diff --git a/ProcessLib/ComponentTransport/Tests.cmake b/ProcessLib/ComponentTransport/Tests.cmake index d0df696eaa09d8cca9bf5435877832b19daed297..c68627c6b0ea75eb49e6308bd2b53c2cc5ef5647 100644 --- a/ProcessLib/ComponentTransport/Tests.cmake +++ b/ProcessLib/ComponentTransport/Tests.cmake @@ -788,8 +788,22 @@ if (NOT OGS_USE_MPI) OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchange.prj RUNTIME 60) OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeAndSurface.prj RUNTIME 33) OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/1d_decay_chain_OS.prj RUNTIME 2000) + + # several variations of 1d_decay_chain_GIA OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA.prj RUNTIME 40) - OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once.xml RUNTIME 10) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA.xml RUNTIME 10) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml RUNTIME 4) + + # further variations of 1d_decay_chain_GIA with Eigen's SparseLU solver + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA.xml RUNTIME 40) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA.xml RUNTIME 10) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml RUNTIME 4) + + # variation with changing timestep size + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA.xml RUNTIME 40) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA.xml RUNTIME 10) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml RUNTIME 4) + OgsTest(PROJECTFILE Parabolic/ComponentTransport/ThermalDiffusion/TemperatureField_transport.prj RUNTIME 27) endif() diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once.xml deleted file mode 100644 index d5fb7813b27c990432ba53df6a52926bdc5d0453..0000000000000000000000000000000000000000 --- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once.xml +++ /dev/null @@ -1,95 +0,0 @@ -<?xml version='1.0' encoding='ISO-8859-1'?> -<OpenGeoSysProjectDiff base_file="1d_decay_chain_GIA.prj"> - <add sel="/*/processes/process"> - <is_linear>true</is_linear> - </add> - - <remove sel="/*/test_definition" /> - - <replace sel="/*/time_loop/output/prefix/text()"> - 1d_decay_chain_GIA_asm_only_once - </replace> - - <add sel="/*"> - <test_definition> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Cm-247]</field> - <absolute_tolerance>2e-8</absolute_tolerance> - <relative_tolerance>1e-10</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Am-243]</field> - <absolute_tolerance>2e-8</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Pu-239]</field> - <absolute_tolerance>2e-8</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[U-235]</field> - <absolute_tolerance>2e-8</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Pa-231]</field> - <absolute_tolerance>2e-8</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Ac-227]</field> - <absolute_tolerance>1e-8</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>LiquidMassFlowRate</field> - <absolute_tolerance>1e-10</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Cm-247]FlowRate</field> - <absolute_tolerance>1e-10</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Cm-247]FlowRate</field> - <absolute_tolerance>1e-10</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Pu-239]FlowRate</field> - <absolute_tolerance>1e-10</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[U-235]FlowRate</field> - <absolute_tolerance>1e-10</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Pa-231]FlowRate</field> - <absolute_tolerance>1e-10</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - <vtkdiff> - <regex>1d_decay_chain_GIA_asm_only_once_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> - <field>[Ac-227]FlowRate</field> - <absolute_tolerance>1e-10</absolute_tolerance> - <relative_tolerance>1e-16</relative_tolerance> - </vtkdiff> - </test_definition> - </add> -</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_0_t_0.000000.vtu deleted file mode 120000 index 6f5000a8bc781ca0276ea733d02dabfdab5e8e8f..0000000000000000000000000000000000000000 --- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_0_t_0.000000.vtu +++ /dev/null @@ -1 +0,0 @@ -1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_1000_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_1000_t_3153600000000.000000.vtu deleted file mode 120000 index fe539d52010a57406b6e77b0e047d8ce71207ccc..0000000000000000000000000000000000000000 --- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_1000_t_3153600000000.000000.vtu +++ /dev/null @@ -1 +0,0 @@ -1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_100_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_100_t_315360000000.000000.vtu deleted file mode 120000 index a2ba3c1ef9788fa357c64114ad6d576286db8f86..0000000000000000000000000000000000000000 --- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_100_t_315360000000.000000.vtu +++ /dev/null @@ -1 +0,0 @@ -1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_10_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_10_t_31536000000.000000.vtu deleted file mode 120000 index afa18784cfd3b774654da070a300c0741445b6dd..0000000000000000000000000000000000000000 --- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/1d_decay_chain_GIA_asm_only_once_ts_10_t_31536000000.000000.vtu +++ /dev/null @@ -1 +0,0 @@ -1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..692b44a36478dc3c1dcc9ae069a1f38de032117e --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain.vtu @@ -0,0 +1 @@ +../1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..d9273c291af252636b54f34acd8e9693cf4858b4 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA.xml @@ -0,0 +1,10 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <remove sel="/*/linear_solvers/linear_solver/eigen" /> + + <add sel="/*/linear_solvers/linear_solver"> + <eigen> + <solver_type>SparseLU</solver_type> + </eigen> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b647f53816b385f3d956ee89f521d30c650f2f2a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b65363fc6453a5db9e4eb5e255973ef49bcd7d61 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..042d5449fb60578db6028ab9acc312bd6f55c991 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..fb3bca1bca2ff0bca433056588512336aa0e76a7 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..13f06137f4412db5e3ea84848af7f3ae8e27fc15 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..436686ec91dbcfd3cf92c096e3ea2dedf07cab6a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../1d_decay_chain_upstream.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..692b44a36478dc3c1dcc9ae069a1f38de032117e --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain.vtu @@ -0,0 +1 @@ +../1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..1c821430cdefb9bd5d63d36961bd1d8506606b3f --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA.xml @@ -0,0 +1,14 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <add sel="/*/processes/process"> + <is_linear>true</is_linear> + </add> + + <remove sel="/*/linear_solvers/linear_solver/eigen" /> + + <add sel="/*/linear_solvers/linear_solver"> + <eigen> + <solver_type>SparseLU</solver_type> + </eigen> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b647f53816b385f3d956ee89f521d30c650f2f2a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b65363fc6453a5db9e4eb5e255973ef49bcd7d61 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..042d5449fb60578db6028ab9acc312bd6f55c991 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..fb3bca1bca2ff0bca433056588512336aa0e76a7 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..13f06137f4412db5e3ea84848af7f3ae8e27fc15 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..436686ec91dbcfd3cf92c096e3ea2dedf07cab6a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../1d_decay_chain_upstream.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..692b44a36478dc3c1dcc9ae069a1f38de032117e --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain.vtu @@ -0,0 +1 @@ +../1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..55a5907a6c19490da9451daf100ee400f39a75b4 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml @@ -0,0 +1,15 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <add sel="/*/processes/process"> + <is_linear>true</is_linear> + <linear_solver_compute_only_upon_timestep_change>true</linear_solver_compute_only_upon_timestep_change> + </add> + + <remove sel="/*/linear_solvers/linear_solver/eigen" /> + + <add sel="/*/linear_solvers/linear_solver"> + <eigen> + <solver_type>SparseLU</solver_type> + </eigen> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b647f53816b385f3d956ee89f521d30c650f2f2a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b65363fc6453a5db9e4eb5e255973ef49bcd7d61 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..042d5449fb60578db6028ab9acc312bd6f55c991 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..fb3bca1bca2ff0bca433056588512336aa0e76a7 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..13f06137f4412db5e3ea84848af7f3ae8e27fc15 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..436686ec91dbcfd3cf92c096e3ea2dedf07cab6a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/SparseLU_is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../1d_decay_chain_upstream.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..692b44a36478dc3c1dcc9ae069a1f38de032117e --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain.vtu @@ -0,0 +1 @@ +../1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..35a742eda51958d12409e5d8b2fb03992a4d937a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA.xml @@ -0,0 +1,6 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <add sel="/*/processes/process"> + <is_linear>true</is_linear> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b647f53816b385f3d956ee89f521d30c650f2f2a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b65363fc6453a5db9e4eb5e255973ef49bcd7d61 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..042d5449fb60578db6028ab9acc312bd6f55c991 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..fb3bca1bca2ff0bca433056588512336aa0e76a7 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..13f06137f4412db5e3ea84848af7f3ae8e27fc15 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..436686ec91dbcfd3cf92c096e3ea2dedf07cab6a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../1d_decay_chain_upstream.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..692b44a36478dc3c1dcc9ae069a1f38de032117e --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain.vtu @@ -0,0 +1 @@ +../1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..55aaf9b19f68251f21824cfa0b0e76b240cbb904 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml @@ -0,0 +1,7 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <add sel="/*/processes/process"> + <is_linear>true</is_linear> + <linear_solver_compute_only_upon_timestep_change>true</linear_solver_compute_only_upon_timestep_change> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b647f53816b385f3d956ee89f521d30c650f2f2a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b65363fc6453a5db9e4eb5e255973ef49bcd7d61 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..042d5449fb60578db6028ab9acc312bd6f55c991 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_100_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..fb3bca1bca2ff0bca433056588512336aa0e76a7 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu @@ -0,0 +1 @@ +../1d_decay_chain_GIA_ts_10_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..13f06137f4412db5e3ea84848af7f3ae8e27fc15 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..436686ec91dbcfd3cf92c096e3ea2dedf07cab6a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../1d_decay_chain_upstream.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..692b44a36478dc3c1dcc9ae069a1f38de032117e --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain.vtu @@ -0,0 +1 @@ +../1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..e8605854f42be1326049e99d5997cf6d38098ee0 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA.xml @@ -0,0 +1,122 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <remove sel="/*/time_loop/processes/process/time_stepping/timesteps"/> + <add sel="/*/time_loop/processes/process/time_stepping"> + <timesteps> + <pair> + <repeat>10</repeat> + <delta_t>3.1536e8</delta_t> + </pair> + <pair> + <repeat>999</repeat> + <delta_t>3.1536e9</delta_t> + </pair> + </timesteps> + </add> + + <remove sel="/*/time_loop/output/timesteps"/> + <add sel="/*/time_loop/output"> + <timesteps> + <pair> + <repeat>1</repeat> + <each_steps>10</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>9</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>90</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>900</each_steps> + </pair> + </timesteps> + </add> + + <remove sel="/*/test_definition"/> + <add sel="/*"> + <test_definition> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Am-243]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pu-239]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[U-235]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pa-231]</field> + <absolute_tolerance>1.5e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Ac-227]</field> + <absolute_tolerance>2.6e-9</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>LiquidMassFlowRate</field> + <absolute_tolerance>8e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]FlowRate</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]FlowRate</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pu-239]FlowRate</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[U-235]FlowRate</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pa-231]FlowRate</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Ac-227]FlowRate</field> + <absolute_tolerance>1e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + </test_definition> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..f6480176de3bd5a0b800027a083bd98ec2767293 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1,38 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="601" NumberOfCells="600" > + <PointData> + <DataArray type="Float64" Name="LiquidMassFlowRate" format="appended" RangeMin="0" RangeMax="0" offset="92" /> + <DataArray type="Float64" Name="[Ac-227]" format="appended" RangeMin="0" RangeMax="0" offset="176" /> + <DataArray type="Float64" Name="[Ac-227]FlowRate" format="appended" RangeMin="0" RangeMax="0" offset="260" /> + <DataArray type="Float64" Name="[Am-243]" format="appended" RangeMin="0" RangeMax="0" offset="344" /> + <DataArray type="Float64" Name="[Cm-247]" format="appended" RangeMin="0" RangeMax="0" offset="428" /> + <DataArray type="Float64" Name="[Cm-247]FlowRate" format="appended" RangeMin="0" RangeMax="0" offset="512" /> + <DataArray type="Float64" Name="[Pa-231]" format="appended" RangeMin="0" RangeMax="0" offset="596" /> + <DataArray type="Float64" Name="[Pa-231]FlowRate" format="appended" RangeMin="0" RangeMax="0" offset="680" /> + <DataArray type="Float64" Name="[Pu-239]" format="appended" RangeMin="0" RangeMax="0" offset="764" /> + <DataArray type="Float64" Name="[Pu-239]FlowRate" format="appended" RangeMin="0" RangeMax="0" offset="848" /> + <DataArray type="Float64" Name="[U-235]" format="appended" RangeMin="0" RangeMax="0" offset="932" /> + <DataArray type="Float64" Name="[U-235]FlowRate" format="appended" RangeMin="0" RangeMax="0" offset="1016" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000" RangeMax="100000" offset="1100" /> + </PointData> + <CellData> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="200" offset="1196" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="7304" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="8720" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="9976" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9E1NDI01k23NDBKMkwzTNNLySwqqQQAT8gHCA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAHAAAAAAAAAA=eF7twTEBAAAAwqD1T20ND6AAAAAA4N8AEsgAAQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAJQAAAAAAAAA=eF7txSEBAAAIA7BHIw/9BRJiIDaz5PRUbNu2bdu27ccvHGzVgA==AQAAAAAAAAAAgAAAAAAAAFg4AAAAAAAAwhEAAAAAAAA=eF590mc4For/BnAzIuNYkb2KUAkZUU4ysjKeisfeRyISImSr8KSEUJnJlpGRfYok2ZHMEhmVPUO/9+f+X//vy891v/he93WTkf1/56z6X/F9OpiptXn99H+dFPaBKMAWDq5EPzNd3XIPvN1BhtVMOx7cs4+9V6ohGfyvR46c2wJp4I+4Bn+5zWSAN+idSievfgYuwEjR1HIvB/yPTU59l2s+uBkhf1rauAi8k03Aezf1BbjtCVsXoQOl4BYeMzqMj8rAv2U2N7znegn+w3xj3D61AjyzVzxgQqwK3F+LZGxYUQ3ex62VUKVZA75a0ekiPFILvhUofOSxdz1448G4BA66RnAagqb3wmd0AYZK1i+FTbiTLKbnP0P+Bf/YLRPGTXyNf/qRKbnLvAEv7xMjLDI2g9eeP0vM+oHeL1y+QGpvAU+wTayqKHqLe7NndheMawVfci1f6vN9B96cJHpgwLYN3N7ra52U/ntwrY57vaMn27HPlitXFyQ+gDPILWb9w9cBHj+QHqHH2gnOQTyaaUTdBb7y8+eBkyHokRMxdnZk3eguT7M7bqGvcbxhCCLrAQ9M45/wC0F33UoP/pe6F3wuwUuOeBf9NcV1M3XmPnDl6L22kYnocby7OcICH8FHRkjpvHnoSd4lHTfk+sHF0668VPgX3dao8oe1wQC4sw8T3+oYOu/+R5Mb7p/AZYK3vlylHATPrgnrs0hEl56bC26R/Iz5RzQZha/RGfpGmPabD4FnVTvl7VlDv+SnRAi6Pwz+/RcT1e0jI+Cc1f3lgh/Qjer/OBi6joIvtzhKcDONgdMJ0vCFlqK7pfQVtkiMg9ePVdLz30Kv1lh7o9uLTiNTTGYk9gX8jum+mWOB6D8d9TLn+tBbTr60CpP8iv1T9drshKFH+fePm4yiS0sK8ycpTIBbCK5dboxDD9KRYuyeR2cLvG35QfcbeL9hUV1lHroDb+KdB3snwTXM5EWsndHPMs5RCrehC55JSRmRmAIXoK6xfUBCJ1i6jqgtoVf4tkWvXPwOrn4ifze7Fl1zWaLDQngafNKmIIo7Cn04/cXw12V0Pjq/KxUWM5j3eT/xqBVdPVp6M1p2Fntg4XKOT0fPYd7aKWeaAy8SzQj6FYh+L5Sp8ew8uqd+1/1X1j/Amwemu4160Yn5/J7Mmj/B/wTctlqrQecyt46kOf4LPNRNcFkjF33PDntepeA8eFKIYpl5CnpFb8QDHvoF8IlwKiaxc+gxzn/b9kSikxSjhXnfov8wNprdS7MIXlokezFZE50sSJK+6zb68KeEkoI2dJ4l0yVphiVwtdUBPxsDdKp5PnKVh+hn+7ZOt3xCTxPlWd7lXQZ3Zt03NG2HTjdtWxeeh+630WQ/sIh+vJkufUxxBZyt1lItLQQ9MlThIHc7+gGBZFEjjlVwi7uUwpo26EVx+dTbBegtHsEV1zbR5xd1RQo11sD9JxrUCh+ie+9PZPWaQPcImYjdI7MO/q79Tr1dKDqLr14eqQ99bYbP+s7BDXSB8KULvuiz06V+a+3o4s4pnK6Cm+AL7tzLNd7oRfxcxybb0dkZvcnmhLfAT6dcedR5E728zvlofB86c8FF2lNHfoPTWmU7t99Gr+8JfnLmG3oA9dvVDNVt8A822u3zT9BLqKb8JLbRRRTu2JmY7YAHdtqs3KhBfxF64PE9nl1wWdfWD08D0Tt/iezN/YKecbS644X6H8xLDj+vykOPOuIfZ0NLpvpff5TaeXXmJPrReH351avod9M4T0Zkofvc29v9ZBCdxDxuqMJEDh4kornfUR3dj1ASzOWPvvBidcWkDL3yUPqA6Bw608LHuGBhCvBMlpoEV3N0/fUho7l49CQnaeXtTvQbESLt6XSU4FqHq26NqKMLLt75+CIYXeXSrCFvPTpjG12AyG/0Q0wJ394qUIHbbr7h3OuDvrF8JX/mJXqy/gNZl1V0qkgng3ty1OD1N21TL3mjMywYtjRXovPYeroNbaLHNEapJSvvAR+RZlmjDEKPMs5VPvAGnVAd3j1KSwO+dv2Ip7E+OkupxoTvQ/QH667TxkPo/BNu+hNCtOAt1YpT4i7osr2iEeLl6PFU09TfdtDftRWdNdPaCx7z7pzo/Th0R55jpMgxdG6DNFdVSTpwwaHGl3W+6PUeo+bkregmvTWWDPvpwfe+/lM34YjuSV1yK6ISneBIV7ROuw+8lv+CmaIZuoL/wxS9InQqWf2oExQM4K3ZwdprF9GrmDJ2SAXo12w1eygoGcHNFqQ3jYno/Sctc8JK0XmmRLkT6ZnAn5kSHsY4oF/Qv2B+uRHdNTdjbD8jMzhLUSStuzL6BeV3H0+5oA9mWviEJ6NPaV/gV29Dnz05TnlrC72P8YqlrMRf4J+2c50dzdE5Kh47cJDQm/KrHqo3opsd7FFeXUJvG7F/fvAgC/j5EA/+IVN0mZWMFVYSOn+nlV/Pv+gEwtAezg10KT3R5UkpVvDjUwqPVezR68VY7ARS0PvmG/Lv9aBXPPAcjaZjA7/i/ciRSw29NXO55IQ/upaSiczUS/TAXh9b8QX06BLVKnIJdnDdKdVSd0f0Fq+SHp8M9IG68FTOMXSSTng6gYcDnF6W4CBFRPd7RQrIeoROY/krsGYAXSyWn+L6/v3gAkTJ7M5L6Boibvu6HqFHdEYMen9GN6KIq2zm4QQnyCpdqLdCp1VvdrDNRLdS0Est+45+mdq6tkySC/xO0miA/TV0iQaXnLdV6NyPJynH/qDP331jXqB5AFwv7U6EdCy68VbSJfdB9OhPQ3mXhbnBXQbeWwm5oZ+ONzFLqkY/EhUf2U3NA/6cM76n3Qj93BcT6Zg09E0e9RS2efSaqcMMDqd4wU+oWN8NIqHLBz7mdh5Dn6U2+CAgzQc+fOtpSW4o+us53THqAXSl2E+e8hL84J+TntxXDUKf0ftuJdyPfj5eYI8HhwB4cnGf/ekz6KS7DdMBbuhsEk4vpFLQywxyR863oscKl8VPrqL77YsjWxAWBP9U1qzlboQu6vcmxSkYfdhS8PDAC/Q51oFDjePopALTduG/hMAVSw8ZUp5B52sQWLbyRP/Q07Ok9Ay9ibgTFz+ALpR7hNeDThjcizHmU4cKOlWRBesLD3T9UlY+jmx07udfdCmG0K8n9q55MYuAX1V75X1NA11kKExi0x/dYJfkTV+OznFhrDZvDr2475rTJ2FRcMLG3xPx5uhnFG+lfYtH9wqtZWnpRD986VrJSbqD4PqnxTY01NGLEzkdZ4LQf9OzBYrUofvQSLzd3ET3yP72/rL8IfDVpIADvl7ovAzyGgfL0VeO/jvpuYzuzGgbZycjBt4fnfxrzROdWoc++ehLdFbBdGWmdXTyAYWQREVxcOeLxQfa/NEvjqRX5zSir9Qn7ZejPgw+W6Wy6K6NPiNJRmsZi55HuCS4249uKilEa8wnAU5jcCDK0hGd7YxrgFAx+lCEZmXaBnrMQ232oTOS4Fdlc3x7Y9AFbWvbogbRG9wzlqkPSoHrCNt/U/NEVxGTfKDZhM64r2CdhfkIuFf3LGuOFfpeS/U52hfoREq3SHnyo+AEHvZ1OWP0MAYK/T3Z6BG3vz/L20SvS+0lsRw6Bt4r9/RHjSH6nUyu4B5/9NNtA3aXctATgzSKdfrQdwP8g16QSYObPoxdj5BCLyO/Jd9FROcJ0XGMuY2umxtR0FCBzvzPiNw/k+ifXU2lb7MdBydeLekSOIuusOOiJXMdvdqmtasxC/3M7d6sto/oA9oBFEY0MuBBJlkSJorojbOx9qMu6I7fp1Ymn6LrB8iJufege4S91A3cIwtOrihU/tdJdF27u2US7uhO8haZH56hmzhTjm8MoRN/zrYWsciBh18ea1w4h+4g63ukMRh9/MmPm3yv0Omn8jgYltH5GuzcYyRPgF92Or+b5og+WMmjeC4dvYsU+iRyGJ3vy/d8C0558AGN9Ol2AvqUa/ZQ/310rnDavwI60a/39nI2MSiAW3WyRWbpon8rWVsWi0YPu5r3+3w7ekTYuVPcDIrgbGky1tH66G5WYnTPYtHzb85OO/ait6t0FfZyKIFTHyMy/iSikz+2eFOeir4YrUmSnPw/8k2Pj1yUOAk+3ES6InMN/Qm9OFtLNfri/XerTBTK4M2/bkyx6KCnBX1p6HqIbjz70VpnDL1bRasg7LAKOJ254t1Ab/T4tt3vSq/RHfmtKmuYT4G3N4rNU1ihv5HSjmIpQk86UhP9YwedK79+84H+afCAbdIITRq6usqWlt4SuqRzTU6pkCr4dpPg3lxd9AAPsn46H3TdWVOhwXR035wFSvYP6KOnTOIaNtCVzLfnBkX+Bq9l/y7hYIjOKLjjaRuI3sB/fronH71Dr7+4chBdlFx75S/aM+Bay4Zfv55A3+dfkivhiO6kdS7gZzz6RqFYnHgLug/TYZEva+hsi6ZX2MXUwHV7d/PemqKHfI4W2oxCN3mexplfj14lb90/uohefPbP83jRs+DjZF+Gu0zRC8e5Wu+T0O/epW0cfI1+2dKIL28TfUuOTZXqmDp46dv18BlH9PVoUYLZU/T60kQWs350tpdRkrOMGuAvtzaZ6bTQ6bxCjtcGo9+59oSGohZdjEeDbmQNXfxEZJX+cU1wdSu2hyZu6Ieu3BPazkO/cIH4U2kafcWtI5jjoBa4wpysR6w9uuwjFsO8THQDtz+vHCbQ+Z6a6b4RPgfeElOb/dYenekju7tHNvryeqzR62l0cx3Sdr2ENvh37zgBx6vow5GxXq/K0HPTeyvqNtBV/OSzPE7pgMvnqVB8CkMfbgpMWnqP3h58Uf41qy74146JQh1zdNfZ/N6YZ+gGv36HRs2jh6nuSdVQ0gNPu/xmb1M4OuNUV+F2N7pP7JLvbz59cJb5xzYNV9BtuIIttGvQJX45uTylOw++RNMeU0dEV/pQ2p6bj368Q1POYQf9c/rQj41DBuAUz75N5xiiH3JRfvL6JnraaWZu7Wx06mmCt0o3uuzj0uan2+iMPzKErooZgr9TDswtJqAHDFr72gSjS4aqlIcXoedWct/iHUZvUyklP0xnBB4Qu+RYoIBeLB87/MwJfYZRO25/IvrqYZYGirfoi3NvEv5ZR2e46U3QFjMGV75pJ5drii5bMuobEYXeveXgMFGHHpLUdappAT28X8ZAUIQA7pDRNUVlgl6Y4WjsGo3+0Ytt1qwJXX5Tg6JnDf3a/em1LskL4HZlhgeJdui/5YhLbsno9bVmjcw96Ja9TpuqdBfBXSr30ZGroZ9RC7U18kdPzW7yPlGBTq3oXl+0gF5ivFxeK3EJ/JKZx6CNE7oh/UpRaiY60ces1mccfWTQNXqO1wQ82GSzcNsMvXPyWVlBMrp0nqHsziB6xf6GtnkuU/D31qPsEUR0BuO2qqYUdFPhemLWCHrFtOrzowJEcLVFWX0HO/Qvx1IoNZ+jO17/eqt/Dj2BmSqIXdoMvNT+bDO1DzrB1JY9tw79qsWAEjm1OThlTzQVsx56Kcu6+kA8+rlP/wyYjKGLl3fFJ4hbgM/G7do+uI5eznpZVL8RPWHcs/X9PktwD54oZQYi+mbLqDdbDrr9wR6PiTV0bZNKSX8NK/DEs/sKxhPQk1s8N1mm0WdGJu/T8VqDy+9LSL2ugU77+3apljv6a+lDnyOT0cPEEsRkmtHJj+eX6iygl9jTx/Zw24C3FR4aatVEjxTUKjl6Hd33aOBx2nT0wuXWYOMO9Is9+5tZttG/WJ0Q1TxsC36ufOfDogn6zd4Tv1hvo3tdq6wsqkRv4XW2ev0dPUpYldeY0w58Z8BM0uocutnSdtu0H/r9lzFKiwXolZGlDb5j6DdSTTJCWezBCa/ypJg10E+I878Q8EOP0I6+WVGELrsrOdkzgW77MU3dh8sB/MbW+kbWefQ4ozpLiwj01Rjyz+l16O2frbo9V9F1zjAV90k5gofQfRtvdkTfw2r2SSsNfT3qKZ3VZ3QphnsLe9mdwH/wTe/RMUB/+Vy0QzgavbE9ti2+FT0zzDwsg/of8KHZokgdNfQ9Lnn2D4LRf8s5FN9oRP8fwchz6w==AQAAAAAAAAAAgAAAAAAAAIAlAAAAAAAAAwQAAAAAAAA=eF5d2bMWIAYARcG1bdu2bdu2bZvB2rZt27Zt20yRkyLzmvmD19wAAf5dIAyMQTAoBsPgGAJDYigMjWEwLIbD8BgBI2IkjIxRMCpGw+gYA2NiLIyNcTAuxsP4mAATYiJMjEkwKSbD5JgCU2IqTI1pMC2mw/SYATNiJsyMWTArZsPsmANzYi7MjXkwL+bD/FgAC2IhLIxFsCgWw+JYAktiKSyNZbAslsPyWAErYiWsjFWwKlbD6lgDa2ItrI11sC7Ww/rYABtiI2yMTbApNsPm2AJbYitsjW2wLbbD9tgBO2In7IxdsCt2w+7YA3tiL+yNfbAv9sP+OAAH4iAcjENwKA7D4TgCR+If+Cf+hX/jKByNY3AsjsPxOAEn4iScjFNwKk7D6TgDZ+IsnI1zcC7Ow/m4ABfiIlyMS3ApLsPluAJX4ipcjWtwLa7D9bgBN+Im3IxbcCtuw+24A3fiLtyNe3Av7sP9eAAP4iE8jEfwKB7D43gCT+IpPI1n8Cyew/N4AS/iJbyMV/AqXsPreANv4i28jXfwLt7D+/gAH+IjfIxP8Ck+w+f4Al/iK3yNb/AtvsP3+AE/4if8jF/wK37D7/gDf+Iv/I0BAv7fgBgIA2MQDIrBMDiGwJAYCkNjGAyL4TA8RsCIGAkjYxSMitEwOsbAmBgLY2McjIvxMD4mwISYCBNjEkyKyTA5psCUmApTYxpMi+kwPWbAjJgJM2MWzIrZMDvmwJyYC3NjHsyL+TA/FsCCWAgLYxEsisWwOJbAklgKS2MZLIvlsDxWwIpYCStjFayK1bA61sCaWAtrYx2si/WwPjbAhtgIG2MTbIrNsDm2wJbYCltjG2yL7bA9dsCO2Ak7Yxfsit2wO/bAntgLe2Mf7Iv9sD8OwIE4CAfjEByKw3A4jsCR+Af+iX/h3zgKR+MYHIvjcDxOwIk4CSfjFJyK03A6zsCZOAtn4xyci/NwPi7AhbgIF+MSXIrLcDmuwJW4ClfjGlyL63A9bsCNuAk34xbcittwO+7AnbgLd+Me3Iv7cD8ewIN4CA/jETyKx/A4nsCTeApP4xk8i+fwPF7Ai3gJL+MVvIrX8DrewJt4C2/jHbyL9/A+PsCH+Agf4xN8is/wOb7Al/gKX+MbfIvv8D1+wI/4CT/jF/yK3/A7/sCf+At/o4E/IAbCwBgEg2IwDI4hMCSGwtAYBsNiOAyPETAiRsLIGAWjYjSMjjEwJsbC2BgH42I8jI8JMCEmwsSYBJNiMkyOKTAlpsLUmAbTYjpMjxkwI2bCzJgFs2I2zI45MCfmwtyYB/NiPsyPBbAgFsLCWASLYjEsjiWwJJbC0lgGy2I5LI8VsCJWwspYBatiNayONfC/W/4HiFogGg==AQAAAAAAAAAAgAAAAAAAAMASAAAAAAAAjAMAAAAAAAA=eF4119FGIAgAQNG2TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJkjGQk2Yc5e1/ON9zAgL8FMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5i7/5wU/+4Re/+cOAf/4SyCAGM4ShDGM4IxjJKEYzhrGMYzwTmMgkJjOFqUxjOjOYySxmM4e5zGM+C1jIIhazhKUsYzkrWMkqVrOGtaxjPRvYyCY2s4WtbGM7O9jJLnazh73sYz8HOMghDnOEoxzjOCc4ySlOc4aznOM8F7jIJS5zhatc4zo3uMktbnOHu9zjPg94yCMe84SnPOM5L3jJK17zhre84z0f+MgnPvOFr3zjO3/xNz/4yT/84jd/GBAIBjGYIQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+Yu/+cFP/uEXv/nDgH//EsggBjOEoQxjOCMYyShGM4axjGM8E5jIJCYzhalMYzozmMksZjOHucxjPgtYyCIWs4SlLGM5K1jJKlazhrWsYz0b2MgmNrOFrWxjOzvYyS52s4e97GM/BzjIIQ5zhKMc4zgnOMkpTnOGs5zjPBe4yCUuc4WrXOM6N7jJLW5zh7vc4z4PeMgjHvOEpzzjOS94ySte84a3vOM9H/jIJz7zha984zt/8Tc/+Mk//OI3f/j/8AcyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg3+B29LIQw=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAADwAAAAAAAAA=eF5jZh4Fo4D6AABDtAcJ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..cc3a2977c457e9711a109eecea868db4e163f2f9 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu @@ -0,0 +1,38 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="601" NumberOfCells="600" > + <PointData> + <DataArray type="Float64" Name="LiquidMassFlowRate" format="appended" RangeMin="-7.1054273576e-15" RangeMax="7.1054273576e-15" offset="92" /> + <DataArray type="Float64" Name="[Ac-227]" format="appended" RangeMin="-1.6251120912e-51" RangeMax="1" offset="596" /> + <DataArray type="Float64" Name="[Ac-227]FlowRate" format="appended" RangeMin="-9.260082196e-23" RangeMax="1.2050580963e-08" offset="6912" /> + <DataArray type="Float64" Name="[Am-243]" format="appended" RangeMin="-1.2219107684e-50" RangeMax="1" offset="10200" /> + <DataArray type="Float64" Name="[Cm-247]" format="appended" RangeMin="-2.4140561658e-47" RangeMax="1" offset="16520" /> + <DataArray type="Float64" Name="[Cm-247]FlowRate" format="appended" RangeMin="-1.277333825e-22" RangeMax="1.2114059092e-10" offset="22800" /> + <DataArray type="Float64" Name="[Pa-231]" format="appended" RangeMin="-2.4465319572e-48" RangeMax="1" offset="25660" /> + <DataArray type="Float64" Name="[Pa-231]FlowRate" format="appended" RangeMin="-9.8090153137e-23" RangeMax="3.1284481874e-10" offset="31960" /> + <DataArray type="Float64" Name="[Pu-239]" format="appended" RangeMin="-2.6292470643e-48" RangeMax="1.0059797446" offset="35016" /> + <DataArray type="Float64" Name="[Pu-239]FlowRate" format="appended" RangeMin="-5.772187954e-11" RangeMax="1.2831001869e-22" offset="41252" /> + <DataArray type="Float64" Name="[U-235]" format="appended" RangeMin="-7.0239765756e-47" RangeMax="1.2281331044" offset="44364" /> + <DataArray type="Float64" Name="[U-235]FlowRate" format="appended" RangeMin="-2.3605501829e-10" RangeMax="9.1052751822e-23" offset="50604" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000" RangeMax="100000" offset="53452" /> + </PointData> + <CellData> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="200" offset="53548" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="59656" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="61072" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="62328" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9E1NDI01k23NDBKMkwzTNNLySwqqQQAT8gHCA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAWAEAAAAAAAA=eF7VUkERwzAMK7CMyyAUwiAUQiEUQHZXCIUwCIOwz+y7KdXJTvOZPr5YsqyknaYUbuJ8FU/B2z6lMyid8XgP0n/XKYR3gVrPKwPybK7ZU855P5sP9JGPnhWiubPI5kD07o0i6/8qv7Xha4xnQH+v9bei3s9E53wyF9NnEc2dxdV82fkjqD/EfYzP6nA/zhuPelpFDtQzKL4XzJf2yXtIXfD/w3ej/LfuZP9eoSbfz/To4zw5+xzMI5TfaGCuLEblUz5XcyLMZ6vndRSY3wb32Egepse+yu063Juco/dJvltzv0G+DL3+eO+VfAfsr+DL5hQaH5JX+a8kv+o3uuR+pkcw/9596j0Y1Dv0YunMY1i+OczHzyQf9nEO+wimZ4jq/h3R93OefDeGB/DNGfYxvfJBMN79yvm50Sf/c5Y3i1H3ReC9lU7xzTt2fi/DTPbOMH8vHziy8QM=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAYBIAAAAAAAA=eF4Vymcg1X0fgHEkq5I9yybZjnWcc/6/rxFRkrjLSCVR2Zu77FJGUQohQojEccxkZEtGtmSTvSIzKs/9XG8+by4qqv+3Co8WItofNG5K185/WLptuwL5HisZSUNLEPG4Uva49SJkxtarOO/MgxjeeJjj1RyoCtPTxhvPwpesNOEgzhn4l+X2BdOZKaCpYnd42/Adrkuta9FSJiFk8Cd5O2sCXnGfuc6ZOw7HRJLWJnzGIGqKYqdBHgEOGvI7r90hGJNQZC25PAjvGZcpql0DYLSWxaFm8RVCjwq3bW32ARvH+lZ5ei/kZLuwt1v3QG9pp5ovrhucxd9Pc7N1weDCddZdqk4oDOFZ3P3dDq1jc660HG1Qs1qa9k2nBc5wv042iG4GnGpKOn6zCdTptOqDXRuhzcWYkZOmAWqIMypz2XVwoIuG8utGLfzK7k42wtVA8LX40F/iH2FMNzpAhqkSUhQVx+4eLQfTEYENFeUyMIhN16n2LoXZhDWOsL5i0Kg8cpz1fBEYWQ8YLkwUQFxa+mDhYwoUdBVrKCaRQcaN9li+fi5kqg3suwvmQFtVtbEMfzYI5tV+zyC8AcqaLqrxzQBd2LDwHX4Nzlzn3Bct0oDV4mLC3YUU6HWSvWlnkgwnf9tzmi4ngtMjEyRSEg/rbvF6PVlxoEvdn5xYFwOHe6o6v9A8hxIWlrRF22g4+/LHJeGeJ1Bt92jvL1ck/PujnlfleQR4REqlfNIOg9j3iuFbYg+B15E+iKgUAsf4zyqfdrgHF6SKsv5+DoLM8icNa/EB8NGV4eCvMV/4tvEnaPfGHRgQEIxREvKBxE6TERyLFzC+1pHtlfcAFse/viRfN1h0/8z8bsQFSI+jPj9ndgLlYLm0A/ftQVXC0BSp3IY6bFFyQ/AmNMXIJhCRDazGblVEPLKGs4iCCg5ch0lyXXemzjUwmV6eq2+xhFmbfA2lpxawOPtabP2JGfS5eewFN1yCLvp89V7JizDReghvUGYC3uOC2wXOxnAhhzdbWu8C7JaSh1U1jeAV/zFa7TxDsOIlZNEfOgd0bG2cXnFn4WQjelh35gzEpN7rTxTVBy9v0zm243ogsOs4kap0Gm6MMDWz2+iChxpz56N3OrD6VgXvQa8DvzoMXvp4nQKTQApVyLo2NNWAYEWgNoxqlx9z59GG5iq6CelKLSAdfJ8bY6cFqNGKLkBQC7S7R1iHhjXh1Xy1YlXqfxrSbxjZ/6eXsN4QXhMy4/iWSg9pgs+pp0LGkxrQ+o/wU5lKDRgy/unQF68BNL+TCud9NCD2IpbOZq4BweV/LtOSNKCMNPbST0gDCP6SrzXpNGAjI/yy1iDArjKDwthbgMHJIyzMvgDFc62+kecAvn2PHBYTBmAzf22fvonA2TBfZqwFQcp9du7iVASUcBa9Az4IZIOETAvPIWDQGanIEUPwpvSdzrc9DJaI13NlezAw+ksRT8zBQOioESP7PQwek5PCo8wxkPedcKBVxGDff67diQGDR2m+6w1jJDDUaOc7+J4EDDnVFlJRJLAOP+CvaEsC0yT5GW4SCRyOEgOG2P77CiLj784TgWycOrNeTYSx91fsdOOIMPniwA03RyIcicsx8NQigpE5T5chDxEYn1XVUq0QwK+hijmingCK/DSfFuIJcO++KJuoMwHSf2idVNImAJ0cZs7PQ4BMrorfQ0vqQOPMfderVh2efOfUmYtVhyo39kFle3WQGnj48TJShyDkFHCFTR2i/hXII8zgweLRuZn1D3ioN6xrDo/EQ/Sflp3fVnjokfITMlTGQ1Nw9Yo/PR5U7sRzRw6qQTZB1NgvTw1OJSdeNghSA5VogY0/xmogt8A3Hi2uBhZlNfMMO6qwszY0cqNFFQ4LEiLTk1ThUs/d1mZnVdg7penWq6EKvl+HLD+xqULw+rTz6ykVYP/V8uhmqQqw4ipecoSpQB5fWkSeuQr0jnLp4aRV4HpXVXP6b2XQeFBKe+CLMojvZmwZpSiDmPX95ChXZWCYPfa7UlMZkmhHeEfYlKG3KZx69bsSmHierN0qVoInHUz2Px8owYvOVyxTl5TgoD9zR9sJJTi1p1ubt4ODnGvu9GGfcZCGzTVaJuLgwd9EEVkHHOAG753eJeLA8YCjdeNhHNAHiWY8GVGEi9LJYEFWhAChJEeJQEVQFN203TyvCI2cM7eahRQhPKukKHVNAThHGh4F1imArq+t6s3nCvBiQe3PRRsFuJQcJWWkogAWlwoOX6JTgHob/fkusjwYL7E4clyQh9C3M2e91+Wgt71KbTdWDrQtRKZf4+WgP3vwkMeQLKxTld5yCpCFy8/Pl8UIy0LbfkHdYoMMnGAjnPO6LQOk02rCyodlQDXanVmaIg2FW+bfLf+RhmvX9d3bdqRAcvDlE79kKdgOp2Z11frPE+xdb2dPgtOl4LcykSdBsDPJcw93EsLuVDLzfpOEgv3Bi2GBknAlOeaEgYQkWJwZsLrVfgLq1pXHhj1PgIT5bED+sf9kZj822SABZQxfnvs4SUCFY361O5cEsLze8+qvFoc01paoTDtxYCpOG51kFwcdHZJq9EcxGBV5c6PITgzmX8kpGXCKQaVoitPVWlGw9RPvW3ISBcMrp6V2+USBOMJ4MrxZBLY94x4keYvATILymqq4CMwRkngu9wqDa9ly6qEQYVhHqZJnlYWhRULo9LFpIfhclRgVHCcEfoP54f56QgCC0u7iW4JwRcdPJtRSELT/0p8QbxAAUck4ZVpZAeAk32I5+eI4NPFfvRlPcxxEcnu/XHI5BudHWttvj/DDQGhKZ7cBP4xssMslVPHBlsrQiRp5PpAvC586m84LUdNnfTR4eOHh5otvaVE8oDvQOudBxwP2xQW3ygO5wUYgierOLheQ6x01i7y54CrThyTHDU6QufrDNtuDE+zYK3rsNjjglqfOfpE3B3hmFE+E77IDG2Xwn5VAdjDRtGWdomMHt8/0hU5P2CAhtIkcycsGlKcFlrqZrOBl/GIlAccKfesvvSJqWSDwi+EYrzEL1IRuzD9vPgo1FzlL8KvMkBOldkycnxnkwz36LusfAfXzM/pjdw9Ds/Lc84L8Q+C9/TSod5YJAnQfP9UXZYLuZ1YbrNaM8A7XECmXwQBX9jtXUubpgWIaaXoTRw+PcsllwQF08GeDlrLWfhDmXpBCS4QOwkAhi3qbNy2gN8uOyp0HoLmb1ntJ5gAI+ZmY/HxMAyMLrQXaq9Sw9LJtceQSNSyr19J/rKGCPInd9+OyVOAz/+F9CGkfnVL+RPVR9C/6NNNaZcP6B41l5X90OfgbiSziFPr2d9EQX9aLCKpdRNVHNxRC/wsZnPXRLOPYQVSm3s48ktuoVqPRIV5zC6VupbyRur6Jbg10/Kh5uIEWdFSDDQrX0cihj1Qfv/9ENK4qgQf5fyK/r9H+bGZraIU4tNyTuIquynS5ujb9QFx6c94W1ivoqB4hU4NxGXELPi/4Xb6IQncsLt7yWUBv8YfMzNA8ahIafvbm6Bwy8L25f2JxBl3j260q6JxGVrmnBHhqppAynXO23IfvKPkVq0RzxSS64fyaUvppAtG2t5e1Do8j4rcIUcrmGKKTuL5nqj2Kou/xuMu9HkYLujcZu1mHUKef++3x6G/oGRPRa0t4AA3gTjhSavsRM9PF3beufSjPZsM0QK4XUfimbZp3u1EAf1WtSF8XsrG9t3SiqhO1h9GWTdl0oHCWd5i6XTtSDSbP3XvYim4oW3duV3xGKilDU18YmpEWbZa4hmMTYhfJ7w6ZbkCD3Z9zv3rUI7HaTWkvrjqE76TKf9lWg97Rh/zLLV2NdGNVr7FMVCLJEI2vuR/K0TpmK+FfVIb2DtbYc7eXou1g8T3ugyXIvUWgVtiiCNXoHH402lKAOPOXbfcvUtBX4+YvdzbykPvThhmy4ztUQlijlmd7i9qYCoteTr5B1dkBiVlDGeizFXUb195rFOa5KFON0lCKdJQLq34KCm256z/0TxLSffxVdSspAQ1E0L1LPf4C0Y3Su0BPDOKyUCu2LH+GyGUrWtkdT5H3W/mSFcEoNCnKtBG2GoFasliPXz0Uhg7s2LJs2T9A+3ImhUJM95GKpXntxvcgJOKX+DNp1h914Mbkkuzvouu/BG7n6vmghgDdDfa7nsjJOzg0btsN/eF5Yzzp6YImR+j+vPvXAVHHd37rWLmFenuYJR3bbJBwjbGZM701etVirswuew3ZXZsstJi0QOOb/YrbAqbos7R/ZkCvCYqIEOhs3DRCb69c8UhcNkB7OyxTlgl6aOHjsBn70Ck0PEAfPpuqiaprnrM9L8GQ2nh2/8sNPLJu+FeXb1oZSSZ4WTK4KqKRGivyILUsCsTdSdY/JIlWCsYSLwyLov5+s70qMyHk48s6kN7Bh/yNTiaMznIiLb0Kh9BeVmQmfDZiZf4wKlVXd1kxp0fbP53b/ZppUFPBm8Yl7r+YFI7xURL1DlZ6szM6hnUd47sxxXb25Arm94rmtnH1LJYimjLYmTSJnYn9cec+0wg2WVYenPK4H8tI2HmQ6tiF6dPEB1W1tmBeLK544aAGLIi8vSytUo01OvcIiqa9x1IOHf71qbUA0+E5frw/Owf7UmNL+2ooHbuPyxEws0/Gys65DbC9jcUsT0obypQ+wf4qsuv2sYViFbHUtx3ygzAGh8MLPbs+2IqbIzeLoBuGFxg4RX3mNkbv8fOr8PHrmGZcGVPFuikWRpJIYs80wjptxV/idnSxsLThrhofwA6TQ0rP2KpgX1tMfejGZTDGECmF+IuiWJ2CDkWWwouVcBr6RCyzYPw+zvMPhOiw7zTll4H8m1RhYm1U5vSTFDV1/d/iO7Mkg1aclVz6CElQxGmqKLybNK6h3xbwq4mUEOTu+VmpksTYvpGHiRWQaox6/3qmZZAazh67eCAmniQRe2oY231MSjuX31s6E0SauKr64V6QByll0HuPTvMm6eDcOcyN35wUIBvvnbN/lkSXeOrbm0FEimwK8PJrVSD5DMZAL7MIKQhvk5wuzU4itlWdS+SiJRVXKzQHNG4Q7W6HXxmVnyaOeq3eJJ/vI27nxWh0CDcSXezo4qzfFBOlUkLZFsbTiXLcLeckB54R+zP/RNfHBhNzjrJUU8RdifhsI85pqSvEAN96Gb8ZfaJndlePYqIq8UhYqgiTlShxzbdb66UhC7G4zJORaXWXIDs0wZbfPU0wU2AUHPqni2Dz82Fr00454Uscn/bS4wxCYKdYkVpmFGHiWml9lJk3gU+12Fz+2zVCYclpU0kpXcLo/cBcUX45wnn1mOa+H+yEZVftho8ffqlbM+b+mTwxrn7ux/f1zIp6df+vcWaC9lnqNoMO++ubEeo9pL+CR7id1cMVM5dwmkbqPcIu6WK7Curt8cKShcdZ1UV2Hmqqpa3iJ2vV+I5wdeAz0uiG+abf4X3yCQdydkPxkWKHOFILb+DzPDYt7vcjvHbsNOpc5sLnfEpoEhNZVVvaNfEXsGlUw+Y6+nhiE9VKis7P0NY7qzlvurybddVQ27naxzl+lEVN6O2aRt2pYdUOxtW8npVM1biNqDGpPUfVLZ92szo/OVWL6j9Ud3SnVZYodQsjx6xVqpcKsQ3PGyUcH1bG/eklSs5dHbHmv5OtvJbPjhqW3yk/z8Cz2ctYKceI3eSycpArfi1598jBxLUirwvLalnVRUpfHmUna+gEKj187PKsgVmrqNg+Pt2Dl6mo1N3oH/JkH26J995Pn3vRuPXQPWddFqdCq0BHg3L7SsX03sNbLaXUOB/P5Rej72sLWp6uWsWcjijIrCO90Z+wVtR46VantlBOERaLPDZ2gbagMspmtJFnWGFUpUDLwYlMOf5RK9EzPkyBKaGQoT/JgWJvvuoSV2qosC4UXxxIrUApizVvdVVgUWDcqn/26uJqfhL/L4s7MZ3yFTzSnRZzlPwQNssvwrrR8t2LMQOs2W75FzTu/LhxxFg+lb3DCPng8nf0Qh70zrDJl/DoVk5YrpPfxISON3zrkWPcLth+f6WYHPE5wvTnXIyc6GlxzWJfL7IsawzHaa5Lcv1t37p3y1TJ+WZPUsVsuOX+bs/0CPDs5GmmR2/o9w3Ieso67h1J+pB3lTbQecgxUZaELJRk9HzzqJYCToTIWcqS7CIeuglheedn/YmRAgKyt3IHxX1P7ueyMEzLbgqNy0T4MDSdKa7JvSofWSl8Pk1GwkVtaWotOFeXp6WRN9la5h6T59MgY+1c78GJdpAQk2lkvpDccIou93/9LbinAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAfwkAAAAAAAA=eF5VlHlcjWkbx2/7YfAeETOEIyEpQpQaeWQLMSVGthxLWaI5lky28RBjMpayJUsOsvOqbCm8D8ramF5hsh+VV2FMsmVs89zX73r/cP75fn6/a7mv637uKpkctcBm6+sr6Oe4Wxxz9k3+MCJTnJ7c/GFrPx/RL3rfsKt9MkXy5y5lWZ4+4vSVkOLZgZlCFKQmOTv4COPYRfETBmWKZc+PLq0y2Ef8cvdI4usemcI6aolhaAcfoVlLTBWq+QhL1N4g+w56XU2lZ4wpU6QsHvx43wA9zy5yf2gXHyF2p4xeXD9TKGnLkhydfYR6e8bV8NaZIrBv1W2ze+l1tjrRPp11/3GtLVONmUJtO8Q3sq7Oigmrghvqdfvmul5qpffp2K+ZX1Odp9/9aKruI5RaF31/cNbrzVGb9hVmCLXm27Qper0WcSn/QFu9n33INjd9HuH/etPw2jqjIpZ0sNf5bPzktPfe+qXsefnkR53Ob4b276j7r0pLTGUZQkyvtzGwiqzLefOyQNd5Y+yiHXTtvt590gc937w0bnklXQfGV5r5lT7P4qJXO/RzhW/17cslq8av/FxT97W39hde6/leHrsL/tb7WJx+znum02lRXpN3OpWdW94KPU9dF9Dsd12L80OOPNUZN6X51Qp6H1POgPbyfFvQlaM2Gfc6c3uD3k+JHH3qvk714/fVs3Xf5LdzRZHstzLx1xs6VbthB+/JOWMO1i+Re3q0PHlU1oeNys6VdS2G30vXaWvb6bTsq9iZy+7KeGp2wSnJ+d8W3tTj7sXvvQqltgU7ROha67r4j7uyX+DWrVck56cnXJP9vjsuzsi8oCmhqdJPCw7IpPmSXC9Irea6xEse/Ov5MZlnuLI/VuqxEQ+SJS1ps+ZKXySG7qH+xjYJUl/v+2eyZE5obdlPVMwITpXaeqvNSqm9MpzjpXbfkP+zpHFrA/k9hcPgpDWS5uwFUZQfWWGl5OXj93dIlh6O2CLj5Ylvqb+x4YZfJJXGbpOlbw24Q31FWkSk1LZuKxZIiluPxko/xCFvHe31OTaC8j679JfUvglfSnmLbim019QHqyheYdwiyrfbOF9qVXgmSm1sf3ExzdO+0Xryux3fSjq4cKFkrmPtOMnAuYUxFFdHTaRzwuKW0znuETg/cnYvqbVuSdG078OAjeTP6juC6pado3tQsxaOIf/q855UX+n5QuKSgeGS5tgHK6jP/M4Wyj9+Yyad563Q/GJn4mCqN//divaJTZxOPDk8iupmTJol48rO0egz1H0Z5VuDwkjXdKTvrvavNkPS1rs+7nlEuwnUv3c4zvHOwH1vz5pG8ZuNaD7Vy4nuS3ngsJR8l8p0T8ZG16mPehn9Rb+gcRTXtDCav+1t3N+Je4jXa0x7qT7f0jsSBZ3GEK+5/ET+ufQFdM5/dlB/0bocc21eHUq6cnd8xycZ0yWt5+fT+xZLX8yhuEcU3buyqQD729WjfqLiLboH8eHZUGLuG/jnN00m+mf3INoEzS0c386hvEtWlfScGHp/IsdgIX/5ScT9/6T7EQfKRlPcHNuX9LERNKfomRBE2ty4Pemz3eeSPmSg7yZa59J9iNL39N2F/dNo6avXt8VQ3OXtTKKlWT/yf7qEezHfDMC+q8ZT/NqGqcSvDUPI10qbkA6uSu9PGHImoY8zvVORu3IgMaVsGLG461iu8yCq572JovhSFwnlXSvojKmonzeS+jm+wflicx3y/W24Z+W1E+e/OEF973iQb3PEfSjTBhI3dsd+zv/C3BO3YJ6AxpjH/wDeR/rAQUTrPHw/c8sp6F8Tf082P3/4iZi/9Cj9XYrAN7zXUMyj/taBqLgNIEYfwLxqxa6kvQzjoO/ZEcuVYPINPw3GngvbI/6/Ftjjq86Y48BL2lMktYMOw/num83Q8XgXFzdifstT9FU74J7VOQHoa/LDPjO7ELXzHeA36o4+ya1Jl44ZBG3KwrmHa5A2G3ti3zw/9LXrgn1T0EcYH+B7rOoN3QZ5IqCMfGutPqjrhj2F4R35yiFP7DvCGzTinkWsL/JyUacFIU+dzfHuRuhd/tD+zbFXCdcl4/upXvguoo8Tz4/3ovmC6vtmyK9UH/5nBXOGsj/JE3oYn1u7EXzlBr1fYS0Ad3fkvR3AlOrIX+MK7nMHNTfEp3Pe9wb0v8l/ByFNQDcj6GkPJuHdCI+myM9vAT+5LfzedUGxk+ZR97aCPu4EZtgh/8I30G583iHes24DcGYV+LaGoJqN/QbZI66dgK73Ee/DoyL8xeXwT1dFXTUHMKsMvvkTmIC/Z3HfgLp0vA8ReBscz/XFJdANK0DnPofuVwN19d5D55eDe3j/LPxfEEVcF839LY9B8R5zpPN3e/IafssP4My/wFncx3wXtF1Fvq2Eifcuvua51VPw/TXo64+hy/8LnfUQnPcIjMtBPFfj+0mDX3oTtJ7g81M4fgF67e/Q2mloA89luQDGcT/rXu6TAmpJ8FNSQbELvpjHXAe+Ske8NIHzojiezHOsYX8acy3oHoc8JQa0/QrfuAp0Xs35QaA6nuddAJrG8zmTQHUC6zDuNw4st4DmEM5T+NyB3I/7mkL4nM7cpzf36QVf68Hz1OB4UTr6tOS5FY43RdzaDtrWmPs04PMbcV4O6oUV1CojrhV5wc8DrYLPv8O+hny1mPU97nOG9W/Qlhug+RznJ/O8KchT0lkncP0U+LYdrMO5bir3HclzTuF4GMfDEVcVzvv/z8B5bpznybou63peX2hTHY5/Og7mexKUT6CIY7+I/Xusd3F8D2v+2bZDq+vZ92c9i3X4l/nqAO7jyrR1hu/CughalDLvHgOzOe8cawtzLftrWUdxXSi0GsIcwnEvZn4nglKX9fOj4E1mCqhlIU8kMBVmJOcZWRtYOzKLj4CFHuBZ5iHmauZEzvNiGtivwrR1JKjXD0OvhRbzWP/A2oH1qzTwHTOXOZEZyRTMGszk9mAc0z8VrMN6QwoY4g56sb7eDrxxCIxhGpkVOX713+KLX3BbsCUz9yCY5gZuYe3LbAIqnw8QTUWuROsx1uugJ06D3vwddJwr9Idq0IGP9hPvnmlD9LZCz5sPvWcEdG5naHNd6A+vXYiGK/uIDvuh02Ohp4+Ddu8NnW+CDv+0F35ha2LPLOjiNdD+KrRlJLTZD1p9sYeovATFQ2fE/2A/gWi+XAl1BQWklVpnKU8bvo20tlFFnb0ZdZ98oSs1Ia36fWxFddG23f8AvPM5Yg==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAYRIAAAAAAAA=eF4Vknc41Q0fxmWmyEzEo6yUY4aD45zfl8eIskJ2JaMio6xkNRB5lJWZTcome69ssseh7HEOjpOVmd7e+5/7+lz3df/3oaD4f34C0StVHRdShApnZjnNTyRD5Zq70PlBMsSGxIoQqskQePBu/78MMmTYVz+mCSVDKorHxdCNDC+YGaY9LcjwQU4xzkWVDBSnK32VRclwd1TEdZGNDL3c03fvHK6Dm3ugSN7cOqCJclXfOtdB9nb2TmvROhQy0XVGxK6DBt3Xc1f91uEDP8u3LJt1MKzrmSRfX4foU+KijFLrwL5PV3DMsQ6vXRp0vx6R4P3+dao7cyQglKtWd7eT4H5Riy1jPgkCttKP+SNJgEr515fhKQlimIpHOs1JEC8f8cdMiQTnAjC/GgRJ8JvhU+neSRJEc/oo0JDWgEaG3X+xfw1GxV6HxZeuAaPpO0u+uDW44xJz6OO9BnMqfbZ5d9ZAn1s+s1B5DZbHPBteC66BTxCxRYru7/9XTV0RcRWKPlJVUfWswiO2+iaRglWQeG+8KhT+l2/uau08WQXV89v7cQarIOKZQcMiuwrdFPUhtzlW4dULlky/3RXg87BxcBtfgW81SzRQtQJ1W6ORU/ErwDvwn6yB1wp86GZhTzL7yxNphrWYFUg7E/9P8fkVUGPOSPQ+IELghDAVzwQROKRUnkdWEeGotO3f6TgicMm1v6b0JMLrIeGXR0ZE+Lzz8lGvLBEaa7D+7uxEOGvIQLuzSQB5KkdZrQECnNGJNfIuJIB7nUThq7cE4G+PCLZ6RIDwrUUJbk0CCNyt28y7RIC0vsf8nNQEaE4dZb49uwx6g0FsPvXLgFblCnL/sAxGLp87ND2XgZyWe3XfcBne9BZcCZBaBuaMedZVxmXgpPltIL6yBOVWCaY6bUug6U4Kv5G+BCdpRx9c8luCEJ2f+tOmS8Abm9DlIbsE4ybdqiTmJQj6IY2orC0C/5qM3LP2RTAbmC0KS18EkbdzV4N8F2EqK0XN0mQREu0kXbilF+GjIueNKsZFaEZVW2IIC6DsSn0tpXkBuNnN4wiJC6BhMkTmeLoAddLMayI3F+CpxVNRIdQCuBznGdHSLIDWqRG2vql5yCd6ML+onAdMYMgRV+Q8BA6dfZ30aB4uitVan1abB0a9cl0b3nkQJO2fyN6dg3+fJMtP9M/BYIJPxV72HGAFOVVo/OeALYk7g8JiDqYVrdJXZebggG7yTDvjHDjTUtRGLc0CnSLeV79hFpq47FHUcbOweZSXnP14FrynJ8pVNGeBf5HKaIhvFq4HZ9wxPZiByJvHZaODMzB3w0BdK3cGtpWCj6r9Z0A95nSHgMUMPPMdTwiS+bsnmtgtM8wAc8EF0+CuaVDQ0K3BeU/DjqP19k/UNKDlSVSZ36fASSmfZPJ2CqwTiupYkCkoJsz496//AIrLZIPYlB/wTV1c+aHeD9iWM7dXO/ED3huObUh++Q7D7dV7otbfITJJOleR/Tsoap6Tv9s6CUzt7f3xHpPgGs+ZTRKehDsMF3ct8BPwplL3gBgyASWtuj9jsBMwqk7kvr+Oh0v8xK+mqXjYcimTdNPHw4w2ZFdQ4+FV1AefSxXjoNvsuN9sNw5aYRlOYTzj0H9xQupd3xhc7XWOa3o1BuVHl7dR6DHwQwck9hFHoddZcbUgaRSE3Gpke26OgrvpldErtKPAJXgs2FU9Al7kRs9C5xEQH8pFfRccAcEst2j9iWHoUZ5hPBs+DHfOlxGF1IeBfhTlG3Q0BJkW2rzYkiGYZazmUbcfgtUwsbZPfEOQ85LvgTV+EFz0rDS9IwYBzxNUuqE5CIyTNSsdlINQJPNMjKp2AMKzNCrT3QegUGK0OVtiAMir+6/Or/TDul6y8G5mP5xeLZlQtuyHU5kSDUfc/dDneYVgUNQH7s1CIrFX+qBU8519e8Y3SHV2bSbwfoMBURbcn4ReiJC5NHaGsxc0jrX8uGN6wO7mJfYrZ3uAKdjDTjG6G8RLDjFGHN0gNvZT1jeuC3SWWX6VcHeBiK0M3XFKJ/BtGs3eEeqEW2qEZXxuB7wUc7Bzke4AYXxuMqq2HUYsmopOqreDi2ZcAcNAG/SWNkVibrfBuVcd/0avtEIfJjj4wrNW2HlQc+77yVZ4JsP0tjf+K3xEeh79Qn0FY6MobtOGFpAgi6/vGrSAxbEw9wixGQScBmo2XzRDOpp/SJ+rGYJelajufmmCFVLvxKx2E/zWrFJlX2mEzk16lvCgRuBZdig1utQIqg0VjEOhDUAV9eB1VF89ROp+ot9gr4fmK4RIkkUdlN4uWQz5VAvbXpSBXds1kCG/UJ6vWgPB2xwBsrHVYKQgUGO1VgVlcRMEWdUqaA0sNS9MrgSL0esifYcVYF6fIxRt/reHMPMU9eVgllZVxSJQDp+NsxrbQsqA/nflKO9OKSxnV8ZxWpWC3K0Jmy8DJbBDV3l7RaUEoirN7esrv4Da2pK0qOQXGApiuySVUww2qQIuXZeKYdd5i2HnYxEsPZ8ozhcugiwZna5Z40LI6e7+4W5bAB4M3FVMnvnwkiaJ9VNYHoQNV0lI5+XCk2Hsck5vDlimYj9Rb2f/9VrdC30hG6RLU2nQup+BlmYxYM//E1Sme+Bd6rLgwbd3r+MPP4LlV3yeJfIRdFQzuGoDM+FVKJd6ykAGjC4yGP7my4AhrzG2To90GJG5QbfTlwaV+Mt2rmJpEEEgotBhqRArsbpxeyUFaKqY3JLrk8F0IwjD/CEJtivGRaKfJwJ9clzxGYcPgGLdwt+2TIAqoQ5ta4t4aHuuY/Hnbhx0qhkfszyKBffGjikv3xjgYjWw5YqNBnD5VtpT8R7+YKYaXKejoCKyVZ3EGAUsBP7v51QiIVo3ljzgFwG+FN3j+43hoC3jh3ekD4evq/w6nEXvoC7+8oSt6VvIOqouenEmFOSu8SoK9YUA7c+mA6YPb+AW22r87yfB0BIyvpNjEASjlo9kRuA1GE+1tCmgA4FkkuARgw4A4wUF92wlf/DEB9tJGb6CFn4jT9Ljl5AgJqybFPMCRKknzSlDnoODp+98ya4viLEtaQ66+wCvMSXtHJU3hAsZU9qlPYMTZzVK1rU9waisWuTo5FN4YislwDPoDm9s41knP7vB9TNu8u2hrvB8svDzY18XqL/tctvO6wnQ/7mHqPk/Br/mqlsyEs5ApxF5jsLJETRGeAv4mh/Brf134gMi9nDp/f3l658egutTM9c+9AMQo0daMsZtod3GWZAl1AZOhr/UsNWzho91s9qbglZQ8s+Pr2fo70GJ+8Id1N5dsGeoY+g9uA2OdOVOXZwWMPR4DrutZwY00gKsgukmwHhezRJ72hjQv7pMLv93C1RonFYnLxoCl5RAnkG3PuzfmKh5/+Ym5CRWleeZ6UFTSRDa2lsHPIZpDPytteBzwM8IWofrgIpM79GM0gBtN5XsqjH1v34p3RiUU4O39U5sF76ogGBpnw5G7V8oSzRb6CErwfvw8tM89wCGajAFgQw46JicUvSZxoDAdOe3hjF5kFQqNhfZQsP7k32HBRKy8PsMVsb0P2mIVGJR1aK+CjsmmzbNcZKgPprEz/lOHGq2aWJ5uUVhv5nY+nbkCoi/cHP2rxYG5N4YvWq7ENRyFeor7AtAMdfBzE9tfijhR9efb7kIIfNadMz5vJB7pua3PgMPDEzyFfKkcsEEj+TzVptz4HgqVveH0VlojWs+vuzKBuM/scSUchaQmLJ+YcfLDG94vTfLdBnBaEqZdiX1FLCwnD3XgjoJ9/rJyvOrNGCodrIe/YMKsugEB8iHJ4CBT4XKX5UCbnYJVqo/+I2sD56K9w09QAS8yFE7m7uITGnv/r3oHYT6Iq/8uNMWYsvQPNjptYGs0skq/bYjIwVN5kW80msI/beh0kZNImJequuk8GkJmT4q+W2ltoC84ghPjeSdQybOtmHCxWYQ8sPjQZ7J70jScvgJ9VI8UmC7RHg+NYpQDdndN9UfRkLeojr+nBxE+L4mCt/f60M0kyKpPbR6kLMLGw5VVJ1IIu1HxXT2NuT9LhPhqUcLEmOq36bO14SofWjBp3LXI9Oh8yYH9tVIUY60YJJgBeJbxtn+EVeKfPJ8eHQ1rxhZC0NbpH4rQFbNK5haenOQNFYMu8C1T0ha1VfWF2KZSOp575UFtzSEZyDA+axQMsK4xq7tsx+P7FUEF7+9FYMkCIqHpV2JQork8wgFD8IRh8Nn127QhiLj2okDMbNBCN073iW0dgCiyecgoi/3Eokwd6hmveiLUKok1v8X6Yngxpe2OPPdEL2md+c+mz5BfOYvGD2nd0SS8DfN3TAPEc5EPAvTZRvk5b1ZSUKFJUJW5ZwZ+miOhF5782yh0wjx7p+MP6zURzy1UA6O2TqISQxfeDyNJuISlioqYKqKBH/Ukj3tq4QsJbSytKVgEMoxFU8pe1nEJ9TOP/+yFHIqaW972BqFCLCH9JBahZCHtKM2DVg+hOLEZ+FcMW4kfHslMuvWWURaotApMI8ZUc6yJklu0iNbcYxfgZMa0dQt09o4OMbF3m9sMfu6i8tmqIqeE9zEuc/n2j8PX8VR8sVyVQ8v4N5yfK6l1J/GOTeT+KIfjeHO1Sat4u0HcMcbAy/YWjpx8aCMzdhoxkXVLOiNfanBjc9KBl/gK8VNG5zPdWbPxx0rsUUeTGfiIp3qn3S3J+HGpy75/TofjVN4pzf5vuItrmOrubytPQBnTMGvXfndBzfwo6uPedkVN4ZtF7yj9AhHne6syxtohatFhZ7oOzTB+ZuMrx1U6uFMfq0Gs6LVcQlkostJVRzuRobVZvAFaZxRD/2BX8dlnHwe1sto/ALOeuhe8gUNdtzy44t+3xPocejlGJtz1BQ4XaPJ/S/4LSx+ODAh+w4BG9D6zXEl9QdWfGrpCzIygN0UG2bZg1bscP1sqilTFZapOjm/GZeP5c96La06k4pV0eSMqlKJwrIEazIp1Qdi2WS0aI+VPbE2f9bkAurtsR3zSiHX+W5j1eiyeh8Y6WKPH9343JCphDXukUA7uEphtfnCA6+d4cdemR2lnndkxWouzL6ZCaXEtvfK1tg+3FSUNeu9bkcxp6jK4WDcbzygKJzyj4WRW6MinaTwOb/aAkXTa79cCiBRcexQ2CL5zRtFUmHExP4XD8WSP1h/iWFrxcc5i6hjqpuKO6ZJT1zysIrOGpJfasqEFe8PsRkwK7Ip4n/6O0pHH2M6EJbapqFlTF1W4E6+2CBGyOxzDkqoBlPLXoayHMzAPJrMNJi/HopxM0B47la6YrQ4cjrYhs0wZ3jCmOu6lTGUOSIquRTCGGYxUnj4BgOG8+FXclzZhkLXETdyxDiiUKCAWWS+UanA/Yt5cAT1QaHabwZhdvBVeCcnKevde0fBWn5CfZQPFG6mxpYNGvAqhEhuZ1U4HMn7tP+mo43Gy2cb8jTbM5XLbywtLhaJR8q/Jzv0ekc4yDfrrB3v66vJU7NLbSXx88qfQrykaFm35focjg/DWDrl9C58ytkQTZLzrKPweGrtLFd+2KoisojIZboxzOo7nZYzYQ5zcgkcQa9tj+D++5GIRpddbdxnvYvOT9He8ermQG9p9i90C2TLLj+SiXPSjCx7YumeLMRsXCbcJma/kDdYuiVO5tgbnJDxxu/RnFaMkrHtHm1Qx5uVluu0o22xAqVCndX/vpSdka5oYHvb1lskLePZ2lV737EkbU4nRnYIWzKYoF9xo45S2qtx5Cpze+vVydd8jfkpCV9UnR7zvZ1X+DJrZCob7CB19WTdlRPfZYnF9yz3Lc5qNhZbijx2XUiPlBrMr1Tmrmcrdim12jgdjCo2nO6a5WTclZQqFakwNY2RpCLFol4jMUUU40WRSZrWkjMVLC8N6vokyjdTCeerTxSp7udFq9QNSLxIuxgkHPxQQsmH3a2nwaewo+Af0YttxhKeJ3zvXLW6VPgiU7B4imFEvP9CgmGyyZB4nFXMlJdjc0FwGiOv+3yOOCexrEwbFVkwbJXCmfjgqTjh7IpY+p5FwXGHJKuUubL4SvVIZ46aYIHSrN8NQTk68eSs9IAN0ZX8YTn+zTGBXjHe9Cv6haeL8uVkJDmYXkaI6VB97BInu+RPoDDNOgaGYjGnbZb3c2TzhzM5zf7Z5hCT3v9gyyy2l3d0QXo70hAv2usb8rnNrjovLSGCUcjhg2jQc0d9N3OfvBdcRoY1crdFx7XOn5E7geSJsGrIPKzkFSWye+wk3P2TO9FHqfudfgbF+TR3N0GzKfd/myIP2w==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAARBIAAAAAAAA=eF4VkHc81Y8bxZXdV0ZSKCWziGvFxb33CREyU5mFIhUyChESyijJLEpWQvY1I3skZK8QrnVdd3zsVfj5Pf+d1+t9zus5h47u/7cITSb2VL6rIrm7kaWLjX8RmOirYfPbQEA8kh8tuYKALT2baScNgT6ey/p3FxDo/q9ud3kWAZf6UYPHhH391llwYQwBRK70+rVhBFL0JHrwfQjsWPp7MHYh0DDSIaLXhoA/e0Ldy2YEFp8nSJTWITAlS9EYqkLgVKg6hVKGQNBJbYb1IgTIxBGn5VwEDELuM05lInAbXuc1pSHgwa58KTEJgcPj4Vm33yPAlbFVIRCDgIC0oUl7BAJjV67ccAxFYL1xL3knEAHKG6bDgX4IuN7k9tn02s+d3Gq0cUfAN/x3S6UTAol4yi0mh/0e9yocNGz3+VHW726WCJSZ1itGXUfArLAPn2qIgBWjz6F0nf09jqOOx2kgcFHUB++FReDX5cVSXSUEJoXstg/LItAoPm1aL7HfrxOfYSeCQFj/fNWGAAJRB9LdfY4jMKhsn0LhRCBaYobf4BAC6FtJFZ/o9/9/pmY4/o8GoJZdzLZOg8gXHlXnEBo0uLipXpingYBrJDOKQIP6guKVYyM06C8k9lJ6aXBAxsSrsJ0GvuShYtsmGnyR0rSkq6YBy9Y33OtSGohEoVGM+TTQbXmy++ALDd7+9PWt/kSD5GgR73/xNDjTLtckHkmDSvkn5yGEBh9qUwPUn9HgoeaFSFkvGrSzN4uyudDgZH4pV+/d/bwOdcGgWzTYev1V4PQNGqR6/B3I0N/n5zSOHtekQduQZbo7hgZuYXiDCnkafFspmSRK0MDccOvMASEa/KhzGaPno4H9Mv1vhIMGzc4RE01MNNAA94rAHSq8dmKUPLdKBbH4kJ3yBSoQeL+tSxOo0FXL8ydiiAqRj1Ae/b+o0CPPE3ywiQpCuS87j1dSwXFSmPdo4b7/30HRjQwqaDmdqKj7QAW0gkqMaxQV6rFO3kwhVPhr0iEZ6EuFL8mcjtNuVLiTbL15zoEKpg4FMdetqKD+NvqfvTEVyLL3liy0qNC/viijoLrvOxHivYSiAl3RsbBoESp8/09I4DgfFbK6ziz5H6aCWn9e/c8DVPhJOHBlY40CfpEyl5kXKCB4vch16w8FtJn0An/1UGAz6MWFoGYKFPDZafB/o0AOw2O76FwKVPTXGpGTKbAXn1InEkOB0WUhR9xLCmi6dDGhvSlwiDlHh8uJAj+590g/b1HA+E50kq0xBYbfDPIOa1AgUaKEQ0qRAj8iryranKVAg7HxRTd+CgRs1U1as1EAQxFvk9wlgxQ8ze9HyDDqSgMLAhkuFFugvveSwdq7R2q7kQyx3wfJ3KVkMOaz4GP9QgZBh5d3f8eTodxsNTA4hAyeYzkCh56QwcbXdOb+PTLs2H58kW5GhirHtIIybTLEzPJxpKPJ0LDaZHzvLBl0dXpFmHjJ8HxqXMGXmQxZgptSbesLEIskVCGzC2BtrBFO6V+AK6mCmnWNC2DiEvvuAX4BtKM0pcgpC1BOF1yoFrkAlvcJ7c5++/w7lISL4wJIf6/x0DRfAJcfZmaLWgvATxj2dVFYgE/bSRENZxZAkdggT2JfgMvtHnzTf0lgaKVKKpgnwb8tSz3DARJ0XMVR6+pJYJIy6cGQT4LFjIFIvkQS8BwZnd17QYIQLSOhcjcS/FTbRXA3SSDjYLEVr02CpnhdUo08CVTIK45lp0gwZRpw3o+VBA3pvoNHVufBf/jsMa/xeTiYL/0+u3UemohzrF/x80AX6Mv75OM8NJ8Icud+OQ/6DN4tT13mgU/udWOh2TwwTjrz49X2+a3Op88k9vWKcAIv9zyM8fOJ+P0lwl+Dhq7caSK86mc2zmwnQnXYppVTMREExlKy/yYSYTeVh3YtkAhXTZ9Ned0nQk6d6EU7IyI4/ME08CkR4VKRmOh7ASKcsN0WnaAnAulsfBCNNAdvE512m7vm4NAWh7l96Rx8Mo817UicAznr+NrtZ3NQdv6G2aLdHBCcKxZydeagL5ygLiM9B1OWzNI+R+agPfbv0/D1WRjK19izGZmFwGt5r3aqZ2Hr2uiGdeosTPbrCoQGzwJd7+qQh8MsnC+aYzynOwtcs6xhqedn4Y4jWmuCfRZ2/14VmVqcgfnoIvavvTPwpKh9WbFkBq4soxpC42bA3V7XPdlzBp5WDW77mM5A/kNpsxPoGajSzg0P4J2BYa/m+K+b0xDm7xacMDwNjyQ3rfUrpmGTvlWl5d00HPYXl2DwmoYnI0zazDemodlAsLhLYRruGP2IvMk9DSv3M5mKlqZgABWp2dY1BWUvtwOy86agucZpyeDVFNB9SBqovDcF20t07lTNKYC+Rk6i0BSoF7vQZ+0RQOTWUorMGAGsLjlrPa8ggNQip1liLAEeCSuq+boSAKM69khcjwDnCe33PooTYJbJIWX0IAHSlEXTZv9MAouO9U5lxSSo5nLpWsVMgtW6lnib8yRcNXFWZdSehF6WaUV2oUkwJM+kt29MACvHXgJfzgTcSMueYr41AeIsbcLvOSdA9HQaT0fDONy8+iYg4/E4YJZw6mJi43DycMMVo6E/kOA2/0k09A9IjWSaZKH/gBi74ruR+THg3sZn17wfA85v2RM3tMfgg4JeWsbGKOyaUd3yvowCd8DVGdfro/DerTdtmX4U5vKynS/gR2Asu/ckxmYEstDZn1jZR2AS7bCWUvUbLlaexjDe/w3c9dwZysd+g8q5Vm+1xmGwV8HyC7oOQwmdy87wyWG4pVWKd/k5BCUueeNEjyGwIytd1BQagnge+bxXnYOQT7DhqvUZhPsP01ymxQYh3Sxt+l/vAETpFyRzPBuAlvUK6mnJARiI4JSSG+oHvnKBft2gfmgu4XR9iOoHHs0b6amjfWBzmk+MFNIHOyyHmnUU+iAg/tWd1sle8KO/u3k/ohdIug8i5FV6IYahBiSIPcDMf/SiSWwPfMEw9RSr9UAOEa1ljHRDyM4JetmkbgjVOuJjdqUbeIw4rRJXusDANvDWOeMuIHsS5O8XdEIj16nz9uydIJTyI+/sw1+gP6krW9vZAco3+C8qyHRA5t9/bjHR7dCf3HBvfq0NFl5ju3EWbaCbVWiWVvsTAnM28KfEfsJxDa3o2ohWqMu4mfF2/QdgaoOik2x+wDv6s6tL7S1g43zXNAHdAgXtK0rJX5qBk+3QX/ZjzZDaeom88rIJXohnXTDfaoQPg4RZHedGuHM3b7J7qgHWel4QNs0bAHHu9ujorQf8VMfadf16+JHfGpT8sw58x6yZiy/XgaqhwxWFyFqgZ+sO/B5dAwXZ4UTOxGoYH3Vg18j4DjtZt0h3SqoAdSeuNuhHJahtxAnix79BvlXx+M5WBcSk2zF48FWAMvpzpwi2HGq6olP47MtgrDuRzjqqFHRNF9/s1ZfAiG7PP4aNYjiIV2R+IlMMFGk7Z5uHeNhViKE1FRaBTEaCes5GIfi1KB3l1SiE7QfjGwJiBaBlcmhdpCsPFDWZ1y4/z4XO982vQjA5wLZoxjVF9xUCdCoTTTqzoBq3szHwORNav/oV2gR/AcILRSaSUwacNiZs2N76DPq1o+rfzdLhmrf0vTnLNBDnH8J3OKQC0wCHmrlvClRhLXjn5ZJBOgNHYvRPgmDa2499vz/AW/fLU0e1EuFSnFJEWMN7yG2MLaEavAMd1ZqJrYU4mD4dInUnPhZKPod6jxrFANXYMIqLPxqS/py0K1p6C52z7dat+ZHAYez+LDUuAtDHr6govXsFUm+GIjrxYUAJ/DadRQyB4aDOAIYLL2EwcpJOIDEY6NI+9EgeC4JiwSM597Kew7Z/OfchowCIuBZe8orXH4JkZk+lVzyFvDOrDC3+3mDsJPfE9r4XKPcZEWY8PcCUsRFpyHgEvGsDPu6rbvBMy/aGi60r0NksX/EcdIY4l1L174KO0IEqTu/6dA+emo77T+jfhbHPlyXOS9rBDxvCQxaF27AkeDFhxN4GjlaWTaj43gRzy8HjDY8tIJdWLfyu0BTs5Vo+yktehz6/Ay4weRWGJzLio9qNIN/C3dS2Vx9+xcpZfXmgC74vrOVqzS7DJ2tS+HDcJZDFoE75n1AH+QetaPkfAAJ8iuFT3aow9e4YTk8HDYnFss13xC5Ay7Eh1M9bcjAsN7MQ0oeCT9eT7H38JWFsbpn/UYE4nOZdjsowEwF5YRXe285ngOaGGuJoEgBrNR15mikfmAZ13GQI4oGwiGdFtfJHIFuHR9q9hB22ETF92W5WsAP16yspjBDGIJH6ieMgvDO3u32WYxcnmXj46yZlE8flw1Es8X4VJyU618+yuogL41FXTe8k46z0TExbyudwS40a2CHfKdwukZ7ms/kHd7hlZrNBdhgnUp1taP6oD8fDq+6nL9KFWzMI6/7c24o7fc0ueBvfiCPwxV26KFiLGz76o8XRpwLnGVoleuxcMU4/+Eiw50gezvwCw4FRkUxc5Xs6x7CRVFzZwKG6LYcPOPMarqbz1FicJHv9llBbJM7haLa8EkMo7rsSwfXxf4G4pCJiy+y6D+4An7TDOZbHOKazu/ai75xx+eNsMcXf7HFaMzI9LqXWOP1JAqjs3cBFBxBOjEYb4Zp+LiRhv1/GnStGa96euohz4OVvsxxTwk0m2Bhn1sjgknqTwl7eEMc1viK9HhcVxOEMbC4xo47herQePJkFdpydaHlstxcDTihwyV/Y9y+2a26ZZdpgGTuT9p9/vew8VvCy1V5P6QT2gUPvotiHfmwnKtyPN6IN+yKiKKN+tQ6rcO7hyS+epVjRb48ie8hfsUMcTvUj31KwdLcvyqzGxWLDmBmA4XgYtmRuWi9Fyx97cPz0WcJRd6zJM5u2r9b22Imqx672e2bYHbMGpgdkPSy3kQzdiVcXsZ2ftt7Elslhl/NK+y5TRLBR+H48w6nj2IjDVpE5qqzYXExIaav8X4xFm/RHm1UKRj+ZU2PacRxDW+C7hA7vwli8V28nCtZhauHKguGlQswpW31pv/MpmNZnRMtT+EiMswyh9cl7f4w6S4n2Sx5nTIwCJvOakiXmoLhVUw6HDsZdaOMKglfEoIy2NXsVRTBfN/Kntgu5MJKdY4bOjruqqhrrf8rzSKomj8QoBM0B1adnu7r1depV7bTZnCvCc1QdkmaCvJ/FqTarFGvGPwxQ1aMz8dKMu6caJnaPi/mfsSrjUc6K8XJl1XNsxts5a2dUp2MN5Ot9WFTXzln6tlxaVFm9NNX4iWtA5e1v7yfVkZUqBBuvljfaKSpin1HiZfZBKvw9Gr1TTndV1kM3RifP6KhYfGvNpNeUVHGyjONJ/cCmortYYeC5RVH2fDP26qROh3JLg29oaNRX5ewxWU9kPUS5pr/E0qLMTtkpwNTT56Sackp2g470Cr9yefqj5RCJVXTruvCfF9Ed6GC/lJLio+noGmuXZO85LzR7QxOr8dwV9BcNvVXk5Cm0roKWalwNVUm4YQvvE1SpxLlkZhk/G6z0lPHQ9SKUntLhS2qHT8axKy2V0t8xbG5RPMaZ2cyBvqk4/KQBzfxZreymc1jmzV2mMqsA4U6VwTelVYuyg/mi4Re6dW+vycxoXEDPxrG0BLKWuj5NerAW2ley3dFp+ua/Nwp2RRqTcSy2CivClqG9F06UXGt6mnA3iFqsmWW5yFZRJK9I8cl0YPKSvyzAcrhyQKfYN+LThQThJTxp3ixi7TZBzrI+XyzTIh5fuI2iCbO54aMNvtncOKoux7IreVvpSbns6tCkw2/cWJHt2/fvaCpfZFnytAZO9evLmhtVr/TjNYtW1wpO3P7FKavLdN3T9EO1zJwTuk1ju7gwt5Z23zrOT6Z/q0UrmnRVpvn316SndJqFdirLL5Prz8qEV6wL6bkdKjwyUMU560ZBSZaOSSZOdhZoRUmW/0soRB17/lpcOyiq4GGROff9k+6omZ6Kb+EPrhbsReuISnjLoRgj8ISJq0cKOidZUjr2lqQ5PR/+NnnZk98sIyzDSymUjsgTjAtRfJv/7kRl4srAQ2nOX73zkgL6+S9kWFev6UlKs6ejqvmdWPMPFBmOHQ0mSiE8hvpVic15d0T2hh1L06W2PtoHeQ8/z1OL8H+rxmwjtVhMzx0SisnL2kiN8RDik+pn1Z53HV/L5dZiYPGp7j2/vp70FPesIPd1xdaMbGvYeRGmrdqr1+xy2arvbPnM4s7/DzMOX/8=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAQAgAAAAAAAA=eF5dlH1UlGUaxp8QdVw5OCoqqSujEo4GOsn4Beq+ulrIQUTQpCCYzBQ7to1UbGpr7wKWre05rNoRTWnSFFIyVCDScmdb2sWVTVRK/DoOZjApFfmBaC6uz31d/KHvP79zXc/93M99Px9vTEC5e9ou3xQl38JipXzzey6ZdeieGJx92BarlHdE1XzRW14K6n9Pq2dW9p5yj+aqsKJ47fvuHp+i2dan+Wk9nh12ZrweXx6Smab118OOTdc8PHePMHvfG9N1/LFt5iytzUHVdk1XzpjHte84U/l7TbP8SKRm7rtRT2gWtA4XHdfmmafpijjWW3NiUWSynp9ctneGplulxGoWxihZZ1FQhCH+qjyZr7Y8N1bT0tSWoH3nhjWJmuG+23Ha98yxjNM0JgzsK3U4VrXG6Hl7syK0HrJ5ZZLE5aTP1Ez1Fsj+FPy0TfetIrJnP6d1a9bj46S/D+qmaYZOKhC6ryyQ/iL3nJ0r+XMWjtS+rXb+SK3LEiodsv6O46O0n9HsdGkqd8JwqX/GVz/reuwrDqCv8pQ4Wacpd6rkqXA+JnGxLqfWliUR8zXtztpkyZsW4pTxD271035BxYvSv7E0YZT23RO902TcdfisXse8Vtxb1q8P6SP1HnREy3i3zG6y7pwS1H/qr2Mlz5ie4RJ3JDxCxmeNidL0zHgPeQt+91tN740eck4qb67cKzWvsv2g5voTkyXPuZdjJc+6AVNEF96S83Rdbo0XHfyw7K/qNTBE9Mylj8l601ZPkHmb8kfIetF1cj9Vxttyj9T/TLmH5pb1w2X+jcXDNH19X56OuMNyzir0SIvu35OzSM5L7bwj9RpxPSaJ9i29KfX+siBS8tTnBgiD82SfVP0oiTOvOydo33suE/2knJX+VMsmnKd7owN1LpE+1Xszx2O9mhjRq7PCRA9cKvfd7FiGfazfgP63Lcd5Ln4K410D5V6o2jvR0ueVOrkXalCa3H+z4U253+pMQZSwJgN1xEfhfbSVWyX+aNeJojfOk7zKmHxa+g0fOUT02Z3ow1Mo56ve3oU8Ee+i3ujLDvEvfon+PNtsor1/vIBzThstfsg6uYcqywwT1t3sLr5rRVeh9XPci4DBmB83yCJ+n6OPijYH9BEWPS/vRSVcxn2tMvpJnHqzp+jJV4Zi/QD4zvNyP1X71/CThsh/QQW1o5473TFeU/iIcOwVudfq2R+x37YnUFfiaOynOzNI4jb0kndw76HjHO07kMczeij24WfskyM4ROg9Je9enYmKQV+35B6rkkTUWeAHy7rLO1NWqx3rJweiv+pG+T957a1SjzfjmnDGddRdVyP3W/lr+gqNJuRJGjgM6wfi/xZ6y4Z8c/yi42pCJS5rLPbTOjVUxo2MnyS/7zzqMlLuiq4eiX2sexV92fbj/EqrR4jvLf1V4lS3H4VJK3H/1LOoW2VgP00fzrPsIN6hsb0L8p3uKr5qekS0eQ3nZJi/EbZ2oD7vH/pjXg/06817SGjO7pC+bNE9MH/5XdFG356iPf5urBN5HH8fAp1pEfpWB4vvuoj37Y3tBZ2COlTHecmncrGumjUAcX9CX6oxGPWuwP02m69JvBmixC8ofxj74d+NPJcQb6ajP1WJc1If4r9jNneBH34Vfhz2SVkqoatvYN2t6M97A+fhegbv18hBfhWH/5byHUHeF+6AKb+AKzjuLUJecxO4kefpvg1tx7s0tz+EOhZchx+A8zWfop56A/Tgnqlh3yHP1Xboou/AdbwX1SdZF85HlaB/9U/sn+oWgPVOBmLcuAh/+/fgSuZrakaem1cx39cMP5F9OCq4j7+CL16EX9EGvZN5W7ysfzPGw1vAc8fhf/I9dMdxMJ51JuK/p3IvQW+sB12H7utTmSXw75yFnlgP+hnvOAH2ZF5jB5jFuIVN4LJToKWaedcgbtG30C2NYCvzGqzf8h+wgf0W/oC4V76FVl9AB3GeG/dGGfnQuVw3/SS09x3mXw+WfQZWfQNW1yK+5ij0sn9A28qhS9jvomNgK/PbNrGvj7k+dcO/6X+E+KxD7IN1Wvk+knaCdtajlmA89StoXyl0WTG0lXRXcT3ON/KgXytjXcXg2v3sfyt04S5o/x7Q3As/iXVG7oP2bWY98dBuD+PXQKt57O99xhVSsw7fOubdiPE67rtrLeOnkrNZXzbz8vzUa+xrMfULHH+efJX1LIN2raCfyXkvUSvW5YLve4P6SXIu4+aQ81lnBvPHwvcmc50FjAum/yTriyXtzOvgfCfrmUBO5fwe5FDQCOc8K/0+ZBDz9qbumAQGMJ7jZhjr6cK4BsZ985nAaANVDf3T0GYj/X9RX6AuJI8h3jxFvYP8gnm2Un9OnUsWgUZn3GbG5ZN/69TM/zqZR//PnJdGptN3krPJNDKmk4xXZDj9/tSDyUD6t6vAMOrr1JfICw/oWvLgRHAftUl2fh5qF+PWkW766Q/EOzo1GdGpOS+E7NdZzwSwkfzhU/C/1JXUhWQ+/VeoF5LZpI3jDjKSfn8ymL5/POitVPd9HurtZD75FuMzqONJCxnEcf848Bz5Jbm7Qt33uaiTSCvjAqlbysETTrCcOp86hzqNejTZGg3WHwA95OvkDNJK+seCVaS5H7RRK+rqfWAW+eD3oQN8p+x+P5T60idg/hgwlbTQb98LHiH/Mhp8mtpC3foxWEq6osA40l8KNpDlkWAq9TxqK3lxD3jmUYFxAFRuMoHjCdThpG8U6CVP7gY91Gup48h0+hGkfyTnfwTWkqX0s6hTSYN+59dgB8+RZaRpvz8uvgSMpt9eDF4mG8n8EWTx/wGsGIoxAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAUxIAAAAAAAA=eF4VlGcg1I8fgCWyUikjhGREOHucc98PZWSWVTapfkJG+JWiKFklM8neZe+VyIjsvbczjnPcyZbw//2f98+b58VDQfF/1qHP4Uyh4gduUcr4feXz22TAGCyrnl4hw8yloOm1aTI87RrFVQyQIYd4xGvXSoYMvLn7UQ0ZFpZeZHsXk0Hgw9kYXCYZZvO2GMXiyCApKI+zCiVD/wPOxadvyDBKZlzzeEqG1etpHSYOZHiTFGd0xYoM2NuLZn36ZCCQggseqpEh7XfdlRkFMsiWbr3HipIh4GbJd18eMtAP5rzNOk+GlE/VVWXU/3nKM9cy90iAw6vlPyeS4AglwyQ1TYK8Mj6R7l4SuG7ndOv+JEHo9dDOonISWO3m7ux8JQHFU8bLl+NI0BA5ySEaQoK+XrtqjlckaG3k6yO6kMA9I0ci+R4JRudKc2UMSVB0k501T5UEv9gnr1PLkeDdBD+V8lUSVGnJi1lc/M/zeRZpSkcCz2U3GoU/axCnOmu1u7IG4dXJDjETa2DjFnvM1rkGl5zGNj1r1iDN4QtHdd4aaDm4q08krIG7c4XOZMgatJzipqz1XoMJ2VeKLx+vQWlWWeclizVgHekNjddeA+sM5jv7imvgfzC2J3ttDSKFynT02ddg54KdoDbtGmxylVvy7a5C1O1XHWOLq4DmOlRzHlyF+6d9M2YbVwH/1bhBongVcM9RHlbJqxCu1xtt/2EVfNf5KQy8VuFw3TCEzX4VvNgymavvrEIBeHugVVeBOT04IFpyFYL4Pwl2c6/CxkGE5DzDKuzSVPgN7hHh2NL6T+oiEbz9lNy0+4lA5czV1vuDCJEWzTOSuUSQrzT85BxDhPOR7u0BfkS4yhpo9cKFCJ+SLGQ0zYlAus4qtqlOBDGHPlFPKSJ4nWRkG+UiQmZJefd5OiIgQalooa0VOI7BIRdnVuBSl8TPubYVuMGJLQgsWwERNHH5VPIKMGXHmtsEr0BVdPTvKPcVGDUpi061XIF6SnWpYI0VeDqhUaEluQKfxsPP4DlWQD8SJWxOtQLpb0R3s9cI8KOA375/mAAz2/uug3UEmOK+RlGURYDmTUGGhxEEMKcvD9x8TgDjP7OPzW0JYHP6TGmCFgEE89JvV0oRYGM9XjmXgwB/Lnj4eFISoEIsgIZnZRn2X+oOJ/UtQ1GF4upu1TKsTvlrXktZBl6TZrJs4DJMVv3FcTgvQwVXFP+Y0TKUie78cMUsg8e/jlU43mWwFc1iF6VdhqnDkdVbpCWQfi0MuoNLMN92k4e/egna+TrjB5OXQHG3o8nKfwnedT3Kb3RYgpMBOg4Ut5cguS6V6aLsEjRlXflOx7EEexnnfIeO8HDOuMHbax4PHK4JXQcteDB9yh55Jw8PxCYd4vtwPDQVzxzEe+DhXcZHQoAJHsTN2id0lPDAd9nvYI0HD1uDW08cTuKhWWvocSN+EQSEsjh32hbhUQ9FAXX+IuTsXjT5HbYIvKlDt765LYI4b3enpfEihPgZ0s7IL8LzCVcslmMRWPFFuZ5/F0CeeCIqYnoBgkQeyQXVLwDHp3OTFmkL8GD5XfvZtwuw/S5EO/XhAvy1W8pl0lgA9iYlxXtCC9BOtaseTrcAKpsbgskr81B3PCER2jEPkqj575Z582D9IYXvzId5sDzo+pXsNA+yG4VUF/TmocaJqPwINQ9XBSlwyWfmQbD6uk41aQ6s92xIld1zMPIWJxNbMAcCJebhVqFz8GBb1Z3WeQ52HnAbxujOwVrf12wGsTlgfGP9++HpOchlSPj6hYiDfuc/Ot3tOJCOmXkwlY2DP1UD/w4G4eA9Xpi2zA4Hk6KGWd7qOEBHflxACeDA3I5Hr+MkDo46pF8YzM1C8MOR46b6WaiXWvTkS56F/jGZ184vZ2HIR6nqi/ksEKbCGjrRs8D0wf46jm0W/LKjmtuIM0BRPxtX9HUGokNyrT3vz4B1j6bHFZ4ZEHrmqlw0Pg1/a7Yk+D5NQyHOrMJbfxpuCvhr/Dg9DXJP120ILVNwqmzR//jNFOQxxyOUyBSoZTNe3NybhOR8xoyB0kkwfXDqeabzJDDIdsg6CE+CDEOrF9/CBORUpG/0J03AjqrwzRemE9BY5CPKyTwBRwuVxpXd45Dl4+dzO3gc7B4e2S/fGId2DedR36MxONq/Fs35bQwGTM+6VLuPQbIInbw1agy+bz5uZiCMQromaqshfRROdjGk+1mNwrm+lAoD9lEYswtllhwcgYR7GlmXw0aAf031Hp/WCKieGZLCUI8A1fHj8w71w5B6kWq/2GsY/HkcF5jlh+EsO+vgx40hiDZybZcuGALjiMLOTfshGLahXRgWGALvla8cM7hBqL2I9z6TNAi3Zac47cwG4cg/i4bIOgjnq9UNEwYGIF8BdeFl+AC4XOu1CNMdgMYHaM0h+gFI4etcv93aDygDm8dUAf1gVa81/PtGP/zsY9bipOwHgjfl/Jv6PpgyH/1+zacPNhN7ycxIH1RNiMbeOOwFCrFL/VU1vbA55FP+1LsXztz5au6j1Au5Kbiy7P0eoLnPF7nxogf8LVQ8p/52Axt//ztnn26wKvcmZFN2Q1mDaXFUQBf8OmX0R5yhCy5qJfe/Ce8EieFjtXDWTvjqGG9qkdgBOTb0NET+DvhCn3VDOb8dsjU5j6zl2mErDceuV98G+nn5rme028DXf6QvY7gVdHooqFnut4JpZtEv2/UWwEhNNEW8aoFZu19pmYwt0JagtZ+a+AuqZs4bvUP9gnszr8Rs65vh7NPULVHDZjC5JU1PwjcBpnGnLsurCQp56O7aMDWBqf7qMVvWT+g6nTnxXyV4ckdzN2q0ET5r5epbuTWCzYeKYRnGRqgfLLTkyG4Acy+DHCb1BtCNt3TmWqgHFCZLXdmvHkwf7X335quHzF5z35zgOrhETWvzufsHqGjQZ7aw/IBdlF2BknUtYNyY8w9yasBJVy+Vdv87FH5CrO00v4OEIlMQZ0I1OA2GBgv9/gY1fHzJETe/QfbH7/2maVXwhGNn3++oEqrFucvPW1ZCTmKYE+2PCqhiP2Nsx1sBbeV99pKB5TD41+vJI3IZvKlo2WU0K4M+mS+3+FpK4XPoRFS2XClc2lTJSM0qASnnJsHTXCVAyGkNIEQVQxm39SaasRj2H2ndOwwqgoZoyyBpmiKgi+FvrjxbCF/0y62JLAXgXjSyeHw5H1paL+M2JPIgNczMukEtF6xPF2/bWedAkgyhbu5lNrSMW1iJpWaBmGTd9vW2ryDtOCnBvfMFBmqNVL5d/QK8SwNTjFaZsCRoqcYSmwErt6mhdTQdXqh2sfJwpUOaZHQ60z9pwFjqpRFTmgqKTQarX6hTwXifQC9vkQLvzlMbeDknwxq2usRGLAnG5WJ9aLcTYGqwTtCiOR7KJy5gVJPigEuFwjvLJxYIxj3DLvafwd/e0tnXPAbWH72IqzP+BF78mxtMJtFACDQ2MLf9CEYWWWOvPKIghINzzyo0Eu5wVDtNFUbA0Zb4nYnRcPgl4SyGpgsHhoLzefmvQ8GmaRiuHofA5rWxxIR374G80K3VzvcOVo10Bxzbg8CT4v4k5lUgtNvMyW4hAeCDcBJ1T/vDraNY/RN4P4j0ucH9q+MNMIccPTOsfQ2sbrR0NtW+cGAWza/q7wNB6x6HSbkvIcmpaR2z5AWsWyHb/vIvQCqSpncp3hMKjHvQnReeAb7uxdmkpH+BU+nWv60YD5jQajiuWHGDPCR+bijnCdDPSLNHermC63Qjc2mVM2Saj7nIxT4GphOznaExDuCaVuObXPIIRvJRDLcI/8BDfzezQMWHwKvz9oJc5n1ID+vH6wjZwl2Gmt6GRhvAxfbVcy9ZAWlqatPe3QIikH8EnIXMwCe3B49QmcBO/PLkH6o7cO+3hWCnkBE8dpyoX3YygN8x/+Ij+2+DkdB6kVSOHiD+bZaFS9qQa00t5WSmCWz641dMjtWhS3z80rMBVZjoUNVaHbgO9jy92tuHytBGq14wnIiA0WP2sIAgDEQTBWQ4KxVARH8zd5VfDuYtS1uCu6QhY0kvozJPEtQub7DNeYtDWjqLW8ehCChQbm9vDAqB+99ex4ADAThTW/GJzZEPTrSEtMRy8YJgr4j3Dw5u4LzL3yTqwAGdxSeiP/CwgaSwnlaCJDMQqi9SVccwgazr4d+uqDOARKgEPntNDwGrqe5NK6fge1GeNtfPk9B5NfLq7yMKYFezPXfr6iHCxK4Sxk/eQyR9JOTrbmwjhvEWiRdZNpCJ9V+rJtkkBM8rp1ezQkBMOM9e/TG8iPihvrmImMwhqc5CTaxV00jE2+PmubQxBGUgdjHNYAhZj2DPycrrQyx9VXp7pLoQHffvtDdpW5HoOL0c8/KfSC7HpbjrHPVIVhl+I1WuGrmas2t2WqUcUaQ6fKl5rRjxLXSi007MRcrvMW/S8XxB7klmDb3PTEUG5EwC6mkTkKS7L6y6RT4hMY+Ipn0eEQhaqCyd1fI98t/ECo5N/JGDu6VYqyhfhKu2kR2X+Bz56K4/+rLEHRF7LmudweeMlNAoyFat/4Ok5g8Ip1rdQzb1KzObhc0QkY69T0OfDZFdO7GFFkldBG09qvkkWQ3pzT6Hlh4F5H5c3Ob7W/KIsYuLwKkdCaTmWZlZRaAQoluIvx2Wwos0PGjrHxVhR35KZlD9HGdC1LwypCmF6ZA+5HLz3fgTCHUgKfu15x6WkePu1JO5dex6tWhZNu8SlsePrTjEYwZ78G4S3YQewm7pKuT/eNyJzaKdaTg914gNE2/8TD9fhX2VcTixdKMIGzHMui/Kkok1OMv8eYwtHruzIdKRoRKB3W+uPYVu88fuiaFuHip7Yd/JCbL8M++KNXWMFBD6/gBrK1xY/a+0KXY3TTYn3UgPG2yXQ3uN6Tq22cCugk5XFqtx4ZH+iTEh7KC4Sc9w7iUsg45sdKf5Oaxob7x1pQclVmNfeX3k45YSDzFRAFWAV/qwNFK2XzSqFG3mKGES0q7EHX1D+5x4jdJefTutb1C+ElcDk2RycJKS7tUIZUrBMKVI0V3rFiMfpbVXpM07TC5KBK0M7zlzK6XPwfjSCLSuEq1V+JRRGUbpF39Ilfm4sBL/h4fqirVsSh7tko5drtRKtXh3sz26TYyuh66OSeIsRtOS/g+7dyfG7a9Bwr39SoyUGX+vaFc6Rt20j7qIPhyzXO1ZT3rxHFOrVkcTO3AfI6yFeuMup4e5LsK0gA+Qw5hJpmRcdLqMCSwf/XHTngaD6Lsf/9VaV/wQasJhxzusmCDr4vj6Vq2izHC4KAshTXFcpfS3R32gIr/aglwrpZOia6BfpIScvuIBhX2jf5+0YgGz49BDblbFtu27UbmLu+j+0aKhiO1R9GDqxeRh4W9oFraDyUG3z+jN42Wp0bGn6HHdr936r43QGKPYKtcUSfQ/Y3IP3m6fRksx6/rz5eIVnlUzbfSM1yuIJ9p/PFkVo3BjdrNswM1FQUcwTtvw3Q0Flbv2wj0JrAp8uVl+3SLL8sqv6LiEEivlqzruKKW1vJU/xXtByobntvxH6XT1Kl0WeT6qC9nC9sNy3tH+gGiEyQUpUq8fp9DLMT7TzxqLO12B8r/R/Fqyt3zeONXT5lBfNpy6eKIw0Ei21vlJL1cLjeysT4mTrcVw2YslpdKE2diy3wYozi+0ljLdz539ov8KytgJpV9xDFkpfVV7heGSeGmp9m9P7g4WX2kba8pkhZ9o6aE7tjnPbFlKfWOmrgvZuEiRO4dRA7PZUqzbaeMW9+1LJl41GwZlypR4DjAK1DifkRLkkErhl6wofnXny5Wow7TiVtcPlZsG7pJBw3k0qRJzRfOx3Cj7TKZiU5EJFu75eQlOajVcSUdKUfLXP0VCP4yLdExvBkjXMxV55lLFKjNekyjRPLGffoep6G78jJxGMll8c7U1y1airVA1kL0p+Fu6+K32qM7gOZ9CC9sE2zYdM/Flx5s50yqyhSkFPCUbtOfEwx98NfEmLRQo02t0lHiVoFJchq58E3uKuhmXTLUz/rKAubhiX5zVEdU4I1OyHWZYMH1jZ8PNA43qLcqqfCjIU/DA+VlogSYlStU71OdgcCFfoLoP5SXWIubSUYzb0snOTyHuTZeh3ouZPuVu8O95nL+B8ZSLFNMTo2hIFFC8KZ7PkGGs9fvsOTGaZfbAObP1vIiT3TGz/r2icqbTYeyRRXl/Px3LrvuGi97uDzJ4b+Sap7PmLajNcVvUduQBe3SsRN7/ACBMRnM=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA0QgAAAAAAAA=eF5dk3t0zGcax182JZhkR+OSoWpkUwlCRpqMRJr1axLJiGx2Nm5TjXScRa2Gji5FxfrJpkyXMh22LpVjQoKIZURKXJoORVlB9CAal06qJdGwEWEjLt15n+frnG7nn898n/vzvu8vf1TIuU2LHyQI+oWHCTG9Q8fRaYeEcFy5uXh8vBCGs3PHjPJpNduT2t5Hw/6Dmyb4qB1b35ws7W87z0T6aFVO5CT54sWasANRPm0L6RgzzacVg25BvI+e0Wsup/js4iVdL6OMO5955nXJjbWlw31UK8oCqV7G42UxPnpnHT2e5bO7Vs/c+Ya0Z078Mk7mn3wrI1zqgPs/Z/ro2hCYOkbWWTGkboC0J3WdkCG1OVUXK+NbvDXUN/RsMfUNeNYi7erKoGEj5XyNq66bpf1Fy/QUya1vFk+S8ZenGYZIXZy57U9Sb9v7jpxL2Adn9JH2pH+2vCZZYe02QFKfljNY+m9Gt1LftqXrjJIjZtnHSn9WTluIZPzUn0ZLLlx5xCL9sbXnUqXuUZk/Uurab6JpztxeiTTXh5umZUo23yugPSqzC+TeYlz2Ztq7uWpEuqRfZexgyeypzmTJj9//ziI568DMBEmXPSBJ5lmNkVpJdf3+MZL3/qCh+VTT4rsHfRS/v1gl2VjYSnPl3miheS5Y6ifK+OgvEqiOKz3kBapjX14/3Md1zo0jpJ7ubKB4z7uLwyR3Bn1tknbzV15F0rJrNnF+0qVI6XeWLn9dakPdsBipd322LI3mSTrXJOsarvw2lubYeWQk1d27YqCksmd0lGRFfRr109yKTJTUDzzSV1KczBPUNylrGO0fmEx7F40oofNTnxRQvjuli5726b9jiKR2zxq6N+/beq30W/vqKF80nveTNOnm0jsInhmYIGk/Y6LzVjff7051NZvkexbaaXepjqPd3WipHXnj6P2K8hnyOxKeb9PiaI8zmmDKzx0fQfv1HNSLdMMnJvJfT3mZ8ox/C5W0JVbS+Xs/dXD8+u2hFO9MD6a45A/q6R57TmiR56fGmGg//e+C6D2LBwtpL/VEPc3rf7o/1TNn3qLzF0mWdsT2kQNon14L6Tw98272obl1enrH1RmdDORfOSKI4gNX/pf6ZpyLkHZX71fpHByfLBpOc5kVep/CfvFF0n/R0PvwGPuGkD5VSt+RMvEqvQvRse1lon+Mjvpk3wwnHbelC3HLqgCiYS3tL/6d3FVS/yzPQLq5tTvx8fZIqv9kcqs8D6FNekrn0nd5fzqHmgLKU/ub+tF+ddH0LkTLxse0z9x8Oi+hVn5G+YHXaH617CrNKyxxtyjOfZq+B1HSg+ZU09soznN2wVCKy/lRR/a+2qEUVx5D9yyqgnuSHpxM70DczuN556ymOcWkBJpLOGoeUZ/qPT8SdY7+ZN/1Mc0vYqfwfmrncuJ8TQvF2ZZQX9Euje5N7AtkRnk78BxbuY7Q1FK82cvn11vbj+btHqsnPclM70gk+3HdJ5EdyO5dw/dkLetBNKR0obhnC+n7E+awhzTP2FTuVx/fieLspkDS2p/vkz9H5TrRYV3JXjHEj1jtX0d+m+s+9a3ay/tqdV7SpuIAirvgpu9bPHyL56hYFUTaOZ7rNZainpHni3jcjeI8Cs/5cC3vpx5to7qeKL532+x71L/J0pl0vbUnUTl+m+JE5zLy2wP4u3EVN5C2zOvE5/roDsUZnvIcuRf4HFzv8X1eTfHjvLF3KU8sOUac3uBPdscd7q9MvULx3i/ZLhZ5yG5+wucnTt3EPOf43rPaU5x+BdvV5kt8v7eesn98E1Gbwvtv/46pNvyH+1Q1c90v9nH+vFOkrW3f8zxpP7FfvUasXv+A4pSCG0TrDp7LE3+Bz/ODOxyftZntNayVLfe4fp+r7L9+mv3f8ztTN14krTa0sH0nvwdReIL8+gLUNVZy/1U/cHz6Da4/g/f2RjSy/dtatl+r4/juPL86jvcW7W9zvY5uZmc+d3H4APfXXGb74kOcX8HvUFSVcp0avj8xit+H+kfey9PKc4iPjrMeUI28/Ry/tYzjf4P6U0qYLVxXJJzm+CLkdStm+6BDTA3vIxIvsY7nexPBRawd67n+mKM8dwrq5Gxktn4O7uB4ZTXr6K9Zd97DfG0107yU/RVnmdUFTEMhMwLzdTnC2jWZtXif2bSb7U0LWOvzWNfvZu11srZvwByFbB91gLXJxdzlZk6HTi9hqnamZzJTux79PmR2W4e6a7mu/1rWjjzs72Bm4x6aljLdqzjOrWLulag7B/rvmMPJ2ryEtTIDdd5Ffg7Tfz76TWOKqWyfjzpZmFdBP0cuayHQdyrbvagnzKxtY1hf/Strw5/RF/UdYLiVGWtF/5eY2jfRF3XUVKZNQR/Qmoi8QUxrMuYZxnSPQrzxIOxMVxTygtGnG2tFi7rx8Icj/wUwlOl5BToQvHCAoPpBX45joq7oBH4D+0mm6uU8IeD/CnUeMfVNiLuOuFqwATwMloM1HO+5wdpVh35rWCsexJ1H3CFoJ/puQ3w+7CXIK4S2gYsQNxvzzYb9I/AdcDzyn+fpkReKflmwx8Meh7kU2E2wxyN+KGulH/xBoAb0xjKrmGor9GXwTgXzGOgFt/+Krl/RBm4A30O9fNAEToRfC6bAngFGwB4F9oa9cRizJ/R96Evg9f1MN/R2sBB2K3Q+tAI9BcyEPRbaCIaAXcEO4NN9zNtgEXjYyHSBNtAKvxk6EzoUugdYHYN8sPpzpgraYF8GPREMBw2gFnz+Ky9n2qOZ/4j+f38i/BqwaS+zClRfZVqgLdD+0C1lTA/4/GeIwh/Qu4dpB42g1810g1YDcwa0FrwdyVy3m5kDCtg9u5jHhjBt0AbocOjyfzFVcAkYPZipAWt2MosimLmgArsW/KFU/PKnroC2DWKaocOh20PfHcg8vIPpZK06oNPht0B3hK4oIXhuDOD4o6xFEWuhQCvQz39atqs6sDmc7S6wApwDWsA3wFDw+c8Txjy2jamCebBbtv0PbCrHbg==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAIhIAAAAAAAA=eF4V0nc8le8bB3AyQnZWIpVknux1nPNcLYmibJIZpSgZfW1Kg2NkJVHKVraM7JGRkb333pxzsjPye373P+/X/bye13Vf9/W5KSj+v8jQ2qIug2eWyDQdbnl8iO6P/3X5ukdJBlPp8LCNI2QYTtqhWaIigyT7xvwwNRkqxpg4m2nIYKGGtyugJYNQ/tSv2KNkUF6pPepNR4ZTOlO0JvRkWJz0jJdjQP+rk8qhP0aGUKdDxiFUSTuByBRGMnSEnOW1ZyKDeA+rB4aZDK+bqQMXUaNTtU7Hs5BBvjKLXZuVDOqTbAr7qJicQrMENjIE0VFZXGQnw3RAOuMgqrhOvILdcTJoUxKzt1ANjSdVPTnIQD57omUH1fTyHSYHTjIs54UNjaJOlo8fXuUiQ7p7mHoy6jUpgZd7qNkLCq4a3GQgLCSRwlC1DPQL21AFo23CqHjIkNPJeV0SVdGvPlEbtUBtw+YRqo2wqoE76jE6D0Uf1Fp+h99uqCaRJ/ttUSvk3vNooY5tMmqLoNZZV8M2Wnd8gTmpFHUUa6fkhPoryrCcH7XPxn2pHO1H/Zu/9y3UIN9rkr1o375ZEcWaqIWjOp3F6L3Wx5ykuFAfJx4NtkHvfevxlZhUdB7KbRqMg+iceEyNP/x/boqFYyRWVHo1xTpOdK637g7WM6Bz7hozSiahOTiEajDXobnM7Vrk+aN5XbZ1wGLR/AbUNfSH0VynNOczH6E5r05bLs+j+XtZ9pXooO/h3rB/dTr6Tr7lOWmOH5JALi9D6PI+CQquXdH33kGV6xIK2yBBZm7MmDuZBPYyO/XKKySYib93un2eBIXJplLK0yR4jVVXdB0jgZV8skvAIAlc2KnP2/eQoKJ7w/9MOwnaVuN705pI4LM9o/avlgQts3lc5ypJ0M30zY2nmARPLVMSh/JI8PV+VePDDBJ8/GPKX5+Mnsd9oXM5Du1rtIlj9D0JxsXTuD6EkmAlXIiaLwCtw6LIYPucBG9C1fU83Uig8mmKUf8pes5pVtONBySgNUt9bGROgprsqvvPDUhQR/jlYKdJAnXb0ByeqyRQ6KS94Y9F69KMPSiSIoFm3GPxlPMkoFRTLtHhI0EHt6h8JRsJcq1iaudoSZC+zhjQskeELcqlFDsyEdbvR15smCGCkpSr59AAEWRCVzzSfhMhQvmXlUQ1EVIohQ1t84mg+z3U604qEZzZWnYoY4hQvnVpzTSICLZz2NDH3qhB5VuSDkTY5vHUTrYggnywaFOTNhEIOsEBXy4TIf9iTNk5WSIMHwkKNRIkghPtrCz2OBH6brQONB4hwoWxhVyqtVWQYI8nL06swt6IbJtH+yo81G73K6xYBRGpCvWYjFUwqfC3EIpZhQTh07TGb1ZB7Vybt6zzKlyH90wF5quweOrcweCNVcARGGKSFVeh88Kc1HHBVYg4/ZxbiHkV/Nj+JA7urIDSTpWE1PQK2LGxcYi0rkDHZEtpddEKvNAt8f/7ZQX8xWrmOgNWYPk16Zq64wqEqubzmRuvwBaZdor90gpYKUZyWousQPa7ZqwOywp4+uFHRjaX4f7FFALVyDLcNCf21dcsw8aJT+aCactwipJUfzJ4GZ5gunKzny7D+P3b7cN6y7B9J7IvUWkZotoOX1DxLUPaUkLUwb8lkO4+NRI2uQR93dvCFbVLILMVo+OXsgTCEnH4iTdLcDb9RE/fgyVQ63tx9P71JfD6/bMzRGQJ9LZH5LXoluBg5z2kzS8Cjxg1dUzDItCV6ccLpixCOnIHp/ZyEcRyjOmoLRehx8cQuYMsAlPZE0GNk4sweuMTTc/2AvwpPcDtdC+A4wGz+I+cBVBafYtjC1qAtqMqS7T3FyBlWL3ow8UFMBn/ifnFuwBfTT8uRGzMgyZ/F2G/dR5mSghV1GnzED2teTXTdx5uxJBH1w3n0Zza745IzkN7q1fc/aPzcOzD04DIsTnYZRlmty6cA03ar/jBoDkQnfXh3LCcg0LKie+FinPw3yIXVoBpDs6/Sx+VnpqFKeGJIWLRLNyhOeZlGDQLLAnveR6bzwKY57FLy86CUuf7wWTaWRD77bTYNDgD981SmxMyZyCqaZ/1gu8MqJpdNHuqPQOlpTEWjwRn4F3Cnw7+zWko1vD+L7hhGoaDps8WR08Dvy5NYaLtNKyUmfFoKU8DU43Z5XL6adA0SJYnDU6B4scKisVvU9DEuVuR4T4Fzh2YCGX1KchnCMt6xzMFXBNxN6vmJ4Frr7KwrGgSbJn4sMGvJ+G7s7W8rN4k6MREMOefRb/XfZJn/jMB/AYXzqlVTUC87xNzi5AJ+DP4xfmuyQQUSXVu4UUn4EmLFgsLcRzYTyTHuBLGwVA7Z7X03DhUyJu5j1WNQUF+TfH8nTGYaZRRHNkchShXj7c1YaPQ03rSOk58FErzvG2fNYxAC2ne8JblCJgmtGxL7Q+DQEUS9+noYUj/lxp+VmYYDkNPqSKtQ9D7/JDT3XYIrGP11waohuAohUPLvS+D8Gh3852AyiDInU9WZe8fAJGqn/2XnAegMNfpWgHLAARomBIcMvthXIwY467eD8lCtxwG5vrgtUHx3/BXfbB2s1g482wfNPAFT0vU9MIfyt/MvBa9oPVw0M/9sAc00kpYtL/0QN+1aO9U6IF8C3WC70Q35G/XTEy+6IZb3DFC3YLdQDofs2LU0AX1yc2lbg+7wIGkT6nE1AVWV0bOfMrrBKq/V+3SDTqhryKKx3a/A3hMZrWGEjsgsPknH61GB3zk5NicmG4H/vjjwTj5djjO5hAiEtAG5r73dbJHWsHFzW23T6YV1B9I2WcE/gaXH1UGcjMtcOINnYQHtADPAseZ15+aIcbKWMR0rwnEYjvX6e82QWU+fj2ishGm9BRvH55tBCFlbaI+4RcAraBt3J8GsKCJZx8xaQC3grgt7sZ6uAk77QYK9XDxcI/pc2odvA0u617jqQN94dubxiG1YJOYv9VPVQsjv84zOHr9BA5fNxbR7Rq48dA0msqlBjzUecep1qvhNcG+XcKlGg7Fz+9RkqrAp4FsSLNbCecui4c9oK8EhknefnH+CtgeoSrWky+HHcmZ4zPaZWB4t0Vo2KkUsmkcfbEfSoCFp5fuyM9ieOW9dlSa/AOuHSvmazj7Azx3rC9VGRcBNRHz+0RUIVRYxjp39RTAIv/XW7M8BbAnQTWkaZkPx0d7SLTZ3+GKtFYvw2EeuH61V9LVywOiepX0YFYuNCs7qUcdy4WywuW1f0PZcD2o9M6ptCwgFAVF/ueZCV5UlmYbhhkwN+vg/BKXDntmupHMot8gcZ+e4Mv/FT6wuEtWnUgDrh1P70L+VAi17n+rLpoCmnlGXy1xyWAR/vbKtEESqMoacea7JcLbzecnChMSoMc0M/p3ZzwUK3pJj9DFg5Ave09QyGcokuS928cVB3mjYpXGWR8B/8uksO92LIweurEwUcZA1epwRVlFNCR9TluIf/MekmtUjniYRAHWR3yICvcO3ifuFu4KR4Kp3gtLXoEIKPe6e+XUmXD4PIRzqsGEQeAxwXBvwlvIwPivJLQEg9LTVIzNmSAwuaUQiAskQJSWnEkcTQAkGAZeOYh4A7d26vW7pF+Df84NlcjJlzAGsQY/EvyAZurzQpHjCxAsei17TPs5IK8ZLpn6+MBSG1Ku7OoFUk99KFKDPMCK2vn6l1I3eHmcwH+eyhX681eCEOtnMB35yIY84gyIa5Crmr0TSAaeLNFlc4Q2I0lW3fcOwLsRm1wr/RiMznT6yq0/guWs3ualAVt4W01skZ+8D7Tmg9IODDbQIM9isKdzD7AcUy7qJZZQ3vh6uVvFAjxl8I0Xv5vC52ct274CJqB/9UTb53IjSA3n5CO+MYDR4wbYPk89MFI6lOj/oANDflN5AcO3IbRGy13upRacySsdSgm/Af/x/1o8O3Yd1js9JqKtr8Hjm6w2Ameuwgd8LeMR1suwRV9fV4i5CNdpdq6VruKArrZeI6RDGepsmL/1HyiAVotI/oSDHAjJG/69dEYG5qr6MbOMUqAejqmmuisBzJSlagoUolAaXC+7eyAE483FdS6agmChPUqhO38abDu4EgII/FCHVWJZqjwBN9v+1bDd44K/F1zaxeyOw8+50TKlVlboKn8YxEPBBE1KU7FPt+gg9GZLCNMTGgjLpP0+bHQEpPpC2jj0DpHGlx0mxIxdpLiaOlAmeQuZbO6vHRZdR74LOJxoFicj3B/zOnDyy8g+56d1TOcc0n4hyXuYfRqBkD63icZxxDcobv6MzRCiKlYZojrQi3jYq5wUo+5C0m9irEs/tSJhSRm+7tCIpDiOCCKNtUgPrzHpCEc1Yn/OBbdJV4rYjhaLMh0WIJ2+bTFOo7nIDkLlHbaXjnjV9/hV+aQgoaGR/f8YE5DlwOnhZWIskmiYyOiOiULMZUjeiZFhyEJRkWpZDwGR+/IobfPoK+TQNvDvypIPMvDomKp+pSvyRsbcPvicE0JBKM7Ki7JDqPyfOT4csUae9Ng1P7QyR2bndl/OehgiKvFnAnnctBFsfcOX7gF1hM+Co7XtyBVkP5/mJlerCtIwbqX9RU4OkRPt5fkmhUGOHHZXzqyfQzTk/rFJTvMjGTTl5hoYTsSlcy7aop0JKXhYIJfTR40UF5UyvSfu48OYz38R/LOO57399WWBxjJ+Sj6cKZgwhc8vC5ffPBjA6/yIC0790YEP7tihN5VqwLcasrLvKlTg25ieu0scz8erLCh8RvK/4lM8MFF/C7/gpc1zmgiYd3jeDrdsPmcCnkX2T4Ntmy8+l+aVeUmuM551nB/TJGSLHziZ7uqna4r/fTWvwD9BGy983V+Cef8q/mMljVLCDyW8O9WppkttEvi17RUq39jTeB2LqY7yVXa824+cR6P6NPiRlpwl4fptHM2e29Mn4ks4xq/u9SH/jeC+hdm3CEW24U4vynr/VKjGvR37YGb6NxcXklveOB6QgCu553NUaywcx+dFIpRuvMDt0YfU5TU54mAwccjX1BLXrjnLp5Z/G7eam35YlwC49Vf9J0W8MbjsGpNReqaTOLVnSWJXbOlw3MmdnDWpmyon8yJ96SemVIIFVAmDoh0q/v53dHYwZSrWUTRpU/apKi9vOi7PCkWoSCfJ5Nu1eKmM9XfpBFjeVyH+2739mU5bRURUVPa2ubJKTdyVgRaPsyrLXNdaU7UYVNrsa1VN1Newfw/ofBfaBrAnDzJ2fWyrscKtt/svCqVgNXz/rN14E4h9ZhBdeQ/zFFtbnbtjKK6LfYX73JPOoICN2bW38g/jwdrP++gyPd9V9v43GfQ9cVi5bY6ERTrLlAdojnYE7MUq/6QuCuTGuCsflOqnnwoxUCYWunjaG8sqe7oWpR0pZVGO9qi0CWxcUEra717dtfqpJEE8qmHQEaMUOVCFX2BzVKrs+Q8fIqyq5HnYUSpuy6PEoFh/241iSVHDQXvnslaJIisPVaCJ+BtFJnrxf6YntRXbcekUAo5civjETeMi436FO9zL5cqdoQrnOI5ZeTQuyuOin+ZXVjAXnb/cbFL1vqNw59DDwq3eQr4kKcd2tF1fXuFBiKx0Fq38XrreJk3QQEHlmr+UW2NMgdHVuZfrRhZyPKLnp42OCcvpbUfGl26u5kdTPFN6Nf89P5EipFG39YXs7FKZrUqIoiwxO6Pempo7n2Cor+sumSoj/UZ+z683XUaFHmeq+vXxd/Y4toDNSNnvjx7eSsiwY5UpWvKKDVyuyrM3u+5PFknKmzuEXN/CZ9KuVn+0oii58l5NW/Aw+rHmKaRn8BJ9pqViJ8q4xew/5s4USrD7n7bLlRJUYLwZKS1lJfNiLc1SRMrMfgyJm+PITZtP+FtRuCXpxwI2LqO9ORtGzb3TgwWSmwLhOphr73Kw+53ihDVnSTFRFtn1z7o5xbxxftmyspL2/ndleovZc8bjIiZVL61dyOM88L842pm9/1HCUPR93gXeVIurGg7h2Wwdxc6HDxwvXBSyJcV4a2ebUN3SjciUvsAKkRipP2zZr2pa9ybV1jCSL7IEHLK6smIrI0y4BfIxoR3+N1JjI7M2SjgkvU65YJptRuuCv+llFZRwVOmryGNipXj52rs5s9iJl/YMnbck/h0siyXy9meKDxdmfmn+IVFsEWke8OpD5gdjLSflG+4SrFsqCWeU72T6pJ4O+N6Bk/gfta86tQ==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA+wgAAAAAAAA=eF5dlHtczXkax7+FkTI0yuiFzEEowim6kMtPROUyRyPOGJeslgxjGxrXdufLRlmGw6TpNdvsHHKJaE4pMs3mMJltiY7Z0DQuR26NaTkYIzNt7fk+n8e8Xrvnn3efz3P5Pt/n9/sV13To1p6y6r8L+iUcFCI6cqxjSoQQRb42j4QyISp9S6oinZStomyuk6Lo3fFxiukbrrzuzBNh6z2inLSG5XeOd7K09c16Vefp4l4/XfkbZpZPdeoku3XhQpV/z29fsJO67LdNBidlUU3GRJXndibE4Myz9g6ZOEnl6WY9GaHOWTLBpZ+T2l9fTYxT/pKZF2KdNJ889ULliz3Dz4cof/iJ9yYpvXLKUKrP+6mfqhN7vxzbR52zNiVWzSOrj7vNUn5c7rOhTurup6cvUPlZ4wNilD8pfZ66r0jttaCf8ptryoaouqzU9fHKF2fmPRmp/KNFak9ixvOz+jLV/5v3f6fiDaM7UV7249jBKn78yO9pvvk5a8nPEJt6Kf14cu5MpTutWPqW0nNOLTcqvWPpL2ovYlVIKM0za6nvbKXr2pTQfTPzV49QemGbGzFqrnvbP5yh9J2KunGKHbuUaIqy10Xal1W/RSjq/O8FKEY3Nw9QfZoTA+meXlljaK6mRjlcxUvT5gQpXdqQG6h4PsOFzk168bc+ivYHOb0Vl92aTfMZXK9RP8OBeD9VP+Xp0zBFS62xr2JT97RhKj5y57Qpiq03PafTfUe60/PSpTbSXHn1lcMUbaKgN9V9Nyqc4vPX9lDUX6qZoHzR+cW/1f6tn9xR741IO3JtmqJe/14wzdeljPZbGdUyUeni5eMnKy1d53orahVvUj9D7ucRiuL7QvUeiIyPy6MVm4cvojkdjvcpbrmaSc9Phgwj7vtHV8yR76D303/Yx3qlE/oPIuoeGmhP+o1mmscwZnsE+dGbScszZ3vRvTIj6XnJ6YG0H1kTrb4jYX17IOXpBgXGUN/QjIE050CvAGL6PXfFhJ3vhFN9XBV9h7UB88dTvWdUH/J7aLT/5KUe9D7YZy3qq+o0GUHvdfLQTlFKJ+88qlHfdXtav1Rc5kv97cEbQ4l5FuqjuW6gelGb+kDtP2HrRJrfWnd9CPU95tVfaZH0WQM9n7ALgaR37fCgeZLbDSBODKT9yMxN/hTPMNN7JuyBPZW23TXSPYSxgr4fe3lKGPVfEUz7Tzh5nfYsrvz4BtW1fORNc9oi6L2z7nCn99fqPZ0otm18lc79rp2OtEtcdzo/4nRXyg+rD6K42yrs+cx//Ck+Pw73qSq+T3tZ+BXNqa1Zi+c14SHmNi+g91VWzKf+smc6zS0ePafnIvwqO1K8+6OhilqfkROo7mY8PQcRNoL+T4lXvDpT3q1y2ruwPfWg834cRfeQHZfQ/UXgk5/VPFq30zSHaN9IexMpWc00Z613q9q/6DTai+qXjaPvWuTNfJ36xPnSnoQjpp7yh1xywZ7MdJ40u/qRDvL1wlwdMOeY2W1Im248ov7WK4+o3vT0DYpH7+xBzFmGfuZlNynPqBtI/uLBuOcf2uD5GYPpOxBVF2nfQj+mMzHtPPqZPqf/s0K78ZCYn4D3v1HXnuKG8Fvk+/jTfkXq3K4UryhoT3Tfhf1PKafvQcjP3NB3N+5hf15P9Xlb2pIWU+tI17q/RrqyEt9DysxXsL9x0KFG7EW3+DFpw9cdKG5b7kr0PIpzdH+8iz2V0P8rEX6U/g87F07vq2haSfsWbi7dyU9u/pXy9IewP93YH6i/dHlBvukc5miq96G4XIG5tcnYl83I99r0jOpsy+n9FtbBqNN5wtf3f0osDcKeDCPaod/D23SODDpLcW30Hezn2mtUbx6AetH3OPkiErRY2uJeXq6YZ04L+bqGFsq37nFAb+X76y+RXlMIbfLH3I6u2K/Y/C+iTv8c9y+/Svnm6h8wn/Eq8qp+xhxfXEfeRTwPWf0A+S3Q4tNqMA3vkxyKuBaD90fGfI+6D37hOOa3dniG/jIefv016DLMLzxOU5157gv0z0dfsfEC8tfacY4ee9S23kaePQf9C+4jP5/v0+0cmPUt5vHD9ykf34V/+lvk+1tARzH8IYXQnnmkteh78L/he99BP7GtkO/H88eegp90Gbr8n2DTPpzrzXkOC/JczkNv+xrUZ8PfXAgWnIB/gOc5x3UW9v0PQotc6FQ+T8PcIrwM8104Dd+WCX9UEZhVBL/yGPSaI9CWzdDG/dC1zIQt3MfE99qNPLkV2pwKFh/me+4AM3eDci9zHmg1ot62Duyyh+8jeU4TaE5BfsZ2aG05tG4Tn7MK/j7W1iXQpg/A0m3wsz8CL3LfUj4n70/c9x2+38t7SL7nesStBj4vCUxeDd+yAlr4QNuXQltmg6ZZoFsimDCXz4vl+0XDNy/i+/eF9ozifuP4XvEct41APBK+7M39IqB9pkEnB4GyF/cZzHkBXDeIz9dz/058j0BQ14/n6g9qXXl+9mXLSfjPMI/VARq6cb0raHfjPpwv7yNP/sp1rfDFQ45fZF3PuoH1XtBaxbqE41bWRegnDnP//TyfheOfcDyNmc15L+MG1jnM1dz/Q87fxPOmcn4KM46ZyNRzvh/XR7IfyvTheF+eL4j9bkw/jreEgzWlYCPrWtZmpoP9Omj5Mv8ys5DjGayLmfuZSRx/+Uth/132NdZ6aLmA/Sj2Dax7/h9dOd6Rtf0EeJvJP3kpDH9kh/2PL7I471P2jaxXsNZAGc/+KPYdx+H7se/G/hP4oiIUrGaa2TcxJddv5Hg0+7GsfVj7sHaUgBbmmRAwh5nLXMc0cl40ax/W9mLwJ+ZlZuZwMJn58qdj3Zbzao+BVcPAA6wlU8++YNqKwNJgMIG1nrUb81ohKJnjmQ4LaNGDf2bOYN+bte0LsJSZzAxl2go4PgRMY4az78+sGwyamSlMA9MRCN4+AmYz/8K+J1PHvDMIzGGmgTIxH9rAvh9TMBsPg1XMAuZe5krmDOYophuzNoAgbx8Cz4JiFzMR8d9+4ez3Yb/BH7zErMgDk1mnMBezP5W1ntmO/ZqDYB4ozayNA/4Lhs/ZmA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAJhIAAAAAAAA=eF4VVXc8198XpogUoaTIjIbs7bMOoUHWV8mIQmZWJSMUUlYJESl7JPrYe0UyKzNbCtnrPUJEfp/f/ed53dfrnuc895xzn0tH9/+FwPU/94YP1pi8j51JxPkZELgdtz2jyYxADdvvX+77EYhzT0Vz2RH4o0XiWjiEwGjpOSPZowiU5F2uDuBDYOk9i/aQEALDpGP7VU4gwMQezJAqhoDN6UgVDikEKk2CC0LlENj7rsmFRRkBGdN5rxckBPR643tF1Gh5lghBdZoISBjWRtzQQiA8VmuNRY8W/+dLXa0hAj05zgtexgiwiug9JJkj8Hyj25fZCgE/itb0qC0CH64y1lXeQoBXsYUh2Q0B9/AL1U/vIfDj2uxE4H0EwjIJvgEPETjRThccEoRAc9LUrvhQBHTzPiznRyBwUebCxa4XCDAKHuHYiEfAbXBFXSwJgeB3xWPW6QjsWhMYy8xGYM9qEwWhIuBRdmXrbDFNV3ACR1IFAkRhcW/6OgQiOW9JODci4LDje2q8lYZv5q3MOxD4pK31bbwXgdKXSe4uQwj4hqcSd/9A4N0Ze4GUX7Q6+pRyac4jMLmzdRBbQaD+zW62t6sICE7Kr1v/RcDcLunjKXoUhm3VrVb3oPBH4kNL234URi3Vf2VyonBbXvNt6BEUfioL7bjzo3BeyHLYTgQFL263E1ZiKFyYRzqspVEoyEr/4KSIgmIw/6QvCYXUr03CMWdR6Am7ZVd0AYUPZdnxA7ooHFAaebP7CgpONjUmimYoSDR9LHa1RGHy+dGIfDsUZt0Jn1edUfD00b501h0F7RfFaMx9FDx4/RKW/FF4gVYdvxSMgt58vkPBMxTAyvwCTwwKETYSr0ITUNixyZD/l4LCgylLzPMtCszzyNs1Kgq1THOn75egYLQ2ob2rGoVGMP0R0YBCho1MiUArCjnzLa9KOlBo2tAx1+lD4e6gVvvcCC1PvkBu6AQKyoZYi/gcChV2RTM9KyhEdh3q8llDIXxkS/3kNgpFYY8Z+3ZjMGKz9i2IBYMbH5XcFDkwSFrqfjHHjYH1EevNRH4MAiu5zA1FMRiMT7mzVxyDIzHVKx9kMZDNPBbsoYKBWIjznLgqBo6Jcs0T5zA4trbcFqeDwSuO30nalzHQm7ZZ3jbFwL+w3CLPEgOm+LIX1+wx8FC1lGJ2xcDyvVt3wT0M2m/pcBv5YlCpv+/NeiAGNztX12NCMZj/bdEgEYkBdefM04aXGGgGf5nTS8RgUbXLfjAdg5JNjVjTHAz6bnFu9BVg8JonnFerHAPUgSmgrBaDJnFKLs8nDIx84KhHOwZqUw7nW7swEBW0yWcfwIDvaX2L7ncMHHoTGQInMdgY3ex/N4dByiAdtWkFg/DWf+i3VQzMKg+wDfzFoHHb3vYzPQ7m0QbmhUw4EL/b/BfCisPrpLxUvYM4nNeTyNhzFIfLKuIF7/lx+HfD4IiaCA7L67Lijadx2HTTU5aVwsEqh/HJM3lafECE2TcVHAQwn7+MgMOztNuZQho4aARlxZ64iAOL3QTDIV0cDIVWTs39h4N/tYB85lUcBp0Nr5y/RuNfP1nRcQMHg5nVIIINDjsPXX6GOuBgEb+zUO2Mw74jm02dt3GQK94X+ukeDrE7bpdeeeOwYHNORMcPB80HHEI//HF4zMOprxuEQyePWvWrYBrvDLtDfRgOfTpl1xqe4ZDFw/rydSQOrMkVHLovcGC+yNo2EIvDqebdRUrxOCgsB31wSsBBWVBj/N4bHJqzPu7+LwmHd/+s2OlSaPpdXJcepOLA/UT+wdc0HLbD8bT5dByYMCaVvgwcnmbM8jzNxMFaX16QLQuHs9UdfKY0tIyYm3KhYfz3Qxe0abjBYMCxTDuXe1F8vxEN/wn30AXS4l3zhErdaHz7xj4tCtL48cwLDlG0vEWSivP1NB2Hu8gSeTRdZiIXlq/SdOp1PJqpiaPxQ0L3SAwO99c+WxdH4WDXf/zy2QgcJHuDrwbT7l91algo4AkO2eH8tpKBOPzMetP/jFY3z0hd0SQvHESu5+62uIuDsP/B419o9XY9z6gwY4eDG3lrnmqJwxC2uMZvRusvnfc+lcs4SPGxjG5ewqFaY+qYtSYO1OWuR25kHGQ1OVuFFHAQL7yWdk8cB0H7iq+Ox2lzVc3KRMdDi99BWeXZcTi23p/BuIfWP9eGyLu0eZTo10zwRWjzjcU9E5iivcOpbwSzIdqci7J4SH7FYE6xnju+HoOpLzHbL4tp7+/+9l6xLAyusn4X0Y/HwCdvgMgchgHzmbWzBj4YjEXclBdzwkDflJ0j+hoGrPj78eBLNH/oay5lIWHw5SZ75tEzNJ9g8e4sPoqBSbCX+SATLb+VYsCTVRSqFofv1dL8pyXsvL9vJwpuOYMrH2n+1afTxR9J8ze7gut3JqNp/tvNYlbjhwK57M4VHnsUeJXN57cMUFD77p9vTUShdOLyBV2abyudc7Wpofm7sgdDE/U3AojyiLzwKAIJb65HHaX9L+FObM0v3iFA8tPpiHyOAJmoWcZO++8emUwnHDRFwKzF9d0rCgLc1EihdGEEFNbZr0jvQYAdMdZ91LMC+WMZfPlxK6DQflliymwF9s8wVp4QWAEpIwORe+PLINkW9rc7bRkCMLU1ivUylKo/W6sVpu3j2JgNxpdAVppmlElL4B6x4FxjtgR6AidqXnEvAecuPtbYnkUYSXPTL3y6CHP/RDJRzUXIrRI2Nfm3ANjaytJC6QI8Y/A5QHVaAGvj98kpwgtAT9jJax+Yh44vZwOlns6DpjV9ZC/Mg4x15cNqbA6eF0idWcyYA4O/simORnMwod/FT2KaAz1JWx7b8lnYhyQrLdvOQqHhSd1hrlmoOe1sL/1pBmZ9pT6u3Z6BySCsVU5gBsrUGniWP08DvaZmiLjXNATW2XKsHZ8GGcbGXwadU6C82Xr9/P0poGo2sI2JTIG7z0QOX+cveCArepTN+xdMDqfblwv/As8Z426hL5Pgecap9Mq9SViMdUw045+EbGEdRVLLBLC/aNOnc5uAfaz6PwuOTMC70Nl1o4ZxyFMVafvrMA51wJiWzTkOVcfX5myrf8JNjcNCqjd/QsVju1Ey609Irf74uNfpByhlXOJ9/WEMEm0b90xzjkHdqOZ8i+13KNU67nm5ehQcWy0ck9lHIW9N4kmN7Qj4iSuHfagdhl+B/eI1XMOgmpzO1ewyBItEngGkdRCqM5EpPZFBUHigF7PmPwAvxXax/BnrB42WGRU7Sj9YrAyPGSX3geW+sbtD9H2w3y/kFL3tN9CXHxr78bkXAstLBYPlesGc4d9h5sQemLqtGnSXuQeMzxTUDt3rhibgTdWa6oIIIf3nfUZdUBnX3swZ2wnSJhrDs/4dEMjr2HHh9ldQlWuYvmT7BXJPcoiy3fgM79PvEDIs2uG1f4uvqFUb3D+6ZyDLsRWKitM+Er1a4HBOIWEtrBnOUlUKp9OaQMRBl/FY/SeoJvl5p080gpFQYH4ISyMgkUFJfUofwSBR+1m0YwMckpRna06rB92906tz9R8gQTTph8b5Oqhft4xLHqyBP7Onrm+4V4OG3N+/OseqgI1HtzK2owK0LaxdmsLL4UbdenCHYRlsRbiwJ58ohZD63lohhhKQ/ZRLR1ksApvI8SODY4VQd+ftie6RAvhT5eHP1pwP90NG+HJnqVDwh773lMB7yDPlHpF1yIFhh4Lzrs3Z0D/y++xDxbfgop2nu1ORCZs9Xq+DdTIgcWOP3ns8DY5FHenZzkkFfa8u8b13UyD08yy14GUSpOU6Ck/ZvoFM3VnfyisJkHIz3lPOKh5ufy8OuBL+Ej6+Zror0BUDM544PJd6AUZvRgtTs6MgmJuf35AQCc6S7sKqLc+A0y6IYf/5cDhtbrzBhIWATEvbI8XmJxAdIfgtuSEIrlsHrP43EQiZwT9Q2xMBMPamrG6d+yEYPxFv9BT2hcv0w5IV9t5QKLY1R5jxAHPJQa7XCe7wvsjvdsTDOyDcYBE5He0Gnd1jPcfTnaGjaJevym1HeBhPSLIOs4MS4s6owtxNuBnd+zEwxArWtx7JX7O+AdzNX+RPzl8DZaMC27t3TMCpX1eTdNUIFDtMPRMjDYEv6fp+CW4D8Jr+IYS16EB8eaXF3vGL0Dg9thjqfA4WDtq5EqzUAc1iJpWVqIK/6z+u9jISCNpd1fuVoAyCjPyJTxgVYDizNnpsRgZEjo+7dNtLwiHLZruq2tMwXBIyolwhCnERB6OVNIRhqDjISiuZH9TfnhhIjDkK65d8pL20uYAx59sgVw4HQGcGI0GOFWpk1WQq9zHD6cWKmGNVu+FHf2OdkgAdnGTO6k+GTQp9E7OAw4VVyvTA8HStFEo58PXGLeuMBcqY68nGbOFpSsBmAihmjVO0GbVDzBhHKd+XRtnHRPopj5ebMp1udVMMS6pCLp7/TLGk4Jfr1ZooUcoujnM+9ZR+0QRFO7dKSrhy0vuG4GKKBZtP7eU+KuXYFL+Pb04W5Zj39NmvgqmUHcrYvpK6V5Smz0SNQPILSi5MnhGMf0rRFd4Q6Rd4TLGj493p2vOQQhfZ51Cb6UGxd5770efsRvn8/DRjfL4dZYn8y3F07QbltP5iAauIMcVLvf9i8wEDSnvXR7Z8/DyF1+raIbxQlcLnV59VzKtEiZnitHtdL0Xp1x1YJb4VpRhd0izl1uOjxE1LXy/OO0j5SjQpPUJgoRCWrGvVr9BTdnzFZIYr1si5wyJ3zEOXyNezxTBH5knyLt8FCQ/9QfJRvivnUls7yKU6dicV9BrJvnlzxpE75eQ7DxqkK8Oo5N+rB3Pi6dPIAY7neFyqY8lOvPQ8AWuh5Cu/H+HHih6QUfXWocO/b5MzvamIWPNNMkFyyCmx6Sp5Q71iN+eUFjnTpQp/dJBCrjWmJpxPkiY/Mr5fFSAiTC6ojPAZf36QPFaXvn23l4EsZmZsGjWxSqpx+P4ysXCatM1HPPNVcYAUNuvnNurYQvK+HTmffbGclF8R+ON1TxYpyb6MMMT8ktSTY1AlhgeRTr5kScl8fZfEu/unH/sBK5LHVnUw1zV9UoTJy84sETJp65Th9KfA0yRXw4TO9hUuUsrXO2L3Hu8iHdzzbtancJkY2yshqIQNErsIEun+PxuJfV6Cujp784nLz7bHCFVxxCiJc0lv6gOIfvXTV8c2HYjR3G0P78b8RxQkbgX4/1YhPs84flmnUIj4dmCLLegxE5HjZc0o7rlMsHPMp/Qq9BKYRUt7+J6XE/pIAlsnOd8QOn9vFG8R/AnQHttULGNFYGb6pML1QZ3A1UayjaoQIah5hoT83WYg/BV2UaM+/KXCVeG9FHy2UWXk3FNq6o1UFS9ZBqrU/gcq1Kgdw7Fvxip7bLWeUp/LqdAJnNzevMCqog9Y4r6GX8oCvo7s+6urlespzKc2r0cpr1SVS5dr3VROSxIzLp9TUDbIkjBRy2ZUPsVqQjEw6FUi87jqRHonKUX7e2x+j76p5Jz8M4vH7ISSf/Qfhe7Cn4rSZOZrevs9FH3CAH6/Mymz16E7wjsgWPZuBfra3bJLSUU6B1RY0xV+l3YX8BiZK4iKNY1X3BcubVxrdosqXCyR2e3Rq5WeKb9Td/kdP523/DVN2dzsWLmS9hcNWHghY0niu27TV0ltcvmpm9+3GaPk5nqR2ifNVsX2h0ucnC6wFMcJbRaa223Inrz3H11BV37RKHEhjPN0aJFkvcxM2yVT2aJW0sqnzgGZIi+FObdXvwuTPUtYDVs/yMjsUjmol+Ygs6tcviKPeKNwbveDpodtp2S0hl71phQNSkt7RJmPKnQVuHB82WvGlCytarMsd4SkJr2VNX63Z8SgYEtmz0LJFSVpyespMoTPPAVpTx94HvPbkYKL7COd1In8wxkanP6lTVLuXq/SGD2y86cPuMj6N4dJTfWPknhTnPIt2LVGwph1pZ4nxNNdZJLK19A4JbeSdkCqP7UDHRhfyQvLL006+rlTMmtqbHHSNj8vS9pVUrsuQnLntKd697Bznr5s/9OFpkuSGhYe6+khZ/KM+xJPm51hkXxgKFyeVTpLdXJTcFSXbJGIVN3bf+h1JvVs4zcdCfogCfZUeraRm1bUxpSNpxVtqhJXYzKrfG34qRPNFPtcjb/i/X5DRQPyg+9vza95aamUintvL2wwmEW/v9cacdZdzE38f5GWaIo=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAANwgAAAAAAAA=eF5dlXtQVOcZxr+0alY0cVVU8JZVCCwqsCroipecAAoiKZsolggdVxPbEKnShCHYSfTEIAVH6WY01UaSLJSkmhCLZESN1h4dogiO3YkY6XjJYvAS4+Aa0NpCbDnv8/CH8s9vnvd7r9/37iFt3YW0Q87A35X8FUQqpY+9c9wxu1dEDBo816QvPDbscK+9LvfQ8l4qZ2BduGn3NmcuM3Xg9i6bqbe41j5vaj0p6zFTW/Z+/7zJ0rYfXKY9/89lmsnyS8XZpv3Vrze8ZOr7Le8vM7Xz3o9Jpp4TNDHD1Pbm2GSTceGrlpj2xqodS6Vu08oJJh1vvZFi2ndf+zTV1AX+1zNNur97QfpUvw0eZ2r1dM8oU9tOHlhkat0TMtLUjvY6TfLlZi40tW/ysQXS/xtrhO6lC+eZ59qQc+mm3tm/Mlvsb6+eLnVGjJc5PHGDpT934uI0k4GMKLGris5npZ7jW+nT2LhF5nFmhy82tetFd5rEV7rlnvS3voiS+gUZEudaHbRE6g9cv1DyHQ6X+9UWDX7GpDcy5wWxe+LDZN54u13qdC2YJnpEuMyhrpX3N/1ufJHklvwbXlksc7fsyJK+38yVOsrZPVEYGxwl8zWELjBpbBvqlLqhZckm/TMHLJI8tStkT9Qen1P6bzkwS3R6HuzTqieL374KuXe1I2yG9JMaPll07aRhcp5SC/9tzbGinxvyrHBLAvrf1TNLuD4z1PTTCsvl3fSYeQnCvE0Zcq5CZotuK0oVfWqo7JM6/Z7sn37hm3mil9/C/dTHxov9Upu8jzozVvIpS7HU1baWSJwacxH1cv+IvLOyZ0pccqzY1YPLT4t9zZxo0QWvyn6q+1NkftX9k8yjznbEiX3n4QjRxw/hvjZ+j/ebvxX3kJ/TlWDSt072QFk/jxSm3pa9Ve0p8ntTzatwP0UfxIhOL0kUahsmiN0+LkZ4MwN+RueDL016SkPEz94Ae9V42SelopVwVxn27V/rF6JPbapwkEveXdlmoJ51iHwH9Jar2J+jo3HfNUmxYn/mKOyZHSmol4N7GfurqcKQounif+LSfNH1A5PR9y3ZN5UTJHul9PMDhYE5w8Xe9C3u3bP5Kdj9o8V+/a7sq2ooxn3/ekeSaDXspsyd/+5sseu/7yc8XYV97GlJxPyzR4q/FjFIWFQpvwPlfxf9eodib3bew33ov7gq75ST5RDt+RP2wF8t8yvjSD/MbQsTNs5F3623ZwiLzyKf6/V40e7oUahTgj01TqBuqh/1DvaH1vYrYdY7uL+Qbdgr14oQ9FeOd/Ba8XvW3/9J5redx367dyGPdXMs5n7pvsyhJyKvdjUa85zAnnmjkjkP8mpd8rtVjuXyHVS2GOzbwSTkVfV3pJ5rZjzmOD9U2LoK92T7GHm1zmD0N/dJ9JGC34ExBnPoNx6HffAYoT8G3w39ZwNhD/oO+7xxEuIiwmG/Eon4RDvqWayIV/jdqSwr+lw8HrSelTzGOcxl1ME/UDcP55MHgPpV8VPX/w3/8ijkK0b/mgV96s7RmO/6U9AXn0DfUf1Fewfh3vQAfodGGfZYHcV9GNuHg0H43eul2Hv9OPZcT8H/NWXpkXfr/fCL9q7AXukPUF//KIx9/xPvW4nvh/7Jk7Bf+VHm0O3YOy0D76g2oY4qxDsqywDo6G7kGcX7HI53VAM6sV+v4X3Vym7EzQyFvgx/teFx+Gv/QN9x/4FfPd+zAd+H3oUXuzYf/ejvjYD9Y97jsrHQP2AeteB/yOMeR83+e+6gjqcV574m6CDso4qxIM8r9Dt9G37jfo7zj1BP9buJ8w58H3sTwu+/nHPpE7AvGQz/49gPtYrxex/Due8s8jReAr3sp5r3UITvjooOgn/TPdhtuA+VfgX+CffA9XzHUN5f6RW8Z9Jw9nkDcZeZv+YG4vLYd/EtULsLu/EX6GEBaPdJ0Ml6vgu8x8vQ/rvQTtaxM7/GeuorztUB+8v0m4PvsfKfAXe2Md+X0N5vmMdHzT5s56GN/aCFeR0XyXOwe/r8T4HqGvO3sS7t+V9Du85A659B726nrqN/PWjle/nrmHcz7adAvZ5xrK+OgqVNnIPz6R+Ajmbqd+CXdQwM7GN8Kc7zj4G2auZ/m/HsS70Ju7eG/W0DPZWcr4p9Ml6r4Fx76V/JvB+C7q2s/wdyC+tksg9qbwnzvUZugl0rZL41tJcxnudqLakzfyK07mI/BTx/jvwN+13LvL9j3lyep5KBQwJvDvPm0i+LcWmgzQV/I4F+ivE81+dS26ENjX6TSAs5kH2PZL5Q0ONgfAf6Ud2zwE7qENbpz/gunt8hqfVO6tuMa6BuJWthN9qoK8ga+n/FPCeoj4C6Qb2Hehv9tjPeQxaBmof+a8nVPF/G+DzyRZ7beT6FTKN9BnXII+cR5ATmGUL/TifYeFBg3IXWA7SfJGvJ3eR2+KsPSTdZRBbQr+8vnTqV59nUVuok6klkyCPxxoGH2UbqZO1MMP8R+0baXyYLadfIBNI/A7xP9oO/fqce2keeAvX91EXkJsatJH9JhpMW0tgP+khvPFhFXUTtotao51AHk0Yc48kKspzMIpPJYWT7dHA32ffnotZIK+mrAz+ZBuaR02j3TwXd+x7mFNprHaC3Fsyn7vvzxYKevz1sn0/7aLJhL1gRA+aTE0nf5+ARsiIadFNbqHumgKdrwFLSRfb9tX4Gtk8GvdBaNe3raS8kbbQHU7d/CnZMAg2yhiwhHfRLJi2kfw/YFQXWkh7a86ndpJUM5rlvN9hoB4+Q1bS7qJPJYNrDqHsiQd9fwe2R/wewwXONAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAJQAAAAAAAAA=eF7txSEBAAAIA7BHIw/9BRJiIDaz5PRUbNu2bdu27ccvHGzVgA==AQAAAAAAAAAAgAAAAAAAAFg4AAAAAAAAwhEAAAAAAAA=eF590mc4For/BnAzIuNYkb2KUAkZUU4ysjKeisfeRyISImSr8KSEUJnJlpGRfYok2ZHMEhmVPUO/9+f+X//vy891v/he93WTkf1/56z6X/F9OpiptXn99H+dFPaBKMAWDq5EPzNd3XIPvN1BhtVMOx7cs4+9V6ohGfyvR46c2wJp4I+4Bn+5zWSAN+idSievfgYuwEjR1HIvB/yPTU59l2s+uBkhf1rauAi8k03Aezf1BbjtCVsXoQOl4BYeMzqMj8rAv2U2N7znegn+w3xj3D61AjyzVzxgQqwK3F+LZGxYUQ3ex62VUKVZA75a0ekiPFILvhUofOSxdz1448G4BA66RnAagqb3wmd0AYZK1i+FTbiTLKbnP0P+Bf/YLRPGTXyNf/qRKbnLvAEv7xMjLDI2g9eeP0vM+oHeL1y+QGpvAU+wTayqKHqLe7NndheMawVfci1f6vN9B96cJHpgwLYN3N7ra52U/ntwrY57vaMn27HPlitXFyQ+gDPILWb9w9cBHj+QHqHH2gnOQTyaaUTdBb7y8+eBkyHokRMxdnZk3eguT7M7bqGvcbxhCCLrAQ9M45/wC0F33UoP/pe6F3wuwUuOeBf9NcV1M3XmPnDl6L22kYnocby7OcICH8FHRkjpvHnoSd4lHTfk+sHF0668VPgX3dao8oe1wQC4sw8T3+oYOu/+R5Mb7p/AZYK3vlylHATPrgnrs0hEl56bC26R/Iz5RzQZha/RGfpGmPabD4FnVTvl7VlDv+SnRAi6Pwz+/RcT1e0jI+Cc1f3lgh/Qjer/OBi6joIvtzhKcDONgdMJ0vCFlqK7pfQVtkiMg9ePVdLz30Kv1lh7o9uLTiNTTGYk9gX8jum+mWOB6D8d9TLn+tBbTr60CpP8iv1T9drshKFH+fePm4yiS0sK8ycpTIBbCK5dboxDD9KRYuyeR2cLvG35QfcbeL9hUV1lHroDb+KdB3snwTXM5EWsndHPMs5RCrehC55JSRmRmAIXoK6xfUBCJ1i6jqgtoVf4tkWvXPwOrn4ifze7Fl1zWaLDQngafNKmIIo7Cn04/cXw12V0Pjq/KxUWM5j3eT/xqBVdPVp6M1p2Fntg4XKOT0fPYd7aKWeaAy8SzQj6FYh+L5Sp8ew8uqd+1/1X1j/Amwemu4160Yn5/J7Mmj/B/wTctlqrQecyt46kOf4LPNRNcFkjF33PDntepeA8eFKIYpl5CnpFb8QDHvoF8IlwKiaxc+gxzn/b9kSikxSjhXnfov8wNprdS7MIXlokezFZE50sSJK+6zb68KeEkoI2dJ4l0yVphiVwtdUBPxsDdKp5PnKVh+hn+7ZOt3xCTxPlWd7lXQZ3Zt03NG2HTjdtWxeeh+630WQ/sIh+vJkufUxxBZyt1lItLQQ9MlThIHc7+gGBZFEjjlVwi7uUwpo26EVx+dTbBegtHsEV1zbR5xd1RQo11sD9JxrUCh+ie+9PZPWaQPcImYjdI7MO/q79Tr1dKDqLr14eqQ99bYbP+s7BDXSB8KULvuiz06V+a+3o4s4pnK6Cm+AL7tzLNd7oRfxcxybb0dkZvcnmhLfAT6dcedR5E728zvlofB86c8FF2lNHfoPTWmU7t99Gr+8JfnLmG3oA9dvVDNVt8A822u3zT9BLqKb8JLbRRRTu2JmY7YAHdtqs3KhBfxF64PE9nl1wWdfWD08D0Tt/iezN/YKecbS644X6H8xLDj+vykOPOuIfZ0NLpvpff5TaeXXmJPrReH351avod9M4T0Zkofvc29v9ZBCdxDxuqMJEDh4kornfUR3dj1ASzOWPvvBidcWkDL3yUPqA6Bw608LHuGBhCvBMlpoEV3N0/fUho7l49CQnaeXtTvQbESLt6XSU4FqHq26NqKMLLt75+CIYXeXSrCFvPTpjG12AyG/0Q0wJ394qUIHbbr7h3OuDvrF8JX/mJXqy/gNZl1V0qkgng3ty1OD1N21TL3mjMywYtjRXovPYeroNbaLHNEapJSvvAR+RZlmjDEKPMs5VPvAGnVAd3j1KSwO+dv2Ip7E+OkupxoTvQ/QH667TxkPo/BNu+hNCtOAt1YpT4i7osr2iEeLl6PFU09TfdtDftRWdNdPaCx7z7pzo/Th0R55jpMgxdG6DNFdVSTpwwaHGl3W+6PUeo+bkregmvTWWDPvpwfe+/lM34YjuSV1yK6ISneBIV7ROuw+8lv+CmaIZuoL/wxS9InQqWf2oExQM4K3ZwdprF9GrmDJ2SAXo12w1eygoGcHNFqQ3jYno/Sctc8JK0XmmRLkT6ZnAn5kSHsY4oF/Qv2B+uRHdNTdjbD8jMzhLUSStuzL6BeV3H0+5oA9mWviEJ6NPaV/gV29Dnz05TnlrC72P8YqlrMRf4J+2c50dzdE5Kh47cJDQm/KrHqo3opsd7FFeXUJvG7F/fvAgC/j5EA/+IVN0mZWMFVYSOn+nlV/Pv+gEwtAezg10KT3R5UkpVvDjUwqPVezR68VY7ARS0PvmG/Lv9aBXPPAcjaZjA7/i/ciRSw29NXO55IQ/upaSiczUS/TAXh9b8QX06BLVKnIJdnDdKdVSd0f0Fq+SHp8M9IG68FTOMXSSTng6gYcDnF6W4CBFRPd7RQrIeoROY/krsGYAXSyWn+L6/v3gAkTJ7M5L6Boibvu6HqFHdEYMen9GN6KIq2zm4QQnyCpdqLdCp1VvdrDNRLdS0Est+45+mdq6tkySC/xO0miA/TV0iQaXnLdV6NyPJynH/qDP331jXqB5AFwv7U6EdCy68VbSJfdB9OhPQ3mXhbnBXQbeWwm5oZ+ONzFLqkY/EhUf2U3NA/6cM76n3Qj93BcT6Zg09E0e9RS2efSaqcMMDqd4wU+oWN8NIqHLBz7mdh5Dn6U2+CAgzQc+fOtpSW4o+us53THqAXSl2E+e8hL84J+TntxXDUKf0ftuJdyPfj5eYI8HhwB4cnGf/ekz6KS7DdMBbuhsEk4vpFLQywxyR863oscKl8VPrqL77YsjWxAWBP9U1qzlboQu6vcmxSkYfdhS8PDAC/Q51oFDjePopALTduG/hMAVSw8ZUp5B52sQWLbyRP/Q07Ok9Ay9ibgTFz+ALpR7hNeDThjcizHmU4cKOlWRBesLD3T9UlY+jmx07udfdCmG0K8n9q55MYuAX1V75X1NA11kKExi0x/dYJfkTV+OznFhrDZvDr2475rTJ2FRcMLG3xPx5uhnFG+lfYtH9wqtZWnpRD986VrJSbqD4PqnxTY01NGLEzkdZ4LQf9OzBYrUofvQSLzd3ET3yP72/rL8IfDVpIADvl7ovAzyGgfL0VeO/jvpuYzuzGgbZycjBt4fnfxrzROdWoc++ehLdFbBdGWmdXTyAYWQREVxcOeLxQfa/NEvjqRX5zSir9Qn7ZejPgw+W6Wy6K6NPiNJRmsZi55HuCS4249uKilEa8wnAU5jcCDK0hGd7YxrgFAx+lCEZmXaBnrMQ232oTOS4Fdlc3x7Y9AFbWvbogbRG9wzlqkPSoHrCNt/U/NEVxGTfKDZhM64r2CdhfkIuFf3LGuOFfpeS/U52hfoREq3SHnyo+AEHvZ1OWP0MAYK/T3Z6BG3vz/L20SvS+0lsRw6Bt4r9/RHjSH6nUyu4B5/9NNtA3aXctATgzSKdfrQdwP8g16QSYObPoxdj5BCLyO/Jd9FROcJ0XGMuY2umxtR0FCBzvzPiNw/k+ifXU2lb7MdBydeLekSOIuusOOiJXMdvdqmtasxC/3M7d6sto/oA9oBFEY0MuBBJlkSJorojbOx9qMu6I7fp1Ymn6LrB8iJufege4S91A3cIwtOrihU/tdJdF27u2US7uhO8haZH56hmzhTjm8MoRN/zrYWsciBh18ea1w4h+4g63ukMRh9/MmPm3yv0Omn8jgYltH5GuzcYyRPgF92Or+b5og+WMmjeC4dvYsU+iRyGJ3vy/d8C0558AGN9Ol2AvqUa/ZQ/310rnDavwI60a/39nI2MSiAW3WyRWbpon8rWVsWi0YPu5r3+3w7ekTYuVPcDIrgbGky1tH66G5WYnTPYtHzb85OO/ait6t0FfZyKIFTHyMy/iSikz+2eFOeir4YrUmSnPw/8k2Pj1yUOAk+3ES6InMN/Qm9OFtLNfri/XerTBTK4M2/bkyx6KCnBX1p6HqIbjz70VpnDL1bRasg7LAKOJ254t1Ab/T4tt3vSq/RHfmtKmuYT4G3N4rNU1ihv5HSjmIpQk86UhP9YwedK79+84H+afCAbdIITRq6usqWlt4SuqRzTU6pkCr4dpPg3lxd9AAPsn46H3TdWVOhwXR035wFSvYP6KOnTOIaNtCVzLfnBkX+Bq9l/y7hYIjOKLjjaRuI3sB/fronH71Dr7+4chBdlFx75S/aM+Bay4Zfv55A3+dfkivhiO6kdS7gZzz6RqFYnHgLug/TYZEva+hsi6ZX2MXUwHV7d/PemqKHfI4W2oxCN3mexplfj14lb90/uohefPbP83jRs+DjZF+Gu0zRC8e5Wu+T0O/epW0cfI1+2dKIL28TfUuOTZXqmDp46dv18BlH9PVoUYLZU/T60kQWs350tpdRkrOMGuAvtzaZ6bTQ6bxCjtcGo9+59oSGohZdjEeDbmQNXfxEZJX+cU1wdSu2hyZu6Ieu3BPazkO/cIH4U2kafcWtI5jjoBa4wpysR6w9uuwjFsO8THQDtz+vHCbQ+Z6a6b4RPgfeElOb/dYenekju7tHNvryeqzR62l0cx3Sdr2ENvh37zgBx6vow5GxXq/K0HPTeyvqNtBV/OSzPE7pgMvnqVB8CkMfbgpMWnqP3h58Uf41qy74146JQh1zdNfZ/N6YZ+gGv36HRs2jh6nuSdVQ0gNPu/xmb1M4OuNUV+F2N7pP7JLvbz59cJb5xzYNV9BtuIIttGvQJX45uTylOw++RNMeU0dEV/pQ2p6bj368Q1POYQf9c/rQj41DBuAUz75N5xiiH3JRfvL6JnraaWZu7Wx06mmCt0o3uuzj0uan2+iMPzKErooZgr9TDswtJqAHDFr72gSjS4aqlIcXoedWct/iHUZvUyklP0xnBB4Qu+RYoIBeLB87/MwJfYZRO25/IvrqYZYGirfoi3NvEv5ZR2e46U3QFjMGV75pJ5drii5bMuobEYXeveXgMFGHHpLUdappAT28X8ZAUIQA7pDRNUVlgl6Y4WjsGo3+0Ytt1qwJXX5Tg6JnDf3a/em1LskL4HZlhgeJdui/5YhLbsno9bVmjcw96Ja9TpuqdBfBXSr30ZGroZ9RC7U18kdPzW7yPlGBTq3oXl+0gF5ivFxeK3EJ/JKZx6CNE7oh/UpRaiY60ces1mccfWTQNXqO1wQ82GSzcNsMvXPyWVlBMrp0nqHsziB6xf6GtnkuU/D31qPsEUR0BuO2qqYUdFPhemLWCHrFtOrzowJEcLVFWX0HO/Qvx1IoNZ+jO17/eqt/Dj2BmSqIXdoMvNT+bDO1DzrB1JY9tw79qsWAEjm1OThlTzQVsx56Kcu6+kA8+rlP/wyYjKGLl3fFJ4hbgM/G7do+uI5eznpZVL8RPWHcs/X9PktwD54oZQYi+mbLqDdbDrr9wR6PiTV0bZNKSX8NK/DEs/sKxhPQk1s8N1mm0WdGJu/T8VqDy+9LSL2ugU77+3apljv6a+lDnyOT0cPEEsRkmtHJj+eX6iygl9jTx/Zw24C3FR4aatVEjxTUKjl6Hd33aOBx2nT0wuXWYOMO9Is9+5tZttG/WJ0Q1TxsC36ufOfDogn6zd4Tv1hvo3tdq6wsqkRv4XW2ev0dPUpYldeY0w58Z8BM0uocutnSdtu0H/r9lzFKiwXolZGlDb5j6DdSTTJCWezBCa/ypJg10E+I878Q8EOP0I6+WVGELrsrOdkzgW77MU3dh8sB/MbW+kbWefQ4ozpLiwj01Rjyz+l16O2frbo9V9F1zjAV90k5gofQfRtvdkTfw2r2SSsNfT3qKZ3VZ3QphnsLe9mdwH/wTe/RMUB/+Vy0QzgavbE9ti2+FT0zzDwsg/of8KHZokgdNfQ9Lnn2D4LRf8s5FN9oRP8fwchz6w==AQAAAAAAAAAAgAAAAAAAAIAlAAAAAAAAAwQAAAAAAAA=eF5d2bMWIAYARcG1bdu2bdu2bZvB2rZt27Zt20yRkyLzmvmD19wAAf5dIAyMQTAoBsPgGAJDYigMjWEwLIbD8BgBI2IkjIxRMCpGw+gYA2NiLIyNcTAuxsP4mAATYiJMjEkwKSbD5JgCU2IqTI1pMC2mw/SYATNiJsyMWTArZsPsmANzYi7MjXkwL+bD/FgAC2IhLIxFsCgWw+JYAktiKSyNZbAslsPyWAErYiWsjFWwKlbD6lgDa2ItrI11sC7Ww/rYABtiI2yMTbApNsPm2AJbYitsjW2wLbbD9tgBO2In7IxdsCt2w+7YA3tiL+yNfbAv9sP+OAAH4iAcjENwKA7D4TgCR+If+Cf+hX/jKByNY3AsjsPxOAEn4iScjFNwKk7D6TgDZ+IsnI1zcC7Ow/m4ABfiIlyMS3ApLsPluAJX4ipcjWtwLa7D9bgBN+Im3IxbcCtuw+24A3fiLtyNe3Av7sP9eAAP4iE8jEfwKB7D43gCT+IpPI1n8Cyew/N4AS/iJbyMV/AqXsPreANv4i28jXfwLt7D+/gAH+IjfIxP8Ck+w+f4Al/iK3yNb/AtvsP3+AE/4if8jF/wK37D7/gDf+Iv/I0BAv7fgBgIA2MQDIrBMDiGwJAYCkNjGAyL4TA8RsCIGAkjYxSMitEwOsbAmBgLY2McjIvxMD4mwISYCBNjEkyKyTA5psCUmApTYxpMi+kwPWbAjJgJM2MWzIrZMDvmwJyYC3NjHsyL+TA/FsCCWAgLYxEsisWwOJbAklgKS2MZLIvlsDxWwIpYCStjFayK1bA61sCaWAtrYx2si/WwPjbAhtgIG2MTbIrNsDm2wJbYCltjG2yL7bA9dsCO2Ak7Yxfsit2wO/bAntgLe2Mf7Iv9sD8OwIE4CAfjEByKw3A4jsCR+Af+iX/h3zgKR+MYHIvjcDxOwIk4CSfjFJyK03A6zsCZOAtn4xyci/NwPi7AhbgIF+MSXIrLcDmuwJW4ClfjGlyL63A9bsCNuAk34xbcittwO+7AnbgLd+Me3Iv7cD8ewIN4CA/jETyKx/A4nsCTeApP4xk8i+fwPF7Ai3gJL+MVvIrX8DrewJt4C2/jHbyL9/A+PsCH+Agf4xN8is/wOb7Al/gKX+MbfIvv8D1+wI/4CT/jF/yK3/A7/sCf+At/o4E/IAbCwBgEg2IwDI4hMCSGwtAYBsNiOAyPETAiRsLIGAWjYjSMjjEwJsbC2BgH42I8jI8JMCEmwsSYBJNiMkyOKTAlpsLUmAbTYjpMjxkwI2bCzJgFs2I2zI45MCfmwtyYB/NiPsyPBbAgFsLCWASLYjEsjiWwJJbC0lgGy2I5LI8VsCJWwspYBatiNayONfC/W/4HiFogGg==AQAAAAAAAAAAgAAAAAAAAMASAAAAAAAAjAMAAAAAAAA=eF4119FGIAgAQNG2TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJkjGQk2Yc5e1/ON9zAgL8FMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5i7/5wU/+4Re/+cOAf/4SyCAGM4ShDGM4IxjJKEYzhrGMYzwTmMgkJjOFqUxjOjOYySxmM4e5zGM+C1jIIhazhKUsYzkrWMkqVrOGtaxjPRvYyCY2s4WtbGM7O9jJLnazh73sYz8HOMghDnOEoxzjOCc4ySlOc4aznOM8F7jIJS5zhatc4zo3uMktbnOHu9zjPg94yCMe84SnPOM5L3jJK17zhre84z0f+MgnPvOFr3zjO3/xNz/4yT/84jd/GBAIBjGYIQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+Yu/+cFP/uEXv/nDgH//EsggBjOEoQxjOCMYyShGM4axjGM8E5jIJCYzhalMYzozmMksZjOHucxjPgtYyCIWs4SlLGM5K1jJKlazhrWsYz0b2MgmNrOFrWxjOzvYyS52s4e97GM/BzjIIQ5zhKMc4zgnOMkpTnOGs5zjPBe4yCUuc4WrXOM6N7jJLW5zh7vc4z4PeMgjHvOEpzzjOS94ySte84a3vOM9H/jIJz7zha984zt/8Tc/+Mk//OI3f/j/8AcyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg3+B29LIQw=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAADwAAAAAAAAA=eF5jZh4Fo4D6AABDtAcJ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..9b511565d8df76d4e0a88c5c48e8104c4360aebb --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu @@ -0,0 +1,38 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="601" NumberOfCells="600" > + <PointData> + <DataArray type="Float64" Name="LiquidMassFlowRate" format="appended" RangeMin="-7.1054273576e-15" RangeMax="7.1054273576e-15" offset="92" /> + <DataArray type="Float64" Name="[Ac-227]" format="appended" RangeMin="-1.1887831249e-76" RangeMax="1" offset="596" /> + <DataArray type="Float64" Name="[Ac-227]FlowRate" format="appended" RangeMin="-8.6622675273e-23" RangeMax="1.2050678977e-08" offset="6984" /> + <DataArray type="Float64" Name="[Am-243]" format="appended" RangeMin="-8.1654243059e-74" RangeMax="1" offset="9536" /> + <DataArray type="Float64" Name="[Cm-247]" format="appended" RangeMin="-3.8168436477e-74" RangeMax="1" offset="15904" /> + <DataArray type="Float64" Name="[Cm-247]FlowRate" format="appended" RangeMin="-1.0440025033e-22" RangeMax="3.82837841e-10" offset="22276" /> + <DataArray type="Float64" Name="[Pa-231]" format="appended" RangeMin="-1.7896410911e-73" RangeMax="1" offset="24672" /> + <DataArray type="Float64" Name="[Pa-231]FlowRate" format="appended" RangeMin="-7.3658151531e-23" RangeMax="4.6040146594e-10" offset="31032" /> + <DataArray type="Float64" Name="[Pu-239]" format="appended" RangeMin="-3.4748949454e-73" RangeMax="1" offset="33436" /> + <DataArray type="Float64" Name="[Pu-239]FlowRate" format="appended" RangeMin="-1.2437049765e-22" RangeMax="1.8994937505e-10" offset="39792" /> + <DataArray type="Float64" Name="[U-235]" format="appended" RangeMin="-7.5929564737e-74" RangeMax="1" offset="42160" /> + <DataArray type="Float64" Name="[U-235]FlowRate" format="appended" RangeMin="-1.4316133323e-22" RangeMax="2.6450255124e-10" offset="48516" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000" RangeMax="100000" offset="50908" /> + </PointData> + <CellData> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="200" offset="51004" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="57112" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="58528" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="59784" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9E1NDI01k23NDBKMkwzTNNLySwqqQQAT8gHCA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAWAEAAAAAAAA=eF7VUkERwzAMK7CMyyAUwiAUQiEUQHZXCIUwCIOwz+y7KdXJTvOZPr5YsqyknaYUbuJ8FU/B2z6lMyid8XgP0n/XKYR3gVrPKwPybK7ZU855P5sP9JGPnhWiubPI5kD07o0i6/8qv7Xha4xnQH+v9bei3s9E53wyF9NnEc2dxdV82fkjqD/EfYzP6nA/zhuPelpFDtQzKL4XzJf2yXtIXfD/w3ej/LfuZP9eoSbfz/To4zw5+xzMI5TfaGCuLEblUz5XcyLMZ6vndRSY3wb32Egepse+yu063Juco/dJvltzv0G+DL3+eO+VfAfsr+DL5hQaH5JX+a8kv+o3uuR+pkcw/9596j0Y1Dv0YunMY1i+OczHzyQf9nEO+wimZ4jq/h3R93OefDeGB/DNGfYxvfJBMN79yvm50Sf/c5Y3i1H3ReC9lU7xzTt2fi/DTPbOMH8vHziy8QM=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAlBIAAAAAAAA=eF4VyHcg1I/fAHBKRtlnFJI7Z++zzo3PW1aJy1ZmCJVsIZVVHJLILNnr7K8ykhUyKxXZqxIyK7Ii+j3P688XHd3/+wXbDozTrm96M2/ZKLBedfkBvYeefk2fWAHrENtIAadlSJhiK3LbWQRHhx0nzqwFmLavzUo0/Q5KHQd9QbzzQDTlZTOenwWp/nLl3I5v8FqdnW/vvxlgSBW5v0r7CvkVvFpHy79A48lbL3sDP0Nz9RBOvHIKTruy+1jtTsCmYF1fqs04XNG6cYmvfxQ86BmqeKxHgLJ03GhgcwgyVbRsk/MHYX2+06LA6ROseA2YGOMGgJ97v3+Jqx8812++eUP3Eb7sLC+n/e2DvHXKZgbqHUwvh2d56L6BdVo802RCD9j3mHu93uiCFl/KHJN3J9BdlA5Ipe+AzsbFr87F7dCCC4r3udwGom3LBa+VWqEy+HTfELYFaII13w6YmyAPcg202RsgTyLcaANXD+yeXoF+/nXQLeLNgBusAaNLVs+qKNUw4jjpGfrlGXRpCHuQY6tA1beRX+lJJSwxz/k80SuHsfaDnDNCpSAspnlsmb8YMAIXQinqReDJZRZterMA4hbuCW+P5gG1jv+W8YVceBos2sX3LRsEuox0Rgwyge6qOT51Lh2eFPXhcRWPodOtr7w6OxVUHSz2zzUkw/3lgKbzu4mgMWdZQrB7BKWLwq22bfHQ7V83McwQB6ftRR8Wh92H2cEvr4cUo2GV1TAoi4sKxAcxFndORYCEGZFZ5MJdSKEKJXrWhoFXQtzGvmcITKfSmhRqb0OL5s6SFT4IIvbjxl7+DoCxy/Vi0zM3YFasKCuP3g/4sSeIsoY+0CMQ4NUb7AW3j0qbrJa7w/10fGLyKTf43XZ9/dDHK3Dt76GKhXoXEO4Y07Ydugx1PLTeTyJO8Mvjw5JwmgPgJlKm2q/ag5RjiqDgkg14oP9wNJdZgRBt4Ugx7QKo5lFcrEctwLfWtqAHbw5OpSHCFh2mUKvpM9IdYAJNGocYzhgaQ87QvH/O3fPgZeg95VRoCNFthW1H9s4BShhfoBWiDw1Jjm+Npc+Ch0Wz+MSuHjDPMZRtLevCqptf0oldHTBrn93nxuiAbN+k+mFHbZA68v2peY0WDLzK+FpzQgs2sWmKHPGn4eRXMycq92nYEzFp9crThHYZA6vzZE1IYAtXyHwN4KB4zTbiJEDQZYlpPBWBE3+CJqf2yMDmFjfx7g4ZhNzOSSUwkcE1MaF2Kp0EA90utxNVSbB9/p9R5TARfqiznjQOJoJPU47Hc0kiMHJamEmOEuCRUkmBQCwBLNYHwo+cJkBG9H/cAX804PHnvEjmGg04p6+v6+qtAbGtPpd05DVALrlCyGkVD9v8YbVRFXigHXlIiPTEA/45d5KSIh5kuZ0zrq2rw51c8ysctepAQwqoLDfVoduOJ0CLqA7MMiSu4gM1gAYTCZl2NWDRnWB/FakGcq+6z1rpq0FT1mXSGqsaWDdVrYZ+VIUXE5jX/5JUgQOlb+Z+QRVky6002gVUYcTEf/NgSgW8FEQ6RHJVgHdEL1rcWQXqv09Wc0iowPa0svzkojJ8DIs6+6BcGSgs1/8T8VKG27uzNulKyoBbZ4rZ/Y2DMYbIKq06HFi5HA65cRMHBw7Xuh4RcLAR7XI/468SXDCM+ZnaogTSTA/U74UpQXbxYMdlrf/721vcRAYlQBvH1RzrUgQNQQfL0ShFaB77V5+vrwjv2+aeeR9TBEMDMeOIdAXQ7h6XVhNWAKpwMOd+rjyEo9PUP4vJw0Q+dXumRA7SYaeHXV4OEnK2tK49l4VnZzUF/6jJQpqNgUhnoww8Yv2nOagpAx/ua9yT65KGNMoa46iBNHjiLVkm+qVgOujaBPmiFNx9ODbL9FkSvO9+ydZ0lQRTpYPMn6sSwDJ/PVooQAJc37PyfTgQh84Pwuwc0eLANdKsN8slDr8GLfItM8Qgd/cQylNCDMyOGCfiqrEQej9PrBywsBrFNzTzThR8W1X/m7YWhSn8q07aIgZik9Lk9IIwIDOd+aeNBQPqKWZ40adoSMzrXPORQ0PU6Ba2rlUEaHaBb7fNReATufBp8OApqCWnsonTnwJbO7nwHQVhmPJAWzE4noQbRPp3F5OFwCn6zRTDG0GgLby15D8kCPKFjxqySAKwUHqVUhJ0AtqtsUy6L49D17EaaugeP1BeMwq6avIDRvFixZFoPshcquxyG+CFvESDqNxTvCDLsJla68UD8anFMs/bURDHxvUv9zgKIs4Zn4334YaFksvP7/Vxgc0zlHW0LBcoOOW+LXzICWH3jq90f+eApd/Rpsn17OAptIxuiWcDGeEVZxMPVsD1NL++aHIMcj47hE8Rj0J+sE3Id1kWMBTSFwjGMgOtOpKcj2EC87EBip0EI4QEdklU4I5AYZI8NkmHAbh6BY6w2x2GkyGMOwJ3DkGJ+2pabS49POCMWR7po4MHFQsOt+jogPfZRoaE3wFinCK9hlv/i4hIBaAPgveQAu3vQR58u4jLu/8Qp8YdxGutitbgvo3Mu5DWTaS3EJLkOSrdxgYi2z23+bT3N9KoEYLaLl1HJs5ksc+krSEq9OKPpBN+IR400zJ1iZ9IiDjx1r72KsJia/dXOWAZ0UsduePcvIisN56w4TmxgGxeC/HujJ5HIrXszLaOzSFDrRGPMXnfEDHbVenX52aQtMjYrPNHviIsHXgBv7zPyIm0t52rNlOIW9Sg7S/VCWQD68ZoqzCGIAmN+ZxnRpBelizf1dtDiE7C8/L+d5+QMywmlEz8AELfEl+h1PIRkW9xMJqtf4/snDviGoN9hzTKhdCLNfciovHW0o/CuhE7e6uUKvdOZB5/eMAr9DVSljGq2FXXhqwcBJXXcbYirju/nubyNSPboUG7TvoNSI1m/0WmuhdI7bT1Pr1VLdIXrpU5K1+NVHgh9g4qz5AOmzZi3LtK5L2pLw/qXhmiLSpICqIWI8q6bCNS/YXIRb2V9AG7fCTv6Fqts0QuEsEdh5IyzULufB3Vft6UjlDYWbuHI9OQz491FmIKk5HIvPFRMk8iktUmbtKWEo/k7n1pexYZi/QxCpcfXolCfr+L4DNqjkCE16f7GH6GI5ZSM4NvfoQgWKGJ5Z/pt5D9/Ut36QYCkFEbdvxShB/CQygdXin0RlYbvYZZTdyR4euPOF4duoqMW4qe8TJ0RvScr7/IF3REHNByndGvbBE+5/iJFdRFRC/wVu7aCXOkkttjkKHBGMGaTdpRWwyQuEiJa/4/9BAMMklz+KaFpLKm/82nB+SPwypqzEYDGbmunHmiVAV54GNW+blLEUkIfsYXKSqDqNCi1VunxBD+06zNRQ/QSALXk99T7EJIoYb9q3FLPqRxg+75ozouRPL0cQnuP8cQKw/U5o2DI4gKzgk7p06PbFYJ+hiM7JLdpSRGej9tkJ9ZiAW48/0iW8o2zxw0LZCF+MpYLH7MkIvs21/OD02STZfbixvGh8gzaRN+Brc/kttnfFNZm3rIPYNDVoKB7eQcomWLrkcjeX/xl8ycVg0ZbT0S69pVQQ5t5sQqtBeSPVPLdweys8nLTbIfMOOpZAF6XxvM9QTy5Zznhe43osiIr2fidVoY2ZX3culueCDZMQN13CDYm0xsxK5J7buSQ16+od8YvUTWqwiL+rtkQV4ZfJBQuEMhx5w5OM1ho0Pe3FKbzgkgkhUT2Bzxrjhyen6Xk85tSfK4xFzPbxkR8jwJy8akxksmSIe0bmYeI3uG0mYsRunJA3VeR4W/bZFiW3XOT4iskq4KrQXyOs+QEkOuimyxjJD+HT3LuZ3zjhRsm8qrXdBG0om5+a0svpZEAZGPSyKlJK1SZma0czZJLjoGK/4skWTTPjrDwUklYZC1c27vg0jDy/FXwhc8SPwZUeWuMo6kcsS3tJNqRqqkyRzAgS5p/HvcmZtReNLqLIvjD14Z0q/BI0maT0+S6m6Vu/ce5iQ9CPLyZxOjJ12jR3bmJNeJLaf2MtiYvhERTy6pxRefiBkr62G/VDqIN/+Fx3IG1RANWhk5DsIKiLPh/W98DZKJ+hGcTefH7hEvvqTwpcv5ERWrKx1dKU7En6UxqAQwIaqeDqxxZtUkBsVED1y5JUfUbLHcLXohQFzBSJXALBORqyHKgAG1SXC/OVbOYjFDmDGmF9z0+UCg+95KQVIaCHd3BKkEsSJC6E+rqC+yiYTh/hsUilMwQeUgxN3s8hVCyvmv4sJmpoTBLW9JtBaJYFHEYRTmJUaYGXRjGdvjILDy1TR+8d/WsLLYLdhd/KIRy2sYm7TVrZFc9jT+SnmVhntNi7J2T6rGeXoUZiEuRGPcZ+GOvYCzRuW9F+j1NX2N2dSAfW43RY2XRnPJ6dY8GtfbF6TOvNzBY/j0esevTOE/FIk5O51sw+fvt6Plg/PxtOMEne3nkXj76VA6SsYVPHUz3rKPXx+vj6qAcmZpvKre3Xto66P44VfmD1QOLamrdb0Xvnq4Vz2SkbFx2Z2mXpvNoKxiFakeTfPSxS47qb9ZxmgrntNUXz1Y4pUjCarfF855U8m7pWbReXef0aZfzZ4pTk78Wqmaqzpnep7XPbXSXy6BRvk2ajtbWwY3tnBq5WzWwWI8LGqoRAZ+3MpnVfbtzDOl1GrViBMhY8nLVNUMy/p++04r1QfkWuH1ahlVZuxrxPnaX5WuwPNo96a3KvHMlzUYap+o7FZVPLz30FUlAz8Qo1WBU2FVFjGfQO0rj6Mv5ZYpdior85dn0Xc+UKY/5++F4jNVXiIJaUst8ijjfph8ZDs6jHuBWjWvW0vGCbv+k39ZZYJj1Wo7gT52FFfP8oLJldiqNEb3u+qJlbeSYNVwpYfpcaUl6vd2q+4aRU3qmVMdUTJVAmip7UqpP/8lh+KqbnLeUphcmAlI39dTCLMPe5wWvlrZ0EQgzvtHV+5N+HF/mNSVn7TyFvT/zicv2SIVY2j1p0Iz7x5lHjMkZ018PLxf8qyi+D/DIIv5ODlh17h+puBrFVqcgf2Mo7pyAnc3x2c+YCqGtvOVOc7QydVJ+t42M5wsT6odq/xXUy/LG4HMCJamlKtG5x/2QfnJVk0v8zpOGZerRx0rWPopJ/tnFWOuVX60vM7R8Y7t+HcZ1N6fjfirnWU/Y0Y+IGfzZZ578zDpeISX2a5LUffTL8kwEDlDFltJZZsCAih2REAm7HLjDTfGndKxpza4UY5h6UOFgr8bTGpKP+1VMLzqSJT22jO1y3fyKR0Rq3zKJm4s/UNxn/aGR76U9XZ293V+Vul43bMd0pSlEvHGBoVTVT1S3m0nxKSItJJibNjPT4uRUiHcHhfJ9c4lo3pdX+jytaUS1i9oidMwJal2bVHc7fRSlI1T1rfXvhTvMk5Y2Cq3SuJcicUTx7KLrfMfsRI+BEted3wWdbTStthLocx/sJAoSV1wWHapESjO3PXmfjvyR2LzevuAHvsYDcOK1zW0rJdIplsTC6pMo23yie0n8AZKIAoOUzfvW9IQFbfnyqxqEv43JQ5/fsJLyzzsL1GF2xR//C2jZ21osGg8M7SG/l6NeNlsIL2RRnKRS4qO4cUdP/GwTmfr0ldmRUf5omumHyqLkwPFE9JdUEWSjLV9cdq/xVy2brL7Sn4qHI/pXWfhqRab3mXyE2FMKuTpWlSKPvAVk2X2+yewb1pY/2TQ4yW9shjKKM36HCuqsFfQLLVB6DfWfi6+5C/uU8E6LzGC2agaq4j+dHrCO6mg60kBe+BjP2ypvuXaTKdZwQ37rGbpP8rYS30xP+xxPAVyZ70zk302RKnYdupc3WD+QSb3L69DtaIm4rOvLc1T8iVPU+63lfuLFr+4ED55zDKfyWO6YtRHTTTalLSzPM2XP3yHqGdito0xXDSgnf0wkkdtwATym9Vjklw6kpk/P85L5+OJdfcLwhyfGBh8wmmdZ68neHy1joChGcz79LoK5kVa+1c/FvmLflxLbXk7O5lrfDhjZry6GX3tK5+k3sOs3CSH2L6UG6Fo205nkwplh1x9mTyttGpNdFHSe29rAjq3QIqQSumhR7+78PjVO7uZnCrqVrLGXrvIzZbYkr2c/JwLsvsDYUYRIgGHZe6TmVxyMJGPzlb06IqwD3/+aZosnkPLTCe9dGMSmW+8TPYzXMjO0K18L0ToPRW1QkHbqJRmc6vx6k8RY0/d8N0csjVxz/YfbPHN8qecsqKlJvuWyGcL+Rko1K1ynEqRetpUkvsra2EUa5tr0S88zF4bq4t6niVSqzKAnkgUlkEfxb+p8Muy4840mIo1F9aK2n4iGKCa9WFFvOi1J5/w1b7J66IPtzO9Us9vSBPGT/4PzmOl3A==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAWQcAAAAAAAA=eF591G1QVNcZB/BjBIOpzdAUV9CIK1KCCnU1ETeC5k5kDFKSXBTD1tfNhCgmjCK+hI6a3FrfsOpsjGY2BNsNkIoVcQFD1rzYa6QJcUzcGlKN5cNihVmM2m1CTDWQds/5//fD+qH3y2/+z3nOc869i36Y5s+/GZg3W6gnPkmIpy/Wfz83OxwOTtr65Uwhziwv/n3u+0JsuzG9LztcN/3rMi1hs74a/ctF4XpjZouvKKwnOzA1OaxFO/LMkvD6pcUfP7UgrFH91cbEcF3seiUmOZydk3fUjg1bmjmzrFDW/3p81/Bw9lf1zMoLZ9sXF3fnhDWGlgyIsOZPu/enyL4RXf2D74V1rM4ZKe9XGmi1yXqv5dUUmceXZY+X+2KaV8j5RuvlXyfJ9SXWgwky17nX/lzO233qwEzZX9wwL0lqLs8aJV2zr07O0zb+alSa3GcuXnZJnlf/ZFu6zO9/+bNUaf6yleOkKceenCjtzx8bKw21+G7J/p6vx42UuWNJmzxXWP4buFdqjd1yQ65rk2/fr+YcO2qRZliO3Zb1B890C9kX6PtefndRfc99Q2UuSH70W5nT/zL9mvT6U6u+kcZNbVDn5e1O+k66q+nmd7JutJ3pkVkMeblF5o7cKQNS14onBmTdHPwhKHPgxLCgyhPqOmU27WmfqX2zzzeqORM3nFP1Hc1nZN3zcHq36u9bd1mtP7vztOofXOWRWcQkt6p8vucTlTvvtKm+3mkdKr9+6i21/+yYDtXn6H1b2dn1jlovNWuU7c8fUvWi85jnWbhVWXW2Wa2/0NukdOZWKxeVNGL+ziOq79LWPSpru5aqrO//jdId71a6Tr6G/Vt2Ks0+J865h+sFG5WhrDrUr7ypFO9VqH5brKE0FhYqA4WblOnfvqb6vC/uU1mcfgnzfrIRfc9gvzFmu6o7/wyN4xtwn6V7ce9HXsL+mHk4178NrkS/CNpwv88OYd6Pzymtjdznf1EZX7Vf9Vmn4lxr+16ce2oD5kwpRv9gFfp++zLfc66qh7qw35iD/eEvDTcVqbpnWQXWixeruunagnOG4vcSF19B9uI7GK5VqF/W0N+B38XchPlaG/rMnN9h/eR2vs9DqP97HfNC9H++GfMGCzF/Je+/ugz7a8qR3Uvg1edhLN7beHcz5t1ZAbt5v3PFcM9K1Iufw/xOnu/UsW7BPcRZzi3E35E4+izqZhLOmbEeWc9EblqLPls+7lm6Fus5eH+Rlw8rSlCPw/c2tvG+BbzfPry3eOAFzM3m3EH8XYpv+Pued6C+Yg1yzBy4dzXqjlkwdiHURkB9Nvpu4HuKr/kdzTRk5wzkhGnItvnw9QrOLUAuewyeWoB6cCpszIWP50HbAvS5H0c+zO/5sY76/XOQJ+UijyqCQSvq9ZxzlXWXFfbPgr7HsC46HlVcz0a2zob2J6B7AvycOcjvo/E9xE3s36OxHoe69gDfYyKyNR56R8IQv5uOf78il/Py7Mgue2Q/9KZi3byD87QfTyqNAWQ9FX0N7NPTkJ0J3HcbfbbRqBv/4v6hyJ5hMGTh/W9h3cb9xg/IWhzf8xrv0Yu6eS/qZh/3DWHffVAfznsM571uYb+T55qcJ+qhEeD8HswL/w+gCPSx71MY+Afqnm5k73Wun+X+dp7zd875MHIOsvMC3+tvqFs/Zfbx+3zCfVQ7zf3lXOe9jFq6n+ubua+U79PKejXv9cbJqD7zIPNaGOI8sYZzX2UugoFI/3ZawPlrqE7zub4c2bP+rv6nmXOYU3jfudDUeH4W6xr7AnbYT4dxjpX9Y9kn6B0fvIV+IwZ92hDuM7l+hfO66T9ZdzGfY25nbvFFaTQzH+b6ceYDkTm0im6lZbSC+0roUjqfLmLfPJrOegqzoImsh96FSb7ofI120Qv0ixnwI+YPqIv1GrqbbqYVVKcOms79Gk2l07huYU5gDrRBfxbspD7aSN3URZ3cV0Yjj5PrNtYzmBNoDA2+A69Qk34wHRrMlVRnXbtLO408Ccz+R2DnCdjO3ECdrOvUxnous5XGsx54GHbQE63QzexkLmK200QamCaiHi+zqwXuoHlU0BE00Aw/opHHwWyjIVu0kcfjhU5q9Uavm1OgQSuPw/k0gfWuJuhpElFPOnMoExqZ0euhDOhvjK5nsO49Cq2T4WhaMwkW0Tjqngj1IzCHJtJQOvTThgZYSZ1Uo4lUsP/mQ9B1GJZTnXWNOZ5a6NU/if/7OO5eZ05Igx1vw4ZfwFpaSR1ct9E41kP13E8jTzmzRm2pMIMKen0C9NVBF/MB5jKq0USuR55LtfBCbXTdYNZToJXGR/qYA+Ohb7yIesqZndT6FkyM9DH3e6CPeqwi6tGYNa4LZguzOQ56qfFH6GIuYdZp5AklQ/8foMnsptuog9ppPPsF88BY6KWuiIdgJc2jOTSRBmqgnzZQg66nGi2gD9KBMdBLI4+LufxNqNNcmkr/Uw2Do0XU42a9nJZy3XqXqTSYBK9SDzWo/gbMo/ak/wG8LiNjAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAhxIAAAAAAAA=eF4VlgcjFQ4fRlWUTRQieyd7u+OH7KSMyEj2SnZGScgKmdl7z+xVZM/svfe4uLiUSijv/z3f4TnPwcP7P4eQ1PnGraCPKjnySoZgPwYH/P96LtkO40C7b0x1tg4HXII7SwzpOJBy1E8QCsQBnrfkA1p7HDwXGJwd1sIBy6+0mwbSOKDqspupZcZBSmr53zUCHMzcKrNYxR5AufwBtmL0ACon5Z016w/goll6qj31ABCzX8/w/Q9ggT3zK631AThNjl2c3j8AnVT64jKhA7g5J5EhcvMAuGLyu4L+7IM627MrJYv70F9AIp/Rtg8W6yt25nn7YLzhavU7ZB+SaoI4De334ceCYmLEw33YoBMtjhbZBzWLMDWLm/uggLG1v3qyB7lv3C57zu2BahrXlc9NeyDKnWLRl74H3Nuxt4t89+AHfi7HE7M9mE6VfjV1bw9WzDzoOTj3wKgTeVnu6h6wc8mJ8GOwEGPGWL7dg4W9FPE3roVYCKBuzxwMwUKv4QzjbxssoIuc8Q5VsODZ5vWkgQcLETc7hB8RYsFGgzaxHrMLmeu3Mw66d4EvJdzgZ94utPZRL/UH7MJRloqii/kumG+MlGzL7YJtsT2/IMsu0OtP7ij+24HHRr/x+Bd2wEB6N2bj8w4oEaT12CfsgLHQtf4utx1o+5HdhdPcAWE83PquwA7wiYFBPckO2H0P03+8vQ0Pgmdpujq3oeqKTv/VrG0oS4qqoH+zDdQc9/Ev6W8Dp78R4RexbciyErxQpNyGDvR9wTwsBnpVHNenuzGgI3NktZSFAZt+Y6LP3hjAuJ3Q2+hhAFkreYgVxkAri9qmAikGNIq59Fy3tsDhkC3To3ULUL1FnFrJW0AReEvjitsWoI8yfMMebIE4ivsulmsLlG4FtLLhbYGJdEKZyOwmsO9MOzBUbYL8Qw6fxdBNKJVi1fMy34RX9rTeOMQm/LaqdJW9sQna5j1d9nsbQFn29dLLzg3gdJJt0E/dAGUz8dcMbhuQlCuM+XJ/A4hjryVIsW8A6zSWN+50HZ4T5CiNjq4Dplw9br9wHbi0/Np3367DxzFt7z7ddWjKUvIM5V+HVnVDJwH8dQiUPmOrm1uDMCSZNlvlGqTz8bS7Bq/B7zYiZMnTNVh+dze6T3QNMle9ooaJ1sDvvh1l8/IqpKzlHcTVrsJ7wffET8JWQadnSZnAdBWEKr5HpEusAt3J6wEO0lVgG9A6TlxdAZUJivOzuhUI+FC/qBG+At9LmhNiTFeALeqDYK/ECnAX7pcdkqyAEuG6PH37Mhhbswig7JdBwpztgTrNMrw8ZZxSbV0CtHTrNSm7JRDAqvHeurEE4SpWobivi2Attx/81XoRROYf+QdeXwSL57gt1cYFuG1hzkdmuQArl7UHR8kXwC33XDe5YR587N0NbM3mQXahyFmOdB5mLtalOevmYP5tvQmtyRzUeSSn0BPPwQlxarZwzSyQ1W6jnhnPQppIOTKfcBZerlO9JKqegXJ7xs6wpzNgoJBMJkQ4AwWI2Xt/qqZBUDTDcPfpNBQP1GhfJZqGTOSI2KOaKSiMjCbqfzYFsZ9ubHmRTMEJYTDmWf0kCPapCvmaT4IHTSlmkWISML5zst5NE7BAaeRqbDsBtg1O9cE0E0AcxPXorGMcdqlCg5ucx2EFHVUwxDwOMwX9V8SHxmC4yPP7d+8x8FXmHCC5OwYdITVH/vOj8EstocswbBRq01+XJSFGQcsXSy27NwIT+8MmWmkjYOwwQzChMQKP8UOcevFG4Nx6mNnKahjMBqiKBQaGIEy/2OxIZAgyuj7x1yYPwkQtcsf3yiDcOrzhYfhiAErbf1Xcn+mHh8bv7Z8o9EMx4a23IZXfoPeBVNUa8zfoU1DqeRHZB095YlyE8PrAz5XCVNilF/gRC1Iemz1wlOf3gdCgBxiz9daxw90Q8OvvJ27lbriuN6TR3tIFyjnK1O3SXdB2aijJX9sJLueWy0QineCF26U2rugAvdtCXYJCHfBUiq43oLIdigjSpszE2kHhS3bocEMbuGRRGI2g20AwGZFh190K5lPr/jkPW+GirIsXr7YFhF0m7YmHmmHT4a+s4+5X8Ijv65Ak/gqiu4Fl9vxN0C9lbUyj0wjZxyvDSJ8vcEKlkoAp+QwEJQ2zjIsNMF9j+HjregNsE1DoKqvVw8M0sRKloDpYss6r3umqBVTDTTVxoloIfZE/yP+oBvSP8G5PJ1eD8Ce7ALGdKvjLnjeqgqiC0kJdeZroSvjz/TAwfbcCaCYf1K0pV0BwZndlt2Y5EBbqtsgylMFpSjmI7JVCN3NrfmJnCey3WAk45RaDQ8vPmeqwInhNk2729FUh9FK4KVo6FcAlDc/29hf5MHix/e25Sx40559QPPbJhQyM+j/n6BwQpCRsrinJhsKWPRT5YBY8mw/jdviZCX5NCEw7RybgXfe0/lGbDgHOfBx/BdNgUnf8k2d9Cviqo/Sl1ZNBUREjQ3mQ+N/eRQUHUhOgMfHgUPpJPFichQhysMTBvJZyrPZxLMRTEU5GTMSAuk71VnJrNBy9Vf0j0xAFT4nH+U3dI4GfvfydR8wHaGXy4pLoDAOdC+d8WpJQWCDLZ/5oFQKGh4KxrFNB8ETLiE5MPxBA1YwSjXsHW/zGfhUJ/jA0/FfzTNMP1H4X+n9g9IXapsXD4h9vgIJgOsB/4DUEyGYPvOn0guK3d5Fecx6ARNALaJG5w/GPqrcYQ7f//kyCjr7LBRJQw2aDys6g+SA7eLjLEcxuiz/Jv/MCym8GU5w12oGdV4BZlYcN2GoHfP5iaAXyAvEEZFYW8Ob5dvinj2bQrl8dVbppAoV369k1yozB2zy7MmLIEOZPe85DefRB2jpsabhBFyiPUpqueeuAnqub0JmDFvji+eRHRzyCSB2X6JzyB6D9+0ZbR6QaSEHfDcoGZVAgKA7VYVeExhslc6kD8iBH58giVi4L1BWs7SofUBDPh7J7zigDCVeSiueuSoI/RhJHJy8GFB2XTxh7hYHGUSOtgEMQtkJwx1zifLCq6r8kX8cNI4bFIdppHNDvPh3gucIKAezWTSz7TEDu1EhuUkYPub09SLGfNBBg2UllX00NbCSVB2QLlJCtZlES1k0Ktf827xZ4E0J1CpHk9258MCKPFB6LvQRS3uk8M/l/0R66jANXcSfoa4slHTVbx2jK6VYtLo8j9NqXqieqdPvoj7aBTWHc22g9ilfqjufr6AaE6nP61yto+dNufFmaebTWGVu2hsAUmkqDul301hj6+TwRtfGLQbQm8zFp22QPOrhC/2kUogPt7zOxLIdtRiuZXg+PaGtAvxe3FuFvrkabnic6DhiVo4/D68RnhwrR6q+mpaNDc9DOP++fBBakowNnpuOjDhPQz27fPKdMi0H35rvmFo+Eo6OUdhGDokHoyED6U45rfmjXpoaV3X9e6Gj1QMrwFlf0ksLXkNL5F+h4TGlN80sr9Pkb/U61YRO0xz0JdQdCfbQ/6fWL8VAt9AN6g8hprfvoqICWRycECmhx7Oeb5YIoNGl9vPNNbnG0kexuR7m3AJqTgPXmlRlOdLpBDoMZEzP62cRaawUhDdqHpsox4QoF+s5KWI9+JQGaakWE9irPP1QSn1wmdvwY5W4zcRYUt4eKR976oum9jvq46vQs23wOxXldRD6gZRS1qLUZaVzbgxJsZUydcmlBoS6ry8TU1qD4T9Lx2qhLUBMWxuP3YrJQCUz/aSs7HpWf3WSbigtHKX2rlnhk4I8SaiKUornlgeKJLsUmTtmjbPKPUh7Mm6KKTeU/eh08RhWb65Wf1aqhVh3M7+SyyKJihxXv+WiIojb7r7wd3OZCEVfRcdMf0aMq36onBllSoCw9JSloWC6jyMUDp5Qbj5EEQr+80r0xSMQ5nly//hxSJ3B771hxENlL/ObxMV0rcrjeqVsmqBLJsMZb5bWajRRh5SD/w/IReXjRxUqACERa8TWvmnG5I2tzi5n65qyQa3RBjrqaesiSl45JZwHKSBldxohRF0mkXPFitzY9N3LnUtCI5xsaJF1BLU1+JgHSXNxd0yf0GOHUYavx4d46IuhIf3ZqchRxgXbbfKTeihjZoMjNs/iEUG8wdSHiSkbY6/wOrjoKQtg0Yf6Jz7kiXop1I3hxJgg1xYtLpl7qCAEzQ/60eEkEtvpM/r/qQ3xZchXFHZIjuGXnn6S9PpGJytVdfX59XYbqRk3vtvSgTNzSJOdzwjqZ7kL30NjHmTIE7M985YaDZaQGvRfHyZxlclO6hy3xnsikZMjpWcfLygiI3onQ8+eSIbQk+ERySibj793cQxX3Q3rNw+FsmWZWmvg0R7fWv0V6R/dwLsY8R1p0UE++2jhY+jBqqyQ99rn0DG/X/aLph9JxDYnbrGfC0hIe3zo55qilg5ROnW3sfkpxJXn1hUROSZFOhAnritRLEeU9Iqm/lyDFco3t2VCzu9SKOFnTpeLHUnlnnX8yaMSkVKzdbTiYqaS65dcjs3txkvbMbTc4qPslqRQdkPZm+ZK03MKXhL/7SVr9bqCsXjGU7JdCBG8di0kadmoWGLuTS/pPWX5NN92UyH8QIBP9o0lCrfEPf+9qjIRKvT2HRaW1xFrUqoxRBFKCOEc9IM6XUsLt69C/Jbk1ccmiF3a06tXiHIEh00nO78R5AT1Xm6UlzkXCWoePYxH34Wkd8mPYF3uNu0r5PrZerDvD+rfmvp+YEy9TY8IrVbE6zZhNmklKMWNSXYWzsAlR58vB/rh/8aIWlAmesiZ6otuBzsfXtW+KcuQwyAoIjIpMBQjcfbEdLKLa+0+1vxshEpguZWfvsCPMiKyauoqIEh56l+D0ypJN+Oezb3wvPdorvlynivGLfF6x7OHzkf4eldByhJKDmU+lID4HjxhHn1M53YLJSz2dq4L9vwh7nyx0CcyWyIyqmr0rK8x2zeqM5BEg0qVjalOf5P9y5elrk5bcT+kh2Pu0Is/4+eZOt+mGCD4pErLit2c0lt6jnL2vey36bpBs9GfxLq3SDbLKBj8tkrsqY4f6tvoVJUVNvEJdXm9KIhaZSHJ5tfgQAWP2LUO3Sr7wyH30mpi/U3OD71NmR1xxweWQ/Fcy4new7VXP7IRo7zgWjeBe9OCKDixjWQ2mGnnd30Uzm9C+K5rzKk86QN3j3TBdZIl1WS8kiVtgc347VdhPMzI/R1/Ho3JIRidGFFno/6JlPDjenIedvSJmekWyUGf411gpKRnPqnAuHuneagHPZutubmwdt1O4k0EP+YcCpu1KGmJKc278R2FrA7bSBb/mOjG2PNe5C424TVRsMPnpC5nmrPStXJcsZLLTH8XnH2ex3mhhceRKOhgNEJ1RzDfRoWCsmWbiQt51fHK49TPPmFM+TkttmLNF+YPKJe/8vKy1k/Cfsr6cXDakddq5enkEEl8LCtWFOV8OYh/yehHl4eUt2BAur3G8GDyUK2dryn167CpFzxDHUaNwkRa+6JhrYh8IYuIqHHwOTGm//dhyXe2w55dfn7NfuqnKvUw2lUPpTMJALlTJbrn8jeflr9AcqooUTayKJXuumdS46I5szsQnNI87CQN7h0iXdGPHz2wxXMBCWuYo20Ik6x+xptJsBg1Guo7oYLZ7+G7fb7mZZ1ffcS//yS3L9v7x1bGjC/rs6p6EU5+qX6yTHwTD84THs07/s36QdgXrgYj57aODsCyGtcnjzms2rGXMBkwyfQpZrrNr7x2p2VifPtgMYku+yHRLoAwf7Zhnoen8+jTgXUOmczsHPkdLHIs3Qf1FgqlrpqiR2lCzvibLtcfUPrKigpkVtL6zCXykLLl0O/I173cyLpN2fCRH9zArJJga9yLyMoj+nny+6/mOeZWctlBt1zRDOGDBLidUlvmJ6t+k0TymjPZNkuXI1+dMnN+2jL0/zKVH5Jvi7403ML2GX+91VBLS/Wf8DBk3XzLFkHtiPfN00kn9aloUAkWZEjt59g58qdKFU5d5TeKOGHW5mj12WkbSyAf5s23Pyxn7kbJVTqkRaZSvbKj0jF4wnh68RJ5LqafRK2E6MwX5GKNYcPdnUcRpy5sZVu9Md27vNq4KNCX2ptZr3+WaWS24nVZdqGKECE5tylJmPsmxup3Ymp3lS6+UWvyGqw+bxnl7uoi3TZ2fIFW3VC5ppGeDYak73qbRvjOl84JkyJIhl0E4hKlXZvxdyjn9xVBtrDlD1ZimoKnRvZQNk+uJE3fZGcgbiyeq8a+kjLk4ff20vkY/ZoBQft3Xnlz2Z+3Dcm02/aS0pUptoX/yJW4OkeFsM/rFvfGfW9XyyRKj//olp9np/wcsnw12AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAiBIAAAAAAAA=eF4Vlnc81I8fx2UTlVX2XpkXZxx3nzeJshWV7LJKMkJWA6HskSSbsxNCWdkjZFOIZHOcu0KFjN/39/rz9dfz8frn+aKg+H9+QnNs82y6gmsqw8vIU5mbZOCUrFriWiIDS6mblNc4GbZ1WiKLe8iQw8z/7mMDGe6NUemWviUDB8lh3zeLDNQnirwEEshQjcJfzQ0hg2CwkB6FNxm0RYi7qo5kOFTGMhlcI4MW+YM45iIZ2IK2yEcqZDilt8eULUkGZ/8Sfi4uMth5m/a4MJAhYUejMmmXBCGmrwKSCSTQPGnf4T5Jgu9tnCjBHhI8Zz1hW1hLgp/VtL+oi0jg484RqvqKBPjRgTrNcBLoJQooCPqQwHp47PmoPQlSzZIsLK+QgInn94UaDRL0ri8vLMuRYItbe4zASwJGH/13zYwkiGdPYr+9swESyhkp80sboBcyOiE3ugHidPTuBi0bEJrvtqX2dgM+fRE52n29AYLuKjIR4RtgsCDCtnp/A45b9+udtt2AJtbg22z6G6AscIzmh/IGxC5x1PsJb0BItjffLPMGCIvqtLPvEsG15JzW6UUiOAy7KC4OEOFGX4rk4zoiyG3v1i/gidAJFsHssUSoWWdnOeVHBIPl1xRfbxKhVHln0VGfCLqto5eb0UTwWfafmeMjQgO1q0g/LRHqO63fB5HXIb8WJbU/vg676AQeaFkHei8fAd2ideik4Oznil+HgdfsjRW+61A59iOc2XYdeqbN2+V11uHYWD/TGdl14PCO229j+69H3ZFV3FuDI+EWdefZNcAcnGy36VqDYceHdlyla8CcZlWRnLAGoUwtJl8frEHpm/2Fccs1YP/XfzxNYw2IBlNOAmJrMOhRmOrAsAZWj00NXDYIUOseLogaJsDiWnTL+2oCKA7d+bL3igCEE5t0RwEEKHlfQ9NmTYCLGZ2PtTQIcNujXPCpMAEuX6HPDKImgHowQ6n68iosHpyjqP60Cr8uq14lFK1CyKqp01TEKnAxqpEjXFahiTehaltvFd6YWPjwSK9C0kLP7gHjKvyWJBxPX1uBdFSv7++eFWCO4mBmLF6BPzv16ZPPVuAc8/iBvdMKZD4OOF58YQXYPT/kFQmvwCbjQOktihXgPR1GO/59GRxeVGfQNCzD0NNj9qRXy5BZW6aT4L0Mt9KtNUgmyyAms21EI7sMI0r83l/plwEr0/Th5uISiOWLiRQ2L8H1SanPBalLELVZ1W3nswShLxUwX4yXwDefT4NaaglaSoXoSFRL0ECMb0n8vgi9hsb5mx8WgVqsYJM5fhHo8J3ExduL0PwONeeruQiPtSpFP3EtAko7kG301wK8GLFnSe9ZAOtkxkjhnAX4nGiy5eS3AFf2j/fcMV4AheTiBGnxBXCPUpgu3Z8HaTc3DdLIPPzpv3rzZ9E8IPH061WP5+HiGboXGLN5aDTDnA45Ow/yQzEQezgHcySBRZvROQjj75ndLpyDEMlzQpcfzoF0dmiat8kcSHK9NbETnQN4EWHAsTMLdgSegqTPs2DL+uPpj8xZKEzt4vjrOQtUqg9eT1+YhZvWzywSzszC3YmT1rJjP+Dv35jNKb8fcJpr8sY5vh/A+dE0HtU6AxOJBaXTDjPg1bW3rEo/A2ZfDRIuvfkOgruDbCeNvoNoS9NO3M9p2CiuWx1InAY2VhX8IHoaWOU5GZO/TkGTtAa3uN8UdMdnrD/lmoLjK+9qq+q/wZWr0uN1lt/gZVxwQ+r+JMy+cfhtkTEJqq0Sike4SRCpkNCOnpkAY24bNronE5DzzAHvLTAByHoA17fmcaCuHPyAtRsHtTSVbzkU4zCouPHvRM5XCL4wWxWh+RVs6PCVZ+a/QHgnS0dTyBcwKNsZDhX5AgdGa9PuHWOgrJN+GOY4BgVPu536acfg2tU9G4OiUThooNJn0BsFnItEDiNxBE5LaBCvxY7A9peM3m3UCNwaHSKujQ5DjbM9u4bvMEgYYjn+cQ9DWgtqWLh5CAaiKtBN9kPwU3NBdYx+CMxPnmkbtxqEe47j3pzFAzDpLlrh96cffF625dBq94OHWkzgUFIf/PNhc19c+gxU44JVJqqfoW9+wkMkuhdkx153u8z1APMTpX60ag+MVos/iIvvhu5nhfjna5/gxTsuLjmdTyCIOecTg+8CLWFuqWrKrv984hdcbt8JMuNCCdFdHUCX6I4yl+4AB+mfh/yJ7TDhyHZlY68NWu2PYwYd26D+m6TP0EgrGLHpu+5rtsJPl3eyNlUtUOyUc5tCogXORon2f8M0g3QaNY2NVBNcYKMyzBBohGhGpsQSro+gmazUnszZAAqnpPs9eevhBzs5Tk+sDkqrxyblFGuhM73aVFqnBrJiqB7p23yANwW+pa8D34O/wuY2f2Y1BLuuSy90VsH5DoMZ4mYlPF/X1dUUqwS9GD3rRat3YFhnXTrxugImbL+PIbXlQHy7/M3jYhlURvebXZgrBWNhTruqsDdQqJ1l8B5dAirnGPAIqQgSbrwX1KwsBCadR61vggpATmKlx+VGPgREfGlxxuZBTqXsw4izeOD2QpBqwVywkeas6hHKgQ6RkGPFMtmQWyfebh2SCX4Cg853m9IhkhYRl2ZOAwr8cM8lt9fw/r4/pevcKzhIC4tRdUoGo/rrt4z2kyCSgUSnh38BWeeF+jssEoG7YuTITDgBns1h3Xm34mBl1AtD1RIDIrmF7g9LogD9e+Z27rsIcKPUMIgeewahA2aNRqzhkHrK4sH+nVDQHg4aL/gWAoHEIS8b+2DIK3duUaQKgilyD7jffwQThwWEv/SBsJ183Eqy2w8+76UUSZc9gPPyU1IKdd6Auevid3/lPuBXTH2kVDyh63qTqYahO0zxnlTRvu0K9yrTL3B8vAOjEuoWvtrOsHVNou/SMUcoyjIqeEy8BbwOm9Xi1DfhpZYs/XCkDdypenidydISchtll+u8zKFIiO3958GrkO4/uHXXxRT2o5riDpDLkFfCUqKaaAQtRjUDGAZ9SPkXs8s5dRFmXYzf2VFowxy/Ez3j/fPQUkZXFnBWA0bO8CjRaGKhPdS3tzJXFX746xUq31OC5zWZ9NHJCvBEpHXkDgcKTLLC9R+0SQOpFS0hvygBp18HMj4IFoVqWt2/e9FCsGvpnC/1mw/+XBcmOD7mAuyTrsTYHA445mH3z9uAFdL0VRrsv58AyxT/jeNbDGAkcy3Lu5kGSspkFKikKQGdkvfGRfMQMbwhf2qYZxfJvTx441LHNnJG8+V6H98vRDFOenWIj4jYhj2SL6dcQSref5e72z6P3GHzGqx5OIOcVXirOVQ6gcja3AygXBpFZGYWI/K3B5H397qTWON7EJ/CA8UR6w7ER3Fy57dkC1Jjse1WGlGHXOMKpJo9U42wvDP5HRtYjiz078pdjC1CRDjrG/RY8IjCjyTJ8wEZSIFeRJhcWTJC4h1PsbdJQKIKar5n+UciDNFUEUHsoQhvlg6nnPFjRF6J/19s2wOEOTdM8oDCE0EFjNz01rmDyNq7+6aX30IspzVWhAItkUXlMvwhpxli2sR7t1jdENEOraSjFdVGWK83PZt3QhC+hxZnUxqUkCtxO9dRC3JIUliKHGpYDJnY8AmbzuFHes/mo3/ZcCAHngf/fHKYER5bEeqJ29TIOG1xTB3pH06HthO69jdxNdXTW814As6SiwZjdG4Ox5qay+S19BX31EZnvkFnAKf5UEQm80c7boHF3EV9uQ7X0FTwSL6lAodRwcjuB+Xjgpj9LEcc0nB+XU/5D40TcENfDriC3ofhyqid1KopAnHEz6+xFEUeOBZcSEiWnQPuoHc5UajWHIfVZqGLrDfE0QV02/vXauJIXG6g+hONW/2YEvEgVBKH6FQJUd/nxYW5zEvR3DiFI+jHY0bSKXF3R855De5vYx0WV5iU3FewFjq7t8VWJ7GPfKlOrN7ow870Dt/Wfd+EtbV7hT7pU4H1oPSv2fLKwf7HqKBjnIj9M7Qf9+IoBLuOak91fuyFjd3KnC7tssfCyoXWwzFTbFgxza2VQi1sn2woiVJDEWvBN8JNky2Mvbt5tTezjwXbxc7w+0IfBZZzc3W21pCs7uRiSZnTO63+835hn4pwr3qakWF/qnONuuJC5YbQ2zz1kcAHDlFUiepWbfLpWZuP1avtKDyM0f9NufXEMu77VfUkhfsu+bua6souw3d3eGTVBeduS/srnVHn9e+4rqNCqf4n6m3ooghR7YVlSO/NW1/UrDBXZNF/m9WClzs18Y8K1fImHsZ1/41X+8n+u/SIw08tTXjhqKLXTs1MiDvM4UBHzY3+2BSyJKe2+qezEW/DriZeu99paL6HyV4lExirZzEOMnFoirYOjNSUk46ddjGGV89nXVAwFtOYpOIj9sIT833MWPT5STPMQFm3/YK9MqbgXkSdvSsnhmRixUqm2VNty02y72eZUnWXvlKg7d+gWqGGlc1Bpalael02PokJUNW3/rxMk2Ou2nFf1/1viLJqFprRPJiSXbXyiqVH4KVfKtecCfMMB30q1fWrI8EvC1VQBd2LXSkhKtw+MqeZnaxUyvD3DAN20Sqna6JuTZGZVXZ48ssSMheV65U2RnbsGpSz8a4pVk8SlElFNnu2TxyVmSRorI7MMcqYVomIc7lMyt36tbZo0oySnRS7vvl8uRKtnkMMs/4TpaaPv3JPSBsqXeFtCj/bzKUk7nA7ms17Cc1KRJJlhyrQ/70r644yP7S3yOKZ/XkNdMent7TP79Cg0Y3tTTn73Yrepy6TI9MiFftXGouCk3QV++4LLcASjSKhNuC0q22LgkaJdorkoLfC2PJz7ZRgMQUWwRZZ3tyhcwUEpugTW27nft7ypLRdzaqIa7SzSdV6V7Ea/yDY8/im/PNnLFvJFhSoTLbhwU1sRrnH3kIGt6JhuZP9lUS+Ngb5Xsl827XXRWVDf6aPC/vblWWPRlMYe4nJUXm3a148/Pp2//zNMNyP67KeH+X1Pf5oy9rSyiuezjz+9nzhmoSzVIfMhbESE/Mll9KXn7yeeCjJlBr4BGeG3jomExM05vOAreuNVO+VPxKcodJMzH3KjLHKb4borCj7MDMlNf9SBsKzPkndLuSxDBlNLrk6X9J+6GgnRU/3TIQfLVLy7Y240EeHubOVUWxOW6mxxdZTQX2KR5bFlDkCxreeY87y0VIGUowxFIdk0ZsJjI9KBj1k36X++7LoOY9EWHusiiRabqtk9oSs5Hqrcb2gF1OR6PYY/sKTeYnG/ELnTz8rCwdci4948gIlKDzXmzUOtws+NnCjtASkCoW/qapTI6wSr1C7HJ60WwVmuhd5xyuGxRMFdbV/UZcXRFKd7GzVjRQPkEuUfDDiWOArbIZ6P6cp7nK12amZha/g8pH9Nfunf8UWxfDSy39H8k3O8w4dJJSJhXxluVue+zwfzet/cW/GXqz1T7dNNrNGvmIEsW7/gEusb+Gl+HnO33lhHx5e4JUeFh2imKzgpS/NO2P4mD37d7jo5dKliPKZW3mfD6R3vgmCaDTfZAxlJ1eelLi92pc7v0UkrYyWnk0P48P2fM4EEd6KOOQl6HeKRuBfRsaT36k4iuRp4IhOu5r459V8RpaJ/CI9IwvKsVx7ueQ3Ff9kbb4Kh6nICcshVbmWFKrytJnxwviEWKvOAddcZYUKStVTusJ7YnF7n+bFcj0NO9NwclTC7J5afQ0zsznyszD59VOjEFNZW2WuXWqOhV2HTrSnr1Boc0vjqVWznKh5lrzuagUhpnItqsneUzn7rc88jhCSoPg9woGL6efsWufZ3Lb2IkHPX8d2FZ+GZ8smXx5cCncQ9HDXwuZ1ns8+/4z5UZqKkOCyCwMRV3qUVXJj/tS28neB/Rg9qkSahqzZD8ry706+FngZm13DYeSbdaZdFRVcf1VALWOtP9oYndWzU5MWQc8m4Ear0Ok49yvTqtOGKvnrEP+YB0qVprc80yPuZjiJLZZ/wHS9USrcNRNf93khnlefn152VMdv9GwmcWo+qbCQnt/KU89CJ3klY0RZLWwovYuvjEDbfLwuP8PANQp1uBrKJ+qvGLcs5ZDhvbypofRIi09yddQtfEY4I3pUcDzdkJLP81fDFeueufTlqtLNXpNW3npKz1Sqhez0hJoiWtyTIN7yHHrlNlG7dL71E7rz+cBLThTP9GQVSJcss1mWiz3k+RIZw6LAOZNWkCU5+Ka8kWfzbT5qwTQjLcf0dIIi9SMet3GdOsYWq7RpE7rLK+FYnjYD68Dr5rxpSkNuKzuK+9yCP1g2o7mmUzMJ+3WXGD9yl5gz2tTwpadKebKu5PU94v4fElMPzg==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA5AYAAAAAAAA=eF5tlH9QVFUYho+GgYV6JxVXFLoq0YaBiyKupnYFzdVMV8Nk1HRzSs0pZzOnqLG6ESpjiJuJQVJt/kAys41MV2Vqa8yscXRLTabMNnUcJqy2MiVHI/d73/3jMpw/eOZ5v++ce865d1natGPOpalXxygZ5VU3/nhf+WH4PTcY+mzSuAM36GgYeH+M5r6a8TGq2mXDYnX10tmBMYYj902S+l+DxdWAWUaMRsm6mTH6t/8wVeYFW5JjNHYkjIzl+pqpMk81tuXJvLKlvYWX190pfGjeGKk7r1zfH5s34eRUyT2L0uV5vaeNkvVeGTtRnlewfnKMZt0Rt/SNW/cw+p6fIZ5nd8p65qtnR8VwoXSO5M6TPaSv4u5p4vbGXshbbpV+NcEpvmHtfPGKlCJ5TlrBdJn3etF9Um+6Hfcyq6ZQ+n5xI9cqNfHSMtSNXbniyw8OEyYel/syu618EM+ry5S++oI88fIWzHNkF2Jfq/thnVKX1GumTRae2Jsv+akzsp4KF44TTnlH3qcK5Q6WPk96ijAwMUsYmo7nXW6T8yjHMzivfqST0PZhrjD1W7z/1pnyXSi3A7n3lCFe+z7Oa+uH889onSBe9hjev+swvP7pDPH6rtin/7Wbherzc7H3opq7473bTJynJHWouL0Q92Vk2tFf8d9+8Up4uBLncK3Nlz5/rnwnSu2JSF/TS7j35tKxQjMtFefJw/2Y0WzxyBLszzf7Tsxfhnu2X0BfdI4utNvHYx/TE8HtI3GeAT3hJd9jfzl3wQ+mgD+nCY2k3tjHbV3wnPHk2G7IG+5Ff05E7sWsdEgeKsJ88yk7+h4fJLQlYj/uLjinext+V8qrY95M5OagTPizuCdVe1HW9+8YgPoT+C7CJ1E3d+H78908Guv64J5OYOifHOSr8B2oslOynkr+HryC96On8fnzsB+17D+pR+oGYZ+/Xpb70pY7cD8rNOSb+B4yUuGjksA96WAV73teG57X/aqsowrwXswXcT9mT1ClJQqNSfh/Za7E/xt1LAH30ov7qfwL6/XqAe/VHXyhD3i0Dc9xXcP7eRL/v9Qj2KfZchv8wTvw3Gx8n2oj33P/65jvIIt6Im9tgXvPg1UK8zxB7CfnFvT1Yf+qzqgX3wS/xvm2MJjA38kifLfqXDL68nlfe7rxfAr55j+RO09j/hm8JxVoApWHPIu6yd9v8A/krdyf+hJ1owW58QU8Pb7+j+DLiTz3KdQ78/d0iPvRvkGe/Dvvied0/g3Xf8M6ly6wfhZ+mvfXhO9bmW/Ao7+AMy4hd52D978I+j8Hw2HUU/8Fbd8hV6vgEZ4ncAJechIe4vfv/5n3cQJ5hOu5j4LqXeTuEDzUCOpfg8ZR1I1j8KTj7D/OvgD308D1DnCd3aDzIPezE17Nc9m/gvtCrL9O8n7UJnIBaL7F9ctJH/t3wSPx5y8DXQ2oB/xcZzX3VcM+JxmfV8tzvce+9XDPTp5/A3Peu76J80q5/gvx/dGncN4K5sXMV8JNL30OzzefHt+Xi3yA5+T3bs7db61ncf5Csoj7nMG+gXQ3fQjn9adPoGtkIZnUbj996Sl8TiZznbSzfhOZQbbtA1vJq6DRlfUrzC+OBP30I+QfzIOg+SPzn5jvp39K+tl3OO5kI7md896kl9Mr6Gvoq+jr6UvI55iX0J30InI88zyygBzVrj8aBDOZtzpBRe9ENrPvfLzOcbqdf8G+3cyD5FbmZtDab7LuZe6lF9Pd9IX0PLotvm+6Ro+OAPu0e06A+ekRVg/tBbfSq+kbyBLmy0kHOYV1J13fa2UyGd0DRshwvupwVLNukh72GXQHqZMaGR1uZfgT1eEwWS8hF7PPoOukxjyaBzbvBg/T/aSPeXwYdD3PmkeGWT30sdW9dIPU29XjI9AA+oeCXrK4oeP+yEdgINeau5nrpGI94mB/QHU4NNbDQ0D/EGvd+BCM5lhz7y6rRz8AA6Q3G9SyrX2enWB4MOgn9ffBaBboI40sZRm+90A3qd0FhupBjx10kCpODvd2UCejdWCgztrnoIe3sU6ad4Cebdb+cAbrW8HFGarDEdoC+shiUie1Ldb+wEDQ3AzOpTvIsaQiI++CftJHukmD1MkkMuIHA6Spg14yPmx+q4ffARtJL+m+HTToitSYN6WDwbdBH+ll7qLr9PiIvgUG0kj6YnIhcxcZ7c+J9HAt55Hx8Sj7RpMa69F+1j4fvZ70bALddI2e0G5eUyoYfBMsJx9lPpvMT1UdjkN9wUAN6CEXknYyi309ycPVYMgG7iRLyXnkZDKB/Ulk8A3Q7AOWkaXkAlIjM9jfvBGMkNUpYAW9hDSYD6fbyPO9wYNV4N6q/wG6r8BfAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAgBIAAAAAAAA=eF4V02cg1Y3fgHFlZFZK9sheZWWe8fuSTVSUvWUlRJSZzCKh7L23yAzJyh4lZGWPY51zrO5C6Pk/19vP64uE5P/bAddL42d1u56yngl6P7ixvQ09l+dEKua3Ib0gaujWt23gXnNz6mrZBu2s6Sqmim2weDZiqpyxDZyGZ9g0orZBS6Umh99vG2YMxrJ/Om2DPvJfv5PRNjzauzf2Te1/TjvuRiezDfdOj3V5eLeBoWqX7zz9NrzpCs8bPiXCIq2gtxOeCLI10/cmp4jQpmVGYO8hQlwf+a5sLRFWeIYvCuQQoXDa8njjDRE89XYfBPsSIcDr6RHRngh3FLycxfWJoNDA56wMRNhwMSkTESVCtVvJ1AojEVBLCgXuZ4lgOLbSMkwggJGz6PiZKQIMyqDSyToJIJi22zZZQQBXC9xeQAoBOPT0l/ZDCBAkwKeEciUAqdHZtjtGBIgzMjgvd5MAtK0ys3hRArB6uc67XyFArVNyd9cpHvK8mZTX1/BgF8dBNjWMB4WPfp+TGvHg/3mYjy8XD3yp77cCIvHwbCOoI98DDx5+DyySTfCAK7J7YnQTD1TJXrUrwngoSFGewtDjYSfPN9nqYAtqe7qKbs9vwZ7ghxaq7i2QsJmMiy7fAibLtZnZd1tQI6x/74/3FjzUj62fttiCFC3H5pcqW3BUlnn1VHgLlrgXcrEXtiDdW+uf6q9NSB6n/sU4tQl7ln5KHz5vgsSWZhF97iYYlhuvocI3AfW3s0v04SZIbvJTrOhswsRlI1dbyU1gKkzqLmHYhA3BmvH6PxugJoxzjJzegGcsHOp8nzdgK74VG5q1AZM+gZylQRug/YLQlGC7AeNarYtqqhtgRdHp9FlgA6hfLgofntuAPb/Dg8P1dfh99mVNa986CNOJyWqVroNA8JR5SuQ6VLgz071/uA7OZmnCYVrrcF7xWyK3yDqwi55gg6nWIXi8mqZofQ3Q9sKEmJ416O1O/4EpXIMXR0KN70PXgG+0M2rJZg08DVR1fyquQejWyWES5xpMUf6OYT7GQeJBDaP5FA6WUXSJdvU4MNmaZZGKw4GRW0RlhxsO0PJizky3cCBDhbaTEMIBZ5dHEx0ZDjjKmKIq51eBs2fj6MqnVYh8ri6plLgKjzPjLCTdV+EMaV0VTnsV+usQa2uBVZhRVinLIVkF3tF3w0XTK3AwLc/kWbsCZNF1/RTRK2COJsVYOaxA+w/JzheKK3BTNrfVkWUFWuNjY5n3loHzg0JWbP8ypKbqm33PXYYp+R/IT99lUFIoba/QWwbhr4j9LZFlYN0k1teeWQa9lSmV9cklyBfYK1qrXALvXonAmvAlmLtU+PiW+RJ0pO6J1txYAiR/2G6daglCNVtm8POLIG6EM2ivWwTFM1K59q8XIU6wOnHWahHGbX0ZBGUXQdOgj1SFZhHIw470ZBYWIDKQ++Rv7QLMWdNTpEQsAJ52+hmdxQIsKw86mUgtAIfPleMXFAsgX91fSVY3D/YvBSxbzeYhSMg9QJpsHtzmx9Pty+aAOtHawkhvDnLbpHxpD2fhHt9ca1jWLFCI3z/fozoLEhcUzUa3ZkDL9uTj+7czMEiKUzaWmwEvY2PZqZmfQLaRuygR/BM8cKrltoI/ITZCj85rcBrUqnqSHN2nwdd44rcS4zTwPn+AI/s0BaS9HEid5RQs7V3dNCCbgviJhU1C8SQYxKuYPdeZhOYUI1favQlIVSh0TE+cgNKv2YVS6AnonRlIHZ0fByud8e8hoeOAuu2/ri48Dj/Q197yff0BU5/m4zmf/IAgUaPvKOYfEGpZqfD88xjUTEuNEGzG4GuDan005RhI0cTR21eMwkcyfx6fe6MgIhiIGToaAbZJm3aHnBHYH7bk1dUYAVlXvqWw7e9wamkUzZD0HeKDDvv+Id8hsP5YUWdtGBJJdMrOxg5Dr/7HAX6FYfAufzvr3fUNMqeR0WSWb6C5bS/70fUr7F8PHJ7vHIK7mo8ec7IPgapgMPG55yDYDfcK0n0dgFdquJMxoQFoGQm7vRTaD/aOuF+KS31g6tHbfKzYB20ROY7cOb0QZrpS1XS2FwIYTuXH7HrgvxdMkT793XAmjoylXqIbtNQvyCQkd0EKEy0dz9kuyGjIK3Vw6YS8e1lbj6e/gNMCxk9D8ws0qmLGDxo7QFRZQCnqWgc0/hFtpc1pB6vmSuZQpna433x34G9MG/wpO6QLoG6DzZIrCdznW2HSrpovkKYFZKWE1HjpPoOK8oUWjsvN8Pk+09sAjk/Qk7r2351rTTD674peATTCp7Vm2ZeGDVDh0KVz1vMjcICiIXdCPSDvP3MTm+pgt03lpftqLXQnaprXMNTCkkOlR5NGDUj+1/02KqgaIvuITmKtVVCUX5GYd6YKdCsskogaH6BCoCieW6QSXkWVLDIMvodpCqObdc/KIdPJJ/b0WhkQhxgNNrdKIFhotd+tthgaDvqHQsKL4C7RDsdsUwh1jBI6XOoFQGXqsBkqkw+Wd+etZK7nQU4xEwurWC48ofuDZZXPgfc6k32s2tlAJ9GnfDKUCcKKt0V1mDIgLx0/t+SeBp97GS97z6YAyyl5T4dxMtCjku28cInw5Vh8FQlJgIYsLboB8XjoJg1J69h6B69KSpwH6t8CW9KTjlexsZC0G3MiuxsN+MOOOJXZKFjPfF35ZCUSxut0NI7II4Dv4IYLjdJL+IMjr5+ID4NE6vsNb0hCISCvOdkkJBhq+9SiHrIHQdzwaNZIQiCkRlKjydkDIPzWJ9+uPl9g0sncdcnwBuLGLJ9ZwlO4yqfivlvpCdxbY7txWx7wcvs/q0o1d5B2Eqh2DnQDKRZOe6XSR6BZvGWxRP0QDL2/KNtkOgAnRZbkmrUdxLVnEUr1bIGknGzxr4s19Hous/vbWEJp28+KiRtmMJ9X/+S6tjHcv/+n81ueAfx5qopSUrgHF4HWSuacHnBzqvC/pboDqqvd6uPet4Bn1oKDSV4T2tRHjyc01cCRoMviWqQM4p6xXjFaSmBp+Csq1wSBiGXWS7fiURD/UC22Xk4O3H41oMXQ0sATVndcmiAJEaOvB+IDxKDufknnO3MREGzcUfjbLADpvAhkRPOCsl2Yu3n3VYhOdxK5Xc0O58alKdp8mIEo4ny+dJgBpLdwTVaF9LDw/tOlvAk6oExlsf0mQAVql//xLHKTw5xejN+ZmjOgX60k4fjmBBmtbo3RSjpAdBx5qn49+IU8PGf3VOPnDhKWz+s+0rmFjKjtc4334xApQ8/Q8/lLyG/zMXVD6zmkete1TKJ0EmkpHU0h3R9FfHQY5r5fGka4wiUWfw32Iee6SdNIszuRA8dRownnNuT4jdCNBOomxJvU++9JTC0SKc0dOSPyAenOsG01vlOC+Aoij/425SHuTZI3czIzERGuZKOewiQEZZnoqin+DrlALW5GGHuNbJPfvaEnFYbsudJgUy6+QGhnuoIuo72Rd92VekliHkjrDFGvgN8Z+c+k2Rcl/AChfUzeld5njkyuqLWxLd9H+jtICthPbiNam+4WHKCOtBoxcRgNKiJM51zU7/LKI023Msw6sJLIPyv/+j0/IeSRiwVnozo3kpKqV0eKMCOM1cv1TLiLiE3PLRJ2p3NIjdhBbBQ7CbLl7yVEQ/kbOzOLMeclELDxMTUsbBIrWNGEk9HvtD+xLUPXIg5Ov2NtrCQJLt092JbhmOnz4q3YXZqZeDKdWmxpvVi2AqYUCxZtyN5INhY5k+Hq7JSAZXQ16XlP9RpL0sx5Erj9Alv1tjDRkcYLS6zrZy7bdsL+WLsZPlVtiUWaLAy3pPWx661dU+jL6tipk0nlI180VkUwKXRITgIrF5l7qHrAg11o7Cy/fnwF66ic/Owvlgr762+4CHXdMWatLTe9TmQHE8VpNbtzbglzhC15SrExivmg8IvywZcujK9aL5f1648YH1zz1ULpEgxGgD6stDoVMx4s46F6+BqjL9wloHHij3nzYc6Euc4Fk2BVJ6zIYoEZu3tjZY1PF/OWc2RFfByL8c7s97YWu475SOjs2pVkx/hFnLe9t06NCaagTssyPUSbhnnpUSavoZ9+RFaRsh9oO/IX6w15X9BT8rX5/8VUoY2SPFkS/2aiySSMSWL2I9F/JlLY7Tmeodt7r/W7RNqi+WcvVJip30GH0ROPQhpQaJFGd5qXKfzodAfmFglJevSQfKN1884R6gWJqmZ11woq1tR48k3IN9RFd9KojuCPqOepqOVRJAc1p/ycZmj2FWr33UGca4Y7ylJerlAtxAiVdkxRJt2qiLLRcRP94iWACuFVU6KMpkOFSKOkHlzaV3he8cWwg3tSQQz/ZPoZ/rPCRU+V6TfXchXirGR/p2WEKdyhpWG1EnZSeCpQxbNTeEthvriT4TNOXKFyM9P6kim9AjX5SDSVx578t2Gqsyy8o/JtafFbhxY18pPLUwRDzjh5iwDScBpbD/mXobJGiPxd+bZ/Hw67bMTlpZ6eS8cM08gX+il/Wdxbk6sIKvHlJe+UUykMUdxGZ8tZVdveJAn1kRuPlmcge6gv1/mIXJsi7ppcBzHv6f4dMrnU5gjluYWfsi+OcvOM3aplh7MduZSevZQdcbmwu1hrJush23BedEpC1oz6hJi1e1Z2fid+57r5mAyJp0Zd9FK+TJ6XxBUnW08ZPeFGt9TVmzLjdyq82uMvyqTnBaXd9PopHWtzdHXWskC6w1atWkzQTVqGQ4SI45eRVlo3CTlNPLrB+GAC6FpabgjJS+/a3Hhxo1GFKyarH7lxevhY4OTMkdS9pHO6a3w1Uqc0c468sw5S33zeKUdSMUtRh9wL319olxTkzqM1irKQXGYokSrGjH0g4bbBKAXmfrBhMJV9d41XQm71uqnVwo64vVov5V/rhMqnZGMtEf9kKhf2LlxmuH0i5qBNvNPknl+hpoIzKGJQrVi/JjMcq80kZpKat+jw7tt7znuUvJuXHl/HVVjiQ9Mkr/OPzqRxz5+WCw0T3Y+DP12TKDfmHRh5VH7xf9f43fhXVnxOMiY3eUd0QToonpWxqczPBil1Q/mLqmlbf7X6KlP2LgLfmLY0JRInamJmylMlUsGZfBjh97J0cE92iVijL0KgDvU51GAtTX2tbU/jMCNcqb70B++WUHInrbC93Ji0RNfrWTNZBL+wVWYh5aeqw2Jm3agG/7l2oRcR2CtcUvrFJFL+k8/X7Ysjc81RMubaQqS/27VLzwsVN2xGBh+snxVSEYubN1GZKSp2eTLwK79WcGU17CXVwpuiDCmscN87O0HzXvc+ETkoerBo5r5Txii4c8jymidqpzBjoAGnrtkrMG2/jbjhcwpFOF7ls6b7Cgw5sIZmzOkXzpeSko1OXRegEuG6fxJNURgobPV9QGCRXwuvK1mLbSrY8R5Sei0Vzx/pTGyN13ArGOySWPS30uBXn8zdr2LnLdhZvk5JInjKJ5QqIEVKnMjvdJH5Rs9Ww6edKitU+SE6P/YdNaXegCMf3qVdIptfJf/mcLji0NOrfF3WRFb0hb95rjHqE+um47y/NaVa2eKq8zp4goc0KWJ4faRMmoRoHuaN2jDzXzpU5fW4VVxtnMOTZ5SpJtfa8o8njqO2PuLaz1xKQpaAscVHnvnhzwZfxeNz1T6ymUyHuPMk1xD3jMJ1cxkiNnN/14nwHE3KSgl6n8ttEhdRka9d4RYxCFcgN+jISSVXWrmgk81txIgoxjMF5CzmtTpTnzfhzleLIDl9KJdT/KNcn5brCrd99kCANcd+dofloNZN0+9XqxQLyoyzKrPryx4eM+Kirtq/yL+PD3iYbVRKHnBqqnH1cUFZ5uVnAtnXeJV7dHvIrnbpOjz7o7qcVSj4mF2b0M7lFLblZ9CQnUVOOuVSphrI5bkeJH5DzzzLadS/fCkGzZU7ojErfsiSJYVSOtCIOOBkUPQiP0JPZK4lBJcm0tVzxuY6G64dxWf69nzBsJzx5IzvCun7wKGfSZ/NRflcV4pzJGSn7d1b+kzZQWoy1OoOx47X99kd9eGMGUkNaHtcycGTLLP//mF0xogGoSjKz4Xj5IlPok/OrQxivK5b97Qox+DOXdV9fpqMP+bq2iVBm+ztYXjlenxfukXjz2BK+xL2347WzmX4V+l3auVsOwMd2XXD3/DHcmqkl3u8cbbqFWRP/Bs3neJ/Ln3CxU6+GrXGhpCVfhc725MWOs51JW+kkO1rha1hZVl4mrWBeNO/KHs2zv06Ve2namnj/MVs+g4CbGv+MiNLlhRpr8WNJRYtcaxsbEdWNo7dqTfFzxZkRhWy1u7fte8/eZn6f2WGHiE=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA6AYAAAAAAAA=eF59lH1QlFUUxm8MNfRhrl98qfCqqGShGyIBfr0KJirRSlTaONNWTDFmMztqYQ42r8qYTcy0zYhRKa1fIyrKKlCg5KwjGiU1qKlpSm9GIFm2WeqqZLnnedaZ3ZjuH/ub5znn3Hvuue/sxO0n24o2/TNRyVpXdvsntcY5dd9tVt61Zdb42/Q8Pq2vn6s3ZGT7qV4vS/LHjcUxGaJ/WmjzazXszNN+7cz6eaZf6zcSJvi1EXs+y6/tg+oyRY/Im4B9DuZIXVfmSL/W5r72pF9r60ufkrxJhZPk/AttuRLvaCwQf1PGVD9dkSnPSP2VTVOkn3urZouu+Luv8O2UocL91dnCDn2UcEh8htB5abj0MUnPEd6Tif3mhQ8RvhAm/XgmduaJzjgyWfhZ/gzhmYbpUhexs49o2zmZk/rlhNzf+LoIc2kpGC2+nvlrhp/WW3eJX/BMvvD4WZvEjdOmxK9elTmqY7/NFJoD4iWvcWei8Jdlj4rvPfCAUL2CfitHJAtV41nZJydOl/j+T6cIXctQv3BaLup8scJ5WxOErWEDJG7ZNl2Y350mfuNSq2jf85hfTh3mUB71iLDNIu+rnDWJuOcj3XJ+xLXxov+6iDktGYf8hPhk3NeN8wrvhh9emy6sL8rEPW4OFtovj8K+713b66cja4horeVh4bWvMOfoyVmi6xfNRD/rpok2X3pYtOuleMyh9zjRhg3fiX3PMPFLntOh41LRX0GS0HIRfVl13NPMHIb6rn7C1dWYU8S+ScgbmiJavdxL6IvCu+ivjhDtuduC+xQPwj2PYg7aArxraxLeUzsyULT9hwHY7yL61U8Nhi5OxXmTke8e+5j47lp83661Gs5rw7vZyzFn9UQU/IGaaM8U9KPMRnk3tQDfg34UdZ4Z0bivD9+hbqDeSMX3pC6lizb7YW7qcgzyu2IRn497qaYf5f2U9ybOuR6GuPNBMPs0/FkW1N8ag7r9N+CPjcC5SzmPr/uDbZHIH9Mf+7yF7894szd06XnUV56CX/Qg6tp7IT43EvvOR7/GIvafie9MOc5J3/q7I6FjUG+Mfwj1LX/iXkvDEJ+NPtVoztV5COdH/A66/0C+EY5zluP/Qw2M4ryuoM/hvJ9+DPlZCufG4x1U++/iG908J9mHuuP4LtWt69Ar+yBurOUcOJcUnvtNOOK7LrMvvk90J5h7Bb6J85RmgtF8l1HML/6D92wH738A++vV0Abff7QX2nYQ1E7D7+6Cvqc3+tG4byzmpLTDPP9LsAT/l+o+9m36wGzO13EATLiEvJbz0Ip1thZwyVH4L3Mf60mwCfNU+ufQ7b/xHtvB+Xx3bwd01U+g9whY/jNo/R55VRfY/xfst4Z9cg6qCTTrwAruN+cE+25gPxtBzw74xhqwlPeb14q4zwM69vCcwHlu7reS55aR9aBt914S2lXF+BusY39aBft4FzQ2c/8G5s1jvJL35vfneZ/33ML+3+G91rIuHzTLQH0F/RzQw749TtYVUb/BPhay3+cYLwxo7jMbtC9i/nLGNca5j5pKnUzOJCfw/i9S5/Iez7Ium/vnMT6ZvoU6hUwiUxmPZd0U+orsRUay3xjm308q3rMPtdkAetJBN/W3ZCd84wp1B/O6qJuoj1MfBY1A/WHGG9KD4nfO2c38WsZL6G+nLiRX0V9MHVg2+gvpO8gcMo1xnZxLpqUHMzWwL+ODqDUymr6FOoI008BuMrA66oN1M3Uz8xqpa6hXk+UhdSuoC0mdeQXUedS5IXUW+mkhvvkY+NdnYDjz2qlPMu6idlNXUq8ml5CF5AJSZ76NtNC/s6i9n4ImeSEVPEvtCuEacgnzCqhfJAPLEtAhvlkHtpL140A36RynelxW+lpdsG+mgJ5asJl00l9HvZjUSY1xC7U5VvW4jJpgbWOelfTuUT0uJ317crCvheS3PhqsjRAdWF53sHZaQQd9a0g8dNmrmTem57hjV7A2k0B30n9zxa8K1q07QCeZuEP1uKyjQO+2nuOKvicRLCS1StC7FXSPBO3UCWRguUcwTlpJcwvoGq7+d32XEKytm0EtxG8eBpZuAg3SRt9KRtC/sBF0DwWd1DbqfNJC37sBbCZdZOiy0k8gTQ1scYGVruD8bMZTSMW4+QnYEg+Wk4tJGxlY3jiwvQJ0VwTHi+OCdSLj3vWgSTYNBp3UJeQcMo2MZp45COwga8lS0rZOBa1E6nDGz34MugaCjgDp51NrpIW+7yPwW/JQLGiQC+jnUydTW6h//RBsJNfEgKvIAvr51Bp1f/JSNNhcDjrIYvpzqNOo7yzqzijw2AdgObWdtJKK8QjqMPJ8pApaBnXJWtBGKvrhpK8M9JC1Zf8CwRjNyg==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAfRIAAAAAAAA=eF4Vincg1I//gKVsFUUyM89W9nF371dkr+yPjLIq0iBkRNkjI0QKZyt7lsjOHtmk7HXm3SEhFb/v7/nn+eN5KCj+ny24cncrpk7XKYUjM/65+W8y+L6ZdI/bIQOlSbVTyQYZ3uZorhUvkaF2ufxZ7DQZUPrWFUbjZGC4VkKz108Gnth9qqedZDjl+ERqrokMIeuplEI1ZFhX4zipXU4GxVORpbr5ZJi3sg6UyCTDwQBufz2ZDEw/KyLDXpKBMzS79CiMDNJywVPGz8ggrH8yMsiTDDkJl1Ex98nQmI4VeuxAhmPvS7+uWJLhRP72yW5DMpzrim5Q0vyf0Y+jgnBkuKj49Vu2LBmsz/rRp4iSIfJMYvjdS2TgVlKrpGclQ6vH2mYQPRkYZUOSB45JoBOuwry1SwLps7vVi2sk+B7FuFgwQ4KSRn6yyggJatgp5Yo6STA5zU67XEeCb45PmkhlJJhRMS3pzCHB1I6k4KNkEsRrC3gsvSBBaPTPddQzEhQ27o/Iu5EAd9/pKZMjCfRZv0tUm5NgXHDhMkqbBMuSDd23MCRQJadftZckgcMFnwmJSyQY9l4ebmQiQUFm5mM2ShIcqUseyP8kwmrzUBb7EhFc1E1KWkaJsEvQMpdsJwLbdeZxq49EOM51uKuXR4TM0ny1o0Qi5At45LqGECHKkaYh250I4ixIxyt7InSaKeyqGhEhnrzgWwZEGOgWj52QJIKOIpdtAycR6lS7+W3oiDBmZ0f7aW8T4rScVHoWN6Gb89VR0uAmfFzcdGVv2ITqpMNOk4JN4DuulFVL2gRulYKFtYBNkPxLcUrt/iYMU/l2G/33v6+xzuGc6ibkatymCJXYhBOPp4fyL2xClnk9nT/FJpQn1k1QrG/A76Lxx7IjG9Ay/4CBpX4DNnntxrJyN4BKmI1mKnoDThKaJ1o8NiAxzyrA2HoDGIbGFWOubcCbXcC4iW2A8NH3jn9MG6BvrMsps78OXoFtPqen10F1nkrw5Zd12P7YbF/9fh0+D8T5B0WvgwK7YNOO6zp8OJXsRW22DlJqDw7q0evw1378NSvXOqDGGgvOHq8Bllo8tnB+DcRyHfOWW9fAiJPHrDlvDY7vfKJRDl8DDUF+EWOnNaC/GyxGq70G1YSQCCvRNZC5U1evS7cG9RWftSdWV6HmrdBniq5VOBFUkdb2bhVM87zCBEJXoZ1T/Ty3wyqE8/Yul19dheBdrsIZ7lXQOPuW+d3hCtzHG45Rf1sBTXfjaoqqFXhnyhHwKnYFTt5soG5yXoFhkx3BYLUVqKaMbZzlWYHPHQdfRg8I4PzQWtx+mAB/tmcPw4sI8O8lFWiEEABvu3oWb02A4jtfE6LlCHDiK8MeCyMBbpJrPRUWl6GafebGdu0yRNmX7anHLcMenWiZ3J1l6J8Q+tmAWYZmTA0sMC1DkY8Wd/byEpzVvoM6ql2Cm+oMp/ZjlsDUAOMSY7cE8TGWgl/klkD6eJv6Nc0SrMlTH9L9WIRWg4e7PMWLkOd46d+Y/yLoBQ1evnJ9ESyTp6qleBehr7l1YHhrAWiEknu5WxZgSWSGnjl+AeqJCpSltgsQIBSnvHd5ASQCblzfOJqHWrpqUuzXeWha+zu9kDoPCYN1v1ad5+H+y2+XchTnwTv3n815qnmIzu3rxAzPwRm//jCejDnYoBqdanCZg8nuk7xc6Dng2t38jDk1ByoBbnZI5ixE2FnLJCjOgqmDl7p3/wxca2Lj23OcgSu+BG/mP9PQ79IqPRg3Dbo1V83RqGnge3iD27BuChJj8za4DaeAzcrHKH9pEkIHPjPseU8CPoD9+PTpSaCaEoP9zB9wuHOPulbuBzCVStdadn0HEbvS1UWr7yA58FHHmjwBumNW9b1BE2Ahq4MoX5iA0vnjg7KCb1B+7hpOHvcNNEsong4PjsNtFP5anOM4bKj7aXkdjEEMk+uNuOgxCAw547DEOwY5YVyufh9HIZEsm2unMwqKknmK+NkRwLWU+qA9R6D28ZWvWIYRiCZr5VdlDcMSB//Ld+hh6HY3Yb40OARzdD6dKKchSDTXMeykGAJhyxgT+pRBuFeb9OS37CAYUr1twOIHIDOZ0oZqtB+eUFYc3GLsh38cRYW3NL4Czab2Y7agPoh/dEEspakXzuIT/Q+PekDkOYaoc7UHQr4KNeODu8E5wmHvVHcX3BqVMExg6oLGgb8K/1l2Qle9TYvjuw4Yevgjv3e3HdjcG9Bp6u1gPUVpQnjTBg8zpRxrSa3wAm9rJajZCqtJu+ny2V9AXaqQ9s9xC1ygiJ8PtG0BaHw0Mt7aDEudQstUYs2Q8xi3IodqgkK7bSvkqAG4268zY6fqYWUW73G1uQ52hMefWBd+hn66M/cyUmohuI1MwxZfA4qVdfYDMZ8gKxY9ORxXDQ2z5wXEUj6CWpsAaqrgA7yheUFHaqqC7cdLYg5TlTDlmMaJO66AKvvwt09FKuDVoXYMl0U52H0Q4kRzlUEw8uXTamIJeP8dG8FwFMPm6ZZGnuJCQA/QiD/VKQBtOUGc4q/3cIHRqEy++B2YTVZ8NXuUB9wXdl+4I7nQmc6Zdpc9B0zeY5JoKLJh1kb5WGgnE/7Eqv4QnM0AhvSHlrJbeHgcmNLOwJYGEUH86jiTFOj8RWlknPsGWDXc9wfpksFf0V4AE5wEkSei/5xhSoRgBkpcZ1kCHBElsibt4uH2Gqtsi1AcdPkvGI79ioHTqn8y4luiIGMMv5ZUEgnB2imejTXhcDyf83N5PhTiXKesCcIhgH6Vm/82MgjI/4xe/KAKhMyWSQN6xedw0dE3g5zgB8JWww7C3L7Q3TG/5TviBe+Lvh/WVXnC7K+5kvY6d5A529njv+YGwk6UTWPKruBa4GWQbPUA/A3CjMcD7kEl1iohbf4umIgyymN9b0Pp2b5xlKYDxOj+wZPU7GCDIUoxdu4mcJe3XWSMtgKZ816NmmEWYNCqd8272wwe1p/T5DQ0gVQ695O/WIxAw/GQjxdlAOoiWVU+UTqwVFD8gM9IE2bvPsV3P1QDGSnvuwVTKrBwU0rwJwrgo937tfmLGIjQa+0OCFIEQZHaNi4LObg9uE2/HCsNP2xiPn5RkgKJrbDlgW1RUAntyUbJo8CnjOT3aJcfEoMM3Sv4eGG459sXH1tOuPlHf1ZClA2Ei1kK2yLOw7q2IVvmfSawYprMY49gAEnn++EqFDSwdzlkXVT4JKiotytF9Bwj9+KpE3x0D5GEXnYlr+JfyDUDJ3n9r9uIDp66LFeAiDzLP1v558sKwoGX/UdrsIhE9bjQ/4JZpIpel1Ve5jvyxqnUxQU7itxl8xHhuTKI4PL0fEN6u5HG1LNLxV5tyLDRVUMJiWakEBW2SeNei5h6vV/8Sa5CHkhZVRHYyxB8MumMNSofkf+Me95WmI0YZ169FF+bhlRoTGaoHych+utHXu2tcYg0y7dBmoeRiGsqXT6ddDDC0hNl5TDsh/SFGekIRngizoqNzi8pXJEPbPsOhPy7iDdtdHrObTvkQXZBRK/bDSRzeTqVMdAYsfz4qp22VQeR2kilHcRdQ3RUnaqIgRjkO6r1Q2OULHIIj4xRaeJITL+wYqKdADL1KbD8Bj0nsvnmiOFJ4zlke7GVvWiIDil9piwfWngCuVK1Ed5+8gAXzlQv8p/CFm56/UDTuGEZR+lRI162M4Urn+FlpBQYwaGwDFTxPN04Adq89Vc2zTjxpxXSAWIfcSj6jC2SWBFOpCfPSFk/CyfaI+jpNp2E49gwZC10jsJ9Kb6R854hECcVcPGGBrUnblLwH73zJ2ec7gUlDt8rt3C8oYHK2GZjnIycrbjFDQ2cbaqhbNEdZZzfwKwrw6oULrDFRb9okw+nGjdCv/qGBXc+8R3voBsN7t2DO9ZfHhxi27YcqO0CiNga374uC/05LEqh8+yHsSGshflCdvn1VuwX305HwYoP2JqNvYYqch724UrlZa0TydjnMysZL6fCsZGqz3T9fLyxn08X9NUPOWGRTI1X/PMW2KXXSWGkPC1shNKG5l9eNBbB7OR3mgljUc/2ZHR0Lvyvh3FWUlNhEwFjs5/4E1Nz8ZWnOcUCpkWGLvSz6SBm7Arqjhq2AXPawziYdbAA82IFK//N5zXGb/pf02vdYIzF3x6vVRNXzH1/7WNRjBXGgB2fx3pLA8O2dWKTg0MGY/tX8dytCS6MhU4UZ0wGNYbnwYwMy5Nt5R9SqRORIT+UP3VtsTV/bVXu+FxFx8laopylvnhG7F+iMuH6ysknbf7KGqdQjqN1jsovTs5Zoqz1lJ27dQZS6WSVDz+yn9g6z67sKgLMiCyFslyLUKJc6JISt/QP9GmfbiW5nQ66ot+lSsh39a0+1wQl3/Genav+nkoEGjoT/ecWSlKBw8kKBhilh82T4NrIrXTURnMpPu8YzT9S7On4aA4d5KbWnP6+Gd3Swe885JGJNm3U079f/hx9JmHPmb/aBu3YvvmnghODfvz9G3mJ8SKamYd5JKJuV3Fdx07rlOWQ4hKj2s27EsWKQW4HmnixMMVddzVs/YKtYta/kww/5tGKvl1CVgbVzIo2BQVLT81WFY7lD/iBq1nBYOLDE9qIRIUTM6zhqULOCt74TXRzDE7Boj1vJjCbSeFiP/eW5sq8fM/ASUmMfaX8ELfwwux+oHzpf0/1oosN5ReNo5JJutzylUaXWu20V+WcxrLti4mVctR1g8Lk9KdyyjlUETXtqnLJL81UzbNo5NoexONOWfbKkm1mTp2Yipal9RWQQDx0Ze36jeG0Ao1sbILjZAR7i4wL+VsKramnDKFKC5vjJyRj2vq91488IH0z52u+q5CLNAsXL2d83mI512jV/GJxeTnLQpYi4ilzRermKB0h6uhyB7FjN7Iup8zLY+9TUdm1slvpsdOsC/SXrXuzq+sOKkvZQnbDnFlNSkcLdI1fBwhJHRbbOPBrTZdw3OwgzG36S14W9ChncbgqqeKmry/ewVgSop13/mt2t4Svf1JVXL1vMUkPVT/mdLZ4H6fjQGNxLC7jFafaE9BVRG72TKC99UKcMYfOw4lTraivkh9VZ78sZvPWlfG6XYsYh7sBS6locuHl5bdzWf4OYhzGf24fxYoV+qW9ZFHyJomOKl18kS1eXDDrYjcy2WgrqpVLRNEw/hHpKqYJq+VazGfq4/N6dDU3P6kJk+RSkSnCQ9zwtegIzN+7oCLYzmwj4kvzXP4/Xvn8CXaVrL/LjCIx7v/45EUW39cjhytrjLXCvb/Q9wXN4t6fmIguTHG4LWxtYRUlp4p9z2UZP0K9cE74m6v3bcO4tXfGNkGqhMgWVHV//byy45t3t/E9JqjLbqj8VhUOjxCtd8okcVN8JR9KeLKtGz/2O69gxEpS5/SIUD2nhN35W8V5V+V/M/5nGCr00OHOj31B27zQuiKTv7looeuPTda1ts/lWfCx59BdJwre+o2RQA905CZZVrOZf88S1DUuKb1x3i+3z3ThYErKXPBJ6DHViRTp3G9rc1cf0DMKMrnJcZ66R8hZzZSkk/vdItDRM+4mu5qWQyLcqZ7R9xII3lk3/ztinBOiuZ+Q4CslwC19bjPmA23OV3fVL+sMS/xVZM3UJo3m7OQRc16mRyn8bGeiIss9PLM79bf4n9w24qfSFcsAEYlspQuBswK11Px6S3Th3dcWsnz7mubCZRv4Usxie63Fk7Ma3Oyc82Ue85H/Y3HYv6KXNWgzlS19T4ivRXORKT7zOPOm3OlPo9bjvF2TLrSht0syuTiuMx1VB/BSbBRTRBO0MnlJnqb2r85numrn3otHn+dtnrTweUd/nMFiVaNU5rB0aZWNTkDdsSvD8U2Qxu3iokv5tfNK3FaxGVuR83eF1V0vbVu2afcIG2VgC1aSn81IX+rQiOsfdj2XIb1sx8i1vMPzwrz8WeHVkXSZ3L6S3fAqnpGbeJe6xlfpGukV2cKr7jxlzb6nF6lN071fDRIkuOV4TF/bMG9IsKQbO13xq1Hc5UYR2sW3kVH83d5p9fprH7g7jtNfsmgm4kX0HoQOaHtw/5oYMcvRM8Xb6BWRxA3luK0/damRTVnwA2Lma7ZWu1zrgrJsyw6jaSFmzAYjDz9wPWOTDvf2S0wjjRHPs8d4cPk6HaJ3Mk3T8r1ZYzE1clzDZC5JkRGWtC8EsQ8r27ucTn3Rou9ZxlJfxZs1xGM+ci4Ui3oO3UlKtZb93fzytSfnI/faP796zFKN3DKIkqcUOEuauVXtVS+kzn2y5W0O3eMQ/3Wh90X/eMrFqMM32jyfOELmm/PlXySnyKNmyk9b+XD8H6AcFIk=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAzwYAAAAAAAA=eF6V1HtsFFUUBvCr1IIEdARKKy0wtOWp4kKhDKXACKVWrLC+omCB8RWbCLhBNI3PMWJSseomBGhrtUvl0WApg2BdqOioIEWNjihGNIFREdYHsPLQShSk5/vWZBs08f7hz+/cM/feubNlQ96L+ydn/jRRyXhl+bn/9In1ntJ6TvPhtKkdOvYjt3XYNnb/zR2q4jkXTeiwaeUf284RX3A82FG36y+c3lF3s3eVdmjmnbxO+to+y5H13E+mSbY+PV1wDn+9c6esN3On7GO/uXm2PH+0VrRbBt0j/bdONkTtWC/pO97lVsl+bn/Zx8i8RfLbw2+R+bPPT5G8InOSrJ/fZ7oYPVYk9fTxJZIPrxgl2byvu+S6tFHov2mCuLvqeuw7JEXy5PFzxMWfj+/QnfXRXZLX7Z0hfTv2mmLW9ELx0EtYXw2Jb5P5inHSb/Q1xMZCnGdV7o3iQxtxzv4GHDAP+xeMuA3nXIZ1QmfSJc+/pliM5w+V/qpLC0RPS8M+LvZb/4J8P1XZI0+8cuEYUa+W+1S3TxyJ938U82ZBuhjYeiXW/XCq7LOk9zTJBWtN9P2VjfqpayWreQMkB8sGi3+uKUL916MFsk8t7sVt7y7qC3JEq2Ek8qN4jx27S8XQ9GFi5Hnca8oXOIdfhXsLbbxC5puOXIN9Dt8gdfsM1tHrrkI9X4mx+GisNxPv5Tn50h9txn1EApgPNF4hda0YvxOteBzO52G9kiycIz53LNZ/DvfmH8nD+/fEut5S5JLBuK/AAvwundPFkq0D+O5+abZkuwb34H+GewkORL8WwHe0H+gqmoMD2Hfi7/J7UD9cJn0q66Tcs728N+4hFeuEQ/nYT43Ac3cMRP/mnlj3mwGot6dJ3dwzHO87vLAVz4+VbE1GPRLEuu4BaC/H70ClXo719uF9VE1P1Gdxv7yL8X71+LtwdwZQj+L7+PcXMsu/K8r+Vsf6ffD3r4q6QrcV7xmSf1eUu/Bq9E3C71k1cP/sXui/pB9cdym87wKcswznV2NwD2p9JtaxWLf/xD5Dcb/2nFzUn8HvS92UBf330OcPQv4e31GlZCBPwjncYq5b+bX0qxre1/5c9Fkp2Gc71xl5Ft/3yf54LhXr2HP5XvPxHqr6BPqMn2HgKDwyCH1aD2icRj0Hvw/VfDGe36jBQBzn6vYL+lbje6nHFKzmeb7E91KR95H39OV9teK7VemYf6sd841dMD8M96miR2A594ty3epvkUuOwcChbVwXufQsrDqD+ph2ZCsGy3gfAe4bSUU+yP2dw6i3JM4TYx/3tXiP6mPkSCvP/x3PsQGa77G+H5adQH9wL7LxJe/xIHLiPS3O283Q2Yu653F+B+qB3VDfzv128Tz7eL5yZP7ulBmFtgMb98Awv4/aBPl3o7QvkP2dfP596OzkeV2ut4Xn+BRZPcVztrD/Ha6/lPMvQ30dz93A+cfpIr7/M7SJ7xuBofV8rzr2383967leDfcp5fssY34W2QojR6hZyXWM5Oesp5nv4nkfZF+I9bl8/9uZy3jeWcy5CVm/mQa5vsX5GVx3NjVZ15j98XhuAuvUTPRdQmPoU+l8bgTrfZh70RR6fCs8SRPjN65znHZnfyo9xXobz5XYN8p19jEf6LRuIjfTd9nXynW2s97AehV1aD3nlzA/Ru9hfRENsW7S2ayXMeu0iHWd5rJuUI1225qcTxrJz6lEH/U470fhj9Shjcb5DdEIrWD/Ymqx/ggtp6XUZF8hs8GsMydG+5swTt1x0EnIehuNsG7T2k7Zoib7A9RkfQqzYu5H/Rbo5UOX2WFOjDBzNefLmc1OfTrnFY2/AWPUGwtd5giz3ckg54PMBtVpN+ptgS6NjIFhWsF6YhiJ3Kke25ycG/NgZaf6P6NT3RudnMOvw/LX1f8a1ihobvrvvsQIOlCj3tX/3ivjX+bNkfyfZuBeBS2qbWC9CYao95pKGnqnHB6hzjsiw2GQ6tQbBq1GWEI16qyDNtWGwvha2DYEhmiA9fhgdd6xeA3U1iTXndUwSDXq58A26rwKwzTIusmcGH423EHtBvYzGzSD+oNU0oisghU0QIfReAT6OnRpiAZpGVXsj9Wr844lrC+m+kDYjcYGQIc2vQLD1GRdZ86g8f7QozYNUetllTQ0Zj8ruV5dBytYL2E26pL7vsqE3ktwLfNC5nuZA9C8lnWvFh7sB/cwr6a1rM+nC6kO7Rz2XUC9y2EDtFfVwGfp3VCNZl8Pmsr699XQoSvpw/TeDDiN9mC9K42uhFvSYYgmRhFzBo33hW0rBPsgVC20kj5Bi2gBn0unZ9LgB9Re/jfs/cMGAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAfBIAAAAAAAA=eF4Vk2c81Q0fhyWhUka67b1lb8c5/59CQ0bGyS4jo9smFAmFbDKy996bQjbZIXsl6+BwTiKj5bmf75vrc13vvyQk/9836GUufTbRapXS9k/Nq9ZDIoTkmamZ7xJBZDprY22VCLZpPOc15ojQY9irkTBKhK38f3Xae4kwyiJUP9RChAFmdfqmGiJce4WcDykiQi7GSkwugwjpfynYu+OIMMSf5SIZSoQov+YW3xdEEBsZTipyJ0LCinVytR0RXIQ1tJPMiFBzitcw1SVCNcNb3j83iYAVH37krUSE7eLV1M/iRFisE7lPyfsfP3VyMDISIdu4/SUpFRGm5HgpPp4SYOFaspz1PgH0FeqSFjYI4DnOUS0yRwCXCsWz2GECTD3lo8O2EyBObeWBSC0BLuFE/53LJ4D3ZnbNgyQCUBDL6t6FESDkl/MO7jkB7Pd7J/FOBNDqsNjuMifALG9rtrMuAaSazrsTVAhQwn5tEmQJkHx3Gm3FTwCD/XBWQwYClB2HrrFREsCEq5S87ngX3LojDpi2doGNuZBFe3YX8OPSON3+XThVuNTN+34XFCNWWLuLdoGEndNYImkXnvlvrdu93oXLtjKCjp67kG7cE4y23gVLUj7bKb1doHxQK4K6sQsct1IVbCV2QdhmbNeUfReUE4Qrmal2Idjv0XzmyQ4YR9CN4Td2AP2i4dufzzsgo9/3drJ9B4IqSjjcynfA42c3bjx5BxjCfe4cBe3AElo5c8l1B/zfJKuEmO0AV4po9P7tHTBP75zjkNmBt1qmflQcOxCWJzHx7vwOrA92SPAe4GHJe2FbcwkPAxUlhrJ9eKBSnR6frcYDfWt4FSoVD8t0D9QMAvFgtPp2S8wRDyK90gftWDzEzo01USF4MOn4m0DLjwdNR+bFkUt4cJJ32lD5sQ0R6iYXXRa2wSXcu0C3axvUh+2p8cX/ObdstkLMNjxL1HyH8twGY/Pkqm8m22A3X71ldH0bwmiWOz34t2HNlDVV5eI2iOKipzuJW6BMojH//fMWUHoGXfzcuAWIyrcxy9QtuJWamJT9YguO7/EORVlswWHHwqyQ6hYszZLJuPFvASrtSNuWcgs+zEIB5fYm/Eocr8EOboIXxfo3zbJNWIWY1W8Rm7CkSk2HOG5CcBHrWVnNTShcO1WZFNmE8I4oO3aqTSh1FaKgweNAg3imubgfBxwclrz4QhwcRIxvfg7CgaJcSL2VFQ4qJbSVUpRxsL6/JuHFhoPnBii9nycbcJs4assztQGG1uuo79UbcFrlnW4TuQFkEb22/nYbgI+K8wGVDRglunTmsm0ASztOtPxoHQ4lxxtNxtYh3SXOsrJkHaQ/xikVvVoHvkIwuGm6DtGnsZOhMutgtaG77Ea1DmwX7paeWVuDhb+DnnLNa6CG/RxJG7sGz7UtbsbZ/b8XnjYja7DWnC8YQb8GvbhgNNn2Ktx1f9DO27YKw+2IOiFuFayk+X0t7FbBm9LwvB96FSxIG8pu0axCfxG1dMvqCqhQZ3kvNqwAlknKqSx0BXRHXpwXNl0BVEi6kYHYCvgNsD6TJVmBtod+8T1jX4Hhz4ttytyvoL1jMkDy5CuQKLPEV6h+hQSBjZYrV78Cm4HaoOT6Mpya2GAv1C9DNc6QIjNwGY5ETLP39JZBK5Ph4CzPMsyphw5Xrn4B3/3jjSX/L1BE3aaVzPYFcE9NNVffL8F3H3bdDuwSnBZIH8nvLQL6ksTfuxGLoKpK1CMVWIQfSy/ozTsWwFhNy/9fkwVgn/lEKvBjHgxJp6RTo+Zh8fDv5JDAPPD6v5/uaJ8DQUm8lr/RHMTqHftd/j4LWScGU25hs+B4mour5Z4FoadVnjNNM1DZS7TH6c7AtqXIDG57GlbbVfaWX04DeceTf+aYpyG89cLYXM0UyEzODW6rTwE0NE7Srk7CXyPVZQOfSaA6Lf/bfWUS/pxoPLIomwCLaJSNrNoEDLdZe95Z+gzutBMcBV6f4Y7VEaU+7WfIwdZ/MykdhzdJqIpetXEIvyckkr48BuNS1202fcbA9rW8bTXDGAjM0dw8UzcKQvocQl/vjQKpBItn3cIn+E66aIxn/AQlgdH2z+6PwKZ77wXXhGHIuPTu7drkECizy1puMAzBtsJRSYjJIFjJj0UvZg1AY3Uc/RGuHyZNZehxEv3AuBIg3ebTB9XidJsxfR9BXHnPwpHhI9zfFY+2tuuFyHOHtGHNPRDTFiiOp+mBOt7+iSS7biibhrCczi7wCN+1Z+DoAvOZHTbyF51wR1697/mXDtDzzaALVemAV0z3ryqUtMOecyH27ZV2eLR+9/nD01ZQL12Q4Vj8ACG8uCsB7S0gmhF6nFTcDAb+wubPkppA9C6rinTkezi3Gso09fodiJIig84hjaA1IJ1HFd0AYxcfYhtT62FUJn/haUUdzGYYvTT8WAtfjbumTDZqgOJcf2nwxRo4st+5OC9XDTRGe3JGdlXwyjnj5ilUQkCi1/eE5nJ4YRMs4qBSBpKaAdxPpktAW83XLs2rGHoKhclGeYoAtXYh8nC+ALY7VPgOMvPBY2c+rNg5D77EKEgcqOeC2f1CbIVkDsSN0rFW8mQDKZtp4gBnFgiuaZ3k6mRAavlZdwGvNPgZbsLSWJ0Cle/SfddJkqGp7NoT5UeJ8LL6gr3OfAKksQU1p1vHw2XqnLOFpHFwJzA5FF/9BiZjFqI23GJAwyNWiyssCoaflGq0a0cAwYTibJxsGNBsdhn6oULAnoQTZ2cWDHNnYUEyPRDUJl5WNx+/BF2n93icUwDMt14slvzjB66VAw6PNH0hL5JLRGbIG5KIB0VuXk8BzeQ7dqzhCUvmGuuF6k/AKC4s818nN/DSSzSTa3ABj7kpC0ZlJ4DXZG/29ezhgaNrmUyeHSzvOmeJidoAj2iLkS7eCtRipn6Jz1uAspZCD/H7Q7hWQk5xFGQKUba910wfG4HNyRFKPfE+/E56YCx5QR9eNgawfWzRgZSM43OX9LUhSxWn8DDlLug+guZIldvQ2PFHT/CWGuwdpiqppN8AJp3Xck8QZZgvbU3OuIUG9p4AQk+kwn//7b9gpyIL4flRPm5mUnDAQPvFOFcc9MREVq1Er0G1mFVf2y0BQBtj3QtXeMCU3OLiOyIn0FPOiLd0sUII3UOmAGNGENLjEzaMoge77pzAP3dpgZeORuEe2SVIwOms9dygBOHKAY1P8mTg41fy52CABPZoF044hn8hxVmfW2mIh8jbJ+F7YnPfkeKSv/tyKwQEdTJk7yqzhaiPfDIMe7GGRAiYZf5KXkZeX9xVZB+cQ14xiOr5h04iyFyi7n1kDPH88dpWyH8Qsbpgiv0z1YOMd8JsjloH8oX8mSODTDOC6OsppevXIyUxPfFHBVWIHkdILXalGNG4+1UslzwPUakVbhCayUBaLLw4nfISkZO2nxRM52MRujM3UkQswxHuaN+juMpA5OdiC1s6ox8yExdwdU/ZC0kM1pGK0HBFPB9VY3VTHiMrbqslt2YsEdXsjCr2RBMkO9sja+GqPmLmE+ykQa+JdAsNCV0gqCJakarnqQ8wyBxdBc8bLVmE04cg78wlhqQ8A+o3InzIoxRVG0wcG1KmfMyEBNMjIYK3f09pUiHftT5MJVudRdjllH2MrH5ipu44hP2a3MM8fhipyPIdh8Ffalvu3/mCuT1uXh/JNYmJem4WWtMziHnWGUdzwtaJWbEjVsh5NmL2Wnx+uwpUYIRtL/KVonIxboU/Z9yxSZhI5M2LjogoDFqmyWHo3CuM/qPnNy/7eWFIXV3H9j86YOR/pAf5eltgkiL62CipsBi6YWOZSI47mEqqJjfJ9xjMyipqsslBEuPm2yYlhfBiItn5d+w0GDAu7j/Tv0RfwDA8N5s7+fMHTR70Lcir+xv66AZ35H70CrrhNmlgnsEEeow53COTphf9sElRSb6yEW1FT7jkIlCMpuj5qxjsmIJuoa/V8vcMR48fitd1KTxHyxXeWsouc0CvhXvtjw+Zoj9I6HNNvNVAOx3URXBeRKNJbtVjQPQa2sml/0fOWWZ0PJG4aJpIiW6o/LVSsH+o1PXuO06Tb13J5YFOLTnqs5KINy6hCTqUREY4mWteVyj1MklTe+SnKJF1/rFCCMFKrX+LDrLd3ZW68722Z2+YK53Byynq9qsr4UqtP1I1yyq5qaXsXTDlUorXl0c1aF5UqlA/J13J9QP1FV3ldp1hGZU3YpMmydyH+s5okdrXVo2aFH5/kaomGaV282hr6OZLlIhU88Kv0Meo+XfjsSFBOqipyrjVN8nyqFaPWYsWCQ7UoF7VPR95MtTVIG9NdM2W4uM11E2dM6OK/RGShXohtYpJNI4XSgwSFRlpY+gnNH0Uu2t0f/5FHioOZPYWJvtcV5zv65sl5eBRjLlTnfbRkUxR6Yl781XtdYUbZ6/dY6/qUbjLIiIZHpyvwJ2++ZVlPFDhdg/hLEO6lcLIh11h+1/XFY4lW7viKDkVXn3QiWXv/yV/WIRItppPyzvHUd1GXa2V15UIXy6UipL36Gk51uKxled6q1cYzH9dXoQve6/xDaP8v8q3SMJ/f5PDesx0JeX1ymVLdwwtXU6Xe+fg5li64yrXt5xxPl9RTU7OoE8IdZVRjhCYsfKAe1u2AkXLGE7bLKusL0q+UBMmWyPMldx01kiWX3p+R0qaX7ZC26XZM+W7TOz0Q4cg7AcZjQ2bZcnSIBl9acuxkFlNmQmMXsIn6isymIIShNR+SvpVFtVl5ytJ0tz9I8bGZgbSN6x+D4vI0UsXfaLgIUsekQpW+adxtemVlLiY6PRpj4xU2d19s6f+y5KH4+T2u2L+kg+4Wo9I7NclECz+xTmRjqouySzyjh7pKr2n5ytFSmgk2Lvfz6ZdLqj8nNi8FG1hUTliWJ/EH8soPn4yIPqForKC6cyi+XHPk4owPMWdUV5ZsfiE20pxCSvlKtTr97NO3MsRpXbRqQAjUWxBvfp0KXP5zXKOEyXrUZHHAVm/87styu4+KxM0PFYtQ8mnbOWH0YmcCVEqZnWZKN1HtH1LCqOviS6V/nk2JlP60foKhvExWanYDwmdReMFYQbOSJzppcKSGW6pIGdrR2Hd3lN1vznREtcnFiWEoVWhiNrcZ1NtYUJO5xoC4tmeF1dhH0dXtt4T8tRjJRVoZCvmDBcapwpdFxTn0n3/+1Nh0YtbP7ZsafUFb5La6SRLywvSO/ka26kyFdF9Ubon+GlPABPMhCrj7ikkWbjMsC/9VmAU49Psy/WoELXmYkxrLSyw/GBla2tvkD9pxMT7NWapYEYdudbn3s3P8yZasDouv6AqdvefpfRA/kDc41Pu95YFB5HtPRovlfk/ZjeTv4xnLUh5wv/wncsxH2fnuHVP00R+lHQoHPhU8zkcfqjcs4jMl35L8vVrlh0fpoGi71y6an6W9/ZMNYaLb2W/caBy6ndeXkXzU2quGV4HQcpLuTJ1eWv47A+Z32J4451mjancHPJqX7v2G+7c4v2jeWjvLMibR4PljhE9d4bXGy2vRTuykIuEs5EZO73jca7Qj3Ttic8Vmz1s4K1z5ZlzUg21vK6VOyDQaVCEF+JpFZopOFUhz730i4h9LLrKPdkhHbwb3Z6j/FW1wKkyjZsvredRzebTnOjGR8nWVVju/HLZ0TWiVE7NYL2KcTwNN7uatYYA6262Vr1PyU5mP1fh0FNdpoyC7PHLCgnaZIFc1xOTdXi7LLJrqc8eIqnAdafh3Kd8Sdbs+yEZMhTyJ5wMWjxy3alTWToSbzkydOs4oyJkruvfi82KCj0Q1w134TQ3/js+faiZFWNZ7qsufY0zx4fu5rl2yqw5FWebrtgNjk8hVFZVOd2ZOM7XsRKbORw0pBoxNaYBmS6Bjw+ofzzkcNHBDIc8w2TesJKYv4GwcNA7D1OMKJ1kYNd6PlbYT7OXeTjRo/vqMwLmyB1easSzl4YnUVw7cMsw4ioatWnWYf+Gdbq+kCGREb+09UVcnpq9hK8+9K/Zbnq6l86lsPJBtuNwR9o2rpJ0FsuReySNIWwzNtNbDP/apjs3W5YIK9xk+1bYf7mcnS89u2qu0IiFjI3HDD4KiqymdS3tXr+j3cl625GRhflVdpr+qMgJb68/K83zNC0mBvO0LYRJLmYLYWW/8sVKuYUt7UXt+Co27zeLu1ZqH13WfOo9GcR8tbyJpWmFo9FoKDm1roaYJvTzKctzxTcsfHKGqS76k9aKfvIs3uMtVxwm/km91VjjMytzyJwzRvm7LXMyxS6YKGJ8tZ75/m2deyt58SnvSGeTX97zYP4ff3wisg==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA4QYAAAAAAAA=eF59lHtsFFUYxS9QCiLCAgW2UGGwINvS1rGUUirgUBFbQFkihIJGxwRJ0YZsDNEmGp3URorRsIZXUYQBUdeCuJYCFRTG0hBUYrY8q1ZZsBAfDSy4alV8sN85mzjEeP/55Zzv3O8+5u4eXbRwfW7ulSnqX2N3r3vvuAY7o/nOBP31+x/Zf43W8w+OSuicsq2PJrS9ucfd4p8cni28ZWJ2om6l1pcltJpTdndCq/MFU0SfeXii8MCBhZJv/TJfWDPoPpm3YdZc0WuCExI0XgyWi7/9ldnSp+LT8cLflpQkaEwZ9kAi59QsvV/8e6uxzsHmyaK9cV24bv8M6ftEykzRCyqxv/jG8cIne0k/VTggX1hXIX3VqoL7hb2Pyn5Un4duR24F1jFfulKc6JuyEetHP/41odXk1eOkHmrNFC5fI+urDy/dI7lV/WaJbvurWFgauEM4cMw8oV0zUPab+z36BrthX9XF6BM4PlV01YoZwsl77xLfexZ11XCDcPpq3JsZkO+iHpuB+g9/4ryB7qMxv8cs7P/9TKH9cx+hdh/uR507vy+BJecWYP2+OH/Xsumol34k9Yo8nGfbenkX6jtH3o+yPh8s2skcCu3FPfobSrFuLtaJ9YfWvue691yVvlpjiWjrj7HIp6YJfXH4sVWFop05c1B/i/dfWYp9RKeIb6Rjv7XbcJ+dqTPR90KBUK+YKL5qyBB99DMD/p+54tf+AK2W5iH3bSrWfWo+ztXjFqmHD00SbU4tEOoGvrvy4z2q04MkFz2TBd0xFH0fHwVdeFbeUdHVaTjP5DFSt0/hOzs2vtu1X5TkrKj8/pR5cALWTR+D+sjB2Nfsm8DHfejzOd6Dll6EXNqPcs+RUzr2sXIg1knPg97cE7liH9hyVdbVXsd3NLaMlpyxGfdqRDXMa+uPc07C71Ydk9+LMkca2M/o4fCf7i50MnFfqn4gGG3F+Ybif8NZXwx/Kvsvvij7Vl3HwexR8HMuQzf+LvPVrTzXPLxr1S8F62fgPanynyXn9M1HrukXzFszgLo/cnMzMC+N3+vrAfC1GPKVI6CDv2P9jlTkfuQ5vdxnK79f2c1St27iefy94c/He1SVuD/17I2gcxzrxKkHeVjnPlJ6cd5l5J6j33YF62r9oM1L0Ce80Ppp6Kn4Duok7z9nGBjG+1HqG/Td8Tfy5VEwMAT1rXhv6pne3O9J5BfdAN/qRD6F91nThXpQQYeotYugcxh56zDPzXdo8R6m/wSWdINvtEMvow5/hfkGv0eE+YoO9v0CLP2V7ygOqj3IedqZ207fD9/kuXZ0gP6zqKed5z47wdqvec/fgk4jz3cSeudvPP8prtMARk/Dr+P9Js8R+4r5Q2Dye2j7wSquFzsBbfMc1gau/xYY5L2qnaCB35nS90BrB7iPFuZ2oB79hPvcxb4vch8V7LOb9RA1+6lNzD9Pv57neBN0NnG9tey3ilzO/Gr2WQHfXO2uqyDPV0u9kvt4hvoFch79Z6mrqV9mvxqev5r7Wsa+j3IfS5ibzvkG88uYX8R+85mbxpyiLiSHgFYZddo+l6/yqTOoox+AWdRZXIf9HB/9PpyXRw4i2yeBF8gIaPVk/SL7H5vk0lYXc+fof8mcQzaRn5H7mLPJAOfvZr2evunOWW+wbnLdIOvlZDWpk48x77+OPnImc77r5nlYn0Aq+hnU8SJwBP0UsrMJvEyeuI5HOM8mP6RvkyEykCRzQdKkv5xcTL+UnE3f0+TWXjI5kjoyEXT2ghdIh36YbCJDZC1pkcvJSs73UxtkEX1FeunH9oCdZBvpFII2dR11gKwiTTI5Spkv3uP2o7vBKxPAI6RNhsgAcybpJw3WPaQiI41gOxkuAIOkSd9PXUqdHLFdYCTJ8e56gNpP6tfVk8NpAG3SynfXDWovGb1d/e8w3gc9ZEQHw2HQ0t15D3X0PfWfw6DvuQ10doJWHuin9pDOu2AgF9SpIzn0dyjXCG9nbpzbD9aD/mwaZDALNN9R/zsMH+ghnbfBclInPWPd86xbQR/pISNj3LmqN5kjvxsN2tvcuXL6HvqRTOZI4w1QJz1kbCt4hAySfrKEVElyRLaALaNAiwyQ5ayXbHHP67DBFg20NHddZ91nu31nJBjeDNaNdNcN+gX0c8iOEWA7GSatTeASao300o+/Dh4hQ2QVuZjUSQ+pyOhG0CbXkGYGqFHr1IraGQ42kztfAwPD3dToa9SxV8G2YWCYrCUrSJPMIftynpMOtpJh8iXSIPUNoIeM14EdXjBE1tNfSWpeN7vWg91Zd4aCzfRryQpSZ10j+9KPDwHbyEby1XVggCyi76W+uha8SIYGgx8P/gd1O9NmAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAJQAAAAAAAAA=eF7txSEBAAAIA7BHIw/9BRJiIDaz5PRUbNu2bdu27ccvHGzVgA==AQAAAAAAAAAAgAAAAAAAAFg4AAAAAAAAwhEAAAAAAAA=eF590mc4For/BnAzIuNYkb2KUAkZUU4ysjKeisfeRyISImSr8KSEUJnJlpGRfYok2ZHMEhmVPUO/9+f+X//vy891v/he93WTkf1/56z6X/F9OpiptXn99H+dFPaBKMAWDq5EPzNd3XIPvN1BhtVMOx7cs4+9V6ohGfyvR46c2wJp4I+4Bn+5zWSAN+idSievfgYuwEjR1HIvB/yPTU59l2s+uBkhf1rauAi8k03Aezf1BbjtCVsXoQOl4BYeMzqMj8rAv2U2N7znegn+w3xj3D61AjyzVzxgQqwK3F+LZGxYUQ3ex62VUKVZA75a0ekiPFILvhUofOSxdz1448G4BA66RnAagqb3wmd0AYZK1i+FTbiTLKbnP0P+Bf/YLRPGTXyNf/qRKbnLvAEv7xMjLDI2g9eeP0vM+oHeL1y+QGpvAU+wTayqKHqLe7NndheMawVfci1f6vN9B96cJHpgwLYN3N7ra52U/ntwrY57vaMn27HPlitXFyQ+gDPILWb9w9cBHj+QHqHH2gnOQTyaaUTdBb7y8+eBkyHokRMxdnZk3eguT7M7bqGvcbxhCCLrAQ9M45/wC0F33UoP/pe6F3wuwUuOeBf9NcV1M3XmPnDl6L22kYnocby7OcICH8FHRkjpvHnoSd4lHTfk+sHF0668VPgX3dao8oe1wQC4sw8T3+oYOu/+R5Mb7p/AZYK3vlylHATPrgnrs0hEl56bC26R/Iz5RzQZha/RGfpGmPabD4FnVTvl7VlDv+SnRAi6Pwz+/RcT1e0jI+Cc1f3lgh/Qjer/OBi6joIvtzhKcDONgdMJ0vCFlqK7pfQVtkiMg9ePVdLz30Kv1lh7o9uLTiNTTGYk9gX8jum+mWOB6D8d9TLn+tBbTr60CpP8iv1T9drshKFH+fePm4yiS0sK8ycpTIBbCK5dboxDD9KRYuyeR2cLvG35QfcbeL9hUV1lHroDb+KdB3snwTXM5EWsndHPMs5RCrehC55JSRmRmAIXoK6xfUBCJ1i6jqgtoVf4tkWvXPwOrn4ifze7Fl1zWaLDQngafNKmIIo7Cn04/cXw12V0Pjq/KxUWM5j3eT/xqBVdPVp6M1p2Fntg4XKOT0fPYd7aKWeaAy8SzQj6FYh+L5Sp8ew8uqd+1/1X1j/Amwemu4160Yn5/J7Mmj/B/wTctlqrQecyt46kOf4LPNRNcFkjF33PDntepeA8eFKIYpl5CnpFb8QDHvoF8IlwKiaxc+gxzn/b9kSikxSjhXnfov8wNprdS7MIXlokezFZE50sSJK+6zb68KeEkoI2dJ4l0yVphiVwtdUBPxsDdKp5PnKVh+hn+7ZOt3xCTxPlWd7lXQZ3Zt03NG2HTjdtWxeeh+630WQ/sIh+vJkufUxxBZyt1lItLQQ9MlThIHc7+gGBZFEjjlVwi7uUwpo26EVx+dTbBegtHsEV1zbR5xd1RQo11sD9JxrUCh+ie+9PZPWaQPcImYjdI7MO/q79Tr1dKDqLr14eqQ99bYbP+s7BDXSB8KULvuiz06V+a+3o4s4pnK6Cm+AL7tzLNd7oRfxcxybb0dkZvcnmhLfAT6dcedR5E728zvlofB86c8FF2lNHfoPTWmU7t99Gr+8JfnLmG3oA9dvVDNVt8A822u3zT9BLqKb8JLbRRRTu2JmY7YAHdtqs3KhBfxF64PE9nl1wWdfWD08D0Tt/iezN/YKecbS644X6H8xLDj+vykOPOuIfZ0NLpvpff5TaeXXmJPrReH351avod9M4T0Zkofvc29v9ZBCdxDxuqMJEDh4kornfUR3dj1ASzOWPvvBidcWkDL3yUPqA6Bw608LHuGBhCvBMlpoEV3N0/fUho7l49CQnaeXtTvQbESLt6XSU4FqHq26NqKMLLt75+CIYXeXSrCFvPTpjG12AyG/0Q0wJ394qUIHbbr7h3OuDvrF8JX/mJXqy/gNZl1V0qkgng3ty1OD1N21TL3mjMywYtjRXovPYeroNbaLHNEapJSvvAR+RZlmjDEKPMs5VPvAGnVAd3j1KSwO+dv2Ip7E+OkupxoTvQ/QH667TxkPo/BNu+hNCtOAt1YpT4i7osr2iEeLl6PFU09TfdtDftRWdNdPaCx7z7pzo/Th0R55jpMgxdG6DNFdVSTpwwaHGl3W+6PUeo+bkregmvTWWDPvpwfe+/lM34YjuSV1yK6ISneBIV7ROuw+8lv+CmaIZuoL/wxS9InQqWf2oExQM4K3ZwdprF9GrmDJ2SAXo12w1eygoGcHNFqQ3jYno/Sctc8JK0XmmRLkT6ZnAn5kSHsY4oF/Qv2B+uRHdNTdjbD8jMzhLUSStuzL6BeV3H0+5oA9mWviEJ6NPaV/gV29Dnz05TnlrC72P8YqlrMRf4J+2c50dzdE5Kh47cJDQm/KrHqo3opsd7FFeXUJvG7F/fvAgC/j5EA/+IVN0mZWMFVYSOn+nlV/Pv+gEwtAezg10KT3R5UkpVvDjUwqPVezR68VY7ARS0PvmG/Lv9aBXPPAcjaZjA7/i/ciRSw29NXO55IQ/upaSiczUS/TAXh9b8QX06BLVKnIJdnDdKdVSd0f0Fq+SHp8M9IG68FTOMXSSTng6gYcDnF6W4CBFRPd7RQrIeoROY/krsGYAXSyWn+L6/v3gAkTJ7M5L6Boibvu6HqFHdEYMen9GN6KIq2zm4QQnyCpdqLdCp1VvdrDNRLdS0Est+45+mdq6tkySC/xO0miA/TV0iQaXnLdV6NyPJynH/qDP331jXqB5AFwv7U6EdCy68VbSJfdB9OhPQ3mXhbnBXQbeWwm5oZ+ONzFLqkY/EhUf2U3NA/6cM76n3Qj93BcT6Zg09E0e9RS2efSaqcMMDqd4wU+oWN8NIqHLBz7mdh5Dn6U2+CAgzQc+fOtpSW4o+us53THqAXSl2E+e8hL84J+TntxXDUKf0ftuJdyPfj5eYI8HhwB4cnGf/ekz6KS7DdMBbuhsEk4vpFLQywxyR863oscKl8VPrqL77YsjWxAWBP9U1qzlboQu6vcmxSkYfdhS8PDAC/Q51oFDjePopALTduG/hMAVSw8ZUp5B52sQWLbyRP/Q07Ok9Ay9ibgTFz+ALpR7hNeDThjcizHmU4cKOlWRBesLD3T9UlY+jmx07udfdCmG0K8n9q55MYuAX1V75X1NA11kKExi0x/dYJfkTV+OznFhrDZvDr2475rTJ2FRcMLG3xPx5uhnFG+lfYtH9wqtZWnpRD986VrJSbqD4PqnxTY01NGLEzkdZ4LQf9OzBYrUofvQSLzd3ET3yP72/rL8IfDVpIADvl7ovAzyGgfL0VeO/jvpuYzuzGgbZycjBt4fnfxrzROdWoc++ehLdFbBdGWmdXTyAYWQREVxcOeLxQfa/NEvjqRX5zSir9Qn7ZejPgw+W6Wy6K6NPiNJRmsZi55HuCS4249uKilEa8wnAU5jcCDK0hGd7YxrgFAx+lCEZmXaBnrMQ232oTOS4Fdlc3x7Y9AFbWvbogbRG9wzlqkPSoHrCNt/U/NEVxGTfKDZhM64r2CdhfkIuFf3LGuOFfpeS/U52hfoREq3SHnyo+AEHvZ1OWP0MAYK/T3Z6BG3vz/L20SvS+0lsRw6Bt4r9/RHjSH6nUyu4B5/9NNtA3aXctATgzSKdfrQdwP8g16QSYObPoxdj5BCLyO/Jd9FROcJ0XGMuY2umxtR0FCBzvzPiNw/k+ifXU2lb7MdBydeLekSOIuusOOiJXMdvdqmtasxC/3M7d6sto/oA9oBFEY0MuBBJlkSJorojbOx9qMu6I7fp1Ymn6LrB8iJufege4S91A3cIwtOrihU/tdJdF27u2US7uhO8haZH56hmzhTjm8MoRN/zrYWsciBh18ea1w4h+4g63ukMRh9/MmPm3yv0Omn8jgYltH5GuzcYyRPgF92Or+b5og+WMmjeC4dvYsU+iRyGJ3vy/d8C0558AGN9Ol2AvqUa/ZQ/310rnDavwI60a/39nI2MSiAW3WyRWbpon8rWVsWi0YPu5r3+3w7ekTYuVPcDIrgbGky1tH66G5WYnTPYtHzb85OO/ait6t0FfZyKIFTHyMy/iSikz+2eFOeir4YrUmSnPw/8k2Pj1yUOAk+3ES6InMN/Qm9OFtLNfri/XerTBTK4M2/bkyx6KCnBX1p6HqIbjz70VpnDL1bRasg7LAKOJ254t1Ab/T4tt3vSq/RHfmtKmuYT4G3N4rNU1ihv5HSjmIpQk86UhP9YwedK79+84H+afCAbdIITRq6usqWlt4SuqRzTU6pkCr4dpPg3lxd9AAPsn46H3TdWVOhwXR035wFSvYP6KOnTOIaNtCVzLfnBkX+Bq9l/y7hYIjOKLjjaRuI3sB/fronH71Dr7+4chBdlFx75S/aM+Bay4Zfv55A3+dfkivhiO6kdS7gZzz6RqFYnHgLug/TYZEva+hsi6ZX2MXUwHV7d/PemqKHfI4W2oxCN3mexplfj14lb90/uohefPbP83jRs+DjZF+Gu0zRC8e5Wu+T0O/epW0cfI1+2dKIL28TfUuOTZXqmDp46dv18BlH9PVoUYLZU/T60kQWs350tpdRkrOMGuAvtzaZ6bTQ6bxCjtcGo9+59oSGohZdjEeDbmQNXfxEZJX+cU1wdSu2hyZu6Ieu3BPazkO/cIH4U2kafcWtI5jjoBa4wpysR6w9uuwjFsO8THQDtz+vHCbQ+Z6a6b4RPgfeElOb/dYenekju7tHNvryeqzR62l0cx3Sdr2ENvh37zgBx6vow5GxXq/K0HPTeyvqNtBV/OSzPE7pgMvnqVB8CkMfbgpMWnqP3h58Uf41qy74146JQh1zdNfZ/N6YZ+gGv36HRs2jh6nuSdVQ0gNPu/xmb1M4OuNUV+F2N7pP7JLvbz59cJb5xzYNV9BtuIIttGvQJX45uTylOw++RNMeU0dEV/pQ2p6bj368Q1POYQf9c/rQj41DBuAUz75N5xiiH3JRfvL6JnraaWZu7Wx06mmCt0o3uuzj0uan2+iMPzKErooZgr9TDswtJqAHDFr72gSjS4aqlIcXoedWct/iHUZvUyklP0xnBB4Qu+RYoIBeLB87/MwJfYZRO25/IvrqYZYGirfoi3NvEv5ZR2e46U3QFjMGV75pJ5drii5bMuobEYXeveXgMFGHHpLUdappAT28X8ZAUIQA7pDRNUVlgl6Y4WjsGo3+0Ytt1qwJXX5Tg6JnDf3a/em1LskL4HZlhgeJdui/5YhLbsno9bVmjcw96Ja9TpuqdBfBXSr30ZGroZ9RC7U18kdPzW7yPlGBTq3oXl+0gF5ivFxeK3EJ/JKZx6CNE7oh/UpRaiY60ces1mccfWTQNXqO1wQ82GSzcNsMvXPyWVlBMrp0nqHsziB6xf6GtnkuU/D31qPsEUR0BuO2qqYUdFPhemLWCHrFtOrzowJEcLVFWX0HO/Qvx1IoNZ+jO17/eqt/Dj2BmSqIXdoMvNT+bDO1DzrB1JY9tw79qsWAEjm1OThlTzQVsx56Kcu6+kA8+rlP/wyYjKGLl3fFJ4hbgM/G7do+uI5eznpZVL8RPWHcs/X9PktwD54oZQYi+mbLqDdbDrr9wR6PiTV0bZNKSX8NK/DEs/sKxhPQk1s8N1mm0WdGJu/T8VqDy+9LSL2ugU77+3apljv6a+lDnyOT0cPEEsRkmtHJj+eX6iygl9jTx/Zw24C3FR4aatVEjxTUKjl6Hd33aOBx2nT0wuXWYOMO9Is9+5tZttG/WJ0Q1TxsC36ufOfDogn6zd4Tv1hvo3tdq6wsqkRv4XW2ev0dPUpYldeY0w58Z8BM0uocutnSdtu0H/r9lzFKiwXolZGlDb5j6DdSTTJCWezBCa/ypJg10E+I878Q8EOP0I6+WVGELrsrOdkzgW77MU3dh8sB/MbW+kbWefQ4ozpLiwj01Rjyz+l16O2frbo9V9F1zjAV90k5gofQfRtvdkTfw2r2SSsNfT3qKZ3VZ3QphnsLe9mdwH/wTe/RMUB/+Vy0QzgavbE9ti2+FT0zzDwsg/of8KHZokgdNfQ9Lnn2D4LRf8s5FN9oRP8fwchz6w==AQAAAAAAAAAAgAAAAAAAAIAlAAAAAAAAAwQAAAAAAAA=eF5d2bMWIAYARcG1bdu2bdu2bZvB2rZt27Zt20yRkyLzmvmD19wAAf5dIAyMQTAoBsPgGAJDYigMjWEwLIbD8BgBI2IkjIxRMCpGw+gYA2NiLIyNcTAuxsP4mAATYiJMjEkwKSbD5JgCU2IqTI1pMC2mw/SYATNiJsyMWTArZsPsmANzYi7MjXkwL+bD/FgAC2IhLIxFsCgWw+JYAktiKSyNZbAslsPyWAErYiWsjFWwKlbD6lgDa2ItrI11sC7Ww/rYABtiI2yMTbApNsPm2AJbYitsjW2wLbbD9tgBO2In7IxdsCt2w+7YA3tiL+yNfbAv9sP+OAAH4iAcjENwKA7D4TgCR+If+Cf+hX/jKByNY3AsjsPxOAEn4iScjFNwKk7D6TgDZ+IsnI1zcC7Ow/m4ABfiIlyMS3ApLsPluAJX4ipcjWtwLa7D9bgBN+Im3IxbcCtuw+24A3fiLtyNe3Av7sP9eAAP4iE8jEfwKB7D43gCT+IpPI1n8Cyew/N4AS/iJbyMV/AqXsPreANv4i28jXfwLt7D+/gAH+IjfIxP8Ck+w+f4Al/iK3yNb/AtvsP3+AE/4if8jF/wK37D7/gDf+Iv/I0BAv7fgBgIA2MQDIrBMDiGwJAYCkNjGAyL4TA8RsCIGAkjYxSMitEwOsbAmBgLY2McjIvxMD4mwISYCBNjEkyKyTA5psCUmApTYxpMi+kwPWbAjJgJM2MWzIrZMDvmwJyYC3NjHsyL+TA/FsCCWAgLYxEsisWwOJbAklgKS2MZLIvlsDxWwIpYCStjFayK1bA61sCaWAtrYx2si/WwPjbAhtgIG2MTbIrNsDm2wJbYCltjG2yL7bA9dsCO2Ak7Yxfsit2wO/bAntgLe2Mf7Iv9sD8OwIE4CAfjEByKw3A4jsCR+Af+iX/h3zgKR+MYHIvjcDxOwIk4CSfjFJyK03A6zsCZOAtn4xyci/NwPi7AhbgIF+MSXIrLcDmuwJW4ClfjGlyL63A9bsCNuAk34xbcittwO+7AnbgLd+Me3Iv7cD8ewIN4CA/jETyKx/A4nsCTeApP4xk8i+fwPF7Ai3gJL+MVvIrX8DrewJt4C2/jHbyL9/A+PsCH+Agf4xN8is/wOb7Al/gKX+MbfIvv8D1+wI/4CT/jF/yK3/A7/sCf+At/o4E/IAbCwBgEg2IwDI4hMCSGwtAYBsNiOAyPETAiRsLIGAWjYjSMjjEwJsbC2BgH42I8jI8JMCEmwsSYBJNiMkyOKTAlpsLUmAbTYjpMjxkwI2bCzJgFs2I2zI45MCfmwtyYB/NiPsyPBbAgFsLCWASLYjEsjiWwJJbC0lgGy2I5LI8VsCJWwspYBatiNayONfC/W/4HiFogGg==AQAAAAAAAAAAgAAAAAAAAMASAAAAAAAAjAMAAAAAAAA=eF4119FGIAgAQNG2TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJkjGQk2Yc5e1/ON9zAgL8FMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5i7/5wU/+4Re/+cOAf/4SyCAGM4ShDGM4IxjJKEYzhrGMYzwTmMgkJjOFqUxjOjOYySxmM4e5zGM+C1jIIhazhKUsYzkrWMkqVrOGtaxjPRvYyCY2s4WtbGM7O9jJLnazh73sYz8HOMghDnOEoxzjOCc4ySlOc4aznOM8F7jIJS5zhatc4zo3uMktbnOHu9zjPg94yCMe84SnPOM5L3jJK17zhre84z0f+MgnPvOFr3zjO3/xNz/4yT/84jd/GBAIBjGYIQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+Yu/+cFP/uEXv/nDgH//EsggBjOEoQxjOCMYyShGM4axjGM8E5jIJCYzhalMYzozmMksZjOHucxjPgtYyCIWs4SlLGM5K1jJKlazhrWsYz0b2MgmNrOFrWxjOzvYyS52s4e97GM/BzjIIQ5zhKMc4zgnOMkpTnOGs5zjPBe4yCUuc4WrXOM6N7jJLW5zh7vc4z4PeMgjHvOEpzzjOS94ySte84a3vOM9H/jIJz7zha984zt/8Tc/+Mk//OI3f/j/8AcyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg3+B29LIQw=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAADwAAAAAAAAA=eF5jZh4Fo4D6AABDtAcJ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..9e82a52d609be85cc6c69585eb2d6c4f1bde4117 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu @@ -0,0 +1,38 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="601" NumberOfCells="600" > + <PointData> + <DataArray type="Float64" Name="LiquidMassFlowRate" format="appended" RangeMin="-7.1054273576e-15" RangeMax="7.1054273576e-15" offset="92" /> + <DataArray type="Float64" Name="[Ac-227]" format="appended" RangeMin="-9.6616858686e-117" RangeMax="1" offset="596" /> + <DataArray type="Float64" Name="[Ac-227]FlowRate" format="appended" RangeMin="-1.2570843099e-22" RangeMax="1.2096330906e-08" offset="7068" /> + <DataArray type="Float64" Name="[Am-243]" format="appended" RangeMin="-1.0859646742e-113" RangeMax="1" offset="8920" /> + <DataArray type="Float64" Name="[Cm-247]" format="appended" RangeMin="-1.5775978113e-113" RangeMax="1" offset="15392" /> + <DataArray type="Float64" Name="[Cm-247]FlowRate" format="appended" RangeMin="-1.0706819054e-22" RangeMax="3.9632086893e-09" offset="21856" /> + <DataArray type="Float64" Name="[Pa-231]" format="appended" RangeMin="-1.4545214007e-113" RangeMax="1" offset="23740" /> + <DataArray type="Float64" Name="[Pa-231]FlowRate" format="appended" RangeMin="-9.028547139e-23" RangeMax="3.9711458768e-09" offset="30212" /> + <DataArray type="Float64" Name="[Pu-239]" format="appended" RangeMin="-1.8817994042e-113" RangeMax="1" offset="32124" /> + <DataArray type="Float64" Name="[Pu-239]FlowRate" format="appended" RangeMin="-1.4206827021e-22" RangeMax="3.9386787088e-09" offset="38596" /> + <DataArray type="Float64" Name="[U-235]" format="appended" RangeMin="-1.7660941114e-113" RangeMax="1" offset="40472" /> + <DataArray type="Float64" Name="[U-235]FlowRate" format="appended" RangeMin="-1.1853562801e-22" RangeMax="3.9523502491e-09" offset="46944" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000" RangeMax="100000" offset="48848" /> + </PointData> + <CellData> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="200" offset="48944" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="55052" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="56468" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="57724" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9E1NDI01k23NDBKMkwzTNNLySwqqQQAT8gHCA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAWAEAAAAAAAA=eF7VUkERwzAMK7CMyyAUwiAUQiEUQHZXCIUwCIOwz+y7KdXJTvOZPr5YsqyknaYUbuJ8FU/B2z6lMyid8XgP0n/XKYR3gVrPKwPybK7ZU855P5sP9JGPnhWiubPI5kD07o0i6/8qv7Xha4xnQH+v9bei3s9E53wyF9NnEc2dxdV82fkjqD/EfYzP6nA/zhuPelpFDtQzKL4XzJf2yXtIXfD/w3ej/LfuZP9eoSbfz/To4zw5+xzMI5TfaGCuLEblUz5XcyLMZ6vndRSY3wb32Egepse+yu063Juco/dJvltzv0G+DL3+eO+VfAfsr+DL5hQaH5JX+a8kv+o3uuR+pkcw/9596j0Y1Dv0YunMY1i+OczHzyQf9nEO+wimZ4jq/h3R93OefDeGB/DNGfYxvfJBMN79yvm50Sf/c5Y3i1H3ReC9lU7xzTt2fi/DTPbOMH8vHziy8QM=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA0xIAAAAAAAA=eF4ByBI37QAAAAAAAPA/3jCXE8G0FoC1bbafz2PuP7CF1Jlm2Ow/Mp5gmEdd6z/1Ukf49vHpP50H+Y/6leg/QUwEAtpI5z/RjzKLHgrmP1RwdRdT2eQ/NB1HVQS24z+Yp3T2wJ/iPxtEb7QZluE/0mHmKaGY4D8lrH/E103fP8EgpBkhgd0/qR9buE/K2z9YbTXgmCjaP3pbvI42m9g/u198Mmch1z/+x386bbrVP0lPip6PZdQ/aPndqhki0z8NvRw3W+/RP7h9p3aozNA/jYI7+rNyzz+YqFUgmmnNP9mqP5LGfMs/3BBE7gSryT8OBBjMKfPHP0RcJqQSVMY/zMdPfKXMxD9ly7wQ0VvDP2h/xIWMAMI/QfFMWNe5wD9OA9Dmcg2/P2wVAhqGzLw/XjzovBivuj9G5RUZa7O4P/UoHVbN17Y/jZoSK58atT80ITVbT3qzP9sZynlb9bE/e/Zkqk+KsD+AsItejW+uP2AgFcDS+Ks/X7rNIdytqT9SnYX3MIynPxzk0mNzkaU/EpuJCl+7oz9zz+p8yAeiP6B7QgGddKA/su6zBcP/nT8CYhP8Y0+bP5eyiRiC1Jg/pfNVPK6Llj+2FMrGo3GUP4y6YsxHg5I/nkYJhae9kD+KUUNl7TuOP+ElsKkdQ4s/lpEIE9yLiD9/ST65ahGGP+acuspPz4M/+OBsFlPBgT9jAtfW9sZ/P+xZ0+EYZHw/86Y2fghTeT+RsU6/MY12P/5ZG0lsDHQ/djdArfbKcT+eovlM44ZvP3/DVba34Ws/gJ4QhxqdaD8McYD+ZbBlPxHeY0eWE2M/ACeQgEC/YD/W/WjoFFldP/Je07pGqlk/AcpC2nZmVj/oI552+IJTP+KF+0YD9lA/oIyRPUltTT8ebL1OY3lJP928eaR0AUY/bUU+b/j3Qj+Vf/8ArFBAP29qT9zvADw/YDRyO7L6Nz/AuxlBlnw0P6jCKyhodjE/6HIOEESzLT8OCuD6jjIpP5se3baHUyU/l78LgZIBIj/6Gsh7y1QeP7wTv+Sjexk/9+DyPhpbFT8Api5OBdoRP5fY5BeaxA0/MDkRzjHBCD86N5j8B4gEP3aV1kCw+wA/ZqZspTsF/D6c3/LdYQ33PsYM3FKg6fI+rmNEOiry7j7a7sbzDT/pPu39jjufieQ+UjHxHaqo4D437g3oRvLaPkVHxzequtU+Imlx8UR40T7wgY9ejQHMPu6gaapMYcY+x0NdzEjUwT7Lw4nculG8PtghQ/yDa7Y+8SSjh32xsT6bBzH8PdarPuh6c6S606U+iHsirhEPoT76T0q5o5OaPrPNetQ1opQ+2URkyHnujz7r8imIxp+IPhwoeFGR7II+3ALHBp38fD6W6sHKdh92Pi/60xE+03A+EOhfAW6AaT4rWB715UFjPlQwudfR+lw+i0txBvS5VT5wRfqfpDpQPmZQxFEKKEg+9ijD/VfpQT6M1LcFkXY6PsbJ9qe/eTM+EOGdJNuOLD6D2ew7zdskPhBXVH+LWh4+DNUOLzMAFj6N5aFjGcUPPg3W1AZ72QY+PtcCoqxeAD7tbVjyEF33PZQSLUBtm/A9q6nOViGE5z0Gfm0eepXgPcmfEKkwTNc99iSOKrFM0D2JCZ/dXbfGPaI5kmJciL89JrcUVEHMtT2Wucn/IwSuPSAdeE1rlaQ9rgpnAg8enD0p/uaPkyCTPUEuhoQz64k9KyJdWYx9gT2GQe9S0oJ3PQyHIiQ1em89UEd9XrH8ZD3pUUXvo99bPSA7IF6Qb1I9MIPruB5KSD0z+Bt5td8/PcI/6glX1DQ9R6mrf2YdKz1oNtL43pMhPSolq3fDshY99gS5yEkxDT39lWcMS7ICPWzDylHg2fc81ndp+W5N7jycBj+PlSvjPEghWeWgJ9g8qby78eBOzjwP3H2sJe/CPD4vkVNgjrc82QIl3P8trTx+hEZJYP6hPEde86bJF5Y8ttj0oesAizzCrZooWm2APOmZYbSd5HM8EBNE9MT5ZzwodIzSm8FcPIAaq0r1KFE85Aj684ZgRDzAacUvuBI4PDwyqfhwSiw8TJtTjPOIIDxw0cEhFDkTPKy8aMhKOQY8XhKBgSmM+TtusJyQ1zLtO/Sm55hiluA7YQePvq+70jtNcsFa5gbFO1Yl9WdZdLc7hSaR/AX/qTuvYPsCiaCcOwh6psogUY879vwrSd4DgTtNdmbEDV1yO4Hx4ON+rmM71iPm0jHyVDvEosLi7SFGO7A+XpFwNzc7qNwuVp8sKDuaLR5ZvvsYO23qoKymnwk7+NN6mPkT+jquJuwmUVXqOpBsGY9nYdo65K4OAjU3yjqwEzMbAde5OtTZas5nQqk6+pD2T1B8mDrSpNLh1IiHOrI9W/QebXY6GAdQrTcvZTpRV+7yz9VTOqcHPpkBaEI6IZcUAw/tMDphayw9R9geOlh/NVYt2As6jjTVk23m+DnGvasvOw7mOaiuYaccWdM5Jq6BOsHOwDn2hvbo2OmsOX51xP3znpg5oTgTCuvAhDleGt9whlBxOaj2xsJUl1w5B5tom6ZbRzneiPsUNuEyOVsgduP3MB45dJzktWjgBzk0QlD7iazyOJVLwpsL4tw4K+jnylMVxjj/eCVkwbCwOAK7xV9775g4u7Fp5zdogjgGiNS+49lqOKLrkvnkWFM4CA5E5+iJOzgFMxP8/VojOI2UahBh3Qo4bD6eLc9n8jfts90KpOTYN+NALfXWnMA337bFIb7gpTeUqV9qO2yMN2odn/26NXI3Xq/cxlgCVzfylHt726k8N/LhAlMtmSE3+JXfar9LBTdetQGmCWTpNmPgL8MM0s02vtpuAe0+sTbCvU+GzqOTNoxt30swBHY2XLTeAMxJWDZASk/Atlw6NrkbXwfbJBw2KoLV5qqL/TVe3Lis433eNcFt4PQx7b41yH7AwozRnjW0UDdzEyp+NX/X4IVU/Vw1Nk6J0e5YOzWtSRwOkVAZNflCggRv/PY0mUO3H1t31DSODiJVt9yxNOLO8d30jI406wVGHveWaTQQCptDW/xENCuZC/DG1yA0VYNtkH9y+jNCq5w8lk3UM70d2zRNd64zEEYhnjxUhjNQhoFI9fRfM0VonxrHUDYzzZSy7m1lDjMUdJCFsy3kMgzJ/akyGboy2BzdkUpukDJWO3oRtyBkMtAxuv2o+DcyBwdQzCu8CzJYuMRFpCbfMdYQxkDc97Axrt92zCnqgTFYYkogNlBSMS9J/PPbGyIxyCF55bFN8TCD/BKUXeu/MDxghzKKYowwyr6cOHdOWDB++ujfIQQkMCSXQXssqO8v+rmp6qMAuC8yEa2rgmuBL3GRNgjCKEgvzC4oXkTzDy9vtmGJRRrULrHX+KBOA5guELOinysoWy7H33HbMv4cLlYAbLv/H90t245yK8ptmy3E6BIAzx1YLbSrEGrHsxMtUKlS1Ia/zSwRNI/tzJ6ELGh4YZxKDDosNgTs1W+17SsL+AecDECeK23m+ZdQHEsrV8JBFJL+9CoJXqnoP2ebKlwpUcSpFT0qEYtmD4C91yke/ko9vvxqKZlB/Vxx9PAoNdOs6Mn6RSiG4irHOF3Yp6P+omBThGonXn97+Mz1Aacr8vdVVsWdJpPNiZqCSj2mjg9Nqpin4CXpwJ7wc2eFpQg3KYUlfC4lt7rkm9Ke16Qcpaxw7oeDJOt7QYwP0zCkUoRWLo8V3SOx6k3VvUeHo/4XG//+oCkjMrZZzR9X0iKwfQ9LqsCsoguyFl0jrnQiKn6e8H2XOaJtlMuD107+IapVmCl41MGhIc794UUzhSE9i13KHbRJod2S1SdW8Q8hkOnhRHtp1KDvBQ4c3uOaINKWp6DMSWKg+X8W1US4KSCxyD4g5bfyn8ajc4goOLwf2tl4YRwKhp9hOHb3N9VRHweBQv1E4R2fJKvzD97j6R6HafAoEiq3nsa6PoXDW4UeByiM+ZA/VJ6IAYyCMrAjHj3oADDQlfOdakKJOcHhwx3tayetuYuUnXZUtBzKj2Ud4pJLvcLsNp37in4wnKIIHTiIhNGJsNqcEvNiDj8SrRyWAOU2wLt/nJazFhFhSVEcDPo1oQiyIpxUe2vRR+nzG7IrfpL4ncSbgIHCsYhGlBvplaCtBv5hm5wj8DNimCgbADRXJdR7uZo+TyX0p2TUmrDU4UcsxbwaGgVGNCcwnppfVpuhAEp8Gtb0ZzpmB1manFOSFkVsNRqWLTvrr/cRmp9dMH9uwe0ZFFWywxZxyJlp1nWn5vqjGZ5sD3VUSoCZAsIhC42JWhmAEI9zXZ41mWo6XThSoREZspSj+v7N7JgWGhFBaZXHGKDl2sYeXKOYLMpAZ+zgfxh65S6KaFRamESELY7i0TUYFmNtZ1YlEphn/+08NkruF7IrW/K1X8mX2vT6l9NVpRdnqQfB2QGCl7Y8q2oag14XDgYk4ubyOZcIpZ+W5iYWF+uqzG17+/KWEWD7oeBT0BY5cQ/IlTGslnrpRRGjbogWcEk5diFAZZZJNrVH8oxCFjCTGt+GQCCWc9R82wCU/BWrL6t8+TbZlRb3U/kMU7YVhD281UPVk5WRu0BB4K1xFVDEqmKQn0+VxFDAWxhgLBUfm1NVCosJldDXooAJEecUOKFsQSjlxJQPZ5IAfvyiFJZNdfnPTYGUQiVe35OiXxQQNaXKhgA9lAb8/yYeqhoU0EGLgKWV+JOPM/UqzLrWE6M8DLdtErWTrHx712OWkxPX+lcUYEFyk0cR3WzLDlETVW++h1b1L5Pr5UNPFQMOE7zW+kzOQOyStPMeG0GpyhIeGe6P1jepktlSjCiJ6IcSlOVdYdG3ZpIK0ZzClKJFEhREIokXpiSSn0eiI/C/AxKbY/bJ/O3ikcWz4EFaLsIRVc9FHVx/oZE3iy3ohd+AEQvn2lyFTWCR9w/ymFqQPxGTn1ub4pwekapEoNjDvv0QNZwih1L03JAX0s9QEDy8EKWXJFqnlJuQG4IezuX8ehAEVGUFunNakO5GhBYv+DkQtAuP8WmJGZC3BD67pib5D3eutYo2z9iPGuq6fX2CuA8y5P278D+Yj4MnuQwVB3gP7BssgX3XV4+Rf6AeyrA3D1XpvtymkhePU1VOvsp89w6d2pb79m7Xjm+QcDH2aLcO76Zy5ptql47MtuvUw3N3Dg2sII5RhFeOs2LDEzCcNw7rPfNRUbsXjgWMQQKu4fcNXVwMXUUP2I1Hf/PLHES4DWhWW+Q/gJiNC9BzL8DDeA0TZQsUtQ5ZjXLsGtM7YTkNt/2ocne7GY1JsODEkB36DIwhhnq2h9qMnLv9Ix36ugykpBw//3SbjDTAU3+d+HsMA6Ejrz6FXIy+o/MkMBs9DA3NbbnFuh2MiGVlDVpk/gtMMIXnThjfi+bv4kwN178LIOPE9YJQoIsrfuS2WLuAC+6XLmRILGGLL0C9y5ajQQsA4gZRjSEiixN3wyN6pgILYls0brAy44oVs8WriMbDCv1X8exgYqSKBykEGZ0GhQqlzjNLp7NlipFXCSTwaUYK5E8OKe8pJ4pDPbgfI/QHCipZ6YwSyeiJ1O/7EEypyQkLK3HmZpWqiTBxe2gDjosJLMcml8uTbInNlWGpc6dNCYtyMqK6yS6J8IsHAGv7DwlayW2yrZ7wiFIipqY3SNEId6vC9Mv6sYgZjSxn6raSCOJXRYEafXOIxQrE4etNVAizyo7M9ik1iAjcZ7LcERYIE/OBuEgG94fr6itW8AfYBwbLgQKUF7mHcbkiyv81mgeQ3RYQDGR7h5/p2WCeolwHPFmXLaryPYdgbummMVUfB6MkPGGjZQCHhTL/DwYr4QbH3SIEW/vBhqqytNNF16IGaf1PDnS/g4ZQhnDrnbRkBiUU6uWGt0WG5ysBdf7IJgZNbXHb4OkHhks+I9sXG+kFsGedqJtdyoX+YcLAc7KrBeWqzem3Go2FAS3tNZGXbgUISDyPHRVQhYV8QlMC6jAFuokH0SjLEYX5cNj+TbnyBFfnnJg6tdOEzOoR1sO/tARstFA9zNmVhHaVT3hEBHcEsJmaQCxAWISow+RIk445BP0SbUqa8BqE3C9fIHRn/AOQCtLdZvTdg0SyGB7NmL8DHdTMoQuroINeObJx5paBA9TFIyPHkGKDv/Us+IqZQwMnWyEvHbIkgwFHAeV32wUDslghCKUW54LLE+Jcv2TIApDkN5jzxqmCMadqgYE+iwIGZ88qvcxsggg0UEQQc04CXaqSwH0ZMIJ/11EIDAcRAgn0h5kMA/KBpucU9GYO0wH9Z+NdESq0gRl1YdURV5UBAhNcGH+WdoHq+7i3gelXAQY0CkBVUTmBDRsmc0nPGgHyUlySw2T8gCPBtdM/E94A2szLBlPcv4DfgVN+1+CgAHDGtFSn4oGA/KIaFfn1YgA0HrojFDFEgHpqmB/b0iYA2eHpEA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAATAUAAAAAAAA=eF6d111sU3UYx/E/MmHqgCII40UpyssAHeVFNqaBIxEylYteTNMokbKMZPGqQYwVufiLA6aCVJhuyIADEhkJSHkRB2JyjBhJILECiZMQaAiQBUgsMBNijBr6+x7CaTYvfC72ye95nv//tGR024llV6r6/vnCrAdMvuydL4PbZz+TTxfOH7nD87E53+aHW2/mc2jcjHyOXa3Jm9s4K7/v7R+TzyP/qdX+jWd1z/axeZ2ds/N998XKvObwNM3TRfmcfZnnXh4kT+i5pmK07m+amc/O21Wary/LaydMVJ7TX44YrnPnh+q5G6YrL6afGSlz/XS+eYLyuRLl5RXKyZtV8nb+fZsVpbr/FM9ZOkCWG7Jep0kOk6/2kiahexKca+ml+7fcp3ypS/fXFSnHTyuX/i7tTp1vyym7v3LfLVl5S/3INeXGm5w7quz8LHOnpTmACe2FT8nYGfqrlY1HblZO8brSP0rPlU67jH7H/l7lzEnu2YTc62wjL+O+fTpnt9JvIG/BzfRrcJH64SbyO8rem8ruKuWs5fXU4EKch+9yrp7XVUe/jP4buIj5S8xf43U5PH8uz3OYj0Xjy95oHI+jmE+S7hPkSzPljcPyD/JVcprcIb0c/bPK9qJ0suz9oLm9wN5v9NvJTZz7Hg8z/4L5Dvp7yAm/j9vYX02uJi/AJNbiK+w5WEN/Lo7DMrzdLp9iP1spBzL3y6N/hv0O8mWyi9cwjT+x5+KX9BvRr7jfZ28JOYH19CPtgX1bRw5jKXtTsazgOUPoZ76RnejhJTyFv1TIdnTpp/xcEcwNzBMVQZfQf51cSZ5PNhjCEr9PZQ4F9/ycmSE98iFyAi0msR4drPHvpSrph/w++fbTshO7MPO19MhHySm09OOYpB8jV5PD5HBBNuTMQXkGvekyTfYrQT8+3XRbkYNB/eo6IDPTpFugxTh7UbKDYQwxN5idKr39Mk225AQ5Sq4m3y36uX3SmyJdTGEco+w5GMZcRGbSMo09VZj9UMFeZq90J8sEOT45uGf2BqNXLt3yYD/2lQxjiLm3J7hnC3K4IPuV2i3jT8rI7uA8M0m6k4L9SEHuqcITZXaXTO/qeffeirfJSFuw746Xzk7zvyq7QybQjCmYP858uwyR09tMt5UK99AfJR3MPSbdLTJCzm023VacfuhRmRkpU62yvjW4n90k3RHSkh1yCLOfyxQmh8sIubBSw4LZ2RjMl1qki40YxVCL6bZahspks1yMZfj3Z/I4bhwi1+IsaaeQM5/KNB55xAQqRj9Cf3DB/GyTbMP4YFlLriSHyAYzG6TFNYOkQ64k5x5mH7310iVbsoOV9EvJBjOfyP0DZZycIMfI5TgQr6RkG9qQXEWOYhX9IZgdIM+tky7Zrzg5si7YL6Hv9Q/2W8nNWIvOx3IMGrzYT6axca1cilGMMM+VyC5M40FsXcN5XEA/hMX0/ep4SFrfj2QCo2iYF6H3oDyJfllyFOMFc/Oh6OTPYA/bPpBNWE8/Qp6DpZgrlscbOY8Wk1iNEfZzq2VnX86T07gdk+hgiH2//lolr/eRx9DST2KsT/BciH52pey4Pzi35DjzOvJ8DGPxSvOf1dIgl2MNzmsI7nX1lsfxGCbQvi9jGKZfhrn75PUV0sMW+o3ol+Nn9ooL5un3ZApbeskE1mCEec7KTuzANIL/uLvFr/2mlAX+m9oiZY+DYSySlnftCeMgHyamtx547/hO5nvPDCDznsMmWLw1L//VMramtNs1a4lR9P8h/W/Ut4T1f2DyjWMXIr9YWT74rf9B9hx5HPIHhl2A/wIhg/x/AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA0xIAAAAAAAA=eF4ByBI37QAAAAAAAPA/Z0fhTNwAAICx/9HwRHTvP39rnhZG5+4/bjHsfRJZ7j+4x/RCusntP/uY+XdOOe0/kwGWQOGn7D/yANq2hRXsP19A8ulPgus/iVrW21Tu6j898qiXqlnqP5QSAS1oxOk/B5jxj6Uu6T+KcAKSe5joP/5p8vIDAug/+iHhPVlr5z/hJWulltTmPxq8nUHYPeY/cPT+6Dqn5T/KIWHw2xDlP7zT+0rZeuQ/wmfpYFHl4z9MUc0SY1DjP0PNzo4tvOI/fBiXOtAo4j+LTujJapbhP7gNevgcBeE/S/2nXQZ14D/8d+H7jMzfP/b/82D5sd4/36zi3Y+a3T8Ujp+djYbcP3/gkaMudts/uyo7lq1p2j+1sMytQ2HZP8DloXsoXdg/Bnfxj5Fd1z97vEBHsmLWP8SrVrm7bNU/gzMYhtx71D9NaySGQJDTP2E47aAQqtI/1gfmpXLJ0T/1Ocxeie7QP/IFKE10GdA/13Vbrp6Uzj+sTf2ZZQLNP5IsuQZnfMs/3EveIMUCyj94SkyCmpXIP2/3/Hr6NMc/1n0XsvDgxT+d3KwwgZnEP1fQLZmoXsM/Sez4HFwwwj/GmCmkiQ7BPxkw03Yw8r8/O2U6RtDfvT+muFGtpeW7P3Cv3iNXA7o/IX3+a384uD+fDIimrYS2P1We0XVm57Q/voUFvyRgsz8UbtpOWu6xP8zc1tpwkbA/DqBrs5WRrj8xppiIiCesP5OpHTdn46k/RDiCltXDpz9CWLDmb8elP7tR88zM7KM/aKER4n4yoj/Ut4+SFpegP3FjnbtHMp4/r3H1L29umz+mqFWtyd+YP1cBzKyFg5Y/B2eu1ttWlD/P3G6DEVeSPzaDV1h7gZA/FEHp3f2mjT+09wJoKZWKP3ohJYWTyIc/zPJtLoI8hT9fWzkKaeyCP14ZsPXr04A/Tp2+aMDdfT+9UIytmnJ6P4r1plncXnc/mr6Fj2GbdD93DGXybCFyPxfFyvFO1W8/pszunDziaz9wfNLDgl5oPwAQvU3CP2U/Qv33GVd8Yj+CZocQUgtgP3S250LkyFs/TCs9iToAWD+0degPsa5UP020+xKAx1E/CjiNB/t9Tj9MbeA4GBVKPwqMtrwWQUY/32hKJI3wQj9i/D5wyBNAP93C4aFZOTs/HnEvpSz9Nj84HsX0dFwzP5x5jzgXQzA/dMqrR3U+Kz8oDYJnKcImPwaTkv9v9SI/DbSquZZ/Hz+Q6QuyiRcaP4xqFBY5jRU/kzw9OP6/ET/iAPICBScNP4wk6ziE3gc/+jA2ETR8Az9wiIP8gbf/Pl7Yz0YcvPk+UCEWdBnR9D77u00ISsnwPohtQSe+/Oo+PgUW4/Wf5T51xlBsukXhPgydmySigNs+mDkl3vvS1T6m4ce3zELRPhQQ0+NiNss+tIMN/NRgxT5MoJF50rzAPkZ5mR9GHro++6km7qZOtD68EK0IlXevPo5tUusWS6g+qA88TAmwoj6A+ojYiqWcPoAxFLVD4JU+mfomYM+kkD7es1SBMDuJPgQiPkhpDYM+wQ+eQdupfD7Cp0Cac3p1PqSVwigUCHA+Taty5X7WZz4u8eqw9KZhPuhfEZHCCVo+3JccokEgUz6C/lFJd/tLPrvU4IeIYkQ+jXYuNX2TPT5zgBhacF01Pj7jDPsrvC4+3p5TjgQDJj72ykJEJGQfPh/5KqDwSBY+YIiKzOl/Dz7MMroxgikGPtRtqy8YC/89bPgbQ1Ok9T0OE+zJBwnuPeKOu6mCvuQ9Ivp9UMKE3D0prJOYbILTPb3VRTVHkMo9YLYj8Oj+wT1uwLVYJ0O4PYpHFNoeRrA9PsfqkKa4pT12kJx0JticPV1aUlKRDZM9Py0Bci4KiT3DNCsUCV6APbRrXiWOSHU91uHKyAqHaz1Yr3F+hLRhPTrI7MN6plY9/+eRH+3QTD1ZAmG/PzpCPSJYGLTU7TY9rns0FqCtLD3qdI1xsNQhPTghq6ASCxY9mj20VAcXCz167q/y9IsAPeqJwmZ8F/Q8cIYUMWA/6DxIhZU0KhXdPNCKoeQUVdE89tRwW22HxDzur7SSGCm4PApHD/pmQKw8lZYq8QdpoDxQePbGXfCSPFYVwUdGtoU8MPyy5VS5eDx+63hZavZrPIg54KGHaF88oWcX7VWEUTwSWqeg4WZDPHo9BTNUVjU8PN1yRx1MJzyQs4jAxUAZPERa6AsULAs89GftTDsF/TssyxiDFcPuO/aPPa80LuA7BYN5Khrk0Du2t2/U/X7BOxg76FIO+7E79tdeMgxVojtVuWGUbYqSOyeD6Rt7mYI7dPzer2WBcjt14vEdU0JiO6gowoJh3VE7QMDdbKBUQTsvMq8C/6owOxIWKU9jyB87o+C7gh4JDjs13RTN0CH8OkD0f1uzHOo6fEUT6TkE2Dr8WBDBtuLFOpKDflECwrM6w7ZhlS+roTpShJeQmEyPOmXwvk9idHs6oRlHbMfYZzpXhJ/TD4JUOiN5aKTGdUE6Do5SfrptLToVx9U3zIsYOlTacdfDQgQ6p3rPfDKM8DnBtvWw8L3aOaWwJ2EHYMU5/zgm5Q3msDlElVqydGyaOW40xfNcbYQ5/EKmGHw5bzkiNkAnE5dXOaZsdEJenUE5Bqe9ycv+KTlBOXGtwfMSOXJSQFq8TPs4ItSkw6tr4zgdjqNRf0nLOHY2xnee7bI4Ghvz14zsmTiVyMtxyoWBOJo7Q1BkYGc4eGi+CEDFTjiBUXSoWPozOPtMLTUClhk4NQOFogYoADgEIgcIvx3kN4OhMqQssMg39tHo9vzbrTej2j7GbMqRNyKtgL8K4nQ3AdVoh/kjWDcR5c7/3Hk7N1eq5rZpyB43+bpTED74ADfEXF0nXGjiNjj6l/zNo8M2IJFkkO6apDZSoSRob0CFNvMd8rJ7imU26YDDb6dzRTZxGQ9whvskNnC8/nzZJgQ2Op3bDkj/4jVlvEXXqZLBNaq7DrLh45811J9e7alffDW1Pt5Nyb5YNYsG0JNKJTU1UH/FOMuyETV/4c7MewHtNCjqeevXQsc0uYlmWHM/ojRFbaUQbf57NHT3belH/FQ0DLdBJg68LjTbukglUvkFNLIgGzI+qd4zjZMHlNLctDPl4gbkTKyLM4RQUIPl4GEzhacyOz99NjNTN6DBdoULM6FjuwELX+AyGk8/lOHrsjJLgrh3ejqFMqy70xK6GVcypQ9PSVZcKDJs/K7FeN/4MdUNfN+ZkMgxmTZH30pxlzE4MfS79ZdlMQ6Y5HArLTMxI3fkkedlADEVoig8zPfKMJPCs/ctS5UwTcxMB6QeYDAJ+Yt8GFwnMNS/gW3AK/AvNX8ucQtZtS/K7aWFQtB6L7Y4/yx69z8vqx4R8fgJAi+rKXhKhDfDLlCdNWSZQoMu+vfWHykYQi6JQp81Ybz/LST66uzb2rktataBmN91cy1XwpHzBuQqLfvEvmiN7OAsgxmE8wY6kyydNcC3vX1DLON8Ys2eYfEr12E65evDmisMchtQQllBK2JeobsLQuIq6PEAiSl6fSpQuyavDXwQKvT/xF7DFZQpyd07RLoD4yh/j6AXRb56qN5csBRKJg8okr0vQkYEpqcT3wYHj95CJ7RbTWLcH+OmhXfLCLBghiZLVhA30Z0tpo2h+Mnax9Ulw/HcZNeFgaV0qY/Uk2AuJS091HzK6Nuku6mmCrGhiiTL9SzMipY5pMKYXcGdRecjgmySoeGNkKPApicmXrgKo1eaF1OPAAgjzN0XOHA81KLScEnLK2ibIl6FEt7eXmGiQAGoCaueJSI+Gk3f6PfqoaX00Q/PB7EhVLj+ZfPldaEwlGBm5sA8IYPdpNgxTwOhMG9EIOqMyiD5/gJAm7GSoACpCjO69VogzCZv4RvoI6AWLUqvzxfuH4BthUhaRref6F9L8GNpgh9dH0LfV8dNnzIJ3Jklmxgf3/q5gIrD5J4AWooMcOKxHh4RUDxQbn+enkeThn8pTB4S7cmFdbcZntPd1pry6+cdgT5pRgWotp0jyx4ocdaFHeRI305QaVWdH5iE64tYJR1K1z/g7qD1nLjiO2StQ8YcRH8Aok5Gl5zKfHiJ7bJoHFkqFJXUmDqcAIeHeYANDRwzjKdkDxfgm+6PzK3WELIbVGuiy/aNhJsFSVdfvLBXG0nGqeyvpiubzpf5eTxWABvH2+QjoYnTmmFb2IcepKcaN8ZNsJLvfJrCsBhcROhRGnbwVQdaaCaaghnGpO1W/BkYkvvuzBvSmbr+yrsHYacZ7gX40yp8fpnxXTHHyxFUGRuZQD5hrSqZ3mAWv0blARnE/MyKbTrYmE4q2IYGjLAY6PahlHrMhphCDAxkE65fGNScDMmTMTaYTl5aY1ZZDxgSTGwNFVHmlwQRmRiwAsAXBoEcr70ll5cr/VRAgttwF8YJ0Htxu0iXuPb4qqJFIhcGU29dyi/7lvw/W4X9XNQWQUipxk+1rpaLhw3kNE6HFsIy1zDdzGGWo30cxF5cOxYeLHqAIigVlvl8h7oWdfAVlB3vX+nAyZXGetKTEESkFfUpUZ52CYCVry6XODOFWRVL6TbnM2o0lSEHk5SnahAV3rG+vOmJ6pQB5o49GI/FFIDdoF6VmaGUtHLlt97ffBSTzkSkMMxXlJjPGFg7tDMUZtC1i25jEJRGdASP0WHrE3eQwSx0+caTHBNSHKZboxNv9KdM6GCAkzWzLW7y01sTmMFPUAW8N5M2JoD+Z1IUEwbnOGJcd/GSKKi2CrkizhKCzy6WnReqksbMXycGrIYSxazL7s/EY5JsFEj+1ktBEgaLRCn1XR6SV0wRTqy++hHbB9Y1RqHXkfQDy0118bQRrOSHi2GekpF+xuiLBppwEblmCrthsU2R1rNUMCmhKhGyG4aY7/IHkXyfBBDamOUQDgKTPDWHw5ApxlWlGLShEH0t/JQaF4CQ9LQM0SJSXRCBfdsDwMc6kM7DKzKWhBgQXCE0iqt/9o+GZkwMSLHUD1Y4I13EErOP5YBbxWCekQ8bCRi+Ik9wj0LvURxwQU4PZ7IA/bweLI9q1UJTni8KD3w1o2pabuiOmoAMMe7Vxg5zGOYF9GGljtvab3mODoQOpJjnHlbYYo6Wy+70SbxBDqqTi/rBtyCO0nnFs8eQ/w0yis7VMdjdjbsWVpULQrwNvA0WAwbLmo22TjYaLXB5DSiN/vjcLliNV/UCNbgENw1syolsn+8VjfwZvCiq7fQMKBQuaSD904zD+vMXdRyzDPzWWDNBSpKMJn+AeT+FcQzEexiqSMxQjBS5IzpQHjAMGNLss8L0Doyd6yazOL/tCzLtQulomsyLW1OqP9uEqwsqUbbCNX2KiyhJNB85gmkL1DtK0L2SSIsagIefsa0nC/W4eyUV0gaLeUX5yvn+5QqacbTefzPFiphpA9LUbqQK4Jq0pjGwg4rquU6R2fZiCro6saMYQkKKIORgiUKRIQrHv8mCseMAij1jqVbFOOAJbNQxpcQfv4lP4/He4NCdCQxLzeS0g3yJWmyVQRo3Wwmd5a3t7Ok5ifV0+e8JmxgJBESo001J94jtgnVPk/PVCJERru6xmLSIFyZ1s3w3kwhQcQTCwM5xiMxVvQhEXVAI7FKj4ofDLYjofWQB6LUKCNTDQO74jueHMJXT4PFLxAfIovPK7emghxjBpgXRy3oHKA7oI3d5U4fA8EJhbKwnB0Bfvnsn2e6GALc1K/n70YYANKOTqX/KBkB3Sx5nb7aG0FTHjRYLoAZAIe8Vix6FhmD4mCLJdmoGqDn6zWYMUIYQve6d7wQzBlhSA/HJJxaGiGOXCOt3+QUEb7ladfjchTQ9+eBdVsAF9lSlWyJMooUsAHv0Zl+EBUzAe+0nkmaFxidn7oDmSAXYv6Itr14rhbg6FJIT/Q0FbPZHlhpi8IT6f3vVYdvRBNRUMAnNa7OEGvP+yuAUlQTiPRxTOth2hLow4BGRt1gEjJ7ab7i0OoTijQydodEcBICiko1dEP+DB7mLgI+54AN/dSliHv7Bg0pcZgQaV6MDXh6XeNXFhIPTbKKVuUtmA+qIbWtG6keDOH/FzBSjKQOGdObd13cLg3pYQOBeau0CDJEU+pZ8z4KIR2SYRtiwAqOOpUE4BJKCFQcIC0pDcwL9ORfPuJZUgnoLnfDV/zUCN82/sAiAF4LMj8edzxj5AUVUIR/Cy9qB85YzEJKavAEAof95DYeege66wTeQSYAB8gJeg2tgYYEbjS23L4lCAX7pEBUGxSOBoT8ZOisVBQFHPldk8HrmgOj3/sq898cASz4dEg+NqYCnzV/SfjyLAHT5Vz2+B22AxKvW3JvwTgCKvMU1gnwwgLF3cWiCkREA2P2EhBmuBIBJtd6RJT8BAFUqGdUCVQCAjbRCjaYWAABdUk3ODwYAgPqwf+m4AQAACdHtmA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAzxIAAAAAAAA=eF4VwQc81H8DAOCz995lZUT2Otz6fZHIzN4iqzPKkZTseVb2XtkkI6Ts7L0lI2RnRYn0N9/P+zww2P/9ArVyrG3mRLAg+gnE9svnh0CBGbOZv3MAfGS1ryKsDoDBnxUd1NhPQIs33B6DfgLYXeZTw+p9kMBEk7fEuQ9WvMzOAqP3QEnCBY/e6S7oEJCXcrDfBTbfZ4ymx3bAv8ln+Q2IHfBUw4VMoHgbYGFBOEXabSAtKZZE8/IHqE9vHWtf3QI7eUSeWK0tQD7gGS3UsAmKzC7KOXg2wbfpvzDrqA2gpJUA0R+vg3uButEGNutA7POR9d3hNTCgqveUUHENvMqo66wpWQWhXZnOrsyrQEhR1sQ4bAU0x6HGb+x9B4fGuFKniWVgNYvfGmlcAteXM4ExxYugqWgc+p78DRincqUR4RcAl1ZFrEzAPDgUigor9pkDTC8uv8f7zIK+h1pjwgFfQYj5DWQBfgaMR9SmCqd9AQWfF6P33k4DuWibCabuKYBTDiIcWJ0EpnRLH0RJJwEFPUbSRmoC/Cg2kr3qGAN+Ns6EGuKj4OZ17MZgyTCo137iXCwyBOiETYOPWwbAElqmd8y8H7R1PGRVIu4D237V5TotPaCGxBxxEtANqr73EYk/6AL+sLXtddFOYPJ8epGApQMMmTjujTO3g7Xz1xsrbK1Ab8YrcFmmGcwcDbU6ODaC9nTdWaKaj8AvMuixMl0DKLQMEswMrwdWucg4f4Y6kJk+sWlW9x7QsZLwcY5XAys8d/WRbSUwNcBPrbFXgIwHsnEJJ2Ug1vuAIeOkBLyaJ+uMZysG46ORXRQWhSBj3HoztSUfhJhU9UU8zwNTk87aqpXZgI+2wz2SPRPUCyHNAz+lgTPL5+I2ESlg49oi1SUkCTQK9Nj9KU8A3T0Mfo0Hr0FapD0b/Gs0gMEEcnFEkYDg053OCo9wwMussKDHGQomHqS+gF0HgSrovSyDaACQUz67O/PpFRCx0sz8mPMCrH088Aqf8gJYY829lwaeYO7taJcEKw7cjvZqMpB0A/m+LRk5hViA+9yPGfB1BFIuM5XctXbgvuPvvTyELdDgs6I64LAC9IIlrGdqZmC9Jeyu7r4RcPWs+U16qQ+cWmfvdSzoAiuvQSINR01QDOsrQ0aoATvWulFCsbuAC6G8NKCmBKhCR+/nJqBA9IRSbYG6AqjufkM7mS0LArHzAYsvpUClVuYTn0xREEQnM3ZGKwTsUnaxbPL84CmkYMS1zwMuH7pOWXneAGZfsw6J5lmAvNqPJtprBrDMvLBfHk8D6FUtcYxwcmA9FrWW2k0EKE1VxzxYYYBUwrXHkPMM8s5k8mriOYHYnEqqTSh+Q2LV0xw9DnvQEdE+q8jxJhRGlRT6LmoV8u5tp9z7+Q163yKUmybyFTow9/4yFDkJCSKffF8oGYZEyhIYtZp6oXssFdcDhJ3QKzbKhbjYZoixr1rvXskHiKRrL1Xkugb6p8/aPv2hHJpLW4mWJSyCckvdpfoEcqHYnmRfZ5U06MvkizHMrwRoqkclpr46CkLR7IaHO4ZCWj3sX7sk/aGJDjzP+PfnkNHjaq0gIxz0b42BXEMDC0m/7QyZungElcLUmj5EWUC4owNL6UBDKGhT1rAPrw317lRZDQ6qQpUb+9CUCATpYsfxy8NwiFKN8nmplSS0fT8Ox/3iNhSH1kLUk/BCx0M2WusdrJCk/7/NdBZ6CDbdgcYUkUKTWYb+Zp+uMTfSanIKuf5i3Ksqbt2sP8CQryzGiME3MREedzPi7yxhGGsbSPWPpzHFUaMlh2LDmEVB0h0ely7MZvlujcRMIya4w8mS8e17DNVAcR4TVIpxhuOeCsbkYjQvPGeJwpMxZTUG0b3lURjnEQJEd18Q5sa7FCb+qecYGKvD0QTSDdOijPMwvmOHqWVNoPbGmGK69yo1L5J0MMpeH/bvflTBXPCRp3rEKGDc2/bqhrzEMdciyfsj+nwY7L79oEkZKyaGJiaXdp4KY+FZ6VJHRIAJ6awrtas4RmOacq0Dj7bRin7cJaiDJfSjYUOtodlJtM8ZfnuevxdNqdS5d2O9EV06WLYuylmFLhZplSLezUdXxC079kcko01YV3JCHCLQuQJqFuPBPmjuKhtsxDc3NE7ooeF9eVs0O3+V9yqrAZqsAT6ySamKVriT8iiTWh4Nez8mr8gijPYecMLScN1A/yCYBxk3qdG0cWIprWRXqLLlqzdXs4comPpghGPnCurapWLgUeAkyt6JAhd1qwu1IHhNsFJUh/oFQP4VYRHKbtJCE4FORn3m75Zt0wlF7bJVt5fJP0NxrmvSMp/aoZ6wUtHyJBigXvWVTq0QqaD6viDiLIylUbu6JcWWkbyoLz7c/1pU6FBQtU3vJ81LZPtJe7Ky7B7SqFW4QJpsHimGf7yuPNmHfHi2tFSb/QHpuOebd+peiOyUyJjwM0lAih+Y9sxV+iGPSx6lCuxhkfiEwcZ0nDHyjx51JPNdFeREyKhmwrAE0mSD4HykjgM5BhMR+KNIgmSFk/D7mf5GHPk6rXJQLiI2Dpxkfdz6EKqZyKai1lqEgFXh45bP2Yj/WHSQyd7hiHOfqLkGZxwCcdi5qjxhhkh79AyzEKWCeC8/vtRsI4ogeIFRPztlQmS4Ve9N9V8oDpIuarv4bShuUDbLso2OKNos5RvEXdYrRnXOpak6Ziu6xUR7WeBDFHWfSlWdtmAVp2Sfs5Nr6imOCOtEG4jAFf9N9Ywt8NxUpHnb3FHAT6D4JcXqsM5iU+GLyq/Zz4ghhac5XnKFbTUK2lbbWWP7SQrqHnqKf5HeCsUmnM4+n8wV+G4JPyrSxCiIo75JNrjyKqhHKF1qcBMq2Ch6i8q/W5cfC85p8YP1yqe+8whTpimVN3qH9LvRHSHfjlMe0WB7LM/9zKG/k0hdvhrt0jKMvy2Puj3ODJWTyA/cOd+Rd9+Ar3imvrfe64J/hG4+bJMogONP6L3rswLguokHw1qfLOBexdkIpgV5+FfNX7fhgkzwikhhz2LsoRyXrvnFkPygXJmWXfDJSJFcxmOWhnhsgFzs6S9LyikTObD1YWqkWUquipWukeQPmZxHUWiGW/OK7KWQl2rt0EfZ9GcMObOqcbI9gcWr/in2sjWbxk3KbxVlQ8I2K8kUaWWNCkoKyWBrMg7IXQ/JmQ8y9twlCr8e42U8BfzRS8HmMgQPB/vcfonICIQ/aDCIPZd+sJ84T6c0LH02o9CmTp0l3e+ouNRJjpX2LoHPZz2CSysvbPVT6xNKG0WXUhBLjEnhGUujNFbSpRwX44J8Oe2k1HDj99h0RKRqqJ5RqYAjyWxvMpZFgUbJfqP/Rq4cAyT3Zc4L/ERUJA1nXZUC44gl2bu21MZPeiWcmvlkhJkiJEidi0jGRlUl2Bx81IV1CSUuqJO2CA/bxDkeR3IL53mLXw8wyGTbSYoTR6fr/5tdF9v3Gcr3K08T+y+jgKuBQ10sLfz4OqnlWDQJnfqPhCVf9BLiVsSR3xO18kctN9tuiUh1nGOuDEJEtmB4uNdPZpE7Ljk7NRFZd2qNbRbp8UfCX4leuM26hZYnHmvaTnQwC9snzt3i6XtXVpv29zB1WE1IXTKZ+j/kVunOlE1ZMl3UbfvDAaXEHclS5MMM8QD/r4I1csuz63LBJUm5YuW156KCPCVR5Kjw2WJeG62Pbf6hAh3j+L5mK7HiPlcbNh6Gbn5OB/rt1o+x/Kydt8hrUyyLIslJSTuJ+fiPdLDdKLPNQo+XsZwWWeV8C/PJCk5WboXL2jz14vFSfEWd8oI0jX8KyDJ+cFSSNd6iYdRyoSANKFh0tl59BO7e+n021fjYmKIg++QILcE1yStOzszwqTk9P+OW1Yjiii2v+7QAaUSOcP6TIulJUocjnpwa9c/st1vfXBgKBNZSR/D8y/6xSfRO/82evWok5oiTxzzvbIsGuZ13lWhv5/vhA/e4OrAhpAvJKyAdkK+g1+PGKZ8WPefnyktM6jH7uL/LlVUpPcVk0pQLv/NFP141kstPb/8zR6lpruMxP1WSuxBXVc+TmdDs05wXdnEmXncGOEWfMjUUcGXm1O02TfEHu3B6PiOVeGqHzvngUoNFfaXlDNMfEnp1sZLtQH5JbfGv7ibeFx9O/TI8m45Iv5s51+ym9atE97lksWzxEGeCt8Owm4hvM2Ws59NZSgi6/w6py29ILG27qN/3z6J7YNveQmpwg0ZVWOPE/XZW0ltGx3PEBUcdc1Vd2a/JTL8LtqgXFGUcPJWGw5Yr/plSI6qZLfGGHENGJ+jJb3cydXka+M4BAUcYobvAteJsRn8Wd6REdA271M60zYOs8Iy5rU+LLbPW7NrILgnLAbmM/Dw53y1xGvY9/x4iqZKN9K5NzRl9XBvbhe+AhbdgavrkFhtaLOspW+kEabKqjlr6ImbObsqal+3uSJJrtOS/tPFx1JDJ5SQr1ltjuvqwIo3kwJTWRSuMNfBBEcvz3odpXKlv/ui8VGD9NcTvMUvAmLZWmWv3aWiPxU69t8wmsTfVoAVLHvQln4WAQeu1HvZVqkpb5Uz0tBGL3B+VZ+ohUqldRs1h3TqULMIbMzHZtJspOmUumvOHHcz52ezN0jbZKcVvjSlqFLyZuwrdYWucBim4R5puleXizM3BPQFsduQphYa1zm68G0xl7bNmOVUdyeO3LR1P27OZ9Pyv3xGKvEi2uGw9tcUaMknFSXOQ6Eslx1r3F3ZHUDElVfuw3tT6kRT4L1qjrLebsb6HbUR6Jj+pgY7D97LNjxE/MK+9l2WWFG/8+4kIN5zRPkFoW0mUMUkYHDxcNz5kyEnGqboxDye6Db4Z/OZZxvDATZvZ0zQska9FrvZH5SMGhTrjXJluKJF716ypefQGw3eRK7YT29MEq1M5rAf2C/0tojwNmunahIHacZdugXh6P8ufiWlyrgkpd2QT6DvV6deQbt0TjQIJ+E2Z+yw0hPR/46cWsu2+x691LomFwVvoHjqTnccEpcdLzjUa/ifrRSfweNnyvop+/Lwb1/JbIE73pLi9RCCcPB6dJdGcc3eDdnnZlPnStSPuLK5ownAtk7ZZ2afcPf5Z3Puf0++a0rRoF6vNTx5Q3IpTUnPtYLT9SaO0wE+HDn5LM0eBeIBtq39d7A0JziQU0DC/Xtii6ox8/WVq79O3QHeaFHf2i8ufBq//ZmhYav6G0yyAg4imcfbXu1ydAtlx59QiMtodLTLLsbqc8odI2w7qY9+BFyu5BbFKIcJIni8h1JKM9vWFxA6xOGdK8b9S96h5AwaRURa3Y9vV3AvrQ8io5+5Ffmms2I5Z6dCQGZ4epOLypC2kva6Ied7HYZItHks1lK+9Gmj7JMb16Sej7gxdKh18rerjWckYmXB89Yc4eiqrDve4Nfjv6Px3ZlXNq5OUSqdHk81JddEhbhX9jzSSKbui5+mlSL2ij4JLQssHjSjjBHWm9VLg0d7OeEydEytl6+gop4XyadSCk4THgsAchYgLRcgQQ1OU037rk37yLIoJhukeL0rfKGq1Vzf92awo0AzznUlSmChOksMHOBNuCgUjrMl81HVkmNSNmFHHFfIOvFOmGm1n5JozAjHYXkB+ZHz6eeRFSORs4seNMYQ9eUCXj4gRiWqkU7KtwfaCALnVT7NV7haSyBX1s9jk0i0ydoub33dz+/ELG0uVUwXlZLuUr1sJ66PwfKpCWMyUC9kuyRGkB9PG0/OSdTJD4mTdwqniHrG0eOluVlnz/UNSpEyS8+OaiYjIxO4qD89aUpmdKt5FkBRBET1Ir8T+jBR+1/wMXBhGlL3coI7clyPdsvvzeWyHJeLVklHMzPFfkl6djTBn2rnwLaIAMQeFJpKQifu8lbiscM1dh2N4iy+J0wZegITdOrzhNHJdLBIigTnPZmNJecMl00/+JU/DSE6eO+yjK1fDlocFdxkSu4gjTE1vjoQUhb288ieVCgkjVuvz0KFNcAxTlb52Ua1SIw5u3ohqWxAKI5NzNn3GQUFMLhNx+tRlN3SXYvN8cGyYSAr/y6tGvSr0RrP3tdXXOCIqnPUVA4QLpeFVeALn0idSC8+6Y0ohE+q3Cl4pEzERFfayqw9THYfkd0bvzfHPEGb5njNba38MUX+YV2wekU7Y5br9fmXqZUic5Wg0i6wFIWnO8Ix4OSrEW37lg6csF2Eq8xi9yter4OfabH/INFYI4miYZ2XlOoMLV6KOvMULCQ58o6ffw0OD+++jpMd1HAgMnOEzY973gj9XVSa31t4mqK/dMfp4TRZsy1Mitv9oB5anSxxVMD8UJOAng5PAVsKu5I9nYHRxQVvsrsR54+4wKvsTmqkZvSDmcdHvjlPSMMV7ZKtey4xBua5z1e1XxLDTffW+RAOCICNewYxqcxgsxJm5Y5ENFuSh73KnjRQG+x9PhtW+AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAYgUAAAAAAAA=eF6N2FtsFGUYxvEPEEEBXWopRQoZTrXhUJZSKJZDBgQh0piVoFZi4gQBG2J0LxTRcPEpiIiHLAhYUHAl2JQIuiiHRQ2OJMRKGl2IIb0iW+xFTbwYAoR6AdHu8x+T2TTE94Jfn/d9v5nZtN1uqOu5UNI8cMaC8aZQtvcf97n43F798zML2kXzC+avPan8zPzvC9vVnpw8Ub6+XJrygvZCYq5ypfpnFiv3LFaufUS5g+uZC/UFBjSqX63nsKee0Hz7XPVfWSK3LpJtcc3PL1TetVQGg2TzIs1jo+TgCbKZc5kq9qcq7+F1WK7nLSB36vncCvXjU7hfLa+z/TtdZ4TykVqd657OPvc35crZCdIp43yXzqcqlZM8pylV9ocpe6N5nlHqN41jrz+vZwz5pp43VsL5qzz/3zJ9S5p+zAfqXE+pdG7redzb2vM7lc1ZDM//qWz/Iv8qvVvqJw2v7yJ73Vw3z3X5vvuXue7v7J0jn6iP9P1L5G3MU+S0tL9w/Q76O4uu8zP3O03f4xzn/RbuH+6/yHw3+5vZ+4K8RtndF903bzBv5Hm20n8VPV4P17NN3HcD88c4v4IcwxXsrSMvZ2821oQyd7n+LPoV9MvJZVhKP3hYhvebxLwfeThm2LuGXacLWMP8hrK5iJfZa8c2PML8HLmVnMKDmGa+hbwRt6pvd5MT7G0Ipb8OV9FvIMeK8hJyPXkiOawgK8cX9Q37HXNkD3t57MpG5xezJlKt9JPYUpRTaDnXhGtwGfNGXFnUjxVpmJeSr9dFzZ0ykfLJ7XXRbPEQ/QNkj7wJN9JfQ06Q55AdchU5rNxJnB21AzMno6bpWywul71ls6M69IMTfZufJTPoYytzS06SPUzQd8kO2YTSDytXKzPHo31L39L3ME5/McboBzOj5r+VPqboW3JYjWSXuUMOamT+m+h+ln66qJ+oiWaHeXBM5jEzQ6bJSXITOY7/FfN8XPqZ6DhJ36UfJ8eK9sJKfy296dG+Q9+EUumvpEW32vRZ/jT2j0rvaHQem2buWO5U9jD/pcygnSLjZBNKpSabPit3uO9+rKhvq/reC8t7iC8wUykTLTKYFN13yOlDNEKLKnMwmoNxMv25dMmBY/5XuZ9Jf6xMH4jO42OjObNfJsdIl2xCKVshPYx9KvOfRPeSZLeo7+8zfVb8QRnslR2YGiUT5DkYNMsctpbLJDmsGP38SJn9WG5Dl76DQZn095g+K8E8hj27ZW6EtORN6KLDPL/LRCpVau5Y+Qdk20fRvkdehnH2DDm3U7aWyF07TaRWhpl59w7pY2a43EJOoEM/SMkcpmNRw0owj9Mvw/z9Most6KGL83Ao+vdFbf5QWlyNc7ASgw9MpOww2YQuVmEcu4bKNmx930TKpV9LvwK735M+pnDjEBMpjzwbh+LVe2XbdtlKbkKPfj3ZkIN3ZeYeeVbafeRGmX1ee6lF0o5n7+a2gu4VaY9Js2Nw1LX06zD3jhxCvkT+QbrHpN2Prw3SvIq9/FZZSjbMO+6WhzGFL7G/Qtp55JHYPpDzmETKbnlbXzRiNfNSvHGX7MQDmML10q4m12A1xvDKAPnjZu0fl+ZZDKucvRl46y3t/9Ff+Qwmpd2nuVlPXqXs1km/hPnVfurn39TeT7hXmhewQXtmHvPR9DuFaRf2N3L4NsaPm1lqC/gN0vBtcvorp/X/LGYj67zbW15tkru7jP/9Ievd7/2l7DUYIj0jH5d+iXT6y+tG8qfJjFDWr7o1mX5Sn/yteVRbDt+pHj2DXc1p3nDs08gbuGlAjtkFRdkl1xb1n0Kezq7Fl3Eh+0nkD4wJP5BwPvwgaP8BIo0DQw==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA0xIAAAAAAAA=eF4ByBI37QAAAAAAAPA/kN/ghMQCAIAEZJ6zM3XvPyNa+20Z6e4/N9GbN8Bb7j+7pHErOM3tP3tJcF2SPe0/oezL9eCs7D9c+EoWNxvsP1ql+dioiOs/cSviTUv16j/SYVyRNGHqP1GTZsd7zOk/IwDP+zg36T/PTy4bhaHoP/AIlwN6C+g/qbbTYTJ15z9wroqNyd7mP3LN+8ZbSOY/m8UWEAay5T/dhlns5RvlP166v4AZhuQ/v1c4ar/w4z9yUi7B9lvjP6iSce7ex+I/kD8WlZc04j9DBeaoQKLhPyKJIyj6EOE/TV0P7+OA4D9MXHKSO+TfP0O4tK2Oyd4/eIINuf+x3T9cf4B4zJ3cP02IXYsxjds/NmZ0NmqA2j9GD0FSsHfZPxT/8xE8c9g/DnGfqENz1z8y4CwW+3fWPxcD4BWUgdU/eh+36j2Q1D//UXkPJaTTP9TNTgxzvdI/ftdwT07c0T9nwhg/2gDRP+KlePY2K9A/UHQE5AG3zj/jM4wooiPNP0mzu4B5nMs/ue1MLKshyj9AIIDOUrPIP0maN7aEUcc/0jkbfk38xT+Qkr0WsrPEP7x6rf2vd8M/eDNtMj1Iwj+ih99dSCXBPzwUCkC5DsA/gKTBfeEIvj9uC0vakQy8P6qPHSArKLo/goIaCElbuD9tym+Ne6W2PyWQFxFIBrU/wliWGyp9sz877A4ClAmyP1OeaOjvqrA/7Nb9NEHBrj8uFZKbBFSsP48BIlHXDKo/O1mAS13qpz8i4p++MuulPxgraxzuDaQ/p55IpSFRoj+ZC2NLXbOgP1HvlOlgZp4/xGqdf1aemz+BGsvkvwuZP22ep8bJq5Y/qstc2qp7lD+bwUNjpniSP8QjwdUOoJA/o6TkBo/ejT/KprH+jMeKPyRVyfws9oc/uJP1HbBlhT8RW0skhRGDP5kBDwpL9YA/MrTNcKQZfj+wfBjpOqh6P+HrGbLFjnc/GlZruRfGdD+Mn0WtakdyP/6VsNheDHA/Fkk8FfIdbD+tPl9WQpNoP3TKMARAbmU/UaieYTilYj+EAWh7Li9gPy/uFFSoB1w/Uh3OJgY3WD/E1+Nvad5UP+PLTdX08FE/55llYNTFTj9NRy8tM1NKPx6+3p+idkY//fdbjpkeQz86A7DYRztAP+987xfufDs/Cv6d2tU2Nz/Wc3TohY0zP1mMh/y6bDA/3R33i/CEKz9trwbCpf0mP8awEcaAJyM/DOPKLqDTHz8uR+Pu3V0aP5IeTTrpxxU/h/zcJdPwET9IEAf3CngNP3ha4x6JIQg/zVO3FnmzAz+B/+IxMgkAP9AJq0ubBvo+MswZYPkN9T40yiDI4PrwPugnBHhHTes+14dawCbh5T5gR+v3U3rhPoFbgDA91ds+Zsad0c0W1j4qprQC/HjRPkjRKJytjMs+8Oi+0E+lxT4E0ygn+/LAPqANn+ekc7o+kXaeq7ORtD6BKWJ+iOCvPqD1X5DvnKg+pF1pkKLvoj5ibxzDBQidPoFSKTg7LJY+aDxnezHfkD5mYkjIl5SJPrwICO2aUYM+OsIZxX0RfT52Pb0m5ch1PlIRwhs5Q3A+/jlGwFQvaD4oPyUCaOlhPvo0RdvFbFo+os5zB7lpUz7X/BCSCmhMPlj9Q6RuskQ+0ilA7ZYIPj7NN/lB47I1Pq6pmBJYOC8+XiFDuNlcJj6QSTvdjeUfPkG7f6m+pRY+kwGRhzYCED7YFBMxsIcGPsSDs3lbkP89rFqzxywC9j2YaAeKmozuPVj84uhOGuU9Y/PtAT8E3T2VZy/LhtrTPZYL94h1Ccs9TSmHrddRwj1kL3tLG7S4PdpKezWokrA9yyVcldkfpj0ERnKbl2KdPSwigTbzaZM97AAXidWEiT3jCBZNB6+APXIRKkX0snU9DBh6CBESbD2sA04t2g5iPTCVaiw7G1c9XEvHFfxmTT0MRsikJJpCPXnlBw2zZzc9OUEOfZ5HLT2vgcnSazUiPS4zD5XjgxY9+LOnJwmtCz326S/7hugAPa3k4agMifQ8djFyS9jJ6DzVDzl29rzdPJiHOFkeutE8HrhEglYAxTxT/k3H3ri4PDru2uND6qw8guKd6LjMoDxadBBInWSTPLpddQXuPIY8y8bPNUNUeTw0Z/Zhd6dsPFRJ6mq8GGA8jGnR+pL1UTx+dkyQneVDPEobs5Ep4zU8Gv3qtn7nJzx7Mtoj9uoZPDpxlEwf5Qs84IraD/DM/TuAD1grAJnvO7tVcGPon+A7cDUwPgxc0TtOiphRi/zBOy85aPhyfbI70j1JU2Xbojt9iTsuvhOTO8nqDASxJIM781DYsV8NczuqimPS581iO2yWyaBmZ1I7HPXzSvLbQTtju6Lwhy4xO8hvWNjwYiA78MiJ7j37DjtmXhtDBgf9Osa0c0K88+o6FVpvSyHM2DqixOy415rGOvWqkZEHarQ6oOjXTBBDojrwobucRi6QOl48hFeFZXw6AYMvsICsaDoymf+qHzpVOulYU6YwFEI62J2FF6Z7LjpopTUdZm8ZOhpE8PKwAAU6VfK0NQUp8TnSD4VzKr7bOUvvep8XL8Y5/NoMVpCLsTlJEMCxH3KbOQNdRHrlOYU5OJiTK846cDmMJHbOkohYOWVGC2S2U0I5bMQus+kOKzkU4ZeoYLwTOVF539L6cPw4TCyVSus95DgnGycQQnTMOGoMIGI3v7M4rCciT+MOmzjsEPn+R0yCOBhVNVI7bGg4GdD2yu4UUDh4kkrzjeQ0OHjYPPtvxRo4paIFz9rpADgPDKC15RHlN3bqMRdT38k37I7p8PFOrzfXCeIwDqqSN4/4cdWm63U3CCEHNKtaWTfdBIGOtd88NxYsVFURLyA3ToBMkpnaATd7h52j3mDjNuGlgVsssMQ2Mpo2ZO63pTbMMaJC/GmGNoiJwh7Ou2Y2IBia6XunRjajVvqCYCwmNijtHcJNTwU25PDaxkYa5DVXxkJ0w5vCNW4gATiO5aA1PP0E8bwWfjV96qE/qkJaNb6uVkQQdTY1Ieq4RYPPEjVYi8SFRdruNKVilWwKw8g0exs4XONwozRQQ2WrVNl9NEyg4zwlZVY0jYjcuOppMDQiPUz9sX0HNPacvctfZ+Azvw43BwJYtjOlmUcbdKqNM047taw+L2MzhvtSdPUnODMAcVWZXJcNM2A/iKv2nuEylgWEujljtDLY8/kGCeaGMlkvG2Y18lgynG9zT29WKjInUTd8duz6MakI1QZ/n8oxD971XWZwmTFvumXXpHZnMQUeIEWF3TQx8HR6tAneATFRJscWV23NMN1TFZVARZcwXaq0ZNSkYTDrzcTVO5wpMP7bu8tRwvEvMGJNw3N8ty9sfpOC4419Lx6mpT7KpkEvCxOBuG72Ay8mRtJm8U/FLmLm5f7JaIUuloc+zJspRC7AgsZURboBLn2pygk197wt5O2oLg7edS12HhKCulAuLWMMFOvBJeMsUK7KdqPWlSz07DnFhzxGLIDm67e37fMr53kF3YbdniuqrnATzSREK4LdTP0wYeUqbDl+3nlzgSrOXcKBgtYTKsMiIisv7ZgpP/7zPyoo8Ciza8SI4uiBqJ4xkCn+fRMo/tbsNotnqqeoLWytU+JFJw4lgwUKiOWmbHoMwTV8iCb/Fyrxu3cvpoLm/Am8aNYlP1bz4PxcgaU13jVZCbcsJfKBBJLRvNikjPjnz+dihSQCSKfVkCExpDwhRdTR79Ijwts+KgFteiO+6hux4PFUo0qumM4RIB4jY6af6Z6a4qLn1Vk6q/WlIrAE3YMftmmieeOIVZBcLiKkAXw5TTvyoVnSc1dDXrYhkeR2kHIafKHP04L3+xlCIWAD5L0S7AehPmiti+Q30CB1hmCELY+WoIQ6N+AKF2AgdQkkPfKGJ6AdrGm5h5/xHzOU2yboCLufkgmUq7s4hR/TT+fv0QlRn6WE1jWW9xsfdaD9Iv5y557xnE/VIhO0Hs9edSGmiYGew3EnCrNATx5ctT532mIcnq/umau2ROodPlj7yCLBuJ0AluKhdb6HHQBx0sOXK1edjbrgZh7+Jh3U43LCHTH3nF18u9CDxMcc+gUVzeG8mJwnDcfklCNqHIKaAL1OBzycqwGmNwd9DhyqLl0StdDgm3h/WLZxzbIbp7hc+TxOhZv6C5BT4XRYG2+QD4sobiybqe/FIM66ABthA9aXW+3Tmqwx0fkNBKgapbSsuNNGfZqFYMgJpQtSGiZVe0lbfSaaV3q2mRZU/BkdcElAMAfSmVPZ/1geLqcZyFbFEgYafpnPUOZTNrxTGWey9rmhHyqZxEubhFNzARkgs6PreYbXmIF9tZr0/q8Ya+HpE1jyhZiC31hRrlxeGGVEPvb9LDWYoeYu5bvGDRjKW/a6qRnllyjVRTORIr4XOd2ounCulZcrgO09p21vFxuEhC1J8UaXbu7aA6TdIBfxuVyDu/f4lmj956rimtIWosbpDuPoq5bFlxZxfRGFFptQsUTzAGCWAUxZJ1V2OBYyu73dxc4Slsyadmr8Fu0VBiOx5QygxpV1VFFgELKhFU7CMrDE1HuVVmVjyrMAVhXXSwSmS3wxlYd/61PJ7gsV8nnv3Plr5pQktF502BXCFG4B1EwsUJ2UoquzVo7ddxTwbrnghoRTlJimkgM4CDAU7GFov2hzCpSD3YJ5R+nlE63SggaAOcKTYIp7jcdvnhPQp5rfj4N5k+KU/p+3d1UT0ld8ZgYhMpPMWmntT7oOEw40XTh5IeqSOM6THLZLxhK2qG080RWjkj81nXpmY4ASBLqmAvg6XJLPFiKK0mI4EpDY3LrzHxWShd5bmX5Z8hEIPprGG/bPkcG67Kix56sRmhfjaQhsiJFW/kteLWxlETK5rQwR1UKRqKTEsNKWIBFZIIeqXEj9kK9NN44N5NkQsrsyNwvutpBKN/smmlaUEMZrNGtwEHKQWMvz0kwQUBBJPO4NQpkskCQsbGiVegkQgtNW7LG25o/Sth20t0HED3yPJip4EaKPM5zbEDMdgA+M23wMvbpcjzrGHHfwljkPYyCyfLzDFo+dFH2zWzf0Dg8dx8lP6dGOXx0GLGWkrw6GS/p/HNeLjsUBFUR3X2gO/EyXU4szRY5tv1/coUoiDtiKnE0bOv+N1TSqPA9I2g3uY9xKILO1jQXYePCpcJENxJQcT2ruao3CExu6onxDDeiJSgHM+RiN4JOJPLKG5wwA78SDDU2IDJCgKSrXWqmMqFNq540RmAzQz6QtbYCBjICY7PvhxWYMgMoJnazgS4yMnMJT3GswDLAWRge12BKMvhZHYNc59QveiJYeB5LXi0xKbeXb47kL7p1tRccxnIsIeTOPGn5+Cx3X+daFZWCLYjjZ3VyNQQsKcnSkmLcii8Nrn/s35QMLTxu+CTQX5Yo0QnXogU7GCkvkyhwUjKeKMJni+dvQiAryadYEyx1qisaY6zXUc0sKAWCqF+3TLIp/byIODz8OCpNUG3c4tu+JtFoX3Dad0AkMRjs1XWaxiQI+tTUZN5IJFiRmffkPc4lwqJLkkfFTCdwKwx183DSJmbE0OFjRFQnaA507zdD2iHz7/MiJ29cIJg/Mt0TyuIic2Ea9vRWaCABzGBW+RnuIgqy6PxmGXAg6yui5rdQ9iFjNPcBlMx8I551SGJxRAIj9wtCjlBLhB31uENgl3cGH5p3zqOCxogfPCX8zXpGDhzSS2kZAfGQHLdQg7TFzRYe+tYQI6HYmBwZ8n/8hiAeHmiRvU6qn6AbQ9XFdV9bJhpojNR8MFasG2iyp+7hkjIa7svKNXMZtBiJNGKkEO0+GLfOLnOdhMAYA3jSe9TARhpbCE/tMC/IFYBz8+5fx0oWUJLE6i+SzBWvamjnm5JSFJmfRF3TzdQULultaDBFXhT46K5uTPjgF7GBndfx8GYX3tC5VSM36BJk7/3CIMNyE2GiyxN6nvQRY5DokfzSfhEqPuSrYa4AEJ2empmZJYYSxfro2ozNCBNehu3VRKyOELo7kGEExBATdbdO7Tkblg76MSq9ka8YDfg103Xuhp4PD5uyrnOmIAz+BjgDgRGqDR4y4U3C0SwMK2i29ijktg2IHnTmA1Q4DGpd3b9tE8IJIhv+d1SvRAvo/iOZ4ILKCAYgnO5wjkwIuAzwZJDZ0gn+IRWQDWVUCnStyUDyNNoK9NKBe4dMXAi1XfG0WLvmB6Dh20RGd2gG/3euCHSK8gWbFS2WYvp0BJLqzoPdzf4GY7PUG5KFgAfLLud7Xl0GBVz6uy7ecIgGeERWMcrEDgfxVjRIG1+QANHztg4AOxoD4Q4pBAVmnAExjVAe6t4iA+m7CG/AragDA5/CM/bZLgDAkdJpSWi0AxrSimbuLD4DNk+rnAR4EAEwIsi8wFwGAjQQp/ftJAACtj9KbsRMAgNRNc2mQBQAAVD/Rmg==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAeAUAAAAAAAA=eF592GuIVGUcx/HHS2lej2a663XUNa/Z7OrqpqInE1nF6mghZlKDF9jEYAoRA7PHWi+V2dEsrTQHXW3JtUaznKzwUEpLJJ1ERMRkX4itsNAkRlsvopzf97w4w7L/F3729/8/zzNnhtk5s17115Yv6lU+8yFTKFv4d93E6XdwB1d+fcdM5aJCtqcXFAy2PlLo23lPFzRXZhX6Zvd85bKHlc+VKwcVys/Olhsnaf/CxcreaHmoWh5h3Ybh2n98tsxNlOafaQWW6xyzbYTWr9J1mjVlOv/xhcrXK9nXrH3+LK6rm+zH+YGRbqn2ZUYo57GE5+H+rXOqEsp+f66D59F5qjRNWmeHat5Yqf7V6bJ5JOdx/SY4XWDvKPIw7bP9WddLNg1Q3+8j0+PVtz25Xq7ftOjxzS2da3rzvAbJfBee703W8bqGvC6p7pFaH7RwTiiDm+ST2ufy+iY7cd2XNE/9yfnneD2ix/ud+Q1yPec2c25G2ovS/YH9F/EM/R9Zd438M/tPYIrz95JPYQ39w+Tt5BT5KB7AzbiWdTt43P30D9PfgBvpv6zs7qT/Ej7J/HmeD9djX6C/mnVLyUmcrH6wkryIdQuwBKfho5w7j/UJzH8lB7NuIP3x5M44gOfpMO+IWX1s2C6sa+Vj5C+8hH/wOL/gFazHBtZl8Az9k+Q6siVHtZ3+etzCfBt5K3kTuYa8CJfQr0IP5zCfRnZwGn0nkn6Yk13pN1XJW/SbMYs55heq2u5brMOo9ubi2WP+Iv0kukVWY1l0HrmEnD8lW6fKZnJUl+lfpp8tMiqfnC4yxf6VWD3VtFlz6CfY55Bbv5T5KfI6NuJZ5lFl6Vv6tWSPnJoSXz+jKOe/4Af6t8mXMYtBZTynyZZcQ/awGqvQwa4YVThZZk9Kn+yT0+hFTjaxcsgO83BSfJ75XPqYLjKqJNmJ5JymE3GzFbLuhImVR05WxPuGHJbLoNy0Wd5x6TJ3itY1JU2blcpKl3kyG583fSZD9DGN7oMyQTbR+oky+6m0ZI+cxPwxGTxgYpU6Ztqt7ASZbpAuOhPi6zJHWYfJ8fF5ME7640y75Y+VHjoYjpG2XrpjTJvljeaHj4v6R2R+lPQPx+fZsnj2R8rEIdNuZYa3P3cz8ewPo3+gqP+RTGES8/tlMESmh5g2Kxws7T6ZwsS++LrMIJn+MN439IOB0sfUBzKBhn5Yyrr3pUdOYr5EBuhjai/ryCXkpgGm3UrsiefwPVnfX6bILtkh59+VjfeZWKWKclRhPxnslnVYg0nmid3xfcG90kf7Tnw+mb6DYV95dpc8iOtxDnMHW/vILBaXu1MmmOd9eduRWfTRY74cx2APbH7bxCpDXl/Un9BbdsXmHaxHv5esIS/Duehg+JbMYUNPWUuuJnvo0G/dLrPYgJkecg25GidgD+Ytb8qT6HeXteQl5Jl4P4bdZPYN+Qm5Fj3689HQv/66zGDdPfIguRZXYT/Md5UtmNsmffJq8nPSVtC/0aVAY5L+v8qJJmm24x5pN29VLqM/V9mOJbdukd/dLRukPUZeh4tZNxNL6ZeSr90lc9J+S96BLv0Vm+U86Sal+alW/QudTazWqG+WoMN8DLkjhp3k+dfkN2hxBfNqTNK/m9yF/Our8nvp5joWtLvoP4NLcTDzbtK0dJDhJrlNBvtxMy5k3hdvC/MbnseUlbxt7Cu4jP5C8jBly8PnMPpWxN3b9tT/v3gd5f8fDgX5EuN2Vk7w5ljLbr6D2KGmMPd4LyZ5kOhPJm6dtvCSWrOkg+Q3xfBJ5XJ4incGXyCjG5bhBTEjcLmwj+EM+tGNOjr+CeSLlYluCFHm/OgPPMuN2/IBZLmB2dms5w1un8L/ABD++1g=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA0xIAAAAAAAA=eF4ByBI37QAAAAAAAPA/43khegIFAIDhjRrGTnbvP6rpIoBD6+4/AfLsMe1e7j95cfX0W9HtP7zAQd+gQu0/W3+IHs6y7D/9D8Td9iHsP3vQ80MvkOs/DgLgcYz96j+S3VWYJGrqPwiykvMO1uk/r8mVq2NB6T9MPhzNO6zoP/qrOlqxFug/b0OzJ9+A5z/YlyK54OrmP75EfX7SVOY/txM3rdG+5T9sUy4A/CjlP84catdvk+Q/r2mGDkz+4z8qpBkAsGnjPx2UiFq71eI/SvvACY5C4j+0RX5NSLDhP70b73IKH+E/wgcJqPSO4D8CZKMMJwDgP7tuQS+D5d4/Pi7NzMfN3T8UaXBrWrncP9gUWmN4qNs/K1APtV2b2j/c5xr3RJLZP+drjhxnjdg/IiiTGfuM1z+mWsqvNZHWP0J6S1xJmtU/DIdxI2ao1D+NHkFAubvTP8eOaPls1NI/eJlZeajy0T8+ec7fjxbRP/wwIf5DQNA/sN22BcTfzj+QNUT8BkvNP7nskPd8wss/7+7LfUpGyj8SMcJsjNbIP5JCeEFYc8c/Usgxt7scxj/7ZePQvNLEP2VzzQ9alcM/FFrAZ4pkwj9E0RVmPUDBP7Y3YZ9bKMA/VWSRe405vj/CJ9cOszq8P94IdMjQU7o/at6shYOEuD+YqmBEXMy2PxwOZUfhKrU/aX/B2I6fsz+1BjDv1ymyPyaIUDEnybA/MF6Sn7/5rj+4P6iPvIisP5Y2wtfyPao/hwlnkQYYqD/FTCjikxWmP1Jq2v4wNaQ/jZn1vm91oj/twHOD39SgP2J3BPkdpJ4/KGp34RrXmz9LyLBf2D+ZP9OfTwCB25Y/Kk6YKEmnlD+UWM6jcaCSP+FcU01KxJA/S6fyhGcgjj8CU8qZQgOLP9sI8JI1LIg/NP4VynuWhT9X4tc0fj2DP8Z1rgLWHIE/CGIbuJtgfj/x9eauxed6Pz4eWvWKx3c/X5x7j7P4dD9omq2NbnRyP8akMfRRNHA/4v/+UbFkbD/gZP8hwtFoP9SBgbhVpWU/QE55B6jVYj/I9pOvq1lgP9xUhgoGUlw/ImkNKfJ3WD/Vsc5Z8xZVP69H0q0SIlI/FcsOXPQaTz+JSF6yx5xKP+PLhxkTtkY/MXwSzSdVQz+3MtkoE2pAP6YjVFL+zDs/ZEqjnCV7Nz+tM8TbpsczP7iTjHsPnjA/1hWe+2/YKz8mw95BHkQnP/JHPDbQYiM/QT1M9pYbID+WawpLLrEaPzae2BhvDRY/UsKR0qsqEj+yek7BBdgNP4qNod3scAg/ugE2lfH0Az+0MXRhBj8AP/wka8HZXvo+4J83BBVW9T6SwKbxnTXxPuhGTsmsrOs+X+wKlF4u5j46ftueobjhPjp0E5RzOdw+x0Q2NiJn1j6MqW+yKbnRPhf5kmTi8ss+1laSgmv2xT7MsUxsIDPBPgYcSU/B2Lo+GIdHBx3htD4yHMGFai6wPq11QpTe/ag+E/iK2PQ6oz40o9NBp3ydPhoCuMUyhpY+0q2X0lUkkT4txuJReP6JPnRJnRRdooM+dOIoBTiMfT5Ata4EyiV2PraC//9CiXA+osX/QIeYaD60aMk6GDhiPm6leNQE4lo+OMjQebfAUz6a2QNlm+hMPsnJbFEKEUU+txdt+D6TPj4plBaIEBg2PgWEoZ9eyy8++jG7/zbHJj7w7CbQYz8gPlUOpPifExc+IiiZo6hQED5AQ+tSMfcGPljKqOIQFwA+8t4Z+0hx9j00kfVxXyjvPZm7nlL8huU9hEcdNiyb3T2UY9dO00LUPfZxalHqmMs9CaQDkwS0wj3IRvhT0Tm5Pe1zevdB7bA9TalotAKapj0IgZTLdwaePb1h+WlN15M9Y/TFuQMWij2K0uVX5Q6BPfu0/AvkMHY94n0k0J22bD22KUlRxXliPVAXyN5ppVc9mtACk5UYTj2EInWSogtDPafp0fPt9zc9Kuv+ht39LT1N3LzS5aciPcoBD2zdEhc94mbrkI1eDD3uGhN0ElYBPaWBmBRvD/U8BV/YnbJt6Tw+1NUyhIPePPKW2gasMdI8RI2YdmePxTxWDIxP/GK5PFMKwJM+s608Xp+2O6xCoTzEgDGlJu6TPNxTcp093IY883lZqo4Lejwspl737HhtPDOi3FKYj2A8Adk7rYh7UjzVVd9jiXtEPAnMDSLCiTY8XPK1YkufKDz4Pj3MRbQaPKBHYMn/vww8Sqervya5/juUbm4HAkvwO2Yus1FjJuE7GgMxpujp0Tvaa91aCJHCO0xtXG6oF7M7vrfvC0d6ozuSdaHgILaTOyqiqmhQyYM7Cvmzv+WyczvaCCfW9HJjOyEDaeSZClM7a4Em9fJ7QjsUaAW2DcoxO75TmSfM+CA7Eg/VRMAMEDv+Y4oNAhb+OgUnaRP08es6Yl9wzXO42To9IrJDgnTHOohYWJqlMLU6WQIttpf2ojr32/0rAc+QOtg7EzuKgn06xNwVTb+maTqVTgd/qhNWOoazGJ5pz0I6ji7R2qS6Lzrpj4/xXnwaOu91l7oh4QU6BV4oz1Xi8TmUdZNc7uzcOX+AxZ7BI8c5JnPX2h5Psjk+AR6bSKecOQhsjsaKK4Y5cXO4hor1cDnYEFBS3qVZOdmECsQdK0M5ZCZdCFpQLDlfnyD/WakUOZ9xcv0pyv046XAILz425TgrhhCvG9XNOAJOBsi/trQ4nUhBP8JlnDhgUSLYrDaDODcL9RaBqGk4KerlJXnnUDgg5qRKFvk1OOxgcZeuKxw4uhIBJ7DOAThukPlSIDLmNy86lIIvRcs3ysMT5GmCsDfMJR6FBLKTN0IPlKclJXc3gKCVP1vJWjdq25jjBYY+N80+a0F2HiE3T2fB1LTlAjcH5+ZhGYbkNoosWwbR7MU2UuXSJy0IpzYMQZpEBMmHNvjp1In7I2g2l3rJ1ZgSSDZ7HOwp9JMnNqNyKs3zrAY2jl5VSwdo5TUDaGrCY9TDNTVmOh3TBKI1KjpZSToOgDX7bO3u+wtcNYXJIy7rADg19ZlBcCcfFDVHmzKwyYPwNKGFJN3hh8o05JNOkN7YpDQuZJ2KfwSANFi8ssBhDlg02N1S6pClMTQm9nM2RUcJNFFpmcYNq+EzKDvdN60WuDNkQrLaqwGQM/ap2d0FuWQzeIyQDXgeOjO/BIiWqQMQM+GvBfeiF+Mypd/BlxsdtjI6sjjgVN2IMviQIIJTHlsyAKlvCA2qLDLgMD3PPVb9MRCJHbVwC80xg5N4ZLHJmzFA3utAuKlpMZfuWuQG2jYxId5zAF2YAzElxW4myCjQMElEEdQ1mJkwkNlkxHpvYzAEA1eTWUEsMJrqN7oQoPMvOfue/pT/uS8SXnxFB2OAL5RaU1NUnEMvGbHpJ6w4Bi9C8h5OrMXHLqAGt+2H7ocullP+d9uWRi5GNkOhwegDLm8W+buRTsAtq/Jq7XqweC0JGfWRISoxLVSWl2eowOUslQ2eJrTlmCy0kBvMRHNJLP1TKjG96PYrUlacjn3UoSsJFWs8B2lHK4NCGnBbBukqp1b27nWdhCrj5JwjVr4XKioVwgvGjJ4pbZcaYq3H9yjwiZPWuyuHqP7Mi7ucDxgo4r3G5QeMr6c3tODvT29JJyYMthQQYuimMljxM+UAiyab44lIndswphWoLPyjNtcl6pHjrTs9gaVxJd0veuQqJQoa1DiHJ9WkpCGmuGDIfiQcHJKZxZwdpP00XrYq6Mmj9ySa15i4oCPuCthVgyZmo3POKqGhmykjDEiTSrl+7KJ7NX1/upivIt5kVmDSunGiX3lcKYhLNCIN0iDX28r3ocYb2itooLwhHf+Uk1exgaFin/0wC3pGIQOefc5hWA2hfmpqx2uu0yBwXLj+gxyboOE8vwGLKmMg1RjP3i3MK6DOLtbSNKr0H7kg3Dccer+fQQIPcUuLiB+lEjU53pRTn4te+eC08h8fGfPIfvCh6p7OMu9qbay2HkR8noavs4Oet6mRLKh2UR6yo9uFJpAfnpsTl0x3EO0dgrDT785Bu50O/yZ5TQWKHXlUgeEYRlmdVTUbsgn3KB0u2f3WMRH5nKudR7cCk8kci4uhH/F/mpxxk+/igeBrHLJCXjO8wj2ci2e4E4QdEBykHBGxxLLhm1pd3OsKtLMbeUCy1Ho6hpsK5tS5WGdZG2YBtCynZi2b9IIykGA5ARuEapIMqWzUmgMz+88bgagaxt3NpYm8fZr4e2Yaqz5SGvIR9W3voSaaXdHZFOFf/Bm/DexKr/jRmd4oIoLm/qYZFu80oja3fZlzFsT1kGJTGfUqmVSlhymZM8WQ2T73ABk+lZ1YXcDWmNLznkzxxq4YYwNI4ar+hJiLhwjf2eFcGKqf8bAtBzSYqMsreTT/CxhOoBSKQrjjl1lCfZ5F/bsXi5vB3oIClJc/XnVi59BsF0FjSxz25ESXKtN8BwuCHhfxREgbvGv2liNDpN+fldAWrM/3uaKwqJZfVktZ5H2CFj7iO6yG3VuWUni66SkeNRb+ueeqWhgQlsQl9pxrq+gV24Oa7eoBw5WMnpE+SHGdFWS3jZ8f63aV5WqS5W7tURVGEWSBDC4slYR4HVXXPwYVRJSciBOl4ZS+7pbZIhu8FEZO+GgKepaUHftgKL8LchRsJlsBKBZNlBKELj6MhicUyHVUkNIXA5Qb9kGciBffEzKXmsSYZLmTAVRz4TLMlBOggNjjLBRxk1aPl94HHkwTNi5ow+8xJ5PISkfyrysDE8zUZ5ZQvd+SACWRCMtOuhLRMvQNSdOVkl1Wa2aSHXISQ1Ugz7QSTpIEUNO1yfIoEi4dTa8krASSvKLOIHoY4RGNS24MTjG8kW6G+9WNJpcRmsXL2inncpG1wuOKH6JOET134NtxkCiRVwVKYw9rAxEOlJimeBfekMAf/0mKpbYQIHcyh59LkJBUOElqmrtlELytJ+2N3TiQELEqU1LNARCg/CzrZVLTD6ylZAf5qtCP6ID5cZflug8QNfmxH+Ghj/6Hyr+huoUPzPk3J4UVaY/wfyIAqwRMDwI1hzgqmC6PopcGaeBuEA+8knb2mHDxjjQBclNKVtIOpjSSD0sks45qwnlMWN6TDmt7RAWth3SOJms5rBUjVQ7WX7SyALM1jhxxbG+MORYOjBHEG5O49o2fUQvBtDHXDUqy/+VfpreN/Fkp5NgXmA0Gxlr9P4d4jbTjpuaW9VgNEJU6VsVjOY0ArrngnNIZDYKHWozcQvqMhn6psDO12gwIdNaLRCq7jPc1946mopsMQQYPR+gefIxKFzEfkZ9cDIQixvMiJT2MskFHXxuwHQxL2Bbo9ED+iyRhCEgo2N4L5q9MIS12v4v8GBmcvQ2gC9zJAYRFZICLsEOCTOu+YAtQD30u7R1Bi04I/9aKgSELO8UpzAXqAYvBNGG+oVfiCggchdCkysKKUcDs4ldDowqXQFruBsKDigYQjU4BR2QK94N2/5nSRIqwYLoCKGUlCkjCDa0G/wWKnIcv7pWg5gkOInqzOkrHifUR3Tpf/KcJQ1SJcnO3iInRO/BQ7XtpCWjUU1FJSkqJtEbYxwojKwk+jFtYvAYMiaAjEnPw9ewIarkrzEHxzYjSXM/fU/muCO2jjLtpB5CI8SUFozuZcAguQLQ/gDJRiBtk8Lqd0zEIkhDOLgB9EoiJggHxGS/zB5ynEAxk6tOHm9GckV6vtAeNLgcUkX6Vh0IDLByLWHYHTyORneQ9V4eiu4l/Pi84B/TguTRDLRmHKH22OKc4+ga1sKy3KVLbhqEZEkaVerwG0eKDfsCynYa+hni9jvt+Bm5ypIL4KmCGTMS5X3PhQAbQG+FKv6EhhvN2tMFrbAIGKObS3BBC44Wch7PmTyPEBQtnld7TEKWFkughF1ILhgXQZbzoihNnhbHLx0dKKkgFhpIsl2hQKYW6IExcy4YKBViXChtmzuuEEW90MTsozQQcahrJXJWuhAkpveZ2C5AEgrKcgRHXcIRHrNIOIq5RBGLkVX1WkTKEt3tOa2eBEwTsJYTZGH/0g4QePOA6i9UDaUGhd6qmtoOi7sA8UtKXA1A7rlYrD3mDXqEHZz5eWgMgHOlzpMA7g4X6gwaINx0DaDeXNybE/oKrXNbx5zPgAnnYmXj1EcGCOH1Kzfn8oQKHl+DzvvWCgopILJYb/WMCYNq80PMTRYIKfyYPOjsmAg1c8/rvcweCIuHXbye/6AFPTIuDAx7KgX9draO5kasB1jWUw5IbjYHAPdyZ7LxuAX7J3nqdO1CB+6P3lAQmMQES0XLIfR4SgZLMkpLoJfMAu9ovnjI91IDuocqrWGW1AJ0Yaotnn5aAibRbJH3sdwC7XdOIyU1ZgIrtFDuQxDoAZsaIcClSHICl+QGSAX4HAP+rgl19+wGAPHYf7FaGAAAlfFnZuCMAgAsgKtsUCgAA34DJcw==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAXAUAAAAAAAA=eF6N13tsU2UcxvGXsenkWmDIgoBlDldl6BG5TIZ4RERUxEKQDETtEjREjSkRzP4g+qKgyEWLchkTtIwFhy44sOBANCeTGBT+qASQBBMqEkPAS00MmYQYYc/3JJ7aEN9/Pnme3+/tzpam22YtWPDKB+ecCX3Nv05Fr+orxFZO7tSWPtGpd0rZ3Tj9886++/hOzZzH5GZH+73v1fybGnmktrM3LRO1V/e0bHpEfb+H5PdRWX+35qerlFPDZGSW+m2TpO2n/sI98sQ4OaVM8+YRsmOUNKM1L5/I/gT1Ja4cSf8Drxfi9f98UPMe1TJdor5uuGyrlOMf0DxezbxMesN43ohyrBfP5/C8Ds93bpz2ipSzETm/Qnul5co1Q3k+dIfI+GDNM91kuJC+p6wJS3N+XyfNfXiuQfQt6k0B95knL6mPddWezeg5s12UM39o7nXw/CeVw/T2uEz+pHnmonLmL2X3d39P2fuVfIDn2UY+prlBu4d5A65nfojnPcXrHWI/xd4q3MfX38/zfsX9l7iXIi/BlbiW+0ledx3Pt5r5PIzS+/dqcCn3Fmnu+a8/Bedw71m+zvP048lR7k8nz2b+FHnquKDV7E9jfh/9CPJQcil5CDlMLsIBPJe/98te2YV9Q//bXTKNh/Fn9tvIJ/AY/UFyHL/wM/MtOTmGUVyOS9iz5IU5+zOxFv0TIU/mvsmV+S3YFwuYd7TJXvTpKnmR/iAepW8nJ33pE+RGtFVBF9O75Cj5GXIteS55GtmQx2D2M1nMvIQ+M1amc/SwjXspbMJ65vVkizH6GvJcdOjDY4O5lHkPcu5J75FnxshWX/oUOUG25BjOo3fIIcw9JfSZ0fLsbumR27Cevmm0yXtc5g6GsHR3cC+bkmlsw8SooBbjWIP+CfkZs3fK9Key1Zc+Qa5D/zjkkN/nzL1dMjlSJnYF5zF6lz6SM8/eEcyJndLSR8kuhuizrTLtSI+cIMfRpXfIxpfjfRLM8dulSx8mZ3fI9G3BfUt2MbzD5D2JEfn7/3tClcGcHJ5/z3wsvFuDdfQjGaZPb5eJ7cG9EDkdYd4sXXK2QrZ9KKMYov/PuTl/3doUzMmbpLNVemUy2hjcS2wxeU8iLJ2kzNyYfy/zfv4+93ibpR0sXbIhpwcF92ObZBgzNwTn8ffkFDS+nGSDjDWYq57kxmCeRC7GdKlMYF29yXsyA2Ryg1yOLn0VuXhD8F5ivYyhe31wbuhb+7OPUXTRYPE69teyXyJjZJccwkw/efBd9slxjKKDGf6t8d7BwL85l38P0Ds5vfHv9ZFJjGN0jQxh8Rpz1bMwJF0MYTGe7S3bsBGjb0uHHMbsW9LrJb9G/8SYOxjCjp4ys1qmcBN9FB36CLkEvVVyPyZwPs7ASjQ9uLeSe91lA8bUe08qu/ezVyFtf/KPK+QR3NlN87UYl2YqVmEJZt+UKWy5TiZwHn0EK+kLyV6xPIqblssVuAirmLvkS2/IC9fK4+RWXIczcQZGtG/RZK6RJ6Vtx630L78uQ+jQDySfLpJH8cAyuUraZeSZmtsZ7A2kN3h4qebfFiq3SC8hbS1OZl6mfXPmNXm+q9yPcVyDL6DDfiG5iFxA/q5AtmPjq3KZsn1c2VbRD8cjS+Rhafd2UW7G+cyrsJy+G/5t2Led2HZyHfofoy+SH8UC7RvejmF+PB1G/cPS47sJd1W2ZH6I9vKb4Urv8kNI4ygejs8Gjzp0pb68/6WRjnTZbuWtekn4v6k93vmtehU7ibH/AckHq+W25Y1iw8gfQpYPSut/4HPPLKZfhLxRbYz5c8gvMDOU+WzkDwPDd2HK6f8BRnn0ew==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA0xIAAAAAAAA=eF4ByBI37QAAAAAAAPA/bOQowy8EAIDs402W13XvP907vjta6u4/2a+69ZZd7j++Qfndnc/tP22UPAmAQO0/okOGok+w7D/aPY7QHx/sP8dzfrQEjes/UgiyZxP66j9fz/kRYmbqPzft/+QH0uk/qPaI/Bw96T8DZm9XuqfoP4ilRuj5Eeg/tkmncvZ75z8tTFhny+XmP17H5yGVT+Y//DrLwXC55T+CrkXqeyPlP1HKOuLUjeQ/xB2fapr44z+UluzB62PjP8N0/3joz+I/HnjgXLA84j+5ZRyNY6rhPzxWdjUiGeE/kjdQYQyJ4D9kLrkZhPTfPwqQuRTG2d4/qoxhox3C3T8Yi5PyyK3cPyPIeAwFnds/AGpnog2Q2j+9b8b6HIfZP5Sgx7drgtg/5y86fDCC1z89nym4n4bWP+qqE5frj9U/Q0Pzy0Oe1D8oLe1A1bHTP8fVj+zJytI/Nvwrqkjp0T9T+IVLdQ3RP+ibcFVwN9A/SWBTV63Ozj8Ck+sqgzrNP+ctr6+Nsss/JRTV4vA2yj9mxDweycfIP+jWPWArZcc/APsl6yQPxj8+VPVOu8XEP3ZCKqDsiMM/Q/xPbK9Ywj89mSfh8jTBP/4cXzqfHcA/hpEzoCslvj/E7xA7Yie8P+cYWI2KQbo//HlU+kBzuD/eghMUFry2P5DwYr+PG7U/NQzW9SmRsz8GTRdrVxyyP39wqY+CvLA/vDJD1Rzirj+Wfqa3rnKsPzpHsUdoKao/FoVEke0EqD9Y50HB2gOmP8W6VyfGJKQ/CvksyEFmoj/KM71C3cagP5DmFClPip4/oHxDv2C/mz9C8dK3EiqZP3Uul4WQx5Y/4m2Xhw+VlD/zr46T0Y+SPzyG/5wntZA/LkBRyeYEjj8mxZnAUuqKPw/c4z2lFYg/utPbBhyChT+DNcWAIiuDP0TVzklUDIE/ywxZ6fxCfj/STrr0QM16P9msL3Dar3c/aUJo85XjdD/Dw1gCp2FyP4o/CPCnI3A/7Ng3ky9HbD+zV4jgsbdoP3T1EcZdjmU/QK8tdnbBYj/ZVatx9UdgP2QpOBcHM1w/RlqH2ONcWD/SxUE7ZP9UP5XP8AOcDVI/pbY6Yn73Tj96A3f8IX5KP1TzDaOnm0Y/fv0ZSXA+Qz+aHga3l1ZAP4ksuzKqqzs/oLLU6bZeNz8aWJESdq8zP5DcCNqIiTA/Zml3JrO1Kz8QkH4AziYnP/zF2V4lSiM/qDuj++MGID95NFGGio4aP+gXXGKI8BU/dpGXuaASEj/unFXEIrANPzAlkDfwTwg/PQ6Eor7ZAz9eGbaEqigAP3DkY/QzOvo+n07eCiQ49T7ekuUmOx3xPkYAw9gThes+rBfnq1IO5j5tSeB5x57hPrSqIXTgD9w+lTZbStBF1j4ypVUOjJ7RPnypDXWByMs+frxdrcvUxT56xacSihjBPijuba7arro+kit1DjbAtD7Son3EqxSwPlaR2he51ag+po95ZsQboz4epblHXkydPkRLU6j1YJY+COs74LgHkT76e1vxqdKJPvpWnwf1gIM+oiV7UXZZfT7Xgd0EYf91Pk0xXeFObHA+NJQZwQxtaD6Uj/ZclBdiPvKMFv6UsVo+Gmx9I8mcUz7nmGyJhLNMPkxpQ3b76UQ+DMiFLQRaPj5MwDFvUO41PsQqydm2ji8+3ka6QlibJj7kyKRszB8gPlA3sapT5hY+Km9j11MwED7flEZ0P8kGPrl2CmAj7f89KJlMqYZD9j3MKo/7POjuPWR6B3JAWuU9ESWxhxBd3T2gtsan6hfUPc8XIL3pXcs9EmRHdaaLwj19TvWL2gK5PSp9HXoGyLA9Hnw3n9Jnpj0tPoRMKcOdPY45/wVnqpM9alDexmvaiT0eW+RQjueAPUCG9iI6/XU9msh87iFzbD3CiC6B701iPc/duyzHbFc9DN/G3tDPTT1F0xH6Jd1CPdBo5gTfvDc9CZO7tEOzLT2aYkiWDXkiPZyd0Zxg2BY9qE8GtPUVDD2BD/9USikBPd587zqE2PQ88kPPzMIq6TzyDLaYbjLePBpgDNfdANI8pKwqXAVVxTx5jO/Olh25POZjFJBJYa083vLxd5cSoTxCV0RVG7aTPJrGTitZm4Y8pMy4kuzAeTx1gpICrCNtPHjI8HY8X2A8GO7igw1FUjwG8NCqlj5EPOqMxg0PRjY8A1RsdaJUKDygWxSQiGIaPGrnBT8qZww8tAOZV1JZ/jvHyi8AtRfwO+18vLfg7+A7KZ4WqG6w0TtjahDT5VTCO/qEVQ482bI7QLrd8/05ozt+GfKidHSTO+1xKInEhoM7bPnjwARwczvO/EHwTDBjOyYM4IO5yFI7pn2+JGU7QjsXi+CdVosxO8Y5H8RlvCA72hiD9C6mDzvW15hf5qj9Op2IlDmmi+s6SdFAgGZZ2ToNXYb0AR3HOrPm+cDY4LQ6aQJNYICuojpaXlyxf46QOu25T443EH0656QnGm5CaToeN91NgrxVOvJxNXVyhEI6YiPI4f06Lzo9PXonzRAaOu/QRTNthwU6x9tJV1CY8Tn0az5lEnTcOfIPagUnwsY5JlJxTCgBsjkpv1FbHCycOb9opeFUy4U52aAALT6rcDn4Y3zcbjRZOaSpnYiH1UI5QFshM7nQKzlE5Y7MU0sUOXClP99NQf04+Q7z29vT5Dh4DZFfaknNOFABNU7TVLQ4bEBvLTnemzhTMF6gF9qCONmxH86tK2k4kUEcynGUUDipTd1YH4w1OJSV7Oiinhs4hor1RKt0ATj++lC21sDlN7TypbmmuMo3s0ckgYIssDcFU3O/ikqTN4y73KFdqnY3Jpy5AeA5WjcWTZ5X7uA9N50PNoP3wCA3ZnikYn19AjdKHfOtzRPkNgTbhNGEccU2oBgeUGGFpjZUdf56nECHNj8H1/wrmGc2T6h1n8yFRzZKhgVTrggnNlX8i1atJQY2oak3Iw3n5DUpqwuxt1vDNW1pSX4SlqE1zrqychlVfzVCHtOQGlxbNbOx74zeaDc1hS0fTGaeEzXHHt4wCRnwNCZ6rcuh2sk0q9iC+lVPpDQn4QEqeTN/NKz+lUVhbFc0aicrsH0tMTRNePf7d5kINHQlu9xMMOEzt5b+h4xttzNm2zLXMCCPM5Ir9rppJGQz7XZ4MiZhOTMw1m12qRwPM9cx9G07iuIyzeGyVIh3tTJ23JMZGyGIMgz9Fc3BTloyMX5KKTHMKzIi4Lt9nHD8MV7fdYKBJcwxJGFJYi3rmjGc8tfj1NloMZhnyRa9HjYxWJUmntv1AjHCf1g5UkLPMBeU97/JvpgwT290zlfIYjAPSflJVEsrMPa4YLEE8/Ivr4rIJmIXuS++CmeQgZ1/L4yKnh+D6EIvNpj+uCNqBS9/urJ1puXGLhFUWmrKCYcuB5FsTMu7RS4ntOYAySQDLpg3Br8lV78t8OqC98C1dy19u0Op7ngwLRSP5Vc43OQsv9kzU4Xblyx5eQBtAF5ILKlknWkf6vUrqE4oeAoKoSsLFYIJ+lhGK42EzCj62+cqFRVNN1uggyoQv6UYX5AWKn8C234P9ZwpX8pWvftQ9ihuGk4YA7+FqOUmI150ohYociHWuAvFradoGmGj2xZIJxbr4B5+MOemiu/Lg1zOiSYo32eSRzQwpsoEflMaetYlQgLdZzPbgKWvzSFaU6wqJVzViRybfNWkOAlXGBVvgCRwItDPiw0jpEAUPqtwSbSj9DgosvM/miMhsi6d99Rio5IQ9Mf/eCYjuO8Tbsdx6aKiMUfkCYisIu1ZcvY9I3CiZAXZw66VMiJO2hEoluT1oTKGaj1scrohseWM1dNmgKGeI/0FJeZEIeFc/PezWwuhKR7zCptk0iBEbFGnjmSZoDd+rnH1/GEgBAe//Z8jKqDeVOLDn3fzHxPvb1E6tL2fCxCDSi0zhx+0MM7/24lSn8xdex74Sh4fJLi/XFlK6Z5ZXuj77Y+1Ht3lFW1Mw4Ke/raYSYanUB4kCnf9XiQenvrAOikey+sd7XRxHKMZup30AKIPC/OIHZlzVZvmQ1idIRjNRQ8AKB2DJgf9SSH4nBURQOR/psgcU5zRv26TmZxwL0/WvfBqHMJdVmh1zDycPPnvAOA6Dxymf1IZ8yvhm96oo4uCJLMb8T8oewaghZsS3Ujkdr9YG+MkEsB4riybyZqP2XvTABsAT6V8D/vTmg+XF/yeAagabGsY5bAsfZrltUeFMe1RGjYPO8JvRSaaztydoN72+xlPpaIiQr3RmZVt3aYevKYZKOJUbydtfZnnCCuybDpTGUPOQSrOXSmZLxOsa/TiABk35YWPf6/WmBK91fOAvq4YqlH5Uf8ChZgXEw9wF/ZcGJRgMpBrHzSYBIMokM4vDBh5eB9tMeXjl9B+Jxa+TLwXui9khe5GlJewyUIwvkRtF867oqL2RUWXoJR5DGIjHxf39xGNWfH2lkjpqXUHBNEWDZXum+5mqZb4PT79axSDFjidH3pe1lyWFPyGyizsNRZCbnBBQsMQlobAqyKsx+kV2CJqyvLuw5Xe0Ft2wf2eFQmeuz++N3iVU9juWGQFUxX1RRU35wYuldEaeOaK0AcVBTloFNL54pS1lWYDs2C+FM4O5AIYbJiU5G4yTc23cxTZsnLukfhPlCgIpz22BSoU9KD/mwlDBZRJ39cTwm/hE5o+/1tbs7yT9I9qiHyzlxMcnOJR4KJzk4DYWdqlUVATez6d0y00K5P9YHBqw7wGE8BelL61DeOStd0Nj00BwBIUhtaKxPKakntwNpGAu3YS/OA8xtQ1U5KF84l1QkIwEhP4I9eBjguSSKd4+RZg5xGd5NIAYNfDkWdfcXyf2KAR3tq+Tx6afJHwMg+P3ENYESCZc36AjzSRQPfBW2NjERHbLJsNb1TtkOCgWw5/pMgQ448UvVaZpJDi3rBCKRqBECYOY0FMJFyQILrdyZPfNhAD4UHjnUgSkP2ZCsDfjOwP1qN2U7yHxY/qpHY8s7ueDypKNdIu4XOPJIhDW0uXRA+AhCABHub8jqBUtxPD8/aOcLOtu4Hu6A5OOX1c6nzSjpql/i9n5rcOnvaC5uPInI58FslUXpuADsK1x2Dzn2KOUmk28SR5RA5hE43oBS0mjuUeyzfowAcOBg2QUXg56Y1pVM9T1JrKDTLEzAug6KuN5B1YDRYmjQ3OPFsjFlZujUfKDBwye08NP2HiS9xLMI3M8tQk39YQDRQM3yOTX/GMT2KrftTm0Qwg4Q0pbW2yjNffEY0X9JIM7tDP24B7c4x69PojSwRUDE4GNC4PjzSMjC3PEV4cFQz+Vcefwqz1i8R6vc/CQNYLnqa2tuDYtovw/8PPm3WXC89wlMRxF3iLfCyUWt++WAsyy+1dYWw5i5WdFEF1IBoLpdsb7Znb+orQKHRwUJ7bCsJOu5scabyKZR6TnoU8nQoq4XW5Fhl+itoebdRf/14KlMut/vXvP4p4RLQUunUgCuxhUt49+QCKDEkHkdqC4QnIr6076BLCibgf8hPDqaIJfL18zMtHg4mMLtHkZ+1jCbbjcRUCm0SJCwxknApRJQnGxpOk9w8GiabC0rFF2OYIRgD+CHiqx4g2ut4hGYeoCFzr7Bm7bomIhbfwOvhhaghmx+55c2FLiCluvgDZbSwInPu80d6HDYjTRe1IRbDuBxnrMufX58+Hbub577aXsAdL4uty9UORh6Sh7vgf+XEHqlosBLa3UodwRwWQPoAzB1vsfpBIUxSHwl0dXWsx9QZkJs49RxvWhmguLgWGEbcGlzRJltsUmIYfmrGCBiZ5Bm1BsMnQRVqGzkizexB1OwbTsl5xqLQchh7ShTCJBf4FxZlyrbFo34WnNP4jmG/ABatuXNQRNaGF7Bbb5V0FggUKOfWVHeFihc5PrOD7yEMFBzQUMa69JIW3DjL59L8FBSLW6mqc0OaEFs7zMH3wxwTMIN45fSCphExFmoeQYYoE4+BCGrq0a4ROiNvZDBtNBLNTCaCslS6EeGy3necSEAQcJ7vOXubwg9XOdYXqxdEDCCacNkSysoOcszbPMKyTA91/Y3WBtHSDIMbCUhTMVQPoR7NZ1fM2g57KTTa/LBgD+dqyMNx3+YJL3n0wR9baAlobUc8sSbyCET/6bszRnQIVYTd3eXF/gnCf00vOlGACmuR8kNp9QYKcmPw7rXQiAuQW+NMeegOCx60ZfxWP5AGsLVXjhbTFgWilsxZ066YBpheRnfQ0iIFt5S12LZJpAcY0QDhXBEuBbquyRr6MLAH9bb4WxCwOgRyyAojg5e8AZi/prNHc0ICkTjLZ2tSxAPNp3uHt25KAAk1ARPvycwBYkWrLAhtVgOkyIZ8UVTYA/S/DXVKiF4ADD7aq/EAGALfywv61pwGAV3FUOjBwAADT2Umx1h0AgJYDaU9sCAAANIno5Q==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAcgUAAAAAAAA=eF592H+IFGUcx/HH67RLr9wrzdM0R83a9DpGvfQ0syHF1pJYzEoKbJIgKaMNJJYsmMzs1Ktb9fJXZpNZXqQ0muWPfo1icUnYYgr+ccVCYvpHuaWBwSHlft7zxwxXzx+++Hye7zMze+ftLbe++utd2/+2p401leVV/vlm3B2XLa2aVdFsHljR6z9P2b6pYvjL/M917MSUCmcnV7J/9nH14x6Q9qUDmjsqC/eqHzNd11uelcPnqi80KLeOUF49Sy4cpb4rrVw1WzlbI4/PkM1TZX6srOF+Rq/D1E5Szo9WbpmufPQeuW8K55gL5vBclrR4rqETNGcsGQ6TAefMMX1dmiZzv1H0wzXXPV5ajfRd+vq4dVz3T+U89/P7Sbda+5k09+1LXye9UzpXHKJ9l+dzu/U81l/SG8R9zmne4TrmZ+XwN75vezRfir6PPKf5QdpVuo5vuH/v6PXzes5z/XNc57QM/+B5zvI8XXiE6/vMH5cmjO5L/pHrlnje79Q7J5g7wvlofh+ux6Wc3838Fmkd4jk2MbeR/RU89zb6RbiW+TbmXiK3kh3mMpijX4BP08/ldSyhvx8fwqnMTVf2HqZvRpv7zozuR8/yJtGPoB/JdZroh2AjFidrP8V8HV7YHzfQnCmTT0vvIv0xPIldzB0lH8RDWGD/AObQY38ZttIvJq9IzOXRxaXsP0G2yE3kmdhEn8Zp9GN4Xc3k0eyfaZbdWE0fkLvwdyzuk4eb43O76b8id5CjtY4+ix77Duaa4/M2/exE30ifip6XXJ4ki5Pi8wG5E4O98jDZI3ckzr1IdvfGTa40c1bivCGXJ8rixPj2SbKP334mO8jt5Bw5jy69k7ieRV+DJrrv7TLEzk+lT96BLfQ5cp6cXCl6i7ka8pk9MmyS/p64BczhQubmYbRS5HrmShPi+4c/kYVE79Jn6R206cvj4/PhbunTbyC3kHNkB9P05XEmtoJd0sccZpnLkO3oHLlsyyBAcg4dtNlPrvDjeM4lskUuN8piY2I+kZPr5E5ZuK3nfYv90g4ZNPQ8l/qPPvdRPNeTwzHSxyymsPhh/Fz2Vvbpix3S64jPmbTwt5v/XdkP4rnwvrQx2GZ6XNZ7Mtwqs1t7nnPejeeCL20/OUn/jixt6XnfSfTBMOmh87asx+JQWUB3s7TIpRtMbOXeimdDDjfJArpoDzE9rsJGmRssZ2B5gwyxUC9dtOkNubhedmILZgfJNBr68Hrpr5Mu2cF6+vKbsoiFgcyTbYxWsV0GA+J9nt6hT2M1hmulf5300KFPYwpLa+Tha5lHF601caswWt7quFlsrpP1eCol/YJsJ3toJzTMRet4f9nSJrPkDLm5LT4fXiMDbHlDLsS5aLFfujpugB66ka/LJnK0LrVyDtvRrZUL8O7a+LmTq6SPXr/4fobewhr2B8nwfF/lzdJbKZ0l+MxK7TcwN5Fciz9dJfdErpB5ZW8xOcP+APrB6r2LLeq34e4a6WI2YQ2Wr5Rn8MRr8hAuxMXsz8Fp9FXR+T7ye9yPm/E5TC+XI8mjyd29K3jnenPuVeVAGg+fZX8y+eIybffi/IVq9QfVmy3kNlyE97FvY1/6s6/IL6+QO8mLyVlskE6T9r1bmOteKndUyXZlbwt9hvwYzqIPXxZ9OPcFubOX8jpl00p+FG+mH0q+ILxfPXlQ2eHjm8d/I2Np38xnbqx0+sliL1mjv7cYPq2F1cqlKnrumjHKN8rohy36TM/vCu/yz/i/+25vGfSSTzEWvVXyLdZvAs/MpuZqDu9keX7S5nL6Scb4IOLdhdEb9/M4Ch9h/058EPmF4fGHB/NCwuiNcQRGH9D54GF4I7v8tagsruP9A+rk/PA=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAJQAAAAAAAAA=eF7txSEBAAAIA7BHIw/9BRJiIDaz5PRUbNu2bdu27ccvHGzVgA==AQAAAAAAAAAAgAAAAAAAAFg4AAAAAAAAwhEAAAAAAAA=eF590mc4For/BnAzIuNYkb2KUAkZUU4ysjKeisfeRyISImSr8KSEUJnJlpGRfYok2ZHMEhmVPUO/9+f+X//vy891v/he93WTkf1/56z6X/F9OpiptXn99H+dFPaBKMAWDq5EPzNd3XIPvN1BhtVMOx7cs4+9V6ohGfyvR46c2wJp4I+4Bn+5zWSAN+idSievfgYuwEjR1HIvB/yPTU59l2s+uBkhf1rauAi8k03Aezf1BbjtCVsXoQOl4BYeMzqMj8rAv2U2N7znegn+w3xj3D61AjyzVzxgQqwK3F+LZGxYUQ3ex62VUKVZA75a0ekiPFILvhUofOSxdz1448G4BA66RnAagqb3wmd0AYZK1i+FTbiTLKbnP0P+Bf/YLRPGTXyNf/qRKbnLvAEv7xMjLDI2g9eeP0vM+oHeL1y+QGpvAU+wTayqKHqLe7NndheMawVfci1f6vN9B96cJHpgwLYN3N7ra52U/ntwrY57vaMn27HPlitXFyQ+gDPILWb9w9cBHj+QHqHH2gnOQTyaaUTdBb7y8+eBkyHokRMxdnZk3eguT7M7bqGvcbxhCCLrAQ9M45/wC0F33UoP/pe6F3wuwUuOeBf9NcV1M3XmPnDl6L22kYnocby7OcICH8FHRkjpvHnoSd4lHTfk+sHF0668VPgX3dao8oe1wQC4sw8T3+oYOu/+R5Mb7p/AZYK3vlylHATPrgnrs0hEl56bC26R/Iz5RzQZha/RGfpGmPabD4FnVTvl7VlDv+SnRAi6Pwz+/RcT1e0jI+Cc1f3lgh/Qjer/OBi6joIvtzhKcDONgdMJ0vCFlqK7pfQVtkiMg9ePVdLz30Kv1lh7o9uLTiNTTGYk9gX8jum+mWOB6D8d9TLn+tBbTr60CpP8iv1T9drshKFH+fePm4yiS0sK8ycpTIBbCK5dboxDD9KRYuyeR2cLvG35QfcbeL9hUV1lHroDb+KdB3snwTXM5EWsndHPMs5RCrehC55JSRmRmAIXoK6xfUBCJ1i6jqgtoVf4tkWvXPwOrn4ifze7Fl1zWaLDQngafNKmIIo7Cn04/cXw12V0Pjq/KxUWM5j3eT/xqBVdPVp6M1p2Fntg4XKOT0fPYd7aKWeaAy8SzQj6FYh+L5Sp8ew8uqd+1/1X1j/Amwemu4160Yn5/J7Mmj/B/wTctlqrQecyt46kOf4LPNRNcFkjF33PDntepeA8eFKIYpl5CnpFb8QDHvoF8IlwKiaxc+gxzn/b9kSikxSjhXnfov8wNprdS7MIXlokezFZE50sSJK+6zb68KeEkoI2dJ4l0yVphiVwtdUBPxsDdKp5PnKVh+hn+7ZOt3xCTxPlWd7lXQZ3Zt03NG2HTjdtWxeeh+630WQ/sIh+vJkufUxxBZyt1lItLQQ9MlThIHc7+gGBZFEjjlVwi7uUwpo26EVx+dTbBegtHsEV1zbR5xd1RQo11sD9JxrUCh+ie+9PZPWaQPcImYjdI7MO/q79Tr1dKDqLr14eqQ99bYbP+s7BDXSB8KULvuiz06V+a+3o4s4pnK6Cm+AL7tzLNd7oRfxcxybb0dkZvcnmhLfAT6dcedR5E728zvlofB86c8FF2lNHfoPTWmU7t99Gr+8JfnLmG3oA9dvVDNVt8A822u3zT9BLqKb8JLbRRRTu2JmY7YAHdtqs3KhBfxF64PE9nl1wWdfWD08D0Tt/iezN/YKecbS644X6H8xLDj+vykOPOuIfZ0NLpvpff5TaeXXmJPrReH351avod9M4T0Zkofvc29v9ZBCdxDxuqMJEDh4kornfUR3dj1ASzOWPvvBidcWkDL3yUPqA6Bw608LHuGBhCvBMlpoEV3N0/fUho7l49CQnaeXtTvQbESLt6XSU4FqHq26NqKMLLt75+CIYXeXSrCFvPTpjG12AyG/0Q0wJ394qUIHbbr7h3OuDvrF8JX/mJXqy/gNZl1V0qkgng3ty1OD1N21TL3mjMywYtjRXovPYeroNbaLHNEapJSvvAR+RZlmjDEKPMs5VPvAGnVAd3j1KSwO+dv2Ip7E+OkupxoTvQ/QH667TxkPo/BNu+hNCtOAt1YpT4i7osr2iEeLl6PFU09TfdtDftRWdNdPaCx7z7pzo/Th0R55jpMgxdG6DNFdVSTpwwaHGl3W+6PUeo+bkregmvTWWDPvpwfe+/lM34YjuSV1yK6ISneBIV7ROuw+8lv+CmaIZuoL/wxS9InQqWf2oExQM4K3ZwdprF9GrmDJ2SAXo12w1eygoGcHNFqQ3jYno/Sctc8JK0XmmRLkT6ZnAn5kSHsY4oF/Qv2B+uRHdNTdjbD8jMzhLUSStuzL6BeV3H0+5oA9mWviEJ6NPaV/gV29Dnz05TnlrC72P8YqlrMRf4J+2c50dzdE5Kh47cJDQm/KrHqo3opsd7FFeXUJvG7F/fvAgC/j5EA/+IVN0mZWMFVYSOn+nlV/Pv+gEwtAezg10KT3R5UkpVvDjUwqPVezR68VY7ARS0PvmG/Lv9aBXPPAcjaZjA7/i/ciRSw29NXO55IQ/upaSiczUS/TAXh9b8QX06BLVKnIJdnDdKdVSd0f0Fq+SHp8M9IG68FTOMXSSTng6gYcDnF6W4CBFRPd7RQrIeoROY/krsGYAXSyWn+L6/v3gAkTJ7M5L6Boibvu6HqFHdEYMen9GN6KIq2zm4QQnyCpdqLdCp1VvdrDNRLdS0Est+45+mdq6tkySC/xO0miA/TV0iQaXnLdV6NyPJynH/qDP331jXqB5AFwv7U6EdCy68VbSJfdB9OhPQ3mXhbnBXQbeWwm5oZ+ONzFLqkY/EhUf2U3NA/6cM76n3Qj93BcT6Zg09E0e9RS2efSaqcMMDqd4wU+oWN8NIqHLBz7mdh5Dn6U2+CAgzQc+fOtpSW4o+us53THqAXSl2E+e8hL84J+TntxXDUKf0ftuJdyPfj5eYI8HhwB4cnGf/ekz6KS7DdMBbuhsEk4vpFLQywxyR863oscKl8VPrqL77YsjWxAWBP9U1qzlboQu6vcmxSkYfdhS8PDAC/Q51oFDjePopALTduG/hMAVSw8ZUp5B52sQWLbyRP/Q07Ok9Ay9ibgTFz+ALpR7hNeDThjcizHmU4cKOlWRBesLD3T9UlY+jmx07udfdCmG0K8n9q55MYuAX1V75X1NA11kKExi0x/dYJfkTV+OznFhrDZvDr2475rTJ2FRcMLG3xPx5uhnFG+lfYtH9wqtZWnpRD986VrJSbqD4PqnxTY01NGLEzkdZ4LQf9OzBYrUofvQSLzd3ET3yP72/rL8IfDVpIADvl7ovAzyGgfL0VeO/jvpuYzuzGgbZycjBt4fnfxrzROdWoc++ehLdFbBdGWmdXTyAYWQREVxcOeLxQfa/NEvjqRX5zSir9Qn7ZejPgw+W6Wy6K6NPiNJRmsZi55HuCS4249uKilEa8wnAU5jcCDK0hGd7YxrgFAx+lCEZmXaBnrMQ232oTOS4Fdlc3x7Y9AFbWvbogbRG9wzlqkPSoHrCNt/U/NEVxGTfKDZhM64r2CdhfkIuFf3LGuOFfpeS/U52hfoREq3SHnyo+AEHvZ1OWP0MAYK/T3Z6BG3vz/L20SvS+0lsRw6Bt4r9/RHjSH6nUyu4B5/9NNtA3aXctATgzSKdfrQdwP8g16QSYObPoxdj5BCLyO/Jd9FROcJ0XGMuY2umxtR0FCBzvzPiNw/k+ifXU2lb7MdBydeLekSOIuusOOiJXMdvdqmtasxC/3M7d6sto/oA9oBFEY0MuBBJlkSJorojbOx9qMu6I7fp1Ymn6LrB8iJufege4S91A3cIwtOrihU/tdJdF27u2US7uhO8haZH56hmzhTjm8MoRN/zrYWsciBh18ea1w4h+4g63ukMRh9/MmPm3yv0Omn8jgYltH5GuzcYyRPgF92Or+b5og+WMmjeC4dvYsU+iRyGJ3vy/d8C0558AGN9Ol2AvqUa/ZQ/310rnDavwI60a/39nI2MSiAW3WyRWbpon8rWVsWi0YPu5r3+3w7ekTYuVPcDIrgbGky1tH66G5WYnTPYtHzb85OO/ait6t0FfZyKIFTHyMy/iSikz+2eFOeir4YrUmSnPw/8k2Pj1yUOAk+3ES6InMN/Qm9OFtLNfri/XerTBTK4M2/bkyx6KCnBX1p6HqIbjz70VpnDL1bRasg7LAKOJ254t1Ab/T4tt3vSq/RHfmtKmuYT4G3N4rNU1ihv5HSjmIpQk86UhP9YwedK79+84H+afCAbdIITRq6usqWlt4SuqRzTU6pkCr4dpPg3lxd9AAPsn46H3TdWVOhwXR035wFSvYP6KOnTOIaNtCVzLfnBkX+Bq9l/y7hYIjOKLjjaRuI3sB/fronH71Dr7+4chBdlFx75S/aM+Bay4Zfv55A3+dfkivhiO6kdS7gZzz6RqFYnHgLug/TYZEva+hsi6ZX2MXUwHV7d/PemqKHfI4W2oxCN3mexplfj14lb90/uohefPbP83jRs+DjZF+Gu0zRC8e5Wu+T0O/epW0cfI1+2dKIL28TfUuOTZXqmDp46dv18BlH9PVoUYLZU/T60kQWs350tpdRkrOMGuAvtzaZ6bTQ6bxCjtcGo9+59oSGohZdjEeDbmQNXfxEZJX+cU1wdSu2hyZu6Ieu3BPazkO/cIH4U2kafcWtI5jjoBa4wpysR6w9uuwjFsO8THQDtz+vHCbQ+Z6a6b4RPgfeElOb/dYenekju7tHNvryeqzR62l0cx3Sdr2ENvh37zgBx6vow5GxXq/K0HPTeyvqNtBV/OSzPE7pgMvnqVB8CkMfbgpMWnqP3h58Uf41qy74146JQh1zdNfZ/N6YZ+gGv36HRs2jh6nuSdVQ0gNPu/xmb1M4OuNUV+F2N7pP7JLvbz59cJb5xzYNV9BtuIIttGvQJX45uTylOw++RNMeU0dEV/pQ2p6bj368Q1POYQf9c/rQj41DBuAUz75N5xiiH3JRfvL6JnraaWZu7Wx06mmCt0o3uuzj0uan2+iMPzKErooZgr9TDswtJqAHDFr72gSjS4aqlIcXoedWct/iHUZvUyklP0xnBB4Qu+RYoIBeLB87/MwJfYZRO25/IvrqYZYGirfoi3NvEv5ZR2e46U3QFjMGV75pJ5drii5bMuobEYXeveXgMFGHHpLUdappAT28X8ZAUIQA7pDRNUVlgl6Y4WjsGo3+0Ytt1qwJXX5Tg6JnDf3a/em1LskL4HZlhgeJdui/5YhLbsno9bVmjcw96Ja9TpuqdBfBXSr30ZGroZ9RC7U18kdPzW7yPlGBTq3oXl+0gF5ivFxeK3EJ/JKZx6CNE7oh/UpRaiY60ces1mccfWTQNXqO1wQ82GSzcNsMvXPyWVlBMrp0nqHsziB6xf6GtnkuU/D31qPsEUR0BuO2qqYUdFPhemLWCHrFtOrzowJEcLVFWX0HO/Qvx1IoNZ+jO17/eqt/Dj2BmSqIXdoMvNT+bDO1DzrB1JY9tw79qsWAEjm1OThlTzQVsx56Kcu6+kA8+rlP/wyYjKGLl3fFJ4hbgM/G7do+uI5eznpZVL8RPWHcs/X9PktwD54oZQYi+mbLqDdbDrr9wR6PiTV0bZNKSX8NK/DEs/sKxhPQk1s8N1mm0WdGJu/T8VqDy+9LSL2ugU77+3apljv6a+lDnyOT0cPEEsRkmtHJj+eX6iygl9jTx/Zw24C3FR4aatVEjxTUKjl6Hd33aOBx2nT0wuXWYOMO9Is9+5tZttG/WJ0Q1TxsC36ufOfDogn6zd4Tv1hvo3tdq6wsqkRv4XW2ev0dPUpYldeY0w58Z8BM0uocutnSdtu0H/r9lzFKiwXolZGlDb5j6DdSTTJCWezBCa/ypJg10E+I878Q8EOP0I6+WVGELrsrOdkzgW77MU3dh8sB/MbW+kbWefQ4ozpLiwj01Rjyz+l16O2frbo9V9F1zjAV90k5gofQfRtvdkTfw2r2SSsNfT3qKZ3VZ3QphnsLe9mdwH/wTe/RMUB/+Vy0QzgavbE9ti2+FT0zzDwsg/of8KHZokgdNfQ9Lnn2D4LRf8s5FN9oRP8fwchz6w==AQAAAAAAAAAAgAAAAAAAAIAlAAAAAAAAAwQAAAAAAAA=eF5d2bMWIAYARcG1bdu2bdu2bZvB2rZt27Zt20yRkyLzmvmD19wAAf5dIAyMQTAoBsPgGAJDYigMjWEwLIbD8BgBI2IkjIxRMCpGw+gYA2NiLIyNcTAuxsP4mAATYiJMjEkwKSbD5JgCU2IqTI1pMC2mw/SYATNiJsyMWTArZsPsmANzYi7MjXkwL+bD/FgAC2IhLIxFsCgWw+JYAktiKSyNZbAslsPyWAErYiWsjFWwKlbD6lgDa2ItrI11sC7Ww/rYABtiI2yMTbApNsPm2AJbYitsjW2wLbbD9tgBO2In7IxdsCt2w+7YA3tiL+yNfbAv9sP+OAAH4iAcjENwKA7D4TgCR+If+Cf+hX/jKByNY3AsjsPxOAEn4iScjFNwKk7D6TgDZ+IsnI1zcC7Ow/m4ABfiIlyMS3ApLsPluAJX4ipcjWtwLa7D9bgBN+Im3IxbcCtuw+24A3fiLtyNe3Av7sP9eAAP4iE8jEfwKB7D43gCT+IpPI1n8Cyew/N4AS/iJbyMV/AqXsPreANv4i28jXfwLt7D+/gAH+IjfIxP8Ck+w+f4Al/iK3yNb/AtvsP3+AE/4if8jF/wK37D7/gDf+Iv/I0BAv7fgBgIA2MQDIrBMDiGwJAYCkNjGAyL4TA8RsCIGAkjYxSMitEwOsbAmBgLY2McjIvxMD4mwISYCBNjEkyKyTA5psCUmApTYxpMi+kwPWbAjJgJM2MWzIrZMDvmwJyYC3NjHsyL+TA/FsCCWAgLYxEsisWwOJbAklgKS2MZLIvlsDxWwIpYCStjFayK1bA61sCaWAtrYx2si/WwPjbAhtgIG2MTbIrNsDm2wJbYCltjG2yL7bA9dsCO2Ak7Yxfsit2wO/bAntgLe2Mf7Iv9sD8OwIE4CAfjEByKw3A4jsCR+Af+iX/h3zgKR+MYHIvjcDxOwIk4CSfjFJyK03A6zsCZOAtn4xyci/NwPi7AhbgIF+MSXIrLcDmuwJW4ClfjGlyL63A9bsCNuAk34xbcittwO+7AnbgLd+Me3Iv7cD8ewIN4CA/jETyKx/A4nsCTeApP4xk8i+fwPF7Ai3gJL+MVvIrX8DrewJt4C2/jHbyL9/A+PsCH+Agf4xN8is/wOb7Al/gKX+MbfIvv8D1+wI/4CT/jF/yK3/A7/sCf+At/o4E/IAbCwBgEg2IwDI4hMCSGwtAYBsNiOAyPETAiRsLIGAWjYjSMjjEwJsbC2BgH42I8jI8JMCEmwsSYBJNiMkyOKTAlpsLUmAbTYjpMjxkwI2bCzJgFs2I2zI45MCfmwtyYB/NiPsyPBbAgFsLCWASLYjEsjiWwJJbC0lgGy2I5LI8VsCJWwspYBatiNayONfC/W/4HiFogGg==AQAAAAAAAAAAgAAAAAAAAMASAAAAAAAAjAMAAAAAAAA=eF4119FGIAgAQNG2TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJkjGQk2Yc5e1/ON9zAgL8FMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5i7/5wU/+4Re/+cOAf/4SyCAGM4ShDGM4IxjJKEYzhrGMYzwTmMgkJjOFqUxjOjOYySxmM4e5zGM+C1jIIhazhKUsYzkrWMkqVrOGtaxjPRvYyCY2s4WtbGM7O9jJLnazh73sYz8HOMghDnOEoxzjOCc4ySlOc4aznOM8F7jIJS5zhatc4zo3uMktbnOHu9zjPg94yCMe84SnPOM5L3jJK17zhre84z0f+MgnPvOFr3zjO3/xNz/4yT/84jd/GBAIBjGYIQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+Yu/+cFP/uEXv/nDgH//EsggBjOEoQxjOCMYyShGM4axjGM8E5jIJCYzhalMYzozmMksZjOHucxjPgtYyCIWs4SlLGM5K1jJKlazhrWsYz0b2MgmNrOFrWxjOzvYyS52s4e97GM/BzjIIQ5zhKMc4zgnOMkpTnOGs5zjPBe4yCUuc4WrXOM6N7jJLW5zh7vc4z4PeMgjHvOEpzzjOS94ySte84a3vOM9H/jIJz7zha984zt/8Tc/+Mk//OI3f/j/8AcyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg3+B29LIQw=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAADwAAAAAAAAA=eF5jZh4Fo4D6AABDtAcJ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..5a3f6808efc11e55169604a8155e9c698beb753d --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu @@ -0,0 +1,38 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" /> + </FieldData> + <Piece NumberOfPoints="601" NumberOfCells="600" > + <PointData> + <DataArray type="Float64" Name="LiquidMassFlowRate" format="appended" RangeMin="-7.1054273576e-15" RangeMax="7.1054273576e-15" offset="92" /> + <DataArray type="Float64" Name="[Ac-227]" format="appended" RangeMin="-1.2895800835e-115" RangeMax="1" offset="596" /> + <DataArray type="Float64" Name="[Ac-227]FlowRate" format="appended" RangeMin="-8.0659862189e-23" RangeMax="1.2051218915e-08" offset="7044" /> + <DataArray type="Float64" Name="[Am-243]" format="appended" RangeMin="-9.8893599697e-117" RangeMax="1" offset="9236" /> + <DataArray type="Float64" Name="[Cm-247]" format="appended" RangeMin="-1.2032305054e-115" RangeMax="1" offset="15660" /> + <DataArray type="Float64" Name="[Cm-247]FlowRate" format="appended" RangeMin="-8.5444869415e-23" RangeMax="1.248178944e-09" offset="22080" /> + <DataArray type="Float64" Name="[Pa-231]" format="appended" RangeMin="-7.9319972724e-116" RangeMax="1" offset="24096" /> + <DataArray type="Float64" Name="[Pa-231]FlowRate" format="appended" RangeMin="-7.8866501528e-23" RangeMax="1.2732245212e-09" offset="30524" /> + <DataArray type="Float64" Name="[Pu-239]" format="appended" RangeMin="-1.4847287296e-115" RangeMax="1" offset="32536" /> + <DataArray type="Float64" Name="[Pu-239]FlowRate" format="appended" RangeMin="-1.0808510166e-22" RangeMax="1.1724691691e-09" offset="38960" /> + <DataArray type="Float64" Name="[U-235]" format="appended" RangeMin="-2.0297005041e-115" RangeMax="1" offset="41004" /> + <DataArray type="Float64" Name="[U-235]FlowRate" format="appended" RangeMin="-1.016576902e-22" RangeMax="1.2134651649e-09" offset="47420" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000" RangeMax="100000" offset="49444" /> + </PointData> + <CellData> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="200" offset="49540" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="55648" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="57064" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="58320" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9E1NDI01k23NDBKMkwzTNNLySwqqQQAT8gHCA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAWAEAAAAAAAA=eF7VUkERwzAMK7CMyyAUwiAUQiEUQHZXCIUwCIOwz+y7KdXJTvOZPr5YsqyknaYUbuJ8FU/B2z6lMyid8XgP0n/XKYR3gVrPKwPybK7ZU855P5sP9JGPnhWiubPI5kD07o0i6/8qv7Xha4xnQH+v9bei3s9E53wyF9NnEc2dxdV82fkjqD/EfYzP6nA/zhuPelpFDtQzKL4XzJf2yXtIXfD/w3ej/LfuZP9eoSbfz/To4zw5+xzMI5TfaGCuLEblUz5XcyLMZ6vndRSY3wb32Egepse+yu063Juco/dJvltzv0G+DL3+eO+VfAfsr+DL5hQaH5JX+a8kv+o3uuR+pkcw/9596j0Y1Dv0YunMY1i+OczHzyQf9nEO+wimZ4jq/h3R93OefDeGB/DNGfYxvfJBMN79yvm50Sf/c5Y3i1H3ReC9lU7xzTt2fi/DTPbOMH8vHziy8QM=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAwxIAAAAAAAA=eF4V1Icj1P/DAHB7E8qeZ++9zt3n8zaOyF4ZKSuErIwQQpG9Mg9nkz2SJIQyQ3bK7PhaRSg7/J7n9Ue8CAj+3x5Q7ismxa1qZvixaCg7Oe+CoOIg8bT5X8AsrOUHteNP8O1DLIXlyRY4CFL5cFywCaYyrTb9TTcAJqzw5DbTOsi106MRWV8DPH50536fVkH8dbncwQY8+N1Z2PGm8gdYGElkGa1ZAZ3aeWmYx8tAbCSEJ6tuETTJ5Vp3nc6DVE5s7p7Nd/BVHTq6Pz4HpAjvnFpafwUSMX1yVIczwGlAure7ZBooUZEL9TlMATHHCn9n2Unw+dmU9F/6CZAx+DM79eoL4Fw4IH9yNgoMxEv+uTKMgI47W068msMgS83xXmDyIKgOjhPXOugHZP3P5n08+wDP3tsn65cfgRZ2bSSvvBesG/Uqpdj3gFlvaGVAqhvEflblquHuAnrO0t1FRB3AL2nIrYm8HYS8K3SRkmgDKVhq9WCvVrB48ABNPNoCyr5fMRlovwbtXnQ963NNwDzS28f7WSNYXvSnFYurBykt7ltCSrVgsohL3o26GrB7yVkWkb0CWryE4lmCFaCvKUJNyqUM5J2rZTv3lwAj399eJphiUC2Ak4I6CsHDB9q9CIEC8GSJ2Y+kEwuaZcc3Pz7LAdR29vkPArIAJRZDyZ+SAR5dBE/rjqUDCXzTuJVMGvginG277JwCSqd9uYsqE4FfnOlZGyIeQNHlFFLjLwBb6vAj0BAN7qUI0bm+fwYEr8++s9iPBO10HJV7BhHgTVc6Fy4/DCTdHIryXg4Bl5Hc5pBdEBif7bLQYgkEB9wkaczE/mD/tqVmEvcjML3JOz3m7APSDxbW4qs9wWwEQl9lyh34VEeqPwYPwEScjX/iljPgdb/DKDriBNhd81/exzuAhw9fELcK24OV8TPGBem7wHiDetbxng3oLLTqWZ+yBPcaSK1W4izAR+7YX8YhZiCP9WKvrdAE6HfajHFtG4FQBaSv1099kAgF7B6r3gIZkqfDVBM3AaL7xKSiQgtU2zyMcH+jCfhHE3YSjtWBs4SS+KCrGjB4YEX3hggG2rwJy6tPUYCr3i3XECDBxUBs1BZSGbTylcTbuCmC/bDfK1sD8sB32KjGz1gO1KQ342wuZYDVeyGzE6w0iO4rWNb1lwRMP+bDaaLEQR7uQ4h1lyiw9VHk/M0vAm7ufTLkrRcCshjlf31WgoC8oDZBllcACN3MSuIl5AefVA3Smk4QQCe0ediaBAGGNx+vzCN4QXM3IcVTHDeQYNzrecnEBbbzUu12yjmAMff3P6v67GCbVEFIkIINTDmNo6tnWMDQASdVw2tmUDFbuFJVxASOWomcMHk3QKSeCLtFyXUQBAuMfmthBKg3X8wOJhjAV0VtuYUTelBZm5q2K0IPNOapQiQ/0gH4m4pYNYYW4MPmcvxnqMF6DDPtsD8VCN2cD7hCUAJ2Fdp/YQvkYLiuq/VDKRlYea68qP+YFJy8dsS+u00CxkYJ8aXqxADNc9XcpEwELv4w5KWoEAJhy3i/35oEYCMi6TPd60vYNCOpH3HwDzauyj1NwZzDEYu4FzNVpzBOU8TLF3ECm/rJLK1VH8EzrruZzVqH8DXVr6b39v/AFdohAQ/rDmB+/YbvDsH7sPXwZvpH8z04zpLkmWT4Ljz7Lsy/x/sXrCDZcGAQtg0HluhoLJVvwgcmZK7hm+swx7I1QGH+g+MPRWb52lZhXAj/N4wmHjbfKp1uXluBLysotQmVl2Hmc4/ncaMLsFDW5nPZhO/wi8TMe/Jec3CWgjhu3H8WprKj5TcrmIZb9OK+0K5Pwqnm+oi7BhPwjZ/3M41Kv8CF2gVWXfgRGENVNX1lMQyTotcjBc4G4A7DmWXzkT74zPtKcHLoI5z8wK746HcPfPspLK2E7oanNtPO0Vad8AV1Cq4+pB220VLh0Jp/C/c0YY3bAt7AsdcqSf5qvYbHSPf9WHSaYImJQLetvXr4wVjuCk9lDUyY+YsAqn0FA49XOOqzctg89BamJb4UBlZkre1WxfAAa7DKUScOjhJ5LGQomwcbRfxHGE2UA78y721XE82ElxiUhroK0uF8Z8GHo1apsI7NwEJcZSKc2+EhQMgQBxPdLs1rwEfDa7ieBSnGZ/A2ifTTw8wIuN5dZOHlcChs1tZS7r4XBP8NFiveSQ6A1SAR3d2cR/DDpYasYCIf+JZI1vvISA/4OdLYkTzDFZ6eszs5FLsPe3XvZ8cpOcDb34KqtEzuwqoYjqdaW1ZwzauN4zRuC7h1qNRNZNEEng6hzkkTMoRtz53PQx114ReWttvWplqwjutSf/eiOjw3RHb4YgmCEeYkX+FNFbg9h2pt8a0C3MpFDs/KyMK3zb86NfpLwA/ro7UHw4ThA7xi24glP2z3+eq6Xx8P3K/B6c5Mxg53SdT039FgghlRfkXHJgxwfUPkfRFBGtg2kX6TaowMtr9dLiXqSQSvvHLOi266gGKeW8vYzh9DN8JX6Yc4/0BtDOST72J3oahSxEG1ySYkQk5L02m0CmHTqC5OXy5Brf/eRlTyzUGhAu4fflxMQoUecnXdn0chvLft3oj+AGRW+di5ULQX6tzKVKxEdkD2+MdvtRfeQH8Oxv4KrjRCZrGTARfHVdA/BjeWi61S6NXQ2oq1Dw7CeZ1eUEpnQ5zmtN+mctIguWDl2UZcPBTvkppvRP8cSo6woSTjD4dabm2TWyUFQkr+F0aF4z4QzZdf9E/OH0AshmTbhmGOUPsf+1t/Ne9AP3SeyP4hM4dapi8w84YGUN2f8a8FtlrQirbBHJYEQIZEt+clvZQgS2ZX+2FhGciJIZMpXFIY+lu06LiRzAvlHf0VTUphgZQqUOpwEz1EOrN9FZJEDpUzlczlJxBAv5SxuWqCx2jXulZrV+499Cd8wnVKm3V0XU5+oP38Elrn87sPbAoz6JeRJcgrwlH06a6JiV73R/SY0g1UXl872lOX0ov9WjP6N8aGJwC8QjtfQjru8kXouakf15UTMtFRpLF78lGJ6Cp7F6/NT1FonIfYW5HsIHTD5XeqIzIf9GvzjWcEQ/fRhopOfIQTNugxuxpvF0UT9LgNIQHyRAstZ4obOvwPhU5nkj6Qwcmijeu/hTshhNCMSE8a7XIOtFegivq6OAM6mZNRlFOJFM1L2LMZQnuGynIIbMKN/0ahm7fMOYxXUVVC4ewYo6+oWj/9Gofjz6gOY3MTyrpulI9dxwPkp9eokddcMyjdSpSCiuZTds08lF9H5ZvotymoApZ3jbIWUSi1jlN8LV0ASiozzbqO/AEqyEqRnh2+gxJE3VRmrjdEcZNo3/kloo6aoPvPepBeHnWdk0qsjlIQVcsjBpXSsqCabz3x6mCiRFlSpKdJsZ+rMr0fKwtm3FGl05+wxx4uqcYTaIfy3x1XLbzLR4sV71F9ncfc0/ijSXX0icV9hSclqjVbW2Quf9NVlRKYMnhvPVOtYY4xOgv2U41nFJW2j3JSdScYZKl2NFM1YmIlEOLQVKVOCWlgq5NTRU2zULaz86kG/fNkZXNlUC00ZiijyiJQ7WIsZSay+o1kjY1sGbyziBzwSPMeVv+MFNSUxRTceIfMqjeQaFyqQO6+tU4+rMpA4k0XCrKfRiGfz//8/s7VBylZJhqZMWmLjG//o9t3XRd5f2jbODBPEdkqj75j7c2HJN0LMSITvIb8tMWVpkt9phKz067bkPyfSkDJiOTPVxMq3DsdxIvFHSoSjx+46x9XqEjT1ZzZI9NVBHMaByjyQ1Vq/VcfzSm6qFymPoZoaE1UGvk72NvxSJWlex5TIw/5Veje6LCKTtCoMOLbewl4D5WLrIpn97FLyt4I56XbG33KEScNNAEn9cp1J8NkVEWZypXBahr3J8OUf9FXDRob3FcOHByOCdHVUxYDPbWabHLK1Q3r7ERNLMpRbO7NIzmXSkvE6v4yYatKM9K7Jyqhg0o0edHRJBb1SrGOSX520elKpSqRYQu3ApV+CSt6Z/rYKKnrU/L3rcFK7ez96gf9CCX86RTeV5BE6ZMe8SV1yLoi0+hqfkD9oGLH0cFnRE214qvMWJ4PVomKl2EOB/hiT8VNMU243d9Qsf3Dv+GXn6QUb9W26TAl0CkSM1syHw7uKMzdLCPlihlROA+vOxOfqFao/fFv0a4rViGcw3+a2MVFgaZ5gyIZr6lwzU3+ZYkhQoEu7P/CjLmQHx2uPhqumZMvM3fQ2JdukUfh2XWQ4qnyVG6kDYGWbvJbpgODRA815W/EH7GusHHJ23WSXNM0OJQjasKdePuPyRHypVMNgnK5npjmGImdULn/3sl0iMuZyXW2CuhLTYnIuVN8p9XWvJI1zubAXhOZkm01VeDHTlfIYkbbxI59QmTpZu6LvugwkPW+a2tnheSVlfdjry0W3Ze5TST8ZCqzR0ZTj1UjwztNZmKnT9Co1V6GdlDF4+9vKZmXnj+FiQvPpe9TtZde7x2Q5sS8iAureimtwB2H2cXYST8BkfnV34Wlv9TEnVJ77UtNy16LrLZpkyJz63ZoRUdITYgwHprhMFIBk5lYyxUKqX9vx8UWfEckLVeN/IU6kyVttPAuH/SMJAkJfy9c36aVTKPZfaHUOSxhZvm7gkgtRsKI4YtAnKC6RKBqfxre7ET8QvbHnF9ig/hHyfcKHPGO4jYMPBW6CdfF9UirLIzhXrGmI8PgP1WeYkm9HiMliTfEVr81Ucm/eCt6iSdNXdeyEDXQ/2xqQflLxMjIFH8QFSxSiklTEDa78erR6N1Wkq09YRYPRKcw02Dl0gJjXKNGsfC9MCmCrv2gygmqxCBTcVPhjx2ZAeg6sUpj1aunBB3EwmqpkVUd7osVOUn/glmYW4U+vsNgi1+nVjz/kHJy5O0mxIpo6+SJ1Kx4ml1OV8TJLcRFB+vWOh+X7xxabpPrTwo6fBVslR+pLaeUE1GyG40RPA26LUco5ljuHEA+xc0JCYYojFYcBbCUt7T/WFgi/iPg231CXXY5Vpbxsk/ou3OVgI2jggPHr+dlM+GHyUgzB4EBcirGvll0WbqlYTDgYRVwXY2XCdT+WyroRbWWzTPBH/bDgvWKrq40QdDr69mnWP5bhmcNJorOpRouOsvSkAa/7dYPybRInlL8ZzvhCrNzPs+3S9QfRr6WTFSN2S99aeGTrb+6DNdKL4m13z4LYvfhU30f8V07XL8EhxnZ0TUQ5WOZqp+YSCQrIbjBvOAgvobQmrU7CmbvLY7qlnxDaViEKED3al0+DismIA+dm31rg6AjPmd+ZKBSvBbpsrEswYxIsB3Wo9T/WySdYHZuXzLJO5nHsVIs0lTUdvWTUr4phfdINfr7sbVn0VGk/FSYhh6vEt9Z+7GjaJGMR/f1uhZyXpLgZzTjsuuFhW0IZ5uZTzy3WWmu72FLC8/oqZ/2h0fxcGLTilPCHAqXlm2iH2So8YS5KrRlRPIUig7sVZwTXHKTlxB84i1dwLVr4OSy7r/nLoxMrbHQwOLIGKSuvUYGc5t9CiM00bHCjV+S7zI/VOZ24RpJESllxul5duKWfh5y+Q3hfLoxMwViCj7B4bUtXGuYz5E7iIwCDdqNWKIyP67xez2IL7JmBdHOAXrhw3JcTIN17008GQvmbBmcCtkOOJO7tT2+jE3k08x0aNskNnHq6DdzD5ik5a8EPHep5vbllJ9ayCg7MM6X5w295jAqwznmQIPKrKfP1w6gSL3K3OMoc3Bec3k2nqcRtTGSG9jIkZ4Yde7pnZp30Uf84YOnD0dtsFOxr69x3jlseeIRIsOxxG6TmB9Ln7dA3Gp3lLfHbrHD4ODbMo71PGXGUE02sp9WTt7s/ZuKtQodZink9GX3eBjRXq1rgmUiX3b980SWXaPfIjnhNQPWOrf9fdzePhsW2iymkJ/MDRilZBZ+0sxG65TJTjGUntvV2LMxyenHVtbbSPw60Cy300zFbG5Wnm1lDo96DN3ITUgNaB+s/stK+1I5lYpnJmcw0NftKfYNa90uH4M3V1aOrbdnrtCrQNYOfpqCE1XLnA3R5EhoVpk12+i42iyENYdktftrofApCx05t0PS0rfsA4qTzOTCdhY/9AAbl0dedskTLXS7eigLwUus52/+u9mPVpKqDBlhlvjAezuPaHmyqztSbQmoCVjuEP00MstaySJzmd6kE+1hzjEmupP5sThrOczos6FLFHOxYfWrKganrJJxNQqOfk1m9tQjSp7nAllJMRsaSH1SZtv+RelD7vVMQh98zfq/fiZyqTS/6vXKTOfKHzXrC7FMAR87/fVW3DIT4x2jXu7fYvpCON/xnEEiM4Gv8nJPjZbpndzhr9aI3YyOfCaavokvN+y75LZw2MYM6x2n3JuWaTe22GzqU2UfZWRv/0KaQeY3/gfDCsFMAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAASgYAAAAAAAA=eF5t0X9wFOUdx/HtgHKkKCcNEFITN4gSIeABQSNQZqkpDQylV7E0BWc8LUVosV6dCBmFsk5TjTglJyEaCrYrYEFq6xEtPe0Ms1JaYye1J2Uq/hjYAgodWnsohTDSH9nn897O3E2ff17z/j7ffXLovV01TTP+Mm+2ZU5rh2X5Q+6pq//1QDw5d01taLzzyuEDBhNeTTUP6Owvf94Z0F15vuP28D6RnX9d6Hszv7545oCPv/nOraGnrqxIhjZ1/mZq6LlvN80KrfAuHxHuf2vzrptDx54+Mzecp4bdWxe2deiHb74ywIrXR90UzgevWTIznB+Y/cKcsM+ve8gJ7a6rnhLOmycuGR+213/gilB3w7FhoZlY1eTwvjC7ryrUXr/NDufpQdNuCLXu6P202T/RdXbGgEHZg6PDPefkgmvM77jvzKDw3m/ZVRbqTD0x1HxXOWak2Zu277JQt6VjrNl/4GF9t3zrxVfM3v3nw3et/acuma5+64Lpxuw/w7ZTC+Pm+0cfNG1VHD9m7uc+91fj+bMfm/ml8e+brvY/NE7e9YH2v/eu6crbPjK9oPZt06OG/MMYzHjPzOv++IHazZtu+u3bxlVj/m7srw7M/bJBR7S355iZZ1fsN+5besrMtx09bNo6vMPoBq+p399h7jNVrxqdT/Yac3P0nvevHu2t1Ht+9Ytmbp3pNp362Dedf13fF750QHuLtmuvbZ0s69L+ar3vPt2leTBdv+fZbvWkjP7e8C3yk4zmtTtlZpNcv1H3Jzeo735EveQJdf478saH5RvrdP9V3hv5uPpoi9peLee3ar7vUXnLY5ofvE/t16hvZ3/2/ZoPe0DtL1fPcdXdX1GXPyTdL8jUPJn/ovba75TO16S7QFpL6Yk4Wd8l7+K9uzSvX6o+uEid+6Z6I/fe59R19/DOFN6/lt/zZblqsQym6j6xSG1NV+dvlQHvxeZwf/FlWcn99bw/lvs4Xc/789W+zbu25s2OzIyTHvdWcIvBGU/znn0VfQXv8u/x+P9k5fld/dI9J9M12vP/o3fdIfzO37N3ge8+0n3qMt47zn4Z+39S20Pp3XzPntWn9qL7P6j94zK4yF6vbLDYO8K/9yz379Lv8Lu6+TtHpcN/H/8t7n2+68ED7GfpZ/juNbqT7/biJuZ7cCu2884W9jL4FHMPtzNvww18v5H7R+gG7r/Bv+/7/K713K+W7jL2FjKfX6y/kvs7cVwke/P4u430BKxkbxYdo4OcHE1fapD/Zj6E/cvxUzgUP2Svj+9O0Aele4H5SfQwx95h2qdzdE/JfnTcaM5+F91Gp7G55Lvv0iu4X4wJ5vX0QmyM7rGCvavpCXQFXbhZBtiPZdz7dO+vivsgncdDzH9Hv0yn6Xa6i05GMk/Rd5docz8LbeYJ2sIRzKvw3D5ZwOAm2Yt/Zu5hrqTT7LlR4w+wmfvluIy5TcdxHPMRdGE6/lIGmGXeizl8iftubC0xjQn2Hdqha2kbY8z762XwksyihxmMTopOYzMuQJv34vXF38Xo/DTpvyg9OkOnsY15ik6izdyiC1OtouPTXk+x7cxbeor3Hbo2mpe8l98rfcxOke30CjpBN9BxOsjKIwmr6LjMW5k3o12yZ5W094J0b5SttEPHsTBZ5n9hFZ1MSUcnwX7h59LH7CSZxiTak6yi49fJHLqYRPt5GfxMZjGDLRPZw8IemZ8gd2J0bHow5m+QLiaeYxH93dyjg6Uns0sm0cLen8r09bIOe5+VLo67jvlOuQotdK9lD2M72N8us9iG0Wmgy/F0DfvPSA/TzJvoeE2xgW0VnT102pMJrMUYnvyJzF4j2+noNNGJknmhWno/lm4k8zUYZ154WuarkM7Sm+joNNIJDK6Wf0Mvclvxd030LO7Lsf+z8jBmMI1JXLJVVmBQKfOY+5HMYpq5Q//vMB/G3N8i+8bIbnSZr8LbMIYW5rtltkJuxhRGx2avMFoO5v44/QZmcO1TMkk3ooUxPD1KepjGtXgHfh6tJ0V/lzyNHu4eaRUdh27AeoyV7HmbpVsuW2mHtmmbtuigUx76jFV0Mp3F7dB2yTy/SWZHyAymcS33Dt1AV+Dg6Pur5G5MPyGTtIO1zOvQiuR4celiGh1MxK3/e/LDZV+H3NnxX6jenAk=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAsRIAAAAAAAA=eF4Vk4c71Y//QO2RLZtsQva9l+uO98veIiVlpjJSyEwfIoqScW2yJSRklmgYGdkZyd7Zs2SE/L6/8w+c5znPc8jI/p8tuD+nY5ZZ2x816bioG/VtE/SVLoqV52zCAkeC3u27m3Dl/nWvT7AJlsK7jgXMmyCVcWVbYmIDRnvLFvHFG8CjHSK85L8Bisf792R0N8DjkHWY4vQG+HzdwXpOrQM9+41U3+J1KMUcHbDcWweShv1ddc11eC3dyUHLtA7a1GH/bvxYA/6PwbaWuWvQIC7uNeO6BtNFZIEU6DW4qpnWWXe0Cr4LmLpTLasgyPSm8lfUKrQx+El7X1qFRUJORhT/KsyzjeTD7Ap0YonLUa9WwOl8OJOv+wrQBhC691ErYHTJbo/nYBn+NHA6D31aBh2Gakbl0GUQisj9Kau7DPn/9Ry10S8DRs7Dm6p7CdR2PULmSEtQGPnYzcl8CcjvpEXHcCyBboKXqe3QIlzPZFUbTFmEXKGV6Z0rizAdarnRwLsIfMrUfLjRBfjcfB65nrYAg26lpnirBWC4QW3SxrsAO0u8+nQjP+HViwhfstSf8KYy5Uzl5Z9QEELMEOL8CYMMEp5GA/NgccZSERs3D0IrpNCl8/MgMs4qZ884Dy22105lt8+BzaDrqeLwOQi5mqERrjUHUaIeMyiyOZClmpKu+TgLX8fZ/U/fn4WZ4jwTY8wsgMNvnOP2DFgOOK87lM5AQr6ngu6tGWgtw85wSsyAIOrJyeD0NPCM3sx7kjEN0o84D5WuTEOjqqvZ8Onp/3m2Wf9lTYHRzCesBdcUDEUfIvXRk2BY135Xh3oScjSvmmwHTkD6wUps1844rIru8M7cGQeuvKAx7M8xiDcLYpy0HYPaSQvysaFRkON8KI0zGwWJgxQJmo4RUNXZKTHQHoHY31ORLPXDQO5tXXMdNww8YbRw/t0PiG6lRE8o/4DYBdE2vvIh6MO44djlhyDYXWOgp+Q7LKtGrlrLfoc+Yu5Ic8kg5D94s8YhPwhiI0HhluUDsIeT2EpBDQDXH/tbMzX9EDr9QQ6I/ZApqmz78UsfhOTiyW8a9UGQyLMT9cFvQN7RLmln9w0aXNk1owZ6oUgRP0Gz3gOjvPtN6vQ9gKMPZzsv1Q3DrB7JmoZdIJOMFCh5dEJpsf0vuZQOoC2qLjNoageeyeaI5K2vIHPo+UBC9CvgjesmaCzbQLJhxtCQ1ArslKeK/nW0gHhngZjyqRYYW0Ez/jJuBuTW4KRhwhcYsczB6U80QX9d1fyOTBMsdtW9tQpsBPJhs4jQvga4X2as5SPTABKq8wVuzPXAEt5onNP7CRamuTSfpX4EE7n3ONStDxAivNqdo1EHPqTPIUMitWDw7rjgO/174JZq9cs8eAcyF09TnNt+C/PPHynf36qGNaNzow/3qoCjduoVlqYKChjllZMEKqHk2HX5Ka4CSuy+GFNdKwfj3OayVd4yiGkRpE0MLYWP1vKLQwfF0JI1Mh4W/Br8XU+NuZ8uguL5fVubt4UgJ5Yay+lYAB/F6uPsRPNhkGfZbX8tD9gzBl1ym19AuxNIcxblQmpFSjdjWg74MQp6BMlnQ76Z370m9UxYqvCKN3JNh74cHmLg6+ewx2EgWk2WCqb2M9Zmd5Kh1yT5W/FaIpgHifQJhSTAQq6nO5V0PNjJWrWVz8XCj0vLmL1rJLhZ7ix570w0lH4ku0w6fAbzXvGGmwdPYbSxpkif+wnIcPVQmpmHgSFlj+enokdQRZlrYiIQCn90OscaXj0Es8X1O5/Sg0Dx7vjSAkcgPPRrtXpZdx8im+y/Fz27B6VbZLJ1ob5AdYMlpzDHGzrSV8svzXpCYUU/qVrnLqwaqF5PiXMDtxL/0GsDrjBhYPWZw8QFDCjxA1KHjpD2rFhXZfQGdP0+U3G44ADauehWG8FrwHFzWLL5rw1k6YgXelJYQdOYrYDjeUuosytRjBi5BDtj534xZ5sDlxTe706aGdAo0198F2MC31Jn6Eq0DGHESddFwVgPgu/nsyrlasOqTX4OD0ETWlxixBu41OHwevbq5GUCLBBm/r1ZxsL+ouQI3zgGML5vPjFIoGCravWH0EdFCBQ5ttBAyQFzlF3XrzvSIP+XJcaKRxJWSu9+yJAWg9wiia6lJGEwZEb79xYIQLNTUoZFJQ/Et5mcUUE4oVXH8Uk/nh1eBef7/MWzQAfO8+/7ilNwEmwum/mFBroOou5l21HClUz33CZPMpA1G7foGDtEChko6GQj9xBRQlDRj5HfiGUryvlz5Rbio8hll0WzhrwXkBS447eI6NbGg0bqHOLD2PuY+eI0MnfJO2BNZAxpEKVWnH0whHjRJD3aTe1HBjnJjsRLexBx7bVuVkI7klAQ2IOqbkYI448XObYbEERPZGS34APi890gLyTkHaJZ33J0W7sSKYox2r8VX4oMF7H5xUwWIur4fmMDlTzkF8vuv4qhLAQ9URA4V5qKaExbselUJCBYEcGMYAsS0uXemV0/+hQZLfBO6S58hFxPv1Vs8C8IoSxtfA42/sgrjgYnGy5vpFwef6Te54Y01KwKq6g6I97zun6BVNcR409e5orT1kguYz4fEmSBqJvZKFg+NkNKaQJXdo0NkEDCdMacqRayRva5JcyBiIha0NF80FFB9BHbML4BRUTmQpWEwiVp5Mf7d9ecT0QRs28vXSUdBRB7gx+JueKcSHI4TVabHQvylyEx11eBFsl5d0fKmJ0cqXcWQqswHBDfGP1kDTX+RYwXcNBlzVshnhzSPsgwnSMu8V8p8JwbI1p1xmo9Zx4klmtFng3+0EUcKNURmA9qJpZ36jUGCH7637P3GzWfVxM3KNlld6hKicl87thIq5fEknFZixi3DKLc2HwiU3MCkW0g66K9bSSRP+5BXfZYKPG4slqueuo+sXay0F2n2JP4cnFkzpzahWguz6oVoH6NOCDTkonMWRBfT99543zZhJiHObktGqdFRP3yDjQ4UCNucFEVRZ1VInotN52ijpIkbuhdZLsaeIaok9JilS1/mqgra+AYPEhHxHDnLXscnBDWCi1zyv/bIbynTvyO4VkhLBmtGEtHTBOYSy792/0xSDCxtnDRFekg6M+OGNcaNBAohvR5jZWqCQWNC3wG868IFCQXQfvQLEL3QkryZHI8gcOiGnUpLJywNPcP4ykUQOhfu9agQrhLWJoVy3l94QZheu6OP3rkMsFKa+2V4pghYfj2KatuOyDY/sl160ArE7iG6oz8T8QJj66I3x1k4SFYDOwWVN1kIHw6KK4QPvyHFw7yzeFw3sabO/pqWd+ew9de0HhdF/Ydn9QaEedS3oYnL9xwDZ2vxRO/JRuK8pXgiZzOEQ/1s/CBVC/J2FCxeNKZ2fcR6BC8INlqaYqYFx5rTzrAHF7HM9sJ86S+u4iPTbi5f+mCNl7Uhx4f14bGn/dPaZPkksCHPteSasNx4oOrYp5woanxVGoN9p/J/+D6exZHfV/O456dlm05OTOIQz9FRM94fsHVMRtu+uZW4ra2Tuj8q3JxPik3L8qXxOJelC9+FhcNxtWzp89X997BrbEXXY65Y4VDK1xg/Umpj0vkFhPWzcHgega4lQyNxHCJ+zUOlkxsuNBrKvHLo8dqCwMsRfazy2qvurFkUmpDaoyN9fNO801qu++xpw66ytQY6Nc+Jgelqcllk86JjISptRkpKMQMeqpNOzU1Erps1D7cNoq6SKGnRsd9ra1eQVmtbv6Fb4+HgFoOffLy2yNqtde1VmXhvVtYPx69Iz3XEaw75tXfzeMm7GnKABQDcwlWqZO81+i/RGyn25Luh4gH2Fl9b+4pBkcsNRL++F+2CVbInMTqm4LGNpema5zSFsAKykgHCJ2lxI7r/pWbyFpWnZ65Z+26/E11MZjrYjHtO9W/lH7YR6YZqtITt8I0tkNU2zaHP/m4Oan6WEU1fs0zUm09eeiy3K6oqmA6cymbl0P1N075Iu27PRVHu1bX2ugxlcevVZ59flqvcl5u6nJAc65Kh4xyQMzbRypyLAyDqo8dVSKDwcZXQE9ljSljac9VSiVQVu1FvB29Cv9qZk3u8jKmYp9WUpOyA0NH3RONflWEuVZjvWoy9hQDM3aZN/KdMXqumydlHLoY+bu52Z/w4pjeNp2pPwoUmNN0TTqHtNPoumMlmaOqD+j3Seieuz4p6Gc9vTXu3t5ox4l6AcVkU3R/f/5kLa80Gs1Bqsc/okQnV3quiryeQJ38Q3//Sf8ONRHvkqBxTEKlbIxdpy12Qjmxu+rWXwXU0qjY7wNxTlSq5Ytt4+5V5ZvBcwU6PY3KYSuj2froZOXplaf/3dpyVeYnUw9/3QrKkbVvjg7Q7Mo8RJ8qYY15pcKE+MuMY2+VbKNoLnKNhSs5VH3azxe3VKoYKQgSK5ZU+jwUv9fu80eR15R7Pibti2J8OwNxRztOUX7qbVissa0iW1wobmnhrKLObihlVu0vhS33HIf7Ih8V2hnuCJLjHitcCt5987HDSEHKnhkngWFXMMFgI32rhuS9CvIxmMk0eX+9PoUKfjv505jv736PCMn7J53L/ls9JccVZx1DSsmUo8ulczRuvyp3OUSE0XmGQ+525q/2JPVeWcVIlg7p/8JkrVIFXOQWcbK0Ye90wWPjHCex/xGpPuuc9kXnBB1ro3OxnUd9Uwx/ZJi9xWZLzNNlJOesvCd+EmQME+qfByb/kGakubogQ31bGjkjGfoobFsKa+V7VZrugtRO9CQ/amu4cJg8p7mywvms5SJ1iM/wcYFywJrGWmGKJMuDJwbK2SoFk0dYwgX9EYl2/8DsBP6H+WLxL8o9NyQlNBmx6vkrfS/Tzdd511WCxIce9wbjT2RenqEttQzbHxZbR/kdD9E+ydM3/lt7+zFKbGMq3eETfujFJXph3fST0Bd08hXv/eJsRV20I/PHxCVf1PBrop6krImkpwtUbL2oyF1PdSV1xfiKkCJ5P1g9w+VSYVte16SQiWR+LueIk2nJKci9IG+VGSk8J883kOVlnvOVL4f3uwav8E3TzwbR72eyhVNorbYCioSqhKX1Ua1e2V75rGRFlwhC/lemYv/MUGcLMTSnXzHqEywq75kt3EnPojkq45DmcRb8+/i7jf0DVNZea/hdtk4ywfAEszDhp92Z2l8VUqcD0s4YDUZY8qu4ZE4Ep7bpRaucufCmc9vvJnUmvznb2HrhoEDpl/aDZcOXGVv/a4nS9REoTA29qZ2inYGzZRScBE6BnrTlP2S6C+k3XG9TqlXX8D/KHo7UTYtIr2ztHlFgtuHnp0jnGJBTSLfXHqGLjSXnl29fm05lHkw7yqJeNkIX8kUIRCrmKQakPfFAzqNFzPgWSqzc9+3E0q495VwjPdvjbUnKqrLc7npONF83ePovl7e85mF7Wrbf8+Fb9kPPG4x5u2j2/Db9RJ8n3PVxF9vd4/nxm5Y07dKbep1c6D+zjpc8fA/RFKvtAakKv3e6tOvNeQg4hveWT6RTb2V3o7YiyHkqGbcebJoOp2Qi6AWek3Jug/HYsNN7T1LQVvmMdPQO3BWcmZ0irtiUNfdeceILNm5rLI2/b/Fy8ujbAozNQBOXOZubo05ferKHqRX3syofro5gvrSPtKbJmw3qcky3z3K55iQNqHaSJ//70rj9DDvGOaVa8YDqT3XS56Kr/80SYjkxTjbi2xduJVkM+J6tGdfipD3UiyVcFUritCvRc5jd5/hqXT0/NzGQWEhjwZexUMYhZHOfuNMQkcjHxFRxZfEmhyBtnsVzZo3Er2nnA84e8nOUfi2S0mfbS/B7LWWbKDBwusAN/7amvyzh5p5FCl/2s9PrdFvNi/ZOCQy1HEkG85qnM66S9iaohROeaF/lLjM+ZE8g81Kyt/4RT7FWrRTBVs2edyx2K8ksLn5XQJZx+cSN/cSp+uQtt2G8f6kHa8RXSfYrNWV5tvuU8VpfUuqO42bY4i8o7ArQ1cc5XFl4kP0wna1AxnSXxs8/zkKS+sHSoAWb1K/aa1LRqLirzYwkuzg2NgLRva2yZDO2Y0wo0DO/i/X2ixUb7HFRLBVZtkhjwRPWtBKHsYFkx9gjqQGPjS9arPwtSXxHEqKxUTy/GnjfkbHK0548bB+fJEXqFDx+mfCRxTKhkpz/aRrJy47epabSn0W9b+0KPZMlSUffNjooDsOSQ6XJoInnILHgsxOFaX4zCweGenlu9MVMM4SPUWyXM39fSbalZ4iNaX6TFyfm4868FNjtvbJnHLNgttOemXmO2UhTrWHB4VQMKXzQql9jmcnLwa6wGfc1mmLZrMvNsJDpsvpJXIN7ePTqfZ/DlXxHppmcxz+tN7SjfzWcQkfpiTOR7WVWouopo2358pxX9OcZ/w9jKOHQAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAArhIAAAAAAAA=eF4V0Gcg1Y3fgHGb7JW9STKO0Tk46/eVIt2VESkjI4rIygwREcneW2ZWMpJI9s7OFmXvGULF83+uN5/3FwnJ/7cN1okqrMTlXfpRtzJzk6EtKLOczLqZvwWiHyrRPV5bMGE2HvNdcwuYVhlVvIS3IIqRtDX/1yaw/MaWW7ZugrCXTUpJ/CY8O/+B66XVJuSfU+5bVdqEFcbXTt+pN+EPrqHKcHQDwn/Umj7I2wBG0y7MX5cNeLwwTC94eQPqfaw/9jBvwMCtcl6a6XVo/bGP6S1ch8AG7RNB93VY1Qvx+ae6DrPPbTsfMq7DTO95cuPxNVi/t2Qwlb0G92YmKNfs1oBH3cQwUGkNlJP7KotJ1kC19oKneecqPGV4zJ8TtQpvmu9IuhqswkFShvKw0CpEcUTvtyytwFaFN59ayQowoi6467usAKzpLh5hV8BbFXdf7nQZRmZYfx03L4O5YniZYfAydIQq9WnfWIb+mdP4aaZlUF77+oDy2xJ8u7tX2Ba3BBmtbcuid5fAUNC3RYBnCTR/nT39NLkI7Fj2h3upi1BUOz45eG8RstQ1rfQFFsGnXuqc3/QCTGNENW6nLwDz5WSJ4XsLcFWzG0POvwDZ5XIHM5PzgHoITC7J85ATYYPU3p0HhSYdgy8c86AX9sXYc2gONsZsHxxEzYEpU1smWmsOGCbtzZTp54CHJJ6TsnMWKF4ma6UHzsJLM8UyatVZSNlJp1Q7mQH/fW1Zw5oZ8HtPKX/dbQa6wh7I8CnMgGoAv9nAxk94VEMUcyj4Cau+lHtHlj+BoeGDuZvQT1hgeocfrPoB9jI2P9+hfkDs8SuvV7nTELfpzefANw0NRJ1/1jFTUC175OJHOwWqOVznm/2+Qx3d9Snlo0koRLUFbDhOAqnB+yvryxNgFG5noWI+AZHvvl3ZHx+HyWOUD4fuOOxYkXW87x6DmuxH893q/1On48vTxlFQHKW820QYBQLv7abyTyMgMVopcQczAl7R2M+fy4eh7Sq6cF1uGBS2IlUO3g/BkK5G1bzsENDF/73SUvoNgi8KiWYqfAPWrVbXoMpBENB+q/0COwjPTa8UvKkbgMGPwxZrVwZgufGsmkN3P2C4G9aVbveD2iPazMy6Pti5KnUzZLgXVpJiSVW2eqDtIr3DGF0PFBayvrWW6oaKZ1qXKTW/goti6Z0m5y6QUD3+ryK1EzTp6SZXOzpgT2CX1euwHSQU7VRcpdrB7lffwYp5G0zf81tbTmkF2U7S4+fjLfCfsAhvA08LeNPaWFWYNgMu9ZTMKr8JqKRN6Rb3GuEOG3sqTq0Ruh53D9glNQDlxH1nprl6ELSNTxBIqYPwIuhhN/oC59xn4v6I1ILjftulid0auH9DraOyqxqY/HUXIgs/gUmeP9Xj6Coo+ybxn5r/R4haCQnn8qyE6vcblj+efoDEMl2OKL8KwAxWp4lElYOcvvHQy/wyYCZju1/SXgofW6bcmKbeA3ves6wTbAnsG72hP80thqIBQd8ZoSK45otbe1JYAKdosQhv1Xx4wFNHbFnOg/bc6tv0abnQb2HGyG6aA9TnI3MSUNmgO8ntoE2XBbw6iqj9vTdQ4Gfl6TKSAXmvLdyzJ9Og7FJAyOhhCij3NHjaySSD2z56rs4jEZzI3sWLTMRDMEKtsaEdB2oZxotO32NAA4XfJvWOBsX0NyybqCgIzMav0K9EwGieqpliYhhUq4vHHD16DdX/2KiPjF9BcBVP8rhDEHwovCR/OTMQQoZ4A2a2XkD4W85xS0N/YFRh9/H/8RyGsC2Ua398gOYnddqJtTdoPFCAfnJPsBPaO3va6Q4MjTSN2GpXSGp5pg59zqCE70z/ceYJ2MxUmP996Ag5yhMFrJ12UKJ/yZWb1BbSea/YwBNr4Dsk+fud6yFUjC0QnHYsIJWilSrr0Bzayz4N4KXM4H448xUL+ntAxbbrgWUwhMUDVicP3TvQ+7hzYXlcDzheCw+nptyCoj+p0xsx2pBeVnR64H0TLmLKAm+h/gPLh9M6WPRVOC70JXULugK2BBUhTWFVYO4x6zk+ANgQbC4yFyKAeATOlvyDMkQVrkrPvMVA2WcSgYZdBWCd/P1IMFQO4s7y0hiPScO6qu3qc84LoCy2zhvecQ4eZ3deC/4hAlXXvgkG6gjBca5NuvwFPvhaFFYWDFzgkVDwomOYHbxv9nKoTLGA0HCUik0UI1RVfn31mosWaEnEkxNxVJD2+tm94HkymB+qUDWnJIGVrw4TbHx/EJqIZyrY2QMkWMEm3kvtF/K6e5tqTW4bkaiybJIVW0PYffl7MssWEc01Ne+ejVnkpd1w0qDvD4SGYPyqSmwCoQxiH67LGUbqM1U1TH4MIJ264f9WHXuQG0+nSl7LdiAqVZzdW/3NiLqfmrqxfANCUqYdHmpZg3DmoUv/c65EHFfFqsrvlyEl4hXzwTzFiI1oNdebvDzkY54h6io6C5mu7w24LpOG+FiQhRppJyD9Kx9Ez8REI5S9fDFq/mGIiv1kWIVJEGKod9OuytkfseFL2fSmf4aEp3/sdv3qhry3zI7pGnJCpPyvi1L32SIKOM1jn7QHyITmtKtcvRmSf5M3+umUAdJw/LnQa1kX2aG1SkNeayIqrzoz2Q2vIlgXa6HprksIc4VRHz0lHsGRuEuMO6GR3Vc3/iYNoRDysb3MwQvnka9/1qvF7ggj82XqFJemuRGOOl0WIywbkpxs8NjPnR4J/WYiY3VKgTR0mwlvT54QOUu6bPrjD4giNMLEYo9tohTBgEdzY4n4SrTP57bWDDFxYGiSdneM2Hqr23Z5cYBotOZzuh3fSfznlNX2WbGJuP6I2WJqoJro1LLSq4ktJ3aRZSTEpxUQ6+rPTk+sZxLnxS2tbI4TiTyrlIGpulFEuk28psFmEFHhj39dq/NzordWk19rgBuRJojDGF1iTxzxtJAt7LEkehAT/Z3ZjYnLUqV0tt9vEU2Gd3ONlK4RpQlbjiZtKkTs8WxkNkaROFiIsnZUlSGOR9Zk2cqIEt9i9QIoyLmJj8eu/e8xM5GkfOlj9C4FMfpyXJfB4jFBp7NxUQW1Q4imxsXoDi0QauOIfDLxkwQfjuIedv0BwqZxaZZRUSvhA4vs59tbNQQ1qP1wJ7eUEAf6xYKuOYR50j//TE8TCZH0+g8lTMIJ2ytC1nb6/gTz1Idzg+RuhMHW6ERbNRuCoUoEiuyCKaGj1vyo8d4tgol+xXXFADVCcVPXRAQ9lkAbUvWU51iaQP2oiV32rRDh5bZnghkFG0FE9+CUI4aSwCqGPjHTPsS70p1qtiqt4Skjwz2kLk/j3QLjs6wr+/GMIhHpb2814cli4+xHf1XgdanOJ3RG5+IHU95S1kgk4NX1xIrcSoLx1kUe9yP4PPGxZrbZoba2eP6xXT/pWGP8rp5BY2bETbwG6jbvtzsIXvrFL8bEJRS+MLjNfgsniD9sC7OQ1mLCZ43uqXGJnuJMGluZqKo2ceMTVqMj9NO4oSeVIRvne3DOVRkNbAy1OO1ucUmtpkIcp8gFi0LNJNywpL/4XnUQ7ui/uafu9G44OoaIkDJNS1wIS2Y/9atbuMr+B/X+zSq47u/cl4ToUDgZcZInGUU8uHLNwaoxZ2qcwl/iELndHpa9g5JJJH0Gy+/WJ3TK2Ys95IleSnhSjaWxZFwLvZmL/dH2XOFXXhT2Brc8imLPG6vAn0Ci52uFlbMSMDOcvoU9I5lN0nVMxGb76pWgIs5jtxcxcgVarFgzb4rnVOJ/lafIr1o6Wi4op4SfkKaz9is/mUJTxP+oUo4p/6sxEZipXLMnQsTYvlKm8WGq4lB6ojzGVXVuq9NAOfcVrnaWWlV5B0137WRBQvlQRdxL4ohZWa7bVV967EDJ6pyr67u700pLAVUVE3PNSg+zdYSdqguUtl/K3u6wjlRKwuuef57rosT7gNfHOc1AiaaBbZSgB0onsyT3JWZFlKYC38b621MpyVYe2QSrrCqWICJnFlV7FUdF70tPSZcpFsvLPSyQj1G8NsP1qJ3PVdG/izZwZ1xfkTU5DbOtp6xItxp+ncaLW/Glwt0BJ8Ixxl7Uvb0sbAIT4uRtV2Jdg4mVTrpk3JOEsX+a4r3a6IExOPcryfLWHQyrzvz1vggM5pjU3mg0nA0TUvE+U/HhDpq9JSf4yKAXXZtLrjGyU4B+hU5a5qsJRBvHnpd0GDBHSyw7KsWnENB5ahrqER4caHO29torl3cu0h/KbzZsdF4MMSgcGafKvhgsTp9lr+Z1EX3t01Ejm+7FC3QBobNnJC8+34DOKF3SiyY6if8kPUYUjovVBZ+ZFStIOJuy3HX0U5hP7iNzG9NTiCNXarZVklB4KPLQ41Dnj7yNrJG6w3KP/AZ1eKlBXYb8kcfZaR8dR/k3W+on6QQVefa3ZDXSRCb55seOLJuUU3IJLCOvEPJCuZTjIdufbm5y5ySkSi8Uqco9C20RQA8wyP35L9lCZHxEVrz2m2tD6xvZJquEhLhQK1mB6zONGhGysnexAuhusT2USlePLNrxE4qx4WbgTV5v1LgP7aFeBIJ6+9uhvln7VAbT5RmQIFonc2XX4dk5US8Z0j7BGeEmRZnM8KSC3Pc70vVKfy5Z3yqQdveZ4qSOM5PmvErzuaCCTZokKiPnBWWrlNMcXQvdvLPUQD1/ddljISkF1NI/X+l2yXD9i5fyBG0l289/AmnFM5IukCkkqZt5wX3Yl604EXWBXnxH9tpqnoTA84OahgPWfI2StoGC+LDzg3Kk4XYpZ95KH/d90jH1ziO5Mzdson5F/Jp4AUHC8FfuvvOXrM9ymedO/fMpuiq1cjHySZTbmFMxECqRYfYrzTlzvf7jWON9MfRgtnfIBEfOjb95jh8aekSDAiakBDMCsn86CP4e0kNEyaV3cGoJv7NqMF/ua92tEGkYGCHXeueYZcjInyQijhKhqrFuZ/Zbz7ytliSVI1gsHKreeyl84XGmYgMvSuA7SpiXT0j1BdfOG+N3sxbK6RVCPEerAwlX3d9kCIyzkr8kCF27Y/jXhYLsDfWqmgLWsV1Q5ntXn5pRRMYOeVCR3evbgmgNH25qM4EMl3v52uU7CwJXRh1zKnCl6Uf5ZnRBoR4Cdib2yym/VdOV3UpI2VcYBEhNEvmnacfSIjvo/6mWZPMnvyMfsbZwTDv8ZmgZ9hnPf/zSXlqinzothzxXkqd6iM9QMmSmC7JSD8livo/gHflqB8TubPMRU59ai9+OQWj5TB+LKbRVjKZQHNS6rN7J5X0mFALXqJ1Tyhgn9qdTVHjv+rhkvP9Gl8JBHCrMdxvmoUi7iGuTSkluUEp5Yt12nec7Ty3V+seLPH+LRodPGniTa6xeFxAZjrnvrjnylVoMJ1mHlycvepVy+5eXNHwJDU5SZmI6t75uzt2iVOUQOItN+qin9aEjhpVbYOeywGjiauIW2neZ8Uwzl6mWVpLZtZRE7Wj7kl8pzlzlBoY9MRo3Eh+8wNzI9xLjGn+q8Dag91/C5krx3+2vw5xbLe1tfFSlCfRDK9SppUGc+xuysbdTzRPyzm4ymN/Gcd6TdTQP7GFL2Lno8oJnf4PjZ3lLbXdXW3yQoVLUBadMDqThS97guGc8o4KIvm+nHgfTLiyaysrFqwXGo4bunuEgIRH7F7U/FzfJqe1VmVJ/Vvnjr2d3JZPiQktQ7r/FXM4Gjk7WcytqxznXfPboxUmejSR78MNKjzKuO7exnNxhhv1qjrShek5t7AhTB/d0TgK7hbx0Bkmac+z1faRn/642e+KJONCZS8WyS5SZh9JQszv8puUVd5+LOfle1E/xsoFN3epP2Kx0akxmyoo/rZAHmwnvu4y4Or2YZI2dqwYr8mzldb9pIhiZYlbDmEa1adZYX708262Y0R5t72qak/Eph7V9CVPVj/hH+wvO7Z4ImrH+WvJN40ghRGMviTD0uXGzPjEsSkTXH0Sx+ZrmfrIYYklJulcRpV8e1e9W7Y4PjWRxIJv9J3BgF/UpoOxoFnOdhf3PzFOOLomoC0Qjecm3VCzH05dUdJrnI8/TaBYocjQzb+KSOBoSMyNtnPY1J688Z67VUfuUL2kSmUrMbHxAR2A2+CZshxPjiTymt6x4bn/ItIM9iHCfH4kom1pXFfarZDI5J7osrhIbgakzDm/gd2byLDqiyeS4FaG8rD0yf16eafRyUzK5FnNE8ZOk2CC2LUZTlpqrZsU94dNcqbb8D4oZiy309ctxr8Nfe8Kjx5I2jGa4ucol+Wvh3qMmOEotCUYr3wSnWV/qcM/8eMrBpkWGr0axobc52sI8T56ycD3NZbD+wyK0uhIQFhQ6/L3LypJBHmvaXLN7OUzZZUhTPUmU4bQH8z1YlyLs/wAjhtxDAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAxQUAAAAAAAA=eF6NkmtsFGUUhketUuTitrZ0FdAJCjSAdoFaChIzSI0Vb2uiBmOjo6I2BpMBjTZGk0Gr4VJhuWhaVBy14hJF1iqy9UIm4ZIaoy5atVEwG9SIJsaFoCIKmM77jMkshXh+8PC853zfd3ZgXc2Ty9sWVF5mBBUv7f+zcePU9/v5wLGbL+1nbMP4wG+8bXbA5K7KgO9vvSmgtX9CQLtzZjCfX1YTuPv91YEf/vyWwFND6gI3u8cGHm+cFbCvck5A54zZQT+VvjJg8lwryHvmNwT8YeWt6qemB/S/015e+trAnU8aAhrXTdMe2yYH9CquCeaMVWMCd+su0NzvFwW0HtbvsHdx/vaqwEsX3BAwv0DfI9Whfc1Z2rdw6g2a/1B9wx8e0N9eJ+88MiPg4WGa8/X7jd8m6t7n2av16HtB+5cZOn+6vptxmn6n9/VVcu887T91is51jBE/Sui+j/X9jI36nfk5V2j+hUs0N0n/TsaxqZp70JTnxsu7pslXMG9eIKYN9Uvi4vpa5cZg+bxxYukg5dvYL8u5vlPEtrPgUPXLK8QPysWWMvWzo3h/iNg7TrR+1vdsG6G5xy5U/ulEeSf7No8UK2Ji7J/g+xrtx3T+WfZtu1j90XyH8rHKh5fJq0vkj/POvdyf4v9P4Q/dmxkid0aL7XwHv1JuHNFc+ny59ZP26GE/Y4v682PMf6O+tUesr1Leyx5ur3LnbzHFnom/5OYgubtH9xq7lGcG63yafzdnv/qJU/m+33L+T+YPqp88IG84U+fso3KX/ZyD+AHe4558gfvy9L8k/0I8xPvWJ8wV2OdXud0nN7dzjnutz0TjR+7N8u4G5j7CX5d7O8l7yLdyfj33beadr9hnM/Pvyt1N+Da8mz13iHYX9y7l3hbuYd7Ywh7Q8cmT8Al+Rwf3byBfxH6vkbeKHns7zLlrefcZub+a3/Oscv9x7n+M+buZX8KeDnyE/NGiuQWct/GZ7LFQnqdv3M/cnbwPjSb6FXh4Tx3vXI+b7DGbuTHkh6aLFxXdE+O9WvLx5AeZP9wtmjOivp/+IN4v4VyePAf3Qo9zf8mtAr4T7uuOnu+EO+BW+ovxbvwNPIW3Rd9zu3AbvkqexhdxbhH+EGwkb8LvgXeS3wcvJ79petQt+nX4LHwaPgovh4fqxRF4CfSz9LNRD6sX3835XpgmT2Wj/l6YM+fgq/BWvAXa2ehc6E1wLueSeAyfBE0YD3/HFrGCvJS8b5row94tUWbh9tCZ68Tb4VryB/H5eBLOgxZsgCbzM2GcPI7n6+C7Yg7uhj70YCok5zzokrt4ElrkJqyH/1X4/iXivs2ivzk6lqHvwsX0HdgMbfoWXo8nwvvw4vLfEXvg9tpo3yV3inILN2F1UX/fVDH3tpjBU28bA5ZNP3GCfmGKmO8SfdyDKXJnSvSchVd3RfP85KhncBe2vGUMWNXhOfq5jOgnonNOkf9X5PkaMbdJ9DZFx5K4VRPNCxeLuTeNAcumnzhBPyx3o5jcGM0Lbxw/2192cY7nJh43GlTidf4CcxPE1ITonFnkYbkbol5Ii5nq42f7K/9a1JOhjxf89dF+bFzU7bHG/6tXBPflgduJlwbOLTPq3vlRN1+MurPOOGnZo0Vz9MnnzFFR90aK9nNi4rloP3Nu1C3cXCvmz2GuQ7RxCzegHxdT7czBsEpxv0r0oF1lnLRSI0QHJmDhGTFXKbr4XGjBsPIVUXrQWSM2wwYYX2NEKne2mIL2arER1sKhMLdKzMKw7CKP4YUy0V8ppsuicw65BWMwFxM/h2low8aUmIBjYN9ZYg/0VnAOJmE9/TjcN1zshe5ycTGcBy1YzVz+aTEHfdg6TFyI10MTHmoT90Iftg8Vm6FFnsArwvllYu8QMQtbyOfCu2AtHMrcgaVi5kyxCz4Fm+gn8EmwDO5fInqDxfWwGTbBK5mbAP8pFb9ZbETKJW8lvwPGSv8FRDBQCw==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAtBIAAAAAAAA=eF4V1Pcj1f/jQHGysi9xbdmyLq5x9+tpl0iibGW9VSKbuFR2yZ6ZGdcoO5KRlS1lZWRmb1KEuHw/3/PL4z84FBT/3y9gE+tX2XO+yqS/rwt/PrILUkpawxMKd8E9hNOQqt8uIAtuBTnr7QJVe4SkksAukI9Qtorc2QFXEHst7i07QKIm6mAtdgdggstJu/d2wE4zIjhMfgfwPws3fHe2DSgCasatv26Db4jY5TcZ22C6w8fE7eE20KxwYx5Q3QYnxLPNRqptECoRsak6uAW8VbI41TK3ANkhwnP8/haw0r5+mYzcAlmRc7gq8iaYO/hI/tO9CbITJPI74zdBa5y7l4TlJpBzlhiFi22CDsVapdStDaBFe0hZXLMBaBgaOnUDNkDtQAhPoOYGUDp+Q9Jg2AD9hFnRjMF14CM+ZRuRsg5UAv1RF63WQXSrS5Kg8DpA23169mV5DdgLiMFg79ZAkniK87bLGpC9VvDdQXENgIcMub77q4C9nx8v+XEVKHQZiHj7rYIippIFO9wqGM1bQvw+XQGmgqzfxZpXwCNP45LTpyug+YdaHhGsAH6j2L7882XgQKWv59uyDNq6jm2Oni6DsGIrFyloGXBFP19jIi8BeQKfbUHjEpjkvh164LcEhKFKOAV6CTwOVN/vPlgEU0fFlw2rF8Ea92hDhtsiUIAXH5XJLYJORJRM5MYC6E3t6FcqWgCYBbJjuf3/1AwkkS8vAA847qb49Dxg1ivSlXo9DyY1MpOZb8+DzEXG22Os86AkgLU54stPQNLWlJGI+Am2faPZajV+AsXUiRPf0zlQ7OOn4uc5B0J3zW75bcyCT+fq9MG2s0BtJNkia2IGRAY5PBq9OQOky+sClLungTHtdd5OaBo8ixj8E187BZiMiycLEFPAG805wVg0CW4PkdgHLk8C4wjL/n+vfwAmqyqfdPYf4Lu7Kak+agI4J9fu2tNNgACnYJ6C4HHwtJ/634uzMeBgdezBRxwDV1LIzx8cjQJL0SORAJ9RkMVtYmJ38B1Y26opSnp/B18FTWvHDkaApJfaUoDvCJh0+tYg/m8Y8D8mi8wEDoOCOPKf8gvDYJbOe7nwxRCwpbmfOcg6BLpPhLJQrweBxMig9qrwILA2u5w4aj4AJuAGquke30AzlRgMGfMV8JERV9+X9oMQmiZb+W9fQNsyl0vT7z6QILaw68rbBz4iJdrNtXtBy5MaeLRnD7j6lnifr6AbfObR8eac7AKy223ar9i7gI9TEGWUQSfI0xY9Eo/pAEYh/amOQ+3AzL/a1YK7HVysfsjPbP8ZxMkcqLysagPqlSW3J6jawN0njzioLFpBgnL+RZEHLaBvqVGDTawZVO5kkWZXP4FPvajuhOpGkEbrx6Mc0QCW/Fzru+zqQVzZz3h9nTqQMDd1tVPxI2hP18YixGsBOkc6PljoA0h8Y6LYKFoDxBOt2r4hqsGZjzqpSv090MwNEDexqgKfwmYelj6tBE/C6ae1blWA6dvcj67VlIHzY/dglEQpYNewgBYK3wHpl5THHKpvAUswu9vrkSLwi3WCEfmsEHhoUYznowsA0q+8r/Q8H3RFIU8ufs8Dv2iel7p/yAVSB205Wfk54O+ZZGIw/g0QVOudF7ieBazgO3MurhlAdLFyf6AkDdRNWT3LPksFrZerMIr3U/73haqZmaUkQHfk9fzIJxHswQSXRvgTQLux7KXPo3GA8Yh4T0ojFpioNbRiT6PA4oFVttVEJMBTX9lRHn0BGuRshJ33wsHVELGBMpkwoN4QR3wbHAKW05tuXjoIAsXiqrGkoOdgNmIpA23wFHg1GlI97yGCj97S5I+ufkBWvnspQt0X3L1u/6oQ5w18X84JTVl6AgZJZAP5jTuQFpw8PKRxA+UTv/hfcbmAK2dGwut3nQC8cTRdb/Y++J0dT8Ob8B/gak4RXfCxBzWCTwXMXtoCqRzOotKoe0Dt8FVkwx0r8FU8O0jigTl4Id83H9FsAi50Laa2GN8G+e+6p/+KGIHMuKmYLElD8NSFPDHYoA/8XN4HZT/XBe+YpbI503RAVlWWsThZE/yQiWlRKVQH8pVD/jr8ADyhug33vIsDzYzlJOuLaFAfFfOIAFMBR/IrWAYXJHggFEz0gCsAincaCnn0soBbx2NSx+4KsGdPRZ9LiYPP2alTnHdEgHT3cn1b1WWgUapndc+UD5h32N3xfMkFIKcdGV40B6AM6qgh32YD7Lv81c6FzKChR7XNwoAevCvI07sQTQOibobdGL15AQwtNt1KYDqHcsLyogw1/0F24eT+fqm/kGP0XbZfxb8haKf263uzXSik3ixaQWsD6jrnI03sL0Oilqw4jpsLkM7P1fAk71lITKJN61j7BzR9wS1reuM7pDf7zzhfawjKMtB7dOLaDy15NzZ3WnRDScgKb6RwO7TmGdEgr94CsYReNyn3qYf6x0T1HStrIJ+V56Ze7ZXQdPw0mYarBKJe7G36PFIA2f7p/O38Mhc6+jCWhebJhMrzGGT33VOgfqttbYef8VAdA/mJsEMUNELRaYLxD4eQ1I3Ko01BEPaXL6l3kwhFGCYsMKx6Q+lXnKZyhdyhCxhaeGO1E1RO6pLwbXGAiPndFp/YbCARHykG8wEzaLXyPGEUbgxxL32PX9W5AcEzunXpbXSga2WVum0M6pBVkVDE1CwGOltuSroXrwRN1IhVQc/koOZOkVJFSQkoeHcGu5woBP1WciGF1XFDY0mm+yhrdshD98LVdgQjlFChLDLFQA15+xGjie5kwjaOvxH36oBw3YHJoO/+LuFkZXyL6usKQYgHkXYa8JPQ2lcSd7N1nBCF0dHMph8idDHT5q6a9hAq9tLEq2+1EbR/7FbaR9YRDEq9H8sZVhHE+Cj3YcbFBCTqSlYsVS4B/ZGtNvh9KsFR6HBb7nEcobXcJO5DeTgBzambiJF9RiisvC33ycib4BYlbZRB70Kgro7p+VdmTzhT45VqjrIghLAtu1GO3CJgI70KHYeuEohclPr6pYAw4T1e9mVfmUC/I9BB+1qG0PoEreF3SYSQRwjpYozjIvS02md2xrAQ2qkiKy1rqQi0Fiwfy/WP8awPNi2vSvzC/3zdWLwXtIQ3Jb1CNa/8wA8OSzNGag3io5jkJx2MOvBqcL/zWqgePwmz/yEnX4E34NfMyJXIx6vVDH07sUvFez99xFXqEIXn/Fgy5C4ShBdGljG1xnjhOUj0TsqhD/DqUYUedqzWeDeNm4UXBG/ht+qUGHAMWvi3JNHVF4YofPv3lN7eP9L4r8nlXMoHgvgoxZfpFO/Y8HXfFQajaanx3SXNg07Rf3GfDB3nTbDrOO+BQNVEumlcet1/FZPb33AFcbvtSr9bcd5CtQ2hbu9xizdUzSW28nEUvHSXftxNxjEHlk+ftoXjiPMfR5pYnuAUfI8PdaCHuGkTMe9/uha4U//4uBIZPRyZjRg4MYPDWXAc5sxbyuKExui+YfP4cdw+/sTEciacLJ9O6P6zU+zfanjEIHwLe9TM40vrPYVFPBUb+J7Vhx2mzpFrSa7HmgUIXHC0K8aWkwRWjBhSsaekLM9PSWHYSdr7F7TovbCztFSkKlc7rEcgT1PlgCGW6mEvJGILYb2vNywLImWw//GeRhgIcmNZDiqQ8/I02DstCvPsrr8xzbtNcPmOOYzOQlo0gfcLhtj4uWliqRaT2Cf9j1o8HzOGVBJyrIrFJN98URjy1w/zULEhjY3pP4xur/Wf7nlDjOFFXfHlPiwmUb2uvIdOHNMETRYmGsMwy9XUqZZsx2ivjQJ1ZbpF9OhWD2oqph+t3aYLG0N8QOP9qVPKWN6geVucc82ehaNrKb7gZnnc0FvqKsecHSZo/qHSmvU+gGbsKsdtbYqj+XrbU3YmmNHNe0wNGyz7KLFkfffyjEkUoHbi13NqQ2mRYw47AgtRY8w7z/8URqFUDo0MS8/dUXd0JIr29ExQR8Sz4GwsDnV8K9aN1l4I5SJuzU10pUIRYfSorA8rqvmBCwfFIn2qXzrCGgyzy1TPJISWP4TFqVbiaI7TxDxU9W14BkLTjVXL1rhsjMaUVYcfj/to9XCq6gydz6jZ/1UxFpQU+ZM1psLRo9tb4VmrMnqKXDhdSlbhxS8nlBx6qQSnFCOJtcYq7dqPl/UVkCq3xqY0T31gKnDJF93HuG1lm6hObI97r3LETkI2S02B8oeSbRmSSLAyzHQvp6XMWtm/9029ZSdKOSG52Hs0h105Su0R8n30lhJ9dlSprkOnEs7+1Al1640S+Hyiw2DvozTjLDX+H+Gm0m4gvMJFU1xpx/OiyVv0KRLNwnb1NRhGunjbwjhPCpH1/dfN+qUCkEfSTE06PYZI8r3M359dRZEGdQ1rP6YOFAM1lsIFJ7sVq1MXntji0hRteJJ33CcfKjKK4hGoPIzitODMvbH4i4qa0g9OR5vGFBgNNrP6bpAUGl4Tecd93BXousPHONbwCidVq6v6p7QKLBGU7hsvhuQd97Z9/r5Jk78yNpRJuWor/2AKMcY2Jykv7t5Ze9FwB6H1uI1KW/c9wjToVLdnzQvB+rAoJPC1KqJYIfzTTcpDOSel8fA75A9yCwvvzAaKPOWWZNpCmSwV5EJ5jU4sVdZlbxDa42gWcmUpOnOpfiqYyiYFmzAmqTPK/vXBVpc1fpJxnuAKlBh2ktEss/FCfuOUuSP1l3hBtVm61PY3X76erXRd7UReg9a5VN2/0OuY8iSpg9lo600ZYSkFfXdFwfnkK3NhBpstFPTFfXms2kr/RUpeCP1StR5+qag6NOTI1jNH4koDcyBLvGjh1YB6Mc33HQV/OOJrmatCxJ2pi2b/fkUVWCoaTtFrb4rt/1c0E7v3hiTL5JHDkGoshhdGtA1a0ZOst297/bJuE1U/ikillPDL1xpgdEZjlEQDrh1dZzncybN5pPqdEf1OJNmhtfqt7v08rLS6dUShuEg93qbYjnY5928rk+WfawXCxCYZLhZnx1wWlvT3hy+uCL9UxXxyHt/Mmf27p2JkWSkE82L7wT3nmXPhzP7o7jZaaH5aa8P7MkXOKzt0og2x8/JsPaWpu0f0m32d1oW9ptuXj+zq766dC7wpEqqitldbEbz39Wg4d70yO9g4lehp5C8YJh5oitjXym6ZmprtY2ITdHSJi6Awnc6K7/rsOEJfLPCi9ul43hevrJnL6xyTdzQE7IoRH1G+sCyx3cU0Gt5Z/orOemsEuSSTjBjdWPDy54dt0zk9eKCbWa1gfJLfxc2fYlE2rB+6ltFNYfWpNr2Ob+VOmAYt3csM0cFF2ve95nxeYJ8CuyKdIacWaUJnf8pbGzWKvK/7LV2K9Cql1yiHl20/UNqq3T39IT8fr8czTV63rMJn5vGc6YhykUJ16jUePVN2ivuLDWlJPhRlQegYHqW0TF4itW3aS51MUsAVJZ7+9+myJYE0abNTm06z6+Pco7uL43D0u9fNsIMntLQB3FJi7loUhfqvLX/fuy+9w8t9UGBae399KZV7smiF0jqLC5aqtZouGsLFIyY44DLilop0SBO22TXiotF9T77phkz98Y/NIKkFxnWVdupasfp2ioaes5fsnx44uW2RiDsgpaC74mmfuAbBr67bhjaNWqU0cQWEm31GwVMU5XQHIi+leJjSPD6E/eL07bD9pfW4L9notaxuZkcBZ9PehNnGQVCy2kgMU06NNadmZxC7Yi462cbBDDfjz8HJg67SPOfYS9rZSbmbl9LPQW3N4bBCUZxU4SLWYoAJ5RDK3/oYzGObZNGQrgSnIXDIjKLgXbXcSafo5eTMyweXaMzXbIYFhxO3Hkp8zlaquCR7JlawcRCZKAufbrtpe/+SVaE9B5O5VuIv/xPTlE7hS2k3ps4JkucJG1IrrhGOU+xJdkwsY4i6BCfuEuHnTsnsLcwLG7F0ngleD2o8uA4N2eNlXdWumyMSbG1f/VeAY2SXiES9Gw5Ziy+ktYiXE+1ie/yZEGTDTIoflE+vpUAHs3VV0gvh023i/Y/pvsiYQ2yo8Llg6yG+eC9Y4p5cwjFMyGyWZJgwHtdR8XOyv/cDrKDsxkaPYlKcDleG9d0OD1h2nomqd8CtOD0FAZWCOwowD3/7M9RrlrifN9abWOq3WAvWY3/QXPwSS6F3IMD2/C0r7KA/p4v/RSzmctfja5OOrPCT2/GKH7RjB1EJU2HvxFiprjHASB+pYuvsdumwkwss8Mb2F1jY5xixY9cX301zWVoFYAWPKp7H9KcWvI3ntGG5oVI4R8kOYnyOORnk2QRZNJ8OLRdIkKPRd+5KphlOM197/HXUOboxup2AaqucSmcefmNezY/1j6bIMRTPKjJn3jarNLYVw0RjeV9aCbRzM2PnMmJ9W46j/g/+vOWWAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAwgUAAAAAAAA=eF6FkltsFGUYhn8MaKUVxmpx0YrbgqQI6qJtKeJhEDDFeNgggdogjoJmL6pZPAUTQwZDQhXUtYISQB1RsCri1lYoinEkRKuimSghVTGuBggaMSsSrMYLZd5nLmZF/S/65Hm/wz8z3ecf3jy/+9uqK014Dp3y9x93Q+vsKcdt+WPXv3OcfTfXhT7/2KzQq++/OmRb7dSQy9ZdG9btUTNCZgZuCNmzQ3WnUfXGu+bIM1eE9H/TnkJDk+ZvbQzpV08Oufin2WG97HbNpW9XnzttVOjF+TNDLg5aNdet+3JFPbdpmxnmzsS5um9pTcjkhIlhbvybxIVT1L9gcEh3xFjds6NJ+V7NO+Zy1ddpj/11Sn2brwxZuNFW/yQ46ALtn3eS3HiXhX23Xq25mRO0r6dBvFf7jaX39yunab7pZPVvvCJk8kF9F/fZq9Rfo+9m+nWfm0/Kg0nkf74d8kl9RzOF/pyl92hrlpvD6qsYJ191vlhdKf6u7+0OZu+fp4m7R2rv+zXyDuaGTOS9D4fvbfZURbl49xmi95vquXLtP3qp5maMFffrO5mN48WnR+s972zQfC3P6xlx4anqK9bKM7/qvZI/iB1J1bOniMEZYstg9a8dTc4ec1BzpgvmxEPMewfkmZGarxuuPHmmvKycPu5fM0Tu8F0r+H59PH9nldwajlfKO07nefBW5g+eI08f0/71g5S7n8ibBvE8P8oLx/S9O4cq7+c903+o3v676O9WX+qA6PYod/R7NBN43iz3Zo+qzxjty/wiT0B7J3v3yP1+ufuN3ON3Yt4Vk/vFwo/0f8nvZB99zKe/w7/g/7wPfsr/6y3u+Yi9X5N3Mfc692wn38T8Xurvwa3s2cL34HdguuWpgL5emInv95/j/Tcxv0G0uTf5ptyJ7lnO+/L89jr2rWD+CeW519i/lrkHROdZ+tt4Tp7HzpEnyRcxdxt+n+rJpeTcl8X9LPO30P8Az3MHnFuyry66DybIoxPtqWH/NXiCfQ2icx35MPY0QgOn0j8CL6e/Fq+CQ+DAdvHnySHsSvp98oOiX07/PvWZfvqP0Zcj/wB+TP45/hncQb4V7iDfLLpd5FnYTX0t7FTursIXww6YYe5x3MEX4AvxND4Ln4VbcAacTH06nsDLcBPNkQe9YtX2eH2gSSxSP4Lvgn3k/XAn7IEfwiz9r8J28hfwlbiDZ/B7YJp8Hj4dziKvx6fidbC6N06LfGBSCNeK3ktuvt8m5uEe6FPP4S7u4ovhMnIHX4LbeAteDy3yeli9LZ4Xt4r9jaKPB3ge7iKPjke+qiTP4A51u4R11BMlNLDYYGJnD+6/JXbi7SV90UmX5M24xbyJ6nhQD3tEH/fwHO7CDEzDFH02buEGL3aLBZi/VPRwF8/i0bFxCyYipz+4RMxD7804o+PgKVgHLVicKAbQi9glutAmj06yK+5BXvRTooc7uI2ncBOx5HhvxN3BUxcT4AMXif6WeH8WT8MkfcUL6Yfe6/E5mzx5YTz3N5sTntS/5J2vic54+nCDBxf8Y0R9r8Y9P07MvkIdFjvjfU6d+c+TfvnEubNJtMaK+fPp3ygWx8T7rZfE3IsEo0vqtdRrcNjniVmYgoXnTezYkZ8Xz7Oj4l44N+5p3IKF9fF6psT/7xTPFvPQhWlowWBkfC5b4hYeJERvDX3QJjd4cJbYC51nxGZoYDDCnPCknxYtWFxNP8yt/ufM8ZMoyfOrRPfMeN5EbkryzqfELGyGBhY7RDdipfgc3gLnwDoYnC72w54nxRxsg80wOkVL9HOiB11yB58Ox8AK2DdczMNO2AKTT4gJWEEePC5+DNcME128BY6Bo6kXHhN7T2MOz8K7oQ3rYXTyFXFfhi9cGc8nRH3kR1aIu+EW+DDMlouz8QR+aKiJnfyjYjt8iHorbIRnw/2PiF9BD3acKi6BDozOCLyvPYRbKJPvhC5cBFuhVfYX1dlPTA==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAsBIAAAAAAAA=eF4Vinc41Q8fQClF2XvvlX3Ne93x/VgJkUT2loxkFaKyZ/bee5WtJISEioyGGZKRTUaIjN7fe/45z3meQ0T0f7ZAwzPh3p7UKUVB94jC6egmKL4QjYus3oQ7tVFaeSGbcP+yxGvEZBNGym7IOEluAp78ASXn2U2YoBqvNhn7BQ/pXjzgqvwF7ZHZY87+v2DbLEcJ0fsFbtxNChn8v6D2m6PKg70NSDbb3/7+fgOqnz2b7UnfAHkl3waM4wYU09hTSGA2AP/AoaiUdAPmba9D0eg6+IVfq+IrXYfnVpRdQvfWgc7O9XaN0n8WfPqkmXId4qzFJTUm1qDK952Jadka/HYTlN7yWIOcqy7zFwhrYPSDsqScdA1QdbUtvV9WwZ1yL8Q9exXOZ51xzrm1Cinft9Z1JFbhJs4/O2xvBS41p9Crta1A2WHCxSehKzAUPqdjfHUF1rr6XtfSrsDo6Jpq4tgy+Jv4bp7kLAM/3czsvs0yiN2M13sstAzn60Mjk1aXgD987Ce6ZglaZN2XXT2WID+IWUZRbgmS7UpdM/YXgWBxySauaREi5u12OPwWwaLLg08dtwgHdLtkFMcLsP/k2U/31gVwtZ2i8Hm0AFJSw9s8+AXoqU0U8Dj6CXaoTV3nlp8wvfEDQ+37E+qijAZs0T+h8xQ4HffmIV3YXJvvxTx8IOoqSHGfhx9K+CedEvNwz4whtnZ1DrCMyHWr8jmQYQzNHbGbgxZfJ1MmnjlwfCsYLzg1Cz/pHW6TZszCGK+3UIf+LHCR56ENqGfheuc5gZ6PMxB5EJXAEz4DAv50qrbKM/AngBEtcPgDgvbqZJ3dfsBldcoPBQvTwPI3xeWr2TTI0mA7L3z9DixbaU16Gt+BRPK8y8v2KRCvBD4l+Sn4qzZnfVI5CTJBiV8P+CZBrYzhMpI1AZbjmW3faCfAkVTXeSzqG5Ddd41UPfMNMDwqIaIPx+FOqMRCxu4YlM4qaGa7jgGF2msXZGUU3A81mOJvjcKE91ParJkRaCqM1XKxGAESAUI+3eQwGKjrbGWaDIPM8qAg9bchOGcbzxRgMgRmuYyx+xNfoZvXWDHY4iuY7n5qk5z9Ah+jhgvIbn8B8uYRdY71z0CefGHD695nqDhJElI9+ATLIZZShhSfYAMylfH8g7Cf6EtJQRiAaxj1wUmTfijKb8W99e2DLJCw+ZLzEXQ97Qp5unqh0pK0qnO9B3xZTDw/svbAkHqziJbWB+CIKRbS938Pqi3XZ/ZevoOIHdEl5e1uKKDtXbyM6gYi68YE6ntdIMFAGVXZ3AnovH5nQZJOGBEN/Rhx4y04fcwQmCrpAOfFmeqb+29gy6YbvV/RDkTTTy6WObTBrnDUGTfxVtDtCnhifNgCIXTYZofBZlB0HsDnVzbBTc8G438Jr4C+LmY3zL8RMHJVsZL3X4LffTrcjkcD/PnsVvbB5wWM1KkoFoc9h22khtwnux7qvmbPyjTXQajj68bItloQjr41LMFSA1Ya0R3CwVUgKh1AcvmoAhxRSnLXQ56BcwgRhobtKYhaJitrvCmDRpXb7E2epcA4eMuQQ64ElDSkLCXPFoMnPaGv5EchRFT+TZXtLYB5T91gloB8qD/uFmoNzQVtT4P+qqJs+NGmm6Q8ngmT9mN3BgUyIObrj08lEWmAQbxZGYhSIa6hf9opNhlKPZnTdySTwP+58ebhfAJIbAr7pxnFw9INfr5b5LFAVxC8sTv7BKqEJY7nvkXCSZ84R992OBxaqZXpXAoDYB9Xp34UAuVdFQHNa0FAVBXuduQVCKM24wsMsv7gN0hhebniIdBoH8pT6/rCTrHzFBm3D3yvyVX/xuwFlFGRMRj0PZDPVHm65ecBgQFaYq1v3SAhpMR8ZsAFJsVyMfpMzoAh/oNVTncAbXqNxFNte1CjIzEmlbODz79Ugv5p2ECd2F65Pa0VkMePmYnMmIFSvLJKwIExyMi/mF4xMIThI/Lv6C19YG7Z8wp+pwdPLt6wNirQheYiEv5mZm04fj5MeX5FA05RJ075FOqwE6OMcnioCmn+vVKvJZWhM+kt64wSAqlL77EZqVggyWmLIdFDw6nbZ1YTJzmIiBLpiR2RBvV3RJHlbFKwI+39mZFODEh/GrK4hQjDI7fk+i0bAcj9Ql1zUMgLd9KDuRc8uOCZr1FAFJYNJj7Zjj+KYYKCg3wzCmN6cCmqlqWPpwESbJXBS00KyGBTbDhgJwMih4uPogNJoFvH+jnWnhhy6mMmy+6dIKMt5rpLPw6Q+eyk8ta9XYT4ThhFad42sjUf35UWu4EY87r+Dm5eRoj7b1oHFP1EqhosmYYlZpGvQfuWTpFTSBFjtFlr0Rji+G3q9sOIIcT7bHY3sHxGWCqSPQq8PiJKQdfrcfXvkCMi9+nc1rcI2fafWOONViSreqvFIPwVoibOHXeJ4QXSnzMnIj1Vg+y1bHo6zD9FUJHUuNmzJUhN2hhqkKIAaSo62o+uyEQKjrYFFLxTEG8x+/BK1QQkocW7XetDFDIOv/nPWoYir8h7XNYuBiLF0SqFvdK+yPc997aupnvI/vyNQPEPrgimUFcuessBUcibnXgcb4ssj52xqK41RxQbK7WvsRgiKDUOZ5796wiL8P4m+64mEpe1HLzVq4qM8101rqFDEDpc7jW/dwpIirZgW7qkNLL84DBYfVQEeX+7bULMjB9xvXDNMGyBAxGJ1eVOe8yIWJ8LIxsYp0YwAytjUsGkyK4Nl2CZJjEi9PtCgpDBIUGCxLqs7uEO4TpvMFfr9CpBNTqyXvn+PKFbX6KqnmqKsFQVxflMaJjwseqDYcdQP6FKjLbxc2Q3wT60uvWAt40Q3dh4jjelgfDo1Vbh3E4VwZRXYFFcvYRA3qcgh1XPIZxONgxRFCYTPP6ZoCT5ogkaHD4fjCuDCXtff9fSJvsS9klYEzrcPAg5StpqYRUOBNTR2kLMgRXBwluJ7pL/TYJkjdVru05twhp5aMC+oCrhSQZVaKWVIqFVXfBPYAuK0JhwnSdrR5CApbwXY1bGQaDDIfdzs+gIp/0dnLcukBGmtsQVZ3+e4iu3O7iG3/zGX7/9yS6RcwVPufavNrn7B96lbvmv2dEQnjPNNL3hXw8+zfA8NSnbGzyL+qo/JeEFvqWpqMOsohxfbpg8XrmdgzcYLLFfykjEr1gHHuVeDsOvK5fTtsb74sdFuj8IRbri37IM6zRw2+IdyrC3Y21v4o0SmN5k02viJ7Sz+iowBPwzfaWD3VUUvpJf1L3dmx+/2+6XGwZMeF3baOIK1Qv4k2+TlgsBx7hlj80HfJubOPkzh+1S72ZxtUMiebolQ7jA7L4dr/h3OGGRMDN04Cuc4tz0q2tuz3BkG1UX3xhk485kFt0kvhSLGxRXjcLP+OMUzjitqWDdcXNGnHcZflnj1LP+GPhG6P33EfW3n1HBJZ3Y4dvMZXB7lwK8DpP4cLW+rQYdxXQ4X+PuHVzcGdx1ZQ+TwBs7WB2lOsv47VnsiRNf8I27X7BEq7Qj0T0d2Ik7mNS283VYyms4bgbjPOyu/xwLu18Mdid3JtrhsR82cNjIk9nFEavnU9qkcN0QSxmRlH1HVg372m2uq5JLBqvcHGpywsqD3Vkk9Yk1psAeSurymjUeKLqRdQRRGC4ofo/U4SojfFXsEGgWuTzbrph2SNjTnHmmyLyb1PzIO1Xx1/kIzcC8IMUMp8gmwwIXRSxJRY3/GSNFLxuvYmltFcUis4HeK73iitJSb6NU7JkU2Yy5dXaxxIqtz/Cc+wqrGLZzv0aIXw1hGDxYtGp12zBL9hn5C5GlmH9kn8yK1eIxpsc0k4l3vTGGS+e5fXqsMIXGldksiDqmzKopU7RdEqPcUzx98S8DZjaz9Z+EyjG63SK74krvHHqfTGmPqKwHrdTu+Be1XIuuSSglP2OVgmb5VD9sXu6L1g7LtJ2YsEInN1rqqQaooklQ7RdJwoXRLc1O63F/yNEkWuZa69ZbCtVTWmHyC18V5KYXSdR8Xipon81nP38mQ+HRKf1C0l0/hVuSrBvOBeYK599Xy1EGIQpIY3pm1x9uhW6lHH7kAZGCdkARKNXMyDs4yHxfzeyQ76oIPabCFcjLWM13jIoGyL8fMP+wbG0hv5Bc8TheAie/M84j2lDBIv/nMqp5ZXdPjjx26qWKyJCcD88lJ4JdnVzlgrf6gVe0XLv1fZuViNtyvI+I/cxZVOS66a+SabpzyO1hTGIvTO7Joqg1bxjf+SzLqXvlzQTbU1laAymOrCtBsma9ajYuksayLpSnxZFBKFm/3mpx04NzsuWW7pef+k/JnHyV7ks+rZch5X4wcMoZLnMpLnV5ws1UxlWnQSbjpaQMscPK6aYesYzUn7aMxd2v0kJmVh36nCXSxwXhqZZV96Xxgms8z+PVpMUcTAkk7+ilhbtC45TM5lAcM/yG6+51qCfE9mPTVo9QRsEFxSzxV1CPE8s/+ffRoeh//3a7825KqlTJeW2WuVTK5V6VSlPSXakr9baOoz2yUlS2/YaL8oeSAyaq4iLh7ZLCxq87w0KCJDHVFuIvT1Uk597dl6FxOitJdlsm5WF+p8TNj0hQ2ctACfGAJ0xxqziJbHHrIobMPfEpbvUAVHeNOK4fn79Jekvcgs/HnbqEWZzzj4vLVdJeMeyEfyGpj49YilCTQbQIvxi171Vin8qPonftmgT1q11Fbe2H64ImyUVjSkM+/AgsEhlbkCiJ/yIp8t405tqbwOJLE5SBuMjbzE8liZ6SblNkClsfc7QZevKVr89atA+T1wiNVD/2IrYXL/ts7pT+jXWyNDxiupF/J1WwmnbY8HumZqmA5tWxom/HAruhzavLzXUl/X4hg+7mtwR8iIgqJGXYStLKP3JdGf3C37Ph+VyrPqr4fqLUm4EoVX71y/I6ebr/ily8zdhJrFv4mBLZy2p0fIr6bjDv3IuR59NjyLzj8Wm3sCvwFyZ2p4F3oO3Zcc2mV+Hiy2sWSpNo3nyUxAR68W9BanBNQI39G54HR63P27eCC37LYoWy067wNKn7Dr7ToCo4sTfWlyYZ5h4JfqIqpZCdr4df9jIisuP+VTJkdg0nlo+2v/hQkHiX6+FTFcMl1vY8d07998riEVw8M2NUjfgbedpRcq+O9Di5thaMKHspl3PPvv/9VI+7gXOuwc/vlVBQ7nASN8lplw5n3d1mdh51ttzIZU3msKQlDqYqlOwVv5c5Jw/dr16ZDOFgT7ecN865kaMys5GaVcHLgT2n7Zn4Zyvb4UHIgw6fDvYqopbaKN6E7FvOFzodx63YQ7ea3dZzpbK7x62dOwL+salYXYums/+UlXd2NSZaPJ8tlLjdXb/cNeski+hwOZHApmYg9rEuijxrrWEhNPVkjJXR5EYqgbkoU1HbpFJcxobV0SVVf0dPhNW07u2XR26cmc5xBvOzskSsF0mTxphLv2e4djIObJw0sXwW7H6RKpaSUR33NvxsuxtLWVFBOypTI6PH2dKwfp6PJUaew2to6jj9Lwdnlc2/EebdOSKrvrd16fcrXnyzjo1iRlPOBI6E2qXfpTA/r7ZIYC6X0Rj1PGRKL3E85zP0apvJui+wWNC9L038gA5Wb5Yylfb5tJ6tCEzr4D0n4itkyhRs4zevmSuXtlVRen5Rn4bp2P7WmPTJSqrJ4HhZeE8349PQ4QaTFwWpcY6eOJ4DP8aZz3fWnWZvpk4N3hxHj0ozsn25xX6EpkxlH6jf1SdfZsB3bV8fnelKUe4WYA8ILmBgl6trCIp5mJLSvffZj8mIQSMyitrQTTYlcdhh/54rDcNoVLm7y9JaMkdzkwjS94FeYAYb+MaqJJlLp0TCOzSIHqP3F1OEWCbn+cssFypg6YVsaGgPBpmSBdsn1VjXf9PJ3mh5kOHzJUnA+laTensNHSY3/dBJODopv83hzQKtIx2n10iiodPlpPdFp/qTHPx07u8JGDcu4iSRFN+Wnu5p2kArWduttteJ3mxukwfMmbSOzSmrPO+8E6lIEns/NRvQ0rZRW6DXZRIZCg4tSP/LY9+yj+bDmwml1jx7V/UGaB4k+kTGM1QmbK3wCxswRtF0XIiYIdF2SGj0T1Fme36ZRn7X1HVbWSBh/Vn+1rP9MzQXXpJSXeifjZepaqu3ae+gLnrbL0GUmh/fghNTkZ58TF0y86feU8s8foz1sfTDaSz1ps86R0Qya/zZ0O9Z6rcPqIb3DowH9cfi7sdGPXpi0kjVIit7R9YrNe7tRqN4d8l9qhm8Pqfnon7ccB3ph1KMLJXA6nLdbiZd3Ler20QcF3YoOyvnZo5Cv8Sy2G16J1PUU2pSTZOe5iXE5mQnBPrh3CnLN0yzL3XrxuprNS5v4KUo70SgkWkFmtj/ARme6sc=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAA2gUAAAAAAAA=eF590muMHWMcx/HHhrXa4vSiXe12Dd1yesG0u9uuKkZt2hLkuO8bMpFiSchEJDZRjCC2VYzVsqqJoVpbWo5bu+rNaJCjipEUS1xOXJKNW462dEXTSOf3PS+ek8bzYj/5/f//Z55n5uz0F9f/3tcy4VyTrcrRh/566895J4vbF2Zec5WfGdx0wdmHHDnz/MzAUd8fMzczvXVxVp8cX5lpRv+w4BBO23Tt/6M1M/l1Ztb/ZneXzvFOy3LD+EuyXHrosszoyUVZvThqns5pPzWzM7xO50+4NMvdH16V5aH6yzPj5bpPeZP2hRP1PHf4at1r37jMpK890zuL9+2YoPutuFb57lmZztAVqr+n+8XtvF9e36PYrnOTJZw7oPPCqbqvs+hC9Rfqu5lZJ8jFHTrnzenKrafonIOaSx5vU331HOWJeh9z+1G699Ilus9Bnefs7FS/MEnPKV6i/WvnyW/1/U1jg/K+BfLIGZnhC3q/8O5W1cfOl+Vxeq86fYfw/vP0nMX0e3mffKPqyVcLtO9X+Zx+b1Ns433JX8+WuQPbM9/TPYy/Xzndo/2LuXei38MswHS05qPfNV/U9zO9juodfNcbOHfLDOk1qn4H36E4muePkp2jVO/XdzZrea/8eNnSrPquBuWdPC/5TfcdqVceOU79pfv5Hvvk7EnqD3NuZaxy+Jbeo1yn+r0n85x9vB/fyeGe5gj1dzYrLzxROf1X5+xoUm7S/7UJ/1Td/VvPSfZKb4T8l4wOaq6lnnP4vgfquOe33Gev5oZ5rziVEc9fZTQ/yH3Cz6XzhRysyB7uVf5J+1z+b/xd1L9RPfe9cpJw34+k6ZHxd/RL1Deyb0j1fFmal6X3CXmL5sofc9773PdZ1cOtMqVvPlV2PpB+Qv1d+9ywn3MGeN5W7vcS+XXNeRuY34wv8Zz78UFcSX8N5zk8bx35MezGAu/1BLmH9+sj38ZzbyPfjJfj9dzzLuZ8vIh738JcG/cKyJcxt4R8AbnA886nvoR911Cfz9x52IAjZ8mccuKxv5V9c5mbhuOpT8GpzJfflnXkKZxv2Hc8jqX+D+fuZd8f5F3K4c+4n/ov5B/IA+z7CEv4Cf0ivoKr6W/EtdW6DDdQDzgnIheY88gryXcydx+5i75blfpScideiQZzzDncYxF5Gk7G5uo+Vtohj6a+Z1BWcIh+Gb/sMNaKmYtwG/0Bcn+H1Q/XU++l3oUF6suwQP1iskv2MIdt2FS99zbbMg7hcE39R9w9XyYYYz9uZi4kL69mXE69C6urmnPMuZjfZs+NbJUH0NBP59lzJXLM3AvkiBxgNy6r0WM+t9XWUK+8Zaw11C5TjOnH5BB7sZt+AbvQrXluI/OGevomtskSOcaozVgrIPs19epy2JfDBubKb8jdrTJ5w97XQ93HLvou5lvNYVf6uizOlf3kgFwge2QHDVZeM9YqzbFzUNP3avoVV5aLdj2iHmChpu+4dk7PlPGrMkKfuvuqPW+oJ6/IIoZn2GMOdUM9PV3GW+y5Qk3OMZfOltFm6c+umavJ1RW8XDM3S6YzZXGm+d+VzJDBJultsvulPP0B6ebtfvyiLJxmDruCjXZONkgfcxvsvtMi4/X0p8noFPrP2/PuybIc23WPXHlWxifZ/Rz1tFmGzXbfkItTZYDOVHtscJ30m+ivs/vFZ2TvFOmioZ5MlhH6k421yifK4tN23SM7ONzIXL857HKoVyYx95Td98g5LE+0+xHZf9KuG+rJCcytsdsu9coE5jBaLR/EG7EDTdWaNTBeBk9IH/NY6ZPD42SCIQb0PcxRN1gcKyMMsYDVlSOP5GQasY/cix71tpyx1hjqpeNljCEG6D4mG8l1mB4ndzwqH8Bu9HEuVo6VJdz1iIzQx2X081hZJZMxcpAcYh/1Anbi2ViPyWj2Y4AR+g9LF0dWyj1YGiW34yrq95Craw65CfeskDuOkQP49Ap7X57cQr8eiw3ys165GXsajLWchv8Al+lbjg==AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAqhIAAAAAAAA=eF4VyGcg1Q/bAGCjjOy9SUKyxznHWb/b7G+UlYzsTSipRCWjjOyZTUpmWScj2UqSPVMhe+8VKs/7Xh8vMrL/twn21MrTfzRP6G2BLTRheAN6WBy3SMUbcFifk+0QsAE2gw/2XlzdAEmdelt38Q0gBdWZtB6tQzIkGL7uXgfpzpu9bC/WIW9syIjBex1eCpC7x6uvg96J7bsc9v/7h4N9mLk1MMr962JetQYBPeWyp0LW4LOF5SzGeA3yVhVVd8+tQQaphhu7tQrzclevUDWtAiIb0GIRtQqmWogr1nwVaFpziTmiq/COl1k/emsFbMoOSZQNK6DNvRVNEb4CTUXhPBFGK/CI82F2Ov8KbIKbq9L8MkQ6ko+ali3Dhmib9WnfZQB3kyCiyjJcceIbIaNZhkuvKykMepfgmePjD5LPl0ArgKIryXIJxJkeckWdWwLJcJ941sVFWHp9HZF4uwh/dEj4/tuL4Cba3kyHXoQ1AnB9P1yAbUx1BrFhASS9lBoxgQvwIJeRtVNtAVjFBy7tn1oAg7saPI3t8yDYlW4hEj4P29Ospy9oz0MtuYtID+08UN44/M7VOQeJjf4+1BFzcHkdzHK054ASE3c0RTMHLx8+Oej/PAuaOyfk3qGzcDl8f+6jxiyArnFKN8UsnNeZuRjbPAPTYlwd9I9n4EdSfI02fgYuEh/c0P49DVRxOCemqmkYkcq7knN7Gkb/8qz8kZ4GVmYXIanlKWgnq1mTy58C+zcGD5jsp0DtBYmyS2AKhPWOF2+M/QJT5sqizaRf8HOrYMLO4BfQRKuptNH9gkP+JUQxZhLExa1GB09NghJCcdv74QQ8q79iy7M9DgQVbZ5B13F4JB9iUzz5E8p+XREqNvkJKk+uuI93/wA9yqMEfc0foGYyQE3f8B10IMRCEPUdKFu5jRPejsEYd+r4HbEx+JthuNmT8w2QP2/Kyni+wZaGkcW5pFH4MDqiosg0Cox/TbrXI0YATRZ11456BJz7Vt6kPB2GYmqJM9kUw/DOWpc5KGgI6Lis1K+QD0HV30QppuBBEOSaUh2kHATTyJ3l16EDQOty4U7imQFI8I/iLIzth+3xOzsbHP3w5vnYqftZfcDwQFFAW6wP7vma587Y9kKgN63w4f0e0ChWl1yK74bIXvakL6VdMKbq976s5yuQLYneK9/qhEdrN3YnuTrhxzvtekPVL9DRicnhvtkBw1eh8lL2Z4her9Vf62+HpmyWHX7adqhcySHMqX8CAtF/0Tj4I5Cl1vT5fWwDh9Nl32zPtIFeu/p3DuNWOJtkVfwqtwWS0zr52Hea4Xwu6/otrWbA+JzE+Ks3wUfmblvGfw1Q949HIKu5HqbvXjZWiPwAwaJlCkNWdRDYQZkdqvwe2Ek5wrp8tfAumm7tLFUNOOdvTJ86rIJUH6fIrZ13YDChxT25TwLXumHrNnISYJa0TyWwV0J+xENPgmwFtNF411cYlsO5iwNkjQel8Efu+zVri7dwsNcKnD0lIJd1JoakXwzW1+8QyX4VwqmaoObWxwXwRaJqr0EyHwLdtO5VzOeBCE1Yo3nZK5j4RH7ZK+QlMCZjZ0tcc6ERtfy12ewF5PE/nGwpzoag9kisb30m0H6ozSCbTwdepaeZJLE0uOce923ePwUomFOy15aTwXHf6wqPZxIwm9EXvadMhMxMkUcCpfFgT9W1nOAeB441rB29PjEgzfP6yjA2CrQ490SHBCMgtBCN8TgfDk3hIaoq2qEwIthQvh/5FJ7mTFjjVoKB9Q8jywenIJDKP/Gy3A2A3Ykw3hw9fzi7+VG8bfQBVP7zULOM9oX5xK4wBk8fYKTqfBJx9y542tB9Ssn1BnZTgUS6bS8gU5amy/p8E6SubVfWLLkDWmKq9sklN4jh8DPW+O4MlqsKow65jtA66zN5J9UeMs1nMNL1tqA0TMqcZLUG0V2dyadH16HZqLspT8IM/EsV8+bSr0H9HmOisvZVwK5fTx6VNQQlCbe1sCQ96AggrYZf0AVxrXiHdjYtuE3o2x7R0wQZzZtrPQNqkK1RH41PU4E+5ActQZkIBrK3hrtKsLA52Wk9HowGbth9tkxShKorEbRyaHm4aV/0G08pA8rKGO4sgYsQ3pk3dfBWDICN53i1QAREw9R7UGTCUOxMbiRiLgAd7SmaLv/xwG6L0LBdHQekK+6XT75kBTnNf/k280yQoTa9QYPQgRj55Pk3aGoYYstRi62nBOaBSwI8jWTg5aoWoGr6B1E5lhEMWD9AKuhx6lckdhG9VHfh9a1NJPC/SNV7N1aRMq169YaPC0j68jQ9angGoa85QbEH/0L2/5F7tLj9QKYbluKE3o0gPtcaF6xbBpDdbuVZu8Ue5MYWUpDj/AXRJ6p9/df/EQnPOZnDnG5B6G2JtoPNH5CU82O2X+KqEUJheyvn5UqkLkE/mDXlLRKHXy7/86MA4aVCn2KRfYXQlEJuY2s2EngDh7mQkoqYzb91fJOWiEz2WupJicci4m3Ee/ul4UgoK2NwVMATZPNbUdC3qsdIAY1apiy/L6Jx/pRg6IQ3wnkr1F3otidSzPa5zWLOGVEmof3vN9khBm8LjPs9LJDN6zuCaYLXkEK5kNzXKANEpy2AZN+lhQTNbVtFLaghvDZV99XeExD+wjr5mUYUEpvcQSx1kUOG7ttXkRdfQCxsudst/M4hB13/zgon8iGuz063HgWyI639s61sdowIq7nryIA7FcJ49T4a9YgM0RulaGcX+02MekCIeJS9RXxXy5JLl7lEjHKnSB96Nk2ca/JS9PnwnSh1d9QPozBIXLlt9mb17leiTZjnPH9MG7H0051S6YYPxKcm7rVGKSSijmfdgXRMCdELyxuerfuKSLxqSNO5kE4U3eb9wvo2gTg9HFXzr/cZcZb9pTR1axAxPVLcO9PIl8ipavXkXZIXUfCAa9430Jm4SjQr2nC0Ju5HjeBlbxoTJ65tX311TZeoJs1Qn6CgRtTcsLh7n1+ZKCPgWf77iyzx/FJLzMrYeaIlCv/nEoaPmMkgVjBQwkK8czxZaTpERRwS/+8ilelfglqrEw1/yzbBgES6Kj22QKhUDVStlZggZBRpaGX9HiA8dkSH5374TIhR+sjtGdpAOLNjpyKpXkk4Ex5b8t4nn1Bdeifhgl8GYbFIiuUnKY5gqlznliX3lPAMr+nUquZL0GI5NjM98iCc+13BF6FoR9BY7fszr2tMCB+l/7PY9R8BR5NAz1mPJwwad6jXMMoRaNu+FAT5nSOcHTufqinIQXA7bTfvf0xNKJ/N7OVgPMbXqz2qVDVcx4ta7tnLT/7C17oVOT7KH8Brzv0VNfL7iL+gjLbKNqzGj9FdCve/UIiPp+H4Zrmfhp89UvEVJUXiV1/P3rht4o/3zcPYdozexKPuT5/25rLF4/5ryTsuMsDXE+xOjoRU8ZuGsxaePvL42j7Z8e1iYfx+S+Hs4gcWPFrnmdnjQnL8zRfKK01eWzjFuDqKTI4pnAq3qsR4ah8u8HTfMeaoCbev/zPDILIUp4YOzx9ezcQ9YR/xDxaPxOX5cu6WaPjh0EnNUatXXHAvDNRd+i5fw7V50NaG6KjjeoWMPJL15XHUG558ep8FcebXJNfyeOlwT+wmWMjyDrB1iQPz5e6zWBYvwazQ+/3Yel2rhK7kBmxWEkfVTnchts7IcXA6OQlrM8GzlLsYiA1gD4pj93fHHrHG7S3wmWDzf7pwfUhRxR5mdHzirZTEhu+sKvyK5cASGzBWA2lk2BZhF7+US0vK7/+b5tw7Pah8cXHGQlqvXnn2BtGNsS9PmZomN+UzEqPsE3jVILn6nvIXfmpHYpe18h6dHm9VgqYyf/ZGX+o3aeVPa1ydMfbsymcU8qu0/I8xXdWHQvq605gWsgFLJ+oOTKCp/WCnSBmml+s27eOFREywiMW4P7cfJhKV8BevaIMxm1JS+i6ojrlQJujpyCOOMXJQG/kRQIdJcEXhws5uokVfHMtW5w6gvTRdUFEKVeimHE0Ri8YUtPBgi0aI9AO0WZyLKMnZEn2tRKDAxgBBmxM4BrIHhNAn8WaCDz3I0Eeqn87QF/9CMdgH7ORnNaPqIgJzSJdeoJKvdhmcMQxAHca2JJokWaEy2OW1JtzxqD/Pe3WZt7hRqQkHkUSVfSWlQVtbb59BJb9UyxibsnKlPGlZDTbqKCWhpyuYEQYXpYq7apaacWpKLCsK5v0qAkpq+8kVGpH7isrXo5gk/vQpTmNOmE0oihSbsiwGYo+DFBuibF1SEXPFDoVQoSptecWjvwmXizipFXUdDlAN9BMKi4rlJ4F0JIX6gMrn64/DFJ4Uh0nGyFsqOGCfTHV5ySnMarNqaeZQKFDotC0jvkPyWS+RAWL/a/nr1JLU/GE+8ntBr5yzn1yS9yyZqUpp4ZB3F8hbTNGblSuzw0VkaVfKrczpyzU1BMgp61ucWQrWkUMHF9zAanHIaSzte+k4/ZLN1pxOi1EqlKXh7fHi5rotS6OAvQ9nMLJfZRZ7llL+yvSZB9fSsbTKTJCz5E4tP5UpqFMy25i/JBN6myq99xW1zIIw4M+vtUtTc41htHufSrcSd+m601SlZTsbRnLSj6VkfgdIl+6QpCrf3OzYdb4hVd2z65pYKyT1te8fq7JwvyT7nLUN4hko6almmH3vmaTkN4EfQ/daBy+W6HzqfZxy/+L4t8+nDn04L64HumzY/iiTuPVpnq7MhyixlLMZlu9Re2EnBhdt9VeokGs9zTvOKk5c5pD6djzxt9i98lmZfYe6/MiV+Lb4aQcxLvLzSjVz9PmdId0KFnbVopTqqe6mE/avv5GZD7pbsoiGjGNybtm15L0tdXNYHfU+P2K6piZGKZZH84C3Wijhh0i5Db6n2jPhVe1rV8ycjI6IeuP7UesKylfyzne9E1WazkkIK68xsT94eUC1k07Vjz5nJPPcvWhyNxf3UXbq0zJJ+Ja+e/vF9ju5Jtz6LmV2SsI1i+7Mjm17L7QY9U2cqWrP7rW9Xr1u9fCFXRFtkgq9ytnEsRJ7CjPKF1L6GlQzS5+FFtLIvoupxuSIliVUyEdcFZr+STLDkXhyTOKKv9eITwl+tcq1jxUvyFa5+nHpn+ctQX0btfwMHVT21tq4y+LdPwKPbcQ8DGxbs2JQ1mupv0MEFA7TtjfjNbPuSmT9IJvd4Ge66VFqvjXEnx7eFhLxrzpz+yulEy0xnr/L9do8V79zprdwoalbBIH/Jfl9unpzlszwErZAv65ZvkZhoSCajtqMGBn6yLzH0XyWTk769Cl2GfksY/QmrCg+MYY7Rp0OtBlBCtfze7sneLG056JUhyrTt7pX+HeVwnjlhz+QlXyzTP/JsPF5ikOBd804v/jaFFW6hVNQBg1qnOeXyNSZ0N7KNKfece8t73CePKl4rCyNbZqX4vRQJRrFkzkmnNFmSJ8WM5dsnsIyw51q+aqEeeF96hMZ2W7zxnhuVJaEfcUT11T1YGl2QzZV7g9me3rRx1ypOr2sTlpHm1y/d9XC7XAdKWTRi2IMHrlcq5krh17gl1LwE72XfNOIq1A30cmdXzJFhvM0isBxiivvn5LWuYPx5+6ybZ07wdWcMb49snzU8c97NE4GBtbdOO1Xs3qafqk/zwS5ybISQc6Kkr6akd6DZPia6y2QPsAxyc/kM0J8m5wkR6O1JRjG8YVkkhHkYJ88tY93EHcncpR9t/ZVLeZKPvS8VeF8foe9QlHQs+pcbxIPlj5n7G4R+z+zbIXjladJTg3piR5aduxnrrrq3akkJMm4PegQ3uJizzIWlpFh3U2kpI207lnoY6MSvZyikfkmUcvzJ8tPw3C2Mk/JvaY2x8SWiH58YI8qW8VvSqXaEsFESmuRsBuhR6z1dK3DdTSjCb79qqyGHO9Yg5vz3V2S4hMKNE8SDOdusgrw266lq+gmVHo8Zu47e4H1FL+UTpnX6YRUixnBMsEZltJ02786/C3xxc85exfqslmUQqaacOUP43HsdoUt1OYs1C8/JTiR0PF9ggLmlwvYWYQ/Y/h8xrbjeBST33uo9jNvbCaxnSovi6OLaXilKBPNzD36NfFo+0acx/TYT489Lea5eF75GWnxuILdkZCO5NPMIqYT7F7is7ELDGmG2+OtTHInkxFMVbmxrfW6V7iKAplQtzgdCjxtYrkmSV83qolMB9iIgXMS/LFSxs85DpqOGH808yUX3R+LUXp088XK5VrGDmy18yAhJSajebazR8OHUSF+jT3V/loMQYxBRSpJidF9/lFu6yhbDMUDuXefJHcYSBKLa10xA9HHJaZ2KScVDC2f6Zqo/eOjvztpiElS3WbQY42emks3iLbwUynm+0+OoYgsOz56lDn6f88+2to=AQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAzQUAAAAAAAA=eF6N0WtsFFUYxvEjNGZRgRVKrdwcStWlUhiUQrmog3JpFONaEUpicIMmVoNmE/2AWJMxQVKw6CpVW1BcvLFE1BWrclHZRCOomKwGtCrEhQBpAsqAEBusxDDPfz7M2hjPh/3led/3zDkzW776WLzQWXqD8VdF5Pzv9pg1zY/Thu84zy2/TfBdvG2Rr7NxsN+vqlf2RtzpG0tP9q0bN8238OlN/lysaZafmxbM93PnCeX4Ace3dvkMnXfvBN/unbf5pvvM8e24cp4/l3pc2bQPVP9AjfJC4/fd8bqHabH9uj3uLuXmas1XztRc9fU6/8ztuv/Wer9fmF6v+QeqVL9f72cG6F6Nn8Z9vcGcU3WpLBukezSU+7ovzdY5t10l79E+51c9x9T9OdX3Dt0z0anvlOjgfpvq9JzVFX4uTNL3cMpnqL9glvqz+G43as5smiKTJ7b7/YWT/OxcOVf7v9b7mhX8vytvVn7zatldLedrn0ns85+Tm6PzzNFbVe/Q/2xO6zuZl8fJqOfPm718jy3VvO9U+U2N5i7pL49xfn6YLBsk+/BdHxqlfYW+0kxX/WhMef0Y+fBo6TF/VvdzV+n7mni37nVojPan+8qKy2Rc/5tZNErZOaP/x+yTe4erf9rIa4dozv1bzy0tUz16Tnkr7ze3n4z1Ud+tlLt53rzR3GcI79ei8+yCLOe9rYjMdKueOKVznJ/wYHBf5fgfyukT1PerXhLVc5wjyrlf1E/1yMhA7vtX+Lk9hve9gPcskV/0k7EezWd/13yO7+bu4ZyfleMnuU+bLJykv1sm2e8c5zuwzy7R+XneK3UkvC9zlOf+yHt/zz2+4h58zxTPixZ4vy3Be/K8nZiTZgnv9a32Jb5Udl/jue3MZzn3Y3yfuV24nfvtYV+Gc9Hlf09xH/dJ5nlOgjnTiE/I9DrpbWDewSZsYP4xfIrzg+fXU7eVnWXUF/FeK5h/mNzEuY9QT3Lfh9g3Aw0Ox0qZu4/zprDvTnIFc5M45yZylH5NkaU4mbnROJZ6CferJEeCfcydnSJ7toXn+3J+cP++1M8xX2D+GDmNB6ln8Ajuov8lfl40F6wN5FZMat7doey+y/52+muCOVyOLnMuuYn8IC7GRfQfwHnU7yDXYpy6jVHs3ipHMhehPpRcihcWveepWnm4yFM87xA5jynqeWzFj+hvJrvkNHktxqkvwwbq95EdrKVukW2sxAh2TzahdRF172N5mH4X7qaexz3U3yB/VpQTuBSTRfXFzMeL7mGTb2HOkEuKcrDyk+T+j2SW3IGfUc+QXXILJrAR6wKZd8g22ZAjQWYVamTuQyRnyG5N2GZswGDVMh+tCWuoFybKrg6Z6zChtZV+K/UkOYFx6rVki+x9EDZYuetkBlPoMpcgN5BtchRLMVj5LTJ7rUyRk5ig3kC2yFFysDonyCxm3pfN5MYJ4fmJZM8O17NZmcIk/XjRnBVk5vLjZRrd92SSbL9nel35d3uvB8su6ne9I7PV/549vyzq3ljZuTncT5Kdonqw0m8zd03v/XxVOCeLsrfJ/K+Vi8lkJlz3NsrsxnA9Rs69JZNXSQtzb5r/XHYlc69LC90K6Y2S2Q3hfVFyNl1Ut8I5cYWMvSrz68N9Z6T0XjG9LmuELLws05hAG7vXySy6w0xoRYpysJyh0lor8+0yjYnL6aPXJneXS5dsK7tDqXddxhymMPGSdMiGHKxsWTjHX5QWde8FHBKec8lx+jZG8HirzGIbNqJVKsvJhcEyvcb0uhzq5YPD9ezz4byU7AySNkawcKnMPWd6XXX0LfpeShaiMo2t1OPRsJUYod/5rOzAtoGykWyTY2RvgOl1pZ6RKzCOUea91fI4pvrLN/BR6gm0MUK/6xL5Q4tswxQuwZnM2Xg55p7Gi2UzOYl3o0U/it0XyS9WyRQuxyTOZG4sluPJlfI7/KSfXI8NaNGvIvdE5O/4PaawpVkuJs9u/gev3FiGAQAAAAAAAAAAgAAAAAAAAMgSAAAAAAAAJQAAAAAAAAA=eF7txSEBAAAIA7BHIw/9BRJiIDaz5PRUbNu2bdu27ccvHGzVgA==AQAAAAAAAAAAgAAAAAAAAFg4AAAAAAAAwhEAAAAAAAA=eF590mc4For/BnAzIuNYkb2KUAkZUU4ysjKeisfeRyISImSr8KSEUJnJlpGRfYok2ZHMEhmVPUO/9+f+X//vy891v/he93WTkf1/56z6X/F9OpiptXn99H+dFPaBKMAWDq5EPzNd3XIPvN1BhtVMOx7cs4+9V6ohGfyvR46c2wJp4I+4Bn+5zWSAN+idSievfgYuwEjR1HIvB/yPTU59l2s+uBkhf1rauAi8k03Aezf1BbjtCVsXoQOl4BYeMzqMj8rAv2U2N7znegn+w3xj3D61AjyzVzxgQqwK3F+LZGxYUQ3ex62VUKVZA75a0ekiPFILvhUofOSxdz1448G4BA66RnAagqb3wmd0AYZK1i+FTbiTLKbnP0P+Bf/YLRPGTXyNf/qRKbnLvAEv7xMjLDI2g9eeP0vM+oHeL1y+QGpvAU+wTayqKHqLe7NndheMawVfci1f6vN9B96cJHpgwLYN3N7ra52U/ntwrY57vaMn27HPlitXFyQ+gDPILWb9w9cBHj+QHqHH2gnOQTyaaUTdBb7y8+eBkyHokRMxdnZk3eguT7M7bqGvcbxhCCLrAQ9M45/wC0F33UoP/pe6F3wuwUuOeBf9NcV1M3XmPnDl6L22kYnocby7OcICH8FHRkjpvHnoSd4lHTfk+sHF0668VPgX3dao8oe1wQC4sw8T3+oYOu/+R5Mb7p/AZYK3vlylHATPrgnrs0hEl56bC26R/Iz5RzQZha/RGfpGmPabD4FnVTvl7VlDv+SnRAi6Pwz+/RcT1e0jI+Cc1f3lgh/Qjer/OBi6joIvtzhKcDONgdMJ0vCFlqK7pfQVtkiMg9ePVdLz30Kv1lh7o9uLTiNTTGYk9gX8jum+mWOB6D8d9TLn+tBbTr60CpP8iv1T9drshKFH+fePm4yiS0sK8ycpTIBbCK5dboxDD9KRYuyeR2cLvG35QfcbeL9hUV1lHroDb+KdB3snwTXM5EWsndHPMs5RCrehC55JSRmRmAIXoK6xfUBCJ1i6jqgtoVf4tkWvXPwOrn4ifze7Fl1zWaLDQngafNKmIIo7Cn04/cXw12V0Pjq/KxUWM5j3eT/xqBVdPVp6M1p2Fntg4XKOT0fPYd7aKWeaAy8SzQj6FYh+L5Sp8ew8uqd+1/1X1j/Amwemu4160Yn5/J7Mmj/B/wTctlqrQecyt46kOf4LPNRNcFkjF33PDntepeA8eFKIYpl5CnpFb8QDHvoF8IlwKiaxc+gxzn/b9kSikxSjhXnfov8wNprdS7MIXlokezFZE50sSJK+6zb68KeEkoI2dJ4l0yVphiVwtdUBPxsDdKp5PnKVh+hn+7ZOt3xCTxPlWd7lXQZ3Zt03NG2HTjdtWxeeh+630WQ/sIh+vJkufUxxBZyt1lItLQQ9MlThIHc7+gGBZFEjjlVwi7uUwpo26EVx+dTbBegtHsEV1zbR5xd1RQo11sD9JxrUCh+ie+9PZPWaQPcImYjdI7MO/q79Tr1dKDqLr14eqQ99bYbP+s7BDXSB8KULvuiz06V+a+3o4s4pnK6Cm+AL7tzLNd7oRfxcxybb0dkZvcnmhLfAT6dcedR5E728zvlofB86c8FF2lNHfoPTWmU7t99Gr+8JfnLmG3oA9dvVDNVt8A822u3zT9BLqKb8JLbRRRTu2JmY7YAHdtqs3KhBfxF64PE9nl1wWdfWD08D0Tt/iezN/YKecbS644X6H8xLDj+vykOPOuIfZ0NLpvpff5TaeXXmJPrReH351avod9M4T0Zkofvc29v9ZBCdxDxuqMJEDh4kornfUR3dj1ASzOWPvvBidcWkDL3yUPqA6Bw608LHuGBhCvBMlpoEV3N0/fUho7l49CQnaeXtTvQbESLt6XSU4FqHq26NqKMLLt75+CIYXeXSrCFvPTpjG12AyG/0Q0wJ394qUIHbbr7h3OuDvrF8JX/mJXqy/gNZl1V0qkgng3ty1OD1N21TL3mjMywYtjRXovPYeroNbaLHNEapJSvvAR+RZlmjDEKPMs5VPvAGnVAd3j1KSwO+dv2Ip7E+OkupxoTvQ/QH667TxkPo/BNu+hNCtOAt1YpT4i7osr2iEeLl6PFU09TfdtDftRWdNdPaCx7z7pzo/Th0R55jpMgxdG6DNFdVSTpwwaHGl3W+6PUeo+bkregmvTWWDPvpwfe+/lM34YjuSV1yK6ISneBIV7ROuw+8lv+CmaIZuoL/wxS9InQqWf2oExQM4K3ZwdprF9GrmDJ2SAXo12w1eygoGcHNFqQ3jYno/Sctc8JK0XmmRLkT6ZnAn5kSHsY4oF/Qv2B+uRHdNTdjbD8jMzhLUSStuzL6BeV3H0+5oA9mWviEJ6NPaV/gV29Dnz05TnlrC72P8YqlrMRf4J+2c50dzdE5Kh47cJDQm/KrHqo3opsd7FFeXUJvG7F/fvAgC/j5EA/+IVN0mZWMFVYSOn+nlV/Pv+gEwtAezg10KT3R5UkpVvDjUwqPVezR68VY7ARS0PvmG/Lv9aBXPPAcjaZjA7/i/ciRSw29NXO55IQ/upaSiczUS/TAXh9b8QX06BLVKnIJdnDdKdVSd0f0Fq+SHp8M9IG68FTOMXSSTng6gYcDnF6W4CBFRPd7RQrIeoROY/krsGYAXSyWn+L6/v3gAkTJ7M5L6Boibvu6HqFHdEYMen9GN6KIq2zm4QQnyCpdqLdCp1VvdrDNRLdS0Est+45+mdq6tkySC/xO0miA/TV0iQaXnLdV6NyPJynH/qDP331jXqB5AFwv7U6EdCy68VbSJfdB9OhPQ3mXhbnBXQbeWwm5oZ+ONzFLqkY/EhUf2U3NA/6cM76n3Qj93BcT6Zg09E0e9RS2efSaqcMMDqd4wU+oWN8NIqHLBz7mdh5Dn6U2+CAgzQc+fOtpSW4o+us53THqAXSl2E+e8hL84J+TntxXDUKf0ftuJdyPfj5eYI8HhwB4cnGf/ekz6KS7DdMBbuhsEk4vpFLQywxyR863oscKl8VPrqL77YsjWxAWBP9U1qzlboQu6vcmxSkYfdhS8PDAC/Q51oFDjePopALTduG/hMAVSw8ZUp5B52sQWLbyRP/Q07Ok9Ay9ibgTFz+ALpR7hNeDThjcizHmU4cKOlWRBesLD3T9UlY+jmx07udfdCmG0K8n9q55MYuAX1V75X1NA11kKExi0x/dYJfkTV+OznFhrDZvDr2475rTJ2FRcMLG3xPx5uhnFG+lfYtH9wqtZWnpRD986VrJSbqD4PqnxTY01NGLEzkdZ4LQf9OzBYrUofvQSLzd3ET3yP72/rL8IfDVpIADvl7ovAzyGgfL0VeO/jvpuYzuzGgbZycjBt4fnfxrzROdWoc++ehLdFbBdGWmdXTyAYWQREVxcOeLxQfa/NEvjqRX5zSir9Qn7ZejPgw+W6Wy6K6NPiNJRmsZi55HuCS4249uKilEa8wnAU5jcCDK0hGd7YxrgFAx+lCEZmXaBnrMQ232oTOS4Fdlc3x7Y9AFbWvbogbRG9wzlqkPSoHrCNt/U/NEVxGTfKDZhM64r2CdhfkIuFf3LGuOFfpeS/U52hfoREq3SHnyo+AEHvZ1OWP0MAYK/T3Z6BG3vz/L20SvS+0lsRw6Bt4r9/RHjSH6nUyu4B5/9NNtA3aXctATgzSKdfrQdwP8g16QSYObPoxdj5BCLyO/Jd9FROcJ0XGMuY2umxtR0FCBzvzPiNw/k+ifXU2lb7MdBydeLekSOIuusOOiJXMdvdqmtasxC/3M7d6sto/oA9oBFEY0MuBBJlkSJorojbOx9qMu6I7fp1Ymn6LrB8iJufege4S91A3cIwtOrihU/tdJdF27u2US7uhO8haZH56hmzhTjm8MoRN/zrYWsciBh18ea1w4h+4g63ukMRh9/MmPm3yv0Omn8jgYltH5GuzcYyRPgF92Or+b5og+WMmjeC4dvYsU+iRyGJ3vy/d8C0558AGN9Ol2AvqUa/ZQ/310rnDavwI60a/39nI2MSiAW3WyRWbpon8rWVsWi0YPu5r3+3w7ekTYuVPcDIrgbGky1tH66G5WYnTPYtHzb85OO/ait6t0FfZyKIFTHyMy/iSikz+2eFOeir4YrUmSnPw/8k2Pj1yUOAk+3ES6InMN/Qm9OFtLNfri/XerTBTK4M2/bkyx6KCnBX1p6HqIbjz70VpnDL1bRasg7LAKOJ254t1Ab/T4tt3vSq/RHfmtKmuYT4G3N4rNU1ihv5HSjmIpQk86UhP9YwedK79+84H+afCAbdIITRq6usqWlt4SuqRzTU6pkCr4dpPg3lxd9AAPsn46H3TdWVOhwXR035wFSvYP6KOnTOIaNtCVzLfnBkX+Bq9l/y7hYIjOKLjjaRuI3sB/fronH71Dr7+4chBdlFx75S/aM+Bay4Zfv55A3+dfkivhiO6kdS7gZzz6RqFYnHgLug/TYZEva+hsi6ZX2MXUwHV7d/PemqKHfI4W2oxCN3mexplfj14lb90/uohefPbP83jRs+DjZF+Gu0zRC8e5Wu+T0O/epW0cfI1+2dKIL28TfUuOTZXqmDp46dv18BlH9PVoUYLZU/T60kQWs350tpdRkrOMGuAvtzaZ6bTQ6bxCjtcGo9+59oSGohZdjEeDbmQNXfxEZJX+cU1wdSu2hyZu6Ieu3BPazkO/cIH4U2kafcWtI5jjoBa4wpysR6w9uuwjFsO8THQDtz+vHCbQ+Z6a6b4RPgfeElOb/dYenekju7tHNvryeqzR62l0cx3Sdr2ENvh37zgBx6vow5GxXq/K0HPTeyvqNtBV/OSzPE7pgMvnqVB8CkMfbgpMWnqP3h58Uf41qy74146JQh1zdNfZ/N6YZ+gGv36HRs2jh6nuSdVQ0gNPu/xmb1M4OuNUV+F2N7pP7JLvbz59cJb5xzYNV9BtuIIttGvQJX45uTylOw++RNMeU0dEV/pQ2p6bj368Q1POYQf9c/rQj41DBuAUz75N5xiiH3JRfvL6JnraaWZu7Wx06mmCt0o3uuzj0uan2+iMPzKErooZgr9TDswtJqAHDFr72gSjS4aqlIcXoedWct/iHUZvUyklP0xnBB4Qu+RYoIBeLB87/MwJfYZRO25/IvrqYZYGirfoi3NvEv5ZR2e46U3QFjMGV75pJ5drii5bMuobEYXeveXgMFGHHpLUdappAT28X8ZAUIQA7pDRNUVlgl6Y4WjsGo3+0Ytt1qwJXX5Tg6JnDf3a/em1LskL4HZlhgeJdui/5YhLbsno9bVmjcw96Ja9TpuqdBfBXSr30ZGroZ9RC7U18kdPzW7yPlGBTq3oXl+0gF5ivFxeK3EJ/JKZx6CNE7oh/UpRaiY60ces1mccfWTQNXqO1wQ82GSzcNsMvXPyWVlBMrp0nqHsziB6xf6GtnkuU/D31qPsEUR0BuO2qqYUdFPhemLWCHrFtOrzowJEcLVFWX0HO/Qvx1IoNZ+jO17/eqt/Dj2BmSqIXdoMvNT+bDO1DzrB1JY9tw79qsWAEjm1OThlTzQVsx56Kcu6+kA8+rlP/wyYjKGLl3fFJ4hbgM/G7do+uI5eznpZVL8RPWHcs/X9PktwD54oZQYi+mbLqDdbDrr9wR6PiTV0bZNKSX8NK/DEs/sKxhPQk1s8N1mm0WdGJu/T8VqDy+9LSL2ugU77+3apljv6a+lDnyOT0cPEEsRkmtHJj+eX6iygl9jTx/Zw24C3FR4aatVEjxTUKjl6Hd33aOBx2nT0wuXWYOMO9Is9+5tZttG/WJ0Q1TxsC36ufOfDogn6zd4Tv1hvo3tdq6wsqkRv4XW2ev0dPUpYldeY0w58Z8BM0uocutnSdtu0H/r9lzFKiwXolZGlDb5j6DdSTTJCWezBCa/ypJg10E+I878Q8EOP0I6+WVGELrsrOdkzgW77MU3dh8sB/MbW+kbWefQ4ozpLiwj01Rjyz+l16O2frbo9V9F1zjAV90k5gofQfRtvdkTfw2r2SSsNfT3qKZ3VZ3QphnsLe9mdwH/wTe/RMUB/+Vy0QzgavbE9ti2+FT0zzDwsg/of8KHZokgdNfQ9Lnn2D4LRf8s5FN9oRP8fwchz6w==AQAAAAAAAAAAgAAAAAAAAIAlAAAAAAAAAwQAAAAAAAA=eF5d2bMWIAYARcG1bdu2bdu2bZvB2rZt27Zt20yRkyLzmvmD19wAAf5dIAyMQTAoBsPgGAJDYigMjWEwLIbD8BgBI2IkjIxRMCpGw+gYA2NiLIyNcTAuxsP4mAATYiJMjEkwKSbD5JgCU2IqTI1pMC2mw/SYATNiJsyMWTArZsPsmANzYi7MjXkwL+bD/FgAC2IhLIxFsCgWw+JYAktiKSyNZbAslsPyWAErYiWsjFWwKlbD6lgDa2ItrI11sC7Ww/rYABtiI2yMTbApNsPm2AJbYitsjW2wLbbD9tgBO2In7IxdsCt2w+7YA3tiL+yNfbAv9sP+OAAH4iAcjENwKA7D4TgCR+If+Cf+hX/jKByNY3AsjsPxOAEn4iScjFNwKk7D6TgDZ+IsnI1zcC7Ow/m4ABfiIlyMS3ApLsPluAJX4ipcjWtwLa7D9bgBN+Im3IxbcCtuw+24A3fiLtyNe3Av7sP9eAAP4iE8jEfwKB7D43gCT+IpPI1n8Cyew/N4AS/iJbyMV/AqXsPreANv4i28jXfwLt7D+/gAH+IjfIxP8Ck+w+f4Al/iK3yNb/AtvsP3+AE/4if8jF/wK37D7/gDf+Iv/I0BAv7fgBgIA2MQDIrBMDiGwJAYCkNjGAyL4TA8RsCIGAkjYxSMitEwOsbAmBgLY2McjIvxMD4mwISYCBNjEkyKyTA5psCUmApTYxpMi+kwPWbAjJgJM2MWzIrZMDvmwJyYC3NjHsyL+TA/FsCCWAgLYxEsisWwOJbAklgKS2MZLIvlsDxWwIpYCStjFayK1bA61sCaWAtrYx2si/WwPjbAhtgIG2MTbIrNsDm2wJbYCltjG2yL7bA9dsCO2Ak7Yxfsit2wO/bAntgLe2Mf7Iv9sD8OwIE4CAfjEByKw3A4jsCR+Af+iX/h3zgKR+MYHIvjcDxOwIk4CSfjFJyK03A6zsCZOAtn4xyci/NwPi7AhbgIF+MSXIrLcDmuwJW4ClfjGlyL63A9bsCNuAk34xbcittwO+7AnbgLd+Me3Iv7cD8ewIN4CA/jETyKx/A4nsCTeApP4xk8i+fwPF7Ai3gJL+MVvIrX8DrewJt4C2/jHbyL9/A+PsCH+Agf4xN8is/wOb7Al/gKX+MbfIvv8D1+wI/4CT/jF/yK3/A7/sCf+At/o4E/IAbCwBgEg2IwDI4hMCSGwtAYBsNiOAyPETAiRsLIGAWjYjSMjjEwJsbC2BgH42I8jI8JMCEmwsSYBJNiMkyOKTAlpsLUmAbTYjpMjxkwI2bCzJgFs2I2zI45MCfmwtyYB/NiPsyPBbAgFsLCWASLYjEsjiWwJJbC0lgGy2I5LI8VsCJWwspYBatiNayONfC/W/4HiFogGg==AQAAAAAAAAAAgAAAAAAAAMASAAAAAAAAjAMAAAAAAAA=eF4119FGIAgAQNG2TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJkjGQk2Yc5e1/ON9zAgL8FMZghDGUYwxnBSEYxmjGMZRzjmcBEJjGZKUxlGtOZwUxmMZs5zGUe81nAQhaxmCUsZRnLWcFKVrGaNaxlHevZwEY2sZktbGUb29nBTnaxmz3sZR/7OcBBDnGYIxzlGMc5wUlOcZoznOUc57nARS5xmStc5RrXucFNbnGbO9zlHvd5wEMe8ZgnPOUZz3nBS17xmje85R3v+cBHPvGZL3zlG9/5i7/5wU/+4Re/+cOAf/4SyCAGM4ShDGM4IxjJKEYzhrGMYzwTmMgkJjOFqUxjOjOYySxmM4e5zGM+C1jIIhazhKUsYzkrWMkqVrOGtaxjPRvYyCY2s4WtbGM7O9jJLnazh73sYz8HOMghDnOEoxzjOCc4ySlOc4aznOM8F7jIJS5zhatc4zo3uMktbnOHu9zjPg94yCMe84SnPOM5L3jJK17zhre84z0f+MgnPvOFr3zjO3/xNz/4yT/84jd/GBAIBjGYIQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZglLGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73ecBDHvGYJzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+Yu/+cFP/uEXv/nDgH//EsggBjOEoQxjOCMYyShGM4axjGM8E5jIJCYzhalMYzozmMksZjOHucxjPgtYyCIWs4SlLGM5K1jJKlazhrWsYz0b2MgmNrOFrWxjOzvYyS52s4e97GM/BzjIIQ5zhKMc4zgnOMkpTnOGs5zjPBe4yCUuc4WrXOM6N7jJLW5zh7vc4z4PeMgjHvOEpzzjOS94ySte84a3vOM9H/jIJz7zha984zt/8Tc/+Mk//OI3f/j/8AcyiMEMYSjDGM4IRjKK0YxhLOMYzwQmMonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjayic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJy1zhKte4zg3+B29LIQw=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAADwAAAAAAAAA=eF5jZh4Fo4D6AABDtAcJ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..13f06137f4412db5e3ea84848af7f3ae8e27fc15 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..436686ec91dbcfd3cf92c096e3ea2dedf07cab6a --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../1d_decay_chain_upstream.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..6dfc0ea7268f622f25268e90a8b117db2af8e1f0 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..c68801d2a628cc8769bde37721260f18fceace83 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA.xml @@ -0,0 +1,126 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <add sel="/*/processes/process"> + <is_linear>true</is_linear> + </add> + + <remove sel="/*/time_loop/processes/process/time_stepping/timesteps"/> + <add sel="/*/time_loop/processes/process/time_stepping"> + <timesteps> + <pair> + <repeat>10</repeat> + <delta_t>3.1536e8</delta_t> + </pair> + <pair> + <repeat>999</repeat> + <delta_t>3.1536e9</delta_t> + </pair> + </timesteps> + </add> + + <remove sel="/*/time_loop/output/timesteps"/> + <add sel="/*/time_loop/output"> + <timesteps> + <pair> + <repeat>1</repeat> + <each_steps>10</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>9</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>90</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>900</each_steps> + </pair> + </timesteps> + </add> + + <remove sel="/*/test_definition"/> + <add sel="/*"> + <test_definition> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Am-243]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pu-239]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[U-235]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pa-231]</field> + <absolute_tolerance>1.5e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Ac-227]</field> + <absolute_tolerance>2.6e-9</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>LiquidMassFlowRate</field> + <absolute_tolerance>8e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pu-239]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[U-235]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pa-231]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Ac-227]FlowRate</field> + <absolute_tolerance>3e-11</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + </test_definition> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..65369967d342e460e83ce2c6e0241aadafae97f9 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b94fdb1ff141ae622a36a5a314104ed846819652 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..91c9716f9b1c6ac61e49cef5ba65ba4dd40da2c6 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..6a0f0027d52390a52e5cd846be3f60de1a8d577f --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..0dc79c33fc3a01cc2df7ddf365936e408e235728 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..be15462f2a49cd0d5502ec7d6dfc3238df397526 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..1330f8997037ea712f875e0bf60e286e52843763 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_upstream.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..6dfc0ea7268f622f25268e90a8b117db2af8e1f0 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml new file mode 100644 index 0000000000000000000000000000000000000000..4ec9cc4fc40a7a636781720d822abf40c35490f1 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA.xml @@ -0,0 +1,127 @@ +<?xml version='1.0' encoding='ISO-8859-1'?> +<OpenGeoSysProjectDiff base_file="../1d_decay_chain_GIA.prj"> + <add sel="/*/processes/process"> + <is_linear>true</is_linear> + <linear_solver_compute_only_upon_timestep_change>true</linear_solver_compute_only_upon_timestep_change> + </add> + + <remove sel="/*/time_loop/processes/process/time_stepping/timesteps"/> + <add sel="/*/time_loop/processes/process/time_stepping"> + <timesteps> + <pair> + <repeat>10</repeat> + <delta_t>3.1536e8</delta_t> + </pair> + <pair> + <repeat>999</repeat> + <delta_t>3.1536e9</delta_t> + </pair> + </timesteps> + </add> + + <remove sel="/*/time_loop/output/timesteps"/> + <add sel="/*/time_loop/output"> + <timesteps> + <pair> + <repeat>1</repeat> + <each_steps>10</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>9</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>90</each_steps> + </pair> + <pair> + <repeat>1</repeat> + <each_steps>900</each_steps> + </pair> + </timesteps> + </add> + + <remove sel="/*/test_definition"/> + <add sel="/*"> + <test_definition> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Am-243]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pu-239]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[U-235]</field> + <absolute_tolerance>1.6e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pa-231]</field> + <absolute_tolerance>1.5e-8</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Ac-227]</field> + <absolute_tolerance>2.6e-9</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>LiquidMassFlowRate</field> + <absolute_tolerance>8e-15</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Cm-247]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pu-239]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[U-235]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Pa-231]FlowRate</field> + <absolute_tolerance>3e-10</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + <vtkdiff> + <regex>1d_decay_chain_GIA_ts_[0-9]*_t_[0-9]*.000000.vtu</regex> + <field>[Ac-227]FlowRate</field> + <absolute_tolerance>3e-11</absolute_tolerance> + <relative_tolerance>0</relative_tolerance> + </vtkdiff> + </test_definition> + </add> +</OpenGeoSysProjectDiff> diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..65369967d342e460e83ce2c6e0241aadafae97f9 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_0_t_0.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_0_t_0.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..b94fdb1ff141ae622a36a5a314104ed846819652 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_1009_t_3153600000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..91c9716f9b1c6ac61e49cef5ba65ba4dd40da2c6 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_109_t_315360000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..6a0f0027d52390a52e5cd846be3f60de1a8d577f --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_10_t_3153600000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu new file mode 120000 index 0000000000000000000000000000000000000000..0dc79c33fc3a01cc2df7ddf365936e408e235728 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_GIA_ts_19_t_31536000000.000000.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu new file mode 120000 index 0000000000000000000000000000000000000000..be15462f2a49cd0d5502ec7d6dfc3238df397526 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_ReactiveDomain.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_ReactiveDomain.vtu \ No newline at end of file diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu new file mode 120000 index 0000000000000000000000000000000000000000..1330f8997037ea712f875e0bf60e286e52843763 --- /dev/null +++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/DecayChain/GlobalImplicitApproach/varying_dt_is_linear_compute_only_on_dt_change/1d_decay_chain_upstream.vtu @@ -0,0 +1 @@ +../varying_dt/1d_decay_chain_upstream.vtu \ No newline at end of file