square_1e2_UC_early_python.prj 9.42 KB
Newer Older
1
<?xml version='1.0' encoding='ISO-8859-1'?>
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
<!--
We solve a hydro-mechanical linear biphasic model (small deformation, linear
elastic, Darcy flow, incompressible constituents) in square domain where on
the top boundary a constant displacement boundary is applied. On the right
boundary a constant pressure boundary equals zero and zeros traction boundary
are applied. All other boundaries are constrained in their normal direction
and all boundaries except for outer radius are sealed. The fluid is allowed to
escape through the right boundary. The drainage process can be concluded into
two stages. During drainage, the total stress is the sum of effective stresses
in the solid and the pore pressure. Once the material is fully drained, the
pore pressure is zero, so that stress- and displacement fields are determined
exclusively by the properties of the solid skeleton. An axisymmetric domain is
used in this model. The mesh is refined based on the distance to the outer
radius.
In this problem, it is assumed that the biot coefficient $$\alpha = 1$$ and the
storage $$S$$ term is neglected.

A detailed problem description is provided online:
https://www.opengeosys.org/docs/benchmarks/hydro-mechanics/hm-unconfined-compression/
-->
Christoph Lehmann's avatar
Christoph Lehmann committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
<OpenGeoSysProject>
    <mesh axially_symmetric="true">square_1x1_quad8_1e2.vtu</mesh>
    <geometry>square_1x1.gml</geometry>
    <python_script>python_boundary.py</python_script>
    <processes>
        <process>
            <name>HM</name>
            <type>HYDRO_MECHANICS</type>
            <integration_order>3</integration_order>
            <dimension>2</dimension>
            <constitutive_relation>
                <type>LinearElasticIsotropic</type>
                <youngs_modulus>E</youngs_modulus>
                <poissons_ratio>nu</poissons_ratio>
            </constitutive_relation>
            <process_variables>
                <displacement>displacement</displacement>
                <pressure>pressure</pressure>
            </process_variables>
            <secondary_variables/>
            <specific_body_force>0 0</specific_body_force>
        </process>
    </processes>
    <media>
        <medium>
            <phases>
                <phase>
                    <type>Gas</type>
                    <properties>
                        <property>
                            <name>viscosity</name>
                            <type>Constant</type>
                            <value>1e-3</value>
                        </property>
                        <property>
                            <name>density</name>
                            <type>Constant</type>
                            <value>1.0e-6</value>
                        </property>
                    </properties>
                </phase>
                <phase>
                    <type>Solid</type>
                    <properties>
                        <property>
                            <name>density</name>
                            <type>Constant</type>
                            <value>1.2e-6</value>
                        </property>
                    </properties>
                </phase>
            </phases>
            <properties>
                <property>
                    <name>porosity</name>
                    <type>Constant</type>
                    <value>0</value>
                </property>
                <property>
                    <name>biot_coefficient</name>
                    <type>Constant</type>
                    <value>1</value>
                </property>
                <property>
                    <name>reference_temperature</name>
                    <type>Constant</type>
                    <value>293.15</value>
                </property>
                <property>
                    <name>permeability</name>
                    <type>Constant</type>
                    <value>1e-10</value>
                </property>
            </properties>
        </medium>
    </media>
    <time_loop>
        <processes>
            <process ref="HM">
                <nonlinear_solver>basic_newton</nonlinear_solver>
                <convergence_criterion>
                    <type>DeltaX</type>
                    <norm_type>NORM2</norm_type>
                    <abstol>1e-8</abstol>
                </convergence_criterion>
                <time_discretization>
                    <type>BackwardEuler</type>
                </time_discretization>
                <time_stepping>
                    <type>FixedTimeStepping</type>
                    <t_initial>0</t_initial>
                    <t_end>1</t_end>
                    <timesteps>
                        <pair>
                            <repeat>10</repeat>
                            <delta_t>0.1</delta_t>
                        </pair>
                    </timesteps>
                </time_stepping>
            </process>
        </processes>
        <output>
            <type>VTK</type>
            <prefix>square_1e2_UC_early_python</prefix>
            <timesteps>
                <pair>
                    <repeat>1</repeat>
                    <each_steps>10</each_steps>
                </pair>
            </timesteps>
            <variables>
                <variable>displacement</variable>
                <variable>pressure</variable>
            </variables>
            <suffix>_ts_{:timestep}_t_{:time}</suffix>
        </output>
    </time_loop>
    <parameters>
        <!-- Mechanics -->
        <parameter>
            <name>E</name>
            <type>Constant</type>
            <value>30000.0</value>
        </parameter>
        <parameter>
            <name>nu</name>
            <type>Constant</type>
            <value>0.2</value>
        </parameter>
        <!-- Model parameters -->
        <parameter>
            <name>displacement0</name>
            <type>Constant</type>
            <values>0 0</values>
        </parameter>
        <parameter>
            <name>pressure_ic</name>
            <type>Constant</type>
            <values>0</values>
        </parameter>
        <parameter>
            <name>dirichlet0</name>
            <type>Constant</type>
            <value>0</value>
        </parameter>
        <parameter>
            <name>displacementTop</name>
            <type>Constant</type>
            <value>-0.05</value>
        </parameter>
    </parameters>
    <process_variables>
        <process_variable>
            <name>displacement</name>
            <components>2</components>
            <order>2</order>
            <initial_condition>displacement0</initial_condition>
            <boundary_conditions>
                <boundary_condition>
                    <geometrical_set>square_1x1_geometry</geometrical_set>
                    <geometry>left</geometry>
                    <type>Python</type>
                    <component>0</component>
                    <bc_object>bc_u_D_0</bc_object>
                </boundary_condition>
                <boundary_condition>
                    <geometrical_set>square_1x1_geometry</geometrical_set>
                    <geometry>bottom</geometry>
                    <type>Python</type>
                    <component>1</component>
                    <bc_object>bc_u_D_0</bc_object>
                </boundary_condition>
                <boundary_condition>
                    <geometrical_set>square_1x1_geometry</geometrical_set>
                    <geometry>top</geometry>
                    <type>Python</type>
                    <component>1</component>
                    <bc_object>bc_u_D_top</bc_object>
                </boundary_condition>
            </boundary_conditions>
        </process_variable>
        <process_variable>
            <name>pressure</name>
            <components>1</components>
            <order>1</order>
            <initial_condition>pressure_ic</initial_condition>
            <boundary_conditions>
                <boundary_condition>
                    <geometrical_set>square_1x1_geometry</geometrical_set>
                    <geometry>right</geometry>
                    <type>Python</type>
                    <component>0</component>
                    <bc_object>bc_p_D_0</bc_object>
                </boundary_condition>
            </boundary_conditions>
        </process_variable>
    </process_variables>
    <nonlinear_solvers>
        <nonlinear_solver>
            <name>basic_newton</name>
            <type>Newton</type>
            <max_iter>50</max_iter>
            <linear_solver>general_linear_solver</linear_solver>
        </nonlinear_solver>
    </nonlinear_solvers>
    <linear_solvers>
        <linear_solver>
            <name>general_linear_solver</name>
            <lis>-i bicgstab -p ilu -tol 1e-16 -maxiter 10000</lis>
            <eigen>
                <solver_type>BiCGSTAB</solver_type>
                <precon_type>ILUT</precon_type>
                <max_iteration_step>10000</max_iteration_step>
                <error_tolerance>1e-16</error_tolerance>
            </eigen>
            <petsc>
                <prefix>sd</prefix>
                <parameters>-sd_ksp_type cg -sd_pc_type bjacobi -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters>
            </petsc>
        </linear_solver>
    </linear_solvers>
243
244
245
246
247
248
249
250
    <test_definition>
        <vtkdiff>
            <file>expected_square_1e2_UC_early_ts_10_t_1.000000.vtu</file>
            <field>displacement</field>
            <absolute_tolerance>1e-6</absolute_tolerance>
            <relative_tolerance>1e-6</relative_tolerance>
        </vtkdiff>
    </test_definition>
Christoph Lehmann's avatar
Christoph Lehmann committed
251
</OpenGeoSysProject>