From 5e2b545a32a3b865cc0c564e225d41448b3215a7 Mon Sep 17 00:00:00 2001 From: FZill <florian.zill@ufz.de> Date: Thu, 8 Feb 2024 10:00:36 +0100 Subject: [PATCH] observation point example --- .../plot_observation_points.py | 74 +++++++++++++++++++ 1 file changed, 74 insertions(+) create mode 100644 docs/examples/howto_meshplotlib/plot_observation_points.py diff --git a/docs/examples/howto_meshplotlib/plot_observation_points.py b/docs/examples/howto_meshplotlib/plot_observation_points.py new file mode 100644 index 000000000..473f72b3d --- /dev/null +++ b/docs/examples/howto_meshplotlib/plot_observation_points.py @@ -0,0 +1,74 @@ +""" +How to plot data at observation points +====================================== + +.. sectionauthor:: Florian Zill (Helmholtz Centre for Environmental Research GmbH - UFZ) + +In this example we plot the data values on observation points over all +timesteps. Since requested observation points don't necessarily coincide with +actual nodes of the mesh different interpolation options are available. See +:py:mod:`ogstools.meshlib.mesh_series.MeshSeries.probe` for more details. +Here again, we use a component transport example from the ogs benchmark gallery +(https://www.opengeosys.org/docs/benchmarks/hydro-component/elder/). +""" + +# %% + +# sphinx_gallery_start_ignore + +# sphinx_gallery_thumbnail_number = 2 + +# sphinx_gallery_end_ignore + +import matplotlib.pyplot as plt +import numpy as np + +from ogstools import meshplotlib +from ogstools.meshplotlib.examples import meshseries_CT_2D as mesh_series +from ogstools.propertylib import Scalar + +meshplotlib.setup.reset() +si = Scalar( + data_name="Si", data_unit="", output_unit="%", output_name="Saturation" +) +# alternatively: +# from ogstools.meshlib import MeshSeries +# mesh_series = MeshSeries("filepath/filename_pvd_or_xdmf") + +# %% [markdown] +# Let's define 4 observation points and plot them on the mesh. + +# %% +points = np.asarray([[x, 0, 60] for x in [0, 40, 80, 120]]) +fig = meshplotlib.plot(mesh_series.read(0), si) +fig.axes[0].scatter(points[:, 0], points[:, 2], s=50, fc="none", ec="r", lw=3) +for i, point in enumerate(points): + fig.axes[0].annotate(str(i), (point[0], point[2] - 5), va="top") +plt.rcdefaults() + +# %% [markdown] +# And now probe the points and the values over time: + +# %% +fig = meshplotlib.plot_probe( + mesh_series=mesh_series, points=points, mesh_property=si, time_unit="a" +) + +# %% [markdown] +# You can also pass create your own matplotlib figure and pass the axes object. +# Additionally, you can pass any keyword arguments which are known by +# matplotlibs plot function to further customize the curves. +# In this case `marker` and `linewidth` are not part of the API of `plot_probe` +# but get processed correctly anyway. + +# %% +fig, axs = plt.subplots(nrows=2, figsize=[10, 5]) +meshplotlib.plot_probe( + mesh_series, points, si, time_unit="a", ax=axs[0], colors=["k", "b"], + marker="." # fmt: skip +) +points_2 = np.asarray([[50, 0, z] for z in [60, 50, 40, 30]]) +meshplotlib.plot_probe( + mesh_series, points_2, si, time_unit="a", ax=axs[1], linestyles=["-"], + linewidth=1 # fmt: skip +) -- GitLab