Commit 95a8335f authored by jbathmann's avatar jbathmann Committed by Christoph Lehmann
Browse files

[T] Moving and adding of unconfined compression early benchmark test

parent c5e56d22
......@@ -182,6 +182,20 @@ AddTest(
expected_square_1e2_UC_early_ts_10_t_1.000000.vtu square_1e2_UC_early_ts_10_t_1.000000.vtu displacement displacement 1e-11 1e-16
expected_square_1e2_UC_early_ts_10_t_1.000000.vtu square_1e2_UC_early_ts_10_t_1.000000.vtu pressure pressure 1e-10 1e-16
)
# HydroMechanics; Small deformation, linear poroelastic (unconfined compression early) The drainage process is ongoing and the displacement behaviour is related to water pressure and solid properties.
AddTest(
NAME HydroMechanics_HML_square_1e2_unconfined_compression_early_python
PATH HydroMechanics/Linear/Unconfined_Compression_early
EXECUTABLE ogs
EXECUTABLE_ARGS square_1e2_UC_early_python.prj
WRAPPER time
TESTER vtkdiff
REQUIREMENTS NOT OGS_USE_MPI
DIFF_DATA
expected_square_1e2_UC_early_ts_10_t_1.000000.vtu square_1e2_UC_early_ts_10_t_1.000000.vtu displacement displacement 1e-11 1e-16
expected_square_1e2_UC_early_ts_10_t_1.000000.vtu square_1e2_UC_early_ts_10_t_1.000000.vtu pressure pressure 1e-10 1e-16
)
# HydroMechanics; Small deformation, linear poroelastic (unconfined compression late) the drainage process is finished and the displacement of the porous media is only a result of solid properties.
AddTest(
NAME HydroMechanics_HML_square_1e2_unconfined_compression_late
......
<?xml version='1.0' encoding='ISO-8859-1'?>
<!--
We solve a hydro-mechanical linear biphasic model (small deformation, linear
elastic, Darcy flow, incompressible constituents) in square domain where on
the top boundary a constant displacement boundary is applied. On the right
boundary a constant pressure boundary equals zero and zeros traction boundary
are applied. All other boundaries are constrained in their normal direction
and all boundaries except for outer radius are sealed. The fluid is allowed to
escape through the right boundary. The drainage process can be concluded into
two stages. During drainage, the total stress is the sum of effective stresses
in the solid and the pore pressure. Once the material is fully drained, the
pore pressure is zero, so that stress- and displacement fields are determined
exclusively by the properties of the solid skeleton. An axisymmetric domain is
used in this model. The mesh is refined based on the distance to the outer
radius.
In this problem, it is assumed that the biot coefficient $$\alpha = 1$$ and the
storage $$S$$ term is neglected.
A detailed problem description is provided online:
https://www.opengeosys.org/docs/benchmarks/hydro-mechanics/hm-unconfined-compression/
-->
<OpenGeoSysProject>
<mesh axially_symmetric="true">square_1x1_quad8_1e2.vtu</mesh>
<geometry>square_1x1.gml</geometry>
......
<?xml version='1.0' encoding='ISO-8859-1'?>
<!--
We solve a hydro-mechanical linear biphasic model (small deformation, linear
elastic, Darcy flow, incompressible constituents) in square domain where on
......@@ -18,7 +19,6 @@ storage $$S$$ term is neglected.
A detailed problem description is provided online:
https://www.opengeosys.org/docs/benchmarks/hydro-mechanics/hm-unconfined-compression/
-->
<?xml version='1.0' encoding='ISO-8859-1'?>
<OpenGeoSysProject>
<mesh axially_symmetric="true">square_1x1_quad8_1e2.vtu</mesh>
<geometry>square_1x1.gml</geometry>
......@@ -240,4 +240,12 @@ https://www.opengeosys.org/docs/benchmarks/hydro-mechanics/hm-unconfined-compres
</petsc>
</linear_solver>
</linear_solvers>
<test_definition>
<vtkdiff>
<file>expected_square_1e2_UC_early_ts_10_t_1.000000.vtu</file>
<field>displacement</field>
<absolute_tolerance>1e-6</absolute_tolerance>
<relative_tolerance>1e-6</relative_tolerance>
</vtkdiff>
</test_definition>
</OpenGeoSysProject>
<?xml version='1.0' encoding='ISO-8859-1'?>
<!--
We solve a hydro-mechanical linear biphasic model (small deformation, linear
elastic, Darcy flow, incompressible constituents) in square domain where on
the top boundary a constant displacement boundary is applied. On the right
boundary a constant pressure boundary equals zero and zeros traction boundary
are applied. All other boundaries are constrained in their normal direction
and all boundaries except for outer radius are sealed. The fluid is allowed to
escape through the right boundary. The drainage process can be concluded into
two stages. During drainage, the total stress is the sum of effective stresses
in the solid and the pore pressure. Once the material is fully drained, the
pore pressure is zero, so that stress- and displacement fields are determined
exclusively by the properties of the solid skeleton. An axisymmetric domain is
used in this model. The mesh is refined based on the distance to the outer
radius.
In this problem, it is assumed that the biot coefficient $$\alpha = 1$$ and the
storage $$S$$ term is neglected.
A detailed problem description is provided online:
https://www.opengeosys.org/docs/benchmarks/hydro-mechanics/hm-unconfined-compression/
-->
<OpenGeoSysProject>
<mesh axially_symmetric="true">square_1x1_quad8_1e4.vtu</mesh>
<geometry>square_1x1.gml</geometry>
......
<!--
We solve a hydro-mechanical linear biphasic model (small deformation, linear
elastic, Darcy flow, incompressible constituents) in square domain where on
the top boundary a constant displacement boundary is applied. On the right
boundary a constant pressure boundary equals zero and zeros traction boundary
are applied. All other boundaries are constrained in their normal direction
and all boundaries except for outer radius are sealed. The fluid is allowed to
escape through the right boundary. The drainage process can be concluded into
two stages. During drainage, the total stress is the sum of effective stresses
in the solid and the pore pressure. Once the material is fully drained, the
pore pressure is zero, so that stress- and displacement fields are determined
exclusively by the properties of the solid skeleton. An axisymmetric domain is
used in this model. The mesh is refined based on the distance to the outer
radius.
In this problem, it is assumed that the biot coefficient $$\alpha = 1$$ and the
storage $$S$$ term is neglected.
A detailed problem description is provided online:
https://www.opengeosys.org/docs/benchmarks/hydro-mechanics/hm-unconfined-compression/
-->
<?xml version='1.0' encoding='ISO-8859-1'?>
<OpenGeoSysProject>
<mesh axially_symmetric="true">square_1x1_quad8_1e2.vtu</mesh>
<geometry>square_1x1.gml</geometry>
<processes>
<process>
<name>HM</name>
<type>HYDRO_MECHANICS</type>
<integration_order>3</integration_order>
<dimension>2</dimension>
<constitutive_relation>
<type>LinearElasticIsotropic</type>
<youngs_modulus>E</youngs_modulus>
<poissons_ratio>nu</poissons_ratio>
</constitutive_relation>
<process_variables>
<displacement>displacement</displacement>
<pressure>pressure</pressure>
</process_variables>
<secondary_variables/>
<specific_body_force>0 0</specific_body_force>
</process>
</processes>
<media>
<medium>
<phases>
<phase>
<type>Gas</type>
<properties>
<property>
<name>viscosity</name>
<type>Constant</type>
<value>1e-3</value>
</property>
<property>
<name>density</name>
<type>Constant</type>
<value>1.0e-6</value>
</property>
</properties>
</phase>
<phase>
<type>Solid</type>
<properties>
<property>
<name>density</name>
<type>Constant</type>
<value>1.2e-6</value>
</property>
</properties>
</phase>
</phases>
<properties>
<property>
<name>porosity</name>
<type>Constant</type>
<value>0</value>
</property>
<property>
<name>biot_coefficient</name>
<type>Constant</type>
<value>1</value>
</property>
<property>
<name>reference_temperature</name>
<type>Constant</type>
<value>293.15</value>
</property>
<property>
<name>permeability</name>
<type>Constant</type>
<value>1e-10</value>
</property>
</properties>
</medium>
</media>
<time_loop>
<processes>
<process ref="HM">
<nonlinear_solver>basic_newton</nonlinear_solver>
<convergence_criterion>
<type>DeltaX</type>
<norm_type>NORM2</norm_type>
<abstol>1e-8</abstol>
</convergence_criterion>
<time_discretization>
<type>BackwardEuler</type>
</time_discretization>
<time_stepping>
<type>FixedTimeStepping</type>
<t_initial>0</t_initial>
<t_end>1</t_end>
<timesteps>
<pair>
<repeat>10</repeat>
<delta_t>0.1</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<output>
<type>VTK</type>
<prefix>square_1e2_UC_early</prefix>
<timesteps>
<pair>
<repeat>1</repeat>
<each_steps>10</each_steps>
</pair>
</timesteps>
<variables>
<variable>displacement</variable>
<variable>pressure</variable>
</variables>
<suffix>_ts_{:timestep}_t_{:time}</suffix>
</output>
</time_loop>
<parameters>
<!-- Mechanics -->
<parameter>
<name>E</name>
<type>Constant</type>
<value>30000.0</value>
</parameter>
<parameter>
<name>nu</name>
<type>Constant</type>
<value>0.2</value>
</parameter>
<!-- Model parameters -->
<parameter>
<name>displacement0</name>
<type>Constant</type>
<values>0 0</values>
</parameter>
<parameter>
<name>pressure_ic</name>
<type>Constant</type>
<values>0</values>
</parameter>
<parameter>
<name>dirichlet0</name>
<type>Constant</type>
<value>0</value>
</parameter>
<parameter>
<name>displacementTop</name>
<type>Constant</type>
<value>-0.05</value>
</parameter>
</parameters>
<process_variables>
<process_variable>
<name>displacement</name>
<components>2</components>
<order>2</order>
<initial_condition>displacement0</initial_condition>
<boundary_conditions>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>left</geometry>
<type>Dirichlet</type>
<component>0</component>
<parameter>dirichlet0</parameter>
</boundary_condition>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>bottom</geometry>
<type>Dirichlet</type>
<component>1</component>
<parameter>dirichlet0</parameter>
</boundary_condition>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>top</geometry>
<type>Dirichlet</type>
<component>1</component>
<parameter>displacementTop</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<process_variable>
<name>pressure</name>
<components>1</components>
<order>1</order>
<initial_condition>pressure_ic</initial_condition>
<boundary_conditions>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>right</geometry>
<type>Dirichlet</type>
<component>0</component>
<parameter>dirichlet0</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
</process_variables>
<nonlinear_solvers>
<nonlinear_solver>
<name>basic_newton</name>
<type>Newton</type>
<max_iter>50</max_iter>
<linear_solver>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<linear_solvers>
<linear_solver>
<name>general_linear_solver</name>
<lis>-i bicgstab -p ilu -tol 1e-16 -maxiter 10000</lis>
<eigen>
<solver_type>BiCGSTAB</solver_type>
<precon_type>ILUT</precon_type>
<max_iteration_step>10000</max_iteration_step>
<error_tolerance>1e-16</error_tolerance>
</eigen>
<petsc>
<prefix>sd</prefix>
<parameters>-sd_ksp_type cg -sd_pc_type bjacobi -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters>
</petsc>
</linear_solver>
</linear_solvers>
</OpenGeoSysProject>
<!--
We solve a hydro-mechanical linear biphasic model (small deformation, linear
elastic, Darcy flow, incompressible constituents) in square domain where on
the top boundary a constant displacement boundary is applied. On the right
boundary a constant pressure boundary equals zero and zeros traction boundary
are applied. All other boundaries are constrained in their normal direction
and all boundaries except for outer radius are sealed. The fluid is allowed to
escape through the right boundary. The drainage process can be concluded into
two stages. During drainage, the total stress is the sum of effective stresses
in the solid and the pore pressure. Once the material is fully drained, the
pore pressure is zero, so that stress- and displacement fields are determined
exclusively by the properties of the solid skeleton. An axisymmetric domain is
used in this model. The mesh is refined based on the distance to the outer
radius.
In this problem, it is assumed that the biot coefficient $$\alpha = 1$$ and the
storage $$S$$ term is neglected.
A detailed problem description is provided online:
https://www.opengeosys.org/docs/benchmarks/hydro-mechanics/hm-unconfined-compression/
-->
<?xml version='1.0' encoding='ISO-8859-1'?>
<OpenGeoSysProject>
<mesh axially_symmetric="true">square_1x1_quad8_1e4.vtu</mesh>
<geometry>square_1x1.gml</geometry>
<processes>
<process>
<name>HM</name>
<type>HYDRO_MECHANICS</type>
<integration_order>3</integration_order>
<dimension>2</dimension>
<constitutive_relation>
<type>LinearElasticIsotropic</type>
<youngs_modulus>E</youngs_modulus>
<poissons_ratio>nu</poissons_ratio>
</constitutive_relation>
<process_variables>
<displacement>displacement</displacement>
<pressure>pressure</pressure>
</process_variables>
<secondary_variables/>
<specific_body_force>0 0</specific_body_force>
</process>
</processes>
<media>
<medium>
<phases>
<phase>
<type>Gas</type>
<properties>
<property>
<name>viscosity</name>
<type>Constant</type>
<value>1e-3</value>
</property>
<property>
<name>density</name>
<type>Constant</type>
<value>1.0e-6</value>
</property>
</properties>
</phase>
<phase>
<type>Solid</type>
<properties>
<property>
<name>density</name>
<type>Constant</type>
<value>1.2e-6</value>
</property>
</properties>
</phase>
</phases>
<properties>
<property>
<name>porosity</name>
<type>Constant</type>
<value>0</value>
</property>
<property>
<name>biot_coefficient</name>
<type>Constant</type>
<value>1</value>
</property>
<property>
<name>reference_temperature</name>
<type>Constant</type>
<value>293.15</value>
</property>
<property>
<name>permeability</name>
<type>Constant</type>
<value>1e-10</value>
</property>
</properties>
</medium>
</media>
<time_loop>
<processes>
<process ref="HM">
<nonlinear_solver>basic_newton</nonlinear_solver>
<convergence_criterion>
<type>DeltaX</type>
<norm_type>NORM2</norm_type>
<abstol>1e-9</abstol>
</convergence_criterion>
<time_discretization>
<type>BackwardEuler</type>
</time_discretization>
<time_stepping>
<type>FixedTimeStepping</type>
<t_initial>0</t_initial>
<t_end>1</t_end>
<timesteps>
<pair>
<repeat>10</repeat>
<delta_t>0.1</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<output>
<type>VTK</type>
<prefix>square_1e4_UC_early</prefix>
<timesteps>
<pair>
<repeat>10000</repeat>
<each_steps>1</each_steps>
</pair>
</timesteps>
<variables>
<variable>displacement</variable>
<variable>pressure</variable>
</variables>
<suffix>_ts_{:timestep}_t_{:time}</suffix>
</output>
</time_loop>
<parameters>
<!-- Mechanics -->
<parameter>
<name>E</name>
<type>Constant</type>
<value>30000.0</value>
</parameter>
<parameter>
<name>nu</name>
<type>Constant</type>
<value>0.2</value>
</parameter>
<!-- Model parameters -->
<parameter>
<name>displacement0</name>
<type>Constant</type>
<values>0 0</values>
</parameter>
<parameter>
<name>pressure_ic</name>
<type>Constant</type>
<values>0</values>
</parameter>
<parameter>
<name>dirichlet0</name>
<type>Constant</type>
<value>0</value>
</parameter>
<parameter>
<name>displacementTop</name>
<type>Constant</type>
<value>-0.05</value>
</parameter>
</parameters>
<process_variables>
<process_variable>
<name>displacement</name>
<components>2</components>
<order>2</order>
<initial_condition>displacement0</initial_condition>
<boundary_conditions>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>left</geometry>
<type>Dirichlet</type>
<component>0</component>
<parameter>dirichlet0</parameter>
</boundary_condition>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>bottom</geometry>
<type>Dirichlet</type>
<component>1</component>
<parameter>dirichlet0</parameter>
</boundary_condition>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>top</geometry>
<type>Dirichlet</type>
<component>1</component>
<parameter>displacementTop</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<process_variable>
<name>pressure</name>
<components>1</components>
<order>1</order>
<initial_condition>pressure_ic</initial_condition>
<boundary_conditions>
<boundary_condition>
<geometrical_set>square_1x1_geometry</geometrical_set>
<geometry>right</geometry>
<type>Dirichlet</type>
<component>0</component>
<parameter>dirichlet0</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
</process_variables>
<nonlinear_solvers>
<nonlinear_solver>
<name>basic_newton</name>
<type>Newton</type>
<max_iter>50</max_iter>
<linear_solver>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<linear_solvers>
<linear_solver>
<name>general_linear_solver</name>
<lis>-i bicgstab -p ilu -tol 1e-16 -maxiter 10000</lis>
<eigen>
<solver_type>BiCGSTAB</solver_type>
<precon_type>ILUT</precon_type>
<max_iteration_step>10000</max_iteration_step>
<error_tolerance>1e-16</error_tolerance>
</eigen>
<petsc>
<prefix>sd</prefix>
<parameters>-sd_ksp_type cg -sd_pc_type bjacobi -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters>
</petsc>
</linear_solver>
</linear_solvers>
</OpenGeoSysProject>
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="OpenGeoSysGLI.xsl"?>
<OpenGeoSysGLI xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ogs="http://www.opengeosys.org">
<name>square_1x1_geometry</name>