From b39d1eaa7b5381fe3c5cf73cd4b72517e702dc03 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=B6rg=20Buchwald?= <joerg.buchwald@ufz.de> Date: Wed, 9 Dec 2020 19:48:47 +0100 Subject: [PATCH] correcting latex formulas --- .../consolidation_pointheatsource.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md b/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md index cf1fd7bb4be..7211af27e7c 100644 --- a/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md +++ b/web/content/docs/benchmarks/thermo-hydro-mechanics/consolidation_pointheatsource.md @@ -61,10 +61,10 @@ The analytical solution of the coupled THM consolidation problem can be expresse and \begin{equation} - g^{A}_{,\,i}= \dfrac{2x_{i}At}{r^{4}}\left(f^{A}-1+\dfrac{r}{\sqrt{\pi At}}\exp\left(-\dfrac{r^{2}}{4At}\right)\right),\quad i=1,2,3 + g^{A}\_{,i} = \dfrac{2x_{i}At}{r^{4}}\left(f^{A}-1+\dfrac{r}{\sqrt{\pi At}}\exp\left(-\dfrac{r^{2}}{4At}\right)\right),\quad i=1,2,3 \end{equation} \begin{equation} - g^{\ast}_{,\,i} = Yg^{\kappa}_{,\,i}-Zg^{c}_{,\,i} + g^{\ast}\_{,i} = Yg^{\kappa}\_{,i}-Zg^{c}_{,i} \end{equation} For the temperature, porepressure and displacements, the correct solution can be found in the original work: @@ -72,7 +72,7 @@ For the temperature, porepressure and displacements, the correct solution can be \Delta T = \dfrac{Q}{4\pi Kr}f^{\kappa} \end{equation} \begin{equation} - p = \dfrac{X\,Q}{\left(1-\dfrac{c}{\kappa}\right)\,4\pi Kr}\left(f^{\kappa}-f^{c}\right) + p = \dfrac{X\,Q}{\left(1-\dfrac{c}{\kappa}\right)4\pi Kr}\left(f^{\kappa}-f^{c}\right) \end{equation} \begin{equation} u_{i} = \dfrac{Q a_\text{u}x_{i}}{4\pi Kr}\;g^{\ast} @@ -81,10 +81,10 @@ For the temperature, porepressure and displacements, the correct solution can be For the stress components the corrected expressions can be found in the work of Chaudhry et al. (2019): \begin{equation} - \sigma^{\prime}_{ij\,|\,j=i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( 2G\left[g^{\ast}\left(1-\dfrac{x^{2}_{i}}{r^{2}}\right)+x_{i}g^{\ast}_{,\,i}\right]+\lambda \left[x_{i}g^{\ast}_{,\,i}+2g^{\ast}\right]\right)-b^{\prime}\Delta T + \sigma^{\prime}\_{ij\,|\,j=i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( 2G\left[g^{\ast}\left(1-\dfrac{x^{2}_{i}}{r^{2}}\right)+x_{i}g^{\ast}_{,i}\right]+\lambda \left[x_{i}g^{\ast}_{,i}+2g^{\ast}\right]\right)-b^{\prime}\Delta T \end{equation} \begin{equation} - \sigma^{\prime}_{ij\,|\,j \neq i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( G\left[x_{i}g^{\ast}_{,\,j}+x_{j}g^{\ast}_{,\,i}-2g^{\ast}\dfrac{x_{i}x_{j}}{r^{2}}\right]\right) + \sigma^{\prime}\_{ij\,|\,j \neq i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( G\left[x_{i}g^{\ast}_{,j}+x_{j}g^{\ast}_{,i}-2g^{\ast}\dfrac{x_{i}x_{j}}{r^{2}}\right]\right) \end{equation} ## Results and evaluation -- GitLab