXkziwOyIgwj5bZpR87gf7diXsebJ1wMnRew7Jrzy7lyGkG+tOvfYt6PJ7pIx646PmqL7GyL6OLb0IeT71e4tDrBat0+vcFn+p0zR/TvWNH4v6kOz/8+T3X2XMg68Dde3/6QRp6rF4A2Xz3JckfUsYq5d6CfDK7cn69svCjUs4mBCyGef0EvRyd6074ZNDfvtvyL2v4+5erz+izBfec3ttpkNO/adE5o7zcdMdP/e3bN/RrEi9Ft8lTA9E7RxH1+1Tc7uEyL7t1jNjznOjpDvYJ7RF7kh1G7PsW3aqUZ69p8iDPY+f+cJl78z747ivbeT933+p+P8IUzPfkfEKaEVHxHyvuV3PNeLHN436+lvtbf8ovZNMlt38f9HyPe2nlm5ZebdfWw6k0tK9wjtb7NIjvnFhXD/hX/rUr4dPr3v3ZbrjecWCu3P6nv5RIobIa+wYn5V6c2Z+zassfZ7v0DXfk75jLKQJR6o4Xvh4e4nC2QCmEx07V3kPt2ZvgAhb/5YpF3Sbfc+7rW23/Z9ELHvtT5pcGkFQp7jYsdJP7fb+57nF/XNLBPYzxUke+7TTIR82r740MT+A/s28qemtjkI7pcKEeOQmopm/4RXuwGTw+xEAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAIwIAAAAAAAA=eF7T7DcU+6BoYN++/IQA11qv/YuFCrTNzp+0YwCBjCvWSocn277+om/PuGJKaudyr/2LoPJ7NKPmcT/ase+fjsNyqxmi9iUK+0V39SDkS6rOPfbtaLKz2LySrSJaZH/Wi6RLT0oQ8m1q9xYHWK3bN+WD176K2SL7F9mEHVyMJA+2P+rp7v6ELIHiTj37oqOxF08Ye+9vsz/3P/T8zX3hjiuynkXMtQtqMFZJPKpnr/LJQG65KUI+6YReik72pn0PIuqXP00Qtq9Ldv3SaYiQF11zu21mw459R7/N/OZ4WWy/XcTspT8tEPJ2XyVMzwRt3McTb3lmQ6rYfvvr8zjSrL33d0DldzDP6IvcEGr3+eOJtu4mA/slE3e6WFt57o95eYOvf+o3u+fz7ijeezt5Hz9fi9DFKQb2ORODZ/228dyfAZX3Kb/juV7k8L7X8pteBWyVsjcKtXNK9vLcHweV72k9s3LLzLv7Yh/vTFTW49pvVfjmsW8YQv/Vf+tSvh0+vc/gq1PN1R+c++WOF+XkAeUToPKqK+ZXld6cuU/vx8nOKSrK9ruebFHPdvbe/zHjccfWHyL7weHr8HB3zptV3cu3K9lHdfP1rbP33v8BKu/yWKRd0m33PoYV76d53arft2zF04cv3BHybBc7Tvq53d6XDdG/X2G/ZT2nJUI+YV98aGL/gX1BNirf58oo79c4aLTTwMR7/ztk+ye82g0AUlBCJA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//YlPwNEBPBPBAdSNktW7KcFRGkjt900bwQC9zYyUwsQ/qM2xPKlGE8GWBl5w0MApwUgMcADcSBvBTXfFtV3picBoNQLJSj4TwTyXiAT0nyTByVLmk0DXFcGAvg2GqD4qwJy5TxxrQxPBJDVdj/UQH8HmX/+u1HsQwefBUbzVFHPABvXP999OE8GSHtOxYhUfwdZ5/CgFgBDBAOnHfnnJzr8OY8ctlzkUwWspVLOZvSrB0nSygfJXHMFdcB4+xJVzQEos2wacLxTBpFMjCUy3KsECxV+ZPFgcwT3S2xTA5oLA5Kd27OkkFMFOoFclDGolwbPS6eMY1RbBPAw/xTVbg8B7tiZLtSMUwXB6WXCsJyDBVbg1GlpVEcHa3T9q0Z51wCB5WmONGBTBaAZpOS0jIMHKr/KF9k8Rwcu0FHIXjmNAtCXva8NiEcFU2HStPqgnwVgJ3XsD0RjB2sbmUUBXYMDEPWflRl0Rwa6nd8oRpifBYRYon9PUGMFbKCKMp6aSwHLw53g/XBHBQHH9PDwLI8Hw34y6CtsTwbTMf0xiU6bAx+pxYelREcFqhZ5X2dgcwW/jMlcZqQ3BqIxLXRQdj8BZ58K5u0kRwfQoS+mG2BzB/jhr/Y+kDcHg66TgXv86QA9O2hyaDxfBO1n9fLPMLcHw869xUM8fwaC5nYJCDyLAr0EvOcgjF8Gb/t3pD9gtwRKG/aJEyx/BMXZg8r0ukcB1+xMrbkQXwebyy5w34ifBKIUj00leGsFxxFXqNLyuwMAk5KSiVRfBeKeLnSjWIcEE+riP3+sUwbGlGeJyvpLAssl44gFxF8E0ookhztwhwZYf747N9hTBANwZHOWc+D8AmT9GAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALgAAAAAAAAA=eF7rjrmjovOwwKGbAD2X41nS7ZJCgrSuUcuCqcX5cFoPBz8NBITKCNIAqNRD2A==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALgAAAAAAAAA=eF7rjrmjovOwwKGbAD2X41nS7ZJCgrSuUcuCqcX5cFoPBz8NBITKCNIAqNRD2A==AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//meeN6EbmBPB3kn5Z3sZKsGKelSZpK4bwQI3befNQ3DASK8KJc6KE8GDCBCGGgoqwVG9rlWCmxvBGCsgDjCYbECKL8+ITpwTwTAhjJrdgx/BMiyt97HSEMG3R5oRUQ5xQASj+YWZlRPBMvX8ph9xH8GYR2D0lMoQwXomON4evlLAtFsoIVSpE8GQsKSrohEqwS66yg9rehvBxyFHewqAi8A8uvaIGqQTwV2zJWaXEyrB3adBgkyJG8EsuaXQQ0mewDxk4LVUNRPBwNnzHC50H8HxesPR84cQwaYdknbTDpbAz13jg30sE8GIGRPdhn0fwfOt/bXJiRDBXtI8DlkFg8CKhfxVzoATwSYJE13+/inBtJzsTqSOG8HjC4utAXuCwCgWW2pVkxPBPUq+YM0LKsEL7lyoDJIbwertRvzRw6HA5Ous2ZrwE8HY4QyU744fwfQQeCSAgxHBWFmQyY+nn8DVfn8OJwAUwYYy7A2ilx/BDpeaN1eJEcEpPHJAsJiBwEObuL8=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.9000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.9000.vtu index 40c1590e3a6197248c069a0895429c0e728c1a6e..2f65890c851c0092d20a0eac8e3cb3b53a726be8 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.9000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_0.9000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00098664461403" RangeMax="0.0015673217661" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00099771185417" RangeMax="0.0015672537417" offset="1624" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00020000156302" RangeMax="0.00044759777846" offset="3176" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00082305017871" RangeMax="0.0017716860602" offset="5268" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00019209375175" RangeMax="-4.9917888871e-05" offset="5840" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="221700.15763" RangeMax="293504.41015" offset="6156" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7791152616" RangeMax="1.7795258629" offset="6472" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="298232.93363" RangeMax="662295.69995" offset="6752" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00084940474615" RangeMax="0.00097985550123" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.0008497363546" RangeMax="0.00098008236801" offset="1620" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00038897209061" RangeMax="0.00079429075853" offset="3160" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00032127228399" RangeMax="0.00054401577269" offset="5248" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00048591849765" RangeMax="-0.0004046525951" offset="5820" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="447156.00596" RangeMax="525981.61468" offset="6136" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7779907104" RangeMax="1.7783357739" offset="6452" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="692350.39243" RangeMax="1242781.6683" offset="6732" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00019860299747" RangeMax="0.00048865476663" offset="8836" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00082984602522" RangeMax="0.0017802885737" offset="9748" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.9322956507e-08" RangeMax="6286234.2794" offset="10020" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-6.4335299289e-05" RangeMax="6.0974958712e-05" offset="10180" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.3116919128e-11" RangeMax="112275.86623" offset="10452" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.0002414562303" RangeMax="0" offset="10812" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="318834.33648" offset="11016" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7795482205" offset="11216" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0012727922061" offset="11404" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00099178505842" RangeMax="0.0015553796875" offset="11748" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.0010289354917" RangeMax="0.0015539754398" offset="12452" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13244" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13304" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="290276.00117" RangeMax="731169.27508" offset="13364" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="248.91983308" RangeMax="363.15" offset="14276" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="248.91983308" RangeMax="363.15" offset="14384" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00038625852385" RangeMax="0.00083628891455" offset="8808" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00027934342396" RangeMax="0.00053507166467" offset="9720" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.9322956507e-08" RangeMax="6286234.2794" offset="9992" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-0.0001041290866" RangeMax="-1.2410194943e-05" offset="10152" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="4.3655745685e-11" RangeMax="237994.76193" offset="10424" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00051540597503" RangeMax="0" offset="10760" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="554564.10586" offset="10964" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7783745757" offset="11164" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.00090944473396" offset="11348" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.0008491292608" RangeMax="0.00096989461741" offset="11704" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00087311243007" RangeMax="0.00097455191492" offset="12412" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13200" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13260" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="674725.22815" RangeMax="1312980.2085" offset="13320" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="248.91983308" RangeMax="363.15" offset="14232" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="248.91983308" RangeMax="363.15" offset="14340" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14492" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14560" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14628" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="342942.58711" RangeMax="563241.60446" offset="14688" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15260" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14448" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14516" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14584" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="745478.63534" RangeMax="1142427.0035" offset="14644" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15216" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15332" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15288" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15480" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15636" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15736" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15436" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15592" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15692" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAiQMAAAAAAAA=eF5l0H9QzGkcwHFy+rE7W1eLm+7EjhrVIr/6geuex37JcSmVr6Mak1FJ4TI3ZduUCsMSM5owZrRXac1GP82G1Hk2WXzbCrXRbq0yS25vLRmxXKW5f3a/D0+ff1/zns9nPmk53wv/2UxDjn+Bb5gxQjXFNl1OTx2Wra9BOw15hZKoyb6w/bfGHhWD0mz9Z2mPNnUcu9wtvu8Yo2R70l26WuXcmHbk07J11kQJDX3PF1nkHpGsP/DJ0NbzGpCwqS1tv4KG8wlvvnPdEl34mO2jBLdkoUHYeQkfyhlpEduT/nF8+MjL1W1IscVZ0ySmYHIpLzllOfbiWpmie1AJAtMHqyNCKJhEePmLlEjhgm5g70e9BOpO7lf7/dxCpv35N1pu68cIv9n0Pk4b1wgKE+b3imUieEXjoXYaxv+h10pq+eEt6EvRKWn/IxGsIrzesN2auE/J9omRZ3+azmBfFNiJDnSfBfZ+F+FL9QUFM0o6QBIKLe7aQkO/k/xhbhm+z3jIv4/Z+wCF935p1KVMdqZ5v++GrFZk76dkHl8su4DdpaLGQ/9QyfakuwZnxSnbK9Blwe7ZnqdpeNUbPPxQgd056BTgrdEhHcdwq24VDSsJX8nPDtNIjWx/KN47aYcGO3/JSc8N514jva3PJfzZjMGEdRPvUMa8Tfe9FlOQe/RAUN8Idqfg+h+eB+pRaro7szCWgi6Enwt4M2Ca+S/bix1SOSqwifU5baK7bjFdKM3WSwjPtl5vyPcZQuqIXeMuDhScqMoMFcRgF88zF7gPK0DJ6MoM1TYKTq3+1n0lKxzzZGpg72e75coXhWJXVb9RmKAWyGz9XMLHLnWM3jvTB0oyBm6Ycml4tM7carGGs55Xeu3iz+rL6F1Au9CvcrKP7GkRvxJUs31LkvfT4JfYG38v5UiBBth70ocst381xWuB2SvbsVtIQ0tl3Rx5K/ZtCbFDWbE5yLUuqMIYTUMz4SNrqgROQ71s//bVpd4yCfaD7ofvXUntAPae9M+6/JGysBcg8eaJ5BwhBSPhGBiPxu7Pu2+I+lEPjn18/2wgXwQ3Es43hKQ7phvZfj1l5VwLwF689L9fjB1NyN6TLs6vYXhUA3gSrRZxD1LQw2LVzVyBXWtyrk35pAdMDqfS+TAFXQkP27fV86/zN4DO1q+a/ocnNxP7d9Yl/eZ1/WxPennpp86rPc3gf+esMt8=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAagQAAAAAAAA=eF5F0n0w1HkcwPGKW5Q9J67Yu3MSPXAaD7Elvt92qQu3v01+U7HcqvNQh8vluTNYcZnbqzslN5PYDqUcWrfIkO+P8rCWFdaUlct5PI8pLrnO5Jq5n/3+/Z3XvD+fz3yVZacT2X4k9GrpzCx6wqMaYpuD3ThVQKnzeJ3DoTLk8yXrYpErCa2tvrCc0yMo5qbkkLe9KmTd7lXTS8mRkvau2yyc2l7yqEbaSwwE/d/LZYhPe4sMSZeRJfbM7gdFG460o/MvpSFEAQlPOQ7ytHUJTV9hGaOSMiuRsWtwRO4VEvIvB0wSLtjXNVbN+Ii7NP5yPWMl15rQ9A2Ef/8qz8zSeNHH6dfGA7BfWJ47P7q/DZ2sqT0lSOPCUldBS8sO3M8qzyvuGZQB7WhjaaEBF4pz+04YCrAvGAkjrG16QCjt2XWRVrZrcZ+xw4CtdfY+WvU7WdMN8Y7Y36ud91f51wCPB32xJrc5cC4syCpsFN+f9EgsN/JuQOqrjWL7d++qlj8aKjZhLx0IXPwqUqbx+dNDScH1+P62u5Uoricb9ND+opfQ5O4cT+Md1CKR8fUOsC5V4RxCkvA5Y6l4tICgglzGt7Y256DR5J398ohWZH58a/dABQnTMuVIS5+glE5BegzRPJDXRW33THiAVn37y/CJ2Fzs9QrLNqo7ZYhFe36060q2NkF10t7QOcFf1l6IuMOvqFIxCaNuWFxQ3sJ+vdOPgOneh+6I1/bI0kmoZbGQN2NAUE20tzc6d0CROYw8aM/r0/lkr5KghLQ3tvvB1PPqNKqkvdyvz/G4M0HV0/6p8aDw4NsXqPjm18wDn3HhozWC578vYq/nLN385241Yn4bsLR7lguPptm81yPE/bxds88mPpxEpbR3S+E9/IXD18y/pY3z0OBINzKlvXyNWX91Cd4/YbGqMtVyDP3bJXK3X+FA5Q7/V0sk9vEWUyLDuWLAWU4vap3hQl6Jtb4Jwv3tiXsYKXlN4A3tJ8UnAhmQr5m/sXS2eAKqgBftw5kOMVa38f7zBR1vmn/uBxuU9kOeySSUvnX/xnrRm0oO+OhxtlcCSJFU5O5ruolqzE7vmr7iC4cfldeFfkpQLK0tLY/cDanZ8Ib4cfNS8D7tB2RJopgR7GuOStZnAgW4T3uLjL86pe/+jwntB2fqP58QqIBvnNLO0YaEHyzpKoYasb8u9BtL8EtCw/mqWzfdfCHRFr3ZbJqn6b9w/81cZ+wJEKx65+W0Zwne1D3v/32sYVrzndMdYNUf1gnrYhXwNP3lvtSFGwdGgMspu1pgw4VRl8ipvT7Yb2O2DBxmqQGnJFDRJgWwXEix487hvuEA+wzjzDDg0j4ii1/93Bb7C/b/uA131KJVX3SyVsvmGO7Hp5bJmdxKcHddeI7yOy7cs+9wui8b76+e0C0Pe60GQQEH717y2w/P6td1/xSE+7zIY6b5OdWghvZBZGvToRjcX79o93Tq4FMQSvtrVg4bM/JwXyJ5rSzprQP/AYyB5SQ=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAAAYAAAAAAAA=eF4FwQs003scAPAyW8orSbV51MH2z2xobKH6/T2mlDzuJYomnW6hQhKVCj2IbrHQU3lUlu7OhGLW4/dNbhFKc0c1j/I4Rt6lhzr3dj+fjd1MwtGVQc5VOJn1p/NhQrjzbN0IE3jNtd7tL7Px3VH0oyiFQXov2Jakv1wAxQxP2aoCFsjCb4H5WCHW7Dgt9F/PIB3U4l5DGR9G+ZrmuQtZUFsqaku6UorVTSOOOecYZB4puuPlLwA/r0OZfvUs8AjSyt0ql2HdfYH1xXwG2TnxU00k8uHVJfWPA91MOHGhgeBtvIljX9TVlB1jkMM+rpIYigDmBSt1xFks4Evn9RRPSvAGadK6Lh8GKdHsYq0v4wPla4rlAxMWePsHu3cqUvBfckhQ5THIo6ajRvkCAQzE+h5+WMeCG7n1vevsz+F586/urqodRrzdRHJlIwfmBNc0XbelQsiaN3Ef08RISmU+HnqnQZtGs055ybjQfLtI0etKg2rHOHt7xwq0Njt7Vn77MDq/JyWDKOCA9MuT8aVGVGgx7f30hyoKu/R5R/vMaNAtsWdBZwoXruDXXc+W0mC9yf76VY4SFHD/OXXl9zF0KM/YqS+NC7sM2wNLVFTo6KtYfuFiDu48RLwjBkbRFqN3M8IBLghP1lfPukaDy+rXbnL3Hehcg9I67MUY2gSMO+G/c2GWh25BSzUVHixU5SsIIbIf6zjBrBlF+9vO7t1ZzYWO4/3fdh2lQfGSEZa6OxclBjPWXSpikNA3XnS5TQA9B+tVIjoBeSEmQ/Frb+KIkI6B8Ed0Ul39Q/+JxgkUk8mBbzTWcHAL2aMvu4EL6sOubb7KIPmc90RFgwCCnjTUlesR0L4wKXmQXYmt1jeYGsvpZHcHd/VAlxOMa0m1TTutQRExYREsr8Cc1UMXdM8zyFtmK5OO5QogLSnQU1vDgqMh017mBwDfrbNJjG6jk476pb0uTD54Rohni5hMID88Kzw69Deu+03hV1PCINt2GetPvxTAYJz/xV+mBMCiNY2Bz1/hoPL3jh79dHLcK2GZIoIPicX/PfoayoTw0IgHNVeVuNU3eTrGaxjZKlWbb7PtwKp128wnKxocX6vT7mnViL9olU2e95tCbft7tBet4MDiLuVT20oK5HREKbfTlPiBzOiMO2UYjRvTpmzT7YCO/UUNgTSwjFaGMMsrsYHJT+Y81ynkJtXpT83kQImTdte+HgpUV2xdJZbW47gFW6smU0aRW/OkzvVuO3BZ0hNZUEkDvYH4MT1pLt4+YW97UjWJvBcrmWWFHMhMy0mx6qYAU2hDf/s4ABnfvftvW+ooUka63x57agdvMxLbU0poML/Vt39FxiWk3jhzIvifSdRtmdXPSefAGoafMfcVBY6oTzeVpt9C922pGq4vnQxbJvIfTOMBIV5w7iDPCsxTv2G9ZwlYOw07De83I2tEmQnHZpyBMKiIT1axwfLsDCuDdwalm5xPivGgk1qthr9oO3kwJgmgzV9kBR9XWzRTpktQPhE2wIo2I3XNa5e4djvD4Dpx6mkFG2TDwo8cbiVqiji4wSiITkbuWCCMvcSDaxs/Hy9aawUGX1mLH97Zh39ll+3De8zIh/EQRae7wJl06nhmBxu4khsqcWgFSixkhU8sp5NpMTqSn2weJLRLmobbLYFYHaJ1obcAm0Uc8G0QmpGp/p0jAVJnyNANPZy7hw2FLWSibWQp2sQUzXGL+4zM5jy5bbGUDQXMRz7NHtrwZs+0QfzmPHzY7vSxG/FD6AuranFrowNsocuz3BsNYc7XmsdwXYKst9SW5qV9RiuiSlZwv9vAK8NHu/UctOH+m5dvXXl/4tKkSDaqHUIPs9yXmVc5gN/r9/ceVxlCZM7sn6FnJIi+6PmBvc+m0J2oGSKh1AZGrkTne72kQGCJDe15Sw0qa1rjEXftA/psZMGVzXWA7XJerKePAVjH3G8e/FiBbja0vaB+mEKH+D4uco0NZNu7RFTPUMAgLEhU3l+OlvTKjzjf+4BaEqIsquwdQCnuqO07ZQDO20Q5AbGF6H8RguzCAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//nZH1ox1Z1w/nzSXLEE2XD8VmAYZZWlcP9E/W1AuOFw/Ax7/71vOXD/M0skPz7BcP/qtjf0M0Vw/zLBA3H2zXD/UXTKJ1fROPxLBpOd+pE4/oPcMWIbgTj+plOctA5BOP/31ApyYzE0/7Gk+J9rlTT9IbX/4DLxNP76ARO6c1U0/Y1xSUrFqXD/TQgBs/QZdP1s3gbkNalw/eukvXl8GXT8hGrtUrbZcP6JKkzdvylw/i5vxI5+5XD8hw7l5js1cPwPxr7ZjD08/fRM3c9dJTz+zWt9Uyj1PP8djA5Osd08/P9NU/Wj2Tj+9XndYyIpPP8Xr3yYz7E4/ocfjF7SATz/u06wZzHhcP4j1rCVDzVo/61UxoKB3XD966fgxJcxaP7o3kUyYA1w/EjGoA5dSWj9jKisu1v5bPwjXRYcgTlo/1cp8+ZGqTD9IZbghXBJLP/Cf6XO/j0w/rOPdzD74Sj/LSpvEVwRNPxrkRaEYU0w/efdOWtQeTT96mkTj3mxMP49LsJM=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA///JOGms67hu/1AwdU/8NIL9agLlrXB0bvxi2RrV/TR+/az9RVWJgH7/qOeUdppsgvx1OlQfjjh6/e39KU4EzIL+mP24vzRUhv9OpJHWJDRm/tHBkC8TWIb9SxB/hF5oavzDCMNNsoCK/1m+3eoDzGr9AEE0eZ2civ+x7FUsSfhq/RKbJ0OdLD79sClnDmC0pv9wAIhljzg2/dSdqkprXKL9rSfyZ3SsKv75MPiuIISa/NWvdOv7SDL+fmHQLWLwmv+mKVg8=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//2CQ/gGESw5BPDczCeJCD0E/OexyDRwOQcYLGPxuEg9Br0P+iUcOD0Gumidpc34PQeQeMZSl3Q5BgyQWdm1ND0HrYGhEfr8PQfpXoPMNnw1BcjrxFI4OEEHmL/StvfgNQbEYOgxUPRBBxdzAME8ODkEmqrjVai8QQcVqUo/T8w1BgrTGOQqTC0EUm/6jAeoRQdV2DLz0agtB589wTHrSEUHhsdRCIRALQb8Y/tfNIRFBAloEAFBVC0F9hhVoxEkRQdyxS0s=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAsAAAAAAAAAA=eF5TWp2s41Pxx/6fS7ynDJDecNn8dwiQfjdHRUIVSJ/6eu+qFpDmbsiqEQHS39aLNBsD6ZqsmZqyQFrhS5MVB5AWzpZ3KgPShc9sJ30v/2Mf+2fmzFQgX/e7g81LID9/82nDRCD/ufoj2XdA/tXSRuE0IN/xtVveDSDd3tI+wREo3tDP6/EAyOf5eTfTE8jfYFgp8wHI99sg2NIA5Cfx2PU+AvK7ZrV+LQLyAVHmYdE=AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA+QUAAAAAAAA=eF4N0X880wkcx/EZVlS2fbdG2zqJmlTKj8j162vs6KdcN0p+hlEkZSFJU/lZ0YWKmBJXcf0i/RAPn0/6eaFE6VaS6i7ph6zWfumcP19/PR+P99s2K9TjRpQW3DqdUiOGuPiw/GvdDkcWCnpdlrkpQ6AttOx80B0d7LaapdvbysOCx5oho24WFmQWrBWbxMO4CFeFqFELBZ32J2jTedjo7l46fR0LRQ1qz1RJIgxllLpReXrY/7IbZxnw8d7t3uzSHyx82z8k3tyRBlGl/L2DHlrwtmJ8Fz/nYlfTY8o2axb6fzJZHmwohWUL82vn79CBvo792kHOw47cF1dZTSx0Sb1QFvJXElxu732TXasFE5+9W/Om8HAklVLa5s9Cide5yvQeH/h3jsWU7nc62Dr7QFrsGx6WJgx6RAyx8OS7X7QrPIPBTu369MNRLZB6aUxdLhN/PM1w8H9ugJu4ArvfJ4eRtPwTcddf6GBRVdWxJhsC+xRERlYxFc9zezjfWmWkZdHcvkcSLfReVReGxzExrrDL3b3ZAFOEO4tY4AaG7eM2BVfroC15jq9iDIE2coamI5WKP8yT7n0zTiJdayKczozu115oeM7/CxNfCCoachZT0dmuTzwvLBQmPHh91ytSB2Ubg76WzidQQa893FxNRXoda2C3xolkXhnb96BQC74yTeWSLib+t0Nzt30qFft6m1JM3rHJu5OSnB8v1MGL/a0Kdz6Bmws8/y7Lo2Jli/f7z4fCSdttvvtcHIdh8FT/taJqPmbwEj6JJGxMsOmQRv1IAIv4J++mmWrAMfGD5LsZF6Udinv1EQQePhQUvyY4AfyM+z6VcYehxKKx4vpxPs6Vu41vCWDja7nwkqItHXISCzV/KNVwcFFesYDCxfFHDtId1xHo2TI/2sAvHXiTGdtjz+rBtti8s96Pj9uEB8uV9mw8dS2rXexzCH66vbNhZb4GGmdGY0gYFycdrzEsPkGgMa3FWXm+CLosWuyN7IYhrIM7MaOKjw3SpC8FkWz0+/A+N36gHIYbptl5MbRwf3G/m99FLgrrLb2Kugl8xtkgeuReAQte5Vg9M9PD2shT6sNRBDaXS5+Ma6ai55zKGWFji+GGWzXrYbIaZnAi0mUjDHyUskfU9JmCE0S8KP3pk/DfmB71hXg9VNn9uaC+nMDi5Pvcyyoqht6pFqvFe+B2Bzv3Tqca+M1rjwfMY2L6HvXLU1MN8Gy+yTGRpBAGSrT3V/rowTfkS4pb6+i/NXQl29IQjQIgZUlgOAz1Jh/jGWng1q76Lf2eTOwuaG0TOhjg1a1PBRhoRco9OP6NznrYJJiT1nGDQPqFSXGvzQzxythbq1Mjo8nOlhUWyz+owWearHbVqL+Ua3mTMuofrZnktNV7O3k9kk+L+6KEJ422KzyGOGjTv28gcyMDh60YtMsyT9hXzmjPTqNgQv5bQnXHEo0lA9KeFeZYovBynjtzPTm47/0m2WUlcKK/3Xv5gIP+ZZQrtqsYuFIcq4uVbyNVFZvDvEMp2Goq0K0+aYleaF/JdDRHrMu+7vIondxJdNbkTfkKC2ZHZ7Hp5ugiMlrjksZAIffMgn+83GHXpTxmm5yCB3efePntoyX2fHwujA80RwV5MveBSkZ+bFn1G9VVCe/H37YQ7uJgcjPV7yjBwA2uyVU/D8RCQuwBq0+2FJz43W9zcIAltjaejrH+ysHa5ti9axwTyRprQ6HUQQXe7bMt5Nl0LMk8bXrRnIIl3UVxTEYEtE9eqPt1tPMy5cnGA2w8JFq/5KbJGFwf7NEWI00i10u11QqaCvocTE3XraVjSI7YLJdCwWfG68aHOgcCYxBGajQjkEWGy2VtbHS1DdfQP9MQjEjVqtAkUlJxLcZnpgqWyeldS43pmBi04RpxcQSaBorj51ZlkYHBY3JEV0dAuXyaNYNg45bzPYW+s2gYbCDM2bk/nayMKVpsL1HBxyDBMRTTMeysZpfZqB+aafYq3khGBsxbktM/2oIuPx7XnY1HDD1YTkE0HCcv7p+Rv4X8H+1v/BY=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//Z+nMrWZGxo/Awp/jDI8Nb+hG9g1wZwlvyDIClxqAzc+/rS07X8kGj/uGGnvMVc1v3gK3UVBtiW/jNgg9/Khp742U5agYIUNP8lPgTTa5DG/PEYJF90fG78az4IOAQV4Pttop9xVfuw+rIYE117SLL9nagNCpB0FvzHAffQzA5y+gjeUBdMc7j7hYTaAJR0tv8zy4HfsYQW/ABus9n+vA77E7/4ic8MaP03J0Rmn7za/pBvwry1cJ79+fadKL/uavvku5hERvho/OvvtyeLNNr8m+J4QAEUnvzInGJ+rorG+RKlRfSqjDT+XZH6EOBQzvxJq1L5pKB2/fAC0tA84ub5oGb9P/PzoPv5Dxi12vS6/FMWO0ZIdB78g8a/4Mmd2Pg2ag1REb+s+dfIA/ripLr8/ZxTXzy4Hv44OKyziGqA++tRXEb3KGD8qGZYlYDIyv1S4+LJoSCK/RrglmDpbmb7aEw2vhtAYP6Av1689QjK/DrXyMm9YIr9+GJOk+0apvo7dQ2Ws7w0/1uWLy1X8Lr9/V8V4Z7EWvyREw6Xdlci+iJSkrQAC9D5v+gBoqYopv8iN5JMObwG/PgEftcQrk779GyT1L5bzPpTAXGBSpSm/PB09eCt2Ab8aYq+MalWvPjZz361EnR0/+NJT2D1iO7/ZEbp3XaktvwDAkcaXB2W+582ypxuUHT/jpvPyFmo7v1JG+k+Pni2/gQ8olrFBuT5nSxjnyLsPPy9VBzVNiTa/uNTVKvQGI78Gaw5JjkiwPmWLbf+jRt0+PgdwuLeWMb9f0snKJnsRv7phJ0NgbrE+JlunvON80z6GYcCyRm0xvwqaLvraOxG/0FiEBG8dcT5OJiziAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/51IKXDCeFw/SmXfUSeqXD96CO1C1zRWP+fW0zIEYE4/T1Oh25isTT/UoFlzoSpcP2tGNvi3alw/5/S/fTMGVj8CyG2tYpdOP5VEI+aTRU4/7nfkTBIrXT8d+v862fFcP8rCjzhr71U/OoRwoC9uTj/efh2Uko5OPzfJZucsMVo/t86+zHvyWT8zTVhjrXhTP+6K/sRAMUs/NgyqZhI1TD/ROEggAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVgAAAAAAAAA=eF5jYGBY8L3Ufx8DkN6cHw+mf5dCaOsaCF3eBJZnYBAptIPQjRBarBGVLwGVP5AMoTcUQ+gZULoDSi9IthNJeDjx2S93Rwgd7igKpUVQaHdHAIoDLoE=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/1B0OSZEXe8+5tYeYvll/z7wJgx2nlytvrjBYbJdfAC/NM57L1tb8L6c8p2JsKH+Pri3/Mk/zA4/DHEFwyu0x759zJMGeN0Qv6RnQBtkwQC/phM0A93+/z5C3Nqg6/cPP9Aa6cRrXa0+ntaODpcuD79+iFgvQ1L/vuFDplD0hOs+3Es8wUU4+z7oYxXEWtfOvnwWnIuyewG/QI7ehnGs8b7hH1N2AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA6wAAAAAAAAA=eF5bw83b98XlosMbvZLwnfmvHRhAoOGJbd8GgTu2mb8hfIZze29JcEx9P+8blL9jr9fij21zX350YFmz5XGtycUDVxN/9E76+9Dh3Y2jR8J/P4SqW7AXQl+H0gwNEOq+LYS+ABVfsRemXk5MauO+aQ8PQPgbbCdoihYu5rnvAOFfguhzeAFV/xxqzhYo/wSEf+CpLYwfN7O7Kln4AdS8A3v//TjT8vLTZYcuOb5dQVGvIeINn/bO9A2rU/X/fQBm7mGZKZM71347ADO/S3/GrM88nw4wXK26lLfp8oFX4nmHPB8/PAAAcdpveQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAFDlvZg/M3S+1vMHkm2qwisz+1dOVX66my+9GUMSj9NF1ktVNxf+Fbh7db85T2h8TeyP/qo4ShLqA99vnmOI79B6Sfr/+myLk/5tu95S3iXBjq6h7PtXy7VH//D7HJilbRuvuFQpeq6yzS2Q8AGqAucg==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFj870rTBj4nOcZ5D04Ewwn6Mde/DV34v4HNGUMcTvrvS/yCLguNto/vR5BgKOtxde+XdDTQBD3co1R5/nrORyVLwy3cHmLJejy61DUvLPuTDUHSvoizhZKuy4bb1TZch1IUdO47iXpWuEHAEVHSo5AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAagAAAAAAAAA=eF5jYEAF7vraVVEVf+xfRMae9AHS71b537MD0mjKGCQMpE9/K/9j/+NZhNZLIG0nOFX4XTmmujvefH3slX/sX8nc3cQIpGU2G375jcW8lPt7jqws+2PP1W2qehtIf33xueg5kAYA+aMziQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4QAAAAAAAAA=eF5jYEAFW28ZpWqEmtjD+HVbBM9plrvA+fe3iu/6K+UJ508+Xe+xv9YXzoeL6+j/OvPUeL9YXWyAhb+Jff78LUx/mU3285m6n7WtdbG/33Jp3Tttk/1PVX7/02b1tOde8u2gyT/j/TDz/h2s0NC8aLwfZt6LDV2f1TVd9s8Uv/u7MM/E/qJJQdZXY5f9Hdo/Dle7utjz3i2+IhPnsl8z4Y7pgvse9i/7JvjVFrnAzatK8p3j7e8CNw8qvv9L95mn87ab2MP4u3u2MD7vdoHzQ5vXJ8y84wHnw8yD8QFNDHpzAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7wEAAAAAAAA=eF7bessoVSM0xP7uIbfyzTd89zMggwPbrBu2CJ7TLA+x13jP1/Kb1Q8uf/mOaIPdhYX7eCb+4bv8wNc+4Lg12zNHhLzBxsYFf6032Wnp3fmixetkz//to5L/X4T5YntzQn1iL+y7ELbAkq3b0f6v0tY9e3ei2S8jt0esLjbAwj/EPoYz4O1uW4T5+reLWjkMzu3jM3U/a1sbYm/lv0L+gy9C/mnA1YuOU0/u23x6xlr53b72U06vtdPuRciXNYnMMta/uI9dt/AbE6OTfdy1G193r0bId1xU4WGYUm23bZaQmu8jR/vtwiVZH8sQ8qvYP+4703rNbob43d+FeSH2b/xlDF0DEO5Xvsx++u2so/vatH8crnYNsT9puUNroSVC/sxj3v0X5+zet33F7fxzAb72W88ufLlaGiF/RFsnve7IzX2iDvyc7QVO9mHb3KK/2yLkWXRrVWot9+9btbbXq6bCyf6BfCrfgXiE/DrzaYo3Zzy0+9R95um87SH2f/zv/zv61xs1fBM+797Vs4XxeXeIvdMRvVmxdxHycgtP77xecNtuc9Wk25MZfe0nnVaOeR6HkL9StETNPOOV3fraab0bHjva/9p69u1RRYT8nnc6vP81Fu37puA4f3qLk72P9XSW6G50+z/tBgBPtOPwAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAMAIAAAAAAAA=eF7TmcjyZk1yiP2P0MWZq3b77v/6IGcxL+dZOwYQcNhq/S3rcci61hB7t6bssk8vfPd/gcqfuiPaYHdh4b4Pf+fL3Pnra18UNePHHRU/uLzWxsYFf6032fHMrmcy0XKy1+70E3V7gNAvsjcn1Cf2wr51h53d+Vc42nNtE1y/ZQ5CHmy/gtyeT1X1UvpGIfYL+Hkiz5X77TfWZL5nynl3n8HtolYOg3P7nhlmTjdJCLHvCk3pZurw228AlX8TcPWi49ST++KP3nHkbfS1f30xc5Xtcb/96lD5kiaRWcb6F/ftUNva9eGYo/3mO1MSzz31228Ild9xQYWHYUq1XdKUsF1WQPfxSRlcY97ot18FKr+e/eO+M63X7Mxj894KXQmxP3rkpy9zq89+q/TAFJuMn3Yql9lPv511dJ9MYedWmdUh9j3rprrH5yHk1z/m3X9xzu59H43/BQnI+NkXO9WzZQX47FeCyp/X1kmvO3Jzn99pwzcnrJ3tpbRVKrYW+ew3g8o/0qlVqbXcv++1xQbdfc7O9oumOGnXTfHZLwOVX20+TfHmjId2bX06Skp2wfYbveTb9n/w2y907b/lmeni+8Hhy/B5d0y/iF2WULA9x/48xfALCHmxhad3Xi+4bfetPihkFp+Xfcix5McPAv32C0DlrxUtUTPPeGV3mnUtT95DW/vtG3hL94sg9G95p8P7X2PRvjwfJgMbZXt7DrPr3SF1fvv5kO1v+LwbAIU1Izk=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//SiYYK11yPjAQNUuH+2NGsF6Y7yvFOgSwUBvMG/b3QdAsMuAmYkC+cDAZxYQ4LEawcica+6UARPBqNqx1USCeMCaMKEmUk75wD45IrKVJxbBrSNPsrcCDMHqOQsn/+hIQHREdIQDNvnAQucl3AiGEcGiRQ59WcgBwQMSZrgYDW3A4oLCCMlI+cCKYh7GpK8RwYKICDJA8QHBAAyysFpq1L/481FmBnT8wL/0mHfr1hzBOlzFMcyVFMEANrsBSvtrwCLlfAkzLPzAaq4Y5TarHMEIeCATW3oUwW7WNbAQSoLAWIIK5Fwn/MBoUFodC78XwYDZCc2QMw7BCENWYHAnisADvTmOfM37wEgBWklnyxLB9Pjhnc9IA8GgkTY/2TtHQOC4wGgZZfvA/mrb02u4EsEcguteezQDwcCp/2nAs3BAgq0FF4s38sD6TvEyi3EWwcVtwnskmw/BPJPUEulLasDrWUpc61nywK31R1LVhhbBtHw7VjS6D8E07uTy6TZ6wMpk8ZHZBfPASc0BcXLcEsFereN5AVIHwbBEt8M6f5nAUm/mljLr88D1RcHREoYOwc6Xvein+v3AkFNgC73hY8BHI0HuCyP0wMi8mF+qqw7BatFR1Fgh/sDlqY3Aaj+AQBZ5Hl3gGwPBJi8pik2IIcEURX/mBdwZwYAXgZ40zzXAxEgLzU8jA8HWdZgaM4whwaw9KHUZ2hnBNDPUr20xikCFgH6to1sCwXnAJ35DnRzBCP/ssnwQE8EWqvELHuOAQO7FMlzE1gHBuGmhojYnFsEidXIdY+sIwVIIAfTUE4JA0raB0JgAAsFA+HXiBgEWwaC9xwCWxAjB+OMoaOO/QUCS7TsBAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALwAAAAAAAAA=eF57zHH7J8vtAofHBOhQ+c83NBsLCdKTw0665svmw+kpOPhpILCpjCANABrUSIM=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALwAAAAAAAAA=eF57zHH7J8vtAofHBOhQ+c83NBsLCdKTw0665svmw+kpOPhpILCpjCANABrUSIM=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//nN0dEFYQfrAsqkZ9kZ5G8F6XsNyEJgTwVDAglFzT3PA4PVoDuIV+sB2FA2yYF8bwVDOJ+ZtihPB5XvQrUCta8BcOgUkdSH6wEh0kLpryRHBHHkffDwsAsH/jvYoUslvQHzRMYTj/PnApIIJiF0GEsFFUaR7rWYCwfWb/3EHWClAihenVGgS+sASnAdXW1UbwUxIhTS8XxPBlksJxtxoe8BvLR1iwVz6wDi14Dh8gxvB3gG0Ni2DE8GMOD5GFpuawNh8yW0Hc/nAThkD1AjPEcFmBS5FiPEBwe9srk5mepbApWB1NNyc+cB0StWGkAASwUZCBbxOIALBUhlap/VXWEAUnAA0pNj5wOUvighaSRvBOKtnrqfNE8H52eb8xzxtQHAEllnBufnA3ysJe+o0G8GSq+JVGLgTwcsKP0/ov2NAtnBNOOiX+sDOcQdqAEoSwXPfLhQDhAPBCzMiCJq/XUDc9XQRpZL6wJDnJf0r4BHBjaKSIGcYA8GLLQTVOUaAQANPtP4=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAhwMAAAAAAAA=eF5l0X1Qy3EcwHGNI13rOKo9iS0PdXm4ZpdObT8PR5iGG81QXSza8jCLWkntnNxkuiLuPPRksZanGeqyfH+aniydUC2uBxpn5FzWQujwx/b7um/ff1/3vs99Pl9V6WrPimo29mhhx4CYKcDHud+GFK9kUT7I5BZPoOWO9UukbYqQhKM8lau3d9eM2BnQfYfrmIyQ+0SPuoj0Z0Ns1i3AU1vpBiUbM5wWC0TToU9MY2mr+q+DSCNpwVIdG7uNeIVcphDdvcZz96+VUyfHe0A/FOh0bp2m4bn7V4iX/pAEK1preaZjEcUGMh0fzOkJ2OyMJvyGqmhSOqWQZ5o1fdSeQce/IF7/PedDL9dE9L8ECYJKG3RLfdHJyu5C4O5HEc8JWjL+/Lg7vJ9NXK/szXRcqNnVwO2Bzr/a5qWhVoLBVfK3YQM0fAviXI8HD60mHXD3HdrGsm3d0BlTmAVT5SeJvgvxNKemRuXIBvRvtL50IRtLMtt2RmrhfShDZGl7fhHYnqrPtAyEjvFgUXXv0RoDoLn69dQ0cWQl9GdGKWmU1UT0qPuVaCVlrS1A5r2gRFnw739SBT9HDNDnHHqX2vSyAUjzJi7LmsfGrIgnBTEsgfJWok9c13JcUgu9cLKPbserdiBz9bsRH7Dp23J1XUD56/sXzW8aPiy/OeV5M3TyuYTz2GorSIyVeTLCqPgQ4nsCA2bmNveCNFd/+VrUoKgP+hrzzDgO9gRIXH0p4sv2P61+x2wH26uCWN7hNLwufmWIww69o7w/Sn6kGShiY0id1RS8AfELvTEb2U4L0dN8Ngp0n6FzPlGDLtn04LCrn4F44b7h8k22O0C2Ysl4hjEUyzvYmKu7x4fzfZP7eQEVICpRreVkjnW12DNazS8DUld/fK/gBMUIfXGkRP+V9YjoUX9B9fdUd9eCN/RVGU5zKMaJs+Z/vgs9nPnAIeI0guC6I47ltFCMjfiNivezs7ktRJ9VcoWfYYIeWMC9Z//0muhViOdtEUZnHugB6bvi38bd9se7kp16Si30FvHvlPCmN2D+j04yf53vGI95qlX7XewDSlc/a1/nxYgq6NJFjY6RRS+JnoV4/ZqDZ0singPlwzPzjQ3+eHlql538335zhyZcOCWsB8K1S3fGGfzwK4i/T+jUhinMRN9sSPoYYYB+yiMrRSm4SfQWxH3Mj4tnP7kK/gKq+j5xAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAYgQAAAAAAAA=eF5N0odT02ccx3EgrGixlRUgFAyhmjAEQkTPwu93nqBoTBBFkAoqHtoioBRKK7YMFVliDzCkliFTCHsZCMPnAQokrFaEk1GgbIy2thCkVhHau/7g4Q943fv7ufvKL5Y4yXpY+Fq3CbdelwebQ9t9HQ6IMAWXkC3+HkngEyf1rR37WbjMLPs56QgPauhGXFwd6AfpSp8Fm/uEY3LCm11XO+OsyYMthKe8bqEZmos2vN5w9HKKI/KuSmsu3hHlQMy191y4y8LlZoUVtWTUV/3GJK92qgRM1gfYznmw8KF4U46iPfIlQZeDPWoKsHVvrHvuMljmbvT96EtLp7USsXWvHjqqQmYin/3Glxnc24TJAoTCErEB3EM3j6qRcTf6pVGZamF6fOxjpYDpfWJDaHRTSF2lIt/x9+35cYdGbJbwTr+XV5CHUV/SlhlfPMoHNMJbciw4bluRv83YSxIoVGHG1cXa19cM4H1m1c7Mp6h/9OGTLYn6xeDELqkkhmEIo+N2t84rI89SbHg82FgI1r3+AW1SQx/qm3xES94eFA/cCE/OTn6gvMn7LyXWRy1GgpgV10Apl4Vb41KqTgEPnt8/R5e0C8AOuYbfQFImEIfhYyNatnhl830W+0Me7N1znqx6YxHb6VE3Hl5fueEpgjOaOmXId1f7Kb03kYBKwsdSLJjs//7rZ8JrZeX55vR2g0FNX0vJHRaeK2fVPK3Z1P9q5mtJfzvoSs7I/t7FFrcNJXUtGPJgG+EvMAy76EG9YIjw5pIKBwfIg+cIn0TeVug1PAAg4UXOUW5eDB58TPiX00VPEgqHwKNJau0JLSqs+yO5s6gbebVUHwF+aBAsuGjGjKRqw4NXL0xI2aj/Od3IOEE6DsoJ7023KLKeQvc7txqfZeOdG34ufwW6cNB+7EpP3QxtAPAzjsn6eAYwfnTXTNdL5Pvypw4HfSsFpOOrkXyKNjQ6++atzA31BePux1lLXRt+LoGtFvUnun/vC31G+nQRUCH8lQ9UjLJOo/2pga/zXaergEl+dGl2jQ0ubja2m63hwAgv6jP+0WvYkI7/FGYkBEpHFHxvuJvhr5ITbtHGuNCAROv45eB2GOupzo3j5AAjwpc2Ftq4VyHPtvctWjBpBqqEn0jUjEwZ4UI9wg/qU9TjRpuAIDyFHtZmg39RZm1vtqnPpjUserA7gFRhXjEjhYkLItLjL42ifolw1jTSoRukEb7g1bvlugYOrOP873ckOzx6/mIEtBF+BF5yXJpG/dhTJ7nfXR0D5aNM+2NFFLjawD3l3oh8u+dKyD7JBMh5/85P4zAdYoni3JQZ1HfryYvTTfsNFBPescnqUJgI+UCrjsV/rPpBLuFv3k27JxpH/RbnL+9lfdoH8uy8Y7MgBfa02/A51Wg/Q678452TbWB3gaU25S0dKvyQMRn7K+rP+jzLswtuBULC/7XWwg+rQP1ExYiQa7wywCK8aZ/FlGgI9be1/vTAtPMh+BfSDuq3AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA/AUAAAAAAAA=eF4NkYs703scxzerNmZ0QReWHZvRhRMR27JfqfkZ3SNp0c3lRJJHR6pzrKWSp6T7Wi6Z5eRSIaLC9yOGzK06op51OedxmTSzowspdvwBr+f1fl7vB84Ns52KiVjK+bn9Ez44lJ27oaMrWbCXe30Cv3sOJZphVdHTiBiraCcjowAH1gAtu5BkD/e2HM0QuaXxNSvXZlZXEjGqur545hocLrrBbL86FhyRlR+NnFWOUsuMpVY0IhYzIDlxPw+HyoVnf74i2oN9s81avbAQCb1+bO73JGKLhbxdKX44KL8b/3UjiwULiw52/3QpQl7YzPlm/kTsdVSqPkWKw/EVJv4BM+xBMtPEb2h9Af9VYle+4w4i9qps80g3B4ftGlZ32FUWXPlMt+Q8FfNln1zSlhwgYjO+lre/OoODTT3FzHWCBRalK56Rd1Xz51m/dz3cYgsf6ks3SmhccH/W7v2yhgqu6/4NzNEn8R1yr8kbRAxQjei+XIjgQv6fKjCbT4OO+vYYVkMZX9Obp0xqsoXy5/vpFAMH1AE3l1wspULD9z7O6wgJmhU8W/QumAG+pU3LNUFcWJ4hDSHTaFCTYh42tLqYv6B9tC5g3BZCFnAdysY44FYfvTWqiAo+ZRseHxu8iewaKwxJQgYEaBzH7/pwoSv8vnhkGg3CS3NV20ZTkSL5F8vrP2xBIC/JzR/lAKviR3ZJIRWGveB4f1Y0SiWZfmD6MeBDgt3HDAEXrNfRpaIpXtAh9hWtPc03Nr8p0xMI2Ni2gcweDQ5OMY/cHb6yYCRelEORS9GMRPHlZhIBY1VeGSoY8wGBk2tlWwMTcqjaJTm8YmQUOp5yQGPgv+2hdlJ0ONyQBNBPjLFAScw4k23RhDKzqno/aQ187aILR1onfcD9UPY4t5kJWb23SqT5LSiIHJh7OpyAiYf8Tif24RCoUCdct7IHValnMm+7Es1aU6jm/UHAVgq1n3d98wFLp1tuEh0T3q5onKsce4bUkaFO4gACdv+lW0/UMA4HdtI+FtDt4fK9oSgL7UvEfe6UGBpNwIIHK1M3EXC42ln0rOorEx71/zrvxmQnSs2dtyibwYBe8p6A7tdcqPj5sm6g3BQW3D1TrottQZ3Ff8jKnOkw+EK7Lr+ZA85bJG86EAWC9scus77VhvZiK038HBmw1ULioB/kgtBocVGv0hR2p8RERfxXgyZd8vVkLzqI5j9YnqzmgHL5HP3WNgr4DxiH3Dn5FHn6Tk+hGk/5jfoZLA0XWrXRd2nNpvD6XumBEn0t0oYX8gVDNuD83v6baQ8HtA+/f17XSQESZV9ttlUd+jbvXWTWFI9tozAjp/wjbUl0eYspGGzL1/c+vYbETQlnftPZwJy+OXGe/RzoO82e1HZRwN2qV7HhUQ4ajGXXLHIjYezw233mCQJwOb6nQkxkghk+rkhvv4NKkeJ86FwDP+HUOUmxUAifaE1dgjQ29CcffOx1VoFaVRkhjR4kjJrG9u6IF0BkptjRmjDVt7A7ZZWmFv3u1RVbbGvgdw79zY7BheAt7SKQz7NB8TzC3e5kLXLinQuLjyRhL+qajzLjBFBf4BcfaMaEiZXk4UZWA/Lw7lp8ynuC/+WCvOTibiHwfONsZNvYsBFz6Tlk1YGWkXWnpFtJmMPNhYXoiAAcWrs7zWcxwTu+bN/STDWaUIVQti+Y4IetJ5bYRgqhYnT0kjyYDRHvp4kWjvyDjPZsrNntS4d09bK9Hu6e4E10n3443AQirsvc+Ie6kcNtM7K1rx0Iwj3CXsh4oPBBopxplrB4H2U8tFqNHFtnFq2e+rdRoQsKd/UEv0NimX63CbS3+ze21jUiY2cj4YnVdrBEmah6IuWBqsp8TuykBcTnied+/9KG4qrfJ4zQ6bDiydKxhx6esMh+VZzXFO8tCfKYAbWoSttqt/GSHZgEtQwUKXjwICL4TRLREp67yKuHtU/RsZC8+QXWdPDvo+95OLV/RzHprGOoCWTGp+/dFChHm/GPsi/pdvAxr8eQK+eB/0/nXW8NFtCiUymHDbnofyZi+dk=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//u540yPF+z8/JGmGQOwUPz/S2nY5f/k/P9W6vBWgEj8/v3UjIfypPz/sr1G4TDA/P0ywH4sCoD8/0nepI2YmPz9R2Ynxej1BP6YBrA0ZPkE/gjZWswQ0QT/tBVJmvjRBP44yPCiGMkE/V3cYJK04QT+o7qmZIDJBPyNRbG5NOEE/DdfSw9yaPz8IZJKfIJlAP+cmMBK3nj8/k8QoSRebQD8SqxL1Y+s/P7kfFdNWwEA/o3KSS+LxPz/k/dbuosNAP01KMT3Bt0E/ffAEQUe5QT97XwRFAMVBP3wVjmaCxkE/YzBtcYHRQT8HtFgiJ8tBPwj34fmI00E/MMg4fzjNQT/aDcVkl1k9P7lrLZYngjU/KB5h+FBYPT8lyq9I3IA1P9D3fnu/bT0/2N7t8w0ONT+XnE/9ZHI9P/DwEK3nEjU/luQGRAzsPz+jUa0qc0RAPyKiUjHb4j8/HPv90SY/QD/X3UgZIdM/Py3q1oHnNUA/iaDxYm3PPz/xqZ3MADRAP3qopQE=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//4B4WAg49Dy/d+kOzMp9Pb+umRw44+M8vwy+xfuTbT2//LPC8iHjPL8D/OplOlc9v0rwFRIt4jy/GCAfnUVWPb+nFCwxFuI9v/ZGN9PIOTy/WcSjrzX3Pb8HTgkTlk88vyO1dRow7D2/aZ4K0cBOPL/+ed7/u+89v+BB/chiUjy/bjct/nyLOr/+DkntmL4/vxjJORzthTq/hJD9Gc+5P7+NCeEcwIc6v7saUA5c2D+/RzmGqfGEOr96rVTb1tU/vzkwYUw=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//+C6LySAZB1BodTrqsrgHUGIc8TB01UdQdko5jL70R1BzIDuFypVHUFH+EXzrL0dQVW/RmxIVB1BxOTVcMi8HUEbYvSdnjweQTpIyvs0vxxB5XxUqAZQHkE2FHgvPNIcQWPP7dLORR5BYgFYJHDRHEGJIhEtFEkeQT+GkyCg1BxBJe2sBAdQG0GbpUZdewAgQWrTza+NSxtBpUu1hHn8H0FypiRdHE0bQdz0tzo7DSBBc1waBtBKG0HbT/gPBQwgQU9NT48=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAArwAAAAAAAAA=eF4r/inXVFf8x95CwOlDJJDee9vXrAlIH9PPWRILpL/ZmK1pBNK72VkEkoH0hP+b7oH4LFManED86ukiR92AdKx/EeMOIG1c63XYEUhnu0/5vwlI23/vFnMF0ktYIuK3AOmDE6c6uwDpd6lxPZuBdP5xTSO+kj/2alWeweuK/thfl7xWzw/ka697umA9kH+e4cVUEN/TVzZ5GZCf15VmJgDktz2czLwcyAcAzi5eqw==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA8wUAAAAAAAA=eF4N04s71XcABvAuk4TW8Tu/n7ONc2GK0zm0pZ1c4rRSabkkZUkuyaaR5ZJrrjFkuaWdIXcWRck1p/J8X0a5pOeU0WgphqyseyKrnT/g87zv8z7Pq20jVfg8peHs5VzC+lMEi9/iruSt5kHej7qXdW7k5vCb4r4fGIgUD6M2uYhhr2/zW9UFHlaETo9l2rpL1V9UzXn+Q6Nph26CVr8ITf+etKxfyYPmooz4sVuJ5GfJP6s6fRhUHdhrvtlJDM2NiddIFQ8LLOyywjdFkZoXkrJ972gkDEq71t8T4YSdkU0ul4eRYP9WnukxUpho8HPaTgYNGraRBVIxOhzs1YfO8FAna4jXtYqUchvPvhZN0CD3zFwed4qQsMxgq7YaD8X1g+d2hjlKVQeaL3pbMmi5MdnusFoM4YPl/3ol8zC6N2S1s/9JqYqku+bZKxqxB41rFAUCmMtlqc3ntfBfu/uOVeqO0rzsIZvyIAavJuOcL0wK8M3oe4MZXQqysvrTvXGJUjcYCyee0Mh3T2obyhFg/GGA0dYyLZjEPDqsouFEouYC8k8p95vXuzladF+Anie9G2JpClRnT43Dujip4ew1jdK3NNIKO/yunRJg+knsI36FFm52eY68mfIj9LYw+dq9DCwv6X5WdFuAjT02wgNqFBQOdz++Ne1K9As97iQo/f6YBaXGSn/tvII0lmtBUri2Vq3ckkSGiBYxSm8QGDeuqfRfzQ8bzi2lsEW15u/1y/dIo7Z3aGu0M5j9tdRIWCGGwdSAvGeKhwvHf+nbGe9LnvwaH+9bT4Mu/VOuHiDCA81FD9f4cbGE+BmpfxlHRNzhH991M+h4Wm+/tEaMD/OXh1uf8/D1F4/H657KiF315vz9V5T79GaWTB0VYVOF5pRxMBePjVIO8C+eUfbP+Cm5hYFPX8lSqzIxqgI1b+M1D2GuJYMun5wmYuqmRk2l0keHHk/yF2FPoYudfyQXues8Z3rGc0lb2rZQ7U4Gn+2zSVerFcMzLfyrmoV8dM8km9UWlZHyFRETGxppHKgOYTlFiFB8knqqncKFQ2V10khHBRENNi5ZcoxB5KeklivQQ5TEw2l4LQXxgqbT+0POEIp9Y8XkYzbMA7493rJBgNbcrw/ODrDg2S9usblcSIJ2+ajqpzIYa039Y1KkhwXPa52LrJW+1Z9dqJlBeBL9y6lv2bBvLUzfYivAGN/VyHGUhdzf85PvGWYTT7fWrrSjDIQFoSZBq/SQf2Iy7L6EQmVn3yfHsrLIuwrL3pd/s1H//fBwutIHNl20/u8vFtKdM3wd27LJrYLATL8w5b+aH8ZEGOnhqszDtMOMAueBUfShzO9IkmvAfNcEG/F+Td0p3wigYl1cNjzCgsq8zueLXQJJRr/5oKyDglXeq0ca8UJEb3F0tYjTwbd2/JmU2nAyNFZ1Nd6Ng0avu3dmfjTBOrPdn1KqAiyXv+8r2xhC/pK8/aK/jYI0SCfPOEYI17QTcttoHUQ2eJfUJWeRZkPZwdq9HFj/8UGhfdgE0xWd7cUqAjhcVYvt52aRjxwWz569SkFo5RjkFCWExpvg6/XK/LE7Y93h06dJSmp0S+pPHFhY5YR9lGYCeWbuMSdlvsUR+bJ2bjFJT+qvUyj7t6S9jR44LsSOXaoZ6qk68PBXrLUurSZc76NmbRkcFBgObE88ZYLnW+hDWeoCLOlNyZ3JvkQSGhIOq7qxYfCib8XnHnwcvb8rQ+8QC97LNm++bF9JpKuaR3Kuc7D7uq/eSUN97A7KHPowTUNxJNi3rL2ahBpcWrnHhQ0+tabquhsfMeYvd7G+Y6FLzyfpbp6MjLKDPERtHDAlz/q3r9RH8JHFZx9M0fAxzTzvxCoik1GVFpGObCzkZDqsduejZ7zEf/QgC3OxjRFz+7OISo7pAPsNB4eenfd6v04ft217c+iFDKiGmSu0LJucW/px0YA9GxaVtOSOMv/Ga7utEd4slO8UrhmcDSTrz+m+3PCKA6+JsPBTpvq4WMuoBX6g4a62b/m2hmDyP3oX+TY=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//cHA4cSO6gE/CmUghFUkR7+d3xpThq0kvwA7wzbmJf29zINkgbCPAT9wnqmc/ShHv7aFhgCAkiS/eHNdRhPGvL4Qrs6qoMYGv4KgcfZSCEK/nmeCfHc7G78s/rG5bFWEvibfklrHmB+/LqCr/OHaOb9wGz+Fiy0Lv/A/xvZkVqS+Le3KwSbEH7/UAa7Sv9o5vxiWMwviKwu/gOBp2UZtBL6+StjLumMAP/6rkEsrBki/cBM59Eg/Jb+hwlOOOuGoPuZG7RgwmgA/sZ3batcASL+20PI8Ykwlv+jS/NmIkbS+Pd4b8SvECL9CNiBcHrJCv+332Us1zhy/R27ewB4es74OJe0JQpAgv949D90u3Dq/M4P2gDvhDb/0gvv1XvSmvuSUrDS4gSC/cgiYcUvWOr/C7YFP9uANv6yQ5XhQeZg+fwycdrRJAj9OoAh9lldFvwx5f+2hhSK/7tcBpMYfk76M1u6Wuo4CP2xDy8zFU0W/vvHJwgGaIr/IVyNtY9rEviVfpx989wG/4nHFE4K4QL/ssKBzmTMYv065Upzp8ti+vyoeJ+QpG78oN6IoEDs4v1jOTvA0BAa/lulXI7d2wb50voTI+Pkavxb+cmNAPji/E8jTwAwFBr/E1Oy/lwljPgB7UB+hZvw+2sebmRSxSr/NGXIt+tknv0BMgJbjv1K+oKtEXyYk+z502+f3Cb5Kv+T6NpV1sCe/S4iO/b3TxL7Q1AUILm4QvxLyBsw5o0S/11grf0TAIb9+VRaG2UnjvgzqXBOVziO/1klfMCfdPL+OcIAr1toXvzj+HLZWLMe+v4y5CwUHJL+ICFvif+E8v6oJCBWF2xe/AAJJnizkJj59YEJfAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/5t8VyGMKEA/VPof+NYJQD9Q9eHTlJJAPy6VsAdZMEE/aC8mBbgvQT/oVb4Bz+I+P+2Sb3ATCT8/tonggMmHQD+8a7F9Q4JBP1MFgKaBiEE/GcxUH7B/QD9QYLsZV5JAP7hHr8xQuEA/QelJv2nNQD/vAuEtZctAPyjnNajbozI/ZG3K3ppOMj9nuMbWQWU5P5x6BeEOVkA/C87ocTlPQD+iYEUnAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAVgAAAAAAAAA=eF5jYGBY8L3Ufx8DkN6cHw+mf5dCaOsaCF3eBJZnYBAptIPQjRBarBGVLwGVP5AMoTcUQ+gZULoDSi9IthNJeDjx2S93Rwgd7igKpUVQaHdHAIoDLoE=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/xsHkTSsBuq+VldCPykP+r5TSltNRgcEv7g2cKKE/gq/On/t+gj6+r6WscIhW6r6vpha8gHgngq/wa5i3PhMFL/K/gMW/Esbv1jUkqf8Rgu/4gJprpZy+b6oZMTE3VwJvwixTOSceBO/HNwXRQlKGr8KUEGZjkYKv/vgzgObZu6+qsq+oXqa/r421WDitMoFv/NCTpEnQQy/stAz94pV/L40KVMqAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA2gAAAAAAAAA=eF5zunjvR1rCW4eHKxt5V0n9dWAAgwW2NgwFEmG8vI4QPkODxH8urf44dkeY/Cx23YtNOxgdT/cKfyxNe3tgZQuv07qNHx0KmL5F/XwNM+eALVT9Xgh9AcaH0neg9Bmo/BVbn1mvg8qn/T0A4TM0/GCMCZxW9McBxoeqh+p7sBdVHJ1/wlZNSuPxnIg/B6D8vUp3Xn8IVnvvcDSMuT/tA0x8g+3Zwq9vxD7yHITwj9g+UX6RuCmDHcbfy/inV9/mAuPB1v3GT63/vz9ge4jl9bYLHw8AAOJtYW4=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAFVtw98beP2+xnCuQTsNtks7/s4KfPIdtt9qMpY3gm9n/LC1G7/eILt/8R4LPb/0Xi5KVYFjsMdZ2SR8sz5Kz2P9jPJlKoabU/5++mb+LqVhjqmm7Ur9p92WF/6YpVqrtvOezfm+75vPOxw34AKd0wwA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAF74Q+/I62kXW0zHy0SlFT1vHZo20e23RlHdGUMXx7JMmRliXn+OLpAbmWZDlHNq7V11ZEyWGoY4jeGJD8WMox7eDSB2/eSDnme/vtPPhKCkNd7YY/AeJ3FRwPVOwzff9YwXFnh7FZxxsFRwA8AiwXAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAZwAAAAAAAAA=eF5jYEAFckZ7O7uK/9i7/GV+2Aekd4jlqvYCaTRlDKKXVXRNgeJpbZVK5kA6/+3etZZY1H3Yrv7MouSP/buGhWLmQDrZtz8AxEdXVxXCzqdb9Md+v0zjQg0gvf2qJKcykAYAFpAtKQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA6AAAAAAAAAA=eF5jYEAFNY2mC0JOCNnD+OWKQh//TleC8/ddP+TeVyYH5/Nf+295Zro4nA8DH2atTAwUN9nfELM+J7dSyF770NYeAyGT/UeyzlremKFkf+vNMybPP8b7b4VrLP/uIWcvsfCtK/dL4/0w89Zp3vzH8sJ4P8w8D9VlLeaOLvu/8ou+v3ZU0F6nNmjjRieX/Q9mrEt2faxon3X0pkOonct+c8nvoTMXydqLmjx6vB2oHmbeDIbYPRHOLnDzJp+u99hf67t/9/RV2yszBO1h/NqVgmp1Sopw/swrux2btWThfJh5MD4A0hB2fw==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA8AEAAAAAAAA=eF6rbTRdEHLCyD4jo07ol5LffgZksOC8dYWi0Me/043sHRcLXPaQRshfuOcbtHna3n3da6T8i2PE7b2To1pyf/nC5cW87/ddLEux23vTIyDeQHr/ksInLybcRci7fntvWSOxcd8+Nh5zjmrp/W37XOvY7/ii2N8g9Hl3Q8z6nNxKI/s35j/dLici7L8jlnw+uHmJ3eGss5Y3ZhjZH979u5MrBSHvY5xebJS/dd+Gbx9LROaL2yuscHtYH4uQD1Exsn03f9e+z/9Mi08YS++X87t8dXISQt6pr8DjZeXmfTrsi7asPSK1/2lDtxRrKkL+yoIy98KUBruv/KLvrx01tFetbXisqI1wv4NT3dFTi6bvuz9jXbLrY0P7PfHmzb/0EPJMU4V0pm45tq9F6MjZlp3i9rvqJ2ll2CPkF53cNeGo78N9ydt3SdXGSuzvrfCtuOaLkH9Qmc6aeu/8vmU8d/NNtCX2S12aozvbDyG/zeDEmnbeWft2TV+1vTLD0P7Bpx7v6Vu9UeN3B9ue2pWCanVKhvYGr9uPamxEyO/p/pZc1Xhw355KJRHhFnH7GqFPYnb7EPJlhduOrRV6tO/iTzeVhCjR/RXHbuiKbUHIJ9+TOa3ccmyfyq/3cne8xPZ/SchYYrwezf4Kzj0A11TjOw==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAALgIAAAAAAAA=eF6zjK7ZncZkbN/w+xbLR1a//V8f5Czm5TxrxwACBhesbX5H8AhcMrKPMcs9av/Pd/8XqPyle75Bm6ft3TdH2GzPbhcJ+4xv28pS7iLkb3jd77tYlmK3qUj3sZiH1P5jLI632w8g5F2/vbeskdi4b8P8Dyf3T5LavyBwUcG/fQh5kPUNGp93X/c3n+rBamRvbbd109PZfvuNNZnvmXLe3XdJLPl8cPMSO6m40KTNKkb2Uoe2f5WZ57ffACrvYZxebJS/dZ/UEUHxxnOi9sXrmHwnTffbrw6Vt1Mxsn03f9e+NkOxi9EssvsLQvodl83x228IlXfqK/B4Wbl53wHLJiHHqTL7Hdrd28Tn++1XgcrvW1DmXpjSYJenFrU1KsbY/t3HWIYH8T77rdIDU2wyfto5ONUdPbVo+r7A9Z81T1Ya27ddEVmwIxkh/2+KkM7ULcf2uefceDZZWM6+7ku+u1qJz34lqPyCk7smHPV9uG9W7DLGPGah/cFvtaZOafLZbwaVf1qZzpp67/y+B5tOhKleFNz/0K3KK7LZZ78MVH6XwYk17byz9mW6hAbxsqrbz3l75tKEFX77ha79tzwzXXw/OH5nsO35ka6sL1apZv/m6XEfpSUI+UPd35KrGg/uY4iOuau6c/I+K16jeeYb/fYLQOVLCrcdWyv0aN8riP79JgcltvIvR+iPuCdzWrnl2D6xF+U6IR/V9i+LXqGtu8hvPx+y/RWcewAuxSfxAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//RH/otcPxBXBzspKCrWsLMHUBziZbf0ewQDJvUGSOs6/WM7gFnnPFcGYu7auqbEswVJBms6Z9h7B2E2swjHXjcBS1prEXcQVwfQzJN82ECfBxvPLWPyrGME6wGdnbhZVwBn8ChKlyBXBvt6xVsF5IcGaeG+cfHsSwexEwdhvF3XACuPi4R3VFcGKQvBq93shwZF5K9LafxLBALkz7iov1b+HaGqMst4WwTCiKwO5zS3BtL0ebdcUIMFcXMcDY815QArwDBYC1RbBLpurlXfHLcHEYfbs5BQgwT5zKRfFVIXAIG5MHf/LFsFortivMPknwXikuE++zhnBL4mnipXTg8CRxMDVlM4WwR7VADQoNyLBbNladwJ5E8FwkM87Qc53wIzvmJ+SwxbBRNkZtigyIsEHDoKRTnMTwUIEdZSeYWlAasx+ws6yE8EaLJB1kFYqwc58LZmJKhzBujRQJU3VY8C5ThoI3qkTwaJ+mLx1UirBtfIsEGUvHMEUW84wU6CVwG0vhnmxnBPBjudn2Io+JcHEQNPq7GYWwV2BZOy536nAfP/UV2OEE8Ek248KMScgwSs92kYrjhDBcsxY/HocksAyb3A73XcTwbU2McN9JiDBBLC98IGKEMFQNW6xS74zQEhVEPSXCxrBcaev/6OfMMFi8Pxl1AsiwcCVL/DbcSPAKHHw5kQlGsHGTlCpHacwwdrWNHaqCSLBON5Dq26ZlcDOZWWm2V0awZYhjhKvzyrBfq9vNvDcHcFq+ixk7wC0wElIhB0chBrBX/IVosg1JME0u9/WfaAXwfgfXTpMCJjAKuUc0uSmGsEd0po0bD4kwZnMdBW1rhfBAAozJ3W99z/GQj3DAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALwAAAAAAAAA=eF57zHH7J8vtAofHBOhQ+c83NBsLCdKTw0665svmw+kpOPhpILCpjCANABrUSIM=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAALwAAAAAAAAA=eF57zHH7J8vtAofHBOhQ+c83NBsLCdKTw0665svmw+kpOPhpILCpjCANABrUSIM=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//p7SMuWWKhbBdjhr9qoVLcFR/vUWrmofweIZCBJmH3HAmkAv9d0bFsFr4qpXxAMtwf7haiH7Uh/B2GVzQj2AbkBeoVCuwy8WwYJzwKk+viHBzZq0RZ3gEsFbGKc/ADtyQPVUMKfbKBbB0g+ZQ+ayIcEH2By/DNcSwX5+fpUh91DAeasZaTM/FsHdPTD1iQ0twVPmJ5h6Lh/B+wZ+iwHkj8Bwkwd8YjcWweOU9MpHDi3BGm3aHug+H8EPWq1pSDmgwHWdwXVmuhXBe0EQpkG1IcHIOCsNMYsSwTh8LbgTN5fArL62SC2uFcEBijrVgLkhwfTF5SPfixLBAUyFPc29hcA8Bp2Kpw8WwdxQOsoS9yzBB6RENLtFH8HMmPooifGGwE2wsmcxJhbBLMysbGwHLcEpPnbI4UsfwRbYw3Vrt6bAiEXXtEePFsFsG1bssMIhwe++NhnFqRPBzohMURwapMC0cALpaKIWwcJlMhhkySHBhLV0lDiyE8HqRacCTLCGwGp/tnE=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_1.0000.vtu b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_1.0000.vtu index a6149c376b4d58ddf095f9b6595b16134a0394cb..394837740d71b956751176269a1d3f9543b79ec9 100644 --- a/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_1.0000.vtu +++ b/Tests/Data/ThermoHydroMechanics/MultiMaterial/DP_MCC/TM/square_1e1_2_matIDs_t_1.0000.vtu @@ -4,52 +4,52 @@ <FieldData> <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="761" format="appended" RangeMin="34" RangeMax="125" offset="0" /> <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45" RangeMax="121" offset="284" /> - <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.0010806369451" RangeMax="0.0017699918208" offset="372" /> - <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.0010909060876" RangeMax="0.0017699100078" offset="1628" /> - <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00021826163127" RangeMax="0.0004816919775" offset="3188" /> - <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00089896769606" RangeMax="0.0020260161171" offset="5288" /> - <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00024374628612" RangeMax="-9.3992006386e-05" offset="5860" /> - <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="241978.95861" RangeMax="325225.90264" offset="6176" /> - <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7789619188" RangeMax="1.7794093687" offset="6492" /> - <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="327079.28464" RangeMax="719493.55351" offset="6772" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00094552305411" RangeMax="0.0010918630015" offset="372" /> + <DataArray type="Float64" Name="epsilon_m_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00094607689362" RangeMax="0.0010921107991" offset="1600" /> + <DataArray type="Float64" Name="material_state_variable_ElasticStrain_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="0.00043370806171" RangeMax="0.00087522600204" offset="3144" /> + <DataArray type="Float64" Name="material_state_variable_EquivalentPlasticStrain_ip" NumberOfTuples="48" format="appended" RangeMin="0.00037769040601" RangeMax="0.00059968263156" offset="5232" /> + <DataArray type="Float64" Name="material_state_variable_PlasticVolumetricStrain_ip" NumberOfTuples="24" format="appended" RangeMin="-0.00054370005611" RangeMax="-0.00045910415927" offset="5804" /> + <DataArray type="Float64" Name="material_state_variable_PreConsolidationPressure_ip" NumberOfTuples="24" format="appended" RangeMin="498237.83477" RangeMax="589966.73214" offset="6120" /> + <DataArray type="Float64" Name="material_state_variable_VolumeRatio_ip" NumberOfTuples="24" format="appended" RangeMin="1.7777501663" RangeMax="1.7781321814" offset="6436" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="48" format="appended" RangeMin="770919.41903" RangeMax="1378086.3004" offset="6712" /> </FieldData> <Piece NumberOfPoints="20" NumberOfCells="12" > <PointData> - <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.0002163285083" RangeMax="0.00052739364009" offset="8864" /> - <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00090419722141" RangeMax="0.0020349745795" offset="9776" /> - <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-5.3408439271e-07" RangeMax="6286253.9" offset="10048" /> - <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-6.4975466705e-05" RangeMax="6.1687010529e-05" offset="10224" /> - <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="4.4257922348e-11" RangeMax="120790.82248" offset="10496" /> - <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00029612457972" RangeMax="0" offset="10836" /> - <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="354790.02771" offset="11036" /> - <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7794360115" offset="11236" /> - <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0014142135624" offset="11420" /> - <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.0010851051235" RangeMax="0.0017571086797" offset="11764" /> - <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.0011299583785" RangeMax="0.0017554198824" offset="12468" /> - <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13272" /> - <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13332" /> - <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="317607.35124" RangeMax="796108.44613" offset="13392" /> - <DataArray type="Float64" Name="temperature" format="appended" RangeMin="246.22766585" RangeMax="373.15" offset="14304" /> - <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="246.22766585" RangeMax="373.15" offset="14416" /> + <DataArray type="Float64" Name="ElasticStrain" NumberOfComponents="4" format="appended" RangeMin="0.00043036361039" RangeMax="0.00092163314575" offset="8792" /> + <DataArray type="Float64" Name="EquivalentPlasticStrain" format="appended" RangeMin="0.00033099831962" RangeMax="0.00058962126877" offset="9704" /> + <DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-5.3408439271e-07" RangeMax="6286253.9" offset="9976" /> + <DataArray type="Float64" Name="MassFlowRate" format="appended" RangeMin="-0.00010328435372" RangeMax="-1.2613329893e-05" offset="10152" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="262578.73546" offset="10424" /> + <DataArray type="Float64" Name="PlasticVolumetricStrain" format="appended" RangeMin="-0.00057441478335" RangeMax="0" offset="10752" /> + <DataArray type="Float64" Name="PreConsolidationPressure" format="appended" RangeMin="0" RangeMax="623249.22856" offset="10956" /> + <DataArray type="Float64" Name="VolumeRatio" format="appended" RangeMin="0" RangeMax="1.7781752709" offset="11152" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0.0010111146276" offset="11336" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.00094524245073" RangeMax="0.0010809335767" offset="11688" /> + <DataArray type="Float64" Name="epsilon_m" NumberOfComponents="4" format="appended" RangeMin="0.00097115678715" RangeMax="0.0010860206007" offset="12392" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0" RangeMax="0" offset="13188" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0" RangeMax="0" offset="13248" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="750506.30686" RangeMax="1455630.8066" offset="13308" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="246.22766585" RangeMax="373.15" offset="14220" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="246.22766585" RangeMax="373.15" offset="14332" /> </PointData> <CellData> - <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14528" /> - <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14596" /> - <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14664" /> - <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="379471.8256" RangeMax="608827.65881" offset="14724" /> - <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15296" /> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="1" offset="14444" /> + <DataArray type="Float64" Name="fluid_density_avg" format="appended" RangeMin="1000" RangeMax="1000" offset="14512" /> + <DataArray type="UInt8" Name="pressure_active" format="appended" RangeMin="0" RangeMax="0" offset="14580" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="832741.22534" RangeMax="1265632.8662" offset="14640" /> + <DataArray type="Float64" Name="viscosity_avg" format="appended" RangeMin="0.001" RangeMax="0.001" offset="15212" /> </CellData> <Points> - <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15368" /> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="15284" /> </Points> <Cells> - <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15516" /> - <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15672" /> - <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15772" /> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="15432" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="15588" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="15688" /> </Cells> </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbTTTc1NU0xTEky0UvJLCqpBABLoAbhAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAjQMAAAAAAAA=eF5ly2tMk1cAgGFdxtqJXFREjIpDA2oFweLQKjvHtFoRGBenfFOLtKy4iIFWhyCXdKRGiLugbGUDBkRkIayhYimGCt1Bp7ghSqqVSGUERKxKgYI01oHo/nz9TnL6/n3ydtSmR74PpWDNtFojrE7omEf3pCCLquddQeJYrZHDcXW+58vlhc+7UAf9t/2S3FSjxh5wLmt8zxs985Oe6vNyxCjsQfFpla/1pyloXqCVX7uKXTQpKspp1iPTTNzUubMU7CO80T46PFN4n/kz2OFvW29jb619NTD3tIz5SU/tTEO8tC6k8H3ktSBGANktUX7LO7HfLY1xl4y3gD/uP66bZQsgi/BMexpHfMYEnH8mlbFQ04T9uPuLKVm1ATXQv4zw4O3SxialAURtbAywn+LDpQNJLUUXsW9kiQK/sl1Hd2xa2cdqPlxGePbX3hsaxDrmt56wjpb8gD05JsNivKUCzn+M8MQRbVLitntAzvX6RBhCwcZDxlyvDxMZD1Su6ivhdqFv2RUpv+5w9SJN5IE7ZbeQjP4XcjMtFfOwz5/MlQCrASnon/TQPfrDV7U6tCtsyKPyGAXXVs2/6cfCPlGU99jS3o+SHb9dP+VNwTWEu28pu5dvG2H+6bo1os9XYh8YZ43eUE2gI/RPOtcWGhhoeoVePwhKlbgJYOrQ1PNKLvb4nbod4boBFJG9dV35ZwIoJrx15b7ohmVjzN+717HkwCHs2b+roibWm5if9ICev4xnH1iQsrXYHDvIh75f8qPVUuzKT9nbf3pWAybM1lBDpAD6Ea7PaBr033wTOP9YN+MbzkHsTx1Hk3jfmICN/uMIP76h5pJsVT+oHTysikykYEKK7lKQezzjJR951OfdrUex5hVhngpXv2DmsNZZNeAi/YvSF9+WOOIY75zLCfId7QbOn/SI2eGo998/BJs9F5VL3iZBu2bXd5seYr9crT4o9DmPFhf26tX+lItP8yPOdyv6QBj9B9e92/lPMfaSjrYQVeffwPmvJ3wuXz62QjMMCv7jWSN8BdDHtGUq/Qh2y7sb2d05j4AjU9py7CQf+hHuNu2VNdn7BCjoX3pt6EoPDzvXsnp3+4wBOX8x4R80U4WVvTrQnpf7xaxYAC+U5tjlAuw/yhPQ5LZ+ELxJuOjno67+orhqf/6sHrTRf4FHOCdFid2xtHm/dPe/zH+acLP/2st7Q/4E/wNDMTO3AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAcQQAAAAAAAA=eF5N0otX02Ucx3HdCdAoBTQpiw1EDEEuIpAMeJ61KUjq2BS2CJCLoFkJniMBgRJ34mCghCypoRGHgYk4JrCEPT+GEDexxZCLiBfCLSaXaSChg+Icf+PpD3id9/M534fOfnhF5caHm33dvMMEHGJBI+6XCxvAg1Nx/AqPa+igqlVmtZ4PRUGCZn8Jh4g3PTJhtrofsdaMv5Oq7kR00jM0atBQziEWSU/NjZv0/UeKDpC+XefXImrG/tj68TGFz23Ubmpy9FIKH4Yc8lzRW4P7YdqQ7IRaKZIXRd5PjeVD9QlhRks39ldmNKMvUv9Y9tpgWZ6iGfelPz0bWfjzPPqN9JkxtLXye9iHt0Ujj+hOdDK2RTvIY8GzRkrRdgL3u87tNY6YvA6yDCgp4/eY8O2NbvabhrGPmYm2C89QggTSay/P/dBWhfuHjf96GitsQhmkT5MF0erbsN9Gj7pSk94EmJkCys00JhQ6P2JdLMF9e6MQm8PTzegX6yG/udNMaMNitRfUYx9/1GRrZbhk2X/e9mWSKBv3Q/ceVylai4Dezw8MLAjKsA8YE/O4O3uAb69yn9ieD/tuGO8vN+AS9cWU+h37L6Bt6RaD+S6dKCcqrKXvWz4sX1xt3ivmEIAiEH9cMAOyq70Cu863Ir2nF1b96kjBfqX2qwjwZGk/6Vf0izJCrnIISHpnX2lwnViCqIpyusGnfMjWeRVXr8J+KjvprqpxGEUejLSWRPKhJcMzfPg6h/Ai/UrX8z3J02OIRnraa4ecRi24REbhKz8yaaSRF02hY6R/7Bsyv7aLQ7jp+9NONjbKZ6jE7FrjBxQWzGM4NDq5cok6ss9jSDx3SEaQt2PrhNkoCwZm2meFPuQQrqSXv3fgo0rzCXSJ9LoqF/V4MH5/YnnRnilbJfIhfceks9h8aZ836S1vtyiyelXIbs5kh/XS/9glPW0Bj2Cf7raKXvi4FMycS5x1f8SCa3TJ6i/MuMv7pcdrHlC33wR6nxhtfIv4BO9XzR3heZxUgpWFrzyzanXxpCF3eX/U1tKyWIthAOzzkyq5fGjVwe5nv+5PfCZSFZ6ZTwL5hm9WJN2qQHuerkO0vTx4SRBxM03KIWRfp1iqHdcR2UN2Ru8/qQYM0m9UVs/nPmcTPxe/8h0LCVs2aLrBPtLbWpgGXly6/w3Su7wc3fNvXh/oDGKl9Oh4kNjwUMZTspf7CuHlIJ/1BYj6fY9P05NA+BzYNRgIcf8Z072gO2UQ/E76WeOSOG027ucSNxyK2tqB3hd45BT2xuM+5dSJiXerR0HN2dKGNeYseNdTsfm7UOwfL8rjuxMGgK40QHHmDQb8hlumsY7EfcO/18Zp7zwCDaR33HRq7PlO7LeoaLsbXzQhvRftSuy64/+/fi0/teSOBEyY3qcpI1gw+IWZ7QUm3l90goO0O4eByyF3h/oVH8LWa6yJigDcn8n5MSD5pRTMkt4v/nZoThruz71VGxC1+96yr4uxMqLG4f4Q1fqqn4MM/AfiqwaUAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAABgYAAAAAAAA=eF4Nzo0/1HccAPChc5Ty3HK/OHI5xN05dSfx/aG13dUq0YOilmgpkuZhkTych242MT1MGS5SJk95KCrfT/K0LJMQ7lUppeOUQ2Q7Ttv7L3gfO/3QKF6bII9evab0WuCBqiIoIekxE7b2148VrsrAg8Tih717CLKXt9o+sIYP4qwLRbfPW8O2hwfTG8dz8IAo6NxdE4JsMo+b/2c1Hwp17LrKPjGheSBwnHv6Bl5bfVU4coQga1nJ6sbP+UDf9opb0WAN5rKydKsV5TjqvJGrrwZBhlOEJRIFD7Q+RnU33mfCZJrSX664hnNrPCRB3gQ5w/dXX/YLH27F5BZ5n7YG/MVF9x2JRfizb0tTAo0gmUlvaHst+CA/+nS6dYYJG4tFTmFcEf5b39Yr+RhB7pTTP7Q18GGhohmENdYgXvI+Egcm4Y02fcSlchkaz4+RKh6xQb2W3SPCmhDr+0jgppuBbpwT/OReNIxYzPsLPx/lwEUce6DsAxU+q3fXzskq0YY2Sh6vXYZoXku3b7rIBvzbgc44iSbUPGt/7xP9Pc7YLHhR0zSM+lh/flO1jQPdqZql439T4fXopEptfTEKv7viXuvzMWQ4Mv7e0Z0DaaHrH3QeosLEeUOF0jsTp9P8NEevytF09s2bNXEcCKnrUu7epAXBMraDev8uJORMJTDLxtBlo/yhJ0wONKKQcCcPKog06QF1v/DQoG3Am+3hchTRFptDHOZAgMLPZMhSC8JYnhfyTbOQ4O6xQ7NnCJLhONvcHewEwoPlDU/MbGDNieq7+6mFeFdrum5QPI3c2EeXsLx5wI+WSqorrKCEkWTkF1WIG2d2X//tFEHyyrieff5O8Gw+kBtgYAMBuvUnrJTVmLJ4y0pKDI20XEmrcxbyIPfM2sSvC61AaUHctmutxkf/vTb/fQhBmvWM6TfYOMEcz3EEyawh/U3E8UNlD/COF51Vodk0cue3VcLgTB6kWOxvyZi0AtHhA5Zn5luwi87p2ZZ4glxbPN+66P8/Q6SvW7HKBnarqBYaap0Yhi1jdUpppC26EHOviwdzyeJnlfZMSEurGk9s6sK5QsvnSz1kyMwg1KW8mgODYX9YjPdTYbK3IN3YpR3Hu6tqp29MoPjaBXquOhsSd8SGyJdQIGGKWR6c1YV3jO7pMyNkqNp532prGQfKR6IzVuppwb6Un5adsqvB9aWB2kUFE2ie56y6fpgNKoOc2E6SAshaahtu1oxbNkU9vFIiRyFCf8oyQwfY+jZ43YsQLXha4flS/jkfv/T02BJ8cAK5b57x35TAhvVX2qpmPSigt9zga8YlMV4eV+Zacl2OiDXK75YvcoAVv35etN5XC4gule43wvPI8K3h6F6/CdQjfdRdF8AGc8KHVc6lwMRWn+wvNAqQn1RFbJ82IRcYUUdERY5Q2aGwHapiQF2sUYoPLxyn6ukOq+JMyeTBZ1/u73GGaCtbLxZpD7dODmwIzRajjlKFRDxiQn4ITjn1ldgRVk9bhHhdYIAT9YY8Ik6Chj7+UW8fYUp+lemihm87Q0ZbFF68yh66Iskp1ZpK9NhbeTx73oRcKr/TyKt3BHeTyBC9Pxng6ntpLN8nFZ9MVc62x5iS2Ne/KVfpDFmzbXOeAnvwNTcSx/BK0KFo0+TODhOSXi9PTBI4gn7jnErDkwEZxx/pPu8owaPSqMdLPU1J2w6Hg3liZ2iergqT9tqBcYnCdCNEojsp+iL7oilUqWOg9zrFDu4XsNj0sxRI267dq6NdhDNlbh0TomFU3H82py6PC8MObtduuejD1SmlYFemCP3uanxZdn0KFXRfjuraZwduG8yDPMIokBWqKVj3axbeHOmecPjmMHJ8VZKXlMKF0fZ7ao9Z+jB0h+Nqqp2H/nrneaJRbRKtc0na0KBtBwvzRNsxfQq8y1jTM7OoBhlrKLQfuEnRg4KI79QGHGBdEl/yY7Qe/Py+7hP9hzL00VKgtkCfROdKi1eIvOzgd6pkq647BTyYTQsxqaWolBtg0xEuRXondx2fVeeCbDZu4HW2Hux9NXjvdX8O+g/AUfOJAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//uP81c3WR2A/wCJ3mx0rYD9STCQT0khgP+4nyr0XLGA/YCg80wx7YD+VwyZPe2tgPxKbwCJhfGA/U6D4jc5sYD87MX8ZPddQP3xIEPxLrFA/zUw3yWPMUD9mfMo1YKFQPzfSE7KyQVA/v0n9mJNNUD+2RqKofTlQPxnCUseHRVA/Mp/kafVFYD9FoNke3ZhgP3/30LynRWA/UrVzSpKYYD/a+Vf9h29gP5I2lO4QfGA/ZVaIbh5xYD+JJnSNv31gP0aSc/gJ61A/u2tqiuURUT+cbbY21gJRP24UNqh1KVE/CgmVguHgUD/u/mjNzzJRP4MWwLes21A/Boubx6ctUT+rPD2IU0hgP8kFAO3lsl4/4pWYCbhHYD+yHQjWvLFeP8CJwWxtDGA/qrZ9y1UrXj+1oQJx+glgP/ZRbo+5Jl4/kwd7DbJKTz8mo9/3Go9NP/DwgafFL08/9r1nbRZ1TT+wk3tA66FPPzOlajHRzk4/ESwxqa+8Tz821vD9kOhOP8TLrc4=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//zIAGMpGcCS/DvaAvIShJr8emgEAzAIkv7qLa61uNSa/6G/DMmMBJr+W3HIkSQgnv4igmNuWmSW/g8minzChJr9fbwBhzrsnv7NnujscuCK/nJWSY3GCKL+Ybg+FQIUjvye/jg1pNym/kNGLaqq3I7+47ZjQh/0ov6S8+qHMeyO/VpYxr14HG79olKOnxPIvv4Bcych4RBq/mFp/vDecL7+eTMJfsqMYvyq+za4ZHS2/DRWPNFf5Gb81+FG2ybYtvwZVXTo=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//0MgBgeItRBBni71BeJEEUEIhFY7FJoQQTUIEyrbKBFBacJvCogWEUEqX0yiflsRQV4f+w0F/BBB4xSy78BAEUH4qMK8p44RQVu+feqWRBBBEJfIO/XDEUEEshLbj3cQQdmY3lgL8hFBDewOz9iEEEG8ftuJcOIRQY3pIxUBdhBBQdIVEZIODkEzskycp9kTQfKg+JDw4Q1B1oiQ5Wq/E0Gw6Tqr14kNQctIdieYCxNB2uivA9LVDUFD+NDsrzcTQSSJUQ0=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAArwAAAAAAAAA=eF5LUl1/fW/5H3uvFzn3OoH0yziu+ONA2m/PttTJQPoMp9iOeUC6QkeRtRVI65++OHM5kDZ5eeVZL0iczWx5MZDuCvnC+AFIv/Be9DsRSPNmCofdA9Jz1EVfhwBp10WtPTeB9D9rS44oEL/r4EqQ/AP9D8HxFX/sp4g+Prqg7I/9ap3einQg3y6S4dUKID+uy/drKZDvvkld8C6Q3/by91eQ/HKJ+ULngXwAS3llwA==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA/gUAAAAAAAA=eF4NkY071AkewM/P2IyKxrwYZkxEU17CeF2dup9QltB25KhQiNCahGrGsiOpIaWlEGVN7UirtAnJk77fSo5wIp3bRVrZo8nLrubGy5iuP+DzfD7P8ynb8dUXJyvUMHTdbqxqnotN83OtswMM1PlzMJW1PgpyzRWTnnwN3MuYFX6cNkXb4r5rHReYmBdyzuOdKgkEG89+sPxTDbSEE38Y25nigNwn8cUyA90Uh9SM8BOQ5FfqpZOhgcArfZ0pljw052+OK2xiYhm6UXtcsoD5bMgeMtQQvLzqVNc7Lk7NMCM57Z/55ESxvDENLKoLMlW9y9Byvq5mS4spdgfznBuFTIyzoUiOBqRDPXW7i2RCDZsozXZHN5qikKdv57jEwOnXUVNWb3aDlYxa2OyhAfU+n9G3GlN0CaT/r+0GE02az5X3c4Nhb4/fs85eNTz4Mf+GVhwdJ++JrzTUaOOOkwbXdDlRpGCu7pDFNg2EmOqnX2MzUHewRkzLpiCjyBBSz0rIZxmD1xdK1XBg2Hg8cjsdfxbOnSiUaqPDTE76T4FuEDCwpBjS1UDr+FJvoIqOe7Oqix0OUDAedt2f4p0kd8kKTbar1JDGtuZ1dtHR5CXPZO0qCq5vKV+nmo6Csx2XIx48XoZDgg2SDksGzo7VHjuaT8EHcwZBYdV8ct+pqiOiF2roz/p20vwOHfWL3RRrprXxu4ihfz05uIIUgduIe9EyiHcdXurTYWDx171bp5IoqBc001DUcZB03xoXkHr7EwTQfb/yGuGhq4d/Y7ENC3eeK5WqW45BkWBIFGK+BNfpnIgV2lysEZWNxCvpeFXqlcy2TwVZiqmyt+QTuI9Un87v5eFPHrc4VWYsrIbvH7U15cCyXaXy2colIE5EL4cpORg86Ss9+Z6Om/rP3xqR5ED06p1BPmafwDPRLND3DA+9r7LP351lYmyhJVnnfxGuhtTAHvkSiOZ1g56HcFFTln8/1omBkb4WuXbdl6F19AXX73P/+lEpKId5eMPIgem3iYWPasLS5fQfQOBTEtHspAbC9t0fFbVcPFBeR4sWMpC33/YuL0kGToFP326TaGAuvdHbPZ6BM/rOc613P/+Rfh9m4lIOr+wfd+odWIRvFBMW4oeGeCf8sYZfROBMzw6Jq7sMiC0GN48oNEA9zt9aWc1AOWG0x2qagm9KnNQfFTmQN1Ip0366CIvH20NXqgxxvIQXZt1NYEXfhy8Sh4vBM77ydNRzDURmVfkK+xn40PG/uQksHdTrieW8KhHCaMU/gkanFiFtOlw/Q5eOhv1v2k2GCWypiiNyssJgvOb2toM1Gsh2nnm6Fhl4L1zhKqHoYAR1NCv0LzHkjzExgYt9i/DyZcFqzme/g9OL9/5dBJavS9Cbv51CxrYo5+VCJUza9uyX5rLx9wwy07aBhg/F7Z4NH7xAauI+LD9NYHdS3eY5G3O8m3effyTGGJsajO6NScLIJ3wP73qBEnKbbtg4RrKRibe2GpbSsDzlUgCFc5RcG/6+6/dYAiWOcl0rtjl672aLf9thjAK3xuLMtu9Iuyhvqk25Ep6fyk9eV8XGrwN1ClgdNFzTZvZri20ozBnEM5W1BOYbtf2S4GWODZ7Cn2+KjHFhfpDnZy8mrTu3WP/15kfwD3aI3kRl44R//eEnoTR0bRUV+HaJYX3cfe0kRwLPJg8701RmOL66euPllcb4OlwaWlewncxb9fJL76cqkBW4D0yQNFxV1tp0RqqFx6yJ7KbeNKDp7WRX2BK4WdxvbeBhhBOn/um0KKLipQ13PPLIv5MXsuPdn5eqoHbf++oiPg2pRty/kUIt1BaNSVM8o2GyfnnF4hoCFzwj9tRxjfBhjOt+k31U3HZF8MmFn0yWEmc0Rs0qyLa9YvnD8hrsvsClJfpq4X8+aB4tPckhV07Z3cn5qIUW/G5iYD8Ljyex5IpSXfwSEqSV0kxyPDmzVrCggouHx143WdGQ07M3deGYFrZv2P3vLZe+JTNf2ZflmxIo9QmQ1V9kYXZa/KCsRxdnBV0dzm+TyP8Db88C9g==AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//cs5kxDc5ho/AN1nHi2tNr8XCn9SJHQnv4Axg38IYzU+g2X/uFPwGj/MjFBz/8o2v6lTrhu2jye/0LomxFu4qr4ZPS//JhIOP/x3gzUmXDO/0NBlRohbHb8QFjvVdW1oPtZq2eGpeeo+mGAV/67EL7/XY+nqTqEGv7KMzib2iJy+4slK5XUO7D46fS8bHggwv+RLVR7P4wa/AEWGPFFeC76vnKyS4KUbP3CsM7E0jji/QtycWF1qKb8xiQiA212Vvic/pkZYnhs/VskqYKlqOL/ZfaJpTk8pvyAO5MSM97K+RaQ4ZFk6Dj9tcY9uqbU0vy4FO0WipR+/Sn28xObaub7xLj5pscTmPhhI7xrjBDG/fULobs/nCL+A26lOY+8hPorel1M+Luk+qE2q4zr2ML/5xqhKU/MIvyfPZfw8i58+KGkSr4poGT/BLeKivlAzvyjZbim7tiO/1UHL/eDZl77U+kuHVW8ZP1c74hW/XjO/bjL6AojHI78TLvH2hwWtvi4GBni7bQ4/ENzvX0efML9yuy6rJWEYv5ry81dLcsq+OhI5zKuR8z6lDv3dxt4rvxVPqd5AcAK/FAUacIWGmb58fjulsD7zPpDEVFb1/Su/Vh5G6Ep7Ar8EJc1dpfStPh+RRI+wzh4/Qn6T9VKAPb97hVhwUDUwvzCHkd0YmWS+gtTXy+HGHj9MOwc5k4w9vwnSYaPFMTC/qqzDpe/dtz6fbPAUaD8QP/DB2/B4ozi/HDsRktLNJL/KHCCKAReOPqx+ZxC0fNU+WYpeAUGhM79WzowRTxATv6MeWJArqK0+6LLVQlQyxj7/tC9H3nszv9zOmmPQ1BK/wOsGwxvicj4smTWUAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/zOPGSP+UWA/KFfrfvppYD94f9yBBvhYP0txszRGjFA/SPsy+A4yUD9oCmhH/CNgP05W90czRmA/wQIMN37HWD8B570BLqlQPxDLWm5igVA/48mLqKarYD8cZDISW49gPwFTHgrtt1g/wu7EaFqaUD+HIQnJ9KlQP1N4qgRyBF4/ECP8EGi9XT9SuzNHzvVVP2TsXr/0oE0/xBC1rzakTj+5ZkNKAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAYgAAAAAAAAA=eF5jYGBwWMPcsI8BSO842QaiGzYETQLRCRKLpoDFaxa1gGgGhrhGCD0j0A5ENcyaBeYfeL0QIv56IoQ+kAuhN6RB6J5mCK3SAaENKvY5bZ5Z+fqXuyOEDsdBuzsCALtJNls=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/87UzPBZwu8+LFFSCfXD/z4wNVqIHQKtvjfENZzmqAC/p0qq1i2L8L6SaB0A8AP/PlIe/1n0KA8/VHpMBueYx76G7aUEbggRv0Jg+SdF7wC/nC8fZC4rAD9O2m/FvisQP/DqdfvPM60+MmMDRJ+QD7/w8PMeBa7/vq48X3uw1Os+gIlbb+KJ+z6sRiRx1QDPvhSMQ3lJqwG/GTaxQAbZ8b6BMU2DAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA3QAAAAAAAAA=eF6zfrPhXXreZYezQTzd31veOjCAwQnbWTMeauTW/oXyz9humdr9J2X2Dyj/2F6hVddMnp/97PBfaTbDtLjLBzaFfppw8P5jhxVWmcWu1k+g6nbshdBXofQFWyjfFlX+LpTeYOvXIXao/9zjA1B52wruoFUybQ8dUNXvgdI3oPRFqHkboPwFUP4J26jXO9qt+B4dgOlPkpJdtCf3moOq7y/rJTlvD8DUnRK89LAw4e8BmH7LXb9Ot678AeWf2Tu3kzvX4vPnAx0dXBb73K4duJZwO0799OMDAAf+a90=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdQAAAAAAAAA=eF5jYEAFK1pEgqRPK++fpLnA/U2myv6EdZ8nsQir7kdTxhAmzVwiUqCxP3ln6/EHopr70xVuyQQ90cBQZ+enc/B0vfj+u3c8Txz4Jr7/Qk2L1IF6CQx1zvVrk1QzjPcn+dYXtgQb7Xfvk+LlYzPaDwBN6SqcAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdAAAAAAAAAA=eF5jYEAFhYfF3Dm6BRxtsnnXp28UcJy546G2wU0BRzRlDNc+dB1YtVvQkbnD9qPwC0HHs6am/nw3BTHU3ee3XtrDwutY8HhhW64hryNDwffVsQG8GOrm70+QmbFc1NHV4UJcLaOo4+5lZUV9t0UcAea0JqE=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAaQAAAAAAAAA=eF5jYEAFnkL3E86W/7H/wv4l4SCQnsSk6rQFSKMpYziUwv87Hih+arebXjCQPu/v1BuJRZ3Afa2nEyv+2M9wLBToBtKtSTWnWiow1Rk+ORv+q/SPffy1/dVaZX/s/dWmeZoAaQDsazEYAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA4AAAAAAAAAA=eF5jYEAFzCa/6xWNzO1hfI83vkdFgt3hfNWJVZseafvA+X9WfrzkmxQA58PAXF/+460KZvtldyn0cmiY27eI/tkSZm+2/8Yuk62Kke72uiwmd6amme1nm/DFJFTUx74wIfO/jKnZfph5zzjeX/nPZrYfZt4qBT1f1Uy3/Rcb2j9dcTC353FhNOwvcdtfUHb3Y4iEu73BvEid1Qvc9vcZl165/8bb3tlgt925rW5w8xhmXGKqnOgGNw8qvl/a4sPF0j5zexhfY+3FGddi3BH8LsV7xa+84XyYeTA+AIaJeEY=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7wEAAAAAAAA=eF5jMvldr2gUbm9W5R2aMiNgPwMymPBmt/cb36MiweH2KgJ72RvXI+R3r8vtv+G1bp/a95pPFycF2Kswq6d+OIOQr92QveW82ia7xPNaB3kfO9mHcPTvv7ocIa91o0FF7tWFfT7ci88+TnKyX+u2+b59K5r9CQJ7ZHYp9HJohNs3zHj08/Y5hLzds+Nv3l44t+/6LpOtipHh9pyfD6RkX0fIT6vaN3d/y9l9341S3gU0BtgvMXNObPiBkPd5U/e0sfLyPluj2IefrznZG6fwrI/iCITLZ/i8O7dYutDuGP/uw5J7newZPskeknqL0O92TNt2Kt91u4sN7Z+uOITb3z14ZKKTO0I+77DbsuOXj+3LK7v7MUQi3P7Ft26LLdYIeT2PdbFPZQ7uUyk2jC71CbDP+Hut848OQr7HVrppo/X9fQK7uTN6I5ztL/5adKfTHiG/ythu+vVvB/Yta9zh+j7O2X7Z7QlnrgQg5BsVfb7M1XpkJ2Xx4WJpX7j9s5nyXMlC/mjh+223xtqLM67FhNsf1V8Wp/rBDy4futvleLDMXTuJPM2vFsoB9qGKc3MuZiPkK1qnzJ634aXdPF9lqa7zTvay2RWmGToIed+rH15388/d56DOLj8/w9n+kbHRy/SZfqj2M0jZAADNv+MJAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAOAIAAAAAAAA=eF6LXnb1g5NTuP199sInTh0B+02ji24VKF6wYwCBhDe7l8RpmJklh9ufmvtoWvz8gP0mUPkt63L7b3it21ebGZ78eVGA/YkJPl/O7UHIV27I3nJebZOd3Jb7iwKYne1/Td3it2U6Ql7jRoOK3KsL+zg+hK9Xa3ay97hyI0+uFCEPtj9HYI9e3/nKo+zh9ulHjHnl3wfsZ/k5dUWn4oN9rs+Ov3l74dy+F32PF96zCLf/LSdUse57wH4OqPycqn1z97ec3cfOLnybNzHAflbSlJLDEoH7P/yAyPu+qXvaWHl5X8StXbtypznZq06IPTRXI3A/J1T/C+935xZLF9o92C4xd3KNk/0n2fyrsbyB+x9A9fsc07adynfdbumK5KkHNobbq5lcvLt2jf/+qi+c219Y/bHLPey27PjlY/ts5u2c4tAZbq81L1574lT//QVQeRmPdbFPZQ7u+zaL91/C3gB7hdVfzypW+O+PhcpPtZVu2mh9f986riNrU6xc7P8s7S22meu/vwgqP8PYbvr1bwf2hV4s6D7m4GK/LD0z+NJ+//1hUPkaRZ8vc7Ue2d0qtlvM/jrUXm7iwc3zdQL3GzvLvH5kJrUfEr/fdn97IZ+VsTPUXvwOy70G6cD9BlB5v90ux4Nl7tpdDn7fM/W/j/2DEIanYTcD4PJ1rVNmz9vw0i6jq74yWtDeft/PXM9FOxHyoVc/vO7mn7vvyrzFBw8pOtjL3fNSVvoQsF8P2f4fkjYA1T89Rw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//bADcOv97PvAVKWnheeKHMFA1oJMUYMUwUB5FUoJLgZAwkCpUA0t/MDYtPclhrIcwahFB04tnxTBKedLK/y1e8AMVwpWoHj8wG5avKRHEhjB3+kGw0mDDsFvaB5sU1U5QG7Z1oX2XfzA6gtpi8JYE8Fk52cOt4sDwRaHPozQl23Anyshwm1y/MAgwfjU2oITwa4Zy02xtAPBACoE6hhi3L/p+wJEPPv/wDBFmFc8Eh/B5kJKTgtiFsEUOscpqyhmwKmDm76Cr//AOMCXsNvjHsGjue6Pz0MWwQWdOHOVq4PAjvX7TmOw/8DUloUkR+EZwTnt20e4fhDBtrtDHFHQisDSVW0WnFn/wMAW+R791hTByPMM09VIBcGA3N+SoJnyP6R6xpME6f7AEEAskj6+FMFCyGRY9C4FwTpNlmhTW3BAQtT1WEyo9MA4Q98PqvwXwdiKQr0BDRHBinF6vkW8aMDYaR+a9sb0wHo20vnXDxjBGdQmDBQcEcGgZi7FABl+wEpPbz0aaPXAeuAx8pNUFMF0igPpizgJwfS4TrNSbZvA7gMjM2dE9sCzajg+w64Qwa12sjDJTgDBis2u2M54asDyyFClw3n2wKpP3Je7wxDBPLVmP+JjAMGy7CXX+xB/QDapHMRhbAXBxk/S6i//IsFUijzV3D4cwQD1TuOcXDXA7BVDDmx4BcGoB8k4+QUjwfj2BpDaQBzB9YpU6XrAiEA+ilcI+rUEwZI5dbj2Zh/BdnSnAlH2FMHeXGMonjRfQMCfNbdOOATBLfQjV1PAGME8klEryrMLwdhD/SGswX5AQhMOMwpsBMEIcwRoTaAYwdbwB7DClAvB4LLs61iVQ0ArB0EuAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAMgAAAAAAAAA=eF7rEg+7evdKgUMXAXrm7mOuFb2FDrOgNC5+49NnnJ7H8+B0Ew5+GggElROkAZeBTNE=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAMgAAAAAAAAA=eF7rEg+7evdKgUMXAXrm7mOuFb2FDrOgNC5+49NnnJ7H8+B0Ew5+GggElROkAZeBTNE=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//u82FUg5jP3APIkaxIiOHcF4lhGMxUYVwdxZlBeYh3PAxoXunLxc/cBOu+5O13EdwVhs1W3yNRXB5ZZVr4vhasAUxbMuMW39wI/hK7RTrxPByB7wCKIFBMGSVwUzHLJwQOQrQLFsRf3AiQYOIWLpE8Gp5vStozwEwSexIJzpFB1AXgTA7Jdc/cBMn5sKzGkdwTj3dQ4GCxXBps9HcpeXfsA0Itbi56n9wPbb5VPomR3Bkvpg2nAwFcEt+dQEGkabwHpmzL0vpPzAWlSjv1ewE8ENQUpozr8DwQExSji7vpfA6oSCWSfM/MAJXR7KCeUTwetkH5wU8QPBWpdpubrZNkDWMl5kXR79wL+IBwR9Wx3Bugaul2N+FcEqc6fdcURrQCbGbhmKAP3AkDmA/NFHHcF1+jP0xWkVwc67xdO7syzAvUKzrM31/cDhaZW/DjAUwS1m9iE3dAXB1BNfcGYcRsBSvXCOmvX9wG8AJii4xRPB9c/9wPwIBcGrLWjQWwV9QGA4wsk=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAeAMAAAAAAAA=eF5l0HswVHEUwPEQS+mBmNiNW9JrUtJuKbm3pIco6UFqM72laXopbWZCjKS21iZ5llCpiLLEtJwrm2iptg2jzCCL0EPtuGXUTPXHuj/zc/79zPfMnGNXkP9SEyGgRusl5EhgIz1KN2VbDsZ035VCz828WzyvkW5tfFStSbhI2ul6TtZki/vyYT6biArml7I97t3Ooi5n0SPwm/lHb9xCAfXLK9Y77AlyedBg6Dm/R3Dfc5Z58f6RbtDsvvtrYC451MceF01wyUVeDQl10z1iyKEe984ZSbtI/wqylD9/YO0BgnYI79KPzkYuvV3j/bdeSnI4PqnJ6QQ9HfMO3992LYnA9sWFcdVPUpDHW1t6Pe26Dka6HnczjcHTvgNFZNOPrzVqKUGb+WRFqhKRi7LHr9duyoMXK6cxHv4EbY65VpJmur0yB4b68CVW+5hryENOFEeNPR3H9hGYG967bfBAfRim9tFmijECitf+e8xlQ1/WeTtcloYQGWBZm5opl/BH+PiAi+JtUTIgdL2M2PtRa4Lc6LXbkRBGCVa6HveJv27cXRusApM9ybJAHwGVaXCso2IccrKzszTjUg2kfiYVBa18KgvzuNeupz1Xob7HqcmmwgJ5sGnjvkXQyPa4u3Xf/FtQ/gHW7z70Xf//f17EKAWmNsj1m1dJuf7vYTVE/JhXZUsrMHdPs3LoC2pj+9q21oAVDsiToiW99s9r2R53MXd+fv32BvA7xb3AtNjR7pvPvHOegzzF0XUPzdRC1YRQRsuzpVdjHv3cTW+00Ru2FyR+N4qYi7wlr8ckKjQXanT9YsxJzqC7slkGvlsyOoTr+NQ9gVicUrWBdY05kzVn9kOgqIArLZyRHh7nHUg43mH7k6GFxmmVyJUuHxsGnynYHneVZYnHQOUzOJOksP0TxKfKhHKJcNj+sxuDLVyVStiRYmueHb+QKsV8rkI9MPWTCsJ0vWmJ8Y32N8gL3K4L5co2tjfGXLvO4Vr5pXaoeHj+sNMAj57cvyaySI38m9Ap2dqlA7Qym0IpY01PwjysYathHa0Bha7/Ut+YP3z/1damt2G7Gtm+G3NHlX1e69EGKOtP6M9hePTykhOeda+G3Vf+M4gQvQQ6c7N9TzyXXob5p96J7/XE1WwfGZjO7VUiJ4s6F+wMf8z2uKdP4c9a7p0L/wBPvklxAQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAAYwQAAAAAAAA=eF5N0Y8z1Hkcx/HyM/ltz9UeTeuEEKrbRa39ftmYofNjNcSVkh9Hbm5o6HDuIqQOG+fnkl8lP2J1sX5tdnw+NpzI+LHYsprEIpxjzhEx6m6mLx9/wGOe79e8lfySUuM5NPw3j0NWj/gsuDVfJxYWNWMCj6tJsxUZoERh02N9mYqTguNa8oZZMFIzaEFLSQzI+8JE0qwUTInwaaulpcJGFvxIeLIxJSGEygcFhD+wT96QN4j89MnomZPRtcB+VNRefZaG/1qi+TqzFvVbgjci48/XAp+6yD9/V6XhirwI38Re5BXGmH5/X+Zi216rU6aEVY76ApDVe8Q+CQskfMHLwK/thMhLDTlXMK82bGYg/rqqFQVWDV7LLChC/Yyy586fhjOwHCveiQlnPWg1JdJmP0X+L/fNw29yADZFeFuFL7z6s1CfTdb+tmUmF2z7roOREvgEeU2pbMtSUAO2J83WgeNPgfmlxzTm0lE/5qGay/K5GuB5PYl9V1EPGjWmZY1ykV9IL1C58KwSbHuFu/f/VU1H/djwxgTlqOQdn14iE/WxGvnFyjLZatGPIDxU1BEmR8MdmVZv9BTdYVOuTNM3LvnA8KL16QhKCaDTG47VvaLhardpj9zqWRCT4dR5p69g+79LYXsn1IOfCC+5WdxwRxn5PX2M0IjVHmBB+PsdhbGNzSyIE159rajCMWQAXJqoDlJ2ouF9AdxmT3XkT01P80tSn4Oui96u5Uct8aLKqvhEAQvaEP5OHz3KyWEA+BNeM4O06KHtDhMzP/vvVcSBlkAMGgk/NqzJT/j//zTCM2aLPz1plYB7/g4pVQEUuDgtr/RAxx02Ev1NiUOGjtco4G+RO70fkCHfWG6or4sFqYTHC740WAp+Czjb3lbHTGyI7s9OTJ/X73ix49tukddkh1iQQfgUHYs/hi+MgIWoQQFz/TAMq2+o6DJFPsuM7g9XXwBLN41u3Q8HIXONd231Jdqf2MHYK6fQD6SE9101lZDM0f7JmjmlhEguOE14k1MmZXYStN9OcYPZM1YPBAlXb6g4U/Gfi43ahB2u8IfKmUz2hxhsRmu11MT4MSjHIthO0eZ4n4yrtSCHBVvjYinvzEnwZrLzZYpZOWgiPHPcxaZd6Aof5n72fdYTIxvC9h1/XN/vPT2bBVsIP6zdbL/+TAgmO9nN3BAqzuk8335rV/8XVgiJ3tMDJpa3skTJZrh37vTTwl19k3bRut67ATBL+NHDZQP7+1H/MSPXR9DzFowSPuYMu238HuovnTXIbk2dBEdW/JTC/9GFkz7S+teDyM/5HM8jW0+BoXznEJtMQ6gwacpzLET96BFP+V4oBQaEb2KET+7uc8ZfDcZcEe/40HMR3bv7JgP6NeNhI4BED8uYW9SF6hS1Gyu9aL9F6/tgSnQ34GnM6c36GsG8M8Lc4XzUl85rjO5ld4GvCO/SZeWm1YP6eMP0iUuxdaCB8NQD4riAPNQvPkQ9auvMBf8BH1MVhg==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA/AUAAAAAAAA=eF4N0vs/03scwPENR6XZeCQj0eayGQ9JZufE9v1OLttI0d1KF13khFo4TkS55JKJLropMSRNecgRKZ+3y1Jyv6Wr7KRIx6WiG2unP+D5eP3yCk1oTzDpIOLXvvPrB7NEkL9gzzrBPSakVeGHVKVSFJks3RtmTMSjsiUAP0VgO7o0/K6WNaxSXch1WJ+N/W5yxvnDMyJ+oOvLaF26CCyP7K95VM0EbgS75fbaO2j/wwdTeyyJ+Cm3noy87yJ4ZNcS5KJhDf7u3U5LPeRo70IDe0dPIi4DZV//WRG8z5eW6p5kwmmrwvC+5WXIaMnPFXwxEb9Z6D7v4qgICrvuynp++Sw2W/p4+00sfUT8Xh5CxD+09a4jxYvgjYG+rTKBCSEG2mdazPZgUqlO04VjRJzRT//r8RMR3M/Z1Fr7lQm1gzUXtBYBVlOfUoH30OGtr5l8LYsHHXNeOI3RyXDlU6QeySYUs9gf7HNkoznULgzOP3GaB5EGRbpbSigwbijc4SesxNp2p/241UmHcPqnp2IqD7QprhmJC8gg9JF0jLGSUH+MVuvMOnPYt2dNZMAxHsRcFO9i5lAgoVZ6l9NZjnUfvcx6PUYHu4PkELEeDzalHt+wlUSGrYPpb8SKy4iRLlp/0tMc+ibey9ghPOg2lkx7naJAYHvMt4sbklFw49Ko6HE6JMxkig+TeTDq6CDXmE+Gj7zYDnlFENrd8PKRncAcJr6UELz/5EFlyEkyNYsCs7pYSUlRBqbk+R22mlZjeu33j1ev9AJ8yEB9/RMTXD9ztFZcP4++cjKJikY1dmTEtpTgIgJidWhE3UUG2Ec45hm9K0dcLeX+5F41FvAvJ0bi5QXr1RHlo1+YYLH9huIk+zHq6qgTDsvUWMXQJeqdlSLInjqYYZrLAKvaQ3qlXR3owZZtLeU7Cbhy38tiB1cvUGlVrEsytIbjA6RiU6cmFBXlEcc8SsBl/l0kIUcEBbNTtrQ2BtQUkzXLGh4je+/MpBRfAr7cuH2ywNsL/uGrdJeYWUPzKoncv60HaTwLcnMKI+DsZPvn1XwRzAk9dmeolwEYnlFX2NqHgvpUFlUG5vBuu90pqjEGZhFYfxiHAsYyecF/T1uR+eF62YCYBl+gWWjUzwW9tMBklzoduGwRmFq/uR3ptulPLjY1B8m5WOdZWwxWs3LecTwpkLX44Da2UR1a41H4/E4gDWTDSdYP3nMhMfcM369dBwKazIr9NBpQYqHny6JZOvj5bzJRMTBwXfH5VaeIAg5zo7sdtRtRdbC7xowdDZoF5Y29k1xIeju542yfDkxX2Q5cuqxAxW6SSC8VHc7HM629f/W/1WyJ1vahgL2J1J1XeQ5N6Mjj8pfSYGfz3CqNaS4wPtxNGXyqA2U21zkjwgJkrB/Db9ilicc7VSxLSRdAeDc7gXvfCv7O82k6G1aKvnrFog57NTb5gD9m2OoN3JJ8CxsFC6Zygho6s4uRidXV4fEgTTx0JHH8TaoAsgZDUG6NFQyXZZ5V8hTo+UKxZvAKNeZw43WapNkbUjwfplc1sOCbzqaGcoIC5R59EeN6WxN3cZRnTScKoFJZ1KTfaQU21YEHIKAZVTo8ue2oocI6z40lS0a8QdtU8IcikQV1c2sJ8/R70NBvJ3RdLmji6QmUDosMAQRUVg7s7rUCzi6f9GNaStR6+37Fk5ZZbJnHFVXWR28YGT+d55nKgoJbzev5tLfIpIuqKguiwUjacDR1xhn0Fg0V5hSRQOQ2YWjX+RLFuFyNFcZbwoZXZEnmDwxmP4d1OVpSod4j/9q4mxKl2NVHzeykAdesc/XnH85Qk+NP3VxAgux7mbmNp1rQRETxovhoSwgbpvjHzWBQz2SEt5pRgV27+ExcZjcqkwUYSUU02PxBSYggukD5w40Js7/8RmlaqPuAAqn2KVILnluCL0YZJ8/HIStNYb/XggoDaAfL2LcJPa3st9km/PXXss2GArUzlJNsGK/zSeAmtHXaqHcN8XKmNPnPLIFiyp7om4uDy5hC2ECngnkIl9DbXIz+B5ee+/s=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//moIFyk9iUI/KJ6pdJ8HQj/OLI/awYdCPx0e2xQgBkI/pl9PkCZXQj9EmrqtBRNCPzLSSr9BUUI/19Oc1ysNQj8UKBKwqgZDP1M76HThBEM/cH1Zuwr8Qj8s2Ne7YPpCP99xVbKo+UI/KGlZD2D+Qj9Z2P3f2/hCP1WeFDya/UI/yOSlYPFOQj/oEb9MZSxDP8kLU0dZUUI/dxs2rNkuQz+uRmUA7HtCP7Hd7kZ0YEM/B9bLfFF/Qj+d5AzI5mNDP5pCzkaIiEM/JAUB/GySQz8+bdJ8PJVDP7WuWV4an0M/VZRWcn2iQz+2CxtTEKRDP2HS79TfpEM/9WgwpYCmQz8dHjOkPgZBP7HOYI0DTjk/GuTBmoIFQT9xxU8ehUw5P1eQ2u0tGEE/Eyka8ZfAOD8SDnnBbRtBPy/gh6dhxzg/6gGbJMiuQT/F2hrxxO1BPw4bCBPSq0E/vMNgyO3pQT/msojuVKRBP9Z2JP9g4EE/ocs6j36iQT9b0lougN5BP0AEpJI=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA//zL1R4uTUUC/fusBieiYQL/arG3GgUhAv1UQUwPqj0C/Kl/3Sj5IQL8pJzka1oRAv70i32FnR0C/e1WKEwCEQL9A2AmcNc5Av27oRucM4j+/vKmRmxfYQL8fpKnEhfY/v87MvTh80kC/S+cEmaLyP7+fDDMZkdRAvyj8fbDo9j+/nBJGY8MaPr9lnp0Q3cBBv4Th16BmGD6/XQWzj/K/Qb/KSlMoOhk+v7FQ2/ri0EG/2eF4WX0WPr+Mb4aqqs9Bv5zyYXU=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAAywAAAAAAAAA=eF4BwAA///TXl/qxbiBBrrXJ9cO2IEF5wo/ZlmUgQfl+5UiUrSBB6QzxHlVlIEE0zW6SUqIgQcvfTpN6ZCBBWvmD3XWhIEGOisULYu0gQTofAdMIDyBBcnm0Kov3IEFSSECkAhkgQcMZQ9G58SBBlaVWOREXIEE77fAF4PMgQbEQg0opGSBBT+6+jatsHkGkN7kuYe8hQcfadwSnah5BUQS/7HruIUEuP311dmseQY6s2nYdASJBguPNVvdoHkHR9PPmzP8hQWPdVrs=AQAAAAAAAAAAgAAAAAAAAMAAAAAAAAAArAAAAAAAAAA=eF5btGBn1MyiP/bS+yeIFALpAqP5W+cC6S61gvxSIP25QZANxJeba81aDaTDk8vSQXxh7gVpIL4S6/KOaCAtYZH7+AaQ3vA7oTcMSP+1EnxxGUhfK6iQjgKpY+dPugaku3+yiUUC6eWSM2OuAmmW3wveWhT/sS/0z6/bUvjHft8EgT5LIH9H2DW5rUD+Lb47YlZA/nKpDo1VQP7x2e92gfhaSyeeAfEBS0pfpw==AQAAAAAAAAAAgAAAAAAAAAAGAAAAAAAA9wUAAAAAAAA=eF4N1ItX03UDx3FlD0mKD5ex8RsQMH6DLNkFFFC5bDGT20C5CEpen5IBopSAXMILmpJOgbhNhISAjaMTEVBMG/j9lAoJZM4MVIRUiMDykkODh434C17nc87nvMcCV8btP0whzeRW3ZU7QhxT/zJg3MFFZLFOx2/fSKYzQh5FWnAQ5dJkFIlEWHY5ea7iEhcnUzcVqBwTJG84P0xN7aMwE/P2raW9Qpx+qpy4nszFVmFATrlbPon2SNvWacZB+YqCv/9yF4F6PpwZeYGLThIROi84l1j06/RUKQXPA8NvFvUJMfaUJ12RwMXQVCIzl7+fnLRQ5rnoKSSLq8b30CJ4va3sLj7LhSBWyKnavVditetj3/9+TuFQvOXQ43Yh9LWTQ9vXczE5FNywctRL4ub+TavjAwodmiTtfbYIk1syj92s5iLPJnXoa+ciSXStfHG5goJmd9vrjBYanosueH9x3Qbqhzk5QwEBEnFb9PcyOw56vRs/ijXjobnSvNoQxILfNWF5jPVhyYV97afK8igwSUxeXAMNtbE1wOU7G1jlGmuixmJI/FhY+QeWHGgFqoUOBhopshyzIn8W3h/dxpZlH5C8VVucvbiQQniFZK2Pmoa4tihrQ7sNqrKuLEi6u4PgtIWX3wyFuwU7gzTPabiED9cVili4+eiyV8V7ccShv4BfX0DBPfeczk1Fw0GYosjV2kDbcXJEVbqMqJt/11w0Ujh+Sy5WPqNx6UNGcouQhYVWkzusr26SSCN/fXI2lYMNz0qY38SL0HyG8TKwj4uaoPjUG18mkkPie3LGKgophUdOjG4UonRvmsHShIukPZYthsIDpPFWwIWqbA78Gl74FG8WYXxtulg6wIWldZ2TjF9JDmxeXjC1mgKfMjv6o1wIQzS7hJrHhU9f+/J7+2pIhbNTE1POQV2A287gWd83spqWDnLh6M47+sc8JbG50VTm7D27z3br4ovrhaiPF8xcnc/FrsSu7c2kkkROtFkuTeeg2FT+vzlbRbg68lC3c4SLT7as0K4+Uk8G7cyPSKQUWgdM17nN+rsMsa0TVrP/8+MZCyvVxKL44E/fv8sBv7FHlyHj4WnykwSzj1mYa86b3zH+NXnYK3peuckWXvnrpnWBNPL7bkeI7jDh2+Un/imrmgT9Kn5R48XBnw++FXat40EeFXFqZSoLX/1fJZg8X0SWrKoP/2e7LUY397wZi6Cxmv3OwOtBJkJZqqrAxmJy73Hjy05nDn78x7AhJ4qHG1LrfQ0JLIjE6rLOKyXEcaHe6dIaWzSc3WynCKcRMiKZvtjHBGtjm1CypYyIpC+CBDQHXM/aVHotD8GZu7sdklhgdgfIuo7JSZnqtt4q2hZf+p+PcFlDo1fIeJd7n4n8V34uEzNpRHW4pTzEmY27J4wpXT58bGwxle8ZcsKcxNfX0nP3EFuV9kn/UnswrIjpyHoPOO/yPHdmPo1nMKQ3ZWSR1zEmXRbvsCFThEXuWMpHqXJv38IBJ/SsfdDFMJaSVWkHVxZ62AOKpATvdR6YbE/xnzKjkTc3RFDYUUrqzVLnVVuz0aG2DpwR8GFzmZkf+psTRvSDukMRJ8maktv+erk97AIl5xqTPRCYub+1dgGNcf9fyhk36sgmTUmrvxMbtncOXulfwUfsmTnJDn86QZZ7LdhM3UxM9As++y7dHhmWxrgTn3pgtNufUWlF4/Ff/r6df1wk8qKKp2GtbHxQVGUb4ueCWvctizSrmRB9ez5N86iRKGZcLXNgD9+qV4JlOa4YZxzadj+Hwhfbj2b+PNpMshfYRXc3sUGG40PzfV3wkeN+vXkEE+PeN2vSlFXk0uBpSXy7PU6E697qyHaFt/b6h8uzZnvrfrNII64jE0u+6k+sZyPO0OvXOuu7Z6YvagpjQhOmNVlfX0Z8lkxH5k7bI06Z7PnJcVeYNnofeTXby0GZ9P1hWkl6Qs2jztayMd1e4SyZ9Y2CnjZhKBNi6wDDD492k3tx3fGKKXvEqr2lAwpXnGL+/NKnhIL2P8cTajRZ5F+um+vJAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//UhRH0+rDQI/3k8V0IlqSb9ZKHMWT6Env4Bah3zoiRS+aFm/hYeoAT92n8oILm9Jv8Cgbjczgie/RvODmJQ8wL6QJ1oNlY4Kv6crZ8eM70O/XEpTIv65Hr+sGXrc/rCTvs18XxxvtiG/fgF4l+TsPL+/GfoUsH4Nv2m2GEgfX6a+m05oTDvOIb/AvePALuw8v7TBxlkVfA2/AL2B4McYC77+0g41O24AP+4cbyKhZEq/Z0Scx/BHKL9y0BktaSmvPgIUO1YLoQA/hTaB94RfSr8IDCGQM1Qov6LHcYlh07a+SgtLUGjFDL+Ws3tQ/bBEvx09Dcz7PiC/uRwVg1I7s74qF5nod5Qiv+932UGcGz6/Bs/ugcpDEL/C6d6zFOKovizxCoJfhyK/dkrattMUPr/09m8FZkMQv+a6GkTu5J4+08FA6HRSAj/ifMxz2mpHvxb6/EyELiW/aA4OF9fJlr5N9FoFXbACP4y56BkQZUe/PU74AsVJJb+4AMLz6MXHvvB88aOgJQW/lcyWXdVxQr+EgYmBYFYbv0apFb16fNy+OYmOfiFjHr9u0Kf7BQE7v8DgoF94sQe/ezUxzjoUxL4Yd4/tpSEevzKo+dGQBDu/Mh9kafWyB78Y5ffPi4lTPtlH3lOvZPw+fsuYFoBbTb80a/hCYj4rv4AZXbX7X1S+UI1dg8Df+j5Cw6+PzmtNv6zVrVV6DCu/TioeOIBGyb4yeT113eYSv/I4MuRn5Ea/srLDWLQKJL8a1XgVjSXovjrhXe9gPya/EPkYR0w+QL+IrMjTpVkavzoz44wg0sy+lNuT5Y2EJr9zj6yCKUFAv+9I7pEiWxq/AETa4rStJT7AyjgQAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/0M9Ysw4uUI/6gixQHWUQj88LBzNnrlCP7onFcp8+EI/Vpwve9P2Qj+ijzD03upBP8bYgRCi/kE/BefKHNSpQj9uBvl/aUtDPyt/fwgaUkM/XjbdXV0OQz/ZUw897ShDP0DLRodm7kI/bjfv3o6bQj/+jftR7plCP+ISN6A5GzY/sCMy9TqxNT/6MW7IPLE8P/CrIDUY+0E/A2fziMXzQT9GL0cXAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAYgAAAAAAAAA=eF5jYGBwWMPcsI8BSO842QaiGzYETQLRCRKLpoDFaxa1gGgGhrhGCD0j0A5ENcyaBeYfeL0QIv56IoQ+kAuhN6RB6J5mCK3SAaENKvY5bZ5Z+fqXuyOEDsdBuzsCALtJNls=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAqwAAAAAAAAA=eF4BoABf/zuWPNy6c+q+VCvp/Op8+r61Cpds5wYEvz59oZBexgq/uPPYZqfB+r40vggS8xf7vnbHhk2mDQu/Ut0375JMFL/AQ4qvSxMbv1DxDv2qDgu/soOKNXfi+b5vr7wZg8kJv0io9ch/eBO/01nu5FkUGr9bOezuJRAKv1PW9JQx2e6+l1HPZ58P/76Tz3/r/ssFvw64XrIvCQy/5z5Du04e/L49F1XVAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA0wAAAAAAAAA=eF5jVOtjm5z9wWH5GZGpjnwMjgxgsMFWRVP64yk2ASj/wN6g7aGevq844fJJizmWHb/A7DjfIGaBWP6HAy/LXmznOfnZYYG7tmPsTga4PlT6AZRmaEClN9hC6BO2N9W6Zup1MxyEice7bDNuvfjfAVX9Aaj6B7Zo4lDzF0DpDbaryz9+OLjk/wEof6/YzKhanrSPDuvDVoeyvIGJH9i7ZT1Hud8bfri9uRnvv975ygnlH7DteHz0Sssb5oNb50wuXfn64wEDGZE1DW8/HwAAHBpf+w==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAdgAAAAAAAAA=eF5jYEAF2y8lfDtt5bDfpFjx5hY9h/3nLszrf2XgsB9NGYPi3vtfP71w2N/yfb7z58cO+3ks5flC72Oq28ic2ce61nb/rH4l7Rvbbff7+Vi+Mdpii6Fu1v/MFOd9TvvfTEzavPmE035z291RXZec9gMAsdczAw==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAcgAAAAAAAAA=eF5jYEAFTdFSgYvDFRwZitv85nkrOK5fZ7Pvhi+QjwayT3oXHWVXdHyuZV9+jknRsWTXGwWJf5jqnikWs8/+KOt4oDKb8fhvWUfLN5s7hX/IYqgrM5zafuWdkqP4hu+XUn8pOXa4s5UqsSo7AgAK9ifkAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAaAAAAAAAAAA=eF5jYEAFal+zG5YV/bHnLePdsBpIK03w/bsSSKMpY1j1m0fGAyj+K/b3Yi8gfeLMHg1fLOouG1vvSS/+Yx89IVwqDUi77lr/EsRHVzfrXYmYWuEfe5EKmWh5IM2Yxb9MAkgDAAh8Lyg=AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAA5wAAAAAAAAA=eF5jYEAFgUrm5qaTRe1h/IrTs0/djlSF8z/svn/R0VURztd1lnn9yEwKzoeBly9t5lwJMdu/XVvF+LS5qP0Fl78bFf3M9nOLLClhjVC1v749vFjRxGz/kikHOJ5rK9p7d7543yBrth9m3imdHa/bpM32w8z7sfSlW0KT2/76PrOGzUki9i7FspelWtz2P3xfonCwR8VeTG9vJnud236d+7yfKk4p2Lc+XKm+ot4Nbt71zEPhQY1ucPP+rPx4yTcpYL8g66FP7e+F7WH8wKIKwzUzlOH8C2HcMja1CnA+zDwYHwCrl3RIAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAA7wEAAAAAAAA=eF4LUDI3N51sal+wXrd0/v6A/QzI4MEm66rTs0/djjS1n/u51nXmLoT8Bpu+ww+UD+5TXi1wc847SfvHJxvFJJcj5O/Iz5zDzlO271iw9KorNQr7f6W926wwDcn8qtjrYiyb92VkuhU6LlfYP0PxlMHSKaj2N9x/vXubtorxaXNT+2obfdMTDxHys9Km/FtxepUdt8iSEtYIU/tisTA5kccI+ZVLX2Zppu7Yp/x75x5WByn7iY98+1vvIbn/4rWdtp579r16ov1PvVJhv3Lmftl99xHyr/ao+58p2LrP7MxJn2uOCvsTzl88+PcBQv6wwAlW5wX9dnV9Zg2bk0zsnZZfZlxqjJAv23fF5vCK2fsevC9RONhjYq/bulpSwwwhn7Z3952C3FP7tsSfOl6TImXPOUvT8IU9Qv67irpny+3H+3QsZ6+2Oyq7v8G7OCnFAyFftXq2cS3rpX0b3/x9bF0hu18vj1VFyRMhz6ba2sG4eNY+IdZDn9rfG9v/43wrs+mYH1r8PtsdUFRhuGaGsb3EosCKpoMI+TtHbrZqzTi6Ty5wZdcDUSn7hYVFW/ZcRsiXHl2d/u3hs33PnVa+f/VFcn9o+JqqW+cQ8slKnx0ufDuz78TKl8ahfNL7k/clvbp9Es3+A5d3AwDkLOu/AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAMwIAAAAAAAA=eF7b+3rBr12XTe2FbINZ6tYH7DeNLrpVoHjBjgEEDmy2fjOFtS9xlqm9U+PiK+WrAvabQOU32PQdfqB8cN+VC9ufbf4gZd8Vvnzp92kIeRaFmXPYecr2XWnsd5v0XX7/ki/Czv9bEfIMVbHXxVg27+u6VvTKVE1hv9P69/ubW5DkQUD6ze6n1fef7ttmYp+f0eDBzRS4n+Xn1BWdig/29aZN+bfi9Co785R49Z/XTOxTnJYbhjMH7ueAyi9Y+jJLM3XHPjab5e1XrCXsW/jmLzrxL2D/hx8Q+YUXr+209dyzr9pl6wyHasX9wlMFDBkZAvdzQvU/26Puf6Zg674j2sHP3zkr7g/6rXTVgTFw/wOo/hUCJ1idF/TbndZdzp2kZmb/4N+7vUWt/vurvnBuf2H1xy5p3xWbwytm71Ppf7o6P8DMfveueW8ruvz3F0Dl0/fuvlOQe2pfXN6xqtk7FewznsyS+TnXf38sVP6Lirpny+3H+8T23Kht2Sa2P9Vdr/7jOv/9RVD5utWzjWtZL+1blG+9rTFTbP+WniCm3A3++8Og8kyqrR2Mi2ftm/Dia/68w1r2Bp4atsfZAvcbO8u8fmQmtR8cvg3PdkscTnr7TFTL3mrqrSx9lsD9BlD5O0dutmrNOLqPgavS0qBxwT6Gv686fHgR8kVHV6d/e/hsHwNE//4779lzbnMh5MOVPjtc+HZmX8G3Jv45i7T2hys/Vo7hCNyvh2y/w9XdAJyqO2E=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAiwIAAAAAAAA=eF4BgAJ//XgXOHLOVhjBWT1OM6KiL8FDEXciQVQhwQD/7lXcTOW/uRbz2tFiGMHzK22QaKcvwWS1rB7sTyHBvasAsLLWkMA0adFd3VQYwZwDbPFkkSnB9h66I8CHG8FsAPPI52tkwGi0qbQGWBjB7tOOS86HI8HwtLPXjo0UwUz+MeR4M3fA/FhteG1lGMFkt7gd4okjwcBr8rb+kRTBAO04hPsZ3L+Dl0IUZY4ZweJ+aX9kcTDBiI/KhY77IcHfiYc3mSiAQFknzig+hRnBkdIaNmVuMMFwj+GyjvshwURTp6sKrIfAMki4BXt+GcEnevi8E5oqwVVDbN9E0BzB/6l2fN7xg8BGK9dFUoUZwepwoSK+ZCTBorTQ7qewFcFiIfY/Rc55wJ73XlC9ehnBrC/Mh11fJME8HkfAzaoVwdijsMEWBXBAyXaBfmoNFsFWOa8Z3AktwTRbiU2afx/BOJeoqSWiZ8Dt8G/KogAWweX6jQeHAy3BE09QWWyFH8HJyywpkKeYwM2Vxxhu5RXBQh5FLjuBJ8FdiS4jNfgYwQDsyqfeiq3AVt0njCq9FcEHepsTQPwhwUYiovIAVxLB5Erdp9HSlMA8OXY1uKsVwQSPig3U+iHBnNx90rJREsEIf65I/kIkQLUdAMUYEh3BgijvPHZbMsFomLUkPi4kwcC2rZthISXAwA9Cy64xHcEJcY6C4WQywYxKXTf5KyTBWLnn8mk2msC59CX3AIUdwdZdYJKG0C3BpqDrCpCzIMHlMkQdwAq5wE7OtMKawx3BosR7ewu3JsHMWfTNAnAawUQWgW6x453AFcqgYnvuHcFWrhLj5sEmwY9SMAXMgRrBAN5leXp79j+IPD5pAQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAMgAAAAAAAAA=eF7rEg+7evdKgUMXAXrm7mOuFb2FDrOgNC5+49NnnJ7H8+B0Ew5+GggElROkAZeBTNE=AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAAMgAAAAAAAAA=eF7rEg+7evdKgUMXAXrm7mOuFb2FDrOgNC5+49NnnJ7H8+B0Ew5+GggElROkAZeBTNE=AQAAAAAAAAAAgAAAAAAAADAAAAAAAAAAEQAAAAAAAAA=eF5jYIAARiiGAVx8AAC0AAc=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEQAAAAAAAAA=eF5jYAACh34HBhrRAEjWDLU=AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF5jYEAAAAAMAAE=AQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAiwEAAAAAAAA=eF4BgAF//gsBMSalxxjBKWKqqmULMMGhDu9SKJEhwdMlFDtLvXHAeqFbGZq3GMFhFqCkNwEwwUM+y94AgyHB0h1H3Uf+b0BmMLGI7s0YwRFnV/jP1yPBvMM7B40BFcFv2iSqNnBzQGL1BWLwxhjB9VyxK2jKI8ELGXnEhvYUwclFTixBHU3A/u+J49HfGMFZWjP3Qgcwwct0QPArbyHBz5GEjoUhksC2faQ3KtUYwYkvkKTtBjDBxKNA6hl4IcGDOVUtSyKhwBkf5v79SRjBDZyqvb7NI8HKKggMHaEUwc74KgVyMJjAL/aY0+85GMFHBWzNUtEjwQk0c9tmoBTBGdm5C0+GiMAAPb1h8KgYwWpXpyUb9C/BRFW4olp8IcEsstACjpyLwNYOeBqjwxjB3mMigQwEMME4HdJL3IAhwRUjEmK5AqzAiN7g43o4GcG1V++l8dojwcfCCvIy5BXBVzX9cCzPqMB2Qtk1h08ZwUA+wvRM5CPBtNmRloLvFcHjLvkiy1WMwMWXuLo=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAEwAAAAAAAAA=eF77s/LjJd+kAPs/NKIByPY3yQ==AQAAAAAAAAAAgAAAAAAAAOABAAAAAAAATgAAAAAAAAA=eF590LEJACAMRNFs5hTuncY+jZAyIwiCiNHvdXlXHETkFy1vN3AHD3CROtNSr+XtBu7gAb52O+xmN3AHD/Ddn/f6c3YDd/C4fADMATcAAQAAAAAAAAAAgAAAAAAAAIABAAAAAAAAUwAAAAAAAAA=eF5djTcOwEAQhM45+xz+/1cXHhq2QUJotpT/mnAMB/k2nNThu3BWh+/DRR1/2NvCVZ69XR2evUMdnr+nOv6wd4VVnr1bHZ69Rx2ev6+6DwNvAck=AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAKAAAAAAAAAA=eF5jYYAADijNA6UFoLQIlJaA0jJQWgFKq0BpDSitA6UNoDQALeABOQ==AQAAAAAAAAAAgAAAAAAAAAwAAAAAAAAACwAAAAAAAAA=eF7j5EQAAALKAG0= </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1.prj b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1.prj index c4f6fa0e3d468169d8c46fdeff5cae2febf17015..2dbb23feedd5322a710e895ae53e17abbe609e9f 100644 --- a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1.prj +++ b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1.prj @@ -316,27 +316,29 @@ </linear_solver> </linear_solvers> <test_definition> + <!--primary variables--> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> - <field>displacement</field> + <field>pressure</field> <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> - <field>sigma</field> - <absolute_tolerance>1e-12</absolute_tolerance> + <field>displacement</field> + <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> + <!--secondary variables--> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> - <field>epsilon</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <field>sigma</field> + <absolute_tolerance>1e-12</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> - <field>pressure</field> + <field>epsilon</field> <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> @@ -349,43 +351,45 @@ <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> <field>NodalForces</field> - <absolute_tolerance>1e-10</absolute_tolerance> + <absolute_tolerance>1e-12</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> + <!--internal state variables--> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> <field>EquivalentPlasticStrain</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> - <regex>mfront_restart_part1_t_.*.vtu</regex> - <field>NodalForces</field> - <absolute_tolerance>6e-12</absolute_tolerance> - <relative_tolerance>0</relative_tolerance> - </vtkdiff> + <regex>mfront_restart_part1_t_.*.vtu</regex> + <field>PreConsolidationPressure</field> + <absolute_tolerance>1e-14</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <!--integration point variables--> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> <field>sigma_ip</field> - <absolute_tolerance>5e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> <field>epsilon_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> <field>material_state_variable_ElasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part1_t_.*.vtu</regex> <field>material_state_variable_EquivalentPlasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> </test_definition> diff --git a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1_t_1000.000000.vtu b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1_t_1000.000000.vtu index 5325a0e2f1d62be7ad93bdd258a58557a7a4de9d..ec13ecf3e1e50042c2a414a37eacab7dbdbe2e87 100644 --- a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1_t_1000.000000.vtu +++ b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part1_t_1000.000000.vtu @@ -51,6 +51,6 @@ </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbWTbdIMkyyTE0y10vJLCqpBABOCAcUAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICA6pc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDBtSCFAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAqpc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDA5SCDAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQQAAAAAAAAA=eF6zcV67y/yW5/5H02LCpy3J2m8D5R9rPSGy5BnTHhsc8i+cY1/PChXaYw/lP4DKw/jXoPpxyTO4QPQDAPP7QqA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5L7S9uKohosk+F0uloNADnEA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF4z2tmio+pSt98ISpui0QDTUA0LAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5j+x1yiGUaryMblGZHowHL+Av/AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5zNV9TZXXpt70rDhoA+jgPoQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAPwAAAAAAAAA=eF5LCBbc2NLFenCWwLT42ycEDiZA+ZwWOpvD7vbvTcAhv2W1yNzLL+btTYTyZ0LlYXwVqH5c8neh+gG64jxlAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF6zcV67y/yW5/7H02LCpy3J2m8D5W+7lFBbf/rHbico/xFUHsY/AZW3gPKfQOVhfKGgTDHeaaJ77KD8e1B5GN8FKg8AU2FB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5L7S9uKohoss+E0ilQOg1KAwDnOA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYACDBgYU2sAWxgcAGaUB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAIQAAAAAAAAA=eF5jYAACqXW7QRSD7LbdvMdL2GXPm+zjA9Mu+wB1MQl9AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAPQAAAAAAAAA=eF6b1MZ42O7SVVuxgi9Rdx0FHa2Sr5VmFigclADzFR1trawN/JVm2YpC5A8uWN86NwUoLwmRPwgAiLQcJQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF4z2tmio+pSt98SShtBaRMoDQDTwA0OAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5j/R1yiGUaryMXlGaB0qxQGgDL+Av9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5zNV9TZXXpt707lHaB0k5QGgD6QA+fAQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAGAAAAAAAAAA=eF5jYCAOVL20qWI41bEfxq+F8gFnRAhYAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAqpc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOUr0OT/Mk1qcKlz2wPjo5v/DyoPAG6kH5M=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAipc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOXR9f9lmtTgUue2B8avRpP/B5UHAG3MH5I=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQgAAAAAAAAA=eF6LDxbc2NLFenCWwLT42ycEDsZD+S3NV3K7nrXsTUWTh/EnQ+UT0ORh/E9OD+7LGC3aCzNvOpr5ss4QeQBeUj0FAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAALwAAAAAAAAA=eF7bxsK/xuvvdOt3XVEHWe4r222F8kVrIXy+r2vfXPiUsxsmLwflC0DlAeqvH8E=AQAAAAAAAAAAgAAAAAAAAAQAAAAAAAAADAAAAAAAAAA=eF5jYGBgAAAABAABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADgAAAAAAAAA=eF5jYAACh34HAAImARA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAJAAAAAAAAAA=eF5LDhbc2NLFenC2wLT42ycEDiZB+YkacjYGEw/uBQDiMA3OAQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF5jAAAAAQABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAAEAAAAAAAAAA=eF77s/LjJd+kAHsAGYAEpw==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAFQAAAAAAAAA=eF5jYMAHPtjjlcaQh/ER4gCW5AS9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYIAARijNDKWZoDQAAHgABw==AQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAACwAAAAAAAAA=eF5jYYAAAAAoAAU=AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF7jBAAACgAK + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICA6pc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDBtSCFAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAqpc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDA5SCDAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQQAAAAAAAAA=eF6zcV67y/yW5/5H02LCpy3J2m8D5R9rPSGy5BnTHhsc8i+cY1/PChXaYw/lP4DKw/jXoPpxyTO4QPQDAPP7QqA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5L7S9uKohosk+F0uloNADnEA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF4z2tmio+pSt98ISpui0QDTUA0LAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5j+x1yiGUaryMblGZHowHL+Av/AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5zNV9TZXXpt70rDhoA+jgPoQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAPwAAAAAAAAA=eF5LCBbc2NLFenCWwLT42ycEDiZA+ZwWOpvD7vbvTcAhv2W1yNzLL+btTYTyZ0LlYXwVqH5c8neh+gG64jxlAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF6zcV67y/yW5/7H02LCpy3J2m8D5W+7lFBbf/rHbico/xFUHsY/AZW3gPKfQOVhfKGgTDHeaaJ77KD8e1B5GN8FKg8AU2FB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5L7S9uKohoss+E0ilQOg1KAwDnOA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYACDBgYU2sAWxgcAGaUB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAIQAAAAAAAAA=eF5jYAACqXW7QRSD7LbdvMdL2GXPm+zjA9Mu+wB1MQl9AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAPQAAAAAAAAA=eF6b1MZ42O7SVVuxgi9Rdx0FHa2Sr5VmFigclADzFR1trawN/JVm2YpC5A8uWN86NwUoLwmRPwgAiLQcJQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF4z2tmio+pSt98SShtBaRMoDQDTwA0OAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5j/R1yiGUaryMXlGaB0qxQGgDL+Av9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5zNV9TZXXpt707lHaB0k5QGgD6QA+fAQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAGAAAAAAAAAA=eF5jYCAOVL20qWI41bEfxq+F8gFnRAhYAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAqpc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOUr0OT/Mk1qcKlz2wPjo5v/DyoPAG6kH5M=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAipc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOXR9f9lmtTgUue2B8avRpP/B5UHAG3MH5I=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQgAAAAAAAAA=eF6LDxbc2NLFenCWwLT42ycEDsZD+S3NV3K7nrXsTUWTh/EnQ+UT0ORh/E9OD+7LGC3aCzNvOpr5ss4QeQBeUj0FAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAALwAAAAAAAAA=eF7bxsK/xuvvdOt3XVEHWe4r222F8kVrIXy+r2vfXPiUsxsmLwflC0DlAeqvH8E=AQAAAAAAAAAAgAAAAAAAAAQAAAAAAAAADAAAAAAAAAA=eF5jYGBgAAAABAABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADgAAAAAAAAA=eF5jYAACh34HAAImARA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAJAAAAAAAAAA=eF5LDhbc2NLFenC2wLT42ycEDiZB+YkacjYGEw/uBQDiMA3OAQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF5jAAAAAQABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAAEAAAAAAAAAA=eF77s/LjJd+kAHsAGYAEpw==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAFQAAAAAAAAA=eF5jYMAHPtjjlcaQh/ER4gCW5AS9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYIAARijNDKWZoDQAAHgABw==AQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAACwAAAAAAAAA=eF5jYYAAAAAoAAU=AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF7jBAAACgAK </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2.xml b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2.xml index 4e638c4a374de6e327df9b8d706f285fd2c9a719..ca0f8697beb430e1bca0c1d43943a90902818248 100644 --- a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2.xml +++ b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2.xml @@ -50,27 +50,29 @@ <remove sel="/*/test_definition"/> <add sel="/*"> <test_definition> + <!--primary variables--> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> - <field>displacement</field> + <field>pressure</field> <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> - <field>sigma</field> - <absolute_tolerance>1e-12</absolute_tolerance> + <field>displacement</field> + <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> + <!--secondary variables--> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> - <field>epsilon</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <field>sigma</field> + <absolute_tolerance>1e-12</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> - <field>pressure</field> + <field>epsilon</field> <absolute_tolerance>1e-15</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> @@ -83,43 +85,45 @@ <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> <field>NodalForces</field> - <absolute_tolerance>1e-10</absolute_tolerance> + <absolute_tolerance>1e-12</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> + <!--internal state variables--> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> <field>EquivalentPlasticStrain</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> - <regex>mfront_restart_part2_t_.*.vtu</regex> - <field>NodalForces</field> - <absolute_tolerance>6e-12</absolute_tolerance> - <relative_tolerance>0</relative_tolerance> - </vtkdiff> + <regex>mfront_restart_part2_t_.*.vtu</regex> + <field>PreConsolidationPressure</field> + <absolute_tolerance>1e-14</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <!--integration point variables--> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> <field>sigma_ip</field> - <absolute_tolerance>5e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> <field>epsilon_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> <field>material_state_variable_ElasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> <vtkdiff> <regex>mfront_restart_part2_t_.*.vtu</regex> <field>material_state_variable_EquivalentPlasticStrain_ip</field> - <absolute_tolerance>1e-15</absolute_tolerance> + <absolute_tolerance>1e-14</absolute_tolerance> <relative_tolerance>0</relative_tolerance> </vtkdiff> </test_definition> diff --git a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_1000.000000.vtu b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_1000.000000.vtu index 7146ce6a67010cc2295150085263739d3f6a245c..6d7abb6a0ddb12e7a2983f2ff67a5b66ee60d442 100644 --- a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_1000.000000.vtu +++ b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_1000.000000.vtu @@ -51,6 +51,6 @@ </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbWTbdIMkyyTE0y10vJLCqpBABOCAcUAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICA6pc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDBtSCFAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAqpc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDA5SCDAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQQAAAAAAAAA=eF6zcV67y/yW5/5H02LCpy3J2m8D5R9rPSGy5BnTHhsc8i+cY1/PChXaYw/lP4DKw/jXoPpxyTO4QPQDAPP7QqA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5L7S9uKohosk+F0uloNADnEA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF4z2tmio+pSt98ISpui0QDTUA0LAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5j+x1yiGUaryMblGZHowHL+Av/AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5zNV9TZXXpt70rDhoA+jgPoQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAPwAAAAAAAAA=eF5LCBbc2NLFenCWwLT42ycEDiZA+ZwWOpvD7vbvTcAhv2W1yNzLL+btTYTyZ0LlYXwVqH5c8neh+gG64jxlAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF6zcV67y/yW5/7H02LCpy3J2m8D5W+7lFBbf/rHbico/xFUHsY/AZW3gPKfQOVhfKGgTDHeaaJ77KD8e1B5GN8FKg8AU2FB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5L7S9uKohoss+E0ilQOg1KAwDnOA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYACDBgYU2sAWxgcAGaUB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAIQAAAAAAAAA=eF5jYAACqXW7QRSD7LbdvMdL2GXPm+zjA9Mu+wB1MQl9AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAPQAAAAAAAAA=eF6b1MZ42O7SVVuxgi9Rdx0FHa2Sr5VmFigclADzFR1trawN/JVm2YpC5A8uWN86NwUoLwmRPwgAiLQcJQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF4z2tmio+pSt98SShtBaRMoDQDTwA0OAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5j/R1yiGUaryMXlGaB0qxQGgDL+Av9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5zNV9TZXXpt707lHaB0k5QGgD6QA+fAQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAGAAAAAAAAAA=eF5jYCAOVL20qWI41bEfxq+F8gFnRAhYAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAqpc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOUr0OT/Mk1qcKlz2wPjo5v/DyoPAG6kH5M=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAipc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOXR9f9lmtTgUue2B8avRpP/B5UHAG3MH5I=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQgAAAAAAAAA=eF6LDxbc2NLFenCWwLT42ycEDsZD+S3NV3K7nrXsTUWTh/EnQ+UT0ORh/E9OD+7LGC3aCzNvOpr5ss4QeQBeUj0FAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMZNIAW+cLuQ==AQAAAAAAAAAAgAAAAAAAAAQAAAAAAAAADAAAAAAAAAA=eF5jYGBgAAAABAABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADQAAAAAAAAA=eF5jYACBH/UAAncBeA==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAJAAAAAAAAAA=eF5LCBbc2NLFenCmwLT42ycEDiZA+a+SQ6v3Z0/fCwDrYA9AAQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF5jAAAAAQABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADQAAAAAAAAA=eF5jYACBH/UAAncBeA==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAFQAAAAAAAAA=eF5jYMAHPtjjlcaQh/ER4gCW5AS9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYIAARijNDKWZoDQAAHgABw==AQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAACwAAAAAAAAA=eF5jYYAAAAAoAAU=AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF7jBAAACgAK + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICA6pc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDBtSCFAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAqpc2VQynOvZDuQxrd7/T2cCnvAfGR5d32x49SX2fI1y+hoB+dHmYfgDA5SCDAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQQAAAAAAAAA=eF6zcV67y/yW5/5H02LCpy3J2m8D5R9rPSGy5BnTHhsc8i+cY1/PChXaYw/lP4DKw/jXoPpxyTO4QPQDAPP7QqA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5L7S9uKohosk+F0uloNADnEA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF4z2tmio+pSt98ISpui0QDTUA0LAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFQAAAAAAAAA=eF5j+x1yiGUaryMblGZHowHL+Av/AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5zNV9TZXXpt70rDhoA+jgPoQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAPwAAAAAAAAA=eF5LCBbc2NLFenCWwLT42ycEDiZA+ZwWOpvD7vbvTcAhv2W1yNzLL+btTYTyZ0LlYXwVqH5c8neh+gG64jxlAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF6zcV67y/yW5/7H02LCpy3J2m8D5W+7lFBbf/rHbico/xFUHsY/AZW3gPKfQOVhfKGgTDHeaaJ77KD8e1B5GN8FKg8AU2FB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5L7S9uKohoss+E0ilQOg1KAwDnOA3NAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYACDBgYU2sAWxgcAGaUB7g==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAIQAAAAAAAAA=eF5jYAACqXW7QRSD7LbdvMdL2GXPm+zjA9Mu+wB1MQl9AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAPQAAAAAAAAA=eF6b1MZ42O7SVVuxgi9Rdx0FHa2Sr5VmFigclADzFR1trawN/JVm2YpC5A8uWN86NwUoLwmRPwgAiLQcJQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF4z2tmio+pSt98SShtBaRMoDQDTwA0OAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5j/R1yiGUaryMXlGaB0qxQGgDL+Av9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF5zNV9TZXXpt707lHaB0k5QGgD6QA+fAQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAGAAAAAAAAAA=eF5jYCAOVL20qWI41bEfxq+F8gFnRAhYAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAqpc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOUr0OT/Mk1qcKlz2wPjo5v/DyoPAG6kH5M=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAipc2VQynOvYzwMBcSe0XFXN2w7gN6PIrUOXR9f9lmtTgUue2B8avRpP/B5UHAG3MH5I=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF7j8OU4vb518wEuKM0AAh0IGgDJ4guXAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQgAAAAAAAAA=eF6LDxbc2NLFenCWwLT42ycEDsZD+S3NV3K7nrXsTUWTh/EnQ+UT0ORh/E9OD+7LGC3aCzNvOpr5ss4QeQBeUj0FAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAEAAAAAAAAAA=eF5jYACBH/UMZNIAW+cLuQ==AQAAAAAAAAAAgAAAAAAAAAQAAAAAAAAADAAAAAAAAAA=eF5jYGBgAAAABAABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADQAAAAAAAAA=eF5jYACBH/UAAncBeA==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAJAAAAAAAAAA=eF5LCBbc2NLFenCmwLT42ycEDiZA+a+SQ6v3Z0/fCwDrYA9AAQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF5jAAAAAQABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADQAAAAAAAAA=eF5jYACBH/UAAncBeA==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAFQAAAAAAAAA=eF5jYMAHPtjjlcaQh/ER4gCW5AS9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYIAARijNDKWZoDQAAHgABw==AQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAACwAAAAAAAAA=eF5jYYAAAAAoAAU=AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF7jBAAACgAK </AppendedData> </VTKFile> diff --git a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_2000.000000.vtu b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_2000.000000.vtu index 0c63275ba57bf7d320f181ca02dc2bebaa84117c..23a6468f9aa4fb1fab767c00f9cfbe3d406e705a 100644 --- a/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_2000.000000.vtu +++ b/Tests/Data/ThermoHydroMechanics/RestartMCC/mfront_restart_part2_t_2000.000000.vtu @@ -51,6 +51,6 @@ </Piece> </UnstructuredGrid> <AppendedData encoding="base64"> - _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9A1NzbWTbdIMkyyTE0y10vJLCqpBABOCAcUAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAB723XcK5Ju+Hchn+vCsSbE2y2gPjo8tP/rr3/k6FcLj8IwL60eVh+gFZdiO1AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAh723XcK5Ju+Hchn+vCsSbE2y2gPjo8tP/7r3/k6FcLj8YwL60eVh+gFb1iPBAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQAAAAAAAAAA=eF57w//d2HS6//7pd/xeMq7L2/8Gyve/fHmR9Oxf1m9wyMdVH2PUWiVv8wnKnw2Vh/EdoPpxyftD9QMAqW5AtQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFgAAAAAAAAA=eF57EftubeHiPvsXUPoNGg0AQ98TDQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFgAAAAAAAAA=eF57dFhM6Nimrv2PoPQzNBoALD8SQQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFgAAAAAAAAA=eF57kl707IqBoOMTKP0UjQYAFG8P5w==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF4rdT1fpr7kt30pDhoABq8QEQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAPgAAAAAAAAA=eF47+NlRYE8150E2BiDoED54EMpvymdfH5rbZnsQh7ytAbvznw2rbI9A+RxQ+aNQfilUPy55Q6h+ALYoMp4=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF57xf/d2HS6//6pd/xeMq7L2/8Kyv/kVPHBmOPJ7q9Q/jyoPIx/Byr/EsqfApWH8b1sXLf8zlCx+QDlz4LKw/hWUHkA4vZBcA==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF57FvtubeHiPvsPUPoZlH4NpQFD9xMMAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFAAAAAAAAAA=eF5jYAABA1sGCGhgQOMDABf6Ads=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFAAAAAAAAAA=eF5jYACBA9ZgiuEClEbwATdcBA0=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAANAAAAAAAAAA=eF67tv+6UuSkA7ayBV+i7joKOmo83n5BrFDuoAKYr+i4XnRRRLbqRZj8QTVU+YMA3EgeEw==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGQAAAAAAAAA=eF57dFhM6Nimrv0vofRDKP0USgMALI8SQg==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF57kl707IqBoONzKP0ISj+B0gAUfw/mAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF4rdT1fpr7kt305lC6B0kVQGgAGtxAPAQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAGQAAAAAAAAA=eF5jYCAO3O+97RLONXk/jP8YygcAbZAIgQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAB723XcK5Ju+HchlOHNdrzihi3APjP0GT/4Amfw9NXsSa8cFx3Vi4PLr5olB5AKppH1A=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAB723XcK5Ju+HchlmHNdrzihi3APjP0OTP4Amj65fyprxwXHdWLj8QzR5Sag8AIuxHv8=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5jYACCrBcHGHDQAHK4CEk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5jYACCrBcHGHDQAHK4CEk=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF47+NlRYE8150FWBiDoED54AMrPqfMpO/CoYO8JKJ8LKn8cyk+Ayu+D8lmg8jD+D9+T90JMNtoegfLZoPKHofw3UHkAwgk3Zw==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAHAAAAAAAAAA=eF5bOeX7Acvbm6wZoGAldv5uGH81Gh8A68YU1w==AQAAAAAAAAAAgAAAAAAAAAQAAAAAAAAADAAAAAAAAAA=eF5jYGBgAAAABAABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADgAAAAAAAAA=eF5jYAACh34HAAImARA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAIgAAAAAAAAA=eF47/NlRYE8150F2BiDoED54GMrnbku5rqG2wBYAzrEMaw==AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF5jAAAAAQABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAAEAAAAAAAAAA=eF77s/LjJd+kAHsAGYAEpw==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAFQAAAAAAAAA=eF5jYMAHPtjjlcaQh/ER4gCW5AS9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYIAARijNDKWZoDQAAHgABw==AQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAACwAAAAAAAAA=eF5jYYAAAAAoAAU=AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF7jBAAACgAK + _AQAAAAAAAAAAgAAAAAAAAPkCAAAAAAAAtAAAAAAAAAA=eF61jz0LwkAMhv/LzV0Up67iLgouIkfaxhK4u9RcriCl/93zY3FRUbvlzUuehwyGgmIroMTBdpyTBRE4R1Puh6eSpUEx5bwwATya0kRqPVjqTN4kX6FYPtqafccBg2bAYizeILCL5HLh/4P5CeJBUQicjZon20MOlUO7chCV6q0K0FSKU6IeXMasP5XNvpY9FDt2yaPKxDLBJYfIjprbZc4xJsFpbPefNter14LDeAEk3BwxAQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPVM9Q1NDHUTU9JTE41NEox0kvJLCqpBABQQQcwAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAB723XcK5Ju+Hchn+vCsSbE2y2gPjo8tP/rr3/k6FcLj8IwL60eVh+gFZdiO1AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAMwAAAAAAAAA=eF5jYICAh723XcK5Ju+Hchn+vCsSbE2y2gPjo8tP/7r3/k6FcLj8YwL60eVh+gFb1iPBAQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAQAAAAAAAAAA=eF57w//d2HS6//7pd/xeMq7L2/8Gyve/fHmR9Oxf1m9wyMdVH2PUWiVv8wnKnw2Vh/EdoPpxyftD9QMAqW5AtQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFgAAAAAAAAA=eF57EftubeHiPvsXUPoNGg0AQ98TDQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFgAAAAAAAAA=eF57dFhM6Nimrv2PoPQzNBoALD8SQQ==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFgAAAAAAAAA=eF57kl707IqBoOMTKP0UjQYAFG8P5w==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF4rdT1fpr7kt30pDhoABq8QEQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAPgAAAAAAAAA=eF47+NlRYE8150E2BiDoED54EMpvymdfH5rbZnsQh7ytAbvznw2rbI9A+RxQ+aNQfilUPy55Q6h+ALYoMp4=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF57xf/d2HS6//6pd/xeMq7L2/8Kyv/kVPHBmOPJ7q9Q/jyoPIx/Byr/EsqfApWH8b1sXLf8zlCx+QDlz4LKw/hWUHkA4vZBcA==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF57FvtubeHiPvsPUPoZlH4NpQFD9xMMAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFAAAAAAAAAA=eF5jYAABA1sGCGhgQOMDABf6Ads=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAFAAAAAAAAAA=eF5jYACBA9ZgiuEClEbwATdcBA0=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAANAAAAAAAAAA=eF67tv+6UuSkA7ayBV+i7joKOmo83n5BrFDuoAKYr+i4XnRRRLbqRZj8QTVU+YMA3EgeEw==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGQAAAAAAAAA=eF57dFhM6Nimrv0vofRDKP0USgMALI8SQg==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF57kl707IqBoONzKP0ISj+B0gAUfw/mAQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAGAAAAAAAAAA=eF4rdT1fpr7kt305lC6B0kVQGgAGtxAPAQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAGQAAAAAAAAA=eF5jYCAO3O+97RLONXk/jP8YygcAbZAIgQ==AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAB723XcK5Ju+HchlOHNdrzihi3APjP0GT/4Amfw9NXsSa8cFx3Vi4PLr5olB5AKppH1A=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAAOAAAAAAAAAA=eF5jYICAB723XcK5Ju+HchlmHNdrzihi3APjP0OTP4Amj65fyprxwXHdWLj8QzR5Sag8AIuxHv8=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5jYACCrBcHGHDQAHK4CEk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5jYACCrBcHGHDQAHK4CEk=AQAAAAAAAAAAgAAAAAAAAIAAAAAAAAAASQAAAAAAAAA=eF47+NlRYE8150FWBiDoED54AMrPqfMpO/CoYO8JKJ8LKn8cyk+Ayu+D8lmg8jD+D9+T90JMNtoegfLZoPKHofw3UHkAwgk3Zw==AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEQAAAAAAAAA=eF5LSwOCoCKHNBw0AMi4DAk=AQAAAAAAAAAAgAAAAAAAAEAAAAAAAAAAHAAAAAAAAAA=eF5bOeX7Acvbm6wZoGAldv5uGH81Gh8A68YU1w==AQAAAAAAAAAAgAAAAAAAAAQAAAAAAAAADAAAAAAAAAA=eF5jYGBgAAAABAABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAADgAAAAAAAAA=eF5jYAACh34HAAImARA=AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAIgAAAAAAAAA=eF47/NlRYE8150F2BiDoED54GMrnbku5rqG2wBYAzrEMaw==AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF5jAAAAAQABAQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAAEAAAAAAAAAA=eF77s/LjJd+kAHsAGYAEpw==AQAAAAAAAAAAgAAAAAAAAGAAAAAAAAAAFQAAAAAAAAA=eF5jYMAHPtjjlcaQh/ER4gCW5AS9AQAAAAAAAAAAgAAAAAAAACAAAAAAAAAAEwAAAAAAAAA=eF5jYIAARijNDKWZoDQAAHgABw==AQAAAAAAAAAAgAAAAAAAAAgAAAAAAAAACwAAAAAAAAA=eF5jYYAAAAAoAAU=AQAAAAAAAAAAgAAAAAAAAAEAAAAAAAAACQAAAAAAAAA=eF7jBAAACgAK </AppendedData> </VTKFile>