diff --git a/Tests/Data/TH2M/TH2/heatpipe/heat_pipe_rough.prj b/Tests/Data/TH2M/TH2/heatpipe/heat_pipe_rough.prj index f1f19ca846b795bfeb0e7a9db917d0b2b14c4d00..922ee05bf7bdd474574c91fa25ff0fd6f274e631 100644 --- a/Tests/Data/TH2M/TH2/heatpipe/heat_pipe_rough.prj +++ b/Tests/Data/TH2M/TH2/heatpipe/heat_pipe_rough.prj @@ -612,7 +612,7 @@ </eigen> <petsc> <prefix>sd</prefix> - <parameters>-sd_ksp_type cg -sd_pc_type bjacobi -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters> + <parameters>-sd_ksp_type bcgs -sd_pc_type lu -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters> </petsc> </linear_solver> </linear_solvers> diff --git a/Tests/Data/TH2M/TH2/heatpipe/heatpipe.ipynb b/Tests/Data/TH2M/TH2/heatpipe/heatpipe.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..9934d07473afc5438713316748772966046f1b8d --- /dev/null +++ b/Tests/Data/TH2M/TH2/heatpipe/heatpipe.ipynb @@ -0,0 +1,844 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "7613d48f", + "metadata": {}, + "source": [ + "title = \"heatpipe\"\n", + "date = \"2022-09-14\"\n", + "author = \"Kata Kurgyis\"\n", + "notebook = \"TH2M/TH2/heatpipe/heatpipe.ipynb\"\n", + "web_subsection = \"thermo-hydro-mechanics\"\n", + "<!--eofm-->" + ] + }, + { + "cell_type": "markdown", + "id": "8c6aabd3", + "metadata": {}, + "source": [ + "|<div style=\"width:330px\"><img src=\"https://www.ufz.de/static/custom/weblayout/DefaultInternetLayout/img/logos/ufz_transparent_de_blue.png\" width=\"300\"/></div>|<div style=\"width:330px\"><img src=\"https://discourse.opengeosys.org/uploads/default/original/1X/a288c27cc8f73e6830ad98b8729637a260ce3490.png\" width=\"300\"/></div>|<div style=\"width:330px\"><img src=\"https://tu-freiberg.de/sites/default/files/media/freiberger-alumni-netzwerk-6127/wbm_orig_rgb_0.jpg\" width=\"300\"/></div>|\n", + "|---|---|--:|" + ] + }, + { + "cell_type": "markdown", + "id": "4059693c", + "metadata": {}, + "source": [ + "# Heat pipe verification problem\n", + "In this benchmark problem we describe the influence of a heat flux on a two-phase system (aqueous phase gas phase), also commonly known as the heat pipe effect. The heat pipe effect describes heat transport in a porous medium caused by convection due to capillary forces. Detailed description of the heat-pipe prblem can be found in (Helmig et al., 1997).\n", + "\n", + "This benchmark case considers the heat pipe effect for a two-phase system in a horizontal, one-dimensional column. As illustrated in the figure below, a constant heat flux $q$ is applied at one end of the column, which is sufficient to heat the water at this end of the column above boiling temperature. As the water vaporizes, the vapour moves towards the other end of the column, condensing to water again as it moves through cooler regions and, hence, giving up the latent heat of vaporization. The resulting non-linear water saturation profile along the horizontal column causes a capillary pressure gradient to arise, leading to a flux of the liquid phase pointing back towards the heat source: the mass of the vapour moving away from the heat source is equal to the mass of the condensate moving back towards the heat source." + ] + }, + { + "attachments": { + "heatpipe_schematic.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAYAAAGACAYAAAA+i2C7AAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7L15eFPV9v//TjrPEy10Li0tU6FlRqZaaAGxMogoKuh19sMV5/mCiCJ8r3id4IKoiIqi4oACgkKZB8HSUiil8zzStLTpmKZN8vujv5x7TpO0mXOSrtfz9HnOydl7r32StjnrvddaW6BQKBQgCIIgCIIgCIIgCGJAIrT0BAiCIAiCIAiCIAiCsBwkDBAEQRAEQRAEQRDEAIaEAYIgCIIgCIIgCIIYwNhbegIEQQwMzpw5g2eeeQazZ89GQkICbr31VgiFQqgrc6Kp9Im+bc1hw9C2ho5l7PmYap6mamvJeRoyhrnnZMjYxrJfX1+PxsZGtde0RZvySLqWUOJLe1PPw9hjmeq+9O1jrn6mLtFljPHN/f6Ze0xL2OADve9TIBBYaCbmxVz3aWw7+o5njHmoG2PIkCG4++671bZXKwx0dXUNmD8ugiDMwx9//IHLly/j8uXL+OKLL5CTk8MRBjQ5IOqOqa3ubflswxr78XEMU45nDDu//vorhEIhRowYgYCAABAEQRAEYV7EYjGkUikAwN7eHkLh/xII1AoD7e3t6O7uNs/sCIIYEBw9epQ5TkhI0BgtoAlqa1hbPtvgcz9T2jb2PIy9wmhMOwqFAtnZ2RCJRDh+/DgmTZqE22+/3bDJEgRBEAShEwqFAi0tLQAAT0/P/oUBgiAIY9La2orMzEzmfObMmVr1s5RzrYsTZG7n21Rt+WzDkv34Ij6YcjxzCAoCgQCvvfYacnNzkZGRgWHDhhlskyAIgiAI40HCAEEQJufMmTPo6upizhMSEjS25YODb6hdY8yBhAN+9bOmMfgaOSAQCBAaGoqgoCCD50cQBEEQhHGhXQkIgjA5p0+fZo4jIiIQFhbGuW4qMcDQsfjcdqDMhy/9+Jg6YIwxzCkoyGQyyGQyg20QBEEQBKEffX3XU8QAQRAm59SpU8yxMlqAxADTtuVbdAL1020MSwoRuo7dn520tDScP38eo0ePxvDhw+Hh4WHwvAiCIAiCMC4UMUAQhEmpra1FQUEBc26s+gJ8c8RtuS2fbfC5Hx/H0GY8Y499+fJllJSU4ODBg9i2bRvkcrnB4xMEQRAEYVxIGCAIwqR0dHRg8eLFGDRoEIRCIWbMmKGxLYkB1tmWzzasRQAwV/qBuVMROjo6kJeXx5zHxMRwKiATBEEQBMEPKJWAIAiTMnToUHz22WeQy+UoLCyEr68v5/pAEwP4HO5vqrZUf8DwftqMwZfx2GRlZXHqCowaNcrgMQmCIAiCMD4k2xMEYRYEAgGzRZktiAH6OviG2jXGHPj2/lI/849hrsiBK1euMMdOTk6IiorSyy5BEARBEKaFhAGCIExGU1MT8vPzAfDDeTa0rTXM0RhtbWU+fO5nStt8EREkEgknjWD48OGwt6dARYIgCILgIyQMEARhMg4dOoRp06Zh5MiRePLJJ1UcDL45oHyyy+e2fJiPMWxYsh9fxAdTjpeVlYXu7m7mnNIICIIgCIK/kDBAEITJOH/+PABAJBKhuLgYAoFAp/4kBlhn24FoQ197prRtaRGB0ggIgiAIwnogYYAgCJNx7tw55njatGkA+OuU8825tuW21mzD2Pb4En1g7PdAIpEgNzeXOY+JiYGDg4NeNgiCIAiCMD0kDBAEYRIqKytRUVHBnCuFAXWQGGCctro4enxLDbAW4YDP/cw1hjbjZWdnUxoBQRAEQVgRVAWIIAiTcPbsWeZYKBRiypQpnOt8cJ7NaVeXtvo6+Iba1XcOtjgfPvezhjHi4+Ph7e2NtLQ05OXlMTuSEARBEATBT0gYIAjCJCjrCwBAbGwsvLy8dOo/kMUAc9o1Rlu+RSfw2QZf0hZMPQ+hUIiIiAj4+flh3rx5OtcXIQiCIAjCvFAqAUEQJsHS9QX45jzzyS6f21qzDWP344v4oO94XV1dAECiAEEQBEFYARQxQBCE0amurkZZWRlzbon6AsYci8QA/rTlsw0+9zPXGAqFAqdPn4aHhwdCQ0Op4CBBEARBWAlGEwb279+PrKwsrds//fTT8PDw0MvWtWvX8MUXX+D06dOor6+Hl5cX5syZg5dffhlDhgzRepzS0lKcO3cOIpEIzz77rMr19vZ2vPfee2r7Dho0CKtWrdLKzuHDh5GWlgYAePbZZ+Hp6cm5LpfL8cEHH6CtrQ3u7u549tlnIRRSMAdhvVy8eJE5FggEKvUFdMEWnHK+Ode23JbPNqxFADAkckAmk+Hw4cOQSCSws7PDrFmzkJCQoLVtgiAIgiAsg9GEgcOHD+PHH3/Uuv3DDz+slzBQWlqKpKQkTrXj1tZWfP311zh69CgOHTqE0NDQPseoqqrC2rVrcfDgQcjlctjZ2WHVqlVwdHTktGtpacHHH3+sdoyYmBithYGTJ09i586dAIBHHnlERRjYuXMnNm3aBADYvHkziQKE1RMUFITly5fj77//hoODA3x8fDjXB0JKAd8cZkPbmtv5NlVbPtvgiwBgiO38/HxIJBIAPSKBrrVFCIIgCIKwDEYTBsaMGYOmpibmXKFQIDU1FQAQGhqKESNGcNo7OzvrZSciIgK33HIL5HI5VqxYAU9PT/zxxx/45ptvUFNTgxdffBE//PCDxv7p6elYsWIFRCIRAGDw4MGYNWsWJBKJijDQ2dnJHE+ePBkuLi7MeUhIiF7z7015eTk2bNgAoCfc+h//+IdRxiUISzJlyhRMmTIFCoUC7e3tAEgM4EtbXZxBUzmZfBYZqP6AYWNcu3aNORYKhYiJidHLHkEQBEEQ5sVowsCqVas4K+hSqRRBQUEAgOTkZLz77rvGMoVdu3bB29ubOZ83bx66urrw/fff4/jx46itrVWbUlBbW8uIAoMHD8YHH3yA5ORkjYWRlKseSpuDBw822j0APQ9XL7zwAtra2uDq6oqPPvqIijQRNoNCoYBCoeAIaoaOZywGshhgTrvGaGsr87HGfrqOoVAoOMJAeHg4XF1dtR6DIAiCIAjT0td3u1XGrLNFASUpKSkAem72+vXravu9/vrrEIlE8PX1xe+//465c+f26YgrVzo12TSU3bt348SJEwCADRs2YOjQoUa3QRDmprKyEllZWZDL5f22tdYoAj44+Hydo7nb8i06wRb7aTtGaWkpmpubmfPekYIEQRAEQfAXqxQG1MF23JVbJLEpLi7GwYMHAQD/+te/EBER0e+YSmHA0dERTk5Oxpno/09FRQXWrVsHAJg9ezZWrlxp1PEJwlLs2bMHiYmJiIyMxBNPPKFy3RYceGOORQ4+f9ry2QafBABNsKMFAFAaAUEQBEFYETYjDJSWljLHyhQGNj/99BPkcjnc3NywfPlyrcZUrnz0LhZoKMoUgpaWFnh6euL999+nFALCZlDuSNDW1sbU6bCU023MsQaCCEFt+25rLfUH9O1n6PvCFgYCAwNVio4SBEEQBMFfbEIYkMvl2LVrF4AeUWDUqFEqbY4fPw4AmDp1qtar/2KxGACMliOtZOfOncx8NmzYYLRChgRhaWQyGTIyMpjzyZMna9XPWqMI+JBSYE67pmrL55oCurQdyP1qa2tRV1fHnFMaAUEQBEFYF0YrPqgPZWVluOeee/pt5+TkhFOnTnFek0qlEIlEKCgowI4dO5Ceng4AWLNmDezs7Dht5XI5rl69CqBn9f+LL75AQUEBPD09sWDBAsTFxam129DQAKBnO8Tdu3dj1qxZCA8P1/k+2Vy/fh1vvvkmAGDhwoW47777DBqPIPjE9evX0dLSwpxPmTJFY1trdeD54Dyb064ubc1RA8GaRQZb7KckKyuLc07CAEEQBEFYFxYVBqRSKQoLC/ttp26F/9ChQ3j00UeZc0dHR2zcuBF33323StuqqipIpVIAwL59+7Bv3z7m2vvvv49//etfePbZZ1X6Kbc0bGxsxHPPPQeBQIDbb78dmzdvhr+/f/83qIannnoKEokE4eHh+PDDD/UagyD4SlpaGnPs5OSEMWPGcK7bQkqBMcfiqxhgDgefD235MB9j2OBD/YGQkBCMGTMGubm5cHd3N/ouPgRBEARBmBaLCgNBQUHYvXt3v+16RwCoQyqV4tSpU1i4cCF8fX0519jhjYGBgVi0aBHc3d3x7bffoqamBhs2bMCkSZMwffp0Tr85c+YAAAoLC3Hq1Cm0t7fj4MGDyM3NxdGjR+Hh4aHNbXJQRiF0dnYyNQYIwlZQRu4AQFxcHBwdHXXqb60r/3wdyxrs8rntQLSh7xgjR45EdHQ0mpqa0NjYqJc9giAIgiAsh0WFATc3N9x222169Z07dy7Onz+P0tJSnDx5Ejt37sSBAwcgFovx448/csSEjo4O5vijjz7C7NmzAQDLly/HzJkz0dHRge3bt6sIAzNmzMCMGTMA9EQNvPDCC9i/fz8KCwvxwQcf4I033tB53itXrsTu3btRW1uL+++/HwcPHoS7u7s+bwFB8A62MDBx4kQAxnVI+8MWHHhjjkVigGnbWrMNY9tTKBTo7u6Gg4MDAgIC9JoHQRAEQRCWw2qLD7q6uiImJgZz587Fxo0bsXnzZgDA6dOnceTIEU5b9vaF7BXMiIgIzJ8/HwBw9uzZPh+IfHx88OmnnzJ5k999951e837xxRfxyCOPAOip4Lxq1SqjOg0EYSnEYjGKi4uZ83Hjxmlsaynn1lBbphrLFgQNaqvals82jNmvvLwc3d3darcKJgiCIAjCOrCoMCCVSpGTk9PvT15eXr9jrVixAoMGDQLQszUhG2dnZ45NNiNHjgTQU2BQWVNAE/b29rjrrrsA9NQfqKys7P8m1bBp0yYmTeHQoUPMjgoEYc1kZGRALpcz5+PHj9d7LGt1lPk6li7wzbm25bZ8tqFtv46ODnz88cd44403sHfvXlRVVWltjyAIgiAI/mDxXQlmzpzZbzsnJ6d+HzaEQiGio6NRX1+P0tJSzjX2doO9hQGlmAAALS0t/YZAsnclaGho0GurQaFQiE8++QRJSUkoKyvD2rVrMXnyZMTGxuo8FkHwhYCAADz88MNIT0/HjRs3EBoayrnOp5V/vjrwVF9Au+uWaqupn6na8tmG8jg7OxsymQwymQzXrl3D2LFjtR6PIAiCIAj+YFFhQCAQwMHBod922hYw8/LyAgA0NzdzXg8MDGSOlcX/lLCFAnW7H/RGLBYzx+xIBF3x8fHB9u3bkZKSgs7OTqxevRqpqalaFVokCD4yevRovPvuu1AoFExIMV+dfUNtWcNYfBUD9HXaDbVrjLZ8ExnMXX9AHdeuXWOOHR0dERkZqZcdgiAIgiAsi0WFgWHDhqGmpsZo41VUVAAA/Pz8OK/7+/vDxcUFHR0dnBxo4H9CgVAo5EQPaELZXygUcgQHfZg8eTJWrlyJr776CllZWdi5cycef/xxg8YkCD5gb6/dvxY+Oft8dbr5OpY12OVzWz7b0LZfd3c3cnNzmfNhw4Zp/bdPEARBEAS/sNrig70pKChgHlDi4uI414RCIVMh/fLly5xrGRkZAIDIyMh+IwBaWlqwb98+AD2F1Yyx1eDatWsZQWLjxo1GFUoIwlyIxWL8/fff6OjoMNhJtJRDak5b1jqWNdi1lbZ8tqE8LigoQGdnJ/O6sjgvQRAEQRDWh9UJA+3t7XjssccYhx7oyXF8/PHHIZPJAIApEMhm0aJFAHp2Hzh16hTT78yZMwB6tj9kc+HCBWb7w66uLly6dAlLlixhHPd//vOfRrkfb29vvPbaawB6CiBu2rTJKOMShDk5efIkFixYgMjISMydO1ellsdAcNANtWUNY5EYwJ+2fLCRnZ3NHCvr/BAEQRAEYZ1YXczfn3/+iX379mHfvn1MTQF23v+yZcswadIklX7Lly/Htm3bUFxcjLvvvhtRUVEoLS2FVCqFi4sLs4Wgkh07duDAgQMAeh542NXWly9fjoULFxrtnlasWIFPPvkEBQUF+OGHH7B69Wp6wCKsCqVQ19XVhZaWFq3rgijhk4POV0eZr2PpAt+ca1tua47POCcnhzkOCwvjFPolCIIgCIJ/9PWdb7KIAYFAgODgYAQHB8PHx8do48bGxmL+/Pmwt7eHWCxmRAEnJyesXr0aH3/8sdp+zs7O+PbbbzF8+HDIZDLk5+dDKpXCz88Pu3bt4uw2APSs5CudG6Uo4Ofnh3Xr1mm0oQlfX1+Eh4cjPDxcbf6lnZ0dXnvtNYSHhyMkJAR79uzRaXyCsDRXr15ljseNGwfAep19c9qy1rGswa4ubU1VYNDcK/y6tDW0X3V1NW7evMm8TmI2QRAEQVg3AoWapwOxWIzu7m5LzEdrxGIxLl++DLFYDH9/f8THx8PV1bXffnK5HFeuXEFlZSV8fHwwadIkjbsRNDY2Ii8vD3V1dQgKCsK4ceNo1wCC6IVCoUB0dDSampoAAG+99RaefPJJjU6I8tjU163VFo1lfXbN0ZZv80lNTcXvv//OvP7Pf/4T/v7+IAiCIAiCv8jlcjz99NMAAE9PT84OgVaXSqDEy8sLt956q879hEIhxo0bx6xq9oWPjw+mTp2qx+wIYuBQVlbGiAKAavFPNta6sm9OWzSWddg1d1u+RSc0NTUxaXY+Pj4kChAEQRCElWO1wgBBEPwgMzOTORYIBBg9ejTnOl8dcFu1Za1jWYNdW2lrDBtLly7F3LlzceXKFU4NHoIgCIIgrBMSBgiCMIisrCzmODIyUudtPK3JAbeUc2uoLWsYi8QA/rTVtp+joyPGjh2rtQ2CIMxLUVERLl26hGHDhmHChAmWng5BEDyHhAGCIAziypUrzLHSSeCTU2xNc6GxTDcWtTVeW+Ux32sREURLSwsAwMPDw8IzMT8KhQI//fQTOjo6kJOTg7CwML1Tfrq7u9HQ0IDBgwcbeZYEQfAJEgYIgjAIdsSAsVYPbdXZN9SWMceyBgfemGOZ6n6toa2mfvq0lclk+Pe//42wsDBERkYiOjpa5+1JCcLUdHR0YMuWLWhvb8e8efNwyy23WHpKZkcgEDAFs4VCod7Fs48dO4Zz587ByckJr7zyijGnSBAEzyBhgCAIvens7MQ999yDK1euICsrC2PGjNHY1pwOdn/wydmn9ATd2vJBDDCnXWO0NaaN4uJiiEQiiEQipKenY9GiRVoV8yUIcyKXy9He3m7paVice++9F5cvX8awYcPg6+ur1xjt7e1UR4QgBggkDBAEoTdOTk546623oFAoIJfLVR4e+ORg82kulrJFY1mHXXO31aXf9evXmWOBQIDo6Git+xIEYV6Cg4MRHBxs6WkQBGElCC09AYIgrB+BQMAJW9QWiiKwLlvWOpY12OVzW/Zxbm4ucxwYGAh3d3etxySIvlAnLveHsetcGHM8mUzWbxuFQqFVO1Mjk8mM/r3Dh/siCEI3KGKAIAi9yc/PV3EOrMnp5dNcrNWWNYxFYoBx2jY1NaG2tpY5p2iBgYlCocDPP/8MhUKB+Ph4zu9BQ0MDjh8/DgBISEhAQEAAc+2PP/5AS0sLhg8fztSjqampwYULF1BWVobm5mbI5XIEBQVh+vTpKlvfKhGLxUhNTUVeXh6kUinc3d0xdOhQJCYmqg2Xv3LlCiorK5nzmTNnYsiQIcy5XC7H+fPncenSJTQ1NcHe3h6RkZGYO3cuBg0apNN709bWhpMnTyInJwetra1wdnZGaGgo5syZw9hsbGzE+fPnUVxcjKamJshkMgwaNAiTJ0/GpEmTIBAIVMYtLi5GSUkJqqqq0NzcjObmZgiFQvj7+2PcuHEYN26c2n4XL15EeXk5XFxckJKSwrmmUCiQnp6OCxcuoL6+Hvb29vD398ekSZMwfvx4lbGkUil+/PFH5nzQoEFITEzktKmpqUFqaipKS0shk8ng5+eHKVOmqL0vhUKB8vJy5OXlobKyEi0tLVAoFHB1dcXIkSMxc+ZM7d94giCMAgkDBEHozb333ouysjKEhYXhtddew9KlSw0ek5x967JFYw2ctuw0AgAYNmyY1n0J20EgEKCmpgYNDQ3w9vbmCAMVFRXIzs4GAIwYMYIjDFy+fBmdnZ0YOnQo89rNmzc5O9sAQHV1NX788UfcvHlTxTlsaWnBzp070dzczLzW2tqKrKwsTJ8+Xe18a2trOYIWuyaGXC7H3r17OZEw3d3dyM/PR0VFBZ588kl4eXlp9b40Nzfj888/58xNIpGgoKAA06ZNY17r6OhAWloap299fT0OHTqE2tpaLFy4UGXsw4cPQyQSqbxeUVGBiooK3LhxA7fddpvK9crKSmRnZ6u9h9TUVJw7d45z3zU1NSguLlYrDMhkMuazBYDw8HDO9ZKSEnz77becqIuGhgYcOnQIbW1tKiJCfn4+vvvuOxU7TU1NHOGGIAjzQcKAkVAoFGhrazNpWGVLSwtcXFxgb6/9x9bU1AQPDw+9q9EShCZaWlpQXl4OACgvL4eTk5PGtpQyYPq5WNN9WWosXeBDKoOl2mrqx3aeXFxcKHd5ABMQEICGhgY0NTVxXmc74MqtAoGeAnadnZ0AwFmFj4iIwIgRIxATEwNPT080NDTgzJkzaG1txcmTJxEXFwdPT0+m/blz5xjHOzk5GSNGjIBEIkFeXp7GrfSGDh3K+V318fFhjq9cucL8Xk+dOhWTJ0/GjRs38PPPP6OjowMnTpzA4sWLtXpPfv31V2ZucXFxiI2NRVdXF4qKihAWFsa0GzJkCIYPH45hw4bBx8cHzc3NOHfuHBoaGpCRkYHx48cjJCRErQ1fX19MnToVvr6+aGtrw6lTp3Dz5k1cvHgRcXFxCAoK0mquTU1N+OuvvwAAISEhmD9/PlxcXFBVVQVXV1e1fezt7TF16lTm3Nvbmznu7u7Gr7/+iu7ubvj4+GDx4sVwc3PDH3/8gcLCQpw9exYTJkzgfJZs4uPjMWLECDg4OEAsFnM+I4IgzAcJAxrYtWsXsrKykJycrFaFVVJdXY1XX30VqampkEqlGDRoEB5++GG8+OKLEAr7LuFw+fJl7N69G/7+/njttdfUtsnIyMC2bdtw/PhxNDc3w87ODlOnTsWaNWswadIktX2OHz+Obdu24fz585BKpbC3t8e4cePw9NNP93kvr776KqRSqcrrLi4ueOedd/q8FyW5ubnYv38/srKyIBKJ0NTUxIT5zZo1C0uXLtX4pUNYF9nZ2RynYdSoUSazZUtRBHyai6nGMtSWqcbiaxQBH6IB+hMO5HI5CgoKmPPIyMh+v+MI2yUgIAA5OTlobGzkvF5XV8cci8Vi5pjdzs/Pjzl2c3PD8uXLmfNhw4ZhyJAh2LVrF2QyGQoKCjBhwgTmeklJCQAgJiaGEyHQl0gVExOjcbvCixcvMvczb948CAQC+Pr6IjY2FpmZmcjOzsbtt98OBwcHjeMDPSvzxcXFAHq27V2yZAlzrfd3o1AoxL333st5LTIyElu2bIFMJkNOTo5GYcDf3x+TJ09mzgMCArBjxw4APRE92goD5eXlTD2HhQsXMpEd7M+mNw4ODkhKSlJ7LTc3l/m8FyxYwEQTzJ8/H1u3boVMJsO1a9c4kRNsxo8fzxFPCIKwDCQMqOHUqVN45ZVXIJfLMWjQII3OdGtrK1JSUphVU6AnHOzdd9+FVCrFmjVrNNpoamrC//3f/6GwsBBDhw5VKwy0tLRg0aJF6OjoYF6TyWQ4d+4cFi1ahB9++EElzG7nzp0q+8x2d3cjLS0NK1euxPvvv48HHnhA7ZyUX8S98fT01FoYOHLkCN59912V1zMzM7Fv3z5s3LgRW7Zs0fjlQlgPOTk5zLGrqysiIiI41/nkQPfHQJ0LX4UFax3LGuzq27a4uBgSiYQ5pzSCgY2/vz8AqAgDN27cgLu7O1pbW1FfX8+83tDQAABwdnaGh4dHn2OHh4fDyckJnZ2duHnzJudaV1cXABglOrO1tZWJcBg1ahQnBz4iIgKZmZno6upCVVWVyvdbb9jRNJpSGvrC29sbfn5+qKurU7nnvggMDISvry9u3ryJqqoqrfsp30fAOO9lYWEhgJ7PNzIyknl90KBBzO9DaWmpRmGAIAh+QHJ/L86ePYuVK1dqVRl3x44djCjw8ssv48iRI4iLiwMAbNu2jfOlyObmzZtYunQp849UEx4eHnjggQcwZ84c/PDDDzh58iQ2bNgAV1dXSKVSPPPMMyoVdJOTk+Hh4YHk5GT89NNPOHnyJDZv3sx8Eb/11lscoUGJVCplRIG5c+figQceYH56K9vakpKSgqeeegpLlixh1GORSIQHHngAFy5c0GtMgj+w841HjBhh9tVDPgkPtjQXS9my1rGswa4x2rIdH4CEgYGOcoW5o6ODEYxaWlrQ1taGwMBAuLq6MmIAAOZ5SFO4f2/c3NwAgEk/UKJ0YsvLyw3eQYCds987p52dk8++D01UV1cD6HGM2XUVdEF5b+oiN/tCGXbPTt3oD7Y4o4zCMARlpEhAQIBK6qoy5UCb95EgCMtCEQMsDhw4gCeffFLli0gTv/76KwBg5MiRePnllwEA//nPf5CUlASpVIr9+/fj4Ycf5vQpLy/Hfffdp/KQpYl169bB0dGROY+NjUV3dzfefPNNlJeX4++//+YosGFhYTh+/DinuE9sbCzEYjE2bNiApqYmpKWlYdasWRw77JWgl156iVOcR1+eeuopTJw4EUDPA+b69euxdetWSKVSrF27FkePHjXYBmE52MKAMlTS1A6yNa3c89UBtyZb1jCWLYsBbCZPngx3d3dcu3YNnZ2d/a76EraNn58f7OzsIJPJcPPmTQQFBeHGjRsAwOS/V1dXQyqVwtHRkXEK1QkDMpkMZWVlqK+vh1AohKenp8at7uLj41FeXo76+nr88MMPTC67PrDrI0ilUsa5B1TrI/SHMnLC3d1d7e4AvVEoFKioqEBdXR3kcjm8vLw4z2G6oEzP1EVQGDp0KDw9PdHc3IwDBw5AIBAYlA6oTCNwcHDgvI9s1C1KaUt+HqlURwAAIABJREFUfj4nysFYODg4ICoqiupwEQOKvp4JTCoMSKVSdHR0aF3R1ZLs2bMHTz/9NADglltuYYqyaKK5uZlTsEZJfHw8/P39IRKJkJ6ezhEG6urqMGvWLLS2tsLPzw9+fn7Iz8/v0w5bFFAye/ZsvPnmmwB6/ln2Ds1iiwJK2Dl6FRUVKtfZX0jsgjLGQiAQ4I033sCRI0eQn5+Py5cvo7S0VG14XktLC+zt7eHi4mL0eRDGQaFQcMStkSNHWnA2/4NPznx/8MkB56stGos/bf39/TFjxgyMGzfOrH8nBD+xs7NjQt/r6+sRFBTEhOX7+/szwoBIJEJwcDATMRAYGMgZp6SkBPv27eNU8u+LcePGobi4GNeuXUNBQQG2bNmCxMRETJo0SeeoNbaj+csvv2jVThPKBSVtnluUxQ3Z9RgMQXnfuvxdOjg4YOnSpfjmm28gkUiwd+9exMTEYP78+Wq3fOwPpShRVFSEoqKiPtvow4EDB3SKiNCF+Ph4rQtMEoStY/TY37Nnz+Lxxx9HbGwsgoODERUVhZCQEDz44IMqW9LwieTkZHh6emL16tX46aef+m2fk5PD/BOOioriXIuJiQGgGnoZEBCAadOmYerUqTh69CiGDx+u11zZKzXapDwAPeFtfcFWcjVVjTUUoVCI+fPnM+fs34ejR49i2bJliIqKwtChQxEWFoakpCSkpqaaZC6EYVRUVHAKS/W10kBRBNpfN+dcBoItSznwxhzLVPerT1tl6LY2K6KE7aMMmVc6uDU1NQB6wvKVNQjq6uqgUCiYvHl2yL5IJMKePXvQ3NwMgUCAiIgIjBkzBuHh4Rp3XxIIBLjzzjuRnJwMe3t7SCQSHD58GL/88ovWz0NK2L/jnp6e8PHxUfujTXSMcqz+xIn29nZ8/fXXzHsWEhKCMWPGYOjQoX3u7GMKwsPD8dhjjzFiTX5+Pj777DPmc9QF5f07OTlpfB/Zu1HwievXrxuclkIQtoLRIwa2bduGI0eOcF6TSCT4/fff8eeff2L79u2caq18wd/fH2lpafDz89MYwsaGrW73XqFXflmq++e6detWeHt7G5SPzVZjNVWu7U1ZWRlzrK7yK/t+TBkiyl4tYBfYycrKwokTJ5hzhUKBzMxM3Hvvvdi2bRuWLVtmsjkRutNb9OodMcCnFUU+OfP9YU0OuKUcdENtmWosvkYRGGOsq1evwtvbW6+VRMJ2CQ4OxrVr1xgnt7q6GkKhEIMHD2aeKerq6tDU1ISuri44OTlx8u///vtvdHV1wc7ODg8//DBnZ4EtW7ZozEkXCoWYPn06YmJisG/fPlRXV+PatWsIDQ3FlClTtJ4/e8Fk+fLlWlf0V4ejoyM6Ojr6DZe/fPky2traAABLly7FmDFjmGu7d+/WuNpuKgICAvDoo4/i7NmzOHXqFDo6OrBv3z48+eSTOj2nOjs7o7W1FdHR0bjrrruMPs+ZM2caFHGgjvz8fJSXl0MqlaK0tJTqphAETJhKEBwcjPfeew8eHh5IT0/He++9h5aWFqxevRoTJkzg5bYkfW3T0hvlP3ZAdTVeWUCmvr4eMpmMk7tk6IOVQqHAp59+CqBH4e69K4Emfv/9dwA9BX3YaQVKlLl2QqFQbfqCsWhtbWWO2XmBs2fPxo0bNzBr1iz4+Pjg8uXLeP/99yEWi7FmzRosXLhQLzW9ra3NZHlp+uY12gLOzs649dZbUVBQgK6uLp1/rymKQPvrA3UuNBY/7CoUCuzduxft7e1wc3PDzJkzOelzxMAlNDQUQE9ofEdHBxobGxEQEAAHBwdGALhx4waTRhAWFsZ5HlKmHgwZMqTP7QY14e/vjwceeADbt2+HWCxGenq6TsIAO+zfkPx3oOd5TCwWc55x1KFcMHJ1deWIApbEzs4OCQkJEAqFOHbsGOrq6lBYWMhEv2qDi4sLWltbtarHoA/sLRqNha+vL1NAPD8/n4QBgoAJhQFPT08kJycD6MnBHzFiBO655x5IJBJ8/PHHeO+990xit6OjAyNGjNCqbUZGhk5iABu2MNB7f1vll41cLkd7e7vBK/Dt7e24fv06ysrK8P333zMr62+88YZW+WxXrlxhhIEVK1YwhWrYsHdQ2LBhA2bMmIFZs2YZvdJ8RkYGc8wWh+Lj4xEfH8+cT5s2Db6+vli9ejUaGhqQlpaGGTNm6GzvkUceMVk6wt13341t27aZZGy+M2vWLMyaNQsKhYKpT8GnKIH+4JMD3R8DdS7W6sDbghjApry8nHnYb2tr0xjiTQw8AgMD4eDgALFYzNRLUkYF+vr6wsHBAbW1tYwz3LumkHIF2JAQemdnZ4wYMQIXL17kPMewBQhNiwPsZ7PS0lKVtFBdGDx4MCoqKtDe3o76+nqNYfPKufSX3mkJ4uPjcezYMQA9z4RKYUD5Xva1yOLp6QmRSISqqiqm4CTfURYdlMlkyM/Px4IFCyw9JYKwOGbbX2zOnDkYO3YsAODw4cMms6NQKNDW1qbVj675aGzYqmjvByW2s67tDgd9kZOTg/nz5+OJJ57AiRMnIBAIsHnzZvzjH//ot69CocDatWshl8vh6+uLF154QW075ReqXC7Hhx9+iLvuugszZsxAZmamwfNXkp6ezqSZeHl5qY1cYMPeOcEY2+kYm71796qkzQxEtH2os6Uogf7g073Y0lyMacsaxuKDCNG7QK4hzhNhW9jZ2TEr/enp6QD+JwwIhUIMGjQI7e3tzO9Q77RLZdSdSCTSKoVTE8qidOzvIicnJ8Y51bR19JAhQ5g5ZGZmGhSqHhkZyRxnZ2drbKe0JxaLDY5SMDbs4n5sx14ZBdvd3c3ZyYGN8v9CZ2cnrl69asJZGg8nJydmK+2mpiajFYMkCGvGrNL/tGnTcPXqVdy4cQO1tbUq+8YaA2dnZ0bx7A/l3q/6wK7i33ubE7YSbAxhoDcKhQI7d+7ElClT+t1eZseOHTh//jwAYNOmTRpDvhMTE/Huu++iqKgIR48eRXFxMfLz87F48WIcPXoU0dHROs+ztrYWRUVFqKysxF9//YVPPvmE+fJ/4oknVCIteqMsXgRwIzR0YcyYMUZPJZBIJLh48SKAnqiNxMTEfu/FllAoFBCLxfD29uaVM94ftiRM8Gmu1mqLxtKuLVsY8Pb2Nuh7k7A9oqKiUFpayoRks/P0Bw8ejJqaGlRWVsLZ2VnlmW/YsGEoLi5GS0sLDhw4gFmzZsHNzQ3Nzc0ai8GdOnUKYWFhjEOXl5fH1LxhRyQIBAIEBwejpKQE169fx9ChQxEREYHGxka4ublh8ODBEAgEmDp1Ko4dO4aWlhZ8//33SE5OZrZbrKiogLe3N2OrL4YPH85s/3f69Gk4Oztj7Nix6O7uZsLy3dzcEBUVhYyMDMhkMvz888+YO3cuvLy80NbWpvd2hfpQUVGBiooKjB07Fu7u7mhubsaff/7JXGe/l8qUEQA4ePAgkpKSYGdnhxs3biA2NhZAz24Rp0+fhkQiwZEjRyAUCjF8+HAIhULU19ejvLwc06dPN9v9aUt0dDSKi4sBAAUFBZwaGAQxEDGrMMB29IqLi00iDAiFQsTFxRl93N6w1dTekQds1dkY4VRxcXEoKChAVVUVLl68iE2bNiE3Nxf3338/Tpw4oXF7wby8PLz99tsAgHnz5mHp0qUabQwbNozJr3r77bfx8ccf45133kFrayvWr1+Pb775Rud5a4poWLBgAZ577jmV1xsbG3Hy5ElUVFSoPETo61z861//0qtff6SkpODChQsoLCzEF198gSeeeMIkdvhITU0Nxo4di4CAAAwfPhzvvvuuxlVESzvjfBIurOlerNXZN6ctSznwxhyrv7bKolxKKAeX6E1UVBSzGGNvb88RBkJDQ5mow/DwcJXUxIkTJyIzMxN1dXXIzMzsN0Kxu7sbZ8+eRVdXFwQCAYRCIbPYYG9vj4SEBE776dOno6SkBN3d3fjtt9+Y12+55RbMmzePOS4sLERZWRmKi4uxY8cOzhhTp07VShiws7PDkiVL8M0330Amk+Hw4cOc6NhFixZh3LhxGDVqFCIjI1FcXIzCwkIUFhb2O7YpyMvLw9mzZ3HkyBHY29tzhJjx48dzUiEiIiIQEhKCyspKzpyFQiGGDRsGZ2dnuLi4YOHChfjxxx8hlUqxf/9+jj2hUIhJkybxLsVg+PDhjCCSn5/PS/GCIMyJ2VIJAG5xP233rOUr7Dz93so2O83AGNvP2Nvbw8fHB7GxsXjkkUfw/fffQyAQoKKiAl9++aXaPnK5HM8//zw6Ozvh5eWFzZs3a21PKBTi2WefxR133AGgZytBQz8ve3t7jB8/Hv/973/x1Vdfqayw7969G3FxcXjsscfw1ltv4fXXX8fDDz9skE1TsmnTJuYhZ/PmzRqrJ9sieXl5AHqqTZ85c0alhgafnPH+sCVhgk9zHai2TDWWpUSIoqIizvcbO1yaIICe1IGIiAgEBQVh9OjRnNRK5etBQUEqO9cAPQsnDz/8MGbOnKkSieLk5ISIiAjOyrVMJkNcXBycnJygUCgYUWDIkCFYuXKl2oiEu+66ixMp6eLiwoTGAz3PJitWrMCUKVNU8v79/Py03vkJ6EmVeOihhzgr7EBP5X9lCoFAIMC9996LpKQkldVpe3t7hIaGqo3Q9Pf3R1BQkNqIHW9vbwQFBWHw4MEq13x8fBAUFKRii91e+Tfu6OiI6dOn4/bbb+e0Vc659+cbEhLCiXIYNWoUVqxYofI52NvbY+zYsSqLaM7Ozszvh6UEA19fX8Y3UdaIIIiBjFkjBtj/UHqHd3d1deHLL7/E/v37UVlZiUGDBmHKlCl48sknmX/MJ0+exNGjR1FeXg6FQoGIiAgsWbKEk6suk8lw6tQpreYzY8YMvf8Zsb9YeuelKf+xCAQCrYoD6srEiRMxceJEpKWl4bfffsOzzz6r0mbXrl1MuPvGjRv12oZn8eLF2L9/P2QyGa5fv65zJeotW7Zg9OjR8PLyQmBgoMb3+vDhw3j++eehUCjg5uaGxMREeHh4oLy8HOfOndN53uZgzJgxWLZsGX744Qc0NTXhvffew6ZNmyw9LbPADi328vLSOfTO0s44n4QLa7oXPjngfLVlrWNpaqsUAYEewbh3jjhBCAQCjdGBfn5+ePzxx/vs7+zsjDlz5mDOnDmQSCSQSCRwcXFRu6ji5OSElJQULFiwAE1NTejs7ISHhwfneaw3sbGxiI2NRXt7O2Qymdpi0A4ODrjtttswd+5cNDc3o7OzE+7u7n2Oq4mQkBA88sgjaG9vR0tLC1xdXVVsOjg4YMaMGZgxYwakUina2trg4uLSZ0HCu+++W+O1xMREJCYmqr02e/ZszJ49W+X1UaNGYdSoUcw87ezs4Ovrq7HgtJubG5YtW4bu7m60tbXBzc1NbSHSqKgoREVFccb18fFRSbkFeqJI+vv9MAcxMTH466+/IJfLUVRUxJvdIgjCEphVGGAXgGFv9SaXy7Fy5UqkpqYiJiYGSUlJqK2txZdffonbbruNEQb+/PNPfPbZZxg1ahSkUimOHj2KTz/9FP/v//0/ZnW5s7Ozz3+gbHJycjjpDbrAjhjoLQwot6tRVuU1BdHR0UhLS0NFRYXKte7ubrz//vsAgBEjRmDZsmV62WCLCY2NjXrNUVlwsi/++9//QqFQwM/PDydPnmSKF3V1dTHHfGTNmjU4cOAA2tvbsWvXLjz44INa74hhzbCFgeHDh1twJqbBloQJPs3VnHOxpvuy1FjatGX/rQcGBppE6CYIJc7OzlpV6xcKhTpvkatuN6beKJ1YY+Dq6qqVTUdHR4uG12s7TyX29vbw8vIy+riWRCkMAD11BkgYIAYyZhUGRCIRc8wONfr555+RmpqKlJQUfP7554wKWVNTozY0as+ePQgJCUFhYSEWLFiANWvWICUlBQEBARAKhZxt8PrCkK342AqwsuhO73N1czcWygc0dWFPR44cwY0bNwAAr7zyit73yQ6PN+U/+GvXrgEAkpOTeS0E9CYwMBCrV6/Gv//9b3R3d+PNN9/E999/b+lpmRz2KqJyOyNLO9N8csYNxZrulU9z5auDbqgtU43VX9vm5mZmn3mA0ggIgrBNwsLC4OzsDIlEgoKCAsjlcqNv1U0Q1oJZhQFl5VhHR0dOsTJlYbuXX36ZE5rUn5M4bNgwLF++HNu2bcPFixdxxx13wNnZGRkZGSaYPRf2Sqmyomnvc1OuppaVlQGA2oiHPXv2AOgRX3rniulCQUEBc6yt2KIPyhw1dSF+fGf16tXYs2cPKioqkJqaimPHjmHOnDmWnpZJYf9e6LNbBR+xtDAxUJ35/uCTg87XlX9TjSUWixEQEMCIzCQMEARhi9jZ2SEqKgrZ2dno6OhAZWWlSZ95CYLPmE0Sq62txZkzZwD0VIFV5o/JZDJcunQJwcHB/W69pw5l0RD2/qvmwM/Pj6lUy66kW1JSwoTdjxs3ziS22e/l+PHjOdfkcjmzPWFiYqLeqmdHRwe+/vprAD0FhEyZW6oUN65cuWIyG6bC2dmZs/PB2rVrNW6zZAuIxWJOJElfVcot7UzzycE1FGu6Vz7N1Vpt8WGskJAQvPLKK3jppZewePFilYJqBEEQtgJ7kYOdQkUQAw2TCQP19fU4d+4cGhoakJaWhvvuu4/JxX/wwQeZdjU1Nejs7NT7oUO5bYoulWONRUpKCgAgLS0Nqamp6OzsxMaNGwH0FOQxZLUe6BFNFi9ejB9++AHNzc2QSqW4cOEC7rvvPnR2dgIA7rvvPk6fiooKZgeBkpISvPXWWyo/H3zwAadPRkYGPvroI1y/fh0ikQgnTpzAbbfdxkQ+PP/88wbdR38kJSUBAP7++2+8+eabKCkpgUgkQnp6ukntGoulS5diypQpAHq+UJSCii3SOzpG0zaFtoClhYmB6sz3h7U6+4bastRYbm5uiI+PV1tojCAIwhaIjo6GQCAAQMIAMbAx2Te9SCTCokWLVF5PTk5mHGoAaGtrAwCdC750dXXh4MGD+OmnnxAWFoZbbrnFsAnrwapVq/Dtt9+iqakJy5cv51xbtmyZVnvf9sW5c+dw9uxZnD17Vu31O+64A8nJyZzXmpqamOMLFy7gwoULKv0CAwPx3HPPMeffffcddu3ahbffflul7dKlS3Hvvffqewta8fLLLyM1NRU1NTXYunUrtm7dalJ7xkYgEGD9+vW47bbboFAosGnTJixZssRoRYz4BFsYUG6txMbSzjKfHFhTY03vBZ/maq22LDGWLUc/EQRBKHFzc0NwcDAqKytRV1eHxsZGm3yGI4j+MFnEgKenJ2cV39vbG6tWrcKuXbvUhrcr96NVcv36dUyYMAGfffaZSttZs2YhJCQEjz32GIKCgvDtt98atfq/QCBAXFwc4uLiVPZjZTN48GDs3buXKcAG9BQ0XLJkCTZv3tyvnfDwcMTFxand3xcAxo4di9WrV6sUMfT29sZLL72ETz/9VKWPUChk5q7pZ/To0Zw+w4cPV6nnEBoainfeeQfbt29nVFRtCAgIYOxoW7AwMDAQx44dw//93/9xxBShUIjQ0FCkpKSopEzwjYkTJ2LJkiUAenZw6B2VYSt0d3cjNDSU+WxMteuGpbC0MMEn4cKa7sVanX1z2tJlrLNnz+K9997DgQMHUFhYyKvfS4IgzEtJSQlSU1Nx8OBBZGRkQC6XG91GcXExKisrjT6uLrCf5dm1lAhiICFQqPnGF4vFeq8U3HfffThy5AhGjhyJ06dPo6amBnK5HIMHD1brRFRWViI+Ph7x8fFITU1lXs/MzERSUhKT4wgAr732Gj777DM888wzGDRoEDZu3IjY2FgcPnxYr7kaC4VCgeLiYjQ2NmLo0KFM3QNjj9/Q0ABvb29ERUWp3RPWEORyOWpqalBTUwM/Pz+L7lfd0dEBqVSq1ZY4fKK6uhpTpkxBR0cHHB0dcebMGZsNtZdIJKirq0NISAjHaVB3bOnrfJqLtV/n01ysaa7WNtauXbtw9epVAD0raS+++KJOAjFBELbBtWvX8NNPP8HNzQ12dnZobm5GdHQ07r//fqPZyMrKws8//4wxY8Zg6dKlRhtXV2pqarBjxw4AMPo9EgSfkMlkeOaZZwD0LOSz/XOTJg0KBAIEBQX12SYwMBBOTk6orKyEQqHQ6uHjoYceQkhICOrr6/HRRx8hNTWVyVO3BAKBwKQOoHJ8U9oQCoUIDg5GcHCwyWxoi4uLi1Xulx0UFIRVq1bhP//5D6RSKdavX2+z9QacnJwsUtdDHyy9ym9NK+/9YU33wqe5WmrlX5+xFAoFioqKmPOIiAgSBQhigDJy5EjcfffdGDVqFBQKBb7//nvk5eWhurq63+d7bUhPT8ehQ4eMMFPDGTJkCDw9PdHc3IySkhJIpVI4OjpaeloEYVYsvlGnnZ0dJk+ejPr6ely8eFGnvv/85z/h7u6OTZs2mWh2BKEbTz/9NJN+cujQIZw8edKyEzIRfHK6Bjq2JEwMpLlaylZ/baurq5naPwAMrpVDEIT1Ymdnx+wYxl4Eu3nzpsFji0QiHDhwQK8dyUyBQCBg0gm6u7tRUlJi4RkRhPmxuDAA9EQAAMD777+Prq4urfv5+vrioYcewpUrV9QW2SMIc+Pm5obXX3+dOV+3bp1K/QxrpaGhASNHjkRKSgqeffZZlJWVmcyWpZ1dvl/nE9b0XtjSXIxpiw07WgDoiRggiIGKQqFAS0sLmpqatP4u7+7uRlNTE1pbW008O/PT0dEBAFrXkOoLf39/PPTQQ2oLlVsK2raQGOjwYv+hO+64A0uWLMG+ffswc+ZMzJo1C6WlpVr1ffLJJ7Fjxw7s2rULU6dONe1ECUILli9fji+++AKZmZnIzs7Gnj17sHLlSktPy2CKi4shEokgEolw4cIFzs4WhHmxtDPOJ+GCT3Plk7OvbxQBWxhwc3ODv7+/7pMjCJ4il8vx66+/orW1FQkJCX1GxBQWFuLw4cNoaGgA0JPmOHPmTEybNk3j2CdPnsTFixeZLaUDAgKwcOFCg1LvsrOzme2bFy9eDE9PT73HMgSFQoGcnBy4u7sjLCzMKGOGh4fzaveTyMhIODg4oKurC/n5+VqnOBOErWD0iIF33nkHx44dw+eff651H4FAgO3bt2PdunWws7PD3r17UV5ejjvvvBNz5sxh2sXGxmLRokWc/PPBgwfjhRdegJ2dnc2szBLWjVAoxMaNG5kvk3feeQfNzc0WnpXhsLcqdHR0VHnQsbQzauvXrQlreq9saS6G2qL6AoStc+LECVy9ehXFxcWclJne1NTUYM+ePYwoAPSslh85cgQZGRkaxz59+jQjCgBAXV0ddu/ejZaWFr3nLBaLUVxcjOLiYkilUr3HMZTr16+jtrYWM2fOhL09L9YVjY6DgwMTJdXS0oLa2lrLToggTEBfzxJG/8vWt5q9vb09Vq9ejdWrV2tsc//996utEvrCCy/oZZMgTMXkyZORkpKCAwcOMEUy165da+lpGQQ7dSA0NNToO2MQfWNpZ9uahA0+3Ys12aqpqeE4S5RGQNgSJ0+exJkzZ7Rqe/z4ccjlcjg4OGD58uXw8PDAd999h8bGRpw4cQLx8fGcrbfb29tx/vx5AD3fj3feeScqKiqwb98+dHZ24ty5c5g/f75J7stYFBUVITs7mzmfP38+U3xPLBbj999/R0BAACZOnKjz2H///TfjZHt5eSEhIcE4kzYBMTExzHaF+fn5Ktt5E4Qtw4saAwRhi7z55ptwcnICAGzfvt3qC9mwhQFlGKGlnU1bv25L2NJ7ZU3Ovi4UFhZyzkkYIGwBmUymUzHgjo4OJnJm7NixiIqKQkBAABITEwH0rCSXl5dz+uTm5jJRq4mJifDx8cHYsWOZYnZsh5uv3Lx5Ezk5OcwPOwr34MGDkEgkWLhwoV6LAhUVFcy47OhDPqL8zAAwAgFBDBRsMxaIIHhAeHg4nnjiCXz88ceQSqXYsGEDdu7caelp6Q37QchY+YVE31hamBhIzro1Ofum2t6QLQy4ublh0KBBWtshiM7OTjQ3N8PR0REeHh6cFXVLcvjwYVy6dAkAMGLECOTm5vbZvqamBnK5HAA4KXPsLaOrq6s5wllVVRVzzN72OSoqCnl5eWhpaUFzc7PJ6wN0d3ejq6sLzs7OKmlAXV1d6O7uVnsNACZNmoRJkyapvF5QUICCggJMnz6931oJbW1taG9vh6enJ7MwAgBLly7V847Mj5eXFwYPHowbN26gqqoKra2tcHd3t/S0CMIskDBAECbk+eefx/fff4+6ujr89ttvePTRR3HLLbdYelp6QcIAoSvW5KwbCp/mqu9cZs+ejeDgYOTl5cHT05PqCxBaUVJSglOnTqGsrIz53RIKhQgJCUF8fDzGjx9v0flNmDABubm5SElJgYeHR7/CgEgkYo79/PyYYzc3Nzg7O0MikXDaAEB9fT0AwMPDg+MQs8U1kUhkdGFAIpHgwoULKC0tRV1dHdrb2wEAzs7OiImJwa233orKykpcvHiRES+cnZ0xZswYJCUlceaqibS0NDg7O2PGjBka24hEIhw8eJATWRgUFITbb7+dI5RYC9HR0bhx4wYUCgUKCwsRHx9v6SkRhFkgYYAgTIi7uzteffVVPP/88wCA119/HceOHePNSoq2dHV1cYrw9CUMWNoZpOv8vm5OrOle+TCX8PBwBAcH0w4/hNakpaXh999/V3ldLpejvLwcEonE4sJAYGAgnnnmGTg4OHBW9jXBLh7o4+PDuebu7g6JRKJSTFAikaht7+bmxhwbUoBQE2KxWG2KhEQiwdWrV3H16lW119LS0iASifDggw/2KQB2dnaisLAQY8aM4RT+7j2HXbt2MaKEkurqat1uhkfExMTg7NmzAHrqDJAwQAwUSBggCBOzYsUKfPnll7h69SqysrKwd+9eLF9zxTTUAAAgAElEQVS+3NLT0onKykpOviFFDBD6Yk3OuqHw6V60tUW7+xDaUldXh8OHDwPocZiTkpIQEhKCrq4u/P7776isrDSqPYVCodXWdgKBQKVqvoODg9Z22JX/e4+jLMbX2tqqto+m9ur6GJsJEyYgLi4Ozs7OyMzMZIohOjk5Yfr06YiOjoZCocCpU6eQl5eH0tJSFBUVYdiwYRrHrKurg1wuh0gkwoEDB5jXw8LCEBcXBwD466+/0N7eDoFAgCVLlmD06NGQSCTIy8tDUFCQSe/ZVISEhMDV1RXt7e0oKiqCTCajgsvEgICEAYIwMUKhEG+99RYWL14MAFi/fj1SUlKsKmett/LfWxiwtLNH1/l9nU/Y0nthzLkUFBTAy8uLs8JJEH1x7tw5Jhf/vvvu4ziBrq6uRrdXXl6OXbt29dvOw8PDoN2q2MJAb2dQKTD03jZQed47GpAtFJh6q8Hw8HDmu3nu3LkoKSlBTU0NPDw8MGvWLKbd4sWLsXnzZsjlcuTl5fUpDHR1dcHFxQWNjY1obGxkXre3t2eEgYqKCgA99RTGjh0LoCdSQpdIERcXF46IYmmEQiGGDRuGq1evorOzE2VlZYiMjLT0tAjC5JAwQBBmYMaMGZg/fz7++OMPiEQibN26Fa+++qqlp6U106dPR2VlJcrKylBWVsbJuySI/rC0M84n4YJP98Ie65tvvkFLSwvc3Nwwbdo0TJ8+3Wh2CNtDoVAgLy8PQI9QbK0rw+ro6upijns7+kphoHfkgiZhgB2poE20gzGJiopCTU0NGhoa0NXVxczFxcUFwcHBqKioQE1NTZ9jREZG4pVXXumzjVIc0text7e379eGJYiOjmZSMQoKCkgYIAYEJAyYAYVCoXMRJ3P1IczHhg0bcPz4cUilUmzduhX3338/QkNDLT0trVEWM4qOjrb0VLTC0s6mrV+3JWzpvdRnLvX19Uz+c1tbG4XMEv3S3NzM5NWba5/3kJAQPPfcc/22M7SGD9uB7/1MpYwA6J1yoxQT+ooYMHeajoeHB4Cev/n29nZ4eXkx15RFEI2R3uDp6YmamhqUlZWhra3NZqKOoqOjYWdnB5lMhry8PMybN8/SUyIIk0PCgJZs3LhRrdrr5OSkVulUKBTYvn07du7ciYqKCnh4eOD222/H+vXrVYrTKGloaMC6devwxx9/QCwWIzw8HI8++iieeOIJjQ7/hQsXsGHDBly+fBkKhQLjx4/HmjVrdCoeVVJSgsOHDyM7OxsikQhNTU1wd3dHeHg4EhISsGDBAl6FeFkrEREReOSRR7B9+3ZIJBJs2LABO3bssPS09MbSztRAclz5iKU/X1v6/bH0vZSUlHDOqYYI0R/Nzc3MsbHSBhobG+Hg4KAxzc7Ozo7j3JoKtjPf+29L+RyoLsWgq6uLWT3v3V5dH1Pj7OzMHEskEs57p7xmjPSGyZMnIy8vD21tbdi1axeWLl1qNrHIlDg7OyMkJARlZWW4efMmGhoaKFqSsHlIGNCSDz/8UOUfPtCjyKoTBtatW4dt27Yx52KxGHv27MH169fx559/qnxBdHZ2YuHChUxoHgCUlpZizZo1aG1txYsvvqhi4+LFi7jzzjs5/9gvXLiAO++8E6mpqRg1apRW97Z//368/fbbaq/t3r0bYWFh2LJlC4WWGoEXX3wRe/fuRUNDA3755Rc89NBDVlEB/I033kBLSwsCAwNx6623YuLEiZaeEkGYFFsSJvqzVVxczBw7ODhg8ODBpp4SYeWwnzs0VavXhZKSEnz11VdYsmQJk7tuKdjh/zKZTG2dAHVFBtUJA+y0hN59TE1fEaTGjC6NiopCYmIiTpw4gfr6enz66aeYMGECkpOTtdoOkc/ExMQwWzDm5+db7XbTBKEt1rVnmoWQSqXMP/vp06dj0aJFzM+CBQtU2hcXF+OTTz4B0FMl9tdff8XKlSsBAJmZmfjll19U+nz++eeMKLBq1Srs27ePcew/+OAD3Lx5U6XPv/71L0ilUri7u+PTTz/F1q1b4ejoCKlUinfeeUeve01MTMTKlSuRlJQEf39/AD0Ff+655x5cvnxZrzGJ/+Hl5YWXX34ZQM/D+rp163i1cqmJ3377Dbt378a7776LCxcumMyOpZ0xuj6wr/MJc94rO2IgJCSEUgkIndDFybx58yauXr2Kjo4One20tbXhypUr/f5cv35d57HZsCMkNTn6vaMolee90wXYEQO2HHmZkJCAe++9Fx4eHlAoFLh06RK+/vprkxdcNDUxMTHMcX5+vgVnQhDmgSIGtECZRwf0VJTvbz/T3377jfky+eCDDzBq1CjccsstOHXqFMrLy/Hjjz9i2bJlnD5KsSAqKgrr16+HQCDARx99hOTkZHR2duLAgQN48MEHmfYlJSXIzMwEADz22GO48847AQDXr1/Htm3bcOzYMb3Cnl599VVMmDABQM8X4EsvvYRvvvkGEokEa9euxcGDB3Uaj1DlH//4B7788kvk5OQgPT0dv/zyC5YuXWrpaWlEJpPhxo0bzHlfRaZsyTEjBh6WFiYsEUXQ3t6Ouro65nVrqntCWA72qnpnZ6fW/dLT03Hu3DmsXr1a50iD+vp67Nu3r992Hh4eWkdMqoPtwCur8itR3mvvdAdln94pp+z3xpp2ItKH4cOHIywsDAcPHkR2djaqqqpw9uxZzJ4929JT0xt/f3/4+vri5s2bKC8vh0Qi4aRoEIStYfKIAVtwBNiKpzb5bRcvXgQAeHt7M19OdnZ2zD/Hv//+m/O+dHR04Nq1awCAqVOnMur7uHHjmFX7S5cuqbUBgBPiP3fuXAA9X06GrvA7ODjgvffeQ0REBICeNIXe29YpsYXP2VzY2dlxIjrWr1+v1+qJuairq+M87NhS9WltsLQzSNetx9k2NaZ4L0pLSzmvkzBAaIOysB3AXTwxJU5OTggODu73x9D8dnb4O3uLPrlcDrFYDIB7/8D/cvbZ7Xuf9+6jLex0BL5H87i4uGDp0qUIDg4G0CMEWTvKgssymQxFRUUWng1BmBajRwxcunQJ3333Hf766y9UVlaio6MDAQEBmDNnDp5++uk+90vlK+3t7cyxspJrXyjD2Hrf68iRIwH0VIGtrKxkHsDy8vKY8LOoqChOnxEjRkAkEiEnJ0etjd52RowYwRzn5OQgKSmp3/n2hb29PRYsWMDUS8jMzGQcwzNnzuDLL79ERkYGampqYGdnh2nTpuGll17C5MmTDbJr68yaNQtJSUlITU1FdXU1/vvf/6qtI8EHeotBxhYGLO0Y2pLjSOiOpX+/LP3717vwYEhIiIVmQlgTXl5eTOpi798hbUhPT4erqyv8/PyYZyOg59mmqKgIDg4OiImJwfDhw5lrQ4YMwWOPPWaU+fdFQEAAc9zQ0IDw8HAAQFNTE/Osxm4D9Kwsl5WVobW1lbOq3NDQoHZcXVCKEYBx6jmYGqFQiOjoaFRVVaGtrY2zVaI1Eh0dzSzGFRQUYPTo0RaeEUGYDqNHDLz//vv46quvkJ+fj/b2digUCty4cQN79uxBQkIC/vzzT2ObNDlNTU3MsTaKr7L90KFDOa8rV/8BoKqqijlmK8q9+yiLQPV2zpQ2HB0dOY6an58fU+CGbcMQlMovwP2S++uvv/Dbb7+hoqIC3d3d6OzsxIkTJ7Bw4UKr/JzNzdtvv818WX700UdG+7yMDXteAoEAQ4YM4Vznu+MzELG0M2vp67aEqd8rtlMXEBBgFY4HYXmEQiETTVhVVYXa2lqd+itTCnovelRUVKC+vh7Xrl3Dd999h9zcXGNNWWsCAwOZlXn2919lZSVzzH4uAriCGvt5raKiAkDPolJ/z4/d3d0qNQrYq9Te3t5WE8ZeX18PoOcZ1dxFF41NREQEE0VSUFAwoL5/iIGHyf5ahwwZgrfeeguenp5IT0/Hli1bIJFI8Pjjj+PChQtWtZWJ0gm3s7Prt3iMQqFgwsJ7P2Cx93Zl52y3tbUxx723/VH2aWhogEwmY76slFEMzs7OnH1zBQIB3NzcIBaLOTYMgR3mzp5fQkICioqKkJCQgEGDBuHy5cvYunUrOjo68OKLLyIxMdGmi+0YSnR0NB588EF8/vnn6OjowKZNm7B161ZLT0sF9kOOv7+/TXymlnZcyTE2LZZ+/63l81UoFBzhm9IICF2YMGECU5Dtu+++w7x58+Dv74/6+nqIRKI++z7++ONqayDNmzcPcXFxaG1txbZt23Du3DlOJKQ5cHZ2RlRUFPLz85GVlYUxY8bAzc0Np0+fBtDj5Pf+W4mJiWH2vD99+jR8fHxQXV2NgoICANBqlTkjIwPnz5/HpEmTEBQUBLlcjqysLCZigB09wSf++OMP+Pn5ISoqCvb29sjNzWWiWiMjI426A4IlsLe3x9ChQ5Gbm4u2tjZUVVVRZBVhs5hMGPDx8WEK4iUlJSE2NhYPPvgg2trasGXLFmzcuNFUpjXy1FNPMf/Y+2LNmjW4++67mXPlKrlAIMCHH36IhIQEjBs3Tm3fjo4O5qGud+gUWyhoaWlhjltbW5nj3k6Xso9MJkN7ezujOCvFBHXhWc7OzhCLxf8fe/cd31S9/w/8ldmR7kUHpZOySgHLLHAZAgICgqBy4Yp6QVC8ilz8OlARRL1uxT0ABQGVIYKACMieZRQoFChQ6KClIx1p05X1+yOPnN9JkzZJm+acJO/n49HHI8lJTt4naZu83+fzeX+MnqMtDE0OAeMq+YABAzBgwADm+pgxYxAaGooXX3wRRUVFOHfunFMsxcell19+Gb/99hvKy8uxceNGzJ49u9nfLa6wCwP2mkbgKokVIVyw19+HQCDAq6++ipKSEmRnZyMoKMhuMRLXl5SUhOTkZFy6dAlVVVXYuHGj3fbt4+OD2NhYXL16FWq12uFnnUeMGIEbN26gsbERP/74o9G24cOHmyS73t7eGDx4MA4fPozbt29jxYoVzDYPDw+kpaVZfM5z586hsrISe/fuNdnm5+eHoUOHtu5g2pFGo8G5c+fMrj7g4eGBe++9l4Oo7C8pKYkZvZKdnU2FAeKyHLZc4f3338804tu1a5ejntZIWVkZCgsLLf6wz+AbHgfoh3m99dZbGD16NMaNG8dUgtnY/QiafpCZ62wLGI8YaKmYwH6M4XnMNaIxnNW3pVNwczIzM7F7924A+mkU99xzT4v3Z/c0uHHjRpuf39UFBARg4cKFAPSNjRYvXsy7pLaoqIi5bBjpQ4m57bguhtB2597envz9/ZGSkkJfdolNBAIBHnzwQYwePdqoqBQWFmZVo2ZLZDIZtFqtXZvzenh4ID4+HvHx8UajOJuKiIjAv/71L6MpoDKZDGPHjm32e9CIESMwfPhwo+H+ERERmDVrllXTUB988EH06tXL6HufVCpFr169MGfOHLOrGkilUuZ4mm739fVltjU96RQSEoL4+Himf0JbDB8+HGFhYUyxRCwWIykpCbNnzzZ6/ZyZoQEhQMsWEtfm0BLskCFDkJWVhYKCApSUlLS6EUtrLVmyBM8++6zF+zVtAJiWlobXXnsNt27dwr59+1BcXIzTp09jwoQJ2Ldvn9GQMnZhoGnSzv6wYCft7I6+TYsJ7O647PsZLpurohs+VFpTGKipqUFpaSkKCgpw/PhxfPrpp0xH+tmzZ1scRm7oiQDApMBCzJszZw7WrFmDGzdu4PTp09i+fTseeOABrsNisOdYNp1X6UxcObEjrq89fz+bzmsmxFpCoRCDBw/G4MGDme8KYrEYGzZsMGqa19p9A/b93xoSEoJZs2ZZdd/4+Hg888wzUCqV0Gg08PHxMZq62ZRAIMDw4cMxdOhQ1NTUQCKRmEwPbUlYWBimTJkCrVbLjCSVyWQtrkQQGBjY7PHExcWZ9K0yGDhwoF1GdBqaTqelpUGj0aCxsRGenp5OP32gKV9fX0RGRqKwsBB3796FQqGwqhk5Ic7GoYUBdiHg5s2bDi8MtHZd2x49ejDzwxobG/G///0Pn3/+OeRyOZYtW4aVK1cy92Un8lqt1mg/7KFW7ISePUqg6Rc09jI17PsZLpv7QmcoCLSmC+zUqVPN3j5s2DD83//9n8ntdXV1OHbsGAoKCuDt7W30nlKiZB2JRIJly5Zh5syZAIA333wTY8eONfpd4tL777+P/Px8FBUVtWltaEsoMecfrosp7r69va1fvx5BQUEICQlBVFRUi2dQCbHE2ZvMNcfWvwuRSNSmERNCodApk06RSOTSzUuTkpKYqZXZ2dno27cvxxERYn8O/S/ObjTT1koyV6RSKd544w1cuXIF+/btw86dO6FUKpkPDnZ1mL32O2DcxI89eoD9ocMuBDR9DDtRNDym6XOwH2OPxDIxMRGzZ8/Gv//9b5Oq9W+//YaXX34Z5eXlbX4ed3ffffdhxIgROHDgAHJzc/HNN99gwYIFXIcFAEhOTkZycrJJoaspvidBXOA6saT3xLm15/tbXV2NM2fOMNdHjRqFIUOG2BYgITYynHG39HlCCN907twZBw8eBKBfnYAKA8QVObQwwD6D3TQB1mg02LJlCzZv3ozi4mJER0dj4MCBmD17tt0qkDdv3jTqwNycmJgYhISEtHifadOmYd++fVCpVLh8+TL69+8PwLgnQEtJPruAwJ4X1rSBS3OPMVxuqTBgyxA2g3fffRfJycmQyWTo2LEjAgMDzd5v//79eOqpp6DVaiGVSjFw4ED4+PigoKAAFy9etPl5CfDWW29h2LBhUKvV+OSTTzB9+nSjqRnEdpRYk6boPdfLzc01um6vxqKEtMQw176iosJl5p8T9xAZGQlfX19UV1cjJycHKpWqVSNzCeEzhxYGDE38AOOkVafT4cknn8T27dvRpUsX9OzZEzdu3MDbb7+Nf/7zn3YrDLz66qvYt2+fxft98MEHeOKJJ1q8D7tJE/uMuVgshoeHBxoaGlpM8tlD7tkjBpr2BTD0LAgICDCa399Sg0HD3P7WfOj26dMHqampFu+3YsUKaLVaBAQEYN++fcx6xo2NjfQFs5W6dOmCmTNnYs2aNaipqcG7776LTz75hNOYysrKsHnzZoSEhCA8PBx9+/Z16HKF7pKk2RPXxRC+b29vXB+ftdsN66sb0P9t4gidO3eGUCjE77//jtjYWIjFYmYFK0L4TCAQIDExERkZGVCpVLh9+7ZRU0JCXAFnhYHw8HDm8saNG7F9+3Y8+OCD+Prrr5kh6wUFBWbXuW0tHx8fq+ZtWZP4sEcesKcFGJ6noaEBeXl5Rrc3d/zsEQNNv6wZzuqw789+TH19PcrKypgRDlVVVUxBwtBBvj0YRgWMHz+eKQqQtlu8eDG2bt0KhUKB9evX4/HHH0evXr04i+fatWt47bXXmOtXrlwx+pt09iSuPXCd+BFiDfbnU3BwsMnnGCFtMWnSJKhUKpMpiIGBgZgxYwZOnz6N6upq5vuDr68vUlNTjT5foqOjoVar6aws4Y2kpCRkZGQA0PcZoMIAcTUOLQwYlvgQi8VGnf/XrFkDAFi0aJHRhwj7rHxOTg527tyJ/Px8REZGYubMmUZnxMvKyrB7925cvXoVKpUKycnJePjhh43m2bObBLbVzZs3zcYJ6CvicrkcOTk5Zh8jlUqNkumkpCTmcnOP6dKli9Ht7MfcuHGDKQywH8++j70ZRjJYswQPsV5wcDAWLlyIZcuWQavV4o033sDvv//OWTwlJSXMZbFY3OzUEmdCibnjcV0soe2m2wsKCpjLzrzaCOEnc0vrGSQmJiIxMdHotpCQEEycONHoNkN/G0L4IiEhAWKxGGq1GtnZ2bj//vu5DokQu2p+3RU7k8vlOHz4MACgf//+zNmJxsZGZGRkICYmxiT5ZduzZw/efvttbNy4EW+99RaGDBlilLSsXr0azz//PH755Rf8/vvvWLhwIcaOHYvq6mq7H0tDQwPWr18PQF8UaPoBZ1jj9u7duygtLWVuP3HiBAD96gjsUQlBQUHMWrKZmZnM7YWFhczje/bsafQcffr0YS6z5/QbngMAevfu3Yqjs45hzeJLly6123O4q3nz5iE+Ph4AcPToUfz555+cxVJcXMxcDg0NbXGpJkehxN0UHxNPwl/l5eXMcmgATSMghBBrSKVS5vt6VVWV0XckR9HpdKirq0NVVRWqqqpQV1dHn8HEbtptxEB5eTnOnz+P7t274+bNm3jhhRdQX18PAEZrrt69excqlcrisPeHH34Y//rXv+Dj44Pff/8dc+bMwcqVK7F48WKj+23duhU9e/bEF198gaVLl+LLL7/Eyy+/3OrjuHDhAs6cOYMxY8YgODgYly9fxpIlS5jRD88//7zJY8aPH4+vvvoKOp0On3/+OZYtW4Y9e/Yww48mTZpk9jFff/01zpw5g5MnT6J///744IMPmO0TJkwwun/v3r0RERGBoqIirF27Fg8//DDUajVWrVoFAEhJSWnXIf4jRozAxo0bcezYMXz44YeYNWsWfH19jUZSkNaRSqV4/fXXmT4Xr7/+Ou69916Hzu03YBe27LW8qDsmmZR48w/XxRIutzed5kaFAUIIsU7nzp2Z77pZWVnw9/e321QsnU4HhUKB3Nxc3LlzB8XFxaioqEBdXR00Gg20Wm2z/9sFAgGEQiGEQiG8vLwQEBCADh06ICoqCjExMQgICIBAILBLnMR1tVthoLi4GKNGjTK5fejQoZgyZQpz3TAk3XAGujns7ZMnT8bChQuZ5NycuXPn4tNPP8W2bdvaVBhYv349Vq9ejZdeeslk2/jx4/HYY4+Z3D5gwAAMHToUR44cwVdffYVVq1YxTQKDg4Px6KOPmjxm3rx5+Omnn1BTU4MJEyYwDQwBYOLEiSajEoRCIRYtWoQXXngBV69eRdeuXQH8/1UKzBUs7Omll17C33//DblcjnfffRfvvvtuuz6fu5k4cSLS0tJw/Phx3L59GytXrsT8+fMdHgd7VI6hMOCOSaw7HnNb8TkxdnfsXjZCodCkhw0hhBDzoqOjmcuHDh3CoUOH4OPjg5SUFAwePNioobg17t69i4yMDNy8eRPl5eWtXspTp9NBo9FAo9FApVJBoVAgLy8Pp0+fBqAvHAQGBiIuLg59+vRBVFQUFQqIiXYrDMhkMnh4eDAd+z09PfHwww/jzTffNOojYBiarNFoLO6zuLgYmZmZ8PHxgYeHB9N93xypVIpu3brh7Nmz0Ol0rf7lj4iIgL+/P6qqqpjbQkJCMHfuXDz33HNm9ysQCLBy5UrMmzcPBw8eZBL8jh074rvvvjM7T7tjx47YsGEDnnrqKRQWFjKPGTlyJD7++GOzsT322GMoKSnBihUrmPt7eHjgv//9r9lRCc3x9/dnhkaxezK0JCYmBnv27MEnn3yCP//8E3K53Gh/ffr0MZn+QGzzzjvvYOTIkdBqtfjoo4/wyCOP2LUZpzXMFQb4iJJIU5R4k+awRwyEhoZyMhqJEEKcTX5+PjZs2GBye01NDU6cOIGMjAzMnDnTpPcYm1arxYULF3Dq1CmUlpZalf+IxWJIpVKIxWKIRCKIxWKmKadKpYJGo4FarYZarYZKpTJZLh3Qf2aXl5ejvLwcZ8+ehVAoRHBwMPr164d77rkHYrFD284Rnmq334JOnTph//79zHCbmJgYs8sOste0bcny5cvx5ZdfMmfErREUFITGxkZUVVUhICDAhuj/v4ULF2L+/PnIyclBSUkJgoKC0L17d5NOu00FBwdj8+bNyM3NRV5eHvz8/JCcnNzi49LS0pCRkYFLly6hqqoKMTExTMJujkAgwIsvvoi5c+fi6tWrAIBu3brB39/fpmN8/PHH8fjjj9v0GED/nn766af45JNPUFJSgsbGRgQGBrbYdIhYLzk5GdOnT8eGDRtQVVWF9957D++//75DY2AXBgwNLtuDOyahlJjbH9fFEGfZHh8fD41Gg4KCAppGQAghVqisrMRPP/3UbB6i0+lQX1+PtWvX4plnnjH5Lp6fn4+DBw/i9u3bzRYDJBIJgoKC4OPjAx8fH8hkMuZkqC0aGxuhVCpRU1PD/FRUVBgtca7ValFaWopdu3Zh9+7d6NixI/7xj3+YjFAm7qVdy0MSiYQZ4t6cDh06wMvLC3l5ec2e2T958iRWrFiByZMnY9myZVCr1bjvvvssPr9SqYRAIIC3t3erjwHQn0Xv1q0bunXrZvNjLSX3TYlEIpuXpwsICMDAgQNtDc1uBAIBOnTowNnzu7LXX38df/zxB6qrq7FmzRo8/vjj6N69u8Oenz0SpC2jFVwxiaXE3RTXiS+xzrhx4zB69GhUV1czy9sSQghp3p49e6BWq1sc6q/T6aBWq7F3715MmzYNWq0WR48exfHjx5k+a2xisRjBwcEICQlBcHAw/Pz87DK8XyqVQiqVmoxQrq6uRllZGcrKyiCXy5mRBVqtFnl5eVi3bh2kUin69u2LkSNH0igCN8T5Oy4UCpGamoqjR4/i8uXLZpemuXDhAgB93wDDskrWrGtbVFSEgIAAGiZJnFZoaCieffZZvPPOO9BoNHjttdfw22+/Oez5DVOBgJb7gDhjwuaOSSgl5o7HdbGkue1arRZCodBuTbMIIcRV1dXV4cqVK1Z9Bmq1WmRlZWHfvn1IT083Kb4KhUKEhoaiY8eOCA8Pd+hqT76+vvD19UVcXBx0Oh0qKipQUFCAO3fuMCMhGhsbcfz4cZw6dQrdunXDhAkT6HPCjXBeGACA6dOn4+jRo/jkk0/w/fffM38kDQ0N8PDwYBp53Llzx+p93rhxA9nZ2Rg7dmy7xEyIozzzzDNYt24d8vLycPjwYezbt89sY09702q1eO6551BeXo6KigreDS9zxyTWHY/ZEr4m3nxlGJlny7Q8QghxZ8XFxTb9rzeMFGALDAxEdHQ0IiMjrTq52d4EAgGCgoKYKdJFRUUoKChAWVkZAH3vt0uXLiErKwvJycmYOHEiL8Yb9hQAACAASURBVOIm7YsXhYGHHnoIv/76K7Zt24a8vDwMGzYM1dXV+Ouvv7By5Ur84x//QGBgIF566SWcO3cOWq222Z4E77zzDrp06YLt27dDp9OZXTWAEGfi4eGB119/HU8++SQA/fSCYcOGtfs/aKFQiBdffBEAWt0lty2cLeGyhqslmdZwt8Sb77799lvI5XKEhYUhISEBqampXIdECCG81pZCalBQEBITE3k95VYsFiM6OhrR0dFQKBS4efMm7ty5A51OB61Wi4sXLyIrKwvjxo2jzwwXJ1q6dOnSpjc2NDS0OhHo0qULJk6ciIkTJ1rd1EgoFGLSpElQqVQ4ffo09u3bh5ycHIwePRr33nsvYmJiMGLECOTm5uLw4cO4evUqevTogfvvvx/33HMPAODYsWM4duwYpFIpjh8/Dl9fX7z00kuYNm1aq46DED7p1q0bDh8+jIKCApSXlyMkJMRh/5xbm5i5YsJHx2T7dlfE9SiEtmzftm0bKisrUVpaCm9vb4t9gAghxN3pdDqkp6fb9BjD97SkpCSnasrt4eGBiIgIREVFQavVQqFQANCfIMrOzkZmZiYSExPb3L+NcEer1TK96Tw8PIwa4wt0Zr5BVFVVcTrMUKPRWOz639T777+P999/HwcOHKBl8ohLunjxIkaNGgWtVouAgACkp6e3OO+/rRQKBQoLCxEYGIiAgABmhILhXwb7X4e5y3zczseY6JjoNXHUdoVCgSVLljDXx4wZg7S0NBBCCGmeTqfD559/joqKCquK4V5eXg6Z8ukINTU1yMzMZKYYAPppCP3798fYsWPt0iyROJZarcbzzz8PAPDz8zMagey4jhc2sLUoQIg7SElJwdSpUwHol8356KOP2vX59u3bhyFDhqBHjx6IjY11ijPDzhCjrdzxmGiUgil7vGaFhYVGt/F5aCshhPCFQCDA8OHDrf7sac0qZnzl4+ODQYMGoX///kwTQp1Oh1OnTuHLL7+EUqnkOEJiT7wsDBBCzFuyZAkzfGvVqlW4evVquz0Xe0WCgIAAh1SFXTEhpGNyD85Q7CgqKjK6ToUBQgixTkpKCvr162fxfnFxccwKaq6kQ4cOGD58OGJjY5nbysrK8Mknn+D69evcBUZs1tL3DZcpDDzyyCPYsmUL4uLiuA6FkHYTERGB//znPwD0Q4HefPPNdnsua5cqtIUzJox8SOjszRWPyRJnSNzbG3vEgLe3t1PNeyWEEK75+vo2e5JELBajZ8+eZpdddxUSiQQ9e/ZE//79maXg1Wo11q9fjz///JPj6Ig9uExhICYmBsOGDaMvOsTlPffcc+jYsSMAYM+ePdi/f3+7PA975Y/AwECrHuOMyZMrxuyMx2SJOx6zJba+JuwRAzRagBBCrLdr1y7s37+f+b/q6emJ+Ph4dO/eHf369cOYMWOMzqa7sg4dOmDYsGFGJ41OnTqFdevWueVnsStxmcIAIe7C09MTixcvZq6//vrr7dIslF0YCAgIAOCcyRfFzA/umNjzaZSCVqtFcXExc50KA4QQYplOp8OGDRuMViXo1KkTRo4ciR49eiAhIQHh4eFu1x/N09MTaWlpSEhIYG67ceMGVq5cCY1Gw2FkpC2oMECIE3rooYeYpTqvXbuGdevW2f05DEvUAPqupVxxxYTSFWN2x2NypmMuKyuDSqViroeFhXEYDSGE8J9Wq8Xq1auRnZ3N3JaYmIhevXq5XSHAHIFAgO7du6N3797MFIs7d+7g888/R0NDA8fRkdagwgAhTkggEODtt99m/hH/73//M0rk7YG9P39/f7vum82ZkisDV0oYDVwxZmc8prZq7phpRQJCCLGeVqvFN998g/z8fAD6710pKSkuteKAvURHR6Nv374QCvVpZWVlJb744gujYjRxDlQYIMRJ9evXD5MnTwYAyOVyfPzxx3bdv71GDDhjcuaKMbviMTkjrkYpREdH48EHH0T//v3RsWNHhIaGtmo/hBDiDtatW4eSkhIAgFAoxD333IOYmBiOo+Kv8PBwDBw4EBKJBABQXV2Nb7/9FlqtluPIiC2oMECIE1u6dCm8vLwAAN999x1ycnLstm92YcDX17fZ+zlj8kYxO4Y7Fiv4ekzBwcEYOnQoJk2ahDlz5jAdpQkhhBjbtGkT831KKBSif//+iIyM5Dgq/gsODsagQYMgFosB6Kew/fjjj7z9XCSmqDBAiBOLiorCU089BQBobGy06/KFXbp0QdeuXREZGYmQkBC77dcRnPFDiGJ2DGdN7NuCfUx09oYQQpq3e/duXL58GYB++kCfPn1ohJUN/P390a9fP2ZaQV5eHjZu3MhxVMRaVBggxMk9//zzzHzhHTt24NChQ3bZ76+//oojR47g/PnzePjhh+2yT3txxuSNYnYMZ4zZkrYWM7RaLe7evQu1Wk2FAUIIaUZGRgZOnjzJXO/RoweNFGiFkJAQ9OnTh+mDdeXKFRw8eJDboIhVqDBAiJOTyWR45ZVXmOtLliyx21Ixhn/qjuaMyR0fY3bGs+POGLMlXB+TXC7He++9hxdffBGffPIJbty40a7PRwghzqa8vBx//PEHc71z586Ii4vjMCLnFhkZieTkZOb6oUOHUFBQwGFExBpUGCDEBcyYMQO9evUCAFy+fBk///wzxxG1zBWTOy7wMSZLXDFmvh9TaWkpAH2cVVVV8PDw4DgiQgjhD61Wix9++IEZUdWhQwd07dqV46icX2xsLDp16gRA//nz008/0UoFPEeFAUJcgFAoNOov8NZbb6G6urrV+7ty5Qp69OiBtLQ0jBs3Dnfv3rXp8XxPlMzhY8x8jMkSipkf2MdUVlZmtC0oKMjR4RBCCG9t2rSJ+c7k5eWF3r17cxyR6+jZsyezslVDQwPWrFnDcUSkJVQYIMRFDB48GBMmTACgTwQ+++yzVu+rqqoKxcXFyM7OxtmzZ5kmMs6Mj8kfH2OyhGJ2DHuOUmAXBqRSKWQyWavjIoQQV5KZmYkrV64A0J9kSU1NpVVb7MjwmhpWKigoKMDRo0c5joo0x/m/7RNCGMuWLWM+0L766ivk5eW1aj+1tbVG15smEnxMtCgm+6CYHcORMbMLA8HBwQ57XkII4TONRmPUV6Br164IDAzkMCLX5OPjw0x3BYADBw6grq6Ow4hIc6gwQIgLiYmJwdy5cwHoh2wtX768Vfth/8MWCATw9PS0S3xt4YzJHx854+vIx5idqe8AuzBA0wgIIURv+/btaGxsBKD/35iQkMBxRK4rMjIS4eHhAPQFGVrCkJ+oMECIi3nhhRcQFhYGANi6davR0jvWYo8Y8PDwgEgkslt8roRPyZ8BH2OyhI8x8zEmS8zFrNVqUV5ezlynwgAhhOhXa7l48SIA/QmQnj17chyR60tOTmamFNy6dQu3bt3iOCLSFBUGCHExPj4+ePHFF5nrixcvtnntcnZhwMvLy26xtYSPiRjFZB98jJmPMVnSmpgrKiqMli+lYbKEEAJs2LCB+Z8aHx/PNMgj7cfLywudO3dmrm/evNkpP4tdGRUGCHFBjz76KLp37w4AuHjxIjZv3mzT45VKJXPZXo3K+PjPn48xOSM+vo58jMmS9ojZsFShAY0YIIS4u8uXL0MulwMAPD09kZSUxHFE7iM+Ph6+vr4A9N81T5w4wXFEhI0KA4S4IJFIhLfffpu5vnz5cpOGgi1h39fb29uusZGW8TGhpZjsg4uYaalCQggxtmfPHuZyt27dmOHtpP0JhUL06NGDuX748GGn/Dx3VVQYIMRFDR06FGPGjAEAFBUV4YsvvrD6sezmg9YWBvj4j51isg4fY3JGfHwd+/Tpg6effhqTJ0/G4MGDmTM1hBDijm7evImqqioA+hGRUVFRHEfkfkJDQ5kidX19Pc6ePctxRMSACgOEuLC3336bWb7ws88+Q0FBgVWPc5YRA3xMxIh98PG95WNMlnh7eyMpKQn9+vXD6NGjIRAIuA6JEEI4s2vXLuZyYmIi/U/kSGJiInP5wIEDHEZC2KgwQIgLi4uLwxNPPAFAX5VlTy9oyZIlS5CVlYUzZ87g008/BeCcSREX+Pg6UUzW4WNMllgbs60NSAkhxNUUFBQwvQW8vLzQsWNHjiNyXx06dGAaPiqVSmaFCMItKgwQ4uL+7//+D8HBwQD0HWBPnTpl8TFeXl4ICwtDTEwMYmNj2znC5vExUaOYrMPHmJxRW1/HrKws5OfnQ6FQ0HtCCHFr7N4CCQkJEAopDeISe4WCQ4cOcRgJMaC/CEJcXEBAAF544QUA+iTjjTfeoASBuCU+/t63Z0wqlQrff/89Pv74Y3zwwQc4evRouz0XIYTwmVqtZqZTikQiREdHcxwRiYiIgKenJwBALpfb1CSbtA8qDBDiBp544gl07doVAHDmzBn8/vvvLd7/+++/x8svv4zly5djx44d7RaXuyVqrUUxWYdiMlZZWWl0ndbpJoS4qzNnzjBTqiIiImglAh4QCARGzR8PHz7MYTQEoMIAIW5BLBZj6dKlzPU33njDaOWBpv7880+sXLkSn332GY4cOeKACAkh9kaFAUII0UtPT2cuU28B/mCP3MjMzOQwEgJQYYAQtzFq1Cjce++9AIDCwkJ8/fXXzd63sbGRuWxY1cBV0Fll61BM1uFzTIYluQyoMEAIcUe1tbUoLy8HAHh6eiIkJITjiIiBr6+vURPCu3fvchyRe6PCACFuZPny5czwuRUrVjT7D9hehQE+Jk2EuAuFQmF03dfXl6NICCGEOydPnmQud+zYkZYo5Bn2qIETJ05wGAmhwgAhbiQpKQmzZs0CoK/MvvPOO2bv58ojBrjAxwIJxWQdZ46ppqaGuSyVSulvmRDilrKzs5nLHTp04DASYg77PcnNzeUwEkKFAULczCuvvILAwEAAwC+//ILz58+b3IddGJBIJA6LzR74mMgRYgt7/Q6zCwPe3t522SchhDibsrIyAPrVCAICAjiOhjQlk8ng5eUFQD8FTq1WcxyR+6LCADFLrVZj7dq1+P7777kOhdhZYGAgFi5cCADQarVYvHixSSJi7YgBSsKJLfj4+8LHmOyFCgOEEHdXUlLCJJrBwcEQCin14aPg4GAA+s/kGzducByN+6K/DmLiyJEjGDlyJP773/9CLpdzHQ5pB3PmzEFCQgIAfafepksSqlQq5jINP7aMj8klH2MijsUuDMhkMg4jIYQQbmRkZDCXDckn4R92Q0hanYA7VBggjFu3buHRRx/FlClTkJWVxXU4pB1JpVKj5QuXLl1qNEqgoaHB6L58QgkvsQUff18cFZNSqWQu04gBQog7ysnJYS7TagT8xX5v8vPzOYzEvYm5DoBwr6amBh999BG+/fZbo+SQuLZx48Zh+PDhOHjwIHJzc/Htt9/i2WefBQBoNBrmfoZVDAixhI9JuDt7+umnoVAoUFZWRoUBQohbMizbKhAIaMlWHvPy8oKHhwcaGhqMitrEsegbvxvT6XTYuHEjli1bhpKSEq7DIRxYunQp7r33Xmg0Gnz00Ud45JFHEBYWhuXLl6OhoQE6nQ4DBw7kOkxiBiXh/MWX9yYkJATBwcEIDg7mTUyEEOIoOp2OGQHp7e1N/QV4TiaToaGhARqNBg0NDfDw8OA6JLdDfyFuKj09HaNHj8YzzzxDRQE3lpycjBkzZgDQjxx57733AADTp0/HrFmzMGvWLCQmJnIZIi9QUkUIIYQ4F4VCwXx++/j4cBwNsYT9HhUVFXEYifuiwoCbKSoqwvz583H//febXaaOuJ9XX32VGV63bt06XL58GYB+2B0hfEdFG/MaGxtx8eJFZGdno6CgALW1tVyHRAghDsWeq06FAf5jv0d5eXkcRuK+aCqBm6ivr8d3332Hjz/+2KhTNSEhISFYsGABli9fDo1Gg6eeegoxMTFQKBTw8vLCsGHDMHPmTPpQJZSE81jT96ayshKrV69mrk+bNg3JycmODosQQjhDhQHnQiMGuEcjBtzAX3/9hcGDB+PNN9+kogAx6+mnn0ZkZCQA4MqVK9i9ezeOHz+Ov//+G0uWLEFqair++OMPh8RCySchbcdeWQQAzdUkhLgdQ+NBQN/cjvAbu0muQqHgMBL3RYUBF5aZmYmJEydi5syZyM3N5TocwmOXL19GWVlZs9urqqrw5JNPYvPmzQ6MihB+cobiVdPCgEQi4SgSQgjhBvv/IK2wxH/s90ilUnEYifuivxIXVF5ejg8//BCrVq0yWnaOEHMaGxsxd+7cFn9XdDodBAIBFi1ahEGDBjGjC0j7cYbkk/CXVqs1ui4SiTiKhBBCuOGKhYHmRm9OnDjRwZHYHxUGuEcjBlyISqXCt99+i759++K7776jogCxyp49e3Dr1i2Lvy+GZX/WrFnjoMgIIa3V9O+ZlukihLgbdnLpKoUBV8YuYFNhgBv0V+Ii9u7di9deew03b9606343bdqE06dP23WfhF+uX78OgUBg1RlqnU6HVatWISMjw+w2a7V0X3vtp7X3tXQ/Lp7Tlvty8ZzW3o9eu7bd15b4lEql0W1//vknpFKp1bEQQoizq6ioYC5nZGRQgZTnhEIhhEIhtFot1Go11+G4JSoMOLnGxkY8+eST2LlzZ7vsPzc3l/oTECM1NTU4fPgw12EQQmxQUFDAdQiEEMIZuVzOdQjECmKxGI2NjTTqmSNUOnNyUqkUb731Fh544AGuQyGEEEIIIYSQVjH0x6HRHdygEQMuIDo6GqtWrcL8+fOxePFinD171m77/s9//oPnn3/ebvsj/LNp0ya88sorVt1XKBRi+vTpeOONNwAYD202d7k129u6Tza+xNTcEHBHPact27l4zra8t1zE1JrXztExZWZm4ueff2ZumzNnDoKDg01iJYQQV/X999+jvLwcADBixAiXWLZ19+7dXIfQbnQ6HTNSgHpCcINedReSmpqKP//8E5s2bcLSpUtRWlra5n16enoiICDADtERvpo5cybee+89KBQKk07m5sydOxf+/v4A+FkYcJWY6HXgb0zO8Do0XbNbIpHQOt6EELfC7qsiEAho2Vae02g0zGcZFQa4Qa+6ixEKhXjkkUcwduxYrFixAt988w0aGxu5DovwmLe3Nz799FM88cQTFpsQLliwAN26dWvxPoQQ7iUkJGDRokXQarVQKpUICgriOiRCCHEodmHAVZrZucKyhM1hv0dUxOEGTeBwUf7+/liyZAmOHDmCMWPGcB0O4bkJEybg66+/hqenJwQCAQQCAbNNJBJBKBRi0aJFeOmllziM0r2w3wPCL87w3shkMkRHRyM6OhqRkZH0JYsQ4nbYUwdcpTDgyqgwwD0aMeDiEhISsGHDBhw6dAivvvoqrl69ynVIhKemTZuGtLQ0rFmzBgcPHsTdu3fh6+uLtLQ0PPbYY+jatSvXIRJCCCGEWMXb25u53NDQwGEkxBrs94imvnGDCgNuYtiwYThw4ABWr17NzCcnpKnIyEi88soreOWVV6DT6Sw2WWsPlqYzEO7Qe8NfTd+buro65Ofno76+HtXV1YiNjYVMJuMwQkIIcayIiAhcuHABgH6pZcJv7PcoLCyMw0jcF00lcCMSiQTz5s3DmTNnMHfuXIhEIq5DIjyVkpKC0NBQhIWFYf369VyHQwixUXFxMb766iusXr0amzZtwt27d7kOiRBCHCo2Npa5TIUB/mO/R9HR0RxG4r6oMOCGgoKC8M4772DPnj0YMGAA1+EQHqqvr2cuW7NSgatzhjnl7oreG/OaFn7p75gQ4m5CQkKYy0qlksNIiDXY7xEVBrhBhQE31qtXL+zYsQPfffcdIiMjuQ6H8IhQ+P//NViTUBQWFiI3Nxe5ublGRQVzamtrkZeXh7y8PDqL2QaUEPMXH94b9t8wAGZtaEsUCgUqKipQUVFhcUUblUrF3LeqqqrVsRJCSHsQi8VMEzsaMcB/hvdIIBDA19eX42jcExUG3JxAIMCDDz6IU6dO4YUXXoCnpyfXIREeYJ9ttCah2LlzJwYNGoRBgwZh7ty5zc5D12q1mD17NoYMGYIhQ4bgyJEjdouZcI8PCTHRa+2Igby8PKxYsQIrVqzA+vXrm32cTqfDli1bmPtevny5zTETQoi9+fj4ANB3vK+rq+M4GtIcjUaD2tpaAGBWyCKOR4UBAkDf/fPll19Geno6Hn74YfqDdHO2jhiYM2cOxo8fDwDYt28ffvzxR7P3+/jjj3H06FEAwKRJk/DQQw/ZHBv9bhJbuOvvS2sLA8nJyejTpw8AIDc3F4cPHzZ7v5MnTzKr3HTu3BmDBg1qQ7SEENI+IiIimMtyuZzDSEhL5HI5c1IpNDSU42jcFxUGiJHIyEh89dVX2LZtG5KTk7kOh3DE1hEDAoEAH3/8MTp16gQAePPNN3Hp0iWj+xw/fhxffPEFACAuLg7vvvuuHSPmlrsmn6R1HPH70rQwYO1UAgC4//77ER4eDgA4dOgQbt26ZbT9zp072LdvHwDAz88PU6ZMob8BQggvpaSkMJfLyso4jIS0hF206datG4eRuDcqDBCz0tLS8Pfff+Of//wn16EQDlhbGGAnA35+fvjmm28gkUjQ2NiIefPmMfPFSktL8eyzz0Kj0cDDwwNfffUVM7yPtA8+Jmp8jMlVtaX5oFgsxkMPPQQPDw/odDps3bqVGeJZX1+PzZs3Q6PRQCgUYtq0aUZrhRNCCJ907tyZ+eyhwgB/sd8bdjGHOBYVBkizRCIRYmJiuA6DcEAqlTKXGxoarH5c79698dprrwEAbt++jddffx1arRYLFixASUkJAGD58uXo0aOHfQNmoeST2IKPvy/2iKm1zQcNgoODMXHiRAD6hoRbt26FTqfDtm3bUFFRAQAYOXIkM0qIEEL4SCQSwc/PDwBQV1fHFDkJf6hUKqaBraenJ2QyGccRuS8qDBBCTHh4eDCXLXUmb2rOnDkYN24cAGDTpk2YMWMGM0958uTJbjkKxVWTT8JfbZlKYMDuN3D9+nWsXbsWV65cAQAkJiZi8ODBbQ+UEELaGfskV2lpKYeREHPKysqY/gK0Shq3qDBACDFhWJ3Cw8PD5gSyab8BQ7PB2NhY/O9//7NvoMSl8LFY4awxNV1hxtYCnwG734Ch14CPjw8mT57My9eGEEKaSk1NZS4XFBRwGAkx586dO8zl3r17cxgJEXMdACGEf/744w9IJBLodLpmlx5siZ+fHxYtWoQFCxYwt3344YcW+woUFhZCIBAwiUh7EAgErTqm9sTHmIjzEggEEAqFWLBgAaRSKbRabauXohWLxRg5ciQ2bNjA3Hb//fdb/Fuuqqoy6msgFovh4+NDxQRCiMPFxMTA09MT9fX1KC8vh1KppOHqPKFSqVBcXAxAP9KNGp9ziwoDhBATEomkTY9XKpX47LPPjG774YcfMGDAgBYfN3LkSAQGBuL48eNten7SdnwsVlBMtomLi4NOp0NtbS1UKlWr9qFWq3HgwAGj29LT09GlSxeTPgZsq1evZuaMGohEIoSEhCAtLQ29evVqVTyEENIaXbt2xfnz5wHoz1AnJSVxHBEB9CeEDEXkuLi4Fj9XSPujV58QYneLFi3CzZs3AQAdO3YEAOzcuRPr1q0zuh8fzx5STNahmKzDx5hssXv3bhQVFQEAAgICAOinFBw7dsziY8ViMSZOnIiJEydi3Lhx6N27N+RyObZu3Ypz5861a9yEEMI2YsQI5jJNJ+AP9nvxj3/8g8NICECFAUKIGd9//z1mz56NGTNm4IMPPrDpsWvWrMEff/wBABg1ahR2796NqKgoAMDSpUtx+fJlu8dLiLNqz8JBfn4+Lly4gHPnzuHq1as2P/7y5cs4c+YMAH2PkKeeegohISEAgAMHDiAvL6/FxwuFQqSmpiI1NRUDBgzAxIkT8cgjjwAA05CUEEIcwd/fH/7+/gD0oxpp6ULuVVdXo7y8HIC+Lw6tcsM9KgwQQkxcunQJ27Ztw969e5mhd9a4cuUKli1bBkDfWfbTTz9FQEAAPvvsM4hEIjQ0NODpp59GTU2NVfvj49lWisk6FBP3/vjjD/z444/YsmWLzdNzysvLsX37dgCATCbD1KlT4enpiYceeghisRharRabN2+2eemvxMRESCQSVFZW2rQUKiGEtFX//v2Zyzdu3OAwEgIYvwc9e/bkMBJiQIUBQogJ9nKF9fX1Vj1GqVRi3rx5qK+vh1gsxldffYXAwEAAwIABA/Dss88C0A9DfuONN+wfNHEqfEzSXS0mLy8v5rItSbharcamTZuYx0yaNAm+vr4AgA4dOmDUqFEAAIVCga1bt9rUY0Gr1UKr1UIoFEIspjZHhBDHGTRoEKRSKQD9soUVFRUcR+S+amtrmdUIhEIh87lCuEWFAUKICXYHc0NyYClBefnll5nq7wsvvIB+/foZbV+4cCGz7vmmTZuwZcuWNsfpaolce+FjTM6Ij69jSzGZ+zu2xp49e5i+AmlpaejSpYvR9gEDBqBr164AgOvXr+PkyZNW7zs9PR0ajQaxsbEQiURWP44QQtpKKBQaNUGmUQPcuX79OlNUTk5ONjohRbhD5XpCiAlbRwysW7eOSfQHDx6M+fPnm9xHKBTi008/xX333Yfy8nK8+uqr6NWrFxISEuwXuBPgYxd7isk++BYzuzBg7cifrKwspKenA9BPB7r33ntN7iMQCPDAAw/g7t27qKysxL59+xAdHc00GjVQq9VMvxG1Wo3S0lIUFhbC398f48ePb+1hEUJIqw0fPhwnTpyAWq3G3bt3oVAo4Ofnx3VYbqW+vp5pOigQCDBu3DiOIyIGNGKAEGKCXRiwdKYxJycHH330Efz9/RETE4Mvv/yy2TOB4eHh+PDDD+Hv7w+JRILFixdDrVbbNXY2Pp7hdUZ8fB35GJMljo656VQCS0ULhUKBvXv3wsvLC35+fpg2bVqzf8teXl6YMmUKvL29IZVKsWvXIXixOAAAIABJREFULpMlEbVaLbKyspCVlYVLly6hsLAQEokEU6ZMYZoYEkKII4lEItxzzz3M9aysLA6jcU9Xrlxhlijs2rWr0WcV4RaNGCCEmLDlTGN8fDwyMjIAgEk8zCUghrOpo0ePRmZmJnM7l2dY+XaGF+BnTM7IGV9He8fM/jvW6XRQqVTM/Fpz/Pz8sGDBAqv3HxMTgxdffLHZ7VKpFC+99BLz/Dk5OdiyZQs2bNiA+fPnM8sfEkKII40ePRrnzp1jRjIVFRUhIiKC67DcglwuZ0YLCIVCTJgwgeOICBuNGCCEmGAnFHV1dRxGQpri45lyPsZkiTvEzP47BqyfTtAeBAIBEhISMHXqVDQ2NmLXrl2cxUIIcW8SiQRjxoxhrl+6dKldRy8SPZ1Oh0uXLjHXBw4cCJlMxmFEpCkqDBBCTLD/USuVSoc8Jx8TNT7GZAkfY+ZjTJa4QsxNCwN8WB4wISEBXbp0QXZ2Nm7evMl1OIQQN9W/f38EBQUB0BdNs7OzOY7I9eXk5EChUAAAvL29aSUCHqLCACHEhGFpMkC/pIxGo+EwGj0+Jmp8jMkSPsbMx5gscYaY+VgYAPTNvwDg77//drrpHoQQ1/HPf/6T+V9+69YtVFVVcRyR61IqlUbFl6lTp0IopDSUb6jHACHERP/+/fHDDz/A19cXvr6+Dk2CysrK8OCDD5rd1qdPH7z66qtmt/FxTjkfY7KEjzHzMSZLLMXsiGPy9vY2ej6+FAYiIiKQmJiIGzduIDs722Q5REIIcYTQ0FAkJycjMzMTWq0WZ8+exdChQyGRSLgOzaUYXlvDdI3Y2Fi3W5HKWVBhgBBiIiwsDBMnToROp2uxkaC9xcfHo76+vtmqfW1trd2fk0uumPBygQ9JuL3ZI+bw8HAsWrTIaASQo/j7+7e4LvWwYcMgl8tx/vx5KgwQQjgzefJk5OTkQKlUQqlU4sKFC+jbty/XYbmUrKws5nudVCrF9OnTOY6INEegM/PNo6qqippwEEJMCgPmLrdme3vs0xVjopj5sZ2PMdm6XalU0uc6IYSYUV5eji+++IJZQq9nz56IjY3lNigXUVxcjPT0dOb6Y489hri4OA4jIiqVCgsXLgSgX42IPUKGRgwQQkw0NjZix44dqK6uRmVlJR588EFERUXZbf98PIPLx5gsoZgdwxljbsoZeiIQQggXgoKCMG7cOOzcuRMAcPnyZfj7+yMwMJDjyJxbTU0Ns5w1AAwePJiKAjxHhQFCiInGxkbMnTuXuZ6cnGzXwoAlfEzE+BiTJRSzY/B5KkNOTg5KSkogl8vh6emJ1NRUTuIghBA+69evH7Kzs3H9+nVotVqkp6dj8ODB8PHx4To0p1RfX49Tp05BpVIB0E9tGz16NMdREUuoHSQhxIRMJjPqFltdXc1hNKb4ePaTjzFZ4oox0zEZ2717N3755Rfs3bsX58+fb/V+CCHE1U2fPh3+/v4A9CdITp48ifr6eo6jcj4qlQonT55k+kJ5eXnhiSee4DgqYg0qDBBCTAgEAshkMuZ6TU0Nh9HYjo/JIR9jssQdk3Bn1NIxGb7kAvwr8BFCCJ+IRCLMnz+fWdGlrq4OJ0+eZM56E8s0Gg3S09OZzxuJRIJ58+a12IyW8AcVBgghZrE7mbeUUDhjosXHmCkJ5wdXex/Yf8fOVuAjhBBH8/DwwFNPPcU0ZKuursbJkyfR2NjIcWT8p1arcfr0aZSXlwMAhEIh5syZg4CAAI4jI9aiwgAhxCz2vLq2nGl0tkQKoJgdxdWScKDtx2TvY/bz82Muq9VqGhZLCCEW+Pn5Ye7cuRCJRACAyspKHD16FEqlkuPI+EulUuHUqVMoLS0FoP8smzlzJjp06MBxZMQWVBgghJjlqDONrpj88REl4a7B1mNmFwYAGjVACCHWCA0NxWOPPcYUB5RKJY4fP05Tssyora3F0aNHmZECAoEAjzzyCBISEjiOjNiKCgOEELP4MgTZGZM7Z4zZEnc8Jlc4ZvbfMUB9BgghxFqdOnXC008/DalUCkDfaf/YsWOQy+UcR8YfVVVVOHbsGPM9USQS4YknnkDXrl05joy0BhUGCCFmsc80KhQKDiNpmTMmb66YkLriMVniDMdMIwYIIaT1QkJCsGDBAmZ6pUqlwokTJ3Dt2jWnW1rX3goKCnDs2DFmippUKsX8+fPRqVMnjiMjrUWFAUKIWYGBgcxl9vCwlvAhEWrKGWO2hI7JNbR3PwKBQECFAUIIaSOZTIZnn32W+V6k0+mQnZ2NU6dOoaGhgePoHE+tVuPs2bPIyMiARqMBoO9LtWDBAgQHB3McHWkLMdcBEEL4KS0tDUKhEIGBgUhMTLTLPgUCgdNV2J0xZkvc8Zjaut1ZeXl5QSKRMMttUWGAEEJs5+HhgWeffRZbt25FZmYmAKC0tBSHDx9Gnz59EBISwnGEjlFZWYlz584ZNWJMSEjAjBkzmH4MxHlRYYAQYtbUqVMxdepU6HQ6hyVMzpicuWLC6YrH1FbOXHjw8/ODXC6HTCaDWEwf+4QQ0hpCoRBTp05F165d8dtvv0Gj0aC+vh4nTpxAhw4dkJKSAk9PT67DbBcqlQrXrl3D7du3mc8ygUCA0aNHIy0tjePoiC1aGm1I3xAIIU6Dz8lXa9Ex2b7dFbXna/b0008zTQjr6uraFighhLi5Hj16oFOnTli1ahUqKysBAMXFxTh48CCSkpIQFxfnUtPfCgoKkJWVZTRtwtvbG48//jjCwsI4jIzYGxUGCCFm6XQ6lJeXMz99+vQxOtvojMmbM8ZsiTsm2VR4sI1hiKthOgEhhJC28fX1xYIFC/D333/j+PHj0Gq1UKlUuHz5MvLz89GlSxeEh4dzHWablJWV4dq1a0yfKUD/+Zmamopx48bR1AEXRIUBQohZZ8+exdixY5nrGRkZiIqKsvrxzph8uWNC6Y7HbEl7Fx64ek2FQuo3TAgh9iIQCDBq1CgMHjwYmzdvxs2bNwHoV3I6ffo0fH19kZiYiKioKKcaQVBaWopr166hoqLC6Pbg4GDMmDGDGgy6MCoMEELMavqPv6KiwqbCgCV8TZ7awhWPyRJnTZL5zN6vaVVVFS5evIiysjLcvXsXo0ePdptGWYQQ0t68vLzw6KOPIjs7G7///jtqa2sBANXV1cjIyEB2djYSEhIQGRkJiUTCcbTmaTQaFBUV4ebNmyZLVHt4eOD+++9HSkoKR9ERR6HCACHELPZyhQBMKsdcc8WEkpJoU6569t6RqqqqsGXLFua6O3XQJoQQR0lKSsKLL76IixcvYs+ePcwqMEqlEhcvXsSlS5cQGhqKjh07Ijw8nPNRXDqdDhUVFSgoKMCdO3egVquNtnt4eCAtLQ1Dhw7lPFbiGFQYIISY5e/vD7FYzHxQyOVyjiOyjTsmhJQk2x/XhQl7bDc3+ocQQkj7SElJQUpKCi5duoQ9e/YwZ+C1Wi2Ki4tRXFwMDw8PhIeHIzQ0FMHBwZBKpQ6JTaVSQS6Xo6ysDEVFRaivrze5j7e3N0aOHInU1FSnmgJB2o4KA4QQswQCAfz9/ZmCQEvJhCsmnK54TG1FhQfnJJPJ4OnpyXwBpMIAIYS0v+TkZCQnJ+P27ds4dOgQ8vLyoNFoAAANDQ3Izc1Fbm4uAP2ysiEhIQgKCoKPjw9kMlmbz9JrtVrU1dWhuroaFRUVKCsrQ1VVldnPYaFQiKioKAwZMgRdunRp0/MS50WFAUJIs4KDg5nCALsrrb25YkJJSbTt+HB23VXfk+DgYNy5cwcAFQYIIcSRYmNjERsbC41Gg/Pnz+PUqVMoLS01+jxRKBRQKBTIyckBoP+88fb2hkwmg4+PDyQSCcRiMUQiEXNZIBBApVJBrVZDrVZDo9GgsbERtbW1qKmpQW1tLbRabYuxBQUFoV+/fujXr5/RylPEPdFvACGkWUFBQcxlPicTrpzQNcedk1y+4row0dL2kJAQKgwQQgiHRCIRUlNTkZqaCpVKhWvXruHSpUsoKChg+hEY6HQ6KJVKKJVKlJSU2C0GqVSKDh06oEuXLkhNTYWXl5fd9k2cHxUGCCHNYjcgNIwYcMWEkpJoU3xOcont2H0GKisrodVqqZkUIYRwRCKRMFMNAKC+vh6ZmZm4ffs2ysrKoFAoUF9f3+rPQYFAAA8PD/j5+SE4OBidOnVCSkoKZDKZPQ+DuBgqDBBCmsXuXF5aWmrVY9wx4aMk2PG4Lkw423Z2YUCtVqO6uhr+/v7NPp64Dq1WC4VCgYCAAE7j0Gg0UCqV8PPz4zQOQvjI09OTGdLPplAocPfuXWb0QF1dHerr65migaenJzw9PeHt7c38REREwM/PjxoHEptRYYAQ0qxOnTohPj4eoaGh6NGjh0Oek5JoU1wnmcT5NV2esKKiggoDbmDv3r1IT0+Hr68vnnvuOc7i+PXXX5GdnY24uDj861//4iwOQpyNn58fFdOIw1BhgBDSrIULF2LhwoXQ6XROkzhSkmx/XBcmuN7OtfZYsrC8vByxsbH2CpGwnDhxAqdOnULXrl0xduxYTmNRKBRQqVScxgDoC1GGbuyEEEL4iSYYEkJazdIwNVccxtbWY3bH18zZucJ7HhQUBIlEguDgYCQkJMDb27vdn9MdabVa7Nu3D5WVlTh58iSKi4u5DokQQgixCo0YIIRYRavVQqfTQSQS2W2fzn4mlwtcnz2n98Q5CYVCvPfeexAKhcz8VGJ/QqEQAQEBkMvl8PT0hK+vL9chEUIIIVahwgAhpFlyuRwPP/wwiouLUVZWhh07duCee+7hOiwGJcH8w/V7Qtub325YhYBWI2hfjz/+OK5du4bY2FgamUEIIcRpUGGAENIsX19fXLx4kUk07LmWrivgOgkkpDXEYvrob0++vr7o27cv12EQQgghNqFvB4SQZkmlUgQEBKCiogIAWpwvS0my43H9mtN259oul8tx8OBBFBUVobCwEDNnzkRUVFSzjyfmKZVKVFVVwcvLC/7+/q0egaHVaqFUKqFWq+Hr62tTwaampgbV1dUQiUTw8/ODp6dnq2IwaGxsRHl5OYRCIYKCgizGolKpoFAo0NDQAG9vb/j7+9vUK6O2thYNDQ1WH3djYyMqKyuh0WgQFBQEDw8Pi49RKBSoqamBTCazuHRbdXU1qqur4e3tzfmyjoQQwhUqDBBCWtShQwerCgNc4zoJI4TPBAIB1Go1jhw5wtxWUlJChQEbVFdXY/v27bh+/Tpzm7e3N+677z706tWLuW3Xrl24fv06/P398fjjjxvtIzc3F2fPnkV+fj7zfxXQT+9ISEjA2LFjTVaQYLt+/ToOHjyIO3fuGN0eGhqKXr16YciQITYdk0ajwYEDB5Ceno7GxkYAgJeXF4YNG4aBAwea3P/GjRs4cuQI8vLyjP4fBgYGIi0tDX379m0xAb9z5w4++ugjVFdXA9CPXklOTsa4cePMJvslJSXYsWMH8vLymNtEIhFSUlIwduxYs48pKyvDtm3bkJ+fz9zm7++PSZMmISEhwei+crkcO3bswK1bt5jbIiIi8MADDyA8PLzZ4yCEEFdEEw0JIS1ifzm6e/cuAOqcbw7XneudoTM+n3H9+jri/QsNDYVEImGu09Qg66nVaqxdu5YpCojFYohEItTW1posw1dTU4OKigooFAqT/dy4cQMXL140KgoA+tED169fx+rVq5mkualTp05h/fr1JkUBACgtLcXZs2dtPq5t27bh6NGjaGxshFQqhUgkQl1dHXbv3o3z58+b3P/69evIzc01KZJWVFRg586d2LlzZ4vPV1dXZ3R8arUa58+fx6+//mq28CoWi42KAoC+mJGRkYH169dDq9UabVMqlfjxxx+ZooBEIoFQKERVVZXJ34hCocCPP/7IFAW8vLwAAEVFRfjpp5+gVCpbPBZCCHE1NGKAENKiDh06MJetHTFAZ+ddD9cjMuh3qu2EQiHCwsKYxJIKA9bLzMxEaWkpAGDkyJHMmfnc3FyEhoa2ap8zZsxAaGgoBAIBTp8+jWPHjkGpVOLIkSMYP3680X1LSkrw119/AQD8/PwwduxYdOrUCSqVCjt27MDNmzdtfv6cnBxcvHgRADBw4ECMGTMGjY2NWLt2LQoLC7F//3707NnT7Eo0YrEY8+bNg7e3N0pKSrB7924UFxfjzJkz6Ny5M7p06WL2OcPDwzF27FiEhISgpqYGf/31F27duoWcnBxkZ2ebPC4oKAjDhw9HfHw8AgMDUV1djf379+PGjRvIy8vDtWvX0K1bN+b+p0+fRk1NDQBgypQpSElJYYounTp1Mtr33r17UV1dDYlEgkcffRSdOnXC7du3sXbtWiiVSpw4cQKjRo2y+XUlhBBnRSMGCCEtak1hoL1xffaVzr67N65/f9qyPSIigrlMhQHrFRYWAtA3Fhw6dCiEQiGEQiHi4uLg4+PTqn127twZgYGBCAgIwOjRo5nRWdeuXTO574kTJ5iz49OnT0f37t3h4+ODwMDAVvcXOHfuHADA09MTo0ePhlAohKenJwYMGABAf0a96dl6A4FAgNDQUMhkMsTFxWHmzJmQSqUAgKNHjzb7nD4+PoiNjYWPjw/Cw8MxZcoU5vfV3HEDwPDhw9GpUyf4+voiMjIS06ZNY6YQNC2IGIpeHTt2RK9evSAQCCASidC1a1ejXgb19fXIysoCAPTu3ZspGsTGxiI2NhYAcOnSpWaPgxBCXBEVBgghLeJjYcDZ8TlxpO2uVdhpeizswkB1dTVqa2sdHZJTMow2EQqF7fb7YThbXlVVZTKMPTs7GwAQFRWFyMhIuzxfTk4OACAhIcFoVAD7zDp7nn5L/Pz80L17dwBAQUGB1b9Xfn5+zPEUFRVZ9RhPT09mlEZlZaXZ+5gb5cB2+/ZtZgpIUlKS0bbo6Ghm381N6yCEEFdEhQFCSIvCwsKYy3K53GQ+LddJmislccT5cP37bevvP7swANCoAWv5+/sD0Cftt2/fbpfn8PPzYy6zCwM1NTXM9abvX2vV1tYyyXvTqRC+vr7M5fLycqv32bFjRwD6IoqhH401DK+tLXP6vb29Aeh7FJjbV2FhIcrKypp9PHsb+zMOaP3xE0KIs6MeA4SQFhnO5ggEAoSEhKCysrLFrtl8w/Xcddru2tv5xJpjMVcYMAydJs275557cPToUTQ0NODnn3/G+PHjkZKSYtfCpKH5HaBfDtCA3cSQfZ+2YJ8JLy8vN2lcaPhdqq+vt3qfhmQdaP5MvjmGY2IfM1ttbS0uXbrE9HiQyWTN7r9///44d+4cVCoVfvzxR0yaNMlkRABgfPzXr183eh/ZzR1tOX5CCHF2VBgghLSod+/eOH36NCIjIyGVSp0mSSLE0ZyhSBEQEAAvLy/U1dUBoBED1pLJZHjkkUfwyy+/oKGhAVu3bsWZM2cwadKkVjcfbIqdnLLfZ3bCbK/CAHufFy9eZJoQtnQ/S2QyGXPZloTacNzmfrevX7+OLVu2WL2/sLAwPPDAA9i+fTtqamqwYcMGJCUlYcKECUYjMtjHtWPHjmb313REAiGEuDIqDBBCWuTh4YG4uDgA5r+4sXGdGPEh8SLN4/r9c6Xfj9bGKhAIEB4ezizRRoUB68XHx+Opp57C1q1bkZ+fj/z8fPzwww/497//jZCQkHZ7XqHw/8/6tFeiyi5CREVFISAgwOz9oqKirN5n06UD26qqqgobN26ESqWCVCpFjx49EBwcDKVSicuXL5tdDhIAevXqhdDQUGzduhWlpaXIzs7GDz/8gNmzZzONItnH36NHj2ZjCAwMtOsxEUIIn1FhgBBCrMR14uns212JM7+WSUlJ8PLyQnh4eLsmtK4oKCgITzzxBE6ePIk9e/agtrYWu3btwqxZs9rtOdmjBOzVLJK9z169eqF///5t3ic7NsMKBW1x4cIF5sz+zJkzERMTw2yTy+XNFgYA/RS4efPmYf/+/Th+/DgqKirw999/44EHHgBgPO1h8uTJkEgkbY6XEEKcHRUGCCEW/fzzzzh69Cjy8/MxaNAgvPTSS5QkknbFdeLNp99fex/LuHHjAOhHAFVVVdkvUDchFAqRlpaGyspKpKenIycnBxUVFe12djkwMBAikQgajQZyudwu+2QvcWivYkNNTQ1z2dAEsC0MDQJlMplRUcBaYrEYY8aMgVwux7Vr15CZmYnx48dDIpEYFUZqampoZAAhhIBWJSCEWOHIkSP49ddfcfz4cVy4cMEu++S6Wztt5/d2Z+JMr0XT57K0rBtpXkJCAnO5pbPXbSUSiZglBG/dumVTYz+DpoUjT09Ppjhgr1UW2MsNspe5bS3DCjjsqRStER8fD0A/DcOw8gF76sT169fbtH9CCHEVVBgghFhkWNcZsH5da0LshesiBZeJu723N1VdXW31+vHEWHFxMXOZ3XivPfTr1w+APrldu3Ytrly5grKyMly9erXFPhGGOfVKpdKoP4FQKETnzp0B6AsDbS0O1NTU4MqVKwD0RQF2o7/WMuyjurq6xaUHLTG8PkKhkJlCEB8fz0wfOH36NDUZJIQQ0FQCQv4fe+cdFtWV/vHvDMMMHQSk9yaCiEQRJPbYjbHHksRoNolGU0zZTUw2TTcxu8YUN3X9mWaKGo1KYo0mYMFCFaRIF6RKG8p0Zn5/8NyTe5kZmKGX83mePLlzz7nnvOfOcL3ve95CMQCmPjUA3LlzR6u9v926afvQbh9IDKa1djRXbGwsrl+/jubmZri7u+OJJ57oE5kGKxcvXoRUKkVwcDAsLCxw584dXL58GUBb3oHeLuE6evRohISEICsrC3V1dTh48KBB19nb2wMAFAoFjhw5gsmTJ5OEgpMnT0ZmZibUajUOHDiAadOmwd3dHXK5HOXl5eDz+ZgyZYrOcVtbW5GQkAAPDw80NTUhPj4ecrkcABAdHd0DK25b85UrVwAABw4cwNSpU2FnZ4fm5ma9ITCnT5+GmZkZAgMDIRQKUVhYiLS0NACAt7c3yX1gZmaGyMhIJCQk4O7du/juu+8QHR0Na2triMVi5OfnIyoqSqu8J4VCoQxlqGGAQqF0Ctsw0NLS0qvxtBRKRwwlI0V/ytra2kpiwisrK6FSqSAQ0FcCfeTk5KCsrAwJCQmc8yYmJliwYEGve5XweDwsX74cbm5uSE5ORn19PYC2XXWNRoOmpiad14WGhiI+Pp7s6JuZmRHDgLOzMxYsWIATJ05AJpPhzJkznGudnZ31GgbUajXOnj2rdT4oKAjjxo3rzlIJXl5eiI6OxtWrV1FTU4Nffvmlw/4ajQY3b95Ec3Mz4uLiOG1CoRBz587lnJs5cybKy8tRXFyMkpISlJSUcNpdXFyoYYBCoQwr6FsAhULpFHYoAQCUlZVRw8AApb8V58GkmHfGQFpLT8vCxKwDbUaCyspKjgGQwmXatGlITEzEnTt3IJVKIRKJ4OnpiWnTpmk9Hz09PcHj8XSGFzg5Oektj2djY0Pa2MnxGExMTDB58mRMnjwZSqUSGo0GQqEQBw4cQE5Ojs58ERYWFnj88cdx6dIllJWVwcnJidM+YcIEODg4ICEhgbM2Nzc3REVF6b0fJiYmCAgIwO3bt6FUKjFixAiEh4cjJiZGp5HE398fDg4OcHFx0WpzdXVFaGiozsoA8+bNQ2BgIG7cuIHS0lLIZDKIRCJYW1vD2dkZAQEBnP5z585FcnIyKioqIJfLYW5uDl9fX0yfPl1r7QKBAI888giuXLmCjIwM1NXVQalUwtbWFgEBARg1apTe9VMoFMpQhKfR8SYhFotpvBWFQiHIZDJ4enoSxeK7777DvHnzOIqGrmPaTtu70z6QZBlMazGk7927d/Gvf/2LfJ4/f36HiiBl4PLll1+ioqIC3t7e2LBhQ6/OderUKVy7dg2mpqZ47bXXenUuCoVCofQ8KpUKW7duBdBmkGYbZWnyQQqF0ilmZmacGFqagHBo0N9J+wZSZYKBtJa+mMvBwYGzo11WVtbtMSl9T2NjI0muRz0+KBQKhdIdqGGAQqEYBPulk1Ei+ltxpO2DR/HujKF0LwaDEYHH43HCCahhYOBz6dIl5ObmoqWlBUqlEkVFRfjhhx/Q2toKHo+HiIiI/haRQqFQKIMYmmOAQqEYhJeXF8nuXFRU1M/SUHoamjug59r7UpbuzOXt7U1KzNXW1kIikZBybpSBhVqtxsWLF0nm//bMmDEDjo6OfSwVhUKhUIYS1DBAoVAM4sknn8SqVavg6+vL2WkcLPS34jvQ2/uSwbTWoSRLe7y9vTmfy8vLtZK5UQYGSqUSo0ePRl5eHlpaWsh5JycnTJ06FWPGjOlH6SgUCoUyWOjI05AaBigUikEwtak1Go1O5aO/lb2BpPgOdIbTdzGQZB1oRgRvb29Ov7KyMmoYGKCIRCIsWbIEACCXyyGRSGBmZqazekFvMmvWLEyfPn1QhSlRKBQKxTCoYYBCoRjFQFL6+ov+VqyZ9lOnTiE3NxdeXl5EaTDk+r6kv++VMQwlWQzpa2FhAQcHB9TU1AAAqqqquiYspU8RiUQQiUT9MrepqanOsoIUCoVCGfxQwwCFQjGI1tZWxMbGoqioCIWFhfjb3/6G8PBwnX37WxkcSApeb/L+++9DKpVixYoVXR5jKN2rwaS494Ri35Wx2jNnzhzweDx4eHjAzMysS2NQKBQKhUIZ/FDDAIVCMQg+n4/nnnsOEokEABAZGanXMDCcGOhGisHkKj+YFPuhMtfEiRMBtCW3a2pqGjBGHgqFQqFQKH0LLVdIoVAMgsfjwdfXl3xmKhP0d5k5Q9rff/99LF++HC+//HKPjz+YGE4l/wZCScD+nsuYsXg8HgQCuldA6T1qampQXFzc32LoRa1WIz09HWq1ur9FoVAolH6BvgVQKBSD8fPzQ2ZmJoDBVbLw9OnTKCkpgZubW6/O09875kPJO6AnGcg79r05l6EolUoUFRXh1q1bUCqVmDmYWhldAAAgAElEQVRzZg9IR+kLNBrNoDFenj17Frm5uQgLC8Py5cv7WxwOCoUC//vf/1BTUwOlUonx48f3t0gUCoXS51DDAIVCMRi2x0BhYaFWe38rvoa0d8RAUma7y3BS3IeqYt9XeQh+/PFHpKamAmhLSDhjxoxBo2wOZ44dO4b09HSEhYVhyZIlA/o7Ky4uRm5uLgD0uoG2KwiFQjg6OqKmpgZxcXEICwuDUCjsb7EoFAqlT6GhBBQKxWDahxIMFiW5P+jvEIqeZDjJ2l9z9edY/v7+5FgikdDqBIMAqVSKtLQ0qNVq3LhxAw0NDf0tUoecP38eAGBjY4PIyMh+lkY3U6dOBQA0NTUhKSmpn6WhUCiUvod6DFAoFINhKxAymQyVlZVwdXXtlbl6Yxe5tLQUBw8eJJ9DQ0MRGhqK2NhYyGQyBAcHIywsjFwvl8tx/PhxaDQaTJw4Ed7e3uTaK1euoKysDO7u7oiOjubMU1dXh19++QUZGRlQKBTw8fHB8uXL4efnp1NWiUSCixcvIi0tDVVVVZBKpXByckJ0dDRmzpzZaex3RUUF9u/fj9u3b0OhUMDb2xsLFy6Ek5OTznshkUhw+fJlMh8ABAUF4YEHHsDIkSN1ztHa2orz588jISEBzc3NGDlyJMLDwzFt2jSt0mkajQZ//vknEhIS0NTUhJEjR2LGjBmIiIgYst4BA0luY8cKDAzknCsuLoaLi0uPjE/pHczMzODg4IDa2lrY29vD2tq6v0XSy927d1FaWgoAiImJGbC5LNzc3ODv74+CggKkpKQgJiamv0WiUCiUPmVgPp0pFMqAhO0xALSFE+gzDAwkV3WGzMxMvPHGG+Tz008/jdDQUPzwww9IT0/HsmXLiGEAAPLy8vDWW28BAP7xj39g3bp1pO3TTz9Feno6HnroIUyaNImsJScnB08//TSpDQ+0GREOHz6MN954AwsWLNCS6x//+AeuXbumdf7kyZP49ttvsXv37g4VtcuXL+Py5cuccz/99BN27dqls3LE77//jg8++IBzLjExEUePHsWOHTsQERHBaVOpVHjttde0dtF+//13ODs7c+ZQqVR4++23kZiYyOl77tw5rF+/Hg8++KDedbRnqJQE7M25emIsZ2dn2NraQiwWA2jzBmpv7KIMLHg8Hp544gmUlpbC09NzwCrbAHDjxg0AbZVtxowZ08/SdExYWBgKCgpQU1ND7i2FQqEMF2goAYVCMRgXFxdYWFiQz32VgLCn3KzNzc3h6elJ/rOxsQEAsmN6584dTv+cnBxyXF1dzWkrKysDAPj4+JBzLS0t2Lp1K2pqasDn8zF79mysXLkSNjY2UCqV2L59O27duqUlF6O42djYYMmSJVi7di15gS4oKMCLL74IpVKpd612dnaYNm0aVq9ejXvvvRc8Hg9SqRRvvvkmZDIZpy+Px0N4eDisrKwwY8YMrFixAtHR0eDxeJBIJNixYwfkcjnnmiNHjhCjQGRkJJ599lk8+uijGDVqFEJDQzl9v/76a2IUmD9/Pp5++mmMGjUKAPDdd9/h9u3bHFl6ChpC0L2x2N5At2/fppnZBwFmZmYIDAyEmZlZf4uiF41Gg/T0dABtz0orK6t+lqhjgoODiZElLS2tn6WhUCiUvmXgmpgpFMqAgylZyFQmKCgoIOcHint4R0ybNg0ff/wx+czMqc8wwCTLAtrc9RlkMhnq6uoAgBNe8Msvv6CyshIAsGXLFjz22GMAgIcffhhr1qyBRCLBl19+qbVbz+Du7o7XXnuNyPXf//4X+/fvR0FBAY4dO4aVK1fqvG727NnYunUr+bx//3588cUXqK2txdWrVzF9+nROf29vbxw7dgympqZkrmPHjuGjjz5CQ0MDrl69imnTppHv5eLFiwDawg3effddMs7DDz/M+d4aGxsRGxtLZHruueeg0WgwZcoUPPzww1AqlTh58iQ2bdqktYbBumPf3bl6ayxj1xgQEICUlBQAbb/vqqqqXgsTGuxoNBo0NjaipaUFpqamsLW11ZmoTiwWo6KiAjweD87OzrCzs+t0bJVKhbKyMrS0tEAoFMLOzg4ODg7dMmzV1tbi7t274PP5cHNzM0g5l0qlaGpqQktLCwQCAUaOHNklA0RFRQUaGxsBACEhIR32lcvlKC8vh0Qigbm5Oezs7GBvb6+3v0qlQnV1NcRiMfh8Ptzd3Ttdm1wuR0lJCVQqFWxtbeHs7AwTExPSbmZmBj8/P+Tm5pJ/3ygUCmW4QA0DFArFKDZs2ICWlhaMGjWq0xe93qA3jBBBQUEAgKqqKqhUKrJjdOvWLfD5fAiFQrLTzePxUFxcTMZgewycPHkSAGBvb48NGzaQ815eXpg7dy6OHj2Ky5cvo6WlBZaWlp2udePGjfjtt99QX1+PM2fO6DUMtGfRokXYu3cvWltbkZ6ermUY4PF4MDU15Zy7//778cknn0ClUqGgoADTpk0jbfX19QDa7pO++8vj8ZCYmEg8G2bNmkXabGxsEBQUhMzMTKJ8doeBpNj3V7hCT8/bPs9AUVERNQy0Izc3F2lpaSgoKOB41fD5fKxZs4bcQ6VSiVOnTiE1NZXcdx6Ph4iICCxcuJCjiDKoVCpcuHAB169f1/Lysba2RkxMDCZNmsQ5zxgNXV1dsXHjRq0xm5qacOzYMY6Ca2JigvHjx2POnDk6ww9iY2NRXFxMDJ/sNYaHh2PBggVaz46OYHuV6XPLl8lkOH/+PNLS0sjzg8He3h4zZszghHgBbaFP586d0/oeJkyYgLlz5+q8x7qusbKywmOPPcYxQHh6eiI3NxcNDQ1obm4e8F4OFAqF0lPQUAIKhWIU69evx5YtW3DffffpjHsfTBnsGQICAgC0JdgrLy8n5/Py8uDi4gJ3d3fcvn2bvOQzL7vW1tZwdnYG0BZGkJ2dDaDN3Z7P53PWwmTiVqlUuHnzJoDO1yoUChEVFQUAyMrKgkKhMGg9tra2JPEg4wXR2VwCgYC8HDc1NXHamJCL9h4V7cnPzwfQ9oLePsSA8awoLy+HSqXqcBzq9t+zYxnCyJEjYWtrSz4XFxd3e8yhxvXr15GVlUUUS0axVqvVcHR0JP2OHTuGlJQUaDQajBgxAra2ttBoNEhJSUF8fLzWuGq1GocOHcKFCxeIUYCttDc1NRkdtqVQKIjhAGj7mwTannHXr1/Hr7/+qvO69PR0jlGAvcbU1FQcPXrUKDkYTytTU1OdiU0ZOdlGRfba6+rqSOJCNqampuR7YIwAarUa169fx+nTp7X6Z2Vl4cSJE5DL5RAIBHB2doaFhQXkcjl5vjGwyymy/z2gUCiUoQ71GKBQKAOW3g5RYNqdnJxI8rU7d+7Ay8sLlZWVaGhoQEhICAQCAQoKClBdXQ1nZ2fykh4cHEyUstLSUp1eBAzsc6WlpUTh7wzG+KJWq3H79m2tnV19a7Wzs0NFRQVaWlr0jq1UKlFdXQ0TExPY29tzlAA2ERERZLf0wIEDWL16tc77yigBDg4OWruRjIeERqNBfX293uoHna3L2HZjGApjded+BQQEIDk5GcBfeQYYhZLyFyNGjMCjjz4KOzs7aDQaVFZWYsSIEQDajIZMqNWUKVNw3333QaPR4NChQ8jOzsbVq1cxadIkmJubk/FSU1NJ2JKfnx/uv/9+2NvbQ6VS4csvv8Tdu3eNlvHKlSskL0pkZCTmzp0LpVKJ2NhYZGdn48aNGxg3bpxWQlmGsWPHYs6cObCysoJYLMaRI0dQUlKCrKwsVFVVEYNoZzCyu7q66vwtXbx4keRrCQsLw5w5c2BtbQ2lUoldu3bpNYb6+/tj5cqVCAgIgEgkQnV1NY4ePYqKigokJydjypQpHIX/0qVLANqeixs2bCDGmoqKCq1nVXvDAONRRqFQKEMdahigUChGoVarkZ2djdzcXNy6dQsrV67U+3I5UHILGAKjFBUVFSEmJoYkCfT19SWKckFBgZZhgIG9y66rdBj7HBNzawjsuGRDa5XzeDxSQrC1tVWrXSwW45NPPkFcXBx58WbvOrffgV6zZg0SEhJQWlqK//u//0NSUhK2bNmiZQBhjBC1tbVYsWIFp439gi+VSjlzDXe3//4MIWC7ugcGBiI1NRVeXl7w8vKCUqnUKkVJAUQiEfm75PF4nJALJgO/UCjE1KlTSZ/IyEhkZ2dDoVAgLy8PY8eOJdcwFUksLS2xevVqkq9AIBB0yRtEo9GQZKFOTk6YN28eTExMIBAIsGTJEhQWFkIulyMxMVHvs9vKyoq40Nva2mL27NnYt28fgDZPKkMNAxKJBAB05gpobW3lyLl06VJiPOgsXMHa2prjleTk5IQFCxZg3759xIjKDj9gjCRjx44lnjE8Ho9jBGAwNzeHhYUFJBIJmpubDVonhUKhDAWoYYBCoRiFSqXCfffdR9zBfX199b5c9iS9bWQICgpCcnIy2blj3P2Dg4OJy2peXh5iYmKIYWD06NHkerZ7vK5EZOzEXZ2FBLDXws5FwMjRnbU2NTVh8+bNJCyAz+fDyspKr7GCx+PB2toa77//Pt577z2kpqYiLS0NTz31FJ599lnMnz+fyMK4AqvV6g5fqPUpO4NVGR+oYxnb95577kFERAREIhGkUqlWdQpK5zDPBh8fH45y6+HhQY7v3LlDDAMNDQ1EaR09erTOZ4exVFRUEEPlqFGjOPH2IpEI3t7eJLmeRqMxyPjg4eEBc3NzSKVSVFVVGSwLYwRke0gwlJaWkvbw8PBue6ewQ9vaP89MTEygUqkMrrZhZmYGiUTCMWJSKBTKUIcaBigUilEIhUL4+voiLy8PwF+Z+wdLZQJ9MEp+Xl4eeDweKVUYHBxMdsLz8vLIbhQATk1u9gu9Lvd9tqKs6yVZH0xteQA9snt7+PBhYhR49NFHsXbtWohEIshkMqxbt06rLCODo6Mjdu3ahdjYWOzduxdSqRQffvghvLy8SBJKZofRxcUFO3fu1DmORqMxKIxgOIQQDDQjAfs3LBAIqGHASBQKBfl7dXBw4LQJhUIIhUIoFAqSzBMAJ0yAyQvSXdh/w+7u7lrtHh4eyM3NhVwuR2NjIye3hD54PB6srKwglUqJF0BnKJVKYjDVVdGAvXZDQ4s6wtTUFAKBACqVSiuPib29PSoqKpCRkYGYmBhO2V1dMPJSwwCFQhlOUMMAhUIxmlGjRhHDAONy35P0VW4BNvfccw+Av5T/zMxMmJqaIiAggCj6ubm5qKiogEwmw8iRI+Hr60vGYWKMAW5YATMXeweL3bez3Tq2YcCQF/iO4PF4SE1NBdCWDJApp6jRaGBmZqYzS3n76x944AGEhobi2WefhVwux/79+4kRgAmXkEqlcHNzI/eGfa/1HXd3XUN9R7+v5xUIBKiqqoKtrW2XytQNR9gKc0VFBc6dO6ezH9vg0lWDYUewnzW6FGD2OUMNA8BfynL7ygH6YK9Tl1Gzu2svKChAVlYW6uvrIRAIYGNjo9cjYMqUKTh06BDEYjH27t2LRYsWwc/PT+/YzFqpcYxCoQwnqGGAQqEYTXBwMH777TcAug0DA807gHGl1ZUNn5HF39+fJCBMSUlBZWUlQkJCIBKJIBQK4eDggPz8fGRkZAD4q8oAc72Hhwf4fD4xKrQnKyuLHOsr26ULJis2j8eDl5dXh30Nua+MoaGzGOGOxvL398eMGTNw+vRpzlqZZF+NjY2oqanR2jXtqtwDVcEeikaC5uZmnDx5kihcS5cuRXh4uEHXD3fYIULFxcV6Kzuwn0NsJbunDDDsMXUp5Gwl3NBKJ4Dx1S/YhkZdxgT2fTBm7RqNBrGxscTIaQghISGYNWsWzp8/j/r6enz33XcICQnBokWLdBoldFVIoFAolKEOfeJRKBSjYWdpvn37NmQyWZdfavvCO4DZEausrOywX0REBOLi4vDTTz8BAHGRB9rWfOXKFZw6dQrAX4YBBpFIhPHjxyMxMRFpaWlobGzkZMVOSEgA0PZSzg5B6AiFQkGyxI8aNQrm5uZGKXm6YF6Cu5LpnA1jbOHxeOQ7CA0NxbFjx6DRaHD+/Hk8+OCDpM9gd/vvybEG8rxmZmZISkoiO6W5ubnUMGAg7Fh+X19fnW78ANdjiH2NoTvxncGO1deVfJQ9D3v+nkYkEhFjqa6dd/bcxhgoEhMTiVHA3d0d48aNg5mZGcRiMf744w+9XgOTJ0+Gp6cnjh8/jrq6OmRlZUEsFuOxxx7Tug9M2cie8uKgUCiUwQCtQ0ShUIxm1KhR5FitVpP69broyZr0XYWpHpCZmYmrV68CaJO7fTx9dHQ0AOD3338HwDUMMGUCL1y4AACYOHGi1jxLly4F0OZ++s4775CX8vPnz5NyWfPnz9ebYEwul5NdNLVajQ8++IBUIpgzZw6nb1fvK5NLoaioCGfPnjVorLS0NM6L/d27d8l9YLvjRkVFEaXn4MGDyM7O5ozD9prQhzHr6qzvQB2rq/P2hYwmJiacv++CggKdyiVFG7aLvre3N2bNmqXzv/Hjx+u8xtDY/c5gewkwCi4b9rnerDrBro6iS46urj09PR1Am4Fl/fr1iIyMRFhYGCZPntxpAkNvb29s2rSJJH8sKytDYmKiVj9qGKBQKMMR6jFAoVCMJjAwkCR5AoCcnByDd8E7ore8B5YtW4aDBw9Co9Fg/fr18PDwQENDA8aNG4e9e/eSfvfeey+Av3bUIiIiSBtT+kqpVMLFxQXe3t5ac82fPx8HDhxAeno6zpw5g+vXr8PKygqlpaUA2koPPvnkk3plLSwsxIIFC+Dt7Y07d+6gpqYGQFsNcMbo0BXYc61YsQInT56EVCrFO++8g2+++Qb29vaorq7W6UWg0WiwY8cOKBQKhISEgM/nIzMzk+RdWL58OelrZmaGp556Cjt37kRLSwuef/55eHl5wdraGmVlZWhoaMAXX3xBQiIGq9t/f1YO6AsZQ0JCiPIlk8lQWloKn3alKSnamJmZkXvJzjPSEeyEg/oSfxpLZyVO2ckP2X17A6aSga4qJeyEg3fv3iXG186oq6sDAHh5eXVa1lAXQqEQixcvRllZGWpra5GRkUGMwkCbUZZJOkjza1AolOEE9RigUChGIxQK4e3tTT4ziQh7ckezu7DnioiIwOuvvw6RSAS1Wo2SkhI0NjYiPz+foxAFBgaSkldWVlYICAggbexdPl3eAkDbbuuHH36IcePGAWh7AWeMAi4uLtizZ4/OzOOMrDweD/X19UhLSyNGAR8fH3z00UedZtE2FA8PD7z//vvkJbysrAwZGRmoqqqCWq2GiYkJR1lobGyEubk5JBIJkpKScP36dbS0tEAgEODxxx/HlClTOONPnz4dL7zwAtlpKykpQWZmJhoaGmBpaWmwwtSenvztDAVPAmP6Gut1EBISwunHVB6hdAyPxyN5NW7dumVQaTwHBwfiZXPz5k2dFU2Mxc3NjRzrynPAnLOzs+v1HXFG+a+oqNBq8/LyIt5TKSkpRodSGFp6UBcmJibkWd/+nldXVxOjd09ViqBQKJSBQkfvAdRjgEKhdIng4GAUFBQAACntZwx9Xd7wkUcewYIFC5CYmIjGxka4uroiMjJSa5xDhw5BJpPB1NSUE0fv7OyMM2fOQKPRcHIHtJfF0dER33zzDTIyMpCZmQmVSgVPT09ER0dDKBR2KHNwcDC2bduG9PR0aDQa+Pn5Yfz48eDz+eQ69lzff/89NBoNLC0ttWR56623IJfLde6ohYWFYd++fSgtLcWtW7cglUphY2MDBwcH+Pn5EfdfJj/D/v37kZ6ejsLCQsjlctjb2yMiIgKOjo461zNnzhxMmTKFJHHUaDRwcXFBeHg4LC0tdV4zUHbLB+O8Pd3XxsYGHh4exKiVm5urFcpC0U1wcDAuXbqE5uZmJCcna+Ui0UV0dDROnToFiUSCr776CpMnT4aVlRUqKio4FQYMxc7ODh4eHrhz5w6ys7NRU1MDR0dHAG2GuqqqKgDcUKnewt3dHbdu3YJYLEZLSwvnWWVqaorx48fjypUrqKmpwTfffIPo6GiIRCKUlpbqTBbLrE8ikeD27dtQKBR6Q7PYqNVqrdwLZWVlAKD1PGcSvjLyUygUynCBGgYoFEqXmDlzJkaMGIExY8aQUn9s+rLygKEKm4ODA+bOnUvO61K22e6t7cf08PDodE2MJXbs2LEk/EDfXLoICQkheQA6m8vd3V1nSUAARBHoaAxPT094eHho9Wt/DZ/Px7hx40gSOkMUe3Nzc9x77706xx0Obv8DWfE3pG9ISAgxDNTU1KCurg729vYGjTWcmTRpEpKSkiCTyXDq1ClUVlbCy8sLKpUKlZWVUKlUWLx4MeeayMhI5OXlIT8/H7W1tTh+/Hi35ZgyZQp++uknKJVK/PDDD5gwYQIUCgWJpxcKhZg0aVK35+kMtmJdXl6uFS4wffp0FBcXo6KiAmVlZThy5EinY44dOxbl5eVobGzE119/jXHjxsHc3BxisVinF4FGo8Fnn32G4OBgeHl5Qa1WIyUlhYRZMM9bBsa7QSgUkucohUKhDAeoYYBCoXSJRx99FI8++ig0Go1BynJfegd0h76UZbjO1VtjDVRlfSAq/p31DQ0NxZkzZ8i5vLw8REVFGXT9cMbS0hKrVq3CgQMHIJfLkZycTCqLAG0hSu3h8/lYs2YNEhMTkZGRgdraWpiYmMDZ2RmVlZVdSko4atQoxMTEICEhAfX19SShKtDmRr948WJYW1t3bZFG4O7uTioT5ObmahkGRCIRHnvsMVy+fBnZ2dloaGiAUCiEm5sb8vPzdSa+jIyMxO3bt5GdnY2KigqdYQpsKisrUVNTQxLAsvHx8eF4dWg0GhIax8hOoVAowwVqGKBQKN1mMCnuQ1XZHqhz9ZfS3JNjDYb19nRfT09P2NjYEFf23NzcYW8YCA0NhYuLi07lno2vry82bdqEq1evoqSkBBKJBKampnBzc8OECRN0XmNiYoLo6GhOEjwA+Pjjj8n1uuRxdXXVq+DPmTMH7u7uSEtLI8YGFxcXREdH63WRj4mJgVqt5uSQYRg7diy8vLyMSlhoZmaGgIAA5ObmIisrC/PmzdMqDWhqaorp06dj+vTp5JxarcY777wDABAIuK+qJiYmWLVqFQoLC5GTk0M8MczNzWFjYwNXV1eOAcLZ2RkrVqxARkYGampqoFKpYGNjg9GjR2PixImc8UtLS4knQU8k1KVQKJTBBDUMUCiULqNQKJCTk4OMjAx4e3sjJiZmSCnuA3UXvbtzDVRFd6CONZhlNEaG9sfBwcG4fv06AKCpqUkrTnu4wa5S0hkjRozA/PnzuzWfWq0mhhldxghdIVztCQ0NRWhoqMFzzpw5U2+bPqNGZ4SHhyM3NxctLS0oKiriJHXVR2NjI/EW0Gf48PPz45RL1Qefz8eYMWMMUvRv3rwJoM1YYcx9o1AolKEANQxQKJQus2LFCiQkJAAA1qxZg5iYmB4df7iEGMyZMwejR48m+Q0GqgLd3bl6a6yBoID3pIw92bc78kZFRcHNzQ2jR4+GpaWl3mRwlN4hJyeHKMdMic/ByKhRo0jZwqtXrxpkGMjOzibHPn1UKlMmkyEjIwNAW94BWqqQQqEMN6hhgNIlysvLoVQqdbob9hUajQYlJSUwMzODs7Nzv8kxnAkNDSWGAWanhc1AUkoHsixLliwB0Hmywa7M1ZNjDQVlfTAYCQZKX39/f/j7+wMA5HI5NQz0EhqNBocPH0ZQUBD5t6ywsBDx8fEAAFtbW4waNao/RewWAoEAEydORHx8PPLz81FcXEyUfblcjmPHjmHMmDEYOXIkVCoVsrOzyb8rHh4ecHV17RM5r169CqlUCgBaIR0UCoUyHKCGAYpRaDQaBAUFob6+Hlu3bsU///nPfpGjtLQUU6ZMQXNzM/bs2YO1a9f2ixzDHbar5a1btwwuHaWLgay4D2RZ6FiDb97B2NfU1BRSqRQajQY8nv4ayBTjuXv3LjIzM5GZmanVJhQKsWzZMq04+8FGTEwMkpKS0NLSgvj4eGIYYJIIsj0EGCwtLYnRtLdRKBS4du0agLbcAm5ubn0yL4VCoQwkhm+w4CCisbERCxcuREBAgEGlfHqb+vr6/hYBKpUKzc3N/S3GsGfs2LHkWKFQkGzOuuhJZaKzsQbSXMbIMpDW1Vtj9eX9GgzzDuS+zHFlZSXOnDmDTz/9FDk5OQaPRTEMCwsLREVFwdnZmSQZtLCwQFhYGJ588sl+9czrKUQiEaZNmwY/Pz/MmzePnHd0dERERAQcHR2J8cPa2hoTJkzAxo0b+6xcoFAoxMqVK+Hq6tphngUKhUIZygxuE/Qw4fz588SSvWvXLixfvryfJaJQ2ggODoapqSmUSiWAtnCC0NDQIbsjP1Tn6qwvO569u2MZA/Uk6Pg7YXbvezM/gVwux+7du8nfeGZmplbdd0r3sLKy4iQqbG1t1crcPxSIjIzExIkTOefs7e2xePFi8rk/1+7n54cnn3ySesRQKJRhC/UYGAQEBwcTS7oxWZEplN5GKBQiKCiIfNblCttdBtIu+kCdq7fHOnLkCLZs2YKkpCTSfvXqVezatQv/+Mc/+k2uvug70GTk8XjIyMjA9u3bkZSU1OvyiEQiBAcHk89MyBCl9xiKRgHAsN9jf6+dGgUoFMpwhhoGBgGjR49GXFwc9u/fjz179vS3OBQKB3YJKH0JCDtioCrbvTlXRkYG9uzZg/T09B6ZyxiMHau5uRnff/89cnJyEBsbS85fuHABZ86cQVFRUY/MO9AU8I7aq6qqcOjQIaSkpBg0ljFrN0TeuLg4lJWV4dixYwYnBOyOIWLcuHHks1KpRH5+vsFjUSgUCoVCGRxQw8AgITg4GPPnzyfxhxTKQIGdgDAjI6NbbuSDRbHvzlwKhQKbN2/G119/jaeeegqNjY0Ddoebx+Phxx9/JDKuX7++z+btqbHkclLj6G8AACAASURBVHmPj/vRRx/h+PHj+OCDD1BSUtLnhor7778fAFBTU4OLFy92a1xDrhszZgzn357e8AyiUCgUCoXSv9AcAwMAhUKBtLQ0tLS0wMPDA/7+/uDzjbfZKBQK1NTUoLq6GgKBAP7+/jA3NzfoWplMhszMTIjFYowYMQKenp7dTvqTk5OD8vJy2NvbIywsrEMXQZVKheLiYlRXV0OpVMLLywu+vr4Gz9XY2IiSkhIAQFBQUKeZ8ZVKJQoLC1FRUQEzMzOEh4d3eq+kUilu3LgBuVwOT09P+Pr66n2plslkSEtLg0wmg7+/Pzw9PQ1ey2AjLCyMHIvFYpSVlcHDw0Nn34EaY9+Xc6lUKkgkEgBtvxOZTAYbG5sujdXbsfJyuZx4CcycORN+fn49Ipcxfbs61s6dO5GTk4NJkyZh48aNPSpjS0sLgLY4//ZJUPsi54Cvry9CQkKQlZWFc+fOYfr06VrKvjF5BDqThwknYGq85+bmdqsCCYVCoVAolIEHNQz0M7/88gu2bduG2tpacs7Lyws///wzqR/d2tpKahhv2rQJL730EmeMXbt24cyZM7h58ybHrVQoFGLFihXYuXMnLC0tdc7f3NyM9957D99//73WC+7YsWOxbds2zJ4926g1ZWdn4+mnn8aNGzfIOXd3d3z66aeYPHmyVv9XX30Vhw8fRl1dHed8aGgo3nrrLcyYMaPD+bZv346tW7dCrVYDaMvm/Pzzz+P555/X2f/zzz/H7t270dDQQM5ZWlpi69at2Lp1q05lf+/evXj33XfR1NREzgUFBSE2NlbLgPLNN99gx44dEIvFANpetufMmYNPPvkEI0aM6HAtg5ExY8Zg/PjxiIiIQEREBGxtbQF0X+EbqIp9d8eytLTE66+/jt9++w3z58+Hk5NTj8jVGV1Z46VLl4gS/MADD3Dae3PenhgrKyuLyN7TMv7tb3/Dr7/+iqCgoA4T8fWmkWDKlCnIyspCTU0N8vLyOLk+eloeJpyAMQwolUrk5eVxvIUoFAqFQqEMbqhhoB+Ji4vDpk2boFarYWJiAnd3d9y9excVFRVwdnbm9GWUWLZbLMPBgwdRXFysdV6hUODHH39EeXk5Dh06pOWFIJFIsGzZMr1xsunp6bh27ZpRhoHS0lIsWbIEtbW1MDExgaenJ8rKylBWVoaHH34Y8fHxWqWXjh49qmUUANrcVVetWoV9+/Zh0aJFeuesqanRWtc777wDgUCAZ555Rqt/a2srxygAtO0AvvPOO2htbdUyvBw4cADbtm0D0FbL283NDZWVlaitrYW9vT2n79dff42///3vAAAbGxtYWVmhvLwcZ86cwVNPPYUDBw7oXcdgZcSIEThz5gyAvzKl9zQDSbE3Bn1jLVmyhNTn7u+d9Y5gvlcHBwdOLomuMhA8CXqib3h4OMLDwwH03Penr6++68LCwiASiSCXy3HlyhUEBQX1+BxsmHACpjpBVlYWNQxQKBQKhTLI6Ghzh+YY6Ec++ugjqNVqODo64tKlS0hJSUFRURF++eUXWFlZGT3epEmTkJCQgIqKCiQnJ5Od9ri4OBKHyuaDDz4gRoGlS5ciMTER1dXV3Yof/de//oXa2lqYm5vjzJkzSEpKwp9//gmRSITm5uYOkyc+8MADKCkpwZ07d7Bv3z7Y2tpCrVbj+eef12k4YHjuueeQmpqKqqoqnDhxAm5ubgCA999/H1KpVKv//Pnz8fnnnyMzMxPl5eX49ddfibFiz549HK8AAPjwww8BtJUySk5ORnJyMoqKirB//36OsaWurg7bt28HAEyePBk3b95Eeno6MRScO3eu0yziQ5W+jovvKQaq3H0xVmNjI/m9zpw506Dwpv5OCtjX8+rr29PJBnX1FQqFGDt2LAAgJSWFeEz15BxsRCIRxzuCCSegUCgUCoUyNKAeA/0I45b54IMPIjAwEAAgEAgwadKkLo3n5ORE3Em9vb2xe/dujB8/HhqNBr///jumTZtG+ioUCuzbtw9A287TF198QXIAdOTa3BHNzc349ddfyZqYTNbBwcGYNWsWTpw4gd9++w27du3SqWRYWVnBwsICALB48WIolUps2rQJDQ0N+PHHH/H000/rnJcdwx8VFYUXXngBL730ElpaWnD58mXMmjVLqz8TpgG0GVR27NiBdevWQSKRICkpiRhVpFIpCgoKAACPPvooMToIhUKteswnTpwgRoXXXnuNrGXTpk3YvXs31Go1YmNjMWHCBENv6aBCIpHgxo0bSElJwcaNG/Uqkv2xY6/RaJCeno4LFy4gPz8fdXV1MDMzg6enJ1avXs35PeTl5eHLL79ERkYGeDweRo8ejSeeeIKE8+iiuroahw4dwpUrV3D37l1YWVnBzc0NEydOxMyZM+Hq6srpf+zYMZSUlGDkyJFYvXq1TrmvXbuGQ4cOoaCgAAKBAGFhYXj44Yfh4+OjU4bi4mKkpqYiJycHNTU1qK+vh6mpKQICArB48WLOGju7XwCQmppKlE3mt64vD8G3336L3Nxc1NfXw97eHjExMZg7d26HCmlOTg5+/vlnFBYWQiAQIDg4GKtXr4aLi4tW35aWFsTFxSElJQWVlZWQSqXw8vLCvHnzEBkZqXcNQNv3uX//fvI5MjKSPCeVSiWSk5ORmJiIqqoq1NXVwdzcHH5+frjvvvs47vnscVNSUnDr1i0IBAKsWLGCM79UKkVycjJSU1NRU1MDsVgMS0tLBAQEYObMmXrzbzBzXLlyBRcuXEBNTQ3Mzc0xduxYzJ8/H2ZmZlp9x4wZg8TERMhkMpSXl3c4tr77Y2hfJpyAqaTB5GlhlzKkUCgUCoUyeKGGgX6kt+v1enl5ISgoCLdu3SJGCIbLly8TJXbt2rU9Isu1a9fIDtLcuXM5bZGRkThx4gRqa2tRVFRkkJKydOlSbNu2DfX19Th37pxew0B72KEPGRkZWoYBXTBuwQBQXl5Ojo1JAnnhwgUAbW7X48ePJ+dtbW0RFBSEnJycIesxwNzn1tZWAG07zB0p0obSU0aEZ555BqdOndLZNmfOHPj7+4PH4+HixYvYvHkzJ2SnqKgI58+fx9dff80p28YQHx+Pl19+WStHR25uLuLi4nDlyhV88sknnLazZ8/iypUrRBluzzfffINPPvmEs7aioiKcPXsW//73vznGQ+YerFu3TucO7o0bN3D8+HFs374d06ZNM1gpZEpP8ng8nd8lo/RLJBKO4g0AV69eRVpaGl555RWOjAznz58nxjKG0tJSJCQk4MMPP4S7uztnvOrqanz++eda55KSkvDggw/ioYce0ruOoqIiTklFe3t7ovAnJydj9+7dWteUlJQgPj4eS5YswapVq7TaMzIycObMGYhEIqxcuZKztri4OPzwww+c/jU1Nbh9+zbi4uKwdu1anc8kjUaDb7/9FvHx8ZzzpaWlyMjIwCuvvKKV7I8dllVUVAQPD49eDScIDQ2Fi4sLQkNDMWbMmCGZM4VCoVAolOEKDSXoR7y8vAAAx48fR319fa/Mwey+tXfFz87OJschISE9MldeXh45bp8Ia+TIkeRYVz4EXZiYmJC4ZkZJMQQXFxei0HcUgsDGzs6OHMtkMnIsEolIvodDhw5x2tqTm5sLAAgMDNQyKDBeGIbWfB9stF8zE6IyUNz+mSoA5ubmeOihh/DPf/4TL7/8Mu6//34SJy0Wi/H8889DLpfD29sbH374IXbt2gVHR0fI5XK8+eabHCUKaPs+X3jhBTQ3N8PU1BQrVqzAK6+8gi1btpDflLH3IDk5mRgFRo4ciS1btmD9+vWwtLSETCbDP//5zw6fF56enlizZg22bt2KFStWwNTUFCqVCu+++y4nGV9nchUWFgIAXF1dOVUT2iMUCrFgwQI8+eSTWL9+PfGO+OOPP7SUXACoqqoiYVSBgYF44403sHXrVlhYWKClpYVjAGBk9PHxgY+PDxYuXIjHH38cy5cvh7W1NQDg559/Rl5ent71ODs7IyYmhvzn6uqqs+/MmTOxYcMGLFmyBLa2ttBoNDh69CguXbrU4X1i037c+fPn45FHHsG8efNgYWGB1tZWfP/998jOztZy9b969Sq5X1FRUXj++eexcOFCAG2Git9//11rDldXV+JJoOu52hPhBOxjkUiEV155BYsWLYKPj0+P/v1SKBQKhdLa2oqioiIUFBSQzSZK30E9BvqR5557Dhs2bEBZWRnmzZuHjz76qMthBPpglBNGMWKoqqoix+0T6HWV6upqcnzkyBFO3eucnBxy3NjYaPCYTMb/hoYGNDY2dqigMJiYmMDKygqNjY1a62a4ePEiTp48iYqKClhYWHR4D5577jm8+uqryMzMxIIFC/Dxxx9zSvQxMOtvamrSyqXA3G+mUsFQw8zMjFPOLDU1FWvWrDFqjL5INuft7Y23334bwF9J45j/HzhwgPw2P/74Y+IiLZVK8cYbbyAvLw+pqam45557yHifffYZ5HI5eDwePvvsM0RHR5O2M2fOaCW5NETuffv2QaPRQCgUYs+ePQgMDIRGo0F0dDSeeuopNDU14eDBg9i0aZPONcbExODZZ58la/P19cWuXbvQ3NyMy5cv60wmqut+VVRUAICWd0/7vpaWlnjxxRfJuQULFuDhhx+GQqHQCmEC2iqxKJVKCAQCvPXWW+Rvr7a2Fvv37yf5QtgJWHk8HseDQqPRYObMmXj22WfR2tqKCxcukHAspj9DeHg4Nm3aRK7Tx5w5c0g5xrlz5+Lll19GY2MjfvrpJ8TExIDP5xsd5rJw4UJSpWPKlCl4++23oVAocPDgQbz11lucvidPngTQVsHlySefJKEC+fn5uHXrFuLj44mhgIHP58PNzQ2FhYWcZ3pndDVcp72HgampKc0zQKFQKJQeQalUYt++faisrATQtqm2YcMGg0uvU7oP9RjoRxYtWoRt27aBx+OhoKAAixYtwsaNG41SnDtDnys821XaEGXbENhK+M6dO7F9+3by36FDh3TO3Rlshb19UsCO0Lfu1tZWbN68GUuXLsXevXvx22+/4dChQ/jiiy/0jvXEE0/gscceA9BWqWHWrFl4+eWXtV6ImfVnZmZy1r59+3bcunULQFtuh97I2j8QYCvMqampWu19mRSwK2P9+eefAICAgABOkrV7772XHF+5coUcy2Qyck10dDQmTZrUbQ8JsVjMSfjHVnbHjx+PgIAAAG3u6oYye/ZsYqQzxPOGkZH5ezPWXdze3p7k0cjOztb6vV+7dg1AW24TBwcHcj4iIoIcp6WldSqjp6cnMVqUlJR02NdQmL4ODg6YP38+gDaDBeMN1J05PD09yW+pqKgId+/eJW21tbW4c+cOgDZvAWY8Ho9HPFrq6urIyxIbxnPCGG8QfbIbc11DQwMuXLiAn3/+2eBrKBQKhULRR1JSEiorKzFv3jwsXrwY1dXVSEhI6G+xhhXUY6CfefHFFxEZGYlnn30Wd+7cwZEjR1BSUoLY2FjOjntPwx67I/d4YxAI/vo5Pfzww3qV847qfreHKY0FGBfvr49PP/2UGCnGjh2LZcuWwdraGgUFBfjss890XsPj8fCf//wHkydPxt///nfU1tZi3759KC0txQ8//EBeppl76uvriylTpugcSygUDln324iICHz77bcA2kqZyWQyrYRpDH1dfrAzNBoNMd6w800AbTu4QqEQCoWCuNcDQEFBAal60T4RZVfJyMggrnPsJJXMGiMjI5GXl4fCwkK0tLSQBJcdrdHKygpOTk4oKytDZWWlQfdWo9EQRdPS0tIg2dnj+vr6IiEhAU1NTZBKpbCwsACPx0NzczNRbtsnrWMnzistLTVoTsawwFaKDZWxs99FeHg4Dh48CKAtTMrQJHsdjTt27FhiTCooKMDIkSOh0Wg4ho32HhrsxJWVlZVwcXHhrIP5DejzjjI2j4Ah112+fBmHDx8m56ZOnapVYpdCoVAoFGPIzs6GmZkZJk6cCD6fj4sXLyI/Px/33Xdff4s2bKCGgQHA1KlTcfHiRbzwwgs4evQoEhMT8dVXX2Hjxo29Nic7pr6mpsagZICdwd5ZfP311zm7gV2lpqaGHBuqoHTEgQMHALTlVTh9+jRJ5tXS0qLXMMDwwAMP4N5778WmTZvw559/4uzZszh27BiWLl0KoO2eNjQ0ICAgAB988EG3ZR1ssD0GlEolbt68aVAFhr6sUqCP+vp6olw6ODigsbGRM6e1tTVqa2tRW1tLzjE7vMBfIS9dhVkjW0Fsn4APAKmKwczfPpeHPuzs7FBWVqalQOu7txKJhCQGZP7ujPkeGPd5ABwDBnvH287OjiRs1Gg0nESE7BAM9rzNzc0oKipCa2sr7O3tteIPe/K3wvZWYick7U7pP/ZzlwnVAMDxHrCwsIBEItFpwNDlTcbc25aWll5NPMi+zs/Pj9M/LS1NK+EshUKhUCjGUFVVBXt7e7IR6ODgYHBeMkrPQA0DAwRra2t8+umnuHHjBgoLC3Hw4MFeNQywFYq8vDxERUV1e0z2i3RVVVWPGAaYuFk7O7tuhzxoNBpSenDKlClaGb4NwcHBAV999RUmTJiA2tpaHDx4kBgGmAeYMbG+Q4ng4GBYW1sTF/SUlBRMmDChV8oPdrVdX1+2wvy///0P//vf/3Rew3gIAOBUIWArfN2Riz0m4yLOhn2uubnZ4PshEokAQKvWvT4Z2Qo32xOI3bcj2B5JbPnY9+/zzz/XqjTA0N6LqampCV988QUuXLjQ7dh4Q/uy77WhHgmdjatvTHZ4FZMDQxe6wrCY76cjI0lPGwxcXV3h6elJPDuYEKverrRDoVAolIFPc3MzJyF5Z7i5ucHJyQlyuZwYu4E2w7dSqYRCoejSOzsDU92noqICKpUKDg4OGDduHAnPNJT6+npUV1fD2tqas1HDUFFRwdlIYOPp6WlwOfiUlBRoNBrY2trqlLGxsZHcXycnJ1KyvSeghoEBhFAoREREhNGJpLrCvffeC4FAAJVKhe+++w6rV6/WqQDogs/nQ61WaykZvr6+5PjUqVPdrnbQ2NhIamYzcbbdgalnD3SsIHWGtbU1QkNDceHCBc735Ovri+TkZNy8eROlpaU9+oc6GODz+Rg7diwuX74MQHeceF+HEBg6lqGZb9mKD3ts9vnuhDaw5TA1NdUai61ws8NsehorKysyd08oxQzG3GdmfpVKhddffx35+flENicnJ4jFYtTV1RltKDD0dyEQCGBiYoLW1laDEuwZMi77xYYZk8fjden31/776UrIhzG0NxhERUURw0BLS4tR4RYUCoVCGbrU1NTg+PHjBve/7777iNcxWxdhjqVSaZcNAxcvXsT58+c55yoqKnDz5k3MmDFDK0GyLsrKyvDHH3+QzcXIyEidhoFbt27pzQE1f/58gw0DJ06cQGtrK4KCgrQMAxqNBrGxscjPz4dAIOjxTWRqGBhAqNVqktW9t+M17e3tsXz5chw8eBApKSlYtWoVNm7cCAsLC1y9elXvdTweD87OzqioqNBK+BUTE0Pc6b/99lv87W9/63QntSMOHz5MlJ+ecFPl8/lwd3dHaWkpLl68CJVKZbAxhI1MJiPlHtnf07x583D48GGo1Wp88skn+Pe//91tmQcb99xzDzEMMCUL9dGXIQSd7XCzd3JfeOEF8qBlz9/+mG3VNrb6gD6YnX2A6z0AtK2BnYCzoyy93b23JiYmMDc3h0Qi0ZKjIzob18rKihy/9NJLmDVrFgD99xloi2dnjAJLly7FunXryN/te++9R35vhspgKBKJhCjsZmZmRuUn0CcP+16y82+wv8v333+feFu1r5zR/piRE+hayEdXvQqAtr/148ePk2d0WloaNQxQKBQKBaamplpew83NzcTrrX2bubk5+beEbQBnjmUyGSdE0Rj8/Pzwxx9/YNSoUfD19YVEIkFycjKam5vx559/wtvbGz4+PnqvT05OxsmTJ8n7gLm5Oef9j41KpQLQtn72+w7Afb/rDqmpqeSdaMaMGZxy8D0BNQz0I3PnzsWcOXMQHR0NtVqNH3/8kWS/ZjJi9yZvv/02rl27huLiYsTHx+usOa6LgIAAVFRU4LfffsPrr7+OTZs2kQRtzz77LLZv347y8nLMnz8fGzduhKurK8rKyhAfH4+NGzciJiZG57iXLl3Cvn374O7ujsTEROJmbGNjg7Vr1/bImpcsWYL//ve/yMnJwerVq/Hggw/CysqK/JG1R6FQYNasWVi1ahXGjx8PqVSKL7/8ksQEs8uHLVq0CKNHj0Z2djb27duHuro6LFy4ECYmJsjLy8OVK1eGfAbvqKgoJCYmIjo6mlO6r7v0tqcB+x8cQ6uCsJPlsUt1dhUej8fJVaDL2MCWzdBQHUMqJei6d1ZWVpBIJBxjRHeVbrYBhr2WjsZljHACgQDr16+HiYlJr4QTtM/Oz153R2FMxtwTfaEi7N3+5uZmre+2IwWeCc/QZSjq6XCC9kkPx4wZQyqQ5Obmorm5WetliEKhUCjDC3d3dzzzzDOcc4cPH8bNmzchFAq12oC/QuXYHr2MMt4dpdrd3R1btmzhvF+NGzcOn376KVQqFa5fv67XMJCTk4Nff/2VjDN79mx4eXnpTYbOGAZ8fX17TG9h09jYiLNnzwIAvLy8erzEPUANA/1GYWEhkpOTkZycrNU2ZswYbN68uddlcHR0xNmzZ/H+++/j5MmTKC8vh5WVFcaPH08yZ+tiy5YtSEhIgEqlwueff465c+eSRGlPP/000tPTcezYMeTl5eGll17iXBsWFqbXMFBSUoKXX36Zc04gEODjjz/ulucBmxdffBEJCQlITk5GXFxcp2XfkpKSkJWVhTfffFOrbdq0aVizZg35bGJigm+//RYPPPAAKisrcfToURw9epRzTVlZmc6kckOFefPmYd68eQC4oRsDNYSA6WtqakryIzBeO52NFRQUBDMzM8hkMly4cAFPPPFEt+Vih+NkZGRg+vTpnHZGNqFQSLLV91YOB3t7e1RXVxtcIcCQcW1tbckxUwWiIxmAv2LxraystGLY2yvz7OsYrwJdYQCG3DN2ckB2ZYCO6MwIw06+yB6TbXgoLi6Gt7e3wfMxchpTVrI7ngLsMSZOnEgMA4zHW2+8qFAoFAplaMOESjLKNQDOLn13aJ8gesSIEfDx8UF+fr7enABSqRTHjh0D0PZu9tBDD3XqZczI3l15dcGEEMhkMohEIixdurRHqrW1hxoG+gkPDw/897//xZEjR5CTkwO5XA43NzfMmzcPzzzzDGcHicfjYd26dQC4tb4Zli1bhpqaGowbN06rberUqbC2tta7u2hvb493330X7777LjknlUpJfLyumJ5Zs2bht99+ww8//IDMzExORQM+n4+9e/di1qxZ+Pnnn5Gbmwu5XA5XV1dMnz4dDz30kN57MnbsWIwYMQJZWVkwMzPDPffcg82bN2P8+PFafa2trck90ZWYY/Xq1ZBIJFovqVZWVjhx4gRiY2Nx6tQpZGdnQ6lUwsHBAe7u7oiIiMDs2bNJ/3HjxuG9995DbGwsCgoKoFKp4OnpiUWLFuGpp57Sekj4+fkhPj4en3zyCf744w9UVlZCIBAgMDAQq1atMji+aDjTl8kK2URFReHcuXO4fv06iouLtSzI7ccyNzfHjBkzcOrUKaSkpGDv3r147LHHwOfzIZVKdSaK64yQkBASjnPhwgVs3ryZ7JBLJBISnjF+/PhuJ3rr7N74+voiJycHhYWFnYbdGOpmb2ZmhuDgYGRnZ+PKlSsQi8UdugfyeDzyLBSLxWhpaTEolp7H48HGxgZisZiT8d8YEhMTyfGYMWPIuN3xVmAMwXw+n+N2HxQURPIZxMfHY+rUqeDxeJ3OJxaLiWcJ26jUm4kH2QQHB5PfK9Dm4kgNAxQKhUIxFj6fD1NTU07yYblcDj6f363Eg/pgvNv05WtKTEyETCaDQCDAkiVLDAo9ZsbqqbABNuwQgjlz5hi1GWAM1DDQTwiFQqxZs4az46wPPp/fYfm7V199VW/bI488gkceecQo2dhl2PTFrkRGRiIyMlJnG4/Hw+rVq7F69Wqj5h0zZgz27NljUF9HR8cO78m//vUvvW0CgQDLli3DsmXLOp3HwsICjz/+OB5//HGD5ALaXLzffPNNnV4Gw4WGhgZcu3YNpaWleOyxxzht/eUd0Blr1qzBuXPnoNFo8MILL+CDDz4gxoHy8nIUFhbi3nvv5cz7zDPP4MKFC2hpacFHH32E/fv3w97eHiUlJQYbBthrMDExweLFi/Htt9+isLAQe/bswTPPPAO5XI6dO3cSV3RDfrvdvc/BwcE4deoUlEoliouLiQGuu/f8/vvvR3Z2NhQKBXbu3ImXXnoJjo6O4PF4KCkpgVgs5iQbHTNmDH799VdoNBp88cUX2Lx5M8zNzaFWqztMwBgQEIDS0lJkZmbi6tWrmDhxIpqamtDU1KTTa6e6uhr+/v5Qq9W4fPky8Zry9fWFl5dXh2vSd0+qq6tha2sLtVqNs2fP4saNGwCA8PBwEkqg0Whgbm6O6OhoXL58GUVFRaTaiUgkglqtRn5+Puzs7MjzmJnv9u3bZK6OYiR1ydlToQUTJkzAuXPnyHorKyvh4uJi0LgUCoVCoTA4ODhwwijr6upgb29vVF4fQxGLxQCgN/yN+fc6NDTU4PwGzHtfTxsGmpqa8PvvvwNo24BklwfvaahhgKLF6dOnyXFPxolThgdHjx7Fxo0boVarIRQKsXbtWk6iNTb9HULAZurUqVi8eDGOHz+OzMxMzJs3DyNHjoRMJkNjYyNGjRpFDAMMPj4++Pzzz/HKK6+gvLwctbW1qK2t7dYa1q9fj3PnzqGsrAzff/89Dhw4wKkCEhMTg2nTpvWoUUSXjGwPpPT0dKPL+ugb97777sOff/6JpKQkpKWlYd26dbC3t0dLSwukUikmTJiATNO9wgAAIABJREFUHTt2kLVNmjQJQUFByM3NxZ9//omLFy/Czs4OYrG4Q8PA3LlzERcXB41Gg3//+99kR37SpEn4+9//rvWisXv3bqLEM/kF+Hw+1q1b1+V7/fbbb2PEiBGQy+UkSaBQKMTKlSu1+j744IPIzs5GXV0dzpw5g/Pnz8PW1hZisRgqlQorV64kYToMTLkiHo8Hb2/vHqs4YMzfUVRUFBISEjBu3DiEh4f3euJcCoVCoQxNAgMDcfHiRdy5cwcCgQDV1dW9ogSLxWKyCcr2tmOoq6sj73KBgYEGj8t4O7ArSHUXjUaD48ePQyqVQiQSYfHixd02lHR0PTUMDGNqa2vx1ltvYdmyZQgKCkJzczOOHz+Ojz76CECba/Xo0aP7WUrKYCMkJIQosQqFAikpKXrzSrDprxACdt+dO3fC0dER+/fvh0KhIEkFeTwePD09odFotB6oEyZMwOnTp5GcnIySkhISOrJt2zYUFBQYHQNma2tLjA1ZWVkkZo3H42H27Nl49dVXtWToapb8jvDx8YG7uzsp09OZl4Kh4/L5fLzxxhv4/PPPcfbsWbS2tqKmpoa0tQ+3EQgE2L59O7777jvExcVBIpGQ/kBb4j7mH3a2DKNHj8YzzzyDr776Cs3NzSRWke2myEYkEpEdBKAt7v+JJ57QKpVqzL0WCoWor68nnx0dHfHEE0+Q3xIbOzs7bNu2Df/3f/+HW7duQaVSkRcTc3NzWFpactan0WiQlJQEAPD399eKaeypPAKdjTFy5Ejs2LGDhLw0Njb2isGKQqFQKEObqKgoJCcn46uvvgKPx4NIJOK8PyYnJ+vNT8Rm1KhROsOQlUolysrKcOLECSiVSpiZmSEqKkqrH9tzWigUIj09Hc3NzXB0dIS/v7/eUE5mA+Du3buoqqrqEUP5pUuXSAjBwoULu1ydwVB4Gh3/gjM7FJShza+//ooNGzbobHNwcMCJEye6vUtoCKNHj8bdu3exdu1ag0MJKAMXjUaD4OBgotRs27YNzz//PGlj/9+Q4+62d6VvU1MTbty4AbFYDDMzM4SEhJAHvKFjxcTEoLGxEQ888AAntMUYGfPy8lBSUgITExMEBgbC1dW1V9ar79zXX3+Nr7/+GjweDz/99BNxEe8pGcRiMfLy8tDc3AwLCwv4+/uTuDld17W2tqKoqAhNTU0wNzfnuNfrm4MJhZDJZHBycuL0v3z5Mnbv3g0AeOedd9Da2oqGhgbY2dmRuH9j7+XJkyfx/fffAwA+/PBDVFVVoaWlBY6OjvD19SWGhY7uVVVVFcrLy6FQKGBjYwMfHx/imsj0KSwsxDvvvAMAWLduHaZMmWKUnPrm7u6xRCLRmfCRQqFQKMMXdlWCjkKg6+vrkZGRAY1Gg7CwMNjb25O206dPd1hSnSEqKkqrutvBgwdJlSOgLVfZihUrdCb77Sg5uYuLCx566CFOZSGG//znP8Q4ALQZzmfPno2g/2/vzKObrtL//07Spm1aupeudKfQQktZy1JKWQqlCMiqgiiog37V0dFxn9/R81XGme/x63h0XGYcx6+igiKrIFBWgbK0QCktpQvQle6lW7olzfL7I+dz55MmaT5Js3xS7uscDjfJvc99knzS5Hnus8TFGdWZzXvvvQelUgkvLy9IpVKoVCokJyfjwQcfNEnOUDz//PMANIcg7AgHGjFwHxMdHY0VK1YgLy+PVMv28fHB0qVL8frrr4/o6vkU6yEQCDB9+nSSkpKXl6d3Dl9SCPQxatQorbQBfWuGktXY2Eja8cXExJitY2xsLHHOGcrxtuZrk5mZiW+++QZqtRpHjx7F5s2bhyV38DovLy9MmzZNr5Gpbw+RSKRV7NSQccrG2dkZY8eONbgHg5OTE8aNG2dQljmn7mKxGImJiXqNb30wewQGBiIwMHDIdRcvXiR7sOu9WLNFoTF6enpw4cIFlJWVYePGjVbJC6VQKBTKyMXHxwdpaWl6H4uPj+fUpUxfnZvBDmsnJyeDTmx2O2UfHx+Eh4ejvb0dNTU1aGxsxJ49e8jvITYTJkzAvXv3yIFAS0sLduzYgRUrVpiVEsGOYrRWscHBUMfAfcyECRPw9ddfA9B8YPr7+4fs120t2B48ysggJSVFyzGgVCoNhl7x1UnAVVZhYSEmTpxIjCCpVIr33nsPgCY0fuHChVbT0ZS55jgUgoODMXXqVFy5cgW7d+/GmjVrdLzkljBErTXX1HVcsVXVf0PrOjo6kJOTA0BTCNbNzY2z08HUvbnIEAgEKCgowPfff0/qPlRWViI6OtrkPSgUCoVC0UdERATndr6DWbRoEZKTk9Ha2orr16+jvb0dO3fuxKZNm3TqDDDfY56ennjhhRfI74Ps7GxcvHgRVVVVqKmp0SlMvGzZMgCa9r2FhYU4fPgw5HI5jhw5grFjx+qNMhiKoKAg9PT0QCqV4vTp0/Dz8yNdkqyF5RsgUhwSsVhsF6cAZWTCztmSSqUoLS3ltM6SJ4ymGnrmPN7d3Y2NGzdiwYIF2Lp1K7Zu3YrMzEycOXMGALBmzZohv8QsqaO15m7duhUCgQDd3d3YtWuXXXQwNNeR9xjOfkePHoVcLoeTkxMeeOABs2QY29vU5xIREUHqOAD6I4UoFAqFQrEHwcHBSExMxPz58/HMM88gICAAKpUKv/76q46jnPkuE4vFWt+Fs2bNIreZvH99CIVCJCcnY+XKlQA0jobCwkKTdfb09MSjjz5Kagjt378fdXV1JssxBeoYoFAoFic5OVmrGFpubi4A2xjr1p7Lfry2tpZUzj1//jzOnz+Pzs5OCIVCPPLII0Pm0VlTR0vOHT9+PObNmwehUKhVuM+RjXJbGfDWWjcwMACBQID09HSDLWWHu7epMry9vbVOMsrLy7UKL1IoFAqFMhxUKhUUCoXRf0wBbEO4uroiNTUVANDa2ora2lqtx5kIV7azG9AY6kx7w6E6UDEkJCSQ+YP34EpgYCDWr18PoVAIhUKBPXv2cG6HbQ40lYBCoVgcsViM5ORkkgedl5eHJ554QmsOX1MITJmbkJCAs2fPoqCgADU1Nejq6kJAQABSUlJIjQ6+htmbMveZZ57BY489hpiYmGHn39s69WCodTExMXjmmWcAaIoEWSLEPjExEU899RQAQCKRWETPwWzatAmzZ8/G6NGjLZ4WMBwZc+fOJaciKpUKV69exaJFi0yWS6FQKBTKYI4dO2Z28cHBsOsQ3Lt3TystwMlJYx7ra4kskUgglUoNdjhiIxAI4Ofnh+7ubnR3dxudb4ioqCgsXLgQx48fR1tbG3755Re9bY8tAXUMUBya3bt3IykpSaviZ1dXF4qLi+Hp6anTamwk0NPTg+LiYmJ8A4BCocDOnTuxZMkSnXZv9iIlJYU4Bpj/DeHIToJRo0bpVIQ3Jd/bFjoOd25ISIhDGv7G9ggMDMTixYuNOjtM2SM8PBxjxowht61ltOvL3x+qBoAtihAynTMaGhoAAPn5+UhPTyc/sigUCoVC4QPu7u5k3NfXp/UYUwugv78farV2m2rme5BrK2qmy5+prasHM3v2bFRXV6O8vBzFxcWIj4+3Sr0B+m1N0WJgYAAymYyEvvCZu3fv4sUXX4RCocAnn3yChx56CP39/eRU86233tLrGGhvb7dZdU9jmKPLuHHj0N/fj2effZY4BlauXInc3Fxs2bIFH3zwgTVUNZnU1FRcv34dc+bMIYYzF8w9vRyuLGs5J/jmyDA215LPzRL6mIKtnQu2WOdIMgQCAebMmYPdu3cD0LQuvHHjBvk7RaFQKBSKucybNw8zZ840Oo9p7zsUUqmUjF1dXbUe8/LyAqAx6qVSqVYNNsaJYCwikKGtrQ0Ahm1XCQQCLFu2DFVVVZDL5Th69ChiY2N1dB8utMYAhVBdXY1JkyYhNjYWP/zwg73VMcr7778PmUwGJycn0tpErVYb/KGrUCjwwAMPYOzYsXjuuedsqaoOKpUK69atw9ixY7FlyxaT1up7fvPmzQMAfPfddygvL7eIjsMlPT0dP//8M1588UWtNi0joc6Ateaakg9urbmG1vFhLl1nexmmyps+fbrWDxWmvgiFQqFQKMPBzc0N3t7eRv+xa1wZoqamhowHR9qGhYWRcVNTExlLpVLiUDBW3wcA7ty5QxwJ5nZTYOPl5UXsne7ubpw+fXrYMgdDHQMUwvHjx9Hc3AyFQoHt27fbW50huXPnDjmVevLJJxEcHGx0TUVFBclN+umnn9DT02NVHYeioaGBfKAPHjyI5ubmYcl7+umn4enpCYVCgY8++sgSKlqMoQwL6iSgc+1piJuCrY12Phn7pshzcXHBjBkzyO2GhgbcvXvXrP0oFAqFQhkOd+7cwY0bN7QO1SorK0n3KG9vb4SEhGitGT16NInmvXTpEilmeP36dTInNjZWa01ZWZlWSkJFRQX2798PQBORMGnSJIs8n1mzZsHPzw8AcPnyZbS0tFhELgNNJaAQZs6cCRcXF8hkMmRkZNhbnSHZuXMnVCoVnJ2d8cILL3BaEx4ejqioKFRWVmL27Nla+UW2JjAwEOPHj0dpaSmmTJkCf3//Ycnz8vLCo48+is8//xwHDx7EX//6VxIKZW+amppw9uxZ5OfnY9u2bQaNEkeuM0Dncpt7v6cTWHNva6QFmCsvNTUV586dI+tv3bqldQJDoVAoFIotyM3NRXl5OY4cOQJfX190d3drdczJyMjQyf8XCARIS0vDgQMHcOfOHfzjH/+Ah4cHKisrAWjsCXbxwv7+fuzatQtqtRpeXl7o7+/XchIsW7bMYiH/IpEI6enp2LNnD1QqFX777TeLFiKkjgEKYeLEicjPz0drayuvi/apVCr8/PPPADQh9FyNaldXV5w5cwalpaVITEy0popGcXJywokTJ1BcXIzExMRhFyUBgDVr1uDzzz9Hf38/9u/fj8cff9wCmg6PS5cukT7rAPDYY49h3LhxRtdRJ4FjzuXzHnxeZysZtpI3evRoJCQkwNnZGWlpafD39zfaPopCoVAoFEsTFBSE6upq9PT0aEUKu7q6YvHixQbtncmTJ6OpqQmXLl1Cc3Mziez19/fH6tWrtea2tbXB1dUVPT09Wk4HT09PZGZmIiEhwaLPaeLEiTh//jwaGxtRXFyMuXPnajkqhoNAredbvbOzk1RRpFD4xpkzZ7BmzRoAwKeffoqHH36YPNbX10cqgr/11lt4+eWX7aKjNQkNDYVMJsOzzz6Ld999V+ux6dOno7KyEjNmzMDhw4ftpOF/kMlkiI6OJj1X//KXv+DJJ58EoL+Cv7GxJefaa1++zR0p+jjiOj7KsJQ8lUpFooNkMplO1WcKhUKh3D+oVCryHSESiWy698DAAKqrq9Ha2goA8PHxQWRkJKcihc3NzaipqcHAwAD8/PwQHR2tt9OOQqFAZWUl2tvboVarMXr0aISHh9v8uXLl+eefB6BxXjg7O5P7acQAT2hubkZVVRX6+vrg6emJcePG6VS8HBgYwLlz51BdXU0KUHA5LS8rK0NRURGkUimCgoIQGRmJ+Ph4nXlqtRqdnZ0ANAU+DH1g+vr6cPbsWTQ0NMDPzw/z5s3Tqtipj/7+flRUVKCpqQldXV3w8fHB5MmTSUsQUzh+/DgAzal7VlaWSWulUimUSiWcnZ2HTCW4e/curly5gvb2dvj6+iIiIgKJiYk6H3ClUkkKkUgkEojFYq3Hu7q6oFKpIBaLdd7P7u5uKBQKODk5GaxWqlarkZubi1u3bkEikWDWrFlDPr/ly5fjk08+wdWrV9HT02PXdAlAk288depUXLhwAQCQk5NDHAMM9jr1NuUklW8n86bMHSn62DoNYSRFCpjLcCIP2ClDYrEYvb29UCqVtHUhhUKh3IdYIjLWXJydnREbG6tTF4ALo0eP5tQG3MnJCWPHjjVHPV5Bv6HtiFwux/vvv49ff/2V5K0wuLu7486dO+RHVH5+Pn73u9+hurqazBGLxdi2bRueeOIJvfKLi4vxyiuv4PLlyzqPRURE4LPPPtNq+9HW1kbCvN999108++yzOuv27duHV155hTgQGF23bduGTZs26cy/ceMGXn31VRQUFGBgYEDrMYlEgldeeYVzjQCGc+fOAdC07TPmkBjMihUrUFRUhEWLFuHHH3/UebyhoQGvvfYasrOzdUJf/f39sW3bNqxdu5bcV1lZSV7Djz/+GBs3btRas3DhQlRWVmLFihX4+uuvtR5bv3498vLyMGvWLBw8eFBHl5s3b+KZZ57BzZs3yX0ikWjIkNzp06cD0DgsCgoKMGfOHINzbcXcuXO1HANKpdKgB5VvRqyxxx1hrqF11po7UuoImLufNfe2ZiqAtWQrFApcu3YN2dnZSE5ORmpqqsl7UCgUCoVCsT60K4Ed6e/vx6effkqcAm5ubggJCYFEIkFCQgJxCtTU1OChhx5CdXU1XF1dkZqaioCAAMjlcrzxxhvE6GJTXFyM5cuXE6eAm5sbgoODSbhIdXW1VqsOLpw8eRJPP/00Ojs7IRAIEBAQAJFIhJ6eHrz00kvYu3evzpr6+npcvnyZOAVcXFwQGBgIQNPj+t1338V3333HWQe5XE7a8U2ePNkk/Y3R2tqKBx54AEeOHCGn/MHBwSRyorW1FSUlJRbd0xD19fVYvXo1cQq4u7tj9OjRUCqVQ/54Z/cLz8/Pt7qeXJg7dy4Zd3Z24saNG5zWmVI5nc613Vw+72HPdY4owxayP/roI/zwww9obW1Fbm4uTVOkUCgUCoWnUMcAT9i6dSuqqqpQWFiIqqoqrdPl//mf/0F7ezvc3Nxw8uRJ7N+/HxcvXkRgYCBUKhX+9re/6ch75ZVX0NXVBaFQiA8++AAVFRUoKirCb7/9ZpZ+SqUSb7zxBlQqFVxdXXH48GGUlJTg4sWLpDfnn/70pyHzSL/99lvU1taiuLgYv/32G2m38dFHH3E+qaqoqCBOBku1/mDYtm0bich47rnncOvWLRQVFdml1db7779PcqHeffdd3L59Gzdv3sTVq1e1coEGExwcTEKe2G1V7MnUqVO1UhpycnIA8M/gpXP5vwef1zmSDFs5DwQCAaZOnUpuS6VS3vxdolAoFArlfmSo3wDUMcATmNN3QJOHExwcDEBzQn7o0CEAwMqVK0mov7e3N5YvXw5AY2ixQ/sLCwtJpMDmzZuxZcuWIY1JLpw9e5ZENrz66qskZD06Ohrbtm0DALS0tODXX381KMPPz4/kGE2cOBGbN28GoImIuH37Nic97t27R8aMQ8ISSKVS7Nq1CwAwe/Zs/Pd//7fd8vO7u7tJ9MXixYvx7LPPkvcvIiLCaJ4W87owFVTtjbOzs1bKCuMYYMM343gkz+XzHtbSzdL7jSRjn6uBby6pqak6jkHaoYBCoVAoFP5BHQM8p6CggLTXWLBggdZjTCi9QqHQCs8+ceIEGTPV+4fLqVOnyHjJkiVaj82bN48YrqZEJMybN4+Mi4uLOa3p6OggY29vb857GSMnJwdyuRwAdNqQ2Jrc3FyiC7vVH1e8vLwAQMtZZG/YecUXL14kz08ffDOkHW2uI+9h7jp7Gu18TAvgQ6QAg4uLC2bPnk1ut7e32ywli0KhUCgUCneoY4Dn3Llzh4yjo6O1HmNC8QFo1Qu4desWGZtTgVMfpaWlADQFAwf3oZdIJIiLi9PZ2xgBAQFkzDb4h4Jt7DIGsCVgRyzYu6ooU0MB0H3PucC8LlxfU1uQlpZGxr29vSgsLARg3FAxxajhm4FuylxLvg620MeeeziKw8BWMvgaKcCG7TwGNAVkh9sxgUKhUCgUimWhXQl4TltbGxl/8cUXWiGZTU1NZNzV1UXGTG66UCi02Kl6Y2MjAI0zQt+PRR8fHwCadAKusDsK9Pf3c1rT3d1NxoZa/JkDW2/mudgLdrqEqV0XAJAWkEwbRT6QmJiIFStWYObMmViwYIFeh4dAYP/OAabsa0kdLKGPKXP5vAef19lKBl/kmSrb0NjDwwMpKSkkjaixsRGVlZVmOT4pFAqFQqFYB+oY4DlMGgEA7Nmzx+A8ditAxsh2d3c32BbOVHp7ewEYNlQZY5StrzHYDgauP1rd3NzIeKhCh6bClmWOMW5J2E4Sc+ocMM9FIpFYTKfhIhQKSUFNtVrNqQc631sRWksHS8zl8x6OuM7WMuwtzxKOhMF7zp8/HxcuXCD1BXJycqhjgEKhUCgUHkEdAzzH1dWVjP/whz8YNFrT09PJmGmv19vbC5VKZbRYHReYMFBDxjhjzA63yKEx2OkDlsyhZ1pDApoODPZELBaTMeOQMQUmhcCSNRgsCeMQ4pMh7WhzHXkPvqzjowy+yDNVNpc9/fz8kJycTNqoVlRU4O7duwgLCxuWfhSKJenq6kJHRwcCAgK0DiIoFL6jUCjQ0NAANzc3+Pv721sdioNCHQM8h23crV27FuPHjze6hqk9oFQq0dHRAV9f32HrwTgkDOWtM6kM1j5tt5ZjgH0yb0oIPtvpYimHAhN9AWinknCFeV346Bi4e/cuTp06hVOnTmHdunVYunQp74xuPsy93/cYSWkB5jJSIgXYshcuXIhr165BrVYjLCzMontRKMMlLy8PR48ehUqlgouLC9avX4+YmBh7q0WhGKWjowPffPMN+Y0+efJkrFy50s5aURwRWnyQ57CNu4aGBk5r4uPjyZhrtX9jMC3w2tvbdYxVtVqNqqoqAMCYMWMssp8h2Pn/7BoLwyU8PJyMTTHG2Q4FprbDcGGH19bX15u8nmlTyEfHwMaNG/Hyyy/j0KFDOHLkiM7j7PQSYzjyXD7oY4k9HHGdI8rgq2xT9w8NDUVGRgaeffZZ/PGPf0RkZOSw9aRQLEFfXx+OHz+OkJAQPPbYY3B2dsbBgwep84riEJw+fRqdnZ1Yt24dkpKScO3aNc5twCkUNtQxwHPYHQAOHDjAac2iRYvI+LPPPrNIz+hp06YB0DgBLl68qPVYaWkpKZjHtFC0FnFxcSRdgalsz0YkEpEfpaac4CckJJAxUyCLCz4+PiT0n90ZYjiwX0N2m0guSKVS4qSZMGGCRfSxJOyWm6dOnTKa788Vvs0dKfqMxHWOJMMeBr6lGbxPVlYW4uLiIBAItFLlKBR7Ul5ejoGBAaSkpCA6OhrTpk1DR0cHcbRTKHxFpVKhpKQE4eHhmDBhAhYvXgwAKCsrs7NmFEeEOgZ4zrhx40grwD179uj9oA82/CdOnEhqDpw4cQKrV6/Gjh07sH37drz33ntm6bF8+XJikH/44YdaxQ4/++wzAJoffcuXLzdLPldcXV1JRERBQYHO42KxmKROsNv+GWPy5MkkBeObb77hfFIvFosxadIkAMDBgwdRXV3NeU9DhIeHE5kHDhwgOblcKCwsJNeDtZ005sB2DDQ3N+PGjRsAjBsm1jIYrTXX0DprzeWbA8PS60aSw8Ca8vgaKWAIkUiE0tJSi0Z/USjmwO68BPynnbKlIgEpFGvR1tYGuVxO6gp4eHjA1dXVpC5hFAoDrTHgALz11lvYvHkz+vr6sGzZMjzyyCOIjIxEQ0MDzp8/jyeeeALr1q3TWvPxxx8jKysLdXV1yMnJMekUXB8hISHYsGEDvv32WxQWFmLVqlVITU1FYWEhjh07BkDjPLDFKfWUKVNQWFiIoqIiKJVKnc4L48aNw4ULF7B//34AwP/7f/+PpEIYQiQS4ZlnnsGf//xntLW1ITMzE4899hhGjRqF3NzcIddu2bIFly9fRmdnJxYuXIjly5cjMjISra2tZp82vPHGG3jkkUcgl8vx4IMP4tFHH0VcXBzu3bsHhUJhcB3bWZKcnGzW3tYkJSUFHh4epO3kqVOnkJiYqDXHWJ6zrfPk+TDXWnvYUzdL58qbu87WMqwpz1TZlt7TlP1v3LiBI0eOoK6uDnFxcdiwYYPF9qZQTIXdzYn9vymdluxBRUUF+vr6EB4erlWfaDAymQx5eXmoqamBQqFAcHAwUlJStOo2GeLevXtobGyEt7c3QkND9c7p7e1FUVERqqqq0NvbC4lEgvj4eCQmJhp0GHZ0dKCgoAB1dXWQyWRwd3dHbGwsJk2apFUQmk1/fz/u3Lmj9zEPDw+jv/UYZDIZGhsb0dzcjN7eXgwMDMDFxQUBAQGIjIx0qGgm5tplt/B2d3c3q3i1Pblz547B1uXjxo3TuSbkcjlu3bqld75EIkFUVJTO/S0tLQZ/lwcFBRHHIBvmM6YPdhTzUKjVarS2tqKxsRFdXV3o6+uDk5MTPD09ER4ezqtikdQx4AA88MAD+NOf/oS//OUv6OjowBdffKH1+MSJE3UcA6GhoThz5gy++OILnD59Gq2trfDx8UFMTAz27t1rlh7vvfcebt68icuXL+PSpUu4dOkSeSw+Ph4ffvihWXJNJSUlBd988w26u7tx7tw5rY4MAPD6669j/fr1kMlk2LdvH55//nlOXxbPP/88cnNzceLECdTX1+Ovf/0rJ33WrVuHc+fOYefOnejo6MB3331nztPSIiMjA2+//Tb+/Oc/o7e3F19++SWndUePHgWgiToICgoath6WRiwWIzU1leh5+vRpvPjiiwbn881At9ZcPu/B53WOJMOa8mxt1FtClwsXLqCurg6AJrqLdiig2BO5XA7gPx2KmAMHS7ZFtjSVlZX47rvvoFarsWHDBoOOgf7+fvz73//WOkGurKzE9evX8eSTTw5ZoFoul+OHH35AW1sbJk2ahFWrVunMqa+vx7fffguZTKZ1f0lJCW7cuIGHHnpI5wAnNzcXx44d00n5LCkpQV5eHh5//HG9LZfb2trw888/69U1NjaWs2Ng//79KCkp0fuYWCzGjBkzMG/ePKt32rIEzLXLfo1FIhGvr119HDlyxGCEziuvvKLl+AA0Rc8NXQtjxozBk08+qXP/jRs3cObMGb1rMjMz9ToGsrOzDUa1vfTSS5yca7du3cKCQe8RAAAgAElEQVSOHTsMPh4VFYWsrCwSqWRPqGPAjri6uuLtt98GAMyaNWvIuS+99BLmzp2LHTt2oLy8HL29vQgICEBaWho2bdqkd423tzfefPNNvPnmm+S+/Px84hgY3IpHIpEMqY9EIsGBAwewfft2nDhxAs3NzfD19cWCBQuwZcsWva194uLiiEx2gT9A491kHps5c+aQz59NZmYm3Nzc0NfXh7179+o4BubMmYNz586R1At2Mb+tW7eipaVF75eHs7MzduzYgT179uDQoUOoq6uDp6cnUlNT8f777xvURyAQ4O9//zs2bdqE7OxslJWVoa+vD/7+/ggNDUVSUhLmz5+vs27Lli3IzMw06IF/4YUXsGDBAuzatQsFBQXo7u4mMlNTU3Vk1tXVkeiGtWvXGtTX3ixYsIA4BvLy8tDV1cWpm4WjGfPU8LffOlvJ4Is8U2Vb06nAVZesrCyUlJSQ+06fPm3wu4xCsTZMeiRjXPHdMdDQ0IBdu3Zx+uyeOnWKOAUSExMhkUiQl5eHnp4eZGdn45FHHtG7bmBgADt27DBakNnf3x/Ozs5wd3dHQkIChEIhSktL0dzcjPLycr0HOD09PVAqlfDz80NCQgJEIhHKysrQ0NCApqYmHD9+XG9VfXbEpKurq1Y0ArvVsykwhZqlUimUSiXkcjlycnJQX1+PjRs36jg1+MbgaxfQOLgGO2r4DuMkcnZ21okO0Bd1Ys61wOwhFApJa3cGQ1EqpuplDIlEAhcXF/T19ZEIicrKSnz11VfYvHkzgoODTZZpSahjwI6IxWK88MILnOdPmzaNFAE0F3YOfGBgoNZjbm5uRvURi8V46qmn8NRTT3HaLzIy0qBMiURi0vNnGDVqFJYtW4bdu3fj0KFD+OCDD3Q+4NHR0Xj11Vd11hr6AmQQCoVYt26dVgSGWq0e0jHAMGPGDMyYMYPjs4BOlIc+Jk6ciIkTJ3KSd+DAAahUKggEAjz00EOc9bA1CxcuJGOFQoGcnBxkZWU5nOHvKPrwLQ3B0DqaFmC6PL5GCnDRKywsDImJiaSI7J07d1BVVYVI2qmAYgcYo4qp0cP8z25JzBfu3r2LHTt2cHJaKJVKFBUVAQBiYmKwZs0aAJrP6KVLl3Dr1i1IpVKdaIP+/n7s2LGDU1FlsViMRx99FAEBAeR1TEtLw5dffonm5mbk5uYiLS1N67WcN28ePD09MWXKFHJ/WloavvjiC7S0tKC4uBgPPPCAjlHONgZfe+01i7w/f/jDHwBo3vPKykrs378fUqkUFRUVuHr1qkm/6+wBY6yy640plUqHiHZgw7y3y5Yt45QKy442eemll3TsgKH2iImJwcaNG03SKzMzE1OnTuW0ZigWLVqEKVOmANCk0xw7dgw3b96ETCbDL7/8gq1bt5rlcDCFoeTz7y8exaowYTceHh68zEHnCmP4dnV14fvvv7ezNvZHoVDg3//+NwBg+vTpvO69HBERoaXf6dOndeaY8kfR3Lm22IMP+pi7zhK6WUJPPsrgizxTZVt6z+HqxTgEGUztwkKhWArmhJExAtinhHzi0qVL+Oabb9Db26s3SnMwDQ0NxIHA7nLF1PZRqVSkkxF7zT//+U/U1NToPSXVR1BQkM6JNVMAua+vTyfqQCQSYdq0aVqGvVAoJMWl5XI5Ojs7dfZhTsddXFws7rQRCoWIiYnROrS5evWqRfewBsw1yjaUlUolp+uDTzCfPa56M9eCUCjkHC1i6h7mruGKt7c31qxZQw5qGxoazGpTbkloxMAI5fz58/jqq6+QlZWFqKgoNDc349tvv8XJkycBaMLYzQ274gPp6emYNGkSrl+/jr/97W/YsGGDw/0RtCQ///wziQYZKmefLyxcuJAUEDLWyYHP4fumzOXzHnxeZysZjiTPESIFuOgYFBSE5ORkXLt2DYCm5WtFRYVW+heFYg7Nzc0oKSnBvXv30NnZCWdnZ/j7+2PSpEl6Q3WZ30NMvjYThs0lf9jWKBQKJCQkYPLkyfjhhx+GnMt0WwCgVeAsKCgIQqEQKpUKTU1NWkWA3dzcIJVK4ePjg/Xr12PHjh2QSqUm68lOEeQa1s6uK8DufsVgTSONITw8HIGBgWhqakJTUxMppghoiteVlJSgqakJUqkUEokEY8eORXJyssVSDvr6+lBWVoaamhpIpVLIZDJ4eXkhLi6OpF2wYa5d9mssl8s5pWjyCea95XLyP3g+V0e3qXsA2s4oayASiTBlyhQcOXIEgOY3MZNi3N/fj7KyMlRXV6OjowNqtRrBwcGYMWMGSYGxNNQxMEI5deoUDh48iIMHD+o8NmvWLLz++ut20MpyCAQCvPPOO1i9ejWampqwc+dOPPHEE/ZWy258/vnnADS1GpYsWWJnbYyzbt06REdHY8mSJQgLC+OtMW/KXD7v4Yjr+JgWYC7WNPCtYbBbmqF0ycrKwvXr10kY7MmTJxEVFWWziAbKyKOlpYV8J7K5ffs2cnNzMWvWLNLrnYEpOtbR0QF/f3+0t7cDAK+qhQOaiEBPT08kJCRwCvNnOgAB0CqsJhKJ4O7uDqlUio6ODq013t7eWLduHaKiooZ1gNTV1UXGQ3VMYMOupM90hmDD5GRbu2uAv78/KTjX3d1NHAMHDhzA3bt3teaWlpYiPz8fjz32mEWMxx07dqC2tlbn/qKiIpw/fx4bNmzQMvp9fHwgFArJNatQKCCVSh0qLUupVBIDnOt7a861YOoalUpFHC7WvObYf2fYTriSkhIcOHBAa25lZSWuXLmChx56yCrRwTSVYISycuVKbNq0CUlJSfD19YWPjw+mT5+O999/H3v37nWoViyGSEtLw+rVq7Ft2zY8+uijVt0rIiICERER8PHxseo+5rJ9+3YsXryYFHPkO5MnT8ZTTz2FMWPGGJxzv4T62zpk39ah+XxPC7CEDL7LttSelhqzCQgI0MrbrKurM9iCikIxlfDwcMyePRvTpk2Du7s71Go1Lly4oNVVCQD5gX379m2o1WqUlpbC2dnZ7oXABiMSiZCQkMB5PhMBAegaNowRy3YeMIwbN25YTgG1WtOSFNAYrlwdA5WVlWTN4Cr0wH8MOy7pDcOB7Txl/+2KjIxEUFAQpk2bhpkzZ5Iq8nV1dSQi11K4u7tjxowZmD17NunY0tjYiJ07d2rVE3BxccGYMWNQXV2NgYEBlJaWQq1W6xT85jPsNoVc31smRcaUdB9Trx+2XtZMKzJ0vUVERMDNzQ0TJ07EnDlzMH78eAgEAsjlcuzZs0fr820paMTACCUpKQkfffSRvdWwOlzb+A0HgUDA+zyzqKioIVuh8BmBQGA0X5LPp/F82MPWullCBl9O9u19mm9N2XyKGmAzWJclS5YgPz+f5MgWFBQgLi7ObvpRRg5Tpkwh9ZTmz5+Pf/3rX+jo6MDp06eRnJxMjOWAgADEx8fj0qVLKCwsRG9vr1Xb1TU3NyMnJ8foPA8PD53oBlNgGw6Dc/KZ52bpzgtdXV04c+YMaUc6Z84cTk7NqqoqclJuqFMVo6tcLkdjYyMCAwOtEl107949MmZHLsyfPx+LFi0it1UqFb799ltUV1fj+vXryMzMtFjtg4CAAGRlZQHQGI5HjhxBXl4eGhoaUFBQQArYAUBqaip27NiBDz/8EHK5HL6+vlrpIbbixo0bKC8vNzovOjpaq84ZO1KksbERo0aNMhp9wawZGBhAQ0MDAgMDjb72zJqOjg50dnYaTRUarJeXl5dVUgrY1xvbIebr64tXXnlFK30kPz8fv/zyC3p7e1FaWoqkpCSL6kIdAxQKxS5IpVLs3r0bhw8fxvnz55GXl4eQkBCj6/hmlDvKHo5itDtSaoE9DHxLYykHw3DGAQEBmD59OsrKypCRkYGkpCSt6uMUiiVwd3dHeno69u/fD5lMhvLycq0f1atXr8bVq1fR1tZGumZYi+7ubtKRYyh8fX0t5hgYnJvOnJpa6rN27do1ZGdnk1NWgUCAuXPncuqmpVarcezYMQCatAND1d+Z6Ibm5mb84x//gJeXF+bMmYPp06dbzEFQU1ND0ggCAwO16h4Mfg2FQiEmT56M6upqyGQytLe3a6VsWAqBQIBFixahsLAQ/f39KCoq0nIMjB07Fo8//jhKSkrg5uaG6dOnWy0nfigaGho4XdcuLi5ajoGenh4y3r17N5ycnDBx4kQsWrRIb+QIe017ezv++c9/YtSoUZg9ezZSUlIMOgiYNdeuXcO1a9cQFhaGRYsWGUy7YDsG9u7dS/RauHAh5ygYYyiVSuTn55Pbg9upD77mkpOTcfjwYSgUCnKdWhLqGKBQKHZhYGAAb775JvlRcuzYMWzevNkkg8hRjHJb7MHndY4kw5ry7vdIgaFYuXIlxGIxRCIRVCoVpFIpb3WlOC7syvw1NTVajgFnZ2eDJ9WWxsfHB+np6UbnsY1Sc+ASMWApx4BMJtMKvRaLxRg1ahTUarVRo/3ixYukGvvSpUsNhnoHBQUhKioK9+7dQ1dXFzo7O3H48GHU1dVh1apVw9JfqVSivLwchw8fJvexjW9DsE+d2c/f0ojFYkRGRqK0tBS1tbVQqVRa72lkZKRBA9dWxMTEcIqyYYrrMbi4uGD8+PFoa2tDa2srFAoFCgoKUFlZiS1btugttBcYGIjo6GhSYFQqlSI7Oxu1tbVYt26d3msuNjYW9+7dQ0tLC2QyGe7evYvt27dj1apVeh2BhvSqqKjAE088MewCgC0tLThx4gQx8IOCgowekAmFQnh6eqKtrc0q1xt1DFAoFLvg6+uLadOmkVzPo0ePYvPmzQbn89kot8UeI3GdrWTwRZ6psq1p1PMhUoA9lkgkZCwUCuHq6or6+nre1nWhOCZubm5wcXGBTCZDS0uL3fTg6hgYLmzjaLCBzuSpW+qkfezYsXBzc0NbWxvKy8vR0NCAX3/9laRlGKKpqYm0Kp0wYcKQNRRmzpyJmTNnQq1Wo7KyEocOHUJbWxuuX7+OcePGmVR/geHLL79EX18fOjs7tXL3o6KiDEY79PT0oKenB25ubjqvsTVhnBAKhQIdHR3w9fW16n6mEh0dbVZXmeDgYDz88MMANKkoJ06cQGFhIXH8bNiwQWfN1KlTSWRJdXU1Dh06hJaWFty8eRPXr1/X25KdcR4pFArk5+fj+PHjGBgYwKFDhxAVFaUTnRAYGEj0kkqlOHHiBK5fv46uri78+uuv2Lhxo8nP9ezZs8jNzUV7e7uW404sFmP58uV6P48DAwPo7OyEQCCAp6cncQhZ43qjjgEKhWI3li5dShwDOTk5kEqlnMKzRqLhbwr2XEfTAkyXx1ejnq80NjbiwIEDqKiowO9//3uDoaQUijlIJBLIZDKL59bzEXYBwcGOASZSwFKF/Pz8/EgY/bx587Bv3z4UFRXht99+Q1JSkl4nn0qlwoEDB6BQKCCRSEhOvTEEAgGio6Px+OOP47PPPoNcLseVK1fMcgwM7hsvFosxffp0pKen64Rx3759G8ePH7dKCDcX2PUOent7eecYsASenp5YtWoVZDIZysrKcOvWLaP1ACIiIrB582Z8+umn6Ovrw+XLl/U6BhicnJwwY8YMuLi4YN++fZDJZCgqKsKsWbMMrhk1ahRWrVoFuVyOkpIS3Lp1C+3t7SY7rwd3AQE0TqilS5di9OjRWvf39PQgOzsbxcXFpAaPtaGOAQqFYjeysrLwzjvvANCEPJ4+fRorVqzgnVHuKHuMpFN+S8jgizxTZdvKkOdDpMDgcVlZGb744gty39mzZzkbCxQKFxhjmWmPNpju7m6UlJSgra0Nbm5uCAkJQUxMDDGq+/r60NzcjI6ODqhUKnh5eWHMmDFWrVpuLmzHgFKp1Ao9Z56/NSr8C4VCLFmyBEVFRVCr1SgoKMD8+fN15rFTCJYtW6a3ReFQeHl5IT4+HtevX0dtbS2ntIXBMMUEXVxc4Ovri7CwML35+SUlJdi1axf52+Ti4gKBQGDV9IHBsN9PQ9dvX18fiouLce/ePbi7uyM4OBjR0dEWiwyxBQKBACkpKSgrK4NarUZtba3RQoHu7u5ITEwkBRoHBgaMfiaTkpJw7Ngx9PT0oKamZkjHAMPMmTNRUlICAKitrTXZMZCQkICQkBCIRCJ4enoiODhYr4Onv78fX3/9NSlMKBQKIZFI0NPTY1XnPnUMUCgUuxEVFYW4uDhSxfbo0aNYsWKF1hxbG+WmwGcDfqQ6DBxJHl8jBfgcNRAbG4vAwEA0NjYCAK5cuYJp06bpnKRQKOYyVJuzkpIS7Nu3D3K5HO7u7pDJZFAoFFiyZAkxGpgQZDbu7u5Ys2YN5zDqyspK/PDDD0bn+fr64tlnn+UkUx+DHQPs58wYlqYa41zx8PCAp6cnurq60NraqvN4f38/zpw5A0CTHz9hwgSz9mFaBg4MDKC/v3/IDkf6SE1NNTpHrVbj6NGjUKvVcHd3x8MPP0zaLd++fRvff/+96YqbATvKRd/1W1lZiZ9++gn9/f3w8PBAX18flEol1q9fb1Y0hamcOnUKFy5cMDpv6tSpWLp06ZBzmPcV0ITxc4FZo1Kp0NPTY7QGgEAggL+/P3p6ejjvwf4u4rqGTWxsLKfaFbm5ucQpkJ6ejtTUVDg5OUGhUODzzz9HW1ubyXtzgToGKBSKXcnMzCSOgZMnT0KhUHA6wbjfT+75so6PaQHmcr9EClhKL2uMRSIRli9fjn/9618AND/wTpw4oTfHlEIxB6bS+GADsrOzE3v37oVYLMajjz6K8PBwKJVKlJaWkj7ybNauXYvAwEBUV1cjOzsbP/30E+fUF7Vazano33ALA7IdA93d3aQ9o1qtJkaNNVN1PDw80NXVpVXdnaGoqIjkWA+n3gI7xNpap+JMezsAmD17NnEKANbtbz8YdvX+wYUpe3p6sGvXLgiFQjz11FMICwuDQqFAWVkZYmJibKKfUqnkdM2yazkMJYuB6/s6nDVc57OfnzWjMKqrqwEA/v7+Wp8PJycni7XE1Ad1DFAoFLuSmZmJTz75BICm7Uxubi7pezzSDH9TsLWxzBdDne+n+SMlUoDPUQMTJkzAuHHjUFZWBgAoLy/HnTt3bPbjljJy6erqIj/sB7eVu3LlCgYGBrBkyRKEh4cD0DiqDJ1kjxo1CgEBAQgICEBXVxfOnj2L8vJyTqeBYWFhnCIBhhvmzw5zvnfvHvz9/QFoTjqZiAFrtNdjYJwP+kLzr127BgAYM2YMIodRTb+9vR2A5rWyVos+9km9sZB2a8I8V5FIpHManp+fj76+PmRkZBBHlpOTk87129zcjLa2Nri4uGDMmDE611hPTw8aGhogk8ng5+eHoKAgzvrNmjULkyZNMjqPS1QH81wB7s4rZg0Tds8F5uTd1D0A60XbAP9xYHp6elptD31QxwCFQrErTJhwc3MzACA7Oxtz5szRmjNSDHhHNNodydg3F3vLtrfBzodIgcHjFStW4MMPPyQnS8ePH0dUVJRVT0ooI5/bt2+T8eB+4bdv34ZAINBqacgVJoS5q6uL03yxWGyT9Jjg4GAybmlpIc+N+b4FYJLhZwodHR3o7u4GAJ3n2tXVRWoLjB8/3uw95HI5eU/HjBljtRNcduQFEznAhe7ubvJah4aGDstxIZPJUFtbC0DzXAf/Lbxz5w4AID4+3qCMW7duaaWw+Pn54bHHHiPOjqqqKmzfvl2nO8PDDz/MSXcPDw+LRaAwefwAiKNuKBQKBYk+DQoK4hTJUV1dTQxwdhTIUNy8edMkvcyFeb1Nud4sAf2GpVAodkUoFCIjIwMCgQBTpkzB2LFjh5zP/uI35UeAuXNH4jpr7m1rGdaUZ6psS/8oNXXP4Yz5RmhoKKZPn05uNzY2oqCgwI4aURwRmUxGxi0tLTh9+jQAzY/uuLg4rbmtra1wd3fn1BlnMIxxwYTq8wV/f39yslxcXEwMvvz8fAAag3c4p/WAplbAxYsXtYrh9fT04MCBA8TZN9j4b2hoIGMnJyfU19fr/GOfzAKatobsnO6enh78/PPPxPnA/nthaXx9fckpd15ent7K8vpgDO3t27frdD8whlwuJ++XQqHAoUOHSOpFUlKSzvy2tjaIRKIhi+GFhoZizZo12Lp1K5YsWYJ79+6RzwSzj0qlQlpaGn7/+98jLS0NlZWVOHbsmEm6m4JMJkNNTQ25rVarcenSJVy5cgUAMG7cOJ1T85aWFi2Dua+vD7t37ybXzIwZM3T2qaqq0rpG6+rqsG/fPgCaz8HgSIeBgQESzs/olZeXh7y8PACa9pzWbKcbGhoKQBPpw7wWtoBGDFAoFLvzxz/+EW+99RYCAwOhVqutfuJvz3QCPq9zJBl8TwVwtDB/vkQKsMcPPPAACgoKiHF36tQpTJgwwWrhwpSRx5EjR3D58mWIxWI0NjYSQys1NVUrnFmhUGBgYMBosTJ9yOVyEhZvTg93ayIQCDBjxgwcO3YMDQ0N+Pzzz+Hq6oq7d+8CAJKTk7VOw82htLQU2dnZOHPmDEJDQ6FQKNDY2Eg+t/Hx8QgJCdFawxjzgOY90sfEiROxdu1acvvYsWOorKyEr68vnJyc0NLSQvLD4+PjhzwpHy5CoRBpaWnIzs5GZ2cn/v73v5O0jMEODDbsfHRTnUb19fX43//9X/j4+KC9vZ04n0aPHq03XJ8pvDiUw1cikSAxMREAEBISghs3bqCurk5nnpeXF/z8/LBgwQKUlJSgqKgIS5cutUoHi/LycuzZswceHh7w8vJCW1sbSd1wc3PTW6Tw9OnTKC0thY+PD5ydndHa2kpe69jYWJ3XRyaT4YcffoBAIICvry9kMpnW+5aZmamTFnDr1i3s2rXLoF7W7paTkpKC/Px89Pf349ChQ8jJyYG7uzu6urrMKnrIFeoYoFAododLOBafDWpbpCEYWjeSHAZ8kWeqbGsa8vYyzK0NFx08PT2xYMECYjh0d3fjypUrOqlGFIohBAKBVkV8gUCAWbNm6VSiZwzMwYaPXC7H2bNnERISolPV/cKFC8jNzUVNTQ26u7uRnp7Oy+4ZM2fORF1dHYqLi7Vei7CwMCxYsGDY8l1cXODh4YHu7m4Szs4wYcIErFy5UmcNO5KDC0qlkrSHZD8HoVCIKVOmIDMz0+oRUDNnzoRKpcL58+fR29uLpqYmrcclEolO+Dq76KKpIfYCgQC9vb1aMkJDQ7Fu3TqIRCKd+Wq1mnOqlVKphEAggLu7u9Hoh6ioKOTl5aG9vV2rU4ClYN7P7u5uLYdRUFAQVq9ereOsU6vVaGtrg0qlIlX7Ac3rNWnSJCxbtkznWmhpaYFQKIRMJiMdbwCNgZ+RkaG3LshQeq1atcqq0QKAxjmzadMmHDlyBHfv3kVHR4fWeyUSicxO2xjqs0IdAxQKhVe0t7fj9OnTWLVqlcE5fDbgHdFot4ShyHdjn0YKmAZfHA8LFizApUuX0Nvbi/T0dMycOXP4T45y37Bs2TJ4eHigo6MDEokEkZGReot5MQbd4Or5AwMDyMnJwZQpU3QcA0yf+P7+foSGhg6rsr45hIWF4fXXXweAIU/9hUIh1q1bh5SUFNTU1EChUCA4OBixsbF6DczBPPfcc1Cr1QbnxsfHIy4uDtXV1aivr4dcLoeHhwciIyMNOkpmzJiByZMnD7kvez+RSITnn38elZWVaG5uRm9vL7y8vBAbG2tWMcBVq1bptEY2hkAgwJw5czBr1izU1dWhra0NAoEAEokEfn5+eg1FpouAp6enySkqERERyMjIQH19PQQCAQIDAxEWFmbQqBOLxVpFEvXR0NCA7Oxs1NbWQq1WQyAQGI1kYE7SpVKpVRwD8+fPR1JSEqqrq9HR0QEXFxeEh4cbfK4CgQBPP/00qqqq0NTUhN7eXnh6eiI2NtZgxE9YWBhefvll3L59mzgVAgICEBsba/Czk5aWhgkTJqC6uhqdnZ0Qi8UYM2aMWbUsYmJiyGfVlC4WoaGheOqpp9DR0YH6+nrIZDJIJBJ4eHggMDDQKhEc1DFAoVB4QV1dHV5++WWcPXsWAwMDGDt2LCZOnGg1w9+eUQWO4jCwlQy+yDNVtjWNenuG8PNpLBaL8fjjjyMgIADu7u5QKBRapzcUylA4OTlxKm4nFArJqTdjMBlj+fLliIiIwOHDh5GXl4fq6mqdgobWRCgUcqruzhAeHm5WsTQuIfAikQjR0dGcUymcnJxMNmoEAoFJewzFcNInhEIhMRCNwZxom9tRJTQ0lOSaG8PLy4sYj/rSrQYGBvDjjz9CoVBgyZIlcHFxQU5Ojt5Wkmxs4az28/MzqTuGQCBAVFQUoqKiOK9xcXEx2GHEUnoZQiQSmfRZHYy3t7dZaU7mQIsPUigUXuDv74+8vDxSHOaXX37RmWOKl5Y9l66zvQxHkmfpEFRT97SmLiOByMhIcmolEokgFou1+nlTKJYgKCgISqVSq+AYF+bOnQtnZ2ecPHnSSppRHBGVSkW6COgrFmhpmA4UFRUVeh9nCvbNnj0bM2bMwKRJk+Dr62tULvO31lLdBij8hjoGKBQKL3BxcUFGRga5rc8xwMaehrgp8MVhYGsZXOSZizWNaj4Z8pZyMIykcVdXF/bu3Ysvv/ySVOimUCwBU5Tt6tWrJq0bNWoUpkyZgpqaGlLUj0KpqKhAT08PgoKCEDnMzg9cYFJdmEKYg2GK85n6nVVfXw+xWGyzE2uKfaGpBBQKhTesWLECe/fuBaD5Ur158yYSEhKslk5g7jp7hubzPS3AEjL4LttSe1pTl5GGQCBAWVkZvvrqK+IQOHfuHBYuXGhnzSgjhcTERFy+fBlFRUVwdnZGfHw857SV2bNn48qVK8jLy0NYWJiVNaU4AiEhIXjwwQfh7e1tk0iwmJgYxMbGory8HD/99BOSk5MBaNr0RUREIDIyEq6urrh06RJGjRoFFxcXrZZ/bKqqquDl5YXbt2+jrq7OIt0rKGIza2QAAAaXSURBVI4BdQxQKBTekJGRQfI8AeDgwYM6BZ9sYUQ7otHuSMa+udhbtq0MeUs5GEbSGNAU43JzcyOOgQsXLiApKckqBbEojotEIiFdBwIDAzmvEwqF2LBhA/bu3Yv8/Hzk5+cD0OTDGwu59vLyQlxcHG7evImsrCyTW9NRRh4SiYQY56aQlJSEiIgIs07o165diwMHDqCkpAQlJSUANDUiRo8eDVdXVzz00EPYv38/9uzZQ9boq2Fw48YNFBUVAdCkKFAH7P2DQK3nl01nZ6dW700KhUKxFb/73e+wb98+AJp+tBcuXACgXQDH2NiUuY64bqTKsKY8e+8zUvSy1pjrvKtXr2L79u3kdkREBDZv3kxrM1AsSkdHB+k64OfnZ1IlcQrF3nR1daG1tRVOTk4ICQnRKfTY0dEBuVwOLy8vrUKFt2/fxvfff4+srCxERETAycnJIsX3KPxCJBLhv/7rvwBoOmaw/77RGgMUCoVXLF++nIxv376N0tJSAPbNz+fbOkeSYU15I62mgKX0csQxV6ZMmYL4+Hhyu7q6mpxsUSiWwtvbGzExMQgKCqJOAYrD4enpiejoaISHh+vt/uDt7Y3Ro0fr7V4AaAzHwMBA6hS4D6GOAQqFwisyMjIgkUjI7YMHD+rMsYSxaet1I8lhwBd5psq2tFHPF2PZEbDk67NmzRotY+3YsWPo7++3uM4UCoVCodxPUMcAhULhFW5ubg7TnYAvDgNby7C3PHtHCtCoAfu+TgEBAViwYAG53d3djVOnTlllLwqFQrlf8PHxQWpqKoKCguytCsVOUMcAhULhHStWrMDkyZPxzjvvYMeOHeR+Phv+fD/lt4QMvsgzVbY1DXlHNa4tgT2dDBkZGVpFBy9fvkxbxVEoFMow8PPzw6JFi/QWJKTcH1DHAIVC4R0rV67E8ePH8fzzzyM8PFzvHEcx/Kmxbzl590ukgCH4cPJvi9eAy97Ozs5YvXo1ua1Wq0mhUgqFQqFQKKZDHQMUCoW3CAQCkw0RvoT3m7vufksLMBd7G7Qj1TB3pOcVHx+PpKQkiEQipKWl4eGHHzZZBoVCoVAoFA3UMUChUHiLVCrFjz/+iPXr1+PixYsA7Htab+46R5fBRR7fIwWGsyefogbYOIqzYSiGq/eaNWvw2muvYfXq1Rg1apTeCtwUCoVCoVCMQ79BKRQKL1Gr1UhLS0NtbS0AYMyYMZg1a5bWHIFAQHqcs8fGsPQ6W+xtKz3M1YlPsi29pzV0oWPz3xP2em9vby25bm5uKC4uxpgxY3jlxKFQKBQKhe/QiAEKhcJLBAIBMjMzye2DBw9CLpdzXqtvbK111tybj9EGfJdtqT35cqruyNgyqqG/vx979uzB//3f/yE3N9dsnSkUCoVCGakM9X1KHQMUCoW3rF27low7OjpISzK+GO222NtWMviYZmCqbFsZ8tYwdkfq2BzM2U+lUuHDDz/EhQsXoFarcfLkSbS1tQ1LDwqFQqFQ7ieoY4BCofCWqVOnIiYmhtzevXu3zhw+nvLbYm8uMvgiz1TZfI0UoFEDutjztWWvYQoQMgwMDGDfvn1WSyOhUCgUCmWkQR0DFAqF17BbkmVnZ6Orq4vTOj46DPiYWsD3VAC+Gu98OI3nw3i4WHLv1NRUxMbGktu1tbW4fPmypVSlUCgUCmVEQx0DFAqF16xfv56MZTIZDh8+DGDknvJbQgZf5Jkq2xEiBe7nqAG+RAcYGguFQjzyyCNwcXEh9x0/fpymFFAoFAqFwgHqGKBQKLwmKioKycnJ5La+dAI2I9Vh4Ejy7B0pQKMG+OkIscXe/v7+yMrKIrcHBgZw8OBBmlJAoVAoFIoRqGOAQqHwHnYRwpycHDQ0NJgsw54h/SPB2DcXexvyfDeW7Q0fHQvD3SMtLQ3R0dHkdmVlJa5evWqyHhQKhUKh3E9QxwCFQuE9q1atgkgkAgBMnjwZra2tAPh/ym8JGY4k736JFGDDh5N8vrxOfHEgMCkFzs7O5L5jx46hvb3d5D0oFAqFQrlfcLK3AhQKhWKMwMBAfPTRR0hJSdHqUkChUCiGcHFxwdtvvw0A8PX1xeLFi5GSkmJnrSgUCoVC4ScCtZ7EO6VSSfPxKBQKhUKhOCxKpRLp6emIjo7Gxx9/DG9vb3urRKFQKBQKbxCJRNrRd/ocAxQKhUKhUCiOTnd3Nzw8POytBoVCoVAovIc6BigUCoVCoVAoFAqFQrmPocUHKRQKhUKhUCgUCoVCuY/5/xt2nLXqz4uGAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "bf10d5d3", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "id": "2489049c", + "metadata": {}, + "source": [ + "When a heat pipe evolves from a single-phase liquid region as a consequence of constant heat injection, the vapour that is created at the heat source, displaces the water first. As a result, the latent heat of evaporation is given up by the vapour at the condensation front, and a mass flux is formed by the condensate pointing away from the heat source towards the completely cooled end of the column (here liquid exists in a single-phase region). The capillary forces which arise due to the non-linear saturation profile along the column are strong enough to transport the entire condensate back to the heat source, as long as the heat source is strong enough to ensure constant vaporization and liquid saturation reduction at the heat source. Like this, a closed loop of mass cycle is created within the heat pipe, and the heat pipe reaches its maximum length when all the water is evaporized at the heat source and the evaporation front is far enough from the heat source so that the temperature is just enough for the vaporization. At this point the heat pipe will not propagate further and remains stationary.\n", + "\n", + "While heat conduction is essential in the single-phase regions in front and behind the heat pipe for the heat transfer, the temperature gradient between the two ends of the heat pipe is relatively small, and therefore, within the heat pipe itself, heat conduction has no primary importance compared to convection.\n", + "\n", + "This benchmark case assumes that the gas phase contains an additional component - air. The presence of air in the system results in the following considerations that are taken into account:\n", + "\n", + "* While air does not condensate at the considered temperatures, its diffusion in the gas phase must be taken into account.\n", + "* The presence of non-condensable gas obstruct the convective transport of the latent heat of evaporation in the gas phase.\n", + "* As the additional gas component fills the pore space, it reduces the available volume for the liquid phase and consequently results in a lower relative permeability for the liquid phase.\n", + "\n", + "For verification purposes, the numerical solution of this benchmark problem is compared to a semi-analytical solution. The semi-analytical solution is briefly introduced in the following sections." + ] + }, + { + "cell_type": "markdown", + "id": "ba767e39", + "metadata": {}, + "source": [ + "# Analytical solution\n", + "The analytical solution of the heat pipe problem solves a coupled system of first order differential equations for pressure, temperature, saturation and mole fraction derived by (Udell and Fitch, 1985). The here presented solution is slightly modified by (Helmig et al., 1997), as not all original assumptions proposed by (Udell and Fitch, 1985) are satisfied in this benchmark, thus some generalization are applied and will be mentioned alongside the original considerations:\n", + "\n", + "* The porous medium is homogeneous and incompressible: $\\phi(z,p)=const.$ and $k=const.$\n", + "* Interfacial tension and viscosities of the gas phase and the liquid phase are constant: $\\sigma=const.$ , $\\mu_{\\alpha}=const.$ **Attention:** we do not consider the viscosity of the gas phase constant due to the presence of air in the system. Instead, the viscosity of the gas phase is calculated as the mole fraction-weighted average of air and vapour viscosity in the gas phase:\n", + "\n", + "\\begin{align}\n", + " \\mu_g=x_g^a\\mu_g^a+x_g^w\\mu_g^w\n", + "\\end{align}\n", + "\n", + "* Density changes of the gas and liquid phase due to pressure, temperature and composition variation is neglected: $\\rho_{\\alpha}=const.$ **Attention:** we take into account the infuence of air presence in the gas phase density. The density of the gas mixture is calculated as the sum of the partial density of the two component. Including the ideal gas law, the gas phase density is:\n", + "\n", + "\\begin{align}\n", + " \\rho_g=\\frac{p_g}{(RT)(x_g^aM^a+x_g^wM^w)}\n", + "\\end{align}\n", + "\n", + "* The single-phase regions at the boundary of the heat pipe are not considered in the solution." + ] + }, + { + "cell_type": "markdown", + "id": "616f2507", + "metadata": {}, + "source": [ + "### Input parameters\n", + "The following material parameters and heat flow value are considered as input parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8f0d0275", + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "import numpy as np\n", + "\n", + "q = -100.0 # heat injection [W/m²]\n", + "\n", + "K = 1e-12 # permeability [m²]\n", + "phi = 0.4 # porosity [-]\n", + "\n", + "p_ref = 101325 # reference pressure [Pa]\n", + "T_ref = 373.15 # reference temperature [K]\n", + "\n", + "lambda_G = 0.2 # thermal conductivity of gas phase [W/mK]\n", + "lambda_L = 0.5 # thermal conductivity of liquid phase [w/mK]\n", + "lambda_S = 1.0 # thermal conductivity of solid matrix [w/mK]\n", + "dh_evap = 2258000 # latent heat of evaporation [J/kg]\n", + "\n", + "D_pm = 2.6e-6 # binary diffusion coefficient [m²/s]\n", + "rho_L = 1000.0 # density of liquid phase [kg/m³]\n", + "MW = 0.018016 # molecular weight of water component [kg/mol]\n", + "MC = 0.028949 # molecular weight of air component [kg/mol]\n", + "R = 8.3144621 # universal gas constant\n", + "\n", + "mu_L = 2.938e-4 # dynamic viscosity of liquid phase [Pa.s]\n", + "muA_G = 2.194e-5 # dynamic viscosity of air component in gas phase [Pa.s]\n", + "muW_G =1.227e-5 # dynamic viscosity of water component in gas phase [Pa.s]\n", + "\n", + "s_LRes = 0.0 # residual saturation of liquid phase [-]\n", + "s_GRes = 0.0 # residual saturation of gas phase [-]\n", + "\n", + "k_rG_min = 1e-5 # used for normalization of BC model\n", + "k_rL_min = 1e-5 # used for normalization of BC model\n", + "p_thr_BC = 5.0e3 # entry pressure for Brooks-Corey model [Pa]\n", + "exp_BC = 3.0 # Corey exponent for Brooks-Corey model [-]" + ] + }, + { + "cell_type": "markdown", + "id": "eadac229", + "metadata": {}, + "source": [ + "### Constitutive relations\n", + "\n", + "The system of balance equations from the previous chapter has to be closed by a variety of constitutive relations, which in turn specify the necessary material properties and express the thermodynamic equilibrium between the constituents of liquid and gas phases. We apply the same relations in the analytical solution and in the numerical model as well.\n", + "\n", + "Due to the existence of multiple phases within the pore space, the movement of a fluid phase is obstructed by the presence of the other phase. In multiphase flow applications, this effect is usually realised by introducing relative permeabilities as functions of saturation which calculate the effective permeability of each phase as described in the extended Darcy law. Additionally if the present phases are immiscible, one also needs to consider the arising capillary effects by introducing capillary pressure accounting for the difference of phase pressures.\n", + "\n", + "The Brooks-Corey formulation accounts for residual saturations of both fluid phases and links effective saturation to capillary pressure. Additionally, it also models the relative permeability of both phases as a function of effective liquid saturation." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5957d46f", + "metadata": {}, + "outputs": [], + "source": [ + "def capillary_pressure(sL_eff):\n", + " return p_thr_BC * (sL_eff ** (-1./exp_BC))\n", + "\n", + "def capillary_pressure_derivative(sL_eff):\n", + " return -p_thr_BC / exp_BC * (sL_eff ** (-(exp_BC+1.)/exp_BC))\n", + "\n", + "def saturation_effective(p_c):\n", + " return (p_c/p_thr_BC) ** (-exp_BC)\n", + "\n", + "def relative_permeability_gas(sL_eff):\n", + " return max(k_rG_min, ((1.-sL_eff) ** 2) * (1-(sL_eff ** ((2.+exp_BC)/exp_BC))) )\n", + "\n", + "def relative_permeability_liquid(sL_eff):\n", + " return max(k_rL_min, sL_eff ** ((2.+3*exp_BC)/exp_BC))" + ] + }, + { + "cell_type": "markdown", + "id": "12c45c99", + "metadata": {}, + "source": [ + "Determining the composition of the gas phase, we assume that the sum of all constituents’ partial pressures accounts for the entire gas phase pressure (Dalton’s law). The partial pressure of water vapour is derived from the true vapour pressure that accounts for the impact of capillary effects as well: due to wettability and capillarity, the interfaces prevailing in porous media are not flat, but rather curving. Above curved interfaces, the vapour pressure may change depending on the direction of curvature. The Kelvin-Laplace equation accounts for this and expresses the true vapour pressure as a function of capillary pressure and the saturation vapour pressure of pure water.\n", + "\n", + "The saturation vapour pressure is determined by the approximate Clausius-Clapeyron equation." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "216f6517", + "metadata": {}, + "outputs": [], + "source": [ + "def vapour_pressure(p_sat, p_G, p_c, xA_G, T):\n", + " return p_sat * math.exp(-(p_c - xA_G*p_G) * MW / rho_L / R / T)\n", + "\n", + "def saturation_vapour_pressure(T):\n", + " return p_ref * math.exp((1./T_ref - 1./T) * dh_evap * MW / R)\n", + "\n", + "def partial_pressure_vapour(p_G, p_c, xA_G, T):\n", + " p_sat = saturation_vapour_pressure(T)\n", + " return vapour_pressure(p_sat, p_G, p_c, xA_G, T)" + ] + }, + { + "cell_type": "markdown", + "id": "5f15f38c", + "metadata": {}, + "source": [ + "The gas phase density can be determined using an appropriate equation of state for binary mixtures, such as the Peng-Robinson equation of state. For simplicity, we use the thermal equation of state of ideal gases in this work, which gives sufï¬cient results at high temperatures and low pressures.\n", + "\n", + "Dynamic viscosity of composite phases is obtained from the simple mixing rule." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4ddc36d5", + "metadata": {}, + "outputs": [], + "source": [ + "def molar_mass_gas_phase(xA_G):\n", + " return xA_G * MC + (1 - xA_G) * MW\n", + "\n", + "def density_gas_phase(p_G, xA_G, T):\n", + " M = molar_mass_gas_phase(xA_G)\n", + " return p_G * M / (R * T)\n", + "\n", + "def viscosity_gas_phase(xA_G):\n", + " return xA_G * muA_G + (1. - xA_G) * muW_G\n", + "\n", + "def kinematic_viscosity_gas_phase(p_G, xA_G, T):\n", + " mu_G = viscosity_gas_phase(xA_G)\n", + " rho_G = density_gas_phase(p_G, xA_G, T)\n", + " return mu_G / rho_G" + ] + }, + { + "cell_type": "markdown", + "id": "efc317ea", + "metadata": {}, + "source": [ + "The macroscopic diffusion constant (diffusivity) is determined using a simple correction accounting for porosity and gas saturation on the microscopic diffusion constant ($D_{pm}^G$)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a3df8f38", + "metadata": {}, + "outputs": [], + "source": [ + "def diffusivity(sL_eff):\n", + " return phi * (1. - sL_eff) * D_pm" + ] + }, + { + "cell_type": "markdown", + "id": "999ac64e", + "metadata": {}, + "source": [ + "When heat conduction occurs over multiple phases, a mixing rule can describe averaged heat conduction if local thermal equilibrium is assumed. In this case, we apply a very simple model (upper Wiener bound, Wiener 1912) to ï¬nd an effective heat conductivity by averaging individual phase conductivities by volume fraction." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "eff58351", + "metadata": {}, + "outputs": [], + "source": [ + "def thermal_conductivity(sL_eff):\n", + " sL = sL_eff * (1. - s_GRes - s_LRes) + s_LRes\n", + " phi_G = (1. - sL) * phi\n", + " phi_L = sL * phi\n", + " phi_S = 1. - phi\n", + " return lambda_G * phi_G + lambda_L * phi_L + lambda_S * phi_S" + ] + }, + { + "cell_type": "markdown", + "id": "322fba11", + "metadata": {}, + "source": [ + "### Governing equations\n", + "The solution for the 4 primary variables (liquid phase saturation, gas phase pressure, mole fraction of air in the gas phase and temperature) is obtained from the numerical integration of a coupled system of first order differential equations.\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial z}{\\partial S_{L,eff}}=\\frac{-\\frac{dp_c}{dS_{L,eff}}}{\\theta \\omega \n", + " \\frac{1}{k_{rG}}( \\frac{1}{1-x_G^a} + \\frac{\\nu_L}{\\nu_G} \\frac{k_{rG}}{k_{rL}} )}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial p_G}{\\partial S_{L,eff}}=\\frac{\\frac{dp_c}{dS_{L,eff}}}{1 +\n", + " \\frac{\\nu_L}{\\nu_G} \\frac{k_{rG}}{k_{rL}} ({1-x_G^a})}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial x_G^a}{\\partial S_{L,eff}}=\\frac{-\\frac{dp_c}{dS_{L,eff}} \\frac{K}{\\nu_G \\rho_G D_{pm}}\n", + " \\frac{1}{1-x_G^a}}{\\frac{1}{k_{rG}} ( \\frac{1}{1-x_G^a} + \\frac{\\nu_L}{\\nu_G}\n", + " \\frac{k_{rG}}{k_{rL}} )}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial T}{\\partial S_{L,eff}}=\\frac{\\frac{dp_c}{dS_{L,eff}}\n", + " \\frac{1-\\theta}{\\theta} \\frac{dh_{evap} K}{\\nu_g D_{pm}}}{\\frac{1}{k_{rG}}\n", + " ( \\frac{1}{1-x_G^a} + \\frac{\\nu_L}{\\nu_G} \\frac{k_{rG}}{k_{rL}} )}\n", + "\\end{align}\n", + "\n", + "The differentail equations given by (Udell and Fitch, 1985) that are shown above are derived on the basis of mass and energy balance. It should be noted that the equation system is integrated over the effective saturation instead of the spatial coordinate $z$. The above given equations are reached when:\n", + "\n", + "* the effective saturation is coupled to the spatial coordinate through the introduction of capillary pressure\n", + "\n", + "\\begin{align}\n", + " \\frac{dz}{dS_{L,eff}}=\\frac{dp_c/dS_{L,eff}}{\\partial p_c / \\partial z}\n", + "\\end{align}\n", + " \n", + "* and the following chain rule is applied to the primary variable derivatives, e.g.:\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial p_G}{\\partial S_{L,eff}}=\\frac{\\partial p_G}{\\partial z}\n", + " \\frac{\\partial z}{\\partial S_{L,eff}}\n", + "\\end{align}\n", + "\n", + "The parameter $\\eta$ in the energy balance equation represents the ratio of the heat flux caused by convection to the total heat flux $q$:\n", + "\n", + "\\begin{align}\n", + " \\eta = 1+\\frac{\\lambda \\frac{\\partial T}{\\partial z}}{q}\n", + "\\end{align}\n", + "\n", + "With some algebraic transformation, $\\eta$ can also be explicitly expressed by\n", + "\n", + "\\begin{align}\n", + " \\alpha = 1+ \\frac{p_c - x_G^a p_G}{dh_{evap} \\rho_L}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\delta = \\frac{\\rho_L dh_{evap}^2 K \\alpha}{\\lambda \\nu_G T}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\xi = \\frac{1}{k_{rG}} (1+ \\frac{\\rho_L R T}{p_G M^w} \\frac{1}{1-x_G^a})+\n", + " \\frac{\\nu_L}{\\nu_G k_{rL}}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\zeta = \\frac{K \\rho_L R T}{\\rho_G \\nu_G D_{pm} M^w} \\frac{x_G^a}{1-x_G^a}\n", + " (\\frac{p_G M^w}{\\rho_L R T} + \\frac{1}{1-x_G^a})\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\eta = \\frac{\\delta}{\\delta \\xi \\zeta}\n", + "\\end{align}\n", + "\n", + "Including the reformulated $\\eta$ and grouping some of the parameters under $\\gamma$ and $\\omega$, the 4 governing equation can be calculated in the following form:\n", + "\n", + "\\begin{align}\n", + " \\gamma = \\frac{1}{k_{rG}}\n", + " ( \\frac{1}{1-x_G^a} + \\frac{\\nu_L}{\\nu_G} \\frac{k_{rG}}{k_{rL}} )\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\omega = \\frac{q \\nu_G}{dh_{evap} K}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial z}{\\partial S_{L,eff}} = \\frac{-\\frac{dp_c}{dS_{L,eff}}}{\\eta \\omega\n", + " \\gamma}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial p_G}{\\partial S_{L,eff}} = \\frac{\\frac{dp_c}{dS_{L,eff}}}{\\gamma k_{rG}\n", + " (1-x_G^a)}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial x_G^a}{\\partial S_{L,eff}} = \\frac{-\\frac{dp_c}{dS_{L,eff}} \\frac{K}{\\nu_G \\rho_G D_{pm}}\n", + " \\frac{1}{1-x_G^a}}{\\gamma}\n", + "\\end{align}\n", + "\n", + "\\begin{align}\n", + " \\frac{\\partial T}{\\partial S_{L,eff}} = \\frac{\\frac{dp_c}{dS_{L,eff}}\n", + " \\frac{1-\\theta}{\\theta} \\frac{dh_{evap} K}{\\nu_g D_{pm}}}{\\gamma}\n", + "\\end{align}\n", + "\n", + "The full derivation of the analytical solution can be found in (Helmig et al., 1997)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "161d11ea", + "metadata": {}, + "outputs": [], + "source": [ + "# Parameter grouping\n", + "def alpha_(sL_eff, p_G, xA_G):\n", + " p_c = capillary_pressure(sL_eff)\n", + " return 1. + ((p_c - xA_G * p_G) / (dh_evap * rho_L))\n", + "\n", + "def delta_(sL_eff, p_G, xA_G, T):\n", + " alpha = alpha_(sL_eff, p_G, xA_G)\n", + " nu_G = kinematic_viscosity_gas_phase(p_G, xA_G, T)\n", + " th_cond = thermal_conductivity(sL_eff)\n", + " return (rho_L * (dh_evap ** 2) * K * alpha) / (th_cond * nu_G * T)\n", + "\n", + "def xi_(sL_eff, p_G, xA_G, T):\n", + " k_rG = relative_permeability_gas(sL_eff)\n", + " k_rL = relative_permeability_liquid(sL_eff)\n", + " nu_G = kinematic_viscosity_gas_phase(p_G, xA_G, T)\n", + " nu_L = mu_L / rho_L\n", + " result = ((1. + ((rho_L * R * T)/(p_G * MW * (1. - xA_G))) ) / k_rG) + (nu_L / nu_G) / k_rL\n", + " return result\n", + "\n", + "def zeta_(sL_eff, p_G, xA_G, T):\n", + " D = diffusivity(sL_eff)\n", + " mu_G = viscosity_gas_phase(xA_G)\n", + " a = K * rho_L * R * T * xA_G\n", + " b = mu_G * D * MW * (1. - xA_G)\n", + " c = p_G * MW / (rho_L * R * T) + 1. / (1. - xA_G)\n", + " return (a / b) * c\n", + "\n", + "def eta_(sL_eff, p_G, xA_G, T):\n", + " delta = delta_(sL_eff, p_G, xA_G, T)\n", + " xi = xi_(sL_eff, p_G, xA_G, T)\n", + " zeta = zeta_(sL_eff, p_G, xA_G, T)\n", + " return delta / (delta + xi + zeta)\n", + "\n", + "def gamma_(sL_eff, p_G, xA_G, T):\n", + " k_rG = relative_permeability_gas(sL_eff)\n", + " k_rL = relative_permeability_liquid(sL_eff)\n", + " nu_G = kinematic_viscosity_gas_phase(p_G, xA_G, T)\n", + " nu_L = mu_L / rho_L\n", + " return 1. / k_rG * ((1. / (1. - xA_G)) + (nu_L / nu_G) * (k_rG / k_rL))\n", + "\n", + "# Differential equations\n", + "# Spatial variable (1D) derivative\n", + "def dz_dsL_eff(sL_eff, p_G, xA_G, T):\n", + " dpC_dsL_eff = capillary_pressure_derivative(sL_eff)\n", + " eta = eta_(sL_eff, p_G, xA_G, T)\n", + " gamma = gamma_(sL_eff, p_G, xA_G, T)\n", + " nu_G = kinematic_viscosity_gas_phase(p_G, xA_G, T)\n", + " omega = (q * nu_G) / (dh_evap * K)\n", + " return -dpC_dsL_eff / (eta * omega * gamma)\n", + "\n", + "# Gas-phase pressure derivative\n", + "def dp_G_dsL_eff(sL_eff, p_G, xA_G, T):\n", + " dpC_dsL_eff = capillary_pressure_derivative(sL_eff)\n", + " gamma = gamma_(sL_eff, p_G, xA_G, T)\n", + " k_rG = relative_permeability_gas(sL_eff)\n", + " return dpC_dsL_eff / (gamma * k_rG * (1. - xA_G))\n", + "\n", + "# Mole fraction of air component in gas phase derivative\n", + "def dxA_G_dsL_eff(sL_eff, p_G, xA_G, T):\n", + " dpC_dsL_eff = capillary_pressure_derivative(sL_eff)\n", + " gamma = gamma_(sL_eff, p_G, xA_G, T)\n", + " mu_G = viscosity_gas_phase(xA_G)\n", + " D = diffusivity(sL_eff)\n", + " return -dpC_dsL_eff * K / (mu_G * D) * xA_G / (1. - xA_G) / gamma\n", + "\n", + "# Temperature derivative\n", + "def dT_dsL_eff(sL_eff, p_G, xA_G, T):\n", + " dpC_dsL_eff = capillary_pressure_derivative(sL_eff)\n", + " eta = eta_(sL_eff, p_G, xA_G, T)\n", + " gamma = gamma_(sL_eff, p_G, xA_G, T)\n", + " nu_G = kinematic_viscosity_gas_phase(p_G, xA_G, T)\n", + " th_cond = thermal_conductivity(sL_eff)\n", + " return dpC_dsL_eff * (1. - eta) / eta * dh_evap / (nu_G * th_cond) * K / gamma" + ] + }, + { + "cell_type": "markdown", + "id": "3fb51d5c", + "metadata": {}, + "source": [ + "### Numerical integration over effective liquid saturation\n", + "To obtain the analytical solution, the above introduced four coupled differential equation can now be integrated with the well-know Forward Euler method.\n", + "\n", + "To get a unique solution, the following boundary and initial conditions are considered:\n", + "\n", + "* On the left-hand side ($z = 0$) - the cool end: $S_L = 1$ , $p_G = p_{G,i}$ , $x_G^a = x_{G,i}^a$ and $T = T_i$.\n", + "\n", + "* On the right-hand side - the hot end of the the heat pipe, a constant heat-flux is considered: $q = -100 W/m^2$.\n", + "\n", + "* As initial conditions we chose: $S_L = 1$ , $p_G = 101325 Pa$ , $x_G^a = 0.25$ (computed according to Dalton's law using the true vapour pressure assuming $p_{c,i} = 5001 Pa$) and $T = 365 K$.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5542ceb3", + "metadata": {}, + "outputs": [], + "source": [ + "# Define right-hand-sides of the coupled system of first order derivative equations\n", + "def dy_dsL_eff(y, sL_eff, p_G, xA_G, T):\n", + " dydsL = np.zeros(4)\n", + " dydsL[0] = dz_dsL_eff(sL_eff, p_G, xA_G, T)\n", + " dydsL[1] = dp_G_dsL_eff(sL_eff, p_G, xA_G, T)\n", + " dydsL[2] = dxA_G_dsL_eff(sL_eff, p_G, xA_G, T)\n", + " dydsL[3] = dT_dsL_eff(sL_eff, p_G, xA_G, T) \n", + " return dydsL\n", + "\n", + "# Numerical integration - Forward Euler method\n", + "# to estimate the integrals of the coupled equation system\n", + "def step_Euler(y, sL_eff, dsL_eff, p_G, xA_G, T):\n", + " next_y = y + dsL_eff * dy_dsL_eff(y, sL_eff, p_G, xA_G, T)\n", + " return next_y\n", + "\n", + "def full_Euler(dsL_eff, y0, sL_eff_low, sL_eff_high):\n", + " max_steps = int(abs((sL_eff_low - sL_eff_high)/dsL_eff))\n", + " sL_eff_list = np.linspace(sL_eff_low, sL_eff_high, max_steps+1)\n", + " M = np.zeros((4, max_steps+1)) # Solution matrix containing the 4 primary variable\n", + " M[:,0] = y0\n", + " for i in range(0, max_steps):\n", + " p_G = M[1,i]\n", + " xA_G = M[2,i]\n", + " T = M[3,i]\n", + " if (dz_dsL_eff(sL_eff_list[i], p_G, xA_G, T)* dsL_eff) < 1.0:\n", + " M[:,i+1] = step_Euler(M[:,i], sL_eff_list[i], dsL_eff, p_G, xA_G, T) \n", + " else:\n", + " M[:,i+1] = np.nan\n", + " return M, sL_eff_list\n", + "\n", + "# initial condition\n", + "z_0 = 0\n", + "p_G0 = 101325\n", + "p_c0 = 5001\n", + "T_0 = 365\n", + "xA_G0 = 1 - partial_pressure_vapour(p_G0, p_c0, 0, T_0) / p_G0\n", + "y0 = np.array([z_0, p_G0, xA_G0, T_0])\n", + "\n", + "# initial effective saturation\n", + "sL_eff_0 = saturation_effective(p_c0)\n", + "\n", + "# integration boundaries and saturation step size\n", + "sL_eff_low = sL_eff_0\n", + "sL_eff_high = 10e-16\n", + "n_dsL_eff = 10 ** 2\n", + "dsL_eff = (sL_eff_high - sL_eff_low) / n_dsL_eff\n", + "\n", + "# execute analytical solution\n", + "M, sL_eff_list = full_Euler(dsL_eff, y0, sL_eff_low, sL_eff_high)" + ] + }, + { + "cell_type": "markdown", + "id": "48cb410e", + "metadata": {}, + "source": [ + "# Numerical solution\n", + "\n", + "In the following section, the previously analitically solved heatpipe problem is solved using numerical methods (FEM in OpenGeoSys). The numerical solution takes the exact same input parameters, and considers the same - modified - assumptions that are mentioned in the analytical solution.\n", + "\n", + "Additionally, it is necessary to introduce a discretized spacial domain for the numerical simulation. We chose a 1 dimensional domain with length of 1 m discretized into 200 equally spaced identical elements.\n", + "\n", + "The numerical problem considers the same consitutive relationships and identical boundary and initial conditions. We use the TH2M model of OGS to solve the coupled partial differential equations describing the system behavior. Detailed description of the numerical model can be found in (Grunwald et al., 2022)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9904cc5e", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OGS finished with project file ../../Data/TH2M/TH2/heatpipe/heat_pipe_rough.prj.\n", + "Execution took 176.3947033882141 s\n" + ] + } + ], + "source": [ + "import os\n", + "from ogs6py import ogs\n", + "\n", + "prj_name = \"heat_pipe_rough.prj\"\n", + "data_dir = os.environ.get('OGS_DATA_DIR', '../../Data')\n", + "prj_file = f\"{data_dir}/TH2M/TH2/heatpipe/{prj_name}\"\n", + "model=ogs.OGS(INPUT_FILE=prj_file, PROJECT_FILE=prj_file)\n", + "model.run_model(logfile=\"out.txt\")" + ] + }, + { + "cell_type": "markdown", + "id": "bcc334ca", + "metadata": {}, + "source": [ + "# Results comparison\n", + "\n", + "To compare the results produced by the analytical solution and those by the numerical compution by OpenGeoSys, the four primary variables are plotted along the 1D domain ($z$): liquid phase saturation ($S_{L,eff}$), air molar fraction in the gas phase ($x_G^a$), temperature ($T$) and gas phase pressure ($p_G$)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "f687ed25", + "metadata": {}, + "outputs": [], + "source": [ + "# Import OGS simulation results\n", + "import pyvista as pv\n", + "pv.set_plot_theme(\"document\")\n", + "pv.set_jupyter_backend(\"static\")\n", + "\n", + "pvd_file = \"results_heatpipe_rough.pvd\"\n", + "reader = pv.get_reader(pvd_file)\n", + "reader.set_active_time_value(1.0e7) # set reader to simulation end-time\n", + "mesh = reader.read()[0]\n", + "\n", + "# Define line along mesh and extract data along line for plotting\n", + "pt1 = (0,0.0025,0)\n", + "pt2 = (1,0.0025,0)\n", + "xaxis = pv.Line(pt1, pt2, resolution=2)\n", + "line_mesh= mesh.slice_along_line(xaxis)\n", + "\n", + "x_num = line_mesh.points[:,0] # x coordinates of each point\n", + "S_num = line_mesh.point_data[\"saturation\"]\n", + "xA_G_num = line_mesh.point_data[\"xnCG\"]\n", + "p_G_num = line_mesh.point_data[\"gas_pressure\"]\n", + "T_num = line_mesh.point_data[\"temperature\"]\n", + "\n", + "# Resampling dataset via linear interpolation for error calculation\n", + "S_num_interp = np.interp(M[0,:], x_num, S_num)\n", + "xA_G_num_interp = np.interp(M[0,:], x_num, xA_G_num)\n", + "p_G_num_interp = np.interp(M[0,:], x_num, p_G_num)\n", + "T_num_interp = np.interp(M[0,:], x_num, T_num)" + ] + }, + { + "cell_type": "markdown", + "id": "3c5db40c", + "metadata": {}, + "source": [ + "As one can see from the figures below, the numerical results are in really good agreement with the analytical solution. To better understand and visualize the deviation, we also perform a quick error analysis by simply calculating the difference (absolute and relative error) between the analytical and the numerical solution." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "5d6ec7dc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHAAAAGgCAYAAADCcJBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3hUVfrA8e8xlER67xBBQEogCKEKJKDiIl0IArKgKIioiIsKKIiAiyCdxYh0FpHmhmZBFAJYcCNSEkNvCmtEUSCEhLT398ck85tMekgymZn38zzzJPfec899bya3zDv3nGNEBKWUUkoppZRSSilVeN3l6ACUUkoppZRSSimlVOY0gaOUUkoppZRSSilVyGkCRymllFJKKaWUUqqQ0wSOUkoppZRSSimlVCGnCRyllFJKKaWUUkqpQk4TOEoppZRSSimllFKFXKFJ4BhjihljZhpjEowx3tkoX9oYs9oYE2qM+dEYM8sYUyT/I1VKKfdhjOmVfJ7db4z5xhjTKovymZ6bjTF1jTH/MsYcSK7zkDFmZDr13GeM2ZNc7pAxZmg6ZdoZY75Lrue/xphH8mavlVJKKaWUKnwKRcIjOWHzEXAK8MjmaquBaBHxM8YUA0KAacCkvI9QKaXcjzGmJbAeaC0iEcaYHsAuY0wTEYnMYLXVZH5ufg6oA3QVkThjTHPge2NMgoisTN5uSeAL4C0RWWGMqQkcM8ZcEZFdyWVqAZ8B/UXkS2NMC+CAMaadiITl/V9DKaWUUkopxzIi4ugYMMY0BWKBmsBe4B4RuZBF+TCgWcqNujEmEMsHh8oicjO/Y1ZKKVdnjNmC5TrxmM28COBjEZmcTvksz83GmLHAYRHZb7PeJ4CniHRNnn4eeBOoIiJJyfPeA3xEpGPy9BwgQERa2tTzKXBVRNI8raOUUkoppZSzKxRNqEQkXETO5GCVB7EkfMJt5oUCXsADeRmbUkq5sQeBH+zmhQIPZVI+03OziCy0Td4kiwGK29XzY0ryxqae9saYu3MZm1JKKaWUUk6tUCRwcqEu8Jukfnwo0maZUkqpO2CMKQ+UAX61WxRJxufZHJ+bjTEGaANssqsnve3eBXhnUaaKTZJHKaWUUkopl+GsCZwSwG27eSnTeuOulFJ3rkTyz/TOtRmdZ3Nzbh4B/A4E5bAevQ4opZRSSim3Uig6Mc6FaFI/bo/N9K30Vkge5SR5pJMSLcuXL87dd99NbGws5cuXz684HSYpKYm77nLW/Fz26D66BnfYx1OnTv0hIpUcHUcORSf/TO9cm+55lhyem40x9wOvAg+KSHwO68nptqzXAE9Pz5a1a9fOYBdchzscW7qPrsEd9tFJrwMuq2zZsnLvvfc6Oox8FR0dTYkSJbIu6MTcYR/BPfbTHfbx0KFDeXIdcNYEzjmgsjHG2DyqXzX559n0VhCRD4APAIoXv08SEn4lKiqK4OBgAgIC8j/iAhYSEoK/v7+jw8hXuo+uwR320Rhz0dEx5JSI/GmMucb/n1tTVCWD8yw5ODcbYxoCa4E+IvJzOvWkt90k4EIWZSJFJE0Cx/Ya0LBhQzl58mQGu+A63OHY0n10De6wj854HXBlVapU4Ycf7LtRcy3ucFy5wz6Ce+ynO+xjXl0HnPXrjt1YOsVsYjOvFZaOML/JamWRuzDGUBhG4FJKqULsSyznVlutkuenJ1vnZmNMHWAL8HcRiUieN9KunvuNMXfZ1fOtTXJmdw5js4qKKkKfPnAro+eIlFJKKaWUKoScIoFjjJlhjAk3xngCiMhPQDDwSvLyosBYYEF2hhCPj0/kxRdfZOvWrYSGhuZn6Eop5czeAboZYxoBGGO6A9WAJcnTOT43G2OqYUmyLAfuMsa0Msa0AobbbHcNltGshiWvUwN4HJhhU2YRcK8xpktymeZAJ2B2Vjv1669ebNsGQUFZlVRKKaWUUqrwKBRNqIwxxYAvgLLJszYYY/4nIv2Spz2xdEppbFYbDiw2xoQCHlg+EEzJzvY8PIoRFBRE2bJlsy6slFJuSkQOGWOGAGuNMTFYzrXdRCRlZKncnJunAfcCC+w2Z32sVERuGmMeBoKMMU9h6bB4nIjssinzS3JCaa4xJh7Lkz8DRCQsu/t3M8t0v1JKKaWUUoVHoUjgiEgc4J/J8vHAeLt5N0j+djanPDyKMnHiRMaPH8+cOXNyU4VSSrkFEdkObM9gWY7PzSLyDPBMNrZ7Asi0gzIR+RZol1VdGTEm6zJKKaWUUkoVFk7RhCqvJSQkMXPmTObMmUNCQoKjw1FKKeUAmsBRSimllFLOpFA8gVPQkpIMo0ePpkWLFtoHjpNKSkqiWLFinDp1isTEREeHk2/KlCnD8ePHHR1GvnL2ffTw8KBs2bJUrFjR5YfBdTX6dilXk5SUxB9//MG1a9ec6tqo1wFVmDjrcWTP2Y+r7HCHfYSC2U9PT09q1qxJ0aJF83U76s65ZQIH7mLBgoUsWrSI4OBgRwejcuHSpUtUrFgRb29vihYtinHRr9KjoqIoVaqUo8PIV868jyJCfHw8v/32G5cuXaJ27dqODknlgIueNpQbu3TpEsYYp7s26nVAFSbOehzZc+bjKrvcYR8h//dTRLh69SqXLl3innvuybftqLzhpl8TGIzx1GHEnVh0dDRVqlShWLFiTnthVc7PGEOxYsWoUaMG0dHRjg5H5ZB+Ua5cTXR0NDVq1NBrYwHS64Dr0eNIuRtjDBUqVCA2NtbRoahscNvb12eeGafDiDs5fUxZFRb6v+ic9G1TrkjPR46hf3fXou+ncjearHQebtqEClau3ET16sUcHYZSSikH0XsVpZQqXIwxvYDJQAzgAYwVkR8yKd8ZeBsQoChwAnhZRP4sgHCVUqrAuW16ecSIsYwfP54iRdw2h6WUUm5NEzhKKVV4GGNaAuuBYSLSCZgJ7DLGVM2gfFlgJ7BBRDoC7YGSwNICClkppQqc2yZwli3boMOIK6WUG9MEjlJKFSoTgV0iEgEgIjuB34AxGZSvhyVh81Vy+SRgD/Bw/oeqlFKO4bYJnB49Hufll1/m1VdfdXQoSrmlhQsXct9999G0adNsrxMSEsLq1avTzJ8/fz59+vTJ07i8vb3zpD5VeGkXB0oVPocPH8YYQ4cOHdJdfvnyZcaMGUP9+vXx9PSkcuXKdOnShe+//76AI1X54EHAvrlUKPBQBuV/wtJkajCAMeZuoB+WpI9bO3z4MKVLly70x9Gzzz7LuHHjClVMyrWdPAnBwRAR4ehIcs9tb1+3b9/DvHnzmD17tqNDUW5IL1IwduxYJkyYkKN1MkrgVK1albp16zosLuWcNIGjVOGzbNkyBg4cyKFDhzh+/HiqZRcvXqRFixZcvnyZ1atXc+LECYKDg2nVqhVFixZ1UMQqLxhjygNlgF/tFkUC6V7gRSQW6Ap0McZcBP4H+ADP5WOoTmHZsmX069evUB9HIsKOHTvo3bt3oYlJub7Nm6FfP/jwQ0dHkntu2wFMjx6PM378o8yZM8fRoSg3c/HiRfz8/Gjfvj2rV6+mRo0aXL58mW3btulFKpcGDRrEoEGDHB2GcjLahEqpwiUmJob169ezY8cO4uPjWbFiRar7tEWLFuHh4cHHH3+Mh4cHAN7e3hk+ZaCcSonkn7ft5t8G7k5vBWNMKWA3sANL86u7gRHA5QzKjwRGAlSqVImQkJB0AylTpgxRUVE5i74QSTmO1q9fT0JCAkFBQbz99tvW5XPmzOGuu+5i9erV1uOoQoUKNGvWDKDA9v2HH34gJiaG5s2bM2XKlFzFlJiY6NTvVXYV1H7GxsZmeFzkt5s3bxbIts+dqwPcw88/XyQk5Hy+by8/uG0CZ/v2vdoHjpubPXs2fn5+BAQEWOft3buX0NDQfG1a5ww3oB9//DHz5s2jWLFi3Lp1i/bt2/POO+9QvHhxNm7cyMyZMzl69Cg7duzggw8+4Pjx4zzyyCMsXrw4W3Wk54EHHuCbb77B19eX2bNn89BDD/H000+zefNmOnbsSOfOnVm9ejXXrl3D398fgFWrVvH1118zd+5cjh49iogAkJCQwJQpU9ixYwflypXj1q1b9OvXj0mTJuUqNqWUUvlvy5YtlC1blgceeIA//viDUaNGMXPmTOuXG3/99RdxcXFcuHCBevXqOThalceik3/aX4iLA7cyWGcElqdzporlBiDaGHMM2GeMaSAi12wLi8gHwAcADRs2lJR7CXvHjx+nVKlSudqJwmDr1q3W4+j27duMGjWKuXPnWo+j6Oho4uPjuXr1qkOPo927d9OjRw/KlSuX65iioqKc+r3KroLaT09PT1q0aJHv20lPSEgIGR2TeenAActPb+86+PvXyfft5Qe3fYC8bdsHHfYPqgoHPz8/AgMD2bt3L2BJ3gQGBuLn55ev27W9AS2sNm/ezGuvvcbevXv5+uuvOX78OLNmzQJg4MCBLFiwAICIiAi2b9/ON998w7Jly6x/y6zqSM+BAweoW7cugYGBPPSQpbn7/PnzadKkCTt37uSVV15h+PDh+Pr6EhISQkhICPfccw9Dhw61xpNiypQpfPrpp3z33Xfs37+fpUuXMmXKlFzHppRSzsoYx7xyY/ny5QwePBhjDI8++igJCQls377duvzFF1+kdOnS1K9fn/vvv5/x48dz5MiRVHXMnTuX11577U7+ZDz99NP4+vry1ltvpTut8l7ysN/XAPsRp6oCZzNYrQEQmdyUKsV5oBLQOS/j0+Mo57I6jrZt22btv7CgYrKPozAc2zt37uT555/PtMzFixfZtm0bYPm8ktsWJNnZlqtL/q7XqbltAufAgSP07ds33z+sq8IrICCATZs2ERgYyJQpUwgMDGTTpk2pnsjJD1ldpArDBWrOnDn07NkTgKJFi9K3b18+++yzNOVSmi1VrlyZxo0bp9qP7NaRwhjDsGHDWLVqlXXexo0bCQwMzFbMKWJiYpg/fz6jR4+mZMmSALRs2ZKJEyfmOjblmlzhIq6Uqzhz5gz79+9nyJAhABQrVoz+/fuzfPlyaxlfX1/OnDnDvn376NGjB59++iktW7ZkzZo11jLh4eE56hzf3k8//cT58+c5cuQIb775Zpppla++BFrZzWuVPD89l4FKxhgPm3nVkn9m9NSOS3OW4+jMmTOcO3eObt26FVhM9nH179+/UBzbx44do3nz5pmW+eqrrwgPDwcsn1/Gjx+fb9tydSn3fs7cjN5tEzhQ0trcQrmvgIAARo8ezfTp0xk9enS+J28g64tUYbhAXb9+ncGDB9O+fXv8/f2ZP38+kZGRacpVr17d+nupUqW4ceNGjuuwNXz4cM6ePcv+/fsBWLduHU888US2Yk5x5swZYmNjuffee1PNnz59+h3FplyPXgKUOxBxzCunli9fTvPmzWnSpIl13hNPPMEXX3zBL7/8Yp3n4eFBx44dmTZtGmFhYdStW5d169ZZl4eHh+Pj45Pl9k6fPk2PHj1o1aoVHTt2JDIykoiICB5++GFOnjxJ27Zt00yrfPcO0M0Y0wjAGNMdS0JmSfL0DGNMuDHGM7n8R1g+yzyXvNwDeBn4BfguLwPT4yh9uT2Otm7dSteuXSlRooS1rryKKTtxVa5c+Y6P7fXr19OmTRt8fHzo1q0bt25ZcoY9e/ZkypQptGvXjpo1a/Ljjz9mWv7o0aM0a9aMw4cP07VrV2v9n3zyCcOGDWPfvn1MnTqV1atX4+vrS0BAAGFhYQD88ssv9O7dmxYtWtCkSRPOnz+frW25M03gOLEmTVqzdetWQkNDHR2KcqC9e/cSFBTE5MmTCQoKStUEKD9ldpFy9AUqOjqaLl26UK5cOQ4cOEBISAgTJkxIN+GZ0ocPWJ6gSSmTkzps1a5dm65du7Jy5UqOHz9OpUqVqFixYrbiTpHVNnIbm3I9+pYrVTgkJCSwZs2aNAn7jh07UrNmzVRPZtoSEWJjY6lUqZJ1+tSpUzRq1CjT7d2+fZtnn32W9957jx9++IFhw4axZMkSGjduzODBg1mwYAEHDx5MM63yl4gcAoYAa40x+4HXgW4ikvINiyeWjopNcvlzQDdggDHmG+C/yWW6icjNgo7f0ZzpOLJtPpWXMWU3ritXrtzxsd2tWze+//57wsLCqFevHrt37wYs9/E1atTgu+++Y9KkSQQHB2dZvmnTpvj4+HD8+HFEhMTERN58801mzJhB586dadq0KV988QVHjhzh8uXLNGzYkLi4OLp3785LL73E4cOH+fbbb61frGa1LXfmCgkct+3E+Keffubw4QuODkM5UEqfNynNpgICAgqsGZUt24tUbi5Qq1atonbt2ixfvpwlS5Ywffp0Bg8eTJs2bejfvz+vvPKK9ffsOHHiBFeuXGHAgAHWBE1cXFyO9ulO6njyySd55plnKF68OE8++WSqZXfZjPscFxeHiKTpeDhlaPYzZ86k+iZj8eLFDBkyhPPnz9/x/inXoAkcpQqHXbt2ERkZiY+Pj7WZQIrOnTuzcuVKTpw4QZMmTejatSvVqlXjwoULzJ49m+vXrzNhwgQAzp07R7Vq1bLskH7r1q0cP36cXr16AZZrwOOPPw5AWFgYI0aMsJa1n1b5S0S2A9szWDYeGG837wDQqQBCK/Q++eSTVMdRdHS09QmXwnQc/f777xw8eJAtW7YAlieEGjVqlCcx5SSujI7tjBIcn332GbVq1bJOr1ixgs2bNxMXF2d9EiYqKoqkpCRGjRoFWEaPqlChQoblY2NjERHr+1S3bl3Onj3Lnj176Nq1q3V7P//8M97e3kRFReHp6UmxYsXYuHEjrVu3tn5mKVOmTKax2W/LXWkCx4nVq+fL+PH9dRhxNxYaGpoqWZPSJ05oaGi+JXCyukgV5AUqI97e3nh5efHVV18REBBAYmIiO3bsyNF+3kkdffv25bnnnuOTTz7hvffeS7WscuXK/PnnnwDMmzePUqVKMWbMmFRlvLy8GDduHEFBQQwZMoSSJUty4MABli1bxgsvvICI3PH+KaWUyjtr164F4JFHHsmwzOjRo9m+fTsLFiwgKiqKWrVqERAQwJEjR6hbty6Q/SdYw8LCePfdd639hNg6c+YM9evXz3BaqcJqxYoVQOE/jnbs2IGfnx9VqlQBLP0UbtmyJU9iyklcGR3b9knk9KxZs4aIiAj279+Pl5cXDRo0oHHjxoSHh6fqXzUsLIzAwMBMy9s2d2vdujX79u1j0aJFfP311wBcunSJypUrY4xJVT4sLIzWrVvnKDbbbbkrTeA4sdOnf9VhxN1cekOFpzyJk1+yukht27atwC5QGalQoQLr16/ntdde44svvqBGjRpUqlSJyMhI/P39eeWVV3j99dcB8Pf35z//+Q//+Mc/OHLkCBcuXMDT05MJEyZkWkdISAgLFy4kKCiI3377DX9/f3bu3EnJkiXx9PRk4MCBVKhQIVUTLYD+/fuzZs0aOnToQPHixdm8eTP//ve/mTt3rjWe5cuXM23aNESEtm3bUqFCBUqUKGF9hDWr/evbty9BQUHW6ZS4lOvRJ3CUKhw2btyYrSFys+rgP6PmAV27dmXt2rXUqFEDgKpVq7J7927rSD1hYWH4+Pjw119/Ubp0aeu1x35aqcLMdqQpyHjoaUcfR/bNp8aNG8e4ceNyFVNu47rTYzs8PJx27drh5eXF0qVL+f3336lVqxaff/55qk6Cjx07xvTp09m1a1e65b/44otUfdK0adOG5557jsmTJ1O2bFnA0s9NtWrVrNtN+ZxQpUoVa7IpKSmJv/76iwoVKmQYm/223JUrJHAQEbd7QUupVu2SiIjs2bNHZs2aJa5m7969jg4hX0VERMiNGzccHUaemzFjhkydOtU6bbuPXbp0kUuXLlmnFy9eLMOGDZOkpCQRETl27JiIiPz555/SokWLNL8XVum9j7169ZLTp087IJrci4iIyHAZ8IMUgnOfvv7/GgAi776b4VvmElz9OiCi+2gvs/NQYZZX1/NBgwZJhQoVpE6dOlKnTh3p2bOnJCUlSe3ateXWrVvWcjdv3pQ+ffpIw4YNpXnz5jJu3DgREdm3b58MHTrUWs5+Oit6HXCeV4MGDTJ8r5z1OLKX2+Mqv4+jWbNmyc8//3zHMYmIXL9+PVdx5fTYtnf06FHx9vaWjh07yptvvikdO3YUEZEXXnhBtm7dKiIiSUlJcs8992Ra/sUXX7SWFxE5fPiw1K1bV27fvm2dd+3aNfH19ZWmTZuKv7+/bNu2TUQs72/37t2lcePG0rx5czlw4ECOtpUeR/7vF9T1/PXXRUBk+vQC2VwqeXUdcPgJ1BEvaCkeHqdl7ty5UrFiRdmzZ09u3oNCzdVval01gWN/gfrb3/4mIpLrC+edXqAKQsr7uHHjRjl58qScP39eunXr5uCock5v3J3nlZLAmT07w7fMJbj6dUBE99Ges37wzM/reUREhPX6mN/0OuA8L03g5ExBHkc5ERoaWijjyq0RI0bIli1b0swvqM887pDAmTRJnD6B47ZNqIoVK8/48eOZM2dOgXZYq1Rm1q9fn2o6KioKsHQK/Nhjj+Hl5WVdZtssyFanTp3o1KlTmt8LuytXrvDQQw9RuXJlPvjgA0eHo9yAaBMqpVxeo0aNmDdvnqPDUMqpFdbjqGHDhoUyrpw6e/Ys3bt35+GHH+axxx5zdDguTVygCZXbJnBiYjwYOvQJ7QNHOYXCeuHMS88//zzPP/+8o8NQbkQTOEoppZRytHr16nHy5ElHh+EWXCGBc1fWRVyTMaX49NPPKVKkCLNnz3Z0OEoppQqYJnCUUkoppdyHJnCclDFJiNzFmDEzGD9+PEWKuO2DSEop5bY0gaOUUkop5T40geOkRGIBWLhwhw4lrpRSbkoTOEoppZRS7kMTOE6qWDHLO9e583BatGjh4GiUUko5giZwlFJKKaXchyZwnFR8vGVkn88/P0Xfvn3x8/NzcERKKaWUUkoppZTKb5rAcTpxAIh4I/oVrFJKuSU9/SullFJKuQ9XuPdzywROyZLFAKhatT1bt24lNDTUwREppZQqaK5wEVdKKaWUUtmjTaic1M2bVwG4fLkoAH5+fjqUuFJKpcMY08sYE2qM2W+M+cYY0yqL8qWNMauT1/nRGDPLGJNmqD9jTDdjzCVjzNR0lq02xhw0xoTYvL43xiQaYyoml/E3xlywKxNijGmY3X3TBI5SSimllPtwhQSOW46fbUwcxiSRlFSd3r19ueuuOIKDgx0dllJKFSrGmJbAeqC1iEQYY3oAu4wxTUQkMoPVVgPRIuJnjCkGhADTgEk29S4GqgFFM9n84yJywWadJ4FBIvKH7bZEZGqOdyyZJnCUcj3r169n4cKF3Lp1i+rVqxMcHMzdd9/t6LCUUkoVAq6QwHHLJ3CqV68O/AyASG0GDhxIQECAY4NSysb69etp06YNbdu2pVu3bty6dcvRIaWxcOFC7rvvPry9vbO9TkhICKtXr04zf/78+fTp08dhcakMTQR2iUgEgIjsBH4DxqRX2BjTFOgLzE4uHwcsAF4yxpS0KbpHRPoDMRls93Xgst284cCK3O1G+jSBo1Thc/jwYYwxdOjQIVfrd+vWje+//56wsDDq1avH7t278zhCpZRSzkoTOE6sdu0kAHr2fJHHH39cm1CpQiXlBvTgwYOF9gZ07NixTJgwIUfrZJTAqVq1KnXr1nVYXCpDDwI/2M0LBR7KpHwsEG5X3gt4IGWGiGT6yKOIXBaR+JRpY0xdoAmwNduRZ4MmcJQqfJYtW8bAgQM5dOgQx48fz/H6K1aswM/Pj+bNm7NhwwY8PT3zIUqlXFvKF4k+Pj559kViftSpVE5pAsdJ/e9//+Py5QMABAcf06HEVaGTcgPavn17t7gBHTRoEPPmzXN0GMqGMaY8UAb41W5RJJBRtq0u8JukHt4v0mZZbg0HPhKR23bz2xljdhljvjbG7DDGdMtJpZrAUapwiYmJYf369YwZM4ZHH32UFStSP3S3efNmihcvzsWLF63zxo4dS7169fjtt99Ys2YNERER7N+/n6NHj1KxYkUaN25c0LuhlMMdPnyY0qVL5+uTbM8++yzjxo3L0zqVym+awHFiHh4nAEhMbKpDiasClZMb0G+//TZXN6Aff/wxHTp0ICAggDZt2jBu3Dhu37Z89t24cSO+vr4YY9i5cye9evWifv36vPDCC9muIz0PPPAAxhhatGhhvSg//fTTlClThh49evDuu++yevVqjhw5gr+/P/7+/pw/f56PPvrIGk+KhIQEJk2ahI+PD506daJVq1b885//zHVsKldKJP+0/8PeBjLqUKJEBuXJZJ1MGcs/xt+BlXaLrgMXgQEi8gAwH9hmjBmQ3br11K9U4bJlyxbKli3LAw88wBNPPMHatWuJj7c+jEf//v3x8fFhxowZAMyZM4ePPvqIzz//nCpVqhAeHk67du3w8vJi6dKl/P7779SqVctRu6OUwyxbtox+/frl25NsIsKOHTvo3bt3ntWpVEFwhQSOW3ZiXL16dbp0qc/atVCp0oOsW2cZSlz7wVEFoX///syaNYsZM2awbNky6w3oN998k+YGdOHChbm6Ad28eTOvvfYavXr1Ij4+np49ezJr1iymTJnCwIEDqVKlCgEBAURERLB9+3auXLlC7dq16devn/U4yKyO9Bw4cIB7772XwMBAHnrI0sJm/vz5REREsHPnTgCio6MJCQkhJCTEut6gQYNo0KBBquNvypQpfPrpp3z33XeULFmSQ4cO0aZNGyZNmpSr2FSuRCf/LG43vziQ0XPP0RmUJ5N1stIF+FNEDtvOTJ4eaTO9xxizGUv/OZvtKzHGjPz/8i0BuHjxAiEhF3IZVuF38+bNVMeaK9J9TK1MmTJERUXlb0D5IDExkaioKJYuXUr//v25efMmnTp1Ij4+no0bN6b6kPjGG28wYMAAatasyZw5c9ixYwdVq1YlKiqKfv36MWjQINauXUunTp1o3Lhxgf49YmNjXf7/URV+KU+ybdy4EbAkTubMmWNdvnnzZp544glOnTpFnTp1AMsXiTt37uTbb7/l888/t36R6OXlRYMGDdJ8kRgaGkpsbCwPPPBAntWpVEFy5gQOIuJ2r9rJlmsAACAASURBVDJlykipUrXEkoO7Jbt375U9e/bIrFmzxFXs3bvX0SHkq4iICLlx48Yd1TFr1izZs2dPqnkF9X+wa9cuKVKkiMycOVNKliwp//3vf63Ljh49Kt7e3tKxY0eZMGGCdOzYMcf1//LLL5KUlGSdfv/996Vt27bW6b179wogP//8s3VeixYtZN68edmuQ0Rk1apVUqdOHev0W2+9JfXr17dOL1u2TObPn2+dfvPNN6Vz586p6rhx44Y1HhGRW7duiaenp7z//vupyr3xxhvZjs0+roIQERGR4TLgBykE576cvoC/gAl289YA32VQ/iUsiRpjM+8eQIBu6ZS/AEzNIoZ/A89nM96pwM2sy7UUELH5l3JJrn4dENF9tJfZeagwu3Hjhpw+fVoACQ8Pt85/5pln5JFHHklTvl27duLh4SGffvppQYaZJVe8Drjqq0GDBhm+V856HKVYu3at1KlTR65fvy7/+c9/pFKlShIXF2ddnpSUJC1btpSnn35aRETeffddqVSpkpw6dUpERMaPH2+9B3v//felbNmyabYxceJEGTp0aJ7WmRt3+lnAWRTUfjryf7+grudjxoiAyKJFBbK5VPLqOuCWT+BERUVRqhRUqxbDr7960afPaxQpclKHEnczfn5+BAYGsmnTJgICAti7d691Or89/PDD+Pn58cYbb7Bjx45UfTA1a9aM8+fPAyn/q6VyXP/169d55ZVXuHjxIsWKFSMyMjLdJkaWEdksSpUqxY0bN3Jch63hw4fz1ltvsX//fjp16sS6devYsmVLjmI/c+YMsbGx3HvvvanmT58+/Y5iU7nyJdDKbl4r4D8ZlN+NpSlTE/6/I+NWWEab+ianGzfGlAK6Ay+ms+wlYJuInLeZXYOUIQaVUgCYtxzzNaO8mbM2isuXL6d58+Y0adLEOu+JJ54gICCAX375xfok6p49ezh69CgiQpUqVdLUs3PnTmbOnMnt27dJTEzE39+fd955h+LF7R8OVMo1LV++nMGDB2OM4dFHHyUhIYHt27fz2GOPAWCM4Z///CePPvoo9erV4+2332bPnj3Ur18fgKFDh9K7d28+/PBDunTpgo+PT5ptbNu2LdV9WV7UqVRBEG1C5ZyqV6/O2rVreeSRr4AeJCU1Z+BAX21C5WYCAgLYtGkTgYGBjB49mqCgIGsyJ79l9wY0JiYGEcnRDWh0dDRdunThscceY926dXh4eLB69WqmTp2apqyHh4f1d2NMylMMOarDVu3atenatSsrV66kUqVKVKpUiYoVK2YZs62UGPJi/9QdewcIMcY0EpHjxpjuQDVgCYAxZgbQB2glIrEi8pMxJhh4BRhmjCkKjAUWiMjNXGx/IPCFiPyVzjJfoKYx5hUREWNMo+Tyk3KxHaWUAyUkJLBmzRr+8Y9/pJrfsWNHatasyapVq5gyZQpHjx6lX79+LF68mE8++YSJEyeya9cua/l///vfLFmyhODgYKpVq0ZcXByTJk2iaNGiBb1LysU4SyL0zJkz7N+/n/feew+AYsWK0b9/f5YvX25N4ED2v0gE0txfnTlzhnPnztGtW+pxA+6kTqUKiiZwnFRsbCwA7dp5sW8fNG8+jMcfj2P27Nm8+uqrDo5OFaSAgABGjx7N9OnTmTx5coEkb3JyA1qyZEmKFy+eoxvQEydOcOXKFQYMGGBN0MTFxeUoxjup48knn+SZZ56hePHiPPnkk6mW3XXX//ebHhcXl26ypn79+nh6enLmzBm6du1qnb948WKGDBnC+fPn73j/VPaIyCFjzBBgrTEmBvDA0hQqZWQpTyydE9teBocDi40xocnlvwRSdU5kjJmCpW+bqsBwY4w/8KqI/NcuhOHAWxmE9z7wMvCNMSYRy1DlrwJLs79/2S2plPPK6QdAR9i1axeRkZH4+PgQHh6ealnnzp1ZuXIlw4YNo3v37rz88ss89dRTtG7dmmbNmhESEoK/vz/Xr1/nH//4B99//z3VqlUDLB9ebfv+UMrV2T7JltL/U14/ybZ161a6du1KiRIlUq3jjE/H7dy5k88//5x//etfGZa5cOECR48etfbFtXfvXg4dOsT48ePzfFsq/2kCx0l5enrSt29f4uK6AV0JDU2gb9++2oTKDe3du5egoCAmT55MUFAQAQEB+ZrEuXjxYo5uQKOionJ8A+rt7Y2XlxdfffUVAQEBJCYmsmPHjhzFeSd19O3bl+eee45PPvnE+g1QisqVK/Pnn38CMG/ePEqVKsXf//73VGW8vLwYN24cQUFBDBkyhJIlS3LgwAGWLVvGCy+8gIjc8f6p7BOR7cD2DJaNB8bbzbsBDMuizmnAtGxs+4FMlh0EArOqQylV+K1duxaARx55JMMyjzzyCD169LB2Vt+0aVMGDBjAxIkT+e6779i5cyft2rXjnnvuKZCYlXtxhkRoQT3Jtm3bNoYNS32Zd9an444dO0bz5s0zLbNr1y7++OMPawInt58VsrMtlf9cIYHj8E7EHPGqWbOmlC5dWkqVapjckfE1KVWqbJoObZ2Zq3fsmBedGO/Zs0cqVqxofd/tp/Pa1atX5b777pORI0emmh8YGGjtgHfdunXSq1cv67Lc7mNwcLA0aNBA/Pz8pE+fPvLkk09K8eLFpXPnzrJz505p3ry5ANK5c2e5evWqDB8+XMqUKSN16tSRmTNnZlmHiMiCBQukYcOG1nlRUVHW7Y8aNUomTZqUJq7ff/9d2rZtK+3bt5eAgAD5448/ZOnSpaniOX36tMTHx8uECROkSZMm0qlTJ/nb3/4mZ86cydb+ZRZXftLOK53nldKJ8euvZ/iWuQRXvw6I6D7ac9bOV/Oig85Jkyaluu4MGTJEGjVqJAMHDrzjurNLrwPO83LFToy3bt0qgHz++ecSFhYmBw8elLCwMAkLC5OhQ4dKnTp15MKFC1K9enV56623REQkLCxMjDHW88y1a9ekUqVKcu7cuXS3ceXKFSlSpIhERkZa591pnbnx4YcfSuvWraVx48by8MMPS3R0tIiI9OjRQyZPnixt27aVGjVqyKFDh1KVb9q0aarygYGBcvDgQfnxxx+lS5cu1vp37twpf//73yUkJETKlSsn9957rzRv3lyuXbsmPXr0kGPHjsnPP/8svXr1El9fX2ncuLF1/7LaVm5oJ8Z5Z+RIERAJCiqQzaWSV9cBh59AHfFK+ZA+efJkgfMCIsuWfa+jUDkRZx+FKiP2N6CBgYEFfgOaF3r16iWnT5/OVllXGUFAb9yd56UJHNeh+5ias37wzIvrwPTp09N8cfD+++/LK6+8csd1Z5deB5zn5YoJnJ49ewqWUR8zfOX0i0R7K1askHbt2lmnc/PlZF74448/RMRy7hg9erRs3bpVRES8vb2to10tWbLEOoJpSnkRSVW+cePGcvPmTYmPj5dq1apJUlKSJCQkSMuWLa0jtXbu3DlV8ql+/fpy+/Ztadq0qfVzxLVr1yQ2NjZb28oNTeDknWeeEQERu8FuC0ReXQfcsglV+fLl2bBhAxs2bKBp08cID4fw8DL07u2n/eC4kfTe5/xuQpUVLy8vYmJirNPLly9n/fr1nD171mExZdemTZvw9fWlWLFi3L59O80oUkoppVR+6datG4MHD2bs2LFUrlyZhIQE9u7da232oJSr2749dWvn7I5kunHjRuvvERERNG3a1Dr9xBNP8OOPP9KsWTM2bNjAtm3b6NOnj3V5+fLlOX78+B3Vacu2nK3PPvvM2n8PwIoVK9i8eTOxsbFcvnyZ3r17ExUVRVJSEqNGjQIgMTGRChUqpCofFxfHL7/8Qu/evYmNjUVErH351K1bl7Nnz7Jnzx66du1q3d6FCxfw9vYGLH9TT09PgoODad26tfUzQ5kyZdLEltm2lOM5cxMqt0zg3Lp1iw0bNmCMoWtXT8LDYcmSo6xePVL7wVEO5cw3oFeuXOGhhx6icuXKfPDBB44ORymllBvx8/Nj4sSJdOnShWLFilGkSBE6d+6cab86qvAxxvQCJgMpHeePFZEfMig7HJgARNotagc8LiJ6U59D9l8krlu3jqVLl1q/SOzQoQODBg3K0zpt2Xdinp41a9YQERHB/v37SUhIoGXLljRu3Jjw8PBUI1+FhYURGBiYqryXlxcNGjSwlm/SpIm1fOvWrdm3bx+LFi3i66+/BuDSpUtUrVoVk/xpP2WdsLAwWrdunWlsmW1LOY4U/u6ssnRX1kVcT2xsLFu3biU4OJg1a54BIDGxLQMHDtShxJVD2d6A3n///Tz44IPUqlXLKW5An3/+eS5evEhoaCgtWrRwdDhKZckVLuJKqf/31FNPER4ezo8//sh///tf3n33XcqVK+fosFQ2GWNaAuuBYSLSCZgJ7DLGVM1ktXdExD/lBTwJ3AI+z/eAXVC3bt3YtGkTV65cAbB+kZhyX/fqq6+mehImL+rMqfDwcNq1a4eXlxcrV67k999/p1atWoSHh6fqJPjYsWPWke1Syi9dutRa/ujRozRr1sxavk2bNrz66qs8/fTTlC1bFoBffvmF6tWrp9q2j48PVapUsSabkpKSuHr1aprYMtuWchxxgU6M3TKBU758eWtTmeefDwCuIVKbyZOzPfqsUvnG9gY0JCREb0CVUkop5Q4mArtEJAJARHYCvwFjMii/NfllaziwQURi0hZXWbH/IrF9+/Z3/EViXtc5dOhQ3nnnHTp16kRkZCQ+Pj6A5YmblCSJiHDlyhWqVKmSqvyvv/5qLX/s2LFUSZWGDRtStmxZnnvuOeu8xo0bc/HiRXx8fAgLCyMsLIymTZsyfPhwzp07R5MmTbj//vutzciyuy3lOK6QwHHLJlQpRo0axYYNG7j33iGcOVOW996L4KGHfiM0NFT7wVFKKaWUUqrgPAjMspsXCjyEpVlVKiJyzXbaWNq5/B0IzK8A3cFTTz3FU089VWjrbNasGefPnwdS9/OzaNEiaxljDOfOnUtTHmDq1KkALFy4MFW9//rXv5g9ezbFihWzzitTpgyHDh2yTttu45NPPsk0tsy2pRzHFRI4bvkEDsDevXut/eA89JDlzzBnzhH69u2bqv2kUkoppZRSKv8YY8oDZYBf7RZFAnWzWU0AcFNEQvMyNuXazp49S8OGDfHy8uKxxx5zdDgqn7lCAsdtn8AJDQ1l61bLU5f9+j0JHCAhIYDAQO0HRyml3IH2gaOUUoVGyvA8t+3m3wbuzmYdw4EVGS00xowERgJUqlSJkJCQdMuVKVOGqKiobG6y8EpMTHSJ/chMXuxj5cqV+eEHSz/ZhfXvVVDvZWxsbIbHRX67efNmgWz711/vA6py8uQJQkLs+z93Dm6bwElpIjV79mx69LiHdev+h0h1XnxxKXv37tVmVEoppZRSShWM6OSfxe3mF8fSKXGmjDGlgJ7AyxmVEZEPgA8AGjZsKP7+/umWO378eLaG3y7ssjuMuDNzh32EgttPT09Phw1EEhISQkbHZF5atcrys1Gj+/D3vy/ft5cf3LYJVYoiRYrw4YfrqFvXMpTd66+HEBgYqM2olFJKKaWUKgAi8idwDbAfcaoqkHa86bQCga9E5I+8jk0p5XqcuQmVWydw9u7dy8yZM5kzZw5XrqwDYPv2WCZOnKjNqJRSSinldETbBjqE/t3zxJdAK7t5rZLnZ2U4mTSfUkopcI3m826dwAkNDWXTpk28/PLLjBxp6R/Nw6MLMTEu8M4qpZRSyq0ULVqUmBgdPdkRYmJiKFq0qKPDcHbvAN2MMY0AjDHdgWrAkuTpGcaYcGOMp+1Kxph7AW/gi4INVynlbLQTYyeX0sdNynDiVar8nd9+q0bx4l21HxyllFJKOZXKlStz+fJlatSogZeXF8aZ71CdhIgQExPD5cuXqVKliqPDcWoicsgYMwRYa4yJATyAbiKS0tOoJ5YOje3/sYcDa0UkscCCVUo5JU3guADb4cQDAuLYsAFef30fXl5vEhwc7OjwlFJK5RNXeIxWKVulS5cG4H//+x/x8fEOjib7YmNj8fT0zLpgIVW0aFGqVKli/fur3BOR7cD2DJaNB8anM/+NfIhDE6DKrbhLM1BN4LgA2+HE+/QZB/yHhIQABg6M0H5wlFJKKeVUSpcu7XSJhJCQEIeNfKKUvZSmiHffnd3Ry5VyfvHx8RQp4vqpAVdI4Lh1HzhgaUYVEBBAaGgoPXqUA26RlNSMt96yDCc+e/ZsR4eolFJKKaWUKgApTRFv3brlNk8lKPeWlJTEb7/9RpkyZRwdSr5zhQROoUmzGWN6AZOBlDavY0Xkh0zKdwbeBgQoCpwAXk4ehjDHihQpwkcfraJGjRe4fNmXl17axVdfPcGmTZtyU51SSimllFLKyThrU0R7zt40MTvcYR+hYPazRIkSVKxYMV+3URhoAiePGGNaAuuB1iISYYzpAewyxjSx6bjMtnxZYCcwUUT+ZYy5C9gELAUG5HT7tsOJT5myHvBl48Yo5s7V4cSVcibz589n37591maRd2rhwoUEBQURGxvLhQsX8qROVXjoF6tKKaXS44xNEe25Q9NEd9hHcJ/9LAiukMApLE2oJgK7RCQCQER2Ar8BYzIoXw8oCXyVXD4J2AM8nJuN2w4n/tRTlhEEihZ9lNjYpNxUp1SWLl++zJgxY6hfvz6enp5UrlyZLl268P333zs6NKdWtWpV6tatm2f1jR07lgkTJuRZfUoppZRSSinH0gTOnXsQsG8uFQo8lEH5n7A0mRoMYIy5G+iHJemTYyn94IwaNYo1a6ZRuXIk8fFeFC/+oPaDo/LcxYsXadGiBZcvX2b16tWcOHGC4OBgWrVqRdGiRR0dnlMbNGgQ8+bNc3QYyknoEzhKKaWUUu7DFe79HJ7AMcaUB8oAv9otigTS/SpdRGKBrkAXY8xF4H+AD/BcbuOwHU68a9fbAEya9A19+/bFz88vt9UqlcaiRYvw8PDg448/pkOHDnh7e9OhQwdmz57N/fff7+jw2LhxI76+vhhj2LlzJ7169aJ+/fq88MIL1jJvv/023t7e+Pv7A3D9+nX8/f0xxhASEpJuPT179uSee+7h7bff5vr164wYMYL777+fPn368Ndff1nrTkxMZOLEifj6+uLv78+DDz7IkSNH0o3vs88+o1evXtSqVYt69epZ59tKSEhg0qRJ+Pj40KlTJ1q1asU///lP6/KU9yEgIIA2bdowbtw4bt++nQ9/WVXYuMJFXCmllFJKZY8rNKEqDH3glEj+af+J6TaQ7vh9xphSwG5gB5bmV3cDI4DLuQ3Cdjjxvn2fAz4hIeERBg48pv3gqDz1119/ERcXx4ULF6hXr56jw0lj4MCBVKlShYCAACIiIti+fTtXrlyhdu3a9OvXj4CAAF5//XXi4+OtyZoyZcoQEhKSKnliW8+pU6fYsWMHp06d4r777uPXX39l8eLFeHp60r59exYtWsSbb74JwNSpUzlw4AAHDx7E09OT4OBgAgICOHv2LOXLl09V77fffsv27dv59ddfGTFihPVpOltTpkzh008/5bvvvqNkyZIcOnSINm3aMGnSJAA2b97Ma6+9Rq9evYiPj6dnz57MmjWLKVOmFMwfXCmllFJKKZXvNIGTN6KTfxa3m18cuJXBOiOwPJ0zVSzj+0UbY44B+4wxDUTkmv0KxpiRwEiASpUqWT94pmjdujUAH330EX5+iXz55VWSkurxwANPMX/+fE6cOMGgQYNyt4cOcPPmzTT76ErKlClDYmIiUVFR1nmlS5dySCw3bkRlXcjGiBEj2LNnD/Xr16dZs2Z06tSJgQMH0qxZMwAWL17M77//zrRp09LsY048//zzHD58mB49enD58mXr7xMnTsxy3Vu3LIdez549iYqKwsvLi/vuu4+DBw/SqlUrAG7fvp1ufLdu3bLOS6mne/fuREVFUa1aNSpUqEC5cuVITEwkOjoaPz8/QkNDiYqKIiYmhrlz57JkyRLi4+OJj4/nwQcfxMPDg+XLlzN69OhU9Q4cOJCoqChKlizJxo0bOXDgAIB1+zExMcyfP5933nkHESEqKooGDRrw8ssvW8tMnTqV6tWrW6f/9re/8eGHHzJu3DjA0vN/yrqZiY2NdeljzhXpEzhKKaWUUu5DEzh5QET+NMZcA6raLaoKnM1gtQZAZHJTqhTngUpAZ2BbOtv5APgAoGHDhpLS9MPejz/+yLJly7jnnhOcP9+BLVti+Pbbf7Jp0yYyWqcwCgkJcap4c+r48eN4eHhQqpRjkja2chpDhw4dOHv2LN9++y27d+9my5YtLFmyhJUrVzJs2DBOnz5Nly5dKFWqFFFRUbnax59++olLly5x7NgxfvrpJ1588UWOHTuW7fXvvtvy8FuDBg3w8PAALEmzuLg4azzFixdP9z24++67rfNS6qlfv761nhIlSuDt7W0tU7JkSaKjoylVqhQXLlwgJiaGxYsXs2bNGmud5cqVIzY2Nk29jRo1stZrOz+l3IULF4iNjaVp06ap4rTt1yoxMZFRo0Zx8eJFihUrRmRkJLdv37aW9/T0xBiT5fvg6empIwQ4GU3gKKWUUkq5D1dI4Di8D5xkXwKt7Oa1Sp6fnstAJWOMh828ask/M3pqJ0u2w4n/8cdqALZvt/THoc2oCj8Rx7xyw8PDg44dOzJt2jTCwsKoW7cu69atAyA8PBwfH59s1XP69Gl69OhBq1at6NixI5GRkURERPDwww9z8uRJKleubP29bdu2uYozhTEGsdlh+75mEhMTs1VPetMp9ab8nDVrFiEhIdbX6dOn023SZF+PPcniDYqOjqZLly6UK1eOAwcOEBISwoQJE7JcT7kGfZuVUkoppdyHJnDyzjtAN2NMIwBjTHcsCZklydMzjDHhxhjP5PIfYYn9ueTlHsDLwC/Ad7kNwnY48VGj7gESMKYzUVGF5c+kXJGIEBsbS6VKlRARTp06RaNGjbJc7/bt2zz77LO89957/PDDDwwbNowlS5bQuHFjBg8ezIIFC7hy5Yr194MHD+Zp3KVKleLmzZvW6cuXc90FlVXKsOonT55MNX/p0qXs3r071/WdOXMm1fzFixfz559/cuLECa5cucKAAQOsyaC4uLjc74BSSimllFKqUNIETh4RkUPAEGCtMWY/8DrQTUQik4t4Yumo2CSXPwd0AwYYY74B/ptcppuI3LSvP7tshxP/4INZ1K59CZEiJCXpcOIqbzzxxBO8/fbbHDx4kIsXL7Jv3z569+7N9evXmTBhAufOnaNatWoUL27fJVRaW7du5fjx4/Tq1QtfX1/mzZtnHYY8LCyMpk2bpvk9L/n6+nL8+HHrCFIfffTRHdfp5eXF+PHjWbJkCVevXgXg/PnzzJkzJ9tPJdnXN27cOIKCgqzJpgMHDrBs2TLKly+Pt7c3Xl5efPXVV4DlKaIdO3bc8X4o56BP4CillFJKuR9nTuA4vA+cFCKyHdiewbLxwHi7eQeATnkdh+1w4o88ksgHH8DMmUdZuHAMwcHBeb055WZatmzJli1bWLBgAVFRUdSqVYuAgACOHDlC3bp12bZtW7YTFWFhYbz77rsMGTIkzbIzZ85Qv379NL9nxyeffMLrr78OgL+/P//5z3/4xz/+wZEjR7hw4QKenp5MmDCBLl26MHz4cNq2bUv9+vUZOXIkAC+99BJvvPEGXl5eaep5/PHHiYyM5J133rH2N7N+/XquX7/OgAED2Lx5M1OnTkVE6NChA1WqVKFo0aKsXbuWqlWrphvfyJEjGTx4MP/+97+ZO3eudf7y5cu59957mTZtGiJC27ZtqVChAiVKlLAeyxUqVGD9+vW89tprfPHFF9SoUYNKlSoRGRmJv78/ffv2JSgoyDq9c+dOSpYsme2/pSrcNIGjlFJKKeU+XOHer9AkcAoL2+HE+/X7O/ANCQkPExj4uPaDo+7YuHHjrKMbpSc8PDzDp2W6du3K2rVrqVGjBgBVq1Zl9+7dDB48GGMMYWFh+Pj48Ndff1G6dGk8PDxS/Z5djz76KI8++miqeatWrWLVqlVpyi5ZsiTVtH3fMfb1fPHFF2nqeOaZZ1J1EOzh4cGMGTOYMWNGtuMDGDp0KEOHDk0zv0iRIsycOZOZM2emW1+fPn3o06dPqnkrV660/j527Nh011NKKaWUUko5D21C5YJSmlGFhobSo0c94BwilRgx4n1tRqXy3U8//cTixYvx9vbG29ubgQMHApbEyJkzZyhfvry17JNPPsn169dp1KgRvr6+1gRLQTSfUsoVuMK3MEoppZRSKntcIYGjT+BkoEiRInz44ToaNhzKyZN1eeONgxw5EsimTZscHZpyYevXr081HRUVBcCJEyd47LHH8PLysi6zbQpkq1OnTnTq1CnN70rlhjGmFzAZiAE8gLEi8kMm5UsDi4AmyeV3A6+LSIJduW7ACmC5iEy1W+YNHARO2FX/pojssynXDpgHxGPpB22KiHye3X3TBI5SSimllPvQBI6Lsh1O/K23lgEP8eWXxZk7V4cTV47RqFEj5s2b5+gwlJsxxrQE1gOtRSTCGNMD2GWMaWLTyby91UC0iPgZY4oBIcA0YJJNvYuxjDRYNJPNfy4iwzOJrRbwGdBfRL40xrQADhhj2olIWHb2TxM4SimllFLuwxUSONqEKh22w4mPGdMUiAZacPWqZ1arKqWUK5kI7BKRCAAR2Qn8BoxJr7AxpinQF5idXD4OWAC8ZIyx7f15j4j0x/JUT26NBc6KyJfJ2zoM7AdevYM6lVJKKaWUi9IEjouyHU58yZK5NGjwMwCxsV20HxyllDt5ELBvLhUKPJRJ+Vgg3K68F/BAygwRyYsh/XIaWxr6BI5SSimllPvQBI4Lsx1OvGdPyzu8aNE5+vbti5+fn4OjU0qp/GWMKQ+UAX61WxQJ1M1gtbrAb5J6OLJIm2U5cZ8xZrsx5oAx5nNjzOB0tpVebFWMMXdnZwOalRNfBgAAIABJREFUwFFKKaWUcj/OnMDRPnAyYDuc+GOP9QfCSUjoRP/+g7UfHKWUOyiR/PO23fzbQEYJkhIZlCeTddITC1wAXhKRSGOML7DbGFNDRN7N5rZu2S4wxowERlqmWgJw+fJlQkJO5yAs53Lz5k1CQkIcHUa+0n10De6wj0oppRzPFb680wROBl599f+7UXj++X5Mnx4ONGXo0PccF5RSShWc6OSfxe3mF8cuOWK3TnrlyWSdNJI7SH7cZvqIMeZ94HUgJYGTo22JyAfABwDGtBKA6tVr4O9fI7thOZ2QkBD8/f0dHUa+0n10De6wj0oppRxPm1C5gVGjRrFw4ULatLkBwLJlF7QfHKWUyxORP4FrQFW7RVWBsxmsdg6obEyqy2LK+hmtk11ngTLGmIo220ovtkgRyVayyBW+hVFKKaWUUtmjCRwXZ9sPTt++ltYEH310VfvBUUq5iy+BVnbzWiXPT89uLB0WN7ErHwN8k92NGmMGG2Pa2M2ugeXJmqs228pJbEoppZRSyo1pAsfFpfSDExwczLvv9sTDI4GkpBb07v2U9oOjlHIH7wDdjDGNAIwx3YFqwJLk6RnGmHBjjCeAiPwEBAOvJC8vimW47wUicjMH220AvGyMKZJcT3Us/dcE2XSQvAi41xjTJblMc6ATyUOYZ4c+gaOUUkop5T40gePiUoYTDw0NpXt3fxIT9wN30bPnPG1GpZRyeSJyCBgCrDXG7MfSB0235D5qADyxdBhsexkcDmCMCQW+B74FptjWa4yZYowJwdLkabgxJsQY09qmyCYsT9t8nbzdHVj6r5lkE9svQHfg7eQyy4EBIhKW/f3LbkmllFJKKeXsXCGBo50YZ0ORIkVYt24dzZv34uhRWLDgCCdPBrJp0yZHh6Zc1Pr161m4cCE3b96kZs2aBAcHc/fdORnExznNnz+fffv2WUeAu1MLFy4kKCiI2NhYLly4kCd1uhsR2Q5sz2DZeGC83bwbwLAs6pwGTMtk+f+xd/dxVs/5/8cfLzPTJYl0JVkiLWJTjYuQmaRcq0VpscL3q/XDRjJtkq8VSgq71obdtWGXFEqFzdWM2ijjomgr17KiWpuiTNev3x+fzxmn01ycM1dnzjnP++12bmfO5+L9eX1czJnzOu/367UUuDSO2F4HjqvsuPLPr+qZIiJSG8zsbGA0wdLbLGCou79VyTm/AgYRfJmwH/Cau1f6HiIimScdEjiagVOJwsJCxo4dy4QJE/j888kAzJ+fzciRI7WMSmpN3759WbhwIQsWLOCggw7ipZdeSnZIdaJNmzZ06NChxsYbOnQov/nNb2psPBEREakdZtYNeBy4xN17AmOBOWYWW7A++pwRwBlAn/Cc/uFrEZFdpEMCRzNwKlFcXMzUqVPJz8/nm2++Z+zYH4DOrFtXlOzQJI395S9/Ydq0aWzatImVK1dyzjnnJDukOjFo0CAGDRqU7DAkQ2gGjohIvTISmBPOwsTdZ5vZauAqglk5OzGzFsAtwM/cfXN4zmIzO6/uQhaRVJTKCRzNwKlEpA7OkCFDuP/+uznwwK8BMMtTHRypkmnTptGwYUNWrFhRum3o0KEcdNBBrF69mkceeYSlS5cyd+5cXn/9dfbZZx8OO+ywuMd/8skn6dKlC2bG7NmzOfvss+nYsSPXXHNN6TG33347BxxwAHl5eQCsX7+evLw8zIyioqIyxznrrLM48MADuf3221m/fj2XX345Xbt2pW/fvnz77belY2/fvp2RI0fSpUsX8vLy6N27N4sWLSozvhdeeIGBAwfSvn17DjrooNLt0bZt28aNN97IEUccQc+ePenevTt33HFH6f6nn36a448/nvz8fI455hiuu+46Nm/eHPc/L8lcSuCIiNQrvYHY5VLFwCnlHH86sN7dP4ze6O5zayE2EUkD6fC3nxI4cYhuJ56fH3y4HDt2gdqJS5Wcd955HHHEEdx2220ATJgwgSeeeIJ//OMftG7dmiVLlnDcccfRuHFjHn74Yf7zn//Qvn37uMcfOHAg9957LwBLly5l5syZzJ8/nz/96U8UFhYCMGrUKAYPHlx6zp577lmauClrnA8//JBZs2YxZ84cRo8ezahRo7jvvvt466232LBhA7///e9Lz7vllluYN28eCxYsoKioiKuuuor8/HzWrl27y7ivv/46Tz75JG+++SadOnUq3R7t5ptv5vnnn+eNN95g7ty5PPjgg9x88481cadNm8aIESMoLCzkn//8J8uWLePOO++M+5+XiIiIJJeZ7Q3sCXwds2sVUN7a6iOAr8zsf8ys0MxeN7MHzKxlbcYqIqkrHZZQKYETh+h24k8/PRSA7duPZeDAgaqDIwkzM+644w4mT57MuHHj+O1vf8tzzz1Hx44dAbj44osZN24cPXv2ZNWqVRxxxBFVvlZkOVKrVq047LDDdpoJk4gBAwYAcMghh7DPPvvQpk0bmjRpwm677UaPHj149913ASgpKWHixIlcffXVNGrUCID+/fuXFgKPdfnllwPQtm1bnn/++V32l5SUcM8993DllVey++67A9CtWzdGjhxZesyECRM466yzAMjJyaF///688MILVbpPySzp8C2MiEiaaBo+x06h3UzQ7bAsewGdgZMIZumcBDQHiswspzaCFJHUlg4JHNXAiUNBQQEA48eP5/TTW/HEE1vYseMw7rrrQQoLCykuLi49RiQeffr0ITc3l5tuuolZs2btNJPryCOP5LPPPgPg+++/Z4899qjydfbdd9/Sn/fYYw++++67Ko3Ttm3b0p+bNGmy0+umTZuyfv16AD7++GNKSkoYP348DzzwQOkxzZs3Z926dbuM2759e3744Ydyr/vxxx+zadMmDj744J22jxkzpvTn9evXc8MNN7BixQoaNGjAqlWrtIRK4qIEjohIvbExfG4Ys70hUN4fCtuBHOAWd98GYGY3Ax8AfYHZ0Qeb2RXAFQAtW7bcZeZxutmwYYPuMU1kwn3W1T2uW9cFaM6iRe/ivr7Wr1cblMBJQHZ2NlOm/JV99hnJN98czA03PMUzz1ypduL1hP02OalU/7/EPwW++uqrLF68GHendevWu+yfPXs2Y8eOpaSkBHcnLy+PcePG0bBh7N81FcvKyir92czwqE+ssbVmtm/fHtc4Zb2OjBt5vvPOOznllPKWrJc/Tiyv5BP2xo0b6dWrF+eeey5/+9vfyMrKYvLkydxyyy2VXltECRwRkfrB3dea2TogtuNUG+CTck5bGT5/GbUtUmDwwDKu8RDwEECnTp08UgcwXRUVFaF7TA+ZcJ91dY/NmgXPXbsexYkn1vrlaoWWUMUpup34hg1BS+eHHlqiduKSsMWLF/Pzn/+c++67j379+u20HAjgscce47bbbuOpp57itddeY+HChWRlZZGTU7OzgffYYw82bNhQ+nrlypUVHB2fjh070qhRIz744IOdtj/44INVaoUeGe/jjz/eaft9993H2rVrWb58OWvWrOH8888vTQZt2bKl6jcgIiIiyfIy0D1mW/dwe1mKwue2Udsi34p9UXNhiUi60BKqDBLdTvz116fw9NPQtu25bNumWhv1RVVmwtS1FStWcPrppzNs2DAuu+wyjj76aI488sjSrPP69eu5/vrrWbhwIW3btuX777+nQYMGTJgwocZj6dKlC6NHj+bbb79lr7324oknnqj2mI0bN2b48OHcf//9DBo0iBYtWvDZZ58xYcIE5s2bV6XxrrvuOiZNmsSFF17I7rvvzrx58/jTn/7ENddcg7vTuHFjXnnlFfLz89m+fTuzZs2q9n1IZtAMHBGRemUcQf2aQ919mZmdTpCcuR/AzG4D+gHd3X2Tu88zs/nAMODX4RjXAR8Cc+o+fBGp75TAySCRGjdDhgxhzpwi4AJWrTqArl1zVQdH4rJ27VpOPfVUzjzzzNIuSp07d+b8889n5MiRvPHGG8yePZvjjjuOAw/cZeZv3J577jlGjRoFQF5eHs888wzXX389ixYt4vPPP6dRo0b85je/oVevXgwePJhjjz2Wjh07csUVVwBw7bXXctNNN9G4ceNdxrngggtYtWoV48aNK603M3nyZNatW8f555/PtGnTuOWWW3B3jj/+eFq3bk1OTg6PPvoobdq0KTO+iy++mMsvv5zHHnuMiRMnlm7/85//zMEHH8ytt96Ku3PsscfSokULmjZtyvTp0wFo0aIFjz/+OCNGjODFF1+kXbt2tGzZklWrVpGXl0f//v2ZNGlS6evZs2eXFkMWUQJHRKT+cPe3zexC4FEzKwGygL7uvio8pBFBQePoj179gfvM7B2ghGBZ1SnuvqkOQxeRFJPKCRyrrMZEOurUqZPHLvGIR2FhIf369cPMaNToa1avbkzTpseRnb2M6dOn16ulVOm+VnLZsmXst99+1SrwWx9FEhu33347ELTcfv/99znyyCOZMmVKMkOrNdUt1FxfLFu2jEMPPbTMfWb2trvHTguXJDHr7vAWl1wCkycnO5rak+7vA6B7TBeZcI96H6hfqvpZIJVkwv9XmXCPkBn3WVf3eNxxsGABzJ8PPXrU+uV2UlPvA5qBk4BIO3GAU099CTibHTuOYuDAI+tV8kZSV+PGjSkpKSl9/ec//5nHH3+cTz4pr36fiFRVBn5/ISIiIpKx0mEJlYoYJ6CgoID8/HyKi4s5/PDgQ/bhh1/Cgw8G7cTHjx+f5Agl1fXt25epU6eyZs0aALZt20ZhYSFHHXVUkiMTST9K4IiIiIhkDiVwMlR2djbvvvsnABYtyuLuu+9mwIAB5ObmJjkySXW5ubmMHDmSXr160bVrV3r37k379u059dRTkx2aiIiIiIhIykqHBI6WUCUo0k78tttu4aabYMeOI7n++h5MnDhOy6ikRlx22WVcdtllQPrUhxGpjzQDR0RERCRzpEMCRzNwEhRpJz5q1FXsvfc37NjRgDPOGMG2bduSHZqIiCRACRwRERGRzKEETgYqKCiguLiYu+++m40bXwPgtdc2kJ2drRo4IiIpRAkcERERkcyhBE6Gys7OZvjw4fTt2wKAzp0vZfjw4WRna0WaiIiIiIiISH2lBE6G2bZtGxMmTKCo6F4A3noreK1lVCIiqUMzcEREREQyRzr87acEThUUFBSwbds2TjutTbjlCH7962Hk5uZqGZWISIpIhzdxEREREYmPllBlsOzsbKZOfYjdd1/Dtm05jBz5iFqJi4iIiIiIiNRDSuBkqEgr8QkTJrBly5sATJjwCiNHjlQr8Trk+vpc6gn9t5ia9K9NREREJHMogZOhIq3Ehw0bRo8ejQE49NBfqAZOHcrJyWHLli3JDkMEgJKSEnJycpIdhiRICRwRERGRzJEOCRy1TaqCgoICAIYMGcLChWuBk/n4493Jzc2lsLCQ4uLi0mOkdrRq1YrPPvuMJk2a0LhxYyyV/y+UlOXulJSUsHLlSlq3bp3scCRBSuCIiIiIZA4lcDJYYWEhU6ZMITu7LQANGhzDOefsw267GdOnT09ydOmvWbNmfPfdd3z11Vds3bo12eHUmk2bNtGoUaNkh1GrUv0ec3JyaN26Nc2aNUt2KCIiIiIiUg4lcDJYcXExM2bMwB16917Dxo2t2GOPAxg48FjVwakj27dv5+CDD052GLWqqKiIo446Ktlh1KpMuEepnzQDR0RERCRzpEMCRzVwqqigoIDi4mLMoEOH9QD07TuSCy64QK3ERURSgBI4IiIiIplHCZwMlZubS//+/fn3v2cCMHPmv+nfv79aiYtIvWJmdyc7BhERERGRZEqHL++UwKkmdyc7+z0Aduw4Uu2ERaQ+6pLsAOoj/boWERERyRxaQpXhInVwLr00qN/RqNFxzJgxg+Li4iRHJiKykxR+m6o9SuCIiNQszfgUkfpMCZwMV1BQwJQpU3j00Vto0GATGzY0Y+3aHHJzc1UHR0Tqk0VVPdHMzjazYjOba2bzzax7Jcc3M7PJ4TnvmNmdZrZLwXwz62tmX5rZLWXsO9LMHjGz18xsnpktNLP+McfkmdnnZlYU8+hU1XsVEZFq04xPEam30iGBoy5U1RBpJb7bbkanTpt4//1G/PKXd5OT86paiYtIveHu11XlPDPrBjwOHO3uS83sTGCOmR3u7qvKOW0ysNHdc82sAVAE3ArcGDXufUBbIKecMW4GvgHy3X2HmZ0GzDazvu7+cvS13P2WqtwbaAaOiEgtSOGPRSKS7tIhgaMZONUQWUI1ffp0PvroSQC2b+/CwIED1UpcRNLBSGCOuy8FcPfZwGrgqrIONrPOQH9gfHj8FuBe4Foz2z3q0Ffd/TygpJzrfgJMdPcd4TgvAMuBQdW+oyhK4IiI1Lgqz/gUEalt6ZDA0QycaigoKCj9uU+fb5k5Ezp0+DkPPtg5iVGJiNSY3sCdMduKgVOA0eUcvwlYEnN8Y+AE4B8A7l7hFEV3H1HG5hKgYVxRx0kJHBGRmlXVGZ8iInUhHRI4moFTA4YMGcIrr0wA4IMPmlJYWEhhYaHq4IhIyjKzvYE9ga9jdq0COpRzWgdgte/cjm9V1L6qxtIMOByYGrPrODObY2b/NLNZZta3qtcQERERkcyQygkczcCppkgdnKysHHJytrN164Gcc05Pdtvte9XBEZE6ZWYWkzypjqbh8+aY7ZuBJhWcU9bxVHBOPAqAl919ZtS29cAKYLi7f2dmvYDnzexid58WO4CZXQFcEbzqBsA333xDUdGS2EPTxoYNGygqKkp2GLVK95geMuEeRUQk+dJh9nWVEjhm1srd19R0MKkoUgcHoE+f94Eu7NhxBIMGtVcdHBGpa9+Y2RzgeeAf7v5NNcbaGD7HLltqCPxQwTllHU8F51TIzE4HzgJ6Rm9393cpTciAu79qZtOAUcAuCRx3fwh4KBizuwPsvfc+5OXlVSWslFBUVJTW9we6x3SRCfcoIiLJl8lLqKbUaBQprKCggOLiYgCOOGIbAMcffzUXXHCBllCJSF07BlgIXAysMLM3zGx02E0qIe6+FlgHtInZ1YagyHBZPgVame30thg5v7xzymVmxwNjgVPdfX0cp3wCHJzodUREJDExv+dFRFJCJidwUviWa15ubi79+/dn2bInACgs/Jb+/fuTm5ub5MhEJJO4+8fu/jt37wu0BO4A2gHPmNnXZvawmZ0X1pSJx8tA95ht3cPtZXmJoGDx4THHlwDz470PADPrCjwAnO3uX4fbrojaf62ZHRhzWjvgi3ivkQ7TaEVEkuQbM3vczC4ys32SHYyISDwyOYEjMdydrKzFQNBKvObKUIiIJM7df3D3We7+K3f/CUHnqOXANcAqMysys5MrGWYc0NfMDoXS5UxtgfvD17eZ2RIzaxRe81/AdOCGcH8OMBS41903xBt7eL1ZBLNvWppZdzPrDvwi6rAuwFWRb4HDcwYCf4z3Ovo1LSJSZTU24zOamZ1tZsVmNtfM5oe/+ys6fnn4fhb9GFqdGEQkfaVDAqeqRYzH1WgUKS5SB+fFF+cxbtwWduw4lL//fRbFxQtUB0dE6gV3X0LQ3nt8OAOnL5XMpnT3t83sQuBRMysBsoC+7h7pLNWIoDhx9DiDgfvMrDg8/mXg5uhxzexmoBfB8qrBZpYHFLj7m+Ehvwf2Bf4eE9JrUT8/AAwD5pvZdoKZPwXAgxXd0873F++RIiISzd0/Bn4H/M7MmgAnA2cQzPhsALxAUI/tRXf/Lp4xw+TP48DR7r7UzM4E5pjZ4VHvO7FWuXteNW9HRDJExiZw3H1OTQeSygoKChgyZAhTpkyhXbtLWbmyPUuXNiM3N5fx48dTUFCQ7BBFREqFf0zvUui3nGNnAjPL2TccGF7G2JdUMuatwK0V7D8ljrgWAAMqO05ERGqXu/9AMGtyFoCZdQZOJ5jx+aiZvQmMcfdXKhlqJDDH3ZeG4842s9XAVcDo2opfRDJHOiRwtISqBkRaiZsZPXoE/1WMHv2C6uCIiNRjmoEjIlLz3H2Ju49395MIZlreT3z1M3sDb8VsKyZYAiwiUmNSOYFT1SVUEiW6lfg55/wf8Fd27DiGgQMHagmViEg9pQSOiEjtinfGp5ntDewJfB2zaxVwWgWnNjWzhwk6EO4gWLY7wd03VS1iEUln6fC3nxI4NSCyRGr8+PH06bMHTz8Nu+3Wgz/+sReFhYUUFxdrGZWIiIiISNmahs+bY7ZvJqi1Vp4PgEnuXhx2w5oJHAucGXtg2MnwCoCWLVtSVFRU3ZjrtQ0bNuge00Qm3Gdd3ePmzccBDVmw4A0++ST2101qqDCBY2b3As8Br7n7ltoMxMzOJljfGimUOdTdY6dRxp7zK2AQwbTM/cI4L63NOCuSnZ3NM8/8gaZNR7NxY0sKCh7j0UeHMXXq1GSFJCIZysw+A75y9+OTHUt9lQ7fwoiIpImN4XPDmO0NgR/KO8ndL4r6+RszGw28bGZd3H1RzLEPAQ8BdOrUyfPy8moi7nqrqKgI3WN6yIT7rKt7zMkJnnv0OI527Wr9crWisho4G4HxwH/NbKaZDTGz9jUdRFTV+UvcvSdB69g5ZtamgnNGEFS77xOe0z98nRSFhYWMHTuWCRMmsG3bqwDcfffbjBw5UsuoRCQZNhN0epJyKIEjIlI/uPtaYB1BzZxobYBPEhgqcuzBNRGXiKSXtC9i7O6j3P0o4BDgWaAPsMTM3jezO82sp5ll1UAcu1SdByJV53dhZi2AW4Dr3X1zeM5i4LwaiKVKiouLmTp1KsOGDaNv3yC1t99+v2Tbtm3JCklEMtuyyO/HWGZ2bV0HUx999pmSOCIi1WVmn5nZ/BoY6mWge8y27uH2sq57hJn9T8zmyHfqX9RAPCKSZtI+gRPh7l+7+1/c/VygBTCUYJnTA8A3ZjbVzAaHiZWqSLTq/OnAenf/MCbOuVW8frUVFBSQn5/PkCFDePXVmwFYufJgunY9msLCQsaPH5+s0EQkM/3NzP5qZiea2YFmtn/kgdpvA/Dxx3D33cmOQkQk5dXUjM9xQF8zOxTAzE4H2hJ0scLMbjOzJWbWKDy+BVAQ+fxhZg0JvhR+E3i7BuIRkTSTDgmchIsYu/s24NXwMdzMDiBYunQ+sA8wIZHxqlh1/gjgqzDrfiHB+tj3gNHu/p9Erl+TIu3Es7KMfff9ga++aka/fr8lO/tdpk+fnqywRCQzRbp+XAJEzzOxmNcZbeRIuP76ZEchIpLSKpzx6e73xjOIu79tZhcCj5pZpCZmX3dfFR7SiKCgceSj13vAU8Dz4fG7A4uAy9x9e9VvR0TSVUYmcGK5++cEmfH7qzhEVarO7wV0Bk4imKVjwGNAUVi0bGsVY6mW6Hbip58+DbiEbdtO4sILD1EdHBGpawuBC8rYbsATdRxLvbU1Ke8WIiJp5W9m9lfgYeBLIDp5MgCIK4ED4O4zCTpJlbVvODA86vVa4MaqBCwimUkJnJpRlarz24Ec4JZwRhBmdjNBK8G+wOzYE+qideDRRx8NwBNPPEHHjvvz/vvQvPkABg1awz333MPy5csZNGhQjV+3LGo3lx50j1INI9x9RVk7zKzM+mIiIiJVoBmfIpJSlMCpBndfa2aJVp1fGT5/GbUt8kHlwHKuU2etA9955x0eeuh2zEayenVHXn/9Ve655w6mTp1aZy3g1G4uPegepaoiNcHM7CcEMxYd+Je7r3D3d5IanIiIpBPN+BSRlJAOzSviKmJcBxKqOg8Uhc9to7a1Dp+TWnU+0k584sRRZGW9CeQwalSR2omLSJ0ys8Zm9jfgU2AWwczET8zsUTMrb3mqiIhIokaEXw7EPj6nnI6yIiLJkA5LqKqcwDGznBqMI6Gq8+4+D5gPDIsa4zrgQ2BODcaVsOh24j17fg/AQQf9Wu3ERaSu3QO0JOja1zF8nBFuU+8lERGpEdEzPs3sDDM7PZz9iWZ8ikh9kg4JnOosoRpnZtvdvQDAzB4nmP3yLvAPd18f70BVqDoP0B+4z8zeAUoIllWd4u6bqnFP1VZQUADAkCFDWLjwPeAUPv30p3Trtp3CwkKKi4tLjxERqUXHAV1jOnF8YmavAPqDWkREaoSZNQb+BAzix7/Vd4SfDX7l7uXVtBQRqVNpn8AJZ7ycAmwClrr7yqjdecAxUa9/RrC0qR/QFRiRSCCJVJ0Pt/2HstfbJl10O/FWrTaxZk0rzj77F+TkvKV24iJSV7aU1UbV3beZWZntXkVERKogesbnx+G2g4FrCWZ8/ipJcYmI7CTtEzjAdIL6CQOB/5rZPsB77p4P7Ih0gAq94+4PmdnDwD9rJ9zUsHM78cnAr9i27Rwuuugg1cERkbqyxsxGAfdEvv0Ma99cC/wnqZHVM+6p/UYuIpJkmvEpIikhHRI4ldXA2dfdrwK+dPdOwI1AYbhvs5m1ihzo7heHz9uoB92tkqmgoID8/HyKi4s56aTgc1LjxhfxwAMPUlhYyPjx45McoYhkgGuBy4C1ZrbCzFYAa8Nt1yQ1snpmw4ZkRyAiktLKnfEJaManiNQbmZDAKQmft5hZA3d/EOgVbhsHzDCz/aNPMLOWQMOaDTM1ZWdnM2fOLTRu/C3r1+/FsGF/Z8CAAeTm5iY7NBFJc+7+EXAocCUwDXiKYBr7Ye7+STJjq2+aN4f1cVdtExGRGGvMbFR0h0Mza2JmN6IZnyJSD6VyAqeymTK/M7O9Cf74f8DM3gD2B3D32Wa2F1BsZq8DS8JzBgBjayvgVPFjO/G7GDXqaeB/uPfer5g4Ue3ERaT2hctZN7n7/0t2LPXdjh3wzDNw6aXJjkREJCVdC/wDGG1mq8NtrYEvgb5Ji0pEJEZkBk4qq3AGjrs/4e5r3f0uggLFHYFzovY/Fm6bRlB1fhNwobtPrq2AU0V0O/GBA4NtTZpczpYtu8wwFRGpDWcCf012EKniu++SHYGISGrSjE8RSRXpsIQqkVo1L7j7o7Eb3f3LB4qsAAAgAElEQVQ74PGaCyk9RLcTf+aZKTRv/nPWrdubnJzeaicuInXhTXcvLmuHmeW5e1Edx1OvXXstrFkDt9+e7EhERFKLZnyKSKpIhwROZTVwor1uZh1qLZI0FGknvttuxllnBV/vjhz5L/r37686OCJS2540s/9nZmUl6m+u82hSwB13wMsvJzsKEZGUoxmfIpISMi2B8zxBEqdr9EYz62lm82s2rPQQaSc+ffp0Zs8O1lFt3XoO/fv/UnVwRKS23QrcBWwIu1B9GnkAxyY5tnrr979PdgQiIimnwhmfdRyLiEi50iGBE/cSKncfamb/BgrN7HxgDUEnqlOAqbUUX0qLXiJ19dV9GTNmLtCTY47RJwQRqXWbgLKmsxswoo5jqfe6dYO334a5c2H7dsjKSnZEIiIp40kz+3/AQ2Hr8Gg3E9TRFBFJuoxK4AC4+wQzywJmE3wImAEc6e7/qo3g0kVhYSETJ07khBNa889/9uSuuzYwZMjuFBWpFo6I1Jo/uvsjZe0ws0RmX6a1GTPgzDODhE2HDvDZZ7BoUZDQERGRuNwKtALuDrtQRXfsaJOckEREdpUOCZy4/4g3s/Zm9iDBL+liYDPwnJI3FSssLGTAgAGMGTOGZctuZ/fdN/Lpp7vz619PYcCAAaqFIyK1ZVh5y1vd/eG6Dqa+6tz5x9k2kZWts2YlLx4RkRQUmfE5hGDGzW/Dx63AiiTGJSJSplRO4CQyA+cj4D3gTHd/ycx6AU+bWTt3V9+OckTaiefn53PUUUdxxhkPAdcxaZLx0ktTVQtHRGrLZqBXsoOo75o0+fHnfv3g4YdhzBg45hg47bTkxSUikkI041NEUkJkBk4qS+SX6kXufrS7vwTg7q8CecCVZvbH2gguHRQUFJQmaYqLizn11C+A7bify+GH51NYWMj48eOTG6SIpKNl7r65rB1mdm1dB1MfjRsHbdv++Pqss2DECNixA+67L3lxiYikGM34FJGUkFFLqNz9qTK2LQaOJ0jkSCWys7OZMeN37LffYnbsyObSS+dpGZWI1Ja/mdlfzexEMzvQzPaPPIAByQ4u2Vq2DJI1sa4NU1tFRbC5zPSXiIjE0IxPEUkJGZXAKY+7ryBI4kgFCgsLGTt2LBMmTOC77+4E4PnnD+CGG0ZpGZWI1IZpwCXAa8DHwGfh43PgmOSFVb+1aQNHHgklJTC/zO+TRUQkhmZ8ikhKUAIn5O7f1sQ46SxSC2fYsGH8+tc/BZYA7Sku7pTs0EQkPS0EDgwfHWIeb8Y7iJmdbWbFZjbXzOabWfdKjm9mZpPDc94xszvNbJd6a2bW18y+NLNbyhnnp2b2qpnNM7O3zeziMo45zszeCGN708xOjfe+KtKnT/D80ks1MZqISNrTjE8RSQnpkMBJqI24VF2kVXhhYSF33z2B449vw/z5nVmw4CS2b4e5c9VSXERq1IhwhuQuzOyqeAYws27A48DR7r7UzM4E5pjZ4e6+qpzTJgMb3T3XzBoARQSdSG6MGvc+oC2QU851dwdeBH7r7n8xs/2A98xsjbvPCY9pD7wAnOfuL5vZUcA8MzvO3d+P5/7Kk58PEybA669XZxQRkYwxLXy+BIguEWoxr0VEkiodEjiqDF+HoluKL1/+W1q0WMeXXzZh8ODnVAtHRGqUu88FMLPOZtY7/LlNuO+dOIcZCcxx96XhebOB1UCZCSAz6wz0B8aHx28B7gWuDZMyEa+6+3lASTnXHQw0Bv4ajvMlMAW4KeqYocAn7v5yeMy7wFyg2lnw7uEco3fege3bqzuaiEjaq5EZnyIidSXjEzhmdk1NjJPuopdRTZv2BJs33wrA3//+E558Ui3FRaTmmFkLMysC3gMeDDePDJdBtYlzmN7AWzHbioFTKjh+E8Ea0ejjGwMnRDa4+/Q4rvuOu++IGaeHmTWJOiaR2HZS0Rt3q1aw//6wYQN8+GE8o4mIZLQR7r6ijMfnlJPwFxGpa9EtxFM5gVPhEioz+2Wc41wJqOlqJaKXRxUXF3P22et4/PGVuHdm48Zgho6WUYlIDbkXeJfgj+dJAO4+1MzOAn4HDKzoZDPbG9gT+Dpm1yrgtHJO6wCsdo9+i2RV1L54dQBiZwmtIvjS4QBgaXjMjDKOaW1mTdz9hwSut4tu3eCLL+Ctt+DQQ6szkohIeoue8Qm0CZe1tnH3VQnM+BQRkThUVgPnQX784xugdXjOGoI1ra0J1rf+u1aiS2PZ2dk88cRkunU7mbffvpArr1zNpk0DmTbtyWSHJiLpob27XwxgZtsiG919lpkNjeP8puFzbGeRzUATyta0nOOp4JyqjlPZMdVK4HTvDtOnBwmci3cpnywiIhFm1gJ4GuhJ0O3wIIIZn92BcyuomSYiUmc8TSpyVZbAWeDu+QBmdjnBt7H3R1oFhgUqrwFUJSAB0S3F77hjJE2anMbKla258MLJWkYlIjUlOmFSOlHUzIyggHBlNobPDWO2N6T85MjGco6ngnOqOk5C1zKzK4Arglfd2Lp1C0VF5Vcpzs7eC/gZr766nqKidxMIvf7YsGEDRUVFyQ6jVuke00Mm3GOaq9aMz2hmdjYwmqBGWhYw1N1jl8uWdV5TgtmZn7l7XqI3ICLpLx0KGEPlCZwzo34+z913mjYfFqicaGZzCH55SxwitXDy8/NZt24dY8bcAPyF55/vwebN0DD2I4mISOI+NbM7gYmAm1kW0AkYBSyq7GR3X2tm64DYejltgE/KuybQyswsahlV5PzyzilvnLKuuwP4vJJjVpW1fMrdHwIeAjDr7jk5DcjLyys3gEMPhREjYMWKPenZM4/dUrDkf1FRUYX3mA50j+khE+4xzVV3xifhuVXpfBhxK9CsCrGLSIZIlwROhX+SuvvGqJedwhk3OzGzRsDBNR1YOisoKCA/P5/CwkImTpzIhRduJytrGd9+25xJk4IZOuPHj092mCKS2q4BjiWoYXMSsAV4H2gH/DrOMV4Gusds6x5uL8tLBAWLD485vgSYH+c1I+N0NbPo96juwOtRyZmXEoxtJ5W9ebduHTy+/x4+/zyeEUVEMlZ1Z3xGJNT5MOo6XYBcYGYC1xKRDJMRCZwYC4C5ZjbYzPLCx2VAEfBGrUSXxqJbis+Z8xyDBy8HYNSoEs4773K1FBeRanH3/7j7ScDJBC23rwV6uXueu/83zmHGAX3N7FAAMzud4I/x+8PXt5nZkjCRj7v/C5gO3BDuzwmvfa+7b0gg/EcIulldEo7TDrgAuC3qmN8DB5tZr/CYnxHUX6ix7PfPfhY8v/deTY0oIpKWPjWzO82sFeGMTzM7DPgbccz4jJJwd8Ew0f9HgiRPmlS4EJHakC4JnMqWUEX7X4Kp+A8AkZk4W4GHgeE1HFfai15GddRRR3H++QNo1epQ1qz5KWedVUR+/v7JDlFE0oC7FxEk2qty7ttmdiHwqJlF6hH0jZrK3ojgm9fot8LBwH1mVhwe/zJwc/S4ZnYz0ItgydNgM8sDCtz9zfC6G8ysDzAp/KKgKXCdu8+Jiu3fYUJpopltJZj5c767v1+Vey3Lz34GL74IixdDv341NaqISNq5BniKH7sWbgmf5wHnxjNAFTsfAlwNzHP39y3VP5WJSK3KuAROuJzqV2Z2PUF1eQM+jllmJXGKbhWen59Ply4/45VXLgLe5Omn92fpUli9Wm3FRSS53H0m5UxLd/fhxCTw3f07wpkzFYx5K0G9goqOWQ5UWNXd3V8HjqvomOqIzMBZvLi2riAikvrc/T/ASWEyvjPBZ4T33P21BIZJuPNhODvzfwiWC4uIVCjjEjgRYcJmpwnlZlbg7iraUkWFhUGipkmTbWzd+le2br2cX/ziW778cgDTpk1NdngiIhnpyCOD5/drbE6PiEj6qs6MT6rW+fA+YGRZhevLEt2NsGXLlmnf+SwTurtlwj1CZtxnXdzjli27AT1x30FR0dxavVZtSiiBY2YnAV0IqrzHTplXAqcKIrVwZsyYAUC/foPZuvUsFi9uxY03vkZ+/mFJjlBEJDN17Bh8S/PZZ7B1K+TkJDsiEZH0lGjnQzPbg+AzyQ1mdkO4+adAIzMrAt5w95Ex1yjtRtipUydP985nmdDdLRPuETLjPuviHktKgufddtstpf95xp3AMbPfE9TBWQp8z86FwprXcFwZI7oWDsDQoZcwZkwBMJm//OUwbrgBmuufrohInWvUCNq3hy++CDpRdeyY7IhERNJaeZ0Pn4k90N2/BzpEbzOzycAB7p5XS/GJSApLlyVUiXShOhXY3927hV1M8iMPYEYtxZf2Ii3FIZiNM2nSJHr1WklW1husXg03hN8pqLW4iCQq7ARyppkNDl8fGXaGkjhFkjYffZTcOEREMkBCnQ9FRBKRiQmcZWGRsrIMq4lgMllkKdXUqVO56aYbadz4WmAzf/4z3HnnYgYMGKDW4iISNzM7AFhOUIB4dLj5LGCxmR2SpLBSTiSB8+GHyY1DRCTdufvbQKTz4VxgFJV3PsTMuoTLpk4FuphZkZmdUXeRi0gqyMQEzkNmNtzM2tmuffp2mdooiYleSpWfn8/MmeNo1Oh2AG68cR8efvjp0pk6IiJxuJfgW8s9gC8A3P124JfAxCTGlVI0A0dEpHI1NePT3We6e66793T34929OGrfcHfv4O4lMecsClcHtHH35uHPz1X7pkQkrWRiAmcWQaHiL4BtZrY98gBOqpXoMkj0UioIWov36LEAWMCOHe2YMaMnoKVUIhK3Zu5+b9g5sLRmmbu/RTktWTNJvG/eSuCIiFRMMz5FJBVkYgJnMZAP9Ip5nExMW3GpvsLCQt56ayGNGl0JbOLhh+G2297XUioRiVeZ5c/D2gH71nEsKUsJHBGRSmnGp4jUe+mSwEmkjfhYd3+trB1mNqqG4hF2bS1++um/ZdOmsdx8czumTHmW/PweSY5QRFLAm2Y2BbgbaGBmHQharN4AvJrUyFLIgQcGb/RffAHbtkF2Iu+aIiKZoZm73wtgZjvN+DSzjJ/xKSL1S6oncOKegePuUyvYPbwGYpFQbD2c4cNzgOdw35s//KEH27YlO0IRSQHDgK3AG0AP4COC6e3/Rr+z49awIbRpAzt2wMqVyY5GRKRe0oxPEan33Cs/JhXEncAxsxwzu8nM5pvZJ2b2aeQBHFuLMWac2NbiDzwwiRNPfBizr5k3D267jdJ9qocjImVx9x/c/WLgIOBsoB9wsLv/MrYApFTsJz8Jnr/4IrlxiIjUU2+a2RQzO5pwxmfYAvwFNONTROqJTFxCdSdwKPAIcB0wDmhAUKRMv5xrQXRrcYCzzhrCxo0zGDPGaNp0MePH/7hPRCSamZ3j7s+6++fA5+G2Jmb2JHC3uy9MZnypZP/9YcECJXBERMoxDHiQYManEcz4dODvwPVJjEtEpFQmJnCOA05w9+1mdoG7PwJgZg8DyiLUguilVACzZsFpp93F5s0jGDFif/7+95nk5x+X5ChFpJ4aCjwbs60EuCd8qJhWnPbfP3hesSK5cYiI1Efu/gNwsZmNBjoTJHHeD79AEBGpF9IlgZNIF6of3H17+HMDs+DWw23tajwyKbO1+PHHv0ykHs5ddx1HSYmWUolIfNzdCVq9Nk52LKlES6hERMpnZk8AuPvn7j7b3WcpeSMi9U0mJnAamtkZ4c9fAL83s5PM7FZgz5oPTWIFrcXfpHHjKzD7lHffhbPPXsX556u1uIiAmf2fme0ws+3ASWa2PfYB/BdYlORQU0pkBo4SOCIiZTrDzIrM7FdmVmZBYxGRZEuXBE4iS6juBi4ys3eB2wjq3lwF/AD8ohZikyixrcXPPvsiNmx4iZdfbsOlly4kP79DkiMUkXpgMlBEMH39HuDamP07gDXu/kHdhpXatIRKRKRCM4FrgAuAZ81sDfAo8HzU7H0RkaTKuASOuz8DPBO+/MrMOgA/BT5397W1EZz8KLYeznXX9WbMmF8A0/nrXzvQuzf8Qmk0kYzm7iuAFQBmdoO7v5bkkOqtRN68o5dQuaf+G7+ISE1y94vCHycBk8ysI3Ap8Aczm+7usV8miIjUuXRJ4CSyhGonYYvad5S8qRuxrcUnTZrEySdvpGHDGwG49FKYN0/1cEQk4O4vl7cvXPoqcWreHHbfHTZsgHXrkh2NiEj9YmbHRP3cEbgEuJCgRuahyYpLRKQsqZ7ASWQJldQDsa3F+/Xrj/sBbNnyK848cytZWb/h6afHJTlKEUk2M7u5gt0XARXtlyhmsN9+sHw5fPkl7LVXsiMSEalXfm9mfyVI3BxNUCz/j8Df3H1lUiMTEQlFZuCkOiVwUkzsUqoZM6bTr9+5NGt2JN9804N99y3ksMOasGxZUXIDFZFku46dixVnEXwb2gooTkpEKSw6gXPEEcmORkSkXskFDgCeBK5x97eSG46IyK7SZQmVEjgppqCgYKfX+fn5DB16NWPGnELbth/y1Vft6NMHxozRv1qRDDfd3S+L3WhmJwPdkhBPSttvv+D5yy+TG4eISD30FtDD3bclOxARkfKkSwKnSjVwzGx0TQciVROphzN69PWsW3c8LVuu5b33YMSII/nuO9XEEclUZSVvwu2vAKfUcTgpr3374FkJHBGRXfQsL3mjmmsiUl+kSwKnqtM0+gNjzOx1d+9RkwFJ/KLr4eTn59O8eXOuv/5n7L33EpYv35MTT1zHypWXMG3aI8kOVUTqATNrAhwP7J/sWFKNZuCIiPzIzLoB37n7R0CBlf+JSDXXRKReyPQEzttm9jKwn5n9HFgCfOSeLqWBUkNsPZxhw4YBcNNNx9O48Vzee29vjj76XXr0aJHMMEUkCcxsB1DW7+SNwDV1HE7KUwJHRGQn0wmKFfdh15pr0ZrXWUQiIhXI9ATOF8A9wIvAscD/Ageb2XpgibsPrpnwpCKx9XAgSOKsW7eOMWOOp2HDhbz5ZgvOPReeegreeKOQ4uLiMs8TkbSzGLg26rUD3xMk2zckJ6TUpQSOiMhOOgJbw5/fdvfeZR0UfuErIpJ0mZ7A6e/uY8wsx91LswFm1hxQf44kitTEOeWUo3jppZNo0uR1nnuuMSecsJbPP9dyKpEMMsrdX0t2EOlCCRwRkR+5++aol2fE7jezbIJ6a6fWWVAiInFI9QROlYoY8+MSqs1m9nMzO8TMzN3Xufu8mgxQ4hddE+fGG29k4sSL+eGHo2nUaD1vv7037dq9R/fu+ckOU0TqgLs/X94+M3uoLmOpjxJ9895rL2jSBL77LniISOopKYEbb4R33kl2JGnnhTK2ZQFnA0/VcSwiImVKl2IvVZqB4+7/a2aHA3PQEqp6I7omTlFREcOGDWPRokU89tgx7LHHm7z3XnP69IEXXoDmWpEsknbM7OE4D9U3ogkyCzpRffABfPEFdO6c7IhEJFGvvAJjxwb/Hz/9dLKjSSu7pMTDGTpXmllR3YcjIrKrTF9Chbv/y8xOcfdlkW1aQpVcsbVtCgsLeeGFFxg9+kruuqsHe+31OgsWNCM/H55/HpYvV00ckTRzGvCPZAeRrn7yk+CD34oVSuCIpKINYfWv//43uXGkAzM7BzgnfNmpnC8Q9gb2rLuoRETKl/EJnNB/zey3wBZ3v93d1wFaQlUPvPvuu9xxxx0xLcaPYJ99FrFo0V507VrCpk0jeeaZsckOVURqzgvuflllByUwU0eiHHBA8Pz558mMQkSqamtYclfLIGuMRT3HfiTaASwDbqjTiEREyqEETmAa8ChB+8DbzawzMNjdh1c7MqmW5cuXl9lifPToo9h333/y1Vf70azZXBo3bpDMMEWkBsWTvEnkONnZT34SPK9Ykdw4RKRqtmwJnpXAqT53fxZ4FsDMJuhvfxGp79IlgVPVIsYRjd39L4RtBN19CdCr2lFJtQ0aNKg0eRMxbNgwrr/+l3z1VSdatFjId981oFcvmDUr2F9YWMj48eOTEK2I1AYz621mr5rZf8xsTfjzyQmOcbaZFZvZXDObb2bdKzm+mZlNDs95x8zuDLuRRB/T1syeNbM3wmOGx+yfbGYLzKwo6rHQzLab2T7hMXlm9nnMMUVm1imR+0tEJIGjGTgiqUkzcGpHRckbM/tlXcYiIlIeJXACq81sPyC6pnOjqgyU6IeEqPOamtkKFUmrXKTF+OjR17Nly2nk5DxGSQn06wdXX/0R558/gNzc3GSHKSI1wMwuBGYAq4EHgAeBVcB0M/tFnGN0Ax4HLnH3nsBYYI6ZtangtMlAlrvnEhS5PxG4NWrM3YBZwHvufhyQT1Do8oqYcS5w97zII7yHV9z9m+hrRR8TPj6I596qQjNwRFJbJIGzfn1y40hHYfL+FDO72Mx+GXkAv0l2bCIikD4JnOouobqO4I/1VmY2COgDLE90kKgPCUe7+1IzO5PgQ8Lh7r6qktNvBZoles1ME91iPD8/n/z8fM45px+77baSzZt/w/33d+TMMxdxwgntkh2qiNSM64Hu7r7T72Qz+ynB79vH4xhjJDDH3ZcCuPtsM1sNXAWMjj04XEbbHzgyPH6Lmd0LTDazO9x9A3A60AXoHR6z3sweBG4ysz+5uwOjgDUxww8G/hjXndeSSA0cJXBEUlMkgbNlC2zeDA0bJjeedGFmPQiWU20FmhN8cdAAaEPwxYGISL2R6gmcas3AcfePCf4YHwYcBrwFXFSFoXb5kEDwy/+qik4ysy5ALjCzCtfMKNEtxgHy8/N59tkZnHDCy8AFZGdvZfbsdvTpo+4MImlic2zyBiDctjnOMXoT/F6PVgycUsHxm4AlMcc3Bk6IOuaTsOh99DHtgU5hjCvdfWtkp5l1AA4nmFGUNG3bQnY2rF4NJSXJjEREqiJSAwe0jKqGjQX6u/u+wEJ3P9Dd2wHHA08kMlAiM/LNrKGZjTGzf5rZK2b2rpnNMLODq3c7IpKO3Cs/JhVUdwkV7r7F3ae6+2h3v9/df6jCMIl+SIhMw/8jQZInTf511J6CgoJdauIALF68mNGjDyEr62SaNdtAUREccwwsWaKaOCIprpGZHRK70cw6EsdSVzOLtH/9OmbXKqBDOad1AFaHs2iij4/sizyXNWb0MbEGA0+4e2zi6TgzmxP+8T7LzPqWc36NyMqCffcNfv469g5EpN7buvXHn5XAqVE73P2f4c+l3227+wJgl/eh8lRh2e5ewOXAue5+MtAN2AJMSfwWRCTdaQlVDankQ8JpFZx6NTDP3d+3VP+3kASxS6qaN7+b668/lP32e4tPPmlNbu52srOnMHPmBckOVUSqZiLwjpk9C3wcbjsYOAu4Mo7zm4bPsUmTzUCTCs4p63iizonnmFIW/IL/JcHSrGjrgRXAcHf/zsx6Ac+b2cXuPq2Mca4Awjo73diyZTNFRW+Ucxvla9iwG7AHL774Nj/96fcJn1+XNmzYQFFRUbLDqFW6x/RQV/f40UcHAAcA8Morb/Hvf2+o9WtmiCZmtpu77yD4tX2wu39sZq2AIxIYJ6Flu8Ba4Ax3Xx0ev8PM5hGUdBAR2YkSOGUws7bA2jK+Ja1Iwh8SzKwd8D8EBTKlCmKXVP3YZrwzRxzxEu+/3wV4kGeegeOPhwbqNi6SUtz9b2a2BrgRiMxMWULwTeVLcQyxMXyOrRLREChvpuXGco4n6pyN7Fq3LPaYaL0I3lfejd4Yvr4i6vWrZjaNoH7OLgkcd38IeAjArLs3bNiQvLy8cm6jfD/5CXz0ERxwQDeqcHqdKioqqtI9phLdY3qoq3v8xz9+/PmQQ7rX+/+HU8i/gH+a2TkEtXCKzWwR0Bl4MYFxegN3xmyLzMjfJYHj7luA0veG8PPBJcDvE4peRDKCEjhleww4yMyerqilYIyqfEi4DxiZyHKt6G9fW7ZsmfHfZh199NEAOx3TtWtXzj33NB577Cjat7+Dr74q4A9/yOLVV9dzyy1L+fLLBSxfvpxBgwbVcvTx0beS6SET7jFZ3P1FEvvjOfrctWa2jqAIZbQ2wCflnPYpQVF7i1pGFTn/k6hjTi1jzOhjog0GHo4z7E/YdaZOjdpnn+BZtcJEUo+WUNWa6wh+j38L3ANkEXQg/AtwezwDVGNGfiRxM5OgVtq9wC3xhy4imWLHjuA5Kyu5cVRXjSZw3L03lHY5ifechD4kmNkeBB1MbjCzG8LNPyWo91AEvOHuI8u4Tum3r506dXJ9m7WrwsJCXnjhBUaPHs3vfjeORo1eomnT51m6dE/+93+74X4XM2ZcU2++CdS3kukhE+4xGcysMdCSoCbNZjM7gCC58YG7Px/nMC8DsQUkuwPPlHP8SwR/vB/Oj4WMuwMlwPyoY642s+ZRhYy7A/+ObQEe/r4/Hfh1Gfd3LfCsu38Wtbkd8EUc91VlLVoEz998U/FxIlL/RCdw1Eq85rj7eoJlrRF3hQ/MrLwlt7Gqsmw3cv2VQDczaw08RTAL89zY4/RlbvrJhHuEzLjPurjHTz9tCuRSUrKBoqLY8rupo1Zq4JTV+aQScX9IcPfviSl0aWaTgQPcPS/B60qorDbj/fr1o6TkMDp0eJFPPz0Ys6d55RXjhBMgJyfZEYtIJcYRTDsfYGYrgQUEiZQsM7vP3e+Kc4wiMzvU3ZeZ2elAW+B+ADO7DehH0K58k7v/y8ymAzcAl5hZDjAUuDdsIQ7wArCI4Bvb/zOzZgR/UN9WxvUHAi+6+7dl7OsC7GdmN7i7m9mh4fE3xnFfVRZJ4GgGjkjqUReqpJhNsBS2MlWZkb8Td18dJvffMrNe7v5qzH59mZtmMuEeITPusy7usXnz4HmPPXZP6X+e1e5CFcvMqtLmdRzQN/wDnLI+JJjZEjOrtHOKVE1ZbcZnzJjB0Ud34NNPO3HiiYWYGbffDieeCJ9+muSARaQy3YGu7r6EYBnSZuDQ8HF+PAO4+9vAhcCjZjaXoL5MX3ePdI1qRPDNaPRq4sEAZlYMLAReB26OGnMHcDZwlEJz1ycAACAASURBVJm9AbwGPBT+YR1rMOUvn3oA2B+YHxatfAwoIHzfqC1K4IikLi2hqjlm9mk8D+KsV+nua4GElu2aWZaZxS6GWBo+H57A7YhIBtASqvIdmegJ7v62mUU+JJQQrJ2t7EMCZtaFYK1r9BKqu9z9uWrEn5EKCgrK3B60GR/FpEkDOOOMESxYcDULFzaiSxeYNAn23beQ4uLics8XkaTZ5O6bwp8vAP4ceW1mcbdPcveZBLUFyto3HBges+07giKSFY35FUESp7Jrn1DBvgXAgMrGqGlK4IikLiVwatRmgi9gK2LAiATGTHTZ7sXAPsCEqG37hs8rE7iuiGSASAJntxqfwlK3qpTAMbOxBPUN3geWufvWSk6pVKIfEsLti4C86l5bdlXekir3P9Cz55vMnduKiy6Chg3/w1NPqRmYSD3UxMxOAg4EuhLOugnrEeyRzMBSmYoYi6Qu1cCpUZPc/ZHKDgqXycYroWW74Tn/Y2aPuPt/wmW7Ywhqob2cyM2ISPrbvj14zsgEDvAf4GSC2gaHmNlXBMmcJcDuNRSbJFF5S6qmTJnC008fzpln/onZs09h8+YBXH01NGkCveJZ4SwideVmgnauewDj3P0LM+tD8IewZilWkYoYi6Qu1cCpOe6+S6vuMFmzr7svN7MG7r6lrOMqGDPRGfmvEHxB8WI4s7QpwXKr3uFsUBGRUhmzhMrMcoGt4WwXANz97phjOgCdw8dLNR2k1L2ylkRFZuK0bt2aMWP6c+WV9zJz5kBWrGjDySfDVVfBuHFQXKxlVSLJ5u4vmVkLYI+obk+vA70JkvBSBVpCJZK6tISqdoQzOycBFwGfAwcBD5lZA+CKqCL2lUpkRr67/5syuhSKiJQlXZZQxRP+OIL6CaXM7GIzm2Nmj5nZ4e7+qbvPdPc73P3C2glV6oPCwkImTZrE6NGjmTbtNoYOnUKTJmPJytrB/ffDIYeU0L//3eTm5iY7VJGM5+7bgX3M7CwzOxNo4+4r3D2ujh6yKyVwRFKXEji15k6C2S9nwf9n777jo6rSP45/Tiqh96qASBUVUBCxsAQBBRFxV6KorG2FH3YREURgBRRlESsqugrrri4bV0FQEUUnoiiapak0qYJI75CenN8fd4ZMhkkjZUq+79frvu6de8+9cy6aZOa5z3kOe9z7bsd5aPBcoDolIuItXIZQFaX75+Kk4QNgjOkAzMKpq/AHnBlAmpdF5yS4eNfFmThxIomJiUyd+iSTJsVSrdoV1K+/m1274jh6dD7z58eToq+IIgFjjKlvjFkIbMD5HT4f2GCM+dgY0yCwvQs8Ywpv40+1ahAVBSkpkJpaun0SkbLlPYRKNXBKVQdgkLX2EyANwDpeBloEtGciIm7hMoSqKAGc6uSt5H4LsB5og/NLeSkwuvS7JsHGX12cxMREsrKyuO++y9m7tymXX55ERITh+efh3HNh0aIAd1qk4poFZAFXAS2BVkBfIIf8p+aWQhgD9eo52/s0EE0kpCgDp8xEW2ute9s3PF6vvDsjIuJPRRpCtQNo4vW6J/Bfd2Q9C5gKxJdF5yS4jBo16mTwxiM+Pp4uXbq4h1WNZt26QcyYkUyjRnvZuhWuugpuvhn27nUyeKZOnRqg3otUOC2BAdbaz93DXDdbaz/DmcGjVYD7FtIauPOX9uwpuJ2IBBcFcMrMIWPMcGOMASw4BY2NMU/jzAglIhJwFWkI1WfAI3CyWHEH8hYq3gqcWfpdk1Dgb1jV44/346GH3qVy5SeIjc3m3XehZctMBgz4kM6dVRtHpJxs9noiepK7Ls7WAPQnbCiAIxKaNAtVmbkPGAEcAS4yxuwA9gN/REWGRSRIVKQhVE8BlxpjdgLfA7/iFCXzaAQcK4O+SQjIb1iVtRl89FF3KlfuSosWmzh2LJrjx5/niSfiWb8+wJ0WqRheMcY8bYxpboyJcC/NjTHTcIZXyWnyBHD27g1sP0SkeLwzcDIyIC0tcH0JJ9bazcA5OMGa14BE4C6gvbV2SyD7JiLiES5DqAqdRtxa+7t7KvEHgJrAiz5Pda8Afimj/kmQK2i6cYB77+3HpEmtGDgwkaVLB7FkCXToAKNGwZgxULlyefdYJHwZY3Jwp697duHOoPTZlwPMKa9+hZuiZuBs2wb16+v3nEiw8A7ggJOFU6lSYPoSbqy1mcBs3/3GmPnW2gHl3yMRkbwq0hAqrLXbrbUPW2vvtNau9jncDvhv6XdNQp33lOPffHM3b7zxNV26/EhGBkyeDG3bwnvvwZdfqjaOSClZjVOnzLPE+7z2LMqaLIHCAji//QYvvghnnw23315+/RKRgnkCOJ5Z6DSMquSMMVWMMaeEqd1ZnzcDGjsvIkEhXIZQFZqBUxhr7ZDS6IiEF+/aOJ6MnISEPzJmzBh++WUM9erNYdOmaiQkQHR0FK+99odAd1kkHEyx1n5VUANjTCXgYDn1JywVFMDJyIBu3ZwgDkBiIsyapSwckWDgqYFTqxYcPKipxEvCGNMEeBe4zP36HWvtn40xccD/AQ8CZwALA9dLEZFc4TKEKsS7L8GqoCnH584dyaFDLenXbz7GHCQz83KGDu3Kgw/C4cMB7rhICLPWJuZ3zBjT0xjzJrALaF5unQpDBQVwPvooN3jjkZRU5l0SkSLwZODUreuslYFTIi8ADYDngBlAT2PMPcAaYArwBXCetbZ/4LooIpKrQg2hEimu/KYc9+y/++5hfPLJtTz88EzuvhtycnJ44QVo3RreeMP5AdO04yIlY4zpaIz5mzHmN5zZA6/DKS6pumUlUFAR43//21k/9RSMHu1sv/VW7ocGEQkcTwCnTh1nrQBOiZwPdLbWjrTW3g9cCkwDfgBaWGvvsNauDWgPRUS8hMsQKgVwpNx518aZPXs611/vYubM5URFLWPfPhg6FFq1Os7AgTM17bhIMRljmhljxhhjfgaWA/cAy3Ceija01g4DJgayj8HAUwPjdOSXgWMtfOUewHb99XDLLRAVBe+/D61awSuvnP57ikjJeYZQKQOnVOy11h73vLDW/gpsBm6y1v4euG6JiPinIVQip8G7Ns7EiRNJTEwkISGBli2Ps2hRKtWq3UXNmofYurUqR4/OYcqUeFatCnSvRUKDMeYbYAtOgGYX8BecoM31wH5rbQaAtfbfgetl6Ktb1wnM7N8Pqam5+zdtgn37nJmnWraE9u1h8WI44wzYuhXuucfJMBSRwPBk4DRpAg0bBrYvYSDDz7691toc7x3GmPnl1B8RkQJpCJXIacivNk5ycjI9e8bz4IONOHy4Ib16fUrNms6XnwsucGZy8a0rISKnSAEygWdwnoLOstbqGXMpi4yEpk2d7e3bc/d/952zvvTS3AyfP/zBmU78pZec18OHwyeflFtXRcTN2twAzksvwa5dMETTcJTEWcaY8d4L0NzPvnMD3VEREQifIVQlnoVKpDhGjRp1yj7PLFW5Q6se5dVXhzBr1gc8+2wcy5ZdwOzZEfznP/Dww3DxxUtYs2YZF110UQDuQCR4WWv7GGPqAzcC84wxR3BmCZkb2J6Fn2bNYMsW+PVXaNPG2bd5s7M+55y8bSMj4d57nS+MTz0FgwbBF1/AxReXb59FKrIjR5ynr1WrOhl0UmINgdv97Pfd16Ac+iIiUigNoRIpRf6GVt111x+57rolVKt2Md277yU1FSZPhmuuacuOHQPJyChBEQuRMGWt3WutfdFaeylwP3A2sBQ4xxjTzxgTaYx5NbC9DH3Nmzvrbdty93m2Pcd8TZ7sPPFPSYHevcHlKrv+iUheu3Y560aNAtuPMLLMWntWYQvwfaA7KiICGkIlUqoKmnb8/fefYe3a9tx22xtERf2AtfV5+eXW/PnPXZk1C7KyAtx5kSBlrd1krX3CWtsRuAboA6wCrg9sz0Jfs2bO+tdfc/d5tvML4BgDb74JN90Ex4/DVVfBv/5Vpt0UEbff3WV1GzcObD/CiL/sm5K0ExEpU+EyhEoBHAkKhU07Pnz4cGbPHsro0R8xd65THHTPnkrccQecey68957zQ6mpx0X8s9YmW2sfBDrizBQiJVBQBo4nuONPdDS8/Tbcd58zI86QIfDEE059DhEpO8rAKV3W2m2l2U5EpKxpCJVIOfGedvy1116lRg0Xq1fDzTcvJCJiKxs2QEICtGlzTFOPixTCWpuNk4kjJeAJ0niCNllZuYXWPQWO8xMZCS++CC+/7HyI+Otf4e67885oJSIls24d3Hor/OUv8P33kJbm7K9cObD9EhGRwAiXIVQq4yZBzbs2jqfYsef1X/4Sx623/sp1171MRMQENm2qDsxhwgSnQGH37oHuvUhw0sxUJdekibPevdtZb9nifDA480yIjS3aNe65x7nOjTfCa6/BBx84xY6vvRbOOy93JisRKZ7sbLjlFlixwnm9ZQsMHuxsh/oHdxEROT0aQiVSDgqadhygd+8ejBhRhWPHGtCr16fUqQPffONM3RsfD0lJAey8iISt+vWd9d69znrNGmfdvn3xrjNwIHz5JVx4oXOt8eOhQwcnw+fFF3OzBkSk6N58Mzd4A7B/f+4HdwVGRUQqJg2hEikHBdXGAe/hVY+watUQZs9eQq9e31ClSiZJSU4Qp0cPmD59Jc88o9o4IuIo6Ze46tUhJsYpRpyScvoBHIBLLoHkZFi0CG6/3cnK2bEDHngAWrRwsnIWLIDDh0vWZ5GKwOWCxx5ztp9+2lkfPZpbZyrUP7iLiMjpCZchVCHefanIVq5cecrU47ff/if69v2B2Ni23HbbVmrWhK++gocf7sQ77wzlyy9VLFRESs4YaNDA2d67t2QBHM/1+vSBt95ygjfz5kHHjk7h1RkzYMAAqFULzjoLrrsOnnoKvvgCjhwpnfsRCXVbtjg/Gz17woED0KuXU/8GnACOMnBERCo2DaESCbD169fnO/X4f//7dz766CLuuutJKleeQrVqmfz0U02uuMKpjbN4sQI5IlIynmFUe/bApk3OduvWJb+uMU4dnOXLYelSmDABunWDSpWcosnz5sHYsc4X1Jo1oVUruOEGmDrVGY6loI5UJCdOOD8j55zj/GxUqQKTJ8P8+U6mHCiAIyIi4TOESkWMJWQNHjyYHj165NnnKXQMMHz4cCZNepxx48YxcmQ0L70E06c7NXJ693aGLYwf7zz1TkpykZycfHJolohIYbwzcDyzUZ11VuldPyLC+T11ySXOTFVZWfDLL05tjx9+cGbWWbXKCR5t2gSJibnnnn02VKnSkVatoF49Z2asVq2cpWVL50uuSChKSXF+3n74wQnYfPZZ7gxuQ4bAM8/knSo8Ls45fuKE8zrUP7iLiMjpCZchVArgSFjynnr81VdfJT4+nrFj47n/fhgxYjNvvlmTb7+tw1VXQevWR9m16x/MnXtroLstIiHEk4GzZYtTJDU2Fho2LLv3i4pysgzOOceZYQcgMxPWrnWydZYvd2rprF4NmzcD1OTHH/1fq1IlZ0iWZ6lb11nq1cvd9l5q13ayGUI97VhCh7Xw669OoPL7753/tzdudDLefF1yiRO4ueyyU49Vr+4EcEaPdl4rA0dEpGIKlyFUCuBI2Clo6vH4+HjeeONsBg5cQkJCEsaM4JdfqgOzufde5wPeTTdBdHSg70JEgp0nA+f77511s2bl/1QnOtqZtapDB7jjDmdfRoaTkfPZZ6to3Lgje/Y4GQsbNzrLli3O7Fa7djlLcVSt6nwh9ixVq0K1as7as1Su7H+Jizt17VkqV9bv3YrEWjh0CLZvd5YvvmjCwoXO/4+7dzvrnTudNr6io52ftTZt4OqrnfpQTZrk/17Vq+cN+oT6k1cRETk9GkIlEqQKmnrcs+/qq7vz8MOLmTSpHldd9R7r1vVn/Xq47TZnWNUjj8CddzpfLEQqMmPMAGAckApEAg9Ya/9XQPvqwItAe3f7z4Gx1tosrzaNgNeA+kAs8K61dprX8ebAMmC9z+UnWGu/8mrXDZgOZAKVgPHW2k9P916LyzNM49//dtalOXyqJGJinCydvXsP4zPKFHC+PJ844cxqdegQHDzoFH3dv99Z9u1zXu/bl7vvwAFnxi3P8vvvpd/vyMjcgE5MjJPRFBubu+29z/P60KG2vPuusx0dnbtEReVde7Z99/vu810iI50PepGR+W97r/Pb51mMybtd3qx1luzs3CUr69TtrKy8i2dfRoazpKc7i/d2aqqzpKTkXR89euqyf7/z/1GuVn77W7s2dO0KF1/srNu3d37uivP01FMHx0MZOCIiFZOGUIkEKX91bLxr40De6cdfffV23n33PXbt6sHIkQfYvr0O990HkybBQw9B+/ZLWLdumerjSIVjjLkQeBe4yFq71hjTH1hkjGlvrd2dz2mzgRPW2i7GmBggCZgIPOa+ZgSwAFhorR1njKkBrDDGHLXWvu51nU+ttbcV0LczgYXA9dbaxcaYTsDXxphu1tqfSnLfRTV4MDz3nDPMA6Bdu/J415IzJjdb5owzin5eTo7zpdv7i/jx43DsWN6158u7Zzlxwv+Xe8+2Z8nOzg0QFV0ZjlkrB8b4X7wDPNZenue1vwCEb1F+a53/Xp61Zwmm4v1VqzqZNM2aQVTUTi66qAmNGzvDEBs1cpb69UsecPEN4IT6B/dwV5yHBsaYBsADQHcgC6gBJAJ/835oICICGkIlErL8D7EaRGJiIv/+N1x33T9o1OhFfvmlOmPGgDEduemmpuzdm1vzQqSCGAMsstauBbDWfmSM2QPcg/MBOw9jzLnAdcD57vYZxpjngdnGmKestceBfkBHoJe7zRFjzEzgcWPMG9YW+SvmA8Bma+1i93VWGmOWAKOAIad/y0VXvz48/DDcf7/z2l/9jXASEZE7dKosZGbmBnPyy/Lw3k5Phx9/XM9ZZ7UlPd3JEMnMzF17b3uv89vnu2RmOh/2PNkp/rb9rb3b+QZQfAMpnoyYgpX+J01PFpEny8h325OR5NnvnankLysqJibv8DjvIXLeQ+48S+3aUKNGbnAmKWkjPXoUMA6qBGrUyPtaGTjB6zQeGgwCrgR6WGuPuQP7K4A4YHy5dVxEQoKGUImEqIKGWI0aNYoPP4RBg87m5punkZh4NpmZl/HOO9X54AO4/XYYMcKZ4UWkAugFPOOzLxnojZ8Ajrt9GvCzT/s44DLgU3ebzdbawz5tzgTacOqwqYL69r2fvg0r4vml4sorc7cvvbQ83zn8eIY6FSdA1Ljxbnr0aFt2nSpDnkCOv8XzIdNaWLJkCZdf3v3ka8/aNxDh+9p3+JYni6eiBTCUgRNSivXQANiLk21zzN1+hzEmEbgZBXBExEe4DKEK8e6LFN+oUaPyDKcCJ4jjGSIVHx/P3XcP5513bmP06M/49lvo3995KvzKK9C6tSUhwZkRA5yMnqlTp5b3bYiUKWNMbZx0dN8yt7uBFvmc1gLY45NFs9vrmGft75rebQDaGmPmG2O+NsZ8aoy5yc97+btOA2NM5Xz6V+patXKCuqNHl+0MVBJ+PHVyPJktnmyWSpVys1iqVIG4uJyTQ96qVXOW6tVztz2LdyFpTzHpSpWc60ZFBa7uTqCpBk5I6QX4DpfyPDQ4hbU20Vo7x2d3Kk5tNRGRPDSESiRM+ZuCfMGCeNasgYcf3sWiRXV4770Y3nsPOnY8xJYtrzN37tBAd1uktFVxr9N99qcD+QVIquTTHq9zitImDdgGPGit3W2M6Qh8boxpYq39WxGvk+J9wBgzFHD/oF5IenoaSUnL8rmN4rnmGmedlFQqlys1x48fJynYOlXKdI/hoSzv8dChs4BmJ1/v2LGdpKQtZfJecvoKeWjQtxiX6oZTB0dEJA8NoRIJQ4VNQf7pp41ITFzKbbetICfnLlatqgX8mwcegJEjnaKmMTGBvguRUnHCvfZ9khmLT3DE5xx/7fE65wTgO0gmTxt3rYMbPQettauMMa8BYwFPAKco73WSu0Dy6wDGdLaVKlWih78pmsJIUlKS7jEM6B5LZplPnLZ586b06NG0TN5LSuR0HhrkYYzpBTQFrs7n+MlAfr169RQYDQMV4R6hYtxnedzjtm0tgKZs3bqZpKQdZfpeZUkBHBEvRZmCPCHhUn7+eRGTJjXgiisSWbfuSn7+2ZmCfOxYePBBGDq07Ap9ipQHa+1BY8xhTp3mpyGwOZ/TtgD1jTHGaxiV5/zNXm2u8nNN7zb+bAZqGGPqWmv3u6/jr2+7rbX5BZhEpILxfdKqIVRB63QeGpxkjGkGvAIM8KmxdpJ3IL9NmzZWgdHQVxHuESrGfZbHPS5Y4KxbtTqbHj1Ct6BpiCcQiZSuwurjgPcQqwdYvfoWZs1KYtYsaNBgHzt3wiOPwJlnwqOPwnvvLVV9HAlli4HOPvs6u/f78zlOweL2Pu1TgaVebVoaY2r6tNlhrd0AYIy5yRjT1efaTXA+xB/wuk5x+iYiFZAnZd4j1FPnw5W19iBQ3IcGABhj6gMfAndZa1eWTQ/zt+3wNnrM7sFf5v+lvN9aRIohXIZQhXj3RcqX9xCriRMnkpiYyM03D6JZMxfvvvsz1asPpkOHQxw9ClOnQkJCF1yuIaxdG+iei5yWp4ErjTHtAIwx/YBGwAz368nGmJ+NMZUArLVrgLnAI+7j0TjTfT/vnkIcYCGwCnjI3aY6Tkr7ZK/3bQ2MMMZEuds0drd51Suz50WcQFBPd5sOQHdAEVMROck3gKMMnKBW3IcGGGNqAR8DY6y1X7n3lWthwiNpR/jq16/4YecP5fm2IlJMnk+QCuCIVCAFDbHq2TOeefOGsnNna+688zViYj4kIiKaTz9tRPv2zkxWX32V+8tDJNhZa5fjTMf6tjFmCU4NmivdNWoAKuHUJvD+SnQbgDEmGWea72/xms7VWpsDDAA6GWO+A74CXnentnsk4mTbfON+3wU4ae+PeV1nB9APeNLd5u/AIGvtT6Vz9yISDs4/P+/rUP/gHuaK9dDAGFMV56HAYmCfMaazMaYzMKw8O52ZkwlAdGR0eb6tiBSTJ6Af6oF81cARKQbvoVQenmLHnu3hw4czadJwxo0bx623Xsv06TBrFnz8sbN06eIMs/rjH2HJEhfJycl+rysSDKy184H5+RwbCYz02XcUuLWQa/6OE8TJ7/ha4PYi9O1bnBlHRET8uvpq6N4dlixxXof6B/dwZq1dbozxPDRIBSIp+KHBA0BX9zK6vPvrkZntDuBEKIAjEsyUgSMip/Cdgnz7dhczZsCvv8Ktt27FmAMkJ0NCApx5ZirXXPMp553nW+pDRERESoMxcKtXSDnUP7iHO2vtfGttF2ttd2vtpdbaZK9jI621Lay1qe7XT1prjb+lPPusDByR0BAuGTj6MyZSSvzVx0lISMDlclGvHsyefRYff/wzVao8Qq1aB9i1K44TJ55hyJA/MH487N0b6DsQEREJP95Bm1D/4C7BRxk4IqFBGThhwOVyaYYgKTUF1cfx6Nv3D4wYEcehQ/W5/vo5dO0KBw7ApEnQrBn83//Bxo2BugMREZHwExmZu60AjpQ2ZeCIhAZl4ISwtOw0XC4Xffv25eWXXw50dyRMFG8K8rEkJd3HU0+5WLIErrkG0tJg5kxo08apj/Pdd7By5UoFGUXKQKj/8RaRovN+2hrqT14l+CgDRyQ0eDJwQv0zYIX8M7bn2B769u1Leno6x44dC3R3pILwN8TqhhsSyMpyMX8+zJr1PbGx/yIqKoe5c+GSS+CRRy4mI6PvKdOgioiISNFoCJWUJWXgiIQGDaEKYek2nfT0dADatm0b4N5IRVHYEKvbbuvKwoVNqFbtPC699CuMOUx2djfGjTuPdu3g9dedLB0REREpOu8hVKH+wV2CT0Z2BqAMHJFgpyFUoSwKiIOYmBgGDRqkISpSLooyxCo+Pp577vkTS5f2YNSol7nnno00awa//ALDhjl1ciZPdurmiIiISOGUgSNl6eQQKmXgiAQ1ZeCEujMhOzub8ePHs3nz5kD3RgTIOw35m2++wNlnf8SmTfDuu9C48R727oVx46BpU7j/fnj33e8UgBQRESmAauBIWTo5hEoZOCJBLVwycKIC3YGAaQbZv2STmpoa6J6IAHlr5MTHxxMfH891111Hx44dGTw4ngYN1nLddcNp0+YNkpPr8NJL8NJLF9GjRwt69oTOnQN9ByIiIsFHs1BJWVIRY5HQoAycUNfMWeXk5HDjjTcGti8i+K+RM2HChJM1cnr2jGfevPvYurUtQ4fOIDb2P0RGGpKSGtClC8THwyef5P5yEhEREWXgSNlSEWOR0BAuGTgV989YYyAGatSoAaBhKBJw/mrkdOrU6ZQaOcOHD+f11+9l1Kg1bNsWwciRUK0aJCXB1VfDeefB7NmQkeFk9ej/bRERqciUgSNlSRk4IqFB04iHskwgAiKbR5KSksJ1111Hly5dAt0rkUJ518h59dVX2bjRxd/+Bjt2wNChm4iI2MWaNXD77dC4cTr9+ydx7rkXB7rbIiIiAaMMHClLysARCQ0aQhXKMtzrZpCZmUm7du1ODlMRCVbeNXImTpxIYmIiCQkJuFwuatSAmTNbsnDhBqpWvZd69fZw4EAsKSlPMGRIdyZOhEOHAn0HIiIi5U+zUElZUgaOSGjQEKoQZjKd/2rZTbKJjo5m1apVysCRoOevRk5iYmKe4GOfPj146KHa7NvXkBtv/BfdusHBgzBhgjMF+ejRsGdPoO5AJHiE+h9vESk6DaGSsqQMHJHQoAycEFa7am0AzJmGTJtJr169Tqk9IhJs/NXIiY+Pz1Mjx3uI1eLFDzF5sosvv4SWLbdx7Bg88ww0b+5MQf6f/3yr+jgiIhL2NIRKypIycERCgzJwQtjB/QepeqIqNtLS5/Y+LFu2jOnTp+vLrIQ0f0OsbrghAXDx+utbqVHjSrp1209aGrz0Etx4Y2e++uoWqyn50QAAIABJREFUNm0KdM9FRETKjoZQSVlSBo5IaFAGTgirXr06x9ccB+Cb7d8waNAgxo8fr2FUEtIKGmIVHx/P3Lmj2bixHUOHziAmZi7GRPPJJ41p0waGDIGNGwN8AyIiImXAewhVqH9wl+CjDByR0KAMnBB29OhRerXpBUCt82vx2muv8ec//1mFjCWkFTbEynsK8kcfXcn69YbbbwfI5l//gnbt4I47YMsWTT8uIiLhQxk4UpaUgSMSGpSBU8qMMQOMMcnGmCXGmKXGmM4FtG1gjHnKGPONMSbJGLPSGDPGGBNVlPeqW7cuy+ctB2Cn2ckVva7g7bffVgaOhDXfKch37nTx1lvwz3/+QGzsO1ibw6xZ0Lp1Dn37/saZZ14W6C6LiIiUmGrgSFnyZODERMYEuCciUhBl4JQiY8yFwLvArdba7sAUYJExpmE+pwwCrgT6Wmt7AAOAEcD4orxfrVq1GHvPWDgKVIbFKxczceJEFTKWsFXQFOQ33dSNhQsbU6PGxZx//kqysy3p6UO49dZLGD4cduwIdO9FREROn2ahkrJ0MgNHQ6hEgponAyfU/w4ERQAHGAMsstauBbDWfgTsAe7Jp/1e4G/W2mPu9juARODmorxZSkoKTz/9NE0jmgLQLaEbU6ZMweVylewuRIJUYVOQx8fHc++9V/Hjjxdw990vc/PNkJUFr70GLVvCffdp+nEREQlNysCRsqQhVCKhQUOoSlcv4H8++5KB3v4aW2sTrbVzfHanArFFebO0tDS6du3KnmTnG+mKfSsYM2YMc+bMUd0PCUuF1cfxHl6VmDiZO+90sWYNdOiwjsxMy8svO4GcJ56ATz5Zop8TEREJGaqBI2VJRYxFQoOGUJUSY0xtoAawy+fQbqBFMS7VDScLp1CVKlXi66+/JmqXUzKnQecGPPHEE/znP/9RHRypcPIbXrV7t4vnnttNjRrd6dZtP8ePw1//Cv37t+X3368lMzPQPRcRESmchlBJWVIGjkhoUAZO6aniXqf77E8HKhflAsaYXkBTYGJR2qelpTFv3jw+eOUDyILtqduxcZYbbrhBdXCkwils+vEPPpjIxo3t+POf3yQqKhlr6/PCC21o3x7++9/cX4YioURf4kQqDg2hkrKkDByR0BAuGThFmrWpjJ1wr32HP8UCKYWdbIxpBrwCDLDWHi6g3VBgKEC9evUwxvB+4vvUrFKTwzUO03lgZwbfOJjnnnuO9evXM3jw4NO7myBx/PhxkpKSAt2NMqV7LB0XXXQRQJ73McZw0UUXkZSUhDGGvn378vbbf+GWW4bQqtUo/v73FmzcWJlBg6Bdu6Pcc88m2rc/ysqVK4v981MR/juKiEjgKANHypIycERCQ7hk4AQ8gGOtPWiMOQz4zjjVENhc0LnGmPrAh8Bd1tqVhbzP68DrAG3atLE9evRgxYoVHF54GC6DZTuXsWLFCqZMmUJiYiI9evQ47XsKBklJSSF/D4XRPZYPl8vFwoULT04/fscdtzNmzLk8+ugGnn++JuvWNeDeey+gV6/dLF9+L++//1Kx+hwM9ygiIuFLGThSlpSBIxIawiUDJ1j+jC0GOvvs6+ze75cxphbwMTDGWvuVe9/Qor6hy+ViypQp3NH7DgCqt6/OyJEjGTNmjIZRibjlVx/nm29cTJ/eho8+2kBc3LNERmayeHFDUlNX8d138aSlBbrnIiIiDhUxlrKkDByR0KBpxEvX08CVxph2AMaYfkAjYIb79WRjzM/GmEru11WBhTgBnn3GmM7GmM7AsKK+oafuxzP3PgPAnsg93HTLTWRlZZXmfYmEtMKmH+/XrzsjRx4hO7s1bduuIS0tirFj4Zxz4MMPA9lzERERh/cQqmh9x5ZSpgwckdDgycAJ9UzMoOi+tXY5cDPwtjFmCTAWuNJau9vdpBJOQWNPvOwBoCswGme6cc9yQVHf0zOt8tiHxhJxMAJi4KPlH9GlSxdcLpemSRahONOPD2H//h5Mm7aKhg33sXUrDBzoLL/9hn6mREQkYLw/rMfEBK4fUjhjzABjTLIxZokxZqn7AW1h53Qxxqw1xswuhy6eQhk4IqEhXDJwAl4Dx8NaOx+Yn8+xkcBIr9dPAk+W9D1dLhdz5swh8spIcmrnMGTMEAYOHIgxhrlz55b08iJhzXt4VXx8PPHx8SQk9GbUqMd44om9WDuJDz+M4rPPsoiI+Jx583oHussiIlIBeQdwlIETvIwxFwLvAhdZa9caY/oDi4wx7b0e6vqe8yjQGwjYnJjKwBEJDeFSxDjEu18yycnJzJs3j/sG3gfAlxu/xBij6cRFiiC/4VXWZrJgQR9iYy+gTZu1pKZGceLEUzz2WDyrVwe401JsxX0aaoypboyZ7T5nhTHmGWNMlE+bRsaYD40x37nbjPQ5fr4x5h/GmK+MMV8bY743xlzn06aHMWabMSbJZ2lTencvIuFAQ6hCxhhgkbV2LYC19iNgD3BPAeesB/oA+8q+e/4pA0ckNIRLEeOgycAJBM8wkPp76zN943TWHlvLuPvHMXHixAD3TCT4eX5+vHkycQDuvXcgkya1JyHhHT799BqSk6tx4YUwahRMmADffusiOTn55DTmEnxO52koMBs4Ya3tYoyJAZKAicBj7mtGAAuAhdbaccaYGsAKY8xR92yBAOOB/UC8tTbHGNMX+MgYc6W11ru4/Wxr7V9L9aZFJOwoAydk9AKe8dmXjJNhM87fCdbaDwFMAL+RKQNHJDQoAyeMvDDuBUgDasDL/3wZl8ulmh0iJZBbG2ccX375AI8+OptKlV4nJ8cyZQqcc85x/vjHv9KlS5dAd1UKVqynocaYc4HrgKnu9hnA88CD7uLzAP2AjsCz7jZHgJnA4yb3E/hm4FlrbY67zUKcp6yDS/sGRST8KYAT/IwxtYEawC6fQ7uBFuXfo6JLzUoFoFJUpQD3REQKogycMOFyufjPnP8QdV0UWWdlce/T96oOjkgJ+K+Nk8CTT45h4sT+RES8zZYtdYiKcvH99xF06ZIU6C5L/or7NLQXTjj8Z5/2ccBlwKfuNputtYd92pwJtAHWW2sf9XPtVCD2NO7Br1D/4y0iRachVCGhinud7rM/HWcikxIzxgwFhgLUq1ePpKSk0rgs+447o7fW/G8NW6O2lso1S8Px48dL7R6DVUW4R6gY91ke93j4cCegBqtXryQn50iZvldZqvABHE8dnH/++k9m/TqLRWsXqQ6OSAkUNPX4/fdfyKRJzbjwwi9ZvvwixoyBc8/txCefwJlnBrjjkkchT0P75nNaC2CPtdb6tPcc86z9XdNzbL2fvlQH2uMMxfLWzRizCOeD/yHgZWvtonz6JiIVlGahCgkn3GvfQH0skFIab+Aepvs6QJs2bWyPHj1KfM3UzFTSv0onOiKavlf0DehQLl9JSUmUxj0Gs4pwj1Ax7rM87rFaNWd9wQWduPTSMn2rMlXhh1B5pkm+5Q+3APDDrh+4//77mTlzZoB7JhKa8pt6vEuXLu5hVSP49der6dv3BerUSefnn2vQsSN88ommGw8yp/M0tEo+7fE6pyhtfI0CFrtnK/Q4AvwKDLLWXgY8B3xojBmUzzVEpILSEKrgZ609CBwGGvocaogzrDYoHUg9AECdynWCKngjIqfSNOJhJm1zGuRAROMIXnntlTzFWEWkZPwNqxo4cCDWvkDbtl+wfv1ZXH01xMX9xIcfqqhxkDidp6En8mmP1zkngOqFtDnJGNMPuAbo7r3fWrsSdyq8+/WXxpj3gLHAe36uMzS3/YWkpqaSlPR9PrcRHpRyHR50jyWXkhIJXA7AihXfs3dvapm9l5TIYsB3psPOwAcB6EuRHEhxB3Di6gS4JyJSkCNHYNkyZzvUixgrgIPz5XLQtYNoPLoxv+f8zrjXxpGQkMCYMWPIysryO9uOiBSdv2FV8+bNY86cOcyZcwE9eyby5ZfxpKbez8SJcN550ND3GZyUK2vtQWNMcZ+GbgHqG2OM1zAqz/mbvdpc5eea3m0AMMZcCkwBrnIXOy7MZpwiyqfwTp03prONi4tTOnIY0D2Gh7K+xxMncrcvu6wrzZuX2VtJyTwNJBlj2llr17kD+I2AGQDGmMnAQKCztTYtgP08yTsDR0SCl3deRqhn4IR4/Kl0JCcnM2nSJA6uPghAer10xowZw/jx4zVLjkgpyG9Y1cyZM7n22mv48ss+3HrrP2jcGL75Brp0gRUrAtRZ8Zbf09DFftoCfI5TsLi9T/tUYKlXm5bGmJo+bXZYazd4dhhjLgBeAwZYa3e59w31Ov6gMeYsn/dvAmwvwn2JSAWiIsahwVq7HLgZeNsYswQno/JKa62nTlolnKG2J79+GWOGGmOScGY3vMoYk2SMGVBefVYGjkhoWLkyd1sZOGHAk2Gzr/E+nt7wNG99/hYHZhxgwYIFGkYlUoZcLhfz589n3LhxvPrqaPr2XceqVY/z0081uewymD0b6tVzkZycrEy4wCjW01Br7RpjzFzgEeBWY0w08ADwvLX2uPuaC4FVwEPABHeB4qHAZM+bGmPaAQvc16lnjKnnPnQT7iwanA/rZxhjHrHWWvc5NwCPlc0/hYiEKtXACR3uWmfz8zk2Ehjps+9kdmUgnMzAUQBHJGQoAyeM3NH7DgA2nNjA/w3/PwVvRMqQpy7OhAkTmDhxIomJiXz44Rv8+mtr+vb9ndRUuOEG6N/fpUy4ADmdp6HAbQDGmGTge+BbYLzXNXOAAUAnY8x3wFfA6+4P4R4vAo2Bd3CmGPcs3l4DmgJLjTFfA//EKXY8o2R3LSLhRrNQSVk5mYGjIVQiIUMZOGFkx+odmFSDrWqZ8Y8Z9IzvqSCOSBnx1MXxzNrgXRfn/fc70KvXP1m8+CpSUiby8cfwhz+E/i/cUHQaT0OPArcWcs3fcYI4+R3vXYR+LQMSCmtXHr7d8S2RJpKuZ3QNdFdExA8NoZKy4snAqVu5boB7IiL5ycnJ+1oZOGHC5XJxzTXX0K5qOwDunnI3CQkJTJ8+XdMai5SBguri3H33cBYv7kv79k8RFZXDs8/CbbdBVpamGpfgkpmdyaVvXcrFb15MVk5WoLsjIn54f1iP0qNLKUWH0w4DULNSzUJaikigHDqU97UCOGHCU8h42zfbADhc7bAKGYsEgMvl4tVXX2XcuHHs2PEMMTF/JC4ui3/+E666ajeDBg3Wz6QEjf0p+09ubz+i+skiweq886BNGw2hktJ1LOMYANVjqwe4JyLiT1YWvPBC3n2hHsgP8e6XHk+BVHOWYcSPI3j/h/fJmpGlQsYi5chTF8cz5Xh8fDwDBw4kO7sfMTEL+OKLhlxxxSq6d9cc4xIc9p7Ye3J744GNtKjVIoC9EZH8rFrlrEP9yasEl2PpTgCnWky1APdERPyZPh0mTcq7LzY2MH0pLcrA8TH06qEYa9htd3Pn8DsVvBEpR566OJ6fO09dnIsvziEjoycxMel88UVD7rwTrA1wZ0WAfSn7Tm6Pc40jx+YU0FpEAiUiQnXUpPR5MnCqxSqAIxJssrNhwoRT94d6Jqb+lPn4YekPROyLgAh47cPXcLlcge6SSIXhry4OwOrVq7niijiiogZQqVIW//gHjB+vejgSeN4ZOMm/J+Paqr8ZIiIVxdH0o4AycESC0SefQFraqfsVwAkjLpeL/v3707WJM5PIoBGDVMhYJIC8h1SNHTuW6OjvMeZGIiJymDwZBgyYp3o4ElDeARyA9fvXB6gnIiJS3k4OoVIGjkjQmT7dWU+aBB065O7XEKow4ilk/OPHPwKwN3avChmLBJD3kKr4+Hjmzp1LTMxiWrd2qpGlpDxHZqaGOUpgbDm0hYcWPQSAwSmssfXw1kB2SUREytHJIVTKwBEJKl98AUlJUKMG3HMPPPBA7rFQz8BREWMvnkLG9dvWZ0jyEBavX8zSGUtVyFgkQDw/kx7x8fHcf//9TJo0gvbtW7JmzTXceCMsXw7btrlITk4+5RyRsvLi9y+e3L6s6WV8vf1rth3eFrgOiYhIubHWnszA0SxUIsHDWhg71tl+5BGoVStv1k2oB3CUgePHzX1vprKtTIpJ4cbhNyp4IxIkPFOMDxkyhDVrBnLOOZs5dAiuvPIYgwbdokw5KVfWq5J258adARTAERGpINKz08nMySQ6IprYqBAfkyESRt56C77/HurVy828iY7OPe69HYoUwPEjKSmJrK1ZAPzjy3+okLFIEPCuh/P222/z7LN/Y+3aLlStuoeNG6txxRXfKdgq5epg2kEAzqh+BiO6jQA0hEpEpKJQ/RuR4PPxxzBsmLM9ZQpUrepsG5Pbxns7FCmA48NTyLhX214A9PxzTxUyFgkCvlOMjxgxgiFD+nP8+LUYk8177zUlKSmwfZSKxVPAeGb/mTSu1pjYyFgOph7kRMaJAPdMRETKmurfiASXhQth0CBn+vAxY+DOO3OPhXrQxpsCOD48hYyXzlkKwHa7XYWMRYKA7xTjLpeLhQsXcsUVVYmOnoq1cNddkJqq6cWlfHgCOA2qNCDCRHBmjTMB2HF0RyC7JSIi5UAZOCLBIScHnngCrr7a+R5w553w5JN524RTAEdFjH14CqC2Pb8tV399Nat3rWbH6ztUyFgkiHgPpwIYODCBrKxr2bTpHIYO3cann+YeE/GnNP6Q7zm+B4D6VeoD0LRGUzYd3MT2I9tpW7dtyd9ARESClicDRwWMRQJn+XKnULHL5Xy2mzQJHnvs1M954RTAUQZOPvr16kdD0xBrLP3+0k/BG5Eg4ju9+Lx5icTFOdM5/+tfjXnhhfn6mZUylWNz2JeyD8gbwAHYfmR7wPolIiLl42j6UUBDqETKm7WwciX86U/QubMTvKld2xlC9fjjEBHmEY4wv73T53K5OPzTYQDe/+F9FTIWCSK+w6ni4+O5+OJs4G0gho8/7gZoKJWUncNph8nKyaJGbI2Ts480ra4AjohIRaEhVCLla/t2eOYZOP98uOAC+OADqFQJRo6EDRvgyivzP7daGP2YagiVH55Cxn8a/yfeSXuH868+n4SEBMaMGUNWVtbJYVYiEhxcLhfJyclUqvQbaWk38O67sXTvnszjj2solZQN3+FTAM1qNgM0E5WISEWw+/huAOpVrhfgnoiEp6wsZzrwTz5xsmtWrsw9Vrs23HILPPooNG5c+LV69oTbboNLLy2z7pYbBXD88BQynvzyZLgVNqVtYvTo0YwfP54FCxYEunsi4sVTD2fevHkAXHXVG2Rk3Mt99/3GokWJGkolZWLFrhUAnF377JP7WtdpDcCG/RsC0icRESk/vxz4Bcj93S8iJfP775Cc7Cw//OAsR47kHo+Lg2uucQI3V14JMTFFv3ZEBMyaVfp9DgQFcPzwZNh07NiRXp/2Yj/7efKfT6qQsUgQ8p1efPjw//HCCxlkZg6gWbPIAPdOwtVnWz4DoHeL3if3tanTBoD1+9djrcWEU8U8ERHJY8MBJ1ivAI5I0VkL+/fD+vWwZk3usmrVJRw6dGr7Vq2gXz/o2xe6d3eCOBWdAjgF6NmzJ62XtGYDG7j85ssVvBEJQt5DGl0uF2+88VdatLiYLVsuZ8SI35g374yTQ6w0/FFKg7WWzzd/DkCfs/uc3F+3cl1qx9XmYOpBdh/fTaNqjQLVRRERKWPKwBE5VUYG7NrlZNPs3Am//QZbt+ZdTpzwd2YMNWo4RYm7dMldzjyzvO8g+CmAUwCXy8WOb3fApfDZ2s9wuVwK4ogEKc9QqkmTJjFp0lhgCfPnV+eZZ15g2rTJqoUjpea3o7+x6/gu6sTVoX299if3G2NoU6cN3/32Hev3r1cAR0QkTKVkprDj6A6iI6JpXrN5oLsjUmashWPH4OBBOHAA9u2DvXvzLnv2OMvOnc7rwtSoAS1bQvv2cO65zvro0e+44YZuYTXdd1lRACcfnkLGt0+4nRmpM2jctbEKGYsEMe+hVJ06daJPn1VkZXVkwoRkFi5ULRwpPev2rwOgff32pwyTal2nNd/99h0bD24k/iz9PyciEo42HtgIQItaLYiK0NcpCV7WQno6HD2auxw54iyHDsHhw3mXQ4ec5cABJ2hz8CBkZhb9/SIioGFDp7BwkybOctZZeZdatU49LykpXcGbItJvnHx4Chk/NfUpIu+OZFvKNiaNnqRCxiJByjuompycTIcOTVi+vCPNmz9GfPw5GkYlpWbdPieAc07dc0451qp2KyD3w72IiASfrKwINmyANm1O7/wf9/wIwLn1zy3FXklFl50NKSm5y4kTcPw4LF9ek6NHndfey7FjznF/a89y9GjxAjD+VKkCdeo4Mz/Vqwf16/tfmjSBBg0gShGGMqV/3nx4vuR16tSJPu/1IbtBNs/86xkVMhYJAVFRUSxf/gjGDGbDhrOZPPkVXnhhgoZRSalYu28tAO3qtTvlWKs6TgBn06FN5donEREpum3bKnPOOc6wj7p1i3/+6j2rAejQoEMp90yCSVYWpKVBamretWfbe39+r1NTnWBMftueQE1KipMp41/HEt1HdLQzbKlGDaheHapVg5o1naVWrdxt732egE2dOhAbW6K3l1KmAE4h4uPj6ZTUiWSSuWDABQreiAQ5l8vFlClTePbZMYwevZTMzMsZNy6JZ58do59fKRWeIVTt6p4awGlZuyWgDBwRkWCWk+OM1fjhB2eGm+I6GcBpqABOacvJcQIZRVn+97867N2b+zotreBtT/Alv23f19nZ5XvvxkDlyrlLlSrOkpl5iDPOqHXytWepVg2qVs1d+257AjYKwIQXBXAKMWzYMH5e+TNcDUu3L8XlcgFoKIZIkPKuhfPhh1+yZAm0a3cHWVk/BrprEiZOBnD8ZOB4AjibD20mx+YQYSLKtW8iIlJ0a9bkBnAyMpwv77GxTuZFXBx+a3JYa1m9O/QzcLKzTw2IeP4NClsXddvftQval5Hh/NsX3Xll9c8DOP/94+KcpVKl3LX3tud4fq89wZi4uNy1Z6lSJW/AplIl///PJSWtpkePHmV6rxI6FMApgMvlYs6cOUTVcP6Z4lrGce3Aa4kwEcydOzfAvRMRfzyB1WHDhvG//+0FerJxYx26dOmiOjhSYgdSDrA/ZT9VY6rSpFqTU45Xj61Ok2pN2HlsJ78c+IW2ddsGoJciIlIUo0bBk086gYPU1LzHIiKc4VWNG8PZZ8P550PXrtC43W/sS9lHjdgaNK3R1O91rXWGxPz+O8TEONc/dsypRZKV5QRPvJecHGd/RoazeDJBsrKcc/LLQPEXYMnMdNb7919ITExuRonn2p625Z1dUhyxsQUvlSo562PH9tOkSV2/xzxr7/2+x7zXvktsrFPLRYV1JdgogFOA5ORk5s2bh7WW3p/25miVo1StXZUb+tygoRgiQexk8DWqBsZYjLmQa69tQEREpoKvUiK/HPgFcGab8p2ByqPrGV35YN0HfLfjOwVwRESKwRgzABgHpAKRwAPW2v8V0L468CLQ3t3+c2CstbbIeRxHjjjryEjni3t6urOdnp47TfKqVfD+++4TOn4BA6Fx5uWsXGno0MFpv3s3zJsHH3zgDM3yXDdwqhV41JhTAyMxMfmvPdu+bQvaPp190dFFD5okJf2szBSpcBTAKYD3U/rWS1qznvXE/zmemU/MDGCvRKQwnuArQO/e68nMbEdMTEcGD26h4KuUyIYDGwBoUyf/qUu6ndGND9Z9wLLflnF7p9vLq2siIiHNGHMh8C5wkbV2rTGmP7DIGNPeWrs7n9NmAyestV2MMTFAEjAReKwo7/n1186sOfXrO8NZvGfPycyEfftg507YsAFWrIBly+D7Mz4jB1j3cW8uHJ9bc2T3bifzxiMmxsneyc52ghLVqjn7oqKc7J6oKGeJjHReR0bmBkri4nKDGVFRBWejREefuh0TAz/9tJxLLrnQb5DE0w9ll4iEHgVwisDlcrH92+1wKXy27jNcLpe+BIoEMU/wderUqZx11kVs2tSOSy55mJkzr9IwKimRDfuLFsAB+Hr71+XSJxGRMDEGWGStXQtgrf3IGLMHuAcnKycPY8y5wHXA+e72GcaY54HZxpinrLXHC3qzPn3gssvyPx4d7QRgGjeGLl3gllvgWPoxzn5xMftSYMC5vflxD2zb5gyPiolxrnn99c66UaPT/FcoJRkZxzivbEvEiEgAqLpiIVwuF/379+eOXncA0LhLYxISEpg+fTpTp04NcO9EpCBRUVFs2vQvAL76KpXp06eTkJBAly5dAtwzCVWeDJzWdVrn26ZLky7UqlSLdfvXsWbvmvLqmohIqOsF+A6XSgZ6F9A+DfjZp30cUEBoBojIJDLKFtjE174T++jzrz7sS9lH27ptmfdGW7ZscTJvduxwhkwtWAC33hr44I2IhC9l4BQiOTmZSZMm8dTUp4i6O4ptKduYNHoS48ePZ8GCBYHunojkwzOd+D33vMSMGVC9+nmMHPknpk2bpgw6OW1r960FoE3d/DNwYiJjuP6c63ljxRu889M7PHXFU+XVPRGRkGSMqQ3UAHb5HNoN9M3ntBbAHmu9By6x2+tY/hr8yOfnnsld8/sSGxVL9djq1KxUk9pxtakcXZmGVRtSPbY6kSaStKw0lu9aztSlU9lxdAdNazRlweAFJ+ugNWhQ3LsVETl9CuAUwjPMolOnTvRJ7INtaJn6zlQWLFigL4EiQcwznXjz5vHMmAH798cwZMgtZBVvfsoKrywKShpjGgGvAfWBWOBda+00n+u0BV4BooHKwPPW2n/6tOkGTAcygUrAeGvtpyW64QJ8ufVLNhzYQM1KNWlX99QpxL3dfN7NvLHiDd5a+RYT/jCB2KjYsuqWiEg4qOJep/vsT8f5G5DfOf7a4+8cY8xQYCgAjSCr8k7+vvLvxepkm2ptmNxuMr/9+Bu/8Vuxzi1vx48fJykpKdDdKFMV4R6hYtxnRbgIxgB9AAAZGUlEQVTH0qIAThHFx8fTOakzy1jG+decr+CNSJAbNWoUU6dOJTn5R+ABIiKa8Mknn9KxY0emTp2qGjhFUBYFJY0xEcACYKG1dpwxpgawwhhz1Fr7urtNVeAz4Alr7ZvGmDOAH40xe621i9xtzgQWAtdbaxcbYzoBXxtjullrfyrwxuqt5eB5TwATivXv8dekvwIwsttI4qLjCmzbvVl3zm9wPj/u+ZG3V7/NXRfeVaz3EhGpYE64177R7lggpYBz/LXH3znuvzHO35mqZ1g+e4BXX6hGRnYGxzOOczD1IIdSD3E88zi7j+/mWPoxcmwO0ZHRnF3rbK5tcy2D2g8iKiI0vj4lJSWF/QxNFeEeoWLcZ0W4x9ISGr+BgsCwYcNY/cNqGAjLdi/D5XIBqBiqSBCLiopi5MiHqFLlLk6cqMy9905k5Mi7mTZtWuEnC5RNQcl+QEec2gVYa48YY2YCjxtj3nCnwt+GU8NglrvNb8aYOcDjwCL32z0AbLbWLna3WWmMWQKMAoYUeFdRqRzs8FeKE8BZs3cNX2//muqx1bm/6/2FtjfG8MgljzBk7hAeXPQgTao3oV+rfkV+PxGRisRae9AYcxho6HOoIbA5n9O2APWNMcZrGJXn/PzOcZxoCN8+wv91Pt0ei4gEhgI4ReByuZgzZw7RlaJJIw3TxHDt9dcSkR3B3LlzA909EclHVlYW06ZNY9SoLcC5vPDCe0ybNk3DqIquF/CMzz5PQclTAjgUXlDyU3ebzdbawz5tzgTaAOvdbVZYa3N82gwzxlS21qa423zvp2/Dinx3xfDWyrcAGHzuYKrFVivSOTeddxOfb/mct1e/zdXvXs3lTS+nX6t+tK3blnqV61E1piqxUbFERUQRYSIwGIwxGJy6CqaE87vuSdvD9iPbS3SNYKd7DA+BusfacbWpGlO13N9X8rUY8A2pdAY+yKf958BzOEN2f/ZqnwosLYsOiogEmgI4RZCcnMy8efMA6P1+bzLrZRLTKIbBlw7WUCqRIObJjnv11V/YtAn69LmDESNuDnCvQkMZFpRskc81PcfWu9cr/LSJAJoDa91t5vlp08AryFMqUjJTePvHtwG4s9OdRT4vwkTw1oC3aFe3HU9+/SRfb/+6/KcW9w1xhSPdY3gIwD3+/Zq/c+cFRf+ZljL3NJBkjGlnrV1njOkHNAJmABhjJgMDgc7W2jRr7RpjzFzgEeBWY0w0Tnbm84VNIS4iEqoUwCkCz5fAqVOn0iq6FetZz4V/upCZT8zE5XJpGJVIEBs2bBi//toNaM3HH6/C5WoMaPhjEZRVQcnyapMngONbvBIocrG8xB2J7E/ZT9tqbTn+y3GSNhbtPI+LuZh/d/k33x34jnXH1vF76u8czTxKWk4amTmZ5NgccsjBO+5lKd70tv7k5OQQERFR4usEM91jeAjUPf666VeSjiaV+/uKf9ba5caYm4G3jTGewvlXetVcq4Tz+907PfE24CVjTLK7/WJgfFHeL0rfgkQkBOlXVzFERUWxftF6uAG+3fUt06dPZ8qUKSQmJga6ayLih2f4Y0REcwAGDryHgQM7YIzR8MfClVVByRNA9SK0Kcp1Tq94ZWNjAX6p9gs9mvegVe1W+Q5X2n18N+//730ApvWfRnzr08+67E//0z73dFSEgoC6x/BQEe5RisZaOx+Yn8+xkcBIn31HgVuL+z61amWgCW9EJBSF9yOdUuRyuZgyZQqT7pwEOZDTOIeHH3uYMWPGaBiVSJDyDH+8997rAPj554MYY7jhhhv0c1sIa+1B4LQLSvq0x+ucLflcsyhtcoBthbTZXdThU8M+Gkabl9vQ9Pmm3DbvNpZuX8qPe34kMzsTgOSdyfR9py97T+yle7PuKkIsIhIm6tVL5/zzA90LEZHiUwCniJKTk0lMTCQmO4a6GXXJMTnE3xZPVlYWLtf/t3fvQVKVZx7Hv8/QzICgqAGDGg0KEdCkxMgYY4mga8AlkQ1WiRj/0N2NmorECzvMQhkvIALCsFGTrMHKRd1io8bNbpKVqKgzgaAszQgaL6BByxsgEGMQRGDGZ//oM9g03UN3T/f0OX1+n6pT0+ec9/S8T1/Oj3k5l2bmz59f6S6KSIbGxkaSyST9+6fOrHn++W1ce+21TJ48Wd/Z/OS6oOSTOdovJXXB4lMy2qdfUHIpMMTMDs9o87a7r09r8+XgluPpbZ5JG5xZWmDfsqrrUcc729/h/ufv5+xfnM2pPzmVz/3gcwy+ezBn/PQM1m5eywmHn8AjFz/S5YsKi4iIiIh0hQZw8tTY2Mi5555LIpFg2/9tA+DZLc+SSCSYNGkS9fX1Fe6hiGRTX1/P7bdfA0D//iO46667mDhxor6z+ZkHjDOz4QDZLihpZi+aWS8Ad38J6LigJDkuKPl7YC1wQ9DmMFLXppmd9nvvJ3U3q8uDNscCkzPa3E1qIOi8oM2pwDnAwUfm9qYuo/P7y37PtsZttFzewrVnXMvQzwzl6L5Hs2XnFl7/6+sc2ftIpp01jVVXrmJAnwF5v2giIiIiIuWga+AUoOM0qinTpvCjXT+idngtDQ0NNDU16XQMkVB7F4APPzyUXr2M/W+SJLmU44KS7v6JmU0AfmJmzwbPcW9wjZqONjvMbCxwj5n9E6kLFt/g7o+ntXk7GFBaaGZ7SR35c7G7/+mghb0/hGOeWsAFt4wFYPSg0YweNLrjeXll2yu0fdLGsP7DqO1Rm/8LJiIiIiJSRhrAKUDHaVQrV62kZ3tPttdu55tXfHPfaVS6q41I+CSTSX7zm58zduxedu/uzfXX/wvjxp1NMpnUwGseynFBSXffCEw4SJt1QKdvkLs/A3y1szZZfdKTPpvHZl1lZpw84OSCn1JEREREpNx0ClUBOk6jqutZx96XUxe5fOKdJ3QalUjIrV27BngTgEWLWlizZk1lOyQiIiIiIlIgDeAUqLm5mZtuuolxx40DoPfpvWloaODiiy8mmUxWuHcikimRSNDQ0MBpp6UuZDxmzI00NDSQSOgARBERERERiQ4N4BQomUxy2223sfqXq0l8kuAvvf7CWV8/iwceeEBH4IiEUFtbG01NTaxb91MAlizZTlNTE21tbRXumYiIiIiISP40gFOgxsZGpk6dypkjz6TtpdQfgCu2r2DWrFkAujWxSMg0NjbS1tbGeeelLkZbW3seN9wwlfr6en1fRUREREQkMkIzgGNmE8wsaWbLzGyFmY08SPvDzOy+YJvnzOwOM+uWcyKam5tZvnw5NX9KvXy9z+nNrbNvZeLEiSQSCf1RKBIyiUSC3/52AXV129mx4zC+//2f6bpVMffaa5XugYiIiIhIYUIxgGNmpwP/CVzu7ucAc4HHzWxgJ5vdB/Rw93rgTGAUMKvcfYXUaVS33HILNW/UwCbYldjF7pN3M2rUKGbOnMmGDRu6oxsikofm5mbmzp3LwoVNuC8HYM6c5cyYMUN3oRIRERERkcgIxQAOMAN43N1fBnD3/wXeA67J1tjMvghMBOYH7fcAdwLXm1nfcne2vr6euXPncse8O6hZkXoJ93xlD0+vfBozY+jQoVx44YWMHz++3F0RkYNIJpM8/PDDTJ06lY7xmj59FvC3v/WsbMdEREREREQKEJbbsJwP3JGxLAl8DbgpR/uPgRcz2vcGzgYeK0MfP/1FwR+EAHU31bHrnV3wOfjoHz5i5PqRNDY20t7ezvDhwxk+fDhDhgxhy5YtbN++fd9jgEsuuYSHHnqIESNGALBx40ZGjRp1wBE8ixYt4uqrr865bPLkyfvugJVIJGhra2PDhg24+77+pq9rbGxk/vz5Bc0D+37fokWL9vUj27Lm5mYWLFjAtGnT9jvCoZTLk8nkvhoL2aajtvr6+qzrgZzryrltrvVr1qxh1apVRW+fT99KvS7b69/ZZ+fSSy/N2S79c9jx+4B9vyP98YMPPgjA4MGDWbZsGVu3bmX79u28/fbbHH/88fTr14+VK58nkVjBzp2nMWfOOWzdupjBg9/jqaeeZMmSJYiIiIiIiIRVxQdwzOxIoB+wKWPVZuDvc2x2IvCed4xQfNq+Y11ZNTY20tzczKRJk5h922ymz57O3sv3wnGwuv9qOBRqttbwys5XYA+se2EdPXr0oL2tnXXPr6O2Z+piqqv+bRW1tbW88NQLtLe3s3fvXupOqOOxpx+j/ZN28NSgyyELDmHx04tzLlv89GIWLlzIuvXruHPhnVx//fX0+UIfJlw9AXc/YF3rxlY22aaC5levXs3ipxdjZnz5t19m5MiROZdNnz6dK/7xCi665iLmzZtXluXz5s2jT02fgrdp3dhKv2H9cq4HKrJtrvU333MzTU1NRW+fT99KvS7b69/ZZ6fPF/pw6EmHZm2X/jkcNnTYvs/0lVddecDjtrY2EokEF9RdwKPPPfrpwM9h8MoHr8AHwDHQ5mOB+2hjIPf8zzDgSAYNGsJFU1o5agD07Qt1vaCuDnr1gkQCagysBmpqPn1slrY8bZlZaj8R/Ng3LyIiIiIi0hW2/xhIBTpgdhzwFvAtd/9l2vJZwFR3P+CUKDP7GXC2uw9NW1YDtAPT3L2ps985dOhQX79+fZf63XFkwMyZMzEzhpw5hNajW2FQl55WRKrRrbS6e6cXZpfuYzbSYTUVjr+ya2lpYcyYMZXuRlmpxuoQhxrNTDkQIqX4WyDs4vC9ikONEI8641BjqXKg4kfgADuDn3UZy+uAjzrZJlt7cm1jZlcBVwWzu83sxWztCvR54AhgY+vjrceS3zWFdgB9O3nc8bPjiKSjC1i2CdgIHJM239m6YuYpYFm5l/cHthXxXPmsr9S2mev3kKqxO/pW6nX5fk6G8OlReLna5fpMZ3uc+V3KZg9QG7Tpjn/BDT14E+k+rTvA1sfg6KiOfWQ1U43VIQ41KgdC5NVXX91hZtU9ghOP71UcaoR41BmHGkuSAxUfwHH3983sAyDzjlMDgVy3c3odOMrMLO00qo7ts27j7vcC9wKY2epq/18Q1VgdVGN1MLPVle6D7Gd9tX/mID7fLdUYfXGpsdJ9kP1UfQ7E5XtV7TVCPOqMS42leJ6w3IXqSSDzDRsZLM9mKakLFp+S0X4XsKLkvRMRERERERERqaCwDODMA8aZ2XAAMxtP6lSIHwfzs83sRTPrBeDuLwH/DUwL1vcErgPudPcdFei/iIiIiIiIiEjZVPwUKgB3bzWzy4AHzGwX0AMY5+4dd5bqBRzCpzd2AbgC+KGZJYP2TwI35/kr7y1Jx8NNNVYH1Vgd4lBjlMTl/YhDnaqxOqhG6W5xeD9UY/WIQ52qMU8VvwuViIiIiIiIiIh0LiynUImIiIiIiIiISA5VN4BjZhPMLGlmy8xshZl1ejVrMzvMzO4LtnnOzO4ws1CcWpZLITWa2WfNbI6Z/dHMWsxsjZnNqKYaM7brY2ZvmllLmbtYEsXUaWbfMbM/BNu8bma/6I6+FquI7+To4PO63MxWBt/PI7urv8Uws1ozm2tmbWY2KI/2kdvvRIly4IC2yoGQikMGQPXngDIgfJQDB7RVDoRUHHKg2jMAujkH3L1qJuB0YAdwcjD/DeAvwMBOtvk18B/B41rgGWBOpWspVY3AFKAVODSYPw7YCsyqdC2lfB/Ttl0I/BVoqXQd5agT+Ffgd0BdMH8qsKXStZSqRuBw4ENgSjBfAzwC/KrStXRS4yDgWeB+wIFBeWwTqf1OlCblQNb2yoEQTnHIgGLqjFoOKAPCNykHsrZXDoRwikMOVHsGBH3s1hyoeMElfvEeAf4rY9nLwG052n8xeJG/lLZsEvAR0LfS9ZSoxknA5IxlPwY2VLqWUtWY1mYEsCz48rRUuo4yvJefAXYBJ2UsP6fStZSwxtOD7+TwtGXfBf5W6Vo6qfGLwBBgTD477Sjud6I0KQeytlcOhHCKQwYUWWekckAZEL5JOZC1vXIghFMccqDaMyDoX7fmQLWdQnU+sDpjWRL4WiftPwZezGjfGzi75L0rjYJqdPeH3f3BjMW7gLoy9K1UCn0fMbMa4N+Ba0h9IaKg0DrHk9p5vZq+0N2XlaFvpVJojS8B64BvAZjZIcBFwHvl6mBXufuL7v7nAjaJ4n4nSpQDGZQDoRWHDIAqzwFlQCgpBzIoB0IrDjlQ1RkA3Z8DVTOAE5wX1w/YlLFqM3Bijs1OBN7zYNgrrX3HulApssZsvgo8XKp+lVIXapwCLHf3P5Wrb6VUZJ1fAjaa2bfNrNnMnjGzn5jZgHL2tVjF1OjuHwN/B5xnZm8CG0nV/d0ydrW7RWq/EyXKAeUAEcmBOGQAKAdyiNQ+J2qUA8oBlAOhoQzIqUv7nKoZwAH6BD93ZyzfDRzSyTbZ2tPJNpVUTI37MbPzgeOBWSXsVykVXKOZHQt8G5hZxn6VWjHv5RGkDrkbTWrUejSp80RbzKxnOTrZRcW8l4cCS4HlpM4nPRa4HXi3PF2siKjtd6JEOZAH5UAoxCEDQDmQTdT2OVGjHMiDciAU4pADyoDsurTPqaYBnJ3Bz8xDAetInU+Wa5ts7elkm0oqpsZ9zOzzpA4rnODuH5S4b6VSTI0/BGa4exjfs1yKqbMd6Anc6u5t7r4XuBk4GRhXll52TTE1/jOpkedbPWUn8ALwBzM7vDzd7HZR2+9EiXLgIJQDoRGHDADlQDZR2+dEjXLgIJQDoRGHHFAGZNelfU7VDOC4+/vAB8DAjFUDgQ05NnsdOMrMLKM9nWxTMUXWCICZHQX8BrjS3deUp4ddV2iNwSjtCGBacFvEFuACYEQwP7fMXS5Kke9lx8jzO2nL3gx+nlC63pVGkTWeBGwODp/s8AYwgNT/MlSDSO13okQ5oByISg7EIQNAOZBDpPY5UaMcUA4oB8JDGZBTl/Y5VTOAE3gSyLyv/MhgeTZLSV0s6JSM9ruAFSXvXWkUWiNmdgTwKKlR6T8Ey64qWw+7Lu8a3f1Ddz/R3cd0TMBjwNpgfkb5u1u0Qt/LluDn0WnLPhv8fKt03SqpQmt8FxhgZj3SlnXUG5X/UTmYKO53okQ5kIVyIJTikAGgHMgUxX1O1CgHslAOhFIcckAZcKCu7XMOdpuqKE2kbjv2IcFtx0hdqft9gvvMA7NJXe25V9o2vwbuDx73BP5Invdgj0KNQF9gJTA3+GB0TK2VrqWU72PG9vcR8tsGFltn8Pm8O23+B8D6XK9FpaciPq8nkto5fy+Y70HqAntvEdJbeabVOoYstw6shv1OlCblgHIgWB/6HIhDBhRTZ1RzQBkQnkk5oBwI1isHQjDFJQOCvnZLDiSoIu7eamaXAQ+Y2S5Sb/g4d++4qnMvUhcGSj9c6Qrgh2aWDNo/SepcwlAqosbrgK8E0/Tu7m8xinwfMbMRwJ3AMKBXcPjkAnd/tNs6X4Ai65xI6vP6HKlR2neBr/n+hxmGRqE1uvvrZjYOuN3MJgfr3w222dH9FRycmdUCT5C6iBzAg2a20d0vCuYjv9+JEuUAoByIRA7EIQOg+nNAGRA+ygFAOaAcCIlqzwDo/hywYNRHRERERERERERCqtqugSMiIiIiIiIiUnU0gCMiIiIiIiIiEnIawBERERERERERCTkN4IiIiIiIiIiIhJwGcEREREREREREQk4DOCIiIiIiIiIiIacBHBERERERERGRkNMAjoiIiIiIiIhIyGkAR6QTZjbHzO6udD9ERKQylAMiIvGmHJAw0QCOSOfGA0sq3QkREakY5YCISLwpByQ0zN0r3QeRUDKzY4DXgM+4+8eV7o+IiHQv5YCISLwpByRsdASOxIaZNZqZZ5lm5dhkPNCca2dtZpeY2drgOb5hZr8zszfM7EYz62dmPzOz58zscTM7onyViYhIPpQDIiLxphyQqEtUugMi3ege4IG0+Qbgsoxl6cYDj+Z6Mnd/yMzeA5qBk9z9QjM7CVgHHA18D/gYWA5cC8zscgUiItIVygERkXhTDkik6QgciQ13/9DdN7v7ZuBy4FJgjLv/ObOtmfUEzif/810fDn7Hq8A2YLO7f+TunwDPAKeVogYRESmeckBEJN6UAxJ1OgJHYsfMZgBTgHODHWw25wBvu/ubeT7tprTHH2XM7wT6FdxREREpC+WAiEi8KQckqjSAI7FiZjcC3wFGZxtpT1PQ1ebdvT1jUea85ftcIiJSPsoBEZF4Uw5IlOkUKokNM7sJuJoch0lm6PR8VxERiR7lgIhIvCkHJOp0BI7EQjDSfh0wAdhpZgODVR9kXlXezE4AjgFWdG8vRUSkXJQDIiLxphyQaqABHKl6ZmZAI3AYB+6Ezweeylj2dWCpu+89yPN+Hbg9eNwCXAQ8CAwEppvZnuDxFcDhZvYrd7+4S8WIiEjBlAMiIvGmHJBqYe5e6T6IhIqZLQEecfefV7ovIiLS/ZQDIiLxphyQsNI1cEQO1AL8rtKdEBGRimlBOSAiEmctKAckhHQEjoiIiIiIiIhIyOkIHBERERERERGRkNMAjoiIiIiIiIhIyGkAR0REREREREQk5DSAIyIiIiIiIiISchrAEREREREREREJOQ3giIiIiIiIiIiEnAZwRERERERERERC7v8B4T7YmX++0cYAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1152x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHAAAAGgCAYAAADCcJBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxU1fnH8c+ThX1TQFQWFbFBEQU1uCDIVBRR0FLtiErrWrVW61KMggtKFGykLq0tirtUxOBPFrEWwQ7aunVkURGkFYSCVRQRWWTJcn5/3DthMmTPTCbJfN+v133dzL3nnjk3ypmbZ855jjnnEBERERERERGR+ist2Q0QEREREREREZGKKYAjIiIiIiIiIlLPKYAjIiIiIiIiIlLPKYAjIiIiIiIiIlLPKYAjIiIiIiIiIlLPKYAjIiIiIiIiIlLPKYAjIiJ1yszONrOwmb1lZm+b2XFVuCbbzJab2TNlnOtuZo+Y2T/8OheZ2ZUJabyISAqobj9tZm3M7Bn/msVm9jszy4gpc4CZzTazd/0yo8uop6eZ/d3vzxeZ2c9jzh9lZlP982+a2TIzyzWztJhy1f6cERFpCDIqLyIiIhIfZnYsMA3o55xbbmbDgHlm1ss591U519wCnAa4cqq9BjgIONU5t9vMjgbeN7NC59xTCbgNEZFGqyb9NPAMsN05l21mTYCFwHhgrF9nGvAK8Jpz7g4zawssNrMtzrkpfplWwOvA3c65J82sC/CRmX3tnJvnv8+ZwC5goHPOmVlX4GNgA/BILdovItIgaASOiIjUpTHAPOfccgDn3Fy8B+9fV3DNp8DpwDflnF8H3O+c2+3X+SHwBnBRvBotIpJCqtVPm9mRwAggzy+/G3gIuMEPyoAXeOkD/N4v8z3wGHC7mZlf5hKgOfC0X2Y9MB24PertXgTGOuecX2YdsAroUdP2i4g0JArgiIhIXRoMfBBzLIw3wqZMzrnZzrniCs4/7Jx7K+bwDqBpjVspIpK6qttPDwZ2AstiyjcHTo4qs8o5tzmmTFcgK6rM4pj+PgycZGYtAJxznzvnvo6c9EfXdMMbAVTT9ouINBgK4IiISJ0ws32BtsCXMae+ArrH8X0MOB7Ij1edIiKpoIb9dHdgQ2RUTFT5yLnIvqw6q1ImDTg4pp2Xm9laYDJwvnNuaS3aLyLSYCiAIyIidaWlv98Vc3wX0CKO73M53nSryXGsU0QkFdSkn25ZTnmirolXGQCcc0865w4CLgVeNrNza9F+EZEGIyWTGLdr18716NGj8oIN1Pbt22nZsmXlBRso3V/D1ZjvDWDRokUbnXMdk92Oemy7v4+d2tQU+CEeb2BmxwA5wGDnXEEF5a4ErgRo1qzZsd26dYvH29c7xcXFpKU13u9qdH8NW2O/v3//+98N8TOhJv309nLKE3XNdqBNFcpUVk8pzrkFZjYVeBD4v5q0P1U+D6Dx/5vT/TVsjf3+4vWZkJIBnE6dOvHBB7FTYxuPhQsXMmjQoGQ3I2F0fw1XY743AH84t5TDObfJzDYD+8ec2h8vCWWtmFkW8BzwE+fcfytpyxRgCkBWVpZbuXJlbd++Xmrs/+Z0fw1bY7+/hviZUMN+ejWwn5lZ1DSqyPWrosqcUUadsWXKet9iYA2AmTWJJKyPshy41sxa16T9qfJ5AI3/35zur2Fr7PcXr8+ExhviEhGR+mgBcFzMseP84zVmZgcBLwG/iKw84n+rKiIi1VPdfno+XsLiXjHldwBvR5XpYWbtYsqsc86tjCpzjL/keHSZd5xzkdEzr5tZh5j3PxDY4pzbWsP2i4g0GArgiIhIXboPGGJmhwOY2ZnAAcCf/Nf3mNkyM2tW1QrN7AC8B/MngDQzO87MjsNbklZERKqnWv20c+4TYCZws38+E7geeMg5t82v8zVgKXCjX6YN3rSle6Le91m81awu9st0BkbGlAG4NbL0uJl19+t5qqrtFxFpyFJyCpWIiCSHc26RmV0EPGdmO4B0YIhzLrIaSTO8RJMWucYfSXMh0AfoaWYLgQecc3P8IuOBHsBDMW/X4KYviIgkW036abyA+R/NLOyXXwDcGVVnsZmdDTxqZu/6dUzxpy9Fymwzs9OByWZ2GV5C4hudc/Oi3uc+4FrgfTPbBbQC/gjcX432i4g0WArgiIhInfIDL3PKOTcaGB1zrCQ/QTnX/BL4ZTzbKCKSymrQT2/BHzlTQZ3/A86upMynQKCC838D/lZRHX65ctsvItKQaQqViIiIiIiIiEg9pxE4IiIiIlKugoIC1q9fz86dO+Nab9u2bVmxYkVc66wr6enptGvXjg4dOjTqZW9FpHKJ6iNjNeQ+syoa8v3V5WeCAjgiIiIiUq7169fTunVrDj74YPzcsXGxdetWWrduHbf66opzjoKCAjZs2MD69evp1q1bspskIkmUqD4yVkPtM6uqod5fXX8m6CsDERERESnXzp07ad++fUL/MGlIzIwmTZrQuXNntm/fnuzmiEiSqY9MbXX9maAAjoiIiIhUSH+Y7E1Tp0QkQn2k1NVngj55RERERERERETqOQVwRERERERE4sk5+OKLZLdCRBoZBXBEREREpNFasmQJZkb//v1LHX/99dcxswq3qVOnJqnV0uD9+tfQpQvk5ye7JSLSiCiAIyIiIiKN1uOPP87555/PokWLSi1RO2DAAL788suSrWvXrvz2t78tdez8889PYsulQZs82dtPmpTcdohUIl5B7quvvpq+ffsqMJ5gWkZcRERERBqlHTt2MG3aNF555RUKCgp48sknmeT/Qd28eXOaN28OwPfff8/69evp378/+++/fzKbLI1NUVGyWyBSoUiQe9asWaxYsYLDDz8c2BPkjujXrx/BYJDRo0eXHNt3330BbyntV155hSeeeIK+fftW6RqpGQVwRERERKRReumll2jXrh0nn3wyGzdu5KqrrmLixIlkZmaWKrd48WKccxx77LFJaqk0WgrgSD0WryB3OBxm586dnHbaaWRkZFTpGqkZTaESERERkaozi8vWuk2b6l1TA0888QQXXnghZsZZZ51FYWEhc+bM2avcokWLaN++Pd26davtb0ekNAVwpB6LDnKPGjWK5557joKCgr3KVRbknjVrFmeddVZJ8KYq10jNKIAjIiIiIo3OZ599xltvvcVFF10EQJMmTTjvvPN44okn9iq7ePFijjnmmLpuoqSC4uJkt0DqWpyC3NUOetdAvILcs2fP5ic/+Um1romHuXPncu2111ZYZs2aNcyePRuAUChUMsIoEe9VFxTAEREREZGqcy4u29YtW6p3TTU98cQTHH300fTq1avk2KhRo3j99ddZt25dqbKLFy/Wt8SSGBqBI/VUvILcn332GatXr2bIkCFVviZePvroI44++ugKy8ybN49ly5YBEAgESuXjifd71QUFcERERESkUSksLOTZZ59l1KhRpY4PGDCALl268PTTT5cc27ZtG//5z380AkcSQwGc1BOnIHe1g97VFK8g96xZszj11FNp2bJlla+ZNm0axx9/PL1792bIkCH88MMPAAwfPpw777yTE088kS5durB48eIKy3/44YccddRRLFmyhFNPPbWk/ldffZWLL76YN998kzFjxvDMM8/Qp08fAoEAH3/8MQDr1q3jnHPOoW/fvvTq1YvPP/+8Su+VbArgiIiIiEij8uqrr/LVV1/Ru3dvli1bVrJ98sknnHLKKTz11FMU+1NblixZQnFxsQI4khgK4Eg9FM8gd1nTpyq7ZsiQIbz//vt8/PHHHHroocyfPx+AZcuW0blzZ959913Gjh3LzJkzKy1/5JFH0rt3b1asWIFzjqKiIsaNG8c999zDKaecwlFHHcXrr7/O0qVL+eKLL8jKymL37t2ceeaZ3HDDDSxZsoR33nmHAw88sErvlWxahUpEREREGpUnn3wSgDPOOKPcMgsWLOD0009n8eLFtG3blu7du9dV8ySVFBYmuwUie4kNckeLBLlvv/120tLSKgxyf/PNN7z33nu89NJLpY5XFhh/8sknmTFjBrt37y4ZCbN161aKi4u56qqrACgqKqJ9+/bllt+5cyfOuZKRP927d2fVqlX8/e9/59RTT6Vr166AlwPn4IMPZuvWrTRr1owmTZrw4osv0q9fPwKBAABt27atsG2x75VMCuCIiIiISKNSVhLO8lx//fVcf/31CWyNpDSNwJF6KF5B7ldeeYXs7Gw6depU6nhF1zz77LMsX76ct956i+bNm/OjH/2II444guXLl5OdnV1S7uOPPyYYDJZbftmyZaWmf/Xr148333yTP/zhD/zzn/8EYP369ey///6YWanyH3/8Mf369aty22LfK5k0hUpERERERCQRFMCRemjOnDk45yrcTj/9dMALcm/evBkrY6WrsqZPVXbNsmXLOPHEE2nevDmPPfYY33zzDV27dmXFihWlkgR/9NFHJSOEyiofm5Pm+OOPJycnhyuuuIJ27doBXp6byNSoZcuW0bt3bwA6depUMvKouLiYb7/9tsK21Zf8N6AAjoiIiIiISGJoGXFpxPr3788FF1xQrWt+/vOfc9999zFw4EC+/PLLkqDKJ598UhIkcc7x9ddf06lTp3LLf/TRR6WCKllZWbRr145rrrmm5NgRRxzB2rVr6d27N9OmTSvJYXPJJZewevVqevXqxTHHHMOKFSsqbFvseyWTplCJiIiIiIgkgkbgSCOWk5NT7WuOOuqokhWfAO666y4A7r//flq3bg2AmbF69eoKyz/88MOl6n3kkUfIy8ujSZMmJcfatm3LokWL9mpD69atefXVV6vcttj3SiaNwBEREREREUkEBXBEEmrVqlVkZWXRvHlzzj333GQ3J+E0AkdERERERCQRFMARSahDDz2UlStXJrsZdUYjcERERESkQs65ZDeh3tHvRKpEARwRiaM6H4FjZgOBG4B9gHR//4Rz7mH//GZgacxlhwBLnXPnlFHf/wE/dc7tneJaRERERGolPT2dgoKCUnkFBHbs2EFmZmaymyH1nQI4IhJHyZhCdSFeMGY8gJn1ARaZ2Srn3Fz/3KDoC8zsTeDF2IrMbBjw48Q3WUTqk7y8PLKzswmHw6xatQqAmTNnUlBQQM+ePdm8eTM9evRg48aNrFq1ikMOOYQ+ffpw6KGH1ijZmohIKmvXrh0bNmygc+fOpKVp8LZzjh07dvDFF1/QqVOnZDdH6jsFcEQkjpIRwPkDsC7ywjm31B9108M/dGl0YTM7BOgNvBxzvCVwL/A7YGIiGywitZeXl0dmZiaDBg0qeZ2RkUFhYSE5OTnlvl6wYAE333wzgUCAq666CvCWCRw+fDjjx4/n+eefZ9euXRQWFgLw3nvvAfDpp5+WvPfWrVtZuXIlM2fOrNubFhFpBDp06MD69evjnmNg586dNGvWLK511pXMzEw6depEmzZtkt0Uqe8UwBGROKrzAI5zbnnkZzNLAy4HdgEz/POfx1xyCfCCc25nzPFcYDIQe1xEaigysiUQCJQcC4VChMNhgL3ORQIqjz32WKny999/f0nQJSIjI4OxY8fSp08fAoEAGRkZjB49mkmTJpWcL+v11VdfTTAYZMyYMUyfPp2ioiLS09MZP34848ePp6CggMLCQjIzMykoKNjrnjIzM2natCkzZ84s1Z5yFRfDtm2wdWvp7fvvK962bKnGb1pEpOFIS0ujW7duca934cKF9O3bN+71itQ7jz8Ov/xlslshCeScw0wZPVJZXeVFS9oqVGZ2O3AtsAk40zn3RRllDLgYODfmeF+gHzAa+EXiWyvSsFQ3EBM5l52dTTAYJD8/n0AgQCgUKnkN7HVu+vTpmBkjR44sVX7MmDF7lZ04cSKXXnopwWCQX/3qV0yePJlJkyYxceJENm/eXOHroUOHMnr0aEaNGsXs2bMxMzZv3szu3bvZvXs3p590Eh+98w6tYa+tVUEBP83OJvDmmzB37t6BmcgWCdps315n/51ERESkkUpP3zP65sorFcBpxJQnTKDu8qIlLYDjnLvHzO7Fy4nzppkNdc69E1MsAGx2zi2KHPBH7fwJuNo5V1zVSKeZXQlcCdCxY0cWLlwYh7uon7Zt26b7a8Ai9/fCCy/Qs2fPUt9OLlmyhE8//ZQLLrigwvM9e/ZkxIgRjBs3jr59+7JkyRLuvvtuxo0bB1DuOTNj7NixjBgxgrPPPps5c+aUHAf2OnfXXXeV1Bddvm/fvmXWc9hhh7Ft61Ym5eZy2Xnn0b9TJ64+/ngW5uZyayDAGZs307ZHD5bl5vLo0UeT/a9/0Wefffhy6lQua90aN3Uqd++7L80KCynOzWU00ApIeye264ixYIG3VVFRs2YUtmhBUYsWFDVvTlHz5hS2akVhy5YUtWxJYdRW5B8vbNkSrruuyu8hjdSqVdCtGyixqYhIaosO4Eijpjxhqa2u86IlLYAD4LxxRs+b2UjgPmBgTJFLgadijl0HvO2c+6ia7zUFmAKQlZXlInk4GqOFCxei+6sfKhoJE8nzEnv+wQcfpKCggJEjR+41imXChAnk5+czaNAgnHPlng8EAvTp06fUaJfoKUQVnRs0aBDfffcdubm53HHHHdx4440l04oGHXYY6f/+N3959FEeGjWKSw4+GLZu5bATT+TtqVOZ078/A1evhqVLGbR1K2fvuy8bp05lUocO7PfAA+zcuJGhO3fyHMBLL8FLL3H8nl8MhEIcEXn94Yfw4YeUDNrfutXbb9q01+/5B2BrBdvO9HR2ZGTw04svpkffvtC6demtVas9P7dsSXp6Ouk1+Q+uAE5qmzcPzjgDTjsNXn892a0REZFkiv5DXlNrGrVE5QmL1ZDzhlVFQ76/usyLloxlxJs453bHHF4OXBFTrjVwFt6S49FOB/Yxs4X+6/398guBHc65ofFus6S2mk5HysnJqXRKUlnn77777pKASn5+fqlAS6QcUKXz1/7yl/wpN5fbrrmGQOvW8MYb8P33BLZs4Zljj+Wd3FxePukkBsyYAU89BVu38t3atYxYtozr2ren6N57KZw0iYwdO0ru7zf+xl/+4m3AMH/j7be9zXeov7FxIwAlXXKzZvyQkcGX27bR5oAD6Ni9O59/+y3hTz/liH79OPLEE3nvk0+YuWABfQYM4B9LljDkvPN4Mj+f74uL2VxUxK9vvZVP1q3j8WnT+PFpp/Gvf/2r0lWoXj70UHKuvjou/1+I7MX/98D8+clth4iIJF9x8Z6fDz44ac2QxEtUnrBYjT1vWGO/v3hJxgicRWZ2lCud5edAIDYHThCY75z7Nvqgc+6s6NdmdgnwdOzS4yLREhmEqehcTYIw48aN884XFhI4+mjGjBzJ1NxcfvfznxPYsgWeew42b/YCMd9/z2tdu/J5bi7vdu9Oj1tvLTlX9N13jNu9m3EAf/6zt0U5y9945x1v8+3jb3zr/9PzgzeFzZuzcdcuWnfuTMtOnfiusJC3ly1juxknDx1K58MPZ/U33/DEiy8ycNgwXvzrX7n+9tvpM3Ag7y9fzi9+/WuGXXghv3/0UcjM5JGYVadm+K/XFBZyZE4Ob+Xl0WnoUKYuWMDNc+YQCAT4a5MmHACMHDmScDjMw08/zU9+8QvC4TBz586Nz/8sIjWVXqNxWyIi0hj5q2MCsP/+yWuHiDQqyQjgtMabBvUHADM7FjgPuDWm3KV4K02JlIhdihoSk5y3OkGYcs85Bz/8QOCwwxj3058yIzeXh3/2MwJr1sDvfw/ffQfffUdg0ybebteOjbm5XNuhA20nTIA77/SS6gI3+RtTp3pbjOP8jdWrvc2XDhSnp5PWrh07mjTh319/TbfevSls2ZK/f/AB/YcOpcvhh7Pqm2+Y8sILXHzddaz84gsOOfpo+gwY4E0natOGt5Ys4b1lyyAtrdTvdx/gFX8VqvP9Vai6A6eNGuWtQjV7Nn38ssefcAKPHnII06dPL8kNkpOTU+o+ynt90003lRyLXu0qOghWpdWlRBJNARwREQFv9E30CJwyVskUEamJZARwxgJXmNkFQBHQHPgt3pLgAJhZD6ArUOE4dH/aVPQUqvnOuXsT0mpJiPJGxpS1DHUoFGLVqlW8+OKLJUtRVzUQU+MgDMCuXQQOP5w7zzuP6bm5PHj++QTWrYOHHy4JwMw/4ADW5+ZyRZcudLvmGi84s2lTyQf2tf7GjBneFuNH/haZagTgzNgCNNlvP5p36sRm53hv5Ur6DBzI/llZrNm8mWdmzmTk1VfTs18/Ply7llsmTODuhx5i0Wef0at/f0454wwwozmwKRRiXiTQlZtLF//+DgXOuPBC5obD5EycuFfbBnbuzMBhw8r87xcdUIkoL6ASCAS0vKI0bhlJTSsnIiL1RWzy4t2x2SNERGqmzp82nXPTgGmVlPkMOKgKdQ2KU7MkTmoSkLn//vv3CrqUtQx15HXPnj1rFIgJDBrEDZddxhO5ueRefjmBnTu9nBUbNxL49ltePegg1uTm8v7BB9P9+uu9AMymTSVTiK7zN1580dui9PE31q8vdbyoSRO+KSykVbdutOrShY1FRSxYvJj+w4bR9aij+Pc33/DgM8/wq7FjOWrAAP61ciWX3ngjk6dN471ly8g+/viS9rcDmoZCPOdP7crPy+OUyy+np3/+aOCW7GzeDIfJueeevf7bVDRSRaNYROJAI3BERARKT58CBXBEJG70daFUSVmBmav86TPRozAyMjIYPnw4r7zySpUDMpHVlmKDLn379i3zuJnxq6uv5oHcXHKvvZZAy5bw17+WBGJeyspiRW4uC3v2pNfdd8NvfgMbN1K8cSO3FRZyG8CTT3pblH7+xpo1pY4Xp6fzbXExLbp0oWXnznxbXMzfP/yQE4cOpbB1a554+WUuuvZaDj/pJBavWcNvxo3jd1Om0H/YMH7/xz+W+r11ADqFQrzgB2Fm5eURnDOHo/zz/U4+mSu2bOG95cvJuTV2VmHpQEvslKPY8yJSxxTAERERUABHRBJGARzZKziTF5NcFsoOzEyfPh0zY+TIkSXHJk6cyPjx46sVkAH41a9+xYTcXCbceCOB9u1hwQICGzbwXN++LM3N5W99+nDsAw/ALbfQ97PP6Pfdd4wHeOQRb4tyir/x6afe5ksDCps1I2O//djatCkfrFnDEQMGUNC2Lc/Pm8eIK67gRyeeyNL167np3nu5Z/JkTho2jEl/+hPZ/fqVtLU90CEUYpo/HenUSy/lcP/cMUBu7968HQ7Tv3nzSoMsZZ3v27dvg1kmXUSiKIAjIiKgKVQikjAK4KSA6ABN5GegZJWl2OBMRkYGo0ePZtKkSQDlBmZmzZoFUGZQZvPmzeTm5nLnbbcR6NkTFi8msH07Txx/PB/k5vJKdjYnPPoojB/P9s8/5/r//tcLyDz4oLf5hvobS5d6G9A2crJZM3a2acOKTZvo1rcvBW3bMuef/2TwBRfQPTubZV99xR0PPcSY3/+eDz7/nF4DB3LKkCGAl0mbUIhn/SBMv+uu40d+UKUPcMexx/LPcJiTWrUi55Zb9vqdajqSiOxFARwREQGNwBGRhFEAp5GIDtK88MILRFZpj6zANGLECM4//3xGjhzJiBEjcM4xa9ascoMzkyZNYuLEiWzevLnMwMy4sWMJ9OgBX37Jwz/+MW/l5jJjwAAGTZvGxrFjOTcc5uZWrWhx771w75680uf4G+GwtwEt/Q0zdrdty6qtW2l5yCF88N//kj1sGF2POYZPN23i3scfp9ePf8x+Rx7JZbfeCi1b0syMzaEQ8yPJeceOpbsfPDkS+M2gQSwMh8m5d+/c1grCiEhcKYmxiIjAngBOkyZe8EYBHBGJEz1tNjCRQE0kMBOZurRq1SomTJjA+eefT8+ePUsFaQCcc7z44ot06tQJ5xxmRigUKjM4c9eYMdx0zjm0W7qUUG4uLwQCBPLz2Th2LMFwmJwWLWgxYQJMmADAhf7GP/4B//gHHfByvUSWwf7GDPbfn483buTwU0/lgL59+c+WLdz/3HMcPnAg/UeMoN/w4dC+PU3S0/kqkvR4yhS6+kGUnsBlw4YRDofp3q8ftGpV8jtRIEZE6gWNwBEREdgTwGnRQgEcEYmrtGQ3QMqWl5dHKBQq9XMkUBMMBlmzZg3Dhw/ngQceIBgMkpWVVRKkWbJkSakgTTAYZNasWfzmN7/hntxcbr/sMu4fMYJ/5+byl6OPJjBzJt+cfDI/nTiRrS1bMm7iROjRg8umTmUqMDgUgkcfpcN773FkURGtfvgBS0vjKzOWpqWx8YQT4IorWPPzn/ObzExmX3opvP8+/Pe/sGsXy954g4v79MHmzeOA116DCRM47JFHuGD2bAoGDqTf5ZfDfvuV/PETCAT461//ulfgJRAIlJkzRkSkXogO4PijIEVEJAVFB3AAdu1KXltEpFHRCJwkix1REw6HycjIKDWiJisrizPPPJMmTZowa9YssrKyGD16NIMHD2b06NGMGjWKiRMnlkyJeiA3l/uuvJJ9N28m7Oeb6TF2LAeGw9yRkUHmQw8B8EuAN96AN96gI9ARoLCQ4rQ01hUXk3HwwXQ+4QT+6xwPv/wyAy+6iHOuvRYOPBDbbz/GXXMNsGcVqoOBEZdeSjgchn79Su6xvFEwGh0jIo1WYSFkZia7FSIikgyRAE6zZt6+qMjbNFJTRGpJAZw6lJeXx6pVqxg5cmRJwCYjI4MzzzyTwYMHM2HCBA4//HDef/99rr76apxzPP/88xQXF5Oenl5q2tOlF1zAv6ZN47aePSmeOpX5vXtzyK9/zZGffuolA54yBfCnNvn5YTr47fjWjLVmdOnfn10dO/LnV16h/8iRDLvmGujald9PnUp6kyYlq1B1A4aFQl5g5thjS+4nevnwCAVlRCRlRSet3LVLARwRkVQVDHr7jIw9eXAKChTAEZFaUwAngSIBG4CRI0eSnZ3N+PHjeeaZZzjmmGMYN24caWlppKenEwqFKCgo4P3332fw4ME8+uijjBo1itdmzODQnTsZc9ZZdNy4kc25uVzbqhUdpk3z5r9Flsn++OOS9y3MyGB1cTFr0tI44qyzeHfDBmZ9+CHX/+EPvPO//3H0gAEALPBXoTrdD84MOwAWle4AACAASURBVOEEAG6+9da97kWBGRGRShQU7Pl5585SubpERCRFOAdLlng/79hROpFxZESOiEgNKYCTAJHATVZWFtOnT6eoqIjnn3+e3r17s3v3bgoKCnjvvffIzMxk165djBo1ipdmzODA3bu58PDDyZg/n9vat+fAqVN5Bj9R0auv7nmDbdsoMmOVGfTsyWuff05xjx68tmoVtz/9NFMXLOD8Cy4gE5jmB2k6hELeakx33llSTSQgo+CMiEgcxI7AERGR1FNUtOfnb7/dE7RRImMRiQMFcOIoNnBjZlx00UU8/vjjFBYWlgRtmjZtSrNdu8guKOD8gw6i09Sp/B4/B82KFV5l334LwG7g+wMO4O8bN7IiLY39TjmFFn36cMMf/8id99zDTTfdRC9/BE1OdjZvh8OMvPBCBg0aBChIIyJSZxTAERGR6M+CH36ANm28nxXAEZE4UAAnDioK3EyePBmAZsAAYHBBAaeZ0Tdy8dq1JfVsNGNDly68um4d23v04PUvv+T8O+/ktrvvJve++zilb1/C4TDX5ORw0BlneDlpKB2cCQQCLFy4sM7uXUSkuszsbOAOYAeQDlzvnPugkmuygWeBfznnLinj/AHAo8B+QFNgmnNuUpybXrHoh/adO+v0rUVE4qm6/bSZtQH+APTyy88HbnPOFUaVqbSfNrOewJ+BTKAF8JBzbmrU+ZOBG/BSO2YCRcDtzrm3ospcAtwKfBXTzHOcc99X/bdQQ9GfBQBNm3p7BXBEJA4UwImDVatW8fzzz5ORkcG4ceO48847mTx5Mk2Ac4GLgdPwgjgAOEdBWhpLzHjPOZZkZpJ20km89MEHjBw6lKysLFoWFjLBX5Vq7ty5hMPhvQI1GlEjIg2NmR0LTAP6OeeWm9kwYJ6Z9XLOxT5sR665Ba8bLXNtbjNLA14BXnPO3WFmbYHFZrbFOTclMXdShuiH9tmz4Ygj6uytRUTipSb9NPAMsN05l21mTYCFwHhgrF9npf20mbUCXgfuds49aWZdgI/M7Gvn3Dz/fR4CXnbOTfCvudpv27HOueVR7bnPOfdMnH4l1RMbwGnSxNsrgCMicZCW7AY0BiNHjiQ9PZ3CwkLuuOMO2LGDO4AvgZeA4UAT4NOWLbk/LY0zMzPZLzOTf+bl0XvBAppcfDFZZ5zBrNmzOfTQQ7npppvIyckhEAiU2ouINAJjgHmRB23n3FxgA/DrCq75FDgd+Kac82cCfYDf+3V+DzwG3G5mFqd2Vy76oX3s2Dp7WxGROKtWP21mRwIjgDy//G68QMsNflAGqtZPXwI0B572y6wHpgO3R73dcryRPhGP4Y3CObfGdxtvCuCISAJpBE4t5eXlkZ2dzaxZszjrrLPYd8cOFgA9/fNLgYUHHcTDX3/NdxkZ3Hn//XRduZKuQGFh4V4jaTSqRkQaucHA72KOhfFG2NxR1gXOudkAFcRiBgOrnHObY+rsCmThBYASL/ahXUSkYapuPz0Y2AksiynfHDgZ+BtV66cHA4udc8UxZa4ysxbOuR+cc7+IfmPnnDOznXhTsuoHBXBEJIEUwKml7OxsgsEgY8aMoUNBASHgULyvB+adfTZ3LVyIbd7Mnffcw8qVKyksLOSxxx5LcqtFROqeme0LtMUboBjtK2BoLaruXk6dkXN1E8CJXkYcoLgY0jTQVUQajhr2092BDc45F1M+ci6yr6yf7g4sLqNMGnAw3uN1bHsPA/YFZsScGmZmv8AbBP8V8DvnXLic9seXAjgikkAK4NRCZPTNmDFj+O1vf8uTeMGbD4CftGjBtjffZNy4cQrciIh4Wvr72CWaduElq6xNvWXVSS3rrZ7Yh/bdu/csHysi0jDUpJ+uSh8crzKxxgF/cs59GHVsA/AZcJdzbqeZXQS8a2YnO+feK6ee+In+LHj8cXjuOe9nBXBEJA4UwKmFyOib448/np5paVxcXEwh8NGYMWz9058YOGCAAjciInts9/exQ92bAj/Ust42ZdRJefWa2ZXAlQAdO3aMy+p9R371FR2iXv/jjTcoatmy3PJ1Ydu2bY16ZULdX8PW2O+vgapJP729nPJEXVOVfroq9ZQws6uAA4FLo487514DXot6/byf7PhW4Cdl1BPXz4NmX3zBCcCOAw/k/R49OHr7dvYBPgyH+a64uLLLE6qx/5vT/TVsjf3+4kUBnFoIBALk5+czdOhQnsJbM/GZzEwOOe00Zp12GuFwWMmHRUR8zrlNZrYZ2D/m1P7AqlpUvRo4o4w6Ka9ef9WTKQBZWVlu0KBBtXh7X7t2pV4O6NcPOnasfb21sHDhQuJyb/WU7q9ha+z31xDVsJ9eDexnZhY1jSq2D65KP726nPctBtZEHzSzc4FfAEOcczHzV8u0CjiurBNx/zxYuRKA5q1aef9/d+oEwNE9e0KS/39v7P/mdH8NW2O/v3jR5PxayMvLY8mSJTRNS2O4H1Evuvlmhg8fDqDgjYjI3haw90P0cf7xmpoP9DCz6AjKccA659zKWtRbPWVNoRIRaXiq20/Px0tY3Cum/A7g7agylfXT84Fj/CXHo8u845wrGYFjZkPxRtMMc85tM7N9zOxnUecnmlnslKvOwH/LaX98RT4LMvzvySM5cGLzpImI1IACOLWQnZ3N2LFjOc45WgP/TkvjpkceYfz48YTDdZMnTUSkgbkPGGJmhwOY2ZnAAcCf/Nf3mNkyM6tO8pjX8Bb9u9Gvow3ecPh74tnwSsUGcHbFpnIQEWkQqtVPO+c+AWYCN/vnM4HrgYecc9v8OqvSTz+Lt5rVxX6ZzsDI6DJmNhB4Ei/3zaFmdhzeSldnRdVzInB51DWnAAHgz7X5pVRZbAAnM9PbK6gvInGgKVS11KxZMwI7dwLwZno6Zkbfvn21HLiISBmcc4v8hJLPmdkOvNmnQ5xzkdVImuElqyxZM9zPT3Ah0AfoaWYLgQecc3P8OovN7GzgUTN7169jij8svu5oBI6INAI16aeBS4A/mlnYL78AuDOqzkr7aX80zenAZDO7DC+p8Y3OuXlR7/MkXjDp1ZhmPxv18++Aa/1ROWl4f++MdM7NrcGvo/rKG4GjzwQRiQMFcGohHA4zc+ZMDr70Uli7llbnnMPMa64hHA4rgCMiUg4/8DKnnHOjgdExx0ryE1RQ5/+As+PVxhqJHR6vETgi0kDVoJ/egj9ypoI6K+2nnXOf4o2WKe/8YRVd75cplcS4zpU3AkdTqEQkDhTAqaHIEuJpO3dy4Nq1FANj5s1jyL77atUpEZFUpBE4IiKiETgikkDKgVND2dnZ/OQnP2Hiz35GU2B7jx58Z8aLL75IKBRKdvNERKSuRR7amzf39hqBIyKSeiKfBenp3l5JjEUkjhTAqaFAIMDIkSM5rKgIgL+uW8esWbOYOXOmEhiLiKSiyEN7y5beXt+2ioikHiUxFpEE0hSqWnjsscd4+6OP4L33aH/iiSV5b5T/RkQkBUUHcDZu1AgcEZFUpGXERSSBNAKnFkKhENsWLQJg2qJFmjolIpKqiovhK3+BlhYtvL2+bRURST3+6HyNwBGRRFAApwby8vJ44IEHCAaDDOjUCYBBV13F8OHDFcQREUlFl18O333n/RyZQqUROCIiqUdJjEUkgRTAqYHs7GzuuOMObrv5Zlp8+SXOjNuefprx48cr/42ISCp65pk9P2sEjohI6tIUKhFJIOXAqYFAIMDcuXMZ+9OfckNREWvT0nhuxgzlvhEREY3AERFJZUpiLCIJpBE4NRQIBLjutNMAKDjkEAVvRETEo1WoRERSl0bgiEgCKYBTQ6FQiM9efRWAv3/xhXLfiIiIJzKFSiNwRERSj0bgiEgCKYBTA6FQiGAwyBWDBgFeAuNgMKggjoiIaAqViEgqUxJjEUkgBXBqIBwOk5+fz4F+B5112mnk5+crgbGISKpq3XrPz0piLCKSuiIBnPR0b68pVCISRwrg1MYXX3j7Ll2S2w4REUmujh33/KwpVCIiqUtTqEQkgRTAqYHs7GyCwSAFa9YA8I/PPycYDJKdnZ3chomISHI0a+btO3VSEmMRkVSmJMYikkAK4NRAIBDg/559lszt2ylIT+enV1xBfn6+VqISEUlVkQf2hQuhaVPvZ43AERFJPUVF3l4jcEQkARTAqaGBhx4KwNqiIn51zTUK3oiIpLJIACczc8+3rQrgiIikHiUxFpEEUgCnhpbOnQtA+kEHMXnyZK1AJSKSyqIf2CMjcDRcXkQk9ZSXA0efCSISBwrg1EAoFOKJu+4C4JCTTyY/P1/LiIuIpLLoB3Z92yoikro0AkdEEkgBnBoIh8PcdP753ovOnQkEAlpGXEQklUW+WVUAR0QktSmJsYgkkAI41ZSXl0d2djbdI51xly6EQiHC4TA5OTnJbZyIiCSHRuCIiAhoGXERSSgFcKopsoT4xqVLAfj4u++0hLiISKorK4mxHtZFRFKPplCJSAIpgFNNkelSX/zrXwDc9MADWkJcRCTVaQSOiIjAns+D9HRvryTGIhJHGcluQEMUCATY1qwZbN/O6ZdequCNiEiqUwBHRERAI3BEJKE0AqcGFs6fT6vt2ykyY9LUqVp9SkQk1SmAIyIioCTGIpJQCuBUUygU4jp/Bar0Tp2YPmOGlhAXEUllRUXgHJhBWpoCOCIiqayoyNsribGIJIACONUUDod5auJE70WnTlpCXEQk1Wm4vIiIROgzQUQSSDlwqiknJwf+9jfvxX77AV5OHOXBERFJUdErUIEe1kVEUllsAKdpU2+/a1dy2iMijYpG4NTEhg3evlOn5LZDRESST9+2iohIREU5cIqLk9MmEWk0FMCpCQVwREQkQgEcERGJiP1MMNPngojEjQI41ZCXl+clK/76a+/AfvsRCoXIy8tLbsNERCR5FMAREZGI2M8EgGbNvP3OnXXfHhFpVBTAqYbs7GyCwSBfffghACs2bSIYDJKdnZ3klomISNJEloZVAEdERCIBnPT0PceUB0dE4kQBnGqIrDi14s03Abh78mTy8/OVwFhEJJVpBI6IiERoBI6IJJACONUUCAToue++AJwSDCp4IyKS6rQKlYiIRJQVwNEIHBGJEwVwqikUCpHm58D58//9n5cTR0REUlfsw3p6OqSleauNFBUlr10iIlL3FMARkQRSAKcaQqEQ5//sZ3Q0A+CP06cTDAYVxBERSWVlPaxrFI6ISGqKBO41hUpEEkABnGoIh8O8/PjjpBUXwz77MOj008nPzyccDie7aSIikiwK4IiISEQkSBP5HACNwBGRuMmovEh8mdlA4AZgHyDd3z/hnHvYP78ZWBpz2SHAUufcOWbWFLgcOB8oAtoCi4ExzrmNiWx7Tk4OfPKJ96JTJ8DLiaM8OCIiKSx2FSpQAEdEJFVt3+7tW7Xac0wjcEQkTuo8gANciBeMGQ9gZn2ARWa2yjk31z83KPoCM3sTeNF/eRhwH5DtnFtpZs2A14CXgYEJb/2GDd5+v/0S/lYiItIAaASOiIhEbNvm7aMDOBqBIyJxkowAzh+AdZEXzrml/qibHv6hS6MLm9khQG+8AA3ADuAx59xK//qdZvZnIN/Mujrn1pFIkQCOPwJHRERSXOwqVKAAjohIqoqMwGnZcs8xBXBEJE7qPIDjnFse+dnM0vCmQ+0CZvjnP4+55BLgBefcTv/8KuDmmDI7/H3TBDS5tG++8fYagSMiIqAROCIiskdkBE50AEdTqEQkTpKWxNjMbgf+B9wInOmc+6KMMgZcDDxVSXUnAkucc5/FvaG+vLw8b7WpjX6anY4dCYVC5OXlJeotRUSkIVAAR0REAIqL4YcfvJ9btNhzXCNwRCROkjGFCgDn3D1mdi9eTpw3zWyoc+6dmGIBYLNzblF59ZjZfsAVwDkVvZ+ZXQlcCdCxY0cWLlxYrfZmZmYyYsQI3uzVi6OBv3/0ET998EHGjRtX7boSbdu2bfWuTfGk+2u4GvO9SQpTEmMREYE9wZvmzSE9fc9xjcARkThJWgAHwDnngOfNbCReYuLYJMSXUsHoGzNrAuQDtznn3qvkvaYAUwCysrLcoEGDqtXWQYMG0adPH9aecQZHAy/Mn8/M2bPr5QpUCxcupLr315Do/hquxnxvksI0AkdERKDsFahAI3BEJG7qfAqVH3SJtRzoFVOuNXAW8Hw59aQD04C/OueeiHc7yxIIBOh9wAEA9D/nnHoZvBERkTpWVgBHD+siIqmnrPw3oM8EEYmbZOTAWeTntol2IBCbAycIzHfOfRtbgX/9U8By51yef2ywmXVPRIMjQqEQO9avB+DpuXO9nDgiIpLaylqFKjJcXg/rIiKpo7wROJpCJSJxkowATmvgusgLMzsWOA94MqZcRdOnHgEOAOaY2XFmdhxewKdb/JvrCYVCBINBDm3bFoAJU6YQDAYVxBERSXUVjcDRw7qISOooawlx0AgcEYmbZOTAGQtcYWYXAEVAc+C3wORIATPrAXQF5sdebGb9gWv8l6fFnJ6WiAYDhMNh8l98kaZDhgDQ/+yzye/QgXA4rKlUIiKprKwAjr5tFRFJPZEpVBqBIyIJUucBHOfcNCoJtPjLgR9Uzrm3gdgpWAmXk5MDmzd7D+qtW0PTpgQCAQVvRERSXVmrUOlhXUQk9WgEjogkWDKmUDVcGzd6+w4dktsOEZF6xswGVaPs2WYWNrO3zOxtfxpsReXbmNkz/jWLzex3ZpYRU+anUXX+y8weNLNmNbyd6tEIHBFpZBLUTx9gZrPN7F2/zOgy6ulpZn83s3+Y2SIz+3nM+ZPN7CUzW+i36y0zi13FttrtjxslMRaRBFMApzoiAZyOHZPbDhGROmJmU6pYdHwV6zsWbxTmxc65gcBEYJ6Z7V/BZc8A6c65bOAEYED0+5lZFpAP3O3XOQA4EcitYttrRwEcEWlEEtRPpwGvAB85504EAsCvzOzKqDKtgNeB551zA4BzgIfNbEjU+zwELHbODXLO9ffbOc/Mjqhl++NDSYxFJMEUwKkOjcARkdRzmpm1raiAmY0F+lexvjHAPOfccgDn3FxgA/Drcuo+EhgB5Pnld+M9wN/gP+wDHAmkA2/4ZXYBbwGnV7FNtVPRKlR6WBeRhicR/fSZQB/g936Z74HHgNujVqe9BC835tN+mfXAdOD2qLdbDvwh6vVjeDk1z61p++OqvBE4TZp4e43AEZFaUgCnOhTAEZHU0xR4JeohvBQzewC4B7irivUNBj6IORZm76T00eV3AstiyjcHTvZf/wP4GrjIb9O+eH8sbKhim2pHI3BEpHFJRD89GFjlnNscU6YrkBVVZrFzrjimzElm1gLAOfcL59y2yEnnnPPfu2kt2h8/5Y3AiUyh2r074U0QkcZNAZwqyMvL85YL/+Yb70CHDoRCIfLy8pLbMBGRxLsP71vVWdE5ZcwszcyeBa4HfuOcq3S6kh9YaQt8GXPqK6B7OZd1Bzb4D+nR5SPncM59jTcc/0Yz+w+wHmgB3FxZm+JCSYxFpJFIVD/t78uqsypl0oCDy2nvYcC+wIxatD9+lANHRBIsGcuINzjZ2dkEg0E+GDyYg4BVW7YQDAbJz89PdtNERBLKOfcHAP/bz/8zs3OATLyH5dOBn/urC1ZF5Ik29gl2F17ApbxryipP5Boz64aXN+Fe59xk/wH+CmBjeQ3x8y5cCdCxY0cWLlxYxVvY28HLl3Mw8PnXX7PWr6fL+vX0ANZ99hmralF3bW3btq1W91bf6f4atsZ+fw1UQvrpOJaJNQ74k3Puw6g6oq+LrqfMOuL5eXDYf/5DZ+A/X3zBF1H1tFuxgj7Adxs28KE+ExJG99ewNfb7ixcFcKogEAiQn5/PP4cO5SDgkenTyZ8zR0uIi0ijZ2bnOOdmO+fyzawl8BLQHjgWGOGcezW6XCXV+WPLSw11j7z+oYJryipP1DU3AQXOuckAzrlNZvY1sMDMejvnCmMrdc5NAaYAZGVluUGDBlXS9ArM9m77kN69OSRSz4oVAHTt2JGutam7lhYuXEit7q2e0/01bI39/hqoRPXT24E2VShTWT0lzOwq4EDg0pi2RF8XXU+Z7Y/r58HzzwNwWO/eHBZdj58jbZ/mzZP6/3xj/zen+2vYGvv9xYumUFVRIBDgmIMOAiB76FAFb0QkVdxiZl39US5vAP8GsvG+rfzYzLr5526prCLn3CZgMxC7Esj+wKpyLlsN7BeV5DJSnqhrfgSsibnuc6An0KuydtVaZMh869Z7jmkKlYgkmZ+jrFoS2E+vLqfOqpQpJqaPN7NzgV8AZzvnCmrZ/viJTJFqGhM/UhJjEYkTBXCqKBQKsXX1agCmvf66lxNHRKTxOwHvwflzfxsNNAGejTq2Bji+ivUtAI6LOXacf7ws8/ESYUYHYo4DdgBv+6+/AA6IuS7yurxvjOMnEsCJTlqpAI6IJF+fGl6XiH56PtDDzNrFlFnnnFsZVeYYf8nx6DLvOOdK+nIzGwrcCgxzzm0zs33M7Ge1aH/8lBfAURJjEYkTBXCqIBQKEQwGOXJ/L5h/x0MPEQwGFcQRkVTwIfDjqC3gbz+O2T6qYn33AUPM7HAAMzsTL9jyJ//1PWa2LJIw2Tn3CTATPyGxmWXiJU5+KGolkqeBH5nZcL9Mc+BaYBF18Y3r1q3eXgEcEalfrPIiZUpEP/0asBS40S/TBm8k5z1R7/ss3opSF/tlOgMjo8uY2UDgSbzcN4ea2XF4K12dVdX2J1QkQBMZcROhJMYiEifKgVMF4XCY/Px8WgSDABx/5pnkH3QQ4XBYU6lEpLF7zDn3ZmWFzOyxqlTmnFtkZhcBz5nZDiAdGOKci6xG0gwv0WT0Hx6XAH80s7BffgFwZ1Sd75jZCOB2M7sFaIW3nO2tMcvRJoZG4IhI/bS0JhclqJ8uNrOzgUfN7F2/jil+/plImW1mdjow2cwuw0tIfKNzbl7U+zyJF4x5NabZz1aj/YlT2QgcBXBEpJYUwKmCnJwcKC6GTZu8A/vsQyAQUPBGRBo959yj8Sznl50DzCnn3Gi8aVrRx7bgfyNbQZ2zgcqSKCeGAjgiUg85526sxbWJ6Kf/B5xdSZlP8UZ5lnf+sIqujypXbvsTSgEcEUkwTaGqqi1bvCBOmzYlmeRFRETKDOBEHtYVwBERSR1KYiwiCaYATlVFRt/su29y2yEiIvWLVqESERFQDhwRSTgFcKrq22+9vQI4IiISTVOoREQEtAqViCScAjhVFRmB0759ctshIlKHzKymq5ikBuf2BHBattxzXAEcEakj6qfrkfICOBkZYAZFRd4mIlJDCuBUlaZQiUhq2mhm08xslJl1SHZj6p1du7yH8aZNS+dHUwBHROqO+un6IhLAiZ1CZaZpVCISFwrgVJWmUIlIajoeeB/4ObDWzN41szvM7Ngkt6t+2LrV20dPnwIFcESkLqmfri8iU6RiR+BEH1MAR0RqQQGcSuTl5REKhUpNoQqFQuTl5SW3YSIidcA595lz7mHn3BCgIzAB6Ay8bGZfmtlTZnaembVJbkuTpKz8N6AHdRGpM+qn65HyplCBVqISkbhQAKcS2dnZBINB1n34IQD/+fZbgsEg2dnZSW6ZiEjdcs794Jx7xTl3tXPuIOA04FPgOuArM1toZqcmt5V1rKwVqEDLiItIUqifTrKKAjhKZCwicZCR7AbUd4FAgPz8fN4dOpSuwENTp5I/Zw6BQCDZTRMRSSrn3DJgGZDnf7M7BEitZJrljcDJyID0dC8/TmGh91pEpI6pn65j5eXAAY3MFJG40BNlFQQCAf7dtSt89hknnnWWgjciIjGcc1uAGcluR50rawWqiKZN4YcfvId1BXBEJMlStp+uK85BQYH3swI4IpIgmkJVBaFQiC1r1gAw7W9/83LiiIiI7Njh7Vu02PucHtZFRFJHZGpUZiaklfEnlj4TRCQOFMCpRCgUIhgMcsT++wNw58MPEwwGFcQREZGK8x1oJSoRkdRR0ecBKImxiMSFAjiVCIfD5Ofn0+KHHwA44cwzyc/PJxwOJ7llIiKSdJHgjJaMFRFJbZEROGVNnwIlMRaRuNCk/Erk5ORAcTF89513YJ99CAQCyoMjIinHzD4H/uec65/sttQbVVlxRAEcEakj6qeTqLIROPpMEJE40Aicqvj+ey8xWdu2SkQpIqlsF/DjZDeiXqlKAEdTqESk7qifThYFcESkDiiAUxXffuvt9903ue0QEUmuFc65Mp88zeyGum5MvRB5EI/ku4kWOaaHdRGpO+qnk0UBHBGpAwrgVMWmTd6+ffvktkNEJLn+YmZPm9kAMzvEzLpFNiCY7MYlhaZQiUj9on46WSrLgaMkxiISB5oPVBUagSMiAjDD318MuKjjFvM6dSiJsYjUL+qnk6WyETjNm3t7TasVkVpQAKcqIiNwFMARkdT2PjCyjOMGvFDHbakftIy4iNQv6qeTpbIATosW3t5f2VZEpCYUwKkKTaESEQG4xTm3tqwTZvbrum5MvVBRDhyNwBGRuqd+OlkifX15U6giAZzt2+umPSLSKCmAUxWaQiUignPuLQAzOwg4Em84/ifOubXOucVJbVyyKAeOiNQj6qeTKJIDp7wROC1benuNwBGRWlAS4wrk5eURCoVKjcAJhULk5eUlt2EiIklgZs3N7C/AauAVYC6wysyeM7MWyW1dklQlB46mUIlIHVE/nUSaQiUidUABnApkZ2cTDAb5avlyAJZ/9RXBYJDs7Owkt0xEJCkeBDoCZwKH+dtZ/rEHktiu5KlKDhyNwBGRuqN+OlkqC+BERuBoCpWI1IKmUFUgEAiQn5/PJ0OGsD9wz5//TP6sWQQCgWQ3TUQkGU4EjnHOFUUdW2VmbwCpOTRfU6hEpH5RP50slS0jrhE4IhIHGoFTiUAgQFbHjgAMOvdcBW9EJJXtjvmjAADnXCGQmlGKqiQx1hQqEak76qeTRSNwRKQOKIBTP5WNrQAAIABJREFUiVAoRMFXXwHw5KxZXk4cEZHU9LWZ3RadR8HMWpjZWOCbJLYreTSFSkTqF/XTyaIcOCJSBxTAqUAoFCIYDNLFj5hPeuopgsGggjgikqpuAC4DNpnZWjNbC2zyj12X1JYlS1WSGCuAIyJ1R/10slS2jLhG4IhIHCgHTgXC4TD5L7xA5umnAzBg+HDy8/MJh8OaSiUiKcc59x8zOxy4COgFGPAxMM05tzupjUsW5cARkXpE/XQSFRT8P3v3HedGee1//HPW3cb2umLT458JHQx4IQkEVvSQQDABBcIllJtwL6TQl869dFhIKClOSEJJiBNEu7QQqpbiQKLg2ARsuMFcwICxAfeyLrvn98eMbK2sXWnXWo1W+r5fr3mNZuaZ2TOwHmmPnuc8wVo9cESkGymB04GGhgb47DNwh9pa6NWLWCym5I2IVCUzuwNodvczoo6lbBQyhEo1cESkRPScjlC+IsbqgSMiRaAETj4LFgTrESOijUNEJHpfI5iOVtIKKWKsHjgiUjp6TkclncDp0yf3cfXAEZEiUA2cfD77LFgPHx5tHCIi0fubu6dyHTCz+hLHUh5UA0dEyoue01FRDxwRKQElcPJJ98BRAkdE5F4zO8PMcvXevLzk0ZSDQoZQrVxZunhEpNrpOR2VdA2c9hI46oEjIkWgIVT5pHvgaAiViMiVwGjgx2Y2D2jJODYmmpAi1lECR9+2ikjp6TkdlXxDqAYMCNYrV0JrK9Toe3QR6TwlcPJRDxwRkbRmIFdhTAMuKHEs5UEJHBEpL3pORyXfEKqamiCJs3JlsKTfI0REOkEJnHxUxFhEJO3n7n53rgNmVp1fJaZr4OQqYrzJJsFaCRwRKR09p6OSbwgVBEmblSuDYVRK4IhIF+hBnk96CNWwYdHGISISvXPMbGquA+5+R6mDiVxLS7CYQe8c34eoB46IlJ6e01HJ1wMH1tfB0fuCiHSREjjtaGxsJJlMthlClUwmaWxsjDYwEZHorAIOiDqIspE5fMpsw+PpBM6yZaWLSUSqnZ7TUclXAweU2BeRjZY3gWNm4wq5kJldv/HhlI+6ujri8TifzZ4NwGtz5hCPx6mrq4s4MhGRyMxy95xzYpvZWaUOJnId1b8BfVAXkSjoOR2VQoZQDR0arBct6v54RKQiFdID59f5GpjZJsCkjQ+nfMRiMRKJBP83bRoAFzY2kkgkiMViEUcmIhKZe8zsTjP7spl9zsy2Si9APOrgSk4JHBEpP3pOR6WQIVTpkgwLF3Z/PCJSkQopYvwlMzvI3Z/JddDMRgJ/BkYWNbIyEIvF+HTIEFiwgMOOP17JGxGpdveF65MAz9hvWdvVoaMCxhB8iO/dG9auDT7Yd/ShXkSkOPScjkohQ6iUwBGRjVRID5xZwH+b2b7ZB8Js/kvA5kDFZTeSySQePmB/mUgENXFERKrXX4HPhcu4rOVvEcYVjXw9cGD9TFSqgyMipaHndFQKGUKlBI6IbKRCEjjfJBgedZOZ7ZneaWY7AlOBvsC+7v5a94QYjWQySfzYYxlRE/wn+tmUKcTjcSVxRKSaXeDu7+VY3gW+F3VwJVdId3kNoxKR0tJzOiqdGUKlGjgi0kV5Ezju/r/u/glwNPALM9vZzL4AvAgsAvZx99ndHGfJpVIpHvjtb6lpaYEBA6g/9FASiQSpVCrq0EREIuHuLwCE7wMHha/HhMemRRlbJNIf1jvqgaMEjoiUkJ7TEdIQKhEpgUJmoZoM4O4fAccAvwWeBv4X+LK7z81sVykaGhrYb5ddgo3wYRuLxWhoaIgwKhGR6JjZCDNrAl4DfhnuvsjMpqb/QKgq6oEjImVGz+kIaQiViJRAIUWMDzOzyzO2ZwE7EvTA+aGZpfcfWuTYopd+uKYftiIi1e0W4B8E3fDTyf0zzewI4FaCIbfVI10DRwkcESkfek5HpZCkfm1tsFYCR0S6qJAEzhjglKx9c4Fjs/ZtWpSIysmCBcF6+PBo4xARKQ9buvuJAGa2Nr3T3R81szOjCysihXxYVxFjESktPaejomnERaQECkngvOLueWeYMrPKq+6rHjgiIpkGZrxe1/3Sgq6YY0sfTsQ0hEpEyo+e01FJD6FSDRwR6UaFzEKV3ftmo9qZ2X5m9qCZJc3sBTP7Z+Y3Ama2yMyaspb3zOzhrOtcbGbTzOwVM3vAzEYXGGfhlMAREcn0jpndED5v3cx6hTMS3gNML/QiZnakmaXC94CpZjYxT/shZnZXeM60MIbeWW16mdkl4TVfMrN3zOzaLt1loVTEWETKTzk/p8ea2cNm9nLY5rwc19nezJ4zsxfN7FUzOzFHmxozO8fMVppZfY7jJ5vZmzn+nhha6P13iWahEpESyNsDJ5x2MK9C2wHfAqa7+5UAZjYBeNXMZrv7Y+Gx+swTzOx54N6M7R8CJwJ17r7MzG4CHgL2KTCGwiiBIyKS6QfA/QTDaAHCT6u8CHyjkAuY2Z7AFGAvd59pZl8DnjSzndz943ZOuwtY7u51ZtYXaAKuBC7OaPNTgm+b6929Naz38F9ZbYpLPXBEpPyU5XPazGqAR4En3P2yMJkyzcyWuPvtYZtNgKeAK9z9N2a2BfCamc139yfDNsPC+5sN9O/gNq5397sKud+i0RAqESmBQoZQFdttwJz0hrtPN7NFwPhwV5uePGb2OWAX4MFwu4bgzeAad08XFbgR+NjMDnT3Z4sWqRI4IiLruPsnwP7hN547EyRMXnP35ztxmYuAJ919ZnjNx8xsHkHBzcuyG5vZzsAkYNew/WozuwW4y8yuDZP4OwEnA5u6e2t46mNA935C7kwNnKVLuzUUEREo3+c0cDgwATgobLPYzH4JXGpmv3J3J3iODwDuDNt8YGZ/BC4Fngx/3CDgAuBT4LuduKfuV8g04ptsAr17B0n91as7fv8QEcmhkCFUReXuM919KazrAvldYBVwX3j8/7JOORn4g7s3h9u7EhRM/nvGNecB7wMHFzVYJXBERDbg7k3u/lN3/0kn/yiA4MP737P2pWj/+X0Q0Ay8ntV+ALBvuH00MMPdl2TE6O7+Uidj65xCEjjpIvj6tlVESqgMn9MHAbPdfVFWmy2B7TLaTMtIxKfbfMnMBkKQ1HH37NjKQyHTiJutf1/47LPuj0lEKk7JEzhpZnYp8BFwNnC4u3+Yo40BJwF3ZOweF67nZjX/OONYcSiBIyJSNGY2HBhK557f44B54bezme3TxyDopfmxmV1gZs+H9RpuDLvjd5/OJHDSsxqKiJSxbnxOj2vnmoW0qQG2yRd7lq+FtXReMrP7zayuk+d3TmsrrA0n/eqdZ4DDqFHB+pNPujUkEalMeYdQhV0gHweed/fV+doXyt2vNrNrCGriPG9mX3H3v2Q1iwGL3P3VjH1hQQFWZbVdRdvK+22Y2WnAaQCjRo2iqamp3dj+8Ic/sP322/Pt2bMZAbw2Zw7P3nwzb775Jscff3whtxepZcuWdXh/PZ3ur+eq5HuTgnTl+T2onfZknDMM2B+YBdSH5zxOMPT2kFwX7cx7Qnu2mDmT8cAH8+fzdjvnj5o7l52AT956izci+N2v9H9zur+erdLvr4fqrud0sdoUYh7wNvDf7t5sZicAL5vZvu7+SnbjYrwf2OrV7A+09u7NC8933OFptz59GAZMf/ppFpU4uV/p/+Z0fz1bpd9fsRRSA2c50AiMt2Cq8MeBP7n7nI5Pyy/M1P/ezI4Drgf2y2pyCm1736TjAcie9qMfsKKDn3U7cDvAdttt5/X19R3FRTwe59QwQ75m8GCuveIKEokEHZ1XLpqamnpEnF2l++u5KvnepCBdeX4vb6c9Gee0hOsrwveVZeEXBE+a2c7u/nrW+Z16T2jX3/4GwBbjxrFFe+e3BiMBRvXqFcnvfqX/m9P99WyVfn89VHc9p5cDQwpok+86ebn7E8ATGdu/N7P/BC4EjsrRfuPfD5YFZTlr+vXL/zs9fjxMn86ELbaAEv/+V/q/Od1fz1bp91cseYdQufsl7r478HngYYJvM1+3YPrvGyyYFrxXoT8wrEyfbSawU1a7wcBXgd9ntX0nXI/J2j+GoCL9RovFYiQSCT596y0Avn/ZZSQSCWKxWDEuLyJSldx9AbCIzj2/3wFGh0NqM9uTcc6HwGcZtdIA3gvXn+t6xHloCJWIVJhufE6/0841C2nTCrybL/Y8ZrN+wpTiK+T9IE1DqERkIxRcA8fd57r7b9z9G8AI4EygF/AL4FMzS5jZyWY2Is+lXs16wANsRvABPFMceNrdsyt8vUbQNXJieoeZjQa2Ap4p9H7yicVijOkfzE541CmnKHkjIgKYWS8z+5qZnRxu72pmHUy5sYFnyHh+hybS/vP7aYJCmJlJ/onASmBquN0EjMj6gmDTcP1+J2LrnFVhz34lcESkjJTpc/ppgt78tVlt5rj7Wxlt9ghnnM1s8xd3L7gHjpldly56nGFzuvP9oDMJnJEjg7USOCLSBV0qYuzua939OXc/z913BHYHngeOJWsa8BwGAz9Ib5jZnsAxwG+y2uUaPkVYmf5a4AwzS4/TPQ/4C/BcF24np+Rzz9FvRfBecetvf0symSzWpUVEeiQz2wZ4E3iE9VPJHgHMMLPPF3iZ64FDzWyH8JqHA2OBn4XbV5vZ62bWH8Dd3wAeAs4Pj/ch+ALhlnBqWghmMXwf+H7YphfwQ4L3pde6eLv5qQeOiJSZMn5OPwFMJ5i8BDMbQlB35uqMn3s3wWxWJ4VtNgeOy2pTiC8C/57eMLP9Cepq/ryT1ylcegaqjqYQT0v3wPn0024LR0QqV1FmoXL3d939Z+7+VXe/KU/zi4GjzOxlM3uJYMzpucBt6QZmNp5gWsGn2/l5txEMrXrJzF4h6BI5Kav6fZclk0lOOfbYoEDQwIH8/r77iMfjSuKISLW7heAD/GDCbzLd/Rrg28CPCrlAWJT+BOC3ZvYCcAlwqLunZyPpT1CsMrOn5skAZpYC/kqQsL8845rNwKHAwWb2N+AlYCHwjWK9L+SUTuD0yy7ZkGHQoOAD/YoV0NzcfjsRkeIo1+d0K3AksLuZvUyQYL89rD+TbrOMoFTDt83sReBR4Gx3fzIzPjN7EPhj+n7NrCmrB+YNwGFm9kL4t8YNwHHu/lgh998l6oEjIiVSSBHjonL3KcCUPG3eBrbO0+Ya4JoihrZOKpViys9+BscfD8OGrauJk0qlNJRKRKrZEHe/BcDM1iVG3P3vObqrt8vdHyH4djjXsfMIelVm7ltC+I1sB9ecDXyl0BiKopAP7GZBL5x582DhQhg7tjSxiUi1Kufn9EcESZyO2rxJ0FumozZH5znepohxSagGjoiUSMkTOD1BQ0MDzJgRbAwbBgQ1cZS8EZEqV5trZ9iNfrMSxxK9Qj+wpxM4CxYogSMi3U3P6ShoCJWIlEhBQ6jM7AQzq65kz8KFwTpM4IiICH8zsz+a2V5AXzMbF9ZGeIIi1iDrMTqTwAHVwRGRUtBzOgoaQiUiJVJoDZzfAsO7M5Cyk07gDK+u2xYR6cA5wBrgZeBLwL8IutjPIas7fVUo9AP7iHByxs+yJ1UUESm69p7T7xPUnJTu0NkhVDU1QQJHtdFEpJMKTeBkT/td+dQDR0SkDXdf4e4nAv+PoI7BUcB4d/+2u6+MNroIFPqBXfUORKREOnhOnxQWfJfu0JkhVH37wnbbQWsrvPFG98YlIhWnKLNQVaR0V3clcEREADCzr8O6mQcfc/dHgflmdq+Z7R1xeKVXaAJn9OhgPW9e98YjIlXPzP4AbZ/T7v5uxGFVvs70wAHYdddg/dpr3ROPiFSsziRwzjWzr5vZFt0WTTlRDxwRkWxn5ti3Erg5XKpLZxM48+d3bzwiIvDVcFrt/zSznAWNpRt0NoGz227BOj1piohIgTqTwDkOeBB4z8zmm9mfzewaM/uGmX2um+KLjhI4IiJ5ubsDbwIDoo6l5JTAEZHy8wgwiaD8wcNmdp+ZHWFmvSKOq7Klh1CpB46IdLPOJHDqgGHAQcANwGfA0cC9wGwzq6zpNZTAERHBzP7LzFrNrAXY38xasheC94PpEYdaeukETr9+HbdTAkdESsTd/83dF7r7ZHffH7gY+CLwjpndEnF4lSv9flBIDRxYn8CZMSOohSMiUqBCpwZ3AHdfAiTDBQAzGwTsAexe9OiipASOiAjAXUATwbe5NwNnZR1vBea7+1ulDasMrFoVrNUDR0TKhJnt7e5/DV9vC5wEnABsDuwQZWwVrbNDqLbYIlg++AD+/nfYa6/ui01EKkqhCZx2Z6Fy9+XAi+FSOZTAERHB3d8D3gMws/Pd/fmIQyofGkIlIuXnNjO7kyBxsxfBENefA/e4+4eRRlbJOjuEygwmTYKf/AQefFAJHBEpWKFDqA4FFndnIOWisbGRZDK5PoEzfDjJZJLGxsZoAxMRiZi7P9PeMTO7spSxlIVCEzgjRwYf1j/9FNau7f64RKSa1QFXAClgb3ffyd1vUPKmmy1fHqwHdKIc3NFHB+sHHgD34sckIhWpoB447v50dwdSLurq6ojH43y4Zg19gZfeeIP4f/wHiUQi6tBERCJlZpd3cPjfgI6OV55CEzi9e8OIEUEC57PPYNNNuz82EalWfwe+5O7KFpdSV3ru77svjBoFb78NzzwDBx/cPbGJSEXpTBHjqhCLxUjcey81i4MOR8eedhqJRIJYLBZxZCIikTsbiGUsBxF00z8feDe6sCLSmZoHGkYlIqWxX3vJm6rsKVkqixYF69pOzNzeuzecc07w+sILVcxYRApSaA2cqhKbOBGAZcB3zzhDyRsRkcBD7n5q9k4zOxDYM4J4otWZBM6mm8LMmUHByl126d64RKSqmNmewBJ3/xfQYNZu6crq6ylZKl2tnfnDHwZ1cKZNg0sugWuvDYbcioi0Qz1wcvjL448D0DJkCJMnTw5q4oiIVLlcyZtw/7NA9fX97kwCZ+edg/WMGd0Xj4hUq4eAn4Wvs3tKZi6d6B4inZJO4HSmBw7AwIEweTL06gXXXx8UNv7rX9UbR0TapR44WZLJJFeecQZJYOjWW5O49Vbi8biGUYmI5GBmA4F9gK2ijqXkOpPA2WOPYD1tWvfFIyLValsgnAaJV939oFyNzKzdQvSykdJDqLoye+2RR8J998G3vgUPPxwsI0fC3nvDrrvCZpsFddQ22QSGDAleDx8OgwYFS2/9OSdSTfQvPksqleLHl10G554Lw4YFNXESCVKplBI4IlLVzKwVyDVVxnLgByUOJ3rpBE6/fvnbKoEjIt3E3VdlbH41+7iZ9SboJXlYyYKqNl0dQpU2aRLMng0/+lGQzJkzBx5/PFjyqakJvkjo1w/69w+Wfv3WL+nt/v3ZafHiYEhvr17B0qdPcG6fPkEiqKYm2F9Ts35Jt831OrNdejELlvZeZy7Z+9trl7lA7tdmDP/nP2HVqrbH0zK3M8/Ndb18bdqTfU5X9nVwfJN//attL6+u/ryu3G8h7TrzOsd276VLg2Rovt+BQn5H2tPSAqkUrFgR/A4PHrz+M1oPoQROloaGBnjwwWBj+HAgKGys5I2ICDOAszK2HVgK/Mvdl0UTUkRaWoIl/SE2nx12CD5Az54NixfD0KHdH6OIVKMngAOy9vUCjgT+Aziq5BFVg64Oocq02WZBAuemm4L3imnTgtpp8+cHMxguXx68f3z2WfDzVqwI9rW0QHNzsISTsLRnVNej6xF2jTqAbjYx6gC62b7FulB7ycLWVlizpm3b3XfvcV+uKYGTy8Zm0UVEKtMl7v581EGUhfQHgEKGT0Hw7eauuwbf+qRScFDOEQ4iIhtrg6+fwx46p5tZU+nDqRIbM4QqmxmMHx8shWhpCXqdNDe3Xed4/fo//sHOO+wQ/CG7dm3wXrZmTdCjdO3aYH9ra3BN9/VfVqT3ZW+3tgbtss9LL+nj2a872ya9QO7X4bLgs88YPmzY+uNpmduZ5+a6Xr427ck+pyv78hxftnQpm2yyycb9vK7cbyHtOvO6nf9/a9esoXevXh3/DuT7/cgVf7Z0rxt32Hbb9tuVKSVwclECR0RkA+7+p/aOmdnt7n5aKeOJ1KpwxEKhCRyAAw8MkjcPPqgEjogUjZl9Hfh6uLmdmd2Ro9lwQF3/ukNLCyxZEiRehgwp/c/v1SsohjxwYN6mnw4eDPX13R9TRF5raqK+gu/v7xV+fy8V4/7aSwSmk5avvgoTJmxcb7mIKYGTixI4IiIAtPOHQC7VVVuhMwWM0447Lphl5L774NZbg145IiLFYRnr7F44rcAs4PySRlQt0sOWhg4NhmmISHTMOh7aXgEJMCVwclECR0Qk7SvAn6MOouw0NwfrziRwdt0Vtt8e3nwTnnwSvva17olNRKqKuz8MPAxgZje5+3kRh1Rd9HeDiJSQEji5LFgQrPUgFhF5wt1PzdeoEz11KkNX6h2YwamnQkMDXHIJfOUrhRVAFhEpUEfJGzP7trv/tpTxVIViFDAWESmQ+vnloky6iAgAhSRvOtOuYqQT/eFshQX7/vdh663htdfgxhuLH5eIVD0zG2JmB5vZiWb27fQCXBh1bBWpmAWMRUTyUA+cXJTAERHJycwOAi4GdiGYRvx14Bp3fzbSwEqtq+8TAwbAzTfD0UfDRRfBvHlw8cUwqtIndxWRUjCzLxEMp1oD1ALzgL7AGODjCEOrXPq7QURKSD1wckk/iDv7zaqISAUzsxOA/yH4g+AXwC8J/iB4yMy+FWVsJdfVHjgAkybBr34VFLu85RbYYguIxYKEzpQp8MILMHMmvP8+fPppMGuCiEhhrgMmuftmwF/d/XPuvjmwD/CHaEOrUJlFjEVEupl64GRobGykrq6OWEYmPZlMkkqlaGhoiDY4EZHonQtMdPc3M3ea2fbAlHCpDhuTwAH4zndg553hmmvg8cehqSlY2jN4MAwaFPTg6d8/mMGqb99g6dcvWNLbGfvGz58PjzwSJItqaqB37+Dc3r2DJb3fbP3rmpqgNk/mdnpful3mOvt15gLtb2cf66hNO+va6dPb/ney7Ml32tmfuZ3rdXvXyaejn5OvbY7jg2fNWj81cFevneue2ntdSLuO9uVad7Cv/9y58O67Hf8+dHSN7N+/XMd694YZM+DDD9f/Lh9ySPDvqDK1uvtL4et1/7Pc/RUzuziimCrbsmXBevDgaOMQkaqgBE6Guro64scey7yFC6kBmqZPJ/6tb5FIJKIOTUSkHKzKTt4AuPubZrYqioAiU4xi91/4Ajz6KHz2Gbz4IkybBm+8EQyr+vRTWLEi+MNg8WJYujRYOmmLrkfXI0yIOoButmfUAXSzL0T1gz/+uJITOAPNrMbdWwEzs/Hu/raZjSYY+irFlk7gDBoUbRwiUhWUwMkQi8V44K67qDniCFb17cuxYfImFotFHZqISDnob2afd/f/zdxpZtsCFfvXUE7FHGo7YgQcdVSw5NLaGiRvli+HlSth1SpYvXr9smpVsKxZs/51uP/tmTMZP25ccI2WlmA41tq1Qds1a8A9WFpbg8U9aJdun2s73T5znf3aPYi9M9vZ+9KvO1gvWriQ2vTML+lj2bL3Z27nep29r9DeOB39nHxt2zm+ZOlShgwe3PVrt3dP7V2ns/9t8q3z7GteuZL+/fq1PZZrae8amb+Hua7R0gLNzUGPtAMPDHqftbYG25XrDeAlM/s6QS2clJlNB3YGnoo0skqVTuBsskm0cYhIVVACJ8t+uwRfTsxbvZrTTz9dyRsRkfV+BEwzs4eBt8N944EjgNMjiyoKGzuEqjNqaoLaCl2or/BBUxPj6+uLH1OZmN7URH0F39+0Cr+/V0pxfx98EAxDq566hmcTFCxeCNwM9AK+DPwGuCbCuCrX8uXBWgkcESkBJXCypJ56ijqg7+jRTJ48mVgspiSOiAjg7veY2XyCWagODXe/DnzD3Z+OLrIIlDKBIyJdt0WlDyRsy90XA4szdt0YLpjZwEiCqnQaQiUiJaRZqDIkk0muPe88AMbssAOJRIJ4PE4ymYw4MhGR8uDuT7l7vbuPDJf6qkvegKaNFZGe6LGoA6hIGkIlIiWkBE6GVCrFVeecE2wMG0YsFiORSJBKpaINTESkDJjZADPbysz6hdvbmNnZZnZ41LGVnHrgiEiZMLN3ClmIsG50RVMCR0RKSEOoMjQ0NMCvfx1shB/KNYRKRGSd64GDgbiZfQi8AqwEepnZT9z9xkijKyUlcESkfKwieD53xIALShBL9VENHBEpISVwsqlbvIhIeyYCe7h7s5mdTfBHww4ERTKThHUWKl5LSzC1t1mXCguLiBTZZHe/O18jMxtSimCqjmrgiEgJaQhVNiVwRETa0+zuzeHr44Bfu3uzuy8HlkYYV2ktWhSshw4NZogSEYmQu9+Wvc/MhpjZ9uHrvu21kyLQECoRKSF98symBI6ISHsGmtn+ZnYysAdwN6yb2WRwlIGV1OJwgpfa2mjjEBHJYmYDzexugmnEHw93325mU8xMGYbuoASOiJSQEjjZlMAREWnP5cDDwG+ARnd/38wOAWYAf4k0slLSh3URKV83AIOAI4B54b5TCJ7RN0cVVEVL18DRECoRKQHVwMmmBI6ISE7u/rSZjQAGu3s4joi/AAcBn0QXWYktDUeLDa6eTkci0mPsBuzv7m5m5wG4uwM/NbNnow2tArmrBo6IlJQSONmUwBERaZe7t5jZSDP7MuDAm+7+dtRxlZR64IhI+eoTJmwgmHkq06hSB1PxmpuhtRX69YM+faKORkSqgIZQZUsXp1QCR0SkDTMbbWZPAG8RDKV6BHjLzB43s02jja6E1ANHRMrXQjM73cyMIMmeLmh8PfB+tKFVIPW+EZESUwInW7oHjopTiohkuxNYCxwGjAe2Bb4CtAJ3RBhXaakHjoiUrx8A5wCLgb3MbA7wKXA08MMoA6ttGbHnAAAgAElEQVRI6fo3ej8QkRLREKpQY2MjdRMnEkv3wKmtJZlMkkqlaGhoiDY4EZHyMB7YPqN7PsDssK7CrIhiKj31wBGRMuXus81sR+AEYGeCYVSvAVPcfU2kwVUiJfRFpMSUwAnV1dVxyrHH8u7atTBwIMmpU4nH4yQSiahDExEpF7OzkjfAuro4/xdFQJHQB3YRKWNhouau7P1m9oi7H1n6iCqY3g9EpMQ0hCoUi8WY8vOfA7CkV691yZtYLBZxZCIiZePnZna9mW1jZjXhso2Z3UQwvKo6qAeOiJQhMxtkZgNz7K8xsxOAugjCqmyaQlxESkw9cDJ8accdAXh/6VJOP+ssJW9EpOqZWSthIcz0LuD87GYEdXD+WKq4IqVvXEWkjJjZ5sAUYN9w+/fu/m0zGwD8J3AWsAXwRHRRVii9H4hIiSmBk2Has8+yBzB4yy2ZPHkysVhMSRwRqXYzCD78d8SAh0oQS3lQDxwRKS+3ApsCNwN9gaPN7HvAucBmBMmdm9x9ZnQhViglcESkxDSEKpRMJvnRZZcBsPVuu5FIJIjH4ySTyYgjExGJ1HXu/nxHC/AKsKDQC5rZkWaWMrMXzGyqmU3M036Imd0VnjPNzG4ws5xfQJjZZma22Mzu6tRddoY+sItIedkVmOju57n7D4F9gJuAvwHj3P3UziZvuuM5bWZjzexhM3s5bHNejutsb2bPmdmLZvaqmZ2Yo02NmZ1jZivNrL4Y8XeZphEXkRJTAieUSqW45HvfCzZqa4nFYiQSCVKpVLSBiYhEyN3breRuZgeY2W+AucA2hVzPzPYk+Db4JHffD7gOeNLMxnRw2l1AL3evA74AfBm4sp22txEM5+o+6oEjIuVlvrsvS2+4+3vAbOBb7v5RZy/WHc9pM6sBHgVec/cvAjHgdDM7LaPNJsBTwO/d/cvA14FbzezQjDbDgKeB7YH+RYy/a1QDR0RKTAmcUENDAzuOHRts1NYCQWFjTSEuIrKemU0wsxvN7AOCD9GTgATwvwVe4iLgyfS3we7+GDAP+F47P2/n8Gc0hu1XA7cAZ4Uf9jPbHgGsIRj21X3UA0dEysvqHPvmu3ubZLaZPVLg9brjOX04MAH4UdhmMfBL4FIzs7DNycAAwqL47v4BQW21SzN+3CDgAuDaYsW/UdLvB0roi0iJqAZOpkWLgvWwYdHGISJSRsxsa+BbwAnADsAq4E/A5wm67a82s+MLvNxBwA1Z+1LAwcBl7bRvBl7Paj+AoGDnn8MYBwHXAIfQ3cWU1QNHRMrL58zs8qx92+TYt3OB1+uO5/RBwGx3X5TVZktgO+DNsM20rMRTCvgPMxvo7ivCpM4HZrZNEePvOiX0RaTElMDJlE7ghD1wRESqnZm9BHyRYFhSE8G3pw+4+xIzey78phV3/0MB1xoODCUYcpXpY+Ar7Zw2Dpjn7p7VPn0s7Spgsrt/vP7L3G6ib1xFpLyMAU7JsT9736b5LtSNz+lx7VwzfezNcD0tR5sagmG6eev4dDH+rlMCR0RKTAmcTAsXBmslcERE0lYQDEu6CbjV3T/ZiGuliwSsytq/ChjYwTm52pM+x8x2B/YGNiiI2Z6w7sJpAKNGjaKpqanQU/nSggX0BabOmMGaOXMKPi8Ky5Yt69S99TS6v56t0u+vhF5x97zTpppZITNzdMtzuoht8ul0/BvzfrD9228zBpg1Zw7zesDvcqX/m9P99WyVfn/FogROJg2hEhFpw90PMbPRwHHA/5jZYoLikF2ZNjys9ki/rP39CBJF7Z2Tqz3AirAw5s+B/8yu99ARd78duB1gu+228/r6+kJPhVXB3wX7HHYYDCz0b4poNDU10al762F0fz1bpd9fCeXqfdPVdkV/Tme0GVJAm3zXyafT8W/U+8FttwGwQ10dO/SA3+VK/zen++vZKv3+ikVFjDOpB46IyAbcfb673+bu+wA/BP4fMBXY0cwON7NeZja5gOssABYRdPfPNIZgxpRc3gFGW9txUenzZxPUThhBMFNJk5k1ERTKPCzcPrOwuyzQ2rWwciXU1MCAAUW9tIhIV7j7u8Vq103P6XSbXNcspE0rkDd26HL8XachtSJSYkrgZFINHBGRDrn72+5+hbtPAI4gKBo8HTimwEs8A0zM2jcx3J/L0wSFMHfKar8SmOrus9z98+5en17CeP4cbt9aYFyFSU8Zu8km0N21dkREolHU53RGm/FmVpvVZo67v5XRZo+wZ2Vmm7+4e6E9cLoSf9epBo6IlJgSOJk0hEpEpGDunnL3swh6vBT6zeb1wKFmtgOAmR0OjAV+Fm5fbWavm1n/8Ge8QTBc6/zweB/gTOAWd19WzPspSHoGKn1YF5HK1R3P6ScIkutnh22GENSduTrj595NMJvVSWGbzQmG72a22ej4i0oJHBEpMdXAARobG6mrqyOWMYQqmUySSqVoaGiINjgRkTLn7i1mdkiBbV81sxOA35rZSqAXcKi7p2cj6U9QaDKze8vJwE/MLBW2fwbInh4XMzsMuJAgobR9OJzqXHd/tUs3loumEBeRCtcdz2l3bzWzI4FfmNnL4TVuD+vPpNssC99LJpvZqQQFic929ycz4zOzB4HNws1bzGwRcEjGrIj54i8eJXBEpMSUwAHq6uo47thjmbdkCZiRfPVV4scdRyKRiDo0EZEewd2XdKLtI8Aj7Rw7j6zZpMJrn1TAdf8M/LnQOLpECRwRqQLd8Zx294+AI/O0eRPocEYtdz+6o+Nhm3bjLyolcESkxEo+hMrM9jOzB80saWYvmNk/s4tMmtmuZvaYmT1nZrPMbKqZ7ZxxfGsze8DMUuE1njazXboaUywW4/477gBgZb9+65I3sVjeGRlFRKSaKIEjIiJpSuCISIlF0QPnW8B0d78SwMwmAK+a2Wx3f8zMPk+QMT/c3WeaWV/geWAb4PXwGvcAc4G9wy6ZZwJ/MrPx7r6qK0F9eecgP/RxczOnn3++kjciIrIh1cARERGAlpZgVkIzzUooIiUTRRHj24Cb0xvuPp1gur/x4a6rgSnuPjM8vppgXO3fMq4xAUi6e2u4/TSwBbBjV4NKPf00AP033ZTJkyeTTCa7eikREalU6oEjIiKgWQlFJBIlT+C4+0x3XwpgZjVm9l1gFXBf2NvmCOCFrHPecvf5GbseACaZWTrdfQLQCnzalZiSySTXhsWKx+64I4lEgng8riSOiIi0pQSOiIiAhk+JSCQim0bczC4FPiKYTvBwd/+QoBdOf2C4mT0U1r75k5llj2f6d2AO8JGZvQecC1zk7nO6EksqleKqc84JNmpricViJBIJUqlUl+5NREQqVPoDuxI4IiLVTQkcEYlAZLNQufvVZnYNQU2c583sK6yfjvBa4AB3fyeccvAZM9vP3aeGx+8imD5wS2A58A2CXjztMrPTgNMARo0aRVNT07pje+21F70ffxyAuc3NvNXUhJmx1157tWnXUyxbtqxHxl0o3V/PVcn3JlVCPXBERASUwBGRSEQ6jbi7O/B7MzsOuB5oCA/9zt3fCds8YmZ/JeipMzUsevxvQL27LwMws8eABWZ2iLu/1M7Puh24HWC77bbz+vr6tg1efRWAsTvswNjsYz1MU1MTG9xfBdH99VyVfG9SJZTAERERUAJHRCIRxTTifXPsngnsBHwYbn+Qdfw94HPh68+H63fTB929GZhH0BOnaxYuDNa1tV2+hIiIVDglcEREBJTAEZFIRFED51WzDUq1bwZ8GNaweQcYm3V8U+D98HU6ybOujZn1AkYBK7oc1aJFwXrYsC5fQkREKpwSOCIiAkrgiEgkokjgDAZ+kN4wsz2BY4DfhLuuB75tZiMyjn8Z+El4/G/AG8A5YeIG4HtAP+DBLkelHjgiIpKPEjgiIgJK4IhIJKKogXMx8B0zOx5oAQYQzCI1GcDdf2VmmwDPmdkSoBdwjLs/Fx5fY2ZfBW4EXjGzteF1v+7ur3Y5qnQPHCVwRESkPUrgiIgIKIEjIpEoeQLH3acAU/K0uRm4uYPj7wHxogamIVQiIpKPEjgiIgLr3w8GDYo2DhGpKlEMoSpPGkIlIiL5KIEjIiKw/v1g6NBo4xCRqlL1CZzGxkaSyWSbIVTJZJLGxsZoAxMRkfKT/sCuLvMiItVtyZJgrYS+iJRQ1Sdw6urqiMfjtCxYAMDzr71GPB6nrq4u4shERKTsqAeOiIjA+gTOkCHRxiEiVaXqEzixWIz77rmHXqtWsbamhmNOPJFEIkEsFos6NBERKSdr1sCqVVBTAwMGRB2NiIhESQkcEYlA1SdwAOonTABgQWsrp59xhpI3IiKyoczeN2bRxiIiItFKvycogSMiJaQEDvDKn/8MQM3w4UyePDmoiSMiIpIpPWWshk+JiIh64IhIBKo+gZNMJvnvM88EYOT48SQSCeLxuJI4IiLSlurfiIhImooYi0gEqj6Bk0qluOGii4KNYcOIxWIkEglSqVS0gYmISHnRt60iIpKm9wQRiUDvqAOIWkNDA/zxj8FGbS0QFDZWHRwREWlj8eJgPXRotHGIiEj0lMARkQhUfQ8cABYuDNZhAkdERGQD6QSOPqyLiFS3NWuguRl69dKshCJSUkrgACxaFKyHDYs2DhERKV/qgSMiItB2BirNSigiJaQEDqgHjoiI5JfuLq8EjohIdVMBYxGJiBI4sL4HjhI4IiLSHvXAERERUP0bEYmMEjigIVQiIpKfEjgiIgJK4IhIZKo6gdPY2EgymWwzhCqZTNLY2BhtYCIiUn6UwBEREVACR0QiU9UJnLq6OuLxOEvmzAHg72+/TTwep66uLuLIRESk7GgWKhERASVwRCQyVZ3AicViJBIJPv3XvwD43qWXkkgkiMViEUcmIiJlRz1wREQE1s9CpSLGIlJiVZ3AgSCJs2m/fgBMOuUUJW9ERCQ3zUIlIiKgHjgiEpmqT+Akn3uOfitXAnDr3XcHNXFERESyqQeOiIiAEjgiEpmqTuAkk0lOicfpDTBoEFPuu494PK4kjoiIbEgJHBERgfXvBxpCJSIlVtUJnFQqxZSf/SzYqK1dVxMnlUpFG5iIiJQXdyVwREQkMG9esB49Oto4RKTq9I46gCg1NDTAP/8ZbNTWAkFNHNXBERGRNpqbYc0a6NsXwrppIiJSpebODdZjx0Ybh4hUnarugQPAwoXBetiwaOMQEZHypQLGIiKSpgSOiERECZxFi4J12ANHRERkAxo+JSIiaUrgiEhElMBJJ3DUA0dERNqjBI6IiAAsXw5LlwbDafX3g4iUmBI46SFU6oEjIiLtUQJHREQAPv44WI8ZA2bRxiIiVUcJHA2hEhGRfNLd5TfdNNo4REQkWho+JSIRqtoETmNjI8lkss0QqmQySWNjY7SBiYhI+fnww2C9+ebRxiEiItFSAkdEIlS1CZy6ujri8ThzZ80CYNbcucTjcerq6iKOTEREys5HHwXrzTaLNg4REYlWOoEzZky0cYhIVaraBE4sFiORSPCPZBKA63/xCxKJBLFYLOLIRESk7KgHjoiIgHrgiEikqjaBA0ESZ4fw4bv/UUcpeSMiIrkpgSMiIqAEjohEqqoTOMlkkuUffADA7x59NKiJIyIikk1DqEREBGDevGCtIVQiEoGqTeAkk0ni8TjjR4wA4Nqf/5x4PK4kjoiItNXauv4bVyVwRESqW+Y04iIiJVa1CZxUKkUikaB/czMAXzz8cBKJBKlUKuLIRESkrMyfD2vXwsiR0K9f1NGIiEiU0j1wNt002jhEpCr1jjqAqDQ0NEBLCyxZAmYweDCxWEx1cEREpC3VvxEREQh6ZM6fH7wePTraWESkKlVtDxwAFi8O1kOHQk11/6cQESkVMzvSzFJm9oKZTTWziXnaDzGzu8JzppnZDWbWO+P4ODP7qZm9GF7zVTM7rWgBq/6NiFSZYj+nwzZjzexhM3s5bHNejutsb2bPhc/zV83sxBxtvhhe4wUz+5uZHZZ1/GQze9PMmrKWoV3977HOggXBF8C1teqRKSKRqNoeOAAsXBishw2LNg4RkSphZnsCU4C93H2mmX0NeNLMdnL3j9s57S5gubvXmVlfoAm4Erg4PH4GsDVwoLuvNrPdgL+a2Vp3v2Ojg1YCR0SqSHc8p82sBngUeMLdLwuTKdPMbIm73x622QR4CrjC3X9jZlsAr5nZfHd/MmyzJfAEcIy7P2NmuwMvmtkX3f2fGfFc7+53FfE/S0D1b0QkYtXd7WTRomBdWxttHCIi1eMi4El3nwng7o8B84Dv5WpsZjsDk4DGsP1q4BbgrPDDPsAc4MbwGO4+A3gWOKEoEWvKWBGpLt3xnD4cmAD8KGyzGPglcKmZWdjmZGAAcGfY5gPgj8ClGT/uTGC2uz8TtvkH8ALQsLE3XRDVvxGRiFVtAqexsZHpTU3BRtgDJ5lM0tjYGF1QIiKV7yDg71n7UsDBHbRvBl7Paj8A2BfA3W919xeyzlsJFKd/uxI4IlJdiv6cDtvMdvdFWW22BLbLaDPN3Vuz2nzJzAZ2MbbiUgJHRCJWtQmcuro6brviimCjtnbdtOJ1dXXRBiYiUqHMbDgwFJibdehjYFw7p40D5rm7Z7VPH8v1cwzYG0h0PdoMSuCISJXoxuf0uHauWUibGmCbPG02zUjyAHwtrKXzkpndb2bF+YCfTuBoCJWIRKRqEzixWIyG04Ial6++8w7xeJxEIqFZqEREus+gcL0qa/8qYCC5DWqnPR2c8+/AJ8DkzgaYUzqBoxo4IlL5uus5Xco284C3gcPdfV/gIeBlM/tCO/EXLl0DRz1wRCQiVV3EePswe56cPp3TL7tMyRsRke61PFxnD23qB6zo4Jxc7cl1jpntQVAL4SB3X9NeIOEsVacBjBo1iqb0kNocvvjuu/QDXn73XVatXNluu3K0bNmyDu+tp9P99WyVfn89VHc9p5cDQwpoU8h1Omzj7k8QFDom3P69mf0ncCFwVHbwnXk/2H7GDMYAby5cyMc98He30v/N6f56tkq/v2Kp6gTOu9Onsw2we309x02eTCwWY//99+fTTz9l0aJFtLS0RB1ilwwdOpRZs2ZFHUa3KZf769WrF7W1tYwcOZIaTUMvkpe7LzCzRUB23/MxwOx2TnsHGG1mltE9P31+m3PMbDvgt8BR7v5+nlhuB24H2G677by+vj53w5aWdTMWfnHSJOjbt6PLlp2mpibavbcKoPvr2Sr9/nqibnxOvwMclnVerja5fm4r8G6eNh+7e3sJpvTPyDkVesHvBwA33ADA9vvvz/Y98He30v/N6f56tkq/v2Kp2gROMpnk/x54gFOBA7/xDRKXX048Hufxxx9n7NixbLPNNvTp04f1hfF7jqVLlzJ48OCow+g25XB/7s6aNWuYN28eH3zwAVtttVWk8Yj0IM+w4YfoicCD7bR/GrgZ2In1BTInEhQpnppuZGZbA/cD307PnGJmp6Wnp+2yTz8NkjgjRvS45I2ISBd1x3P6aeD7ZlabUch4IjDH3d/KaPNfZlaTUch4IvCXjOTM00B2l/mJYcwAmNl1wFVZCZ3NgQ4T+wXRNOIiErGq7TaQSqU4fJ99go1hw4jFYiQSCVpbW9l8883p27dvj0zeSGmYGX379mXzzTdn+fLl+U8QkbTrgUPNbAcAMzscGAv8LNy+2sxeN7P+AO7+BkH9gvPD430IppG9xd2XhfvGEnx4/zVQY2YTzWwiwZS0G0cFjEWk+hT9OU0wpGk6cHbYZgjBsKWrM37u3QSzWZ0UttkcOC6rzW3AeDM7IGyzG7Af4RTmoS8S1EIjbLM/QdLn513+L5KmWahEJGJV2wOnoaEB0mPsamuBoLDxrFmzNBxGCqbfFZHOcfdXzewE4LdmthLoBRzq7unZSPoTFKLMzKCfDPzEzFJh+2eAyzOOXwmMB27J+nHvbXTASuCISJXpjue0u7ea2ZHAL8zs5fAat2f2knT3ZWZ2CDDZzE4lKFh8trs/mdFmTphQ+pGZrSGYqvxYd/9nRiw3EPT2OZbgy+rewHHu/thG/YdpbYX584PXo0dv1KVERLqqahM4ACwKe3CGCRwREel+7v4I8Eg7x84Dzsvat4TwG9l2zvku8N1ixriOEjgiUoWK/ZwO23wEHJmnzZtsOEQqu81fCHrZtHe8TRHjolmwIBhSW1sL/bLrKIuIlEZ1dx8IC1MybFi0cYiISHlSAkdERED1b0SkLFRlAmfBggUkk8k2PXCSySSNjY0dnygiItVFCRwREQHVvxGRslCVCZz+/fsTj8dpWbAAgOdnzCAej1NXVxdxZJXn1ltvZfvtt2ebbbbp1HlNTU3cddddbfbdfPPNHHXUUZHHJiJVRAkcEREBJXBEpCxUZQJn4MCB3H/PPfRavZq1vXpxzIknkkgkiMU6HHJb1p566inMDDNjyJAh615nLr/73e9KHteZZ57JhRde2OnzciVwxowZw7hx44oUWddjE5EqogSOiIiAEjgiUhaqtojx/rvtBsBnLS2cfsYZPTp5A/DlL3+ZueEfGsuWLeOAAw4gHo9z3nnra8wNHz48qvCK4vjjj+f4449n6dKlUYciItVCCRwREQHVwBGRslCVPXAA/vpkMCNhr+HDmTx5clATpwgaGxs3uFYp6usMGDCAMWPGMGbMGPr3788HH3zAPvvss27fmDFj6Nu37wbnPfDAA+yzzz7EYjH23ntvzj77bFatWgXAvffey4QJEzAzHnvsMY488ki23XZbfvCDHxR8jVz23XdfzIzdd9+dp59+GoDvfOc7DB06lK997WvceOON3HXXXUyfPp36+nrq6+u56qqr1sWSae3atVx88cXssssu7LfffkycOJFrr722y7GJiKzjrgSOiIgE1ANHRMpAVSZwVqxYwX+feSYAI7fdlkQiQTweL0oSp66urs21kslkyevrzJgxA3dnzz33zNv2vvvu44ILLiCZTPLSSy8xa9YsbrjhBgC++c1vcssttwAwc+ZMHnnkEaZOncqvfvWrNv+tOrpGLi+++CLjxo0jHo9z8MEHA0F9m5122onHHnuM888/n5NPPpkJEybQ1NREU1MTl1122bpYMl1++eX86U9/4uWXX+aFF17gl7/8JZdffnmXYxMRWWfRIli1CgYPhkGDoo5GRESipASOiJSBqkzgNDc3c3269kltLbFYjEQiQSqV2uhrp68Vj8e5/PLLicfjJa+vM336dEaMGMFWW22Vt+1NN93EEUccAUCfPn2YNGkSTzzxxAbtjj/+eABGjx7NjjvuyPTp0zt9jTQz46STTuLOO+9ct+/ee+8lHo8XdoOhlStXcvPNN3P66aezySabALDnnnty0UUXdTk2EZF11PtGRETS0kOolMARkQhVZQ2c4cOHs9vWWwcbw4YBQeIlFosxa9asjb5+LBbj9NNP56qrruKyyy4reX2d6dOns8ceexTUdvHixZx//vm899579O3bl48//jjnEKPNNtts3evBgwezZMmSTl8j08knn8wVV1zBCy+8wH777cc999zD/fffX+AdBt5++22am5sZP358m/1XXXXVRsUmIgKsT+BkPP9ERKRKpRM4SuqLSISqsgcOAAsXBuva2qJfOplMMnnyZC677LKi1tcp1IwZMwoaPrV8+XIOOOAAhg0bxosvvkhTUxMXXngh7r5B2169eq17bWbr2nTmGpm22morDjzwQO644w5mzZrFqFGjGDlyZKfuM9/P6GpsIiIAfPRRsNaHdRGR6tbSAvPnB6/VA0dEIlSVCZwVK1YEtQ0AamuLWmQ4XfMmkUhw5ZVXFrW+TiGWLVvG7NmzC+qB8+abbzJ//nyOPfbYdQma1atXd+rnbcw1TjnlFO6//35uueUWTjnllDbHamrW/2quXr06Z6+Zbbfdlv79+/P222+32f+Tn/yEBQsWFOX+RKSKaQiViIgAfPIJtLbCyJHQp0/U0YhIFavKBM7cuXN5/7XXAJi9YEFRiwynUqk2NW+KWV+nEP/4xz9obW0tKIGzzTbbMGDAAJ599lkAWlpaePTRRzv18zbmGpMmTaJPnz48/vjjHHrooW2OjR49mgULFgDw4x//mF//+tcbnD9gwADOPvtsJk+ezLJly4CgQPKvfvUrhg8fXpT7E5Eqlu6BoyFUIiLVTVOIi0iZKHkNHDPbDzgLGAb0Cte/dvdbM9rsClwLDATGAguA/3D31zPa1AOXENzDFsB7wInuPjdfDGPHjuX5//kfTgR+NmUKiUceKVqdmoaGhg32pevrlMK0adMYOnQo48aNy9t2xIgRTJkyhQsuuICnnnqKzTffnFGjRvHxxx9TX1/P+eefzyWXXAJAfX09Dz74IOeeey7Tp0/n3XffpX///lx44YUdXmPSpElMnjx53fZjjz22ruBw//79+eY3v8mIESPaDNECOOaYY7j77rvZZ5996NevHyeddBJnnXUWAIcffjh33nkn48eP58orr8Td+cIXvsCIESMYNGgQDz30UEH311FsIiJK4IiICKAemSJSNqIoYvwtYLq7XwlgZhOAV81strs/ZmafBx4BDnf3mWbWF3ge2AZ4PTxnX+CXQMzdPzKzIcAMYASQN4EzcOBAdh83DmbNYu9DDil5keHudOaZZ3LqqadiZgW1P+qoozjqqKPa7LvjjjvWvf7qV7/a5tidd97ZZvaoQq5xZjhley5z587lvPPO22D/yJEjefnll9vsO+mkkwBYunQpgwcPBqB3795cd911XHfddTmvvzGxiUiVSydwNt882jhERCRa6oEjImUiigTObcCc9Ia7TzezRUB6KqGrgSnuPjM8vtrMTgYWZlzjx8CP3P2jsM0SMzuaoBdOXitWrOCzefMAuO+ZZxidTFZUEqfcJRIJJkyYQN++fVm1atUGs0iJiJSFDz8M1uqBIyJS3TQDlYiUiZLXwHH3me6+FMDMaszsu8Aq4L6wt80RwAtZ554YRGwAABxVSURBVLzl7vPDc7YE6nK0+Uf6uvnMnTuX3T/3OQAuvP76khYZFpg/fz4HH3wwxx57bLs9Z0REIuWuIVQiIhJID6FSDxwRiVhkRYzN7FLgI+BsguFSHxL0wukPDDezh8xsqpn9ycwyu8fsEq7HmdkTZvYXM3swHIpVkLFjxzKkpQWAiQcdVNIiwwLf//73ee+990ilUuy+++5RhyMisqEFC2D1aqithYEDo45GRESipCFUIlImohhCBYC7X21m1xDUxHnezL4CpAu3XAsc4O7vmNmRwDNmtp+7TyUoegxwFXCYu39iZj8AXjaznd19dq6fZ2anAacBjBo1ijVLltAHmDpzJjZ0KHvttRdNTU0MHTqUpUsL6shTtlpaWnr8PXSk3O6vubmZpqamol1v2bJlRb1eOanke5MKo+FTIiKSNies/qCaaCISscgSOADu7sDvzew44HogPYXT79z9nbDNI2b2V4KeOlOBlrDNz939k/D1T4ELgdOBDSviBte5HbgdYMstt/Q+n30GwD6HH07ypZdIpVI0NDQwa9asdQVye6rMIr+VqNzur3///kXtSdTU1ER9fX3RrldOKvne5P+3d//RVZV3vsff34RAwm9JhaBXJqIgqNQIWH/gj4TiZUYLt2Cl2K654xp6qc7otVBAAUspFpUODFaWg9p2hkHHUmy1VxRGsEMqCs5CBJVfKkipApFWSyQQID+e+8feJ56c/D7nJPucfT6vtc7a5+zz7J3vl5PsL3ny7OcJGd0+JSIi4N1Su2eP9/yii4KNRUQyXoffQuXPcxNrN3AJ4P/Jk49j3j8InO8/b9DG7wj6Y1SbZn1y+DDU1kK3bmx87TUmTZrEFVdc0doUREQk7LQClYiIgHf7VHk5nHUW9O0bdDQikuGCmANnmzVc4/oc4JBz7iPgQyB2ivd+eB00AG8CJ1po06xz+vUDoDw7m0mTJrF69WqtQiUiIl/Y79+NO2BAsHGIiEiwIqNvhg6FBr/CiIh0rCA6cHoAd0demNkI4BvAL/xdDwP/28zyo96/DlgG4JyrBH4K3GFmeX6b/4XXCfRkawLI6+wNAvrj559z5513qvNGRETq27nT2156abBxiIhIsKI7cEREAhbEHDhzgO+Y2W1489nkAd8HlgM4535mZt2B/zKzz4Fs4BvOuf+KOsc8vAmP/9vMjgG1wBjn3J7WBHDm5EkAegwYwPLlyykpKVEnjoiIfOHdd72tOnBERDLb7t3eVh04IpICOrwDxzn3DPBMC22WAkubeb8GryNoTjwxHPMnMC687DJWT5um26hEROQLFRVw4ADk5MCgQUFHIyIiQfrgA2+rCYxFJAUEcQtV4PJ79/ae+NuJEyeydevWACMSEZGUsWuXtx061OvEERGRzPXhh972gguCjUNEhICXEQ+K1dYC8NGJExp9IyIi9UU6cC65JNg4REQkWDU1cPCg97ywMNBQREQgQ0fgnCgvB2DVunXqvAmJpUuX8vWvfz1p5/vpT3/KkCFDKFSxFsk8Gi4vIiIAH38M1dXQvz/k5QUdjYhIZnbgdO3SBYBLr702NJ0369evx8wwM3r27Fn3PPrx1FNPBR1muykoKGDgwIFJO98999zDfffdl7TziUga2bfP22r+GxGRzHbggLc9//xg4xAR8WXkLVTVp08DsHbLFnI3bgxFJ851113HkSNHAKioqGD06NFMmjSJGTNm1LXp06dPUOG1u9tuu43bbrst6DBEJAwiI3AuvDDYOEREJFiR+W+S+EdCEZFEZOQInG7+CJyps2YxYcIEvvvd7wYcUeLy8vIoKCigoKCA3NxcPv74Y0aNGlW3r6CggM6dOzd7jl/96lcUFRVhZrz44ouMHz+eQYMGcffdd9e1WbhwIYWFhRQXFwNQXl5OcXExZkZpaWmj5xk3bhznn38+CxcupLy8nClTpjB8+HDGjh3LX/7yl7pz19TUMHv2bIqKiiguLmbMmDHs2LGjQXw9e/Zk3bp1jB8/nvPOO48LLrig7utFq66uZs6cOQwbNozrr7+ekSNH8uCDD9a9/5vf/IZRo0ZRUlLClVdeybRp0zjtd+6JSIZy7osROOrAERHJbBqBIyIpJiNH4EQmMa7u3h3nXMDRJN/bb7+Nc44RI0a06bhvfvOb9OvXj5KSEnbv3s0LL7zA0aNHGTBgABMnTqSkpIS5c+dSVVVV11nTq1cvSktL63WeRJ/n/fffZ82aNbz//vsMGTKEI0eOsGzZMnJzc7nuuut49NFH+eEPfwjA/Pnz2bRpE2+88Qa5ubk8//zzlJSUsH//fvr06VPvvJs3b+aFF17gyJEjTJkyhVmzZjUYSTVv3jzWrl3Lli1b6N69O9u2bePKK69kzhxv9flnn32We++9l/Hjx1NVVcW4ceNYtGgR8+bNS+BfX0TS2iefwIkT0KeP9xARkcylEZkikmIycgROzZkzAExbsIDf/va3PPHEE003NgvmkYAdO3aQn5/PgAED4j5H5Hakvn37cvHFF9cbCdMWkyZNAmDw4MF86UtfoqCggK5du5KVlcU111zD9u3bAaisrGTJkiXcdddd5ObmAjBhwgQ6derE008/3eC8U6ZMAaB///6sXbu2wfuVlZUsXbqUO++8k+7duwMwYsQIZs+eXddm8eLFjBs3DoCcnBwmTJjAunXr4spTREJC/1kXEZGISE3QnGgikiIycgROTlYW1NYy7m//NhTz38TasWMHw4cPT+gc55xzTt3zHj168Pnnn8d1nv79+9c979q1a73X3bp1o9xfEWzfvn1UVlbyk5/8hMcff7yuTe/evTl27FiD85533nnNft19+/Zx6tQpLoz5JeyBBx6oe15eXs7MmTM5ePAgnTt3pqysTLdQiWS6997ztlqBSkQkszmnDhwRSTkZ2YETuYXqsf/4D6ywkOrqambNmtV44zS8xertt9/mlltuSegc2dnZdc/NrN6tZrFzzdTU1LTqPI29jpw3sl20aBE33nhjm+JrTEu3xp04cYLRo0dzyy238PTTT5Odnc2KFSuYP39+i19bREJszx5vO2RIsHGIiEiwjh6F48ehd2/Izw86GhERIENvocoGyMrirtmzmTFjBp06hacfq6Kigv379yc8Aqc5PXr0oKKiou71oUOHEj7noEGDyM3N5b3IX799TzzxBBs2bIj7fPsik5H6li1bxmeffcbevXs5evQot956a11n0Bn/1joRyWB793rboUODjUNERIIVPfomwekNRESSJSM7cABOdu7MQ4sWsXjxYqqrq4MOJ2m2b99ObW1tu3bgFBUVsWfPnroVpH75y18mfM68vDxmzJjBY489xqeffgrAgQMHWLx4McOGDYvrfNOmTWP58uV1nU2bNm3iZz/7GX369KGwsJC8vDx+97vfAd4oojVr1iSch4ikuUgHjkbgiIhktkg9GDw42DhERKKEZ+hJG5WdOsWdM2cyffr0oENJqrfeeotevXoxcODANh/70ksvMXfuXACKi4t57rnn+P73v8+OHTv4wx/+QG5uLvfddx+jR4/m9ttv56qrrmLQoEFMnToVgO9973vcf//95OXlNTjP5MmTKSsr4+GHH66bb2bFihUcO3aMW2+9lWeffZb58+fjnGPUqFH069ePnJwcVq5cSUFBQaPxTZ06lW9961s89dRTLFmypG7/z3/+cy688EIWLFiAc46rrrqK/Px8unXrxvPPPw9Afn4+zzzzDPfeey/r16/n3HPP5eyzz6asrIzi4mImTJjA8uXL616/+OKLdZMhi0hIVVZ6S8ZmZ8MFFwQdjYiIBCmygMdllwUbh4hIFAvjMtotGWnmXigo4LLqambPnl1vDpw9e/YwNM2Hzh8/fpwePXoEHUa7SbX8kv09U1paSnFxcdLOl0rCnBuAmW1zzo0MOg5pm4suusi99957sGULXHMNDBsG77wTdFhJEfafOeWX3sKen2pC+qmrBwDXXguvvw7r10Mr5mdMB2H/mVN+6S3s+SWrJmTsLVTnXHwxs0M4B46IiMTpzTe97Uj9viUiktFqa+Htt73nRUXBxiIiEiVjO3B2HT7MggULuPnmm0M1B46IiMQp0oFzxRXBxiEiIsE6cAAqKqB/fzj77KCjERGpk7FDT7bs3cuZvDymT59OSUlJ0OGIiEjQtm3ztiNGBBuHiIgEa9cubxvHQhoiIu0pY0fgVHTqRFZWFqtWrQo6FBERCdqpU96KI1lZ+g+7iEim27nT2156abBxiIjEyNgOnHP9C/LKlSvZuHFjwNGIiEigdu2Cmhpv+fC8vKCjERGRIL37rrdVB46IpJiM7cD5/Y4dnDlzhsLCQrZu3VrvvUxcmUvio+8VkZDYvt3barlYERGJ3FKrmiAiKSZjO3DKzaiqqqJ37951S4gD5OTkUFlZGWBkkk4qKyvJyckJOgwRSdTmzd72K18JNg4REQnWZ5/BBx9Abq5uqRWRlJOxHTifOkdOTg5f/vKX6+3v27cvhw4d4uTJkxpdIU1yznHy5EkOHTpE3759gw5HRBL1+uvedtSoYOMQEZFgRTr0hw8H/ZFORFJMxq5CdQzo3LkzkydPrre/Z8+eABw+fJiqqqoAIkvcqVOnyM3NDTqMdpMq+eXk5NCvX7+67xkRSU9ZVVXekrE9ekBRUdDhiIhIkF5+2duOGRNsHCIijcjoDpyamhpWrVrVYBnxnj17pvUv5aWlpVx++eVBh9Fuwp6fSNiZ2XjgB0AlkA3c45x7s5n2PYFHgUv89huAuc656qg2/YHHgb5AF+AZ59zi1sTT6cQJ78nf/I3+2ioiQnDXaTMbAvwLkAN0BR5xzj0V0+Zq4J+BKiAXmOec+89E4q/n1Ve97Y03tqq5iEhHytgOnNN5eZyqrOTQoUNBhyIikjHMbATwDPAV59xuM/sa8LKZXeKcK2visBXACefcFWbWGSgFFgBz/HNmAWuAdc65H5hZL+AtM/vcOfdkSzFlReY9++pXE8pNRCQMgrpOm1l3YD3wI+fcL8zsfwDvmNlR59zLfpvzgHXAN5xzr5jZ5cAmM7vaOfduAvF7uTvnrUqYne3dQiUikmIydg6cf33uObp27cqf/vSnoEMREckks4GXnXO7AZxzLwKfAP/YWGMzuxSYAPzEb38GeAT4nv+ffYCbgCJgid+mHHgCuN/MrKWA6kbgXH11vDmJiIRJUNfp24E84N/8Nh8Dq4D7o77cPcB+59wrfpvtwKvArKg2bYo/Wqfjx6Gmxls+vGvXlpqLiHS4zOzAMeOGsWN54IEHyM/PDzoaEZFMMgaIHca+FWhqrPoY4BSwM6Z9HnBtVJv9zrljMW3OAy5qKSCrrYV+/eCSS1qOXkQk/IK6To8B3nLO1ca0ucbMuka1aSm2tsZfp0vkD7ua/0ZEUlRGduC4rCw2lpby0EMPMXPmzKDDERHJCGbWB+gFHIl5qwwY2MRhA4FPXP1lAcui3otsGztndJvmPfIIZGVkSRQRqRPwdbqpNllAYQtt+plZ1zjjr2M1NTB4MMyZ01JTEZFAZOQcONXOMWnSJFavXt1gAmMREWk33fzt6Zj9p/Emq2zqmMbaE3VMa9o0qSYvD2JWJBQRyVBBXqeT0SYvZl90m9bdE3XHHdCnT6uaioh0tIzswHmnthb+/Ocjo0ePPhx0LO3kS8Cfgw6iHSm/9BXm3KAVt+tkOH+yGbrE7O8CnGzmmMbaE3XMCSB26cDYNvWY2VRgqv/ytJntbKxdCIT9Z075pbew55eONSHI63Rrz9Ncm9qYfdFtWlcPpk/fyfTpjTUNg7D/zCm/9Bb2/JJSEzKyAwfY5pwbGXQQ7cXM3lR+6SvM+YU5N/DyCzqGVOac+8zMjgEFMW8VAPubOOxDoK+ZWdTw/Mjx+6Pa/HUj54xuExvLk0Bk5ZPQfl+GOTdQfukuE/ILOoa2Cvg6/WETX7cW+EMLbcqccyeBk22NP1PqASi/dKf80luyaoJu+BcRkY70ChBbnEf6+xuzAW9IfPQMwyOBSuD1qDYXmlnvmDYfOefeSzhiEZHMEtR1egMw3F9yPLrNZr9zJtKmpdjaGr+ISNpQB46IiHSkh4GxZjYUwMxuAvoDj/mvf2xmO80sF8A5twt4Hpjpv5+Dt4zsI865Cv+c64AdwDS/TU+84fA/7qikRERCJKjr9L/jrWb1d36bc4HJMW0exesIGu23uQy4Hn8J89bELyKSzjL1Fqongw6gnSm/9Bbm/MKcG4Q/v4Q557aZ2beBlWZWCWQDY51zkdVIcvEmmrSow24HlpnZVr/9K8C8qHPWmtl44HEz2+Kf40l/WHxrhPlzC3NuoPzSnfJLQUFdp51zFWb2P4HlZvb3eBMWT3POvRzV5iO/Q2aJmVXhjfy51Tn3bhvib05afmZtoPzSm/JLb0nJz+qv+CciIiIiIiIiIqlGt1CJiIiIiIiIiKS4UHbgmNl4M9tqZq+a2etm1uxs1mbW08xW+Me8ZWaLzCwlby9rS25m1s/MHjSz18ys1My2m9nsVM0N2v7ZRR3XzcwOmllpO4eYkHjyM7M7zOz3/jEfmtm/dUSs8YjjZ+8G//tzk5m94f8c9umoeNvKzDqb2UNmVm1mha1onzbXlrAKcz0A1YRmjlNNSAGqCQ3ap9X1JYxUE+q1VU1IMaoJDdqnTU3o0HrgnAvVAxgBVAAX+6+/BnwKFDRzzHPAU/7zzsBm4MGgc0k0N+AuYBvQw399HvAnYEHQuSTrs4s6dgnwF6A06DySmR9wL7AG6OK/vgw4GnQuycgP6A0cB+7yX2cBvwaeDTqXJuItBLbgTbLogMJWHJMW15awPsJcD+LJTzUhtR6qCQ3aqybo0d6fmWpC/faqCSn0UE1o0D5takJH14PAE26Hf8BfA7+J2bcbeKCJ9pf6/9DDovZNAk4C3YPOJ8HcJgGTY/Y9BuwPOpdk5BfVpgh41f+hKQ06jyR+fvl4S3AOjtl/fdC5JCm/Ef7P3tCoff8AlAedSxPxXgpcCBS35uKcTteWsD7CXA/izE81IYUeqgkN2qsm6NHen5lqQv33VBNS6KGa0KB92tSEjq4HYbyFagzwZsy+rcCNzbQ/BeyMaZ8HXJv06BLTptycc6udc6tidlcCXdohtmRo62eHmWUB/wL8I94PQipra3434V2k3o/e6Zx7tR1iS4a25rcL2At8C8DMugITgU/aK8BEOOd2Ouf2teGQdLq2hFWY6wGoJjSgmpBSVBPqS7frSxipJkRRTUg5qgn1pU1N6Oh6EKoOHP+euF7AkZi3yoCBTRw2EPjE+V1fUe0j76WEOHNrzNXA6mTFlSwJ5HcXsMlFLR+ZiuLMbxhw2My+Y2YbzWyzmT1uZme3Z6zxiCc/59wp4KvAaDM7CBzGy/kf2jHUjpQW15awCnM9ANWEZg5VTUgBqgmNSpvrSxipJrSaakIAVBMaCnlNSOjaEqoOHKCbvz0ds/800LWZYxprTzPHBCGe3OoxszHAAGBBEuNKljbnZ2bnAt8BftSOcSVLPJ/fWXhD7G7A652+Ae9+0FIzy2mPIBMQz+fXA9gAbMK7d/RcYCFwqH1C7HDpcm0JqzDXA1BNaEA1IaWoJjSUTteXMFJNaIFqQqBUE2KEvCYkdG0JWwfOCX8bO/SvC949ZU0d01h7mjkmCPHkVsfM/gpvCOF459yxJMeWDPHktwyY7ZxLpc+pKfHkVwPkAPOdc9XOuSpgHnAxMLZdooxfPPlNwetlnu88J4B3gN+bWe/2CbNDpcu1JazCXA9ANaExqgmpQzWhoXS6voSRakIzVBMCp5rQUJhrQkLXllB14DjnPgOOAQUxbxUA+5s47EOgr5lZTHuaOabDxZkbAGbWF/h/wP9xzm1vnwgT09b8/F7ZImCmv/RhKfDXQJH/+qF2DrlN4vz8Ij3MH0ftO+hvz09edImLM7/BQJk/RDLiAHA23l8R0l1aXFvCKsz1AFQTYturJqgmpIG0ub6EkWpC01QTgqea0Kgw14SEri2h6sDxvQLErik/0t/fmA14EwZdEtO+Eng96dElpq25YWZnAS/h9UD/3t83td0iTEyr83POHXfODXTOFUcewH8CO/zXs9s/3DZr6+dX6m/7R+3r52//mLywkqat+R0Czjaz7Kh9kVzT4a8lLUmna0tYhbkegGpCHdUE1YQ0kG7XlzBSTYihmpBSVBPqC3NNSOza0tIyVen2wFty7Dj+kmN4M3R/hr/GPPBjvBmfc6OOeQ74d/95DvAarVyHPZVzA7oDbwAP+d8Ukce2oHNJ1mcXc/wKUnt5wHi+N18DHo16vRR4r6l/g3TKD29Y5Engbv91Nt7EeX8kBZfnjMqzmEaWCEzna0tYH2GuB/Hkp5qQWg/VBNWEVL6+hPGhmqCaoJqQPvmlY03oqHrQiZBxzm0zs28DK82sEu/DHuuci8zsnIs3OVD0kKXbgWVmttVv/wrePYQpJY7c7gGu9B/3dXS8bRXnZ4eZFQGPAEOAXH+Y5D85517qsOBbIc78JuB9b76F1yt7CLjR1R9OmBLamp9z7kMzGwssNLPJ/vuH/GMqOj6D5plZZ2A93gRxAKvM7LBzbqL/Om2vLWEV5noAqgmoJqgmBEg1If2oJqgmoJoQmDDXhI6uB+b3+oiIiIiIiIiISIoK4xw4IiIiIiIiIiKhog4cEREREREREZEUpw4cEREREREREZEUpw4cEREREREREZEUpw4cEREREREREZEUpw4cEREREREREZEUpw4cEREREREREZEUpw4cEREREREREZEUpw4ckUaY2YNm9mjQcYiISLBUD0REJEI1QYKmDhyRxt0ErA06CBERCZzqgYiIRKgmSKDMORd0DCIpxczOAT4A8p1zp4KOR0REgqF6ICIiEaoJkgo0AkdCz8xmmZlr5LGgiUNuAjY2dWE2s2+a2Q7/HF8zszVmdsDM5ppZLzP7hZm9ZWYvm9lZ7ZeZiIi0heqBiIhEqCZIOuoUdAAiHWA5sDLq9Qzg2zH7ot0EvNTUyZxzvzKzT4CNwGDn3DgzGwzsBfoDdwOngE3A/wV+lHAGIiKSDKoHIiISoZogaUcjcCT0nHPHnXNlzrky4O+A24Bi59y+2LZmlgOMofX3tq72v8b7wJ+BMufcSedcLbAZuDwZOYiISOJUD0REJEI1QdKRRuBIxjCz2cBdQIl/MW3M9cBHzrmDrTztkajnJ2NenwB6tTlQERFpV6oHIiISoZog6UQdOJIRzGwucAdwQ2O96lHaNLO8c64mZlfsa2vtuUREpP2pHoiISIRqgqQb3UIloWdmPwC+SxNDImM0e2+riIikL9UDERGJUE2QdKQROBJqfq/6PcB44ISZFfhvHYudQd7MzgfOAV7v2ChFRKS9qR6IiEiEaoKkK3XgSGiZmQGzgJ40vOCOAX4Xs+9mYINzrqqF894MLPSflwITgVVAAXCfmZ3xn98O9DazZ51ztyaUjIiIxE31QEREIlQTJJ2Zcy7oGERSgpmtBX7tnPvXoGMREZHgqB6IiEiEaoKkEs2BI/KFUmBN0EGIiEjgSlE9EBERTymqCZIiNAJHRERERERERCTFaQSOiIiIiIiIiEiKUweOiIiIiIiIiEiKUweOiIiIiIiIiEiKUweOiIiIiIiIiEiKUweOiIiIiIiIiEiKUweOiIiIiIiIiEiKUweOiIiIiIiIiEiK+/+0EUphCYli7QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1152x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHAAAAGgCAYAAADCcJBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXgUVfb/8fcBEhJ2FzYRfohAcAFBibigJrjgBoqjgAgzbuPoqIOMKxlXdGQZFdwGQUUURIwLCihfUSdRVEYjEgFZHBAVUcAVEghbcn5/dKftNEkIENLd4fN6Hp5OV526dSrAreT0rXvN3RERERERERERkdhVI9oJiIiIiIiIiIhI+VTAERERERERERGJcSrgiIiIiIiIiIjEOBVwRERERERERERinAo4IiIiIiIiIiIxTgUcEREREREREZEYF/UCjpklmtlwM9tuZq1L2X+lmc0zsw/M7G0zO7SUmLTgviwz+5+ZvWNmzasifxER2fvM7GQzezXYz79vZgvNbHBEzE7vFyIiUjFm1tvMcoJ97odm1nUn8Q3MbGLwmM/MbKSZ1YqIaW5mr5vZ3GDMTaW008HM/mNmc4J9+qByznmumbmZXbqn+YuIxINaOw/Ze4IFmxeAL4Gapew/D7gf6OTua8zsOmC2mR3h7puDMd2BcUC6u39vZg2Az4EDgB+q5EJERGRvGwDkuvswADPrDMwzsxXuPrMi9wsREakYMzsGmAIc6+6Lzexc4K1gn7qmjMMmAhvdPdXMEoFsYBiQEWyzBjADmOXud5hZQ+AzM9vg7uODMfWA2cA97v60mR0MLDCzde7+VkSOdYH7KjF/EZGYF+0ROPWAQcAzZey/A5gU1tGOAw4ELgmLeQh40N2/B3D3DcAFwDd7JWMREYmGR4DRxW/cPRf4DWgb3FSR+4WIiFTMUOAtd18M4O4zgbXAtaUFm9mRQB9gVDB+KzAGuCFYlAE4G+gMPBiMWU+gr77dzCwYcymQTPB3A3f/DpgK3F7KaYcBYysjfxGReBHVAo67L3L35aXtM7P9gGOAT8PitwG5wOnBmJZAKvB+RLvz3T1vb+UtIiJVy90XF/frZlbDzP4MbAFeqsj9QkREdslphPWpQTmU3aeeBmwGFkXEJwPdw2JWuPtvETEtgZSwmM/cvSgi5gQzq1O8wcy6AMcC4yspfxGRuBDtETjlOST4GvkY1BqgTfDrjsHXNmY2y8w+Cs6R0LlKMhQRkSplZrcD3wNDgLPdfTUVu1+IiEgFmNn+QEN2rU9tA6x1d4+IL95X/FpamxWJqQG0DuZXA3gcuDbifHuSv4hIXIjlAk7d4OuWiO1bgOIK/H7B13uBP7r7CUAWMFeTV4qIVD/ufh/QHPgn8J6ZnUDF7hciIlIxu9On1i0jnrBjKivmOuADd19QTi7hx4W3o3uCiMS1qE5ivBMbg6+1I7bXBjYFvy4Mvv7b3X8Mfv0YcBtwDVDazPZXAVcBJCUlHdOqVavKzDmmFBUVUaNGLNfodl91vjbQ9cW7L7/88id3bxztPKqr4Ceuz5tZf2AEcENwV3n3ix2E3w9o0OAYmjWjfeWnGxOq8/+56nxtoOuLd3F6P6jIz+ClHVNaPGHHbAQaVCCmzHbMrAVwJXB8GXkUtxF+XHg7peav3w+qh+p8baDri3eVdT+I5QLOyuBrs4jtzYAVwa9XB1+/K97p7m5m3/L7kPoSgrPcjwdISUnxZcuWVVrCsSY7O5u0tLRop7FXVOdrA11fvDMzTaJeycwsMTgpZrjFBH6Qr8j9Ygfh9wNLSXHGjWNZNf13WZ3/z1XnawNdX7yLx/uBu/9iZr+xa33qV0ATM7Owx5qKj18RFnNmKW1GxpR23iLga6BfcNsbv897DMBtwaXE73L393Y1f/1+UD1U52sDXV+8q6z7QcyWuNz9VwKTj3Ut3mZmCcBRwDvBTZ8SqLI3jzi8KfBtFaQpIiJVY55F/LQOHASsruD9QkREKu4dwvrUoK6U3ae+TWDC4iMi4guAD8Ni2ppZo4iYVe6+LCzm6OA8N+ExH7n7Jnd/xt07uXta8Z9gzIjg+/d2M38RkbgQswWcoPuAQWbWNPj+z8DPwPMA7l4APAxcbWbJAGZ2HoEf6sualV5EROJPfeD64jdmdgxwIfB0cFO59wsREdklI4CeZnYYgJmdTeAD08eD7+8zs0VmlgTg7l8A04Cbg/sTgMHAGHfPD7Y5i8DqgEOCMQ0IPLZ0X9h5nyWwmtWfgjEtgP4RMXucv4hIvIrqI1RmlgjMBoor8VPN7Ht3vwDA3V83s8bALDPbRKBD7+num8OauRMw4OPgcMki4DR3X1JlFyIiIntbBnClmV1MYP6zZOBGYCxU+H4hIiIV4O7zzOwS4DkzKwBqEuhTi1eNSiIwIXD4yMhLgUfNLCcY/w6Bn9OL2ywys97AE2Y2N9jG+ODjS8Ux+WZ2BjDWzC4nMCHxEHd/KzJHM7uN3x/JKn6E6lR3L6xA/iIicSmqBZzgfAZpO4l5CniqnP2FBH6wz6jU5EREJGa4+xRgyk5iyr1fiIhIxbn7dGB6GftuImKxEHffQHDkTDltfg/03knMUiC9AvmNIDDSpqz9ZeYvIhKvYv0RKhERERERERGRfV4sr0IlUimKior46aef+O233ygsLNz5ATGgYcOGLFlSfZ8CjOfrq1mzJo0aNeLAAw+s1ksdisi+Jxr3S90PRKQyxePP/RUVz/1lRcTz9VXl/UAFHKn2vvvuO8yM1q1bk5CQwI4L2cSevLw86tevH+009pp4vT53Z9u2baxdu5bvvvuOVq1aRTslEZFKE437pe4HIlKZ4vHn/oqK1/6youL1+qr6fqCPC6Ta27hxIy1atCAxMbFadeJS9cyMxMREWrRowcaNG6OdjohIpdL9suJ0PxCJTerHpKpV9f1ABRzZJ2hos1Qm/XsSkepK/duu0fdLJPbo/6VEQ1X9u9O/bhERERERERGRGKcCjoiIiIiIiIhIjFMBR0REREREREQkxqmAIyKV7uGHH6ZDhw60bt26wsdkZ2czceLEHbaPHj2a888/P2p5iYhI/Jg/fz5mxoknnhjtVEREdktV9WNXX301Q4YM2avnkMqnAo6IVLrBgwdz22237dIxZRVwmjVrRps2baKWl4iIxI8nn3ySfv36MW/ePJYsWRLtdEREdllV9GPuzowZMzjvvPP2Svuy96iAIyIx7eKLL+ahhx6KdhoiIhLjCgoKmDJlCtdeey3nnHMOTz/9dIn9P/30E2bG6NGjSU1NJSkpifbt2zN79uwoZSwiUlJV9WM5OTls3ryZ7t27V2q7svepgCNSAaNGjSIrK6vEtqysLEaNGrVXz7s3OtNXXnmFE088kfT0dLp168aQIUPYsmULAC+++CKdO3fGzJg5cya9e/emXbt2XH/99RVuozTdu3fHzOjSpQtvv/02AFdeeSUNGzbk3HPP5V//+hcTJ04kNzeXtLQ00tLSWLlyJZMmTQrlU2z79u1kZGTQsWNHTj75ZLp27cr999+/27mJiEj18PLLL9OoUSO6d+/OwIEDee6559i2bVto//z58wF47LHHGDFiBAsWLKBTp04MGDCAgoKCaKUtIhJSVf3Ya6+9xjnnnEOtWrUqtV3Z+2pFOwGReJCamkrfvn3JzMwkPT2drKys0Pu9KbwzHT9+PC1btiQjI4MBAwawatUqkpOTd7nNl156iVtvvZXevXuzbds2evXqxciRI7nzzjvp168fTZs2JT09ncWLFzN9+nTWrVtHq1atuOCCC0hPT99pG6WZM2cObdu2pW/fvpx++unk5eUxevRoFi9ezMyZMwHYuHEj2dnZZGdnh4475JBDaNmyZei8AHfeeSdvvvkmc+fOpV69esybN49u3bqRkZGxW7mJiEjpLKw/rkqelrZbxz311FMMGDAAM+Occ85h+/btTJ8+nT/84Q8A5ObmUrNmTd58801SUlIAGDlyJG3btmXp0qV06dIFgJkzZzJ8+HC2bNlCYWEhaWlpjBgxgtq1a1fK9YlI1Yqnvqyq+rHXX3+de++9N3TeeO0fZ86cyf/93//x2GOPlRnz9ddf8/nnn4ceF8vKymLevHncdNNNlX6uqqAROCIVkJ6eTmZmJn379uXOO+8sUczZm8I701NPPZX27dszcuRIfv75Z5YuXQoEOpMTTzyRrl270qVLl52OOHnggQfo1asXAAkJCfTp04dZs2btEHfxxRcD0KRJEw4//HByc3N3uY1iZsaf/vQnnnnmmdC2F198kb59++7CdyMwrHT06NFcc8011KtXD4BjjjmGoUOH7nZuIiIS/5YvX87777/PJZdcAkBiYiIXXnghTz31VCgmNzeXXr16hX45KY4LN2nSJO677z5efvllPv30Uz7++GNq1qxJQkJC1VyIiOyzqqofW758OV999RU9e/as1HajYcGCBRx11FHlxrz11lssWrQo9D49PX2XizcVPVdV0AgckQpKT0/nmmuu4d577+WOO+7Y68Ub2HlnOmnSJB5//HGmTZtG8+bN2bp1KxkZGeV2pOvXr+fmm2/mm2++ITExkTVr1pRa8DnooINCX9evX58NGzbschvhLr30Uu655x7ef/99unTpwuTJk3n55Zcr9H0otnz5cjZv3kzbtm1LbA//BGF3chMRkR3t7kiYXZGXl0f9+vX3uJ2nnnqKo446iiOOOCK0beDAgaSnp7Nq1SpatmxJbm4u/fr1K3FcTk4OSUlJpKSksH79em688UY+/vhjmjdvDgTuuQ888MAe5yci0VMVfVll2Fk/1qhRo0rpx1577TVOPfVU6tatG9pW1f3jlClTePjhh9m0aRMHHXQQ06ZNA6BXr16hKRdWrVrF9OnTOfroo0uNr1OnDp9//jl///vfmT9/PjfddBPvvvsuAG+88QaZmZlcfvnlDB06lAMOOICXXnqJ9957j4EDB3L//ffTqFEjrrvuOr799lu2bt3KzJkzOeSQQ3Z6rmjTCByRCsrKymLs2LHccccdjB07doc5cfaG3Nzc0JDFYsWdaZs2bbjxxht54YUXduhIa9Qo/b/2xo0b6dGjB/vttx9z5swhOzub2267DXffIbZmzZqhr80sFLMrbYRr1aoVp556KhMmTGDZsmU0btyYAw88cJe+Hzs7x+7mJiIi8Wv79u08++yzDBw4sMT2k046iYMPPphnnnmGzZs3s2zZMoqKikrEjBkzhv79+1OnTh1mzpzJ8ccfzyGHHFKV6YuIVGk/9vrrr3P++eeH3kejf+zZsycff/wxCxcu5NBDDw3Nkblo0SJatGjB3LlzycjICBV2yos/8sgj6dixI0uWLMHdKSws5K677uK+++7jlFNOoVOnTsyePZvc3FwaNmzIsmXLSElJ4eyzz+aGG25g/vz5fPTRR6EPr3d2rmjTCByRCgif8yY9PZ309PS9/hjVzjrT3elIly5dyrp167joootCBZqtW7fuUl570sZll13Gn//8Z2rUqMFll11WYl940Wnr1q24+w7P07Zr146kpCSWL1/OqaeeGtr+6KOPcskll7By5co9vj4REYkvb7zxBmvWrKFjx44lhskDnHLKKUyYMCH0qMALL7zAqaeeSpMmTbjvvvtYvnx5aD67xYsXl/jhfODAgXz22Wd06tSJqVOnVt0Ficg+pyL9WPGKUXvSj/3444/897//LTEKfuHChXvcbrGyChyzZs2iZcuWofdPP/00L730Elu3bmXVqlWcd9555OXlUVRUxF/+8hcACgsLOeCAA8qM37x5M+4eGknUpk0bVqxYwX/+8x9OPfXU0Pm+/vprWrduDQRGfSYlJTFt2jSOPfbY0O9xDRs2LDe3yHNFkwo4IhWQk5NTolhTPCdOTk7OXivg7KwzffTRR3f5B83WrVuTnJzMu+++S3p6OoWFhcyYMWOX8tqTNvr06cNf//pX3nrrLZ588skS+5o0acIvv/wCwEMPPUT9+vW59tprS8QkJyczZMgQxo4dyyWXXEK9evWYM2cOTz75JNdffz3uvsfXJyIi8aV4md0zzzyzzJjc3FzatWvHXXfdxcUXX8wvv/zCGWecQU5ODs2aNQMC95jw1VYmT57MuHHjWLFixd69ABHZ51WkH1u4cOEe92MzZswgNTWVpk2bhmIqs3+MLD6V5tlnn2Xx4sW8//77JCcn0759ew4//HAWL15Mampqievt27dvmfGLFi0q8bjZsccey3vvvccjjzzCBx98AMB3331Hs2bNQivaFh+zcOFCjj322ArnFnmuaNIjVCIVcMstt+xQqElPT+eWW27Za+cs7kzvueceLr74Yrp06UJeXl6oM41cgWry5MkMHjyYVq1aldnmAQccwJQpU3jppZc49thjufDCC2ncuDFr1qwhLS2NN954gxtuuAGAtLQ0fvnlFy677DJyc3OZOHEiI0aM2GkbAA8//DAjRowIbcvPzwcgKSmJfv36MWDAgBKPaAFceOGF1K1blxNPPJHZs2fTv39/Jk2aVCKf5cuXM2zYMM466yyOO+44TjnlFIYPHx4aXrmz3MrKS0RE4tf06dNx93L/LFiwgI4dO9K/f3++++47Nm3axGuvvUaLFi1C7fTs2ZPMzEzWrVsHBB5pyMrK2uFRZhGRylaRfmzRokV73I9FPj4Fgd85qrJ/XLRoEccffzzJycmMGzeOH3/8kZYtW7JkyZISkwQX99tlxX/++ed06tQpFN+tWzduueUWrrzySho1agTAqlWrSszrWfw9bNq0aajYVFRUxM8//1xubpHniiaNwBGJUeGdaf/+/XfY37NnTwYMGMDgwYNp0qRJqCMtXiKvLOeff/4OHfeECRNCX59zzjkl9j3zzDMlVo+qSBuDBw9m8ODBpZ7/hx9+4Oqrr95h+4EHHsjcuXNLbBs0aBCDBg3aIXb48OEMHz681PYrkpuIiOxbcnNzOeuss8qNSU1NZejQofTo0YPExERq1arFKaecUu4n4iIiVWXhwoWce+655cbsrB878cQTQyvNFqvq/nHQoEGcd955PP/88/To0YOOHTsC8MUXX4TycHfWrVtH06ZNy4xfsGABPXr0CLWbkpJCo0aN+Otf/xradvjhh/PNN9/QsWNHpkyZwsKFCznttNNIT0+nf//+HHHEESQkJPDYY4/RvXv3Cp8rmlTAEYlRO+tM4+kHzczMTDp37kxiYiJbtmzh0EMPjXZKIiKyj3B3Fi5cyK233rrT2Msvv5zLL7+8CrISEak4d2fx4sVkZGTsNLa8fizy6YFo9I+dOnVi5cqVofd33303AP/6179CqxKaGV999VW58Q8//HCJdh977DFGjRpVYsXehg0bMm/evND7Rx55JPT1G2+8UeHcIs8VTSrgiMSginam8fKD5rp16zj99NNp0qQJ48ePj3Y6IiKyDzEzNmzYEO00RER2m5mxevXqUIGjMtuN9/5xxYoVnH322Zxxxhn84Q9/iHY6e50KOCIxqDp0puGuu+46rrvuutD7vLy8KGYjIiIiIiLVwaGHHsqyZcuinUaV0STGIiIiIiIiIiIxTgUcEREREREREZEYpwKOiIiIiIiIiEiMUwFHRERERIDAJPpScfp+iYhIVVIBR0RERERISEigoKAg2mnElYKCAhISEqKdhoiEUWFVoqGq/t2pgCMiIiIiNGnShNWrV7Np0yb9ArQT7s6mTZtYvXo1TZo0iXY6IhKkQrRES1UV9LWMuIiIiIjQoEEDAL7//nu2bdtWJefcvHkzSUlJVXKuypaQkEDTpk1D3zcRib7iQnSLFi1ITk7GzKKdklRz7k5BQQGrV6+madOme/18KuCIiIiICBAo4lRlQSI7O5suXbpU2flEpHqLRiG6qsRzwbsi4vn6qrKgrwKOiIiIiIiIVAtVXYiuKtW94F3dr6+yaA4cEREREREREZEYpwKOiMSt0aNHc/7551dKWw8//DAdOnSgdevWldKexCdN3CoiEmBmvc0sx8zeN7MPzazrTuIbmNnE4DGfmdlIM6sVEdPczF43s7nBmJtKaaeDmf3HzOaY2TwzGxSxv5OZTQruf8/MFpnZvWZWIyzmUjNbambZEX8a7un3RUQkmvQIlYjErWbNmtGmTZtKaWvw4ME0bNiQu+++u1LaExERiVdmdgwwBTjW3Reb2bnAW2Z2hLuvKeOwicBGd081s0QgGxgGZATbrAHMAGa5+x3BYspnZrbB3ccHY+oBs4F73P1pMzsYWGBm69z9reB5zga2ACe7u5tZS2AhsBZ4LCyfEe4+sXK+IyIisUEjcEQkbl188cU89NBD0U5DqhGNvxERAWAo8Ja7LwZw95kECiTXlhZsZkcCfYBRwfitwBjghmBRBgKFl87Ag8GY9cA44Hb7famgS4Fk4JlgzHfAVOD2sNO9CGR4cMiku68CVgBt9/SiRURinQo4IjHsp59+wswYPXo0qampJCUl0b59e2bPnl0p7b/44ot07twZM2PmzJn07t2bdu3acf3114di/vnPf9K6dWvS0tIAWL9+PWlpaZgZ2dnZpbbTq1cvDjnkEP75z3+yfv16rrjiCo4++mh69uzJr7/+WiKHwsJChg4dSufOnUlLS+O0004jNzd3h3ZnzZpF7969admyJWlpaUyaNCm0r9j27dvJyMigY8eOnHzyyXTt2pX7778/tP+VV17hxBNPJD09nW7dujFkyBC2bNlSKd9LERGRauQ04NOIbTnA6eXEbwYWRcQnA93DYla4+28RMS2BlLCYz9y9KCLmBDOrA+DuK919XfHO4OigVgRGAImIVGt6hEokhs2fPx+Axx57jPHjx9OyZUsyMjIYMGAAq1atIjk5eY/a79evH02bNiU9PZ3Fixczffp01q1bR6tWrbjgggtIT0/nH//4B9u2bQsVaxo2bEh2dnaJwkl4O19++SUzZszgyy+/pEOHDvzwww88+uijJCUlcdJJJ/HII4/w97//PXTs3XffzZw5c/jvf/9LUlIS06ZNIz09nRUrVpRo96OPPmL69On88MMPXHHFFQwaNIiWLVuSnp4eauvOO+/kzTffZO7cudSrV4958+bRrVs3MjIyAHjppZe49dZb6d27N9u2baNXr16MHDmSO++8c4++j1J9aASOiOzrzGx/oCHwQ8SuNcBZZRzWBljrJScSWxO2r/i1tDaL9y0Nvn5WSkwNoDWwOCzPK4A7g/v6uXtuxHHnmtkfgcRgGyPdPaeM/EVE4oIKOLJPsmAxoqp5cBRLReXm5lKzZk3efPNNUlICH06NHDmStm3bsnTpUrp06cLMmTMZPnw4W7ZsobCwkLS0NEaMGEHt2rV36VwXX3wxAE2aNOHwww8nNze3RHGkovr27QtA+/btOfDAA2nWrBl16tQB4IQTTggVpQAKCgp48MEHmTBhAklJSQD06dOHq666ismTJ/O3v/0tFHvFFVcA0Lx5c958880dzltQUMDo0aMZM2YM9eoFRmsfc8wxDB06NBTzwAMP0KJFCwASEhLo06cPEydOVAFHQtwdwoqTIiL7oLrB18ghqluAOuUcU1o8YcdUVgwA7v408LSZnQa8amZXuPsrwd1rgeXA3e6+2cwuAeaaWXd3/29k8mZ2FXAVQOPGjUMfWlVH+fn51fb6qvO1ga5PAlTAEYlhubm59OrVK1S8AUhMTAx9PWnSJB5//HGmTZtG8+bN2bp1KxkZGSQkJOzyuQ466KDQ1/Xr12fDhg27lXPz5s1DX9epU6fE+7p167J+/frQ++XLl1NQUMCoUaN44oknQtsbNWrEb7+Fj7CGli1blnve5cuXs3nzZtq2LfkI/L333hv6ev369dx888188803JCYmsmbNGj1CJSIiUtLG4GvkJ0G1gU3lHFNaPGHHbAQaVCBmZ+2U4O7vmNkkYDTwSnDbLGBWWMzzZnY1cBuww/KVwUmUxwOkpKR42i5+4BZPsrOzqa7XV52vDXR9EqACjuyTdnUkTLTk5ubSr1+/EttycnJISkqiTZs29OzZk48//jhUJElMTOSBBx7YrXPVrFkz9LWZlVhO2SJGJBQWFlaondLeh7db/PXIkSM5/fSyHqsvvZ1IO1v+eePGjfTo0YM//OEPTJ48mZo1azJx4kStOiUl6BEqEdnXufsvZvYb0CxiVzMCkwWX5iugiZlZ2GNUxcevCIs5s5Q2I2NKO28R8DWAmSUGJ0kOtxi4zszqu3teGTmuAMpdCl1EJNZpEmORGLV582aWLVtGUVFRie1jxoyhf//+zJw5k+OPP55DDjlkr+dSv3598vPzQ+9Xr15dKe22a9eOpKQkli1bVmL7uHHjePvtt3erreXLl5fY/uijj/LLL7+wdOlS1q1bx0UXXRQqBm3dGvnzn4iIiADvsGOxo2twe2neJjBh8RER8QXAh2Exbc2sUUTMKndfFhZzdHDJ8fCYj9y9eATObDM7MOL8BwEbios3Zja8eNLjMC2Ab8vIX0QkLqiAIxKjFi5cCMALL7zAnDlzWLZsGYMGDWL58uUMHz6cxYsXc+SRR4biBw4cyOGHH07//v0rPZfOnTuzZMmS0ApSL7zwQqW0m5yczE033cTjjz/Ozz//DMDKlSt54IEH6Nix4y63NWTIEMaOHRsqNs2ZM4cnn3yS/fffn9atW5OcnMy7774LBEYRzZgxo1KuQ6oPjcAREQFgBNDTzA4DMLOzgebA48H395nZIjNLAnD3L4BpwM3B/QnAYGCMuxd/AjQLyAWGBGMaEJh35r6w8z5LYDWrPwVjWgD9I2IAbiteetzM2gTbmRC2/3jgiuI3ZnYKkA78e/e+HSIisUGPUInEqNzcXNq1a8ddd93FxRdfzC+//MIZZ5xBTk4OzZo1Izk5mYKCglD85MmTGTduHCtWlDW6eUdvvPEG//jHPwBIS0vj1Vdf5cYbbyQ3N5evv/6apKQkbrvtNnr06MGll17KcccdR7t27bjqqqsAuOGGG7j99ttJTk7eoZ3+/fuzZs0aRowYEZpvZuLEifz222/88Y9/ZNq0aUBgFSp358QTT6Rp06YkJCTw3HPP0axZsx3yu+qqqxgwYAAQmP/nwQcfDO176qmnGDZsGO7OcccdxwEHHEDdunVD5znggHc4R7MAACAASURBVAOYMmUKt956K7Nnz6ZFixY0btyYNWvWkJaWRp8+fRg7dmzo/cyZM0OTIcu+QwUcERFw93nBiX+fM7MCoCbQ092LV41KIjCpcPgz1pcCj5pZTjD+HQKrRBW3WWRmvYEnzGxusI3xwflnimPyzewMYKyZXU5gUuMh7v5W2HlGANcBH5vZFqAe8Cjwr7CYkQQeqbqIwAfWtYD+7j5zj74xIiJRZjubN6I6S0lJ8chHN6qT6jwR1K5c25IlSzjssMP2bkKVLC8vj9tuu40ff/yRzMzMUmNycnIYMGAAH374IU2aNGH79u0MHDiQ8847L7SiVKzKy8ujfv360U5jj5T378rM5rm7nrOPI5aS4owbx+aTT6Z2jeo3OFX3g/il64tvuh/EH/1+EL+q87WBri/eVdb9QCNwRGJUbm4uZ511Vpn7U1NTGTp0KD169CAxMZFatWpxyimncOaZkfMDikhF7csfaoiIiIhIbFMBRyQGuTsLFy7k1ltvLTfu8ssv5/LLL6+irERERERERCRaol7AMbNE4B4Ck561dfevI/ZfCVxDYBb7AuBqd18Rtn8i0IHAhGfFVrr7ZXs3c5G9x8zYsGFDtNMQiRlmdi7wV6A2gTkRfgVudfcFYTF3A+cDv4UdWuDuZQ9li6DxNyIiIiISq6JawDGz1sALwJcEJjuL3H8ecD/Qyd3XmNl1BJYOPMLdwws2/SMLPyIiUq1MBP7m7lMAzGwE8K6ZHenua8PibnD37N09iQo4IiIiIhKroj1TYz1gEPBMGfvvACaFzXg/DjgQuKQKchMRkdjxfnHxJuhBAveDM6KUj4iIiIhIlYpqAcfdF7n78tL2mdl+wDHAp2Hx24Bc4PSqyVBERGKBu18Qsakg+Fq7Us9TmY2JiIiIiFSiaI/AKc8hwdcfIravAdpEbBtqZtlm9qGZPWFmB+399EREJIqOJzD32fSI7ZeH3Q8mmVn7KOQmIiJx6gdg5k8/RTsNEZFSxXIBp27wdUvE9i1AnbD3XwIfAD2ANKAI+MTMGu3tBCV+aGlgqUz69xRdZmYEHrG93d3Xhe36FvgcOA3oDiwG5pnZITu2Ujr93YqI7NvygF6LFkU7DRGRUkV9FapybAy+Rg6Prw1sKn7j7veH7Ssys5uAy4FLgTGRjZrZVcBVAI0bNyY7O7vyMo4x+fn51fb6duXaGjRowM8//0zt2pX6pMVeVVhYSF5eXrTT2Gvi/fq2bNlCQUFBtf3/FQfuB75x9wfDN7r7hPD3wYmOrwYGAzdENhJ+P6B9YKDO+x98UOITgupC94P4pesTERGRYrFcwFkZfG0Wsb0ZsIIyuPsmM1sDtC1j/3hgPEBKSoqnpaXteaYxKjs7m+p6fbtybRs2bGDt2rW0aNGC5ORkAh/ex7a8vDzq168f7TT2mni9PnenoKCAX3/9lbZt29KgQYNop7TPMbMbgMOAC3cW6+5uZiupwP3AUlIc4KTu3alfK5ZvjbtH94P4pesTERGRYjH7U6q7/2pmnwJdgakAZpYAHAU8VxxnZg+7++Cw9wlAEwJD6UVCv2R///33bNu2LcrZVMzmzZtJSkqKdhp7TTxfX0JCAk2bNlXxJgrM7ErgbKCXu283szZAG3d/J7i/xP0gqAXwdkXPoQeoRERERCRWxWwBJ+g+YLyZ/cvd1wJ/Bn4Gng+LudrMJrl78WpVtwJbgSmIBDVo0CCufuHOzs6mS5cu0U5jr6nu1yeVz8z6A/8g8Hhsx+BIumOA5sA7wbDeZvauu08PHjMQaA08WdX5ioiIiIhUtqgWcMwsEZgNFE84PNXMvi9eLtbdXzezxsAsM9tEYMWRnu6+OayZm4DRZrYdSAZ+BdLc/bsquxAREdnbJhG4Z2VHbL8n7Ot/ADeY2d+BRGA7cIa7z6/oSTQCR0RERERiVVQLOO6+lcDKUeXFPAU8Vc7+R4FHKzczERGJJe6eUIGYKezh6EutQiUiIiIisSqWlxEXERERERERERFUwBEREQnR+BsRERERiVUq4IiIiIiIiIiIxDgVcERERII0AkdEREREYpUKOCIiIkEq4IiIiIhIrFIBR0REREREREQkxqmAIyIiEqRlxEVEREQkVqmAIyIiIiIiIiIS41TAERERCdL4GxERERGJVSrgiIiIBKmAIyIiIiKxSgUcEREREREREZEYpwKOiIhIkEbgiIiIiEisUgFHRERERERERCTGqYAjIiISpGXERURERCRWqYAjIiISpPKNiIiIiMQqFXBERERERERERGKcCjgiIiJBGoEjIiIiIrFKBRwRERERERERkRinAo6IiEiQRuCIiASYWW8zyzGz983sQzPrupP4BmY2MXjMZ2Y20sxqRcQ0N7PXzWxuMOamUtrpYGb/MbM5ZjbPzAZF7O9kZpOC+98zs0Vmdq+Z1YiI26X8RUTiQa2dh4iIiOwbtAqViAiY2THAFOBYd19sZucCb5nZEe6+pozDJgIb3T3VzBKBbGAYkBFsswYwA5jl7neYWUPgMzPb4O7jgzH1gNnAPe7+tJkdDCwws3Xu/lbwPGcDW4CT3d3NrCWwEFgLPLYH+YuIxDyNwBERERERkXBDgbfcfTGAu88kUCC5trRgMzsS6AOMCsZvBcYANwSLMhAovHQGHgzGrAfGAbebmQVjLgWSgWeCMd8BU4Hbw073IpDhwYq7u68CVgBtdzd/EZF4oQKOiIhIkMbfiIgAcBrwacS2HOD0cuI3A4si4pOB7mExK9z9t4iYlkBKWMxn7l4UEXOCmdUBcPeV7r6ueGdwdE0rAiOAdjd/EZG4oAKOiIiIiIgAYGb7Aw2BHyJ2rQHalHFYG2Ctl3wOdU3YvuLX0tqsSEwNoHVEnleY2TfAWKCfu+fuQf4iInFBc+CIiIgEaQSOiAh1g69bIrZvAeqUc0xp8YQdU1kxALj708DTZnYa8KqZXeHur+xO/mZ2FXAVAO3bA5CdnV1aaNzLz8/XtcUpXZ+ACjgiIiIhKuCIiLAx+Fo7YnttYFM5x5QWT9gxG4EGFYjZWTsluPs7ZjYJGA28sjv5BydRDkyknJLiAGlpaaWFxr3s7GxdW5zS9QnoESoREREREQly91+A34BmEbuaEZgsuDRfAU3CJiMujifsmK/KaLMiMUXA1wDBFa4iLQZamln93cxfRCQuqIAjIiISpGXERUQAeAfoGrGta3B7ad4mMGHxERHxBcCHYTFtzaxRRMwqd18WFnN0cMnx8JiP3L149MxsMzsw4vwHARvcPW838xcRiQsq4IiIiASpfCMiAsAIoKeZHQZgZmcDzYHHg+/vM7NFZpYE4O5fANOAm4P7E4DBwBh3zw+2OQvIBYYEYxoQmHfmvrDzPktgNas/BWNaAP0jYgBuKx7tY2Ztgu1MqGj+IiLxSnPgiIhUop+2bo12CiIiInvE3eeZ2SXAc2ZWANQEerp78apRSQQmBA5/ZOpS4FEzywnGvwPcGdZmkZn1Bp4ws7nBNsYH558pjsk3szOAsWZ2OYEJiYe4+1th5xkBXAd8bGZbgHrAo8C/diF/EZG4pAKOiMhucHe+3ryZ+fn55ObnMz8/n/l5eaxWASeuaQSOiEiAu08Hppex7ybgpohtGwiOnCmnze+B3juJWQqkl7P//4D/K6+NYFyZ+YuIxCsVcEREdmJbURFLN20KFGmChZrc/HzWFxbuEFunRo0yl+gQERERERHZXSrgiEi1NWrUKFJTU0lP//2DvKysLHJycrjllltKPWZjYSELigs1wWLNoo0b2VLK5LaNExLoUq9e4E/9+nSuV4+2ycnqWOOYRuCIiIiISKzS7xkiUi2MGjWKV155hZUrV3LooYdy//33U6tWLc4880waNmxIUlISZ511Fq+++iqZmZkA/LxtG/Pz8n4v1uTn8+WmTRSV0n6bpKQShZou9erRPDGRkiumSrzTKlQiIiIiEqtUwBGRuFQ8uiYnJ4cVK1aQkpLCggUL2Lx5Mz/++COnnXYaZkZhYSE//vgjNZo3Z/LKlVyYmcmYAw/kT3PnsmrLlh3arQl0rFt3h5E1DWupuxQRERERkejRbyQiEhfCCzapqamkpqbSp08fTjrpJLKysti2bRu1atUiISGBbfXrU3TkkXDYYdCuHbRtS1HDhmwCngP4+WcgMF/NUcWFmmCx5og6dUiqWTOalypRpPE3IiIiIhKrVMARkZgVPodNamoqffv25aKLLmLYsGEMGzYMd+c/2dlsbdmS7SkpbO/UiaLDDoPmzXdoK3nrVrYvXcoFHTty3uGH06VePdrVqUNNPQIlYT5Yv552depEOw0RERERkR2ogCMiMaW0os3QoUPZvn07Q4cO5cabbuL4fv248f33aTVmDN/uvz80bAjw+9w1GzfC4sWBP19+Sa2vv2bm5MlYx4707duXv2Rm0iG9zBVKZR92+bJlXFZKAVBEREREJNpUwBGRqIpcKar40ah+/foxbtw4bhs6lBsffJDjrrmG+Vu2kDxzJnODIyS+DbZRJz+fTXPnwqJF8MUXsHIltWrUwN0pLCxkO3DO2Wfz5ptvkpmZSU5OTomVqURERERERGKdCjgiUmWKizXhKzfVqlWLXr16MWPGjFBRpahOHSavWsUnU6aw4OCD4fnn+W9YO0mbNrF57lxqLVxIrYULYe1aErZupbCwkOTkZAqA2rVrM2zYMLKysvj8888BQsuHq3gjIiIiIiLxRgUcEakyxY9EZWRkkJaWRlZWFsOHD+fuYcPok5FB5z//mQ+3baPo+ecpMiM3eJzl5dHy55/59vXX6ZeSwjtPP82p3boxZ84cTjrpJN5ZvZoRI0bQpUuX0CTHU6dOZfv27cyYMSOq1yzxZ2tREYk1akQ7DRERERGRElTAEZG9IvLRqGIXXHAB99xzD99u3MhTn39OamYmwxMSWH/00bwXjKnlTs1FiziyoID5Tz7JqKuvpmj7dmqddBJ33HEH9957L3//+9/JysoiJyeHG2+8MfRYVPH5NMpGdld+YSH7q4AjIiIiIjFGBRwR2SuKR9tkZmaSnp7OO1lZXHjnnZw1bBg1evZkzP77Q/fuZAFs306NtWs5ets2vnj2WRIWLuS1F14gJyeHgVdfzfDhw0PtFI+yAVSwkb1iY2Eh+yckRDsNEREREZESVMARkT1W1mibc/v25byHHqL1mjUsqlsXv/depgLsvz8JhYWQm8s5TZrw3qhRvPzII/RIT+cvc+Yw9ZNPALjlllsAQkWb4oKNijWyN20sLIx2CiIiIiIiO9AYcRGpsFGjRpGVlVViW1ZWFitWrKBv375kZWXxVUEB12Vl0XPhQiZfeCF5N97IwubN8QYNOMidpJkzuXr5cvLS03nr6KOZffXV3H7ZZfQIFmXGjRvHa6+9FhplA4HRNcXFHJG9LV8FHBGRfZ67RzsFEZEdaASOiFRY5GNRWVlZXNS/P3dNncqG/v05/bvvKPz4YzCDTp2o4U6txYs5JTGReY8+yjnHHcfF/ftjZtSuUYP09HRmzpxZolgDaJSNRNXGoqJopyAiIlHmgO00SkSkamkEjojsoKyRNjk5OWRmZnLRgAFcMmYMZ7/9NkVTp/I3M6aaUdiyJeTnc/jatWS40+jyy5l92GG8c+WVvDpmDNNefXWHc2l0jZhZk2jnEK54BE6Ruz6BFRHZR6n3F5FYpAKOiOygeKRNcREnKyuLiwYNoiA1lQnNmpH/3HNM6dyZzWecwa9mHJKUxB/caXDPPWTk5LDuuuv4aepUXp4wocQkw5mZmTuMthGBwNRIseLNn3/mzpUrafjBB5ySm6sijojIPkh9v4jEIj1CJSI7KC62XHjZZZx0yy3MysvDJk3ibjNYuxYSEmicn0/+rFk8fOGFHFpQQL++fXkt+GjVaWlp9O3bl/79++/Qbnp6OtnZ2dG5MIkaM2sAjAbOBJpFOZ1y/fv770Nfz1m/nrkbNnBCw4ZRzEhEREREJAZG4JhZopkNN7PtZta6lP1Xmtk8M/vAzN42s0PLaesVM1O5XKQCynpM6o6HHuKJ1asZsf/+/DZhAq8ffjhbu3VjixmHuVNn0iSec2fduefyxoUXktG3Ly9OnRqaFwc02kZKNQYoBC4DFgA9gLOAccCjOzvYzM41szfN7F0z+6+ZzTKzTqXEVfieUVEnz5/Pu7/+uqfNiIhIHNEvFCISi6JawAkWbN4DDgJqlrL/POB+4Bx37w68Dsw2s6RSYs8l8AuBiFRA+GNSP27dyt+zsuj5xRfc36UL1/zvf8z+9VeK3Dnkl1+o+9RTvOjOpTk5zBw4kEERhZpDDz10h0mHNbeNROjg7le5+2zgV3d/z91nu/tfgVYVOH4iMNndT3X344DPgXfNrGlxwK7cMyoiJTkZCFSdLlm8mCINpxcR2WeoxxeRWBTtETj1gEHAM2XsvwOY5O5rgu/HAQcCl4QHmVld4J/AyL2Up0hcKmuUzahRoziqe3cuzcyk54IFNP3gA0abse3II6lVowbHuVPv8ceZVqMGX11wATOuuIJr+/YlNTVVhRrZXZvDvq5tZglh79tU4Pj33X1K2PsHCdwPzgjbVqF7RkWdvv/+zOncGYC127axcOPG3WlGRETikAo4IhKLolrAcfdF7r68tH1mth9wDPBpWPw2IBc4PSL8XmAssAYRCYmcjHhGVha9H3+cV1JTafrRRzxgxrajjsKLimj7009M7NCBtSecQJ+cHKb/9a+cr0eipBKZ2bVmlggsBjLN7E9m9iyBQS7lcvcLIjYVBF9rB9velXtGhRyUmEj3Ro24tFlgyp63f/lld5oREZE4pEmMRSQWRXsETnkOCb7+ELF9DWGf1ppZF+BYYHwV5SUSN9LT03kmM5PejzxC+5deovf27eRfdx2fmOHuHONOvbFjufGjj/jtmmtotWQJjRISuOWWWzTSRirbPcDBQENgGNCewOjLM4Drd6O94wmM6pkefF+he0ZFtU1O5m8HHwzA6fvtB8DbmgdHRGSfofKNiMSiWF6Fqm7wdUvE9i1AHQAzqwE8Dlzt7kVmttNGzewq4CqAxo0bV+vVcPLz86vt9VXna4Ndu74XXniBDh060KVLl9C2nNxc3l2/ni2nnMJHZmwdPJj/AbjTBUgD9lu4kAfvuINhd91Fly5daFG/Pn369OGu4Pu9qbr//cmO3P09AnOeFTvCzPZ3910e1mKBzv4O4HZ3XxfcvNN7RinthO4HtG9fYt99BQXkzJkDQPEEOnN+/ZX/ZGfH9CcfZanO/+eq87WBrk9ERER+F8sFnOLJBmpHbK8NbAp+fT3wobsvqGij7j6e4GidlJQUT0tL28M0Y1d2djbV9fqq87XBrl2fu9O3b19ezMwk6eijGfnZZ8w49FC8fv1QTK0lSzitRg0+eeABHhw/nvT0dEZ98gnTpk0LjbRJS0ujc+fO5OTk7PXvbXX/+5PfmVk3oA+BQsoL7r60eN/uFG+C7ge+cfcHw7ZV5J5RQvj9wFJSSnzYeu5JJ1G35u9z6zf76CPWbN1K627daBOc3DieVOf/c9X52kDXJxItGoEjIrEolgs4K4OvzSK2NwNWBL8+A9jPzLLDY4PvC9z9rL2co8heN2rUqB0mD87KyiInJ4dbbrmFg7p146zMTE5fu5ai+fPBDOrX54g6dThh40Ze/utfeeXf/yY9PZ2s9u3p27cvmZmZpT4OlZ6evsOjUyK7y8x6Aa/y+yqDN5nZSe7+2R60eQNwGHBhxK6K3DMqrE6NkuNsjqpblzVbt/J5fn5cFnBEZN9kZg+5+9+jnUc8UgFHRGJRzI4Ed/dfCUxG2bV4W3DVkqOAd4Ix57j7Ce6e5u5pwIjg9jQVb6S6iJyIOCsriwv//Ge+TU0ldd48OnzyCZPMKGrWDH78keO/+Ybcrl1ZmJpK25ycUPEGNBmxVLk7gX8A+wFNgQnA0N1tzMyuBM4G+rn7djNrY2anQcXuGRV1RJ06RD6S26lePQA+z8/f3fRFRKKhc7QTiFeaxFhEYlEsj8ABuA8Yb2b/cve1wJ+Bn4Hno5uWSNUpLrpcNHAgJ2Vk8MbWrRQ++SSPm0FeHvVr1uTE7dv5aNgwrj/pJMaNHcsvrVphZUw6rFE2UoVqufuo4jdmNhj47+40ZGb9CRSDLgU6BgssxwDN+b1AUyn3jNyuXXfYdlSwgLNAS4mLSHzZ+QSRUiqVb0QkFkW1gBNcTnY20Ci4aaqZfV+8XKy7v25mjYFZZraJwIojPd19cyltZVPyEaq33f2fe/8qRPZMaY9IzZ8/n08++YSbb76ZjzdsYOpBB5H/7LO8VivwX7aWGefuvz8Dmzal/hdfMKhvX17LzCQ9PZ1T09NDj0mpUCNR9lv4m+Bk8ztUQMzsn+7+j520NYnAPSs7Yvs9Ye1X+J5RlqQaNahVY8fBqZ3qBuZI1ggcEYkzudFOQEREKk9UCzjuvpXAgjjlxTwFPFWBtsptRyRWFT8iVVxwycrK4q5HHqH/hAkcnpPD0k3B+Vdr1eKg9etZn5nJ5Cuv5PyOHQEYNXFiiWJN+GNSKuBIlNU2s5aU/AS4tG07/Yfq7gkVOWFF7xm7qkOdOtQy46vNm9lYWFhigmMRkVjl7kOinUO80ggcEYlFsf4IlUi1F3pEasAA0jIymL5tG9snTOBJM9i0if3c2TxjBo/16sXl551HVoMG9O3bl4bBoo0ek5IYdhzwdcQ2i9hmxMHPyQk1atAuOZklmzaxbNMmjg5b5U1ERKqfmL8xicg+SQUckSpQ3kpSZ1xzDdMOPphNzz3HKwmBQQY1gd4HHshlzZqx6JlnOK5XL42wkXj0OXDDTmIMGF0FuVTIcx06lLnvsDp1WLJpE0tUwBERqfY0ibGIxCIVcESqQORjUm9kZdF/3Dha/OUv3DpvXiAoIYEmeXlsfPllbu3alTuuvx6AXjffvEN7GmEjcWKcu7+3syAzG1cVyezME+3bc1GTJmXuP7xuXV796SeWaCJjEdkHmFlv4A6ggMBnS4Pd/dNy4hsAjwBHBOPfBv7h7tvDYpoDTwBNgNrAFHd/IKKdDsC/gQSgDjDG3SeF7e9O4MOBA4MxhcDt7v5+WMylwG3Amog0z3P39RW5fpVvRCQWxewy4iLVSfGomQtuu41jnn+eXps3k3/11Swzo547SbNm8YQ7a849lxmXXsqDd9wRWjZcJF65+xOVGbe3JVr5i7UcVqcOAEuK56USEYkRZjvpwHa9vWOAKcCf3P1kYDjwlpk1K+ewiUBNd08l8AjtScCwsDZrADOABe5+PIH5z64xs6vCYuoRWODkeXc/CTgPeNjMeoadZwzwmbunufuJwTzfMrPDI/IZEYwJ/1Oh4g2ogCMisUkFHJFKMGrUqB0KLllZWYwaNYoN27fzxOrV3Fi/Pr+NHMlnLVrgycl0b9iQ5zp04LZPP+XNM8/kL+npmBnp6encdddd5OTkROlqRPZNO/vtRwUcEYlhP5nZFDMbaGYHVkJ7Q4G33H0xgLvPBNYC15YWbGZHAn2AUcH4rQQKLTcEizIAZwOdgQeDMeuBccDtYQWoS4Fk4JlgzHfAVOD2sNMtJjDSp9g4AqNw/rDbVysiEidUwBGpBMWPSBUXcf6TlUWfjAzeS02l+Ucfcc3//sf8/HwsL49u335LoyFDGPbbbwxq1ox/3HzzDo9DdenSpdTJiUUkelLq1MGA/xUUsK2oKNrpiIiE6wZ8DAwCvjGzuWZ2R3Akze44DYh8XCoHOL2c+M3Aooj4ZKB7WMwKd/8tIqYlkBIW85m7F0XEnGBmdQDc/Y/unl+80wOT1Wwm8EhWpdEIHBGJRSrgiFSC0EpSgwZx7hNPcMY337B++HDeNGNTURFHuVPv4YeZVa8e//3jH3n1oYdKFHxEJPbVqVmTJgkJbHdn7dat0U5HRCTE3Ze7+8Pu3hNoDNwPtABeNbMfzGyCmV0YnKemXGa2P9AQ+CFi1xqgTRmHtQHWesmZf9eE7St+La3NisTUAFqXkW87YH/gpYhd55rZf8zsAzN72cxSy8i9VJrEWERikQo4IhVU3mNS/9u0iektW5L/zDO80aEDha1bc2BCAje1bMnSY49lQE4O0//2N3qWspKUSHVV2XMyxIKDagc+4P1BBRwRiVHuvsndZ7j71e7+/wiMmlkKXA+sMbNsMzu1nCbqBl+3RGzfQmBS4bKOKS2esGMqKybSXcDj7v552La1wHLgbHfvDkwD5prZcWW0sQOVb0QkFmkVKpEKilxJ6p2sLC4YOZIOt97KrZ98EghK+P/s3Xl4k2X28PHvSbpQCmUtqyAgCIqjItR1FOq+7/LKuDszrjMqjKOCjruidR1n1BF3x1Em6M8FBsa1RUUcK4iIigtFZAfZSvcl5/3jeVLTkNK0TZul53NdudI8ufPkxEua9OScc6eyy7ZtbH3uOV686iqO2W03gLDtULaTlGkHfhaRt4DZwH9V9edYB9RSfdPS+BxL4BhjEoeqLsFpbcpzK3COYedjvwJb7YW2JKUDDQ0BK21gPUGPKQVCK4DCrWnsPHVE5FKgH3BR8HFVnQPMCbr9LxG5DGdnqlPDnOcSwBmmvPvuAHz08cd0C12YBEpKSigoKIh1GK0imV8b2OszDkvgGBOhQNXMmRdfzKgbbyQ/Kwv/DTdQCKSpIvn5/DU3l0tPOYX8rKx6yR5j2qkDgBNwZjI8ISKLcZI5s1V1QUwja6a+aWkArKkM/YLYGGPin6oWs2OrUeiazSKyFQjdcaoPsKyBhxUBvUREgtqoAo9fFrTm2DDnDF0T7nn9wI/BB0XkDOB84BhVrW7wBf1iGTAm3B2qOg2YBiDDhyvAwQcfTG/3d34yKSgoYNy4cbEOo1Uk82sDe33GYS1UxkTos+Jinu/Th21PPcV7Q4fi79WLIR06cN+QIUxeuJA5ublcai1SxtSJ5kyGthBJx1dfa6EyxrQP77JjsmOMezyccI7OtQAAIABJREFUd3AGFo8MWV8OzAtaM1REuoasWamq3wat2c/dcjx4zceqWleBIyLH4VTTnKiqJSLSTUTOCrp/amDocZD+wE8NxG+MMQnBEjjGuMLNuHk3P59zn3ySQxYuJGfhQp5fv55aEYb+/DNZd9/NtPJyrh04kFv/9KcdKm1yc3NtJyljXFGYyRAX+rnfxloCxxiT5O4BjhGRPQBE5HigL/Coe/tOEVkiIh0AVPUrnDkzf3bvTwWuBh4O2jFqDrAImOiuycJpW7oz6Hmfx9lR6gJ3TX/g7OA1InIY8DTO7JvdRGQMzk5XJwSd5yDgt0GPGQvkAo9F+h/AhhgbY+KRtVAZ4wqecbPfoYcy+cMPeWLjRvzDhkFxMZmq1M6axZMnnsi5Z55Jfo8e1iZlTDM1YyZDXLAWKmNMe6CqC0TkHOAFESkHvDitSoFdozrgDBUO/r19IfA3ESl0178L3Bx0Tr+InAz8Q0Tmu+eY5rYvBdaUiMjRwOMicjHOUOOJqvpW0PM8jZNM+k9I2M8H/Xwv8Ae3KseD8zfP2ao6K+L/BpEuNMaYNmQJHGNcubm5POzzcfzs2fhra6lKSYFevRiakcHV/fuzZfp0fn3iiXXJmuA2KUvgGNN8kcxkiBfWQmWMiXcishxYo6qHtOQ8qvom8GYD910LXBtyrBi3cmYn51wDnNzImqU41TIN3T9sZ49319QbYtwclsAxxsQjS+CYdiUvL4+cnJx6CZf38/OZ8c03rD/sMN4QwX+CU4E7aMsWHjn0UE7o0QOPCFx77Q7ns52kjGlf+loLlTEm/lUCh8c6iERnCRxjTDyyGTimXQm0SeXn51Oryi35+RyzbBn/2HNPXvv5ZzyqpBcU8PtPP6Xkkkvo9OWXTvLGGGOAPm4CZ31VFbU2H8EYE5++UdWwfZ4ick1bB5OobAaOMSYeWQLHtCu5ubm86PNx0rRp9Jozh9tFqBk6lJ6pqZynStYllzBn7FimXXcdPp+vLtljjEl+kaRq0zweeqam4gc2WBWOMSY+vSgiz4rIoSIyWEQGBi7A+FgHZ4wxpvksgWOSTrjdpPLz87ntgQe4e8UKzk9Lo/TSS9ncsSPdyst5bNgwfjrwQPYqLOSVadPCzrgxxrSMiCwXkXmNr4x/vVJTAfi5ujrGkRhjTFgzcGbRzAV+AJa7lx+BA2IXVmKx+htjTDyyGTgm6QTvJpWbm4svP58LZ86Ek06ifPlyALxFRZxSVsbcO+5gxPTpZPTvH3bLb5txY0zUJM1Mhp6WwDHGxLf/4Wy9HUqAl9s4loRlCRxjTDyyChyTdAKVM6dfcw37vvQS/6+2lvKTT6ZchNGqZN1+O28PHsyrf/gDM6ZPtzYpY9pG0sxksASOMSbOXa+qK8JcfgSujHVwicISOMaYeGQJHJN0lpSU8ESvXmx9+GG+6NcP8XoZn53NZ6NHM76wkNf/8hcOtzYpY9pa0sxksASOMSaeqeoHACKyq4icICLHi8iu7n0LYxtd4rAhxsaYeGQtVCYhvfzyy6hqvfamafn5/G3LFpZ07+4cqKlhvw0bWH7PPVz2yCOMHjmS0dYmZUyszHCvL6D+F5tCgn3RaQkcY0w8E5EM4ElgAr/MZ/eLyEvAZapaFrPgEkhCvTEZY9oNq8AxCWnEiBF1rU+FxcUcnJ/PpSIs6d6dNFU6zJ7Nv1NSWHDOObz6yCPWJmVM7P0PGOxehoRcPo1hXE1mCRxjTJx7CMgGjgeGuZcT3GMPxjAuY4wxLWQVOCYhjRo1ipt9Po5ZtIhqERAhXZUrBwwgY+ZMjjjuuLC7SVmljTExc72qrgh3h4jExUyGSLYRB0vgGGPi3kHAfqpaG3RsmYi8B1gLVYSsAscYE48sgWPiWl5eHjk5OfUSL4/k55O3fj2r+/SBUaOgvJyDNmzg9QkT6JWWBhMn7nAea5MyJraCZzIAe+F8Nv7KHayZUH9QWALHGBPnqkKSNwCoao2IhB0mb3ZkCRxjTDyyFioT1wJbgufn5/NZcTEH5OdztQir+/QhU5WMV1/lT599xvfXXstX8+bFOlxjTANEJENEXgSKgJnALJxvhF8QkY6xja5pLIFjjIlzG0TkxuDfrSLSUUSmABtjGFdCsSHGxph4FLUEjoi8H61zGROQm5vLvT4fx376KTkLF/KpCBmqHLV2LekXXcR/Tj+d+//yF3w+n825MSa+Jc1MBkvgGGPi3DXAxcBmEVkhIiuAze6xP8Y0sgRi6RtjTDxqUguViKQC1wPHAX2oPzKgTxTjMu1IuDap/Px85ixezOqjjuJlEfSAA6CigoPWr+fNCRO48Y9/ZPKzz9qcG2MSR9LMZLAEjjEmnqnq9yKyB3AOMBLn8/qXwEuqWhXT4BKIJXCMMfGoqTNw7gX2AJ4HJgL3AGnASYBV4JhmCbRJ+Xw+cnNzmZ6fz4Xvv0/14Yfj37CBFFVS/vtfLuvcmRf/+le+HDiQCRMmMG7cuHrnsTk3xsS1pJnJ0MnrJU2EMr+fstpaOnq9sQ7JGGPqiMgzQIWqXhHrWIwxxkRXU1uoDgJOVNVpwFpVfV5VnwROA7pFPTrTLgSqZ8686CIOfv55JtTUUHnEEYgIx6vS+YormH3ssTx00011rVKff/55rMM2xjRN3M9kiHQXKhGpq8LZZFU4xpj4cyLwbKyDSHRWgWOMiUdNTeCUBX2DmiYiAuAe6x/VyEzSycvL22FGTX5+Pnffdx+fDx1K2ZNPMn/XXSE1lbN79eKb/fdnbGEhrz722A6tUkuXLo3FSzDGNF9SzWQIJHA2WgLHGBN/PlXVwnB3iMi4No4lYdkQY2NMPGpqAiddRE5wf/4JeERExorI7UCX6IZmkk3wjlIA7+Xnc/Ijj/C3MWP407JlVKSmMmjLFrpefz2XrF/PsI4due6663Zoi8rNzWXChAmxeAnGmGZS1e9xWnAvB2YArwCXAXuq6rJYxtYc3d0EzmZL4Bhj4s+/ReQKEQk3KuHmNo8mQVn6xhgTj5o6A+ch4FwR+Ry4E2fuzZVAGfCbKMdmkkygemb8+PEcN3kyL3fpQs3VV1MCeH/6iTsHDOD6U0+loGvXejNxjDGJL9lmMvRIcd4+N9fUxDgSY4zZwe1AL+BBEVkPBM8fs01HImQJHGNMPGpSAkdVXwVedW+uEZEhwAjgR1XdHO3gTPLps//+dH38cf7ZsycA/dLSOHjpUi4dPJgjbUcpY5LZiTjbhieF7jYDxxgTvyqAcMlywdlN1hhjTIJqNIEjIh2A+4CzgCrgKeAOdZSRYNu/mrYRujX4lupqfvfRR7ymivbsSVpNDSk+H09NmMBxF1+8w+NtRyljks5OZzKoakEbx9MiPQItVFaBY4yJP4+p6vPh7hCRpo5PaLesAscYE48i+SV+G3A+MB/4EpgCXNKaQZnEF5h3825+Pk+sWcPgjz7i/0RQVU5SZeVhhzFrwgTOD5qJY4xJanE/k8Gdyx+R7m4LlVXgGGPi0CQRmRfuDlV9pq2DSVQ2xNgYE48iaaE6GRitqj8AiMivgTuAJ1ozMJPYcnNzmeLzceyKFdSKgAh916/ntl69+L1bWdPLWqWMaU+SaiZDDxtibIyJX5XA4bEOItFZ+sYYE48iSeBsDSRvAFT1IxFJD10kIp1VdXtUozMJIbRdamVFBefOn88HIjBoEKxbxxkbNzLjD3/Y4Rtua5Uypt1IqpkMdRU41kJljIk/36hqZbg7ROQaVX24rQNKRJbAMcbEo0gSOOVhjlWEOfYGlu1vlwLtUi/5fCzabTduXraMChHSamtJ8fm4qm9fnnr0UQr22suSNca0X0k1k8EqcIwxcexFEXkWeAZYRf2Kx/GAJXAiYAkcY0w8iiSBM1hEQucTDAp3LDohmUSTm5vLX3w+jlu5sq5dau8tW1g5eTKvPv44ubm5HD12rG0Nbkz7NklEzlbVQ0LvSMSZDLYLlTEmjs1wry+gfh5CsLyEMcYktEgSOH2Ai8IcDz3Wu+XhmHgX2i61saqK8+bN4y0RGDgQVq9mwsaN7FtVRY6bvAHbGtwYk1wzGXq4LVS2C5UxJg79Dzg7zHEBXm7jWBKWDTE2xsSjSBI4n6hqo39xi4htJdQOBNqlpvt8FA0fzp++/ZbtInj9ftJefZWrs7N56tFH+X2YShubd2NMuxb3Mxki34PqlwqczdXVqGqTdrAyxphWdr2qrgh3h4hc2dbBJKqiigr27dw51mEYY0w9kcwdCFd905J1JoHl5ubyoM/Hsd98wyXffcd2EYYVF5N1zTX858wzmXrrrfh8Psbb9uDGmPpeFJFnReRQERksIgMDF5yZDAklzeOhk9dLLVBcW9voemOMaSuq+gGAiOwlIke6P/dx71sYy9gSyRlffRXrEIwxZgeNJnBU9cfAzyIyZCdLT4pGQCZ+5OXl1UvC1Pj9XJqfz8Wq1Oy5J2zezGlLlvDbpUt59a9/DdsuZYwxrhk48xjmAj8Ay93Lj8ABsQur+ep2orI5OMaYOCIiPUSkAFgMPOEeniwi8wKJHBMZa6MyxsSbpu788VS4gyLSF/hjy8Mx8STQLpWfn8+XJSXsNXcu00So8XhInzuXPy1Zwoe33cb+QTNxAnJzc7nuuutiFLkxJg79DxjsXoaEXD6NYVzN1sMGGRtj4tPDwOfAr4DVAKp6NXAP8NcYxpVwyvz+WIdgjDH1RDIDJ1iOiByqqh8GDojI74D7gKyoRmZiLjc3lxd9Pk545RUqVfF7PHStqsJ/3328PmUKubm5nHDooba7lDEmEkk3kyHbTeBstASOMSa+DFDV8wBEpG7SuqrOFJGrYxdW4tlaU0Om1xvrMIwxpk5TK3CWAteLyJEisps7uPgh4Dbgo6hHZ9pMaLsUwBP5+VxQXk75WWfh93gYvWoVExcvrkvegLVLGWMik4wzGXqnpQGwoaoqxpEYY0w9HYN+rpuwLs609b5tH07i2mY7DRpj4kxTEzjHAWcCV+H01dYAe7u7hzSr/EJE0kRkqojUiMigMPf/TkQWiMhHIvKOiOwWcv9FIvK+e98nIjJfRI5uTiztWXC7VI3fz2/z87mstpb1HTviWbuW8xcuZMXEiRw6erS1SxljmixaMxl29p4hIreKyCIRKQi6zInWawjVy63A2WAVOMaY+FIkIveKSC9ARcQrInsCLwKLIj2JiJwsIoUi8oH7u3pMI+uzROQ59zEL3RhSQtb0FZE33M/rC0Xk2jDnGeF+tv/Q/RvgvJD7fy0ir7i/4+e58R3W0vjD2WoJHGNMnGlSAkdVf1bVCpwkzrvAo6q63L373aY+ufvhey7QD9ihPlFETgHuBk5Q1V8DbwBvi0iHoGXXAbeq6lGqeiDwEvCmiPRsajztWaCS5oyrrmLwzJk8IwIpKXSYPZtZffrw/KRJtruUMaYlWjyTobH3DNc1qjou6HJcC+NuUC+rwDHGxKc/AgcCa4GxQBXwJdAf50vYRonIaJzP1Beo6mHAVOCtRhLuzwFeVc1xn/9Q4Pagc3qAmcBiVT0I58vfy0XkkqA1nYC3gX+p6qHAKcBfReSYoOd5GFjo/o4/xI3zLTdJ1ZL4d2AVOMaYeNNoAkdEikIvOK1UowFf0LEDm/H8nYDzgGcbuP8vwD9VdZ17+wmgJ3BO0JoLA6X5rgIgHdilGfG0G6EtU6rKTKD4gQdY1aULnSsq+O3Spcw+7jiOs3YpY0zLDVDViar6FU71JuDMZAB6RHiOxt4z2pRV4Bhj4pGqblTVscARwNXANcDhbsJjU4SnmQy8papfu+ecBawHws4sE5G9gNOAPHd9FU6i5Ro3KQNwPLAv8IC7ZhvOZ/ub3PYugAuBDNzf86q6CpgO3BT0dF8DjwTdfgKoBc5obvwN2VpTw7aaGl7duJGF27c35aHGGNMqIhliXInzDenOCHB9U59cVZcAiMgOyRYR6YaTJHogaH21iCwCjgKedo/9L+gxmThvVPk43zSYBgRapnw+H7865BBOnjeP+SKQlsbIdetYe8MNnPPss2HbpWxYsTGmGVo8k2Fn7xmxYBU4xph4pqoFOF9sNseRwL0hxwpxPoP/pYH1FcCSkPUZwK+B/7prlqnq1pA1A4DhOF8QH4lTXeMPWXOpiHRU1TJVPT/4iVVVRaQC5wvc5sYf1m+++abu5wyPh6IDDqBPevpOHmGMMa0rkgTO46r6fGOL3LLIaBrsXq8NOb4OZ9vZ0Od/HeeX8vvAmapaG+V4kkqgmua0W27BP2UK2zt0gJISbsrM5I6zzya/d2/bXcoYE01FInIvTlJeRcSL84H9RpowkyECF4vIrUAqUATcoarfRfH8dawCxxiTjESkO9CF8J/BG2pLHQKsV1UNWR+4L3Ad7pyB+5a616GD7dfhdA0Mwqm+CY13GNAdmNGC+BtV7vdz6KJFPDdiBId06dLc0xhjTIs0msBR1UcaW+Oue6bl4dST6V5XhhyvpP43uYHnP1VE0nH+OPhERA4KVybq9tleApCdnU1BQUFUg44nJSUlda/v5ZdfZsSIEYwaNQpw6kzvW7eObbfeCh4PmcuXM6m0lMP32ouCggJEhClTpjB9+nR+qWqNH8GvLRnZ6zNJ6I/AK/zygTpQtvIh9cveW+InYDtwMc6vuRuABSKyd9C8tjrB7wfsvjtff/MNBUHftjZmvXu9MgH+f07mf3PJ/NrAXp+JiSZ9Bg96TLj1BD0mWmtC3YIzl/OLoHMEPy74PGHPEfp+ECoLKAZ+KC/nuM8/5xUgrYFg4l0y/5tL5tcG9vqMI5IKnFgpda9D6xTTgbJwD1DVShGZBKzBaaW6OcyaacA0gOHDh+u4ceOiFW/cKSgoIPD6VLWuomb4wQdzwscfs6hvX/D7OeTHH1k6eTK5L79M8H+PeP5vE/zakpG9PpNsVHUjMFZExgF74bRRLVbVuVF8jnpfJIjIPcBl/DIDInR93fuBDB+ue+6xB+N69474+cpra+HDD9kmwtjDDovLZHdAMv+bS+bXBvb6TEw0+TO4+5hw6wl6TClOLqSxNY2dp46IXIoz2P6ikFiCHxd8nob+hqj3fhB6/3HZ2Vzcty/HLF7MdqBk5EhOz84Od6q4l8z/5pL5tYG9PuOIdttTNAW+LQ2dFt8HWAbO7AQRSQ2+0x2atgwY2eoRxrmXX365blBxoGXqpFtuYdC777JIBNmyhTwRPrrwQma8/LLtMGWMaXWqWqCqf1fVv0UzedPAcynOe8nQSNY3Nf2S4fXS2eulWtV2KjHGJA1V3QxsZSefwcMoAnpJ/Ux24PHLgtaEO2cka/zAj8EHReQM4HzgZFWt62VtZvw7ddOuu3J09+48sNtuAPxz/fpGHmGMMa0jbhM4qroF+AwYEzjmJmv24Zcty3cFXgvz8L6429S2ZyNGjKhLyqgq04HSW26hOjOT7kVFzOjalT/bDlPGmCQhIuG2I++P01rVKgJzcNbbHBxjTBwREa+InCgiF7q39w790rMR7xL0Gdw1hl8+g4d6B2dgcfAXqGOAcmBe0JqhItI1ZM1KVf02aM1+IbM1xwAfq2pd9YyIHIfTJnuiqpaISDcROasF8TfoyzFj2KuTs5HWhF69AJizaRMVtTZu0xjT9iLZRvxhETlKRGLR6nkncJ6IBGrafw9sAv4VtOZIEckJ3BCRK3ESOC+0WZRxatSoUfh8Ps48/3xGzpjBNBHwevn18uXI5Ml0D1mfm5vLddddF5NYjTEmCk4WkZMDN0TkXJyhl0+21hN2dxM4W60CxxgTJ0RkEM5A4Df5Zcelk4AvRGTHAS/h3QMcIyJ7uOc8Hufz9aPu7TtFZImIdABQ1a9wvlT9s3t/Kk776sOqWuKecw7O0PqJ7posnLkzdwY97/M4u1ld4K7pD5wdvEZEDsPZjfYWYDcRGYOz09UJkcbfFIM6dKj7uW96Or/KzKRSlULbVtwYEwORzMApBfJwMub5wH+A2aq6sqVP7iaF3gYCmfjpIrJGVU8HUNU3RCQbmCMiZTi/0I9R1Qp3/TrgNuAxESnH2XWkCjhOVT9raXyJJi8vj5ycnHq7Rq0EKh98kG+ys6GsjDsyMrjpoovIHzTIdpkyxiSUxt4zcHa0usadhZYG1ABHq+rnrRVTR4/zPUiZfRNrjIkfD+MkKp4EZgGo6l0i8hbOZh8nNXYCVV0gIucAL7ifsb04n8EDu0Z1wBkIHNwydSHwNxEpdNe/S9A8SlX1u0n2f4jIfPcc09z5M4E1JSJyNPC4iFyMM5B4oqq+FfQ8T+MkY/4TEnbdrrkRxB+xTin1/1w6rEsXviwtZe7WrRzatWsDjzLGmNYRyS5UNwI3ikhf4Hj3kiciPwGzcX55zmvOtt3uvJpxjax5CniqgfsqgKnupd3Lycmpl5R5cdkynu7TB7Kz6bhxI3LLLRzyqPPFQ3DLlCVwjDGJoLH3DFV9CXipzQICMr1eAEotgWOMiR9ZqvowgIjUDeRV1c9EpKGdnHagqm/iVPGEu+9a4NqQY8W4lTM7Oeca4ORG1iwFGvxwqqrDdvb4oHUNxh+pnw85ZIdjY7t25dE1a5i7bRs3teTkxhjTDBHPwFHVtar6tKqeAfTAKYv0Av8AfhYRn4hcKCI9WilW04hAUuas8eM56skneXrwYMjM5DBV1p12GjMffbTeoGJrmTLGtKUozGSIO3UJHL8/xpEYY0ydsGUhbrtTvzaOJaH1SN3xLeowt+rm423bqLbf/caYNtasIcaqWqOq76vqtaq6JzAKmAucRf1t/Ewry8vLq7dz1K/HjqXbnXfy7rBh4PFwsSoF48bROSXFBhUbY2ImSjMZ4o5V4Bhj4tCnIjJdRPYH0kRkiDsDZg7wfoxjSxhZ7u/3UL3T0titQwfK/H6WlJaGXWOMMa0lKrtQqeqPqvqoqp6gqvdH45wmMoG2qfz8fLZWVzNy1ix+GD4cb00NHfPyOBcI3tHRqm6MMTESmMnQGXdXKFW9C2cL2AdiGFeL2AwcY0wcmgRUA/OBg4HvcZLnPwF/imFcCaVg330bvO/ArCwA/ldc3FbhGGMMEMfbiJvIBKpqzrjiCgbNmsX3WVl0rq5m3v77c+dRR9VrmTLGmBjKUtWHVbUUqDeTAWcQZkKyFipjTLxR1TJVPQ/YDWfezKnAUFW9IGgjELMTfxs6lFGdOzd4/wGBBI7tRGWMaWOWwElAoW1T2Tk5VNx/P9u6daPr5s18eeihHJCVVbeNuLVMGWPiQFLOZLAWKmNMvBGRl6GuQn6Wqs5U1R9jHFZCCa5eDyeQwPnEKnCMMW3MEjgJKLht6qOtW9n/k08oz8yk19q1eCZOpGj+/Lq11jJljIkTSTmTIdNtobIEjjEmjpwgIgUicpmI2D7XrWDfTp1IE2FpWRnFNTWxDscY045YAieBBCpvAm1Tp9x7L2MLCylPSeFXW7eyYvx4XnnuOWubMsbEo4ZmMqwkZCvaRNLRrcApsxYqY0z8eBM4DRDgDRGZISIniUj4qbymydI8HoZlZACwrLw8xtEYY9qTZiVwEn3b10QVXHmzds89KbnuOvypqfT//HM+P+UUOni9ttOUMSYu7WQmw/mqmrCffq2FyhgTb1T1XFXdoqqPq+pYYApwEFAkIg/HOLykMcRN4BRV2FghY0zbaW4Fzj0ikhe4ISIvicg9IvL/RKRLlGIzIQLJmZP//nfO/eor1ONhr0WLqLj7bj4oKKi3ztqmjDHxREROgfozGYANIvJvETkgxuE1m7VQGWPiTfDvVBEZBlwAnAP0B/aIVVzJZkiHDgAUWQWOMaYNNTeBMw4nmx+wD1CE843qlHAPMM0TOrD4xxEjKPnDH1CPh30WLODLa65hhs9nbVPGmHh3dZhj5cBD7iXmdj6yMrxMa6EyxsSfR9z5N/OBpTjtVI8Bu6rqMbENLTFE8n4wxFqojDEx0NwETq2qBk/sWqiq04DzgLEtD8sEBLdNPblmDRd/+y2IMDQ/n9X33FNvJo61TRljEomqKs4fFxmxjqW5OloLlTEm/uQAtwGFwAGqOlJV71XV1TGOK6nsZi1UxpgYSGnm46pEpJeqbgBw5xqgqjUi0txzmiB5eXnk5OT80jb1j39QcvnlAJy4ahUzb7uN/HHjGD9+PD6fj9zcXHJzc2MctTHG/EJEbgFuAdS93VCW44U2CyrKrIXKGBOHPgMODvmy1USZtVAZY2Kh2TNwgNdFZGDwQRHJBtJbHJWpV3mzaeRISi+9FIDd33mHmeeeC2CVN8aYePcckAscASwGDg+5jAP2VNWLYhRfi9kQY2NMHDqsoeSNiNze1sEkq0FuAmdFZSU11kZrjGkjzaqWUdVZItINKBSRj4El7l3jganRCq49CyRnTr3zTkqmTEG9XvZZsIDV06aRf+SRddU2VnljjIlXqroCWAEgIn9W1bkxDinqbAaOMSYeiMhooFhVvweuE2lwisu5wM1tFliCimQGTobXS7+0NNZUVbGyspLBGQnbDWyMSSBNrsARkXQR2Qfn29RhwAyc33MVwDmq+lxUI2xngocWdxw9mrIbbsDv9ZL9wQd8PmkSPhtYbIxJQKr6bkP3JfI3wh2thcoYEx9eAx51f56IU/0Y7tI1JtElqYFuFc6qysoYR2KMaS+aVIEjIkcB/wJ64CRtyoHpwOTAPBzTMoHWqXt9Pq4BalJT8bz7LpWPPkrBoYfWa5uyyhtjTKIQkZ1945uw3whbC5UxJk4MA6rdnxeo6pHhFolIg8l003T909IAWG0JHGNMG2lqC9XfgbnA9UAVsD/O1rALRWSMqq6LcnztRvDQ4n/4fJz1889odjaeTz7hv0ccQcoRR9jAYmNMIpsILAq67QX6A71wdkpJSB08HgSoVKVWFW8DbQuqyjtbtnBwVhadUmzWvzEmulQ1OINwQuj97iYjRwHHtllQ7UD/dGf05+qqqhhHYoxpL5raQjUQp9qmSFVXqer/qepYIJ/wavOfAAAgAElEQVRfyjZNMwQqb/6bn09eVhaanQ1LlvD/vv2Wo9yEjQ0sNsYksNdUNTfocpiq7gacCvw31sE1l4j8MgdnJ1U4D6xcyTGLF3PVDz+0VWjGmPZrTphjXuBk4JU2jiWp1SVwrALHGNNGmprA+RLYJczxO4FjWh5O+xOYeZObm8t0n49T5s/n0+3bYe1azly8mHdmzaqbd5Obm8t1110X44iNMabpVPXiBo6/h/OtcMKKZA7O7StWAPDsOitUNca0uh1KAVW1UlUvx2bgRCSSIcZgCRxjTNtrah33S8CTInKcqgZ/jZgNbIleWO1HoPLG5/Mxb/BgqkSgpISDZs5kxksvkT9hQr3WKWOMSRYi0hE4BKe6M2Fler1QXU1JAwmcWlW2B93nV8XT8A4xxhjTZCJyCnCKe3O4iDwTZll3oEvbRZX8bAaOMaatNTWB86B7/bWIzAQ+x6nimQD8KZqBJbvgmTc+n49T776b4ilTQJVRM2fy/Tvv1FXm2NBiY0yiExE/oGHuKgX+2MbhRFVnt4WqoQTOzcuX17u9oqLCtps1xrQGCboOzRL7gW+AP7dpREluF5uBY4xpY01N4GQDo4B93cvZwHD3vltE5HSc7cUXq+qsqEWZhIIrbwYdeCBlkyaBCLvNncvCJ54g/+yzbWixMSaZfAFcE3Rbge3A96paEpuQoiPLHUpcHCaBs7Gqiqk//VTv2OLSUkvgGGOiSlXfAN4AEJH7VfXaGIfULgRaqNZUVqKqiFVXGmNaWZNm4KjqJlV9V1XvV9VzVXUvoBNwEPAQ8DNwPPBi9ENNLoHKmrPOOYcx//kPNRkZ9Pz+e7Y+9tgOlTfGGJMEblTVuUGXD1T183hK3jT3g3egAmd7mATOsvJyFNgrM5NrBwwAYNamTc2O0RhjGrOz5I2InN+WsSSqSN8PMrxeuqWkUKXKz9XVjT/AGGNaqMV7mbrbFn7mXkwEgtunsm+8kaU9e5KxZQtXFhcz9t//tsobY0zSUdXZDd0nItNU9ZK2jCea6hI4NTU73FdUUQHAiI4dmdCrF39dtYqn1q5FVblryBB6u/MTjDEmmkQkCzgA6EP9dqobgBdiElSS6p+ezpaaGlZVVpJtv9ONMa2sxQkc03SB9qnT776bpSNHIrW1lE+eTNYll9jMG2NM0mhgiGY4x7ZqIK1sZxU4ReXlAAzp0IH9OnfmsWHDuOS773h63TqKKip4f9992zRWY0zyE5GDcdqpqnF2nVoPpOEkc2wrvCjrl5bGktJS1lZVMSrWwRhjkl5TtxE3LRC8Zfgfb7qJad27A5Dy4os8cMklTJ06te5+2y7cGJMEjuOXYZo7uyS0zu4MnLAJHLcCZ4g78+Z3/fqxJCeHLl4v+Vu38tHWrW0XqDGmvZgKnKaq/YD/qepgVe2Ps+vfy7ENLfn0datu1togY2NMG7AKnDYUqLz5t8/HjAEDoHt3WLyY8X4/kyZNYtSoUVZ5Y4xJJnNU9eLGFjWhUicuBSpwisO1UAVV4ATsmZnJVbvswh0rVnDHihW81bVr2wRqjGkv/Kr6kftzXZJcVT8RkSkxiilp9XUHGa+1rcSNMW3AKnDaSF5eHoCzZfiDD7Kke3coLWXkm2/y1uzZVnljjEk6kSRvmrIuXmXtpIVqlfuBfoD7AT/gml12oZPXy9tbtrBg+/bWD9IY0550FJHAZ3wRkaHuD72AX8UurMTRlNJQq8AxxrQlS+C0kUD1TQlQc/nlAHifeoq/3XgjPp+P8ePHk5+fH9sgjTGmFYnIkSLyvohsFJEN7s9HxDqulmqohUpV6z7Q9w1J4HRPTeXSvn0BuCdkm3FjjGmhr4CPRCQbZxZOoYjku8c/jmlkScgSOMaYtmQJnDYQXH1zxpw5lHfsiHz1FSlvvQVgW4YbY5KeiJwDvI4zTPMfwBM4wzRfE5HfxDK2lmpoiPH22lrK/H46ejx1VTrBJg0YQJoIr27cyFelpW0SqzGmXZgIXARsAR4C7ga2A08Dl8UwrqRkCRxjTFuyGThtIFB985s77qD62GOhpoa0Rx/l7jvvtC3DjTHtxZ+AMaq6NPigiIwAXnIvCamhbcTrqm/S0hDZsSC/X3o6v+/bl0fXrOHPy5Yxe++9Wz9YY0zSU9VtwLagQ/e5F0SkY0yCSmI2A8cY05asAqeVBapvpvt8/C0lBTwevK++iixfzqhRo6zyxhjTXlSGJm8A3GMJ/am3bohxSAVO4MN8aPtUsFsGDaKz18uczZt5Z/Pm1gvSGGMcs2IdQCJo7gwcVW2dgIwxxmUJnFYWqL55ZsUKdOhQ2LCB1OnTueuuuxg/fjyADS42xrQHHURk99CDIjIM6BBmfcJoaAZOoAKnn/vhPpzstDSmDBwIwNU//ECV399KURpjkpmIFEVyAQ5swjlPFpFCEflAROaJyJhG1meJyHPuYxaKyL0ikhKypq+IvCEi890114Y5zwh3RtqHIrJARM4Ls8YjIpNEpFxExoW5/0IRWSoiBSGXLpG+/kh19HrJ8nqpUmVLmN0IjTEmmqyFqpXk5eWRk5NDbm4uL/p8HLt+PQDeF14gXbVe9Y21Thlj2oEHgIUi8gbwg3tsKHAScHnMooqCrAhaqHZm4oABPLNuHd+UlfHAypVM3nXX1gnUGJPMKoF7GlkjwPWRnExERuO0tu6vql+LyInAWyIyUlXXNfCw54BSVc0RkTSgALgdmOKe0wPMBOao6l/cZMpCESlW1Wnumk7A28Btqvq0iOwCLBaRDar6lrumG/AKsIydfwFwj6o+F8nrbam+aWkUl5eztqqK7qmpbfGUxph2yipwWkmg8iY/P5+ZAH36wPLlnN2jB6+99ppV3xhj2hVVfRE4HegPXOle+gNnqOq/YhlbSzU0xHhzdTUAPRr5MJ/u8fDYsGEA3L5iBSsqKlohSmNMkntcVZ9v5PIc8HiE55sMvKWqXwOo6iycIfRXhlssInsBpwF57voq4GHgGjcpA3A8sC9OQj8wq+cJ4Cb5ZVDYhUAG8Ky7ZhUwHbgp6OkycRJRd0f4WlpdP7dVdrXNwTHGtDJL4LSSwsJCJk+ezJkXXMAT7u4i+3z2Ga+/+iqAzb4xxrQ7qvq2qo5T1Z7uZZyqvhPruFqqoRaqwEycrJTGi12P7N6ds3v1osLvZ0pRUfSDNMYkNVV9JPSY29I0wv05raF1DTgS+CzkWCFw1E7WVwBLQtZnAL8OWrNMVbeGrBkADA9as1BV/SFrDg4MYFbVVaoaGltMDXATOCstgWOMaWWWwGklOTk5TJ06la6//z01nTrRdeVKVvl83H777VZ9Y4xpd0QkQ0QGiki6e3uQiEwUkeNjHVtAU4ZWBuvo8eAFyv3+ejNsit2Wqi5hthAPZ+rgwaSL8NKGDRQWFzczGmNMeyciHUXkeZxtxP/jHp4mIi8FVcPs7PHdgS7A2pC71gFDGnjYEGC91p/iuy7ovsB1uHNGssYDDGos9hAnurN0PhKRV0Qkp4mPj9jADk4n109WQWmMaWWWwGkFgZ2nJt54I0WjRgGw9f77OejAA5k0aZJV3xhj2qN7gP8Cw9z5BZ8AVwH/EJE/xzSyFhKRupkHgbYpgG1NqMABGJSRwdW77ALAFd9/X5cAMsaYJroXp83oJJy2J4CLgI+BhyJ4fKZ7HVpOUgk0tA15ZgPrCXpMtNZEYj3OvLXjVfXXwGvAfBGJeIhzUwx0K3B+sgocY0wrsyHGrSAnJ4dTTz2VqtNOg333hS++IG3pUj5csYL8/Hxyc3NtcLExpr0ZA+ynqhUiMhHnA/kegBfIB+6LZXAt1TM1lY3V1WyqqaGP+0E+kIDJirACB2DKrrvy0oYNfLZ9O0d+8QVz9t670Rk6xhgTYh9grKpqYJcntzLm7yLyXgSPL3Wv00OOpwNlO3lMuPUEPaYUyIpgTWPnaZSqzgHmBN3+l4hcBtwAnBq6XkQuAS4BYPfd+fa77yj47rtIn44t7vXidesoWNfQjOf4UFJSQkFBQazDaBXJ/NrAXp9xWAInygK7T531m9/wzJFHApAyYwYej4ebb77Zdp0yxrRXFaoaqC0/G3gqcFtEtscurOgIJFl+DqrACczA6RJhBU5g7dx99+XIL76gcPt29vz0U24bNIjf9e1LiseKZo0xEUkNamUK7Q7NbuzBqrpZRLYCfULu6oOz81M4RUAvEZGg5w48flnQmmPDnDN0Tbjn9QM/NhZ7I5bhfJmwA3cXLGcnrOHDdfjuuzOuX7+IT9y7tJTrCwvZnpHBuAMOaGGYraugoIBx48bFOoxWkcyvDez1GYd9GoyywO5TVTk5aI8eUFREysKF3HXXXUydOpWcnFZrvzXGmHjWUUTGisiFwH7A8+DMagA6xzKwaOgZJoGzLVCB04QEDsCQjAw+HDWKg7Oy2FBdzeXff8/RixdTFjIk2RhjGrBFRC53d3ZSqBtofA/wU4TneJcdkx1j3OPhvIMzsHhkyPpyYF7QmqEi0jVkzUpV/TZozX7uluPBaz5W1YgrcERkamDocZD+RP76myQwxPinigrqjwEyxpjosgROFAVm3/h8Pl7ctg2AlDlzQJVRo0bZ7BtjTHt2M/AG8DSQp6o/icjRwBc4cxkSWg83SbMpuAKnGS1UAf3T0/lo1Chm7LknfdLSyN+6lVOXLKHCkjjGmMb9EZgEbAP2F5GVwM/A6TizxyJxD3CMiOwB4A6c7ws86t6+U0SWiEgHAFX9CmfOzJ/d+1OBq4GHVbXEPeccYBEw0V2ThdO2dGfQ8z6Ps5vVBe6a/jhVm8FrInEQ8NvADREZC+QCj0Xy4KYOte+UkkL3lBQqVdkY9D5gjDHRZgmcKMnLyyMlJYXx48fzztdfo6NGQUUFvPsud911l+08ZYxp19ztwnsAPVT1Rvfwxzhbxk6JWWBREq4CpynbiIcjIpzZqxf5++xDr9RU3tmyhaMWL2ZJSUnjDzbGtFuqugzYE3dQPOADfg+MVNWiCM+xADgHeEFEPgBuBI5R1cCAlw44Q4WDcx0XAohIIfA/nN/xNwed0w+cDIwSkfnAXGCa274UWFMCHA2cLyIfAjOBiar6VnB8IvJ/wHT35sMiUhDYKt11L3CsiHwgIh+5t89W1VmRvP7msJ2ojDFtwWbgREmgdWry5Mlc99VXMHIk5OeTXl1dr/rG5t8YY9orVa0VkZ4icihOWf9SVf0h1nFFQyCBE6jAqfb7Kff78eJsM94SIzIzeW+ffTjiiy/4aNs29vnsM37Xty9X7bILIzMzGz+BMabdUdVq4LnQ4yLypqqeHOE53gTebOC+a4FrQ44V41bO7OSca3CSODtbsxSnWmZna05v5P56Q4zbQnbgfcB2EDTGtCKrwImSwsJCJk+ezK133UXtUUcBkLNhA+ecc45V3xhj2j0R6SUic4BvcVqp3gS+FZH/iEjv2EbXcqFDjIOrb5wxFC2zV6dOfJWTw5X9+iHAtLVr2auwkAMWLODZtWup9Ptb/BzGmMQnIplhZr8gIh4ROQewYYytJNAuW2wJHGNMK7IETpTk5OQwdepUMo8+Grp1o8Pq1RQ+/zzDhw+32TfGGAPPAjU4O5AMBYYBx+HsLPJMDOOKitAWqm0tmH/T4HOkpfH33XdncU4Ol/XrR5bXy6fbt3Pxt9+y6/z53PHjj6yvqora8xljEoeI9BeRuUAxsF1EXnCPZ4jIRGA58AKwIIZhJrXAjoPbLIFjjGlFlsCJgsDw4rPOOot1o0cDUPHqqxx4wAFMnToVsOobY0y7NxQ4WVXfUdUiVV2mqm8Dp+IkcxJaaAvVFvcDfHf3eDTtmZnJ47vvztqDD+a5ESPYJzOT9dXV3PzjjwyYP5/ffP01H23dajuhGNO+/BXoDTyEM2j4cBG5EvgKmAq8B/xKVU+MXYjJLTDvrNiGzRtjWlHMEzgikuZu9VcjIoPC3P87EVkgIh+JyDsislvQfekicoWIzBWR9911T4pIz7Z8DcuWLeOkk07i6f/+F8aMgcpKUvLzWbRoEZMnT7bqG2OMgWUaJqOgqrU43wxHpCXvGa2pq/vBfaubuNnsJnK6N3OAcSQ6er1c0KcPn48Zw/v77MPJPXpQq8rLGzZw6KJF5CxYwEvr11Nt7VXGtAd7A2NU9VpVvQo4BLgf+BQYoqoXq+rXMY0wyXVxKy6tAscY05pimsBxP3zPBfoBO9SZi8gpwN3ACar6a5y5CW8HtizE+db2HuASVT0c581qKPB/rR58kLPPPpuamhpqjzkGAM8HH1C7bRsXXXQRNTU1Vn1jjDHwmIjcIyKD3FkMHvfn+3HaqxoVhfeMVpPpfnAvdZMlm1uxAieUiJDbrRtv/OpXLD/wQG4cOJDs1FQWlJRwzjffMPiTT7gLuPenn5i9aVO9rc6NMUljQ9B23ajqCmAZ8Bt3cLBpZVaBY4xpC7GuwOkEnEfDH97/AvwzaMvCJ4CeONsaApQDT6jqtwCqWgE8BhwqIgNaLeoggfap26dOrRte7J09mxNOOIEZM2aQk2Oz4owx7ZOI+EWkVkRqcZIp1+H8QVHtXpYBk4AXIzxlS98zdh5vhEGEU5fAcT+4t0UFTjgDO3TgziFDWHHggUzbfXdGdOzI6qoq3gVuKCrihC+/pPe8eRy5aBGPrV7NmsrKNo3PGNNqwg3A2uBu3V1HRMLuKmVazmbgGGPaQky3EVfVJQAiskvofSLSDRgNPBC0vlpEFgFHAU+r6jLgzyEPLXev01sl6BCB7cMHnncejBoFy5dTvWgRueedx6RJk2zrcGNMe/YFcE0jawR4LZKTtfQ9I8KYmyXT3So8kMAJVLm0RQVOOBleL7/v14/f9u3Lgu3b8S1cSFX//nxeUsL84mLe27qV97Zu5crvv6dXaipDMzLqLntlZrJXZiZDMjLwRmEHLWNMmxgsIjeHHBsU5thebRVQe2O7UBlj2kJMEziNGOxerw05vg4YspPHHQR8rqo/tEpUQfLy8sjJyWHy5Mn8yS2bT5kzB0lN5fbbb+e1116z9iljTHs2VVXn7myB2960OQrP1dz3jKhI93jwAFWqVPv9v7RQtXEFTiiPCDlZWZQC44Y5s6I3V1cza9Mm/m/jRt7esoUN1dVsqK7m4+Lieo/N8HgYmZnJ3pmZ7N2pE3tnZvKrzEx6pqXF4JUYYxrRB7gozPHQY73bIJaEJ81IXtdV4FgLlTGmFcVzAifTvQ6t764EOoZ7gIj0An4HnNLQSUXkEuASgOzsbAoKCpod4Icffsjtt9/OsMMOg+uug8pKePddRo8ezZdffsmDDz7YrDeAaCkpKWnR64tnyfzawF6fSQ6q6mvoPhE5HKe16XQgKwpP15z3jLr3A3bfna++/prsr5s/47MDUAa89cEHBM6yoaiIgqKiZp8zWkL/zQ3EKY26CtgErHYvK3EmShcBP/v9fLZ9O59t317vXFlAX5y/Fvu6l15Bl0xa1o7WVMn++8Ren4nQJ6raaMm3iOS3RTDtUZYNMTbGtIF4TuCUutehrVDpOJ+R6xGRNMAH3KiqnzR0UlWdBkwDGD58uI4bN67ZAaoqH3zwAYsHDgTc4cVbt3LWWWdx9913U1hYSEvO31IFBQUxff7WlMyvDez1meQkIvviJG0m4Pzdvw3n9/ZhUTh9k94zoP77gQwfriP33JNxvXo1O4Csjz+mrKqKUQcdRNp338GmTRw8ciTjsrObfc5oac6/uS3V1XxZWsqXpaUsLilhcWkpS0pLKa6tpRj4toHHZXo8DOjQgT5pafROTaVXWhq93Z97B352b3fw7jCLusmS/feJvT4ToXDVNy1ZZ5ooUIFjLVTGmNYUzwmcwLayfUKO98EZfFlHRLzAS8BsVX2qDWKra5+64bbbmDLEqc73zp7NMSecwNSpU/H5fNY+ZYxp90RkV+A3OImbPXAqYmYDu+NseVslIhOi8FQRv2e0luA5OJtjPAMnGrqlpnJY164c1rVr3TG/KuurqlheUeFcystZXlHByspKVlVWsrKykpLaWpaWlbG0LGzerJ4sr7deQic0wdMtNZWuKSl0TUmhW0oKnb3emFa2GhOvVPXHaK4zTZdlLVTGmDYQtwkcVd0iIp8BY4DpACKSCuwDvBBYJ84nuWeAr1U1zz12JFCkqq1St56Xl0dKSgrjx4+n96WXwr77wldf2fBiY4wJIiIf4cwl8wMFOAOGX1XVYhF5X1WrAFT15ZY+V6TvGa0peCeqTe43sD0SOIETjkeEvunp9E1P5+AuXXa4X1XZVlPDqspK1ldXs76q6pdLyO0N1dVONU95Od+Xl4d5tjDPj/Mtd4/UVLq71zXA699/Tw832dPJ693hkun10tm9ZFoSyBjTCrrYEGNjTBuI2wSO605gmojcp6rrgd/jtOv/K2jN33FK8f8mImPcY+NxKnJaJYET2HnqjPHjeWKPPZyDPh8dOnSw4cXGGPOLMpztwu8H/qqqG1v5+SJ5z2g19RI4MdpGPNZEhK6pqXRNTW10qxtVZUtNTdgEzzo3wbOtpoatNTVsca9LamvZ4t4O9s7q1ZHHCHXJnM5uVU+W10tWSkrY605eLx08nnqXjKBjHT0eMt3EkO3aZUz7len14gHK/H6q/X5S3apMY4yJpph+snTn1rwNBOqzp4vIGlU9HUBV3xCRbGCOiJQBFcAxqlrhPv4Q4Ar3sUeFnP6l1og50Drl8/k4+oEH4KyzYPVqRpWW8sDs2Zx66qlMnz7dqm+MMe2eqh7tDpc/G3hdRLbh/G6OaNvwUC19z2htgQROSVALVbJV4ESTiNA9NZXuqanskZnZ+AOAGr+frTU1bK6pYVN1NZuqq/loyRJ67bYbm6qr2VpTQ2ltLSUhl+1B1+V+v1P5U1sLVVVRfU3pImQGVf1ker109Hjo2ILrtcD6qqq625YkMiY+iQhZKSlsralhe20t3RtI4FT6/fxt1SrOyM5mcEZGG0dpjEl0MU3guOXz4xpZ8xQQdq6Nqs6jDTe7CG6d+pfPh+ciZw6c/POfFP3g7Fr++uuvU1hY2FYhGWNMXFPVDcAjwCMiMhRnFs48oI+IHA+8BfxdVS+P4Fwtes9obZ3cBM66qipq3dtp9g1sVKV4PPRMS6u3lXknYNyAARGfo8bvZ7ubzNleW0ux+8dWcU2Nk9gJ3A76udLvpyLoErhd7vdTWltLqXtdqUqlm2CKqo8/rvsxTaQuwZPhVgNluD93DPo5OJHUyesl0+Opl1jKdI+F3k73eKzFzJhmyvJ62VpTw7aamgZnoE0pKuLBVat4acMGFo4ZE3aNMcY0pH3VdrdQoHVq8uTJnPjEE1RfdhmsWEHGxx9z8623Mn78eBtebIwxDVDVH4DbgNtEJAcnmXMvzqDhRhM48S4wxPinSmcn8/bWPpUoUjweunk8dItydZSqUhGS0ClxK37Kamspc48F/xx8X0PXm8vK8Kem1t2uUqWqpoatUY3+Fx6oSwR1DEoKBZJG4ZI/Dc0d6hQ0e6iz12vJIZP0uqak8FNlJVsbSOKqKo+6LZ+fl5TgV8Vj/yaMMU1gny4jFNw6dfL551P92GMADHn/fZ564426xI4NLzbGmMapaiFQ6O4iOC/W8URDoIXqpwqnY8vap9oXEXGqYbxeekbxvAUFBYw75BDA+eOv0u+vS/CUuz+Xuz8HLmW1tTskkkrdS0nQ8dKQdaW1tVSp1rWeRVuKCFleL90Cg6hTU6kGXvnuOzqHDKAOrOnhXnf2euno9dofuyaudXMT96FzusD593vKkiVUqtYd+6asjJERtpAaYwxYAiciwa1TPp+P9CuuoKRzZ/jsM35+4w248EJ8Ph+FhYVWfWOMMU2gqrUicnSs44iGugSOW4FjCRwTbSJCB6+XDl5vq21RXxNIArmJobKgVrEyN9kTnBAKTgqVBN0Onj+03W1Fq1Jls9titqzil9FU761ZE3F8HTweurivv3tKCr3S0ujjbj3fIyWF7LQ0dk1Pp196OhkeD7Wq/GvDBlJFOKZ7dwZ16EC6tTaaRjQ3TRj4dxmYgxZsTVUVMzdtqnfsnc2bLYFjjGkSS+BEILh16rgpU6icOhWqq8l46iluuflma50yxpgWUNXiWMcALR+oFkjgvLNlC2AtVCYxpXg8dPZ46NwK567y+yl2Ezibq6vZXFPDvC+/pPfQoTskfLa4g6oDA6tL3GRSYA7R+jB/IEdCgDGdO/Pp6NHRfXHG8Mvv/XAVOItLSgA4rEsXftu3LxcsXcoNRUVsqanhql12saS/MSYi9umyEcGtU6ecfTaVDz0EQN/33uNfjz9urVPGGGMASA1p7bAP48bUlxZmCHVHYNwuu0T0eL8qZe6A6c3V1WyqqWGju+38endXsvVVVSyvqGB9VRXlfn/dH9JdU1Lo4vWysrKSNGvDMq2krgInXAKntBSAfTp14tzevZlfXMw/1qzh9hUrmLVpE//bbz9SrDrMGNMIS+DsRHDr1L99PlKuvx769YNlyyh96ik45hhrnTLGGAM4fyAG6x30R6oxpuU8InRKSaFTSgr90tMjesyaykoE6Ouur3a3ojemNQQqcMK1UAUqcPbp1AmPCI8NG8bpPXvyu2+/ZWFJCfevXMkNu+7apvEaYxKPpXkbEEjeTJ061Wmd+vvf2bLfflBeTsb993PLlCmMHz8ewJI3xhhjOK9373q3s60Cx5iY65eeXpe8AUj1eMi25KppJTurwPmmrAyAkR07As5Mq6O6d+fJ4cMBuPXHH/nOXWOMMQ2xBE4DcnJy6pI3N7/wAlWXXgrAXm+/zX8ee6zuvsL/3969R8lVV4ke/+5+dwgBQiAJGRQThsDACEp0ABHCDIqX8SJ6r3NVFgNLGXVGvI5efMQHjAyCoq5BWT7IHRGdweEqo6OoXCBXW15RQ4DFEE2QgAQICUrMO/3+3T/qdDgpqjvdnequU9Xfz1q1quqcfU7vXyqpnez8zu+sWJifW9gAACAASURBVFHjTCVJRXBQayv/tGDB7veH2sCRpCnloGFm4KSUWLtrFwALOjv32PfamTP569mz6UmJdz3yCCl3lypJKmcDp4Krr74agG9/+9t86gtfoPsjH4G2NjqXLWPDv/7r7n39/f3OvpEk7TYn9z/7h/q//JI0pQw3A+e5vj62Dgywf3Mzsyo09z+/YAGzWlvp2ryZLzz11KTkKqk+2cApk1/3JgEtS5YwMGcO/OY3tF53HUuWLPHSKUlSRfl1b5yBI0lTy+67UJXNwHmsuxsozb6JCotoz2prY+lRRwHwocce45dbC3FzRkkFZAMnp3zdm9ctXcqzRx8N27fTefXVXLZkiZdOSZKGlZ+B4zobkjS1DDcDZ+jyqfkdHcMe+8ZDDuG98+bRlxL/bdUqNvT0TFyikuqWDZyc/Lo3n/i3f6PvHe8A4KW33caPli7dvc9LpyRJleRn4BzU4o0eJWkqGe4uVE9mzZgXj9DAAfjsggWcMmMGT/X08KZVq+gZHJyYRCXVLRs4mT3Wvbn2Wro//GFoaWHaj3/M+ptu2r3P5o0kaTgzW1u57MUv5nMLFtBUYZq8JKn4xvvtPb25mZYIdgwO7tF8eS5r6Ozt7oTtTU1897jjOLy9neVbt/LBtWvHmYmkRmUDhz3XvRkEmj72MQZnzYJVq2i5/nrXvZEkjdo/vOQl/K/DD691GpKkSRYRu9c/29jbu3v777MGzsGjWBttdlsb3z32WFojuPbpp7n52WcnJllJdWnKN3DK1735L0uX8vsjj4QtW+j83Oe47KMfdd0bSZIkSXt1WHs7AE/n1rAZmoFT6Q5UlSyaMYPPLVgAwNt+/Ws+t24dg95eXBI2cFi7di2XX345S5Ys4dLrr6fvwgsBmHvjjfzo+utd90aSJEnSqMzL1kJbP84ZOEPeO28e78sWNf7gY49x4sqVXP/MM+waGKhuwpLqypRu4GzatImFCxeSUuKTV15Jzwc+AO3tcOut7Lz9dsB1byRJkiSNzrxKM3Cyu1KNdgYOlC7HuuaP/5hbjjuO2a2tPLh9O+9Ys4aX3Xcfq3bsqG7SkurGlG7gdHR0cNVVV3HZZZex7dxz6Z8/H555hmnXX8+ll17qujeSNIWEiw5LkvbRSJdQHTyOuxO+ftYsfnvSSdxw9NEcPW0aa3bt4pUrV/LVp5/2LlXSFDSlGzhQmmHzseuuI731rTA4SPPVV/OPS5a47o0kSZKmrIg4JyJWRMSdEXFPRCzaS/yMiLghO+b+iPhMRLSUxcyNiO9HxPIs5pIK5zk6In4SEXdFxMqIOL9CTFNEfCAidkXE4mrkXy3ll1ANpvR8A2cMM3DyOpqbuWDOHO478UTOnz2bnYOD/O1vfsOLli/nE48/zgPbtpFcI0eaEqZ0A2f9+vU88MADdF9wATQ3E7feStOqVbvXxPHSKUmSJE01EXEi8C3ggpTSacBVwG0RMWeEw24AmlNKrwBOAl4NXJ47ZxNwC/BQSulk4AzgbyPinbmY6cDtwI0ppVcDbwC+EBFn5WIOAu4AjgY6qph/VZTPwNnS388gMKO5mdamffun137NzXzj6KP51jHHcPx++/FsXx9XPPEEL1+5ksOXL+c9jzzCnZs3u+Cx1MCmdAMH4EPf/Caccgrs2kX62te46KKLSCmxZs0amzeSJEmaipYAt6WUfgWQUvohsBF4T6XgiDgOeCNwdRbfC1wD/H3WlAE4GzgB+HwWswW4Dvh4PH8N64VAJ/D1LOYp4Cbg47kftx/wYeDKauVfTeVr4GzIZuLMzmbm7KuI4K2zZ/PAokV0nXACF82dy2FtbTzd28uX16/n9Acf5PDly7n4kUdYtmkTfV5mJTWUKd3A2X///Rk455zSm5tv5qSFC/nOd77DZZddxoLs1n2SJEnSFHMmcF/ZthXAa0aI7wYeLovvBE7NxaxNKW0uizkcWJiLuT+lNFgWc0pETINSUyelVJ7bvuZfNUPr3PwhW7j4mayBM6dKDZwhEcHpBx7I/164kKdOPpn7TjyRDx9+OEd0dLC+t5cvrV/Pax56iNn33svbV6/mNps5UkOY0g2cLdu3w6mnwuAg3HILs2bN8q5TkiRJmrIiYiZwAPBM2a4NwPxhDpsPbEx7LsSyIbdv6LnSOUcT0wQcsbfcYdz573mO0QQN44CsgbMla+AMzcCZW+UGTl5EcOL++/PpBQt47M/+jBUvfzkfe9GL+JNp0/hDfz9f37CB1z30EHPuvZcPAO9as4bPrlvHbZs2sS3LU1J9GPtS6I1kxgxoa4Nf/AJ+9ztuv/12PvCBD9i8kSRJ0lS1X/bcU7a9B5g2wjGV4skdU62YvRlz/tk6PKW1eI46itVr1tC1Zs0of9yeEqV/YPWmxO1dXdydbR/43e/o6uoa1znH48zssQ74afZ4or+fTcADzzzf22oCjgJeCswDDs09plNftm/fPqm/xpPN8QmmegNneva19KMf0dzcTGtrKzfddBNnnHFGbfOSJEmSamNH9txetr0d2DnCMZXiyR2zA5gxipi9nWdvxpx/SmkpsBQgFi5MRy9cyOK5c0f5417owHvu4fd9fRx/yincvm4dPPUUr5g/n8UvetG4z7kv/hpIKfF4dzc3/+IXTDvySB7ZtYtfbN3Kym3bWA2srnDczJYWFnR2sqCzkyM7O1nQ0cGR2evZbW08v3RRMXR1dbF48eJapzFhHJ9gqjdwskXGeOghIoLLL7+cfqcRSpIkaYpKKW2KiM1A+R2b5gBrhznsMeDQiIjcZVRDx6/NxbyuwjnLYyr93EHgtxOYf1Ud0NzM7/v62NLfP2Fr4IxVRDC/s5NXAov/6I92b9/W38+9W7fy861bWdfdzZM9PTzZ08O67m429fezads2Vmzb9oLz7dfUxIs7OpjX3s5hbW2l5/Z25rS1Mbu1ldltbcxua2P/5ubCNXqkeja1GzhNTbBlS+nR0sKaNWu47rrrap2VJEmSVEvLgEVl2xYB3x0m/g7gn4BjeX4h40XALuCeXMzFEXFgbiHjRcCTKaU1uZjLIqIpt5DxIuDelNJoZ+CMJ/+qyq+D88wkrIGzL/ZvaeGsmTM5a+bMPbanlNjQ28vaXbtY293No7t2lV7v2sWju3axqb+fX+3cya92jvyxdDQ1cXBLCwe3tu5+zMy/b2lhZu71wa2tHNTSQss+3nJdalRTu4ED8OSTtc5AkiRJKpJPA10RcUxK6dcRcTYwF/gSQERcAZwLLEopdaeUVkXE94APAhdERCvwPuCalNL27Jy3Ag8C76fUpJlBad2ZK3I/9xuUbhF+AfD1iJgHvAV4WzXzn2iVGjiHFbSBM5yIYG57O3Pb23ffRixvU18fT/b0sL6nh/W9vTydvd7Q28vGvj429vaysbeXnYODPN3by9PZr8NoHdDcXGr2ZA2fA1pa2L+5mRlDz9nrGc3NHJjtfwJY39PDAS0tTGtqcuaPGpINnN/+ltbW1lpnIUmSJBVCSmllRJwHfDMidgHNwFkppaG7RnVQWhA4/y/kC4FrI2JFFr8MuDR3zsGIOAf4akQsz86xNFt/Zihme0S8FvhKRLyd0oLE708p3ZbPLyK+CxyWvb0mu2TqtSml3lHmP6F2N3AGBljfU1pLeW57+ZI89W1m1lw5fvrISx1v7+/nuf5+nuvrY1Nf3+7Xz/X1sSn3+rls36a+Pv7Q38+WgQG2DAzwWHf32BJbvhwofeDTmpuZ1tTEfs3Ne77Onqc3N7Pf0KOpaff76bl9+edpTU10NDXR3tREa4QNItWEDZx16+jr6+Okk05iwYIFtc5GkiRJqrmU0g+AHwyz7xLgkrJtWynNnBnpnOuBc/YSsxoY8Y4iKaU3jbQ/ixk2/4l2YNbAWd/Tw9aBAdoimNkyNf/ZNb2lhektLby4o2PUxwymxOahpk/W1Nk6MMDW/n62Zc9D77cMDLClv78022nbNnpbW9nc309PSmwbGGDbwAD09U3I2Nojdjd02puamNbURGfW6OlsamJac/Mezx3Z9t2vy7Z3lO0r3+5KrQIbOLBuHQCbN2/29uGSNIX5/2iSpGo4oLkZgNXZ+jCHtbc7W2MMmiJ2z/AZi66uLha/6lUA9A0OsnNwkJ0DA+wYGHj+9eAgO7JtO8reb88/Dw6yvXzbwAA9g4P0pER/SvSkRM/AAAwMTMQvQ0XNXV0VGzzlj/bc685ccyn/eqjRNLS9s8L7oXM1+fu3MGzgPPEEgLNvJEmSJO2zoUuohhb4LeoCxo2stamJA5qadn8W1TaQUqmZkz26BwfZlXvsHBjY43n3Y2DgBbFD24a2lz/njxmAUtNpcHCvOVZTWzbbKN8UqtT4GW720bTs9dAlbNOyy9aG1jGa0dJC2nsaYqo3cFKCZ5+lo6ODefPm1TobSZIkSTW2r7NlZmRNg67NpZtt2cBpPM0RpXV1stlWk6Grq4tXnXZaxQZPT0p055pJ5Q2h8obSzuy4Sk2n8qZST0r0pkTvwABbJ3C2URMw4+67dzd4hp7zi1YPLVA9NDtoem4x6wOyu5gNLXrdUWEh6+39/TRH0DmJn1u1Te0GTm8v7a2tNNfxByhJkiSpOMrXuzm8wRYwVu20NjXR2tTE/pP4MwdTordCU2i4xk++QbSzrGm0Y2CAndn27dkaRUNrGnUPDrK5v5/NVcq7NYLZbW3Mam2lPYJ1PT277wp37LRpzGtv58jOTr501FFV+omTY0o3cKb39NDU3s7AJF63KEmSJKlxvWHWLFizZvf7F41hAV+paJoi6GhupmOCJz3c0dXFy1/1qt2Nn11Zw2eoybMlW7Q6P3Mo3wTa3N+/x6LX3YODPNXTw1PZneDyVu3cyaqdO3l8rHc5K4Ap3cA5bMYMvvqtb3HuuefWOhVJkiRJDWBmays3HnMM5/3614AzcKTRaAUObm2FMS5ePZzugQE29Payqb+f7sFB1vf00N7UxJGdnXQPDvJMby+Dqf5W3pnSDRyAM844g//4j/9gxYoVtU5FkiRJUgN4SW7WjTNwpMnX0dzMEZ2dHDHM/pdNZjJVNOUbOFBq4pxxxhm1TkOSJElSAzgi17RxBo6kammqdQKSJEmS1EjmtLUxdP+b2d6FSlKVOANHkiRJkqooIvj9q15FonTLaUmqBhs4kiRJklRlM6u0GKskDfESKkmSJEmSpIKzgSNJkiRJGS94klRUNnAkSZIkSZIKzgaOJEn4P66SJEkqNhs4kiRJkiRJBWcDR5IkSZIkqeBq3sCJiLaIuCoi+iPiiAr7L4qIlRFxd0TcERELKsTMiYhbIuK3k5CyJKmAIuLCiFgdEV1ljwNqnZskSZK0r1pq+cOzhs2/AY8AzRX2vwG4EnhpSmlDRFwM3B4Rx6aUurOY1wJXARsnK29JUmF9OqV0Q62TkCRJkqqt1jNwpgPnA18fZv8ngH9JKW3I3l8HzALOy8X0A4uBX05QjpIkSZIkSTVV0wZOSunhlNKjlfZFxEHAicB9ufg+4EHgNbltP0kpbZvoXCVJkiRJkmql1jNwRvKS7PmZsu0bgPmTnIskqT68PiJ+kq2bdnNEvKLWCUmSJEnVUOQGzn7Zc0/Z9h5g2iTnIkkqvo3Ao8DZKaVTge8ByyPipNqmJUmqJ1HrBCRpGDVdxHgvdmTP7WXb24Gd4z1pRLwTeCfAIYccQldX13hPVXjbt29v2PE18tjA8UnjkVK6Fbg19/7GiHg38BHg3PL4fD3gqKN4eNUqDpqkXCdbI/+Za+SxgeOTJEnPK3ID5/HseU7Z9jnA2vGeNKW0FFgKsHDhwrR48eLxnqrwurq6aNTxNfLYwPFJVbQWWFRpR74exMKF6bhjj2XxIYdMZm6TppH/zDXy2MDxSZKk5xX2EqqU0h8oLWC8+y/eEdEKHA8sq1VekqRiioirIqL8Ett5wLpa5CNJkiRVU2EbOJkrgPMjYnb2/m+A54Aba5eSJKmgTgbeMfQmIk4HzgC+XLOMJEmSpCqp6SVUEdEG3A4cmG26KSLWp5TeBJBS+n5EHALcGhE7gW7grJRSd+4crwSuBo4A5kREF/CTlNLlkzcSSVIBfAa4OCLeTOk/KFqAt6SUfjiag120UpIkSUVW0wZOSqkXWLyXmH8G/nmE/b/c2zkkSY2vfBFjSZIkqZEU/RIqSZIkSZKkKc8GjiRJkiRJUsHZwJEkSZIkSSo4GziSJEmS9hAR50TEioi4MyLuiYhFe4mfERE3ZMfcHxGfiYiWspi5EfH9iFiexVxS4TxHR8RPIuKuiFgZEedXiDk5O8edEfHLiHhd2f4LI2J1RHSVPQ4Y1dhHEyRJNVDTRYwlSZIkFUtEnAh8C3hlSulXEfF64LaIODaltGGYw24AdqSUXpHdabYLuBz4aHbOJuAW4NaU0ieyZsr9EbE1pbQ0i5lO6Q61n0wpfS0i/gh4KCKeTSndlsUcTmnB+v+eUloWES8D7oqIk1NK/5nL59MppRuq+MsiSTXnDBxJkiRJeUuA21JKvwJIKf0Q2Ai8p1JwRBwHvBG4OovvBa4B/j5rygCcDZwAfD6L2QJcB3w8IoYmvVwIdAJfz2KeAm4CPp77ce8D1qaUlmUxDwB3Ah/a10FLUtHZwJEkSZKUdyZwX9m2FcBrRojvBh4ui+8ETs3FrE0pbS6LORxYmIu5P6U0WBZzSkRMG2duktQwbOBIkiRJAiAiZgIHAM+U7doAzB/msPnAxpRSKosf2jf0XOmco4lpAo7YS8zsXJMH4PXZWjp3R8TNEfGKYXKXpLrhGjiSJEmShuyXPfeUbe8BplHZfsPEkztmsmJ2Urrc61HgH1JK3RFxHrA8Ik5NKf28PPmIeCfwTgCOOopfr15N1+rV5WENYfv27XR1ddU6jQnRyGMDx6cSGziSJEmShuzIntvLtrdTao4Md0yleHLH7ABmjCJmNOcZMSaldCulhY7J3t8YEe8GPgKcW558tohyaSHlhQvTMUcfzeI5c8rDGkJXVxeLFy+udRoTopHHBo5PJV5CJUmSJAmAlNImYDNQ3sGYA6wd5rDHgENzixEPxZM75rFhzjmamEHgt3uJ2ZBSGq7BNPQzjhxhvyQVng0cSZIkSXnLgEVl2xZl2yu5g9KCxceWxe8C7snFHBkRB5bFPJlSWpOLeXl2y/F8zL255swde8stIq4qWw8HYB6wbpj8Jaku2MCRJAnY8z+OJWlK+zRwVkQcAxARZwNzgS9l76+IiIcjogMgpbQK+B7wwWx/K6XbfV+TUtqenfNW4EHg/VnMDErrzlyR+7nfoHQ3qwuymHnAW8pivkipEfTnWczxwGlktzDPnAy8Y+hNRJwOnAF8edy/IpJUAK6BI0mSJGm3lNLKbOHfb0bELqAZOCulNHTXqA5KCwbnO98XAtdGxIosfhlwae6cgxFxDvDViFienWNptv7MUMz2iHgt8JWIeDulBYvfn1K6LRfzZNZQ+nxE9FGa+fPmlNJ/5nL5DHBxRLyZ0n9YtwBvSSn9cDTjt6Evqahs4EiSJEnaQ0rpB8APhtl3CXBJ2batZDNnRjjneuCcvcSspjRbZqSYeynNshlu/x6LGEtSo/ASKkmSJEmSpIKzgSNJkiRJklRwNnAkSZIkSZIKzgaOJEmSJElSwdnAkSRJkiRJKjgbOJIkSZIkSQVnA0eSJEmSJKngbOBIkiRJkiQVnA0cSZIkScpErROQpGHYwJEkSZIkSSo4GziSJEmSJEkFZwNHkiRJkiSp4GzgSJIkSZIkFZwNHEmSJEmSpIKzgSNJkiRJklRwNnAkSZIkSZIKzgaOJEmSJElSwdnAkSRJkiRJKjgbOJIkAVHrBCRJkqQR2MCRJEmSJEkqOBs4kiRJkiRJBWcDR5IkSZIkqeBs4EiSJEmSJBWcDRxJkiRJyriovaSisoEjSZIkSZJUcDZwJEmSJEmSCs4GjiRJkiRJUsHZwJEkSZIkSSo4GziSJEmSJEkFZwNHkiRJkiSp4GzgSJIkSZIkFZwNHEmSJEmSpIKreQMnItoi4qqI6I+IIyrsvygiVkbE3RFxR0QsqBDz0Yi4PyJ+HhH/HhGHTkbukqTiiYhzImJFRNwZEfdExKJa5yRJ9Was36URMSMibsiOuT8iPhMRLWUxcyPi+xGxPIu5pMJ5jo6In0TEXdm/Ac6vEHNydo47I+KXEfG6fc1fkupBTRs4WcPmZ8BhQHOF/W8ArgT+MqV0KvB94PaI6MjF/E/gfOC0lNJJwOPA9yY8eUlS4UTEicC3gAtSSqcBVwG3RcSc2mYmSfVjnN+lNwDNKaVXACcBrwYuz52zCbgFeCildDJwBvC3EfHOXMx04HbgxpTSq4E3AF+IiLNyMYcDtwKfyHJ7F3BzRPzpPuYvSYVX6xk40yk1X74+zP5PAP+SUtqQvb8OmAWcB7sLwUeBL6eUtmcxnwVOiYi/mLCsJUlFtQS4LaX0K4CU0g+BjcB7apqVJNWXMX2XRsRxwBuBq7P4XuAa4O+zpgzA2cAJwOezmC2U/m7/8YiILOZCoJPs3wYppaeAm4CP537c+4C1KaVlWcwDwJ3Ah8abvyTVi5o2cFJKD6eUHq20LyIOAk4E7svF9wEPAq/JNr0UmF0WsxFYl4uRJE0dZ5KrCZkVWBMkaSzG+l16JtANPFwW3wmcmotZm1LaXBZzOLAwF3N/SmmwLOaUiJg2htysBZIaUq1n4IzkJdnzM2XbNwDzs9fzRxEjSZoCImImcADWBEkat3F+l84HNqaUUln80L6h50rnHE1ME3DEXmJmR8Q0a4GkRtay95Ca2S977inb3gNMG0OMJGlqsCZI0r4bz3fpfsPEw55/b5+MmM6ybfkYa4GkulbkBs6O7Lm9bHs7sHMMMXvIFkobWiytJyIerhTXIGYBv691EhOkkccGjq/eLdx7iCbAmGpCeT14wyGHWA/qUyOPDRxfvavHejDmv19nx1SKhz3/3j5jFDGjOc9IMYNl2/Ixo/r3wdvmzHn4bZUCG0Mj/5lr5LGB46t3VakHRW7gPJ49l68WPwdYm71+LLftt2UxP6l00pTSUmApQETcl1Jq2FsKNvL4Gnls4PjqXUSUX3evSZBS2hQRmxm5buTjrQcNoJHHBo6v3tVjPRjrd2nmMeDQiIjcZVRDx+f/3l5+u+9KMZV+7iDP/11/uJgNKaWdwM6x5m89aAyNPDZwfPWuWvWgsGvgpJT+QGnxsd0fYkS0AscDy7JND1FaUT4fcyjwolyMJGnqWEauJmQWYU2QpLEY63fpHZQuXTq2LH4XcE8u5siIOLAs5smU0ppczMuzO83mY+7NmjNDMXvLzVogqSEVtoGTuQI4PyJmZ+//BngOuBEgW6H+SuDvImLoet1LgHsZZgaOJKmhfRo4KyKOAYiIs4G5wJdqmpUk1ZcRv0sj4oqIeDgiOgBSSquA7wEfzPa3Urrd9zUppe3ZOW+ldDfZ92cxMyhdtnRF7ud+g9LdrC7IYuYBbymL+SKlRtCfZzHHA6eR3cJ8NPlLUr2q6SVUEdEG3A4MdeJvioj1KaU3AaSUvh8RhwC3RsROSl/oZ6WUuofOkVL6YkTsD9wdET3AeuCNZavgD2dpNcdTQI08vkYeGzi+etfo4yuslNLKiDgP+GZE7AKaKdWNDXs5tNE/s0YeXyOPDRxfvavL8Y3iu7SD0oLAkTvsQuDaiFiRxS8DLs2dczAizgG+GhHLs3MszS5fGorZHhGvBb4SEW+ntGDx+1NKt+VinswaMp+PiD5KM3/enFL6zzHkP5K6/MzGoJHH18hjA8dX76oyvhhdn0OSJEmSJEm1UvRLqCRJkiRJkqa8hm7gRMQ5EbEiIu6MiHsiYsRVrSNiRkTckB1zf0R8JiIKeaeusYwtImZHxJURcXdEdEXEAxGxpKhjg7F/drnj9ouIJyKia4JT3CfjGV9EvDsifpYd81hEfH0ych2PcfzZOz37/XlXRPw8+3M4c7LyHYuIaIuIqyKiPyKOGEV83XyvNDLrwe5Y60HBWA9eEG890ISyHuyOtR4UjPXgBfHWg0pSSg35AE4EtgN/kr1/PaUFkOeMcMx3gX/JXrdRWgz5ylqPZV/HBlwMrAT2z94fDvwOuLzWY6nWZ5c79vPAH4CuWo+jmuMDPgzcArRn748Hnq31WKoxPkprYG0DLs7eNwE3A9+p9Vgq5HoEsJzSIosJOGIUx9TF90ojP6wHe8RbDwr0sB68IN564GOiPzfrwfPx1oMCPawHL4i3Hgx3bK0HPIG/kDcD/1627VfAPw4Tf1z2C/6nuW1/BewEptd6PPs4tr8C3lK27UvA2lqPpRrjy8WcANyZ/eHpqvU4qvj5HUzpNpxHlW0/rdZjqdL4Tsz+7B2T2/Z3wJZaj6VCrscBRwKLR/MFXU/fK438sB7ssc96UKCH9eAF8dYDHxP9uVkP9hyH9aAgD+vBC+KtB8M8GvkSqjOB+8q2rQBeM0J8N/BwWXwncGrVs9s3YxpbSunbKaWbyjbvAtonILdqGOtnR0Q0AV8G3kPpD0SRjXV8Z1P6snokvzGldOcE5FYNYx3fKmA18DaAiJgGvAnYOFEJjldK6eGU0qNjOKSevlcamfUgYz0oHOvBnqwHmmjWg4z1oHCsB3uyHgyjIRs42bVxBwDPlO3aAMwf5rD5wMaUtcBy8UP7CmGcY6vkZODb1cqrWvZhfBcDd6XcLSSLaJzj+1NgfURcFBE/jYh7I+KrEXHIROY6HuMZX0qpG/gL4M8j4glgPaUx/90EpjpZ6uJ7pZFZD0bFelAD1oMXsh5oIlkPRsV6UAPWgxeyHgyvIRs4wH7Zc0/Z9h5g2gjHVIpnhGNqYTxj20NEnAm8CLi8inlVy5jHFxHzgIuAT05gXtUyns/vIEpT7U6n1KU+ndJ1oV0R0ToRSe6D8Xx++wN3AHdRuoZ0HvAp4OmJSXFS1cv3SiOzHozAelBT1oMy1gNNMOvBCKwHlWr2XAAABdBJREFUNWU9KGM9GF6jNnB2ZM/lUwDbKV1bNtwxleIZ4ZhaGM/YdouIF1OaSnhOSmlzlXOrhvGM71pgSUqpSJ/TcMYzvgGgFfiHlFJ/SqkPuBT4E+CsCcly/MYzvndQ6jb/QyrZATwE/CwiDpyYNCdNvXyvNDLrwTCsBzVnPXgh64EmkvVgGNaDmrMevJD1YBgN2cBJKW0CNgNzynbNAdYOc9hjwKEREWXxjHDMpBvn2ACIiEOB7wN/k1J6YGIy3DdjHV/WnT0B+GB2C8Qu4HXACdn7qyY45TEZ5+c31Gl+Krftiez5JdXLbt+Nc3xHARuyqZJDHgcOofS/CfWsLr5XGpn1oDLrQe1ZDyqyHmjCWA8qsx7UnvWgIuvBMBqygZNZBpTfW35Rtr2SOygtHHRsWfwu4J6qZ7dvxjo2IuIg4EeUOtE/y7a9c8Iy3DejHl9KaVtKaX5KafHQA/i/wIPZ+yUTn+6YjfXz68qe5+a2zc6e11UvraoZ6/ieBg6JiObctqGx1sP/moyknr5XGpn1IMd6UCjWgz1ZDzTRrAc51oNCsR7syXownL3dpqpeH5RuPbaN7NZjlFbq3kR2r3ngCkorP3fkjvku8I3sdStwN6O8H3uRxwZMB34OXJX95hh6rKz1WKr12ZUdfwPFvk3geH5v3g18Mff+n4A1w/0a1NP4KE2P3Am8N3vfTGkBvXUU7BaduTEupsJtAuv5e6WRH9YD60Gtx1Hl35vWgwI9rAf19bAeWA9qPY4q/960HhToMVn1oIUGlVJaGRHnAd+MiF2UPvSzUkpDKzx3UFokKD916ULg2ohYkcUvo3QtYaGMY2zvA/4se3xksvMdq3F+dkTECcA1wNFARzZd8rMppR9NWvKjMM7xvZHS7837KXVnnwZek/acVlgIYx1fSumxiDgL+FREvCXb/3R2zPbJH8HwIqINuJ3SInEAN0XE+pTSm7L3dfu90sisB9YD60FtWA/q83ulkVkPrAfWg9qwHlTveyWyro8kSZIkSZIKqpHXwJEkSZIkSWoINnAkSZIkSZIKzgaOJEmSJElSwdnAkSRJkiRJKjgbOJIkSZIkSQVnA0eSJEmSJKngbOBIkiRJkiQVnA0cSZIkSZKkgrOBIw0jIq6MiC/WOg9JUm1ZDyRJYD1Q7dnAkYZ3NvDjWichSao564EkCawHqrFIKdU6B6lwIuIw4DfAwSml7lrnI0mqDeuBJAmsByoGZ+BoSoiID0VEqvC4fJhDzgZ+OtyXc0T8j4h4MDvH6yPiloh4PCI+FhEHRMTXIuL+iLgtIg6auJFJksbCeiBJAuuB6lNLrROQJslXgG/m3l8CnFe2Le9s4EfDnSyl9H8iYiPwU+ColNJ/jYijgNXAXOC9QDdwF/A/gU/u8wgkSdVgPZAkgfVAdcgZOJoSUkrbUkobUkobgAuAtwKLU0qPlsdGRCtwJqO/vvXb2c94BPg9sCGltDOlNAjcC7ysGmOQJO0764EkCawHqk/OwNGUEhFLgIuBM7Iv1EpOA55MKT0xytM+k3u9s+z9DuCAMScqSZpQ1gNJElgPVF9s4GjKiIiPAe8GTq/UWc8Z0+ryKaWBsk3l72O055IkTTzrgSQJrAeqP15CpSkhIj4BvIthpkWWGfH6VklS/bIeSJLAeqD65AwcNbyss/4+4BxgR0TMyXZtLl9FPiJeAhwG3DO5WUqSJpr1QJIE1gPVLxs4amgREcCHgBm88Ev3TOD/lW37S+COlFLfXs77l8CnstddwJuAm4A5wEciojd7fSFwYER8J6X05n0ajCRp3KwHkiSwHqi+RUqp1jlIhRERPwZuTildX+tcJEm1Yz2QJIH1QMXiGjjSnrqAW2qdhCSp5rqwHkiSrAcqEGfgSJIkSZIkFZwzcCRJkiRJkgrOBo4kSZIkSVLB2cCRJEmSJEkqOBs4kiRJkiRJBWcDR5IkSZIkqeBs4EiSJEmSJBWcDRxJkiRJkqSC+/8Z7VyqUXiXxwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1152x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.rcParams['lines.linewidth']= 2.0\n", + "plt.rcParams['lines.color']= 'black'\n", + "plt.rcParams['legend.frameon']=True\n", + "plt.rcParams['font.family'] = 'serif'\n", + "plt.rcParams['legend.fontsize']=14\n", + "plt.rcParams['font.size'] = 14\n", + "plt.rcParams['axes.axisbelow'] = True\n", + "plt.rcParams['figure.figsize'] = (16, 6)\n", + "\n", + "fig1, (ax1, ax2, ax3) = plt.subplots(1, 3)\n", + "ax1.plot(M[0,:], sL_eff_list,'kx', label=r\"$S_{L,eff}$ analytical\")\n", + "ax1.plot(M[0,:], M[2,:], 'kx', label=r\"$x_G^a$ analytical\")\n", + "ax1.plot(x_num, S_num, 'b', label=r\"$S_{L,eff}$ numerical\")\n", + "ax1.plot(x_num, xA_G_num, 'g', label=r\"$x_G^a$ numerical\")\n", + "ax1.set_xlabel(r\"$z$ / m\")\n", + "ax1.set_ylabel(r\"$S_{L,eff}$ and $x_G^a$ / -\")\n", + "ax1.legend()\n", + "ax1.grid(True)\n", + "ax1.set_xlim(0,1)\n", + "ax1.set_ylim(0,1)\n", + "\n", + "ax2.plot(M[0,:], S_num_interp-sL_eff_list,'b', label=r\"$\\Delta S_{L,eff}$\")\n", + "ax2.plot(M[0,:], xA_G_num_interp-M[2,:], 'g', label=r\"$\\Delta x_G^a$\")\n", + "ax2.set_xlabel(r\"$z$ / m\")\n", + "ax2.set_ylabel(r\"Absolute error / -\")\n", + "ax2.legend()\n", + "ax2.grid(True)\n", + "ax2.set_xlim(0,1)\n", + "ax2.set_ylim(-0.001,0.02)\n", + "\n", + "relError_S_w = np.zeros(len(M[0,:]))\n", + "relError_xA_G = np.zeros(len(M[0,:]))\n", + "for i in range(0, len(M[0,:])):\n", + " if (sL_eff_list[i]) >= 0.001:\n", + " relError_S_w[i] = (S_num_interp[i]-sL_eff_list[i])/sL_eff_list[i] \n", + " else:\n", + " relError_S_w[i] = np.nan\n", + " if (M[2,i]) >= 0.01:\n", + " relError_xA_G[i] = (xA_G_num_interp[i]-M[2,i])/M[2,i]\n", + " else:\n", + " relError_xA_G[i] = np.nan\n", + "ax3.plot(M[0,:], relError_S_w, 'b', label=r\"$\\Delta S_{L,eff}/S_{L,eff-analytical}$\")\n", + "ax3.plot(M[0,:], relError_xA_G, 'g', label=r\"$\\Delta x_G^a/x_{G-analytical}^a$\")\n", + "ax3.set_xlabel(r\"$z$ / m\")\n", + "ax3.set_ylabel(r\"Relative error / -\")\n", + "ax3.set_xlim(0,1)\n", + "ax3.legend()\n", + "ax3.grid(True)\n", + "fig1.tight_layout()\n", + "plt.show()\n", + "\n", + "fig2, (ax1, ax2, ax3)=plt.subplots(1,3)\n", + "ax1.plot(M[0,:], M[3,:], 'kx', label=r\"$T$ analytical\")\n", + "ax1.plot(x_num, T_num, 'r', label=r\"$T$ numerical\")\n", + "ax1.set_xlabel(r\"$z$ / m\")\n", + "ax1.set_ylabel(r\"$T$ / K\")\n", + "ax1.legend()\n", + "ax1.grid(True)\n", + "ax1.set_xlim(0,1)\n", + "ax1.set_ylim(365,375)\n", + "\n", + "ax2.plot(M[0,:], -T_num_interp+M[3,:],'r', label=r\"$\\Delta T$\")\n", + "ax2.set_xlabel(r\"$z$ / m\")\n", + "ax2.set_ylabel(r\"Absolute error / K\")\n", + "ax2.legend()\n", + "ax2.grid(True)\n", + "ax2.set_xlim(0,1)\n", + "ax2.set_ylim(0,0.12)\n", + "\n", + "ax3.plot(M[0,:], (-T_num_interp+M[3,:])/M[3,:], 'r', label=r\"$\\Delta T/T_{analytical}$\")\n", + "ax3.set_xlabel(r\"$z$ / m\")\n", + "ax3.set_ylabel(r\"Relative error / -\")\n", + "ax3.set_xlim(0,1)\n", + "ax3.set_ylim(0,0.0003)\n", + "ax3.legend()\n", + "ax3.grid(True)\n", + "fig2.tight_layout()\n", + "plt.show()\n", + "\n", + "fig3, (ax1, ax2, ax3)=plt.subplots(1,3)\n", + "ax1.plot(M[0,:], M[1,:]/1000, 'kx', label=r\"$p_G$ analytical\")\n", + "ax1.plot(x_num, p_G_num/1000, 'c', label=r\"$p_G$ numerical\")\n", + "ax1.set_xlabel(r\"$z$ / m\")\n", + "ax1.set_ylabel(r\"$p_G$ / kPa\")\n", + "ax1.legend()\n", + "ax1.grid(True)\n", + "ax1.set_xlim(0,1)\n", + "ax1.set_ylim(100,106)\n", + "\n", + "ax2.plot(M[0,:], -p_G_num_interp+M[1,:],'c', label=r\"$\\Delta p_G$\")\n", + "ax2.set_xlabel(r\"$z$ / m\")\n", + "ax2.set_ylabel(r\"Absolute error / Pa\")\n", + "ax2.legend()\n", + "ax2.grid(True)\n", + "ax2.set_xlim(0,1)\n", + "ax2.set_ylim(0,30)\n", + "\n", + "ax3.plot(M[0,:], (-p_G_num_interp+M[1,:])/M[1,:], 'c', label=r\"$\\Delta p_G/p_{G-analytical}$\")\n", + "ax3.set_xlabel(r\"$z$ / m\")\n", + "ax3.set_ylabel(r\"Relative error / -\")\n", + "ax3.set_xlim(0,1)\n", + "ax3.set_ylim(0,0.0004)\n", + "ax3.legend()\n", + "ax3.grid(True)\n", + "fig3.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "f14cfb41", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "[1] Helmig, R. et al. (1997). Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer-Verlag.\n", + "\n", + "[2] Udell, K. and Fitch, J. (1985) Heat and mass transfer in capillary porous media considering evaporation, condensation, and non-condensible gas effects. 23rd ASME/AIChE national heat transfer conference, Denver, pp. 103-110.\n", + "\n", + "[3] Wiener, O. (1912). “Abhandl. math.-physâ€. In: Kl. Königl. Sächsischen Gesell 32, p. 509.\n", + "\n", + "[4] Grunwald, N. et al. (2022). Non-isothermal two-phase flow in deformable porous media: Systematic open-source implementation and veriï¬cation procedure. Geomech. Geophys. Geo-energ. Geo-resour., 8, 107\n", + "https://link.springer.com/article/10.1007/s40948-022-00394-2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6451d320", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}