diff --git a/GeoLib/AnalyticalGeometry.cpp b/GeoLib/AnalyticalGeometry.cpp index 37771bc670bbc9f4d9a0b1dc7d929204b01cdd22..b8fa5b673470556943795b1fb9d4b272e3ad10c1 100644 --- a/GeoLib/AnalyticalGeometry.cpp +++ b/GeoLib/AnalyticalGeometry.cpp @@ -184,70 +184,59 @@ bool lineSegmentsIntersect(const GeoLib::Polyline* ply, return false; } -static -bool isPointInTriangle(const double p[3], const double a[3], const double b[3], const double c[3]) -{ - // criterion: p-b = u0 * (b - a) + u1 * (b - c); 0 <= u0, u1 <= 1, u0+u1 <= 1 - MathLib::DenseMatrix<double> mat(2, 2); - mat(0, 0) = a[0] - b[0]; - mat(0, 1) = c[0] - b[0]; - mat(1, 0) = a[1] - b[1]; - mat(1, 1) = c[1] - b[1]; - double rhs[2] = { p[0] - b[0], p[1] - b[1] }; - - MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> gauss(mat); - gauss.solve(rhs); - - if (0 <= rhs[0] && rhs[0] <= 1 && 0 <= rhs[1] && rhs[1] <= 1 && rhs[0] + rhs[1] <= 1) - return true; - return false; -} - bool isPointInTriangle(const GeoLib::Point* p, const GeoLib::Point* a, const GeoLib::Point* b, const GeoLib::Point* c) { - return isPointInTriangle(p->getCoords(), a->getCoords(), b->getCoords(), c->getCoords()); + return isPointInTriangle(*p, *a, *b, *c); } -static -double getOrientedTriArea(GeoLib::Point const& a, GeoLib::Point const& b, GeoLib::Point const& c) +bool isPointInTriangle(GeoLib::Point const& q, + GeoLib::Point const& a, + GeoLib::Point const& b, + GeoLib::Point const& c, + double eps) { - const MathLib::Vector3 u(a,c); - const MathLib::Vector3 v(a,b); - const MathLib::Vector3 w(MathLib::crossProduct(u, v)); - return 0.5 * sqrt(MathLib::scalarProduct(w, w)); -} + MathLib::Vector3 const v(a, b); + MathLib::Vector3 const w(a, c); -bool isPointInTriangle(GeoLib::Point const& p, GeoLib::Point const& a, GeoLib::Point const& b, - GeoLib::Point const& c, double eps) -{ - const unsigned dim(3); - MathLib::DenseMatrix<double> m(dim, dim); - for (unsigned i(0); i < dim; i++) - m(i, 0) = b[i] - a[i]; - for (unsigned i(0); i < dim; i++) - m(i, 1) = c[i] - a[i]; - for (unsigned i(0); i < dim; i++) - m(i, 2) = p[i] - a[i]; - - // point p is in the same plane as the triangle if and only if - // the following determinate of the 3x3 matrix equals zero (up to an eps) - double det3x3(m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) - - m(1, 0) * (m(2, 1) * m(0, 2) - m(0, 1) * m(2, 2)) - + m(2, 0) * (m(0, 1) * m(1, 2) - m(1, 1) * m(0, 2))); - if (fabs(det3x3) > eps) - return false; + MathLib::DenseMatrix<double> mat (2,2); + mat(0,0) = v.getSqrLength(); + mat(0,1) = v[0]*w[0] + v[1]*w[1] + v[2]*w[2]; + mat(1,0) = mat(0,1); + mat(1,1) = w.getSqrLength(); + double y[2] = { + v[0] * (q[0] - a[0]) + v[1] * (q[1] - a[1]) + v[2] * (q[2] - a[2]), + w[0] * (q[0] - a[0]) + w[1] * (q[1] - a[1]) + w[2] * (q[2] - a[2]) + }; - double total_area(getOrientedTriArea(a, b, c)); - double abp_area(getOrientedTriArea(a, b, p)); - double bcp_area(getOrientedTriArea(b, c, p)); - double cap_area(getOrientedTriArea(c, a, p)); + MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> gauss(mat); + gauss.solve(y); + + const double lower (std::numeric_limits<float>::epsilon()); + const double upper (1 + lower); + + if (-lower <= y[0] && y[0] <= upper && -lower <= y[1] && y[1] <= upper && y[0] + y[1] <= + upper) { + GeoLib::Point const q_projected( + a[0] + y[0] * v[0] + y[1] * w[0], + a[1] + y[0] * v[1] + y[1] * w[1], + a[2] + y[0] * v[2] + y[1] * w[2] + ); + if (MathLib::sqrDist(q, q_projected) < eps) + return true; + } - if (fabs(abp_area + bcp_area + cap_area - total_area) < eps) - return true; return false; } +double calcTriangleArea(GeoLib::Point const& a, GeoLib::Point const& b, GeoLib::Point const& c) +{ + MathLib::Vector3 const u(a,c); + MathLib::Vector3 const v(a,b); + MathLib::Vector3 const w(MathLib::crossProduct(u, v)); + return 0.5 * w.getLength(); +} + // NewellPlane from book Real-Time Collision detection p. 494 void getNewellPlane(const std::vector<GeoLib::Point*>& pnts, MathLib::Vector3 &plane_normal, double& d) { diff --git a/GeoLib/AnalyticalGeometry.h b/GeoLib/AnalyticalGeometry.h index 9aed682d823bf508076880a638387cc83735f726..1a6b1a48d9dd33275de281d3b8fc77d547cf23ae 100644 --- a/GeoLib/AnalyticalGeometry.h +++ b/GeoLib/AnalyticalGeometry.h @@ -98,12 +98,29 @@ void rotatePointsToXY(std::vector<GeoLib::Point*> &pnts); */ void rotatePointsToXZ(std::vector<GeoLib::Point*> &pnts); +/** + * Calculates the area of the triangle defined by its edge nodes a, b and c.. + * The formula is \f$A= \frac{1}{2} \cdot |u \times v|\f$, i.e. half of the area of the + * parallelogram specified by the vectors\f$u=b-a\f$ and \f$v=c-a\f. + */ +double calcTriangleArea(GeoLib::Point const& a, GeoLib::Point const& b, GeoLib::Point const& c); + bool isPointInTriangle (const GeoLib::Point* p, const GeoLib::Point* a, const GeoLib::Point* b, const GeoLib::Point* c); +/** + * Tests if the given point p is within the triangle, defined by its edge nodes a, b and c. + * Using the eps it is possible to test a 'epsilon' neighbourhood around the triangle. + * @param p test point + * @param a edge node of triangle + * @param b edge node of triangle + * @param c edge node of triangle + * @param eps size of neighbourhood (orthogonal distance to the plane spaned by triangle) + * @return true if the test point p is within the 'epsilon'-neighbourhood of the triangle + */ bool isPointInTriangle(GeoLib::Point const& p, GeoLib::Point const& a, GeoLib::Point const& b, GeoLib::Point const& c, - double eps = std::numeric_limits<double>::epsilon()); + double eps = std::numeric_limits<float>::epsilon()); /** * test for intersections of the line segments of the Polyline diff --git a/GeoLib/Triangle.cpp b/GeoLib/Triangle.cpp index 14ea90d525007cc60466d73dc450c49eba242c91..f915d3da8b4f05e5d2f125f0441c287b87cc5682 100644 --- a/GeoLib/Triangle.cpp +++ b/GeoLib/Triangle.cpp @@ -14,6 +14,9 @@ #include "Triangle.h" +// GeoLib +#include "AnalyticalGeometry.h" + // MathLib #include "LinAlg/Solvers/GaussAlgorithm.h" #include "MathTools.h" @@ -59,106 +62,12 @@ void Triangle::setTriangle (size_t pnt_a, size_t pnt_b, size_t pnt_c) _longest_edge = sqrt (_longest_edge); } -bool Triangle::containsPoint (Point const& pnt) const +bool Triangle::containsPoint(Point const& q, double eps) const { - GeoLib::Point const& a_tmp (*(_pnts[_pnt_ids[0]])); - GeoLib::Point const& b_tmp (*(_pnts[_pnt_ids[1]])); - GeoLib::Point const& c_tmp (*(_pnts[_pnt_ids[2]])); - - GeoLib::Point s(a_tmp); - for (size_t k(0); k<3; k++) { - s[k] += b_tmp[k] + c_tmp[k]; - s[k] /= 3.0; - } - - double eps (1e-2); - GeoLib::Point const a (a_tmp[0] + eps *(a_tmp[0]-s[0]), - a_tmp[1] + eps *(a_tmp[1]-s[1]), - a_tmp[2] + eps *(a_tmp[2]-s[2])); - GeoLib::Point const b (b_tmp[0] + eps *(b_tmp[0]-s[0]), - b_tmp[1] + eps *(b_tmp[1]-s[1]), - b_tmp[2] + eps *(b_tmp[2]-s[2])); - GeoLib::Point const c (c_tmp[0] + eps *(c_tmp[0]-s[0]), - c_tmp[1] + eps *(c_tmp[1]-s[1]), - c_tmp[2] + eps *(c_tmp[2]-s[2])); - - const double delta (std::numeric_limits<double>::epsilon()); - const double upper (1+delta); - - // check special case where points of triangle have the same x-coordinate - if (fabs(b[0]-a[0]) <= std::numeric_limits<double>::epsilon() && - fabs(c[0]-a[0]) <= std::numeric_limits<double>::epsilon()) { - // all points of triangle have same x-coordinate - if (fabs(pnt[0]-a[0]) / _longest_edge <= 1e-3) { - // criterion: p-a = u0 * (b-a) + u1 * (c-a); 0 <= u0, u1 <= 1, u0+u1 <= 1 - MathLib::DenseMatrix<double> mat (2,2); - mat(0,0) = b[1] - a[1]; - mat(0,1) = c[1] - a[1]; - mat(1,0) = b[2] - a[2]; - mat(1,1) = c[2] - a[2]; - double y[2] = {pnt[1]-a[1], pnt[2]-a[2]}; - - MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> gauss (mat); - gauss.solve (y); - - if (-delta <= y[0] && y[0] <= upper && -delta <= y[1] && y[1] <= upper - && y[0] + y[1] <= upper) { - return true; - } else { - return false; - } - } else { - return false; - } - } - - // check special case where points of triangle have the same y-coordinate - if (fabs(b[1]-a[1]) <= std::numeric_limits<double>::epsilon() && - fabs(c[1]-a[1]) <= std::numeric_limits<double>::epsilon()) { - // all points of triangle have same y-coordinate - if (fabs(pnt[1]-a[1]) / _longest_edge <= 1e-3) { - // criterion: p-a = u0 * (b-a) + u1 * (c-a); 0 <= u0, u1 <= 1, u0+u1 <= 1 - MathLib::DenseMatrix<double> mat (2,2); - mat(0,0) = b[0] - a[0]; - mat(0,1) = c[0] - a[0]; - mat(1,0) = b[2] - a[2]; - mat(1,1) = c[2] - a[2]; - double y[2] = {pnt[0]-a[0], pnt[2]-a[2]}; - - MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> gauss (mat); - gauss.solve (y); - - if (-delta <= y[0] && y[0] <= upper && -delta <= y[1] && y[1] <= upper && y[0] + y[1] <= upper) { - return true; - } else { - return false; - } - } else { - return false; - } - } - - // criterion: p-a = u0 * (b-a) + u1 * (c-a); 0 <= u0, u1 <= 1, u0+u1 <= 1 - MathLib::DenseMatrix<double> mat (2,2); - mat(0,0) = b[0] - a[0]; - mat(0,1) = c[0] - a[0]; - mat(1,0) = b[1] - a[1]; - mat(1,1) = c[1] - a[1]; - double y[2] = {pnt[0]-a[0], pnt[1]-a[1]}; - - MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> gauss (mat); - gauss.solve (y); - - // check if the solution fulfills the third equation - if (fabs((b[2]-a[2]) * y[0] + (c[2]-a[2]) * y[1] - (pnt[2] - a[2])) < 1e-3) { - if (-delta <= y[0] && y[0] <= upper && -delta <= y[1] && y[1] <= upper && - y[0] + y[1] <= upper) { - return true; - } - return false; - } else { - return false; - } + GeoLib::Point const& a(*(_pnts[_pnt_ids[0]])); + GeoLib::Point const& b(*(_pnts[_pnt_ids[1]])); + GeoLib::Point const& c(*(_pnts[_pnt_ids[2]])); + return GeoLib::isPointInTriangle(q, a, b, c, eps); } bool Triangle::containsPoint2D (Point const& pnt) const diff --git a/GeoLib/Triangle.h b/GeoLib/Triangle.h index 3b0dcb07dfd741cd3256315b885b618519af8d89..caa14f01d0a956856e336e2c17d5ea55fa0adb8c 100644 --- a/GeoLib/Triangle.h +++ b/GeoLib/Triangle.h @@ -71,11 +71,12 @@ public: } /** - * checks if point is in triangle - * @param pnt The input point + * Checks if point q is within the triangle, uses GeoLib::isPointInTriangle(). + * @param q The input point. + * @param eps Checks the 'epsilon'-neighbourhood * @return true, if point is in triangle, else false */ - bool containsPoint (Point const& pnt) const; + bool containsPoint(Point const& q, double eps = std::numeric_limits<float>::epsilon()) const; /** * projects the triangle points to the x-y-plane and diff --git a/MathLib/MathTools.cpp b/MathLib/MathTools.cpp index 651fa75369b10a4218753378150339db1694d346..a086660e996d0f8a01256e1c90eb0ba8a49489c7 100644 --- a/MathLib/MathTools.cpp +++ b/MathLib/MathTools.cpp @@ -62,23 +62,6 @@ double getAngle (const double p0[3], const double p1[3], const double p2[3]) return acos (scalarProduct<double,3> (v0,v1) / (sqrt(scalarProduct<double,3>(v0,v0)) * sqrt(scalarProduct<double,3>(v1,v1)))); } -double calcTriangleArea(const double* p0, const double* p1, const double* p2) -{ - const double u0 (p2[0] - p0[0]); - const double u1 (p2[1] - p0[1]); - const double u2 (p2[2] - p0[2]); - - const double v0 (p1[0] - p0[0]); - const double v1 (p1[1] - p0[1]); - const double v2 (p1[2] - p0[2]); - - const double z0 (u1 * v2 - u2 * v1); - const double z1 (u2 * v0 - u0 * v2); - const double z2 (u0 * v1 - u1 * v0); - - return 0.5 * sqrt(z0 * z0 + z1 * z1 + z2 * z2); -} - double calcTetrahedronVolume(const double* x1, const double* x2, const double* x3, const double* x4) { return fabs((x1[0] - x4[0]) * ((x2[1] - x4[1]) * (x3[2] - x4[2]) - (x2[2] - x4[2]) * (x3[1] - x4[1])) diff --git a/MathLib/MathTools.h b/MathLib/MathTools.h index 585d141b14c405b6143eeb70d2ac50a59fc559ab..8c78efca61690d9c1f4cc4dca30118855648d0af 100644 --- a/MathLib/MathTools.h +++ b/MathLib/MathTools.h @@ -148,12 +148,6 @@ float normalize(float min, float max, float val); */ double getAngle (const double p0[3], const double p1[3], const double p2[3]); -/** - * Calculates the area of a triangle. - * The formula is A=.5*|u x v|, i.e. half of the area of the parallelogram specified by u=p0->p1 and v=p0->p2. - */ -double calcTriangleArea(const double* p0, const double* p1, const double* p2); - /** * Calculates the volume of a tetrahedron. * The formula is V=1/6*|a(b x c)| with a=x1->x2, b=x1->x3 and c=x1->x4. diff --git a/MeshLib/Elements/TemplateQuad-impl.h b/MeshLib/Elements/TemplateQuad-impl.h index afd624856b42bf684cc3ca4911314694970c72c8..fff572636170247c3932311c97c6387247f765fb 100644 --- a/MeshLib/Elements/TemplateQuad-impl.h +++ b/MeshLib/Elements/TemplateQuad-impl.h @@ -90,8 +90,8 @@ TemplateQuad<NNODES,CELLQUADTYPE>::~TemplateQuad() template <unsigned NNODES, CellType CELLQUADTYPE> double TemplateQuad<NNODES,CELLQUADTYPE>::computeVolume() { - return MathLib::calcTriangleArea(_nodes[0]->getCoords(), _nodes[1]->getCoords(), _nodes[2]->getCoords()) - + MathLib::calcTriangleArea(_nodes[2]->getCoords(), _nodes[3]->getCoords(), _nodes[0]->getCoords()); + return GeoLib::calcTriangleArea(*_nodes[0], *_nodes[1], *_nodes[2]) + + GeoLib::calcTriangleArea(*_nodes[2], *_nodes[3], *_nodes[0]); } template <unsigned NNODES, CellType CELLQUADTYPE> diff --git a/MeshLib/Elements/TemplateTri.h b/MeshLib/Elements/TemplateTri.h index a0c05f27d38dd4ccb0cf4a630e3eb3d951b56cb4..c91290193e21420ee7fa232d2bc5aab822f78fa7 100644 --- a/MeshLib/Elements/TemplateTri.h +++ b/MeshLib/Elements/TemplateTri.h @@ -22,6 +22,7 @@ #include "MeshEnums.h" #include "MathTools.h" +#include "AnalyticalGeometry.h" namespace MeshLib { @@ -121,7 +122,7 @@ protected: /// Calculates the area of the triangle by returning half of the area of the corresponding parallelogram. double computeVolume() { - return MathLib::calcTriangleArea(_nodes[0]->getCoords(), _nodes[1]->getCoords(), _nodes[2]->getCoords()); + return GeoLib::calcTriangleArea(*_nodes[0], *_nodes[1], *_nodes[2]); } protected: diff --git a/NumLib/Function/LinearInterpolationOnSurface.cpp b/NumLib/Function/LinearInterpolationOnSurface.cpp index d71716a7b856ac5400e1ea1ccacd5f5b105e328d..18aa67f09ae1f3a19cf025b85722bd54756d1429 100644 --- a/NumLib/Function/LinearInterpolationOnSurface.cpp +++ b/NumLib/Function/LinearInterpolationOnSurface.cpp @@ -70,10 +70,10 @@ double LinearInterpolationOnSurface::interpolateInTri(const GeoLib::Triangle &tr std::vector<GeoLib::Point*> p_pnts = {{&pnts[0], &pnts[1], &pnts[2]}}; GeoLib::rotatePointsToXY(p_pnts); - const double* v1 = pnts[0].getCoords(); - const double* v2 = pnts[1].getCoords(); - const double* v3 = pnts[2].getCoords(); - const double area = MathLib::calcTriangleArea(v1, v2, v3); + GeoLib::Point const& v1(pnts[0]); + GeoLib::Point const& v2(pnts[1]); + GeoLib::Point const& v3(pnts[2]); + const double area = GeoLib::calcTriangleArea(v1, v2, v3); if (area==.0) { // take average if all points have the same coordinates diff --git a/Tests/GeoLib/TestIsPointInTriangle.cpp b/Tests/GeoLib/TestIsPointInTriangle.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ce90557fa3a5b82c894d91f512649f7ed03dc1cf --- /dev/null +++ b/Tests/GeoLib/TestIsPointInTriangle.cpp @@ -0,0 +1,60 @@ +/** + * @file TestIsPointInTriangle.cpp + * @date 2014-05-27 + * + * @copyright + * Copyright (c) 2014, OpenGeoSys Community (http://www.opengeosys.org) + * Distributed under a Modified BSD License. + * See accompanying file LICENSE.txt or + * http://www.opengeosys.org/LICENSE.txt + */ + +#include "gtest/gtest.h" + +#include "AnalyticalGeometry.h" + +TEST(GeoLib, IsPointInTriangle) +{ + GeoLib::Point const a(0.0, 0.0, 0.0); + GeoLib::Point const b(100.0, 0.0, 0.0); + GeoLib::Point const c(0.0, 100.0, 0.0); + + // check point on corner points of triangle + GeoLib::Point q(a); + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + q = b; + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + q = c; + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + + // check points on edges of triangle + q = GeoLib::Point(0.5*(b[0]+a[0]), 0.5*(b[1]+a[1]), 0.5*(b[2]+a[2])); + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + q = GeoLib::Point(0.5*(c[0]+a[0]), 0.5*(c[1]+a[1]), 0.5*(c[2]+a[2])); + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + q = GeoLib::Point(0.5*(c[0]+b[0]), 0.5*(c[1]+b[1]), 0.5*(c[2]+b[2])); + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + + // check points inside + q = GeoLib::Point (0.1, 0.1, 0.0); + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + q = GeoLib::Point (0.1, 0.1, 1e-10); + EXPECT_TRUE(GeoLib::isPointInTriangle(q, a, b, c)); + + // check points outside + q = GeoLib::Point (-0.1, 0.1, 0.0); + EXPECT_FALSE(GeoLib::isPointInTriangle(q, a, b, c)); + q = GeoLib::Point (0.1, 0.1, 0.0005); + EXPECT_FALSE(GeoLib::isPointInTriangle(q, a, b, c)); // default eps from float + q = GeoLib::Point (0.1, 0.1, 0.0001); + EXPECT_FALSE(GeoLib::isPointInTriangle(q, a, b, c, std::numeric_limits<double>::epsilon())); + q = GeoLib::Point (0.1, 0.1, 0.000001); + EXPECT_FALSE(GeoLib::isPointInTriangle(q, a, b, c, std::numeric_limits<double>::epsilon())); + q = GeoLib::Point (0.1, 0.1, 1e-7); + EXPECT_FALSE(GeoLib::isPointInTriangle(q, a, b, c, std::numeric_limits<double>::epsilon())); + q = GeoLib::Point (0.1, 0.1, 0.001); + EXPECT_FALSE(GeoLib::isPointInTriangle(q, a, b, c)); + q = GeoLib::Point (0.1, 0.1, 0.1); + EXPECT_FALSE(GeoLib::isPointInTriangle(q, a, b, c)); +} +