diff --git a/ProcessLib/TH2M/ConstitutiveVariables.h b/ProcessLib/TH2M/ConstitutiveVariables.h index b8d6276fc7dcd7d2a466bad30997d059caed6d7a..c4c9496095eff74f0387c8fe60d513259acd625e 100644 --- a/ProcessLib/TH2M/ConstitutiveVariables.h +++ b/ProcessLib/TH2M/ConstitutiveVariables.h @@ -20,9 +20,59 @@ struct ConstitutiveVariables { using KelvinMatrixType = MathLib::KelvinVector::KelvinMatrixType<DisplacementDim>; + using DisplacementDimVector = Eigen::Matrix<double, DisplacementDim, 1>; + using DisplacementDimMatrix = + Eigen::Matrix<double, DisplacementDim, DisplacementDim>; KelvinMatrixType C; + DisplacementDimMatrix dlambda_dp_GR; + DisplacementDimMatrix dlambda_dp_cap; + DisplacementDimMatrix dlambda_dT; + DisplacementDimVector drho_GR_h_w_eff_dp_GR_Npart; + DisplacementDimMatrix drho_GR_h_w_eff_dp_GR_gradNpart; + DisplacementDimVector drho_LR_h_w_eff_dp_cap_Npart; + DisplacementDimMatrix drho_LR_h_w_eff_dp_cap_gradNpart; + DisplacementDimVector drho_GR_h_w_eff_dT; + DisplacementDimMatrix dfW_4a_dp_GR; + DisplacementDimMatrix dfW_4a_dp_cap; + DisplacementDimMatrix dfW_4a_dT; + DisplacementDimMatrix dfW_4d_dp_GR; + DisplacementDimMatrix dfW_4d_dp_cap; + DisplacementDimMatrix dfW_4d_dT; + DisplacementDimMatrix dfC_4_LCpG_dT; + DisplacementDimMatrix dadvection_C_dp_GR; + double drho_LR_dT = std::numeric_limits<double>::quiet_NaN(); + double drho_SR_dT = std::numeric_limits<double>::quiet_NaN(); + double drho_u_eff_dT = std::numeric_limits<double>::quiet_NaN(); + double drho_u_eff_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double drho_u_eff_dp_cap = std::numeric_limits<double>::quiet_NaN(); + double drho_h_eff_dT = std::numeric_limits<double>::quiet_NaN(); + double drho_h_eff_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double drho_h_eff_dp_cap = std::numeric_limits<double>::quiet_NaN(); + double dh_G_dT = std::numeric_limits<double>::quiet_NaN(); + double dh_L_dT = std::numeric_limits<double>::quiet_NaN(); + double dfC_4_MCpG_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double dfC_4_MCpG_dT = std::numeric_limits<double>::quiet_NaN(); + double dfC_4_MCT_dT = std::numeric_limits<double>::quiet_NaN(); + double dfC_4_MCu_dT = std::numeric_limits<double>::quiet_NaN(); + double dfC_3a_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double dfC_3a_dp_cap = std::numeric_limits<double>::quiet_NaN(); + double dfC_3a_dT = std::numeric_limits<double>::quiet_NaN(); + double dfC_2a_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double dfC_2a_dp_cap = std::numeric_limits<double>::quiet_NaN(); + double dfC_2a_dT = std::numeric_limits<double>::quiet_NaN(); + double dfW_2a_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double dfW_2b_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double dfW_2a_dp_cap = std::numeric_limits<double>::quiet_NaN(); + double dfW_2b_dp_cap = std::numeric_limits<double>::quiet_NaN(); + double dfW_2a_dT = std::numeric_limits<double>::quiet_NaN(); + double dfW_2b_dT = std::numeric_limits<double>::quiet_NaN(); + double dfW_3a_dp_GR = std::numeric_limits<double>::quiet_NaN(); + double dfW_3a_dp_cap = std::numeric_limits<double>::quiet_NaN(); + double dfW_3a_dT = std::numeric_limits<double>::quiet_NaN(); + double ds_L_dp_cap = std::numeric_limits<double>::quiet_NaN(); + EIGEN_MAKE_ALIGNED_OPERATOR_NEW; }; diff --git a/ProcessLib/TH2M/IntegrationPointData.h b/ProcessLib/TH2M/IntegrationPointData.h index 67100620dddb756a556610db0eebb9e909ecbc18..2e959a1da3ae37a2df5e3305cc475a4cfd58482f 100644 --- a/ProcessLib/TH2M/IntegrationPointData.h +++ b/ProcessLib/TH2M/IntegrationPointData.h @@ -122,6 +122,7 @@ struct IntegrationPointData final // porosity double phi = std::numeric_limits<double>::quiet_NaN(); + double dphi_dT = std::numeric_limits<double>::quiet_NaN(); double muGR = std::numeric_limits<double>::quiet_NaN(); double muLR = std::numeric_limits<double>::quiet_NaN(); diff --git a/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionModel.h b/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionModel.h index 54654ccbb048f5df6454bc228d6689ca970611a5..b172d3f45d1c5ffe5acc99e89bbb61d1f8995843 100644 --- a/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionModel.h +++ b/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionModel.h @@ -24,6 +24,23 @@ struct PhaseTransitionModelVariables double rhoCGR = 0.; double rhoWGR = 0.; + double drho_GR_dp_GR = 0.; + double drho_GR_dT = 0.; + double drho_C_GR_dp_GR = 0.; + double drho_C_GR_dT = 0.; + double drho_LR_dp_GR = 0.; + double drho_LR_dp_LR = 0.; + double drho_C_LR_dp_GR = 0.; + double drho_C_LR_dp_LR = 0.; + double drho_C_LR_dT = 0.; + + double drho_W_LR_dp_LR = 0.; + double drho_W_LR_dp_GR = 0.; + double drho_W_GR_dT = 0.; + double drho_W_LR_dT = 0.; + double drho_W_GR_dp_GR = 0.; + double drho_W_GR_dp_cap = 0.; + // liquid phase density double rhoLR = 0.; double rhoWLR = 0.; @@ -71,9 +88,18 @@ struct PhaseTransitionModelVariables double hWG = 0; double hL = 0; + double dh_G_dT = 0; + double dh_L_dT = 0; + // specific inner energies double uG = 0; double uL = 0; + + double du_G_dT = 0; + double du_L_dT = 0; + double du_G_dp_GR = 0; + double du_L_dp_GR = 0; + double du_L_dp_cap = 0; }; struct PhaseTransitionModel diff --git a/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionNone.cpp b/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionNone.cpp index def1a73daf3e0263ff1dba6edca339f0048a0823..9ce4254b4fe270b51a229629aaa0da61c6026015 100644 --- a/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionNone.cpp +++ b/ProcessLib/TH2M/PhaseTransitionModels/PhaseTransitionNone.cpp @@ -107,11 +107,61 @@ PhaseTransitionModelVariables PhaseTransitionNone::updateConstitutiveVariables( // specific phase enthalpies cv.hG = cpG * T; cv.hL = cpL * T; + cv.dh_G_dT = cpG; + cv.dh_L_dT = cpL; // specific inner energies cv.uG = cv.hG - pGR / cv.rhoGR; cv.uL = cv.hL; + auto const drho_GR_dT = + gas_phase[MaterialPropertyLib::PropertyType::density] + .template dValue<double>(variables, + MaterialPropertyLib::Variable::temperature, + pos, t, dt); + cv.du_G_dT = cpG + pGR * drho_GR_dT / cv.rhoGR / cv.rhoGR; + + cv.du_L_dT = cpL; + + cv.drho_GR_dp_GR = + gas_phase.property(MaterialPropertyLib::PropertyType::density) + .template dValue<double>( + variables, MaterialPropertyLib::Variable::phase_pressure, pos, + t, dt); + cv.drho_LR_dp_LR = + liquid_phase[MaterialPropertyLib::PropertyType::density] + .template dValue<double>( + variables, MaterialPropertyLib::Variable::liquid_phase_pressure, + pos, t, dt); + cv.drho_LR_dp_GR = cv.drho_LR_dp_LR; + + cv.du_G_dp_GR = + -1 / cv.rhoGR + pGR * cv.drho_GR_dp_GR / cv.rhoGR / cv.rhoGR; + + cv.drho_C_GR_dp_GR = cv.drho_GR_dp_GR; + cv.drho_C_LR_dp_LR = 0; + cv.drho_C_LR_dp_GR = 0; + cv.drho_C_GR_dT = drho_GR_dT; + + auto const drho_LR_dT = + liquid_phase[MaterialPropertyLib::PropertyType::density] + .template dValue<double>(variables, + MaterialPropertyLib::Variable::temperature, + pos, t, dt); + cv.drho_C_LR_dT = 0; + + cv.du_L_dp_GR = 0; + cv.du_L_dp_cap = 0; + /* TODO update to the following when uL has same structure as the uG: + +-1 / cv.rhoLR + pLR * cv.drho_LR_dp_cap / cv.rhoLR / cv.rhoLR; + */ + + cv.drho_W_LR_dp_LR = cv.drho_LR_dp_LR; + cv.drho_W_LR_dp_GR = cv.drho_LR_dp_GR; + cv.drho_W_LR_dT = drho_LR_dT; + cv.drho_W_GR_dT = 0; + cv.drho_W_GR_dp_GR = 0; + cv.drho_W_GR_dp_cap = 0; return cv; } } // namespace TH2M diff --git a/ProcessLib/TH2M/TH2MFEM-impl.h b/ProcessLib/TH2M/TH2MFEM-impl.h index 9f4f9471951f78129af9be295e0dd6b83cc31ec9..d7763bb9713851f88159e1d015e94619d4dbed3a 100644 --- a/ProcessLib/TH2M/TH2MFEM-impl.h +++ b/ProcessLib/TH2M/TH2MFEM-impl.h @@ -125,6 +125,8 @@ TH2MLocalAssembler<ShapeFunctionDisplacement, ShapeFunctionPressure, pos.setElementID(_element.getID()); auto const& medium = *_process_data.media_map->getMedium(_element.getID()); + auto const& gas_phase = medium.phase("Gas"); + auto const& liquid_phase = medium.phase("AqueousLiquid"); auto const& solid_phase = medium.phase("Solid"); unsigned const n_integration_points = @@ -143,7 +145,7 @@ TH2MLocalAssembler<ShapeFunctionDisplacement, ShapeFunctionPressure, auto const& NT = Np; auto const& Nu = ip_data.N_u; auto const& gradNu = ip_data.dNdx_u; - + auto const& gradNp = ip_data.dNdx_p; auto const x_coord = NumLib::interpolateXCoordinate<ShapeFunctionDisplacement, ShapeMatricesTypeDisplacement>( @@ -153,6 +155,8 @@ TH2MLocalAssembler<ShapeFunctionDisplacement, ShapeFunctionPressure, double const pGR = Np.dot(gas_pressure); double const pCap = Np.dot(capillary_pressure); double const pLR = pGR - pCap; + GlobalDimVectorType const gradpGR = gradNp * gas_pressure; + GlobalDimVectorType const gradpCap = gradNp * capillary_pressure; MPL::VariableArray vars; vars[static_cast<int>(MPL::Variable::temperature)] = T; @@ -293,7 +297,7 @@ TH2MLocalAssembler<ShapeFunctionDisplacement, ShapeFunctionPressure, auto const lambdaGR = MPL::formEigenTensor<DisplacementDim>(c.lambdaGR); auto const lambdaLR = MPL::formEigenTensor<DisplacementDim>(c.lambdaLR); - ip_data.lambda = phi_S * lambdaSR + phi_L * lambdaLR + phi_G * lambdaGR; + ip_data.lambda = phi_G * lambdaGR + phi_L * lambdaLR + phi_S * lambdaSR; auto const cpS = solid_phase.property(MPL::PropertyType::specific_heat_capacity) @@ -340,6 +344,275 @@ TH2MLocalAssembler<ShapeFunctionDisplacement, ShapeFunctionPressure, ip_data.h_G = c.hG; ip_data.h_L = c.hL; ip_data.pWGR = c.pWGR; + + // --------------------------------------------------------------------- + // Derivatives for Jacobian + // --------------------------------------------------------------------- + ip_cv.drho_LR_dT = + liquid_phase.property(MPL::PropertyType::density) + .template dValue<double>(vars, MPL::Variable::temperature, pos, + t, dt); + ip_cv.drho_SR_dT = + solid_phase.property(MPL::PropertyType::density) + .template dValue<double>(vars, MPL::Variable::temperature, + pos, t, dt) +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + * (1. - ip_data.thermal_volume_strain + + (ip_data.alpha_B - 1.) * div_u) - + rho_ref_SR * ip_data.beta_T_SR +#endif + ; + + // porosity + auto const dphi_0_dT = + medium[MPL::PropertyType::porosity].template dValue<double>( + vars, MPL::Variable::temperature, pos, t, dt); + + auto const dphi_S_0_dT = -dphi_0_dT; + const double dphi_S_dT = dphi_S_0_dT +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + * (1. + ip_data.thermal_volume_strain - + ip_data.alpha_B * div_u) + + phi_S_0 * ip_data.beta_T_SR +#endif + ; + + ip_cv.drho_u_eff_dT = + phi_G * c.drho_GR_dT * c.uG + phi_G * c.rhoGR * c.du_G_dT + + phi_L * ip_cv.drho_LR_dT * c.uL + phi_L * c.rhoLR * c.du_L_dT + + phi_S * ip_cv.drho_SR_dT * u_S + phi_S * rhoSR * cpS + + dphi_S_dT * rhoSR * u_S; + + ip_cv.ds_L_dp_cap = + medium[MPL::PropertyType::saturation].template dValue<double>( + vars, MPL::Variable::capillary_pressure, pos, t, dt); + // TODO (naumov) Extend for partially saturated media. + constexpr double ds_L_dp_GR = 0; + double const ds_G_dp_GR = -ds_L_dp_GR; + double const ds_G_dp_cap = -ip_cv.ds_L_dp_cap; + + double const dphi_G_dp_GR = -ds_L_dp_GR * ip_data.phi; + double const dphi_G_dp_cap = -ip_cv.ds_L_dp_cap * ip_data.phi; + double const dphi_L_dp_GR = ds_L_dp_GR * ip_data.phi; + double const dphi_L_dp_cap = ip_cv.ds_L_dp_cap * ip_data.phi; + + auto const dlambda_GR_dT = MPL::formEigenTensor<DisplacementDim>( + gas_phase[MPL::PropertyType::thermal_conductivity].dValue( + vars, MPL::Variable::temperature, pos, t, dt)); + auto const dlambda_LR_dT = MPL::formEigenTensor<DisplacementDim>( + liquid_phase[MPL::PropertyType::thermal_conductivity].dValue( + vars, MPL::Variable::temperature, pos, t, dt)); + auto const dlambda_SR_dT = MPL::formEigenTensor<DisplacementDim>( + solid_phase[MPL::PropertyType::thermal_conductivity].dValue( + vars, MPL::Variable::temperature, pos, t, dt)); + + ip_cv.dlambda_dp_GR = dphi_G_dp_GR * lambdaGR + dphi_L_dp_GR * lambdaLR; + + ip_cv.dlambda_dp_cap = + dphi_G_dp_cap * lambdaGR + dphi_L_dp_cap * lambdaLR; + + ip_cv.dlambda_dT = phi_G * dlambda_GR_dT + phi_L * dlambda_LR_dT + + phi_S * dlambda_SR_dT + dphi_S_dT * lambdaSR; + + // From p_LR = p_GR - p_cap it follows for + // drho_LR/dp_GR = drho_LR/dp_LR * dp_LR/dp_GR + // = drho_LR/dp_LR * (dp_GR/dp_GR - dp_cap/dp_GR) + // = drho_LR/dp_LR * (1 - 0) + double const drho_LR_dp_GR = c.drho_LR_dp_LR; + double const drho_LR_dp_cap = -c.drho_LR_dp_LR; + // And also for drho_GR/dp_LR = drho_GR/dp_GR * dp_GR/dp_LR: + double const drho_GR_dp_cap = 0; + + ip_cv.drho_h_eff_dp_GR = + dphi_G_dp_GR * c.rhoGR * c.hG + phi_G * c.drho_GR_dp_GR * c.hG + + dphi_L_dp_GR * c.rhoLR * c.hL + phi_L * drho_LR_dp_GR * c.hL; + ip_cv.drho_h_eff_dp_cap = + dphi_G_dp_cap * c.rhoGR * c.hG + phi_G * drho_GR_dp_cap * c.hG + + dphi_L_dp_cap * c.rhoLR * c.hL + phi_L * drho_LR_dp_cap * c.hL; + + // TODO (naumov) Extend for temperature dependent porosities. + constexpr double dphi_G_dT = 0; + constexpr double dphi_L_dT = 0; + ip_cv.drho_h_eff_dT = + dphi_G_dT * c.rhoGR * c.hG + phi_G * c.drho_GR_dT * c.hG + + phi_G * c.rhoGR * c.dh_G_dT + dphi_L_dT * c.rhoLR * c.hL + + phi_L * ip_cv.drho_LR_dT * c.hL + phi_L * c.rhoLR * c.dh_L_dT + + dphi_S_dT * rhoSR * ip_data.h_S + + phi_S * ip_cv.drho_SR_dT * ip_data.h_S + phi_S * rhoSR * cpS; + + ip_cv.drho_u_eff_dp_GR = + dphi_G_dp_GR * c.rhoGR * c.uG + phi_G * c.drho_GR_dp_GR * c.uG + + phi_G * c.rhoGR * c.du_G_dp_GR + dphi_L_dp_GR * c.rhoLR * c.uL + + phi_L * drho_LR_dp_GR * c.uL + phi_L * c.rhoLR * c.du_L_dp_GR; + + ip_cv.drho_u_eff_dp_cap = + dphi_G_dp_cap * c.rhoGR * c.uG + phi_G * drho_GR_dp_cap * c.uG + + dphi_L_dp_cap * c.rhoLR * c.uL + phi_L * drho_LR_dp_cap * c.uL + + phi_L * c.rhoLR * c.du_L_dp_cap; + + auto const& b = _process_data.specific_body_force; + auto const k_over_mu_G = + (ip_data.k_S * ip_data.k_rel_G / ip_data.muGR).eval(); + auto const k_over_mu_L = + (ip_data.k_S * ip_data.k_rel_L / ip_data.muLR).eval(); + GlobalDimVectorType const w_GS = + k_over_mu_G * c.rhoGR * b - k_over_mu_G * gradpGR; + GlobalDimVectorType const w_LS = k_over_mu_L * gradpCap + + k_over_mu_L * c.rhoLR * b - + k_over_mu_L * gradpGR; + + ip_cv.drho_GR_h_w_eff_dp_GR_Npart = + c.drho_GR_dp_GR * c.hG * w_GS + + c.rhoGR * c.hG * k_over_mu_G * c.drho_GR_dp_GR * b; + ip_cv.drho_GR_h_w_eff_dp_GR_gradNpart = + -c.rhoGR * c.hG * k_over_mu_G - c.rhoLR * c.hL * k_over_mu_L; + + ip_cv.drho_LR_h_w_eff_dp_cap_Npart = + -drho_LR_dp_cap * c.hL * w_LS - + c.rhoLR * c.hL * k_over_mu_L * drho_LR_dp_cap * b; + ip_cv.drho_LR_h_w_eff_dp_cap_gradNpart = + // TODO (naumov) why the minus sign?????? + -c.rhoLR * c.hL * k_over_mu_L; + + ip_cv.drho_GR_h_w_eff_dT = + c.drho_GR_dT * c.hG * w_GS + c.rhoGR * c.dh_G_dT * w_GS + + ip_cv.drho_LR_dT * c.hL * w_LS + c.rhoLR * c.dh_L_dT * w_LS; + // TODO (naumov) + k_over_mu_G * drho_GR_dT * b + k_over_mu_L * + // drho_LR_dT * b + + // Derivatives of s_G * rho_C_GR_dot + s_L * rho_C_LR_dot abbreviated + // here with S_rho_C_eff. + double const s_L = ip_data.s_L; + double const s_G = 1. - ip_data.s_L; + double const rho_C_GR_dot = (ip_data.rhoCGR - ip_data.rhoCGR_prev) / dt; + double const rho_C_LR_dot = (ip_data.rhoCLR - ip_data.rhoCLR_prev) / dt; + double const rho_C_FR = s_G * ip_data.rhoCGR + s_L * ip_data.rhoCLR; + double const rho_W_FR = s_G * ip_data.rhoWGR + s_L * ip_data.rhoWLR; + // TODO (naumov) Extend for partially saturated media. + constexpr double drho_C_GR_dp_cap = 0; + ip_cv.dfC_3a_dp_GR = + ds_G_dp_GR * rho_C_GR_dot + s_G * c.drho_C_GR_dp_GR / dt + + ds_L_dp_GR * rho_C_LR_dot + s_L * c.drho_C_LR_dp_GR / dt; + ip_cv.dfC_3a_dp_cap = + ds_G_dp_cap * rho_C_GR_dot + s_G * drho_C_GR_dp_cap / dt + + ip_cv.ds_L_dp_cap * rho_C_LR_dot - s_L * c.drho_C_LR_dp_LR / dt; + ip_cv.dfC_3a_dT = s_G * c.drho_C_GR_dT / dt + s_L * c.drho_C_LR_dT / dt; + + double const drho_C_FR_dp_GR = + ds_G_dp_GR * ip_data.rhoCGR + s_G * c.drho_C_GR_dp_GR + + ds_L_dp_GR * ip_data.rhoCLR + s_L * c.drho_C_LR_dp_GR; + ip_cv.dfC_4_MCpG_dp_GR = drho_C_FR_dp_GR * + (ip_data.alpha_B - ip_data.phi) * + ip_data.beta_p_SR; + + double const drho_C_FR_dT = s_G * c.drho_C_GR_dT + s_L * c.drho_C_LR_dT; + ip_cv.dfC_4_MCpG_dT = + drho_C_FR_dT * (ip_data.alpha_B - ip_data.phi) * ip_data.beta_p_SR +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + - rho_C_FR * ip_data.dphi_dT * ip_data.beta_p_SR +#endif + ; + + ip_cv.dfC_4_MCT_dT = + drho_C_FR_dT * (ip_data.alpha_B - ip_data.phi) * ip_data.beta_T_SR +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + + rho_C_FR * (ip_data.alpha_B - ip_data.dphi_dT) * ip_data.beta_T_SR +#endif + ; + + ip_cv.dfC_4_MCu_dT = drho_C_FR_dT * ip_data.alpha_B; + + ip_cv.dfC_2a_dp_GR = -ip_data.phi * c.drho_C_GR_dp_GR - + drho_C_FR_dp_GR * pCap * + (ip_data.alpha_B - ip_data.phi) * + ip_data.beta_p_SR; + + double const drho_C_FR_dp_cap = + ds_G_dp_cap * ip_data.rhoCGR + s_G * drho_C_GR_dp_cap + + ip_cv.ds_L_dp_cap * ip_data.rhoCLR - s_L * c.drho_C_LR_dp_LR; + + ip_cv.dfC_2a_dp_cap = + ip_data.phi * (-c.drho_C_LR_dp_LR - drho_C_GR_dp_cap) - + drho_C_FR_dp_cap * pCap * (ip_data.alpha_B - ip_data.phi) * + ip_data.beta_p_SR + + rho_C_FR * (ip_data.alpha_B - ip_data.phi) * ip_data.beta_p_SR; + + ip_cv.dfC_2a_dT = +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + ip_data.dphi_dT * (ip_data.rhoCLR - ip_data.rhoCGR) + +#endif + ip_data.phi * (c.drho_C_LR_dT - c.drho_C_GR_dT) - + drho_C_FR_dT * pCap * (ip_data.alpha_B - ip_data.phi) * + ip_data.beta_p_SR +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + + rho_C_FR * pCap * ip_data.dphi_dT * ip_data.beta_p_SR +#endif + ; + + ip_cv.dadvection_C_dp_GR = + c.drho_C_GR_dp_GR * k_over_mu_G + c.drho_C_LR_dp_GR * k_over_mu_L; + + ip_cv.dfC_4_LCpG_dT = + c.drho_C_GR_dT * k_over_mu_G + c.drho_C_LR_dT * k_over_mu_L + // + ip_cv.ddiffusion_C_p_dT TODO (naumov) + ; + + double const drho_W_FR_dp_GR = + ds_G_dp_GR * ip_data.rhoWGR + s_G * c.drho_W_GR_dp_GR + + ds_L_dp_GR * ip_data.rhoWLR + s_L * c.drho_W_LR_dp_GR; + double const drho_W_FR_dp_cap = + ds_G_dp_cap * ip_data.rhoWGR + s_G * c.drho_W_GR_dp_cap + + ip_cv.ds_L_dp_cap * ip_data.rhoWLR - s_L * c.drho_W_LR_dp_LR; + double const drho_W_FR_dT = s_G * c.drho_W_GR_dT + s_L * c.drho_W_LR_dT; + + ip_cv.dfW_2a_dp_GR = + ip_data.phi * (c.drho_W_LR_dp_GR - c.drho_W_GR_dp_GR); + ip_cv.dfW_2b_dp_GR = drho_W_FR_dp_GR * pCap * + (ip_data.alpha_B - ip_data.phi) * + ip_data.beta_p_SR; + ip_cv.dfW_2a_dp_cap = + ip_data.phi * (-c.drho_W_LR_dp_LR - c.drho_W_GR_dp_cap); + ip_cv.dfW_2b_dp_cap = + drho_W_FR_dp_cap * pCap * (ip_data.alpha_B - ip_data.phi) * + ip_data.beta_p_SR + + rho_W_FR * (ip_data.alpha_B - ip_data.phi) * ip_data.beta_p_SR; + + ip_cv.dfW_2a_dT = +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + ip_data.dphi_dT * (ip_data.rhoWLR - ip_data.rhoWGR) + +#endif + ip_data.phi * (c.drho_W_LR_dT - c.drho_W_GR_dT); + ip_cv.dfW_2b_dT = + drho_W_FR_dT * pCap * (ip_data.alpha_B - ip_data.phi) * + ip_data.beta_p_SR +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + - rho_W_FR * pCap * ip_data.dphi_dT * ip_data.beta_p_SR +#endif + ; + + double const rho_W_GR_dot = (ip_data.rhoWGR - ip_data.rhoWGR_prev) / dt; + double const rho_W_LR_dot = (ip_data.rhoWLR - ip_data.rhoWLR_prev) / dt; + + ip_cv.dfW_3a_dp_GR = + ds_G_dp_GR * rho_W_GR_dot + s_G * c.drho_W_GR_dp_GR / dt + + ds_L_dp_GR * rho_W_LR_dot + s_L * c.drho_W_LR_dp_GR / dt; + ip_cv.dfW_3a_dp_cap = + ds_G_dp_cap * rho_W_GR_dot + s_G * c.drho_W_GR_dp_cap / dt + + ip_cv.ds_L_dp_cap * rho_W_LR_dot - s_L * c.drho_W_LR_dp_LR / dt; + ip_cv.dfW_3a_dT = s_G * c.drho_W_GR_dT / dt + s_L * c.drho_W_LR_dT / dt; + + ip_cv.dfW_4a_dp_GR = c.drho_W_GR_dp_GR * k_over_mu_G; + ip_cv.dfW_4a_dp_cap = -c.drho_W_LR_dp_LR * k_over_mu_L; + ip_cv.dfW_4a_dT = + c.drho_W_GR_dT * k_over_mu_G + c.drho_W_LR_dT * k_over_mu_L; + + // TODO (naumov) for dxmW*/d* != 0 + ip_cv.dfW_4d_dp_GR = + Eigen::Matrix<double, DisplacementDim, DisplacementDim>::Zero(); + ip_cv.dfW_4d_dp_cap = + Eigen::Matrix<double, DisplacementDim, DisplacementDim>::Zero(); + ip_cv.dfW_4d_dT = + Eigen::Matrix<double, DisplacementDim, DisplacementDim>::Zero(); } return ip_constitutive_variables; @@ -807,18 +1080,703 @@ template <typename ShapeFunctionDisplacement, typename ShapeFunctionPressure, typename IntegrationMethod, int DisplacementDim> void TH2MLocalAssembler<ShapeFunctionDisplacement, ShapeFunctionPressure, IntegrationMethod, DisplacementDim>:: - assembleWithJacobian(double const /*t*/, double const /*dt*/, - std::vector<double> const& /*local_x*/, - std::vector<double> const& /*local_xdot*/, + assembleWithJacobian(double const t, double const dt, + std::vector<double> const& local_x, + std::vector<double> const& local_xdot, const double /*dxdot_dx*/, const double /*dx_dx*/, std::vector<double>& /*local_M_data*/, std::vector<double>& /*local_K_data*/, - std::vector<double>& /*local_rhs_data*/, - std::vector<double>& /*local_Jac_data*/) + std::vector<double>& local_rhs_data, + std::vector<double>& local_Jac_data) { - OGS_FATAL( - "TH2MLocalAssembler:assembleWithJacobian is currently not " - "implemented."); + auto const matrix_size = gas_pressure_size + capillary_pressure_size + + temperature_size + displacement_size; + assert(local_x.size() == matrix_size); + + auto const temperature = Eigen::Map<VectorType<temperature_size> const>( + local_x.data() + temperature_index, temperature_size); + + auto const gas_pressure = Eigen::Map<VectorType<gas_pressure_size> const>( + local_x.data() + gas_pressure_index, gas_pressure_size); + + auto const capillary_pressure = + Eigen::Map<VectorType<capillary_pressure_size> const>( + local_x.data() + capillary_pressure_index, capillary_pressure_size); + + auto const gas_pressure_dot = + Eigen::Map<VectorType<gas_pressure_size> const>( + local_xdot.data() + gas_pressure_index, gas_pressure_size); + + auto const capillary_pressure_dot = + Eigen::Map<VectorType<capillary_pressure_size> const>( + local_xdot.data() + capillary_pressure_index, + capillary_pressure_size); + + auto const temperature_dot = Eigen::Map<VectorType<temperature_size> const>( + local_xdot.data() + temperature_index, temperature_size); + + auto const displacement_dot = + Eigen::Map<VectorType<displacement_size> const>( + local_xdot.data() + displacement_index, displacement_size); + + auto local_Jac = + MathLib::createZeroedMatrix<MatrixType<matrix_size, matrix_size>>( + local_Jac_data, matrix_size, matrix_size); + + auto local_f = MathLib::createZeroedVector<VectorType<matrix_size>>( + local_rhs_data, matrix_size); + + // component-formulation + // W - liquid phase main component + // C - gas phase main component + + // C component equation matrices + MatrixType<C_size, gas_pressure_size> MCpG = + MatrixType<C_size, gas_pressure_size>::Zero(C_size, gas_pressure_size); + MatrixType<C_size, capillary_pressure_size> MCpC = + MatrixType<C_size, capillary_pressure_size>::Zero( + C_size, capillary_pressure_size); + MatrixType<C_size, temperature_size> MCT = + MatrixType<C_size, temperature_size>::Zero(C_size, temperature_size); + MatrixType<C_size, displacement_size> MCu = + MatrixType<C_size, displacement_size>::Zero(C_size, displacement_size); + + MatrixType<C_size, gas_pressure_size> LCpG = + MatrixType<C_size, gas_pressure_size>::Zero(C_size, gas_pressure_size); + MatrixType<C_size, capillary_pressure_size> LCpC = + MatrixType<C_size, capillary_pressure_size>::Zero( + C_size, capillary_pressure_size); + MatrixType<C_size, temperature_size> LCT = + MatrixType<C_size, temperature_size>::Zero(C_size, temperature_size); + + // mass matrix - W component equation + MatrixType<W_size, gas_pressure_size> MWpG = + MatrixType<W_size, gas_pressure_size>::Zero(W_size, gas_pressure_size); + MatrixType<W_size, capillary_pressure_size> MWpC = + MatrixType<W_size, capillary_pressure_size>::Zero( + W_size, capillary_pressure_size); + MatrixType<W_size, temperature_size> MWT = + MatrixType<W_size, temperature_size>::Zero(W_size, temperature_size); + MatrixType<W_size, displacement_size> MWu = + MatrixType<W_size, displacement_size>::Zero(W_size, displacement_size); + + // stiffness matrix - W component equation + MatrixType<W_size, gas_pressure_size> LWpG = + MatrixType<W_size, gas_pressure_size>::Zero(W_size, gas_pressure_size); + MatrixType<W_size, capillary_pressure_size> LWpC = + MatrixType<W_size, capillary_pressure_size>::Zero( + W_size, capillary_pressure_size); + MatrixType<W_size, temperature_size> LWT = + MatrixType<W_size, temperature_size>::Zero(W_size, temperature_size); + + // mass matrix - temperature equation + MatrixType<temperature_size, displacement_size> MTu = + MatrixType<temperature_size, displacement_size>::Zero( + temperature_size, displacement_size); + + // stiffness matrix - temperature equation + MatrixType<temperature_size, temperature_size> KTT = + MatrixType<temperature_size, temperature_size>::Zero(temperature_size, + temperature_size); + + // stiffness matrices - displacement equation coupling into pressures + MatrixType<displacement_size, gas_pressure_size> KUpG = + MatrixType<displacement_size, gas_pressure_size>::Zero( + displacement_size, gas_pressure_size); + MatrixType<displacement_size, capillary_pressure_size> KUpC = + MatrixType<displacement_size, capillary_pressure_size>::Zero( + displacement_size, capillary_pressure_size); + + // pointer-vectors to the right hand side terms - C-component equation + auto fC = local_f.template segment<C_size>(C_index); + // pointer-vectors to the right hand side terms - W-component equation + auto fW = local_f.template segment<W_size>(W_index); + // pointer-vectors to the right hand side terms - temperature equation + auto fT = local_f.template segment<temperature_size>(temperature_index); + // pointer-vectors to the right hand side terms - displacement equation + auto fU = local_f.template segment<displacement_size>(displacement_index); + + ParameterLib::SpatialPosition pos; + pos.setElementID(_element.getID()); + + unsigned const n_integration_points = + _integration_method.getNumberOfPoints(); + + auto const ip_constitutive_variables = updateConstitutiveVariables( + Eigen::Map<Eigen::VectorXd const>(local_x.data(), local_x.size()), + Eigen::Map<Eigen::VectorXd const>(local_xdot.data(), local_xdot.size()), + t, dt); + + for (unsigned int_point = 0; int_point < n_integration_points; int_point++) + { + pos.setIntegrationPoint(int_point); + auto& ip = _ip_data[int_point]; + auto& ip_cv = ip_constitutive_variables[int_point]; + + auto const& Np = ip.N_p; + auto const& NT = Np; + auto const& Nu = ip.N_u; + + auto const& NpT = Np.transpose().eval(); + auto const& NTT = NT.transpose().eval(); + + auto const& gradNp = ip.dNdx_p; + auto const& gradNT = gradNp; + auto const& gradNu = ip.dNdx_u; + + auto const& gradNpT = gradNp.transpose().eval(); + auto const& gradNTT = gradNT.transpose().eval(); + + auto const& Nu_op = ip.N_u_op; + auto const& w = ip.integration_weight; + + auto const& m = Invariants::identity2; + auto const mT = m.transpose().eval(); + + auto const x_coord = + NumLib::interpolateXCoordinate<ShapeFunctionDisplacement, + ShapeMatricesTypeDisplacement>( + _element, Nu); + + auto const Bu = + LinearBMatrix::computeBMatrix<DisplacementDim, + ShapeFunctionDisplacement::NPOINTS, + typename BMatricesType::BMatrixType>( + gradNu, Nu, x_coord, _is_axially_symmetric); + + auto const BuT = Bu.transpose().eval(); + + double const div_u_dot = Invariants::trace(Bu * displacement_dot); + + double const pCap = Np.dot(capillary_pressure); + + GlobalDimVectorType const gradpGR = gradNp * gas_pressure; + GlobalDimVectorType const gradpCap = gradNp * capillary_pressure; + GlobalDimVectorType const gradT = gradNT * temperature; + + double const pGR_dot = Np.dot(gas_pressure_dot); + double const pCap_dot = Np.dot(capillary_pressure_dot); + double const T_dot = NT.dot(temperature_dot); + auto& beta_T_SR = ip.beta_T_SR; + + auto const I = + Eigen::Matrix<double, DisplacementDim, DisplacementDim>::Identity(); + + const double sD_G = ip.diffusion_coefficient_vapour; + const double sD_L = ip.diffusion_coefficient_solvate; + + auto const D_C_G = (sD_G * I).eval(); + auto const D_W_G = (sD_G * I).eval(); + auto const D_C_L = (sD_L * I).eval(); + auto const D_W_L = (sD_L * I).eval(); + + auto& k_S = ip.k_S; + + auto& s_L = ip.s_L; + auto const s_G = 1. - s_L; + auto const s_L_dot = (s_L - ip.s_L_prev) / dt; + + auto& alpha_B = ip.alpha_B; + auto& beta_p_SR = ip.beta_p_SR; + + auto const& b = _process_data.specific_body_force; + + // porosity + auto& phi = ip.phi; + + // volume fraction + auto const phi_G = s_G * phi; + auto const phi_L = s_L * phi; + auto const phi_S = 1. - phi; + + // solid phase density + auto& rho_SR = ip.rhoSR; + // effective density + auto const rho = phi_G * ip.rhoGR + phi_L * ip.rhoLR + phi_S * rho_SR; + + // abbreviations + const double rho_C_FR = s_G * ip.rhoCGR + s_L * ip.rhoCLR; + const double rho_W_FR = s_G * ip.rhoWGR + s_L * ip.rhoWLR; + + // phase specific enthalpies + auto& h_G = ip.h_G; + auto& h_L = ip.h_L; + + auto const rho_C_GR_dot = (ip.rhoCGR - ip.rhoCGR_prev) / dt; + auto const rho_C_LR_dot = (ip.rhoCLR - ip.rhoCLR_prev) / dt; + auto const rho_W_GR_dot = (ip.rhoWGR - ip.rhoWGR_prev) / dt; + auto const rho_W_LR_dot = (ip.rhoWLR - ip.rhoWLR_prev) / dt; + + auto const rho_h_eff = ip.rho_G_h_G + ip.rho_L_h_L + ip.rho_S_h_S; + + auto const rho_u_eff_dot = (ip.rho_u_eff - ip.rho_u_eff_prev) / dt; + + auto const k_over_mu_G = (k_S * ip.k_rel_G / ip.muGR).eval(); + auto const k_over_mu_L = (k_S * ip.k_rel_L / ip.muLR).eval(); + + GlobalDimVectorType const w_GS = + k_over_mu_G * ip.rhoGR * b - k_over_mu_G * gradpGR; + + GlobalDimVectorType const w_LS = k_over_mu_L * gradpCap + + k_over_mu_L * ip.rhoLR * b - + k_over_mu_L * gradpGR; + + // --------------------------------------------------------------------- + // C-component equation + // --------------------------------------------------------------------- + + MCpG.noalias() += NpT * rho_C_FR * (alpha_B - phi) * beta_p_SR * Np * w; + MCpC.noalias() -= + NpT * rho_C_FR * (alpha_B - phi) * beta_p_SR * s_L * Np * w; + + if (_process_data.apply_mass_lumping) + { + if (pCap_dot != 0.) // avoid division by Zero + { + MCpC.noalias() += + NpT * + (phi * (ip.rhoCLR - ip.rhoCGR) - + rho_C_FR * pCap * (alpha_B - phi) * beta_p_SR) * + s_L_dot / pCap_dot * Np * w; + } + } + + MCT.noalias() -= NpT * rho_C_FR * (alpha_B - phi) * beta_T_SR * Np * w; + // d (fC_4_MCT * T_dot)/d T + local_Jac + .template block<C_size, temperature_size>(C_index, + temperature_index) + .noalias() += NpT * ip_cv.dfC_4_MCT_dT * T_dot * NT * w; + + MCu.noalias() += NpT * rho_C_FR * alpha_B * mT * Bu * w; + // d (fC_4_MCu * u_dot)/d T + local_Jac + .template block<C_size, temperature_size>(C_index, + temperature_index) + .noalias() += NpT * ip_cv.dfC_4_MCu_dT * div_u_dot * NT * w; + + auto const advection_C_G = (ip.rhoCGR * k_over_mu_G).eval(); + auto const advection_C_L = (ip.rhoCLR * k_over_mu_L).eval(); + auto const diffusion_C_G_p = + (phi_G * ip.rhoGR * D_C_G * ip.dxmCG_dpGR).eval(); + auto const diffusion_C_L_p = + (phi_L * ip.rhoLR * D_C_L * ip.dxmCL_dpLR).eval(); + auto const diffusion_C_G_T = + (phi_G * ip.rhoGR * D_C_G * ip.dxmCG_dT).eval(); + auto const diffusion_C_L_T = + (phi_L * ip.rhoLR * D_C_L * ip.dxmCL_dT).eval(); + + auto const advection_C = (advection_C_G + advection_C_L).eval(); + auto const diffusion_C_p = (diffusion_C_G_p + diffusion_C_L_p).eval(); + auto const diffusion_C_T = (diffusion_C_G_T + diffusion_C_L_T).eval(); + + LCpG.noalias() += gradNpT * (advection_C + diffusion_C_p) * gradNp * w; + + // d (fC_4_LCpG * grad p_GR)/d p_GR + local_Jac.template block<C_size, C_size>(C_index, C_index).noalias() += + gradNpT * + (ip_cv.dadvection_C_dp_GR + // + ip_cv.ddiffusion_C_p_dp_GR TODO (naumov) + ) * + gradpGR * Np * w; + + // d (fC_4_LCpG * grad p_GR)/d T + local_Jac + .template block<C_size, temperature_size>(C_index, + temperature_index) + .noalias() += gradNpT * ip_cv.dfC_4_LCpG_dT * gradpGR * NT * w; + + // d (fC_4_MCpG * p_GR_dot)/d p_GR + local_Jac.template block<C_size, C_size>(C_index, C_index).noalias() += + NpT * ip_cv.dfC_4_MCpG_dp_GR * pGR_dot * Np * w; + + // d (fC_4_MCpG * p_GR_dot)/d T + local_Jac + .template block<C_size, temperature_size>(C_index, + temperature_index) + .noalias() += NpT * ip_cv.dfC_4_MCpG_dT * pGR_dot * NT * w; + + LCpC.noalias() -= + gradNpT * (advection_C_L + diffusion_C_L_p) * gradNp * w; + + LCT.noalias() += gradNpT * diffusion_C_T * gradNp * w; + + // fC_1 + fC.noalias() += gradNpT * + (advection_C_G * ip.rhoGR + advection_C_L * ip.rhoLR) * + b * w; + + if (!_process_data.apply_mass_lumping) + { + // fC_2 = \int a * s_L_dot + auto const a = phi * (ip.rhoCLR - ip.rhoCGR) - + rho_C_FR * pCap * (alpha_B - phi) * beta_p_SR; + fC.noalias() -= NpT * a * s_L_dot * w; + + // TODO (naumov) Extend for partially saturated media. + constexpr double ds_L_dp_GR = 0; + local_Jac.template block<C_size, C_size>(C_index, C_index) + .noalias() += + NpT * (ip_cv.dfC_2a_dp_GR * s_L_dot - a * ds_L_dp_GR / dt) * + Np * w; + + local_Jac.template block<C_size, W_size>(C_index, W_index) + .noalias() += + NpT * + (ip_cv.dfC_2a_dp_cap * s_L_dot + a * ip_cv.ds_L_dp_cap / dt) * + Np * w; + + local_Jac + .template block<C_size, temperature_size>(C_index, + temperature_index) + .noalias() += NpT * ip_cv.dfC_2a_dT * s_L_dot * NT * w; + } + { + // fC_3 = \int phi * a + double const a = s_G * rho_C_GR_dot + s_L * rho_C_LR_dot; + fC.noalias() -= NpT * phi * a * w; + + local_Jac.template block<C_size, C_size>(C_index, C_index) + .noalias() += NpT * phi * ip_cv.dfC_3a_dp_GR * Np * w; + + local_Jac.template block<C_size, W_size>(C_index, W_index) + .noalias() += NpT * phi * ip_cv.dfC_3a_dp_cap * Np * w; + + local_Jac + .template block<C_size, temperature_size>(C_index, + temperature_index) + .noalias() += NpT * + ( +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + ip.dphi_dT * a + +#endif // NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + phi * ip_cv.dfC_3a_dT) * + NT * w; + } + // --------------------------------------------------------------------- + // W-component equation + // --------------------------------------------------------------------- + + MWpG.noalias() += NpT * rho_W_FR * (alpha_B - phi) * beta_p_SR * Np * w; + MWpC.noalias() -= + NpT * rho_W_FR * (alpha_B - phi) * beta_p_SR * s_L * Np * w; + + if (_process_data.apply_mass_lumping) + { + if (pCap_dot != 0.) // avoid division by Zero + { + MWpC.noalias() += + NpT * + (phi * (ip.rhoWLR - ip.rhoWGR) - + rho_W_FR * pCap * (alpha_B - phi) * beta_p_SR) * + s_L_dot / pCap_dot * Np * w; + } + } + + MWT.noalias() -= NpT * rho_W_FR * (alpha_B - phi) * beta_T_SR * Np * w; + + MWu.noalias() += NpT * rho_W_FR * alpha_B * mT * Bu * w; + + auto const advection_W_G = (ip.rhoWGR * k_over_mu_G).eval(); + auto const advection_W_L = (ip.rhoWLR * k_over_mu_L).eval(); + auto const diffusion_W_G_p = phi_G * ip.rhoGR * D_W_G * ip.dxmWG_dpGR; + auto const diffusion_W_L_p = phi_L * ip.rhoLR * D_W_L * ip.dxmWL_dpLR; + auto const diffusion_W_G_T = phi_G * ip.rhoGR * D_W_G * ip.dxmWG_dT; + auto const diffusion_W_L_T = phi_L * ip.rhoLR * D_W_L * ip.dxmWL_dT; + + auto const advection_W = advection_W_G + advection_W_L; + auto const diffusion_W_p = diffusion_W_G_p + diffusion_W_L_p; + auto const diffusion_W_T = diffusion_W_G_T + diffusion_W_L_T; + + LWpG.noalias() += gradNpT * (advection_W + diffusion_W_p) * gradNp * w; + + // fW_4 LWpG' parts; LWpG = \int grad (a + d) grad + local_Jac.template block<W_size, C_size>(W_index, C_index).noalias() -= + gradNpT * (ip_cv.dfW_4a_dp_GR + ip_cv.dfW_4d_dp_GR) * gradpGR * Np * + w; + + local_Jac.template block<W_size, W_size>(W_index, W_index).noalias() -= + gradNpT * (ip_cv.dfW_4a_dp_cap + ip_cv.dfW_4d_dp_cap) * gradpGR * + Np * w; + + local_Jac + .template block<W_size, temperature_size>(W_index, + temperature_index) + .noalias() -= + gradNpT * (ip_cv.dfW_4a_dT + ip_cv.dfW_4d_dT) * gradpGR * NT * w; + + LWpC.noalias() -= + gradNpT * (advection_W_L + diffusion_W_L_p) * gradNp * w; + + LWT.noalias() += gradNpT * (diffusion_W_T)*gradNp * w; + + // fW_1 + fW.noalias() += gradNpT * + (advection_W_G * ip.rhoGR + advection_W_L * ip.rhoLR) * + b * w; + + // fW_2 = \int (f - g) * s_L_dot + if (!_process_data.apply_mass_lumping) + { + double const f = phi * (ip.rhoWLR - ip.rhoWGR); + double const g = rho_W_FR * pCap * (alpha_B - phi) * beta_p_SR; + + fW.noalias() -= NpT * (f - g) * s_L_dot * w; + + local_Jac.template block<W_size, C_size>(W_index, C_index) + .noalias() += NpT * (ip_cv.dfW_2a_dp_GR - ip_cv.dfW_2b_dp_GR) * + s_L_dot * Np * w; + + // sign negated because of dp_cap = -dp_LR + // TODO (naumov) Had to change the sign to get equal Jacobian WW + // blocks in A2 Test. Where is the error? + local_Jac.template block<W_size, W_size>(W_index, W_index) + .noalias() += + NpT * + ((ip_cv.dfW_2a_dp_cap - ip_cv.dfW_2b_dp_cap) * s_L_dot + + (f - g) * ip_cv.ds_L_dp_cap / dt) * + Np * w; + + local_Jac + .template block<W_size, temperature_size>(W_index, + temperature_index) + .noalias() += + NpT * (ip_cv.dfW_2a_dT - ip_cv.dfW_2b_dT) * s_L_dot * Np * w; + } + + // fW_3 = \int phi * a + fW.noalias() -= + NpT * phi * (s_G * rho_W_GR_dot + s_L * rho_W_LR_dot) * w; + + local_Jac.template block<W_size, C_size>(W_index, C_index).noalias() += + NpT * phi * ip_cv.dfW_3a_dp_GR * Np * w; + + local_Jac.template block<W_size, W_size>(W_index, W_index).noalias() += + NpT * phi * ip_cv.dfW_3a_dp_cap * Np * w; + + local_Jac + .template block<W_size, temperature_size>(W_index, + temperature_index) + .noalias() += + NpT * + ( +#ifdef NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + ip.dphi_dT * (s_G * rho_W_GR_dot + s_L * rho_W_LR_dot) + +#endif // NON_CONSTANT_SOLID_PHASE_VOLUME_FRACTION + phi * ip_cv.dfW_3a_dT) * + NT * w; + + // --------------------------------------------------------------------- + // - temperature equation + // --------------------------------------------------------------------- + + MTu.noalias() += NTT * rho_h_eff * mT * Bu * w; + + // dfT_4/dp_GR + // d (MTu * u_dot)/dp_GR + local_Jac + .template block<temperature_size, C_size>(temperature_index, + C_index) + .noalias() += NTT * ip_cv.drho_h_eff_dp_GR * div_u_dot * NT * w; + + // dfT_4/dp_cap + // d (MTu * u_dot)/dp_cap + local_Jac + .template block<temperature_size, W_size>(temperature_index, + W_index) + .noalias() -= NTT * ip_cv.drho_h_eff_dp_cap * div_u_dot * NT * w; + + // dfT_4/dT + // d (MTu * u_dot)/dT + local_Jac + .template block<temperature_size, temperature_size>( + temperature_index, temperature_index) + .noalias() += NTT * ip_cv.drho_h_eff_dT * div_u_dot * NT * w; + + KTT.noalias() += gradNTT * ip.lambda * gradNT * w; + + // d KTT/dp_GR * T + local_Jac + .template block<temperature_size, C_size>(temperature_index, + C_index) + .noalias() += gradNTT * ip_cv.dlambda_dp_GR * gradT * Np * w; + + // d KTT/dp_cap * T + local_Jac + .template block<temperature_size, W_size>(temperature_index, + W_index) + .noalias() += gradNTT * ip_cv.dlambda_dp_cap * gradT * Np * w; + + // d KTT/dT * T + local_Jac + .template block<temperature_size, temperature_size>( + temperature_index, temperature_index) + .noalias() += gradNTT * ip_cv.dlambda_dT * gradT * NT * w; + + // fT_1 + fT.noalias() -= NTT * rho_u_eff_dot * w; + + // dfT_1/dp_GR + local_Jac + .template block<temperature_size, C_size>(temperature_index, + C_index) + .noalias() += NpT / dt * ip_cv.drho_u_eff_dp_GR * Np * w; + + // dfT_1/dp_cap + local_Jac + .template block<temperature_size, W_size>(temperature_index, + W_index) + .noalias() += NpT / dt * ip_cv.drho_u_eff_dp_cap * Np * w; + + // dfT_1/dT + // MTT + local_Jac + .template block<temperature_size, temperature_size>( + temperature_index, temperature_index) + .noalias() += NTT * ip_cv.drho_u_eff_dT / dt * NT * w; + + // fT_2 + fT.noalias() += + gradNTT * (ip.rhoGR * h_G * w_GS + ip.rhoLR * h_L * w_LS) * w; + + // dfT_2/dp_GR + local_Jac + .template block<temperature_size, C_size>(temperature_index, + C_index) + .noalias() -= + // dfT_2/dp_GR first part + gradNTT * ip_cv.drho_GR_h_w_eff_dp_GR_Npart * Np * w + + // dfT_2/dp_GR second part + gradNTT * ip_cv.drho_GR_h_w_eff_dp_GR_gradNpart * gradNp * w; + + // dfT_2/dp_cap + local_Jac + .template block<temperature_size, W_size>(temperature_index, + W_index) + .noalias() -= + // first part of dfT_2/dp_cap + gradNTT * (-ip_cv.drho_LR_h_w_eff_dp_cap_Npart) * Np * w + + // second part of dfT_2/dp_cap + gradNTT * (-ip_cv.drho_LR_h_w_eff_dp_cap_gradNpart) * gradNp * w; + + // dfT_2/dT + local_Jac + .template block<temperature_size, temperature_size>( + temperature_index, temperature_index) + .noalias() -= gradNTT * ip_cv.drho_GR_h_w_eff_dT * NT * w; + + // fT_3 + fT.noalias() += + NTT * (ip.rhoGR * w_GS.transpose() + ip.rhoLR * w_LS.transpose()) * + b * w; + + // --------------------------------------------------------------------- + // - displacement equation + // --------------------------------------------------------------------- + + KUpG.noalias() -= (BuT * alpha_B * m * Np) * w; + + // dfU_2/dp_GR part i.e. part of the d(KUpG*p_GR)/dp_GR derivative is + // dKUpG/dp_GR + KUpG. The former is zero, the latter is handled below. + + KUpC.noalias() += (BuT * alpha_B * s_L * m * Np) * w; + + // dfU_2/dp_LR part i.e. part of the d(KUpC*p_cap)/dp_LR derivative is + // dKUpC/dp_LR + KUpC. The latter is handled below, the former here: + local_Jac + .template block<displacement_size, W_size>(displacement_index, + W_index) + .noalias() += BuT * alpha_B * ip_cv.ds_L_dp_cap * pCap * m * Np * w; + + local_Jac + .template block<displacement_size, displacement_size>( + displacement_index, displacement_index) + .noalias() += BuT * ip_cv.C * Bu * w; + + // fU_1 + fU.noalias() -= (BuT * ip.sigma_eff - Nu_op.transpose() * rho * b) * w; + + // KuT + local_Jac + .template block<displacement_size, temperature_size>( + displacement_index, temperature_index) + .noalias() -= BuT * (ip_cv.C * ip.alpha_T_SR) * NT * w; + + /* TODO (naumov) Test with gravity needed to check this Jacobian part. + local_Jac + .template block<displacement_size, temperature_size>( + displacement_index, temperature_index) + .noalias() += Nu_op.transpose() * ip_cv.drho_dT * b * Nu_op * w; + */ + + if (_process_data.apply_mass_lumping) + { + MCpG = MCpG.colwise().sum().eval().asDiagonal(); + MCpC = MCpC.colwise().sum().eval().asDiagonal(); + MWpG = MWpG.colwise().sum().eval().asDiagonal(); + MWpC = MWpC.colwise().sum().eval().asDiagonal(); + } + } // int_point-loop + + // --- Gas --- + // fC_4 + fC.noalias() -= LCpG * gas_pressure + LCpC * capillary_pressure + + LCT * temperature + MCpG * gas_pressure_dot + + MCpC * capillary_pressure_dot + MCT * temperature_dot + + MCu * displacement_dot; + + local_Jac.template block<C_size, C_size>(C_index, C_index).noalias() += + LCpG + MCpG / dt; + local_Jac.template block<C_size, W_size>(C_index, W_index).noalias() += + LCpC + MCpC / dt; + local_Jac + .template block<C_size, temperature_size>(C_index, temperature_index) + .noalias() += LCT + MCT / dt; + local_Jac + .template block<C_size, displacement_size>(C_index, displacement_index) + .noalias() += MCu / dt; + + // --- Capillary pressure --- + // fW_4 + fW.noalias() -= LWpG * gas_pressure + LWpC * capillary_pressure + + LWT * temperature + MWpG * gas_pressure_dot + + MWpC * capillary_pressure_dot + MWT * temperature_dot + + MWu * displacement_dot; + + local_Jac.template block<W_size, W_size>(W_index, W_index).noalias() += + LWpC + MWpC / dt; + local_Jac.template block<W_size, C_size>(W_index, C_index).noalias() += + LWpG + MWpG / dt; + local_Jac + .template block<W_size, temperature_size>(W_index, temperature_index) + .noalias() += LWT + MWT / dt; + local_Jac + .template block<W_size, displacement_size>(W_index, displacement_index) + .noalias() += MWu / dt; + + // --- Temperature --- + // fT_4 + fT.noalias() -= KTT * temperature + MTu * displacement_dot; + + local_Jac + .template block<temperature_size, temperature_size>(temperature_index, + temperature_index) + .noalias() += KTT; + local_Jac + .template block<temperature_size, displacement_size>(temperature_index, + displacement_index) + .noalias() += MTu / dt; + + // --- Displacement --- + // fU_2 + fU.noalias() -= KUpG * gas_pressure + KUpC * capillary_pressure; + + local_Jac + .template block<displacement_size, C_size>(displacement_index, C_index) + .noalias() += KUpG; + local_Jac + .template block<displacement_size, W_size>(displacement_index, W_index) + .noalias() += KUpC; } template <typename ShapeFunctionDisplacement, typename ShapeFunctionPressure, diff --git a/ProcessLib/TH2M/Tests.cmake b/ProcessLib/TH2M/Tests.cmake index 1c34a3537bfed0e87af643c1f467de6a3796721f..ea7d68981fe3a102d2993751c6a9be87ce3f1dd4 100644 --- a/ProcessLib/TH2M/Tests.cmake +++ b/ProcessLib/TH2M/Tests.cmake @@ -1,6 +1,8 @@ if (NOT OGS_USE_MPI) OgsTest(PROJECTFILE TH2M/HM/flow_fully_saturated.prj RUNTIME 1) + OgsTest(PROJECTFILE TH2M/HM/flow_fully_saturated_newton.xml RUNTIME 1) OgsTest(PROJECTFILE TH2M/HM/flow_fully_saturated_gas.prj RUNTIME 1) + OgsTest(PROJECTFILE TH2M/HM/flow_fully_saturated_gas_newton.xml RUNTIME 1) OgsTest(PROJECTFILE TH2M/HM/Confined_Compression/HM_confined_compression_gas.prj RUNTIME 50) OgsTest(PROJECTFILE TH2M/HM/Confined_Compression/HM_confined_compression_liquid.prj RUNTIME 50) OgsTest(PROJECTFILE TH2M/THM/Confined_Compression/THM_confined_compression_gas.prj RUNTIME 55) @@ -57,6 +59,29 @@ AddTest( result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu saturation saturation 1e-8 1e-8 ) +AddTest( + NAME TH2M_T_1d_dirichlet_newton + PATH TH2M/T/T_1d_dirichlet + EXECUTABLE ogs + EXECUTABLE_ARGS T_1d_dirichlet_newton.xml + WRAPPER time + TESTER vtkdiff + REQUIREMENTS NOT OGS_USE_MPI + DIFF_DATA + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu gas_pressure_interpolated gas_pressure_interpolated 3e-6 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu capillary_pressure_interpolated capillary_pressure_interpolated 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu temperature_interpolated temperature_interpolated 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu displacement displacement 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu liquid_pressure_interpolated liquid_pressure_interpolated 3e-6 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu velocity_gas velocity_gas 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu velocity_liquid velocity_liquid 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu sigma sigma 4e-6 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu epsilon epsilon 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu liquid_density liquid_density 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu gas_density gas_density 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu porosity porosity 1e-8 1e-8 + result_TH2M_T_dirichlet_ts_34_t_4000.000000.vtu T_1d_dirichlet_newton_ts_34_t_4000.000000.vtu saturation saturation 1e-8 1e-8 +) # TH2M 2d linear elastic mechanics w/ neumann BC AddTest( @@ -97,6 +122,29 @@ AddTest( result_TH2M_M_ts_2_t_2.000000.vtu result_TH2M_M_ts_2_t_2.000000.vtu saturation saturation 1e-8 1e-8 ) +AddTest( + NAME TH2M_M_2d_neumann_newton + PATH TH2M/M/M_2d_neumann + EXECUTABLE ogs + EXECUTABLE_ARGS M_2d_neumann_newton.xml + WRAPPER time + TESTER vtkdiff + REQUIREMENTS NOT OGS_USE_MPI + DIFF_DATA + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu gas_pressure_interpolated gas_pressure_interpolated 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu capillary_pressure_interpolated capillary_pressure_interpolated 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu temperature_interpolated temperature_interpolated 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu displacement displacement 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu liquid_pressure_interpolated liquid_pressure_interpolated 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu velocity_gas velocity_gas 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu velocity_liquid velocity_liquid 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu sigma sigma 6e-7 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu epsilon epsilon 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu liquid_density liquid_density 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu gas_density gas_density 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu porosity porosity 1e-8 1e-8 + result_TH2M_M_ts_2_t_2.000000.vtu M_2d_neumann_newton_ts_2_t_2.000000.vtu saturation saturation 1e-8 1e-8 +) # TH2M THM point_heatsource benchmark AddTest( @@ -138,6 +186,30 @@ AddTest( result_point_heatsource_ts_5_t_100000.000000.vtu result_point_heatsource_ts_5_t_100000.000000.vtu saturation saturation 1e-8 1e-8 ) +AddTest( + NAME TH2M_THM_point_heatsource_newton + PATH TH2M/THM/sphere + RUNTIME 40 + EXECUTABLE ogs + EXECUTABLE_ARGS point_heatsource_newton.xml + WRAPPER time + TESTER vtkdiff + REQUIREMENTS NOT OGS_USE_MPI + DIFF_DATA + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu gas_pressure_interpolated gas_pressure_interpolated 7e-7 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu capillary_pressure_interpolated capillary_pressure_interpolated 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu temperature_interpolated temperature_interpolated 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu displacement displacement 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu liquid_pressure_interpolated liquid_pressure_interpolated 7e-7 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu velocity_gas velocity_gas 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu velocity_liquid velocity_liquid 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu sigma sigma 4e-7 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu epsilon epsilon 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu liquid_density liquid_density 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu gas_density gas_density 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu porosity porosity 1e-8 1e-8 + result_point_heatsource_ts_5_t_100000.000000.vtu point_heatsource_newton_ts_5_t_100000.000000.vtu saturation saturation 1e-8 1e-8 +) # TH2M Thermohydromechanics in a slab AddTest( @@ -179,6 +251,30 @@ AddTest( result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu saturation saturation 1e-8 1e-8 ) +AddTest( + NAME TH2M_THM_THM_1d_dirichlet_newton + PATH TH2M/THM/slab + RUNTIME 15 + EXECUTABLE ogs + EXECUTABLE_ARGS THM_1d_dirichlet_newton.xml + WRAPPER time + TESTER vtkdiff + REQUIREMENTS NOT OGS_USE_MPI + DIFF_DATA + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu gas_pressure_interpolated gas_pressure_interpolated 3e-6 2e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu capillary_pressure_interpolated capillary_pressure_interpolated 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu temperature_interpolated temperature_interpolated 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu displacement displacement 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu liquid_pressure_interpolated liquid_pressure_interpolated 3e-6 2e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu velocity_gas velocity_gas 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu velocity_liquid velocity_liquid 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu sigma sigma 4e-6 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu epsilon epsilon 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu liquid_density liquid_density 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu gas_density gas_density 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu porosity porosity 1e-8 1e-8 + result_1d_dirichlet_slab_ts_5_t_100000.000000.vtu THM_1d_dirichlet_newton_ts_5_t_100000.000000.vtu saturation saturation 1e-8 1e-8 +) # TH2M Heatpipe w/ static gas phase in radial domain AddTest( @@ -406,7 +502,7 @@ AddTest( results_heatpipe_radial_ts_10_t_1000000.000000.vtu results_heatpipe_radial_ts_10_t_1000000.000000.vtu xnCG xnCG 1e-8 1e-8 - results_heatpipe_radial_ts_10_t_1000000.000000.vtu results_heatpipe_radial_ts_10_t_1000000.000000.vtu xmCG xmCG 1e-8 1e-8 + results_heatpipe_radial_ts_10_t_1000000.000000.vtu results_heatpipe_radial_ts_10_t_1000000.000000.vtu xmCG xmCG 2e-8 1e-8 results_heatpipe_radial_ts_10_t_1000000.000000.vtu results_heatpipe_radial_ts_10_t_1000000.000000.vtu xmWL xmWL 1e-8 1e-8 diff --git a/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton.xml b/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton.xml new file mode 100644 index 0000000000000000000000000000000000000000..756248341599945e46150d6ff7002f043d7a5375 --- /dev/null +++ b/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton.xml @@ -0,0 +1,6 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProjectDiff base_file="flow_fully_saturated_gas.prj"> + <remove msel="/*/*/process/jacobian_assembler"/> + <replace sel="/*/time_loop/output/prefix/text()">flow_fully_saturated_gas_newton</replace> + <replace msel="/*/test_definition/vtkdiff/regex/text()">flow_fully_saturated_gas_newton_ts_.*.vtu</replace> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton_ts_1_t_1.000000.vtu b/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton_ts_1_t_1.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..ed9d4a9237160b56ff2eb43072471ed7a7567abf --- /dev/null +++ b/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton_ts_1_t_1.000000.vtu @@ -0,0 +1,48 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="238" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="22" format="appended" RangeMin="45" RangeMax="103" offset="192" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="8.372123689e-13" RangeMax="3.6305644768e-11" offset="276" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="900" format="appended" RangeMin="0" RangeMax="0" offset="22724" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="0.013178612662" RangeMax="0.57148944237" offset="22808" /> + </FieldData> + <Piece NumberOfPoints="341" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-0.00010000000062" RangeMax="0.00010000000062" offset="40628" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="41056" /> + <DataArray type="Float64" Name="capillary_pressure" format="appended" RangeMin="-5.9428570106e-10" RangeMax="5.9428569596e-10" offset="41568" /> + <DataArray type="Float64" Name="capillary_pressure_interpolated" format="appended" RangeMin="-5.9428570106e-10" RangeMax="5.9428569596e-10" offset="42480" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="9.2857142719e-12" offset="44764" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.5957911446e-26" RangeMax="3.7142857143e-11" offset="49056" /> + <DataArray type="Float64" Name="gas_density" format="appended" RangeMin="1" RangeMax="1" offset="58012" /> + <DataArray type="Float64" Name="gas_pressure" format="appended" RangeMin="0" RangeMax="1" offset="58184" /> + <DataArray type="Float64" Name="gas_pressure_interpolated" format="appended" RangeMin="0" RangeMax="1" offset="58544" /> + <DataArray type="Float64" Name="liquid_density" format="appended" RangeMin="1" RangeMax="1" offset="59296" /> + <DataArray type="Float64" Name="liquid_pressure_interpolated" format="appended" RangeMin="0" RangeMax="1" offset="59468" /> + <DataArray type="Float64" Name="porosity" format="appended" RangeMin="0.1" RangeMax="0.1" offset="60164" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0" RangeMax="0" offset="60328" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="1.3562798488e-16" RangeMax="0.58466805513" offset="60408" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="298.15583048" offset="67576" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="298.15" RangeMax="298.15583048" offset="67864" /> + <DataArray type="Float64" Name="velocity_gas" NumberOfComponents="2" format="appended" RangeMin="0.00099999999703" RangeMax="0.0010000000045" offset="68448" /> + <DataArray type="Float64" Name="velocity_liquid" NumberOfComponents="2" format="appended" RangeMin="0.001" RangeMax="0.001" offset="72144" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0" RangeMax="0" offset="75580" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="75648" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="77104" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="78844" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="79112" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAO4AAAAAAAAAbgAAAAAAAAA=eF6FzDEKhEAMheG7pLZZtJqrLBKiGyXgJENmLBaZuzuFjY2W7/3wHSBaeHUqYorJ2kJyp3+G8D1u0fzHDqHvQCkyBMiyRkJJ0J49TuxoC84WkylracBQuzeCyn61B+fz6nDKsj0jQx3rCRUKV2Q=AQAAAAAAAAAAgAAAAAAAABYAAAAAAAAAHgAAAAAAAAA=eF4z0zPRM9A1NDQw0k1PMzZMTTS1sDA0AwA3egUYAQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAokEAAAAAAAA=eF5NnXc81t///y8UkpVSkqKNKCXFK1dJmcnKqsgelbJHiIvsvXd2drLHi8tKUpJRSdEglChSkhG/9/fX63qeT/8+bs/jdb3GOffzOI9zGuasr4yce0hVNK+Z+BZ4EiMR/9Q/STT9SlDERwkdUxVXfTbnAPqt5/0HItnPgc4RM/bel+4O6ALsx7+LyhlidEKdx/KMWqklIQaDj/LNQf91rYtcbuqP03R/qZaM2F92oJ8t0eF8xuIKusT9FxfaN90C3dGukNEhyBgXOD1YS+1spj7c31fLslkb9ONajMdHuv2wHYROid+qEhx8HHQxxog+rnpDnJfQf9UG7w3JlMVp+tJRSZ/GS7fwL5mT1iLNTVRh3vGVsk4D0NtzPom8cQrEZwidslp+Vj/VCnSLh4Fqqa1nQf/tutBmI2QHuo7JUckJiiOufvio3cX4BuoZzX1GJGYb0GU+zbuY8fvjqoQuaPqq+8u+a6Bvub9GuUf7MqZF6KyOvqd65cxBf/VO9+8lVVsso9nDyd+6jjoyEtEfxmsMv1/RKYta/vUenk/o+BvJHRlK9qBfO9v9vazzAtSvtAhpLKz1AJ3PVo70aiEdt7Vptz0eV0Ptr5awi9luAfoyf5Gc5g1N3IjQS5x+Hcq54Ai63QenJ8Nq3rgVoTNzquZ5Jt4GnTrcmmNxIgAXkBd1MrteSfVPeUFV80O/75jgBo6YAQnQJ0K9yV4dZqAb6yUdEBwyxncQurLnIWrJeqTrRMhsHvjhiH/ki70VdbqMmjcjp/AhCenC6rbFuUO5WA+hz98pTF54aY+e765zPWJd2qAnc5RHMRi4g75s1nzf/FEC1jw3MOH7soQ6MvhJTv6BM7r+V1vpzVUv4qTf//QvlRYdnNE+oF+w8Xmm2uaFfyTqO90Hb3g+CwL9w06ODCbXCPwmfffse0o+dYb7YbZG4y3QWX3DuN4+0MWsCF1Q5PeVzJeovkFeoDMu2hmzIPRii7W/Wc1jQN9TsLKJu4mCCXA8WpIUzaK21ORp5JaGwPNRON6l5H/AHvvI/k/HXcfr5Ejo/dkXrn7EfyQRIxH1Gbd9DrUYOUD7w3jrvcGwIqz5JfuYxN9U6smf0UqLXHFQ/8cxz72eNRGn6U88nw/P7w0A/W1c390rjC4YhdAz9IdaphKMQJf3Mn1QzOaN96nsnp/QjqR+WDlho2bjC7pM2sTS4BUDvIfQU95pZK81twKdV1pni6CxDfaS0HcL7DuRdMsWrn/+dMZHizI/jCTYqDTjeIPa4zxt5/z6OuiejVqHmyj3QJ/0/Tm/nEkBnaLC9DO6ygj0oyLXL/CpBoMeT6cpSZZMw0j7/r9O7uYpY7F+4wd6xLu3cTMxV3DSnn/64pdV30u/vUGX7Fqg3Da9jBPtkyn2d1ei9nmAvjfhxyaBpHQs/9/vI1decB7z4Y8DfV2FVkblNkM8ktD7BTM98uP14f44P3ph2kM1wOMJ/Zkry5xueSLot+bICxo66bTnQ9bjz8jIDE2H9rX3iPx4lZyI03RvYc7vRnmBUN+SmCd0QOIG7f0gf92jp0DHWww6k9jm70/HKFjzv/ePvBn3DPiy9x60/2e09Pzz4ljQUw8+nl+IsQR9Iv1C7c70KJx4f8kWL/0Ur4pnQft3HN1yEuYqcJV/3wfZ318loOxqJtR7Fy7c61VJxYwIvWC79BtRUgZ6vx953xMrS8S0CT3hqq6Oluhd0IO2NOtdiLGg9Q/ku6JrxY6wJcHfH5Hqsfc9V4kR3z+51M29e6cKer6HSgYr7xeXQD2LVvNqgQj6/a+cGN8+u1KFDfzrn8jssrP3w7LR+2/D3nXc70gsTtN/1/Hs2pyFvn/Vc8/NTUUe0PpHspByXNjC03zQOSizWvlOrbjQv/6VnOVBLom8WgF6nsv0Uvqf2/geQmfjLvl2c+t90HMX/IZWz0Xh+wn9ldiwZ4NhNuhsf9oSLLFYjPJvfCCrNzjfPRaD2r9uGKt6IZ6KuRK69PoDdyxHUf+5ibl2Ok0/FyPGJ3LWrO4tqcr78Pt17PKdGpvKsY5/4xs5SnSEdW/SA6jfx/8q+EtiHE6Mf+SG0Vp2/2g0Pq39U2TggPvRxk+ykbii4ifPCtB3BHOki7zIwZX/jc/kIRvlNu0redC+6aDhw8tMUbgOoUdu1QpXiEf3v3y9Md/6ilP4WULXLy9/YCfjCe3/Kruc3L0SSeML8tAdP58fPzWQ3ijk854tF+PJ+qcHG0btfKIdDu2/3iL1nl8mAyMRemZNnRSzE/o+t8rF9L54loNJ/+MjMqn0TRF/8jcpmr6lLeTWIc4EjJnQWbsjDcIdUP+UnLzXKvR1Ak4m9LPK/pmnXVD/wqVVeoT3bx7O+o/vyLmy7cyjHLmgK+9T7V/kzcWZCH0hnVHeNg79/p/bFoqyfljh6wj91VcFXpkq9Hxf1EXemn1ah7X/41Nyktvzx3NJqH1zi617D98vxTZv+Kczaao9nTtbBvXYmPwi955QrJqor5iRlXaYbAedma5iVjOqGqPxb478D7GgJNR/KXZ+k1tKUMLGCF39kCBnxioavw6c5wgb5zmPjxD68hbD6WpzpE/XB77pav2Pdwj+LS7u2MY0hn6/yiMl+T7t68DH0YOlPG8+Ij7LK+ZWIl9QAN2DJYm7aMgN9L1n9XefaLTH+Aj+TRD7+TpxN+LrGk+mB72Bnvh2Qmekam/kUHMGXZ2667N6nytO42tnpVpVPzc0P9i/1UP8wxtr7A/Bvzq9R/z+CqPrd3YQkHuqC+8vlVOHY7SgFF3fj5ytOVFlJqA/fjspq3PMBXQ1CT1FFS1vTJPgXw//scxSHXfQBU0zY4TVIjAaP9s97c37a4+u3+7afu1GXS/QLdgb7ytHoPmH3vE9+g0u8Vgpwb8ZNtd99vEpwvvTevuP6sFX3rT+gTr/Kkv+YKYJ6Jq94wf29sdiNL7O6S6c0jyB+H539ZARw1wiRuPfHPrH6TlfroIu+HlKejt9MPAx/bdtNyMwJ9BNU+jmg55Kgl6tpxX6jHIb9EPBX8+2bsnEaPzLs3N/QOomedA/3TtxIYPXFfiZvcWYxd4S8c21+wnjI7LCUL969/0ddVZP0Gd1ZfIPbooC/pX5qFd+uEgK7t/1Id1B/dgE2vhDXdecUvfMCs1/uBitu9ZJBSI94KDCvmOo/w5f9+oJy91cjMbHMnqaHerrBNHzz3btlIzJwWl8Pbr//OKx1+j+WowsiOb/dgd+vvBOobn5HOIvpzs+JrhVJH6F4F9Zc9ubmbLo+bnGV/Vxx1Jo4ztVvb3j2Y42NL8jm3DIeyZEY5aELrZ/54FUOfT319odTvnY7gV8HNlbeCx5APFXYk+M96/QTODjx+uTow6XoPkFZ82K5ynZbKgvDeZ6E8VkDPq3u2x63PsyMBmCf10bZqYFLtwBfaO+e5PWS28aX1HppH04u4TQ/d0yICXDMxsJun39xsO3SIgvnjDZzEZUReM0/p1qk1azzNQHPb23/FVwiy/ws2Xu5R3kZH/QfW63JbhWOeKthM731rJgX08s6JNjaxNPbXGk8Sk1gz35XuMJxP83xTYNu0cjvs5nmdqsyHkJ9IvmV3ptDNxAVwpryKpaiIL2s4UGVD5e8AZ+Ngv9Tjrdgvj0CU/nuyiz/8a/Xf90o5GWs/J9fqArdHu9ZIiNpbVPNlI3H37lgviR4bQs/a09OVggwb8qoaNfr7gi/v9qk3FR5hIFoxC6sQJv2TrJIGh/smDc65tCHEbj68UB53DuvFTQ15uksgsV5gM/V87FzSSmIr5r8MRGmwOyafMjMmtfvtL1//FXkpbni3sMvKB+haPzYq5GPuhc29/1fpUOpr1f5G2YkHrvFOKT+ix3q6s7qoGPnbE+OY8ER9B/S+6eeCFfhNP4uqio8uRsO+LnRp+vfVLWtbgWwb++N3Om6yhhUI9XdBkaxRgDP4tw88/Nc6D5T3GUvGSUtg9Gq39Zn7QokY7er1C3FSUu+WjgY1/26cNHGND7U63Cw/z4QwPoLJ5XTbpPRUO9y9H1QgNZFcDPnGuN3a1aikFf0WQ58Cy+FOsg+LfSzbd98XAktF8puuOwpXQLTvR/5PD7ke+UytH7J7zZ0FzyZiPoul/7ZBQ6C0DvDthV8MWuHvg3cTJKeLQhC3RxFS5nqbd5wM9DjD5xj4cCQF+/0iN6IyoU303otRlnvOgwND9nfvZY+MaNfCyQ4N/1J5s2TOVUQ32A4y/ZFoV24Gv64kDJYBPkT3wd8RF/8aEKI/wbco9gydPkAcS365Q6X0TE19DGR3JuoeVzNc0qqJcevqGzVqEa+JjkzPOdlCsG9YxK2M4u+lS8ltDDB8/0pDhUgf7l0838iaQ7uBLBv+qnZYrTpBKg/RD5rDWy6lE0/4v8VWzNhJs64o+VgFWn63tCMHlC/yxizPndNgN0DxeTU5tYw2l8QqZQhQt9d6D519VDTVsMvxVhAgQfb+7O5TFUQOOXueTCj8smWRjhD5K9uE5t4x1G87+2X8+CfKeyMQmCf2/QX+K6z4v6n/lR8dlQJk2ckdAphbbrNRZ5oL76W0rV7k+In5s/2VZmqiSC3ji+NKtpGoWvJ/j3q0RYRyEZzU89hLN/d5X5Y8yEzrMUKWz3HL2/EVyen29MRWMshB7LE7HAxoj4d0lHhn91UwP2hODf95ZfsnvVqND+qPTKAXLiQ4yH4OcuGYn4IQ7k/1KxYsEBiQKsjqjfP4Sbja5rAf0TnYLqiYhKbJjg38q8vX7Dp9H4tE+iL3vpvCVO00ucrtpPWHiBXslpXPk27QL+gdBJqQFvOZTdQL+kEK3bKL4Vo/FzW+DhufhriJ+c5x6WL7C746uC//STp9dckhFH/lTDhc9PbMS1sRVCr1zob5xYQnxkWLt9PGPMFdtG8G9q47ZbdJro/XA+YmiUu88Lp/H10XXZb0VJaHzfx+YaXHXpKkbj684LwtKX/mf8n/67fLI+2RT7SPCvHanD+shbV9D/iK9GudaFAh/zMV97/04Y+X/0UTx9++dcMZr+nINVPcgd6XtZbx4/8t0eUyH4t05K++JpXeRfskf+6Sc998OI+Ss19QqldrO3C+gn8mSPG+YGge56p2jLVCG6f+e+FfdrpttgxPdN/Wi6/XD+Dml4/hU+Tw97PDcGPtYWrLfuv20KOu68R4j/BeJnHs2Cicl6xOe6xTuqDy6EAj83ePnxbhBA9U8FBOxNHAOAj6umFu3Xrt4EPWDTiT/HpG6Cfz0lUju2fNMJ9LMPvyyrCltg/AT/UmYPqcubIv5p3fl1gT00EiP6Z+pA3ZifYgPiw2ct0QdqjbyxXYR+lPrmh3M2ej+kNjPHUD38sC8E/9ZGaHs1frYG/bZhEmMoRwL40y9PVjxZ+Yb4e4a1qoT/wR2Mpg+9fSfEUYnGh66/1yocaqKxDIJ//zznb7a6gPi291fZnVc7S4CfY8p+Sj0yRe8XE+Z4V7/WGPzrIerkusnniC8Dvy6NBIpkg38s8KO630PoKOjjuTIyy08LgZ8pDqsxt70Ogf4xe5lJ4Gk61MvQRbnRFe8DvSk8t/22AuLjWjYR5zUNFqBvFJ1jkN1XBLpMQbT31nvI/1CJ8suxZywAfZP+h6VwMbT+0GOepTXWlgb+M0n6yzUOTV1o378tMV1r43/jwat/enwNS4XEKGr/paZj7o3AY+BPU155WpHDboA+cZiyfLslGm8j+DdRvaNq+10v0B/0nvr1eV80RuPnwO158VvMroDeG0IJ6TSIxWj1/S2OXzdcR/3PyXddq7eUo4F/S62d9R7MRUB9NbUr6rejP+i2Qs/2uOjogM7tUU+S3f7feCT8Tz9mciZigxHiLxW9508nLmUAP6f9+rL7fDbiY5ew2Q1BDTEYzX/WV/eeaVE/C/WWFbZXZaMSoD58x4KxuWgg6PvF5rxLPoYC/3r7ep5xwtD6RID2jhANyRycxs99CgEDXd9Q/xj9WrfQ3V0Xjyb0ldmhortHrsL1qWk3Ptwcn0ebH5GdNQwpT/rQ+LxSVS2pVFIE/vO+3yICRjWof1yN/dSSQrIB/c3+/JmRJ7HQvsdGegkN1kDg53iW/V3vOFD7n9Qu17w5UQx83MoSkL7uDZr/sdVMdzJNF4IuEBn89FhFFLT/qZ7LuS7tPvDzr7Aynok3aP764oibw96uUODnng1d7WUhyH+zOatq6MASA/xcHPfF0Y2Mnm/A07MUZV5f4GMV3WEWJTPEj0YMIn0GCzjov7UPVmN9EVC/ZXN3R4FgJfBzGKX77qFW5K9pHrwUfnJfE/Cz7LecvK3XvKH9YrqNP5tscZymqyWnsVJlkT/p4PbGzC68Dvzp2QDJmVF35A/HsatLJtvV4tsJ/uVyqNn9Kw/d/+DugSYxS3eMj9Bdefe1Ze/0BV15g3jgzOBtWv9MvpYQxRikHwzXp/5A7P4j/iLwl936N3pIn6uE+jMx8WuPbewCndo1GV9Riu7/xR4F/YWKRkyP0FPby0T4G5E/yVlhPJakWAP+M1Obj9Add9T+Pl/hkwEmRTiNrxsGY4v9j6D5D72FSObE5tug8/DWL7e+Q+1Xcwi38oVE0cZn8qWzFw95hKP1h9zVeWkbAW9cj9C1qpg7yy+h/kWbMrkNcwrGZAm9fOLlk13GaH51wule5sT9QOBfzVMWrpkLKaCfu6Aq5eKWj3ES/OwYn3fmuyAFdKuD/PQxFjlQr6Nx+6pFJhq/cr9L9685UohJEvybLfLRdL96DNRrv1Ys9azMwZgIfeSq33PbNej9Eryy8i7Y8gJG4+d87v7CSgM0/jU87dPHyJE4O8G/vWkrm0+sLQXd7BHbh8+USOBnzgVNOT63y9D+XG8/4/aKNIzmP+ceE1pYP1wK+tdU2bJb7M3YU4J/MT++mVzmFmjfO/nRiSGfFuBnyRCTH6oBrlCfwi9XLVKUi1UR9Yv3j3zYFtUKuneJTMQfphqMxr/Frcrn61jR/FPCZZfpLSct7D2hf82b+PPiEvp+T49ENJxmNAXd/ClZVyI1FPSl+V+S54z0gH/lfXYxNTWh/lmk74j2nmN2+DKhtz0UO/jubwjolqFSe91TdXBavfLaU9pLJ9D3XW/82F75qRnwseg+zW8Lqsh/es78sd2tyQL86RR/3ncvg9D4gfGUFI0d8gH/+fv4yLMHbej3fXu9EPLhij3w782/4cJhhmh+e8GhWSzawhH4uuT1p1L3ADT/MGaMFTNXtsJpeowY5ZnYB/T7O7m1wkvX++I0ftZ86zqueAR9P9hBfZUtzCmYIqH/ntaL9S9B848e3Oj07P47wM9pa6Vk24QRf9/2Ov3577gb+MtBUzo9CbmIv952Ro9Jrg8Hf1q5INlEoBPdv4ldxyV+xgVCfuNFZ8OExgc0f9qfs3tbVrAXbX2MWvPT9++3JqR7vlP2mNsRA/y8FM/pLfwF8afvofMWGlOBkO9QxFLXWHIinaSuQi8wEorR/OWeKaWfGvXX4P1VUrPP8T8ciBP9M1Vvyj76ru0FqFe++qKsrvYOrX+nRlq/b53nRvOPx4wjVRprfIGPA5UF7dl40PrAqM/1Pu0tOeBPT02khd23QHwtI9SjHp97kebPUPckf/Iy+J/3e3psQ6Z/QQDwsUxsjfAJFnVo/+Je2XWJOe6gN0y4HvQbRONzQOsJnyHNayjfYbJnWHAIfZ8fS+jCPl2hAP9G/qEsiBqi538yYHRAOiQT+FkwicvsdzPqH62fM4QxrcRjJoROulw+JjwRCbrjcr3FsFgw8O/Jhrxct81ofhxR4HrRX64C9N0u6nyGWYhPtmbrBu7svgf60cMLUWcOovcj9zLn1noPe/CPWeif8B8zRfMbIfvdByuLYoCPG9Rr/KMjEL/Z8bNSl5mdod4s/d637/Vo/tiUzWhwjRwH+Q0VrqPybQzo+U2Ka2VG/4oEfu4TF/vOwYau/+/zAqaymw4YzX8+cyh7aAcrGp8bIphjBcu9wX+2Uj7j+ZoNXT/dN/Na6//mLzRdM79ZZ3IJ1b/s/+xVxBYN/Jz36pCLUy16vn1qtw99PJAMfFxdrSQwuYC+z+nv+XJRJffBfy6RMvhpkIy+b5UsoROWzoifSxps23sw9Pf39ShxhmrKQT4j7y3D5Q8rqaD3nP29/d18LvjPK1u1bpqzI761cuplbhl2Bv7O7XqTXeyC/KFwHcXAVHce4N9CA2/pnz3IH/Xz/d786nYQ+M8Hs4/tlK1GfFK8yU2vudMB/Of1rOMH+pwyoX05a5shJcuTtPeLvC1ipr1TphDqBz4foGt9UAH+861T3ZGuDej+vFl7cqr0dS6eQeiu04GeESbI3zPY+KuzYm8prkHw74zFO5Ej9uj9Vb07TXqa7I+rE7qR8N/YXl0tdP9G8gdOcfthNL2j94qJkjzyBzhZ1b6fDKTgxPyazGPy6UBIAfIPD9zoPu9P1wR8/MdBsiTI4Ca0f+uEkrVgWSltfk6Wb6rtdM5A/CrOTyrsLCrDmgn+5Zy98lOwOwzab/vwzKa2rhb42TmHN1Q7EPHtHdFxzk1T9TjhL5BF2Mfo52qQP8jMqlAQlFRPW/8jD19bfDXxGa0vnJ7ONR3npQA/W03ePNUmjvzznDcFK+803PGdhD6wdLlSJBPlI5JKH+8Xsr4BfFzWsOvkwpsaqK/Esd4Het2Qz7ik3fqBcQ3KP9j8GTJ48awGUyR02z13UicfoPzPhok7zH/5y2n+Ennz34usw4dR+9PYM9d1h5Mgv8FBETE7ZI6u30P7Q8qddzHAz3RuAZXRK0XQPus+48Vuy2RcgeBfQ3Jr4HkrdP9ejvNcOcUaCf6zpcqY1gAvav/G1dGnqk9CgZ8zho19L2rogG6R4ZMitTUSp/nPMdJbxIIEk+Hv79P4kBu0WIExE/x8rLpTITQVrZ8I/Ymy0Pa6R+MX8sFbP+qDR4pATzoo2qFSn41JEfzrJZpvaEKP2j99tSRyijsHo/nPI+rcpk2b0PhlV/VcIGRPIH6S0PmargxHrkfvh6Rv6XLJwXjwn+nrdKeFzyG9nbLYiZ+MwBhp/rMRh9SSGPLnv16RkmPanQT+s1hUCvXqlkLQKV11N4aoDcDPYt7l1+WeIf+ZgYWhe7ykFfIbDzvSXItOI/+5TX6V0d0xH/IblVu/7dFTRf6zGf8bityaauDnxI5e6uuPKP831TT1UpNZG/IZmmfYntt/ROODfhZHQL21KfaO0ClV3tR8HsSn3s17d15t9QH/eaDheIKENfIvfXWM62MyYyDfwTlhd8mmTR3qVx+WxS42XAD+NiqzPXvjOeq/mVPd1Z69TsVo+eept4lq158if+v06M71l01zcH5CF9NIvpPqYwh6uWLki/hdUsDXAk8OHnfcg/q/cOWDClvTcoCPKQLyexTiYP5DoZf50HzfIQP4OKPQPUanmAt036WXu0J79GnzO6pAUb9Gw6mLtPYpzTnZqmac2RixvkPNWdNssuoBfEfZ+XId6UPEXZzGz63nuXge8sH9p0R+oX+vP+EN/Fwq+iSZ7RbkgymGDnfxc6H5wMdTnXESTFdQ+xtNnw7otWUBXw9wDT6qXQ/3n9Jl6VTl3haHJRI6s5/6Pe1S8I8pDTxGpAtpYcDPe+q1W6okgG8oG1qCUni/3gV/eeBgVvYHPVHQw0uyva9tsIB6rcRtj/cb2UL7V0QUXa63F0H+orlo9UXDelh/pvjx2Qr0ncmgrQ9Sn2nlBRUmAR9RUjnM/Zfu3IR8x0fPPP5nG9H9mw8/N3NE0B/4mLRhtU7KF/LhFB+9bT/jozNp/guVL7ZFyksUtb+oOB9jLO0J/KwXbrT+uQvMnyiFlx3uHq4LgPxGxnOFxVIM5Xv+PjxMIR3KAn6WDDkZkOiM3r+y8vNP3mf6gS4Y/DNtBUPzM3O/11Yn+bKAfx2DeW6JjiJ/UlBZIne4k4LT8s8fQ87VHLBRBt36vbNAK28Y1I/yHKJXjEft5za+ijl+MAvyz2Zt9jEMZ1F+sm0mwOSPgxVO42PxpD2WW4WQv/BpMLx1YC4b+DmZc61CpB7qv9/Mv2gUk8mC/IZdMeMpETl0/TfSDT4ZfLsHfFxd/8dDaoMR1De2lYnvFr8DugPLnb8d51H7WzgEL/G/oIB/7HPdKJmbJRza/5Tw/mx5rw/+kdClR9kMlQvQ+khEo8WPEqNwrJzQ386Wv/p4DeWLtqZPl6nYVQH/BvGT9zBwIv8yq2fnOXHJWOBr+essD+cuID7gPmrU+ITuP74V+ad3qDZxy4qZQvvepG1cCfvLgX+t6qkSkZ5ofsdnunHqr8VlyD+HuU39OPoVjS9Duh4OYsYJkN/4KLWt5I02fF8ks++Cc2ZZxVgiwb9LG3ftiRhPgb//IGQpakPsBTyD0Ene+y8GpPBB/a3Z+0O6fiFQz2j68kg7P8pv7F+UyfjLVw3+8/5dUU5lXYhvOVz+1pXqJwBfX9tydlyJgubHnmySgumlHjitnvfexXJ8ewno4mvrbhcI3AX/2Wr6M2vlRWifElD4S0ghvwr5y+di1XUcz8H3/cpk22TwF5TfWBNt3aQjAfxDYXyfY506l4GfJ/hXcahkYmsR5Dcpz+Ja5Ww+luOKhP4n8eYl+l0wv6GQIneaq/afxZQI3ZaNjnxlD+wPoPS48HuY/cffNP5dfvFJfXAQ/HWKo95BSZ2BMuBn1+OMLH+WYPyjLO+YdS/fVgb8XOzys3ByCviZUpBydcsSH/KfOYeZGMxKoqH9phLWl0ldDyGfwXm8OTDSCvXfNk2mgkJWTeA/Ry5ZKhSPwPtB+bGZka2rp4zmX5B7Bl1kHQ7lgH4gLta6qv8e6K7X1MT3XkX9o4adzrd7R2+Afy12PkOjZQ78VcrZvU+9Aj1yIH/xvWH7lxfudVDP25v5tertE9Cv0T/I4deE+T+Fem12utupHvzn5RPt3G2asL5POZEWeZHxL441E/y7whK7o3EjDvVBGY/bdtXnQ36Dq1N3zn0B+JzyMur8A4UqR+Bn771fdpO2gP9JsZALbf65lEXzv8giayJfN6zC+gBlawLn1e8FyTiNnzsS1ob+9YF8GCVPszVmfW4qJk3Lf5he0F8cg++bcoV5/8L4l3Sav0du7LjClmIO/Q9FR+5Ya19ZDvjPUjefmPR9A3+QcmsLZ+m97fexAaLebNum2uoCyLdTnFZDuzvayyD//HZ2YUVsAvXPbo8NippnM7F1hB47fuaPUwHyX6RKOp4wC92C/MYFU3rJ1t1ofWT7D9Jzz5owjOY/Dy3PHHf9Ug76fNGW9NdW5hgtH+3vxFVcVYDyHwc4WHml6hMwNkKvZE4PcFJFfP82fj5O0g/5z2nGVX6NAw+hfiI8veP7VAu2neDniMMBqhHH0frAizOnHU7r5mGNRH2k8H6zKu46aN8vOUR3gKMae0vwb+FEycqB/cj/EKnb1KjGexv8ZbXcFS4lMzS+Pk8cNWg8cBn4O+Pp0tneXuT/6XhpqRRlOoC/XGIiNyS/iu5voF/sdM+vy9gSoftEi+p1rUX+XTs1+5Wx1U2ojzTsmWdlQ/ObWOtH5+0P+ONbCP5VNOn8Ge+J1se+qWpf9Jo2wXkIXUbIdvteF8T3WppOF/64uiJ9ZpNChQ3yP+5vU990aDIe8hlt8/YFD92Qf6E0Y9d8e50H6KZpWflP/yB/yO7EYJGliBfKR8v15fU6o+uPkpGJ85JG/rNtdEGXpBryl6W7qtfqDdoDHzebMoqx/zEEPad5bahDhxb406U+Sf3tKtrwfAOMdKuHFANxGv96OIcwuT9F+w+/xjJeOtybCvy8juXFkpO9GdRnK3kNXXSOAn4uMXnW9GYSrf9YJjGVqLfHQH7D6nfg+T2vUP454vEzW05KCPjP3/1TouNj0f5F7Z/5D34PeYP/LE5vVCfohfLl1b35i3cNHMF/lqnYfr78kDa0n3c40L1M2I/mb1BJBqv2Z6q3g84XeWw4togH30rj78fU9xOuaP2/qKlcSfNREPBvhuv35E5xa9BlKt4nH4sNpI0/1IzR97Lut2RA3/Dl4ZzNrgDQjRi9FtjmEf+sMp5Zx/gkFPIXthHr3EMpiF/MHzmWXdmYgfj50CUxdkdN0L+c1uTwvXQN6mU+2IVw86L9q72+4n2dskHIP2YIXyuUrgn66ewzB1RuI/+Zojtsw2d6ANqPXmPi+utDHNQ3X/TfOeNyEfSdEzelpP+Pxwn+VZfZpyAcgvhR9Aj55rrtmSgfHVcrZR1wCfSpx9JrjNjzQGf/rSTsqIB+P193Qfg62SLgZ1/8z+T2XpRf6bm8NHc/0x/0o2nlT6VdVUBPkkxKO/beB/YPDnGp1LFXoPl5rew6bdOfBTiNf61n59/z3Ub5Wqk882fTMkmQf+bhJt/PeY3ez4Ssv0m7LktBftrWZs28nhnaP+fZtPeaR0wc8HPk0ZptdAvo+3g9K8748EEq8LGa8i6Lz5tMQNdSPDxbbK4B9frkxCwJHOXPF7V8o7aI2gP/yii3L/NMoL9/K3Lx1umvKN+RfEN0YkeTCugqbbufvpG3hXqS4s1n6/6O1tF0wcDlhVGdEPCfP518YpT1Lh7+/txhh+KT5DzQbbVs0lnOHIb21X1LTob8dsNp/FxY11aFWyaALhgu+qhZ7CDw8eJhfw3+/Wj8DHAPUe5UCQG96uYeo9q/aP8xw3OejPxIWeDnR03BBv3/lwci/nHoH3jzbtAH/GUZF7HHKwdQ/tbn7hz3Ga774C8zXlivvC4VzV/Tp3cW+C+UAj+Lq1RspXuB8tWWF+5qB3ygAh8LhAStCbZD/WOsusseo4Ug0Dm15Kbl/NH+Ha3Tfzis77uCf63+Y9fNT1fR/qCDitEdryKiafsbyFobpNR/690FXSmRr4rncgXkN3iKC6z2/EX+1aZq7m3tKSWg2/+Ul207gPIVB1Z+srSdwmn+ADlDDhPvro+ntU+xv/o+ZqC3AfznX/oiYrXb4PumDDPMiF4Np4LuI5V/71UO3F+K8U12g6UiHPGxRfvf6XrgG4rWWKP4saV80CmnE+cHxWB8oNBdDft6oj2Ktr+bLKLzcbXWBvH9Dt4ZlvS4KPCfv5Q/mpVWhHwF5frYFVMGo07wn6d6CyWPPYX1AcqytBzXpafVwNcjeqUHfqsivvVkz+PW8kT+s+J9o6SRfNR+67n9maPLacDP4Sc3vIs5jeZHEgdlrrltcAJ+zjLgy7qth9qPm8GMn9Uk4DT/WExCuuPgGPAZZeZF0kpqehpGnB9Atl2bPkzvh+YvP71Khl+LJwM/Z5Rb697PQvOrZr8dZ891h8D+QWl1hxZ2VVj/ofxsiM9j4qgBfn7m7KKrUwHraxTzG+1LvIUPgJ+N1h/6VpeXBnrP2cHqm2/ugv88kMnzeD4N9d9Bk9Gi55eLMQZCf12seLRjEK1fRHz8e431rxF+gtAvvWLf58+QBHpqxoO7CxezIL/RWpd2Y/gu2h86KuBp0j+bCvmNNE/HZN5bKJ9g/Sn/TJRCMuQ3PI8yhEt4of6BZ/y8p1t/PdZF8G/rd7dbK5OInzuF+dzu4a0YL8HP3Wqv37bko3yD5Se8p90hD8OJ+p41AifHNzdD+2rcLldOG1RhHwn+/bO98iWnEVpfqhN43tZYhgE/lzr5WcbPovHnahrdjfggCZymk/4IXypX3wV60vP4wdDdezAa/2ZEUQK+xqD98c9r3v7sOuqO/6X5y+7cOrMlp0G/42lQ9ILXEqPpFLXXdo9+qMLvi2NLuuUhHYxtJfiXpL+/1fQd2p8Ud3LgtMNkApyvIbmEmR01Quc3qH1IdC87owf+MyVZlXHtJ5SfDReyX1hIiIL8RqTXlhfMZWj/iahf0fzB8ljgYzfMZ1X4f/Z/dXpLDdl4+IJ//dHpld5ZFZQfDUutYxpzy6TtD6CSUmZjlvXQ+nr6ph8i2/7jG5q+OSK9Tb0X5Q94WrQGJXaGoHoO8gFW7oOgfz2SeafnVTTkLyhyBhz2Kmj/U8+xCF/BQzGg23MLmM/xovc/vTrvgpRhEhZJ6CT6xB3ajWj/Gxa3XUeFNRT84y37nq94s6P1s/ffP9OtxGUDH8vevG+WeRDNP35JtHE+yqUAX1P4c6bLOQRA98+UI/v8yMR4CP4tffBlNY0RjR8jMubM+qX+OE23ot83GrGM5he5UTWt8md2YLw0vh6/9M7WD+3/WFnBjvOXX6OND9RR2Yis703+oA+5axYvxLgCX/MIrgqwl6P9qZpvyCPrT1rC/kGSsNfPpUhd0E/m7t7rG2ZOG9+oyzJWU7prUL7R51dXuJKOH+wPPLj7+AYNBcRfxlsCfj5uCAb9IzfPgKAQ4gvq5dihK598IL9ReVHnsbU9Gr95BJe1jY38MJr/vJygUkpiR/MTNe3nSfta7kC9db9sUmwBygezZjrLaX0OAP79YLdOT3IB8emuqDL2h2szgK+3cYvMHNNG/oT3TIfSo4gMqO+rFXr7pR+t7+s6cffZDt4H/o2UZnnfjiuAzrCkcO7kcCHkN5IbvFUV2JB/u2eM+9E+tjjwnz/yZH5MjkL3V0hl8O/aB7HYCMG/+7yFRPOOofzJmooadi5eY+DnmfniDjdrlA/hluqPmNJwgP2Dxe+MOlLPov5DQaEuQi/tDvjLA8qjxx160PyXvzBF4NP/rfcSelv/K9s1Qmj+LB6lvWjUgfLRAoF1ct1XUb5imn/inkdsCvAvX/Vl3ZJCdP1qMobGIbGIn4PHUo7InEDX7+XgYcmrGwf1esK123IS0PxOZKR4ZqPSPYyWX474df7xnfuofxB805kuVJoA+Y0qAa4FRynE/2EhNtkS8T6YK6H7eUSvHT6B8gcb92Xyv1UqAP95je9RG5lJxHcTcnvVSSzpyF/OPyF8ptYG6j+4rLYyH9oI9fN/3F8qjuSB/rBWL4MpPxjO12DQPFDVqYr4mf1FnGL2rXLg48iAXmmpYLQ/4wPdeSnOFpSPXvV5NMTVnAO64bqTXXZW6bgewb+UDqGpVLOzoB+7UzHFx1uK0/LPRmEhuwZ1EV+r6Iv/HfJA+WgZLUY/hU70/fQm+gxEcN4F/t21WUij/fk90AM49Ys4nmWC3nDizqbqBtQ/PPUJqEoNRfkN1pnnYf0fk+H3pz6PNDQzqYb8RhZ2et0Jd9gfSXlCdzmSa99DnKYbuWgbvbeF759iwenv3b/cAP6zTK3uCONJ5L8/7Wn6bWNApfkTZFZ+MZ/OfsTPRr+DDWVvpdL6Z7KAuizfg/Pw+ylP084PcdUYA19bZwsG9jZmIP1aQFHl9xzYH8h6In+bRCH4kxShkZoDG/QeAz//3J4iXRYC+1spJLUf/hpsdZg6oefTd1/byQb+IaVTTDDrCkM18LNRl97CvVDUvpHY5NniXWWQ38g7alm9UQvWrygi/gI6Q/vsgJ+vJM+OF+7EQS8v7Lsw5ZGFyRD8m3+By3BsFfJRlNBzN+S2bvEGft5UPRVCcYD8MKXxcVSPrXsi8HOlr9dcuRS8/5TNLmO7931NAv955jhPgE4Emn80Wp1fiKM8gPyGPvc5WVIiWv/ouN9CZxPzAPIbpEtjncX+aH1Aljn62ABbCXaMll++Fpxp9x6tP6YMP3c/fvwetobQ75RdrKoaQt9X2eS2gy6L5zGM0CN314eJfkT9Y8V+xkZ1tdtw/kbV0PmLh46j/PPZBuUNYtfigJ8l8+Is9yuj8wN2OscX8opnYbTzOf6sN3Rha3gAf5+6Qt+rFt+MPSf4t1Ze742qGMo/H9DNHThp04rxEfzs3CHc+Sgd+b8FfakHGJkLsRqiPjnlQGv3MOLn6JGA5VsKNdgQwb+BFlJJn5TQ+SJxVVXjjMMbcJp+Zo3Sz6/eiH/Cgh8fPDcuC/sLm/cyGgZ7IX+kQVQqOP7HJfCPFcWuCua+Q/7w5ZjmI87jFjjNf5acKv4aifILpILDbrYtyxTIP5N2jnwrYEb58e8j+89H80UCH2d4sK5ZTED1G4Nd1eyVPTCav5x/TtjaxQOtL+vMMWyJMI+E8zlIbYGGLDe1oH2O/g2s0qx5kM+gJPtcPLAL6ilWD+OvjpiEID7+ED3S+lEM9Dmf6xfD3d1RfVv96bkXKP9xMdUle5GajcsR/GukW3WLOxn8P4ocf3QA20Qa8LGA7e4EWVaUL9CX3/nWyN2Tlq+iUo5a27mdg/kNheWu1Ys4uzzwl2cGJu3Snl4HXZHxqLerYSjwM/3u80JLstD/UwZSHnwRqjKH8+2M3uq3PHBG11e6Kp7xsACdX6d+Y57eEkP5Cw6umYmBTB/QR8yaQx4fh++Lcu/U1N1r1anAz6QGBfk1k8BPlK4nhx0DJStwGv+WCh5zCKCi9atV998Sm5ZzwH8OdH3Y/doCxneKL51ZqKxcLOSjKQwHji9ek4Dn085hM7Mttgb4eOA8w7UgtP5NqWyeOEUi5YO/PNXUflrnBfj7FO1o902yHlGQ7/g4eCq6gQ69H29rrKWM0kshv6z4KOVNKCfKF4kaGFSYnAkCPvbdtDy16TbyP6sG1C0q+DKhvtn/r1lTCtofxkHv19e6rwLyGVxug9z8GOKPGq0hHq4LQZgtoZfIdDMFktD6/sHY6x/Ys9Qx2vkdZm2lviQzdL7Lw/WkE8cM02n+HpU0+TKg14gX9GRvuTrjxSzgZ9bNpGxnH3R+3daaB4OHtWNAD7WeWa087wO6bXz/ntUAbxo/UdW/lpWIzaD8VonNw2GVUynAz5IRh+Lue6P5g3bI0EJSQBroo+uGmuuoyF/sWK+kz/ChEPYPsg7/THw5heb/7L/oHj3y8YP8hnpWaa64mDzog8+EGX3bY6F+hv94iFMBWv9ItWGW+C1WDHxsIvysi40LjS8J39c68M06Ax+HVvFMDYci/yC/SdkoTskMJ/iXqpfu9UDqf/qvUInAt0lH/uPBf/40uVIhuunEGjT/CbB4JNKTjPhY+GjYq9Q16P4bCau3LbzXQPkNb4GS+Y16oGdn/b3SJxaD+9DyGaNvbnTOo/m7mtfGTxvjUjFafkN4zdZTfPSI3xK5qVnfiu7gwYQu+Xvtb7oVtH/pzELe/a9nQoGP5R1/+AmUo3yue22buf27IODjksBdNXwHUP7wAg/9qXdPYqG+utZnuEQB5Rvde4XczMZqcSJfRF6espmIMkT57eNnKL+vrqL9gYH3XDlZGtDzKRy16tRXr6Dlj8iuSr+Wu8KQ/xzw/sUZnag23JCWX96xff9tEXT+yMH6Ao8HomkYja9tBdlv80ej+Rvvhi3+bg/DgK9JR1b7WuZR/nhNTdepeZZiyG/YBlfYDCSh/Oza1di60Hh0/kbN+6IzDYPAR6T5/fECnDGFwM8Wuhx6kh5o/bjrujK5b0M25DOS5+hOdc6i+1e6rN+YUVwD/HzQ6YPY483gT5PyPjNP6DU1w/l1z1aDJDlt0fiv6+3kfTO2ndY/kwXkpkLuj6P+5zGfm4BkXSy2idAbmipKONXQ/EoXV5I89yUG+Nlq6dere+pofiR5N0NyMT8ep/nPgX8cE46qofPzloL1LemEusFfvjKTyzP0ErVPNyUgFHWqFvi54xebHjMXWn//kvM9yfJgPOQ31kRkfRGaQe0Hry/Pjz6SAfwsb0Jiq21H7R8S7X2ZypJJW98l57v2LtpeRu2fG/TdbKBWgdP4WYBX3qaxFZ2PKv8oRS7JNI92fgD55XzVghYHOt9iOhxfYHVzxMmE7nyx8CPlMvJXy/ey6I2HltHO1yV3nBI4430czf+KN/mJ55FqgJ9jnSSPq29B78/sq2fFZl/T4PwOTs2ThoF0yJ9aX7SS8MTIDT9K8O+GjclfcBLaH2DL1xJct7kEW5X5p/+qPDDAOob8EdOszEf8izE4jZ8/YkdnycGID5m0WQY0psrg/LnfJ0xFx8Ug/0MSKTqfEiyShtET+vt+xcUtl9H1D5Wf/TF3Lhr42X1d/8ZVOXS+iqD9DWYjuVqsg+DfbZlK6xqsUP55m/caO5dWlH/exkW37DOOvs9rtYPNl+VzIf+8OLvH7KAd2j84/EJZtn1zBZy/kVGRebvuL+q/oi62/DKzdwF/Oj+ZnvJdHe0vf+pjX6fOaATn3800H27ZoAn5JZKM8VrZ382XIN/coLN7NV4NnY+3GL9XsMM1EKOdv6H7rYzLvRrlE6uvfmHwHPfEiftHZZYViHkQju5f5G/3HVbJUTjt/A19l4Ao2TS0Pqa5af26z6d8wV+2p56pfsWD+j+XE/cSv54Kg/OjSxlIg1YxaP8vfcUJKcfEbPCXZTKOltXVovHLpuA49dl/82kaHy9gH7QSnNH+U/msNhWLngjg55m9e3p7I9H91eMwMlw9nQ/8SypvFJKlHgP97N7W1PT76cDPbpclGI+3Iv75NKeWYpPsTTsfh7ps/vmXCitq/+tGPeqXljzgXxkL6yLZV2fQ+9Vr47YjLAT4ue3c+miPW+j6X1dozK4zNAO97MsDj7636Ps4OqiQx6lURuvfqLWH+1zVp5H/Isz87KoMUyitf6NqeX3cmjqB+Glwp8CXSstk4OcjUu0s5edQ+1mp+uZy1llwfrPmzuZ4NwXkr5aWbOd4WBUD/Dx6PygmYRrlQ2v8tBlCY6Ihv+GLXYisTED372ngZuFx5nLgZ87Lr7MaY9D73TRZulkas4B8tOXEhMJ+PnS+IF3Gom/aiRjg58D2qusG79H6R5Oy51Dl5gfAx0dd2FsMZFE+Vi6if73KKW/QV9a9rBfWRu+X7wvx4jcaaaA3R+3eeqYR5X8/z9ST+vkycF2Cf5/Kenbl/UDP//dGTqs/9Fm08Z36XrLJQbcR3R99/H2ob3IAzV+jbipjOnLbHJ0/MaAsKvV7cybws8ASneDCNZg/kNZ2XB7TiwkCfznE9nXA0WBL0O+Zad3WeucGeuBsP9n5EOK7Vzlpdps3ZAH/fmRVcr2aheav99X/Zl22RufXse2IPCj0B+Vj+6/Gpv+dzgO95+3tnvButH4m2qZwTnFNOf6U4N/K+HPi4XvR+6OSrfcYPx8A/Kx7Yy9DuBua33CGy7+tHMvAnxH6csDKvW3p6HyJkk1szjF5mcDPhee1dx77gtrHvZWHd3FRgJ/fNqrwf19Ev+/UgWwB4+2hUK/yvWRD0zXkH/cMrWs4+n/7sQj+7Rjbsargj9a3PlUntpz7nEfLf5DFDtHZSBSj/WWe2R9kjrOb0PicbOT66f2uvhugX7wjVrwtMRL2/71cO67nbYjOf7V4yfXiOqcP8PP7LUUCWueQ/x3vcT9t1/FoPIvQ2dwiFV9Lof7ZXq1t46fwDMhnfGWmtoaFo/Pl6MMetLzekA3nO7+rfaTWz4T8K9EvXlrD4S5QL9hcFRo4jfjhSc7OBIknWcDHuBpLkw4v8p+jdS6XyKmmQL4jJZTUme6G+HlM8UL/9Y5S0FXjg3NyddH+MlsVO9dz8s34ZYJ/hzz7L2lEo/nD+te/Toe7BwM/V77LfzQdic4n2KRW/u1zryft+yRv8Bh/Vz2QhuqXVvuPpyTQ8lvk38waxttd/2f9ueDCobbWWuBjHavAiE42ND9x+pGZYClfBPrUgtOnkUvo/by7KJej+y4L/Odds0tDongu6IVHPKy/nW4Afj7P6nQ0qhflR52slj2D1iB/eu7aqEGYAfr9ij3bD43EtoH//Fm3sY1rF5p/rbttvFQbF4/T+LnadiqzaxXxucWsp3/j5ntQ38nId0GzA91/Kb1b7R/IeTT/hdzjOvp6sBGdz8ywX+7sqgPKP3Nu13jfLI/4c+WR0lmr9grQ9Tt5Lz+nbwD9tGJrwuhkGfjPZu9rjQVGUft1B5P+mLxJB342N3KKHBdC16+csXUy80YW5Dv8+LfcYmCqB10mZ0yTwaMUzm9+Jbvp8D5WtD9Dhq6tl+VwLO38WjJPK3fZ50nEL4lbd3O/Z/TBTxJ6/49us7+S2aALygXOamn8N38n+PiAWevtfRno/MUu8YGfP0Yq4fxnruYd+5/zoPWPgVMyvzRIkej8Dau5z2MVaP75UGE9T35lIvAzw2/2z2qH0P4Gm7krLp8bHmD0hO4RVRCYOoDOT+prTdvwtTsT8huXBfe4mgqj/qV74a3ll5lKnLb/j3lzCNPmvah/kMpoqlO9kwh83CTNRenNQOv/Cx9e7Hp1Khjyz6wB/nnDy2h/8TTpd9/F2mqsk+Dfx4mOUiZKkG8nzXoqXNuz0gL5jY6YgnSSKBrfR173TFeXFWINRH1s59Xz9A+ooEtfT2Rz+FWD0fYHGm0SbXs+jcbPhZz6l7v9w4GfPT7KP0/hQ8+3cLFxUj/6MvaZ0DdzrBlJE0X8PJHreO/R7mDgZzOWI4OPsxG/aInP3hUxy4V8R9hbydXV42j9t8omw3ly5jbOQNRP6Vozs6shvhqKVb1uxlQM/FxrURmScRtdX3Xjpd1WMeXgP198caTu2HrkD/hFD2WQUoPAf+4+VTb+LBHxu95wtvMalQb4/1N82LO4d95B+vbmHdl0o+WQ79jTYrmj2ARdnyo1oPN3ZAz6/1PcVsoe30H8dDXjSNBR5SbIP3e6Pcz6FoXyAyXMx0S2lNdCvnnh3HTUhFQo6CYD2440VwfRzmen+oeHNc/OoL9/jOKv3/S+Gfg5Pj5PeFsOyqe8SH6n+oOhGs6niz1Lb9a9F+UPzlirJ+9NcIX8dM43LYW5UcRf7g3rwy+VNIO/7LvPs4DFH43/CUYbzma9LqStv1HFXoW9VpXaAzq7kOUbvZYIqB9TXNvgJIu+b4NJ7hQP+hrwjwU67rrMK6O/37PjE/+EdRXko798d+Ec70P9u8+3805XuGJo+7up9xcEzNVJ6P4KFq39qnalAfj5qB4ziU8I1f+UacjcNJkP/PwlaiGiJwrNLxgNecqWbRA/B3d+5fdbRPODn6nKV/eWPYR8s6kP1c/sMPr7fSZM3bVmkF+kpvJPzF5fg8b3/riP80wbU4Gf2xs2GTm8Rn8/1O6DhjZLGa5P8K/wyg1ywB30fjwcX/l8xbwO+Pm16FWhkieo/kRv9uR9hnD8Ao2vnaK0tU6h/Pcfrsu9M+31wM8Una2ffD4h//KwJybBpVgL/rLmxj5JJWGUTwhMHT3I1nAD+Nk/n8HS+3/Ol6i1T7lcfqMZ/GfKCfbuyMcov5HkKPt+PL4UzrcTNkmyPcSC/C+zQyf7ZJ2z0PnQLzfMX+9A+SFmVX2pSQEq5Jc3SGq2zTqh+zNhwObq3V4E529saxM4aWuMzi86+uQVE+PPaMhvSPY84mHRRPMX70FWj5fNDeAf814P0F5vgb7vs7XXxFtflwI/M9pyv1fqQM9/U/Y76aKYQODn0o2SuxYDEf8zJW/fG19bDfxbXO81n5GL1gcEZcVrG8wqIb+h0/nwa+YG5L/z3Mi8a7beD/hbfJDpfZYHyr+0NJ7t5V6ohvPp+KTv5B55hvbPbPd+N6EpUwx8rbn+2+DjOZR/z/05cTruWALknyVubLW7m4X8m8rBUKZfrDXgH5sy4+8nIxCfNLkJJR71aAR+rtopkbLZAD2/b7xWDKFjvsDPzF3rAgrNER8pnAuujZRsAf+YSfSYbeBmlK920n0UtXI2HPIdLAV3LSKD0Poxtwk3tndnJuSj41vDdfZUIn+N1ekKr+u2FshvHF7sr/95CfFT/+4hulK9PMhn6FVl2e9KQ3r1KhsXW3ks7fsiG9veFNIYRrqe5K9zqv048LO2d6VU2VPkH565tOGcLs8j8J9vyg/1Jgai+eOutK6J7d3JsL/w2B9X/rRb6HyHaO3O5Rfb6/BSgn9Jm45eXH8L+c/fxRQTZ/mrgI9jVV57XO9H76/7nud8hRqwPkeeCqurPSWHvt+xh5lreqIe4lsI/l29xlbbOonyJ9OHfwvNRZbS8nfkkIizo9s50PluD3ffuvxNKBX4+e8bcqD01nLQs08mWc+PtoD/3F72K1frATq/xZEk9z32eS/kN0S2c5rgQihfRylmDPLMSgJ+fqnfkD7sAfsHScZ1kS93SDZD/kJZb+d0dCLK397JaMkruZFP84/IlFN2DzU10f4sOk8bNePvGcDP/pzBHssB6P6OW/5+4buhAfxnfcajqWMaaH+HinvNmpdGFcDPysUzTJ/00P1vVYrwf6sSiZ8i9A2iLvX8puj9YHTaM2HR1wLnb+i3tI4lJCPd+PsKm/+dFjj/+dz2StV2HfT+Wb6n3H9Z7A7/f0pfE3fEeCusT5P0V+sZMk7hOC2/0a3KblJ6EPFp51zXlgC9WmyZ8J9zqo9vFopA88e36rktuduycNr50RtPnct8xID4z6rtFJ8DZyvkn/sqPm3kPoP42VIwsj69uhBbS+i6p5N7fykgfmb7yb5Ddv4OTuPnm7tvf9hyGM0fBO5933WkzAKn5Teqb78rK6d7BPXZDvp/ouTbIL+xTSdqpTmuDPQNQRx7foWGYI9p+Wdp4+QwQzR/DQ7L6onLcsL/H35VRLM=AQAAAAAAAAAAgAAAAAAAACAcAAAAAAAAHQAAAAAAAAA=eF7twQEBAAAAgiD/r25IQAEAAAAAAAAvBhwgAAE=AQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAFDQAAAAAAAA=eF51nXlUTt/j/TMXmYcoNEoiYyIOl8wyZY4yNyBCJUqpKGlO8zyX5kGRnNySoUQqU2UukczzGL/f+rTP/azv/aznr73W3l1rvd/peV7tZ59j4torjoYLnvCjHw5auP/WdUE7XNdY2aPrWjoFuRb8sdDeS2PVSqetpzqi59nXbd+Qvf+0lAWJ9fC9cePGQ15exv6HR3Y5rwCd/UHpJC8bSFk+BD77ujKfd3fiT7jSGAl5q+PvmbHmllSWN5SftbKBl9F5cjrR9yrfHfqiz6W8re4BRAa5NHymSf3eO0/fZUE7Ie8In2nP4FfT7fLd6O+Yt3Kfn9bxvjt0XYasusL7QNuCl2k5vQyiHWPb80D4TM9obp/ChawU8iBRvsrxfOZOIxeaefC+ianpPf5JVuHESZPK+MfQzEURvwNvBdB05I/gMw2YekHH186c5CB/Bv8p9IfaGZ/F2g5Ef2npmfrXt3mFn1OalvQv5YdC9x5407wj9gw1QK4IXwla6BCnqVK0lSxGPgQ++3MGbtl9a298Bp212CTXy66Wb3vDHT6WyfN/oX6VX+02O22hk5C/gN8CvVurfM21gy/VRf4e/mdo1+2NHq9uBtIRBTf//vt3i/fVMms4u+cC7wMdET6up6bfHIn5L8OrVqV/LKkKcm/4XlCZHqf2epa60Od3q8NfdK/kJ+31md6qdY6fCDXVfqHX53A+uYFcEf4w6OFe1mt/uG4XciVRvnff7rYji5LIh9pxwUs0ynl3lQPvbufn827QTPVZ8rtTTanq7fb8LPw8aPHhRdZOB7xod+QJ8KOg52R21k4YG0m/B638z/fbxyl/eTebHN4TajJHt2SCjgn5jNwX/kloWzcZnuocJ5+QB4ieLwjS9hz315v8ym2NnHSE8j2L32612XWal4euTM9ItprnREKRX6Xt/nWo5xmzHzULk8kt5FJ47jfybt1llvMZheTKossB/86e5XfW3Li28FACfwQab6xgv+lkEi1Hfgi+CzS5x1Qti+jjJAy5EfxN0HCVWQ0fPXzo0aaVoWFhqfzYNfUDNn8M4mdBPR966mos3UWdkevBXwg95KCrdXbIEeKNfBP8ddAmqyXXB+4JIJ5V1mrVA07wz4fvMM8rt+IrobMDgnOPzT5DQpErKbb7zcjnX+sipfF2D0lCboz8H/ITRx7Oqu2dTu7c+E/O3R/6H58bMaxdd/sucfqwdTddUNmehyi0+3XQqck7favczKll+5/PbWn/c7lTUGcX57d39DPIlPb/Pu7O6v/8d3G/oGYvJ8Qcf7CbKiH/A/8H9PnEHQfHx++iusj12/+/cIpQSze/Tx36ZBDf9u8PN7b9+8Ithu4qVLOPkU6m0cgPwDeDKo66n1070o48Qd4IPweaL7df+fgcH7Kh/e8Xt6X97xXnBh3y/eGxwmPxxAx5FPxY6J5xHf1tfGNoMvKu7X8/uWbkUjGv+qQ8KaV3238+uHXtPxecKbSq8f39knWp5AVyM/g2UK27K7QShyaTR8i3wt8L3T2kwcF0ijX53P76wIW2/1xzXtA7a+L1wsZcIt3af/65U/CDoSt/nL4td+gCacHz2+EfhNrMunZomGoZqW9/feLGtr8ucaOgez5cu6AzKJ7eQS4HH69z3NklZxRsWi/Qh8i7w8frHPe257ST905UU/X211fOqP11lTsKPTyqorzhngdVRm4iyl/sbUv2/xVNRyE/DN8DOqnk4IT5w+LJvPb3B66u/X2B+w11evOm5LbjdSHv9Lbd7wZ9W/XWeWfXfCEfC78/dJ2pQsnY6yXEtP39jRve/r7GjYEqmp3MUV+XQJcgx/sjNwz68OdQnfE2AXQ98lnwx0LnuN6yGJCcRxPb35+5a+3vy1wNtC3r2/u4o9E0G3k9fLz/c2vM6iO7b18iPF8H/x702nb7dyv3RTO+4ALauULQ5P3GlU38GaKE/DT8dKjRt10FN+UzSQ/kp+CHQa/P77zTJDaPTG3nI258OxcJeq/I64BOSiJ5cbE9fzG53W+B3lrjMOKiYRJlz4/Cc1rQlV6/DTbbF9DMdr7jwHecKjRTRdkkrvIMTUOuDl8NOvlBn0kb1h6kechnwB8Pnaf4OurL4Gukczufcl8e/IdLub/Qgml+DWqPi4kncu92buUcoUQ38978SWHk75r2XBd+H6jpYM2EiMmXCeNfTRH/utaXVK94vZZMEfEx4+djDY4LXXptoJOQj4TP/hzeNnJa+hErGg3+lQP3Mg4uMm1q87M7JPDxYBEf9+036bBe02qJefeR41/eLnciXcC/ncC9naFvnH/L/V7nSaWRM78LNEXLae6yaW6U8XVX+N2gofMDZPreO0y6gX+Dwb2h0J8bNdeOnxdFOyD3g4+/h3z8ETMVh+J9Aj/7i/KP2/Wd9sr4EsbPD0R8/CRy5dswmUjC+LkBPvu6hS82T1/Y10ti/uRBhX/u8ESCn29eHdzLtK9zh+96H3wp4+thIr5epN98tPh0PGF8rQpfBXqCPPHcYphMpoF/f4B7v0G31/UN3rg4hLL8J/zvUM8HWVvWTZpPpyP/Lcpd4pzsO0RlEca/jHs9oXPLlyTeCnJlr9+8n4if6/eEOxsdn0JUkfuLcmf91qiw4GhSCf5VAPcyPXpjREvAsCRShxzvO/xIaLHPGp8euUHs/YnXgs++bv+QQ1Lys/KJMvg3G9zLdPr9TztvWeRRxtcn4LtCs54brQrtfpLK4PkY+JHQE/of17ptj6KvwL9O4N6j0NtH+zho5XqTN8hd4DtD3U75rlJNjiUfkbszH/op+rzrTWsvEgn+rQP31kLvpWomvNybLfDxP/p/+dj7ar9YWS6XRCCvhl8FVbFZ827UmwyyG/w7B9w7DbpswNAVxe98aRTyPfBNoMc+Hgj0MowWcgtRnteUEtmnNJZ6gn8Z966Cev8yM1gcfErILeFvhE4fkf7PztOF2iO3g78GuuDCn/Trbc50Efg3axi4GPz7Jepyk4lBAHFEngg/G+oX6jtKNfIEyUMeBn4eAp04OFk+U9qXaN9s599gcG8z+Dlt/8jy/kaZ5HVFe64Lbn4t365NR52nu+6JJ3bg5wA8fxraYRJvEC+TR/qAf5+Ci19Aq+9oVIcu8ia9kEuDiz8iXzFzZVtcrwQyEfkK5EOhf9c0J6wfdJZ4gn8VwL160Acj0lMWO+TSm8h94HtBs65tVy8c5EXSkKfDd4IOrVVS6Hw0hHiAf13AvZnQQwPWaORXlVH8fsddgY/f77gSlSlFqnsKqQ3yR/AvQL/VGM5ofHyFPgH/WoB7raD6FuOqzewsCX7+uIPwj0DHm3VtHLLbj7DnLeFbQ41qfI/oGscSWfBxKrg3FlqxJaVxw4MK0gW5J/wA6JLN/treQaWkGfy8Dv5+qL7Ppj4yZ4tJKfgXv9dzA6EKv1suxT+uouXIe4ryA737G42aVUkvIf+8p91nHF0lP1CqMKCcaoJ/7UT8q/JxXpSqUYHAx8xHz8E1HFjbbUJQGB2DPBJ+MLSKGNt+fVJA9MG/9eDmjuDfHT/mdC36fJssQd5XxMc2MxdNPx1cxt6fOA34XaBSeptkvRSvsPc3rgu4dzDUfNw32vdzGeuXOGX4TL+//WRyaGAqNUG+DP40aJ/hXRK8vf1pEvj3Frj3DvSse73SxI4xrP/iGuGjB+P856gVr1oWSk4jb4L/EPrx39aY+S3hpDv4NwHcGwUNJdYJCzqeJyOR58E/Ax0+b725z8Ec8qO9H+Sc4bszXXCg0O1+Lhkn4ufR0NwM31QyYgt9Dn5+CW5m2jXfe7Pijv/y80gRP3cuMX2xTi1G4GcFET/fSxlQmrsykGQgHwNfA5r7QvPmxE+xJB+5HvyJ0KMZKxLLRlSQjuDjh+Dmb1AH+dFve3rVkJPID4GLD0LvvlfqYBlwVuBncC0nC/29+3ca2XmJMP4dJ+LnNb0q93s/thb4mHHzGKjh/BkOv/y30vEivh4Ffe1ttN3bX50w/h0q6p+d5vgmKk53p1Gifprx9bz+evsX/tlGIkT9M+NoLd27sWH6bgI/dxXxcZRxSKhBsyftipxxMfu6dc29tQ/kHySMr1kvzb4u069q5SKf/eQb+mdPcK8H9N6yyjE9z4fRThL65cXrdMc6G7oRSXm4oUr9tc9ORNwvM/4NklePzXMLYD8/gs84+V1oUOWkH8ES88STq55sNThCNoF/8Xv1f7Vgz6+5zy0FPma9M14f+B22vzdJJ/+Xn8X99L6HGz/JfwoT+Jn1xl+gm1sjvnyQChL4+ZMo9wiPfZnbx17orxk/sx57VdBa+431VkRN1B8z/eRiwt2MjyJ4/eWD4AdC+xv1z8tU9CV4/eYD4DOOfjjiN/d2RgD5CP6dCe4lUN01gwYkJifSZuRT4GtD584sJF6x/uQF8mnwJ0PHrvKrLr0US+6Bj/eBey2hhgsmtpb+LhL4+aSonzb7UmSXRC3JR+RejJsZfx+weRo+Ope8B/8eB/cy3fzCo8uMv+fIaxFfMy2qKOtz1jZD4vMdBv/IdPyURarAv3/Avb+gr1sUFX8uLyQ3kX+D/x36U2nYzjbzs6QS+Qf4X6E2+l0irnmnkxvgX3AT7wk9fCrvkpt1MvmL/Az8fGjSIX55otZcWon8OHx3aE7gPxe+MpbuBv+qgnsnQO1Waz1eMTuWuCCfD38RVCFjiNl3Ek+skDOf9dS9NgZtGL01lqwD/34AP28DH7eNWfF58tBAgZ+T4edAyxr/vdYMTSI61e15gVK7vw66vuvLheWLM0kv8HMLuDkcajxZvc4nI44Yo3+WQj/dBbrD/ILdDfkkUoP+uhy+Ip63OjxljObDMCIH/q0CFzdDlQyMP5sp5NFOyGvgN0BLpxQuWNLNhKoh7whuZj21i9SreEXFAmIM/v1X3c69w8C/Rw55bK+oKKShyNfA3witXXc4YVaZPY1DzrgZv0dxj98fWf7PPYj4gn8jwL3noBqvLO/7LDxPTZGHwGc99Pp/V5YfH15I9yK/CD8LurSyYaqhWxF9Cv7dL+qXO3a4ezb9epjAz4dE/Lypq47GwJ5xAj+z3pnxs2GM6bjjUqcIPl/iEsG90dDiLjPvXhlZLvCzN/xAqFr4wL/bel4iL8HPW1jvzDg7uyXmy/NKwov65f7QqFVtiXszr9ELyDvD7wGdabdA4WrjVVqNvBv8IdCeYfOq8pquUAXwryW41xGq6jW6driHOxmG3Am+K3Sy2p58zWIPwvg7HH4g+3NG5y7UXFxIOPDvdfAzPqfkdu8Z/XWnTIPQLzOu7gqVXVWxItaxkkxE3gs+3qe4V1mN6RfqL5Md4F85cO8o6KOU3dKfXAvpOuTojTg1aM9Xnz2KZD2oMfIZ8MdDO5Qq0/DdMSQZ/HtTxM/ySmc4zwwfegb5UxE/Zxg4Se/PDSGsf8b7O3cf2n/m7Hv5Q4JJG/iX9casf/6eszw//nUBGQp+zoCfBq3U6NDpztw88gvPn4TvBTWw2pg+2+Yc0Qb/TgL3joWe7Wc7OcIjT+if34CbW6Fd3tUbHNiylUwT8fcE6LX349KjBkbRbPDvAHCvCvR195Di2z5RJF3UP4+ABn8+1eGBQzo5g3wW/AnQ9W7Rhc9Kb5BO4OP74OavUN8g7Qm3jW4J/My42Qb6tK/Lw9Il+eQn+Blcy0lDvZyHLnwQc5mMF/Ez4+BhZPSN0Su3kbGi/QbrlxO9cs6uktn/Pznj57LeI+9NvGNCIkX8zDiYH7tT2uK2Iw0T8fEg6IQhLpvCuB2UPT9M1D/3MChrVow+QLuJ+JfxsX3h1eIPm6wJy7uL+PhvuWfvTYv8aHfkveD3gH6z0p1jaeVEJO0v2oyOLbg910Xga2/4jLO/dLwVHVxiQ1nuI8oNJ4XV7fvsT9PAvw9F/Nw6s8z8q/Zp9vPH4/MdHp/j8Hv61LU5jvQnqaLnGT9nl3gdNJBzZ58/CdyLz6n4O0edJ7i8DCeGyPG6wY+EFnSROcB1DiZLRPzMemqtvTHxDTO9yGzwL36v5/E6xm/57Jh0QDHuf/pl1lN/LFuoFWIQTLWRf4D/Fqqm97y3zaMwgZ89RPuLsMDjRgZpQVQR+Un47tD7tik7RqT6C/sN1juz/jpJqn70/Tf+tAn8OwbcOw56x6ok4HFbrrDPGA5/KLTXEjVVkx+m9CbyEfDZzuNYUe+TJ8YH0ffg32Pg3uPQwyPH2SuUugv87CniYx+aeCntlC1VQ/9cDL8Aeq/bvsEvDbzJB/Av22Ww/rhoXon2nd3Z5K0oZ3wsG79m6pfgRIGf2f7jBFRx1MgcYh0i9Msdsb9gHG0wsH/t79mlQt4JeRvyea4h6gUnzpBq5J1FeaTN0wFjfJxoBPjXFNy7DXqyr7Tukag4WoXcH743VLpiaczxC8doJHIz0fN/tnTuN7VLAnUH/xqK+udFz2NL/xhHE5ZvE/XLDcGapN7UmVgj38B6Z2jSkYlLTub6Um/w8Vtw8S3oa7vVDrTtHIlFrode+TPymeo1x85pxpI54Od34GZLqKLZ2I2llilE0j7DyuHr5JOBRSQf/fNk9M720L1v3/3/b1qSsP94AH4eCX7WG29+SG3wKioL/o0A996Cyt/1KNrrn086Ir8Bvw5qs2jd0HiH40QTuSb4WRb6z6HRKPXNCHoC/NsF3DsVWrfJq+TF7WC2z+Gwz+Gwz+GmpNF+44qcSTLyYPgHWT89ZLPeF119cgH8mwzuvQstMqsLHRZXSkNEfIydEfds/ryJMdb5dDbyNPje0HeftHTtX1P6GPy7T9Q/Z2zb4DBwZqCQMy5mfH3uTrees56dEvj5MHxbaHmnBSN+RnjTBvCvC7jXFjpF70tGv8uV5B1yZ/h4HeG+jK+YyjUXk2rkq+GzHYfMHYeXqsk8yQf/9hPx8fNycnmB2lVKkUszLobOG9dVW7FDBW1FznYdeH3kbB3DnmifK6fDwb+7Rfy8c+ZeY5U6LzJU1E+7QN84Kjt2tXWnGsjRf3DoN7iMI3v8+hrakZngXx7c2wq9eMHMXqnfQyHH+weHzzk5veZrX1RXXCHqyPG5JvcI+unMXynF6SVkLfhXGtyLz1+5uzLVr5V8k+ki5APhY8fIeSfEashdjxP4mcAfx3pq/dOX9iSl0ATwbwW4l+03SuZNn/u8OJJkifYb6NE4Fb/84unXwkg88lr4t6EKGiN2qdyNpJL6555Jt68NeF5K+iNnfhzUaoJeATfrDPkAfraC7wQddu94hFV6LtEB/+qI9hv/dJT6RfzJJU3g5+fgZrbj2FNqMSI3OohOwfOqeG4M9JF95P75jxIo65cHi/j5qpJ7/bNfEeQ0crbbYP303IHdDgW5JBO235gOn+03Fg24FvKbVgj7jUfg5h9QjdpOp4dcqCZuIn62hrou3RA9/0UB+Q1+Hini5ykb9T30z5WRcaL9BVOvb19qMu5uo9qi/plxsso7S9XBJvuJlmj/wZ6fHzpz4KkbfkS8v2CcPNSuKnNXYJywz2BczHTzjNWOXzK2CvzNfPbnZLrGxEy+k0pkRfzMdtBZXSepf5qdR3tIyLUumlwd7zKfsH6a9dZMW4zevvE6mEe+gn/xuQaP39P4iC0V41RtMynLT4pyS9cxu87d3Ekk7afPzLXRMOuXS1JE+wvGyfPn1ivIHk6jkvj561UZde3ufkL/LH4+y+DJtPDfBcJ+Q0PEx3ImV/4trcoR9htst8G0+NaU0WMcE8g85APg43WEv24++FCbazhh/TH2Z3wH6PM5ix/VV6QJ/fI/cDHT81UpLX3KrITn/8Bn++kZa+K6mD4pJJL2yyMDLA5aKGeyz//4YFH/fEm+wiB5lb3EfYdF7rVHtvcDhP0GehVeHrq70af3v0PZVNJ+o2mzfdWJ/p4CP6vAZ5ydoyi3zXdmEFEC/6aBezOh/RvS7vktzBH4mu02GF+PPlA3XmtzAP0oga+3Pqr2vjwlh7SCf9F/8Q5Ql5ernysM9KFsn8G42RXauVPYqDF9wsk70X6DfV1K4YJXDxfkkD/g3/7g36HQBcolsTXNNlRSP90ruuPWZ09ySS3y3niOcfjTgItzv67LITvAv6rgXi3oF+MTp8vjzwh8zbh4CzRV7q3P8Qn+NAY5uErYUd907tXYX8WHmIJ/e4J7NaCpOqrL9Rr8aBhyxs1G0NV/82W6a0cQQ+TT4GtB3XaY782aVEaab7Xz7zTwcT40uVPEwyUK8XQv+NkI3OwPrR10/pFBeCJJq2nP3ZTbfRuofaRF9tvZJaQD+uc0cK8T9Nq1wcs+njSnFuDr+eBjVejkg90PlrxPJOB77jV2G1XQwPS059sSz5Mh4N9UcPED6JnQr40G7lvpVOQ9wMVMJwVOWKaYFEo45Ovhq0OdKq5s33uzjKwF/z5F/9wH/Cu7u2TQ+deJ7PvL7YC/FTqzb6uDUu5JegT5KfjYuXMdmypDbAamEXfwrx24l3Hw+WkaI1t3lFFz5AnwmV5v1Uz80lZI7ZDjcxPuGnTde4/Kus1ZtA78uw3cy3YcD2m3HjYvS+h95Dvh74EeuLB2V+PplaRBxNcHoO8dlwUWzQgU+NlR1B/3WP77/auvvMDPR+Ezzrbfv2xS78SLAj+vEvGz+4SmH6cfVgr7Dca/g6DlclID7l+ooddF/TTrl5vz9J/8VrxBa5H3gc92IIsm2VTsauHpYPCvObiXcbJa+IDVjj5nKOufnUX987xBlzZvHGnHzq8I/TNep7mza4f2c1yfRzTBv+Hg3nKo8kxz434j7wv9MuPiZujAOc8adELKCc7fcAPRP2NfyPVeNvmo7OhyslHEz2znvDliHfEacZYuR864me2k75b6Tlru6SLwMwd/AtTxp9GOIVK5Av9eAfeyHYd5obpFwtMUyviZ7ZsZP09NbK1LSUklUcgZd1dDH8+xzZwXkME+3+bCwb3YmXIuI615Hfc8Ii/i62So9rJ3+y71KyKvwc/74NtDP/sYT7W7xxNd8K82uHcidHWy6aXIfjnkpYif2f651+lGg28n3CjjbyU8p8mebx376kRkOMkC//YG9ypBzctmhCuMsSKsn2Y+66FNxhQEbZmVRAqQT4Y/DprbY8xin+CbpAP4uArc/BE6q0XFz7RnNfFBvk+032j56zPxwYt8ob9Whd8T+s2s45XTpWVEA/yrAe5Vg36NVb9wpbeH0C+L9xm5Wy4WNq42F/ibPc90zZ9V5UcDnYV+me022A46f//WVZ+kd5JQEV8PhC5Y8PLnu2n2wvNyovyHvvzGLQ0B9N/F/7t/lmL9stbi0Z++7KMdRHzMzge+l3au0W91FfLOovzPsHvP+7slCvuMEHAv66G/uYzvdVDhpMRc/rnF+0OtnkLO9tOsvx75/vAYdcVTEvtn144Fv5obnSTy8SrFOdp2kduEfhrnCnh8vsPrHX42cgofRBn/yjFuhr58EWOsX5VKJZ0vzJprULR7fgyZi7y/iJ8/7Zh1d0VBnMT989mHWfImsaFU0r7j2r0LKyf99aV4/eOfw38JDbbQDqsiLoSdD2TcyzjaYVa8tPWXU4T1z6x3ZhqTcnF/tJw6lUd+DP5xqPLyLm9b+4ew9w9+sIifr96xWJrbMZhcRI73D0FbS83Sfc4FCjn6Hb4vlMwwD/51NYy9//Hoj4QeeuXDHg1J1zMk9tNvL/X2dA2zJWK+ZhqXMmq8dEywxH3zyp8nsh+uzJa43zhiodn1anCC8Lw47/pDf35EeIDQL4v7Y58OK3fbJGdJ3Dc/qNu6OyQpn4QhB5cI5wuP3dvkVm9eSHaBf2eCe9FP8p0mqAyfPTeQmCOfDJ/pwXtDq22b/YTzg+vhs3OEn24sjx094xxdCf5VAPcqsh7ZM6rFOCqZsv3GPNF+Y4lSn8e38+fTk8hxPo5fDj3xaFS0/soE8gf8nAxuboTSxhKjjTmpJBp8vARcbAT15NcO8NHYTIajf9ZD7zwCmiob9q9hvhM5Af5Fr81dgl7Y9tjSRT+LfEa/vBtcbQKt5S5m1qs7EBc8X4jnmK4d+f6Pm30oZfvnLHDzfWjnd4qc3618qoj8O/xv0D7RyWUzR7hTghz/34Tzg4o7NvUdLjOdsv2zPLh3NrTvSQUn+wOhEvlZ3nbAsc6xK+hh5KyXXsv669UqtcZNftQH/BsI7i2AHnTeae4nXUSnIneGbw/9Ua9a9cD0Ij2MHPsirgx6aVyM49aS6wI/M+5lO47tbT/03PVCaL1o/8y+LrKqcPvcIW70GXKcS+DsoFP/PjyzICaW9sQ+Iwfci3PC3E7VwQpL15QK5weD4IdAQ3sNt/pifoF0RG4Pn50/zHZ2VvJ3vkZugX9xPoNThdZ++DjsWVUFLRadD+wFfWzyzbDY9jotFO2fOyH/pPXu+OHGa8J+wwbcy3Ya7gt6er/ddFbop93gn4B+3hD51OFujMDPYaL+udpjuOwexxiJ+42iDtE2ucfqhJz1zuhhOK+oGeMzzS+TqciHsd0zdLrxsdXhviWE7TNkRXxcZlLw4g2fTleIzhfic1xuCpnm/OTRf/mZnR9k/DzIy9Ru+YwkGiM6P1gF/bOuc9wOi3R2/knYZ7B981Svcy1NB1MIe57tNlgPrX+mwGL9y1DGF8J+g/HzYddxHlrJlwV+ZtzMzhHakWvBMhspeQN+toXvCD3PB315XZQm7DfYboPtl333Ff9s/nKePAY/PwE3P4P2Pbz1geaevXQynh+B59h++nufJcayljnC/rmXiJ/n2+ZstHiTStJE/Mz65/ufqxK93VNILvJpIn4uXtvT5trbctIV/Fsr2m8sPRirEn2lmngg3y/qn3vv8wg2kSogUsjBtcL+WWvv6xUXlMvIBFH/zPi32ecUH/9ygdAvq4v6ZWOvbIu9i+ZQLdHzTE3K9tVVSU8U+Lg/uBc7F/7WhajWf0buNBw5220wvftr34/iHGsiKV9vSxfHOYaQjqL7MzpA5YJ/hfrtThLu1+gk4uOf49ZMCi4yEfpntvtguqIw8UWiS4zE/Uau+qSVJ93jJd6vYZ2V3sF8/Smhv2a7adZP2/v3/uGzLFvgX8bNrF++fzLFstP/5xucP/ivD1Wc6NJmpR8q5IyfmR6dZbr906NYshT8i92WsMM4lPt75RetOCJp3+EfaKLjUJhMOOR94TO1Vi32+jksjOiBf7EvE3YcVjeOPerukSvsM9j+me0zVAoTliTWegt8/RU+0wEvLoYf7ZtDGP+6ifh315A2O1ODQDoEuason5Y5zj1/yGj2+aGQM51a0zLs50tb9vklj30fLwt91b+J2nV0E/gavY3QU09onNNpYbU1uS/ab6hDV82xlv28xIp0Rf/sA+7FfpGfo5zU4qAQQPH+yONcEI/z9fwC35v5xz+GUGnkeN/kcU6fnz6lWm5Qq5/QHzuy3hm633t6zgm1AGHfcVSUJ7geaMnJ8f+f5xl/B4561fDELEji/RpSw30S5+dlkArkL+F/hC5eWq9nlZpJApGfgX8Jur2ybG0hLSLh4F92b8ZmqOVclfjR/QrpdeRH4btClU4MjPhXH0+DkC+CD77iB20LfZbvGk8SwL+Hwb17oMciqreMiNtL3UT7jJVQKY03awYtdaaWyGfDnwHt7iH3ydXfn/qjX/6DXvku22+si5l87nAsZfdvDANXNyHXezHzaYtpIIlBPhP5J+STng35lZV3muwD/+5gvTHjYJVSaam8TNIMfma7jIXQ3PWm76YOTSD2eD4Mz6VD9102T03tfYYMAP+eAxc/hI52MWw7pJNEpJG/hN8E7fRsi3Rboh/pjlwN3Mw4m1/mTg2TzpKN4N9v6J+HgH8XpgS+Sa1MpzuR49woNwWqePtD430tZXIIOb7/3Gqo1cpTzu8fhxAj8O9OcO9JaFzGsY5mniV0p2jfkQgtel1QWM+fpweRN8FnO49xV2rfEKUM+hz8ayfi3/6T9nmcv0cpfj/l8HPF4eeH03X4++6qSxj7/ZQ7JsrJkWnJ3bulkd7g3wvg3tNQi+8bot4+ySY4PyycK8T5YU6dnpCrTCgmNeifDeGbQBe9N/AJ7HGZnAP/Mm5mOw4DW909NSNqaB5yvO5xMtDxzb8+b/laQW8jZ+cKWY899OjumY361+kg8O9+cO8RqI/yqSKvo6msvxD4Ga/PXPmvCU1riywFfo6Hj3Mq3BV+/Y8LF/PIfPBvg4iPp/jr6AS9vMP2g5wMuJjdw1H55oejmuVVMg65Gny241g0KqfyyNky9vks11vExzPWPvHyzrko3L/B9s+sn36xpyy2Z6Ej3Yp8Ofyp0G8XMzXX++SQaBE/sx20rfTWqtoIH2G/8ZT1ytDO3pk6Lm+SSBxytotmHO1wcVFIs3YK6Syhfybf7i58MJmSAciT4CdCu9n3GUbnU/IF/OwK/wRUZu6TjQ9eFZHx4F+2u2D9sbquVOf0f3nkmej+jWbotLTaYqe6DYTxM+Nm9ufU5N66STgPYb/RF9yrCA06LtNrhVaCsH9mu2em26fmzZmxJEforwn8sdBdu2wNNQtuEmnw7wNw8y+o6a+WwMEu1cQXuR24mKlJIb87efm5/9lvyEDfr+pYf77uMhkD/mXnAhk/y82bqVXcUYmOFvXLjKO31ZhOyX+zgk4U7TeEe/AWlsdXKZlL3DcfVz+6tt7ZmoYgZ70y42u9/q/8Ey18aISIn1kPfdr4R6nSg0iBj1l/zDg5eoz3j9g1J4kUcsbVrJ8el3xgWb1xlHA/B+unGT/Ly444m5GQTyXx72rrdxlz3EKJpP1GaGpt5MZIdypp/7Fxw+TK+sxcdj8Nj3MF/F3ooa5t3hpZ6QIfM5/x8YWqbrUf9T2ppP45p9B6quXf/P/pl5lq100vtjYPk3i/3ZVNn8dZ77Oiks4XRrxSM7qw4b/314n3Fxf2T/htnu0n8X47qzvd3684myrwM+ulGT93jpM9bKhTyvoNHp//CT3yRv3tlwqu5wn9M+Nr9Bt8F+1ppX/V46mkfvrBiSdXDIddEfhYTsTHuVnL73x3KBD65d6i/tm8wnq4lEEMZfysAZ/tO76GKuuYXimmbL+RDu5l+w2FCLmlvjHBEvnYbqvx2gdJWZTd34F+Sri/Y+S76XMt1Usp42PGxWx/8VCZGxKRGUy+IWe7ZraDzpruI6V93Zi0ILdjvTR04751637IZdBw8O9NcC/TVNvmzbl/c4TzgYyb2fnApzWfVTqviCPXkbfC/wRNy5PR7mrqS1m/rCPqlz+HO/Y1NT0tnA90g8/OBy6t2f21aW26wNc4XyZ83ZRRO4zG9Cmke8G/k8C9U6HNvWIHrJ4TQCORb4a/Bfp46MqDF8Pj6X7k7N67mVC5kdejq2aep2bg32ngXheo/ni7zwu8jpMjyKPhZ0LVDv58/UjzAMU+g8c+g8c+g+ddfF5V6OfQke39NLe3vZfmpkK15iUYP1ifQHzAxx/AxdXQF84trS+kthA35LhXjyuBLlTWy9w/Lo52AP8Wg3tvQytXP+t9MDSVzBDx8SBouk90RnaUPx2FHOcvuQHQZbVaXcqXh1F2flAK3Dscep8rTHIdFcLuX+Fw/4rA0Q8HLVW4GBVP7ZDj+8qtgxaNn+m6Xf8q/SraX/TBPXSpbacnjtcqpLuR5yFPheb3q1mXo19KHyGfh+eGQP8uS1imuLuWMv7Fz43AwUelZtdt6pou3F/nynxoTFlI7zkp4RS/n3Je8NnXKe/6KV8+9Dx9Av4NA/eynfObv9au18IqSA/wM+Nq3MPDPU+/2Kxx4xy5LTo/aA49oPymPqt/rnA/3TxwL+uhGw4VpC2bdIUWiPYbbP88/siirql/b9JG5OzeO3YPXuXx9N47pt4R9hl4XRU4uWWs+5x7PvGE8TXrldl+Q/ZcpsnF23F0JPJM+KHQTDJH/friRIp+hsPnk9wv6L/aqxF7Xj4gk5HjfUU4H3iz6I3e87NXJPLzrrWux7s+SiBbwL/sXjp2flBx04m17h0zKfonTl3E1/k79ny3cc2iy5DPhI99JNe0ZM/GysWlNFa0v2D9cYmx8e2Wj/kkAzm7X4Px88hRWl/nrnWhbP/xHD7bSW9zvjWvai9P/4J/o8G96PG4tN/zspeGXSaDwM/s3CDroe/fjbi/MTudSCPH5+cc7hfjZCNclqrGnKDs/g2222D87LjMTPnWxyLSAH5uFvXP0eM7fy9oihP6Z3F/vVyzpUuDbIlwP90gET/r8Pf913dJJ4mi/TProVeqyIYe3RYr7Dtmw2f756yvGy/J0SvCfuOBqH++Vs29iL7x3/0zu3+DnR9MN5J6evjTGYGfwbVcd6jyzHTj4YNL/6d/ZvuM7W3l+Rr/jgvnC1VF/Owa5LBp7hkLMln0POPnVTeVR8/5aibcX8f4mO00zC+UZym1Bgn75n7w2ddtOTXN41G6p3A/NONntoOedmqB5j+3GNoZ/Ptv8v/tl8uPF/lOVDkl3M/BuJnx9Vcr3fADE8KFfTTjZ7aTnqN6RpfzypV4P136glGDKtsc2e9vvBt8xsm2/dPsVztEUpbj9zsev9/xy0aMtO57vkDg3/si/v2eVCA/flOGwM9ivtbsujpA9oSv8DzLGUfrrt1gZDy/QOBfZRH/jtDmWgZmhEq837nD0BnuA2YeEHK222Bft23UOLLi60WKfoCXRu+MHoDP/aEUZz0kjO3T+CbRPqNn97Dja5JShPufW+Czc4QTT9ic2Xs0h90fKvTG7Jygl7+9tGNyHBku2mcwjv71Kzs+PD5W6KfxuSKP8yt8UMK2qv3qJez+JoGPWc88q5/CyeiXVkRS/xw4wunXUN04ifycd6kmuPv9CxTn54X9MuuZ33+Piq9p8pHYPw9akHmqVD1d4OsI+OHQloxXHcMfZNBG8C8+N+ZxPokfPdkmWUU5hzQhx7kmYScdWFD4cZBqEOvXeJxvEvTQa2mZwIgsgZ8rwb03oI7dTXZqvgwW9hnl8NnX9Z5feyytl7vE/rr3wMBu17RyKLt/g3HxSeiiY8vfu2r7UrbP2ADfGLq+8s7ROMsCdn+D0Dvj/gb+8XrdfctVSqgN+Jfd/zwdKvt0v9Gqx4HC/tkAPuuh00d1CTGakyXcX0fgs/s3FFJNZwdFZ7P7lXlj0b7554CgafvKvYT7N3BvHJ8L7X1f0WSeVhgF/wq9cw3rsadPWTE36gy1Bf+eAPcmQPuk3Z1WZ1ZAZMDXT9v7a+439O2YsWnao/fRl+inJ6CXXgKtvKT3ZWthlNAfB4Kb2TnBpJ5rZozV8iPayNlug92zYfoyemv98li6ADnOVQr7539c4bDHKZnUA/w7ENzLQS3Lzl8/0z+XSLq/LqnKt0f6YFeajpzd+8x2HHMyXNNP1+ZQcf/sAXXtf9iwyuo0jULO7qe7w3rmue9MXvW6SDORq4ObPyOflnarvGHETdoi6pcZH38/bvhM4VwIeSnia9Yv2zfKaO4N82T3S3Kn4OP3W27fgsij51ST6A/wbwa4l+00NBaudds65ip5gJydG2TnC5WlthRdsigk95Hjfh8O9/twS8p5lZznOeQ8+FcT3Mt65IAjc37/W1pBzyLHvZ0cXge5BTrqdhXdJPfTvc7XGy7ZWyvsn+3BvWy/Ee78QspLN1Hop9m9dYyfs95mFgc35lGcD+dy4YdA24JtjilV57Pz59xNcC87P7jUv2GfXOU9gZ/Rz3D4nJPb99Lti0lBKSHI9cDPfdj9HA9mjD8kW8LOz3PYJwr302XamxRvcc0Q+HmEiJ/91PibyU45dANyffiToK2Gbbv7uBUL/Mt2z+z8X2iWxdOmAfEkW8TPrIcO9lzTL1bNT3ie+ax/lj+Wtqty43naF/ybKeqXrw8/9GhS/iWijDwHfjbUL80p+MTpSPIT/H0MPruHo88Ai6aLisl0rOj+DMbP/4wbtZ7spuQR+JlxcyN0065bendeZFO2/1AVPX/K7GdlfsklgZ8Hivg56VBbhvfnJJKKXBk+O1+oenmoZaxzCDmLXBc+u3/DJOe+g8/6y6Qb+Pg5uPk3u78uXrnm1tBq4iXqnxlHZ9oNoREvzwn337H9Bts/05TuKTFWVwg7H8i4l/XQ27+PfRW4JkLgZ7aLZpxce2tr3/IcczJN9Dy7x6OFvgw7ah7yP/c3sx56S39fRa2e+YT1z33gM44eICu//cstDxovep7tqOee3PskcMh5ifxsrb3TxS6+hLB99G/kf6G+6t0iWt8FC/d3iPl644DAITLrKugvUX/M7s/4dLbxQUprCWF8ze7fYJw9aPOdUR6ucQJ/e4lyW5Up4RpdblB2fwbjXrbT6K6sHHVg2FWBn2tE/Dytt2P0464hlJ0/rBXx852nmu+adaoEfmb3NjO1NUhWkzpXJvH+uuMlybUGXdwo2z+Lzw/G6egc1316k0o6P1guI5PhJ1PI7ufkcX5D0HzTTQX1lpES++tRerEyn8IvU0l8vDvTbF7JuDLhfg7ms3s6Nk97vmvMgDjh31dhObt/w8hgttpuswqhf8b7irCDnnwlx8V+xVmBnweI8rq68TM6msfRu8jZvRv4nJS/F2r4aGN8DX2L/TL2ibwTNMux0+OUKReEfYe/iJ/NNf726aCWKvD1KVE++VBY09fjF+kLET8zPvZcuHbj3+KrAj9bifjaM/r2v5Kn4ex+Lh7nm3jsOHnl4Ub7Hj0pp2ES+NlpnEy188Urwv0aXUT76Ib7DWaRsXYkFvkr+PVQ6Wx5KwuLm0L/PAncqw1VfLWgcerZYnILeRh8P+jHHoXPtrjnsPvNeEf47B5ow8d/rHMGXqdO4F81UX9crHv9/OEnhYT9+yq68OdCL3e87Sr/I1borzn4jKPXDPfXTeQr6KUbOP/Xfm6P74T+OGTMO/etmhfJdvDxKHCxPfSyYvZR7Y7B1Bq5DfwI6ETv1S6X11+mUjg/mALudYTuUvr8aOycS6QT8jz4x6D0zSMHi7pTNBj8PQBc/RT8LeeQXeJ26jL91NjOv8fAx4VQd+sNm/yWnCfy4OMn8N9Al3W62T2sIpHqIB8r6p93RtXZGiRepqvAvzXYb3QH//qHpllmL6lk/34Oh+8b5wC1ufp3pfvZUzQeuSvjbui3zQnqZfer6EXwL/ZBXAP01ruSrTMVIgi7vy4cfjS09ZP0hJrMLOH+jXT47P6NtSvyE5ITqgR+Zv0x4+hev/WsVFvy2f01Ah/jHC4nlbf5+y73eNos4mvG39V3fadtkS6n38C/SeBe9u+k8H1GVnZ+XivsN9huA78/cytsxo760OE0eYXnd8I/BLUYQ5a+dbhK48C/7FxgR6jc2u0Rd1ovUXY/B17fBE5+1NVwb/2zyxLvh8743Jq9xK1G2DcngHvZ+b/6ii7OAenF7P79/+Hj4v0WX5ynpgr//koxfHYP9I+TZcvndq2mbJ/Bzgey/vhcxdsF+58/EfYbncHFeP/hioNe1RV9SSboZzhlUe49a+oTW9mbwv3O3cC97JxgTK/9Q8c/LWD9kXC/nTw0u6hiX/PKLLoGuQ58TehZ+citySoVwv6ZnftjPbTlNqVBlhtKBX5uhs92GiZ1HX6HTYgS+Jn57Jzh+sZ+9Qtf36Ls3z9JBffGQnVtS9d12nSLjEJeDL8QOrpq21X7cnfSC3kMfKapOnKP9jlfoxPBv5PBvaxHHsqNPTjz5hVyD/zMuPkRUzlvnkzJoVp4nv37KRpQnX9hZdpa1TQH/Mvuf2b7jK8/703s8OYcSUbOuJr1zzuz83+qPfOnkvj5Nf91svpKa8r2z7dE/XM/xclKozVqhfvrNoGL90J3Lbb++z49lPRA3l/Ezz1Gv5Kr2XyM/j9zFJ0oAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAHwEAAAAAAAA=eF7tkz0KwkAQRi2CiNioQdCD2OxCTiTYxT9QtLCw8AAWHiQBPUIawVLEwkJBJEWKFIL7fYEdAvayaR6TmbydmSTj4PS89uuHyvc6KsMUvID3yDBjPrLzieLza+MLpl/24H2wHnyBFQ0uRB4+D/l2PDe+ILS8b2U/zz7ZVyY8NTBDXVOHpd4kEhTndISn6B911aLfieXlfjl3zjg2YH8txD7Yw/2m3sM7srxnvi8xf7FneBrwyP129RreQeke6OOc7L8BL/vlfQ9xqlbwLi3vTew1E+f49Ih+OV+qdvDOSr8zvnc5v/zOGLO+Gm/gHVpe1iXSK/okeR73kEdbeFfW/8Y+uOfXj5h7yg0Xvt7if0N+7ujo6Ojo+E/8AGGZAeE=AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAXQEAAAAAAAA=eF7tlbFqAkEURVc0AcUmcRFW7FZNIGACC6ZYIYWFhR/l/peB+AmWlpJK0EJEZAlbBBycYU4mGbELPJvL5e28Pd55M9sdtTefg9pHcPrlU6Xz1PYH+BX8emb7HPUj6sv0b2/enyi+t7N/OPkWeLfov4LfwQdD+Mz2XL8G3w3WN97P/knxad7YybtHP76feTJv5lsGTxWe+d/penwR7wLr5/AL7h/qTfB8sZ9nvm5/zbfn5GW/Et5fMH/dXynzu0c9hG/heZPvBLwdd778/579/zHP4KmDZ4f1FdQj7RPwRhfNA88v55nnrQ5e5svnK6ib++gZvH0nL88T54Png3mH5PHky/0zvGPwPjp5ub+cV9ZLzC+zPXlY531iztsreNtXzYPv/uV9ynw535yHQvdPwfvi/L4teX/B7zkvnjrX59w/22dmnlJ830RFRUVFRUVFRUVFRUX/h34DJDLg0A==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAigIAAAAAAAA=eF7t091LU3EcBvAFi2ahrZbFGpoZIbgUDcm3eUayIp1NK70QZs6zUXtxZs6CMns1ipKkoIxYNZ3rZINBqal4tupKXVvUjWVzvVjOQsjAhbb50r7f7uL8BXGeu8P5nQ8Pz4/D4fzNy61u6/q2xbyK/kqDxsAl6pTJ/ln/MqLj1SWdxhDM4wlmM9Vx2ZIsiaQm8uxMUyR9irx38WIP6iPnXVrRyMPI907OP1Flh9vBTZHx4BzReOGpD9wfc1x0a494hMSXAnpDz7ge3FbNvo/gCqpPQA/XDTlJMbmN1xzYV/uN0IH725z5Htxbj/cfAldJ9fZ3FSnovW911eB+/Zk7Bm7YF4VuaN7L2Nedk/gAXFl+N7pvasTYd8GYqAF3mt9UbB8poxuO7cIdptNFsJOrcEGB7m3FBGNfvS3BBi6/KhZ3eHFOiu7FNTno8qjULKdXSTueb6wF12eNwR0CaYNGcC2dxYwuNW/GHQZLS7GvbpsDd3Cag2pwJwNdB/weFV2fEqgDN9rd/BncIZKLrjXY3snktorG2sAt5wYPg1u0UDAK7q/d3di3L17sWGuvpK9uzjWBK6M52Hfdme014ArTm+1M7vVGrQXc+O+F6EZ5+NjXFJSrwD0uXVl1s1hJlzQt4Q7pqa/R5d1Zwr6bcvcw3luFJuM+uGHbTtyh15SBfT0t3iq8tx6Z77xSTevUfOxLkTPoEqMl2PdKxxyjK0w4ew/ck4LVWnDLTkvQzW9oIcF9FqIGiFUkHTelqAd3pmHLOLg7hsux7ylX8iMmt2/Sjv9F9JQDd5CKB96BG2NJwn2fGEMrhm0kbZcPHQV3+d2JD+BKLgfQNS/aGPuyYcOGDRs2/1P+AO+zkEw=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAkAYAAAAAAAA=eF5tlns0lHkYx3VShMp1EaLpuildKHIZm2QTUZYt2ySNIXdTugmtlU6blNVKbalcG1Gs1XW9MxVdkDppldA9JHXe2uiyITvPd86eMXtm/nnPHK+Pz/k+v+f7o6Ii+9yYWJf/Ve4Xp1UXVkcIIlS563lTH358OIRbcGtnmCCix0ld76NtkNk8RztHx2jpd/FMr8lPpD+XqBsEhEvfl4Sa3CuS/r5Y5X+fwHm9ecSd7qpO73ETt59tJS77SRVcYUy9Mfe5O2N45lk4cQ8Ilj0mrl5kHHlI9nnwRcq4iXtL4RvayQ0j7j/Zti3EzSr3CSEuT3TuQoWnF7OkKSySuG1vHR4Qt7d1BLif+24q9a2z5xwnrqvLaXAboi3h2x/FERD3jXaKd8k9PyZ+40Lk8GaWCeUkWdzvBe5Br3alvuGFFoXE1V5jgBwu/+QM7g4de3DVRVZ24ps8pvTSGCFxW/NHIYeOmdejiJtzwlspV9SXjRyu+/rCN2xaKXIQZ/cEEfdFR8V3D+sDmQ3TO9YTd2Rd2lPi1vBVwc3vyTuhjHvA5EEucf1Ve9YS17PfvZm4791Ow/f8WMtS3ZLVzO5xDrHEdWVU4Kv/4+xo4hrPSitRxs1IDM0h7tiXi8EdUa8N39gej0DibnLWWLPfm8csTRlADrOsboOrfmgAvuYOi5TObZXA5hhxewvnI4dzsTbwrU+/uQZzO+PamswLYsKCtOEr4neDy21eCt/Ugk9KucYWSUeJu1VvdChx/bY5gusSn84n7sXPokquJp8xe+W1gbjd8eOfEXdurT98EyRTi5Vxz78owV6MfFWKHJwtK+8Td1TOZOT7R9RntdpCPlPiUbOOuMOOtD8iruPPHeBmfylU8JXtL+v03/dxIXmPsA9lfJyPTo2FE0onDOVe/VKB83dlAatTrNfn9ClGSHvBbSowlp7fNqfaIDfs5bCQYunetInv38jtNToxlfGMXGgofV9ctCUd+5Rd7jJRypMI/BnkGJAhwHPvpVeD+oAVJ1qbKnjK+kDuGf22Cj3DPveF592gxxzyXJyVjzn2DNhpk6eD9kecE8uMmmDydLlbspY8W0zNo8kzRLPq5SdDT4ZzsUqfPGe7HY8gT7/QYHhKiq9hT9lF++GpVjB/UL+wYrcJRgqesn6Re/5luFvWh4LOAvL83aVyHHl+vz8OnlfeB44kz/Yd5fA0N9nFJ8+6dPtg8rwSZS0kT693M7KSt/kwqQ+EuuQpOL48ijyFHXnjyTM8owQ95Rh1Hp55kdMG9RUrri30V/CU9ZXcs7GMj7mPEeaib1LvxyDP4oY2eN4udISn+5Y56J+vq08GkOdlZyucO2+Lyljy7FvZvMDGx585+doJeeqbzIzB3A3n0DmStHfp4zx63MmBp5Hh7kh5/7Fi04RDCn0l6z+557NmH3iqNwQgz9B1xfB83SLr3ZRUHjwNmj4gT9u84avIc9xyQ3j2zfDaTJ4R9jfeVFqvZmarmuJ86mxOwr4EdoVPIs+es0twT7Umn8OzqTZ4UJ+yYo53nEKesj6Ve+4Jy8DczdMY7OvBb4bA85dpBeiDmq1FWuTZot+HXtCz2ruSPJvX+cJzbLZnPHlyKgV+1ssCmetPBsaQZ5JI1kPhWYsmk+eUajf47WG78GSFhwf1Myt+tO+AQo/I+lnuqTtiHfY405OD3r6jcsyCPJlNx9Av1ywKNMmzWHAKnu7JtTzyPG2WhB6z7ZgIT8OyQ2q+/asYjSVHjciT9THDvXHyyG/I035jKOZ926MP98heLeNBfS+d+9wuhftE1vdyz+5fL+LcfRTeQl9ntpyCZ9q3bsjT5dpcDfJ8ciwPniaj7fzJ06JKCz1eFKa3hTzvdrVdnVQVyPi/9Ybng241eJq2vYBnZM1TeNa36sAzf96UaPn9wYobY3IU5i67P+SeBq+jkKeDSwv6v1nLAfv+J68InkccTOA5PM4OngFe5ivIc+cOK+TZVCBJIM/lKzbdeFLBZ3iZ8cbkuUBUhrm/M+Ng7ktiNOFXtT8ET/tld6Pk9xEr3l6eoZCn7D6Se1ZniJBn59As3KudNYXI03XgEeb+wSEFnnWNvbhf2lp3Ic+iPSvx/0F8qm8iedrZNDzdvoLPJP+92BS9dFgTnpl5EngmpKXgXNpn2sLzwpScQfcbK04LCFXwlN1vrNOGmGTkOElzDrzcem/BJ7Wy8QfymDHTBOeupaoW+5ujG4L5Xa02xd+R3XOs+F+SRbsyAQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAcgwAAAAAAAA=eF6FmHlYzVsXx9OggebpUkjqRCUhYotmnQaNp07qVKfT5CZpcKKkUZSicpMkIpkSCqV2gyREJHTlDUVcyS3KdQnhff/Ye53nPfd5n/f8t5+999rf9fmttdfaR0Tkv3/r5GzHosN2N9ExDrv8QX5OMYyr9izcLKp3FMYNT/r/diw+BuOAiEh+8PpyGDcJzdcK7b8iZD9O6Pz/9dM6eVu/dLsZCiXrbZw3njf1noMbiD0v/9DMA60OiOp93/1xZq7fCoyJnpefHBkOZZ7In+g1c6xpOxnrgale/y6ZmX253qiG7FfJCwz9nm+Pmon94lsqx98McVEs1Vt0UFcjxx5TfUU900Z1RdMRHc+6sjV/drIf6C23/Wmk1IhQPbHn2iW5olhzATpPzhOb1vsitM4J9OadMjq2KNAe+RG9W5hTWafUluNGMt+YXaE71sFCl8j+ZTj8W4eMO24h9v2H00fTfvgiypd7McFGW5EDenPcj89ZvE+gtytCc1stdw3ikfUWL5STdK2UcS2xt+2deHKLvBM6R87LPBBRkLOQg+uInohBp/y1fEfEIXpL3nrtyi1bhGm8VI1u+qowYIMukv06T30XNRmF4SZif0uZRlv5FEvg+7ycPYdVbQ56D2ZIn65NzAC9Kqm9z7VZq3EQWX8q6226pzgL9Ip8vfFxrroxPkvj4UPva897PHyZ6BntOXrx6aUVyJfo7fymxntZ4A38ne4FxYTz7DHV29sml+uZEIFp/JZckW0V0WFhyrduuPO9vKEf6C1fPG9bWfBO0DuhY1maIsnCAfR7VPMnLdV3wZeIPYXcwN4fnzRBb4FYJ+/O9BDQmzLDZl9ZzoflPkQvM2Zfcd6/7HA9jZfS9mX9XQb4Atn/7MH+dL3NG4HvO7HS88bzfsVbyPlTUxSvfM38FfTOyHL2kghPBb0PXuEWU3kuDqTx25gh8mGciy8Se+MOj4deseejM+S8RWlnm7dND8Y1RM8Rxok3x2YaYqr3TgPX2TfGCvR26ZR/Mo3WR9Vkf5Jdy/64jljIZ8fCKq7G9yjMJ+dz5DV+H46IAr3LLRoqbx9LBL11b7s1Z0n4At/OgxHx08WD8QVib0J13bfh4TWY6lWI19j79Opa0PuuozqyVM8VrSV6z9XctBUz9wS9Kke7qsxuWML9MuK2u6XkbCSm+cwLUT0z+UcQjiLnM2LauibqN4BedUXeOj97gV6F9o7gHutQHELWS+ZfOZ2kGgLxG2HQUClzfDXEQ1NF2dQXVt64luhJ7eQ55lZ7Icr3jMny5hurXCF+F9ZUn94U6A18+wc+MV64c4BvVYyradaQFORb+C6X9JXMQEG+WY89LWxJAb0b5sQXT1Jn4fVkfYTajmOljP/kC7EnZfVyP/shgvtMst1xnVKmHdwPN0w9d8UUr4X74bXuUC1jvxvcDz5NkvpL3gciGr/zp+o9CPzDDdF8+9F23660PxglkvNHl9RJuuf4g9728+zu6mDBfUZ/9HvQcaNQ/aF86Jjyo2N6/8J+oflLQvuvCdlP+T/1zdK5cLRMOvkf81XPvCu6OTLIUDGxZvRhAczTep3CKZLur/mrPi/Wu0rt6OF/1O9f1h9yGCgzQQyRDV4jBWX/qOdRjQH1Nq2z8NL2XZ4zTQX+0e8R8Sh9tF7JFZkKzdN6v8qg/cld11XYUMh+M9k/qWNZ4oisIy4S0kfr67JB18STTD80X8i/q0T/RdPWM2MKPthbiA/9nhOTpLsnplvC99YKr5FgpK5CtmS9We7BsJ3YDOZ7J/yM5KLc4TwtTcXYkT9NMOVZvnLgwgukgyhPlkzn7ZAjxhDfj09cn5EhYg08G7L8L0yvYGHK8/LqwrmyN83xEsIr8dXJNPHtixGNJ7Pr0179q8oZeG4ZSTEe6WNAPyKSfthKIkcZGxD7VhOGfw8c+BVTngUZzMdTZy0Fnj0K3mPZdpsx5alqdH107C4bLSD+pbTWv3zsFYApz4h1jdlZg57Yh/ApmPZAfPdmJoom/h+RSRuv9TcAXi2TGkNDgmKRFVm/8nfutusN7jA/OUfa5627JzIg5+W5VP1M/zEf0fusXdKg0jZJD+0hektKNVhXN9riy0RPZaiB3Fx1c6RL/F2U5PFE6/BaTO+Pa8mZ8dnYHXjeeRWt/SXMAe7jkmLFKoaRLaLzxk3Niy9IsaFf4t43ka17pI8oT32XpbZeYjHQ71lYJT503qwKPMNtj/PXyCZims9dM55GGh+zx0bEv8atM7XkDrGBp/5NBaky7bXYj/BR0rQK6skNAp4pou7xSh+mwv20Lz9i0fPOWLSSrB+Qz05ma6wW8LY1zDpRL4HmkfOMpVt3q5YsxbQfY+leXvKo0QJnE73erjZzzrBccA3RY7Li57vFl43RHOJv+fkbk4dFfaB+WMXuHZnL9cWLCa9XfbXhHz1soL+wSM8tfPndGnhqbbLBV4adoT/avit/yoS7LZ5H7GP3gIfx7nFwf3f+Vl+WkMvB+4g+n+PSb8RkUqB/2pepMKwoFYBp/tm0vZNp1PPHtL+ety7574LocLyW8BmW8xDJeR+MNhL/jZ+dajqeLeDFwe/3NhnHIzOynjPvU5DMudXAe27DCzff2tV4Ljlvb9vVqLgTTjiMfp9Jd9cc5bsCz4NTVUZ+HHSD+uvtm6FbUGKKtYm/VUb38x+nhmLa//JvfDYS1+DhRYTXV1epb6E8T6h37QldWzi1NsiEzFt4i7bFtS6B+qdVdk5J7A8HPJfYL7RIfnamW8DzSGXGTIOhYOApFVn/8fPZdIjPI0XPfsb2BUF8Vkjw7JtzN+BWor/gvbXP6CAf+xI+Otpex3VurBO8Bzr4bfemOQGvU7NTXTRm8xEi6w2zT8jvlHKA+WUZA74Rl/yxHo3PzklWWQae0G+9Qs3XVdq88S6iN2/GvRUsFhv6xbxdI0368jrA87u62dmKxyG4kvjTEaA8nJ4WhI0JL5vnPSVqqc7Q71jI22fw/zAB3s9nR63dHb8U+p9xnmr5+c/LgefNcaOsfssEuC+MOZ8HP8pz8G9E39nx3nhmRgb0yxHf/BM+vA6D+GyOeZ1rMxEn6J/FJQ1PGyTgQMKnzvrt0YuGNojWIyXPa6/ubw4CXiV+0VWT3YKROVlfpLBgMHY7F+bblBvGohQ4EJ+cKSXKY37ekO9rPPcnr4nj4Uya70Meln3pAp7GSa8dsJkdnk38jT6v/fpxZQj0t2lzDhkdZvsBz+4e3TFJfzsBT9/OFYUztRHlWafQfm/T4mXA0zX/1mh3oCA+v0ifYh8P2wz95abzDtvGT3oAz8vcx4apjB2Y9lP6kluTBlaGYdq/JDKsY/0fbQGeVw/lB0iMJ+AAwsdipKTBut0O+meLhMkmC+6HAa/akicHe924EJ9pI93RdsoCnmOxFjOU9UMwg5x3IXOn+sYPXIjPEMWsyWnzQ/BOorddszm6vtYHVxM9b4Pyxp71MYHnhQbGsDorAFcQf6pkZdpu/vACnmouUxIPynrA+yHGTCZWIssVLSTz5cw/Fw4FWcN7wmxN6BflREdM+4dL8rNvWQTFCe6L0r1aZyZbYdp/uMStWCZhnwH18Gv0Ro5LJAvrE/+URO3Yfd58eH88KIpqVEuLwmyav9Xjti9EHaC/udx/5VONhuD9f4phEmMjGopo/6mX/vnh7evBMH9CSWqK891ATOvRtZvdCuKJ/vBekZuWvOTdPi7cn6sPGzP3SLGhHklV3UlLmmUG+W4qJTlkh9lQj1rzWsLPejEx5bX3+ZvXRWNuEJ/iKQ8cxOK9ID77es2KolO8oB7FrFvTZrnDAesR+2KRbi+P9EdBvh/5yOeLhE1B+USfb62D6pLlKRCfbyLEH37uZEI/GNfDS7GNCYN6lCi3coeIJBfuz6MhZ7Q0/VxRJH0/Wxyyk/RHgvfdV65Ko1QsYpL1UcyvRQe+uMK85Xum04iJC+QD95HuE1zghbnEnmJlUkJ6JxPn0v5O/a+L0n86wP8DVW+22iqwpJAO8VdHjc9/yXcCnrubj92q7DWF+p6wdHoRI9UaePoOfhR9uN4d6pG5GVvt4Wc7yHeHv1R4U2SXQb4r5r/Zo/ELD3j+pnPYpzDHHBfSenRCbIaj+WbofxcXzd/UbR6IjIl/sgmD5uuv+mL63jqsmtfxdr0HDiF8KorPncxbboEiiP/M9DZ8IFwG6vsXT2knldPuyFmo/6f26Xiv0PtC+L1D/aVj4feOgdD6A0L2lgidFyOk59+hHlWRAQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAGhoAAAAAAAA=eF5Nmnc81d8fx8nKKKuSFkWSFSnj5KKobygjQmRkZZMoSVZEtuy9N2XH0UWyKkU0VJRS0hLS4Et+30fOPefXf/fx8j73c1/ned7n/X5/etg45WXj1EG17WJibxe3hnToX4s4l0K9oz+QTC389fF4G9WkP9lxT9M/gKavZrFSGC8JBMrSm7+/Cmik9iay9v8Q8sB6o/YzvqCrBXDBlPJffBX1Xsg6xshfB/H6Ke71A/wChYD5qNB/eg4VbjYJtCpNw/HBkkBs1620v38fcC8XTu66ofha9CKO5+hyg3mzJSDtyN94yopR5meliSVYX2vtGbZqbQD8tfz9FP3pmjd02lV4fRPl1umWpBvAdfn5Kf1vvrXciK/H8Tv22ApEv2sChsu/n7Lx7f3gYLNMHJ8aIDcV1NQAPJb9o4zP7rsY+KcGxzfmOJxxSukGg8jfkzeuv3RJvYrjw8PKChRPnQRSyF8GwXPy33WNiH9FruO/uaOgEvK3Y9vUoOJzd6x/qZ3zY16XB9lOLvvbsk/LqL76NP7+AMPGqhobJ1iy7A913RedLNWAs1g/Fjj3r6xe4t/12qIKwIv964TF+i/j9eO/Cz9nKy8Gt5G/JUeUPETnnbBuTH+ENaO+HtIvfz9Fuuvx4m5Lfbz+YbWYZ/FjqdAQ+ctVw8kvZ+6M9QZng+TbKSXAGPnbr15C0Xxhhde3sV7z2F7WB9ghf38zWuf3KeZjPeaotGmBXw94iPxldN8ssvurPtYTmiYzXIPdoRjyV/dHXfe6KkGsi5wFfJ0Z3vAg8vf2j/rtIh+t8PN5GD9Sn2oLBkzI39UOvF/37iP8MW+IG3SZzIMNyN8UDva0c/ecsD7/ooF/clXy3+8LSE4GEycrNFpj9Yh/j7I/nuXKAgnIXyvBAsB6hPg/c0zuaPlUHe38UBysu1/YaaXj9SH704XuyXhohPxtq5uzXznriuOrSqfXegjcBLrIX5uZ5k/i1eT5XVLZjhQfzwX2yF/V6DgdTht3rL86GCJpNNCJ/X3cI7W4UjYc61cmRu7UVJtBaeSvZb+O34DIeayXfBG2o9bbAVXkr2a2f5C3qCXWD6SH/xHscQYsyN8Ya5ecOT3Ch5rP5fnr+/JBO/K30vV4o9akLv598lwpB5b4wv5+FmSrgl4LDu26qaE4XvJdVmi4cjGoQf5aW1C2f45OxrrPmhyqpmMVnEH+8ruMP2CUC8E60/ZDlJG4VHAY+WvINFw7WhiP9Z6voQ8K71JxfhgQzNt5dFsMfr6eS5LN24OLgC3y156/K+iWVRzWuyYYYtV4u0Ev8teSY9SXt5v4P7++vqxv0gpIIH9vihaLD/mcw/rtjr0TrpRECJC/z1lk3ySm+2E919hUcU45GvIhf7nlDWePlvhgfXVMxCijUxqEyF+bHWEM3akkf/+c3r3jgXP+378XLKyEATOpMrEW5HyPaB88llAWBK4gf7/sXa8m5RmG9RtR7cd21FbA78jfAAuVZOFB8vyelfNTLx/lQHR/UHy8JGUkV6ZivUA9+8KWvXXAAPm7wF1+pFj8GtarFDS+h7xJBzY0f1nLGUeVg7Fu6TT0fFdCF+hB/t62M52Xzo/Derd0mFJsSyD2N+j7kX06At5Yp37qdOt8kgikkb/KLKUZfF5m2B8OVl8Pli4v+Bvdb0VS7DGyWbY4XlC9ISJRVgM0I395llhHTeRisT5jKHU7z3mZlwDzTHhT9Pu3OFE3vH565gmd9OJaUIz8tftRWX3CLgzr9Wlxvkq/U+Ef5G9w61u3zxsc8PpZAvNhajxJQBf56/vR1GMi5ALWtyxNaW490YLzg2Fk5SOWasJ31waGcpnnVcAZ+ZtU1HCBc10O1jlOC02Mm3aBPuRv1CR117cpL/x8Ezvcfsm07IW0+uGDfGRVCyB8JrS9VJnKyIQKyN9zhj790ZsvYV2V/dGdZFFdQPN32kSH03bgIl7fWqvqfDy/FyhF/nJahV0XzTyD9U8fs0smHi7zFNCdAJ5/V123a8gLr9/MuW+2Zu1VGIX85chbPGgb74PjxT5unfkj1AAXkb9VknupvBHHsM5pzPqxQykPHkf+hi2I82we8yV83pIb97pUgf0dZZP+GRMYgHVeH7WIbqF44Ij8beO+9/YEqxnWwwx2tb716wL3kL88556XXPoQgXVj7t8DLbpbgSjy92unZVbl6P/l75yFTiPhdLAH+UvPXZHNo+OCn7/Uh1VNRDMc8KD88HVumnNL+mmsKycdyWfwvwYikb+F5lk6OVrkfuqYT7kr9qbg7+echRIAXnBsDl1rjPX+lsaMxykF4Bbyd7WVR8Sq18RfsGkmdGQgBX5B/l7k3r7DtiIW695rGVdsZw6C2shf+TUtAksDWVgXlGZKf7JIBXrIX1efnE+5JlFYPzAcHfb8VSXODylBQ9GphwOIvhBy7cBIFxhA/n7k3T+46qc3+f6Ii6ym9ta4/h26uy/0Pjd5/psmY2dnvybi+kE3blaq49hUE01/P31H5nVwEqT5u2lq8upPvSAcf8+VSUxJoRT2I3+N2M0MXEYJv1a6798rbFrOF23W+aCR2uoqY7If769MfHnxjaoIfL9J87oPaFBI/mj60s6U7N2A8690pEPUqn+Iv9f7eg9499fAA8jfsZG7RfaTRL/G0qZxXLUUmCB/BS8tPhgeJvfXXO/ADjnjTFw/bBql955jSsf6pezUI3YSneAx8veg98MTseJXsD7imPZV+ZM/EEf+rqmWNC+IJfWxXMHJkjm2VECrfwspditMHpD9MY2Xn52CVwAD8vfwfYk3LN4iWG+5uK9Q5H0QSEb+tq/uc2FQsMR64IVo1olU9Ht77YF5UWtw8xvi37s1P5Q42cqxv1PTDBaMvo7Yf7+d78dEmt3gW+SvBY/VW72Oazg+5yh4LgJCMb/zA1IlYyuJvwphbD2+r9vw/eZupF2Ud8EYr6/1yiKn7Fwhzr82q/xePf+ZifUaQ0kL6pseMIL8rfDsy+o+S/qn+btdrlnCRrg+K+d+sp3+MalPjD+f3q/uewfS7jefHNdj+fqk/t6tKZPW7teG+f2vBfuRouCH9R8ibO1/FlphBfJXY2lyimVVFn6+2ejPNrum7ix/7skGNoFfy5tFSP/iNvR7m3cLFV5C/ibsT5Jz5y7EOuiaqR/+0QNnkb+a76wOz9wh/RXnwdoegepOiOpLylBaeYhBaQ2O799idbR3Qzuk8cvs6/gPi2gi2T91PpsHDD3QDfnbE9Enay1aSs6H7BOtBrkUuGLnfbliy3bqaKld/abLp7AuvLduTd6eEPgU+e9V0uIzNkDO70efutRvPz3AEZk9Z04k3aLa0/FepCqS/Kx0MZf6aCED0uqPjq1a6QelyP6fY5q8LF/rBcUOSf63fh01pXGr7f5bpL4IF7dQN7wcBuTQ/v2cV/mR3UTym7nx2YvVc57QY0XfzKuAEirPr/IzSbIeOH7N/J+RS+LmgBPtLyPTibMXNpzBemP6ms9PWm1Az9/9iaW+zuzIOpRO6o+q+jsN60uUwR20/2mzr24Ms0VgvU1xaWl7ayIYWo6nrHcx2y1xj/Qv8XS8Lzc1eC5/rquAfzLf1sfpkvrR/rjZosoTK3h4+fkpYl+o1u8GcrGuOXIqPKgiFxQgfkKCowqf1Ebj79/Z5acmdT0M7lr2jzIbp7q9b7AOx/dzaFedDzSEqP+gmM7Otfr+9Mfxgowa74KL9IHW8v5R5I9GzaXoleP4jg4Zo6SABKiO+GNaOPHQSjgRx4cWrOTT3pgJED8Ubm3vrF0plTh+kUGS97JMAdyB+By5tOLb1m/+WN+VfPr71LtwwNq0zKf7UUHnG+038fpWjIr346f/+z7E5zU17qNOepewbvNB6L1TnB58hvisNLmo4P2D7M/0G6Wdg0PG0AjxqdJ5n7/9CTn/gsdUqSqhEng+8Ud/d8em2+ewrrHWjyfU4SrchviUfvYodY2DHn7+Z3G6CTPRroBW3/UFr2rUgaQ/9B1r5Y+nuwJsEJ9d3V0yF/VJ/9Y7F+FjEuQJUH1LFUn7JcLSS/jtzVj/edDdDdxDfMryf+6N/mCD9UPMHFzG29wwn55Jd3jBSdJ/HDGhPuzuCAN1iM+McC+twQOh+PexW58pG5OMX/6cdhM6dmdtvHSBnK+J6o69yR/CgC7i05M6Ud/4gOSXqczDnuIZDvAh4rPB8M3znEEyX/jEn2VpUFMIRRGfSmtcZB7452P996uChoGs//xCfArJbK00Vyf1ueBoL+c2hkyoivj8BEPYSp8TfmYr1M7d4nKAtP4Vqiq1hYq5YN1dnUHUnpIHlkSX+axoeVrExUvuXyalA5u5HtYDGp8btq5/9XzzZRzP9f2Dsa30KciO+Azbe38V17wdjqdu2y0XYFmB+ewxp+QIvFTFek+Cq3Kovil8hPh896nkw/mgILz+wNObww9M7KEu4pOuapGfoYDkx/FHqqsp7Vdw/9ZYxKP45iaZbwk8jpnK7jMCgohPTbdOfY97RNfYyl8fapSE55dLjfrObSYX8PPRmaxecH2kC+xpfErIDql/OYXjn2hpld6jpIAVKH+quls439AMJP5rxUbq8oWi+VAs9cGBnH8thsn8pSv8z+uXrgHgK+KzxlPqaMhddfz9kvQT2fHe0aAE8fnR9pv/oAOpH1U5avJv67kur/ehFvY5HvxN2UbmI6opEb+ih5KBHuKzMr86MDqK+EvXKRboeusayEF8qkqvLzw4RvrDhejcsQH3PLgF8Un56DNfz0L2v0negl7l3yJAm0+Fbumnr6wl/fVsJ+PPRY9QqIz4HFJwMPutQ+qvHGPjFqkz+6Am4jM8l7dm2JDkf9FdudzjT2to/FDo6r7FVjzbgPWcsqX6tP4GsA3x2bUQFU4nRfjlGVwtrXIkGdD4NPjzca8QO+lfWBe5B5jFi2n8Uw1aDjWw55H+LFTg6uA4vR14gPg0EDP7elmU9O9/br07VbUxgHY/UFdoRWtYx5P7fWfxtV+1s+G080P1zGL/pRJM8lvL+cEbBkn+UATx2Wbh+UmcjwvrjYxpUEBbG+xHfEqovdm4Nu4K1uu8BfpcONyBI+JT9RWXF72wHdYfGr8vKWDIpu0PtVNZnvNhLMm/o7xBnRadBvA24nO2O0z0cyl5/u23u2qs3iaAEcSn4rwJUxE9qQ+yrkdOPmhLANmIT8Dv6tEuFo31A1uTi+F1VE/tuAXt405Z6Hwg+9tgf+3d58lEcBTxKSzp2M+dSPzJ3h29dDzgLOhAfE6cZxF+8CkS63eGf9GPCKRBdL4pZx+Wn0jTi8F6fV2BL/uPMjCJ+EwL9+ubu0DmXx1NaScrLkXC/YjPdbvqPfi6yHxA/ovu5dVp8bT+g2IE4n4KfSJ850sOqGyruI7zp3r/VEyyBqk/nG1ij2042wS20uYr6jdzSmPI/DRSsEittCcB3+9f7itpyHESPqtSEjb7O5H8OUSfyj/MQvKXRdCYKXtGGKT1r8LN3D8Sd5L7Tfq96F0baT3MZ+DJN4bXV5H843lscTC5LRvuRHwOe07GCEuQ/L3Jpf9rv7g37fxT8wdDgg2jyPf3f9vrzTl/Db+fiD7vuTFUwBDHS28rXTHNHgHcEZ8p90vkxqdI/qxiOn4yMt+Tdr9RPYr8nuXMEH4tDUb9an1DIa3+9LVqi1D+7IjXfzF6tpYuPQ4+Rnz2XnJPikgm/KrGOOp4UBxBHuKz46WZe/QUyW/yIS5PGuZRvlZqgO1Ff2rVCkj957T24IjJLl9wCPFp7XunOUeZ5M849qqtP2oKYCbi8wq38tFW1vM4vq21fsPhM9lQAPEpYHn2MEWT8BPmH7eTYaUH/In4pA83iZIdJfezc4KW9MTDAKiG+PTuf84sMZeC9XcO1QrTGWkQ1f+UGQllq4VhMh8deFdc0flvLa4/dQv1m7j8yPmbDXzfY7W9AWxHfIqs/zhtbkHmSwWrXC4WluUCLsTnQ4OD7dzvSf8pWsL1VGd/BVhA+TMl0d8vRZ/wPRtW6O81cA2/P2hMv7z3uCKZ/yUJ6uzqYz6F+yPdWkc5p5Ukv4SPnuTtqUgBND47e2xU//1O8p9W/hXDL7ohtPNP/TfWUzQ5yZ7EB+70WuiIw/1RQLltwxYb8v5qy7dVlWHy54Ar4rOaN9NcLJ2cD7N5rsIFrjyA3g9QGzaGDwgzG+D44FSe63bgPKhFfJ4rlkhe2umG46sHz7T7JGXR3k9S7cW4twsxk/er9tacvWszMkEu4vNxx8rajnrC9+mSywO7mlOXP8c0wwOxLJfYGE2xXqNy8Nv6ustAB/F5PPqs8ZjwWcLfNIPoiIghTEJ8+iw+Ui6eJf334e1RT306s/D9Tlc1FfFp6KUiTS8IlRQ+Mx5Lq28oT590SrrqkPn6tpG7olcs4qAC4vPVoZU79r0kfMlJfSi9I5QLaPOlY7a2EjFsZP80O40ClJ5UAUbEJxdcGF+3NoPwp3RXq6PiFr7f2yNfaklqkvOXfkR58rtzDliN+Mza4LCkMk3un+HpTft/M5SCP4hPa+4ek8IB8v6pbZ2SXcqJcNiP+EwwEf4V5+eA/Qm4kC9Xd9IFqiM+60S9k315SX4VPbu0ziTdHPfv124yNiW4uWL91rjrPpmG/WAj4jPrQnYJb7sp1n/cHmj5s3QV0uazZ56XvenTIPdfXF2BeaanP7BCfE6e+jCXOkfmCy+Yd7zPuRICGFH+lHPlLBrnJPXhMdMk8ftbTqH+I5ZqcD1LtfIjmR/0UOXzvF6HgEeIzxV7G8d1k0h/76T9+2p0SQgoQ3wetpr06VAi+X2VfvIWfxHUT+qGw4OmPhxJq8n53rn2Ux7zuavgBOJTgsFlaYFC5qdXZ/TYG32LYRjiU3HhbevjCXI+7aZ6dSpz8zGfqg6VPi7yJD+4j0mOKtP5A1r+lOO3XKvxD5kv2nUtnNg8kwoVEZ+aUvX6j+ZJ/XOPju6Uz4twPD/a3/Rqo9JFMt+sGWt+2WxdievP9T/uBAXbk/zQYOs13rb2Jr7fX7S4++Uok/mh4yn31kXZHMCN+BSEr0y3HziC4zs+7FRWZyvHfK64WyX7ko30D3TnXh3dKnMB588G7e/JsmPk/aTq5BOz5gf6gMZnbPjX7OElsj9OGYMX+o6lARFa/Sl6sWvQ9DiO38QV3OQcGonvd7oUlbLc8/93v5o8CPfdmonf35ppVnXUy5L5gLyUMk+MeBy0Q3waPPmktWhJ7r+nX9es3HY8DvdHL7a4uxR9Por1uIzZQ28fZcFCxKd7nM9g+0c18v3rroWy2YTCF4jP81dg8TNjkr/6lWRq5ydcYDTicyZbX1MQ+GK9raCh23ctmie6ZwKFkJ5CKXpyvrWpdZz3fT2gJeIzY2Q6hEoJxHqd83onn9BcEIv4HKemv/9sRuozD67NQhXqtbT5B6UlJ8vW5k081v2+/hwPlC7B/dFrY0MF+cIErG87Y03lyS+HAPE517b/6fDVZKKPdDcbKhbS5icUCb1vDOt9UrFun651Q7i+CCyi+vPFGRbe4jJyfnfwvuwt2nELbEF8BqkV7DffROa/0gMLPqGm7rg/itQOSubmC8f6wMnxFfrlxYAe1Z+PEyJDdQCZ//5ePb0h7JAB7t/HWMZ9hiJJ/Xtkj1H4uxBLXH+K1ek8fmlH9n/82LS7084YSHt/FaP9a6NXCDm/7qoSPoeKU6AQ4lNQg5NfTojsn00e18Da0wW0+od6d8mJffdVEq/4MVUlsD0KnkR80l+d8UhbJPObtkNigfPlu/H/P3g8JZ+5kULqvy/HPc2NGrNgM+LTaoM5q2UCqY81RAtt1ezyYR3iE27y9hpdT94PS09WVBwYS4c+iM9YEdWEGwLk/qd74XntJb/S8t9X5IEVQy0u/h80sc5Yxviue9SSlv8pLc3KDH+OB+P174WN5t5WzoFtiE8210877RoJ/z8kTZO8+PMwn1Epfw5k7CX7/41JkwWOecMxxGdZfc3LnWMZWKczYz7ypakI9+9gfzzfoy3k/YaBjnpi4a5MXH/uKah2+pVG+Oy9oFA6sqUE90eC4xPPin6S/GoSfSntrl8DEEZ8spoGzfeuscH6ic0fxFs3hcBViM9wRbqyVQ6Ez/4UQTuOzbh+oA5aDm8MopL9f6fneEIoPg7Q+DzozEffvonMB9qu87MzXDfC9eceJ0HbGb0QrAfziAvGSaYD2v8fYs44HfmPNOG7I+LhL7PDiXAT4tPIbc3iq6Ok/lJwUzcL2xwENGn/f4B1smVdB+lPXN2SW7L2xEN9xGdB+a2338MJn3x8b5PSswpx/lwNzVfwOZL57qgnq3vzaC7u3z9ZtW1Yp0zyU5c/B/PKi8mA9n7x6QGvpFA6Mr9I07nez2EbCV0RnxyPqwPPVpP+11nKrfFCGHqfdzgW6rnl20wtEH9W6neB5nRLaIz43NwxOKiwh/CzckKsUh3EgWra/LPiqucKpyS8vjZrf9Drk3FwA+Kz4v3vjRODZTh+qb0jWJWaT3v/T7n1sOoQNCf140FfEeU6wTRcf4YwZ7/JySHv16pUDOgkFJNp9xeFQ66LP5QvDce3qJ1+lO0cA5jR/W6swvqw8DD5/QoMrXfXHGvGfNZsHVSv5SP5PeV47QWtQG/Ig/iE6S4aryiNOP6fbN9r0eeSAAviU7iMvz73F+Gfy5n75A2NGngI8dd43Ugp5w7RDzh8/XScpQtuRnydUjEupgsi8+nMt4Ylty3vwP2InwATWXOPKxZYn542OLw34zaMQ3y0WvszCeWS+unrCd9TwT/bYDja/4DSPU836JD3Fx4e105LPGiG2mh/sxRs3o3MJmG9p/mZyxDTbciP9u/bOceUTUK15Hw/G+XKqeiAcmh/NPiYJZvuF2P9XEvEdJFmJ6T5v7qGp2ibYgnWAa+UoZN3FPgf7G8bGg==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA6wAAAAAAAAA=eF7t0jkKAkEUBFBxSTyEy1xhDvBDQy9gps45XDIT43bNvYGpmTCRomCkIIyKIqKOuAQu+E0KPo2BiXQlDT3wKGo6EHjn1CnXlerSID2rKdUnz+rZtj2keGqtlJrQ8f7KlHKZ6PN+TuVtzHEcjyKb1PP7ilqVquu6G3prOz5lNwZunt0SuG3B9dkdsruAvnvoW/yy78ddspsANwtumN2m4J5hhyX0PYBbYDfIbkPjjsBNwr7ohjTuBdwVuL6wQ0izw5XdseDiO8N9pf8muRb0xXf2a1fa4abZ96Rx64JrYmJiYmLyT3kAVVrIpQ==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAEwIAAAAAAAA=eF7NlTtLQmEYx0WtobEPYCW0VnTaX7LALbW5rZQKWqIPkEnQDVpaTtchuugaDdFWNAQOkSkEQUXhBSUi06yGesPnOcM/Xo6nCDrLgffA7/3xfy7HZqs+5VhkRdcPxLnvZlnXT0XafaRpWkI0efO6rl+K54+v51oMDTTI8zsReXCFQqG0qCt45fecWJ9bjMfjBVGlPdJbzXUBN0jcKeBuKLgl4iaImwHfJ/ANW/Rlbpa4zcAdBK6TuGsKbgVyyIJvEbiTxLUTd9WEmwRuC+SLXIcJ9xW4OeCWFDk4THJ4I25KwcU+w3xVdVNx3eCLffbXXFUO7yb5lk24K8Ct9m3U4G83Bro07VhwPw+36vL0zOg/+35K8lLGPM5tliTvypjL9rZp+b416jGxtSS/3xt16R3bk+cZw6v/MN+paXljvnwnXnn+8C3X33rOgmcHeRZ/6OlXeJbAc0fhyXvCQZ48fzPkyXujjTx5f4yDZw95hsHTaTFP9nwhzxHI0wmeszV68px7yJP3iJ88ee77yBP3SkXhWYE8Lyx6Pis8u8HTR552i5674Ml5JhWePEctNXr+NM9X8IySJ++rUfLkvVVHnrxn5sET5x370wP96Yf+7FP05xt4xix6cp5ui54874Ea58iqZz14LoAn7yX+P/BeCsK8/xfPco2eqrpjf76TJ/cle3F92YPv53v5Pr6H+Z/EDyyXAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA6QEAAAAAAAA=eF6tlVtKw0AUhrsbba31toDZhxe8dzNpk9QrLsEl+CYKYrXggyAIgoiiiKWWWn3wgpKZ88/DL4ckpfMSOoVvvpw5/0mh4FZtL1kHJrDPphmZSdalqdvf16b/m6xbM273781qNVmPZtf+/2zOW8lqG0frylPn1ohbEe4ycVsKNxBuTbij5Nsj36WcvuAWhRsSt0zcHeGeKdxQuKgDuPB9I+6icLeE20zhhsSNhNtXfLdTuJFwI+GWiPuewtXqEAs3VrjcZ1xf7d7AZd+YfLnPhs1dydgPDYWLOnyk+J4S1/Xrvue7PBwb9HPb8i58/81a3pXP46Hl3fhcur678/fhznvwPj92/8m/75Tdf/H5stvVzr/8ZvVE/uCJfGueyA97fosn+mg6o2dAnkXy7GT0xNzYFE/MjxPxRH7YE/XEfcOT+4nrCc+6eL6S57x4Yk6w50aK5xd5Tooncr+ueIaKJ+YX13MuxRP1RH+y5yd5VsQT83RNPHn+sWeJPLviiXmLeiK/R+KJHOf1nKB6wpPrGZHnmHhiXvXEE3N22J64d/Sndu8xeZYH9MS85bkET+Rd60/OEc/7rJ6Y1wsZPfF90OYS5qfmOWg983rie5PXE/fOOWqIJ/zghfuFB87HuTgPOUD//wFJWVWsAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAWQAAAAAAAAA=eF6bMhMEdtrPohI9H0pPJ1I9sfRcKD1qLoQeNRdCDzVzCakjlZ4NpedA6elo/BmDhA+jYe5GD190+YHij7qTuvxRd1KXP+pO6vJH3UldPoyeSWUaAOgVEfo=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAODPAAqoAAE=AQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAA3hQAAAAAAAA=eF51mnlYTmkfx2PGvkyWSEqpJJWIVLg5ZEukaBklKqKIZCmljBSlpgiVCintKe0p3TqlkIRoQbZkMLaxhxHeeTvf+1zXe95r/PO5cKWn7/Px287z8cd/fz3gm4o33CnecJlvAK1rPS7PUg0jM+SUY2Njb/N2y/bKObw9L3J2U9CX9wn7yeBb+ydMnNjAL+36zLyHZwVvB2Yt74hQdM6nQ8/4xsTGXuIdbDoGO7wt4leA1X6VfgOf55Orj5b88/el/Hrr2//8eQq/Gxz+oLzt65s0KvPPL/9PZztZsSNP+H1iFnXv+PS9l20xURC+niuy6vw6rg2sNX3tl3EljI4Qvj8XJnxfzgMsLT2wqWA+JZOE18/hdXPuoD5vYPho3EXiL/z83FHh5+aiwYMXH+6Lsa0mTkJ+3GQhN84EVP5wrH3SyCbSgXwbkestUDcx4W33dWvFfJdJ8nW/ueWLWc84OhD5/opcWc69q659mzAhl45HvpuRK34+3r/t+8ZHwd7UBPkqI1cFsEt8ztI3Q5LIf/NMuFrZSX+3ok5WqOWRt134cY/0ish65EuEr+OMwAe7dq5q8aiiKsjXGbmuAtvflQ75aVwa1UC+rsh1LaiwY925c92LSQDyjUKukWD5yDee/l7BxAr5WiNXU/DB8k1Kjq+byFfk24xcGft+mLBPPWoHnYJ8bZArY/LtBY/segfRYcjXEbkyrlFxfMpHHSRjkC/LdT3o8sfxKd/e59JlyHcsctUBTY3nuOqlJHfmKROSL+Q6LVHgogQS2dBvvt7LTKKJfHsiVxnQovHdoN8qztHByNcUudow+rvFh99OpJrIdz1yXQdWxVU3tBZWEy/kuxe5hoIdKdu63O2TQ2yQ71yJvx7GSa8jQxvIJ+Tbglxvgv7DVN/bHF5H5yJfR+TqANLp5s8NbbaSoch3OXK1B+vy728fe8GH6Ejy3Qia65Wd1p6cR9yRL7wTeapgwLOth6I682ydcrmzLjieL+/kjIOl1Pts7vrS+kKyEPl+R10YiHyN83o5Wa45S7sjXxPkughU3pq8oflxKhmOfPH/jlsB9jAcY34pq1b0N0bi7+zYK8+ujikU/V2IXOeDu8fG6H7OaCQfJPWhHpRJX3PL6oMHmY587SX1was8VY10SxLrA6u7rD70V9qo0CJ3hM5BvnuRaxCYkJbaujA9jTohX03kyjzuumrAy9GrhXpbkXpRyPV5oZCzZyH1fbH48pTTEaQ38m1Evq0g/UP5lXNBKe2NfBciVwuw+aNsWr3yKfb6OQvkagU6VMr6hMqfIz7INxi5hoELvfO3nPyUTiyQ7wzkagw+7Kr5QduokbxEvizXy6Bf0pXnFRf3E4J8lyLXX0E179luaeFJpBfyxesTeSeqIHzfzkA6EPnaIdelLN++d1tcD9iQdcjXFLkSVoc9rlZ+Uzsq1N0+xZ25ylw/IuS8JJHqnPrwoT62ksxDvhrwVhHMDZ0tFzgzjSoiX/RVzgns+YuucUNVElFFvquQ6xqwyL7nlrljLxNP5BuAXFmdUAk7fvK9TjmxRb7GEn83WToXVXdrJJ+R7w3kylhDfySFes+ixsh3OXJlfa72c/YlfncmlZXMDzZgfVRUQPobe4L6x1sh119B9/rsV8qPA8hs5CuLXAeDxyp0bvgrCvODzNOTQh1OCRL4OZK4NGuWpXhF0+HI9294+xHcSB6bFzZU0eHIl+XqCBpMOvvhD6tcqo58Wa6sz72bt+WeeWCpWH+DJPX3iedpvkotkSxFvqyvsTpRttw3R35UI3kvqQ8sX8e2/ukDfhpHDJCvNXJlbAurG268KJ30Q76WyJXxQNfYA/dCD5MpyNcHufqBczbfDzGMSCByyPehkAv/HCyfGDDraD76WnmV4HF7XidVLPNIxyJlvaZN+cQF+U6Ft5PAyjyLiXVTUulPyJf1NXPQq8LA5m+1CMr89ZD0t4DnWX323Kkl3sj3AHINBz3O/91ynj9DFiNf1tfmgI1R2+8f8Wn8v/mMzQ9JnwKojtMmwknmB1swzmv6DvOkJKqAfB0k80Nm+/fvW7WSqRHy9UKu28G8n/z7H4oqpnuQrwmbG0BjnQsn/FuOCvXg+lnBW5MMIeddGUR7acSx15djiA3y1UKu6uCQyjYnT+Vq2h/5Mm9Rn7hXxwyUxtyuoOjP3EpWd8GsaqvfG44WkxDkG49c48Bz6XlT9edliv5aIlczUN/KWP/rxxvC65ZpFXO9A54wTcv1iQwT66+lZD6bplBi3mdDKvm3+Ve1dJtlq10kUUe+bC5bx3L2SuBOvYggGsi3A95+A70CJ3vHlR0TXp/mPiHX4Ajh99GBZPuzebklBiXECvmOQK4jwVYP9+1m6/zo+9L/nc+MWZ/TXaR1uS6SqiBf5q0L6L60WHey0VXii3z3IdcI0O2eWa2fUQGxQ76zJPNvdlrcyBEmzaQ78m1Frm3gz8YBNQGlzmL9Zf2NzQ/Oh1sXddlynfZEvubIdRF4ysn4x9fQK5QgX2/k6gt6RMi9n5VSR60k/Y3Nvyt/ebTtWst1of6GlQq5qqMON6YR2+1ypy6cqKWyyFcJubaj/jZP6aatZtdMu8JfReQ6BfxpqZFK8/oGqoh8vSX1V9F9qrKPQT0NkOR7CHQelDjPYVcTXYl8XZCrPRgabDuv/VQKTQzdX1dXd5dX6OX7OTSnhlcEx71Ycsbu20HK/GZesznZydHa/chXf5LldXP1mjXN/P1TJf+8zir+HjhPKSLH/mMGZfOddL/mrJ4+KHIPpPpFV77/+HGNPzLW5Z9/uoyPA5/q398Q+T6K9JXMJ0tAl0/5tw/WBNC/o5Z0fr9w/8J//jyX3wcmdMt55vKzm1j/Wd1n9Sn+2JP+VZGbyYbO9yeDH975/kTx40HZOSWu37YsIK54/1F38PcpvPcaa53VPknkN+HrsddEcRPAmRWn5fuHBQj5bawRWEEFLjtNW4PsP3nc86DXhdfPWQmvm3MGe7bf3eiWlsP6v1j/mEfR8sMWvhsWTccK+XErhNy4AHDvB//9rqOdqS782gqv2H1gxuaPiTdjnEiK8P5xF4T3jbsOHnrU7Klsf4Ltj2L/dwKjh7XvzJDNJEcFf7gegjecHHjlz6YIc7l8iv7NWcBLxibvx8t95WLIWMEvbs5pwUs9UCHy9cvw1CQSDz/l4SXzdJDr3S1PvRxoV/jJ7g53wfKFL1xUZ6yhufCzFV4yVmjfuj0obLLY/6T1Q8fnzeLTldF0NPw8AC8jwCueWn28l/uSX/5lvqvuVtWzo+AQeQM/w+BlMFg/76Ft4fIAgvsC7wIvcWfgS0aqXCwf7Uf84OdCeGkCntuQ6e310Jd4wE9jeDkd7GOjNnucbjRZCT/N4KUhaK2g4HZdR9jXZapRx8aXCrxC6ZdrXzYvM4smLfCTeekO6mfXfZB97UX94edceIk+z6luven9fEMB1YKf3vAyFPzjqfLrtxp7xPkT8y9nD/ppvFH4+WsGTYCf9fDyBjjY7bCM/mYvNp+IfZ3tr3ZuGerbrHNJAvwcAS9R3zhtcsOsIqiKTIKfi+DlEtanBhzcMfKSO9WGn+rwknG2duEjx7Wl7N/nh0vq54qcp2aB3q70G+Yvaf2Mv2NkbXLNk56S1E/GTUpTDdc6RYr3M7ZfsD05/rV2asqS1UQDfkZI/Gxt8PJq6ZJMBknmC7ZHqzwvCOinvEL0cy+8DAJNkw/MNCtKIRr/ch/SmWhzNSY7kjrAzxnwEvWPH9Pnidku93CSCz894OUm8H1rfOjG+UfIAvipDy/VQcdtQ/tlafgKPrZfFXgHfq4+Q1U6+uam2KWQu/CTebkVtPM46GJ4MYEYwM+u8JLdoc6p6LkEBOZSZfjpDy+DQMvimapekYVEHn4ugZd2bE9S+FiS9yOSnoCfzMsGMOFgY8CAQyZi/2ZeYn7mLDLc3zy/XyH6ybyER5y7T1bEXPdqMgF+LpHUT4vaso0/7iYTLfipAS9HgTFHxlVyfCE5Bj+Zl8NA43Q3Y52iLeRv+Cm9fw1NOqMadjuMZMDPu/CSsYK/VxajFiPuZ+yuwPaz6f66plbzw6gO/IyEl1Gg1VsHCze1ZWSIZL9ATrxrv5BNhuV+5J3ET1Y/a97OW/b5/EmiAD9Z3VwJ9p12nS+JXUnd4ecceDkNPG6bEllQcIIcgZ8r4aUjWDPq5OjEqBNEB362WAlefgQ1PsqczPlRLMzVw292eul/Tbgj+X+vpn6nIgaOTU4S6+c6eOkB5nftGJ/qtYu4wU+21+iBwUb3g344p1H8/xb7egj4Izxj+FO1EtJNct9jc3rrnMcn/ANj/7V+yqp/TToVnkhwn+AwV3HoXxztMH0bt62M9V9OWVI/l+057WZae4Fowc+58HI+uKmgdVHm0RP/56caODU8InnyllLRT9bXGTP0QyIKe0XTDkn9vA2+uTjCT+XSCpIp8bMFlG/be0dnYxY1gp9Wkv3Lyf60s37KHqoOP/fDy3Bwdh/utMv3BPH+yPo74/THz5VcjWLIJ0l//x10tyue7O4bQNn+thZeurL+7rgiaFXPKLoVfqIv434WxW+6k+khu/c4DYGfNvDSEpSxVfHYsXMb6lsG7jtRXHfUz8eONW/ODosQ6mVVvcDE0wKnltHD1l1nrZgWQhrhpwu8XA+WOfe/OCUkn06Cn7g/cX1Azfa4GxqaWVQFfv4mqZ/eT7YHpY7yp7Lw0xpe/srmz2575YMV9ol+XoKXV0GfXSpFXZrSKOZ/Dnub6KnS14MXxz2uFOvnUHgJf7jyjb6f3jVWifWTebkQnGvwsJtccg7RhZ8q8HI0+K4u6O5ms1ISJ/FzCOgbNVPtbUuCeB9sltTP6v5jxqT+5k5Ows87Ej/NunWE5MmnivcBNneyOfTC/gfjcoccotL+zvwMd6alMxuOi/sR24twX+b35RU4THwcSNrhJ9uLQkHN6eNe5YzNJbhf8+hvIv8KO2j585XdZCn8ZHuRFlj6680yA+eTRA9+oq/y3UESf3FMR2AmmQY/h8LLgeDPjdaHbvZOE+ZP3yahbrZWCpx0jmb37ushk3KA3Ief3vDSC/RXSKmb07yKasFPfF+xz5/zdt1htu8kHQk/2dzJ6Jd4rz57djxRldyX2XO+wfEvE0KUjtMY+HkRXtaC0w193u3KP8X6l/j8ZBlovs5b7t6ocpIEPwdL/KTf7Suzsi8RHfhpAi9NwVX7K5yHumUTHfipKpk/lx30tDi/ppjtXzz2Lh7fh/eSMwzIjzlMv0juf4wNNY8UpyzYTpPh5y142cj6+5O4kkOubvTf/JR9Mf7SuRJzogg/98JLxqCslTWeJodpH0n9ZH42GQe9VNUOIy/g5w546Q/OlqnvVzP3kHj/Yn19DVhx+PTTuAx3Ggg/LeGlBWi7od8mq+hDBPuJ+FyN7UkeQbUDtFYfIqbwUwleKoCzp6vfHGcRI/hJ04W6qZssUP0I/UkxNeTPumjyBH7idXO/gZZ7R8a69Cyig+HnO9x93oCmj/6K2hWZR1Xh516Jn4Mf+Hi9Ovc7GSC5by5je3xbblEPkkbj4OdleFkHxsu+z1fsG0OZn+z+yebQHVu7F+xZfEbs7/ISP9c5r3wxIauaaMPPhRI/h849nziwWzYZDz+14SWj/auQ0X8alIh+Svu7xTybWQb7g0g7/GR1k93/OxoPK34scyLMT+ZlE7i8R9uQ4wfT2P7GYz4W+XJYrioJi6VqEj9DmJ/Bn6MnDMkUP99hK9mPLCetLttWEU//gp874WUg+HrFMctXvY+LfrpI/HT0266wNvYknQE/ZeEl6h/vHBXMLXoXSSPgJ+vrVqBJ/r3et2q2UxX42RNedqDPn4nuFu/1UHg+IaNaIjA9XeCtFFIS6eM4ZZ8/fQk/sddxeP2cjGfZDvnVOUQVfnZD3cQdmWtp1VtrNLOS6sLPBHh5GAzvpXffJaOIsOdzeK7N4efnokcG3SvnS2gi/Lwl2Y8S/1qw80CXAnH+ZHsR+5xKUNgFzRzrQvG+xOZO5mmiRpe53gaXiOa/+OnxMbCwbcEOcf7UlOxHA416X1ObUEROwE+2F7E9fq9Grqmq5kpx/rwqqZ+KXR8anzu8QdyPbsNLxhij4oi6p0eoIfzE3iY+B5jIbZ9WNSiVjpHMn6zP6zqFjp4/J59K75/s+Zazw/6mValx9Cn8RH/k/cAZ4yzDfEtmEG34yeZOtr//mV74W0jASeoIPzXhpS6Yf+jCADOHPLpUcv8cBWZ4DS+c/CWddrQJftbDy2YwYXxN3xFa8wUfx+P5zlX0++h08sZw3cTQKe7kNfwMgZfMUxPbBRvt5LOxv5VyqNvic7Yh1guN5k7KZfslFw8vo0GyceuJx/OD6OfS/70vsT2p+w39P9ttC8X5k/mJOsPZZyTdaFXNpP0k9yXW5880DYg4ElvE9hdxP2L7u3m7i3bXUdVkvOS+xDixS+G19qcHKbt/joWXWuC+NfYbv96hJFlyX1ICzyit3f23z3Hx80Hs+T/7fFt98Ka3v+uvJunwk9XNm+AiGlm42yadGEn8ZHvSAPPfC7v/kkRHwM/drG6C6t939nhpFEFw3+Dx/J1Hn+EVAkM9bk1IpK3wE3svj/sMb1kgN2emfQGbv3gnSf3s9WxJrE/XXLoafspL5s8LejKlf3RPIcHwcxW8ZHU0NWTr5S0bYukT+FkCLyvAz8/UHF6loV7KnxD6umaI8HsLX6o5NdbgQfkG+if8jICXu0HVQYPfX2uJx/2qVPxcE/v8zbI1gVq18sfF/T0HXsaAw2u9lSdm5xF8voJbDC/Zc+L+eYZzKlan0WPwk3nJ9vimJ8+Cn19OZv2LWyzZ3wduilb5qnaUpMJPFXg5ElzY022/4bYaogc/rSX3pYDs6NkVb/eI98/u8FIRPDB4xeIkpWSSLrkv4c7Knz1T9sjTsYImwT/sdTzuD7zSScOOXmca2P7I+0v8KjJ7lbzC7jq9AX/Wwhs3sETeW3Fy6DWqAT96wAs8h+GLjr6c4u10laqjf6Kucb1ZHx25xXTz4xraJumPqJ/cFytro5d+V8X3rwLv21Hw7Y1Pw/cH3qBH8f7cl9SPpytXhQ8c0EAzkf9E5D4GjJXVq+/jHEf+A0lfoU4=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAtgAAAAAAAAA=eF5LSwOCRUUOPJNaS3KAtJv8NY0iIP3a+btGOZC+fWOfRDWQnq3oO7MWSJ9YK+lRB6TVn37bWwOkj27n7KsAqTuzyaUQSKdBzUsjYO4tqLlzyDSXF83cNwTM1SDTXHT3zoWae5JC9+IKh5No7j0CNfcWkea+ItG9uMwlFG/o5pIavq4E3HuKSubepJJ70cMX3VyYezWh5h4jMd5eopmLnh4ImcswCkbBKBgFo2AUDEMAAOa9yJk=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAkwEAAAAAAAA=eF5LSwOCRUUOPJNaS3KAtJv8NY0iIP3a+btGOZC+fWOfRDWQnq3oO7MWSJ9YK+lRB6TVn37bWwOkj27n7KsAqTuzyaUQSKdBzUsjYO4tqLlzyDSXF83cNwTM1SDTXHT3zoWae5JC9+IKh5No7j0CNfcWkea+ItG9uMwlFG/o5pIavq4E3HuKSubepJJ70cMX3VyYezWh5h4jMd5eopmLnh4ImWv5pzQ3E4m/8sZav/xFiHicsfHZihIk+5L5bitULkLEq/Vf1kiQ+bB42JS++UMtkjsqPDmakfNTmR/DsqpFiPQU4BT3EmQ+LDwXzOy5mr0IM1xJdWcS1J1vKHSnBonutEJz5yqoO2HxNhNHeA42d+IKT1i826C5czMOd54k4M4jaO5ET5/kuvMVieGJy53+FLqTUPp8RSA85xLpTlzxTml+J9edp0h0J6H0uRJHvLsS6c4taO6spLM7CaXPmxSG5zEy0ye57tyClo+q0NxZAXWnJpnuhLkP5q5EqHusoO6A5WNYPMLsg9kDMx8AZqIL5A==AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAsgoAAAAAAAA=eF51WHtcjtkWLilGGnSj63zpXtTX59PFu3Whko6iy9Awbo1xchs0NDRJSKOIdFzrUBrKJUmSjndP0hQZ11NRNOPSKMZByS26mF/7XWv71fn5/tu/9e69n/W8z3rWer+CQPuagPAp51TgF1lWVt29HuBr6xefokLUrmqydVxOTljzmi9IkUliVfdarMs4fe6IMd1SOIatj/TblRARbkHWb5exdX5q1BLBYATdA/EBfyieLL7nSCthv+v6iWm30jyJNpwf+cC5D63wIRvg/hXsPi96CfC1tc5LL+wMpAWwPpXw+7UNN6pExFtVOq0ow1+D9IHznE0H29pu1OF43UNCLo1ssOV47Z5cDSx+oEvjAW/9/A3PA5LNSSrEa+/IZ/ks7k/LYX+p85ZpQ4x8yTA4f3ry8m1hq23JJrif7I0ZUhCpz/EeNr643PiiKs3vwe9h1xXw/ALb03EB9X8I6nBe1pjaNJ9JH/GahWVUvb5iRX8CPJmMbwVdC3i1Xs+3/n2ZPsf75kP3z5FUwP70BxWmhnqDKOK1Om8RsOgqIfFw/5R9cbaqX2mRSsC3QPFu+LxGY4L8av7mX1Th+lT4Hp6PebHdp/3pBUEDztOqeWuh9LIkxXBfWXVI7tuS4TQB8Bz8sfC2aqs+jQG8Bs0GYXFXlPRfEC/r478m8wc5uQD7m/VH/VBfa0F04Xy/0NBt540mcH6TmqtGpK9zITcA3/tcIUS+RMH1kM/00MDxFr6cor6wb6eIeFPXfjB2NtcmZ+C+VQWeTjpaRjQJ8HTtit6Y9MGC403ztFh4oMWaboV4jv8/9m7TMyalsD+bvY9RHK/KZTq7PUtBtsL9LyI2Rq9UMSM3AV9DZ+f3dVvkHO8WYWxFdLMorITnx75c/TY1v4XrId3D/KCWy2CO90lurnOViSnHq/azrsU4P0saDXgnb/CfszDUieMNeedwtcCgTTwP+6X7HSjide7bLC4b5U2S4X7vTEfN8WfVSR3gq048/2j9LAN6CtaeN2Pt/O7eEKPg+eg2s8L4JZoU+b3W3v4o30CV6+Foa+nwVe0Kuhn1G7Q0qkzrkbga8LpHnWg3Dbbj9djxz/jCB762vN40Nt9vqipy4/rtkE3PvtQhJ5vh/udzXRo3ZnlS1IPG7u73N4UWwnqExbV6qzu1HG9I8NWZE46qUOR31gqy5UuHdgHrrWW8Nf3aRI/zu3lSSf+v3IZyPZSz/AwI8rvgXP3OWYOsaBnsH5bqEFOmq6R6cH6hjtxSdsyJJsD9abX7m+1bAugFwOfL/MKK84v+i3gDmT7quX59I2xGmk4043owZvwYcX4f//rdb5o+NjQW8P64uiDgTqwLTYF40IOcxplRhhT1G8P8lVAdON86fO6+cf37UPQH75Mei9aGuJGLgO/2mRr70A5Hjhf8V0C8ebeGxfsUq3I9VJxqXPpnpQ35D9abYpNHmfJjvZGizSsmuNsQ5Le5vCu3M0CL63endeyGjlf9SAnsNzg7Id1ENogOhvPzlhoK/kc8yE9w/9Z9g3xnHxa4P8zLzk6dUe5Fi3r5A9bbrLt5A/IMdTles+BgtTQbK65fxYmx96bdN+H6dGgxNNVNUBDk93rjJecF7ZZ0G8Q31a2LUdNsExFvX7O/yqwnDaED4HxT5tfOHG/2vHXhVoZjSC3ga2L16fl/ejjZaz3Kebqkhy+7f+oU/U5bCpOb3/zC7p8HcVW4v2vX/yJG5L8R9taGsvg0FncipwFvnMk8t+XHT4uYX/bR7p8dSYb8Cll/+SBshHgui4+jcbAONaxofBViR47D+ddllxMXHZeRHbD/buI9mUenLX0I+LrKl6ZkdCkJ1s8SpkcX4gX5LUxpLD891Y/7VdBTz5J16hZcj5EMvx5dj/XN7h9DfoH4XIij36oyeloEXJ+V9CAq4L4rLskmh2p0KM4T8SpvCqerfUZqAO9Jlq8hxfliPsOrQ3dBvoeYHq05n0Vnilp3z+xHcR4KkPAQ1H8T48OFIp92yQ2R721H8/5uyPToTjLh/N2+y906d3gSrOcp7LyR5DHg0xJSls5RNed81oV2x18LfpBfP5a/H/fTp/vbtFqrm0Xk8zi8b+TzjvS+CIV4OLtvNOdTklul68mefApKuM9zqKQn5DOC+fE94RbgzQU++2L/ZL9XrsjnPsbnUIr1qM3yM6I/Aj+TGJ7XYiLwMT+2a2rWAmc+z/3J8BsQ7I8L4fn9cP6T9Atbg594ke2wfyjjewx5BvgGMjw2BPuRUGXjkJPRh46D/DqYfgnVB/xGDJ9A0N9XXV6p1A+zJ+j/kj4mk3KIO7PztDmfauy+/rQnn60C1nsTu68v1yddbe4U49go1AHeECk/AfkcuKa6Lsj/mbgH8pXe/zDub7Lb3X71WIwCfiT+X7sin0vAP9ZB/GtJb3zekJ7vcs2G8yX9KHh/jJP8UGgCfN+yepZxfVoxvY8lyGdEyYKnNodM+Tylwc4PJNeAD39W3+P4PBjb4FI5eW0gn1+9gU/s/30lgHytAj+s9xzQH87je969m5GY/Rm5DXjzWXwA1+frZ8NSn2oPpzsg3wbmpxqczwEvX57RDjAicT34KS3G/hzJ/MKDroL4LeY3LpxPuUF3vVSIWXD+ij0Z53ZGPBGx/3zOzhtM7wK+F0wPFgTnu5Zh3ftvihMhvyKGfwzF76tolp8brQE+2uF7AfUp+ZEbwe+XRex9W3L+wD9F7KdZbD65LDjDfSnMn2Scz2UdHce9q++LWO9h7DwTzmcTu79ZxH5UzOKNIs5jRlDvOB+sAX2jf6aaVLrkx1lyPtUZPiXF+VLiR04PwPkZrP4cCfJZMiPv55Ol70XsR57sfD2KfE5layfqC/ntYPkF835UzurbiCCft3XOecW+16GozzBJzxT12cb0YsX5VAM+cW3M/PGRiHw+l/qtiPPKiCb59W9PfE6x3ot66fM7pi8z3o+ypDj/nsw/v9j94X/NuD4jpPomWO+3WL8eTFZAfAjjfxTnN5jVnzvBeg9kawXvR5J/Kuh9wJcC5yOfjlGye6V9HKg/5Cf5bxDnE/yYYr1Ph/eRBPlXsXoZTysg/h74PN2jvjOLi3qsVVSQz18ZH+8Frk/mF1W8H2lAfSGfyoMHNZRBA+lu7O+SX/B6j05JNbzh/ULo6YftxajPIGke4fOR1wujhzke43m9h0t+SDPg/GWgF/RPZWVkw3R7OZ+XpPqX8e/PQobHnetzETvPlRoA/gus/lwp9hvve8qoHcGO3D8TlEmX/8qxIKUQn9Or3pG/T/Fpz/x7CEE+JT01fpJPmeRvQjrkK/UTE85nKuCJ6cGnihvWayurZxmfj+KY/7tzf1gC/oDz0jiW7xdcn23SPMD9UwP4xHndg/mZJvGG/PpLca7Ph2y/00f9xXT3VxNe7weYv4zn/f0K8wPzT/onzkvI5yApX86n4bHM2ep5arzeC3vVu8S/AUmDfFUhH/w+lPqxNp9/jkG/Qz4l/uQE+ZzJ+BvNvx+jmZ5sCM5LBWy/HcHvHQluWzHyKelHj+vzG6n+qSfkFyzpi//fJ80Dct7fk9j7J1yf5iy/ieQKxLuYHXqQ3v0d581F4DfIF/gb90Psl2t69As5148++B3qB+KkHs5bDPmN7pHPaO7//2b160D/Bmzt8Vw=AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAA8AkAAAAAAAA=eF51WHtYjdke3t1o10TptovMThe7dC+79uzP6YqEXHIqNMZJnOKQXHJLMoSI6RA5bplCcsrJkMeZ/SGXZgqn6SnKbWQyEXGqfZSScp7Wt9a7n3qe2f+9z1rfWr/1rvf3/n5rqwvba6bHzrwuor/3FBtW56Tb/qpWMRzW4JOcPVuH66RY/HfXy27zvfgein+qGprvft+e0zon4Mq5zRnae1x4fYobftFPuLXXg9eleO76CzsnlQdzIorP1J9oHdcm59j8BVmRZ6OGirgRFHep445e6g3n1XQ/qX3VE8fH9UoW35qkqNWRJysQ79KIxqY9ngaI91nFj7W17u6I98X8N+bOfYaI53B4WXZaUZ+SxT/5/tHjK29pYfy//fNTAxGfTqxvU3qeJ8fGRTH96/nyQyk2INiOb6f7rfxz/68J8XoZHY2bqt2t7KDYPT8/4GSOFeLdbOxaG5fqxndRXHjq6yfhQ7x4xld9T8+rEist/jMdN3DvrD57xZsbQsdblRPKN7b2qFi8z9sXPZCGuHMsvp11x50Oy215xm+T+kFq5PkR4Hd7zYNtN/beRbxVMfmi9cdNeRbf1bCFHctDHbgPFN+UZ0aZjLTlGe59X2+QajuM/0Tx84XyL9XNPrw23e9Ifoy5apoP4i34XTFnndqb06HYyC7Gqz1xAsZ/iHrZ+9jSlTem+MLD3NLrhR6It23tT96ZjpdUDI/Vz1TeWjwc8T73VRSPE79TMhwSEVHp2mgFfvsObUzf/VmGeHN+bbm2M9sH+MbbFI+PQUbQd8pZK22HZgPc/zPCr5wzYny3vnE+NvyRUkJx6M9Jo35O+oT4Lu54WrWtugb3n5Kwyb1ap1PF4huVa1KzY+Q7FYuvXSItsD/sxXdTLDPOmCdL8QSuSG+Lq6oM4HspvjxX6dN8TIdn8Sam9kXmJXwF/pMWZFnvWx3EfUFxy8EN1zsnBvKWFMcu+MeHZd/ocv+j6x14MC4t9t4j8Fc9t8uyYv/3Khb/l2Jlud/oMRyL9yrV50eK7zm1q8slDUqGo9eV3PjB0AX5+B/9nGmfRjrz7P5dVPWbhzuNR7zPCv201gaM48QUe/MPg/Mb5fxwigN2HUrw8p8JPaQR/asQr8OrIYlr1XXg98iaJSEjsk2Rb/c8/HeVJjuDT+kB96DIKju+j+KSsmXrZ0osOIa/tanwLUlzQHxblkv+NUbOIf7mENm3bXUuvAGLb98Lv30vfKBfaUW/Hp6qGL/Mf6GHsmtj5M5NGr3Gy1xHT5Ei32ydCrWmm40Fv6uL34+dOsYR8Vpm/la0ZKUCehB7PXldMEkX/mERnVvTcc8b8Z/P0ulL6pBwLF6RpOdip2+5yoTiYwH2S79vC+ZZvNR/weedLTNbMk1fAa8gerNDvOd8dt99XSABv6NWlfmfP+EBPt8UKSM8llvAz4wkp6UmQWoVizftqCTFrblcxeZPa6kym3ZUDn+IMtyU+9c2XZ7FO2zP85c1lycj/11IvJr43PfMD0zzM8a4x86D+SfS7aCHXU3/7C2K6VAyPT8h9YPjmB/80lQpT+hxQLxFxI+k4NcsWdpQpu2I88XfkOllGNcomf9+R/xsAmdBcR3J9/E889vB9Zhhxr+BAJGfdabXA1M/vlAyvoeRYWPkw47u7vkZZ8TwO5e9jas+Ok3Aeasfbk3RMewCv1rkew+c9wq5P13Uw3mknk3EeQsSrZVhhWPhJ9eavrI2LBqP+n7706fikFofzHci+0/kmP5mBa94FRgfCH/VI/uHIp/CPHducNvkyQ+jeBXZ3xz6PUP298V+f6HjA/m75MfwKEEPSsbfbOvypvcR2uCzzFp1ZEaUpt+JIes5gc9nGQ1S/14b6MeVnMeJY/nbayXJery4G/qdLcTDsXydQPopBa/H7t93r83p+778QL40egtqH/l7gX8wx/R25lz/zxl835TezVhWLEP9XE/u2wn8mimzEhdqKdGPGVjePKAY682z/Mkj/Plj/pxrCW9lp0eDTzHhL4Af6Fdt8K8fST1rRL9glGCWUzujG/XuZfIXU5LFXcg/XUFfWG8b7Y/Y+EvCrxX4FfRkDr+bRebrQc98bUTRh2u+OM8L4XuO1ZelZH6HiuFoggORnzcJ334c84/URt+KGVvk4FNN1rOFny4g3ztgv7P0Plg9Sr671sciehz6A5ZPDMdMTDhmVWn+b8aXjkAo+NhO+pnb6GfDiV6GcozPUxXxOaVuJjj/ZbK/NfQu6MkS+tUny0uAhe2M4c9TKT9svZWUX6YHQf+u4N+fzmfjDats9urVeUGv5wU/UbJ6IviFJ/QkxOeP+UJ+OHAsHxxIPgVzLN/DSH56oT7tE/TJM/0vpPcxkM829Cci+sP7gaxvgvlJ2x6lVOTrID8FvctwH+KTpWG3bLyQ/8J+5uDzDvFfO5xvLuWHrSfk1+RB/qsAn/sJX/qo35GUD8aPdk5LvEuJBfzXT1hfyfY7NClJ0ZsdAL8U/EzT71WGz7jwrMeRZ/VmCNUj4/PD7cSs3D4fzvgP+NQaxCfLd4b1ib8YYv7rQfmuRflk4+8+kx/0lk7usw/5L/Bnjn6BXp+C5a8zqa8W4G8+mT8e/E4W9AI/PU3zk83/G12f8bObYD3cX2joFKP4PAn8cDfp9ybCr8+S+zZFv1xFMfNXBclXd569B7oO9d+fI/xMWzgPcB7pV++ifoeQ+DX5nH2w7M2TrB6MC/lkg3GPnNzrB+Mfg2+pdZwiqbgU95NN6rcL/G4R1Q/jN4Hwb4H1TMh9eoP/O7QeMX7yaL1l6y0vKIhu3eyN90Yc1S/DK7KabpdGat7/KcRfZ8M/91P9Mr7Y/Q/yV/DL6vtAPttUA/1NJEK/T+Y/QH3aQjHqC1nfAPk9S/BbrD+d6gP9kqlhi1lQNfJb2O3hFaY/oR9RQH+BQv3GezKW8CHF+0f43lAxqP/Ceb+j+zM+hfl+0K+gh0DMnyHwj/eRoHc98P8NXU88YD0NX3+EmZ6EfvEh+DQs7/cPXdSTULJ+B/qrrVn7ratDfkO+nyD8WGL+qeMnYq9+MILfzaHxMiz0A5p+O43o508Y7yL+ZY/vtxO9m4H/vuNdRuraViU7P61v6KdoPQKf60g+uKEeJRN9K/F+y6TxMX0K/aAT6vs6Mq7Rp8DepSvsvLT/hJ8GCHyh3i8SdV6ap6OF/1OE+i2CPtcQ/Yi4geP2wFtJ/2cFvysm+h4DvoaT+VLk79dk//HgdyNZX4Z850n/5YD5MTUyt4JctYrNXyKcV+OftF6zfukp8T8L6Ld+yMXurMmW0Ocecl8c3nNvyX2GoL8NF+Ib1L+UXGH68ib9phjjiwfxuYH0YyPRDwrvCw/wYUH9jp1PRuqzpj+Mpedj60fTeMxofE+J/3vz/wdDZeZDAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAPgfAAAAAAAAIwQAAAAAAAA=eF51mEFqHTEQRH2nZO/b5E7JDf4Rsv4rgQMDHwyCLGQUwogJg44Q/EUxdFVXr6zyo9WqHs186eUljx/fP+Pna64X0b8842H4KvqKZvJ00b8946/JP0T/9fYZ/8y80+i6boxzvYgOH3K+ir6imTxddPiQ5x+iw4d83ml07XP0gfUievSB+Sr6imbydNGjD5x/iB594Hmn0fW5hg+5XkTHOOer6CuaydNFhw95/iE6fMjnnUbXfRyfB9aL6Mib81X0Fc3k6aLH54HzD9Hj88DzTqMjGuXH/mG9iB79Zb6KHsecp4se35Ocf4ge35M87zS6vqfjvmC9iA4fcr6KvqKZPF30uC84/xA97guedxpdv0vwIdeL6Cvvw/BV9BXN5OmiY5znH6LDh3zeaXT9Dsf3A+tFdPiQ81X0Fc3k6aKj7jz/ED2+H3jeaXT93QEfcr2IDh9yvoq+opk8XXT4kOcfomOczzuNfv0ff8X3JOtFdPiQ81X0Fc3k6aLH55jzD9HjOnneafLcjC/6/6/POu/Cx33E+TbDF+HXet+Fj/vu4td6f5v8Vfg1/jDrbcI/07/9MfV0s95d+Liv2c/D1D+MP6fw8T3A9Uzjw+01Pu9XcJ8xZh7j/LnYDF+ER9+ZR9+ZR9/z/FV49D1fbxMefc/r6Wa9u/Doe+7nYeofxp9TePQ9r2caH9B3PUes2KjOu/CxDt7fm+GL8LHvF798fggf+875q/Cx77zeJnzsO9fThV+xCx/f2+znYeofwse+X3x8z3M9U3T0Pfp6BfqAMfrOPPrO/IrNnjeZx5h5jJlH3/P8VXj0PV9vEx59z+vpZr27Pecyj77n9Q/jz2nPxXk90/iA/a7nRP5+xv2u5+j8e7sZvgiP+pjHOpmP+13P48zH/a7ndObR97yebta7C4++534epv5h/DmFj79vuZ5pfMD3Xs/F8Anj+J3QewPmV2yGL8LH51LvGZiP69H7B+bjWO8lmEffmUff8/XuwqPvuZ+H8Oh77s8pfPxdx/VM4wPe83oPENfN73m9J2F+xWb4Ijz6zjz6znx8z+t9C/NYf77eJjzGeT3drHcXHn1nPr7n9T4n9+cUHn3P65nGh5u991ixU513c9+C33V8jtnsfRHz6Dvza50P4dH3PH8VHn3P19uEh195PV14jJmPY/bzsPdXzC/utPdazK+YoqPvcZ4r+HwZv++D8uAcx+fRzfBF+LWed+HRd+bj953zV+HR93y9TXj0Pa+nm/XuwqNPuZ+HqX8Yf07h4zmO65nGh5u918I8GKPvzKPvzK/Y7H0g8+g788vnh/Doe56/Co++5+ttwqPveT3drHe395DMox95/cP4c9p7y7yeaXzA77pJ9dxFX7GJvvK+ix5/d/E94Yfo8Jn1Fbvo8Tnmek7R/wO2lrzJAQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAA+AQAAAAAAAA=eF5d11f86HMdx3F/e+89Dw7H3nv+bcdelZUOKSO0yF7tQcMoyjhlFA1SlJFQCJFVshVFRmXvceH1vDi/383z8bv4vK9eN9/JJnv/G8kZc4Y8Mo/Jb+ZR6W7ynCntHJ3H5bfTnrspcua0c2yekKekPXdT5ixp5/j8fJ6WJ6S7qXLWtHNifjG/m/bcTZ2zpZ0v5JfzjLTnbpqcPe18Kb+a30977qbNOdLOV/LreVbaczddzpl2vpYn5Tlpz930OVfa+UaenBPTns70Mk/OnXr7Tp6X30p3epk37ejt1Lwg7bnTy3xpR2+n54/Tnju9zJ929Pa9vCjtudPLAmlHb2fmT9OeO70smHb09oP8edpzp5eF0o7ezs5L0p47vSycdvR2bv4y7bnTyyJpR28/zF+lPXe6G5N2JuaP8vK0pzO9LJaLpt4uzN/m+elOL4unHb39JK9Ke+70Mjbt6O3ivCbtudPLEmlHbz/La9OeO70smXb09ou8Lu2508u4tKO3S/OGtOdOL0ulHb1dln9Me+70snTa0duv86a0504vy6QdvV2Rf0p77sbksmlHb7/JW9OezvSyfC6Xers6b88r051eVkg7evtd/iXtudPLimlHb7/Pu9KeO72slHb0dn3ek/bc6WXltHNd/iH/mvbc6WWVtKO3G/O+tOdOL6umHb3dnPenPXd6WS3t6O2WfDDtudPL6mlHb7flw2nPne7WSDt6+3M+mvZ0ppe1cs3U2535z7wj3ell7bSjt7vzibTnTi/rpB293Zv/Tnvu9LJu2tHb3/KptOdOL+ulHb39PZ9Oe+70sn7a0dsD+Wzac6eXDdKO3h7K/6Y9d3rZMO3o7ZH8f9pzp5fRtKO3x/KFtOdOdxvlaOrtH/lSPpY608smuXHq7V/5aj6e7vSyadrR25P5etpzp5fN0o7e/pNvpj13etk87ejtmXw77bnTyxZpR2/P5btpz51etkw7evtfjvRgs+dOL+PTjt6ezym6t+dOL1ulHb29mFN1b8/daG6ddvT2ck7Tvb3R1N02aUdvr+R03dvTmV62y21Tb2/kjN2/1r87vWyfdvT2Vs7cvT13etkh7ejtnZy1e3vu9LJj2tGbh/rsac+dXnZKO3qbvLs5PfjTnV52Tjt6mzLnTnvu9LJL2tHb1DnvYM+dXj6QdvQ2bc4/2HOnlw+mHb1NnwsO9tzp7kNpR28z5MKDPZ3pZbfcNfU2Sy6aM41MeqeX3dOO3mbLxQd77vSyR9rR2xy5xGDPnV72TDt6myvHDfbc6eXDaUdv8+TSgz13etkr7ehtvlx2sOdOLx9JO3pbIJcf7LnTy4S0o7eFcsXBnju97J0TUm+L5MqDPXe62yft6G1MrjrY05le9s2Ppt7G5hq52Mikd3r5WNrR25K51mDPnV4+nnb0tlSuM9hzp5f90o7elsn1Bnvu9LJ/2tHbcrnBYM+dXg5IO3pbIUcHe+70cmDa0dtKufFgz92E/ETa0dsquelgz93eeVDa0dtquflgz53uDk47els9txzs6Uwvn8xDUm9r59a55sikd3r5VNrR27q5zWDPnV4+nXb0tn5uO9hzp5fPpB29bZjbDfbc6eWzaUdvG+X2gz13ejk07ehtk9xhsOdOL4elHb1tljsO9tzp5XNpR29b5E6DPXd6OTzt6G187jzYc6e7I9KO3rbKXQZ77wEQhC2+AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApgAAAAAAAAA=eF4txRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF4TF6c9AADGKQj9 + </AppendedData> +</VTKFile> diff --git a/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton_ts_2_t_2.000000.vtu b/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton_ts_2_t_2.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..cdc73b2ec6bf8228759d453b5a6226f477139c5b --- /dev/null +++ b/Tests/Data/TH2M/HM/flow_fully_saturated_gas_newton_ts_2_t_2.000000.vtu @@ -0,0 +1,48 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="238" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="22" format="appended" RangeMin="45" RangeMax="103" offset="192" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="8.3721237139e-13" RangeMax="3.6305644771e-11" offset="276" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="900" format="appended" RangeMin="0" RangeMax="0" offset="22708" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="0.013178612702" RangeMax="0.57148944243" offset="22792" /> + </FieldData> + <Piece NumberOfPoints="341" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-0.0001" RangeMax="0.0001" offset="40804" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="41212" /> + <DataArray type="Float64" Name="capillary_pressure" format="appended" RangeMin="-1.3842426329e-17" RangeMax="1.7506467745e-18" offset="41708" /> + <DataArray type="Float64" Name="capillary_pressure_interpolated" format="appended" RangeMin="-1.3842426329e-17" RangeMax="1.7506467745e-18" offset="42896" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="9.2857142857e-12" offset="46008" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.0805986934e-26" RangeMax="3.7142857143e-11" offset="50308" /> + <DataArray type="Float64" Name="gas_density" format="appended" RangeMin="1" RangeMax="1" offset="59260" /> + <DataArray type="Float64" Name="gas_pressure" format="appended" RangeMin="0" RangeMax="1" offset="59432" /> + <DataArray type="Float64" Name="gas_pressure_interpolated" format="appended" RangeMin="0" RangeMax="1" offset="59768" /> + <DataArray type="Float64" Name="liquid_density" format="appended" RangeMin="1" RangeMax="1" offset="60468" /> + <DataArray type="Float64" Name="liquid_pressure_interpolated" format="appended" RangeMin="0" RangeMax="1" offset="60640" /> + <DataArray type="Float64" Name="porosity" format="appended" RangeMin="0.1" RangeMax="0.1" offset="61340" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0" RangeMax="0" offset="61504" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="1.1030265706e-16" RangeMax="0.58466805513" offset="61584" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="298.15053296" offset="68732" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="298.15" RangeMax="298.15053296" offset="69036" /> + <DataArray type="Float64" Name="velocity_gas" NumberOfComponents="2" format="appended" RangeMin="0.001" RangeMax="0.001" offset="69668" /> + <DataArray type="Float64" Name="velocity_liquid" NumberOfComponents="2" format="appended" RangeMin="0.001" RangeMax="0.001" offset="73088" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0" RangeMax="0" offset="76508" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="76576" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="78032" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="79772" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="80040" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAO4AAAAAAAAAbgAAAAAAAAA=eF6FzDEKhEAMheG7pLZZtJqrLBKiGyXgJENmLBaZuzuFjY2W7/3wHSBaeHUqYorJ2kJyp3+G8D1u0fzHDqHvQCkyBMiyRkJJ0J49TuxoC84WkylracBQuzeCyn61B+fz6nDKsj0jQx3rCRUKV2Q=AQAAAAAAAAAAgAAAAAAAABYAAAAAAAAAHgAAAAAAAAA=eF4z0zPRM9A1NDQw0k1PMzZMTTS1sDA0AwA3egUYAQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAlUEAAAAAAAA=eF5NnXc8lt//x4kiqTRESlZESUKlS3dp2TMj2YRkky3cyN4ze8ve++LO1kKaRopKJQ1SVonf5/Hrut/n27/Pxznu+7qv61zP8zrvc/Ke6KqLme+i1L0c7jC+7IfREP82cDIErTYKYd4E11wL91wnGgD86smT0yFdsjiVzx44I57PGIjay9LrR00Y4L/OzB0vNO6kXJ6lZd3+mQzcxMhuModTEP9J8N/KF4+SLH2ABy0G11xLsgAu1xIkqb3qCVyq2k7Bj98Gt8nibqY8aqfQlzw7ZH/WFbhB2XmDJ+6BmCXBey0mYlvcrwHP5xjZtovOALMgOHffI+NeZ3HgRzb+8G384oRZvo60FW5vo/wSDV8672AI/Of7ZP9IM1XcneCzrn1e1+TVcCpf6isVtL3mgJMJbrV1u3uonz1wR1qFF5kaXrhp+rTjlaRWSvtcnPvCOx7gt66Z++D5xzEq37vj0ZyBtCnwgJtyU9m8BpgxwYO8NpyRqXYEnnRv9oiBtS2mpifrGmTTTPmwoF95ZMkLPn8rvy9NPr0e8OkVUVqbW+j6JTxnsAzaH4hJUvm69RpFLI7Avc0y1vkYRWCzy/GOJxIbKekVAoPdPej+Cb61EBjdlgh8JxOJ8o7eG3iRuL/H7ksawGkahUelfNDfvyokiUkfzcVGm2ZdzKzrKKY1ys4dA9bA65tu8uv/OI9PEPwEp9Kr9Tq8wIfaNutp3DXFxgiOi0w2tQdch+uDiRt14NZe+KCbsmfs2WpK+26xHUedBYAHHai6dftcEkblYiK8rVIvnYG/NtddTnlmjbUT/KH5i0Wrm7eAW/jZvdt8LB+bEJb4cut5BUVU5/njF49uAK/jt9e+f+AK3k5wKZ7uvZuaUftnQmYnvDdo4NT2Krsy1Q9FRAP/+/LjtsGXwXhlybefb8hFFEuu+k0S6aj/Oz4L957svoIVETzR3naT+vMA4IFW3PSKejexUoK7qdJsCxmNBK7D32MamBmKGQsWrkgezqUcOxgWZNMSA9f399/J/VraaVg2wR+G3j8eTgoB3svaG6JfkYqRCT7hs9zuyYiebz25sfqF7lys/RH547G/6RQ273V72umTgL9gPprLdq0AeGnmumujknHAkyKfLbLc8gKeT15v8XkkAvi9L2yxvgl5uOS9n4uftWIo3fsTlgKN0P15QtptQcFfB5cmeHLK9W+HDqH7c/aaQDMbqzsuQPCizyWfFW+7ofv7HS8eNZOF0+w6rjjrbEsRFU7rfZmgC7y2WinGlO6/77PzHx9/oP6LXdcc3f+3bFdxpijg8X+1Anuv2wJnDZvy3BeegNFw/D8nsRzcI1z9xRJ48UJl7QaL29T2pJ+PSQ19h9H4+qnm87Nvev9dr3+fjyTxwpmnnDsMeLK6Rupe5irsY+//fz/S2Ly3yfuTaHw9tm946LVJEjZLcKc2dcOSTvT7dNNI3ruqaIZNEryBhnfO1isP+OBvafVfr/97H/z7fUgTHwTTZPegz99xkWalziARkyb4b86KB3pOmcB5tt9j3FHpDzw9+o9q4WwZur+2RlaPV8fjxP1FEj5K5rjW5gP3b9ushu/SxgTq/Usaizw/wdSA7o/Phxkseu954VR+vN9RY04sF/jY1G62lW9NePq/54OkdtDGlsf/JvSPPSlI8cpLxWIITu5a1t5RgZ6fCPMs6Zt+8Vg2wb82Zf4Ji0wC7mZ8h8maKwHL/vd8kwLFE3ZeNUfXr9FVKnLgeylGjA+kQW0R3osiWsAzxERHQwaKgdOoOHb6bM+F/rd5Hb5uWt6I3f83PpE+/xKOLR9Bz++uLZXth/sKcCoXDTD1CJhG48sjDrbML3kV+DDBG1pkA9lNi4D3v33SOzHVjn/4N76SZnldRsxHa4Ar9V+xL7/oi08S/OLjMrG+k5XA5eg9d9aI+eFvCF6kY1/Tdxf1X0a7/bXxunCM5vf/vx9IlpI/WDZr1AKXxhXXhuYbgb8ZnP0lExsH/Mt+p/KQ7Hzq+4WUlPVD+NnOfPj+hxivG7b8qMYs/73fSOoHK4tpZ9Dno1uu1nm9wIYT70cS907hZNU49P7librmwfMgEjcmeF9hcUNjejn0v/NyB7Ouczxu8O/9THoicn+JRq0U2pPzuiNKTjtiVgR/lzTqJC6cAdyd633q3JQ3pktwZj+BnANdtsAbWweXXRrjqP5Byk89eS/7RBTwCoq++4WVEiyG4N+3hfV+bUtB1y/L80uUdjZGbS9R2pJAL4buH3OtfR9LZNKw0H9+RBJX+ijZMoPu772q0x3PBHMxDYKzX7ur1u4VD7zS6W+HZEksHkxw1qKN6/PWbgM38xY9/GZ7Mb72z+9IeyPP8m/PQb//iz6FJ/G1ufgywSff/ZgoWbKC6ysdzkySDryE/yF4yQMjvwM0aHxQuXj3UcCeZszwn5+S3p+UCHdZuAP9nwvan9O6rxqrIPghSpxL/ddK9Hx8VxxYbQvFVAm+0zaJc6m2B3i/GEfOJcZ6zJfwX4kE407a/CDgtjffYQfUz+NeBD/feY5dPfgWcG//DJ81Cw3sJsHVZvfbZVv5o/ZMFgP2I+rYHOG/MkbWHgxC6P2KXdLFFZkvA8/5uOkzz0n0fjtX5+xVfVYF+NIrnWr3OGfgyYdvzXam3gD/HT196aC3XzDwmVVnxjk1X/wawdedMb3WcxO9/+QF+SyLLtvjVL+mcVhr2zT+rpnKT0tdjmllCKbeX5QPLT+nKvXQ/GFciT8hj9UP/PmF1im+fuEbwP90tXSQtfbjDgSnYap9ZerIBr/fZL+51lVpc8yQ8N+VtQmR5HkHaL82t+b9IMUa/Fg7v2XQvAN9f4qZyLZ1t8KhfZlckpN4pDtw8jpfh3DtaEya8F+a5Iz87u/IDy2fW+ctPc7AqbzEW6q/0Qq9P7U3b/cI/M9nqJz3V/+4Uy96/74qiXt6xDAWW6L6710f1R07mKD/L0kVD/13B+BUP6bP5TrvaeEB7V9ohZ7uTpfFpwjeyW2vHUkORdfXO9zZ0Cwb/NfYJ/5l5Tbk7+c2TPY3rfPGhwmuMH1iuVXQBvi1yvw7bz87YkMEfzgkd5FDxAJd30/XU7NycqjvF0rXtmzOnBB0/zW8sdpg8/QGTvVjy8j4r0vjisCLvozmMLt5QXsx6T00F3aj9+u+S3LtE29ywZ9FRh4y9h9C88v2j6+nH6uVgx+bjVR5sJgYAH8Sa9m3gewPvPIi5fm2Qi/on0XpR0vNVDj4cbpCrGRB9E3UvuMgR0lNGHD2mV1DdCNmwN0kuELfbkgCHmP7OTBw1BD6b/Mf+1hqeAv8eSptmqG7ygH4s1eWrXZOseDHcz19FXWLaP62FJqS27KaD+11Ziq0Ck4jv99z8EfJvRfFGJnwX7JrlbZQJJqfjPEOZGpJxuA0ff94btPO+eVNLsC5u25PkwVswJ+nfrvHPwxDPGKvfvxfmwxchPBfneEzDdkDyI+Zzli5fTEi42oEV4tN7quUsQOuX9VpLV8cj1H9mua0SFIP3T7gD3VDBfT2gr9SODak4toK8cBXWLeofH3IB37dkeH0q08QjX8sVywK5XTDqH5LSTY0/TTsgcaPQ48WW8P8S8CP86elirZWo/lDMNvyk6xmPZzKTVuUWIXUkB+lnM7LyzLJBn+WZG+hD3wTDlxxhO7l9fhG7DnhvzTCCYxCK2h8WmwUidmq9d/9+u/7k26xbj2vXB4L7bNm/5jMTjtgq0T7XKP4y4rNOcBFpOtSc6NLwH+LbIVZVSXSoH8reZXIYpbb1N+P9FposlTTDj0fQps+fjbhioP2A4ohE+rqRcDpTgTw974NBj9WqmfKX2PNhP7l0pOEPOpjwY+NW774qomg8VUgyXnpBXM+8BJ5mrn4Xchfr7/oEXqhW4PnE/5bVXj1kFMlev6WzKSehurGYckEr9MRNNr60g34hmPzC9FvErE0gt/f+C2ubAXd/yXDNctJtlngvxF6z9Y0+NH1lVvstJibbgJefU6odS8X8qPFv5MHs3hqgM+prBpI5hYCr8szuqHe0UCd35MWVt+Ri7rR/fH3S7TQX9lO6vhGSl3nOZ3MhObvS5l/sri4KeDPGLmiPvsa8isr4c8igT13cWJ8JnEJzAqsMicCpxE/PrfpdADwWecvojHx9vD3T8XcaHRr9cNfE/wa3SHxdz/SgTtpnH4mfQ/eL6SIHw6n69SQP28v1SnNpB8APzZuO2A67XMauPC9hkeLMo3YBMF1c8uuN+yoRfc/x0axYEbkz8lvt6/tH6yD9mkJvjdU9xaCP8vVBol/xtHv+0Fb1n058TZw4U25w/eGq6H/q+ppSWkyRbg+4b8Yy26/1tQcaM/22UIwU9wRsyQ4i4ixRJ6OL3A+l4/vfe/fwi4T3HPjOssDoWh86VNp6NX5QwZ/tll4yvDFCD3f81HpipUhVVg2wdssk/2De/2g/+FnNcGKKkXUfJA0+N5vg7drFrq/7vlanN5digUQ/usZN4onHEHP5zr6t3N7AtMxNYI/ZNu1kMqO8sHh3IKdXoqh4M9HH89x/DBA85v6kI0XRyRC8FXCf82ie7tqU8uAh/hOa4tJh2FLBB8+nFaTpYr8Ri1d7tzbB6kY1Z8Dyo8PK19G13+aI/5IG38bdpXwX+Nsm2OsXB3Qv2jgVaEy7S6siuDFTo8mFTXQ+GB1UvIXK0cppkbwwsvNP+X3dwLPH1ndbBfWgFH9WFqjQik5Thv638I0MtIsq4ZT/Xg4o3mukfkacMeHjVxSdbbg1zQbo8a3WaL3p00/+0GZJTf8B+G/NE27X5x8Qw88xcW2x/xICHA18+uCY5VofDEoy77vd1sJnyF4smLC97+pKD9TFRBetdjlhlH9mIWN7tjYQ+QP5XfU9vK+vYVT/fq5guDJeh91aK+7+EbjT5UiZkZwkcxHlnt6/NHfd9z+czXcB6P67+qHMx95pv4nf88ZHlFPjcep+fQEvke4Yvg68O6Eb9xjPXaYMcG5ee9LH5qxhv6Xb8zne9Rkgf/OyhXL22ehfKZVXtrt0lVb4Ad57Nar5yB//mKmElxlEgx8OIPBYnoOfX+OB7J/FvYkg//ed5bfXbotBP7+m0NPQyouRmNyBHdgaPoy6nAJ+OMUmkFGgyTIp1ec9AydXdD3V6K18kh47oxR/bd72pPpT3YotG8vmdYw3ZgDfky+KdVbXGMMXELLbrfOM0tobyNscOCOLPLXX1juskF+HEb14xh3V+cKaxng9+5TbC0ewvhMSU8fCXzcZgx8pHeZYvPYAdqzpCXa1U6i/HratsBhfsUP/Phpj5GucDbKRy13H3FujYnAmgh+U7jny5aTYvD5ea6esj98zAX8uezY1z2FN8jAfTNse56e8QN/fnNALP2WHer/7JDYqzR1X8if/2pLvXe314D2gXT84XkXQ6jvR0rJ509B3DvQ+81TIoUmwzkf/JeG5c0I3V50f+Q0nnt6QSGbmn9RBo/cv9q+A/mzQa1DGo8P4jSS7Ye+Bk3A/NGZy/6y/8Vc8F8WiRdClKto/aZk74gTqTUN/NmucHH37yE0/xrmZ9ccnS4B3q7r/5hpDc2/ZYtuvW2wKEX+LCBQkuCO8rWgUFVTD98Y8GMJBxarQyTkt6+WEy0216P8efhj0JkN42h8/R2tyuvwLAWj5scOn84b9nKh3//q+ek94ymm4Mc7ZetD1zkjfy/l7HTsd0zBjhN8SlqG55dUOPD3HAN7psMLqPkwhTFw7/xLMso3tX8UH6erCQZ/Ht/9a1tUL+p/wZVrie1AHvizqWpIQE1eMvBHts4Ce0UqwH+N05xE2EfQ9U300SsTwgrBr5ljT2uONXlC+9GYp+cTKMiflWZajtVtT0D3jyxTWqhoLrZC+O/Ctz1M1jeygftvbFaSGnQCf5472GWtxoHyp1ouG6sn0THYd6K9dEjB+cNm6Pd5l5vYrsl/h/r7kkRGOJhfbKiG9ssYn1/Bi0zgNRHbNbzo0PtVtkYxLVjMBXgJP1+PCFM29N+2Y8vfTX1e1PuLdMpmNqbPrApd39LXp7ZqpUM+fSlg+/grWtR/FJdYRmVXLi5N8JCS9EDP6Azo/9r6ftk5/hrInxft91dmz6D8uCRk8XArXThOzZentWIeGSSg/JYvQOX3/rkEjNp++NGQpKc88pfDpYtvOJJzwH8TLSjrLgqgfN84friLI6OVOn6QZD2dMvWkg6D9zAVBsV8X6iG/Pjl7W01NHOVr4dsDf1Jsm6jjF+k7XzONpSnyrw4/O1qOa02QP1ultdZFcwdC+3zuBMaNQ43ABcbxUa+z+cCvDVgkP5dtpuYXpLLZPVL1Gej+eRWzzbWUzh5/TvALh517Ze6gz1+v2CcrxOME7SUtg41kDyI/O1Dy8aw+JQH82fXWvSeyu5DfXuT56PhRvA/8eY+4MHvgZXT/fw5b1/ttpQEbJDhptUPk8qMq6D+2wfPrpooa8GeBO+JJPLL/k29Xjjyp4y8CP1aq0evNUbsK/PakQsx1B+TPv6b7Pdi210D/abJ2jgM7EsCfmXo+Jcg7oOd7Yv6Q6qE1c8yC4MbypCCHZ1egvfTd8YLv+2MwDYJL2FUWNJakoftziKIxEBwD+fHx7092x+xNAb5JpE0q9QPKn1eWj+QtC6LxP1yrH1+fVUj1E1LUzPpq9f8ZH9T+OEfUx5Zg/tT82GP72vEraP4uo7uTdtvFFEyV4ObxD+KWHqP1tTJPhdTpEis8iOB2gu11jg+RH0j8Lf6Z6+iIUf0ZT7APXudQAnyDGvlHT7g3Rs2f79McPF5phvx2OePmgX1XMrDfBN/I+ltTJLQCuOClXA7+/jbMlPDfS6d6f9eJtUH/G58wGfHydoI/n8sa+LxrD8ovfnt8ovDSFoM/CzPSfN30qB14t4nbOOuxBsyd8N+gRdaLI13o+02KNitirc64G8FvTm6KkyxE/hUSqP2tTdoMdyG47hPa8dthwcDbRGNYKR8V8FnCf0eYTnk5FP3P+rT28+1BYeL4d4JLjt458rsFjS+CtW9ppbZvxKjtT2nw3WfI8gYurrJ2+ISFIvjzTbozR1jvos+ndK2dm1HJHvJnufp9ig9o0d/PXHwVoCPtCXzXwEr/7zC0/rc6INxTaeoNfsz53NSkUBm9Pyf0nw6xbwkGPz4z3yGTJYbGn5TWNSZZ++vQvlz4nI7IEdQ/5/1cvjBdP9yI8F8bzZGLci/R+CJh/nrXg1eWGPH8URSeiubFlaL8Y87R8oTUmDNGbR+yaOAipIWe794bS1yWvFbU55uS3bWv920ZGl823nC8cj07BtchOHvux0vVDLLAT6ZaGcVsOgvtGfeYO85PIz/LLR++JHfZH/y4vd5aUCkefT6nBaETG0OdcWL+T1kRsHTjykL55v7Jh2lvNCLxYYJnX7AfcQ9G84dHQYIm30Oj8JeE/wqqc4npmLlD+75ow/hP6f6QP0t4CSXtT0L5wISaIufpL1r4IMHlCsR/z95zBW77RYK5PvwmTvXjDMOx66F0aP5B0nh5dk7RH+ozJCg2FcOWV4HrRJjuM/G3Bn+ePjfuanLMBPpf0Dy3jYXnv/fZ4X/+29QR/I1OG80/br/dkfnlbBz48Wr/U8X02yg/j1N7Yr10xBHah1h57BsSNIP+TTaIlu7z8QL/ba+tELtMawTtnX0GHtJ25YJf/5kQbn+u5wTttSLslkdZQjEiX6OYNfrfWZNC99+B33WGM58CwJ/Jok9Nv3ZdgP6F7TTi7+7MAT8+0yw6nHHGA9o3Xqa9TPbPgfbDrwwyx8LDgFcHCZvbigbgVH+WvlG7eX71HLq+86FvC51UgB9noB2zKUL9n0x9cGCeNgkn8kmK2ukxYf1h1L/puuBgIaV4bB81PxZLUrR7cwH4ugAzux4vJ1yU4PkCJVodkWh84c6zFFTS94L2IV2zDqNnIoBv38PwbqbTAfy4PTWkZUBAGT7/w4nS172PysGPdU7IdHUcR/ffdYvvUk3hiRgN+z8+3L5aIbIRjV++aoflmCX+8+1/nPTGQGTkxV00PnZwSUpvSSsDf16Iu+TGw4/m/4tyUuaMt62g/cQ9V1bbcMStmuMi7R4U4u8I/1WwvVJDW5kHfJ8Np/6jgSqo39is9eS6iyryzy7ZJX+flevYL4JnB/iFdC+h92eN3l/XsWs3cGr9RlD4QmrNZDm0z0qju+F6K4z6+5F8frA58nnEAt+08FCXNj8A6j+WxSka+4aSoX/8oWH9iVBv8OMZurwCPBOtj6/eKO/JrC8GnsvHq2ZxEvUfWPd+LnGmBPh0O21p0cME6J8lmXPsfmEz+LP6wVPcu9TR+jPTZptkeZoQyJ8H9hoFRmqg/PWEYu1WeR4/qN9Q3eo/Ta+N1rdPVccVG3bkUOfPJOGgPTkpyWh9Yn1ErOnGAJQ/W28Y+1XVivrPy+7lO3CwFvy56BOvwdA79P01rLWS+ThLsSrCf9X2ijAXxqH5q30f7Rp+qxby5/NvbkyXRKHPF/qV7crfj8iv75v5lmvWovV1CQPv66V5FOr4TPLW1P19cgnl05KvP442HU/EqP6sltuiEK+Lrn/QG6WgbM5r4M8xvF+WrUZR/pTQ7Pdz1w196vol6ceOiAzpZw3QfoFXocFOoh/8WkmntvqcPPK/nH21anwuKH9efmwWetqgGPqf6aZ7eCL6P38k/Df93T2N8rl6aL9FiKXUSzoG/PinN6lJyBjd/4cmhAWyfrpR358kEdlLM6KBqP+ntop95bvscW3CfyP6+uOcmNDvNy5UkavuHE9dXybRjJyTX/sfP4gXPxpn1J2KqRBckFzd9OgBWj8ftVt0arrnTF3fJnGuF9xoo14AvGnDlxC9zCoshOBkAVaJ1eSDwI+8083ozivFdAieOdrGjO0tgL+/ly1IYI9xHuZL+O95Q8mKBDJaX9rlX5HGXlAI+bPTmUtS98ZQvlJx3LmHXtsMp9Z/hAmnRy5uRPUpyube8wZ2MfgK4b8Ofr64S0Ix8KObinc2XbmNLRB8vY2MsD0tytda42Xep9zPBr8e0FMvSmJC+fOHXT2Fl1LaMBPCf3ns7xtaP2uH/k/Tagx8vtmJlRHc0IYh0YuC1mde4tLNGgXFmDzBTykwXXi4DtVvtC5za8QGNYE/D6cKPh4KRuvr74zPmPoJuuOeBN/g+0OiwV0bOMlb4dIhzkvQ/n6D0fXlJBv4fL/WlUZsfOAP9ReLjJa3htuQP1gXcor+pk3Dqbz7uYD8UB6qf3XaUpooMegM/n3BcIF/gesy8GlRP3Vm1QjMmvDfnzpZC9EzvsB7N/ZhBrRZuBXBk3afbA7icQJeFEFbu4nTFfJp4+uKM/PK6sAtUzMuugRngx+TvqSPL1ii9afjwvvfHyxKAD9+q3hmXvaNHvDqyyFi2z3dIL+e+v31kpvWKbg+MpnpMTe0CyA/Foy/uiUk2xxdP/6O+AtGZPDnwe9pHHd7NIHv8uh2MdMPwUwIThPxy/30lT3w93fU3OIMlcvAqH48pca5mSKN/EPKJLnVejQTp+bPrgr7LUrYtYBzi3X6Mwig/Dr58q66x5aoPvOgara49v1oyI/ljD7SVPxF6+e9pqEHN2FuwNOvWIaFxKoCL3+jKUKL+UB9R3tscuttMeSPm0Mw2rsGadhTwn/pA3231xxD9WdTokeuL/dnQP6sdKHVZorbEnjGh+f3cx28wb9j6JZ79zHbAW/1e1m7LRzVb8T4sU0GKaLPlysifS1Dt4r6/qBY0l0R2D+B5gfudYUj+QJa4Nea4WxN1l/Q/LOk4kD/A70qjOq/0oVRo3mJF4FzsL16fl2zEifef5R2HBuVL0Prd1/27JPbTBsB+fSVwdj0mUto/fbKAHuDZ0UN+HMVrbQFAwtaX5EJPUP+61GOE+93isDcTk5OF+SHxxzPffzeBvWZlHc/lET3aqD54Xflm1bbd9Si+uVzH4Rt76Ln+/Fq3M5HfwKo/kFxeCw//uU98ruus6NPFs6j/HpKWffGqWTkn8JG0kP1KtnU9XlKe0TR2zsx8sCN1lTqdSKTwZ/ZzTM8xDvR/M/iXsid3jMpwC3G/DcJCaHrz7/pU/coQwzOTfiv6B3vipW/aHxvePLV9vNUEfBXygryj9qR35J+MPioOsThWwhu1fjZWaEdff6fguIDbQeDqH5KkTT8+SjoJlp/8Fc9euTKMKpvjjs4GcWNIz/ZImvy2sPQBfya+85A499jaP30N6e4QbN3DNQ/q548PbSLjPLNCvZedZujCZAvfxq1dWO0RP7gLjklVeZlTfVzkmzKqYD1LKj+UfycWKDYvRhsifDfpafVhW16qP7h6qfUp3ya6Tg1f07LDfQM9Ee/70p8hs0XL3WMieDdxjq6zjWo/upb6x1O+6cF4L8+2blPdDZVQHt6y5Wg6hk/8Ge3VdFAlxto/iAdvFts84+b0P4sD9PWzCfo/d1FSiiaWYuH+ou0crcsG1fUv2dg3y31jeXAg7qiQllMY4C7MKV7aPhVQf585/mTQ02CqH5g5sLRdxF25Xgq4b+TU0FiKrzIn4/psvmPHazDQwg+GDRak3se9X8gXmyztXYEcEt5fYvvD9D8xdpAUPRmWzb4bxXt65X1nuj9PdlbN1dOCQB/1snXchq6g+6/bH2ZoIexlcAHLqU02sWg/PmRaA5D2kAz1G8kHz7LwWgF/kE2Dm/goGG4C/4sduiwVXcJ+C2ZUfLP+JQ0Bfx5vyvFQWY99E+WmHs9ovGmHifq40j69JeP9NKC/5BP12z6VFxeCH7MeOKrp4UvXD+yb1Fa8OuqSODtL8pk/vBDfkK+UpW9cK6yCvz49B1R7e0PG6G990jdRx7+bur7hTRi9U7cCj0fZAbNibAyrnrwZ0M2h7iZZ1DfSt4hR3Nvxy8c8ufvP96PNMqj/l23u/e7z1ZDffOLb/RWYeYwPye3mUh/PRWbQn1/kgIbTM9oVUG+Td7lqKCw7nAIpkn4r7baVXXJKHT9vCu5DjhRonFq/qzQY+O58xDcP2Tu+leH1O0iMDVqPi08qhcdAc8XeT7IcnB/Qz7UXwwHnTy4Mw/mR+STe2l4jEuKMWL/FUmg3COl0hfyTXLBpi3M99ZKIH8+Iqk4lD4F6wfkodxM57dN5Zgf4b9V0unZBfzI314mRbGMfkiC/Pn0WPC85yoaH/bsaPY9W3kep9Z/3Fl50aMci+q3hINKPfadC8ao/mypWoElsqH5H7+98rnPoQbgx+/3kJpcb6D6Aw6V0JjqwxlQv5HaEf1mxACND1kRU4UuKu1Q/ywXIbZVcZwC7c/dcUnpvtyFVRM8lM7dx4sGjT/JR3hZfrwsxzQJHhWecER4vBH6j2R2DQjmRf68f86a7gIvyk+z33Pf5I68CZxfz7X/ExuqzxAeVDLUzbDHPAj+Ue/lkIMQWj//k6G+1jllDvky94E035wmlE+LzmBHc6V9oT6j7ZqqYXUJev/cYejbL7zsDv6cr8bg6X8S1XdkblnfEfnsOm5K+G+P25MLUQ2o/tS3quBESlcSbk7wv+vol21LkT+yqXS9u9ERBf58Iup4uXI2en9eTLRgERmLBT8+rqd95S4FcaNTtQm+XSlQ39zpoZM4MIn8cbyENcGaJQzqo82SdZ+8+Z/6TRmb+YAHz2Mgf17YtaYcPo6+P/+mCNo/fk7U+Stl9ll6or4J8p+3hebKoXtdcR2CT3lIRefSoe+nNTOrGabkAvUZ2nwxH4y1Uf6udPI4KSY2D9VH44c79pmjv68ksOaRYBkJ+wclcpJONn9C+W/M0UF1710ZkD8Lrn4ipdxGn+/zxKvaUtNY8OMLh+oxthuo/R16cX62dT6QP9/U8T+RqIJ+39KixVA8KZu6/kehifU51fsc1R/rxNLR96qFUPMNyn0xtfMhcsgf+ZXosorZyODPvEP2T5tJyK8t4r3Ur58pgfqNkFvW35i50fyNs3nmVdNIPvgx/bmttzV4jgPXj3wuYz/FAX4tmh7q+U7vfz7/LRrzn1Gp4L+Wr6wYzFjR+pDCdOCpK4MekD9nF0o+/+QlDu1ZHV0Si2pjob3m7A/at7fQ/aOhLPDr6oZ8vJjwX24SubiTJAT9f5+0vTlz1Berovq1YmzguCSafxk/K3vgQfIEf76pKlTV0ofmb0bbN2Z6rUVR/YOivyiS98YUzT/SaxNe+PZkYe0Er/sr8Nn0ki7wsefzoTIk5M/GX7imvp+Vhs+32NVZNV2eheo3OPd4UH6h67flp8icnUoU+PHPci8Gu13o9wu6pWKtul4B6jeKzvqf7AxSA34mmdOE4WI8voHw3yp6seFzbqj+TNRNZcD2TjDOQnDmtp1VSpWovoLl1xOBm+KnMHbq/kMvll+Luej+HuVJKXm/JYRaf0yZ9RpmyZBF6ycXbsbwDp6LAH+Wonvyea8uqt/67L1nzNxxG+TPMdn7mufvoveDlcB3fscDN6j5Nkk6QZ5f1/4ylZMP5sxZi8zXgz9LTy98vP0a1j/IFwo7u/22B0E+7cAk3+JPB9ePfO9B0snevUU4tX4jO0de2WcQ/Jq8Mv+24rymLE7Nn/f4Lupm5VgA/5avpWZjFwecpjPcdZcg5Ldkpbbl/JqzyeDH8g25Fb9MkV+lz2KNvJaJkE+X7bj9R5/XAX1+eYPPUbvTgV/+0WpvoAv5GnlO4CLJbToJ/Liw3cHp8X6o/yWXH7fYdmqxGfw4aOnyWT4+K+BFi2MuhvM1wHs6LjJZT0D9M1lKRqlwmKYZjyL8l6XT0jb5FbxfyEmaC+fquHJw2D84o2Qwqg7rd+SNAbM7hZYM8CTq/sMg1pc8DJAfkgXXCrErD25B/kzT/ybY9BTUj5DrVVTTVh83Q/2GsT29r/B6BfT5fftl4tOqwJ+NdzxWrR+D+Q9ZTSZXx3+gFvx5dstR/b2isP5P7pF4UyGS045T8+nsyiUGmW/ywJOYeWzrVdvAr2f9q//IxqL7Q33A00a5ohN/Rvhv3WyycWIRzA/JbB1rKYb/+ROx/keSvpgQIIz2v5JPn/2sqLI+BfJrwXU+fsbvof6ALHfqgIP5AxPIn4dimTUFE2F/Irnny26dTQv3oX6D20Zt28MzsP5KdtBY2cGbU48R7xeSSvhizSETyCfJiyOfjvedLoX8mSVUXNVzEfX/YHg/H5dAGeTP9AFFJ6dK0f3ZkHj8K8kkAXiZ+6rs37fInwvf+zMon8zAqf580/356RgK5M/kC3p+fYWK8ZgZNX+ebDN0KKGB9uNVM7Ip92PAn50lxSuxgUTg5LFqg7zp89R8jpTN8iCtYzIL/X5idKWPJ+sgf56aNX81/RXyL7LI0LkfWicqwZ8ZE2Ymg64no++f+f2JQkQJ5kP134NuWS94blPb05yW8/GR31eAKRCcxXx65I/C/9THZewwX23Vx8kEN4xdKdqliuaXy0o3O5UO+uJ/Cf89qvbhArkOzX/3chbNGz1Jhvpn99ICD84naH1XlXI5ty80C9VvpFUl6nui/YPBzoU/OxnvYhaE/77rfCn31qUT2lNebFOXUe3CGgjOfi97tO4oGn97b7uzBhgUgz8zlviXl2xF9RtCWxR2ROnVg/9m13aUd3ui/ePNGxa3iJ7XwKm8//U8q1CEIvSv98Kzht/6MuZK8Mj7r9660qH3A99Tscd1mnZQfyEptG1j2gzqv+Ll979Opx2g/tndp+D8Cebd0D7oAY9YbY4E+HP3cOAPnm1o/T/WSIc3zckT9g9Kp46K3AlG/lT6hWtpd5kX7A+cuKm71M2Hrr+t6YsC03WoviOmTHak4X/OZ/jjcSgkMTAE8mPLxRBxuSTkDz4RQ0aCWD74syX3k4LDKzA+05z/dHZGk0sO/NtBfjf7DlP0/k75eUPyilk0RvXfq12Su1My0fztsdvDIaataRjVn8s2y0/vSEb1+SXJPn8ZIyOo+3MpgvfOn50TROvH4r60X7g0UsGfEyTcGnROovxicds7t1Bab9g/uFNL9KSdAfIX7x8hp+8/SQC/nr0b+ft5I9q/lxQbf+fznQjq/J7ivqb4fcUV5WNeQb46u2SzoX7D5vKgzI3vyJ+vHnfKPHQf5c+NWd8zBHjR/to8pxujWkLZGNV/B2/0vy8PQfli3RmPC/lDHlC/0cV0b20yBuXDu3267JSGob6O0tTUN950FvnVoxwG8k12tD8w+XB/Y5gj8qdwl4+UfXPXgIudGPWSnQB/oFE2Lh0MzlKH8znalS25P7qcB27haR2leDoe9v/JTRoaW29B9TV1Ufqp708hP3bwKuabXCIBvy8i7Ph0JALyaQemzxVm3Gj9Rb6NVzTgRAaWQfjvXsnYJT5alA9vZe+j29HpDfUb2fmqThNblaC9KfkB18+3cdD+YOAYexi9C/DgL5ZDZ8b8IH8uMjaKF1JD8+dySpB1xm9/OH8joS/nQBIHqq8zf8B86viGPOCfksivjerR/uLX6rz4ylw2+PMS14vTvWxofiDm/H3Qvb4A/LnsvfQ9VjL6/onTWyo+yKD8+dV9LHbKGp0/0T+icL7jSAFGrc9op1su6z2B7u8TTqqzG+NDIH8enAzSfNuBxreZ+epDVeNHcGr9RntCRWV6FPLjG+fZTw34ZYMfk69LBu/wkQL+WziqsP6iHeTTv2Y9xEpWdIBTsJxRBplA8OeJ93EdnyJQ/cNfBX7Lg/sLIT+WfvgnclcGXB/ynMt5s0sa8eDHNOymo+1qH6j162TF8/Wdqb7J0F7Skqe/Jxh+X/JY5B4DsmE29pvwX7OLLWSjM6nQf1Ph7daFP0mQPytpt/n2nYXxnTzY81btp6Qv1G8k2D8y/moH9bXkUcGTR9mqk2H/n8dzpV36OOyfIg90e7SoaRWAXzcl8d+Z0ID5JbkiXvg2w3oXyJ85sJdnNKPvAKc9LlV0uCAGo/rvKaNiCrsC8scNceXfJKTLwI9Nl/D5ulCYH5MV596FW5ysBP9+ZHs+3eMenM9A9rNMfnH1cxWeQPhve3aKAs8BmF+S0142CpPuZIM/07T6O/feVYD21rNcjT83B2BUfxb1tT137jyMn+TVlDbuPhbYX0xqV6fceTkM53+Q2e6uHC6aLANuJ57L3uSC8uNZu28Cx1jrwZ/d7Ycl5qVg/YF8zYy9a6K4ESsi/LfqRJh9vT3Uj5Mpuo8kHSp7wJ9dmxl1N6P9m2TGBxqzWqYt4M/G19mYWt5BfRe5szcov8ulFfxZms+j8UcZ5Ivk54Nhdz//tAV/zn5OJ1dKA/sTyJwSURqfJLWgPjo/iFKe9xLNX+T5xGZOCOXD+RqhZmZ+mxWh/pks9cz11tK1h+DP/QYffAbK4PknF19VfXxLpRnyaZ5WTp6zrk3Az42nxB/TrqOuz5Lk9Esty1eh/pn87J3o5fnfadT3I8l0feveP7OQv5JLx0kRQ0d8IX92NRg98vU36n9C4g9/knYMpkX4r/RV89rPNmj+wSjEYHD6QxjUPycbHdtjeA3lx4M/XeJUA/OwS9T2Jsqf+KbR/X/0YuGPotZc8OfubprRQlfkz3+elAdJGNdC/XPdt2ktpVCUX3O+ss7ssayD/DpE9zKLXT3UP5KdRJIHTvM1YjcJ//WhM368REqltqdJZx4UDY3OxZQInsX48WhUSyTwfG1sOVAsAOqnQ4REd5Z+RX59wCJ1OuNdOuTPp4pN6jlEUP2G49glSYbiWGyRWh/t2X4rjIL218Z/nmNo0c8D/m7btoynLvXAv/z6pka3uxP8edOkfWz+EKp/dt0peGxCsBOrI7gOY70q1zFUv/UzSuDPpagiTJngfBIFezmWu4EXZlcd6+5vxKj1zc1WL/cv+aH1KenwK4aVo1fAj0+zWO76Uov8LlbIdcOCoCnUdwhaNZ+UkET1ORt29NclcPhAvvy+/P16twtofbH6nsqyZ5kt5NPY13dydPqo/nLf+7rqOv1A8GfpuWU201a0/yzw+7mQHeyp4Me8sRo3LvWgfPtMqtjSoVOmsD9Qwe0xt38LylcrY38lfJSLgPw5Bk9Kv3oVvV/7rAqOFj3Kxan1G4M5Gs78QrD+Rt5J83pwWNcT/FnYYl1M6FnIf8lxbtqdhmXhwKW3tdjFmIDfkJXzvR7L1uThVP9d/XJyd4Ye5MPk2TSh0jpm5Nc3J3bG6zeDv5DNdC0bLvF64lcITtYXPEq/HfZfkT81/jgwsTsN6jMe/zrsLRkH8ytypJ1rg6ybD/hzuMkm9bEP4JdklrD+YX9/f/DnwydfPvGvhv1vZO6eQ5O+XKngx4Ndg3Ih6eCfZM3lgS+MJ3LAj3vzeMmXt+hDe31b1oc+2dGQX48yOdKPqqP3w/u37CXdHJngvw6cpTRNTM7AD6/Fmt/Lgf0plHTl96Mx+uAf5D0ac1J8bH6QP7fTBuRFch4D/k1mk0rtfQ84v24vZrni0YDGX83L+mJc8UWQPzs9WizbPgzzK/LDXg87kp0m1E+/4Zq8FJAL+6vIntgx9iatYvDjMulnn88eRPu/dLfGmx8OzgM/JqeYTBimIX9UE1Wnc1qfAP49m14wfUYH1Q82C7CmXJbPpdZnUmiuN9Yu9AoDZ7tQxHP0Bhn8mb5MOdUwAfITmo9v5r5vVXfGCwh+ZcCn7RwPej42sm8Z+eSbi1P9l6vW9P6G92j92TH+QJerQzb4dYHtbDSujz5/jyHbmZOHE4HPDtqeyuxH+yOvbWTY7d6QC/5Lf6pi7yIv6l86xLT4WlcyNX+knCc5fIhzR/MbkzujkaQ7qdD+/kYWmTdlaP+raq/Ilz+VVeDHs++msr91wf1Hs+Syk9xwIAh4/kOFuFOmaH5UrVNvXBUbD/m0GV3g7xPxKH/Gl+i34QezwY+Hq9N+x4eg/U+/Lgj8cf0O/ktR4J/y76dB86ehgsV7Kzd0oX4jpntr629GNP88n1U/J3GjCuqXq948Sdo6hu7PVLapHxtY/CB/Xhnxjx7aJwfceSR/TNHKB/JrUYYu+etVML8kf5x0O6y2KQ1fIPx3sFGy6bQ2Wv+We/L3wqyKONQ/j1xN2u79HurXyIUS87yNN+LxaYJ//dWRvZoH+RR5rv+a+E3WIsiP6/Ij/OM1YX8QefmUxfh+i0jwayU/yQ/jtbC+R/5DFnX288yF9lG3ToemFSK/rckr7nj8uwH8mIGmZdghDepzyT5Hvr5Zsa+C+uagiCcsWAnq33ZsR1Dm9TrgPBlBmu9mkb/K1ArNLLp1gD+T8xe0lAQ1gbdP/krlPpIH9c/Sl/1f6ZcgP+9zo90R9ckN9g9W+XepafAjP7rN9JBvRe825M8Dao9bbavQ99vjmiMzoNIE9R1jtt6UujgYP8jrRE8lOgnWYmSC60+Pc/ixpcP3Mw0yELv4vhDy54adxsOfRdD5bdVRYU0PdraCHyscuNZl5I7W58+Pf6OljN2F+o1TtFe+3fiA3t9/TwauRbV2gP+S2RIua35F+xeyoj+sZ78dD/XPU+lXrwtLoPwy455L9TmTGMifI5TWs3tNgR/SmDnYvxB5HkF9P5AElOaMXR+j+twr7J++y4QNgj8nL2PK/PvQ/tJE2rX6XYv1sH/wF1ed98T6FuBvl+12df2sgvqNOh3Hs2qSqP/W3Y+3KkfD+VQksfFTiuKRqP/siDNsg2NZwKPD5631hFD/3UV0mnNxtVD/zP024NHRUHT+z8XyGSNh9iLq+bSkod+nuzTTUP2QUjAzm8atcEyZ4JU+A6Ei0+j8mY3HN37TPZcL52/sz9LRfJhUCvx5/nmm4WfN4M89z1hEM3ei/anBsvvYjDPvgH/nHeaKrWJE/lUiXGjvutEF8yL8d+V92OmlD4XQ/sipB/zJY/mYPMGDGsS6mGchH6c5/yNrm3tpLH6L4ORh//pGQ5T/vRV7sd6FtQqn5suMuJk5BwnVl03/OW8VfSQNI84vJmWSebq270bXZ3esy03j1iTIn6e+f/79WK8O+OswqzvvvHHMiPBf7tcPuVkYmqH/qr2rGRKRqP7ZlfFd1+ox9PtefpgXbslfBOfXzTlpOwVnIn/GPrqI2WjXw/kbOpuHpwWuo/MBTOwsX891aoJfq8b2HXvCCv5Cc5VlQsQ6DIN8OuagP+3iLbS/qn23Y7gomR7y5/vTmS1pKSgf8tIMiLl4Pxaj+jXnxaS4TzKoPryehvmqh7wr1Ef7Z0VeF/+FeN8ZppW9jxOhPmNCqto20Bq9H0/Uqwl8UIzFqFxWQsvGgg99fu8qyasWd6KgPnqKOevufCL6fK+0p1kUZavR+XNSJZ8t9VG+nn1E+4W7kyvk030CRz8GTaN8KViQwf5nD6r/YKz+9smND/lThdPEMOlTCfgzy+7FGrYoVH+xe0d984cLmZAvDw8t8QVJov25vkmHyAHO5pgewRM7PUwPs6Lxz6dq0U3n+m2cWn8h0zJ5nH0e5ZOatbd5v17UBb/+OrxLhEULPd+XAh8yupa4Q/3GBvopzkPyaP9trkfS+mbePJx6fp25VMCv55+QH7zitPdSo/cDf44SSQpjOoKub9X4zkibC2ngzzuSBITWl6H+9y9phhrY5IL/0rDzrt8gPwznQ9w6yiL0RwWdX1fTfXQd70lUv9/0+qu9olAS/oTgTNfneA+dQvWZGctivcEXasB/6W855nbcQftrFqortsp7xcD5Gy/jbfcttKL9Pe2vui8d3BIL+fRw3vXUg8/Q+Qu5O5vmn9Xlgz8na8v6N0qh9rpiBWtSr8OAJ2aSH66bRdxz/e2dCR9zYf8g/rF5u0o++vybFb3P6QlU41Q/nmif2n2PHp3vvaJjVscU7w/1G2bKKy3d0qg+pTFV+GD5QCS0Xz+61bDzJlpfGLQulTpAgvO/KOyDVyyOZKP7I8rGPm1npz/Ub+y9soUjoRLtLzDxOXf0onI45M8x4ZtOvP+Dzk/3qrRXM3ybDfv/fpZavpnjR/l0aemlIcphtD9Qyvrt9koe9Pz6GC1fPLEO5dPZv8Jlu1pUgdcWNocwt9zGGQn/9Us5byIjh87njL6dbucdkQ1+rK9lfepcJtrfXTzCLW8okAjt77OYxLMUIb9mzApSrL6D/Jne5MKza3tR/vKMxlAt7/Vt8OO6n9IXHH3Q9elgpcT77RCD/YfJoxv2fZNC8w9Jq6pLY/YF4L+SjHpFTY/R/T2WIBU8vJQP/kwz7t727haqn3uW25D564kGRrP9H+e+1P2kNBHtHxg3G7JZ3JqDfyX8t6Z1n4ETM5qfeck1yOzuLIDzN/IVwlrk5s5C/yc92P8UyKRBeweToamkQ+j5zR7ecFpxKh/y5UsqQlkGR1D9o3nruwJW1yQ4XyPzy9SP30Po/vewOnwjthzVf/BxhsqV0ZUApzf41pg1kQr+e5A7Wy1vDe3v0qIP8p7ZWwT5sraUnURHNMqvkqWi7+06WAf+3aB4dyxuK/IPS81DqUYJHXgK4b9LUb9birzR72tPu1iY8i0J6psnpKuFIl6i7+92yDll4sNtyKcvYebz578jfzn6dssBldew/4H0ifHdCVYb9PfpKTLq8pKNkC+nFXH6H3NH+R9lsHm+Mq4C/HpwLbxpwQutz94Vfqx89FMO7B8MmO2OSH6M9red//BB0EqTAv6s3uRu/8EbnT/CFTMmzufZRh0fSRLnMlmvOaHnX2j2t7RcQDf+lJofV78IMnmG1qdMvkheWE0Kw/sIvmKV/Ur9Mjo/4tH9w5MdQunQXoXHi/luLDo/eVd6eI38thhqPkNql9j2pfA9Wt8v0f2j2OT1APzY1zpVRW0O+Tle2nP2nHk11k7wqMEXe1eskN8+KjO5lYrnQ/3G53I79XpPdP6zQ251565fpeDHlpt2S7/dgM4vOXE4n/X2iyLYP9g71iX3SLoZ+LVzPFMWrNVQv1F0qqm3NhrtD3wTFtH/dZEM+TP724+7sAvIv7Ytc0bejDbHqfnzoC/P34296P4Z25G4kcGjGvzZjiWg/eoA8utvnXoiIhONWDLBmT02iQ3pGMHfT/JMzshozof6jfX388R/dKHzL7w4+ceNjqbi1P2DxoV051h6UH3xvUWSydS9MsifSy78VTQuQ/kladzIMrYgDfYPjsqvs5ROQ/uHy8jauokqDVC/sVflMV2kLDq/jrdNYbDQDe0P3GDA2y1NQeffRKyLuq569T9fl/7HWXpqV0WF0Phu7LHM56TdjJkT/qs2/WKR5ITyZ55znAG6Nl2QP1u51Oh/DkX1y7zbcIO1skpMm+CaysXZXVtx6P/60qRK285WjJofFxz5FDZejOYfE25BDGHXQyB/Xt9wJ++5DNp/80WxQH/eUA0jE1zkosH3fAE0PjWa4JeMS8OhPiPic036bTqUf23lFjWTUsnCvhGctuWnfxAH6t/cNkUvwz8M/v8UhUvPtm6NRn7oKFLmRZkuhfw5KMJoyesE8h/R3csZEWLVGLU+OsC1hbdTCbVfZYswk82NBf+2MWZTZjRF72/GEd43w7eawX9zHTdsyFBA4+Pw3RPqndIV4M/YTgX88lQU8IPjPPXHGePAv/dfDLZ0kUL+07Uuv5/JuxWn7h8s33b5VesCun6S053mDkYNsL+w6tH8bGQK8rMgixs0TAOB0P7NDdKh3Iso//ouoVqlursZ8uX22fkwkzIT4DyXS+xFVWogX66I69C7cQa9X5s8Jicv8BsC9wg7xZPPiuojmI+nCrcatED+nN1wSPpYDlofED0RXcHRXgL7B5X17+UccUf1GzOF92u09GJxYvyjJNu1qr9TRfXZ8RKvmUsPNeIvCP99njFzo8cXnY+VnrdW8U6+HqOer/FeXnLV4Dj6frEtEfTK7/yhPbmC4ULdtTPAlU/t3a34rgHyZ1LNRXyzCDp/ObO0cUOTOAX2FwqKs82baKD6BN2w6HKv1ptQ/8wVuWkzZSuqP1l0UBbO+NUOfjylkGwYfQ+Nj4pZqRxd0w1Q/yxYx7HjqSDa/6pXH7xbihvVf/BxZtzbGYZ4zjyJVbq/Ffw3QjObpLsfrT8JneoQGDhUA/nzV3vm7gDHaOAB+ZoSMyk3oX3q8WFmjVQ0/oQtrLtftdgC+wPrVF/Vy6ui52ehMLiPhhXtL1wK5HhmRy8LfJfZ76MvF9D50XdW3V612KF8u/wh3WXJk12QL7vaXbO5PoD8UFjxYmf7XBXUd/hI9Z7P2o7uL8f0lLt639LBn1ee79K5NYvun2/alHafi92w/y+13OBl+Qn0/Gj5bPoj974W6js8OoX2Sd5G58dj4aO5eg8yIZ8+OTRv3rmAxgeV8c897K9awX9no8edYmlQ+8h3R1OLD1WDP9espYf6l6LxgXvslQazViK0zzxxePDkIfR+LqpIJgV4tcL5zuSfI/cYuATh+ymu9zQNfdoE9RvKkglVrAbo93sYUlvhxRcN+fXer3ztGpHo/Wt/0nBikL4bp/7/J7l8ItbPpCG/pOnt8w65ENEI/tzJ+sEldw6dn37wmWL5ISwa6qfj6zTo766i/GZM8naKy8UO6u9DsnaOvcc8g9Znt6dMOBx41A7+vOr5wcz4Kdq/2/I61j5RDdVHa8tZdXvMIj84zeDw9axIN/gzI/fW/T1ZKL/iDYlPSjtRDPUdHpxCed4/0fh98Uzhxsdb0Pl10uWix4y70P+f0C02PHv7eAceSfiv/MiaTsBRlL95e/NUBJ5owqj+3JC9OlN1H32+JGvr31IUV2hPb/k36I0R8v+r3IosHzjbwZ9nvJT65zcjf+xV/yoyav4Q/PnSkN4Row/o/uASL8svZMgFHi33VuqwOpo/bN1708iM6S74r9ig4QX786h/kpj8T5P6SuDjh7zF2uiQfxqyMTxgEqqH/LkiOki2fRXtr2rRPVV9fFcv3k/4b6rcDpayb8ivrtdbTEdwFWNUf2ZX1nBI9Uf+Ht7GGjHyOR/8+W6RvGV3ODpfbv+ctOLOJQrkz0779APU46rg77OHOY0/xJ/C/sB2h7/hymlofz5fX3671Hws1D+/5LswxXEF9T+k7Eyz27Ad9ge6z6bneDKj8zfq3H5W83YnUesfSQG8gm+DTdD60HYHvp50S9h/TzJ6XHDpqCX6fbH8eIbvEq3gz/QKHJcOxKH6yd71VhwlHPVQ//yLeceXvGvID/p/GZ32/u/3pJ6/8Yed5aHeMDqf/Jn6+9MPHlHAn13+7D95Nwrlvzvyul7vGW4Hf84PeegXzonOlzIxEQ75tuYB+fPXV6sTb9fQ+tpPtqvFMVGtOLX+QknlyvtgEvILX7ygRe93M+TP2c7CW7JD9KA9s4Qs5du1fDj/WdR68mMlF/r+8q/CwnWLuvF1hP8qyL0p/uOOzrfkWFcs0/6yBPLlgAj77UdSYH8jzQy3n/pZUgBOT7SfcB/6FreM6kMuqxt55Z4Lxq0I/3VXWt+zZnsf2hdOiZ2RX+vBWgiu2ry776ptC3BbKZet+StJcH60mkWeJPcfVJ9hPLP5g4qqM/5/AC04kw==AQAAAAAAAAAAgAAAAAAAACAcAAAAAAAAHQAAAAAAAAA=eF7twQEBAAAAgiD/r25IQAEAAAAAAAAvBhwgAAE=AQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAozQAAAAAAAA=eF51nXVUVVvbxcXEwu5O7EKvtXArYoOCgaIoYHcnFqBIKZIC0iGhgICUuGAjJSlhoKJXsONa10Ks774v81nv+PYd+M8c45lshw7P2ed35p7rsWG/G0cMZzyU68X2nrmjKE9uAK1Qj4/63mgsawBfBXP6uYVrvjUtnbGIk19H4Ts/SlXVvbqRFxb859d9+YvdxSq7izlyFbTunBN55h5j/uV/hTb1GrJ3wITdvAD+V8X1g/Pih58cfYB77M7uPHn+PfnNKhYefDpbfgc9qDm6esMEF+YM/xXmr6EB+bnLv1VvYKfhv8CcVCtk+J7TH8yZR+rmjh8r7sjjl4ZYdlqQJfR+mUFqWlcjHgJfG/Np0AyDDOuRpod5BPw5mM+GTt2auMVjvw3fuPY/v27LYzX+8ytDqOmACe1/TNdm5I/DnPRw7sx14zpsZBsU1/8BPepX7+XSJWZslJpJ3N3XN+SBzdIe67S5Kg+G9jCfufHPkev/5Q+Cjrjr8vXNW2fWA34nzLtA759YfuHAek8mLWkYe9KsVP5af6HZsUhZ/g7NHbn+QsaBIOF/w/wH9HJcN4dJuqbCr8b8JzQ2Yew619nRrH6d//wqlh8mbClP2HJFroT2ffA67365Pm8M/xXmpOErGrm/zNnOGsJ/gflzaGTSzrXDHWz4uXkfvZ41yZfL1luzV0MThep4blvb+V0QC4Vfjvld6NdHv59pvN7PHODnYp4JbdQ31udgx1gmP5bcdQbkyJaLlr27ERcnW0BHFzVcVnZiLQ+FvwPzLdC6S5ZW2zQ25Vfh22N+DHrC/NjhdoZufBr+vVc22qPXaE+0bAJ9fvTGQgOztWyKwl8OXdhpe93E1bZsKvx1mJtCdw/M/zH4wxlm2kDXV+MQlzV3dlu1Z2OYrAM17uUwvOHBMJYN/yzm56CrFx5V9XoSytzh78P8MPT67uzl5dej2Zehz1x/JyTI5XOycmbuD5LfQU+98d9iN+gS+wq/EvMP0PcGGs7VQTasCv5zzD9By2YeWxVnE8NLPP/zK1webvyhnfEHN3kSdFtGotq5v9fwh/AlzHWgT5Inty53tOJJ8HtiPhh66Gnc6omeEXy4sVe/4rbW8vmzJhtic3bJCdCib9F65glBzHt5jT/Ns2ZuCP25dtvOVs/PMk/44zFfAD0zr8/9U2sCmcnK//qSm89/59JRaEfPxfrtPgWzpJrrpfya6yRnaIjPkLkF2/3Z4po/n7TKq2beAGozNrZOSApnRjV/P+nDiv/+vaRn0A939rbr2jSY7YU/qubvLTWGvo2pp3JoyE62Ff5CzNWgFWNvrPru6sLW1/z7SJY1/y7SUei1jmfu9u4dxILgl2HOodb9L2pNueLIIuHX1amZF8FP/ls3qm5QAD9T8/qS9ta8riS8vqTFLDPr2YcAtgn+FsxNoS62uy95V9jwnfAdMd8GjSk/MaPdgmw+uub9IenWvC+kedDLKQO7P7gXygbDlzCfBt2XahgbuS+A0fVamOtA62y3durSIJC51Ly/pV0172vJFMqnvIx1rHeZhcDfiPkGaPuk6IaDuyYyP/i6mK+ALvsQ1vGHRhbzrrk/SbhvSSVQjX5tDVtaXeJn4Kdhng219r/VaPL2K/w8/CuK6+ekfpKbzLrOcX+V4mvuq1IZ1KbHc7/OKieFL2NeDu1p+PylVOjA68JPw/w29IKzZ37ZcA+mXfP5IN2p+VyQ8Dkh1Qv8Pefh7iw2G36DBjVzNWiV27phV/bHsqnwu2PeFLrvT/eM2FZpbErN55vUu+ZzTRoJfaH6cVHunn5cAz4+N4U+tFApmh9xlmvD18V8MnRv59+3Xm0K4KtqPp+lHngd0Otl8+Jvq6MfHWFb4Y/AHJ/j0hyXrvnFOXZstcInje3b+V5Guj8/V8MX0qQarpCmQF+uP1WxYlASS4QP7pD0oEt2fbX7rhXJAuH/gbkE7bRUv87vzWEso4aPpJar/8tFUhvod82tMxpPjWY74efWcJNUAJ1ZqaYzP8iPX4XfFNfR7zO/+4vorrsT+IMavpPAd1I9+xpt9PqC6yw5mpfBr4u5CnTaYGOdQjcT/hB+J8ybQ20Mu/+6dzCb3ej7Xz6VcmP+y6XSTajL44L75uGpzLCGXyXTGm6VFkBVTfz/6tfCnRXg+qaYP8H1hVdOBkXcSmdNwb/EzarQTi8e+K3R0ef14P+uuU5w9LERlZafjU1Zbfx8tt1VrUdfjVk++PcjuJc4Wfvbh7TkoNWM+Pizgo/NCiLOzuq4jNXG35rDT/yh52DBHMC/T8C9z6BTilrljWx6kjvBf67gY8niucfoVoe4C3ziatK67wY5nPNzZcHg3ynEvdCTv1ZajfF0oNevrKXwdS8Ub7cbM4r7w8frUuiyHWusKhvtYmvBv6PAMRrQn/JV1a2J+wUf4z4sj4HO6z90wpsgD7aulus/brFeP6alN+sP/u0J7iWdavizemfsed4PfnfiaqjDF80bxxODWF/4XTGnn2s/cad53y5+bDr4t0nNfUluDH1x+m6MU2cnruRn4mP7lblmnfst4uPhv8L8HVTr5+y4xGWRrAH49zG49wn028iiO+eqben+K9/H/E9ogzEn1C40MWcq8HHflh9AjSuj6//lcpF5gH+zwL3Ewf20X+sOSLPgJ+Hj80Vo/08Zu+d72LCz8PG5Il+Hpq60H9TyWTRLAf/uA/cehKZUjHzvMjmZp8I/jPkR6P6ubX17ODly4u/jCv5+cLJiTsdfHkwT/96LwL1LoOk7dxze88KdSfBpvhRaZ19eRsDlIDYZPnG1EXTjXC+9NE1ntg78uxzcuxTqW9i+5zrJj3nBt8XcClo38sjw9oWxbD38FYrr1+Z41A/rncgKwb/3wL23oAavZta518yHjxxW44+o4Sd5CLTXQNtOO8YcYHXgN8RcBep470BukeF5ngH+7Q/u1YDejG6aJS84xb/DN8Z8LTTVYF6P+V4B7An8RZgbQCe0+2zXNTaYbQP/7vGo4d7f0L6+MSN2XB7J24Kv1cHVh6E51guX6Hm6M3X4Fpifg840abl/eUoiuw0+1quZC07u80k/4v2N9fw6fA34qfBbnlf7XGAQyZaCn7eAmxtD1+t9npHcNYtNBP9mgptJH9+7fnl1ZxdmD38suLgDNPnoq5grOkeYK/zNmA+B9mla2LpDbiJzBP8eBve6QbtXu2QGhQYzlZp/P0kNfNwA2q99k46uE/xZOK7H9yIpF5pyK8Xg2Uo3ZgT+HQDunQrVLrjS7UCiH8frV8LrT8LrT9ow7JDnvk8xfBd8F8x3QG8MHFVVvC2NTwSvzAf3GkCD89TNT23zZ7jvSnMwnwt125yWdcItSPAzcbc+tFtUuz13+kawcPDvXnDvNujrOlvKjfSyWRD85Zivhl5/Er/DjaUxH/jTMF8KtVnRZeIZk0x2Gvx7XcHH6j09W35YUczt4V/GPAVqKw3qXd02j0fAx/1RugW9M7XBVQOHfI77s+Bm5BzSqjVJ+2ZNdBL8/BJz5BfSVPPXKnUyT1P+If3E/D20VVzIIP0yP8pXpEJw83uoQfch7h6V94T/C3PS8V5VWtPuZDJ8vkh9wc31oClLysYlW6QyCfyLXEgaCm0W8aRl69g4jnxJQr4kDSLOft99XYMe5/g4+DMxHws9MrjO4lEp8Xwl+LcvXgdDoMU/PiQ/u/4/fkYuJk2Apl97P8XK25kRfyMXk+j19rTRHd/uGx14qIKPZ0Bv8zar071TWCZ8I8xXQM8M+hLYNjOenYE/DPPR0KL81yH62kksBfxL3NwK6vbaR3egXTjbouDnPOi1FJMeRSFneDr85orrXx4632lOpBu/C/59D37+CZ2wpfLpRwt3dgt+PQU/O1j89pR+hrI/4XdX8HPVnj2Olk/yWSn4NxLcmw/dl3X8hYF+CVsMftYBH8+Btr0xK6r1tCSWh+vBt1IFrv/aPGvwtuGZrD74tz64l7Rx5NRvGwcs57X5DUaZO3h5mon8uYHCtxtcvbPZPiueq+BjUrcWJ7dsCHPjefCJiylnvnz4TlXgWUOereDnT9D4uCeh1yKOM0cFH7+ELh275IhrrDOnfPmlwq96utFUo2AJs1fkz8Tf/R80N7mx1J75gX8ngnvxPU9O8On54dWpAH4W/jhFPm2g28sn2OEgc4U/BnO8PuXTw8qX2KyMYOvBvxrgGFL7gHf66vpmtfL1qeM+6hrvXYU/UuE/LCw5XNf9HFMH//YD9/aBZl377NVFxZsNgd8fc9JdGZX6OQ2DRT6tjjnl1EWDvSIMQi3ZRPAv7ltyFXTzyc3RWsei+AT4XzD/DB2j//bz+Il76f4mv8Ec90dZrYdv4PkYf1YP/FuhyJ972qTpfksS92fB10+hu3NfH93d5Qirja/Dxx01T+viSJ8f8hXiXugp1SVZzq6ezBx+IuakD/0/HS/7aSn4uRTzIsqhM4PfpD9xEPx8ANx7CGr1+vqD3H++3yFfkjdhjpxJLprYZuxC7sYon96pyKdVn03YsVY/lk3Cvzc+12VDaIjrmgdVQyLZePgLKHeGNm29LbTcNpLR8wzib9KKWfmuSUbRbC34dz64dxF07LKkBTNvh9WaL3eaet4zu3MSc4O/E/ND0Kfzfl6Msf3n/gR+LgY3l0K7xA4xmnrSh/2A/xXz71DDosmn7xTZCJ9y52rozvR5vU/3DGWXwb8DwL3DoHsfMTvtsO3sOXziZiPo4/HlC3rmhrAH8HdhvgyqV6p+/9icS2xETT4sc+8a7u1dkw/L9yerdeg1zo1rgY9/g4vvQTcmNjl+pX8M2wv/Yw3XylOh6zPU1dMaXmHTwb9twL2PwMnHzv8ZU1gQxxzBz23AzVOhLXT8Fx35Hsl+r6jx0zGfj+tL5E0P3s+KZqvBvy7g5uvQjlfeWv19x1zkz6WY/wV1aDftu024D1sL/6PCjyhxWPvs5iUWD/5dB+4Nht67VS/ymvcFlg0/gXJp6ICNt632f7dkt+ETV7+Af7xqd73tT2yYJfi3K7jXAJqUuOVHL+Nw7gJ/LeaUU+8/uHJXQmE0nwR/GeaToTN333qwe3IaJ16ZDO4lTo4I0i9RG+nBiWtmYa4HfRMcPav4aqDgZx2F/1E/oOSh5UXBz/heLeE5lLS2c/mYEL9cxhV8TT+3OPOwZlXTDGYFfyTmxNGvzeoXaVZkMUsF/3LojCUF5nPuZYn8OQPzHOg8LQPzmYZZ3Al+BOa4P0ob5z+ZZReUzX/9/s+vIikT3HsD+m2Dxc5fWQf5T/glinz6rNaUisHMnOP+LuH5oIT7uNT8Xj0fe+dANgn8mwcufgsd56o9efuUu8JHPiPh+aY0Za7W469umWwIfFVwM3IaqVnBx+BFyWmCn5ELScOg+QlFyVf84kX+TNxMOt0kY9HKn8F8PPwZCn4OPmfqGV8dwCk/HojXwTDomicdyi7H7hL8jPu00Nk76vfq/MqbmSr4mfLnhMS0/cO9fBjx81xw7yzoykuxn1u3T2KX4RtgvgjaW8fat4d6PHOCPwTzkdCsYa1s/85LFPzcXsG/9uM8g1oGhLDN8ImbSe3OPtayqtwn+LkFrmsNfWfu1a9a8yi7B/4F10m/oWG29SJN9tix2/CV+bOBQZuf9WaeZxXwu2CuBp2jHbZ0o1mByJ9jKDeGzqmoftdEs5gtAT8TN8+GNoy95DNxdYLg5x+47k/oznsfW9V9nMFUwL8NFfnx26bxH62dLPmPvv+/v0E5dMbYh7mfeu8Ufl34v+AnrS7f2KHDEsHP3xT5s61xVHLW0SmCj4mrKacOqPRwttvVntH1Sr7uVxSyULJdwlzBv9TboB6HoW7TRfkN/5cvK/1b81zatbe0FnxNuTP1PNa4j/B307MTfEy5MYNO2fEpavE5V8HHxM1joVqpYw88yN7LPeFrYk4cHpA0bJp329Oiv4HvnaKH4Tjqba9crb2Cjyl/1oBuHu58ZUSUpeBvyqXp5xKPeZydvm4fvf9l3BdkfL+Wt3lPbj7lmg+9/+URmJM+LTnSf5D1XF5bv6P5oKpOQZsdBR8TNxMnu274qB+9ypKPhv8ac8qZYw1blulNPctxf5PvY/4ndFi9rk2ql3hxyo+Jm6nHMW10/z+/n3ek+6/Ipenn0sP7xVf6r+Lfau7f8h3Mb0EnWWs+beVoy4+Cf2PAvXHQQbc05hxa6chOwZcV+XP8O/27+wL3M0/4hZgXQA+ca/qsTcklfhv8ewrc60z5cfjp+xaG/iwY/jrM10PLxmuuW5FzhN+BfwZzN+hug/6Gob42gn+VfDzi9Ne8zoXRIl9eociX/R5bLpi384zgbxOF33TlmH6bbzgJfgaXCF01t6mJl3uUyJ9PYm4NrVo20XuY0UW2Gf5mzE2gE99HTe4w3Inng3+Jm0n/mLtvRG/tZfw6/PvUy4D2WmXYYXx8EPeFn4J5NHR9T3n7mxkBLAr8OwjcOxC6/1eP9nqnzHkx/CWYz4Y6Ri0PWG5uw6i/gX6CPJH6G39dftG+wRE+Evx7CVycDJ2T2X1jTFQy04ZfH1x8H37A8COjFs8JYs9MavxI8PdiqJ5R+FvXDpY8ssaXQsHPz6FqPS5ZFPtcZvbg5081ubc0Bpzs3/Hm14SifTwC1wfiuifQ0zN3vO2kG8/Hgn+NwL1B0Ozj7nsXdE5ly+BHY04c/Sul7ugF0/axbfC/YU4cvZ3/XnXFxIIvAP/2APcuhIYcGFTQTnbnLvBPYu4Fbbvmy2L3M05sO3zi7lPQcUtOX2+/y46fAP8OAfcuJ91qu728QaLg5/UKfv417YtXvR5J3A9+IObU42g2pOrcvm/ZHLmE4OfZ0FkJSZbjj7ix4fCpv0EcfVejkXGrKAdG3DMdc8qhm6zp7Xet4CL1t0R/A9+PpUvxGa7zPmaxAPhLMF8J9dIsvrN/4FV2DP4AzKdA27ptC74+I4ntAf/iviZdhLoXjg5wM7vKbeHj/id6Gnkv9M+X6GRzR/jBCr968rJH2XZ5/Af4mPoZxVDDFFff8b8DGfmFmOP+K+3qZvVKurRb9DcqFfl1xfSJSxuabeBjwb8J4N6H0Cr/3DcD1e+Jfgbxc11w8qcz4Rd8VLLYOPitMKf+R9SzofurOsazseDftuBe5ETS+ne2PXZ28eEj4PfFfAD0V8LiJ5U7rfgk+NqYj4PmRTlPrV92kBuDf/vhdTAIGmhcX/fxpgD6/K55TPjPnL5vzfX4Pk6/KpQZwafrSJscXhhW6mXJg8C/1MuYDr0YkajnkpHCYuHPw5z03eSO6ivSkpgt/B6YD4Rq6a2zzTWMYcng3w7gXuLgu11m1XccEi/yZ+pt5EMjNn0Nq/PHTp4JXw3XtYWOLk3J9dviI/Lnv8HNv6CW3vxNi5fB7AZ84mbi64v5vx9ObBEl8ueuCn42Tto0tq5OASupJX9maoEvFjkUs/mK/Hkm9ObbZVO0vyawbFwPLpYe4PqFPy+1OPAli9UBPxP3Eh+3GtB3o2agFa+r6D8TJ3caczLeY5wJ+9X3//c76PcZufiPiRaljqKfQbkx8fO088vuHhweJvrNnxV8rNp9e9GmIMt/5df0+9RZN7VSNvRkyv7zW+iIsitP3mRc4MTXxMV/Qc8WN/1lVnhM8LOy3zF8+qhvp89GMmfwr4YiP26drj/M6Wig4GPi5wnQa20i3FQbWon8ejLmxOF2V+NOBHW59C/+JV3fJv1P1/mn2Br4eH+JHDp7zPgdccVuoh9NvWdSr+JY+0HjzzPi41HgXvS7ZBeVDiPUAi7w2vLnLyp+1xr4nxP9D2W/YzyratN1r7fIj4mfKV8Of6tuEltwXPifMP8I7XFA58faVvai30G9aep3zJ41/WaYRRjdf+V74N670OVLc4eER5/nyn7zM6jNn4vM2iy3E/xN3E35c8eyOu9ObLoo8uMCBf+OXXJ9vzQ7hSvzZepn3Ldrn3zj/Up6PirnY049kPMLjx4y1ElhxL9uCv7VSTpXrKPG+Sn4eO4qG0A12q8yfN7Gk4fB34M5nu/KHR7evZeUnCbyZWV+bGxX/HHXmmTqb4r5fMqXjxtc87wYwPB8WjZW5NdtW312Kmx7lZ0F/9qAe49DO5tU+I5+6sS94TthTj2OjJZfVhksixb8vBVz9E9lrWPJ096MjmSe4N8wcC/pXF6ns/2Pc4KfHyj4ue7WB0ULvEN4MfxnmFOPepP6284NE7x5NPi3N7hXHVq8U3eB3dwEHg+fYY6er6w/LYg3O+bP/eBTP7of1PD3Wcu0uy68HPx7BNyrBc1tEN1Gw8+L3UG/YwW4uQT95tKl/Qbc6H2MWYOvp+O6deBsq5hJn3ra+rCh6D+H1/hSZ/SfW+8eMmJiu3/4BPky9Tb0kS/rr7pnvNd7P7MEP4PbJUfwc7u875OSmvkyY/DvGXBvAfRJRtngeSvCuRn8Jwo+3jGvyevVesbME/4Y9Da6Uz/63mrj83aXGPFzdwU/vzXqu/thC0fuBt8Vcz/oxZnJH0pf2bJd8OMwp58baf91xasXAVwf/Pt1Rw33Dgf//p6s09GhTjI3gY/+vqQLnebqtcf1dArXhL9EkT+fdpm+Ysyy5Fr5+bLMXy5tkc7pufw4zOnnmnTS3m1o4il8TcynQAeGth7z4lckcwT/moB7DSmHvtSgu1ukk+hvUK95DfTD8hbOU6dx5ltLf6NrQbnuxK7X6Pu/yJUpZz5zTX9x8uM8wc+XFHwcpq01z2BUnsifwzGnfsfBFTnv9dwyRL6cBO4tgtYd3qg7Gx3P64CPr2OOHEPavvSP3+5nzor8uULBz6s2Pkq/W5nCNMG/qeDel9BYuYPj+Calgo+fY47+n/Tcpfqh26t04XcGP1O/Q/PSmZmN++QwTfBve3Av9ZstX/DnTi3TOPnIlaTR5Heb+2D60xDR75Awp/70/VKjO9NC3Ngy8G8XvA6Io2+OcjNettmbb1bwM/Wfo4c/mJS2x5Mth0/f06j/Me26+vh2J2PZWUX/GfmcdF3V3Cv3ewK7AJ+4eiY0N6Sdw7GhScwRvjrmw6FlZ9aZZ/kks8uK/Jh6GO2OtrfStQhmm+BnUW8D+lK7k9V5f31O/F0f11EPWmPk36Fvbrgy6jdTf+MHdNnHrML4XRvZTfg0J77e0K69Wq9e5xn1p1uBmxtDL/l21TcbXcgKwb9R4N4cqM/rI03mzy8R+fMM8PEsaL7183fRScnsOq7/hOseQq13Hdjw2DuL/e77/88PEieHHUhautjJVvgqCr/5y7HdfecdEvxN/Ew96JQPmz6H+e4S+fJXBf/W85qld+aHPc9R+MTJNx5VNO28/ITg5y8Kv3rLubDwnvu4jaL//Ih6zK9Lf/mvDOanFP0N4uQIhzrTYu28uKOCr0k7FDetW/DDT+TPlDtTfqx6pfXPma1DRb+Z+tHEyfMH+o4bvNid+kkyXr/ifOHI+PS+Lfr5cuX5QOJftaHfTz10Nqf+lOBmvI/k405XxjX8h//RjxL9DTzfkdtePLQlo/UxNlSRH+P7s3xwdIRzmxMxot+B79cyzlHIt7XVIu8vOst6wu+GOfWgVQ6onjJsdl7kz3T+j/Jnl8c6RkP6+PHJ8NE7k+tAjUyHXln40E7kz49wHfIFecLnrYdfxkfS80HBzaRbTr0u0cl2Y7/hl2NO2vCFZWOD0pOiH025NPVA1qo3eSRZJIr+Bp5ripzZ87eq+YcLsYz6z1cxJ33+u5J5dxzAKX+m3gbl0Ad6aAwxywnllC+vVeTLzg7dHuV1s6bzQaK3QZpgfKn5+Dg/0e+g3sZmaNjwlSqxb2M45cuUGy+DHldtULj5nT2bDp/OBZJ+czbsffyoteDvxQr+/hqT7jUp3YvX1l/+sXqSj9OuCPYTfjnmdylfPve6seGi//U/FmNOGv9B22DXigjRfybuvQ2Vl+ZNju3jxQvgEzdTP7rS/Yf2ON3F7Bf835j/gl57v7i73ZQAjv6u3Arc2xSaeWzd6atD3bgPfOpHd4W2eR/ZstWUWewCfPR/RY7ddMDqLzr2btwLfDwFXGwA7Xrfok7+XE8WAR/n+uQDUPUT7a6c1OzBKsDfLuDnOdCOD0aYNFW34CPQ34gA/yZCW3Xq0jcnPIMNgx+IOXJwifn2+tkk04Xhzyfhzycthn5zbNeWu8fzDeDfcHBxGZQdMt819MlCvgb+I8X5QjtD/2ZGFv58D3z0Y6T6UHZ/UWpB0jluA/5dAu61ovzZ957ngcFBfC38fZibQVeH7F17d2A43wtfxvws5dPlGVO3WQXzxeDfFuDe8dAo33N7fCZf4xrw1TEfBHV4ZzNmdHUa14K/CfMZ0MgeLaZ9W5XN6bm7Nrh3BnTz2x3G7EIUJ56hXgfxtfTuzNzttzdyDfh4LiT6z5td3R7N8HHm58G/5uBeyqHPdja+fKDbNYbzERLOR0g4HyHpNpoc5p6aIvJpfcyNofuTN+iE8quM+Pc25crQo+VjzAJzCvku+Bcwp57GV9912u2bFHAb+JGYJ0Htq7iOY3KxyJ/zwb03ofqPbrtm/sNPeP4nuJnOB1qsHejzdV2I4OcPmCP/kAa1G8bVy7fR+RgpA9z7FJp84PwbnaW3Rf+ZehvIXyTthVc0jq/IYCPhtwU/4/NJKtp3/s7fa5IoX5JwPl70nNMvFdl2GnOZj1T0N4ivk1rVcWk+OVD0n6dj/gd0VJ5+3RODz3PiX/oeRa8nk+iR2gdmBLAt8Kn/TKraJTd3QgtftgI+9YiGQg/PW3az7Ja+OP+H/QQS9hhI9rM6hj+MTxf5sz7mlFNv1piSr/XpiuDnwZiPgH4x3ZLYMTuRJSn6z5QjG3z2e7P4ZSxbCT8d3HwVqvXqVvpovoETfzfEdU2gK7pHGpx5Yf+v/jPxsekqN/O940NE/7kOuJg09Ojh/V0mRTA6P9hZkT+PvHmgzdyneewu+PciuLcI2rJe368Js0uYMfh5LrhZj/h5YFHGp4QE0Z+m/jOdH2zutcNyTM+Mf+XPpLppF5o9kUxF/ky5M3G2FRunf6FqNaP+Bl33Eyqvy5yrN/Cg6F98UvCvWXXlmcIOhzmdLyR+Jp20T98i+4CW4Gu6njTk16YhHS9aMycF/xInmzZJdLl5zYbT/g3l+cB7J8x+lWUeFD7l0qQl8fau7p/dGPGxMj/uZp7o2rxbLFf6pBtbmBg3PLtI5NPE3ZRPHz9V77VTV286XyvyZeJg/yUffg2bGEb9J8HNpJfKPfW0nDzF9cTNdH0T1rPnc+dQNgz8O0TBzyOa7B5z5pstp3yZetHEz9aB5bNuBQeK/JlyZzp/eOnul4StYZ5sDPiXcmfqMb+cYN97unok14CP3procbzfcWBOguP/8mfay0H586qDZz//+BAh+su0N4M4OFljW/H8vtaiv0G5M/WgB865c29whejXCW4mbT+7vCikkwWnfgblxunQqV0Oh9ru2CP8DIXv/3bBpiGOxqy2/R1172tvtZwYIM7/4fNRPgqNGtLSzeKhL1fyM87Xyysj3Lwb3PbkJ+EvwJy0cdsbdf8aeF70NwwU/Pv9QWh3lRA7cX6QcmU6P5iffWR58Qt/er4s6yny6dYt39x5/eM086zlfKC7xchbz345sjz44ZhHQI8OebhhVuMYdg2+H+ah0IIfA3P6LYv6Fz8TJ+c3m383efsl0e8owZw0M/K+QVxgCM+Bn4V5IXR1F/P1P6piWSH4Vw/cOwNaPbqTWrDKGR4LfyjmOP8mh4zQWN7AnvFI+MhV5b7Qv0Z4zt/uGMkCwcem4OLV0PJf6YsedTnI08HH9cDFatC9EVc6vGvmwlLhf0LurAo/NTG5svPlOJaI/LgUufE36LgbL7MM5gawIPDxOnAxqVRnXhZ7f47dwPVLkV9rQG/Im3aN0Y9kxMfnwMU3oe4pG853dgvmR+B/wvw7NDfGqSrusz2jfJrODdJ+jkvxX01PdQ1hDuDf7eDe09Bf9VPa+XW+xL3gX8T8AnTXqRaxl0stGfFzBubU7+i3uFFAXpEPGwT+/Yn8uQP417z+vON7dC7zP+CPwXwEVG9knYFdv1zhu+F7YL4L2ifg9IHPs1I59VWJi6nHPMO39evoksh/8TPpbtWAW2NbOonzhcTNeJ9J3CDd7PjQaJYJ/vUG92LPjnRCp5f55YeXaX+PdAJz7PGR0navPPBHZToLhE+5NfU7Xhx/Id0ZkcU2gX8pVyY+vn1vRPiCTTf4bkW/Ixq6fplNZZZVDreDT9xM+XOCc8mRTYdyBR9T/5n6G88vfHIPLDXj1fDx/FD0n6Wpy68MVVkl+PkbXQe90S5z1qPmsWwa+PcmuJd6GsENtVo6nytjyGek+uBj5DNSQ83Lrtbh2WwK/CmYt4N+cLZYPuSPdDrfI7UC91JP49SU+pt2qoXT56OE80MSPielSrOXD06+sedj4NP+Deo/348ef1h1qo/g3z54HQyAFtr5R6e182Db4OMcuDg/6H62WVTngzFspcLXgLocvsw3XYtmQbXws1b9ZK0Kw6ui/2yIOfWgBzeNu5k/PZ32i0nonUp4ji4Ns8h/NiMpk8WBf1sq8mPjjq261fOLZuvhU28jB6oTaJP+dYQT44r8mvj7db86xU8fhLM74F/qb9D5wY9uN9sMD/AT+XQjcDGdIwyXRidmGMSI/nRPxfnBLZo5jx+OLmZl4N94cG8JdOQn7y1tpxYLfl4CPqb9G56H4sZt+hnPcnF9I8wrcf27vy8HfNfLEv1nVQUfPyyabd5MfR37CT6mXJk4ue1R7a/qU7eL/RzK/XZPpT19pn62E+cDkb+LHnOTwOLU885mPAu+sv9sm7xusWYvl1rPHz4btnR5wxWhtfabS9dM/71s4XZWW/5s9FzPY9JCz3/xNXH42Pq2+XdvRnMXxflA7HmRC72n7ijxtBb8TPs3iJ9vL4gb2jrHo9Z8Onvr11fGQTF8LfiXeht4f8gPevZ92+66F1Pmy6TjEsq2aKyz5rXxs4v5MItH2mGc8mfqLdM5QN160/Wmz7QX/NwLc9LvLedpGLo4MtrPQfkzcfT9rBZ9I1aHin4zcTP1m799tN7W4FZUrXw86nOQ2db53lx5fvADNNf7erutn8+L/JhyZdqfUbBgq+y64BCn/Jn6zaLfMd845ImXg+hvPFBc/7nx95Mf2lvzYPBvMbj3BuXQJfs6JKoksNr4edXLe8tj5qzkOJ8j5pRjpy9lUvXFBJE/49y86DmXzLnknH0ohjvAX4z5Iuj2L/lL7r4JEPvrqD9tBY2ud0RH3SSa0+uGuFf0oF2qfkzde0rws7L/7FXptcFxpCUnn/oblF8PHRT7rJ5TNC8E/3JwbxxU9vYbbbojUvQ77DE/AS0P9euS9CVQ8Df1Po5BL+s9M6+4Gi36GbSf7i5U9a9Brz8OCeEb4CO3lM2hjn366C56ECryacqlb0KPHTOt3+9xiuhvUO+CzhHOrdizVbXMhcfBp70cdL4w9tTGpSNOBIh8mria9tgdeW/03uxTBA8D/56mfjN0QZ5P5NSt8Swf/mhwcR/oguEWDxZGr2MraP8GrmsNDVlQUTp7bwq/D/41B/dOhbrOTzEfcNqB/YH8+Rpy53RogwCVgnPMnveGvx5zT+jNwnEd7owN43T+7yq4+AH08LAPLzbMnsIon/6C+TtoYKOlfy/ZFMBpfx2+f0h1oY9DPJqNcYrnBuDfQeDepdCtfyewqAVnmTt86m0EQTuw9C9DT0aL/Bn9dskD6qztZdnaNZP3Af9WgJ+bgn9HWkY/PbE9Rey3O4D5EWh90/JWDjPS+Tn4qZh7Q7/f8FmkP6uI03kt6i3Tfo1P9Zprvhkaw3C/Fvky7em4fqKfb5v1VvT9VsL7Suzv8Gl0xLjD62AeAf61BfdiT4/kEzg1yTYzi51S8DHuD9LD3RkvPqhfZdsU/efR0DPLzIw0V8czF/BvBbiX9nAsaTmw1KVfLsf+TQl7hyTs35R66Pnu7RWUz90U/E3nEH3vbo0bmFkk+hnEx6QbG4/e0Mg+gPYfSX9hTj3nj5OdDvc38BH7O1QSa+Zv4C8vWVxeVezJkc9IJYr82dTt9X5vvweCjzuAi7H/SZKfyusOX8hgw+EPpL12uP611dumtkapTEuRL1M/40vihU22+8/zAfDpXCH6jZL+8KcaO20iRD96DuXO0M83uoTrWV8V+zeoB0SvJ7cAm3k+LvEif8aeUYn2vXT64ZQzJthD8DfDnH4fwzcPbJ8aRvNw8O9ScC+dI7RODRz2V89rLBn+csyXUD7tuDdozpQ46peK3gfOaUm+G//8GHPbkiWAfzsp+ht+5S8/HouKZasV5wepx5HcVG+4wzk/nqrgZ9J5eXG3V17nvBT8S+cHq6G5LVMu6C4JY0XwiZuJrw2jk3YNNAoW/Y1e8FtAhy08+nHk5Wui/5wE7r0OPTl5XeVf3sVsAfh5PviYzhGqBjTZss/vn/s3rgcfS49x/dsBoW+8u2Qw4l/iY8qZA7eXXD7pvlLk05Qrkz5dqqexKXMGp36Hsv/cdoy2buay1iJ//luRH9df+1f/vnf92DX4yO/lD1Dr7usGaH8+JvJpZT9av+hTmxjrIE77654p+Fgn8XKRabUvO6nodzyFHnn3e9/+nV7crZZ+dOUXn/I+f6fWmi+/GjSwvLrTcdFvlhT+xq4uLX7c9OO0P5rOFVJP2q7a7bJdhySuzJ+pp9FRTbf3gC4XRP+Z+Ji0ddG+Kaf/2CXy52EKf4+Pxiy1r8G8tv5F/lkrq7bW6/hgRX+D9nSET7jp7NP+BOsOH+cr5I7QNc8rjpT0juG0vw57NcUeu6zesuYwMwc+SdGPJo4OPfbnhR8bwzj6aTLuiyKnDtYM0j9+NPpf/Ev95arlMwe9n2Qn+Pqews/NjW6+604QrwJfF2BeCl1b7DLqzrI0fgT8GwXuRQ9Qns273Ug/7sPIx/NLOZY4u0fDh6X2vtQflBMwRz4j63a75vTcLpajvyjjuaqM/qKsfknXzVXNQ/A1+cTZrY07Hf38VzS/Bd8Oc0fooIc7dvVPTBX8q9y/kXrl9e3+gY5MGz5xMXH0kY3d+s2OOcvp/CD1N2jPXYz3zPjqh758NfiX9j7THg6PAN/V0wsc2Xf4xZjfopx6VkH4i50eLBf+eUU+XXphmLf7xCgOfpI9wb0BUGvbCUe33g/iHvD9Mcc5Mllt1cKQ0cWx/8qn6fxhZmJAxLjJ57gV+PdFDffJP6Blf3Zq4xIUyc/AVwUXt4AG79GydX0fyB3gt8Ec+43l9JS3j81LI7kf+NgE3JsDHeNZ3H+U8Tmxn84K/ecQ6Po5jfd9GD5Z7OdQwXXl8B9X+pxaPeoSnwb+bYncuRL8O/vlHKfia7FsAvy7mOdCH1bsNUmRTVkzoxr/g3vNvC7OGSZkfY5rdjqKLwL/0vlA2r/R+7zJicaHLjEL+Crg4jrQJm3ue1RvDuOb4VPv+Seuz983o9WvpFhe2/66o06hjcZ2C2bor0vor0t4DiG1bZ/x55pOIfw8/G+Y50Nb3nri79MqjDuDf1eDe+l84Pxu3VQr3eM57X+mXHkV1N8y8U64WjqfDt+CcmloLxerNyMOFYn9GsS/eL4j3ahKuKlpEyz6HQsU+XPCp4AGLmvPif409kOKn9tkadrhsQ3nZ8C/eC4loeclHTH4YtMjP5NRv4N6G9jDI/3qvNi0xOSK4Ov5mOP5lDQn42WQlmo0OwT+pb1zlB9P+vb9euHU//Wb72CeTxzdKKdeuxEFHPuHxN4O2nP38rv5DNsVpaK/Qb0MypcnTMt5Glnkzr/Cx14kCfmGtH7j80bLxoVz7PeXGin4uUOXT5NfZ3vzYeDfJHAv5dClv+ZWqJTeZgPgP8O8HNrzXNjv6+oy663obzyG39qwnl8bx3/eP+BffD6Kfkas6fuzc1QvC36mc4OUT/tsMb/PNBM47Y9egvkUaOqo/eU5Hqni/CCd+6PnFa0OH5R/rnIQ+zeIjyl/npRekZowdxc3gY+cRPSge5nHVP4xRxb8TFysAw3YMU7lgGkWS1Xkz8TZ03tF9xt5OpY5wO9JuTT0Z6t5HyJ3h/IrCn6m/RtnfNvlVGddZmvgp4GbM6F3daflV18NE/ufVRT5s1HXkh1l3zI45ccfFP2NmMl+tlpHIkV/o0qRTwc4TVyprh7EKuFT7twUWpJV/55/dLbIn+PAvcXQ1i1zta6uLmFGiv0butDeCQfP+i/nYn/H95j/z8/3B7c6atcvV+yvo/0btH9uTtN1+mb33UQ/oxpcjN9HVu2S/avh/OWsWS37o1vln1047JqHyJ+Je6nHXNJhI89QjWDp8N9iThrYxaPv1hT3Wv9/lY8lyzb99TtJnA+kc3+UIxeETS35UZDKqB9dgTn1ozukXLXu6OYn+Puxgq+z/H7PGHYvm7srzg9S/jzQaMvWXR2uCH4mLqaedMmLPhdv9vPn5FNvg/ZwDFxS9vmdZa7In9FrEvy7JfGZyzvVTKb0KV/O7W9zM/mEC6f9z9TrIP5ev2P+rcoD2WK/s7J/Yd/98/4jq9NYbfnz6VG5a2/92siU/Q7yM5b5jgi1yBH9DMqdScNUA2yPfEr81/lC6kdPCre4o9rej6vDx31PLoOOC/EuLZUzRf+5TJEvX2jZsnBlywxG+zWwN0lG/072GnTwQc+XjpSPiPya9ti1/KIpdzuSyUPAv/h8EVrXZ96iE/3zxH4N9AbFOcH13kPi5Cu23KMWv9cL86AWK64LPl6lyJ91u/pqXLLKZLX5MQVd2JmeAWI/9H7Maf+d36QBjhl5uZz2P89R5M8j1EaqxE1LE/uhkZuJfkegWuzuIm9bwc+UXxNHv//2frpV01zuCv4Ff4j9cwNKXGfbtL8q8mXwh9BPQ9S/18t2Zhvgg2/EHml+IbL6yx8lfA34dxe49wCUuTwzSV6ayihfpl70DeiLcIPZx5+H8yL4jxX5db9+DS+MVi/lJ8G/6O3Kv6G2Y9r31yq6ymg/dBdw8UhohJ2KfbbTBU795+aYU4/Dft2JsoFlubwd+HcYuJf2OMf6F0uhaamsKfxf6HVshs9ym9w07RzEVeAXwV8Mv4F6oJ6TRS6nfgZ6IdIaqNOiijvmE7JZOvyPmAdBx77v4HvwkReva1rjj8S5Q0fk15mT9jeb9aaETwH/WoJ746Cht3N6L2yfxSzhUy+D+s1/bXgWXfDFizvBX405zmdKGnWim5S/vc6Twb8W4F7sR5E+f5u/+nqb67S/UML3Hwnff6T3WheWr2wfxPfDz8PcF3raWdVsTetS7gj+pb3OtL/Za0uUVj23BDYB/mzMqR997rbVGT44ms+Cfxpz2n9npWLUfuLN64J/N4N78f6QCorKfl68mCX2b5BP+bL2oiqVt0bHRf95J+boT0mJde0OHn1QIPiZehk4HyF92fJ0bURQmdhvh/2X0naolvMdp4X9okV/wwhz3Eekz/WSKjKe/e984GNwL/Wfo5Z8f9h7DefHFPkz7acz+l5u8e3vdO4OH+c+pGtQ1XjPNKNrN0Q/g/Jl5BxS1eIN6vuPJoj9G1WYP4Ka1emTtjI5VvBzc/DzO/hqXCVm+e08+nyRZHDvA+i1amc/OauCkf8Cc9InKwzMbrX1Z6Pgt6a9HPDXWmgtPKRXKPrLyv0bDX6u79J1VTBDviT1VPBzXGZ+Wp+JF0T+PBHz4dCc+rGzjbRyOeXH1Nug/z+laqjVzk7P0hmdH1T2NyZce/l75zp/0Z+mc4X0eht6K8L+UlSe2P+sC+6l84G942b0rDv4OpMV+TPtgS7UGLdi7Uxr5gsf3CLOITbUlNUCnHM59S9o7xz1OGLnZpzeMPUaM1HwswxtYxZg2WR6rOBn5f+/0rdpUfmVo6Xi/z+h/gbtqfu8fJBOtmqS6G/Q/69CfP22m1s91wlO/Dn8For8ecyM2X+uuunKqf/sB+6l/RspwVLIzdgbzBT8PBzcTPs3vjcJrIh3C2b3cf09xfnBxRFddX4Nt+T/B+QqXbU=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAEAEAAAAAAAA=eF7tkzEKwkAQRVNYBLFIkUIklYhWQgoRIQspbDyEd9F7uaBHSGkpYiHYpLBIYSFk/x+ZxXgA2TSPmWxeZmdnJ+vscV32j1H7VAfHGoz2mnWhKXlZv3K+ctpyBO+NXnxX0YN8zzimlh4QcWoWzleOlZfrnoVmA+/A6HWRF6c2/+m9cF+oo4E/6ah3SL9dwTtRXvFhPfd/8ch8LD7QbL/Wy35y/3evv4n0Uedjeq2Bd6i8J3ikLsbe+bMffB9LzD7Mv3rv3r5ZD/ssc+Wf434D70x5zx1ekl56+L/PPHMeMl0vvn+B9LM+mTN/fsHEsL+5um/sA+8dz8+fg877eICvdHGzCwwMDAwM/Ce+AZKw6WI=AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAUgEAAAAAAAA=eF7tlbEKwjAQhiuCqDh0cBBxEtFJ6CAiKDi4+BC+i30vBfsIjo5FHAQdRByKiAgGDflMWnETrsvPT3LJl8td2po0Dtt+eeU9v2SudL0w/QneC9P9eZjuOd+9/kDxjV++/fR18O7Ii/3W5MH8/MjwYXVpjm8Qn8N49R3fU3xv3qaVl+e/DNN9At6yyetFmH+DjxCvzxf8xBvzvpCPxNw/9DPyy3qr4Xx6/QF4W1beD77Q9Kw3zqdnfRWcfEp1/mdf5Zf1yfvfw5Pfd9aj0iPmFzFf84/AW7Pyst6YL/Z7DL8hP3jZv0XnOOuh+xXvfpHumZ8r4vl+sN/c7+MUvB0rL98b7pdVr3fE8/wlnI/51rx8Hxr2/DIfGf1zga/gfq8YJz/zq+uH9RtY/29cj+8P+4/5Zf/xPFyf+dHxAf5voqKioqKioqKioqKiov+hD/G56RU=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAWgMAAAAAAAA=eF7t0f1T0wUAx/F50wuFHetuuuEgHhrziTNSmAw32S1ZQAg6vpvs+UEGPbAtjLt2OEagkQcYu0EIJyh6Oo1CCWNk+0h6dT1MREv0CjmlOAt1iDk9kHYj7/rN73/Q7fUHvH/4fCiU/0zf2v/eQnE+GF/SnXzTqyAGNp1yblLDGbwucisJNHmIxx98ZkTyGnXWVZMFpXX0ooT7VtSdnKPGELvwTfOWvOq1KlCeM8atG3cV5iOibbl4GVOK9uKbS1t7OegU7imP6FJheLWPqPeb4NB3racqymCrPp/89EwpLucKJtS0Euxr0a2iRuWQun05/W+YfYWI8G6IH1/JxdyGJS2jC5sRlS5jX1+6DXbb8hOBj7U4msI0qLuM2LqsdPLa9E4EDjVbZ2INYATpgzyJjNT1X+DU34zmCDrvumbZPRIc7o293fKRHAn6vZkXHTrMVPVJrRYdQnH5DSytGiXiKfEAT4kpE+3Xung1rlYsfqe3chupa0tNok4oc5FZNX8421cApp8taiwiQKt+mxoKGuGyHzNz4jVo7+bc4TkV+F4SyI0ZV6DPzaVFN0rhiDxPrDu4g9SN/KdirODcVlxk7WsKtWlw8Mnk6Bf6YpxgrCiIGzRAe8mUmkGVQ5xbtj5vVo4LLetWsQJ6xLbdFqTPSPHQmtZdq5OSui95fq/5Q5KBhodricE0FTjmyp88UUawh7LMlUETEjI8b3F3GyH8Of3WyXkDKA/YL16qVYInSXgk5svBpAu3jFjI+z623z/X1LlR4D7A+vOV35TIOeXNGbqsB7OPcXZgVANWv9tT9ayz/c3T6p5D2/FoZL4k+Gyn0PEjG2+8LoNo0WKK40ocqTshXPFjB3eJgKjp8Q1fkaM4y1J7wKbChxHNBSNOGaQpY3e+2lyEGL7d9bVvJ76by1K8/Ckfgjjv7OQxIUJ2VmRHskjwfJeSZHi6yH/XG0n7a03FmR0on5Zi5aAelsbW/bLdBuwt07rLC7Xo7vZz+49IEHxB39Ujeg2fmykdDWfp2HXtRurcFPk3TuK3C9R6nuCXe4k2hUmKB+8GuHuseRjiRz+JPq2BTfbJ35kpRiT9kDfs1eiQono/kXEvDZW8mNbsqGzYW9sdNa7VpG5YWFhYWNj/yb+3KoEaAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA/AgAAAAAAAA=eF5llXs0FPgbxqcd2tyWShlJyWUithS5jkhMQ+M25sLcZzIjCZW2tbm0SipE69IiumhXUiHVSJ5KW6lV1JbdxSrtSrZyW7S5pV/nR5yzvv89/zznOe/3fT8PgTD+up4diPwQQIf2Ja3D9rKVYF62LTpsy8fh0V9dCrlMpCiYA9+elcLEjO/8SBYO+R4tf4M3EdhzepCoy9yIG2lrPGOX8UD4z2sm72lJ96Fj1pF5rqo6DGQH/KGSed4YeU7RW2bl8/DAtJaZ2ClDnDh/OTEwGFGx10yGSuWo86A852sEISFDtJSoTpvmW0Yr3xBW64NZVasWtywgY3CVckbDB0eor2bp/arihZioeT/2pwpx0kJHws+Xwk1V3vaki4P+o2kRPQsl0B7VqrChsqb5dlYbJ/6haUzJe5X+Tq+YimPnF7Zm7GfDQLzX4WacCD27yhgR4SKM6dOTSEI+glz/dr1sw8XfMo3GPYv5eLRNKfT8Dq9pvlGWhsTnXA847Bo+5l7rDZ1OPZdkfyY0YjcTx0alSI8pCDNeLED2CeN2m8OBqKH2e+i2BKKskKyhmcxAnNo1pvn3ftN81Ua2NXtXuuEmKSFl7IgA379ta7ggDsCP2vO99SskEN6XWdoR2XD1CF7u+Y6N6gzzpaR+MRYeaaWs7mGgN8L6RLyIMc13keLP3X9R7ZDUu4xZYc2DcdiOnxXqUuhddw7bMSqDgZ0ihLxdCqdfVj87PSwBoVtv9v14LmyoBn2u9mzoaDmtqQ+fPt+BmDeVKXlWlMJDpJcrmrigFVXRrteJoVOmffFygwCk8kLFro8+vptK+MVHfdFXPxw0+nFOYz8ct/ptPQsuM5QIcQ/1p/k+d5p/L4esTGHuLq598JCNAOfw+ENRPOybleZdf5gFhkVz+xVHf+jax6RfreXg9qBzoNEZe1D0q961FThhLIaklmPiQvmvL8FQMjSj81WVmkaH2bZSP2zpYmBBhRjhyZkHWNsl2BssLNziI8SJE53k8uNUjH4uzi92WYdzYYScpIta2PjkN8vBv6f/m/GSWx+IiTaUx6+XRAXKGOje2k+OjvDEdXvNt5olAkSxsv5xsJDC8K7ngyqBCBa8r5dov7bGDhvdTHd1d8RkZsftTjed9B2/X8qkjsm7p1+/zxUv9iibejDpsPhHPzGC5guNW7qFAVup6GtM3KHnEYBgg0izdXXeaLh0Q7uhkY/5+UXs30c4aIxozCk6sAnnItJ+INKDUMOy8YgyjcDj26OKkNbNGMhMOJt3PAQ9H+RI8QrFhXfJDWd3iFEUtaDvatknHmxAtcW7cOds/8lc4zyYynmVad4YstgXd2wXaBM0vKE3w+8WzrkhpGvkjqzZDaVFiq6rq7xREDG0wcfcCnVte933PZVgduec2CEtFn68ffHm7QI59m0vnkvIlWIk/MtlcUrBOExtvrtiJAgFbaOfnRXK4LX2SvI2fwlKlmsXC7S4eN7XvpScJZ3gix3eSMUmCwt9J3ON88V5UldG3zBLL3LFVySzzTtrHLCG5uN3MtEKwmzRh8eWFLh1hJa3JriDP/yUeHC/F+JVxLo9B9nwfz//xa8zONg68Eg3tE8MxdBf0RfGhLi1spZBzRTiUf4if2u5GPNOukqa5grAJC/NcJsTiPe6pPuq1Tx0eB/5o8xCNMErd8TleiiohKl7HeeV9uTeSipV5psUroQTIWfJK7Y1bGZHdvl2++LNBep9y6ueaJ35KGUZkYdmel5aWhgLB7pyqNk7RUidz/ZdIZRgJz2ue91LAaqjzZ7/TBVipWXuS7knDxtEVyqWvuOC3LBLY6E5D1m3w6jBKlxseni3pnMLC/SZuX00FmeCf06wKlisfNN0ap7j/LOf1IGsL35Jn0PHT/Nqw3VU1yM388HnnBY/9BQTSrTi2CBFRp26RRbg997dSYu4bJx9qq9PqxGjiVZdpMGVIit145nzHB4GjZR8ln8XiNL+ZB1TRSC6Bu4crF4XgKp/U8wzrdgwsjV5YPynADpN/1jqz2ZAvohoYnjtE0/XouJa1C72yNR9jvPUelIbJT8bfTzkD43QlRricBdYfH7JsnGEi8IETm+zjI+tmgfsdnYI0Bv88qKmkxDMYZq88gof4lfFT+81bYRvknzF2lg2Huq/iv8pUgCJnWjNtXA+nn0V8pa+U4B64dE75Zu5qE6qLH1vJcRMYlI47zQDZt27dSiZzAk+u0Kp2q5nacfUHY3zeer+VUpnD9ue8kXRi0YdzpnPENJ+MHLOaRFIN5bk98/k4cQ87tEspSAoVEkHHcIkWDSyK9TLNghz1WSngiOlKFH61yjYRgqL71TutJWL4HTvlvyQowgy5UPqsTQu9BYcm7FfEIBvhGpVbZs5IJ9dnj2rgYXct63pKdWsCd67w9zXaVHNhvWTucZ5bzS5nyEl+RXqfe4oc+vuE60lU/R67jqyHYSITZQExDUEgEmgGupeEWHg7nYV5SQhSBeeWpPM+fBu+YXwU3kgrA8VH0xPZWF1hEt9zjM2Th5tED/5moFLvllfr7JiYtDei/6qjgmjOk9H9+uemNN+fG698Xp4bUldmVZGn+gPDZwbWnGE8bvpZK7x/njr+EnL6kJGvydTUf06OmMVp8uRLVInf2kcCMsa2vAxZya6T411nE8IAElDNVYSKcSWXOvcdXImyjRbSuHAh2KVOez3svDaY2FN+p0AeNo+2ERc7Y1LbkOPPQ593Lfk2CJioSNWfEYwOabqAsLLkv6trm8dmXnvvds6LCf6yJJyzyyLzTlnNdUf/++jpqpP0udh05cebWuhTRrsOaUwofRFUv2epAaiO1rJT6bKQBgiDa9oS1D0s2biEIOD7NY/u5S9xCBrp94sMRbjNe91S8FDJvLdpAWDZ8TwZpKly3vdUJn8PKKWzUL5vG979TirkX5Zr+TSZSesaZY3Ww64YpmbfYfC0Hai39air/2MAW3EbTLneL+RKXPcpb1l++3hceqomk6+DxZ843b75XYWLL75YufJeDES+E9DU7rE+NebudmAzoDqi4YffOKdkcG7Edlu6TjRcyT8D59kl/I=AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAdwwAAAAAAAA=eF6FWHk4lVsXlzRrdHGUqFTKPITaxDEdRDoyD8nYMZWxEGVWJDJUbronojmpKy674fokIdFoKCGh02BqkBvVd//Ye3nuuc/3fOe//ez1rvVbv/e3hvcICPzzl/xrwkgw5/Aten5XJP1pvswJOKOatHBB2QI4/37DftT8RCGcX1QM7/byL4JzOd89k+/5IT7/OXzx/9fPpfbnAquPliiR2P9e8kZEJGIJ4hF/atnfC6b2WaINJN4LC5erxblG+BrBo8421Ota6IHaCd6YEdMR7lwVVEbu77v3H3jJ8EW65Hkl9r6Gsyx7RPEWOepw7vdYoUwSX1hBMaEzzhVTfMfs+xO/lsYhetZfvHGKh7wbiif2CZ8Lpz4XMkRviL/UbXle9d+c0HoS757CEq9f5YxwCcFjyQvzTTW1R20Er+uh2TyFv+1Lyb3CpusBBo270EbyfPISE6Wc1ep4gPifZzFue2+RIcog8dVc1mlM7N0BeM838YJlP0/iXXDsfLZrsCvaT+xZs+vy7p1koT7i74T4ebGuCmukReIVxHdwl+uY42KCp6l023XP+R6oheAtbuo4vNbEFlH+eZVioXa6bkibPH95RsdA9hVr/J745+V0DQR3r0bpJP6ZK+9Fp1d6Ad6ksGKJlR/iAe/oF4EDL97qolhib6nDFt0UhDDld2XIbp9ATTukSeKtF24fVrNYDng5QzmBebLOgLfhWF/IESULdJXcf24RL3dp0ENU/6xYG178XT/8lvhXjfosz2O64cMkflds0/4cTU/AuyhvxFLieTLgxTkd7fvjNqBoYs+4INS4/ac4pvyGzUr7c5OALeDN071wSGXPFsBb8SP98sxBFnpG8HYqpuW6HXDBV8j9iR9JDEatFaZ4q+T9Fo9VhWBazzhnxtESQV9M9cD10LAyivQDvL35ZVpdBomAt2nZj6CyB2uB33PjquJ31xjgXuLPqXD4VJGiHuBVSGZZ9KluwZcJnlXy0sWh5/UBr1iiSMCYgBvoO8YivvXSmAPgLc+0s1YzCwW8QsuvbDvovRNTPXyIsu+Xvjap36S2aeNz2if1y6sdGymvEQL9GuwtTLHMs8CviT+mzUR+/KHvlRTv29h3e271sAEvs4i7qMXbHD0leB+7fru69KMT8NsrIrI29aEhpv1lvX/Cnrut/pj2H/Hiau/90t74IIl/XabZ49U8e8DrfqqrNkFoUg8cH5ORtBpjHEf1cNZlMPGZA/Abm3HHLLGjG/CmO3tp1LU7gR5y2zms+6+UgN+max5Ti6W2Y6rfHCERzXMuzsBv2kjYCo8XHOA3NCxFlcsxhX52dnrt7oO6+oDvrK/SLFZJGpzVk7p1Zz1COInYn8j1X7Uv3wbyP28jWRM3hQ397MghjYmfwlLwvnUEaueLh5lBvQmUG5c6SthDfxaW1N103W8Z0qHz4kbMt6Gy9g3DxH/ItxrlKaY+6ASJP3abG7ZPZjHgu+kc3aYiNomX/lL/z3yj75OeKX/0TPsvPZfy3evyPf+Jz3/R/5lvT7LLhk/PivnXPbc/ZvHjMW3kp3WrbPhJDtxT/gtfXfttRacMMhB9e1WsgAv3tD8JhadoTXCZSC+mzW4g5/S/5rl9i4GzotMKnBk5205KazI/+j6CvokfWutlg/jvnxM+qs8pzvKdsgix+PzTeVrHq/gUHW2AzPnw0X2gIPJA0gnsjgL48hsh+D8Il1aaG7rgfj5+aL9VFszY9slOFeprmVUux3a1JnpK7OuK/GS9rE1BDxNGPx5VizkAn9lSEYn16oqY7hMrl4jGREw3QPoEr0Nd5Nhpx4ENVN8izafZu5+xgc+bfVHGS/AW6AfXLiquX7JmHT5C+Nr7y+Ctm7YmME+cLjp2qutuAz6/eOszbDU8EOXzS4XXCvsqa2RM+dRU6tp92x5fJ88PDHlWHCpyQ2YEn1C7TPWs8QhM9XfXUz9EssMV+Iw3Fs3IsONgur8o3H7a6dvhht8Rfsp5sm9uZGugNJJ/5q1HgdJZW4HPdIO2h9Pm7kQPif3vrbc5AiOOwOexDNMRZuF25EPiCbvKfEzNU4N9J8Wy7cwejiXSI3ivpQxfagjWQv0EzwJfoeVnfNhIl+RrURkyZOFpgmn/4Mk1RKz33IDTCV+xTj0HplRaIdpPXqoWRIc1OiHKt7JtVWi9QhDsS9aCK5ZK89yRIfG/Mnuab1GhG6b7q4PRzm4TDhuZEHzyIozVHTvCMe0/olKzzibPYSF/kl+F5Zef0Xk78SDBXzBdMKu41RO/IfzMlFggWaNjCXwOtWmWrUUOwOdwTgnjs38wekDss0THb81buBX4ZJYmYNbQVuRN4sl6ThV/0mSGYoi/BTXs8JAL89FGgldsqeSqaQEGiM6Lqyb6n/YWWyEdkq+DhXF1Y7kupvPjmknTWKi2Ok4jfDmUqGuvEzVEsF/MPRM196w7OkzuvRu9b4aUecF8WTDnVKjTuA3SJ/4Xb9E74Gm8E+ZNftdKGect6tiI4OPGe7xJGIyC+dNZVDF3lZ459iX5nS1qy3rHDoB5pCx9VcwnZSfwmd/OSJ1XbIvoPJ3ycYvSI11D4LO2In9RekMIqif2Uv6sVXkzlYHPv65nRzZEGqIdJN7mVtHZN7YvRQnEX3J1lvpaCRmsQ/AOuy5MLzj1oZLqsz7g6MuJ6K3A551Pl+8ZzrEEfXLlB86Y6q/DhwhfPPv3t3/duAL2Bcbqz5cjB20R5bvxgMLjDxtNYf4tq23ujWuYg2k/YfWPjSXIhQOftiLlTRfr3TDt77XuQc13A+NAn1qOi2yWOHtjDskvf8qnqQaKwbD/+7cUs/oP78E9hJ8N952H+wvdQZ8G2qsk1fKdgM8xlUSOR+de1EDsGxa2Tn3SaQZ8Kvz18sBsuUWgz6qTCb8Z9A1WUn1Gt6oYOS/UAD4bPz+pT1Bbh3sIniaRjtHW/ZuQNsnXLixiSKTJCWuQfNq6ck6JCJiBPsNMRg117rBg3/k2pz+wZ5yJKN/dPa/Tu1SkMN3XukOvT2VtdsJM4j83PoE5dmkf7B8eEd/rhVJ9gM+6gADL5yuSQZ+mW3sYOin+mPYzmXeJTa+LwuH7JD8iK/nhjQj8gfCT2l9Zqv339xDdL65Em4sKL3MGPnvSp2d6WwWjJmJ/vtJ73Dz6r0p635H6B1O5Vg7R9+ctdZh3acIE9sEHWU+Va5JYWJvg5T2r6rWW1Ib98KoET7UrRRJTPiWV0es7T1yg3qP6sfm8Djboc0TnYdPNc9bAZ6J0bVFW8EbQZ24mo3bpuQ2Y1rt9b+94feE24LMh4pe646OTfIomH1du3uUF9c6UGjq+PSEJ+Dz2RWwodRMH6t1lW1tiesEkn4xBble06V78nvAjnOmdJ7iGjVJI/hGNeJEThw18mhi1yPc8CQZ9fqjODz5eNQXuhav6jnHnmGOqzxuuB1M+bdmK9xF/LzSPVuam2QCf3wIk/mp5YAX6/LwvTOiCoAZGJN/uHW8NswKcQZ8zy+dzc75b4FTCV53SbJGZc2zh++FhybSV6o81QJ/vhNKii7EJ6FORHV5nOGoD9R7U8lhCsGAf9Is+NdfvObEcTPcPrrXtUxl2IuwXshtuSCW9coZ6b3stINGTFgr7t8HXUt4AIxDqfXGmxHsd4x3wf4nO64tyzFmT8+ZRHK9zBnc/ekTsxe7szkDBk/O/xaXH746YDsQblPq6rW+HI6b17qZaPbrwuQPU++LB1gfMBeagz6Bw9pJo9lKo9zOn/Z6vmeEO+ny+VvpIWPpm0Cfb3kLllyTHye9Ztc1dMt2GoM9lA48TjnzUAH3e/Dg69EeKLfDJE4j87a5LFOgz5Pwwg7fOA+rdUONtr4ZDDKb/P8yUPXbkgYQqpvvg/fsaExJabjDf5WKxi/l3W9iXTh4VkGvfvgf6ZxZu0jvT5wV8CvZ5F18NTAA+d3isbeZGqQGf3EgDrsQpE6iHNB1XJ91XdjiK+Ouz/F7dMKKP6b6U17H6u3KqPHy/vrCR/Q+z1whtJPkO/dly8qSsI+hT5d2r3vSLi6F/bvdZznDr2gr6FLlyVvzrFhNE9ymBS0vly5zVQJ9hcbu0vr6xwAbE/2j/jz+rnoTC+4hvVGWGa7pgui91Bc0/HOUTBvU+2rxbb0DACQWS/Jxndxx8u9UG5pFSMOOcjq0V/kL4ae5m/HEt3Q/Rfb5zz8TN20s3T+qzzEyyxGkX6uDb//m/F5h83xd0n6RnyJf8MvjORnz2Fnz+wvjizcz5J57/AuNTrNg=AQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAFxoAAAAAAAA=eF5Nmnk4Vd0Xx0Wmt4hGYyGhkjKEdl2USKUShQqZIxkyZMosQxmueeYak9A1c3KRMpVKkqQMZYhIlClvvL/nyb57//x3nu9dZ/iez157rXV0VU+7mNs8o91jY/guruwDGOCffe2Euj2rFuBq+bUwfrGBRhFjPDV21xnp8zfe9CvE3AFZBd9/9ftW00L2JaldUApCev3F7vBPHyKA5N94Ko05c0Wb6aY60t8WM8i/FyADlr86hdb18n47l3kq0s2yxYtMxgr/HpPDn4CpHT+mhu/IIr0zSp+jOjMb/Gn+G0+KKr7pOBPkS9B1XWNbQGuPB2tXr0+Kfaq2TSGoFMWPjt0dXmeVAJ6t3j9pq660gI9LOYqnnFzp9bhWBZRWn58UX878I9fFF8Uvd0/OzBdWA/tV/0jPhaY5FgtKUfyhd4l9Fc9bQDf09/aVAbA7GPsjJXMnvEfJhtgE/WXZPqB/rhH7S1o3cIjnlQcRD/39dUkijtpqgvQDbhXXTIcMgBD011d+ZNzgpzS6vpMc2cG3Ipr4B/q7L2VSkeOcHYpnEPRI7dS89/f3FH8q2Lol6IpaeTi+P4HPAvf8csBP6K/UARuTFyl3kD7o8OjoY/CA4IP+BkaFF91YcxNd/yB1b3ClRCZRC/29kNZ8oTQlAOnAwWCGkVYDAPRXdLP6t8lZW6QviQnH+0tEAUvo73r2hSPSnbHo+pf2V+y+3doCOqG/ZnG+nLJsTki/QTrP1HLcGvHbvYlXcHDOEeln02rDl9RuEBHQX0Xv4s1bBw3R9RsmsxhKlk4AEejvkbmUvkFBVaRvVnI4KpIdBfmi0E7lVfNxWVghfbruVGext9/f6zU8pxDtmVWJVobY3zxZO9n9ClQA3w+p9mc/p9HOSBRfyEhO+6kbQ/BAf8sPD/Il1wUhvXrHumsOlrZEKfS3Nbd1200uS6TvzLtU6fe9FChAf9niT5JnFbC/PexNQaciMpG/+bN1S2F9mM/jOn8uZqg1gw7or92k64Wjxnh9FSg8bSxSDyY4oL9sZwIfsLqEIt2/5a55Qx8ZpEB/M73rJQ+nWGH/x5KeTNTqEcLQ3zFq5omN+UdR/LeCHqZLLRTADf3NUu2MqHjrj+LnAtXdtQ9m/j02tngERhO8Aq6zhKP4efnZq41vHyF+T8Uk8/OEYf5sjYva18aVEszQ30PFAbs8RLH/tWVZh3QEnIhs6K+bfvyWHGns/zGiP2NgTzWQg/4uTEXHUOXJ6P66Ii9f77mSh/w9IOXHb5PgguLVpl5kMSs0g3bor3SfesP5l/ZI/yqUwH1uxYDYAP3VDzcqvcEmiXQDbmsLKfVEgu6v1iWltTxZquj6xRa7UhdZEghF6K9paFzNwuuDSP8u80xhf2Uh8W3VH9pPp7NnD63xR+cXUbQxuBa2up5VrB6A/YcmpwR9gpG+9aD5xTeBAWAE+psfL7vkC2KRvr32dvZ6vVyCFfr7w//bsVzuGKRLaFfGWvflEeXQ3yPWpMWQa/FId3vgrVbvXwQOQn8l/aXWvMuPQjq/t3WIeUoCMIT+jjoXT0ncyULPN/ptl9FP3VbwGvrred9dW7YEP9+mlGmhHOkQsB76+0FbN1kiA68fueZMtofpMSAB+huae1mO18AY6YMHPcgc6nFgC/RXIdJv5KyZM9JBk6pWyRgVTEF/2dwGRBV3YX6YToxv2iWxup6M9+eBtSbSqe2m+Pm+zbM6WzI+BD+gv3dfKzNXS+H7P85n0zbvVU7wQn9XNggXhIrh9dkzslAgrXqbyIX+Jm7jZXJ3sUA68z+D+dX6lYhflTKD2Ovt+sg/Frle2fTCAmAD/R000bEXz8hE8UMsK67j51tQfiiPTK/1V8D59VHWwIRv/U20v/WJ+pEP/rBB8ZbLXOKuSVnEXejvRuMtuhx7QpCey7YcZEy9T2yH/nbO604FX8b+rvS9XhezJ5XYCvPDPU8RHaUR/H4+W6sX54ev8uZ7MAJwuFh5iD90RPq1HctdnDrhxAD013nkv2MdANc/7aOLBZfCS2F+o5KCdMSbfU/i5/tZHtHbzVpCPIT+ilVHz1VfDkTnfyHjpuOtWQ6kob/yY1rLY0oOKD7m1ci+hnO54Dr0t4Hn/nKTB95/OOU+TZ6ba0L5gevAOXPPIjLSFySCGPy/30D8NnB9kRSr90A6T3Iy587cYJAI/dUc2bLrdD0+/+bLa0uVW00BP/S3NoH8xWjIHd1fn8UMU/4TMlCH/nac/0arDD2F4juLufwacyh/f68idh/oHkngb9qJ64MQHh4WbY+H4DU9P/SEv60v90TxeYSK89X5HPj+qKRFH/0aMYMwFJ+TuI49eVsGUQj9XbblzHO9nYF0HtqXe1YsdUAe+rvVy+TuCclkpHeqnuiTtCgDptBfzpGlojhbnB+WOHZbCjY3gy7ob02e0faXPYFIf/fPUs7RPhOCG/prI3q0NFcB89v1/obiECsZ1We07pyE2iJbFD/lMFs6N0whNkN/W2O2lSZKYn7bKr8fSItIIhihv3dPrtlZQnFF8dLrd02aqmev/l7aD3D95/PP1wYjvD48ncNHRQJhfqWQ5IZ9ZQcYAlA8197R8tjUcmK1PqaSpk0utg7tCkH659kp3TGQSaRDfx+uMe9a+zkO6Q1zZEMZ+0dAEfp7x4SV7eC/WJ8PVo/7apYIrKC/5Gir+gg+7L+Y2mDdU1Zcn1VO2UxxN+P8xTMoebHWNxDQ9zexGSnj2/vw/QnN+ZffCjIFYdBfBbOOrw+cMF+XD/6WJ2VFgH3QX40+du/UFbx+JyxjDKR/3KfXV7SQ/vqMR++uI73YwIh/p1vi3+OGxiLCXPjrwoWXp9H9Rc8my+ldp8D1RSGpHNd7Wyx7BcVvGIk0vigbC+j+MvL9vsU/HY/0zWvZ0i9POoF86O8fPvLBoOP4/ZBijU9SQ+sRv5e2MSQ0XMpA179tsuLaZ5cF7KC/VufFZxlM7yNdtpf9w9nnL8Ag9JeViSFWXjcJnb/N5H1fb7MTwQn9FW8udevfhK8v6pTL6FzzhPCm51+Xge6rAji/CMnH9x2ObCB2QX8t809miMxcQ/FS8t3xt7Y2Qb4oNFP3rPyi/XEonqGPi5kq9nL1OK8M9EUqzQmUYn64Dof6n+xuJppgfpDUjeYQmi3B/h25rU36rxXVvytee3ojj1DR+UfMM53eir6grz9Se5fBiWYb3N/liGuu6TJ4ShyB/vpTuxtHHuH9S00hLXOH8guC7q9kIHPeVCHenxlyUnMtZVOIOeWf8veNG2k/FTSjFa380PmbzF8/7hw3Qf3d/MeMAkc97O9Fh0eRp43MgHHqt5uX4mtpMrz+o5dnlJBOXVrp89p7ltgI30/PS4fJdXvPIz2kZMBt0vMA8eHv+ctpiYXpP+1abyI9zKC+QOpjNIDrl7bsqaQmcg5fX3Duwc8FvmhQ9FfPp9kPxVDNwnH+Wv1zqIL5l7Z41UngQ5070mN/U4wT5kOA2l+dTJN8qeWovh/X318CxFo8dK8DDbi+VEU3b9CLx/w3/yvTZhWcBthX40n5Qom1Uy6GSKdM7PTso6atHg/HA26plCIWbnOkG4dblt1RSQOU1fsnNZRsqvoQ7ITuz3Pv1eO6AYkA5k+S6tLA+OareH+QK03cSKXZEt9W/SPJlRaztrwoQ/GdA53xYZ5u0H8q6XKOgJcWD+7PHJTO8mSnBBNXV98fie+UMT/72kcoPl0g8HMFWwigQv54HdYd9b6C+6d3mfvsubvjwcIqPySjuI7MElHM79i4rqyHIYVgg3z6Hv7Dvff/6mMR16cBK/pRgLVmlc8b33dYzglVovP75+c9jnOIAbOQT6fvYmbj8fj9Oxy2YFbMkgJvIZ95I276jFtw/lyKMsp+ZX8UGEA+5YSWN8dr4/4rVlb8YZuGBeLzUJ1D6BlP3F//Y6OdaDjsT/RDPqnWjwIuvBdF+oR9bveGAlNUf3y+yTpT2nUb6X6i9cKUGU84P8qnfYqp9m8vw/1PPKmkf5/nHQDXPy2ead+3vbLCKP7F0hNtZkZ3WD+Qab6BhQyJzPj8mrTyoJngZEIZ8sknpsu3ZiOuj/s/2jjvYIwHn5pX+WypKz20+WAMilda2ld+vix49VgrnqCZ5t26VY7rkyrBz6l/PsSDXMin1MiJqfz/cP+o1fxrUnVvDJwfUEgb7zK7Lfri+9vWwP/itHIs3T+Sg1hF1Bv/LBRvF6q+5eTWIMAJ+dxl12ax/y7uD9JdyY2+EimEHuQTZIyqOdZhfuKGZ11KVX0IOJ8jqTSk6gYM4PrjkPliqUNtPvgJ+eSaO6HZcdgE6dTdNXwbPSrg/tlAOmP/j4kQN96/hyKrZoyYY8E/kE+qbBPXEucF9Hznjd84WbYVg1+Qzy/Hg5hSOSyRLpJatcerzoF4B/l0OHDgwvycNjp/IZNT9TpVe8IQ8vnsYnIbQzPOf4Eedsm8R0xR/fvtRvli9gLOn5Of2rYrVsgSnyCfGac0fzu81EX6cf7ge4Gx0ai/+yA12NgmivuDWLVE3ZLUSMQnuf1K6DwPfj6feMVOjy1k6A+VFq07FN31EPs3dSbzVeSkN9gJ+WRuXNoi/MAMxYeu6akTaAyA8y8KTWwHj3L7OjxfTLtD5V1QSgMrkE/fOEbbqLU6SJc6uWeY2251/sHgkEaoPRpu5PK5ga6/XqY98RxnLiBDPu1Eu9a5PcbzEW2P1Je/5e/A+6OQTs2uXbSUjkb60eNrX1TdjSF6IZ9C7hFVbnxXkE5ItZsJX0ygr09STMen5D3pmI/BCeNTDjf1gBbk061W1PjCJlOkm27znJo29yYyIZ/jyqJRF0sckO7/bHlpRgbzKbp06paHDt5/WjfVzCkkV8H5WwPpeUu3YloMno/yFPQLxdbFIz5rZw34aVdx/krQ+Hr7i3UhmIZ8rhtyKVRcuoOuH1OnoS/haAteQj7L7EzTM83DkB5fWmNkz+5M0Pf3/iTNWzvvmSHd5uibNQEaofT1Q1PiZRnbZIHrC62R+tNxYX50f2m96cJf3whi/h+/8koWDg8lUiGfVqHMMtlfcX8+mWHM9vFPCOzv82ndvZS9r5qwXmD8fsLDOwvA/Y3m//oc/+VsnH9UxHtrLwR6E9KQz4cKXCkyUV7o+jLKLBOky6lAAvJpKTk49d36FtLHvIyCeKcDEJ/mJreTIvZhfqp6tb6eMaKuXk8jmdjIxq5TtoDnw680snyPH/QGEZBPr4tWbDSXCKRbmzE3ua6kgM2QT0fDN2IphVgfNrSSfs2RTXRCPoesmc68X7yL9HuUmnGvmhyYH6ik0/wN+1p24/o09cic7ou1fsRZyOc8OehKQaQz8oeltYRxcCwa1e+O3MGCD/nwfCq0lSXkOeMjMAP5NDaNs1E4hucD5xeeavBbEYjPupgTrwYOGCFd8doj8nhtGmCGfAY0XPjneS7efwQnygf2Fz2k809r//7dZddtY6T/STWVJjmHE/T5FhitMHnNjvsXxoynriG7vACsX2h8/qXD+oN4PnJ6QUtTZdkZzRfjur8URIRZo/OXam8sZn/nSPeX5uwYEKnz3A7FC215JvHi3ziCvr/X7zsi0wc0kF500v952jtnWB/l066rJY/L+rohfejskXNcPNmwP6HSQN99k/k5vD+XzzYvGE97EXsgn7U9e04WCeL56R7ma6bp6+IIScgnTztloDYVz3dDBvZmc9who/pz+4Ko4dWme0hv63rEbSmVvnpslQvarygH7M5ORrqL/tlPROM9kAT57OwN9hmbwfw8DAy3f2xVSizB/qXAreWe7SbcP4WvL83wt6UQ7yGftpI9syxHE5Fe/1+S3Sgrmf78pIIkZWXu95hfK8Opxp6meEID8jk+dTHxRhe+fiO5qJKHN5oogHwG1T8KchzG+aut18WRJJADfkA+Y0skD7Rfw/mzXiK2IvdFJVy/DSQ1uTURVWI4f4czD47e/pSG8id/s97Y8TE83zdSf7Ze5r8S+vlpx3tSOHl1cf9w4hKPynKSK3gF+ex/bq2T7H8V6clnQ3f8R7kJzCGfrccS4oQ8cP5f8u/qG566heYDexoELTb8wvtzo/7IVGtWHNEF+TSO91ZsUruA9GnvFmWHuExAn8809zgt8/pjvh4H6hnv4nGD/VM+7bez3PW2Opz/KOrD0r3sBWh/18/98CpAbwvyj6XjStRTTidCBPK5ReS+nvd+zN+Dx8l38oN8iZOQzzzh/ctjVy4jXUfOTtpWMxVwQD4TmxsYbtbi+d3GYY9fkXWwP1pMBsmqLEpvzHF9UaXduGuBIQwEQj6/m01cUPHBz2f8nMfpbbgb6IB8pjTeMry5gvNvO6+etUj/Q3p/ScrvearDyueD9C4d93kJzkLoP5U0/e3HMM/Ji/j8EvVvREvSiVOQz3Kz46Mlgbi/dLU9s+B4gQLo8+dXtSoTh6fw+pVx+n1jvCEH7e9BitKvpOZxfh9qbmLcvf8x4tPI7+LWyjGcX/sf8LO7b6EALsjnsa4+IxURPD92Uw9p/jz0EO3v1aEmMluVT2J+jIRJlyIcUP6c/5aR+eDpJaTPvD5kvbvUAlyGfB6tEer9LYH9PWrTEi6g7Y++L7rV8qfrbb+O9M77CaenO8KIHsjnW6PT69dswuvrJx/XsrNJFkGGfOofVVn5nY3rc/VP75v52K8R4ZDPWww3X5aX4v7I1721gV/ald6/0gbfks/1PMXPd8xJ+l1Fhw/Mj2RaauGPehPm20jfwRG2SMoIJuQhn7PFdcsul/D3uVABUf+2X/6ADfIp13Hw3pg0/r6594NpwtWdaavHckWE0rmBpzvO4f3DQbx77KhrAoiDfOrvIHe7jl5FuhV3A8fzgmQCfh8hWf2qdPLtwvnp897vr3Kdsuj+kdhqxGy3vMf1FVf0RWajSkU4n6WSRM5YLYZ33kXxYRLZFE3WOLS/L2678okpBe9f6mbfvoilGQNYX5EMs9oneB7h+e8eUYG1eZqIH5JK7Q/JLga8/24VOcHOr1oNmOD+Htmmt1Z+7B7Sy1oP3zysUAA2QD71vqj8q/shFseH0mZXRh6g/b087ti04jmcX32LlVcqBx1Q/lwq8XXjfIffX3GraN1WSXPUv+eYCAwd58DzEZl+9wdJYXcBff5nov5RvEAH55dvrxXjN1Sh+p42W07IW9zF76/m80DqqTkvNN8O3C+cQjbfg/RgV5rgK40gIgfyeefg5n87mvH8u9m7lumuoCvkh0qLyDrwKXkc7///1ewt61WKJuj90Z4niwXDljh+yMAncqmeDOMpNPUPaty1iTg+ljYcJ37iFsEE+SzMOM0b8swUxRfVDW/pEIPfYxfziep09tT2fnMUzyAotZHQUSOiIZ/JR/rlFA5ZoPiQ/jov9rwcsA7Wn8IfJh54vMH7a9Zvo9fPdpTT9x9SwViigW0dnm9eMd0smTSbDxggn2YmGjnT33H/Mcg269QnlkZoQz4/vtUafVOG//+lSH1d88PH+YjPW2J6VQNMmUgv3Pbymd6zHPAd8skaIejod4iCdKpA4dS0PQ3x6aYf6f++HdeXdS7pFo6HfAEL5DP997PckQIcXytUEnHkEuq/aJc77Ao5/XH/zVYc4Pa43hnlT9f+pPbNo3h+N56je++Xqgt9PkHz7Z5kUOnH31dnK9Jv+Lf7of8fiFatmBRjx/73UBZ67CwyiG7IpyhHJf+DsPMonueMVpPtKRvUHzV0fvRhl8TrV5jriKfcciD8fpRPY7AWeZL7TgvFl74qKeuYSibo+ztZlV1VXiESxberDC6X26YTYpBPxpea1bQm3F92gPVz4y1ZcL5MoRmsrzoTvucW0sXPMo1p1EQQnbA/snpd2RhbfwPpPN1FYbzz9qvHXFFEgYuGhhYH7j+m1wG3BYEgEAP53C7Gvzgwhr+PhLbFiu/PSkfff0RoiQlKptFYFx9td61+SLyBfB5+GuQ1rYff/wf3N+8kMy3o9Q2JrY7TRPNLGtIvsDqO7/idiPKnaO1Q46lFzPcf4asLM70xRCDks/f44fWUGjz/9dJrOxW3LYk+/yFN2ygrckREIL2s5PWbAr5q+P9fDSQ+YmUx3Q3XJ9U+Vfa5lQEof0rs60w5N3EN6fFm7oVfn5eg+WfiwvuN2iH/1x8bNvi6Tbmj7//SOpotuY34+2tgGWcdm4kbuAL5lN0QKZwxhO8vI++1D6MJBc2Xnng326W2hiK9IUqidNP2JNQfGRQaTy/U4/2LctNm9MeLcEDf359Z7zz4ZQ3+PhyyUSIky5mM8qeIAzlwkzM+v6HTs8BQyxTUv7u4Zi7vaNVGep7c2ktth2IJ2N/QhIxlY6+9w/mF+r0s1qI7EwhCPuV8q94KvMH1Xd/pGx6NOhHEW8gnVfrFjzxWvL+U/tJqBj+zIZ+JhP3ObULUATz/fHUshJdvZwK9PiG99ftYoWmB89OnqGRu+fhUsAbyeTL7pYHJHVyfF1vL62wnUhGfb3dukPSey0fxs0ksZxKv5aD5JyU+8k8FNxeKZ6P1s9w0iUB8dvjUiZqTcP4ZPryd8U1FEH3+TBpWrPRcczkdxfOkSBm6vHcAvyGfF1I8fCo705AefkRD77dqLerfUxWGrKR0cf6wO9EVU7hMJrZBPnVrzgT3hz9Bukb27qB7R7PAIuTzG8Ngy+uoYHR/n/UUDT/KlBB0/vT2px9q2Inn91/+6k/o/tAYbvt4Evr9h+h6Vk/DholiGnEf8iM7a5lTz4rzX8gJnsMxW57C/Eam6YjnR25Nx9+var4yyI61NcLvz2RSfRr11/SdXKRr2kj/WHneRMTC90t+q7/1SncB0pPcOTjSRZ/R8zNJbu/vrj15+PtdO43f0a+tgVCH74fxygn3uKb7SFeR8/5awPGU+AP9j8gPX9G7hPnqc5mY2XHPCvwPCX9DlQ==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA2wAAAAAAAAA=eF7t0jsKwkAQBuBcR41aeIC5ikbwNuYlvo7iEeKjsrKyEATBwkKTUtnNPwgDw6ql7N8s2cDHz+wEQZ1kabKi2J4FNXome0rt94HKp8mROvb+RMORyZkW9v+FtjZXqrUbzrc7Fm4i3O6Xbiz6Nh19I+HuHH0TuC3h3uG24Q7gzuFuFDeDmyruA24Itw93Crdw9M2Em8Etf3RT0TcULveVc2BXmwO73Fe68t3YncHV9oHnmztc3rPoQzeHOxFuDrdS9ozdtcPV3q1S+vJ8NdfHx8fHx+ef8gJCMcAMAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA7AEAAAAAAAA=eF6llVlKA0EURbMdNYPDAmojjlGzG5PujnFYgkvw14gajfghCIIgoiiiSNQM4ExXv1vClUd12vppUg2nTm699zqXS1ZtM17bpmqfLTMyFa9TE9jf56b/Ha9LU7T712axEq9bs2Hf35u2XY8moXXk+ctdIW6NuKUhuVXyHfX4lol77PGtCXeMuF3hFoS7INx14R4p3FC4gcLtCTcv3HnhNoTb8viGxA2F28/IDcg3T1z4cg7gajmAC1/m8r2BuyZcrR6Qb+Thos7KKbmRcOvEjYQ7UOoM3EMPV7u3geKLfJmb1MGW4ye8pkF9dCzvxPXLtOWduX5sWt6Fq8dV+7xyuR3Y9zfuf37Z/TvXr5N2/8H1l92uPP3JlT1HxRP9rHmiv3fIs0GeLcUT+aX1rHo8n8lzhjy1PNE3nOdnRk/t3tFnL+KJPp4VT9Qb5wlPzLl98cT8+BBPzJEJ8US9w5PrMyTPPHm+DulZF0/c+x55vpFnSTzRP0viyfOP82TPruKJubArnuhj7qOsnpxn8E9P1KfmiXtHfb6LJ+bxuHjyvbczemJuD5sn9xHqE32k1Sd7cn0WxBNzupfSE98FnktZPfk7GpFnkTz75DmX0hPfG58n3/uyeHJ9whM54p6RGzxwPs7FeTgH/B/OKFdcAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA7AEAAAAAAAA=eF6llVlKA0EURbMdNYPDAmojjlGzG5PujnFYgkvw14gajfghCIIgoiiiSNQM4ExXv1vClUd12vppUg2nTm699zqXS1ZtM17bpmqfLTMyFa9TE9jf56b/Ha9LU7T712axEq9bs2Hf35u2XY8moXXk+ctdIW6NuKUhuVXyHfX4lol77PGtCXeMuF3hFoS7INx14R4p3FC4gcLtCTcv3HnhNoTb8viGxA2F28/IDcg3T1z4cg7gajmAC1/m8r2BuyZcrR6Qb+Thos7KKbmRcOvEjYQ7UOoM3EMPV7u3geKLfJmb1MGW4ye8pkF9dCzvxPXLtOWduX5sWt6Fq8dV+7xyuR3Y9zfuf37Z/TvXr5N2/8H1l92uPP3JlT1HxRP9rHmiv3fIs0GeLcUT+aX1rHo8n8lzhjy1PNE3nOdnRk/t3tFnL+KJPp4VT9Qb5wlPzLl98cT8+BBPzJEJ8US9w5PrMyTPPHm+DulZF0/c+x55vpFnSTzRP0viyfOP82TPruKJubArnuhj7qOsnpxn8E9P1KfmiXtHfb6LJ+bxuHjyvbczemJuD5sn9xHqE32k1Sd7cn0WxBNzupfSE98FnktZPfk7GpFnkTz75DmX0hPfG58n3/uyeHJ9whM54p6RGzxwPs7FeTgH/B/OKFdcAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAWQAAAAAAAAA=eF6bMhMEdtrPohI9H0pPJ1I9sfRcKD1qLoQeNRdCDzVzCakjlZ4NpedA6elo/BmDhA+jYe5GD190+YHij7qTuvxRd1KXP+pO6vJH3UldPoyeSWUaAOgVEfo=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAODPAAqoAAE=AQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAzxQAAAAAAAA=eF51mnlYTWsbhxWSZB4idOiEzEkcw8tKZIxCZCohHcOJzGWKlKMJ0S5R2VJpZ2iXRr21UqmQZhqR5OTILMlQfd9p/d51rmu7Tv/cV2i39m/d+3mf51m+t/zz9ZQvibOriLO7z5eBZql9fI1j1xD/1q8yvtfaD73Xfrgj8svZg6TLkrNkyvh/vop48w57zDrsSeUtQJ0C2Rcv6QWS1vrzd/lJrT8Xy08Bk3fmjwqoCCBOrX+fyJdZ/fPnoXwDeOtL/equzxNJm/9/GTpVtLLqXFYr2xzMIq+26hp4+ESRvcLPc2+En+PqwaEPBh7I3xJCfITfz80Ufi83CFTNDN5b8zmEmAjXzy0QrpuzAouXqErWf84g1cL758yF980tAXXUbzlX9M0kVkJ+nIGQG2cMvjDepMYtekiUWi+4ii9FruXgopMTXzRtdKAByLcfcmVc5Zdc0F7pBNVDvguR6yLQ/VV6huTJZhKNfEchV0Z7V2mi8m0pPY18VdYKuaqCiXW/dXHeeY62Xt7SnNZcU3NTW3lkcBLp6Xniyrc10WQL8v2ukK98v7dlnl8cDUe+WshVG6z7bdFLq6QbdBHytUGutqC8Z49qR/Us8hj5LkKupmD0mGnPlJKCyHLkuwi5zgVf1pU8MTR5SH7A30cK/rYbZLAuV7pX9LeHgr+drj9Nki52pKOQ73zkyjjoVWrQRMdlJAb5jlbIV9ko65jU9yL5E/myXFnOplpxTyyWnRLyfBMj5CyfJ3wf4E+HeGZF3VNLJm7Il+WqLPw859xY3yJZfImGIN++yJXlHP6u+OmHpfvpbORrjVzXgSO8s+8O/5RKSpDvPOTK+KbHCX2THZHEHPmyXOeA9bFeQwo+FJFm5FuJXCvAdxtONiiX+lAf5NsTubKcXV8kzBk4IYhMQL5myHUx+PJ1eMGLGRvpTeTLcmU5D6iN1WtSv0HOKeTbDVw7039UfcGN1jyt1TOFXD0uC/Win5ycC7x6Y/kRSmyR72PkWwPGae1Xf305lbog329WQq4toK58cmmfgUcp6hu3FLkuA5u6tSxcE3KHFCNfE4V8jeYbJ8W3jyFLkC+rC7PBzXUfVFJqishH5FuMXPPBVQ77R0Q3bKa+yLeXQr6nB5SezKehdCLyXYJccZ382xKlXg1BIbQU+S5AribgyWk1yf3jEqk18n2PuvsXeFLvSOkrO6dWb63bpQn51lwU6sS+CJIRqBos2+9NTJBvInK9DxpvCTs/asBN+ifybUSuSvC3JVH7QYpjjOjvSoX6u2Da5b0L7G6RAuQ7A7nOAs3W/+H69NdQsgj5LkCus8Di7vs7FN9/+J/55lpOzNgaISFnkS/LtTs480VqTp73JWLwH/52I4UG9eqXSTDy/QW54vPJy7YapsTOTSGbkG8jcn0Luk0s06x45ynUhTAqnGsRuwV/BwaTTtYdHlSOTSDrkW8pcq0G5wZ26p25Mu0/60PAqkwLbVM3SpAv83Y5O9/UVnnWKWeQIuQ7F7kyLjc4ZdHpeTxZhXyNFOqvu9PVET2qi0k98s1XyPfxhrE/tt91ooHIVxO5MgZfs9xZe0VORyBfnL/8PFBZM29YxMRYGol8RyBXXfCg7hrzPpNleP+J/GDUhUHgXyfn7fNxviTke1moC20yHAQ6eJFZM7wzfY3OUzPk+xS5spy9qyZ37RKYSln/0Bu5dgcbfoTaHD6SQjnkuwK5rgIfrU5UcRydRnKRL/OWsaPrXzaXe98kK5DvPOQ6H1TyTNX5S/ZvfWDnG/N4kmWhZ1ito+ivYn3IsI5c6z9KItZfVh+Yx4b62x1yCuyJDPkybweDH20so+8rB5G3yHctq7tgpPRavFredaEvK0sXcn0cL9TjX2+SR2XBFoYXEsg45HsTuSaAj8e9CvW/E00vI99hyJX1D7k6V/JLSq6K9eEP5Mr6iLWBT4P0n98jj5DvUuTK6vD0V24hS61uk8XId4mCvytSz1U+sykW+wfWn7FzrqfOizOJzdvF/ox5y/qz3uvypvWOC/ipP2OMNg2aqmJ0g15UyHcgmDQncemb6jDqjHxZfWgGa3K1Vtw2ihL8fekn5Fu/R6C5MzGL0q+brHqGnkS+GsJ94bqAOWP2ftbbk0YPI992yLUNWPzb2B6fK27Qqch3DXJF/85t3RlTMXcoJRXIl/W/rD/TzDl1fltJqNifsXwXgn1DfH5cvVhMviFflivLWSVh/4EZa87gfC/Duf5vf1ZqZbfkua890UW+M5HrbHBDiM/5lG0XSAbyNUCuk8EMn/6SV9tiCfLhO8LbzmCy+uJnnn+HCufZnqzWnFPjhD6tyj6G7lvQL2az7XXMD4n43Idy6D+4moCWXz/0CSYs3y7ItS3oUqw1Zl3JUTIN+Voq1AfTXpW9lafniP3DdIX6cEVK1t0+Khfr73SF/sHg2akNz6pLSYdWIar458i1FuxVbe2TE3uUKubL6sPbkTFV/il5dBDyncXqAhh39r32ofAH9Bby1UOu+uAYsnnJ8upCehT59keurE+zvrvhbblmueCvRoHgLX9HYJvb5PTDlRaWu4opQb6/IFdWh73ldXUn1j+i55Hva/QPqsh3n8azSvmiUtb/iPVhNbjyxt5e5csLaDnyZbmy+uBvUOkxzbaUWiJfNl8wErP5uimrw2lezj9flfw398hG98hskRfq+OhANXu8nypxfq4AHekEmxErdpBNtv98PeKF60znJ4B9VSL//r3davF87IP70hesuuF9uNZ1Gm3X+vr5/JPW103iq8DUDZ0/plZLySTcP9aXsDqfk/LWQDpRSozw+4T5QM5bgcJ1708Mw/3VwX1F/eUd7QeY31vlS2pb/17GC/2XhF8M7mzyIy8l+8gr3P/puO9LQBeV8UYOOyKIMH/KOME7CT4/Eu6ljnq9n2+EkN+PaIGaOKf/kpKUwgSnpnEROL/SOeF9ydGHy7lygyd2Pp9C8fqJ3AT40xc8szLKtWfwfqoq5MfFC7lx5eB76ZveF167Uin8GgKvUJ+50n7RHho6ErpRuH+cFq5jFJiydKpDhquEsPOJnUvrwWNXNQaN3BVC7gn+cDWCN1w96L7L/NVa0+vUE362hZeq4CKlbTEl3S+SEYJfnGG84OVosNe0yHkemy6RXPjZCC+/go1R7z8lbpv603zM6q+0fa+NN6eYElv4OR6eGIA/slKH/t51l3j+9YaXGmCbHhoTvr06TVXg59/wsha0t7g/LCPOnujDT7a3YHx7f2RVHxU37I/S+VXwcgU4b/Rcsz/JWcL8xN5GZF+tca4qG4/j/slQdyS4TglvO3ZZ2vi0K7QGflrBy1VgS82WRqvYy8QcfqozL60E9k11kppMlgg+6kUIdeyIl/B9qgvVydroeH1vCLt+zkTBT1Mzn6f7RlwisfBzIrzUB/npt9yvDA5m+XF58BKfcy7cRjbJLussOQM/leGlOpiw68/c74vDqTX8HKrgZ3FRmtS8xUOcX1nfz9j8bbtx/NA4ch9+foaXDeB6V7vxblPTySn4qQYv1cG/c02Ns99cEv3UgZeMnjlBU/K9k37yk9HW//jeX5oO0Rb4yfY2rH4+9M025ZsPUFY/mZeMVe+LPReY2xO2f2DnG5vfzDQ/ByiFzaDt4WcNvGT8uttU3/GyVPST9cWMwedNUlVMA0Q/Vyj4WZVsONkuN4B4w89u8BJ9AB+g96LBJMoD+yMZPwxejgSjLbLMvaK8SSn8NISXc0CrbwO9zulFoL+Q4f5LuGb42buppMz3t0jBR5Ig+LlfJnB2GO0SN2tLx4poMhI+cPByDvhJtyRrV8sZ7A8TUZ9D0X+Hclq1Dww/Ol1i5w/3DF5Wg33ke5o+1YSw+VecPweAqbEeFxY22xAr+DkC18Gup2GK5qDy3372k82pftXGSb5XY0kO/GyCl/CHe9fBcXWh9h1yAn52UKifiyPejtO2ChH91IaXjCZXp2ln70gk2QrnO/zn3/R3Mbe32k8aFOaDQnBVD+evWz8cpVsUznfGlS+8HIeG+OLz++9+jHlaO9F14LRtp8Tz/Tm8ZKw2z/zd/5kv/Q1+sr0O45q657/bWvtivv/Zzx1eGf2TT8lJAPzsAS/7gAZGNyY0LPWgefDTAl4uAGUneqpmbpCRVPjJzvfJoGq1VXVSuTexh58Z8LIGNHD261lhloz+KE7w8la4QN8QmrljU4fhnT3Q36dz0+HlLPC2d0iDb3cZOQ8/28FL1n+HjXg3SKNbFBXmizwuB14WgQNqa2/3OhWN+nUXn5tY1LFY7mWtzxy1AyfpGgU/Ge3GGze1fSclbH+Cvkqc8xvfhLSfcCeJPICf3xT8JB+d9KNCs4gL/GwPL9uB4wIHpa27FEGGwk9WN7XAlnaN9g+yE5j/opdiHR1m4LTQ+jxl89VDeMn60Cf06MzCfu7/2X++rmw+mHbfWdwvsrrJ5gMX/zfmho+P0O9CvvA/SaRa4LOmm5GX6Xj4qVg/va0GzpoV7kzm4PfZwMv14NLOpm+M+0VhPrmL+fpfP5dP1bd0yHOnmfBzHrw0BK9EcJOlpcE0G37Oh5dG4Psp9lYzfAORv4x7Bi+/gTnl9SuUO1wVfAxPEDzN9xe+3y0h9PCvg/pWniN68MEQXs4HjaOWbJ55MJXuhJ9PMLdgv8dd9Brzuc8f14XX+3/9ZH4+Yv2n0rJmzbgAcb/E5ho2R9ructkYYhNCl8PPAbgObfCRn1bnTwZSOh1+srmdzZcLPDWbjZSjxf6zUcHPgk7ZIx9tzsDztzLuh5XgZRO4267dpvDkCLF+Mi8HgbberrNvD0wV6yfzE/0tf33d79mB2q6kUaH/ZKyt6uyfc8aJ/AE/J8ETxvbJ3DZbNxfiBz8Vnz8eOC9/0rz2Mm2GnxXwEv09766+YVq/w5GE+cnmIjYnve6u28nvrCthv4/1n8vBe85JbvMWx2N/cJdH3yUyfNfxLx+6HcV8LIN/EjznlPBT1lTOHOzvRT/CTxt4uR4sGRxbbWshQ/8gQ/4SeCDhGs67KlUGYz46HSPQIFCg2iWirT30z6Ke/mQwfCDwktXRSenz23394Ur04Sfbu1GQFPt7B9cniOd7hUL/6eQntwr5JRH530XdjeV6gm8r4w9qHLxKV8DPIbgOxo8Tgw4YcNfF+snqJmOP7ecyEyXRYv/5EV6yPrRuwM0vHyyy0f+UYW91B3X8DlcUeUplS+41MgZ+6sLL4WD+ofujs78mMP9/8tOvZDRXG3aINimc74zqryua0+12ERv4qQ9PUA/4yD1eMqVNp8kF+MnmdjYf/Vro1r97rj9tK+TLv1Q439ssKJHwe+Ti80c2F5mAKYNbRj6V7sZ+PB3PJeX8XHDS16KmqAwXys73vgr10zLGMebCIU/URxlvBi9ngXMjUr4vHiahhfBzFrxk1Jz78MzdxtN4PinDczEJzi8Jt2mX+fDnGpiLVmdiz4N9pXc0dR0rO32sbahYP83g5SJwuFqvgZueXaHs+VyDQv18l7w5q+NxOVWGn9h7iLSO9O48Z/Bs9v457K3F/rPXnaa2acXBdLXCfMRYvZ07vuW2HWH7I9Z/4v8xcJctH2qt2imev9wXeMmoMiDCseutO+Q4/GTzkQp4et3DvNeO8WQs/BwPL0eBh/umHx09Lp75L/afeH1+W/L7d1unHCafFc53Vj/zn0hMd3fb+dP8zqg5o2Tx2kw/sX6y/RKrn6qm7fKvXBH7e3GvhP6eV357xvdJkTsdp+An4+EdhdkR9WexP04X6ybrP6eOH5w28qaLWD+7KtTPhBzjL2nLpZTNRzrwcgS4zPuA+72WQHF/2wteYr/NJ2zkNul9OkaPw081eKkC6kmL1zu8CRDqZUO64OXnaIFuUbTUUK9Ov99SOgY+LISXjKM922aFH4omnvDzB7zE831ux8rC+q3t00Q/6xTmI/Umzl5pZRw5Cj/bw0v2/HNLcVVg2/4RdD38RH/Gsc+L3MXttcr/53PmJ3u+zzy9eMRjWc65aJIJP38ozO+TOn+ZsHvNPdFPNrczP2sKJB1Lu3gRXfjJ9kpDwNmxoQ1VD8T5S/SSsdynZO1VH2fK9kuKz1e/m+7e1KPTMfb+xLrJeOvkKJ2kqlP0v+b3wVbSE+4Dr7F8RT+fgt16Ws+wtHegis9nGetVOryMv3+GzsTvY/tPRs3iDV+XaIVT5if2K9gjxfJB8sLIm9xVmgA/mZdjQbWmnlFOBXJaAT/nwksTMH9P3r11xy5gvy3j8lA/s8D3anvHa1w8KPhpeEXwUu+QwEGn6cuk7VWbHpzFfiId910u1tHsZ2Zto7ddpWfg5zB42QcsnzPGt7YwQew/Xyqc7zTq/kMvq13i/4/C/hfPkWI5o4IUja6WYZTN7+w6RoMpZQ3kXtYlqgM/cW5xeD7DWagfi1jmEMb2P1wzvGSe6un9qlYm+Xd+Z152BE9oj7k994o3GQU/hyuc79fUhh+seMyTfIX6idfnY/LsLDIm/fnT8+kCMKz7cq/KYlfC/GTnLOoBf0Sr0OXmsuvi81V8flB/7vATgk1XDT0cRr+i/8yHl8WgT8OQ4Y9unCeK5zt7Pri/p5pvmUMgZfslnIvoU+W8QZeUbm5u4SQIfrLznXH6t+8HEgYEU3f4if6Rx/nML/nisdv+YySJhJ/YO8LjUL5+3Q2TfboX6ET4GQkvk8BRnXV0QyqjBD9Vrwke6boJ3x9xp4Mf3ewwLCGEsnqF+Q7np5y7tSCsztFfRo7AzxbUTyX4OUul9MKlRJlYP3/AS+yPuYHOX1uSjaNFP7G/EPvQxvwRJfEGF8T5ne09h4O6G2Md5y33Qf9RhL1Cqvj//NoY7agrGX6YFMNPVjfZnil6z6mhD03vivWT+cnm9z3be8fM2xZE2fneInglzkkXb8/OG7lSzl6fx+uKzF1xttztQQp7vsCPhQesPgp/nyv6hblR5JOWrkFlPvfoNPx75o0FmBlQs7WTRgH1gB8f4Udb+OFfvSZwblE+Dcb9PyH8OTcV7LrQZpSSSxHFfMQ54L5as/t7K+BQesdC2hH3r3e8cN8acP8enbtxrrxbrji/Ym8r7v/6vLp3qaFrAS1H/qoeQu6MAVm5d7y+7SH/A+wEecQ=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAwQAAAAAAAAA=eF5LSwOCRUUODK6fOdOB9Kf3u+aD6Pr6I1IZQHra84X5IPqOp/1UEF1itb8VRL+YnWEPouf9XnUUpF5mg50SiE6DmpeGZu5HIs19Tqa5DUS6dz6R5uIKh7tQc0spDAeYe6dDzb0HNbcMau5LMt1LK3MboebOoNBcRqi5n3GYex9qbjnU3FdQcxdAzZUlYC4u98LMraDQ3AY0cx+gmfsGzVxC4fsZh7no7oWZuxCHuQyjYBSMglEwCkbBMAQAfZLH8w==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAtwEAAAAAAAA=eF7F1b9LAmEcx/Fs61+QWpr6IVG5NXQlOLRGf0HD6Vb0w6zFK2goa4pKCFIbm4KC1IKgtKVZWlLbzB8Qdm0t3QPfD8gXHu7xDqvlu8T7efW95y5dt34uVmZ6gmZfyJpfn7mkmLFY3hu25kk1vSTm25x2LOba1MOumB9nYU3M85/Lgvj9/qvpQTF16ums21LsVh12DUVvUrEr20OJuusu9wDvKXXL1I1Qt+bQ263uNnUTLrse6pqSboW6G9StUzdF3QGbrsyLbtRl12Ddd9Ztsq7dfk1Jl3vRTUu610Vfpr2/6X1dCLWdk7nVSu1/x77fHxQ93O9sYnlHTNzzoUDsUEy8R2ONo0Ux8T49vez1ion7Xyp+r4ou3oPZ+HxeV3BGJc4WcxoOnY9ddmKfcZfOPHOWHTpVnzucOeYcJmeZOSN/9NzhPJA48V0bYc5x5sQ+a2yfyQ6dfJ9ZRWfin505iRPfxTuHzjpzpmycN8y5RU6PovOeOUfJWWFOfCcLNs4AOfn33qnTkDh95MT/hwmJs2HjVN2n6v20c04y5zM5mx0+d9xP+LA/eODA+TgX5+Ec9H8BOFAJ/w==AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAA4gkAAAAAAAA=eF5dWGdUVVcWpj0gDxSkQ4AgTVoEqQ/ejYCiIgEsOCwrwRo1TrDEuhwCg7GNKLHgWKLRYBAjDmAj866KjgiGBAURDVEUFSciukB6n2Hfc7635P371r7nnr2//e1yX0tOc2XMgqnXNNivjeGTG+4UaS1qV3E8KjWyalydm9DFcH+NT8KEFbZiN8MPmhYYpe+0FDXOSFhrdJvcfMBP1GW4fJVtySrbAFGH4Uwjlbu3mR2e1/vH05eVl8IFjjt/nnTEzuEjgZ+PLBl8gaHYyu5zcC7/w7XmgZJjO7+SuHkxL5XtDA8oN/9uvt0F/i4x3/jIa5kj/M28OD6tPFhD1GLvt6Do9QUZw3/W3w5c1iOD/VXzwvsOEU6iJsNrr5cWZ9+JEDjeEuqUNSxoPOLdef6uqcxipNDC7lv5l8FfvZLz2X+z/2xfzBtVB8OJX/613ltVq+pkeOzu54rdz91F7v+Pt7WKo/1blf0MCzaBtzN15ODrpW+42eNXPuBLv8ow1eQra8GAYb+G32IL6yIQX5Fi8AJtgcc3dpNzh9ErM/Ede/+Wyvtp19PL4O/r/LxN2x7KRe5fit5bq72Ne5Ucj7i1Mt6v0Enk/Gf47yx7lW0o9jIcEKPbXfFJIPibuj7veoFBCPw9P3u2n6LNCbh4nGt76cJPBH2GB4oH3x8imDCcRHz4Qw9bkmyUUTklyP/W7T8VG797ruT8xrZ//ibJw1Dg/oY4z+vc4m4FfuUzX/bVWPYhnsQrS10PvPYQe7jeNPbYJkwxE7TZ/eu/S3HXnGUH/pLbDZac9ZokGHL9rLGPO7THQ7Bi2O2r3KSO2tEi14PGudzexQ/qcJ9jRnj0xhn98DfvV5ml/nx7+HsyJ+eFRbMt/A187Nuw4omewOPVKU7KON7vIHB/p+846H2r0w/1tdeg7vbRfYLI/XfUftv2aGMs/E3YkL9tYnGAaMPrgfx1hX7ztj4qT7tbCX7vRYbeuHGqC3o9r3yY+LvMVOD1laN7oKjqtCf0UlGu94N3lQn0EPTZm8/rPVxErucCUx8Xh58U4gDDf662S5dVO6P+zL/ZZ7neZAz0XPCb7uMjNgEi10PDkrS3Mekx4Jf1B9TXqIGN+61LNeBPXOWhEZOnysGvX0LjiWmrtGE3HHchel9Xl7KP4ZodTxxC+zThX/Mv4mc9J33A75ynAYKboS/4daZ680I/yHz8+uq2/REir7+JhzaPKFjtKvL6erH2lt8u1wvgszo++u54E134E7zUtCI0UybweDyd5vo2J9nD/unlXSF/dLjAn0uaky8bXg0B1jh5cpNhrbHA+c4+HaSs22qAevy2q2vOjh9HQt9u5L8/6tGX7rOC3rgeeL73Ks3DrWf0gm/HnvPtQeYfgt8D1M86VTz/U09fi28yqAB+7tUakTrBX+R8L+/ouDPfTw5/228O6ttK4Haj8b98KVsSLvB5kpT49uONL2xEI4a73y06cqEvEPzw+cZxWHWm2+QVtag3cXn5mL9f9YS/i7+Jbvy2xB71lHb6tH1akCf8Ka1wG519/J2K40byzwv63sX6A+c3Zc3i5OSaKNSbdovk33CGj4Y5Lz/RFCd2DPG3bQjm/W4RzRM7gdvXEb6v7neEzQX+fMfA4E8P9XnuzODPBnp6S/6bwX6W7L6Id65NcX1rnA30O0KZkZSo6Yd6+N56UfCq3GLVB8y+hO6XYT5tfhZUOuVrX+hNTtH4IH8hjWFXU2W24K+b/PVG/e+meeIPrEPnw/D+G6bXwpO7TYEX0P0BmEcSexcUnC9b6g//VfJ+YXXw9VKvvJeYd8YK/Q3T443BR4LEt3rekD9myFcD9YcPUB83HMp2fJFrjHiW0vk2JccKxievLykfvuiH9sSvE+bLbDrvgnxUBaXbnaoKgr2O+mUg6tds+nTtw26+As/P4rK1/hYzPXFfSW9vbsQ9BfgsoPs9wN9t8t8B9TiF/I1C/BKfTdgP/0394Bn2sVGUz14VxxN+nX+sLKFPxeeXlD9f9L/DdL8W+Iyi+xxRv1r0vBXmsXT/00Ken17SrwPi6Wf12PPe+0LAH113Ro3lxLenMIydD2v+8EV26CTwWU/vc8Y+EvrEf93+6aHgs0b3fFfGJPX+27353sNpUer91oryESXw/H99dVmj26nR0Ke2FBD42ELz4KaK299RPRjhea2Co4XVcm3ss/p03Bn26tgp+bU9w4FT6T71fvEF4eHod1MlfWL+7Kd6alFxPqX3+yA/N1j/4PHF0/lw9MvjzC7n/Y7Oq/fl/PoQG4OzLtBnHtMft0v8jxdGMPyppD/0C+f0Z6u73cORj62Mz/f7Z14hj9//frJHZO1T7C9elL8B8Jv1oGSYaqUF+IhmfHD7Hqp3W/BZRvWhgf6ZNefcD/lF3Soe/0w6H4z8JNJ8tUZ+a6lefeGv1C/HgM8ddqVBeSnB4HP7w9TN2gadKq7HfKZfnh9rSb/ox42Zg/3MAvoTKZ9OoiXDrkP46yB9+wvGDCdK/WZI/yxScMzrncd3hfzpBr834/6W2jCpDngKva8efA53z9GMMRuJ7zMP8mck+K+m/jYK9S/NIxvwKRIeWj/+4DOezRPOxwn6PvDGfV0UbyTmkQmdd0A/0B1mGPmmwBb95F90Xyz2O7OR1N8FzmeRNH9Ezmcy6cUZWMqHK/yV+l+T6n1+1ftJHvmr3u/lLS2XTWJawPdl8scE/GT/8z/CwSsO6n2Hvgdscd41K0vXf5ot+E1h84jzweudx59C83os+C4gf0aBn+/ZeT4fpP1MgXmRQXYZnt+jq5u1bparyPuBFH80+udkqu9xIu+/bH+BXZp/Adg/uofwKbF3oZDnn813zJsm8s8Qz188+KCy7lIn7Lp0Xt0/d353bMGVjj7ss+upvhug533S/AefuZQP9f8Lj6n/WkA/Mnp/BOa7A82DEMyDUIrfA/ylMP3w8wulelTzbzm4b91XcX5mMn643qR+qf4eiaB+5416Hy7pHf2B1zuPV4vpk+Oh9d5JfKr74QblVmeVjg7Oz6P3ucP+NfU/c+Cx5M9H0OfF6yvGvqhwB59SvtuQH0mPgci/NI8U2K+k/SQE8/4Y8ecFvqT6VO/vfJ/i/UHa7z4GX69on3MX9Hj9Eg6GPbZycP83Ad+txEcY/l+JZvb3950mxMPrnfPZyvZHHr++qcFrs3FF2KdmSHxAf3snrgru2++I/XSmNB9gP0z16gR9Sbc1KfjzFdRf1XaS7//3T45vDfm+ucbmNcdNbL/iWMqHun9OZHrj7zs8RM/K0tXPZnsK2LdGD9En8wd4DesHQ7+PoB+pH0JPs6R8gs+7FK8fvh+l07KfuX+S3sMQD7MH8/vmMr3I3/PHReTfcyuYf/8DB5sfzA==AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAA4gkAAAAAAAA=eF5dWGdUVVcWpj0gDxSkQ4AgTVoEqQ/ejYCiIgEsOCwrwRo1TrDEuhwCg7GNKLHgWKLRYBAjDmAj866KjgiGBAURDVEUFSciukB6n2Hfc7635P371r7nnr2//e1yX0tOc2XMgqnXNNivjeGTG+4UaS1qV3E8KjWyalydm9DFcH+NT8KEFbZiN8MPmhYYpe+0FDXOSFhrdJvcfMBP1GW4fJVtySrbAFGH4Uwjlbu3mR2e1/vH05eVl8IFjjt/nnTEzuEjgZ+PLBl8gaHYyu5zcC7/w7XmgZJjO7+SuHkxL5XtDA8oN/9uvt0F/i4x3/jIa5kj/M28OD6tPFhD1GLvt6Do9QUZw3/W3w5c1iOD/VXzwvsOEU6iJsNrr5cWZ9+JEDjeEuqUNSxoPOLdef6uqcxipNDC7lv5l8FfvZLz2X+z/2xfzBtVB8OJX/613ltVq+pkeOzu54rdz91F7v+Pt7WKo/1blf0MCzaBtzN15ODrpW+42eNXPuBLv8ow1eQra8GAYb+G32IL6yIQX5Fi8AJtgcc3dpNzh9ErM/Ede/+Wyvtp19PL4O/r/LxN2x7KRe5fit5bq72Ne5Ucj7i1Mt6v0Enk/Gf47yx7lW0o9jIcEKPbXfFJIPibuj7veoFBCPw9P3u2n6LNCbh4nGt76cJPBH2GB4oH3x8imDCcRHz4Qw9bkmyUUTklyP/W7T8VG797ruT8xrZ//ibJw1Dg/oY4z+vc4m4FfuUzX/bVWPYhnsQrS10PvPYQe7jeNPbYJkwxE7TZ/eu/S3HXnGUH/pLbDZac9ZokGHL9rLGPO7THQ7Bi2O2r3KSO2tEi14PGudzexQ/qcJ9jRnj0xhn98DfvV5ml/nx7+HsyJ+eFRbMt/A187Nuw4omewOPVKU7KON7vIHB/p+846H2r0w/1tdeg7vbRfYLI/XfUftv2aGMs/E3YkL9tYnGAaMPrgfx1hX7ztj4qT7tbCX7vRYbeuHGqC3o9r3yY+LvMVOD1laN7oKjqtCf0UlGu94N3lQn0EPTZm8/rPVxErucCUx8Xh58U4gDDf662S5dVO6P+zL/ZZ7neZAz0XPCb7uMjNgEi10PDkrS3Mekx4Jf1B9TXqIGN+61LNeBPXOWhEZOnysGvX0LjiWmrtGE3HHchel9Xl7KP4ZodTxxC+zThX/Mv4mc9J33A75ynAYKboS/4daZ680I/yHz8+uq2/REir7+JhzaPKFjtKvL6erH2lt8u1wvgszo++u54E134E7zUtCI0UybweDyd5vo2J9nD/unlXSF/dLjAn0uaky8bXg0B1jh5cpNhrbHA+c4+HaSs22qAevy2q2vOjh9HQt9u5L8/6tGX7rOC3rgeeL73Ks3DrWf0gm/HnvPtQeYfgt8D1M86VTz/U09fi28yqAB+7tUakTrBX+R8L+/ouDPfTw5/228O6ttK4Haj8b98KVsSLvB5kpT49uONL2xEI4a73y06cqEvEPzw+cZxWHWm2+QVtag3cXn5mL9f9YS/i7+Jbvy2xB71lHb6tH1akCf8Ka1wG519/J2K40byzwv63sX6A+c3Zc3i5OSaKNSbdovk33CGj4Y5Lz/RFCd2DPG3bQjm/W4RzRM7gdvXEb6v7neEzQX+fMfA4E8P9XnuzODPBnp6S/6bwX6W7L6Id65NcX1rnA30O0KZkZSo6Yd6+N56UfCq3GLVB8y+hO6XYT5tfhZUOuVrX+hNTtH4IH8hjWFXU2W24K+b/PVG/e+meeIPrEPnw/D+G6bXwpO7TYEX0P0BmEcSexcUnC9b6g//VfJ+YXXw9VKvvJeYd8YK/Q3T443BR4LEt3rekD9myFcD9YcPUB83HMp2fJFrjHiW0vk2JccKxievLykfvuiH9sSvE+bLbDrvgnxUBaXbnaoKgr2O+mUg6tds+nTtw26+As/P4rK1/hYzPXFfSW9vbsQ9BfgsoPs9wN9t8t8B9TiF/I1C/BKfTdgP/0394Bn2sVGUz14VxxN+nX+sLKFPxeeXlD9f9L/DdL8W+Iyi+xxRv1r0vBXmsXT/00Ken17SrwPi6Wf12PPe+0LAH113Ro3lxLenMIydD2v+8EV26CTwWU/vc8Y+EvrEf93+6aHgs0b3fFfGJPX+27353sNpUer91oryESXw/H99dVmj26nR0Ke2FBD42ELz4KaK299RPRjhea2Co4XVcm3ss/p03Bn26tgp+bU9w4FT6T71fvEF4eHod1MlfWL+7Kd6alFxPqX3+yA/N1j/4PHF0/lw9MvjzC7n/Y7Oq/fl/PoQG4OzLtBnHtMft0v8jxdGMPyppD/0C+f0Z6u73cORj62Mz/f7Z14hj9//frJHZO1T7C9elL8B8Jv1oGSYaqUF+IhmfHD7Hqp3W/BZRvWhgf6ZNefcD/lF3Soe/0w6H4z8JNJ8tUZ+a6lefeGv1C/HgM8ddqVBeSnB4HP7w9TN2gadKq7HfKZfnh9rSb/ox42Zg/3MAvoTKZ9OoiXDrkP46yB9+wvGDCdK/WZI/yxScMzrncd3hfzpBr834/6W2jCpDngKva8efA53z9GMMRuJ7zMP8mck+K+m/jYK9S/NIxvwKRIeWj/+4DOezRPOxwn6PvDGfV0UbyTmkQmdd0A/0B1mGPmmwBb95F90Xyz2O7OR1N8FzmeRNH9Ezmcy6cUZWMqHK/yV+l+T6n1+1ftJHvmr3u/lLS2XTWJawPdl8scE/GT/8z/CwSsO6n2Hvgdscd41K0vXf5ot+E1h84jzweudx59C83os+C4gf0aBn+/ZeT4fpP1MgXmRQXYZnt+jq5u1bparyPuBFH80+udkqu9xIu+/bH+BXZp/Adg/uofwKbF3oZDnn813zJsm8s8Qz188+KCy7lIn7Lp0Xt0/d353bMGVjj7ss+upvhug533S/AefuZQP9f8Lj6n/WkA/Mnp/BOa7A82DEMyDUIrfA/ylMP3w8wulelTzbzm4b91XcX5mMn643qR+qf4eiaB+5416Hy7pHf2B1zuPV4vpk+Oh9d5JfKr74QblVmeVjg7Oz6P3ucP+NfU/c+Cx5M9H0OfF6yvGvqhwB59SvtuQH0mPgci/NI8U2K+k/SQE8/4Y8ecFvqT6VO/vfJ/i/UHa7z4GX69on3MX9Hj9Eg6GPbZycP83Ad+txEcY/l+JZvb3950mxMPrnfPZyvZHHr++qcFrs3FF2KdmSHxAf3snrgru2++I/XSmNB9gP0z16gR9Sbc1KfjzFdRf1XaS7//3T45vDfm+ucbmNcdNbL/iWMqHun9OZHrj7zs8RM/K0tXPZnsK2LdGD9En8wd4DesHQ7+PoB+pH0JPs6R8gs+7FK8fvh+l07KfuX+S3sMQD7MH8/vmMr3I3/PHReTfcyuYf/8DB5sfzA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAPgfAAAAAAAAIwQAAAAAAAA=eF51mEFqHTEQRH2nZO/b5E7JDf4Rsv4rgQMDHwyCLGQUwogJg44Q/EUxdFVXr6zyo9WqHs186eUljx/fP+Pna64X0b8842H4KvqKZvJ00b8946/JP0T/9fYZ/8y80+i6boxzvYgOH3K+ir6imTxddPiQ5x+iw4d83ml07XP0gfUievSB+Sr6imbydNGjD5x/iB594Hmn0fW5hg+5XkTHOOer6CuaydNFhw95/iE6fMjnnUbXfRyfB9aL6Mib81X0Fc3k6aLH54HzD9Hj88DzTqMjGuXH/mG9iB79Zb6KHsecp4se35Ocf4ge35M87zS6vqfjvmC9iA4fcr6KvqKZPF30uC84/xA97guedxpdv0vwIdeL6Cvvw/BV9BXN5OmiY5znH6LDh3zeaXT9Dsf3A+tFdPiQ81X0Fc3k6aKj7jz/ED2+H3jeaXT93QEfcr2IDh9yvoq+opk8XXT4kOcfomOczzuNfv0ff8X3JOtFdPiQ81X0Fc3k6aLH55jzD9HjOnneafLcjC/6/6/POu/Cx33E+TbDF+HXet+Fj/vu4td6f5v8Vfg1/jDrbcI/07/9MfV0s95d+Liv2c/D1D+MP6fw8T3A9Uzjw+01Pu9XcJ8xZh7j/LnYDF+ER9+ZR9+ZR9/z/FV49D1fbxMefc/r6Wa9u/Doe+7nYeofxp9TePQ9r2caH9B3PUes2KjOu/CxDt7fm+GL8LHvF798fggf+875q/Cx77zeJnzsO9fThV+xCx/f2+znYeofwse+X3x8z3M9U3T0Pfp6BfqAMfrOPPrO/IrNnjeZx5h5jJlH3/P8VXj0PV9vEx59z+vpZr27Pecyj77n9Q/jz2nPxXk90/iA/a7nRP5+xv2u5+j8e7sZvgiP+pjHOpmP+13P48zH/a7ndObR97yebta7C4++534epv5h/DmFj79vuZ5pfMD3Xs/F8Anj+J3QewPmV2yGL8LH51LvGZiP69H7B+bjWO8lmEffmUff8/XuwqPvuZ+H8Oh77s8pfPxdx/VM4wPe83oPENfN73m9J2F+xWb4Ijz6zjz6znx8z+t9C/NYf77eJjzGeT3drHcXHn1nPr7n9T4n9+cUHn3P65nGh5u991ixU513c9+C33V8jtnsfRHz6Dvza50P4dH3PH8VHn3P19uEh195PV14jJmPY/bzsPdXzC/utPdazK+YoqPvcZ4r+HwZv++D8uAcx+fRzfBF+LWed+HRd+bj953zV+HR93y9TXj0Pa+nm/XuwqNPuZ+HqX8Yf07h4zmO65nGh5u918I8GKPvzKPvzK/Y7H0g8+g788vnh/Doe56/Co++5+ttwqPveT3drHe395DMox95/cP4c9p7y7yeaXzA77pJ9dxFX7GJvvK+ix5/d/E94Yfo8Jn1Fbvo8Tnmek7R/wO2lrzJAQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAA+AQAAAAAAAA=eF5d11f86HMdx3F/e+89Dw7H3nv+bcdelZUOKSO0yF7tQcMoyjhlFA1SlJFQCJFVshVFRmXvceH1vDi/383z8bv4vK9eN9/JJnv/G8kZc4Y8Mo/Jb+ZR6W7ynCntHJ3H5bfTnrspcua0c2yekKekPXdT5ixp5/j8fJ6WJ6S7qXLWtHNifjG/m/bcTZ2zpZ0v5JfzjLTnbpqcPe18Kb+a30977qbNOdLOV/LreVbaczddzpl2vpYn5Tlpz930OVfa+UaenBPTns70Mk/OnXr7Tp6X30p3epk37ejt1Lwg7bnTy3xpR2+n54/Tnju9zJ929Pa9vCjtudPLAmlHb2fmT9OeO70smHb09oP8edpzp5eF0o7ezs5L0p47vSycdvR2bv4y7bnTyyJpR28/zF+lPXe6G5N2JuaP8vK0pzO9LJaLpt4uzN/m+elOL4unHb39JK9Ke+70Mjbt6O3ivCbtudPLEmlHbz/La9OeO70smXb09ou8Lu2508u4tKO3S/OGtOdOL0ulHb1dln9Me+70snTa0duv86a0504vy6QdvV2Rf0p77sbksmlHb7/JW9OezvSyfC6Xers6b88r051eVkg7evtd/iXtudPLimlHb7/Pu9KeO72slHb0dn3ek/bc6WXltHNd/iH/mvbc6WWVtKO3G/O+tOdOL6umHb3dnPenPXd6WS3t6O2WfDDtudPL6mlHb7flw2nPne7WSDt6+3M+mvZ0ppe1cs3U2535z7wj3ell7bSjt7vzibTnTi/rpB293Zv/Tnvu9LJu2tHb3/KptOdOL+ulHb39PZ9Oe+70sn7a0dsD+Wzac6eXDdKO3h7K/6Y9d3rZMO3o7ZH8f9pzp5fRtKO3x/KFtOdOdxvlaOrtH/lSPpY608smuXHq7V/5aj6e7vSyadrR25P5etpzp5fN0o7e/pNvpj13etk87ejtmXw77bnTyxZpR2/P5btpz51etkw7evtfjvRgs+dOL+PTjt6ezym6t+dOL1ulHb29mFN1b8/daG6ddvT2ck7Tvb3R1N02aUdvr+R03dvTmV62y21Tb2/kjN2/1r87vWyfdvT2Vs7cvT13etkh7ejtnZy1e3vu9LJj2tGbh/rsac+dXnZKO3qbvLs5PfjTnV52Tjt6mzLnTnvu9LJL2tHb1DnvYM+dXj6QdvQ2bc4/2HOnlw+mHb1NnwsO9tzp7kNpR28z5MKDPZ3pZbfcNfU2Sy6aM41MeqeX3dOO3mbLxQd77vSyR9rR2xy5xGDPnV72TDt6myvHDfbc6eXDaUdv8+TSgz13etkr7ehtvlx2sOdOLx9JO3pbIJcf7LnTy4S0o7eFcsXBnju97J0TUm+L5MqDPXe62yft6G1MrjrY05le9s2Ppt7G5hq52Mikd3r5WNrR25K51mDPnV4+nnb0tlSuM9hzp5f90o7elsn1Bnvu9LJ/2tHbcrnBYM+dXg5IO3pbIUcHe+70cmDa0dtKufFgz92E/ETa0dsquelgz93eeVDa0dtquflgz53uDk47els9txzs6Uwvn8xDUm9r59a55sikd3r5VNrR27q5zWDPnV4+nXb0tn5uO9hzp5fPpB29bZjbDfbc6eWzaUdvG+X2gz13ejk07ehtk9xhsOdOL4elHb1tljsO9tzp5XNpR29b5E6DPXd6OTzt6G187jzYc6e7I9KO3rbKXQZ77wEQhC2+AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApgAAAAAAAAA=eF4txRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF4TF6c9AADGKQj9 + </AppendedData> +</VTKFile> diff --git a/Tests/Data/TH2M/HM/flow_fully_saturated_newton.xml b/Tests/Data/TH2M/HM/flow_fully_saturated_newton.xml new file mode 100644 index 0000000000000000000000000000000000000000..d920a82989ad1bddda8b074da1f67c7a7a6fb403 --- /dev/null +++ b/Tests/Data/TH2M/HM/flow_fully_saturated_newton.xml @@ -0,0 +1,6 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProjectDiff base_file="flow_fully_saturated.prj"> + <remove msel="/*/*/process/jacobian_assembler"/> + <replace sel="/*/time_loop/output/prefix/text()">flow_fully_saturated_newton</replace> + <replace msel="/*/test_definition/vtkdiff/regex/text()">flow_fully_saturated_newton_ts_.*.vtu</replace> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/TH2M/HM/flow_fully_saturated_newton_ts_1_t_1.000000.vtu b/Tests/Data/TH2M/HM/flow_fully_saturated_newton_ts_1_t_1.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..721ba83dbc0d174922538511e3195fbe04f37ec4 --- /dev/null +++ b/Tests/Data/TH2M/HM/flow_fully_saturated_newton_ts_1_t_1.000000.vtu @@ -0,0 +1,48 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="238" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="22" format="appended" RangeMin="45" RangeMax="103" offset="192" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="8.372123689e-13" RangeMax="3.6305644768e-11" offset="276" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="900" format="appended" RangeMin="1" RangeMax="1" offset="22744" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="0.013178612662" RangeMax="0.57148944237" offset="22844" /> + </FieldData> + <Piece NumberOfPoints="341" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-7.7698752462e-19" RangeMax="6.1127768849e-19" offset="40724" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="42132" /> + <DataArray type="Float64" Name="capillary_pressure" format="appended" RangeMin="-1" RangeMax="0" offset="42700" /> + <DataArray type="Float64" Name="capillary_pressure_interpolated" format="appended" RangeMin="-1" RangeMax="0" offset="43096" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="9.2857142719e-12" offset="43924" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.346401037e-26" RangeMax="3.7142857143e-11" offset="48160" /> + <DataArray type="Float64" Name="gas_density" format="appended" RangeMin="1" RangeMax="1" offset="57124" /> + <DataArray type="Float64" Name="gas_pressure" format="appended" RangeMin="-1.1750946e-28" RangeMax="1.061141177e-28" offset="57296" /> + <DataArray type="Float64" Name="gas_pressure_interpolated" format="appended" RangeMin="-1.1750946e-28" RangeMax="1.061141177e-28" offset="57952" /> + <DataArray type="Float64" Name="liquid_density" format="appended" RangeMin="1" RangeMax="1" offset="59660" /> + <DataArray type="Float64" Name="liquid_pressure_interpolated" format="appended" RangeMin="0" RangeMax="1" offset="59832" /> + <DataArray type="Float64" Name="porosity" format="appended" RangeMin="0.1" RangeMax="0.1" offset="60660" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="1" RangeMax="1" offset="60824" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="1.1576064701e-16" RangeMax="0.58466805513" offset="60996" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="298.15" offset="68144" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="298.15" RangeMax="298.15" offset="68316" /> + <DataArray type="Float64" Name="velocity_gas" NumberOfComponents="2" format="appended" RangeMin="2.3063602094e-33" RangeMax="1.46388895e-30" offset="68564" /> + <DataArray type="Float64" Name="velocity_liquid" NumberOfComponents="2" format="appended" RangeMin="0.00099999999703" RangeMax="0.0010000000045" offset="73352" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="1" RangeMax="1" offset="77056" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="77128" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="78584" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="80324" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="80592" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAO4AAAAAAAAAbgAAAAAAAAA=eF6FzDEKhEAMheG7pLZZtJqrLBKiGyXgJENmLBaZuzuFjY2W7/3wHSBaeHUqYorJ2kJyp3+G8D1u0fzHDqHvQCkyBMiyRkJJ0J49TuxoC84WkylracBQuzeCyn61B+fz6nDKsj0jQx3rCRUKV2Q=AQAAAAAAAAAAgAAAAAAAABYAAAAAAAAAHgAAAAAAAAA=eF4z0zPRM9A1NDQw0k1PMzZMTTS1sDA0AwA3egUYAQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAsEEAAAAAAAA=eF5NnXc8Vu//x+8KJYq2kZKVpBIVHe5SmSVJZIQQSbL3KCdb9t6y9woZJ7ddWRUqRUKSzNCQln6fx69zv69v/74e7+s+zrnOuZ7X63pdV6PsDyrDv7XQTC65bW5QNSAo5D+zuS7hdfWMxCipK+uv0vG3twE9dtfo1Jr9aqBX8k/MGFxwBf0Ac6iw24IKQdnTeSTXsJn29frsmQOW5qD/HrgV53JQEnSV4cu5Y5l2oCt+YUz6LH+V+Cv8T9/B3J53MMIF9F65txml+y2xHSfe1NA6G2luuxVX8Ge7gc7KLTYld8oX9HuVh2w+3L0JutbOvbrZSxbEdlKf542Yu3AWBz3X4jnTTc5IbCJ9+oZoYwNNUb2iKvWED+inWkJGnnWdIUZIXe/HihcOKkhXaD31FqcYgG6dprZwWgvpE7+qjAynXDGVg4dsdWLraCxK3ZcF2v1A3zNeZzF/VhpTInXRzNiT7y54g7796KGYZAyH+vjftadlaJ7o+S1e1ST+JGF5jR6OfjdqaVFS3m9WMFuBfnt8u0nbx2iijNTTCt68904+CLruofThdbVBWBqpD54NHh1JN8foumTeyYW3O8MwG+tHNpIx1TTZoeAw/lIR0NMO+P2trIgFffmypCWLylXQP41+DOYttwWd4wehFunkCLrSO+kNX/vtiV0K+xxNLCppbZns3gp8WnB9NV2xddwORwgBUq+UZft2u9wSdM71VsYcZ0wwflJv3nZGY37SGXSn/XoajXdxont7tGvEiXu0G0tJL4M5UP+KjoiaG++Pweg6H0f6Bhn5O6BbfbB7UGJlRLwmdSYubJDjeDTo6ixjolWffDHK4utJnxclNIuzCnZOzb6gZxiz8zyqjSMav/3TowPso0OuR6HnP7wjoSnUHvQbUy1zw1+SQB9w/6AdpXmXsFr57PMQnkdTN8/9/DXYC3QxDsF+fbYY4hqpczI6hMi9jQD9DG3ktlSDO0avD9SMTl/vkAh6W0Pfjp0O6Rgv28NfUvsyaC6zyvEfVHzh+YjUbJHP/GSDUUh9iJb9w3+DIeg2W6VyVVoisZH1//Tk7Z+OnApA72fWinRv88+FGOXl+g+H/yTTrBq97Jhr7kD9pEd13rFCc6LxxT/d7p2ig5GCC+im4y8ytWQ9CJzUwxf7Fo6HXID2y3R9tvOMRhFTKvzfJzXDaU+LrotonbMFncHypi3OYUSMkProlvJlrXvuoAcKMG30br+ODZC6e4OHeREzev+cPG5RrMf+e1+F65XnHSxpBjUHP8uphIA+f37dA6XKMoyuV5znWm/JGQh65Mfi3amHcNBZp1eKxIyj78O4iJeD485sjCL0/zrV4O7JqREh1P6RBMJo0OMoRhH4p48X6Zs36Hig9+P4CTeNh/4YReSfLqucul0s6yjcP8MvFocjliIxr39/H7VN9O7pWyuCoP7rwGRry9cYDCf1oW32LylUT6iff4u1WNZpQf15Pubw4ztTQF+/8Mb+GacvJvvv+VAfBA9TJx+j/q3cxHUmaOAS/flR14YZ1O6pCoX6c3NBLassgjC6Prrurjvz8XzQ+Y6xCRt6RhNk/6L+nTM3SeFNg/Zz9dv5jlVEYY2kXuY7+Pt1lxHooyFY+sf521D/pj45kOFpErTPm/Bhz7ZbxYTKv/eDGrnM69orgto3fy5QxGsaSaiRepVqUeL7PqRbXP6lu7QYhZ0n9TepknVfvdJBLx5yYIxcGY2R7zd1nwOl/1BnOPy+ZFTlyS71ItCtJTuKDPrDoL60Z3JQh7sE9PuaH5qV1fNAr1579qDHtXqM/D5RXQSdQ0KP6oO+tbtWePbTFdDtIvr9calU0D891v92lq+E/n2jfntlualStRh0L0efSRmmRmLvv+8rtUFm+RwXYxXoV+KaNxgFp9C/z9RzE668umH3QK/1KttlJ+tDCJF6/e7pdxISBaAPdoiV59poEwH/xgfqLctStVsjlaBf1381EP2Ghl0j9eQv8bvZrVH/ajOixYnL5oH+Z/yh68z5HLi/gXMHIn6lFWFt/8Y36okTTwLPsaDrYzcyNVn7KJY+PlJrdrY+sD6kC3q6N+OqE0WBRA2pn+KdYyk6Wgbtr3lxb9Pg4xhC9d/4TJXvW7y216YE6k8vboxt0A/F9EhdWkhF6SUr6j/23jafuKfssdOkznBlm9vnuOugv58aVXLmjifm//EFNSWqrZjzZwLoXWNUDq6Fcow9459+7MyZvXruqP+V9epuvGifjNHrs1TKPQt/ZIOevD+nLs3eijj5j4+oD1Q/V+/ZgK4vYnPql6/DOdgaUg+V1P+tIJUB+qGE5Ze8nsnEMVI35m2TNbmcBXrs48iEkVWVBNs//qPqPRa9a6tTDvqt16tkQzkSiTWkLkGTkbcfiAP9+0127d0/XAkWUjfJPPp5uCwB7r/PWqVwT/X72ON/fEo9Qtk+upW5DF1/gv7Vj/P3MI4N//Q0pfzqk2mZUM918tFi2sVIrJast8sa7Sp60QR6rkSrXwdbNfaO5N+xu90GMVlofPuQnaRRUXeYeE/qHdMhGfK7TEHPu3ta52GDMTZC6nj32oVj6y5C+3q9AnvTH1ljyyT/Riebvj3KjfilqblIeULME/g4OK/BO3QO8Z3yh7DPYzpawNfdB64lqJ+/DLrlz0vNktl2BA/Jv9daBI/aziI+9h2fpgYVhgMfvxzMDLtF3AL9xoaQht+VbqBLLe4aD/JH/LnB0Ne+5pMPQefnghM0a80gxNdbHSxbrZ3CgY9tt3DtbDNAevt3OzeVHCd6/6bJTjo9xcSRnlXzS+BKmx6hTPJvBuPzmx2vEP/4eT0OMGtwpr8/tOspfz9v/4L47s/TmZPfdESJM6TOe7n8hbLlNdAfyCns0b5gT3+/aek5onWHGxH/mURUnRK2cCLofC3Vob4m1hCNvz2JB6NqowOAn2skjZsZmE6DnpPRq9R6M5Ugv0+0W0M877BNiA9UvzyXqrdyIAxJnXkF73LmavR8RLdOPYm4cgV0m80bJpQy0fPdWP4swYXtGsFH8m94yuvV4/rWoHPc6Lp2wC0I4yV1kb/2pZ/vO4BufEnsOm3/SWIHqQeX/tL9XIfmd2KK1BlWxxTg32ufRj0/pdhB/z2py7Dr9pQ3fXyhSeuFH3nIg+Z/fopbB3zcbKFeI/vom/63iI8jj7gNGn7xx0ZI/tVWELmVIuUM7a8Z9ThmPYt0sV3sRBOfIdRPXo5/f2LGjKDrjRI8yaXFiN8OJPJnvOXzIq6T/EuJ/NprFMEJ7Qc3zWQ3uAZiNqReZi+TXhygAfVUhaiIXMNYjF6/tO1FqZQmer9baVWpksw+dL6g8eXFS5qdR89vlUmfOZ9xMfDzvIGUc4yYMegyXV2lFsO5wM9tUY145gk0fzpnNCPO7FhE5yvaEu0Vr7IX6t9Jislv3xhFAT8nmnReYrhqArqVZaVgx08P0NVMD27eZKsG7Uc+Gohz64sg6Py7eKBs5E0IDjpBybKpVr6DzZM6r7Ht1TS7w6DfEAydCD/tjtH5u1IisvKKJfp+eL+vCg43iAD+tbkdWN2kh77foaxNH7+ujQN96uoJx6xE9PyxeuG2HOdQOt/Svib1/Bjagfh1SUs4wl35JvCz3oWONVdyY6BeZg/3zsmqLNBlq8NDq9+6gX4v0H1T/Fgc8PO1uVXe623R9+d8m1mNmnMw8C8bricn74r4XcJ/MX3hWCGWRupps9v2PZQzgPafnXq+qiw0Fksk9Wj3jDCntcGgi+eekQxpSwR+5h8flZ46j8bn44qRCwVOORj5/KiLiivkWcItQB8LdeLm/K//0vlZlHby+cRwOrTvfPjGlEipM0Hn47gThPXbFjQ+tyyzzkbxx4A++KR8lOWjPejPY2MiNX3yQA/fzv3pUPRdaH/tge7wl5pVhCrJv6m77ndMWqH7t/nxV4/rLTcIWVI3dGH4/kwCjR8ellcvM+wLxjRI3as4VbsrEL0/LwMXT4uIZGBpJP/+TVupRt0aDb8/s8ts3a+EYtA5owTCbOURP2dcFXhncbYC9DcJUdavivPR/TvzcX2gfzXWRvLv7Xq2xLzXiM9bGhOzvrk3EXS9SSXdVOxMANTHXP12+OfrGuBnTt/XnjMR6P4Wln4Q/JheTv8+UwmHQt8VcoivbpW437kdm0CQ32dq4+9pWu8W9H0oFsrQYvZwA11l6s2l0JXJcH3cTfbPeP9kYXR+viH1KFUouhbqeeylHbOuPqL7L1QPLZbQ8DA0/rhvMV/w+lKFkeMLddT4lPtJsQpo/3kvZ3ONah3w8+Lkg+U4qQdQ/ypFO+en3T36+EjtOv/9m1YO4nNBZTZDneE44Ov1JxpX3TC9B+3zOL8Trva6AvwsUmzC3pWIno+P1o8vfCoBhC6pL7d3d/6WiwU9SL/MZdOek5gCqYdz3hVwK0Hvt8DZ0a4NEk4EheTjkdZHhnkSxqB/NtC4wXKtCOMl9VK9T6p6m1Og/VXMPSzr16YBPy+2/XwRK4n43k5cM2xSyhTDSP5V21hhQmy1gfarWaQaBpxuAz8b5hc0VG2MgfrEtSdk9LYlEbKkXsBygjV0Sy7op/u5OxrbMoj1JP++mAjg6A1C8zPzxpA2nolIjJnUxQYt8o+yXQH9pO/W1POe0RgrqdtZXno/tacQru/TRP1AJdsD7CnJv2G7fftrnzdDPaNOPmvUt1aMi+TnLIWN34ckUP/PUvjtwiZUiNWQ9ZU0+W/uiQ3QvuqhPbuTjSqBf+c3rC4tj0Hfl+aFm9KTrUYY3V9+N7091j3fEfTLf9bI9DpqQ333Q/GbcjTEx+8ebNhy/oY68DN7gmrun1rEN9rTicMFno7Azz7HciT74tH3R+Nx8iluMX3iD6kvLSxfeSWN+KSH6nj79lEvjM6/jZsclmffoutbN7R5rHooFvjaoJlp+3QLGh98H1BMrN7ZEnR/etDtudRwfCh6vq+ubVq57za9f9HEfh5uzeC9TdfxW5FVH5uPBBFLpM60dlH3qSO8v/gqNz61yTp1jK7Ps75Z8vgQDvqKM6oFaxjCgI9Fexn/nt8J30d8ftXUEPV0OEHXN7Ff8902Af4TzricbHL4ly9G5+eZsx0sb8uCQQ99bRBN1U4B/pVjHBPEdMF/xMe8xnRFM28BP1s5dTU9n/cHfXfHyiqbo7FQn9eabn1VF+ZXeKd8p7l0XDZ9fk+7J73uTwUrav/c3WX/A69uAF9/3hTf9H0l9E9cZ0moq/ulEtSzG+3dyNYP/h++xp4rT29FEEbnX95rlkZHWoH/8S92pfJ+X1zp31/az0xasmYI+vvnwnue9Im7Yzyk3jW87rXDRXi+uPmfy9zmOyLAX5ZdXvvhcj3wMe5SpGru5X0H9LBE0zwFDug/OOvqu9yaBR6gd2GthW4j6PkGLccLGJVkAx/L8p3R1g9ThfcvO2h278qsVOBjZb5Y4WkbJ+h/CbcE2S/H20G9wwuu5REd9H7Pd1gfL3oQjV0l+Ze3TvyTTTjy1z44+MuaXA/E6P4zLyfr7I58tL40f/7e+NhCLGZM6ja15X8uHfwff6XX75z22QzgXymbR9rnTdD7ozH6c+VYVRrws4LG7a4XUWj+xpNRxNCfmgV6eTDLhyeH0Pe34pRo/Nb+FDo/0ZaSV6qwbkftr7d+sfPWR3vQ55jEjo25oflTX6TWcwtTSeDnQdOCimtuRtD+RgabT5Ne4cQLkn/VGv1YZQ8pgc7LPMtf1RKB0f1n9TLmOU4dxG+6X8eKRpSisV5S1w5InE+/jPi5yyv58YU8xM9SYvWVglk+0P6RlRJchmb/va//+Ja29UjyCt94tH63Lf/Vy9V3U+j8S9suse+SZmok6C99XtS3TeYDHwvd5P/2DUf++9Cz+Y/ZhcXgPzfunxLJ34XWX57vZuM8yBIH9bMvmcLP9aD586Y1iVt3tGdikST/tjxtatOZRr//mxL2VZ7rBhZO6qqCle903qL+FcPlp5tljAN/T97JT2OaQPz8/Z7lNatHFsDPbns2GN+0QuPnG/+7mcMcmcDHH7pET2m3o+tfG6pS9UvxDugDYYU66veRP/TsmbgOA+W//vKvf1GN5QZHE0KQ/9rbEFuwU1gO/OUzp/WN1wUifyJVKMd+QTkL+Ln12KUrQpGp0P5+zHlYSp4gtEn+3SF6uNdD5n/Whw4MCV3qD8To/vPv8pT3VHG0viOj0Kyfcz0Go/N3nj3r1J9zaHy55Ckl0s3gB/5xZLJfIE9+LPz+Z8GZlzxx1fT3nzqen3eJXxw9P7+TKitP2lRA/arMOLs0S/T3T9wxVZPfQQA/v/45ldFIC6O3j1/8PZyeN19NX3+jbpTk8/AeRuNP+X8d4GILQYyQemV/5/jBYXh+eHOT/1mO3jqCi+Tfi/27teKnkL53v/fHJaMEYjupt/1g9Dh0Khl0tQWnTZxm7sROUq+57RJlY4zG181zWg36pRnAx8nbxexFlGtAD7r76b1KPOLne+Y52mzisH6Gy238qX6zsQbTJvXXz2pD5A3Bf8Z/OhjmvBqpwej+sfiE49yZh9VQ/9O0+94RoXLg48M5ZRJKPMC3+ML13F/pB+OArzeLSBees4T1EVziE+1w/GI0Rvpj1OBUPp1VAuj+nPE8LBq97TqmTepVLQqLzA1o/KSa/Wi1OhKBnSR1GwvroA9RsP6Hiy9TS7s+GYP/TPluJVWW6gC6S1/L7uQvZeA/x0dtX+PjAfyEx9/YY/43JRN7TdYrnZfaKpaF7t/LhTivuYYCTJrkX8p+VZt1V9H6hWS3ZMJMYy62mtQPtwuldpghPlNcMoucrrpEyND5e3zXY/MI9P68jfjKXVkYDv6zhGUD9rMM+c+GNZ3ikWEh2FpSv3FkKaN7PXp/JiQ7XYNMEkBXblgpEKyL1hfEH/058/59HdZB8q+k81zw+qwmqFcb4JVtkGgCft7N8sLlbRSafwXF6m4Vqc3BCLK+cTr/geB/7dH1fRu6lreevo8Nkfy7UuByUHUImj+Ijevpdt2XJ+j61NPavKstaH5UrzXKyInLEIOk3uq6+dGWH8hflz2fa2GFiwH/yu5qSPNLQt8XWx6T6FfShsRvUlfNFDqbqo7Wv+cdm7I2rzQm6PytLRj64z4zaj9PpeiNkv0V4Ge8yitD5hjy56YejdL67S+Dv9x2zYKTWor8naD2gZ+ebZ7Azy7rRNp2sKPxozOcSc+Z3w342dDIe7ubCuRL8EM32lZ/VnEFf7pz3fZdpWvBn8BDQk+tb7YRw+j+dOP1RYldc5DPwNkE/kpSeK9jZ0n+lT3gKctWCOMHPhZsfrfyRCTkN8TGxPL8xs1A53jpOO0b54+R81saJWGUbXkXzO/xUvad5v1FN4F/i6RzHu+aQnzM8kNed/WRaIye39hvp9zTpwD+M257tEP019AdyH+k9QcLvbCD8RP/dmDY9sp2P+Bjh6RkkdFlxK/XP57ZbfzeG/T8l6EjZQaIP0N2VPPmugWD/1y2c+W+vx4w/8KLojbIbS0MAP4N93wQa2EO/g3e1aQ9OJ+SRP8+09aGvt97xADGR3w+ecPKn/uDwH/W0DMPrlqN7v/8r8HFTXIJ9PGBhoePr3g+d4X+fuC3+O1CC+JigY+tPI7HuH2C+Rne/1Pb8JfgTfCfbXhrNa2nEN9znW496ZQcAXyc1tpz/4IDtE95L1ecsb9MC/SOh9J/3EpRfqDu3qaTF/n/+16Q+Q9Dbu1vigrA5xRPua8v1L77EiYk/7rwKwoebUTzR77gIMdH/CGYIakrFLl47EDzDwrT3++pWG8cdpHUDd8LSbBroPd/b4yD2zkVP+BnYtiM6+s4Wp/geMr1vuJuAeivuzsdCv3Q+7X68Lr2F0M5oJe9Pmj1SQW93xu+D/0uV/Wl8xFt837Nsw+5Ed8EvvQVUpzLAj7WcN68Sy8X+hfF8OwNvy8b/Qi6f31kxNzNNQF9n7Ue858IeqJJECT/fi593vvGEtVPK4UZCj9KIRpJ3eBoifuVYHR/8w9jEXPFN7AOUm9L/Lyu/x36PlxbPmNbpe8OfMzL+PRQYRZqX0zjXrt1pz3wtdwJ3oIpK3R/9H/t8XKw9Qb/WeWm3U6Ro+j54L67mRmzAuj5EOrAK/PMWg/0+6L6WupVxfcxCt8/vdjrSyOrA5pf+Sp4mZeMhdN/nypWKOSk8hb5GwUha9LNLzgQ9HxGckvkzw1FaP2VeaMQa7tsEuQ3vtrd+VEsivIjF3x5q/4e9AH+DhY+8n36IvL3Db4KZsmsyaE/H6rvdc68t6LIXxo5OyA5vQ3xMY+accYLDvT8dLk9uhamboP++JAVy0Zh5M96fyuddNUIBT6Wj915TIEHrf8bui/8xs9mAl/LaHDm3XZF9+9Et/ZKg20lRBpZ37iGU3tjGMqPPLUbaj31tgbyGSPuobvbvNHzCdzR/WxnuQ/wc9pT4bCtXej+lNAGhO0eeYL/XBNu5C5+B/WvMOOJkmG1AILuHxc9mXm3+Wkk/P7XgyrHGzobgI8J/ec6ctLo+osbFBVuMiD/Wba1vUM1oxD0dboC/Szt5Vgjyb+4PVvCI40Aevv4YJpeVWYoDfxnlfanrmND0D5+gFnBlVm/HvjaL3sj79avwOd46+TU3uQ1TfTvKzV4y5rrNvqwvoAzvHeL6bjpTXCQOqvlILtiI+LD7WxvEo/JRRHk951KkdNvPz3pAdf3gI+DS22DL+ZC8u/SumWXEX4C6pcMDTTZ1J4AP++RxuKYIoAPcE931p1z1vcxNVIXfdekS1QVQftaaYPfZyvLsEaSf198fP4pMAn8bfzvHhouaBgF/OyWJMyJf0X8/Omg8eqOynDIb3Ac8myNOonaz9Pasmco0JOQJ/l35KSo21oz8OdxoapVDEpldzANUqe4xh5g2IX8sRbGLTlXtG5jsqSOX2UX8rtmCe0b7Pm69XtyKPBzW775REoqzP9wptXdP0+K3sPWkPwsGia/oq0B+VeY85fAQ3LZdD6hqiW/+ipeCv0HN886J0vzi8WOkPwbUPdYwfcV6p+PIjms++JyMCZS51N2Kzlbh/q/hbTOKa6gaOI4qTeuTHebVEbzO1eJceHZ/kyC7h/npjXEPdlSAbrG+nQu9YpEjInU57+/uPhiAr0/sxuesA0wxIM/7aRc8PrRyWy4Ppeswsv2lTSsi+Tf/bf2W230b4X66IBLB1/rNEN+o+O7pJ+CCvARpY4xY2yXSR5WQdZLeZqlBKag/EbX7MF1O4hq7C09fyG9t4b9wwXQPZ6Z0iJr7YlhUhf+cIJvRzoa/y8sNDzNOSYP/nOaqNVExTl4vpQSLaayAHFbjO4vl939WClf6Q76G2ZeppdCUZDPoLwZ+q/DIX9q7Qe7qsgjNuBPU3S03xzk1QbdYaNvHqtHCMZL5+fDFUmNP26DHkBlC7j3NIOg64buN0V/DqP1DR2RW5sKW52Bn9PmJtb6b7KF+3fGZtrYISER8s+8D/IMW9/B9eMqO+2Vt8WmAD/jnnX4UP8e0OsTHdPyypXBn+b9kuwiJIf82598wykRxemIfzf59qQ8h78PXyMVn31CM5Sg55sNt5fdueSkB/U7t08G6zZJQz37hdqjW2zA38dZ88VdisSy6PNrmqxOauen/ZCPwI/+WPjJop0O+Wc1vZs9LM4wv8Sf23wQz3S/DfyMX9Z7JdxwCfS1zElbT8760dfHaLxJDZlC5YjfDzqv3r1Ppgj4WJv5pWRajw7o+tedf3x7H0TQ88+UGk218ZsqoOe6RFRUtqdhpD9BoxyW6lKOQ79fOzA3evh4HvjP+I6QZ07R6Pe/tOzvrNtiAXyN8y3XKOmj+YdZz1/GWf8sbILk38YCTj+BDHR9NbIHXw29jwA+fvGlJYVV9AboGq889x1f4UP3d2i8gVQP7xbE14xjffJY5z3wj/HXMx1d1pBPwg0vzZzZJ1QM+eai86eGWD5DfgE/tDlGJULLE/jZhTugkOMi8mdmOv0fKhTdw9Tp/Ot5dXjf//QvxaQnk63DFXT/jEbpOc/FM4LmF2zL9X51hs9r6Xwtazwvx5+Kvq+Twl1C4+eLgH9tjBbd4x3R/Gn+KGP0GZ8KyHfg4XnWDUvo78ebTr1cmZYE9V3fC9R0ktD1f9w79vPR2TLwl3GR2OYT3JD/wjtrmCo6TuRCvlnp3F21nih1qF8lOv3ZNzoN9EaTqYN26Wj+yZ977luoXCTRRfJv462PRguEFrTvE5vPxKaF+DncSV1USBDy23hLrgPLZzsPooBev+9e7vMbJqB/6T9mG5gbDvw7L7/GbeMlyCfiDRT7W3tnfICfDcU9xcMNDkG9AMP2kci5SKhv3JjnV2VnDbp38fh0d3s+8G/4kK0J1wU0P/2wrXnzM7ZM8J/tfnSd+vgU9c+m3t+M1WUhUD/fstX37Cv0/RIq/HVpnectLJ7kX1zTeO8BPlifxy/lzH0dkYgF//lYr02s2jP0/B5xMUQGK9lCfffrC43rHME/xRsKf+EbWbPBfxb6algplArrw/jrHQI5btrhkH9mNe85wi+I+mdR1hVzFooF8Hfy8SWOmCAYH/E1F7kGPvz3/aDz84xP+ZXSX8DPeHhlkv2R4nLwl0/vs46e1kbz707x88OSHAVQ/6I29pZDNvjbePAV8XNn15UDP1+r/r3t8E20vpiov7JEYDmNUKLz9XHn0SsEmv9rKh+fctmF+JriqqW9aZ8KtJ8xlGYjuAfyW9SZJk5TgdOJoKe2uEQG5JYDH8/E1OosvEHv931bBknHy/dAxxR+BawfzASd6fpPuXpPGvCzrO73ruNJyH92iM8Wc9/cCnxsYq+9jjEe+Qu3KTWuoScbIL9RyTbl2iuO2tdmrIs+2NNAcJP866FWL3oAg3wC3vHZQ5TzYzr4zzMdxg4ZdoifA++tvP931A/yG4Zbrd6J70DXt+b1XjxeoBD42eruq3O95xA/r6XlPKHaPoJ8RnA/I7uBHPp+Zd3IbSDuV4H/LLOnr5M4Vgnt5x0KfFepVwH8rCGpdYf9IeLn1vjIRgWZAuDnNTHh7MzO4M/hsx/4ei3e6oEusFFCQfUjaj8/wMuHqTgN8heGu/edZUxB849G3f3Ndl22BJ2fA5Kkpmwvo/VRq8vHmJpfB2LHSF2tYldZ/ADwK740ob9TUT4O8heUSNGXG+quofd75Wp2kfZs8J+zlj9zx4si/v+1Re2XvXsmnW+obY/lj+rUIH9c5glhVh2eC/kNisrLjltLQnSdohiyierZEQ35jcf7tk3FVCD/xdJl6E+XYjAhReq4topFSjLKb+3reT6gfMId8heLEmphavUon8zMcXK8OUAH8s8Gq5//qFdH/LzqZuJfIctYjK5XGT4RGN2D8l36L6x7fKkN2COSf/NTorl/BCL/WfHRYJ0ZZwv4zzX9iuY8N5G/e+FAvnCHeCFWTdanqvp6XdEkoH3dMuvCeZVqjM7HSq47Zt4wwfeRom+Maac560I+2lBeco/6Dmmon1z82LTplzzsH0ybvbe+qcYLdKGx35ah83bgH8tWrPRVvYLyIRa8rIvlP/VB52W9z+EvidYHx0ZXa+5M9EF8fdTSWNrgBLT/5I5d3NkXtwgukn95x03vPJ2/ATrNuVLE/JQ7wU3n64zamfVLG0A/mMy5S+lTCPjTI2cSk872oPXbyghlsau98ZBvpsioGbv3OEH/9GYa8PBd4Qv8rLRJTnVtPeQD8SV+k8M6vd6gU9prZl63Iz69a90sWT/oRc9H0RqP2c3bCaDxvZpfKvlwlAv4z7zV23R+NqP34/fOuYcu/fsI8v2k4bt/Jb/9AfldfFrwb4HV9VCC7j9TYv7GPx+E/Chu9ymyfPtXP/CneRl2vD83Zgv1jpEMMunVvsDPNpP67T7c/qC7p9VV41rIX6b8GTwpaQf5JFxyx9NvNgl+sD9QLUk4gmUHWl864Pm8YRCzB74OHxg2SviJ/JEoh7SjRTO+GJ1/Kaw9A8yziJ8MVwiYM5/NAh1Pn9BsEIP1e5ynRvS8e5o8+M9pY8ldK2YcQQ+/Y79TercPQY4vNLHFwt0lW9D8g5ND916YqCH4z+ITC1sj5NH4yJ4o3+y4SQ7y0WIDkkwOjmh827QxsPDDDxz8ZfbtDpNmb9H6xcbtWZm0M2XAx2tuNHpG3EXteziZxkpaxUA9bx3r1gdGaH1AnNl91tfRB/xnnKqYM3EP8tP47uGTe67u8gP/Gf+75cd/gzzoR3aeno1844vp0nX3VWrl9ufh/rCuapdg0g8A/t2sGTwZshmtrwxZXP8Wtjqbvj+LNlNzrpDPGPHrhfLc9T9c8kBvDFU81i6pAO23nDoVM3YmHfxnOd3cuK/8iM/mbtDWURjDgI8pEttUW5ptkT7zAEt9IoN07l9P+volQL/k9LskQiqNyCH5F/9x6R3Ocwr0RoxXTUDaligjdUrHAf/7e9lAV7xm8XdmrQGRRa+nzBhutjkG138yIvYQu3EM8K+Y2LsTAf/z/mkHjGtu2VQA/NxWE8Zy7rcu6Lwn3DjUGND+QVzVdN5rVhN+38A6XTXjLMo/y7Y0fAiXhnwMvl3zaEE0Vg4672eejZ1tu6F9XUnh40MdBqCP3F6lVHDIAvR61aAbE7E5BJ2P5Sza3VL5kT+2aUa8wo3RnqDnn4XnN3XqaUB+Bt9wuIelRSOQoPNz3sCTZkG7eGi/0bpo74e0AuBjqyfUmJgJ8J/xMMM/f1ZXpYK/fNt5MEpMGvYn4AN89xnPO6qBfqtUwaY9IRfaH/scUh2pmwn861QU0t6LI/+s7+L5l3JBN4CfuUKecU5po/a9VxzP3xlWCLpGO+epeBHE52vv98sns9GQ/6ya2LLsh/jGUSJpnUShH+Ln+pTCnnr0fpzTma9/ftwc6nEn5hSB+7D/Ga8W8lNnqQujz5+psmwqe/Z6RMHvm7QZX7ngVQ3+M3sxLVbwKfr9YxcnzpTZloE+8ZbBUFgQ8aviXinbBN77kN/A+8Kj7lSAv46fkzXTPVXbAPycV/7rma0Xav+UpeOH35b1kN8wXD8azP0pB3RJ2yWdLYI08I/ZM4VWm+1H/WfDN44QUzXEz4335/cNjaH7vyM/eprhdTjws820xneD6+jvP5+3+XrdcASGk/z7wvdwkUQ77B/E17pdxH9QOoGfG+0q91lrKIG+l+Ius76vBnSpyltz78wQ337ZuPp8wUQJ5J9flzRdJp6g9pcvMggK6xUDHzfe3nZhVOEs6AK32X7QpJE/3a3m2Jeqjdp/7ESVjb0bTtDzF3ikuMvxDtjfh/dO9f1dCltJXKT7z5MDXW/cDoKe+dqR7bqdL/jPNg86E64dg/0VePN72WDuwBTwn5cuTRavSkXzv3ALH+ER9WLgZwp3MOPXYdj/i7MUn2TYrJUF/rNsAavOOhXk3783PnoJs07ADpH8u+bqDt2ZUMSnjxktn51Ny8eWZf/pXUuTB/svwvhN+agmUnrMyBPxc042w98QlO+o4LpiO7UliaDnLzTex3YI2aB8ePHeTEv3+ERsFak39vmM83AAf1AedPV/2Xc9AWMkdY/cmSGuW+WglzUw2XNffIC1k/y7mxj+GeqG+Nl5Il3ryZNmbCvJzzsC8jXuD6D90TUqNa7XhXKxKrK+XF1EDXNpAd04/+61SKtKbIzkX717nWnpnRGgX+7y//X44BXYP3j8RFrpxQfo+vfaDigZ7d8F+Y+y4+rSL+rR/pggQ8mZM3I2GJ1/w82rLxzIDQF9U/26g/tzrIGPbbhzklqvoPZHVB9+cilD+w9tnkS/1+FF/nKX2XZ5Du5wyG90x4Se8FCA9R/K+vpJ1o+1ieAvh6ZJ+hbMo/z9JUNaq2r7Rai3KRxpe53oCjp1S5zPWR0/yC/jRksmns2w/wm/Zbz56phiNOwPzCsqd/dsBf8c93ubqijo7g35j3DhSbmG3Yi/61aoPF3dlY4B/25ePOu05gz03zvCNs90bUIIOj9fS5Dyx16h8Y9r4FmgyGQA5KfnL31XU5ZC78f70S6FI09R/tnmR3y7kRLit13B1b0zal7A12rqT9gs35hCPTYn9pfbOwj4eVCw4sbHDZDvxJ8q+bhzXwuE/HI44+m7DxZQ+4X8wzk7/JD/HG33+kroK8S37H3b79z5fBDq56UjVmSbwPwLzxZV0352pwLxc0eMkJ7qAdB/82ztHtzkS18fpM2b/pxrTEbzi7W/Phl/tjTD6LpN9cP1qhnQP3GhPb8vW7hlIP41GOx7zQTrz7hnclFqTYQXnM8x5rdp7drX0H/w1wHerHsdN4M/bXje6qpxBuLzlVKyvseZbIGPy34671CLQX/fmRSX8wPGXqCPsqtPURjR81N/12VkxWkCerhoZZzRMORf8c3Tuq0/16cD/1K4uPYctUfre53+3jMH6v2Bnxt79Bhmx9D19RhmnpBlicHo/G0TK+pAZb8J+mS5uq/fu7sYub5N6/Z7wOTRg+ZfOw/f1v+T4gP55u2aDfoMu5E/W34hwKF2PcpPUzh5jJrDboFebCr5dYCvAPznESI+YetF1H/4LHkSg1Z5E/TzOShV70+NS2wC3SxiIIii7Qj5DakUVzPnOjT/u39JSO0kWypWRfJv2WD8eHA88se9v245ElKjBfzcyjZs0XUaje+z3GXFZgKeGJ2/X58UXGD5g+YvTSv/lscVBUN+mdI3o6ulifzNZxKdwep7U+j+MI1yaEVFqBHkN/C27zShhVcBUB+8LD8oxQr5Flw1bHqb8lw2+MvCZg2X1y2g/KLxvLXaX6540DfeP93ofBrlszbtmfE7jMWC/8y+qo93NBP5c+9npplVj2WCf3xtyNFUcEs86FpL2m4UXQ/gZ/zm+IItN5yvgy9VF8V5TAWBP83qQt0XdRPxs+aVKFazN/H081WoJo/GWFl3ofX9ICNMtVk1jJ7PoQ4007IufkP+eImMa3HG5avIn5bcXGW0A62P16cYNr/u8gP+dVKyXTtjhdoX+9UzVO2F/Oelu/2HWkqvQ73Xw9moxLFS4G8PD1bbsdY80Mcz+q57mpYR9PyFmPUYc6Mg4ksGwlmOqI8APqZo7C3YcBDN7+78Gc7LNroD+Y2Rw3YNepMwvuA2fl0eD80TgX9rHr6M2daJ+GiljKjrfYVM8KdlL934PKaoDvpjpu+UBBXkT08cDfjO5YX45/MHmT3GiTTgZ/bti4od6sjfZlA2YVrx4BHkNxqlj5ikyqPvH35iWnyL9QPga7V6z8daXCh/9+PEfi+xwWKCk+RfMU+5b5wXUX7W7cT4XcwwEfIb+M7cVeYYnK+D38gfiVZfEwB8LfbM0eOEUgHoZ/DjqdT+KODnPp0J9xeN96F9QeuB1n1324CPXUyeCwcLofEpY9lLd/MJlH8WluDxc+4A/xDnfneEvXoA5Z+n5If/On5D7a8/UOwRxnifPj5SD/1M6mMk0Pf7z4+p201XQ0A/Lefn+D0Ttc9bJLRyzQt/yC+/fqxjb7UG3Z9u82KKmXIyoU73n5cVxLy7g6B+guGwpNz2cEyaztdXuntcZtD9MdminRAdnw3+My+/9fCXuTTQFSJn9q7emA/5jYCGddM3QmH/KO5Ee3/nh0ge5J8pw9ocNCM0/xh/N778ajofEyf51+VnmLndVXS+zqLS/god67sYhdS/u659+vQt4kfFRm6ppBI7QpLUZcc3dRRpIL5acv3R4z/kD/6xTaJjfaokzM8ooofdRho9LYCPvVhHtQ7sjYH6je/6pV3PJ4N+5fleFrN790F3vcM5U83bBPlnm9zNxs/caNB+7AXuVwIdTRgnyc+3TZ7UHe+F7xeFNVKmf2h7HvDzUBE17ftCK+hyZpEHrjmg/AZ7/+qdKbdQ/owvTNlRb7sOQc9n1KT7Kn/fg/YHlbGJfIjrOgj8fe2dSsKxCXT+1AqlQJrBwHnwl/EAV6fUVpS/8xNJOED8N58G/cDavr8twqAvGJy/W+ARAHyd9oHD1UAK+JMSmaS6TlzGH/YH8rZxXO1e7w26g5tIyvMRL/CnF6+bjQkcRucrRCrKMe7RigCdkr/3iM1hafh9pdHiF/l6icDH4dIjsQvH0fsftr7zdczBQOBjytWzb3eXI77h22xuev6zN/jXuO6+hKRB1D/zXjnknNgaC3wczp6wm7YP8UvMFq/L8W0RmBypd5k7Lf8SQHzgm51dGs90CeobWc5pTttogL5YFyzWJRZFxNPzF7tWJClYwfkZ+CJL/bF9av7A1/gTs4q1ydxQv8/a03M9nxVGr6cEzWZmFcD5Bvh8cE+L8qMS4GOKXYcdJnUU2lcRZs9bwZ0O+vzV4j7mQnR9XStYb7f7hYI+UskkuKHXDHRRo4hCY8UE4GOKnMOHqRKUjxsdiEiZrfKEfMZXrm37by6j+zf9deBZ+Up/uj9Ca1yodWJTRXwq/fSpy9Yt5cC/7EnY8FgE+j7uuaJ1O1g3Evg6zdaWU8MLjS9DhocGW6vjIT8tG66W6/cBXd+tXRP4q6Fk8I9rPi1OVxyG/oln7zimySPrC3qT0/GTlldhfojb4hr8E2KJkO9Q+8N28Ox+dP1JevqmnlsLCDof854IWOn7B13/Q2yr/NvKuxg9vyHDx2rh14zGFxvGwENS0zjKf6wKf+7v7wc6W/3vbULtsD5OMzQ7Z1Wojfj74LonZsFtycDPC7PjB+8yovvDzLl8J58/EfxnQ+GcogkDtP+F5+t0S5aEHkYh+Tf8bJaWsCGan7LzsQZ/WwoHfjY8LuMiMI76f8p61+cs34C/aBTtnNZDyej9M0gMaxKazyFK6P7ya7aD01L2oMdb3t7sX+QF+Y3Gjbj3o7Oof0r2n1oncj0K+Fo25e4QmwDKB1kTopzs+oVwfh3HB06/zZOBUH9ynnmIdTYa+DiS5fpdwR40v/Y942zUd/025KdlKy4/eXsAzR8SZe5QC1yzIP9saPtql0gpur/Rq3/fuuQI+xep1UJJPYW9aH74gyK+pTbyEvKvX65vYAqF9Tn8qYKEfklZPhFL8q/Hm8En1xfh+4/fF0oflea9BudvfHo9lsj6BfnrSdUDLKGpYfT7Q2VQOse9YA3jK86ul+4ZuC0G+NfEnHuHrClav36up8m/NJkG/jLxq+fM/kX0/r+/rtp98nI48PXK/JiPjCawvx63V6j6zqJRCXzc+CSgg5aA8ifJyvlXY5eygI+Fw23zj1mh9S9TdYnZs+33oH6N+AeHs/fR/q8TqrkZ7dRm4GellkcbFk3R99+HsLn9jT8F8hlSUy8V9MQR/6i8Wbz3Yp0i1HNs+ODevIz0CD4fl7SJVPCftbAv7Qci4fwzfGDFuq/y62uBr7PYrXi4HkH+G3/iZJG41RLlNyht8zN36tD8Z8Clcl5MOhz4eaAt3yZ7GLX/y6RRZCquFvjZZO9ifuX/8HtlcPJtuZI60LvjHN9qP0X7Cw+a2h4+L9gE+wdrDlJUrC4CP+G7drw5FNEdjW0m9YxZfe8n6uBf4gJ9Ue1/EyIh/2HS/GDkyk90/2ffsBZiEhH0fB91e8RKRnVGyOfj3mVM7RoeHcDPR6M2nDzDnwX1mem9yXJGFaCvHYyU+ypIA31h6Ef4dtt0yG+UKfN3n8tD/afKhl+k82468LGva5CnDHsG1LvGnIrr/JAG+wcNd6SYmZjA/jK85vC2S/He5QTkl3m2sp8Yg/Nf8QO/SrbwXblNz19SlcI1fj4PQPe/t2ioREHClJCi+8/7L0yGTaH1l1fnC4SCbQro69tUGZOfqZfdi0EXVuCpfNldDvzs+AY7d2wHmj/dSLe47d6WDv7ziMLvm2sn0frpCvPEMCMhL+Igyb99JjmredD7RxEbN3mTtzMX/OelK+PheXHo/JR3Zb/iL1GiiKN0fp7/G1UjhfK/pjLHudgjC4nVJP8eEKpldSPQ/jbX7h+ZPfdSsBWk/lp8i7MaJ2r/5TcX09+GURi9fs37mnqFX+h8FRGRkYtf7Guxh3T/+PbGNfxMkP+hdGT3SJ/saMa2kPxcwlZrmtiAzk8K/3sxfuXRXKySrJ/xceZZskP+c5DDlndVApXYOMm/2q/9T+c+R+e7vnUJ+GR4xA6j+89qI5u+/jBC8wsfDmzjm3xd7AOpR754f5J3IA70/QwWfy9lXidW0P1l/yd9bIqo/QPVl4tHFLzBn5ba02KvbA35J4rcjQ2mIx44sZLUg031Apo60f6R4LUqo/tEYghOev7i+7VrN9SQP33kjuS+Q19dwF9muVDJEFWG1hc2cD054EALh3z0oVee3Xpr0Pk+A1sjYvYrFqL8xbyWYbsxGp9Cd7yr/rnDH/LRIowPOfMfIn7Z0bd+ukszCuptNhp4z/aj8XVfZWCEckgJ8C+FcN7k5Iv8kb/HAo0VdRIhv5Hl2fTp7QLy70psVzinG0fC+RyHIt6b42oo/1DFHDhbUZIP/vK1vkZfq4OI7/zPSu3/NhgK+ecsytn6mApUH+2R15sc6g/1gp2D27Fc9H1cPy4RdHqsHPIbbaymnAyuqH0Zsdnrxcej6fs3aF94524+yEb5j0+1B7YvssRB/eDbGGc3fzQ/nluMqlg7lwb8q9S8oezhIPJ/sxY3fIr/jPIbc7ODvYs/EF/cL5wyuoFHEltIvfVn2ZM7vogfwz9Hiyufugf8PFPdIWauj/4+RYHg+Cg9W/CfjZ0p9oaH0PVtSGHZ7pSAAz/PWN64XroVrY/WcDXafrhaCfyrfeDnfv2PqH+Vjm6WMlWH86to/T6jnzd/QeszH5n3RXCUJQBfixZ2+1tvQ/PTzvsLSs9q7xEXSP6dMJ93l9VE6yux+275YjsRP4sZ1laKtwE/Uub3jPYcSbYldOh6McMbZSfof5SsPiWh1WOwPk57uLXhxaNQdL7EvWeJGUZtZsDPE+MJLgZv0fu35ma8t3cnDv7zktWk1IwW9F+KQcObNzeV70L+YtAz5cmWFPT3Y0Utf55KGwIfn4j7vXenG/r7QyWuXObRyoL6mpJLd4S1/md97MXahhG+e0QRyb+RKu1C0zXo+5IRjS/leQRgdH4WZn16LPF/2udffHaxnyeWqCP1rs7ei8oy6Pslc/XBWyu8iKD7yzXpN5StDND5E7/59O4aRuZBPiOLeRt3CwOq364gLhf6IAT42/C9V/+Bi2h/CJORWs19xnvAzzXvkwOM81H/XuY9/9dJJQv4WdyI03oqG/Xv8994ZT9M/sf75Pl1bUMxmnYZ6P02a/CenaiPo88vqCZ4dkrJbZTvTNMbT2+VScDofKzga0+JDULfL56CmOf9aneg/hlfZu6RHMRHl+06Mquz4PlQj4grD9cxwPnC+LrA/JNMeCDw8ck9/HH+mxGfUuyNlsoeJ0L+eWrfEekMVuQ/b2Z83v3TvBj4t5djt5yVDvJfzzOxOQUcQ/mMpy0CYusJ9H7u97jGvSRfBfsHEz8JYvXMiM8N+UynO5YawV+W6S497lUC/he+3kWuLrDlJuQ3jh3MDNeZRf77uaUc65Hj4XB+tHZk7DsxURj/8Ya5OeKiaTbwc/eue1qi/Yhvab5U7BtPKfAz60cp9W8x6P46fIko5qxC59uJFS2p7UxA84+M/ErJWxz5WBnJv1293iFv9UtBVzK96dbxt5GeX6P2tioGGQ+h9r9ViLHoMTeC/yz7dr9Aqjua3780P8V0mrMZ+BlffnVs82qU76/prdr1KCQc/OdK/XZ74XrEb05Hk8J6ZdOh/nnxmTNcschf7dRM3Sz45RpBzz8Hue64bSRbCs93/ZGdnx/8T36Dge+V4hld9P3OUfv65cW6UvCfxZ66mVw8WwP6WxP3fD/GPPCfJVSzd2v0oXzR/g6hAeMiGD+pXPzTrwMtUf444oNGm6F7HuwffCilRJnbhdqf12BdXLellKDnl8PVm3gLVdH6g71hf4fUnBXsH/xau+uzzk/Uf5o6T1tPSF8B/7kmjDnUpxvlixwVr/e6eZUDPztt0h7w+1gCOleHYZSKZSXkN0YP6o8cXYn679Ek8dgoxTTwnze3fPuS0IHmz2pDD+yHV0cSdP9Z+Ykrv0QW8DtldMw/rcinAvznyDKOYvYe+D5Q7PX7HK64JgM/c0wNJGg6o3z0Yz7BRGpdJeQ3ipv2BDKXo/3LL5UYzXm+ZmIMpL6SxQKbDUD+qLJ88Oe+uRg4f8NB8bIQ7gTfBwrPppSHiqk14D/H+2ie092Bzj+8wcYb8eAr2j9YIsu/MUAS8blBttYmI58SOL+uJFJClC0F8bP9/Y5UofEHwMdSp3QakvQh/0i5xlZk2V96B51vN9KVJX4O5TP27WM6e/H7aYLO39dq3ol68qPxQbb28633M0HAvwx8jhGHLkH+gKJQfmXhvGQBRj+fI+Zzf2HCIPiHlHL/nNWG6zwJ8v7R1hZ4+HcxovExYzhxmu9CKeSbY0upp189Qff3mbyLzUOzSozuL/9pe9c7j6PxsUw5da5rZyCxk9S5Fpr3MSYivhlJ5M1wrqoF/3nC5dEK5nA0Ppr82FM86X8f/Oe3PaF2HYfR/OLWAvutN5YoHy1uhpmE8yP+H3jbxmBjWgf7AzW6Ga4+LkP8cP/Ka/3hYBrkM17rcmz7w4jav9G4cddTDxM4/9nx7H73WAnIj1G2yCX33JupB/49VWLCfzoT5Vv2G+WeMEiohHxG0mJ5/S1RxD8b/M5pi2K2UL8+tsJCezXip4y61cnrQlvAP77gkLw0WIv4iOWN4LMavnTIZ+guCpueSUD5IuVZ3tEktliCXJ+jbasbmNCTQfv3Ixj3LosPVNG/r7TRQ4VbMrLR82FW+1j3oLsM+JmfdVdf8TR6vl8b9p7pH4kBf/pSyTS+LRhd//zkIWme/XXAx9N5lTbvw1H7Z/cs0eI8C2F/4H7NGsr7z6h/eUzOrghrQflpK2Me/Dcb6t/CZjvrVjU1ovM3ws0ZciLQ+VQrd30sjIxE59upT6wt7dBFz1/Xb2xKPCIV8hv1Br4FkQKIrz7HimflVd+D/YF6UueeDsvB+h1llk114ppAOd0fo33y6/vmEIPmt/WFFqprv6US50h9LcaTqnES/X5ME86dZlMF/Fw9VurA3Yvuj0ZYnluAZy3w8fr77Grckuj6VpS+WmmG45D/MFaTMbWqROdnx+pLxg5fa4T8hcHRI7EpNDS/Nai+3zxmmQv5aPzlHMtwNuSLKCIKmzCDcnfgZ9kUD169l+j8kgtXyn+XG1YTzST/1if+PmLxBP397z59/vP5VQXWTeq8hw+NBJujvy/o05lOQWYPOP+uO/XVRn0WtL/Dy8rn/So8l86ntAzZhm8iicAHFA8RraQflBzg58NxnQdve6D1x9VxPnqzlz2gvm72leUrA/T781sWxrdeqwP+nantsQ8PBv+S0vOptq7S4QHwsxI7P5PyWnR+xOUVNxXZ93gDf+tJYF0UOdR+6g/qcwpRBfzrlCuesDcJne/wZmtmRIBeHn1+QR19Eawh8AydD3jc2cI1ezmReETqtEHNkq/r0f0VfyFxpxurBn4Wk23KKIpC4+Nj8TUvE8RqwX8Ofzj1SHMnmr8d/67O0Bt3B/i6PD71UtwrtL9eJ+cQ8d23Cfxl7QPZLwwC0fkjftcc17mY3IX/P+Xw5y2VKs/Q+my0X67ZTsdo4Oc+6nHzrAXgD4qvTcq2faKtBLk+Q20fsXbc2Iv4wVmCK2qNWzVG5+eFhERbo+fAfxT7xlThdVvlMDlSX1J/aFn2AvxByg1ujH+Q5QHwc13BBnHGm6i+zVLaIMToEfCzR6npkdPT6P932RhQU2XmnQa6zzlZebUxdL56u0B/ma9ZBVFD8i/34BmNjQTyD+Ox3rSnwWXIfy5RrtZejfKtE39tv8gpVsL+QQaGHeYe6oiPRoyVs+pEW4CPOYlzjo/70PlhK23NTFM674P/3GPpzZX2C+YHlM3hJetCnNMgv+G7bOA2GFSFfv/hNrbTP2ngP5d5FSQbGMD+RUrB/prdW9/2AD+/6A/6Gy+C7k9GqXt03MsA0K32cz91l6sGfYGyPnWQ5xFB95+H1UP25RWj81skU1PsVcIL6euz1MQIaVFMFI0vryvkeZ/oI3+6IORl+ug75H+K/bQ7V/ywEfznGRpTV44gqt9+Qzp0X20e/f8/oyp6cwgeGgR/mxKYOLqee2cq+M8UrQNxy/th/kPZup+j7Jl6I319m+qZe2tP4nX0fK/NOL7tbWsE/7lrG7umyyvUvlPQi/vTbGZQj7GfWlEcgPiE+duAf902AvhZotJI8q4F6v8Pj1Tuujhfg/0i/WcL1X1U2l00/twf60vgXZ0D/HyhZ8G3KhfxyTC7Ld/1qy1w/gbrLtkJrRPo+yD1JMYyJz0f+Hlg248JX3XYX03hiLPpNff1JtbRz+c4dTk7by/qf1ui4h9VRWoS9PM3Pn0MNTF7gs7fYFwnk3BC7hHsH0yYkvDVX74HOt9J6RVnWmOxVrK+a+rVT1UXNH7n1mw+cz3Emfg/dWXrgg==AQAAAAAAAAAAgAAAAAAAACAcAAAAAAAAKAAAAAAAAAA=eF7txTENAAAIA7A5w78bJCzYIO3T5OzEtm3btm3btm3b9vsLNU4peQ==AQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAQTQAAAAAAAA=eF51nXc4lm/jxhOptIuGhtISKYpKLt1SNL5N0tLWjggJLcqKZO/sFbK3Lt2UtKSkYTRol9KeKr/f8Tqv+z3e+3v46zyO83zu73G8b3qej/M5ryuNlZeOrJn3mFd9MHD+vpvX+IlQs/sS6bvsBlAN5JPgs9dljuOSdvxaRzU7yiXmu2g0r6FRHt6VlZUP+KHdD/7wyLgi6BajXyO7XJor5MNEeZKNZMHQT9Y0Erk8/CHQ168S/aUUHYgMv0Ze17Ce7zHt8Zl47wq+O1Q2pknaVsa/w/zH88MLN/W0p12Rd4MvDZ25s6xpkWY0+R31btDnxlreb6vWsSFGl3gfaOPJlL0Kz1fTb8i94HtCqcOtl68e7u4wv8P144doupFU2/vbtm+/xz9KL5wydepF/gHU/Hh6m5P1fJKEvAF+HbTvt78DW/p6Cc8/hM9eZ6mRbfiubzJZvrgsp665hlf8Of3pogFlgn44eOupe2EsXY18HHymF65zv8xrQsg/yIfCZ7pvq23ErMfhRHfhtqyTDrf5trec/fE0XtD6cIXn21bEC/kf+H+hvKxNs0PWUSFvhc9edynwx6MXFU50fN6Nv21tN3kf1R31+ebneG9o3BzV3/uGzqUTkQfBD4BKzBh2eMZEK6Iiyv2hybrDVvav8KKVd2+FvZC5zo/ce0r7jWoBPxz6/pjLrrW+ceQG8rHwFaBGt/+UZsywoPXIp8FXhY7yf/H9d5w/GV0zOWiR0hW+UNGqpSY3l8+B1nspr5flEuin2+25P3xPqFSCZlef4070C/Iw+F7Q19/P6azqc5b+CDT8z5+3j2Pu0q77M/mTUP3KLuatDbH0C3J/+J7Q7J5PEz7XupNfyCPh+0H/UZriZq6XQVqz3pyeeojy/Uvebd6/+ww/DCpZ1c/fxOgIqUT+lbb736Hh78/fWX8jmpxGfh9+NbTsceW069JF5NeCcv+2/Hw+urry8ny7OP4sVFFF+4nPb1t6DbkjfFfolZCm0IBFJ2gY8s3wN0Gz/ewiNKtiaMZTw5DQ0GT+sHGd7MaPgfx+6M+zt+RWRu6lMcgPwN8NXfRu5+zm3wdIqCjfDvXqY72tm2MATa6yGXNL1o23VNi6M/uKNd8V6n0q1b/2TQmJR24Mv3VEuybM7vpWXdqLRCLXRv4BuaS0gefWN9nkWuV/ci552H98rv/wduVXb7HsWmNAFl1vzzOGtvtPoHa1A4LMFwQS2VvtudxIPA+VWL9/e78/0aRT+/8+rmjFf/53cdXQftdVYncmx5EeyH/AfwOV2XLtj83sbWQ48lnG8KFezcoJxs/9yOb2Px9Orv3PhRsP3Xah69E9H3fSKOQH4O+CPp3/3M3TK4SkIk+H7wRtzvPK7G4SS73bf764sPafK64Auium2JHEx5AdyKPgx0Bn9S4c97WvD41D/hN+I9MNXu8UdhXTe+1/P7g17X8vuB3QVe8HDehuH01rkZvA3w39M/Vh85PGGFLXQf7kbsEcg+YYgr//nG/732vOA9q9OfvY0PVF5C1yO/hHoS7d1mV9/lpMXiLfAN8GumGPdYC09nVyv/39icP7l6BJ09++TK/bR24j7w1/GLRCv+aS6u9iivc/7od5u98feXxQ3JOROZXs/Zlb1f6+yh2BLo+1DG7en0IVkK+DfxC6V3KdQoaiHx2H3Az+cWjj279RdU+20UXtnw/c4/bPBU7qHfTeqfBaeo3MQP4CeQv0eaNEjU1BHpmFfPC7/30+d9WWuQpxRWRb++cbN6z9c42bCA1uXnj/1tZ49vnIjYWPz0du7CROx+5PEDVFrg9/OvTAEPNpU5ziaGL75zNX3v65zN2GeneeOmWXejjJQV4LvxE6cNeEkxvuOpEzopzpmbjDo32CEmin6P/wBXeinSs4b2jyIrW/m7+VksHIw+HHQV8Nc2mc5ZBM/rbzCXcM/kmo8cJVMhL6BynXzkecSjsXcVOhgz61yksfyiXPzrfnDzTb/WfQt+mD1Kqck+kMPD8az02E9g7d3rTvbRnNbOc7rl8713GK0P3lRM9mQxJNRg4+5EZB31ZIbDfWc6PZyKfCV4XO+XnNYMjgi0SqnU+59w3/4VLuD7THJYlPX/qWEk/kx9u5lTsI3aLRNrOXWTRpM27PwbVcL6hTjUHPB4nlZKqIfxk/r0jW/DP1wJwO+dj+575mjWuWRB25EvwJ0FanwvwAm0MkHPzLuHcwVCpOdahTiyeN6ICPJV6YDp3xeuu/+Ju9rnCBYbJ5tiPtDv5lXNwVOm/DRC31hogO+bi+VLvtxBu3DnP50Mkm/Hk/yvjZF9yLn09eLlsrecChCIGP8XPHe0Djc+P7bp3vTCXbf375IPgB0K0muQU7K3ZR/P0QuLke6jPmlZLCXBeSLOJnlh9Wjv/ubKpFxTnTJX4BH0yWONGN4F91cO8k6PZ3S7+bD3CmhsjHiPj62hyFoHGSQQI/4/1F0Nfz+q+TW5JKtUX8/BPaZ8TT7DGLjlEN5B/gv4VWHgk+8XTdPjoVOfOboavSdhjf9txPJ4B/Gff6Qv98MFw9KjyE4P1X8Blfv/VafHHF/GV0tIi/vaB9q9ucu25OoffAv4rg3jHQka98VIru+pJa5Erwx0MlqgPznyw+SuuQT4avDL02u2VYilUg6Qp+DgD3BkMHr5nnuMo8kHRDHg6fcbJlZI+4BWb7qQzyGPinoXONvGOydXzoZ/CvG7iXaeq7hd90bgWR78gZVzN+lplhqy0tE0/Y8yfgu0NN3z7pOfOjL2X8Wwvuvc04+dlKmUHLikkV8t/wf0E/fky8e21THglFfhX+daiu/n338oNFZDf4dxa4dwb07Z/z60xMYugN5Kfgn4TOvWVn6vn5BK1E7g7/BPTLqtiBQZ+iqBf4lwP3LoF+3HbPyMEjmOQht4XPOPnlm9jCQ5buJAu5G3x76HdLn5LqoVFkFvjXoZ1reTXwr4WCYZlbbDyxQr4Xfgj0RmaJVfj8cDK9nW/54nau5ddAJywzS5ac6UFUbrTzr0X7c9wd8LN0xDqpSyeziSTyXPjO0GVfh94x25ZA/twEf7fzOfcMGvveSPbm4VDSGfx7EVx8FyprQNfKbi8kWsj7gYt7Q1MXndXmpsaTGcgnwx8Ibd0VNajP7ySyFvz78VY79w5ifLzIoYgOzyXXkbvAx58jF3VHuubMzSCSiDwYPuNsmZyK5wGaLnQt+HczuNcV6uE+r0a2JZZuF/E14+hbY5b2tv+SR62R14j423BN30zjTuX0Afh3L7h3H1Rvzs+eX8vsaTXyrSK+zu9yeqmBdihpRG4F3xbqEKfWhczNJHXg3yPg3v3Q1sfzCoYcKyY1yLfA3wXN8e89tPeCMnIDuQH89dBVJ6pmD+p/iZSBf9ELcAOhKvILZxxYdpNS5NLwe0LlmiQ26etW0FuifDA0QnlD8f6MUvb+yh0A97pAq6QnnPr7OpGORe4J/yS0oHmVvEeBG1VGHgcfPQfndNluYeL1bLIQ/HsLXIz+hUs3Jx+29LlDOORf4bcyfh6U2uruVU60kI8T8XPtUs1e+9dcJVvAvz0ZF0N176vlb9bl6VLkQ+CPgDY9Lbco3pRANyCfDX8K1LR8Z/Zlu30U/Rd3BdxbA30ZYH5j7IVAmo28QcTPp6rLjfXmLCOMv9Gbcfeh/ddKvZvadJz2Bh9HgXsjob8eLvxH0bKIjEWeDD8Dmj7txftvRWfJH/DzQfiMw133bj03WcKaaIJ/J4N7J0HvSnb1MZznTZ6Dn5+Am19Ae5dxj2P0zlBtET+rQj/LyQ3QvZ1JM8C/A8G9o6G7NvzovbIlmqQhHwt/HHT8LefU32tjST5yDj7j6DXzG3Qua18hXcHH98DNP6CXNpqHPSm/TTyQW4GL90MHT5n14PrSQvIH/DwOfneoRJPS1826FwT+VQH3KkON+3f6R6HGgnTUP/eaNuqb/cttHT7f09RD2f7opg75eYTPZe6k7nGhX2Z8zF5Xr9WgsXD0bhou4mv2/Kkum+p+LPch0uDfriL+HTd9tuobh3iBr2XgM05+7NSrfoikI2X9dG/4rKeuCPoxte/FU6Qj/n08bqlL6YYQ2h05fm55/J7Hj7g5a3PC5U2E5dHwT0ONp+x8vbwiXODjx6L+2WlAwO63EyNoR7nlH9VG1Qx/koK8UZRvto9rmjkvhSwC/44G9ypAVx1QKQuw8BT4mfXO7HXX5vbe9epFnPA8e2449KrZgh2JxjmE8XPn9vcloUdWTFefmVxjL/A1650ZXx9+NMzTUmel8Pwv+N+h+c9cLrdMCiFjwL+BIj5W2jH3zUIdN6GfDoHvB30udWS1jon7v54/BbWo/qTffCaSsP55BLgX/Qs/16tKT/t8sNA/j4bPXuc1wTjzSOoJUiXi61HQC75FrzbtzhH4OATcGwqN6WI4c4VlKu2OPAI+4+iRulrRbxMdCePnOPjsdaM7bee7+caS9+BfV3CvC/S9xHDTwxeCyEcRX7PX5dYqag48GU/eIj8Gn2nmS7sWappJIsC/D8G9d6A9LqqkH3+fJvDzHxE/Z2UOjZlxIFvopz/BZz31oLUze0QUp5Cb4N8wcK8vdPmuqnPSNU6E8bMPfC/ooIhx0R6f51LwF+8m4ucnL6mZmV8EPQH+XQruXQa9Wj9q4c9bUSQSuZmoX3Ys85UnyrHEEznzV0M7O3/OfhcVRbaDj6eDi52gjT6ZrldWhNHf7f0xHwC+toVqHey8M8o1hYxu519+AZ4rR/6z9cwXX40CIgE+TgMXO0HjyhZ/bPYtJsbon+vRO3+B3piz9UzJ//P7DfTXheivB+P5l2HKBjUFWUQO/FsCbn4MzXvxe9lhZXsyAvl7+J+hI0OfP49a7UUGIO8Lbv7Gnh8/4MzOx3ZkNfi3GfzMeuihW1cHtw3JIqHI18BfB9W4evv7W/dgkoQ8Ar499P0S+Re/X/nSEvBvKrgX33NwF7/mLXnZ05AGIz8P/zL0SsOkTWoq2dQK+W0RP4+zf/nH2vUybQL/7gH32kAVg/rfaxgbTBqQ74RvAQ1Tq/9TpBpH6jvITZzn5V8u8Cefwb9B4N6T0EjngOk9Rl4i0u1//zlv+IHQ8uV9l+nuLOuwf251P2PhZ3pZ4GfWK8tBdyrtiJtpeYleQd5HxNffTXRemn6/TB8gZ1yN9zdukdejSfI3r1JZ8O8mcO9+6IgrwXM/FydSeeRW8I9CT02Wi+ru4S7wN+PuE9DMWX7KzucyhX45B1z8COov1+lLvfYdoV9+A/8bdNGbJX6rlCuIOnJ8Pgn99CE31d3L5lWQleDfruBe1kNX90wbla1bSlmOzz0O/RKnNvGhuvKleGqMXBO+MtQmf6h95aVYEgf+rQD33oJGZ69aFrD+ABHz82PWMxtsX/OxJlJ4nnHzXeiChQUTDb9Y0s7g40BwL/iEa5wVsHzOuvNEHnkC/CToo217h03zzSLvwM/28I9CjT77NK76UkCmg38ZNzOOfhez2vegfp7QPz8HN7+EFq1fddG5eiedhueVRPx8cUnxboeGiH/1z6xfjtZTMr5sFybwM/PHQDdYq3WZXZJIWP+sBX8yNDJQSr3746ukM/j4Lrj5C3T6+rq2UTerOuTnG6mv/sxfkyv0z6NF/NwYaJ3g2/cimQz+nQzuZRwc/lv6TJd9RpTlaqJcyj/O8qzLAjpRtP9gPfSHTiUzfnnpCPw7XMTHdU9VdRUHmNMw0X5jEDSnYETmypGWQj89Ej7j7B4+yurfdu8jrD8W98+tUnIl1spmQr8sI8pPlvgdnm17kvZA3kfEzwsWlB3R2ulG8PPJB4r4eaLj4Gcjzrh22E+nnbLs/WqfDulov7H57efeCtsOCPz7QMS/KQ9lI5atiWa/f/L43kbQSclFZjtHBv5rv8Gez3q8bFmbn4fAv6PAvfj9mX8b9FbSZEgsWYN8Avzx0Lm5j7qO7Rvyr/0H+++siP+0/Fmlv8DHncDPjIOz5VoyV9/0FXK2y/gBnTe2v0alY6jQP78X9dObfLP6qA4KIorgX8bN6DH4K/Ue88edO0NHdZC/mral8fKqEMr4me062OuGx3vKTIpOpM9E/bEaNEJRJXCBdrzA12y3wfYd0YtGKWvJewj9szp8FWjnvjWH0jyiKONn1jszjlZXmOhweNo2gZ8jRfy8myrZyP8Jo2OQU/i50IacZ9ZZqf70vYiPGT/33BM7jxscRt4h94DvDLXy+Jj8a0UCeSnKHaHrfR5vrPruTzrqn3NmzHVzuF9AopA/hX8P2nRUr5fUwVwSg/wd/AboiX+GG2fL+pMI8K85uHcbdGbd1TEcn02rRfuOAOiZTkkNluX+1AK5EfzZ0Fl7nxgtcDWle8C/JuDe2dC13U/OSk5OofuRC7sNqFXJ09LCdHvihvwo/PXQWN/43rFO7nQQ+FcW/AvO5R/6tLa8KHIiSeDrrdhndIb2Mku8YrjLl0xD/5yL3nkl9NEcpWe1fYPosvbnuVvgXmP00LI9Jn64vOsiSbvang+Sb/f3Qn01Lp1ynR3J+m/OHM+h/+Zs1xzXTp16jL570s6/e8C96dAdB1qcinecIb+RZ8OvhEY2Bqnycn5kPPi5P/hZEtqrYW5obXEOXQH+rQM/9wL/5gRtn/NkfTAJQI4/N84Qen6STHlkDx8Sg/wofPyccJN8q32GTgin7uDfg+DeFOiRkImdRy3IopeR4+eOewtV3GKwa8unYqqN3Bu+EzRMneoMm1sh9M+Mn1n/3GPmZf6gu5/Az7vgW0L7D/sdsdvmJHkkep710CdbVapMKwIp658Pi/j3hZfDswn2lcJ+wxY+66n35m5xP9/1v/3zHPgmjL+nqC88fruU5IB/+4J7ZaBH1LzKPx64Rs8hlxDlS9SVhleoXacXkX8x/9/8cJjRtcdOVXQo+Hc3uPcwdH5vxboNNr50IPL9otxRdoDRPd0Yivd3Du/LQk8dNFEiouihH9EB/xaCe19CH14NcHjJ1Qv8/A4++hdOvWyw6f4pF8lEET+/Qj5LL8a509sSYgL+7Q7uHQn9fSyt6vaamA75ebeC27jS5ghhv6EHn3H03TOblFVmnaQxov75JvTS+g/jjV4Ekwzk+F6Ze8Q4+qDz/e+9vUk0ctZbMz25Steny+5w2kXUP4dAk/0+fCoqO08GIGe9dAy06vjG04t65JAP4Gdr+I7Q6yaPBo+aGE/URf0z23HI3O3WaKmdS56Cn5vAzYyjf+WYynlsi6VaeH6UaL+x3sAso7Eii6aCf3uCe4eznjk6+n2P10kkCTm4j1OA6iR3bVx6LIFkIZ8On+03jsRnvbsReo1Igo+rwM2foEOs5Sxa9t4ibsgtwMWMo4/L9bwdez+PfAM/j4HfBfrs7t1hptwlwvh3LLiX6bcdP8peJjsJ/DxexMcVT82sjKSN/rXfYPp8ZPjlr5VHyGnwr5yIj8eOfetzdFyMsM9gvTLj6/nN68yyux8W+Jk9x14XuvdVl0U7wgjjX9Y7s37Zd/vQl773M2lPEV8zjnZ73u3p3fku/+qn2euuznqt8qQ6ifwC/zLuZRzc8nSXROSRFNqK/BR8pjorzztrSK4S+mnWO4dBH0x1e78sOUPg3wYR/z6y8jWv+v/PhxRRzvYbF5e6xDyon/+v/TTj6MUGtVu8ZbMJvl/iVcG92Hfx0ft7Go3tmyHsnxk3sx56rccD76dLvTvkZ8M/r3e9dwsgHe0vwuIHeNfNLxL4uFmUK8punlv/M4Tqivib7UDmD5m/bVq/dKE/ZrsLptHT9rn65eex7wcFLmb98sJ9N++rzrZj+zveAz76Db7L7aU1WVuyyQfwLwH3Mn2waG3PBV2iKdtvTIDP9htBExfeGfjGl/DIZeFjH8iHaUXssXjEE8bHbHfB9hkyvvqPtskX0w/YN5+A7wq9GnbspUK/k1QRz+fDz4aqaH4z7ZTEE/Rj/EFwrx00bHWj4rDKMvoCuRP8w9DimtCea9c2neuQr11crBavKyLh4N9b4N4qaMigG/XqDmXCvoNxM9s3m7z/+bhTyRmhv2bcjO/J+WcH8u1mTy0hHe0v9u0yi42tye1w3yzZ3WrJt6w0Go6ccTd7nec5p5hHJtH0EPiXcfNcqEpx4kcVgxS6C7ka/KlQrYMOi5/bn6AGyLFf4LFP4Bd2etFZ6k4EGQb+1QL3KkK7G0TE2FI/4gR+zgVf50O3X89NkvwaTbrh+cdsHw199XCq4cdBBWQd+Fca3GsGvTYzwLWpX5bQPzegd/4KNTLOPL4/KIwE4vk+2G08xPNv0rr2JEs9ST/w7zFw8TXo+bo1Fu+a4sgQ5PWi/bN+/v6zpl+OEG3kBuDmEdCUVHvNbnXZxAj8ewf83AP826WXpbaZQQQNRr4cPuuhq+P9KkpV7agtcjv47HV6EcvuXP//9w/Gz3bg3mSofVmpQ1BRqbDfCIYfAc1t03s1bkMBTULeo33Xz71EviOsRtlUubRDfg7/Fl810iKd3hflbOcRr/bP4U/SfgI/s93GfqimuXGaT0kA6Yl+OR3cGws1Lmp0dcwtJXfBx2y3YQa1M/0yb89wntxEvhT+Zmhuxc/qsN3XSC74l+2We7D++Pjmf5a1VtOronwQ42szt/FL/16n1ci7wR8C3T8n0EXmSCWVA/9uBPfaQu2XD+2m2i2TDkPuAP8YdHBz2EH+SABVQh4KH98fcjZZlv0PLSnskJ8bDn093zj4DpmCvBE+20ErLSj00FxZTrAf5EaAn9HvcH10lmmeX1nWIT8f0no0ad+RAroKOeNm7By5Pmt25s2q28X2kdw8+BrsdbV9jtU+TCOMny+Ce6ugFfP3y0U1HqVifsbnN6fUrTrPcGyw8DzbPd+BKppo3Si7F8/6PaF3ZmrjM3nR+mM5ZAhyfP8t9NCDQ7ZWGlhlke+i/YYr1O5JXNtS+Txhv8F6Y6YLfOpUlkbGCvuNJtF+Y1v9uL16RqF0Ep6Xx3NjoOFO9+pVd7oTxs99RXzsq7gjLOPhdpqCnPlsH31r7MYV0+XiSTryKfBVoCbHg5Vu/LxOfoN/b4KbW6DqTy4csJevFvpnS3CxDTS/6+kuU0wKyU88PxS+FONozZkbIx+WEzXR/oLtl5sUVOSCc3aQKaKcqeMY/bI+GUZ0qoif2X5Dy1L57bOvjrSj/UbJ6RMG+bX/3Wcwn3HyU6cZa/9Y+Ql8zfYbTJ0TbHP8wz2pJPhXAtzLdN+OTVtld7vTLsil4DP1nJMRFXwjjEqL+JupTdnMFZtnJtKv4GM3cK87dB43fV/gTT+BnxlXM36e6adnM6jUV8i9RfmeBPfz45750I74ObEPnXBdwlXon+/BZzrwot+3L8UzaQJy/L3i8f0Of7ya+15OwinbL7PdBdsvH5HJTO1/KkDYN8vDZ+cDc7baeiRb+ZNlov0z23FML8rRlTP0pTPBv2x3ge/PeAPDcMdGEtDh+UDDmG82FjOcKN7/eLz/8Xj/4yUanL0nxPoTxr+Me92h46oz/b+qZgu5K3w36CcdiUct642Efpr57L9TFmGWIN/Tj2aDf9Gr8Pic4D82UZny72ako/OFTYcSJm3/tVzYR7Peme041IZmfHfZcarDfUZi8wY+fHKJwMesV86CKjb7XWlWixOejxI935Ys03W6oR9tAf+6iPjXWert303V/qQZOeuVmYZ7Pk2r8/MnL0T8fQiqorF7vn51oMC/9aL+eVey79K/d7LJLuRn4MdDW+JG2y96k0d2Ise5LT4W2vfE++ubfqUL/bOZqH/O+PDAavLlcIGPt8PfAo3YIP940PUFAl9vhM/0y6Mh/vq90uhs8K8cuFeW9ceSdw5uenCELkc+Cj7TSv0yrVkvd9NZyLFPELQo+pB793FxRBr8exfc+x2q3MmReq0pIIfBz3Hg5gzoC89gLj3jJHFFfhU+D+UWjV1zTseDvMb+YibbNUNlt8ye/d6wlHxEvgX+ZqhX46fSkf57yC/knvCtoK/7+9Pwmbm0O/jXF1x8HRqRUmMf082JaiJvgy8NPp54RKtqREYQJcgXw8f/f///eSP32rO2gLqCfyXAvdOhST82vTngmEpCkBvDN4F2UjYf0t9hPUlBngyf9dBDJL8Pv7siS+DnA+Be/BxyH+11dqZ52wv8HAI/EhpSmm/blFZIbZE/g892Htvf27upSV+jHfXLmzM0PS4vChD4meXm0Kchn09sPG1LGT+z3QfjZ+1pajLye06z88Mczg9zOD/MrQ688tms16UOzw8+d1Xn/axLhP0G2z1bQy81vZPa3Xyhw/1GV+/pdqd3Vna437BpbBjwhbsu7Dd6wVdk+Q1t1T1Drgl8bAnuZecHx+okl+/rnEFHIGfnAvE+zZ2KDOpapxwp8PNp+PiekNOJC9IKlIgm+uDfO+Be7P84jRWLfgdOqmX9DfcaPttxrI955J2kU0Hw+cQpg5+7QPvlueXdTDtHtoJ/B4J78T0sVyi1OJ0uLBbOD7Jzg0yf31caq6UVI/CzgYiff6eq/ay4FEFZf3xV1D9nPu2tsyOqL81C3gSf6ZZuXX6lafiTWOTgAg6f/1yI8uWgP1YpQv8cC+5FP8ctOZz+y0yvmAxDfhZ+CnTehyDvz9OyyWfwM+udXaBrq2qG3a5IJJPBv+zcIOuf4xvsCso/5ZNa0f75MXSM3pmd14acpKy/Ho/nJkAjau8Wrpx9RuDjAeDeEdCza0NnSlYnkXjkbBeNHQL351CXi4suJJKzyGeJ+ue27vIutx2ukE7g4xpw82do3eJe3pfu3SKuyNluwxrKj0wvHXEuV+Bv7Je5HtB7Ebztn38ukGki/mXnBw9+Xhu1WG2fcP8Gyxk/H3k8c4bLpUlEVdRfY2fNx1z0DjVQPEzYvllWxM9/r5y+7rLqkLB/lhPlZc92TCvZdIiEiZ7Hzpw3mhWSc7D2NGF83FnExxLPFt780JJEuyHvItpvDFM3ry7ZsbXD5wcmvKyzlAwg3dAf43sRPhS6quCo2toJsWx/JOw32D0do1LlDDtZ+ZKOcnnNz26PH2eQhA74+GzAGumadWG0I342pBYx5UuChPs5mM/2HZPdJ6Q/zkwR+JjtNhhHZxbnpH7c7kPF92swTv6xtWmKQlyIwM/sOcbP/a0OFe0rDWLvT8KumXH0qbJPP/p6/rd/xvdmPN7n+LqJUxaY9ddl5zt47NL4T1DlZ71Wd3UsE/iYcTPTof4DR3Ru9KODkTvBR7/BSwbMHq7aakNYjvd14XVr5aaoy5/MJPdEfMx2zpXqFnI/on3oNeT4XOHRv/D7b2okPF+u2OH5Q9V6+4b4w0eoAvj3DLj3LPTXCzX/NlsfOhJ5sihvLN7dj2/bJ+Qp8NOgd/yeqs/3SifPwb/24F7GwdtnJwzrNieQvEHOuPgItNL0RMs/tbHCvoP10qyntnu83Cfl5FkyHfyL78d5e+i5xi/vrG39hH3zF/jfoElWF/WSVTIJ9qd8Gfwr0JmFEhZpOwpIFfiX7Z7ZvrltxcLhL6R96V/kefCZ7lQcL911+HG6A7kqfHXoi6wrkQrNKWQj+HcmuJf1zK7apUq/dbZRY+Sa8CewnYfsw89LnnoS1j8rwx8OdT8aWu2cFkq6YL9BsdtwgzrvuGUnoZBCnK+jf27fH/OG0JFTjkiu5oLIeDxvAm6uxPO6qanujvE5RA/98hG2a2Yauzt3TFAC0UVuC/8q1HL3ozMhL+PIZvTPI9huA6pXvi7JWTuLDAP/5oGPG6Ga9RKS3qYnKDsf2BNc3AO6pE1/aXZbCJmMfA78QdDy/DUr9+klkg/gX2twbyj0c9AyL9L9NMWfPxcI3xt6cZxX2LDuNjQNeQF8ds7w5nk/xde7A4TzgxvBvS7QuLbH6e7+pRS/33FJ8PH7HWdz2lDfzJvSVORD0T+3II+xjCQl60sE/jUD91pD//Iv1HteiaIPRecDGSdX7TLa+CoqmDxBjr9fnAP0lofkw0lJScL+GbsuDvfrcD8iK+f2mJPFzk9w+N6Kw/kJLt8zJqKfaSm5jefXwd8O9f1zq6ftsWvkAviX3bvB+uP7cYUFLWvvUHx/JnDzAGjpmP2j1XyvCP0089n5wSlfP/01LSkW9hkW4F52vwbPdzOIi0wS9h343pBDj8F9yfjtucclUODnLPhhUMVn/KE5FTECP1eDi7H/4+LS3isc73lP6JfxuSHsOFZs3vB3VuElMg35VHCzJDTerK6kZnYFYf2yDLiX7TSiLcdunVpzgWL/KPTS7PxgnVt3p5krwugKET/jfD4nU7D5XvDKQNIRPy+dGx6StSJZ6J+fwm+Erj/2+GVA/Wmhf34Gn/XQCz0SnBtW5pAuon4ZfMLpcMvHr7POJ3Ki84OJUGuds8et4/PIe/DzcfhM46T6Dds9rYCoiPYbbMc8q6afnNm4s6QB/Mx6Z8bRnnHa3+8WO9Ipovs7lKGrxvte/rsxUNhnyIr4eQxfWT882o6cQT4BPjtH+Gmcwetmk2RhHz0HvhpUvWGCea+0KuH+jUei84Pq60+eOPLgJjmJ3BFc7ACtmiA16nZwnnB+cCp8dv9G1yOOg791ukQmdbBfvuqVKBlxaDtl+wzWKzOVHnE8pKmRE/ib+ey/c8N7u/qpnxs77J8vHEyxCQwKF3LWOzNd/jB+Zvi7wA73Hcs2/MqKqgoQ9s1i/v1qrvyi6qWP0E93EvXT6rFJ9071jhJy9jzTpIp/Hu4LT6IS0f+7z2Ac/ORpYHSkdxCR6ICPzx2R3V34wFfor3GuVVA+L91n++W4f/XHjIMvlpjbFtZFsfMDPHZPwuuOhltdjpy68198jXMGvGyW6hizyTFUH/yL368FVTPqvN65MaDD+zU+yp/++KXVgXT0fErYkOvS3ucEPsbv/f/VlsWOt2PThfy1KN/++7j+hJXhHfJ1tx75c8fEJQp8fFjEvzau6eou20+yfkPgZpxD4S34JQGK4QF0JHL0H0JPTSojeq5TL6V3Rftmxs/ZqbYvvS2iO+RrP422re6KifSpqH9mO+o++iqmzvXJFOd/eNxPxeOcEG9hWn83tqs/Zfdz+IlyhS3uhXo2SbQF+w7sHnknaJF10v7T6wroaxE/Mw4OOK3c5+zWs+zzm8fnO38Aeu398hVk8Sn2/TKP3kx4XVL6wIT7TSE0BPx7CdzL7tF43XQuxasimVxD3gz/MzTjxSyL7TuTyFbkvvDDoaPnLrXQnL2LaIJ/u4B7u0Jv3vz48v62SPobOe4v47OhfR4VJY+NPN3h/XbTrP6mu3rk0n/Av33AvYOhr28OsPhZ6CPsN6bA14BGj5XacH1LDDVCrgR/DHRGqc3gXk6FdCP644HgXyt2/8Y6JRvdkljyAucHVcDFC6BV+i4Vlere9A/yUPh2UEmzBR5vjbNpCPh3FPYXz8G/1RFuSvFzo4gfcknktcjV7m4Mlc/aSVrRP3uhd7Zm/bRerpKFRAEdCv7lwc1Pod1WOKrdDdsv7DPkwcXsHg7PqO/xWctO023IcT8gtwD6vJOE06KnsdQD/DsA3DuL8XPVloFtC9MJvl/gtsLH/oZTNZqW72sYQR8hb4SfAY2L2xVONC50eP/Gym6FawIvZ7N9EXcXPnZI3Og0jeg/9Ty1R46fWw4/55xkUZhFlfEt+hT8i3O1HH4P5TZ8+rFz1+AU4X4NRxEfr9g/9ox8wgrh+ePwGUc3PdvxrCItlf4C/+J+S4GTlQ+v3txmUSHcbxcg6qcnOn2+dkeTF/iZ7Z4ZP9/bZFf5vV8EYfyrD+7F/owzNFc7Oru5gjK+HiPi6+DBMtVSGVeFfbQUfLb/CFSp+rwgr0q4nw73Iwn75YZjD0vPx8Wy/oLD+W7hfKCyd96NzWeihfvrMuGz13lWanpqVEVStt94Ci7+DB1S7Z58o+C+wMcy7/6Xrzsvn/ymZm2ZsP/QZ70zU1kt2+46GWQz+Be7ROH8n4HJE5kEnwy6BDnz2Y7D08JymcucdMr2H4tF/bOWQ33e8oBS2tF+OTpl0pZOY7xJGvIXIn5e8aU+ZvRvKxqJnPns/ODQbD093bQC4f46tstg++elOjevHaorJQORp8Fn5we1C89fcK7LIF/Az2y3ge/XuVrNc861uj50Ivh3moh/vZ51buyXl0vqwM+vRPz8yWDr5h5SMVRDtP9g++embk0GxzMLKeNn7AqEncbehfNDrYJTSCxydu8G65+7uxbM8l8bQ9j5Qz0RP9/p5X6h5/UKgX8fiM4PzjaK1Qmt+W//zLiZ7TciakOsL13PFfYb6I25btAR6jZFdd0vEC0RP7NzhKscn7eoLHUU7t9gvTLjZKWXyfJ+jTsEfmb7aNZfa8etqi6tPyDw7yAR/0acJl/V5/j+q59mr/swYu+6025eNFrUT7P9RtiE+5P/fo6lEuDfv+1/bgIn2/dQaktc7Sr0y8yXhC74XN80tzVCOD/IuJv10++rOr2zMS8U9hfsfjq20xgj86llf26AsI9m99ax1/k6z/57alkM/SXiZ5ZHuHa2ajU512G/nHz84tddIUmkI76mvjHJlbbR7H4cIWf8/EDtRXxyWz5dCP7F/TtCz1y0XKPcKC6c7buEXTO7x84vfHO2+eBA4Xk5+Oy/oz0+cuzrN6WU9cfs/B/e3/h5O759+zsqloxDXgkfPQJ/wGCi3N64eOF5xs/sv6PlPem27Ip0gX+dwb1sh/HuoZ/CjAvZhPEz42rGzw4rBwQ5+EbT/sixy+PRj/Aj4wtcvr05T++Af9GrCJy88mXCVL3BR9n3mzzuRxV6aEfjRLOqYi/ahJzdDz0ROn2yyd3h+hcovn/lD4B7GQe7v/l6Tm9nJrufisf9VDx2jvywfl8kX3dKEvgb5+95nL/nx7xqWKPD87RRxMf4fpgfVG+uf/ZRKsHnN2/LemXodCvDh9oeR+kz5MzH5z9vubmn1dubWez+Ar4E3FsB7XR36/AJi/YL/PwGPrtnw6855B9r2VMd9s/9flFJF6mzNBD8Ox/ca8z42NP8Uf8B5vQK8v3wcf8vL+W590PrtGwahHwx/FXQlH9sTjRnnqe64N/X7VzIY3/Ad/vRuTT0XSDZjLyXiI+bDuaOmVoVR9eL9hujob/O9l3206WIaqFfXtne+/IUGuwRtLenRL5wP4cGuNoR+qyrSalydBi1RL4Fvj/UPXNJ7/RD5wV+Hini51Xvo2ytVLPZ/dGcFvL3yAviVFvevbekGrj/OQX3PhtCtf+euJI2J4HOE+0zGB+PWjJXLzY0kaxFzrgYv2dwMsetHjz0CabbkXvBZzsOqcAe2g6HsqkP+FcN3PsPtKTX14wHd4PoLeSR8P2hGtMDHyxoTaIHkePeQm4t42/l277DVxXTTeDfw+BeP+iNv0sn5m8rpObIi+GfhSpd0oof+ekinY+8Ej5+v+Mc3Fd4e26roqw/dhXxc4+we+nLkjyEfTR2Uxz+HnFy0b3l18lHsL+fHO6F5A4y/m4cZ/FDKUfg5yJwL/ZZ3NBf2j/cH54jX5FHw/eBcns3yc8PLyb3kFvCt4A+WWqiO84+n8SBf9m9GV2g+2bP0JW1qqIFyNkug+2gD/rNUSwsrGT34ws57h/iZi/w01TQvCXsN9j9GUwN9vyqeJwQQYeL+JndX+frerKn14t04X67DPjB0KoUfmbuKls6G/xbBy5m99QpP6p4sGFSrdA/M27GPalcyu2WgYNvniOayFXAzThnw8Ul7rZ8cyyPnZ/n5ER87PNsiGfQn3y6GDnupeLw/Sv3I9awwfptHt2O3BA+gY5XcG/yvnvuX/zM7n+umXHnanrOQeH+jTfwWc/sGOSgslFrn9BfM35m+42Rh0IlDf1LBX5mvTLj55/SrWl1Cy+Q4ciz4DOOvtqgsW+cUppw/wbbP7Mdh8Hdj56uY6OpqoifWY/sO0HhortDmdA/s3uf2Q56m3Ht2pSjyUL/zHbPrL/W7Z3+2sP3gnB+EP2ocM/GD+0MkxWPskiiaL/B8hq7Yz5t8XEkB7kO652hXmZ7J+T1qCDS4OPn4OZWaHXJnpWxP28J++ej4GJ7aMbt4XoSK84J92+ow+8NLatJNrrVeoVoiviZqXOvrwofngcL5wPF5wdzQ76Hfhm7mnbE3zYbZL7WSoRS/P4g3K/B9KZuv2+dHApIKHLsXwRO9u1zcEtGlSeNF+2f2T0e5xcX9FXqRamUiI9Zfxw35+WeF/oXSGfkf0R8PePn34NZR4OE++vYc2z/7JKTFBchfVnonxk3s555e4K9Q8u8i0L/zLiY/fsqA/e9Xhqq5k9/gp/x+51wDrEtsjim0vyqcD8d41+2v5BtfZG5zvaasM+4LeLnwbOzzehqKyrOGT+ru0uZ7cm63iE/mz9ssl5mdUHYZ7B9B76n4jerKm+Mrz8iPD8YPttJ68b0qWs5Vi3sl5+Be3G+g18Yt7NzfGY6EfM122fkXvoYbVUWR/9B3gfnB/tD36h9UnlkW06HgH/twL24/4iPbAp0qBx+ngwX9dOsZ+7pGfHeLziOvX/zjiK+lrTue3s2ufovPsY+kFdSzZX6GVVIcD+qsIvGDpA3WbfUa3CIH81ELgkfn0/8iLxJdgkSVVQK/OsG7mU99NAejxY5LM9h91MJ/y4KuydatvHV+EMbUzvcb3y+tmis6TmePgb/bgb34n4s/kdIWKgsV8ruz+JN4bOe+ZvEo8Rnhals38nvEj2vP2qrm9HgchoA/s0B916AbpxY0dPsbgVh/TTzGR8XLPX4/NbLS9h/HILP9h+T0z99v2J6g24F/44C906ETu3r+Xpkay6734zHLpZfD90zLFB93w13ehr5bvjoMfk7fwKHLntfLvBvC/h5CPj37Ldxu4ZeKiN2yJk/DXr4j/TC8UNPUGfRvkMfuiTUeI5Jjzxa2X6/Mn+B3V+H/XPdU5U7q3JzyHzwcSp6ZX287swjuy0Pd56gL/H8HDxXCJXJqvGbaHmVzgD/loB710J3tSZwWkFXSAr42Qb83B1qX2s28qiSL01H7gyfnSP8pTZ3Yfe15VQP/PsM/NwF/GuRMerynVt5BPeXcDrwtaD/3H+j4zjxDD2O3BU+7ifhNOZXKZjeKKenwL9jwb0G0ICr3p/oqYoO++eT7voue24F0wbkVfCToKkSv96abrlJg0R8zPrje4Yz3NKGnSWWyPG9CZfD+uWH96Y3LI+l/yDH/TLCv6/SukbVyL3vbfoK/BsO7mUcbdUn5Xtbl0vs/C4XBp/11HnXxugV/l5O8PeTOw0f+yhuTZcHZsYzrtAft//3/CC7x87bPFXqjswdgn8/Seil2b4j4HpYzmL/NPIeOc4dcy7QxvGTMsw3ldF08O84cC/7d1J+Ky45Oia+hJYjx/dn3FCovu/SHdeVLrD7hTjcS8Thfntu0g8drasq1ex8CZcE7mXn/3TL3Ad4O19k789cNny2bz45a+zp/kfS6CTkN+EnQm1bG4xX114T+ucmcDHbaagMVc3Y8/exwMdton762vmBS3R0gtj9qMJ+ozvUNYGTnVZVQzeBf9m9dUrQYRWut1vSC9n9VUI/zfYbn8w2UWv5DHb/K6cNn+2nFb7NV2nrXiXcv8Hun2Pn/wwa3m27Pjpf6J9fi/pn6yc9rJb9TKFRyJ/DZ/+dH3HFXvrkBuvnhPs18P03l07fNcf0qSKDwM/Z8NmO42VY9MWfiTaUnR8E1wj/fkqRo4lN4frLAj9rivhZ/kf2TjXjCnJXtN9g++ebL8x06otyhPvrNPAc24Foxyy8YLGxmrLzf+zfR2H302WvijX8+TmfJCBn3Mz655bIqslTDvrSAuQEPjtHeK26MCZsuSll92/cEN2/0VpX+iX4Qw1xQW4CLt4DvfRujYauabxwfzTbbbD++dT5p1NMBrnQ/wPWG8kYAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA/QMAAAAAAAA=eF7txf0z23ccAPC0JQ2iHjbmIZR4qI0SapT39zy0hBJtt9GydeaOwxmOFDPncdGqh+pa9dDqip5VmXp+2O7zaagy2gkWz+aqnoOyTkOIiN3tz9jl9csr8UZ+K86uROSEt9NeFl2oabP5xNwXf6OJj5iBtSUzqKRl41HX1Apa5gT0Mtp3UPtp5s+V8wcwEof9Ml7IETVNnKpLrVLkWBClZrBHwQEFrMQHQ5sQ1ptzyiiKiwpNr0VOWvPhms14epipGAIzl0I/NRDCaMn9o7c5QrRazC/Xb9EgklWtqzriDbAIlMl1IjJuiJ/qP2m1CW8utq9+ZSeHu41Ddllre9DdXtRNq+5DiivFXFXjMaijdlxnDglgNHjeevgvCdha5b7LcyHjbRun91sKytj7RxtueshRooL9uMfel0RITpc1i3MUCKqiVIkFQnh1JGJj/Nt5iA4/ZvG9Cw858hKozoJBdMEgzYZhKUZ5EYz+Kt4s3A5p0yY/WkJvUlKT7qop4/TM5lf53Fx0hxmYrWx/ADkxLDq3nIwfiHzCnmQJYcCDcEgfXAHbjLzPBwzGUJMhM0mB9AdqnjGZvpd9hEiqCGd7H3sPqqLjARFTKlgjuKUu4vgSOIZOdn1505SIefhc7+MgLfxr+IR3Zv02+Nm+dvqEpom9GvY+/OnrBYikDx++QZ1EUt/DrR47q5C5nyrOEvaBpvxoLKd/Bi2qtwrWQ3SJpauuZ4AtQpebpWo7fhTCw7OzPNeYguVV7C1IQ3JYUpWwMBEtAReL+Bfeonvwjc+sV0EcH0nbWg5iOSPQ7c4LCosiYer+sLZx8jLy9zTye1j5D5T1TRfpaaoSDbsjG921I6Bnp3PZZ/EdDNKMds9paxHWArHh80BNolJdXv6gohHlVzdZ8X/pQgdXETPm+izivT5fPOo8DoFB2m8nPMUgcDNLfnlFiRh6YmpS6CqHS0VaQl0lDeyaFHQrpsYCh+w+w+cbBVCosHB29pkuFlQf0HTWf4N6y/4z91UwYqQo9tFzu8CHW7axxFsGLmFOr49eA/dYskep1hq6ExcsFtXpYgYn+zvKDxhM/K/YbSsYEW1sqf1ZRCMkrNqMQ9sioOezt343lYC7rzSNFNWJ+FEWTln5SzD2p/Mp5sk5yNYvXGj/bA7pJsGQ29gWUFNS+bGJSkRPlJl7xvoiRPIk8hE1NKyzseUwEHaI0LHSNxuqMsQZdnu66qI58C8LppyjNKJIy6cvObYdUER/Slmw30S9noFuvr3dcKLUeuTShX3UaV7C6uuog9AYe3G/7za6m+gynP54HvUkrH2w0r4JFzsUGpscKATbnEG+SawC6T87abJly5YtW/b/6X8B0K0onw==AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAiQEAAAAAAAA=eF7tlU1LQkEUhgcxIrEwKSstgqAIi7CCNhX2g9oFLiJ0cNmqVUvxfxR0f0KbwGVECxcGIiGXCAnupbmcp7HcBsfNy8s7H8+cOeNtVJ/eXo4yDyb6hY1YX++kD4+l7yMfIR/Cf0pvS/e/j+87fxPzVb+9jXwRvB3uB77MifRDmQdbyOckny0j72D+rhtfj/kc75WXtwveaaz/gXwg97PLqN8mfEWuZ0tYP7nfJngvvbw98Dyivmmszxz9YfPgXUW9d8B/6PLJeI2VfhH74X6NgZ/FeXj+fZmfbWP+kstvwVvz8g6wfg/1y6EeRey3AN40cvYv3++pyy/Ae+7lDTGf9833NgVfGFuvWHn+LM6f9EsNvE0vL977j/VZ/yz6kf06wnvcw/gVnGfd5W3w1r28vJ8uPOv3DP4Z1Cv/R3+k4JP7nKx/+X+L/c07+AKMB7+dB395LF8k7QOXt8B77f++gScFXvYveXO47zWMRx5sIE/6p4Xvm6qqqqqqqqqqqqqqqur/0C9scfspAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAACAEAAAAAAAA=eF7t0rtqAkEYBeAt1MKH0KjRF9iH2DIvYKdZX8NbZZN6FJPeN7D6wU7YziheCgOC141YeIviFc82Pwy7hVWY0wzMwMfhMJr2yK5WqAhRp9bbT1mIJk2iDV3XW/RiLIQQPdpc7hnSezJ4ux9RfhkyTXNMAdu4vc/oq/RhWZZND22FU9P2Ejf8JPcb7hRuBO5a4vo9um24M7hR5qYl7qfEPcDtwJ2zvs4OKbhZuD64VRe3y9wY3C3rm/PoHuH24C7gvsLdSfb1uexwgtuHa7O+jmvCLXj8D2eJG4e7h5uBW2SurK/jDuD+wk3APbC+RY//4cz25X3/JH3d9lVRUVFRUflPuQIN0wBrAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAATAIAAAAAAAA=eF691btPU2EYx/EmloYw8gd4qeCoyPEvEEw3AWc3sOCli7eZS1lALoPL0agDISrqRByMw5toHEw6mKC1VRM0Em4txIFLKVJ5TX/PGX7kyXuIhi5Nzkm+/eR5L41Eqp/NqYH7vv/KzLR9v+f7781C/I3neTPmaKLg+37erP/5+5k1ly7W2ec/Tf/q4WQyOW9ixYR9v2QeDY1lMpmiqdZ+4TsSKSndI/+p+xHdRXSPobumdGtCdj+hu4RunLpdSveh0i2jm0V3mbwyh050e9GNovvA0c1R9zi6G+TtC9ndRjePbgHdBnQ3lflGHXPYQfcLukXySjeJ7kDI/VBRuo3oltDtRjdNXc0r3a/orqB7At0yedMh90OF5sveLcWrzbd6fp8G/cf1HWc8762R/dzT6NunH4JzGH2Ztb1scB6HJtZt71tw3ptODtrvH8G+vDl5176fC9a7NTVtny8E637hdaHZ8wrBPNvfJezz1T3rVSLnE8Up5/oQnIsO59oBOy+TM6o44w5nl8NZQ05ed825BecVOOXeicEp98QwOU+R84bi7COn7Ms2xVkm5xScZXJ+3qdT7rfr5DwLp9yj7eQ8Dyfffy7nVThzivMOnA207i5nv8PJ89wm5zM4f8N5DU65D2vhlHtmVHHK/Sv7U+61FnJ20P7U1n2HnM/hrIR0jpDzNJwlxSn7M+047+ys/KNT5in/C81wyj1+m5znHE5tnux8Qc4UOevIOa445X/sVsh5us67OGWOMj+Z2xgc8vsyH/k92V/S3wXx/86kAQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAARgwAAAAAAAA=eF6FV2dUVMkSHhRdDCgCgoFV0pJlhyQwEnUYMoIgSHAcYJhB0pCzBEElCYMEEdEFTKCgILkBYTHAcjCLzCK4uEhQQUFZXPct+t6PvjXnzZ533v3Xp6qrvv7u11XVJNJ/f37rLObD2Cc7iXUru+XjeoVSWN/I1YpZplwBa/Titz9sSy/A+lBQSBQz8CKsuwTsrQL7bwvETxDI/78+3UuLfqYfdyEm9u8P3SEqXWiLWnC8utlLy62CKRQCb0iCX4iVlQci8PK6vgwv/OlEoWO86bTxPOtEF3QL2w2PTXSW/uZOacb7uXaR2fVMBdRDxFdd1RfwwpkSi/NfJwdsPHHEHxH4Ok24I2lD8RRinbLaU0x6iAZ4RzZ/X3+m0ouPl1xys3VeH13H+czK3t84SqejVoynO2vi67smG8pBjNds5SNZSrEJ6sT25rDpysFWJ0oj3l9ubjkub8dAP+P4Zhd9znFNLFEczu89Pbxd5O9YwKvUUsqy6wgHvLp1463XZvchb+yf3pUTfEWHjZpxvNbhrULsH11RLc5X4k2SXNjth1owHkaOmFvHPUOKJ8b7SM92zew3e9SO7XXTG5/vYVEpDXh/DbVxdd1yf3QLxx+Y7Isp3+6PonD+LLaoTi81EfBOt5ypONkVBHgj0/We9lcGIh/sL5z1Ui9GMhT4XZjV0PTc4Av8llMp42xvf9SM8ZQ/evFk/bAtIvDGjnPCvop6g16qm2Qujm52Qzfx/sKr1/7+pBuJOnH8vhSLsoYb0SgS55/S6N/2pTkF8Ja4xVuYd/sBXuba9d1XygMA78Kt6gxkygG8MkJLExFUJvD7+ory5ZmcQODX/7J3wAe0D3lgvOsdXK0fznqjNmx/uqFSnynhg+rxfpHnf818/CEGIRxfyFLype36eBSG8zM6rrornzsGeM3uujsfWWEDePuvZvB++eyPWNh/Nftlw/6FYNBD3221Oo4rA/Ai8a67oYfDgN+S/ge9W656IXeMt3vdrbmkfAboe6f6ZepiIBvV4f1pFjNnmlOSUBuOXyD+R+DMbBwKwfnbRiRMLczTAK/KL1c/1Wm5Ad5pydi5WmUG8Nsw4Gv0IDQANeF4lDmrey3VXqgG54tc01d1nhwEeKfdbL8z3emBDmC8IguRRpHsYOCftFxkfmKZNyLqSyxZIVY2JBH+n2fzlnuLw9EoCOfX3W0yWduaDHhPX1a1adgRCni5R6VuL8z5IDbh72F89QvbD+Ktna43vLf9EOj3XJOjXwuFBXgdRxO1KoL3Ar88U6vtuzn+fLzbLddNa9MBb49BWjPdJwIR9T3E9uTEjLM7Csf5ebSl5KcHIwFv1Z5X7sVi/HrmMqCpdPrcHhSM/cX9uCP3Fd1RO47HyKo9UedsDPlIg5+svu2yhP9NSi3W/6VIG+pDyu+9Ra3ifP2OTUqzDNv3gH4V8+Ui7ls7og6ini3RLxpwZFEMzh8V/UbJOiQA8H79tMMgPS8d8BIfoXdiTdxfYk3oj1gDXvx5CfS3NgF7g8D+boH4qf+nv5k5FM9Vrkr+h33t8qEcuQk5pLYhsWnuaSHYifuYGbrbsDiBgnIjDtRJVZwHO6GfMa+fJsmTEpQfSMGus4WV/+jnxXqGK9wSzNHOvqz92/T55yPq31GNf5EfvbGh6AvYiX7/oIpcmStmhTQF4hP9/6qhdtWfCsaoTBAfzn+5+ub7d34uFC2B893B+Ps7SSzrrXTkIcAPoVdqdYrDGXc7+P8DX4KY73RMkTn2H/uqHf7dU2OwS34fR1LXskSqON/Y485zZ2ccEDH/qBSZ3r3R74JOYrxc0q9coR59qHeyJ/pFncnqiOBz8dlMAqXIC+4ndU5hTZmTG9LDfE3H5JbEKdNA33Vyhy361a2Az00SXtTSJSuYR7plPxu6WskjDRy/06ZWLWg+APp9h/OiNENCEZ3F+JLMFnW4mxIRMa/ISrIKRmINgc/8CzRR+euHEcGnwbhhIintMPLG/HidJgurbvRFEfj8B671780p5c8zZh9K1LfuN6YQ+ly3qO3iam0LdmGyatPqOAfQZ+PCBrJSmDvwaXlAp83c2RvlYLyPbv7YnhduB/WNOx6gIFHkhBTxeTPGwsMnKunAJ6/0L7Xk5QykS+hPh1MwL2kB9cSMOxwsc1eXQvBtMMKw91yzl0Lc1279YylKHHmkjuP714dKJp0ORR1E/9/G03AsskIlGF9GRNWcKOkIIuapVtRXkqvmiAg++wYXFaO7omAefBUt9bTxVDiiY34KGe2aG5eYwOdx1IiuTEXz+dyVT/65jYqMsL9Rr4qo7n/mU7AblF976O4D+tRkf5tcdsMf5jFSnsQr9/gAlIXxvu6V7j2U4QP9jeeztbH3CgMp4PPODNFip37l9+cFKbX+UTsm0sZ8cTPbNOqXOfL7hdQp0Vfhy4DvFJKdkvCkJYWYNzatcwkX2uuOVHH8gbs3Kn1jY2BeEtU+lqOtcxAVYXwz5zNiNiinw/zUb93i8nbJF+3A59vjRnOp5SXC/EdXmJ+lfTgCfJ6S89qWmhqKOPj8YnJ7Y4994/MpK2WUEKHohyjYnzppR9VmBYOdnOIvv7UzEKngfAM2wuqj4oHQb3kPrTsf3gwGfcqw15rufnUY+mOQzR1HuQVfJI/Pa5Q2Gt2dGwj9rSystGaMfhhpYb6schy+RJr4gT5DnQebXm2xRzrYbpKev+y3XhrMm15fL6yZvOKDVHB8lOHUJRRyBPiU6qzI1OAFo0KM7/3UVPxMwwlE9JuoiWdtR4Y4SAOfL0M42Wq1ayrqwvgN9y+zjXJOQ26Yn48t0uarLGJg/ntXuMyFHsifV1u/zGjxhNjIGPuLuchGcFfy++sm0Z7qFQVBoE/hzSezNZOD4H2TMyFyOVGfz6fX97poqiMQ9Pmsv0n7j0wm6FP42ETEwMkw0Gd36+d9z66FAJ8Ue5qnYoUv6PPA2hpuJ90D9Cuj/1zD94I7zD+sg/EJ0WQGUsbx3764LR9+Pxn+x/FRsRF5SjjKx/jeRvepm2llw7wxbJc3mN4dCfXs97GWmqJD6TDfiIVWG7ow0qAfSb034GUMHEGHiffS6fOiR91Tga+VFe1bPveEISr2jxcZUHHqCuTPr5sLj//rsQ+/fh4farJaEQD6vLRZw2DfviCUjfH6my0veSYcAPXTqrm1qzLMG/jcWSU6NNDN51NmSk5LcYTP5wFGonFZLZ/PqnxhIYsiOvA5pzPcHjV1CPjc9J3IyTsfmMAnzz67kl2QCnwOvBny9GGHIS7R31Mkr9cn5sA8/9heWn/FQizopUy1Jy8/mM+n9zSd25HN12eW6rtoGc04mJ9LLsVxilASvz7K1xVk1DChfk75urboMX3ArqyVdybzLAvy3R51qsozYiNfHE+6UE3h+0E/lInxni97ZPdzLhs1Yjwmk9HSw5/pcN8lu0Xiz8ly4L0w9y7gA2fIH5GJ/r1UNZPf4Y+aMB9cvUK3mTJXsP/5rrzpbcEheE8k0vTlK6j+MD/wXkY4RXGOwjzvEp1yeUc0B+a5yGLHXrPRTOiHa9mTWZUOoVDPeqpdwtIvpUK9ehQU/bqpOh65YH7msw7OcppDQU/eZ5RIzPYIfn1cvZLK4+2k0Ij5ylyiZTCbz2fSm5U0KT9P0CerqLzq9gNfeA+GNWxI0n7uDfp8Qv5WvS7PG+al6ZqDp3dtdgU+CyeWyzx4wgJ9mlWnXkn55gH6XOjbyLreygY+zOLEJTNP6ICdXBRLTf7mBvrMWL9T5UGbL/AZqjLXGxaSDPr+u/TVBLmWhfIwPi1h9S8uH46CPv3vVB09O38AzufXgOrtJeNAn09kJWTC4zlw30+JyqmFv96PAvD5c2mPR84V8vnqOzRttmowkGJD1M8eSYXr45ZgH2vc7mL4zBhp4nw5dz4p9hl5Qn+nIQfxGaYd/P+U5ykv3TL3Q/0cacraoKyqBfc9a4W4+udRH+BTNi5Wb8l6G9xncoYzKWG3B+jTsbA/mvqTCYWwk9otT5QnaQCfjSzL0PvZ9nDfP1puzJ2KioL/wTCpXyju8kIFGN8WqZ8O6mgk8N/DDxGrbHY3hehHFYEeu2R3hMB73vy8fb/+QyZiYH5qanaceLzOEPhs3dZser6YxufLtj3vhoc7xUFg/icLvBcIPMRaSeA9AufFn67AWkXAv1ggno5AvjABPP8GRNiHjQ==AQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAIBoAAAAAAAA=eF5Nmnk8lU0bxyVtCoWULClSiUIcGQ5psUXZl6gk2SvZErJvWY8l+x7ZRfabI8mWiuwlpEKRpNTzUJb3+WTOzOu/8/m57nvOb75zzTXXnFfVs05mNk1UVXtVhU3J2gQd/HulunKprV+PEE3I/ndSt4GqplZUP1jriXT2pqKBGjYKIIvyzI14VVOPWlPaajQ1kF5HmuGUqbcjdhmT/4svoZrp861fLnNC+mx+nRn9o9uAVZ3/Pz2dWvHugkSBZSyg6cvjrO7m1rdWP1v7E1MtHRoMSpEonuvz82PO/MUgXu1vPLnQ5hMLr1gG0ntdOTQfegaDP0Z/308Wfdf1RlchHz3fYle/jlFLGXBeHT+Zb3xNhN6XChTPpDQYYFVZBYxXvz/Z/bwdj5GaA9LVSBsT69UfA4dV/8jgcIhY5wMcr7c2xIkuthV0Qn+5G26xZJ3wQvr1sFreRJbLhDD010TuvuubQG+kW9qJ/rHUuEAch/7aZT35Lu50A+la+r+V1n2LIOihv4wSF3JanXH8ZOaCh45RAOG36g/1dqSsWmPoLaTzOx6w594Y+dePhkPF4DFnwzXKvjDkz4i6pAzfmjyQCP1tuCzg+idZBumaM7X0Ry4kEj+hv68iNteIWt5BzzeIZi+0TcwkrkB/001cRlJ9Y5GunDqVcSqpCBhCf1fkxVLyeO8inXGHXEPpgRDCGvprIrL8QpLeHuk6Wr+J5JPt4AX097dk85Ur4qpI/8bupuY07QaOQH/rtvIdCw9wR/qwSrEeOTyUEIf+DsXPn/jwf/712ywX57hFEuuhv/YK7B0fydi/9GVWYY6Jc6Ac+vso6dHXZSZHzEfZwvVy7uhVv9SdAV903MecDiOkv13m2REqRQHZ0N/XeyMN72li//5c+2n/6d8E4h/or9bFhEOifSFIn14/prfs4wlUob92ZYtLTSS8Plk2j2uoeZYDPehvlmpntphHOtJDpdbVqotHAjPoL58GZwWbgCvSI4qydaQlm8FL6O+yUGuWq0Iw0mMsn/6JM9UjxKG/TZ/NO2ecApHe4R/F833KCpCgv67aIuEqwBfptwsMxQPDYgAz9LfPruyt5iheX/z8/WctuzNADfRXUvF+feJ6XcQfnZaPr+V2nb//P+pdBkjRHmcvu8egeAqj6fPZdyXgHvSXPvXtrvwneP39qbcO4WkrIeahv1x+jB3zV8OQTlctulvpkQ7y12quUd2LEfv38G75orNnA9CA/pokKn3YfdgPje/8PVkGywc5gMbvK9+J411sqSj+upHozBB/C2iH/h6YMPsl7o75N73bzmi0w4wQgf6uZSss7BO2RDr45fVLcpFCAOhvePn6E3L//T9Nd/B12Fw4mUbwQH81i7wq4u5gvs3ZB3pj2ZOIAuivcTq/B1UCz091uOWGUOG81c8Nh0CVAzmmdB77x8IZ8/p2TRTwgv4m7JWc1kuPQ3rspfqQhrePkL/GSj6VKVcjkK4gN6n0Wz2H0ID+1g1mUwc4EpGuzmbo3qtfBnShv8IcEuFC3tg/8iudm0vhfsAE+luS7Xm20dUH+c9A0m0+x9UGOqC/vicuuegzXUfx/a6XMp9x2gNa/qUTvWk2pCSIdD2lAm8xtmhA83d+8DP3fiMrPP/vj7dYD94FK6vfj2qw/c/53nG8fp77rntzlC0GVEJ/Fz+b/2HT9UP6jw+Pfsi4Rfwd73G/AoKu8uM7bodbaPzrg7ovJO4qB/nQ38NiJxLKJX1QvNBo3ovu5zHEHPTXku6ciG5UANJHX3t+L0x3I87T9jet+0Fhlrbo+c6VyXwmH6qAFvQ3l23FVSrFAsXzdc7JXzyXi/KDX3LU3Xvf4zEfIsrFrC0toBv6KxUoQVrqj0TPV0+6k7NHzoqg5d+jErfSj4Ypo/isri0cRazJiN8J52ZnWW47FJ8T9m08fCCa2Ab55cuTbLZyYUXxWpzrGJyOBRLh0N+v88JGa6/h8bOna7RxtFL+fjZxKSSm19Sdm23D+4fsUYsWLn53UEvLv+0fc5KTbND7ma3jnqvsqiJ+Q3/pBG3mIjtCUTxJKcV1tKOUMID+uqQBhn9fOiN92DOYfeBGEcoPTYXdVt6jTuj5xUWDcu+Yk4E59Let+Wmo9L8xSN9SoHksZjvODzxClTUaLjj/upR4HCz+aAdo9VnGmWXj2EZ/FG/Nli/g7RqD8q/Czvi4mtybSPez1fvxem8I4ID+LkmVi2U8cke6a1oIfdY3f2AN/S03vBCTmof5dI4/OTJFTvz72SsgGPgtL9XbqNmg8W368r4eVOeCUuivnYKgwIlzVig+1qJtp8mNJOIb9PeseKnXik4K0rN7qVlOe2LBGejvGdMd+l3dmZiPh66Z/eYEUIP+dnM4SW3an470f5RGbJRY8oEp9FeInl/sRz3WB0isrClFLaAf+tt6lI0v1T0c6Seq5V2feJqCA9BfBfbO+nQBvP/sbTVyafJ2Q/VDrsimOc6H2F/lvm+h14cyUP3QEi/gYVEXivTGxs+PVeVDiATo755LBwxVGe8inT8q6nsCdbXebUjJBsVzlYpdoteQvpW0ke7qjAHIgf56UatOd/fg538sCH46Q6olxqG/bBF/ZiM/RyNd8VS080mWUkIH+mucPjXDVpqI9PT+FHcfiWJwFvrbOS5deocNz8+r8S0qU8xJiF8GmVM8B0+mId0zbKtm/WIz6IP+FmtnTLwXCka62VWgHJpjAA5Dfzss8lSHZ7Bu67Breio+CvH7Wt2swGsb9mejmGyEtusVwAb9rT/2wWrCHeefbnpVKa/AcCIW+kvl196x7I/XB32CqOdaFlj/qmaCPGqi7tH9EUg/9V3t1l7vDBBOy78uDVuF7gcg3anTa3fY50jiC/R3a+mVx2GtUUj36n2r3DYiDAyhvzZppU0DT7BOEZbWE7v4BKhCf71Y57zueLkhneHse66Od3nAEvqrMc2wsCyNz0/2jjfZa9lfgCFa/WCqKvZsPfbnRMr0ZvIVS0CrH2wPbrwm2IrnP/4M3dqZjw0EXF9Uyjlm/egoFzw+cLlZzf4pwQj9/bIUXOYtjeuLotY1dcn6VMIe+uu+M8KQX5aCdOaDAxc36DWtfhYqJoTa5faWH8b+XmflYOmwbiRSob8tn38O8VwrQbqdWHGmqc8LgmH1/WQe+SM/I7/g+qs6f72hI9NTQg76GyVUkPGmpAbzYan25W5NO0Hb335X0fnpkXB9+TuXTofweIbOF7ONbTtvVNxH8dXXbC+QZDOINQefk3JMGqkny0K/7vl9FcXvvUT/8/VjR9AD/VfcT6RZ3LqJ9AeJ8pbKHBZATUzipmFsHfVZpVzS43ZcH08U24uW83sQtPzibi5rGS6L6zMj+xO7MnvdCAFFkf+eX07d0u58nVNIBemfbN+9cJ73Aqfg/AWUK9Gr++H9M1w3z2bYJhC40Xf+GPHKpS73DetH7XJD8UwXGaz776QTC7B+2X1t5ZTINTx/XntmJTJtLxEzf+eHQh34911+Q7Qt0sW55PcymweD13D+u49UbxO/hdfHLjLv1NZ1ofB8QyG312ldtiqPRvHUIeWdZBI8b2blEzt3Ds0ZJeH6N8HKdeCFSxg4vzp+cpSB9oDX9zSk98ltGv86HkkUQX5UHR5WNhyioPef1XEKclpjBSRW/SNn3VINM9CsQvGCkuXsmRL3CDrIV8lFzZlhsgHSGVcYj9X0RQL11fkjC+cO0tFplCLdgNy0T/FkDDgB+RNw3Ox6ujsIvZ+3Tfj2rfkMsGGVH7Jic4wx/0/cH8i2vWWVrRZJCEA+O+qaBj8n4/pWtM7rh5rgTbC5ZpXPg/sHrR614PVhOfCztXtTElg5sMrna4lp4N55G8XTtdtn+UnsJ3ohn/VnblhNCZnj8QcLHry49wbis2ursl98K+avd3cc/XaVILT/dS3srygNx/UnQ+SzhQbHu4Qg5DPdd6Z4wBSffyc2tEZdehGA6uel7ombJm74fEon9ePpkwYnYAv5DBjgHVBywPUVb4LfpUn2VLAO5p8tWUVK/Ddw/vEgd/85/dgZdEE+TXozeX9yCCB/Qm0mRdQ7HcAryKfaWKbK7+24Pix/YNzZyJYI8zuFzOiV6tgYjveHTNFKEa/F1NXPQ9GEBEfSM6stXkjvWHPYLMXMH+hBPhPYD0gcH72Hnt98ZOpx/Xo/8AjyGVvi8nTaBPtTeVuNf3IggxCCfM5yf7vEzf8A6SMJ0qMCeVeIz3B/af1zlKr+NgrpZimKhcxDIYQy5PO5f5DAVdUkpDf2qam6SMUTND5FwyRmHhbi9WeuxTnLW5sL1kI+U9gMGVXqcX+t3mDOcBt9OTgI+dwQNOJ46A1ef8cP9rKaHz5KMEE+mXvGHzCewudvbn2v03XkYsSn2jMZHu9D2H89nmPFu1buID6v27Te1mjG9Xl5Ck+a/9HTBI3PhcqvPZbDmM+xlbQPZPZ7qD/p4uHm+EESn3/+lXt5ktpjR/BBPqWWEnudpvH5dmMzj5C6DoWQhXxKnIjeVCWPz2c9NlaO35QigSnkM+dDD52UKc7/Nu4PE9almaP+m8FlkcI7ph54fTRV+M4WXwOjkE9jXbrrxs/+r39nG3ux0SUYvIF8lt6TUBZTwvvHm4p0bvOGYJAM+WyjU6KGTODzv8kmwUe8bnA/p6QQWitJC2tNsX/yk3zZ7PYZQBfyKWh8zXFqB+4f2Z2Sm/rElQwqIJ9yNXlnFDpw/J+OeC3yI1+af2TLNjtL3wp8/tcN1aFXDIgD8PuTRQMpH0ZVsb/x2uMBkr+DieOQz3fyZUF8jzF/DRndwxGhsuA05HO9eqjZn4+4P0jXKiNvOFYIGCCflPc2IwGa/kh3a4x9PsNRCfZCPp+4LV6qtcHjk1+6bhP7NR5sgXxKKK/7mtSB43+VxVJ+UvLAEuRz37fKG+nSOP8kkcwdY0jOqP91Lc5R4kclHl/SjknfzlFNoAL5VFxKlSFz4Pxo2tVbUHI+AQhBPhV7XNzErmI+NxsFcb1o8kZ8/mEzdS+Rx7q9VH7s4Dt7QOv/OnszifPPYn8tf50Re9rrDK5CPl3rlvm6a0yRPld5zkU1NA7Qzh+CIyd2Bohi/r64DydvKXQmCMin5tSGwEV9/P5ld9Ki91wo0QT5FA1frjdzxvszaeWRSaVgLMiEfMb0m7BezA1C+vOJ7eny15JW+XxYQSxWBv3c8BHXP6e6A95frkgEMpBPT988mxx9zOe4OE9ViT0FtEI+Rdtdana/wvnl/VvGJ8IM9wheyKf1evtab0/cP+qy2+HUOJMOpmH+1O49M9XsiePD75h9fmMbRQDI57G+0ANy67C/jBZ+ZWVZAUAJ8nk644dddQR+/k6R7cP6RgWADvLJx7wj1TQE97f0uKyOC5vUgD2Qz1O1mRIDL7F/ivXibaaBQYAR8sl98+yEnAfOb/O23zT+ac2jPZ/a5924k5MH8z16bcL7eJs3Qbtf0L+8xpMqpANouqjCBSZNJy2gAfl0ObBO4tkjEaQ/5b+bG+gTjPqL9dk+VKZjWki3WujlVX/vR+yFfBbIq89qi+P+llDIkLnvVAat/qZOeygYzyzpI33P0d0vBQWciYuQzweMPd5cl3B/da3hJOMduVyUP4NGT6ccKcN8Di/siz273xN0QD4tnEhHR2Xw+lINXDrxLO0e0Qj5vFjZ6Oe/DudHL5d9pfzD50E95DPvzNq0eTW8v+m75rIk18P5kqokwrXpRjTcNZGedNRCRelrKDgL+Vw3MXEwoh7P70ibWpaxWTyRC/k0Ufl+Z58Gnp/uSsWKo9P3CW7IZ2/L7PymNpw/qn3l9kbP2RM/IJ8xpTuu/LLC/f94/r3NExfTCXnIZ1ZHX+UiawLSP03eN9xxIZiA92/kpyObVBaG8furX64c7yMV0PZfciGfskXsOM5/WutPx75YVwn4IZ86L00FP3ng/l6+xkS2xpdwlD/Xjr6wTWTG+Tvk85YsEqkULMP8eePBIR3/7CtIV7dP5Z4Y9wZdkE+OV/KbC+JNEF9Br6y7F2S0CS3Ip6usdXGlPa7vlJfmDv20jEf1p9bIh7TRj4YovvB6/sXHyhSCC/KZ4pIiO7qI40c3JLif5C1E9WeqOBfT9gcOKN4ruifgeaEUsIZ87g8v0uW8guvTVi7LLTFfMwDt/DshbUAeO4z5m+Cc9eMuiCVqIZ9inBUZ+1TOoedvYf21xm7RB6RDPu0GKVbTfS4oPrX/YrPuzjiQAfnkyxdkMBvH+38XKS0qVjh+9XljOcTP72NfFElG6PmPZsZUbwqGAxPIZ5rK5pDhTny/tSj/blMt2RM+P5086MGuMEjg9et9vl/EVTucVr+Te4tCwHdnzB+QZ4iqV4oFi5BPj1gj0UlTXH9mMm2LMxKOIaQhn9UsvNJd3ZeRLu6a1yNkdZe2f5HLX3hp57yVQON/fGu+ZyTkIY0fcuxz34ehCzj/lg1+/X3Lqxbshnw61o1t6osNRPFqzCOz98Xvofx57PHv6gtOt5HuncDD+rUd58+n+33F7231Rvr5iWqLa30+BO38XuF8sOn0Rnx+XWl5cup6wW1afU0lbdp3/vk/BkjPXEfS+d4UR9D6V3Vrr+pmR+L+39gzC/Yv+3QA3J+oui3bfxi5WSBdtOKQiHJRGHEM8ln/U46+hcUM6cNOkroLv83AGcins2Tf+Yk3pkivLmVJn77pie7PNiu0knLu4fNJfc/WX1dTPGF+olDNxc7N6i7j+akkKdTWLFLAZ8gns9te/3sB+PvpnflZFUqJhf1FCnn00i7nh8+UkT5QrvRhazS8b6fEgdDUrFT7zbh/4Dv9WmtlRyLQgnx+e3D8fvxDvL/tTGUwzDwfScD7EXKV2eau3PV4/KHD04Ujdx8Q+yCftjVjlv/U4v6XYr3V1OsFH7AM+XzQM6g5XOOI4stXJHMPl0QSspBPg+A/N6a+4/zE0ZD6oYM7m5CAfKolBbrGUz1QvPjhJ1JRmYVgEfJp8lYzXzUZ91fXquhJGn0pB7yQT8X8Vrecedx/MNdatu51iAW081G7KU+G2FwC0tmS1tzsGkD5merVta3+9eIPaZp+fGljBOPlI8QryKe3sihoGsL9dbVbGkxVdU6o/kxm6fbpkMF8v8z7krTsHIfqTzvZhkFBYbw+WN3e+Ow0ikb500u+q7MqBfcfw+fZP9Fvjwe0/vaWYk4fSjLuj8xfs0+5Wq1NaEA+NfZT3tuux+8/tqzpwdOeATZCPkWLdDT9Xt7Bz6/xeKa0NZkIgnya3b9unzSB7++tFYLfSUf4gwnIJ5eSCXuMnCuK79xlbnJw7DZIhXxa7k2qcsq4jPQL2U8AdzvsJ28sBlv830X+fo37mw94TcRyjc4TKpDPsgOXZbQe4fU/eec+aPFPAcWQT3ff6b0OvFfw+ov8fnj5SAk6H113WYrdzoH7h9b5KrdfLdwH3yGfPl9YzMxS8O9bPtAfrcn8lIby5+73WtJDXLh/3tT0eM+T5GRa/5vsIDt+wzUnC+kl++z26alkID77giPO6T/F9xuk0545PvZUwAP5dHHMXNlzJRnpDNcXG+wGvMFGyGfyxjM5UlXx2D/biS+zlFxAD/PnBNMGkaAreH2OTvIGbB85QtD6+8a+X6t+hOD+O12MpWtZkiQ4BfnM73HyINlrI509jE+H9/ANAvYXqOIfx/pmtmP/O5M606ZcUmjrn9qkl8csIIfvp/iENz+f3xdKSEI+BwWrUyhU/PsV7nC2h4PyKYQq5PNJXhbPcgy+H/bYGvBpqdkJwN9XUF1LXt/KDsD3bwIbBz/d+J5A+EA+TaXv6MTnYP7e9nNkLv13nqD1P/NZ1dO1HXD/fU/ckGfmuWgiD/LJcbrNhkkT/z7g+MnjlEMdmqufRYOA+WTDgL4FHt9c18yJjVfcCGXIp56Fd89XW+yvSudApb10Mu3+nhz3zybxVGv8/g0N/v2cGaXEbsinCY+PEdGB5/eQShI5tcqOoJ2PKu8eFJ3gx/z6kMa3LAymEyTIZ2ryzy6Z5CSkmyc6Na+kJaP8uatV4XTgDuz/MGe7K/VLHNrf1Vhax21+3EP6i2dnvVhcagAf5JPrgu65ilH8/biTVHZpf7yD+p/n1TmTmf/v/q/Yruxs1ONSWn+A+pHhYM12P9x/7Re+yb+zKQbQ8qeZJ/Ft0Q+v//Qd215pMp8CtP3dLutyZE1OCB7fbM+2Nrt0lD/1PMq111zH9xc5h/34mVJjaP5SLbRqfF4b4v0hiC/mk1WIA+ovhTu/0DmrY4/0AyVHFMLfxxNGkM+I80+yni3i+6GPJM86+eJoAPvTVNN2Ua4VRpw/Px8UGN/GlUwUQz7DGsw4zT5h/xinfV3ConzR75PG+dz9ZWRw/21HuaGywPdg4iHk0zT211XbIzh/j43xzScKwXoryA/wvZWuNdfH87eczMfw3DuSUId8ivg1sMc34Pm5YLBn6p+CNNgfSCcnjqY83pCP/dcPuzKi/DSc4IF8hjL53pFiyEO6glqpxpBbKaD9vqz/12TncWO8fuSLD9mYEqnEMcjniliTe5Ir5vOYYEL4m5t2iM+ueueX60Pw+diAs7XW+ZgGQesv/RApCh28hPOPptP8wtj2OrAL8rllSrP6qx/Orw+9y5uS9cMJZsjnop204tWyGuRvQ+uxgrzcDLAe8rnVqetXnAlen09fWLAoZpURSpA/pZB/41/34fu5uf8yUp1hM80fqvGsA+e5Upwf7qkYy8u+aaTlB6rBp4h1clsw/35ZgdJSQ3XEO8gHQ8PQ+Ux3vL+PVej9/LWunPgA5/+ik+u/r3nx/W6A8y47D51a4hSc3+wWr/qw8mKkv/oSJAM0G9H+V/mgTPusUDXSO6fzqcxHGwkxOD+6VlFlPqalSE+KnZKYZHpKQH/I4Veapi2ZCpGeYiF5QiMiEvwPn4slaA==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAygEAAAAAAAA=eF7tk90rQ3EYx38YtnlJJqOGcTWutBJnSivUyK24cCEX3lIWV7tyLoQLpShJkrghFBdkFOfGHZratKa85MLyuo15G03O95Hk9xfofG8+53n7nec8v+cw9qOZuKhTfojP3ZRZnmaR2ZkFBoLCF0RHgmyL3Ynwd2ksdMQ3f8m4pYe/IYjzxXOQLciUXCEB/ldQRflDt7DHNdxz2XUy/JV4r/SkQ9/FHtQNJ8K2qaj/HfgPX52F3rauvPVRJ+NI9EaQZ1+VKTkCyKu7BE1+xMtdVD8CO3AorC7XFHsW7wXGU88x8g3PYHMEfAyD/gfQGoO+Xz5grxxRP5fcfpnaA7/xFFx6AjfonFm6136ajy0E2/4Omtkm46n1Qo6LpW94v5q+y0D1835wMEeul6YLcM7EFfLOfNx+TbsZ2B9fOu7FdIf8MhXqmzRgbSYYAK29atjSNXe+1n0t4hXYL3GO9rE9FkxLQrwxFZxKoHn4hTHv5G7JVZQ/3zuPoD31Hbj7ThBfo33ao73Nx//ArLR3Uthp09VXWzq26V7cf/q90ZprCvQ6zMFlRH0L7Zm4gfyibPgHcsG6FLDqHHHjMXcOihQpUqRI0X/RJzq2qKA=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA3wQAAAAAAAA=eF5tVn1MU1cUf/JZquN7BQXhzZGtW+LSMLb5akZesg9wIUs1IzMZLpVsyBzTzi0sEpfdKKLZzJYMg2zR2UyzKGpiHaAPNvZmqJkgiLNgA0EqItTyVbEwviaL93dwe1nvP7+ec88973fPPfd3Kwj/DnvogsJ/hKc1cFwba+a4NRnovyc9BLYzgttseyT8JVFmSrGImiE2JsH/9j3kZ7eAwkmOaseEBP8MMIzi94/CrooKmlcYXgb/K/iuOpUA3qZOrDsQCTs3jPj/Bv+1GeUZ95aS9PpvFSHIYO45xNkcHNWdfsTlDQGNXsyv7aD138D2X5McZ9aZOk+NS0KwsaMH8al/Aa1zwMAk0HsfKC8B7+m/YZ/tIj5DQfkKuk74xT7g6SngBcrzI51rOdUndwK2bR6YKTQIwUbRbT7PXprF93W0r1Raf8IL3LeSr1d/WIU81T7EebqD8jU6E9E/3fE4F+MY4teEYX1BFPANA9APlD/RwVaHg9ZXbtNjPhv9xY5RPxaHAGOXYn5jNPBwBNXDK1W6v3e+4FsIXt+xTknf193u+uIm5uuon65Q3z6B+yDI1HfqpJKbkP+a+YMmOhfX//iO6DPXrUpKQB06RKwvpD5jFxD/7HL4K9KAeY8BX72FebFHk9ceOq7hH+iP5/uzBRYQdxD9Zl0dx/1sA85BMMxjfpDu0xodeH2MdVYr9skC2Kd6eAnwI8R5NsVhXT3VZcuiDviRt5X8NMTGSI1tfT+U25Zk1ENI8mEf797E+tjr3Fafwnmpun7yXwQ/4xRHOWcE696jOpUTjzo9+O6h7+4i/4ouxFfNSBbT079X2ma05zQ8r7UPYf/2D8NRnxrcY9aOfarHQjg/0+PUp4MB5C++TH3QAtwNHWQ5k3ydXaY++pPut9chbT7q+NydQnXIv0N6tVvxbxvMyjD0aXgxt/Y+sPER2PMDODcn9W34IOqYjjp5Rkh32FeIb0P/MX0HbMtVzFegj605pE9e1F1oGFXcXRnVvvUDFO8i/euTCt+ptNZ8pmrrt6NV+a/Jpkdhv+wGZs8AB8aANdPACPKPUT3PkW5lkX46aT6NdCxjGTCP9EmkPKY/gM2og2C7AYye0vASdE6tnUg65usFfgp+bDv1YTTptP0K/M3E49Is7BLSnTmqtwH9wfYmw1+APlKHEmFvfYC4XDq3TNKFr+9reRVd19az3MP5FG+E3qm9AW5bi+n9VGsRX016a6M6v07834zF9yugg6JDBE/vco7yJOZVA/0/sLTwPHIbveuelsU6ID8No1N7/11Xcc/FMrzv7Cjpyjm6lwV3UbfV08jTQjot/Ir8u6Bfwouk90fonWiE3nUcpPl0oLwH/OTN9G6pPdB7fb+mfnLbrMZWU1EHFkP9c8IrXTxf//xktgfntRc6KJ+m98VC/2va6f9DLfXhL3ROZcT3LPXtl3SuTUID53PptnJoU/55d5mL3qNxhWO/T3vuY85H9U1sqjty8kmH8vA9CSkNM6cfzygKv+OXYjbE/xyixIBXygPE6+4C99F78Bbd28uos7yS3mMb9id0x5iz1ucfr/yJdKlkQiooze8tXKpIzzXWbHOM4vwFsRlov/GIF963UHNp+HcZcQUreF62n3S5lu7RAepLdwqwyoC4duoDF+m/2Cr9AzHDPW0=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAASgIAAAAAAAA=eF691b1PU1EYx/EmFmIY+QNEy8soymU/iUK6QWF2E6qCLILOAmVBBQeXqxEHYxSQiTgYNw0DSQcStIKaKMEI2EIceClFCsf099zhZ56cayR0aXJv8u0nz3lpJFL67EwMPvL912a+9dtD3581K7G3nufNm9PxrO/7i2br4M/nq+m8VGGfL5uBjVPJZPKHKc/F7fs182R4NJ1O50yp9gvfkUhe6VYdUfc9uqvonkF3U+mWhex+QHcN3Rh1O5TumNItoJtB9yd5ZQ6X0b2NbhTdx47uAnWr0d0mb3/I7h66i+hm0a1Bd0eZb9Qxh310P6GbI690k+gOhtwPRaVbi24e3SvopqireaX7Gd11dOvQLZA3FXI/FGm+7N1VvNp8S+d3POg/r2xr9Lx3Rvbz1VrfPp0LzmH0Vcb2MsF5HH66ZXtfgvN+7uyQ/V4K9mXfswf2/fdgvZt6pu3zlWDd299kGzwvG8wzMRO3zzf+Wq88OV8oTjnXJ+BcdTg3j9l5jZxRxRlzODsczjJy8rprzl04u+CUe6ccTrkn7pCznpy9irOfnLIvWxVngZwTcBbI+fEfnXK/3SDnBTjlHk2QswVOvv9czm44FxTnXThraN1dzgGHk+e5R85JOH/DeR1OuQ9Pwin3zIjilPtX9qfcaxfJ2Ub7U1v3fXK+hLMY0nmPnOfhzCtO2Z8px3lnZ/E/nTJP+V9ogFPu8VvkbHY4tXmyc4qcPeSsIOd9xSn/YzdDztN13sUpc5T5ydxG4ZDfl/nI78n+kv4hoOUupA==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAWQAAAAAAAAA=eF6bMhMEdtrPohI9H0pPJ1I9sfRcKD1qLoQeNRdCDzVzCakjlZ4NpedA6elo/BmDhA+jYe5GD190+YHij7qTuvxRd1KXP+pO6vJH3UldPoyeSWUaAOgVEfo=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAzxQAAAAAAAA=eF51mnlYT2nYxytjb6wxyJKlpBSSbA+nSbI1lZCkBRWi0jbZq0mSRItKG6VNNZRGkno4JSUVSigkQ9bsJDGl13S+z3mv97zX+Odzjbm6nL7P53ff93OfX1vHv38e8ndyne7nOlXwt8CGLR0fr7vbUf1Bo6Kjo+/ya1cHDLL5UMJbg3kaRUMXVcQRhbpgralTa3gLuZfG3X8v5FeD8sOTx6a37aYL83dGRUdf5Q+YtSnYfDjLB4CXRrSfiJfbRxobTX/8//O8z4q7P/4+hY8ETQLlBsu0+hGZf/98/ZP+C1217E7K9E6iI7teHzi9PZ8oCT/PlS/v/DnuBehyKmfH9fwjREn49zn8u5wLOGfICBuLs0VkpvD8nLXw3JwbOD+6Jqc/KSH7hN+fixR+by4K1PE+2LasRyWxEfLjdITcuMXgQXOH9N6jbpN25HsPudaByho3o+wPOVMO+VoiVwvQpGLqpem6m+hg5Ivn4y3BvRM2GRdGxVEV5OuMXDeDnx81Rf3aNZz2Qb5vhFz4l6Cv+o4e//gc68zXp095J9dE8J1UGnCe3PBTs55pl0s0kO9PwrmI1DaIVXoZe4L2Qr6GyNUI1Jlnb1ycdppqIt9NyNUFlFs18L7unnzii3xDkGs4OEI+8dR40yhqjnxZrkvAMSXlTXJ7a0kz8r2JXKtBl/neBp6y+4ke8mXespyHtvZ2NQuLpr2QrxlyXQ5Wjhse9co4nqohX1fk6gSGaFzTKgyxJBbIVwPeTgD/qlN86jTiuOCvUrDAPBuBm9zJnFcmfV17HyVzkW935NoH9Fno/1bn1xP0Z0m+pqDMnmtzuswIIiORrw1yXQuqD1d5/cXiEtmNfP2QaxCYd+/zpKDKY8QU+c5HrvpgjOzoiY/bb5JW5Mu8ZXUiVOvvkku97ehi5LsBudqB1V+HrI6dtpX0Qb6rkOtK8HFG6OjcDYlEB/nuQK7bQM/EnFVLXmWRtchXHbkyvs/wrR7XtrazHvj0rBByVUsWfJ5yhgxzXNvSY+ZFMgb5vkVdaAFHH/pnolWfi7Qf8jWW5FtVcOjTsYB1ZCjyXYFc8fnjxuhr9+eCrpFtyDdIkm9qt2lrqMZZwvz9FbmynD/2f3k3oqaGvJP4ewP8lrddt7HdVawPq5Er4xy9A5cyNh+j/ST5moMxy26Pbzl8kv6GfMOQ6yHQgFhGq+imUUPkq4ZclcAZwUeOKB7IFeptN3+B/WMFxgbQN6qJVaGXE0j7YyHfAuRaBboVRIbPaywU82V1YTnYpDpnVlBDDh2FfFmu68AI/w36a0yLyE7k6yvJd9TEz/pdHcLIIkm+uqDbjbZCx8jb5CvyvS3pb15XP+wMneZDdJEvq7vmoJKck8NLheOkv6S/sXzvnNMceEPlCBmFfB2Q63pw/7NYVfVvx4kV8p2BXDXBpnlLHPtNiRN8jbvcmWvhrJNCnzt3ms5rcM2pkLlE9OBvT9SF/qCuWh7nHZ9IeyLfhcjVBHzB7ZsWfSGAqiNfZ+TK+Dw4eZaLbYnob6Ak3+T5g1N7lZwlJsh3NnLVA2fYuM2rs7tF2pBvjaQ+KL3ufeNejCedh3ytJPPDxj62mVlj00V/zST5Kn4sKy26fJzOQr47kSurE61d8zIMKsKpIvLF55pvBrcozA/1lz8m1AftK51UqhV81j2TQ++k9ytbr7Wf2CJfbeQ6Gfx5QLuP3unLVAH5srpgDu7qHRHZ+oSnqpL+xrjAy6GvlWW+mO8h5MpyftzlUswCpXRihnxNJPNDnnUvvYrSGvJR4m8VeL3HzbgCzkvsbysl80O/vVvbTpolkr7Il/U11DFeq37RoleGUeRX5LsLufqAs86O/1SdfJg8Ej7ffB5ypeCbno/tX3qfEOru/kSBKrsE/h1I9B8NbPkwJpcsRb7KyHUMWE/OTHMPTRPnB1vkagbGeM6qd65OImOQr5skX2ebHtsPJV8hHsg3VJLvIl4mStnsHFmKfI2Q60Lw1rAHX98b3SJywgOL/a0e9DNYFfgoxIXMQL7LkCtj6oT7oa+OB9CeyNcEuZqCOnubfLj2LDoO+a5FrhtAf4NMVbv1UVQV/r5Hrt9AnZ9mXu9eGi/UW+8iIVeL7E7qLskihSFfZ7ovW08WIN+JyHUEGOp9v+K5dRn9el7Il9UFVieskh/blR+8KPrL8nUCN5oeXrRTvoBsRb5sLmP1oWTbhNr+s9PICuS7DLkagk972144eLpGeO4f+dYiVzYHH+wYXyirsP4//Y1zLWpwOJFA5CX5LgNnpMn46bu6EoJ8XSTzQy/FL42VZrFUWTL/toIH1HffWnlQmH/X3C8UnnN3nkDvbFLh072tYFUWGSWZf7+ivw3Y0jp8R88EKgd/WV1gc4RMGHfJ895MoibJl9XfGY35OuMVb5AtyHcvcmW0mJI/P1H9nDg/LJD465+Tf9Zf+S7pinwfINeHoOHJJY237/wu9rflkv42puPMFw3d63QE8l2DXBkPywa5KWyqpprI1x25eoB3bYfVZRiU02bUhyfItRb0sr7ZJqdzU/C3WehvMnnweVwm7TG2JWKkVxU1Qr7O7F4BPjD0uZ+37y5l9zeWqzU4xP1qaUnfajoc+foiV0cwaGl/h6Nva6m0vzFe3fze5cytO9QS+Voi1+VgwMKnxksaMmliYHBlZWU9P7znztbArDJ+BDhye3JpSbgv6UB9vi+pH3OXaeifPOlBMjxr7devv8M3ZOb9eM5ivh7UdLsY6tweSFl9WYVzMQN3GSk6K70O+DFCXvve0XGDD9fY8OOjUyCy5NmTZ812h8gQnB+7F4r3w4agWuOv4aRLpGnnvxflk/Pj70/zh8GocfH/LN9/ig7G+W7EubI6devVdP32sY70TOf5pPPenecSwe8AFypvf30v6QgJwudLH3ONMai34HqU9y/RRFv4ee5WpxcR3Bfw2jyH71dUY4TPW0up4EVjgcC+uXRr2JDRtnYx5HFE5/Nz64Tn5raAIcevdBvdPYGawh8deKMKlurvKNpr50l0hPw4GyE3bh84+ZVpvkV7ouiXHbxibP3at2j2h3iSIpwfVyicG1cF9nDvunO6ciL5Bf6xexfbI7gka+fk/3KawB9OVvCGUwCH9N82Pv+fY1QTfurBy8WgifysavlzXkRD+Hxzc84JXk4C045EBvnqpJGj8HMovBwGJrz3zeCvaAt5/qgP9RI/Axcnvd35aCc5+R9+/tEwKMyBjyAz4ae5xM+bybYvLldEUk34GQ0vj4CT6urjdm0KJ2y+Y/Mzm/Oe5X9/cXvHHtIqnC8fDi8PgvW5S7dOep9BJkj2G47g5EFdthZZ+5G98PM3eGkETuUT3lle+IP4wk/mpSG731gsHDTB4gTuh+mcgvBznCzo6rX1Yxj/p+AnSRdy1LUUWBhMvwd4epqqHiZ/w89N8NIN9IyabdLlXShhfirCy9FgzMC1YSqfs1h+3DZ4GQSGxG6wnxLrSlvQv7Xh5VzwSYW+fenHKMr8vA4va0BfYx2Z5KwUOkhyf13N5v97Y68HKOeKfv4CLxXB2KHGvWqaish0+Cl6CRZ+eKZloPErVYefI+HlONB+qNf8iwoF5Bj8ZF4yT8+FnVRJqw+kshI/WR8bZuTwfXWbKf0vPz9EXe+96u9EagA/beHlGjDAPjJHc6wXHSepnyHghGv5V97PPUoHSOonu3/kDbResPjTMfIKfu6Bl75g6jSHew9/9fh/+7dNoIO6sk9D+A6SAD+d4eV6cFPsl8qYnCMkDH5aw0sL0L26dtCl5iNkEvxsQ92Ug58Zfhccv7liv1SWJ3j5PkPg21R61zOppGRuFmmAn07w0gO0bToV/Un9x/0DfjIvx4FGrcn+ZkmhdAz89IeX+8GE4XO+fO6XQkajfq6Bl7j/cn/77+/wV42ix+BnObxknr7fPv7u7ZBFZLDET9QJrjjmbZXbw/MkGX4yL9F/uXGlH4/KlhUTDfi5SFI/j8dmzc43TSXMzzHwUhncen5p/25Pc0mcpL8zT4ubDE+aP9kj7g+Yl2yOLXv+S/gBuTUkDX4yL++Diq+za51yUsksyX6Bzbm7flk5+tXNYKryH34aqG95+u6ZD/mv/a/57MQbHa5+5C383Asv/cBeXlfdVw1OIWoSPxnzzrhbBf7mRzfCz6XwkoAvy+u7dXsTTT3gpxG8ZH0+wOnsgLF3kogW/HwGP5mnE2+uTjwQnCb4+alauIfrFwt+hhXSfYtKgp80nSAV8NMSXrI+v3GFz3er348SF/g5El5OAR/bD8v/XJ1IR8BPT3jpC84bsNX58LJM0ob6OQte6oH3bKOyP3kn0Dj4WSnxszywj2yLQTibrzj0LXFPVZs494Gvdx6rb//b18FnleGFZudLiTr8NICXC8FhT3yOa3+JIGrwUwleMk8rPh42Xjj4nNjfpX7GvZ43RPFuMGX7WbYfYNTT9FoTsG+N2N+Znw/A45Zdcy0uHKHsfsD24owb1RfLFfwVRtXhZ6Rk/kw+kfV8du/TVPr+R+zzx/6SqavZQ1/Dz0BJ/YzpObfj9dmzYv1kfZ3Vz83lfrNePD1A9sFPVjeXs/nzUu/NxlZJ1BF+EtbXQRPTXtVefTaS1fDzO7wcgfo5xyddZb1TnOBjiOCnzNGLAgdepIudNrW6Po8m9+DnRnjpDO7SVnSurU2h8+CnPLwcAH5ZMcdsbm02VZT46QNGfdj3KKrVh3ZH/VwCL9medM0L9/rXS0/RWPhZCi+Zp6Xlnu9rYo+w/iX6if7FkZALn6qs81h9E/0cDFK37KL0vGIyGX7qS+qnubWi6qTTsUTa35mf879G3AyquSj2d9bX4T9/OTekz7DuIeL7L7YXZHuW5jfbLjjPXEsz4edDeMn6fPf9+SOb76eI8ye7v64Ai4vfWHBqR+lI+Im+xAeA3Y9kDO2neV6cP9n+i82fITkZ3zymzifN8JPNnczTWrf6Q99+Pk20JO8nPEFbcwvLM4bJdC38VIOXmuDwo5fTA2RCCYGfg+FlX9CpYmiBb2YymS7xsxv8vOqwcN3TlBShfhpdErxUOSWwPJMO65W38XFHDHkBP3fASy9w+imj6ravB8gM+CkHL9keeaS91iEd1Vg6EX4ehJeh4LFrS4+e+5REBuX/3/3RKnb/tuFbsvslin5K6+e1uspcu6JIsb9bSurngzln9Vo4Kvo5AF4OApdfbrtZlFBGJsLP3yR+9rvp9DT0n0TRTxXJ/Omh1vPKuyHnSAL8HCypnzLjKhKjH4TQdkn9ZH4OLkj1K2jzp6nwsxZe3gFNW+0qFRalUD1Jf2f1U/vv9nNveq0joyV+HgC1PWb9se5wDO0j8ZNRfq2sa95VN1Z/eBd4ifsFP256pUq+apD4/sxNsp+JbWzxSjMOogvgJ+oePxQc0XS/ONLxGEmDn5vgJeNq5eWjmrSTiT78HAwvGTUCB7vd3Z4l+FiXLniaECb89ww/8vOAIP1mqxPi/OkimT+n7DmfcEUhnlrDT7b3wXtUrqluUelbzRzWf7hgdi9i/Km2Xud7CBkOP9ncuQ4MuHxucsepeHpUcj9izPXo8/inF3/Rn+En3kuKdVQrc7fjgeTzJAZ+Dpf0dwVVp+G04BJRhZ+G8JLNofUOHiO1FJOJJvzUgpcTQb9qx9Bvb8X6zOP+JTIhpTk/diih3+BnrWT+TFxoaTp96x7C/Lwt8dObjjJc0CWFEEn9ZPd3hdhBbw1XHBfr5x54iTmfH/dsglNZSAph78fZXptRpfveoffS1tL78BN9kXdnfCm/1rU+S5w/2X5JvL8v3bwtcHQ6VYCfwvvZCP41uDCoe8+dRodxfzrPW8JLO3BdL5OOgEn7iA787Acv5cEy/TcbPdqPCF6mlglUPC+QyyWnvVVVDsRsYM8v1s/fwfbNsS6yLhnEBH6y9xZ4P8o1jDdwfNlO2X6OOwUv40B5Fblm58ZsIg8/sVcT98Sl65OMx4adFO9HuDdwt8AOGvphRXw661/cekn9nJXr+lfl50wSCz9Hw0vUN+7O0FtTi6zLRT9NJPXz5OuEFqPmYDIBfk6Al2PZnqnt+PjijrNsPyDWTdzDeJ/HbQkR+wntkNRP5qeuckxT6qp5JAl+4vcSSQO7FMm+3inuP03hJfNUxj2ncrddhrhfYveiMObnqG1Tv2hHU/Z+wEji52yTFRZ2UzJoHfzEfobHPZh3HN9Nzt97Dzsf3gBeYs/MH3231dZx9gn6E/yshJd3QZ13D85Grk6kgfBTD16ye1LtnaY9PZccp7/BTx14qQJWyS4PzWnE90ESUD8PpQq8FUc2mBaH2vsH0Lvwk/V1T/Cwbn/FjQbp7P09h/fK3Fiwj2mua1sYT1XhZzy8xPzONZakT69+v5t2k9TPlaCJ5+R5Yydniv29VrL/tKncXzYnMV2snxaS+tkyzaZfzeYU1n85Jcl+abmV1tf866Xi/X0pvGR11Dxc7dyV4kCxv0+Fl2pgQ1jSqOCrPEmR3I9GgW+nrLM4HJVIWP1k369glJldyVd8XirWz5vwktXR067Xaz66nhLv7/j8iO//zP1l+/h6JlLW3/+Q1E/dLUmFoT5/UPb9Afa9F7ZfUrjQ9/2nBakU+23eEV7ifPlR9TbZxfHHyUj4aQUv0d94FeXnH6aqp1M9+PkcXnZHf69syVzZ4h/K9jvi9ztUwGcNbks3KkVRM/iJez+HOZYL09g08eHFcMFHkyyBU3MEaqYQl5zy+y8t4ukj+BkML33AednLrp6xPCl+v2kovFQAf7uSPdcsKFbs79nwMgaM1wq7v8iEJ/3hp5WkfuY+V2q08vtTvL/Xwctq8LRZt5R69920N/zEXCVycmqE0aCfrWgS/BwDL5mn99JG7AhVuUrGwU9jyf3dIMLCv0k9lqrCTzl4OQS8WNXgvy8hi5z4Dz/DqmIbbkUWUVYfb0jqo8Ms86LwkTVUCX75watAsGBu/zi5R1X0NvyxZ3UN/MipW6rVXaUR8GMJvFgJespp+xi/LaJ/4fwv4twPgE/sKzPWbC+jD3G+R3GuvuycVXLbdTZU0ek4vzqcWybosbUyQsuwisbgfBpxLmw/neMc6KjZr5qeQv4zkLsaeJp2bVFyjyf/A6r1p74=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF5LSwOCRUUOaVA6HQedioNOI5FOR+MTMhddPbHmotPkmkuIJjUcSHUHIfMJyeMyn5A+XOZQ6l5C5hJrDyEaXT+tzKeWubBww2VeBgF7GEbBKBgFo2AUjIJhCADE25HiAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAmAAAAAAAAAA=eF7tlUEOgCAMBL/mZyyefZIv1YNcmmyGUiSa6GUCwrApImbXc+yL3SyCq6AFWVybvH58q9ez10uM1iGag/z0XvlpnvJk85K3dR2in/+Uf5S31k35tuQ6VA8/Xp1Lv7/R/e4l5VRt6if/bFLOnzl+pb6jc6rz/pbvvpL+p9RP/llsvR9m56ZcKufm2lmq+83fc3X8Cc7ibJ4=AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAA5g0AAAAAAAA=eF49WHdAk9cWt1qrpSKitNbaKqKo7bNuUw+tT0QUXAiitg4sQ0ABIWwExQRCmIaEsLcJy4GCQuT0uap1b0vlWXfroGqtrQN8rpdz7tfmn48bvnvP7/zuGb+T1INPRy6/pIcu/MkyBdBHZoQFLYNSgoc3YYPLzXibXeW4PNv8orwBYYL5E9yIY+mpr4XZ5vfuW2vg1RvzZ8MOeDnS/OZVLXj22+5y83/T0M78iFclYeJ9j5ZBt9NAQ+eNXoGedN6DUrSlg3tGwimjfIpF/wLIoPdmaOH1RfMXGWmYbkMH5Ap8NyJNy2if93bktVxhciL742Kgosj8CS3FD+n1/ErYb3YrO6gOA/n/0biV7H5WCybz0qNKiTtorSljP++fV2AW8XA2F1aR//ICfOdTM7DoxeDM9oOhhva1ZMFvZngp/8oAcvdNaiFE0/t3IiBnpPr10S0qeIdweVcKvK7LZO50vtIg4Y2WxU+xaDOeUyG5ZxGbB5vNj7YeNXCC1gWxeP+U+ROihCpaH/UDZzPM7R0qtGecwbCInjo1riK8U30gi/AFZeNnBO9eEvxF/E/JE+/5lMHIDZnOVmEusILWHkHwhP6fosCGzX8tTixTw4SeFiHLHo8Q+Gynmnq2mQ1f0Il1e4TsHO+TiXVTLpQTz15Z4GB2Q35aB0eIRzc5h8WEk1rsRftnJmEw+SlXQh/CFeqHzGuAEg+Sf3NDgb4e1L0QttD+a/64gdbRKnj73rBPa59GYiv5P0KFHYT36WIo3lExzN9xDZRv+2hBtxkqwW/nAlk42dGGi/UjP1lfDpf1MIN4G5MCywj/tHjBS3MAOJK97V9gJfmB38IQBuKHjD8yEfTEq5Vc+Pk8Ey5QHB1cDRTO8dsLpHPS8TU/Y4HjcXksMt/WKfAnX6wXHAn6zyPfqxroycASBX99AmQPKH7uBwm8Yz+X3eO1Hyxnu/OgN/E3OwYYny4bJxKuXUr4kvFlYgD5+ygALrIfnjiPHi6ZMJv59cM9nEfh+Ct9/X0xnGb82ehJZt41QjrbiQBvcjvFD2XseBIeI3tFS1BJ8fRdrnT/LiYL8rs1TorncBPnyVEFupJd51LB21AF5tD3FcXinldkwUQuGGnI8X9eCRpxPrzFB5nzk/CHxsFHdP6Vamhh/CHgS493qvE84U4qgPeIj4M1eJH8GRcPKo6bcFhCx5duxKkMIFzgdfQx2ZPdvC1i3WWObCHZH1KIP9D+AVnwjOg4mAcVlHdz1PALfZ9ugAV03p4YJDg2vfNgONc3HTZxvcqGDsr3/RlwjnA5Sfn/bQ7eIhoPpeMNOqeoEtmNO5WomMVxBlVsJxtTdr1cbWergB/4PpSCz7RA2XiyM2KTVN8UMjeOowAop32thXCLzj1dgqM35d/NzCmGWvq+30ZcS/f0s0L42VkC1gT8SQ5OZj4qwIrWK8txN+XbqQBMpPcdypHzza0AVzPQfBwVr3Rc3SMcszX280NtNNiFCQiDLLJjDAA/xXHZHyFSPGhdTFxHrEPE+pHC1Ndlf79uKX7wZMy6Cq+TVfgzxd8bNcaRvTs1+OGuoEsP2831hsrIsWxYyPk2D/twnqrhOPMZDrSt7VCdiKPBecDl9t/1eH3I85SvYn1FnpVWYg29N1SJm7gueECTbWJjZsx0nDjMIer5oTRskfKV8U1zNTWNOvxeWlidFA9pJr7/lGqcNC3Sc/X2GgyLqlGX1pfByk8KD/TdZxJ12aUaPiL7iQbgvEEDail8B6jBkvPTiH6Ep5cBOzl/M0BHuHfsRC4HIwzAdat5M/I95GrhZ/KjIx5L+JwA+Iv3eaAvb5DqV5cvTflSP17E/bcKh9D+SIn/LutMaqJPsQ0uEYw5OzGGrullHnhI/bqK82wvch0vTkI5BeBZT/i7f3PffpyLxfRa+lb4jlDsM+B4qZ8f47zbDNz3J1dAH/r+8qp/+jvXpVk6nETl/XAsGGj9mxx+lfq9SqpLXD/XKnAvnb9E+0//byd+v16JluTXwkDU0utHXUU+m/XAUI6PNOB7NkbDE7LbpoQLkj5QS3rgY/IvIw45Tl6roGub0AtAuMqKBZ8NK01LJb3AuEOz8Cc6J/zveFgpY/+fNQLBfuhuxBbiP8xPxOeeAoii815F4yNK8B4L0YfOm2+EfPa7ApdwHkUhbcvuNIAt/TF/GQwjwg/UwBe0//10gXN0EXSSP/OSsTf7GYYXKT0/DkdbWsvUok83JuM1yvv+1XCa+2U1PifcqRtgLv0/R48OXPeT8RuuW3XAeiZCD/F0bH0avMN9fBuc4P0FODhj05vGUB2cePetfjGGBBhF+DqLoDvRYNYriaxfosCV43s5WpAsiK2EZ0/1Vb1ctYJPx2DZAknPXGH9kgI/0jO4ROLTXybqjxaYD7sNwOvkaBEP4/TA9eFFI+ykZ+Ay7EH2BpdBPeEflAtO5NfUrUI3ngqEFooD/VrYSf93rRL5f6gSODzSAmAS+VGeLPpiQwpcIH97bcN8su8QC2qyuyZB1JU/DPgx8by9EFg3BOthCdlri0Wuy5pSOMP1UgfbyN5irYh7ZRIM+lTUm5s2qv9eXqTFlq8dJj8ftx4mx+sdD/fwwQ+43uoxR9JTW1lfxQh94xaMx1pP7D9XpcIQVdCtSbcjJT5XmHpJeuttWjepYC7d55V4ic+lMu6zg3XA8eGoh2TyY4zUJ2X50EREJKjBm+uiI1ynsNivglzy+7kG7hLPu1fhQ6pH9nIMoX01XiKf7ibAQDp3hbnudyUHbk3m/mMZK/qZT7zQC7Uq+J4JTxS4vWdBMwV0XC7k0vfdApD7nBnnXMLbIwRm0jNBD3Uc+P7YhYVOP9FvP9+ArKMW6WGfc+pye6v1eCtM136zfjXW7Im0aq+LRgsuj674t97TsP7zglvceJfA7MWWm5UGHch3Brla2iwSuA54yYIlPTib9V80+LOeCJPqax+TN/F7SgXJlCdX40FJz8ORoh4Hu+NtbkT+cJlwzvKDXXR/M+ME/+Y4O8z9JRg5TMZGwv+4D8lhMPfNVWjBcbJQ1NeiFJBzIowG3uekFHG8PQmiCOdPOcD6rVYJWtY1iTCM8ydQ6LWSjeDOxDqK+7hZApl03tl8oTNiFCDyPwuFrlyPPPc4qSHX+neH2o504Ho/YQa+zzouD7oyD4l4gvVpotATQ9cgzwXRGcB92yFL0qt+svuSXuW+ZDUF0ukLeyl+uzjI7jNfSyCO/DmwHmXkfmEgct3bGwCcd1bJEER4kzYKHdDpiX1Y1+Xhee4HChhL+9rX4znitWeqOE9eiKLe+6ErLad4IeelJhZMrMvUog7tLoNh3E/S4BvWm/nwmPtvGnK8DTHiXXpOqhS6HvVCV20qEjruzVoope/P64DP6yhFvp/2JpjMdleKejnSG3cSfkWu4Ku5GBWSXv6K73sWtnLe+AndGKpFvu4e6VI+rzANlPQ054lzFoYTLwkF0v8jTFxHXubjIwqHiBLk+u2kFffbUI8a4t8/QcytS/R4hPD4JsAA2reuAhV8YXnwguMyCtcTvsoi2MX3OE7076I1yHy1hrKOsOjYCIwrNwuY/wcNUEf+u0cC2z1ZIOzpCuETyoN9ehGHVplijltTKvI9NQfryOFniDFkt7cGzhMfsSXI+9wMaMd5lA6sm5PlyGneahT6464RHCU9z3SXrscrtP94DC5inZSBXJ88fEX8VXqZRkp6/xTr+3Vwhs69miTxqZDxfVVGgonyYnw6uBPOb1MYZ+61ZmC94WYELk+X/eEc4f9sFS4me7e2wCbuN5tYVkxxSsVQ7jtquEnvz0lF7sce8bCNC4I3XiM+kwuB7bbUYTXzXQg3OM78kOcX/wJw5fj2gXquD0vhNvtZhBpeR4nfKSbnIId/SAnOIzurtTifnv1zcDrrpjKhOz6owsa9P1rqr8rBkBej8eyhx960L80o1SslZPD8IYfRBEsdi5NeXL0lcyuDJxZB1vP7xwq+DoTKxkrzCM9HrWngzvVSI+V7kInj4Hgp/tLzXlzjriI48yZ0buzJlbCb8LYbkNvEuWL8LX//9IH2SSLva/T4VcaLjOmBzshz4ABfwZtPJrZZt/7p+1qN73I8RiHn4YB64Dl+WyHy70LmOBPxlir6+yk5zCH/55fj13TO9zrxu0zCDmS9dCpZ3JN7MXJ9npEk5olB1WIuWWrAi/kvj7i15GDYULt7o96okO/XQoM3ggf+YTm+FDzH52fFBceh6fPELZm1a9G25Mc7vZ8rwVeahyrZ0cVgM7z9SZtsKdhUuNlNqy7AGh/nOWUTlYJPhbdpDOEzz0udPB/lotOH/X+oGVssxafcVOQxIvjlEQU42OVFDr5UjWkTbVdEzMvFsdJ80jD37cg03wosY725EbV2DwP7j06CQGleEXo+S/A8OhOsO95PPdNLB6xzzPNLO8epFoez/3oM5ff0oj+Z5xnm80Gh6MtvbUWun0N06CXNNzy/e+hgOhH0ew3yvDZb98+8c+C649HJq9JFf+mlxcaFi/4866YXc7Z5/rHsFlV8b1842hE/KTHid57ucrgizUMmaV6T8fwWh77WDvXPvvSAR9J8xL8zTQkV8aeYZGqQ5rmJzE8+TrR/3PdViQG7Xh/ZbLRoxJPkz7AWqG52HrPmVTEaKZ8fqpHnpu6FIIT4DjG3vZcu/U6ViU70aN6KHN8eVcD9KWMHZrKOqoDR8wbabrEpw3tccBbATFnt6U8iwtBbmt+68cZp+H8J3Re0AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAuQoAAAAAAAA=eF51WHdcVFcWRhiKggUBaaJDr1KGAcd5V4qAESyJighW7LqxoSsaRUR0VapEWbGCa1CwbVCKo3NVVGzBig3RjYpgCShYCEKE7HLfOdef5Lfz3/2dd8/5zve+U978PMr17sjp352V2t145FD1Ur3k/Pk7HeeqSffXPJG0q7Wv67OzXsrTFxUlJuSEVVJFx9mmabbj48VSmlqkZOfp9TernoSbkYQfpewcfTmm7+WYa0IG2Omhjl83Wgb33caOvTqg2pqYgX/VltgFgrmcbID4Mc3NN6d5u9BywFfq/O79RTMPWghnN4b3gfrv8Hy1j069y3MJlYA/ocBvf90OI1IM8dLz8/utG2jH8e65pm2qN82JrgW8vVOfHZm92Isg3kqjs4HxrZb0Ety/dX6BZEWKNjEF/w4Kr23PIoZyvKLdi/4C+Iax/D+rEa8G/BDvvkUHx+d/esL51TyiTNtdaEBUEE9/3j9WLtOwpUmIt2LMixna7nQN4O3j8futfJU92QL24M017dZ7bAjyG3FooUK2oEUwB/+JS2fFx08IIUkQf+qBA1smljlyvG9P3HUN/+xIjsNZteySd6pDkXoZPK+RKPf79LJFrQv+VmR13fdq1AfhJMTTdG/qZvKnDcfb5/W1TXZOpiQO8ErNLkRdf6qgiNd/rtOAfqFBHO+I9pJhHwI9iQn4n5SU5XHpk4ysh/iJYTTO65ItvQL47Jn+ZFwPjYA3Fp5f1b94TktAs1oP/GUOtjZ7cUGD69fPfsoZs+dSmgx49vvb5nYfaExWAd66Ks8pIfPduF4kTB8m9CLc3/0gu8G10Z0Yg//jPik/rp7mTTZC/GPs/fYntwBf7nNF+nOFA8dbuOHxjXW3KoTl8Pwv44Z3K4j8nfO7/ftx8UtrLgqohxJHyYW4SBnHm2C6am74YxuKeBOsg8vlO24K6WDv5RO0VzLZi5bC/cp0VxfdV34U8U5NXzKuXmZINkH8ZFYfgfQG4DNkaiW0CM7rK+6tO5dWzvHeK18WFjrEkOpgf+gx+4P15hccb7+O99PoTVMAj/GpWXcfntHi/AaN0i2d1exD08CeHxW1IFdw4ng7qqfvZW+K9XYhQ6s9pqkX5/d5W9vSylQZvQT4ugPeEjgv7vMo5JRtjrACng9PqNtQ52xAu+H76ql29jB+x/GGvbOsyfP/oofrmStapqeaUuxne+OKc/55WEI3gz0+ZPHSeY8IPQ/3Q24fzdsaGkB7Y33kJDh3iXojYH94W9Z+pG2kNrmMeo1afiC6ypiq4JwgDL64skHN8foWuu26YvSHGvHaNJhHJlyTklMQb1TdDeMRuwbwegt93/eQ0GLH+4NfePjmc7tkdCvYlVPfzKl1kXN+W1X33r0sdqa9wP/HRWcKNxweRhIh/qzjAV5G3f0J8vuY9QcPjhf72Q/wvLv+CcOnA1rV+uAvY5OyeuE5R6KGeEWtrdZW0ea8nm5HvUrSTOlFVgNea7vJn9Y7e1Lsv/1Y/3AlZ7GfTVl15udSLWoI/lembajzdRvG+0PWykKjhQpvrofkcR0/bXqyE17kN7+vVk2m5Dnnd7fywc6QER4cr1as9EmppgVBvA3BTomN910Izotwx+iwgAhTgvye8k0db2gZTCncz/VtUxaWOxLUg55TvnBywjckGeLrqUQ+LwK+4uxeBh+mjeX1JqItU+G5L8xnue8Edn8ey69JwHmyd/sFknX6N3XljNMs/kzIXxPim5nPHBRztFjIehDO7NrMvxPvh/rzjLPufNuV5zcX7mM/2djSMjHpgDlNBPtIi4u1H8fKeH2MZmcXshf86zH/UoL3t8iTy1/nGZP6r/DZ8/5vy/juQ4Mgv2fb6ua6FTjQPoC/NumJ1L/Ni14FPsT4Q0gc5O/3RB6bOcaDoD6jRf+0+Cs+96qKOulBBvH+YP5bOJ+aopneB7zH2P5iwfcLKfNfq94G+UYwPBZ8frscKxhlLfnCl+juigL7ocZyg9DYrgE0Huw6Il+8fq3GjNHa6aQk+8A/2An2nxIRD/kN8J2BM/ajqQyfCQmG/LTY/YAvfC6xStO+ryQ4T0X/niQe8v838yf7C5+d+et8Rn3uYfc1KfL5jvHbhaA+J4A/5PMps1vR7ZBvKOPThiKfdqAP3CdiQP/Y/9ZUD7zy7RoHug75zurQjw6fj5LsT93f32lQoz5nZ9SWFUc48X0vDPT0EvCdZPhtCPbLcIgXBvkdWmQhhB30p7ivvAB9Ip9DKpzc83J6U+ynNczuTCjYZ3biU9Rbo5rPW7bPlKl9IN5w9nx3zmfBpG9mrC3Wpg8BbxSzD6C4T07Jy4tsWG1Ed0G+hxne/lyf5oxPHboc+BHftw3dBHyI+dnyfjAJ/K+A81LGn5Tkgv/MoTGD2jKH8HrvIWQsiu5iS2oA33awY71nM/8hZAjkd4ft20Z83pfsyZ5+utmK93OHtOolrc6BfN++zPC60DKwi/3Kh9e7FvBZ0kmfvhCvH/NnwvlMPDOv3mm/DkE+Qf98v5Gz/mJNsd6Lmb03KYF83HNzdeSj7QjWs/g+BvF9gn7+fDT4jpzGgv1XVn8yzmc+649uvN7ngD5x/owB/l8BPlWt0kL/iD3B75Mezge7jDQOooGQ3wr2vDbF76v57GxCcL87IvLH97+PZYsyctrlvB9MFp/n+uzSic9TbH+tFgZBvLfsvgHF/TAttk+mpY4uvQd4i+B9IZ8p+s+u7t7qyvW5ifHfzvexm9LypO+PSjk/4xkeL74/uLD350Nxf6gYmGa1/24gXQnnONYPZDQb/A9n9ahJsP8WwPtFfYZBvljvEexsT1Gf+ix/Be+fKQxvD86nLrP/b3+E/OcB/zjfZ4G/kq/0qcHPWO8KiNe8rKM+f1fjvhKh+767W7QGfQB4sR7x+0bxcG2cln6lgHwWgT5xvo9k+u3J++dYdr9Jjfo8z/RpR5C//zB9+vLnL93u4O+9Ogf8D4P5j/NIE/h5Bvha/+z4edBzEP8U0+tgOhTyu8reryc1Avw7WT8I4vXcA/jE/pnK+O5HzoF9GryvE1/1zy987mP7dLmAfIr1Y0jx+9BS0qBe7N2FVgFecV46c332tzDLqJr1WsiEfAMqxPxRn995bfzBfZU9r/ejjG8L/r3T9sZsS31vP74fRTL/gXzeK6FfoD6HQj44jwygnlGfn4FP1Kc4P314vd9i+g+iPQG/qrJDD58E1J8/7Ec43/8l8k1Kwe4O80r1FZ+N6s77vhLi+bP3r0lRn25sf2wRkE8Fw1fLv78t2T7jRndCvgoWr5rX+99Yv7Pj9S72J98v/y8xuxtdD/ZEVt9+fL6LehxCcb7vZ/l5833JkfGtIL8CPnHfUZDTEL8c+rMf5DcZ6rUr4P8J+iXyqbP6TuXoMCuuT/H92nM+uzH/nn/5Xvp/fLqL84hg/9xdKdYz8inuC00C8nm5R41lZKkdQT5PiPrj34eifnwI7pM435HP5MBtRg8mmBPkW3ZlSfUEV09e70vY/iCQA+B/Jswj5FPJ9OTP60fsfwEEv39mzjd9nR4nJyGQnxr6vwHgn77uYdyVn1x5fxwD/CGfm9g8tON8dgU+T3TiD/cjzB/3S2YsNTq5A/CLepbz/x9w/uG+OJHFH0xx/pqw56UE93+x3/qQEZ30gf0qSOSD/BcBdcDoAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUpj0AD4RXZdAQAAAAAAAAAAgAAAAAAAAPgfAAAAAAAAIwQAAAAAAAA=eF51mEFqHTEQRH2nZO/b5E7JDf4Rsv4rgQMDHwyCLGQUwogJg44Q/EUxdFVXr6zyo9WqHs186eUljx/fP+Pna64X0b8842H4KvqKZvJ00b8946/JP0T/9fYZ/8y80+i6boxzvYgOH3K+ir6imTxddPiQ5x+iw4d83ml07XP0gfUievSB+Sr6imbydNGjD5x/iB594Hmn0fW5hg+5XkTHOOer6CuaydNFhw95/iE6fMjnnUbXfRyfB9aL6Mib81X0Fc3k6aLH54HzD9Hj88DzTqMjGuXH/mG9iB79Zb6KHsecp4se35Ocf4ge35M87zS6vqfjvmC9iA4fcr6KvqKZPF30uC84/xA97guedxpdv0vwIdeL6Cvvw/BV9BXN5OmiY5znH6LDh3zeaXT9Dsf3A+tFdPiQ81X0Fc3k6aKj7jz/ED2+H3jeaXT93QEfcr2IDh9yvoq+opk8XXT4kOcfomOczzuNfv0ff8X3JOtFdPiQ81X0Fc3k6aLH55jzD9HjOnneafLcjC/6/6/POu/Cx33E+TbDF+HXet+Fj/vu4td6f5v8Vfg1/jDrbcI/07/9MfV0s95d+Liv2c/D1D+MP6fw8T3A9Uzjw+01Pu9XcJ8xZh7j/LnYDF+ER9+ZR9+ZR9/z/FV49D1fbxMefc/r6Wa9u/Doe+7nYeofxp9TePQ9r2caH9B3PUes2KjOu/CxDt7fm+GL8LHvF798fggf+875q/Cx77zeJnzsO9fThV+xCx/f2+znYeofwse+X3x8z3M9U3T0Pfp6BfqAMfrOPPrO/IrNnjeZx5h5jJlH3/P8VXj0PV9vEx59z+vpZr27Pecyj77n9Q/jz2nPxXk90/iA/a7nRP5+xv2u5+j8e7sZvgiP+pjHOpmP+13P48zH/a7ndObR97yebta7C4++534epv5h/DmFj79vuZ5pfMD3Xs/F8Anj+J3QewPmV2yGL8LH51LvGZiP69H7B+bjWO8lmEffmUff8/XuwqPvuZ+H8Oh77s8pfPxdx/VM4wPe83oPENfN73m9J2F+xWb4Ijz6zjz6znx8z+t9C/NYf77eJjzGeT3drHcXHn1nPr7n9T4n9+cUHn3P65nGh5u991ixU513c9+C33V8jtnsfRHz6Dvza50P4dH3PH8VHn3P19uEh195PV14jJmPY/bzsPdXzC/utPdazK+YoqPvcZ4r+HwZv++D8uAcx+fRzfBF+LWed+HRd+bj953zV+HR93y9TXj0Pa+nm/XuwqNPuZ+HqX8Yf07h4zmO65nGh5u918I8GKPvzKPvzK/Y7H0g8+g788vnh/Doe56/Co++5+ttwqPveT3drHe395DMox95/cP4c9p7y7yeaXzA77pJ9dxFX7GJvvK+ix5/d/E94Yfo8Jn1Fbvo8Tnmek7R/wO2lrzJAQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAA+AQAAAAAAAA=eF5d11f86HMdx3F/e+89Dw7H3nv+bcdelZUOKSO0yF7tQcMoyjhlFA1SlJFQCJFVshVFRmXvceH1vDi/383z8bv4vK9eN9/JJnv/G8kZc4Y8Mo/Jb+ZR6W7ynCntHJ3H5bfTnrspcua0c2yekKekPXdT5ixp5/j8fJ6WJ6S7qXLWtHNifjG/m/bcTZ2zpZ0v5JfzjLTnbpqcPe18Kb+a30977qbNOdLOV/LreVbaczddzpl2vpYn5Tlpz930OVfa+UaenBPTns70Mk/OnXr7Tp6X30p3epk37ejt1Lwg7bnTy3xpR2+n54/Tnju9zJ929Pa9vCjtudPLAmlHb2fmT9OeO70smHb09oP8edpzp5eF0o7ezs5L0p47vSycdvR2bv4y7bnTyyJpR28/zF+lPXe6G5N2JuaP8vK0pzO9LJaLpt4uzN/m+elOL4unHb39JK9Ke+70Mjbt6O3ivCbtudPLEmlHbz/La9OeO70smXb09ou8Lu2508u4tKO3S/OGtOdOL0ulHb1dln9Me+70snTa0duv86a0504vy6QdvV2Rf0p77sbksmlHb7/JW9OezvSyfC6Xers6b88r051eVkg7evtd/iXtudPLimlHb7/Pu9KeO72slHb0dn3ek/bc6WXltHNd/iH/mvbc6WWVtKO3G/O+tOdOL6umHb3dnPenPXd6WS3t6O2WfDDtudPL6mlHb7flw2nPne7WSDt6+3M+mvZ0ppe1cs3U2535z7wj3ell7bSjt7vzibTnTi/rpB293Zv/Tnvu9LJu2tHb3/KptOdOL+ulHb39PZ9Oe+70sn7a0dsD+Wzac6eXDdKO3h7K/6Y9d3rZMO3o7ZH8f9pzp5fRtKO3x/KFtOdOdxvlaOrtH/lSPpY608smuXHq7V/5aj6e7vSyadrR25P5etpzp5fN0o7e/pNvpj13etk87ejtmXw77bnTyxZpR2/P5btpz51etkw7evtfjvRgs+dOL+PTjt6ezym6t+dOL1ulHb29mFN1b8/daG6ddvT2ck7Tvb3R1N02aUdvr+R03dvTmV62y21Tb2/kjN2/1r87vWyfdvT2Vs7cvT13etkh7ejtnZy1e3vu9LJj2tGbh/rsac+dXnZKO3qbvLs5PfjTnV52Tjt6mzLnTnvu9LJL2tHb1DnvYM+dXj6QdvQ2bc4/2HOnlw+mHb1NnwsO9tzp7kNpR28z5MKDPZ3pZbfcNfU2Sy6aM41MeqeX3dOO3mbLxQd77vSyR9rR2xy5xGDPnV72TDt6myvHDfbc6eXDaUdv8+TSgz13etkr7ehtvlx2sOdOLx9JO3pbIJcf7LnTy4S0o7eFcsXBnju97J0TUm+L5MqDPXe62yft6G1MrjrY05le9s2Ppt7G5hq52Mikd3r5WNrR25K51mDPnV4+nnb0tlSuM9hzp5f90o7elsn1Bnvu9LJ/2tHbcrnBYM+dXg5IO3pbIUcHe+70cmDa0dtKufFgz92E/ETa0dsquelgz93eeVDa0dtquflgz53uDk47els9txzs6Uwvn8xDUm9r59a55sikd3r5VNrR27q5zWDPnV4+nXb0tn5uO9hzp5fPpB29bZjbDfbc6eWzaUdvG+X2gz13ejk07ehtk9xhsOdOL4elHb1tljsO9tzp5XNpR29b5E6DPXd6OTzt6G187jzYc6e7I9KO3rbKXQZ77wEQhC2+AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApgAAAAAAAAA=eF4txRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF4TF6c9AADGKQj9 + </AppendedData> +</VTKFile> diff --git a/Tests/Data/TH2M/HM/flow_fully_saturated_newton_ts_2_t_2.000000.vtu b/Tests/Data/TH2M/HM/flow_fully_saturated_newton_ts_2_t_2.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..37a1d96e7d934eb6a7a42449cb768a4f6fa3fa05 --- /dev/null +++ b/Tests/Data/TH2M/HM/flow_fully_saturated_newton_ts_2_t_2.000000.vtu @@ -0,0 +1,48 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="238" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="22" format="appended" RangeMin="45" RangeMax="103" offset="192" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="8.3721237139e-13" RangeMax="3.6305644771e-11" offset="276" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="900" format="appended" RangeMin="1" RangeMax="1" offset="22692" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="0.013178612702" RangeMax="0.57148944243" offset="22792" /> + </FieldData> + <Piece NumberOfPoints="341" NumberOfCells="100" > + <PointData> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-4.5989945488e-28" RangeMax="5.7816473768e-28" offset="40628" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="3.1622776602e+149" RangeMax="-nan" offset="42040" /> + <DataArray type="Float64" Name="capillary_pressure" format="appended" RangeMin="-1" RangeMax="0" offset="42508" /> + <DataArray type="Float64" Name="capillary_pressure_interpolated" format="appended" RangeMin="-1" RangeMax="0" offset="42832" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="9.2857142857e-12" offset="43496" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.2019295926e-26" RangeMax="3.7142857143e-11" offset="47792" /> + <DataArray type="Float64" Name="gas_density" format="appended" RangeMin="1" RangeMax="1" offset="56744" /> + <DataArray type="Float64" Name="gas_pressure" format="appended" RangeMin="-2.5660521294e-28" RangeMax="1.8320999423e-28" offset="56916" /> + <DataArray type="Float64" Name="gas_pressure_interpolated" format="appended" RangeMin="-2.5660521294e-28" RangeMax="1.8320999423e-28" offset="58060" /> + <DataArray type="Float64" Name="liquid_density" format="appended" RangeMin="1" RangeMax="1" offset="61080" /> + <DataArray type="Float64" Name="liquid_pressure_interpolated" format="appended" RangeMin="0" RangeMax="1" offset="61252" /> + <DataArray type="Float64" Name="porosity" format="appended" RangeMin="0.1" RangeMax="0.1" offset="61920" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="1" RangeMax="1" offset="62084" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="1.4602462439e-16" RangeMax="0.58466805513" offset="62256" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="298.15" offset="69412" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="298.15" RangeMax="298.15" offset="69604" /> + <DataArray type="Float64" Name="velocity_gas" NumberOfComponents="2" format="appended" RangeMin="3.9384443476e-33" RangeMax="3.5414867942e-30" offset="69884" /> + <DataArray type="Float64" Name="velocity_liquid" NumberOfComponents="2" format="appended" RangeMin="0.001" RangeMax="0.001" offset="76484" /> + </PointData> + <CellData> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="1" RangeMax="1" offset="79800" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="79872" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="81328" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="83068" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="83336" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAAO4AAAAAAAAAbgAAAAAAAAA=eF6FzDEKhEAMheG7pLZZtJqrLBKiGyXgJENmLBaZuzuFjY2W7/3wHSBaeHUqYorJ2kJyp3+G8D1u0fzHDqHvQCkyBMiyRkJJ0J49TuxoC84WkylracBQuzeCyn61B+fz6nDKsj0jQx3rCRUKV2Q=AQAAAAAAAAAAgAAAAAAAABYAAAAAAAAAHgAAAAAAAAA=eF4z0zPRM9A1NDQw0k1PMzZMTTS1sDA0AwA3egUYAQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAikEAAAAAAAA=eF5NnXc81t///y8plTKSSrKKJkkU3q+6ioYkWUk22Un2yrzskey9srLJHi8uhArJSqEkCpWEQlHk9/7+3q/reT79+7id87q8Xmfcz+M8zslttKUifLGFKqayKfjOa3+MRPwbH4450iOhhLkR+ovSj9+u8vqA3hTieK5jWhen6W37PDK1ezxAn9dP9xFLNsTnz/4Qz9Fvpmr2s5uzRHmCLlupVNy5wR77Qei/pLb+MxjvAvo5pRR/2QBjnKZHFdFvSk91AH0Tf4tlcc017NYDvlrq8ybqzrHUpm2CxqC75e/Y4vlWHjcjdJ4dLHfKefRBfyDdXXPWwhJ0lci/ovkCaqCvSYsuW+fbYdbv7t8Ramqkqqxe47i7RQWn6TciJbu+KV7CnQldkpfdvP6QFuhsVbvDYg7r4bTyEXxT79b2GYBeceH4Wc52Z9wgecpGI7aeSsmjD5C+LQ96Q+uRsxM75TB9Qt/7KY2hv1kH9Codzg1tE7dBb1p5n0WfawJ6/ie6e8EXIzBZrUuO/ha11DlGm/CUafT9Zjo4s0ouRONKhB4hN3Z4WcgLdBauUU4V1WBMitD12TP98964gW6lXZvsy2KLf16OspGIqaZabk40ua0aCLp2xw7D1+pq+Byhs7NtPiuq4At6xGiW2b1wK3yJ0Ns4nXctX6KALhn/SDD5sA82VjPnYHS7gsr+43sp5e0t9Py0S1+6Nqrgo4RusSLpoI+dg7//suva118Kjvg7Qj8geclR3c0G9PJtP6MFBv3wQaerLhHSpdQ53k3NZ59Ygs5hTS/4WTQb6yF0icMRIvyj3qCfCIsYHqtzxWoI3UIuzfoncyjoHVM3LthjGdio0Imvvv3F1C6Za2km21xBr7b23XxE6zhO00c7Rcs/lQWBrvC8yzP4si+UP/yHe0voTCTopxb4JjQE9PHC/G/zI5RcKt8J6gndXTKgL+5iLEiLi8ZLCP31Lyd3+2IX0I9OLLkX8HpjuYQeIyCU+FcePb8o1X7HCYNMTP9Qzork0Qzq1OdTBl2nY+D972D5pTZln4WnEfpKXpq1bE0o6LrTc4w68/FQXt+7nWvhpzfoRcV/YnQdCzFSJ2Xy5GoyVSDJ6aYbUzLorKQHim82Z2OU5//pNTcdiumK0PNdzhw72OUcC3qh0uRPpgT0/KjBqU/Lwf4Y17P5X1+uh1OvtISbqaxFg64ptHqU8d5lnI/Qf2rYlj5LDAJ9iu/bYK9nJCZF6Fma/vyv7tiCbthgxZhuk4GR2MSvzNnfoTKKtl7lvR8OOvnl60vcHRhOYv9P1/yj7Tt/AI1vnWY7P2hR/+1vHP/pmzKLtIVe3Ib3n73juVnH2QiMKE8+de7R1OGHIVBe3WG1oVxFmVY/Obgy8p6KOuo/X81OaZlPOtLqJ5MyB0unj6Lx72QI80qp0QNs/On///vIJ76Pn3vl9z/j87FbXxkn/u2/hM5QV6TH/BL9fbvlObf6F/pA+YZ/MixzWhNAj5Nm4xzKTqZ9HzJlTs2w5p4Car9f+ncZOGnjNP18iDaj1I44KP+M/ZfSI7I/JkXoGz5/+WoZlgP6taHKEObz5hjlv/ZF9vWe+h6Xj9qvXdQt8pObJjhNP/nBvmk1FM1PrYISs9PjiTjRPslpZceGOrhQ+zvx49ZBj79leMh//YNs2duVVaPjD/WvYytQ3dVgg4UTesjvDKUxJtQ/N/v8+jpf4YdlELp+yIjC5HQ86D4LWZfXY4kY5b/+TZbW63KW25UFzy/Zoz926WM51kTokz7yIn/fOYF+/IDERo7FItDV3RyHYs4mQ/26Kcll6nY41vTf+ESOVrvDuqU1CspvsrEN2n3yGuhnvBdW1N55QXmWSx/pXKfy8DZCZ5suYSjtyQCdY6An6tWXenzyv/GV/PfTTfLkjzLQR+SmvSuLKbTxmYy9jRtQ4SgC3TSv1pRFx542PpPtJ2+fGJLLAj3mRn3MH8U0bNPv/z8/kG+fDol9plmB2s/qu77bzlSMmD/IPAEJZ7y8I0CvGl44KPEyCyPmJ7Lud48ZJjHUfkb5LQ9v+V6Cmf03v5GL//zhcTMshfJBw0cvGs/F4vqEzrW1h2v+hynofnHk59NfPGjzJ/nNos6bhLZHUP+LX8O73/pn48T8TA5xHXoS4fEIyrOxyCjU6FliloSeVSApRupOA308aa4mXccO0yT08XcN6x3+WIPuL8n5pnBDPI0/yMtbmX/VHUPff5vCg/fO0flYGqHL6Vh/8CGh72dnXu0QMJGA0cpvrdBoP/zlIej66hd2y82nYkH/8RFZ8YNskPu9RNBr5xrZmZ1CMVVCf7Bf/Z4NUwroY6LCNRlnwvAAQp81M71vHPYA9CMf/56PysrD1/7jOzJT9/nQ12X5oNu2ny+f2PoAXyb0+EG2sp4FMvr+V6UiHL6a4CuEPubjeoX+VD68fxFdx3XPI2swnf/4lEyeKPvYKZEL5W+N4UpHdpRixYTOx8L+i+FXEZSfZdNc+bDdB1Mm9PEmxwrHzU9AD028wffPRDnwMWVlO1dhpxXoO1uOz35/cRn4OLNQfOCvuz3oZzqUQ2r+OYm7EDpJyzAtZ8dd0BsPrB3JcTTBvxP8e2Lk6dNPA6j/S+3heB3PpozR9KQNbmePCFiDruOYfE99WAL4maRpYD00isb/uqGi93mFUsC/ooF0nQVtrqD/Yo88J3rbBjMhdI2MlR7eA3qgc/ENO7nP3cJp/M1gyfBM4rYZvF/Vo5UDQRw+wL+MRp773EfdoXxWm/jIjctuwM8HJrc0szObg37NOjS1b68OZkboUrNJ9Oej0PzhtlJ4Cb8sjesS/MtaJHZ3SRS9n5qWJjnB0xEYTbc4oPi80AE9/0myzU2mjHDQxxUrQ0WGEf+uL+2/33IqFaPxMSnvrMiFacRXdHN317wq7gA/y1rmvlfxQvM7b3KwaPNiLPD3klnhvl1z90B/kNUjLeIVRhu/qGkF8x5v+W5A/dJDb48pet3DSf+Nf1Tj2zNrTnvtoPwVTLiOIcIK+Hp4tNMqagNav/UNhlXb3kjBaPxrMPV4+uspxO++26Wi+Tn98WFCH/R67J5hdQd0RrEjqn3xFGyQ0Ecdl1lunRID/RN3mW01SwBt/qDONHTIOhRFgP78atbSrzIKTuPjIhXqp7kWxE99L+mKpRLvYsT8QpUUHMxbjqXA339dl7W1yS0T+LfqALvVaFUkar9nHvJnueQCPx/eJqpFkkfrwz9uA2kWCbdw0tH/9DOnf3o37UX13xBsvHDLKwuj8fOSCkdtXAz6/ts0jZ+z9TkDP297VG8gtGQBevTIhrNxZ+Oh/OibbvLWTnWon/HSaDcD9z0an1CbXn5toctCfMd++PhPqQGkT3c1HuTbgoFuHWBnxXA8C/Hz2J/af/ai9e2r3tn6jX/zgX/5xkckOvYjvq9+sXHmaEA63kToabIS05uajEH/FUS9YuvlTOMvqpRlqvCGOGX09y26+csP3cOFCf6V8igR1nWQAf2lUROdb2sqLkLog+V5Aw+HlKB+YZHPePtXV0yI0K1fXjdcdUTr0+j29butlKKAf7P3P+Lo9kd8e/Py/YfhT//93jv/04+xcS4VUdH4dP5GQJHYcAjolDsZbAIC/0D9phoH0nmOu9N0ctO9Us8v2ohfq7wcIrGkNODrW1fVPLTtg0HfRG4w2y6UBuVP+1xenRBG69dnbrw6uXVZ2GuCf0mFW2yTu/aDXnRefaKiNg8bJfStrY3WffSof6zGBsxPawRiw4RuWnO1n34mDfQfE+fkvxrkYSSCfwuZzV5xLyB+/Ovu1y32WRv0EL2CSpaGACh/SErzurNjBOj81UFPdmrkgo5dTb52Nvs+rX2RP/vWBRt2oPl7p0QRf+TZR8DHxUxXy4zD0fiw683Ti4X/8iFN1zLKcT0TlwE6G/XHQFVQLZ5D8K/kmItdecZ9qH9c23avvZcOlkbonSmpq7sjEb/vsHNebNkTjNHK62s2B1C8/EBPY3il9s+RB7TxgUxx2cEy9vsaPP/Eqpf8ilgV8HHPPQn8kBDio5wgab5Lboiv70iUNK89LwT95kv3Ku0DNVgJwb8U36NJ5f3ioH9gHxiNyGymjW/kEDfBsp1vY0H/Xvy29pMoFfj5J9+i3J2ibNATa+jFdZ5Q8TcE/77XXmGR7U4HPY9n6VL4z3ScGH/JSsMeHs/oEX/qcl3mE83zw98SeuU6DanUdynw97vdfbFy53sW8PFzqcDI0oYqKB+YyTkXv9SKEfMHeXyHr0jaT1Q/t/3NKxG6VdgooVeseYZdOlsJ9Z/9qdwptLMeo/Gxud56eusP1VB+83OL/FczpcDHr4TrdX+zO4EuMZahKqmQAHrIkFB1z1oF1L/12sXFnafjcB2Cf+dMHIpIe9H7U39eamv6LQg3J3Q+47sLAi8tQLc4ma6pqeGPqRP6dWySOdkftc8M429WEj5+GIXgXz57u8kidzS/WnjyneQNK8TiCb010pZ1vBjVf/RIalyJXBaNT8gi9HZ/ZHcGgu50fzneszoN8yX4tynRqftNhynU35n8sE3QKAVTJPRRY/mx1jku0Edfbz9qe+8CHkjo4f0GXl1/0PjdaDOm8vbJffwvwb+Cso+XDVPQ+qpuh3y72O04jMbPfccFAycYEF/KcDCqY+0PMBo/GzFOFoXOloLesVTYI6PYiBkR/CvPpjt+qboJ6meiTnmvXWvBSmj8vP2FBLfwHii/J0OJs9YwD1Mi9KINhbe3NzSBfqTY58rGmxXYXYJ/m+TlK9g/6qP2afxSMPj6DeBn/aXRs1bqIqAnWHsd1xW4Cfysz53b9j1BA+rfp5TPhfHbAj/zLeo0LfsivdZt4/bv086gk4S3rXMwWAe6aNsv4Qm2m/gcoUt9OG3dp4vm9zSc9/1rbRGMxs8G4hfLH/mg9zuUwCocFaWFmRJ6YfYQ/YQL8peL05P3B5Wp4TS+/vykxMAlBLWv7WsslmG4B/CzgPK64xcVEN9+ifj5wVyLD/zpc457Ug1StUAXMHOJmb5yE/j5s+CXloN/kf/cahsqsFleGdej+c/nv7ptF0Xtq1xnSL5qzgr4mu8ASXKf/knQpVr9fMVe+wA/j9q9frejAq0PBj+PnDG0DQP+nVZv9vqSg8Z3nqCl3rZ/KLT1NbVhjfvCLkO0vnVQYX74cioGygeWybpmBSF+pPsc9TnifBptfU9VH56fVzJE/S9551vlTp9i8JfztSTff1G/A/rjV3PGvlxitPGP+ln70aaaO6j/y0Q+yeasScdeE/wrVUp9NjCA+GKh9zedHpM/bXymsiflHpT4owjlV7a/k7lloksbn6kl9J0hsZKGoDcWjFffiPfAafy8r+bXjE4y4s/Uonc9XO6ZwNdb/bYoPyoxQ+13QuJNlYoqbX6h6r5+tns3K/p+V7es2ERMOwAfh9h7/XLKRvz/YjZ526bXdngaobtJtrVqM2uCXniOM1ir8ApOzI9UoxLsSNQZK6jfVFEgbyogCPxj/aJN5AE39H51anrUQgSKaPM7deerqiJ6Q7S+6TWNCpAITgNd3+ASWcFUFp7P9b60scgrAPh4zu4FxbAXzf/LJ3bunO7Lx2j+c8n891z/rKugP0tkkesVzYbyrScfFfRxIf855G63meCjNOBnyQ1RpFeb0PrA3NnWtXbCB/RDbJ+cmC8h/o2uEm1ku29K8yepZp/Cuqt6Uf1dKo5yN+iDsAME/7ZlC8mVP3IG/c26TCYztRjwl1c+H1jr4zEBvca2/L3ioQQoLzVzVH1dwAX4fS26Fn+Hp2IxEud//Jt8IUd46iby9yS0P45EMv/b3wi+3ucTls82ZAl6rwodnV5DPPB34DOGTVduBED9+SWnP7w38QP+jZfU6274gvZ3LghEno7lzAI9kGFk5EbgDdCvzPqQPH9EgP88WpUzkLvRB+pfF6jkIX4oGJ8m+NfsQmhz5YEY0JP+zCmoFf+73vrv7ycv/MiqLM1G+zeCn7pHVEycsb9E+dEYp+7abPT7bBbXPWa9xI/T/ON2TitH+VN5UF590xMZfYYK8JcN8i4blpKcQectPbDNnDME/Os7JcncfKcyoX4Za9ml1ftB4D+vqyraETGfA+Vn9vwONvYLBj4+IRRsKmaE1mfhvhe+lQlmg84t+PyUr2Y61P/rhauU5lAFnk7wLxtvT6+7CWqf4vVODS28FCye0GUv3gtOG3NAz69rprYsRmFhhD4aP/0heBqND93hekVbBYKAnw8NLE/37kV/n9CD4TvsyjXAx9ryR3JHNdD4NZdQLdv0pBIjxg+y3v2FgZgq5F+yfBTrO+lSSdsfI/u7nSV1PkV82q0iPWXhSgV+bkrfE6jjrIq+z/6FLXv9cODnHqf0wa9HUP0m2QGk743VwMfGvRycJucyQa/dazs+smYIur21/aUxdrT+GC5M2Cd3TA34ucTIZejVe9R/Gb2PiZ0YBn+GLLW1dvqTIOJnlarTpQyW7cDPdxXMbI9qoPatan5+LK6iGhsk9GdLPOHJ1xFfff+8/U2xSQVmTfCvCn2K5zPdSih/+OwVK9LvEuBjA4aJi+OVtqAXcveXusgn48T8SHY2GP3JuKkc6q99dvKzb0oMTvOPXwt4l/VsRuuLdwXrRTe7xuImhK60e9le+uRN0Pn767oirbywa4SuTf90o/L/fD96ra9yIQuh4B9fOC08taKA9tdMrHvfy7RnAz9vnfmmeO0N8vfStznP/9ichenT+NnLWKhH5B48P6B5bm00LQvzJvjXzavW2O4y8gdKctNOThx9iCkRevrFmaMjQYivmS5XrJUoKoP/nKbbrODri/rP+YCDhcmmvuA//3BRsZIgo/Vf5xN10w0BrtgfQq+ZD+iZb1CA+hPThPSoUSnAz8X4a6ZjYsg/Limx9H/wqgn4+Tmf6+IQFxXqlyoKZtl8+TFWTujbGjbzP5VG+/OeFvfcNdQRP0u08TQ+/In4eUGaafbYt2rMmeDfEv51ibcG0fc7qHWvlTrAC7ofA9/HxGy0/ooeoq+MZDTCHQnd1/2BG0UEtV/PRwL0ATp3gH83XWVI7JhG8/+LLJu/j3gdsBlCt72H58RmoPGzdIc3Q3eFPDZL6OJLknRGOej9Wy9qs5WecsSNCf6NdLR+Pnkaje99+4y2OM6Yg//cdaXJ/OMbO9BPaa03cjlkC/y8yMfKOOrsCLpwa8BmJz5nnMa/go9TO1PaUf0D56L9OL77AR9fPnUxm9EL8eevjG75s0VWoOPmA2sz1igfwCDeGSInJQP8G/5xJSqXDdXv3FJce5Rqj2kT+nSIq5nrGFrf7N35UCzxozPkN0gKBU0xsZvg+5IEX7764x4F/rPIHrXTAWzo+1rWJySWW/iBbpI4+fXPMx0or/K8JCpBNgTyGz2aPNHSd9D64RzT79fc71zBPya1p21LuofyLVcqw/nK9IJo63/q8unR26+eof0DS7kdEz5afjgxvlEPWcmK1Jsj/9VzWlgraIs39obmH8tHPuc7cxP0TxslcL67oeAvr1zTPLsvWgl0xvCORK8DTtgrQidxrfn3nt0Bv2/l5Rm+zS7JwM+Zl3KE5jX8oLxFpOOpc36PwF9u2LNNbEMt2n9JuUMqDw26B/kOitsT0UbuE1C/5PeO88mFD4GfS/eFZ1eWIX9t9cI8a69FOm1+pMqXsZv2NjqCfmO11YHzhAGU59tiORugfQa1n8H47bccw3Aa/0pJHDYTbUHfJ/iEXnGTSTrwdWDz7y97etH39a16+6R1xRf0noIbk7KVqH0YTh6JO1eeTuMLatNx1bOmV9H6YfrYfo0cUgXwcaSLd96b2v95/7+/ZD6/nA465bXMDVEFtP/ybelYVZJkGo2vqPr9GrEy+9D+k6nse/XrU7B/T136GOckyIF+v+OXi9u/sPhCedLBkVwmQ7S+yrPKC3LM8MXFCf6V7X+zYSwcta9doi9Zfr56CPwsFXZ6o96nE6DnfthpcVfRBBcgdPVz8wKL82j+pL/0fO37lmScxs9KX6XG9rij9i28IBy7MT0f+FrzSa3XVnM0fn4rr23pCAwDfuYgMbpcC0Lzl1bf7Rr3IimcxsdK8Q8Uvhnag+6mmfP+9f0C4OeeiceepoZofLS0nnBiTAkH3X5NTH0wGuUPNvzCjZY1A/EVgn8tuVS6tr5NAF35WvLF6dexwM8zs24kzl1ofJdhZAp22G2P0fibVKYq8ZwF+esapTPt5VUJkM8wOl50YLc04udBzT6jSONg8Jc5OBeCFqIRX1WHfDxIv+Eq8HeOrEkL+Rvig6CItcwLc8W4FMG/Md0/6H7NIX8vPromkvlOMeQ3cIG8r/iBENAPiyiuKOuVAD/XuZzmEKtD/vrocvuTO7wNeATBv+qLf0tTDqH1Tc4lW+celnTIb+iX6cUNnEb+xAayzrrGKUeMVt7aqsltmzL6vgXmce3LDuG09TGZ1eTCRYOriB/bmoUPiaTiwM/ccd1Ku+uRf39groMl1qwE+Fm1hO+DjSLy727ruip9fhQF+YxR+k/3tXRu0+qncFQ251mzl9HGP3K4Y12PfTV8f4oy+0hz5odGWr6NfHQyIUjuTgHoD5xf19VrNePE+Eoek4+MGggCPqSknuL2ljvuiPcTeuAJa60NuyHfRiGXMgfOrHrT9g/Jg9G9wjlT4J9Q3B/KmesaHKDNL+SaV3lh9ozAtxTxt5YyxXbPwV/OYyhkK5uD9kMJojCqsivWgO6fu7ojnKsA6k/aRD/5TKkW/Geun4klZ/ghH0IpLBIbH87OAn5uNzjFvZ8Dvi/F8TX71IhPKOg1WHyfOY7qj1ZQS50+kISrEfx7xjz+SKB6OJR/sidXVfFrBEbkN8n6nzoSNgVpgK741IFLhD8SUyb0ZM4G4S4F2F+ihAdd6egKptD8PbK48/1t+TjkfyjSneQvh7mrsHBCl924L3goA/iWorcpao5bMxf4mV/i8qjCU/T9KN3jVX4y2ZgXwb+6Tgu51tfR+nJserZmr34B+M9nLrcxMu1G/T8s0vKEY5I9Tst/rOvw7dTkQevzsgH2GzLW8fgqwb9Xjq9oc0uhfMXL+B8xnnfisV+ELsoVzJz9EO2vhd1Nivv8OAX4uvkBn6hzexnorkr0WMdRKmZI8O+g/+Db5uzHUH/xav1VfnIL5DdObH1rfDEP7c8lRl6zSRXLxRQJ/ebnqMCvp1pBf6TYnbz4G/nPJS+FWi+pofnlceq8TxaFgtP0uN3iVL1UNXh+he9uDsopReBnmTnD3joVNH6z9XePSB53xWj8zGKsojMyjvw9z0dvrKbCw8F/jhPO1cyyQf7mGL5toK7FCafxs75IbX5j/HHQz7D0Wh7aFA35562e8Rc+XkH8MNNZzq3cHYGbE/roeTFrATGUT2HuzG1N3OaGGxJ6yfbbxetTkH+bwCwow3Ajnda+qGqVf+7puqD974O+xtf8LNJwms53cj29yDDyB5YqeneyCzkAPw/e2r2wzg3539Zh/uKu0jnAv+GS8fu+86F8b7yhdVcrZwL4z0fXibukexqB/q7PN2SwLgT4mxKXk5lZj35/rON7RmbDh5g6wb9KS1Ov/lij8p3a1w93FSZDfuPQFh7me53o92cY9/i/tI4Dfg7nUZbhPIT0tD9ObHP9xeA/S726k7S3AO2P3ubIqGS7HwL56PW270cYjiP/befBNK/xLZY4ja/TmJX3TVchPbnywbGU14XAxyX2aoLLa4gvv1TNhD35nQz5jUXVnobdF9H3d2J88Jz/70Xa/iL1xEk5FSwY6eLn1fbVO2QC/4YLnZuM+ox+v/anD4yfo0ogH821rWZOxAn9Pv2nYm98tlOAr9sWj/55sQG1LwWGp9R6zRLIbxza8cfl235U//rlYp0Ilkzwnyfjtf14hFC+YXdr7077DCfwn/n+ceN9YIT8aRamsEHHwTIsi5Z/LnoZy70VjV9NfMcppLpAnPDHqMu1sT+U/mf9Ms03ZZvQHAP+M9/kXdmEICPov/PYhp9OguXgL4tswX5ncKB8rWaGhuOFtmCU78D76zsFRaH8os3Cof4PDyG/Eai28aneKZSvrH///gSbiC/wcXiPWgy7E/KHX/3NW07bGAD5DNHVmtVzXGj9PSzl5dh1zhL00cmA9oJ2xCcHrqQmrFRH4YcI/hUxOoan0aP117MAZVsFhRTIbwy1DQs8+Ir4cHukgIG2+y1sJ6HrVu47vX0r2t/+6Hj+dIxyOuQvlGJ6p0wkUP9IClwuXHbWofEv9ZE4/YeEQMRf0gllXTcVfYGfjW7pNPrPIn4NGnitGzzyEPzj0+s4frvfROvrd/voeAJGvCG/wZjKeEYwE/GxutzQX4kbATR+J3un+DY+l0P5XJsttoPdrmnYFMG/Eon7SN5HUf4h39NITu9iJEbLP2+Micm8+Qjl/xOOWXbKHAvGaPx9m5GzVmoFzT/Z35JX87JKwF8+pLf5mOAs4meXNgF32682oN+SDvP5NYHWB+2GLF3DibeAr7tC9ysUVaJ88N2874HdU0HAx/41Dn/pF9D8O0NSKW37gPIZt5jUG50P3wU9MzGxr6ClEHSLygddD/PQ/nj+zhtFf9KL8FCCf5WiBZToJxB//8z5Y0iJK8Zp/GyEx+wJ24XmvzvW/U3Lgbb4fULno5eQHFDSRO93y/aN/jlpkH82aXKe8ziD8i+OSmUWm6eigI9FOov9/yUQ1P9D++RGakqh/Gj2HqU7/Oj7DcY2vPNxbgT/WdLx/r5jm8C/pFRxGfmfZ28Eft705NKt0wUw/1BE0k2PcirWgf+84nNqk34KtH8KW+C/PbahBB+i+cvOoXxRapBvpZDa60hy77LBf6bIzdWoGkH+iaKuUGfUl3gfHyD0YWOVH+5UyM9TPmhvf82e8xD8ZZL5z9NYHuJbaQ8f7Y2fn0G+mWQ7zfnNVQTKOz6zCDBPqQB+5jwvtEu0A/IVlF8yRnZcO+qAn+NPbcQvbkH197GaSy8FoPxGyc+3lmH60L8pUxl3J4b5I0Df9mehREEa8iGUBJ2Y6Jv6t4CfL0TenmcfioP6r9Ad2fO6NAL8Z+t9k3ZazeAPU64Hca+lbryPXaflnzmNewqCUkE/5Xl2NHxDFG3/m6wnU3izahe0X4r+7GW6cww5wM/rRFta2cbhfAPls8+n550n8iC/4Tj/U9+QHA2/j9uuTWjy6yPMh+Dfc/Q7tNLOIf97dXhf4WHddOwaocs4sCptWkT7q36h+dl8Gtdxf0JXjdhtIhmO1scDPRIjk7yWGC2/IUx3XlXuJRofpCm7JivlA4CPm9LNL1jvRP7NK11vOp6kVPCfw6/3aHP8yws0XetY3YXItSZMj+Bfk/EWY6UdjVA/d3i3Dfv6ZvCfY+nTZAO3oN+f/sl9/vT5PEyF0L1/3K7Wv/IY9If28Z/3fEX+88GNbe/EN6Lx/dlhA/bRdfagJw5rfP00aw66G6nJrzBUE6PlN4qPi/f48aD996fRRmFvbWxwmr/85F5KjfcuNL+F6yqpiFODgI+viLybf1/hCbr2Ktd+rTw38K+fRvydtndA+Yeq8uqoT53GwL8LBm4BB+LR/Dx4JoIxbyAa/OUfO/neuPYhf1n62qrZV3Z/3IjQWXtC5a5/QfyQcHe/VZWaFfjPrCaG9J9fo/F3W29nut4mX9A1Wx1vl35C85vI9dfPdNy8If9hcJE9Z3HOEPTGSDWNU8vncS2Cfw99583QO45+X464yEvORG+M6H9UtXMB2h/1kX/+aESGfzRRGSfyUVTfqJmdpuHI/44NMdWuW/LFJAn+lcpw/tTqivIvnFNpr+/JOQA/nx4Sva/7Bvnbc0saQhzfw6E86WZe9htHtP+old+9EOmlBHxMWuHSb1xmBf3JWT0PPqE08KdjmeSfkfyVQe+06zggqOoL/Ny0/0qn6F/0/KuSJX8cPf2Af/9tEVH977/U0nTmn7fonV84Az+LODMLeLNeh/Lte3Pusaz6Q3kpLlfFjJ/o+1a3m26/buuI0/hZKU7unXgsmp9s8SKt587G4E9LqVwPuX18B+j4AwGlwiPqoLN+a7y9eQ7lI3YL//jZrHUG+Ffk6rbScyVofTNWm+gYJIf4mYs/N3qdxDnQQwr6A64ngT9FbbrWJ0n5IQf1j7fq1UkfdQJ+Js0oPE2M2QN63WSkaIuRB/jLi0cVX24zuAi6j/OIkbeGC5QfPTN1oCb3GugD2hrDH+mcgX/D2QcPWyr9z/kZu7Pn8Y/5WBOhd/PUl9evovf74tN5fGdbCvD16ME08pYC1H9vLqis+r12hnzGnBt/e9U5xE+fM14+HdmXDXyMBWYOaT5F+ncvoYFHlXGgO0fxT/29jPbPt35y4N/4NBdnJfi3Irxauf9/+kfg0OQ/LpF+cH7wkx670DwZ7e+XCjxQevrBC8qHx0nSBy2i8aUsrWu3jTsF+Ljm2085QyO0/n/rLiL9LYsN+Jj0T55S7H0uKL/O4SRn9v+t9wldVcJttVsW9e/4E13tKQPIX7b92U7dN4vW3/RkCSNpgULQn34he2quovbL8SNz/e0tSqCHvyuVityC2l9GkHm1yt1MfIF2PlBinoszAeZPUvemo6QaPlHwn9PiJM/VLyiC/qrjWgP78XD8N1G+uKhbvSsB5ft/cK2WGNtI4E0d//Evc0gar/4ltL9/7fxetfr/O29M8DFJKzNRuFcSyn9l30USE/m3vRC69e4tb7LyUb5hd5DIj6b8FODnUUbp87qBKF+QQip4FW6J/On1iVLD4Qko3+I2wfJJuaUM9Cr2Dcq/6BA/mxRWbPTkbwJ+lvpw77y+Pco33Su/prP3awAeSOikTNarpAtyoK+enxN65GYJ5UlGMWpp2+VBf2rK84K5O4jW/8k+0S/jfeiQv/ena+0uz7tG4GepnHwvjhh0voB5TGrB/20J8PPAmTe/B26jfEB1w15t7GUt8HOI6v6T6QLA55Sh7BNq+SktkN9oe+0Rq5CO+G2ox3KTcxKVNj6S1X/kt86kIX86NGLad9eVBvwljZ/971u5bET+7LXwRvcAsRish5bP6J09uJYC+2+UmcKzki25QTiRzyP7y709NsKK+E/4V1Lb8KYEyG+8GUmymc0ugfo9bO3XpTU8B77mVd7Wm7sK+4eUlAld7NLxaqyN0DXERh9qHKgCvdzkV6oINR34uS1BwulaDDo/qF3hYpj2JxH4mMd8IaZvDPkT6+dH9lrcDIfzhVsP/my/vw3lq50uqHSGOqXR5meyQGP14XfyaP3qtAXffMw2CqPxM6ui7wPTVjR+DK1khombxWIqhN41eXeZ9VES6PG3BvkUmXwgv6Fz7uLp6SC0vhwqq0tZcyoBfqZXeSy6yRflEyIdo9Km44vBf74h2n6xJwz5wzZ3G7TF/+aB/8zoutPk8lPUPxKcuN37pTMwBUJ35dvVF1eP8lvN+1wGKpc8cFp+mrNAcGHxAdqfsXa4cFF/jy/kn/XdzcRzTNH50WSZK3GBNeGQf17/JTKt6BXan2l4yFfTbBMLfC3wo5TBow/lN1Kiakb53OvBf6ZYTVx1Tm6A+tmepx2oZGnBKgh99Oh6YS8/5F8yLdq3s7LnYaq084dDBiJmnCi/UUfid89QqAT/mX38y/AmAeTPBCdWS//coAr5Zlb1pOeHPx2D5wvaFPJpTvNjToQ+p6Czc4YP8VX+cQ7T+C5ryF/4l498+V5hAPXHNimNdZd4Ax8zWx1RCSk4BeX9ckZkfHZdAb5mU7z1t//BLdAfFLWyMcb4YjT+LYzTWSTnoPN/h16Jh+oMonyGKomurHUa5UOKAzTY/jZbAT9bJuadWGxG/sotN/FCrwfRkG+2GbGwGJd1A12x6hqb9ng68PHPjVmD1nSo/HRG+uQuZjXwn/PTtrlajaD86J5zorOVt31o5wOonydUJkbtfNH7KyIleerFgP7BnPvXdz0P0OMCAr/F4WGQ7+BjjOHfN4jm3z1TLw+lz8dBfjmZ5equ2h3Inxo5EuF9U+EiLb9F7VbX9stvQfkSav7OWd9LcYif77uqhHWj/FS98Vm6T3Q2kF+WLBD8sGsB8UUiKYPFL7QA+Pm60np/RiXET2T3so+V1yigz224dmZ/vA3Ubzqwyhfakw75DRJrduGpLXpQPjzJfrOhng3wc/jKljfh22D/i/QkKlXkxsWbiJ+/2Gyc3IX4UIyte7yF5SHkm4cTpjvvyCP/88/afLy3fQzkmykFock7+feCbvIi5OjhVkuM5k9vfcRveBpD+/OCuo+nVFcTwH/+vPimt+MF8r8bXWdezppnAT9v5ftiVKKG/FuzM+9jUy7GQH4jd7fzSBoH4rvGReqOH+FxGJHPpKZFsMU5ftQGPcfW23+5KwL8506DwTyxVdQ/LfZXGouKmNDym9Q0t4ObCgNRftrgD8v1SlIi8LOzfNCW+N2o/Q1d+FoefToP+PhnvQ5/pSHqn6/YnpausGYif/pscdq9ARX4+z+TDKKdrZPBf84NMMupNUH5CN7zDhyxFhbAx0KzLCeqEtH6gkHApNNc1Rt0Dh+LE6ZM6P0WfQhqWZZOwXho+YxtH6a2l6PzCSu63otkEwrw89szuKn7R9T+fOw/tBZFe4GuvlzXf/J/7p/5g3tJXmYKBP95yoyyd3Qn+v1WjLvMJsN8gI/TnE0rPT8ifhd765VVJWyKyrOmRJ7RR/7621Q+oeY+e1p+mryWvHT7izM6X7DZqZP/Xb8Lykd3sTRG+LuDLsDwKX97nz3ow0+15dPF0fqG/3Rg/JfHPsC/FvX/NJbQo3zAucLqy3eSZYCfrTc3Du7fjta/Ac52epO1UsDf69/uXS8/hu5HoWceWFQ96g7+8tbIK5mODxDf0YXo9j4+6gB8bGog8mZFCH2/PcddqH/DPYGvo/MHhirN0f0J76MZtjBb62A0/nWp90iUzUTn6zQrw43fJqH8hqS7/OCuU+h8DP3Y7aM5t8rAf053Vzlvnob4454LA9nwUBXwb/g3sdVb99H9JOu2GU2YZAQCP4vsPWUnboj2p0ZLl9hFL3lhkYTe1BzyQDIT9e8aB741u92In+M/aJgOuKLzkZwLxUKZDhXAz2ZTmjYfddH7sd7u2GjJUAX8nHuQ/h5PFrpfYVRw5PXR4Eo4P8gheoHd5Tva3+9fPnJ6/G0r+M9s28/lJlCgfsoxjjGjWFuUfzbSMFXN2ZdKq5/i/2pRxVK8Avh5YSj3V+oTaD+UmSvumvIZMTiNn9P+sRJ4EQf7axS+H7Xmtn9sIN/Bl9sqFSmI/FWt3lOH+Y9nAz8zJNw1SRSD/DOl58Jz9bSWDvCX6d/8+pQvdBP9/sm9x3naq7AeQu/aucxuLFMNuojk/qVYciFtf5acHcgVMbIF5aurnr/nVvYvAH5m96oM3lqC/EEt9p92+3nsQE+WtNs36lUDuqWL/IXgS9HYDYJ/va5pc1l8TYL6d+3a/b7HOQb4WcrBxKJBAvFh4XuqmezvdOBnCaObF2K2ofYvdye2VsIkFvxnc7vchOqX6P6bv0GFx90LKoGfG0TTdM/vQfzPd8FQJre3DPjZoLykXzAEjS+/K395BNqUYh4E/5YVVT57yozOd6zGkvf4y+ZgV2n5DanHIx330P0DUhWeri9+eWB+hL50UvWmHz+aH7mKTm5LqnMF//nI1FJO5ADkg0h7/t5nYfmG+FnArP+FsTfKVyZ/V5gc08gAnT7M5pmBPMqfG6fnLVbJPcbMCP79MDL4a6AInR9cNNdROhbeDPwcPT3tHlSH8pX0kt/vXhXMxeQJ3dEt9uDlhy2g05VHq08crQJ/eSpiX7EkJ/q+e799/9U5ZwN8rIozVxyyQnxn+YLkmr/pAvjPWbqKn88WovendtSaR3rMHfznmn1JFhOnIP9D8l1y4umMuwv5ZweekTDZq4gv7cJ9lrytPYGvW2e23A+5iPyn6LSDlfmyUZB/ltrR++1pEjpfNNvDc/r+JX+M5k+rsqtcZWFC5RPeCPINpwYBX+fuP1b/3BE9X1W5/Rd1Uy74y1I3FXxOn0T5TEkBqy0ftnsDX0tuitKw/IT8OVWq5vVF1lDg6+YKa8vrzOj90f/NPvxkJhen8e96GwulnDA0v35RspvVSkgHfhYPn3ickY/8bV29ogXmUzJQXv2RrljqEzR/e3YLf1RNTAM+/t2xrdVuM/r7egfUeCLMk4CvLWdX8Sle9Hz7bU8coy7fA13KSlFAIBvtT69K3/mn/V445JenFzdfNfyN1g+8i0KKZOY08Kf1AyMVeNjQ/X6TmerDHsERoDfldNhW30b86lbXM1pQlAvnA1vfzp4L9UL+vMbPV3MTRZFYP42Puc2qfXx2gS5Vyfmk8Jwvzd+gfk48sd/2yf/kqx+taL99nAz+s1HaqntVDvr94VdbtvbfzoF8Bju7TGKBJFp/BYcZpvaZ+QNfn+jaa9N/Ht3P0HWs4MOLinzgXzmF484VE6h+8c3cE/5/DCH/vInJ+lnNXsQ/HRELb3+8TwL/2dzdPXWTM2q/bboGMdPHM/BkWv5ibm+vqBva33AVxMcmx+zAf8ZO6Me0LiK+zjzcX2mocYd2Poo6GuAWyD+P8uvd6+6vv/wG5Z/DOzzv6Cqh83XyJTW/+dhSgY+FHq0onVlD+eRhS8W6Ip044G+puPn7nnXo/AdJYJROoz0Q7tegHIq0E3JF+e42o6s6QiXhwMfCR3xKLqqhv++Da8qu/R8egC67Ue5LpCXqH1SVQx3K7/JxGj/zSbF3cv3P/TrZrGQOH2ogRuPjc4+EqLNf/+d+QTuJjvOWkVBe/MHB4EP/c37yoUZu1kuuPDgfyGderTkmgM7X1GJP8IEqON9HDWHfvVVSCeVf4vi2UhxEb4J/XfJnahGbQf7FqTUxDRW1Usg/z9EnK7kWhIHubnazle4z8p9zB+xXipKRvv6P97ETev+2x//u1yPLF1zNHb2PdOGpRqfT+yvwGYJ/r++lWB9URf7Q0sDn3IuNyXD/xvW7RmypW5B/lSpVQ3liGYZ/IHTW4KyO0soHoJttn/1HLCgX8stdR3Mpp06jfIXjRdl6Jt0TkI8eLdBXFryIxh/eQTE5n/3pUJ5Er1Q4dwTx7Vbj4kMx6+uAf/3z+IWTN6P8c2zCtsNmVZXAzzFH3hWmvkb9V8X8SXb9vkrwn6UaBjd8yUG/31KmTzxmQzMeTfBvm0WaAls++vu3czce+LXiC/mNnm0cxd28aH/54t7X1v/QReKJhI6HKY/kmSF/InYn11AulgD8PCxz+pV9UDGUZ0qnW1bmRfdv5P6TLORwAD2/5kRkOlkf5Z9/HJ45g/1E/t1RleEet1cJkH/WcMvQbJxF+9u8Um0GoyEov5FM5b215wq6/0hzTLq4RawJ/GeeFLbs4x1o/UN5rJo97dQM/EshM9gWbET3e1Qlf38TPcAK+mCylrUAA+ofhs5Z3LLX4iHf0VnJz3NeF90fqLGQ+OLNdVvIZ/zsf3qe3RPx1a4vp+VTJl8AP4ue3n7xiG00lD/rsvvEt5xKOD84sunOhQdLwM+k7Ifvzv5MQPfXNVeuy1McQvX/9XE65xmmD3y8pa3eVokBrQ9rDg2b6fLG4kS+kTzd8J6pxwrx80qSoV8NYzlO42f10uZR4/Po/qLEBd5rte1pmBGha+g8+JiThe7X6b/OHEBlDgJ+tgkskB5RR/5v46236sp3Mmh8Qn7fFHpDWQbd39bo+XJS+2cVnB8cNY+5VvMW9f/TYjoju+jywL+e2hmoNVWC9p+CLzNETBQaAj9nRM0NhmpnQ/m4K2W37lQ+wq4Qeo7VnNZcC6qf84pDnNs3P5zGzxSrsQLNKTS+iGgb+j67XobT/GPVK0KaTJZo/ef72aVq88EH2AKh+2oYX+qrQOcTHkv9k6E4i+7noPS19VhtQ/lnbv2ySfGvtdhNgn/1y3+4PBWrh/rzfLdLmSc0Y0WE/o2UGDZxGK0/9lOddF9kofwz2xu9dG0jlH9erY06bmpThbnS8s/9rAc3y6H50zLeJ9F+33G4fyPnWMGyNY74JvejS8eVp3q4B6Fryt3nKaNH95sxDK8+XWO2gXxz7qGB/IZRlP+sEe8VHvzkCfnooe0dzHQ2yN/h+85gf4bFF+6Pbr3MbtS7hPJ1f+2OjucLJ4F/nHVdZre/LPKP5F7cY5qa88BofJ32/mBE4TJ6fqb4s5SPblGQj5Zib5mVN0D+PWf2l9YhwQLg3ywGbHyZHtWfssA3ryPmAfyse71OpKwPzmeQKFILQpTscOBvSsq6BOsUlG8dfSnk4NeWBvy7MigTsXQF7S/q+rtK7TCNA3+5X1BvmMUV5WtPuka+6DfVhPK5Dkw123KRv7Jnp9a74X/5iuYfOxfeDvvHDPnDwQONeTHSDpBv/u3q4eH+GPG/1+wVsbCJ88DP8Xip1FduxE8JBieCXl0uA/4dLBo55DqL+sfi4RT3oG1RtPGLerKZ+/e2NpR/STFX59/PGofyH70O+nEV26F+ae4F/Utzt2jnU6gNMcfpDJnQ+qOxa/XsvXvhwM/nhsRrDoqh+fdqmQ1prCia5n9QRcZfXXrTqwv1B3XZXb2pVwr8O37y0ZFz5ujvzx+wrNhxLQP8aavRZgVLBpQf5w4Qn2lO9YHybq6cRmF1yJ9SDCNFtf8sAX6uYWrfmvQU1a9FenxoacsD4Odp69rsMg3El22DYztZGJLh/jqFj2wi+F3kfzTuPxNsxVUG5wdZqx2HHS+h9f2P8JKcD4Fp6Hxg+Ks/nw4j/zpChVtfpkYGf0joFPMTezS2In7n4rQcjtIJAX6Wqt7Qvy0Q7R9FnJWy5BguhHy03u5vergu4tPjV63lFHkiga9Ffv/KutmL8qHF4vOTJS/igJ853q6sbU5E6//ClnDe6gdewMfDnh/jWpTR+qeqiEPJa/whur/ubYeU2Dk0fnE4s8vuyMXh/J/m0WfXwkzR/GTXNf6bRTECo+Wfk07vrdQPRP7GawOrfJw1Cqfdv0Eim/ld9LEH3YCxWG/RuwD4eZQxnanuCbp/bKWZjVfnRTTws9vq7dM2oeh+n7Pv794qWKbA+UMy39TabCN6PwJrzuNqLxE/myY797rvRu3/tzDl3fx3dH8dR+/LZ6U8KL99gffK6KqBNdwPPbXhWMMEP1q/TaiGDWcey8Np+ed7ecZ5tuwo3x0r2a7YU5MF/jMWvCvJ9xPqX/pTX2IMpSPwrYS+0lZerS+Nxv9ibq+zMetjgX9HDB+nTPxC/BUl+5C7TjcR/Gmh2XKDZ3SXQL8u1fJi78dg4Gv/1gKDgbMo35C83qY9zCET+Njg4JHHHjrIfw5S4/K2tvMAPl5HyZR9fgflV3JcP66sRZaAPnOFd0fyfpQ/vlF90bzNph5PIPhXZcDrmx87Or/kKrM5OdonGs4PknaYKBw1R/5hPd8BLWM2FeBvo4fRunmeqP1axWyMUfmWCecHd1ux9d3ygPNnpPOvNvA776ViRP8nb6tXDeP9i9ovq2R2geveMuDnGGNXv2jS/+y/n3fL/7opHfxnh8+1c9XTyL8sLXvbv7CjAvIbbA7KBc+DUf2J9ckOjq8RX8c+T99RGoDyq0cXGS/qXGmH84P2Lnb+5W3o/vut3HRbpeodIL+xfpLat3Uczd+z0vl8Mi9jwL+u7P0jJyaA+FD94i82Tp9o2v2n5ITaetbpC+h+aQ51JsmTep3Az2PZj+PNutH6ojV9u22XRAX4z5X838SfSiJ+Lr37k9TNkQv+c4X5WZW9tah+jVzlS9V304CPcR+X7AMziE8iDqyN2e94CHwtU8d8cFIN8iGkmKxRDYpLFU7LL+/TMxNrrUb7OzOpsh8N6yKBn2Wpy164HdofrE4KPR4QpoYpEPrk7JfIV5rI/+0TNltn/jsbp91fF98typCzBeWTD27hNki3rAD/2VZTWD6ZHvV/x1OFxXL34HwXeVOMSF56ALq/ZnfIh73mv/VwCsG/4Y/q+2QM0fMXBCtcpVTzIL9xU4ZJfPwJ+v4uMeksb5bT4f6NnX+MfGPYUb75TPcBkew7VXB+sOcNb+6EbzHobi9/O/15nYj9JvT6G/W1pxzQ+5tYd+wST8e/PC31n87HFFqbcwblRx7JHI2dr6zETGjnB39vmFr3HeWfhekOvq/qa8GqCD3l3dX75f1RqP8Mrwl1M5RgmoSuvVWPP48Bfd+s8n2HnaVwuP85sS9s6jQrer9PDwo2zjn4gz/N2yd/zCRCGsqLfhJmSRfXAH4utLhbcusc6h8jTkJye7+Gwv3NP5o0DTXs0frfa/LJT52FPPCfgz/PmuX0IL6U1uuNNJzyxhcJvUV1vwllH5pfQ/iPPOzVfAT+Memb0e4PUZdBZ0lkZQtRroB8h4XR+Ne4TnR+0f3m6JjfHsTPk6d3v11aQ+PHp8wPe8ZqaoF/9T/oFDEnIX5eyBqxUNpdDfz8fN38fHUpWr/X1cmaP70UDvdD7wlOkl2QQ/nAX49fHneabYDzgZS1jtNH09H5RMaeTuGoqUrg51xvNedPx9D9zwOXtZSFe8KhfEMz/+Hkjej5FJlHTO8n6mj9n6oed71r8wziN94/+Nyrugq4f6O3L/1tIB3a3w2N/tGckH4L+Ps108znjTtQPrlOavWgdGET8G9g8pZqof+538To6epmBQzOf1D184RKq5yQf9zcXOD9408olBeoulogtQPx9RFeh/Tukiqaf0EN/q6WTpeBfp+O7HfrVIsqOF+YxeKA51DQ/nex4uF3sW9jwX/uiW3/kn0M5WOvRdwN7ZGtB/5dP7/xUdV7XdAzWLLynn6tAv/50R6PmO0/UP07+agXJz5HQv75CU/9l/0Yat8BJ0bG8iTr0f1zng9/fFhF+zN/D6yUTX3Pos1/VN+evUVtU+j7+9WorKg0pAF/k1if5Gh1nQFd/TCzqAmJitP4OKO0KZLDArWvIYdIlYt1ZcDP7h58LmUZaHxZqqA0/i2LwGn55xNinimmb9D6+M76cT5SVxONT6hpHh8fT3Gqgi44mH0lZhUHPu7l+qn/WAadX7ga2mjsHKML5bllErRZJtD+U9XW71q1l5rg/oySCGyoyBXlo94G6MhXmZVDPvqNIh/LydYw0Keocyw7tJNp+/9U7YLe+MsP0fh6S9xMP+PsYzgfyLetqC+uB/3/Qz9uzW6ne10L/nNCEv3KPiW0vjiwemvRgz+SxodUi+UiOtZYlH+a1Ha6+XVHNfDzXHV3ZGgo2v/iL5bOXflRAfmNppsFN9bL0YMe+D3kdmaBJ5SPv/Jmo8J+dD/eyJTOybGVKuDn45dmnt7kQuPzqyDxzaRSHPg5x2a8fJcMap+Pv291oj+pCfycZjdq+qgD8X2l53DEL/V6yF9keH0NU7BAfJub3x4s9KEK+Fn5cpQpRzA6v6LM/XtLp7Qt5D+ufWYeY8PQ+HQoxqQwXaiatj4is7rF7PYqQPOz/XPtrRrbyzGaPvdgR3hyPlofWJR+IwnchftZyF9v7Mg0LkyE+uu3fL580+0x8PM+bH/fue9o/stLM56msDyA+6Ed9JfieoRR+zfMEUnj8cgAft77grlyMyvy1zZKOPdqKz2G+zdkLoZ+3xWG/O8B/pqdPP5lwM+J38aFl1mR7qNREXFujgLl+2JOWbyJRPltG2pU9/MPOPjPZ14Lvoq8g54fxnRbyH2hHfxnnyd76dfK0fquLXJ67LI2rL/J1yZP5hw4COfTSJ1vX8dseFEDfFxPCotN4EX5ENW7htx5auWgS55belRQjMaPY05+q7wzVcDPJkuaidUtaP+l53eIXOn5p3g3wb+/ez0aYz+i9c1Dngs/u+7nYJ2EfrC4Qe3JGbQ+aGi8MLzv1kPId/BcXPu5LI/8wybJfYu7r9XQ5gdy0K5YiRfGJfD8mtzvvorPe4Gfm3501nfro/MBPIZsfjcko8F/vu3pVvmSA91f9zzf3un9xhbIL6ck8dwLN0P315W/bmZQqo2nzY9kMwM6iVMxaPxalsyWDeJJw2n8Tek/9X7if/7/jq/FjYc2H6rHaf7x07qAv9lr6P93GaG4/LYOrIH8hiIWiynXIP7XbLBqu/nSH8oz/QnlWnmL1hd5Oe4Xi/8dP2n+sVTdgQB3HfT/R8mLYtvJG1vBf84gk7StY9D+YOKG5dYS/lA4P+hbcMB67xIa3/qVf9XqZ9ciftb/9J63E/mP8rurNvUbN2KXCF1QKf8AOxvK97GOZ00K2WaA/7yeXYUltPl//n+h6zaBx7c/xekI/h0QUxdjuIXWLxc0d0YeDygBf7l8EgsKk0L+9PomfKnigwe+jihPispmvn7qAvy+YsUZPwvvy7gFwb9FumGfD3G3QfmipFTOgetPsFpC19I+W6YyhINOtazR+U2NxgwIne+b51WFMbQ+TbCQ/CjO7Iz/P7KhNSQ=AQAAAAAAAAAAgAAAAAAAACAcAAAAAAAAKAAAAAAAAAA=eF7txTENAAAIA7A5w78bJCzYIO3T5OzEtm3btm3btm3b9vsLNU4peQ==AQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAIDQAAAAAAAA=eF51nXdYz23/xu29lR3Z2RIyLn2MiLIaVDfKaCAre2SlCEVLqSjtkkpT6eLbLmnYQlbInpkJv/t5Ot/Xc/w+jvxzHsd59uk5nvvOt9f3/J7XdTfse32Xqc5DRZ34XtNtSwoU9aBHdvz5+ar5ItYQeV349aFmm5rP2RtnwxvVkj8clDXV96gtLyn8z58yxbdDsd8PxeYrqqDVbrMODXy3l11G/gU+fV135zcDzXQ28ALklfDp62Yq35/dNXIJO7Yxt8tEg7uKt8tYZMjRXKGDu9xY5XjblLsjfw2ftGvu+FWWWjtE/go+qY/q3IJ/TuxlARdXdap8VKqY+E+YfWfDHKGzqz1d9B4Z8TDk0+BPhWqpDZj+6bkNP1XL89f63VBuNWI/t7H6z59bitEa//mTJfR0w5LT3xYasxWyfBTUTRF5YsfPrWxlLfn91/Vc6rz3Z4NaLU688/q6omeL9Ccz22co+kBHnRnQya5fEB+BvD/8AdA9Wu31f3h4s77Iu8PvATWbNW64+eA9fIxJo3jn7dcUrxoYbd8XrVC8h3rqzB3UqL4Fl5B/hV8FTe0+uqivth2firxewxq/EdRyzHyrajU31rTOf/5cUbxMXn0veXWa4jX0ecOfaVv6LuaUv5bl7UYFJA+r2scbI38F/wV0kN3O7nlHPXjCnEq/imaXFU+XH2CvhpxTlEPndngQ0upxAgtHfh/+Hej8Kw5zvt50YvbIM+FzqJ1vG61rBmdZ+hPJe6ZavsJx3oL31xMTFfbQzge+hZ5XljjlB+E7QLdN2Tz0xkB3lon8CHz6Pn4Fo5Nbv1zFp+Df96LGm+Y23nRW6POFi1ZnrAviOsgt4S+F5o8v+HlznCubhNwCvjm0yj9o4ekFccy84Sx/DTuuGL1eZdmmlRGKGVBzy3PxUfrxPBf5MfjB0MUudU0qjMPYUuTT4c+FNjCYJ321S2X9hlZ4/klOVlTr5eRP3xqs6DCzRm307Zvp8QSWPaQmP4s8G/o7ZWd6WI8Qlos8DX4+9H3q9uVvhnkyf5///IlUPDX7qGz+8ZiimXmN7l3u/S714Xweibw+/M7Q3PndND64nmKPkevAnwMdOXBA/fEOZ9mzBX59rygdUEz0XrwiPn+DIhm6V+Wp6aZfOtx9UU2u5FPjT4HmukSEH885ykoW1+STT9T4A6BPHDMqE576s4Ka56Uuvv/1pcSa5yWfXstL3BuZ8xTkRfDdoa66WWnFex3Y5ZrvLw2v+b5ST+iz+FbLH3c7w0xr/v9JlTX/fKRnUC+NBQ0991jw9ci71/z/lupAG//IUhvj78askA+C/wvPe94a8Mw8IpJdrvn3I12t+fciXYPenFcv+MHOFfw68m/wy6HhO25uSXrlwSKRf4SfB7WOaXl8n8MW5lnz8yWtqfm5krZBu3zVaNmo+Ubui/wofCfoNId+OVuUI/ha5A7wV0L37el4w7xeBler+fshSTV/L6QpUL3YMvMXubvZAOQT4E+F7rDYfHvKOg+miVwb/hzodxYx0MYunG2v+fstmdX8vZZmQr/fvzNgUkkGC0O+Fv4qqMnUHrpx18+zQOSG8BdD04t832bE5jHXmtcn6WrN65KUBw0d5mQ1TWMJO4z8PPyL0C6+37zUR53j7shj4Cugt15mWC58eok3qnl9lZJrXlel29BVOYdsyh658AbIL8jy4wH6b2Yze5Hnw79Dz8fsjhmpGc1m1vx+kB7W/N6QGtT8fpCmrr4jtbAoYNrIq5HXRz5qxJN7KmHxbALyTg3/f/5k/r3g08YX2cSa32+Sas3vNWk49FDLaacvHgrhEvKR8EdB1SY02fkh5jDXRK4NfzS0wfln18cPTuQWNb+fJRX8HAyCRrPNg4do7GC2yNXhj4XeVpTPdDfey+j54fBJx+y3Dm6xL5SH1PCFNLaGKyTwheSzzvCTTdE5lolcH74ptFXkqt2Zw8NZEHIN+BOgS2Y/1jE8F8VyavhIamXxXy6SlKGLds9IbDfdj9kiz6nhJuky9NHtmzMKq/y4AnljPEff51YT/xfeX5N5WQ3fSZ9ruE6qc7hGX9p43ppUHMVvIieftOpIjwaG+zfycuRd4beGmrmfTbCpm8uu9vkvn0r5cf/lUuk69HDKtvkLj19kJjX8KpnVcKukDz3/Vc/ESdmNXcHzLeE/x/OxyiXrf1/JYA3Av/Vk/Bvd/8uj4K7Ggo/JbwBtywZ0fFl3Cq+H/HfN9xUc3cXshXGqykZeGx//6NqzINPDjBXIctLt390+NTWbygtl/E2qmdb52Ij7s7gb+Pc5uPcFtMf290a2I3azo7XkbfzqzfAYt4V7IH8j4+tT+b6Z8Z3dOPEzA/fi50sRcL1+8xCjg4Kfp8DXhuYoNT+zu8NK5ot8HHz8nCtmBO5suufrbL4c/DsCHDMSusWjervmA39mjRx/vxQaUG3ltUbqBSeZFfLhsvzAwES9qnZRjPh4ELiXdGSD6Y3u+WwX/EzcPBBqMPBLD+ejIYK/VWX8beTYer3l6BNsGvi3Obi3GXRSwO1D9oHHuR7yNvDbQcfbJTLPf/lZS8bXP6H3WsVoOk47zYh/y8G9z6DMwDHwUYEHbyjLn0I3x/h1jEx1YfWRP4JPmjPL82tBmCc7CP5NAPemQbc1s1q384UL3408Hn4S9PXaFVtM3+5nvsivwy+BPluWXLxuQxxLA//i959iKzRcv8vbgtdJ/ALyHfB3Qlese+nu92Yzv4PcD74XdN+vPJOyhfGCf43BvQugJ120wjqM28+1kRNXEx/3edQw+WVyKCP+Jt8M6qD4ej9R5zjzAf8eAPc6Ql8PCxm27d3/8n3wSVuGLat8qBTPLJEbwp8HLZ/e6denQSmsGPx7H9x7G+od92n3UYtY/ht5PXB1HegfrtrkyUdHDj5TXMFz4DRF6senTWd/OM7zwL/jwb0Mqrs+ZsM6lyh+Gbk2/MnQdnb+QWV1DrJcWS5B/fYXpKXrBbIA8K+FXw33FkBfzOu2RffKKdbTvCZfXsO/Ch/ogjEth/Uv9WGjkGfDz4Cmfa6/dUSfQ2xxTS4drvm+Ugfo8x27Ln2/EM3ywM8twNfR4OdVMU02PPt6hs3B8xPw3Bd83euP1doN3eKZFvg3H9ybBz088ZuWQ9Nzgq/xvkN6gzywTdKbXcXHmBnysTJ+roj9aVSYlszMwb/zwL020OVH9GZUlK9gNshd4TtCF3Q/OytoWgDbgvwS/JPQmNCyW8ouvmwh+HcAuHcKtLOP49mgn2ncGvki+P9ArV59TFz0Lx9uQO4Gfx20SprU6tCDXM7AK7PBvUZQp+at3/ZatVLwsR78udAFTcs6Gy3xZhOQG8A3ge5e5PzJ4UUUuwj+3QPu3Q29q2z3umF5FjtVCx9bfHv/qP6GDOaHnMGfD534U0nJ4FQO2wD+jQL3kqYdi7tfefYKt0MeDJ84uWxLduHlvgXcDXkkfPQDksvJH7MrIwp4XfBvHrj3FrRnUKtVjTqc5fWQ34f/AOow6O1RbunBmyCvhv8OGn97lc3gjH9/PsG/meDj19BvFXoB3nnXmCTj51/QpO83LvVvks3GIh8EbkY/I2UO7335ar9LbAz4ty24Fz2SFBU+xK1L63SujlwNPn4/Ss3r/ug4JTKMj0OuB38stI3ThTUHikMEP/fGz8FgaGnW16slmt58HfLx8EmVU4+a2NX3pN/vkhZ89GRSWkjeg9QpHuwM+HcmuFeX+Pni8CRVj1SmQE7c/A/08N3Hh+4NimfHkY+ErwmNP/Rknu+HaHYR/NsO3NsWet8v7+1L/dNsNXLi5gJon7mGJaWWBpz4W1nG3+Gt+2tZRPryO+Dfj+Dn39Dn6r3en/sewkqRNwAX1ydOHqy95MXmM4z4uSf8tlD1hZWjE5oWshvg37Pg3mJorvvioo+zrzJj8LMu+JhUfe+2QAeezArx/B889wja99vp8DIpk/3p8//7Z3yd4stu22v6zyw49c8NZPy8qeJVklfCGsHP9Dzx8xwVtfUNtfYIfpbzr0v6roH9DPaL/KuMn0fM6XRAz3MNz0eO9ydCH9y3tRg/ewIjfiYupv5455PS5/fjlov8JXzSJOWQxaaGFpz4Wt4/3+j+Qn2/w+Fa+dkwe+6uWL0hop+W4JNWxs9UXVu1hvkgHw+fNFtl+7SgKjNOfEy9MWm/NWuVtH3tRE5cTbpi87T4Q1lugp814JMOKTBd3GfACTZExs9qpHHLr61v7ULvrxVj4OP9s6L99O6L7E8Fs8HI+8In7eLnsv6HajQbB/7F65biO1SzdcsWdoZpnPi6BbiZOHvmJuXHk1UmsYnIqZem77N7hs/8YTyW4fVZgddfoaoN6vjbKjzo9VmB12XFQ2hLU95n0Fibv/j6CdTt5K87jy0Pc2fwL/oXBfoXRa+WLSdk/cu/lKN3Ebp+v2bv5hpLOfFzEXzSgxOmebYN2if4eBu41474NyLm0rKsvdwZuQF8/J5UnD/oo9c634Sjf1Kshr8SOq/025e3ZV5Mwr9v4t6F0GbWJjs+dDrP0GcIvp4P7f3dqnxPQDQbgxxcoJgHdTIeHFDa4hjzA/96gHsPQW153YMmDVPYZeSx8GOgbXhl/6pHCcwL+Ub4dtDzsRs8Yh9HC35+CO4thbavM8bC9qob9ZeCi9FfKr6P+V3YouMm5oXcB34Q9KZa0aBRVl7sHPhXFdw7EHo7I0bTp2swK0c+C74BdMvVfefnHghjachHwteAPgwqXVrgGMJ6La3hXzv0xo1P1uj+Zocma6/z4mng6wpwdV18nZl3nze2amHsGfII+POgGXda7TUZ6MHmgX8XgH/rQlOsztTNrxPPNJFfARfnQrWaan1e0u4UO4P+OQDPPYHGNnAJ27bKmxuAf4PAvcTR78/3zlSK3cZ2Iv8Evwrqs1l/iM8dR+aIvDf4uSXUMi2j3qIp6twJ/GsK7t0PfaKyODnmXQY7jtwffjC0uOvh8JMDfVgp8tY175ukN9RDf9180azcix0E/2qCe5dCfxq3ePFa4c0tkM+Ej/dxUuWk0rG+dxO4LfIj8NdCJzltzDsRlcmJj4mfiYPVWw8tKn3kzKg3nAmfvm7V4F1Hih8GsoHIdeBPp3763rCju/d5sRzw70lwrzO0SXrnZh65OaJ/toGPv//SIP3Q67N3Z7EDyMfBnwF9EL12WOT4LOYI/sXrkpQOter1+zu3KqB+QEqGT/p5lIVbjCKPeyJHvyBlQJs+GjnFVzuH//nvnxIpE9x7HVpQZrrg3gtbwdc34N+D5k/pvOTq/WWiv8bnhtJzaDsTVd+KAycEP2eBi/E5p3Ts6VSfizm3BD+jf5Hwe0RaofL23LpxOWwEciVw8xfkuYZdP73RzmTasv55BPRPuObzJOuL1C9JA2T83PfM6x/rjSNFTv2zBrSZ2eEknQXBfCn4tw9+DoifP/oP6BHWM4SvQY7XYaE3rF6w6eOOsiXI6eeQ+ueLq6yLN6T4sXAZP0+Hzo2KVSRbJwp+XijjZ8sDOsWPP8Yxd+TD4I+ALvZUm9ZsWzxLk/FzG+jvypedDb7FszXIi8HNRdAraa8sh9Y151my54mfR2mqvcqY6i76Z+wLpD/QdVebfA0Ic2LE1/XAxaROl4b/src7zR4j7ybrnxuN8Ft7pF8xuwX+PQfuvQrV7vchaPKXYrYA/DwX3DwbOk577rR58f/jZ/TD0kNoQt724u6rc/7iZ9LHNl1dnu8bLPJ6Mj6uaN/rwbpPtvyX7Hnqoa9nsfKvett5HvhX3i9vmKj57fgre5Yr4+NP0JBvk/95lGgq8i8yfvZd/f3Qmxf7uIusXyad+lOvoG73rUzOx8TPnQ01J6ZO3sNdZfsOygdF1B3QzM+Ry/mXeuRFz6udeoR5/MXHlK9ZKd27s8iuVn72SZlY1eytIaP+Wb7f6Nv2+Mcl7vbMshY+Hq8yptelGftr3XfcLX9feWhjINMA/w4B9w6GjlnzwNh1mIfIqXcmLX/aNPiHoU+t+43K3k/GplY6iX3GH3AvqUnV+WUvU7yYBvLn8F9A5670tBis6sEHIb8Lvww6wWOIbbGaK5PzL6n/ZVbxdoaf6JeJm0k9Q+pv0UhzEPxNfE2aEbsoWWtPJMfnl4pUGT9HvV5/sNk4zo4jx+eeigKoi1/f5c8ijrNQ5Lfhk85f33jB5eUJgp83gXu3Q9csXjPRZFQsC0FuAd8aemJQC6Nes9ZxBXL0Uwr0U4qeXeK8Lw4+wYl/9cG9xMFzVLq/2TEwVvC1Kfx/oK9c6z40vOzOJiIn7qb++svoZkvtE2KJPxQGsv44o9Ox+0de/ss/yPfCJ/VO6dMz4GuM6KcdZP30nhPfnYxbRnPwkyIQ3BsKHWrX+NVcR0/mgzwEfjhU5dbgjWO+uXFf5BHwSQeZDVu7abs7vwr+1QT3ToJu/OfA12suCewpciP486C9H1rFBFdt4Bw59c6joa4HWodHqERyffDzPHDzMmiwxuvzp0vPMWvkKfCPQKtPM+eRE06wV+DnLHDzYui4/FF1Yh7M4v3Ax7vAxcFQq7igJmlnUlh35Cbw3aG3KsNOaWacZB2Qq8O3h25bkzx3bckxvhz8Gwkuvg11zdDv9H5DCNuG/DF84uiEGI3tOX/2MgvkxNVvoS+/atpfbxTOz4N/HcC9cVD7S5NVVgV7s2XILeGvh6oM7/I2vtqUB8r652So66+oUP/ENN4H/PvUtoZ7W4J/Hfy9I7pLaZz2Havg077jaMcd5WcMLvBVyDfAXwbdEDbWwfdHASf+nQzuJQ7OfmP6IfdIjODjifCnQWPdXznFOjrUmsc8vrxg4o6TPBz8uw7cS/uMeZ/D5/a4lSf2GdQrL4HeePV0+tRlF9g+5P3gS9DNr+Y+lwID6f2/lAPuxc5M+jlyqFve8HTuhPwM/BToxsF6fyJdCnmkjK+LofZua4xPrbvCq2X8fA063f/dqBMP9/FfyEtk/bSh9s3RD+u6CX7Grk7C54vSxg9rxhxtPpL2gRIH95ZDXVp4jJ59rFTw8X34T6BX10dvyM/OYWNk/IzPN6WctvXVjkTliv65A7iXeubxyWM7WO2KF3zcT5bPn1oa72zoJ/Ybk+DTziM4JfiZ29wIvhj8Szsg2m+seNhl/6fmpxj2m6JXJk42drXbWT3hFFuEfBj8IVDdjz8Ljp5yEfuNOeBe7Eil1QntWngVZbEU5PPgkx5drXX5dHESO4q8H3zi6C2GjhsCPiUw2l90BfcqQd0dEwIK96UwG+TUO1+CWuvOsRy+0Z5nI28te37LCF1b+/JQTv0yuE/6BT3wsPhLw0eh7IaMn4mvdw806nkv9H/83At5G+itb1d7a/YsEP1zNLi3EHpjTHqvbeOuMiPwsx64eQbU8nndwepnklgRnm8M/yme3zWyZ7ekS5msrmx/Qf2z77WuXRccceGU15Xx8/kWSgd/fVvwFz//wvO7d+aeLjB1YpfAv59k/BvTME13T9RJTnmlLHfasifsj46j4G/KSR2NT2rofAj8q38m/p3W0cwg81kAp3007TNoH7186OLG53sd5E7In8An/Thlp9/cVrH0/kyBfZACn3Mo+kelzNRfGc1ry62Lk47FfbEX/ExcTbrTVnfjguuJgn+pVyb+baPW/OuwHWGif9aAT/ryaquAIWk+TJ7T93kZML30Tb8Een1QYNclVEPnj1dStHj//Bc/G5gFjs34FSL4mfYbpIfXvdDoeyKNXp8UH8G9lVDff1/x9Nx8xD76gyzvuS77QdcX2zle/xQV8ImzHz7IGNzveqrg4zLZ/qKLyoLpByojRb9MPvXLo1QqyoriDGlfJ7iZvi7jwfzX/VfHsRDZ/uIm1Da2aNe9sxd4HPKH8B9Bx3+xsX5R4Cz4Ol/G1+17D/PZonuBPp8VvTPtM7Q/bpl8um1crf3zsJbj1UcMdOShyJfDXwHV/9Polv6jdIbP+xQGsv446+oW59V9vTjtgmbBRz+mMJxyaZadXTAbh9xE1k/f+n1qa9jADJYP/j0F7g2Hruj54UPRT2/Bz/L9xkrW5JaJTwJbgdwSPj5HV/w21tZqqORO/aMC/aMC/aPi2SfHO84BnrwQ+R3qlYmzu3Upnt55B7+C/AX8e/R1Tatb2UUE8gvg36Hg3hHQegcf7J6ndZpfQ24On3rogm2ebbZf38zikC+DTzuQorWtotwaxLKh2F+cwu4iHnqiaozOYYuV3Ai5AfrnX8hbZV8Z33q4O2u+pCZfCK4OAj9rD5+RtfdYAjuP/vgheuM/UNOdnSoUz1yZA/Ybd47X+AOx35ilrpR2rcKT9avhd+kgds8tav53JAND/bGJjtFMF/y7H9x7Hhqbv0LdZ+Epthh5EfwHUDXfJr8L13uzvci7oHduAv3zefaVB8UXGPXP88G9tM9oO7ZNvXYt9oj++RR8vE+Syn9UTHv2djPbhPwi/OPQaVGXp+8c5c0PgH9HgnuXQOuG1hs0a+g50T/PlvXP9QfcPDIsM5WvR+4On/Ybw34mTtE+eF7sn7XAvbRjbrrPolFPyzROPEQ+9ct/VhkN7u2zh9M+mrib9Pq7ic9+XY9mW8G/JrL++M/sPT9m3QxkLsjnwTeCJsYuSXO5oGBrkPeHPwr68PN2pcChhcyhlv45yEnf5+6Ny9wFeZaMrzPsPwc7b8znx2T76Gzo97UDc+9WXxD9Mu2Xad/c7fRLx6BtiX/tN9BvSLaxH1zu2vvS67dUCZ84umXZl5u3lyUI/r0o4+Oxl1uN37P8pthn4PeK9BnawPbT2g+bMunzUWkA+Jn20+dtV0zyn5gv+LkjuJd65oowfv+HpYKjX5Lw+a3QaDOf3rHx/mK/MRM+7TfG5vey35+6mZuDf/vi54DeTy3z+Oj15WyA6J9pt4HXY0ltenRVkz8+Yv9MPn6/SwU2wfOSmgSK/fIscC/OX0kWMUpHDPwTWSpyE/jzoYa6UZ673ZOZN3J1+KOh4eOskz4f4+wC+LczuLc9dIxugF3nrrFsI/Jr4OarUMseOQ2bdl/G02X7adp/2EcM+9Koaju7C/6l/TPxscYh5Ysr7nsy6qcbU68M7RFh+2rR8qha++fsCR09Y22LRX8cRbsNaLZXYd2eva6I/nmOrH9WrWy7e3VAMivG8+BbqRzPH81atXiyTQ6j/UVD8C/1zIOctg90fr2X/QYf/5HxdfnSh4nj8q3F8+QTR/c+vsjJXGs3p/74u6x/3uvs/jS8hTeX98vEx6eDz5T6nz4ozg/SvoO0Y2irjGTHDfwQ+LcC3PsU6pu+71an00F/7TOIs5V6+XUYmevBnWXPk674Wu/lgjZ2nPbLtNug/tiq+mPg1g9uf/XTpFfK6zuUurhy+flD2nc43Tdd8bJcn9fWL8cta9xge4QrfX4j9s1DoUsaHex+64A57avEPpq+bhtPW5+c5856gH+7gXu7Qoe1d9eparOPXh9EL0364aTLxwxj/1qf79HLu38j10Ucr18KvG4Jjbdi5dVfz3DaZ1Av/RvayUXHyWSkO6d+ms4fkm6+9Cdv0UQPwb/ExdQ/u37XbvFt1H7qLxQV8GkfvaXXxp4dvDzF8+TT97nxvuDm3c4OnPrjW7L+eMkVXR+LcRvo94sCn1sKVfJ7/c/QEEux/8iU5XsLLVIDh+nVyr+WrQbc3Trtf/yM34tCY1zL2w64eFI8v1L2/MwbN+pKGQ4M+0zRL5MucA4ZFKd5WPTP1CuT3opzLPI/fqDW57ft2Pk8Yrcjw35UsRDcawpdr96ur6VSCvuFvAz+Hah2z8T3y6JOi/55P3zqoXV79Stqp7WfFYF/74J7b0G1htpPir+WwCm/J8tdh9qvshkfymt7/sxL/XGzhiVzP/BvL3BvV+iz2yXLLfQ9eDJy6pdpp9Gl/bhbsxr8+/cXOXF3T+j1rAsHApxceH/wsSO4OAzauf/EjwPjVVkO+uVO4OKO0PurVU03lzmw68gN4eOcn+JTlwZzC9+lsDG17DOCHdi51RqpIr8OPw86u9T7kzVfyMYhvw3/EnTRb+V9ZuviuDn4NxZcfAN6y77h2tzxE9lu5NXwf0Ptzs01LPtzgu9Djn8+UhvolYJ4Fe3f2lwN/KsM7h0DNX7k1vfOpWPMGvlO+KR6GTpzgmes4xuRn4fvDa22Ovyiu9tp7gL+nQPupZ55ZzeHI1snpvFRyIfCHwK92HWA09KidD4RuQV8bWjspgmpB54Xiv5ZF9w7A9r9oMYUHZtjvD9yOjdI6szHjVKZtUPwNT1P6hc7qyqomzd3B/+uAffSvnnEuhTLFKdChtcHwc2kvg9Pr+ipflHwcx/4GtCIpqerzFTzxH6jhLgYOnyTwduXrlf5HuT4/E06B/088Wj5mn0FPFDG1/R9nO8u0kxUvSz6Z+qXaaehNaRx1KLqIPYTOe2e6XyghWpQqXGVlzg/+AM+zolL+tXKX/rZhIl9xk1wMXFyz8hqZZvSUtr/SY3BxTiHLpWlWL0pzc5m/ZG3gl9B/XNe68F6ObGM+LcLuJf2GWeWtP94eUCE4Oeh8PH7UbI4NT1p3fyTXAe5MXzaccSNUeLKu6LFfoPeh9F+4/kH3Ws/VgSy2vjZ4PnNhpfbhDDqr+X7jTvNddaHtHZjkeBfI3CvHrQg8EbBw10X2Pla+PlEazUNa6s05oZ8MHzi6DVBQzren3ZO7De6yPh3YQfDfqtNz4r+mXYb1EPv9Glbbyg/zIm/W+A56qE7rIp9a1fXnd8D/2LXK84HHj8U/mHjp5Ni/9xQtn+2jkrPMe4cwh7K+LkVdEGB5fn6+y6x6+DfeNn+eVeVyuyCtleZGfiZzg3SjqO1+tvJwzYls2t4vq6sf97+W3EkWCmL1amlf1Z7sytnzrslon+W7zvaKsouLL6tzqr7/P/nqX++MfPZiO+dd4n++bOMn0fcq/Yv4a6if5bvO7pc3HAze7IJz5E9T3zdp3J5u3Vr3Bnx73MZ/6Yas+HjH+0R/Ez7DOLoed2bvTKwtRP8TL01fR+zihcRJVuCGN2fMRncOwka3XWZemrDszxQlhMnn0vbO7xj+jLmh1xLxtfGa5wfD7Fwo/eXgpuJg08UlR6+0DuYLZPlxMfuv/ZuLFpxQuyfqbem/jm8k2bck/Whte6frwRsMFuhZMgpJ5/u4dhSlhiWVRoi+BmvL0Jt/TrNL9u0S+yX6d4MukdDvaqsgXF0ith31IFPHP1pu2Pp4wkuIqdzg7R/NrV92rHqeSwj/n0q49+zv6xSdVV2C37Gbk5w9JRPWR4h79b8xd+k1u1uFM8vi6fz54oL4F7aNy8/vmL9kdHB3Ad5IXxS//o6Kj1cdrB45BXwn0BzPdRGtp8Wzmo7H7h7zSJVPj2eu9TCzw0XJ7w72iJY7DfoXo69UOuzTw47dAn9qz8mddmqv77vswBOPzfUT9POQ3nJI7PABxsY/bwYwqevC+s9RLfzjHDRH+NzbcHRp75umb/FJ5n5ys4XEh9ruzQKeN8ujnkj3wPfHlrgtblJzJZI5gf+jQX3RkFXnjbZqrFxmzgfSLtn0mbhBuParXTlBcjx+b6iBPra6HSMrsZpFgP+xT5X0Re6OG3T7nbmLjwWuQr8PtCJj0recLujPBq5koyfSydNX37/4DE2Cfz8Ddx8C9r/e78JXg5u7Ar4WA9cPAT6fnCnSufMjUzC8+/x3A2oyUynzkmh9jwE/bMdeucb0LOm90KVGzsxVfDxUnCxF3TCXucbnULtqR+XAuDHQZvPLNhvHufGrcG/Z2T7jXpPE784S0a18nP3uzFWzz/P4juQj5Ltn/uaxqgWqx5iLuBfW9pdQFNU1ywf8c2er0BOu+i9UPviHCUXbWdxfjAX/gloSbmrzpGFK9kg8O8f7Dc6g3+NJzV1aLwiTdy/4Qwf7+Mkh5N5Dh12pvONyI/Dpx2HxvDV3YNvZwn+pXszaOc8ft6IxlatvXg/5NQ7U7/8q9+Gbt8+HmH0eftM2fNpgXdN6m334p7gX+y6JEvosug7mvoGmaJ/pn6aeuiOL+59H5eaxVYj7wlfHZps0rjB1xlZbDv4F69bgpMvl2jcLo++Jvpn2ncQJ1t4Zb5tH/u//XOirJ/WbF099lznTP4DfJwD7r0KjfrzZfZR82CRUy9N+w3HTT9eW3bZI/rpT/Bpv/HFIeTH1ocJYv+cDe59A1X71PFn6LfbtA8U5wpfQldrzNF3t85mQ5F3Az9/Qt7vVyc3Fd1UOl8vtQb39oKq6Nrt+x2a8hc/DyGOvqT/T0r3vXw8cgP4DNrqx4NtTQcEMeqf6fwgvR9bmzfm4IpxwYKf6Zwq8XPfpC6tFnQ+K/bPdA4Vr+fS77cmbnVbh4j+eQa4F/cYSDqq66cXWP9vv0HcTPuN9Ox6C8feTRf75+Hwaf/8K+lMVsEEBUsG/xI3EwcnZvepjLyTyKyQ54Obc6Gq9xq8W5R2mFH/3FrG3x8P1X2VfNNJ9M/y/XPRt5lBB+b6/8XPdI4wt/Ei1W9rzrL7yFVl/bPr/RVe2t+L2T3wbzK4l+7fiJt//JF3wBW2CPxsKOPnPolLoi+GJLF8PI9eWXqA55d1jn7oVvY/fm4i6593d4ycdr/NHpHL98+GJ+5EpH3QZ7WdH0y166ryNuNQrf1zkFKaV7/X+8W+mXpl4mTjrXV0N/d3Fv0znTukr2syTEm1UDuQH6mlP27yj+baw5UejPpp6qVpn3GuxaXIbR+9xP6Z9h3E111+DEi+7Jgk+uUx4F66P2N+Rse7OsNd/7rfjvpl7QSfoaFvfMX9dXQ/B/H3IHMV40uGybX2z62G5ZZ2d4wV/Czvl9uFdDVb8MKQW9Xy/McmCTaLeLTgY7pfg/g428vvfh+XCHE+UM7Pl7VuZfqsPV7r+UHV8PkGc4NO8iHg32fg3sfQw1XdPDZlnBH9NM5tCJ0cuPHD7pUBYt9B997h9U3R2GT5wZ2dkzntN4ifqX++c9k6UOP8KYbzK4q78Ek769j0jOnjLs4Xkk87kEEfewcdTY/kYeDfB+Deu9BnYUYbdH4kivs1cP+TAvs/hc7iGznz23qK84PFstz7/u/Gi1+d47XdX9f79paj357aMuwfxf0cOCekqFvhu2Py1wjaRyrWyPJ9Vf6KoXpnOe3eabdB++ejPy1bNizeK/pn+b553Iv4aZOnb+e0/5CfL3zyPnSG9Y9YXtv9GZN1GjvEvT0t9hu74dP+2d7zVrjfmxBx/wY9Zwy9MvPYjGkjvMT9Gn/Avb+hRZuD83c8OSn4mXrlG9D4x36uY1zOiP6Z9h30dTl1HnWKaJXCaX+hDu4dDN2QIf0+09+LUf88ET6dD7Sp9sjU3HtK9NO68GlH/XtPxMXGO5M53b9hJbt/Y+3F6bZJzvGsB/gY+2QF9smKKS/HrbxeuIbT/iNItv/YENxuYauWCm4G/nUENytBW/4p35pansrMZXl7qKKhdURqk418wsKa/Cb2Hcug4Sdt/9FvlskXgH8V1DtDDU44tZcuRjIj5LR7ph30iU3K5s/7nuB0fx12LRLuAZQSTVMO3fiexA+CfxeCew9Q/7xYPXrEhMn0/kcqhI97VKSWVndCg5NieBjy5/Cz6PvUOdTjqno+Nwb/tgP3joXuKYka6mabxXF+VdoKfxd01LgnzY3eZnIt5GbwJ0PvnY1329b7Cqfzgfj7Je7XiDumUb3nsjunPnGWjI9HPxts4d7jFL1/FecK6Xmzr7aPL3qHcS/wL94fS/icSqqTttbGoSSLXh8kW/g4Ryw55xu8NTC6wPYjp955GrRf4fNqi17hjPYX78C9N6Ap53c9L5tYyI8gvwSfOHpUN7Wg0w2KeADyNOJu6GSDuaMfHLwizg/i9VXoiV+dDNoM7C72HcTFtN+ImrPr2uH8ULF//g6fzhE2sKvIXWCzh40E/+aDe/H7RWrTV3qemntX5D/gYycohand9/axyBI57Tfw+af01Wzjm4S0C2wS+Be/18T5wdef3936ErGaj0ROu+ZhUKvrx44cLQnmQ5FPg68Odd6wVcmwZYbon/G5sdgxmx5pGq3VNoatRo7XadFD9/Dz2LRynZfgZ/Kxx5Nsuz0LM9tzlp8E/86W8fNQo7jIDq7Z4vygOXw6R3jhdZPH6hbJLBg57keQwCeS8rOV8S7+tqJ/7irjX73P6b2HWHJmgfySjJ9nX5/c/2mQh7i/rqWsfy5VP7FX1yad3wL/ggvF/vnH+7kup59FMdx/LHrpauQeWe/PNlwbKvhZBXlLqJvxwjt3RuWJ++sSZf2zY8KBp/fCr7B5sv0G3b8xYPp0Xee2yawEzzeV9c+m1UElDTtnC/6V83GrC4Z3B5zV4o1rub/usHqjydM3ruJNZXkjaM+KToP0XXbx2u6na3KqzzBDd+da99GbzWdFBnx1E/dzkE8czfR/NNprHCH2G8TFxMlzvo3OHZF0WPTT5D+Dhg7v2cB1Q+Bf+2jSqW2TJ/80ShH7C+qPSQ2O3NXf1Pww85ftOyg/WVnySu3aScHfxN2kPb6XTe/YOkbwL+1UiZNfTj5yvPGXEHF+kLiZvi7EKVdpfag1ry1X/dzxjOq/fKUqO/+nAp3wrv7tyib7WH/kdD806Q2dgQf0rur/xc84R6HIeu/T/vjidE73b9AuA69jiqZnzBNXtw9kxNdPZXy9q+zB8CHhIeJ52n3QPtpnUrs7S8dtoddf0RvT+cDlz6YYPg48yeogp3s5iI9fNWtjH+MQxL+Br3GuRYHz4Yp2OcP9dVQUol8m7qX7M55fbJ/3aPnZv+7fwH5QMe9Pa41nbm7cG3kufNo/m+1+3f/zkouiPyZupnOAy8pPdl9dFMVq23f8Ptx89LJOkfw2clf4HvR1N184f9BMF/xL5wKpf24Tarq4+8locT6Q7qcjjg6pnNp+p4kRR68h7u8gvk7sZnwh08qHW4F/jcC986Gt5p/Jb1WaygqRx8Onezg6VKoM8h97SvTTuH9Xgft3FUc9dxq/mhvKq8C/r8G9X6G60XX67XU9KvrlAlm/zOYp+tzxTRD7aNpFX4c+XFWP/3yQJ/pj9KcK7HQV23Im1G9VJ4BlIe8Bnzh7inbzXYntAnkKcuqvib8vv/c6UR2UwjPBz43QK7eBWpzZvujRqSCmBT5+DS6+Bp0XfOCUivURvhrnC29j/+wHPfCmZcTXNwreGXw8Eb3xQeiXh+dX6JnGsEPYP78DF2vQ/dDz+fiJpjs55V+Qj0ae6Nk75pFLMp8N/j0BLs6G1u/QbOa2I/Hi/g26H5rOCZbVr7zk+tyfn5DxM3Yy0ibrqEr3c8Gc+ue1sv45WGPgbb2T4XQ+VAqDj/Oh0qHm7fzL2h/nt5E3xf0br5CP7Xh5ZJ3Vcfwo+Bfvz8T9GRWa1Xduah/mI5EPg0/7jegWZuXjYy9wCbm5jJ/T9PRy7269xPG5noS/X+L+uk/3P4QXmQUx4iK6l4M4WttR8fHT0MWCv/G5j+Do1ltSxkulcTwG/HsM3ItzEtLx0GahQzsUsLvIg+D7Qm1NWkdsYunMCfkU+HR/9C99vYFr7GPYDvAv3f9MHFz2aOC2oOoMjvvrxa6Z7qdre677+kz7Qn4IeZIs/1kxaXVi2C2O11/pCriXema/4z7phZv3sapa9htfXZxfrTwcLPj6M3z0JFLrf8remJsF0f1NEs6Xi/N/i3e2tRuz/I7onz/K+ulP88xcPnXJ/Kt/pv2HT4f6n4Z6JtH5eUkJ3Iv7WaVjamXjKvdGc/x+lHrL+umO+W6H1z6OF/vnOfDHQSeOuewxqGe2OD9I929Q/6z5pkXY9NxTbBVy2mfQ/RtLWim//aNhwRYip90GfR7yzm6s5TmPRB4jOx9IHF36IvRhs5mZon+m+59p57Exu1P1G5tYcX6wJ/wh0OVqbgs+B63i58G/SjL+Hax2pzwyJpktR54JbqZ7oLukfGbfO50V/FxX1l93NFg1LlI5m1P//B5cTPfXnR1aZ/bPJhHsNvIfsvzqqML89WUB7Any1jJ+7uQ/o0DNNovdAf8mye7fMHe1NrJJ/99+g7iZOLpNQefSfomcleL5H3iuAjr61oxVI+zzWBPwL/hagXOGCu7RqVpZxVP0z/L986bhOi97eVrxJjJ+ph21QYaOosFZP14E/v0J7sU/B8U6/dltW2idY/LzgcTJV967tDT/4MqLZfxNPXbht/ipTZW46J/l92+suFXu8Uc9kx1GXi7j674XT38x6xYo7n8mrqYdh+7FTt65TfIE/2rK+DfDcJL6sths0T/TuUDi6MJ3r7btVTvJg2V8TTsPSWVzVEXC5b/uf9aA3omcHTz9VJbYZ+B9q+Dr44531Uu6+Qt+ppy+T2CzthNcf+bzfuDfXjI+/vxngfJQt0xxP7R8/2zStbTqbeVmwd/y/XO0umWTLWVFol+me+uoX145WvFlTb0Ese/AvfVixzHz8wRlJYWfeP6H7Pks1bA/RfrZ1G8ILr4HdS4vanZBKVucL6Re+jE0+EPF3W5bQwR/ky/4+0uzhwONLgl+Jm6mfUbkgS7BfvuzWW18XaHtktDk/SmxfyZ+xu8hxZvv/pMTp17idL/GMnCvFVR5v1XnExnxtG9UzIVP5wjXrHB+db06mtP5Q7p3g3RChZu52/dLdD+tYqasfz5rV0dnSG463T8rdhvUL2/5Z8ujJgkB4nkjWX7CzGPb807FnPYXoleGzk6etdd5UL643w73f4kdx6o2sWZzltlwf+Qn4btAHzbM7rhSrYifAP8mgHujofavG2/etSSDXUWOe8vEPdFdL0z4aGMZydcip3OHLtD660snrnpazAvBv9OIi6FhSwtW3+uV91f/TPtnj5gBnadonRL7aeqlibOXNv/5xeRMNs8GP7cEN7eHumu+Xu2WmSn2zx1k++c+e+Y3WLHQmech7wG/C/TnNEXQm2PZvBv4eRa4+Qj0fbbxp28Veew4+HgUuNgAutT76rAPW6x5OPLN8FdDw5sNuRS49BKfD/7dBy7OgLYZNW9pvV3ZbDNy2kXT/RrBPRt6W5ruEfuNVuDmutCEASFnYtOz+TvwbyK49wF0SKjBtRbKGQzvn6S38PH+SVraJ27T6z3RPAg5/fdXUqFK3KX+GP0S7gb+pXszNkEVfp7zva9EsZXI6b+LshjaIL/vppVHz/IpyG3h60JDPwerLq1XIvjZBtyL8wGS006tbx5e6Qyv19JK+HS/81bryMVT5h8R/fMK+PicR5rYfu6Jo+3zxX4D98JLeJ2QNJxbNlDTus0ikK+X9c/qu46r/6N8RtzPYQx/KfXX9Ys8XEfl8gPg3zJwL/33UyIvNxpqpJ/B98n2G8THcSWhqslO2YKfafeBnZv0q/nO8x0+XBf9M+0v8DorvT3fwjSpY5LYP1fBx+u05NXmTJXZ4ASx32h9Ds8hV7maZ7c0P4dTf5wO7qV7NvoUt9927MFDcf8G3WtH+42hjW1nre4aVOv9ddvGXBiV2+wqHyPjZ7r/uUFbfe1XvcMY3f9M/TTdvzFGt5Fv6IMzfALyqfDp/ODoMZH/XBl9iRP/Ej/TDrpXv0jvft9z2FrktM+g/cbloK9GWes8OfXP5FP//KFLBzb/39dPur+O7n3WoX65ZOC6je+vsovI6d46ugfa6WP6XptfvuL+Zzo3iM/ZJdsFj/uO+p7LU2X9MfHvSr1dfZ+pFDIz5BzcfBFqdPvVpBSH//FzczxH5whj9B8tjci+LvbP72R87PLMOKWD7wV2DTndz4H//p50q0w3c1vEYf4cOe2eSbc538usVzqfl4F/g2X988/MSSs7dr0u9htDwc1ToYf6jdbo7BEk9h938BztN5SZ8oT4Q478/wBswR1IAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAAAQAAAAAAAA=eF7txf8/03kcAPC1xvl2JWVmvk7NZqb5MrrPO+fbHiFUvj1KVw8nCz3Cw8mdRPHwJaWHOi6dmNvhZJIjZOvzqrCOiLtuub74fo5872qXWSPWPR73Z9xjz1+ecot20XrDXbwzuIWTYWkGkYv5isNLBpAueCN5WsIE8sLwgGCnEarUtfZLyniDNQhm5l6lkNDaiGtmkhsZcmIof2TIKbAuSuNfGZHhVV9f9S+y6sSCCzb3anHb8KBbnD2lPCoau5ZMOM9zRWpSLU7n64PMM52h7JrHhHWxf55Z34xYsyHevanWMIhumzfeMoMRfZOz1XxzlD35rN4tfgW3ZDODaE4yzNZf/GCCOoldHx/q5wdbIrZw6uyNYg4yGCCvlHdjEJObuy3UlQO9ldzYcakO0tnqZ+Kn2I64Izc8dONtIX86nHcoyAvF9NuxOUIjsJLXqETdB3Hh4W0K4UdjVCz8Vtn+3BIyqAmTt8UsmI24qyv+2xHl2UtFpmvmyDM6Yslu10awsNpHJXVtQdW87M6jux3hfUKUDKLJkNowyjonsILh9nDfqMAVPC33uL9hjwFKDp1j7q5FgOU92b/S4Qynpq6lUGgO6Eicz4nAS9YQ0LpKOOHxCao0c1tac3eDfV8p20TZPLQ80VfVlGmKfH8prHr5wQotcsIc79x5hcukAanS6Wms8FE8fd0LQy/rf9rI8CeD1mKP8UKCIVIr9PuPWa7jUZCbxL/SgzOdDR+rAumgFEprC2OVeKPLAVvxBVukLgrd+XDNCcibasqOJRKhpIlB2N+sDYMM86aBd+aojVcz86EMQ4rzDm0OdEdIGkjPOkJko05JMuvk91pASvjmZ69RF7RVHWbDGLMH5U3ndVYfG/nnfGkjSdmBvKsdoC51FnMup/x6b3UOP8T48bTEkA4zQQc93+7ygZjIA4pCIxqgkCxKfSwLtQaNJpeNUeBo99Bl50QM9OoFTURtU6jYFH81s90aMuOOk+f1nIDka2+qKn2Mf+bRFV/6Qgcmh2ja8x160PhXx5m9s77INEQdvZfmCZaSscZTM65IdbqPVrhHF/3w++sVO7YDGmz5zuP9qDe62Ex14hIUWJeJdV2UDwm4zQ1FHdxhrDOxopWXLsajc1yfl1W4oWL+b1sEss/RF0/ziBNV9vA2v+dFAXsJvxxUmRdeToEdG9SvRVMEiDbqur8gYkBC/iXms4opvMTbZG71JBktL2caJ3XIcWrJYEIyUYlbfOrk0vrIBWzm1cJ75zhQpxdW4E58gv1Dn/mYtsEGIh5gGQGVKkyu1fKu6v529DDO5qbZdWM0GDhm3HXRGJRmTAuJOwnEkW3ccakcJ/xHlaVZs2bNmjX/n/4X/HUVnQ==AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAPAEAAAAAAAA=eF7tlTFrwkAYhjM4BKfgJFI6SAkOpSCUIkRwcHHsPzL/K0L7Ezp2FHEQujg4OGQoeHjhnrvLl4zCl+Xl5RLuyfu9ueTrp7/Dx/AruV3XrdHvyvU/heuv8Enp+r2wni7b1zO7vjB8q7vPb34C3l/sJ+0/wP7kGe9cn0jePj8zfJZ3GuQlzwV5k3+PdT5/Ltp9nPe1Ey/nfwJPzX5U7d7jK+HB28xnAd6XMC/2O/Xs6wh9OPfkTy3/Z6d8uT/7UAvzZ5/JG5+/0cyuL8E7DvIehTw4b6/P8Cn5StfH82Yf3oK8PM+8703gzZBX3/Os8RvwzsL5Cv3i+evNG/fH+2nUy9e+zzt4nzudZ/z+mKfHL3jvfZh3tL/z4P9NysfjF/Ll/KU+s7/N/01VVVVVVVVVVVVVVVX1MfQf1kDUCQ==AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA0gAAAAAAAAA=eF7t0rsKAjEQBdD9G1F0LfwhH+DXuMkWPj/Famp1u62sLARBsBB8tEqSO83AkLWV3CZsFg6XyWRZyGzjsqVw7qg1cKnJ+O8jvT8uJ8r9/ZkmU5cLrf3/Kx0qlxsF7Y5Tdwu4L7h9xa0ibgG3DdcKl/uOG7qFcDvCfcLtwR3BXcHV5lDCNYr7gNuFO4S7hLtXXAPXRvqyy30Xkb7sNu37qyv78p5p8+U5aO+m9S2FmyturK82B7lncg7au1m4cn/lHKQ7j7gpKSkpKSn/lC8f3PaYAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA0QEAAAAAAAA=eF6tlclKxEAURftv1Fa7Hf5GFBywv8YkDdoOn+AnuCpUUFsbXAiCIIgoijjQjgtnUrk3iyuPSgdrE1KBU4f33q1UKtlaWEvXhsuebdc3nq4jF/v3E/f2k64zV/P7F26uka4rt+q/37iDTrruXEbr4mlzI3Bfwa0b3E6AG4E7AG4iXPrOFuRGwq0K9wXcYXBnwF0B16pDE9zY4D6DOwTuNLjL4O4b3BjcJOBLLn1bAV9yi/r2ylVfzplVX9bB6pvl2xRuzeCGfK066JxpHay+JeDq/GodlLtkcLM8rOf8jLftmJN7zzvMczjhecd5Hrc87zQ/PzvnPM/9nv9+mft8+/3rPK9jfv82z5ffbjz86VdZz354bopnC57sQ9vwZP7LelbFswtP9m8SnpwP1pNzwnqyr1rPr5KekeHJuaUn57dXz114Muef8OT9NApP5oieOp9N8RyEJ3PwGPBk3+m5KJ474vkhniPiOW94xoYn6/nUYz2LejLf9OT9wXrq/aSe2vei9WSOynpq3zv/XE/tuzWfzBHnk57WfIY8Q/WcMvrO/00o7+pp1TM0nyFPaz71nrc8rb7zP2TlKIEn/XgP0Yd95fk89x3n1XEO+b+6WPYIAQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAdAwAAAAAAAA=eF6FmHk41VsXx6VSQiRKbxyFEipxRLZZDpkOThmKk7HMIUWDIlMos2TsIrfpKkWKXWnQ65qiVDpSKqGUivLeSOn9Z+/Vc8993uc9/+1nr99a3/X5rb3X+h0Bgb//4vPjRsN8U2/Q9VC5/BdxxQJY6909GimoXArrqmvOf1kXnIT109qR3T6B5bCu4ds34Xt+hM9/Nl/8//VTGW1a2qZgj+KIvUTX24xzadPQW+Iv3qVbGbU6Il0S7/k182NzKzj4ItEj32vfvb3NG1G9l4dFvFTPGCOqNywWudpneCND8vyS3rtCM7s80Sfi3+suI8t5zAFlkfih+ZdiyuT8MdVXOi/3gF5VDKLraZ0MW16yC4ol9h4ft81LlFdEb4g/Be//JAfnbUXrSDxZ1Qu1bIYZriR6TsW+/5qu7oV4RG8n56uCq8hmdJns93yY8gxICEAG5HnJwFfvLAzs8QfKd8exC4vM9FEmiW96jpefYRsEetfwfmgfb40GvRVhrmkhDi4omtiP7+r6uGy7Nhog/oZUdnx+0+gIevN2DnsHVTPxBaLnSHycgK6cF3pC9ModvFqVHuyOLpH9RhHhKJmf25A+ef66EPday2mEh4n/GFHh9D3OQpjqrYuPcUCvfUHvgS7XExtxLOgVnTQcy+tgo4PEviS9QX64XBpTvT1CicfkNFyRDolnf25qQfUOPUT13pqsdlul7Y26iN76+dPVCxodQG8r+2jZ0BV70Csv2uTT9S0Qvyf+Z5Ti1NZWV5xB4k/0Sr9YHbwN9OY8vK0wYBoPes0bp5oGS4xRFK2HOVknNE2U0Gvir2pAOC9J3B1pk3jGORqKgXksdJ7o6arz2Viu7IUeE728eX7eysnToV6WLW2JmP+Yheh5bVrn0PPz1HbgKyKjEVWo7wx6w1tvpUg92gJ6DesP3SnUSgS9WtlOTsWb9aEe1nU/kQ1irsRUr2tR18DPAS7oFc0alFJX3AB69SoGdq76vhX03rENrRM31kRUr/me2t+aO6xA75x5Zr8z3HxBr9C6IsOMUhOoB8astDxOPgK9pzjvV551/aV344+VY9YuWugAsWf7jadNvHIAvbUxaTOzNbaA3pGm2vcPrluhCqJHxYOxz4azBfSaXjy455XIr/O4+ko8/jx7C0Lk+VcMJdujiZ74HfG/hpc5eHgbEx8l8c9w1PsXciVBn8rTlIRnF5JgfQSrF32JNMWHiL26xrnxabscoX7dlIuqhyM3Qf2OyEr+NBiSxpRv44ts+e7orVC/OQGXgl7/sIP63Zl4/BWeZg58JeWLc7j7HKB+m3ha965+dEe0Hhbt/Gt1uK8r6Os7K/kl0S0N1vVnsaP2nHn4MLEX/5Jw0s2eg2m/UIluMD+cYwb3g+0xNjpVrwfv2zj1tWFd6la4z4w7Bb14ZxQw1Ru85pFj9QsWnLcpBYnPE1NWcP86fvjWviffDxWS+EqbS5YVGZuDvl41l4Hnq47Amv5S+foLzZ+u6fuka6qHrqleuq7m2zfke36Mz//J/9PfOrNrRsqEo/+xnySw0F/JwBT569yoGXmYA/u0X488GA/pNhFAptJDFxeUnoB92g8vhb3yTXG0QEbRPKcPOWX/yDdJ7HHyjNp1OGvvHCeGzq/8aH9njMucjnzghPj3af/0iFS6G6izHrH4/NN+enHkDuvxYSay5dNnTOJfyb6Ul9LujYL58vtM9Es5fT9wanIr7ufjQ99nUrTZrIWT7F/3rbSN3NCYIqI83Qu6POZbsKAexKwZcuwNG4Hn5QTbmRIdypj2Z61aV3UzMU3g+TL79kemqhim/brb/nlnf5Ij8DRvXKnBdWFhOm+0xZwxXPx8HU4nvNT2u4517t8E5zE/pT3SP9cTZZL98sxKTav3W1A34RlpesTiOdsReJ7nnviX4Gs3THmuLM1LH5NwQVZE3+qovRVnzCMxrb9ZHsomLWVc4FkieZtxrz8AjxL9t5qNrHuKfPB7wueluamr2NdZmPLc6Td6uPexD/AMrAocUYv2Rx3E/lGNv7evjAPwjBIok/g55oR8STz7G7WzsotNEL3PXJq+D7ux9ZER0euz1i1G7w0T5p/wkErFE1c2IUOS70Wm2/yWOCam90dostTC8zfVcBrh9b3mR+buNg7cJ/Gv/CRPfeMiylu8LSXcVjIQ7pfHk4c1yoS9kRnxfwet6B79ww/T+l4Sf/WJgo8j2kD0tZW07TQK3oPpPBUbkhA57YolCiT5XS9i6lxtDMb0PhKw8viQObodDxE+Jdp6x+cnmqI0kr92bbPBHREv4JlQeMPHMiUE3SP2WQ0PUmWVf/H0F45nF/1wRNtJvPal8rVfjxjDfCNg7cqa7F2KDIleraWXPlbYINRP9PRZfM9UXuaE9Em+w0k8l7xefUz7ncss69PneRroKOGV0x+oJqTrDP1aaXl+nc1Mb0R57ynUtstI8YX+0qmksl+QwUWmxL9On8QKlmgwzNfXC/zr3b+bIBbRd+Dda1tdw4OY9p9ctzyO9m0THEDyM5MfvGMQHQL9vjL5EnfgQhB+R/jk+fWNq+WzUAqd75pkoyuDHYBnvI2jwfS5oaiJ2N9qsst8o2EAPIWKM1s++duhbSSehNDuoZu5TJjHS2JP90glzUf6RG/Bo2I51UhjNEj02DFVIhoWcoHn21kmk5tH10B9SqwrkLc7ZgI83QoFPrfXO8N8aTqR8W2N7DaUSva9n5fp7Oxwh/nY4p4Gy0nbHhkT/9//ZFfZZoVDP5wRff95fr4NNiP6bP5csKZ4aSzUpygz69OfS7iY3meBjtYDIt6hUJ+yFV7OdfLheJDwmW3Udf/LXA+ozybL94sC+i2AZ8nvC9evLI1AzcReNHT1PLMttsAzxqgwetfQCuRD4sXI3XcJnjKB+fC+p7kC9l+MEdG7QfSTclCKA+ojekKYbd+0xrciPZKvcVtEc/MKUajP8tTqp345G9ARwuuLXHhtmL4R1GfQy5nu7EoP2M9qu3v5xjN7mNcyZNpTrQSZwPNZoi5DpyUC5re+CiZz6goLeKo0yy4evhgL9dmltOrfW8WcoT5bxbb/PnfRDvie0nCd+sYTCsVvCR+/2H3leZFeiM57C+qrD371NARegekivL7Yvaid2C+RkX+yZFAe9hUka4dCxQ3gvL88m3D22of5KIb4K2iMtUicY4r1iN4lBSZ9zr1sOO9rKxY9bCl3Bp4XnXO2nFKXx3RejHkSftTkuj3wutWgLJsaswzmR/NqhRrHos1Qv9+T5XL9DrOBJ0M39JjgciVMeQYxIuxVI37xVKu2edLQsAZ4+vgyjnM2xQDPTXs/OgnHWAJPLx8Z+VUuAcBz17F1v+3/IwR/IHyKXrAPmgkEoCMk/8LBGX+8FbIDXhI+mtLinL2ohdi/ZcyNq3kkBfuDsRZSryY3YHree3Vt5eZ0sDD93ipZVlNqOpsNPE/47ox79NQS6jMpogKN/cUBnmM+CQxzb128luTTHzlDcl++JvCMsrM8+LZXA74f/B5+ldSS4wLPRUmqD1bJWaNHhKfq9P03m1x1YX5QbbDx0RrdBTwlYo8sbp0yxHT+qObd55jkRGM6rzEC7bJPr9RHfiQ/S8HkW+fnesP3R+DJAIcJa088QPjscKht97cNQwkk/75ioYdD3T7A69Z56+XnRA+h+8S+P6h97bl9dnAf6FUV/tARW49pfxcy6PhP1rgDpvWZkLA8wXOKg+n9+TRGeV5uuiX8XyASJ55Q2WMB9ydO/jThHWUK513g1oSA3o4OXcrLXX3KsuUegvpMz1BKV/zpAf3oY1gVV7rVDfqRWLJHj5mHKTKh89idqWkB18OhH01N7BMsP7Ue6rNO3kU/eGIv1OdG8SWqxxucoL83mm1uKB43h/p8llM8baqeBf2dN1eqNsVrD6LzUqzL0ejP477A06GcpRMVEY+6iD36cHNJXbgG8HxU2THmztWG8zDc3juRsNkC6tPpbrC2zG4rTOely0ZfPeuYunDe1bk3Su8fWosMSL65rYM5rjUbgWekmvDgjzRN6Dd7ooqa34r++v+A8+11+qjfJpiXeMHiifNnO8F5z/V9ePLpywWY9nfz0bhlOWKhUJ8bLwfaLhS2xxZE33slTckHrbuhPrdLG/ayWFwUQvKLylC8y061A56dE1HCiUYOeJzwkQ3L7JHRCobzrtp070fYSQ7wPB5/6O7l8iDUwzf/7+D7XljP933B/71D64euM/jWZnz2Nnz+wvnizcr5u57/Aiojfqg=AQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAGRoAAAAAAAA=eF5Nmnk8Vc//x5UWRWixpOUjFVEhRRpdJGQpkUgSKtmyZ8tO9uw7l1w7oXBFHW5R9oRsKZIkFaprqYj4fR+ZO/Pz33m8vGfOed3nvOc973M6H9GdTG7U0d5pew1csg4BTPDvy526tbNNAsSmxunfX3VqaP5BBn8dC88gPd+uP3lm0A7E3/s2PejziBbx7aPWK55IpL8O7vpxiTmROPAvvoSmkdTY8FLGhmDou8vnXumZ5gKJfzqFdraQTZVLkILifczEH9J8XP9dG38tA8r9Ic6PO2KQbnrY23xriwsQWY4nnUgePL3oFYzGb/qxOHrYSh38avg3P0ntZk2RuhgVxcs7UV7d+l4BWpbvn+ThH0Nz2l+B4x0XqtdNVwDZ5ecnffEcpChreyJ9QoEnw+5gObBZ9o+kk10qmH+WinRyf7F+G6URdEF/jW1dRC7vcUTz75QfZYrgvEhshP6S+uY1DNfZI12XuyH8VpI2kQH9NXTVMxARN0V66YakZpXToQQP9Nd5S3OmcLM50rkjYtfdYY4g1kB/N71o9BrSskO6uOafvuM9esvXxiTi4p88jthD7vj3/2N831SbAiYalv1tFWw54ZDmiXQBpUk5xZUlxJbl+UkF26JfDCRgf1RKjy3FklOJIuhvn32kfOvqCKTHnP1wTSI6D5Cgv3Xx53YGbcK6QPjKW7dWxgBz6C/vhmqzAx/i0PzarbriLO8aQRv0d7y7YlpTzRjpKwwFTOu09BG/fBQSnXuVPtL/Ur9q181YEzHQ35oyz+yxC5pofvn5GXcgHUeIQn8139f3a8eqIz2RcjhDbk82WAX9lc5kLv9W54T0GeXMETbmZV4pZTmEaEf1YS73O2j+zviUAX/XSLAI/d3+xeIrm9NNFO810Cog6WZN8EF/z6/zenBz3gvpO4NsXhw6mkhUQH+Z5Ec8bC9XHWPoPX/jlNvOl4Oj0N9U0Rhb7i5XNH8hK09G8lAqMIX+djyszuDj8Ed63oFjDVFK9aAD+st7MWfmti72r45Fjmk0zINgh/5uqXxQ2RiM75+eai5dtMcYpEF/d/dzS+R2YX6H5g6fq1fJADuhvxFi37ds93VAukJvXKkgWy74vuwPrWJ6gUp+74f0lzkd/CfO5vy7lm8mE2lmKvsPvPVF87t0bqzr4UwC7DA/8Gc8pffF2SFdSurDSsXCAoIT+ntio2tpg2840mOVyeSODQEgF/pbs/Sl1yXzBtLdyskFv8bLwRHob1/MW8ENLLHo/uh7wyWEOfORv/LRxVJts34o/lBzawxdFfN7ad896s8uU6RfGrshwXrPGfl7QDz4TEHpYaSv6qgV7vSIJRj51+L7uxwFARfs3+mj+3NXRSF+HwndD/WalEP6ycrRsxXWxXB8Ck0MuIPBFpyf0vJVigfbAv7NZ1ydBRROhY9scHNF8+fuXfCe5QoGbNDfAdL9J4mNMUiXM3lycvcuKrEK+nuVraPl861QpLP/+vDhOgeVKIb+nnh+6or6YBTSjZ7W8djEU4EU9JfpslRjbe5hdH87yPpD1Tqp4Cr0t2/O6hmvaBL2P1/U8vKHetAK/d140XtnkgqefzbrO7/8Wl/ACv31ac5z6/5ihnQdi5cT8gMJIBD6q8gj/MKBSQ+vD91XL4KOkBG/Vem0qocz15HePnBwc39XBtx/KLQ1G3Jpmm6YT830iBV9weRlf1fngfta0/vVTfyR3pnjXeadWABGYX4w2DtySP2iExr/ABMhV2abR6yE/hroijkpdOP1k81H3aj8JQTch/6uuvDZ+cO220j/+DJ1s+rRKpQf7p2JphwDoUg3PrJ5Mel2HuK3JK/y7hkdvP4CyHeuSxo1gk7o7yuZih6DFpxfjt4Wqn36zhbl334ZoYsy6zDfnOldE5VsUUQE9PfT9avt6Xdwfuv0uKjyZoJCMPyN6jxo6Mt8E42/yL7meun3UOIP9FfjRuWM0Fk3FC/peFxhzml5P/WpjgZD2cA6PAHzq/DCuz94VSx4C/0d8pv+HPjOCo0fqR/GR+16iPytuR7R1qGH/dtVddm+UTOTyIf+8voGen/Zi/Of3UhZ/FWTInAY+mscRl77/NY5FM/2ZMWYSUcesIL+Rrmfe70p0QPFt8pTh3LbGlB+eLoYmeKbFIv0b8B4a+kJO7j+amjK+YXHnZQMkb6KVGz0xjsGhEN/S6dLfx06ivkumn6xFO5iBiShvzNsxvapHQFI/4/zR75pWw7YA/ODw9BZUu1/mK8d5p1PBqvil/0Niia27Kg717WE6wONYxq2eRvTGfmbZN49Xb0UbY3GrwRjH3cMFRKrob8Vb1gSVSRx/ahsn3BjdjQA+bt9Mrnpm0Qi0l0kysayI2iwfqwhqRtyle3jTUD69jjDDOY/JSg/nPdIyBEbxvHUiCj7PaINiN+9ovep6wOckd7Udyr9vLwT3B9qaNwdLfuVLuLf9z3XiVrO4WQiAfo7K7ok05uE61tqgqf18d/RBD/097h1x+3Cl/j5ffa1H1JUUwPM0N9ANooCzzbMdz6f7IOILWf//b9P9wOiRueaSdJtzM+hO3tvm2llMuo7Urmtq1HgH1z/5CqL1nIvUQkW6K9drt5VszFcXwYSYRPuPanEPeivT/3ZXqsAXP/rc6sGHWKhovpMoD6YWYaGf//QnDy+jp8BwBL6W66jAEpHyEjvdDYOXZfRCPqgv0kpjWGVCvj+5FOepHTd3Yr8tUl50au4UR7pEQpm46vOZwGGv8ZB/UH7yg2QfxnfTJwuCUUAYehvN3nbDP0gzo92O4ulMmrdCEZ9NvHVx3igBdenJTueDf5sCPj3/5pJ5YSuwlvhXWE+SCf6j8UH/4lF54spoy8P6tXtkW73/Ff4MZ1gYgGeL6ycsri+GuL8P7xRhpy9I5xg1A92KlIiAVvw81s6ayxt9SLQ/pabTn9WtTEVjf/I1D/qr1QJcID+Ks4P2wxHFCFd4ulCtOvjFtAP/dVZo0UdT8f5OyZfX6Er4BzBC/1V8ey5vIcSj/QSmtzISulnBGN/6173yX1oPc4/m+ZPCNSW1SJ+Fdtz3p5jx/6Jf1PeWN31lBiB+Vf28Q3+pm/pSJfeRrrZTa9fvravIBy9AjlCf+DnHzhp9aBTrpbogPmhuklMUMs5D+kdXL307e+b0Pnibujf3cZiJWh8FUkrb0pbM5EJ/eUOTA0scClD8Y67/gvqN2ggGP4eOmDMI9WZheLlK2+oa8q9IBjnN71vwLZZBT/fkWe/I8zSKMSM3JRUnvEzWjXrk6YJPx80vuh307qgeG/QA/13OCgj4r0f18+8FhcDxD0sCcPUMfuLCdU0Jl3QTzI8icaXkSzfknkkAO2PE6y7JXWmJFH8z6kveZfFAoihf+OX0w5ka+uT9fH67V//H1ODShhIhb9f5v32UhZZfL64z99ak23sC1L+6fm0g8cNTsy90MTrV6lbakwrC+2vTZZJYNOFIHR/o7d+3xJNjATH/ulRNH7D0Z9tV3D+VKnPPUt+4UAchusrlysn0ucprr8anP8qOIwkgsl/v28USepsDK1lO16f7993JoS5w/24JBRMfY74c6QT15+KYtKa7jvtgMfy/ZPOFUu0/72M6+cfKQ/Ll9b7gH1wfXLtXudg4ojn91rT8WHLmyBifNk/kib//S0NoBzFaz58XsGbrwHrvxLSIy5nlUB1vH8QfcxeC1Z+QHv59yNdO1xFURsuRfEtsus+fftkDx5A/oKdcp2t7QNR/PnXFWdkx8jg1zI/JNaRmx8FD+P4EfdLA90SaQTcv0kNS+/4Wa/j9SOg6308XdgXrHm8zOdc/LxBy2A5Gn/Lp90RV/v9wDTkUzrc5mwtP67/s3+X8haIGYNuyOe2Ml2ruyuw/8Fb85Kbv+kR+pDPpAcq7WM9Wkjn3ymTW+7sBxh8SuU5q3Ra4v1nVkg1eTAvgBiAfAK2kG+it88jPSTANHOu04yxv9Ci+JSdmFbg/XUo26/Dn8sNUCCfIkfPlL83MkbPPxheMfPKLxTA9U9bv+sCu0Iwvn+xS0MHtUfdgCLkc0ym49SS2yWkM32Wa4qblYTrn0KjxPx8acKPxy9pf/h5R2wCoEM+y83TDlCzglB8EuumGPNH2cvX9HgimWptw/MJr2+1lcZXA0KiQBbkU81p0O2ZSDwa/9O8Mo+8ZxgYg/mNwjbOWWvii+Knj/WqyDtmM/wj+RxOGZwTzEbxb2Vf9ySU+IK1kE9Bj4y0r9IUpOeXWvddep5KnIN8gk+/RKgjyUjf8p/mMbPXKQSFsf8EiA2pSbsj3WD4kISsYA6DH5K8gu9Fsz5HpJsmlrWa2jwEayCfb/IC50+/t0V6c8bks4sC0WA95NN4ME3bfRLrqxTXDD8nFYApyKd5/82XP5oM0PMnXPswemuVA8Hg04GPPa2KsgvFd615lCu0cIW4CPk0P3jn9HM53N+iCwr+YpJ3B4zzscrlovR5Vry/fDHl4BA7okn0Qj5N/W9c5xs/hcbf/cSsfinHhXE+oq3n6PzzktUZ6SdNwoSP2ERBPZ/WMfwllzMc128hzsNjqrzZ0J8SGtfbF5qehRZofhveaibaJ3tiN+Sz7Pcqh6IaQ6QbnLkf53gvGshAPvXS/554OMGN/S3z4lz4FAnmIZ+zzVmsjm63UHya8itzR+P05eumFCKyr6Ztzbgt0llqKsMtFlJAMeQz5qPGlWmh22h810almp8fYhj9K5KI5UvP5HT8/NK9q1XK4oKIfsjnkOcsO6eFOdLfrOz6teJxJlgP+TQ038qtQ8f5R/N7745HazwQn/S+TU1WHLj/E3ewtLB/KQjv31vVXK9b/L/6eqCodKItD/Hp/2bEU5mM109YcNiQeF4FXB81pPaqRxYPNuP80vK58fvK43GADfJZKJSxXfNMGNLffj9j6V1WCOiQz94bauopetfR/InE2NecXfbo/KUzHF/Go4L9Me3TLJM7aoH4lNA5Jef3TQvp+hfmebSABzqf+SQeT0m9guvHkhtHv6wes0f5U25ducWcCK4f6U8CA92mA1D9S2i6iLFtvoF0sbqjFtYHrUAO5HMFQXX4uAnXB1Olnb8XXyWj/Mk31Vmk7YTPZyM5BnFW+6JgfRtFU3WykhL8boJ03VjZ4bGMLEb/jKai2XyYZ1oH6e6n5feG340DO5bjSakrkybT2/H5u6XTdfv4gajl//e/T0z5Z4yUceL+h5RCE1kMxIMQyGffZos1wg44nrtsuFzmVQLqj1qm3YwPY4tGupVG83t6QwHKnw9HA339PXH/v08pUUArnAzvv4TUHUDVPN9+F+lZ4XHrG+kZhAbkM2no54KqNe5vrLt97ajvfAysnx6RJFya3xX8iELxE6SC1y9cSxj5jfRof1/cZ1nsP1P1yLaCF1UofxbfEnF1SMX5S0k3MhnwJwMWyCdv/e8LhoVeSC9ar3b37Pg9xKf8SVoBjVkR6avqZHVq3AIJRn927gRnhSGB+Rq4Vi0iuFkHGEE+FQxcbxkMG6H47UUFeflFfoz6g2ZzjcVa1eoa0o3b3tzx3XqW6IF8FojNSBupYj5/OUc7+nGlE2TIp7x+LBuPHo53u7Q9VUgxFJRBPqsV/R38h64iPTGkx95RKZPghnw2ppHmC8twfFuA/vrON06EAOSzxGybWsFBCfR8Yfd07coTMwhY/9F0BQ8R5QI6SE/ZLqMkQo8CnJDPwJGYBX47XN+Grvds3cRyZ/maJYbQ/5qjmDofiPSkkR0bjO5pA3/IZ4vF/nxdJfx+YljjTsuue/dgf+h/+7tU3e33f62QzvT3Y+kVh2xG/U5KLC6KnOoJQ/qspPMmcUlj1B/N33XugXiWG3p++bfB9V+OuRPqkE/jM2OCMhn4fNYpGTjDLh9HwP46yfv+gwv0Fzi/chv3K6nM3UN8KhpZuAzH4fP9ClO9wdbFCsSnwgMln/61uL4Rbi8ma/KSASvk84KIN0nAHve/bEqMrJnTC8F3yCdF8ufpBRF8fm4WTN1rW+4F2iGf9EEFkclgFaQLt0uXE08cACN/6mjmSxf4GCE9Usi/8aMqGfVnlUUFJD+q4P4K+4iFoyNvNNEH+Uy5I25F58L7b/nm5+ZCBxPAXchnE7FiolgW7/9WSy3FhrOGcP/Jp+X/jHHlm8H9s0/9ZOHNjXkA9v9oimMb7fNuqKLxK5MjOSaN7xCskE8hRWZpTyb8/kBiQbbn6NoooAb53PjJgTk43RLpiju8a03Y7OH+EEWamcxi79yE668t9NLwiLrM5fm6Cwh61vl233f4+b6vWh9mcdgFREE+g0c+cGp9lkX6SoHRCx9mEkAbo39cntca8Qn3r8VcG1XuDWQz6iPSxFRzb/ZnD6Q/6f4awS1XCJggn0XPJsPbT5/GfJNn3okeohBakE+FS/vpnuOY39vXNttGekbD/ekRyaBq25GmNTi/Th3UqDSXzUJ8Zk9FBckIYV1sj4zGFGcVrE9qSJypde/EjmF+5d22uZFNUgE75HPo8YLvVXMVpI8Wxoo+DCxG+fNuxHByeKM20nvcCw6Q+28SjP7fwi8zJ3Xm8+j5REul+tuKrMB5yOfdSN9F937cH6ixvV/mG+eB6k+bpiPstlN4f+N17YpeYx7IqJ9o127+dKYfMkH65bi83HbvAMb6pe0KNb/CH3gV6c++fi/quupLwPMFjV5Srctx9QLSfy/66Rodd4fvb0poEnulTAyY1PD6/fj5hNa7SIIJ8vkqzV/5hzfeH6gCzvmbg1wJRn9X32Ok30QL94dVFxOzKuMTYX8yimS1X6Jne7gF0h9ulE0O3Qv/nx5LmCsr9NjL4PO5VJOSuMQPBxAM+dxMX+S9P4n7m76m7RWhjb7ELOTT4lBOS2aMN9Kf9vD6sl/AfA55BaaCj7g/4LHW6qCQph1jfZJmqtIf9e/H9U2J5a+t54O9iNOQT5UPz6h/Tl1B98fnY7RUPu4PkiCfbXKa1YvdeP+pfg1yT2ji/Okz+WnjZhlpFO/ObaAQYFwJ/akh/RVmumTkhZ/v8uToBpvGXMAB+TymLuO8Qh6fL28dU6TOuRag/Fni+jpPdBD3342djax8toWg969VH8f/Ro5ivphOcC/4FR4AlxjndxPJxx5+dkjn3vnXNMQzBfF5ZcKVU+Qtfv5nV5yW1i7GEW8hn3Phb34Q2Th+z83s/LgtGSAR8ln0pCpZjoL3N2WazjvWu75EOuSzpyxqalgH5zfwqn5E1CAR1Z9tn+VZj1thPhq+5A+IliYRWyGf51a2mg+b4froRyD1HVUxFghBPvd4qcs8/Yjr05rJmq2y71WJMXg+cuQZ5KC+x/1p3lsTG8OKYf3JH06Ys6QHbTgZhfRU8f4Vjs2eBKO/NLa1b06hEPM1mh7QIzwWDb+voJAixYRS+Vrw/dvQjBI2LZQTryGfr96yrpXuxOOL145sP3otG52Peke5Gi1+ByB9+Jr43PorWYQa5HO1LVNcVQ/ur4l3ZCYMK6Si+tPh1antnH9xf0rebHdZlXwe+AH5tHJlOjc1gvu7BXPNTKK/qsFqyKeIqB37agt8f3mBZ8pq38ag+jOUPW/3+f/lU4Ze4rDxwRwZn99Nmr9m6myTQs9PX90dvLreHa7POlqRV+9qPSvsX0d5lmb3rB5hAPncdJtnXZEQ7r+EVk38yB8OQe+31awttZ1McH16PGasfkmTjPj0NBPeP9KH82OHpbMTh54+EQr5vMYcky/ocAvpUs+DX3Vz+RF3IZ9HtbR06A6YTx+TgB1nDACjv0z7MKkel/wc379xqevJ1pBoQh7yWef05pf7nBnSq99kzDtfSyQUIZ9RPUm7hfRWIL3bdxdL2aVE4i3k08FrVQBfE+5fGce5pNw5AnnSKCBsteWmOb7i+vPxt4DdxrJRBCN/5s9mlzTR8Pc73euimrMb7IhPjP4ShUu/UnE1ip/gEUrn1cbno6RfzzjklXB+imxi7bfdlwTPbyUkimxQ0j4D/P2CbPNP3vTxJHQ+8qHJXBNuxefre0H8xDmzCMb3M6QGhUlFlXjMNylPIEzrYTqYZNSf24ZEWl1w/1z5jWNthlQl4vNZr9i173r4/bfdTwmKxm5dYhPk02hCJSSlMxLp7++TnC+HUQGjP69pvbWv+oQuGv/WkcXLJ2tjUP2ZpC08/vy0EtJr8qk3KvccQvXn64g72Y9PYn9eRofeyeYko/N7s61Z680R3N+1sXS1UOJLhP2rctqI1x4ui/JTSD/Cd3jnbloCSId8Tho68hY8xnxuOm4ja/Y4hCiBfN6ub9qwxRH3dzhCKIHxQdlw/hLayR32I0IX8P6d3cXk4foklZCAfNLODYf++X0Bxb+Va7m3pJ8KBCCfJ6U1GmN58ftjtaJvzIHzscR6uL8X6MukLwph/pJ30M9smF/+vobpaglxI/C2G7s2Hv+KWcLQQ6swuP7ySTc+K+gtduP8lPF0gKXhUioQhPkz8LjqfsoF3H/05xzrTtyWw/CPtL16V11CcCb279fq1ZbUu6g/r8+ldtTgPT5frGYrXxMdl4byJ5M7nyNv1l6kRwkFWN7/mcH4/ojkk/945eun+PzPRPqUxnr+KDEL+ZQMUl677TXWG/qUhgTmcP0Zacsi9rwD379LJNPtdd7+BBfk88a2Cw/uLdQgXf3FlnNpp1MAHJ8mN3uALfsU7j8laZr9FjhMJS5A/v4boOtHHQpGeiU57imHyzPiFeTrjNSG9QF1uP80+oNTMayvlqBCfjIzxhtMn+L+g2qXHovG3nri43L+oWVW9noEnA9B8T2cft/pLE+IaZifRkQ/q0p8wO8Pk3s9WBXGafD7jHzS3I40ISGbLKSvNFxl2etZA+vncpJVoRuTawH+vlLK0k83+Ek1oQp/n9Yf4rTsr7lIz2ogr1S/WEfMQ/+lVJgSC4bw+uIsXiouSrgD/g/Bd0tMAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAOQMAAAAAAAA=eF7tk/9PzHEcx19Xd3VXnbqkVkrXl9PFcJLtPm/JRRZXLOcstKy1VFrCmbL50vWF6AuNlkpfrlolrdAXfN4yscuUZaXT8i1JMxw6HNvRyrvNTz7+ArvHL+993nu/n+/n8/V6fQD+oMlIyTB+oEAmH7RIHaEBdDeQZw8N74J7fyiMFGg7f/2yscSws7rSS+6AYWA3u8SdrDdZPtbDLAxWhxfEPPxJw98kxRSsqvpOg8OhHWmD4zTE5vFtgj7TIAtqNUUbaBBujlOIhyjQxOufaMi+9CM7YJ07hq5n7gmeHJxnqEhSxAFm6EpfpZ1sJ/uRemVc4AwNG7iSx3pHDMJ0FFZrS1aBZ1PyKKVewBJbr7HDoMpc+iBdQHRYOXln5uL8Wv6i3IJJpl9Nat2nsSkaDJ81ZyfIeXVKwuJpkk+nCgu1/UFDJNqU3OaMwHb67v0pVwylNX29PiSHzPhlibaPFoYa3m4s/EQxdGVdo8f05L2rWXX2bnMwOB6Ivc8TYuiWJVXa8zDkD0F2lBUCud2affW+JNey4/K1bKIfHsPRshEUtfd0SE1MXZDvY72vo4Ad7/Zoth8ffAfiEpZhMKrv4mY2khyrjJi4LsLqLWHhet4iDG9e7nxtvQRBt9Jf62eHIDbiOS96nKlbNL6yxgsQJOnaFbuIX8nFkoAOAQLZufPzJR7kO/2pZysfA/vCpYZSFwyWirYHC71JnurVhZ0zRC/F74VLLaO+6nLdleJsMYaRlNy8PX4YPvLtR/qnKDC0cSJeEf99NuXOZf4IvJtFb03knbGY0/X5Q5Ta6XZ3QBeX9GN9sq54hNm3aBcV77wbgrH5mSFq4lvM3+N4wpXkzG7JFrMQdBQ0FvSQ/JGHA6X1pJ4a5YEj2z1IvYun7vg6oeAsbWiQi4A5ZwBc0woDBaXWifMEpO8NXqm4yR059b3bf04ZiOHpcrTiIMkh28uZ2GaB4ZSpefgrmQd17CgWkXvgeksq72T63V8mulZIfDpFVXvnCNFRY39ufcgEDXbc75JE4vPq1sr0tlmd0Iryum/k/2lVtTTZ4ytZostVbCvUqG++xwqb/Mc8mDFjxowZM/8PvwE96EWoAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAtwgAAAAAAAA=eF5lVnk8lWkbvk8Ox75lyZKthBKnmMb7WuZUjJxKnDTVSBmfsWXMyVTa1EmrrVWFkpM+SYiE6X3aToYWjaKQJE4xEipF26R8d/Lr9Pu8/zy/+33e936ue7uuB2D4EW+K3NTfRQGPXzsqqpEBqPuTNq1koNPtxhtBPwUVpR8+KMsR+Dkzw5yvSaDmV/ZBY1zPscZxGlgEFNaYBNz8l4H/f8ICkpyPvmZAc9Xi1bWPGQhMUFN2ec4Az+X0e/9eBsy8gwTWdykQB3fXi/G9Uw976kxjAheajENM5UlC75EwQRCQEX6dWldvP4vvfbr9ghwHGZilyL3TrU3ALIb2zFLBVcs0N6KFEpmwrDk/qBKI3mx3PUYL/bC2JuwaTRKz1CbuSHoxEq846vgz6QADvc/Fu9vxe1FkyKRPGF9dtKe7yhsGfOi5EcV6NKh8unJ1wIBA6rGqG+MwDl7/y8kVVYyZe2+HV/IzaoRf3oWW2G48ryjuuIahOgHtFYFXlcwISHhhGRpKBBLvwpaFCjTwVX/4PXs8xmW/kT+Djf5nB8hXsGnYc7ayxOn9SL/A/5319DgF7GDDW5/r0TW+JijEnkC/6ArJY9Pc2Iw57WWWROTrObtbaSKBtoc/P+JMpkHiZ1NhpUpD4JwHSv6PR/rd8/i7Y+ZAQ1jdWcFSxMs9fHBqiRYNvH37jbhj0Y65b3pajQD70MkTqfoE5ATF1ydYYDyZrsmlg+gv0qpZP2tEfkXpdYUpW6wJNEbuSAi3ItCjptFYPUBBb7H8nFbEX6WcrpdmQ4NFnmXHezxHGhCfnXiXEulclEy9oIj18IioS2kcWTd//Wil/YY0SI02Txchbmu1cO1tBhjnloIt1iwaSpJykioxfp81jk7ZmE+x34r1i8ZivlMGLo/Xod3iKtxd9LVG9hmA4nuHXgpSOaG6Wlj3E+ZRJNeY1qnqFO7zcyRwfwrt8AfGwftNvn3BKAI73+c1vMJ+EAW2EEv8DwzOO/FLR+IVplmeSUacOgszLbaa0Rv6q3dkT29nQFXxNTcUcRbNz4gp/uzH/Uj68T6cn9PRBbkapDDO8tRRtgKd051XzvJ8Iavb0Pw2fVPHUs7AumoKuM75bz1rcM7S9Wo21jLANSyPUWxlIMw9WqPwEQVFlwN6rjxiQGxrx/oLV55uY+eflylwWXc48zb2JUQWvsxGHAdG1fo7YH2eq/i7mGBf5nccSOPgPjuX3W6vR+C8a3GpM84h/TyzbJ3cMB90MQl9jW/h+kdZ/EN88I/M7tVn3ijgXPSouf437gMD5zY5SLZ3on1Hssu7nwEhq/TTWtxPYVbMP6tAQOg7qWrcPcRbpWjRiXO5x5Xkq9ajXSiJvdFIQYjtLydUNAlv3G++R/tw/2Z+fHT4aAL1ZQaxD/WIR8P5Gc0SrNPSqH2uJurD/NLLTF5s5rDS450M1xC/9Mps4amaBxOQb3YenPVxHMZpPLOy65wygQqbaSfPYB56jnWsW4r52enW9qQL+WcgRe9V3VsGPMYU9s+XI6J/TdjFK9B/0KRWnTRFmseKK599SIOYzR2caKmuQ4CavthmC/JXo80xIpInviUzwo1EHAJZe/rygtnDfNXKFHXUT6nry5ThGuKrHpmdWqV00xjxBIZ4/bQc+Ypr6ZfdhjjHL2JurvnMD5YJ1XJYj6mqtG88nns4wDnNHudD92NlpjLmpXHsiTZBEyNRvtOh+0KThhUnHBl5dSLJkfd5Wot8ZSbdOW9DG8Yv+o+93wBj5vhHhFtzAwV+thvL9fuoL/z3kFK8f6A5f7BP1o9D/NcqwylNTY75rCfia9ee5bcwcMnXi78HeWSJZU+9jQaBGZtJwVzsq0/8VJ1zOF8nw53vSlCPuIPpCbtrGdGt0x+NTdWJMD0sSc4c4zJJbWGVGRBJtY1HwUL8HuLb/L8XU6AhOO/9Vp+GIm2pfRHOm63PX+2rFIf59CkF0vz7xg4vv5mbz3y6X2ZLle3fPcV6n8t09liB87w673kwGUfAyXvl29mIs6DCdKWzIQHBva1eSXqEy3M98joR8VytnerWNIosCn11M1RqRbheH2ZEWiCfJZVsKHrxhJKE35hn2m1BRPFpU58qWiBP6ftOKZenoWe0z8xliNNHO9iDpTDMz3dQH+vHJFG1MlxD/Nwrs4vaPgSt7WFEb/yDbNdjXaU7/vGyrqPg1S+OpixTrNvz97VvsR/ylqaffILx90yQHJDD/KZm/X2Wg3n3zuU/+B7n5FP+8V2TtWnYlqFg3Id4R5uH/ngD49Nz0bULRB3V4WxfnoA8GRi85NZ45J/wppmN5cgbQ3y/D1eHF7fvVX2t8xe+H/OVV3mM+PDuN1ifpr3PTFcqEJFh4rbbt/FcqaXVOi9cu1rk8hf2MSLfsGnuS7D/BFMOCW1Qd8weB+gcxHmMjlD3dMI8iU0aA6/dYcBdt3rSFcT1b5QKPwfnbNFejUt8jHNj143v9qrTogp57+pbyCuDDcJ0Q8Q7pB/XGbemsMR48SgZ3w/phzL9FXe2wOBAOJ7rr1/CEavTkFSdkvYY8ew8YDXNF+2tT0xPqeJ+6KHlIfpGNFRMurB8vR7RETh92GyPOiiOSnc7oktEP7b2LjO2IRB8vTKxfjQNokVrjq0rp2BVf1nGpTE0uP10tdJIidZ023hpbCTyV4RtiZ2d4rAesYhbR5HVr5Gsb3UJ9Ugqq3sqJ3e0CeIWpuUW5LyjIDOlKzQAdU/aJChIMqKtr0hOefoZEuETq4vbzJVp/gPg6HG4RDmsbJVuBZeATbJzviLet+Y1T46Lx/sMO8J/3m28x4l2zz9jhfcgMD+79ngaAxELgpO02J/1ONsu6yFVWL7AYIP+p2F9y2Zybs7KIxnNMlxD+ob9KbzYuStHhxaGlyRritTpWd1b587OMyIQV9y5KRbPHfO3sdKkVwxYhwVevMgmWYZae8fy25i02BrDZQ0fqS8610r9D0+ZAN8=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA0wEAAAAAAAA=eF6tlVlKxEAURXs3aqvdDguofYiCA/ZqTNKg7bAEl+CnCmprgx+CIAgiiiIOtOOHM6ncm48rj0oH6yekAqcO771bqVSytbCWrg2XPduubzxdRy727yfu7SddZ67m9y/cXCNdV27Vf79xB5103bmM1sXT5kbgvoJbN7idADcCdwDcRLj0nS3IjYRbFe4LuMPgzoC7Aq5Vhya4scF9BncI3Glwl8HdN7gxuEnAl1z6tgK+5Bb17ZWrvpwzq76sg9U3y7cp3JrBDfladdA50zpYfUvA1fnVOih3yeBmeVjP+Rlv2zEn9553mOdwwvOO8zxued5pfn52znme+z3//TL3+fb713lex/z+bZ4vv914+NOvsp798NwUzxY82Ye24cn8l/WsimcXnuzfJDw5H6wn54T1ZF+1nl8lPSPDk3NLT85vr5678GTOP+HJ+2kUnswRPXU+m+I5CE/m4DHgyb7Tc1E8d8TzQzxHxHPe8IwNT9bzqcd6FvVkvunJ+4P11PtJPbXvRevJHJX11L53/rme2ndrPpkjzic9rfkMeYbqOWX0nf+bUN7V06pnaD5DntZ86j1veVp953/IylECT/rxHqIP+8rzee47zqvjHPJ/AWk+Vgg=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAWQAAAAAAAAA=eF6bMhMEdtrPohI9H0pPJ1I9sfRcKD1qLoQeNRdCDzVzCakjlZ4NpedA6elo/BmDhA+jYe5GD190+YHij7qTuvxRd1KXP+pO6vJH3UldPoyeSWUaAOgVEfo=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAYAAAAAAAAAA=eF7tjEEKgDAQxFbRd/n/1+gHilJaLz1FqsRD9xKyhElnvn2bI9/RzbUyYE+5VAbsKcdu4dgt/Hp3gv1T3rvxU6ed7bSznXa208522tlOO9tpZzvtbKed7e3/LV7AXJsCAQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAA1hQAAAAAAAA=eF51mnlYTukbx23tJI3EjKyhkaVCWR5OQhKRpaRSWSqGjBmTXd5+0iaJSovK26ooJe2eOhJRWVJhTIYmjBkpIck2/WY63+e4rjPXvP98Lrp639P3fM59P8/9vB2d/7we8TfzPOrzPKr4akat94E/1BjQE1H/vO7zA51faTm/usJ/De6Z42Qxz8SLGEz651XLz1fytFbyvMgvAvNetykVnUiilV2/X8Gbdv1eLj8TfDx7/eShfXPIpa6fF/LqXf+fzE8Ag3oGW89+dZB0+/vVsKO6i3LNy128WMOTosrSlmyrg4QKv8+NFH6PMwA/JU17fCLYjuwTPh//n8v1Bk+E5B9VDLhMVgjXzy0WrptbC+6ZkvjD4MOXyRPh7+eshb+bWwEm+0f2Od3vEnEW8uOMhdy4BWCh21d+BXp3yCfk+zNyZZxc2sdN9Uc3GoN8ByBXLXDvpJTOOUFr6FTkuwK5Mp5Vvv+xPCiCJiHfwch1GHi9tOVSfEM0DUC+PZCrAtj66HqfF8StK89uGnsFhoQJtN1PNriXfFw+M4OsQb6tTkKuf4AWyTkqvdIpjUO+/ZHrQHDq/mpzi7g0aoZ87ZCrI1htXz685Otc8hD5LkSuS8D4YvWPWcPkxB75rkCui8FB7pHklNMd8uY//G1896Ap86g7jUa+/ZEr48wfmmzcandT5q8VcoUHfH5UP6vl3yTQa8hX6u+eptSXW1SyiR/y7Y1clcBu7z7+NXm4XMhzaTHtYnuQwPhEWquT2xE/IYbsRL5tyPUdWDNSvTzZdTdNQb64v9xQ0IrQqaMqk6gF8mXergOXnDSPeT75ErkrydcSzPn50S7tB2lkBfK1kvirrvvoJ5/etaQd+dYi1zvghxeOH0ccDaDHkS/zluVboDZKL/HPzcRE4u9yMPLiAeuKtrMkC/mOQq5jwOgXHq2rSs4TZ+T7s5AL3wjOuHQizlDrfFe+pncLunK9uDGri7JHqVR3nkJPtcPJJAz59kFd6AcO/NYkI/xTHq6/glNFrn3BuH5TsiN+OUZmIF9b5Mo8/v6N1rL59Eu+iyX56h19tWtrUC6xRb7myJUx/b1xYMsvdeQt8q1DrjVger/wqJKFPjQM+WoiV8bpnt3XybbF0wnId6Gk/kY/f+5ukRVDy5EvQa4zwDBHjame9kX4+7/4qwHGFPe02OUXKuS5ubgrZ9lpweeLC1LIw17dHZOOhpMg5Psa3vZCvkP6RY50G15KDyLfT05Crt2Qb82tP5ce6Ff6r/rgAGoMs/wcEFBK6pDvfORqAQbH/ry72DmNLEG+Fsh1DmPWZFOVyFrSgXzvI1eWc+vM6B+27g8mxyT5aoAR344flbsziYxEvnOR6xyQe+SgXeqYSs4iX+Yt4/n1dq6PmzPJduTbDbl2wF/5yr9uzE5NFfI9cVGoE/pxgs9aqcQ8c9SYxud5xA75/o58G8Afi3XGl3zKoT7ItxdyZezok5JpMimCzJPUBxew9+jWM1Odr4n5Sv19PVHHP0Q9lyxHvvMl/m7+sH/9h+Y6sT7cluTL2+yssQjYK9Zftn5gTHTwn0hLYuhY5LtI4m9mb/2lY6zP0gzkq4tcGR/vmtFqPCSS7kK+PZHvZ+RbqLsor2TefsFbz1NCvv23Cfw2hJzX5p9dU4on85BvDXK9AXbojfO+fqiMHkC+rD4ogtzQ5UbVblnUFPnaI1fG/luc7Os3F5Jq5GuOXOeC0VYWqrbLc4kj8l2EXBnfxka2+26uI6+RL1s3sPqw73GZdYzOPhKOfKX+qs462NoeIif6yNcSuVqAWROH5Fzt6Yn7X8FbI1dL8PUei5t9/M6TXOQ7BvmOAxceXh3nuT1RyJNLEfqabKBAu0Dq9UvwMp+aM8QF+TJvUb+5yOObe21sL6CByPcr5KoGTu8wtVKPDRXzZX3NCVzgevrn1zsq/+Uvqw9r1VzlF9xLxPqwUOKv8bE8l8oHtaTtP+rvQ7M6uzqlA2J/Y96ydVqvOr9tqeNPUUPka41cGXWNNofJB8jpOeQ7HrmOA4dpxDt3BK4kB5DvR3jL6oSBZ9AznTsOXXkOu3mtiy4eOUKfU8+lbUuVAp3dsyirv6jf8DSZe2KnNkLvj1J6CPn2Qa7M46iFd0eOrPmyPnOR5DvIyyq7r1opaUC+bN27DPxx9PFmu9Ohor8rJeuzq+s9/Zr/Xv/26BKigW9guYIub5Yo//hqNI1EvtL12SBDg+T2xeeIEfJdKsnX2uzt1zndTpAS5DsJuZqAK6buM3vw1o+y9Rnraypg5Zs7fdfLQrv8HdZY3ZWraa9Swd8fS6hDVHnNV0/iyUXka4RcjUEfhZT5CyrD6Q7k+xn97QNY16S4q1QzmnLIl/U1Vh/0vyo/sK7wKqlFvkRSH2z8Eqp+UC0m65CvqSTfbjcePDrcco/0RL4s11/B56/PtFkfd6EJyJd5qwPOzIw1SbCupqORL9u/sT5nEOPtG519i55HvkbIFfsovptuofJS2XXqiHzhHd8Cj/XHpoY2JtcKec69LdCcCjQopsM3zii/9OQmZfVXGbk+RH0wm5L3rmzeXRqKfH9Hrqy/WW11mWQ6+J5YH7ZJ1r8jz3lcPqlYR2uQ7wzkagrucqgfutHtZ+qEfFmuS1m+o6baPyzNoDXX/3k94N8HZnYEZl7jP4Om0xOvxVgEke7I/wFy/wV8HfphYkb+DrrB7Z/XXV7wuIyfBM5rWlZk//mY6L+0P2r6Fk9J7DhGVbrev5r/s+t9L/DNYIpW/03DV0QRY9w/K8nzkWG4vilw6BH8vAz7miz8PIt/+CF/Rn+rc5Stvw1xX/XBBM0xy7QtY8jVrp+nob+GY38ezv81Y5zZzToZ1peF2H8m4zlM5vMtJr+zdE0mm4Tfx/ovnHsDdo9v1jrx4qDgQ0eq0Ec04wWOiyLxH+PCgh7uJYOF6+emCNfNTQMdA6dfPHUhCNdXyDnAH3PQsvnZCR2HcKoq5McVCrlxv4Ktcws2fN7mgP1BBTccXg0AozmV05qyEOIg3D9OE9cxEvSLv6o4XElGzOEfW1+tAXVXyf12d6aSG4I/XKPgDfcGXNaz9VnRqNM0GH72gJeq4B+8R1YnDSbfCn5xJF/wchzYS2H1xpeNIeQ6/GyDl+2gb5me8tLPm4U8//aTrR/YOnjlT6Uafyxzo64SPw3B4r0p1eX+IYSt37TgJasjp435A0HrQ6kS/PwdXv4Brvb0zk+28WT9hUf947H/5x1mGGlQBz8yDZ+3El7aglvUEmfFFkeQWPiJ+4LnI5dfOM08rGCAP/kTfq6AlytB0980D9emz6G18NMCXjKesvkxwdgkiWyBn8K+Lxz1O5yr0gp0HRycLeTneEbwtGGj8G+9YOqjPKd2dlwsmQofzOElni9u9+9vM4YeiBLXP9L5SWdH1cavlmbTXvCzAl7+Ao4z0CsvPHuE+MLPFtS/v8AN3+m1PitNo47wk3mpB7oOo9cdVFLZ/IhbBi+xD+daJl6+vqM1W/SzA15+AIPfN/YdYFiG/d19TkXi57GIJVffZ8aRsfBzGLwcAdpHad/1jc4T/cT7i+y7lH+wZ4SMMj9Z3WQcbH/eRPmbrXQt/JwATwxAHwXvFUru/oStz6T747YBxa+/U1hNu8PPh/CS8claLUXn8QfZ/ojH88s7g6efa7es8Iglc/F5a+GlC3gsavnYwr/OEX/4ib4kUp7kNuutoozmwM+x8FKf1c+rJVuLE0+SB/BzCby0BhddSrydGhJD9sLPPvCzB6h+5ft5WoPSBR9vnhdy3BshUB5H1xg0aMnGppLZ8MGW1U2QjM7Nr/lDjusv5DrhJfZRXFZ+tHuDTjhVhJ+N8JLxdvNvnqMvZ5Gj8JPN/zTAge4LQz8MDKBO8HMcroNRr1queW9fOJ0GP5mXbM7y9W+rRigsyyW34Odf8PIjqGZSFmmw4LLopzq87A0mmh0LyhuSQPThpx68HA3aKX/4M/hGAbkGP99K6ueggOgz+We9xPkBq5/3wND7yR1ZYdvpOvjJvGT183SgKTdxfoA4X+gHL9n+rGa8kW+Vqozlyz9mXoKTsmVVs1NDCdtfsLkkY1qnt3PSjF2E4PNY3bQDxx7xOTR36ClyEn6y+jkITKqdMtahNQbr5zR+IrycBK6NnVlYEHaOzc9w/V/mQ4e2r81s255AUuGnJrzUAZ123rvi3hEj+Dm6QvBS7YJALp/u3xKZu7xHItGFD6bw0gwM6sihd7cksfkJ9xv8ZHW0d3dHAyetfNFPPNcccuRSb5vNm5OeSkLgJ1uXK8PPHxbVv7unkUXt4edY5iV43cKwNrtTTibDT8wlxHOC0fkKIVayYnITfrK6iXUiN9XCc4f2k2uYD9/H3OAKpwRGF83P+kqWQvTg50hJ/Vy8yShh4jcFpFzS3xn7/hb8aP3wMPoeft6Fl2wf26u+LNjp0VryHfxk68ApzM/6vjLtwhB6FH72hZd4jvgNVY/WBN13QH2u5uvh5QNQf1D6pI47Z+gk+GkNL9Fn+PIXuRb7D0YQC3yek6R+Fjm2jUh3zKJy+Pk1vPwG7Ld3/vn5Rw/QbPjJ6iaro8GxVxz1/pdJS+CnCbycApI5ZfXatnF4/tIwnwzHfQjntDizNa8mRwp/n262wJsZArck0nS9jGLLmDVkGHwwhpezwJdPhn5/uyEf86FC9OVk1OdkTru1/I7bkmyqDD8b4CWeby7ypdzMRMmDsv7OvGTzJdn9QeOPrfGntvCTPSejQf1ji5bYjkigWP+L9ZPxqZ1TQPaYAtFPVj+Zp3NPjmpKivhSP1ndVAOtv3fK3TsnVezvrG7qghfmB+oNpl/8ZPXzNajybGyVyv5D/zo/YHPC3cr7RppXyMh6yfqTUcFcJfO379nze1+sm4zqoVqxpnFxtCf8/FXS34dpNF97Vp9I2PmZDbxEf+EjO79pe3RhE2X1015SP1d6d0Z8tswlMviJubXIlV7FC319Imks/JwJL3XBooRRCxpzYkgb/HSDl+vB1M+hfin+XuQI/OyEnyrwc/G719peN7OE+plfJnhpCT8nZtGBIyzHXCr3IayfLoSXlqC6ws7Ll4KTiBH85OFnCdh0ttAw7Gw2y0+sm6yOdp/ZsGmKWwHxgp9sbs9o1P54sFq3DOoCP7E+48aDR7wX6dksP0lmwU927sfmH2vStQ/FzDhHqiT1k61DV5hqH3xMrpEA+Mm8VAYnG9xZpO6RRsbDz7HwkvX53Izpm+9tLSKV/9Hf+8lyytZc86YfJH6y862b/SyN8zJ2ERdJf0fevG77zNFvIgJIBPyUnt8ezK1Xk2uEif2d7Y+egrsrPkzIMA1lz++/zseyfSrebBt55F9+MiouOXq/fJ0/O7/CujdX5JbZ+o+e+sfgfCAN9T0c55Ph/IbnW8ub2w/SIvg5GV5izsXvbt2/rXJIMuaTaeK+iHmq+t54nm3RT4KPkaif27FPKkmkHj1dNDPaZITVK+alBdhi5yu7c+8IZf0dc08O5yNcVfLjky3G2bQH/GT1k3GD3eHS/5nsI2w+rwAve4B2jzcmBK48JPb3MbgO1t8HeO/26U2Pif2d7Y8wZ+Tqx6getwnJZ/sXsa8zP5sm+euNeXmZ+MBPBXjZC4y/vsq2r1uO6Oc4iZ9lxT3OB93KE+vnO0l/P9fwruPenuOE+Sn9/oDcboLC4fRpYv2cDE8Y5TeOKjUWnCL/dX641eXpUs/rCWz/+S8/BxBbK+uIs/85f5Xd7d184PAR7C/LxLrJ1qG1JcU1c5uSxPUn5itif283nRKWMDiFJsPPgfByCLj5O0UbbnY8YX6y74UYgsO0FKyH66+kzvCzFV4+A3XSdp6/+jBWqJ8G6PNZJ4V/N7iQ2YbH82PSA+kQ+MDWnWwdOvWpe3aTqpyehJ/4fgq+35DMHR0yfXFO5SVx/94k6e9GdmPe356djfXHl/0Rnk9uzNbdi+T250Q/UV/Edeiu2y986xensfmeWDfZ/uj3eO5NZk0Oq29if2d+usoVj373sgL7uy/9ne3fe4TkOzo3ysX50reS/j54S491T1q+7N/Z/JPt33/qYeM16qE/ZfN96fwzx8vMtcrRjbrBz0nwhPX3F7d0LhhMiBDPt1lfZ37GNut4cdtTqYLET7Y/kslGxi+LcBfPD9n51gLQl1/irWgUQqfj89h8yQY0NXK/O+TEfPb9FXF/xNahqjt1NU03nqSN8NMKXi4DL1mdHlL5Kok+h5/28JLxjPnyHneeJ1FL+PkQXt4FU3y7p/hZhQheRl8R2LNIYFkO3TTvUs0Z7Vg6Cj7Mh5dszkSeVrsVqXlRW/j5AHWTsWNRZ6s8I09cf2J+zD0D7Wzu5Y9PSGbfv+BwbsLhfIrbHXPZ+511Cl0NP/UlfsbebzT6NO0EnQg/URfE/ZH77fiJ/V3TxfkS27ezPu9U3jkjqeIy5ltf5p9sn6SRXvbdgNp1dAL8ZOtP5qnZ8Vv1m7xLSTX8/AQvGceNT+h1qEpOPkr2R6y/yza7+xjnzBLrJ+vvzM8rtVGNsSSVhMJPPD/iPmmQ3bCwWVlJ9HPX+9+C9xcwX73A20VWldxzTBLXn/h+Azy8yKvbrsqdpRJB2XwJcxlxn9RoF7dz3Vqxfoh9HfMVPihq1Uq/4jR6E37Ogpdm4CzVSv9t69NIIfy0hJdTwZY91Vfan8Tj/DWNeyHp763Zze9VMoXv13Rzxv69Wjh/7OadS7+fPq9lyU9RlK33UP9x/7O4pEKzcaNc00gB/NRD3UQd56ihp03L71/mn+/hJebH3Ceq3TbU64y4f2f7I3Y+PPdquq/pvtN0Ffxk6wzGdo+bekQri/UvrDu++OlybfWsj4/nsvMdrk0yX1rikZZd3buCHJT4yagc5ziI2h8T/ewUvOJ04Oe+cW/Pah4+RergZ4fEz5myl3Y+hqXUGf7h+RLnnMd7flg/MKCafoRfv0r8qqkbQi3bb1G2v2b7akb1I3EX5C9rqBP86AYvmoT7y5/tudh0x9NKrL/S0NfCsQ4L516sfuzRWFlJ2breFfcV9ZM7oHvy44qAG+L9084X7ttr3L8h0RcDwosrKDs/McH7sPcreK61+OXUGvoQ+SsfEnJXBLOMwvYm5USS/wParzOYAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAAbgAAAAAAAAA=eF7tkTEOwCAMA/u0PqYNnXlSX9oOzWLpZGCs4sXChCOEiFd338/PAzz3D3Gq13PEJ27mbZBPOd3vuKPu3udc+1CO487OabXfJk5cx3F8zVf/jercvKl+1olH/FxfwKM8z22lUqlUKv1QD/qEkc4=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAArwAAAAAAAAA=eF7NlUEOgCAMBL/mYxQ5+yRfqgd72WSyLQkRLhNKuxRIS2vvuK/t+NiAsb4LyV/jSJ90w34m9clO+zvdLN35HDUP1XG61XsazfcUkq7TcfpqH3038nP3Tf5Vkh7px7yDHtmdvjsfUeuQ6jPbB4iufl28yzPbr7L3OcpsXWfP/RdXz9vl4dZnk/rw7Lyy/TC4+juvwmrfqPo7qp77j9x/QnFd5qOk/TvYI+4BVONsaQ==AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAANRMAAAAAAAA=eF49l3k01G0bx4eikkjJVklCQgo1dckyKZHlSVJJU9Zn0DqR0mTPLrvBGNnGvq+TiyxJZEmSKCFLUSmPdo+U18ucZ/6Zc5/fOTPf3/fc9319Pv00ydCjJG8kLHyuEI00o45J61pC9xYTJ6FrseAtHJh7I/UqKBWyGiPHrWB72Y/3QR+8MKrBu+efKU94smXdY0qRP7yayfVUo8XBRuUw6l0LJrgI6w3nUZkoo3zk2fdBLxie8Sa4jiWjWlmtJs9rH2xlSfyUX58MTJAM+CIWiAfUeNqfPqOCi+bLJb7d/jgrzvr3Pf0SKL6d2fpHNnIxn4Q1sa3d++TTvBBYWKc4Elu+S/BbiDiAz8Tz0W5CGLSzCu/YpFth4ERN+EdBL6jU87w60GoNBXpnSY8t44DekL6W++YNlHjYFOa2Mx5SVNeORNvvxj18ZNoLzVBkwMfc0r40ILnGrdbfQcGgmMbd9hrekNIbUBXVdBrENH02FRUzcHVhZa26RggcCO675roiBN0OE/9ZQryADvo77KunYxbzdqoQ1xQe2phvRV/Ma6VD3KO2sy9i+hbI+Tm26sTagFihgpOPYAgobNj02/RNNEj1lujxPPaAQdaMuiKbBkNVXKK8WQnYPWQWIrr+DFjdlPx0XRjgXsWsxawvE5PFPUw7W+NBSiNShudMInwp0eYT7LoJS0X3Vg9xJyPVVvJT2pH5/rZt6TZ8G4gPv+tbWy5noGzAyr7ki2Hok2FhPrPTdzGvgR27QO/02Rs3oxbzPjrGHqGlaUmOx4IsedvyuGPX8J7kwKoSFRvgIrRoqYT7gHZrWV5IaTiOPdU+U9ITAcV6pr0s/XTMFxZwZ5tboFHqMXLF7gQ4cUhkdn11ABKCOmj161PBvDrJ5qJtKqgdGMJqsRTkzylVOdLig/ueJadptNxCQv05KZNtLDzEV73u781H8Q9Z9l2zRjAGu1e+ffTeZzGfgB37z5yt6v2Lvovr4rNsJsONf/hANKzoDV5xbtgHeet3KOX/mwoHNHvGptRtsPy0Xu66J46YtvrZ1Zg9JfD7pBymFeRhxy1vy1D9GPzmYM1LdkgDNY+/+Hm3VYDNu6K77ANMEFB+7M4oTYGwhqFOzaBirPQ4Y/BlsAwv1ZzUt1xBx8HRqhoB0Wh0Exav844JhhlJyl1GDhkO8k1XG8hELOaTUmKTekfbFNyAc94usneXNW+uT44Bgd6fuY/7w9DDzFnriGw5mJUO7uV5IQuhJqTb6p9SUIC0NWbuVRGKvWSbeLfF4ya1Jx+MTelwfOjVxYHpMpiur65Pz0gBIjmNn1+zHmdoIoMFmbGYfkXX8JJiBUpp1BN161OgbcP4hisvSiDAb6uBmKwjENUsL0wvjZr/pr365OUF0RM1/zR6XF/MSzImLu19KPQpg7Of+32IfCcnRSIvR0Nrv6ebOq0IpuXHvnnmB6LS12r3V1ks2B4srFj9MRKW7N3udoPCxsnse0yu7nT49ogpVu6YClRqyJRAqhtWBgk+zdWrxbrBStZPVyZ0ftzvv80gEU89Wav8TCkdT08XxZvtLIU1YavsUCYLJ+leb1o+zr+fWnj+PkNf4Cc0CIvecYZTmsFDzfJ7FvOdNSB+my47WmtVt5ifcJL9uD05rPpnASRl+cR/LI7DT0//van3pwQtxiSVROfu4Fea1WdrRdb8+eeZ1eD2xT+CUqZb5PPRc2J0vF4xG6O4f8yNPoyARtZzlHmYDfujv6d0/CoCzzwnp8MVGdhY0DXwKygWO9xSU/7hqkBiuENxreYFKHR5ML3yUDj+9fkAEnPCsdxdiP6rhA582247d127vJh3+ioxvqU04jNXyeKaRGeXSFor8G/yQ5X1lum7Z4tRbLiTMBJ/HLpGhSuiVrKRlCQuOzihjg1K791zXJlY2Hy4tc8IYfkar9MFyeVAHeYOzuyzRjNtOwNeuzrgF00SPuhfhXMitUpeaQm4k0d/XFUmCLP1uCyGv9wEG4XarC2VBeDwcI0fZS4GaWY5XaxHDNhJkDeqzzRHUlSXjPFQxmI+Lxm278TRSvsazn1BoBGbvq+9+0wrEWuPKxU8OB8HhcvM+qe8kpE2QU31qkxGFfKXkObgerAICgpZ+i0VQnw6CJuUK0FK97NeUXoZyImWUrpF7uLZI6SxlPgijG+IejRsnIc04boiS89o2EbeShwZi8ANPK07Ot7nw9xcj3Dpb2ekSO1Z62ATAPvUHqQq5V2FxDlt2QvDCeieHnFHn2S4mE/Dkj1Kc3qntZO+uE5xYDvVmJxeIpOBB/mixURYfjhLH1+bNT9P5PnWz/29JhGtKPJRo9ergTdQiDr3owzqzzGVuJ9aQSJFO2RKuxTFlVlSp7IKkdJ0/5KyeTWGMfaWMXtDQVXt61fex37Y5d8srmsVgxrBbhKOhXeAt+Lk7vsHGfhlEvYffhmJUYHro14r34bWurAQr0o/vF1RweW2lHN/EU6wxzjzuG9h/vrDNKspZq7HjvPchqjDt0Q6QSgIEhlvcpdEB4Iy35cEl35b6OHMa6HeiQHvemvsaHckk1Xn57af9d2IJHOQ4czvFKoT+atdKAafN3S5fC0c/BsKxDP+ccAIzjwXV87SnCpOg4/tQ/wPyiyR4Ofn3zZqC4Oc+b6C0PF32LFIKAx4MxWZdwcNhnk2i/OEgCtn3hPcypNl5DRxauiD0rAjoCxP/SbqmjgY4sx/vWHtvAvnotB0elWFQHYk1E+keg5tU8cuDg/oWt+4LFp1DddZnbezFaTCVH6gSsxgFGpy+GArhwd2S/yfD85Cz+gpzT+TgfiDwws1IvRmsmA0Z7+eJLZyeCF4gQ88gNR6y86AGcnpcy+xi/UuTX+/J/pNtKDV8gDInCKe2frnBpRIijatUvQAXsJVvna4CNc1NQMf2IeDPE9dq+PYtfnfMy389jYEfDUVaNWXDwPFP2pc5lEcnKuZJqi/dAayYJhukTULrCl6bb+FQvCnpwpLaoszNLl8Nx71iUBy+Midh2PxoK4mF+pbHQTS30jaz+3mOczIwlzK/vfesdNHIlu6yEgZC1P1PVQE8RJZlN9xJLQ9pNgtQUqG1g3k2QyLBJBLzI8zyc7Eb9krRFZVeEDMxTdVl2Q94X12S/KJNCZeXVag9U3HFQvXTzSg8lU4ZGLCu82LjnrWdw0PLYuDvzm8cmKBX8hI3Xi6I/RQNGpPLLnmVu+HEkxy9F6hcE6fu9jCHJ6RXuAXUxid6axZMxnN6XM3e02hvUq59wnsMLpwYv0efyAZDBwvuxIx/56nf9K32eOs/P6KO9cTYcvDgbaByGAo+p5aMcn0hIgGYVbecwb00TqlidLBKDA5Hub6hwrswb5lK4yo2NWe9EnfgYEKicZhrpLpWGWvN2JQFoTRUY5X1nakoMbX6/k2B+goKsJ9qdUnHaY6IlTFufbBwfXLNZYlBMOQupMAJSkXpQSmIkWlvOFoL7GiX/k41tBXpct73wHP001GdpZJwNRLnpq0dYGm5+mmD6roOMHYWfJVY/5/dI6dr1BJRVsj1TapWRbKmIv2uuSE4ArjS1r7d4WglO4nwcM/sv7jqQ0LfOWB9pnppS4SwXgrckWydWg0OnhKK4g671rss57CLuLwluICX1EwTy/056nS25w+DdhrC99LPjBlQr/e0w+x9DOgFRye4bmODqfDTYNVgrzQkeL06kRTLE4cTZ89LBkMU5GrNJs3RM/fZzsi34u7Y1azT4rjC280Gh74YGjjAYWd0iHya2+h4V7B7ufBBVA9uZ8Vu6oU+VdUtqny3sQXRzT0t/zKwvSdPf2G05FgV3f+6BX5OmAfU202eu8PCRBSTryVDFY7OqSK53trv6BeYC2ej0ek7ZTUbIJA0j2zh1mTBJP6fUnycSywoohJnLTywv3nej+yXsWh4pvOAiY9GzUrxw/v2RUOEqStitKqAUgSvSrhU8lAnqwsxu9PYVjj0mldWJmIgRzeW+Q/Gu4qs95wnOoK77ZflmHU0PCPfrfyDkYQh1eOs7kJdgs8yL/Af064f3hp/+tUZ06fJmyiWrPnsEki2FBIB+So19FeTjqu83M0oOSDwDTww/NjN+PHWzPg3tnET/fmecprV4iZrHQBlDNKzD7X/A2jTxuNW5fmoIXlWxgxiAenpjdjisFRKOmXNFeTUwbrBwNkbp4oRNLGS+UjIimgPVJfXLIiHeUSPxqXHSzApfmm7e0t9WC4bnebqU8BtMXwX1m5vQD0K3ct73S9D89tH2vUfi6b56BPIoYr49C+1vy8Qk4OnpDzQuFEJtzWeddC25+LJXva/61Iz8a1EmsFTvSVovbMr9rdXQ/xqrAO76UhX3jtfVDaxcgbBy3S6KpKDJhiGagNfvBBHQ6Pti/wqRE41UwYwpFwqJQUIqgF+cImv/Gfv5b4L/blpUvM71nkVaEFPvXAS5Tv9wZW+nHmv/28H1her+xKBwWycOxFPw/cxHM6MXtZDJTpxVJmtWPw9gRxv85wDRhbT4ZtbUpGs/Ae7TrBVJB7QC+Y4rbF1UnVFC37ZrTNrEt6oUrHlO0v+pxfeWLsyEjLYEMLdoyHrjm76z4wLbaw2/5iQqFrw5h3vxfkj59J9DJEIDZe7pvZEgurBRoO7TnsAgbbnnm0K6cBs6jgyC/DUnQzP1xlmPwUI349k8QyF6jyOrGzj5mD/HrnN5LVS7HMI8HUVO4e3C63qY41jYKTp46M9O4vQjMxsoW5agf4TnQkaiskQYzw0km11msgeNI776hYEMRQzpqfcw+HKA4vKy/wMxU62jN1YhVug11408Wjn12hUK/iyl5+ymKfKfrEVRyefrLAz8lAuqWz6sCeXM7+9CdG6jxNDmgogCXvNv7mi8wBObeVqxp6WUC+u6Ztg24D+CtKP7blr8Dnbkk0Udl5D42LpfWuzUCDVPklX7XLIYGab3OfuxYEsmpfa9kyMeZ8/t3l53wxwKzgosLovIeFvw71PJOGehn3GzujMtAqMfSlv4k7DtCWC6oGJKMD5Qbr+rlYuMZtwpAoKMXVxpkBpH3O8KFk77aCzQ+Rpjj7tPpACujOaF2K2RcLOlyOINufCTSdbY4bj0eA6Fsh0ZK/7qHugalgzMwFRbnfG55eSUYCyfzWsqWVqEQWah/MioHPz8WaL1hFw2aeZTcGrOioHvVeFWZywOQ/nv8/39uCjJuj+I9qCp4dpl3HyAtgUtlx9/t2a879qUn8weH9+AW+D0DGWW4fRk0ip88otnuDjopSxDVc2mwywvUiAeX8lvnOqwXoWKt9PqnyCF9VX5ZoOnwfqytWP5cgxKBd2I+vo1mpqM6XaFSXfB9j//3tb9ZZCKLKb+VMlO6gRGFuAVhHo/mOl+VlTlno4P+kVe7RQyQs36NFUzoA1zyddaKuxEJj+2a7b4eLUWjZ49bkf1uA+kB0X5+HA2gYnT8juc4dxu4LPdjU0AlDtPRv1J9lGNTVdyqmvwhfJBwKxNV0lJq91x7Rijitd23lmF0qeE3gppIP2bjTvDqbLywSGfihpneuBBUvdJ0jVzGRurLOpmefA9iVNUbN3UyG4MyMuOSOcuTi+Eb9gn/4QeJdgY+r3zlD2hPG79fvWNBittKoqjdusU+pG8Q4jo+oLvhHCi5bVhOQxGBxzrsT8cWS3fxnrmaBzxwqvblVhgk60mNK9tFoInZULag7Hzq+b/3YIZGJvDvChWve58/3d+iezdYwtKWMphoXpaJpeLTzpqIMKAtdOc1ziwnUJ68Tj7oXQ/p3bZleUS/sHbX7tGb4AZTLf+l6yVUF62Vvv3WrqYQL0xGhWY3tMDJTvvnd5Ub0xl3alOpsUFDmZuZkZM3z8sxAC1ckZlHT2y6fysaPjZo9zRm3UPGes1uCSDnqD1dfSP2SDfL9hOL8sDjoHJM5Q+Zxw8azbTm/XEPx9ojCezWPCjj1teama/dd0NV9HtQV5I92Blv+vriXCfkBe3Nf3EkHLY4Pdc5tnfcjfTTbLPHr0tcwyD5C5jZyzsDWbn29v4xjOT53jh3G8aXWBT8KgBwqs/FLGIenCMfYr2lzj24IZmGsYtC7GwwqKpAvMtmpqajN8ZM08Ry5yZEI9EoM7NlcO8/vGlamG/O853110VfaP5Ev/Yh/CvUr2KElSflgH857HA/VwgqOv0iW9txlLmOjyURg5o8GDxg5o7Ymqzx7/v5a9BkVt9B1q+QqUfmhlcDnF3QU6/W+Sdpdhuc4frNPTSE+QysIy5q7l9SZsUA+sfHVTG807uX4TnESpFxRpuOdMUOJXdbz+/TKz6xoVhRqcfzHTTNRUcXSHwYG9fdQrTyQ4BJatf1g2H8+5MnxtUV/C0aRSI/P6jq3/vMjg7z+69dNnBbPs9UJ9hDH53QW+nFBqqaDznhREZbolfpNX4lG1aXKlIEGNhBC6ENtbxhgZCf0+qpIPZBEpI0nqedhUugU8+WmOvSNJbgLtrOx+JtrgaTUWWhXIhk/ESrEfXzWjxjfmZA25ZPyttkHvvPM/gncXoK+RL9S7dzr0FpAikxVioLuv7gCgipuYzDH3zoW8rrg/wCbzTR1AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAlgkAAAAAAAA=eF6NWHtUjekaLyrtLuwu6K6bLlKy0a69vxRyyeRSDeNIM5WyFCbFjOGYRKMll9EZhuM2DofCnNC4TFPfUccJOVmOkSGXYWnqrBAq9rBJndPzvu+vZVuz5uz/fut9v+99nt/7e37P8+32w21Xp6RMrzTiPx3HW3oduz8mubniOcfjHKsHJe90kn7l+EraGr/yumC5g+PjI9fXPig2kXsdYfjrQ4fc8tThshnHvheyXC5kaWQTjrf1q/AfZu8qG3Ns21x7tvDjcEnsv360sCC83Vyy5fhle+quk2+mys8M4hXx5eqLSv+69VaFiD/5o5VfjFvhjHi7AnUW/VcNl99wXFS/91TlYT/Es7/2k5EDZlkCz7o38tOtcf2Qz4O2uT+5R3kBzwjakRdrHC0JHHwv7tj0tqcVIv5DLt0JG8vt/LwT+Xcu5125qhXxZtT1V63f0EsW8d39MmBIn2YP6SXHkeu2pasqR8ivOV5rE7TjpdpXNuLvn/T3mwr1bndJ4C2R3hn7WgPBn/k1q9W2Sx2Bi6waNgdPiUK8WWtjWv50wQfr6Sq9Z2qTiyTi9QnVLKk8ew3x/jBnRUOzi538gmMTv0PaH2Z7It7O6szCvZ2DZYE9rIesPhxrKndyvHyXdbl6lDfuO6vkue97npE4/+6AEctu3/CUBP9WQf+7r64IqQ/H0qPL9jG7xko2HHe82VgYcscPelB5X77tc+sG9GqUYWRcMPNRheA31z81ZbN0vkLE19jRURJV54R4r87/NXFgaWvFK44/L008oG1XIP540pM/4n2zxC1+x2ZvxPviZWmGcv8kxPtNppN28uHhiDdnkcMxzxB36KHwp4DclEs3oVeHX2I0yS420OstFh/wvBfzT/RuVCDeDzYuvlhdqdeKeBuSQga1N4fIXRw//bd5+j83eYLvhKKirxKqh0Pfj37erK7eFiP15XjxpGjr+fuVsv1b9TYa8RrWm+2Ugu3DzteD33xlYF1qjhJ6aDy7yOSzDTaIV5esblq730sS8YaRn7gjXq+M/EhFuTfq68qN1St7WzZrBS5LWXW9s8hHsuS4OeFh/yGdzojXbPuKteu7It+JV/CrN4lR1DxUgs9z00uqLy70kUQ+1s/Tkid974V4k6LG6xxkvVbcf3bVnYT2Gl2FqLdL8/KeTNnkinjv8nwFv2Zec1RtmUNloYc5eZOTMt7v8cPE0ogFq+I9fpPfv/S7mfLouybwO5X2Dwa/R0lfHrKe48vkx57Qa9WO6l4By0LgF4VbZ1cVPTYDNiG+vOXeHJ/usy1/fkqopOA4MD7+YmBDIPTr+WHLvtgs7Tt+Jvg1+XhP7u11esQ7YU30zus7XcF3NvHZhvqaOLVPVdqLkZK4/zCdbpymyg3x73XT3G96aI7+YuExu+hihwP4rjrRlPlLzTjJnOOhQXZRP+7pKyk5lo90/1Sy4PM4xdsAP/vz16lzHba0wS+uxR5dn+gTjHgru9uVy2DodYHz+W/XWWslUU8Tkp4ELm/0hP8O1s3zvbPYE/2l/ElSXtrAodDDSePo763ORKPefg54lvN4wwRZ4N3k3/GI11AP7+D199wj3iigX31BN9bjPvrSbiXuK0evTygoMoZe9pF+fCXh58Gs3yGfIuJvCPBB6u/2yOeL+u76NIe/lK2sq4+dbA39zJvR/TNFv7mu3uR68Joa+y0ovmD4p6Yl8sxqUxf4wbVtj+YPPe6D/YvOpLf4HQwCX9n0/v7Qy3Snc03P41WIN5mv/798NlP/ssL+k1f9gor39uj7Q3qfP/h029SQ/crfEf37fVrXQf822sLMJOMA6NWYTnOXhD5iKN7R4PMguw/U50fsffC/2YQHIz9fOn8U+L2f7brJ9HqIJOrZPi6u904/FerLi/aPQTxWA89uCfPV4vwSg/s+a1c5JueVHXAKnT8K/LB8WlE/5Qb19WmDumbaqgHYX1jwYEGj3gj+1Zue98N6GN3vE/Tnzq7u30Dwa077HXDfSzk/oj6d0u23101TgL9Ufv/CPw4QvxGSeJ7SPaIBPxbsviRr/nxkm3NjccRE8NlE+vDG/kOML/AZUab85lKYAn76Gc2TAeDPhe5jKnAI6csW+ZtQfubAuQ63x5d7HQOfo1OS94w1bwffA7qXBznJIv8/UL6ueH4C8dkJPSopPzv4m5LOb9cKP0jm+hX8X6D5o2des2L6hX/4c/2JfGbS82MkwXc84UDJgq+37Dr/ZdzD8eAzkvQ/BPfxR4rXDf1xhjb83Iqnlqh3b6Zf+IWa/CoCOJ/7g6hXVt1VZcLfDtK89QD8MX+zxf64Ndllac6O0OdJWncCn8w/HTH/cj+Af5bVB1111Tvg+TQDPhcXF896+nkA5gs2Lw8FFn4k+PyOzh8NvdU2aZws/xYoC391ofv0Qv6TiE8N9J7E9S/WW4n/MeiPxbzeBd9mdHgo3pfIn39bn0aSziBeoadG6j8K7L/pXluwoKRVK/Jj7zcC3xmFTdWnZppDj8x/bIHv0/tsJEN+hP70xJ89+DvF6/Ht/a2hIr966j9a6O0D4qunX+ewfKHn6TQPO0hWHC+keEPB5xnqd66y4JMen2Eqi3mE3a+E+xPxG/YfQz7F+gH2PY3+XsDqGXyepnwtwLeG6sELfpnI9Sne/w/yc2fwOY/rU/hHf+4Pgl91TXbD7ICR+P5cQ36u6vm+pGiDwVcs14vgk/lvT7/KJP78ZDG/96Lno1Dv0XQfY1HvSzmfYp31v1GyKcev+Hzwe3wKPpby+Ufsv2ugz6MGfD6mevHA97Dov6LeQ8mfXms73jrvP2WCvw2W9y/u3hKOfsT6yTjUp9nnbF4S60aOqWFZJefwvbGX+tUI9Je5BnyeLPzK6UqUMe6D9TMV9BdOehgGvbZQPfV8vzK9DJMEn/8ifXj9Lp9i/RbVkx30yfz3Cfg8w/nE/xtTp5XefW0G/3zB6hd8LqTn+wKz09pCXxnsF/kIPQi9hVE+vuBXz+ZR8J9P/dgZ/Zn5mTv6VTrXr+D7PT5P4v8gdh7m9/0G/epbxj/2L+PvM5yXBJ+G8xKbr0xRrwvp/4x77/Ap/u9g/umO/Rtda9THc3v6ker0hqUTR2vgd5/Q+3UVop4bEhL0tUedoacaqgcl+Mqleg+R3tZ3T70/Iz05Yh7j94Hvpaof2XyB/9fIz3q+70+zfib145j7ryzmBRr/uobh+24JXxd64v0IfCRw/sT6cobRb1h/CTHw444ygRfy94t82P2PhR+y+Wo85kMF40NGf+DP/xczgtQJAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUpj0AD4RXZdAQAAAAAAAAAAgAAAAAAAAPgfAAAAAAAAIwQAAAAAAAA=eF51mEFqHTEQRH2nZO/b5E7JDf4Rsv4rgQMDHwyCLGQUwogJg44Q/EUxdFVXr6zyo9WqHs186eUljx/fP+Pna64X0b8842H4KvqKZvJ00b8946/JP0T/9fYZ/8y80+i6boxzvYgOH3K+ir6imTxddPiQ5x+iw4d83ml07XP0gfUievSB+Sr6imbydNGjD5x/iB594Hmn0fW5hg+5XkTHOOer6CuaydNFhw95/iE6fMjnnUbXfRyfB9aL6Mib81X0Fc3k6aLH54HzD9Hj88DzTqMjGuXH/mG9iB79Zb6KHsecp4se35Ocf4ge35M87zS6vqfjvmC9iA4fcr6KvqKZPF30uC84/xA97guedxpdv0vwIdeL6Cvvw/BV9BXN5OmiY5znH6LDh3zeaXT9Dsf3A+tFdPiQ81X0Fc3k6aKj7jz/ED2+H3jeaXT93QEfcr2IDh9yvoq+opk8XXT4kOcfomOczzuNfv0ff8X3JOtFdPiQ81X0Fc3k6aLH55jzD9HjOnneafLcjC/6/6/POu/Cx33E+TbDF+HXet+Fj/vu4td6f5v8Vfg1/jDrbcI/07/9MfV0s95d+Liv2c/D1D+MP6fw8T3A9Uzjw+01Pu9XcJ8xZh7j/LnYDF+ER9+ZR9+ZR9/z/FV49D1fbxMefc/r6Wa9u/Doe+7nYeofxp9TePQ9r2caH9B3PUes2KjOu/CxDt7fm+GL8LHvF798fggf+875q/Cx77zeJnzsO9fThV+xCx/f2+znYeofwse+X3x8z3M9U3T0Pfp6BfqAMfrOPPrO/IrNnjeZx5h5jJlH3/P8VXj0PV9vEx59z+vpZr27Pecyj77n9Q/jz2nPxXk90/iA/a7nRP5+xv2u5+j8e7sZvgiP+pjHOpmP+13P48zH/a7ndObR97yebta7C4++534epv5h/DmFj79vuZ5pfMD3Xs/F8Anj+J3QewPmV2yGL8LH51LvGZiP69H7B+bjWO8lmEffmUff8/XuwqPvuZ+H8Oh77s8pfPxdx/VM4wPe83oPENfN73m9J2F+xWb4Ijz6zjz6znx8z+t9C/NYf77eJjzGeT3drHcXHn1nPr7n9T4n9+cUHn3P65nGh5u991ixU513c9+C33V8jtnsfRHz6Dvza50P4dH3PH8VHn3P19uEh195PV14jJmPY/bzsPdXzC/utPdazK+YoqPvcZ4r+HwZv++D8uAcx+fRzfBF+LWed+HRd+bj953zV+HR93y9TXj0Pa+nm/XuwqNPuZ+HqX8Yf07h4zmO65nGh5u918I8GKPvzKPvzK/Y7H0g8+g788vnh/Doe56/Co++5+ttwqPveT3drHe395DMox95/cP4c9p7y7yeaXzA77pJ9dxFX7GJvvK+ix5/d/E94Yfo8Jn1Fbvo8Tnmek7R/wO2lrzJAQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAA+AQAAAAAAAA=eF5d11f86HMdx3F/e+89Dw7H3nv+bcdelZUOKSO0yF7tQcMoyjhlFA1SlJFQCJFVshVFRmXvceH1vDi/383z8bv4vK9eN9/JJnv/G8kZc4Y8Mo/Jb+ZR6W7ynCntHJ3H5bfTnrspcua0c2yekKekPXdT5ixp5/j8fJ6WJ6S7qXLWtHNifjG/m/bcTZ2zpZ0v5JfzjLTnbpqcPe18Kb+a30977qbNOdLOV/LreVbaczddzpl2vpYn5Tlpz930OVfa+UaenBPTns70Mk/OnXr7Tp6X30p3epk37ejt1Lwg7bnTy3xpR2+n54/Tnju9zJ929Pa9vCjtudPLAmlHb2fmT9OeO70smHb09oP8edpzp5eF0o7ezs5L0p47vSycdvR2bv4y7bnTyyJpR28/zF+lPXe6G5N2JuaP8vK0pzO9LJaLpt4uzN/m+elOL4unHb39JK9Ke+70Mjbt6O3ivCbtudPLEmlHbz/La9OeO70smXb09ou8Lu2508u4tKO3S/OGtOdOL0ulHb1dln9Me+70snTa0duv86a0504vy6QdvV2Rf0p77sbksmlHb7/JW9OezvSyfC6Xers6b88r051eVkg7evtd/iXtudPLimlHb7/Pu9KeO72slHb0dn3ek/bc6WXltHNd/iH/mvbc6WWVtKO3G/O+tOdOL6umHb3dnPenPXd6WS3t6O2WfDDtudPL6mlHb7flw2nPne7WSDt6+3M+mvZ0ppe1cs3U2535z7wj3ell7bSjt7vzibTnTi/rpB293Zv/Tnvu9LJu2tHb3/KptOdOL+ulHb39PZ9Oe+70sn7a0dsD+Wzac6eXDdKO3h7K/6Y9d3rZMO3o7ZH8f9pzp5fRtKO3x/KFtOdOdxvlaOrtH/lSPpY608smuXHq7V/5aj6e7vSyadrR25P5etpzp5fN0o7e/pNvpj13etk87ejtmXw77bnTyxZpR2/P5btpz51etkw7evtfjvRgs+dOL+PTjt6ezym6t+dOL1ulHb29mFN1b8/daG6ddvT2ck7Tvb3R1N02aUdvr+R03dvTmV62y21Tb2/kjN2/1r87vWyfdvT2Vs7cvT13etkh7ejtnZy1e3vu9LJj2tGbh/rsac+dXnZKO3qbvLs5PfjTnV52Tjt6mzLnTnvu9LJL2tHb1DnvYM+dXj6QdvQ2bc4/2HOnlw+mHb1NnwsO9tzp7kNpR28z5MKDPZ3pZbfcNfU2Sy6aM41MeqeX3dOO3mbLxQd77vSyR9rR2xy5xGDPnV72TDt6myvHDfbc6eXDaUdv8+TSgz13etkr7ehtvlx2sOdOLx9JO3pbIJcf7LnTy4S0o7eFcsXBnju97J0TUm+L5MqDPXe62yft6G1MrjrY05le9s2Ppt7G5hq52Mikd3r5WNrR25K51mDPnV4+nnb0tlSuM9hzp5f90o7elsn1Bnvu9LJ/2tHbcrnBYM+dXg5IO3pbIUcHe+70cmDa0dtKufFgz92E/ETa0dsquelgz93eeVDa0dtquflgz53uDk47els9txzs6Uwvn8xDUm9r59a55sikd3r5VNrR27q5zWDPnV4+nXb0tn5uO9hzp5fPpB29bZjbDfbc6eWzaUdvG+X2gz13ejk07ehtk9xhsOdOL4elHb1tljsO9tzp5XNpR29b5E6DPXd6OTzt6G187jzYc6e7I9KO3rbKXQZ77wEQhC2+AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApgAAAAAAAAA=eF4txRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF4TF6c9AADGKQj9 + </AppendedData> +</VTKFile> diff --git a/Tests/Data/TH2M/M/M_2d_neumann/M_2d_neumann_newton.xml b/Tests/Data/TH2M/M/M_2d_neumann/M_2d_neumann_newton.xml new file mode 100644 index 0000000000000000000000000000000000000000..767ccaf3fc84e39e9e7ad6a024db02020bf4647f --- /dev/null +++ b/Tests/Data/TH2M/M/M_2d_neumann/M_2d_neumann_newton.xml @@ -0,0 +1,5 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProjectDiff base_file="M_2d_neumann.prj"> + <remove msel="/*/*/process/jacobian_assembler"/> + <replace sel="/*/time_loop/output/prefix/text()">M_2d_neumann_newton</replace> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/TH2M/T/T_1d_dirichlet/T_1d_dirichlet_newton.xml b/Tests/Data/TH2M/T/T_1d_dirichlet/T_1d_dirichlet_newton.xml new file mode 100644 index 0000000000000000000000000000000000000000..6e7e10c6ff7b6fe0f319314ccee5c86e55ae643c --- /dev/null +++ b/Tests/Data/TH2M/T/T_1d_dirichlet/T_1d_dirichlet_newton.xml @@ -0,0 +1,5 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProjectDiff base_file="T_1d_dirichlet.prj"> + <remove msel="/*/*/process/jacobian_assembler"/> + <replace sel="/*/time_loop/output/prefix/text()">T_1d_dirichlet_newton</replace> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/TH2M/THM/slab/THM_1d_dirichlet_newton.xml b/Tests/Data/TH2M/THM/slab/THM_1d_dirichlet_newton.xml new file mode 100644 index 0000000000000000000000000000000000000000..216d8274d3d340a30c008e4a833a0ab15a98085b --- /dev/null +++ b/Tests/Data/TH2M/THM/slab/THM_1d_dirichlet_newton.xml @@ -0,0 +1,5 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProjectDiff base_file="THM_1d_dirichlet.prj"> + <remove msel="/*/*/process/jacobian_assembler"/> + <replace sel="/*/time_loop/output/prefix/text()">THM_1d_dirichlet_newton</replace> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/TH2M/THM/sphere/point_heatsource_newton.xml b/Tests/Data/TH2M/THM/sphere/point_heatsource_newton.xml new file mode 100644 index 0000000000000000000000000000000000000000..406fb2b7c2bcb66fb00afc51284aca59d4921325 --- /dev/null +++ b/Tests/Data/TH2M/THM/sphere/point_heatsource_newton.xml @@ -0,0 +1,5 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProjectDiff base_file="point_heatsource.prj"> + <remove msel="/*/*/process/jacobian_assembler"/> + <replace sel="/*/time_loop/output/prefix/text()">point_heatsource_newton</replace> +</OpenGeoSysProjectDiff> diff --git a/scripts/cmake/test/AddTest.cmake b/scripts/cmake/test/AddTest.cmake index 301768913d65a95b416b74ca6d9ab8e60216e190..94182f41fec76001342309bf2dcba8bd4c83d75f 100644 --- a/scripts/cmake/test/AddTest.cmake +++ b/scripts/cmake/test/AddTest.cmake @@ -218,6 +218,9 @@ function(AddTest) return() endif() + set(FILES_TO_DELETE "") + list(APPEND FILES_TO_DELETE "${AddTest_STDOUT_FILE_PATH}") + if(AddTest_DIFF_DATA) string(LENGTH "${AddTest_DIFF_DATA}" DIFF_DATA_LENGTH) if(${DIFF_DATA_LENGTH} GREATER 7500) @@ -250,6 +253,8 @@ function(AddTest) ${TESTER_ARGS} ${AddTest_TESTER_ARGS} ${AddTest_SOURCE_PATH}/${FILE_EXPECTED} \ ${AddTest_BINARY_PATH}/${FILE}" ) + list(APPEND FILES_TO_DELETE "${FILE}") + endforeach() elseif(AddTest_TESTER STREQUAL "vtkdiff" OR AddTest_TESTER STREQUAL "xdmfdiff" @@ -289,6 +294,7 @@ Use six arguments version of AddTest with absolute and relative tolerances" -a ${NAME_A} -b ${NAME_B} \ ${TESTER_ARGS} ${AddTest_TESTER_ARGS}" ) + list(APPEND FILES_TO_DELETE "${VTK_FILE}") endforeach() elseif(${DiffDataLengthMod6} EQUAL 0) if(${AddTest_ABSTOL} OR ${AddTest_RELTOL}) @@ -330,6 +336,7 @@ Use six arguments version of AddTest with absolute and relative tolerances" ${TESTER_ARGS} ${AddTest_TESTER_ARGS}" ) endif() + list(APPEND FILES_TO_DELETE "${VTK_FILE}") endforeach() else() message( @@ -362,6 +369,7 @@ Use six arguments version of AddTest with absolute and relative tolerances" ${AddTest_SOURCE_PATH}/${FILE_EXPECTED} \ ${AddTest_BINARY_PATH}/${GML_FILE}" ) + list(APPEND FILES_TO_DELETE "${GML_FILE}") endforeach() elseif(AddTest_TESTER STREQUAL "memcheck") set(TESTER_COMMAND @@ -376,14 +384,6 @@ Use six arguments version of AddTest with absolute and relative tolerances" set(AddTest_EXECUTABLE_PARSED ${AddTest_EXECUTABLE}) endif() - set(FILES_TO_DELETE "") - list(APPEND FILES_TO_DELETE "${AddTest_STDOUT_FILE_PATH}") - foreach(ITEM ${AddTest_DIFF_DATA}) - if(ITEM MATCHES "^.*\.(vtu|vtk)$") - list(APPEND FILES_TO_DELETE "${ITEM}") - endif() - endforeach() - # Run the wrapper if(DEFINED AddTest_WRAPPER) set(AddTest_WRAPPER_STRING "-${AddTest_WRAPPER}")