diff --git a/Applications/ApplicationsLib/ProjectData.cpp b/Applications/ApplicationsLib/ProjectData.cpp
index ba1c53ea279530bcf54409228656b33556a0366c..5b2209b42d001d700b83881f9c930a9da0172c57 100644
--- a/Applications/ApplicationsLib/ProjectData.cpp
+++ b/Applications/ApplicationsLib/ProjectData.cpp
@@ -353,6 +353,9 @@ ProjectData::ProjectData(BaseLib::ConfigTree const& project_config,
     //! \ogs_file_param{prj__media}
     parseMedia(project_config.getConfigSubtreeOptional("media"));
 
+    //! \ogs_file_param{prj__linear_solvers}
+    parseLinearSolvers(project_config.getConfigSubtree("linear_solvers"));
+
     auto chemical_solver_interface = parseChemicalSolverInterface(
         //! \ogs_file_param{prj__chemical_system}
         project_config.getConfigSubtreeOptional("chemical_system"),
@@ -363,9 +366,6 @@ ProjectData::ProjectData(BaseLib::ConfigTree const& project_config,
                    project_directory, output_directory,
                    std::move(chemical_solver_interface));
 
-    //! \ogs_file_param{prj__linear_solvers}
-    parseLinearSolvers(project_config.getConfigSubtree("linear_solvers"));
-
     //! \ogs_file_param{prj__nonlinear_solvers}
     parseNonlinearSolvers(project_config.getConfigSubtree("nonlinear_solvers"));
 
@@ -554,8 +554,8 @@ ProjectData::parseChemicalSolverInterface(
             "using file-based approach.");
 
         chemical_solver_interface = ChemistryLib::createChemicalSolverInterface<
-            ChemistryLib::ChemicalSolver::Phreeqc>(_mesh_vec, *config,
-                                                   output_directory);
+            ChemistryLib::ChemicalSolver::Phreeqc>(_mesh_vec, _linear_solvers,
+                                                   *config, output_directory);
     }
     else if (boost::iequals(chemical_solver, "PhreeqcKernel"))
     {
diff --git a/ChemistryLib/ChemicalSolverInterface.h b/ChemistryLib/ChemicalSolverInterface.h
index 8596a8721387f54828966eefa919d663f03d2b90..d5e53976e3b2410f169a1c0b24e2857c74358345 100644
--- a/ChemistryLib/ChemicalSolverInterface.h
+++ b/ChemistryLib/ChemicalSolverInterface.h
@@ -28,6 +28,11 @@ namespace ChemistryLib
 class ChemicalSolverInterface
 {
 public:
+    ChemicalSolverInterface(GlobalLinearSolver& linear_solver_)
+        : linear_solver(linear_solver_)
+    {
+    }
+
     virtual void initialize() {}
 
     virtual void initializeChemicalSystemConcrete(
@@ -54,6 +59,13 @@ public:
 
     virtual std::vector<GlobalVector*> getIntPtProcessSolutions() const = 0;
 
+    virtual double getConcentration(
+        int const /*component_id*/,
+        GlobalIndexType const /*chemical_system_id*/) const
+    {
+        return std::numeric_limits<double>::quiet_NaN();
+    }
+
     virtual std::vector<std::string> const getComponentList() const
     {
         return {};
@@ -84,5 +96,8 @@ public:
 
 public:
     std::vector<GlobalIndexType> chemical_system_index_map;
+    /// specify the linear solver used to solve the linearized reaction
+    /// equation.
+    GlobalLinearSolver& linear_solver;
 };
 }  // namespace ChemistryLib
diff --git a/ChemistryLib/CreateChemicalSolverInterface.cpp b/ChemistryLib/CreateChemicalSolverInterface.cpp
index e3e6275b6773be9af6a9f31e0d7fc2df97959c19..ee62d6595aff3acc74cf07e91cad40e848327083 100644
--- a/ChemistryLib/CreateChemicalSolverInterface.cpp
+++ b/ChemistryLib/CreateChemicalSolverInterface.cpp
@@ -64,6 +64,8 @@ template <>
 std::unique_ptr<ChemicalSolverInterface>
 createChemicalSolverInterface<ChemicalSolver::Phreeqc>(
     std::vector<std::unique_ptr<MeshLib::Mesh>> const& meshes,
+    std::map<std::string, std::unique_ptr<GlobalLinearSolver>> const&
+        linear_solvers,
     BaseLib::ConfigTree const& config, std::string const& output_directory)
 {
     auto mesh_name =
@@ -82,6 +84,13 @@ createChemicalSolverInterface<ChemicalSolver::Phreeqc>(
     assert(mesh.getID() != 0);
     DBUG("Found mesh '{:s}' with id {:d}.", mesh.getName(), mesh.getID());
 
+    auto const ls_name =
+        //! \ogs_file_param{prj__chemical_system__linear_solver}
+        config.getConfigParameter<std::string>("linear_solver");
+    auto& linear_solver = BaseLib::getOrError(
+        linear_solvers, ls_name,
+        "A linear solver with the given name does not exist.");
+
     auto path_to_database = parseDatabasePath(config);
 
     // chemical system
@@ -135,9 +144,9 @@ createChemicalSolverInterface<ChemicalSolver::Phreeqc>(
         *chemical_system, user_punch, use_high_precision, project_file_name);
 
     return std::make_unique<PhreeqcIOData::PhreeqcIO>(
-        std::move(project_file_name), std::move(path_to_database),
-        std::move(chemical_system), std::move(reaction_rates),
-        std::move(surface), std::move(user_punch),
+        *linear_solver, std::move(project_file_name),
+        std::move(path_to_database), std::move(chemical_system),
+        std::move(reaction_rates), std::move(surface), std::move(user_punch),
         std::move(output), std::move(dump), std::move(knobs));
 }
 
@@ -145,9 +154,19 @@ template <>
 std::unique_ptr<ChemicalSolverInterface>
 createChemicalSolverInterface<ChemicalSolver::PhreeqcKernel>(
     std::vector<std::unique_ptr<MeshLib::Mesh>> const& meshes,
+    std::map<std::string, std::unique_ptr<GlobalLinearSolver>> const&
+        linear_solvers,
     BaseLib::ConfigTree const& config, std::string const& /*output_directory*/)
 {
     auto mesh = *meshes[0];
+
+    auto const ls_name =
+        //! \ogs_file_param{prj__chemical_system__linear_solver}
+        config.getConfigParameter<std::string>("linear_solver");
+    auto& linear_solver = BaseLib::getOrError(
+        linear_solvers, ls_name,
+        "A linear solver with the given name does not exist.");
+
     auto path_to_database = parseDatabasePath(config);
 
     // TODO (renchao): remove mapping process id to component name.
@@ -174,9 +193,9 @@ createChemicalSolverInterface<ChemicalSolver::PhreeqcKernel>(
         config.getConfigSubtreeOptional("equilibrium_reactants"), mesh);
 
     return std::make_unique<PhreeqcKernelData::PhreeqcKernel>(
-        mesh.getNumberOfBaseNodes(), process_id_to_component_name_map,
-        std::move(path_to_database), std::move(aqueous_solution),
-        std::move(equilibrium_reactants), std::move(kinetic_reactants),
-        std::move(reaction_rates));
+        *linear_solver, mesh.getNumberOfBaseNodes(),
+        process_id_to_component_name_map, std::move(path_to_database),
+        std::move(aqueous_solution), std::move(equilibrium_reactants),
+        std::move(kinetic_reactants), std::move(reaction_rates));
 }
 }  // namespace ChemistryLib
diff --git a/ChemistryLib/CreateChemicalSolverInterface.h b/ChemistryLib/CreateChemicalSolverInterface.h
index 104c80636665a39092b6f7f22fc130b542616449..85c4ba782d165647cc345053a82c1d78660c4b2e 100644
--- a/ChemistryLib/CreateChemicalSolverInterface.h
+++ b/ChemistryLib/CreateChemicalSolverInterface.h
@@ -10,11 +10,13 @@
 
 #pragma once
 
+#include <map>
 #include <memory>
 #include <string>
 #include <vector>
 
 #include "ChemicalSolverType.h"
+#include "MathLib/LinAlg/GlobalMatrixVectorTypes.h"
 
 namespace BaseLib
 {
@@ -33,5 +35,7 @@ class ChemicalSolverInterface;
 template <ChemicalSolver chemical_solver>
 std::unique_ptr<ChemicalSolverInterface> createChemicalSolverInterface(
     std::vector<std::unique_ptr<MeshLib::Mesh>> const& meshes,
+    std::map<std::string, std::unique_ptr<GlobalLinearSolver>> const&
+        linear_solvers,
     BaseLib::ConfigTree const& config, std::string const& output_directory);
 }  // namespace ChemistryLib
diff --git a/ChemistryLib/PhreeqcIO.cpp b/ChemistryLib/PhreeqcIO.cpp
index fa3906b0e47e864231ab91555dc6c25308cdca66..c2e1e1e138714dd5cd7dde6bfed080203a3dccb9 100644
--- a/ChemistryLib/PhreeqcIO.cpp
+++ b/ChemistryLib/PhreeqcIO.cpp
@@ -248,7 +248,8 @@ static double averageReactantMolality(
 }
 }  // namespace
 
-PhreeqcIO::PhreeqcIO(std::string const& project_file_name,
+PhreeqcIO::PhreeqcIO(GlobalLinearSolver& linear_solver,
+                     std::string const& project_file_name,
                      std::string&& database,
                      std::unique_ptr<ChemicalSystem>&& chemical_system,
                      std::vector<ReactionRate>&& reaction_rates,
@@ -257,7 +258,8 @@ PhreeqcIO::PhreeqcIO(std::string const& project_file_name,
                      std::unique_ptr<Output>&& output,
                      std::unique_ptr<Dump>&& dump,
                      Knobs&& knobs)
-    : _phreeqc_input_file(project_file_name + "_phreeqc.inp"),
+    : ChemicalSolverInterface(linear_solver),
+      _phreeqc_input_file(project_file_name + "_phreeqc.inp"),
       _database(std::move(database)),
       _chemical_system(std::move(chemical_system)),
       _reaction_rates(std::move(reaction_rates)),
@@ -395,6 +397,18 @@ std::vector<GlobalVector*> PhreeqcIO::getIntPtProcessSolutions() const
     return int_pt_process_solutions;
 }
 
+double PhreeqcIO::getConcentration(
+    int const component_id, GlobalIndexType const chemical_system_id) const
+{
+    auto const& aqueous_solution = *_chemical_system->aqueous_solution;
+    auto& components = aqueous_solution.components;
+    auto const& pH = *aqueous_solution.pH;
+
+    return component_id < static_cast<int>(components.size())
+               ? components[component_id].amount->get(chemical_system_id)
+               : pH.get(chemical_system_id);
+}
+
 void PhreeqcIO::setAqueousSolutionsPrevFromDumpFile()
 {
     if (!_dump)
diff --git a/ChemistryLib/PhreeqcIO.h b/ChemistryLib/PhreeqcIO.h
index 22d31ff3f7f776d0c94127c52b258abe39c1f8f4..bca62ca832b530ebd32401b5eaf6575b45e66f47 100644
--- a/ChemistryLib/PhreeqcIO.h
+++ b/ChemistryLib/PhreeqcIO.h
@@ -34,7 +34,8 @@ struct UserPunch;
 class PhreeqcIO final : public ChemicalSolverInterface
 {
 public:
-    PhreeqcIO(std::string const& project_file_name,
+    PhreeqcIO(GlobalLinearSolver& linear_solver,
+              std::string const& project_file_name,
               std::string&& database,
               std::unique_ptr<ChemicalSystem>&& chemical_system,
               std::vector<ReactionRate>&& reaction_rates,
@@ -67,6 +68,10 @@ public:
 
     std::vector<GlobalVector*> getIntPtProcessSolutions() const override;
 
+    double getConcentration(
+        int const component_id,
+        GlobalIndexType const chemical_system_id) const override;
+
     friend std::ostream& operator<<(std::ostream& os,
                                     PhreeqcIO const& phreeqc_io);
 
diff --git a/ChemistryLib/PhreeqcKernel.cpp b/ChemistryLib/PhreeqcKernel.cpp
index f3f0ff813dd88f73fc9555658f283ded046189af..89cf1274df72886179f7f2d804d2f0f5f326bf93 100644
--- a/ChemistryLib/PhreeqcKernel.cpp
+++ b/ChemistryLib/PhreeqcKernel.cpp
@@ -24,6 +24,7 @@ namespace ChemistryLib
 namespace PhreeqcKernelData
 {
 PhreeqcKernel::PhreeqcKernel(
+    GlobalLinearSolver& linear_solver,
     std::size_t const num_chemical_systems,
     std::vector<std::pair<int, std::string>> const&
         process_id_to_component_name_map,
@@ -32,7 +33,8 @@ PhreeqcKernel::PhreeqcKernel(
     std::unique_ptr<EquilibriumReactants>&& equilibrium_reactants,
     std::unique_ptr<Kinetics>&& kinetic_reactants,
     std::vector<ReactionRate>&& reaction_rates)
-    : _initial_aqueous_solution(aqueous_solution.getInitialAqueousSolution()),
+    : ChemicalSolverInterface(linear_solver),
+      _initial_aqueous_solution(aqueous_solution.getInitialAqueousSolution()),
       _aqueous_solution(aqueous_solution.castToBaseClassNoninitialized()),
       _reaction_rates(std::move(reaction_rates))
 {
diff --git a/ChemistryLib/PhreeqcKernel.h b/ChemistryLib/PhreeqcKernel.h
index 5a5482bc649dad86a5592eafe82c2efd987c471b..b5a9c4a54f8525a50365cba2832ba081f89cb0f9 100644
--- a/ChemistryLib/PhreeqcKernel.h
+++ b/ChemistryLib/PhreeqcKernel.h
@@ -32,11 +32,11 @@ class ReactionRate;
 class PhreeqcKernel final : public ChemicalSolverInterface, private Phreeqc
 {
 public:
-    PhreeqcKernel(std::size_t const num_chemical_systems,
+    PhreeqcKernel(GlobalLinearSolver& linear_solver,
+                  std::size_t const num_chemical_systems,
                   std::vector<std::pair<int, std::string>> const&
                       process_id_to_component_name_map,
-                  std::string const& database,
-                  AqueousSolution aqueous_solution,
+                  std::string const& database, AqueousSolution aqueous_solution,
                   std::unique_ptr<EquilibriumReactants>&& equilibrium_reactants,
                   std::unique_ptr<Kinetics>&& kinetic_reactants,
                   std::vector<ReactionRate>&& reaction_rates);
diff --git a/Documentation/ProjectFile/prj/chemical_system/t_linear_solver.md b/Documentation/ProjectFile/prj/chemical_system/t_linear_solver.md
new file mode 100644
index 0000000000000000000000000000000000000000..e50877ae81fbbbcf4add3d70cef77f09d7d5e3aa
--- /dev/null
+++ b/Documentation/ProjectFile/prj/chemical_system/t_linear_solver.md
@@ -0,0 +1 @@
+\copydoc ChemistryLib::ChemicalSolverInterface::linear_solver
diff --git a/ProcessLib/ComponentTransport/ComponentTransportFEM.h b/ProcessLib/ComponentTransport/ComponentTransportFEM.h
index 8b615642ecee3519ac5a1f2533828c103aa8bc09..5a235ee8f2fcd9d84cc44b16fd4d2b13fc3d442d 100644
--- a/ProcessLib/ComponentTransport/ComponentTransportFEM.h
+++ b/ProcessLib/ComponentTransport/ComponentTransportFEM.h
@@ -121,6 +121,54 @@ public:
         setChemicalSystemConcrete(local_x, t, dt);
     }
 
+    void assembleReactionEquation(
+        std::size_t const mesh_item_id,
+        std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_tables,
+        std::vector<GlobalVector*> const& x, double const t, double const dt,
+        GlobalMatrix& M, GlobalVector& b, int const process_id)
+    {
+        std::vector<double> local_x_vec;
+
+        auto const n_processes = x.size();
+        for (std::size_t pcs_id = 0; pcs_id < n_processes; ++pcs_id)
+        {
+            auto const indices =
+                NumLib::getIndices(mesh_item_id, *dof_tables[pcs_id]);
+            assert(!indices.empty());
+            auto const local_solution = x[pcs_id]->get(indices);
+            local_x_vec.insert(std::end(local_x_vec),
+                               std::begin(local_solution),
+                               std::end(local_solution));
+        }
+        auto const local_x = MathLib::toVector(local_x_vec);
+
+        auto const indices =
+            NumLib::getIndices(mesh_item_id, *dof_tables[process_id]);
+        auto const num_r_c = indices.size();
+
+        std::vector<double> local_M_data;
+        local_M_data.reserve(num_r_c * num_r_c);
+        std::vector<double> local_b_data;
+        local_b_data.reserve(num_r_c);
+
+        assembleReactionEquationConcrete(t, dt, local_x, local_M_data,
+                                         local_b_data, process_id);
+
+        auto const r_c_indices =
+            NumLib::LocalToGlobalIndexMap::RowColumnIndices(indices, indices);
+        if (!local_M_data.empty())
+        {
+            auto const local_M =
+                MathLib::toMatrix(local_M_data, num_r_c, num_r_c);
+            M.add(r_c_indices, local_M);
+        }
+
+        if (!local_b_data.empty())
+        {
+            b.add(indices, local_b_data);
+        }
+    }
+
     virtual std::vector<double> const& getIntPtDarcyVelocity(
         const double t,
         std::vector<GlobalVector*> const& x,
@@ -141,6 +189,11 @@ private:
                                            double const /*t*/,
                                            double const /*dt*/) = 0;
 
+    virtual void assembleReactionEquationConcrete(
+        double const t, double const dt, Eigen::VectorXd const& local_x,
+        std::vector<double>& local_M_data, std::vector<double>& local_b_data,
+        int const transport_process_id) = 0;
+
 protected:
     CoupledSolutionsForStaggeredScheme* _coupled_solutions{nullptr};
 };
@@ -930,6 +983,73 @@ public:
         }
     }
 
+    void assembleReactionEquationConcrete(
+        double const t, double const dt, Eigen::VectorXd const& local_x,
+        std::vector<double>& local_M_data, std::vector<double>& local_b_data,
+        int const transport_process_id) override
+    {
+        auto const local_C = local_x.template segment<concentration_size>(
+            first_concentration_index +
+            (transport_process_id - 1) * concentration_size);
+
+        auto local_M = MathLib::createZeroedMatrix<LocalBlockMatrixType>(
+            local_M_data, concentration_size, concentration_size);
+        auto local_b = MathLib::createZeroedVector<LocalVectorType>(
+            local_b_data, concentration_size);
+
+        unsigned const n_integration_points =
+            _integration_method.getNumberOfPoints();
+
+        ParameterLib::SpatialPosition pos;
+        pos.setElementID(_element.getID());
+
+        MaterialPropertyLib::VariableArray vars;
+        MaterialPropertyLib::VariableArray vars_prev;
+
+        auto const& medium =
+            *_process_data.media_map->getMedium(_element.getID());
+        auto const component_id = transport_process_id - 1;
+        for (unsigned ip(0); ip < n_integration_points; ++ip)
+        {
+            pos.setIntegrationPoint(ip);
+
+            auto& ip_data = _ip_data[ip];
+            auto const& N = ip_data.N;
+            auto const w = ip_data.integration_weight;
+            auto& porosity = ip_data.porosity;
+            auto const& porosity_prev = ip_data.porosity_prev;
+            auto const chemical_system_id = ip_data.chemical_system_id;
+
+            double C_int_pt = 0.0;
+            NumLib::shapeFunctionInterpolate(local_C, N, C_int_pt);
+
+            vars[static_cast<int>(
+                MaterialPropertyLib::Variable::concentration)] = C_int_pt;
+
+            // porosity
+            {
+                vars_prev[static_cast<int>(
+                    MaterialPropertyLib::Variable::porosity)] = porosity_prev;
+
+                porosity =
+                    _process_data.chemically_induced_porosity_change
+                        ? porosity_prev
+                        : medium[MaterialPropertyLib::PropertyType::porosity]
+                              .template value<double>(vars, vars_prev, pos, t,
+                                                      dt);
+            }
+
+            local_M.noalias() += w * N.transpose() * porosity * N;
+
+            auto const C_post_int_pt =
+                _process_data.chemical_solver_interface->getConcentration(
+                    component_id, chemical_system_id);
+
+            local_b.noalias() +=
+                w * N.transpose() * porosity * (C_post_int_pt - C_int_pt) / dt;
+        }
+    }
+
     std::vector<double> const& getIntPtDarcyVelocity(
         const double t,
         std::vector<GlobalVector*> const& x,
diff --git a/ProcessLib/ComponentTransport/ComponentTransportProcess.cpp b/ProcessLib/ComponentTransport/ComponentTransportProcess.cpp
index 3e738a15742739548ced4ea7f79974df22f818c0..0be1cce8ae718f84feb2d756a595ecaf1c58e023 100644
--- a/ProcessLib/ComponentTransport/ComponentTransportProcess.cpp
+++ b/ProcessLib/ComponentTransport/ComponentTransportProcess.cpp
@@ -14,6 +14,11 @@
 
 #include "BaseLib/RunTime.h"
 #include "ChemistryLib/ChemicalSolverInterface.h"
+#include "MathLib/LinAlg/Eigen/EigenTools.h"
+#include "MathLib/LinAlg/FinalizeMatrixAssembly.h"
+#include "MathLib/LinAlg/FinalizeVectorAssembly.h"
+#include "MathLib/LinAlg/LinAlg.h"
+#include "NumLib/DOF/ComputeSparsityPattern.h"
 #include "ProcessLib/SurfaceFlux/SurfaceFlux.h"
 #include "ProcessLib/SurfaceFlux/SurfaceFluxData.h"
 #include "ProcessLib/Utils/CreateLocalAssemblers.h"
@@ -213,12 +218,16 @@ void ComponentTransportProcess::
 
 void ComponentTransportProcess::solveReactionEquation(
     std::vector<GlobalVector*>& x, std::vector<GlobalVector*> const& x_prev,
-    double const t, double const dt)
+    double const t, double const dt, NumLib::EquationSystem& ode_sys,
+    int const process_id)
 {
-    if (_process_data.lookup_table)
+    // todo (renchao): move chemical calculation to elsewhere.
+    if (_process_data.lookup_table && process_id == 0)
     {
         INFO("Update process solutions via the look-up table approach");
         _process_data.lookup_table->lookup(x, x_prev, _mesh.getNumberOfNodes());
+
+        return;
     }
 
     if (!_chemical_solver_interface)
@@ -226,12 +235,9 @@ void ComponentTransportProcess::solveReactionEquation(
         return;
     }
 
-    // Sequential non-iterative approach applied here to perform water
-    // chemistry calculation followed by resolving component transport
-    // process.
-    // TODO: move into a global loop to consider both mass balance over
-    // space and localized chemical equilibrium between solutes.
-    const int process_id = 0;
+    // Sequential non-iterative approach applied here to split the reactive
+    // transport process into the transport stage followed by the reaction
+    // stage.
     ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
 
     std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
@@ -239,21 +245,63 @@ void ComponentTransportProcess::solveReactionEquation(
     std::generate_n(std::back_inserter(dof_tables), x.size(),
                     [&]() { return _local_to_global_index_map.get(); });
 
+    if (process_id == 0)
+    {
+        GlobalExecutor::executeSelectedMemberOnDereferenced(
+            &ComponentTransportLocalAssemblerInterface::setChemicalSystem,
+            _local_assemblers, pv.getActiveElementIDs(), dof_tables, x, t, dt);
+
+        BaseLib::RunTime time_phreeqc;
+        time_phreeqc.start();
+
+        _chemical_solver_interface->setAqueousSolutionsPrevFromDumpFile();
+
+        _chemical_solver_interface->executeSpeciationCalculation(dt);
+
+        INFO("[time] Phreeqc took {:g} s.", time_phreeqc.elapsed());
+
+        return;
+    }
+
+    auto const matrix_specification =
+        ode_sys.getMatrixSpecifications(process_id);
+
+    std::size_t matrix_id = 0u;
+    auto& M = NumLib::GlobalMatrixProvider::provider.getMatrix(
+        matrix_specification, matrix_id);
+    auto& b =
+        NumLib::GlobalVectorProvider::provider.getVector(matrix_specification);
+    auto& rhs =
+        NumLib::GlobalVectorProvider::provider.getVector(matrix_specification);
+
+    M.setZero();
+    b.setZero();
+    rhs.setZero();
+
     GlobalExecutor::executeSelectedMemberOnDereferenced(
-        &ComponentTransportLocalAssemblerInterface::setChemicalSystem,
-        _local_assemblers, pv.getActiveElementIDs(), dof_tables, x, t, dt);
+        &ComponentTransportLocalAssemblerInterface::assembleReactionEquation,
+        _local_assemblers, pv.getActiveElementIDs(), dof_tables, x, t, dt, M, b,
+        process_id);
 
-    BaseLib::RunTime time_phreeqc;
-    time_phreeqc.start();
+    // todo (renchao): incorporate Neumann boundary condition
+    MathLib::finalizeMatrixAssembly(M);
+    MathLib::finalizeVectorAssembly(b);
 
-    _chemical_solver_interface->setAqueousSolutionsPrevFromDumpFile();
+    MathLib::LinAlg::scale(M, 1.0 / dt);
+    MathLib::LinAlg::matMultAdd(M, *x[process_id], b, rhs);
 
-    _chemical_solver_interface->executeSpeciationCalculation(dt);
+    using Tag = NumLib::NonlinearSolverTag;
+    using EqSys = NumLib::NonlinearSystem<Tag::Picard>;
+    auto& equation_system = static_cast<EqSys&>(ode_sys);
+    equation_system.applyKnownSolutionsPicard(M, rhs, *x[process_id]);
 
-    extrapolateIntegrationPointValuesToNodes(
-        t, _chemical_solver_interface->getIntPtProcessSolutions(), x);
+    auto& linear_solver =
+        _process_data.chemical_solver_interface->linear_solver;
+    linear_solver.solve(M, rhs, *x[process_id]);
 
-    INFO("[time] Phreeqc took {:g} s.", time_phreeqc.elapsed());
+    NumLib::GlobalMatrixProvider::provider.releaseMatrix(M);
+    NumLib::GlobalVectorProvider::provider.releaseVector(b);
+    NumLib::GlobalVectorProvider::provider.releaseVector(rhs);
 }
 
 void ComponentTransportProcess::extrapolateIntegrationPointValuesToNodes(
diff --git a/ProcessLib/ComponentTransport/ComponentTransportProcess.h b/ProcessLib/ComponentTransport/ComponentTransportProcess.h
index a69e1fa2c7f6d8d480bd6277b443188a9fd8b220..27a9e803edea24c407526394fd74c06307dba98c 100644
--- a/ProcessLib/ComponentTransport/ComponentTransportProcess.h
+++ b/ProcessLib/ComponentTransport/ComponentTransportProcess.h
@@ -126,7 +126,9 @@ public:
 
     void solveReactionEquation(std::vector<GlobalVector*>& x,
                                std::vector<GlobalVector*> const& x_prev,
-                               double const t, double const dt) override;
+                               double const t, double const dt,
+                               NumLib::EquationSystem& ode_sys,
+                               int const process_id) override;
 
     void extrapolateIntegrationPointValuesToNodes(
         const double t,
diff --git a/ProcessLib/Process.h b/ProcessLib/Process.h
index d77b06ae53378f3271125c5424067107972a723f..608a00a460f826e8d3776d73d30d7c345a010f00 100644
--- a/ProcessLib/Process.h
+++ b/ProcessLib/Process.h
@@ -176,7 +176,8 @@ public:
     virtual void solveReactionEquation(
         std::vector<GlobalVector*>& /*x*/,
         std::vector<GlobalVector*> const& /*x_prev*/, double const /*t*/,
-        double const /*dt*/)
+        double const /*dt*/, NumLib::EquationSystem& /*ode_sys*/,
+        int const /*process_id*/)
     {
     }
 
diff --git a/ProcessLib/TimeLoop.cpp b/ProcessLib/TimeLoop.cpp
index 0fd238486be391dddd08d9193b68a032df71b21b..8e106531fb5b7aa4dcc5aab5113a00ecb016c85b 100644
--- a/ProcessLib/TimeLoop.cpp
+++ b/ProcessLib/TimeLoop.cpp
@@ -850,9 +850,15 @@ TimeLoop::solveCoupledEquationSystemsByStaggeredScheme(
     }
 
     {
-        auto& pcs = _per_process_data[0]->process;
-        pcs.solveReactionEquation(_process_solutions, _process_solutions_prev,
-                                  t, dt);
+        for (auto& process_data : _per_process_data)
+        {
+            auto& pcs = process_data->process;
+            int const process_id = process_data->process_id;
+            auto& ode_sys = *process_data->tdisc_ode_sys;
+            pcs.solveReactionEquation(_process_solutions,
+                                      _process_solutions_prev, t, dt, ode_sys,
+                                      process_id);
+        }
     }
 
     return nonlinear_solver_status;
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchange.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchange.prj
index 9e6f4286a75a72395dfbb4dcbeb14713905b8d71..0811fa4ebf371c453b94697a2db512675cd5619c 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchange.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchange.prj
@@ -440,6 +440,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>ReactiveDomain_exchange</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>phreeqc.dat</database>
         <solution>
             <temperature>25</temperature>
@@ -706,4 +707,4 @@
             <relative_tolerance>1e-16</relative_tolerance>
         </vtkdiff>
     </test_definition>
-</OpenGeoSysProject>
\ No newline at end of file
+</OpenGeoSysProject>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_0_t_0.000000.vtu
index d4e26fe2a6a47ecfb25a3ba2daa70c8c35e1a3c3..10242dca656b52d9cccbb569b73cccc0a964cdd2 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_0_t_0.000000.vtu
@@ -3,34 +3,35 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.559889828"         RangeMax="12.559889828"         offset="84"                  />
+      <DataArray type="Float64" Name="X" NumberOfTuples="80" format="appended" RangeMin="0.0011"               RangeMax="0.0011"               offset="84"                  />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.559889828"         RangeMax="12.559889828"         offset="160"                 />
     </FieldData>
     <Piece NumberOfPoints="41"                   NumberOfCells="40"                  >
       <PointData>
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000487e-12"     RangeMax="1.0000000487e-12"     offset="160"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="1e-12"                offset="232"                 />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7789238893e-08"     RangeMax="9.7789238893e-08"     offset="304"                 />
-        <DataArray type="Float64" Name="K" format="appended" RangeMin="0.0002"               RangeMax="0.0002"               offset="376"                 />
-        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="0.0011999938369"      RangeMax="0.0011999938369"      offset="452"                 />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.001"                RangeMax="0.001"                offset="524"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="-6.8304736867e-18"    RangeMax="5.4701387734e-18"     offset="600"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000"               RangeMax="100000"               offset="892"                 />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000487e-12"     RangeMax="1.0000000487e-12"     offset="236"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="1e-12"                offset="308"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7789238893e-08"     RangeMax="9.7789238893e-08"     offset="380"                 />
+        <DataArray type="Float64" Name="K" format="appended" RangeMin="0.0002"               RangeMax="0.0002"               offset="452"                 />
+        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="0.0011999938369"      RangeMax="0.0011999938369"      offset="524"                 />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.001"                RangeMax="0.001"                offset="596"                 />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="668"                 />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000"               RangeMax="100000"               offset="732"                 />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="964"                 />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="-6.8304736867e-18"    RangeMax="6.9253413768e-18"     offset="1024"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="804"                 />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="864"                 />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="1256"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="928"                 />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="1756"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="1920"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="2084"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="1428"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="1592"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="1756"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1sTDQTTdPNUw2NUwzMzYHADNCBPA=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwAAAAAAAAA=eF77MU3z4Uo5TYcfo/QoPQA0APxFLpA=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF7jjO7tnzm90JZzlKaIBgCTRooPAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF7L/KvbOHN6oW3mKE0RDQAt3qHDAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF7rbL9WzeZQZdc5SlNEAwAzfYo4AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFwAAAAAAAAA=eF7LypN5/chMyz4TSmeN0mTRAB29imA=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF5bHWQ1SXllsP3qUZoiGgA9fYFAAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFwAAAAAAAAA=eF5j2PPxkm9SgD0jlGYYpcmiAboLmUc=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAuQAAAAAAAAA=eF5jYACCGcF7GEE0w+fdYCokcg8TiPYw2wPmqwXYgGkGwz0cIMpBHCL+wwsiLqAAoS8YQuglgRA6JdQGbK6Kkw1YH8Nz63//gcCeHWKfiiNEnVUkhPYLgtALDPeA1YVbQfgeThDaKBRir1UYhD4gARGfYAPh10VDzBUJgvA1LCD0EzeIfyJs9iiABd5Yg9UJuNuAxV8YQNx5wh2i/ow/xBwgDebXQNVVGEHsYwuHiDfEw9UBAFa+O4k=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAEwAAAAAAAAA=eF5jYACCrB8ODKM0RTQAZ5xC8w==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAjQAAAAAAAAA=eF5jYACCGcF7QBSDQDyEfhNsA6YPeEDoByEQ8R+BED6DE4T+YAwRP+EN4aeEotIMWhD5BzoQvoMJhG8SBuXHQOgdDhBaJxAiHxEH4St4QPghcRDawQdCW0Dd0QB1b004VJ8nhGZgtkERXwB17wFHCP9DPKo8w+fdKObB+CfCIeokfPegyCOpAwAYVjQ4AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwAAAAAAAAA=eF7Tz1vMuIc1yF5/lB6lB4AGABXOzfE=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwAAAAAAAAA=eF77MU3z4Uo5TYcfo/QoPQA0APxFLpA=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF7jjO7tnzm90JZzlKaIBgCTRooPAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF7L/KvbOHN6oW3mKE0RDQAt3qHDAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF7raL9WzeZQZdcxSlNEAwAYlYoPAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF7LzJN5/chMyz5zlKaIBgAEFYo4AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF5bHWQ1SXllsP3qUZoiGgA9fYFAAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFQAAAAAAAAA=eF5j2PPxkm9SgD3DKE0RDQC4y5lGAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAADQAAAAAAAAA=eF5jYBgF1AAAAUgAAQ==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAEwAAAAAAAAA=eF5jYACCrB8ODKM0RTQAZ5xC8w==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAADQAAAAAAAAA=eF5jYBgFlAAAAUAAAQ==AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_100_t_18000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_100_t_18000.000000.vtu
index f08895ae295a5931ec9b450e846452582a2406f6..205296b8f5c02e9ff65a244934c7da315e495f26 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_100_t_18000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_100_t_18000.000000.vtu
@@ -3,34 +3,35 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.562472773"         RangeMax="12.645428481"         offset="84"                  />
+      <DataArray type="Float64" Name="X" NumberOfTuples="80" format="appended" RangeMin="0.0011"               RangeMax="0.0011"               offset="84"                  />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.562472773"         RangeMax="12.645428027"         offset="160"                 />
     </FieldData>
     <Piece NumberOfPoints="41"                   NumberOfCells="40"                  >
       <PointData>
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="-6.9503331608e-07"    RangeMax="0.00060000000001"     offset="888"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="4.5984181669e-05"     RangeMax="0.0012"               offset="1384"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.373178294e-08"      RangeMax="1.0117767633e-07"     offset="1880"                />
-        <DataArray type="Float64" Name="K" format="appended" RangeMin="9.7690317565e-13"     RangeMax="0.0007844158993"      offset="2376"                />
-        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="1.0000004589e-12"     RangeMax="0.0011539770009"      offset="2872"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="9.9658327776e-13"     RangeMax="0.00099999975675"     offset="3368"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="3860"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="4152"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="-5.3035709411e-06"    RangeMax="0.0006"               offset="960"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="4.598418166e-05"      RangeMax="0.0012"               offset="1456"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.3731780874e-08"     RangeMax="1.0149276295e-07"     offset="1952"                />
+        <DataArray type="Float64" Name="K" format="appended" RangeMin="1e-12"                RangeMax="0.00078636813008"     offset="2448"                />
+        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="1e-12"                RangeMax="0.0011539770009"      offset="2944"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="1e-12"                RangeMax="0.00099999975663"     offset="3440"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="3936"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="4088"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4588"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="4648"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4524"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="4584"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4936"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4716"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="5436"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5600"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5764"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="5216"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5380"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5544"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1sTDQTTdPNUw2NUwzMzYHADNCBPA=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAOAIAAAAAAAA=eF4V0V1I02EYBXAIw82ZaBil4abzol7bYBpprNTXrzVDmyJZpDMslzNcMMuUXItQwxYRI5w1usmJbSupxoRMKkbOD9pyU1GSSWaDQJZTcZU0s/O/+nHO1eF5uiy1Z8cFhPIT66+EeYSye30bm1mE1rdf3nJmEBoryZXIswl9LZ85/0xMqIebz9FTQi8oxW/8OYReG2uZs+UT2h3htj7II/SnurnhaCGhDr1wVVFA6G1t5eeqIkI7Oby4d+g5AlN0toTQFb3c4kC/ZfjXGUR+Elg7fR+KbY7Ht04Qqj7C3SeCy7yY/hCcmTpQY4dX28penpESmiaKrE6B4d1xPCv86kmo0EDlzuGuNegSV7VOwOBDAet4MaHSSrcgBg5pDP3bMM/SqDPADN6oqfwkoe2a0prD8Cm/INgIX93Y3lML73Hjjc3wg6bgUhMUrWv9ahi62dPA9P42T89FeMhZuEsFZfHahBKodEnM5+DYyEKpEBZr7TO5kJ+0Q8WGG6IoIxcGgrLpJexw6vpKNuGYzjwwDL8nejOnINfkme9mdtvGG5/DNFXUUBNUBD49ugNjpB3JFXDwd2CxDo78aWnPgqkdZE0CjQP7V3lwPbmaLYR15nRxNCz6O5q6Fzpibawwc0dzUigCOZb1PrSC3FL6LeUXc1en664fygbf5izDHwqv3Ad96SrPIjzV+SJylvnHx97WL/C6Y/KYl/lDWfnUNLTXLk24mTyXaZyE2VbdQRd0z88uMP4HCjsDXA==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/oMPVzAqqUM/b4T8+pqXcT0AwJ5qQKhDP3IzGhYrpkM/DBbXc+ahQz/+jF0XvJlDP7qqtnfcikM/5uTZgMVwQz9U7bcGXkRDP1P2OXej+kI/6gIJy8CCQj8EcC6dQMNBP23RPyM1lUA/zOJc1ZJ8PT+jMm434fU3P8bd3ogIvC8/fco+s/Cq/z6lIepsSlKnvjDrCAlxoGM+SKFbpCuYNz67Dxyi05kKPidAjlG4cN893s2x0cK1tD2EXxICJ9CRPXzUPBmc9ns9UFQQXrkSdD0waeHsB2RyPUNYjYah7HE9Ns5O4SPAcT2CSswA6atxPS/X8q7hoXE9cvqfgMiccT36Mb9lMJpxPS1fAx3hmHE9h1sFpjmYcT2nCfD55pdxPQj+yKW+l3E9Qn09NauXcT1iYLfyoZdxPTRBY5edl3E9qtHcl5uXcT3JQ5moAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/oE8VTAqqVM/K6+Dc+QbCD8ys8KaBKlTP2+dqCuwqFM/BMqdVQeoUz+yuP+0zqZTP/bB01ispFM/0FhqcB2hUz9aeZbsaptTP+4CEhaeklM/mvUllHaFUz92JjHJY3JTP9VzF6uDV1M/3lQAOKkyUz+SknVFbAFTP5blw55DwVI/uMRwP6lvUj8SbfUMRwpSP9sGd/goj1E/P78bJPD8UD+rbAzIAVNQP4oqT65YI08/G+bT0nt0TT8I8CJyEJ5LPyaaysegpkk/TG0JxVWWRz/0nsrfjHZFP5QhpydVUUM/LkNmwt8wQT9mtkIu4j0+PwZKbMK+SDo/HGvfmVKRNj8oSSQHWCMzP8aU9m74BjA/EqTdy4eBKj/P1wCEz6MlPwSFkF43cSE/IgBN5x/DGz/GKhtQjNQVP5RfqCr6BxE/rHf13Df3Cj/fUoqxAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/mZNZYHgKHs+rzxyGgF6dj5D/DA52Ch7PnJlR3XFKHs+ekmRc58oez4CCdrcVyh7Plia2hPYJ3s+tGtZh/0mez50P0T6lCV7PvYSkIRUI3s+sKMAUNQfez4viVrihRp7PkBqjsCoEns+BlrQZD4Hez60OwaQGfd6Prz04+7G4Ho+rJezro7Aej5CLVWofaR6PmcbwKzUg3o+bD65D05cej6SqF8+0y16PurXvHKm+Hk+OO92inS9eT7BimUgTX15PtI1TPmNOXk+4a38U8XzeD7k2GWJkK14PiZSknd8aHg+DgL00+sleD5cmROBBed3PnQXUjerrHc+pFLte3d3dz5A0AsxwUd3PrA7PPSiHXc+Akt8vAT5dj6FE3hpptl2PiivQYcqv3Y+3lrkfCGpdj5Y4RoJGJd2PlqoWb+3iHY+YLhJozV+dj6QspNqAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/oyL262UL3E974VBAuU2Kj9uCeP7xRiBPk5Sw8goIJw+DquWyUkesT74M5WdwkjCPoIy+ILyFdI+Tjys10v64D46E+TMv6nuPgC83D0r3fo+onVU1iT2Bj9yuNs/NDkTP9DcJcCJqh8/KhkgUSe6KT9WoZMWuV80P+ygaGfmZT8/fT0lUSi0ST+a6aH+efBHP8DB62EkLkQ/wg/MuFOOQD/WdcH6kLk6PyZDD2WIvjU/dUsgIFZJMj+UB0HQjxcwP7UscFyljy0/y9/m9ocNLD+l9pRgODUrP/Ip6IVevio/GXQp0hp+Kj+putFh2VsqP25trDrVSSo/UqkXzXpAKj+WDvptrzsqP+4FcyFCOSo/X5wkgQs4Kj96lHEYcjcqP4LMPj4nNyo/fj18JwM3Kj8o1Fj18TYqPz5mI93pNio/dcsXJuY2Kj+t74yYAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/lvsoQial3E94ZOoXiHoUj88+w3Oz8piPqrATwcOgX4+jJgN05Mtkj4WdUt+v9uiPnYZMclC97E+LovbnGYZwD6CsflDW37LPnl/7hn1i9Y+vHJs86/Z4T4IewkqBGPrPvK1HQ99afQ+tp76Dwig/T50uxkWlvcEP4c8nmya/Aw/tPy0WeiXEz+/n3Wr/e0ZPz6349jmzyA/m7WP/6JhJT+Ktc12CbEqP55AflfTXTA/9nqVBYW7Mz/Otrb7Umg3PyT9Z+0oVzs//NE1K7V3Pz+a1F6AnttBP2gDR0PRAEQ/2Ou30kEhRj8qoZfeKzNIP17vWz65LUo/lE7bU2sJTD/6QCb/ZMBNP7KwopKRTk8/b89ZgtRYUD90G9BTivRQP4Ni9k/celE/sjEoYNDsUT+74tXjuEtSP2S20XSBmFI/+NYO7kbRUj9tPZ8tAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUAEAAAAAAAA=eF7jDzriZdZRaBtlJzLBNynAPuBt0lUWhwq7dd4PNzdfnGwXt2rlkZCHy+34D5lff6C2084g9GtAb/4Ju3kCFyMkCq7Z/VPV8gjd89juz3cVneYjH+xSxSad5F/3226L39ZvJ73Y7Hum/pA8PkXQXmzhxwN7LaXt17lr1URtUrFXTK9YVsyqb39vzzmuX27m9jPVVgmw37azv3DE588kZWf7Q/UnBV4edrM/N0ltYsdXT/tVTBUb+Yt97IO2/7VZqetnP83BoLTHzd++o/IVR/Y7f/tYmTTDSvUA+5ZEO5VmpwB7H68Z8XGBAfYZIkLX0iID7CvM5FjWxwbY/9zA3Pk+PsB+8ctt16QSA+z5FGc7bQHSynk6bxiB/j823eyABpB+6+H71hpIVz2d7OEKpO/l5Zz2BNI/OTd+9AbRd7Z/8QHSXZkzs0HhBgAYBI+YAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAugAAAAAAAAA=eF4TDdWZpr9kkp1wjByYdvqiBaaX7dIF0x+MjMC0ngCEfvldH0z/y4Dwm1eYQfTNMAfTDKctwHRKtSWYDomD0Nt6IPSeVdZgui3bCkyvkYGoz86Eym+G0GbREHMffDEB012iEHUnTkD076qG2LcuxRBM26TpgekF7hDaoAri/m2MEP8ZXYK4+44NhE6ygMiHnIDQscsgdPRqiP9dfdXAdBqUXrcLQh+KUQHT804qgellcgpgGgDp9YuIAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OrNsf7DDK/OGQeNHi3i8gfXhR4Z6vQFq5ZNWsD0C62fVxxWsg/VhMJvwZkHZ5EWL6EEgv3tkrfAdIM3Uf+3gNSCfE/D9/EUjv07VYdwZIy/wv6DkOpKsurMw6BKRvLHzksRdImxZLq+8A0pNdQlg3A+mPor2P1wJp/+dHD64A0mt3/Ju/GEjzdJnXzQPS2dEFMTOB9EmdlVZTgLTav4cS/UC67bzU904g/WxB8NUWIO1e1LO5Hkgvdz46sQpIc4r+yy8F0lnPzPwKgPSp7fk62UBau3MFVxqQ7ol6+CIBSL/VljoeDaT9/gYtDQPSG851NwcCaeEFRxJ9gHRp4V97d5D7nczknIC0jUj+HxsgveDp8lvmQBoAcQ2tMQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAtwAAAAAAAAA=eF4TDdWZpr9kkl3+ZE0wffuhIZhmbjEC0xFzIPyqYD0w3VxnBqEvQWjGOAsw/c/cEkyf2Aeh7/2FiPdLW4Hpl5a2YFp5rjmYNpkDkV9kBpG/bgDRN7XVGExrp0DMf34MIr7iFET/GR2IeyZA3fVMXxvizngIn2MqxB/JeRD3MplBxLc764JpXl0IPTsZIi//EuL/6bkaYPqTjgqYvg3lN7KrgmmWTcpg2vKhIpgWipED0wBu+IY5AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwAAAAAAAAA=eF7Tz1vMuIc1yF5/lB6lB4AGABXOzfE=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAANwIAAAAAAAA=eF4V0F9IE1AchmEqac5MdrGxVEhFrR1KNizaspWnaW7LMrHRYFaETsqa0UZaiTCGsJGyLFAzyUqKBM3czHBQthIjV7O1TZ0zSx3qhURj4R8E2fp29fC9/C4OZ2hw9cDofkJnDJXXN1MIrRqNTGwICW1sLXd+ziZUbzgkuXCU0O+LdZKuHEKnta64B5TQfdJdwwvHCDV0NI/3SwhV+FtsTccJrXZwykX5hPLLWMGKPEIzhU0jpScITda5mUPo5yL+sLiAUJ9lpP0TOq9GVBPE/tCcLzPDFOvbRr2U0L1fpGwBbODlPVuFETNHMQDXJyUdShmhJcG1M2nwyNS9pG7I1rvldfDn9tMvQrB+cbbeEe1PNP1iOaEhwY3iBDjRq2GFoTq2T9cG45XrtcUnCRXWPnIL4A678bUG5gb7TJfgnbC3oRq6bAG5Dk5aFgJauLInvSza/RlXzOUwT9PNqIJlU5fZpyCrs+i5CpZoEwuzYMaw1ZUL05dM15iQrxpv2w3XS7d4AniH3Twu24CtOYqed3A+O/2gBxaxCqdbYK/be7UHfutKsOmgat740AgNYXXaWUjUr2bVcGss1yCEMYkfQwXRO/HgnxQY4XTGZUHeY7MoHj71SVK5kPU7n7mJfyrmv/kXgz1w37LyFzu2yJq6FtXBalyATkaSeBmWjr0/PwP1tp2eOXjRPseYhBWFplt+qLqrPOyGS56XP7wwedn6dQxuy+S2u6Dvtj7TCcOVN39F/Q8T0QKnAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/mEyVTAqqUM/PpL2u5qXcT1dp3W+QKhDP8JzxycspkM/gGuU/uihQz8MCpBxwZlDP9d8wYvmikM/YQACWthwQz/mZQByfERDP7o82djg+kI/GQ9Hp/2CQj8HAY5SA8RBP2jEmJ0hlUA/Mt2JSsqNPT/gCl3V88Q3PxjFzA8KDzA/mKVuCpKZ/j70p8d6qj7WvkGZZhRcdbo+Mqyy8gEIm74GtR/k17J9PoHws4s+a1++WSZCr0r2QD6THonuXBcivssYT6cAfQM+pLAt7xCr5L2+oPjcweXGPSG2JrfmrqW9mEeOTUlCkT1UYRI23XBPPXf0NbB9UHU9XIra2zagcD2XapNs3d1xPUNZYOK+hnE9gXivhxWdcT16QeuumZZxPcj9RvUXmHE9RcLSR5OXcT2KCkNdqJdxPXePl92bl3E9szBaFpyXcT3mMpniAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/mEyVTAqqVM/WLpuc+QbCD+VssKaBKlTP2OzqCuwqFM/otudVQeoUz/Oxv+0zqZTP/zo01ispFM/InlqcB2hUz9GuZbsaptTPyZcEhaeklM/d3smlHaFUz9e4DHJY3JTPz96GKuDV1M/DaIBOKkyUz/uN3dFbAFTP//6xZ5DwVI/nkpzP6lvUj8wcvgMRwpSP8uEevgoj1E/f1QfJPD8UD96HxDIAVNQP1dwVq5YI08/uM/a0nt0TT9sRilyEJ5LP7gy0Megpkk/+TANxVWWRz/Bnc3fjHZFP+4KqSdVUUM/LPpnwt8wQT9ct0Qu4j0+P3s6bcK+SDo/9ajemVKRNj9mMyIHWCMzPzZT8274BjA/4JvUy4eBKj/3MfiDz6MlPzKNiF43cSE/psk75x/DGz8O1AtQjNQVP0k4mir6BxE/RN/e3Df3Cj9Jj46wAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/kivvJry13o++zglEQF6dj4YJmaRhz57PpWh6/v1Ins+/2WwBy4qez6N8YwW7Sd7PuW+77v0J3s+K30o7/Umez5iiGwllyV7Pglr8jxUI3s+ZjBKqNQfez5TWR3ahhp7Pld+RiuoEns+nVkrO0wHez46oUbh7/Z6Pg0/9ebx4Ho+bRJF7H/Aej5350mgOqR6PkYrDVPqg3o+MUFEmEdcej5RyIAh1C16Pvd3dCml+Hk+cx2Pk3O9eT4U4D7MS315PnN52X6MOXk+ShOdtsPzeD4JajDijq14PrC2ENt6aHg+IOOhVOoleD7TXDEqBOd3Pp9gXw+qrHc+A83sgnZ3dz780mVjwEd3Pq/5ZU6iHXc++1/fNwT5dj7otrP/pdl2Ps/4oTYqv3Y+y7oDPSGpdj7YWRnWF5d2PpqCfpC3iHY+DVj2hzV+dj5QIpbjAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9c6aAAuU2Kj9ekN3R5BCBPqcKHqNIE5w+OKrqOKMWsT5a1JRcrkDCPmoP6mpbDtI+++iDiiTz4D41kwb+V57uPgt+xC020fo+teTayL7wBj9+wqsZdy8TP8IEPIC1rR8/fOP4h4V8KT8R7Z6iF7g0PwteVsMiFz8/xbhds4jEST+yJFt3wDNIPwbwlsWVFkQ/IPallWSTQD/6HX9137M6PzV2RI9VvTU/lJ0EWexHMj/GVR0JHRcwP9c35wM3jy0/eGQBn2INLD/XgnJjJzUrP685r3xXvio/T87Qexd+Kj8+39vh11sqP7p2Vo3USSo/uNs2hXpAKj+jbCpTrzsqPySM1BlCOSo/DdmngAs4Kj/DlggacjcqP0CA/j8nNyo/Z6DVKAM3Kj/tFz/28TYqPzyysN3pNio/RuhrJuY2Kj+fsIvUAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9mxuoXiHoUj/q5ZPMz8piPncE8gQOgX4+v6Cy0ZMtkj6CF/R8v9uiPhTN+MdC97E+FjvPm2YZwD6UWk1CW37LPj8fpxj1i9Y+sMR+8q/Z4T5phr8oBGPrPoFCQw59afQ+Jo7jDgig/T40gHYVlvcEP7tJw2ua/Aw/TwZBWeiXEz8p6fqq/e0ZPwj9ntjmzyA/fMtG/6JhJT9Zfn12CbEqP8W1UVfTXTA/uFZjBYW7Mz+JEH/7Umg3P5/AK+0oVzs/ubL4KrV3Pz/C7z+AnttBPwFQKUPRAEQ/Pqmb0kEhRj8pJH7eKzNIP+yeRT65LUo/iqTIU2sJTD/BBxf/ZMBNP7TGlpKRTk8/elZVgtRYUD+4qsxTivRQP4jC80/celE/8GsmYNDsUT/jktTjuEtSP0O80HSBmFI/JRwO7kbRUj/pmJmMAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUQEAAAAAAAA=eF4TfKXbOHN6oe2eeJ4JvkkB9sHVCgUXrSrsWhM3snqenWzHpRz02/vOcrsd5yz7FyjutAsuys6enHXCLmkC2+ne7Gt2ImGnitp3PLY7qJp9Rf7gB7spJxmuLln5226jlfL0t65s9r9Mg7dcniRoXyR4Y6WrtrR9k07Em6CjKvYXp6sffHxPz157W7l0qoe5vf2dBRqy7+3sW4tEHTwVne2X359+ZuNRN/vDj5srO7952idnSLmrl/jY+zxY7WGj52dv1fHkxTk3f3uFf9qGLe/87S3nrtevUw+w/8AxQbfVKcB+WsMut/jAAHvF20726ZEB9gl3ukzWxwbY232fMO99fIB9xvNd96USA+yffP3kugVIt55VeMsI9H8dp9sBDSD9plDqrTWQLnoT7eEKpNmdHU97AulA5ykfvYH0cpNlX3yA9PNXfdmgcAMA5qWQjQ==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAATwAAAAAAAAA=eF5jYLCZpr9kkh0DgwyUtkGjraC0BRofJm8HpR1w0HZo6nGZC6NNoLQelNZB4xuh8VWgtBKUVoPSGmi0FhpfBYd+dFoOB62AQgMAjTFiqg==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OYtsf7DDK/OEQe9Hi3i8gvWtR4Z6vQFq8ZNWsD0C61PVxxWsgfVlMJvwZkDZ4EWL6EEj37uwVvgOkX3Yd+3gNSLvG/D9/EUgv1LVYdwZI//1X0HMcSEddWJl1CEhvX/jIYy+QFimWVt8BpItcQlg3A+kLor2P1wJp/edHD64A0hN2/Ju/GEh/7DSvmwekg6ILYmYC6U06K62mAGmhfw8l+kHuOi/1vRNI31wQfLUFSNsW9WyuB9ILnI9OrALSzKL/8kuBdOozM78CIH1se75ONpDW7FzBlQake6IevkgA0h+0pY5HA+nQv0FLw4D0znPdzYFAWm7BkUQfIN1c+NfeHUi/cDKTcwLSviL5f2yA9Many2+ZA2kAQU+uTA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAQQAAAAAAAAA=eF5jYLCZpr9kkh0DBm2BRqPLOxCgiTUXRhtAaR00GiZuAqU1oLQClFZBE0enddDUodPo5sD4Mjj4Kih8AJIsYEU=AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_200_t_36000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_200_t_36000.000000.vtu
index f3bdb5f3d3222ea80c94ee494b04c58733192e4d..6feab80e739569a4a2ca240fb0d7cc6086aa9336 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_200_t_36000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_200_t_36000.000000.vtu
@@ -3,34 +3,35 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.562472098"         RangeMax="12.646689571"         offset="84"                  />
+      <DataArray type="Float64" Name="X" NumberOfTuples="80" format="appended" RangeMin="0.0011"               RangeMax="0.0011"               offset="84"                  />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.562472126"         RangeMax="12.646688936"         offset="160"                 />
     </FieldData>
     <Piece NumberOfPoints="41"                   NumberOfCells="40"                  >
       <PointData>
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="-2.3660381338e-06"    RangeMax="0.0006"               offset="884"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.0010539551624"      RangeMax="0.0012"               offset="1376"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7664939221e-08"     RangeMax="1.0117767633e-07"     offset="1848"                />
-        <DataArray type="Float64" Name="K" format="appended" RangeMin="9.9999993374e-13"     RangeMax="0.000980479658"       offset="2312"                />
-        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="9.9999999995e-13"     RangeMax="0.00014603840963"     offset="2808"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="9.9999999472e-13"     RangeMax="0.00095867964023"     offset="3304"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="3800"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="4092"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="-8.3922993192e-06"    RangeMax="0.0006"               offset="964"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.0010539551624"      RangeMax="0.0012"               offset="1460"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7664934878e-08"     RangeMax="1.0149323331e-07"     offset="1932"                />
+        <DataArray type="Float64" Name="K" format="appended" RangeMin="1e-12"                RangeMax="0.00099212225503"     offset="2416"                />
+        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="1e-12"                RangeMax="0.0001460384096"      offset="2912"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="1e-12"                RangeMax="0.0009586793907"      offset="3408"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="3904"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="4056"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4528"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="4588"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4492"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="4552"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4876"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4684"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="5376"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5540"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5704"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="5184"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5348"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5512"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1sTDQTTdPNUw2NUwzMzYHADNCBPA=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAANwIAAAAAAAA=eF4VzWtIE1AYxvGlTSkbtjScS1tsSR2ZmeVt2fLMLqaCgpVTzPDSRlhOSoicNCoWkq3StrFim7DSZDYiBkrWalguJbKB+SFNMkRdItvEUbB1sWeffvwfOO+5JR8sGhMSOpQ6Kv3DI7TUy/IGcwitGDb6XfsItSXbxDViQu1Gr7TvAKHThqaILkooCRmfzx8ilPWU6bQXEHolxme8JyH0jXw1L/cIoSlpuknZYULZTYL26qOEdp/8OevAXnfjouXgMUKjO1SVw9h7qr5/9KG79OnjGlg9e+6qqhD3euZE6VBNO5cDsFI19tsOddmNjFPHCTVIsgt4sMad+rUXZoobtrbCHzFW8xLM25bFHoEW6X0bvwjvees4kTBf2eMuh2XcZmEu1L7b1d4GXRwdUwY78x95zXCG82mhAxbKHP6XkGpbPf3w15asus9w59q/BRe0xjECHnjeazHNwEAJlxuEZy1Wmx9WKZaU0cWEhh6GDGvoOy+yjHHovS21K5ugf3wtbTssdgoqOJDU6yJ2w3zBVDMfvpILG/bD01Ga60L4IeObqAjOnTDMiaCZPzrkholMdtTlsPp47eYSQk2W1fq/aMWFUisX7VQnKDlwRbOhMBFmL4oWwvt0eXJbfHhPyrmbAK8pYs0sODD1bIINa59E2NfDdN+lpI3wiyCyMYi7i2ccmQx0ys1J2TI61v5+IhD+r2XENA133O5/MA+7yzJ6x6BMrvZPQI9kUP8a9u0ZePwW/gd8K/uUAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUAEAAAAAAAA=eF7rMQo10FrpbL/MxmdN1vIS22OX0i9qAvlSkie/aADpT5++KasD6YqFOV3KQHpG2rTNMkB6c+YGOQEg/cTnZv/PFc72RmIcPy4Caemz53b0Aul9PIYvJYH0ZJvtAhHLne2nHD3ZIr7M2d5vfaQq9xJn+1l5Kb07Fzjbf08vPpMy29neQbnb+ukkZ3ueWXI7C1qd7Y2PfdF1KXC235VkJ6Hg72x/qEJWv1Ha2b5tRcq0ktNO9hZZS7/e9neyV30/qfzkREf7W18qdgbkOdj/8/yVFpNqa5/BlPNvsa2FvcmM9gb5WgN79qmpeZ+c+Ow39fpbsN88vO8Um9HMy9Mq7Qyi3P+sFAiy67jv/e1DpZqd5ISj+SGff9mWBOywzrS7YCuxI9mB59Yy244jHedW/euyXcRnzix/sM5Wxecnl51nhS2btuWeS12ltgDbvZATAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAQQEAAAAAAAA=eF5TMAw10FoZbL/pE8/e2S6B9rlP12mA+M/+cYuD6AzvyE+aQPpi2bFVIDqBtV0VRGtO8DTTANIR3xKmqgHpv5z2F5WB9IclOZbyQFrGeM0BcSCt0hF5mRtIx5+slfu5Itg+5GGe8x0gHRTmXrwBSP/fpfQ2D0iXCH6O5APStwJFGJuWA/XbLLm4Y1mwfXK4vd2cpcH2e29pvuZbEmy/652r0euFwfZv0ypaGOcH2ycJWG4Vmx1sz5173unR1GD7U7+vbObpD7aPm7VIQ68t2N426ILL2apg+x6NgzPjcoLt5VZf3O8SFWy/u9Yp+KIzUF2Fl5y7RrD9xMzz3++yBdsHSH+cdvJekP20rRGr3NYH2dt5lxluLw+yFzWJzn5mHmR/JXy789YPgfYKexWP3lwaaO/jdWRXVlKgPQATSI35AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAOgEAAAAAAAA=eF67Mzm18YFGtZ1I08Pj1eZVdmZWLvUgvtZC60oQ7SWTkw+i13sERIPoxfeNTEH0a71tH+4D6Wt3KstBNFPmx6X3gHSLr43rXSCd8+jFz1tAWoZD3+Y6kJ4kP83iIkg8w3bdcSA920h47w4g/X1G4uyFQLpJykGnDmTv3qYcDyB9+GfqnO/q1XYci5vZ6oF0Xe2niDNq1XYr7iqbHFWttksyk9jurFJtNysiPltQqdpux+bY/PtyQPkdGf12UtV2JqpTpiwQBuqT8JktwlVt1xcmNDPsd5XdwiTWDa2fquzOsN++vuh1lZ3I0WMlZx9V2U3fkaZz5XqV3cojN8RiTlXZPXn7v59nV5Wd3KNFmrOXVdnZbtk98Xl/lV22ZK+YfVmVncH39QdYo6vsPonptyc5VdkBAOAOkic=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/vkpn22Zl3E93Tp2Gl6hLz/KZeNQgy7xPdbAsbBjgAw+6mQirfihIT7AsbX+DUIzPo5hbdcNlEM+PCNxukH5Uj78u8t9KMFhPqwFLCG4KnA+FteSTTfMfD5MIO9zbC2JPnarq0d7qpU+/rLBoY9joj7WueWrxNauPjKO4/Mrlbk+6HokWSUFxT6gbvT9uR/RPo0HVc62r9s+tACy7Fs65j5wZ1XgIrzxPkbNAFweJPw+bk6npy42Bj9r+YgJMnIRP6ywc2WRRxs/UCZ2NRk+JT+yP9JFWnMwP0Q+i/FOKDk/lii1liYpQz96JO5u+CNOP06NMQRuEFA/pOZL6ZbaTT+2PoE7q2NLP4YYjttSl0g/wc2fNweMRT8b/D6+OWpCP6yTbAdG1j4/c0bYC0KYOT9266uRhXA1P35U+guScjI/N57nQDyGMD8ac5KVAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/h/2KYGZl3E9Aa/9YjwkIz8SJ7XbbrK/PVzmfNZXj9k9HOfA4u8g7z0eOzUChroAPo6LwpkrsRA+MXLWr+qkHz5qnwVXo9ksPkwvhE1GfTk+KLHf2TfuRT7Zgssvz29SPgxu4JEMXV4+mokyPuOIaD7Sz24iKHtzPubydbQdb34+pyPaAkRohz6irKhwSb2RPgD1YVHGgpo+vsbXOdKKoz6A04p2W2+sPlIOzFDtbLQ+kPbY7777vD5UAImZLlHEPo5lJfG7Jsw+FG8cucRH0z78QFUFRB3aPkLLcC7dfeE+QtvUX0Eu5z7G+toNhWXuPi6rP4YtufM+zqdMCvpV+T69pnJvOhwAPw4ntclTSQQ/zmvBztFLCT8uXJZIHjwPP58opHr8FhM/qNmI5PwTFz9wiFHLAYcbPyB8EJ9VGiA/3fa5X8c1Ij8eb5acAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/oPOnn+Zl3E9L+be2fxpTz+Wzl/rEMDaPdInToBuBfY9G9m03HwVCz6aoVAuHV8dPq5cEO8kmi0+4LCqQb9jPD6aa8Zcbz1KPnQ3GF/5jVc+VuX7/ZqjZD6rM/NWE7dxPrSNupYd3n0+gRC6hETHiD5OIRwxL0OUPkBMvQfEWqA+1ENMFI4Wqj4u+1tm7ZS0PqFYveuBE8A+o+sSKZbiyD5I++8ijRnTPqKeHFWIGN0+mP5QoBIC5j7GRBypxorwPkF8CL7oufg+AKhNF8piAj9Wlgd+rTQLP/JljVRHBBQ/vIUtVHJgHT9QIBmU9pclP4L3OJ+pZC0/u7R2FkjsMj8yky/Hwdw3PzxNdZLsdT0//pbsekvGQT9yzoliGuhEPx4DoFIx50c/PkB4WDOGSj+KCQOXEZpMP0QsRFoLGU4/hCD6PzYPTz/vao9TAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAugAAAAAAAAA=eF4TDdWZpr9kkp1wjByYdvqiBaaX7dIF0x+MjMC0ngCEfvldH0z/y4Dwm1eYQfTNMAfTDKctwHRKtSWYDomD0Nt6IPSeVdZgui3bCkyvkYGoz86Eym+G0GbREHMffDEB012iEHUnTkD076qG2LcuxRBM26TpgekF7hDaoAri/m2MEP8ZXYK4+44NhE6ygMiHnIDQscsgdPRqiP9dfdXAdBqUXrcLQh+KUQHT804qgellcgpgGgDp9YuIAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OrNsf7DDK/OGQeNHi3i8gfXhR4Z6vQFq5ZNWsD0C62fVxxWsg/VhMJvwZkHZ5EWL6EEgv3tkrfAdIM3Uf+3gNSCfE/D9/EUjv07VYdwZIy/wv6DkOpKsurMw6BKRvLHzksRdImxZLq+8A0pNdQlg3A+mPor2P1wJp/+dHD64A0mt3/Ju/GEjzdJnXzQPS2dEFMTOB9EmdlVZTgLTav4cS/UC67bzU904g/WxB8NUWIO1e1LO5Hkgvdz46sQpIc4r+yy8F0lnPzPwKgPSp7fk62UBau3MFVxqQ7ol6+CIBSL/VljoeDaT9/gYtDQPSG851NwcCaeEFRxJ9gHRp4V97d5D7nczknIC0jUj+HxsgveDp8lvmQBoAcQ2tMQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAtwAAAAAAAAA=eF4TDdWZpr9kkl3+ZE0wffuhIZhmbjEC0xFzIPyqYD0w3VxnBqEvQWjGOAsw/c/cEkyf2Aeh7/2FiPdLW4Hpl5a2YFp5rjmYNpkDkV9kBpG/bgDRN7XVGExrp0DMf34MIr7iFET/GR2IeyZA3fVMXxvizngIn2MqxB/JeRD3MplBxLc764JpXl0IPTsZIi//EuL/6bkaYPqTjgqYvg3lN7KrgmmWTcpg2vKhIpgWipED0wBu+IY5AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwAAAAAAAAA=eF7Tz1vMuIc1yF5/lB6lB4AGABXOzfE=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAOQIAAAAAAAA=eF4dz1tI03EYxvFGpjA3ZTVxKcwYzfrJSjFam1v26zBPuRTtQrODkIleVJgOmYanzEwnDlEWE4k055IomXlhaKD5r1WkuEZSnpAGS2dprJUrdT129eH7XLzwip75xFYJoe4OS9Z6BKGmtur33iOE1q/sG2FiCU3XpcguHCU0xnw9rieO0DPuqQ09JVS1I/2FI57Q2MG1EcsJQuVRZebm44QqRXy57BShjuJrn66cJHSsaqE8R0Vo2kPWxyHsq/bJBmUCoYqDc6oR7MVlV4e+o1309ksd7GR+FlYkEqrtvyiPhr77q0437Mqb3bTAevZf99kkQoO+chQRMERqt3VDhrfA1W4pkBgW4VRRU+AYnDf0mETJhPqz1ZztkHWubzwDZrSLI2Vw+qagphz+ya1dy4OXfKPzHfCdwjLXAIOb/ZzP4UZaqKsXFixKcz7AiqrGLwz0DZpnnDCSNW2cgY5qIdcLNXuTulagTT2gCUghtMWS2+RDhw8H3NuFJoXfVjnwTqVnjxA+jbamCqApxuG/H6YxkUUiuFxQm3UIVrYb6iSwRl9XmAx/zdon5NBDS1smYPFA/oNSyAtL8gafJvR1uyZ7Hf2oX3srDC3sXQoXwEDDAeVumNq6PLG1Lz2+UcKHQdmZjaGwT7hp5ELxsYhJHgzhHX7iBxNcb3eyIfPGftmLu4m8ONk2tNsjzXehdX3nx91QbeS3foYlrzRtDhh/V9dthYw884ft/19R+mEoNf7uHIX/AE3nA78=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/mEyVTAqqUM/kob2VWhypz12HIbRKalDP1htLfUoqUM/XartJCepQz/djYKMI6lDP7ovx7ccqUM/Cf+xJhCpQz8QHpWe+ahDPyuxWhLSqEM/kWiz5o2oQz/3oo83GqhDP6zYKpRYp0M/xWPNXRimQz+gNL2GDKRDP3i0b8W7oEM/Mq6zVGibQz/TCsvI6pJDP/0GRnB5hUM/0odHg1FwQz+SPcY8NU9DP2XnTIWfG0M/Ecqrz6vLQj/ep3q4ClBCP0ustheGkkE//TTSnihuQD/hzFLT93E9P8x+/rkqDDg/zkQDDwn5MD8kGjBHvToNP8qq7dWUmeG+LBHZSJjexT7OCJi5rLulvuLeX+IrWYg+QVg84nxzab70w/drGatLPoCOH6P1Zy2+aGKXXMu7Dz4fk36zudTwvXB3pTwKo9I9VYdMMY2Es72UkJiBAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAQQEAAAAAAAA=eF5LNAo10FoZbC9qx713tkug/eM36zRA/KliPOIg2tot8pMmkNZtOrYKRNeytKuC6Kd9nmYaQHrW94SpakCagcn+ojKQ1pmTYykPpC3k1xwQB9JnyiIvcwNpky21cj9XBNuXPs5zvgOkhcPcizcAaYn1Sm/zgPQHuc+RfEBaJEKEsWl5sP2GwCUXdywLtl8Qb283Z2mwvfdTzdd8S4Ltz712NXq9MNg+JbeihXF+sP12NcutYrOB7so67/RoKlCc7epmnv5ge5cFizT02oLtL2ZfcDlbFWyfY31wZlxOsL3+2ov7XaKC7Q2anYIvOgfbxyd6yblrBNs/ED7//S5bsP2vpR+mnbwXZL9NJmKV2/oge9FppYbby4PsP2pHZT8zD7IPl93mvPVDoL2Hp8LRm0sD7Y8sP7QrKynQHgABPYrVAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAASAEAAAAAAAA=eF7zWL9n1qfrVXZdc4K2VJtX2V2T2HK9367aLtB+/38B5Wq77b9KGPO1qu0Uytf0l2pU2ynuuX7pD5A+6X3B9QaQ7nLgaX0IpOc7RkjcA9KSyosy7wJpy+36724B6Vc1122vA+kpnZfMLwLpvnVp648D6a0fmPfvANK/9r+YvxBIG4h8Ma4D0htlRas8gLS+ctaG7+rVdtzuB1XqgbSsyIGmM2rVdup1K5uPqlbbSTCrf3FWqbY70bCgT0ip2s5r+/7f9+Sq7ba5cNzykKq2SxHsTi8Xrra7vXEDdw1XtV3+Ag95699Vdto3048YfKqyM2KQ+Xz0dZVdzoN/zw4/qrLbc8G96BowHO5dzFKPPlVlV9ZnUcqzq8rO8YbgxVnLquzCbj+0f95fZWcV4rDJrqzKjsvkoQ5rdJVdVomsfJJTlR0AF8iSHA==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9Gd9zFWChLz/oVwAdMSjxPQ35LpfrdQw+ALAOtIibIT4HY+EyFjszPiZJbBwNjUM+fmWbVJDyUj5ZVu7t/rphPu+Hs9c1JXA+gUyjPZrCfD6VHHPXNCWJPtwzbceUo5U+/KoBTNtdoj7RUXdzds2uPjfQTqCtjbk+zJ8o0ir/xD7LqM1yBBvRPjvqmXBLqNs+JmCF4qw05j5eyRz2mLfxPuWWbZiiHfw+wWvi6SEwBj8VoSwh0m8RP8wC6PrePBs/+2ITlM0/JT/2XbSQPFswP9yAx8EziDk/l2r7Ve+yQj8WuXX5I0ROP8WB5ShDQVA/HPKtMUSyTT8XNM6rgW5LP8Jt/6d5lEg/Sx3E4sKMRT/k96Je0mlCP1fkeRiK1T4/J2+lQBiXOT97hNKzi281PwX03fb2cTI/6x2rsQeGMD8BAJiFAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9EufqYjwkIz9rfFfZbrK/Pe9AidRXj9k9HE5q4O8g7z10aPoAhroAPrwxjZgrsRA+x9GOreqkHz53OP1Uo9ksPsUKwEtGfTk+WgNj2DfuRT6deZMuz29SPsT37I8MXV4+XfGsPOOIaD4WGEUhKHtzPjvFuLIdb34+F+KRAURohz5qHbtvSb2RPhjaEFDGgpo+E/7uONKKoz45DU11W2+sPrpl90/tbLQ+DyXA7r77vD4cddKYLlHEPqqCO/C7Jsw+t3OLuMRH0z5Q658ERB3aPkMlAi7dfeE+a6dKX0Eu5z4yKDgNhWXuPn344YUtufM+SBPkCfpV+T6NwDlvOhwAP3JoeclTSQQ/6jeFztFLCT9LAllIHjwPP2OyhXr8FhM/9wht5PwTFz+e9TbLAYcbP2WwA59VGiA/ScypX8c1Ij97NZHzAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9T6qwUPxpTz8ntyfZDrvaPT+GNKpJAfY9BjEQ9WUQCz78z0J5nVkdPlJ/qZihlC0+O9KXhX5ePD7xuQb4nThKPvubBeeviVc+7wcLzuKfZD4ATHTp6rNxPjsc0bDa2H0+BFGXZ/XCiD7inIJptT+UPvIpf1QAWKA+V8L1LTYSqj5VpDqTjpG0PtYkUljqEMA+Q546rKfeyD7S/vNDkBbTPizf9jMhFN0+knrT86j+5T6RZT6VlYjwPiHPR1+Ktfg++WWw8ftgAj8SM25h5CsLP072Bzd+EBQ/OGQe5t8yHT8SUpX9YpslPxZBlNpqci0/E0oC/6XoMj8NAZ8YYd03P5fiiiifdT0/M4vkGl3GQT9niuysSuhEP7IkgQme50c/E/n3ScSGSj8KWSeVj5pMP6SxyptYGU4/xod1nFAPTz+CdZWLAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAATwAAAAAAAAA=eF5jYLCZpr9kkh0DgwyUtkGjraC0BRofJm8HpR1w0HZo6nGZC6NNoLQelNZB4xuh8VWgtBKUVoPSGmi0FhpfBYd+dFoOB62AQgMAjTFiqg==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OYtsf7DDK/OEQe9Hi3i8gvWtR4Z6vQFq8ZNWsD0C61PVxxWsgfVlMJvwZkDZ4EWL6EEj37uwVvgOkX3Yd+3gNSLvG/D9/EUgv1LVYdwZI//1X0HMcSEddWJl1CEhvX/jIYy+QFimWVt8BpItcQlg3A+kLor2P1wJp/edHD64A0hN2/Ju/GEh/7DSvmwekg6ILYmYC6U06K62mAGmhfw8l+kHuOi/1vRNI31wQfLUFSNsW9WyuB9ILnI9OrALSzKL/8kuBdOozM78CIH1se75ONpDW7FzBlQake6IevkgA0h+0pY5HA+nQv0FLw4D0znPdzYFAWm7BkUQfIN1c+NfeHUi/cDKTcwLSviL5f2yA9Many2+ZA2kAQU+uTA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAQQAAAAAAAAA=eF5jYLCZpr9kkh0DBm2BRqPLOxCgiTUXRhtAaR00GiZuAqU1oLQClFZBE0enddDUodPo5sD4Mjj4Kih8AJIsYEU=AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_300_t_54000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_300_t_54000.000000.vtu
index be9e3da8dbd439da054ed257b459e172b9ef6fe4..0d0bcff22cb8fe3bd87bb9b0b3d914c8eda9c5cd 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_300_t_54000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_300_t_54000.000000.vtu
@@ -3,34 +3,35 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.562471089"         RangeMax="12.644841688"         offset="84"                  />
+      <DataArray type="Float64" Name="X" NumberOfTuples="80" format="appended" RangeMin="0.0011"               RangeMax="0.0011"               offset="84"                  />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.56247109"          RangeMax="12.64484157"          offset="160"                 />
     </FieldData>
     <Piece NumberOfPoints="41"                   NumberOfCells="40"                  >
       <PointData>
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.0003906208212"      RangeMax="0.0006"               offset="892"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.0011983741182"      RangeMax="0.0012"               offset="1344"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0099188654e-07"     RangeMax="1.0117767637e-07"     offset="1760"                />
-        <DataArray type="Float64" Name="K" format="appended" RangeMin="1.0000003266e-12"     RangeMax="0.0003897870855"      offset="2168"                />
-        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="9.9999999997e-13"     RangeMax="1.6258251135e-06"     offset="2664"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="1.0000000008e-12"     RangeMax="2.8971274103e-05"     offset="3160"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="3656"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="3948"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.00039079442104"     RangeMax="0.0006"               offset="972"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.0011983741182"      RangeMax="0.0012"               offset="1424"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.0149323379e-07"     offset="1836"                />
+        <DataArray type="Float64" Name="K" format="appended" RangeMin="1e-12"                RangeMax="0.00038946020418"     offset="2276"                />
+        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="1e-12"                RangeMax="1.6258251118e-06"     offset="2772"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="1e-12"                RangeMax="2.8950955747e-05"     offset="3268"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="3764"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="3916"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4384"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="4444"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4352"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="4412"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4732"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4544"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="5232"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5396"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5560"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="5044"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5208"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5372"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1sTDQTTdPNUw2NUwzMzYHADNCBPA=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAPAIAAAAAAAA=eF4V0GtIk1EcBvBIp+TykharJW6NLE+mabZmanLmlrXUZGEXzMbKYhKaRfZhySpFM83mSCwXGRTJSoeamF3QNHK5INBVWLhSyM3MYl5Lhhd6zqcfz/Oey/89erc50rqV0Mh7f8QLAkKVknGbW0JoxS5Rv2U7oQ2K+1HHdxO6WFInM8UROtWoHjdQQv2vTxodiYSO5MqaWpMIbRJ/La6SYn1BRESsnNByt8lyWkZol9hScGwPoblHY/o60Ad7jdxKSMb5uqGUN+gdfHO3C5nHn35dCbc8LTt/eS+hnJuq8G1QlDQxNAOPrFW6WuHw85bZjH2ERjdL4gVQSjWf6+FfbZmvFsoTNDW/oNM72qsHcnP0d0UKQjM051Z4wA9Xc9oPwpLpifWx0M05k10In7wPnDoFgziTHXVQ3/etswI+tu989ArW80XmBva9bY3zI3x5O15ngdY0B/kJ/13oddthajz3+xzkhR1qc8GUlelXOPsJ1TiHg5aQ39p6zwYgHxgYK/WBY0tFPutgsVR7aTUUjs7pBFDAVQUHw4UTASEboTV1oH0DzCzyW74ZqneM1obCF18e5IdBj2b3IOtnf3wqZjnNv7qFWd+jymX9tRuZcpbj0v1S2T5fhWfnJmjMvhgrgsm2d1Hsnt/imqwQuOpZYZcQ9o+Gd7P5TIN5BjaPWjmXz+asbDQ+5LH/Utee9IOhMTPegbDZaS/1hhKT+Q4XzldlCZfBEEX5YU9mn65kHu+QmLdkWIT/AXci+AI=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAMQEAAAAAAAA=eF7jMAo10FrpbJ+679uy9pmW9hcDFcF8F4YV+iB60/uleiD6wZ/5OiA6InGnBlj8WY4iiJ65VEwERC97rf9HE0g35PNeAtE7/l7qANEOQSrcINrpxBVTDSD9xiz3vBqQljDdWaUCpBdP612oAKS/PC0IlgLSYW+KBAWAtLH/45r/K5zt70Xy33wCpMvO7XLfBaTdVsnOLgPSFfV1LdxAmsOg/ETScmf7DS5GXyKXOdtPC/U8uXsJUP1vFh2zRc72v2482Oc1z9lebodlkvkMZ/tVW27FXupztjdoMjgX3OBsP6/Rbj1TlrN9j98K5u3uzvZqWWld0sLO9gLJjJKTDznZLznx5vEedyd79ntP6kP7HO27uLScvOod7AMqv8z+o2ZnnzJvKtt8EWt7ANuFihk=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFgEAAAAAAAA=eF77oRVqoLUy2P4CQ1RmxKJge/fPQWD+j/W+YJpvqhOYDmjTAdOnWpjA9Bv5rfogOs9dC0yz6ZvpgWjTrRN1QLSX9klNEC0QpqIKok0yGmRB9JISCUEQ3ato/FcTSGs8WHkXRC9wtFkDopPmTY8H0dUBv15qAOm7Tj7mIDrFpVZLHUi/83k7UxVIZ62Y6KUMpP16y1/KA+mi7/rM0kDaqnvWD2Eg/fdEzgdOIP1F5eiR3yuC7W89F3jzHEhHaG6MOQOkW+7YZi8D0s1f25YUAelZBhXLdYB0I6ch1/nlwfYbNJXTgoF0DtPeM5uWBds/5na3fr402L7WjyX5/ZJg+zPVyw9cXxxsv4Ynfc55YLgBAJeviQQ=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAEQEAAAAAAAA=eF6bapTa+ECj2u4S+2w+GZlqO+ZrU8F8K5kMMN3l6Q2mj3lKgOn9C9Y3gGiTiyfBtPyDILD4krxrYH7exw/1IPpf/fw6EH352+caEH3t16wqEK3yprEURKdEaeSC6Ll3/eJBtJnNPS8Qva/vvSZYfsbmL/eBdHgG8yIQPcP5uwKIDsq4GHkPSK++f1H1LpDeJdjlfxtIXyiLbLoBpPWOmTlfAdJS6RuvnwXS2xPeah4B0t9Udy3YCqRDm5VuzwfSMmsc/etB/l4avN8PSGucXBHOBqQnCWW1zVIHut97tvEvtWq7+yJLqnmA9Kepb63Xq1TbuUme3r9HqdouwMbqkbZCtZ3X3ubGXNlqOwA2S5WWAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/nQ2kOGZl3E9p9TbyIqLOT96bStl4iN8PRvtVZYeaYo9sqcHhAVXmj0xkc77Ll2qPW2xj5bG6rk9mh2l79fjyD2i0xpzSF3XPbxp8OYrfOU9/iTLlrxm8z1JBygPET4BPhQXTtwpOA4+8+6o8gUnGj4xvvL0emEmPkLA67Xm9TI+hZW+CivVPz4wfq0NwX9KPu63prb141U+Q8BMtc/0YT67BHDee0RtPvhmLCabtXc+VAhMLsoZgz7w1EwxbJ6OPgBTY334bJg+8kxriYRmoz7d/2bd2LGuPnzrw49DMbg+VwuyzbwAwz4atJ8IlMLNPg6p8SSePNc+6tGLxI8Y4j5OMFDIGB7sPukLMg8NzPU+MNL7IjDdAD8msORA8QsKP9S3hrrNERQ/PvNlEiPHHj92Nkwh6EUnPw46+p+W9jA/W71coMa/Nj950ZsuAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/s26K4GZl3E9feD1nd1Guz486QsUWShyPRw/vmAieXM9+OS4Pdc/dj0MwPJLfsN7PTy3hl5UIYM9hmKI7WfNjD1WQtxdeBWXPXhZO2DLKqM9bNGBrmMnsD31NcmfUkm7PXXXp9FY7sY99iIAgxAb0z0oxxpI4ILfPYyGopELtOk9itSbhEK89D3up8yOy4sAPuNuBWNPIAo+nxK62e1pFD69qIxUuZQfPorqd8TEMCg+rDR9KpZaMj5o4Eqk8pc7PjCmpzcgjkQ+9QvjwZtaTj52tFks1TdWPraenTP3H2A+jmqUWbw1Zz4ykHPSAJFwPkehsh/KdHc+T6BAPYl4gD74ktP0UfGGPiqLGGfgsI8+h6njezeylT68rZi4ZmydPtIaI/LyuqM+wv3ivW8Xqj6mM8jAD+uwPlBlz8eOSbU+FrPm4xVquT4rsJ5wAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/u7Fa4GZl3E9lvX4y+pg/j56xGkWcQN0PXClUCniqXk9bEfjmBDSgj1/P31/b8mOPaqE/0LN3Zo9lyS2Y+YYqD2SeeKfB7i1PZukMXpTc8M9ViHafI850T3AMRgvax7ePbeMmwYo/uk9/LyBRjIn9j22/opVq6gCPuuXeOzhFQ8+Hh+XpJmgGT5C9yk8hOwkPiixyUrl7TA+fHuLAn0pOz4Y89fJtZ1FPsZi1pu6ElE+WKUx6nLHWj6nAOAEgdxkPquK6sY4JnA+iik/sAfbeD4K9XmpjwWDPlD6izB/9ow+cMDQrjnxlT7yVVUmJYygPn4KGRun2ag+GBt0pgyVsj4qZfBPQK27PgxK+vvxhcQ+kyp/yUpKzj5aeHHajTfWPha116Y4KOA+CuXF6z8x5z7lzMSjukjwPsAga7qOAfY+aNASYEG6+z4G8p80AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAugAAAAAAAAA=eF4TDdWZpr9kkp1wjByYdvqiBaaX7dIF0x+MjMC0ngCEfvldH0z/y4Dwm1eYQfTNMAfTDKctwHRKtSWYDomD0Nt6IPSeVdZgui3bCkyvkYGoz86Eym+G0GbREHMffDEB012iEHUnTkD076qG2LcuxRBM26TpgekF7hDaoAri/m2MEP8ZXYK4+44NhE6ygMiHnIDQscsgdPRqiP9dfdXAdBqUXrcLQh+KUQHT804qgellcgpgGgDp9YuIAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OrNsf7DDK/OGQeNHi3i8gfXhR4Z6vQFq5ZNWsD0C62fVxxWsg/VhMJvwZkHZ5EWL6EEgv3tkrfAdIM3Uf+3gNSCfE/D9/EUjv07VYdwZIy/wv6DkOpKsurMw6BKRvLHzksRdImxZLq+8A0pNdQlg3A+mPor2P1wJp/+dHD64A0mt3/Ju/GEjzdJnXzQPS2dEFMTOB9EmdlVZTgLTav4cS/UC67bzU904g/WxB8NUWIO1e1LO5Hkgvdz46sQpIc4r+yy8F0lnPzPwKgPSp7fk62UBau3MFVxqQ7ol6+CIBSL/VljoeDaT9/gYtDQPSG851NwcCaeEFRxJ9gHRp4V97d5D7nczknIC0jUj+HxsgveDp8lvmQBoAcQ2tMQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAtwAAAAAAAAA=eF4TDdWZpr9kkl3+ZE0wffuhIZhmbjEC0xFzIPyqYD0w3VxnBqEvQWjGOAsw/c/cEkyf2Aeh7/2FiPdLW4Hpl5a2YFp5rjmYNpkDkV9kBpG/bgDRN7XVGExrp0DMf34MIr7iFET/GR2IeyZA3fVMXxvizngIn2MqxB/JeRD3MplBxLc764JpXl0IPTsZIi//EuL/6bkaYPqTjgqYvg3lN7KrgmmWTcpg2vKhIpgWipED0wBu+IY5AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwAAAAAAAAA=eF7Tz1vMuIc1yF5/lB6lB4AGABXOzfE=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAPgIAAAAAAAA=eF4d0GtI02EUBvC5ti6zmzovaaSJrr2mRWqpc8ZrZqVlVKyknCSkKYY5MaTWZVSzcm5ukoXQtPyQzmXGllqKLmqMpA2TgugGi5yugS2Gwbro6Pn36cdzeM95D6dZKOKNJxOabJ7dOh9LaFad1/w7g9BEh7HLlkqoRdCXVJpDaNOynwk9IkJHYsandZRQqUNgcG0n9KZ+0GTeQejLfS6dNhd96vyNmTsJXSFSvqrII3Ryb0N1ST6hMe9GbKOos5b2XhTvIrS4JzfrOer2qYlHXuT37KJBNQy7Oy69tJtQdZs7aTPsXDXzcQ5GiYN8Znh8VPxNsofQLfaUtFhY9d3puA9FDdZF56BPLdd4oCq5P2CFtWm9t+MLCH3i8QTY8CpvdvgQfOYfi8iEQraj7Dz0ZQ98LYcmbrepg3n3aXhABeWsqPYRaG0JeWyE1xdfdr6BBQZ3ow1qyozhbmgLP8D6DPkHL0z4oa7r6AMv7Lx1UsEtJPSIXsELIAdrWmtWI0cUspt48LTBE4iCqX59NR+eMXbXx0Jpehd/LbxxLJOfAA//an26HhZNziwIYGllozYRZste1AihXF/7dgMsqf6jZPKVLx19wv/zODKm7m+eKmJyXZWqgOmT1LuGmDmaH2Mp8TDD+lDA/BPSnydZBzdtm7bEwfk47vAa6L2mVDD7nDiVU8ns6dOz70XC8Lbl5SthpLk9KBRWzFnOLoFh6Xe0wUy/sz6aBUOjXxdz4IeWIdlf3MG+n6NdgP8A3gX3kQ==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAMgEAAAAAAAA=eF5LNAo10FrpbP92MoNT4RxL+65kRTDf13SFPoi2L1qmB6K/Si3UAdG3l+3WANFu4YWKIJrtt5wIiDYzsv+jCaTb92hcAtGFb5k6QXS0UTk3iDZhSzLTANKRH6MuqAHpqXtcalSA9Md3EksUgPSEpOnhUkD6hIimhADIvhnL2/+vcLY/ttjk1RMgHV16M2kXkM6x23+0DEi3Ryke5wbSP8+JGSQvd7Zv0Zw+JWqZs/2L4tYDe5Y423eybF1uvsjZnnmdGIvvPGd7/09FN61mONsLpGksvd7nbL/U3eRKdIOz/YG/adf5spztAz/NjTzp7mzvbHHY2lzY2Z7j+bTTew852c9vtC5k8HCyf+p94fCBPkf7Cc6aLz7UO9h/F5ihzK5pZx+xKyM3RNzaHgD7OIaiAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAFAEAAAAAAAA=eF5LNAo10FoZbK98OzIzYlGwvf/HIDCfaYMvmD46xQlMczXrgOnb7Uxg+qDiVn0Q/c5JC0zL2ZjpgWinLRN1QHS51klNsLoQFVUQnZPWIAuiLSskBEG0qoLxX00gff7ryrsgWt3TZg2IZpw7PR5E3wn89VIDSDc7+piD6BS/Wi11IK0S8namKpD22zvRSxlI755U/lIeSB9gNWCWBtKxJbN+CANp5h05HziB9CrBo0d+rwi2N30t8OY5kN4kszHmDJDmu2ubvQxIi35vW1IEpP9qVCzXAdKn/htwnV8ebP9URDktGEhXfdxzZtOyYPu4f27Wz5cG2+epsCS/XwJ0b+7yA9cXB9tnfUybcx4YbgBqoohAAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJwEAAAAAAAA=eF7zWL9n1qfrVXa/Nbv85WSq7W44PbvZb1dtd+C7HrugcrUd36lXQvla1XahTu5bSzWq7TrSW+T+Aumd31iu3QDSlklW/Y+AtPP1yZ/vA+kI09ylD4A0j3ByCYjefiepHkR/f1FSCaL3PLAoBYsn384B0b7pMxNA9LnHut4g2kBxlSaI1r419wvIvOC3potAdOl8ViUQ7fcxNvoekF6mGqBxF0inO7cE3gbSX1aYtYDcY8g2x/kKkJ5bb3LjLJDuzb+mfQRI38xtXroVSC/RXvJ4PpA2DQ2JqQfSk8UfX/ID0hsirEvYgPS1bV/Wz1KvtvN8ub34l1q13ZHdjx7yAGlNh5L761Wq7VxqPA7uVaq2a7u2rVlXodruTdmK5fmy1XYA8miU0Q==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9LxoN1w6GOT+Y9yRlXyB8PQWAKs1EY4o9NxN/3MJPmj1e+XyPOlWqPXyg272o4rk9t6YD+PHbyD2nuc7b21XXPYA58fNgdeU9rBPuHqhg8z1hDrJ4uTgBPhLW5bPsLg4++dquTCUfGj4Was/k2FomPt38Wfpg8DI+SHVoEhHMPz6HmMH3UnhKPgn2cDjy3VU+nsGRefvvYT7lX5fDyDxtPqYr/iGCr3c+rqZvaf0Ugz54aW1h6JaOPhrFJwQeZ5g+is1Invphoz4la4E11qquPmW4/4TeK7g+CBQRX5n8wj6hGfXxPrzNPrE9CZTIN9c+UquL1eAU4j7uFZSngBjsPmjTpcvSx/U++xoKOP3ZAD/C6DrM/gYKPyDAO7ffDRQ/6OUKSt/AHj+oOTWIBkEnP4WKF/K98jA/cSSu66q6Nj9iKZ/YAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9tdZ9nd1Guz77Yf8TWShyPVK6lmAieXM9gptYPdc/dj2c/yRLfsN7PeaIuF1UIYM9PJD662fNjD0u8m9ceBWXPdAe9V7LKqM9QbtlrWMnsD3j0+WdUkm7PaTWFNBY7sY9jI63gRAb0z3e4wtG4ILfPTqmA5ALtOk936JYg0K89D0eqdSNy4sAPpPtjmFPIAo+mLel2O1pFD6AoPdSuZQfPuVyU8PEMCg+JaSrKZZaMj7JRSGj8pc7Pm4F1jYgjkQ+PuLCwJtaTj5XIZAr1TdWPtRcEjP3H2A+WUPSWLw1Zz5fQu/RAJFwPgux/x7KdHc+zRnKPIl4gD7w/Df0UfGGPuQHT2bgsI8++yRjezeylT5YevK3ZmydPhspufHyuqM+VRJhvW8Xqj57GHjAD+uwPuCyb8eOSbU+BPx14xVquT6W1p0vAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9uZqoh3Zb/j5QVYanAQN0PcdpABZvqHk9gSJ5f0TQgj26PFxzgMWOPTyT5ETL2Zo9X+Hp2wEVqD1R47oNYbS1Pf6mgbr+b8M9yDJBsZY20T0TLI9NNxnePbEhXWOt+ek97zb0jmUj9j2WOAIOfaUCPmBToBKfEA8+9C6UKEycGT5tJC+4COkkPiVEIq0a6zA+2JsxuQ0lOz4L3DOlN5pFPrlk3QIAEFE+T3g8fDfDWj5NMILVPtlkPiIwncO6I3A+SgbE0D3XeD6AwNzEsgKDPo9XVIUx8ow+TcYsxgHulT4N/QC3v4mgPiaJjDQZ1qg+ZFQvD2ySsj4IUMGzYKm7PsenBy0Yg8Q+z0/tvhZGzj7e+DTqbjTWPmAJ0BniJeA+gKHlOLwt5z5tkq3sHUbwPo8LIqTI/fU+EQWY0E+1+z46qZLwAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAATwAAAAAAAAA=eF5jYLCZpr9kkh0DgwyUtkGjraC0BRofJm8HpR1w0HZo6nGZC6NNoLQelNZB4xuh8VWgtBKUVoPSGmi0FhpfBYd+dFoOB62AQgMAjTFiqg==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OYtsf7DDK/OEQe9Hi3i8gvWtR4Z6vQFq8ZNWsD0C61PVxxWsgfVlMJvwZkDZ4EWL6EEj37uwVvgOkX3Yd+3gNSLvG/D9/EUgv1LVYdwZI//1X0HMcSEddWJl1CEhvX/jIYy+QFimWVt8BpItcQlg3A+kLor2P1wJp/edHD64A0hN2/Ju/GEh/7DSvmwekg6ILYmYC6U06K62mAGmhfw8l+kHuOi/1vRNI31wQfLUFSNsW9WyuB9ILnI9OrALSzKL/8kuBdOozM78CIH1se75ONpDW7FzBlQake6IevkgA0h+0pY5HA+nQv0FLw4D0znPdzYFAWm7BkUQfIN1c+NfeHUi/cDKTcwLSviL5f2yA9Many2+ZA2kAQU+uTA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAQQAAAAAAAAA=eF5jYLCZpr9kkh0DBm2BRqPLOxCgiTUXRhtAaR00GiZuAqU1oLQClFZBE0enddDUodPo5sD4Mjj4Kih8AJIsYEU=AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_400_t_72000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_400_t_72000.000000.vtu
index ae7c692dbac5fd7e611224f99887850e77bad076..eca80f6e69dc0f88ac5b68e9f056933e54a415fb 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_400_t_72000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/CationExchange/exchangeOutput_ts_400_t_72000.000000.vtu
@@ -3,34 +3,35 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.562469116"         RangeMax="12.644840843"         offset="84"                  />
+      <DataArray type="Float64" Name="X" NumberOfTuples="80" format="appended" RangeMin="0.0011"               RangeMax="0.0011"               offset="84"                  />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="80" format="appended" RangeMin="12.562469116"         RangeMax="12.64484065"          offset="160"                 />
     </FieldData>
     <Piece NumberOfPoints="41"                   NumberOfCells="40"                  >
       <PointData>
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.00059949413186"     RangeMax="0.0006"               offset="892"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.0011999929058"      RangeMax="0.0012"               offset="1288"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0117718638e-07"     RangeMax="1.0117767633e-07"     offset="1640"                />
-        <DataArray type="Float64" Name="K" format="appended" RangeMin="9.9999999999e-13"     RangeMax="9.3841061037e-07"     offset="2004"                />
-        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="9.9999999997e-13"     RangeMax="7.0949932647e-09"     offset="2500"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="1e-12"                RangeMax="7.3327670028e-08"     offset="2996"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="3492"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="3784"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.00059949453241"     RangeMax="0.0006"               offset="968"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.0011999929058"      RangeMax="0.0012"               offset="1364"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.0149323335e-07"     offset="1712"                />
+        <DataArray type="Float64" Name="K" format="appended" RangeMin="1e-12"                RangeMax="9.3765171217e-07"     offset="2108"                />
+        <DataArray type="Float64" Name="N(5)" format="appended" RangeMin="1e-12"                RangeMax="7.0949932555e-09"     offset="2604"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="1e-12"                RangeMax="7.3285471971e-08"     offset="3100"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="3596"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="99987.170136"         RangeMax="100000"               offset="3748"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4220"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777788e-07"     offset="4280"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4184"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.7777777777e-07"     RangeMax="2.7777777789e-07"     offset="4244"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4568"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.08"                 offset="4376"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="5068"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5232"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5396"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="4876"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="5040"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="5204"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1sTDQTTdPNUw2NUwzMzYHADNCBPA=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAOwIAAAAAAAA=eF4dz2tI02EYBXC3lUplDilnbWkXXXsxmg1CsalvbmtOsqyMZGW12LAIRxqSdBEtJ7Zmhk5zmF2sbW2kiJlUWikhlfkhCi+kzUbJssSyWeYq7fz79OOcD4fn8XOPsp6vI3Q05673dwSh+42S1plYQp1lJxq7JYR2ynOWZSUQqh78RuzxhG7oq+67RAm9Gpln+JhI6KGXutqWZELn9JP6is2Enuu9sTxOTuijQEGzTkboDumQZq+C0GDf2IMO9H86pEXSLYRmhG9M6ELvCrzTNIF8Vt7uNDHuDtAUKgmNMm0NE8MPMbweL7S+8H/XAnUF8e6MFEK/ckUkAnIvJj2xwpGyZF8BZAk+nxmD164oJ5/CmxeqS1arCE3hrPeyYfvjkIad8Ji6ixMHp0sUqlOwtK18QAstrZG2ehjT6HYY4dt0VcVD+HPkepUTejbde/MaxhanHumGlzs1PA8UCLWfhmCS3v/ZNOyXNtRPwC4X7+j8VELtPdOsWWSzTZ3JRd6nbM5ZANOyX82GwYFBq3YJ9OR1lEbAqTwTXwBtIj0/EvZm57etgrfZhTNCOD7Or4qCi2QctQgauZU9a6HbID3I5KZtcWbGrPg2MdPn3uoPZbLPmDbJ7PlZio4zO9Ghh63M7vZy2f01cO7vcP4KeMBVuHAlDA8y7GHuS1Q7cvnwvZDEhkCD2fJlKUw306n/fwT5ZQVDcbFCxYZ1dY6TAXC49rz9F/5mCedJmP8XR5+u+Q69mZW7fsB/a6T2bw==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAABwEAAAAAAAA=eF47ahhqoLXS2X67ZdKN10uc7X8IQfitx0LAdJ0ihOa5HQSmmeICwHT/Em8wLffdCUzPMjeGqFcWB9Mb1z/VB9GSS/rB9OzK33ogumD9P10Q3SYXrAOiX3S3aoLoQ79uqoBokSx5WRC9oj5TAESf6Fz4WxNIf+q/fhNEq1kaLAbRkWctvEE0n6zfPg0g7ccz8646kJ6g+bRCDUhvm+zgqgJy96aH5xSA9ORnLinSQPresjffhYD0AZkPX1mBtIq4E/enFc72NUqn718G0lPcJM8uA9K5LqnrU4D0vB4NSTYgfdHCvr15ubP9nmX7b91YBvSfz7nZvED627adt92WOtsDAHElh0A=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAA5QAAAAAAAAA=eF77aRFqoLUy2P7qa89JSkA6TgHCj+KD0GF/QsB08CsI7XseQruthtAdjRBayBxC28wIBtMz6oLA9MYVAWC6ucYXTP8J9oDoO2wPphlWGoLpbR+lwPSJ0m/6IPpQ4x4w/Uw2EUw7qV3SA9EHsr7oguiMb/N0QLS/+lQtsHvn1qqD6Lacq0og+ta1e9IgOulWhyCI3rrRlwlEXzZif6MJpFdEbD0Nok2fm88F0b9O/YsC0bs4D/3VAPGTM2tA9I/57WfUgbS+kMsTNSCdaNy1XxXk3+yEHBUg/fNbkZoykAYAvFWEPg==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAA7wAAAAAAAAA=eF4zYUtrfKBRbcclfffRdSC9o3t3PYif9flSLYhO7Q2pAdH2x19XgeiLZTMqQfSNS/8rQPSEuptgvo1sDFj+wSuOahDdtvACmJZ6+gMsfs9QE8zPk7YBm8eWfhHMd5u5CUwfm50PFl+nUwemm65ngumOXG8wrZ+WA6anZwiCaVuze2BzE8zMwfpXPWMG8wvYp5aBaJk8vkIQrbBwayaIPmf4PQZE7ziW4wXWF/VFF0QHx+mwgGhxP/0j94F0mfCTVBA9U63t7j2QuwOfS4PoQ3vMhe8C6YUuz3ffBvF9RFRvgfxdcWTGDSANAJWsliM=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/sBlLYGZl3E9HoRlweJ8rz6Oa4+1tZ5xPSUbWChlr3E9the+BRLTcT30grdCJxtyPVTBvHlDp3I9YhLz5+Wvcz02QJDVoZh1PcraEMvpDnk9GE7iY6E9fz1ouIJzexGFPRacEZAbj449KkktLSh2lz0pUY9vKbiiPfvi/Eyyjq49kMFc6D86uT1WHo3bUerEPQjfRga/VtE9eo4W0yCt3D0bVaImwp/nPcAf5YhhYPM9JfDA40mj/z1zC61vRrUJPsL9l48CyxQ+2B4ky7u9ID7qWTuyRNYqPkyfk0YhajU+YkKO9JkCQT5KsokHFeVKPu3uQFMGJ1U+Qq5yCkCKYD4/XVv7Z7FpPu81xDRgy3M+sIR2LTUyfj7QlAeNzb2GPpimUs7g2JA+mpyVI+5qmD6ukqQOjimhPhFZbbLoEKc+eEzJv5rXrD4veZamAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/u6xK4GZl3E9yf5dEAd5Pj41t668y5dxPTSq4ylBmHE9FEL7wDqZcT2CZX8rL5txPfgVTqnynnE9Y1uNKfqlcT28IOPDyrJxPZSFys6wyXE9lrCSWOnxcT04VIKHgDdyPUZn0FpLrnI9CmyQOJl2cz2YnQvnicR0PT57ELRq63Y9jgCFBSpvej1Gm2wKdQ+APf4IG6qQnoQ9Lshgldndiz1y2D6zTaWTPR5os5EhlJw9sEK0pCE4pT2fQZ+Qs+OvPU5+dY4VGbg95nAeEro7wj1bRCBiC4zLPQ49TKeFvNQ9pNSaQnsS3z0ivPIXvybnPY63bXbyJPE9j9HGqVg5+T342MT/UGwCPgoqZQhjswo+8vZl03EtEz4cgiu960IbPlguTWh4ICM+hiZ8YoViKj6wwQrIIMQxPuSRFZC8EDc+I0ZMyGcoPD7shpOSAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/mbqLYGZl3E9xDJqAwqvcz5O366NmphxPWDcbKf0mnE9GAN0X/ifcT2SyhqTEKpxPVgh+dOYvXE9Q+j1j0ricT2K5kcvpCVyPUBCZdzqnnI9AKyoIMl1cz3p7i8AJu10PTj+BSXAdHc9GNI1U43Fez23SufGjoeBPQa0K+zZn4c9dPfXMoLdkD2W6sBl6SyZPfxhavBZXqM9+L7rbqFarj3hIkkiowO4PSXIFOi/EcM9W9I5uiVJzj0G0f2v9f7XPT6yo77W8eI9nDnzS7fI7T2KmY0NDk33PUZ+dTQiIwI+IETTvWkWDD5iuP3zKKEVPoimWv53jyA+9mh/TI4zKT6qkwPBPwszPl0ZpjdYjjw+uRkRGug1RT6Mrp3JICZPPtZY6qysiVY+oNaJusD6Xz4tIPBiMBJmPoIH6d3+O20+L30eLnQYcj7e/5p3AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAugAAAAAAAAA=eF4TDdWZpr9kkp1wjByYdvqiBaaX7dIF0x+MjMC0ngCEfvldH0z/y4Dwm1eYQfTNMAfTDKctwHRKtSWYDomD0Nt6IPSeVdZgui3bCkyvkYGoz86Eym+G0GbREHMffDEB012iEHUnTkD076qG2LcuxRBM26TpgekF7hDaoAri/m2MEP8ZXYK4+44NhE6ygMiHnIDQscsgdPRqiP9dfdXAdBqUXrcLQh+KUQHT804qgellcgpgGgDp9YuIAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OrNsf7DDK/OGQeNHi3i8gfXhR4Z6vQFq5ZNWsD0C62fVxxWsg/VhMJvwZkHZ5EWL6EEgv3tkrfAdIM3Uf+3gNSCfE/D9/EUjv07VYdwZIy/wv6DkOpKsurMw6BKRvLHzksRdImxZLq+8A0pNdQlg3A+mPor2P1wJp/+dHD64A0mt3/Ju/GEjzdJnXzQPS2dEFMTOB9EmdlVZTgLTav4cS/UC67bzU904g/WxB8NUWIO1e1LO5Hkgvdz46sQpIc4r+yy8F0lnPzPwKgPSp7fk62UBau3MFVxqQ7ol6+CIBSL/VljoeDaT9/gYtDQPSG851NwcCaeEFRxJ9gHRp4V97d5D7nczknIC0jUj+HxsgveDp8lvmQBoAcQ2tMQ==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAtwAAAAAAAAA=eF4TDdWZpr9kkl3+ZE0wffuhIZhmbjEC0xFzIPyqYD0w3VxnBqEvQWjGOAsw/c/cEkyf2Aeh7/2FiPdLW4Hpl5a2YFp5rjmYNpkDkV9kBpG/bgDRN7XVGExrp0DMf34MIr7iFET/GR2IeyZA3fVMXxvizngIn2MqxB/JeRD3MplBxLc764JpXl0IPTsZIi//EuL/6bkaYPqTjgqYvg3lN7KrgmmWTcpg2vKhIpgWipED0wBu+IY5AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAFwAAAAAAAAA=eF7Tz1vMuIc1yF5/lB6lB4AGABXOzfE=AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAPAIAAAAAAAA=eF4Vz21I01EYBfAaK2m1LE2cObc5y7yhlTOcs1pXy3QyisbS1F60zGEmVkYq0VKhoDFzignDDBaZNT+UjqW9kMz5kqNlBE1wRbgsW6jVVphl1vl/+nHOh3PvU+h++HYoltCvIRb/HyGhaftfXJ+TEmrkZ2kHJITO26qCD+8g1B5m4bQnE1o1NjdioIQqHNamCTmh0WrXja5UQhski7X1KYQGKbeGJe0mdPLaeeuJXYQm/KjLzksjtFmX1fUU/csC1qntewj18GI22tAnfT7bOoNcW7TJpIfOjKNKbTqhneHHeJuhfMQ35IfPW/Ped8Gp6XsudQah/R0CsRCKOD09bdD/bcX3Spi7fKLCCxfxB7/YocecUy1WEOprSvay4Eglu10Fb45KF6QwNvJ++gWo6Y53FMJlme6WVvihJsukg1Gy0drH0HtR0GKGzvEnztfw3XB52QCzk8JhT0L21TvTbkikqkez0Go73jwDbSZRyZJMvBOU+fsvcqmDm70KuSBmrIwDHStvzfNgsV58YA203U2sEMKPodnBfOg5pw5cB10HiyyRUNNX74uGnfyey+thuPNNbgwM8Nf0b4Dxg7J8Jgu5vXWMxghdHNNfaTMImGwuWetl9qY+TZxmdoz/nhmZXZdU3REFE/T24gjYXWpdKoLc8fK9zP8SHyg04dCwTx4XBHnblNMhsNecOsvc0ScRHQqE1amvdrLgkeItZwJgw+r6279w93BovmwBNrbIL/ngSZUs5yf8D0ns97o=AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAABgEAAAAAAAA=eF5LNAo10FrpbL86YtqWN0uc7a2FIfyLx0LAtLUihP52KwhMa8cGgOmpK7zBtNMfJzAt5mQMptvNxMG0/MWn+iDa7V4/mL5/47ceWDzsvy6IXmoWogOimxLbNUH0Ps67KiB6SomKLIj2OVwoAKLf/133WxNIzwx9exNE19gELwbTBwq8QfQFoeX7NIC08W7Ve+pAetfUQ5VqIHv7Z7upAGk21v8XFID04fO96dJAOkGZ8a8QkFZacPAvK5CeXG8p/mmFs/2V/j8fLwPpiiltL5YB6ZN8XjdSgLSKpE0oG5D+ybzzbvNyZ3sFn5XBN5c523/etsaWD0hb9s5Z6r7U2R4AvkSG5A==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAA5AAAAAAAAAA=eF5LNAo10FoZbH/upeckJSAdpgDh1/BB6Ju/Q8C0+hsIXXsRQm9eCaHDuyF0vy2EXrEmGExXTggC0/d2BoBprom+YPpFqgeYXn/RHkwfPGIIpoV5pMF068Rv+mDzJ+8B0wyGiWA63vKSHojeU/dFF0TzcMzXAZtvMFULRK+eU6sOopckXFUCm3fhnjSI1j3RIQiik2b7MoFoO1P2N5og9dFbT4Noh9vmc0G0+9F/USD66beDfzVA5vhl1oDoSdPbz6gD6V4RlydqQHqXetd+VSBtkJeQowKkK74WqSkDaQDok4GaAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAACAEAAAAAAAA=eF7zWL9n1qfrVXZc98ufXNeotusSe3G9367abt/rSGZB5Wq7U5Mf8eZrVdvlbghZXwqUF2ZaJv4XSC8u0z53A0h/LPjY/ghIfymTfH8fSIvEzVr0AEjLbS4rBtFOaofrQfTv/PwaEK0ZX1kHonnCD4Jpi23XwHTYpilgdd2/roDp9DReMG0utg0s7/HhYy2I3tXOAeYvL/oBNu/RjRnVIJp96epKEG2/7EYpiFY0ly4A0fPOmGeA6M6ux9Fg89I2e4Lo7Vfu64LoKyWTmcHyVvWHQe7/3rwpBUTXB0TduQekt6wslgbRoq+Zhe8CadUS1j23gfSz9J+qt4B03FyOWaBwAAAd9ZjqAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9cEex6112rz488Ux8s55xPdd5W7pdr3E9XGhff//ScT3tGIpw/hpyPa6Ds3vvpnI9w8xl/ECvcz3SyhubaJd1PVd+qbClDHk9+TK/EYU5fz1+fQlY0Q2FPd3eZJCriI49ytEeS5Nwlz3wO/LDYLOiPXVSlcaUhq49kyBKaG4zuT2auB4NpOTEPZv7VOINUtE9bU+K126l3D0gg4HjfZnnPa9jB5FPW/M96zdoTyKb/z3p1Eouwa4JPnaoOuPSxRQ+jVFaD6G5ID6qSBRezc8qPmXoACwPZTU+9ZlUW6T+QD61+3Hf7N5KPncb+j1CIlU+VyQ7GpSGYD5o7Q+0x6tpPt/v/BMYx3M+DEAt0b4rfj6lSBPc+riGPs8+ku5U1ZA+pmU/GNJlmD6Yfh/Z+iWhPgIh5LEeDKc+pkHg+qDRrD5mP576AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9rM61Dwd5Pj4FIK68y5dxPdnL4ylBmHE9EhH7wDqZcT07In8rL5txPYp2TanynnE9sSeMKfqlcT106uDDyrJxPWB+xs6wyXE9kKeLWOnxcT2AK3aHgDdyPR3Mu1pLrnI95yduOJl2cz39dNPmicR0PRIdtrNq63Y9GMr0BCpvej0MIfsJdQ+APdIAa6mQnoQ9KpxVlNndiz3aC3WyTaWTPVmBhpAhlJw9wC3VoyE4pT15r1aPs+OvPbn0hI0VGbg9lDhyEbo7wj1LPCRhC4zLPevAlaaFvNQ9CmiPQXsS3z1DCjMXvybnPUUg5XXyJPE9R+QHqVg5+T1xWUD/UGwCPvIfrwdjswo+hnfq0nEtEz41AIG860IbPvTm2Gd4ICM+PYnjYYViKj6TQabHIMQxPmwwlo+8EDc++22wx2coPD5OIpXcAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAUwEAAAAAAAA=eF4BSAG3/hHqLYGZl3E9zetCqCOscz6VlcdgmphxPagCcRH0mnE9f8rA6fafcT0IsuZbDapxPYEI+ziSvXE9UR8Xmz3icT3mwmObiyVyPUUp5229nnI93vXj43Z1cz0rq428k+x0Pe6sX+y/c3c9bhujctLDez3Ldm+VFIaBPTQ0ygJbnYc9H/425WvbkD1FH8EDdCmZPSipT7OCW6M9tjgNcgBWrj3fynMZ5f+3PTUFlPq+DsM9PA0r8FtEzj3Am2ENK/vXPQ58g/fa7uI9oesnfgzE7T2qPizmbEn3PbwnM6lTIAI+7OzzcBgSDD7cRLpt250VPhKL+bz0jCA+vUFvLsEvKT7+fIJOZAgzPpPYw38Uijw+d5Y8WcAyRT79yyU/giFPPhgK3RVXhlY+cA09ogf2Xz4+Xgjl7g5mPgO9/66vN20+VCG/n8kVcj4IAZedAQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAATwAAAAAAAAA=eF5jYLCZpr9kkh0DgwyUtkGjraC0BRofJm8HpR1w0HZo6nGZC6NNoLQelNZB4xuh8VWgtBKUVoPSGmi0FhpfBYd+dFoOB62AQgMAjTFiqg==AQAAAAAAAAAAgAAAAAAAAEgBAAAAAAAAJAEAAAAAAAA=eF5jYACCrB8OYtsf7DDK/OEQe9Hi3i8gvWtR4Z6vQFq8ZNWsD0C61PVxxWsgfVlMJvwZkDZ4EWL6EEj37uwVvgOkX3Yd+3gNSLvG/D9/EUgv1LVYdwZI//1X0HMcSEddWJl1CEhvX/jIYy+QFimWVt8BpItcQlg3A+kLor2P1wJp/edHD64A0hN2/Ju/GEh/7DSvmwekg6ILYmYC6U06K62mAGmhfw8l+kHuOi/1vRNI31wQfLUFSNsW9WyuB9ILnI9OrALSzKL/8kuBdOozM78CIH1se75ONpDW7FzBlQake6IevkgA0h+0pY5HA+nQv0FLw4D0znPdzYFAWm7BkUQfIN1c+NfeHUi/cDKTcwLSviL5f2yA9Many2+ZA2kAQU+uTA==AQAAAAAAAAAAgAAAAAAAAKAAAAAAAAAADAAAAAAAAAA=eF5jYBjcAAAAoAABAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAQQAAAAAAAAA=eF5jYLCZpr9kkh0DBm2BRqPLOxCgiTUXRhtAaR00GiZuAqU1oLQClFZBE0enddDUodPo5sD4Mjj4Kih8AJIsYEU=AQAAAAAAAAAAgAAAAAAAANgDAAAAAAAAVgEAAAAAAAA=eF5jYMAOqkXWuT+s2mKPLq7X8fGSb1IChrhWG0i8AEO81TtrT8nkCgzx8k6Q+gYMcda3a4H2tmCIV3qCzOnAFF+uZsixpgdDfHkjyPwJGOKGG/x7p+dNwvTXfZC9UzDEtfl4mLTbp2GI99iA3DMDQ3xB1omyffNnYYgfnQly5xwM8TknWl4H7piHIb6sGuT+BRjiohMVNhRlLMQQ37ES5K9FGOJ5h+uADl2MIX78Jsi/SzDEzX/cUWFrXIoZjyKgcFiGId5iYH3fv3c5hvg2f1D4rMAQf5k3EwhWYprTDQq3VRjiZsu/Bz9euhpDPPMYKDzXYIjPehrKp7tpLYb4P4ZWYDivwxBPlNkCtHg9hvipuaDw34AhnqLb6ZjwFFP87x5QvGzEEJ/us0Ou9TWm+IyboPjahCG+PvX575UfMcU9voLicTOG+MMWsZvnvmOKAwD0N598AQAAAAAAAAAAgAAAAAAAAIACAAAAAAAAWAAAAAAAAAA=eF5dxUkCgQAAAMAsoYUUZSkRLf7/QoecZi4TBLMlr3jNIW94yzuOOOaEU97zgTM+cs4Fn/jMJVd84Svf+M41N/zglp/84o7f/OGeBx554i8v/v8AsmsGaA==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAWgAAAAAAAAA=eF4txdEGwgAAAMAkk8lMkklmZmaSZGaSyczMJNn/f00P3b3cevW3ceCtQ+8cOfbeBx+d+OSzU2fOXbh05Yuvvvnu2o1bP/x055d7Dx49efbbH3+9+AfO3gZpAQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF5jZiYOAAAJxAB5
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj
index 1cd379d22c19a5effec34704e9ab2a756f4f4200..43bfc960f608bc02765b1e2ba8c493fe3e3e965f 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj
@@ -401,6 +401,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>calcite_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>PSINA_12_07_110615_DAV_s.dat</database>
         <solution>
             <temperature>25</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj
index 3a5a7e2e8dce4e6b5ee9fc76e6253c0c88ff97dd..f8b13162ae726e3f92aa7e83eb0e7677beb1602f 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly.prj
@@ -401,6 +401,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>calcite_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>PSINA_12_07_110615_DAV_s.dat</database>
         <solution>
             <temperature>25</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_0_t_0.000000.vtu
index fdf8996cb7a373f5469dd56dd7cfa84bd0578ebc..56b12c0f7d47144ab7c2a67621c090ff8ec8aa4a 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_0_t_0.000000.vtu
@@ -3,39 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0.000207"             RangeMax="0.000207"             offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="1e-10"                offset="84"                  />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="168"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="5.3"                  RangeMax="5.3"                  offset="260"                 />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="340"                 />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="412"                 />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0.000207"             RangeMax="0.000207"             offset="84"                  />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="1e-10"                offset="168"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="1e-10"                offset="252"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="336"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="5.3"                  RangeMax="5.3"                  offset="420"                 />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="500"                 />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="572"                 />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="644"                 />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="716"                 />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.000123"             RangeMax="0.000123"             offset="484"                 />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.000123"             RangeMax="0.000123"             offset="564"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="1e-12"                offset="644"                 />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="1.2291196946e-10"     offset="720"                 />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="1e-12"                offset="800"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="876"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="944"                 />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.000123"             RangeMax="0.000123"             offset="788"                 />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.000123"             RangeMax="0.000123"             offset="864"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="1e-12"                offset="940"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="1.2291196946e-10"     offset="1016"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="1e-12"                offset="1096"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1172"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1240"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0.000207"             RangeMax="0.000207"             offset="1016"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="1e-10"                offset="1092"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1172"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1236"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0.000207"             RangeMax="0.000207"             offset="1312"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="1e-10"                offset="1388"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1468"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1532"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1304"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1600"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2232"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="2532"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="2844"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2528"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="2828"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="3140"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF7TMntWekRR215rlB6lR+lRepQepUmgAbObX+8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7bvff6zfs1t213j9Kj9Cg9So/SozQJNAD1hWFVAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF4zNgYBUQfjUXqUHqVH6VF6lCaBBgCE/TGIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwAAAAAAAAA=eF5zu5T3xVBewd4dSruN0qP0KI1BAwCE7T8+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwAAAAAAAAA=eF5zu5T3xVBewd4dSruN0qP0KI1BAwCE7T8+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF4TfKXbOHN6oa3gKD1Kj9I4aQAHImRTAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwAAAAAAAAA=eF57YNk5c8qTB7YPofSDUXqUHqUxaAA/D+YhAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF4TfKXbOHN6oa3gKD1Kj9I4aQAHImRTAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF7TMntWekRR215rlB6lR2kMGgDjcS/4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGQAAAAAAAAA=eF7bvff6zfs1t213j9Kj9CiNQQMA7Kcwqw==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF7TMntWekRR215rlB6lR+lRepQepUmgAbObX+8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF7TMntWekRR215rlB6lR+lRepQepUmgAbObX+8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7bvff6zfs1t213j9Kj9Cg9So/SozQJNAD1hWFVAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7bvff6zfs1t213j9Kj9Cg9So/SozQJNAD1hWFVAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF4zNgYBUQfjUXqUHqVH6VF6lCaBBgCE/TGIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5zu5T3xVBewd5tlB6lR2mcNACBzT89AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5zu5T3xVBewd5tlB6lR2mcNACBzT89AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF4TfKXbOHN6oa3gKD1Kj9I4aQAHImRTAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQAAAAAAAAA=eF57YNk5c8qTB7YPRulRepTGSQMAO+/mIA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF4TfKXbOHN6oa3gKD1Kj9I4aQAHImRTAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF7TMntWekRR215rlB6lR2kMGgDjcS/4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGQAAAAAAAAA=eF7bvff6zfs1t213j9Kj9CiNQQMA7Kcwqw==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_126_t_12600.000000.vtu
index ab643a546d510e17bfb0bfaf7a0917fc3af1323e..9cc0ece07a0cc7a99712432c2ed870b2bdc7fd3e 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_126_t_12600.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_126_t_12600.000000.vtu
@@ -3,39 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.3381367495e-05"     offset="384"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="920"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.1989249918"        RangeMax="10.365166458"         offset="1012"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2980"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3052"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="392"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.349512014e-05"      offset="784"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.349512014e-05"      offset="1316"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1848"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.0887685746"        RangeMax="10.703776342"         offset="1932"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3904"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3976"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4048"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4120"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0064809117e-10"     RangeMax="0.00012307508993"     offset="3124"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000001e-10"     RangeMax="0.00022967022465"     offset="4016"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0000001503e-12"     RangeMax="0.002"                offset="4948"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="1.1265285351e-07"     offset="6084"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0000000722e-12"     RangeMax="0.001"                offset="7004"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8140"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="8644"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00012308042199"     offset="4192"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00023356408873"     offset="5108"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0000001503e-12"     RangeMax="0.002"                offset="6068"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="1e-07"                offset="7204"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0000000721e-12"     RangeMax="0.001"                offset="8164"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9300"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9576"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="9720"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.2547846189e-05"     offset="9952"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10260"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="10324"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="10652"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.273730405e-05"      offset="10884"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11192"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="11256"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10816"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11472"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11744"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12044"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12356"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12400"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12700"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13012"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA/gAAAAAAAAA=eF5jYBgFpIDjXTeKbjGq2HP6RXOw7mOxv23Ou2DrHS37lfNfrLBK1LT/azhp810Zbft89yefl/Fr2/s/uXfmpry2fYzzsd0HgDSf9TpjWQVte3nB+n1sQPoo8+EXkUA6dUmpphuQTulz8JoIpDcdPaLeDKSDrifPPQykOz7MPLsJSNsf9jP4CKQXWXl9eQSkLQKmSEkpatv7fldYygukNXM9ZOyBNGNCxFdDIB3Wd7QzCUjfPfHZIQxIa/cf/VYPpF2uc7WVAmmFXcvTZgPpaUZPdCcC6ZpV39m2AGmLFXserQbSWmbPSo8A6T7PiK97kfij9Cg9So/SANM67mc=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAcQEAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNvvOfJTQXu7iH2x0hUFrv3C9jeVYxaXXhex59qt6161Vtg+NsaoQ3KeiH00e8j+ifeF7flyZzN4W4jYZ24xXnkoVcS+9XHQg6QNIvbz49wV2eRF7e+98Mzu/y9in9ARd0e4U9T+tz3jm8cmovYhFSvMdQ+L2n/adt9dkUXUfqnFZssv00TsFTboyiz9KGI/yeLArDJlUfv1k0syD2aL2uf9Sfuz4LaofZbsxJ0T2kTt30U/e+WTI2rfVc3B28Yhav/D3iI3RVjU3iQkXvDD6692FzvPbWL5IWi/e+/1m/drbttuvWow59yhS3Yw/ig9So/So/RwpwGWEwX6AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAoQUAAAAAAAA=eF4llHk4lXkUxxPuFEldVJbGuZaKmWouLRhxCCkJPS0atFzaKIrhoUmTtbIUMyWGqBBSLrpZsr1R0kq6M6kY3RakqEhRXHPeO399nu/3/H7nPcvveS2G7cQRlqrM8s33p9g9UmE479Z03XCcxij3Mwp5dapMj/PVaL8hebR02LXfPwHQJEFJ7UShAd6wcSysj5zOuPZssvGv4TJaXpqaX64ZoJFhwR/x2gborP0swM/YAH0P/bq/73d9bJPsG1u6Wx9L5wnaFlvpo8rI1NNHnUjfXCsNnstlQDKgt95QH/NmvfD5/GQ642ZoWWldq4d3oixHdHTVmHHHlzofktWZXoFetHY3D89LNxuLTPTwpnOL/BMdday9MnpQ9F6N4fDNpKV31ZmpIbPjjk3UwzPN/B+mnOTh/M8h33IMeXhk7q2itGgemu7wTd+mysPtA6cu9dcDBoc4cHwoXrWnxrbgOOBX8fbheaSDmhpah1ZzmYVXvE3CwgEb7UHI9QWM7gxekSECPBUZOSchD3DTMX6MkiGgO9+jczSJy0xaJp8pKAVcOe4wYpIE2C1uckzcosKE3Iz46pYNOFW/UlL2G6BF4gXDPtKN9339ErPonLH4y4FOwAdaAQ1ODYC9n5ZszfcGDErZ3gbpgBlB/YrCCMDrovQ1mmmAC9NHqr38ASc+HL43Rwx4uE27Ies2oO6qLAUhxbW6rTf7Ux0Tozc+enoUMGRGhrt6KuDc3c1MHPkjtn1nbZIBRyualsyOBDw+oWvT9Qt0v3VxRxedmxxq61n1F6DH7asZzZmAF0+2hZ6NArzazruscQ0wJlajPpDmEJrNV4uNARyU5NmpFgPujYgRGFOe3A0WWT0PAEWKE46W3gU0c9hm3iEEHJNj+heVAfpWnvPUaAW0rePO0joDeKE4oGJXOfVft37P60KqZ/XJ3kqqM3JUGm1XATjzq5Po0UVAv51L6jGf5ru+7gWfoe9UnijxIb4w9O37+Q6g+PUvUdU3AVvnTK5mrgIWP07xMKf7jYH89giaU5mw29yoGbBw7J/D04g54h3pQvJt1hkoN1bRfA99s8qhuua6HuHd7QC0sq8oSaZ8g90tYQq3AKv8hl3LHwOmf+H1BzwFvFJ8afQ9zd00rHfrLMrnmrHYsrQFsMvkfoQC5RWr+Dg9p32Gh4rSFP4GfGMWP+R1A3BZb5pL1r+A5q+sJ4a/ALxtt53JoLz2w8Ww4Tnt6+EdOTniuPcCvqid9rtwIQQS11jmZYY9AWzxMXk9QPckCh+Dm4nSjamroBvw7cznaxWfASYW5JpMktC7ct07reAN7dWjSDmVGMhXn6fUC7ja8Kn89VeAO59Z1A28BXzvlXJvJmmP5DemM+gdHguaYFZD53f/eCZ/wWtAZS9B9oMemqtltUUr+UVKAfWuffRf0E3tWEP5RgLKlSWkD44K6voo3x3P2uz0D9T/m4/SkPeA2gFaT74bBMw0znMuIh36LHbfg2HAzWpWy5U/AW7pKh/qGaJ3L3l5QJH8guBaDYsRwO+TLnEGv1Df1udixokCN5fTHyieUOWtH0fx54p1Y8eJ9W7rkhuJDe6BWn3Ewpw0adlXwDCdRCcl0ioRP5keIh3eFW+VRRz7/FDi8Y36z6/pLCHNyVg6wBkFbArTK+knX3uPe6nKGKCOUrF/PPkul4N7g6WANzo0rY6Rb6+ZFLVlHDDlZK7mW/LjKkM3CEjvik3jbiPmpujqeBOXv5WTsH6u87gKqwunLDFiWbJTrZP1VzgNDbOsNVrLsKziF7WwtFQ7LGIpXNRezXLgz9VFLCcIu4UsXyY0XWQZZXC5gCVX/E5GF+uGfJb7VmAOS9P2lTI/PHZcpssN2mXMPO+Ry3LKfDMZo6xb81hyjq6T6VTO7zJ6HoqT5VPMFcj0udD/4/8BuFHfYQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAfAIAAAAAAAA=eF7b4n7zUtWq27bul/K+GMor2Oecv/R06r9suz9Hz8yez9xixxg9U7rYYKrdn3nPJBzWLrbb17hlvu3zDXbhllzMRS277Tb9y6xorT9q9zpA6nqB/QU7Fwd27p8Pr9vdO7XuxF3Fh3YMzp/tHvC9sPPVLJ55e+IHuyRWs0zbvG92c9YtWhfz9K+d2I+4ouLlzPYfDuzwy6rltJd5cVZ+vpuA/abVZ7dLbROxN8mTu3H9jpS99/Sk67c6ZeyFYj5ovRGUtV/3atK5yDhZ+5ivjjeeHZC1f3B6wckqWTn7DcF/dh0plrP3lw74/uOQnP0djywDHy55+xma9d8dPeXtdQ5HMm6rl7fP+uax/OJaeXvpdO6wf5fl7V8sk26+/knevtFexrOPVcE+z3vqlQt8CvYbk25LLxJVsH/U+E23VErBPkooVHK7rIJ9yc1m/hPA8Lomc8/zp4KCPdPKx696FBXsffLf/9gGpN85/Pk0D0hfUy9Znwik66oO+QkD6TsnXCQPAtUfO9ekWwyk048vea8LpGecv2fyGWjencerdA4D6TlMQXxzgXR81JnJ9UDa9/Zd70wgbXOB4WwEkC6/tOiiD5COu3XaxQVI6z054GIHpCuDTshbAekIsZ++5kB61tb/maZAehU7i5YJkL682D/SGEiv//v9khGQftM7oxZEH/Rl8QDR/pvOqIHospxiIRDNm6LIBqLjag7+A6UPO72UXyBazOTadxBt0BT9DUT3TG76CqJPrGUH014bD4HT04n8OWB6QVw7mD77oBpMl+0qBdOFaUVgun1JAZh+ezgfTNe7Q+iC/5B0+eQ5hF58HkK7XaIvDQC3+1C6AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAmQIAAAAAAAA=eF779uX+zfs1t23dL+V9MZRXsJ/zr7Nmcnm53dHYbCOhSxPsuKs4fvDcX2inPPNf8pY1G+y2LXvL8ObSHjutU0v4vy86brdAzPG37MJLdutWB1hNLLpjt14wcv0Rtad2bE9Ecqfue2e36Maz6l/Pvtpt2KC6X3TFPzuHY2eqdsqy2ku8esjLt57HfvKzBlVtO2H7JzErGVZXStoLXPI0LJmnYF+X+Zx93Q5V+60l3BUZHbr2MfelTEuk9Ox328Xtl9yhY6+3SVT19xpte4Or50p0p2vZh0yq1hNs1bR3nSh1YG21hv2UDw+4X9Sq2z+Z82Z9YJ+afXziykNS61Xt10bcjn72UMV+wT/1dXvUVeyfph3I4WtUtm9MYnh64K2S/bQezgf2uUr28wLKt0/6p2j/S5X3UMkCRfvO5NOtRYGK9m+mbSv6xa9ob9WpmJF7S8H+9UHRbv31CvYz+K1TtvUo2O+6XtI0uVDBvpYva0J1jIJ9iq6ZrpePgr2Y9R9uZgcF+0cG/h8umAHVd/bKMRso2NdPFz/Dqa1gn6FzmL1IXcF+92Ox6ocqCvY3UsR9hJQV7NOd3QPOKyrYT7GpW/tBQcH+3kuTrxFAeq3zj12fgPGlsHz2vHVAepPSw72NQJpPhLE+BcS3YFkaCKT3Ldg43xVIL9sWxmUHpM3Se/0sgfTCV0JJZkD6pEffDBMgXSVxuNkYSC/6wXjPCEhHhu6vBtHKriJOIPpc30QFEP3N1ZMXRAcV+zCB6IqPEn9A6aZz1sIfIHqf/rZvIPrfzBVfQfQpZTEwfdXpODh9KSnNBdMJ99vA9CftajDdqFAKpqN+FYLpgLQCML1xRj6YfmgIobexQGiee5D0uvg8hHa7RFsaAC4oSDg=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/OCq8dJNYmA/fr2LrZmXcT2mp92rk2FgP7d0QRE6YGA/0hbSmetdYD/cqMLVM1pgP0aC+Tx5VGA/WiZbyvdLYD+MTtoTvT9gP6cW7sqmLmA/bbgYlmQXYD8WRN00/PBfP5cuGp27oF8/bgKbncE6Xz9FTV7U1rteP6SsNBgDIV4/xZaaI8NnXT9unMcuP45cPzLWmdt9k1s/btiQl453Wj9sp7/YpjtZP+b8Sgwu4lc/qr1sibduVj9YWwwD5+VUP9QBGwJDTVM/TKewiveqUT/hd9ybjQVQP+oWXyY6x0w/5jbKCv6WST98+jS6DIZGPxhSzYiHnkM/33rfL7HoQD/Son9DbNU8P4JGf6owUTg/gxJy7nhIND8SE9C8J7swP1ku1TNzSys/TDWSVcYDJj9VBMllfI4hPwzNX5ndrxs/b9Fu48WVFT9Y5dUAU6MQP3gVl0gvXAk/VQAlDAocAz/E0UJiq3n8PuqloTJK+vQ+1jgyFh+Q7j7eu5rUHQTmPnLvocHtXd8+49G35BgZ1j4mAuEvWMvOPqmCXWzcOMU+zY4a3eLuvD6c3P3SmYKzPjLj7BeuB6o+Mu/RhuotoT4/VKnFsW+WPpTC8SyA/ow+DA9+Fv+Jgj6WNLLfcHZ3PjRBv3OVY20+Hgbc1vg3Yj6Bym6XGlxWPuWwUonYKks+qHXObSxXQD6HuVLptXYzPtVBuExm9SY+BFlB8ErSGj7msO4tDgoPPkWvjRqhywE+VdqaXKs59D2fvkn9ZczmPZYOdVfgg9k9PHQWzIdnzD20XmsCMY+/PeTA/Op/mrE9LPaMYHvsoz06KHOY4EOXPYuHX2vxs4w9v+atJ+k0gz3nGXOGHWN8PcjTH+QmJHc9QnL6eaVrdD1GOod8jQVzPXZpT2MHT3I9wgdIRcnycT1w3IPRj8RxPXZPcEmXrXE93tbEHEWicT1DhTBuvJxxPb7geYYNmnE9gvQ+IcOYcT3l0Wp4JZhxPfjGvtPal3E9orv3wreXcT0eY0Nqp5dxPfgoTNqfl3E9mxJnYZyXcT2MGVnMmpdxPX6RaBWal3E9cNosxZmXcT2BOXqSAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAkQIAAAAAAAA=eF6t0ttLk3EcgPEYVgrKFNMZLsjphUaWQc6mfX8e0IQOM22KmWDp1Av13USdBWImSm2esqW2ecBDmwkWOpk11FxrptWNgVCSxfvupDlRXKngsfd9d9tlV58/4HnC5/w2iqESETyp4qkFB07k9Zei0nLEz0hZsQaIUJhB0/pGl43cpOt6fUQaeh5fOFzrdQW5s5TMU16xCGerK1XRXLS5bgxftoai7bGBFX5/EJopX+jRJJxA9SebmCPgg1KymhWHa5ho86zGc/fHURT7ey8MK2CgdPBQlth3oedZW6kbaws6c+K6d945QBj1WfB4dBX+VMfPb+wvgbB65xY+uAjBNe9V/axFqNInWAJ7bODLkhg72TaYT1UZFpRWENoYLVNsK9yP+ml50meBCWytTBJmAW6MH1ZoNIOEgcnP3zbDrDyfI3Axw5wuROQ3bIKva+IlRZ4JtNNC+2SQCWQ7m7xLdgIaL/veMegIcKQd3FU3EcDZJ5KvFRLA53JmXZIIeCV+hPlEEIDB0uuZQAJ2BSozdowAmNwryXEloGKeO+B5gMNQ+4eh9S0cErQTCrkDh6p8IrxlFQffjFGO2o7DVG451P7CIRdCDfuLOJwxXry6bMMhqUhNBJOKorRBfVYctFLmeCLp2wtjW26kDxsONDjZLdE4hk2R6gOKOkdI82Tnjr8g1VV6j3eTbmc2eHeQBkyzQxSkDg9jRhvpg/r06FZSWXW2vIVUqvQ/TXnz48gq9UMvv/ETZYy4QktZzLsxQOlel9VL+W1b1EU5aIrsoGTYDrVTdvkLlJRHvm/QX2VPGmg9Zf20bFcFbZWkmbZM3EDLvVdH250qo9VPO78saHL6JdOpSvhv45Kc4rz/61+VvbglAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/C6t8dJNYlA/KgN8lpmXcT307nDPbWFQPzeEIBbNX1A/MhAAzAJdUD+i8btaflhQP6Zl2Fx+UVA/1s/6dAdHUD8iBgrB2zdQP8c727FzIlA/O/AJDPkEUD9B3OBgibpPP+C6/FK/UU8/RJmP0w/KTj8+raotbR1OPxfZPCE9RU0/+i14+XQ6TD9odS524PZKP/BGJ7W0dEk/gl30bSagRz8W08K2JzVFP12mq1rM7EM/PCZ8n+7iQj8ky/9zc6ZBPxtSP4CUX0A/EMAOMcUaPj/kG92GNWo7PxBtrF4EuTg/xPxUP2gSNj9GzCbXz4AzP1wTn9uBDTE/lBYUho6ALT8wO6UCXT4pP/re9IfbXCU/0Hh0WMfgIT/2X8m1y5YdP61ha+nNNRg/yQ3tp8uVEz8QpSdq61MPPwhzFDtIxQg/n6XI4uxcAz/0DXY/Wu39PjzSAQVL3fY+ul9aKSVF8T6ETn6XI8vpPjk2cXBOC+M+6BXTVyTO2z776UPWHxLUPiwwCuv2psw+8hnQcWQ5xD4DsluGMTy8PlM/ORY+frM+PIdpeyefqj6APutLOfuhPnjBVOJfB5g+GSweHTTEjz4IyfbrTsaEPgYGLfa/4no+Te0SHA43cT4NQpTEEdFlPoRwDmQCXVs+bL6MsRH8UD5pXjB/Ed9EProfvMvXYzk+jJiSj3yULj5YBT6LEDwiPqtvn6QuiRU+qqQSAoExCT5YyTqFQjP9PUwYE2nsxfA9FSJwLvEc4z0OrDinzKDVPeqtaR3hWsg9SnBHQsdkuz3RmoPlHvquPQ8RPr8EzqE9hFCgrvErlT2Qy8RmM6qKPZSu+K7kOoI9gHjnDIN3ez0wLKHSLbd2PSzbwoFHOnQ9+vEgoLfvcj3uZkGrpEVyPZW+Vt7k7nE9njai+AXDcT0Qnfk4Bq1xPVjCBcIVonE9jAuPsrCccT1h318xDZpxPU6h63bFmHE9Aa7KvCeYcT0rAPFt3JdxPQauVsG4l3E9Oke5/KeXcT1mGZEqoJdxPZDE04ucl3E9QoYZ4pqXcT27eQEgmpdxPbB0TciZl3E9wBLSoZmXcT1wa2eEAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAjAAAAAAAAAA=eF5jYBicwDPu/ZZoQ0n7Q6+rVH7Iadlvs9kd7CSmbX9tcpDLWXlte7FlYj8FFbTtRUNkOAOANPcqJssuIP32cZ3pbiD9oc5H6BWQPrT41n1hRW37qWkXOiyA9KzVMakxQNrCOGNfFZCO/ubqNQ1IR2ne+rIeSN+xn296EEhrmT0rPTJKj3gaAO2s9ZA=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2GneuTOSoEbU/U37yQNdZEfvIL2W3e7lE7flOvDXauFjUfs0e60t5laL2B2MVbL/yitrfi1PbzlDMbt+7XkDy1aFDdrv3Xr95v+a27Sg9StOTBgAXrgGDAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAABAEAAAAAAAA=eF5jYBgFpIAeFa99J/cp2yfv/rqp+Qm7/cK6uW/4zmvZ58+zWnIiSNO+v0X4vIWMtn3XshVBnzi07Y2TBc8dkNe2zxAoql4JpFvFnydwKmjbb99sefQzkP/jzh0TdyC/cbP2QiMgnS38tLIBSJ/Mbj+VD6TPmRf+2ASkF1wO/78YSH/3KC5+CKSj/0koXgLS5sddwnkUte21ijeLMwBp59uf5hgCaQ1/7o0qQPrSx4rYYCB9TfWhiyeQjps7fWUJkG57fbYqE0gnrwvt6gfSc9/McmgD0npx7a9XAOnn/28nzwfS35nTEvcBaUUNd8ltIHvMnpUeGaVH6VF6lAbSACI98SI=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAABAEAAAAAAAA=eF5jYBgFpAD9Dafk8z6q2qs3OVxJeyFm76q2xvjzUy178UidJUu4tOx5PG5saZXTtp85XVaSVVDb3jhZ8NwBeW37DIGi6pVAulX8eQKngrb99s2WRz8D+T/u3DFxB/IbN2svNALS2cJPKxuA9Mns9lP5QPqceeGPTUB6weXw/4uB9HeP4uKHQDr6n4TiJSBtftwlnEdR216reLM4A5B2vv1pjiGQ1vDn3qgCpC99rIgNBtLXVB+6eALpuLnTV5YA6bbXZ6sygXTyutCufiA9980shzYgrRfX/noFkH7+/3byfCC9kMNp/0EgrajhLrkNZI/Zs9Ijo/QoPUqP0kAaAKtG7P8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAbQEAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3dWz6IapwQtp8UKOeo91DY/nag3atDcSL2fLM0lJhkReztd4SJJYWK2K+wt10UFiViP0/qiMj0PBH7P7Xz5ATPiNjf1U3avfyEiL3Pm2kzjK1E7SfseNa7gVPUvnkTf/+jWlH7qvhAzo4YUfsGgwWqO0NE7fk8DrNLvROxl7vP510ONHf20ckm69VE7bM6Q2wPxInaM/z6/6AHqC+597Kt82NR+9oe+yBtoPjc6ph/tu0i9nvn/F/6K0zUvlUzOjGhQdS+xlO548+Bb3bB2ew3d1sL2u/ee/3m/ZrbtjfbHhwtULpoB+OP0qP0KD1KD3caAIXL/gI=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAbAEAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3dWz6IapwQtp8UKOeo91DY/nag3atDcSL2fLM0lJhkReztd4SJJYWK2K+wt10UFiViP0/qiMj0PBH7P7Xz5ATPiNjf1U3avfyEiL3Pm2kzjK1E7SfseNa7gVPUvnkTf/+jWlH7qvhAzo4YUfsGgwWqO0NE7fk8DrNLvROxl7vP510ONHf20ckm69VE7bM6Q2wPxInaM/z6/6AHqC+597Kt82NR+9oe+yBtoPjc6ph/tu0i9nvn/F/6K0zUvlUzOjGhAWh+pMqHF0/f2U3/c+mgYBSn/e6912/er7ltK1RwKX+x/gE7GH+UHqVH6VF6uNMAjIn+ZQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAApAUAAAAAAAA=eF4dk3lczHkYx41rIumYWlq1nulyJKu02lfE06BLeVHpUJQr19rcyStl2JjKSpk0Y1J0ULp0KBX6ieScpBdRcqaYkdGhaNraZ+av9+vz+X6e53srwmJKWfO1mXq3eVfsz01k5incHN856TBF4wf6RlRrMwWnfzTrTdFl/OVbglZtMceATt1brt91GUHnOd6caF1mdKfmjUstekzXc53v3i91Gb1T1uGZGca4QOEHLVfMsKOiYbeHsynWypNbomQc5lLOtzdiAYfJf9V8RnSIw6yfuTCE4z8VfePZWs7XTdG7WrJ0gsAEuxrnWrSv1mc8w1trTp2Ygva5GgLFTH1Gy/1L8nFzE8yB8oMDPib40y3Wc9/fXAza5KvY7Mdhsux9DOQO+ozNglPpo+5x0WhHvoU4nIsto4aM1+zi4l9Z8s0KOWC9PG3PplQ95lkdq333VQ6z04KXoz+Dix03xE78WEDvuex9Ra5cjM57wHPnA9oWg3WgExf7hlhvRFGAhisOlJkcAdzQN9tKkg+YNma0TNkC+E4jtXXubcDiWBtj+xxATeHK3gm5gJe2evQ+EFBfm6II4WXAbnGHdvJjQIVintDvHOAjgfei2/cAXYYqP79NBmyzTFV+OwbokOo9SzsFUJgSbeRYAHgvcfuCqCzA53EcRRrpQJf+NMFd0hXCtR2lgLUX602tDgP+2NScUEXjXx6c+Dj5GmCBXd36gjLA44lZwjZab5BbuEHSRcCluzdqxW4DFDfMc9hAOcmLQv87IsCqpsgkfh6g2+C7T9aFgPwyM23fHYDyKYJJxlQvcUmdvDcN0OxuiLt1IuDl7KSY6WcBB25Pi+TFAZZIT86KEwLmfSypFBwH7Mv11W2ndYZaeTG/VwMmzfWfLaJ98S0GfV0zATmhawu7qK9d/OHLWlWAJ6Zm7p9DubFfjugNPqTzuXFU9rACsOGmKHTbfcDq4aN7+msANepMNfJq6VzkngNtRTS+tXNaIO3DUhm9JvEpoLnnujNYD/hLtgsEUO6iyIQ/WEz75b2oYj8BLJfWnr1VBxhRZFecTvdh+FnTZVIDcb846A5peX2j05Y3gCvjSsXdNwFnhzud2E/zl0yPWHbwOeATyb374dcBtZf5sWsoX9qk83F5JWClT8rL1a8ADQ7wk2ZQ/ZrqUtk4YssI5ZW9zYCRovES1kvAqEVSH03q83A0a8YxyheOHeoc+QFwcujKyLBGwLXd8QdHvgP02Hl4o+NnwIVHrS+8p/FnzjGbUloBd7altmZ/AnxbbNgo+Ej7M4s4vo3Gh2fyqiZ3APreH3iUS/XrnFkj2l4Dnr7QuI1NuXbzXcPe5Nd5jl/iT31tHSZkjqe87a1J20+Tv9nNV+BE6+VXzCk53AnYtHkJW5VzbPqwli+j/yMbxXYmPz9T/DqY/lMvd1FYQjugZ8wPc1vypYGfx3p9BawxDK79t5vqN9zxWt5FdaLe31b0AMac/C138TdAfXdlAa8fcFnZ23TLXnoXU8y3FPcBduYbWwaTP44lbfjwg/JLfwqziSFXJfs55K/SKV8cT5yf9O3sr+Tr+SRwz/+k99jkjvXkM+V6kUryJU9HeFWTb9A3tUmLdO+45GljSZeH9CuyiAnSCNnGAcBpdjY99qS39kTX6inpPiR82wHyl4z03WU8SPPwtP3E5Jfc9vgQ9x8g+4nNaAn50u8P+8OHAJXn3weMIi6xlkmDhwEzMvl/BBFHft19Zj2x55pV2Tqi5rUV3SrdzJ34VcX4VPYrFc2OsHpU/G4UzKgo8tv3REUN14xSFSsePL6uovmjk7kqSioHC1WMFLVeVvEf22K1nx5rr9YzktOyVTRMNMpUkWdpkaOi9H2xWv9ZE6WmvtwuSz3/e7aaXxw6Lqlo0DRHrfd6Bag55n6Iul9oRphaZx7aqub/6A/hOA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAjgIAAAAAAAA=eF7bvff6zfs1t23dL+V9MZRXsN/BvnTHklfZdmI+1tcvfG22sy+f9ERIaapd8iq/wsoFi+0KJk+w/3xng53DBoYnl0p22zlqujJ7lRy169vtNGOH+QW7STd/Tbt0/bqdfeuaR/nSD+38X84ptGV/YTfd3XLprN4PdpN+eOQnZX+zs98Ydqb80V+7I2az1ixfyWz/cJabnXc5p33cS0c1xyIB+z6vwMTJNSL2yZu4D8g8kLI/IXbnlN1NGfvDtYsezfsrY++8yUqhNk3W/uviGxEth2Tt5yxbpvlLXs4+6cKW/JelcvYGcsK2dkfl7LV821ZO4pG359+pVdPnLW+/X319yf9GeftbYSvb+TbI28/LO9amfE3evrpJV/72F3n7BzNyLavZFOwntv05sZRfwT57BZ97rJiC/aW18kv5pBXs0yMMD5rIKdjPu2Xuq6OgYL9WTf6Tu6KCfauQXuVJIK31zfHYEyDN6nLm9wEgXeFR11UFpA+mTFdTBdIRV35uOAvUZ/nS6VU1kG7Qi3tqDKSls64bfweG/4yZK88dBdLNy+sPzQPSFgEPVzQA6aU2tT8ygbTJ5HCzSCD9SqpWwBdIz3san+kCpPepFEbaAWmfleLaVkDaafbTYHMgLaj9NscUSItIhWubAOmOuxcjjUH8WvHLRkDad0FfLYieqvjWHUSHP9yiBqJb2+OFQDRPgRAbiN7ze9s/UPp4Lhj7C0Svn3zxO4hmWRbxDURb3234CqJnTmcD03XKh8DpaZ3gHDA9V7sdTIudqwbTdzeVgmnW8iIwnbulAExPOpkPprlDIXQNH4Tm+AZJn8b3IbTTRQjdDU23xlDaG0q7Qmk3HDS6vCsa7Y7GBwBrvELMAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArQIAAAAAAAA=eF7bvff6zfs1t23dL+V9MZRXsPc+rOq/t7DcjsFA2pf/3AQ784ht8iK3F9qxGV6/Hr1yg91bw1viz87usWuMbzLtn3/czm7zrm+88y/ZyUz0Uc4ouGPnslAi/qPqU7tWubNyCfve2bXFZc7f+fyrXefxZwlPVv6zyz664YaCIqv9p02KPU/X89h/Mp65446zsH2X0gG1tgJJ+56pbzmcHyrYz/w2K3C6oar93lXzdQom6dp3Sh+zk5mrZ3/CdK7w3sk69nJP3q7r36Rtf8pM6HpDr5a94zbT2bKNmvYfmiMdo8s17C+bn5ocWKVuH7biVs2vLjX7ifZvHcXWqNpPeaJ0V+u+iv2SST3u3qoq9heS6/ye1Snbf9h3MvLhayX7W6dEZi3LVrLfsG/hVOu/ivbiH331o+Yr2p9JcK5pC1C0X3uxkMOaX9H+xZ7/BlduKtiHWMbob1+nYJ/K8T0lskfBXik3/JZPoYK9k7LwfrcYBftr6qcDlX0U7E8niz5/Zq9gL5X75c4eMwX7sg4Z5q/6CvZzjXLZGbQV7A0Wa8VmqyvYT6n48e+OCtC8jr4gfmUFe6ENpnFnFRXs2eY45bxXULBfbfFEIwJIq1+8YPUJGF/Bx8L81wFpDuGO3kYg/dryXWIKkG6zOTE5EEg/M1ow1RVI33foZrED0ifWuHhbAumuJ7YJZkB62bOe6SZAem2MRbMxkD7Ws+OuEZAu9pxZDaIn/mJwAtFvmToUQLTTVhdeEM3n68UEok9zSvwBpZsNRgt/gOhG/m3fQPTqaSu+guhdymJgusz5ODh9PVacC6ZfPW0D04dMq8H0btlSMK3NXASmdVILwPSNeflgeo0ThGZihNA3n0PSq8gNCL3jAoTeCE3HmlDaF0q7QGk3HLQrGu2OxgcAuf5GxQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/MqWLrZmXcT11jN2rk2FgP703QRE6YGA/W3/RmetdYD8CrcHVM1pgP/fp9zx5VGA/5btYyvdLYD/Ny9YTvT9gPxAY6cqmLmA/GucRlmQXYD8IHcs0/PBfP6cMA527oF8/4m5+ncE6Xz9RY0HU1rteP29aERgDIV4/KwSII8NnXT8uKXIuP45cP+r8vd19k1s/qQVklI53Wj/AlJLYpjtZP81wFhAu4lc/0gn4h7duVj891xoD5+VUPxLf2AFDTVM/SRt4iveqUT/+8J6bjQVQPyvb6iU6x0w/0E9dCv6WST84M9K5DIZGPww1dYiHnkM/9fyRL7HoQD81pPhCbNU8PzakCqowUTg/wPwN7nhIND+/v3q8J7swPz27RDNzSys/sscXVcYDJj+gZ2JlfI4hP6VgtZjdrxs/xITi4sWVFT+FwmMAU6MQPyug30cvXAk/r3iTCwocAz/i9V5hq3n8PjGu8TFK+vQ+pEImFR+Q7j5eqdHTHQTmPhIbeMDtXd8+A3Xe4xgZ1j5OP6guWMvOPo2hf2vcOMU+Vgjk2+LuvD5LqSfSmYKzPotiyRauB6o+3UYOhuotoT53HabEsW+WPvblniuA/ow+oHOjFf+Jgj4lyJvecHZ3Pl1IYXKVY20+jsgC1vg3Yj5/xGSWGlxWPk33EIjYKks+GGsObSxXQD4OUXDotXYzPk/0sEtm9SY+4e4S70rSGj6HvpcsDgoPPhi9zRmhywE+WbrGW6s59D2BhGL8ZczmPT9AfFbgg9k9x8sOy4dnzD15vFcBMY+/Pbm3bup/mrE9/vD8X3vsoz3Ca+OX4EOXPbNp0mrxs4w9ofBpJ+k0gz1GDDOGHWN8PQZTAuQmJHc9J0zteaVrdD16c4F8jQVzPdP3TGMHT3I9FwlHRcnycT3uY4PRj8RxPbUucEmXrXE9kM/EHEWicT3fiDBuvJxxPfzeeYYNmnE9w/M+IcOYcT3Z0Gp4JZhxPXDTvtPal3E9fLj3wreXcT3hYkNqp5dxPVspTNqfl3E9zx9nYZyXcT3xGVnMmpdxPdB9aBWal3E9d8csxZmXcT38wnhtAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArwIAAAAAAAA=eF6F0v0v1AEcwPHJPFzlIVHOQ+2i3MrTNSwPn+/NU2c7D7OpDFvmqTyksJycKLMKi908dVx1d2Z5Ssr0JNXSLVzIQ5hY3+/duaOT0A41rO/3vvd7P73+gPc75Mmb+rWpfATzLuVXK1Do4BXP2aflIQE2kQxvYSai+Sq1Lf+WgEjyqqxD3c8iuYHffeJd2Ihn3XvaKNUfkQ5HfeKEeyEMXvUAXeOCLK6ymEefOiJj7yQidqQ9kmFza2owyAoRxqJFm+VmSLWdqYyLGSG92elm3IxdCPfEkPWBpS3gXlm5nmi5AbUcDDnStAb7x8X3fSaWwdKioHJ9ewFWSwuNnK+pIOnxF7XGUQUnaZI8T4ESJi/6XjKwU8ISlXZIwJ8H+ljp8IDtPLz073YqEyvgr2m0Wa6bApbCGqWX++TwnEGtZZ6XAzPAbTpVXw6GbQZFfp0y0Hu77TuSLIOcG3Vtxo4yeNY4NNn4A4OfDwdiPV9hwFZDoEclBqHdce0r6RhIzDeLesIxuMnRBM96YVCj37MqcMDADvVTh1li4JDiT2EbYzCzV4zu7KAw2zz5W7GBwlxmlbBsDQXzloKdimUU8hc6lCI1Cgy9ygvFiyjkeBcotlQodJ7OP7ioRKG36aM9HdfEdaZVPI+CrWo8i4X7gnNbSsEtjDjHR/Fu7azgeAluckhFTRdu/xmqVTNuwoTFayGuqLXFQoB7aqSfzsfluXfF1BG9GYnMWtykoKtVNbi797g6Ew5ufVgmfqBy+YOElNSSbsKG6ugWwl/7EsWEMS7ZDwgNWX4CQqdRvQZCaI+qJzxsvq796g+lT2tKxyOtzR58rRsinlZayV2txznlWu9FlWmN+0x+eSebdCye1CSFdDqBNCuNlBlBesyDNNWXlKP7e1vntE65TvQ//gOSAq//AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/Cal4lpmXcT3i3sy/bWFQP243wejMX1A/6cTxaQJdUD8xksuffVhQPxqQdRF9UVA/l0SIRgVHUD9m/8E22DdQP+ESpyRuIlA/mH06jfAEUD/fpTx/cLpPP6Dlls6aUU8/pvRRVt/JTj+WaTffHx1OP74raoEYRU0/6cz0CeI5TD+a0nEfo/dKPwJdrUF1aUk/q2YhLbu6Rz8PgxxmDjNFP+AUPtoO1kM/6g3BH3zpQj+GO627EqZBP1vhaFczYkA/vtUj0l4dPj9Cktzy52w7P8Ylp+tguzg/arevdqUUNj+4tEc45YIzP/dFdfdxDzE/Xb1AXB6ELT8SVLu4l0EpP+lUvuC8XyU/oKFVjk3jIT/gO5fhI5sdP1Qov2R5ORg/iYjUqNaYEz+4Et6x31gPP9JxwA0+yQg/t+Ul8ghgAz+rMgSrJvL9PkmJya/u4PY+Bq3/+dtH8T7/gez9Hs/pPqt+fDsuDuM+6kzBuDnS2z5R4J7b+hTUPn6G1ILlqsw++Q5C1Q48xD5harSTwD+8PnCnpPCUgLM+vWPHoC6iqj6LSyImJ/2hPm81OzDLCZg+QWYCIzDHjz4fxfhOHsiEPidEiD/o5Ho+s/n1LFE4cT6r7X5LhNJlPsrmp0CiXls+exN8gPX8UD4uZAxDBOBEPpaYqRPSZDk+9HVMDXSVLj5FSd4shDwiPsSTscuRiRU+lnsPqskxCT7LuvoVZTP9PSEbxiXkxfA9eUniTcgc4z0EjDC1e6DVPVItPX1gWsg9/lpucg9kuz0Ge7vJKPmuPUkdglZnzaE9rguaNS8rlT3J8BPLSamKPaUCqadbOoI9gSZUkeV2ez2Bfxr41LZ2PT1eIzMWOnQ9mRSlrZzvcj35ckwmlkVyPa0nKSbd7nE9/tMm6wHDcT0qHtAeBK1xPW2aD64UonE9RTabJrCccT0usCbrDJpxPdrcC1TFmHE9RCulqyeYcT35tpdl3JdxPdbOT724l3E9Y6bM+qeXcT0r1acpoJdxPQ43Zoucl3E9cIXm4ZqXcT1b5+kfmpdxPdyiQsiZl3E9xgfNoZmXcT1zpXccAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAjAAAAAAAAAA=eF5jYBicIHUy++pX2yXtO/hyTrwW0LLvEb03YaqQtv25nQdVtspr289LFZj8D0jbeLC8tlHQtp9lb6ZUAaS3tz6pXg2kVyq7nboJpA1ka8zZFLXtzUT/q2kD6SvcuoF+QLroiJFQPpBu8K142gWkudZvVF8CpHmmhdnuAtJaZs9Kj4zSI54GAA978qg=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxAAAAAAAAAA=eF7TcTB8tHUBt31Ti9/DlGYe+1MJISdT8gXsVcQ8bt1VE7SPXHnD9GC3kP2JnrnPjL4J2T86GRq61l/Y/k1Wu/bqK8L2X0qN2x7Zith/+e0ZcydcxN7XZ6NkyFwRe5HePytzGUXtu0yr+046i9r/PV4xfUGEqP004cyVJxaK2Depf9mx3UnUftPhTP6MDaL2vCx+K7Z8ErFXTF7bvDYbKG4r8PvXazb7jQkHnHqUDtrt3nv95v2a27aj9ChNTxoAElgEIw==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_168_t_16800.000000.vtu
index 56eb37209268013286ba49f3528d493717a87f20..924e664dde016e77cb8765fa2ad20d7e984bbfa5 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_168_t_16800.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_168_t_16800.000000.vtu
@@ -3,39 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.4876994077e-05"     offset="272"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="928"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.1973309239"        RangeMax="11.132504961"         offset="1020"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3056"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3128"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="276"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.4681975261e-05"     offset="568"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.4681975261e-05"     offset="1232"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1896"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.0621581307"        RangeMax="11.118808404"         offset="1980"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4016"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4088"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4160"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4232"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0010139095e-10"     RangeMax="0.00012302309955"     offset="3200"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025508336044"     offset="4216"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370224326e-12"     RangeMax="0.002"                offset="5272"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="1.1335864343e-07"     offset="6408"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0175046839e-12"     RangeMax="0.001"                offset="7456"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8592"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9096"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00012302509374"     offset="4304"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025591544118"     offset="5332"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370224325e-12"     RangeMax="0.002"                offset="6392"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="1.1225157108e-07"     offset="7528"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0175019002e-12"     RangeMax="0.001"                offset="8584"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9720"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9996"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="10172"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.4107365986e-05"     offset="10344"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10708"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="10772"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="11072"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.4044224659e-05"     offset="11244"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11620"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="11684"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11264"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11900"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12192"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12492"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12804"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12828"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="13128"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13440"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAqQAAAAAAAAA=eF5jYBgFgwmkTjX5duG6ur1rvOWe3/fl7Ut8Ooz+c2jbR942tl52Tcve/rCfwUcFbfv3ejOvbJPTtrcImCIlpaht7/tdYSkvkNbM9ZCxB9KMCRFfDYF0WN/RziQgfffEZ4cwIK3df/RbPZB2uc7VVgqkFXYtT5sNpKcZPdGdCKRrVn1n2wKkLVbsebQaSGuZPSs9AqT7PCO+7kXij9Kj9Cg9SgMAhk/JlQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygEAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNvvOfJTQXu7iH2x0hUFrv3C9jeVYxaXXhex59qt6161Vtg+NsaoQ3KeiH00e8j+ifeF7flyZzN4W4jYZ24xXnkoVcS+9XHQg6QNIvbz49wV2eRF7e+98Mzu/y9in9ARd0e4U9T+tz3jm8cmovYhFSvMdQ+L2n/adt9dkUXUfqnFZssv00TsFTboyiz9KGI/yeLArDJlUfv1k0syD2aL2uf9Sfuz4LaofZbsxJ0T2kTt30U/e+WTI2rfVc3B28Yhav/D3iI3RVjUvmnjIs3ns0Ttv9a+8xL9LmrPckPRtSJS1J4/pZld4ZuIvWSVXnRnpai9yox6LtXVovYFCSn5m2+I2t88u2b5f3sx+z7Z1FdrgO5+3nla/tk/Efu2L6cWi5wStbfke805nV/Mfnpkadue0Md2dsYbZkW9Z7Tfvff6zfs1t21H6VF6lB6lBxsNAOFG6g0=AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA1AUAAAAAAAA=eF4VU3k8lHkcTjkiBuNoisnvdaS0qxpbmo+avpY+bXRQQsearklKUlKKyEZ0OKqlYqKQDiVXYRQvyWTWKLPK0aEmOcpRQzKO2u/+9Xye5/t8z9/7Zl9f6qkpZNBif8WHz2IdumrohTXrNYO2CXrokV7AoAezN1bdH5kGrIAJ8ffZM4E/1lpyJ8UKglJV3FfE6dIzG0fP8IP06Ar/B3lNTjPhzKz6sPlOVpDfuCTBlW8FMzx67hxJsISkuJTgGRpW4GB5qceGawXhJlYlImMrECQoLLZYMOlHrI/fltmwYZdL1tW2Fn1aTem+fyjDEk7OPGV0lG1AV1lKTqxvM6AlXRxj5XYL0FT8sc1WRsGTknlusSEWEJgtXhfXh3ElNUNfYki7XmhW9+ezoTbsW348MYcll0weGbIt4HPGktLwm+ZQpmse1swyB/rujrYDnRSYhaqyaZ45FA4PHcv9yQSWzLk1/AsFjvN8i7mzmLQ+X4cT20KB4ZbK8GvWFAQmuO1lX6DgRVTZ3WAFgU85oxWwhknTjC3yAjcDenFasqi70BRWV7o93/iBwMf+9vDHEiadyNMrMn1BYB03TMRvJXD5alzlzq1MerKPR0Z7NQFdOX0lR0ZAi1n8wnJIjy4Otnt7YwaBVN+w7WbRBI4wVd71XybQ/HmDp/wBgeHJAnZRNoGddLfj7HYCJYxUMx7GeRUaTdPdCSgWtwsa6gmkXLxifTmLgJ+beROdTKC6KJ8kiAhcSxsMmPiEgPxaCq/vOqKm8UXjcgKhRiGKus0EHn5tqKmvJCCh5w5U5BFYbbFANBd9ffICPY1aAmZPhR5ZdwicDnR2jygiYMugovuxLitZULqgkMCJkLD0+GcEahK1rAOKcf5AYT7BOi6O7i4izPt+KMeJKyUweJXlzb9JwHh9RNrfeAdt1SdL3XEveYxUR1hFwOA550GamEB96nKdtlwCjg7hGxrSCXRUj+5aWEHgqwlH3YLGeTMNpAqsr6bk7azG/h52NuFO9whUdNppRmI+i1HkIMK7Dw0WBqk3ELBu8wrkNhJoswyWd78jkLMqkzLBej9OrN0oxXjAuTJK0UzAdE5e5qI6AvohPqXLcT/ayqHU8xWB4PaK3JdNBO6v6+QIMS9TM/qvdPS5zstqeYZ3V3Wh9JMwPyzjoSAC77i1y1uihn7G1exuo38I7HZ1dL3WRkAq2jFxcTcBbozvqt73BG5PG3ys+pqAzL7Q5x6+q02UqCPwI4HDe41Pb0fdRDPONgLrrjIsp+w7COwR7t+2CeuM2a5Y2NtLwEf8a9S/GA82d2SqYB7n+KtpQ58IFOSelxXj9yi1/7JEiXmH+aPxMtyjz94jJgnzZErngVaMLxB68fbgnIuanyZm9xE4aFMmqHhDYP6ROr/TyNduGoq51Y9zLhJqNfXgd9HSkZ+Jc06t929ZinvUlyzftxD71c75ZeXurwT2SjX6GxFtGhMvuisJPO7ulY/jf3PUrz30EHK3IomM/Q19KhkJ/YjJ0Wa53BHso9w11jGKe4wf380exnfYcc8+A3mZ757AUvSt3fBbuco4gQiLSR7vsU6UnTgxb4zAsjcHmqxRNzvp0/oA9Zqe2ZnDyFvuurz0+knAIWjusVsqFLjcEvgVT6CAouvis1APGJk90Iy+S6qjT2uQy7Oni5PQt4/b6a+KXFri5XVLjYK284Fv25E7C/bHnZ9EQWS3a0EL6t7q275qqFLw7KPG7VOoi3g9MWmo/x4ysDd2IgUpxyNiujQoiL0yfPQc6j/rtfvu/19vTUqa32QKPN1Cp+oijpTXdUvQt057zPko8j/VF/qsRL7ske+5Y1oU2FW/+lGO+lm7Xp1y1OvSbDkK5DeZL7umYJxTNCiWaVJweLddaAly7cGRFWqIObUHjcoQv6uv7m3AuOeaKc03pmC/cW7cWcTNhaM6RJuCnYkJnsXIlzKOVcmRv3qbLo1E7PSONO3XoSBgSkEaD/E/mgbJOg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA2QIAAAAAAAA=eF4l030s1HEcB3BPYR1CTOnufj80M51IwnDfj1hI5SFjmKh5KlGuNBdTqfPQsjR3CZXF6rQR7sRI2805Zu3MQ+jMZs4fTBRxx9Gi7+/nr9f2/uPzz/v9mfOzTjAQzHCXGbc1pwgShIyxuKg3QajA7eDv7peJiKPjmKTFZqM6TayuqaYARXTwZvknypB/nlu0k7sQpSdGiAOF9aizUzMuaGhC2vgfrU+HJehjl6AshPsFBWQyROpNOWp06I4/uvYN2eRVOtRPjKO+5T6py/o0Op+1IfjZqEYZppyt2U+LKMLyxphjzioSBVVM1TVo0KEtpcpmfAfpoiw3o0L0YSfKMXDVxhj++n5wTjM3g0HG96qvr6wgftZSa5xsCwuX5EROFROqm7cFw+ZMUBitq/2SmWCwfV8T2s6ENLbsWKkhC/SeNC6YxbFA3pM8uStmgT25YnlSywKLI7ajdcAG3+zLnPwSNqw8uNLhNMgGZeqkq7s+AdapQzFx3gTEna11fJxOgMDLwE/xnIB+nmQhWkrAP6+6vaJRAgbUe4R0iQB+uFiSuUuAVWF27QsTEqacZkw9LUhQDs23JRwmIUuVojhnR8Jx2/5Kd3sSfGVuKeFMEoyMhOtyFgkS19IEGZuEJmWwSwruZ2hx91cvVnGNM7WEFRWrr+qw1X/6HDawjQEq/jx2Lv1ZgBJro06K/IzNc9xjv8V2BVaYlWOzu7xl97CFIwOpGdgAadtMArZI1Dcbie3Wc7YOw4atRdgFYScmlkRc7JTPO38/rGmL4ZAPdT9JYuCNPVN8U+aF9ehqmzmNrXlPcildgrdHPLG3QsQllHotwhjKploPT8r6bWcmJb9fZk6ZeyDHiNK6+c4utUd+tXiHMl8apKMc1io2Ka8vqbSUyf5htI8urtH75VzopR0Uv6atmi6nbVUV0fJy8mmZPXf380oe7WhKLu16+/4fPAzdd9p83//UC0l7AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA9wIAAAAAAAA=eF4l038s1HEcx/Gr1fzs5sdNfuTucz845M6560pXPm/y82Riw66lpSaxZcko+oXrx9mNsztSJyKL2izE0u7SqkVaW6qlG5EfV0o/tiNClOv7/fbX46/Xf8+XRjo8PH5mJHRr+bH5YBYCja7K7cD6RGzSMfQ3/2ZiJy9PJfNyIdadi46U+alw/Z7KpqiIauyX1lUg/NCIY1UrrGb7Viybsu13d7yHNdlb1OWLj3CYa0eObV8/nr9y+/jzvW+wwmLO130bwi1Dnq2xjZM4y6NrhVU7jSuwjcr11wyx/+Mq2bSIZVaRRRxgxfqf9uvjX62Dv0ohS6p2gIzs7xd3uriASCBb/qbZCC2n+0p2VDLB6XDbqljNhShTA54I8oO6nuGOmvsiiJwcj+vODAJOXcrIiyNCaPF0FGjzBCD2EI6pigOhNC8xI7p8MzAlm1hWfQAYHOL2r231h4bgd1/6nviBSTDnrJ7gQ9LvB6IYOz4c2DfrfCvUF3jbfNpXz/mAOrSnXz7AA7epwUX/QB4Yk6fOfL3KBWhelJYyuKCoLQy5cZ0DLuOXwh9s5cDjstNy+igb6BfSyzor2KB6eTK+OY4NmfxC70FnNqyeWOr1NSNoW52ZUxkRJHIs+37oEcx+vyZUFCM4KpHQP2YjmAivKTcqEPBoWRnc3QjSbXwai8IQlGlHPweFIHCjP/UZCEbgohe8sAQiSJCrDeH+CHILqgUlvgjMWu+qfB6Cg9E05RwHAS2n88N7NoIR5UO+EyGaS7UtRgh69Dkb3Alps3frXxFdvPWI9aonfD34THSKcEFr3HWIMDx4xppEeDaD7RBDmCsJMABh8qeKcRmh3XZD+zbCtBTnOimhfWdO5BZCZoF3loRwmr9mVEw4pq87TypelseTat5a/EkZA30M0gvd72xIf9z5YyU75cRFrJAmmHOXSLO0vQukqaXPf5E6KaSUXmsnqK555jbKkEEdZdO0klKxXEQ5v5JPWSLIo1xoyKWcNv3/xT9TykTVAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/A6n8dJNYmA/2t+XdlU+cj24X9snMGJgP6aTC5P4YWA/AHPnOphhYD+MNfjv+WBgP+4euD0AYGA/eIepKoNeYD/YF6SzTVxgP6Z5TxkbWWA/SFB9I5RUYD9LHKCLTE5gP1I8qczARWA/VMl4oVQ6YD/goeCBUitgP1beFG/sF2A/2jkms3z+Xz92Zbq1pMBfPxx19shNdF8/GEl0yG0XXz9iE7BqB6heP/fUdRRBJF4/BIbKnH2KXT/6zdqxddlcPwTl2FFQEFw/swQCrLguWz+ZPs7/7zRaP3pHyHbYI1k/th569vv8Vz9swZ6Nh8JWP21TJQtBd1U/KzTFIXQeVD8czXuf2LtSP2zaMgVzU1E/ShWfgeLSTz/u39YgCwRNP2j2V2GDQko/w+Brz+iVRz/AVsmJFgVFP8IZ1yP0lUI/mbAN/FFNQD+CprcrqF08P0YFSgXXeTg/VrQf7LrxND+GCZWyrMUxP4daa3Aa6C0/jhzZoBrzKD+Mo+Tv/KIkP0bMryBO7CA/etT8flWEGz9UmrNstS0WP669Fse4uBE/OfvKamwTDD8YNDeUOwwGPzbLQTcUKgE/pAC6n5N++j4EauN2jUX0PltEr7P8wO4+ZbgxjKwg5z44NHKHUT7hPuy0pRonftk+c3/w2gev0j4EbNWEbCfLPgyAJjyrkMM+nO/T2930uz4KNqFTQ86zPthHtyXy06s+fm9Lfg9joz4npdPL8smaPpyGRwsSW5I+3IFvAsPyiD54h9PP29CAPlkBMYMPfHY+D2Pn1E3SbT551nfQDJ5jPpSYKdODmlk+FC/4jFqTUD6K4Cn56UpFPrZqoyJHIzs+KugVFM0oMT6dL41zZIglPkDvCjOh0Bo+cOksdDCSED7WctG0kVQEPiRf65ayw/g9dqpm0vH17T0pI1SXuQLiPTqcaP7widU933h59UOpyT0xpVGMkYm+PcgzxmyTOrI94AAYn0X9pT3Wb2WSQBmbPbIbGM4bU5E9XLaKY+Vphz3YlUhJugCBPZaG9+8wvno99g6fu6Wodj2trobJMGF0PaPaubdeH3M9kHD8/xF2cj3R3XKmAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA8QIAAAAAAAA=eF4l0n0s1HEcwHEPcXnIQ0s1D2cqTefhPCbp871CE/OQp/K0JioPSyoSbWzNdh2tmCHpjvM0F+UpT0lyK6bOPI00ZL/fnbsT5pndCP1+v/567f3/O1TVJ3QtMRP5jWe/LpjFIPhs/aMsRgaKf/DQeXTzCQrf3Nnd4j1GPoNx/QseyYi+5LhZcTwRbbCu53eV3UJt5skzx1iRKDtN5B9iGYTuSZutExjeqJ7JbjY94oYM7AzptAgXZKVeJ/DVtUcrS8aiO2YMZBHXW6hjfxLZ2bydz+Abo5eFOyPdAgN0cautZbpUD/nEVRu2T2kgb5kQXG8eQE7VniV0dyWElhl1s7ANYwU6xqnRm3BqMuCpV9MqrFVmcvqVlyDrW8z36QU5SIbbPikc5yD+9rpbtkgOmrUB3JAbcmhkPtOMWZLB6Ofu3gcZMsj5UGRWqC0DTk/FbzWeFF577YZOM6VwdeGXvl7fLLTwzI6mR83Cfbsy+tC+BIIbWKmCKgmITYQZ6f4SSDHY/1OgJIHSyIlWqw4xLDj4dgalikEhEk7vnxcDd4Uh1FYXg4pz2CKawAGT7rI863HIiwpq78vBwfRJ5pXAuziExloNpAbicKJj+0fXBRxSNFx13zFwyDlVPjloRLT5mcoWXRweDldd2lDDQYQHsq33MKBlXXPQVGCw4yeOResYRF1oyuUsY8A+LltuXMQglx+9yJnHICCcazo/h4HFq68RrXIMFGkfa0ZkGMicyy5bEjL9gweapRg06iaGRRKybfVn6ITnvmyw14kvFldV0ThhEi3evYcwdkZnqomwIImnJSCkJancLSecEY395RJ219holRDWZykMiwnpRqs/iwixvcNqpAkerMxCwl6TIAtSzr7SGvmft+fyEGmabVcnqXtY9XtSQQ2/mrS7todPmjQ0xCPd0jnEJT1trPyGtN8mpoS0pUGdkikfpr4uPthMqeTEp9wwK6Isi86jzGe8oByLeU7pwsmhnKP99x/A1KlLAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/FOu8dJNYlA/ti/0B2/mcT1UXRJyKWJQP3bM1zDlYVA/9NULl25hUD8vUHUXq2BQP9zcOHB1X1A/yPJpgppdUD/L6Qaf1VpQP9KCTFDMVlA/lGRrsAlRUD9CST9p+UhQP5RtNILiPVA/g1rrJ+IuUD/bt8CZ5hpQP3hIz2GqAFA/1nvd0l+9Tz9L+sqoemZPPzZBqcqw+E4/vsjv6oVvTj9Q/e3J9MVNPwLD+pte9kw/IIoDOe/5Sz/s8m2KZMhKPwSCsim7YEk/+L01f4HORz+zE8VOcmtFPwo8bZfky0Q/86YQntDuQz9R6KJC7PtCP533atjP90E/htmTJiTmQD/owWlmcZQ/P448S2GwTj0/LuTGQuYBOz+PWc7jI7U4PwQHi7ZobzY/zRPKEWE3ND9SPrrHLBMyP2Z4JskvCDA/yOtJHtw1LD/uOyej550oPxWIGdCUTSU/NHmhxPJHIj+eiLuVShwfP6LvSxIfPxo/snnToxn0FT/sSMa4ZTQSP2zeIeFi7g0/4GhWrnhkCD8koN8dv7QDP2+jz0smkP8+MaSuyqUO+T5J01ltHLjzPsZBXpY+xO4++txgzfrK5z7m7BeUeT3iPp4iSjNkuds+71vVETfj1D6aRGrsvzPPPqDvcdXMGsc+947Me0T2wD5cL6fIKbG4PnDi7GPK0bE+hPlnCGWAqT7kJBRf+BeiPhq8iC2hdZk+/5TDIRvDkT6LKjSl3ZOIPux3wPf83IA+JoummCLzdj7GS4/HHfpuPlp6rCxNvGQ+6q2iRvqIWz5iO0StgCJSPugzZN8uskc+j98I2GG3Pj7Ul44xQcAzPuw/xZKGMyk+iutQaPPnHz5ObmgL4woUPvbOVJWT/Qg+WMpa5ETu/j3SEDWzdAHzPQYriJNWM+c9QP0FEb4m3D3S0q2L8P7QPXOz5YKzdcQ9VMujcKqhuD19//hTws6tPYTYL1zRRqI9rDtnuNb8lj2XY76wsCKOPTLY89Lg9IQ9TBLJkHNafz2304l61VJ5Pds+3eDP53U9bEpR7mT7cz3wJsVPaehyPaqKGK6iUHI92tnShr4Acj36BYtNAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYAAAAAAAAAA=eF5jYBgeoGWRRtbzx8r2z4Tvbbv0Xste/Gcx0xV5bftDi2/dF1bUtp+adqHDAkjPWh2TGgOkLYwz9lUB6ehvrl7TgHSU5q0v64H0Hfv5pgeBtJbZs9Ijo/SIpwE1auckAQAAAAAAAAAAgAAAAAAAACADAAAAAAAA7wAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2GneuTOSoEbU/U37yQNdZEfvIL2W3e7lE7flOvDXauFjUfs0e60t5laL2B2MVbL/yitrvme5h9e+EqD3XvCC1M+qi9nKc143CJ4naq0zv6I7kEbPfFSzR6skvap/AePva1Tei9ks6ffecPPLNbvfe6zfv19y2HaVHaWrQALkY9Uk=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAArgAAAAAAAAA=eF5jYBgFgwk08n3dLdGqbl8hF9zx0FHBPkvo1+xXP7XsF63M7jEM1bL/7lFc/FBB255bIzLRTELb3vy4SziPora9VvFmcQYg7Xz70xxDIK3hz71RBUhf+lgRGwykr6k+dPEE0nFzp68sAdJtr89WZQLp5HWhXf1Aeu6bWQ5tQFovrv31CiD9/P/t5PlA+jtzWuI+IK2o4S65DWSP2bPSI6P0KD1Kj9JAGgB9zcfIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAuQAAAAAAAAA=eF5jYBgFAwmkGnMcToSx2MP4WpUezef7Nex3nbg1/8l9JfsLmQ9WCrJq289+WD85Y5GW/XeP4uKHCtr2kZsU2g5La9ubH3cJ51HUttcq3izOAKSdb3+aYwikNfy5N6oA6UsfK2KDgfQ11YcunkA6bu70lSVAuu312apMIJ28LrSrH0jPfTPLoQ1I68W1v14BpJ//v508H0h/Z05L3AekFTXcJbeB7DF7VnpklB6lR+lRGkgDAI6zzZc=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA0QEAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3dWz6IapwQtp8UKOeo91DY/nag3atDcSL2fLM0lJhkReztd4SJJYWK2K+wt10UFiViP0/qiMj0PBH7P7Xz5ATPiNjf1U3avfyEiL3Pm2kzjK1E7SfseNa7gVPUvnkTf/+jWlH7qvhAzo4YUfsGgwWqO0NE7fk8DrNLvROxl7vP510ONHf20ckm69VE7bM6Q2wPxInaM/z6/6AHqC+597Kt82NR+9oe+yBtoPjc6ph/tu0i9nvn/F/6K0zUvlUzOjGhQdReac1WbdZNovbGBjadv4XE7I94PP2h91/EXvQn92y9IyL2/3hDXLRXitq3HMzf+e2TqP36eP17x46J2k9Z3ZjKni9qv+V+2LzVqaL2pzcya79OFrWfdMMyIOCuqP2deTcdXxqJ2U88+nk7L/9TO0/R0G3Rpoz2u/dev3m/5rZtW/aFi9nsO+1g/FF6lB6lR+mBpgGaKOL6AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA0QEAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3dWz6IapwQtp8UKOeo91DY/nag3atDcSL2fLM0lJhkReztd4SJJYWK2K+wt10UFiViP0/qiMj0PBH7P7Xz5ATPiNjf1U3avfyEiL3Pm2kzjK1E7SfseNa7gVPUvnkTf/+jWlH7qvhAzo4YUfsGgwWqO0NE7fk8DrNLvROxl7vP510ONHf20ckm69VE7bM6Q2wPxInaM/z6/6AHqC+597Kt82NR+9oe+yBtoPjc6ph/tu0i9nvn/F/6K0zUvlUzOjGhQdReac1WbdZNovbGBjadv4XE7I94PP2h91/EXvQn92y9IyL2/3hDXLRXitq3HMzf+e2TqP36eP17x46J2k9Z3ZjKni9qv+V+2LzVqaL2pzcya79OFrXP2NxgZnBN0P7OvJuOL43E7LvjqivvT75jd31ZxfXYRz/tdu+9fvN+zW1bsUPnpOc7L4PzR+lRepQepQeaBgDx2eVsAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA1QUAAAAAAAA=eF4NU3lcjWkU1rTabsuNqZTOd6+b0jZoMdbT8GtFy+iXROMSpqaIQstIiyKSkkrZM9JkqW7XJaU+ayoSCrfLbZPSKqUkjTl/Pb/nOc/3nPOe9/0ut8n2pp/isHNXWbkn7Oaw9t1jk2/KOOy1PfYuiSIOe1bENZ/ios5GrNofWr/YCG149jEmI+psS1xyaHuSOjsk3+U1skuDHcyI7fGeo8Gm7iuUHhEJsH4sdfaeRAEuSA4y3GQpwIGdor9LXDTZXyzUlDet0WLTDl2UxQ1qsqljg8YfHwEmtEY7RPnNwpSIzvcbvvFxFpcnqVvOZZP9U0aOt/PRftpPbXNquGy93DDuRQwfq1dLzjdrzcLYVS3bu7t4yDUVbIhdy2XnfjoszF2mzXqHJ6XpDvFQ534Ahkp56KwvLP3cNxNdM32sA3x4GBzkVRN/XYs1Vs9451HGZeNdHyhWKPBQY75xH0edh6/7F69rNuDhPMEpXtgZDrtbxh6Y+isPu7ISnwXGM+jSue9ekJkWm9qh5OS2lUG+6VZhWD3gpEuBrmsMGfzB2rdopxrgt8e+YOzM4IcVmsyOSC12i8FSedcdwMHhHt16X0BT8QWH/F7aX5zuUu1iwLZPiYM/1wGW2Kru2pgO+PaBkn3eQcAb5/iOoS8B/7o53p5RCGi+t+FCLfliJZu0NK4APsrUvwHVgPuFA0kW5PfR4eReJH6N35k7tRzwlsf5mNLbgD3ClmyzIsCC2KGvo3cB3R6b7C+nPHnWkJN1LaBjtP9o1SVA7tcvistSABeLtyQfprnKRi28pNsAv0SKAhSuAUrU3rRWJACa5W6ev/4soKB9uDzwJqA/m5alFAXYYFGYsCQL8LJl2xmOBPC3c2/ulNMc53u9ZWZ5gHOOXR9ypfM9Kqi5tKsA8LRMbLRCBJhdVb/zyAPAcwpqGom3AEHJ43hzJaDlgIqkoQJQ1uMQuuQZYHehW3jXQ8qRtFjOK6N68skTKeSPzv8xmFkCWF9f2fL8Fe2vwr3JVgoYZJOZnlIDGFBQ1NtF+5p9vfTfeMppaovsFlYB3uG3uoXQ+VU6DglimgANftTcb3wDGJ8Ss6JKBljn3iM+SfM3H2rdlsFSv9K8PTnkM5qkEiHKBeycbn1jL83DWyieIqf3LD2TM72G+u5b91TIaQSsCDaxOtsKaP9RzcaI5iqf+7SYkQP66T1/fPkd4EKVmuAwynvyetW9RW10v1FmV7zofhssOyM8qC411P5u2QEo9stcYPEe0MnpGD+avpc6iBwTegH/GMrodKK6Ql94UFILYHHq+njlTnofbmrp7qQfrbXrlFL/tGHP/VbED8vejpV10f5cQ4ovEBqpRjm/aAe86aG33Y/yXW0DfZTJn1OQZV3YDTi+fqO4sQdwwnz5Vc9mwLiXujHdfYC781uWc4YAl9/9HJxCuZLKdcIL5JMcjH4g/wTotXOTat0AoP75tU/ekk9v9UvzRYTVU6MDw/oBZyRn/3f3M2C+Z//KEtIL+tLHBMOASWn+WTtGAStXGOdu/gaoY/5nf9532ue0Ot2qEcBWQ23/SNJzt9MfQrrl5tSjtuRffuoKN4/0Z0VXl6qO0714nM4JJ5wWFDx1mOrpY+sm5hOPeW1t6veD9n2y+p83xFmFBTiH8Mm08VkbKM9W2z2xmfi8jRpfhhQYfG5x0fnGBAZf6fd+rlVisINvckaT+H9doTxUZNBoifK1SGUGS2fqXPYilFTJkUO+KFPOqT5CX4mQr0E+H6sXBqEqDA4Md7TLST8ZLHAcISwI+B5yS5VBO7vGwGNU37hS6q5JXDYjW/EOoV5mn4074cwZMsNtExlcqeN9VKjGoKU4O6eM9BOeZu+OEz902/pSP6FiSNH0EPIdCPNt/E5okukGDoTmy36vmjCJQTVZU6WYfAbe4wdcJjOoq+5i0UC6jvTVTnXiR+wKOBMIxdh00GIKgx89v+o/Ja4pqnj4gbjZO9PdRwj/BwKjxDg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA4AIAAAAAAAA=eF4l031Qy3EcB3CbVZLFpiftt/1+unVCSunEun0/J1cIkce1HF0JXYXmskzLw7DhMEcc3XU1PVx2Hnaeql2Xo4tILLSHKLpqnnpwUuki39+vv173vs+f7/fHXGu1d+S1SV+67hsMIykgUlgbj+mjUfi3mvzZJ+UoOHXP6nPLM9Fo/Q7BqFaF/I80/NCJtGjW5n4ZP/AScp7tDEo6UYQc91Qe/KsVKIZsylA1mJCz7GerZ0QN+jR3pJ398wk6z8lwc3x5gXjSrwtj37SgKNfLSNxrRwkBNpclxZ9RucPtdpbRiYhAzS9OZj8KvjN1PM8wiP589dLGt46iIBDfvhLHAuXD3Ad1AldInDNU/n7yNHAvqVt4yMiDT1vmF9ys84as02V+oWkEvNbd81vgEEBobPYRFyUBkluru+1GAtgVM863uwrBJ332x1dbhXDir9qZWimEUEuVZO+wEATdHVc+LBPBo5SiHqNWBAMJ4o41z0Vgfu6tXjWZhEK3qrHtS0gwKjQXc3aTkN3l87RIT8L8Xd0D0++TgDy/JBAtJMxEe0Uh30kojUy8UDdOQuMC9ZR5UyigjpZzqj0pyDJuMDfPpOB7deqLSl8KOJuuNmv8KRgyR6zXExTEsy6GjQkpEKDCc70iCnbY1w1ocD8p0mSLDZvcK5BMoihIcwYdd8fG3Q3h07mxqZj8ge/p+hbZW2xSyPS8auyyYzutxdj4G56mM1gdj3VdiVUdZt3ajU31gFo5FqIyleux76oic1difWPuy6Oxa+Icj6XY/sqerRLs0pxheyS2raCPuxi7QiFviMC+MXR3LMIGJ5YCbWeBwhKOjXDmn6Lt4XM30ZaaFeG0YtMqgvaxl4VLSwTkcGjfuhz8R++x8VLFKK3NED1Cyy+pH6K15Nt+07L7VjDKeAPMfv1DzYzPrhUydjl0jFarmpG7T8moe3SAkW3IZtyybT9jrmniD2TxE64lJ/wPbco/bw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA+QIAAAAAAAA=eF4l01swlHEYx/GEpE2DmhiK/661vGKj2mzk/5RqsyMmUQ4dZsoph6KMiqS2pmRmZzIstYOhGeVMF6Ra61DpoAlFrPMuNmkNMpJszfa+b1efm9/d831k8r7+0bRBL9P8hAU3WwSaXrenx/QP4xJFmbx7OQpHxNe88c2+gsdNHjl12mfg9qOV1nF7JThxOSNSPViMtySxOCbGlTiw+oJ4L6Mei2TepZrFZrwoIpBZ21scKVl53yXsE/Ysib1erlHg2AMeB2MeqrBk05ifc8E3PJfQbtSzOIczraIE5ra/sJmh9toIV4eNL0Zs7flsAGXDNq8/ZjEgtaH+hZGFORClObNKiQXkJvuu16TagLrVocmmxg6ENa657rWOkNPrlyRucwV2YHfZOdZWsAyRnZ2N4cKSp5ZnHO0Cabfn+Z5XnUHzVsDqurMFbg6sztic6wRBXXrCY48J4DZG5KXLHeEdo2tn0ZADlDvM8J8ZOoBhWIUowYMDToQm3SrNHry5K6LrPrBBztpVOUKwocD0bPh4nh2Uh944JTO3g8Zq1/KNhSxojWv4G8VjQfb7pmDNABNs5V+0MjETcpYZAb1CJigz/Fc5mjHBRxRpLVUhWON+7faGFwia45HgnhTBaHjdpMl1BNJgUWxZDHmf00daxCEItBXhK1f4Iljb8jL31B4EOn11sjUfAa+wYajJDcHv03VXJ5wR5BWKknYRCFTEftdUDoKgeZVPIhtBjrD28hwLwXlLpUzBRBBoN1e1jrTkrqNBOkKg/i4+YUHKVVRyOskuQiN0HwpIp/LT/6SQ/ph+gM6Q8huUUwGks5f0/wpIr2TxnwApKv3R70E6BF5V7tROMS3lkZ7ssd23g3TeMyh6O+lX68zBbaSZz4/eojwuQYco//T2EZReVs82ULav6jCibAte0lGdipf2aCkXshOWKG8Mv1qkTNn+7iflDJtHazU9SnftP1ZDy53Mpu34dZN2WZdC66SXTFu8+yItUZtIWzTx/y/+AQLkUTE=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/6pySdlU+cj1EVdsnMGJgP6aEC5P4YWA/1kvnOphhYD/l7/fv+WBgP+C8tz0AYGA/HPyoKoNeYD/HQ6OzTVxgP7ZgThkbWWA/e9t7I5RUYD9kQp6LTE5gP3TWpszARWA/VrZ1oVQ6YD9dsNyBUitgP27vD2/sF2A/sCoas3z+Xz+0Y6y1pMBfP+LN58hNdF8/mU9nyG0XXz8p+KpqB6heP9DGexRBJF4/RvfdnH2KXT8TFXKxddlcPyZBwlJQEFw/JUR+sbguWz8wKdH87zRaP05gV3PYI1k//e2Z9/v8Vz+uVRWNh8JWP4hjCgtBd1U/ylmPIXQeVD8UQE2f2LtSP6lUAQVzU1E/Zmg9geLSTz8hAXcgCwRNP/fx+2CDQko/3s0Uz+iVRz+eHniJFgVFP6FFjCP0lUI/eYHJ+1FNQD8txDwrqF08P7Rr3ATXeTg/fPK+67rxND84VECyrMUxP1he2G8a6C0/BqlaoBrzKD8Ztnjv/KIkP55hVCBO7CA/ui1jflWEGz/2iDNstS0WP7LMrMa4uBE/kxQdamwTDD+us6mTOwwGP3inzzYUKgE/UHMDn5N++j4HrFJ2jUX0Pi/2y7L8wO4+8LuAi6wg5z4qwemGUT7hPq1S1Rknftk+UttS2gev0j6SaemDbCfLPr+LdzurkMM+aCHT2t30uz7Bf+ZSQ86zPp7CqiTy06s+7R6MfQ9joz4zu8XK8smaPun8igoSW5I+AqhqAcPyiD7iziDP29CAPr2APoIPfHY+tLSh003SbT6bIZ/PDJ5jPvDoC9KDmlk+Gaw9jFqTUD4ptjj46UpFPm5QbiFHIzs+ta1RE80oMT5hWpZyZIglPsJN1zGh0Bo+lf5uczCSED73/eizkVQEPoOF0ZWyw/g9iAUU0fH17T3aeYqWuQLiPZaqev3widU9Sl9j9EOpyT3yaA+LkYm+PU07DWyTOrI9C6JFnkX9pT37XXiRQBmbPXTCk80bU5E9Mk74YuVphz3jZ/hIugCBPYV+oO8wvno9IlFwu6Wodj2itm3JMGF0PXSirLdeH3M91Tz1/xF2cj3R43pcAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA9QIAAAAAAAA=eF4l038s1HEcx3FyfpzI7y3R9cOKVKjLOHp/WEuhsEppUn4WOa2Gk2i3mGquhRbiXPmR05kuP+dn9GMrm9vk18ny6/u9H46L5UcoP/t+v/312F5/P1/e1e/5899TUIsoszBXgcFan/jh2B4uKi1Uq9MbU1Aj7bftm/q7aJHHTNA+mYD6C5oST+6+hQ6b5TPsyqJQjCRBmeEVgpYVZexZpwuo6Fm4lgfTFym//rTct+MEqvSzDZBFsBBm9Hbex/wo0rB0yxPZ2iPTdMYptbMNGpEn+usJrZGjxfJTwyoL5Jt3+Qyv2Bg9umjW8+kHHenEi1DWNRqilbtzbntoIBrXQSx3XYHIgLbe5uuLUFnszbkqnAM9/a4Kv6oZECZbxyoMJkFneqMehU7CA4upd9IWFdAPM6sXwlVQsqUix396AlYHmXHl9yfgkbVMGrJ1AvjV4WuzRUpITnAZkjgogSUQJhl+UcBx9jHt9FAFpEr6sxUbcvj8wrWz67UcTF5Zx1b6y8FsYN62f1MG7I4js/eaZGAYbMCp4cjAwPJxVJwbsc+HMzK1ZZBz0Gu0axCHZnoASybGYUPcp77Nw8HFhlOjF4fDqZARFus8DjsEoUuZx3FoiE+tSLfHQeI5lS22wuGt1NyVb4QDlivJHtfGgduiyNi5gYER6K6sL2PQdIPn6LyAQbvVgdq0XxjoJpbiVdMYOC2e9nioxuCslJuqmsTA5UNvar0KgwG77UE9ExisFwSG2BN6mhYcqlNiUDcaNnOFcDwZy2MQ+uSeD1ogujC+tMaQEt7p5jh+JBwSRXfXEg5rNGiJCFfH9kaXEnYmYX8FhC+W2HQ+4RJ9zrKAcFtO8GA+YcpmB40UDZtw8wjrI9ztSM+xF+fI/rx3qb+R1pq3tpK2ScrFpNuelwhJmXMfS0g39/e8JH0QYyggvRmvWUSqjovkk44M6VBWm/dSXetr1lEGupdQtu/Kp8yKyaFMs3tK6RX9hDIskEfp+ef/L/4BHueo7Q==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/bu1d0mvmcT1eNR5vKWJQP9kwTijlYVA/bhmyhG5hUD99w7X0qmBQP93SHTN1X1A/uzZJHJpdUD9zw9P61FpQP9TRhFDLVlA/GbuILAhRUD/3bH4q90hQP3nOTT/fPVA/tM+uf90uUD9yJVsM4BpQP6zoFE6hAFA/DoCDE0e9Tz/KyE71WWZPPyiPJ/+G+E4/0VS5f1RvTj87w3sRrcVNPyjj95MJ9kw/zZ3Gg535Sz+DyPuwVcpKP2p7Ms83Wkk/xltpI+C6Rz99dsSpz15FP+T26q6C1kQ/PV5mz2DxQz/eLc59QP5CP82HvQ9O+UE/TS6H1bnnQD+UcVV2e5c/P9pbQnWWUT0/TDueXJoEOz8tmmt/prc4P2st6Xy6cTY/eqkPboM5ND9F+bAJIRUyPwPe51T3CTA/VALWrhQ5LD/nMDfBzKAoP8iUQdApUCU/Jf+5UjtKIj/NDVz6SiAfP6dvTtOXQho/+Kv9sxT3FT/qQQ/G7TYSPznlHVWj8g0/XmlXTwBoCD9iMEmbpLcDPxOvX/HYlP8+aHXkoWkS+T4oAbvKF7vzPnkOzI/pyO4+2NXnK5fO5z5QiyJOPEDiPh8/8F6Qvds+AKWkC1Xm1D4dr3SbWjjPPrprYoMpHsc+8HSi6LH4wD6KLcMmobS4Pnb58fA81LE+4eZvFdCDqT77/TG7VBqiPqBBvd7aeJk+eFXYBUnFkT4a3OxRx5aIPi0Iotvp3oA+mc5dDaf1dj7ssfIcX/1uPlcfTfZhvmQ+Gnec35uLWz6frSueJSRSPnuGfNc2tEc+vmK7dty5Pj6pj6Kzv8EzPh6kBMpNNSk+uUq96wnqHz7CyZlvGAwUPmHvKl30/gg+y0pVl9Dv/j1PD56hTgLzPcrjZMNBNOc9kbgG6bUn3D3+b99xb//QPZWn+9IwdsQ9yCoCPiCiuD07WZw1Kc+tPdULl9j4RqI9tth68ez8lj2+dq6HryKOPV4mKBrR9IQ9c6RB5VBafz0jXRWduFJ5PT0s75e653U913BKTFb7cz2k3620X+hyPUU0coycUHI9KWH9i7oAcj1Rsn+tAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAXwAAAAAAAAA=eF5jYBgeoEZMRan2sbI92z0jkb7lWvaNFmmvumW07Q1ka8zZFLXtzUT/q2kD6SvcuoF+QLroiJFQPpBu8K142gWkudZvVF8CpHmmhdnuAtJaZs9Kj4zSI54GAMSC3uE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAA+AAAAAAAAAA=eF7TcTB8tHUBt31Ti9/DlGYe+1MJISdT8gXsVcQ8bt1VE7SPXHnD9GC3kP2JnrnPjL4J2T86GRq61l/Y/k1Wu/bqK8L2X0qN2x7Zith/+e0ZcydcxN7XZ6NkyFwRe5HePytzGUXtu0yr+046i9r/PV4xfUGEqP004cyVJxaK2Depf9mx3UnUftPhTP6MDaL2vCx+K7Z8ErFXTF7bvDZb1F7rXUVUwyNR+zcLfpxc91DE/uDzh/8EzonaL2q9ofh8lqj9AY+1KadTRO237+Y8KcMhZr+WLUhFvvKb3dNL/kdvsq+02733+s37NbdtR+lRmhIaABik+es=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_210_t_21000.000000.vtu
index 4adf220c71edc3c9594de70cd547dc2500c7bc5b..b7d3d9c5b8864127907df390c745b1159676d071 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_210_t_21000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_210_t_21000.000000.vtu
@@ -3,39 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.4876994077e-05"     offset="172"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="972"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-4.8350439509"        RangeMax="11.365563808"         offset="1064"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3104"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3176"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="180"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.4681975261e-05"     offset="356"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.4681975261e-05"     offset="1152"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1936"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-4.9316956675"        RangeMax="11.235509617"         offset="2020"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4072"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4144"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4216"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4288"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0001781654e-10"     RangeMax="0.00012300768477"     offset="3248"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00026074630232"     offset="4324"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414898153e-10"     RangeMax="0.002"                offset="5432"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291197201e-10"     RangeMax="1.1337911903e-07"     offset="6568"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.8985512166e-11"     RangeMax="0.001"                offset="7672"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8808"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9312"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00012300846745"     offset="4360"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025994348093"     offset="5436"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414898126e-10"     RangeMax="0.002"                offset="6540"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291197201e-10"     RangeMax="1.161189965e-07"      offset="7676"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.8996435187e-11"     RangeMax="0.001"                offset="8772"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9908"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="10184"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="10388"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.4118931391e-05"     offset="10516"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10956"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="11020"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="11260"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.4044224659e-05"     offset="11388"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11828"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="11892"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11512"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="12108"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12440"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12740"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13052"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="13036"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="13336"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13648"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAYAAAAAAAAAA=eF5jYBgFwxnUt9i/yFkmbg/jS3y9PGVSnKb9Q4PDS6t3qtqv3p2vLSugbf85JUL63WMt+5pV39m2KGrb/ztVEVAvr22vZfas9AiQ3+cZ8XWvIoI/So/So/QoDQCUzaqeAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAANgIAAAAAAAA=eF7tzvlL03Ecx/EC07nqO+f3814MPLbsoMOiTJxkvgIJ6RBJNMpjDI+RqWWYMc1KtEQr8yiXKB1o2qGRYiRrLTMTxEgQCzfUtIZHFmoeueGx+qlf+wf204Pnb8/GycgGi68zrCqrcZeQQ7R1lfihUoixnGE99XMoY9oOw1MXeB3dpFnKcEFcbqFyzWcxCouWe2a0LvAouRQ7F8Fj69h3c4TcFeC6RB3trhh+4xFaO+4Kv/TtkxTAQ3osVTuQxeP1e6tsWzND2vpPMmELD5NXdHV6L4NQ7x2c+YxHTPTufOk9hiin8JaSQR5cSuWKwwqGxBc+T94lMFw1hw3FNjDcVwbLHT0JX8YOJhXZGFT5yn6+gLCAlT/Newjhmsd+3m2E6ZeDwXIHQo2iyX9WyyBr8Har+cVQqnhbcd6L8PzWucTWJMLpRfXigz7CKfcSXXEeYSJqZPxIMuHaBcHaPAHBAkVKPE/IaazaMlpBmLs4cYjmCQ5G+QHNCYIoPtdJ9ptBmrkjqiCDsKH8snBjHSFVFX+myUgwfax/ZIMEN90Txuv/fo8WfPAcWWbIm+2sZp0Ef+6H8x2RBJZu9VDccUKjj24dv8DQ3VX7LaidcPar2iC1Eeb3ntxfOUmYWfIIDblCCBCv9t18nbAcLjGpbxOcuDJLk5sEoXcHsm8sEZodW+uaWwUoDTJMxQQR0hxCIl9N9wSGVRmTi3VTgXpDr2kwq29fQJtAqtqZ/a/t2rVr93/+AVdZzwE=AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA2QUAAAAAAAA=eF4VUns41GkUtrlvDIYutGO+nzGu6aZUtjhSIWXpkUoelNRGYaNHoTK2WpdURrWYcpkRz0gKsST1W3Rxl2u551YpjZBb0Z79633O+d73Pe/3ne+yunh1+nkG/dTJkc97pky/MxjvVo5k0Mdl3LyneAz6c6FB4GEzPejbPGZiXKIH6WZ35cMO6sHpale96kwGPasbUHZhgkGrxjWH6x/Qg8IcY1Pb91y4LeEf6Kui4MzsyZM0Qw9STAQREl89+FE1ckdYx4VSjQR/724urKko+wHJqnT1Lz3gHcwF3vSDT0kaarT5xiJ2YyoXrEnp4f50Nbq+907Sn3vUaM3lu8UsoS5c2ROkwbbnglB48YKChy6AhtP1upNM+vmZg0psF3W6YdD1+YyJLrSN91o08TlQe3owdpTmgMa8kfayLA4kXKmPu3KJA36svdrmTA78tXYmipfHgSQGU0YkJUcX1QTJOFiibnXDaLkxk9bq3qHt1a8D+4LVeQq9OnBO6VZoZ4kO5PqIP/4bRYG6qKNliRuTZlKSskV71envi1fJejrowGyEcjebrQPJrSuPhI8w6bboJwHGlymQ/qQ7WzFHwXylV9xGdSYN7malx0x0oHiponGLGwVvL5z1ULNSpQ+snNQO8qUgOoNfIqApcDZtnDUOoeDDvemOaHsKqnpbLvoJmfSve7SHS/wwR8aGuWdmFNCC8oct0wTEpytgPIaAxgqq6p97BJifNKm1VQRy0zY9twkhYG97u3FJLYGrcZJpkQwF2QcdIkvuEsjJN9hwfSnmoyw877YTGBKFxaxrIlA/3Hk1oZFA9R19u1svCKQ4RNf6thK459ru0lBBQKChPfitj0Dw6yyHR80Ebhm5tDsXE5AqYD04UULAThCU79hGIL/5hYCLuYS/WzbHviXgVptpGlJIwJkzUK70EvnnDIudMG/9XWI1UU9gt3usjxL61ZzPGXqKPicePb6mLyTwrtwibHslgQyh0YhcEYH2YCnL7QUEGtrKrFsR4wLfj8qjr06ZmsCslMBwqJaJoINAmHn8kfPodzh0vesfeL+ZXio64A2B+Ci5lEnMy/OcyVZoIODoXcu6gn0OCdPf8YpAUdPrMo9EAh+UawVrOglccs3byWohsKAyUjwhIpAddTCAriPw4nh4qDzeo1WoeOAx6q0u8boqMKcp5fRRFef6G75sE+MeOrysxZo4nyfx2J88gu9TsEdGBTFH9Er8Bud9ZnGTlncR2Gonti1+RyDPZvnuxZj/jF29exbO7VFP8x9+T8ByyjGOg3uITVgVoThKYHOe57dTqO+KD8hioC422uPY5CCBskX7Mm16CCTapXUc+khgfNVXKyfUDcWkp7qgbqzy6A4e8vtl+dLyyLMRJZMkCQHb7XO+lv/PLVydvX6CQOUG8/5d2P/SFBPePEYgIL9sWQXuHSKbcnyGEA0SzjejvzG9bcwCfScTA62dhwnob72eovkV962wva0d+84n0l4bot+0M7d0C/7XGpNRTYdJAulPffr85wl428QHnv1OoMoqXroP+U1Si+Tu4znfedrceA732dq4qBjP5+YyMx4iqk7Fm8nNEIgQFFa/nCXwPXK/Uhiii1eNcBPyQf5ynCviRWWvswz87zmjPFazNAVT0t37gqQouDZ0SUoVfT6olKa6YB2RLKO1aQEFx25scw/8iQKmSNS6ToGC/uPWc+qoa503tN8lS8GpFVazM+hnUejIjsVajb8sxAn5GeXjiVFyFDywGtD89IPA2/286ENYfxxP6ndHXmehrMQG64XKvjdE8hTw3uzkdaM/L/joSd2fKWA3hvP/RqzItHm3lEHBMy/LR44qiAPXWI+Q/zo3O6FVmYKCLwPa+og3QcvJBvkthfs7VypR0Jb725QZ9hVluyovoN5DR57ds5CCGtamZGusY/wiu3qRtzKtNDYBse7m/Q2LkX9Os0jyBOtRNj9dokoBA76rZGN/PvX4Fi7OV5ntN/qB+B8rMr+bAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABAMAAAAAAAA=eF4d030s1HEcB3DplLhdyRLu7vf7UkLdxN2RPHw/lKLTw210lUo6j4kT5ip07liXWJnmQlPdVB4qlHFp0yMTq1VITUxtraerRE+n0dX311+vfbb33n+9P0tcXR4j1UiweJPdLx8aQcKVgemUdi6O0WU0ioQirF3YLgzZHYY9F93UFwuisE1Yn3DZQBx2GckPakVpWP/ayYZuUWKz+lbDSI8GX16sbVOJS/HyinRFYWIF9iz7gwptzuExLeZ86L6ENZya5PjFLTgrIGu09X075vmkDvXn3cbejxwcVpm6sUr14+ek9hEW+LjxLP0GMR48drdLP4yfrTa4/p14jfvkZS9Gfd/hdTERxuY3n3E33VaeV/cNrxXrzTuNJixMOdejPmTG0W+vOlKS2bA5R51lG2YNBrXsfGYSB5ZL3djzQu2hfr9Ec9/CEQwOmkH8lAvvLZ3idde4cFJqZ0wY58JLmtNfvZIHczI2shIO8oCiI2Jn7vCgLm/7vSZrPpzKjbbulfKBpWP56yr5cKa3hhU3yofYxoDDaooCL5EgM343BcLADUUnqyhwP/0d1T6hwDdcoYmxpOGTZk5+mTcN25/Xy0UxNCg3Jv6WFtDAztvVZq2nwZjan36ik4bOP4Y+NESD2Kszd76RBsFoRlXTNA0lU0WVnlYIkszJFQJbBAc6vkXZLkAwGden+GqPYK73x+t/HRC8HDeW7HFC4FZAt3hxEbh3l/0q5iFg38yVa/kIQuJD1wdSCOQtN453ENmRe2dsyQ4mjzq2hhAfFw3I9xDThgp7FcQSicKUzdxB2c1ZRGft8Nl0olbJvZhEnOjosmDysh1TR7YRZ3lUl0uJ1DargxJiV37DmnVElSx1gukPzLFSBBOVJkFtAJM7HJ7pT1zhvPeuH3EwaljpS3zo7FMgJvrdDn8gInKyg0MYiwxLx4TEIGVNJWOuJDGR0eL6dCijLCDYk9Gj1NmRUTAjYzPq0FYW40zOFzOz+/uRW6YZm/Z9nGJ89WWHifFCW/L/v/gH7BM4Qw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHAMAAAAAAAA=eF4V0n9Qy3Ecx/GpVRiJFNKPz3ertbSiLP2gzzuUy5Lb/OyKflkz5JySLjdT6dCRftCPaXVdoqYS65ei0FUikcyVxeTqzm9XtOVW5Pv963Gv598vy+bBtx+kw/4NJbq/Hg4IxCkRJbeGnHGFlagyVh2Ap5r741cYhDj7Uqg0kRaDt7e5XC6dPIq1ytKmZc4pOORRgbQ2JgPH+yhi35nn4IOTi0qgpQgnGN/9PltVjh3y1WJ+XTVevDKGY+XbgLN7Mgs1zDZ87sntx54tndiGrgvsYvbhoNYTe3I2qXGRLa/s8NgwzhPkFo3QR/FdnN8U3/gFD428tjixfgIrVRZ97t/12HX41MmkoH9YZvT11Q6NMYyla5JlI/OAx3Wr8+i0gJo5HTMv5VZAb/cLbFGuhNyej1H3qglI6Apb5tfHBoYuqkuczYVFgm2DRdYeMDMlCj7uvQaydjJKHypWg1plp0nqd4evzdXnHGbdQJur1Qk4bvAjrox1djsX7rvTFnckusKDQPaBb/JVYJ3wavxFhwtci/zY7zrOgZPWTmEVLA7silYfqY90hm6z0biKcjaYvqOtzhp3gm7vXgl/qxMY8iorT9c6wv5iyztZdo7QdLQzt0rOgrHYYtETggUmAaMR9Y1M2HHdZ5ixmwkMG75X6CwB3BhZ+2A9AfTI16P64wRI+PrZTz4EzBXeaxgxI2CDUaZiqRaB4M9Fr9ZWBA9rhDrzEgTtT5NTwzPI3mZgTBxD0EBL1vOiEIi639cWChH4nfI1yLcguK3w6en1RyAxz7ncuw6Bm42nJMgDgfoZb3qCi2BuVdTGfBcEhsyFgX/ZCA4TFW9pTghsf54/JmMhSO8P/xzORLBJVnwllUAQ/OzQRi1C0F0VnigmtdUMKs1J79xKe/6C/F1YUkR1GSl/AbvgDGm0gG0mIUURBZF7SfWT7JoQ0uyJVRmbqS0K1fqT2ttPTfuSpnQO7PImnX/V7oIXqeqXSsgjNan7nbaW6nlDU56kdOkNBeU+k4FoyiXKN76U0l9yRGm3R2xBqbrGMaW8KVxOo/wPBcVTrg==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Cyt8dJNYmA/NFz0QdWg3D0hHdC2SGJgP4J7VhY/YmA/nHL8Py5iYD9cW+1BEmJgPwzcRHXlYWA/HZBl6p9hYD9G4FayNmFgP8REBAKbYGA/+lHFLblfYD9bbeN9d15gPwAK5d+0XGA/iPFAfEdaYD9UDKY8+1ZgPwyeA1SQUmA/wkSw3rlMYD9oe/a1HEVgP9zzfZZOO2A/XBzYu9UuYD9ltV4UKR9gP4Dg/C6xC2A/Xuz7/5PnXz8wpakki61fP5x0/l/fZ18/4q35/CQVXz8aWNT497NeP3xZMngIQ14/QJaFSyjBXT+uIHv4WC1dP3x0AqbZhlw/h4CPHTTNWz8K8ac5SABbPyiGcxdVIFo/0smxw/8tWT/ozApDVSpYP2o7R7jJFlc/D9w+NDP1VT+87FqWwMdUP5DJQb7skFM//M5/j25TUj/DTUh2JhJRP6g4g4MUoE8/rqvHfyAgTT9ikMseNapKP3MjOyrHQ0g/hoDw2NjxRT+4J30Q3LhDP6+vaBmbnEE/gJAj51BAPz8pmpUdrIs7P8ZouIpnHjg/1YW4Min6ND8YDo/QMx8yPwhZXDcOGS8/8McuJw+AKj8kuy2yVm0mP83PmUpT2SI/VrupZ6p2Hz+FhTCz1RMaPwgQwSxtdhU/35xZ1naKET+ILj7ne3gMPxI7lWZ/8QY/TCbkRQBcAj9mgkbGIC39Plrxc885Bfc+otkNIzQJ8j4ifSI3OxDsPvLDXVkYruU+jq1s86+h4D7Y0DDh31bZPm0Dz9ssK9M+GE6B8LvMzD5a7gHxI3zFPnZYMl+T1b8+kvjRc/xrtz6KqqIAKh2xPnmS18mX1qg+slDtnLzmoT4RQ5e3t6CZPuKNSOhYOJI+zis+zGe7iT59P/rdVAyCPhdJIkbRJXk++ASUzCdncT5YEMnuKu1nPrin4BCzVmA+PELLkdEqVj5AeB5Rs+BNPvhZahLsAEQ+wrB52IqcOj56C+lPPJYxPjyuSGGxGCc+oDMTTrIjHj6CfBFgp4oTPlRusZA+Lwk+SXkSyiMiAD7KjDEX2JL0PUL/Q5TgR+o9QGqTBchv4T0KOmKiAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwMAAAAAAAA=eF4V0n8w03Ecx3HjyFSO6bQrP6LIr8r8OD/q/VFXCpXUTbK5UoRz3UlWKLb87Ae5dKU6ZHWSw67Dhn7opHXnmnBH8qPW9zubTe0mu1WLRp/vX4+71x+vv55cfUgVJ4uPnAIyG+4qCXCLyprfEcxHlqZh3/cDhUgQZpL/sy1EdgG6+AjVFdTu5Hux2uMyepOhFMs6chHLIT/o8S0e4tz8HOylPY/2M4zkx+xMZLBKFI4PpiCf1uplzdckxDtld8hTxka9tDt0x7nD6KQ+Y/FlbSTys7QoZV6KwP+PxTXOIUh1bZ0reysLOW38VC/q8Uayo+khfgWb0QRTkGo35oxm+bIue/v1aLfpAc3GkoGSPy0MDWetQX1dpcefNFshUSXawA83R8TfgFXFdSaIbmt73RxlhH3d2aHvbQ2wmlEzXC34CfvjrUhj2w/IsB0R7W3SgKPWzCOhQQN/n5o/+xatAclI3Tb+vBpOSNOW9VVqqCTyIvf5qeH8r4f08IFZELJzbzSkzIJE52IRuaKC2MyCXmOtClInOMf44SoomND23JhWwuTz2JLXAiU4ng51bdyqBP0msrNndAYusPuLkkpnoH9S3jMdNgPEl85X5wwK4Cy8kvqLFZCecV0ZlK+Am7nS2Jy9CnCfvKodYygAtSu8A9UklPAaDYl9JKSVGr/RH5Hgmcs9vSjAe/8o88tZEvyNNo7cIyR0NQ/buO0iIW/Sl/vZl4S4y5IlLxcS/JQ5dlIGCa5e7/Zw6SQ4/Z7qa6Lhnyn+YuoSAX1De5Y4vwlI9FmpZOsJ0CcEMrfME9C0Vhj/REtAFc38q+g7ATUHzep95gjgiC0O0DQE7Hox3u2iJqBA/j0lZ5YA91PBg3oVAYsHZ5bvYK/TRR6HsCstPHcmtlxlCtPj7siOP7JxrHUya/07bJH6kbUE2xX51qEVW+5p49CINSvXbW/A2pZc/FCLlcSF8R5id5QZpu5jA2Pk0hpszGEWnXJnxZmKe1jdifoQytCyIDPKfNbgNNV7Hc9aSqnLE4opbyu7WyiL57IbKUflL4SU/wH3EqDVAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/P+t8dJNYlA/UswfExnuyj3652h3R2JQPw4Tink7YlA/aNAQdiZiUD/IdalvA2JQPxZY8zPLYVA/IqHek3NhUD91qDxn7mBQPwTgTlMoYFA/OYyMTAdfUD+MHs7MaF1QP7zzkbgfW1A/20QW8PFXUD/kV2mLlVNQP4xDDcOtTVA/1GH9iMdFUD9qtDLXVTtQP96XiritLVA/6n1MDgIcUD+W70cOXwVQP/KYrtVK0U8/cqWLFQqJTz96zHpK7i5PP5Zg1iJuv04/IECmBnA2Tj8KsFrYNY9NP+7Si2dwxEw/OhHm5THQSz8ExbUE0qhKP1wqkEqsO0k/NI8DxHKpRz/UefiuA+9FP3rDLSWvekU/roUbfpzERD90cowKK/xDPypJZFruJUM/CxM+hR5DQj9COdGHNVVBP1n22DwVXkA/crhcvsy/Pj9PubJ3/bk8PzYfVLuerzo/C++YMaelOD8qTAUL/6A2P8rJoIBdpjQ/jmi74ii6Mj9a7ui7WuAwPzDT7T3SOC4/d08QtWviKj/GojTnB8InP/clKt7m2iQ/uh/KPAYvIj86/41nX34fP572VGchFhs/3mtT27IiFz9gbm8Vwp8TP+Lcq/SZhxA/XH4kVOWmCz/w6uwMgvcGP7X3fYYC8QI/YlGug+sF/z7ykJSg7zn5PuTANCMqXvQ+2MjezDJU8D4WVkKVLv/pPtI+WgNajOQ+tu5+0oIg4D7wT2jitSLZPmR+eYZEc9M+BERQO9/jzT4CWD1sO87GPv0+BZVDR8E+nteluKH/uT5uwHsbbWyzPlhJ+RUq0qw+nunGivs7pT4Mw99qwRKfPiA8H5g4lJY+tj219EtLkD55vx4sQluHPvh2/JM4oIA+pNzsokmCdz4NNjqAJ4JwPgOaswxnB2c+ub/VDdToXz5fYqW3sfVVPjJEmogoBk4+WGJwV6NjRD6FsTjlpII7Pkgmb6UccDI+hvfnCe2NKD4Wm/VGnz4gPqpwshdoWxU+9rnpDN7mCz6K7+9yGR0CPlkILDHIYPc9t+OvnTMB7j1G8jemoCzjPTxyD4g4kdg9lEnqPuJc0D3FBGqSAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPwAAAAAAAAA=eF5jYBhZoL7F/kXOMnb7P5O8Zdl71O39BVIWs/7Sst9rtWP1TAVt+zv2800PKmrba5k9Kz0ySo94GgAIKdWCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAKQEAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2GneuTOSoEbU/U37yQNdZEfvIL2W3e7lE7flOvDXauFjUfs0e60t5laL2B2MVbL/yitrvme5h9e+EqD3XvCC1M+qi9nKc143CJ4naq0zv6I7kEbPfFSzR6skvap/AePva1Tei9leYBGp2a4raK95gu6D3SNT+65zD7l92itrLbhZgP94var86dKeNAq+Yffljv8cylwTs8x9nM9tve2pn8o9563mjArvde6/fvF9z23aUHqWRaQC2SuO/AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAZQAAAAAAAAA=eF5jYBgFwxnobn0x6VSLpD2M/yW0olRutab9ful5L+N01OxDUgtvvxPRts9cUpOq/UzLXi+u/fUKRW17pROlLksVtO2/M6cl7gPyFTXcJbcBaS2zZ6VHRulRepQepYE0AG7xp60=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAYwAAAAAAAAA=eF5jYBgFwxmwty0x/bJP3h7G375E5s1NDS375TbeQuxF6vbXm8vsHCS17Ru6tgRW/9Oy14trf71CUdu+UJ7xVhKQ/s6clrgPSCtquEtuA9JaZs9Kj4zSo/QoPUoDaQBLzqXFAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAMwIAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3dWz6IapwQtp8UKOeo91DY/nag3atDcSL2fLM0lJhkReztd4SJJYWK2K+wt10UFiViP0/qiMj0PBH7P7Xz5ATPiNjf1U3avfyEiL3Pm2kzjK1E7SfseNa7gVPUvnkTf/+jWlH7qvhAzo4YUfsGgwWqO0NE7fk8DrNLvROxl7vP510ONHf20ckm69VE7bM6Q2wPxInaM/z6/6AHqC+597Kt82NR+9oe+yBtoPjc6ph/tu0i9nvn/F/6K0zUvlUzOjGhQdReac1WbdZNovbGBjadv4XE7I94PP2h91/EXvQn92y9IyL2/3hDXLRXitq3HMzf+e2TqP36eP17x46J2k9Z3ZjKni9qv+V+2LzVqaL2pzcya79OFrWfdMMyIOCuqP2deTcdXxqJ2bNOWW7jbCpqLxDULLXpt4j9NL4bX75eF7UXjTyRPUNBzF439fvNNKC/Z1bP2cP4V8TeWVQ6Q/G+qD1L6p+A92pi9nNncE73nCNqb2b7VzjOWdSe41ZgsPU0dvsI3nKFkrei9mckChS3x1+wW7H/4Pq+Ze/tdu+9fvN+zW1bVdf1+a7yvXD+KD1Kj9KjNCEaAMvYxIU=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAKQIAAAAAAAA=eF7tz9tL03EYBnAzRbZyzv2+74JF0xTNWi4PmRluD7IgQyEna1TaNGUdDPKiYJEZmooJWnlIV85RoWgYro0izYRqS4SMLrpwYjqzGuSyopN5XPsXut/VBx54HniiY0550lJ5SMlbcCbyBfjYk3TAk8FHRGHJ2SmHABw/6HyHQYjLjzsl208I0b973r1+OByNP42v+2qFqLQ2WnXTIiTeiXgSnSpCZ407e8usCHPNmgplIIe+gDC6uiDChmbTjdEuDvuqv1PcCIcmtTRD/p7DhFo5+0LHILgVFxW4iQH9WnHRQYYeKO5qjzCYJQ7WdoZhudwsDR9lmIwvGuweYcj+0mpM3kO43u9ueMAjVNnCrs2UEy4UqHlX8gkVCbdjBjQEQaY9RPKVQeoSZBl8u+0vm3daYgkldRrFMx0hYNE7Xe/rFTe8Vag+EMrrkSvz5R1l+auKWoYhk7drUUuo2Zp3rLCCEHX/kSzYRkhOSK9bEonhyPz0V+5loIV17XIHw2qoZq/sHqH6eenAnx8ES8GOqeFhQktvpT6klPDQpTX36gmvrGtlnmJCkzMtJ2eS8M48nvE5SYzglu50VQpBmFslsS0xtAqcv36PEejwyGljpBjx+vnx477fN8tMT9esMKho48nNLkKQfjnnW6wYHUZe234TYZdihdOpCBLzNv0ldSAOhRoiz80R3lCKxXjUruQ8dpl8xq0cHBobd12cUPj169fv//oPtu3GMA==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA4QUAAAAAAAA=eF4NVHk8lGsUtoytmJAJKd5vZkirmlTXlkMlolKi3GzduLqk4hLCdRXJmmrGUpYWe2idKFwfSqSfpTQJoUUooWyV6J6/nt9z3ud5z/Ke7/tov3+7VziTvpzg6cg4wqRHX9FysmeYtK92XazsSSZt27De+8AlJs3p9ynlB+mAPhFc31/JpIsZhVJ9eUx6tV4I6/g4k05n135438qkl6f0vC0o0obZJK1UHZ4OGDcP5a3cpgPFdxQSmgLn0U95FppCfUV6LkNvL0dCkTbMkvTb1KANEg/8ZaXstGHIOiYt30UbUo4Pl31uVaQ9Hb26yxq5UPcxyFLHXonuTrqnWFTNhajgub+zXipCygzPTuDDAd3/fkX4HlGmfadPsFR3z6c10jvaIsO4MN1UWtqVRSDDVtJAxogLuiYG952kubCGoZGfV6RMy1u/9GE+mE9/0uSZlepwwG+BeGq8Jgcay//JyAnkQO4TbtfOKqxzQpATZs8BwYEldRwBGyjHRd7lbsr0seImN5UKNqxXe1Tg8JUNEa0lvPJuCkKa1AyPBLBhHi95fsc4BQohThmlycr0Dj4EjyxlwyUL++zHDynwS6oayaxWos+9Ss02b6dgQWFarqQmBS0VMm4G9ynQvSxSdfKioOHpYdYhNgsW3kl/Zm5CwZ/R9/Qc+pToDOK45/0XAoVR/dKX3hKQW8FnTA0QULPle822ERgLyHze/4BAylTzraFHBJSuciomnqBePW7O0EMClaa9W587E9hWpHXuSxeBtkRbt0UCAi2r0v6+00CgvOfm+QsmBARiKvSVdgIWxQ1vLPgEtqbPFJlkEijZ0xaexKRAZGB8N6icwK7oxFioI3Aw3L/B7hmB3DaiysE8mpyjvqPhWJ8Rfb4zhECsIz+qW0ggMNu5Nhp1RHRxdvAmgads2c4zmGfjRI6hLNb7oTPNaBXWoTbmIVNfQcD4cKD+tUYCzERm5DnMnz4S5a6M57f2OGwsyCYgn2ZhFh+HdRS4XV3ZQwDiEosscS5TrWmLVV4QGPfo3R5zncDa2x5Jta0EeLvXn73TTCDqLLf62WsCNTYudICIgEO5u73xcwKrxkQn/TsIWA78WtSEeS29/0pflkpgTV5FsxDPN9tNXb5RSKAvaci4DPs28w6e6sR+Iq1+bZJA34YE8+zRbgJiaixW7UsCAfzKFC+cs0bYP/aHewlYdWxNzMLzMLOGoagPBN657rBZ/Z7ADTvnUI0WAluiizZKoG9pZO0mr2ECqnHXxSvRL+gK2zeD/ZxW3dVUj+8vWZOrZtdHYOfrK/L66J903vxa7iO+j5xj1tN3BMRnYsJSsT/ezdFHIpyHRWy7xXKM99e/CT80SEDd4btWCfq3vol3fIz+8Nuv9vYh930bcjTgEwFXzzyGEaKuoWmaBPp61/YbjCFPdYnQYX3Hec/y/C2QSx+dlbDB/TuuZDJu/pXA4Fi9lDPef1dp4b6CCQK7OzYaSI4TYEttDxJDXsO+VdmOfb1h6YlFTOHecEPXCMcInCqMrx77RqAn50tWyk8COUvXJVybJXDStK3+Gvqeb1gzoIV6TnOltM007tHB90V8xLK7SqFyWM8y92Q9gnrPVLJgjhgF7pz7weaTOJclFy2lfuCezTf6Hoj667/t9+hCFA4LI0QSFJyycm889YtAe6hm0vQMgfjeTLM5DAr+TffvkMf4spqhW3xpCsoKOkU/8f6qbck/XeUoKHd3HlfAuNECfW4y6vfkezhYIc8yPeHbjHxFxrfJKXEKetTvt4RgnqjqVdc6ZbEuKRXrGkkKln4O7R1GXYWKeOYGRNcL7S5H8V5+htLOH8gnmGVXnJBnZg4uLpPH/8Efm9eVoZ/x9tCkDH5/e180JlnOxfuFAyWNiNZV1Z35GN8trc6OQV2a0bJcTfSddpdXXo1xhu7sZx/U2ddd9T6H6DBba+unQEG+JT+yGzEnwfIJD3UjTVtE9fMokEjh/rDCeIvQb/UxxKHaAU8jRQr+B/OettE=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABQMAAAAAAAA=eF4d02lQzHEcBnC6dGg3ZUbNHv9/7Yho6HLX7yu2dBirY0bpJEo3QolJjhJlia3Zik3bSpQp0UF2h1SYdrZJo9qJDkvH1uSYjpUOv79Xn3nePK+ep1Harew/3+tiLDSdtidI+DwVuHelhIEq6+eSxlY7ooqjtapvPC5q9+sbbSP8UHhTbrT1+3Ck6/t4Q4VJHNLLadV8F59BFnzJQSS7iKY+xv6ytclG/ltbJJxQATJOUVTOLREhs5S/SfWyB0g4mzx5h16FTEpiopaqahF9WOtV8BkZan40ZGU92YxGlP0DxZflqFPGc9/p1IlKH25rGxIpkSjNdtnsjwHE8XkX0OA0hG5JRIWXvo4jo+yJB+yy37inQ1WmnkH8osyG3tQFxCwf1zvN04YyWqKHZaA+WKbRY/2zaBBVmWAXs8IMWAs2WnyGOZiJp3eomhhwJWW4IT+PAet5w3FZGgZMXLDU793IhGpjjuvtVCbEpRnJ/7xhghttMVlpyAKdRp3dg74s6Dm1W/9ZAQsi3P17zvaxYEtNy5iAZIOeOIqXGMaG+OB8zs1CNnzXMi0RdLBh0OutlrMOAUpegFOIAwF/Pgmk6iACntK6q3+kE9Ba5P8tp4SAI4erxFNSAoYjugziugjI1IR6u4wRwDmnmJfOETBaVOdXqkvCHC3VR2hEwkch/2W0CQlW42H7XVeSENPDWnRbRYL23TzPIgsSDPel/QxnkGAQb6eoYZKgMuD2lbNIeMJSRR1gkyB1Fru2Y4Xae6zZeAeX+/pNeViXKvnDGGypQdXVZGzd/RvVqdgvCdVyKmdcV5w9gZ34oJsZjV3Le2N1CFuosqMFYhnT8NwHO7VrjYc3djH3dbcb9lxYY6Ar1j6osd4Fe6/F69N2bJgwUrAVq67w7NmMlS9qMjdh9Yunrzlhs0OPKRyxM+tGuZSiDNtBB6ymg19A2aktjqS0H2naRSljvrChlNZFmlOe5GYsp+SOHtehbBuaX6B2P/s14C+lRD2hoUynh8xQqi9G///FP0puVmU=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQMAAAAAAAA=eF4V0n1Qy3EcwPEINTYpInNr398eSy2t9SC274ekJafsSnUe1jwkz3R56olQcdQp0+XyNIa0hXQzNZanXCHPD51mq+MyoXAe5qHw3V+v/95/va+Y21925llkjIefB8RsBC01V5XidiHWYrmv8uk07M+LNHr/UmDKaEur/KfC7zN+mxO/rsWS27rPUwTZ2GVJ3K5JiwvxjKQ/2uqRZTh8XmudtPEQ7vquVshqTmLH0X03aHV6rIr41tEbacCXR8xpKuKZcaok2ddoasZxIR+qFvDvY8aYYltt9DN8a94Qq8luwW7pQdlL3d5gV2+HjdXYgw9c9Tjjg79gAU3Otn/6gf+lyKJr4/7iRSl6g6vNFdIz1Tkrumnw7mlYaXHLKOBsOKFlabzBvZNftd48AcbJufbc8xQMSh1+6XqRAHy7GgUXugMhf0rHNUQTg3xkz5wWdjAwo94oq05NgsdZogDRnSDQzEyu1v0WAToX6nmXI4LesS7CrbMCoVU5rc+6LgCkRyMksRUTwTpYb1zV5A9hNFED/aMfFD/q/97G9gP1JukG/gIhdOX5MFTHBfB2YLO2vJcPPTvabRUxfCgxdu5l6Hkg4pW0KSfwwLLRJL1cyYWduhaNB+JCaPPLn8EGDjQ90e83JXJgxYMrBr+/FCx/PfqepZ6CtNO/FrIzKdBaVH3Bkyk4XMVMinGj4GHCzKVqK4Jce3ZHvAmBpu1ilvEIgspYIdOrEMHAMZc443oE1c30s0PTEDBk1NtMBYKa8U30vBgEvo5L0QYZAlHYx6mN4QhcS4UQIUbwQnof2QMRHEzYPKjUH0H40CF0hwCBWbVS0s9DoA5wH8jhIvBJz0hL5SA4sTrBtI0i/foRH14hBDezjfnpRFaW2x8GUc5kKh6Q73x2fUnSEFme7PnbibEHWq0ZxLsV8VEpRK+NPw/NJgblRG2ZQVxHv/BcRtyzZvqPSCLvm6cigrjona4ojDg9hTU3lDh88qcCCZFbHuIIITaUS484fS0uUzld3lAb6fSrrgA5XfY8eZTT3V7sYU6FsV4uTv8DvKpCbA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/tI6zQNWg3D3fH9C2SGJgP7JyVhY/YmA/2F/8Py5iYD+dRO1BEmJgP/HCRHXlYWA/B11l6p9hYD+hnFayNmFgP3bqAwKbYGA/fOXELblfYD9V9OJ9d15gPxR95N+0XGA/dzdAfEdaYD9tEqU8+1ZgP4tuAlSQUmA/Kcmu3rlMYD9lnfS1HEVgP0Kte5ZOO2A/8lTVu9UuYD8/TFsUKR9gPzCg+C6xC2A/SUzx/5PnXz/foJwki61fPxVU71/fZ18/wXvp/CQVXz8d5cf497NePzU1QXgIQ14/aS8JTCjBXT9l12X5WC1dP3Mu/KLZhlw//5XYHjTNWz+zXeg4SABbP3lK3RVVIFo/0EMlxP8tWT+jmdVCVSpYPyn0NbjJFlc/DawXNDP1VT/oyzOWwMdUPxvnF77skFM/GD9Vj25TUj/VcB12JhJRP+Q7LoMUoE8/n010fyAgTT/Ws3oeNapKP96I7SnHQ0g/z8Gm2NjxRT9oyTcQ3LhDP+IEKBmbnEE/RSOs5lBAPz/fUSgdrIs7P3FGVYpnHjg/w2JfMin6ND86kz/QMx8yPzy6zzYOGS8/7mmzJg+AKj8vS8KxVm0mP+PuPEpT2SI/qEAKZ6p2Hz9dnqiy1RMaP5wFTixtdhU/uun41XaKET9U1Jzme3gMP42HD2Z/8QY/SSx2RQBcAj9Yv5LFIC39Pogv4s45Bfc+TIuYIjQJ8j6NzWY2OxDsPpe5yFgYruU+CiL38q+h4D792njg31bZPhQbQNssK9M+UxGl77vMzD4CbFnwI3zFPsxOMl6T1b8+TgQRc/xrtz5DTxIAKh2xPrI8AcmX1qg+BmhPnLzmoT7kYLC2t6CZPpAIoedYOJI+lOZMy2e7iT7h1k3dVAyCPr/RLUXRJXk+yPLnyydncT4lpNjtKu1nPlAAOhCzVmA+oQXmkNEqVj4HbuVPs+BNPldDlhHsAEQ+ynNc14qcOj7BvipPPJYxPgWOTGCxGCc+QqHHTLIjHj6rGDlfp4oTPsMKmY8+Lwk+rhBeySMiAD4n+EoW2JL0PbAXHZPgR+o9LOrPBMhv4T2dUmMoAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEwMAAAAAAAA=eF4V0v0v1HEcAHAqJo7lMlZh5KGElhK7c+/PNc1D9LSumpbM82MhEi4XzqyZSQ+HruJuErp283SJurLlcZ2oFrcexvd7j552OAk1d32/P73+gVd4m/SxXs5GJaFpAp4KA6iM2Wz0LkZtT8zHTO5wEHeywNvHlYPmBT6MePwWmqswHUjez0bXnWMFLZJ8lLrV+ivj3g0kSo+tTdNlo9ydG+ILeenIhl4UVjKegMTb6hOzFNHoivM2c/nYeeT+QMVu0J1CcRP+nKeCENQ9lCk7fIuJLuqkv4ZdAtGnC/SScC8/FDFJTaS89UL6E0v5zzhuyHd/lPT3hBOyUF+isKgOKNhNbDNmRkXooTIvI5uC6BV+GSmt5shYaDA9QtuCTlOpbBlvE+iH+HRuwDpsJD0aHDKuQOm3zuK9wiW4KL9Z28ebB8U9dfLTVzPgG5jUbeicASFTV/ojeAZmNMddGhe1UJ4rirCt0sJbva6a5q0FWloX225YA58LuGtV8RrYpBw4E2hQQxSjY8fvx2qQ8hcbuDQ17EZtex79UAHlL1M4cVsFIUxR64inCuLN6sJmvyrBdtzyBb9MCT7WCVMeNCWss1Y9B1YUINvDqqvpUkBpY8qulgIFhCaL3+iDFRCj5TDjqAoIQ5JlmQYHK5Wj0NCHQ7M7o7+3HoeVy9NvJMU4HGGo7IVJOBie837tO4PDUaZb72oQDplFubZd3jgsB2DTls44VGemnHtJxaGD98o5bDsO/+qHymtNcVCadphF/cMgr93+3dk/GBwT43dO6jHoxrdiTosYsHyb7tYvYBA5z6WL5jBIsOqe3jeLQcXg1SCjFgPP1Pv+ToR/plzDczQY2A35GpbVGCi2tKc/IGSOWEsjCQsnp+QOhKPNY2Z64l2k7GPLJKHHlyjDB0LuwddrEsIm82iLl4RGRqZVE+FCnsZLQNjreGD4CaFtmX0On/D9aM33OsITacb+WsJr0c8tSK2lVpU1hEKP1EBSjZ+dCSnrS89P8nuD02Y/abKcLyEVUSUi0vRvWU2kQTU9QtL/7cih3A==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/MIY2nqLvyj2PMt52R2JQP7AH+Xc7YlA/VzqyciZiUD8upkVpA2JQP8TUrijLYVA/mMfzgHNhUD9Vhp1I7mBQP3VmKSMoYFA/yS2rAgdfUD/SZc5daF1QPz7B6RQfW1A/VN7bAvFXUD9YAMc4lFNQP410L+arTVA/sqMc8cRFUD9SjhlDUjtQP/v6o8+oLVA/NwBgVvsbUD87/6fdVQVQPztZbrcx0U8/TmQU2eeITz8b9Pr3vy5PP5uKjT8wv04/9BMWzSM2Tj/cTwEh3o5NP2QOKyz8w0w/43x/gQzPSz947jZXP6pKP/uh0cmWR0k/yn0AITqXRz8wXO9JFPRFP3VRs00kg0U/mTo6QOrDRD/ABgReBf5DP2rld1pxJ0M/UA9t7L9EQj+cveu9vVZBP9K82WyRX0A/DowtyqXCPj8TKGIJtrw8Pw888GMzsjo/spzU2RWoOD+7jnwwRqM2P/XsqEx8qDQ/4IR2CB+8Mj8gIZ9uKOIwP84giwcePC4/1jq/82nlKj/7q7hTu8QnPwaY+btS3SQ/T719Py4xIj+DtZjOL4IfP3mbNc16GRs/1Q0IOp4lFz9rONScSKITPwKQrOTEiRA/UrROXJaqCz8APkEmoPoGPwZI+uye8wI/xB7emkEK/z5uvHmPgT35PlIHyRAUYfQ+25HPTI5W8D60lP6O9gLqPoGh2Hhbj+Q+WB+pFuEi4D5/AGvVaCbZPmayu4whdtM+pDEhHETozT5pKCj1ktHGPrLiFpTIScE+2gBSymUDuj7KMHFZN2+zPlof2UBD1qw+nHvRfPc+pT62ob5pEBefPiUayw9Ol5Y+Ku+5NnxNkD68HxWhVl6HPu3+FrJeooA+SR9F0kKFdz4OSQ6xMYRwPjDSa4EtCmc+toFYipLsXz4kWSjYMvhVPpESmQR7CU4+PK/zsNJlRD4JTgRsfoU7PkTKAFf0cTI+VcBlyUmQKD6AlZWYH0AgPq4fmExMXRU+ivbRtTrpCz55F2mYjx4CPpa59PqSYvc9pkuW/GAD7j2q8eA98C3jPWhjvRrLktg93L8AwNtd0D3tFmMKAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPgAAAAAAAAA=eF5jYBhZQHfri0mnWjjtb1l0r9/3Wt3+Hku5Qu9fLXuNyf/E1RW17XmmhdnuAtJaZs9Kj4zSI54GALxr1kA=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAKQEAAAAAAAA=eF7TcTB8tHUBt31Ti9/DlGYe+1MJISdT8gXsVcQ8bt1VE7SPXHnD9GC3kP2JnrnPjL4J2T86GRq61l/Y/k1Wu/bqK8L2X0qN2x7Zith/+e0ZcydcxN7XZ6NkyFwRe5HePytzGUXtu0yr+046i9r/PV4xfUGEqP004cyVJxaK2Depf9mx3UnUftPhTP6MDaL2vCx+K7Z8ErFXTF7bvDZb1F7rXUVUwyNR+zcLfpxc91DE/uDzh/8EzonaL2q9ofh8lqj9AY+1KadTRO237+Y8KcMhZs9VPHV1lYSo/TXjAAP3P6L2yR88vbdIi9qr7O2O4WAWs3+V1Xz1cr6ovd5f/qcedwTs2Z/ZKJi+fmwn27CKe6tSrd3uvddv3q+5bTtKj9LINADqjun5AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_42_t_4200.000000.vtu
index a91ab6a73dc7639e62afed45ed37da9445928423..bac50049ac53aa995e8ab7cf9c11f791be98a1d5 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_42_t_4200.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_42_t_4200.000000.vtu
@@ -3,39 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="7.5325959376e-05"     offset="264"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="536"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.0394216572"        RangeMax="9.182848619"          offset="628"                 />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1792"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1864"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="264"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="7.5834701674e-05"     offset="528"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="7.5834701674e-05"     offset="800"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1072"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.0537741132"        RangeMax="9.1777614641"         offset="1156"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2344"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2416"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2488"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2560"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0000003362e-10"     RangeMax="0.00012420896172"     offset="1936"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="9.999999991e-11"      RangeMax="0.00020012832631"     offset="2456"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.002"                offset="2992"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="2.3719406254e-08"     offset="3752"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="0.001"                offset="4296"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="5052"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="5556"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00012425419617"     offset="2632"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00019903727751"     offset="3212"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.002"                offset="3796"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="-1.8499378096e-08"    RangeMax="1e-07"                offset="4608"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="0.001"                offset="5204"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="6004"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="6280"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="6632"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="7.3857242297e-05"     offset="6808"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="6984"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="7048"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="7356"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="7.3666529109e-05"     offset="7532"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="7708"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="7772"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="7540"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="7988"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="8468"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="8768"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="9080"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="8916"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="9216"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="9528"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAApQAAAAAAAAA=eF5jYKAv0F5ocsRri6Q9jF/3MvSWr5WW/Rul96ayE9Xtz8gvzrL7rmWv/HjCnqpjWvZmxrvi7IW17S0mzmC/wK1t/2zu248bJLTt3Tuj7nGKa9tfFXxUXyStbd/OK1gfJaVtf/JKsc5/WW37Q4waH17IaNsv6XsjHaqgbf+GNcY2TF7bXsvsWekRRW37/Pkbct0VEfxRepQepUfpUZo0GgAmhDQIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAqwAAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNt/qdAILipjsS9WuqLAtV/Yfvfe6zfv19y2jUvNPvx3xU07GH+UHqVH6VF6lB7cNAA3czzqAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAASAMAAAAAAAA=eF7t0vszVGEYB/BqMmJS44hKWc9W0lBktITKI0a6uGVEK+mmWRHt1K5JV0mjiHWZ2C1FZVuzskMWq9iTSpcpRDe1JtVs6LJZ3Vx21Hvqv2j66TPf7zxz3vM+5zzkeH24ZU3RcdyX6eqfZnQhbzzft5Kim6NDKmqHzOnebmFLxlc27jI7HX4+eg6WJNj0zBKycWdbqz+VSdGKr6dMnMco+oW0q5fdxcb6IRtlewqg8yeWwv4yG9G0gDd6HjD/9qOaKW2Ao72UxedMwMvnZlxzHbTB7fL0sRXHKTp5oi47Kh8wsdyWVVwKeOOh7GV8ImBk2vuBin2AYj9bWj9sQbdu9NTNigJMUD7O6qgEjA1zyfkWRNG/VBuNHAcp+mJ86fzNC6bRq/WVOo/9gEfSpjYZPwc8eruow7MdUG6XyfLWApY7uXtQZuZ0Y+q22iVPAN9qqUndfMDSjz/4kzYBvnt/QSDjAObVVVt4+wIOi/TR404DCtFDrSNzrOFOjeVucn6vZVAgySYw8HMHF3DER707dRXgvcQqlVoEGDE2T51C7rvdcb9LBJmrq/KyFZ4ErMw1zAzNIH29VKPaQc5ZpY94cACwxEHfKSLv3SqJHZdeAGg3eXXR9zOAy99UrS8g+7BqsdU+zwEU9OkOepO+7/VEn0Gy730NI/4phwGdLJ061pM+ln6qTc4CLIQNUX5SQIw/WP2K7JUrEmlqLpHnVYSpqkmvLehP5ogB3Zwkjw6fBTTkxX0JkQNmGvqCygqJga0BijLAbLeknmVXSZ5dXisoJ/N9owJdLaCLmBXDI/2DuZZyzQXA+owlCq4CcEJszCEH8n0k948MTSN5rypskRWZb3sVH9KgBJTxJZ7p1wADelzbOklWvm052l0NuGBEGedeB+ga06wwrgHcc8XPsPA6YFGaT9lUIis4746hEXDAyGRbEtFcb5ajUQMqgk9IfZvI/zK6V97QDNhfZlwcehMw2jTcpYXkbvsMcTPRfYud7C5x5dJl2YzafuExxhtZ3FJGaWr+VkaOrC6Jkc/zCfnTa+9HMvJej6xhzLeOCmfMjfRax/hsrTqY0XnOD39GySXzQEbrLZw/efH0v71Rfc9///vP+BvxWuawAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAYwEAAAAAAAA=eF4zuf+85EHNbVv3S3lfDOUV7CV6qwUzFE/b+a2KMm/d8MiuSeLWjfZFn+yW6O9aaP/sv12XIPOShDsc9l/E5Z7xlwnZp36fcE6lT9J+0s7jLVui5e2DCo8tKz8kb/9BdMdRCW4F+wTej9qu2gr2Qd82dinZK9gXmcTfPuSuYJ+Tfbl9C5C+lLQjRNFJwZ5t74JARSsFe5dTj39yGSvYq+ZnPhfRVbC/cYL3ZZWGgv2k2BvT1FQV7PlTGS/eU1Kwt7z79U6iooK9sHjt82IFBfuIbjaFp0D379ykN2sSkN4WXt6bAqQ1nlzb6A2k1fJcN9oB6RCFPeIWQPrKz6xrJkC6/nKfmzGQdvHb0G0EpNfx95iB6AKRjQIgWniCAwOInibg9hMUPoulEr6BaKcKo68g+lPALnC4Zed2g+lpNZVg+uDeIghtWACmo73zwbTND0g437gGod0ujdJDgQYAlLY8NQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAcAEAAAAAAAA=eF5bF557837NbVv3S3lfDOUV7Msm3GnPULliF2fy6ZfOl9d262ZMmcus+8duWt8k9gdlHPZy34KDlRqF7Y+s/Hk86ZWs/QHH1zPO7FCxV49cbm1orWU/T/zmglfM6vYB9ROU9s9QtX/jpdMpH6ZiP0/+c0Sgm7K9E+NynsOZSvZBe6clX9+jaH/r+VPjRZaK9grdS1ybbyrY9zvly+6YpmD/6IX+rKWZCvbOCZa7HHwU7E893RC32VLBfs2mpq3Regr2df+c5i9SV7A/vmHGsSPKCvafAvd+mK2oYB9TMPdOvoKC/RublvyLQP+ExumzNgDpLVcynMOBNMvcKfHOQFrld8FzSyA9pf5wgymQ3qZm3GgMpE/0K80zAtImpd3WILpjyRJBEH0m15gBRM+4IPoTFE5WErbfQPQHXvmvILrx4gZw+LVJtoPpsLnlYHrHw0IwffVpPpiepQOhf92HhHfVTQjtdmmUHsw0AEjaRLQ=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQIAAAAAAAA=eF5TWP7xkm9Sgr3gK93GmdMLbUtMlcza9RPsLyz9fsFhXbw9S9Kea8/mxtkv7hIsjpSPtbf/xHR0oW60/Zd+yx1aFyLs/QJiFQykw+yfLfGcMFM32D4s+OrE1ToB9h0Otae1a73s73O5VvtzudrnmbUvnm/sYF/H6nDFV8/C/lvSTF6vGkP7p8WrjHMbNewdKm7ffLFEwX7nuyWGb16L2tfcM9DPYeSxV8x6+9MrhtH+0IU30YrPvtjNEC/2zyp8YZfl4/j74qnbdgrsO1/27T1nd0152tK2ngN2UuyC7zWiN9rtO8eeJLNvoZ2oPmfF1w0T7fYULW6da95oN9HUcG9tbIFd3atz+7akx9kpvz35L2a+t51cQ4LF8T4LO6c97DEliap2Pk//qvnYCdkVJlnx6HT/s521OPbESYWXtmGbZ/+3Sb5ie4F1j++9wgO24WsctV48XGVr9Vfr7mGb6bZMVhw+n9632ZZLuz8J5qyxjW3Sq5mQXGrbJPvt3uTPRbYauhe3RAgV2bpYSVm4Hyq0zVIUarBeVmh7oNyvvmdOoW1SkU66w8xC2x2/vW+rzCi09TsccusYMF4OxaaJrgDSDDkfleYB6SvBM7/OAtIWmTe+gOLt1PptS0C0n/jvbhBddjy3BUS3b1VtAtFffpaB49fO0RlMxwmZgGnOlfpg+lKcHphewwmh936GpAdYuhjpNAAcQWo+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAdgEAAAAAAAA=eF5TV1l75UN5pN1Dy86ZU548sF36pO7ai1hFOzPXGYUzMyTsyvl9FvoycNtpLClzFXjMYPdH64/ePqbvtsckH4gcLPtgK5x7lyHd4KVtW+R0FU3Tp7a//FqMsrqe2Ba02M3yvfzYduUEaceHOo9t6xNPXrkw95HtfatOQ3GNR7bmCscfyJ1+aNuxafnp1paHttMmM10/EfDQVsFo5YZA7Ye2Mj9D1JMFH9pm3vZ4Icbw0NbAWsXp+5cHtg+qKo353z2w/cBZWfry5QPbT7lle+qfP7CVfyDBpPzsga1dgPrO5KcPbN9F+q74C/LPvaQFJ4D0VvXGo2uBdJVwaeMCIJ30c7/0LCA9+7GuxHQgnVF5astUIP3JZKkIiPav+X8WFB4/LpSvB9FNFp2LQPS1uZpzQbTfqR+zQHRBqgSYXiR4ABx+Kt/ngukVfBPB9BnVHjAdFd0Fpg8ch4SzSRE0vFMgdGUOhOYxgtAPLEfpwUQDAKZfyak=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQIAAAAAAAA=eF7buerjJd+kAHvBV7qNM6cX2op1L278rBFgb7H/taFRp799beDsH5MC/ey/t63Ll53uY6+t9bTF2dvLPm4tf8yCRHf7Tze5pxyUc7H/ZiF2ybnLwX5Otvne/8dt7F2MUudGbDO332PM7vvoi5H9qYKFlQIJuvb3/t5d7MujZu+pdspInV3B/skX3/LsSWL2THnHnnue4bOfwbxuuXksi33ZxZ6Fz2R+2U2bYV4pY/fBbpbe+fchcx/bCRS4PDrLeN3uz1yxdQutTtlx5GS9kBfda2cyvXetbdJ6u54dS2c+r11gZ7TiRVXUkwl2h54crl5zv8EugZfZTLS4wO5NxcmZykHxdqFV66ftVPa1+1WjE3u+ycpub/Wrk7Gz1O30bnx2qJoiYnfgenmyx3RGu4jezDeNbW9tkzZci/VJu2GrND/JXf/PYdt/WTZSfpUbbLle+QRke8+x3fDts8hvnm7b7T6XTvr51dsWeWpKia4ss41xMglckF9sW7NQKGy7Q5Ft0kvp+96XC229vnXtiFtTaHvYgOHQznmFtmeeMj1nmlVom/9xxpb0GYW2Saybau8C4+NZlfGS9UB6ZobAggVAuqBy0ZHZQPrqG2fzWUBapPLQTlC8CT2bOAlEL7le3gaiTdOONoHorX7LwfH6fVsgmP4RagGmp740ANON2/XAdIwBhF75BpIOYOlhlIbQACSKcgk=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYQAAAAAAAAA=eF5jYCAPaC80OeK1hdPetE2pY+tTDfsKxlmT79zTsjdP0tzczq9tP01YJeOuuLb9uv7K+mdS2vZur335SmS17T28lqy5Kq9tfybr9MdWRW17LbNnpUdG6VF6kNIAOuscAQ==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYQAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNs/zYuw8v5F6+9mb23g+TKk3a7916/eb/mtu0oPUoPJxoA7QUZSQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAApAAAAAAAAAA=eF5jYKAveL3Yqur7RGl7GP/XvRux11207I2u/s3PttCwdwhKuG/0Q8v+/8qJZX9PaNnzrZuzx1lY2z5u4fvvsjza9qzh4Z9mSmjbT571wfO/mLb9+julpWHS2vbyB2W8naS07e0VT/O8ktW2d067oHRdBqj+c9FPZwVt+23zgrLc5bXttcyelR5R1LY/yqqqbqmI4I/So/QoPUqP0qTRABw2NgQ=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAApAAAAAAAAAA=eF5jYKAvUE383rqHW8kexpeN3PbLvUjL/nu/11OHUk37w/tFjs78p2XPeO7u4dU3teyjf77XVRHRtjc88rc7mU/b/npB9fGvEtr2c1jWqheIa9sbN+7oOCetbb83+Jf4Kilt+0DZxg0lctr26T6b6yJlte2lPvNaHFQA8hVqpU7La9trmT0rPaKobf/kV41npyKCP0qP0qP0KD1Kk0YDAKi9Nj4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAqwAAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe0v3d0utHkuk/2kQDlHvYfC9rv3Xr95v+a2rRlTlO1invN2MP4oPUqP0qP0KD24aQDk6zfAAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAqwAAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3v1M+SbWz4ZjcpUM5R76Gw/e6912/er7ltm+Kwy7W7qN4Oxh+lR+lRepQepQc3DQD54DjQAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAWQMAAAAAAAA=eF7t0etTzGEUB/AdBlutaneTGOrYGZcIRcqK7bhkmqSpTaUao42UtSZksgiNRiimFNWy1rKmjRL16+ZSPbq4rMoMVq2RchlyK7lsuUx5fv4B45UZ49VnzjnPfJ95ztPW4vG234NPuO5NjysYG9KypUdTn8cnqcFyp+QMAXltWDdo7OKTJ7ovh4ZGilA/Y+qHjG0CsqQ5UWS+KiQRKeNytu8TkukB1U3rPvPJM53lLasVE7Dbs9YkFk1Aw7u+zLR+wCaL/AxbTzsSFOMwOPeYgDCSyYfmxAvJbf2U86p4QO1Woz8nALB3zMck/S7ANz0qo7lQSOp6shMKOwAdUkzzBGuE5NOZYkx+ACh20cSKZID66877NhsA83qP1USFCYheYJ9lmSwkVvr5vK6jgFK//O6nWsD8tITWcbcBPWIq1EwsYLPfkVRpIGC7YfXAgtmASVfMw5m9gLwE8WhdNeCmqaPavmcDKqPVucqzgDU/nF2lakCz7wX/DpobWRl8/BLNaQAtyYsDHP+yOS7RG/DVZXlJkTu9x8ex4P0BQA42bpRsB/TZ3/rCfjfNnf3ByZHWUmdF3Tc6t+3jWo+VAzI2HeYBel9R6MI4URJg3OeRaz0PA6YWJJkunAI0rpcorem8ymaeO+gAHW+kM6dyAYd2d1pXpgA+7r+5u5T2eSc6l6ky6Xykl3KaClDm9HGvgb5/crGbXKUHfPhUFsE5B3g0sn1sagHgTEGjawudzzXaBoUXA2I/hqwtBdRMjFYUnQbMadPwqwsBTeJoUS9VoXLmltEcTs6m+gU0J0z7alBCc7T5MWVcmtOqs5r2jJ6zPy2QAa2Dyr3UeWWAAbIj7V8vA67a8tCLqQIcctKCKb8EuDWxIcqCAeRKlxvqqdb33t+VV9L9jIhpsawAXBK8swevAt57lN41k/qydtakETV07x5Ril30n/oKTQ6S64B2c2pflNTSfWnerL9WBxhvoXYPof0pZY1ZN2jduSFlTz3VrcGb3KS6kLoqVv2Od2msB+/YXWR9PYwTzer5fKOSNeeWSyCr7+K0laxOYZl+rPcV+0NZNwzs9GcV8ji/znkvqljKyguULmeNLzX4sEpj03/1wy0T//sXDTkQ+kf9f03x5sA/6v/On/f3mXM=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAkAEAAAAAAAA=eF7bvff6zfs1t23dL+V9MZRXsF/RNKdL78cpO5/lb7c0TH1kN2tC8PSP3Z/sdFdNmLDh9n+712yP5K/f5LD33D1BwEtRyL5gz+k9mlMk7TdM2auRGiRvv6FHOzFirbx9c+Kl5358CvbVJ3ft8tBVsOe0iZ2X46hg793/I8vdU8GeXyDm3EEPBXvZM7vPHXFSsE9SNjMrs1KwZ77xLcTWWMH+ZmPWKnWgvtfimcWNGgr2HzwOVKqpKtg/61SaeUdJwd4yOys0XlHB/t03i6uFCgr2Vlvdlz8Gut/vcuKyiUD6Btudn8lAOtJSLdYbSMvHXWiyA9KiH6z/mwNpptCPJ02A9AXlDAdjIF1Qt6/DCEjflNQ1BdFBdwUFQLSO3K//oHCxnaL+E0TPtAn+BqIFNHW/guiT2jvA4dY4tQtM52lUgmn3KUVg+q1aAZj2cM4H04t/QcK57iqEzrwIoRuh4W8Opb2gtAuUdsNBu0JpdwLq0NUTkncnwCdWP7o8LnFC+qhNo/vDFY1G9y8AkWM/UA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAlQEAAAAAAAA=eF7bvff6zfs1t23dL+V9MZRXsE/rzdvkInDFrmfP3z9cN17brXNZaM0t8ceuM3vng2X1HPYu3P1LewqE7Rcumn+jU0nW/lcs61FrUVX7tt4fhlPFtOyfP513ZtY2NftZHqV/LNeq2l++uuHkbG8V+7Q9sWnVLsr2pzy/8L5PU7JXy5lqVrhb0b5U9e+HZRaK9pevF019c0PBvsv1963MaQr2xW0zVKoyFezPfQ/8quOjYC/63PzeKksFe7Uld49H6CnY9yjc/r5QXcG+xPHJmyPKCvYiS22c5igq2Fef+aVUoKBgv3Jl8PyLQP+I3nuu2ACk5V54B4cD6ctcN9KdgfSrTe2vLYE0h8aWJlMgfTNArMkYSDdptM8zAvH3b7MG0ScubRME0RIfrRhAtPQliZ+gcJrtYvcNRJs1y38F0UvZN4LDT8usHUynLygH0w+/FoJpkSf5YDpfC0IvfQgJ79kXIPROaPhrQGk/KO0MpWHx44ZGuxKQx6WekLw7AT6x+tHlqeUPSml0f7ii0ej+BQCusEgwAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAPgIAAAAAAAA=eF77s/LjJd+kBHvBV7qNM6cX2j51kzBr10+wt5M+fMFhXbz9np0J157NjbPfKHSsKFI+1v6a1t4jC3Wj7V0F/mzWuhBhHxl2W95AOsz+M9uK/pm6wfbuVvMnrNYJsGf88u2Udq2XvfLNlip/Llf73EaGxfONHeynzgy87KtnYT836DaPV42h/Zm7jUa5jRr2E0/8v/FiiYK9jW+hwZvXovZfnk3SzWHkse+QffbDK4bR3rtpbZTisy92H88z+2UVvrCTFd3w8+Kp23aaJlIv+vaesyv7cXpJW88BuykvIt5pRG+0u12Vmyizb6GdtOq08q8bJtq5bYltnWveaKd3XWpvbWyBXXjY331b0uPs7vz1+B8z39vO5rCC5fE+C7t3r77FlCSq2qkYcWr42AnZVT9M5dPp/mcrw99w6qTCS9vprXMZbZOv2FYG9vrfKzxgK2JXoPvi4SrbWc737x+2mW7rPtXF79P7NluD3SLPgjlrbB+HPamZkFxq+1TP5v7kz0W2z3teb4kQKrKdxqpi4X6o0HbvNNEG62WFtt9X+9f3zCm0nflEJ91hZqHtVQ2f2yozCm2vHAu5dQwYL2ZZaaIrgPSyzI9K84C0fuDMr7OAdGnWjS+geNu7adsSEL2V83c3iM45k9sCot1WqTaB6KxfZeD4FXVwBtM/+U3AdNVKfTCdnKIHpp9wQujLTyDpofI1hN74EkJrQ9MJJ5QWhtKCaLQQlBbAwUdXh64fF01IPS57CZlLyB4Awl5zQA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAnQEAAAAAAAA=eF7zWL9n1qfrVXYPLTtnTnnywLb/jwmj0N3gfSr7P/HITrS325K0XvHCc659agbqSmKl/Hbzgw4rPp/0ztZXzmW53NlPtn25H9xEuF/Yyh7UYy2c+NR2s7rNq4zmJ7bC7cLVf648tnXlWrxOVOuxraS5zIzQOY9seU4b6t1We2S75eHRc9GnHtpKxQZy8LQ8tGWcL5TYHfDQtj9k80wd7Ye2J6/FFIcKPrRdtKSBRYjhoe1aswOu3788sN3aknFU4N0DW9FNCu6vXz6wnWNeZ934/IGt96M7QirPHtgK5d3OTHn6wPb9oijhf0D/7Ltx5e4JIC2y0OL5WiAtbW03eQGQ3v7jnMosID03aqnMdCBt8Pbttqkg9XpLREH0C7Pic6DwWPR91XoQ3SoyfxGIVv9pNBdErzjwZxaI7nkuCabnrjoADr8nOvPAtIPGRDA9QaUHTAuGd4Hp2ach4SxeDKGj4yF0UjaEfmAMoWusIXQhNF7+QenrUPoRlH6Ag35IQJ6Qelz8+0SaRypNrH3o4g9x6CdEk6oPANOQyAo=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAANwIAAAAAAAA=eF77s/LjJd+kAHvBV7qNM6cX2r6btprjs0aA/V3XpcvNOv3tVeScOdsC/ez3u7h32kzzsbdnEluk6+tlH3GIezdTgbv97qVeaWkcLvZzJONfOExysE+b2Hg5/qWN/fQtPx22rTW3l5ia+Vn1t5H9ngNX6gxSdO2VFlsbLhNQs3/ANW3pLE4F+ylL/r5fMVXMnmG+tuWP83z27XnTZKziWex51m1KuSH3yy7hv+und3Yf7LKa5qncnvvY7uzVmTOfMF63+35g8WJNq1N2exe+nscsstduxZYTucUJ6+32XViXt7Zmgd2Ls7eXXH40wW7R2ZPXnt1tsNvk4FWiVFhgxx95RZXbL95u5u4XbVPlfe0+zD5x8HCdld104XkfO6ap27m8Y7P7PEHETqymoUtuCqPdMT2B1B8Nb225Xy1+0p94w9aOZ3mqxY/DtmIHbe/wlm2wVa58f9jAbY7tFOW7Hbc4um2lZoXMlPaut53Is/rtneVltgYnvvtq5xfbpq0q0e5xKLJleXDWwOZyoe2l1XelI9cU2ootMTm+fV6hbdiGnWZMswptJ5hJV6TPKLRt5zDLvAuMjxfZUXPXA+m6LWfnLgDSr7Y/PTwbSGeosJvPAtJicut3guLN4Gb3JBB95UVpG4gOO3akCURXyS4Hx2vV0kAwPSfUAky3vjQA0y936oHpDH0IPfctJB3IvYTQQdB0wQClxaC0AJSGpRshNHFCfHR9gkTShNTjspeQuYTsAQBzZnM/AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYwAAAAAAAAA=eF5jYCAPvF5sVfV9Ire9WNTrtIV2mvYK/35ozXigZb9N3e3WBn5t+zM/lOedEde2f+7nmXBGStv+4OGz0xNkte3vnXi08ai8tv2Pua3n6hS17bXMnpUeGaVH6UFKAwAbUCECAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAYQAAAAAAAAA=eF7TcTB8tHUBt31Ti9/DlGYe+1MJISdT8gXsVcQ8bt1VE7SPXHnD9GC3kP2JnrnPjL4J2T86GRq61l/Yvtqh6hS7Aa/9062S5rd49tvt3nv95v2a27aj9Cg9nGgAZWccww==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_84_t_8400.000000.vtu
index ae36ece61de78f3b6c874b66bbc9310f9ef1bad2..bd9b9ac33f731f1015c92ddbc3639b2f92f828dd 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_84_t_8400.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calciteDissolvePrecipitateOnly_ts_84_t_8400.000000.vtu
@@ -3,39 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.3017001011e-05"     offset="336"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="740"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.1401951424"        RangeMax="10.205405225"         offset="832"                 />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2460"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2532"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="332"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.1984475187e-05"     offset="668"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="8.1984475187e-05"     offset="1072"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1480"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.0887707437"        RangeMax="10.121921741"         offset="1564"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3208"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3280"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3352"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3424"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1.0300404327e-10"     RangeMax="0.00012327665198"     offset="2604"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000006e-10"     RangeMax="0.00022199366181"     offset="3320"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.002"                offset="4072"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="9.4575206287e-08"     offset="5104"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="0.001"                offset="5864"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="6892"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="7396"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00012329203591"     offset="3496"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00022108705384"     offset="4256"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.002"                offset="5036"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2291196946e-10"     RangeMax="1e-07"                offset="6092"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="0.001"                offset="6888"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="7936"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="8212"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="8472"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.112667361e-05"      offset="8684"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8928"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8992"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.000207"             offset="9288"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="1e-10"                RangeMax="8.1118752514e-05"     offset="9500"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9740"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9804"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="9484"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10020"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10412"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10712"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11024"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10948"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11248"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11560"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA2QAAAAAAAAA=eF5jYBhe4OeWHquHH2TtYfysW9NeH2jUsl+44nf13xh1++u131cv4dW2Z5UwTLn7Ust+27rvdxJlte3fP1beNVlK275V1sH7BZDfIhPjdwBIq53wUsqQ07bf8G5HrA2Q1rzvZngZSFfaz+vZBKQFvnxUNpPXtr+9SFZTEkgfz0jx7ALS7OvZ2guBtP+Te2duAukY52O7DwDp7ivpuxwUtO3lBev3sQFp5pk9UzgVte1rX/69sgLIv/nV/NkuIL+r6ZhwCZDWMntWemSUHqVH6VF6ENIASKQUUw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADgEAAAAAAAA=eF7b+D5qww9TTvufCT9vGHLx2cf8ZBVcEsdl/6Lp6W7RO3z2U0Wmndi7SsBeOVCt4m+lgH1yc28cz1VB+97+f5c/TxOwl5tYl/Q1VNhe68XLx6GKQvb2fOf4TxwVsn+6T85/2Sshe/NSnfeiNsL2kmEF0+7WCNvvOfJTQXu7iH2x0hUFrv3C9jeVYxaXXhex59qt6161Vtg+NsaoQ3KeiH00e8j+ifeF7flyZzN4W4jYZ24xXnkoVcS+9XHQg6QNIvbz49wV2eRF7e+98Mzu/y9in9ARd0e4U9T+8oS2mEuBTPYhFSvMdQ+L2u/ee/3m/Zrbtoed4h5e4HxiB+OP0qP0KD1Kj9KU0QBPNx81AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9A1NdVNtzBJNU4yMbQ0t9BLySwqqQQAUQYG7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAogQAAAAAAAA=eF7tk/03lGkYx0dSKi+NmTO0JZcxm8pbKJwme65qW28TNh1EXja9mDYppTpJ2+6cHUqoRdvQxsqGLClOsS0eWS9pvUyqaS0RSxQhUlnb7vXMb/vDntMfsD99zvf73Pf3uu7rvp+dp8U6+eZcBnKCHXvHdBnXgvEEnQQD5nneoc90q7nMRLRW5OgbM5zk5HYtl4pQOfBkf/xqMzwzPPQqktadftHhL9XkMe8CF/aULDbDpFCVLUiFuEhpkiG8aoLZI6IfS8dM8aBFf2empxC5UtVQAU+Ir96EZPlfNMUJxrkqZpUBM2iYzXN5Auh6IUca2cRlcpqT3g6uMMXSPe5DZYY8Rj+10js5mc9si540DRgCfGQyM6BAIcCU884Zjc2AuZzdHsXdPKbZ0jf68lE+s4efF1/iA3g+7sTDnUrA73M3jAh/BarvfXzoIWCQPH9QNsxlHO4XKQrvAc67rxwSfAkoP2Ynk8gBly61+yQoArBULDO2J3bthcyzVwDHjte9cP8OsEyZF7S1D5Bnu1r1lrTSZrOJpQKwKGfrrKt9BsyyXfLwQhmt3zxcKfAENKt1uCOy5DFVwbHt9TmAukV8PdsTgD/NeFnNTQH0N+6dOpkK6KVY2R6UBejiMN9vJdWTXYvqH4wD7NObXRaaDhhS4vBachEwY+6c6pt5gGG3lhkGRgO6HZ5kzoUANl/W1OFmAmbKl2jaUn3zk137Nv4AWNPkXD1N/ojMRtZQBBiV1F15sQBQk/9QHHoWcNb2CxPCTYBWFr1XttwErNKuruFQ/kHxvFMRl2h+YUY+NtcB0/haf3ESARe5Wq6rvQ2otbOb61MOmBCauMclG7DWI8hRXgzY0+hvf6SM+tRb9bXJL4B3F8jfxhBnVYjv8uoAYxo3Bd+7Buj33JozTTkHKhhHHerHIbr8U6dSwPlla8ULbgAqtrw7F0s5gi6vQq8qQEeXFi1bmsuSAw96lhfSnGrSt2fdAnQ/McPIvhbQ+YFe+CTl2xtbB89tBDQyOlgsaqBziIpUHhWAHqun0vj3ab+b9OmH9TSvYw3ftt4FHHVZ6baKfGXgF9sSqc+guGmJgt5JmufESIeK7rGku283vaMlAzeGk4gcv9HacPr+s8QqbEUbYOrIAcNF5EujDR7btQIuYIyySojl/c86Wh4Ahr6ui/NvofzpQUeNR3Qvzw2aWmlf1Prjm15S/smitsat5O9y1k6r76C51c/0LfgNcFowOr62HXDHmgBVAfkfTJRm7egGPOoU155MOkJyydqc/ptlxhGSli5A65S93jWkfw9LvprfA2ibVgGBxDlTX7WVk79Pf+b6XX8AzhBcdzMl6inSJcH0jo1vjwsTSBcm6g8/7geMXzzWBsRTL9aWjg7Q+eo2W6Y+BfzIy8ruFWm/hv0548Q1ZgKbSWJ6tryT9V0v533M6mSujzvLv0Wx5iw7ZvuKWW5wmDJguXhUYyFLp2f5Wiwt+hu0WR4NmOSwTArz1WD5+eFDam1tte4dmz98+sifLLvuVKt1p+jINEtVZZPa/yZXV627YyLUvFeRrabnmY1qajHZ//L/S//P9+M/L/kCNQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA+AEAAAAAAAA=eF77EaT9yDngjq37pbwvhvIK9he4Fd4e/TbdziN/w7ffvzbY+f1+wMO25aDd7i8Z9x9JXLBj+OB93uHDLbtLf77/kXV4atdiEtRxnvmD3aSK2g0THL7bXWv3vFYUwWD/zVu093gQm31G6qKoW0d47btSy7nWbxK212HgfKejLWl/TZzl6bmDsvYFIWn/+oXl7PkkO3f05srZPwqxUMu7IGevkequf1ZH3l6y2OP+/ip5e5nFCue7d8nbW03zmvn3jby9xlkf7SWcCvYGk/+Ulosr2B/TaNh1UEHB/rD4ruzXqgr2RSt+c35TB/rn+OSEKg0F+9frds3+A+Qf+sfY+FFNwf5ZJNfENUB1J9nDRFNUFOz7eH5dNFdWsM99usPCXEnBfs0904Npigr215by6h8Bmat1Z68nkC6JqPT7AAynrO7swxuA9C077gMtQPrSkY5faUB6W9kfj2Ag7WTzu90NSN/TuZdvB6StmeTSLIF0X6BlkBmQzl3fVWkCpDtMnyYZA+lVdRkHjYD0hrXRqSB6zcRdhiD6g52lKIi+dnknK4g258r9C4oniW3cP0H0rNgj30B0nd3MryCa6xkjmM5I2AaOT23tiWA6Q7YeTE8qLAPT88KKwPSc1AIwvaQ9H0yXK0PoVZ8h6eHGNQjtdmlk0wC5Q0Q9AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEQIAAAAAAAA=eF7b9kLi1v2a27bul/K+GMor2Kud4BJTsFxsZ7G7wF8jdLfdR/Y55+qWnrG7ta/F7pHNLbuJW6JeKGg+s0tZec7RcP1HO9er1ctU2H/bTXidVhv8idl+UoDNXYYpPPY+Ex9aeLwTtp/OsOGsgLO0/YSzvp8b9yjZsxWml+yZrWFvNvsFx30JXXuF07anvlZo2U/1UY+fZqdpvyOpfic3q4b9h2mx5VF31exPTea7MO20qv0DlX0smy+r2N+ZV6U447uyfVBk98S75sr2zTzTbf5PVrL/cFzjXBWXkv2UySf3b5qhaN+lz8JmZqNob33upDTrZwX7BZvNRBV2KdgvdT6wdlufgv1sEyMhozwF+yKDZ//dwhTsU2qC6v+7KNgfKvbi2GOhYH9B9+MEPQMF+2XWbacDtRTsz/3SrIlTU7Df4TEp/oCygr3D26bl3EoK9nr3PFd+VlCwN3kXzuYMpHeslI+6CgzHuFM+gZOANM+P8J+ZQPrGshP8QUC6OXuupAuQbshvFLQB0v8rbzebA2mn19U/TIB0POOCicZAOkZj9TkjIL1/h0kaiJZi/6sHoldUGgiBaIctscwgWubw1d+geDu3ke8HiFbdqv8NROfFu34F0btUr4DjlU1lHpj+vaAFTGccrgDThRbFYHryoQIwzbEyH0xzakDoVZ8h6WLDAwi9+DyEdrs0smgAkdNBSA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA5QIAAAAAAAA=eF6d0vkzlGEcAPCYlFXOwmZWI0capA1J6Xm+E2qyjtlES2z7JoTOt2O0NENIkhzZeLENRYQy05rt2A7KoDCymNagoQOFab0diqZjd03/QD99/oHPmXq6JyCSAOOJtWeLi0gUIWMtM+UTIPf4UnhpFwGyu1cM7nkTwDae1LdwJCBpW83FV4sIoF67lmdWCyBnQjfM31IAxOI9ksHYvbD8ZwfD7BwfFpiKNiQeiQDr9beFMptw4NtnL3asCgMfc8OFP2Z5sAU/7zRbvRuo32UhStdgsGoNd25xDoL0pUNcpTUXDuvTBcpN/sAJiDYR7twBbpnahiHXfOC94kZc4OatMPU2o03O3QK3tLMucEbdofnx7JNj7i5gNKolSEpxAtlYpW+j0g5sh6X0plIrSE2T243LmOB9nGPcwjIB641umLlCD/Yli3lrkrUBCY3Mz3fM4m5LJuu6hMbdzLqfnaPjuPhmm03ss2Ec2j/W8KGlD9sNZnyvaWrH3R7R0zDThGNoXUmisxTzyg2P5enXYovK9r74/DI81ZRjYdJ/GXspCwRixww8cNslWCwV4pMxR6V6UYexX6SXZUYegfc65E+OxAVhL6oqtYHtg2m56EWoYgM+YB3oJOHa46Xf48N18pl4+qPVQTqHgetF+yvyfOaQoufjHa07E4jDU9QMDQwgosObVdPXjiKHXiRmtshQ16O0lclztehMfO/TdQwx8vf7XFhnmotm3jQb+K5LQ3xGH/XNIQnxisa7Rr6eQl6l0izf3BMoStgz6nn6OEr4c0v7wRyJQqrv2759RqLyXooIrCURM7YLlZSRiGpdgn+VkMhELDikU0wiTilVxaZI9E5+ql6hemREZikkKv3DPj2sUEmvf0ldVenOTrcqVWnAiLQtUenZ29ikfveEKytW+3m5KEstK6UxXS09dS5VbQhRr/npksjXmM0HjQmebhpFq9gatzc4a5w2ndd1ev71v9//61++QXKoAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFwIAAAAAAAA=eF4zXnxqvkZypd1Dy86ZU548sGXjPppy9FSMnUV6nN8qVk+7D24qsxNPWdoJnVjkplSka7dt7yW/YiklOxtG/z9bp4rbrT2ZWLdHRsAuTeBm6Ys3bHZ3fm69r/KMwW4Hq7vkjm0/badG7yniFPxiKyH5cmvA5ve2853nzH77+qWtSjVzZciMZ7avXhxNuyj/zPayhI4aQ99TWx655RN0vz+x3TLb4F1G6hPbE+nLF4rfe2wbZTxLID3psW3aN8uTWp8f2U7Tk+K6MuGRbecBM/1c60e2t0o2vlz96aHtMvvVvA7bHtpu4nfZI9j60FYrsiYyLPah7cfMr/EvbB/aZu5W7e9UfWj76tir/czCD21NDrR8NmN9aHtg+nt/pd8PbJediw5/+fmBLdf7/rSr7x7Y1ryyUgl5/cB2l9utq59fPLDtWyI3Oe75A9u3zlLqoc8e2IotCTRc9fSBrcZ12zu2QPrjiXe+v4Dh6KQ/6eoFIP3j0YQj24H0grvJN1YA6av6n8QXAGmGbiPO2UA6/NRe9RlAmuffys5pQHrf34wlU4H0QT5rdRC9RP3cY1C8PFD7uR9ET3DVWwui74mVLAbRa6yr54HoGJ2fs0G0iPbOWSDav0MaTNd9OweOVxaJVWB607wZYHpO2AQwPXNWD5j2OdYFpl+wQ+hfcyDpgaMKQi9NQaUrcyA0jxGEfmA5vGkAIEXAvA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA4AIAAAAAAAA=eF5jW//xkm9SgL3gK93GmdMLbSOcPiToxgTYe7Eu5f8eEGA/i217iJ1dgP25SmuBbwoB9u/+1Im/fOVv3/u6rJ8/398+LfP1BsOjfvYGvq0Mux/72jOeX64Ze9DHfglfxfK7od72Pg8Psi6b7mn/4rFiTkKuu7204fmWvB8u9knHPJ5LzHCyT4j59Ug5wtE+Q6d99qJIe/tpPef9Sr5b21/1SF1SOs3Cniupc1Gsl6n9hZ4zDXJqRvbe/W71zcV69rOmqSbNUNK0f2p34/ChDBX7K1ec12z3UbDf4HRzx5tZkvZl6jOC7Y8L2395vumXBw+f/e8nQi6RRWz2rC8nJG2oZbD36uy0fXPlu92lX/u5BT98sONgfB3Es/653X6DIpNQrwd2Yh526pd5rtmJbdnrzRh/1q5Wa2XaTofDdkopM74vvLHDbs3m6Y/mTFxv16uysmfS/sV2L5yKWapDZ9iJqi5fq9XZa7ek96blxxWNdpPa18dEni+xu7H0i4OwdoYdg7hgguPqaLtt0uefhlj72x37KrTtZaKj3QbOB43bRI3tOCZaXtFdo2LH92PvDWZJMbs5NoHctYHsdu9W2JYs9v1hO+3p1Z8fOF/a9kxlUP7QedN2xqLGrid3TtoumbF65Uq1XbbB8xZd0N24yrb8KKNkJP8c2yX3ziX+T+q3PWCb6Nhd0myrJ//X1rez2vbgSTbGXbpltlqnF1gorS+2ZauTOm7UWWT7qPfs12zmItvQK23TTY8X2ppwXxNOX1Noa6MWP3nGgkLbg7u/JxXPLrQV0foYaD2z0NZjhvBVjxmFthWp1rGPgOmn5bZd3XYgXVTsvnspkH7F31c4D0gnmNhXzwbSKVwvPWcB6WsHxS+A0tu6+nfzQTRHHn8viL7HuLsVRFvVvGgC0WtnXgGny20OOWBahtEVTE9JMAPTiv8MwLT6Hz0wfcUTQnczQ+i2Z5B0DUvf5NIAwqpuAg==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfQAAAAAAAAA=eF5jYKAP+Lmlx+rhB177NseTxvHvNezfeYlwHPytZR90svf0L2ltexbZcz5XZLXts28zOgTJadsH9n+6dwhIl51uX6Yur23/vNv0RS2QvjY5yOUskL5aVLxHWUHb3sHxqMlNIG1k879muqK2vZbZs9Ijo/QoTSUaALryDGs=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAlAAAAAAAAAA=eF4L1VjlIrqA215pX+mzmLk89neM4hbEThKwr+B0k2QwE7RfYmOyeOluIftJaWX65jeE7FeknjtUGSNsP+PzswVS1iL2Re9dvpY7idjfMTy8+KqdiP2eCc+vsPmL2Aspnm3Y8lzEfr7FlcWBLqL2+w68ThV7w2e/Xv/c/HucV+x2771+837NbdtRepQezDQAd5gPRQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA1wAAAAAAAAA=eF5jYBheYHaELsPJWjl7GN/tpFfYmg4te0Hul3Ya5hr25ktVty3n17bveLBQ8+EbLfsj/1WCzGW17RP2cPmdl9a2f2nBMesUkN/xU8xxBpA2kUl57i6nba/O1PhDBkgfbyxr3wGkr4WGqUwF0rKLdrBIyQPpTW0Gv4H8uITf0UVAfvqVVc+igbRxsuC5A0A6Q6CoeiWQfuzGddNYQdv+lpfizK9AvsTEAH8GRW17wayK//OB4v/eTHXfBuR/6bmzPxtIa5k9Kz0ySo/So/QoPQhpAEU1DGM=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA2gAAAAAAAAA=eF5jYBheICsq+fshLSX7m9WB/8XNj9nx6ubP2L1Cy15fj/9JjZKm/fmWeXrrhbXtNzxM2RX5Q8v+yH+VIHNZbfsnr/a11Mho27+04Jh1Csjv+CnmOANIm8ikPHeX07ZXZ2r8IQOkjzeWte8A0tdCw1SmAmnZRTtYpOSB9KY2g99AflzC7+giID/9yqpn0UDaOFnw3AEgnSFQVL0SSM/78yI9XEHb/nnnyikcQLp29tzfeora9tLFUcyngXwts2elR4B8hgmKYRMVEfxRepQepUfpwUYDAM9ZEYI=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADgEAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3dWz6IapwQtp8UKOeo91DY/nag3atDcSL2fLM0lJhkReztd4SJJYWK2K+wt10UFiViP0/qiMj0PBH7P7Xz5ATPiNjf1U3avfyEiL3Pm2kzjK1E7SfseNa7gVPUvnkTf/+jWlH7fllfmfIbjPYNBgtUd4aI2u/ee/3m/Zrbtg7T2AJSG2/awfij9Cg9So/SozRlNABlbxipAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADwEAAAAAAAA=eF5TVs18bWnOaW8a/fOGIRef/ZMVRv6vHbns5ROyiu8d4bMX5mKpmFsuYN+0fYmUTrqA/Q6L7894jgnaT/w84+y6dgH7xo0TN8Y9ELI3XCi/S9lcyH5J6zMf9VdC9m8nhzTYMQnbr2PgF+37KWQvPnnO1DNLhe3dWz6IapwQtp8UKOeo91DY/nag3atDcSL2fLM0lJhkReztd4SJJYWK2K+wt10UFiViP0/qiMj0PBH7P7Xz5ATPiNjf1U3avfyEiL3Pm2kzjK1E7SfseNa7gVPUvnkTf/+jWlH7IPnHOgrSv+waDBao7gwRtd+99/rN+zW3bYUKVq1cteKMHYw/So/So/QoPUpTRgMAkFIaAA==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAsAQAAAAAAAA=eF7dkmlQk2cQx9GqlTYNJqGCgnETserE0bZjQURwiaggalugKLfVilQFrwYJUqQil4qgMBwFFTkEByhVEKwKvoIFESLI1SASLrlKjSIKjah038z0Qz91+rWffrP/3WePZ9fFuWmHjWYGEz58eeV7rnqMcOPzXXeTeMz+h+b5ZkM8JsVTUCrr4zHbI++E77EywdwVefqn9vMZ3Sgr6ZoSAbPMarlTXpCAiVds6rGiuIWFdT0n08To2KDYXZUhRr7tYqGmUoQhYYc4aK3P+FrrLlBFCZgJydPk9mAB4z3WU1QpF+GwOF99oU2E/t969d3/RoSlNytK+lz1mdR5cosLq0T4tuMKp22xPiPI39W6/os5aHrGMDVST4TnZon1Bx0BMSCu189UwOwr6Fn7R5eAsci6mrLzR8Cgr9PNwjh8pstNfnpzLeBkTXVu80VAgxzPs76TecwRmx/mznIQMKncppG99YDbwrrHG1oAT3epu9epjLF3kTzr418AP1htLn70E+DWxSZzjeWANe8zrWWpgMWFPJ/iY4AnimKfRTQBCncfmi+sAvQt8Jvic47qNIYccAwFvBr1vV8asWKq0nVNCuA8y+7BxGRAn02BgW1kV67LmnC6Ahh3t+SxC+Xrt9OcrNkPOKE+kRgdD2i/77G9lOK9rMezvan/HKXdhh2XAAeMg1Zkkb9/oUT9ivIEROztvRUNuC8g6xNFDOAZL1lb2wXA5DGwEBQAvrtCmcm7TP3zlooM8wBtpPenbaB6pXbRsspiQGN9yaxgmmtJzE0f87OAY2FlvJZs6jPHedwuAbBe9masn95lxHf4J50HVNfLWtopn4ffy2BuJuCmAA//F9RHrkK3Li0O8PhE50AM7QE0Hoz3PYpPeeLeWQZ4yaBO8iYdUDLsOaUzF5DntP0d51Kq06SusrwJuHZ+/hCX/v1gpsONleWAt4prE14VUt8F9g9uVwBOyt6YrCT9xfQoh4zbgIU1ATO51YCNa6VZ3iWAkWPM7N+p3pRrC0Z079Keom7rbKa9OMmcK8rvAE6f6ZnrqgB8ZsDvDST/8bLQoM8bAU9t5UccpDsxrU0rSaB7mHjbzd/zELB8EddxCeU/+Nmon7gZsGPJkKcu0VrqlhBBccEahdSkDtAw81j8CbJ/3TLa00r+jPOuCmEr9TOVcWsn/ctpywSWlO9M84GUBrqXeo76Tw7FHZufbSj5DfBD/xnmLirAxOtbVgO9k3bUqELbAGffCrSwbKc5kpQHHLsATdxff3SRbCNNdJKsB9C8qNr0aieg3rZHL052Ax4ejN15nbh0QV6mMfkLY58YldO7l+ejYoW9NI/4q1qTx4AjlR1z+H2A90aP7LYm/bmt0ja6H3A4sZvXQHpLYk3x0wHAKpdrN1YRv4s45/WSaG9m8PNz4sjmuJBR4syco94st89QubNMGqo8wlJnq5uEpeegyopluNxIj2VV/zJgWT2umsqy6NMBXZaGpTqTWL46DJNZPhAm6LC0ucR5y9atn7Z6nGWurEtrj6RJX7O8vjxJq3MXKrV0f22m1Y1W+mqZyDXUcn2kh5YbrXz/wb/1EPT9XzM93PU/6f/GvwBm/Qt7AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFwIAAAAAAAA=eF7bvff6zfs1t23dL+V9MZRXsN/1uONy1MPpdmqn/m+49XqDXfj1dqukJQftPnAZfXjLdcFO5N93h6c3b9ktEjoQslb/qd2m1Ohbdz++t9u6ppb5h+F3O87f1fVKQQz2Xw3vnmj2Z7Nff7NC/tANXvuNf3gDXEOF7b8//tvFu0bSXihzGafFLln7PdyWDk/eyNrXPYhYeahQzj7SbfZe30ty9jcMF65ZaSBv7/3b/LB6nbx9ywGdj4b75O1nXdJQqvsgb9+zfN96W24F+8Z5S1c+kVCw33F7Y9EnRQV7T/spxXfUFOw5dH46rdFQsNfqNWj7B6QlTKpKooF0p56lkbG6gr3XY0eOm6oK9rbOM4MaVRTsf0R7t3kpK9grBhVddVJSsN+0uGRPLtC8Z6+jrE8oAGmJs3+9gbR4vkTdR2A4We1Pj9gIpM/vzmVsBdJ7bJsF04G01Ocon2AgvfTikmY3IL3gS3+mHZDe6uqeYAmk9WIX+5oB6VP2jmUmQNr23doEYyA9SeX3fiMg7X22IgVEV/IYGYLoJc4vRUD0DYUeVhD9tST4LyieFm/4+wNEm17a8w1E+ztN/QqiJS//B8ejauhWMH1uxQQwHXm/Dkxr+5eBaTfHIjD9OKwATL9tyAfTl1UgdN0nSHpQewChGS9C6DnQdKIHpX2gtCuUdkOjYeLuOOTR1ZErTy6Ny1x3NHkA5vpHxw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAJwIAAAAAAAA=eF7bvff6zfs1t23dL+V9MZRXsG91jXjEb7DYznblM8YlHrvtVoaW72ebecZO+UJWWJDRLTuBOYcmBCk+s+Pk7IhQXfXRzmDbA7EQxt92tk0fGGvfMduH/d/u6DaFx/5PLq+b1k9h+4fLWdLOBUvbK4t+CfZ3UbJ37tPPUxfTtLfd8Dik+JeOvaZ4StuqEC37KqYrji/8Ne1XFJ2bVPBX3b7fT4ul6paavYvdNG3L46r2VzlOOfFdULGPDrEpd/qibB923qqZ21TZPn/L48DtE5Xs2VcVMKzjULK/Z+Pyz3e6or3U1MgIdWtF++upK1usPynYp7/MSu7fqWC/9MGj7QF9CvZnFzRzv8lVsL8j8v6NeJiC/ezio30PXBTsc3I8lVdYKNjnxX/lVTJQsM9uWCzppaVgv0Xy9e1INQX7thKBFXuVFewvHz0vwaWkYC8ypezUJwUFew1HxV4nIC27X0zqKjAcP6T1GUwC0k8bzF9mAmnFSkOOICDt9stOzAVIs+1UFLAB0oIZ8c3mQHqZUuwPEyBdVbtoojGQfiu97ZwRkN7qbZ8GovsesuiD6A0zTYVA9NkHCcwg+lLf9d+geHPbx/8DRLvYGnwD0X9Xu34F0fHhV8Dxqm8+D0wvWt4CppkOVYBpD+tiMO1+qABMN67IB9OL1SE08xdIunC+DqE/XIDQC6HpRRdK+0JpFygNS0+uaHw3HLQrhfLk0rjMRXc/ACGDOOM=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA9QIAAAAAAAA=eF77s/LjJd+kBHvBV7qNM6cX2r5gkBEWjU2w/6f4cVpvcIJ9fdpEvu3OCfb8+Y95pbQT7M9+mdN9jS3BflMg/4KO5fH2rkbXI3xk4+3P64ptup0RZ+8r2s4p1hpr7/4pxLQqL8Z+lzhL1S7laHum1GYm7WWR9vaRkVw/fobbe+iqnhFTC7MP+pgX/N44xP4fk7LeUb0g+w625oD3SgH2cZ9bJr+39LE/e5VBqDLQw37vl018oQtd7N+IJ2b6WTnaG8zlPX4xwMY+8rJsp9dTM3uWgzP2FZgZ2Wc9C42rbtCxj5cX8Nz/XtX+y1aLj5azFexbJFhVn++SsC9TXSFwVEbIvirD0lZCksueY/X9MI16JvuJur9F20//tDsSEii9aNNHuwmrpvw68/S5nZSvl1LGoft2idnPN704esXu0nfzbysPnLI7Gtn33v7bAbu/x35tqNLbaifMfThvAu8qu9oWy8tZE+fbLX+3UFLoxiS7OsGmuDnabXbvw/4EzdlaaXfPR3wLV0qu3aQD7TJtExLs5GROv3qQGWR3yexm42YDFzt7zaMnIq6b2plNbdTeFKBuV2G6PIp1ooTdyRXZWR/7OO1OWB9aNMHll62iQOJGxo2vbPcezlp559Yt2zzlb9Irr5yy1U6YU9VxdJctW22ZXP2vVbbXzJ4e1OecY7vpnML01aL9tmZ/nvN56jfblv9jmvlVq9o2Ppf5/IMvpbapCke7PPuLbXeevvXUuqLIlsFnI9POX4W2vId3qTw6VGj76e7MBL9Vhba7zp+znTW/0PYZA4/d31mFtp5r43NYZxba/ps1Y5nBjELbiVdK110HpqOSwq7rm4D05tB3uxcD6VXG52fMBdLbVFoUZgNpjX+JKrOAtPjZ/QdA6U7BZddMEB0qNqULRHc17m8B0V9ftTaBaL3EdeD0GVMQC6avBduD6a22JmCaUd4ATJ9fqwemlxtB6L1vIOk66iWEdoSmcxYoLQKlBaA0LB8IofEBDqRv0g==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwIAAAAAAAA=eF7zWL9n1qfrVXYPLTtnTnnywHberrmh6+Wj7XL1Xrbc5ve2+6KYI7vAwNLuAmde20c+PbsLazd4qwoo2dm+qNBp3i1u99i2ZFmqioCdxDTu88F/2ewkgpSWN7xhsNtlpLHPbPtP2zNm6cr1/F9sBUu3Nb/k/WDrkxYrcaPvpW2Q7PbX1Yuf2W7um/XTxPyZrWrxF5vHXU9trUILlk3/9sR2t1t63LTkJ7b7/Xf+W3bnse2/tnbh+wmPbS8nuszZ//GRrfzaosf9/Y9s51cJKgdZPbJVXVz87vDHh7bMzhXF3Vsf2p5d8OFaV8tD2x/7zjV+jXlou0b3QuJi24e288Nr+aJUH9q+eqi097HQQ1uP66G/FFkf2l4uWfte5PcD20nCmfwPPz+wlU+ckn/h3QPbJoZe18DXD2yTE0TsP714YDsn/Oje2OcPbOf/s9of8uyBrYlSEsuqpw9spRhZz9oCaeYXfj6/gOHowaJz8wKQ5uJNPrkdSJduOXhnBZD+HR8uvQBIt2nM454NpNewxmnOANJbjLd2TQPSDt18S6cC6WM189RBtHohxxNQvJR4SR0A0W+vOKwF0b/16xaDaNnLDfNA9NH3v2eDaJOZu2aB6DuRMmB6ach5cLyGR68C01qbZoBp3vAJYLp+Vg+YVnvaBaZFWSC02nxIenAsh9BcCRC6JAVCs2RBaDsTCJ1kDaEroenoN5S+BaUfQen7UPoBkTSx6h8SqQ5dPbH6APGDum4=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA8QIAAAAAAAA=eF77s/LjJd+kAHvBV7qNM6cX2n7q3KGtGxNgn6B9Pe1bQIC9utbbvTZ2AfZT9TNWfVIIsL8Y3j3j9it/+29LTLW/5fnbJ/jd1ec86md/hc9pUfNjX/tNRg1nPx/wsb+tYabpG+Jtv2K17/kz0zzt07RmX99f724fWOb04P1LF/uSOssfB+Y52Rto/LRMjHG0P9Xz6SlbkL39hCy/4zt/W9tX6rz8c2eGhX3P+5jcNF9T+6fivzJvaRjZl9Vl5c6s0LP/Nj/vC7O6pv3urBMPy3NU7A36zxhu9Vewz/jz2mvGfEl78ehghZOnhO2TmNe+qRfksxdRLc4VL2Oz/xTk8M+vgcGeRWO/dsON73Z+U670FH/6YCcyd+d8tU3P7WTWBPj7+jywu3294q0T/zW7W+p21z4knrX7tmhWYaHTYbslRdvbpt7aYVef4TnhwOT1djULag9uOrDYLmv/jNTZYTPs5mje8LTo6rVLlUu7mbSy0W6PtNm75edL7Kbvz/XQ186wezrJqEBqdbSdl1Fu+S0rf7vnS++8rEp0tPt7N9ySX9TYbpND3ySP1Sp2xhbuP+6Ii9m9LtMRFA5gt5s+X8/5u/cPW53wZfdZOV7aplr933e6/abtis+W/X23TtpyCkvWa6vssvXgXSo3ad0q21Xu5c6reebYBvwMZfBO6Lc1WvMkz7i42TZ7zWHuv+3VtrtUtvNL6JbZnnb9H3h1XbHtnCMqh/g6i2zfM23xj2YusmX5P+uf7vFC2+pHrsuT1xTarm/i4Z2+oND2iofB9qLZhbaHphqzW88stD134tUWjxmFtvKO3f6PgOlHT6a6YjuQlox9sGMpkM6xmlAwD0jbtFyvmg2kY0X2e84C0q8/s10ApbdfR5/PB9EX9vL0gmjG5ztbQbT9n+dNIJon8wo4Xf4VywHTPu9cwPTqADMwrfXSAExv/acHpje6Q2gOJgj97hkkXb+Apu8bLyG0ApTPC6WFoLQAGh+WLwAu9XdrAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfQAAAAAAAAA=eF5jYKAPmB2hy3Cyls9e59VMr1fxmvYPDj3Od/mnZS90TzygWUbb3mJmf+5GWW17vf5P+UZy2vbnsp9dXQakZVfNn8Ulr22fJBWsmA6kz+08qLIVSN87IbpTREHbfkptivoFIP3TZifzREVtey2zZ6VHRulRmko0ADUECYE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAkwAAAAAAAAA=eF7TcTB8tHUBt31Ti9/DlGYe+1MJISdT8gXsVcQ8bt1VE7SPXHnD9GC3kP2JnrnPjL4J2T86GRq61l/Y/k1Wu/bqK8L2X0qN2x7Zith/+e0ZcydcxN7XZ6NkyFwRe5HePytzGUXtu0yr+046i9p77D+2+YsDn71EwbMzDY0n7XbvvX7zfs1t21F6lB7MNABYuRFzAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange.prj
index 72457ca07acb09c149007615cc1917c8cc4b551c..3044266418a93717e73247ae934b9f24828fd5b5 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange.prj
@@ -412,6 +412,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>calcite_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>PSINA_12_07_110615_DAV_s.dat</database>
         <solution>
             <temperature>25</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_0_t_0.000000.vtu
index 9045e87a84f2c0bfb28513527691ba47919e532e..e9ca68afb2f51f29adc650e98fb5a1852b128d96 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_0_t_0.000000.vtu
@@ -7,7 +7,7 @@
       <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="168"                 />
       <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="240"                 />
       <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="312"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="7.9018480282"         RangeMax="7.9018554854"         offset="392"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="7.9018486313"         RangeMax="7.9018508612"         offset="396"                 />
       <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="2.4488622045e-06"     RangeMax="2.4488622045e-06"     offset="484"                 />
       <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="2.446e-06"            RangeMax="2.446e-06"            offset="568"                 />
       <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="652"                 />
@@ -40,6 +40,6 @@
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF4T2fwyvlhD215klB6lR+lRepQepUmgAe1SZ78=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF7zyu1WDFbQtvcapUfpUXqUHqVHaRJoAIKYwhA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9A1tDTVTbcwtUhLMzEBkgAyrgUDAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAIgAAAAAAAAA=eF4TYZdjbJgt75B0dA1P3Sg9So/So/QoPUoTSQMAhOOadA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF4rOf7P+knXEbuSUXqUHqVH6VF6lCaBBgAmDNJOAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF47kdSyY1/LEbsTo/QoPUqP0qP0KE0CDQBFOqT+AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5bNatmq6C4gv2qUXqUHqVx0gDMdi18AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5bNatmq6C4gv2qUXqUHqVx0gDMdi18AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF6bYtLTMHN6oe2UUXqUHqVx0gAQZnVKAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwAAAAAAAAA=eF6bs1j+4eJXD2znQuk5o/QoPUpj0ACpQO/+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF6bYtLTMHN6oe2UUXqUHqVx0gAQZnVKAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF4T2fwyvlhD215klB6lR2kMGgBlejPgAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF4T2fwyvlhD215klB6lR+lRepQepUmgAe1SZ78=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF7zyu1WDFbQtvcapUfpUXqUHqVHaRJoAIKYwhA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAIQAAAAAAAAA=eF6rcDt1qm62vEPiShXTUXqUHqVH6VF6lCaWBgDKsDwmAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF4rOf7P+knXEbuSUXqUHqVH6VF6lCaBBgAmDNJOAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF47kdSyY1/LEbsTo/QoPUqP0qP0KE0CDQBFOqT+AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5bNatmq6C4gv2qUXqUHqVx0gDMdi18AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5bNatmq6C4gv2qUXqUHqVx0gDMdi18AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF6bYtLTMHN6oe2UUXqUHqVx0gAQZnVKAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQAAAAAAAAA=eF6bs1j+4eJXD2znjNKj9CiNkwYApiDv/Q==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF6bYtLTMHN6oe2UUXqUHqVx0gAQZnVKAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF4T2fwyvlhD215klB6lR2kMGgBlejPgAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_126_t_12600.000000.vtu
index 9c099a2745c0c64d0f4b749aeb2df06e28692fd8..2fbd9757e99f5d138cdce5ecc070491e7ff1fe18 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_126_t_12600.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_126_t_12600.000000.vtu
@@ -2,44 +2,44 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020774045715"     offset="0"                   />
-      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-6.3649179011e-37"    RangeMax="0.00020775286603"     offset="868"                 />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011424731226"     offset="1824"                />
-      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-6.2282857813e-120"   RangeMax="0.00011418268655"     offset="2128"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2472"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.5719283195"        RangeMax="9.8236790107"         offset="2552"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="-2.4163421816e-120"   RangeMax="2.4552594854e-06"     offset="4568"                />
-      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-7.5226247636e-39"    RangeMax="2.455406143e-06"      offset="5592"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-4.4094349429e-138"   RangeMax="2.354043727e-06"      offset="6612"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-1.2833356496e-121"   RangeMax="2.3527121267e-06"     offset="7008"                />
+      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020773088493"     offset="0"                   />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020772375238"     offset="872"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011401460057"     offset="1736"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011398582308"     offset="2040"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2348"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.5719619138"        RangeMax="9.7025347233"         offset="2432"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4551463537e-06"     offset="4456"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4550620549e-06"     offset="5316"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-2.0602537432e-321"   RangeMax="2.3492487811e-06"     offset="6176"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-2.0602537432e-321"   RangeMax="2.3486558228e-06"     offset="6496"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.900639174e-11"      RangeMax="0.00014796621409"     offset="7408"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000001e-10"     RangeMax="0.00022972306584"     offset="8312"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0000001482e-12"     RangeMax="0.002"                offset="9252"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1.0000614881e-07"     offset="10388"               />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0000000704e-12"     RangeMax="0.0010238930009"      offset="11324"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="12460"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="12964"               />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00014645134327"     offset="6816"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00023273912436"     offset="7748"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0000001482e-12"     RangeMax="0.002"                offset="8712"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1e-07"                offset="9848"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0000000705e-12"     RangeMax="0.0010231157842"      offset="10804"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="11940"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="12216"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020773251671"     offset="14040"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011404858608"     offset="14520"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="14712"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="14776"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020772441783"     offset="13292"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.0001139093569"      offset="13772"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="13964"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="14028"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="15268"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="14244"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="16196"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="16496"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="16808"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="15172"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="15472"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="15784"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAaQIAAAAAAAA=eF7tz91L01EYwHG9KNSBxlqZLMWXSreTOqdWWu0IgS+ZzmnDtkVW1G9lpoTgbGL2Yqll+TKN1LXNZRQGpcOMmNOiYKm0gqALc6Zr5iAX5jDJi+o5Z/9A3XtuPnwPD4fz+Pisnv85xRK/948bt+DZ2oT1o4UB2OXcH70Sg/CQVbNpao6HJ0zmhuRUhMt1m0dCdyD8fXD5Kgea0TMLWtBP/pOl2onwL0HfKeMuhFns8iFzEsJRkT0XnMkIz2RKasVChNn596aliQibq3WOXAHC+eMVizEJCOMIpvp1HMzrTmwojUf4MlPK9McizFW42Hy4V7fMXgmEFilt4TKwss7jfrsd4YymGe4CaMh9NzcJXv/wau8UOBA3lbIN5gbUI+IgUKW/o2kDlePCgFLQFCY1cODdlMairK/Qv3nZt25DBwnv2hhw4PjKl0D4x8cnJ484oJsPBBkqoH3nc/l54EF72vAY2Ds/0fYITMzwLWDBPmFL8SoP9AOroCoVOrZbGcED+0NFMgWYlvcmT0z2Ngsyz4EXF13Zp8E1a39Ia8BD7lGsBktKonzrwZpvY45asHM5mH8T5HZZJTfAyZC6yGawWJ7OaQIZ5/OxFtBitycRy4Rn+lrBSvdwEfGpPJ+nAfsehvwh7c/ZpyS91fRCQvzcGXeN+HLjpSqi7ejuduJ97rpmIn/+mJZoPbvQQWRZTHpiB2rVUQ2J3UR0vt9A1NvstE01PdT63mgjcdoTSHW70qm6rj1UzacC6qBRTC3zl1GDZYXU2SwFdUkrp5a4vC2weM3JOUx1iryGF3t9pvDaULnqqv/uX4Au/do=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAArAIAAAAAAAA=eF7tz2tIU2EYwPHlskW5TAOdSEPDS3TyVpo35LUUS9KNjLwOMW/kBZUtM6zRzDDTeZukaTl1aolarouiQcIsc4TTSAvniImhZoUOWlppruc9ww8OBtFnny8//s95Oe85FAo5AspmN8awje0FBhrbGzu3MYZ7wzY2gv993hLzmeczIzTd6LC6PC1F6tLU9/Ld/gGKoFr5NctZbpnRtyR2l/kfVHSUO+Raan84IUehiSTKhoGCi56ekXoQqD50rX9KdQh9r1fcpPkT6FldqnSnL4GOnzPzewhqFKP7SvwIFFLo3Td3jEADurRFWx8C2Xcl+3l4EogVm/cm0otAlaKSwPfwvlGO/5+JIwTKoLJZC24EWh07vf7cnUD5OcO6XFcC0XlzPlawTx7sr813IZDFq8CWBdDbZMl38TCB5P3KTjdohXb+qgy6uG1cpAI144Nl06B59D02bo9MWbMXnONGzM/YgNbTlLhOUKU+JSsAK9STI65wX7hLtm4d+r7myicp9K49tN8C8EPrNQtn+A4mLZa9Cm3JXwkpheZrR+xSwdnta2dVoNj89uMXoFxitmgN/xHdvrtqG9j6Zbg2CAyzo5cdBbnFk5Lz4CfW2INIsCyTnpMLLgeoA7LAeEferwJw4Zs9lw/y37LEt8DOHUPqIpAlYDLLwXSKQ6EQvIgojypB67aUoQrcPVSGCOwOSrlTBTJ6TKZwXwg1rcGyo6xQNVjM/WiLZShjuNjspJoEbLKuuxTL+6m9jnWSz9Zi4+t6q7HKhNYGbDu1+y55ruhkEzb8RmIjtqHrUjN2MnEvqZizSip9PUpamOQpwaZx7EmpJ8JIx7KCSRvpkaSiuQhSmiaGdOVJNGl8UxxpB1MvMuWQTizruzdO36xwvcLLeg+kb+4tt/wX/wKaoB9AAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwQAAAAAAAAA=eF5jYBjcYBnjZSG9vwftYPw1xn/7SpZJ2u91mmv0YJ+g/YaOd29W9sratzcfdWX7IGMvfOJ6Gu9DWfu//0J0vV7J2h9nv/3w8TlZe55CsYeMn2Xtwyt5T7sslLX38Dp7adkpWftA8ThZxwRZ+5apaVdvdsnal/+17rPglbV3Xnbjjr+NrL2orqVV4loZe916V51td2TsTb55TL0+77ed9VyVm7wLRO1h7mq3XXqWp+cK3J2jYBSMglEw3AEAW/FF7w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA4AAAAAAAAAA=eF5jYEABDQzYAbHi6HxcoAGXeEnbO4fdgoWTYAK8M3kKGfne2vmxNd6wEzVY/iVNz1BZTMp+8uTujZ8VhO0vfN70KHyyrP1D3coSOSZZ+zmFi86135O1d+5/MEv6law9Y4nm5UUnZe2nLTWct/qdrP2BFWIOPLNk7UWvi08UPSJrX1G66LRhuKz9x82zvqc2ydr7LNjlfu6/jP0B7i6vPway9qZC2WkSC2Tst29ju9JwTsb+X//2c2/LP9p9kxHdpLeP3x7mTtH0vyZuSzfZYffWKBgFo2AUDD8AALxdT0o=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9A1tDTVTbcwtUhLMzEBkgAyrgUDAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxwUAAAAAAAA=eF411Hk4VXkYB/AuhRoG95zfsUQdabVE2UL4FXEJGdkKLYYKdVNRmKi42SIlLbYpxSW50R6lXjUhuyaRYgoZuiRT2UrNuXee+evzfN/z/t73d57zPKfqU9Zw/BMFGBD4j5wJlIcRtZ4O02A2LA4xKjOPV4QcN1npibsEbJTd6T59ig0vLOdGjkWyIeavAOtygSI066sUy7si0Lq1cVVZvibmthgl6E6bh2tWODo/9GIDcbmFMolhQ6yd76OiNASCK8Ytf2QrQswjXlrAFhJcJ1e0aKykQE/R5fH6cKYvu/XCTDsSuicproMuG7qUJco8U0nIepZ8oKCCxnnKxwNTd9J4bLdDmsppNpQFG713FbIhjZhx1ruWxtK0Qs2sVzTuqSSOrlbVwNxDvEUBAzTWMDgrF/yExg/7hCtt3tA49UG/f/ggjW95zo6OSFQEbesbT2vbaNzkWtoQJqWBc/pmPLbtoHFCgozehzM03l2xS9DBzB96+ZDknaex0Ke1rekqCdmU56YNDTTe59RiUWRC48DtleqHztL4U9M1GfOPNFbWqWHt3UlAyQZCYzSOmb9eExdcIuBy9khi8xiNy/U4rzdH0tielP5Tm09jMi25yrqOACu1S4M6CTTOV7z982tm/+9vU/c3hRHQzqVDnaZo3LvACNvU01j7jUf4AhMS9JOyfPKiSCjYa1yrxSHgeP+7+bltBLR124/eoUkYE6oMCVoIMBRGc/TzCSi4JnO504CE/kJ1cxslErw9/jEuX0zCDc3V5FAEARNZp4ZLbpNw4ebHWgkvEmQLtzo07iRhyYe4OO2/SRgM6hrmVRDgMLBm7HMWCbuWkjP09pDw9jl/IQAJvpY+fSp8Eh6kmzn3TkOwW/uQ3KwGEraH+K12qidhNt8uVe0lY/TeZpnvJFTWc5Z+ySDhTd5hZZ48gpAwCo0KSPCsy0g5MklC8I4RmTrm3Cer125z2Qi8Hv9S7kogIKtzX4EGgoD31CZ5Zt4Ri0Xm5fMRSKnE5cYoIFhYzBrm2CII6zi2NWATAn7LuOoGTwTyTd3bDOwQ1FHxvX4uCNK6ii/2OiFYly6U0FqP4E5l+dXlvgiwkUJsymEEalKylpxQBO1Szt5oG4LOVn3X5DAE570LJWODmP1eawZjYhA0FJSYvCxBkDHLWih5gtl/sLOLz0OwbMmO730RCBLJb46lFxD4+rl3nElBcDO1/obSVQSmapy4bj6CqH2SJzqKmDy6QrCFyXwXtykfAQK7+yydJZnMe62ubFSvRsA7dZQz9zKC4uqLQqO7CCS/Puf8eg+BiaYKK6MBwbTirqrx+wheSKbm1FQhcL9xMyYQEKhMhC/SakFQP9T0Ra4ZgZVnSqxGL4KR+5/XXn+GoL+s++j2QQQna97HDvYgMNxyKyhlmPkeVrvSJrsRaEZmm8z5isBWKNsT3M/U++V10yYQuClwDXk/EEjkHD56fRzB85/dgr9NIjBQ28JdO50Co+Z01R/MnJi+dXvmyFGwvPu3zAoZCpQqQvJIRAHNmltlz+STplYJmaoUGHpY3nZk/HpFU12XcRfra4mxMgW2ul3xL2gKsF7QgemaFFBt6QYRWhRoS+qc5jCZ7W+eVLqMeZ7u3XVAlwJd5XL1KGMKWtsHHHkGFHg09lWZmVLgdq/If50JBXO4d8blmf+P+k8DErlmFChmVb4LwRQ8jbSIqrSkIMksYCbLloLNB0f0V1oz91Lx+XKPQ8FSqwa6w465f4FJfY49BRbtjacKGOXqlX+cZIyML5Q9xzjab1OXzNh5p3/yOOOmTHdClH25mjNFJutHLxHJqlmhJJIfKnBJYgyOvnj9GGNIxBrvRMZL8aqlIj9MalmI9Di8Q2xRoc4akdz9p6xEuqwdXCWujypaijw/T8lGZLVnJBafa/AX90k4J1uLzJ9SE5/3Mw4V1/NGKXE/nviv/n8+lyIttqLGSGzp5oVi/wUR9tY6AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA3gIAAAAAAAA=eF7t0OtLU3EYB/CJ5S3SmpfaUiQFE28TETWtE6RYGpIXCDe0vIw5pRBnambGDC3ZROd9ZipTM90QTDOct4meCeEbMY28QJQRzHKG2zSv9PzO+fmid/0B7s1n3+95nsPDCWFQP/EaVkrLKML5Ac4q7OG/84xknE9iOWb0n2ZacSzu/XDexnkSz2XQMAy4j8bZiOcVeO4F7q9ji3AfhecGcX90lwv2Bn5+dP8c1hnvzycWVuZrZ0o8cS+8syM2FSc5+18cmCASFHZZXxPX6uY0geIYVhnXdP4Nm71pm+ukIXTV7G7b9Q7iMNLNO1pKEt93apMF8inCkZu5FS8niR5upDC0niRK1b8PLkM+ZIb5KsC0uoCmaw0k0XrAt3ZrJIkrH3gdfnUkkcnJuGAH89pbSjG3hiSCmjYMrrUkYV7splmQkcRVVU7f42qScP4xcV9VRRK17NF33tAru5oTlythz0i2BUEv6el3T4Fsb9NXKwf1/dwoDpiwMO8eBU7fimgJBXt79G1h4MruNlMEsjY/jqE9vxZXqRZcl63xu8H9uQqBB7xXFZHKNQcFXnu95eBAvamKD7rHFg2sgp7ceItJ0NVY4xUAdy1LQuwdwUsc1kwOOL7wJ4QHJq+XdraDk6kVchm6f8R4exp86OTrrwaHZu/6fAEjT8cwP4Hto+VTG6BEH6bWgU7Cb/xd0KxBL90C00zFBgZ8l3NrrY2HkKeHlEsnIPOChXnm4OKrFZYleNYmJ8YCtHcY5lmBEYJ7OtS7NBRYWYON7qIZ1Ht7/ExHmZm1F450DtPWIM9wxM+Q4TJPJdL+l0M7smtWMogsWVW8RZ4SGYaRS3FsNTL4ad4YtR/SPIpcbJOPI3U+QZRJXJYGGcjQUzklOI7KK2UEZfqikLLUNpWyqVNEaZWbTfmkKp8y/2Ye5fPwR5TvJwoos0foPPqSVmNZSPl5n85SFzq/ZtKKPI899v/9CwrJgbk=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA3AIAAAAAAAA=eF7t0P8v1HEcB/Bjd6Sh7W5nEtaUuR+KW9Nw8vFtDS2GNnRd33w5EitfwnXJVZrma7lSHN2wvp1maczN17QPlroWmghNXb7F7ZavEdbr/fm8/eC3/gCfXx6f5/Pz+rw+731cGdQl+4XNo2VIcU7EuQa7sXWecRpnFtbJgL5R0MqCce+I8zLOb/FcLA1jHvfHcF7A85V4Lgf3Plgp7gPwXAPuN89lg/XDzzfP34e1xu/PSlfjzYbsWTzcn1NJchpSu5SuUm6p8rClXKLqtrpxlamWVTfNGZqLVdlevvvsznQQ+Waj+/MErwnRTAn3+z2S+BAaumchmCRyA9I0vx+RhN3gY/GlhyRRSuQOz4C23V+miqGvra1I7HtAEpN7OSEtJSSxxC751ikniaJ8zUz1fZIYt/JmrcO+22/0V9qKSSKR7TN95y5JcIr12Q7Qj6g7zS4XkYR2ws1zGpRHq7R1hSSxrAr5wYKs4Xs3+kFW1iy6SECXEYcxe/CCqVDhBp6wbjzrATaLb8ah3JnBa8oE6zZyW+NAixjTrgHQiykPagTLjMYOCWCvgJO+0wI0GWWXloPcopRTGWByeMD6Ivpu4IL2M9gQX/XOG85rqLN9ZQ/29ZSFXQerbN1nY8EemfTgS/CoO8dXAVqSEc4a0KvIgN2BFGh1WtBxvFw5jOYKPKfmwKGs3jQdGM4fjFoDu3brl/6AkSHMA4bwX/jXKiwZ4Mq8p5wFCtMjRUwwwl90yxg04l7sNwLNj/Af7ABjBM+dkU9TdA4mYOVc1gLKysHzqSgvJrWeRK5l8RRIrx51AVJTHVqL9NulfoZ8sV7YiBxui65HFgonm5ETtglNSJHJRCsy6pMr5dew923IseVMyvB6p3bkx1Uzyr8DQsq05OOUqz8TKNtXxJQtgamU/jNJlFMe6ZTcoDRKfXYGZb8drUcvbVgX7RO2hN5nTJvKoy2w2Zq33fZ//AdRdYmuAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACAEAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNJfoLQihGIohKozgfJPQ2l/qPiDk+G/cizO8klD9c2tuXb+zY50u4ashhRnx6zFX2Rf889/ecAu9uDKuXvTttttc1svXlxz2C5JpWlOk8hhuzI5t668zYft7v+5sb9152G7cj+LxyXLD9v9ODjH0nX/YTs+R1fvhM7DdsdWvitZueSwndNBH9+mOKA+p8TAGVWH7Zh6Xp8/pH7YTtGqvfy822G7tZcflE58ccju8PLPh46xH7br1cro1jdbZOflpvogv2WPHdT5DPOe87uVS1TD+aNgFIyCUTDcAQAOa2VaAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACQEAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNJfoLQihGIohKozgfJPQ2l/qPgB3+QDBU1ik6Sh+syZBMT9NSbbNZz2nlVtenWZ7zPbHCfjg3bLssSMV1nutLuW73LEsOGwXYjoh9sFCoftUr5l3j2y8bDd4oDdXOk7D9v9f3yJ5d/iw3bSp9q1M/ccttM/YF88t+Ww3Z7Q1y9DFhy2u6+4l6cz4rBd0OSCCaylh+0WvNqT8UrusN2Gpsb54faH7cSi62TO3z9kt+X6nrKMf4fsNHfnJ2hxTrcLX+07gf3dFjuo8xmWWxhI906LgPNHwSgYBaNguAMAAIBhDA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAhQIAAAAAAAA=eF67Jtc644vZbdtVs2q2Coor2LOsW2TSvX2SXaz94usNQavtwtaqnbl0c6/dzb7beWIfz9hp3fEWuh1wy66rwnynL+9zu4REFRH39Z/t+E5ecFPxYbB/qKhSqLGf076hTdD1br+wPceES5JvUpTtZVQFXJRvKtpXzy+vMylTtG/02r/4HYOi/U3ORiGragV7B6NHPXevytsXvJlUm7BRzj7A/vvmW+2y9trR5dbbfGXs59WtM5rdIWNvlj/D/4+ErH1F4Prni1Jk7WelFZuy7Je192Pb524gLmd/8DPT4eJsOXvl4zn9h3bJ2cccSOP5zCxvP2nb6aefXeXtz6k/mfWrXt6+x+5H97SN8vZiaR6ZW2/J2x/4Vfh33m95+yo53lclXAr2q06eZNwqrGC/chOrJJ+Ugn2B/eft7HIK9gYrnO00FBTs7x7+5v0GSBupey06AKS/e2/f809ewb5L1/PLa6A6Y7u81btkFexv7RC60iOjYK8b2SZfLq1g/0nmsGsL0Ly0ay//b5dUsI/oXdsgCKRfPHkU1SuhYM8x68c9NSB95epFlpvA+Ag43v17HpB2mDGtvARIP1C6eTkUSE9dpCrmAKQ/qTI+NgDSvCLSmWpA2qnvs6c8kJ6wmL1ZCkh7u4RGigPpXV/+uYsCaQ1Xs0/CQPreFkMJEN259GifEJCOna5hCaJDqvJYQLTbkqAnoPTwcNKfCyBa/W35URC9x2fdPhB9z2LnLhCdsblgB4jWuaG0HUS/UE3bBqL/9fwBp6fK3wfB9MerC8H0h7gJYLpEqB1MKwk1genfOfVgOoC3Dkw3x9SCabdfkHRZcQpCu2+A0OwzIDQs3dKaBgBRmTZtAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAoAIAAAAAAAA=eF6l0v8v1AEcx3HNuGVD92XO5XZ97ug64jJ9k7rPu3FU3ETlNFpXHGbdGvLlmsuK61bSTiM5NA1dO80py4Wc0iSWXNEhGXO+3DorG5HN1vp8WX9BPz1+eL1/ez/jUme/zqi+iZprVO1UJgL2/R4ipesdNPiAOTO9vhE1rry9NSJuRyXaT5kj6X1or8vDJpZkBJVz7pXN3phBC87eL6yQOdD+he2tm4o19Hzy1MCJF04Q3h2uMwu2wsTx1wdzM5ig+lA/3FbEhNwv40XKaBaMVryb55h8wMimt3WtcqBBdihPUsuFX/rIcXGiHygzRWNSdwFER39MaF4JgpQcDjuMLYSwxpNLNGMgBC14WFhNuyHHwY2zawIga1/Ik8osf5D9GFNZ5QKIcNfUHknfBcJj0lj/Aj7kH97SUaLbCa6Pkparhv1Aywh2pjL9YHCVvky94gtpnwOUYOOBzH5zaDKVB9bO0OSxdS7E6pa7HTounNO62QwxXDDQW9jlblxwerCxSLMisED/o2gxIGCz2hwODQLe4Wz75UsIlN39HbWZgIDpDQ3NjcQclQbaQhHQU13qsvdgu9Lcmi1AoEfKS4v3RWCohc6s24HA0Qn3xjU2AuquULWXDwLTj+O5AywEGFLfvFlvBL77aPlizNKgcq9J7F/F789cqMB02mD2yjEtmm1JUZhiS4c5BNMWExDGx2wH/WkOZl/DXjkLs1fhn+iFyfA4dZWBWTa/nkjHrJlWN9PwO1F1BG6xM0LBTchYmcP7mFIbLbjPujh9uBJBlRl3mvKzE3fRsfgSN//VoAmXpxYSCvsnib5KKUZCRXwVoXjpNqExpYRQ5nmdkH+xiNwLrxHOeZLaJshOn/eQZulJ6QZS01NSSjXpv67/17+C5jkwAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Iek8dJNYmA/Nx/qrJmXcT3UmxWrk2FgPxyUGw86YGA/VJWSletdYD+G2KbOM1pgP35niDJ5VGA/UwETvfdLYD96C1MGvT9gP/xN7cKmLmA/NbSlnGQXYD/yho98/PBfP45Udfi8oF8/8IVIlsI6Xz+WQOSQ17teP5ApDpIDIV4/XmDYU8NnXT9PSB8PP45cP2iLmmd9k1s/srGZyI13Wj9F2G+epTtZP0PKOcUs4lc/zKRITbZuVj/gG1HU5eVUPzyR/OJBTVM/prN2ffaqUT9XbUuijAVQPxpSF104x0w/+FvXbPyWST84gwJIC4ZGPz4lxkGGnkM/4vSIErDoQD9hx7tXatU8P+B4/QcvUTg/jwO1jndIND/n7tuYJrswP9tTLFVxSys/j4EH0sQDJj+rPd4ve44hP0L6vq/brxs/+5taZcSVFT/25EfaUaMQPwYA4YctXAk/Rm1yuggcAz9qsPxrqXn8PmTbgMFI+vQ+2iL+/RyQ7j56JK9THATmPrILYZ/rXd8+yl+QZRcZ1j6QZIAcVsvOPrD8EADbOMU+TLo17+DuvD6slO6HmIKzPrzfBGGsB6o+ukkTZ+ktoT6+Kn1QsG+WPn0wOE5+/ow+9CK55v2Jgj5a3ktib3Z3PiMX8JmTY20+lL2js/c3Yj4wnio1GVxWPm7Xzd7WKks+2HetbytXQD5KFZC9tHYzPhVksO5k9SY+thWZW0nSGj7nN79eDAoPPjq9DxSgywE+DUD7Nao59D1B48i1ZMzmPSAc4e7eg9k9JJvZQoZnzD3U2JRZL4+/PaQgoAd/mrE9P1Vsb3rsoz1lxAab30OXPYqPXmPws4w9ygpUn+g0gz3+v7X6HGN8Pdr2/pwmJHc9ICLvVaVrdD3UHENqjQVzPdYA+VkHT3I9DHhjQMnycT1bu9DOj8RxPbfSz0eXrXE9Do+pG0WicT02R1VtvJxxPXw5vYUNmnE9xp+QIMOYcT30WsN3JZhxPTh7GtPal3E94tJUwreXcT23NKFpp5dxPYlKqtmfl3E9EGjFYJyXcT3uZ7fLmpdxPYvpxhSal3E9KDyLxJmXcT0sTnikAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAnQIAAAAAAAA=eF6l0lswVAEcx/FsqVyKGdXMTojNZSw1NTKI/xkU06QwlKnEmq2YaCdFhYQyScuDOLMUm8y2EVltaVFbmGqHLugypRvn7OXsTi7tdGJ3GtQ5Z3vx3NPn5ff2+37YWqZKGclHxJJ1uOQ7Bq49+/wyt/MRw7sssrEhBukQnJLzPRCk2Z4juuS9CeEcPR12P4GDNK+9aGXXshoZdkKGfqK2yIm49LglbCskg3hcQEaZYDTaYRkvwAg1HkXD2ikNLCIdL8S362BmbgMrcVIHXzDhwKpgAvonxgrJKwRUemYH5pEEPJL2skP36mG5sPtckUIPaPXHdG+2AdDk9qbKNj3sKfD91uekh/67AbPDYgJkLWmLx10IUHIRfvZ1HQgHUHmUuw7cYx9s1DRpAR+KLHnqrwXHaa+GEJUGam//WsFL1UBuuTjIxNJASL5ReF6mhocjb8jNh9Tw8rCP0uymhsnpF47lehzOPp/LEyhwGHV7lvanAofekoSZ0gwc6vAeJDQGB4FLcFZCIA6+Wn6KtScOX4+7ckVrcNhyxtW83w6H1kLe604WDlIp+oo7i8Go3/z6CBMGZUu3sW6QGFjfOaYzGTFgBYkq7H9goCwaUrVNYlB8QLZTMYGBtILdYUOZOjjWXTWOwcF7gZJwyurwmHlbypy0ZJSgfiuNJ9BByjAuz/iEslAQ97mDsiB0R6aM8nfO+6QWyqnSrrdNlGb/mvBblIbyiF1SSm1XT+dNStG1vhTa2q4ZH9pih2lbWsXVCTPdR6rm8hRtfbXYQFtiE6mjtak6oqFFiCQ1rfOnAaYnSW4+o6oxljGxOYjRQ+7HaE7yYpw1cRiVu90ZnTPcGOUrLZ4ctPSpqrNY/6/XnFaLxqyFZrcu3P2vfwGzz8PyAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/M+r8dJNYlA/gFz4lZmXcT1UJ+L35mFQP0NC7X4wYVA/Kv3+4RBgUD/Wmj76eF5QPwoaq/t9XFA/tE+8fJBaUD9Eyuf/ullQP1LXcflTW1A/uOYNlLtfUD+X4E4nNmhQP8xgBL2ExlA/Bg93h5pgUD+qTK+hFfBPP4CqI1976k4/EB7DghqoTT8ildijJyJMPwX9z0HYU0o/buLNaTMlSD+GO6XQsUhFP0CBuqQx7EM/s5uVHFHmQj8cVK69c6lBP+RnzJVoY0A/hYmXuW4jPj94hUF3i3M7P+z2h7PKwjg/EmMiiWQcNj8BxtVlxoozP4SfN3E5FzE/RACzaBqTLT/pYioes08pP8vYcg+/bCU/C1grrRHvIT8AncaACrAdPwz3UQ+4Sxg/UDLdf4CoEz8k5DHqVnMPP3KE4kdB3wg/h9PCPhFyAz+2JbhLQg/+PtAP3vkV+PY+M7rK5gNa8T4S0VXdMuvpPi6n4wWYI+M+HPupWHLy2z64+Th85izUPssuScjyzcw+GN+In2hVxD5Iz12e9GO8PjIzLNkbmrM+qNmRQrzFqj5oS4oUnBWiPpMN2icJK5g+sxPBidXzjz64Qetnv+WEPhmiCjPHC3s+Ku2dyoVRcT5i+8vo1fJlPhG7aSuch1s+RFWk/KUWUT7oJT1C4P9EPr8azMPnizk+1mVD8OPELj6Su4Lv/1giPsba+RVrqxU+tPnB/5hZCT4JYP71vGH9Pd3NgvGX4PA9k5yAGD874z0AX1de5cLVPRys1e3egMg9nOB7KrSOuz3GESzT8ievPapZSIrU5qE96kiirY9GlT3LJDQUfsaKPcw8/tvKSYI9Ei1wMxCHez0yD84MOb92PVY/PEBnPnQ9jAZ8LdDxcj04RUABs0ZyPWqUYulr73E90Ns93EjDcT0eXI8TJ61xPTcCucIlonE9pDeFbbiccT0Pt2zlEJpxPZawSDnHmHE9chPckCiYcT1qNdbQ3JdxPbiZ6u64l3E9IsphEaiXcT2uV6szoJdxPTHlnI+cl3E91hd145qXcT2meEMgmpdxPRoREciZl3E9vqFeoZmXcT3XRnmqAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAARwEAAAAAAAA=eF5jYBicYPGmKyILlaTtg8Ley+d0aNkv08hZommhba+lrb87wkrbvsE1eBcPkC8+q1s2wFTbvsq3atMlI237tiVdr3YbaNtvjE/1lNTXtj+XsHrPW11t+5g/kZeMgXRC9yuW+zra9qITT066C6S3XDl3RAoonr/1qV8jkC4LvVXyF0iz6ZWsq9PTtnflNFj4A0h7yOinJgPN+/+kV3M3kNaYJ5H6H0hnmficMwTa98OMOTQUSL+8xuOVC6TXVd49VQOkv2l/L2wD0lEn39v2AGnlXWmz+4G00MPT9ROB9Bd+0Y5JQHoTo5nIZCAt/rgxBkRfuHG9AURb7Vs6CUT/0NGcDaKDSpTmg+hHPZ8WgGgN9YMLQbSJv/QiEO12yBFMq+wPBNPOhhFgOvdzFJg+dykaTEu4xYDpN0kQurNilMZGAwB+WP4bAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAbgAAAAAAAAA=eF5jYKAuWMZ4WUjv70Y7E+uzCas2idrLsEVJ3rCTte9IFju1+qmsfdaeioefHsjaX0h8e+7rViA/LKmyt1TW/m5gl+kRFVl7xTD7zdxHZexP3Crbd7idx77ddulZnp4jdoTsHQWjgBYAAMCUJ0k=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAbQIAAAAAAAA=eF7tz1tIE1AYwHERddlSyRpampO8Mc6cc7Oczjp2c7RcoyzES4rYVGzhhhNWXsJULMzLnC9e5rwkorOGKNkFTahJVkwfMhqmLUsqSsOKipHRd86eeqt3v5cf/3MOh3NcXDbmf8ajMnrWlBuKC18mPC3Xe+EsP63fjzCEvdsclfZeDjbac+2GOIS9vp7lr8YgHMQ+0jEPzbk5f0saj/CTQZs+JRbhGdd3Eq0I4YVziTFdcG5HmUYytQdhX5WpUiRAmFdgFe8TIlzCmFKI+Qhz75oE26MRZgXnrI/wEN75sL8lMwrhsWxVXm8kwrveJssDYH2N9UvnCm08zDQmg/4LS0MPuAiHfFpULYPcL/e2PgMZqhjWHGgrrTEEwTmB0F3JAH83H/VpAK8nDCTmg4eqVIE+cC87NKncDl1Swfmpg44Pnv6YA1qWxjhMeEfh/fxTi9DHTphvFEPXPW96nwyuiIvKHoGW/WGbBkDva/n9nvAf/1evr6xBLw97SOOgGzOib0eAo/O5telgQqfm5HGwOiJkXAUWHCw2FoDn3/ivV4B7reyZC2BvbOrjWlA0M9teDW47rfSsJ/ettIXXgbJhk08TGPjC7mgAp3ncSR04ka0IJ9p2mwebwb7Nk6lEXb00XA+6mawO0r6aUQVpy5YqOVE3kldDHFKeuUjUrtpaiJLWS43ELIawg+5fHmwlurMNRqI5Td1JTGvndBP7Ynu6iJ+1Ntrl3QbqN2tYD7H/A5Oqj0yiThwQUwNqUqhRbnJqkWcaVc1OpQ4EZVDvqNOpc9+dzR93KpNlUkv5Tq9qnQYX/t0bbvgv/gFZHfVcAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAZQIAAAAAAAA=eF7tz3tIE0AcwPEJ0wgtV4y1YQRprNXV0qUON9stpWY0KgtfzUeRac2tlyVSm9gCp2645iiXIjrJHmKovSxXmjUQ6Z/U0sJKMkGpLGkyC1/97vZX/9X/u38+fO+OezAYvvE/Q2Ma999azMeu8dx1DiUPtwpFjEmEMJ8TF+BK2YidnmN3FmIQDmZaOb3RCFeMKBKPQisFkWeWSRDuLE9mv4D5iajwuUkxwlz9y1ucSIRLDgpSY6IQDmpGgV0RCCcxb4qfihCOMOoMg1sQLmBVzt0IR1i4I5ibI0RYyv6Q4Q/zx7er2drNCMeXS9TDIPd+R9PoJoTzq7vsYdA7Q3rK2qGLeGmyPrDQ+d4zBLa+UuT1g/3fuVIh7BvzjEWvBLut/QGNoEzlXH8BvM2ZObcB7jvcNpf5G/q6dU9hM3RIi06uAxkp7OIweEeyaVozA/1povR8KbRyaQPzCCgb5Ue+A+1vDQonuGvYksWBf8hxdvcidB83sygOGp+8t00E6niaz4fAebGkMwl0KWt+ngW/XIlxaMEV34RNF0FL3Y8gPSh97taWgfbYx/UlYO6Da34VYM5gVIYZbFzVXnsZVGgOtFjAVNfC8kpw4KvbZAXz3II3pBMdYgsR3TXH2sCP05hL7MkPPk0cFD/KJKLpQBNx7V6mgWh0XK0iuvVyG7GtuqiWyDpVUEPXldH1xNWShDqi7ckJBzE9gUmdmp2hoqxeqmRW1EDPX1xD3fdsN3U+PZ76ayCJOpK9n7pkKo3aYUylmi+pqEN+Xlmh6dTXHm8/VHl7TObVXOg1VP13+/T5L/4Bptf5PA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwQAAAAAAAAA=eF5jYBjcYJW9z6olZy7ZwfhifHvncOtJ2qf4ZJWZXBa0P57Zss43QtZ+Y950q9vOMvati7vVrj2Utf/Y///is2Oy9saW+sedr8ra3ymyf5P8WNY+4uGWGwVLZe05VfpNHfbK2mdxakutTZK1dz3KE/StUdb+zc6LtZ+FZO0tbc62bzSXtdeTPsDit07G/kbvzO1fbsjYX72he2Sr/x87b1+XVN8jIvYwd0UuSqrWen4D7s5RMApGwSgY7gAAeDVGVQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxQAAAAAAAAA=eF5jYKApaCCkgBDYOeVqScyGD3YwfpBC2bHT+yXtSzuEUm/ZCduLsXbbWOTI2rPEVu91qZSx511c3176UNa+eD5Lp+AZWfsTOjO2RVyQtd+RqfP/9n1Z+/XnLO6qzJO1P2+onHBom6z9wb9/4lQjZe13aVyZpV8pa88XeLExil3W/ilrjdlGHVn7snnOz8UXydjLK+aGzz0jY69zom+PXOZnO471EWobyvnsYe4STZif9Mr9FNydo2AUjIJRMNwBABRAQrI=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAywUAAAAAAAA=eF410XtUjHkYB/C2VJaU3nl/LxG9GpZ0NJHoMk2/YlKjIoXuKRpdqKMl16KSpSa6TKWlu4jYbkSiHiJFKrrQKVlFYTBSpkPb2nfG2b8+53l+3+ec33mezrD+KuWG6aAJ+x16g7TggeidRk0IAV+iD5WV+2oDseK4mXcNCzq1DHZrqLJAUJeVX7Gdjc8T7Nbjy0kQXT9tPeIxGz8sHN4+o4GEpGL9zord+jjUM8fp0119vKY103bfOgS3rods3mE8D/tt2NtWkEOA6Xt/f98z8/BZw41/1NSQUJaz8kJ6DoVdv1Zop8wloLwm+NqKwwgcWP6j5gIaO2/uEmzwJmD3Gy8et5LGC4+oDF9so3FF4i6LkjM0rkwrk2Ywddju0XMl1TRul9hkWOXTeJ3BeI7LKI2jSJPpB6/T+IPYE/I05+EBU7uooxu14cQuVu6YhAAf7WWyYTsau+vc5055SuMiHbWOz0YktPnav7VrovGPAb1gdgqNA+ukFzM7aBy7Nio/tIXGZlr1KudeEECnpm5quEBjKdi6uvoQMOS3tCjUlMa89ROc7l9ZMNTboWPkRWMNm32q0mYa50qisz/WElDyNKhm4QIWdKhe+MfMk8ZxWRYiThqN33zkpSo10rg+bUedyIMFnCcvD3Xn0rg3RvhDo4SA8XALw9cjLPA8aejotIXZp19IO/8iCUvSk8c1qwioi/O6LDnEglUJY1s7rpFQ3ijc0LeUBL0ANc1mRxZE/nn592JPEmpb1r308CMhYHnkGnNV5n5rs5X+yiOhT1a51yWYBQtz/1ZiryJBHZuxyu4Q8P3w/f5zgSScig8adhxgQcJKvyLXYyQkL57f0p1FQqJl1Y/5yST8O1d7wsOGhCuaA806H0jYz3t6tecZCefpWyecXpGgQvDPmUtIWDDIf3HyOwkTU7npcQYIJPFZeoSMhPsrst+aPCJBFvTKChkiiDbpDF1+m4TBCLuuDApBZ5gwqnYWgqZbq9kdegjSqCVrTCcjUB2qdF2LEUwbec1tsUHg9rg8O1kbge2UM7tiliIQzZkojN6OoCFQ19bCCsGNUu/hwS2Mwg9aYbsQfMuunmrgg2CShvENnTAEHgVHSgu9ERR95r6L2YNAJzjZvTwdAc9RNiRbi+BMWUa1GZMb5BsfdGPmPcX9bioJCLhS54m3TP4iN0/GT2Lmvn3dU5yJwLtHuvRYKoJE8ZZqXgoC82PNbp2FCN78lj0vNw2BeLjSJeM0gueDSe7tlcz8TOFmUSkC6w9Jw5dKENS3a8UX1iIwOGryzKcMwVfZsJPDNSbfYvWc04RAubY3dnEjgvaHutr8OwjUdS2VTjO+MeZEj3Yg2CRxWqHShUBziZM5akEQp1xlOGcAAcZZB3Z2M3ssgP66fgRXYhqtA4cQWM3PnnZPimCjY7xL30sEUxPG0oo/IVhsVBrn+o75D5+eXf2ZuYduLDHyBYG051bg+C8URGx7rKc2gkAQ62ufrEbBsf11Y8FM7uaF4iORTL3o0ZWdYiUKQoQPRoymURCqTuIudQoWbFUVv2ZRMChUP1BKUbA54n3R1ZkUOHr1cBwZYRLnVCabgmsTnxLDZ1HQ7nLYp8CAghGHdzPOM33J1ePifCMKHLosgqINKbBSunvo4HIKeu0HboqXUYB/PHnBNaMgUvRxlsCUgpUFla2IR4GvXvOJEkvmny68+hBbCtzfqgWDNQXKs8dESnYUSN0tWJarKFisJwgoc6AgSCOe02pPgeWU8YKzTF2xM0ZYxOh2NUqawpgHgdsyGQs997CTGPUd+haeYry7fq6JiDFc4OUjdzSxR1euM9ufLbfx9tmABMb3mrOLExknR+uHn2A8aNDSJLfebutquQ3dzuvllgYK+HITVdus5YbfW2QrVxT5fJXcpJOuivzMvios95JVviK3qbZR8X4/0kMx7+Zrquj7hv7M+0X87P9fb1BerbDXJkJh2/MAhf8BlBzhLA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAZAIAAAAAAAA=eF7t0F1I01EYwGFzkquVocnQauI+1FAkSmc25bAZWSRzGsOmEbncwkJFhvmBpkOQiNA1p66ihjppZFkpWSJruvqr0YeKGrZiwyghqdSJjDlj9J6zq+7qfufm4ffycjicgAD/+Z/DLRUGFX+0oJCvmSzeuXvo+bx6NfAahZrfxprcileoNtWLFvTQ9oh30jYKrcUVO0NuUuib8+zmebBX5aF4HRQKtL1MCIS9XE74dCTsGT/XCd3gcZ0r4kQrhabYPyQ7dRRirrZsmbhBoZMzHd5LWgqJNP1Og4ZC1cz6qiiY5xh6rdMtFFpNslckwDxf9njPaej4J3aWBkystVyNA401zDAR6KILlpPApkT1QDKYt5aWWwLuGo4cLwDFM/y7o6CsxJhhBKNj9AIO3Huh573LC72psPOboK9kz9kLwUZx35cFULab77aAPytcKwfgXXNy3Z0wkDZPZ5aD0U8zsmTgwHC4vAtUtZs4GnB0PfriGNggXo8aAhlcY7MDrFT+yv0AGgwFBStg3MbrlCXQ9uAR2wNO5DxLcYFVnu1vAuBf0n8vy73Qy+Xr1iDo/JURKQ1kxdxiBIOzmWmCreCOBsspOnhQUurA8wUuO2gbGOpQjuF5q7RTjvsYxyzEPhzUa7GmzEk12TujvY8tyk7twsbuFQ1ibW3J/dj2jalh7FLZ4hD2KE/5AjuraDRj6xlaC9baHU/0hDJHsOLJ76R7piSkDx9JJ/ZlFRMX6YXEQ0UqYtRmGbFOU0n8tO8ycYZTTaR1VhHzxn1tvu1zJLiG6HT6WrXf19dZNX+1X7//4h8A/FbvAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAYwIAAAAAAAA=eF7t0F1Ik1EYwPGpTZ1R2ShwgpY2pmVTrHB1sWMLutCLFX41bcPQshVRatN9pPkRQkabX6lppZWIkpquD9Y0LfOob84sFRRDqHDigjZBYZiN7Dnve9Vd3e+5+fF/bp7DYbHc8z/TfEMa6c8eRPzr4nProc+RZFwmKNNj1J9efN7PPoRKVirUe+9ilHL/o9frWoyswkD1y3qMCkWKlkOwH70ZrzHBnuvFq2yow2iKOztsrMFooWeiVX8Ho+Onpw//qMIo0/le11mNkfxirVFXiZGjbC4jAPYt89/ZZyswupacUDQPfrD4drQZMFJGi3f/AtU9S2sINDXN7swGH8qLU4PBKNM2SzQoysn/GgNW/e5+egDkd/qGaMCNXc7lDDAt6JZrErzXXH/yGbhf6gyPgTvfjtqo7eAQlStpAFfi9JQKzO5Nj18Fm5LGVidBh8jcEQvvPUgtJu8Bw2pi+wrAoguvArLAllF/VgeYalZYG8B1QUH6OLj2WLbjLVgtCFAsgLYjDsdn8KdMXr4CKkuSWHawmLcQ5gKFpZlP1sAZnO3jCf9CSe22DWjtg65CNvTlTmPsJnCr2U/tA+aJze+8wcEBhcEXbJxGEcTAqGN8DrioT1sm7bqan0vakuVxiqiui2wkTvBO3CYWGWa6iDNszzaiMzjRRDQrN78gcqixPqIuUdJL7PaY6ye22/m0U8nDA8SITyraOIHwDTHByqHNG0mlfdQeT/ul9BLT+7JoQ0JVtMLyHFqbWE17RphPG3pFQ+u9hZGzxJgywtjK1dLOuphWhTOtD9L+1W7d/ot/ADRkWZc=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAzgAAAAAAAAA=eF5jYKANWMgIphrQxQ+hCxAAVRvXJjedqrCD8d88K55mNeuA3cugkLqexu12V81WmLhEHra73rdr+99Fh+zs36x49mnzYbt31qLlBosO22245/RgxerDdovlfuj83HLYzkxvVrNCz2G7uX28NZdnH7Zz9bMWl044bLc0//vX3SWH7fY5lnF0aR+2i6mc8PSw82G7ZwfCpum+PGR3UuPnJR/Ww3bnbA49Obtqkd2kzZM4lyXthrvr+IR1srXZDXD+KBgFo2AUDHcAAL9+ViI=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAzQAAAAAAAAA=eF5jYKANWMgIphrQxQ+hCxAAOcu/3mdnmmYH4ysat7SH/Dpg12VxslYicafd8qPKX1PTDtvdPMqdbnrskN1502bDzZsP292dZDBrxtLDdktVPm/JWnHYbhqjuvbSTYftlF29bwW0H7YryOnY3z39sF3Gv1OFlyIP233a1zjlU95hu5YHz7KfKB+2U3kZ/qnJ5rBdj9PTOIWHh+zqTkSv1fx7yC5t6+oNF2bMtNOLMRQ+KLYF7q5JOU5BwiGFcP4oGAWjYBQMdwAA1AdSaw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAmAIAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYD+FR9enYMUku+DN5TO/2ay2c2m+ESV4Yq/dlfKZmZMen7HjqGrKl3W9Zafar2uz8ukzu5jNRqIHGz7bRa+f6nFahsG+9eq2W4pTuOxD7C+xOr8RsX+/ZHmpuJGyfe+U+e8eTlS0X85cKbK7Q9HeqTdMMuu3gj2r+IkdajUK9mIWGy44XZG3X80vUPFwoZy90vb6VQwzZe0/KnUe6fCSsb9Qw3zWs1zG/jbvpV4NBVn7BEYTtnPpsvavxTP+fz8qa69kxl7wS1rO/nrX34uWBXL2ZtVv5lvsl7M/N2nWHlMOefsY5t+7v3rK24v7iTnvapa3L/mes11gq7x9I+O+2ud35e2nnpsY2fZP3v76y9/+h7gV7A/U7L9yW0TBfrWlwz0+aQX7kGtGlx7LKdgfS39+76GCgv3VeG/fNkUFe+sSjxA7IN3S7rs2GSj+N/jhLmt5IB3/Y88PWQV7mX2eSXtkFOzt13xgng00R9s/9vs8KWA4T22deFpSwT5PeftSeSAtfS6oYLqEgr3uhpZvukA69PGtD3eB8SFweWvUIiAdGBy9vwxI/3u8PTIcSG9bEyjuCKT7gqZ3GQJpXl/mq2pAWu7W3D55EG1osU4KSPPNNigRB9I8Hk0RokC6YL3DH2EgrTbZWg5Eh3nEThIC0r0vXK1BtOyBlawgWjGF4ykoPbjop1wE0Y45m46C6G/C5/eB6LSw07tANM/cqh0g+rqLxnYQ/Z43cxuIVtH7B05PB+8fAtOt0YvA9LS1E8C0uEk7mI6UaQLTf2vrwXQ6dx2YVoupBdPff0LSZcdpCL16PYSumQ6hW2dD6Hxo+t0FpZdC6TVQeiWUXk0kH0bD8gUAJB40Aw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAsgIAAAAAAAA=eF5d01tI03EUwPFkqCh2cU7n3NDfnE7TLE26aPo/OJLKvITgRtjcRpbX0DQLbbrcSPNSUkPTNInUoRMLL0tqOgolo2kDMS9TXGo3zHpZlhqu/v//9KWnD+e8nu/RDk7NmKSzkeoHUo0zHQG/katTrFdigeJugLoWzOzgHamJ1GCfJnVIKxnGmDbpMZoT41jV+EO99pwJiw+POk0LXcaGROnqMFjFIi7IYy1eNvA4Xzz7vcwRXKorz5gP0aHXaI7jhdEh5VHMBFXMgGNODg39PUxY+UVZM2x4gmzILkB/nw3xJ4Izdtz2gQHq+IJ7lx+wCjC3k5YgcMz6abxUuh9+LPYkxdfsA01mxNhYWyC8r06TFUoDQFguPMLP2gtKCYOZKPKHzeGQu3KJH3gkCihTeVyIS2h1Utf6wgjXN9dP7wNKqSvHluYDKUGFy5JcDuSKolY/mrwBqOilQeIN/M5BE22VDVp6vj67ng3wJA0yYthgDFaIyhzYYE9LVYZNIOC8cGVa2hH8TqDkisoQzEhLrttkIXAMz2lRJeH7Ux+ehkYjyFH1N3cfRWBbk18fdwBB5nQzX+CPYKfgrxjjIDhOKaq+44Vgj27Dc4WFoDilank3E0F8paBpiIHgz9cvF+fdEZyd4bF4uG9kdN00fq/RogXZPdzwvNrgVNzOdyxLNO5A0JLiIO7NjVA3Lu7SeEWkJ+769Cs+A7cp2yXBDddQKr9CwxWus5NccGOb59upuFfnWnmEydRaO8KGtZYloo9kldxAyEmzGybsnbs1SKh6/fk54bXNxX7C8x0jzwg90oNIlYeNZF9mbRfpaEgdacHbCtJJoYK01fkGqb2ghLSvpJi0ZpfVuGlrp1Kd1W9tVi93WB1WWx2ttxrQaLV8q+++LVVbdm7Z8d+87fZf/AMfKjcTAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/su7prJmXcT3F6BSrk2FgP5B4GQ86YGA/Wc6OletdYD+Pr6DOM1pgP9/DfTJ5VGA/KaLhvPdLYD8Jd+MFvT9gP6zUEMKmLmA/KZ0RoGQXYD+f+tyT/PBfP1W3QPG8oF8/S6Fqi8I6Xz95WE2S17teP2EqG5ADIV4/5n+WUsNnXT/wI2oNP45cPzWzz2R9k1s/0BTLx413Wj8RVyucpTtZP5NNuMEs4lc/N25GS7ZuVj+mE+7R5eVUP1YIyOBBTVM/9Fwie/aqUT8zWQGgjAVQP1SroVg4x0w/NNqUaPyWST8qMABEC4ZGP/5rDz6GnkM/Xq4lD7DoQD9eYaVRatU8P+IGmgIvUTg/obgBindIND8HatGUJrswP22xUk5xSys/0d5NzMQDJj/9MSYre44hPwO/Eqjbrxs/CB0zX8SVFT9fB2nVUaMQP+BiRYAtXAk//TOVtAgcAz9EPhBjqXn8PozfzLpI+vQ+KN4M9ByQ7j4kQWdMHATmPt4I2ZTrXd8+dqAKXhcZ1j57GuMRVsvOPp8Tq/jaOMU+CIoF5eDuvD4PNACBmIKzPjoSs1esB6o+zUniYOktoT4ro1tIsG+WPtBFqkN+/ow+oprz3/2Jgj5TtbRZb3Z3Phm7KY+TY20+uCP1rPc3Yj4KqvgsGVxWPmAM3dTWKks+wga3aStXQD77n3y2tHYzPn4JYuZk9SY+3InzUUnSGj7bZKlTDAoPPphZwg2gywE+LMTjLqo59D1wHeOtZMzmPfLCLObeg9k9/cdaOYZnzD3i1FNPL4+/Pf/1JAJ/mrE9i0ifaXrsoz3wjvKU30OXPYjID13ws4w9pncWnOg0gz3wp2n3HGN8PRnAVZsmJHc9hfMaVaVrdD1GPtppjQVzPZO8xVkHT3I9jKdKQMnycT1SxMTOj8RxPak1ykeXrXE9AuymG0WicT1gE1RtvJxxPfakvIUNmnE9d3KQIMOYcT2RPsN3JZhxPdFvGtPal3E98NVUwreXcT21NKFpp5dxPa5Jqtmfl3E9SWjFYJyXcT24Z7fLmpdxPcngxhSal3E93yuLxJmXcT3gs3VhAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAIAAAAAAAA=eF5d0n0s1AEcx3GSkVurJrKriBqdPGSpPH1/jDxOnkaehaVE9OBWc2XjtqZJh01IZ8mRc7hOnVvFEGcSsVlGNfn97uF3EuehDjOzfr/fnX/667Xv9v3v8w563V27OsVCuDwrjDePQrTSsUzPJx1piYt95+objgxppANiXwQRuooDTyKnkcOn6vxd0myQGTlL/XLCDHmcYKty+2GC2Hu6ZRk56SMql2loHlwDDmdwedVrCbr8qtWtZxTAFF6LAWMc5pnu37YnlfBr+cbncW8cxjMDDFrKcQijHWVd+IuDKU8joSer4OsKWNe0q0DRt5+J0+fAniHOZklUQIfU45p9KhhtFEe6cHHwMM2XRtJxEKmzRIe4SkjNqA/aslRCCiNPMtGkAM+fH0O+uyjgydm2+wVSOSik1gnDKXLgs69UP9KXA6u4MtutXQZ9t2Zpe9NlcJ6T17lmJYPxmrEMAY5Br0H6pbZODEpsvtQllmIQxMvbs30dg44I59sjFzGYfGghWz+HQaXNVfvuExg8iGIVJZljYFnR5+5Iw0AzP1H1dBcGBdMOuw9soZDSMbrltI7CAmNxs+IPCs4OHgOLyyjcox2MNlxCoZXm+pa/iIIcNNI3CyjYJbNDjAjNhrwtKn6jEJ4UU+pDWJibGGBCSM8sPIITu22Evg8cI1yJ9evtIbSzzOkSE+rnmMYJCT1uGkYICEP9SkaaCXtq/eEV4d0XouAmwgNZXpJGQv7mbDJpcDuTQerMFZiQMkr6N8g+RMV31KQdNeVzpEVToCR99iFNTho2HC8jZS99onpKn8mn9M0Np9SrcqM0FzpQKuJtKY03bCjlUdaUnJxjlP1GWjkj2j4F9VqrG7Q2CLReztEqKdO6ytfqpPvb1vXN1snT+VznTv91/907/gMrobiPAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/Sy/7lZmXcT1+WmZt5mFQP3RsmPQuYVA/pl9dPg5gUD9u5EHIdF5QP54EuKZ2XFA/hMaCXWZaUD9Sd8XpWVlQPzSMLzyQWlA/vOmjwQVjUD9hhmcPC3NQP79sUDVCw1A/HIPrYAlcUD8C0zUABPJPP1kiuyWH6U4/UdCFA3OnTT/nFT2e1CJMPwmtaHp5REo/gSZJpWc/SD+B96KvZEVFP97f84S60EM/sMzYx+fuQj90KJ4fbKlBP5neDIHiZkA/hR70dkAnPj9SVk+nfnc7P6GgXjhFxjg/wj5tVp4fNj+HDA6ts40zP+klKBfhGTE/6TbBV+OXLT8NUukm/FMpPytuCDuNcCU/mZDMGmryIT9H7JIV27UdP4kd5nW1UBg/aWHo87msEz+Qt/hXZHoPP1PG2pMO5Qg/9eU1SMV2Az+XiKidxRb+Pk6O8YP//fY+cfOAiZle8T42RAKbNPLpPu5qxx/fKOM+AmYw9Ej62z5IjD3MozLUPo1S5gg91sw+xeZrmlBbxD68CVdjQmy8PtM+9Kzen7M+WOaHXKDNqj6gKr8N8hqiPq+zmnQpMpg+OeVBEDz9jz4VlG6F3+uEPjciKn6qE3s+U6/Ys4pWcT7ToNdBJvllPtogy1F2j1s+k3Xo63kbUT6GVvZHvwVFPmGJlqv3kjk+NndqMUvNLj4QtUdE8l0iPmvmglQusRU+XJEd3z1gCT7G4/z5UWn9PS2YnlPg5PA9ctssXglA4z3Db1FzM8jVPZvuG2awhsg9eOS1EwaVuz0iAueavy6vPbNY40J06qE97Io7WmNKlT2mmCklf8qKPcLJ40jeS4I93T64RzKJez28v/MhT8B2PYWQZJ7zPnQ9ojKWahbycj20g4rZ1UZyPcvxCw1973E9Mh5AOFHDcT3ao5weK61xPRacNbMnonE951i5WbmccT3BUuNUEZpxPZ/TdW3HmHE9N84WqSiYcT2X3P/b3JdxPXbOBPS4l3E9VzyyE6iXcT1I9bU0oJdxPZIBFJCcl3E96uip45qXcT06wFogmpdxPbgxG8iZl3E9BCFjoZmXcT39aHZSAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAARQEAAAAAAAA=eF5jYBicQGGHg3P3CWn7bRE7z7xO0bK/lpnC4Waubb8kbYKmsJW2/dmwB2+fAvm/i2/ZGptq2yu82XNvl5G2/YUHFmeWG2jbSxSxeHLoa9u/Wngv6r6utr3H2uYZ6kB63pMHfVd0tO2lDCsmg+i28KMswkDxi+k/l1cB6Y3Bt898B9IR/j8/VuoBzbnIv/8LkH4trOCdADQv0tbr0A4gPXmryoy/QHoXm0yjAdC+HzZvckKA9DcT73U5QPpShExaDZDOYxYxbgPSgQuZJXqA9BYXt9Z+IO1y3KN4IpDeP828cRKQ9prTIzAZSOccmB0FouUEHtWD6AeHdSaBaNaj72aB6Cgb9vkguv7l0wUg2qx390IQ7XdHYhGIXrHdAUwvdQkE0wUiEWDa8EQUmGa6FQ2mn9jFgOmQQgjdWTFKY6MBgin/2w==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAbwAAAAAAAAA=eF5jYKAuWGXvs2rJmUN2tmsncy5oELW3edNbInJOxn73TNeauCuy9hxh228G35G138Ck1B6xUdY+4rn0tsAiWXuh6vNNQaqy9s1XdOIWHpaxbzjsf83qBrd95KKkaq3nJ+wI2TsKRgEtAADS+iW/AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_168_t_16800.000000.vtu
index 0bf6b692d3db5e7ecabaa340c208ba11263213c9..3c3f645dd14adfb2652f000351d89f6b3c7f0528 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_168_t_16800.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_168_t_16800.000000.vtu
@@ -2,44 +2,44 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020791436765"     offset="0"                   />
-      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-5.3876319056e-54"    RangeMax="0.00020790588733"     offset="984"                 />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011483497787"     offset="2072"                />
-      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-1.2098401028e-121"   RangeMax="0.0001148156368"      offset="2424"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2840"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6381748341"        RangeMax="10.19484368"          offset="2920"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="-7.6396638713e-137"   RangeMax="2.4573148974e-06"     offset="5020"                />
-      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-6.3675814519e-56"    RangeMax="2.4572146695e-06"     offset="6192"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-4.2782287054e-139"   RangeMax="2.3661523665e-06"     offset="7360"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-2.492870412e-123"    RangeMax="2.3657538475e-06"     offset="7852"                />
+      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020789354813"     offset="0"                   />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020789445606"     offset="992"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011468168135"     offset="1980"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011467451173"     offset="2336"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2708"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6381955689"        RangeMax="10.250228447"         offset="2792"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4570688351e-06"     offset="4896"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4570795658e-06"     offset="5884"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-2.0602537432e-321"   RangeMax="2.3629937431e-06"     offset="6864"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-2.0602537432e-321"   RangeMax="2.3628460144e-06"     offset="7240"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9950053039e-11"     RangeMax="0.00013984891955"     offset="8344"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.0002563282497"      offset="9364"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370224039e-12"     RangeMax="0.002"                offset="10420"               />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1.1234845032e-07"     offset="11556"               />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0176128318e-12"     RangeMax="0.0010432249759"      offset="12592"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="13728"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="14232"               />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00014192777429"     offset="7628"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025515711465"     offset="8648"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370224031e-12"     RangeMax="0.002"                offset="9708"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1e-07"                offset="10844"               />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0176285805e-12"     RangeMax="0.0010444984006"      offset="11880"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="13016"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="13292"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020789631148"     offset="15308"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011470893725"     offset="15860"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="16076"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="16140"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020788038948"     offset="14368"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011463512325"     offset="14932"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="15148"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="15212"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="16632"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="15428"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="17560"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="17860"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="18172"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="16356"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="16656"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="16968"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvwIAAAAAAAA=eF7tz/8v1HEcwPGrMeRLRhErblTa3uN8X9y5t/IDE87XnC/l+9fLl67k0OZbly+Hc6IvVkSrZPnS3erW3LCFJb+IWKMZi3WhDSchqtf7c+tPaP3i/ctjz9fe7733otH2zv88964Pc30DK9h/O1DKM58yPIUn2jq7ut/R8Q5n+FWtO8KNTE1Es0RYvNb6nu+JsGlc7wMWRpg1qCknVve2i5fB6F1hq4qFsOzlOvubB8JpNfvkInivOYsbqpgIP2GHBLqeRtioiHOc4Ybwh8xzEi1X6L4Loyvgd1bxpL4zwuVXN7rmQF3xo7hQR4RnVwW2Bk5wXxps9tke4bPNjIpCB4RX6jn6vQyE5ZY+iUyYdwgKPBbsEPbkSFO9YF4yWdofCi1saPJuAHVqknw0QefcYFMEftW+ubZsi7C1KEpjB+TzAr1pMO8O++Sxa0v2euvjBJ0Ua/PLCnTRs8/OB634ieI40DH7Y+EIKMi5yOgEpXExJhbwb9VqpOI39Hl5/DYPutzkkAUHVGQZ0V+AQfT1lDvg5pv0K0vgUHxezwQYYLMrMIc9YrhdW9pgZk7xFBu0HmsJdwAP5z1VRYBHS54vcsB40UJmBji+mc1OBgO2A37mgwn7o2jXwGa33GM3QMmP+sEicCDV/kgluL7lv1gGHtDX+lINLu9whFXknWzOqxb0UyWkiUFFmYZUAha5cu2I83lFlXVgCX+XRWQOP9O6BXrwdKdJL80UBJDuQFwXYohhTw7RuH86hbjhpycizjFFpcQpafJt4tAor45oNht2n2gn9GokulfFNhPHBoKaiOYzyodE6WYs5UZ3ewvxjCxF7Y52KzGZr6R6fMSFavndk5QnlL6UBx97UfbJQikNQoIos3QiKBV14ZQZqkjK15fVXlJGUa5L1M6zoynbjNXS09X6+6utEOz5L/0DsnDZzg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADQMAAAAAAAA=eF7tz38s1HEcx/Eju3WTpd3klH6RnXzy84pL7j4hYjfKqlPOj6TSznYN1RS3EOoi52e6KM66VJN+7Eghq9EPhJguqhOVol9/XN1qZ+n9+d76I5u/Wv/1+eex5+v73fezL41GnXTan/4+03umPX2aM+0zvff7TN+n90wn/R89/+tdw6jN2O+zT172wSEiWJBr6h/w0S4hKr7m/GFz7UKbTsWYPi21ehkdmzXXDQiPvlLneG9jCp454u7Aen4jtse74zLVHmsR3jH88OA4QlgfyvmxYh3CfqNPat0xwnV329t7+QgPVbsePQF9ffZzdoYPwgf4ptZSHsKOiXkZLG+Eo71622zgO+e0Sl27F8JT8+nNLVyE58ns48+uRliZVeyd5Qn33Ot/V8tBeCnDyUq6CuHJbF/PKXeENQ9NgtUeCBvsb+eVuyEcdbo4zQP2g4GXnLNdEWZ0NRZOggKfcJ8mF4QHQpwimdBJIeY/uNCfTNjqZLBjYn2E3hnhSGnC+HzorgOyT++h7zs/ytERHZQjZrArVpQIfkInhDew+NBqyVVvBApvyexk4Ksl5eck4JhBa/YCTDEVjLWAg5Y2d13g3hEFK9AS5FdtLEgF/R98nhcDdrMrB++AO+WsXhVozav7ogcl5i8sRsF4/euL9vB/x7gqOhPcROe8DwBFG+o91oAr1SVOMSDWCPq2glbiFnYiuCxjTY4YFNCPnJSCC9rCaIdAVk3M02wwyNWyJxMUT7C9csFoOdNPBl5IeVyRD8pi6mNPgvI4W3UB+JlH18lBA0P1rRA8NOySSazoCrtRBHKVLyXE0s6yxcXgohyL76Ql2r0i0svPDAUQ72/RphFvhs9NJL4JGs8nlnYUHifuUSWfJva02pYSJ3nxZ4ma2CvlxF0BHyuJgi1zKDd/dVESL+9orSIW+T6m2lB2ijJJbVNNHBRNUa1p4lGtK3KnDKkMpZzoC6K03iWkFF7bTMnp306Zf34b5dtgEeWstxGUNcxISkWncQ8NMXaqm1E7sdEGkdG8lP/+S38BQJb2cA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA5wAAAAAAAAA=eF5jYBjeoFCgpJLFU9J+Urklw9paAfue135Prs2WtX92+/H6Yy9l7O84L6r6xypn/yv7f538X1l7sflndNo55ex3XT/0tFBKzv7jpn1POb/L2lfV5hyu5pazlxORt5K7IWvf7nx17Zp3svYPZ62s2rUBqG9aZHTYSVn7V6rim31rgOKcjjEJU2XtmePkjhdby9rPUA9kSA6XtddVyz2x66mMfcas9nVKnLL2pnPs5F62yNinXdER4lotY68w6dHKCKtXdg5N3F3mx1ntYf4I9vC5/fNdvx0+v46CUTAKRgE9AQAPClNpAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQEAAAAAAAA=eF5jYEABDQzYAbHi6HxcoIFEcXR5OC3x4aWz7Nmv/DAFAduN/4l+Pmu3/NThqq5/l5d9iWr6s2iPpP2my42Z7q8E7VdH6+T7LJa1115122reXxn7uVs3dr9mlbP3Z0i4L/df1p4l+m/TMnY5+3Uq1+epSsrZf3rEeOzfZ1n7pqIvgQ845OzbTTbPOHJZ1j6GW7DwwitZ+8lOX8OOrpK1v1eRUvvjsKy9haXfs9QSWXueWLtvGn2y9uxqH30vG8naB3l1xs3xk7VfJXwvtu+2jP2bP8eXbf0vY5+a1rT3+i4x+3kiUmFzFsjYT9gwd+nVVY/tZF74vzg2h8Ee5q+qqMezTI/l2TGMglEwCkbBIAEAEYJt+w==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9A1tDTVTbcwtUhLMzEBkgAyrgUDAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAABQYAAAAAAAA=eF4Nkn081ucex02mPN787t91lUi/8lxedx6GuMNv3M56mLFqoskdlSJs2uhFTBFuK846qVNqJvdI3DIrT4f0qfGKnXOkVltOD5slEQrFJHKuv76v7/v7uT6vz/e6rlK36F3Jcgn6d/aP2J41hkv9jRv3d5sg5W6b3KRHgqTJjlj3nabQXHulF3LLBH/8eiG7Qc7BZjpHtSjPFEJ4EzcXI0XZEq386zusRSMDPbX7AyIm3tzRObWFw4YQC9fJLA4BXkGuHc082j+fsTCtMEXpdxJuOIKHqedhHUs3CmGdU8GtKA4+UyeV/X48fGvHW1IsOPQWDixRl/IYPH7n4uOHy8RM26shH+ktE6tPO/UnSnio+tLj5KEEI9xs5pUeDlZdysSj902xbzKm9JJaEJuc9Rc8+UEQ/crim4oDBbH8UZJV+FNBnDhQ+3rvoCCGV2a3d54TxEML3+pEdgriSbrOyMNgmagd/tR21TNB3JJuKz1eKIjrvOtKNHcE0SLs/OOILEG09LH0Un/Lo2X9tF/8lCA6z7/inKDNoTXXP8b/N0FU5s5ZDUwLYhQMxtYOc8if3zgz0i6IN7VSqjr2SrHb2jNR/lIQvSyX6t+9JYjzvzLSOdgliIvOnDoSuVMKZ/W/HtVcFcTnzy01F1m+9fvLXo1HS/HfJLPYFrb/WTN17bwiQZw9dLBu2IqH2+Xk6917eLxXXHuhNIfDt84RbvodUuT05BX+LuWRZZlbad8nxe3oSy56zVIkf39k2+cWPCY7rUsub+chXCmqSHufh1xufKbHQIoBoyX+zqd57EkYmE0blsL7oHJFfRGP7aMaV69pHuFXJvIkLM+nud7aS1t59OoeaPw9lceAQb2Zz888anz9Wo/+k8eGxoZnp4wJZmvtXmxdSBBjXtzRVcZypgw9M+ji4UO/ia0e59FY4NGby/7HUq0/L334K4/QkOxzWawPKKn6rLKeR5HiRJb7v3k46ilpmB3BvL+CZGMrCewzg84kLiIYVTzsMdKw/Gt0AnUoQW5IzIBqM8GPTydWyF0J0vcN9ZdHEaQ5xmT8tZ1gQaNzf9EWgvFHwYqrYQSRkhcBTn4E3w/Xr3yrJPD2c1nk6EUQfPjiKZckArlO7NfclwS6r387lJZBILuV0GpZwHzH4mQmjFcFnGtZmc/O7wp/FdhI8DK0pHlaxfj0w+aILwg6PPNOjyYQTCka6lKOETicuH3b/iiB2QcZx3srmY+Miw6+SBCUrHW9rILAz0Xh+FRD8EfTxsDHbH598GX3B8UEx0x+kf/vJoFxuiLr3R8ITkx1R5/8iWB663ejHnUE1U26wWatBPd8viyMLCNYmq86cLKT4NJYTdtCppvV3BvxuEvwn/Z3PKqZj8Qsfq7vMYHNjw4Ruxgv/Kr8WOg4gcrqvrXZE4LLpYGq6DeMt92zqWG9uSgznBkgqBncNDQ6R+C7IKJo4xjBW32Z/IEhxcByzws3h9l9+s/waxdQxCbq2SYYUDzfKDvfzPSr2jZHzJNQrDpBi+KMKaK2Ojo81KdQGBPenPHTOudTG5ZT7Ev/JWUFR9GUcuQsb06xwS7YgUop1k/++Wb/MgoH3brKBiuKkYpYlT7TP9GSvShg+vS1SvXHMqbXWpV91Y7iPSctWYWcotKycajFk8LJ/lUgt5rNEZz+sSvFDLfE22YthZ3Xu8ldvhTt1ovf7vgbRZiiwP/MeorlGWvUuwMpQrfZu/euY31+0ArfDyn035TqbmaV35D73G8TxZ4ni/s0mynO/7w64vVGlu+Ln3yygykyHcorHT+lWM213ZgIoxiqML/WqKQIsnjjH7aNQq0afFa2h2L/ueZryYxP7Rx0j4+mKA5VRJZHUXwWsuN4eTxFxVRIahrTLX7Q90nRPorUaW2D3DiKMvdSQzGJ7W1o+DqT1XeMB8erUplvVUVnXDLFwgnfLslBCtu/N/2jJI29Q4hSwx2i2HRK59Eo42uqvcTuwxR5OXds9rKaYRz5slPF9tUOmkdyKIYbywPsjlLMubmvvPs1y/GN7eX0fHZvhk7h3Yz/H+GH3VU=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAATgMAAAAAAAA=eF7t0P9PzHEcB/Bzx3Wt5mu+RB11q/Vlq5TWFd4j4tSsE6VIMrnTWRRFKpxsRFpUSnVZOW3mlFM5LtWJt9HCfJm0ijbamrDyrYjh9f58Xv3gD/Cbzy+Pz/P5eb3fe+0jF3CPdgDN5RVkYk7CbEB//T0v2IR5Auo9jn8p59UqsffCPIL5Ns6peQSfsQ/F/AXnq3DuGPbBaCb2q3DuGvZjezmiK/H72P5PUQc838CjdcM+D/sw7BOx/4CO3Xcf5zSoN87jPoJWNLbJ9tadrKbcrrqtUSzvNK82eu68rI9eFnZRXS+e4XzoebbFRUaUraItav1XH41sbZ10wW2SPVtZ5qQ2k6pm04eSs5SkVA8rW45Q8uDNHVebCko+3VtzZJ6Oklk1Z4qZ4uqQ0mowPXiJRFVGyavGqx3O5ZREtsxyLYLzc5vbU6JKKUk1D4Q8LqZEHmDJOllCSW3us/PuZyjx89g1uQu03H9kbyikxGWyLDqsiJI6m0KvTQWU6Kb/vP4WXCW27Q45TYlMEuvdBJ7/Ujd/+ylKdpVvFtwDGz8m+9J8Sn57+SfZQJbIe/ujIPvYfDcdA0uN2e2zwamnaxMCwIgev60S0Klb0TYNTDPsE84ERw1qkx24Idq9ZDGoSzmwfD64IjAycQ84UTVcEg/23Rw0G0FjfE5eGdiR4us7CIa3Di7qBMVDvQ4esMfIxPUKO7AiLEMTB3roFw6HgvrjxTknwCwfyZwMcEnEC/taML279mUlaKjSnWsDC2LCVRbQQdbn+AqMGG042gFKC5Z2vQeD1jtp+sHR4bv2I+Br6bbIz+CkJ7HCX+A3z28ZP8CE7gU5QvhvgyflrwVg+IPCxAngaqM4bjyYGTLTzwrsfPg0TwxeKbBWSECPg8l9rK9Utb1j+dIUt6vM+ry0UGtQqr/mxqT+VlpmUaAoiflsyFTBtL8uL2T6Pu6oYS40uV9kigKTTEz5cU09c23kQCPzhmeMmdkfEdDMTDusaWLunhbfwtQpvnP9uiufuBwgusUZJwyyMC9sc+LU9m/kDN6u5NzYu4PTeYuK01Gxh3NSYzJnVv5ePqemcUqF6Zyiyn2cyTf5bJ3B2/mTV9bDm+u4n9Nixbvb7b//0j+9TF8QAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAASgMAAAAAAAA=eF7t0PtLU2EYB/B5WctmLOxiyWamXexmWZoj8sWStJaVEdVCpATT8laa6WyZW0Y2SjTNy7ygYrPIii6zULdEO6WEDQoJzTBQmSV5I010OHvecx5/6A/ot84vn/P9vs95eThSHvuoBtFbnDwl5njMtaj173leOGY+usWGeynlVIVi74V5EnMLzkVz8H5hL8M8jvNVOJeF/R5Uif1+nKvDfm4vCRqM53P7f0LF+L2eQ+WJfTb2B7A/h/0QOndfG87FoFtwHvfhNaPFisO3CysFOR0ea5VEt9p265vGF2ce2dw/3Zm3RpYRqZUdrF2kMVYShfdQrLdFoa+8bimfft9CGo629RhcjcRO33zJScuQNquf4lo2Qywjw44dZQxJi3u8azloqMgdNZUypFsuOh8G2fwi8YKohCEp2408E3jTlWfjX8yQ1lGxdhasSFq0T1nIkMSfSv2OIoaMuwqPdd1liEYxPpRVwJAzma2tEfkMsQ+xklnQLSW0RZzHELnbhnod2PVSahDdYYh6l2pADY7oH2zyz2WI1i9SWQSeG34Udy+HITqTZckA+JE8798NygNkRxLAdnOsSgQuvrF2lSc4Ie+R80FN0ObwhWBZUHO6C9jNj7u2FMw928nsBe8WRWX4gbH1PllXwRJhuyIGtF42SY3gzkz1hRp6HlnwwQJ65J1q6gcNPn1mX9grrDnqpBtY/mNd+1mQnzrVfQyMbqiU5oNtCxziM0G7958d68Dg4P7UB+DQ8uRxE1i6UX3iLZgrvCfqBd2Pi61fwOfV1ocj4KHomZpB8Mq7KuEUOL1QVjJB5y/1HJ4FZ5bF8WfAgsC9EXbw36r1AWYbUPjJ6RcfdD9gsKdKoi1ZArA2dHhiHigwb1XOB63zuj2oK14NODiAgYLezzRHPP4QRrOtqYZQB9abNGx2V6VRO1dIqqlE7VVC1fa1PKX2f/tdS5WETL+ivqy5WEf1Fdc3Ur/2xjRQZ22rjNSVFZMGqrNzwWtqyrMA1vQOxybqM2Ufm8fuB7H5SMM2Vs33CNaxOjnrxycJrPyQGNbVOcms5swkVhfPVFavwBTWG4EKVukk13t85XK1jrNJkMbdP8blbAmXdU6cyZ7//Zf+AedUcrY=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAATgEAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNJfoLQihGIohKozgfJPQ2l/qLgDVL00lH4NlTeCymdCuA2lUP6BuuPGmQu9eD5C1QeYNmf+O6hgrXCOI5c50WTxYf2D4cxrDtgtEd0mr7N/qx1XT9eN062H7XTKqt8kCxy2s/okwHvq9GE71uYlaz8cPWxnH+g+Qe7cYbv+o/KsbjcP23X+/rPu7cHDdr1TahZknD9sp7Sfob5r7WG7lfPv3M/cc9gupOD7yYmTD9s511jNPr34sN0lXrELDIWH7W5FWn3uaDxsx9hxMdLO7bCdWKpo48qIw3b8Lx6/38F72E5mlYiZoOphO6FP4hGPzh6ya+0JTWd7fsjOjff2OwXviXYHVq1tEtmxxg7qfYblqgbqxnymcP4oGAWjYBQMNAAAEC969w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAATgEAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNJfoLQihGIohKozgfJPQ2l/qLgDVL00lH4NlTeCymdCuA2lUD6DE0fZy/1z+D9C1a8rjtsSvb/YzuFdW/+L2KplFuKCjvY/DtjtOazc/2v+druA699ebOs6bBfg8lG5UvawncBt84l7Tx+2e/fE7Lbj8cN2IpdfL3p45rBdA+fEd1k3DtvJ2Yp/f73/sJ1L38buDWcP2z3qMbFYs+qwXdPlg273dh62M0pZr7ek/7BdmfGbvY4LDtvtPTAz81T2YTubdzF3jtUctlv3NV+/z+Gw3f/D+3QfBAHlVxZtYWY/bPfaY7L2LbnDdlJTPvRG/dxrt0y7QkrtwSE7i/O8ApXvO+3yNC/rab9Yagf1PoP0vOzJbV4icP4oGAWjYBQMNAAAjVaEiQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA3AIAAAAAAAA=eF4l030s1HEcB3BPK3fNXDiPv7v7HYsy3SQPG/p9JA/V2K5c0VykYzMz5NnC3aSGPJVCHmILI0IjXJ4iTMrT/VEZTgrlSnJJSOr7+/nr9c97n3/e789fuZm+MGn6RMxs8rODBjhULqyn/5yMIk525fscK80giNWDbn1qpQTfP9vBxv8xofk1V4OFdRCGi8OyOqtBIvRUsN9NAxnBoBcaRfnLiX0cu/Kxo8vExMKNlyO168TZ6z278w9UYKMkMF37FQ3SJPaM+kg9oI+M8Y3cTKFrUKiTIzCFxuy7te0GpqDUVHZqveFCQ+DHCe8oLvx2vs201eBCv7ltznQGDlqxtfZBKjjYx+jVpc6wIafje8BCNwuyywcujo1hgB/ZismINAHh6Lv6T1oYXGkpnE0WYeCOHeC1NmFQ5vdj+cwfDPixaSuWniyIFt9ZO1TAAtcSK0tfOQueuxa1SS3YoBhkVpyLYMN+dwbd7ikbTpuPVhWssmFmwKK89zAHhFNh83ZCDiQ0aKtVZXIgY1ttTdHMgYElWwFbxgHNPh2xZIUDHh4VL7pVcZCph6h70XGIFpilSBk44MyduEtMHAb4AUZiQxxWghI8k4xxmHSZC8szweGWQ1bkP+Sw2pBsB+m4WVjdjHTVEXk6IuXx34qaUV4lvEVkhpzjXZ0qM8JhDatZNEVim25BHehuniGDFoBU6W0DXaTxtdyHb1HPxTlyYQ0y9t7cfQly5bJ1nAip2STmeyNrwrdanJHnZ2Uh1kgXnluwBbJj1ucDjiwXcR0w5OsnIwpDZFZXWak+0pumVGUi81cVX3SRKVyaJak04FGdDtIr1UBAKlBUmpAy7Fs3yN1FNA7JSZ2KQsdJiy9UDlJ71I7tJY1PLOokTbSykZJG0qXtpL6/ZG1UrseTcub4OrXjifR+ygXjakpXZQGlkyKTMp+XTrk7LqEM/5xKqXyfQrnksaf79t5f/AcKaDg6AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA9wIAAAAAAAA=eF4l038w03Ecx3GRo4uahQ1ZnxmjqUXkzJ3v+7L8qMPFya9Iym9adY22oyKUH1fyK47qLMrVEZWVqRMT6XKuEBMn9IsiaZjyq+/321+Pf15/vP94vp0qFYMfU4acE06fk+rREGxwSVuOzIvCKK5Z3DcnUjEBVlQx9yMfu/TVqHVToASj812G62LrsBeU6OoP/GfYGrd9o2S5A1uvqmW+XOvB4pry9syujWD2Xr3e99QmseDWSk5xpxJruHlLuzdsFeuB5Mrjj7SgVEVpPHZFHzqbfNViLxhA3DaP7SUCQ4iokSkDHtCAM2SlEgQYwaeXLbaibBOglpn15yYwgAILmTMmTLDKZh89eYMFAkefvTw5G6ZkcYZhTA48b9M7I+6ygZBoe2VO1C7o6FsuMA3ngmaa58G+mJ2gCC2ebju1A7IKM1s+i6yhjReknLrIgSO5Jd0x+dsh/ExgXt9dK9BonygOa7eEihxPrfGfbEgudb6qMGfDyrsleXiMBczFj89jTeawHPr+vsLYHFi9/rpuOSwYfXU4wV+bBUuFDcPlRWYgGLvGT+KaQXeu0J7xngny5Hpe3WUmcNMb3WxdmRAbrGEv0WFChMlmp8VhBL9HzibsliLw6Opx9CtCIFJOfheIEYzqH9lTdRxBjZ9ds5Uvggz538eu+xBM05LEQTwEpxp8UwdsEBQUmCa6cxBAfe1nvgUCrlA3U8TE929q9lcwEFRrREWmb0UwRp09NG+MoN9IpdNrhIBO/cNfh/uFy1OPpyMQ+G8MUMPVDIpzl+JdLGCeP1Jxp8o7pCG4M5KYcT5uCt1Q3Q5XSpmTWOIKlYlaCLd+1WnFGJeaRqml0Yi7qRkGuAyfJIY+7qqIytuCe3TNpJqK+3Bk8QDhN7GrHqFjXvw00aN6ts8AYU1s12tCB2FJK2HV4J3nhM3eD2WEOeG/nhLu0ph4Qu7FXqTDb5Vk10OWLaTWpbdJy8bySeXRWaRKVjpps0Mq6fXC86TJsv9/8Q8yQkXyAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/C6l8dJNYmA/wF0fblU+cj0Mm7QnMGJgPyKwn5L4YWA/r6INOphhYD+R63/u+WBgPxIiczsAYGA/+ROCJ4NeYD9bKMuvTVxgP4wJlhUbWWA//E73IZRUYD/+bpCQTE5gP7RgQd/ARWA/NVwJzFQ6YD8YFjDcUitgP8hbMEPtF2A/VLnFPX7+Xz+qG4MXpsBfPwKbdPxOdF8/GCh0x24XXz9RnnEuCKheP3bc45VBJF4/2r6D1H2KXT8mZj6YddlcPz4tE+JPEFw/pnlE67cuWz8cy6C67jRaP6G07kXXI1k/cqW9yvr8Vz8gu4tohsJWP6xgse4/d1U/v6XlD3MeVD9ETfyZ17tSP0j1pA1yU1E/RTX+sODSTz+yiq1wCQRNP6aT/9KBQko/DqCYY+eVRz+2eI5AFQVFP3PzsPzylUI/mKnw9VBNQD/v8I5epl08P/s2c3PVeTg/AD1LkbnxND+yyRGKq8UxP3wzO3oY6C0/3GCa+xjzKD+/G+CR+6IkP1W0lQBN7CA/jD0mqVOEGz84fCrxsy0WP4OnWJe3uBE/sTIeiWoTDD8lCtAZOgwGP3zUtRATKgE/7Otd2ZF++j5VHqIbjEX0Pqi0saX6wO4+RlFsAasg5z5SM9FhUD7hPheMv2klftk+UJepngav0j5VlMa6aifLPkDsXvOpkMM+Ox/8B9z0uz5cV6oJQs6zPmoIT1jw06s+Zgh4Pg5joz6IB0AU8cmaPkR9xd8QW5I+/GHAbcHyiD6KsbvA2tCAPl/LBxsOfHY+Ab1l+kvSbT5IuHqaC55jPotceUGCmlk+eofXilmTUD6OJR2w6EpFPupykoJFIzs+mg4nD8woMT6or+EuY4glPtVARqKf0Bo+hqDGfi+SED4wu6WKkFQEPuDycy+xw/g93PdkJPD17T2FCR2YuALiPUjCxtHvidU9cGIIlkKpyT0y15P0j4m+PQ5qA4KSOrI9+vHDkkT9pT3c6PFhPxmbPUhLniIbU5E93Ai8o+Rphz3a+rneuQCBPabmTHowvno9aMP8eqWodj3wZyCmMGF0PRuHQaReH3M9WvHN9BF2cj3CtXECAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA5gIAAAAAAAA=eF4l0n0slAEcwPHbeQkbKRraEcnbXV5Clq3fgyPM2LyMluMq/zCSVnMt75XoaHNTU+2KmfcQzc7kWNS1jMasXKPU85y75zl31OHi1HV6nsdfnz++/37PcEzyGt8KJG73GNamQSGD2EY8IwSIPlipdcgoQIQ8XolTLh9pwmS/omeTEVF2koxvF43EzHYIRsLCEC1rtYorZCN+lvYu2gB3hCOewGLdHBHmouSOSmyNNDCsl4RqBsLC0/2QtB24Lq8cYjN1oN858RR3VQFXos4PKFBB2OATc1ajCoIk3Oav71QgqGorsmLiMN3vy3udhMO3dQ5h14XDkvFoc4wtAQkO4f7b5QQ8aHleGLJGQF5Xe64BUUNPlSZw7IMazr180bcaqgamR2vtzSkCgiZZjt/5BLh/liXzt3D4Y9MwcqAGh82G8PEWJxwGo1udU3pUYDarfpZ6VgXSsi+cj/NKyOnm1c3mK4Fl9HFIslKCaVw87NS7Aj6JTZnytBWIbBR5WpqtwJhngsQwooBR4UbcQrECzItLz4vDFeAZWdTmba6AeymlnNAFDDI/MeZz+zCIRVWxqUIMRIsXTIICDGo42VMpqRjohrx1PMBAc6i61f4kBu23tit0rmQ/Ep9VfRgDg/Oux0VrDJoUUo0bEwN2R05xoRGFvMfvbRgGFIZKXhma9CgkDzRMGjdQUAa4uFroULAwrWL1P1GYvz2nubGOgmhPadG5hoKR77RzkHSsxPiwTYtCvn7ubzopXuK15kaakRN0ykB+Ec+8FrhMOrG3eXeaVGDrPjJOyu7/bSEhlRUs+w2QBgvLI3pJh9e4Xd2kQVtjm52kzuhpeQcpNyrajZJlSuxuJ2W0crMpA5oJf0ppZZQ9pUgm/0f9uDhTtkmZJK3XUipC0gnKK8szSsrG/rgVyquXLisoDfJF+uMfVXW0T7qzaEf9uLT3bUJo32azabdqvWgfvTm+b7oHLSvfnXbJct///KyzpQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/KGr8dJNYlA/ZLGWt+vmcT3H1/tVRmJQP/2aYAk6YlA/MIsZtiliUD+yxdtjGmJQPzVbViIaYlA/GLClnEhiUD8cTkz45mJQP9BDwdN2ZFA/1ASM3u9nUD+MR8B37m5QP7Alhadte1A/qPxHBx6PUD+QR7F5urRQP3BB3EmaF1E/3rvZN9rxUD/A2LSTYLxQP0b24LrDeFA/ZzrfMUokUD+2qQ8z5ndPPzaAowLneE4/8KXpQ5pDTT9yIcmX6c1LPxQRdB9+F0o/WS3k8TlASD+csaAQozxFP3ogZf/wy0Q/epJKAiPxQz/qb7HaR/5CP3Sc6TB4+kE/7LTDPR/pQD+WUTg3Aps/PwbOAn/FVT0/AI5o12QJOz+VguoN7rw4P7s/RxJedzY/HOIWBmA/ND8ZesVGFBsyP1B/h/rgDzA/biHzQptELD/cqZ7K1asoP63SHDKOWiU/UNAQ9d1TIj+yAS0Q5jEfPxVEExp0Uho/lnWAhC0FFj8c+2/yS0MSPz6Ft5oRCA4/HF704ld6CD98xP/uJ8cDP3r57ezIrv8++NWO0Nkn+T6erzOknczzPo78tcU+5e4+MDHXKUDl5z6IPuLQKlLiPhFOjOql2ds+iAx5NRn81D40gYgvwFnPPsJskrCGN8c+cMFaZ8QLwT5yH33bB9G4PkDMpvYt6bE+jEeyCWaiqT4i4j9adDCiPjxPGhiPmJk+jhdyTcrbkT6cATUcb7aIPqwYaSX59IA+5qSSox4Udz6qIPClEidvPlrQMfyq2mQ+5LjMQKSxWz7uwgFOfj1SPoyw7Ju01Uc+7II0KbzlPj5OtGnzPd4zPpoj2DIAWik+AtsuB3QMID7UZjm0xikUPmATVhM9JAk+subbsUQe/z0IcpYwAx/zPbwrBeRyV+c97t4DHINS3D38ooA0QhnRPeC7/GEblcQ9UP4eUNrGuD1aOc+FdPqtPRYeoKRLYKI9A9bMX1Malz2UqXoSkESOPSDN/IUwCIU9O4PwKU9wfz0x6hwnHV95PQT3L0mp7nU9BkoA9S//cz16EUSGf+pyPdLLbuXHUXI9uHcT9GQBcj0HAmuoAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAewEAAAAAAAA=eF5jYBjaYGbNyQivgEq7Sbq8qUdzVexPuz4vOKGjbX955Ybt1+217Z84RiyeAqQ7IvcWFNhq25tvV1Djsda2j4kP3LXJQtv+87QrBjVm2vb7blgfLjfRti9z6HPfaKRtz63pGGhoqG0fcuv0jj/62vbfHosFiwBpFjNBllI9bft5THf0JYA026mC6i+62vYTE6Yd+gekK/krlLWB4jr2p/7nAumrRbOv7wHS8zVjX/IB9b9Ps+6JBdJsHswuS4B0vHDR9AdA+pp92E5BA237E4sFJS2A9Iy/mu9DgLSU0+prmUA64t+V2gqQuERbYROQjjG0Z+wE0r9btM16QfKXF13rB9Jy8XoFE4G08bd9yZOAtM2sqI8g2of1leNkkHjG6TwQnXPEux1EX3DMnAKil2zymQ2i2zRuzgPRaa+XLADRMkadC0F0yPYfYNrVSG8RiJ7l5g6m05iDwbSYXwSYnrwpCkwb7I0G026aMWB6WzSE7qwYWjQAGZvpIA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfwAAAAAAAAA=eF5jYKAvYDpybU/EYxH7ncmSp845ydq/vn7hTx+jnH3GbvfOP4Jy9mYzpl5xAvIvaf8qTn0sa18zgzGbY6+s/TPxNezXO2Ttzx3anpztKWvvlVC1O++7jL3fDtMZP6fL2J9Qa9lyNvSPXbCHz+2f7+rtCLljFIwCYgAAeR4wGQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxQIAAAAAAAA=eF7tz38s1GEcwHHNzyWJf/LjHG7M1pPfrt/nkcvminES4RZRxHSzIb+SOE5X15WTowi1UUJC/qIspaaFyVx+tLPqrs4N+R2j1ef53vzR/2390/PPa+/P8+x59ujo/F//ckmkL3pkgk/emz2ct8gyUjthtfto7ikTeyzpbnzbugfh9uh2xsPSXVgm0V/vxgg/mRY5dbAQNhPH9hlCV6iCaDJQP976zPtDCCem5r58DftcBWbyD0ArhZrzBxGOrKGPWe1DOHe4UGG+H2GjgV7uLBPhfkV/kxzekTh9MfrhiXBOya+ZPi+E7T530n08EI7npS2tgsFtFlFDbghvL+ZPJrsjjPm9Tx+7InxYoOuFYB43L7EcdUFYTisQMmFuF55ZxoH+ODOeJQIX2B3ydWeEv+dfsrGHnqvO2VBCe5yT3F0Ek+ZVt9bAOUmV8wqYHfaswRnOBYr5pjYgzbSoKx10aVeW8cDWCbPyN+BsE8fwEWg8v0VhBe9GXWRwNqD9Bxx4idATwlL/ALBjhGnUAs56imlloEhzbXCK7GflqIdBPdOMvZbwjxDxCYkhmDhxWsMC2S0NbDcwzfHnkQjQpz2FHgQujbMWk8m/R483ngVTl23qs0Fus+/tdDDfNkwpADM6OHmXwRSvyQURmDxd11kMRpv4DV4HH4w4JohB3nNb5k2wKz0m7Aa5b2NHQwl4wbqeQdTheRRJQfNXK0zit1CZXin4rlwjJ71tpCuAtJ/DmgcxidWTRiyxEMYTR8cLrxJ3bx0sIBa10WXEgWADKXFqyLWKuCAzuUOs/BpQQ2QVMKuJzcuKWmLChxBK6VjdPaorYyhjmw3uE4/pqqiuaPSiOqjWgZItOEpJX/WlFFwJpdQx5lIarJ+k3BkRTqmniqQMjtOarI6itE/XqvTmUZoxtNolaQ0M1CrK/HO+2f/9O/4GQvnfCQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwwIAAAAAAAA=eF7tz+tL01EYwPFBmjRSFDFRAzVpiAc3U6fT1DM154o0L2hexlK74HKoEehmTkfNS1le8lIaectQE00yAyFXqbkyLBJvNUMtb7mkjJnGSnrOb/iiPyB643nz4ftwHg6HRts+//PIUt/ZmljT8Va7hLA7zmscsWN6I1JXOWBl5c4xfy+Em5LpBZWzTljsXaFSYYTLXB24Ij+E3X1NN1rAHAOuLBLmpkI7ZaIPwvPc9NR4X4RfpOzl62A/36hfqfNGuIT388k9T4TDQpUPGzgIB44Y5ivYCGexncVnPRC2GNUVVrkhLFw61XvaHWHa5xCR5gDC3tG/FXWuCJ8TDxy64oKwPffDETuYzwq5vAwWwuIzCeNfQEWmVN7BRLhi2GTREFpy8oETE9qstoifDC6tMbxWnBF+6psUZAxdrE3ymYUWXzoh0oBdI+2iTVBRfky6DkZOCds4cM+thiHfD8Yw86oVYO2PqLcikPWV6T8Jbsg85nrA99YJrQje1b0x1u4GGT3rJlJwY6IvVgD2hQSoH4PKjJ7aO8Rhg6Q1EBmOhs+AVp+OZu2D/xU1edw3A/kpKqMgkLOrhsUBI7SFhUIwc3rZPAoMspvrTgezcm03RaD1njYsA+MMOhok4OHFqsY8sCCYXnIRHH5+w6IIFEcvW14GJ+TVBcWg6G4r7xooSKQ3l4LSTpuPJeA35eBKGRgTps4ktix0tl8HbS90JxMDxldsykEWP0NLWpq9FEu6P+d1ILF+elc2UZOznEZ8lptRTFQ1rBYQafaeN4lpZqoKoiQt+DZR6Cy/RaR/V9cRp3q1tcTmIUYDUdrTVU8cDHtJdcWrUsqZSctGIq/oF9XcMR+qd6yyKPHxUEp2OJ8yIDia0iovknJoIJYyQhpDmX0wXr8/H0fZbC6gVHXo54/i9b3gp/eqRPDXfKu3/Tf+ATrS3KQ=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA6AAAAAAAAAA=eF5jYBjeYMIlpu3P10nYB7mZzbvRJ2AvcMv/ZESIrP20NXOdH8rJ2BeYqH0I+Str7yQY/9nthqz9suV6/S845ewvhfZ7aAjI2fO8L17585us/Y+pp13tWOXsww6KsVRfl7X3bOLglXktay/oOUV73zpZ+2yrbdH2x2Tt9zzJdxOokLUX1vocyjJZ1v70y9IlQmZAddtTtnuHydrLtJ3L5XwqY3/n2hkdG05Z+1Tz+2HnUqTtd2emL32+Xsa+RqU+9VTZa7sL/72yhV1Y7WH++FrG+WFB1RE7fH4dBaNgFIwCegIAJKpSVg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9QAAAAAAAAA=eF5jYKApaCCkgNogwNb36tPWG3Yw/k0nq8cbXSTtcy/c1j3MJGSv284rkpAla390c5vmtTAZ+/9hBRNL/8vaLwt8sfvgfVn7LXf69kZwyNlb/TKTWcsvZ39Ewjjky2dZ+1SP+e/3MMnZO74yWypxWdb+AmPbWuvnsvaflR/8Pr1C1p5v/xKeuwdk7Q8+b1wVVCBrv8RIXP5pt6x9QV7dshYdoLoPKQKevrL2V9dFy3fdlLGX7yquqvonY1/NYnTvwnpR+w/xZWnMS2XsH2sGyeR/eGQX99omrvvef7g/3LlW9Cw8sQXOHwWjYBSMgoEGAHX5XWM=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACQYAAAAAAAA=eF4NUXs8lekaPbkVU+H7vvclt77N3qVMSTQMNb5yKWIyiV1GRtvELludkxFNtjJou3bToVGn1FQGY1BMKv1aOlHnFGnkUjlqpoQmuSSXmOl8f63fep71Pmut3+tQIoz2uBoieOJj96ETszFuOFAtjTJCwuxif3W7Ic7k7hx3jTCGdm7mF5pmI9S3Rw1Z7pcKzzL8TfofGqNHOZO2L5IKpV+r5y58xMDToGa6LNpGaFpR351uKhUe7HgfPYchqC3Wu5PVai0wWc3nKs4yKCo4PxA420bYXObz88brHM6kx056a6yFsVtTOSUmDBYGV+l5qgm+7V2lf8h0hrDRuel5y78YxIc7zPtttzEUpkmdW9dJhIZlfhI3Rxa1XnvSWq8yCI3WkbvbsfBIkITXf2cMX4sGi+W3eeHXUH23I3JeuGewd8SclQiNwyuO9ybwwshA9edHh3nBv+d3tWyaRLB60cUmtfDCYn/HUEUih76WvXZ5+3ihRFs5HnmRF/q71N8snOIFhW/p4LbnvFA8VjVq4MeiW6WYU9TJC/oZH/Q7YxiE0I8O26UweFelan3ZwCCv2ex9wioGNelHH/4xwAsyrf3kbRgDU5uwr/xmMVgZ8SSt0lEitDe+WF1gIRHmz5dskd/ghaSXyz8q8mRxKytZc6KQF+z+Izu3J5hFkGzLL4rbLIyKcu9KUnlhSCXPMyznEPvus5r/xrL43+BN22eEhS3vnl93mcM7eVXzy0kWpU/CPUtGGPh3vhpKyuQwGfN09PeTYs/7YXftO1hE+TjbPxR7ny88YvZlNovtIWbW0lUcRlW9u8wv8cL3PXVrDCo42C6d5rXyTxa6Hprtm0TfKTaAPhfvrV7xeN61XA5/6EqyTwdxSNVIDxe+4TAzPMM8qoVD1Mk6v3xR932KTuOfpgRmoUp5pyXBhM9EpMKdwGllW3pVBwezxIK/Vt/ioHyruFdqTuCQnOj34zgHy109N6sWECSQZdPvcwRT5SYHxmwJYmL+OmivTbBhvX2E9CuCU9zINd6BoGVdh+yslCDr0bZnvSJqC7Vb14QR9O6w8u2VE7QF2e65FkCgCVpSOxxLUDyYv1MRSRAyqL80Ookg+Ju2BYU7CWrajJrTxL2H3qW9rWcI9Lb+47vL3gRuRapZOVsIMsCkS+MJutdP29yfSOD52i21IkLkc5tDAo8S+D59Y5dwkuDNp0t6erPF3D/tONaVS5CqenrN5QfR/xDz49s8Au/Gx7rNqQRBa4cvaMoJvOSzAqTnCXwqrK/W1BIMWbh+OvMOQaXy1Rexp8Q+z7v4GSUExsl6pbSRIJLJyZjVTHBwyuv60V8J9G9bPe64RGDR1dAa2EpQ1so1f2gR84cVHJ+4S2AVd3NS2UkwvPTUslviXWm1t/W/RV24zpGu/Ffif9QMJpf3iflTdz+y6CVYG/CEXTFGoNAxXfSbyPcdY4JSROzPdTq9XETlPbMFR7QopBUTDrtHCZKXPLC68TcKx2Htz90HCFw6j99Jf09w+KxRmUzUKfsMvvUzoDCx+uBoaESRtTjm5xsshcSQ37DRlML165lspsinrswPPG1MUUkc1brWFO15nsJKhuKi999bDKQUX15h72ZzFJO/rCmfa0vRUZnkNDSP4kBBdP02GUVB/oOzQ+J8Sa2Gi/mE4o7zLg/qRLEn9jO3HlcKreqGKwUeFHouc4q7PSl0L+z/OEhEj6qmuA4fig0hvp/4+FPwWpvrLqylKFvsfD3cV/R33RR3LJDinxdL1rtspJh2437e+xCKN+OJhavXUchOJk1Xb6aojis2OhdMYdhmZx4YLvYYvN2XsYnCJqXOzVtJMePgiRG/LeL7tEwH9VYKzuRFpUskRfyEsf2THRQn2sLNqrdTPLi66GZBLEXIZSFCR0VhVtY0VBlPMfb6wruSOIpclyZ39V6KRJvw1NkJFN39hyqC91GEXk+vUqkp6mItDVqSKbbV98VfEvFpgNZwdhqFU3LNT6pU0T/HP985U/QvNn59/wDFPU3CLlk2Rb9v46YWcW4pH69PzKHwOvaDTYqI/wdJkuKRAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxAIAAAAAAAA=eF7t0H0s1HEcB/DLs4mQ/CEyk+OPohidWl9ZmoectdVF59KD0zwsLnXnoZxMTcozd+dyQ5mHqdMfZO4uR+eXaEdbkac8ZMtzConI9Pn+bv7o/7b+6fPPa+/3vvvusw+F8n/+5bSObZ8e4CejrfzeZ4mBdqnQdGyY+Ta1DNW5KcJrBQQKEj2tD7YikG9D7li6hECbnarI1YcE+jguyF4tIZBzlLY7G/r9jYvjgdAz07UVutBbc6N7UooJ1Lo7xctLTKBTTfxUhZBAbAtTqwQRgapduzIt4f/Tl2YD2kHbpUOD4kICddvLLngWESgjy2WIXkAgg7txtQNgadzJOFo+gX5a3DCrAym2e4WsPAJJGBUv5aDOq2VveS6BzK+8naNAjmf6cYMgG5+jd/JBaVVb1U4w9NFyvwtYnFZ2Xgs0eRwVawwebJIumIG9CxVhO0CBSe1ZTzAzRfZ6H8gxHhuMAyPcnvWwwMCri4QU1KupiRSBRg6VqjmQJRsu7wXbJifsnGAPIS/f3hykpVF78b5WozOe/iDLeTMgE7xMV8sSwXl5BVUK3pvve1MG8hnrUx1gxuc8gRLstmwXD4PRTM+5XnDFWnZrDuQxB9cmwKIcxsAPUPopSn8J9A6h9m2AG7fVJ9ZBccdajBbc7YjBvJICTjFLgnVBebm7rw74TvLFUR/8oHMtVQ+cOOrjbYDfNYuGcP/Npn0S5/D7fU+wpbN2foYg9ZjQAZtt9pyP/W5Ki8G2ydckWLa/RwFWyOJIsTxWSTVWqfJoxI6obOqx9KwuObbq4gEZ9ibPqRnrasd4gR0tClFik4vnyb5P9yuZGyrlpLHHaS1YqXoPaYpxKGnTTBCpUWEM6ZmRCNJox+ukOekcUuEdHinXj0tKW0kgtRFo5CgSSQ+zNfb/0mg4qfGBTRJpi77GeKekP/qt/N+/42+lyUHVAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvAIAAAAAAAA=eF7t0P8v1HEcwHHkfEk22uiUQ76U8cuJjZPek774Uo3MlyR9s0OGxS6cxJGSbOS7u2vKqemGJa7lLlzLe5fUkEK+li/5OkNNWKLX+3PzQ39A6xfvXx57vvbae++9VVS2zv88dSbN/iHNFWizB7xlvMS+18hord8iV9SEYuXyB4ISjGptUos9/TEyNFYosu5jFMkTi3hCjGasdbprwQYU1WkH88rfT2qW+Rj97LDMlggw8pXSJvaVYiQ9FTI2BSqON0rCijHKTDNI2wv3souibyoKMQrPH4jgFGF0mvZrwKcAI9epyeI58GSGVatuPkZmQoZ6MbgYPCdWy8Nowp1tyQEDwqon7O5hxJulF2WDDlmTbYJcjPJS6JOD4Gooq4EF1rQO1bDB4bayUi1wR4hvjxm4vsDO3MjByFP3A0sTWihg8g3Ad+fvBumBqYJF8WFQ7GpsYw8yg9WMroPozGpPGHhiZviCDKT7X4yoIHsq0vhVEDuFuYyCJYYKVQd412V5p5cJaIMZXuGgUPOsvR+oGOrWyQfTXWwZ6eDu20v7JWB7rAmnEpzOqfdqJ3PdjAIMfi/XLxoBnfP3xPSD4/ojfvNgUtd21xmQ4dbSuQJ2mUp8l0AfWr31BsiWrn9aA1lWo+7b4N8Cn55TqIIpu7THaKCbrfuCOmjPpadogoJq82kN8IjHoWta4KsYHWNiFidcQxv0/sjqIl3W+zaI9Gjy/EFiZGTVHeLVuh8JxBZ2soj4aN2HTyzTi6oltsluVBFFt96/IKb1HnhOZOqWvyRGP/OQEaXiwiZq7823RmLcTE4zceWrI2V0n7acOE7/QrWj6zGqj/KZlKbOlyg7uIGUPokxlLPTVygDuBxKu9A4SgdGAmWSeTzlQ6dESqdl5dxiUNnduUof7+RSfl5TNsea+9d8s7f8N/4BaUA9IQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA+AAAAAAAAAA=eF5jYKANWMgIphrQxQ+hC5AJiDWn1GGJTJrbAbvn82SXXLi61S5i1c/IFWGH7fpsvoXO6Tpkd+yfwyvhY4ftmA2VQpeuPWzHv+P/0bhzh+3UitJ7ai8dtjtxpOPXo4OH7d4wrg/yPn3YTmqH0CM5oDo2oWAlgV2H7Zpunl7kNOmwXdCV9/yHFh62a4uapmyad9gu8+HN9b/qD9st4jsYtsnpsB1D347oj+GH7V4XyjC48B62MxSZyqqketjOxILlwmv+Q3ZcaolrrF8dsms48v/fMelJdp0iq9epcK+xg/njycv1f2sZs+H8UTAKRsEoGGgAAC8gZK4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAAQEAAAAAAAA=eF5jYKANWMgIphrQxQ+hC5AJcJlz/sj+siTtBjsY37b34VXNlQfs1p6Xf+Z8YLvd+/Afi/VSD9uddfjS3Lj+kJ38vhss1ccP25U16dyavOmw3aw3+9XCzx62W/csL1Tn0mG78iA5kaf7D9u13u4uWXLysF1VP8MNq1WH7VgYlc43bj9st7X5z8+wvsN2Py3vu5jOO2znu3p9n1TmYTs2adVuj+rDdtaldRNSbQ7b7X7nXMoQdNjuxsnLgetZD9v9N8qJ4ZI7bKfnPE3BcuYeu5ehZda8jw/ZsWmd8Vj1s8POnnPK9VjmpXB/TJtnuS8qIxrOHwWjYBSMgoEGAKTdaGg=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA3AIAAAAAAAA=eF4l030s1HEcB3Clml3XSh7v6ff7naKUZYhqrd+nB6FwrbUe/uB62BSx7hyLFheSiKVk6ZzN04ws6TwcJruSs93hRJ7DmZG7IyU6WZm+v5+/Xvtsn73/+bw/zS2Dw/qEr8dU+oR6awcCclwlmEktJpXKj/GijHQSe78sbZnPJwnNq7Ai/0pyziR83MRoJFlB/kpvQk1Oq2fEim295BQxLCMDxsnzzBVzzwYj2azV1BpSlsiIdnvNhWQLULUUdv0ZYIDOMb+/m28HU42+QYJ8J/jlvMkhQuAE1d8EvZtZTpAdEOx5uoMPO/YJk/6K+LB99710mSUfHshLVznpBOis9KO1azgs10DBET0GJXeUI4wGHpxqGpMX13AhQ6D7N3GXAzG38MVQFhe8JK3XPkRyYcx42xnq0MyM7EpZ40K8sMMkDeTBQqIZl+fxwLBnskI7yYPXSl072w2DsvQwn1wJBkyNn+5cPQbaGKFYuohB7cucdzFuODBSV2eqruLwPSlzx2gWDgN9kfETtTgUylJ2fu7DITg6KWr+Bw6Z2YqQLxsJuD9y9NKJrQREV84xnlkTsJDt5WRjT4DZ5Yw1xiKAK0+cXWMTIG6cPmTBJWAg9IExBFkoi40+g8San7fNcwjYL0ljRSFH0wqwIbTf6f824iTSvaL1Zx3K6VQ8DfdG+rJlse2OBLQ9KS4KR5pXruziIC8a8kSj6M7hM3XySuR1dkD5Q+RCg2d5GLLaRzUuQA6XxnUcQ/ZPcvZ6IAPVTNMe5JWmvKN8ZJxlTywXaTXHtmUhK9hWDfbIm85/beyQVatvlmyQ10QlHpRZJclvdyJZru6XKV3EL3iUObLZZap3moTHespeW303bYZBTVn+vlBFWV2gaKb8rT3RRHnjQGsDpejykJLy+ORZ2kcbzXSP2xI+0YYrymi3HMylHWQ+oY0/nEobqk+iNZqltPmGRNo4v3V1C+t/8R/BvUwQAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA+gIAAAAAAAA=eF4l03kwlHEcx/HRjEg1iT0cxe+x2FylyxA930YMOka2QzkytZuUMVrTSNhGDKtpI8c6mrShTK4c0bq2qCmTzI7ISo62oVJtbWMNyVG/5+mv1x+f+f73/rYrhoY/JI/s7ooTNa9nI8h9ZvvQKz2S3O+qSg6ITCHT2graYydySMW8olMWWEqeV2paxSF1pIy/Xejt0U421YtUvJmX5EzKwaPhc/3k9HxmXc/gOGlwqEjPYXSKTDAUhK5p0JGqR9Lj7rF/yahzCyVFZwyBEU7OBU8y4I53yXBQIhOaBcpLwUIWhATHvhDXsWF69DqqOWEOzhnr3sgllnBLNX19jdAKqtwP67+0IoBY2J/Ul8cBB0b6g6gRe0jo7SB+yxzBsjIhfqDFFRaTlQoTxy1gPn6xQB2xGUhpiOXWCBcI6pDoaqKdIeaA6depOCfo47fyeCJHMFsqr14hcQA/3bGgntJNECCeiG7s5MK7xbW8gm/2oOG+Rz+RPSxly3QqgR34v3YSGMttIWBMqdYzs4Watty3XWIO7Pp+YqP1Sg40N9wsqM61gRkWm9ntbAPdJQYeVQMEjO+Zqr2QQcCuj2mFNj4EmPQKjRSrCVgOM033GEUwl+13Lr8Jgf/ZVYn9eQgm//qe1L+MQCvp4wby8c7/MzYZhMB3+LaxsQ+CYpfiq1s8EARbFy49dkXgJPXL2OyIIGMmddbVDkH1keP7zhMIFGODjVIrBIZuRkVJG/B926t7WgsEY094v5TmCPTTfvGWzRCc4so1Udi6yFr1Mu5B8W7H3iZs6jjhnoJ9r83yDMMWWSqz92KvjTzv2Ybt7vEScbGfEwO11ljW6eQfFtit9RNlbOwjyQ0RE0ue4lkwsGe+x7uZYqt3Jt03wbY0zwZQCrQVxpRivdU/qB49Oewhyixh5StKTUVqF6U6v7iDks2qaqWcctPIKXvzPz2m/MI4QHvFQEd3rd/ylLabX0Z7tyOHNiY0k1bHTKNl2qXQHpNeoS1v/f8X/wBCi09NAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/JwHpbVU+cj2yb7QnMGJgPw9Cn5L4YWA/fq4MOphhYD8sJ37u+WBgPxr9bzsAYGA/T2Z9J4NeYD/VpMOvTVxgP6w4iBUbWWA/qbDCIZRUYD9h+DWQTE5gP/b5y97ARWA/E8t/0FQ6YD/x1ljiUitgPwD83UjtF2A/nVasO37+Xz/67AMXpsBfPwMAk/tOdF8/E1+Xxm4XXz88o2YtCKhePxhUr5RBJF4/MG8x032KXT9yQwuXddlcP51YH+BPEFw/QZTB57cuWz8c8YS57jRaP/mg90TXI1k/fn42yfr8Vz+yG71mhsJWP+oUxew/d1U/pKXtDXMeVD/DeP6X17tSP7iapgtyU1E/3WQMreDSTz+DPNJsCQRNP8S0Rc+BQko/VsUJYOeVRz+7uTI9FQVFP6WxjvnylUI/WnEM81BNQD8mOkhZpl08PzZusG7VeTg/NJgLjbnxND+Mq1GGq8UxPylUrnMY6C0/Fazx9RjzKD+JogmN+6IkP1AcfvxM7CA/x2BMolOEGz/xY33rsy0WPw0QsZK3uBE/sZePgWoTDD8gXr0TOgwGPwbo4AsTKgE/hBvB0ZF++j4F4bEVjEX0PrMAhZz6wO4+THVn+qog5z5Pln9cUD7hPlqcw2Elftk+Peu5mAav0j5hIQiyaifLPu2l/eypkMM+Y7zC/tv0uz7+/w4DQs6zPnh87k7w06s+0tLfNw5joz4T5A4L8cmaPlYqbNkQW5I+hAsPZcHyiD72xtW62tCAPrm6GBMOfHY+s7XR70vSbT51+HyTC55jPivlTziCmlk+k/LjhFmTUD6rjHKo6EpFPrVlx3hFIzs+akzzCMwoMT6lUBcnY4glPlTxkZif0Bo+6AXIeC+SED65WE2DkFQEPgKWhiaxw/g9796hGfD17T0giq2RuALiPc1FJMrvidU9FhIMjUKpyT3UvBXqj4m+PTto73uSOrI95zHHi0T9pT2bovlZPxmbPUOfGx4bU5E9cfuqnuRphz1xGufbuQCBPQIULXcwvno9m6RFeaWodj1f5zClMGF0PS1dv6NeH3M9T8GE9BF2cj3OY3KZAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA5wIAAAAAAAA=eF4l0mkwlAEcx3G7ydIwZhybyNWg2Gx4sc7/k02NzWDYiprc6UZTDMPu9EbOmKY3mRQ1aC3GkWNoQ+SWY5WOVZrn2Ztl2XVNM6TneXr1md/83n45rb2V+u95yKMNR6x2GQWXBYZLlncO8vyIWpssvoMMrVLDqxoSEHqdkch8PAqp87fUOh8PQbzWt1M92SzEgObJ73zhgYjlPePfAp2Qy+rFBrfTVshbyckByqwJMtW8cS5FaYAsRHj05zRuw4eAkJ9blmvw7OF3kduiHFKMza/fL1GAUMxmhZYqIL6K9yB6VAFLNUzreYoSaJmNN65FKmHCt/RvV70SXsriKibNVBBDrQ4s4KuAKSxeGl9TwbCUxU+KVIPHhoI3N6QGl5g7BVVMNXTYp08/HVKBKfWEz9U4FVwa2L9gqlNCL8tC/D5fCeH7HDXXWgkt77if6PUKYGenb3oHKKCWz22fmJWDRlQuWbklh7ZmX3m5kRzQLls5r0EGP16bGSVwZeDd/XO+jSKDYJvqvJFuKeTTHcQfs6QAAVk0oZ8URoq766MO4HIeF+bOY5BmWH9ztAmDw1uZmrFiDNZ3mDzKXQz2wHhZG41BSyL9iQlgkL5IaZpiYGBnc3ivxx4DVloWP9YCA9qpGf9AE3zHOPKoVAy8BmcYsbsoCDj6Ae0OCn6hkvaSTRQiNqub9DoUrObsivbWUGDyDwYValGQJlkP3ltF4Yut927NCgoZIYwRM1zmIR2lRoPCV0Pd74u4LfQgFwfcV8MBgh28i1yTwdlfuGNhzWcmcc9zqGV9uFzNbXUnrj6bTW8l/owKnyZczGihWojbJ4hYFeBmCEWf3+DaR5odJUSL1YI63K/uqXGE5V3xnoS20hVzQolf7R7RY/90vJ7Q2TpXQ/gnOExFmBw7Iifs+BUiI3T1SpQSqop+kB27z5SQStziSBk6Nimy4ENqfNaDlF7mSlr18Rhp2xVn0so0J9Ipw//+A1fEsMc=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/mszF3/3mcT0Vdug6RmJQP2Pxxrk5YlA/S9GsAyliUD+edu4FGWJQPzqGzq8XYlA/EQ5jCEViUD8mRptO4WJQP4uFlAtsZFA/FnR5DsJnUD+6Pdfyn25QPzrn11sHe1A/h5ALxE+TUD/SrJgnQ7pQP3HYKp7xHFE/vaPMLGfxUD8R6JFWXrxQP8Vhsq6XeFA/86MaFxwkUD8rIO2eV3dPP/JTXAoneE4/ZE2208JCTT/FbLewaNBLP9fbPRVXEEo/mbjaFQ4dSD+cFz4gYUdFP8e5t1V+3EQ/zUYUsXryQz/hzaIFQgFDPx0MXwpF/EE/qASjsSjrQD/30ZrP7J4/PxnNf2yVWT0/6Yq+NgINOz8O1wxFVcA4P/N+VJqKejY/MHEv7E9CND9d3/2vxh0yP3t27EFWEjA/lS94Dg5JLD/+GdbB1K8oPxYshlseXiU/eeutLQVXIj+WQsedbzcfP1UjD7BGVxo/wl/7sVcJFj8p9XGk3EYSP+a9eRgeDg4/nRsiQG1/CD9Dfy0qY8sDP+bNkqnCtf8+3YiUI4st+T53OWMCN9HzPksi0OGZ7O4+9HYawxLr5z5Afm6oulbiPrfa3yS54Ns+Z/FFZocB1T7c95qEAGLPPioZNDq7Pcc+EdG3/2IQwT6bGWIF19e4Pi/8J+8l7rE+jp1gDZSpqT4HRp9elzWiPs0O9pHWn5k+hD1D/+XgkT7A8QwNib2IPrM39+rc+YA+H2YYd8oadz6v6ZI8FzBvPmcrFRy14GQ+aU1Kiqi5Wz68ZB45xEJSPhBUEcWU3Ec+bX6AKZ/uPj5ecnJv7+MzPmlpxKs7YSk+5EZfBwIRID6KsmP8di8UPgKoY8VIKwk+jCahRuwm/z3i6fbYSCTzPVZEFO/RXec9Qdy/bCZa3D0aN7PwzB3RPVdtnF53msQ9OCd3nCDNuD11lwKmvgGuPaDyPlp/ZKI92so2JiIflz2U62ezBUqOPZyIgixEC4U9B9OaZsBzfz0zj/aFBmF5PX3b5xO373U9KP50osP/cz2qNh/Tz+pyPUJNRHPzUXI9X61GX30Bcj3kdWYyAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAhAEAAAAAAAA=eF5jYBjaoG/SwUPTmi/a3bvxNHZzlYr9gv7133Seatkv3us+cZedtv0Vi5uf/Oy17bfnnJnsY6ttH5v4mP+dlbZ9zs6Lt6dZaNtnXfOsTzLTtm+JKaxOMNG2d5af0TnHSNt+/RxnWXlDbfsDFSlf3uhr28u0c1xgA9J1i1a2Z+pp2394JFnFB6QnMrP6vtHVttd1cHz4HUinfJwaowoUV31ooglSF3BE9/wOIL3ZbNJkbqD+SVoxl6KA9CWWRKFFQNpoE/Ode0B6te+zJAEDbfuwo6zi5kA66s02wxAgveamh38mkE4K3CBfAaRrXp03bALSeROcrncA6eZCU+leIM0jdeBoP5D+0n07dSKQ5pwwJXYSyJyyA29B9Io/t+wnA+l/WktyQXTTp5VtIHpVo9AUEJ23RW42iM4xOTgPRHc9m7EARNdYNS8E0WE3voLpL0t1FoHoDXvdwPShk0Fgmk8rAkxrLYkC08fWRYPpKoMYML0tGkKHFELozoqhQQMADF3zWA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF5jYKAvKOyZo/Vgnoh98OEytrk7ZexvLjr08ewrWfs9/+5lc/DK2Tcdmv9d+p+s/YWF/R3eD2Xt9zkuPVy3S9Y+o93Qr6tV1j4v4K2uvpusfc0637NK32XsJwQo/4vikrF/f2IVyzHFP3Zfyzg/LKjaYkfIHaNgFBADAKgsMNg=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_210_t_21000.000000.vtu
index 7d992ec63379427792deb1ca53adaba35647a797..b1af805a91194f84cb9cb9cefdf305cfd91e85c8 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_210_t_21000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_210_t_21000.000000.vtu
@@ -2,44 +2,44 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020798424948"     offset="0"                   />
-      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-6.8530538248e-70"    RangeMax="0.00020798252291"     offset="1084"                />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0001149184777"      offset="2276"                />
-      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-1.2339193616e-136"   RangeMax="0.00011493093047"     offset="2696"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="3180"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6425412169"        RangeMax="10.720415737"         offset="3260"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="-6.7565904209e-39"    RangeMax="2.4581408154e-06"     offset="5348"                />
-      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-8.0995469903e-72"    RangeMax="2.4581204092e-06"     offset="6680"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-1.311157741e-154"    RangeMax="2.3678728468e-06"     offset="8008"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-2.5424856229e-138"   RangeMax="2.3681294337e-06"     offset="8584"                />
+      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020798494195"     offset="0"                   />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020798123222"     offset="1088"                />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011483380357"     offset="2176"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011483419424"     offset="2596"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="3036"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6443527145"        RangeMax="10.804783643"         offset="3120"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4581489997e-06"     offset="5228"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4581051548e-06"     offset="6304"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-1.5641274181e-148"   RangeMax="2.3661281692e-06"     offset="7368"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-2.0602537432e-321"   RangeMax="2.3661362173e-06"     offset="7816"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9991896403e-11"     RangeMax="0.0001420814591"      offset="9164"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025919448828"     offset="10236"               />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.041488956e-10"      RangeMax="0.002"                offset="11340"               />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308419832e-10"     RangeMax="1.1331948474e-07"     offset="12476"               />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.9273677543e-11"     RangeMax="0.0010527973507"      offset="13572"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="14708"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="15212"               />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00014415740453"     offset="8260"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025857117404"     offset="9332"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414889339e-10"     RangeMax="0.002"                offset="10436"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841983e-10"      RangeMax="1.0908231936e-07"     offset="11572"               />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.9326436731e-11"     RangeMax="0.0010532704405"      offset="12668"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="13804"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="14080"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020797256969"     offset="16288"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011487531132"     offset="16908"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="17156"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="17220"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020797570722"     offset="15156"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011480512474"     offset="15772"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="16020"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="16084"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="17712"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="16300"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="18640"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="18940"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="19252"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="17228"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="17528"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="17840"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACgMAAAAAAAA=eF7t0Osz1FEYwHGRoq1xyYtWkpJdOdZi3QoddBlW67KllchlSVmSy7ARkpKuNlsYk0iJWGOYpiH0IrchGowkY2xqKpqE3MqQnvPb6X9oms6bz3zPzHnmnKOk9H/9y0udvaau2kQX/+n6PI5OctVOfJDv+PSHBwMnx+eaTexB2Hhw1nSAhnDtfCj9pQvCk0z9GGVQqUWX1ueMcPSEU5EAWuO6pwfNCeG9X/mDneDJ4UOJenCee6G3egycPsOPZDjAvPfi03OgIE2+YL0bYR2tAzoq9ghXjjgY+tghHEG35OntQlhvl2bKDRuE9dN7mrm2CPcLd8x8tkLYu8a+JM8a4SA1N69IDsKNaW+YNNh/NF3YaGCJsFtLHUMGevcF+apbIJxr4i9NA5l8l2WmOcKLDWo2WeC+TCHrHBvu9XYysw3c/PCdhQoYW6Bdbwcqt3LD6swQXp4t/T4EapfF3b8DLr3ykZWBkh5eixSkt8tM80FXQbNjJcgZtdUuBVNLBfn94NB+15E2UFRhMqUGc4PZhnHz0Kpvnnm4QHc+Hk9igZ6cJx+TwZgBefUJsDefxawFQ+R9yvdAnuaHpvcgnXW6uAd0cRaK1sM7KsKUhpagHb8W9JtBb+w2+bkNFLjSD3DBbrlwrRMYNV0lDgQHltxyBCCWmwdEgzWV4fGnwLzAyzNJoP6opCwB/NjlYJYBHu4ONzwP1ocPj5J/+7V1pT0T/MRrb7oOzo/N8a+BEwsd7tmgqVWU/03QuLZxRgL6bdpylCjqoK/KAbWOc4pugUa3V8pJy6LNI4kpvs81pKBnVvkX0mdDMnikz8S52xJFiatjiS8SvoUS3cT2l4lbgsrSiLggQEp8dpGWTUxNtyggBuPWPKLRicVCYq/swV1iVOG6YmJWrFcRsa2TcZ8oUW+m9v1smqhGl7IoX3fRSoiRIVNU8+ysFG3EoBy+6kqpHOdM6dvApxSxPSmtxgWUxRuOUHoJ/ShTvY9SXss4RumkqRCr+ivmjymax1O01naFBhEKr4j/Tn8DVzaqYQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAWwMAAAAAAAA=eF7Nz2lQzGEcB/ClS70xYiJU1jDh6Vrb2tqNJ8c2k1q1bNqUGCJHKWFsrtlGIV1bLLuhjUmXDBlHasudmlYZa3JEB2O0thLJVTP8nmfHDDuzLxm/N5/5fp/n+T//h8GgI2P86a8xzeZ6mYnmenP7fo1pb5rNjewvrf+r3ty66ciy/BRRvxeVV6bpkr9lOwi8ztUbxqfb6rwtqkSGvEosay++ljShyCHx5kQL3hRcd4bNFD+o4bNcDG8v+M7CYdpHq7i3XLG+EAcx/RFuVlSH17qC/IJFmgUI90S3T1oM3k9QXs+Yj7C37aV4JuTPbVvk1zDCgS6ZWbvh3ERL9/I7cxH+IanoyJ2HsKrvfmwTH+Fkj/CNJ/wQNlTq7j33RXig+LJ9KQ/h7rqW+iEuws7dFcLbPginbvUY5s5BeLNE0TgAKorlfKU3wsElq4sEHIRjdLwJ09gIFy7v/XgDPKoPWt/FQnim1hFvnI3wvl3SNp0X/Pc2n8kB0DPu5j0d9kSYFXOhQwK90D1gTSRkXgjrwGkw5a0usMcD4bEOJQ1OkBlFI1LKIYcFR0Q3ggPP0nNyQLtQZUwBODjX2uko2Cb371SA0Z+0sovg4V5mUCm43JAV+BIMsfnu3Axaqk5dHAvf9R4aJWKA4v3d74Wg0tXqsg8Yxbm04yDoVd/qmwRqpicMasB9pRr7MjA2jR3RA46RKs49B6212/PHwTv2tJ6VW4GqHXYZHHBO6Ce/maBo4YfjIaA6cluHgPhkXvZaMEOmd44C4wQnNySBd1UvXseBr9Q3ZuwFfTiO7smgZWdxbSqoyWzqTwF5otDBdNAlUW17CGzo37wzC/xW3ueeCQ65cepzwC/PuH3Z4JtZLQtywcld06vkYPxXN3YeuC5N30b68/lODSSLtfw84lJxzdQj5J660SOJNr1vJMSm9gQBkbuzWkoUNIvjicq9LhnEgSU5qcSbDQoF8daMl7lEu4OJJ+j5ZStVxKqr5QXEd48OnCLqlZsKiflftWp6r3DFaeJDf2uqfexTatyiCmrasOMZYjzTgrp6N5/q+diTepIdTH0gCaD2HhNT08pE1MYWCfX84nBqfusKqk1/BJVVG0kVSoyOmRpFxVZGqyKN7vIyytxkNFP6f/oT2nvaLA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGgEAAAAAAAA=eF5jYBgFyGBpEJPzi80S9vME7jDe+ctr/7Y5mjW/Q9Y+sGDfVsaVMvZJfZ9qNnHJ2e/ZdfmS9GdZ++f3Y60cpeTsnZa8yeRRkLOf9HVycqyInH2i9/9DUTJy9n33S5cWscvZ/+KfP++FgJy9B5O78cGvsvacsxcf6/wva6/6Kbvi6C1Z+6ONdn9+PJO1F3i3596rnbL2Tfb7/qackLU/UXc8T7pH1v5u5wXdo3Nk7ft1fzYeC5K1t9OIFNubKWv/wqPN46iArP2MqJOmhzWAtIsGF+NeGXvxxP5T0+7J2D9Z7fD74Gxee+dc7nbVLhn7zCNLV6w9d9OurJops7Thix3M3z8fGjZtPrIczh8Fo2AUjAJCAAC5q26mAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAASQEAAAAAAAA=eF5jYEABDQzYAbHi6HxcoIFEcXR5XDQuAJe3WnnhrxzzOW4YP+bC45hq6UDrw7FXWVd93bZ4+75TKd3Zkvbype5SO+4I2J+0UuNPWShrX1/lyezxXMZ+c7e+thifnP3EmheL7f7I2pvXOCyRkZKzn+d9KvKRgpz9rbzyGf7CcvbSzJN9Z0nL2a97zdK3g1XOfu49h4RCfjl7/j3fXxl+lrV31hbX8/sra/+thLlH+bqsfVq7pOCBx7L2WvODOf9tkbU/Wjp1zofDsvaCXJqsR1tl7e+WR5q9mCZrP/+0E/NqL1n72wuS9zomydpXz5v2yJ1F1j6OefalGDlZe/2G60E31svY56T8+3r3goy95N8riRJs7PZFGv5/yhtl7Oef0fnzZuEFO1eJxxeXPH5jBwsHntYQz7enJsP5o2AUjIJRQAgAALNBd+Y=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9A1tDTVTbcwtUhLMzEBkgAyrgUDAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA+wUAAAAAAAA=eF4NkHs81mcYxpNonfD+3t/zlFnzIyRKB1aU8ksJeUtKDlsHomwOUWyyRKlMksiKlUaSTZmV5BTbpbypDbFMhA5aaqzXuQNe7fnr+7nu67nv574v8w1HVTSTNHApJP7fVn8NxFs97tumoonu2MuzP5RoYF9hZqiyUhOHOnN90xw10ds0qU11jxYG7qf7VszQgnJHWqzcVILXshbXRyGGIsmp9c6SG4ifjfb1OkVLYHap/dmi3RzmFU6xnb6Ng9I4w6A6h9X7HXp9rKSw2PDEM/UUj8y9EiuFNwc+vmNW1koeDes+/UOiy8HJlri1Z/F4ms+/mvpQX7T7vbh06lV90SbBLniOhIeq93lDj80Ej2deGzetlkPQBmnM4HQO6d08yW3WExNLr4WMq+SQ9PNnt7ebS1BRM3cgYqKeqJBPWuNGOfHG8aSbgesE0dN60DrygQSq+Q77/dsEUTLtsUFclxYCj6xuXZHCYShbYf9zkSDuyEsLPaAQxJvytIXkNA/l6xaPiCFBHAm/+mhHMweHJ8uagusF0UAh00lU0xO5wHpnYYUUOs3zJp91F8SQ3c96tGM5zHWqrFQw/47784D4fwXxly1eQ5kjgjjPz+SHLpkUK8tXNS75SxDfmprkZ7QLYpBmlGpTPQddy4QPvnp6onDMpFsRxOHDtimH8UKK2aPq1HIxjy9/2/j3G3cOQpZp69k8KeIC9H1ureNxtLQ8tS1RCqNXB+Md90txJVN58Lk6j5abQ8fsWN465ypkGTY81kWlaAhjHKKtnUcVATzSfB9qrm6UIufjm8XFyWxOh9bLSFWCMqdrLj+Ws39/km/dVczj4/SaBUtlPP5ben1F+m0enadG3b5l75sGNw/VSAne/aO7PWECwXfug7myMzwW3bt+90wnj5IpJooNjFnKfT4n8nj0SWTJeg94mLtNOOP4G4/flxcZJ97iMRirGL7DmOJn1Dlfn0D/XceJKSsJ5t33UsROI1AOT1L2s/7kL/w7jQSC0lqP+itfEaglOWq5uBKMu3ixac1BgoPFNy517iK47r2tamQTgdH37VUvmPZI+0Mvx5bALvzPclNPAnU/47oqBwKLnvwTvaEEkhGz4LGdBL+kfz0rPZzNkewptTlNcL5xOFf4huDJ1jCVsmMEo4Ffb9lVQOD4j1p/ShiBzYwFfSNsXvSas2fCfAmuRuYGaWawve5bqTskE5ysjqt5+ivBo1ulZT4VBGHLTr1LiCNwjUkocy0heO1reaU6h8DvtHPhEsZXtiZ1E5sJsptivn9TStBdvfxlSznBe6+Fmc5FBDqB9hP0qwjqohTrWy8S5JkZSHQaCFRS9yyKqCcI4Pi6E20Ehf6TvWrqCHbO0m5S6WV5el9eFfaI7VlnGfDFMAG/vu+TvNcEzwvcsjuGCO4F60Z4sn3GGu92FHexO5aMZZuoURzxdreMZv3Hc3ztnSZTKEJH59t0EzRcNgjYMpWiRB4UCClFs1rVXnUly7dI+1iBBsX4k/KKVFWKOfP3PU3SoqgbazU7xzje1LzZYiaFufz8IoFQfB77k72dhMJZWlrwdAaFZ22Jl7E2BT/e1s/MlGIkjFcv0KUoOBDxoJ/5Rp3R5/hlFKM9lUeGjFnfyPOXv66m+GiyWUuCCZs/1jhzwILC/4eet/sNKYrenHY5u4ZCWxYSHMpo2H/v2n47iquGZUVRMorFfQdcItZS3PBwCb/kSFF8q/bHuU4Us/eqjgtgtFwvzepyoFielG3xzJWiem1gSokHRYNOx4qQzeyuJbutDzMGGvbkh7lQtG43bSvcwnTfw7UxWykGHh4OivOnyCy/f87qc4q7L3UyqrwpbDYGLbywk+LtZs8FusyfuvRQWccOCi0d0SXzG5ZnYXuJ2lcUFg2Lu7wCKKA9g48Mp5DrtR/mYyhkc97vyWP15d0+w2ujKWzdOLPtERQLBrgvDzD/vWNNd2QUxdCFQuu7cRT36ucLb5luFEwcU45TuG1aam/A2G1829r2JMWL2f7LyhIpjCtmbXqTzHKWpn4kMv0/zv/1fQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxQMAAAAAAAA=eF7N0ftTVGUYB/DDKrtBQxOo2QiieQGKRqhBFhTfEpKrxDpEOUyY6zAJ7MJq5coOtsuwIjo7YstlIVbCC3hrcCghII5c1mNry3iBZdYGKFKYKFZguAQOZfS85zz80H/Q+eVzvt/zvO9555wwhr/yx1CDIJOHORvz1+g//51n0jC7okEuwo1ZMF+G/RbM85gtOHdQgJnBPh7zLM6fx7ki7CPRPOzjcK4J+6VzrUVj8PnS+XtRH1zfKJAfgP1p7BOwz8R+HF3a7w7OZaFBOI/nYbrQapx/D/PbAkwE9kZcV4Y97sPgd2OW/kcFzmfiPnXYH2MjL1ft6fJK7dhv775ucVWOFdjmfhup/3WfIWRH2LvrdYN++inbDTJx6qHoSrqoxWkrSIpQ3iLTjtUX7EOdJCUpNnvEzJHd83v2vXUE9JSH9HzFkYzCgOxw0Lj3ZM9KUGk6M6ABZ1ad62fPcuTHIk82sZojl46nFEfD+k0dSskjsNBNet/2JUf0i77pB6s4smFXYHxyJUc4/WXVBOj83mQaNXFkZEEboa3giLxv3WRxOUeuP1Ws8YU+b2fXSlkZR+41SJ72gXGHPnwSXMqRhU6511VQ0bjeN7SEI+vs0pIaMK1t8c4BI0e214ulLNhtjk5u+YIjsdtLvV0gp7h3poVCnmu1VuWAHVn3+vvPcKSudOqDZZDvB3dFX4A84czIZMG/Lz5aKALfcas5Vw7GWGaNJ0C7Sj16Cnz/wfHkSnD8+c4rpaC1Zpu5GeyeDAqvB/PFw28OgV5rHoT2gJpbjgp3eE/MtMOxAPnTrWp/ep7Brck+fmDqct0bH4Eb5dI/k0Du9cBpPSjae4CoQZ9L5tyLoHOFx7cV4MtXn+hugibDrh9ugJYXJJG9oPXFkAIbKM1pin8Msrp52SCo1W6STdA5588P/wDH6oZXzIOv3R6yz4DBsxmJz8Dakt3MX2DrNk01/W5T1efFDOhvZU8uBz1EieploLo356gYVAzvt7iCcXe9WySgqdYvivr5qwP658ATv9wNp9pb+0VuYGXDQB/NL4WXyGgu8CoMobbvTNBRax8fy6GG/T5aRU2YdTFSz07OXKMGHw6ro3YrX2mkFlkHG6haQ0Ir1V+ubqZGKgJY6qEtm9v49XPNN6lRmwN5c8eK26lidRRv2zdMB1Xj+InPio0RfL72sT9v7HepvB6eMl79qizexeZ03jLbYV67t4o3t+kIL5v4Ga9P+VHeZ7fVvBtUubzjqwV39Aiq2gTbJRpe91EhG9YK+ZOA/6f/AqNZWpc=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwwMAAAAAAAA=eF7N0ftPU3cYBvCq5WZApoLDCQmKESQLFaaNc/INKxFlXFZHmWYBxoSO2bUBMxFJbdNNXFVuZSKFlhbEbKFjiHaWIRUYeEywi6jMFcNgbUwY6hBhZTIo6faec15+2H+w/vI5z9PnXHLObg7zUz1Dy1k5cswyzG2o5797TjZmL5S3gj3Qs6qE2Mdgnsc8gLsCFo4L+3cwz+H+Eu7U2AtQOfbJuLNgv/xcYeh+/H/5+YfRUDz/OosqCvtK7FOwP4r9c3T5eoO4k6A83OPzcPpRA+5FmBNYOHuxr8HzarHH63DwvXGWv4cW99fCQ5ijr7E/m9H9w5QscsNSjm1DqHuLX9Vw5Ys1Ta9f63JI/LcpzZeTirc2Cyq6SKeXiNfok/lWQaF+Ntl+i5zJEPs+nu8nYiE5dbeRItGb58o+OE8Rl7Bk6baRIpoFW0shKL6y+pLDQJE/Pz81LoS8L87+hQL29YOT/WuhL1lnO7JKT5EF3URWE5jIVb4800ARq1abGqGjyGaj97tr6inygBfTYAL3q9o8l+soYt7K375HSxFlbKwg/SJFriYECsdASWLK4PpaipS5w111oK9xJGXxK4qcjDvIK7pAEdsW+S5vyFJB70spOOaoydhTQ5HOUXGfBjw37L6q1VAkwBqZNg7O6wzVYWDD6TLDe+DOGzvUd6opcii6cH4afBT5I6UFqarDYR3gE39F3mnwp2NafRXY2fzKL1+C4XMfRp8F252y9EbwnrMrpA5MHBXH9IJX+HqLGeSax0SToOZtafsjMDD6bt56uG/PYpBoFaj+Vvo7AW+XdttjwMi0Z9kFoLwyNeMwaH1Vwi8Hg8bfHFGAG3/ONJnA3npRshGsOH7rwgCo7PTZdwPU8SIO2EHPCvvzIbDjyMWPJsAc60S/A+Re/94wA2bnhxybAiUhsr6/wac+22/+BZoG1HIPeDQ9NXsJjA14KFsJ7zFY8XSBAw4PRQV7gQlD05u44KZA34feoNG/dQctL/cPlw/Ij/Arp100W02+YFZwdwEtPyX/NT/wTlPLLJ3Ph77IobPZsTuJ1n9kUk1b/TGvlFYpcTfRNiuytLTazIl2WkvRdCut7Y17FtpPWzxmWu6ve7tppwPaumhnBttv0rb+c99K26Hh9NJufP9cD+19p4XJ1rQTjE5BcB9zf6eLycW/JTH5u9pdjKqduYwr8w8xBo1KGXOlnzAK4z5jLHEXMT7OO8FYFV/MeHCqhPFJPGuP7iSjLJ119SRr/APWb9aVMs7MsrkijM3Ho/6f/gv6b1pTAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAjwEAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNJfoLQihGIohKozgfJPQ2l/qLgDVL00lH4NlTeCymdCuA2lUP5TKP8jVL09lLaG0gFQdWww/oEQwcMfjDpsIVyGBZ/VNP82zzJ3uHSueZXCn/kt8QIZmzwP2ElHL1cvPLbZTsMk35mh8rCd0ZT15uufHrIz/rr0xeNzh+2WrOkNCNt/2C7lxKq3qjcP25VzGt/9fuew3fr2c3ucrx62Kzn+NbLjFpAu+lSw/8xhO7Mjx2P/XALyjT5/ETl42O5bZkNEx/HDdgn72qO81h+2my364lro9sN2VobTri6Yedjugzdbmc7iw3adHi0xOdWH7UrrmX9ltB22q9RNVJ0fetju/cV6vcMph+30lz/4Jal12C4s4dOy15aH7QJsH+++9+mQnb478wpmzsN2N28tfL63dbNd4SO3oLCLh+y2+t+VU2ZptNvP3uKoxznbDhoMDA8zNmZ/CPeH80fBKBgFo4AQAADCgJ+4AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAkAEAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNJfoLQihGIohKozgfJPQ2l/qLgDVL00lH4NlTeCymdCuA2lUP5TKP8jVL09lLaG0gFQdWxQ/oNq8dXvThZz2zJAwZ8vmT7936wafq43/uUWt/j19aMZxw8dsHsg5WHSZLPNLtWx7llJ52E7jvcTru3jO2xnb5bDonDxsN3dx7I5MUcP281vFD3He/Ow3S+RmW9a7h62m5OuenPilcN2hl9/FXPeOmz3e7XXp9mnD9sd+7bxE8ulw3a5Xy4/Sdl/2M7yj3kZ/7HDdmp8dSZP1xy2aw1Xemu69bCdn8Pm+sRph+1eB6n02Cw4bOdRzjvPrvywXUL9d7/upsN24g85V7oFHLYL22nodSX+sN2FJ96H7yoetnuZ4G8kYHzYbknBzj7DV4fsOB+pl37/f8jOuvB15bSYdXaPtr7pnHv6kJ2a6wORr+9K7ZZp5DpE8Ey2gwVD/FXJn6ckreD8UTAKRsEoIAQASQKgLw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAAgMAAAAAAAA=eF4d03lIk3EYB3A7yLKlM9ec7XhfJ4qFttJOpd+TJ7WmZrHENLVEEZ3hsbwambfWZnmtxcRjlqHZSdgIJyWKB20YTleZoiKV2qllmpr93v76/PV8nwee5ykruzUaIBs+TN/horW2JSEiymr5QUwQkub/Eo9Ox6LEpT/FMkEmijim39KuKUaTgriZoWol0klknd6zDajja+9sHfEYBeruCuaNbSj+np9H70w3kifu2ndDM4CI/NJK0ZoxlFuR5JWzNIVyuVteF839RHJXX+Kp2gzC1H2LwZ2bINAFhbUbGJCT3kNmKO2h0bE9Ka2WDzTrehvFJT6sLbRw6Azgw7sC7cEzDD6MQnFNi94eppgx4dIMe3BNVo1bMuxB0tV+aLCOBKmwJ7iJJEGl4ZoidxGQd6cw0seSBwnam1ethjlworbM5PGWDXsK6l1CfNhQF64bmHjIhir/ylXxHBv66Ka4alcOBA6J+YsJHECnSmv6WjiQ5PhKxfnGgYk+vY+PGxd6G72Gai9yQSnPYFzTcmH+WWr66T9coAWlnD/pwYOREkWpMZ0HlmGWfugJD0zGynNrp3hwZFltaGYTIPwcTh85RgDLtyrzbCoBVcFRL+gqArbTmYalZwQsZzcavAYISAn90UJOExAiWhF9XiYgWhGUvn4DCb1F7qrZzSRoZFHbsugkOAeFmBttSJDsDTXsZ5LQOnxcbMR7NVux+viGRQLrfX9ZvB0JB4iD5k1YZRZz7D521TvTSYHV6PWbTmP7d1+7bYON25jwQo/r+mPd5CWUOZc9hViaJFxhjc2JKT80hvM/Pkrzb8XmeoKwAtvcY6dOw64UiZMjsYRTzV8RttLzgwxhdc2uB9yxEuOkYic1H/fEggP2sdnCOgKrKv9yko11u55yi4X1yopTM7Hmv7p2bKP67PQkGdhP46xoGyrnaN7IVqzF32/ZlE6D04gy/hNrK2VIaPIcdd8T2Q2jlCJpXT+lbYd3N6XgCu0lpZ3z7zbK1u+nnlNemG37/xf/AD07PqM=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGgMAAAAAAAA=eF4d0v0z03EcAHDGOSJXeyCPfTYTYytJcrLvm3Rqhh6Vhx41V01JIcpDOluXVRY92KkuiXI93bVj7eRk18OmB44T6+lYHlea0EQ36rN+ev0Dr54I7Yfe/E/cmMz0ZwudEZiYOyQvZiKJhqoJMcliJ3G77JitXn6EsFiRtNXwrpDo33SjfYHjeeLyZYnwvlhGhGTk8fZ01xDtlzLLjQmPiXzaqLzraBMxfe+VqMVRTVQIjJ/tL3QScqvgtWLFF+L12YJeZe0wodN6rt14doK4k/SLkp1nIpix13SW9Tbwp1LV0TdIhhE/dFwrpMLcMKOA/50KRUH6zI4rNLCRZt1n5DhBkcKyqu6mM3yLkpLPMV0gSLd9jkZ3A/cYbvYWpQcsfCnjXZcgyNJbVbMbGBAgCNLuEHtDgvTEeOBhFrToubxUEwecjIoPUlMA9P29OEkKCQCJFSnU6+oyUOYLd0VoloL7KG+2eJwDvk0ta97TOPBx7FTrx1Vs6BUza+WJ/nAyyV0TV+AHp/3DBs7XsMCxsHqI0+ELDqKeylZrXzAlpsa/DPcBW11MW+yZJdB0QFa/pdsb6ipTFJLl3kBsqH4qlDGB2mkwBdozYTwtt9RQ4gU/A0bGT1C9YJbSHVVyjwGUQ0ubH/EZMBjKstn7mw4D0ak5lg/pkMFu+6JLo0O4c5yat4IOQpU6No9Eh+EUSuITLQLrT66JEQ0INqe35KZUIGh0EPIOFSJ4xUgeajyIYJHdTakiAcGdjlvNXdEISquzG2WAwLBrt+JSMII4TW2JYBkCjaWe/ISFwIljlRzpjeCrsujcWzqCvtJ9bxYvRhBRm0mmeCCYv36/hcgNgZ/DjGqbK4IfX6fnZbsgsBM9Zr1bhH+FKVZuwpLi05Km8Leg7fyweqy1k22OCBuz2iMwBVs65tPKwwaX88Qh2Cn/KQEb+6BKNeaFdVXOUTyxWdF8B1esUZ7Gd8ZOG9wO07AvuI1+VOy6sqHNFKxn2e7nZGxYvFRgtm5y2xKzzT7qWfN77d3i/v//u2o6zY5oZtRmh9h1KrP/AHTaTYc=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Kin8dJNYmA/ixistdOg3D3wh8i2SGJgP/MvQRY/YmA/UgbRPy5iYD9KNaFBEmJgP6iZzHTlYWA/8v646Z9hYD8kAnmxNmFgP/IEEwGbYGA/NAgWLblfYD/wEjZ+d15gP6C2vuK0XGA/M2GFhEdaYD+QMmVP+1ZgPwgyG3mQUmA/6lLKIbpMYD/4mNMyHUVgP0wMZ4RPO2A/anv9sNYuYD9zECn8KR9gP7YYcweyC2A/HSWvjZXnXz9WfueJjK1fP4wH55bgZ18/qEAW/yUVXz8NRC2/+LNePw9XgPsIQ14/Xp54hCjBXT8L1RzfWC1dP7BXnCzZhlw/MMeeQDPNWz/VGL0VRwBbPw3UDvxTIFo/evz4qf4tWT9+6fcrVCpYP1DwZqXIFlc/AwFCJzL1VT/whteQv8dUPygQscHrkFM/cbw4nW1TUj+6K3mPJRJRP0521M4SoE8/vJWh5R4gTT+/OVugM6pKP9jpPsjFQ0g/Hcu4k9fxRT8Pq/Dn2rhDP7BZCw2anEE/8ScdBU9APz8vsP5vqos7P8j9yw5mHjg/WkFN5Sf6ND/0UjOuMh8yP/0uh0EMGS8/WqrYeA2AKj+epPpDVW0mP1FYXBVS2SI/J9VcYah2Hz9qoCQE1BMaP3ga/chrdhU/4pLvsnWKET+FiW4NengMPwPtSeh98QY/Ls2+E/9bAj9kDJrfHi39PuhNgE84Bfc+djpj9jIJ8j5T4LdjORDsPtSwt/AWruU+/l0y366h4D4GuCU93lbZPrJXxJ4rK9M+mtthFbrMzD5Sh5GPInzFPgKpJFWR1b8+cCMI9fprtz7yQ/fpKB2xPhyd/DaW1qg+JnDMe7vmoT7SUIEbtqCZPm4brsRXOJI+naxvMma7iT6daQXAUwyCPhJc1LnPJXk+Hj3buyZncT7m3gJ6Ke1nPuKw2hOyVmA+nHOmPNAqVj7KYkiIseBNPtLrmOLqAEQ+fiYVR4mcOj66x4dIO5YxPrEm8QmwGCc+UWN1kbAjHj5NBRVCpooTPsRIMSM9Lwk+hGz+4SIiAD4X2Q3y1pL0PX9fwCHfR+o9whKUEsdv4T07EWJbAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEwMAAAAAAAA=eF4V0udPE2EcAGAcUBSKKFSGBNQgMuoAREng99oqliKgBJWg1AaQoKEmLkwUFwnKSmRoRFQMoVKlOBhqwAVaK+BAgTiKJHJXenelMlpEioS0vvfp+Qce35nIk0LZefTiQAR9x0DA7AQHOe08i/xcng1ktZxC5+Itz/1qTqDOSc+V/K8yZNBcDFEa0xB/jEcr7JLQUl/ulKJxOwpwlC7+Hi5Ah6dLo+KoUFRziR49rvRH69USu1zGGxka+/MGbrqgYrlcw5EsQBVLbt1fPW6DlsY4ZIqkZsgSp0ubteMQLnmb2GiiYCZNN+/MZgroObLUyiQKfNXn1A+yKXB1+bpNfIuCJ++yelw/URC7d8Hcx/Y0VFZF37uYSENr3bXkpHoapqnYU48WMfDgtFODby4DKw5W6ov/MfBTScU4XNDDlMxdEqDXQ4JHRsU4dxj4fZrPqmo9SOosK0mRHsqCpsKHjAzwxEcVzhUM+CeTIX2bGJAKVLyAHzQUO3vnGbNp+NQj5loX0+CpDJKta6Dg1xHnfZJ4CqqUVaJ9ozoIPvuhwFSqA82dA4f6w3Rw3anf8nhwCBJNAYaFJUNQstXLMV44BKNUclz3Py0U9L5KVbVoYeOWtqLoM1rouPHXTxqFtWTZGJdogT6426uPJsG7h2PubCdhf4Z+Iv82CZ5XOJpnF0jQyhVofiYJgsv5atsEEiZdZickQEKr2w6Vcg0JhfKjj0qXk9DgsTq5hUdCbWj6ky+OJERGr+0tsSXhm8/LiGYrAdcHW3nWGQICc9KGhWYCGPQudsckAfkdTSkWEwF7hGGBIUYCVIL7bl/GCKg3b1jbPkrArqBjucYRAnISMsp3Y2dv9HYN/iagreP330KsKMqDFGP5bs9HPLBz74aqzfidvSbQfRDL55ZldmMLhfbdr7GByzfrWrDtRW3yJmytbL7oIbaOaRLUY/+U9/PrsBynq2/uYutP+nxUYLO7uKtY1QX001rsYZNVxurgHBzBqk4PWsbqHhdnx5pa836a/W+T4mVkLbNWG1hfpqUyrP8B1Qmnjg==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/J2q8dJNYlA/jiKbU6cWyz3c3E1vTmJQP7E0sPJPYlA/gMYGpFNiUD+OTxcxXGJQP8IRlutuYlA/KMct9JViUD9cLFzs42JQPypf0x16Y1A/ihE2vJJkUD90BZDLkmZQPxd+t4sqalA/XiWkG4hwUD/wU/QUfntQP6gXNu9MjVA/tjyl8e6oUD+RrgocadxQP4Z9NIzAP1E/CNDTBhg8UT/GyE305h9RP9xsj4AN/FA/n1K+7ePOUD+WkfFXgZZQP9MkxC22UFA/ghFCBQf2Tz/4HnWqIyVPP8nqM0eMKE4/FOziXqn5TD/34p0byo1LP9IU92buxkk/RsOfTUHJRz8ILPcRaupFP7H2iN9OekU/2S6hneDGRD9sYzZj9/1DP5YRvsvmJ0M/2qB3K1ZFQj8/CmtyrFdBP2NFj4HHYEA/xN4LzZvFPj8tzdhyJ8A8PwEaInoRtjo/JEt6sU6sOD+LluEZxqc2PxBk5XIurTQ/GChTUu7AMj+Q3uJAAOcwP5rnlue3RS4/VB7rxcruKj/G+6hCxM0nP5Iv4wTq5SQ/Hm3Bhj85Ij/Meu+OKJEfPy0nLYQ2Jxs/ehavehMyFz9JwM26dq0TP4Nyj7OykxA/XsbCSwu8Cz9NnG3d0QkHPwCD+723AAM/wjjf4J4g/z5y2DVZbFD5PoIuzffucPQ+QRcfoLlj8D65uWlupRjqPhKBZ1YNoeQ+gXiQ6jEx4D6MxlBfYD3ZPjWF4TxmiNM+XMpOIxYFzj4uMjb6HujGPnuTr3BHW8E+3nJmo1Qeuj4a8BUIyIOzPlpYM49r9aw+Do76amJWpT6eOsjf/TmfPvRI6ckmsZY+4CB5M3dgkD5R3mbnAHqHPl7S1UphtoA+Eu6b1P2hdz6oz664qphwPkqlaOEjJ2c+h46+d58KYD7uSb0yjRRWPovAfKK5ME4+48GOA8qARD5Yd+QUSqo7PmAXGbHhijI+36gNatOxKD5kxyEjh1YgPqfzZ5QGexU+MHXRV2cQDD5yV+VnMjgCPqILkrXmg/c98o8yF2wu7j1pONdRlUnjPYRLPP5Uttg9G8287Y910D3eD23QAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAArgEAAAAAAAA=eF5jYBhZgFOfbcd6LS57plKLp5b/1O2Dlh1dm6iqbR/Q73g0zUnbfscN3asiQFrTJlA420HbPnL9pMlNdtr2PStT3/baaNubnRBqm2Olbc9VY75jh4W2vWxsgcIbM237SVwbTtmbatvzuQjs2W2sbf8janVhmpG2fUndvVIXQ217gfalkhEG2vZSGzSjFupr27vNr/wqC6QZYn+sPqmnbc+++8myeUD6inftj6lA2m7OX/UVQHrNV//dZ4H0szfLNv4H0hkOl56YA/U9YDnlVQikpWwYRFcA6c3zNNbfBNJllzcuYgHas+LOozQNIC00ZZ+aK5BW+l7dGg2kK1zPZOQA6SiFnrMVQFrG99KKRiB95/DbK+1AOm92HEcPkOaZJn2lD0g7Ps1ZNgFI75usdmEikH7BOKNrEpBOKzD+C6K/ZKU7TQbSYuWV2SDaOKewGUTX9JtMBNEFCb9ngOhqTv+5IPpX+9r5IFr71ZcFIPrQ3UULQfQC8X9g+o6e7iIQ/f6fC5hO+hoAprN+h4Hp9FuRYPqZZzSYvvYNQq83jwHTIYUQurOCOjQAO2Deog==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAmAAAAAAAAAA=eF5jYBgcoEr3h2L2TWF7+V89sTskZO37VR6rP/8nay/ipHpJTVbOvmqBp3CMhJz9kXKuRbo8cvYr/L7WLP0la//VMtTq/gNZ+5PTbN+pH5S1D2Lx8SuYImv/TEvzjGOcrP2Bi+r2R2Rk7W9cin51+qyM/ayHoU7Ma0TtJ7zRvqzw5ZXdz4eGTZuPTLcj5L5RMDIBANMoN0U=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADQMAAAAAAAA=eF7t0P8v1HEcwHHfYi3CpOQoNax5l2/nuCPel2qjjpoVcTnRufItaSln5ezayJGvk86XfDnMlzVfhnCiq5UVmaRlqajpizqJ+RKxer0/t37oP2it1y+PPbfX3tv7pab2f/7lOcba3n/Q3gz/7jkF5wlLzQY/d2/oYY5YY6EwwT4VI7yJFquI34YwmrDUfeqJ8M6v/HBHMG1FaXVnD8Le2gsBB6C/pJY0zsA+YzrpUjMb4dlXFuc1PBBWtOZ2DoACd+Vn3d0I1z+Wt4yCw2WSI+auCJcL2o0/g7RIgzp3JsIR6vpcLRbC9CVJ3EVnhPeHRlg7uSDcFDgmeeaEsDFTmS9mICx1XWkIpCM80DM2sgi6nucv6jsiXDFY0VAIxsqizy7bI9zzbeNqrAPCnrK296bQO9gcYSLI2Gf85KwdwnrWdZmdYKlRk2DJFuGxgpJwW+g4j1s6jdDp6lzzIdC4Sp6aCUpjNqAyMOpF4oNrIP3nynAO6MVOoVeDps1d8lKQYco9MQiGrAr498Dk+IzoNfBubc1I6yz0zfSZcAwdbTLJswEP3dIUC8E12mgLH+wqmmI0grfFGp+KQD6vx/YtGBA2+mUA/M5V2K2Df0izdC7/gPaWu4ztgpYvF3+wAIv7RyTeoGYMnY5BQ5lUyQNpiedm/MHkNMnCGXKH6dmV02Cw33gtuUvSdNPhCyDLRLQsBnFX1nsRGPTas/sq6NA9UZxC9jQfVWWAS/cljHSwmvXNLQv0nlN4ZYLN6xMms0HhKJNDlLrlLeeA/nWT14ky2lRlLtk/NS8gmu7EenmgbnDUR9KbwzQ4pPOH/BjENB+LOGKI6O5J4pu4thTijfH5JOJThmEesaW3MpNoItIuJA4qJAVELd93JcT6BnExsbdutZQYauJBmaPcWk7kcTrKiA6iDqovuV6hZM+srSB6lk1R7buXTjXvkyXlDysvSlzLpjTL9qN8OO9L2fcygNL551FKI2YQ5ceQQMp2AZeSbaCyxug4pbRP1T4+qp7wUJmWoNIi8s/+W/wF31G4Yg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADgMAAAAAAAA=eF7tz/9PzHEcwPFbK0pNcpSw9GWm3ZtUrtyp6+1bbXXXkb6eqy7SWKjhti5dVly7pO764rKQ1FEodNMXS8qRJRMpseqai9uIoZvSSsrr/bn5H8y8fnns+dre773fNNr/+ZcndDQ7T9/hjP903JduP1YSAze4C/VLh9ZgZX2NmWgzwpYDMxMcJsI/5sV7aLYiLJLZWEWCXN0qp2NbEI51kR+xgRaPiHE5Rni11ly9B869zskpvs5BmJ9QdSMtAOGXLIVR44ewVaOzJtsf4eMhkZyHbIR7HG67KzchXHxRJTFsRHir0iXrBgvhS1OtDFdfhEdKGhOGwXFptaMM3jEzFzzo6YOw3oLWabcBYUOvdKwO/PaCMdHjBe8QOa+I8UY48ujK4MeeCDO5k0O+sLf1+rVkbD3Cn3dlSriwLxttC9sJfXLQSa8CXRV7n7zzQNi/RaelQ9dW/kyqgr7m0/b8Afg+rq8+F5wOjHQ5B94cbw9TgLu7n7YpwaxWT3UtWDkhd1OD10etWQOgWUN8dxfIMqzlL4J7Hw/zmmagnzl2u3Gh7cvbG31AA2OYkQPSD/ZpU0G3t62O98CWIubCGvCr+JbuE/hGELVgAJyo7kihwz+CkoTbzUEOz0nNBJMbrrLcwatLhj7wwZEIjkMguGOGbZ0IxrGNciF4p8XN6ig4my4UHwJV568YpOCKR+k6CXi4xl4hA/2iW5uzwZCpzlenQduFDu/koNl0xZ4CcD9/JT0fZGcYmpVgDHefTgHaGUvZReDyhNy6QnCySbCuGHSlZb4i+/aorA7S4oCSAmKst9y5BLQ84zVH2sL6bDRpVe6dbcQKwfc04o5E3iFi3vy6PCKvc/wU8fDzcBUx31dWRLQr414gSo2MMuJJRuklYnhhcjlx8U3RZaL3rvsVxP6siEriXctZap/C76d69GUN5c8Dy6qIyl4a5UXNJsquHg/K/M9cyqCWQMr6gxGUwSfCKEXaGMpA/2jK+NrdlKmzAlNfFlKGxpjM8IylTP5o6iahqfmhJvMlf7e/ARVztxk=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGgEAAAAAAAA=eF5jYBgFyOCTx5p2RQ0Je8vD6088mMRnv/0+1y5xe1n7NyUhdc5vpO29re5G9/2XtT/x1OJVzBVZ+/bGTTMSxOXs+1L/FDdKytnP2HT2tbSgnP2qJwo7Y6Xk7CNXhF6dwyJnf+rI3MI5QHHL+3szVn2Uted9XVAtxCBn7/fFkcXguqy99pbAyadeyNpXMU55sniLrL2z940fE0/K2i+9pSzM2C5rn6z59HzJfFn78qTTbZ7+svbbrbcW1GbL2p+zyH4QxClrv3baAkshTVl7KbMlfSt2ydgvz7jV+fGujP2OCfz3wuu47Wf//bWepUfGntE9UvGU/xW7ip+9E1sCPtnB/M3i83+/9fkZcP4oGAWjYBQQAgChFmxaAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAJwEAAAAAAAA=eF5jYKApaCCkYIBBA4wRERT+SMLlhsqiU8GPZ16RsP+1k3H+zy8C9jWdDuJikbL2KfqK1rK6MvZ6XPHbJZjl7C/wfNz06K6sfRGnT6W9uJz9zFuR+SlScvaX4xkiuAXk7B9ve5Q9R1LO/kH9HKZ7THL2LNqr3RSB4jOC9laJvpe1f1DlO/fiX1l7G+ntWzouy9rPjd7H0PNU1v51fvCctetl7Qujz7mJHZW1P5NsfaC7QdY+NNrqfvNMoLrIH4Lu7rL2ia2VV74ny9qHcd9iWPZfxn5jUG3RS3lZ+4y8T2fPr5Gxty4pvbnyoox974SWN0mPWO3bj76aOKlJxv5p64ynxQmn7f77PQnkVXljB/P/XInvMWWLKuH8UTAKRsEoIAQAJt1ubg==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACgYAAAAAAAA=eF4Nkns81PkextXWWFYu8/t9v8KRUZQctUsi0+I3m1lWE5ttt+02uRSaQlFpbRdJk5xTrpVLTUS0bIgUw3YeGzs6ItOJDF22bVdX2ZNLLdH+/nye1/v5fF6f1/OhijNLH6UZQyswfXNHYYyDyYqNQ3ommJIzl6msM4bParc/ZjeZQPGw5s9RPxNE3zPIMzptz33gcauvaqYpLNbpjtbL7Lms3cZvFY2myM8qLYrpsuPUlkY3zoXacdY31WV2fUKYBys260vtOMuHkoURBUIwjqULCmLsOK2uqOJEFIvoqMG2kMY53E3jK9IAOyHG5yx4oXzEwlASvZLVCbnKgIvRM/KEKI0RemxTm2Kb6943GRWzubyGY24R8xj8b3jEUnJWiEx/VbPuqRCaHpasqzPDVaFq8Y0RIZpSXA1Sx2y42I+9XxUa2XIOy8Ytvs5gULpkc+2soyYo9p3yjcUVEddSkew6eVTEHd0WaSsuIXgQ84PpsxYz+A0N+keqRJziTMBO1w9tOT+rmRWSARFXPmEyrXg/gwtz18573yfiDOUDz7qbhZhq+vaJQ6YQcqIdd7khxKnNrq9LODO8DV9YqxkTcXWNgdnT54u4hqeubcmXRZybf9zyVM6Wa2yOTbFys+Wys1fs29Ur4uQbfvXcms7AsWA040KAiAt41JvDdQmxI2D+vZvDDLpTWqvSukWceFmVl9UGFvt+WH06fbsZ9FaUMn9GM3CZdj5WfI1F+ZLBPfU8/yLZoWG6Roj+nLBwmzMs3neZhvmEsIhKPPvpqVsMFHFWqZZbWHRZ7/dcuJpBlufdol1yFverW7Xmv4i4puu7fvSqYmGxdUOitReLzxsO+bkrWeijaIqUnxeU4iKfbGdRZ+8TfH49C+5dgfpeD4tfIpifjTQsnJ5Kx8ujWUgzbJ4PUwJH971fHR7ie546GSFzJkhafv3G3loWB3sTgh79h0V8+OhNbwuCX1/lljiOsdioWeogX0AQmdsvMJhBsLOgrqrRhWBSe6An2YSgvI1K9TYRuMcH1mavJFBd3TTwejGBsv6z8jhvgkTvgQtNcQQO/7JRHfMlWHbt3bZECUFLAUMvhhLEHzovU8YS/KUvFgVmE3yX4X6iktdnmSkdfvEEzIwaG/0CAsmQTj94BUHs/VNVH20lCNGvSHqYQHCltmj8WyWBTYm92i6R4JKZyfkmnj/Z+/xBWxHBby5DevJcgnBd2n+zywhmNWvE71UEcu0/R3emE4TZ5v8+GUJQ43bszt2fCNINgmQ1+QRrQ8yMRxoIthRe6nRuIcDpkdLf+f802t2Re7yS4FzxF0/62gk6XxrK7G8T5GnFh327CdbEJ945xecIe2RmUg9/9/THTV9rCYrzSzTNvQRe7h/+xOoIlswB1tURTEwrPnjpGUGq9IU6YYKgYaJa1s/nDG770qi7BGO7PmlVDRIkqAPX/jhAMONy4248JrjV0JHmNUKgLVT+vPojiovv6t0PThIYvlz6fJ6AovRafmr0MEHv9qvxZW8JOjwmlB1jBI2aaqOXPN/uLNsyy4hiZ82qtlAzioGS/x8316doUMUevq5HYXxhmBxgKSzMlaF+8yj8tWsGx6ZTKIwuPym2pPhtQ41BKM/lWq1fIlhAofzCqa97FoXAmZvItKZIeeNpecSRYpWgUtTsSRFgOZKjc6KojYTkpJhi0djo8k/9KYK/vGjdKqXYs7ZzvVhCgVF6/74PRX/17tuqAIozR9J3MKsoDKSZc31lFJeDbkvMv6K4W/OP9k7e3/I0vEu3hqJ3pbCqmteCmM7mB5spqmQ53t28nxX8KmJHKEXZ1sLXi3n/NBZNjkdRjCSpw3KDKRJGBYpIOcXjwgM9ehv5vY3nPm/dwXMn+mOk4RTVjMDhj0iKFiePoJAIivmFJ6cV76VQl2U5bYqmsArTJpnvp5gqzh9qj6Nw9NkfFbKPYt+iwL+2J1CERu0Z355KccJN2h3C55py6TdXlRQ2zRbrhpIoZruvXNZ9hOL7eJGH3jEKw/pLx1/zvP3iShdtFsVZ5w888jIp/q25F2aSRvE3pk7w/w==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAABgMAAAAAAAA=eF7t0OszlFEcwHFasmGm6UWoGJWSLGbaros5g9imxi0SpkXDptumSERIm62kco3shhRhpyQ0ttat9kkhWsNisuWSNA1RERKj3zk7veg/aJrOm898z3POeWZ+amr/17+8Mpmp0kiPR+h3T7zfZ9AulqGf9Oa2gh1PUVOU/bDPTQrZh926IBRQ6LX31kpFLoXUfmhU+IEdwwdpmqDTi73y46DhRf/oEjjfFMB2s8mhkE6Ocz9TBP35K7cFLOdxEqqyKcQevDvqKaSQsWhnkd0NCqXXPb/YA3K0bRWKTNhfXGjMy6JQXqevQ9x1CtGiXeZ1Yf9D6vJCuwwKMXc76z4H+Y4ixep0Cunr8yOF4IP7kpD1aRQqHmVz0kD6eDbfO5VCHsENvDKQE2TGK02h0JGic1WT4Fx77zNLcKx74soBcDvyC2tPppDkO+/ST5BR2/FNBHLQ5JNH4DbWhIgPeg3sH08G/VsXLMIdwXJZIQDzGRnnM0CHtyZ5+PsymueRSnBMdqKzBIxtPXxZCbYYVgW2gpq0M1w6/HeqqSZmGtpzwwufTdArryrM14DxMwGP/UCXsSI/V3Adw4Hig5xis4lwkPlOmXgbnA7VE2eCzTruDdWg3DR7shy8JwuqbMPvjFT0N+J7WfV9/eBJlmtXD7g05uyCUdAihR/7CczNt1TiuUyZm6eN43eUTqZzYJKpoG0GZEuS+Oowx4OWWkPz0FrSzAgN6NBjuvtpeM6XQo8uBJs2x1dogm9ivcu0wI1ewSys7MpwHB3sUE/ciBUyG+ax3l1DcqxOfanrIrB3YAkT669tFodtsZrnYV952AixsiSjFGy1e7IYm25VXoC1K/hYgfVaklyG3UxjPMbqmeyqwpZs0KvGCqx1pVguo7QGm7rdiHhNkliLtTCwJToOzBFfKjqID6XWddgE97XEqVlfovUqN+KWxsPEQGMusa8klMj6EkJME58iKhzCiYfCI4mD8gjiHt/TxBF9lSZKlXcKVdZpRRG7Z1UdZqbqJKOoP/pv8RcU1R+IAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA/QIAAAAAAAA=eF7t0P8vFGAcB3BFLjXzbb5rUybO+uZLorpHK5mmi7441ZS0MGWL5FtdVJcUu8rR4c4hF7tEVmPRhcOjDZ1qpbVmZxU6ueFSnOVLn+e59T+01ueX197vfZ49zx4Dg//zLw+PURTDOd6M/uThD1tFW2Y60ex0ZUTyyg4k3fjDY64Uo9hoRuarAoy+MMUlLWUYbQsUjqSBOzc4GiklGF10nZnfAdmcrxPFw77I8IbbAmjMCq6eEGH0SMHMzRNjFOFg23CuBKPmqaAPZtBnvEtS/CrCCG94pxAWY6RYojwmEGLkY77C3R36+2FH2ll3MXJNro3sBVPcBvhGhRi9GeD654DaB8OJGgFGkiuH+qLhfe2R9V2z+Ri9d3y4GAU9o+IbeyNkv5bNvtmgXBNlcusORsv39jDfgoM8a09rcHZMpdwDhmzK4XTcxuhGqDr6KxhW5CXNB/PtS6UysKLA0zMTtFewVt0EWR1OyVdBte+2HB641iGgohhU8QReAvBTYImDHLxUeCCpHhxncLuGQFOcOtUPFgyuCbKAex+p0s2XgDkr8jxYRLNa3TpwtdpuOga0UxW95IDzIqFNLnhPWibmgoW86hcy0MV5ji0Bh7w5Q+1kz37N5Sbw7IS2ox9kh8dw+sDtixcWhsBWq4bQQfDta274JNjTrXDSgDXeo3k68Dh7fdZPUFXJj1gA40+4eM2Bjel+4UvhH7vjlg4YgBOOtUbLQL5lFcMIZFr5dBuDncx1LsQwu+8aBtiqC7hKrGk8WLUcjLrudJLYcEZmawI+FTiNk5wQG3iM5NFs00Bi2y71dWIpezCNqFWeKicacguFROUiv45Yx8+Q0XMhkkbizFH5E6KxxvkZUay91kS0R2XPiafL5XLiCFvXQqzKukQ1zHzcSvS2SaTuH7NsI0bzJmn2r9tN8/N+b+pncRS1t5xDLZAmUNN+xFHFFsnUzo+J1F+HU6kyrxSqpDeN2hesd+JaOjVhn16tVu9Zud4qywxqG0Pvefe/29+0FCCkAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAALgEAAAAAAAA=eF5jYKANWMgIphrQxQ+hC5AJKDWnAYWCAYeF0Y+CpYRu77ebsfbpvk0aW+xO7Hx8conHYTuXi7ILbDIP2d1Ks4rpPn7YbsvU9sUCqw/b+ZjrWztcP2y3Q5+5evmNw3b3chkM5S4ftot4uny7xc3DdkGHJzx4cOqw3Y9VL94VAcVl+qcfTNp32O70ljnVj4DmcF0rznu75rCd3YWcyx07DtutE1okqDbtsB3ngZkvPy0+bCca95+Zv+KwXW/2x1i9jsN29305Y4KCgfoPt559lQrUt17pr4HqYTsOjmP75a0O2x36MeNc0MdDdg0f/m6cxnHYTkzQReCQwiY75qf9jpMuHbIzfjLn3/8TVXYnvt6PPqE2ww7mc9aud4lbox3g/FEwCkbBKCAEAPlehZw=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAALAEAAAAAAAA=eF5jYKANWMgIphrQxQ+hC5AJKDWnAYWCi6rc6nwi4xh/wM7xld+euphtdlJXpsediDxsN6m3kef/5EN24qWFPx6cPGx3gtORIWLjYbuZ7U4pWtcP26nNCVKxvXnY7uC3nPKsS4ft9l+Jd95547BdsZS98y6gekH34rcVQHEnTfsf6/Yctvt7s0I+7dhhu98LhXe3rDpsd3mOh37qtsN2r+fdb3gw6bCd79vLOv8WAM09f//xmeLDdnUHatqdWw7bxZuIJHH5HbZ7qPBK5WvCYbv60y63zssB9Qe82ipqctjOliO13/DFIbu5ysZPahkO2xksmbfzxe01dua2QXfCzxyyM/0oksfDW2T3Q/TyDJa+SXYwn3sbmq/5/UwBzh8Fo2AUjAJCAACgLoFjAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAAQMAAAAAAAA=eF4d030s1HEcB3DarpDu5hxd7ne/3++uRlxkt2P08PtIE3nKqZw2RcrjFWvqmjRarEkiF3moUEJdrrLC5S7tyrI8tOtRKNc4kalVLg8p6/vrr9c/788f7+390T7qHzCeHNocbPDR2K0kwSUmN8MyYgdVEhFZxxxKpEalFj/C8UzKnXT1wpT51JLz7xu/nb9ENVh0yzpMdRT350TMT/tm6vX2HT2v9Dpq/3CZ4dpwF/VxYbWpoPw1NdnLWl4/ZaR6DTnzIy++UJPFHauG+s1U+qw4ma20AHdZe+qA0QYmOCF4KcMBojXOhoZWATDql6nxMSHoXWTvm5KFoCwMWFsYKYTLoQyijS2EwM8Kya0+AWysaWSajgtgUBjLzrcXgLGxao93LQmm0HdhgwQJTka/vi43AtTHJOGVK3B44nYv6dJXDOr2zopcunmQl2rXqQrkwTdPcSynlQdHk0oGvKZ5UIClnWn0xEDOdczRpmMwlH/T9/E9DKLiCsfxaQyaVCau1JsPkTMRGfcz+SDxVtRe0fGBofodsHeRD+LSRNY2CgcWC5Oos3C4czf0mrkFh5mk7LniKRwKF07b2hAEtJSUJliHEdA0nXNop4KAlZwac18VAbfFVpY57ciz3t0FbwlwNnmIPacI2OAYMvd0kQDdgurc26UkpGWPx6tsSdCqmEFOdiQUrZjP2sch4W9EmULtiPrvlop8uSSMlkR/cl9FgkZmXdqMDDanGEeRzuWsTcPIIk/phQdI/fqosWNItibFg85Xx11kjqD7plhFcSVSr5zURyEFZUQAD3ld5/VgHO1mtUnyR4s8bbXrajmyOWFqMBN5MD75436kRb7P83BkhTa9D5CnfvmukyCL5NOUCHl0ZOvxNcg2Xdg+Avnmg0bJQ9b7uT7jIv07c9sdkfJFP3BADtwwe3CQSzn4YXtkp3+QiY0MPnAij/bhl+9baOdbuBza7iN6M73vlIps43+lHi9pe5ZXd9G26bfpaTUi7BHtmzR5O210VO//v/gH6TFCdw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQMAAAAAAAA=eF4V0mlM0nEcx3FtJJU6CzAFsn4IfxQPcDJNE//fjqXhEWaXrrTsMDEdmqVZoY3cSNBWOYnVnKOD5Vo5U2wZHdqcmaaO5jwqj6mrhWWYVy21H49ejz6PPu8XL/sGhi99igxJT3m9zgOBaHpwgfi1g6TW5+ZM2Q6T3fKStMv3FOT+/I81E6+KyFQq3bTVoYzMfDKXvLNQT9JOs+dfddwn63+qWTsT6khp2XgdPd1MXtxjc+mitJHaGzrqqMpCfo+Jus7UfiFHrwYXWzVfSU2DyVVWPE0utKQoRm4tkrEpoXUFVido7X3bXuREB7Z3FY1VxwCJ3/KMZIABCi3DsfGOO2RZio8u568HH5NisMbgATMufXMNfCaceBLQ5Mljw7zMULnB7AX+0n5JYTmCLY/f2HrM3uCxhxJiLCVA7HJ3rlAggKNm+uekaCEUEufNrOkgePC8e8yfHwTW3eF9gVUi0K9wi3jYLISShNmApMlAUK6eePTXLRBs7RC2NzgAKIYj8bH7/KGAl630Ou8H8o5olq5aAH2nXWUXOn2hqumbIdXBF6StzCGjxAfe6fjflCo+dIrif1gsBDRufLYjSUhA6m/d05JKHjQKOGrdKh6otM6b9GouXO6tyT9J4wI3Q7Lv6UNv+PMvzLQ2xhvuZc2K52c5wB1sEbY94oBRmaO1ZHJA6XjIMS2YA7X71cMNjhyIW5MX69aPQEG5vVDfgCCDAsmTOgS1k+Jda4oQsFpMfplyBPGjLpqzSfj3C1Sf6hgEmURUeTYg8FXPB+WGIvDcukRIRQg+e3aoDAK8t31XBRMINIxk5WsOgoMd25vdNyFQbVPKnb0Q9CROiYvYCA68XE5PZCEwDLl25jIRlE5HvX3vicCa8fWMDLtyWUybxb2NbfaT1WMfSCkfrmBHK3jP07CLxqY8KdZ6Sy4Nw177sDsiAGtkL1m4WBBFO2zEMs+NLDGxA5GHtntg5RrqKXcsr+kxn4Ht4ocn0LGXKqqaadi2Eflxu0KrnrBbNhe3aO/epg8Zs3szMs9iVy4ZbLM7fqyi2e5/LUBFhQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/GKh5q9Og3D0Sesi2SGJgP2QdQRY/YmA/IdDQPy5iYD+d1qBBEmJgP9AKzHTlYWA/NOe36Z9hYD/8EHexNmFgPw7GDwGbYGA/vm4RLblfYD/xdi5+d15gP8AusOK0XGA/CvRQhEdaYD95oCFP+1ZgP9Dg5niQUmA/14SEJrpMYD/zcsk0HUVgP9FsWYZPO2A/H5Y6tdYuYD8nzZv6KR9gP8OKgQeyC2A/krvyjJXnXz/seFGJjK1fPzeHJ5bgZ18/dAs//iUVXz8sSjm++LNeP45abPoIQ14/IjcqgyjBXT+xTOrdWC1dP/LxsCzZhlw/RuxAPjPNWz9l06UURwBbP4Rm+fpTIFo/ZahNqP4tWT8CqmsqVCpYPwoizaPIFlc/YYyYJTL1VT+o+R+Pv8dUP7sT8L/rkFM/HN1ym21TUj8d7bKNJRJRPw0uUMsSoE8/nvwt4h4gTT9tMQCdM6pKPziPA8XFQ0g/xVijkNfxRT/bPwbl2rhDP1z7TwqanEE/t00KAE9APz97U1Nrqos7P+qIiQpmHjg/ehtz4Sf6ND8eUr+qMh8yP2vqYzsMGS8/Qjlwcw2AKj+wK0E/VW0mP/aeRBFS2SI/pelUWqh2Hz95cif+0xMaP0vm7cNrdhU/DWuyrnWKET+vImMGengMPxGOe+J98QY/D6f/Dv9bAj/9CufXHi39PhasTkk4Bfc+csBx8TIJ8j41pONbORDsPs0JkeoWruU+I8hm2q6h4D6Ikbo13lbZPgePEpkrK9M+lBS1DLrMzD5+wgKJInzFPpOtTUuR1b8+oJ607fprtz6BMY3kKB2xPuIOCy+W1qg+QMEDdrvmoT6q7yQTtqCZPmNhrr5XOJI+fvvjKWa7iT6HY/q5UwyCPrciWLHPJXk+gDfxtSZncT54MtNxKe1nPq+eOg6yVmA+sEb5NNAqVj6EYuF9seBNPt43mdvqAEQ+dOa6PYmcOj7lJlNCO5YxPuhswwGwGCc+vbDAhrAjHj7ikB87pooTPuK8NBo9Lwk+uLU63CIiAD75J7Pq1pL0PXfEXBjfR+o9/RFcDMdv4T2I42VUAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQMAAAAAAAA=eF4V0n0w03EcwPGkh9OTiYo6K+smJhWiJ59vWphL4jjUpRLXVadWMaUl1D/ddZIePNQWUuJIO1eHNk89cbtyald6uub32/b7/bYZWw+Yaun7++v17/uPd4yi4/aPj1L0OSmYvmcmwCvmg8Qj5jw6Fy9rn5GfhxKqzOVfnuag10t2joo0WSjFmDvoOXEQ/XiX37d1QQq6sSE4gP9sB9LsiyvQCiPQ8bM/CxW2EGRus2+kWv3Q7OclM+ROy1G07WDt/HZ3NDTE2BIvuiBAVn/Dt2loZrkyPObxONR+aFotDrNCT6ibPFxLgaRgtH8fhwJLZr0+I5MCtX4FL+8UBZ3ewjqxnALXeboa3zcU5KQ0aAQuNEyPMPc4EmlwGUkPNjbS8HLQuSabw0DAv97LYxcYaMncdIuaZOCc493kgMQISotvZbnNCFNZiZllc02wW/u7SSQ3AuOWwNVFG8EvaDKUa2VAGHE7irnBQMVqV4cslIGi7nTh5HsaFMoaT3U2DV7LCjl6Vxrk5medvGYKjl3+o86IxZ3cT25nhg0Q5Zewa1WJAcY969cI1hugNy45xEerhwrRtmNlxXrgWOnQsa16iBQJp67bdeB5PdyjrlUHBVGCvdFSHfiaKkxntuvg2hyPuJULdSA12A940yTwj3KL/LtJiOQcdvyVk1DVaq8QFpIgSz1gunOIhBNvSiofxZNQym9C7kDC3dSNpqxAEt7fvB+YtoIEj4Wx6uJFJAzO6h54OI+EocUqcfZMEl7kCpNkUwSIHWu7LL8J8GuoTQ2ZICCDq3or/EVAI0+QMfadADpPsj7ARoDLYV2HepQAqdP4EtUIAV13wo6MWAhIm9iCErGagQ3ztcMEfLryrfkSNvlvuk2ErfsqAS/sCWtp1AT+bp12f6cW2179i9+PPRR/pLoHu18W+bING7SnsLgFKz1ZH9aMdVj8wxqxXc4KfgP2YqOq4wF2uw/RV4dNCzLwWBeJ857cx3qfds1ivRJ/czNrRP+rpazB/nNnsQaaq+3s/1Klk43V4HPVzCrgJjOs/wEi9qnUAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/7pk5LRQeyz2GYjdpTmJQPw6D6eBPYlA/2v84fVNiUD9n5L7lW2JQPyVNHWJuYlA/5qY2AJViUD+FvsxN4mJQPwMEm3t3Y1A/PAuvFI9kUD/h8l27jGZQP2ijab8ealA/qeB4SFpwUD+mr2f7RHtQP7fFzuUjjVA/M3TlhFmtUD/QEcLMGt5QPwKxIYa8QVE/LuTD+mhAUT8bMBHWqx5RPzrP1jpI/FA/XDNUwbHOUD9sVj3ZYJZQP8qT3YeBUFA/kKDf/YT1Tz9wbenRgiRPP72Gg0yhJ04/SjxCTE33TD/cloiEooxLP4HBgIQt2kk/QMLW86G0Rz8kjs8UL/BFP2muzpkAhEU/0cKj8RnFRD9dv6cP//9DPwriBAuqKUM/hnPjY0tHQj/4DKafjllBPxHIAxGjYkA/o9IZVznJPj+V1ws4p8M8P/BSovZsuTo/nOEuFoGvOD8f7+Z7y6o2P2JSDfoDsDQ/tB3NGJLDMj9WZupGcekwP67G+BU0Si4/qoE+MOLyKj/pjaJHedEnP1VHaRVA6SQ/Wr5U8zo8Ij9f9z8fdJYfP2Dyyc3hKxs/h35JLyo2Fz9qHzzwBLETP4RovaDElhA/RmFH0E7BCz/ZguSuTA4HP34ZB5OABAM/ceu2nvcm/z6amJ9ttFX5PmiCuZBLdfQ+/1q6p0xn8D6+hdt9dR7qPhJ2tNu9peQ+8jsF2vI04D77xHmRVkPZPgfT+KIYjdM+gLzLum0Mzj6EWX5t0O3GPhgNBJyoX8E+xqMF9QMluj6uFuzH14izPlnsLVEG/aw+R0KNYQ1cpT7vEgbfX0KfPgOwi3JNt5Y+xl3htPFkkD7XZdadeYCHPvbGBCMFu4A+3uGlP5iodz48gvl3VJ1wPr6Ya0StLWc+/9PQnSsPYD5XIxb/1BpWPglqit9VOU4+RjkB/KWGRD7HFFfFNLI7PuLlzg0xkDI+sPs99uW4KD6FxvBbNFsgPmmf18sqgRU+kzc3o2kYDD6VNhYMYj0CPlvsYFySivc9Lizt+fE27j2dfVJt/07jPdRrUAs3vdg9iWQU/Bl60D0QLHLLAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAqwEAAAAAAAA=eF5jYBhZIMJS6Yy3AY/9k/+1bpY5GvYepz5X1Blo2+u8PLKj0UnbPrPx4z5mID3Buk8syEHbPupk5PQMO217DpYr/iU22va7mhW3Nltp2x/a2s+00ELb3kb31+mrZtr2j0+kCmibatub/M09ssJY2z5vUXNwqJG2vfipg2amhtr2Wwsb13sB7VHcen/tVH1t+/2h6s+EgfQ/+Rahg3ra9uGcGZHTgbT/a+uz/UDasHLh90VA+hR3YtJJIC3SbyT4B0izBuU+MgHqWxUpfiEPSFvx/+BbBqTjEnx5bwDpE6UpYcxAe5iiXyWpA+kLMmzxLkB6Gh/b+yggHbVn389sIP1OwbO2AkjbZLEXNALpY2cnr20H0nser3zbDaR/iEUe6gPSYqU3Zk0A8Yv2nZgIpMscP7ZOAtKTXUJ/gejwWascJgPpkrSCLBBtrXmtCUQf+ndrAlh8wYkZIPpGndFcED3l4dz5ILpizpsFIPpazLyFIPrgid9g+pqoziIQPTfdBUx/PBQAphnehoHpv6cjwXSNdTSYXvAeQku4xYDpkEII3VlBHRoAG+HdxQ==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAlwAAAAAAAAA=eF5jYBgcwF2U6duJHcL2Qav056ydKmPPJcC9+OtLWfuu4nC2Qgk5+4Xe5Zf2iMrZT9pWuViGW85eOVW86N4PWXubKye9/96XtY9T2/ZOar+sPUtTy0erybL24v4HqpNjZe33PWftNZKUtU/wt+fxPSNj/yep0X+Gqqi9hfcTyfKU53YsPv/3W5/vsCPkvlEwMgEAPHEy3g==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_42_t_4200.000000.vtu
index 6002741988bb42714e13f694238cc8a16ac1450b..97c16bfe9b0cdea0fff4f3f6b2d0c251ecffa6b3 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_42_t_4200.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_42_t_4200.000000.vtu
@@ -3,43 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="0"                   />
-      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-4.4215426928e-70"    RangeMax="0.0002074413507"      offset="548"                 />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0001083761108"      offset="1168"                />
-      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-9.9012113982e-38"    RangeMax="0.00010809235643"     offset="1340"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1556"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.2949227271"        RangeMax="8.5090145293"         offset="1636"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="-1.27584389e-38"      RangeMax="2.4517244091e-06"     offset="2864"                />
-      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-5.2257718696e-72"    RangeMax="2.4517244091e-06"     offset="3512"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-7.6868229821e-56"    RangeMax="2.2330696344e-06"     offset="4144"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-2.0401404186e-39"    RangeMax="2.2272229284e-06"     offset="4372"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="552"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00010833212959"     offset="1108"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00010818127342"     offset="1280"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1448"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.3146520886"        RangeMax="8.506747081"          offset="1532"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4517244091e-06"     offset="2832"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4517244091e-06"     offset="3380"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.2321633971e-06"     offset="3932"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.2290550337e-06"     offset="4100"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9935785911e-11"     RangeMax="0.00013466972792"     offset="4600"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000022e-10"     RangeMax="0.00019865155073"     offset="5124"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="5672"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1.0414881319e-08"     offset="6440"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="6976"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="7740"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="8244"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00013389703082"     offset="4268"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00019755590112"     offset="4856"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="5468"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="-2.3214064311e-08"    RangeMax="1e-07"                offset="6276"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="6880"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="7684"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="7960"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="9320"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00010784123157"     offset="9640"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9768"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9832"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="9036"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00010769096572"     offset="9356"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9484"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9548"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10324"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="9764"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11252"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11552"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11864"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10692"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10992"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11304"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAegEAAAAAAAA=eF5jYKAvMKg7/4k5ScYext+ybEmX5Q0teyV2s0luP9Xtg2c/6ucX17aPNU9lXseubR9QZbIrUUHb/sdDl5u8ctr2D9rPGAcoa9s77f/EUKWkbV/OEJT0R1XbPk/C7Dc/kA76OEnrtIa2vcfz56eOqWvbL7HYNytaG6h/4prf2Vra9jzBNfHJutr2X+bOmLhMR9s+wb7Z8qyetv3ZjC43byB9movx+Bp9bft5j+ftjgXS78z4bTQMtO1P7dse/RfIvyn5emkqkN+Ut357AJBmn2iY3gikFz12l6sA0kncG5/1AOmGTC/5TiDNcOKP70Qgffdl38N+IO2+TubBJCAtzi+aAKK3Le5Nmwyk422ibEC0UPiTCSB63c1jzSCaY239XBDd+nDJTBD9hkVoIYiOW/5nPojOu8+xCER73tgHFj/r5AHm604yBdOJZ8LBdJl3MJjekRYNpncWRoHpJ3YxYHqFMITurIDQClmo/FF6lB6lR2l0GgDS6UjtAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAArgEAAAAAAAA=eF5jYACDBgZUGgbQ+RjiS3JVdxYopLHCxHvYJ/e6d92ZKSHCebDw3WX+VNcbJQcyOzYm9S0svDs9f8mU1f9v/JmmZP9yzdOE+n1brXMdZ8rJvdSyn7P9Wilfhaa9wexFbj0S2vZrjkuWcfBo2ytszF0/VUHbPtnALWmCnLZ9HFe57mxlbftvLgyfNyhp26+q2qJTpaZtfy7s5MpyVW37ubeuOMZqatsv39E3LUBD2z7vs/2qR9ra9nsUD/p91wKaw2rBfVZX217nfUSbNJB+ZPJMQFRf215ReMn9+Xra9q+PLrlyHcjXEz6eMRlIW3dPtbI30LY/+vX0FGkg/Sy/fmsBkNbb/u5nPJBO+Hjcrg1IN4WyS9YD6fSPiTf7gLSXvQF3D5CuXPeefRKQ5ixezjQRSF/XuqowGUjfnydyAiSe1LC5GsTP1U2JB9HdZzOmg2i5LY/7QHROWtp8EP193885IDrixoyFILpG9v0CEF1ZrLMIRM/PZQDTlmaBYHpOqRuYZv0QCaZflIaD6awX0WBaoRRCb4uOAdN+vhC6p2KUHqVH6VGaOBoAg0Rlrw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXgAAAAAAAAA=eF5jYKAM6K97dSP5IKc9jF+x5Oqp07ul7Nl/BlY7bxOz/9L9O/1/hoz9/JvNEqaKMvZL+Q/FMllw2S94kP1+WrQMXN/cyLd3k4Wf22G3ZRSMglEwCkbBYAMAgLkd/g==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAgAAAAAAAAAA=eF5jYEABDQxoQCY+mhWZP4FvSnB60+XFRv9kHhX+8up/+vHejAo3PvuXSWXfpt5w2NG/Kzp2ym8pe9VnwXs3rBC3X14g3P0lVMZ+1g0N6TOSMvYv3yqdCLnIYG+nYyPi4i1jDzO3bCvz3D/BV+3Q7R8Fo2AUjIJRMDgBAMjWKxo=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9A1tDTVTbcwtUhLMzEBkgAyrgUDAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAdwMAAAAAAAA=eF7t0u1Pk1cUAPCqVXSYafvcJxB17raIgPhIITIcBXaps5L4Ai2KYskQBAU3RSqwOWWMSQDtCL6QWl8oipiAQCWKojPUI1ZTFbYAAYSOVRCl4lAQmCww3X38tH9hiZ9+OSfn3HvuyT1r//5W6Vwx1Jn8FktqxZC+zZ44rZOB/gxDgrZEDNNP56fVHkNgPqQI6DAxcGtP4ZOrajFo1r2bcl4jgoGx8V3DcQhe53HFQXMxWRPj6fHQhEnM7ril8i9E8CsePdH7NSaj4Yq3tlAGZg8die1+gMlvL3+wZZVicjSqvfyOM4JFXHJBsVBCjnTtjVFqxXA423Vwx01MatbehMubMXGynRLsrsEkpeWzlFZvBnL6clszv8GkS3LdmDQghiWNS7nZuzBJWnjP7S7NC3ULt/5pw8TH6p6VSPtHtN3N2lZMKpLPV5YZMblgmX/fb+xTUnB2SYU0HpPxzevzilIw8YyXtS+LxaRbk/XCg85dGLDccboQk7ShTLlTESYhg2cCntC58gcuzhnMRxDoW90SX4VJfXf5DUMlJk8j+7qC6DmVgRMitzhMwv2TtKdUDFxb6eU/kkrfs2G9MV2JicTQr/xoDyb4TlPskEIEI/Unxy0Wes/PmU1CuifZXstjwR9iCCopUuhyMckLndkskzBgiZa7hkxjYH/Ms5a8Bkx8zZflfmEMdE401IdvRDD2VybjvpOBZPt+7hcdA5FRhpoz0XS/W195s+UMZOsqM2QcgraqR8JgKQJdz8G61CgEU/7ureOmInCet+PNd2sQbPKWOdT0vH86e3Y61iGYs0WwJXUFAnlFrVlkQiAafmZt3I6AnQxsupeDIDvD5vVVGYJcThHgX0L/i/65ZoLWPTQvcJY207pE25dtVxDMUPlOqh8jOMxNKqW/Izh+rj2huAdB/6wGu4oakSxE5DWdS68UlDho/kBwNTODhW97NW7GUQQH+vVlahcWBqodsxI/ZiFMlT4v3oOF+2Gh6qxPWFgb7PPoEseC+bbP54JlLPzkWnAyhcYVJq/lh6i1/rkFsdQwJ/2PCVQXY9qqKOpwXYJVQ3UXrN6upkqthsZIvm7ffJuKGrnP0Ma7Sm/o43Xmql7xmiJcXvK+m+75htcYLeviPTiz/n3f26n2dl7rinPv8zkhER28o6UuHf+NP/jB/6P/Ahm+r2E=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxQEAAAAAAAA=eF6zYACDhldQuhtCM1RD+blQ/moo/Q9VPUNiw+e5a9o3MbJCxf0Z+2aUSBpOO+3r5/TumjaPwclwkc9pa9amlBfx371xROHFjYyJwhVb7T5u2HZ8VazgDpEFd8JM/Y7Y6eXb1noqHbJbzbfy3p7aI3aRs8PqpIqO2N32/nD0ZMsRu4OHCnnYm4/Y2azWymdsP2Lnfv1nZnzbEbslT5M/s3UesevsnasU0nHETjhs9WK17iN2HLFaGxO7jthtuLdPW7z3iN2CG+tfJ/YcsVsa6Bq8oO+IHfvJhGZBIJ26/x37pv4jdjuMNu7xB9Ip+xoVoicA9aekhskDaU6JdU07gPQHdmWRGUD6ZtyBb8+ANPeSw4rXgfT9QtOvv4G0e5Pv+y9A2nftuuUsE4/YOex4f5oRSG9ZGP+HHUgrHN7+gg1Ii1/r0uEE0mLmm09zAOkVP60ngfizrAOKQPTtLKdNIPr36bAVIPritNO7QbS9zsMdIPqFcf0+EP0rbe1eEN3zxnI/iD73lhFMM93PBNNPdkeD6VXzS8H0dPMiMB0aWQGmmReUg+kbfyB85TsQukijEkx3y1ai8EfpUXqUHqXRaQDWuLPdAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAuAEAAAAAAAA=eF6zYACDhldQuhtCM1RD+blQ/moo/Q9VPYOJ2paupXsYWFmh4gyB3zw6p5XO/PDwzUZh9Tz+Gb+vi8aVK21Uud6wZPdT9iVmX2ULquT32D3eLOvTUxRgLdZQU/Mn6ojdmg3piZedD9vd+Oh9407dEbsnF1dUpJYesTvhISH8seWIXVRGxMnM5iN2e6OyVK3aj9idPL78Z0fbEbuGfV2SaZ1H7NSeLO5f1HHEjiH2uMrU7iN2ibbfXp/sOmLX6/0ppLb3iJ2S5gS/0z1H7P7a5Dp+6DtiJ7rx/K9MID2pPyT+RT9Qvst3Vz+QXnwrdmP1hCN2lz2DPrgD6Ts3vZ+fBNInxNo/rAPSM15MCXkPpGdlVq95BKQVzl2f9x9IN/heMPsFpNeVP1Vgm3jETpF7OSMLkC69w9bJAaQl8lMOswPpqQn1sZxAekF9rBSIPihgvQhEX9O+2AOi75cYbAfTq/ZtANERB6z3guhqz7TdIHql/tN9IDrkbAqY/nQ1ZD+ITus0BtNOSwrAtE5TBph+blsOEY8rBdP5uyvAtFUKhF4qVAmm97FD6BKNUXqUHqVHaeJoAADdtxU=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAiAAAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUrzMkHoSKi6hsexH+uEf88vmHc338p+Effthr66lN8b7BjmvduprlG3xT42v7xmwUE72cWXfYI/77VbvW4Nc/XuQ3Yv9eJdVXsO2XVUXDkxzXOjHZuR8YXFmw7ZQa1hCOc2q5DL64PzR8EoGAWjYBQMbgAADhIuGg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAiQAAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUrfdpYB05FQdQxKPddNdlUuZljA9+vSyY99OpFrTIK+bbZT4HC/JWL+bDvj1YvHu04dtDMv4RdhMd5vJ5/8+cCbdYfsvD+uqnZqP2RXwvhNuVJ3md3hD6vLHyw/ZAc1lcGI9dxveYUaOH8UjIJRMApGweAGAMPvLu8=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAaAEAAAAAAAA=eF6z6logFF1x23bVrJqtguIK9gHsl9f+tX9gx9Ks9d2V7YddyWrtPVLfOe0TgvZtnLNB1N6rpUX9yDJF+3W/hINa7snb/1u1OTbmgpz99Ys/S52nyNmzfbGYNv+tvP22mwdMNWUV7E/kCTQ8sFawX2P3IGu/r4L9rNNa1U+CFey3SUYV2wQq2C9oVTV38lSw5+njPstjr2Df1hWndM9EwV6aeUY6l46C/ZbfF1ZIqQL1lTgb8Coo2L8IzM6aLgNUV6gzNVxKwf5yxdmDHyUU7OecKNKQAdIX1uyyWgj0x1pmqWsxQPqTpuRPcyDNdJdtowqQvj/91WMpIP316U0uMSAdYnpnizCQFrv7aLYQkP5QxCYNogs+eD4EhceHE/+Og+h9f9X2guhNx2fuANGHCnZtA9FSrD/B4faodg2E3tkHprckNIPp30L1YDq0rRZM770DCeclayE0+wwIDQv/UXpw0gAwTzNyAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAeAEAAAAAAAA=eF6bUH3t1v2a27arZtVsFRRXsF9x/E/PrI137YQc595jSfxqJ7XycsDuKjZ7vWeNXyaoCdvHvtIv6uCQt0/87NP9IUPJ3qRAfX2Gi5p9esr5y4s5tew1mid4XLuuZu/1iy9erVzV/ltnQFGmpYq9jtdr5Rl6yvbFt9cGCIQr2Yvcu/1p7zpFe7kUI84CfUX7hRc+OThcUrDXfhg3w3+Cgv2MlxUO9skK9kxrIySbXRXs+Z6sye03UrBvnCSx+KGagv2BWW8YX8kr2LexdrY9klawZ2E53z1fUsHe6l/e/mQJBfv9338b7gH6x+LKk8WpQPrZllpBKyD9Z6PrWhUg/ULbOVcKSDeFmi0UBdIrXSryhYH0k5tqJUJAuuWVNBuIzrv7+hooXHz2iR8G0Sud3uwC0Tpn5m0H0S/9/LeB6KDmM+DwM82dBaY5Z7WD6VuTG8B0H0cdmNZUqgXTXOch4b1kLYQWXgmh7y2E0LD4GKUHBw0AuyUxrA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHgIAAAAAAAA=eF4LWvvxkm9Sgv0Uk56GmdMLbSdPOiDbrp9gr3kvMc5hXbx91adb2s/mxtn7bapaFiEfa2+V8jZwoW60PYPkw32aFyLshX5Mu6onHWbv1lCpOUM32P5c2eO0VToB9nq5Ubc0a73ss6x73/hyudonfrqcN8/Ywf4f+w42Hz0L+ynmyQc8agztH3IeS8pu1LBvcPda8HyJgv2i46YzXr0WtRdcka6ZxchjP1Fu+h7PGEb7ieGLH8k/+2L3xox3TkbhC7voFgPhC6du24nfe3G1Z+85u3+X9na39hyw67B2PqMevdHu4at9ttL7Ftrdl1wV+WXDRDsZ64/Fc8wb7ZTab+2tiS2wyztR9HZTepydpKFfQvR8bzs7/6DzR/ss7CYp22oUJ6raJb3nV/O2E7K7Z/I1Xav7n+2a0rTyEwovbTWjZ32zTr5i+8HDqPFu4QHbwwfNvjx7uMqWb7nLt0M2021n1T5b9PF9m22IjUlWMGeN7dY7UwImJJfa7giIOz/5c5HtlA6+9RFCRbYlwXtN3Q8V2gr9ulNnvazQVqe9pq5nTqFtsUV1msPMQtsFqUtvqcwotJWo2njzGDBe/AyOiKwA0hN6/ZXmAWmvld+/zALSs7abfQHFm84/kSUguioishtEJ0meaQbRZT+aG0G0s8dVcPz6dS8E00yJk8B00o9eMP1vMyT+xcIhtIQthFYwh9BW0PQxZYTSAGYjdIw=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAcQEAAAAAAAA=eF5zZ2W2XRLrZjd3sfzDxa8e2EotSbqkls9j5+ZnqVpvwmK3qzQvfrvMN9u7siyFExe9tdVSPmNw8cQT2ws6tzYvs3pmyzD7b4azwTNb7bC1T6euemqbt3BvsFz5E1tB0dr7bEce2+ao5i3Ikn9sm6Eodjth0iPbOV9SeG/LPbLdtE98F/ORh7Ya/lu1Pesf2nZpudWZ+T60jXrcmMOn9dCW58GrQjuhh7ZHdFyUVzE9tBWpDgs/9+OB7apDjTsPf3pg++W2wxWd9w9sC4TDf0u9fWCbsGe/4afXD2yLrpX1BwBpv6Kdz34B/eN3U2jjOSBtza5WsgNI5xTJdK8F0ne6ZwWuANKzmf/fXwqkk/V+HVwCpFfZiziB6LQcKS4QHVEp8wkULm5rOV6AaGP1R49B9L4rJo9ANEdTFzjc6hU8wPTkM3pg2lxKFUwvmagIpjeEKIDpWccg4XxsNoQuWQ2ho9sg9JzFo/RgpAFXEMzcAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHAIAAAAAAAA=eF67s+rjJd+kAPspJj0NM6cX2prV99eFGgXY557WSM867G9/wWaq0pqrfvYqkVpyswp87Y/ITvV13OZtH3shUW2foYf9loOzTBVSXOz3eyYt3l7rYK9WG9J/8YWNvUUZu5v2BXP7DZ/OFHdyG9sbvS9QTWnTtT+yQ8pIQVvN3qT/quNxOQX7O/dWHeDfKmb/IFWslPEvn/33kuwjKnUs9nEf32cddv9lV6XN4MgW+cFuf3a57J+9j+2ULsSvVNS4bsf01lnTNO2U3ULu+SzarnvtzkhnXlkxdb3dn/O2hktmLLBLzNy2JvX/BLuz125O8P3VYBfyYkXHwp4Cuzcn3Tw+NsbbtVw4+DvO39dujWG+wO6VVnYKvMvfeO5Rt/vjGxmculHELvzOgvDM9Yx2h1cU1Hxc+9b2au3MdQ9bb9hKfJxn9VfkiO02Ue+K7J4NtotmL1wbnjHHdorvo6+VSt22c+ILg5ji6m2tCnvW7FhXZtstbJM4r7DYdt+Py7syHItsvx20W9BxudBW67G2RfEaYHhPujrpwLxCW1nnk0qsswptvXYq5WbMKLTt4dHdcRcYH0mXjLatB9LV76yWLgDSFdwnj84G0qse65jPAtIdyV47QfG2bfqfiSC6+cjNVhCtd0ilCUR/f8vaCKJXyW4Ax6/c5mlg+ptNP5jWEOkF07+LIfEf4AahgywhtKEphIalj5FKAwAXI3dOAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAzwAAAAAAAAA=eF5jYCAPGNSd/8ScxGP/OiyX70CGpn3Ey8Un4/i17VXW7TlpLq9tP3FxvNRTJW37Ip4jem2q2va+OXt/eWho2/ulmp5+rKVt31DR9YNFV9te7AqbQ4+etr3Jd3/HVn1t+ztVj08LGWjb67mc1YsG0iG79hyqAdKFu/4ydQPpdzeOTp8ApNffk1gwCUhzfSgOnAykE2aEdoFoN/dJs0G0alj7AhB95/bjhSC69pXdIhD9pjsUTFu8iQLTbpoxYDqkEEJ3VozSozSCBgDRVid6AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPQAAAAAAAAA=eF5jYMAP9Ne9upF88KfdgXPCi9l3Stif2mTvIOUqY29ZosZ/ZreI/dzIt3eTha/bETBmFIyCIQkA78oSEg==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAfQEAAAAAAAA=eF5jYKAvqGiT/vGkXNYext+1u3JP2V0t+7s28VcMGDXtZ2Z+uZcjrm1ftnK90GIObfuF3375+ylo22ud6zPQkNO274n9L6WmrG0vb7toRpiStj2XtnfndVVt+1qf+xdeqmjbnzr6/PA6DW37OcnMd5era9s/FFm41E1b2/7SzKywEC1te+1vb5eE6Grbf16bbDBVB2j+GfcJh/W07d9dV7OxB9INvr1fl+lr20/o4uIMA9K/N07lVjXQtn864+SDH0C+8hRF/hQg/8zX/1F+QNokL3xdA5A2SuT4Wwaks2bMnNkDpJ0ZuRd2AGnPA64GE0Hqzz9f1w+kTQOLrk4C0jc5nXxBdC//t6TJQPpl10VTEP1vzYF+ED2deWkjmK7UmAui45n+zgDRE69/XwCiZZtOzwfR73sZF4HozAvrF4Jo7hY3MP/EekMw7WITDqaXWAaBab+IaDDtKB0Fpp/YxYDpq98g4p0VEP726BgU/ig9So/SozQ6DQAU+k10AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAgAEAAAAAAAA=eF5jYKAvWPz80/xX+5TsP505P41ffat17MelM4vfaNmLCl12XaKpZa9jVdyrIKltv479+d39vNr2kw7wT6pW0LYPPbS5aqWctn3HycNH8pW17TMufhDoUtK293t+KSVMTdt+9rv8y4Gq2vZq+fN1nTS17blL+08YaWjbRwnWfzmnrW2fzMR76oGWtv0y/qvl+3W17ScGudpwA2nHhAVpPPra9jl1oben6AHtW151/BKQ/3le7ZQeIC3pX9NnY6Bt/1u1bJ84kJ7853dOPpCWu8zOHgekC5c/WdcKpO85OhjXAekLzxrm9wHpuTMnreoG0hq3Uz9NBNIczG53JwDp68YxkpOB9Pf01bsmAelNbc6VIP7zC4+jQLTytRXTQHRLTHkviD5/XG8+iHbg6p0DomUVOhaCaEX1CwtAtP9x9UUgmnXRN7D4JaMAMP81pwuYVu6OBNPfT4SB6awX0WBaQBdCb4uOAdPP7CB0TwWEVspC5Y/So/QoPUqj0wA1UVECAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXgAAAAAAAAA=eF5jYKAMTFSK3m3fxWUP41c86ml/uU3K/vX3D4lmkuL2O5pmXeBOk7GvnFYz/S+/jL2784PwKcqc9g4lt2O/hMnA9bk0Fel+Xn/bDrsto2AUjIJRMAoGGwAAtkQcgw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQAAAAAAAAA=eF5jYKAMmG12MVRV5beH8VNE+/v3iUjbv123t61XVsJetUJJ4U20jH2MWk7pDCUZe/nYRTl2ExnsJc857e32lIHr481ju//b4KAddltGwSgYBaNgFAw2AAASyRbJAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAArQMAAAAAAAA=eF7d0n9Q02UcB3ByUQw8i32f3aGIe/AOBstIjNsyd/JACDoQkAuqYYxfTsEfc2UGs13odm6QQNBONqBiwUkaOFFQyAafvEK4jq5DmnJbie1Ar8liQBDGj77f7rrzOu3qrj+6/nrd+/3c89zzee7pW9F7PJFHgXlmdZE5lgNUY0pbZQKCFyYjJdN1/rAhUuqlv4Eg9aooLCqWCwFn17G/vIXJ23OK7vhhBBei0jUTKZjI2rdaRkcQlC71xxd1YNJZIrN/N4TJ/tkhs9nFAYmuSHqIFUy6VOvqD01gUo7O/NRwARNWZt6n5nQKWlv102+ZMBE6uCbV15jUaJXal4Y5oKsPOqMATBp9GsU7bmKijWnudvZjwokZuKgpxcQgXEBbrJjwN3HeuWfHpLBJvd51BJNl9kV7mRiT9vkezzEbJvWrnFWrlZgEmroEeAwTyRvTIlYoBd59wdr+5RSwjZKdHzb7g1Egj3B3YpLhJynM+oCCHJ+Egxp6nirTBt5CHSZxE69d3P09JnsjRqSfWDBR3wgbcpZgciWqeuTnHkyck1mVahEF7kVX0hODPBJTcfdg7+cciDuV9KrfMUxO5VNsNz1PS/jh0vnzFCxIK0L4ZZiIbioCQvZjkn86YXR0DybrFwKtt+MokG//8RrrKw4IluVkFwg5sFFuRGt8gkh6lSSsi49JaI1YptNTwFNn9JVvQqDO6Hgm8zQFxVKH9/yTCLIqxfwyIYKxOZFPt4aCcysrxje7KNjL9mvdZ6PgvCvt+dxYBK8HhAsEFIKjBUlvXtuJIND72arObQjmIvRtU6kIomt/MGyMRpDzeN5U/CUEiXxtkzsXQcsrT+U3tSMIV604MdGAoPrl5JOKFgS7zxmnBB0IDFu0QWMD9D2OLCkHrQiU7wuUj9xCcNt31/UC+l/1xnspPA4E1v7qtON0X6OKEksmEXy81b/m0h0EyYvEsNaXC8lrPTMN0wgck8XW5YFcMNk270vkcIHVYzfI+Fz44rniA7xgLnxz4rLK8jQXzsqvlCzRtrl12QdowVP5rp421Fi7SkZb+9lhkkf7aLTuaAatR6WozWTW5feuptHemSUrX6QVByt8mTzIHhcwyvvEv+6g3VVa+BiT38v7aJzJKakDM4z1XpJhRqGmzsEY7vzlW8ZydPn3flbKczPyNJE2RsuaQtv9/R/57xqSW3z3/ty8zTj0V/2f9zsHIh947sP6/5vZ1y0PfJeH9f+2oYY94/+k/6/5Gxuvvq4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAegEAAAAAAAA=eF5jYKAv+Ba10tjFa5sdjH/wmetl7aAjdg88tqq9ennIzubqxSLmuiN2y5gNbl8uOmK3265UbHfLETtld7GfUs1H7C5Mmjj9YdsRO5MXWxe6AOl6HUuR1x1H7ESd/VzMgfT5alkNwe4jdnr7eHy8uo7YTbnXF8jee8TuZewfjoCeI3bz/5nqT+07Yldl9ieWBUjrcuvsXNV/xG7iV82FbkC6Iu7hzrAJR+xK311vlgTSf1okJLcBaWe/GRumAOlTcXyHnwJpgWMJEVeBtOTZpMzfQHrzpmaRL0C6YUtcLstEoH8MC3MYgXT/kqdP2YH0w5T0Q2xA+tnkShVOIN0iVraXA0jfTWvpB/GVGOJzQbTE2dSNILr+zc5lINptYeduEL3UMGkHiP6Vlr0PRBdbdewF0TnJJvtBtGP/N7C4UG8GmL/zdASYXm5UCqarMgrBdJ5fBZieE1cOpm/8gfBDj0HoIo1KML1UqBKFP0qP0qP0KI1OAwAv8ZCsAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAfAEAAAAAAAA=eF5jYKAvuOz8XPxR9B47CC/Amld8I39T7BE7teOaIuqnDtvp/Clg8K0/Yvfv745rG8uO2AVpuwTdbTli96nvzJGa5iN2pkv2+ku2H7G79zthQnbbEbuVgn84vDuP2GXk3fnQ2nHE7p2w7cqG7iN2L2/PSdjcdcQuMSM4J6/3iN3NIgW3XT1H7MI3L/rztO+I3X+OvhWxQHpJWM7Fh/1H7OT+Mae2A+m7W83ul084Yuey9uVRJyAtu+L6w+NAuntxDecaIB15XzzmHZCe2Cpj/BBI/61nNPoPpBUTmTp/AunPF2W/sk48YhdaPGkHM5CebLCnggNIx4jJLWcH0i/Sb4RzAmnn2RYCIPqwWPICEL2hNbMTRK92mL8NRDOIrF4Poq3XCe4F0Uf4RXaDaLGuG/tA9LlEXzCt6Ru4H0QvUdAB01wP8sF0/to0MD3jYxmYLr5dAhHfXQGmd+hC6KVClWD6xh8Iv0QDwu+VrUThj9Kj9Cg9SqPTAGv7lXg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQAAAAAAAAA=eF5jYKAMRDxRS7lSv9EOxj9iMVHIZe5Bu79zbuueL91n590pc65j5yE7E/OV6qcbDtk5/Pj3OmjyBrsTW7yLpq4/BNc31emCV7ljE5w/CkbBKBgFo2BwAwC0lSDIAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXAAAAAAAAAA=eF5jYKAMxOTJpap0brGD8X++ki5Uun3QLt/FMU3+7H47rQU3v93edMjuQY3UJP7eQ3Zz/Na9+3pjqR2fjLHivmWHEPomblafszoNzh8Fo2AUjIJRMLgBAMcxH8w=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAlgEAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYD9phVyVueMDu171Dpm639/s9h2Z7XTyJ4f9n+uPU94qitnr7J+351qPov3R5+9EHvfL24ufC/ojf07OvsflXrTSbDl7o4c/g6f8l7cPbNLVjZBSsGdhLZ2T5Khgn+Z+5713oIK99cp5bWLhCvbNvmrLm4IV7K+zHNj62EvB/kXM3s/KDgr2dwPc7000VbD/xPyKqVJHwf51j3BQjKqCvZ6vw3UjBQX79Jik8DUyCvYxBxjvJQHN773Rsfq7hIL94sRL2vJA+rF6yM5FQH+Ey73viwXSD8TlAyyA9Ja4XzdUgLTS93NfpYB03qrVQmJA+oOW0Q5hIH17vttcISAdqTtdGkQnljc/BIUHk5LoCRB9tkF/L4h2fDVnB4j2nLB7G4huzvkJDre4uWvAtP3JPjCtEtsMpo+J1IPpvppaMD3xLiScPddCaPkZEDpyNoSugcbDdii9HEqvhtIrcfDRxVfh4BNLk6oPl/2E6NVoNC7/ETIH3R2E7MNlD7p7YPoA950xfg==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAqQEAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYB/FyZbwZPVdu5AXUQF2177Y/ffIfhP2k9WezcvPaH26sH1fzH110+dy9k9qTm1VY1Ky70+Ie9K/Ss2+5Ml1lwdPNO0XLnvPKbJIzf7n/OfJSu2q9jLZssaPdVTs971cYbdfU9meeTbb64+BSvZnA+73lK9WtJ+kPDFMXFfR/lf+xOxdFxTsN/IcbgzrV7D333Agc3mSgn07r06EpquCva96hEGMkYJ9Wtwax6NqCvY2NzYcuCWvYP9TenbvLWkFe48dbHWzJRXs8wKb9yZKKNif2fjPcjfQP0XLLPVTgXTmry+3LYG0FqvfVBUgfd/8VJIUkLbdvW+OKJD++312rjCQLpFPLRYC0qWfz7GCaC+Gc9dA4eJeynMYREuJvtgFokW9524H0Yf2+W0D0UsjzoDDryp6Fphu7GoH09unNoDpyxx1YHqlUi2YdjsPCe+UNRD610oIrbIIQq+cAaGNZ0PoVmj8bIbSy6E0LN5WQunVaOLofGJpUvXhsp8QvRqNRjdnJQH9uNxByD5c9qC7B6YPAAB8MiY=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAPAIAAAAAAAA=eF77s/LjJd+kBPspJj0NM6cX2qbP3yLbrp9g3xPHFOWwLt7+xQ8V5Wdz4+xFfmmuiZCPtecqe+i7UDfafuPVsO2aFyLsc59UXdKTDrMX1M9QnaEbbP/kdU3yKp0A+38Lj17UrPWyX7+54Zkvl6v9raaZmfOMHexnTez+561nYe+6XXqXR42h/YHsmZHZjRr2fzVuzHy+RME+qLut/9VrUfuwhRpyWYw89rffT9vqGcNof2ah/S35Z1/sgvLjJmUUvrCb9CyL48Kp23ZCJVGnevaes5ty+FBra88BO42rnsfUozfahTb+MZfet9Bu7iS/kC8bJtqlnVDKn2PeaJdmvXlnTWyBndnD7meb0uPsZriej4qe720nq6l2+mifhR3DBTvV4kRVu+ePBVS87YTsVPZPSNXq/mcr9NSi7ITCS9tQea9v1slXbLfuLW68W3jANuVG8tdnD1fZbhQ59P2QzXRb16WlSz6+b7PVWLo2O5izxvbNKuvACcmltuY1S85P/lxkK/lLa32EUJFtWuYJU/dDhbYvLB/WWS8rtFXnravrmVNoO+NAdZrDzELbrBlLb6nMKLS92bvx5jFgvBwzOCKyAkir9/orzQPS1Uu+f5kFpNu2m30BxVsdo+gSEP0mPLIbRAtLn2kG0Xu+NzeCaAG3q+D4De1eCKaFEieB6YgfvWD61WZI/CuFQ2hRWwhtYg6loeljHZTuhdLToPRkKD0VBx9GTyFA49I/hYA4un50eUL2E5IHALwUeLY=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAApAEAAAAAAAA=eF7zWL9n1qfrVXZzFss/XPzqga1ETUsvx9uIfX/8DbU95OztAnTVQjV3SexjUvT6a7mW3e4Fc7v1uuu7bYViZ672kX1tK/iDa7vAmye2uc+dwmb+e2p7u/PM8ojwJ7YW8c+uSZ99bPu9eNd7BcnHtmnOy3LkJzyyneg8aZaPzCNboU0/dsccemjr1T/bW6Tuoa1EYNCTbJ+HtmrJ6Y+6NR/artnkVvpO8KHtgrOX1lcxPbRdvkBMf/OPB7a73hou3/LpgW38OrntKu8f2F4TK9kj9vaB7dmiCRwfXj+wPTU/tNYfSMfdTEz6BfRP+stTReeA9MfWCeE7gPQyvoC6tUDa9TyTzwogLew65+5SIM194/eBJUBa7/oaRxDtV/aRE0RH1PB8AoXLugVML0C0/vP7j0H02ZfGj0D0QeUucLh1/XEH063b9MD0f0lVMD1tiiKYvmysAKY1jkPCOWYhhDZfAqG9OiD0u1UQehlUXgUqXw6Nn2VQeiaUhsXbbCg9F018Dpo4IXXoNLr62Tjk0WlizUVXT6o7CckTsp9Y8wDJqdXlAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAOQIAAAAAAAA=eF77s/LjJd+kAPspJj0NM6cX2iYkea6INQqwv6mVFpG139++bUuPx9uzfvbsc1uKFpT52qu1S0Z82Oxt/zxncs4cRw/70r0sN/28XOybbU7HH2l3sI946H5dn8PWPrF9z7Yjx8zt30r1zO4VMbYXirBqPdmnaz/TmnN2gbGaPcPqsKvBKgr2+xu/SrLsFbN/2VgXUcrOb69Zd471RguL/b/FTB+++f+yM0yq7H0Y+8Fug5pOVNfhx3aC/uI53nrX7Yqsji26nnPKjj94va+Mz167Xe+jP+ycs97uQkPOBpU5C+z2N072Ps400e4Q/z7/mr8NdnIBN1N7+wvs3j0M2q/THm/3t8Zx0cdgX7sXReqXFq61smu6r/Cmc7+6XeC9Mk2uLSJ2G4s3izdvZLTrX7eC2WTjW9tuhrOsUR03bE/zafy5IHbEVvvPUfG9vRtsNR/aPjTKmmM7w/7/gv3K3bZiWn/cbsfV216qvLfr37oy2/0PZphvKSy2XVG+0THfsci2dMeMyq7LhbaHVvdsKV5TaPtIcuf6A/MKbdmqX6izziq0rWDwzs2YUWjbLr59+11gfGyc8XDreiB9gk146QIg/f7H9qOzgXSyppr5LCC95577TlC87Vv0eyKIds2+2QqiXVarNIHobw9ZG0E0s9wGcPwe2TQNTH+x6QfT3CK9YPpCMST+69wg9FRLCK1gCqHzoeljPpSeAKWnQunJBPgwegoBGpf+KQTE0fWjyxOyn5A8AEbyea8=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAzwAAAAAAAAA=eF5jYCAPVLRJ/3hSzmvvU5NzIvi9pn0H56Uf7ALa9mmPXBys5bXtw85eiNynpG1/xFp0bYKqtv3mKaUB2hra9lHXWevOamnb819a8eqLjra9R5B5WqOetj3HG+/6On1t+4Kl+t/4DLTtfxwRMI0E0pufr79aDaSv+QTN7QLSXCem5U8A0u26URMnAWnrs8k+k4G0141NHSD6916h2SD6+prEBSBaZ/2NhSD6laTNIhD9ZVcImD6xMwpM35GKAdMKWRC6s2KUHqURNAA7HigSAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPQAAAAAAAAA=eF5jYMAPJipF77bv+mVn9HbfF/4XEvYzeri3sFjL2H869dQlvkTE3qWpSPfz+tN2BIwZBaNgSAIAI6QSgg==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_84_t_8400.000000.vtu
index 9a93b2cb21bd71970d3f14fcef7b10516e52b9dc..90298d44afbf9ff21a064e59d34372967ae5e000 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_84_t_8400.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcitePorosityChange_ts_84_t_8400.000000.vtu
@@ -3,43 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="0"                   />
-      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-2.4987393862e-184"   RangeMax="0.0002074413507"      offset="712"                 />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0001128411771"      offset="1512"                />
-      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-3.4393213979e-89"    RangeMax="0.00011275530434"     offset="1756"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2036"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4749392229"        RangeMax="8.8599764761"         offset="2116"                />
-      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="-8.8991937337e-24"    RangeMax="2.4517244091e-06"     offset="3772"                />
-      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="-2.953231563e-186"    RangeMax="2.4517244091e-06"     offset="4620"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-2.2055955777e-106"   RangeMax="2.3250707982e-06"     offset="5464"                />
-      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-7.086707186e-91"     RangeMax="2.3233014065e-06"     offset="5780"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="716"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011244400247"     offset="1436"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011235440716"     offset="1672"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1908"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4748016081"        RangeMax="9.0395749807"         offset="1992"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4517244091e-06"     offset="3668"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="2.4517244091e-06"     offset="4380"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="-2.0602537432e-321"   RangeMax="2.3168871522e-06"     offset="5092"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="-2.0602537432e-321"   RangeMax="2.3150410567e-06"     offset="5336"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.0683858079e-11"     RangeMax="0.00014320496112"     offset="6096"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000003e-10"     RangeMax="0.00022019861114"     offset="6824"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="7584"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="4.9650778322e-08"     offset="8628"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="9384"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="10420"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="10924"               />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00014185858815"     offset="5580"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00022006357737"     offset="6348"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="7156"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="-8.1624623988e-09"    RangeMax="1e-07"                offset="8204"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="9012"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="10060"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="10336"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="12000"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011259946251"     offset="12400"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12560"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="12624"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.0002074413507"      offset="11412"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011240480678"     offset="11816"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11976"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="12040"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="13116"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="12256"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="14044"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="14344"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="14656"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="13184"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="13484"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13796"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9AEAAAAAAAA=eF5jYBhe4ObL0rWss+XtYfxzwUv6475p2XtySJ/6cV7d/kEXsxunrrb9/0/hLx2Vte3PbV9+h9NA2/4C0yW1s/ra9o6CU9Ok9bTtC19HTpQF8v9wP/SW19G2VzdRLGcB6gs18tp+R0vbvta3UqBAW9v+Rc6twFgg/63e+sb5QLpuf9ncBiAd+vT6nHogrTf7xgsJoDoZIYns50C+z//oj1+B/DeVM7qXA+lVxp3cb4DmG5hbJU4C0q9y4gVuAu3RUf19txFIxx//vHsZ0D0fpp15HQWkI0/uafACuuv0/CIPPiCdvvhExGGQux9mqk4H0hG/WxvEgP5J1NXy+wFS1/BG3gfIV2h4eMECSG/1vLs6B0j7znvGlwikuXffC68H0sVPnPZVAOlHrPFNnUC6aaLA51Ygbf/Y+EQfkC7refC5B0hvO1KYOhFIS2kH1k8A0rd1Ji+eBKSPFcibg2hmhw8mk4H0S57TzCCawfJ1CYjmtS2LB9GnlolPANEBG3jaQXTfDLvZILrgSP90EK0UtGY+iL4/y2IeiG41S1gIol+kX1oAov+eYloEoi00zoHF506wBfPfTdcC0xdlgsD0zUxvCC0eCabPPA0D04ql0WDa8EQUmH5iFwOmmW9BxBWyIHxfXwjdWTFKj9KjNC4aAAgMIy0=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAANwIAAAAAAAA=eF5jYACDBgZUGgbQ+bjEG9BoXOK41MEAunjD1Za/F9d9WdIEE7gyZ1v+4z8XZpaLvdW+79nJoyjyJNt7XZHhz3Ue3/ttdylvy0+0OySsbH/wKKfSNLHbdief1h2YKqRtn92Z+WyGgab99wjtP5F62vZrHJq9Jqlr27efPHBmib62vVRH/PSHQPrY/LQPnbra9v+3ZD+aBFR3fP5hrbXa2vZzvj2c16yjbR/Ydq1rmpa2Pfvasv3iQPG34qs/OQD5Uk4/FIqAtMy9VdvbgDT/yZlby4F0kd72Q+ZAdbprlhv9AfLnrVOzVgaacyLU5tU5oPiOcNZcOaB9i+6ZTjsEFOeVP+PBCbT3vAv/2U1A8WgLRe0LQH6Jf9OTNiD93cVXLBvozqQcVRMjIG0cPIHnNpCObLXS3wSka86GTFAz0LYvfnHUjBtIr9cOCQoD0mc2Suq6AmmXm3ZHioD0g2dhyzKA9E9trVNNQPoKt5JqLZBmeOMd0w2kzYwWx3UAaeHq77v6gbThN0OLPiDNdyP3zkQg/deiVRFEz67suD0JSH/6ea8FRG/TcPCbDKT/MM9SB9HCdz/Xg+ja1eH5IJpRdc8UEK11+3oviN7zSHEuiL6YEzcLRP+ozloAolkuhc8H0VyrViwE0aIdjmA6u0N2EYjeeOE7mN+v5A7mz9ljCaYl8kPB9IdDAWBa2CIKTH/fFAGmmW5Fg+ntaRB6W3QMmF4uDKF7KmJQxGH8UXqUHqUxaQAh5ENQAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAlQAAAAAAAAA=eF5jYKAvKCqL2Hn+wic7GJ/3vMqEdjEpe+3YpFLvVmH7LG+eiwoBsvbK8yY0fbwiY9/4yiDTuETW3jzKceWSKbL2gqlX3ycYy9r7sOzzWJ8ta78q+9q02Sdl7EP3y88255e11/2oKtTdy25/N9hBg2uhjL3k779nvjyfaPdCV+ZWtOpruL2jYBSMglEwCigDABswMWg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAArwAAAAAAAAA=eF5jYEABDQzYAbHi6HyGCNXqX+5lUbO2z8svVCze2aj188BX4bp/drO+7e651TxxLVujyYOrtVL2V3bxXlK9LGKve6VCRDRQ1r7mVc+tgkcy9hqKHacnZ8vafxG9nfCwT9Y+NKZXikFJ1j4zwDS1LA6ors87Z8JWGftHzyPUFX/L2C/xK3DumMtgP8lhanXbOml7mDt+VbqHPVS4b4fuvlEwCkbBKBgF5AEAPVw+qQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAGwAAAAAAAAA=eF4z0zPRM9A1tDTVTbcwtUhLMzEBkgAyrgUDAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAuAQAAAAAAAA=eF7t0ulT00cYB/BikZZDYvLbFZAqvxQPpkYQ5VAut1YxSq3CAMqloICK4lE5C0UJqDVCAIEWClNBLVqRIyKYMiAPEENECUYFLyxyyAxWEEqhHoDd5G/oy776zPfZZ/fZ2dmNumZX4415cHogssTInAtxgmecjocMnDhcbvhXMQ8eL/OpS5QgMH6d4N1fycAT9ajJjKM84ORn9FhUcEHhujVn53YMkvBlnd/I+MQtubAlvoBPhg5EJ5k78eBs3SpP63M82Dwc0Fl6BoPUL+6013qWeM3TkTeFIKitE9hs80AwEMOW9P/Okp3Oio7sBh5MkWGVexdLbjYEVnpc48HTVbV5xndY0n4tfcTwFg92u71/kHWPC6IkxxtGJ3nQvMCkSe8RSwJCW3cWXmfJapGyCvT5RBgY1WB2iSWCwvvqg7UsMcldHhZYzpLQa6byuUqWnHljMTF4imphJc24whJH6Qnd1W9YskZ5Qbe4mCU1mY/aZeks6a6cY3HgCEvmWuWsf6ZgSUGjWdDHUgRiPeXddHrucKLzhVraF7Urp083niXBOmkxenTOpDynNzuLgaq9nalbauj7BhmKh/0ZeMW1LCgIYMlur6EHj3JZ4i9wStWj97FXqox6mhlwlzyLvBPJkph7idNLs1jiuujniYRSBtLfTtczxxl47FK657c22h8imvz2KgMfNgf6/uiHwOly08x6EQNLOuut/X5lQJQzvq47GEFO+xyJQx8D0vw4xbAVgg67JQtLehjQE/gMnlmH4IZcpPz8FQNpZVFjy9UMvCgykjWeR1AjGrdvWYugSDCU7BuA4CuB0RXVGIIZU2UFC6YYMFxp+0mZDIHl/rDGm3EIVtzdahlZjMBmjVur+hIC/ds6qj//RpASsK+6uQGBsw0/d8NLBIFNHgnvJhCo01m5Zw8Cvnxia18TAtOQp9kjbxHMVsnCNj6l+zZNX3X5A4Fyw4LnfjRHp/raCq0wBKWOJvRyMTSq8ZduZhj4zckvha8RHLTNXJ7yBQb7+Rle1iYY7jh0rQyzxyDu8axzt8Eg357/fZM/hosGaTEVjhjyPnXKK9qG4aC4S+FB60mmiaZ21ENd5Z2ZezAEzw/puxiBIb6rWq2g//whiRDDbgzJmzgXHaIw6Bu4ZhyLxbBMUDLw7hCGdod/mu0kGHx22FlVf4chJLW2qCIbQ2rCe862LHrfsVozj58wyJaGKm4nYxg1Gvf2K8dgHh081ZqLAXF27eOfxTD/o1arjjIMI60+KriO4Xm2bNDxPIbj5isOT9ZhWLInLeKyFEOc57vrurfo/MH+SN0bGFzCf2mIoDlPXFNh04Lh6Adv5yEVBr/4MdPqNgwPuJn3z3Vi6B3YkZ79EMORIImeZTeGu5VC9/4nGE56yWJ9BzAYvE57ntRHXVmmXETzloJxoSt16uvFpxDV2dZg0Jwamr82l0NVLHos5FI9czfvNabOthC3ahzJC19nSLXZHxU9i1p/6WSFPrU73NvZgCoVfHZMk3XaXI5oHDs0U6JxoXXsaY1eLf4nNCo5i3/QmHeuUKzVZES7Pk/IpmkdqErR6LHDXVuvmNWrrb+MfqHtL3Vp0yqpmvrf/9B/AbFiF5Q=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAWgIAAAAAAAA=eF6zYACDhldQuhtCM1RD+blQ/moo/Q9VPUMslM8KpfUZIYzZELohACquB+V/h/IPQdWlQyiGz1BxLyj/C1T9MWFRGxCjHSrO8u7gctNQvmkMpu9asmrrOBgEq1Iu5OeuVdnNUMP99ae8aKSfodyL7XZT1J91hLao7tYLlKxnSj1id9Guz4+b+ZDdpxWqOjF9R+wE5yfM+9Z2xM42sr1z4YQjdk6a5XOLgfS8shlt2v1H7Hz8z599B6SPSW83XN17xK5U43RnBFDfrqvVhtt7jtjNvP5iqRpQfLte55UwIL/h46snHUB6vhJ3eyGI3vTlSAGQzvHS3PkESHek7PPcD6TfMp9/2Q3Udz78/5wAIL264pyAG9Dc1kcydkxAerXIm4ifQDpH1zRlO5BOdtrxagrQHXr84ZOigfTdf/tOCQDdOV/mku1jIL/oyh2jHCCfQ+LRYS8gPdfnp8RqIP3k6xbHKUD6oG3OistAeqZPLe9RIF1zfpfbGyBdn/2j9jGQbu0KT/sFpGd8Ccj4CqSDfz8UY5p4xG6Lw8TU/0C+fcYzYTYg/7XOio0sQFrxtSwfB5CWN+dJYAfSLvUH/oH4b59vXwOi1WdvyeEE6VfucAfRRjsl54Jo5fP3ekD0renLN4LoG90XVoHo2aLiu0D09Te+20F00eKCvSB6bkX4HhAdG7lrH4h+I+oPpp2CTfeD6EdNvGD66vFEMG2eFwymVwcVgulSxxwwnTKrDEzbfywB09YpFWA6+2E5mL7xB8Lv3AChu2UrwfR+dghdpDFKj9KjNC4aAK1tnEo=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAWAIAAAAAAAA=eF6zYACDhldQuhtCM1RD+blQ/moo/Q9VPUMslM8KpfUZIYzZELohACquB+V/h/IPQdWlQyiGz1BxLyj/C1T9Oz3tbyc22ze1Q8W73GO+CG3OnDmBJbzpiYIyz4n5GbZ7nXgMd9xh4bC8GawcJ79mu/WdPXaLfOMvJdaW2E0wWqQbVXXEzneR5eOjvIftvvGp3Y3qP2IXu4H1t2XXEbue/nPioROO2L0pzhRuBtLcQcH1e/uO2K0SlnzeClS3rGnp3ZDeI3bbZGxEvgNp33ussk09R+xaFFxuPAbSV8xmxTkC6dP6HyamAeknAltVyoD0nzd9p7KA9KwXOvx/gHTZ3wbG80A663eR9jqgOXFdE1LygLSm2ySdHKB9G2Lfb1ED0nF/Ii7JAu1d5Xs6/Q6Qf2G7sNMWIP+XL9PVGiCd+S6+QBPoTiOWtsx/QP6hr1MU6oB8A6ZZ5vFAeudnXfvtQPrOS73+RUA6PP9L3G0gvTb/Xdo5IN17hfnxByD97ymDzUsgrdC7nfEvkA78s2HPDyB9RSW2lnniEbuCZeZWjED6f0z7aTYgvd/z5zJWIO2gI5fBAaRfR+29xQ6kH7uKaHICaTnp9ucgcTWBW/Ug/hrpeUkgWt2vaCmIzn7/cAaIdp2itRVEKwt+WQ+ixZe17AbRUm25O0H0qSqGfSBaY6fBXhB9R+0jmB+jshhMG/d67gfRU1h1wfQ/lkwwPfFRHJi+fLUYTPP4FoDpjJJyMC3iVwamOzdUgOmQSAi9VKgSTCvfgfBLNCpRxGH8UXqUHqUxaQAEH5kTAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAzAAAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNIJkoHTpx9aNG3RSYjAypJ+DYYLM+xStPS2f9JnWHWub25ti/FBOwb5UzZ/9u60+7zrhM+D4MN2sSEOjcuZDtupOSoprcw+bFf9MtmAt/Gw3Q2//OmvHQ7bzd0ybw132mE7mzdRWnq/D9mFBL04LqwJFJfNMzfhX293OWtVY96DQ3arJ4cXPp1jbpf6feoJ0WcT7RhGwSgYBaNgFFAFAAAi7Up1AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF5TY2QAg0cQuuEChMuwHUpvhopHQtXtgdLBEKphC5Q/BaouGcqXgNIJBZN91hUxzmLYGHvs3PGExkaWv+f/SS2xOyC2s/y9hPnaVTvyfy8sP2hXMDF+oW3Zbjs/L/noxpDDdkv7V57p5T5sx23e3PEz9bCd4otFJQ61h+0ab6XZlJketus4ue5qcOxhO3dOiZff3h6y+8G7VvSq9GG7JfMjrLVeLrXb8VUsud3hkB0DFIjETs/1b2uB80fBKBgFo2AUUAYAjnhKiQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAAQIAAAAAAAA=eF6LaE/T8H97w3bVrJqtguIK9rOeGdeZuW2ze2KQyPJc/YLdH9+j++dPemiXVqvXFsz10S5q5STl9B3/7NaJ1mhs7+K0v1G5aaFTj7C94p2L9ppHlew/h1S+ThJTtJ9ybvVF/RYF+5n5+87MPSdvz7WO/866Cjl7K+vpr5XiZO1Dc007ktVl7S88uvYlQVXOviymTNuuVs5+b79I6vu7cvZt1q7ZgRby9qkKeiF27fL2stZcBq9PyNs//c55+vcfeXvbA4cSPgoq2Et0LHZOlFewX1eVE7VUXcFe4WTsqgPaCvZGcydvOKSjYC90QnzxaiD/yiWRa+GaCvZl9fcMS9QU7FkWvJ1craxgn+rt4LxbQcHeTVtkQ7Scgv2yGqb1WTIK9v9c7LifSinYd1xrsdsnqWDvVbjyy1MJBfsDOqY93kB61+TtLA+A4SVRn3F1GpDW1fEWTQPSTpI9zm5A+sdUj6eGQFrndIKkKpBuOSlrIgukLycvypIA0o4yOhNEgbTS3XePhYG0i97zN0JAWk1ocQKIbtppJgSiLezZnoPihenEtPMgOkKG7zCIjgst2gOiNeYw7QTRc2Ptt4PorWzR20B06Y8X4Ph03LkBTMeETgXT7cYdYPrbv0YwfU60HkybbqkF05cEIfTai5D04L4BQrPPgNCwdDLSaAARryo4AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAIAAAAAAAA=eF7z/P7z5v2a27arZtVsFRRXsP9wa3HChnMb7Q5uC9u8cvlJu7iYrMWdvbftPFac/Ohl9spuDvsJq9PK3+2uZLYHvmJitv/1WH3PAxVe+/x1rjdFn0va+xW230hNlrbvi22YHs0ob5/GW/7Q7rOivcMq7QvS3ar2v9IP+bdJadkn8u5dtfiOjn1F82Lm6Ula9sq+L3Ru62jatyopbU//qG4f9mfmUcHjavZ2N21mp29Vta9x4DIJ269iP+PjPIkHT5Xt57zKrXmnoWy/MUKHo71dyd5l2vc9P/4r2r86c/0O3wSgfUvP/3U0VbTPuHTrwaM3CvYSc7Zo221RsNfZKR+6s0PBfm2nnsLLdAX7F55p+xb6K9hfSTg1icFOwd7B+sXZfEMFe7YisXlLNBTsT4lvMpyppGD/a50XX4ucgv2qKmHTc9IK9jmnvdw4pRTs38ROLXkmoWDfJpO4Ww9Id8XlNOwBhmNTdOHUMiDNumRmoQ+QZvLYkmsMpPdsWn5GBUgnsfXFyQBpsTV3pogD6Ve1c5+JAOk3S49mCwNpntvNc4WA9Dbe/Xogeqk63xdQ/DQZxV0F0Sc+tR8F0VF1ZXtBdEpP+k4QvSgqeTuIbpRP2waiA0Jfg+NVqHMDmDZbNwVM/1reDqa9FjaCaYZndWDaamEtmJ7DBaHXXoSki5rtELpgGYQWXgmh7y2E0LD0M1xpAA08O4M=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA7gIAAAAAAAA=eF7btezjJd+kBPspJj0NM6cX2q7Kf8cnGptgf2/yse7e4AT7ayeX/NzmnGBfe4DznaR2gr3flpTka2wJ9orMfT4dy+PtXfTqJX1k4+0XvGXyu5MRZ2+SeF9HrDXWPv8gF3tVXow957IPX3cqR9vLCdxU11oWac/Vfvrct5/h9h71izNF1cLsl95nEnxnHGJ/Iegy0xG9IPsfT00c3ykF2Be9WLf+raWP/b9VBVnlgR72isIVi4IXutjfE7xi6mvlaM+uJXjyfICN/dbvH156PDWz35+ysyjfzMhelS89tLJBx37T4enb975XtV/s7HfQYraCfaXz74SnuyTsFVaHHTssI2R/Xvdckpgkl317HAOHej2T/bR9Vq6tp3/aKZWY3Vuw6aOd30qWwNNPn9sZx3V8SD103y6oTsXt+dErdoYxsiorDpyy+/aiAkgcsNslruNWqbfVLmPJ9C19vKvsvjBMOpAxcb7dAxOWBwI3JtnxdYZ/nKXdZvctlG/DrK2Vdp0by29xpOTave9YItI6IcHO0PbZifuZQXbv2K65bzJwsVvDH1wZft3ULugg16kNAep2k6abvGaeKGH3Lqr+4/s+Tjuefdqq/S6/bFPEeE0YNr6y1cg1Mrx965btgT35a5dfOWVbff6jZPvRXbZHnjuer/21yjYiTbRdj3OOLWvt06JVov22z74e6fDQb7Zdc0xa/qtWte2MFP4ZD76U2j6aLlLk2V9s2/R8/S3riiJbHqf6vzt+Fdo6TFNRenSo0Dbnr3K836pC2wlGV2xmzS+03ZLoavt3VqGt37V12awzC21Ft3xYajCj0LZg1sW114Hp6MD+59c2AelX7j67FwPpb/66M+YC6VN5j+RnA+nDvgeUZwHpOYpyB0Dp7swKiZng9Ff2qRNEJzyVbQHRJ8yfNILooE08YPrb+d3gdPpl01wwbTB1EpgWaeoD08LsvWC6pw6SnsV8IfQ9awhdZQ6hraDpfQqRNADRzXb3AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQIAAAAAAAA=eF7TelVf+nl5lt3cxfIPF796YBto92Sq+jdzO6vLPds5/2jZvSvTPhDDKG234FrENsUtvHY675a9lz/CaPfk955zs22+23per070VvtgW1Tw93Wl9RPbCnHPl9e5ntluORliuz3mme0kjTf9fJuf2SokstbyCj63bd5uyDXV/bnt0Y9HHz///cw2QnN5zi6xZ7avbh2pjmh7ats+MVHlw4cntjI9ojIpCU9sL36wu3XpxmNbvyib3qqYx7abXhQ6bnvzyLaxZL6xc9cjW3H7zzVepo9s1+75aZ/39qHt5etH/B9ufGh7peRkTUvjQ9uTm4s1WaMf2i6TXsr/y+ah7eLT4l9/qz60XWebdG2HyEPbudHGHxk4HtrWcUx/d/bfA9sL5sZCrj8e2NZd01299fMD24zUZ4JTPzywnVL3Mbzy3QPbe87l/cJvH9jmXb3sofUGSLNLLZvy+oHtJNdjhmZAOnKfStNvYDhaMurMuQ6ko2pS/hwE0rOOvFbfCqT7DPlXrAXS+1RtwlYC6Z6LJY+WAWm/+XLNS4H0GX67g0uA9KNFu8JBtBu3mDyIvrNClBFEM+imfwTFU7J1wEsQHdVr+BREf5CWfwyiH5wQfwSiH9VMA8enyKVwMD3vjSWYnrBTG0w3KaiC6SweJTBdtkgBTN9ig9BF5yDp4dhsCF2yGkJ/KIDQRn0Qes7ikUEDAIurymU=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA5wIAAAAAAAA=eF77vPzjJd+kAPspJj0NM6cX2s7qXfrBKC7APuSw+7yHYQH2J66fWe/nHWDPpN6w7JpVgH0Lv91lDdUA+21mWr1MHAH2C86bJbXt8beXYmV+7HzX3/5B6lUdpzg/+9Omyzqi1vvYv4h2+753gZf9vVmZ/JVCHvZLPNNnSMq72t85JfrhxmQn+/1Vl/K+xDvaV7AG/cpMs7dPK0lvWMJiY6+xnUWjcomFfYWeudHkCFN7s7ZrIY+NjezVcuIsLXr17Ou0nNddstS09zgboKZcq2I/86GCoEycgr3Dt4xPd7ZL2lscVZbff0/Yfr3s+v4phnz2YRxr+Xz62exnPJtgu34yg/25yCjOVV+/2+lcLzb/zP7RbhWHubb5xed2GUzejP5JD+yM4n9K3NS9Zhe22Dt7ZfdZu/NdLCqJcYft2iNLHEP+77A7d+2plO3h9XZ1IZONbt9bbDd3ctlul5oZdnoTmZZW7ui1m2k0cVHI0Ua7PXsavj38UGLXrhpzXygow+7QN4e419ej7aK4PgrsyPW3S3ywd+urWke7U0yPbyWbGNsZWPxP8TurYveral21p42YnU0L5422Mna7Bu/fYowlP2zXpQm8UTN8aZui41xXs/Gm7azMPGUXllO2l+5Nk4313WXLp1xnsu/aKluDHVXMMcZzbG/t5JCWau23/frnl3RDS7OtHo/MVr4Z1bZSH6MzKkzKbKce5nPQ21RsW/Pnp1N/V5HtovXX37KyFNm6LJV4WHG80JZnIYN2y5pC2y0XnrIsXVBoe6TWennF7EJbo5yeNtuZhbaB9q/3ec4otC1ne77nETD98Lw/vmQ7kPZuzTm1FEj/O2BePg9I36qVqp0NpEsuOHjNAtJrHl47D0pv6/8XzgfRu15X94Do3yvlWkH01DMeTSB620rjRhA988QpcPrck74YTC/cPQVMewT0g+n5ob1g2m4ONB1HQOg1jhB6mwWENjSF0LD0TiwNAOxFb1U=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAVwEAAAAAAAA=eF4t0k8oA2AYx3Et4yBpDrIT+XPZgbWDg5ayRC3JQin/TkorkQNrrbVmB0Ii87/YMMNsQ5MyE0PhNErbYTVxUbNdlnKi9n1Pn56353mf31uvI5mOG6sfGzKB76yaD+r4Pfo8aHPj+gku7WNQnCt8WHWIDxvYtoaxZSyZR7+Yu9jDKTt6j9DqQrMDVbsYdeKKqEfFnhdxf8iKshHRP4DOXvHOITwdxh8tNivRWCPyqfGzXuypwIAEU7+prDlSak+lyFuGt4V4rsKuRlyQo/uL+YME+iMYfUbTK/rCqLrG4jO0eFF+g+Egqv1YcImLcYw9omsbbbNoHkO9BpV1KOvA2k7MaEWeVgzpRB4Fzv3xf1ok1JEisScXS6XYlKZP/4Tj4t8l3KgQ7u7g4CZ2r2LePuYfY3IP311ouMOeK+yzo2kG201YbsG3aVQbMDqB/ZOo28J/aQLFrw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N01tME2YUB3DiEjKE7FKhDKZWucigcldXQcu/AoLiZFRYAVvR4XR2QztdQAlqGAIiRsaUiBFEO53gDHuQMpEs4/LAstnKA9GtJkbHpSaLy6RR/8UCO9/LLyc5Od8558vn4yPHTCQEJvW8GUIc1ajuJOwjXlu0X+/6nKjsMsV9t5eYeVL1dGiPxKFtVvdnhEffb4wQjzQ6lQW7CQ57RmtLicPe9xp7PyVerdJkunYRFWWG+WDx5bXyvuydEj9qOXSkRPKVttgbOyQ/d8zlNEm9evcVf7FyQGFcZ5T7mKgs205UJeaNthcT3n2WU44i6c/alDFfSMw6u+fixWOLHLd3Goj5nGcHmz8hqk8ExA4VEG/8onZN5xN1LzZfCRf94szb87cRp/c0BNXqibc6Ou/Z8ojmByMNUx8TQe+40oPFC9m+c1m5xNLqyNuHtxLWvoyDXR8RUdOlK51biJsxNVMLxeRS6+XUHKLv4mDxl5uJtLHHge2biOEAn3v2bGJTpqphLotwHNWmx4v6XtNsyUbi/r9VP3+bSRij2r4azCDGS/rV0+mEudU5GSZOj3o6tm2QvfiFFJ/Qydw6TaANxPFKg2MyjVhwq/ykUqz7p2VDllbmirB5K9bLXMax3s51xNstbstfqcRZu0K9UFT6Jk2mpBCt2ryOL9YSiyssRW0a4vJPTYvsHxKRT7vts2uIH5c56uPE5KJnupLVxJ3mAG/TKkL3u7p3IJn4bUGO5XkSkZtqjgkT7x9qmNAnEqabnZdqEoipiZHCnnjiwBKXYjJO3rfA1x4kVp+JrN8YS/iPZOgqVhLn5ktfX1cTKk2N7c8Y4obFesBPXNM1GJ0STQw9eTxu/oDYGupz6WIU4dSrCu+uIPY2ahWzkYR72HQ3VjzurarbESF1V7ehKZw4X9Y/82sYEf6Ds+e/5UT3I8/+5WJKcEi0fhkxkqsZ/0ZF5J80tN9aSvw9UG6YWCL9elreDRK9ibY/MhcTp8xjteXvE8Hfu9OuhxJXHypmHsi/+B9SmpVCAQAAAAAAAAAAgAAAAAAAACADAAAAAAAACwEAAAAAAAA=eF5jYKAPuPmydC3rbH57nnX312gna9p/2Ld2uqqGtr3/3T2Nr/W17SPrvlfP0dO2F1JofDhRR9v+5f6HyWra2vavzh7JrNPSts8KUpdtANJLw35oMgDF59hU7TsHpHO3JprtB6rn9tQtX6urba+h/+ByA9CcSVump+gAzQ1xkrRfC6RjRCLS2Q207csY0iucgDTjl8S7aUB6/3kB7hogven09l3tQPqWOde9XiD9ojzx0wQgfcEvMncSSN+yWJnJQJptt0EWiO7VntQNouv10meC6IayT/NAtJm/5EIQPavyBZh2EzFZBKJDD/uB6Uv/wsH0SrloMF3CEwOmt0VD6M6KUXow0QDW5BB6AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAVgAAAAAAAAA=eF5jYCAPFJVF7Dx/4ZGdzLTDTS/PitkfKzmn2Skkax+jZMmZ0yJrv26Lp0yHv6x9g+jvGZlvZOytlq288dxYxP6gbEvD7C237QiZPwpGwWAAAFtSHNk=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAATwEAAAAAAAA=eF4tzk0oA3AYx3EHWWs5KCvJaW0XJWlOK1qU1MqiuCi1klaUhiiNKLJhkyGvw+RtZTOvS63UlrJwkFg7LLSDmm2EwxyU2vd/+vR7np4XV/IjNqgKV8ejGDnCiT0ccePpBfYtYG4A9Vv4K+Zmx1Hqwf0RHHNi7AQdi2iew+cQqqziD3Fv2o4KP8oc+LSNdxb0mbHHgFVtKGnF134cbUdjBSrL8b4MbTrUlOJOMV4l0lnlUnIiB7vr0J6h/6MgD9SgWoupL/qGF/wUmoKofUT/Pe6e4eU1djhx6RKXxVzyHCfdOHWLK2ks2kH1Gj6aUWlEXwl69djbgu+N+Fcr/m7G4gaU5GHBbyrrkEzsLcT4D/UGOVkTJq/eYNMGdh3jmxMNbjTOYL0LQweo86BtHdWHGIhiZhODVqy0iTud+DCPkWF0mTBfZK8Fv8/wHxrTw/4=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9wEAAAAAAAA=eF5jYBheQP+JyYTfu+XtYfzgyluyRzm17Xuc7xlXz9Gwb5XwFbyqq22vfUhzMauqtn2cWZ+XloG2fZboHmZNIM2sKZMiqqdtv/F/8n9FfW375qwFcsI62vYP13o4/ALSpXlxKue1tO0tWWKTk7W17Xd8bgv3B/JvzTygOglIZxftZC0G0vN544OLgHQPW0U0D1Bd/ruDd24B+ZOvKt5+BeSvZnhvOAdIl809ufgR0NzQKXLNHUD61U2GtItA94ns+T2rEkjvUTXavwDonrZDv11DgLRA425ON6C7DjGd0OQE0v/ZOPQOAGmhU9OTJwPptfG/4kSA/jgVpLzhK5D/4rDUES8g/+mPE2LmQPpG88ab2UB6x5Ojv+KB9JW9IffrgPThg7ekKoB0Tdcsh04g/dfZeXorkPb0+rm0D0hXTj95qAdI6x5ID5kIpOV9nNImAOkcnsLZk4C0zpEHWiD6ySYTw8lAmnMq7z8Qn1XQtRjEjxG9HwOi3zUm94Po3+vetILojIlfZoHo3czi00G06JG++SD61gL2eSA69XrIQhB9UGL/AhDdueAfmK/09BiY5thqvQhEf9qhDqYf5geCaedmLzA9500EmN47NwxM70iLBtNf50SB6RXCMWA65wVEfHs0hO/rC6E7K0bpUXqUxkUDAJffIk0=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA+QEAAAAAAAA=eF5jYBhe4NbSS3lbDinZ50YcPatz/rVdx2WTLSJC2vb/PD5sDu3TtHd4aVkWqKdtv1Pe6G23ura9xBbpN9P1te11XroY3wLSE69MW1+jq22vFG/d2wpUF+TGJbJAW9t+/1Hun2U62vZpV0XXdGhp2/+0PLiWCyj+7WbtYSMgf/XEBV0pQDrq5EmBSiBdF73cNwtIy1154a0NVCe+WW/leyB/mXtbuATQnPXfXmw6DBQ/0HzbUxRon8EDzfc7gOKyFglvGIH2nhVVObcKKC5bLlp3Csh/dPtdRwOQ7l0m+yoN6E7R8/HxukBaddpspRtAeuMCmY3rgLTD8qWLVAy07SW3fbjIAaRlZ32UCQXSBzRmzXcG0juPd/AUAWmekJRN6UDalG1+UhOQtj3nM70GSAd/OazSDaTbPcIFOoC01eKeef1AuvUrF38fkN76qPncRCCdPOMuD4hever/lUlA+kfHxyoQzTDRx3sykHZ/yqoMov2DV9eB6E5e/1wQXcFrNAVEBwb97AHR1Vyv5oDoGbOZZoHo8vaQBSBaRsd4PohWDl2wEET/8DQG0zN6pBaB6Iwpn8B8t12uYH7ScnMwnfo2BExnqwSAaSfpKDC9oz0CTM88HQ2mn3pC6GqDGDAtoAShlbIg9LZoCN1TMUqP0qM0LhoAZtEj5A==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAjwAAAAAAAAA=eF5jYKAvuGj3dPGXU1/sYHy7SLuIo2ck7eUcl9U/WSFsf+2B9pLNerL2Xbfe3N0dIWOf33Dc4W+lrH2iy7n6XSWy9mkC+nJOVrL2lzZpqvyKkLXn/KES2XVZxt7Do/Jt3V8Z+4zov5N2NLPbZ9urSvybJmMPs6eqgsFblu8J3N5RMApGwSgYBZQBAEOKMPA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAkAAAAAAAAAA=eF5jYKApaEAXuPrv7ztdbQZ7GF+YKchka6iUfcK1yn2cLKL2jLMlponbytoLaJxZc79dxp7x3FnPymJZ+xbHVJZfQDp7UsE5bT1Ze7VFcYqT/WTt3xmXTTU8IGO/tKVGhfetjH3vSu28JfGM9sdZhKW8NkvB7XENnuN+0PCGHbp7RsEoGAWjYBSQBwCoOioeAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxgQAAAAAAAA=eF7N0llQk1cUB3BEiyKDmnz3RhAdL7hVQSq41FILFwSLWkQQCgQriEEUoSi4lIEUDEsdiJqyqAiIWGCipSjKIiByNGhVEEttlDVSWTVOcY1Ftt7gUx+d6UOffvM/586953zzjftGve5WFx/iMytUWUY8eNvkFfqYIqhyz73en8cDlbVxbHkzgha9LacOW2IwSj5RrblnSn8hW9URbQic9XUsViMz6pAlGXxxH0FsG3fc09KUhv4xev+RzJQa5q6UR7lgkM1LcLYLMqUd1M7tuC2h9pMkVWHjTGlQz4ujvId8MCwSpJEwQjOsIXlDH6GSMDdN5m4OQrmFuxsLCFVO/WHdqnJCN65OHZB0E9oXqqHlJwl9+c5oO+8Gocd9i9McOwmNmNBfeSKfUBuPJlvIJjTZPbZ5UEkoiolQrmXnDfSGL81uJ1SnWbXcKnIapNZn9H+1kYPUg+0TdD7jg52/+fhq9k5rjPzC4DIEiuyAzsJqQlWKro9K2Hw1A9mN6gdsPkmVLHw9oYvp6wnbQwiNbDQw2nCB0G33RCua5nBQ5RUmSa3hgZ04oORpMw8Cn/H3KOII3d/7UqySE6pnEyts6OGBEzWo4DsTqjhy9uxwLKE8l6vqSDGhxcmGU9yLCXV9M7iulc/BjsxoS3qM7VlU0uhXy0H+RAuu1pGDMgv1rAU2HAQssVo53gFBU7Fwh5eMDwOpZ2+WPeTgTcZ5DfVGoDS//dvWUQ7CDa99YdbBwZwVuv3PyzhAPtziVxyCEZzk2aziIOT63IvyYwgM8h3L9rAcF/29uGkNgjb+leKBHg5SPFoyeT8heNxS41+wGMGgp0b5+CaCOK9WwfIsBHfN91+3v4qgL9uxcFoUgnKxMPQc+09+nPFIUfQ765dOLujuQrBlpod33SiCZ+Yz5/lNxHDninxhOh9DZ/OdJPuXCCyk/uePPkMQkNG5OdgYg3rocpdEg8C2bm3pYQGGM7YpKSenY7jiGXw4dwaGmIYdecUsfxtS1LbEAkNGq+JgiiuGDvecT+ZaYzipdDA5YYXBTeo4YvY1BlVENuo2xSD8OKj9tQMGE92jd/mBGN726S5wEmEA79rTCT4Y8uzDnwiYYaFPHHq2Ydhe93mtMAqD3q3TmoxdGPIvN87dewDDbOOY+jN7MDyxubvTi/UrTaZ3LIvD4BcfWDgsw1Cvq05wPoKhLNFbbpXL5oqM8t0nxSCqg4r4UgzVxiaXCnMwZJG02L/yMIzWbtqUeA6De9C78p6LGM4Fl0rXFGEYv1a/3KwGw5ohm94glr8ru2+luIFheNMi3S+vYnAR6TuJb7M9D0W0uP7KvkuAv+ZFA4bumJRJqB7D3nqfU3kP2J5/bps/pMRwwCndOKcdQ0jSsfTeFgzjpjR86tuJYZGosk/cgeGCs1Rk3cPuT1i13IHVdzWk55qwPJLpYTufuW+SfBaPWfmz8DlmCgtu7ZzCXPTqHm8q82n6NF8DZrSXINiQKfARqPSZOS67/Cdrz62SpmlzYJf8tNbk/aIjY7koSKrVpbciUavb1haZVv+6wSStlktd3/f9Ysbs/ZsfrxWH5ydrnen+vl5yyHEsT11vMeara5v/pWzpmaQPqf/n3lzyYfX/mf8Aq6URJA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9QEAAAAAAAA=eF5jYBheIKTmxBoexh12EJ6D9ROWg7bri4/YfZy0YsGeuYfsunq/BH3rO2Jn7X7Jz6fjiN2XOTqCuyYcsbu+/q7kTiAt/OLZL7X+I3ai0QvUPwHpGysu/l7YC5S/+vp8AFBfxQTut2t6jtgVPPbhlwWKG8956OgD5F9aKXSqDki37/xqlw6keT4I7UgD0lKfeq1uA2mR0MxTW4H005Dvbc1AfZdXq7J7gMx1mfLZDmiu5Oro47+AfI75U3o+A/l7P2SpbATSfCvDkicA3aH3U6Q7DEjn1Ohk8QLd+flMbtx9IL8qa/bZTCDf82v0G3cgfS48qGYlkGbseOo2CUhLnQpZeAlI37IQ238YSDuWHVz+Gkgr2kmvfQSkW0q0uH8B6YV/t735AqSVzys9ZZx4xG7PSQWF/0A+WyTTL1YgP7WmrYcFSP+psGLkANLffov7sgPpRRNn/gDxd10uWQyir116mMkJpC8vMHAG0Urpt2aDaAujl10g+mGI/EYQvXXTt5Ug+rHY/Z0gOmzap20guswjai+IPp1jtAdEJ+7fuA9EP61yANMzdIz2g+hVLBxgWjIhAUw7OwWC6dvnC8A01+RsML2+sgxMH9hVAqZDIivA9LYD5WBa+Q6En78bQi8VqgTT+9khdJHGKD1Kj9K4aACTh31ZAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9QEAAAAAAAA=eF5jYBhegLPPhHtu4h67D5kvljNytto5uDyb8KPyiF3hZie3tSGH7XzW7sgK6T9ipxYwS8u064gdZ5p5lPeEI3apdhY1tUDateFfxea+I3ZyJVEXq4HqAhvVvnv1HrEzbFRofgukd9dbzi/vOWKn6DLh600gvXPOj8VmQLrH4aVXDJDe+lv7YjaQ9vg9f1kCkE5yXrLwE5DedOJm61Eg3bDw4bulQHOKjq1/kQqkeV5YOKcC7XtheiVdHkgzZ3x3kADaK/ymPvoakG/m/ffbeiC/jvsFawWQbspM9VADutN0HduhX0C+/oGwN9VAvq+41+QYIJ2WffDkVpB836L9C4D0nMz3JbeAdIWLs9VZIM2izRfxAUjPVahufgGkk6tSN/8B0kumZgT+ANJlajHBzBOP2Hkn/fvHAKQDlnNsYwPSH6beaGcF0izPpsdyAOmLx2VPswPpB1+UVDiB9K0DLA9A4u/a59WC+NXN6vEgOuxM5RIQvVQ5YjqIdlc4tAVEH93rvR5Ex2dE7QbR64Q0doLo/Pvv94LoZQyiYLrj5qt9IDonbgaYLvJ23w+iT/JrgumKL+lg2so/FkzvKC4G0ypX88H0nLhyMJ2gWwamFy2tANNtzhD640cIzfkcQvfKVoLppUIQukRjlB6lR2lcNABVMHhcAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAlgAAAAAAAAA=eF5jYKANWMgIphrQxWc5SKwrzZ5tB+NP4v1Q+ojpoN1S0XXz3r7ZaZdvxix3zfawXfL/7q0HNxyyu/9lll5V/mG7ackbDJlyDtslerdeLHE9bNewRPHL1sjDdiuvqO3exXjYLlg9qTVF9rDdjJYVQQ5M6+2UknhnnLt5CG7PtWcBr1KKuuD8UTAKRsEoGAWUAQD5kDeeAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAlgAAAAAAAAA=eF5jYKANWMgIphrQxX0OTe9KDVpqB+Pff824SSf2oN294nc527btttt7lUsl2P2wnbjkwVXXzh+yY2TSTdfLPmw3cd5B92Yg/UGiYFKN7WG7F55uYreCDttdW6cp/fPLIbvgwyEneoQO24ksf7pC+eUyuz1HVsk8mHUQbs/ZqXv/7n9eD+ePglEwCkbBKKAMAAAH9DptAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHwIAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYG/yueEap+c2u0v9FVdW616w41ATNV5R89Dubmv6ibQbH+x09Pusfgv/s+t+aqLz6henfeqzWYcjlovY//0f/u/3dCV708mWbmoXFeynLwtaeGiKgv39R/rF+Qfk7T0b9zkfXyBnf26qwyYRV1n7p2kTnNR1Ze3Tbl40/aksZ/9/g29JTrmcfcXi9EUdj+Xs5xdNCAixkbfnZuE4u6xb3p5p2vLTimfl7bfLxOf1MyjYO3pv/fVIWMG+OaN4j6qigj2nk1ShkaaC/cqPxXxCukDx3I6FN4C0faw+W5eOgv36L1xvWLQU7BsOLM39rqZgz/FJevEdZQV7pt4ZcYxA/XJ35Ix65RTs716qetojo2B/5I6M8R8pBfvchRdnnZVUsF8nw/r5vYSC/fX8FW8DgXTr4SMsT4DhJSUt7zMTSNfVS05OB9KqKy+quQPpO5Njs4yAdLKqYJoqkJZgnB8vC6Qf+n1okgDST5x65ooC6du79V8LA+nGFcc/CAHptYrrkkA0X5ObMIhmWzzxOSheDprdPQ+iK6MMD4NonzXNe0D0C2HunSB6YZnzdhBd8TdmG4ie+f4lOD61tTeCacdJU8H0zLAOMP2VpwlMt4jVg+nALbVgWkESQnPcgKQH2X0Qet1yCL1wJoT+CE0vM6D0eii9EkqvIpNG1w/jryZTPzq9Gk0dLj66fQAMaTGmAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAPQIAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYP/R0yXm9YWNdgzTc7N3rTtpd/z+r5N6lbftGBSNtKXZXtm1Wjc/Tr38ze5Vr8yzTTbM9gwCfH1sznz2O5x2MOXulrQ3El8bJKwsbR+ZPvmfqIy8vbpBtl4Mo5L9lKZoe10JVfs3u3Y6MNRo2efMDdsjfUPHXm3favvb7lr2mReOdL201rR/1b818+0LdftZgrtOLTqsZt8cYrT+/wZV+4SfwcxTdqvY27xzUwt4pGy/k+/XgwOqyvZXg2Ja9rco2bOVCu+e+1fRfuMdvasyfYr2+1dsl9porGivwnz17fLXCvavjaQbfDYr2N/STxBi6VCwv+f1Qj0lXcE+6oWxh5O/gv3MrfLle20V7KdkrJrqaKhgP2nG7sxWDQX7J59sO1qUFOwdNkxYWCanYO916t2So9IK9mx7379gllKwzzmhpv5YQsF+FvvR3TpAekLJV//dwHBMzzZ4XAqko/qfcPkAaYa5hcbGQFrjs/QaFSA97csSHxkgXeWj1i0OpP/X5DwUAdKfAzgzhYG0+F3xOUJA+lMjix6IPnZg/WdQ/HyX0L8Kon8cLDgKomfZZO8F0Z7CSTtBtPjlhO0gOu95yjYQLXT8FThe85w2gOkfU6aAaa7Z7WA6ekojmK68Wgemby2qBdN8PBC66AIkXWhthdDnlkNo09UQ+sJCCH1gBoTWmw2h26DpaTOUXg6lV0PpVWg0THwlmvhKAvrQaXT9hOzBxUe3DwBxpDTeAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA8QIAAAAAAAA=eF5d0v0z02EAAPASwkVdjkNmXs77a0Roz/PkIro2MSEJ0+WlQn0rJy95uZryujDHNlLXGe3i5O28rZtpJ5M5coYc5TUc4qI4qm381E+ff+Cz82ZtkHSdguinctMZJRhoCl5W0wihoIk0QU6eHwUZVVG3ms9RkLVrwbK2JQWV+6+FDytSUNRI16VnVWFoaFBgScSFoXbnCs/x6FBUJDxqqEkNQT0w6XBS3DXUl7W43moUjJTEw6YW7CDUfZEt3NwKROv0mUgNkwDEFn1TXXG4jFKWQv522ZARvy0Srhj6oPMNZpxlFyIiLgZEJPh6oTL6QLnfK3dEcGk8SXJ1Q2Ytc539PgQkIo9Oe806oUoWO/aOkz2aPaFPSky3QjT97TruqjGao+M7nFn6qHhBIWi2TQtxRVd4XbrHUazzRpCmtgp6u1Vy0DRNDjFS8ARq7xbU4Y2LX9avQZKzn1fv7DykRY3ORPAnYe5gHJwXDEEPVbxONU8I/fG6H+AmD9YaOcFEmyaYL+jj5KtyYLArtzG6oALSe3ZGjo0UQos/+gtMy0xobPaCzWxKhEExn/qVbsRCld4mNepzCpzCR/Mnb5Kh44r4bL2dO6RHLmCBYkfokOTNr/MxheHf3aYPFWhBnEH8wmq+MtzINsfR3LdBhba91YF3i0Cnk2X+ZWwM0GtOs6uGhECUZKP+VNAGbJvlex5tc8BS660MG+UykEgeiuVo0ICrb3aml+1jwBVZ4zYskkG1JSj5+jMeULkd2AXafZA8nDN25uE9UN19d7dlGwO/JvQMp/gYeDBmEObNwUBq2GcCswIDyeoeYJeJAWF77W0FBgb0OD8q7UoxsM4aqBFLHmW/nx+ul1jqSWx/LdGabF1aLnE+ZgrPkqgXzDNiSgw10ONJ311lazGkgoT1LKnKc7gnUvFOMxlSC+uPyDQeaJc9lWsol2lSXCjzd0a+zI+KeTJpqXufQ0h7yhP2XHXcM2f/e+m+RfsW70v/z39K/34JAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAPQIAAAAAAAA=eF7zWL9n1qfrVXZzFss/XPzqge2b9g8lMe2O+wxmKAvoOznYvcj/VfpD76/tS/e6teolInYhifOLDXz+2W7KjBbd3/vDNs3HnkWk553tRlulOU83PbGtlmrfqh7yzLYlke/KVa9ntjIvjm9N3/XMVvCXgOmPP89sdf6kZpiHPLd1+2q65NWPZ7aPDmp4VIg/s/3bcNc8rPOpbY2/xQmbd09sT/uqf5sb98Q2ZlOT1Ytrj20rvu223RH12Hbd3d0pHK8f2bL9v8e9q+ORbVXeoRNvjB/ZconyfHB489C2e84T5qcbHtpuFWxl2t7w0JY1fbduUtRD22j2p+w1Ng9tD6hb3p6j+tD2QzXD/iKRh7ZBfjWF59gf2posTQxb9e+BrXz+k0adHw9ss+om8C/9/MB2jfF+/q4PD2y5RFr0i949sFXewfSP7+0D2/3Zz7LV3zywjRI482jS6we2Rd/nKZgC6SfCE+//Aoajpvxvm+tAetvbrqMHgfTp6HMcW4G0S+LaaWuB9MG01T4rgTTHA5e7y4C0wqWIhqVAmp3xxP4lQFrX80cYiN4Qu0kORD+zfcwAolME/T6C4knlpvNLEH2oWfspiE5KlnkMopcXij0C0UdvTQXH5+dp4WB69nVLMD1ltzaY1pFRBdOsgkpg2nC5Apju+w9JB5wvIXTBZggdNx9C718CodU6IPTPVRB60UIIrQyVr4Smp6VQehaUngulZ0PpOWg0uvxcHOrQ1eOSx0UTsh9dHADLa8h9AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA7wIAAAAAAAA=eF5d0v0z03EcAHB3xCnqB2cRJ64dlUt5nPD5vK1STNn3HOJ2lURTHmZLk+S5cB6ahzmGQ5csbiGOKScqh8hDu/O4diQ9iS6rlM5D2+ynfnr9A6+1umXJmRAC+A65KYISNopczTGyP08A05opfR9AgGbvognFm4Al8ylflgsBLLNa8eQ+Ak56+My16hLgt1on1R6mAy+CJIyaoMPn/BivdT8fMGzZ892q6TTIZ4bHYsppICLxuikOnuDSOkEIND1gtsEluKX4GJz9OhTKvUyFQ8JHAdHnANrjxr6f2u4G7JfuQbZCZ+CPB1LfMRzhL42zS+JkBzM1hGiq0Aa8tie/XcYHgLVjyrQxlQxmG1VkrRBzSA+ofn7pmTGYFFR1680bQNdmr2z16E74Kf+l11esDQYaDbYFpRrw08DSbXrtN578Hdy5V38ZW2zGrKdMfsIplX4f/ZmzOK7oekmNwzg+ViMdqecP4Zx48TvX0JcYCKbmkPYTbLfvKrfsdSN2OjxKr5q/j7nOwRmQXoq/zTrm9Hfn4fE1zx+2A6k4ibxulLgSi9NFIwaswHBsankhS3uGgRutET37Oh2XtaDE/WlUnJvRU7jobI/vFmy8MJSQcRehq0+lknA+7U12ZYIOHh8gTVvF/0ELDyMZ3k5fUAVjk5fXNoW2pRgN2uoOoExBv9TI9ynSMrTIcZXWo53D8a/yKRUoM2hZtJHFQz9IshenMtLRJ50gTr0gAdmM6R0/4shFEbkdYcnN11Bw4nR9czYHBbV12htqcRCzpD80uY+NmsjhCxkiNrpiQj9YW81GGjGe5vHlbBR9XC5GAjaSf5BKvErZSBwr65lT/InyWBKKFaaGCAcfKLxx+3FcpcLW3V6J5QplCb60MoVFmbIR5TcBJ7ZKafTgrVylrBWzO0pvfvRMU3qxzT5VadLggOpnLPO+ytoOvkoGwVPZ7p+n0rhi63F5oFr3LUcpW55w3DJM/f2e2gK1xWr5//kPwEZ8FQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAADAEAAAAAAAA=eF5jYKAP0H9iMuH3bn77grg7GgqXNe0jcq2jcjW17Z+oqi7XNNC2jxI5sHG2nra9UU/J+jYdbfvwnXedJbW17U8eW7yvQEvbntWhZ00RkK77JTPnM5CWz+5oOwyUfyZRMnkrUP1/r7qGpbra9opfpjVVAc15efDgTHV9bfuOF+dPrATSNjf72FmB9qTdK3zrAKQ9tli/SgXSZ/aL11YDaZvn77LbgfTDgsQtvUBajS307gQg7fNCI3kSkP6mvFB8MpA2EBbKANElEiu6QPSkU6wzQXSF0el5IFr4B+dCEH3t0CMw/Xeb4SKwup++YFrnaDiYvsYYDaa5/kHoppAYMN1ZMUoPJhoAWF0Uiw==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAVgAAAAAAAAA=eF5jYCAPXLR7uvjLqSd2er6fXl/ZJWa/IZbn4PbDMvYZj7weRJfL2s9J1FGc5ylrr6Hgv7jlhYz9hG8XDXJ1ROyrKhi8Zfmu2BEyfxSMgsEAAM1lHH8=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu
index e5f57b6983c67913a47cde89dc891cbcde4270fc..b32e873f21e8e8cfb5452d606bb66151db301b07 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu
@@ -3,36 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0.00020724232948"     RangeMax="0.00020724232948"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="84"                  />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="156"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="7.9018483123"         RangeMax="7.9018542964"         offset="288"                 />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0.000207"             RangeMax="0.000207"             offset="84"                  />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="168"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="1e-10"                RangeMax="1e-10"                offset="240"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="324"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="7.9018483123"         RangeMax="7.9018542964"         offset="408"                 />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="500"                 />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="572"                 />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="644"                 />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="716"                 />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.00012275787026"     RangeMax="0.00012275787026"     offset="380"                 />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.00012275777026"     RangeMax="0.00012275777026"     offset="456"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="9.9999999786e-13"     offset="532"                 />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308416694e-10"     RangeMax="1.2308416694e-10"     offset="608"                 />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0099999978e-10"     RangeMax="1.0099999978e-10"     offset="688"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="764"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="832"                 />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.00012275787026"     RangeMax="0.00012275787026"     offset="788"                 />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.00012275777026"     RangeMax="0.00012275777026"     offset="864"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="9.9999999786e-13"     offset="940"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308416694e-10"     RangeMax="1.2308416694e-10"     offset="1016"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0099999978e-10"     RangeMax="1.0099999978e-10"     offset="1096"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1172"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1240"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0.00020724232948"     RangeMax="0.00020724232948"     offset="904"                 />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="980"                 />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1048"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0.00020724232948"     RangeMax="0.00020724232948"     offset="1312"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1388"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1456"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1520"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1112"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1588"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2040"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="2340"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="2652"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2516"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="2816"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="3128"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF6zSuXje6apbW81So/So/QoPUqP0iTQABbmuLA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAIgAAAAAAAAA=eF7LXxi0sX62vIP/5D3ydaP0KD1Kj9Kj9ChNJA0ATZuB3g==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF47urdBWEhcwf7oKD1Kj9I4aQC6LAgBAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF77tm+muaC4gv23UXqUHqVx0gCroDNnAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5zsOtpmDm90NZhlB6lR2mcNACCA1gYAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQAAAAAAAAA=eF674vd47uJXD2yvjNKj9CiNkwYAwQcXGw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF7TCr1rZ3f4tq3WKD1Kj9I4aQDwYnWvAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF6zSuXje6apbW81So/SozQGDQC6PNxRAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF6zSuXje6apbW81So/So/QoPUqP0iTQABbmuLA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF7TMntWekRR215rlB6lR+lRepQepUmgAbObX+8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7bvff6zfs1t213j9Kj9Cg9So/SozQJNAD1hWFVAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAIgAAAAAAAAA=eF7LXxi0sX62vIP/5D3ydaP0KD1Kj9Kj9ChNJA0ATZuB3g==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF47urdBWEhcwf7oKD1Kj9I4aQC6LAgBAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF77tm+muaC4gv23UXqUHqVx0gCroDNnAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5zsOtpmDm90NZhlB6lR2mcNACCA1gYAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQAAAAAAAAA=eF674vd47uJXD2yvjNKj9CiNkwYAwQcXGw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF7TCr1rZ3f4tq3WKD1Kj9I4aQDwYnWvAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF6zSuXje6apbW81So/SozQGDQC6PNxRAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu
index ea7dbe9769fec414375ec84c2abc1bfd0e9173c6..db95dde9036024575416e3268680657ea26fc06c 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu
@@ -2,37 +2,44 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020778386663"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011427141197"     offset="868"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1172"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.5719282359"        RangeMax="10.575773706"         offset="1304"                />
+      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020777423697"     offset="0"                   />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020776708636"     offset="868"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011403773427"     offset="1724"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011401030096"     offset="2024"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2328"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.5719619093"        RangeMax="10.166474867"         offset="2412"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4436"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4508"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4580"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4652"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9052273769e-11"     RangeMax="0.00014795874871"     offset="3340"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000000002e-10"     RangeMax="0.00022972192525"     offset="4244"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0000001482e-12"     RangeMax="0.002"                offset="5188"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="9.9998294075e-08"     offset="6324"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0000000704e-12"     RangeMax="0.0010238855291"      offset="7256"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8392"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="8668"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00014644524602"     offset="4724"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00023273386603"     offset="5656"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0000001482e-12"     RangeMax="0.002"                offset="6620"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1e-07"                offset="7756"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0000000705e-12"     RangeMax="0.0010231089738"      offset="8704"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9840"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="10116"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020777587304"     offset="9744"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011407318629"     offset="10220"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10412"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020776773638"     offset="11192"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.0001139325416"      offset="11672"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11864"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="11928"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10476"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="12144"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11404"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11704"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12016"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="13072"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="13372"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13684"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAaAIAAAAAAAA=eF7t0F1Ik1EYwPHNtPZhKx1Clpg2teykLo0mc3qs2fArU1JGq3wR56RSqS2vyqVO+0DDBEnTJdqHpRaUROVFosug2mbWRqbJUArJqQmbTNBsPef1qru697n58T8czjkcBmNt/mdOUBYOqyEEP5fFyqrrOXghYJZ7eTfCQZsolnMmHC/5dRsfxSHcaDJqmkUIH53v0l6Fzmga+eQjQXhrprLUHouwfMfbRT8xwrmVmBO1H2G2O9gqh/3RDq9BQwzCtipx6Lt9CCcWePMNexEOLL25Sx+NcP/0K71IiPCP9si4SXCqc0UTEoVw3sGYnbdB7xZOeUUkwtqxWoEJHPSaGE0EeeHOjflg+7D0zRGwxuNpUBY4Y//JuQXOdVwMrQTN6RrFBjhHyf1unYBOYfpSV6CZJWHcY2BZnlnGhntLeOpro9C9teONFdCv49z8HDChoDVzGlzw9x83gB5tl4ri4f0it1MaCGbrnrjLwOi6cyEqkHt8LOwxeEh31twC2jQHPIdAVQDr1wAY8dns+AaO3utyfQXLH2QyHGCWDttnQYWA6l4Ce4f41xfBG4ex1Q2ail3LK+CHtrsmD/i3+Q5VHxP8whs+7wlKxC7bOhAnaRVeoLLKwibe91VaiK05ezqJ6ohsn/Xge9fHZdLV9gQh6UJVfSjR1peGifGCIDGxYbNaRhwxMpKIyb8NKcTi3DvJROFDaRoR1Q2kEtnOObqre57ROoZE6cTULdtp+7fJaVn96bQqnpL2xUuKVio5RWuvKaSdos7QunpO016QFdE2T66uB5evdkb+qk79357sXnPNf/cPjvasgQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwgAAAAAAAAA=eF5jYBjcYOmuzzuO3TxsB+MvLGK0fb1S0v4At5FX6zFBe4vNs9YF9svaCzZvX/3yo4y9NmdA4LJHsva7lWa0/Hsta8+u4vWx/IKs/fad+17M/yJrf6ygXe/sIln7Z4f+GyifkbW3tNkouiNR1v5QTeQ2zx5Z+/uMeXlL+WTti+X7dA7bytrPXHu44Pg6GXvvC/9X6NyTsZ/geP4vV9tvuz2By9sTJonaw9yV4KRqIpBwBe7OUTAKRsEoGO4AAAVmSLY=AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA1AUAAAAAAAA=eF4l0Hs8lmcYB/BSKbXwvs9z31JLz1tEK53odWjV7ZBjkkM+Jhm1RZQsi4ysiU3GpHd9HCbMadNWvdPBMX5OMTJSaVKT2sGWZQ6jaas9r/76fn7XfV33574v3QN3gweva2O1ZUBR/n4tzDxfYszvk8In5FxH23IDFn+x2DmuhIOid2l0so0URikPKyc9pdi809rJNUMK3eD0hU0dHDrz77irWRCc/KiOOl+WoGfPxV1pByUwjI73VMg5pCiaM4ySddhk15I1bg0C2/rha8WXpUuZXN9hAkkE9RaBK8N9pRhVxJYYH+RRpWbh7GIvY46WWSaj06VY25/e8kAuYz7EtV7vscDK1wSHWqYJzP5m2iNviYwlhHS/EVEgMM0BZ7OGIxz8q003NsdzWH4yes6a3wVmo4jXuiHI2JJK93PKYoG5tVc3ROjJ2Ar7IfmQhMPYDJcz1/8QWKzRT3trdaVoiwqbyG0VmF92zss9VwQWYvez/P6XArv+l/VE7fcCIzmXNmZ8JTCjFwbra74VWJ/rsa495QIryfHIuDGfR6D6C98acU79zMcdzsMctDsjEgPSBXb7ndBrVnUCcxm74RdzYj5ksx54nTktsJGod+O8qgVWlz3SsPFPDv9qPfbRjBVYd+cvq8PFf4Z3e+nfyeSQ2t5fqxzh0Dxz8baecwL7Pdnisg7Ho1PyXHeGP4+yZIfdtjs4XAipaLqqwwERBZE5jEeEVabrhAmPim6f4cy5PFoqnRQvzHmsVT914HAuj5VBuz6Zu4KHf40i54ds8X6fYPaoh0OrYrZhkjGPkkOHds4u5HD01nZti0EectPF13rceFQ6OM6rP8yj8HTeoEY5jysHjzuF5/FI8vTTe6LNI3r8jUTPah6JO7OSmhYTfBozsDdcTvBXiyy8rYTHU5u/s+vv8FBrtzgQ1cQjaixjx8FhHpNqG3JX6RPs8z1WM1nBI23TsN3z/3iElr3GDlkT1GWui/B6wmPukOdb9hoEvcGa91pbedjjQkeXLYGOprmywYHgwu5Q7+jZBEP3Bu8rX/KITDews7MiCOztd+9dQuA/6tvQ8h5BQrP/rVU+BKMb/DMKNhAoT+mNPz1KYHr4jEamQDDL6uxPRb4Ei+KqNBOOEHyxdMyqI4rg2grjU8aJBBF3K9Ua9xMMtHi/HneWoG/322aNHxI8TrjbGykalTSyfVUWQdNbfwaVlRCYTTS51BwncMot01VeEd8RmhYvKSZYMHzP8OvzBCb5WnsVSoLrqTU95qIztbZ9u6GAgFeb2JZaRzDH8eqJQ98RTOuPZb+VERh/4JZSVSnuRS3RdG0nQejtReqJFQTmbenNgV0ERf3tZUFVBAZ+Ny29+gmqn190HawlyA3TVe/rE/f87G+v0/cJCrfNGUh7RFBwO6WTDhB8vm9dQuMggVW+tscHYh+9RK96TxJIVpcbN4rnPg/Nnh4Tc4jtpsEt0yjUzQMWdP5D0GXdpx43TnBYiFmzbCbFyuHv7FqGCPQfjs1Tn0+huf90oeE8ivasxt3pUooKn5NfxGhQbPr66oyaRRRB+uuzJLoU6/een264kGLW0S0HVi+guLm5yaBboCguTfhk2jKKhX3/7vNfQRHZyuwcxXxhXu1K5TqK0FhZXqQxRVfqP+MxcorA0tpnJ0woyn0llZYWFFsf7nd3NaPoSZkc1nqT4nXNb/7Ls6RwGl/3axij8BgxDK/bTCFpfTZnuh2F849Hpcya4snyl0NVDhSj+f2ye/YUs7skt846UpjXm3z2lehw6Y8v0kSjdKXzM0Q9PQLakkWPBYVNSxUNKyScKp/93k9DZUlRxDKV9/Xe11H58y8DO5JE+ZYHpZ+Kdsn1d50Ufe5cqlTpFG2/SWX2R0ZT/jEjaKvKSykeW1T6ZRpaT9XdXDar5I6426rsLrrCVL67KG+qTzu72UbldnvvqXkbE9Opugt71T9g/ap+yfZVLu61nrKNvjdl7fmAKf8HcSndtQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAgwIAAAAAAAA=eF5jCOBQ0re6bbtqVs1WQXEF+5s5d8ye7pxkZyZo/+Jo6Go7oXkec8Pu7rXbmGdk1/DljJ24r5jDv+Bbdj09R7x1BZ7bVc2MNZTe9Nlu+ROPIz/9GOyLuGqt3xzmtLeYcIOlcpKwvZmv28/VKcr2eufbH/HdVLSXPD5zkWSZov3SwOC+MwyK9m1f/c7zVyvY97QE5lVelbf32/R14e8Ncva/HjLENLfL2nMFFvdN85WxP66XO3NRh4z9oap61ZMSsvaNNzdwtKfI2i+I3zDx/T5ZezuNme+kxeXsfbdLOsRny9mHhWwvWrdLzl777dSz95nl7Vm8Za8+dJW393gf+/5lvbx9tqRLVvtGeftLqx4/XX5L3v7DyvOyk3/L2+8LZzuRz6Vgv2bt8sUbhBXsi5KiCrikFOzLJhttZpFTsD8iq3lKVUHBXob7SMgrIG26/6TIfiB9UvJX2195Bfu/gYpsr4HqQrTXf9spq2C/NXWRT48MkK/ps7tMWsHes6H+TzPQvPibDKe3SyrYi6x5HSUIpEPlnBx6JRTsr/7LOKMGpBetY/9xAxgfXsVXP80D0huqdxSWAGmR/R/OhwLpSdcmCTsA6S2SIQ8NgHT4TrYMNSDdmu3sKQ+k+7bMaJIC0lLyApHiQDor6Iq7KJDucJT5JAykpRmUJEB0lvGePiEg7SaubAmi9+hls4BovRMBT0Dp4WPK7wsg2ka3/CiIFr2zdh+ILvq8YxeI/t5QsANEGx1V2g6i68TTtoHoD9V/wOlJ5t9BMP3x6kIwfSJjApi+wN8OppWEmsD075x6MB3AWwemm2NqwbTbL0i6LD8Fod03QGj2GRAalm5pTQMAe2sweQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAowIAAAAAAAA=eF5j0Hp3837NbdtVs2q2Coor2NdJfOFg5ey2C1h3fJfHwsV2NbszPF66bbWT26V6627GETuN7uDe776X7IR+GXU6td63m8936/GFpFd2dbvKQlQKvtoxiehcfr2Nwb6oWjltlzanfdX+r3416eL2V3IvmHHUi9sHlDLwf/OStFf+kTjl6jZp+67I5xuPfZGzz3sV9Y9vjqK9zOzFtrYRKvbNB+S/lvFp2N97XLnF8rOu/an6t/4GMnr2Ea2iD6LX6djPS55Ta79E237RnMJHjO1a9vM2yZWsLdC0f/b3jvTbFA17rqi8lqA0dfslUrN1bcvV7IsCjxdOnalqf+zDjLZl51Tsw9om9ciJq9hbmy/uki1Wtj9yItHX85GS/dMpCeyPk5Xsd/0+pXn3m6J9+tZk3w8zFe0bwhgT13kr2rtsZ94ymUvRvo/x0x7Rqwr2q78cW7x+pYL93HuJC960KdifV/1rUpCtYF+966HTn1AF+xssf3+WuCrYT+h+ve2RhYK9kjsfY5G+gr1M9IQfhRoK9noH2WYGKivYL/RfZD1HXsFeQrBlz1cZBXvm9INTxaQV7MuZnXRPSCrY62ro1j6UAMobvNR2AdJrPMSkbgHjy9B5QdJkID0jbdKhFCDduI4x2g1IHzgWsM8ISDeJdVqpAWmNfQ+C5YC0SEh4iiSQvsppHy4GpLk+xlWKAOmMif/ChYE0f1TnKiEgbXZ1ljOIPlWhyA6il3h8fgxKH2+Z158H0Qs/yx0B0dph0/aC6CXC73aC6LL3z7aDaL+jJ7eB01OjHphmu3ALnL462deB6ZzAaWDa5XUnmF6X1Aym4/kbwLRqYh1EvroWTD/ih9APbkDS6cZ9ELpgGYQWXgmht62G0OwzIDQsXVNKAwBD/Db+AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/LSn8dJNYmA/3wvqrJmXcT1AkFqsk2FgPx5IsBI6YGA/BmH6nOtdYD94cPPbM1pgP0FPY0h5VGA/DcOu3vdLYD+AtzQ3vT9gP8eCeAanLmA/k7xO9WQXYD/N+5JY/fBfP/yKp/e9oF8/+A9TsMM6Xz8Ib7bD2LteP8ae39wEIV4/42tltcRnXT/O9hyFQI5cP8oqN+5+k1s/lufhWY93Wj+YM3MxpztZPyqASVAu4lc/ABINy7duVj/s5CVB5+VUP+TY1DtDTVM/4QDSv/eqUT+khz7MjQVQP3BokX06x0w/OpSJWP6WST9mN8n+DIZGP6LSoMSHnkM/az55Y7HoQD+qBnubbNU8PxqNnvQwUTg/CsMkLHlIND8MlozvJ7swP+KFRIZzSys//Li6l8YDJj+1Rj2afI4hPwo1jevdrxs//OsII8aVFT/jHnoxU6MQPyo9HZIvXAk/Bi0QQwocAz/kFlqzq3n8PkFez21K+vQ+NkaVax+Q7j5MoIERHgTmPjQuhxfuXd8+gsucIBkZ1j5JR3qCWMvOPnm9sKTcOMU+sAgUKePuvD78NawFmoKzPkJ1z1quB6o+ty17suotoT5HPQ7+sW+WPtu2A3WA/ow+QogPRP+Jgj5KU7gYcXZ3PjqVXrqVY20+RY0kAvk3Yj4wNPPLGlxWPqepZsjYKks+O1BPkyxXQD5A/XkVtnYzPppgMYBm9SY+qjutK0vSGj5U8t1xDgoPPg0IBEGhywE+vFO+h6s59D3dWTctZszmPfx6NYzgg9k9rhmcBYhnzD06ko9AMY+/PUqDPQyAmrE9k5HNg3vsoz1WD3S94EOXPZyRzJHxs4w9DtBhO+k0gz2wxVOaHWN8PUaX6O0mJHc9DX2XfqVrdD0K+IN+jQVzPXau+WMHT3I9/FNJRcnycT2ifTHRj8RxPVLt9EiXrXE9XII1HEWicT32oZdtvJxxPU5u3IUNmnE9TEqfIMOYcT1eHcp3JZhxPeCiHdPal3E9LEpWwreXcT0u2KFpp5dxPZyDqtmfl3E9ioHFYJyXcT3QfrfLmpdxPVXcxhSal3E90CiLxJmXcT1kUXCGAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAmAIAAAAAAAA=eF6l0ltIUwEcx3Enas2VkenAeUlXCkNBRdFJ/A84FVLWUvBCjmolTVg3JQQxfIgIk7KLOS9zytZs3nBekM1EF5lplkwTw7LSc3bcJnPmYJknmtI5Z/jQc08f+PN/+30T2VtNi0tViFJzHNPYUTAHPxgZFlxGNBWFiVKlCFHYsn77RiHIaW6kdCA6ASEOBI0q87jIGlPsqOoMRvQBXuGlT/0RUURsUSmbgYw4GNN3MnbgG6N4g5nshIaa1E3RFg4qSa28pN8CYy3Nydc3LeCjTipISrOC9Mmid2i9FWZ0wvgelxUIlbvhZoEN0oRGdZ/eBo5PX2X8kHWQK6T4wz4b4HWtuSvHbBA0CCy0zQqT4Ue+b4db4eNQzsvqdguUKoWvc6MswO0qNzg612CC/6doNmkN6jWc7owpHF7FtGZIJTgkmOabd71xyLSPc2p0ZrArwsZTSsxgUt2bdUeaYZcjq3xkw2BiRZtTpscgJQ0dYtRh8Ks7bP6+DIM8psIAIgxOTfGb81Mx8Pf1yvSLxsCn/fByIxuDG+ezq4tZGLCWfiaMeGMgieCxY90oLGcZzgl2UFCu+vFULhROPj7KIJwoGOcCVYe2UBBcK1ns20ThUt3BfL0Dhb0TlaNM0g4Xz1i/gQI6HahNJ7VPxHuxSCtCmuRWcre4uwNyE+nF9VWnkVTSr14eJv3sc/uqjpQz7xL3kAbMfVjoJNXpn6drSXMas4UvSNPfvTF0kMYHT16g3AsieJQxvdv+lBELDoLq4z1R+4NS+axtnVLgyLRQoi1XcErEKjZThn2ZoXvqqKyifas+S1vYxaflDsbREuIYWvcOl3bsTBRtqCySdjDAY7nJ0+dUq8f9Xm/1enSW/ev+ff/vf/0LxV68iw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/PWr8dJNYlA/KUn4lZmXcT303BUG52FQP1LYN6kwYVA/yo+zQBFgUD9KpVa1eV5QPy3JaVR/XFA/xtDu+pJaUD+e320FwFlQP/gEyEVeW1A/cOh++sxfUD/L8eFqSGhQPyYWMLd8xlA/ozjqMZNgUD9SyMhrAPBPPzqL305d6k4/lnOz0++nTT8w+9fz6yFMP/b0cROPU0o/cKZmCOIkSD+2Cl+Wi0hFP+ryrI827EM/KmHi9znmQj9MVPxCaKlBP6++lLVgY0A/JFGIwV8jPj8aReXafHM7P46GXNi8wjg/KO96tVccNj93oYu7uoozP1IHkP0uFzE/tgBV8AeTLT+Cr6YEo08pPwLSCjexbCU/vhm57QXvIT8Ge77U9q8dPxzKKs6nSxg/VFkhPnOoEz8oQyuRQXMPPx1hAE8w3wg/16tL6wNyAz/caTqgLQ/+PjAR1CMG+PY+tK4d6vdZ8T6nMgnvIOvpPsiaQsWKI+M+53eo/F7y2z42u46C2CzUPpwO39bezcw+4rjBjlpVxD5gUWkB4WO8PjJnaFQOmrM+5kvK1anFqj5yJ1qqjxWiPljitZz4Kpg+1GW2vL/zjz5CXw0zseWEPuY45uK0C3s+thC1HXpRcT5JCJ8ux/JlPocvdMqJh1s+Yq/qo5oWUT7u5jZl0v9EPm/amgDXizk+gt8d4c/ELj46HFAO9FgiPnv7MShdqxU+ejvE1IhZCT4Ap0phqmH9PT5PDl+N4PA9bkSiLjM74z3xYJUS2MLVPUPrVzvQgMg9yru1EqSOuz2WTlZe4SevPS+I9ijL5qE93KWRsIVGlT0Q1PWJc8aKPejzJVnFSYI9o/wifQqHez2LDqQdNr92PWyXucFlPnQ9pidgbM/xcj28/5agskZyPXKQaLlr73E9s4ygxEjDcT3QXwgIJ61xPUpDJL0lonE9ahTXariccT2I2iXkEJpxPQsbrjjHmHE9DpmTkCiYcT0CarTQ3JdxPWDp2u64l3E9ho1aEaiXcT1rEKgzoJdxPcZnm4+cl3E9loF045qXcT0IPEMgmpdxPWnqEMiZl3E98JFeoZmXcT0aXXssAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAARAEAAAAAAAA=eF5jYBicgKswMSbTQtqea5pql023lr1H4e75iy217S84H9Q4a61tb2E5zawByN9ywCD/sJm2fYf1gi+uJtr2+rkXZfWNtO2vuH7L7jHQtlcpm3E2QV/b/uiu0xeX6WnbZ05/+TkQSE/L/FUUAKTfnDCd0QukJdasFv8CpJeay5gWANV/2y6f8RFI2z15G5oNNGfm/mixa0B6znnLG7qG2vbOnIJCRUBaI1+1agmQVjqhwnACSDfb7vlyH0hniHqUvgfSXJWWMj+B9Lq7Ui/+Aen7yq2uTED3dak81mQB0kFPNIxYgbSSicc+EC0nNJmNDUiXabzQAtF8H7fagGizPEtXEB21zsgTRK+bzeQNoo8HXQTT84q1fUD0k7eBYLrvcSKYFkvJANN5nNlgmkskB0zvKITQn+dA6NjVozQ2GgAeyNE5AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAbwAAAAAAAAA=eF5jYKAuWLrr845jNzfbGeyf6WyxQ9ReRVpz7VwHWfvPol+ygp7L2t/PY3nb/UjW/trMw/oV22Xt62JYnzGUy9qvFKjzNVGTtf+07yFP1TEZewUlaffHxTz2CU6qJgIJR+wI2TsKRgEtAAB1ISSiAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAaAIAAAAAAAA=eF7t0G1I00EcwHGnU3qgxMxeuBVMJXWnWdbmhtQVk6WuBywxlXTlA66Zk4EWOrOUqGVkCQ2m2IuoJjg3bBKjB/2nsylIpUyXJhmiGSuzwpk60Prd7VXv6r2/Nx++x3F3nI/P2vzP7OzrzY5WRmD3nbr+0YFNeFaZHaqJRDiBnzvkNkTj8NZ148GJCBs+3ZgoEiKsUIeUHIcOnfLlMKBH3eHfJ0I40vTG8VWMcA2zVBcM+7YcazWIExC+JQiyG/ciHHai7Vr7PoTP7hDozXsQ5o5Yi6/HI2yKVW2P3I3wUZHu+Vvw1GhU2bY4hO3d3/LrwcrN3PryXQjnrA7dZ0BVl10vBJ2Zn/MywaQe4Xcp2Il4S4dBjc2sagC5KsehSvCBK8XpA+dMr6/a+B7aPZE1XgM98jgBnwRXZ961s+HecjxgGIY2NXR/uARdGxazIQ3UlstzZ8DCJ9VNDNhms/MT4f3hTLaVA17ojEqvAtMsImEBqGh8sWAEHbbkgiYwxL80/jVYmNS18hLUzvUWTYFbVYmp4yDma1p+gpZJfcUsqN6vK/OApc0c6SLoYus6foO80IHBFbBxvv+pL/yb5yPrEQuMCZAo2aA2rnrQD3S39KT7g8zVYRYxPe/0IHE6cPIhMejyq8AA0CG/u0xaKrsYR3ppoSSCKON9OUDMWLwtJh6slUiJLtszCXEszZRCnG2qSSYqlsUyYoXSkkrMuueiLeeaqTedgiPEaT6XigQZVE+tjDpnzac2RsmpY7HnqOYzRdQZeTH1l0VJ1UjPU/1+eNd5V7xtVXvNMXqdb/6711zzX/wDcRK0zA==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwIAAAAAAAA=eF5jYBgFpIDqa/+Uz7Wq2TeLT1HsTpG05537rjRPV9uevaRyQkGUlv1xJnOnEmtte2UdvfOOFtr22y/KC9600rbf1718XSNQvK/7W6MZUDypekFDoqW2vULnij+dptr2X7fYbFljpm1/ecJMHyNjbfs218X1Biba9r0fd230NNS2n8rWYSRlpG3/sP6oyU19oHrH1sYKA237Ys1jcg/0gOp6mqr9gOK32ecuDgXytdxsZ0wD0if+rSnSAtIP3nrpuoBono0XvYD0b50cb1cgzb6RgWshkI5f7cXVCqS9Jvw8LQ40J3R1z4e3QH64bpbxHCCfky1IPgdIW1jf15cH2hsVYv/rHZDPKORtPA3If7fgpGIWkP4VtkjrN5CeUPNo61UgfVVR7JE30P3X5th90wXSLmLcPJ1A2swrI68ISMsVP9PcCqQT7Ke8XGIICo+ovstA+tmnhMwTQPpwg/bc50Dag/eN9wMg/XZvW8gXIG20IXr7eyC9cqO2xB8gfTfhj9dPIL31777VDMBwmrY0kf0/kL+t+JI7M5B/hq8okglIn+0T2ckCpCcUcJuB6D+vretZgbRjprcliDbxmPcMRN/6FHgILB6hIM0GMi/8JAeITiiUMQXRR/aJ6IDoiqvLHEG0yvkAWxC9gb3fHUTPXtzmCqKn17t5gcWrIzxB9EGpem8QHVYtAqZTFDh8QLT8rZtg/nUmZzA/1UEfTL84Hg2mbecFg+lzbGlg2qszCUzni2SB6R8nMsB03LZsMC3sDKH9knPA9EpNCN3VB6EVGyB07OpRepQmnwYAFTSlYQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwAAAAAAAAAA=eF5jYBjc4Ge+xauqjZftYHzB/8E5EkaS9jsVFZJu3BK0/3Piu7F1lKw9w6OTStluMvZHc+s2Vz+WtT/UmHVk0QlZe66tx79duiZrb3YrKvrjE1l7m8cWbe+WydrHyqeV79sna7+pdNE0oxRZ+z2W6341Ncvas05hmpYlAlTHZJinYilrf6TRYu2m9TL2kV4LhSJuydiv4Jlc3m71x06lcNkNpu0i9jB3WeqzqxiduQF35ygYBaNgFAx3AAAqlEROAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwgAAAAAAAAA=eF5jYBjcwNbArO788w92MP6i9GW3Dh6WtC/JW+Tq5iZsn3d7A4NSnqz9RJm0J6erZexnLY7jk3osa1+UXXTg9FlZe/6OtTLPL8raT1L8OyPjoax9vtKt5Qvny9obnt982H6HrL1wQdWxlVGy9spu1o67q2Ttv2+ZPvM8h6z9y8MzGpX0ZO1TfEXe1S+WsS+5O9Oa8ZyMvXYx984N4Z/tquatnTE3kc8e5q4kQeWJH+RPwd05CkbBKBgFwx0AAKnIRYI=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAzAUAAAAAAAA=eF4l0X08lWcYB3DR0dRn4jnPfffG9thZetlajnNyVsjTUTnCmaP1Ju9JOwxpScMxS1Ms2XpDk8QkLdL0olrtt1QWKe3lIM3mJZSkrSapac85/fX9XNf1u+/PfX+uTDPfopErVth5v6XbVDsew0uefzcqlMFQ10XzW9ut4apPv773ghhbYgukLsve5i2rdE811RI+Wrd1nETNoHbCtsYOPYsVvm9V9Aq1lyaw4r6cQURhfcHtQBbBTH3QLSLG3IF7WkkQg+kHu6st1jEoXNeUKYuzxuAdj4IqU8KnbNzH7657k4/rPxczNoxBcNgNfY+5GDEzRGSmxhqhDhr/1WUcP//mP5v9Mjl+XPy5nKgz1pAHfbam8jeOvx6+VNbbwvFLnV0/mGBhx9u6PnA3K+f4z/9gzf/u4/gBsbdN0jWO10gH6IQhjo9sX74nTMFgbF2wT/0Dju8H4xvSzPFL7m0z6cvi+IuJsaYxBRx/ZGTtyZx+jr+tGv1ioJbjta6WO7p6OD5peVD2qLkc/9X4uo8cvuP41psNMclHOH5Dc0bk+sl2fLnZrq6Ijxg83rryQlECgwUN+/d9M12M6TWpfmuFdy440G9jbceg9VFY+IIKjs8qTJzQMJGF/0FRjUS4P/fhfteAKxy/J2qO7MMsMY6qTN6RtYoRP9Mq1VPN4kmjPbtZ+Le0VxXx5F0xDqhVi8syWAzr4gcTtQwsjo65WnBdDIedfsODwv5KFMPOXl+K8bpcuqbDlkWnk8+j5RFWmFIr1/kxLNKiXfrzM1m8xTs5hTSycIxyO/psJot/J065TRxYHOorkxxrFyN8nqfTmNMszt//b06VibBfl1Nrz91iYfdLc4fLLhaMrvC13WUsZqV83ZlQwqKjcRNHFxCkJVymeztZXMq86mtjRnD5sCrj1xoWba1hwafvsYhw+uXHgyICrw+ZVZVXWLTXH0qzf85iSXqTYhZPULKzKLt6JsF40Ruh2csI7r75VY/ClCDAbFJUjQnBBdXkAnNLAmnj+7KNFgTKkB+mrgglWK/T2qYqCIZH6lwS3QjaNOdHFBoCccDQqgorAvvBzlUyb4JkheOG6YI9LixtCBfyLWWHLLQEqdEJ3mejCfx3PH3XVk3wzVYy62A8Qfcd5HQJOZ2URp9JFu7126SUJhAMSv6Re58gsHo2pC6OJNDk6Vdq4ghi0lu6i4X58btBCs9cYa5autQki2D0nz6bHC8QuOfJnfWFBJcs0gpWVAjzuLGOkSUEOJH8PHcvQWjG1MVp3xLUJB5dXn+WYFF1tSypmKDdLUTkVkXwaUHHtMrvCT5rWe+/q55gzbMPTpTWELTIFnncqSVY+PBnL1fBGlF33qh2ghHtZb3t7wSFW5IsC9sIPgmeV7JETzBnwJme7CLobFnUuraDoEL998WAhwTZgcr0qLsE+/+cb/v0PkHgWP2GqX0ESU/mbpU8Jkh4UHh2xyDB7m2HH8WZUCj/GL1l8hMC0eq2pk/MKRSzw/wThbpNKzM9MYZC5BiwPkXIuTfblNq/TvGTOuFYndCX9nl7dIopDqwW58cTinmxv7b3TqIoDRuT5zORYsXx/pYf3qZIzw/WX7ehYMpHVMUzKJq2K18rk1DMeL5xXNF7FDLT5lMp71CcUZ8r1skpyut8h76QUlR0f1zq+j7FvvM35N5zKB507e0g8ynurbMbVTqPIsRMeylSSZHidCwWbhSbbeRZJospXqY3iJ3dKeIsX4RWelJ4y3rkN1UUEXueFeULdfXu0IgSwWW5VgNfC9qXhofnCF6z2ijJEvR4eWdatuDsF86yHUZXBRp0+Yu1NeixJtdo1LXksExBhw565EtB/pouNkOwMnNGncHw1IsLDU6p8vE1ONrNc5FBmxyHxQaD8qYpDSZ5NbkbFMf7GfP6klO8weOS424GrfJrjXO1x0rj+cAckbHvw7/K9ypf9asWvqoPtyqN1tM4oz+Whxr9H3Ki0c0=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAmgIAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYH+hcL1T2apJdl9OhV3TdFhtl+acN3vq6b12HYyNB9mfn7GLdj52P8jjlt0H6QdhrS+e2a2+L9Dp2/zZzvqgz299eQZ7h0k7jSRmcNkzMbvJ5b4Tsf+RuFr0saGyfdrP943XJyraW2iHhs7tULTv77KJ9fitYM+y41r8n2oF++6yc9fvX5a3Xztn8qnShXL2368G3KueIWt/UvGsRJqXjH3DxaaI0HIZe7M1BrycCrL2e3h60neky9pLnd609MFRWft9GZMUnkjL2dtaT5NSKZCzz2l7/kx5v5z9RJOXSkoc8vZ3z34pfOwpb7/zcXbeymZ5+/33d5UwbpW3r1Q5fufmXSB/o15s1T95+y2BCfJ7uRXsIz7uTb8uomCv07NejVtawd4o7Ne+B3IK9rfW2MTeV1CwV5h8xbNFUcE+KEZgjw2Q/rWwLi8JKL57tetRK3kFe18+Z6Yfsgr2Qn8Nr+2WAap7pDFnFtCch56Fq+dJKdiLs66MOi2pYD91S0+dPJBe/XVjyHQJBfvebY6PdYF08s8pj+8C48NTdnXgIiB9I8tlZxmQ5tu7MjQcSLe/XyriCKT3Pb/ZYQik1yQ8uawGpGN+P+uVB9K5d4+slQLSKUteFIsD6QnXQyNEgXT2JNU/wkD6krm2HIh+XR88SQhI2+o6WINosahlrCDauYTtKSg96IgnXwTRfdc2HgXRnhvO7QPRy9VO7wLRH9qrdoBofTuN7SA6RyhzG4jeKPkPnJ4evDgEpgtTFoFp+a0TwLSHRTuY9tFvAtOx1fVgWoqnDkx/i64F0yy/IOmy5TSEXr0eQtdMh9CtsyF0PjT97oLSy6D0Gii9EkqvQqNXE+DDaABrmDqbAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAsQIAAAAAAAA=eF510mtIUwEUwHE3QnFYvubmWs67OZ2zZiiiDvKeVEQtzAIfFFiThkLTdFMIRW26yGm1ReZYGuFrzLlSMTXStMxlPhAjU+cytSwfGfbCHmjWvbv72qcf58vhwPn39s3MLhS9jmipKepypSOQZHgmd9quRPOl76q8tI3o03nfxGHoQhO+xHmPnDWhFcyfb2rjX6Jh3CpnhmgB1SVG+FBCP6KU2fa+r5Gb6NuRqxYhhwQXPSNzCyookFdHKnUIpUPNLnJCg5AOVPaKQSVigMJu7qb0PhMuLFa5W7ZYkPRDOXZNy4Y2FbOerOICbbzpzlwrD4bOnTq5uiMAzfknbYdLA0HEKstWqA+AY9ufuVXdfuBkbbC1RQHgmHcakUr4cCJD6ik54w/8ggnqrXQeLKrWwtdlfhDlQf7VW+0L5Z1O/LAxLhTEhwy5UbnQf119OzvXB6qNHosbCxwQNLa7mNM5UGYUmpibbFie0kpl2F17SUGT2UfY0OnBo1Q6smEmU1d46BUC8pVpkZ0BgVgmLTj9MgLoB90kWYJAT6xSr09G4HecvywkBoGZLN/AjnAEjqcxSccOIlAZz2hI9UdgtH9cg/ogsKUQd6i8EUgVi4Wf9iEQznu07cxEQF3a0zzIQMBlFs2Z98T2p7xgR2HmFT4eMGP/MlKiy25gylmsYDHm4G763xjM+A35pWBMSYaG5ocZdGUogoW5tr6cwsDkvucn0jAHvqvzqZhen/nJ7ph10UvNbpiCcn0Ubma9xh63YbppCe+DzlFM4LZ325twRTvKPtwpy/JD3GGnpQe4Oa3Pu3HNOQKrd0Ms1r6+me5ZnQ7SWM0frSDmNIVVnavcqkNqidWukmKr6j2ER81Ep8X9hGs6QpmB0NRCOK4lDKglVNr67rSpt2m0abDZ8h//ARFBNkI=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/wO7prJmXcT0lAFqsk2FgP3+srhI6YGA/kLL3nOtdYD8cQu/bM1pgP3v3W0h5VGA/m6GC3vdLYD8LsMw2vT9gP+KlpgWnLmA/9EjJ+GQXYD8DHQZw/fBfP9DAsPC9oF8/r7IHpsM6Xz+F5+vF2LteP+ic69sEIV4/G71YtcRnXT8ci9GEQI5cP9yUAe1+k1s/+2XHWo93Wj8rrAQxpztZP9yI104u4lc/cB1Ay7duVj/TzgxB5+VUP00C9ztDTVM/kbLYv/eqUT/1F0rMjQVQP+G6qX06x0w/AfGmWP6WST9ZT+r+DIZGP3tjxcSHnkM/x4ugY7HoQD/8Rs2bbNU8Pz1M8vQwUTg/+dF3LHlIND8A7dzvJ7swPygl3IZzSys/C4ZGmMYDJj/neruafI4hP/10bOzdrxs/iYzKI8aVFT9J6x4yU6MQP07HMJMvXAk/H5fyQwocAz/gIMi0q3n8PqWd8m5K+vQ+JaRdbR+Q7j6P3+ESHgTmPhEgnxnuXd8+n9EuIhkZ1j6oJ82EWMvOPu79YqbcOMU+ZcaFK+PuvD7CTWkHmoKzPkGkQF2uB6o+1NostOotoT6vm2AAsm+WPvGfKHiA/ow+9ikqRv+Jgj6vy4AbcXZ3PjY6Ar6VY20+QNx+BPk3Yj6WPPXOGlxWPsp/NMzYKks+a0ywlSxXQD5fimsYtnYzPtXgy4Nm9SY+dMIKMEvSGj4+thl3DgoPPnfRHkShywE+HcJji6s59D1FrHQxZszmPSXCFpHgg9k9cgUsC4hnzD1zttZGMY+/Pb3Dvw+AmrE9lw2wh3vsoz2hs7bB4EOXPY5zbZbxs4w9BojfPek0gz1O3fucHWN8PTXvT+8mJHc9L6RTf6VrdD1AneV+jQVzPfzWK2QHT3I9PPpiRcnycT2fbT7Rj8RxPZp5+0iXrXE9h8c4HEWicT3eM5ltvJxxPW4v3YUNmnE9fY6fIMOYcT3COsp3JZhxPUefHdPal3E9pUZWwreXcT1k46Fpp5dxPU+Fqtmfl3E9znnFYJyXcT1PZrfLmpdxPSrhxhSal3E9wyuLxJmXcT0CHIAAAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAApgIAAAAAAAA=eF510ltIUwEcx3G2vGFZ+aCWc82WSeE9bYT2P7MCUzN1QaHIpi2CbrM08UEXpGiBSjorH9Ys81LeNkOdZhevBd4bQWoYec42z5a2lve5FDuX9djT5+X/f/p9o1veyRcncxBFDQermUNBce++cgTEiLQ3JL+cn4BIKypZ7nwEKS5al4mPByOpiCCCmcpFVE39e7w0bsiKNXjNOumMpFw6mfbJj4GwpDcZhv5ViO8+mq8PN4MxPCp9K1QP3mh9RoQTDkU7jWmsiVnoaZ24YOLj0Lg6oNGU4dB1yIxlLeMQlxurFAgNIDvFZH9XGmCXSeCx7mmE8dwNeVaHAUqqVR0Ouw0gF1udQIFD1aLYXuSJAxp64w9XMQvzxeofDpxZUKu2FX6r04OL5HKULkQP3BSXysIPOsiQMKs0Ih148GPsShk6mIl75oAotTDt54S6irUguDassXK08GXo4ZQSx0DU6nukRY3B3vjaZWEJBgEriGnrKgYob8fS6FkMpBaz6zoPg4KA5+7vfTDI4U3whO4YCM9EDgRsJ/7aBjcfMzFosDuf6LqBwpg2MyxoDYX+Kc8D5UsouCTpZ0y/UQhkx16xN6PwWR/TV29CYTiqYbz1JwrNyD6BI+FXTpuXbJ6QHVcaSSjlJkQ7Ey6oP7JxYrcwU1H0OOGtqcGebsLs231v2wktxtNJKkL1m4OJjYQnWE9HXhKmSwXwgjB5rDOmjjD+aWRHLeGrPK2Q1J+bfZj00d0mZ9JwnwEL2YegO/MXaXtvmZF0lIHMkl6fu6gj7UKTtaR3tINUT0FuOZSv8xIoh8qOUUpb/CkLkn0puRYu5fS5/ZQyiTdlnyPtgxG6z+Yq2opq2upGWpGEtrOUdqGeNtB2t2nrO99mjU35v+7/4xObfwHy1r0OAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/Oxv7lZmXcT3i5Hh75mFQP+SqXx4vYVA//dgZnA5gUD9KonyEdV5QPw5oxgd4XFA/3Eox12haUD9rp5ReXllQPwDsWsOYWlA/VIdi7xNjUD9MHGbBGXNQP/9eS+U6w1A/0X4uoAJcUD8Y35lI7vFPP7K5hcJo6U4/jhc/jEinTT+AuOsNmSJMPyryyf4sREo/KoVzr+c+SD9EVDDeOUVFP4vPSM7I0EM/lSnHEdjuQj+sbvYWZKlBP1VwY0jZZkA/r/cD+C8nPj+CU1wTb3c7Pz3pV+02xjg/VQNLRZEfNj9XqMjfp40zPwl3QIzWGTE/YA5AvNCXLT/7GYDu61MpP7BDW0R/cCU/9bcWPF7yIT8+Pq8ox7UdP/vnAvOkUBg/NKLdcaysEz/lzuiFTnoPP78XVC395Ag/i0rolLd2Az946QVQsBb+PoX/wyjv/fY+w1ZrIo1e8T7Xm70GIvLpPlUxk2DRKOM+z6QE2zT62z4eb9dHlTLUPreEdk8o1sw+Ipq5+0FbxD6kH/L/LWy8Pt5HWJ/Qn7M+5b9qNY3Nqj7ygzYm5RqiPh62uEIYMpg+GVzEZyX9jz5Q/Z3B0OuEPnaElnWXE3s+NwwPkX5WcT6r7lXyFvllPtPSTDVjj1s+hgBtHm4bUT6nZMPasAVFPqlR0zfmkjk+OmrISzbNLj52PN3h5V0iPjx4SswfsRU+v4II/SxgCT7R/PyNPmn9PXptnEPV5PA9QiAS4/w/4z1Vu/CAJcjVPfg3Dfaghsg9Z+MPJvWUuz3FM8s2rS6vPdJE2lxq6qE9BIQwy1hKlT3nx7f7c8qKPew++W/YS4I9osckNSyJez3Sf78BTMB2PSa+CgbyPnQ9Glj6mxXycj14FONx1UZyPWJ8etl873E96YPOHlHDcT2FHykSK61xPZNoKq0nonE9mGTQVrmccT2Jb39TEZpxPYQhzWzHmHE9/ojHqCiYcT1N3drb3JdxPQCi8/O4l3E9alaqE6iXcT0bW7I0oJdxPdJgEpCcl3E9rTap45qXcT1QcFogmpdxPRUNG8iZl3E9HQ9joZmXcT3GYnfCAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAARQEAAAAAAAA=eF5jYBicIDn7eY/8XWn7SV53vpqna9k/cT95Z6+Ftr2jFo9Lu7W2/QT+gzmRltr2p9ouzlhmpm1/43Ccmp6Jtv2+ym+M0kba9n83NeZUG2jb8/ly5wTpa9vnsH2fPktP234R9/VadyDN8H11MYg+I+F4oxVIH/n5qOAtkE454dGbBVRvNfni6jdAWuLWt+J0oDllovl/LgHpjIMChdqG2vZPthu4FgDpeeuYdBcD6b1LxCSOA2k/PYbI+0D6B2uXwHsg/SEn4u4PIN3Kb3DoH5A+lZmqzwR0361ZCbIsQDpqmrc2K5CW2TlvF4guer+GhQ1Iz1/wSRNEB/DY2oBoEeX/LiA6qUzcE0R/MPzmBaLv3DntDaJ3MGj6gGihOwFg2qUgEUK7Z4DpPM5sMG0vnQOm31RAaI0lEDp29SiNjQYAsFPUmg==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAbwAAAAAAAAA=eF5jYKAu+Jlv8apq42G7VAGr9Io2Ufu6qwnawRdk7I+Uf7HmvyZrv8BdUPPRXVl7n8bzddc2ydpvD19x4laxrL3Cacmm42qy9nzP3sSzHpWx9zPp3rbkKLe9pT67itGZE3aE7B0Fo4AWAAAdvSXHAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu
index 040606aad97e787067afdd43eca80b0302bc79fb..c33f1898b32100997e73fd6ff93dcbc424f0d32e 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu
@@ -2,37 +2,44 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020795763036"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011485849937"     offset="992"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1348"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6381696729"        RangeMax="11.049883178"         offset="1480"                />
+      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020793691995"     offset="0"                   />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020793781385"     offset="988"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011470533494"     offset="1976"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011469813631"     offset="2332"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2700"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6381712777"        RangeMax="10.795506863"         offset="2784"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4884"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4956"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="5028"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="5100"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9950557169e-11"     RangeMax="0.00013984731947"     offset="3584"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="9.9999999999e-11"     RangeMax="0.00025631787121"     offset="4604"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370224349e-12"     RangeMax="0.002"                offset="5664"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1.1234749145e-07"     offset="6800"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0176126704e-12"     RangeMax="0.0010434128414"      offset="7844"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8980"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9256"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.0001422747936"      offset="5172"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025514941188"     offset="6200"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370224353e-12"     RangeMax="0.002"                offset="7252"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1e-07"                offset="8388"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.01762841e-12"       RangeMax="0.0010446695889"      offset="9428"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="10564"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="10840"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020793961295"     offset="10332"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011473238187"     offset="10884"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11100"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020792364663"     offset="11916"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011465881209"     offset="12472"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12688"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="12752"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11164"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="12968"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12092"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12392"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12704"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="13896"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="14196"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="14508"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxQIAAAAAAAA=eF7t0P8v1HEcwHFzl1KxHDXf4mSivef7IXXdm51uvqQlJ+Z7IvOtfNl8i4WQiWLJJol8a9Iaq64SW3eT850WZU2+1A7hxiV1UfR6f8wP/QGtX7x+eez5+uG1994KClvzP0e0wBVyEu9zNlvOUIny0jDB3PBamutbJj7enTGrxEZYLfye5x0mwoxr/LgpR4TzIhanmxwQzh/2pxNrVtsXg2BPt16RnOcgPBFTlR2MEZZNOi6vHUV4lkEfXoc7seOGeQ32CM+5mwZWH0HYSHBamGqHsOTTLlroYYQH5px+Z9ggXJyu/IFvi7C8TZAutkY4mZfinslCeHS58tAZK4RnlCcrvoJ2ZsfULC0RviwcjX4E1u1dZvlYIHx7+2SoAGQFzzeKzRH2fl5mtwP620KmSTK08eNnqxXg/rCQziBQt1977ALYdNJIIwF0FuuqxoL7eiZV6sEAD9OOW+CS9XszKZgVmnpqCDQq4Npz4O45kWiWCfa11vcUgSFCi4R4kNaZ/HAMFA77vRGC/U2vBgzhnfE+eZo7QSsrL4NAkOuwO9IZHCqoMSoEaYX99ZdA1fLjuc1gYtYLWi2oeWDwbi+o26dSKgK7i+q1JkBBvveXEdA9o7dOCn70kz2YAcOqusTfQWP1HxeXwLKX4aJfYPHq9ZIVUKZtVqwA/1gpSTNfh+ZNr0kVoV1Ks9WJpU91/OlgrTBuhAbmVpSwtoGd7Yxpsm/Wb20mvc7SyyG2KRXKifKGiHFivKBHXwmkX5lXIzq+07UhysrKTYkH2UkOxGhmGps41h3GI0Z1eDoRk/piXYhuliHOROmen67EHBRH2fW5xY04rZhM6eGrdYI4WCqnOkWHR7VBmy1l64IvpR6NT3lzKpTySfVZSi47gvLG63BKdW4UZcvVSMqYtY0Wt29okBFNKeFvGNAY/dd+s7f8N/4B1UukUg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA6gAAAAAAAAA=eF5jYBjeQOli3RkVX0n7qDPJ+W7tAvYnalZvnj1X1v6pXJ/H3tcy9o3XdCons8vZf3px5MOWf7L22/MUF0pwy9k/ep73j1VGzr7xP0fZlB+y9o4dRnGSvHL2l5WeyU2/KWv/5q/CWtcPsvZeQV9POWyStZf9dOr9jVOy9gcPxtUdrZW1/36sbNOTabL2D9j2FX6ykbVvOf6+7lGErP1z/2RV+ecy9qmak5a2ccnaF71t184ukbF/ne/EW71Gxl5B6NaDNM1XduejhHdr72C1h/nDWWPONqvF/Xb4/DoKRsEoGAX0BAD9hFolAQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACAYAAAAAAAA=eF4NkHs81PkexiukpYuZ+X2/W7GZms1Gjgp1iFm/0YZRjlblksJar25ULpUuYnMfl0OptZuJXdfYg5MIhfPIqY5QKkSIojqiMqRMzpnZ31/v1+d5Xs/n+/k+4UOOslSbRXC/rDfEyBdCrg7Z92GfHnjSCmnSEiN2Z/x3df4BPKzfvCC6ul0Pa69J+kTGfIyvqvba8ICH2ummY3vdBeiWZmRef8qHozLvgEU1D5jNF/sH85D/3HTlXGsBfFsKVccTRKyNkTG6FELWNpJ5VuQmYotYB/tEGYHr6bwvb/jyUVplW8SEMVA2+vpcjVvBlsgvnUnfwUdN7CbtR1HL2QR/RW/6Ij7EarHIpHk5m9sxcjMxUmlnGFC9pP6CAD3bXXR7iwn+G9jQF9ZB4GK5u6YrV8jWxVb1Z5YL2WdSxZUquZBtSHMaTeNz+Yy7pycuCtAcFBxj/EbIZhU/Sg50EECVZHrqTr+QNddo/vRun5A9HuGoaZksZEWPLgg3K4XsjqdV5bEPhWzb8rHUzmEh6zw6/fp5Cx8JskMbmt8K8OviN7vT2oSsQp6qSGkToM7OcmEpl0tq3l34oVPIVlzW6O5PF7L/N/9q8Tpub/Ti3se2q5azU/8WJaQ0CfB05mDFrWwha9C4f6z0rpBNE9TXvu8VwEDqYM7/LEDyLZkiMk/IShpsr66dFiA6JibXbScDVUzaCstsPtov32tzYvkIfyp+LtvDQFtR2u2yj8E8J3VIqj4DI3tfc297BgbsdNyRFgbREd5OKdw8Xn5EojJlYNYnOmz7NYMtT5y1avQYiLdn+USN8mA5GOfU9J5B/mJVwgFuT7ajwwPLMwwsjdPfi4sZNG6Yu27jVQaVRX8YjzcKEDOg01qWzuBx6KX4jo0EalXwkL6AYFhDt2CgioHJRvdw9QyDHUdVL4tzGSR3FxcFc/cYaeW9WmpK4CB1ztXuZ1Dwbjg0xJCgxKhSqvktwbZdJquPziEwW3PsRdgQg6mhHuWyDAZa2vc26ewkaPinzrDrbgLDjJqVv6gZeG7NObfta4Ler3zfVnB5dsvHVl0bgvuusZ1PIgnKGiyCZ3kQfDy55efvrQiYcV9PP07XL9D6XWVHcE1RMBm+i+Dwz1+4POT0qciCO38JI4g6b/V372SCRbWeUyURBPnxVsF78gi8rgws64wheKOr/s3iJEH3wm+NlfEEiRMewXb/IHho1+CelUjQFvdsV3YOwajLudBNJQQx9Q8lL+oJbvtV3DRuInBSJmj2FBIUXZJuO8/5V00NAyoaCUJsQzfmcPqp+jbtsjrunWLruQE1XL/Fs9zX3CE4lB+tLynn/HWKrL+1EvxBPGYmKwgSrst+segmUK1YP0NuE4xUHi5+NEiw3cfM+gNHw9xOAe0i8J9t8+r1B4L/9Zn7lL0kmAwrn/zPC4J/fbyX0KpJISrJzjkxQlA53xuSCYLxGZn1+jkU6/aGtg9rUGSlVp0d/UggaRsLt9aluLH61ZKz0wRWU4G1Yh6Fqs/LZJBQnDvRfOX3Lyi2SsZSyDyKzf3zm5uWUSTdvfFjxnyK/jSvo0/0KFoN5AF1X1IM6c+zLzKkqG+fs+aaMcXemwb2dSspHIJ+da3h/OmO/V1HvqGwqjabPmpCkeNwTTZmRXHeedbktDnFy/YlbkYcz9mMeAg4Jn3uXb3KkWLpSHBwkA3FJ7PEBQ++o3BbsE3jhCtF5h3/H7RdKCafLLjk6UwR32kuHuDmKKVr55ytFMsu+IXob6co7Hjh5reTommNxdrKHRSxU04yJcfbPzzQ0femOHk6a6mFB8VvepqT7/ZQ7Dm0Xy7lWBTdg4m9FH6887GpPtx/FsVvDeTmT3m1Oad/pLBbdfzz4yDujtKU2aKDFOUXvsnKDKVoKRzYEMvpty76XhQfo9DvWev9E8fKRK2WklMU7PXMsoPHKabE3w+6RnE9zn39OieC4kR//vX2sxQTrl0ZQdEUakncm6Q4ipHaNJ3AWIrwt3Kdn2Rcfx7vrO7HU5gckP91ZQqFp7/a/nESxRles1dEKtffoFb4fU7/E9TXACs=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA2wIAAAAAAAA=eF4l030s1HEcB3DKQ9fk+eGOe/g5z0lOtYvF73OTRWIxD1MrmiMqYSN2JkwSjUzyMKLEWQ+Xh4QThkPWgxgXho7SkEbC5XG3vr+fv17/vPf55/3+KOkesA0XTLrEfUtu0jHCwMfFzi9RGovrb6QohVdk4bwPtE4HtTI87LtzckvwS3y5gTaaxxLj3OkdfMC+D59L33TDjYfxksaPOlpXZHjFSDp/0OEXXmq6RSkSreNO8zmK8nIluHgysvv8IAVqVsJXTaL0gaqffXXKhw2GPm1+qf5s0DxWoi40YsNuiAiTfzIFz6new0djTaHv3VauhoopyOzzOaIsDHLSXG/aKmHwVnqEojzFhBl2TwSvgwE8eeUbzhc6jDV1dZfHmIBF/J2wn4fo0HgutDCOT4ftOUl3dR0dQuRdA9wdOiwrTswZujNAuap3v24BA4rDOrNOyxhg1zEvqLFiwuZa4BIezYSUVwvaZg1MeKivyEv/wwSLkf78OmsW9HKsdi0vsaCguj+wKJsFXiz5fVk9C+LHE7h6wyzAZTxhwhILxgrtY1uVMZA5ctw9DmKgNtbj2ayNgfT9ve5AAwzcJlRHk6kYBIXTIhONMTgjz/yRa4KBxq2vDgqkppAj3UFOCUWTdchZvYnnTkiJ6mt6PcqL84dUzJDTT9XzH9MwwGYUtWwk+1mwoxjdfSRoX7yMnPeIttFDSqr8H4yinn9LrH1rkLXBqblpyFQKL4aP3Db38/JGzkm1G5yR1+4O8TnIgIXZUCukQW3YNIaM9E3j0pHX6SGLVGSVIKDMEBl0tkfZAOmd+HlBD7kvXm5DGNVe9EIX6Zqk5U84PlpmQniB2vCP2F1mXa+McOVGxCChqPBJH2FkaVwnoSW1uI0wXu7QSnh8WtxCmDE+3EzIrXcnTeWukzveSJKQZjGEpK6rBaSnFrNJxeYZpJXDaaRR8ymkf8dvk9bDntpre3/xH1dlPjM=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA+AIAAAAAAAA=eF4l0/8z03EcwHGNyJ10GLNZeu+Lb5svfY/k8yoqZ6SZLxflqJhVpB3K99bNl+yUfMnXrJLmJCnHOuXccnTVcSmVUpeuqCRu1VldY/p8Pv30+AeeTyOrsTcTuW/9kqV53VY0BHXb21k/ysVYn8yX1pYqw3bM2eeaz5VjqRT9qTUxV7E5i6vVpSkdGM+8LTo88D4W/1B1vnnpISYsq6ILKaNY/eOMvDCTCazSdiqmz2QaUyos6CVDv7Dh2sQnYrEBMwnVrbLuMAOTLtUVUT0V2Kf2P2k4bQsFUzfCPxy3g6eVv4s1t2ggiuisNd5HB29VukigcIBkuxDl7RRH8Prjm6ZmsmDbVuniuUYOcCmXLRkDzlD9Qhv8hsOD4WfDEyFDa8EgUOYrxF5g2tua737QE9JvhhfOSDzAcLRxy8QJd0j3TlxcyuSDnNk7aCrnQVRw0ooz5W4wnh/Hn1G5QkCqZ2H6oAsw/C75zM85g+pGvH6a6wzWF4JSpBInWMgWTIfc44JQ9/LvJIMLud++PBcqODDewBqIW8GBlWlFU9eq2LA8Nmh1nicbdK8XDJyXLKjbvI3aVcwCfSBv76ZdLNg6n1HUbMGCmBKZ9u87BI2+FcqN3QgiZkb0kVUIWnUVYSeyEPhnUYXXDyP4vN6mwU2E4LiHcdzunQi+S3sWon0QiOT8ybG1CF7FJmgCeQj49bPMnU4IauvVtzJZCJrX+UuuOCJwdWrJkTMRZIsNifMMBI8ipPajdAQnOx1CluGqa7Vmx+wRGEZN9xvhalJ4gm68Cz+J56wMV2lhefcArqvlrk8BuOq9rZQNuMGZkU0uuExttxnCtWtPWGTgKo7w22m4ujJOgS2uDDvjSMWlHqL72OByY1CLNW5pgV5AGMUOtCJcV5M8S/QYwBaNEVr1Dz0m9G6reUAYaqTqJXSOvdND2CfR3iXUmH1VE36U7SF9N/KL7Pqti4aU0tREqntfTtqfdJb0J0dO2rdZRnqxMp80p+f/F/8ABIA7SA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/LOo8dJNYmA/RDtFd1U+cj34fPknMGJgPykhZJP4YWA/lPKqO5hhYD+qc3jx+WBgPxorfUAAYGA/FgSTL4NeYD/uqx+8TVxgP3botCcbWWA/rFepO5RUYD8ob8ezTE5gPxBF5A3BRWA/ttyUB1U6YD+EPd4kUytgP8QX7JjtF2A/LrMA/H7+Xz8IIzHqpsBfP5rCUuRPdF8/Gc8rxW8XXz/J/V9CCaheP0BK679CJF4/tE/VE3+KXT+MNg/rdtlcP4xEPUVREFw/hb/RWbkuWz8QvUMt8DRaPyCwV7bYI1k/dsdzNfz8Vz8Z9L/Kh8JWP0yJzUVBd1U/zBiMWXQeVD84YRLU2LtSPwZgXzZzU1E/r9zV3OLSTz+8Cb90CwRNPwfF5K2DQko/LV+tFOmVRz+DhOnHFgVFP3i4Flv0lUI/SvnALFJNQD9oSc6AqF08P5gm8k7XeTg/+FpMK7vxND+2M0PorMUxP6/yysoa6C0/JJ417BrzKD9uryUu/aIkP63YoVNO7CA/VAuY0VWEGz8fqQ2vtS0WP4bh5Pu4uBE/WrYSvmwTDD+yd0rVOwwGPxLjpWkUKgE/wyQR7ZN++j5AvLWxjUX0Pjx0XQz9wO4+LNFzzqwg5z4UPYS4UT7hPhgAsmInftk+WDlfDwiv0j6KSX3QbCfLPgZgQ3KrkMM+M/WSKN70uz4i65aJQ86zPpS983Dy06s+ILhNsg9joz6OIiET88maPnzfvzsSW5I+zJ3JQ8PyiD56R4X729CAPiwsJL0PfHY+dLMiIU7SbT575TMCDZ5jPsYciROEmlk+cfNLtlqTUD7TZc4t6kpFPjIoKmVHIzs+rKzKPc0oMT5qn2+nZIglPpnvFnOh0Bo+N8pmmzCSED4ktX/kkVQEPqrFb9Cyw/g9xHdCF/L17T01mTzAuQLiPey4pi7xidU9XlzxLUSpyT28HOzNkYm+PXPimJKTOrI97UVgykX9pT3zMIrDQBmbPaZ4w+kbU5E9wIdqguVphz3MB1NaugCBPcplhAIxvno9qyuExaWodj1tYqLOMGF0PXCgN7peH3M9JHAcARJ2cj2RlWrQAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA7QIAAAAAAAA=eF4l0vlPUgEcAHCvXKJpaoebC+mUwJqT1NS+j6am05kxAWdL7JyVqKWC1TpmG2UpNq/SLa0ZiRQdzlWz6K6lqd3Da2jvgTzIg1TKoNB67/XT5x/4uAkUNinzFJJgD8IUoyh0ynWyVKQYSfYooV3jixF8Ff5q594sRPFFLp7fw0MkSfvnOjzjEPXU2ro6TgSS5V7Dzj/DQlTSvuqaEAZSGFNaGRe4CLFoazQVdR5IsrrxCMfohOjTtw21p/4CZz6jaaPLJLTrJZXOvkbI7T6kiBIbYdEKdR672gjelpbsyVdGYH6Uj690wSFezcd1W3Eocm3cHNOCgxKcE48tMMFjfc3piFMmeJMheFs2boK2SOHxVK4ZHmgYltYOM7hfGi3/tsEM+4rDw092miCbPeNpyjJB5/obtINWHKzv/lzxO4uDPL0j7uZSHFq7Upg7bhih4XvG+sxNRrCIusK0n0ZAenOZvTdnBJL3vx4WzB8BZn5eP11tgJmqtI86vgH2PHtp8XQ1ACPp7uBsux6O9mrfD0j10B8QnHQ1Sg+HnzbRWG56+Bz93T9Si8FbiyMh5xYGxqi+dMF5DBpqT9w7KsbA9rMglJ+GgWx31GIRYMDb9qLCNwSDSnpVzNQyDCQvc6dkfhgo83ou7fTAwMd/75YgFwzusPw1eQ4ULjgGuE42FOxXnjPqfqCg1si+OqZQaFalcOZNohBtjZwut6Dg0N2eKZpAgfZX4q0cR4FOj5z1IcyZ4NcrxlDwchqaExJGP9xioRMWc1VhNuIFe1dB6BDhm7YmWRdhvuFi+xPC3JR49/uETcd9WXcJJZevctWEa1jbW1SEq3jd00pCsQ+3t5mwkJZEJ13SxlNdJ8TM8SLS8t/mdaQDwtiFpB+C+2bJjwFeJ6dJ7RPlY6SeIUITKft59wgpsz7RQJpwYLee1NY7QD0eLimjrFdlUj5aG0t5jsahfCFiUVpLV1NWP1tBWStcThmYw6AcdP/vP3w7rzA=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Jis8dJNYlA/USv3h+vmcT0AXwNaRmJQPy7GSxU6YlA/tie20CliUD+33RKZGmJQP1PRz4YaYlA/S+knU0liUD/KSDI46GJQP9wHIvV4ZFA/TA/blfNnUD9kUKOa9W5QP6nBcON7e1A/enQY8zWPUD/abONanLRQP+zs6AFkGFE/vav9sNXxUD8ykxEVWrxQP6CwNJG6eFA/psQrcT0kUD8upP8fw3dPPxgGyLu3eE4/ebgXVVxDTT+BXv6Ok81LPx7pONDyFko/2HF0Hok/SD+dvJR2vTxFP2AWB6Tyy0Q/5cAQiR/xQz/nAR6CQf5CP2wsAVJw+kE/4BpLNxfpQD8QRMPG8po/P+YwNsu2VT0/+RwR5lYJOz9k0ejt4Lw4P+JyudVRdzY/Zthku1Q/ND8/HiD2CRsyPyju5qXXDzA/Up7siopELD9W3UP0xqsoP1Mt9SaBWiU/SK9VmdJTIj/eaT140jEfP0QXJ11jUho/tgtEWx8FFj8ud+gUQEMSP/Dqoen9Bw4/EjgntEd6CD9vURfDGscDPwRXbrCzrv8+ElCQ28gn+T4yuag6kMzzPqF+B8Ep5e4+pt8M2S/l5z6YEZNEHlLiPvxKy8qS2ds+Z82/xAr81D7KjVqTqlnPPsDFT6p2N8c+iAGYoLgLwT7u+Liz9tC4PmwNBZQh6bE+0VjKT1SiqT6CnS3HZzCiPk7MqGh9mJk+OIgZ+b3bkT61ov0QXraIPo3zV3ft9IA+99IuxA4Udz5DknlC/SZvPgAg+rGc2mQ+hNRRUZGxWz4O0unccT1SPna5wmSk1Uc++IwzM6flPj6R9WqDMN4zPrDF5RvvWSk+dIiBP2kMID6uKW02uSkUPghMElMsJAk+bGppDzAe/z0ktnWU9h7zPXFZNJljV+c9vOoLtXBS3D0ivLA3NxnRPYzjmFwOlcQ9n6ei/8rGuD0H5mSlYvqtPWKxdklBYKI9wtPPdkcalz0AP7F5gkSOPUCiltEoCIU9W/LDfkZwfz3wd6hPGF95PagH2pmm7nU9MHeDei7/cz3auzO3fupyPXX6aXTHUXI9oJFKtGQBcj2hv3FqAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfQEAAAAAAAA=eF5jYBja4NB754N2ZdPt5PZGbD9frGK/WkJwfqCetr1v1aI13o7a9tNeTPjFDqSLAny3PrbTts/7pZRab6Ntv26axmdVK237Vh/9pPfm2vYbTJa/fmWqbW/BNCNVxUTb/lH9geQlRtr2t7/z7M831LZfwPfap91A296N5/DH5/ra9n0XZYS6gfScmXbB6UD6D5fixEIgbdXH/mouiD6zYv8DIO2izjxJH6hPYn/2/EYg/cjvld0FIL2gReWLGNBcq50bXIOB9Bsey7QWIH2o7/+RVUB61ve8WceB9AHe+sY7QFr0XZzGayB9LPKB9FcgPTW6evVvIO3REPrgP5A+se9gAxPQvXN3u0mxAGn1jZd5WYF0hFbubBAdFfH7NYjeLXNHgg1IS1rEGIJoz3WVdiB6yYkYVxCdWP/SA0Rbym31AtERxTO9QfSEHxw+INo3xw5M51aGg+klLslg+mVDBphOe5oFpmc9zAbTzVk5YHr/VAgdu3po0QDqKtK8AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF5jYKAv2Of3ca7pKxH7a2dl6ta4yNrvuv/DRIVZzt5H+4R/v7Cc/cPDsq+uMcnZJ0xgTnv3RNbeRCnhbs8+WfuYI1kSoV2y9kbPwypeecnaL9tT9fTSDxn7dXqpMsUTZOzD73sWtzr9sXPWmLPNanG9HSF3jIJRQAwAALEFLUs=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwgIAAAAAAAA=eF7t0OtL01EYwPGxlVF5yazJ0jRRsTxeypa5TT3T5sgLIkgKptXUMue8gImZFGqRXUiLvJU6NBTnlmW0WIioWRLmNDNSw8ucSQmlE5dWm1rP+Y1e9AdEbzpvPnyf58U5HBrt//mXJ6wBzfRUTwf+7ujSsY7gL254qNQQ7sl0wv4XX815+iHs1uOgtqpwx8ct5dfYQQjjrgElwgjrzHp98/kIzzOG322E+aOUrY0hgQjHrHVacWF/V5aTruXBXjTqovVHuFF5wryEg/Aky8PmMhfhOO6nC6KDCLumfBsLhXvK6797ig8gLNctbA/wRfhIooHzeD/C9c2RNhI2wsYmlzSBD8K8+Ca9BuwuGXjqtA/hxeFb/lJQr4y1Dt+LsGb6c5EMbHcOKWz3RrhO4SNeAfNCOaoMsK0yjF4GZvBUQ7FgUm5r7inwqNgiUQK2r7LXToNVD+0y60CvyM6RUnA5Ozl/FtQ5+MW+BkVliigu3MPaNtVtD1ospt++AfKbd9EyQcbZWMtx0CrNaOwA3bIMKvLeq5jTvwEczyk+Hw+KmE6VQvArz33mOlgjK+KdA1Pve1W0gvEMte4eyI7xWOgDNz9/3/sM5LAYUg1YPY9jRsGMOGnUHJjuOH5oFlSz5CXL4MRIyx496Kq1rV0hZs+eNIBJCkkeDf7RYzDa+id0QlGAhg7NVxXSiFW1u6PXgTOsLjUDnJQLvdeDKcfMp8g8XS97QDr4w2oBcU4wsEzs6980QQxveetgBt50rtxCdEkuZxO19RoPIqJ784ln6pj+RHUEX0is+rhTQAzyTQgl9vgKDxNtd+jCiG+MiZQrq0/CiQ3jWZQ/lMwI4hXBEtX0QQHVSzo2peBOnGlvH015SZpMKfYWUWY5plLaZqZQytlplG3FYkpsJ6F8+cI0dyowdWSSyQSFSX3Nn/3fv+MvmDaeQQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxAIAAAAAAAA=eF7t0P8v1HEcwPHLl4RbmZkvqaTk25s5X+7cIW/Xli/nfE+y8m3KJF/GkMrJCgnpi4TCdm2VqE1J+jKhOEtkOMqcoZPlMJWESL3en1s/9Ae0fvH65bHn+4f3+7U3jbY2/3N01Ufi9IPV8J9mZAkueM+a4tizYoaocif+lJ+0sdEB4f0DgvhOqTnu9zrIduIinFT74eQIRlg7+EHEFheEt0tVLNrBefxsVbwbYW5xxtO3zghnlxllxjsiXN4/sRjvhLBUo+3rVg7CrQKNSS24d2ma93CBhbBu463rw/YId2HRPVUmwvVenPH34HDd0JlQW4T7Unxvatoh/Misx/+nNcLRV1khRTYI327Wc59kIMw+3isJg3PdZlqqIbSE7zyWBj655qYltEI4T6eKNQTKrhTphINhGWqmmWBgWYPGPrB34Bw3FNR4bspMBANGjdxjQFqUT0INWBH4xbUUjGEygxbA1pWIyxJQQda3xIN3ku+0VFqAstfqoZWgr9C++jT4g17SPAXyPHPo3WBXe2meFezZ5iHz1gbHlGo3RYM8lW20ALL/uMi4GFz8aHgoC8xKi61rAB9rFg5Vg7lmFbY9YLq5XVM7WJhaEi4FxR7fqyTgjQED2SzYIuDwp8ATyVL+IpiWdIQzD1oPvGki/2fkaPJyGXTjvbBeB//owxB//gUdlG7spwg91+tQoADmxg6XKIG76N8MifVVrUHK4HxEhyZxw2aaiMi2PF9J7BAtKa4HZfMjM6S7mPrGpA0Sl/WIfis5bCLXUsGGOo9020McDHjnTIySBLkRWQmX9hJnuNMeRI/DypSMWZYnUdj9ikcURw1SPUEXUgpGTfjEgk465f0lvlwXF0qXuFBKYcoBSteQKMrsu5GUtpNHKf0vRlPuyD9GGa8q95RrLGXcqrzzCuXdkCg3pEbuXPnfvea/8TcZ3J+EAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA6gAAAAAAAAA=eF5jYBjeYMmW4rXnNkvYL43Z0DNzhoB9lLzTxowwWftjc1KD1yrK2B8OmvqP9b+sfdJj9v+St2TtH025o9TALWcv4KSwbJ+gnL1iXN+9hh+y9jpXVmYdYZOzl/xwKZD3pqx9oa6t6pY3svYbWrOUXDbI2i/zUKrcf1zW/k6Z8eTmSln7ifXsraVTZO05Lvv/7zGXtV/ndYrxdLisfdqzFxuzn8nYdy0X8pjLJWt/MvbRpWfB0vZFdxzTQjfK2BsZZPXPjH9t57cs6sYiE1Z7mD96X0SoM0QfscPn11EwCkbBKKAnAABuOlThAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA8QAAAAAAAAA=eF5jYBheoGSm2j6FlTftYHwtj+ruBk9J++nLRT+68wjZq7E80cnJkbU/q72ScWakjP37lV43VRnl7H1z1MwmP5S1n7Uk6Nl7Tjn7GHXbX06CcvZTt0twVX+VtXf22z/PiUXO/gJ7h8eqK7L2CSkhWpdfyNpf4/2mEbhK1r6e40pqzCFZ+2/VahxHC2Xtp6U9yAntlbU/NovX+K+urH1qJue7Y36y9retcvXe3pKxD8lZvuDWfxn7Ny/frT+8QNQ+wV0gs3SZjP2ihrfLsu48shObIXMz7/B/uD8iznD3TJq2Bc4fBaNgFIyCgQYAnKBYHg==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAABQYAAAAAAAA=eF4VkH84lXkaxhtdVhOLc973+w3L6aUc6YeTbIQyr1hjUVwlmqJmc/lx0GFU0olilEwp1VYqNc1OIsbv0A8N916cpkxMLKlWDocalToRJoR996/nuj/3/VzPfT0PjeWOky5GCCtflzeda4gbtbU2ayKN8akoWebxxAh/y2i32xEmAn4ZKfbLseYv34pj498t5D05gyRrlQhpq09UekYxyF+efVXiIUaE67orSSvFoIaB97pUDGo1BRb58xj4SqbTH4WI0bL3RFnjJjFKEgPG3qeJYNuhsX+usuL3Xm1je5Ks+La5tMVyUoTZ67dcdicMsl0kDld+NYaR+NyMaYElHziml77kKzF0Zw7+PhFuyY85BZyLU7ytH9ojdRVf4/ifNq2Zef9vEZ7R7kxxMYPn+muX2zRyfJ/DVSJhjeGj02gQNM3xU6ab+Z4LYmTGnh3Q/sHxVV8n3o7t4/gfugwYcSrHSzPDMvtrOH7ZgQWfjj3n+P7E8Ej5bWGvoHVl5AuOV0r3untmiWAitdiYLPDearfK6vscPyjZMNLpZMk3L2rVPdUshjK727VXxOCCpzNvfEgMzeLreupRjrdZpsrRvhNhwxGc/7Kb42MyNfI50wyagr81iprg+Lj+M6eW3eX4/TbdpUmFDAqLbrVsmGFgMOqcH7uWhXYkaHy3huNP++43UTYzWH1FYXosm8WYv4uyc6MYhj+c2B2jx6JrDlh5GYO0oNxfl7xn0FiHiHYPFjmDIen+4xwvb3+ouLmCRfzp0uG8PBZtRmd+/vkii8KZxAsWrQycX3utOf+IQXr8/EOhRgz4k5+58R0srLxS5/XWMjitmfz7n26y4IvMZtkeYJGqc1lq8S8WjrF1y1PSWKjVTbpjSwnutTc4XFSzmFnvHXiDEty1yCk0VQm54+bfO/2XhcQl2v7WKxYDQx3fL3jC4o73yvuKzwmUZwIr3D0Jgpe0b22eR2BvZx/YFk7gpRhu7+ljMX/9QuzWI7ANWVvSvIIgLXnr+NElBA5TmcfEXxJo3uiYX/qCoMx1vn6pM0FxElUe3kYg9nCZK/3Iwj9KVljpQdAfd71xdDvBkZiPQ2vkBKZmdVPWwp3f/HY88vEjqPi9umfAjeDZ5YMLXmYSaNN0iyp2ESjKrY40ClpxTnZFGS301amPjq0kqDl53CxqK4F1rm2hJI7APzUiuUnIn1lfV1aXQtDRaKgztJvgUub1gKIqAvNF0ogPVwmyTxh95X2U4MFEm/ZcDsH+W0tdXU4S5K97Y25VS7BTYvuZy10C1cjqbfUFBM321eMlwn60anlWRzFBp1fK2HArwa7XKZ2jJQRPV09UqVUExrbdziaCvuG4+TffbgK7ILOOyT6C3IwFjm+6CD59d6hE1UNgVV7Tnv2KoFD27ap9agL34QPXa8cI8g4e6FysJVjX0FAmF3yZySvDXz4Q9IWH2mx/TWBZkJEw+yXB49zuO9pPBPGDHcOpb///T++Fs2dRTNtfyjYYISjoHZfq6VPMvb+prGmGYFVFcLOXiCLUe2GKryHF3XqLLUm6FP6ndKLEf6Ewr6yVvSQUkjd1PovNKDQls55qOYrBhuLMKsFvS2mIfyzw0LguNSOmMNTnZO52FFUN9wYdbSgeTg3ua5NS1DceMQizpdhMNWYNThQ+10JXVdtTxEnUA09cKF5cTDj1hRvFpJ0ow8+DYmnqi+8UXhTKl+01230pZOFPT7b4Udy5c/NGrKDj1p4/y/pQOJdO/HF0g+APSbrcgihu593eN7BFuDPuXm4eQLHxdEXYN6EUi/d09SqDKd790/zazu0Uu2RZPTuE3MULrX8+G0HhaM0cyxK4Pz6vehBGEey2cVtIOMWWugwH151CH7c5VQZyiqHNpXqtCRSL8j+4r4iheBYZoLZOpHiS7VFZvIfirxly3Y/7KKK3+v0jXeDTiv5Bk1SKEVdrRUmy0OvHvvKONAr9Za9Ma4SZO2XcdPwwxei7mceKQxRWIbFVTkcpTBLM3R5lUHx9WPuNdRZF0VRC5H8E/jZovyr5OEWMNvBBi8D/B70p9/4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA4AIAAAAAAAA=eF4l030s1HEcB3DyuBCXx8vd/X4nO7Wuhanm6n6frgcMZaQpVop5mMvDuG4rKuJo8rAUKnIpV4uG8pRZtDx0no4wj6FH7uhWnGcbfX/nr9f2+Xz2/ufz+TR8GBqZTBjjfplMqKFY4uAotC2/Ko0hbqw8WA7MvEscCvWjdM0/IUYKVB3ZHqXEY652utOO94SZNPHs5d2thPy+Vlu8SR8RrPmzxfD0BDEkEbFmdRRERS8rX5C6QDQ1BnnHpWjA6PC8ZcXYdhhbxHycbM3hu79sn0piA0x27Iqzhw2MK0d/t1NtQDxjo6/qYIIbd9VtNpoJdm0BqkgtJsyUnotQpuFQSJWEn9rEoFAiKvo4wQAfYZT4di0dqDFGrtg7GghdjT3nhNYw/fxNpz+VBtc7KS6VfBoY/4tdZFfToOSbbk/0Jg3uiLXL+R50SKyktaTl00GqofCr+0EHzaOp5XpsBhTbh2UkxTKgKrBbyq1hwCMFhxepYsAe056kYDYGysMho0WBGPDWOEdkGRg4hq7K+6swaDdK624ZwGBQERH16y8GFhfa1mXbcAjvd7zHNcBhNd6zM4OCQ/z80hUTCxwOPBU1W1NxqLNY3baxCweRb+6rDWscCL0/JQE0HHiWOpFuyM7IhkUlqudpyYV8pPOMzrMhNP+5jKp/HGmZc+JlNcpJ9na2P4j0sgp1b7PCIUjplRSOdN3vbWiNZLX2XPqK9ryZm5ddimT3FRQlI33rDYpDkCEy/ugZpGtDnJSLrI7RZTkgBRfFcjtkc4yYw0RG9+4V0JAmnDJTKjKM3VhrgbR/0WFqjuRcy1wwJXMpWQ6kJTmC8p1Igy6WHykbsuik0efly+TdVaWIJkkLB8d7SKdk062kiyfFTaR8v7cNpMeKePWka9RPdaTdvOFa0uIBd7W+mkvqO9ZIbVZbVyFRW8F5qBbH0tWyIGWrP5Wo1mzj1tbc1E216y5bvp7b+ov/CrJAJQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA9AIAAAAAAAA=eF4l0/8z03EcwPGuOqkkYRuTec/XWmJ1UpY+r2ukFM5a0TEkXy+XnC8taUKyLt9aqMkdZyPU1TrflqY2rkj5Uuh8PZwjjjlKcn2zPp/10+MfeD4VrwaGxq+PHGmJFzTsoCBYVnOq3wkjsWOBD1IZ0WmYBTXOI2tahI140si1nHJME+ylExUsw6ok4iWlqwITZBxghK+2YZeL6ySan73Y+lVyAHt4DIut4QSujc9iUed+d4fVL2PKvENn2YkajF+2bZgVrQvit+rPu5eMwbwtNCOMTwIFva+KH08GqTqfLpdRIGvUj+cbYAqxVFbFrVwzeNbF73GKp4ERL/eMyIIOvVERrV8KrcBS3fby76gtrEzVOWyVMMBo0DG09gUTvvrL0q0YjnC19P3MjxAHEEvY271D9kIw+3Bve4w9ZHKF5hsS9kBO6bXzMQIGJH/vE1BzdoN87mDzRPkucDAO8mpX2YHAqDS7Zs4WLshTpBpkC+Q9zYov4Tbg1HQ8mSa3hu8N7lx9E2t4LT6t6BRaQbp0smCXjhUM5Lko6u5ZQk1k5aZue0vwNrxj+ryPDp1xH0uSsujQMbvy3NadDhu3vIlRbaVDa8KVE66jCFguokf36xH0cEs8+gsQrCK9Lp1kBCsdHE/fMAQUAV81zUFw9KSLysAdQdH1bF2mCwKuDy9czkQQ6jPY58BAIMsXMvfZIEhoDEi6SEdwinG5t4iGILtJT5ayE0EWimhYpOIynP50myJ46hYUuGaCwJwl/RaNK5vvmlrDewhW6nvU464bIrHScGmZk6483CJl7V033KB03of9uP7z5QI73JEZ0aIFbpy4aoGKS67USCi4D1PKBCRcM1UQ1RjXzybV2QiXXXmj0hBXX/jTk5D5pNqAkLtZb4HosbCbMkD4q6Omg9B5LKOF0Le1uJkw0f5xE2E/Sy0nNJVONxKu2+mldYvusrbrCblS66cwidbSZpHWS4G3/3dPuqmVZJOm1a8oVWtF0/8v/gGozkXSAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/UE5pd1U+cj3JZfknMGJgPwDRY5P4YWA/nzyqO5hhYD/DE3fx+WBgP8WmekAAYGA/X0qPL4NeYD/Ctxm8TVxgP5VwqScbWWA/4h54O5RUYD/9IXGzTE5gP9/Mcg3BRWA/pWYNDFU6YD9WxEUrUytgP+79kZ7tF2A/kCbL+X7+Xz8qYD7qpsBfP+Zr8+NPdF8/hTD6xG8XXz/q/x5CCahePzeio79CJF4/qg6RE3+KXT/Q0gnrdtlcP919k0RREFw//gSqV7kuWz808I0t8DRaPwVV8rbYI1k/yFekNfz8Vz8oa8bKh8JWPwYOzUVBd1U/YaGPWXQeVD80axnU2LtSP8vSaDZzU1E/m4Ds3OLSTz+W89h0CwRNPwZ8Aa6DQko/7GjMFOmVRz+VUgrIFgVFP0i8OFv0lUI/+anjLFJNQD900xOBqF08P9LdNk/XeTg/fi6PK7vxND/XTIPorMUxP0QoRMsa6C0/jJ2m7BrzKD/QiY0u/aIkPwkYAFRO7CA/LK5A0lWEGz9anaKvtS0WP4i/Zvy4uBE/5k3yvmwTDD97hwjWOwwGP9N4RWoUKgE/0OYZ7pN++j6gxI6yjUX0Pmo7vQ39wO4+b5CNz6wg5z6wZ2O5UT7hPpegD2Qnftk+xi5uEAiv0j5R0RzSbCfLPgyyfnOrkMM+TphsKt70uz7u/faKQ86zPvf9+XLy06s+RWzHsw9joz7JYUIV88maPiyiRT0SW5I+jqnxRcPyiD6Smwj929CAPvqdPr8PfHY+A4YIJE7SbT4cUi4EDZ5jPj1vNhaEmlk+WJcXuFqTUD4OojEw6kpFPjPaT2hHIzs+FD7ZP80oMT7OEhqqZIglPtwLhHah0Bo+OMqVnTCSED7dVULnkVQEPoTT5dOyw/g9C3+QG/L17T1ziuTCuQLiPUvy5jHxidU9mR7kMUSpyT2IDa7SkYm+PV0KcZWTOrI9ykLAzUX9pT1+lYPHQBmbPUP0FewbU5E9ThIcheVphz1E+d9bugCBPVD7SQQxvno9KXaFxqWodj06TTPPMGF0PVAeibpeH3M90cdLARJ2cj0oqW7dAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA6gIAAAAAAAA=eF4l0vkzVAEcAPDWGcI4kyNXmUJoZzOu72vs6pJMjmGrdcsoYkItMpkcOZJmikwycpQtNxlypXEsVmSMKaOl93bXPrmvbNNkpvdeP33+gc/5pp7SrW+pyOS2KVa9hMIkzZ9W6cBFOmdag9gTN5HRfJYgvCYYaSiMc6XxLyPYi/TkzCMspC37KXM/4ojYhxvhghJrZNxRrjnK2QzxNTZV0XLTRRrVBtkbAhWkPsaOWS3eh7ho7Jpf5O2Cwft+2z6tdchgXMtynpLAgaq8u7EFC9DB2LvyOG8B+iJR/zL+Ahy8FUbHaFIwSvn4Nd9bCiVziY0YTwoeeHvXPg0ceNHNrIE0HGyzVM/obOCgxr0/y/NehIYJhmxkYBFazk5nvLJbBK6TZ+rLARzuWVa0XOfgUKtZuae/KYUKx+cX+JlSmNEutAjSk0L/k0stZrwFGOiqTXB1IRzWb5v6IoGd3RyvX9ES0M727CpWkgDDl66b+U4MVsOyR5G+Ygih9zS308TAWnZrFnSIgG95Kmo4SQRDpxWV651EkDYaa+QvL4JnwuOpadMYfI4owEfqMFCMPqYgyMVgKF3ZWT4Gg5rW7+wNHww6w+S7VAEDD8NzZeM2GIQV/+7tNMFA28BBj62NQeBcaYurCgYPUhkzcnIYmBQnJQb+RWFcWiRbk6Fgk2wmzNtBQY+dLdjaRKHRRbl8bx2FIrd5r4drKCQIr47Hr6LQq6+uWL2CwvyhjDF1Qs5uvFLVMgqJRoYif8IJYbzVYcLc0E88GfHCvWNsUkhYeSecJSD8EJFW0EvY59e92Ea4FMrVbyJso3XT6wgDmJvlbwn96jirNYR85uDUG8LZAB1jUlPuSs1rwpzSKA5pWGTICdLO2VVN0hsj1XvkR2PD4C1Su9spy6ROMZ44aYDfkIR0eI4lJp21DxGR/smZoR5bTuRRyjE5lJKf7pQnhXTK2mBryu2so5RNPywopT7mlK1xZpR0hf/+AwHzrhw=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/QZB3rf3mcT2KgvA+RmJQPxiOt8U5YlA/5sNcHiliUD/Q3kk7GWJQP+xzfBQYYlA/CBziv0ViUD/iPQmV4mJQPzA9pUJuZFA/CtEX3MVnUD9HZpuUpm5QP3voLCMTe1A/y8nThGGTUD9WVO6hVLpQP02YCm6pHVE/v0M+ijDxUD9mFu88ZbxQP2kLqOWKeFA/SKvcSRAkUD+8HyYRNHdPPxtp1IX3d04/vbgGcINCTT+ZT+VRFdBLPyIdt8zhD0o/10sqd3ocSD/Df0QodUdFP7oWYzF73EQ/bQKLhXTyQz/eR30mOgFDPzkOyUs9/EE/bBJ1CCHrQD/fb9bp3Z4/Pz2IlgSHWT0/teIMa/QMOz9fh00ySMA4P3QE5Fp+ejY/1+/Uk0RCND/7UxRLvB0yP7p0odVMEjA/p30HJf1ILD+HRSi7xa8oPzT7BSMRXiU/wvZ9qPlWIj8yoDe7WzcfP00PjrA1Vxo/9defTUkJFj/Kt5iS0EYSP4LJJgsKDg4/pBF4wFx/CD8smeq3VcsDPx9Y1POstf8+2wNKx3kt+T5J3fFBKdHzPucc4UyE7O4+B09A/AHr5z697tu8rVbiPtK0jW2l4Ns+PvanfngB1T6xynIw6mHPPqvvfqeqPcc+ggQhz1YQwT5DoCFAxde4PmwrxBgZ7rE+Uo9Kq4GpqT4/gcJSijWiPuLZ5TbEn5k+NJBHMtngkT40RPRZd72IPum2OsnQ+YA+Vs/R+bkadz6TWJEDATBvPt0ku0Km4GQ+pjCS3JS5Wz6866ZKt0JSPsaf/OmD3Ec+sHPeXonuPj4kIZl24eMzPjLA+OUpYSk+pLDQ0PYQID6gk/jyaC8UPhxXjVY3Kwk+ofRry9Ym/z2vbC+3OyTzPfz+jwDCXec9H8mdPhNa3D28e4l7wR3RPbCVushpmsQ9vy6knxDNuD1K22L5qwGuPSDB4oZ0ZKI9i2ilsBUflz0wnER390mOPQoD0hk8C4U9ozxIT7dzfz1gSuNwAWF5PeT6r0G073U9bWtZFML/cz00Vhb5zupyPYBSH/zyUXI9G2nzG30Bcj05WG8lAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfgEAAAAAAAA=eF5jYBjawGuJ9pOjsy/ZTeLPZrVoVLE3WvLljtxzLXv/9D3yBg7a9nmt/m2HgDSLceat/Xba9i6s6p6JNtr2TunH+LmstO0PBOSvvWqubb/gxJeFl0217X+3LlnGb6JtL82Upj/JSNv+ltGGX/GG2vYvTyueqjTQtl/3fHfpHX1t+1kfDsY0AumMm8aq8UCax0RxQxaQflyXqzwDSBd5+r28DaRtrxzt1AbqW+Z73LMOSHcWaraeBdI3rs88JAI0V84tpCsQSHsUXeNvBtKPwv8eWgmkF/Aw3z0GpF81K/66DaTf2dieegWkr/zQvvMFSKtqNTT+BtInbBOO/gfS5+bcz2cCundf9Bd+FiC9qGUlOyuQjsi+PB1Ex3S+eQmi8zK2irMBaabmXQYgOuCikh2I3iSp7wqim7dd9ADRX7hWeoHlcyd7g+gDf1h9QPSf+zZg+tmtMDD9/VkSmHZxzwDTRveywDTzh2wwvaMwB0xrLIHQsauHFg0A5nHVRg==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfwAAAAAAAAA=eF5jYKAvWMIhJGuyTMRe4F4wE/ceGXuh2ef+9b+Rta/MrkuZzydnryY5Z8mi/7L2R/k6dj94JGuvnX7sLOMeWXuzatmeP22y9rf5ehnWuMva/zj2t6blh4y9nOwkmXlMMvZRRqY2nTx/7HpfRKgzRG+xI+SOUTAKiAEADQUpeA==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu
index cfdcb9f2805f7bcce3c00afdda512293b927b47f..3fa31c3bb11a0ad30f23e06240bbd436a9ff6e6c 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu
@@ -2,37 +2,44 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020802749998"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.000114943069"       offset="1080"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1500"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6426421061"        RangeMax="11.337004803"         offset="1632"                />
+      <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020802827177"     offset="0"                   />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020802449565"     offset="1088"                />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011485668115"     offset="2172"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011485797604"     offset="2592"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="3008"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.6442569639"        RangeMax="10.834225551"         offset="3092"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="5196"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="5268"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="5340"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="5412"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9991998888e-11"     RangeMax="0.00014208044046"     offset="3740"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025917245367"     offset="4816"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414899631e-10"     RangeMax="0.002"                offset="5928"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308419832e-10"     RangeMax="1.1331941559e-07"     offset="7064"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.927318302e-11"      RangeMax="0.0010528606376"      offset="8160"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9296"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9572"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00014412357257"     offset="5484"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00025855272507"     offset="6556"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414899708e-10"     RangeMax="0.002"                offset="7660"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841983e-10"      RangeMax="1.0907812675e-07"     offset="8796"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.9325922084e-11"     RangeMax="0.0010533299029"      offset="9896"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="11032"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="11308"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020801585749"     offset="10648"               />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011489971724"     offset="11260"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11508"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020801913463"     offset="12384"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011482922974"     offset="13000"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="13248"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="13312"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11572"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="13528"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12500"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12800"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13112"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="14456"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="14756"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="15068"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACQMAAAAAAAA=eF7t0PtLk1EYB/CJVxaO1KYyhxZFqIdFS5utbR3NeXnTMk3z1iyUzLuisPCCZhDFMC81ZK4UI0SnQS61MNOKJGVlaabWjCxLo9CZipr3nvOO/oeInl8+fL88HA4Pg/F//uWJrrD7aBfIwX9yyox2xEbrhs/eiZyQn9yNx32dPRK8Ea5rDgsOsUbY9SOuOSRFWPCapZb7Ihym7Bf4gdsZPuM68KCBm1Hog7AfdWVFchjh55HSyjKMcF9HyqtYeOe87QdFlQT61O6SpEMIP2x4v00jQjjg3iW+XIzwOBUq6RXC3itOUtlBhOd6vl1jHEA4UrdltBPUl+eYxgoQns3NbWV6Iawo/ho95onwcOSYR+F+hNmMiq7rHgifcC1CLtDHJy6HFuxDeAveVj4Hujg4GdR8hKtlPPdVsKA/nj2zF+HYqMBsIeS4qP02csj2z7Q3msC0L/FiBLa7f3p5FGz9PJ1lBbJF9ws5YKJiqsQCtBucXGKCyyYxDGfQLcZxxAEse/w0IgAsXayvFoJOxRJNPrjxU89LBrldYrM28F16N78WHJZEqQxgZYUq4T34ZKNsZBf8K/0Fq3UrmKq5nBYBqkfbQ3xByx9tjkUgb2jgcia4Jp6/cAus1H2qU4Jv8jtmH4HTnVTLPTBvvW/nG9CzWC3RgVrGouU4ONZ8zOUDOClh1UyD0sw9Yd/B8uyqdwugu2Gwbw7kUNwScrfwK1T2Mlifs3BuE/RvcV9fB4vkUwsmcOcMK6UF0XptpNoUZMWJTIl3zflNZuBKbxBFlGnsTpiDW2V+9kRFbX870WSzQ0nkzSiXiI01ss/E54FsrgWorNlkEW9TwXzipv6BG9G7OV1C3DfrJCTqmIelRH3TkA/xl4oZSBQNtPgTC1Y5R4in6s5QxCFXryCiIHqQ7nnJfXQeeKuizedyg4nqWAbtVyylHaYEtBf1UbRDdaG0G8wE2oas07RW3CRax7xE2uO5KbRX7ybT9nSn0jZ6GrU9kEaLnYzuuGB0Itzo/E2jilKjsqa/y9/8j4UqAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGgEAAAAAAAA=eF5jYBgFyGBbzz5ly70S9vb/5DY8V+azZw7f/zG5W9Z+9bmbx4XXydgbLFtRlssjZz+n89Zfl6+y9lFu7aEPpeXs+V9NerxJUc6+3K3h6ztROXv3og9OP2Tl7DdfvnWal1POfunDtadahOTsvbIPunl+l7WvzhVz5WOUs2epdK6JvSNrf9yJe0/fC1n724e4nhXslrXf7u869/5JWfuYt1afW3tl7WctlC4ynidr36AisdY1RNZekG/7IZtsWXtvNr6rGkKy9jWTXhyR05K1zzhQdDRjn4x9CaNcBtsDGXte9Q93JRp47Y23vg9o7JaxVwz5s37Gqpt2exy2HVNJ/2IH83cr03+18qPL4fxRMApGwSggBACGUWglAQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACgYAAAAAAAA=eF4Nk3tUlOUWxrkpGAIz833vmwjKIIQQ5YiSqVzOB4wwCKhgaowsJGAARQ7NJHeUS2qG3JQyQRTSEiRRMkUwwCdBwpE0TFA7Hpnk5qEQEGkMGDnfX7+1nv08e7/vXmsPH+B6bIvN4aLrnuneZY4v8s74p+pbgCOt/YfPO3CxTFaN6w0LRFwcra/xt8CyM5errZUC3P+AvPrQUoCJ8qyXWmchpFLZbHyzALXGD+K2nhTCcuLs+JSPEIFRHXrn2kWw6w2cKyyz5+zsu58HGttztXS+1+o2G25y9+HjnxWxmJb6vYgOF0EozPi5MpFFyy7Tu5Pv2HEZZy193eJE0D2cu2HrpSXcn5FGr7NWiVD9P2HceylLOOWpcEFDwwKu39T1G+mnDKYWR7y+co4gbDZ+Y9E9AmlIWOjWaRGGLkwbVlszWKSqPFU1IoLSRlszfJNwVjnaZZlpBG49z6fT14nwsFWjs2IYjPwV7qRRibngFFmNslbMLWkqVc/7TcwVSpqnQsfFXJFe0eeD18Tcs98v1n3/VMydnxcUV9IhwoY9vkWn7jNIvL2iP2VIzHWOCdcY7Gcw3tbiNDzHlmMfy/N1D8RchCoorXJKzL07MNSmqBNzT9QWjU3LbDnq+Hh7bg8DQZ3mcvlpIRySr+z+55mYy3a5vnCnhMGwx8eTJ+4x+PgQl9rTJeZcdSTN/gWDpfvOCvTdWCTmuWwyGxShb8fxvRdrRYj/81n85kgWCTF3Vi/0Z8Fd0zr0vmSwptyrObifweHGLf/5uZ7FA61h/Xk/Fi9j7CMs32PR+PUxf1bLYFtblNnJKQZJ04vWN3gw6Hv60XKDIRbvrkyXBElZ1Nsf4wLTWaRuHrxlvJ9FpKOJbkEaiz2Bl34LrWXwiWzmRf5pFreN8oxlEoLWapP4DfoEum9z1625zmJ+2tVS134WnREh0VTJwkV1/GhmKwtNc7ym8i2Co7H6ZxY/Z7HC80GjvyPBVwU/eRX7EYSuHnmSP8CixlTqcpPnVcVNt4JkFj2FBzQ+2wkCgiJlLVEE7KctN1pm+PcqC3JP2xHcD7/07IonwZTw4F3zZQRVJ6INY7MInEsybfftI8igsYbKEILgq08U7gkET32m5vS4E8iqKmPskglyLhXFJXxJ0H09U24SSzCc88sp50KC9kqbY4pPCBa69CrZan7+N1bCvgKC0nZZoh6fs/V2/GmlkvD3IB8rKSfgYti3B/i5/3U/wv3rCIHYuyE561uCf9xmwnStBPbe13YJmghodcKNV2UEcqlli2UjQUNmjHykg0DtV36oKo/AWGuXe7WZYFXdWsX7bQQHRx3uGfK5O8IVpfITfP8hdUcMfwe+bgMbKy4QrMvMzvbuJFAFLPjxjppgYLBfsqWbgKTWWyTyvmHPg723e/j/VRybc3KUYL3O6/lEH4EmRRLy0QsCo4ztplUmFMqMcnMVX1fsCQ8xnCDwKu10XGVEEQSvfzOzBCvzutIyBBTbNike900RONgsTnrrb4Jbv3ed6TajWLTSV6JvReF0+TPfQgOK4BoDPb83KbzlspMXeD1+XJVTqkfhnH/D3cqU4kSGtvIlr0dWz3iV2VCYps6avSGmWLozad8opZh1tvacL+R96e4DywlFbPKRudmuFKt9Hpr94UERPe5U2uREcXGt7Mfo9yl22NSdb19Bsd9Rsn2Io0jscAmLX0Mhzdmx1NeXwuPs6zvFARRJ2tnIuzxd8wMilwdR3HtlqRjZwufiEuSDgRQ6ad8fZTw3pz1+NLaR4qve5dOzmynKTNrXkh18PXQXiJyi4su09Pkh/N5WFcw7F06hmLO7Sx1NsZbZq34zimIyuM22nve9XTjP0zWWwjpjyxcanrL2xepDiRQHb0Xc2hpH8Uj0i8/fSRS/1rbZhOykOGdtf/cRz/rc7CUXlBRGn5dk/5VDMbHNuCWAz2k2qjpVWRTvFEted6VQmOvLwtUHKEyWRnlk8foG6/05sYcpLIJ/aHLIppCnj2ls8ik8JZsqxvMo3hhbL3UooihR/nBTcJQizGC0Ym8xha3X5HdjPP8PY4bmyQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABQMAAAAAAAA=eF4d03lMknEYB3CMMo/ZTFAxjvcFl5sOnOVRHr2PdGxJKVHZ0tlq1lrhmaZmslx2UTlnyzXKC7XIQsMLRfPKzMytPDpMUmdGZjQjIy3NqN/bX59/nufZnj3fhzIX2CSWvdvEpPJ1q11x+Ekh/IalYoJVbJ3p8/UoUaD69Bj3zST2aebNMSo5sdKknVUrbxDr5Z/DO+YqiN7tHn0VvFqix+HCDKZvJYKqonf7fHtK8BMjAkJVL4kQmxWTMcsniIDAgoLHFCPR/cXQduDXD6I4vvoGX0mB8gd3vUZ7bSF/mWj5+UE6aD3MV/pvcSGkUVeTUMqD+0ltq85m8eBtn91MfTgPamR/urfSebDK+0x//nMuuCy8cpec4kKx31HpBxoX3hhmjUolDl1zedR4HAfjyM2SYQEGYeI06UMHDsj3RBVG61nwykI/7PmWCfrKuAzZFiY4aOOfTWqYwBGEpIrNTJium7qeK0B1+bSb03EsuEQ3ljVXsWBD7HiwvYkFckWPZt16Nsh08+vy0tjw0XrsbKaODccmrjK2LbJB2tMWLQziwOILlVV3BgfaHd/v9a7jgEj9i2+e5sDWkR3JRUwMWprXlvSHYbCU0k6VpGLwlx8tWaHAIKf6lHS2CYPIZFnaxpcYFI0K9zOMGNhNnftuWMIgWRARamWNw5IP0W+yx6FGe7g2wxHtu7LTMkjD4bYwwdXfBYeh2LSpIXTXBe81TcMMHIK1zorjbjh42HQGVyIbKtTB1ciBIU15LpJTTC2LRKZHTkhoSNY9bfZz1JdyxBR1GVmJddJFSL1cl7Qa+bXe0X0CzVdYsv0bkTNueZuuI0/fqbqWjswRxEoPIuMvXlrYiTyUg8KEbMrK8fNFisJ+X/VCZj0xz7sjPfVWVAxJfxG6m4nscF9UMJANts6FLkhKaa6nM5L1m4bTyf69llgaMk96YswJuYthyCZN/DFJkCrVNCfSM3MJZjLfXZvLxkkjLCUDpFavhU9JT+rtH5Gq2udbSVPK9rSQ9upa///FPxhkR9U=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHwMAAAAAAAA=eF4V0ltMk2cAh3G0hojWGD8+Wi0CbwvFlkFbxDCC+v5XSiaKmAnEIY0QBGoRSkVSSzx0zBSkaW3YWASNxgPsABnKDHLIqk2zeUJQQUUcU4w2mslhCgsSRNnXq9/dc/X46YeejBwe3qg+WepeISToF+BY7pyGtsw9eDzM20Wdyeb22E4jrZg6P68csFBLdBLDZxzUr7nsVJKtgcq+cd6zPWmiHsO+/Mva3+iiumNFlgMu+qwrt+on5iZN5X8q+7J2gD7cmJ6y2PWUyj6MFLlbXtMhz9VrY45JGmzs/xBXOUcFQmf3eIc/hmbbGjPeMGgUXr40vZdFh9edfWCURUTyjcFlJ4IQ99e/GrNZgHJ+bl3oOSHUeekehXQVdDkOZkYcjLCDkVp7dwgu5LUeLbcTKH7vbdvWIUF11TLJn9VSlCSWjTUa5TD0FZt+XqBA/cei+Ng5FZbovk3jJaigHncfVpxQwubJvJZ9SwH9AoHpzLsYmDd9lz8RFIP3GaqSqc+jMZoZYO/Z+Rmc00p34ZEohP7N3r7QJEeJcfZ0Ur8Ma8PVS58ukuH4SFTp4y/WIDs23ZpTHYlMYxkvf1CK1hjv2YZYKWrqEzaZGyLwzDkYT5dGoDLZWz1jC8ftLpHrKBuOLtOGmdoWCZrGbIYrqRKEsPd7dO/FEO08r/dvFSPt62zmVbEYdv67zLQ4MUZ1AZstC8U4pA541D1EkKxM2aO5QtBb5y8vqCeYXe7fYrAQfKWa4LmKCPKWwNSZRTDf9Nb0aAtBhcaVehIEExm/yn6IJxgcGHtRoCRYOy/J6pQTRMWk1WqkBIW8xPZeMUHNnZQ3YWEEzHCXPDCEwDHVt8IaTCAM9d7dISJYZ7ewplUE+2uaVX0rCRIdNxK3c6KZyZnmfgs0/0PbOSV3vBVWzoMLS+N2czIb2J7NnG3KiaoEzgSRvjCaU/ty+dtwzudr1rGhnBcrjXwRp1+wNVXIObk+2hDE+Z/gehTLue/SeHqgr7u94A+GU6/9vsCnczIr0ufW4lsffd/XlFtf+lRrfxzw6Vo9e9OnXfeLx+f/n4I/pA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/N6t8dJNYmA/VtochtWg3D2mbte2SGJgPwL4axY/YmA/DuArQC5iYD9IsUpCEmJgP5ZQ8XXlYWA/vuqX659hYD/Oy2i0NmFgP4aChwWbYGA/q3qlM7lfYD+VA52Hd15gP2wo4e+0XGA/bhdrlkdaYD/2LS5n+1ZgP+O85peQUmA/XMB8SLpMYD8EYOlhHUVgP87OpbtPO2A/Erw579YuYD+hKOxBKh9gP15BRFWyC2A/7AeGOpbnXz9Vm/1Ija1fP6UNJ2nhZ18/j7w35SYVXz/fHZq5+bNeP+7VMQoKQ14/xijHpinBXT80038TWi1dPxg/THDahlw/Jok5jzTNWz/k1mxpSABbP6rF/VBVIFo/2RTM/f8tWT+o6IR8VSpYP/YokvDJFlc/TowCazP1VT8yCkHLwMdUPxYh/fDskFM/zVzPv25TUj+A0vejJhJRPwYsU9kUoE8/ybbRzyAgTT8a8O9oNapKP+Khb27HQ0g/Rrk+F9nxRT+GyABJ3LhDP2JzTUybnEE/tuwiQlFAPz/DElZurIs7P25e2NFnHjg/h9jkcCn6ND/ocn4GNB8yP8UCOZQOGS8/YBaDdg+AKj+if231Vm0mP80hLINT2SI/pkkdxqp2Hz8eD3AB1hMaP8JuFm1tdhU/rU3YCneKET+jdkU8fHgMP4+27qp/8QY/NjVtfABcAj/GBqkcIS39PouHXhM6Bfc+gH8PWDQJ8j4X1kWJOxDsPkTTi5gYruU+pwKsI7Ch4D5O0lkq4FbZPtaH4RItK9M+ijbUQrzMzD7lBBouJHzFPjJPPLmT1b8+z/aztfxrtz6AeYEwKh2xPrQ57A6Y1qg+hhltzrzmoT7argn+t6CZPi+jERpZOJI+RBYhEmi7iT4ABbIOVQyCPpabmInRJXk+TvL4+idncT5CDisuK+1nPupu4juzVmA+utHEy9EqVj696cCes+BNPozLDUbsAEQ+E0+4HIucOj5aPbZ8PJYxPpCjuZuxGCc+MAHRmbIjHj5QsNWQp4oTPu4RF88+Lwk+Dn6+8SMiAD7WAWFJ2JL0PQQiztPgR+o9kERTL8hv4T1yqGCsAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEwMAAAAAAAA=eF4V0n1Qy3EcwHEXEaeiTdbDZaSzGNUUTj5fRZc8hFsuFNKD1tMtRxG5zXWIPOR2J7rQtHGaHs7jqM5TKk1LoXNa2u+39fv9Vq0JXVmd+P7+ev33/ust8/sEYZkyVJ8cSqsGCIjhnQ1s3H4KXU/xzb/9LA/pal3je8qPIinnOz+sMxOtcbmUnW5LRGMj/Uzu1FjEV9vUCVVb0JzBrsduq8LQQVmBTyu5EhW0zFc43BWg1KQAk5H0Qe3NVZX86xwkb/PiamJnojmS7z5bBqegxU96LvPix0Cz1EXS1vsDfh0IEv+0UrDgDCMoWE/Bii4krIiloCbAxbUuh4KPPt3ucWUUnNtduV/YRkGgQ7Sy04mGr01dtQ/ENMzqiRcUamhov5+6csCVgZLwS/4Zpxl4opxM/mxnwHPRNkW23AKJ++WGtxYLXJEWuhuc+4Gr4i9sLLfAu2DVPirSAvkJQ23WYQYOG3SHPEsYiOsvGjWsZsAjKK9d9JWGIxEBvPEcGpyKL6Y7udHwnnGTramlYPdnmnsomoK9UxvKkob6wLBnSaa9uA/0kf4dREgfpCm05jqjGTxGMzbNvWKGNEmpURxuhqLCuJJPdhMIm1t8W7QmWDaxSbc13wTdd+YNJkaYoO6EbMdvNxP8vaGe/EKTcDImN1f3ioQKcbn7hVsknL4Dmno5CZzGpPeOqSQEjx53mbGTBMU0seMBIMGqVak1y0m4ll0nucongfv2gU07j4SXBu3yjtkkyKKRqNgRd9J15x/9IyCnVCr+N07ASd9u3oYxAkI6bh7ePkKAdAYnb/InAcLNlvWiYQJqinwFH20E8PJvrX01RICf6MWFYSsBWZVRN3ZhvcNpvXGQAPlzlf08lhuqN0dhj2VX2zywIQGlTWP4O0WMv4cRa2rdKNFjq6LO6V9j7d9K+rTYiciJiodYnvOKyGpsnFd7mAYb0WsV3semuSvf3MMmCQUf7mKPlXL8WFOlA0/V2HUpDlmsLzpFoawF6UIvViU3ejprAtP6h/0flXkPs45zlQOsDYkHGdb/Osam6w==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/HGm8dJNYlA/5qlvgpUWyz3yR2twTmJQP550/fVPYlA/9uhmq1NiUD88DdE/XGJQP09pSgdvYlA/6At6JpZiUD9+gJtF5GJQP2LDkbl6Y1A/H6aNx5NkUD+5h7qNlGZQP4GxrnotalA/QiMQK41wUD8uiF1zh3tQP9FX+ltejVA/ZCKVagCpUD+qoXxDftxQPzYgX4AEQFE/bWN6RhU8UT8ycuAI4x9RPzTc+/4H/FA/RpP3SdzOUD+FcnXcdpZQP1zxNvOnUFA/ZU0uyOD1Tz9gCQOS8CRPP2j2DDJIKE4/VFjI9FD5TD9O+JR9YI1LPxEx9cw8xkk/8HPP4c/HRz/+Sghgn+pFP3w9vwVQekU/hB/jTt7GRD8Usuxg8P1DP1uJoqffJ0M/LcpRB09FQj9653ZYpVdBP6Ve1ITAYEA/Ok+MLY7FPj8Kz7hEGsA8PxbRtNEEtjo/LNSEoUKsOD+Wmdeyuqc2P2ShBsIjrTQ/Pm9EYeTAMj/UTp0V9+YwP0W4ZyGnRS4/Bl0cjrvuKj8QEhCRts0nPxUD7cvd5SQ/JGhctDQ5Ij/eYR2MFZEfP8I/FvMlJxs/D0fdJwUyFz8kaTxxaq0TP/gJHz6okxA/IEoeofm7Cz9ogjAPwwkHP8mfBG6rAAM/R9PPjoog/z4kgFK1W1D5PoqvGHLhcPQ+Fol2uK5j8D58mPX5kxjqPr4iOXn/oOQ+RlK//CYx4D4KXFFFTz3ZPl/SFvVYiNM+KIArqgEFzj7hcyVQD+jGPpDFD4s7W8E+jKTtskIeuj7FBseauoOzPrAO/ppX9aw+JjKdslNWpT4/kKxP6DmfPvzDnxsXsZY+frXr4GtgkD6NXA+r8HmHPii/xbtVtoA+vIysfO2hdz7y008/n5hwPm0Xf+ETJ2c+BlavY5QKYD7uRSz2fRRWPmIVY9KkME4+s9gs5buARD4WPTwON6o7Pg47U/XUijI+rn/ce8KxKD6a4+b0e1YgPptzDOn3ehU+4ScJOVQQDD4iaMkGJjgCPpxwf8jWg/c9OcgAu1cu7j3sTrpfiEnjPdIAKoREttg95MXWC4V10D2FI2VJAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAqAEAAAAAAAA=eF5jYBhZIHKi8D1hDy77F2db4o4wa9i7VO2wv6mmbb8+TH3OLWdte8tTHTwdQPrA7CCTe47a9qc6wzd9tde2l7O/wM1op23fsFZ/Mb+Ntr0Oz7ZL2lba9ionf5rFW2jbp7V+u73JTNt+w5uHx/RMte1NRDhKbxpr22+7xFa43UjbPs5Khee0obZ9zpSrziJAeldv8bUJBtr2Qu0LW2yAdArfpXJBIL1nXeYhDiAtqLfztRSQ5ru9pdIBSPNY9mQXAelfUxlmrwLS29J//H0MpMVSzx+VAprXdEghzgdIz7rvHFAOpE8yZwnPBtIP5jRd2g6kw+23GJwD0iciFgnfB9JTw+QqXgPp2A1mwV+A9PYXRvW/gHSZ8IRN/0C0vUMdI9DdfGs7A5iBdEi6XRULkDZrXmPCCqSP+bstB9Fv3CrfgOi1xV2ibEA6UKhJF0TvvOBiDaKDbnM7g2gp03h3EJ1zYa8niGZzZPUG0f/lNoNpLhs+HxB918UWTOs4hILpy7aJYFrAOx1M54lkgekdNdlgeoVmDphuzoLQ+6ZC6NjV1KEB1/28SQ==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAmAAAAAAAAAA=eF5jYBgc4DXr89ppz4Xtr086c2e3jKz9s+mOVjcZ5OxNJHplTsnJ2cfHWMz5LClnvybKxfskr5x90pvXR7X/ANXFqsuUPZK19+Rc4bjikKx9tfvqTXemytp7zHxufjBe1j7F5/cZZTlZ+3cJJ6aZn5exj33y+f6xpaL2R0K3fjp18ZVdK9N/tfKj0+0IuW8UjEwAAJKBOuY=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADgMAAAAAAAA=eF7t0P8v1HEcB/A7ka1cOGNJFKL01jo5+e7tfKciFZJh9FH5GpUkisxqEeLKEdYp9HV9ITErJCNpdGW3UbpxoUJrJzrZTa/359YP/Qet9frlsefr9X5vr70YjP/1L5c8Q3uy1H81/p1ZMqMOtupGPFtrd35SYo4H9K1amDyEu6bejwlMEb68PhF7eiBM1Y153nRHOCvPguKAF9QixE/B/qI7vRS81zAwEpq5IXyckZafihEuDHJ6w3NFOMrwnEq2M8Kc/vZefxeEnaan4i86Iqx3bNAy3AnhodsjbQ/sEdaVW6ekOSAs1sO5X2wRltboOtywQ9jWUVbmtRXhxWpB7Sy4I1mz+RUX4SNSA2mcDcLNbcHyHGuEA7JsGljQl7bExiZuQbjDlTU/Cg6EOYoLrBDWX2AmToOTL2ceSTmwd3Ff+ibIlhx1rwTI9yQcn2rwUsr7DyYglXr9hwd4ZjY0hEm04ivY4JUot0IGWGYfIVQFC157z60EHVReZJP5Nc1pQ3fQ5eI3UxvQ3PO52QnwbG9jcgxYva/EoB4UDn7UrQJNq55xp8Cp8UWRGPSppMZNYC+xb1D5CvCw07Hh3eCbc/YVPLK/cO3wKdDOeWJjEqioKs8XgrzucD4f7OTmbH0C+vQaSx6C+ydbBSLwC7unsgfU0NxTPQImaX248Q6MqIzdQ+6i37Br4RMo4A7XzII63YoiGRg5mntoAfQd43jPg/FMecAiyJ9rlyjAtmCdcSbcuVzrs4wB1gn5/CVgJztkTgVsn7hVowo+jlfhEakhRoAaKO9epk2krgY2Ee/nny4m/hTpzBG/llESYrqWlcFScKebiEXs43ZziCfDlloQV7cZOxMdMxvtiK19eh5EyZoKHlGVknkTT4+WeBEj6ll+RPVD/r7EDd83byNGRvfQ/cT2Hjqb5PFpddat2k6826mgc0CoO51N33JpY/z20hqvC6QNFUXTdi2PpI0ePUh71PWA8l9pHG1gbixtfnk8bWag0gyvBFqxhlLjbKVNKUrD7yidqfwz/y3+Aj7KiPo=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACwMAAAAAAAA=eF7t0P9Ty3EcwPG1tWk5cSjn9EUrSW+lbKVM3tXSt6m4autk58vGXFK5ww9DrVTSl+U0rnCI65tvoaRRkXxbO0PpCy4dqYwrcTvzNV7vz87/4Jz3L497vu/1vvf73jTa//UvL7cQxdVZj+biP23zNvPnC7kH1sTjS08G5uPEQM3j7mCEXTPOb3rli3CY4ewj11CEf+6+o9QKEE5i14UNhyBcWhGuyYR2rLsjngbzcY9ftT4FY2ve19pjhJUfTrW9Aw8cymLPC0S4oWj7AyN4T/0m3pePcDFnehB9GcK+TVEqcQDC2kmRRxyWIqzW0wMPL0F4YYDtjlX+CG8e/upmgnd0j4kMZ/wQdkuw1ufwYK774Vcn2Bdt7TUKuAiXmXIddGDMlaog/8UI208u7qkFla8/MaQ+CHvn1iW3gr9EDP92b4TzBy5oraDlri5VCdCKH32n80BpdDXfFrQN3lPNBW/vtc78vgjh7MENn9jQY88Fsy1Ar1PP8+lgcWSPzBE8OSgfIefGGs8ahaDf6qHCZaBHQhlrHzgaF5ueBvafu9/XAnYNs1JqwAIHu34TKFHZ7XxNukGn9YR3pXvPvDkbzJbOKJSAKnGSRgiamkfm5IERYtPHXSBDHxdbDVq684aOgp1rZaVtIB5ntV8D6cqIxm4wJ9uTqwc91/TXvwGPu/CcBsDxCU7JB9Bwa8r+9+Te7dv8TaDFXeeNRlDBZWb+ANenSoq+gVkvdZNp8K/RHTEtE9BWB5kb6dATn/PzLMDA6MuDDNDFslJEvFiR1msJJujUGcRnFaWpTDCdUbOE2Cgu7yCK1oXWEm/GV1qwwBNz7o6Svk635JBGUyR2RF1LM49YMJ/pRaxPlGHiSL+aTxQYklYQ+av4AmJnUFUENd+uCKe6IS2KOPX0w0hiTr5MSOxxtKFsKhmiPOncZN4/5r6SSDNNo6y4H0V58MZyStPUtZTIV0Q5el5GKVRvoPzyYAtl1l45ZSp7K2UfJ5nSp8vcheVmY6QplLULzBaozDorzUrO/d3+BuZihus=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGAEAAAAAAAA=eF5jYBgFyOAB13qFJgMJ+9rZOl9mbuezzxYNX7bOUdb+yuT8zNgP0vbTkgzZQxnl7PNXL+FPviZrP3VDg9A/CTn7jpNfzBWk5exjr9q/WC4kZx/nfP7gMyC/c5bWL1M2OXudM+zLLITl7Je9Cm8y/ixrn+C/vX060JyqvcVz9t6QtbdqNf4U90rWfi2ng5/SNln7WdPEbfhOy9o/j+x72Noha5++kb3s/wJZ+8dRvus2Bcja526c8+tpjqz9igfrMg9zydoX9fId7NWStWe6ubqVfY+M/RSP8Aqv+zL2lrwvj21K5LavY3JrjOqVsd+2vnfXQ/Urdmo/JBZnmn2yg/m7bTpvr7zcDDh/FIyCUTAKCAEAhb5mgg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFwEAAAAAAAA=eF5jYBgFyKD4d02h4y0J+1xd77DpDIL2smyJr5yiZe2nfL2TZGAgY3+xIVrrPIucvfChbWcO3Je1L5BcHn1LQs4+kfE0w19pOfutCS/2ThOUs7/AdyZCBchvtvlwtAyo/g4/F/9eoPgEGx+peR9k7Ts5Ba3C/svaP+ENWC56VdZec8ukk/LPZe0Pbr6sq71R1t60i/HQxGOy9q9FOOr4m2TtVzkdauWdLWv//tyC3+s8ZO1/rGDSiE+VtY87lCgozihrr8o9tTZFUdZe2MZqtcI6GXtv5aotfy7J2PvP2rqD+QKr/fWNtRPvN8vY16fOCnlqcdpOq1/kWhvHGzuYv3n/lsRs+1gB54+CUTAKRgEhAAD1o2KoAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACAYAAAAAAAA=eF4NkXs8lGkbxw0p6zgzz3PfHfhoxuHdKLVi7RJ6Kmqzmg5itUIOI6kIvdVuCtlKbIeVsiuR+iSlLbVkNMpPu06vQ7ZaRWWcSo6bJpSk9/nr/lzX93f/ruv+3aG+jorx44YweqNv8CTCEDP3/fxaS2CE/ukNhuUKQ+jv75//TYURSOqBrNkFltyVGJfmoLOW3FnHGJ2yGULkRAwdEc4VYU/ieledMiEma9XmAW0iFBooXi38SQSDMk9paZkYUxJuWR/8jxhll2xLPL3FiImNX+adJEIAU6GbWWbOVUcX+sh2mnPnLSvTEvpFuP1ZG/OKMOi5M/XO4z4h1gY+i1qTbMZd1M2e1hIiRqtgqPVGvhm3Xj5R6TvNjBMVXKnpDjPjLP74kCNyFuPvl9Gxot8ZZFimub7fKMLhRXapkwNCTM/pzvRYLuUqL3q0RbgT6Dg1f3BylHB/Xs/UjHeVcndbfPQO+0i4hSr/nudvhVBrGgwlKiVc46Vnw4/yJVybs/u0510Szjyrf6eGQAS7550jaYMSLlq7t9EPEs6rmNV+y0m5+nbtoSgbMYJstijLgxmgWv46dR+DD7PGzgZpSjlF5OCZVy4Mrubqlu+5JuESYhQWNkIWXz+KONPESDnd3nkVuX9KOOM6o57JagZa0Vs3jVUy2PrU4OnjYQY/Zqo+f/BSwil3RBJHOwZ9VgUPMiJYJPl3zDQ6wGByedOJoxMMXISyZP1tDNJUgRXuKj5PEzex0zIWrb0aj5Wv+X3Tmj4XWrMoTHjj8GAziwYp62S/lwUbW3T3xQMxzgk+hmvLGcgNKsxVcxhMZ1eukHexGO3PcgxqZZDnZdv55D6LnVXrKvN2sKhy6VIqS1hYxTdc2+/H4rdQi09qN4K7g8XugZoEf1nF1QVPsMCGxsbdvSzCbCO5r+pY2Axd9txkShCif3/O63oWu0PeC36pZKER6huXwBG0XD7WeHUmwWhB+7/TIgnavg83bX3JvzdtUfopfYJsYzpxz4HAGO6n7e0IemO7YrO9CNJLis8MOBIsnl1dusOfwIMqJ623EHxL+1LyBATfjXNucieCW0uLNBqCCRT1yXobdxIcbhpr6gjjT609WztXEnQYLvZRygj8Q3Jvvonl5x+5JT91jKCm9sYPK1II7vudTlqxndcrNUcarhAcSpoVUbKKYFHKnc2NvO/u5W8zAuIIEp9lGJ7g55vN36t1fR/BQLjf+wwFQVWwf8rxAoI1t0cGZLxfaeMulfoSQXtQZ7dbNkHs6ht649cIdrVaRypuEsy7+L/IDr7/W/qRBtk9gtp/dKMKzhGc38a0zHhIULAwOnxNEYFU4LC0t5igv+T6aP0FApPFcS16HQTCmjmPznfzeWnmnQpuInjlkppxrI9g+jcvVoyNELSqTJscVATRVpVfJmtQ/HFhe9vmUYItN792owP8XkMe9hN8fSjfft/iQYIkxSqibCfoGz/5ccMYwbsds0bmvuDzqp+3KVWLIkD+1+DDIf7/1rr+XEcpTkS15/W8JSgUfGluyvPVnzx7x2ZQTCTF6zVrU8j316QskFI8dxaKnYUUKquGeBNjiur5lVEWX1AIdLp32fP8nvWhqf8SCu+qgclBXYrm4SHMtKEoGpYkLZxN0VfrKR63oDAluamX+P6xL37N6bCluN21uu6lK8WP4VLzQncK7fylJv+4UeiUnFRfXUIxRda+KEdG8f2grXs5zyd8/WQXvCiqAqt861ZRrMtKaZy6kkK/M9jAmufLIrq/u7uGIk9tKRsNodjo3bT94mqKxC4P9acwiizd9IEi/p59xMOn5aEUdkcwwQZSpIe2eLzfRmFRsy7gEV8r1keeT+M565Bf3OJHMUtAps6NpBj9vXfBgnAKk/CfmgtiKFqjAq6B932XqlQb76FY4rTEQ5vXbTw94XthL8X8ZC+fuF0UTwb7nFMSKD6qD2lf/oHiuFaR1sFUitLc/M+s9vM+sd9mOR+mEP73TdhAIq+rWKtKPkhRO5wt23CCovJo5pTSZIpe63czFCcpfLmTqc9+oYj1PteTcZTi/wPzAVg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAAQMAAAAAAAA=eF4d030s1HEcB3CUm8QVJ6fdw+93h2s43FaHre73KYw1D+mKHjw0DK0oW8TJrNKDS0qN85yn2uVh85CwuzN5Zi5LkYq6OA11xTxk0U7fX3+9/nm//3u/lR0THzXpk6KAXo92CzoOgpzRmgPBxwitMCjOURNLTLCktmKuhPDdSFueyc8iTuvtN/mPZMR8jKBKO1dNFLp6mk5aNxGCeuXgfL+KOJF3pdJYO0B4cVe9vEveEb+nK7vHlzWEA/tmkWhsgQiPulK5f2qV2JB9oDjLDOCr/VT89llTCG1eGxFR90Dx+tpzlYIDrbOdu/5quXDmsnO87jwXnvmkdceJuWAvL7KTW3Jh0S1xM/s1B7Z4S+5dKRyISe2JCKNx4GztbrVhBQ5xnmplKYZD6L1a34OOGORVRBQYmLMhKD1mzeQnEzZsrsp4Qwzodn2gGvZlgD4695dZKwNS1gOybFcYMOzh1FYoYIJUjmfWXWZC+hfvbQ2NTDj5o4agrjAhWpbEPezGAqGI71slYcFjSWd0tooF5S/EuL+eBeamHo5Cgg0Kq4W20mtsmEx1aZl9yYampGHVdR0bxqRD5ZtsDNT695pNfwxM7io0PlcxeCMrjO8uxqA68mJmkgIDo9yfITfGMfB5tdqzT4fBE8fY2yo9BgN2bkffUnAYj4h6KDfDwTMr9RPdAodgat+FMCscaAmU9jprHAZtB1+62+DAXnpUy9+Lg/RbQH4j8lxywy4t0q/QLO8zMjHnzo4W5Illaloy0lLU8pHMc2KF6mnUH5F+Di1CSvsYxSFIgfQpj4Gk9+8sm0O7YU0pvyuR0ctEbgEygbV/VIKUNBx8H4mccl3vCUQmnysbAmTJ/RSHA8inRn8OOSGbL00m2yG3FgPDMWSGAeUxA1lTUN9ng5RlOCuskVi9MexBzjuoXayQiSVGCTQkRS2ctUSKtxJukep654+QLhynWZFqvnWskvv2O5WuIZ35xB8lDeKUDZDyRD5dpKUTjA5SQ9FFBSndS/3/F/8AdvJHIw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGwMAAAAAAAA=eF4V0n8w03Ecx3F15YR+0NZMh893s/FlmHXpB33fy4/KFOWqS/kxP9YPJZaJOi3SGSeTfqg03Jxwp5JURi23dMnvmt85afTrri7p0nVp6rO/Hn+87vXf87F2eHQic2xTbllUqw0DwbWql63PfgRQtI3s8c7ZSKo+cupsZ00yVZQrNLi0ySlj2cJE30UXqCvSVzZjmdepBRL12g+9VdRlXlrSfHgDRQ4kGx4lPqHuHiDttRbtlJhXLmbn6qn+uZHSBxfHKd+eE1myok9Ug2K6ojDnB+VWLXEQqoyUf4lIufWnOdxA8Zb3LFeC/nZssuM9Gnw0Mo41jtLAlvPZ5+1NOoROtp+OSF8F3n1FcsdKBjgVOkkiXJgwfCh4bM55NZyKvhS/V+sAMeYqVrgSgTU9J/CPlgUbg14TQQUcWOI+9ULkTsLLcgG5dbsnnNlx82zXDB/yl4lThFw+XDSLfhhY5gVPjYe/63SeMKRKFaV89YCs7CM9tis8YDDnbX+igAfTCZKYuN3usGeme3BNhhvkvY8qrqsg4XxjglbZ7QrLnUY+Ss1cgV0sfafxc4GavO8lynNcGK4tgEk9B7Z196476MmB5KaUHcVXnUElJ/vVFs7QpWG5VyrY0CRg7Dluy4ZMooHZUssCl7Av6QwRC1TsUUvjLAEfIgz87joCyuPFfUOJBMxrBlQJAgKqoumfmhYQECvZoLcZQRCxWbDi0QMEdMUtm28lCOZPttVbyRFwmz1Cjx5BoJOqZWn7EJhnpE9WiBCcs/pFHAcE1eLl1VIfBCFb8rODvRDc4Q93qEkE/8jaZgEHgYazrqaVQFAyY22gOyG4UZ2abeWAYOT9eJB8NQKJW7gs3B7/Qw2DUiaC238zOjvt8H6flRGGnXz9hz6Le2P6TexqxHYUzvTmYHlkdkssVrKtXhaMLbanidZj9UPPfXlYbkBYPxubVSg3c8R6Lzb/x8T+Vsj8Gdi0FLtDdOzAvIZLw04rhTtXYunSSp0ttm9pUrxJ4d9SjkkqJNRo6l4d5zNlcn9bqt4kv/RNu0kP9WWdyf8bH0moAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYmA/x16uidWg3D1ea9e2SGJgP83raxY/YmA/Nb0rQC5iYD8OckpCEmJgP4DK8HXlYWA/z+aW659hYD+0FGe0NmFgP9yvhAWbYGA/poWhM7lfYD9fVZaHd15gPwgH1O+0XGA/h7I4lkdaYD+rWexm+1ZgP4K9tJeQUmA//Hk6TbpMYD+GORhkHUVgPyZfnb1PO2A/+Cd689YuYD8NVoNAKh9gP2pId1WyC2A/1o0mOpbnXz8HYdZIja1fPzR+62jhZ18/Isv65CYVXz8s11e5+bNePy485wkKQ14/X05YpinBXT/nVT8TWi1dP2ndZnHahlw/8P3ujTTNWz8EfX5pSABbP0sPMlFVIFo/Q82H/f8tWT//Bnp8VSpYPxJgkPDJFlc/koAEazP1VT/qVUTLwMdUP2FQAvHskFM/QlLWv25TUj9shgCkJhJRP1O8Z9kUoE8/GRbpzyAgTT9tqwlpNapKPzRGi27HQ0g/lNVbF9nxRT/M4R5J3LhDP1cQbEybnEE/ZlhgQlFAPz9B2ZJurIs7P8LJE9JnHjg/oT8ecSn6ND+DTLUGNB8yP7DNoJQOGS8/Ay7kdg+AKj/MV8f1Vm0mPwaCfoNT2SI/8s2yxqp2Hz/xVfYB1hMaP9n5jW1tdhU/d6ZBC3eKET/fX/08fHgMPxSrjat/8QY/aFL1fABcAj8k9I8dIS39PsqQIBQ6Bfc+3haxWDQJ8j7GhVCKOxDsPv7hZZkYruU+57dcJLCh4D5LtnUr4FbZPsSPwxMtK9M+3BA5RLzMzD5uXDEvJHzFPgTF7bqT1b8+S7YBt/xrtz4LOoAxKh2xPl7/bRCY1qg+99OOz7zmoT6vbbn/t6CZPpnPUBtZOJI+I1/1E2i7iT44zwYQVQyCPmbohIvRJXk+fdRZ/CdncT7aKCEwK+1nPrgCRT2zVmA+Yum1zdEqVj6pxnShs+BNPpXQ60fsAEQ+5PVHH4ucOj65yXR+PJYxPpeRFZ6xGCc+oQ38nLIjHj5pj/KSp4oTPiyB49E+Lwk+U+GV8yMiAD5Y78lL2JL0PdFh9tbgR+o9gol4Mchv4T3MqWgCAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFgMAAAAAAAA=eF4V0n0w03EcwHEPUZmrPEQoudUmLbdLqevh80VieYrMUHqwSB3pMqeUJFxPrOhycVk3aSvqcKR0eehpd+JoGq6Sdr/f2IPZPJSiVqfv76/Xn+9/3nsa2u5+/3QehQl8NA/0BBh2/Gvq5uSibw9ElnE52Si+r1sieZGJ4gIGh/nyNNT35vSbvBk+Kg7kPeu1iUVVQu7Y+7ZQVDoQYr7C3x/Rxw7J2cZNKEsu5h1vWocOXohM+mpyR0HJoWREswMyP5BbEJG7GMW/7K+6N2SGZPeXpkgafsHg274vIu9J2OC0asJhSA3sufgPhXZqeDUsm1+dpIbYFxWMuxlqmIoSOOaI1FC619Dt16OGGIXWN2SxBpacZXgxuBpgbsxPdHmigR+tizrql2khc7MTFwq0MA1KxtY/WhCxF2S7Z+kgMk71kjmtgyO09PBC2hh0RQesDRfpoDB/4JYxWAfsnBiW56QW7tdYdkzd1oKt6E6M1FcLvwf7Ky0GNZA4KUhQCHAPpbINSzWw6mGZlFWnhsPdl0+khanh6ZCJlzc+ChXKAC/2zVEon+WWbdw8ClH51a7rlCNg5eAkrxSOQA/T3s7kNwKp5ZzoijkVFNXSyNrnKjDufy8NPa+CQjNZS06gCrpmNFKmvQqck66HeWhIcC1bv3DDKxKqXay85kUkNAliMnbnkTCKLp4THyOhtmiNriGShEuTEzxHIGEXXyE/6U2CQFKuP+hBgrHUcPTGchL6PJvD6mxJeCQ2fRRYkdDL9aiunCfA+IH/1/CHgCWOUdc2zRJg7Vb8a9cMATtP7sv7OU2Ae+u7UNYUAYonA71dEwRY+LSvbTUSYLOvM8NoIMDtcFxQNPaz4xl75TgB+e3NjVexp2SsHxzssPM5PxfsNM2SM4u/m0UpHUqs20Q9sxebPKwXv8YuF4plLdj0Ix3CRixdodhSh2Vd5Gx5jK2gv2PUYK+s6Wp7iDUFj3VKsU2BejqlsORCswS7zc4+jTKbfmc75UrbTlfKHSqaNWVlStUc9X+Jt8UUJT+hRE8p4/O0lP8BX7KlfA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/Pyp8dJNYlA/A3lxogEeyz3RcVVqTmJQP5fwN+RPYlA/IxGahFNiUD/V/Xb0W2JQP0M+xn1uYlA/gGdfMpViUD9GQo+m4mJQP3ykWRZ4Y1A/UHEyHpBkUD9cq8GBjmZQP178sbUhalA/fpFFb19wUD8pddVdTXtQPyIHt9kzjVA/NhpZf2mtUD8qbqMSX95QPwxfB1/8QVE/3fZVmlRAUT+NkBGirB5RP2zyG3RB/FA/KOjCcqrOUD9/xMpDVpZQP5V9G0xzUFA/9u6QjV71Tz9rG7FqTyRPP+lvkrlcJ04/EhZDhvL2TD8rVaPkKIxLP1Z4POSo2Uk/iitmm0ezRz+9HWglXPBFP5RORbr2g0U/7osQRBPFRD/jWpgZ+P9DP2+KPFCjKUM/jlScmURHQj+wt2Dfh1lBP7+8eV6cYkA/7uw0KCzJPj+IUZlZmsM8P4EY5oNguTo/W5X5J3WvOD9qepcnwKo2P56k0VD5rzQ/FJRpJ4jDMj8zvL0VaOkwPwYsaTwjSi4/tTEf4NLyKj/N1cB6a9EnP9dTs78z6SQ/eNTjAzA8Ij9Bs4njYJYfP8tdWAbRKxs/w1WVqRs2Fz+khtd3+LATP74D1wC6lhA/Z6Wc2TzBCz+6XV6dPQ4HP+xcIQh0BAM/7uBr5uIm/z5L8uJxo1X5PqW5N8A9dfQ+AujzgEFn8D6bgtufYx7qPssVFaevpeQ+r/9upOc04D4e08QCRUPZPqpVL/0KjdM+0kOyq1gMzj5w8fFMwO3GPqxlrFmcX8E+z2rRdPEkuj4Ql0LsyYizPpS+GrXx/Kw+CyCxKv5bpT5wSASSSUKfPrKoezg9t5Y+I9/Q++VkkD7QwW/MaICHPrRjgij5uoA+IOcaToeodz4BFrSRSJ1wPpaBVqucLWc+2oXiHiAPYD4Hq4guxRpWPiwiEURAOU4+y5LoUpeGRD58+9MCIbI7PnLyu9MjkDI+OqllX9S4KD7Gq9+9KFsgPoF8J40bgRU+hT6ew1UYDD5CVZ4tVT0CPgguVM2Bivc9Z2e0zdw27j08hEj28U7jPcD7JOclvdg9WMgvqQ560D1ahmxCAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAArAEAAAAAAAA=eF5jYBhZ4Ee14Otpfjz2jGdWq/4v1LD3ZWa/4GOkbf8nbeWhb87a9mwnnGXLgXTe1SemRx217ZlW31x3217b3uObcvpzW237lQbJZ75Za9tXXOySELHStr8Tq3Xfw0LbfvY7F/l5Ztr2D1ZOPSttqm3fIn8s9ISxtv2lWmvDFUDzy1bPW7jXUNs+Vi9xOgeQfssuc7zNQNu+5rP9a2Mg3Ti5TIsLSM/0DZjOBKRTXrbvFgXSH86/U7AB0mEdNqfzgLTCrN0zlgNpjkMJzQ+BNP/nO/slgOYpPArb4wWkhd4zs5QB6fmbqvlnAWk2hktc24G02n/nWWeB9F7+mUvuAek96vfUXwPpq7W5Ul+A9JXHt8J/Aen/1Xem/wPSa4zrchiB7t4a+dWFGUjv1rxWxAKk9S6yGrAC6S7RjCUgusR0zysQnaLZKMIGpFVOPNMB0WvmvrYC0X7fbziBaMfFTu4g2oh3nSeIdln9xwtEeyxd5w2iE75w+4BoSzEbMO28PQRMT3iXAKazBNPBtBVvFphuKc0G0ys0c8D0mwoIrbEEQseupg4NAGyHxMA=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAlwAAAAAAAAA=eF5jYBgcwH9NUq/6MWH7BSGP2dlmytgzsWdz33kta8+310qVX0rOPq6HPdRdXM4+ylgyYDuPnD3zXPbW1F+y9lELg937Hsraq1zQdp1xQNZ+Oevp1YemyNprsJWGnImTtefdHjd1hZSs/ekJjP9XnJWx73WJ/SQpL2ovkrJHMMnhuV3bdN5eebkOO0LuGwUjEwAAdkctjQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu
index 119275a1df5ddff4c9894c04cd706415e2f0679b..dfdf2e25c1a12272c161b67b3625402a94e24bf2 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu
@@ -3,36 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00010839891921"     offset="552"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="724"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4094002424"        RangeMax="9.2413350908"         offset="856"                 />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="552"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00010835623116"     offset="1092"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00010820459908"     offset="1264"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1432"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.3485793565"        RangeMax="8.7921690091"         offset="1516"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2776"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2848"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2920"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="2992"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9994553641e-11"     RangeMax="0.00013465976119"     offset="2092"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="9.9999999756e-11"     RangeMax="0.00019864523794"     offset="2620"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="3168"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1.0413578962e-08"     offset="3936"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="4476"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="5272"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="5548"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00013388831655"     offset="3064"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00019755036011"     offset="3640"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="4240"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="-2.3214852139e-08"    RangeMax="1e-07"                offset="5048"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="5644"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="6508"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="6784"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="6624"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00010786453098"     offset="6948"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="7076"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="7860"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00010771614734"     offset="8184"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8312"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8376"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="7140"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="8592"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="8068"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="8368"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="8680"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9520"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="9820"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10132"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAewEAAAAAAAA=eF5jYKAv2FioU3s1W8Yexk+o3Vy4+6aW/TnhjeKsf9Ttr+/cZN8ioW2vqp5hosKpbb+z91HEVUVt+3bedxca5bXtnyRPzDysom1//5551FtlbXtDTrf4fHVte1EvC55mNW37vbENLHZa2vYmuxM2Wmpq2+9g/ht3TkfbnnPiyuP3tLXt3Sx+il3T07bP15ruKwmkFeUYX9kbaNtfcaj4uVdf2/6Sx4dieUNt+7R1xzIvAMVndAc+nwXky3F2sxcAac7YooAbQFpIoTTpMJD258sV/AKk/6jOOfEKSP/Yen7CfyBt2Vl08jeQXq8h9IPZSNu+U3N5NxOQljyt18UKpJV9NLhAdJb1PAE2IM3SmP0MxGdR/WIF4r+Suq4Lou/c73cH0RnpW5xB9KQQJW8QncfK6wWiVZokfED0e/XzYPH9AhFgvt1vFzCd9CgdTFuZJYPpr8uzwbTytCwwvb0wB0wLWUDo2NUQ+vMcVP4oPUqP0qM0Og0AoSTJuQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXgAAAAAAAAA=eF5jYKAMvFZqPfL6NKc9jK8vuX7Wub1S9lIfVz9r3Clmf4OrwKE9S8Z+L//j82eVZOwdfGc4rDPgss+ZvvS/YqwMXN+tZLW/azie22G3ZRSMglEwCkbBYAMA9VIc4A==AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAfgMAAAAAAAA=eF7tz39Q03UYB3DUIRnHwu/38z3gwvUBFeQMlMNDcUiPsSGW+GNwo+aCnAKSgHSKDgV0CpNdYpbaXAQ2p1jh1JiCegYPZ54mKBaGIvMSE84NZKJ4Bib2mX/1b/91V3+97nl/7vO+5wlpeK/O0MPhteaFQT7TORR2pQf6zOFRU3RPvntzMPgVeZfJJASf2DttX0Rz+IHycNKbr3D4OKzkk+xTHO6zHoy5vZ3D8Z/P/DnGIuD14bYgw34K5yRXzXU2Chmp447/vprCx3H+6x5toBAd1VtdXk0hpTcsqYrlohPGPMdjDhsue9o+q6Hw7ubKs+fDedxr21oROkShOrwqxZVEoWzg02LvWgoaHadp76aQqYv1TFlPwVmYFtespfCs/qE980sKfR2x+7t4dkfhxLKvd/F4ZkJ++ew4CjNF4L0kn0JqlGLtyBoK+fJ5E/TFFKYsXvIgUcf6tuVMrpvP49Ef10kd2RQsPQOXEtn+5l/KVQsKKawu/jakm/VHCs+7/dspWHU+ytwXb4Be85029ySFqdbvnZeZEVpRbOV5Dl+Nz81bqKbQrNp5ouUQjx3km+cJmygoTRnkq40UJNsuRb4WyGOqLKFlnpWC/NmtQn0TBb8Vrw9YV3LYNnnpCuNpClIUb4rYyd63l2SLpDyKxzTumb2Dx07xkXzDGQqjpS5yNp4CXEh3VukImoK0mR5NPLoG6/0vBBCM7NQVpIUSdBbvazLd4/FmkathxlyCc7NKf+uSEQxoVMe48gi+pdpquT/KY0S5WrClEbzy0fywp3EEa8Ty4R/eIXi1suqpM4H9a110I9FKUFFWYFYnE1RrVUfzSgluGRld1G4huFje/yD4AMGoQUdT2zGCHimni263EIwOOFRzxUawdsYeYekdggt8+8dK7ATRw+hn7ibYl6MKWMYcsdffffsRwd0G2TnLfYJ/erZLyXgBc8YJjQeGCOpfCDUKPwEDTymmZogF9NElTtKECljrpc3aMknA4cOyG8fDBTzmMEo9IgRcFT/RtJbNc36aMsvAbJnWW5HO3OupLFnFNKty5Epm34aNF5cze0JMWQpm64fBrcnM9defdC1jcnLvDrfT3y/ocZubrX/o1rdicMBtm2jsH24lBnmn22Qvo91t7ZqhX90WmOtf5pFHMl72ePmGd/x9/q96zVHR/0/y//13+Rexw7nJAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAagEAAAAAAAA=eF5jYPi0p7bmtu2qWTVbBcUV7N0yJe+2Ozyw28A22bOI/Ycdj7Sfl8wvTvvmfcE/P2wWtf/+pKgrb5mivVjh5mnW9+TtS2Y9Ynx2Xs5eNHmud9gUOfvIjoTTXW/l7avS2BOkZRXsGd6cPHzFWsHepOJT5DZfBfuemXwT7gYr2M+VyvU1D1Swv71+SZudp4J9xjNzZy57Bfs5HRdK7pgo2AcaBIVx6ijYx/0yZ5RSVbBfbMx8lkdBwf7ArcmG02UU7OXUlpaGSynYq0y/vuGjhIL9ju5p8jJA2meGldlCoD/M6h9cjgHSWjfYfpgDaR/Gtg0qQJq/fv1jKSA9OW0/lxiQjpl7YYswkL7z6u5sISBdHsoiDaKf83o+BIXHhdJ/x0F01B21vSBa4fDMHSD6VdqubSB6D/tPcLg9ql0Dplv39IHpO2HNYPq3UD2YDm2rBdN770DCeclaCM0+A0LDwn+UHpw0ACwVLOc=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAeAEAAAAAAAA=eF5jYNhx437NbdtVs2q2Coor2F/5HX/6yKa7dsvaI1z5kr7aPVm0v3FrDZu9uOhfjqUawvZyR6f9Os0hbx/CzL2+NVPJXsGyoPCWq5r9U9PLM3M5texzY+oY31xXs19w8meJQ7mq/ZlD7p9rLVXs12ilcS/XU7bv22ygLB2uZL/BUnzj0XWK9vtM1HNK9RXtJyUnPnS+pGCvt+LBl8AJCvbvFmrsdUhWsM8x82VscVWwX7C29lu/kYJ9S5zrx4dqCvYrdlnrvpJXsL8vfGnuI2kF+6MbfkyfL6lg77J6ztFkCQV7JlYu0z1A/0zZELs0FUjfvqAnZAWkn3+ctlYFSDdNSc+VAtLWrm4LRYH0CYn6fGEgfW+rZokQkE4TkWUD0aei31wDhcuqT+KHQfSS0De7QHTC5XnbQbSbj/82EK3ZewYcfqa5s8A056x2MH1zcgOY7uOoA9OaSrUQ+fOQ8F6yFkILr4TQ9xZCaFh8jNKDgwYAWLgvfQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHQIAAAAAAAA=eF6rW//xkm9Sgv0Uk56GmdMLbS3XGti36yfYn9Aq53RcF28vt/1X+PO5cfYOcbM8o+Rj7QMy+bQW60bbP+J+OEv7QoS9tufd2QbSYfb3nW4dnKkbbP9K7NKR1ToB9jJynTI6tV72RU2/d/pzudqL1/dfmm/sYD8polPCT8/C/pfvNFuvGkP7qGaG0txGDfse528sL5co2FusW5Hx5rWo/asTFsU5jDz2W/ZsU/KOYbRvu5jYrfjsi53MfaHWrMIXdhlVymaXTt22e7V1pkb/3nN2/cmOx9p6Dtgx7JQX0IzeaHfLb0GTzL6FdrdjEqZ/3TDRzmwP1+K55o12b+Yr3KiNLbDj82N7vyU9zs5L+rdG7Hxvu9es9THH+yzsot19qkoSVe14Hl6197ETslvYamSi0/3P1mDyk+cnFV7aqv9jkLBNvmLb7+uUcK/wgK2S2G3XFw9X2S6U9v942Ga67ZK4qKhP79tsX6ixvwvmrLHti9Cpn5BcauumM/n+5M9FtlPDZm+JECqyfTlhjrn7oUJbI/uaeutlhbbdCzbU9cwptHVi6klzmFlo+2/9qlsqMwptM6Q23zwGjBflNUdEVgDpxF3+SvOAtNmi719mAelZ282+gOJN+5/IEhBdFRHZDaITJc80g+iyH82NINrJ4yo4fv26F4JppsRJYDrpRy+Y/rcZEv9i4RBawhZCK5hDaCto+pgyQmkAMJJtcA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAcwEAAAAAAAA=eF77cWPZpzcxbnZzFss/XPzqgW0co9gmhTweO7/oi9k5xix2fgG3K4ulvtleUX3ZXz3/ra1Du0Zk4MkntlcmbP50wuqZrWiw7+sqg2e2Ja1HpvSuemr7RXDKA/XyJ7YP1rkcFTry2JYxp8KjRP6xbdGD84IZkx7ZTtBmzXog98iWx6NhMfuRh7bXniW9965/aJvbOCPBwvehbTxD9kp+rYe2v5adtLIXemgr891o3iqmh7YV1XwLzv14YMu1Q/Hx4U8PbHdsDXut8/6B7Tv/Q+zSbx/YXvpsY/Hp9QPbRw8PTQoA0nynol78AvpHVvXOxnNA2iWrpWQHkK6+7d69Fkjffrk2cAWQlqplf7AUSO95/ffgEiDtvV7UCUTf4pfmAtEHNsp8AoVL/lKOFyDaWP3RYxC974rJIxDN0dQFDrcwDQ8wHbheD0ybS6mC6cUTFcH0hhAFMD3rGCScj82G0MWrIXRUG4SGxcMoPbhoACjY1es=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAANAIAAAAAAAA=eF5rX/nxkm9SgL2FeU/DzOmFtj8/yXeFGgXYvyicrZlz2N8+J7fjyN6rfvZ7bdceP1zgaz/1TIqv6jZv+wxJtkUTDT3sZQ9f2b8t2cV+avM3lZO1DvYdq1hsjrywsf/yNXmS5AVz+/cBc5SquY3tX6XVf/Fr07W/8dqnTUBbzX6b6oNbu+UU7Je8/rn6/xYxey/G1Kmv//DZ/xKYnyNWx2JfMk/EdaP7L7uNlzZp/Y74YDdRS5n1/d7Hdl01tzYKaVy3q5SaN00l7ZTdJcWz5pKue+1sa5udp01dbzdZOfn4rBkL7JTmeyfF/J9gV3Hi/kKXXw12NffVNWb2FNitUtvy6WFjvJ1T5VXXQH9fO+4oE5H1K63sfoRlrbHfo253ZO/WvTEbRewUKrJ9ktYz2v1r1lV/tvat7bsFV/bcaL1h++3vQp9vIkdsjwVGG6X1bLD9pDbplH/GHFuzvxaaJUrdtl/jShX+xdbbflAz19u+rsx2joDp7bmFxbYJj7p6MhyLbCM21U7ouFxo+7jgkVHxmkJbpzrRiQfmFdrue2CmxDqr0HZ+7+ecjBmFtnnScjvuAuOjTUtv23ogPaXWcukCIG2w4cTR2UD61x4d81lAWijdayco3rZN/zMRRDcfudkKovUOqTSB6DlvWRtB9Bf5DeD45dk6DUzb2/eD6bPCvWD6dzEk/gPcIHSQJYQ2NIXQU0yw01ZQGpZ+7huj8q0oVE/IPkLmE5InZD+MDwDnWnZeAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAA0AAAAAAAAAA=eF5jYCAPbCzUqb2azWM/3WOTy4MsTfu6Al6rKwLa9gt8X0xZraBtn7TwSWKEirb9Ys39pj/VtO0rej7c2q2pbZ/gFTw5TEfbPsrQY1O5nrZ91fo9H//pa9vPqb797ruBtn20V155q6G2fd++4ptngbTaLJbc90B6hrzi2r9AWmblHUdmI237ed3aXqxA2vxey28Q/X1+qgkbkF6kvMgVRDOsne4FormufvYG0f9a/XxAtF9PKpjmkc8G009CcsC0xhIIHbt6lB6lETQA5NfscQ==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPQAAAAAAAAA=eF5jYMAPXiu1Hnl9+qedSutahxW7Jey9ejU7VrnJ2LPd/9G/Z5eI/a1ktb9rOK7bETBmFIyCIQkA34YTxQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAfQEAAAAAAAA=eF5jYKAveJdyn21vo6w9jN9cwynx756WvdclRdOnzJr2jFu2zHgsoW1/PJTbXo5L2943Vd7ikKK2vfJxuYdz5LXtpX1fxM5U0bb/NLWG75Sytv3XopldXura9gtDDr6IUdO2dwl5PF9RS9u+xTn8mJSmtn1F8eOsnTra9t9WnFc+rq1tv3Pyy5jjetr2j6JF37IDae9zTI5mBtr2Fl9z3m/U17bftGXmIklDbftQz9jtJ4DimZ1Pt00H8g1dNvZkA+nou+t2XgPSc7efYz0IpBlLpkZ8BtLT9icsfwmkIz7vdP4PpPfeN/H+DaTnRUXfYjbStl/6nCGSCUjfmtpczwqkv84M+c4CpI3j2XjZgHTS94f3QeJL/lywBPGZNLZqg2jbkxbuINrIlNcZRBcHcXiDaJ0Htz3B9HlBHxDt7X0ALF66IgzMn/PIEUy/6k4H03xxSWBaqTsbTNfFZIHp7YU5YLraDULHrobQn+eg8kfpUXqUHqXRaQC18dLAAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAcwEAAAAAAAA=eF5jYKAvsOw6/CPhkJI9jH+mIO7kh7da9qGFpl6Z2lr2K8SOLp4qpW1v25+gZM6vbc9/2lz3vaK2/Zprv5tkFbTtVZNefXykom1fqsqW9FdZ2772ZXf0SXVte4MlKXePqGnbr/yszbxVS9u+fB/rqqWa2vbG865vddTVtj+ZOHdSsI62veLxybpG+tr2M3/IfqvV07ZvMtQWqzfQtl92gauXHUhfSPlY7Gqobf/lO7PTfyD/7e12y/VAvqLK38wuIL04KUf8EZDOsVyz8QKQFggSj/wBpIX92u9+ANJLZeZ6MhoB3flia8g/IL/uT+UcFiD/2o6YdmYg/eN/zmFWkLzF3hQQPXdTsDIbkP7L+IUFRC+Q3OkAotky2s1BtISEvSeIPqs/1w1E68ye4Q2iG1sfeIHoGRwWPiD6jww7mLYNTwDTh21CwLTxy0wwnfw2DUzbS+eAaf+8bDDd1QfhKzZA6NjVo/QoPUqP0sTRAAtkzl0=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXgAAAAAAAAA=eF5jYKAM7DWtamWZymUP4zdte9Cnu1PK/orh8Y5pMuL29Qo5D1amy9gri08+fEBQxp7LvXKxiwynvU3T9LvVETJwfWwX2LKXz75th92WUTAKRsEoGAWDDQAAoPoZPg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQAAAAAAAAA=eF5jYKAMyO43Llitx28P438+fHvVAzFp+6Yz3VEzFSTsUwPKbtfEythXWBowe6vI2O+JC+9m72WwF31WqM3jLQPXpzQxrzxM46AddltGwSgYBaNgFAw2AADbiBeKAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAjwMAAAAAAAA=eF7t0H9Q02UcB/ArOSiwBd/v8z1joD0Th0ruupYccrXumYmgkcQmcpy5CSI6hxw/JhhRJGEDMj2YNgGDAV7SGPiDGwzvhI8SW4FDQgaJ4H3NMC8pg2A7PS971l/9Udd5/df11+ve7+f53Ofu47Y03T5jZUB8N9L8lZYBoSCL/3QhC/kXy66/P85Cd6Xp4Uw6B4I14RLjMREJWJLVOTUqIHkN6ZuvFDMgLYkOVX7BwqFmjVMsZSD8w4kV7bcx4Ux5L/PPMZCnedMz2IhJ5oyhma/CxH/ppjS5hr7Px3SV9WGyzC649005A0GRcUmKJkwiAs4eyxzEZPiVfKEsBxMtN2/zVWNSYj7yTuMYJk2OrbEiOtfbsEl0QYeJbEG1KMSKydDYuVPKAdqLrM17CjCpe8bg8aG5Mts8m6HHZJUVGXW0r+hd5BS0YnJvVNBodDGQWJkRWb8Ok0mLnc05jElqi271yXpM8mviguKzGVAt0snkDkxGWqP7XTZMAkMdSXYeEx9nXM1YBybvrU0rK/gIk6sqo+zMJUzM+3U9Fi0muROF4iQNA4ru4sL4vZh0NY0PVLVhUn8orKvoBia31vx4w8Kz8IEqZ9+0EZPy8f1qazILKbsWVzy6hUn2fEvpA7pvrnh5a8BqFoa+71uvuMxCxDl7sPs8A6633zhxfYjuvaYfkR9kwa+2mltfisD/7qPUulwWnprShpVmsCBWZ5YkvIYgIeSXyT4DC4MpqQmT4QgSJf2db11hYaOiwMFHIHCWBz1/fykCy+cr9VM7EVTPVla8uA7BYvtPyl1qBPEnXxfflCMwR8mP53cg0LTHvnBpO4KFoWbD7jYEHuk0v8OEoEfVn77BhiBYr63ztSI4+sMFwlxFkJ785cbtvQgOGnp+vcPTf6cF3237FsHaz+pjhycQuPXPpuy+iYBtk+aZ3AjabV+vqr2DQDkn5v39OXDKhN0fzyGoecKPWxDCQaEyTRrFcCD0mFq3LefggK3khFDEge/A4ajTEg6ickjnb9SntR5VFrXGU/RuGTWxaoVQTe18kJu8gypZeX/PFurIXqjdSg2Jj3YoqD5FrwZvph6YPx/gzdO+McQrP/nkw0TqEXumjzcHfjLzszdflBK31yXlMde8Kv2ME15btHMur/saOv7oXzq1c9SrX6Bk9M/5v+Lw7OBj9Zetoa7H6f/33xmWFv2Xd/27/p/8HasJwgI=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAjgEAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYH+nW2KGltMDO+Xi6We3/Plmtze66evq3xz2id1fdx1TEbP/eWHvw+4eRXsOVr5pJ/rl7T82vFJZelbOXtq40dR8tpz9qkl8bPH/5e2Z0ie0+kgp2LssWZAe5qhgz6f34bhToIK9j8IBV/5wBXthj1X+tcEK9kt63B/f91KwP1I8M1TRQcH+ouJL5QmmCvY/RHa+LNdRsM+92bk0WlXBfof3uwIjBQX7pd8WyayRUbCXZ/HbmwQ0f3fmnZnfJRTsmXo7leSBtCHb1C2LgP44yzupJxZIczr+9LMA0rd182+oAGnVhr6vUkDatK9PSAxInwhW3SEMpG34HecKAWmfc1OkQXR6Y9NDUHgIHRc5AaLXJejvBdGRT+bsANEdXbu3gejo9J/gcGvqWQOmY3f3gWlB/2YwXc1SD6ZDS2sh6u5DwvnQGgjtMgNC+82G0PXQeNgGpZdB6dVQehUOmpA8LvWE9K0kUh257sBlD7F8QuYS8ie6OC51AL6kLQ8=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAoQEAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYN9QXRZRvvauneZtofde17/YRRfFS+//xWqv3Jjxti1T2D5A+KHEoudy9jG9X9ZNZFKyvzXt7IzPq9Xsn99lXbPhiaa9afWeH4GL1OxvNt0+aNquan/7+0HLnzoq9jsCTnGf01S2//rsr8/fQCX7l8+X9tavVrTXeTX1lYyuov1lsXfq+y4o2Lc1i36I6Fewv+UT8nFFkoJ9tPRbNy1XBfv1CXF7Y4wU7KdylU46qqZgn6wz6+0teQX7lsd3lt6SVrC3kD3SNVtSwT6sjO1IooSCveNfG9vdQP+wHDtjkAqk57NsuWMJpHOLl01VAdL/9D4lSQFpr4wLc0SB9Jf5i3OFgTR/eEaxEJDe4n2BFUQnTzl3DRQuQSt4DoNoRa0Xu0D0Yb+520G0wzG/bSBaLPIMOPyio2eB6c6udjC9ZWoDmL7CUQemlyvVgmnX85DwTl0DoX+uhNAqiyD0yhkQ2ng2hG6Fxs8WKL0cSq+G0qtw8HHRK9HUryRSHSFziVVHyB5i3UcpTWz4AQCFOzl8AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAPAIAAAAAAAA=eF77s/LjJd+kBPspJj0NM6cX2kZWGNi36yfYP10bweq4Lt6e9+hx/+dz4+wjfrgGRMnH2h+UbFJfrBtt71UmPE37QoT9JcWEOQbSYfZmO68dnKkbbD9vb+fR1ToB9ry3N0jr1HrZC3w8scufy9U+tU3x8nxjB/s71w5L+ulZ2M+RnWvnVWNon7Z5e1luo4Y9f5M/28slCvbZS7ZkvXktar/9vElZDiOPvYLOBRXvGEZ7sSDrPsVnX+yCO893ZBW+sOtifmB16dRtO82DGXr9e8/ZHXPccrKt54Cd5FJxEc3ojXYH+PjaZfYttPNfojPn64aJdu1t4ivmmjfaaV/2vlsbW2An0RL0c0t6nN1qg59GsfO97VI1P6ce77OwE/Vmay5JVLWbvnGzu4+dkB3nWT4nne5/tsZnr34+qfDSdqehsJJt8hXbuUcnZ9wrPGB76UJQ8IuHq2zF4xj+HLaZbjv3y7qkT+/bbMPWpn0J5qyx7Zg+sXFCcqntux2lDyZ/LrJN2P12S4RQke1K7l3m7ocKbSfPaau3XlZo62q3pa5nTqHtYffeNIeZhbbGsqtvqcwotNUO3nzzGDBe6k8eEVkBpE9s81eaB6Sfzv/+ZRaQPrDD7Aso3jQZRZeAaJaIyG4QzSt9phlE7/3e3Aii+d2uguM3rHshmBZKnASJ7x+9YPr1Zkj8K4ZDaFFbCG1iDqFNoeljLZTuhdLToPRkKD0VSk9Boyej8XGpIyRPrD509xDLx2UPALVLcJ0=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAngEAAAAAAAA=eF7zWL9n1qfrVXZzFss/XPzqgW3XzWN/7d9G7Dtd/uiJt5y9XdzEOTd375LYN4Xn/++Fa9jtHCYb5z+5tdv2n3OxVoDsa9vYSQfP+bx5YmsuWBTa/++prcVNjs8F4U9sVznfWaB69rFtpeVDLm3Jx7Y3b1ivUZvwyLabWcoySOaR7TVtwZMJhx7aik810hCve2jr1RV7Ndfnoe1h0WUavZoPbVdJvnR+L/jQdvLiaL1qpoe2E+24qzb/eGArbGN6acunB7Zf3vKdV3n/wFbsXfJJsbcPbFOqYvg/vH5ga2N4vsEfSAc8kkn5BfTPAuFFxeeAtEbOt/AdQNpWt75uLZCW0pXwWQGk159aencpkG7hZzi4BEizNK1zBNHPVD9xgugrL3g+gcJl9x2mFyD6N/eDxyB6srTJIxC9WbYLHG5a/9zBtNg2PTAtK6UKpvumKILpK8YKYFr9OCScYxZCaLMlENq7A0K/WwWhl0HllaHyFdD4WQqlZ0FpWLzNhdKzSeTPIaAOXX4OkTS6+dSmiTWfWHfjUgcTBwD4ZdJbAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAZQIAAAAAAAA=eF77s/LjJd+kAPuZJj0NM6cX2po845CNMwqwz7LyD8nZ729/6UCe7LezfvZzF/33PFTma99+9uGdi5u97VOaNG0bHD3sH1s9jHrh6WK/Zfui2ivtDvaxGQ0BbBy29gpx92u3HzO3//pTPKhOxNh+wjeb5C19uvbBB7OFE4zV7Pe1TGX0UFGwf9YtmfV5j5j93XdZx+PY+e3D1a3sTraw2DPxvnZ84v/LruxzjNK12A92/6OX3qg5/NiO3bTzo7Xedbu+4z9zj+WcstPMW7mL02evXaencNGyOevt/nj83i01Z4Hd0tRfyXuZJtpZRz3fXPS3wW7BCznflv4CO1cG9bfS7fF2/88z5j8K9rW7aMWQPGWtld2mXlPfuv3qdg2ZJoEMW0TsykPDXldtZLS7HXNri9rGt7YaX5tT/Dtu2IZeUl52QuyI7ZXKt6u39W6w7bc319DMmmMbrsmSskO52/b7nXM/r8bV22pWLbn4Z12ZbZ/Q287NhcW29yo/s+Q7Ftm23lqe0nW50PaGXd7a4jWFtvovQtcemFdo2+Usp846q9BW5hZHbsaMQluDCwu33wXGB9fdW1vXA+knzwSWLgDS/wO3H50NpCN+qZrPAtKKZ913guJNfcnviSD6a9bNVhAtu1qlCURrvWdtBNFvZDaA47dz6zQwPdOuH0x7ifWC6SMlkPi3c4PQyy0htJQphC6Epo8ZUHollLaC0nLmEPqNMYRWhPKNofJHYOkLSiugqYfph5m3Dkq3Q+k1UNoeSnOiqT8ApS2hNI85Kh9mP8w9MPe9htovj6Z+LZTuhdIAjDB0ug==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAA0AAAAAAAAAA=eF5jYCAPvEu5z7a3kdc+bfnUZYUfNe2fsDx43SCobW8hNr9nvYK2fVuh0TZDFW3708lrd15W07Z/4i1rPE9T2968L9LdQUfb/lz5/yXpetr2hx6aS3zR17Znqf+t89FA2/5s2umFjYba9jWn9t0/DaTPSP6ufwekuzLL3f8CaSXFdZLMRtr2L8RzrFmBtJd2yTcQHSx02IgNSFv8V3IF0QGSRV4g2ob3pTeI7nD18QHRf76kgOkLn7PAtGRMDpjWWAKhY1eP0qM0ggYAX+brsw==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPQAAAAAAAAA=eF5jYMAP9ppWtbJM/WWn/eUy96NXEvYXZ/8P3GojY/9AaJW4f7GIPdsFtuzls0/bETBmFIyCIQkAgeYSRQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu
index 9fd4a8f55dc6c4cf8dbb6dfa6eb05785c71d615e..aca49c9cafd06b231e40aff8471d89b402b3a27b 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu
@@ -3,36 +3,43 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011286451181"     offset="712"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="956"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4749389197"        RangeMax="9.8507779279"         offset="1088"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="708"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011246757065"     offset="1424"                />
+      <DataArray type="Float64" Name="Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011237850328"     offset="1660"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1896"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4748016221"        RangeMax="9.4761775056"         offset="1980"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3640"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3712"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3784"                />
+      <DataArray type="Float64" Name="phi_Dolomite(dis)_prev" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3856"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.1735577126e-11"     RangeMax="0.00014319676892"     offset="2744"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="9.9999999979e-11"     RangeMax="0.00022016876263"     offset="3472"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="4232"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="4.9638264063e-08"     offset="5280"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="6036"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="7088"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="7364"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="1e-10"                RangeMax="0.00014185236778"     offset="3928"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1e-10"                RangeMax="0.00022006167208"     offset="4696"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.002"                offset="5496"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="-8.1681048927e-09"    RangeMax="1e-07"                offset="6548"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999999786e-13"     RangeMax="0.001"                offset="7348"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8404"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="8680"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="8440"                />
-        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.0001126225694"      offset="8844"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9004"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020748450171"     offset="9756"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011242870047"     offset="10160"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10320"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="10384"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="9068"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10600"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9996"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10296"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10608"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11528"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11828"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12140"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9QEAAAAAAAA=eF5jYBhewNbzmKXRCnl7GN/XvN3a6oeW/dnXO4yELqvbW7+euLhBT9s+bsEhl30q2vacAg4qdYba9v8Oz/F3AtJqW5sZ+/W17S9+S4+faKBtf5xn58pJutr2vPw2L8uB+hhvq7/z19G217NqD30MpLV4zTIuaGvbT35iukQIyH/qxTbjM5Dvv/PKwk9AetOsyWe6geKqTtHhUUD6u7PV4QygeW8NpFOkgLTdQaELcUBzDU9t1GIF0oK8aae9gfYv298w5wuQv3NfTYEk0B2y6zcvOgsUd93EZrgXyNfZ5varAUh/zs5gMwO6+0XD/8ucQHq9Zo9OJ5BOcDv0KwtIS/1iO70PSG8v9a9ZDaT/rywNuw+kX09fs/MykJ782pDpE5Au/7w24zWQNmfv1/kDpHfv9pn7A0jbzQkqYjTStr8pyDrvP8j83g5+FiDfdluWJjOQFvFd5ssKpK03Gj8EiV9LZ7wP4gdK310Lordc+C3HBqS1H7dxgmj2F+pWIDqeT9YQzGf1dwXRYiILHEF03OQ9niB681kPDxB9qLzAG0S/qH3kBaKteIR9QHRJ5j2wOPtWXzBf+6YVmL5klASm63dGg+k1Xplg2owrHUx3z8wG00b3ssD005AcML1SE0J/ngOhu/ogdOzqUXqUHqVx0QC4WriiAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAlgAAAAAAAAA=eF5jYKAveHwn0cTi5yc7GD8vpzUjVFLKvn3D4Q27uoTtp8tZyhwOlLV/NOth/+ZrMvYHv1VX7CmVtX+XE99jOk3WfsfU3IALJrL27LYWyXq5sva3q9oz/pySsZdjNX+4WEDWXnWjlPXSJnb7yJ0JzdMWydgf8zwQFt850W7hokMuvBKv4faOglEwCkbBKKAMAADy8zPzAQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAuAQAAAAAAAA=eF7t0+tXzVkYB3Blii6Hzvntzeji7M6RyyGXVoZapa3IpMuodJmRLscoi1SrklwzuRy6r4SE0nRziFLTVLp4RihqpGaoYVKyujDrRIqcRLNP8y/MS68+6/s8ez3Pi2ftSTGnXBtuC+DUpm92t37Nh8pvY3eVW3AguEkkZ0vFdGrm5B51IwSng9K7eesFsPNe4H6phwAmL6yuDMoQQM+CdY5nmzlA/LGBHVkYtNdvHNbK48NdjZkDpUf58HpzSqCYcLBSZ8Y//tSYjop4ZfucCM3fFmK6YjuhXkL7xN2pHCju/111S5vQQPUHDT4WAsgIcHL11TamrpnWPY1hhD4NRc1cE6EZm2oP3tA1pvnSoY7QFXy4h+8u+3mhANLMdJe1xRJqIi/28o0SQFZN+ru8wxy0Fupkz9YktGKGbUVtMaGWpRfUiq4R2il90nF8hNA4oa7Bku8I3TQ036e7iNBL2S9M9hwg1LdylYZBPKHBgUs8HqYR+kQ3Wa6MJHTuLEeJz5+EtkXrzTrXQmi/88uA1XWEnhzMtu26Tui1t2ac9yAHmR7OvZlyQlfMbtg/UsjB+IUP76/EEZo7+4gyOZdQ4csjWYpeIU26vOD5WBmh8lbpb5XVbM4ah45LHQIo/uQn1Mwm1P3Eu5TCU4RGzZXuiMvmYJL1naoyewQaB4xK6n8l1C31Tk5pLwczNRxk8cEIBDWfZ/k95UD9c5psaTcHP1716pwThiDZPbqx7zUH8+a5LPTdhaAj8orSzQGB//gfb712I7CzqNgQzfqW76MCKtwQyOtHCrSCEPidsy6yEyPYd31DX52C3ann1fP6PrbfltfcGIWgQF+Wacjm+S9v3SKWIxhWtrkrYxBEKLdITKMRuIbdcrcrQ7BxYA1P8xMCixkNGz8YY7gSfc1geS3b6+r00awTQcrlUePpNQh89qaKQ0YR3HSDKoNxBBIHRaXGEIJn8586WnQj0EsXqdUYYrivruO5eAqGn1CKVvJ0DC19hS70PYIWicnww6UYFGeq1XtFGLwGXx6z0MewKERkY8NEnzVMx7wx9O2lW0PnYLhhtFjPywODVUt46BQfDOtMzV85sXzQvqeueRuGgghRFWF1SVZYu40nBh3/zWebtmJYci9x52g0hjd65mHiSAx7j78pMQzHsNLe0vlRIgaDYvHSqyybBcfbxZzEII8dO7maGfGLZULQOQyez8nFtTEY3u3S3+pfiOHBKiP19jMY8ts/njZk/0jIi034/SqGvOzw8dpyDFPFg2XmORhGk9wufqzG4K3vaBhfiuHx2/NWLvUYsoYV8sabGLpGrJaVsCxt3l9lylQrrvPsf4Bhcu7RlV81YShPr0i4+JjlvOF9yW0YBiKtjos6MfAW5Yx3P8GQa+O3xbMXQ8+hgEsHX2BwO9xXP5flCFntcmvmDq3tqYg5s+BxvwGzaU1X2nTmtMWaDnxmh+zGtmnMTtmx+yoVQ3VrdZiP1CTBPOb3juIiLVU/3c5Km5nfa3NClRv1MyJUmoepJamU9dfFqawcLT+mUrSnPWXi3TPlRL3R3Tlhoh9+YMIKPf4RlYeO5sSrdA/5ry48bzuRu6SSCW//9cMX/0f/BXDGAQw=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAAAIAAAAAAAA=eF5jWJBjF2h+03bVrJqtguIK9pf1JzgbeWyzu2Cc/dpH84KdUjhvltSUh3a62YVf33F/tOO+ft0+bM8/u8jOb7+v9XHap8rdlbzRJ2y/4P2vB4+OKNk7Vfz86SamaB+6P2Y7b4uCPfeicsmwc/L2ThcYdSsq5OwNZrZfMoyVtecRsl67QF3W/vfDv8KBqnL2nb6lQjK1cvazHu7hunxXzv6QThSXpYW8fURIbZVGu7z9LWX2VddPyNt7cK3f8uqPvD2T91/BV4IK9g+k+9Wi5RXsWa68jFigrmD/zeDHsj3aCvZsC2517tdRsP+QVGy2Eshv2sfLFKapYO/45vD1IjUF+3cbr86oUlawvyZTNmGXgoK9GJeocbScgv2JGzqRWTIK9iWFIRefSCnY7w6SldgnqWDfcWv+7acSCvZZH9RrvIE0X9SMX/eB4ZV9TeH8NCB9blWpYBqQ9nezc3QD0iELXz82BNJ69VMlVIG0n+pKY1mQfG5ClgSQ/pDCPkEUSPccvfVYGEgvsbjzRghI33SbmwCityw2FgLRbFtZnoPi5cXbqedBNPMh3sMgeod00R4QHVLPtBNEG/nbbwfREZzR20B06Y8X4Ph02LkBTMeETgXTbcYdYPrQ90YIzVIPpm9sqwXTFwQh9JqLkPTgvgFCs8+A0LB0MtJoAJ8wLbE=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAIAAAAAAAA=eF5jKNh/837NbdtVs2q2Coor2K/mZ5vAeWGj3RbGk0ETV560S9vM293Xf9tuyRZjkQyLV3b9c1W3G6t9txNK5Z0fzspsf01T8jGXBq/9qf0ZT52eS9prPdj07UeytP0M3S+upkzy9te2XDK58FnRfv1ixtNbulXtf35nqiiW07Iv2qHtuvi2jv09keKk1Ula9nWcZ5OYdTXte+POsrd/VLc365Xl1T6uZv/nucLbmq2q9vzrdxtl7Fext9NS4n3/VNn+0RauLb80lO1TP7jemtCuZH+BeWsTA4OSveeztNciExTt07syFruZKtrfsDdNfvZGwf57WcRxhy0K9o+SQ2x3dyjYKxsl1b9KV7D/xvdy2yJ/BfvuvH32jHYK9iYSXi4Fhgr2MzYef7tEQ8HecX1p2kwlBXufuOUGLXIK9jc+inmfk1aw9z+pFcIppWDP4GNQ+0xCwf7N5oUH9IC0u8+U5j3AcPzq7j+9DEhnsW0o8gHSv34H5xkD6aMsTGdVgPTPwANxMkB6t++PKeJA+mH2mmciQDpn2dlsYSC9hr9jrhCQXmJ7UA9EO9jzfwHFz6uDcVdB9ETTjqMg2mpN2V4Q3TE1fSeIXpedvB1E35NJ2waiA0Jfg+NVqHMDmDZbNwVM/1reDqa9FjaCaYZndWDaamEtmJ7DBaHXXISki5rtELpgGYQWXgmh7y2E0LD0M1xpAF4KNAA=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA8AIAAAAAAAA=eF77uOzjJd+kBPspJj0NM6cX2nJ8VhMVjU2wz7j1dk5vcIL9nSuXpLc7A+W17DWktBPsn4Xl7rnGlmA/62qea+fyeHt+vsZwX9l4+zXNZ/bczYizZ8gt2yHeGmt/WX7T8uq8GPuIKZuW7laOto86vP+e9rJIey2ttMYfP8Ptz7TP4BRXC7P/Fb136nvjEPujblfTj+oF2bOsXtj8XinAfmOt3Zv3lj72CenCcZWBHvaLVW/4hS50sS9tmTnPz8rR/pvMA9lLATb2r9y2nfN6ama/ZnLm1wIzI3suV/vN1Q069m8e7+nc/17V/uPmeYpWsxXsp+80yXm+S8LezUzW5aiMkP3Ch9FtEpJc9sue/uzUqGeyF9xmFtN++qfdmTcnvRZt+mjHo7jN8uzT53Z8K56WZBy6b7f+kdiLF0ev2IlxLrBcdeCU3bqbsyQdvh2wM2lb+KRKb6vdtj7btRN4V9nd2rpCNnvifLtHIf6uQjcm2b0+wjRxjnabXUBFe8+crZV2Z8q3feFKybXbO9fHoW1Cgl1C/1XBh5lBdu8m3lu92cDFru59wteI66Z2F5ZYRG0KULc7duZ1F+tECTvTHYtmf+zjtFvi73llgssvW4sFUx4xbnxluyB8zc07t27Z/pm80WvllVO2TP0+yzuO7rJV6l7uUf9rle2HvyYv9Tnn2Oq9sdq9WrTf9hC7kbynfrPtUfPI5V+1qm3XKvBeffCl1PbdTuFez/5i20/XGp5ZVxTZGp+fw7TzV6FtQXioyqNDhbYuTYIJfqsKbZM2mdvOml9oy7Ipz/bvLCC9d38268xCW4HF35cazCi0PVp8Ze11YDqa9ujFtU1Aunq7z+7FQPpfp+6MuUB6Rt0j+dnTQeYeUJ4FpOcoyh0ApbszKyRmguhVZZ86QXT8U9kWEH3C/EkjiA7axAOmv57fDU6nXzbNBdMGUyeBaZGmPjAtxN4LpnvqIOlZzBdC37OG0FXmENoKmt6nEEkDAKZ9gUg=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQIAAAAAAAA=eF7TTRFSt16WZTdnsfzDxa8e2D45HezY8tncLiunddfpn1p2rD5eOob/pezWLPu2tXQjrx2f9kd9/kOMdrvM8mb0WH63VWvfzPdZ5YOtB8uxvFfWT2z1dm3b9oHrmW1J97Ib12Ke2YZcXR1quPmZLTd/u5Wm4HPbaU/nMfF5PLc98/3u6pO/n9nesv1w7JDYM9sp299HZrY9tWVZdXPh3w9PbB37ZD3yE57YTlwa2HTnxmNbsXr+p00xj22FJVvD9755ZKuWEC3t2fXI9qc3W5C/6SPb8oM9SkVvH9oG9GYnPtn40PZZZuu9tsaHts47gn+xRT+0na9wKfu3zUPbr9XOX/+oPrS9cL+7f6fIQ9ufjzeWMHI8tP2bHel17t8D25mfFAJdfzyw/WA58+rWzw9sp+sx60398MDWpsE5q/LdA9v1/0xmC799YJt62ipA680D25RFG1dNef3AdtvBySZmQJr//OXm38BwTP6qNfc6kG4T+/nnIJC2V3DU2Aqk77nbr1gLpDfwhoetBNJ9zc2PlgHpomVqzUuBtHyq08ElQDpfdm84iJ4jLy4Porn0xRhBtMiM9I+geKpoDngJotfUGj4F0UaW8o9B9IMT4o9AtNKsaeD4tDsVDqbnvbEE0/07tcF0o4IqmM7kUQLTZYsUwPQtNghdeA6SHo7NhtDFqyH0hwIIbdQHoWHpZrjTAJJLxkw=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA8wIAAAAAAAA=eF5V0n0s1GEAwPFEZMPMS3nLvCV5K92lc/M8TwhHufvl9UYxFNpK+xF5Oe9uLMfdQs67OInMdXbboZspNXPIvORl47xUk5SlErNK91J/9Ndn3/+/Dm1bkwExGCKdY+VWV+GgsP+YBSESQwU5fMvVUAx99MZf0C5iSBhkazBPxpA0WORz6jiGRHhvve5hDKnN8TvbxDTk05Vm5LxIQ3pmBLp9JBXx3i/cJPEvobLm/oj7Tf4ouqhbEKBHQQYNI4sq5t7I6bw21arCExlg4qXNKA+kcdvSGotDyD482Iej5o4GjKseJ/BIiEzNVGfSz6LEd1csZglnUFUCqcS61BkxBviM524n0feDH0wNs2zQhQ3OqG6kBfLsCnMcERkjLf1WukCqj4z4wRU5Ljposp0c4c5WR4s3Tbpbyg8gbnRJePX2DrQ8qh61prEFg8f3m20n1iDXNK7DK2YZWmX5vh52moG+Q6s2lSVj0O7t9U9BkYPw9NeHVK/9Hkg5uN17YpAPgwbTN8ekLXAhV1pEZHBhTDXVIa6nFI6Kcs38XuXBR8XTxdNf7sDQ2N0U1cAEOF3G2pqfjYDdiNPGu0WDnDm+9nKWB7z6lBRIJxKggPXD0HPMBs6+9C1ydz8CJ0PXr6WnakDhzi7tW/IuYDDv/TZyWQek7FBuomAecG44JrmqScD+z/ARWkAfyChOixfMdABxLXOBRqgDhZffCHWYbJB73X8qo7AAsNnZi5rcTGDsJnFNJaYCsMK44NSdDPJTCqbK7iWBWa1f4kNqSYBOXh9JG8IBJWTdsrATB8IwTZXWJhzYrdS2ptXigBe7xATVOKjfa+n34+LAdWtYvCr7h0MU80Qyuz7HS1plmuyevdsg84HEOKtW5pvy8/41MqUTM+Py39xUkxrl9m1ksuTutZsz5VaOUvLlhrcT8uRuDEsUf4rjWxQ2PatQSMHYChtDShXCOuXHNXSlTzyUCklK7VyVSv+6RFD6738yUWkF8f/+AxQTc/w=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAADQEAAAAAAAA=eF5jYKAPsPU8Zmm0gt++V1DBfFmqpv0ZV62S+Zra9ixZ7ywTDLXt/1wtNRAw0LZ/1VvlyaqnbT+j6/rCmTra9vd+mLZ91Na2l2p6K/MZSOfkfRcsBooX7Vo12VFX236Ha9JfQ6D6mLTPxgr62vavzWZ0fgbSFluWic4Hmpf3zfitPNB8DovlwlVA+oX5auWtQPqrgmDHTSDd+j5/6zsgXfnwbcovIM1zXbuDwUjb/tvCyjnMQFrjf444K5Ce4ph/DER/iHQUYQPSxtWLTEF0X0+5M4ju2MDkCaKvVml6g+jru36AaUl3Fx8QrfEtDkwXamWA6XvW2WDa3T4HTO+bCqFjV4/Sg4kGAEtk35g=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAVgAAAAAAAAA=eF5jYCAPPL6TaGLx85FdVd8SHo5LYvZ7YnjDrEVk7W9szGX62Sprn/DyUuT/AFn7P/b3VS68lbH/xlE+4YuhiP37JRX2EUtu2xEyfxSMgsEAAAGgHdY=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA8AEAAAAAAAA=eF5jYBheYG/Ti27N4/L2MP5Os2u87tza9qxFjz65z9ewX7Cd46iXvrY9u0R3Z52atr3mr/OK8wy17TfvtIiaC6Qll+661wGU/yehM3Wqgbb9dka+ojZdbfvKJVELc/W07YtZToc76WjbW4juWnQNSFfO8cg9pK1tL9a6xY0VyM/X+MTwDMjX8JwR8RRIs6V7OtQDxd3Kf5/0BdL3XwuuiwWa92NTNzc/kBY0MswMBZqbtK3b9zeQf236CkUXoP0hz6yj3gDFJdaplggD3dEtnfL3GFC8td991w4g/+q6d7ergfQc8/O3jYDuNl0fL8QGpH/dEONuB9KCqjdjMoB0S4lj/l4gLZDrfmglkE4TDWi5B6Sr4qYsvQSkM0RXd34E0rwSXkdfgdQznXn1G0jfnNjo+ANI33spEcBopG1/5uS7nP9A/rz7df+YgfwXAjECIHqpTosrK5CWjP56hQVI6xu63Qbx2afKrwDRdbWhsmxAOkbhAxuIvvCn2BJES4X+1QfRSy+xuILoIG51RxCtqjTfE0SLPxL3ANEWXKneIPpf5HkvEN21jc8HRCv9vgYWf63vA+YziluAabmNiWC64UgUmL6pmwmm1Q+lQfR1Z4Pp+INZYHp7YQ6YXqkJobv6UOnY1aP0KD1K46IBXe616Q==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9wEAAAAAAAA=eF5jYBhe4PJS+W0/jivZrzG3a9dteGO3PCPh5lRhbftF/QJzv03QtDdY9UL8uL62fViW51QWTW37UCHTg9yG2vZtTDNb/ID0rrqlah/0tO0/x+sp/ASq8/oyLUlYV9tekXlH6CsgnfpX8dZvbW17Sf43z2t1tO3zzD9eXgrknzxos+w6kP7jb8j+Bki/3HPH9y6Qtpq4XGceUJ1+HdekJCBdU2Sl3g00523jtw4zIN2/9ypPB9C+lgW3tmkD6XRj32UlQHvPPUvtlgXSE1ffMbQ10LafWvDV7jOQv97m+cybQP7rlXMEFgDp6IRX572A7n58OyBeEUhvuVDlNx1I+3n71lUDacXz748fB9Kr/z3x2gakYyIEtz8B0jd0xGJvAekz917yfAXSJq/WOL4H0rc2vD/3F0iznu3d9QtI32la6cFkpG3PHauzkwFI31g3s4IFSOf3fN3GDKR5TYXqWYG0uzerKojuvBj7FURvaBA/C6JTlu/WYAPSoU/jxUG0SZeTHYje/4bTHESX+PxyA9FeS4RcQHTa9RQvEH0i19kTRAt2bPAG0V9qnMH08kVaPiBaYA4TmNY2DQPT5aweYHqhXiqYXp6aAKbrYrLAtOqaDDDN/CEbTD+Lh9BdfTlg2i8ZQn+eg0rHrh6lR+lRGhcNAJSbxag=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAkAAAAAAAAAA=eF5jYKAvuPGjbfXfT1/sYPztZpsWM1yQtFcX8l/bsk7YXnw/4+0OA1n7o5lfJj6JkrG/arZNbVK1rP3XM1+nRJXJ2nf+eFJ50FrWPsc7TLk4Sta+2ci99+MVGXvX6Cfv//+TsV9/U2rVlyp2e8Z7gjsqZsjYw+wR8spec5vpCdzeUTAKRsEoGAWUAQCAETSmAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAjgAAAAAAAAA=eF5jYKAvcI3+9yjLjsEexv8s2fXidoSUfauQ0epyTlH7384uv1/YydoXHX+hxtAlY6+V4Lmep1TWXuuF15/pQPpOu/3dVfqy9ic6ntlzB8ja2xgzRc05KGNv83eP7IR3MvZe7/7vnRTOaK9dPHWWzEopuD31rzd5u8jdsMPuqlEwCkbBKBgFpAIAym8vOQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAugQAAAAAAAA=eF7l0flT01cQAHBbrFxyJN/3xNvXcKmhMhQtCI4+sRbrAUwhCPWAUIOIcojWxFYGrEQrogKCVqMgGCweoKjIYU223IpEK+J4lEsLAUVtCVBDjfaF/gGd/tyfPrO7s+/YlUWNjbyXx4edIfstDk7ggSrsSWiMNQexEpSEKjiokxrWrRRjcJp/bW+TTkB3bxa952kmoFvp1caCAD6Yb/fVnnyI4KnySIqniA+N/W/dCwgfDhnMd8vWIrCGtTOuO3LQs7/r9kAoH+Zm5Ydt+5wPMYs1ea5lPODLJn+jMfmQtl4LqRalExqojneOeUHoc+kVsaaA0FBZ3O1ZZwkVBwtnlbD8vPCHr/IbCXVtcz6zfZ0tXM2Z7SypI7Q9sfCWh5ZQtaB59YoThFpEqXR+akKbS7IuFK7hQZK95eOhEkJtM8ze5FYSKm/y1sx+xwc57Y2RPSP0l5ShkKrzhMa/bI8+w/rXKgzSoouE1pm5VGypJvTsvvKCn9h7RjllNw+ze2pfZOiW5hF66VlvwusoQgVdA5W2VwndanJvR6uEUNLSX+XmxsHxYzdiQ7KnUZWyvPTmdUL3tre9y+kk9JCkwlQbzcGS/FYv00RCM9/21fC0HOTNNw3q7CG0SLbji0h2f02Xi/i2mAO9Ej2ZqOdALQo+WDcZgd2S7kW6+4QmdxZ2i7/jwPt6cazdNQS9jwcMlys5GMtFhI9z5INmY9CQuRXbT4OHYONHHAyWNxwOY3uNFPo2DblycE7vUsw946AW7L3N/RHMc8juOnYZgc1vjVUHWBwwXF0pDUSQceKTu3YrEQTWKIZlvQh6BNr6Ei8E4zg4LbiCoC/ct6bHHYFnm/+DO0rWf1pYvPBnBEczbcLnOGE40mnojqxFoNB0WvQNIkiL7oieVIrAS9U/froBgUtLhuth5ppBj8FTzxFkq7aUSjsQfE17pmtsMAzfGh2WboIha+6dY70LMfjElb7W69l/j67yUTliWNxRyI+1xxCX8MDWHWH4LNkJWQdjaM9O26VmdeX6IqHIDcMEM7xctwiD2wI7QYgQQ9m5+z+U+GLYFW7pMDUeg7O1Qj5zPYbkhWembQ7AMFdila9YiUEEdfyArzD8talozAdSDI7bk+urYzCkft+8+A8ZhoYpDgNC1v/pr+31PokYIu6Npg7JGFb3LXtTk86URxaV7cOgUYzfPD4Pw7sEr6JlaRj+tAJFzmUML+enBityMUwdI/5Rp8Tgd+nbdbvOsvMc1VR3CcPzi7TMvxjDphkblrmoMczsudC85zyG8jQVuVGLIWXjClt/FQYbUAYl3cDQW2DqHVTP5mS16JVOg4E+DY7DtzCkOQuXF9zHsHV41F1DCwbw0M/ObWVzupn0SPsIQ84oM89VTzEkTCjrT+zAEOW+Q/JxN4ahqqg5Piz//ilR/iQWC8d5+DoxHSy2TeExM3eG/I6ZLi/so62ZJ4ubeDbMyNAFqyyZkhMJ0VZMbTxqM2daijeEWzCDxCZZxlieue2k0dUHIg4YfeBnk2a0cOme3UazgqXpRhvb9KlGcyauGKlXJCSOWG7LSzGaLD+1z2hg7D/5acd9RuKOiJkj1jz88n+tXNCR+l/y/+bf6koMSw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHgIAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYN8ZFnqMxXub3Tbm/qMK+hfsXL3rtjjWPbQLMpW3/nPzg13G1zolF/F/dgs+dcj/+8tpv1T7qJbJShF7N8/Z/cemK9lvLA5QFL6oYF9w+3/I/CkK9hWreRn5Dsjbq1h7lqxZIGfvtKRhvrGLrP3NliRfHV1Ze+FHK2WeKMvZh+xKPR5aLmc/48qVtILHcvaGqzc729rI2/MFMXtM7Ja3N4u75sZ3Vt7+ep/rqTYGBft7ey+13BZWsNduvFwkr6hgH3JEwUVXU8F+tVLeE15dBXvWDWuirgJpkWS5hnYdBfvLDzexMGsp2Ev6RLJ+U1Ow5395b+5tZQX7F7E7lzAA9f+Vcd/QI6dgX3UiqadHRsF+ogHX999SCvYzVzMUn5VUsPflELr5XkLBXpyZ7W4gkF7k5P7rMTC8NOrnuM4E0rPq5PvTgfTqslwVdyDNwPI5wwhIey6zTVUF0hPrVeNlgXRCweomCSD94HLqXFEgbTNV6rUwkHZS3fNBCEiXfF6eBKLNzZyFQbTos/7noHjJSr9zHkSfe2VwGEQ7lTTvAdFbGbh3guijlc7bQfT3XzHbQHTlt5fg+Eyx3Qimv8yYCqbPhHSA6QLeJoi8WD2Yjt5SC6ZlJSE05w1IepDZB6HXLYfQ82dC6A/Q9DIDSq+D0iuh9Goi+auIVIeLv4oAvRqNxiWPiw+jAXHXKe8=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAANwIAAAAAAAA=eF7bvff6zfs1t21XzarZKiiuYC+inDHL6dJGO+XDOqs3bDhp5xDG1B9UfdtugV+ToRHHK7vUFwlp1Ve/2eme7Lo9047ZPilC5WC5K59906bEnOW7Je0l/n5I3aosbd/DMEf6ooy8/ex3TdrOTEr275jvnVeUULUXzq82O1avZf9wT28c9w0d+4Pnhbx+umvZf3r3aymzjaa967cfjRwv1e0nTbJavOuwmv2yGz/Wi2xUtX/5/tavpbtV7DPZ5Z3iHynbhwduDT2rqmy/MWP6rJMtSvY1r2cfXPpX0f5tJr+Mcp+i/f0tfu+2GivadyRxTVn9WsH+bto6M//NCvaT9prysXUo2Fus452amq5gv6Yww8vZX8F+Y/RGrX22CvY2FbUCToYK9rXzY/e0aijYC8W+3deipGB/67fW0TI5BfsWub27j0or2G/94P+dWUrB/sJLQYPHEgr21tHmB3WA9P2L1sG7geG455TC01Ig7STKxuMDpEs+i5sYA+nb0lVrVID0srqbPjJAutTUuVscSF80rHkoAqRfrhHMFAbSr4Nk5ggB6WsX2PRA9LsPGz6D4mfuOv2rIPokb+FREJ0Wk70XRO8xStoJov1uJmwH0QvepGwD0WrnXoHj9afTBjB9acoUSDzPbgfTEVMawXTF1TowfXtRLZjm44HQhRcg6UJ7K4Q+uxxCm66G0BcXQuiDMyC07mwI3QFNT5ug9AoovQoHvRJKrybAx6WfXHo1AT6MBgA7DTleAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA8wIAAAAAAAA=eF5d0v0v1HEcAPDRKCRmk0OOKG7kqaRwn8+baDvmOQ+ZpytNysjVKs48l4eEL5Gnw/SguTrlPLupyzq10kSioXXIQ2oekrhb6O74qZ9e/8Drb/3SgMdZOhTb3E4tL2WgMbKJpmYoHTY9Fll5p+gwrM3TbXOmw0b3RxMdMzpceL6HN6RIh1ejQlrOo3AYy9a66KEXDlaO461fosJglNLVoHUzFAJH2+sTY0NATbnmAc8oGJgBIqFZXRBEvOSkrIkCgcPJUtIyDoCzIcyShSN+4F/vel5g4QuXprgZC4be0Eec+Llg5w5RJ4+EJfjQgLt7h5d/rQusEv3VnvZO8MYrjDzgTQUKz67PbcoWWtHcSpztYfBjWjYnph4C8rXiWy8WDkIyL8jQvtIA7Movxcx0ksBsr/5JwT4N6HqymkXSVgay2D6XkiIPgTSDsKx3IrxJO+Z+j7uE01Gvw/upGWyKJq9HdX/FsbrWc7OCQRz/KZPK5r/FkZQiXcc/fKxSDTNMixaMnNjPCFU27o1RN4wurME6lSSaxucibOTFLGaZZeJJag/BaknAcvqDIuVzMfh7lr9zJkHH49QzmuMXfPGy9vLTJisX7E+WE58ePoov1kaEc71NsFEhi1AoJGHx/g+1S/lK2F11eoRwEaOxhoLvco1z6HX6knBsZATNq5v61g++RY27hA3Zgk50fIbqnSJmo+CmpkVLJRZSicjtfqxZgEqT2g1dLTNQNrOZvWKaiByia4eEv68itY6+PNeCK0hAG552iL+MOEqv5DvEDMQURR6Y6GagnSHadE82A/VYO6CKGgaiHIhD6xUMtBHLj1YoZyDdL6sPrcoYyKdgkDMseZTyY3aIK/FamzvvvkTzHPOyKok2SRP6lRLXA/hGFRJHzcl86Tu3OlK5VMfrv3KkKk/r3ZBKtv2WJpXg7pZp3M+TPZVrqpJpXFIkcy0tX+YbxTyZRPLW52CPLRWpW84f3TJ3+/vdbe9sW7Jt8X/+A9ESdw0=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAANwIAAAAAAAA=eF7zWL9n1qfrVXZzF8s/XPzqge2fZNOJZV2O+56Y/SlhcnKwk2D/WHFZ8a+txX+ei8LFInaL/KR+5Xn8s/W2FhGf1P3D9tGcb//Nu97ZNq5meGy5+YntjLyCTXohz2wPiRv+/eH1zLZK537OtF3PbPk8Tv1h/fvM9kVya+eKkOe2aZNW5b348cy23bIksln8mW1NzZOWxM6ntqs/+sZ4vHtiG/7+QvuKuCe2Sy1v7Pl47bHtBf2lkw9EPbblMfvdy//6ke1Xj22CBzoe2UYy7tr/0fiR7eEpbp9d3jy0lZ7paPRiw0NbjWsfqnc2PLRlX2UlmBL10FZNWqOo1uah7RGj7U/nqj605ZNvry8WeWh7cbrsr3PsD215/ZZvXfXvgW3PJ73DOj8e2D6+2GO99PMDW2nmRzpdHx7YHlGqdyp698D2VrUOF//bB7bHj00sVn/zwHZxWN/zSa8f2MowtyubAumtHQEPfwHDsfczs911IH3TV/XYQSDtKK7OuRVIf5x/f9paIL0i87jPSiB9Xynk7jIg/Vw5sWEpkF4SfGb/EiDNuOBXGIiW7t8sB6Lf3XvMAKK/Vfl9BMWTj4jLSxDNt177KYi+nyDzGERPzhZ7BKIPC0wDx+eLVeFg2uGSJZhm2qsNpk9Iq4JpRUElMK21XAFMT/wPSQccLyF0wWYIHTcfQh9YAqHVOiD0j1UQevFCCK0MlS+HpqelUHoWlIalszkU0sSaA1M3m4A6XPIwcQDZccv/AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA9gIAAAAAAAA=eF4t030w03EAx/EeXOEq18lT5NSGo8wxY5Xv99vcFWEsrczGnK6mp537eahbmOceME9RWxQSMo7CESt1ku0mqdGQw7Toeriik7jo2tNfr/v8//6sNiwoqKdoSOSVny66jYG1AL4/kU1DiXwLzqeTNDSsoFDJQTTEqHrbjh2goRskxtQkjobC373tf25CQ703JQl2b0KRFKVxmaOhyCEoWz5LD0EF4WKWyaNgNDK/JtpXHoikqbV/yV4B6IrcmiPYcBgphI2SrjI/5Jr+sJ/LoaBbuMdcdhRCdYuxKm9TX3SxQP1tdz0ZEVaKGMMsEkqyaFK/8vZETKmov6+EgHyVjBAVdEERdPbDqgw84hTH8JZjHJDn1Mcjx3psUP1x+pl/anMUFL1nRb1/G7qf0NrQUbYJqcO/O+YI16En8xajstU/0GpjLMd86wJkDU/I4sY+wy7LNdvAWBWc2RbRXuqlhG2eg71lpYOQL8a7Ek6/hFNjaVzJpi44s73NP/t1C4xk4POKP9XAkR/VbYQsIRxbYIe0vxBAteLpkqM8A0qaP9jFLSXCasn0umjGWahsNKIvTrHgtXHGWlJSKAweoIfuyqRAofMApiITYXd6j8xYgYeN1FwmkWIJzVwC/YuSN8PzQTkeNrxloCz+muLr/QX4EhYa+R3jYD7v+HaciRx4bBnimYZ1g1mlQOw2IQapVm0FWT4VwO+nu/ev64XgUJTPb8rVLBC/9cHOWlEykLnljbiRLoHovdeo/NYEUDlgTWjNjQcdxvLVHUbxwInzPjhNioELJeaqq00YYNrOOdZVYcCSesGeV44B53zXTiDCQIXnDcVRIQbiUiR9HzX9dPOn6zs1mimrB2o11pFbLt/TOO4RkFquMRcfFnhH43fu5JC2N/dLiZVaE+Up+Vp7l+xztDrNBWRqjewkZmhtHpTr+gw/V6Mz+1mpzoqwQp2kEwKduLv6jmVMvTw/vfL9emdIetf76F0k6rU17IOGHzQZFBj8Dyixe1o=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAADQEAAAAAAAA=eF5jYKAP2Nv0olvzOL99fEhMg/tVTfsrzz2XP9HStn8XybJvrqG2PU/8Z0t+A217ieAtnL90te2v9TjV9uho25+Y8O/mY21t+zMWR9c8BdJq+UqtaUDxnPPnYsyA6qxK4qI19LTtRe0/2Uroa9tfenLE4i2Q1pWX9p4FNC+jWLxcBmg+2//vm8uB9KmCIzM2A+kPlp+m3ADSu6ZVqb8D0nqn1MR+AemrN5vjGIy07Z0rctuZgfT9wza8rEBa+vGmgyD67TklITYg/XXFDhMQ/eedqDOIlmu67QGipY2kvEH0tRufwHSZspMPiD5vFQemGX6kg2kHtWwwvcE3B0x39UHo2NWj9GCiAVe14ls=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAVwAAAAAAAAA=eF5jYCAP3PjRtvrvpyd2+UsaVjjtF7PPE6netu2ojP1Txmux3ypk7X8tnOsn5S1r/+TY1H0/XsrY5yztb/upJWIv5JW95jbTFTtC5o+CUTAYAADn4SCOAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAgAAAAAAAAAA=eF6FjLsNQzEMAz2KmqwRaBTNkUqjeBS3GSKAF8hnhDRU8Q4QXB2Oojjy93rcnvdRjIM7ctKaXjl3u94pJw3c3yuH8iVPMeBkgCb64a848T+wQ/Luh3v5+lx9N16c8IW8GPCEu2jol++39sEUp+higAbPps+9aHrM2cfOH/xtgBM=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac.prj
index 96707b2133aca2b32662bae3550fe93b5a9fd845..08530df995eb75ba3f627d0ae5d0c667f036256c 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac.prj
@@ -314,6 +314,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>1d_isofrac_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>1d_isofrac_database.dat</database>
         <solution>
             <temperature>25</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula.prj
index 47a777e8457404cc2bc2929b45367a5b61b7c942..ae416a356ce767c26ff85c8e69521c5a1dfe0ce0 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula.prj
@@ -295,6 +295,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>1d_isofrac_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>1d_isofrac_database.dat</database>
         <solution>
             <temperature>25</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_0_t_0.000000.vtu
index edecfa9fcd3f72a5949db0f89b1f7e0dbfabd728..38d4ee303f0cae88c2642ffb8ab0f8d3602e34c7 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_0_t_0.000000.vtu
@@ -2,37 +2,37 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="88"                  />
-      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="168"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="4"                    RangeMax="4"                    offset="248"                 />
-      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="340"                 />
-      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="420"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="84"                  />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="164"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="4"                    RangeMax="4"                    offset="244"                 />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="336"                 />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="416"                 />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1e-07"                offset="500"                 />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0"                    RangeMax="0"                    offset="588"                 />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0"                    RangeMax="0"                    offset="660"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="732"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="804"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1e-07"                offset="496"                 />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0"                    RangeMax="0"                    offset="580"                 />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0"                    RangeMax="0"                    offset="652"                 />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="724"                 />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="796"                 />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="884"                 />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="952"                 />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1024"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="876"                 />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="944"                 />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1016"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1096"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1088"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2700"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="3248"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="3760"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2692"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="3240"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="3752"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPRM9A1N9VNT7FMNkg2SEsx00vJLCqpBABQ9AdBAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7BJQBL+VS2I4GufJmc2tm3btv18ARw0fQE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAIAAAAAAAAAA=eF7zWL9n1qfrVXaeUNpjlB6lR+lRepQepUmgAesfxe0=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KE0GDQBOJu3oAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7BJQBL+VS2I4GufJmc2tm3btv18ARw0fQE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHgAAAAAAAAA=eF7zWL9n1qfrVXYeo/QoPUqP0qP0KE0GDQDk38XsAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KE0GDQBOJu3oAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_126_t_12600.000000.vtu
index c6ade4fce18ffb20242577326ccf23404d93c090..ee3936708e02dcaf5ef056196ea07461db5c9b05 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_126_t_12600.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_126_t_12600.000000.vtu
@@ -2,37 +2,37 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="5.0297441979e-09"     RangeMax="0.61226854592"        offset="88"                  />
-      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.0319195346e-09"     RangeMax="0.60754051175"        offset="4268"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1998266637"        RangeMax="11.3609306"           offset="8456"                />
-      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="5.0297441959e-10"     RangeMax="0.057720123269"       offset="12280"               />
-      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.031919533e-10"      RangeMax="0.057274399383"       offset="16464"               />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="5.0297443405e-09"     RangeMax="0.61226854557"        offset="84"                  />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.0319196702e-09"     RangeMax="0.6075405114"         offset="4260"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1910389165"        RangeMax="11.367606676"         offset="8440"                />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="5.0297443385e-10"     RangeMax="0.057720123238"       offset="12268"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.0319196685e-10"     RangeMax="0.057274399353"       offset="16456"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.6922225425e-08"     RangeMax="1.0000037414e-07"     offset="20656"               />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="9.8017418582e-08"     RangeMax="0.49525962657"        offset="22600"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="9.8017418582e-08"     RangeMax="0.49525962657"        offset="24768"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26936"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27760"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.6922225482e-08"     RangeMax="1.0000037414e-07"     offset="20648"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="9.8017419283e-08"     RangeMax="0.5"                  offset="22592"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="9.8017419283e-08"     RangeMax="0.5"                  offset="24752"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26912"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27272"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29828"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="5.1075755039e-09"     RangeMax="0.60805244463"        offset="29896"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="32052"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29332"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="5.1075756471e-09"     RangeMax="0.60805244381"        offset="29400"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="31560"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="32904"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="31876"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="34508"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="35056"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="35568"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="33480"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="34028"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="34540"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPRM9A1N9VNT7FMNkg2SEsx00vJLCqpBABQ9AdBAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAHQwAAAAAAAA=eF4N1Yc/F/jjB3AVSVIoWUf21q9LxoX367JJXdEn6ZKQMip7RcjKLBn3oXzskS0zKuFji2xSZkJ0EULl9Pv+D8/H49lGN01INfqAqRsZx8qpH/Bc+/6K3PsplL7wijIV+gDlff72cdenIKfX6pqTNwVv3dOKP1YnUbT0IH5aaQp92szhNkGT8OkpXBdvmkSaPmVigmsS7ewvhZ0ok9A1iZ6+kjuBeNOYx02zEzh5c+jcNJmAXp28oJDPBCRmnYs6CsYxQqVPeHNOgOv1Qnft+Bh6pZ45ZVPGYXfLTin+4BiOCUlPIXwMD8uod06cHcUBWsJGZcMoeuz3fat48B5mu6Z+39p6j8ci5rnTPe9wzFi1hBnvwWfjlfyK+x0qhsVCmwLewetcQIeKxQiOH8qulG4fga/uUV6NoreoXRAUkOAawWRmAbVzaxiySp9fFVi9hQJbtUGn0TC2DlQXFFcMw1LgvZ1C3hB+8xpYFWIdRgpFSG+ZcQhThdKTy1ZDeGZlpLVpOYjWsdHn3HWDEOzYvaXZOIAAw1aOgEODsB5YEXkhNQDP9Xw3sYABxP57OsMkuh/xG4z0r7P9CPMWC2f52YcPHgET78/0Y4k7k7XJpg+r5+8yvH3RB+5fTNl33vZC49G5a29l+yBeGjgncaoXTYUi6T20XtzyrSgrp/fgzLKKZQVnLw5c/P6LT70Hv0cdDfYM78GCuObB09XdoCkwq+xj6sG1YtGrGirdMOZdqb0Z0I1Mrgb+ty5vIL+4UBq6vRsM6R57A326sNtjW2bu7jf44YXBG+GdyLXRl7jP1YVja3cO3aW9xlB2lm+ueCe4rH+q5Vd0wDzi6oOZ46/B9PHx4GBvO5aSFCqOUDrQpTMvtLTaBocneWsuru3gdJ+u/8DfBsnOT0+TEtrAlvuYI0W3FdKn/Pqp9a3wURp8tc+zBYiYfWW02II3g/e2iRU248p0Tuhz4RbUU+JftM804fr270l1F5ohVb6qsCLWhHke/19n4pow3NOjHnW9ETWvbaUv9TfieqS3YlgRHZx9hrq9PI0IWTaaH/reAEr6trEMCzq2layN2Ok3QGA6ZkdDUQP8LzoOK9DqUfHqCQQZGqDAXqsu/q0Oa0N76XmUelxre9P1+9k6KDmusV0srkPHJdO3iZav0CLSJ3qIrQ5DHuEe/TK1KHVpXBoZrcX4EC33548XkHN+UumU+xJSVJcrG73PsSfxHWXB5wUoC5/VyktrMJonvXTkwnOcWZKx5H1UjcvWffZyqjXofDo3wBn2DBwxbTqt4tWQH4qiR/hVQZWFLWiR+xm2DJ8POdypRPbowYQojirwaTjsyw+ogM/nBqX7nJVofCuTLv2gHG73hEpH+SpgKeu0MJRehj2r9so2MuXYUpsxTn9ZigPcATJ8J8oQwG0o4Db+FMF/Plkev1wKRuXYWrVdT/FXgs+HrMCnsFB6KfxRuQRpgtslLhSXQPK81lbZ+yI8D7TSaqIXg0082ITNpBBCMUy9FkpFoLtdZSkYy0foXjrjpcoC+OilVF11ycNOZ4GEMM18fPWO6tjNlQspy+futaO5GI0+Y+xIz0G3tLB3Z9ATBHFQp619s8HD8IY7VCUHlBmNwBrtLCz+TFGt3cjCcvTxSFXeTLQHyxwnTZk4/SMns3wjHbafbJ710zJQ2zhcuPghDSrUGZphQDocPwoElY+kopw9dbeDcxq40uyaYqtToBuVdXbHrVQ4/nLnm+ujISHr0Ffap2RMJq15LuxIwkaToacsGw26iw5Th/QfIaJAS0FB5zFuWPWwMGYkgM3KvloxLhFDEqN39nNQYWJz9WrJGhWi07zvm2PicatSylfg5j+4NFHMGicZh9JsC4/VtTiQvhi/L10xcDJwFs+LjYWjDfx0Qx/i0lFf5qcaMZBP1HTbaxwNxQNlD712PMRlf+9gS7P7YJBk2ZzOewDJnln5PxQj4baTUZPTMQoPy1XjPOXCEXigJdyYEoHHuZ9d10+EQuXSGyZ/0zDkxptSIl1DwECV1bjlfQ+5IrQTe+lBuN+3ObNaHQzmdxFhFLlAnKqQcF7YH4R1VTlvteK7YLV2XJUJDfjfC6y8qQb+cJF3aL/PdReqfS/i63/cgRmDdtq8mx+0ymIHWiK9cXguRuTuFx9sTJAiYX0vrCaXDxTG3EYBOlsL5T2gtL36b90rnmC++rzonIobZr1jzf+P4g6RQL1E1usuMHCXe2Ls4ApbWYPLA1VOMJ3F/uICZwzpimnRpRzBrt/oYcDqhGcPfTwXHG7iQJLZ2G1OBxyL4mU+3mKHO982WS7r38BFk0ajFWMbcLE8SyioskXz2/zv1ZzX4FDmb/Dd9DoMPHa+NGK4CtPxsE//ylmj1N51LZPXEu5SVdYW8lZwL/Afrfn7CsrYmbr0L1hAxbdXLfCeGX7NKar7U8zhr2yYzZt8EZEnO8IYtC5BeLaAjX3NBLPFjas97qYw1dULp4ZToMHE8nVt7jyir+10FTAxhl7xCebK+HNglao2PGtyFnnbdpckeBqh8Binl87evxC8uLlkG3UGj6P/qglqOomQ09YhtqmnIP43pVKxUw/Kibn5MbcNwKE32ZsjqIMqz7/L1NN1oTATrfK4TBPNEdLz6+za0NdRcz0ZcuJ/filKJXUakJBKtLkqApzJ+GO4Lv9PeOt8zCtOVsWy2G6/gUR1mG9WzMp4qoB9OMspjRwH+VIxrpatiMjlE6of1ZRh5/qIrAsp4PyfSWdvRh5DIGw+75k8AtKzlGIifhS1jxwVH76SR2hOt1gFwxFsToiK4rAMhAtaxviPyIFFcPuMw3ZJaDfZ+n1ql4IOi4jb/qNi0OPXUdlsFoctk+Bya5kw/luP5HHgE0V6/cr+fVuCuChzWNHjhRAS7/XzCvDww6smo3RcTwCifXZpgk+4sd5arKP1Dy/YPjHJuqUewJRZpkCa8UGEt9veOLjGgafy81lNrvvxYKsk20B9H/QNvn4p+cKOicECySRhVng6LTQPOLBh6vdhzcuhzHh3Md1QO4oFdsX3W+ytGNGaFDYRL7ET4Yd0UwMztiH7sOfsTfkdsDpGy2Dz3iJJ1MFz63EMiDpVs+hy6geh9f4Kds/YJNuOhjh65K4ROTn7V9vKNkjbrmX+734r5JvuO7kerW+kl7ZHY6R+iZh9Kzrjb7BM5JaTv9nRP5NsD/tuC/tFcqveZ84yZ460DalVnluZJ0EOFteK+T6Sfk5T30sHZ8ncuZuMY7uniLnjL7O0ug8kwm5U3frNGAn7YWDzZGKCJOrbLfZqj5D2CyHcYl3vybugON8t80GSUvPZ92XkMHFUNJH9j7mPjBw17nP+2E/8ZEYks2S6yQyPtcB9eg+hyNsNeNzqIE0NQrf+le4iuvOxS6akhRh7p8Q2x7aRDHPRzuh8OjEbHf0omdtEquvP9rOn1hGV377kSxo1EMsyH343jhcklD+FzrRaS06cfCS+mVtF9Eq1tV0FaoiGx70Fjn/LCH1PlpHLtkqSlBol+bO+hGxFdWUeDC4l0aLr7h0SBSQ53dJHR6SYDOb7T3yh5RBm5ioVWdE8QqI/x/S3ZZA8fteOG/NZhOf49i+2D1KJ+eQIh+fFdDJDldbcKHpMDtCqEsfLksllalqa1W9Ukiczs6GUnUjaS/RtZLVjyT9srnPd1+KJFuNSyJU90eRGgIXk2sBDwvXULa6mNJyYz8cy//E0irR/zjxKORxC0iQDV+8UhxIfE1fflesBRIrx0leqXxBpGpecqwvwJTzZP8VOM9wlU0X7ddg0vMi70Zz/vsj4EKsPp0eDp1zJOelkFp/THiSWNlWVDCfCyRdltKHhQoaU3+iyut0gzxSpOvTXDmS6W84w0vk6ocVzuv6mYkfOy/4An6EVWbVhtHhJtSZ2zQcthGrMib2qczw/3YKsWDzb7cJ2kYhFG0fbHjEjMxO22cOXKaTi0e004W8mJKS07wI18Cwx8fzPZSTTmEhFzAo1lxgSHjl6hBDPGUIrLFHmvKtLNm8zzXCaGZDtk+qivCc1ie6OuJWDSdqEXfS/jtxREFuv8U+lTSeIoLXjcFfVccLAbvunor862bUu8kv/iDIxbOH72LvzD7JL5Z6w5iNF0poyoGGnrUT+H4Q086k=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwwAAAAAAAA=eF4N1AcjFmoDBmCbkmRWIiEzDTLDc2eFDtmSES2vJGkoKnskp4yMkITIFnmNELJX9ojsJOWgJZLxfdePuAz+sHzcJ/0RRnsT25ZdP2L4vVazTPEkkLBqtWNlEoV/NdI4NCYhFRRrNBYwiQT9tJz5jgkMZk5bRnFMwiyIc2eP3QQcMozu6idNgF1p4kz193F4xHBqsMlMQOmmpBw1cBzHq4tk+2vHIZ08eiJr1zhUu+hYUi3HoTf9veAIZQy0fry/Po6OYXuoS9LWJ6M4HRxZeWPbGD79zQ+v7R6BpF0z07z2KPhlqkX0t46AcbSEquE9Alu3lqx4g2E0Hc3TuVAxDFohCfnk8A+4fvTBlM7aB9C69TQbDwyh4GBxyrD6B7xWOnIuUWgIu/0t/HhChkAb8GLO/cogTC7IOU71DSLozy7Pnur3SPtw2kZFdBBKCbE7k3jew7QmwHWL+3u8GZCn6bo8gPPEtEyvfQDTd1YCLZv70cBw7d4n8QEIbRPilJTox3czOfHugH6wnZTWkw/pg4E/hzTdpz7Qf1Qau7LQC6mP8wccdftwvDe0tfVkL45uLHEs5fWCOjK6R7W2B6WOorXJO3phLpi/iyrTg5n0urvWgT1QbTXUFH/eDb8n7SHbF7vxVfb9ofvbu/Fxc09QM6UbNFuedrwL7cJMlZXkhZEuvMpKEvnC0oX5RX6bUfMuxEVd8+sI7IR2ML+lZFcnEum1KG6Mnbgw/9TliGEnCCPf5mfsHVDONHm4JakDf4deV6btbMcXrzkr+vR2TMhKaX2ReAdphXtmmoXvMBu9/ZKZWhuautcPlNS1IdRjJafbohWlrPPf9T60orG4d8jQrQWmFaVCn3+3oEOs3Kw0thlRk3wLt7e3wMQ0fn65ugk+jTVT31WbccO74dDGXCO0bPcJKlOaMPM1YK1UsBHrMptkSEwjXhScreS2aICtle7ZheYGUCrbwmgj6rEaHmGhQtcAh1Mr/7l01iH+ao8OB+oR/bnrkz53HVwCRGbsfeowzPDvtgc2tchmsknka6gFoei6C2TW4EhMqtTBbbXI9P448OPPW9CWs4yFna6BVspL1fUTb+Hf5+V9oOAtQmXD1WQzqtEhS+OxxvwW8aUeg76M1VBvML23cLYaNiuiFm/fVeLr+f7OBf8qZMcv8wfGvkHmaH0E9/FK9PcqPFe8VAG1h2qn5Xe8wVzuH7Ua7XIIni+wUpkvB1cAy+xWiTL0Fclu3tZWhrads0IsnK9x+4xbztOC1/grsOtwHH0phDXH2TsSS5G9f/F+7moxJIoaPMMiS8C6fJBZZq0Iq52FaS1hxfjHYaWdnbEIG2HaTs6RRbhddFBWgZuKxqwNciaRCv+vqzHhUoUoP2B7Pjq/EJnOGmdYdV9hZdNNjcXmVwi1+/nmkXMBfB155S9/LUC1a/Y6Z2w+OvoFb3zhKID4eY+8haiXqNSWWjU/mo9a1Yirp5jzsE0tZUF1Ng930gSPKt/LQe+QuqnNuVwELm+hO8+dja2uqjfGZrJBOVhLyc3LhOTft/uf3MnC9Kpi42fzDBho3rp4dlcmhq3cVz9uSscVZcsJpqZ0HFsXOHG1JQ36biebLX1f4Br7irnt41TQuDwqEtNJQ1O14vx11+ewDRwIUNuZiuKowyLe5imwK680dFxKAZeHnJTOsWRQfP+1cZ1IxvKwtcgjjSTUb6xtFxhIQvWXRNrjUYkooCqIOeY/w929eygBrxNgZvmZ9UfTU0wtRyma/4rHUMWNl9ZLT6ArT6k8ohWHWRPRk6Iq8Tj8pHTlZcZjqHudmmqNjEV/3+9OaaEY8F7YRNNM8xifkvu1xHKj8Dt42TDSNxqGySzlW/UjsS2ZhZrIE4WUsEV1i7UIZJ7bCLGpeIQkm6Jxp+pwGDmvrqm4RaD3QFf/Vckw6AV0G2chHIMDgqUWPx+g/Xf9bTGFUJirzttajoSg56dUcA3bA+RR/f31poORTf0jtsoQgqrNJxxXt9yD5MsrDWl8wSj8+v6RplEgRh/K50QYBKEq2DnyR54/2C47lTxKCECE9oO6UXE/RM5HCnsy+eOsdCrz+GsfGO2haoiH+GJFJ245pdELXkGj6k5iPggQVDuzV+8uIsLd07WpnsgoWDrF9tsDIsdE6s/p3oH+M3sm6bZb2Bd9i7LC5IG1nEQPu2Y3GPD8YBifuwnlwxLJEbPXYal4UWBp5QYul+zYVHboGjTdd2oclL4OE7Y7FaMxrv9/bIAhyPsq3po18kopueCZ4st49ukrEF/rdWbwvATfIXGJ5E2XMeeVvl6y7Ij7wV8Zdjo4gVU8hXSnOyDewO/btyUKaHbXHKO/dx5xq/PeTeUXkGHuf2p35FlQRb9dOpl3DmcDguT4mu2xO7b6vn/bGcy17KII65/GMZ6OZBMue1SnJ4f4nbDGuMOqwvCGDcJ0B4J2R1lC1kmtSlvQClrXCrO/bbcAd5i0aI33SfBnhDca9JmiKuet8S1+c2C6WLqx0RjND/dkdHwzwYkrfk32/YYwaNZOd182wsDm1oUjt/TRM3U5teb0CRwuoxOocdJDqztrq6vIPzBrmK7nzjoGl22Lg5OKutD55iLccEALW8e72vSjtbE6w/Rs8Ic6zGRVhH3kNWHqfT8gdgLIeVGkl8epDrbgpst5x1ThNbffcuoEweKec1Y+rMpQ0X6VHDNyBPpq5yIUxBXws57SKNOkiO/LJzgyIw6jKcMxWJJJHpqmgU3mmjKQDBfzex0mi/Nm9o9ynQ6g4NvFyou2h5DeHh1SUCOFy1d2X7PvksZUbWKWtb841Fnyk79YSCI9zcg7PXkv9rt1tOodFUNEItdmKW5hLIzQzJv5iyB/RrzuSKog2H8FDTbwCkHCMyiOK30XBIrW2/qnBMBadl7WWXgH/ogE1pjz82HHvFrS8008aC6eGX3ewIu8FM8RRiNOrLm39B8Z4AJz01x7bT879qrQKb7T4AA1o59FJ5UVdRm5sZbrbLjHZKFsv8SMTR5OelrMm/FofyJzcjUDCv/TvyYUygTr1bol/p+0cOlVVtodSI+QldLUs7QbxCuTz27rGA0alz307leukE+XNnPa7Vkjps7fLR1YlsgjsXqbLfx/SOZ929pbHT9JjGAS9XPCIqEfimYAw3dSY3xo4EDUD/J6uqGXUXaO/MOrOGk8vUBcyth2atB/IdyZUU8TTs2Sit8JuQ0Onwg3k+BBxUufiWfDzTev9CaJb3bvry6mKTLEFL+1T2GMrFg784TwTRA6PgHKy/ghoviDX0Z//wh5bWFx3y6tn/AnqFcXDL0nEtE1Zj5He0hMVTkHj2gfYfPNYfW27CR9UQK3DZa6CMsf9YbQ0lZinHVHtNqznbiqKsZ+82gkkrLTe+0Gmgm76FYH9Q+1RPfsje0Xx+qJTxzdGlNDNQlcrUi97VlDlHe3BgcbVJC70hesepSqSM1+oTi5wRKyi65Frcq0jDTORpMZDioxqXCgrO8rJvu7r/q4j+aT7mdmixIvXhGOG5JBl0xyiEp+SISS+UuyOmLyeKEynYR39niu6mWRPW4TLlcmn5O0Kr+4ROYXJMLHqsU5OYks60u3c7mmEHkxjeaSpidEbeAwh2JPItlXGKgsd+AxIRKKzywq4ohTWinvf0aRhH6kg2/ILZoY7/hLF8oVTmLuurQ9GYsgoSPPfXXLQkjC845il4qH5H0yc/rcoSCiMvt7rYIaTAqtBwwZKX7kZvem4mCfADL32Lx0y10vEju6GKi87kMu/+w3P6TkQfhl13MLhe+SgKxFn7r+G+SPrv6FXM1bxLPkwcqM7FWysVxxlapwnbhm3GzjtHYmrT9kN369ukI2Uzn3/bWkEM01HWu53U7E3PokV9Thc0StXZnnX68L5Nxtwyff/7UjLHEmHaLZZ8hJgfVKn8lTJEdeczGM3pYcvOi0IKxoTr7s0ZkLaz1Jds4ycpeeNiYqnxnnHbxMyRvtvJU+J33SyV2lYz9jSEJfyDNYq+iQisAi3pLtxwmt202rtXUNUixX+CbcTJsklXDxq+wB+UzjqWN/XZ34jKdXFKUrE56DjsN/01TJpQzeMmd3eVK4+OqMRbki0WjsPVYQL0v+OS78oXCHHLnPzOi211iGWLfwdjIPy5D/ARBK8wo=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAEwsAAAAAAAA=eF4VVXk81tkbtUSlLIk0vKbVzdJEpWSJq0JZGlvL2EWWLCFJU1myhZLRYkmUrV47Yy3jfUUksrYiY6cofkJqit95/7qfe+/znOd5zjn3+805p5anV0Do1NNDw00VhC6o7kwNv0JomVQ6K9SSUI1xz/sxsYRKZuid+fM6oU7yHgUmbYusWcu2js5Q5CVfFY/wJHSJwXDf9CVC/7wQrVOVQmg/t/9gKP3Bioy083XiI5RnbiZtGucGNq5PFF0JnV46rnuseYGVxtzo2BZEqO//bnq9VCH0eoajWPhNQoWOfxPrvEOovub0Xq/thJ72OFw+foLQKyUpP50tCJU+ev/x7ZPc7Psl6q/mEG+ePhnQ5Ij6rkOmRsBL8Qi62xyCPvxGDb0iCJVR8dt7xYybvSlT8ZmRPqFS7l7j04cIHZu0/6B0mdBPTaLnD5kTWsFTMnPhd0KrDtgdWQwj1Cj75xajCi52y8iGeJ1oQiOsNw4ZGM2yHqakLEiJcrFVIx/U/zxNaJJgmEUHk1DNG/1X/IH3QmC60RXn75wkH6RnEbq+y+qPT5Fc7E2/7u5sOk7o4lazr0I6hFpFvfCp1yW0SOXzvIYtcAxslzDAs6R3U4VmIjf7TnBLxcgRQtsyXkhPG3Kxf+6/1/JmPaGTp8TbQrQJ9c6w/ijuR2hMd31jBvRo3ZXjMIj5Wl9fMYkIlqE3NnQv79n8g6VkpXWxN5DQtY6LLLvzhBqOHa1XS5GhQuWzhwJR10N5IGs57gNyLIplUS+DK+iAeTyh+cK73Uugl6FB5oI6eK7fUyofCB0GgujJg6mENvx2J4AEE7rss5zEc19Cr15/6/XiNqHVWo2bDq7mYgtrfR/Mjubkn+Ef2E1o7hfnii/oM/BDitj8ckJdFPfVRfsTWmoRNuZsSuhdri7LpihCn0Trh76CDx+m1XaoY/+orcN+kyQX247Z3uPiQ2hhQOsqTf9FlmFn/ELUH4T693hV5KFPk9bVstVKhOYdG7/Qg77ER9RDT0H/NYzltTcZXOytBSc22B2Gr4uP7/h2kdCXafvG9pwldHPJ2kke6H0+9Ninrwe52f4uVdKX4aP35eeLE9IWWUny8zV3o2ZZPRumf3KDBzevRPXsIA7fxgYHgKP9xuR7FfwmpcW/pgF9/FzWxd+Cd8FwnJAJPkZouWpAOgO8GzgwUlRdCDX9sGStSAJ8Jiq41hLrNd2kc7XAKWuQFhLzwp5HVr4sHDy2G2waQb1SKa1WY+SPPNWbjoXeczYtyZPgR9fdJ3UWPsvqj65Lhe/m9IqsmU6Eqr8NKt2FfaXKoCv3OUIF2uMrXuD9KR82aR2AHref58VfuEborRPGkqJxhNoMegUEuhN6SjlH89Zd+EGEezEPOq0zdXMpcyN06fHUDB7s7+7ld3wIPbgSmHdGsR5YedFDDnNXyz5an4d5o9M7WrjQV+X1LLW+G4SGjtsc60oiNDYlMVAacXxCWW3KqMcr0KTm+Rf8VOOxjYk+fN9sWzBB/HYZpvBG1H/RPPVSAe8xYGLvX4bgoV9jZZkO4hoDx5fcQ/8i/NbfuoEj/OIi1xjutW67DIdBD8bB+YlQ8CXv/Ly6F/fVjxK8ojE/ff9xBR/yytJ+3TYKnUMctmiHgE8iaObcfQZ67dR23hVA6JcBtXtD8I1ZY6T2IPqTEZJYYYvvmtqzH7cO4t7tvun1zzH4ngWJmKehnyx9CR//SEIL/hdplg9+3H39YkvAi8X9n9tG8Y6PSvxtUQS9anr7ZwaBE86f/UEAOutJyH/PRZ0gBVUhb8Q9crjnUIlV6gFD2gTvSHFMb3ELcPieWvSp4T2NWjqduHKL0H0X2fnD0DUhquW/Nvg6KbV95VusaY+2b02/Sugzh4NW+5Bv1HxNUAr95LlP2KZg3iyXVp/XfxLKunQpoBJxaySY0W3Q44d9Atcp6MXcdUBfCeeO0bPzRqi7tTfIsxv9Zb/+rHsaPHQPVf4+g/wQAYGhDvCqn8b0Ewb+l2CPtxS6CYRG6BehD2Mfg2/p8IG+fvk/ifieqFv2t9/G++roKClfiTw7/e3DbMwxmXxKOxM6FdnuOLEE+umfPSGcgfhVDg4mS9FP+PM9k7XoW+pswUs94M/fk3FbAO9eq84LloAnwywb72tY0xeYHskXoPcHjel2zBMrG77DFXhDfxeX1eK/pc7bxxsMnfg3pFuVoL6x0icBjp96uDq2D6IeXzldXwX9tJdKWFqg7uoV8ocN0deq8rhze4CfzTuwKRy+OTI3eOMj4nOMGy1jse983fJ9F/pz1NnT0A5fCPZOiRDs1/sJrO9Cvf0THsZK4GO61qi0GLzOlCoI78C+2jTPdzN8esbsweN/8B519w0W5oCPD88rAuaQV6dhItmNuFGhan9f8F787ICwDOp5GlolbMd84m2PI7LQR/LvJyVZ4GWzWvK5vfBTSHbDlCf6/+MXy6RV4Ml7KV3fgO+q9Zr8sN3QMdHDMaEEcz457RmvBvxhqhC4BvnTc6UufahzmbybFIC+vvY88lE4V7fq/U8T+tpnPh4qwT5VrjReBbzwR14SXsA87PZvIadx7t3wtc4e36/EfwPUJ1Fn38y/jET0ITm7basseE4KuvCLIXDEFzSkneAryd1xT10Qv5o3WGc55rLj4dOYgj/MKv3ea4E/1Uy5dSvQ58muzVWOWOsUvUcZqLOgJdeXibkaWj5ldgN/2/KNsb/gnsQzO9yx0gOJucKYq/i49F/J0G2XdrC9Es53/rAqjsDeRfxhkhvqi5Yxqy6h/3ER/4ZTwLU5UpzP+d6V8vo+2Y//nYaOeQ7nXSmu4wvlR17kUPSdlai7ddHT8xH0ye0P1xVHXvi1wl8ZeJe1/u8KJcCLh5ZOiilw42oMBY+hTua58zdncN/YOSIWATx5uevKGdiv7rn9vhm4zTX1uVmYV+NOLcsN+GFRPBOrwdfIq6KTYbifyhdymuf45KOTfQXy8ts1O3tQ/7VoSwIDeFVeZ5ubUU80qeBxAfK/1Qimr0Ac383yGCPwu0nyu08/4kPVi/61h++tKzWkY8Cb0PNPUx8RX/pV3ewGfBR741k9G3gpEnq+zZx+6+JICc4nGIlJJ/GdSVli7MzxWUqN6HVDDs+nlsX2Yl92Uuy7AvBtrbm7FDDvm/G5w4cTCfXxCBy4CT6i6/JkxuEH55cDlXngtSu53K4B/Soq76taBr8phmwu2wI8HzGxd5+Bc7/+bd887lXmxFJTcR8mk6o4Dx6WtFTNPsR5ZrBzqz3e8/7C6vJenOc112gnceoUxUgHoP+MEFcXO+DsyHaX08Z8A/G55caI/02WlxmE8+iwPL1g4E6xhj3WYVX+2N4ki3lts+0yPqD/h+St8EWci7vGtSpwdPw84K2COXkDVaVVECfgZrotH3GF/wV/DAb+68szTqqxnPcRoySF86lXffF2WGUaSN065BXHFTDrwIegTZzGGPzPppIX5RDPWn7XPBH5ugqvBY5hnfw6xP8SPMevFNF9grzIFcNRR/Au2niVlfPQtxJ/s00p9PPLNxlhwC+52cu+r8O94vb6+FGcl7hLJ/Wg7tXKZZrZnO/hzf3mhdCv0XCpQjZ8wPiUW38NPIvtZ9iYol6kKW+OGXjjNc++dQR+uB3KmP2CPGHb/rFg4P5ds7ozCHWErLvPc3yrc6MnRxt8uDmaxM2gP7ekwuCdmKM26P4yNlYhyZmzX8Db+2mxl0aYM/24tUA0zuPOMA5VIn9OochFEfW7w86wOT5Kl3BXnwCevfbRiXWY7//Q7GTyAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIQwAAAAAAAA=eF4N0wcjFXofAGBk51plFNIpkhkZx/z/OHYyjr33lr1zzY69914djtkySlRklEQq+7oUISQ7iXLf9/kOz7qUloSM8D3wuJuwF5l+D4zeq+bh45phhD8jKe9LM/Q7hWtWzjZB1jP30hyFZnDUXvhoim2Cga9znxfymyDnZo9GWn4jiP714lXtbiNErnpc1TxogLiZ6/Xf8I0gpq0XmmzRAAoIr9TR2gDNJ5K6ht31cL3Fh4uBswGWymoYKgXqQYNeN3U5qh58cvL/eOXUgXqEkZfKah00DwjXtf1HArFEn0Yu4zrw3eWlCfIlAR3tcpZvLwm0XCWe1izUQr8+yx5WkgQkRnNyFdNasGCNU/Al1cJENP8BbqQGPIO9iEzctWC+IxNVo1EDHMp7wmfyakC2IVnfrpcIl9mSSgMZayBLao3DW5kIkifNzUKpRCgQ8DR73XMXmJjHjiXoiRAx6ZbtpnoXLtVNn7qTehdSnr7Eag5Ww9tkF3UOpruguGpRZ6dfDdSjrryredWw+JlBu3G6Ckw8K8i2uKsBFxXod9G5CuYF5BT466pAIaCcOvRLJXApFGEJklXA/wuerlFUQoSheQY9oRI8tVMfpl6pAOFUxybV2gqYJZjM6OuVw6LKzwjSUDn08TiRC94uAyr5oS3+/TLArGvI0zeWwshb1o02TBkI4dkJK3MlMBOd7a5hVAo4LD//I7YSGFJZrRhJKoGUS1weNvhicMOMdSj1FoOkPvmL+awiuLV8/lrKf0Vwmq5z9up4IRyMb8WRlIsgXgGSrnEVQld5rk1CfCE4/3z/ZMWlAIR1vDt43hXATCS2FdeWD1WVPRX25wugZ+nKLJY6H3b+0tBX9cyHMnm18U6rPNC/pODY+TwPlo5eB/a05YL5277UzrN58Kju0a4SSy4cBcGgrG8uZCg9abjqnwPK50u1hEZyYGe9QDpkPBtkfZ1qCGI5gDgMSrgVssGw0rBAKTcbfqk/PsVamwW2lKtCOsdZYP49fvsmaxYgvqpGomsWlHZn4JOoMqHV+FVeRGMmiFfFOc1tpENeqfHwxYwM6MJdO0r8Jw3MWAjW/GHpMHK/VjX0XSr0Kk/yhrmnAW6Nk6V0MAXMyzT7aO1SQZNwp/bLYDK0hY0ovrZKgYFr32lxo0nQybHPU2ObDMJzdlF1s4kgvS4fluWWBB2k1x+oNhPgzj5zd2RIIvgxxMnpUyeA4j+NnLapCRAkMKgTwhcP+VpTo5dJ8VBiiP3XW4sA2WMfK1++IgDlvQdaggF3AJtQlSP0/Q7YqjqvlFbHQaT5oz38uTvQhm+98XQyFoSXm1WEdeLAJXmMP5glFvg6LtM2xsVCRGf29T58DNA4nhfu7Y6BGbaVG2LXoiE2M1/PjSIGihvWZN4MRIJMXho6nx8Fll7BX5Tc/oZgox8meuKRMGXVxBN4JgI+pWIr8JMR0Fvml6c3FA67obZ69Im3QfrlLY/21DAICnf6aYMLh5268i+pZqEgJ0dwlKANA9qRLv120RD4Zciu6j4dAtF7ZYtnGIOBzTh7ZLklGFxsisqTDgPBp94/NbUwCDQMXKT3NgJgMy98Xy4hEI7zR44lvvnDQs8pofdRAbAVEDKM2fMDEdHfC8Kx/jCq9Od3OaUfnCLSmQim+0FLsHI1GfhA4RVNew11X5BOU/6kkngLcPRZZ5bjvIEtgMejecETzG7tts999AIuOf6BdV0PoCfyHc5KeQKJpk+E+NYNWPRP6STVu0PcDReacEtXWLf0WksUdQPns1a1DEfOcNovc+3vPheg/KBlc9zgBGLidKbUns4g7Lv48JOHI6j6e+n1XHQC+VdZYXg5B3A3OhBT++oA2TEJbCsc9tDTRtF99bk9mA8SjBzobaHDzOQtpZodTA+MNhLIrSH+ttLgKyEbEAzN3TE+awnqhAtCHaJW8PlwZ/+7ijmQpZzYH+hYgIC0GsYj2RQ6CZVXyghmgGE4PDe/ZgxK6rlneidNYNme2cTJ0QiWBD/KRqsYA3FguINxFw+SVYbP1voMgbR5JHdQaAAi5VdCOWzw0D9GtmdP0gODS6TcCwwGcMwU2N2ofhN+jPsbi1Tpgmb1Y/c/p2+ABPvQY1EDHXjExe+U/VMTPnc2vA25og3+7XYZJGoN+GWO88FhNCGZOTk7GqsGlHo/Nj4gdcDWtrt4JeGA9M2a2SdSFXgOxVN7fiqDhZAys/usCthskBFf0ABwaWLDzpspQyBqkXcxVYSnIk67Y3NKcDEGpBym5aC8sFk3DacA7jlzzY9TsFCC9VE2npGFHMeqgjhPaVCv79KQr5SBFo/7ZcdBkjDMyMvhmi0F6+zP5gLqJICu9awB973r4NZE2K0/uQb9mOKm1i1xCM5r/a6/LwJhTma3dO+JwQOGTgaMsBAI2uNwLN3CoLFUIllSIQDF32SamJkFIePI2jXkBj80TWuefC69AjR2txoKhC6DVc/iqp4tH5DPv+m6rIABdvr7ZLZGl0B9arRxY/sCuOnEsmqFXoRJh9gx7AsuuG/6T8xhGg/UvDDcbZzihCONmFmFiPOAC6gJFMGyA+O5N7+pWzkgBNYVKafOwErv8eVgMTYQ+P7HZ/oRC0wea/d8+soK3NWVZMbxTFBjnSbO+w8zVHRzb3fQMcCTcsaoVjJGmI/sXKFbpYXnpk1r7M30YDQXdt2Ekxo8BxtfU96ngYsL01eFck+BJvGosv2EEmgSLNzr8eTwL2dn60EBBQSxR1ptl5ygvlzvHVk/MrC0eioVT36MDn15H1rT/kEkd0Yj4+GfCO9ATC4o+YVmXxb93bqzj0TlGxJepR0g4u/uRA33XWRkLJ7kP7GHngzLHJBd3UajilFH37x2UEylZXu/4QYiwwsTC7M20e/TKrxib1cRlf3ABZbX6+jC2XayqeZlREBioX7eX1Hh0EeL2Y1FJNwu9VMobAnt/cUoZhrzGW0cR9CG/buAVMgISsvP/kXpWwMjYphPyOVu7oPhP9MIF81iGsoxi7q2t71C2iYQ+Sy7NTFtCll+Ce8MH/uIpobWw0/8xtFqY15fvP57hGnZyg3s+IAGWk4wI7LDSIm+4BXTg3fIRBqn6O04iKLebN38njiEwry7LvTQD6Bf43tUV9deofu37biEML3Im+c0xqW3D5GLKM/ySXaj0fiorOlTL5H4Zr3Qy9FONC+NCv6oPkeBEyDcSfEErfzoj2m59BSNU8SVnn/aipItVJyDM9tRzUzUPt/iQ3TNpH9SK6wF+a/XVojNNyNTguC5kpIHKF+oKHutth7RJsTJMpA3oW0ePvJ6ylq0Utchqn+6Dh25yNY7r1Qj0sQY/xCRiELa6pZEAyuQAJdRYcaTKiRbJhA5PleMnGS5VtlulaEAtSjmXzv5iDfijUoKpgj5MX9o0CzKQSlOBdyyIXloxIde/WtYJko9pGjiNc5G14crFdqKU1C64k8eMEhHn0/obtsEJaAEvtgMbF8SsszUFnbajEPxAcsT1ksElJY0x/R4IRptWz5I7C2JRZT7BucOR2+jqQQW0vPqSHSa8W6ob3wIurDYj5NdDUM3O7A03UsBSFU+RXtrNQjNRO6dMm7wRVKb/x2aJvkjRaXR90zRnkjz97OPaTbeqO5vTutcflf0W3eAciXTHdH424dxRzoiIzXuZ4cEZxRbwiLFOmGLurq4o//idUDM9zuk3e5ZIO8UsnfJydaoembKb9DKBN2zu+hy1GOGSpwmUhpf4JFcS/dOYbcRyu3kEeYN1EVU7OR8Z1wN0KbYbf0Sdy3k8MhJ5qGkDvqCrXafklJD67oMYt1JGojaLHAR266MhpKDqMRrcWiAL2f7T5ECUpcf103/gFCgQAElXb8MGvB0kSnzk0NdXJ4TdL3XUcvvAKuHv6RQP5P/ieBnMVTSG3xOQkMCEWSno1sdBFFIt5yxnZcIcplkU8ic4kPizhIMmxYCyI4Qir/HiUG3FV11Y4Uuo3bSyt4LKm70O9fVUMiHF7EPxbZ+2GNHGVE6rFI951DxV3WR+hFW5EKhhsdxsKEiQ4+KjHlG5NU89qNJmwWN6D3zxUTRoVucZxsIvgyIZuywedqOCn1U0pfsL6ZBI/Ui/9GkU6D5a9/vBFNRIl/Qa5PWIv//g513mA/k6H9D/Kz3AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJgwAAAAAAAA=eF4FwQcgFQoXAGBbVlGUpOxQlFUI55RLRlkhyl5ZUUYkKSOys2Xv0bXJHiXEQ8mTEfFn1DVfQrlW/u+zbnnIIvqrFAdIT1fZ9MuQrWbtF0m9FM+3cmT1vyrFt0IdomO5JVj4qLLbhaoU9UmDKLlPxPKrgiIWZiVoWMdLoDcnYhPhn3OdTUQc7LGts3rzCr90vpchchExPmIjUVngFcqq6P7k8HuF/GE3ycVhxfiLNWKVfqYYz10cVoxbK0IR/OP3RKMYx+yVirfNipAvrt3dq6YInTfK2yb7CjGnp61piacI7SIYfS8qFiLfxytpX6IL8WSvs9d+eQFWFMx8v0RRiLPbFmtSggUo2ZZLxehZgP52OtR9afmom20vcmUxHzOk16PaOfJx3Erz5rh1PhpXl19ljcvDsNPrugOTeRjaQDdeyZqHzPqug8dN8tCv6lR3emwu9i8yeNSM5+KT9PaYD+y5aBU7XpFomouhj/OLFVNzUNCQ/0DTtxw0s1h2nuXLQT+JT+PH7XOwskJSpbkkG4/ocyeX/8zGQDH1kFbZbOx4wx/j9igbR77dk+6OyMLA/qbzpvTZSPOtqV6rNBMl/lTEDYhlYd1DASPKwQyMDCImndDJxM2LA7TDW+nIczZG+MWDDDQwVEhtPp2OJfd2FE9mp+OOq6JEsVEaul192tXwMQ012d8NRUWmIuny+w4DyjSci68cs+hKQfmrtE/mZFNR/hBdKhtVChq2EMRM3FNwXmg/KUn5JRIjnYxKK19ij0Re6kxIMmpmlcb1rSUjaY/Ff+FjEipqqaSVyiXjFkvZjSyuJKwYeOlPCEzCdvEoT7JjIgqn7tg9G0jEqxutVgstCcjxRSPfhjcRa2Rvfb1zJAHzlihXhz0T0GDx5Bc7l3jk3k0/8ak/Htu9UqsneuOwnTBFUBOJx41K6u+tZ+Mw+hF7i8TzOHzt7ypFFROLF204LwcuxKIzYb4rczMGWw80VErqxGKK4/h6mHUMUmqdVb7QEIMeNFP/eOa8wEtM3HeCBGPwZ5gLp/azaAzlaN8UEnmBzPGlF6JdovBbbSNHHUs06r6sNRM0i8QX8ftTBVuROHpr4BiFfgQm2Ao8n1uKwGhFtmg2nXD07dRht54Lxzp3JRMNvTD8LPj388HZMDzIeHHy5a1QZKbur5ogheJdJwbiL/vnSMu9w9q09hyfufz3VfVxCA6zhdanUT9H37rpP8+TgvHBa87jHlwhGPyFe4hY9wxHMkd7pGSD0YrvVVDO1yBU4jDu/HDrGbYS9DIsDgThK7ltXdnAIIynassbkw9Ea4vcFevKQIwj3NejcAtAphMpBJW5ABwvTnLrLfPHWTXz/Y8nAzA4nyHT8NtTjIp3OLFp6o+MHSqqZ+4/wSdCY1GWhKdY4M5Nvc3oh71/2k2+jvphSGmMQ0mlL45ttueoez9G7Yti+4JWj/C+rMmPCD5f9P2uc+w6tw9aksrZIkd8cLV50Zh2xhv3hpo1zyU9ROooCi+Zai9USwkYvmnpjRFUmkwtkQ8wkvZ757yMF4r+5gryc/PE07dPxL0/8gBbg+O2jS09sCtQ8NenXQ8Uk4kSFb/ljqTMPSfST3f0v12pNWrihoEL/Fzzy25YIjXAKe1wH9Nu/02qWL+PxPBO1Qu7rrgm30PipLmP0TfD3/RfcsEKEt/8toIrGlp0SI5HOKNGtyrZMfAu3hv64UP/0xGnGJtFzk444QnGacldGwe8yyukQVJ1xElG12STxTu4GT42Qnhnj1LkKub3AXZY/IjAPKtzB98bjY6Nidrifi150+Y/W9RnuHHt3Iw1zneHp1ln2OBCitUPM6IVSoctsz00tcZiFfuY3QBLpGf43nLprBXONdImyw+a46cJbh9gsMTl+N7vGc2mWG7gVim6bIZ+jjbbyu9uo4Zd59vUGRPkrXwYojxnjJ5DEjlLG7dwS3csoYbXCE8znvxXht8YP1v+FSjxMkT24WaXSMebOKE72qn4XR9zhqM66XoNMGFSTNHX+Qa+IDzYq1PWxxlPWSGfA3rIxf+xvuJfPaTXzRaO99LBciW6cmofXewbSHekpNNCRWaX8khHbWRjMx9xaNXEsLQs5uOM15Hi9d3BrVR1JAlTMY0PauAVscyAxfSr+GeI9xbVGzXUDqUx9GlXQU7jzeneAVVkpftqPE9HwNPjh6Y8qFTQ4jN/W4jzFZTSiR9WNVRGkXN5B40nEBP0cqLj3l/Gya7taM9jSjjBUzvk/AqQ6GvYohR6CTPLlg3EdxUwTFtKofCMHNYcO3RDO1Aez+WZ1jXuXMDyceHpPjlZZG9uHMogS+N9BfuIFu4LqBDduhd3SgrFpvzP652Vxmohe6rfThLI6cCaMGYlibz6Rxm868Rxi6njr4PvefRO1Ine+HIGzWhZC0YeiqH4ebO8dwoiWNF//al8vSjKIfOkz6gQJrp6BjJICePf7Pstq8UCyDNx/sjmnCCufygzESzlw8bQ1tzFPn4MEyKv1DTx4Cav5EGaWV5czvcks7hzI6ZbPJLWOoVyDfqEEu/jSI4ZE7x3+gTy/TPLrdZ1FFdO8d9WuMaJbVqHWygM2dHcSovySS0HSjFpMBjzHUZ+NrqxcIsjmPeaReCMECuOSOkvrBHY8NlmWaBJPTM2sqoJhTcfxI54rYDf/gzoxE6T3KjLhMoeKTtVmXT4XiMpeQgOYLX4hhYlAw2q3v7PbMyPFudLBiUHGyiR089625KOGtULQ/JkdfZhMM/ZO3mQAoMdtslvMnfgcsU9zYjqPVgXrS+UMiTD/M+x1rlz21DA9cTGzeE37GtPhXWxbEKaEDjfGVgDtfUSWlfVDQiSTu66ErAKxilWBzb6f0HU6yeLv5eXQUTE3sVR7id8T9Ld49JdgOaox1JRRkvwPy+RJGmeHyBzwTpWepEEtuoz2lXas3CCV1rMaXYOjJySmB99/gamfT0ND+VmIF5Gtqvn+iRQ3Jzqe932P9i3dAuMe/gFiNIr8gyZE+B5s2x3j3sEWOrX1PL/jsJs7GVFNbEhsDGWvpL072ews9k/eTT1EwislE2pM/0LvPpZJOGGfvB2vPaficIAeFWo1s5+6IGe1rQa77+9IFRexCJr1wVPV40z2LW6YYXoT8ft8g6CeyUEXI52QozG/DXD6jdQm7mXravZDs6snqE78s3QIPT12HRjK+zHkZovmNTDWpduB1NwI5yiGalLoXoNL6ZW5NSna+GgVbQUDU8VdP+ten+mpRp43D0WapXLYLDiXIcHbSV48V2/9IpcDOQMV9VisxJwW9m/F6FeABF2347eMyqCOgtTm+8nc4HyoQG98EweSDJTyaR8yARJSd1qr8VseCCtTikpnAqjEg7R023pUDXNEg7iSVB8cJg/xfYl+Fv3Gqx3x4ERRVn1tdIE4FFf+iXT9QJyR5y2Qp7GAmb3XHIbCYcjAeKpMYlRkBl5evtufgiMSzVbKm+HQlNM6g9R9iDwvLWz1XcoGAoNmVT1D/rDe8qX5n0tAVBD7r4btfcIbt5Vry8a8QManrE5w2Iv+OjS8WOL1QcU67l2hfbdYZswyLFH/wCyiJZnqz/dg0O0+xTVWW6Q2JwnPp3mBEpF7Ik8/i7AqRcbK3bpDvxcie4mFztAuszhVdMIa4h30i8oSbIFNrILxzeSOYzNMnxhP2sFmlk54rMNt4Dqh86lrZemUFLbGT9kZQiupZQCa/8YwWD+da62t3ow+Yto3tuhD3cq4w7nummBekr226E7upD8O9NEyUYdDi29ozaVuAbqLFWe62IqsHSNwUA08CocZd+3/VRyGRY9ml+HpyvD8LUbG0XPFEBx7ujTlVaARH5RBeWKi3CDjVli00Qeyo5VNyWWSYGmbEPZnzkZ2GMgLSw3nAMQzf56QEoSPi99UGtXFIXlTmFNBlUxqOEQ6ZOuFYQqG5EO5ovCkHyd3DZP5gXaZ7qryCAA0+bqPG97T0CF0tGKfAkeiB/Is5pqPgrkzd/ONSHHwfiMq+NM4mEwf2xU0vU/dhA/pBnTY3sQiJulvR6sbJCr8q4i8ccBoP/dDx+WmMDa/dTemRAaCJ1VmT2/RAcBuNItIE4J7EE9XKq7VGDjHTSq3bmnRNGYwNFxhALKiW589LU7SkE5gjUYv6v0f4o21Ts=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAkQUAAAAAAAA=eF4V1Hk0lVsUAHBRQuKSLHTdlCcKIaLw9ivRxJNMiwjJE2kwlexKFDcUkVIvMqcMmSvzECKReagnSUIDooRWw9vfX7911vr2Od/eZ5/d7GHskdmNwBJNm/3Si2CWKfv6SAdCmpuTrkorgnBG6PWxZwhBH/0FUhoROJGtWTb1COKOFjeEHyPY27W/rahE8C11yDhShmDcW84jXUxrY03e2iKEtSnSDYfzEZyq2W6sHATXz7d/FWYimM6ZpVndRbjVMeY9k4rQXTYZHJOEMHfAe0btNsIlz8TXTf8ilL6xdXKJRXj1Mf3aj6sIoS2b42KuIGSKvYpZexkhRzU9sTIUQbtbbcg8BEFLKzxwJIjOfeOb4h+AMMJ55i18GkHZyWxloh9CGLf9hYYvxfMW9tZ5InzbN25hcxRhL1c08pM7QnhJcHOQK8LluhA7qYMIscdVruQ5IqRP9dbutqe8IhIdRm0QJgTdn3OtEFRP+kesNUco8OuXazNFMB96IHPaGOE/FldGeSftb/SzZdAQoU3u8HT8VgRg77Z0AoTpjWEdynoIfkmR9jybEM6b9H4d0EIYCGjPbdRAEIq7+LByPYLL4Hqjx8oI8VMDWV1KFLfwhumsAoKSoswdZXmEg12XdH3kEH5ojma3ylJenlVZBiuojq6dsy1SCCoqiw74SCLctdSo15KgOuWIi0iIIzjLCqktY9E55kvktUQQztTteH9KGMEiJPf8WyGEpqzaiROCCJo9SYobBBC2rPrOkVmMoKf/rESNHyFJK7rZdxHVw3xS8uNCqrOJ0ZZrpFC4aYcXGX1sqXYImcbOymkl/zrsbm1O3/f1t0qLUHz5rpgiPtqvupovR5P2vxVz3yqBzuvjvq3etgQh8oZYo/xSBLfIqYUgSuvg+bZoMYQo1jFDDuXBN9CycYjyMrQQ1O2XRtj3QeaOEOWfuMf2kgfV41uYZu0Pqo/bypzRMkUENo++XTrVUWqFn3GJGkLy+O+iKU0ES+7EIROqf5QL39In+giew13r7OieXGZ8lQW2I+CXa85Pd1M9nCOWxe0hZRv8/C0RInjW1DvZIlz97aP1twP170DbYj3ql/qyqag1bgj9e2V0hKmvLJsUzo55IQgYNvIXn6T7V+++7Uf9OLbynfYfgQjZeZEzpcFUtwVS6pvDEK73ZHvHRyDsfD8RNBRN8XXz9oLU/1FzvSB6C+GCqmXiNL0PgxVbNQuS6T4fKXwyuYOg6HhktuYe3fMoXwUrG2Fc9+qrTbn0jrYrqesWIAy7Z1RJPKC+7WhoaHxEeVx+nG9disCv/I5VVU794/EigbcKocu1V2d1DcIHrO3h1CKcijWKnq+jdepITOET6pvXehxTZg5w1M81PaU+U/EUW0fzgT3As+lYM4K/l7DdzRYEndjB4Yzn1H+uGn+l0RwpfhjTFtqGkOfx53ebdnr/YvySkjRnytvu+taQDoHb7O07EXr2r1o8RgZn5aT804UgOVtg2kOaOFew9WhOJfBViF4neS4Ksd+RxdxzCio9NKeOzi3yIEU+L7mQQnIunLTuJN9YjCj/IgMs85Plab71Hdq/y5DUy9a950Rmd/3W8Sd9F/gciiR9WllxSWS1QbFqHjl4wsKrggyoOZvbyMRbKq3rIHN+arFfkudXi5YOkt7H9TaMkA9NB+9/IM9MGu2dIGsKzfSnyA2mk+HMfOW2hljNkC48xvnfyOUVqXmzpPqE18E5Zv7udOplFE+Wl5onJQNL1BjT0+PXMPakzvExylV2tjDfrWrWDmPUfmCmyzi8J2aY2a+Zrz2cMaHIXI3xZtV4J3OeQdZyZJyunVjNuKNvXyvzPw6OgoGMzgLcjYxqtsafv5Ls9Bd5jK5mL/0Y3W5ab2esiWRxGJOWS/Ay/g/Dyfm1AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAANwYAAAAAAAA=eF4FwQk81IkCB3D3kVau6VhmhRKjoq2nkP+vVnzGMeYhcrx8SqqVq1hE5EnH5FrE2BdyRmSVYWSNwrgNGYMZ1yJPKuQonnO39/2eC+wIcGaNQ8Gou6SKHkE8m3+dF2w9DtepT84v3o3B9JD7EdlbYwhgDbSFk8ZwUO5kjnTFnxCrumhUQvsTE8TWtNfsKKI0j2sdiRuFSxjJUIUyiqcJRQ5SvBEMflOolfYfQbUjjaGmNIKAoC8dh6uGsbjryk1Ht2E8ZO8Ii/o2hPlVvZTfi4Zg+tgmbMJ+CKWt+XWqa4Mo/Hu070z+IEqmWAo3aIOIUNWJT18XIVLuHO1FkQjUpoNkzlkRkqpDk9mSIoTkfJLIrBTCz/lt8lVvITpXw5R37RSiQ/6R8tP2AbgveXRvjxyAq18vxdpoADy7vyrPvu/H19+upOhn9iPIa+Buo0M/hPToKZJ8P1qdW5iajX0gbxUrisL7EPCCZH3saB/iHMA7/FkAprN6/utiAQqLT14SeQnwLIJiGPSDAJTzruzY4V58HJw2Ec/oxYEKy+xxp150J/ZfVlXuxc+703nJb/nIIm202CbwQf08oH7Chg8HU58Qazk+WLqbE9MJPTj4eNnPSb4H3A6mXsO9t/A1+HiAJPEWfA9NQ7Pb3XhPlp9V3+jCI9kTBvkhXdjaciTXLvIg1OxnOPjyYFjvu831fSdKO03s6z07scXZRr0l6kBuGufnO/QOUBrmerpb2yHzQT/czbwdrDLupX2VbeAuxVUZ6bVh7pyIH5vVitoh1SBdpVbMyYZW7IttAaXJXSFppRmCKAn3kKvN6NSOblscbIKKQX31HpsmCD7wC7ZzuKg7lLD50YCLeZX1GX5WI6YsZnQ/fdcISafzZa7RDajpz1tOnqzH9pjK+Na2N2iglzqWlr/Gl1u2OcyMOtz1+nbiwx0ORn0Tn65dr4WMuPovB7z+wDWXOEaPSw3SMmk+tvRXyONXp3y1rcakf0UnmcaGJedVvIZTFVKVyi8TnpUo0N8X3h3AgpaM3brivQpE0rl1P+W9RMT897WWD14geb8Yr3Xwd/SETul4Hy9D9cJuM7+CUnxRpFvsJZeAc48sX1VYjJu2MQs00yLkHju2TXasEPZbHmdnfy1AnduA+AY9H5Khkp/2/5AH93/PSJct50CqfPpvXns2ONaT/bSaTFCk4hvquf9BUpZiVvaHDGQ9EYQ66jKR2rdmbHo7DV1WORYF86k40a12lB+aAu9cp5vrpGR4qx3c9YSZCL3v9qotG8RDRZ+RenKGAdfGl+xXPfcxQbXayh2+C/FJ140j8rGQWQ2dLnSLgZKW6LN/WjRMmB/3OLMiQRyVdkuVj8BgSkt0JzMMDB+a/SuXEHC15w5QrILhnlN3WdHrBtZbipKE9oEoStJQ4On6YbjQYXeMlQ/sevLevHl2Bb95LF2Oo3rj2vEnwQZaXvDLd/KmHL6AU7m80VzhvyDxOTuIVuKGGvVp/5kuF7h0tTvfMT0L7j1jEXPWAfddUgpMquhQq0qVXxSzwyWfhxNzLCoSBv3XmQ2WGL0puULSsoDLc4EqtesUNsxebgaGmOOMGDN9H88EhQrmO80TjcHIfTdi9vIoriqe99ShHME/Hu+Nbpo8BLZvYI3Epj4YjnpWlYm6iDMRd5ZN1AHjecKztLm9qGEVnPb/iQx7VaHU1Ok9oI5pS7BbSGiIClNafq0CGZ1rwcEaSvDVvuHxY4kC7P3svg+slkVglnROr50UxDOeR4y4i8PovYzDyfy/iK2wf16RObNOLGfqsX6MXSGE0dJvumy+EMLVtc1lpQVCLmsy+aLrDKHB2ZkxRp8m3K8/7pMZnyTEyLNVlu/GiSVjMXLS1DCRXbbfd61YSNwvtHH5744+glTdnH5dik8ENJ9eUpvsJIpKH1xYeNBKHKsu5ayOcIltjHJzRUY9cc34wpCPUy2xFrs6V/qVTWgqz9QqU1mEYMX+l4s+5YRhRVdkjEUJYSyrwdr1v0IiwXNRcsgzj2ieZztFNmYRp8z6LqS0ZhB/sKIWBAWPiJUdfZE7jycTNitek/s74oiKDqv0jEP3idAn83qM23cIKauwr9pe0US4HPv6w9JbxP8Bt7oHCQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAANwYAAAAAAAA=eF4FwQk81IkCB3D3kVau6VhmhRKjoq2nkP+vVnzGMeYhcrx8SqqVq1hE5EnH5FrE2BdyRmSVYWSNwrgNGYMZ1yJPKuQonnO39/2eC+wIcGaNQ8Gou6SKHkE8m3+dF2w9DtepT84v3o3B9JD7EdlbYwhgDbSFk8ZwUO5kjnTFnxCrumhUQvsTE8TWtNfsKKI0j2sdiRuFSxjJUIUyiqcJRQ5SvBEMflOolfYfQbUjjaGmNIKAoC8dh6uGsbjryk1Ht2E8ZO8Ii/o2hPlVvZTfi4Zg+tgmbMJ+CKWt+XWqa4Mo/Hu070z+IEqmWAo3aIOIUNWJT18XIVLuHO1FkQjUpoNkzlkRkqpDk9mSIoTkfJLIrBTCz/lt8lVvITpXw5R37RSiQ/6R8tP2AbgveXRvjxyAq18vxdpoADy7vyrPvu/H19+upOhn9iPIa+Buo0M/hPToKZJ8P1qdW5iajX0gbxUrisL7EPCCZH3saB/iHMA7/FkAprN6/utiAQqLT14SeQnwLIJiGPSDAJTzruzY4V58HJw2Ec/oxYEKy+xxp150J/ZfVlXuxc+703nJb/nIIm202CbwQf08oH7Chg8HU58Qazk+WLqbE9MJPTj4eNnPSb4H3A6mXsO9t/A1+HiAJPEWfA9NQ7Pb3XhPlp9V3+jCI9kTBvkhXdjaciTXLvIg1OxnOPjyYFjvu831fSdKO03s6z07scXZRr0l6kBuGufnO/QOUBrmerpb2yHzQT/czbwdrDLupX2VbeAuxVUZ6bVh7pyIH5vVitoh1SBdpVbMyYZW7IttAaXJXSFppRmCKAn3kKvN6NSOblscbIKKQX31HpsmCD7wC7ZzuKg7lLD50YCLeZX1GX5WI6YsZnQ/fdcISafzZa7RDajpz1tOnqzH9pjK+Na2N2iglzqWlr/Gl1u2OcyMOtz1+nbiwx0ORn0Tn65dr4WMuPovB7z+wDWXOEaPSw3SMmk+tvRXyONXp3y1rcakf0UnmcaGJedVvIZTFVKVyi8TnpUo0N8X3h3AgpaM3brivQpE0rl1P+W9RMT897WWD14geb8Yr3Xwd/SETul4Hy9D9cJuM7+CUnxRpFvsJZeAc48sX1VYjJu2MQs00yLkHju2TXasEPZbHmdnfy1AnduA+AY9H5Khkp/2/5AH93/PSJct50CqfPpvXns2ONaT/bSaTFCk4hvquf9BUpZiVvaHDGQ9EYQ66jKR2rdmbHo7DV1WORYF86k40a12lB+aAu9cp5vrpGR4qx3c9YSZCL3v9qotG8RDRZ+RenKGAdfGl+xXPfcxQbXayh2+C/FJ140j8rGQWQ2dLnSLgZKW6LN/WjRMmB/3OLMiQRyVdkuVj8BgSkt0JzMMDB+a/SuXEHC15w5QrILhnlN3WdHrBtZbipKE9oEoStJQ4On6YbjQYXeMlQ/sevLevHl2Bb95LF2Oo3rj2vEnwQZaXvDLd/KmHL6AU7m80VzhvyDxOTuIVuKGGvVp/5kuF7h0tTvfMT0L7j1jEXPWAfddUgpMquhQq0qVXxSzwyWfhxNzLCoSBv3XmQ2WGL0puULSsoDLc4EqtesUNsxebgaGmOOMGDN9H88EhQrmO80TjcHIfTdi9vIoriqe99ShHME/Hu+Nbpo8BLZvYI3Epj4YjnpWlYm6iDMRd5ZN1AHjecKztLm9qGEVnPb/iQx7VaHU1Ok9oI5pS7BbSGiIClNafq0CGZ1rwcEaSvDVvuHxY4kC7P3svg+slkVglnROr50UxDOeR4y4i8PovYzDyfy/iK2wf16RObNOLGfqsX6MXSGE0dJvumy+EMLVtc1lpQVCLmsy+aLrDKHB2ZkxRp8m3K8/7pMZnyTEyLNVlu/GiSVjMXLS1DCRXbbfd61YSNwvtHH5744+glTdnH5dik8ENJ9eUpvsJIpKH1xYeNBKHKsu5ayOcIltjHJzRUY9cc34wpCPUy2xFrs6V/qVTWgqz9QqU1mEYMX+l4s+5YRhRVdkjEUJYSyrwdr1v0IiwXNRcsgzj2ieZztFNmYRp8z6LqS0ZhB/sKIWBAWPiJUdfZE7jycTNitek/s74oiKDqv0jEP3idAn83qM23cIKauwr9pe0US4HPv6w9JbxP8Bt7oHCQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAARwIAAAAAAAA=eF5V1N9Lk3EUx3E1ozWWzrX88aTTtHQ+ptOcpjeRICHeBrJ2oWXsogj/gEgQHBIJ4q8bRwSLsYt1kSwoiS5CJCRMI7soEwlButBEzX7NuYI+by+6enGe89055/vs+X4Nx8easkfbF/bOya4CuVoqe0rk3VMyVCE7q2S5R2ZWSxPjJnnWz56WqWLpcEkPcSv1X7Fuyi17ibfKZDf1EpXyC/2c9BtgrlAt/etkkv3ZeF7IOpN6diymjoO+oZPyIXM+IG7Nk4YhY7my3ylvH5fhHDwmg8Ru3rOL2H+Y36ORISd/fPin9acM/JEvseOX/IrB3zK5T546CwnF2+RvEjclZRzbyK9gc0qOo22PPriPdWnqM4gm/eeZ8xLxNPll9jlkkdFDcpS5guw7xlw++qx/k1d2ZBbxAPkUtlDnObanq34E03gvftyi3w1+H6Xvu+/yzq68z3s2mDfCfqbZ32O00HeM9XHiTf7HNuoGeR6mbyXzbRyV1iz5xiqHj8hGm/yEt7LlM77Lz3ynVfny/QmZwbm7x/l+SrzGd7xLXMJ5s6OL778a/dSfK5Q+6kWIL5Ofou8M+7Dgjp06nJda1oW4j+Y4P17yfezjNXpZX8C8bvpXcK6GyV9lfYD4Be/Hw3yTRbL/jFwtZx/cL/ncLwnyNvKL5KMYOFjH/TKC17nHGnCF+7KU9ZGzsof7abaBPE54mZd6Tu6tWI3sqJfz/H6hUS6dlz7iJ01ymedvm6V50I869eTD9L3G827u0SXv/3Ne5Plf38MDTg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7gUAAAAAAAA=eF4Nk4kj0Ocfx3OVHKuUEBMVK8eIkFTeikSKSkoiCxUlFaGaaEnpwjKJnw5jolFSroaooRxFjMTkyBGVxPN5ouz3ff6B5/V6v9+fSZOE58NRoCz2rCuZISUg5EjBHo41/WPvDntx9LoGu+t4cETWjza+defQsvZfd92No+rh0KNtOzj26R8wltvOIZM6cLtqK0emkrf66S0cGy71xK3czDEk6inDHThigjpOZm/gMBx0Ix87jkb31v0LbDkCG50726w5FGybtl6x4sgvdqxxWM2xzbB+lZQFB0+zz3+8kuOqSo1uyHIO0xjb342XcbySqFQcMuEIPmZ1Kd2IQ/FjmZiHoeDhgaMqizm2Nxd9aPyR46udmWeUDse10vxXa7U4YGxsL7qQoysj58lDDY6IuYuXHZkveMVm3flRnaNGUkejT5XjYEh6wk0VDvlhzekuczgKd6ecnqXI4fZafbxGnkPc4frBMzM50p+o9GAGh71pgsvYdxyjmQp1OTIcifN+W+MrxWFxRe4vTUmOPunoxW8kOKLCZNOuinEYjZ5T2SzC0eIt+avMf4Rf/j09pfwrQWuzWEjoGKG+Imx4KSccXz6xZ3iUoJF9vO32Z0KtxpdNXp8IgQmBlaofCXOnjaxoHiQ8PXUoJ+Yd4TD/sHBdH0HFd/818R7Ck47+mcVdBF+nPZFBHYTZVd0T+u2EEvNdAe9aCXvvt/f/3kKYsch1p2szoTCppWH2PwRPuW22L14SZM80lkTWER6MbzJa/ZzgdvBFxtdqwpS369VynxHuOlf95ldJcK5dK72onCCyujys8zEhI281SywlbNYp3belhDB+Y2XHd0WEFPm/nCoLCXbnTKtP5hNGJnItzHIJif5L8kZyCJZ92TpZ2YT3O/SS99whXKn7U0E9k2C+RutiSwahvzBNNPYW4bKeRvD6PwgrU5LfT04h9CqqeTy6SYi+mNR89DrBVFR5g2ESoTMw/vFgAuH8gLzpH/EEQ/fLWTvjCK0N0xcoxRLCbS5drY8h6BZLT7sQRWgyiAy3ukgITZs8NnGO8INKuF/+WUJNtMjbQxFCjhKh27XDCVLHvj7vPin4fDhqdS1U4POgwq0hhJamAP0ZxwlH7IZTnwULuZb6KYcHEjKN3kevCCCszfCZTIcI3ap9x+/6EcIue33y9iUoS3btnr+PkPuze2vrXoLDp7aNcbsFXy+XCntPYR8tzcun7hJ6tXe6V7ZT6OPxyx9+diVsWLoxychF8P+zVu7jNoFb3e7sLSeh57in335yFP6VsvZX3kSwCn3S12BPaPts4XZpPcF/b8lL63WCR9tyGxEbws2NhcWFawhLy02WBFgKO1v2IF13lbCDOwZze80JY/Pvxt5YQYiJ15XabibkIns7dKapsKOTC0erjQlbWKpPxBLCoM/8N+YGhFPtN7Z80SPMcVStuqdLyKlMxH5tofcVSrkaiwhvs+O02zUJIZqzbsYvIMgnxszeNE/gnTbtgrSawBt+QeTv7wVePjXohLKQp++ZQRMlgkyn+K5Ps4XcnX5pyphFWF71n52nnHAv5iFl308neN8fM2mSFXa4KDgzWppwNWl0nu1Ugr6cf7zYFEJlxJBskThh57jvqUBRAvMb4HqTCBe69x7o/8ag7tzTlTzOkFfj4bzjC4Pdqo5aeWLoyHWzfD7CEKTdWnB2mEHmhrPeqiGG5FlNKePvGUwiHec8GGCo/lYXdaCfwf2wvcTCXobRnupjHd0M511shxI6GdReVHg5vmG4b2n1WvZfBpuCMoeK1wxtuigPe8VwKLnIbFkTg7iCWfbnBob48/mamfUMOpOM/7f7BUNpQM4MtVoGp379M6+qGN65Zn399SnDiXrtw3YVDHLW6b0SfzOkPtR0LSljMNVPqQ9+JHClqK81KBa4lK4XDTxk+HxRxTC1gCFCNOGWWx7DnCAFVcUHDJkDsZfr7jFYuMtNPX+XobEh6oRlFoO3jezIt9sME0XnvPPSGWIMJNsPpjFopJ121Epl+D+tW0qKAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAMAYAAAAAAAA=eF4FwQk8FPgCB/ASlfDZyBmrsUZa9/1o+f/GkSWUWFZhUmmeXjVuUbJuopRtyNrJ3YbYMoSsyW3kGFJS5G5nUruklCS879czJ4ahFT4Ds42JNNu1aXC0qe++vTQNWZXAk/Ny0yhNH6HxSqZgpiu+scx0Ckwvadr1rkl0Z8dbxPtO4qzEat3U6wmEfTlUyNk5gYM8x8v/cx2H2x7FH75eGoNCQ+SOI7yXeL23Tydi60sEUA5et3EZxYiFrHVV1gjyftujXDP1Aslne7WtDF9AUfrBBZL4HOh5rl8+MozmjbdYISbDoKkpbkjLfIaB9NktMwtDYAoOOgd5DEH2w/fV1ManqI1yN/2g8RQhdTKb+399ggpn3eQ7Ik/wUd99X3T4II6aL20zffsYRR+yWh+deIx2HY3behMD8PFPl/byHcD6ci8tvLEfSZctD2e38eEWbBez2t+HZL70waypXuz9rC9w+NyDL83Cjk2yPcg71y3BMekGW01oQTvyCMoXpEJ/T+zC+OQ4qqp5yBlT6AgUdkJWh1fRsasTlxgNSkU+HXDsv1m9eLMdjfr+Dytn2sDcr/WKq9uGb7rtAuWjW7HziqRkGb8FsmGMDQEaLeCrnJjbF9sMnce/bD/zsAnt4Zo1Pyc+xGYN9XtmblzszNEcXdBshJJTenaI2F8Y1loXFL15gHm1wxlnh+thEtRXzO2pg5vcbF0MrxZOCkrF7O77YN/TKN80VIO6q0zpAkE1xLVMQF/nQFTnS4rWLg7KhVsOLeyrQlz5RHFe6D0s/ONeaOl6F9neHay6zkrsbt2xJXF/Bax9xzXPjZZDMpBa6B9VBs8xc6EqtRT8rcZrEaN/4Lvg4KOW+bdATzeasQwswcvg1D/tnIqxUjmhoWpcBJkVOi9zdyFmmbq5DI0CJLr1iLXR83CmqjAyPZWNWZeRtDJeLixP5E2xlX/DDR5lYSrhBhxc1HTfr2chpS3V2u4qC88z4t2cDa+D0Ue3jf47E1WeFzbZ3bmGu+6tzeqiV8F/G15/a/Ay0vzjvhE0p+GNCJ37V18qfspudVpdSobKijMrjiRBy+HFRUpBAuJc+XXVyvEY2MsNVrgXi97ZWGXP+hg8cNkRXWIVjU9Nyy3Cf6OwQLH99UvnOSwFam5p7QxHbXRDgf7bUBwT7zC3MQpBmMPi2ObcIAjkz2obWzPhZZ2+1Tn1NMwNHn7sFzuFXHv5osO1DLhpO7gXZPtDtltOL6H4OFjjrR4iI35gG4ty45h0JLdIKEoFeyOxx3xjcK0XDvxRasWz8MQ/20q4pz65Y4R1bG1ReAhzom3Z9ttccS3wCGWJ4wy98+sGr4od4e+n2hYyaY+v5r6ZjsftQNnsOHRR3QYcZdvkKFUaau8vsWzYljB/U6nD8LbAyXcXpDKDzeB3RNmB88wYfqk69kYJhhAupjZdnNRDRufHWF19bdxeuM+pEGjiR5maZylfqaiO8RBT+e93yBZjHW36lgJxNUtGjIEKpA5IhRnmKyJS3YMqcV4Oql+/F2fel0HXK6raHfvt0KE6L9U7SIJub9X1OG0rlHZLPt2wTwyKtyfaIgNEwDe8tTtmcJ3IbR/bGx65QuTvfr5h+ecSOVrKoJ48vkhyHvk66iYvkFkTsRMMhTnC7vXp9+6bJTrWvu+TFAWk5LhZVdPf00Q4zE7QpU4So0ORCSuXRgk3v3nNN2KYaJh4rNd9ekI4hflFSksDRCqyo9Cot5f0cZRstp/qIrF5sYd9ytvJ57ldNJWoFhIuvBLIjeeS9rVA0/qZeiJiI59vs1RDXBT0BKnFVURhpmI5taSSMF/8LnllspQsehjcpYyUkMYrc+vvwgrJxdygudOGN4nolK2Ly7EcYjBB37PmwSJebXt+1l64Rhr6RPnLhpeJ2TbW9VlmChnUfV3XEZpAVrtTnIcpsYTeOaYWU3ue+CRHfIhVjCCDo/9JcrIOIV1mxj8KKUxCq97l99NQANHY/8vA22B/4tq/Ni034Eckl5Nc5vK8Cd/qvfpqmSdhZgUIzFlupGLBjJ0QdIA4y45myMw7EOr7AImcUDsSKTYvtB2hkasNZyRFVCyJ1oRqSIayOXl9Wo/zbN6U/B8EIvAeAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQIAAAAAAAA=eF5VlEtIlGEUhg2tlBlGs7zMRae8Nd5NGzNTi0AndCFDZUFBEOQliXChgduSgiBCZSRyk1gRuhkXDkR5JUEXYbSoERJFaCFqTWVWjhfwfVy0ejjn/8457/n+7xxLtD8nuS9Q1ntYtKeKb63i+aPiPJzJEZtyRU+GOIT9kvheh7hMXpNdjEsQK46IZ2El59PSxY+cN+H3pYkl2WI7OjzUazkmvkHH43yxrkD0Zolt5J9OEd3Yy/RRhL6gWXSRf/UAdW1iT5w4ECNeOCg+22UkNIg3OL9kEav34w/lHHZ78PMO338XXRvi3T3owvb+ENO3xNmfoiVc5zrIY/grfvonBrGbN8UV/D1ropW4SyHcE/Y54kapf5I4xz7/f3nq0OMkvgZ/Lv09CBM7jaKP77fgE/p6Td7f32TPoe/DkliJnjH0nCLeBbPWxXrqzmMncD8e+qoKiPf3yj/BPc5Sz8x3O/3EoKuAfG78RuxQdCX/Ec+g7yl9rZI3Gn8eepPQ5eO9XI0Sy9C1EMH9mcRszvXx3saZ1014+ZDo5t15ee/XmUcD73w4XnTwzuOZx3BsJ3OQiv2IOTAwly925wGG8b4bOWfjP/9iHlbwv4sVu9HfhT8EfwN7yZMobmHX088U/bSxJyb5XkM/N+E1/Gb6Lacfa5K4SB8z5LvNXhnLFPO5r6/YI+zBh9in2TeD7JtG4q+QPxK7n/3URb2BPDHjuFh7QvxCnouFYgR7KZH95STPHaeYQp7WUrGY+OZiMUCeiSLRj78V3VN876b+c/LbyP+KfWssEe8Rt06dbSIj/Xw=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGwwAAAAAAAA=eF4N0wcjFWwDBuBKmmTvCpUUKg0hee7skAqdjKRkJhnZSbIqMkNKSGTLHiWE45CZvTOToiiy5f2+6z9c6u5JkXFao4j2tj+RHzmKuSjarFj/CMouDQfoCYwi8rKGVbj5CBLnrjkmp42g4z/Dk8t/h6Hc5P7s68kRKHTKPLHwGUbnk5ZFIdowDoq+Gh7iGEbo7MoeO8owxPzHx66nDsGidiSaNj6EJ1ySl7+SIRSw+vEL3BuCzwXZnPqMQSivCY24sQ6h+UhpW9ngAMI6fR2SKIN4OQrpCM4BRN5f/Qr/ATDwWz+Q0/wC+1nrlcLKL3iuObZQENyPbvt3J9bW+kFtPZ7xtaUPWsXMeZvRDxUB9dcfufoQ82LRn+bVB4WtF5ukjHpRFuX0/mBdL5Swyief2QPe5gn+/Ry9qF25E9W41o3JtPzKDOMe6He7aTRqdUNU8H5WVkE3GFijbh9P64LHiWcLAtu7wTXVrTazsQv39MdGZ4y7IM1Ar7J6oxPT/8LKuMo74W1etE6xqgOB11zYvfg7wTn3QqjkQAdM1ygu+7w6wCkxlagT0g5ziRTan/F2yEyXBmxdacOiOP9o/8V2vNKS2kGzaMPaZ266npI27FWJSHHvaUWP7zeLHtE28M8xTO7XaIWTY9ablphWWDBIFeZTW5Bw76NJAWsrfnA6buCTbcE5qdxHLv4teLrtHff5982IZn9wiom+BeebnprJSzVDW8m04rZXM9qPhAn02H+GNUW34PGGZrydPsXmfa8JQT0NKanbPiOsfr7Xyr8R8yc3iwZxNEHrzIF9njEN8GzU8U4VaoRk7TO59IJ6fDHbEv7tVAPOOYv2dbbWgflT7XtxSj1YzW2Efv+thfodiRV7hzpojBpUj/LVom+LZWH081qcjN3E+UrlExqYZ7ojKz7hi7lEFZNLDQ7v0qjSmq5BGa2Xft/bamzn2BD4QbAGzQXd5XXfaOiLVXpdrluNxNIDUrP7aOhILqHTDKdhLmlJLtC8CjFizw8ZtFchVvm5tF8mFV2/bNRbuatwfdVoqmupErFHeUYSjKhwUlwYsFSthPSB6M2VmZWwjTXpPx5TgdC0BIXd6ypR+TJZTmiuHPnua9VplAqwlGW0HtUsx8rPXhb9rHI0FM0OvbjxES0pqcL8jOWQZKD3aBcpgwKz5mLvlzI8i1jLXlkuwclIrjK71FK4Z5aaL7Z+gLvdsauT90rgvmGPYn5uMdBruSCu+wGqaio3eaLewyxv7Y6YTDEi3L/1s/q9g3ppj8Ynofc46HGz7olHEWaqVv2nud7hH53TgI17IW7pfY0NZCnCqa+MnOleBbBgspMNYi2EvGV2ysHgfCwr57/7wlsArvjBP13xedB4MC5rIZKPpS6iH1+aCzHhcXFeuTzIXHiy13EwBxrv5hcHDXNxJCqv6vSWHIy4Zv1I9M6B8I8PwmOS2cgJYRfTzcpGmO3i1vz+TOjmyl+kUbNwPvjPDUadt0jZ9vKL0clM3PYNZc8YSIfWEzZmg8IMrA6HVJrYp8FU9miCn0I6KgQUO7dxpIKZK9yz7EsqTC0artpSk7Flosy30ScFon3dU6b3k2DLe2zPY6lkuDSoBxYrJcIzuFapbDERgbMMz2R43kB1z05FQnsD3FXJzF+Mh895ocr2mAS0ppwtmh59jYhHdsnnvOLx56xuYH5vHKguy2w2d15D7/ONrrD3r/Cwp1qfzjoOV8ynRL+3xaDUeXhD7I9Y3Jf56TdJF41ktUA/UcYYaL8fneFXjUKeH53iceWXWPGq5NmY8BzKPcm1EuEvYOqrHsjGEokXarsdsucjIXqLfrL6aQSS0q4F7rr9DFdcuXnDhcPxo4fj4d/5cMikuwRONT3FUFTC8bSwMJxuig9QeRyK0FExjhz5p7j2b5/XDu0QlN4cjHWlC4UUs0zsjatBsIchx1haMHTXJylJSwRgc87lK6y2gXi3ZynNRcwfS/Hc8dqUJ7ifnOa/IPcY52cFdj7Q88NgGLdlgMNDtJa661i7PUJUtgFlB9UHecsXVv6+94UIRTWaIuaN+w9dfSfZfCA4PRxwOssTm0U+bhJ97AXD05kH49QewPRIbl8QhyeUHjXkVyy7Y79uTMWEowdeySTN1AS4QXFz5RnPqXsoOpNYK6jqijLpLTNvn97FZ9qbkbeHnBG54OCkct0Fc/nsNZekHBFwqcblCMUJV0Qks7eb20Nv48RHbRsHSPqP2XcU2SF6d/TBrIw7yH3mp0s9YAul+u4Ate12ELku/GrS5jY+ekttcmO1wfPTDGKnaiyxW2noiKGqFeKYJh1ntS3A+GeqJKPoJrhtvXmLWc2gv/zRaknPHBdjtPq01pngsLrW1ikxU7T77WVN5LmBOaEJL6NDxhDtuTNffOU6+NRDvqvqGoGel/Wm96Or0Pn6weoB5Rokp0caeWL18S99Im+dogH4LBaOMs/roDWhnrfVSQ+aw13pkf4UBEsIsi98v4zVGYWwXTraEKR9Ei6MuAQJVhFLTR1NFEXZNz130cLA5fIc5R0XEHx/kNEy8CJ2fhL/7UNTB5PWlrKbcRoIZlv+JtF4FhKX0wef3lXDxhDaavJuZexXVRuWjVeBbyyuvMxTQN3sVpZFZiV8kygMVX8ohwlPj8vZ5fL//98Ua7IH+BWh+7c8/QxofHsHs2JloCVwKL/jhSy2MobuFHWRQuC+5sTX5BQo3yrZZJMkcD6T3XbstCQmVahWCwLH8ffGkPftgBM4GuHOwjgsjsH9oXU6QsdAzbW7FfrxEOhKC5QK1oljk/SvczgsAjUnvR07xcVwJn8Hk+0GYdT32Cf/qDsAn2MPE9iO7cMR9k3Gq9VCcHFsF6zNE8THAcWzNrx7cXHZyZBpbTfu+XDdcC4RwHfnMoVd3HzgCbjwe/DsLuh7ar7fncKFW66uZorPeODeXq3iGMcOcY/iE6+1OSEtLxTFOc+CoegPn2gObLBhFGVXl2WC/+j6PTlTzHBTF3KJFtwOdY6ow502jGjYq3zN8PFm0IumPVYK3Ip/E9M1t4w3gpF+aTJi/yZ0nulJ905YD7fx4fHbh+hQb93Yzei2Rui6Lc0XwtdhwaXvgIPGMtFv9Sl3SlgljSXCMc6p82RaoOXv+rxFQt18V3bJY5Yc/nfwUoviHJGL3G3QW/GbnP+dZv1AbYYUfdfiv0X9SfKs0v4zujVNPFh8thknfycyMmb9l2YnSFnEXa8s3jHCyZYZY8A5TnpWy/kGto2QMIdZ59flo6R0OM7E9PMAme3pc08ZGiJ9LkFMbUq9ZP+Mjsy+pn5CCRV8sXatk/ySi4guDegmZQxicv82txFXs5rJO2PthCgXSieKNJO1145Hg6gtRPk/txln63picnsk6NfBJmIltHOLPqkhJQ5SmdVhtURajnMoJJ1Kquz0VoRTaYTh5/1R5rhyUmMiXiqsVUmEfNOOO7KUEG2cGKT/W0bEmyukVlOLSIvp0SsOu4oJx2LMMsuvPML2fcHYfn0hWbA0PL5SkU385G/lcvrmkuVdBn71+zMIy5OkUOU9WYTL7MPUVEwykbKQVhXdm0bW3e2Paa9NIMZvxLutJhKJl5rB/M3gOPJhQyyfi348afTquLCY+ZIsvIxIGcyLJfK3Dqcb74wkdERoo2TSCxKUYWsjqhRGchbHfzebRZDt1xUCrjOEkMl/OYfmO0LJE6IfXZzrT9Y3zDFL5wSSBS5XKcrhh6Rt2X7FPesxmeGq8Jo19yI7D7nNR3r4kIhQ76lyr/tk6TT1wPl1nmRlw2c1RnlXUpcgRzctco8Uug0O+Y44kI2DjYz3zjsT032vimNhR1ZliimL8vakcMPuc9sdrUgIvY86tcGGCBumXwi4Y048ZP9z3illSc7GjMvznjMm254Sk9JIU9JmtN9MoPgasf525Dkf1YiIcUky2TPqEyUf/oib4ldJ8wf3tG5DCnmxUJMoOKdDts2FG0R6axLZ2knn3jfaxGXLqHB19jmip2kWLMB9kcjulSKsnipEZ7DxJ+tVNWKpaHiQR12BUJymljijlYgH56Ou1C8gk61d07k0OZJhcm20qegUEZt6qy7xQJaI/4jdqiYuSVq/tk23bpImNgqNogpREuQZ9ZiGpdJJ8j/DFfuoAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAHgwAAAAAAAA=eF4FwQcgFWoABlBlFilRJFQKKSlCVv+XPbLLtUcUngbCM7IqSraIUomMi+xEyMvKdSMzRLaIVKKkJN45gymU8YMSE/jqc6n1l/sEdnAH0qXKx9Gue86Sb3kcevu5srlUxyHDIWU8EjoO1Q/lBV/bxzB3occikWsct35q8XfbjaH+hHegXtoYun8cdKydH0UVxURtk9QYyLWrsmVho7jMxirT2zAKRyEY5e0cxam/thsyzUexvFhTpug8gqDFwZ8TwyMwilTJ4Lw/jFu9DnVeW0ZwiD08oaFrCJvMUjd81RiG5uG7onqcQ7Bui61QDR5C5FR6QYr+IKrJDd1zLwahYLp6LD3uPSqlHT9q/X2PitzsVuO+AVh6RWYNqryH5D8bnFL3DKDHf3/YtogBvJ3z+Obr1o/vjevOf+jpR2bDRHB37TvwNe63UxLpx0qXtUDatnd4oHjSk8P3HXSPLK7vvNiHRZttNTptfbjqXhZuTu9F96bDEZNifVjm6OER39+LjvZZ8a7QXvzRHDgpG9EDpU/1kusneyBqMDrmNvcW4nIpUi7aPdhnd7itxewtOG8+4FkqfIu/CX57lRu6MX+24VU631sMJ2oIlUl1w9zaJtgqrBuPNUc1xDK6EFZ1Jpp3sQtqOQ5Hb/F2QWvV/hbduQtBjbu73sR0QuDS+MFzQ52QihAUnWHrxPbGh7bDpp3YnDgd2h7WAWpokqV4ZwfiZMv+8WbuQN0hLg9Fww40iX3hfLS5HXNRh25zpLXD8XBwQ9aONmjNVNkxUtuQfWVCe2b/GxitaFqoPX2DgMoGt9PHW9E4Vnq0orEVjtTkki5KCwRrE37qvG+B5+K5EUPv1ygqNhL9+PM1diyoWDy/S8cOc+p3f97XmNHn+f6rthmP4tVn5pXpCPsgLbv2hQaWwkd7FZybMRswua5yFw0aIu6yJImGnonyeh5KE0YGM5zm6E3gU+dKXBf/CqNuI5ZK65tQ73t4/lJHI4xEuPS48Ariz5Zn9HgaYTNr8tk+pBEr93J4oqwbIMwe8pi/qQE0ZfMAwdx6cCy8kDy8pQEiZR/eL/yuw/bCrROxtvWgu2SeWDWowx1j/+uSJXUw3euvIp1TizN63wL+stZBcpEydJW5FlVU+cg5h1oURtfa1L35Dzsnrr+bu/4Swtqe+8Lu1kCn1OQej+5/eCifnHfs/At8jc8/J8tXg5ojahr1GtUYHmN1UPpajcoi5QXO/VUIPerJtaW1CnRdFnG2rZX4k/3o6cOSSkw78ireY3wORv657e2pzyHxpy2uYKUcy7Sy0NiECpzxn94k9fcZYBic/zq2HP1+ST2bmZ/BzGre/ULCM3RZlsrL8ZSBvTxO40xqGRJ3uDyMO/AUrtQe1zvFTzFvk+zMrl0KGWqf9iK9FNHhko23L5TAlP2M0sVPJdhuQ2PivlsM3ysG/jNcJShmv1g1l1iE+G3y6ykniuFQoxhowVoIcWOfP8qzhZBLCTmpcDMfGQ6tttaOBagtObTpLM8TnNx2NXhk+gl2RlEvFxTmQpaTLn//Sh5ygkY7P5rmIMFC1cthZy6C9k6yfNhABc3r4yxLMxW5NENzj9dZMNnxpNv8ajbYmBbsbJIz8fnek5eiWlnYqvRrydM9Awz0ipjjOzLhoFQrEWz6GLMdLhYuS4/hFx13VEszHcZSjE7uY+kICbsqcVs1DfNH1PcI9qXh08vz3LqJqShnM5R3KX6EGzauvqGVD9DNGCi40PwQ13KstE1/pCDX8mat1dJ9+BvltSmq30PJ5TJnEaUURJr5bCzOSUZv9NkfLQl30UmkRiX2JMFLIm4znSEZsflRp0QLEmHyftk24eodTOkr0jn1EvCn/EZ96rZEaBzKMKT8jcdB6d93rV/chrT1yBfX2jionb3MruwdjzyGXd88xGPBw/DKNg9xqEl36aB8j8JF7awEUbkYtDPJeJsPRWBBiCWtflMUkiJo93SmwkEMu46vMEWAMzQ+cIXjJnLktQaz+MNR1CVAVTMKw4Zpjrp4/RtgyCvOXii8jhI91ZbbD0Lh5tDWOyx2DQbG52UDWa4jdnKYb7QyBCzZN0+LRVxFdPonvgxaEC62ZZu4ioYgztgyeJ9OAPxFh5o0ygKhcJb/300//TAyZz/uqH0F9u4DuyVafbDnyeC1ZRY/TAVE37aje+MxR4PQ6Jd/sSb98Hn8rCfMRcpll5a9IPRFbFfVkcuQqfhhfljCEy9PK3cOJ7mj7TaF/0awB1aNZ44fkL8E3v79DZun3KDpOxHPFHgehrAzSN9wEatvNwo//+WC4z/kxHc4uYKJS8u+i+qEo9cOc88vOSNgSsSJ8eZZOBmXpjVXn8Oena7/CiU4QLJXN8Ks0BGH5oYN+On2+OqQmHW99Qzqk92ThPVscXtyQ7UJtz0eNruVXTOwQl3UmuPgmjVO3uPPF0o0x1PWX1MauyzhXdb85hsvBQw9n7Xrg83Q0MX2Ub/nFD5rlFz2ETBFt9+yDo1mDJfnD5rav5lA/0Lemn2vIdbodQ2+v4zAovxrn5KPHjb4xw/U2xrAITjFsN5VB0XiGmvue08iYMnnO0+eJuzMGjdOHNNGyLSnTpOkOtw8Gpb07migOo/tZf+CCn61GmuGyKqBJhtadXcM+CGo5Vy4VQWU0DOPCjWV4WOWEvnBgGB2yDoihF0BvJm2XUlDinDUNKiXE5ODLevlJanmY3h7s1olN/4oOmMuVoqzyOInh8V3UzUpTGV/Kq6Mlcbop0u9Ba6SePiie/IfmyMoojFUl9QfwL/7WQrtOyWQtMeo3eq6GKx/jrXMUMRxkO1FBjV9H3bm//iqc0IUv/00ZA7wCCMkwJDH9PpeWEmu7FTK3IWNrfLMtO17oL5XdIibuhM5uuG7+j4Iwq2KkXJBmA9JCfG/TQX4Ib7vdGnGhm3Yv5j6K6NpO9hMen8wG22FIiOZVuzjRuK1qN2NvZuhbfzg9BtVLvCK7bmklcmO+Jq4RfPVTRjjig61X2JFLMufXHXWjbAM3imcXssEjy3VeXtiWPAuqmlF4Ps60Kc/qwuFMcJRlqHRYd0a8WeePMs5wgBZnubLt/5bJmKMGgp2u/8Sfcp7fye2JdKfmxnKIfCbBLUJDvu0fyeRU8zdHx8sEsc6Kj+Y5om0wbM5ycQFUtXPu8ws/YUIVMuxm0zNEbnPo/KqjDOkQNO99oHFLJkKr25ucpokDqYjesfOfySG1h5vS3XGSXiOMGcXyweytkpke+RGSFRC64EI/jHyRcjiZlHKAPng9e203qEhshrOlGmX1UuI0cbhkoF3pOlxkWvIiW7i9NfgwDaRHmLGkyAYbN5BqD0nYvSXOgnbV4OJmOct5OyYpmZtYBsxsqEWffOjEaqHB+z66MSCZdBX5X0D4QrrlPhn5BWxCWDkYG2qJfUxvc/8A+vJFpWUtHD9F4RFLNW7W/4lOdc680Smv4K0KFFOvTxVRVJ3G+tPc5UR1iYr39WD5aSE8iXSd7iYFFDurhfPLiW04IXk8yb5RPmreLa8aRE5H7Aua+4/KinprI1e0ckjm61N/dzGM8js78qsVNZsIqas3XUhPY0IHPDv43Z/TNZ+S/dUNN8n72c0dh3rTiXeo5dVZSSTiSo3LZfy4h6ZXTIX/GyUQG59KxQe8L5DYrYOs8Zwx5HNqypd90fiyXHW9nDtqgiyT8Dh5aUX0YTaqJ7/5cgNst37OFNNWThJSM47xex8jZQNplaFh4QSX4lvNRwBQWQLl+EthdUQsqD7x+KIvB8pyZopfSocQCL3bg1t7PUij2N/uBSo+RChB/Mr09Ie5Mmba15lcp5EWEm9Y6vVBcKkEMa4WOpGZvNlJP+YO5OZrY22MkKu5Ckz8/bEo47kk/c+vsigcyS0lj1tPtKODN0f6BR5cobEfdZtCBm3IMVKLb9jGW2I1+rZ78LHTIkv96X52BYzwoCXvM9tjcmpLRPzTkGniPhQ8bpeVz0yfoXB0H7akDgHdW60UtIigX2RghW8ukTharH931VV8gQijXGnNQgve6uY0m6QiakYfXtPFeKfVkx7RlUgU/lvP/7JUiYZz8IaL/jKks90nwuU6mPk5ON2o5IUaWJ31GryKZ8MAQs9aJ+xFFGzXuhnHZQi/wPV+Oy4AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAFgsAAAAAAAA=eF4VVnk81FscZSSSJUuJ6lGZG5XCRJbKtS9l31KitBHJoBJlq4dIRTylJG1kiRRFNJNIlh7xokShxVKyJVFN7/jr+7n3fu/5nu/5nvubEatZU2SbT+iayMUj9Q8I1Rq5/dI3jtBitfz2mkBCk9sXJbYfJvTbp8LcV+cJvWJWpaEayuMYisxSfB1NaJjkKT8/H0K9xdac+HGM0Nmld6v5rhC6xOm+Z6sroWny3bXMVYQ6sdacvnCS0BMVNMHbl9A5TgcyLU1xPt/V90UEoa17nvVYXiD0Rq/525n/EFrpGdEfkkZoYTFjvLmOj1v+JNRmVTqhLpzC0fIzhLIyu1Tn2vFzYx98Xx9bQOjm2SaGz3cRWudmcS3sCKFKwkYBNX8Tqt8XfFPSh8dZL5IikdzJxz1ZLO++1ZhQKW/2N0fUSZ1x4rki+mDoeGeOuhHKu7i8aToOv7tkkw++TvmZmcce8HGt+h8Zxgz/4fBO7t5gOYfQ5rLUY+zvPI5Ji/6rKvDP9NQY0SontGQk9N4Q7u0wiqn2PkDo404TT7FS6Plf5744Iz6uhJuoU7AlobllZ79zEeNFf3Z8UCdUWD/k1Qs9Qu/aNThlnSX0gbajt34MP7furr64FJtQdpRz1i4GP9ed+8biTiof98WYqbXVckJD3wgnp2BOo7+i+m6eIHQn1Y78tZNQ197kH1+g3y9mnHOr0i/O1T6Ph+/Qb49trHHZcUKVpZw18jH3SwFhcZVbCZ042yXOj/31cxuebMbcjJ4lrx7APB6ZxLON/XictoyE/469/cWZaWNU0ox6Cvby4qEtfNz98y+3ToYQmiVcz6oLIrRXsnzM+vZ3jtTXEKEp1P+4lpnoEUuo7qI7RWnwxYrkktsb4BMf7Rlle+cT+uP719gu6FeqYrpPZTehnWLrsh5hbq9EWtpf4p5dc5KbZwKhA4MDgy6Fkxxu4AJ2TCj8lXvdwiD4D2e/6Ke1LDtCvUyDr2ig/kZ1tY362oRqhp1ghQIn/PartnuI/84rqX7c/YczINduJ4X56z2a6XEKeo2oNI6Gwd/1ux0/R4GXuoF+mxubn9vXEV6acpRQh98B16yC+LhZvjKPe6CHKMt4cX4S/OFzPmnvIUI1qFSJYBTuh8zkqYQRyr/nxM4O1FN4MtEpDp/eWSKkqOhJqGDi8V2d8EOyYdz5TndCC8xyxregr470wYvttwnluAqIZAUTekBvofRa+JdnryaZG44+JUJeqmBuK7ZGdOeCL923sJ8HP6S9LZrjHEPozbiJP+PAPbLhtdw2nPfJBfHHbCc0iaVang0eTUdNWgXQ3/Iz5hU90P8ws31BzWlC1XpcY/7GO1+/IX6dDPr5yNjv3OpNaJ5cHG/XRUJz6nb2CsfDV/8Ixlr7Ic62Fdg03efcKBYT/u56sddmAPc/f8vNeIO64xGtMmz4IrDwTMVpnOuIb88eRv+CZq+SJ5PhR6FFT2dN+8BcqTH8HL43CT0dXcDv9kvxrgeuiOvKm0KphJ7RrFMxAM+kfLsgdUe846f9c2zwPmsXpbcXoB9/WY/AEPCf9VMx/S14W3w187kB3y7dHdUQCx81Ld0UOQpdszRyHZ4CL0p+yfZL0PMOnZTpxX7McYb4Z+CETX3KFY8kVLFC3rYTOrfaVZo0Yj3mz6i4BDyHlM7VKXiHtVMDyutwztTTfhyE+axU3bIgD32Pyy+S1TlFaKza3PT3iYSKsYUdP2EeK8bMG7TR//lj1dkJ4LmMaShkHUBo0GX94QrgZIp71SWiznrT3avk4JcKZ808FnTRqr14ORpxs0SdVgx81bd2TaAq6sy7cMOSYv5S8VcmR9APmZ3X9BV6ub5zvTiMeFHfQXcQefp7grbkgE/WwSDVNPCsmH/kvj/Oi5q3Olqi71/cGvuX8LPZe17nIPoacv3n09/QoeByeE0Y5lBZoPYxB3ky83pyD6Cf4cc/53kgP3BF8PXFyM+5JybfA176PmFbm9GXe5dnyF+Ye+zHczd8Uddrjg6TB/3N+aMYtQcJTWhLY+Sh33QdC/ECrGW/HVn9BDhqGzK8NOGLPa3ayTsQmdYD90uh2+/F7rmnoItef72bDWJHhkCZNHS0nTjJ2wy/PLNcot8MXisOV62Lwtw1929LpuC9fKFtXS7mm60wlR8BvuyNButfgFdxmbrCfOi287NGNht1eTsl54kiumu5XFsK/GLddItRvIu6oFgddeD+4Ov4nQy8+lP8oYPT7+3WgO7075D8MRfZZvjvZuvCojz4YtX7Az7SwNnWoCubhPWsxlqvFThvtYqXPo/5dbd4FtmD9xVd5sQbnPt0Kx6XwL7v0tkyHVi7xpCXFN/L7mf2m85dIjTgrvo5Qcw1xmGiSRS6Pu75j/sIc6NV/GMU76akIjTBFPtSjml1h8Bbcpug7E3EGxM5Ks3Q5auXcrkh8IwHR3uV4AP/OYusmMind/9NFcZ38uHypW3LULenYWPqdvRn1KfnOQk+bXydjKfoe1OSs5g9cLwi/O1N4Ef65FahDvRtK5xFjoOHb1vCVS/owNbzj4hG/upZwkQY/e9Oj/5ThHhtx+qG5eDP8GL2t6HOjYJcy2zgH6xlJWhDl67fZUOxwIlYa+EbBH5Zf5nYF+A7Otm3q6UJc7dvEc8yh18Pn1+cWop7FxLjh0uQ12/JeuQPHdfsFxhggl+1xVTnSvhzz62JtyHwrZ/MOwElnL9aPsA4hBhlrvVADnh56kFbZMHz9LElm3SwHy0WfYqBdc19VmIT8Iszo4NPwK++h2yNr4C/yXVBrTT8r3ig3OCdgP83AV+rnrUCR/eD04PjOOerGn8Si/yc+pWlHNR3KOodLAKegLiKkSJ02Zyr6bwAc3IQyprngjyFwPEvW8Df+v31wlsphAZ/DeHEAc98gerKLOSbv1csaoTvbbiGVjnow5yZ7uSHef3RmfrYOP0OnGSux0z/buiyxN5CN9bLAu19wGlTj5zxDvU7L6en/4W8GaMCVuswzwhlUdM7uG9QmTtfDPglA4YF1ujj8rLgLz3Ibx9nfPfEPINHZ0efQf+udpeGPyPfz8W0MhnvMy2kmvsYeI1nso2f477ZAelFxdhX0Ze/tAf1vzQunuRAf6F7ebZW0DODmyryDusYO1bydN2zIs8cVqJfclqgxBpz5TsooZUCPd5Ts+zP8KnOw/zqYfC5MGpRWgN9TI56TwhDv62uGwWUgfdm4JDIEHi2CmXLT+Jc37aiMgPnkoLsLT+gQ7iAnvQt7EvLfRnagXk0XTZleE7rtcR8cxrqtA0EqoaB/8H6DMUP2N/LDVI3QPTULKi0Rf5V3415EcAP8la1igTuQGLGfgVEie8az5XR7yx32cx+8Nd9vkP8KPY/Jv1buwL1Ijyk/daiz8HDDNm1yPPgxS27Pf172bK5JxL4lTuSPHSAbyFaTRZgv/RF/untiEm3XB4q4B5zjszVKughN+ih1ofvkd5wYoAK8nUU3Swv4L6N0n4+F8T8w45TLdB54c+qdZW4Z/WhPNwJc7Uee6qSD95P+XSdijE/JeuW1wvhl9v5R4cUcG4RsOt0L/aXqdSf6UDdF4X+a3Kg18ejM80LMb+D7ZJLc6C7t9FUeQJ0LhrpdrRHvbEiq2sO0E3zyVC8E/zwWog9OIZ7rgeluyKB637Ery4CdSS+6LFjoKtDhPF1A+hh9ak0/hv4xQ7VhLDQx0m9HH4uYuMWowNj0O0R72y9FfpUFksXiMd+dZqcwfR33djt9fbVqF9gIVk27SMt6W7WF+DFT418UEB//wNqSlnDAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJAwAAAAAAAA=eF4N1Pc/FQoYgHGbhBCRyIrssnKQ9w3ZCZkZIdmbQsk+Vmb2yj4cKyokxREJuRpuIVJpIUUipHDvH/D89v08OQv6R49JN2EMUWslIq0JOe9l5ZjFNqLbRGtizsdGJAmV6ZdNNWCKj2ZJlnoj1uZ5vLRSacC+eoUPM7kNSJa/qp+aW4+yvM6DpJ/1uNmiI6W3VodWvNt1C2b1+CsBLiefrcObVCrYcacOLbrkTc5QyOjn6yrAwluHlqQGtrLDZGzTM0n7HEnGmMXKHe+sWhzydvDVnKvFSEuNutadGsyajGg8YFGLm36Kuy761+BOz3qWf28NUlp17lfPkHDrtNgvFcUatCP70GpakdCKmKfhX0NCkb2qG1oj1Wg6HUXaw0/CgFv60dW61VjgyiC3N6caXXsLzRx7q5BtveBGMFs1jt1Z3+97ogql/B/clEqpwvPcoWcHeipxgXVmS565Ct2Vg7LdtStxT+Qn+riUSuwRGFLVG6zA0Go/PZ49lfh70qHO0aQCwx77CM/lVKD2SVaj+olyzB8vp1nir8DLv/yDhC6UoxkNQUOsthyjvqcxh34sw8iFLFWiYjlKhkp2zdOUYdpdnSxmYhluVfm1poiX4u5hg2ZtUim68ihOm5y+gf0T41E1T27gXTVVeskrJWjYUb0itlqCs6FcwFxfjFthn5dahUtQlnsq8ct0EX6ysvPRNS/GfTwzEre4i1DAvK5yJKkIS1ue+TiYFWJORMoDjd5CHNNtevg2swAp88MK13YKUHPS/p3Ey3zsYyhIqDlRgALqkylHDuTjsacKzgnx+Zhn5HL/i2sefvxE90DgaR7u1FHatVpzkSnzdKUTXx6OqtS+VWHIxfauJ2e0vXJRp71rvNMuByUNO1w7u3KQaoIQ2tOajSXUahmdXDnIpLV/TYMjGy/4Nw4T/LNR7PW+JonALOSi3TGSGslCCt8iIeTldQwsp9QS5bKwU6vkBr/6day3JRVqZF/H9ynrDJykTGSzOCJn9CcTic3dK6c4M5HgN91U5ZaJCm9+WCfRZyC/kXxxeH0Grh5/4Tn9LQ3ngppHhdLTUYPXkyppMhWz/J+cFwtLw/KtEYPQpynIsskoHuaRihx8CjzFg9eQx91ziMkxBYuLrjV8HEzGed93WgN215Dl4DSb1rMkTO5fFq0+l4yrzgRi7VQibrYLRWa6J+FV87Rx+sUEHBCYeRQRkoi/jFXQhCEBW609D55LScAMgp9ZyKF4DOVLeCVaE4/LSsMzvvpE/NoVSHr4mIhlFJnTkkFxWHhWukDqexz6VQ0sFFfEYumk6G+z/XG4Pb1lcm8sBkfz6PWkjWLxNO0u6UscMRj77AJrfWwMFgS2qvSZRaNnm97RXko0Uv4wWcodicIDQy3m7jTROD+zcGKoPwLpfSr0+XIjMcrQ7LuG+1VUM5hzPH00AkfkbA4H7w3HjGoqstlYOCr1zt84/eQyCi39smZOvIJNfk1BbSlhKO7YT3VO6zKS6Gq/pViHYp1Ok7c8UxjKW+bYtMmGoI048ymPiRDMrtRb2Mt2CcVdrMY+376E+2K5a5I2gnFbcFdOSv5FfPGzVWPlWxBC2Me/qgnBSEX4QauwEPi/qxMKzyODcHXB56XwSgC20bN8lY4JxNP2Q3SldAGYSr9oL5kWgJtFyS1U6Ic9yl3+ujr+6NSAi5qJPv/390Q+x/ri891DoY0zXjjD+vzR9Kg3bsj5//vV2BOFf5EZ3ih54fFPtWpVw+7IUSJyNonsgfwHP3FdtnXDJi6x9URZd/zYFnybZfMCbsp+XLva54qXQzc9/9S5oLna2nkGrwsYuiDT9c7zPA7HL9v2CLngo6/BRDNVZ6Rn41Y/OeuMWsI0wl94nND0YOcTiS4nPMPb5OnMfA5HBX/N0J10xOBgyR4itT1uBbG9fSzlgOrMggyWXLbotyCEHbJ2uDPfzLSoaYODBxUvrRmdRcVxZSXPZCusZWJUKyFa//9zAZm38xaYXy4n3jtmiSt03m4u580xRLTSMErTApuL7YfYfpphQpz1yHzfGaSNphis5ZsiW41TIo+DGXZSLbE715zGdFGuqoMsppi7+WCqXucUJtU0B8qUGyNrrmHc1m5DHFd0GJU1NcL2rF/h19f1cEIn+nOIuAHe5yki1TDoYlWrY4KWsB4arPnWRqmcRD7PfNpR0EFLB/sr3klamDZzT8wvQhuV22tKe9ZPIKvhhUMeU5o4EF830M2I2NF+NIXP+gS+lNVwcLU6jtk7wvteTmugr+2UhfOEKk4pOPmnaqmj5vGB4fZrKth609DJ4jUBp8lSrbFeypjOzOCqVnYMPWyHOv5cVMSC83uV3K4roXz39npQrTw+pIR48zcpIPfTDZG67SMYsJ+2/87SUWTX3txvuiqDJQeYi42b5HCcr1xJWFoKy7zbfTgo0kj/fcuqqPQw5hIIL9jZJZHnFENCiKEYLj5aF5wpFkfPnqDHeVKimH7pFKPJuUMoElYxJqoujJHxFP5z5iKYLDD05tuPg5jrES+jHyqEMlxFNITuA3ijJfrWRqoAtjwjCzaM8+Ir27Zdx8P5UNGgq1RGZR/KFxpIMt7hQV/Gf13oxveimkSu8SU5bszSj86cuMWBdIOMn9/NcuJ7Wn6CRfwetLEhmQhOsqMph47gvV0suO9Y3K07VGw4E8vDyTzHhMfyyPt4Gpmx6YC2vSUvA9bqyPyku8mIo1tC5lLZtHjdqG2obZsO7Sf/XiebUWNbzp/ptTwanN2xIv0o2gabyKr9qgFUyPuHNSCe+g+IGp5ZtWfaghAmrUiLf9ahj3iyO6/oN4hbMJTeWV6Fdu67jY9T1+BFfh5Z1+MnaB8kkANfrcD7EPMD1BI/oODwLf5v3stQBreo+898AxUgLuVnLoLilze2csNzENFe7sYx8BVY3h8XGW/8DHZIJAf4zgKlbtln6tsHMO6pZJcO+wTC7Ww6VtHvoYR+lS/szQyEdzQnfH7wBmQwnP6I8DuQ05BgHNmagEzP/tpQnikwETdrDGl9Bdo9TM1VqePQ5+r9/PK/o8C09KNuO+AlcAV/6Is3eQ48Rdw3gjtegABnrNII4R+4cQQH9jQ/hQDRZ26+5wdBubvO63viE5CO9z/Vw9wPxJxHShLzj+Hkh70oJdwLC8x9Rq69fdCT8IVdTJECQvU/midoH4KYtqPFw2edMNGt8nhLuwue5Jac6qS5C1KzmTW3Re7BEZb77Xz37gDLxGDspYw2ELb/zSz2oQWkBF8t6YfdBpm0jT65t40g9r1Zq6ioGf75XtQyTyKD9xytHQt1A9iQJ/nIdCQoNncyNNldCyZMIV0XvlTA6us0jSdVVUAzkcsoF1wKTtof69PvlkPBZmfhy+lCeNOgzLTPpwTOdVAO/17OhXyabbtrwgXgFFT9QK8gC/oyp+UJITmwOWbnMhuWAX8rFB4IWlwH9z1z5q2F12D4ao4qmqbBtdfOaQ4XEyCJNatapS8Jph1L1FwWY6Huqd+s/ScipCdTS7TPRIGrRkpub1EM/L1BkNl4dgXGWF/f76qIANLxswn+8SFgTDNoTpgLg2dfCjkpn4Kg1YJitTR3EcRtg7kt6vwh1u4orXVSIBAOybzdE+UF6/l2H1IdfGG5VN0tW8wNxvfXs3/J8IC7xnTR/BHnYS3hQP8G8QKcko1DzlfnQP7tu3hWQWdoYQVwbzoLOfN8E8nJ9jBkKBE6aGcJa+8rfDZ7rOG+YFRGfbcZbBw2Xs+nmEPs4ra8YLAx5NDySex1M4XHVpkWRR768OeV//EWRSP4peflM650EshnEhUoSboQ7mX8WaXtBCzNjjAdJWlB+N+fq1sF6mChMX8m7QWAjQsT065Hx2A3h5VaSYAqLFOUJ3b1KoBSe965lt9KECYjRCv1Xg50W5j55XXlYaL1U9wdZ0lo9iqxcfSWASf3m5Axfgh4HzKyL549DLOFnRZNvMKQZz5uGiMlCvfr53530/MDY3OLjZSfICwO8Nx7sbIPHpoL8Cr17IdIzih58ggnXBG8ZaXFww2B3cfI6W/ZQPvV3GaDAQeshK6HCUfuAr+LFbeJ/izwjr6jbcKRHnpFzI8/KmSE788zGJnSaOCqXkzqJXo6SNdPeKCsTw0dW+rjwi+o4T83cK4wAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJQwAAAAAAAA=eF4NxWcgFQobAGB7lkvkZivZlJms9zWjyEhWVIis7E0yO1ZkZ89wOEhChDJKiKwyKg2UjBsZIcr3PX+e4frgA6I/qzGeR2WVxaQGb+9rrM3rViPpt2rBQGU1ytgsik2WkPC/hPheN4pqjGi4pC69X4WCicGiVy+TcOXoRy3aK1U4NuQm9fxJFZqwaTTbPqvEK7Fpp6o4q1Ba79s9DYFK1CUo/DwcWokenaa/iXFEdDeMWqOdISL1k2lIXatAga2dsFtnicgpr1/1+3IF/twe8PV/VIE7m50d06/KUTtxqG2JrwKnfPhCT6mUY8O2af5UUjkW34oI3K8twyTm7XklsnKs2fDbkDlehvMZzVQMvmVYdMGe+lXuffziGCqmvngfDfRpkjsP38fmz1cs3tn9f54OXebUUoywoTYZmi7FN7HsH+qYS7H5cNgYh1Up/liQ6MtLKUEyOQ6/R+9KMAgHUwfZSnC9ev5hhnUJivHWVKnkFOO7GgmGJ5+LcTD2p9vs0WJst5/4wOFYjJ66smdaSUVo+4svu3alCLlHtWPbFYowsu9YqldwEQ5X2Sm8TCjE3KomaWvaIlSpKm89X12AbJWFmUMShahwiN6KfCQfNynTc7gMCzBpt5b+7U4eTm54i9/1y0f/YtaCVqE8jGadVOMpysMzvAfkiOa5SGS82Nf8OhdFlmMnEu/koJJk6suL5Ln4Lcj9w9UX2eh7tTdiTiEHmTPb8lkosjHk0N+TVt7Z2PCnOidTIwuTQ3msquuyMOSTTsEM4R6eqTPLfLV2DwmDVVELrzNxz+BrQfXpe5jOoW5WyJmJ6pIy0ZqRmUig/Ddw2zkDl9QSnKOHMvDJJDostKXjXenhimv8GRis8ebTddZ0fFEavv7WNx23VJM/OLilYXQVG9/wQBoe96Bset+fiquP9HV0RNLQLN/+e7t4Kno2Bj2TiknF5e898hTJKcgy5acZuZCCKUnyfQVbyaixy9ggbZiCpp3cW3F2ycja6qMt35yM+SHGw77Fd3Hw0iXnqOPJaOE0wmsQnYT+3yT/CorcxV/je8pJbol4ToGdu+lgEloNrl47fvkOElx0vpbt3EGZiW0eMpME/G5vlji3lIBCruLpLIbx6FPmzWk3F49bptq2Z43jcOMwy3um2ThUDxWazbKMRX6H/sfv52Mxx2LmwU/HGIxw/cL+ZC0GuYQaZrRvEnDDz6I9lzIG6cYy92IybyOPygSvDycBXW91TVY1RWOFLOG1jMJt1LdXiSv+EIXWIb/6Bi2jMcVlsOQqXRTyn402U4iMwhkp/spJxUjsmGRdt6uLxG6TFjMyrwj8FbqqqzUXgY3W/f79NeF4oSefaognAut/nCOafg7DBfJ0/i3rcJT+z85QzPMWOskwZNlohmGLAcfB3wyheHJgxOHDRCiuxF33JtWFYNa5ByTdgJvYbj1KJ2gbjC8peFcTjoag/qNOfn3uIGx2Qa4740HocFnAjnomAIXY2S+eyAxEb1HyMLl6f1S+UPLRzCYALQ5xsLXd8UPv3qHB73L+mOnRmhDq5YtTReM5Pax+mNNCRWlp44Otfg93hvd8UE9wRFrS0hv91a195le8UYTQYzph5YXESybHvi974W3PZn5ZJ08MdCIvfLDuiSeeqZnK77kj58HClSNUnvhssfH1gJIbCp8J2fqt7I5W1qVq7xJcsbvViNYl8gZGvfKKpV1xRoWZQAXx9y5o+JZObe+aE+aKxJrPazvjqsrJMqvF60hB/XZOs8sRax8xcvZEOCBpfZJj1vA6bvn0fZ0UtceBR0LU9j/ssarnvfmJGTucbDIi2uVfw7K5yLXLVbb4lfccb6C1HVZt8+XtRdhgIvW7XiVxW+TqLKtRHLmCocaV0UBvg9kx2bv5rdZo8aO5R3T5MhYN2f6j2XUJY6WVx3NmrDBNviJHY84CK+UnGpc2LNH0sQLxEb85Kn9b/yp3zAJp+ZNPkfxNsUD+efgdZzOc5ckbV/lqgmtTveM0/Rex9b3g+RDXC0jYnWV6rGGCzCIO8kF0xqhyzKv3wagx9qban0nzN8QP29PtlEFGeEOoh0BOcx69BKMH7jgbIHnT7E+n9nNY03FElINBH528VZd2cnQxxGZE8N3IWRSmrslezDuDh3vlvCme6WChfZhrUKcWFs2b7PQPaaPtLqX7dxpNjAtcX/eh0MLh8n9GCa7qaJkit6htqoHHJo7KWbxHHNw6UJLao4ZTZ6He919VZLKGbddKwP8mo6ZVY5VwY+1sgOSeMn7oC75ULnYaGdecvQ0iFVG3dW+sZVcemWka91+dVsCYXqrV/G1ZVLe9QWzjlsd21vtH0nhl0CdYSc9YXBYLEsO5Nl2kMKBJo3bSVhqZ/hooBDRJ4l1Jg5POISdxX8m7eWNKDI8JpIyMB0qgMYNCX5eyCPZOllcoPhbFuiMhf4MmBJGrzqecXkYY2/tV360SBZCtc1Nma+44sh1d9T9efRSb1EyfLb46hkVzBvwNT/jQkRQrQjXLj+3JWsJM3tz46ZoASfY8L25HeXmQAjiw8JLzBQ8hLrzrfUNH5wU7urR63FbWO4LvuOPnyEzZ8J41q/itxsPI/r1V0uLoIawcYt6Pv8qK979qaogJMuPuXDXjuiYL1sbPNFo9PoBGHJRX41uZcCAwpHoznB6zfhn3tBgxYrToGYH6Ahp0mmzuGAM6dBm56EtOT4Wrb6ajJ0OpUerGusVIMzky2A7z29JQot7m/qqC4T5c5ikpuDdChp+8wlQ7Cnbh0E/1jIT6P2CSKTItY7oNUq/n9+ZO/Ab3GsV4L6dNWLbob3lxcAt+pGTFXh9aA1pRN2F37Q3Ir26ZUY9YBVP+sOMbAz9BWJb8xK/lZZjWeVjlfHoFqlPTNLmMFmDSwyEw0XwJukLVB2T5voFVqPOY7OI8xFjauj40mIVbUyoWLrNzcJXAxBX85jN4hl0aDDw9A9HPUxZ79aeh9lz/fMPTT+C52dadGjgFVLtnnekL3kNSVOP5v9zjINKtnnr/7wTM+98I1JEYA8t7PkmZo2+g+LqULHvOMBxpH2U8yzgKRsPFK8LNA9DAkU9hrTwEru56r2cHe0Et/FNbwN9+UF6uP6Hg8AJIW0/a2M6/BE7xkqPcbl0g0M2u6cb+HL4FNfqb1j8DbirDFqNznRD+pZu0q9gKnOf+xS8t7XBnoXNK3uoxaGryzDHeboHkTr3hbIoG0Ho6fFH3SyPU3lDTpeJ7CLG0YR/F2uphPFmBqUmjBgxZ3CZ8qOsg8dYpy8ptIngKlTgSL5NgNLYvLkG3DHSy4mQ9zCvAkdAQ+JWnBPwVRfiEZ0qBtMxunj1YAMdP7LzwXyyCD0bLPNLCOdCRWVT75WkeBHnpFYNkJgQrsqhm22cB9814x/WXqaAjs/BSrzod3G+SM8u/uAtsgpEMMWEpkMPQf8FrPB4C8uMakzMSgZUoc9DtPgGEbCP9NX7HQpdf8aYoWxQwXTzNOPDPbYjVf2NkwhQOXOMiN161RcBnGeGwxD/BkJUcMVAxHgpFSYfWTYn+YD+qsbXDHATBQwdohfa9wfxj0rE/tH6wzcWpUj/sAdKDzxnqC72A3sBE6UuuCySWbJXyhbuB1kveXAml62CdOTy6TXSCEYtTW9YJdrB2p6eGlGkPJYfp+D/PXwH3ddNPbOK2UHbSR3622RKeGJRo7mRZA9lEePaYrSnQqE2LrvWZg29iKO/TDmNYkai71t9tAhn+D4+UeJ2Hj7R6z8euG0FhIaeN6jVdIPfgpbeW0gM9E/LAdQktSH+/bS4aeQYa1G86DpPUQDWI+Dg+TwPeLgttV0Qrw7cCQtR/7QBmf2VB48Ep0GePkN2yUoR0kmx7Ro0MyM9E1P2ak4M0Tqkfy80n4OTNzY90MtJAaL+n16kiChqZcgb02hIQ3Jr1WrbxOEQ69fYcOCUMTmLCXd+3+YH0qWQd6QVg6aGqYEc/F4x/1Wq8L8UHCyHo+LGVHWjnur0eEThgpPSx+0zGIehuH6p78YkNeOPUcnrtmcCd7O2QDzMLOMYca8n4RgevpaN0B5cYQQzXqMUJVGAb4rR8cokGvrCfGRaQJAfijoOA9h4FgErIvMHzP6qaal083axkUEBkkaZt3FXtMl/swrQ91f8BMjPWiQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAkQUAAAAAAAA=eF4V1Hs0VWkUAPBiwpVXJUmhcZXEuEsu49UOUUaoxB3FQulh0hNlbJPxThkq1FSUdzSeUQ3psiRcxXU9IrOYayjDVCavbmI0+/z1W+es8+3v+/bZezuWPbk12YuQL8mRTJFGjruDRB0Ie7820uS1I+ypcfMZeIEQIkhn5QsQZmJmB75vRPCyLRIqPEWoa5Z5ya9FmHM7UnK8BsH8UcYX9SqEUxfKpRoeIISyOM3H7iM0rN8aoFJK2lUvVP6GEGvqnedRgJCrPBA0k4vwYvVQbGoWQlef/QznNsK5yXzx85sIcnwzv0PXEaZXtqbNp9A5CgzTUy8j/Kdbm6r/C8L8oaLM2gSEoxkzf7nFIWyqPxI5EoXQ7e+XExaBYKlwL0ghHMFV+4B2ZihCsLmwzzgE4U7ivd5npxEsKsV7PU8g7Fgsn/zuBwQrxSutUUcQkjNTvdT9EWxtDS6X+yL0cbsbnLwRYs7G+vzticDtPyCM96A8WJ9L0nej8yW+XCdyRfBUfqURvhPhXk28hoEjQt75L22D9rT+V6fJDFuECq6dux8gKBSkdhpYIZTEXPNeZI7gWBQ9/ScXIae/uUxgjFDme/tRrRHC+zkXh6cGCIvcPxZ1b0TAseuukvUIvH69fAM2wpeADMvgdRRn6XRxuyadhysqsluDsHVKLGlTR1D6ac2BYDWEuE9WjVxVhPtCHSXV5QiPnPU5K1QQEg5qs7lKCBdEnmM/KiCkpXdED8tTng3F42dZCMOHx/Q2yyF81tLS1pCl+pCaq+bIUPyEitaQJQiZxuxVb79COHz0lE0a2fruSucZUv+upVkc+dpztLSdTPO9y3Oj7x02ymgo0frjckMPpClew0qnUhOKXypYzLtD+0kpGtVvW0r3s/ETsBURZLW3LgFlBEXkdVxdRnlsFNpr0T1mj3LNhuheI+Fhlv2rEeyFt/Ll6f5vesSJgZQPSUB7wzzlJ2mHy2iNHkLH3gmvu5THkUZr52oOQmTg84cTJghR0a0BzpT/CJUZxSZrqqNBkYEX/SeXujhDue0I/ger/FucEPS2P1VN34VQZacYFuaOMCmIaPLbh5CdKjZ18aHnJ64sK6qX4reYsiEAIZzNN1eguhKOdEaMnqF6EcfIVZ1D6FTPyAylegyprzLXjaT8LzsmeRyLcLJ8wdjiIuVR7mZIRhJC25bBmKGrCB5N731YVP+Jae02yrcQpHc6Z09SfwTxvjWtyEbYnaE+7pyPwBLum60vpH71flurUozg+/602LwMYYA/b2xZgfCwLrhe9SGC03+xLYLfEX4+H1TJe0x9Wha/vO4JmR6YJVVH77fss9Cpp/534L7SaqBz/JufMvuM+sbE9FplE+VXJUzbleYAK8Ur8nkLzY3Mi8s30XzYq8uyONmKwDGT9r7RhlBf0vTmnhDBTUvWJo/miDx/X0eCCMEkfPqzJ82XZXmlamqdNE/87M7WkyfmRN7eXQgyI9myo2RxoE7u4W7a57n6rh6yiL9a0+olxVVbonKNDAh3WvuGlA3rWW/YQ/3Tu00mkHwWYxOTQ+azCnldpEOaiuECObGxJ5tN821CdP47e9IxlFfoR3IWVpmHkUM3LhxNJluqddKzyGHv5m/KSaGW3xk+mRWRUCYg3aWMN3Uy68yt1/5BKqutfDxINhnabB4hZaeGS/4h35Q47hknV7W6WU+QCfwPl5j5mhkf7zFDXt+/8/5Hkl2aWy4hS1rP+H8i81759jLCSrb6LJlcWMVh1OxL38DIbZdIM5byO9uY70yVzC4yGiftsmRMvZTymonH0xddYpyd2sNhxPR3Xcx+va9VkXGH7rgOo2TR/nbmPB3RcpGMm6/GmTI6Fzh9mCYL2X3ljB/q+kIZOdq87Yxj/cpajBuiVkgx/g/lWPrQAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMwYAAAAAAAA=eF4VxXk81AkDB2BFWZHcsiFLiVGSdOL3LdeLISvH0qpPptLKGVHkWE2JiW2oZt6StW5mXctIS8JgXINh5A45dxFypaza933+eYSE/m8EP3mt5LHtQgm12MDqbINhJHoKTZ6aGsI2uang2JAhaGVf+zIsP4RL/4RjuugtWMJfqEW2bzGm1zl/cWYQBqk7sg/RBuF42m2bDGkQ6wvJ50RaBvDtveYXW3wGIKPoFCMnNQAfE+UmXXY/lH5vu3nWtR859deCw7/2wfA9jZ6f1QePL/nBI2f68EhS7JXsWi+M2swFZmm9iDZVFb9u24uuHQm0J596sCe7waYwqwfOIr8pVzj+78zZh6XCPeg3o2xOKumGZJkV/erlbsztW5VSVOjGIwU56czGN2DPDvMkwt4gy8OFZKX3Bu1u90scJ7rg3rFE107qwsq7K3dr7LswrSc7Li/WhaZKN8buGgEyv5pI9oQI8GME29LgsABOoqPNuu87MabESa3M7kRlxhSlh9KJI0N9ugGqndhyVqKU2t8B+7iUE5uYHZB0Ek4eduhApw3ziqx0B7z1z7fQ2/gYedlQT47jY4icu+u4NR8TD0yCrL7ho1W9fGQyrh0/m1R7O4i1o6PUT6v6XhtEX7ftk9/chn+E5Q4aRrQi/IzEzK7PPOxUt9ZJC+LB+9kNlfKFFtjEbYm192pBASN/m8tEMxId485UXWjGzmRfy9s9TSglHfK8Y9cEg/gb/FZuI+yv1oW4Gjfig4v/5T0lDWg1tCnV02qAam1eB/U5FxaDGwGaUlw80Qgq3kOtx7vzfhK/rNTBan3/j0FX65AgVt240FuLyDqFl0rWtZh7gkyJCg4+HZXZ+EuHA5FCxiz/eQ12s1K0/t5eA1MmqcAlshrjst5r9NEqpBjmP+Q2vMbILoEzq6ASpKq0dAbzFawO3DWeulOB4z8TrDX/cvhIfLy1j/InAhMfxrc7v8TiRogv2a4Mu5S/YS6RX+CU1F6+im0pKIPWCcoObOj+dt6LuFACc8FsRKtvMaIsSF8l7/2B7wOKOSapRdhnqMg1v18ItWipHm5vPmg1QnqXj+Vh++jx/3ins6BPuWanppKL0U375dkZ2ShoCl23PZkFM56UguhQBmyWZS/OPExH7A/u2z/bpeFtuNvyXtVUFPpqK+ctp0CSkiXHa0xGtJfitO3LJPhH67yp4jyFha90UfIUE9OTB2lnNRmYFORanYx4DM6tX53S5xLBrjxvxg9OwPfbx2I+ydMxFSo4+isjHg6NtvrLOg+gsWZYaDQdAxntWX5ZezR46RIKqf138eBgoYy+GBWO2Zc2MlyjkP1hdqfv40h4jNmYOBWH4fAhXkSiWChEKVvSmxk30fynil+ZcxCkN3lYkCwCoaf1OUqSch2s4SFO9xk//DfI0rBF0xvz5ByzKAtPTNBdp17neCBHCA9olpdRacp+ovMdBbRJdypJ9yLsoo/Ip3a7oVG1LNM21xW2nurPp3nOWCRVRt456QgDctIGY8Ye9Jzy6RNsO1wLqSUvCNngdtVT5ffFlrhV6aDNrDaH5ghHVuE7U1DnJcQteafwQ2TDol+QMZgqzqEaLSegocyUM4o/iiM3jLjGRYfhL75ZsId0CPOeAq/a0QNgkc31hde1YRJ8KrAkXhP9LHKkaLwGApKi6h/PqiFxUPO6j4kKdOrDdMZPK+HbKzXqpfXyiEnbvX+5UgYlH+ZpgcpSKHxmT9XPFce5gDlDvxeiEE87VtFhIwJHb+3EgXObIOEyf9MobYNYbHOJ3mr2ifjIcufpU1eIip8uCHjWi8SyUqzqitQ8QVli57m7TBPbqOfyh+wmidVVu4mtw6PEgbK/+ObvholXjWv6v4z3E4K3ZmFr2d3EukXMpbEdAoLMmE3xF+ETmbIlQvKjzcSclrb3/H0uYVzkXPdxgEM83RliLRlTRWhfKRn1dCgnGk4XLLGWSgmzG4VV0pbFRNKzr6HungVEW6JPVJRpLvFIzaJUcTWDEHTLb+27kEqoWKc4h9U8J8rUuygJXCZh+WpmoTP9EWHq/He4wjE68a5Ld3xvE40Q8xpnMA9EE3OKYaSYiDuE0o6EVXVKJKEu1RsYy7pN/AvY0ft1AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMwYAAAAAAAA=eF4VxXk81AkDB2BFWZk0btaRKDFKkk78vuV6MWTlWFr1yVRaOUsUOVZTQmyoZt5N1rqZ17XMpCW578Ewcoecu8goR8qq3ff55xES+r8x/Oi1ks+2CyHUYgKqcwxGkeQpNH1yZgTbZGaCYoJHoJVz9cuo7Agu/h2G2eI3YAl/oRfbvsGEXrfgwtwwDNJ25ByMHYbjKbdtUpRhrC+mnBVpG8K391qfb/EZgpS8U7QMeQg+JsotuuxBKP6v4+YZ10HkNlwNCvs6AMN3sQkF2QPw+FIQNHZ6AI8kxF5Kr/XDqMOcb5bejyhTVfFrtv3o2ZEY++RTH3bnNNkUZffBWeQ35QrHf8+af8gR7sOgGW1zcmkvJMqsEq5c6sXC3lWyvFwvHsnJSGY1vwZ7fpRLCn2NbA8XipXea3S63S91nOqBe9dSgnZyD1beXr5bY9+DWT3pSVmxHrRUujF21vCR9dVEoi+Yjx/C2ZYGh/hwEh1v1X3XjQnF2rTKnG5UZs7Q+mjdODwyoHtdtRtbzpA49MEu2MelHt/E7IKEk3DKqEMXum2Yl6Ulu+Ctf64toYOHsRdNDdQ4HkaoeUrHrHmYemASaPUND+3q5WPTcZ34yaTa20GsE10cP63qex0QfdWxV3ZzB/4WljlgGN6OsNOkOaXPXCioW+ukB3Lh/fSGSvliG2zitsTYe7WhkFGwzWWqFUmOcaerzrdCIcXX8nZfCziUg5537FpgEH+D197YDPsr9cGuxs147+J/aXdpE9oNbTh6Wk1Qrcvvoj9rhMXwxnVNciOeaASW7KY34O05P9LPK/WwWt/3Q+CVeiSKVTcv9tchol7uhaJ1HRaeIItUUYtPR6Q2/tSphUgRY573rAY7Walaf22vgSmTUugSUY1Jae+1hPEqpBoWPGxseoUxJb4zq7ASlKr0DAbzJaz23zWeuVOBYz8RrDX/cviQPt7aS/sDAUkP4zudX+DDRrAv1a4MSsrfMJeoz3GSvIenYssBbdg6UdmBDd3fznkR50thzp8Pb/ctQaQF5avEvd/x3fWSWpO0Yuw1lG80v18EtShyX2N/AWJrhPQuHc3H9vFj//HOYEGfdtVOTSUP45v2ybIzc1DYErJueyIbZlyynOhIJmyWpS/MPcxAzPfu2z/bpeNNmNvyHtU0FPlqK+cvp0KCli3DbU5BlJf8rO2LZPhH6byuqv0FFr6SxSkzTMxOH4g9o8nAND/P6kT4Y9Te+tUpYyEJ7MpzZrygRHy3fSL6k2wCZkL4R35lxMOh2VZ/WecBNNYMi4xmoyGlPc8r64wCN4MklzZ4Fw8OFEnpi9HhmHNxI9M1Ejnv5xV8H0fAY8LGxKkkFIcOcsOTxEIgStuS0cq4idY/VPzKnAMhucnDgmIRAD2tz5EStGtgjY7U9p72w38DLQ3bNL0hoOaaRVp4YirBdeZVrgdyhfAg1vISKk3ZT3R20RA77U6n6F6AXdRh2bReNzSrlmXZ5rnC1lP92SzXGR8olRF3TjjCgJq8wZizR0Ju+exxth2uBtdRF4VscLvqF+V3JZa4Vemgzaw2h+ZYrbTcLlPQBSRxS+5JfB/R9MEv0BhMFecQjbbj0FBmyhjFH8HhG0aNxsWH4C++mb+bchACT75X3fh+sKjm+sLr2jgVdDKgNF4TQyxqhGi8BgKSIxsez6shcVjzmo+JCnQbQnUmTylC6XKNOqdBFtHpO/ctV0qh9L0gNkCZjKKn9nT9PHGcvb5g6PdcFOLpRyu6bETg6K2dNHR2E0gugptG6RvE+w6XqK1mn4iPLHeuPn2FqPjxPJ9r/YFYVoxRXSELCNoSO9/dZZbYRj9bMGI3Tayu2k1tHR0n9pf9yTN/O0q8bF7T/3lykOC/MQtdy+kl1i2iL07s4BNUxnyqvwiPyJIuFZIdbyUWtLS9BfcbCeNi5/qPQ7VEskKwtUR0FaF9uXTc06GcaD5VuMRa4hBmN4qqJC1LiOSnX0PcPQuJziSfyEjTPOKRmgVHfjWT4PfKbh04n0aoWqc6h9Y8IzjqPbTERiZh+XJusTvjEWHq/FeY3NEE4m2P7uSellhCzGuSwdwfRQjkQynR4XcIhR2Jq+q0CGIXuT8ghnWb+Afemft6AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAMgYAAAAAAAA=eF4NxXk8FHgDB2C5sq1kW1eu5MrWEoqt3vH7ImwpPnYUlhy5tRkiV6v5uJqGbFKuJLmyhuQ+WpRyX+UcVwejEMU6XraMZvf557nEt91zX9AUxkKsDY995UAxn/23QiwHYl40z0VJDkTLhI3b8ibhmGDBz9KbROcPHka32yegJDlxNMpxAiL5zX9Nzr6FbvSevHLZt9ilo5hw3uoNDGMXDLixr1HLsZSyb3uFOLOcA8Eir7D8ak+KscU4+KhTx8qSx1B6bUWhcnIU9gO3tQx0RvGcG04nMSMwU0nTLRwbhrmqc2rAoWFIXO3mj0tkgzmVum1qaQhPPq9b+p8ZAtHrqlKtH4TszYWfVtQGYZlYIPLy1gDo0w3MIv4BmOu9+Tk8qB+M5t+36833If3P71s63PqQuiODpfW2F73fcL+3c+yF3ads06D6l8h8J+CU0vQCJlt4UZsvezAn3GidPNmNbWkv547/04VH9y93Ckj89wWqePmhTkgEuxFD+w5E2oaH3I1pB8PYyKSsog3uvrQOv5lW2OzbUdayuxUN5csKOWdb0PGhvWb1XjOOysY8L55qAi/FYLZBswl21ScCpcKfI0JVUJz14hnqRK0FvdWegTF0bNk0ohE1MSoyF548hYFYUZ1tzBN4Sl2v0ac2YHNHKGdpbz2caK33AoTqMPJVeSFn7jH8FVySfYdrIaZcUdjQVYNKreIn9LZq9IU9ZWV0ViHTrrxUYKgSuolT0lnTFbjFu2XqxCtHs4DRjX27yyESp2O7ZFqGj5RZVmZgKYITFYopViXYOGWWVdNaDBcmdWeM+UOU7pjUDRkvxKzcxyL3MBb0WS1LiqoFeHH5qkjIeD64xXE+lPsPMB8n8YnilwdXd/1ak5O5OCTjeEDxYA7GXFi9ierZuKNEyfVUy0L8opd0k1MmdjbVx15nZiA6O/Auqy0dSlpVSxlyd8CbqeTjRKdiNk6XssxLRs4P0lYmCUkQU7nhckrnNqZHZqzC3yfixsEocZOim2D/2T2qIpgA7V/pvQ/64zHCYapPN8bBs8djoK6HiRGNLpfNdQbyz9gURJKrGPSdvKmUFY2k+N6OCrkocPRKo6RLI1C9eOh/NrV0BOypvJNnEI6jDezXM5/CUPEm/uGX1hA0Ci7sft4aBPtU8doD84E4P9hoaawbAK522bJwuj9Wl0qoB41oGDdc0zzF/A02fL67eoV8cKQqu+nXak/gEjUgK8Ud74YZ5tG5rlC5FenHP+YCLd70XCTNCek904bbLzpg7eo59YvVdvC/znVuO2IDsbOM1z5r1ghmW8r/f+YX8AadK8y2WUHqD3nb9fJT4FRS3d7lnkDyx62LARNm0OhQrT7haoLZcdnVKyrGCF95mx2maAhRxYIO4wwKutK0z3k6HAG1c94o8aI+/Id+CS1nH4SI01aabrQO3FNoG1cmtFBgm1useWA/hH82Gn84vRf2KmYCTK4q5AtF9eS9lNEfwWI+VVACH//WdLq2PFyvvE/QuS8DNsuQfHtZEvF+/jq0qp3YU/WtTZGZONxKna0fHxeF995/VvriRCAUujrKZyoEjaTXHaHe/PBO6LOm9/NIgVrppaDQDfKGxm2nPFonofz9xz1cV0l7k7uHJmOJVBXSEzylF4ijetCKQ88Hcv60hDhDZppUHx7rePqeQ3zUpNI0VSdIhF7gg43YcZLtMy7rFDxMMh6HSdWuDRDF1eSqXeu95Ix+SaNudzeRsNjnIO7TTuijNb5nC5vJ+QJbK/mwZ4Ti6hfbENVA+O5+PlE7VUsk/jYvMV6vJI3sd8vM3DLCOB25PTavmGh4fZH7Y6KA6CYI1ymN5ZFM9U2RpUvZxDVBj/ubzj2SM8iytTiXRrKoP2p/PZNENh59Obt/6SYxEypgf9aJJx6xa3c+0K6Ra8qZ9S2B0YQTxW81rBRBXK1F9tKrLxPHYpv1CJlgol36I/OkUQBREew7OaNEIwMWQ26nh7wJS/r2wPxFd/LwevZ7yV4XUmuxn7qQ6UAqR5U1Nlk2RNXZcO5wEpUkD9nmRvtbEvMt0ck7F48TF8f879ICTYhkSc+nY2OG5AKLIc0vTyFbvB6H35A7TKIEIurZi3rkX/ni/YA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_168_t_16800.000000.vtu
index 46d2c05481c1e7bb6e8b55204fcf943a9ea8e246..ff5e0223a495bec7965f188dd3777677c61af5b4 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_168_t_16800.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_168_t_16800.000000.vtu
@@ -2,37 +2,37 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="5.3784055948e-06"     RangeMax="0.82507158682"        offset="88"                  />
-      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.7530524242e-06"     RangeMax="0.82034333486"        offset="4248"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.2677351092"        RangeMax="11.34674307"          offset="8400"                />
-      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="5.3784030384e-07"     RangeMax="0.076251886034"       offset="12248"               />
-      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.753050165e-07"      RangeMax="0.075814908037"       offset="16412"               />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="5.3784060606e-06"     RangeMax="0.82507158639"        offset="84"                  />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.753052822e-06"      RangeMax="0.82034333442"        offset="4240"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.2916762535"        RangeMax="11.359106637"         offset="8392"                />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="5.3784035042e-07"     RangeMax="0.076251885997"       offset="12248"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.7530505629e-07"     RangeMax="0.075814908"          offset="16412"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.5937022019e-08"     RangeMax="9.999304719e-08"      offset="20588"               />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="6.1710925658e-05"     RangeMax="0.49525962678"        offset="22632"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="6.1710925658e-05"     RangeMax="0.49525962678"        offset="24780"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26928"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27752"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.5937022045e-08"     RangeMax="1e-07"                offset="20584"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="6.1710932349e-05"     RangeMax="0.5"                  offset="22624"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="6.1710932349e-05"     RangeMax="0.5"                  offset="24768"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26908"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27268"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29820"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="5.4287174119e-06"     RangeMax="0.82001244216"        offset="29888"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="32032"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29328"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="5.4287178831e-06"     RangeMax="0.82001244113"        offset="29396"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="31544"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="32884"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="31860"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="34488"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="35036"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="35548"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="33464"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="34012"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="34524"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPRM9A1N9VNT7FMNkg2SEsx00vJLCqpBABQ9AdBAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAADgwAAAAAAAA=eF4NlWc4FQwAhY2EzKzsIluRyiz3oIFSSLaskFBIEkVRVshKQiIjUdcs2XtlXVtGxnWvFZWGBl99/T3nx/s858d7eNc4P/PzLGPQUC9802UZ6td6W76GLqGh7AxL6+gShCYX33z/tYhHvKdvBJ9YgiJtH4OO1yK4ebmP+dcv4qR5tDt5cQGc+rv3NqosQjLbrHz0/ALmY9IlbYsXcOTjxrDo7DwqSzjpDfcs4JzacFOp/Tzc2kxqYwvmMR5qZxFDpmIp8lqzoPw81ml02vJcqJiSVcxYIlLx4/vbvt8rFFhM2536vp+KsUW3n0G+FGwSj15RqaLgCm9o0h4aCm6MOQfmHqEgjOg/vRE9h57Q/mIN0hzqzHuYqUJz2FqsoPfRZg50aYvaMy/JsLvz0qdihYybNbsLqSBjTbrFND6IDIa2nxGrQ7MYP/9B3JuLjHvOIVs/u88iOdmMx+j5LPLFzHypW/71vVQnKa1ZMPO5K7ZlzMA8ysB9ZWwG1KfUh/cOz2BhYn9Qqu8MJHy1zc3Kp8FuKcEryz0DvinNBa0fU0iMbzsj5jwN6Ywnsm2HppDGu1yYmDeFcZ+Z26N33iOhl/FW6up7zJwb8nEhTUKKZHpSWvU9sncy9DqJTuK0oUee/N1JnOJ/79TiNYF1D8bLKUMTIFDGzf3axtGp+izOUWYCOUS2Yc+d46B/OSXjf2scIqIhxpk3xmC+tSSJNDaGm91B1hvj7zBiF6JjoTqG78NZL3w03+GL0z4Kw6N3MPFsPLyZNYpM2wTdro1RcLKRxCJYRqEhfcopzXEU3zJZUrb5jcCvgt33YvcIWOhYdvtRhyHj861LRn0EtOmeFo1mw2hufznf/XwY9vX/bXnfOQQZAc9QfaFhWFyj8tdpD+HJW93bCXFD0DLI7rCoHsTc3iByGtMQzC4/tn2qOojIkMUJyzuDmDmVbRxdPgADOcJMA80gCmK6rdjVBnD1bJB/6+0B6Hl/PyFc04+zSt7ONvQD4Cs3lXqh04+YV0lhARH9CNgzJlLc1Qd9aWV6Xs5+BKkeDd9l3geK4fwOsdQ+vNpr/3PuLQm7Cw4rP5DqQ1mguOXB5V7QCAqS291IEE0W/CXC0YuPQwJ6rDG9YI9c+BCt1oNKv6Gbs2U9UFeV77zk0g1STlLHgeluOIlV2RAfdYEk0dLzib0bxG/Xh9RInViNvBxAd6QLRlGDNf8xd+JnkqqO5Y1OqDvObCzpvYWBO8Pb2Tdvka471vwhqgOpNseF7v3sAM3L5e61gXZcfbQ3U0uzA0fEH/5dFmmH6tkKgW+h7ThL3UFs82hDXXBlTuJAG9iCTYOv1reiNXM9n313G+6bvQmh8LZCIbOQ39SvFUIrM9sZvVqQ1q/CYU5qwX3x00vdPc3gjFLjYZBvgShRlV1asRnJYvRMRvea4TL4kZnxQRNUb//eLbvaBLH5sgTbzUbIlMz8CjZpwgrNRvNO10ZYqLL6GNQ2QjJXlENztAF3tM6TAuQaMXuIWyNfvwEB+zKT/qY2IM3za3VhUD0M7o939bA3QOTTcqevVx2kuAkoYamHYc9D3ljXWpznWNaQpqnDnccZL8guNYh9aaZN/V0DZ3vVA5bu1fAUtc0a3KhGgQcfZcK3CgLBJjoTdNUY9WMJORtWiUvG/Q+oHFVQ7BUxJz6ugEq4YPKkeCV6B1Q4+yvegL+Go7PgUAV0TpyVezFeDheHMvlDVm8gduaLpjRdOa7/JezzDypH9S8OdyXF13jHS1Nt9Pw13KySD5Y7vEKPTxVf4egrSJvqXs9KKYPDUNVqIOsrEL0sXeZGSlE4l6VNPF4G9ZyP110ESkG/fd1RNqwUITan3QUcSuDP5r043VmCK31blJaJxdgmpfGsjqcElkzjYzF/i5Ca9y2n7Hwxtmte6jtELITIxVglK88itLcuclU7EbFyu6t4v1ghAlbCkhclX6Lnr+7znsmX2Dqr6vH0cwH6LB0EmbJeoI9clNvUko867y8C9V4FqHTeaiib9RzdNWmVJL180KTQW5VG5EHC7/kGn9y/fEYtTuP6s3+8wiZvnjz80aILfeKVi9NvtjTXMD5DyIGYiCrvHDx4oeQ7RJ+LvRu/0txuZEOUw5k5iSkHrTodGfdisuD1n6DNOG82DIY/On/Pe4pgCZaVW/JZcB24SBvWmYmT8QH99vpPwel5+NXe5Qz4seaVm3tmgvAspYne8AlMX3dkB2pkoPw0i7B282M41Lg0Teemo/amXnny8TQkJ5Sdjtj1GFNqr2Mq3qUgawf7sExBKsTm4vNM/B9BSpJtyVsnBZUrRjv4ZZJh/IVWlnspGbcSORlfUZIwLS7+pjr9IYbL/JuGCh9A+TPJj98+Cb3X5lqkwhIR4P+8b0TxAajzcp2mbgno8lpfymJNxJGlP7Os1vFI93c5KLMeD+9nrj/WzeNgWGQRuH0lDsYXdLQCGu8jIuMQC9dkLCofendxLUfjHnHooPePGIx7hcttk43C5Z0qdomy0dC8+CGjNDASgzsP/ez0vgeZOwdMbBfCEdF8VdGNFAE6O704O+cwjL/jONisHY4EPTMm5h934bn/sJlsRyjin9ZxFabdQcgx4fpVh7twd3f/lHUmBFvrxRmc2e+ATUrhg6ZQMKKWb03NdQfD4xidwvOlWwiOuKXX8Pj2v52TagNrAzGx+0NC9u8gWOyr9ygpvgGWMiaHuYmbkPYuCths9MdKeGH++kQA1jij1oU/+8Hyt4R76q/rmCQn7RtRv4aVxOxTUQf8kK5sKr2WfhVHrze0x0X4ooBcWUQQ8kHAj85z1374YPac69u4Ym+QKcyDbLeuQErOIKnVxgs3I5XDFUW9waNlwB2seRkSHJ8f+OZ54gF5YtvYsjsu+/aTFTUvQWjebuf1+osgyVF+Om64YYSrt9Cs8gLGhiaE/0y7QmZWK/jKiDPs2WnnNxddEGs9lE7hccLk3bMH3XmcUfvZVWTwiiOS5LmuOdufR4rr699XP9pDl9fFW7jLAZtrEtYSrHa4QrNDsP2MPfhpO+PZvWwwL78R4PXhHJaKox0uM1jhsG+UfKaTNRI+DStovzVHRPts7182S0imeU09qTDFn31HBhMpZjjqMNnR0GcCvuRCh0jqWVjUrOrRcpwB2YgYIsBughrGteNkLyPcQk1qmbUxIk98yZtZOAUDzlSlhmRDDOw7eWFM/iQyclkU71cYIESFi9E+Xw+SVtZJl3hPwIO4XdPB5jheH+/YyVqgC4rS3dLt2kdxOCu2OvDKMYRw/bpSZqID28iWcRr3Izh0/27HUpwWEr6W6rDEaWPDZ3/rxrImDkiL9r+sAQpDy5NGNjWw0J9uqZd7GP3MfFvfGatBYPeXKqkhddiaV3TeoChj9dK+O+1HVPHvOIRXig6AYqDpyPDpIKaWuXZFFSmBUsjupNC/H5vnLpga1SkiMvH6txjqPog8iKXh8t2D9gss/rJGClgd37Nf6qYslotENppk5UG/YaCU1y0FjS1vhV4ZySCWze2+kr0EIuYq+cPrJEH+j3uWR0kciY0lbI89dqNDV1jNTX0X8jr1dX1NxSAnqZzcuiiMGmoKc8qCKHxSTutWVAkgo69PYSNUCHu/5+gnz/DBKp18UuMmP0bGhIfyjXnQXvhYOa6JFydnjMRUGLnAxCFO8jLmhmRltbLJd45//kozdBTfjucKRq5UA1bI+WVGm9uwwy1PnmjLxAyVFa3oT1PbYGXhl5wjuhXFMcxd/zUyolPfTz01jB6cSn5lLZtbEF7R2DeqRgtrdkHzqrt06IJqo4PZH0I0Zs/3naGB4LzFoQslvwn1C1kxP2o3CVclSoTsr/0gxG5J7CXo/iJYsk/Z70r9Rsg9FVmbprxOoJMXoU3l+kJI29xLOhf0lXCfZ7HqIfETgai+5rW8Y42wVKt20bX2A+Gm5p4P1l9XCcbDkx75xxcJT4Rqc2XUlgnRHiYWAZpUArPrYInw2jzhXbbVMZ9HZILraK2hOTeF4GdeEGhtPEMoZfhDU/xwllA30N/P2TNJuK0TUmW2OkX47ahf2FA1RnC/lH800nWCcCw+RvVNzCih+ltvlWnpOwKJ6Di9JXaEcFlclo9zY4TwP4m3/QA=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAACAwAAAAAAAA=eF4NzWcg1QsDB2DcElkZiciIpOvSQEnO/0eE0FAZKaMyErIuFUmnsvdIRLZkZCRkn0T2yrH3HgnR0UXlfT89Hx96hd3eyd/msFaon6msPA+XStnGH6ZzuB0+QSLnz+FGn+keO+os2BKY37wXn8NE8N+ZMtqzEBMt1N//chb7XrZDtWYGj16FsY9wzmKlqS0tCzP412P941LADOiVtZrNK6bxyL7uzGWmGcjH/M6yJk3j3kmZ8O0+06B19ou8r5rCCuUNLz3TNIRFWa+R1KYQF2RljIAp+Ec4CP9pnMQr8e5bJbum0LtNcGnx8iS6Hte3WkVPgji/T4xpZALemnbsqvsncfV0+KqK7QSm5X0sVHMmgN8NkZGb46iu9dx1Q2kCdizb5f8LHIeRgb5yZPM4xPeRN81FxuHacoOvy2Qccg2ZYp2FY5CaZWgVWB2D39W4ccVzY/AXsYw18xtDVONPn8jpUTSGOJTHio7B6k7L3V7yKJIjZnxry0bh4GW18UdoFAXtYYbdBqPYJ5VuQP9wBM2ndDSDvo7gV8FrnuyKYSTpkJr3SY2gxEvVbYlhGBuJ/vcv3B1GXXPWt3LtITDfkArlLhzCtX73/7ZHD2J+jjP+2tYgTsmLW5fPDGBiOluB/9wg/Oh38X1RHEDfywwSET+AXvf+gyfD+iHkFpFUvtIP3d3NDRPzfegROUT21uqHQqqma41GH2qj8ojgtD4E/WCtaknvxSXeVc3Pf/XBhvWC2crOXswIXzIUtejFDe1YwwOOPfCU1CKFN/Rgj8enyqv93bA+q7nKcrQHGgYsXU/Uu3G5fuYDObYbcVyyIpGFXRhKM5qcZuqGTakciXywC1uZQT9lHnTB84bRL1IcFYNMYsXnFqjgrfO/VMlNxbjEx63jN6lYeiL9YC2oE54d7mPD/Z0odm6s6t/ZCRZbqbCT+p2QZwlPNvX/goG31T6nqF9wZE1+9AHrF5yf+XCl78oXbBo5XxAK60C1eEjZjt4OxJa+2VDh60Br5sfUMuMO2MbJ8vcntWP544jS/FQ7Zv9E7xiUbkdGBVedr0M77O+ztLjdb8On4GQX/s02VHrk98/EtOIqz8U7PfxtsLFe5/ha1YLtySX/nCC1wnalPtRhvhke7DxvxS1a8LddE6MFfzPC5VXVAsOaYX8rXadQpwkmNiyvjaqbsL5tLO38s0ZQvVK+PPzZCAtuvXwhSgM419Mujh5pRFa2iTU3XQPCh6p7nO42AFK6uwXU6vFOfIff/rx61C+rPxUPrEPIdf6xIVod+OvI74R6P+P+CulDBOrgwdDMsn7wMwajTE/LBn0G35jZ5RT3WohsStBlD9dC8FbFG7bOGujnuK1/k61Fd9M5b0mZGlCkuCznAmuwIPibMhn4CSc906eD5/6vM/MD2aVqnMlXdG07+wmVGzqXGfWqwcVpbx33thomGX9EL1R+xLFXFLsZnmpcCRgWpJP6COnoFN9kz48o92vpYImlYLe2JS/lGwWc5JtiFuwUaE4blh4zpUC2qST4D3MVkhbsZQbSq6Bmn+MX+7sC5/3VFuteVOJvtieTvj/LcVKDtp07uAJQ1ZrO+VmGAyWC5qn+5WgvvmOz9rsUvoveIeZBZZDTURrV3FkKwzH+ZKWoUmxJqJ0KFSyBuJiOKm9aCcj/bawVyX3A3fp/kgdKPoBrae9i+qVilDX/unuPWoxvAS71512LoKdjQKX+KELVBL36i4RCmL2atx/ZW4T6ee9Mu9b34P26rvVUvRB86VnRlQzvoSxp+SX73nsYXg5kvqdUAPZtd1o1cwqgPcWh9sz9HcrYuI3U5t9haomZ2lmVD0Gzx/2BUu8QWSJHvsycjx8B32kcTvlo3+BU/26Qh3ShQv+yijy0aDwKOm6QC39/+tce7HmgpcaFeDLlgGUlguZbn4OBtptaLz9loyz8ZP4vj7dQ8AgNv+Wbha6+E2dkSdnoCj+j+UE/E13LSkHMjFnIYdup7iKTAUnLvdbXezPAI/3o4j2ON2Ao4chmev8GwRbtjLHrr5Fp0sj6NTodQ+a81PKFNDxXUeAd9X6Nh62vxz7MpuIY3Vn+Go801E2G7LT5lgIbqUphZ49UOHWhPWcjGd+PCo/We6VAghzsZ7orGfoFC+8So5Ix5unjYiCThPs7j/t15SYhLLOSxfFKIrj60yZVOhLheotvP+v2BDzJuJfkSUuALq0jZsThFSp9Isp0DePR2lXAxr4Qi/jFH4rZjXHYII3v1HR9CQm9VhVlnVg4cbTvI3HEwKwwYLliMAZXu+K6Y4te4Biz8W2qezQUC1LbOW2jYJS80H700Auk+SpWaB9+jqmhz51PJ59Dcm+DA20rAtMzE4MubyMR1S+3WjIUDmj/HCh4GoHA9rlw1fow5HAI+c5ahkNa5+LGqapQPLhSM1OhH4b5xR6nmGch6CbxWQ1dCsXSI3OZU8lBqEzMHBspDAZntExJTncAEu4bcSkNBULalFFHTdQf/rnNncICAejmk/iqTfZFT86m8sBdPzT5HXi9e80bKY1c1yp7fODF+qXv+yMvxC/Ia/HreaNBmex8VOAZWBjdyaTpZ1AMY5OTaHyCxBbeB27+T2GoMbi6P4AMhtxENTGVJ8i1iqx/aPwYR46zagQwk/HwbqkbB/kRVModi9g/e2L3C1+qgtVDHOCxkR6M8cCFul2qh2zd8OkbI8+RIHeIGX2SiAm+j+hvc1tV8Q9gKZzJrd7iinyxbkXNlnsosvhHZVXCBXTy8QJee1yRUHSEZv3SGXVWXyWJh//C8F5RhruEE/6duaqPDSeoVu8w2WxwwMibhWPXQh2RJe/GHbbDHrHOSqo2JAf4N8TGhKbZoqbNISWR7i4kzSR+t9rcQZLZyq/ZXBvU+022yxveRqDNmRpfb2tQdB+Qq29bYtby2pbzEysY71e2uB9rDqUx44CsJAucULD2dl28Ceq4MrPK+C2U7i6/M2d6A4+zrPgMTt/EMoUxf9+gKRRM1HcfoJhhr5J6i42MMQzqS+o6Ckxw+HCOkFeBEaakfoisC1zH7bnoIuK2Ia4bFuWGFF6FcrFhetpZfUSfNHf28TDAbJBs59iVK4jyMc3+4aAHR5MjTUo+l6AQGxHHE3QZXrr/nRUdvojSmV3RR9p0EVh2ylA15zy2LXPfrZe7CAlR1tXCEW1snxfZOe96Ds/rM8pJOmexykijDn3Uwt6UA17ZS+rgE4wzPaSuiTKjERLHZzU83kPX+3LrDDQfOBmUNp2GQiHbSct5VfimCvFx/FaGgF3u0zmG0zCOr/0U/5ZAoU+xS8kZZTgyaAfUZJ1C5pXN5GumJHx6atlCWVSARiMHm467IvQatLiVHY9jWIpeo6zvBFYT59p+SMuB7HIi3cxFHp2it4QIkWOIYtfo0jkri9xldr581SOY92tcptc9CrevZvxxktKgWytg2eQ4DMEROztuwb+xjdZVQaFKIYxWvLZgdBA7/jqQtzgrCdrVqoroYXGUPPfIeXNGAnlxHb+2Je3Hou3ar+ZJMSRv/DXZGicCxgzhNywUUYhF6R16F70Pi6tkikWqMLaK1T7L6e+Fn8R0qO8/gtgW57ff3HoPtPYmn6/i4AeTufTk60YevGNneFygxgtZemrZB0cuLE6ez99Tw40eCo6fM9wFEdEPxzq8ORESsqbpsMyKBEs62SQ2DghNdduHRDPDvo5xB9mNBR/zam9NxzHCTYdzp64WE0prKGL0tL9gSX+w77DzdowLPDU3jqbHHotGZfpvDHh5ZPkq+c8fosHFiKfjLR3Ixy8KValuEhmr7bO+138TXwXI2wJpP4mU4MFd0h3rRO60y2UbJhrh8+tap+nbNUKv9tQYvdMKEdtHqxGdXiUW0xaK6Q4tEzG6pLgAx++E/Upn2UGtBSJNmjb7b9AiYbRmxptTMUvYKue/I5fNE7+e5TClJ0wRhX7ULpLpDMHBl1jIPzVO5MX1Pgywnfz/t+V/zmuUmGouKTTqGyPcQ+Vv9f4YJDRzRjwOKY0QK4Y+kU5efcRW55jHnO0A0TSa7pVQ203cXnUWItR7CSLquPilTirRf0CAzNLXRbQ78+8NWuoketvO6h66SCX+B19JEZc=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJAsAAAAAAAA=eF4VVnk8lVkYvrcQSlmKKEm5x5omuXY5sqUhuhSRdSIykyKJVBJGkgkRKUopUm6NokRu1krWstRVE6WUJGXLUvP46/y+777nPc923u9OHpmrnX2VUFuTmk1xtwg9elBi9e1DhL560dqubEXotcZvtvuPEfrhpUDssQRCo36PyOVK/arofqOvv9WH0OaQP1et9yd0KL75/Y+/CGXdPvfIIIvQhLDu2Z+qflakBTn0VokRqnIi/2tqNqHnPbuG3rgRWn+mt3ZNyVRF6fNZIhfDCH1kIphRtYBQNaMtzoEphI52f7X0zCC0NulMSeQSQr81VBRt9CR0ZwC7Sj8UOCJNJM2cmbyEulu7w/IIHdl3x2l2BKFisww78oBzx3mLrgLUSb+4FKobTujju49VZrsweX2ctiquBaEfNaz5NbqEhgzl7uH8Taj3VFFGqyKhnI9/VFd1sajxdPKILvrxk0dNpVQZvDS/51eWniCUHMj4bQn61fQlpL+xY/J4sk4eF/cRumri89f+c4RS1zyJPndCP/UL+RpCnw8/Nzb+zCFUXYIELuQxeNfz87f4cQjVrlNe7w695io/U+/8E7rc3XY+24zQFjkupxj4d6aXeU2KzuLZCkeV7eOzKNETPplWzuD5W7TkvLIh1Izb8HxiF861E4n44Upo2B324YBI+LD3W1WpF/yLX/xlBP0iTjGaJL2YvD8+RhWqRsFnfY5tJfAK3zHpLDtA6HYnv0sP9xD6fUOZSD18jKgaXpbiSGjZoMVxNvhYVKg89zYgVLyYP12cSWibS35jymFChY76pB5MInRR2qoDCchH6cnyKRdnQvdsywhknCKU7ZVtLJXO5C3Jtr7XjnrR2ujdvesJ3Zz+wulbLKELJX3W1TsRGrjvxrhKAKExdSUucVifdCyWnXuU0NNTWw8pAYcas79BFef6eIxIRrkzeIIf8ww49oSOZ4ffMNjK4IV2jP+nBB24mo5qrg6E9s4b9ZHXITT/gHYmx4PQq1Nf+psTwVui/YNIHJNn33emOHCYRbVa3mocAn9voeo5jfB1Vstz1fZ4Qk1OSmziKM3iWUSJs94fBN6zAg6vfk5XXBssK+VCp9eeniPfjxMabn6FezOY0DiZkvxw6N1aMCwyDF1vFv/IkQWeC4uqYyV9kb+TnuKlyK2GUshNGeiQLWma9xS+J07qtF9JI/RFtEamIfCd6kgZ58K/CIUn/suQm1qlzJIB6Fh7Yd116X8I1TlS/UQb/m3sHPQ3DSK0cPi9pDzeS8iVRbHR/7Li3qIV8IFd1NfQg9xOqvgwg4GXbSRk2QpfNSbCY3Rwz4uFvLY1AX+SorR8HOq8Dro5+iL/WpkC43KoFzQ52tMA30sSI+TGoMdgfPLSLXGEHljzjpMAvOaxxk1dJwlVuHRUIQ74mlwnWj+gT8Qyv+5pP0IlZaUVfh0htOepwY3VZwjdJvgocOd5Qq8PL+cHoK4+J/lzHvpM68p6B4F3x9tRHQPoLCFLzELTCc3RPJd+AbzUI5/Gi6+AjzVSohdioNt6a+Z66DrbyjDlJfzS++VhroX13e8bolusCa0bml80k2Ox2KglfORyUJW/NQ44PwXbM7yRS0vp+4OpqC+3M2i+5E1oMEs+/NgOQjOjHX2Eoavn5q9j0nsJLfCtj0uFr7Yrlw6zwFu02aDcBroqqKhxjEIIfXni/fIg9P0guPVdCnCVs8WVl0DP9saxyd2493m3Wq9ZQk8rp1AlWeRYVEKi5SXqVkzpa4thHjFsCs1V8BxcqJ0th30yr+RlKHQxWflLJwa6NFr15HuCx9/835Z0Yw7Pe+XbLgCdWrOmlYLBK7KT7zMUTahydWVCMHAK8n/ze4B5ZDOexDqM81iCvDYV3IPtx78EvQZu/cm8Y3rgZ1g8oZ6I3/Vu12uK4dy+krDPQ8hjD0cwbQo83d5G69hg7njELzLwQb8Wc5s194Gzr5ndtQJ+vEgMFM+Hr27RHVbawOMw1OY2k5e7axqruNDVaZusyjPw7gyslXaBrre6rXfWA3/n9j8fVwcSWjXQcd4O/NqP++7USyV0sWj5a8PTOI8dFFGOfb3yoccWz9TfvCV/FTgl+Zq/B4Onk4xwx2LkrIjb5ekPnEoMSxU7fB8CFz+NuAJ8mzy98+7jPsU+LJM5hX2tVv5tUcitwy03x1zU1cpY9RphP3e/5k4rPHM31lRvxnNr5Qup1Jn5yw/aKATeQ5clD4WCp/Jh9TMO8Pdr2jrTGvBUWHaqYRr4RoR2sD5Db61FcUE7oGe7rVx0H+bHwaQxNSusoeJyFhWYa7cmjU68xP7I3mBVQTzntobLmEOf+OYA5jRyvrJBRtQdvOIlHJW6cc/2l/4VIgO88fmy6jWoaxMdWzQH/e/tcmME4Pu3ZuWKjiD0ufbkSW46+MUXrpReDh/Et9T7z+S5yfBazX7UK2sMtNujj6LSvGda0HWrXcWnNsyfwfALtXLYv0zLee0Z8OjTl+cIob5hrSxnGPftw7kH4YdQf1HjaMEb5GFQa8u2Auiw0LZnryDqQ1wLUnjwa6Tk+8hu6KT50FcmAbroKqTo3Ece/eeL/3qLVY+t/rAO80tbJSUsFz5Fzfkr8CJypP/O1OMtcmg4taRKF7r/5zosYAbeK75pinKQw+4iu/wG8BlIDhvVRn0//4nYAHgoxZ7+5AB+z0KEC+yAbzTKIc8F567z0pFxxz4f12NSq1A32yRxtBK+tk0yPTRxP+fe6TXSRR3b3ranGPg9AtKMvODHkYPuxdXoJ8mSfaSP1WfIjlmEvhYbvuR4XybU3os5axTfmTsaaUnPoZfqNH+uDVZv/oPrZehX4EyjLJPx3fUw2z+B5393iSwQw3wrLXLvNAOO8nQbvg10+BJ/P7MWOt2xrqvlIe9HYw1NNcBPfe9TIw/8fi5Y2OAV9JceaV5ej/fysdQ5B3rfmHU4fwH6ZL0vN9uMfZr2lpfNZu7RV3/VOuTALDnllSVwByo+vC4EfWPXbnp8HTgO39S6r4O+1YphTbmYs1FjWboOwGUi2zvmj/cF5+6ViWKt/CfyoAvuV/8VvegfwPfxUubuYZwvrajIKYU+ywb9kj3Bn7ssQ9wQPvpJNRTY4n2D4sPt4TjHJHmdSAD6qDGU1QjwVT+wK5yZe7s4xgPH0Uen1zHvKvJ0qjD+LAt+NLvo/teE7+HnZ8Z7CPyOSTbOK0N9UMyUdCvydI37B+MNeKW83mvsC7w53xcevofzdop2PzKc+d7bOhhuBM4B0Ys5r7FqnJmfXggcAVmJLk3wratzjtwMz7oSu/dHcJ86dNlxzsiXY9nEm0/QKWa1c2IP+jgIVD6bD9/U1Kt87XHeIuvTmtnAafGFlxWIdcDD+Z4vfu/3meKtnclzbqKeHvr4t6Qw6sDTcDgsyR37JH1kdqnhf6qwdZFvK/htqKhhLoVv/cdFlLKQk5INEzJp8PWf4sfWTeC3IOnqhbX4v6u2wdvtFPIvJymxqRV954Vdfd53ltDV5nbOcqkzunuOHMK900/vPtSC36u3srNmwyedCoV7puCRV51VOQ2+v9jDexjof6GS9YGFuTeePHf5D+TFXGzB43XoX1+9X+ozdHqWMeZchHtkamo8dRf9HRYVNt4GLxdmzr/KwCusy+pVBf4eq5ZHe9Hn9fgNY1H4YtTG7xXG+YkmOcv3YJ7pWeQZnUff9Wcdk5zgy03d0AeR6PMpIzumCOcmCPRZFeO9ffPp+I3o+1bsI38XcnklpCtwEs/WNnqhadBl/B1XYBVW1ydkf8hF9D+tK6CGe5lq11LfCrz/AzAuS1U=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAEgwAAAAAAAA=eF4N1fcjFXoDB2A3ktEisyS9x4qoiBDfT12pjIMSFSIHUVY4JJQtK3vvvTIOLSej4iajW2iQLWQUZZS29/76/APPQuSjqFi92+DNbDUnIbexGOnTKPqhFu8YrPyg3EZQUahLX0Qtyi+WuxxtrsXmsCDFt7K1qFsXkRhGq0X8SruS7PMasNTpqwqy1WJLYdfVHtcayNyi43txDTi/pep0CdTAS+6K9j7dGmyS/R4k3siAUoXxp4efGZDxYUo+t2GAMjlcWJjCAH+AdlHnBgbCHa9KD4MBDxmrHcqXq3HcLe36655qHCw3OEd/WgV6TWdNrHQ1tI93yFF3VmFb6BbDGf8qlFbzmtdfq8QDLQWD/oFKhKk8us4crEBFpLujhWol5vj5vxwmFeinfpK4nFaBHKbEe/38W4ivarzP+esW/vJwsO/nuIWqzBfaEla3sNElx3zYtRxlosNDDW3l0HKoyjo1VAYHVqZuh0I5QlRZPirrliFxqsnuWE4ZFnorZq7Xl+JuZPGA3MYyCGUnqEnKl+K95KLJFb9SqJcoWEsWlEBh17+07UslYK9n/eS1tQQeK3kJwhdL8NXNz0gwsRiHDCnmtmPFYOf89ePHpmIMSB/X+GFWjKxu63Pbo4ugtWVnRndfEQJyN725srEIL/dfm5k4XQTN3q6XrHGFyFjnES73thDychJVD/gLwXj1502heSHU5mpeJGUWgJYfiiPvCrBh4XJStEQBDmv/K7T2UgF22cubZzPyMery8fnoUj4GuXcnNGnkY4pZ+KjLLx/0qPas6Wd5oICi/3xDPuanY97xW+SBL2XpQ09WHlwttIawkAuDIAfWvj15+DSgynI+NBfZfW5reltyIUDXbXfZnguuR7FO7WdzMVJ53qXbMQfXrFIDToznoF/cuT0sPxuaih84hwRycGXoYsu3gSxQKG8jpPWzwXvDKIFPOAvD9B+GUuFZeM/HUfTibCZMC9Mznj3NhPfnDLPt2Rlotsru4ObKxHKMrfrCZDrC0hS1+wwyEOZv8Z7sS4cu35kmibR0fPkWs+6HXxps1I3bpybTQOuMvinQkwoRrS17eZXT8Ha8xCpMKhWRzzd0pIanIroxJEXTPwWcpW1VLqMp0GiknlEfTMbosa/LEWopaK1d2WR3MBkf7u0YGU5JRiq9Wq4uKwkDAyY9lt+SULnvtoE4axLsW0/qrTFPQlc3RS3XIRGbJth56psTsYhDfWK9CWDxt5i9vjsRA5pUhQytBAzpeL/6Oy0BOuW7M9juxyO2S235J0cCjotddzkpG48RL6PUHJ94qARz/+2dH4fVHDM1ykIcCl4sdruKxCGXlUr3vRgHqZjr3HvSYtHpWC+fNxELx6YhjlKhWNw9cMjiBi0WE/Z+EsVKMQjeCyud1hhwLy3JUBENY/8qtnfPotEg05+poH8ThR5CTc19NyEabMZ7hBaFhPXlrP0zUeg+/jPFxScSalED5fwsUcjloaUVpEVgcNl52npbJA5avBl93hAOSxln1dsHI/DxlXvy6EQYtgd0NCyeD0ct8wtp4wmDR3jTLZ7IMFh2bX/goXkD9WK3a1aZN6Aq+ejQ26uhWFE2eFUxF4p1afa08TshmOo968opGYobgZlrQpaD8c5fSZ3dOgSqDkzjapVgzBesqCUWBiP2j8uQUUAQhptFWgpng7BixK1v8zwQpWb9HruUguApumeyZ0cgFnu51PmCA9G58ftgnEcAbBTvHj7dG4AZU8bjhBf+0PEyW5iQD8CRXWPGnXL+kLEanK+O8MffxqnCp8X80M7GJ27y2g+gynAazF3DVZ4fj+OzrqO1043FttkXGuHGfL+crsGpuqrZL8cHYS5RDV5HfVEWWqgZGuwN4bRPCZ8kfcCWU5du6XoV4SHT2cc2eWPScvrLoq0XDLJZWOxXveBKa46Sol3B9Gjv7IGVK+jk8kyYsPVE6hnxlOyvnnjIJiDP4+qBGvmXikG/PZDQT7FJDKLDtsSu/xm3B6ydAvmMs9zxrKAqkLaTjtbZqRnVJje0fh7/KkPcsVNhymDXe1dkHLdqW09zw9UHZfac/K4IfD9/ZD7KFSxdrqyPdC7jnmaX492my6Dunpey3egCHyZ5GTPvgoxQQUZUohOGCretF3ByRvXeHuWHUo5olDKiPv3miES21yFPnl6CpovLDcc4B2SWJlHs6Bex61vf03+VL+EaP2fpJTl7RGQu762dtkcKm2dd0uIFdFumLo8U20FRtG5tZYst9L++MxRxvYCwH7/16Lk2MDOJjJE9Zos7PaumVWHWUHMqW9ctbYO6BibPdl8afPR/7nzBbw1drtLLAd5WuLF//MHUBhq+f5zLzgg6j5w7tY39m63QLL3vs7G8JbTLt5rYi57HO3cB5cGL55CpICiS42iBdKPmL1pMM7h52LhnMcxRfH9t2kYRUwiVneI9xvGf71GxqIo7A/NGqAi4n8VB7oRn2cKnkcp7QT7482kc/Xh37ZnbxgjS66Jz+pugQkq5+oTFKbyZSFzcvtMYKyYUSdatRsj5rSut+tIITjxad8YnTyCs+pRNT9JJzLg2tl56bIgXdowKK/sTaL+poS12xgA5TZKUczqGKBoRpqbqUDGnRP/m7akPj3SG1r6zuigNKG/8SteDs97mvMFAbUQdMCgSi9FB/v5l//jWY/gSFD8/13Icl1I0LutRjoLLTMLdhPcYFm/kqq5LPQLrtOHNxle1MGIqp9dC0USRFNV7ZkUTb7yHhUOeHMY589VZ3pt/4wlXvZux7yEU7KrlfXvgMBx5WoJCowkSTH7a3ZwHNoppeTXoqGNSo6frTaIGBEPn9Pxk1aA4JDp0//xB9M3+ecW5RwUxar9GbQxVoR18NDjfSBksnzjOi9EOYHyl/21Gyn5csR0V25uohPEdJSmnvytgf/I95vyEItQDosoPXtmHE9YnnB+dVMA+1z0FLZv24lcQ73mBwb1Ylktpmw2Ug2+OW8LQH3nUxvvYtvHLYj7tJD/DczcSLCyzrF5Lo4UcrOwQkYFDNe4JPZTE+TPpW/3npUCNe/L+bJc4jJOX7VVmJJCrXMJsZP9vR3vTRk8ucfieGelYsNyJMjYDpbcG/0PNtO1d39s7YFdkThO9L4bwDKs57gkR8Pp6uYv4ikLItsI1iboViwx3CZUn20AvyzOX/ygI1twNztlawnBwjFlCAz9Uz03Yxn4XwPG6SuaZB1uwIMr7LXKID1HlGhXK4zwwe8neJTLPi4McQoe6FTejams5xKR50OxTIWh8cgM2jIhtlOXZhNox9ibxAC7UsvrIGgqvBzVdKmVufh3al1LG3Kw50XmCrjGYvBYd3BGp1rPs8GeqSQfQWVFIa6beKGODWrbNhFvQX0gfNay4krkGzzvD+Ev8VslGwzglwYcs2FYs+XRc9xfJd8nW0d72h+ixgXva5jvx5OUQZ3L8JLORcVWfW76SNuVR51V8I2yyC4uq1stkRWLuxNSDL6TzXkoINBbJwlGO3Er3JVLlLKg5qfeZmGryJ0jZLpC9Bjud1bfNkY8meVQevk/kyM/dkdZfZsjYZaHpvvoPJN/UvC9abIr4Bkx3KTGniefXxd2nkibIZFquZD3be8K+Ru6EOvUdGdMb3hmRPE76/5qQoR4eJR2jSy2X7MeI95JBj07fICmhxiwVTw8TvapkUfa4t2QsKfrw7ksDxHjUw2e84A2JevBLt1e7j6TbsftUsL8ilJDJwB1+r4m939iAUG03OSK0oTH+r5ckcJ8Yo0HjBaljofxW6OgiZ++c+kcsupNY/oleoeT9S251qw8LaLURmSPuzvyiHSQ6rbz9rukTctjpzrzZn1bivlZYRfBJMwlVnpH7pfIPGRcfU9T1eUQsdixYef/zmCjNbRe4OdtAXEY6auL3PiR6mfKRZaeZ5GZe3nX62XrSffFzpui+e0RqSvR/Y1/uk18cYU5Mh9vE79VqUt33O2Tq1JqrP34ziB67/B5f01pyM75h8t6jSqILTSmvTQzykeJp98+2cnLgcZuzrngFOT3S+8mNq4RceLrn41BjKbnsbaJ8IamQjOo5tanOFRG2z1t2PenNJ2MZtMChxwVkQG7VmHV9PvHJi6p2o+WT/wNaWNh5AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGQwAAAAAAAA=eF4N0mc8FXoAh3ENo4RrFressiKSjJL/T1wj4yqnQqljRFKIFFmRjnmSIzPZHGSTShK3q5IRokQqRHZKSOa9r573z+dbkFHVKby7AlaqDKFkpwrwRgd/nnldjq+BdoMjbBUwTTi+YdG1HKhVmjrALIfNye4vBn+Ug5PaYtekX45lYnFnqLwMwSU1MzkjZUhZoCu+P16GP0/w0joiy1CfEjQqvlQKvT1n7x/fXYZPGb+zazNLoe72cMvud6UIfcSkVhiVwi+pejvVvxT+Li38s8MlmJupZwxIlcL2lYe9tFYJBiR6jN3TSjBYXa05F1sM6xr/5KezxYhJxzPqVBESZzd75v1dDGo4/ekpkyLIncx8KXevCLe8C/4dKyjEvlvPzbQ4ivCH2OVda7gL0Z8mEvrRqRBXpavEkj0KEJ50mrm+uQAq/p1F5d338D7Y7E2hcgFyYsMqD+reA0dV0oa2pHswj/7JrVOSD2UBaQmn9fcw7vXWq2hbPpoux425uudDbaH+ln9UHloU2bg+9f1fs0PzBWvyEP1PpGqJeR4c4otV9njlwuccx/iHF7lwknZs2jDFRPihl7WntHIhs5tdReEcE1uag3YoPmDieaRiR8xQDjpaqIn6ykwYpalLqp/JwXrqK//04hwwrPh9+IayQQZ5DFQVc2DZe9xQ1CkbVkJzlJWSbHzfdOELZTILLbr6qzMq2eCQ4q0s9MzCqcwLlXyPs7CQGiwsuZIJrSJK02GdLFSrsrgUhWci9dmFwrzmTDDoTqKGmzMR6L30gN8qExNXxqLHmRlIchkwihzOQD0PtzxDIwNHRKJ6ObwzEBLY7LSnOR0y0efe0jZmQHPyw5MG23RoGmZnLaamw2yrm3HydBqYGbrN9qrpiC97q39ZKg09g6yJbslpmFgqSOezToWpoo7VQGsqksw1AhzjU6DpaDbLx5EKnfD4LWc672JrelL1jG4K4vsMPq8I3sWked03n+C7ELeL2rfzZDKEKbTpxBfJ4DkVWNaddQc9TYFqOlzJUGpxHWf5noQUSpmjs8UdqLFZJN9GEn61zsuw5iRhTcfZSlpMIpYeeeuzzSXCSF1pZ9NIAn7qR6bbGiXiqquhoKVOAjrfaR/jzExAval/nnhaPCh+ocG/luLRsEXKSng1DqJrPlwRORkP9zMh6Wp2cVAbW0hxehIHAUa1jEtDLJY5Nwa9E49DnAntaZlyLJqfy09ZhsXimF2o9e+U2ygO03o6OH0batG7N+/jug1m4JZfrja3QXejmDlei0Gv9J/NE20xcLx18OKVGQbE9mjeofwVA9mzalupFxjIqeQfS3zMwJChr6TQcDTcok47lKswIByvEcg4E42LEbKs8SXRGNA+9Czq1S248Cm37lOMxtUwWW3r1iiotfGwyVJvIbhfytu75yZiz4uKqZ2N+t+LJ2f7GB08bg+kIz1vwoZJf0RhoSOssqtKIJQO/wvzFd9EIqFeePdtXWokqkN+MqL3R8BrH0+Xf3UEhkvL9GSp4bD485f9/o/hsB20Fc8JC0P4inH90LpwPBOubZ17EIr7FlYn3JTC4FW835prLATp9i4LL6iheJ/6UrpbIgQ5N/Pf9MaGwM/gwFej0zTs1s90ynhNw7LG39mUtBs4uRwXz8pFg6a57OPBwWCsCmiFLZjdwAwtuXlKMRi1mqoP3ROCweInUubofx02PhzD1l+uY2efUr1mWxBOsL4WL1a5jvvGZta2MkGQiHMstggLQjWDiDVeD8R9rUBBk/5ASHq3NbXXXwPjkyJfAAlEkS+niy09AJwRXpL/4BrWLm32l7P2R0f9uaMtGwNwV7Eh8Y+9fujfSdvD/skPvFozjGV+X6Aryf1YlS8G7p+061q8itxvv2dT7/rAVM9GlDbujf4b+i8aQ6+Ci/fB8OSAF/ZHbF+p9fFGEKd433z/FXSUjdY5XPZCR/DRrTdHLuOItLtCltcVeD+VSmDMeYKZxG1CDbqM1FlWqUlOT8zv6OMMivGEniCrU4jsJehxBClM3bsElTGbel0TD3yQ11GPbvQAxbTuGKeXO2Lvr3oY/XDHJ+E9Q8/yLuK3fUH3OjF3GIvx1KU9c0N3GpM7k3IR7FHqaYoHXfE3fbFAQNQN82u/rSw2X4DCgrqwbqYL/s05FNzqcB5dNFndRJUL8FmQnb3I6YzKbEmJ3nZnyL9dbmHWOEHwhMPjt37nUEPYotT8ziI8O0XMeK8TzqcUVg3qO+LBqw+Oa+YdMdTo0u25zQFPNqy99+SlAxjtRn75q/YYC3jKrp11BrnldQf+mrSDfAdXrmmEPdbpmjawfrWFwKheDdPPDtyWvqNFozbYvTTwg9PHFh3vK2V+TVHRsnx3UfO6DY5M7RiykjiNvLQzueNyVCSwSU+vOFr/70Sk4Jv9KRg9dh2n1p2AuAe31WLZyf9/8a2dU7DC+GrG6wj+E3ihnGKmXmiB7C2+IoJhlni8FGWarHUcXOc9nHl5LKD9tlwuse8oaL9cNedyjyFhxLI8K5YCCYlL9H3mRxGjYUhXsTJHemw6/xEuCs4YyDnX7DqCgrBWz/L3R2DAzq/3kPcwGov9d3VWHMZD+Qg5pQ1/I7jDZfbYATPcMDLhLeA0wU/F/VnWiqZoEBwd7ZAzguGN+MCCA8YIYpdzSbIzxCrD/LGK4yFomnlZTd/Xh/3ileWRfAPQx2tlusT0IPru8cA/bPpgqLIN6Gbqoj+LavnI9y/IiJqEamjqwF/Iw6OJXRcfORedqka1wU9TEF3IP4gI+WaONCtg8Vwvp4mtNiZ/3vAVYNfCdkn7hEQrgor9l7bMdO/H/vrtYkKbD0BoQcDXo00D5+elJzV/78PLjze5W0bUIKvKTNdeUYdqbucpUwlVnDVsjzy3Qw1P+7uvHPJWgXTRRO3qub1Q3b5JRGZCGbduacTYtuzBjkX2O4d9d4NLKM/9l4kyXizFJNANFXH3S+tW19dKkCmWsZRukodRd6WwgeouTJeytKT5ymGX6zBPRtNOyJdoN+lZyODpvnK3oihZSBlz2oeclIIxm0RQo680pLqz5rtp21GjIqB/IXoHTlU5xg91SCBRgl1NslESquEfE+11xZHUl8GZIC2BJLbrdubZ2xD0dey0goEY1LZILhsviWDsRZriqP9WMI9u9n0TsQWS1orODpPCkF7/66CgiRDiO22+v2JsBu37cnPCAQFMyFiIeZwVhKFhLHOtFR9s2h3Y55z5sSN2nL4r9Q+oNOppLybygjh8qjDn40aL3073H708iFGgqEgqcsLt2pF2rvZNYO+nid2J4EAopXtNJ8dG0HNF7V5IsiHyg3KA+jV2RCp/3bp2eh2uCw18V1dixbPb6+c3zqzBXXQddhJYhz8FefWzdrDgyOWRgaida5Da1PBGkWWZ3PowkurxYYVMeUd11LAukHeR9ZNp9xeJhZwSXxTlFxG9MrDRrXue5OibX5X5MkP4xXXOFevOkfcxojLcJdMkpPfQN4/Jn8RRRIG6tvw7KbK3Hkb7DyIbwJVq/nqSjLLp0U52TpEB0ftSTrFjRLfr6nuq4wR5w3Kp9VDRMHE5H2ejdXiUWL4NmK7kHSJ5YtoLc+FfSdCJ2siCxwPkmN+8L33TINm7PcNLKLOP9Hx5VExr6ydKvmsZFdc/Ejn/NgOh9M/EV6Fau0u6h9T3pLL3buwlZtoXex5Kd5FtT/fcuNf1ngxbGjWz+nSSUjrX55jFt2SZoZQkvPkN6dZoO5rh2kH4vqwetPnWShaF9Xy+ybaTN4cmMmelm8kMv3XXgsFrMt36pC+uqYHwsmw6VVLSSOwC6mwaWp+Tz4XU9Wr+L0ksRTOyY+e/hPkjYpySW08uzR7pDumoI7xf3wkZ7XhGnhspvd4TXEOce/K8E9/VktCFb0+UP1QRCX+3Y70j1aRM5JPdw4wHJP3OzRUZ90ckS6Ju+/fGCrJ3RZnabFdJPvMZX75hUkZEGvID48vLie2JdvoJzWLS+TNouvN4Kckeyhbpd71H2qinf8xGFZJnuZ75ejtzyTZL4RcTS3nk5pcV/OOcTf5KdO6p+p5DdAPs5MvVM8lEzB3ZM+ezSJts/DxXfjqZ8ahZ4+aTQTbItzCKhtLIUUZjuLh2OvkPWlLVsA==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA3AUAAAAAAAA=eF4VlXs81Wccx62kNpHo1UVJYS71SimayEdRbUVboytjmJrQKVGd55vul2NNUtk017nGnFhmHS0hdNdxKzWZzKVOck73yFb23V/v1+t5Xs/z+zzf7/fz+SXlu4X9coeQHm2wTHqXYKbbcSi6kWA/mBzmUUfQf/ly9rhawqEc55cPrhG2aLSqcy7z/ri+8yFVhER3T411BSFv8YUdDy8QEgYOh2eUEmZN/65r3e8Et9H2b0YVE67bXS6tLiS0bFnuvq2AEOtxRG6RRzgl7dNtzCYsWZ+/Y1cG4Uzb/uFWaQSV658NyiRCNtLVUYmEjIiDERMSCEEyaVRZPEG6ykfP/yjhbUyO1/vvCD2ljr6phwnyrQUuzgcIr1Imj763h3Cw+PmTyGhCp8/ubn1BMJ93dEz+NsKNItd4t63MlOLN9yWEMTtUNyLDCAOOged1QwjG/Z95ZwUT7tnIzjoFEjq0zvc2+BEsDow23ejD71DeDdJaQyjWlTclehOy+u2OzlxBaJc6nLnqSahpTPMKWErw95Klvl1MyA1uLzrpRpjd/cMZW1fChmW5ZTecCQb7humEOBL2XDpXouNAOKJY3ZdrRzBxPDr4mS1hotx+qHoa1+P4O+eTVoTocTEqZwuCj5WF56MphGpHTdEPJoR6o+tBnxoTRqot//h3LCF0ua/hOSM+X+hdF2lAKG+d5DdXj9Braznr/YeElWbPLt/UIfTPHchJH0qIT5cEkhZh55LqhK/eCexL13u0ZEDAIDNc16lPYKn+pcq5rwQslqkaXZ4LRE9Kn7BCI2D+QSdJngioXTpVP6kEPnJv/qapW8CrQvJ2YqfAhDHSmqh2Ads3Zuq2vwSyo3vyfO8L1LTJ5vXeEyh3mK4+3iyw6IvjJp/fFtjcYj7TrFEgtNk1flS9QGpiZuk4pcBf1h2W82tZjyw1YPcNgchhG549uCawqWtEcNBVAelzXY/hVwSMp2fZ19cITG74oLC8WmBY0xXX21UCsual4YZMLx2tM3RJYPVq9y36TH2X5LF1lQIBv6Y+u8j8aLvV/FampPPO1Om872hXWFzA7K3b2u3P50Od/BIW871+yf4UwN/Zv2eP3a+Xed1x6iwH1pEi/eTqU9blNEQ+pZ11mpXOc9G5JWC5M+plYB3X72mg5kWDwKt9wfJSfm/S2vLdxXcFplW+iXnQItDxrLkSbVyXu0c0yr8FvFc+lsdxPbXnyEKjHwsMcTkQ+qOa71eOutLCfaC0sZJP3wikPbGd0cL98t/akx8/KJC3ecXGEG3CjGMXGvy5397t12ZE6BO6zuYVpfBc/GZ0OKptPMGy771szmT25wlz1SlzntPO/hhdG8J7RezaGJ6/BaonbiPt2X8n3zkkzOP5dpF+bMLza5Z4TT97ESGtqv7fj5cRTLuO6f78BefBa0XYqFWErxZ0rI9gn7S71/tVf83+Nlx8Z8h6QlVLrmRGKGG+wbanCzazTxvd3ZyjCFZr86XG7M/B03m1rbsI4RdUGXv3E0qKThzWlhGaXrXP+fZ7wjn5mrjTxwiBFZU5NScJx7NqSi5yPrwo/XLKiWRCsLJo+8J09u34tZKbmYS+Vae6ZuYSNM4D9yX5BO2S7RQjJ4x3iR2+q4iwd7x1jyfnk1FWRG5/CeHWpkP39yrYF+mTFj48zzpMLHNsyggp275+7FFOiFNotD6vZB8uHFTP4vxrvhhe8bqa4Nu7Oy6VczE2sjja5irrjM88m8R5aeyqs+7FdUJITe3PdjcJjlt8FOs4T+e2dF4Pu0XwNNUM2agkfNOvifHivE1IMtxlU0+IKps6oGHe8ow1ym4g+PUm3F7KuVy+KsX1b+ZIj7jlYU2cIwUb1Spmd6K1tu9tgnKERWgV0zay6oUp53qKwiogihnUqhVeybQuyKrRbiZUyPT03Jjb3QNbpcwDpt1l+UyFYuS0O0z9QGXsP0yf8B57E/4vFF6q9XRiaon+ai9m2cQm6w3/rw+l9ZHM/wD65QV+AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAKAYAAAAAAAA=eF4Nznk8FIgCB3DLPslRjoctR9sYtEq5dsTQb6IckYRcL1fHrKYdFK8PNmIkRthMjDukZSzlZnM1bsZtXDMjVmF7noqOdey27f71/fc7nioefK5mHvIV9kVe+vKIUMuoPu0wj6NM/Q8uS3NY9mYdvxQzh+oTsfdj1Odwx8ptuuTpc5jWe7+d9HiO0V3UWtmNWTQr71+3z5yFoZfn98lHZxFGtZwfF4pgLs3ZVosWodXYnUoliPBX/IH2ql4hzKkBRVt0IR4eEqVDWYjzFyz3x7YKYJJs2NVCFcDVO/n9mrwAZQM3NNRbZnDvyI8ci8AZqHaLfXBWnsFcfpaHR+c0OI08Lafr06g7XldkTJjGWr2MkiR/Ck40mZrO21OwDTtVTTOdgrYPk7y1MglueVAovWAS7ESj0G63STCcyY6fpSfhdOSh5J6OCXy/XFYoHzkBixL1XYtGE6B2Z5imrfIx3NuwpVzKh5+RNTHkAh8ked2IfE0+cmjfleeKxhHxessnMPsfB5iELzzHkbhCDL+oOo6vRmb6k6fHYF5NpkdmjSFm9bfCb7zH8JG4mpSpPoYHG0am7fOj+EpuKaO4eBQpAcMR5MBR3NroYcfrj8IuzlXs0/II3tU3OJ0MGwF3TlA3Kz4CFq8pvpk1jAWiTL9AaxjpsTSzIw1DCO9SsK61HwIzWUrCZ24QbQ1rNlphg/DWi0z5U3oQX4tl7Jh/OAB2TFAOlzwAmpLjC/YkD8OfnUgeITxIHzV5/LsMDxatKlo0Tj8k71EoJSf7sWAnF1vwsg/pfy4fO8Xow01376ac/X04HELRiW/vxflbm7WfAnqR6llcuCnei3C6lzXtUQ8aSq3UbW16INKKWox71Q2rhMYHyne7oSIVwFnX7wYv6fSA3FgXrvxResY/rAt2r2V2/arahTlBZuzt5k7kT48ITvp1QhimIash0YmXKa2LEqUdcPH6v8rHUx0gKKk6rr5pR5D+puEyqx0Hch0SfiW1w99eQVco5CJYS1ORH81FeLnoxiCBi7FaraC0lGf4pGM2zZ5sw/OZpYEajTY4Ls74rl9uRUXsVdmAJy2wcxVUKm40Y5HVGbqH0owyJZm2JGYT9j76t2o0/yn2EQpl5TSfQrflvLzrlV/QTohzodc3QhyVWZHijTjW4amQ69yALhlr4lpBPdSDHSh5a3XQOfXP3qoOfRFMUgK7Fv5paka7VmvAVBTuvGldAzEamfAxrxrvrlbn5m9WIWV7fW+2exXiigaIykGVmO37z94DJk9AMvTZrPhcAblBNZmXo+U4JvHHY0nOz5Cd9/3dOb4MPaKYyxuBHLCqnhYddC2FrVa1qdqJEqT7D118S/4JOiEGi4Pmj2B60I/PpxTD9Ub93X1OD+Hszbnfc6EIRkl1LGF0IWoNavJHTxTgjmTjpbc5+ShLkqxVFcvDdZtXZ2zCcjCh6MIL2shCSaX5sx+YmdBcMDt0Ro+NTR2roQ5BOs5R3G5zMu/jcelyP+8iC9d9h4mvLdOQSjjNGdS+Bxue2RsKKRUkObt0E3IyaMZn3w95JaF7M2+3b1oijq6z3Q8v3AEjwa8m1i4eLGZldkZPHIYNVPYWezPQ/8WGcF4iFrurgo/8xbiFquLyfZe1oxCZaTbt/joS4t8e+4YkCEcTSUo88Lcb2Lmt/cJN5b94r/ClJe1SKPR5Dk1qo9fguH/Ma9EjBD9pN71P/UDHGvdwTPHVq2DU7hwwVrwC3QLXQcYSFR13kvVWXlyCeYXhYdGOixBotjLmzwbAt5r2o3GUH4J9dvzvbuZ5uPtKEkPfeEFlrSa7N8oDScE+vTnHz2FBuPLKgOQKzfhnHmKeZxGplxYYYHsGXIsirvEhR7TkGhfGe9rjmsdQMLfHBnomDaSSaydAlEpJcHKzQswv1JNaNAqIxdmcJh9LrBWVMsUtzfEiK1iijWYKKfXEHUvzJkidCE/6gW0El4MYpCcawG43Y/uJvz7cpD86xCjq4QHdMMNMQxcFjzzL8sKJuJmt32WrQQB597+ie7/8GluRlvRbrur4+d2YX7j8HhitTnHvWqhge2mqYk6gBL2GTz2+HxTw1itq5ThHHn8DM3/0Jw==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAKAYAAAAAAAA=eF4Nznk8FIgCB3DLPslRjoctR9sYtEq5dsTQb6IckYRcL1fHrKYdFK8PNmIkRthMjDukZSzlZnM1bsZtXDMjVmF7noqOdey27f71/fc7nioefK5mHvIV9kVe+vKIUMuoPu0wj6NM/Q8uS3NY9mYdvxQzh+oTsfdj1Odwx8ptuuTpc5jWe7+d9HiO0V3UWtmNWTQr71+3z5yFoZfn98lHZxFGtZwfF4pgLs3ZVosWodXYnUoliPBX/IH2ql4hzKkBRVt0IR4eEqVDWYjzFyz3x7YKYJJs2NVCFcDVO/n9mrwAZQM3NNRbZnDvyI8ci8AZqHaLfXBWnsFcfpaHR+c0OI08Lafr06g7XldkTJjGWr2MkiR/Ck40mZrO21OwDTtVTTOdgrYPk7y1MglueVAovWAS7ESj0G63STCcyY6fpSfhdOSh5J6OCXy/XFYoHzkBixL1XYtGE6B2Z5imrfIx3NuwpVzKh5+RNTHkAh8ked2IfE0+cmjfleeKxhHxessnMPsfB5iELzzHkbhCDL+oOo6vRmb6k6fHYF5NpkdmjSFm9bfCb7zH8JG4mpSpPoYHG0am7fOj+EpuKaO4eBQpAcMR5MBR3NroYcfrj8IuzlXs0/II3tU3OJ0MGwF3TlA3Kz4CFq8pvpk1jAWiTL9AaxjpsTSzIw1DCO9SsK61HwIzWUrCZ24QbQ1rNlphg/DWi0z5U3oQX4tl7Jh/OAB2TFAOlzwAmpLjC/YkD8OfnUgeITxIHzV5/LsMDxatKlo0Tj8k71EoJSf7sWAnF1vwsg/pfy4fO8Xow01376ac/X04HELRiW/vxflbm7WfAnqR6llcuCnei3C6lzXtUQ8aSq3UbW16INKKWox71Q2rhMYHyne7oSIVwFnX7wYv6fSA3FgXrvxResY/rAt2r2V2/arahTlBZuzt5k7kT48ITvp1QhimIash0YmXKa2LEqUdcPH6v8rHUx0gKKk6rr5pR5D+puEyqx0Hch0SfiW1w99eQVco5CJYS1ORH81FeLnoxiCBi7FaraC0lGf4pGM2zZ5sw/OZpYEajTY4Ls74rl9uRUXsVdmAJy2wcxVUKm40Y5HVGbqH0owyJZm2JGYT9j76t2o0/yn2EQpl5TSfQrflvLzrlV/QTohzodc3QhyVWZHijTjW4amQ69yALhlr4lpBPdSDHSh5a3XQOfXP3qoOfRFMUgK7Fv5paka7VmvAVBTuvGldAzEamfAxrxrvrlbn5m9WIWV7fW+2exXiigaIykGVmO37z94DJk9AMvTZrPhcAblBNZmXo+U4JvHHY0nOz5Cd9/3dOb4MPaKYyxuBHLCqnhYddC2FrVa1qdqJEqT7D118S/4JOiEGi4Pmj2B60I/PpxTD9Ub93X1OD+Hszbnfc6EIRkl1LGF0IWoNavJHTxTgjmTjpbc5+ShLkqxVFcvDdZtXZ2zCcjCh6MIL2shCSaX5sx+YmdBcMDt0Ro+NTR2roQ5BOs5R3G5zMu/jcelyP+8iC9d9h4mvLdOQSjjNGdS+Bxue2RsKKRUkObt0E3IyaMZn3w95JaF7M2+3b1oijq6z3Q8v3AEjwa8m1i4eLGZldkZPHIYNVPYWezPQ/8WGcF4iFrurgo/8xbiFquLyfZe1oxCZaTbt/joS4t8e+4YkCEcTSUo88Lcb2Lmt/cJN5b94r/ClJe1SKPR5Dk1qo9fguH/Ma9EjBD9pN71P/UDHGvdwTPHVq2DU7hwwVrwC3QLXQcYSFR13kvVWXlyCeYXhYdGOixBotjLmzwbAt5r2o3GUH4J9dvzvbuZ5uPtKEkPfeEFlrSa7N8oDScE+vTnHz2FBuPLKgOQKzfhnHmKeZxGplxYYYHsGXIsirvEhR7TkGhfGe9rjmsdQMLfHBnomDaSSaydAlEpJcHKzQswv1JNaNAqIxdmcJh9LrBWVMsUtzfEiK1iijWYKKfXEHUvzJkidCE/6gW0El4MYpCcawG43Y/uJvz7cpD86xCjq4QHdMMNMQxcFjzzL8sKJuJmt32WrQQB597+ie7/8GluRlvRbrur4+d2YX7j8HhitTnHvWqhge2mqYk6gBL2GTz2+HxTw1itq5ThHHn8DM3/0Jw==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAARwIAAAAAAAA=eF5V1N9Lk3EUx3E1ozWWzrX88aTTtHQ+ptOcpjeRICHeBrJ2oWXsogj/gEgQHBIJ4q8bRwSLsYt1kSwoiS5CJCRMI7soEwlButBEzX7NuYI+by+6enGe89055/vs+X4Nx8easkfbF/bOya4CuVoqe0rk3VMyVCE7q2S5R2ZWSxPjJnnWz56WqWLpcEkPcSv1X7Fuyi17ibfKZDf1EpXyC/2c9BtgrlAt/etkkv3ZeF7IOpN6diymjoO+oZPyIXM+IG7Nk4YhY7my3ylvH5fhHDwmg8Ru3rOL2H+Y36ORISd/fPin9acM/JEvseOX/IrB3zK5T546CwnF2+RvEjclZRzbyK9gc0qOo22PPriPdWnqM4gm/eeZ8xLxNPll9jlkkdFDcpS5guw7xlw++qx/k1d2ZBbxAPkUtlDnObanq34E03gvftyi3w1+H6Xvu+/yzq68z3s2mDfCfqbZ32O00HeM9XHiTf7HNuoGeR6mbyXzbRyV1iz5xiqHj8hGm/yEt7LlM77Lz3ynVfny/QmZwbm7x/l+SrzGd7xLXMJ5s6OL778a/dSfK5Q+6kWIL5Ofou8M+7Dgjp06nJda1oW4j+Y4P17yfezjNXpZX8C8bvpXcK6GyV9lfYD4Be/Hw3yTRbL/jFwtZx/cL/ncLwnyNvKL5KMYOFjH/TKC17nHGnCF+7KU9ZGzsof7abaBPE54mZd6Tu6tWI3sqJfz/H6hUS6dlz7iJ01ymedvm6V50I869eTD9L3G827u0SXv/3Ne5Plf38MDTg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7gUAAAAAAAA=eF4Nk4kj0Ocfx3OVHKuUEBMVK8eIkFTeikSKSkoiCxUlFaGaaEnpwjKJnw5jolFSroaooRxFjMTkyBGVxPN5ouz3ff6B5/V6v9+fSZOE58NRoCz2rCuZISUg5EjBHo41/WPvDntx9LoGu+t4cETWjza+defQsvZfd92No+rh0KNtOzj26R8wltvOIZM6cLtqK0emkrf66S0cGy71xK3czDEk6inDHThigjpOZm/gMBx0Ix87jkb31v0LbDkCG50726w5FGybtl6x4sgvdqxxWM2xzbB+lZQFB0+zz3+8kuOqSo1uyHIO0xjb342XcbySqFQcMuEIPmZ1Kd2IQ/FjmZiHoeDhgaMqizm2Nxd9aPyR46udmWeUDse10vxXa7U4YGxsL7qQoysj58lDDY6IuYuXHZkveMVm3flRnaNGUkejT5XjYEh6wk0VDvlhzekuczgKd6ecnqXI4fZafbxGnkPc4frBMzM50p+o9GAGh71pgsvYdxyjmQp1OTIcifN+W+MrxWFxRe4vTUmOPunoxW8kOKLCZNOuinEYjZ5T2SzC0eIt+avMf4Rf/j09pfwrQWuzWEjoGKG+Imx4KSccXz6xZ3iUoJF9vO32Z0KtxpdNXp8IgQmBlaofCXOnjaxoHiQ8PXUoJ+Yd4TD/sHBdH0HFd/818R7Ck47+mcVdBF+nPZFBHYTZVd0T+u2EEvNdAe9aCXvvt/f/3kKYsch1p2szoTCppWH2PwRPuW22L14SZM80lkTWER6MbzJa/ZzgdvBFxtdqwpS369VynxHuOlf95ldJcK5dK72onCCyujys8zEhI281SywlbNYp3belhDB+Y2XHd0WEFPm/nCoLCXbnTKtP5hNGJnItzHIJif5L8kZyCJZ92TpZ2YT3O/SS99whXKn7U0E9k2C+RutiSwahvzBNNPYW4bKeRvD6PwgrU5LfT04h9CqqeTy6SYi+mNR89DrBVFR5g2ESoTMw/vFgAuH8gLzpH/EEQ/fLWTvjCK0N0xcoxRLCbS5drY8h6BZLT7sQRWgyiAy3ukgITZs8NnGO8INKuF/+WUJNtMjbQxFCjhKh27XDCVLHvj7vPin4fDhqdS1U4POgwq0hhJamAP0ZxwlH7IZTnwULuZb6KYcHEjKN3kevCCCszfCZTIcI3ap9x+/6EcIue33y9iUoS3btnr+PkPuze2vrXoLDp7aNcbsFXy+XCntPYR8tzcun7hJ6tXe6V7ZT6OPxyx9+diVsWLoxychF8P+zVu7jNoFb3e7sLSeh57in335yFP6VsvZX3kSwCn3S12BPaPts4XZpPcF/b8lL63WCR9tyGxEbws2NhcWFawhLy02WBFgKO1v2IF13lbCDOwZze80JY/Pvxt5YQYiJ15XabibkIns7dKapsKOTC0erjQlbWKpPxBLCoM/8N+YGhFPtN7Z80SPMcVStuqdLyKlMxH5tofcVSrkaiwhvs+O02zUJIZqzbsYvIMgnxszeNE/gnTbtgrSawBt+QeTv7wVePjXohLKQp++ZQRMlgkyn+K5Ps4XcnX5pyphFWF71n52nnHAv5iFl308neN8fM2mSFXa4KDgzWppwNWl0nu1Ugr6cf7zYFEJlxJBskThh57jvqUBRAvMb4HqTCBe69x7o/8ag7tzTlTzOkFfj4bzjC4Pdqo5aeWLoyHWzfD7CEKTdWnB2mEHmhrPeqiGG5FlNKePvGUwiHec8GGCo/lYXdaCfwf2wvcTCXobRnupjHd0M511shxI6GdReVHg5vmG4b2n1WvZfBpuCMoeK1wxtuigPe8VwKLnIbFkTg7iCWfbnBob48/mamfUMOpOM/7f7BUNpQM4MtVoGp379M6+qGN65Zn399SnDiXrtw3YVDHLW6b0SfzOkPtR0LSljMNVPqQ9+JHClqK81KBa4lK4XDTxk+HxRxTC1gCFCNOGWWx7DnCAFVcUHDJkDsZfr7jFYuMtNPX+XobEh6oRlFoO3jezIt9sME0XnvPPSGWIMJNsPpjFopJ121Epl+D+tW0qKAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAJwYAAAAAAAA=eF4FwQs8E4gDB3Cdd/+PtjM9TtxlqCg69KF09hsn7ya1uhql9l/lVclzyaPXXI0koZTHOLEkRB7n0TTPvB9LRizUWP9cC8XJh//3G8IrrOHafMRSMtHnbZEMQ+yHaXvIMujFXXg0cm8Kpj1/dPQSphC7YXFamzuJZffYTxUqk2DFaFGzOVKMq/5PQ6QihV9KVakT9wP4H7UIC4QP8Gv/o3zo3nuEhYeqy/TeoyDN0Glj0QTGFZf5vr9N4NfbbYyOjnFYzsxe2eM9DrnWzKHi2TEkRgdobOKOwW5Bd5pDHkNJj+c+ce07SCnxXM2j78AjNVHp/0ggsvpB18xUgpMM+0+FF0ZhqTe3UlU1gmvrUiQOiiNgV1ZZO3m8RY5dkKwoZxhKCdS5gPkhiLZ/iw5xH4J1UtpsZYEYRqkK3UbqYoRkyFpq/QaxKDUS/rf7DQy11zT8aPUGFds1VKuzB/CgOmbenTAApnnCLy0xr2EfYLmXNCvC96xUt62+ImjWJR5aHOtHINsuI+pYP9bVyu/nDfeBcMHwo69XH2geFkdqJb04UB46kHSqF+NGfyaOT/fg2e8p3Tx2D6JPVGxoUO7BkGumbrRxN1QsH2xaS+sCS+H4TquwTiidO/GqJ6cD2vpI6epvxz5BcL6uejtyEzkxT+zaIJQGjZ+6/Ao6fbc/WwtbYU2Ot/xJrRU2e/LjP3u04GbZ1NanWc2QEfNSbL804fj30s50hyYMj8YRi7Ma0X24YdlnqQGMM7pxNV4N6Ho8t+5+vRC5ri4O8i1CkNOvbaxIegnRDPXzsMJLmFaIz9CD6qHtIDIy7BKAfEWLQ3rxAkfPUbd6Pq/DTYNL3yZKauEnaPNLLavB+Leddz1rq5HDOvcf3fa/UWqsM98oqUKwo/60zWIlRK8VtwVrV6KDv8FqP7UCbapqpJf+5dCZ5BuWpj9Ho9YqC2J/GUyNlw+2rilDJmNmusW9FMvPJY+XUp6BcinLnz5WgonXcqc6sxKsP7is4LqmGAz9obFvwqcwCJv8xfNKIfwz3Brozk/gaNwrqdcugN2PHtcjv/KhqTZQwBLnYy432Ohwcx42RyrmmtQ+Qtx5SXRLdS42c4r7Vl7+BW3el6jS3hxIl5b41bJsDJkF+c6qZ0Mhh+lkZc5Dm4lZWX1jJuKVd59P3JmBAtXoHxLLHoLKP/ks0PYBDK67t46P3AfnvBEv5cY97PD8SWJlmwrlPoOMMNUUGCw0tS0P3cXgEyIjsiYJgc/M4x7w7+BdwQlrpZxEBCgKDJtpt0Em6ysIA2/BoHW0kfY4DjfsSR0v5m/iiD7dluV5A/9s3M680x+LyzbOO9K8OeAGT091Ll/DrrWOi9dKrsJN7c17YsgVpB+q39HmdBn3A6h8olc0Sr9MnHZxiAR3yTTpX1oEHikPlgyHsMGq0RGUVIRBPsCdp5JCoXlWGMu4GQym3m5a9/og9IqpCRF1gUjf8jP90sw5rCocCFNKDkCoGjn+7DE/DM6KThW4+aBxnldW6X0aloFasvxkFowS6pzTZUzIX2hUtHqdRODFx47iQW/EpDJjBSbHoEmKd1AtZ+DW8HA0z/8INKXiI2m0wzCJ3LvW0JOOjNjOU7cSDiDzrwG5i3Q//EyaA3oENOzy39ZuMeMKeqtl12lvZxAXA4osFR1B/Khe2SK2h7xzdDNDYgdp/UNOBNEW9/ZtdRX1U9C2rSCc0LsHoeuun1jR3I085lyeXrIlkkxZArb7Tox1EIVeVHPY66USPJm/YiaqszaDaYKAvY9S5w4YI3OFm/c0YQviF+4c9CIYolrCDB/sImOXepngfMsmBHPO7N8xpQv1ckLNUZ427F81tPkUrQet8a2S7uq1KAjfzT5YqAnu5d++chKIkB1gR2TSNdDjXKGTP6sO5WCqmYdcBWdtwsOKbZVwYWKa9Gp0FYIkkfarolcon6RRrOLK75SrWuTQ7uMLlJWnFoTRM18pXXcNpy61zlAWs80nGeFySmmUuTFz8BOFveCm7gsZxcWPxHFdL6XwbOJdPhyaoCSb0gXKc+8oWauNmy1GRijmPhf/zb0zRFH43fSiyqZBys9TTRGrmwYo/wegaQORAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQIAAAAAAAA=eF5VlEtIlGEUhg2tlBlGs7zMRae8Nd5NGzNTi0AndCFDZUFBEOQliXChgduSgiBCZSRyk1gRuhkXDkR5JUEXYbSoERJFaCFqTWVWjhfwfVy0ejjn/8457/n+7xxLtD8nuS9Q1ntYtKeKb63i+aPiPJzJEZtyRU+GOIT9kvheh7hMXpNdjEsQK46IZ2El59PSxY+cN+H3pYkl2WI7OjzUazkmvkHH43yxrkD0Zolt5J9OEd3Yy/RRhL6gWXSRf/UAdW1iT5w4ECNeOCg+22UkNIg3OL9kEav34w/lHHZ78PMO338XXRvi3T3owvb+ENO3xNmfoiVc5zrIY/grfvonBrGbN8UV/D1ropW4SyHcE/Y54kapf5I4xz7/f3nq0OMkvgZ/Lv09CBM7jaKP77fgE/p6Td7f32TPoe/DkliJnjH0nCLeBbPWxXrqzmMncD8e+qoKiPf3yj/BPc5Sz8x3O/3EoKuAfG78RuxQdCX/Ec+g7yl9rZI3Gn8eepPQ5eO9XI0Sy9C1EMH9mcRszvXx3saZ1014+ZDo5t15ee/XmUcD73w4XnTwzuOZx3BsJ3OQiv2IOTAwly925wGG8b4bOWfjP/9iHlbwv4sVu9HfhT8EfwN7yZMobmHX088U/bSxJyb5XkM/N+E1/Gb6Lacfa5K4SB8z5LvNXhnLFPO5r6/YI+zBh9in2TeD7JtG4q+QPxK7n/3URb2BPDHjuFh7QvxCnouFYgR7KZH95STPHaeYQp7WUrGY+OZiMUCeiSLRj78V3VN876b+c/LbyP+KfWssEe8Rt06dbSIj/Xw=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAACgwAAAAAAAA=eF4N0mc81Q0Dh3GKKEIihDKy0pBRRv4/MpLqjoRwKmWWypFRMiKRWUqyGkYy6pR1I/tkJpscex/brYwkpzzPq+vzfX+Z7j40L8g3jQAXzocM+2kI2g5ULQZOIfdq0JZq2hS0Dj4tXF6dxI+kz17+hlM4mVi26Rh5EtMW/Xqe5ZOIYUq8PjI5AaWPUgeohydRH+5XQLOZQOhksfTFrAmUjyrRdg2PIyNYm+XMvgmwau2oyrEeB002suxx5jiQ89YiYoQOT6+iqp3y4yhTiKhNs6dDde+dxCkKHZIUgbbfs2Mo133/z7IiHUr+n1Z93cfAzBblerhoDILj7c/3MY1hb3aeb6rOGIb16obWwkfRqyuWo948igPDOznowqN4yOpz4j/SKMyjlHWG3o+g+u2qW+HsCNpVb36kYwSWZG7zJ74j8OrVDp3rGMaqmcoeF94RqMvVs313GoaFzGt+o/RhvO5L8KCzDKPp7T57aa1hdLh+UKh5PYR+pSfXZ7uHkHlJOjb06BBUxdzvxbsPoa6h1MIsfxA2LLY75LYPofFU3pTWygBWfbRMxe0GkUDn2lejMYDy7gvZUWkDiPt0MoAW0A/RKXf/+Ll+3GDV8LBv7sMTi/LTMkf60Vjp0GK7qw+KjJYM+Qd90LRQd6gi92L/gAM5rqMX5wwVLW/X9OCRMHPUFdleWHVepDnv/r9vKsl73utBvUGjSaJXN5or12Oau7tx62fVhbWeLgQZfdU9f6QbpAujFFfNLpQcchtnje3C4ZdrBCOZhn92t5z4ukaDmBTLnmAOGnbwBdonXKFBc1Y9YcvtTqS90759taETuQNKUrfp39C/XbxJVq0Ti3eiLKlm32Bs2j7ZkP4NwYaibP31HfBmfvLwhPA3KEWu7yzT7kCbuN39p5EdMIkrqD9f3A73b9FjCewd+LvwzjrpSDteR//utwhoB+Vfikl4fhuYvU+OVDC1w0q+hcSl2ga3iUCvar82/BO3cEqkpBXbB1wcSBvbELBwWvbdsVaIHI8Mvhvcirquht1ZX1uwZinPys/TijVuxRAx8xYY02hC4vEtuOqjwBj90ozyC7JHnkm3QHxykqQ83YRtt+n02mvN6GXvZohyN6Ggru8kZ0QTYiRfzIerNuI0z2O/4dxG3Bxva7xh34Bf5boNSoMN8OY2tabEfsV5EfvWea4GWAxv7lJtrkd7N4vvBp2vCMggVfzZXA/endV6Fl71CJO4sj5l8AUZlLCG4YIvUDE8WzsTVofU2apdob/qUNJn3vKjrRbe+UkpWpp1+K9necOMaC0ksneLLgXWwgFOWTXXa2C6uD09qq0GIldfPXArr8ZNRT0Kl2QNHq2vBI7xVyNw45Kw6e3/13knPxu56v/fuPGaN1eBPuI329BYiQItZwFW+SpUuV3ZJnOwEkXlihxGoZUIrOHayvbsM0bbxWTk5j5jE7U2+iKDijfZawx/k89od2Gu3e1IRf/TnR6nSqmI5BLk1aRVYLOibdvdvVR0DTBrZpyogFfrs9j1+AoYT5ZSP/iWY0mjuqmRqwIV+ckt7uQyhHQz6WVzlCOBfFT4sWMpcvfEa8kwleFwulL2iH0Jfv9Y0qf/LkFQXJGqhVMxaEdn0trXiiGtHTrV616Ey+Itx3s3FGOb5K2H54I+QeAs4uncRXjA60mivCiEirD3iz6JT7i4GMDfWliAM+F2zZkahTj959HBdz35eG+wqqBhWQD7dCEdmQ35oHu5qHj65iNwUJJ86OC/+KC4u8Io/V8wemLU8i/nwUm+RvgDLQ/7zZV9kuNy8YiRs+DDmQfecUWn0c4czD99qE/Rz4WhZ56PvVAOvu+udZALygHPMyay0OVsZCQemBusz0ayeorKNCUL31dHM8v4srGuPT8Ssf4RNGpoRq5NFpqeWnZrUD6g/VuUuqXzR2xdoggX21Kgspj2SVH8A6Z+SSZOSr3HH11GVmPfe9wVeO+W9D0TApJzEuzJ7xAQ8pvyuSoDzKqmEuXkTLwfkzaXS07Hm4oOarNBBoo6f13OCU6D/mT+RoG96RifY4pVv/MWRXWR9S58aeC4Gh/+ipyKgv7C+hK2tzAi/3hc5PIGg1fyvDs2piJ4QDrlmlcKhIxzeKLZ38DdtfJtaEQyahoO2fTwp4BvoeL6cloStowsLtyTT0b9Jz72oPpEVI1rdFmfSELjHj3q/unXIMK1S82dE4F3Zs0bz7zC/HJWlo/6a4yl+8pqV77AwNTG5sHUl5Da4fE5Rj8BtqvsVsFiL2BglBJX2BUHeWWxYdnMeMhFncg18YxFD9PoksuxOJRmNkgIysaAEpWkvH0qBp1bj/LmjUVjxdP3c/HL5+A3Nmzs+PAMUn++3Re0jgbTcZNm6aAo/Mo36u08+Aym3xQ7TK89xQ1FjaVkziisscbNcFo9QXamFiH78wm6ppOYVswjoZJTG7RtNhL/rgmevUt9hH5nB1Hevsc4NVzYxzsdjtGFG/ouKxEwHT2usUUuDG9u6ZCj5MLBnKiQleMTAsPSavavLqEYdua2uTjxEFnMYbjWHAxGM+X1JbsgXCKV6FRqP0SYw06BzSsPIKNvYydXFwjZn9ViHxICcFMhqnHu8gNE9r1jJJ+9j2cdnbx2XAGIvl69oinsj9Z115nRBn+sH1DRT5+6hzCVvnMVL/wwavuzw6fUB2GV1MyU375oueIWkJ3lhcIq4Tujvd7gakuMZFA9ESCyo+Jn7104KthziH6/jQCJ937xq3dg7yOj26nmAVujX5fDlG6DOThC7cdLN8irUnsig93xyr+7ghB2xT3H+84eK64IyG3ojsxygda7ptGt926hj0U2tZpERs8dq5iDu1zw5G/BIX/Nm1D5K53nnuaMTjM9me5pJyRw+zApaN5AKK+L2p3yqwjLMeOzWbuG5qUNtWafHFCXwnX476AjYinmsbc67VCqlvqHMWmPcDHlvDE+W9y35jvpxGeH42w0xfZbV8BuLhBuZ22DUzu9uNz/s4bOslqQyNfL8PfN9d3DeQmkWI79tWetMZxhmsNFJkE0W+gleeYClLqi/G6yWiJZUOdkoq0VhMhyp7W/mENTI2RufasF5PWT1l4VmmKeR/FH1JgZvMeCRytaTEDKWfcJoZ/DJiYva2bus1Ch874Q4jLB9AyZNEI2gocIkZ1rZYxPPGJtQxOnsWkvzaoi5gxehyhFdsufhN96//lHhadgXDomb51hAJWZ2ZIb/IZg/xJGukzSh3CE8zHOzOOI/1vWtE1bFwTdqNvnlh5SuQ49zjU5hvuz0T+ZnHQQ/lx5bCpSC+gavsgRqY1tVrnLa9Oa+E/YZhOlBPhzN6qkk6EOcc1jQQapR/FRTkKmy1gV+8/kDkh3qEHefXjGa0wFT8NDU2p1joC8g+Xo7EclzK3JBbDOK+Nk/xnVsI+H0KGg7H+gVRHfTy3dNSo7CLm5uc2P6AqYsnonxeu+D3k3N7+UMzqA+agtJGlvObDkfBWvlJPHck+5ZVqDNJ6L2urnGcni4O3O94es98CpdIp4WCYFX92nv/gOScBnYL/si+uSqDBgOXdNTQwXz8tdcjcVh1vaTEv1pAioIXy6cRO74DPleKOwSAj/BPParAUKo9F8v23M0A40lwo4qXsLwkk2cTXDmA8GO74ZR37mh4lUsOFhNl5Iduz+RTbejsmMCBuTZW5UK6y5XpHYhlR7Tn/6KU4oX4uimJO4wCj1HLzIvhnVockZ8wNbwKpc3Ptm1yb4fa9g+0tlg0COj0N80EaMkBsXqxgs2PqqfJKmygxG/Jm7RQ82wHVhZvay2V/C6KPhnZazTFAtfu7gkP2b2CR8rGillEF47dulZ+2xQjzIW14ljq8S1BKeILH4JcJy+jQ9QeUnMZZXJB7Pu0DoCXgsXPBdJLiXjBefU+aJhrCMx9MCPwijI4lxjqUzxNKKgBhpcY7waTn8PEN/ktDm5GiXVZ0mSK3PvO5q0gkhWe8ukR/jhNeyo41r7AjxUCqbbL59jDCaOB9jZTxE5FKFRLOeDxMS5xl/eBr7iEs1b6bN5gYIx5qGjoqiboKYwc0Qx15iW/Quy4IIGlFSRB40zekicm3kmFgfdxKuGdlHeNY6if8BwQMa/g==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAACAwAAAAAAAA=eF4N1Acj1QsDB2BREV0SZZySUKhIRt3C/2clI7ISEoWU0EVFhXSszBwjWyGjbBlljySUfey9Nw2UiPd9PsQTrX7aK3FhBor7SGlycrPgDFJqWDadgbgRpyw5dwbFuxk5banT+LP55E2+wAx+MXGni6pPY6/a0yt80dNQIU3IKdZM4cFwGMsQ6zSqAv6kpGMKMbmcH5f8p3CW3qPRomwSW9xryroMUzhmh0wr2Umo37UO3fFsEsktfHz5FRNQdV/g2MYwifmDBsayShOgGuWawH8CfuwVvJsN42jW5b9ZtGcCGebW3xZ1x2ERz9FyK3IcSyM2AgxDYxieLGVR5BsHokeW5W3GsPC+01IxawxJCpzhYeujKOhtYr0hMwbbCu3TvwNGwXsuST7s6yi0tL9uWPCOwrw1k6vDZBQW4csC7QUjEA/VaCb9HIFe6/jYOY0RXLfIjr3uO4JVKcI3bHIYeaQPZTGHRyD9kNWumzyMc/Mn/D6VDMN16c36Js8wmD9RDTuvDIPcLmC0zWUIubNf1QLnhjDnwMORUTYIS98PTQePD2GEVOCyRDuI1fytx5fuDuKmEee3UvUBjH2MDmErGABD9difHZH9kCt1ib+61Y/7e32sS6f6MNO+V5pLox8lj+9yt53rwyMlJjniZR8S90ocOxvci5YXS69Lf/Rizpbn69hsD0rZ3Dy81XrxfTXsYc2FHtR60Mg/T+6BhbJeVWNqN+hOyqrX0vVgIo9i9oOxG3LsEUaHb3aDHNxpdMS+C7MMvgip70JhxlqlYW8nTmuSV5hOdSG2SLrLXbkTO9pJJeSYTpRtGvOFFXTAQ99ncpKhE5bJhiALdqDsQsGa6KMO7F5+vCkbS8X87/NFGvNUxAwn65WzUSHuPbTtjBkVgnUKzquB7Uh7GDY22NsO0rfeql7GdjA+IULP6rfj4p24JFO/NjD8avGVprbBwuPc6KPdbdhvX6Xfo9eGX3fstXmCW5FfSSmj726F2WDChjxnK1hPlKWUXGtFipAQqTehBSX9ncTsRAsyCp/t6hdpQZXAjnofuxZcdRpoefywGavJzo+41pvh4fNocCqqCf/xHrzbxdWM+sdFbHMVjXgn9UTsjGwTGo67hdnNfgWUW3IEbjaCL+M+402ur1gc/nkhIPgrZNoUtQoufkHRWNZbo+ov+GV3762mZwNSL0t3uvxqgEjiUD5PZT1UFyX1hsUa0NE0YsNGUw8Dd7U+h7v1GH36hZOkVAex/c8C+HLqYHWvwFsg4DOONj4fH1j5jLjq0QKe7loshaSUhOIzsii8LGuCtfgrU3JeIrAWgotp+q+dP+FepSNdxuAnGPJtpf/TXgOP01UbCxKfUKvv4yskWoPgYi2rmYAacHeK1YwHfASLzNDM85mPoJeQcpFYqgaHivWjZtWP2FNvq7/zcjVua4bbxGZWw1uL7cil8iokPuy3m2KvRsDniUM0x6uQVfHOP9GtCi8TPlOZYirhPneLq3KhEnEftY/eZK6ElpRmmbhpJS6peoVt7qrAiTvKkn2pFcjmuRUU87cMGZcZlj9HlEMwQmjW51cpphRTmNiel2F2fXAu61cJjOtKrJL8SnHz6aLd6t9ieBaxv7AILMFySM6ECmMxfJbDU2XCixFMmy5HOVCE84+KVfYnF6FQSX+jUPIDiCfPU/uKPkBs/tbPVJ33cA3Vue9EfQ+hhexGTcdCjK/H9lCXC9FbJKQe8aoAxXkHHgxxF2IHX3S2bVM+HO9xankoF6BOLT2unDYfzAftuzKc8uGs9JDZSSYP0v/eaFfJykMS57SKp/M7dESsmijNvgPfxabu9opcTO/TGgo4/g4GShNeurtywRKS+YfFIRfwzFL7fiUHuaLXgkrKcmCrExR++ko2jqW9SHNlzoGXgVekG0MWttZDN33qsnB/kU83+mMGSiVZizdcM9G1UyjG3Ccdqx2TGhKyGeCqy9P6oJ8GCt3HF7t2pmOvnKbmA9G34P7raG/c/RYr5REGTixvUMuukM+Q/wbdZ8qZY9ZSsJHVyj4XmYrroZ19pfPJSKVn4xn2ToFf1OmZD9NJSGBe4a1xTUau+hyr9cJrfNP+V/Cea9L/nzTvyvqTiBgL86k6r9dgH3KjmO5JhOuftaL48ETYal9yuSKagKgqdkpHdgJy6kz22uvFoyDHeE6+NR4bLxhP7t7xCvHF4VluK68Q4O2UMmQXhwszFnXaBi9R+IWZm3k+BhfkH1/IaIgF2/PV/SqO0cj7xqgpdzEGab9fC8uyRCH7sOdGWX8UWlzPjsYURuDYVc77VOdIKFO297PahCNu2K7/lHAEuk1U69RPvkAiHf2Qx/gLlCu5OK9shWJr+evUg8wwHH3q/bdoIASvP5En8zxCkTbVFqtYFwz3G0oh05YhOP6tgU6mggI2K7fvZfrByDNi9IryDMKK+y27AR0KaEfXIJ0YiObhFz+HCp7DsUGiIavTH8Ji7/hlBgIw3+ZhrHTYD6lOEeOHSP4oihBcVyf7YJBeUbvvri8mxcsK9q16Y+DwxJ3yrmc4k/Vj+vsTLwT+jTPkuuyNwHM07qdInlg6dY0iO+mJ4vhm+aMN7qgPUHn22M8DYje6aPj9yZBwYNHhl3fH9luTVJdrT9GxWqzrv4uMYxLmISzkJ9DPjG9irnUD/RfTuX9vuaC0+b1Sf5QrkqxlDYVtHmNqiHJMLNAZ+01EZKKeP4Sadf2+ypePYKaxJajc6AgOcucllUYnXCs6q/fz6AOIZtqe9OJwRFjq5M470fcQlXRbmnC5D/7Wy8XORx3wujXoFv44YObIou16vR1YecUVr1LsEc0gLR5M/x+UHk3oWMvaQXXb/veUZBsc4M6riqe5iyO7kzibre/gU0cW10y2NbLnWGalDG6jLLVp0MfbCkypTZHVty1hSZfOcd/9FsSHXZ0fxljAT+ZIYnrCTdhHr8Y4Lpph7MmxQ/Kj5nBJN3GbMb0BXZM4kSsKZlA7sKvrYL8pyDnawkcqr8OM1mjJWvQaLkwfmm/NM8GSZaOsV54Rnq7Eya+RjGHJoEAlbhuA4Q19U1CBIUjpxjXJqvqors6jPHO9guV9/Esjenoo/b29ftnuMrb2pY3LPNOBeu7b9+yButhgvnH98KAWDpeq5og1a2PxBjNZMUsThuJOHnWSWmi3EyIVDqmjOFVGfNZRAy3VMWOyF1UhaFO1MVClhgidA28ylpQhEq3gJaysgsSnEVdZapXA5Nf5O3rrPBqfbHco/qIA+XKOy5aziog2qBVn+SsHwnU0boZWARm+kr9fZhKIJK5Tis7LweY9Q1FNujQk6sw6rprKgpqZ8b1y8V/Y/aE7c9H5HJ79mD0lZ38aYl2yt0t6zuAta8visogk2hXOfLr+QApKqJImeMVxfg/t8kVVCfxz9oporqIYJlwmmGi1T4FtXkM6VkgExmVU8XWWk2AXEAtiO3AMDmd1Biupx1EV6HZwwUgQ3Obh7YvTQmA0Mx6PHBRAAD9P55vzR9Esnsy5I4EPe9Lu8DaO82OLlX+tKZYXM4WkSqbKwxiVohq/izyIIe/cuZtJh8Clu3dDUp8bI9wyn31OHADFk/+8hRUHNncKulWwcCEs//V6SgM7XvqPx+Qp7YeETtHgB/u9kElIbuCoYQOJdO6ahsEesDIrGbZ6syKVquZg92039m3dcEr4hwVnF7ncgyJ3YbV0jo/8mAkFJY1+k7E7YSB06ZC2GgNs/wTrbVuhg38yhV7s3g6QQ5/4XovcBvGB/f9tW6BFuqRdFHlzk6jztJVqzaSB18ku/QrFdeIMXdkRX+O/hEGoqFTAyi/CMpWkLNK6RpAOfnGxZlgh6rS7aa5nrhKxykLbaR1+ENbBjnOHJ38ST89addAIfyPCzCtK/e2/E9tvpC0Iqs0TihcGDj0IXCQW7APlssqmifPyPCPkkllCZODOidRXE0RQB/9fWdMpQr38RzvXxCgx/vLES3+bcSKU73OShtcwoR2ys82oZ4R4d1QsqHu5n4i02p0lLDNEPBzXKHbw6iHOcLGlztj0ESnlISmvPnUSTN20CoRyNyFpVy6v004lBii345l6OohWbc7TgUvthH37oq2wFpX4H+aKEfE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQsAAAAAAAA=eF4VVnk81dsXdTXypKQkDSROShIqQ8VRpiKRKdPPEEJEAz9TdN1CnplIZEhdUq9HSZG6NzKUoV6mkEf0I0o8xDP2W/46n/O9Z6+99tprn3PzxWdv/OcuofOPFltGFBL6b4qejMkVQplNStp/nyKUpRVsy3AjdC5aiE8jkdByVUXH7yfnOOz5Kw9TbQk1Vh671+BM6PfRVvUad0I7zkpmMDMJjQvbk8LEXiV3zcYkGULNP2wxZkYSKmctsDLXklCpPZZSyzQJbbESvsX2J/SiqbWxCH7P4NPljCYR+u12fv1kCqGfNrl2rNnKw+31OjhdlUzo9Pa48tFUQn0LM1nGhxlcjRbVxk9PCVUSoWGLgwj9vH5CePM1xH36d9UmH0L7Osz3pSfNc47fmp8WEGVwA2NHmdoahMqcbPE5mkBoP+f6YRmcVxLjzzXZSejRJyXjjoKESkrc70u5TGhw1F6P9dt5uFeltN4LX+DhWrXrM2OteLgGZQoONwQY3K3736xoQPyyTeemFj0ktFJHbZuZB6F/nNNSTT5L6KrwgSK3R4SGVdbOmobycLUCzg3x6hFaHPrZVMGb0NN/Sc/pQ+eDrMYDM+jDzLX0CbMYQhWP1HaunWNwR/y/lc8pE3q5Yko82YjBXZ+UnqUawMN90zhi1X2a0NoTZ2v6LAjtdjYmbuBbbsG57O1HaOJv2ScLoJOKTqNr/UUGV1OWXX7mBqHjdSn6QyGEbh53aT0Kvs5EYc70AqE9mx69ewbetwMKp1+fJHTNg06BxAxCq8MP6ipsZnBj35lSE6k5zukoju191HtxG9O7TpfBjftjjdZ94N3rdvpD0wb9+22X+nirNNUSzGALwAfCpfWzWQGE2jUtLfUCn31RQQ4hOG+YqD5jbQfeCvt2SSK/G7NTpgv9aljnKrTqEqF/ta+aXGdK6KmkK+Vm6YTaPNbODkL/B4S+hKQgj/f5riL+m+hLmZglnxOhl5SdtPiBl3il2vHXAUIF81IHe+HLZXZTTw2iCXVdXrdF7RiD67AueDyqWZrKsorI82BCGceFBN9Db6LjlOAN/VhXBW2szHi5jr0p/un/JVRE8VDhx85fHKuu1aPqeYR+rTW3togg9IC486SFC6FbTQKm8pC/ZpqzLMqT0PeOvqXCYYQ+0h+ersa50hHd+WbMT9ixaq9B4F0ubZazcCV0ueKx05LgtcUwWieQTWhkekJVB/zLSjOJEYIvUgLa7kv8TqhYxd6eS3GE6v2ob10aRWig8RLtJi9CZV+ee8rCd/m93Q/32SPvmw1SnZhbvr++FLWi/+ef3KvbAj1DJvekf0D+xWMTscq5mFPvgS91wIm3Ej0Sib4YH1tEZsBz4HJ60kbkZW/0sUy+iXPuPNNHYgk1alyyqxv9pnHTB6Ohv/crkRZPxO82spCPQH6F9jnbaugoYjly4sEZ6O9m/6KKSeiX7qb4YNwXaVVOS1sxxwOupgckoe+d4IF7zdhvfB5zXBzzrtwWYZyEuKqBl36NaTjfMnxLE3MZwjodICxJaMCG/n17w+HXXD6LVhNCPW1Ly+6iX6ODRXy7oc/aaj+Jo7KoZ9195Vfgf8fwkq8/+Kmf0uhSA7/E6PVd+x0JfXtIvckBcQO6hiPZ2Ae267vGLvhdn7/sDOqX3PjagblwX0RLGb/AOi8fYO7GIvRVfPxbA6yZU5HJAZjnuqJL5wSBz2vUIpqFenYmq/KXAlc/e9sGP/igcHx2RdlV9EPyyhEx6JC39e+K3FBCJ44PWgninkvNsyNF0HPHAKv6Fuqy3aPOcxb90khwf+gB3FleM7OM84R+HDNvE4Qf3qSv/3wP37df9xsdhJ5a1p2zIfBXT5OvvBDu154njRmnoT9xPDVUi7mSL5f7bGcF3rtzxjWQ10V6tOci6nvXsl2sHv6ofvRZIhi6Ty8OPfkA/FPPxk6Hg3+vr/SzPPhxrI39jx7w9e93f4xB/J8VD35uhQ8SChqj1OEXHZOc+IV7WqAsYdICPOOy2XoGwD3mqfOlGuu1xy7az+C365ZLq+YDCX0g1R9VA7/2VMWLz4B/mGOCqxDwSlzsf0wgX/0umVNs4GWxbvx7CPmO5XxXSkWeQJlUNgM6eT3c6ZoOPwSLbq7Phw77E3z2FVxHvYZemptQr8mey7blmDslfrcVCdBRpTBHPBx49ovWPVsEv7IfaclejSd0W41+VgTy8ghwsvmxqr0a/EcGc3Nt013/eOBvuxuXvRRrRcjDSi2cn514PiyPePOWMdZ34LnbSb8YRD06ri09Z8DTSfaRxj/IF/iipXgK91Wnu0cOF3zVe2ftHmBN92zI24X+x0zyCndBT3a54tAOnJdYJPfBZUEvryDfWsyZ3PGK2hPQv2n0rpUC9Ogz/va7NfpCbgauMMV9rdTcfHEp+qd2Wu31AOrNNjeT3on1/OQgdUacUU3eDhb4tHFuTMdj305nZvbj/VRwC16tAH9HVa38Wgz+rBP9ixfeOVb/juBK/M6jVGLZhjn8oKDYE4796vrHfCPwkWpMJ41GvpHqo0QY/tT07JJKxO9DzSf4YxC/cj6cawRdPIctsjZBRz3zsc5e8P75yVdqBXjV7J5TKcZcZsyF9TxBHw/XFU/lAbcrgC2ug3l8u3KsYC3qFu1M5DkIXTZIaJ9zx3z9aozVmgI+96Wchx/6PHomkd2BVThJoygT/b6Q//zPOewT7LrlulGvpcPzaQ7yvCjYqXYVfRNZrBLlh/vVh5MsJYT++d+qzHwL/ntJ+NkL4Nczv1G7Fef7I25KaECnETuDM+7gH/hn5W2fHMzfYS+5UrxPuWnya76iDl3Pr8mLoENu3zVxC+hnNVzjqoh4GnwlUQBxbXciDDvBq8G+Z6Ab35sjt808Aw//HxFGbeCZKjYVSYGXwduXJwUf/N1R4eoNXs8Y7SprgFtie7VLD/eEc0j7nUqct/xuEF0AHNVbS36tA+7KOAeLvQ6EvswZv+CEPmUwdjpUQx/7a7fHPKEbs8L++Uucd9OUezmI+JDQfMN6vNeHYnULmpCXv8o8pA18mox5vwdh/aoh9nMt9OEb0Q9amPeSpjbd5fDZw896Pn6YS53/PTZcjrjKiTND8+jHXGTWcRvo1qT3tH8O9SpPisr6gb/TAQcDP/B5PFgzbIa8KdddckJR3/Lll5iy8MVsfYFuB/hPFS9iKyBfeG68nTze70Br0Qkp1F1d7pYnjXjDod9EB5DPccjMmSDOaaw26gDweg9pt3nhvHl5bokp9o0BPDJfsWbsT9r8DLw9LK6PbkA9XWU29VbAiWo3KruGebIq6XttD3/5hU0520QuvF9Mp9W3MH9DP9LW4vwhprV6DHyXuswhsxt596SNMH0wX1pVVeW8qCv/fIPTbZzL8LAeOgic2P70I3XgVbHKdtUpnH+RPB457ov/MaO7r8qjPg2drepboMtEybnQHPRjOmexTDp86Xv7nV4w5kVGqebnPvz/mZjkzy+BPq4GqsML75pieMiLb+CRyPP841ngl9yIdA/FfDiun+xsQt6fLgI1y3Cf/HcX7WhB3ZL84yo8yNciUhXUib58S4nolYFv6MC3nzOoM7d1SaomvjeobT9mCz+sYCwxKcbclXP0vpciTunkj+Ri1BcnGPVgO/gqrFb2lUW/9+h1DFwAzmdZyWEbzEnI+AHpWOibFSSx+zzuqTWjhUszgSt9UezjSfjgin7hzVXgF23MKS1CXn/R7uCn+M65FBGpD9zBgvGVHujvYOPyE7PY2xj1JaVAF420exNyWAdd3gv7ZhOao6nduwP5XqpYpDWivv8DwUhwKg==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAEAwAAAAAAAA=eF4Nz2cgFH4DB/C/JhIZR5IiRJkREv2+RJRLRlmFOKPSMDIysiIjssk8zkzKSlKUrSShhJIyGtQJFZHyPG8/7z6alpLRcYersKM6y4qEVaHpwtX6LV8rsa3Ymw9iVaAq/XEZiKpEq++ii25TJQqMpXYPSldivwclOYJWiUxmhIp0VwUeObHsFVhVid0FdN9etwoIUtU1FworMG/nTu3mr0CzNlV/F7UCL2IHQ8XryyHgrjj9eLocuq+yJbscymGS3liQn1qOI0cVC5+tLweLqe2OYZTjfqmqqIprGfgtzgf19ZahrFrqpEf7HTTm51XFSZUheDJf3kD0Dno9mcYTQXfgoDNl/fDybbSYrzd+8/Y22iIygmqHSjGnZ3jBRu02um2/z2mRUsTGdUi6ppUC/MufjzBuITMwtZZt6RakFrWd37DeQndVMVXC7hbsdnvbDLuVoMH23vu6JyXgoYXSj727ibTvsQYdiiXwff+SqUK9ia9PE8/o0W+Cs+Xy14CHxXDk8nkny3kTIkN2GtvliqE132jhHVgMDvpfh+15RWjnS3cQ/lEEX+Vn05c2FWHC+Wyy4JkiXIKOqUBSIfbTJ6wdRwrx4tSjpUWuQuRv5MDiiUJ0yYifFL5egHb70cyegQLITXX2e3MWwN5U4+u4eQHia6L6VsbnQ/q3wjXZwXxQDN+WPaDkI12kZiDfKh+Z3g49yZl52GimrqUzmoeaVJHU6xJ5yL8asGm1cx4opW+ss8sZcCpN7/7wg4EQ61dJj/YxQNlv2NQdyIBp3wX6l85cHFXuMOxaz0Bx2q5xik0uGCmpzN6sXAjOjw5jJgdcoetWD8jnQuvUKxbbqzmIXMG1qr85B6yuYx0uwjko2bLT5allDuqfRrr3nKMjJqM11HiMDs2u2M4IRjZKZbjXv+OngyMurO332yzILczHSB3JxmzN6RQ+wSxIHOc9JhmZhVPyfMUvLDNB5SzN7mzPhNkpuo1wdgZ2hBU+X8eeCfNSGmY+pgPZSocHDDMg2mw6QXaloy7WpFEiLR3fnQPZFwPTMHPnUOfnj2kIS/WK4++9gYbRZUUelTSoiEY6REjewIDmbOeNyBtwfGOXrh2UCsObRRUuH1KxuF/shMZQCooHX8xH7U3FA40WnlPqKehynhkZTk2Bz8aLCvezknHIYWvfyd/JkGRxNRFfmYyVGryGK6yS8cnjrUbO2SS4uDTyPmxKwu3VP96I9Cfimx4fM0AmCYOUxd0ZBxIhNbOzf39aIvpFerJW1SSgTH587g9rIuq+bXQ3kU6AbcOPdLpfAgq8snR8GfHgLZzVEJuJh6fV5Vdum+NRF/PWy/9MPGJoKznl0+LgGaG9K3c8Dh9vWa8r3hiH4IEm23BaHOirvHYWKseiXU3dSb8tFiG09/IGuA7Lphy20c7rMJuuzlU8EoMcn79NTQMxSEiTENChRcM4I4D1zUQ0/sRVZLr4XcO1yKwyyn/ROCywOjsvLQoLW4SZ9kLX0JZy5mNXXSQCpNhJlXoUVCwX0j+MR8B1zrxx1jYSk4nntZ9wR0DPjZRzX4vAT1rEI0/tcORbStxbrg0H85XwgUGfq5h0vDtQyrwKtx+1TmN3w+DtVenJtv0qIrNG14T9DMUxthDNNfZhmP77y7JsTyjcrqghKT8UnXb5I0eDr+BAiWl7/uQV2Fgqmzh0hcCgnd13h/IVdNhQJ3q3hkA1QF6TLzQEES1rRuI9gxF16NkB8/5gqJ4va018EQTGX9qvcblgvE/tsXwmGwTOg32zZVFBcKs4IWouEoitWl+kzfoC0ftf9wZD5mXId5U/TcgKQHvh4lrHJn8IeE8JLZ2/jK6CjR2BdD/41KxtuaTrjyaNaf2rob4wajic8X27H2RWf8o96eaDiVDJQj0uX6yTnV+adbwEhpjo2tPLl7DPpDJRkuYNSvXgjOq8N5R49dLHHb3Qq7M2O3vOC2KR7bu53TyBTyl7r/z1xIJatXPSFQ9YV6wb6VzniS+iPzaZZl3E9+OKkTRRD2xjVZ1We+SOQobu353kIry38Zrt+OSGwvu5XRy0/zu1/AIbxQ1aJuuoU9FuCG82ZGvQd4UYT5t79SNXpFCPKjlyusA5+/Vw7JQL4h/JPYxOOo8UCRsB/vMXML75ptZjyXPo9zWwaP99DnciL8S1tjtjgiKTcC7+7P/fs7KnPM7gXrtF73MVZxzv3FnpLHsaeWSPeuWX00j6aN2UPOsEBYHcf+8LTyFZ5QzX7WZH8JhUHd/s5oRJpctmHjkOeDewPU1azxHsJ4853ImwB4VB4e6RckCHxPtNwv40dPzUkH5BscdH3us+wb52KBv43vx5PQ3qAtFFGVdskb3dr+3NBju4S7/6z0zuJNre3bA5vcUW3Y/4dIfOWGP2p6cM/ZwNcJRntW7tCcjKbrqSVW4FvxV1RZybj+MgbEX1WE8A7e7n7sRbQJtZr8t/0RKi8yfeZAuao4fVVSN02hw+/by8FlWmYKqdDWELMsNqXcU6Y5tj4BB4siwsagrrb88UV246ilOvtymrvTyKxojYhrGPxpij97v2JpvgW1R4r3OjEUp1nt63O22M22sLTopYGILVpkrOWt8IEzQd2g19A5iymXP6eR1BVuhzy12WVFiYnOid8zgMy1aHu0Mhh6DUzFkrEquPIpKbmNCmh53+WSxTzQdRT6GFHBbTxZaUpDAzHj0kLklR197Qwcz+1m2mPgeQMNBv1SymDf9PQdcm5rVRsBi8I6xVCxyZ5A9PzH4sj+kHm/prQn3tqOigqhamk7bRr14nkNU0CI2ZAlZW+STU6WuA/WHO19dJ+yBjfNApUHovpIe+z9XYqkO12ojJJr8HImR6wcFIDTH+f9MZR1XgqN3oLUJThaFB5VRG6m7k8/WqKCQpw2Cc5Zb5giIm9g09nxpXQmH9inp17124EbUnuMFEEb6hvNXNXApQNNZ25x9SALvUu8nJEFm8XVty790/OTwXFAp7QpGGEC9DpdxLBtIdXbV2fVKI9oh+1rF5JwR7dbs3Pt6OvKgx5aApSUzKpixbdoujYp9JyJ4JCTw58qWnfo0Y5qOH+7zYxTGyqDo6c1IUOpUwGDTcBllW7g/+VVuxO2KFz5YaEXCd5+TlGN8MxQcbMzf7b4HSrw1JyQabINrncWhPqxDojjYBct8EIBP5Ojb7gCCU/unxadZRwMZqER63wI8P70X7LR7w4lzsfYHod3zYdOxsq8oYN5RGH33dPMWDF89LzXqUNmBkp7e5iBQ3SGGPjqnJesi9yt0rzc2F2WKTSfFgdpwti7cwEuTANr2f9cyptdAM381x0Z4N9A9RVkMpq6HLpllnP7kGm6xK9gd7rMR5eyvn8JurkH356z/3Kyw4IabY5p25AqLGY3pFgctEbeizocDj/3CAZ4o5Rl0iHSqaPoeE/hGFNYd2fHFYIL6rrHVrWf+QVm6tzunmOcItcuvaMn6TJTYXvr32P4mKx7Dr5we/iIR4QyH2zZKjxcJNty/+IOpL5098PDxN3O7mVkg6zpC0LzWJGkJMcmQvyyVuvu+kReRljf2vCbKhQp9z8OFXEnE/fE2syGeys6l8Wbn2C+HQvUA9ljxOrsVfMHq46hNpfuXkpGEwSoIC+vZGpYwRoWufDhpofSCZRuFvnE+PEK8WLT7qwBA5LCShXPRlmBSHE+018YPkzp1GPxnnt0QtA7Fjea9JSbaFU/+hATLZoZNXuuYVmW12St8a2Efu8QfwCFb2kNvVdGYCy0sy9615oW7fCzIinKGg1NFNXpbUTIpcf0ZkksblxXOfE7/7SiwCB54Qjs9CsZQtHURrDxez+ngr0f3uxGP1r43cWrHPUqC1iVwIyzZa2tNClvbnGVP9GkhgUmOwb0sjyZYw0I+ZrCNdCmQyQeExmec1un/TvJb8Dn5S5mH5kPTE32zesuseYXJ6Hh75VUPCn2derz1bRWg7yIP7C3eJDkMlefFvORk+LXTE/3glKfN6SalpuE0++dK1LnGVk95zMXEtQiWkcqIxgypeSgT4ZHkvshcRtFfwDNcXE7Y/EqZOyflkyK9yQo1ZQC6LP9Rp7WcQZk85/V1jHmmqV3VdycEgq2Db4U5jkP8BVhDLGA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGAwAAAAAAAA=eF4VkWcgFnoDR1MZGZmRUdkhkUTm/ycyU9dIi6wiqktEVpKdkaxQMh97PTxmg5uS7BE3EdIQIYoQUu99P55zPh4rBpF+/n2VYPdy4k11qoSF0J13P7poMNg/8HGSoRIGg+1b1lxo6L12c04jjwa5kRuf9DlosA89fa5dj4aH07yp47QKaPC5LeZOVoBWaSX/5kQFemlvQvuiKlD1xHJK+Fc5RP6oV5/YV4HAR0O5/2SXY34qkX/f63LUNUfbVhr91zdliNv4l6PRK3Pb4gQVPLEl8R8kyrFWYuQgqUnFKyfqUbcMKmhiSZpLiWXYyXYyrWGxDF/uCTbZzJVi4dCCZ8GxMvS4Oj89a1wK6aYbrdJFpXjFc+vFVHEJfj3INtVkKsW+ahN5uq0lKFJcvjXiVAL5lgSRVPdiuFSrFmzuKMaCXhmVNlgE1jHp/hKFYjxNsas9pFMENrWrLD33ijD8TxuHNrUQT8hvUafNRYizKPIp3VEI8dhLMy5uhWjjS47zjynAypfBraNjBRio275aTFeAmWdWB6lmBdCq81Xa75WP6IDXM2+b87HQKte5ZS4PgZ/jGs9q5kN3V+cBWec8mBNDSbmaPDQxzPfHj+eCa0z8vp5CHgY5VsQOns9FVHtUQGZZLvye9PpxjefgmkCPgZLc/z2n0U6nHJQKVlr8puYgWkNs3PwrBQLpfzYsKv7HNU01JR4UGJ4TreV6RIGM8QFB0d/ZCPlO32miTUGuT6lLaUQ2FOmFygo6snF/gFPYgC8bshsK6rhPZ0O+LjZ+Oi8LT6wijaMmsvCztlw2TiULm7kUR5m8s6DFfOni/o5MFAQxD4QyZ/33zauhxS4T7faHctfSM8E+mXksdT4DlVMjneeUMmGZuMHIUyIDc98PpLqmZuC2bTeFyyodfLPOVh+60/Gp3iLQMSkN6Ruu/ORiSgfcSgXP9z+AsWZVww+dNDDlWnz4ve0BGtz7vvsGP4DYtQQNGctUBOy6s5jSnIpWnoCqQcp9dHsFqWqzpaI2/cLshm/3kONc6nzx5H3spTdIT8A9UHtmZehz70Fzl2ldaHwKxgYcDRmWUmA4ybm3fTIZXSpuFDujFOSvS2w/pZ0MziMip1iyk3Hh8PFi4YwkPA+wD1v+lYQPDAuW/H/ugkWgzEfAMgn1NkcoyvZ3UdLWlOn05C621fjI/N2SCOY37cGvhe/iuwpprFBIhE7qxPdTtxKx3UHdZiUtAb4xP55+mk/Ah/hRflW2BNiea1txsU3Apm0rpo4B8ZiuftE10xMPhhsj7td+xOHdg+EH5ofjccy1dafN5TjovSqeSXkUhxejDBK8E7GI2zt7gaYYBy3HhqC487F4UlbBmESNxdgvo5cxrXeQRK3qVZWLxfsZYV2r7hh4P2RjkbK5Ay0+bn/vodvw8+QSV74Qg9w1U47eqWi8EknbE+VxGzTVU/XmG6KhP1TawBMeDXP58rpZgShoSdoOPU2PwtBAclKsWiRKyxve+j+OxGdBPSMpmwgknkt0UhuJAN/lSfHcW7cwEjPUMr4pAmmjB/uXasLBqj1k7Sp/Czek82zZpsKgHzb2u9kmHBsZJfcMioQh8zb7wHBiGB5qx0wZWYfCOm3tclZXKPyHEwvMM0IQwP7xPj1bKDhVHBo+fQpGhUNA9OpfIZAU7OmZkwuG0UWXx27JwXhz53C1o38Qnm9Rnbb6GIRhJuMW9Z5AeBbOi5cpBqH2uZWt3e5AbAy+Tjt5KxByWppibUE3ke8Rzm/8/iauHirv620KwJLJbt4b5CaaXTo97KJvoDjaSKYRAehZfBwibeUP6eWdVp3MN6CydDST48B1KKgKqTGOXseXNst769x+CJ/i8rF46AfD0hzngTUfJIQfX09/4AuZxEiJ0Glv2D4I6mwL90GPU+Ps1w9e2NqlRf/U1xtmsqwTP99fw8epiZcOnl7YayMidnvSEyM8JooUr2toLnuVFrfkgW8rnWY2gZ4Yso/f85XFA4KeAVyB8R5g87ziEiZ1FXSUP/vniq6i+UhRm46xO5qtMzRj29zRIPbZksXLDfw6aj5G392wJr1/+lnBFWwNb3y3aZcbMkl9e8YzV0w/u8uTbX4FM7wxRXKHXPDhSGgtz05XBLxe3PKr4zLW7lwS18n+G2rOHDHdDpdwXJj7WIriZXREVPy5wnIRKV1de4Z7L0JB0fBNXr0Txib7mv697gwV720pytcvgF27W/rIASdc0wx8/knPERPU3it0Px3BOsn80WOHA8Z6GiqfvHRAjUV1aOGfc8ik6XJqUc5DbPCP7uGv9rBjcig/GnkO8Xeteuk/20HmnVtz3nV7bCwxmi/9Ygt9g8FVFl87RLs9V1mes0GI67HNGkG2eLklZfG0iDViXirUTUvbYPbYAt0fRyvQGxo+nj13FoLU6FWbp2fAVRPvtFZhCZWUuxxLsqdxWcBvJJL7DJonKGcPlpyE4dQLqW23TuG+oZhlquYJhCsaeHOyn8Tj82+VU8aOQ2ay32Ap3wI7uHf9Q0k0h3DDlXuqZsdR7PgoRfG0GSzMDgmbsplj6yeNa/V7TVE2JRhIe2OKzeu5JrWcJnicaqPaX2kCFfFgyG85hpX67awnNP5CzW4myWIWYwQ6ldVZyR3F4uXk9T5pI2iUv0ks1jiC3RrsN+/ZG4Arj9Kp6GiIv5JrLs1X6WFhjJvjS6E+jtt5qQ7s0sVU0pMfjQx6MI0TXdDJ1sH57EHnOr/D4MiKSlZR14a7vFpwO6MOAt8f8H74RQtRZnRyq4WHcCdCUCLjNLBbhSJgbKeFST++JB5GTdRwfqalnCZAyKjCj0E15HdIqvLyaaDIqyjBvUcFgWb7GDRWVPExfadk56QyWKte12n9PghR6e6rR0WUwOzTlu0srozgsJVIQ29FbH8v9u8f5wN4ta9KdveMAsaTC3LtOvdjsayn2MRvH9yrR4OXjRXwo475UbSBHGomh+DSJY+L6lI+ku17UHcjS11faS9UFhymM/yksWffknxWuwxmDwZ+1j25G1WzndGlMVLIXZ/1C7OUwAcprdQ2P0nsiLDiGAoVw52j5taXY8Wh6Z1aOt4nAilN76OibaK4cFKJek5HGDe3R4kmS4qgx1k7yixnBwLbSKSs/i4orq8KG/8SQOG8tcUXfyEwGjakvorcjjJmh2iHr/yIO8xqv82YF/1RnhxtcXwoLBefSdbgQUykLNwvbANff9Szjae5oOodLLF0kRum5hU5e9M5cJMl8sxaCidK7GxHzbi2om6ePv37MDuKl5fPisqxwDddfY2tlxW3lLwM70cyYbYlQLafiRlMWdVhzaIMCKkIzjsYwIhjd6ZUN85vgnGUG5eKPD1e6IVwsPygg1b535eceDYhiKXVmiK+Aa3jE6sxMnSQ3/GCTn7DOuk25+5xf/ubSL87sFxPv0pU9UX5M6vWCHXIbG+M+TJRDJSXcR38SSZ7zBN3f/xBjrwlwWU6S6ThrLjeVuo8kTHMYb76dYE4jbHf2Ej7Rh42sjNq9X4nypPxbWZdX4lf3O96y/45YoYAfafEKXK2cPC3jeMM0R7J+WlYOkHMikSCNU2+kF0BETtqOMcJ/2CtxHLEZ9Jw++/84kcfCPuW1uxo1k9kTsgxkjd7jFjdZXwR2vOeCCUNtFQGjZB1QcsrvJnvyKMT2wMGJIcIg/kR3WHmYVJmc3OtVnKApLFNPCoaeENen/g8RO/bT1oPWS/Gr/1LKkWd6/j5XhFG7y6HLJc+oqQrGGs7200UTjhmzEr1EgfR7aOLkh3k8CdXkTX9LnI8OoI7qb2FyCstx1GpbURReeV2S/cLouYhpKTs/5Joe8jS+mSek7AmMd7j+U2Ef9x+NazvKZExV1M3En9GHrNyMCgG15PWSJ2alNf/kMlCoRmFtw9JY6N7xPDkYxL86klkbVYNibzqKyPlVke4jf11v7VVEupPi5AO+2ry8/H7uBDjCpLsKJSZRKOR7jiL+jPqZaQtag/bvyfKyf38jzrvXYoI03ruzqWYEiIeTOnQlckn7cGUmZlfBaTJ5KB148Uc0tNhvfbwWy4pW63VpR3MJvrvWXXPX6KQQSZljq2FmURnb4uAq28WYZFIaSgdzyCSK1WZwlqZ5H+xlN3rAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA2QUAAAAAAAA=eF4NlXs81XcYx5nrXi5dVlZt6HRDQ1qpRX0yK12oLLukVukihlQ7mO9TZ1SrOUrHUJlFlCUhZZOTKKGMdHCSWrnWiOm4pZs17fnr/fq9fq/v7/l8n+f5fH5Lc4uSBu4Rbissloczq2L1LFrrCBe1TriH1hBOff37G6NqQp9b5LNHfxJ809yfp98g/BQ5od+/lKCaEt9ifY2wf3/47o4rhPOLFYFpSsKSqPy/vfMJcyfrvBiRRzgwvVhZdp4g0172WWgW4WnOoewpZwntkktG6nTCya7872VpfN4nzMAqhTBHu6FOlUR4GBGmCTlOmG10aNf4BEKbC4UUxXJdNx+TDTGEocEtq4flBL+CseuSD/Kzd/oC5/0Eq5DnI+9HEN5m1nZL93DdPmm7qSDcjw8YkxlKMPD4T+H6HWFq87kdD4MJtFVVJQ0kmOjaXjbyJ9jYW3qd3kpoiJp70WkTQe/xgad16wl7HNosvl1LWOiXv1nra+5DzLY7x70IdnpGMTM8CZ3XR+RUeBCc1YdX+ywjaG56Jb9eTBg/oTQ33pXg1bUmx34hYVx/TlGVM6HlTaWe/yfcD0nqH/qOhGuFM1+emUkwdtr+dqk9wbPQREcznXXHDDvHWxGCb4hO5yk8J7tpHk8mss649tyj5oSVbyo3L5lAmNVrU/jGjOu/8Bt96T1C0GO/GulIwuPqyevnmBB+r7R2GH6XcDZ78MYtfcIvvb2/ndQhVOvQJtIi/GVVmfDNfwKJinefuA0JqLR2GDm9FIgYV1EyZ1DARa9avaBfoCD13HjPHoHeHhUFdwusjW3q/KVTwG1l65Y77QJLj2x7/cFjAfWwd3lIq4D+NYmmuUmg0ER5dt1DgaO3ouY9vS9gni7R/NwgsEbzo/nKegGL9+xnTFILZMZtiR1RK7DZ94TyfZXAAYeGafOrBZyDlD4/VAl4DAT1tfwp8HOH49bNFQI1ylHuBjcFiiSFs2vLBfDK9PzVMoF6q+qF9aUCqbYbgkYzC9otc+i6wMaQL3aaMtfUF5nVlAg8yrjSV8xMHcT8RuaYRI3kI34Pu7q8LOZOt+T2DXw+qe1AwmL+rn3iEfLhOkOyyzMv3BCYnLvWwZF1GMgPVvSyruXp/RNbWecPpQcX6N8WsD5W+2xTjYDsVHHPQJ2AorsiW8n3be+aFJF3T+B2hK+85YFA3E7362gWSBEGvao21iuV5hzhfm6MNgvc0yXgpDILPKYR2Df+4s0HPIc9F0qCl7xgvZltdg94XvFhZ8/FvhUYbhkb4K9LsG2QqzfwvOvLztjvMiU0xcRdOMF7kf1VaGjzOIL3E235LAtCypBtV+JkwvYhg2gjG4JlapZ3FO/f2tj3FxnP5v19NmtuwjyCvaRwmjnv779ZZiPTFxFq504ZnrqcsCmkzzh1FWFMlsX2EV/ynmt7+u1in+x7unRj2UZCl255wzu+hF3ltjvtAjhvCof7XHYQWrepP3MOIZgXzKMJ7M/1sfNVjTKCaZ7sdOQ+9rWRdZTuT4SsuFBHv0OsJ7JbkaEgTJr/eUZ5POGb8s8vFXM+qCY9lMT9StBN+Tj805MEj731O26dIjR3mHbMOEO46+nfFJxJkNg07o7KZh8d7jKU5RJWJVO3B+fTOOnljFd/EBJcyhojC9gvKatcOy5zHshWnLEpIrhG7P7H/Sr7Lm1Ye2UJQa2l0+vA+Xd1qm/J8zJCuHagIplzccWPcTKbCoJUE5aXxHmZUabyHqgkHG+Qp828RUgca6z05jz1ioiuCrxNeGQbrfOtivP1r0j5as7bgC1JMpta9mHTyaEe5qjXWmPSOY81R7XvLlMTDD/Rdmljnu7oXxF4h5C8t1jTyfxwhp/uunpCSe13AaXMaEvjZ5Z3Ccqw9T4hzObkOUElTMU/d8p1Gwg9OfNMXJmG+vLGcOaofsPiTOaglt30u0yNvPvwv0yVTNfRnP8L0QV/ezgxbfJNylczryzqsN7G1Lsn95Uy/wfVWAdSAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQYAAAAAAAA=eF4VwQk8FIgCB2CxHa9lFiUJW80kRYqy2FR/TY5XaydFpKWMK8RsxtEQE9M6Qm8zOaKEiCG/kivH0DCO3MO4ZtxL6jnK+aQN+3vfJyHxfyOQPvWmylZLFted8/xYesOQOah+aHxyCE6W9rkTzCF07Y6vnFAZwifZutvRZYPg8zNPD9oM4he1HO7W5QHs3THgfy5xAGoRL8xiDAYwQdf92CnuR22d+7Iysx/N49dcXYn9GHG04uU3iOFQ1py24iXGg2b9OCiIMcpJ2xNaKULFWjyf6yrCvOvC/KysCCzpERUVbh8WXn7NPuHWh8oA2oKFQh/yQrbY2PB7sa/lBIlC70VD4IH0Y8Re/CbNkt8k7IF7z93X/D96oDlbm++h3wO7yY2GK5PdyMIM3Su1G9akQnqdVTfWxit/Wd/ajaSq/ZuUaroQ4qWdJhvYhWjl5zLjR7vgpr1HP3ZaCBOFMysK2ULM0jpINx2FiNN+w0j5UQh7/5Xcx/2dCBq8b++W1Ind6buJGy53ojWTe8tJsROSv9MbY3o7MH+81zPwUQcYjmFpB690gBkRHZWo0oHtlC696mEB/Kwj4zMyBKBk+wQYuglQZ0BLCNMSIJSYtf5toh0BdBmKiW87mB26RQOS7Sj6phRWwW4DtYb2TkRqw2B4p8GRklY0uTDJhWdb8bwnQNJ+qAXeDa6mJN8WmGssxXzb2oI7a9s3Dz9rRnHeQhLPsBl5UT2jCd1NcJsb+snmZhN2ljfm/e/7Jvz2QwHRg9OIKfEoskwaUZxTFJI69g5CTtypc6x3mAgmlCfvfQeB+d9qYdUNqDcqL1ylNoCt45n2RbIBdxIPnvHIrEc9ZZeKmWk9UsLsxu9+rAOp/elTheg6fPS24Mxp1aHP2qRZpqMW4VTOeQffWjQqKRBGFGtxWCk39I8KPrxtp0Qm1/i4RCNLq0rx0U2eHpfKrkH5DElx6VwNVptszac/VWMjTI5OsKuxZJQRMaJXjbUcH3WxmIclRrS8kMmDk7rVrRYiDzPmmr/H3n+LyGKbvoTuKlxKV24tUK0CxWK/w5xLJX6tF8hQX3Khftf6tfxyBWo32PopGVXAvLT0bdS9ciyUi3cyhWUoC2MSZH4sg5mPpbyleylcCWwrr+I32K/Tkxwo+QYTjMRtjy1K8EI7af9sajFeJZSSn8wWwfxLeE4NuQg9O0k/RyQU4qpfky5hugCZfinSQWcKsN1fXm3pyWvQNR8/TfmSD/nrM6pJ1vk4kjamoUB7BYdI9p4Dui/xg1r+Wt56HmZPRcqNCV6gUp1ZtImTC3/u0jeLsBz4uBzwXHbj4GI1jaNpmY0Vxs1TysZZ+FD60OOz4XOE0L9OthzPRPG9g2KhUQaShUHs3ZRnWHRxT653TMdeCc8kMTMNLN/NLwTGqRi2m/b+nJwCVrcCT1HiCfJfNtuZ+iZjZUWql7b8CIttxc237yXi1oEAg/MaCdD/YiSqEcXhwknCA07iQzSM2nQ3ObHBubpwZOZkLC6mEwtb1B5gn7OR1Gm9/6Ak8jlH1zAGUSUbNrfZRiGUkkK8GhuJS53jbodHw6HPWOGH/jsMnIy43Pj6u1inm2pkXGFBUspnclgqFHYlG35dY93BIed+Qxe1YCj/9/t565lAjM6VkvVEDEwpH93l9sEfQQ82rVjt8INlRMZFD2cfvB0saFMWeGPjpy1e4zY3YSY3pPjnohc8T+x6lnHjBlaVBJPH5N3x140tk6z3ruhdJZtO/uWMW1tXzfo3OyHVNj95+AIV0s/qK44FXwM7YE0uJtEOTpFVZ30+2eKsiSW3IdgGdQLCh+TTl1Dp2LtRR88SRqEEusTlC6AR9j2imp2HlfHeqWOHzPF+Trcu7PJZjP1t9Sev3hQ3EpYssryNQW3RyaJYkVFU2n6d5GGE+ftj4RX2J+Gvuh4vefI4UoN0BFwPfXzgVQy8H9aFxJTe9aCEo/Ac1aZ5RWpjTot6+JWDFhzMxNQQeQ3IUtm8n1XVESUX0PGEsQ+x476TZqpEtAYvpjZ8tweaX/M5dyxVwL6t/5AhqwSj/sMz0Sd2wNcYwiHRNrgacD9eXZTDlc/b/kXmyOIfsEoLrQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJAYAAAAAAAA=eF4VwQk8FIgCB2CxHa9lQknCViSlFGWxqf6S49VaKSIt5b5iNuMaYmLaQeitJkeUEDHkV3LlGBrHjBwxjMGMe0ntoAiracP+3vdJSPzfGGROvap30JaFl3txMFV/FDIHNA9NikbgZuNUNEUZQe+ulLoplRF8lGXfTKgeRlNT3ulh+2H8rFHI3Lw8hD3bh0LOpQ1BI/aZRaLhEKZIeh96hINoZvssK1MG0T55zdNTbRBjrraskhYhnKvbs8X+QiS1GyRDQYhxRvbu6DoBaldTmpieAnz2XPg8JysAVXpMRYU5gIXnXwtOeA+gLoy4YK0wgOKoTfb2Tf3Y23FC3YrUj5bw/TnH1PrxqzRVfgOvDz59t182/d6Hg3PNJb4GfXAUrTcSi/jIxyzJP4sPO/UyEtuWj9XJup/XNvORXr9vg1JjL6L8dbJlw3uRoPxUZvJoL7x1dhvcm+HBTOGMWKGAhzlit/oNVx6SdV6RM3/gwSlEXPRwsAcRw3edvNN7sCtnl9q6yz14m8cMdVPsgeRvpNbE/m58Pt7vF/6gG2RXWvaBK92gxCbEp6l0Y5tVr37DKBfBdnEpublcWBUEhhl5c8E2JKbStLmIVstf+zbVhTCSjJVZUBco3XrlQ5JdKP+mRKuld8KlkfhGoN6J4ZgewyOVb9HmQTEpO/sWT/vCJJ1GOhDQ4mmuHtQBS62lxG+bO3BrddvG0SftqCheSGcZtaM4vm88ld8G7/mRH+1vtGFHTWvx39+34dctpWq+jFZMC8eRb9aKisLyqKyJN+Axkk+do77BVCShJmPPG3At/9GgNbSAY1xTtuLSArquX/YXyRbcSjtwxjePA47VThULcw4yaY6Ttz+wod71+LFCAhsfAqwZ89psDNiZtct0NyPGhXHeOagZrUoKhDHFZhxWKor+vbYJAQ7TArNrTbhENJFWlWoC32RmUqqgETWz6opL5xqx0uZgOfOxAethdnSK3oAl49zYMf0GrBYGagqFLCyRE+R5FBbcNG1DO9RYmLU8+Nu9u68RV2E/kMqvx6Uc5belqvWwst7nPO9Rh184XBmX50xo3rZ7Kb9ci+Z1DsFKxrWwrKp6HX+nBgs1wh0UXjWqaRSCzA/VsAi0kbfxqYIngW7rX/EK+3T7MsIlX2GKnLb1oXUlnumk75vLqsCL1CqTR3PlsPwSU9hoUo6+Heo/xaaW4Wpwmx5hphR5wZnSEWdKsS1EXmPp0UuQDj58nPmlBPJes6rpdiU4kj2hpUB8Aec4+u79es+xRaNktXitGHOn4uQmuM9Qp0kp38AoQghz6Zs1rRCBHvv9lr0ZuNhAZBy0KYCYfOOUsmk+3lfd9/1k9BRRpK+ijuN5qLhzQMgzzkUGL4K+y+oJFj18MjiuOdgj4ZcupGSDGrTxGdc0C6OOMwGfMjJB5SuwFCUeoeR5u6N5UAbEYql+4vIDLHZWtN+8k4bQ/WGG57VSYfDFWNAoSMaFk4QkRtp9tIzb89vc6GBcXTgye/IeLuaolXVoJGGvu7HUaf3/oTLuKUPPKBHxles2djrEI9oqU+3qvThc6pn0PjweAwOyuCn6vzQwcpOLUji3sUYy18q9QoWkVKBoVCoajpXrflml3sIh90EjD41IKP/1/We72XCMz1eZ6AvImFY+utP7fQgikjaIbbcHwyY296KveyBeD5d2KnMDsP7jJv9J+xuwkBtR/GPRH34ndj7JvX4dK0pc0TF5H/x5fZOI+s4T/Ssm5qI/3RG6ecVicKMbshxKMkYvuED6Caf2WOQ10MNW5RLTHOEWV3828KMDzprZMFsi7cHmEt5nnL6EOtf+9br6NjCOJpAkLl8AkbD3gYvFedia7pk+dsgS7+b12LTLZzHxj+0fLI45rqcuWecHmMK5QzffytYE5VVdXuq+xpi/OxFT63QSoaprKZInjyMrQpfL9DXAe1bt0LtRPUhM63tFpB6F37gO0T9OBwvaLodfOGvjmoXQJUpeC3IudNZPqppIkAvrfkTei6TJIJGFqho6IhezWr7bjUNfSxi3bFRAv2lwnyyrBAwenk04sR1BpuCNCLbCy5D54eqiHK582vofE4Ys/gW2iguvAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAKgYAAAAAAAA=eF4N0ok/1AkDB+CipdEnM1Gxs1FsrdauK1pF/b4NVo6MsxIjRwjZVmXVK0RJNW1y5YocW2jkeNEoN2HGPdPIfQ1rcnWY0bE1W+/7/A1PMFe9lrl/ASL/ipNjpfNID9DONNWcB/Vfu4LxtDnMDvr08MlzYJmov6EyX8KIXfOKLfcSp42caXlXRRhL1Sf3y4lwsUSmyoo5i+WP3pSP5FlQLQrYI2l/I8+2VWFe428c/zXU+rvSGbhJbFmB+2agqKbC6O6eRmo/ccXUcxomGaZHyyRC2BRVKW5jCsGm+b6+qinEkCCHPlw3heXGnptKx6bAWTAzd3k9iRN+4VsNdCdR4sl+/ejMBNz5XjJPn4zjkt6/QkvZcazy2rLfynEMj7/jL5bmj2K5IuN98IcRhGpax4Taj+BQnOhdNWsYEd9b8X8kDeNPzk+ddUFDMJvwaz3RN4i7WRZtG4wHIbYlSDV5A7D6D+sfe/IANE9WanAuvYDMD0cPKkv6IXOsgr4zsB++1QVHPwkFoFs450R6CDCYLs0sGH2OANJPS4GM5yg33eVWN8kHb8vvQ0l+fEx/G5E0/YqHAkksP/cCDyb0XOqzb3jI0DupEaXdh445t+2b6L0QZ2zaYxzWA0PBuh5efjcW7oyn9wq6kOohX6xG6kKnkHKl2KwT1Ln3s37RHfjt7jqJSQsXWR3Svd+u5WJtu0LCG0cOjmfg55KcdrT1LKfTltvAXP2el2XZhiUGR7kspxW9Gz6uDpQ+AzJt4msZz2DUo0JNb2rB4afe1m+1WuAqE6/OTmrGoW2EeHRVM7Rdu4JczjZhi/59vR29jdjO5TOVGxpQaLOo415VD1W7jdKZ8jroLjqFpFbWwsKgJN29rgYpNUMUta6n/38TLm2dfIKBxlDx/k/VkGpa6J+jVuOHpF/3ORxgg3pDQ7X51GMYyZZpV2RVYeKhxJgiqET0vnFXrmIlsrvrxRz7CjAy00qld/4L60zzEBdhOU4ZxNjVG5TDwegDyVaxDHkS1sL7lhJI1BN2usc8glV2d5eLdTFaprTmmqgsFD2P/DPiXRGiJwcrfIcL4TBqZXCkvQDefz0s1ql7gPR5pzhOzX3w0paGvzb/BfXcT7EV/HyQg0bKaubzcNBhZ4iElAcnsphuvCsXaTzZpqbWe/C2br6YYJSN1muNigmVd2HS4l0fQsuEjM3m/unxdOzeWl1853oaROYeC8a0VKhpUYrC5O9A+sXxxZeRZAhljX0japNwZGgpJbMoEXG9VeZr8hPQsbvJuJ1+G6pByRtaQm5Bymp7QX94EwW6F8caPtwAd4+do6/7dehufnwmURCH4QGCyPC8Ctvknz/0fLmCJNdm+djyyzBkZy1TQmNw1f+zaadVNIw3jjVSGFFoVeZG2lhGwOq8e9E/9HCE/UhqHw29gFkRWVDODsNmLy0FmvIfUHynk+524xx8ynqO96mcxWgD7V54fQhORL05e1F8GnsMhclrUoLBnJ4p+M0jCIe6r0exDgWAde5LZ7WnP64duP+1MMUXO/XOe2bN+4B7za2Ty/BG1lG/4OEhT1wqqS5s1PFA0IVFP/nHbig+fCw795QrbhUHhmXQjyDYtlV/h7sL7okto27FO0E/dlDOVuQAr+zPqbxGOhJar68Yim1h3h+w4u9pDaXiyL5fZA9iaVm+nzNsgZTIGTO3STP4G9/MC6fQEG26LqpfQIA8FpRH5pvidN3C5a9KezGxis3RSPkFuqS0yQv2RqDIt4wxDuwCj1T1vbuPPuh+bsJsHx180lxsWHHShqU0kVcSrwU76tQfDPIORG3wShjq1cRtXurw75xtyFSNZurNqUH0ZP/csVwqepn5LwNKVeCWU7NDTWETaqXOec6PlDAmI1SKi6cgeM4+7Z7Lenhtj7colJBgptRwxvGtHCISH5SU0dYgNuuaQcfEajCLmk6vjvpKbD21lFBW/ZmIfnsjp+/4RyLeuWz3xMl3xEZ/VYUIrphYMHu4xv38WyJfZYzhM7REeL7ONQrEPFETsZZlqyIiYtavD5o9PENcdtk78s3KFHHgtsOK4fg4IXCN03iQOEKICjlZctuGiOS4V3cV2gaI/wEwUxC9AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_210_t_21000.000000.vtu
index 07865fc962ac61f48c0d1589fbd2a0fe2e60b335..a56baa5ccb172d6df2212a238a060feaaeef6e4a 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_210_t_21000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_210_t_21000.000000.vtu
@@ -2,37 +2,37 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0.00027613032108"     RangeMax="1.0421537961"         offset="88"                  />
-      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0.00025737152678"     RangeMax="1.0374253292"         offset="4220"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.2547641313"        RangeMax="11.368361149"         offset="8348"                />
-      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="2.7612321446e-05"     RangeMax="0.09442000874"        offset="12192"               />
-      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="2.5736490294e-05"     RangeMax="0.093991605674"       offset="16324"               />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0.00027613034313"     RangeMax="1.0421537955"         offset="84"                  />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0.0002573715476"      RangeMax="1.0374253287"         offset="4220"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.2859356546"        RangeMax="11.347743657"         offset="8352"                />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="2.7612323651e-05"     RangeMax="0.094420008697"       offset="12204"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="2.5736492376e-05"     RangeMax="0.093991605631"       offset="16348"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.5024993643e-08"     RangeMax="9.9966792901e-08"     offset="20456"               />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.0018602096896"      RangeMax="0.49525962698"        offset="22504"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.0018602096896"      RangeMax="0.49525962698"        offset="24652"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26800"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27624"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.5024993665e-08"     RangeMax="1e-07"                offset="20488"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.0018602098121"      RangeMax="0.5"                  offset="22548"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.0018602098121"      RangeMax="0.5"                  offset="24688"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26832"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27192"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29692"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0.00027772284356"     RangeMax="1.0362332656"         offset="29760"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="31892"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29252"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0.00027772286653"     RangeMax="1.0362332644"         offset="29320"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="31460"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="32744"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="31776"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="34348"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="34896"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="35408"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="33380"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="33928"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="34440"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPRM9A1N9VNT7FMNkg2SEsx00vJLCqpBABQ9AdBAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+AsAAAAAAAA=eF4N0Gc8FQoAhnGJUimhukgqlKwQUbjekr0jkS0yusiMkpyQpmySFRlJZWVfex57HCt7HxzZldm9n57f/+szrzkpxvtoETfl3N3SPi/CrZ5q99a5RaRckhob0F8EXfqrEqavC0gyb1oU3rOI6orKthr6BcQHy7qE2i7gtvnAQzaHH5D80LR2m/gDSpqCfYc75nEq4VM5if8H4r/ZsyRfmofJ2fgfU0HzYOZusmxPoMBJoS8j7DcFioPHiG8OUiBetJHUc5uC98KnE7s858Dqv/T0Y+scxIOjRmIpsyAv6T/6IzMHG2oTkWHTWfhMl+mTMmdBXCGxBnfNgHFDP5/jzCz8KUJ/PqnPQMbeem939Axqk1nkuOvJ8OWlz1k6MgNrbjuFVTky7nZws9kGkdHwRcmEqXoaDx4fCBI9RAad8rd1N/lpiI51eiq9mUYE4cuTY8QpiF7uUok/PI0/2gGecxpTGNn/2l4ofAoXDn95QOmeRNsVAefF41NQTediYTT/3+81yH1Jk1Bse890fX4CpRtmPuNCk0jLeiSQ5DkBBqyv0ZRMwI69X4WafgIKpJET4moTaFkqMLWIG4dz6Fqfw+A4DnJ+dyy7MI49rbNCqY7jkPEV+niIOAbZlTcCPbTjIK2vXFQ2H0MvJzP1r5gxdMYIO1lvjuLQbveFnYtjoFH2KzSPHEWqiZLydNsoWO0zQ4UvjkKN4PL8o/0oSjb0QppII/AyUReUoh+FB3Osyfn7IxCNfDAU+XkEhpzc1RqsI7DSqdLM1xgBT7GphPqjYTyg8EdyTw6DY84nzZg4hHwVo8fXhIdB1LpBXcE6BHep70olj4ew08rsbWs/CB9L8l9+bYNQtOsMVq4egGSC9vWXZwbxIEW3Q4djANmM6y6VXgNgy2Xg8PTsh3K9pujJvn5shC/bZPd/RzWNrE2oRD8mYuc6KTLfcbUsRpgp6jsOFqdVnkjuQ29DXPmb7T5IBtzIvHTo/x71JWxZ9oFyl0VV5GEvvlT82NJo7UXcucP2m+QexGRT73ko3YsotzXmVwY9CGCkeuL0uQdffBkIpJZuaGtRnvKe7IG4bhdtk3w3vGYVtSLCumFN/spvVdYFPvlIo8/03eDIHXgXKdWFs1HHpc2edSFxn5C0bhEJzPEXs1JouqD8qIo+TIqE8Fdbqa5+JPjNd15WLutEyJtn58v2kGBFd5/1rnwnKpKqgj1fdWIuT4mP0tyBBc1fIvFMnVBzLT1Qo9+BvjvEuJMxHXB+9uPd7GQ7QgN/BC7zdGBb8ECdtls72Hc6Jw7mtf//JeDLyp52nP12I8laoR1k/oGQqndtKMtbXF3rbQNNEdVYgXAbUi4ek8ywbwP7/RL9sOBWpEQOTr+gaUN8f4f2QE0LTvGFYl2yFTwOf4wldpphtidGe8uxBWoDtTGhks2ge8c4vj+9GSJPW7WGHzZBsHXlKPNMExYZDx3ZV9YI2aBAg938TUikrBD/7GnES9Hftg2OjRBzmI3L1m7AJP2ghF5RA0xppvYyJhJBSLUSiNrbgHNalIr9a/XwL8pp8tYnImQsrj1QtR4v49hXNz7XY9ffdT5ByXXwumBRs0FTj4rJSett6jrka8t+umdWh+UDFbfqLGpha7GprVJWiyHx1fvDdTXYrp7K9Txdi+mZx1wSQjUIT6ViWPOvwa2e7PWyqGps/uM5nLpQDWV3Zhq7vdUozpObf2pYDY5e/zuCHlUgub+QfdJQBcmZXyE/5yqhSask+Fq6CvxcOnJFtyvxltIsE5VVCYakbZd/Biow/1ZYNZq3EnR3FUy29SugEV9p8zSpApOEJoJFbzkc+ggLKpwVKLQbigo2KIfnsqvHcGI52uTiNH+VloEkzDgofrYcdtYP2/hbSlF4/Y/dS/0y3LN8/zVtrASLVE2F27al8NFvMTbY+he2ERebMwklaGB0buQ5/i9CM99rBMT8i5nNRqMtmWJIEgxMvEqKMWi1SKm0LgI/ISP0n/EivCV9bLAKL4RI2tCG7KEisJeL5HXWFYB4hMK08HchBpZIQ2s7+eBf0Gw0dC5AbbnJSKFkPlx6CE/c0vMx89OhnN4zD4O+BjvnZvJwritxrr8sF4oZxi4W/HnIV5DXPLovF8TNBncm51wcr7YcT7n5DZba8bTcJd/Q4n7qhvfHHKyFu973p/8G8tjqy4CdbET7/0U4Z5aDtsHj9eX62YhgYhdZz8/GVjU5ji4/C7FR6vPTzNk4TdqzfIM1C5FWO7YTLllQ841dCPfOBLOu5Kehnkx0VBWweXRmQOrGyEYtMmEtvkDnmPEVL5vVB4/rZYDeSjx6LeQL7FRj55XEv4JoaHJ5zuszeuQDen6yf8HSW8NCUcd0LDjE2tEd+Az+7rmb2bafQBFs/mpGlQ6Wn4LpKnfTsFWhTz2+lYZf+aaDI04fsS9L54wLVRocrkXm6hNSYaphxrO2/yPqtnXnI8JT8FYt0FydPRWLAq1XCFnJyHJkdjATS4FdM1XCemcSeJ+Zn2LWSUaSAqcAeesDUgK9vVQ8knBs2eysiMAHJEsEf5v78AFPh9eXC80TkeUupTXQlQhTsbsHbWIT4MVKUdt1KBEbmaK7Tw+/x5jGkPUVtQS4NaenNJx9j8e+TmLeQe+xxtOlFkaOw6LSbLxCbjwcRiVK9gfGYobCUcitGwfC8+qhqisxILLk/LagisXiw5OTL7ffoTPP811rXjSOD3Uu8tVE4WC7vLSoxztcCrDfdy/yLcriehhuyUVhv+QJVk7XSIhKKPrRH38LavaDBgyGEegVsrzPshWByom0ICq1cHisBSYoTodjc59NTrlCGB7k6sVZDoTB5t+9XGyqodi/lT16uT8UgtaNHD36IdAkvRAKGQ+BJV16bcW9YEiqWJLE14LhQLcalBQYhMfRRL1lhmAMjuocCHYMRG8i1bc3okGwOpMzt9ARAEqWalx62RvwcRvbrMu/xpDO7C4u3gD8nho/fZX4EmsxT1hYPrzCTKVatYHRC5wnWBSwC75Et1DM9vedZ9BM6yPU1D6HzqHXOzqZ/hAf3NBIufcMTt7MqwaOT9FB5yWlw+OPXEdPgp+MHy6rf80wm/cDA09O8R02X2znvze1rPDFh80UlbDdPoj1NWxfSvSBbFXBrdR1ArrMAknxwU9winHzps1vb3DYD++iDSDgbC8Lc+rRx5B5UubhxOuNX1NnQqVVHsGn97fxRy0v/AwUjTIKfwhuBdX4wTee2BAOWpP56YGywI5KxfEHGDDfimWxc4fIxuX+E+oeIB7Tizj70w26BaTXUY33MVVeupgS6oroclvadWM3GAtm1H+/5oJ4/1N/3He74teM4wW6Pc6onT1ZalDsjAn1FC2XPkdQJXFuTfk5oZV/SLfj4T2oXBacvGPqiKB9NDpOt+0xv2BJqxbmgNJn+VF2Nv9AunDSm/zcDg0ej67efWULbr6hMPXouzCoajHgarDGOLviBn+DDa5tVcboclkhWzUhXPqINWRuNEjVhVviit7P83IedyAduRqqcsoCEmT157RrFug9PcOVWWGO3qP2pTdf3MZAvQjNgIcZnj3NEmAWM4fBlU6dey9MUNPlIC1PNsWRpGVBZyUjsKm9s+sOMgaXZox+moABrOQc85pNDeFP6pY/I6aPSMs3Xbw6t+BSbqO+y/gmOBQcCqht9ZAW1TjvlHwDzn7aR+zjdSGX7iH/8YAOZA67Ciav6iCliXd5K+A6ruT2HVi20oZOFO35Tj4tHOlmSctZ1YKFb9ApjQp1qIRn0gZc0oQLR7nbmKEq2qtVGowK1EAxuDjzgVMZXyZZClbuqGBzMZZulkkRpPGj0QkySljim5WR5ZNHsSYvWzYUQHdNZ1DK6hpUwsgsNVZy2DdQbFRTfRVizexpaVmyoFiI2DDIXUH0sDHn3xxX0dL2cHKl+m8wDF0+nKoLzLZfr+eRkQIpKdxf4rM0+Kaf7KitXMLJt8tLwzKSMDraoOc8JY56/1S26YOXMLnbw4p44iJ0j7K2/2IXx3Py9bqGZFG4iexXeucqBoebLof+irgAC7o+qVdnRHFOvDU7m+UCojWqjTg1LuA/5L4rqA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA9gsAAAAAAAA=eF4FwQcgFQoDBlDCK8lIRkR6SApJ0iA+npQGERFlhGtEsnf2KpHM/PYeGdl7RmbiGkX2vF0rmSn5z5kMdxJcMv2B4l/KSrdjfiBuZjZ1h/UH1A5aFVUq/ADZr+e+b+AKrBkqLUPnVpBjdKY6Z34ZMS1DJIlrK2jUXyuyvrmMRA77u05py6B4Za89lLeENT3yr4f7l6EdZDk2yrIEKvPtfeMWS7AT5TV3dl8Es9vw//70L4Ldz4cunbyAcQFlg3wsYmIhhktLawEUFRaHl3IXoDqt8Tq4gwynCTrie64FZMmSmSRlyJgao7JfDSHjfCXnKY2S7yBiPCqDigz3m4GXhoS/w/XNjcxWl+8YP6SVXpVJQiMPkenOOgn6VOvdq/wkfCgbExeyIoG6ioHeIW0eH5g0jR4tz0PjpVq3jMA8HEsXaL9YzmOIwsZNPmcOQW/jw8JW51Ac4hnvem4OZyMTn/k7zKGMNqV5rGIW8nwk0ZzdWejVNIUYyc/COXbMcMN/FlJCthXUPTPwpuus02OeRUHIFk257gz6dgS3JhJnkJn6RMd2ZRplXkUkK9EZfCJ2FIp5T2NtVtZuf+M0Vobnacls03AzDU6KU59GnVVbaETeFNJfO7gKkqcQ+0+r4+nrU2Cxu3E51WsKGvWs7MkTk9DX52OnOTYFwzS/z2tukwilaXl6vWwSHIpHTnEem0RXgXKZntokJB6lFx6qngDXGXWbmz8n0C2Rw9H8aALCxg03/4RNIDuCU/gKxQQsLuWvWklMQHrjjH/7rXF0+jaayxaPQ/IWRaLH2zGsOZJo/9kbw3DD2Xb/76Mg3TMo4VceQ9vRkWu90qOQpL/7OiRpFHN+DAGqkSMIdjWmurg5guqBl2d2Vr4hbcc7jP7uCEofDDLWKX1DTPmJtf3vvoG1eU8kNH8YN8ZkKY8e/AZlX55sQ+ZhFNb3jZ6zGEbgHy6SkPMQuHcVGxR6hzDmSDAbmfqKbn8OlltXhlB7zmnM9O5X+LdKmImlfUUCTw9/S90XCLGyh68c/opw2wjp2XNfoGxm5OLk/QWqhACL2vRBbBlGSTZsDEKtKYv2P+5BMKjlM1ebD0LGbCvBJHoANtfrvXVmBlBLrzXEyzIAa9NMnji9AZwWv5duGt4Pzk2bAvPRfryhb6Y6y9oPr7q1fxt1+lFCWXPSNKYPX6ToXryZ6AP30QuEQyf6wLzlKUEk9OH4ZMM1pmwi4v76BzktEeE/PmJidoGISy8bj7s4EpHhWVVA39QLm4sbOV1URASrVjOuqfYiuKnoiHFYL2KE47MZZ3ogr0pvdJWvFwo1Jz5qOfWg7D3xo0JZD0qim/pbGXrQlD6Q6nS7ByNtk4NJyp9hzqsxH9XyGQ+NA171+3Qjq2iwwmy7G+tVxR5Haz/hPdlOXVO0G8waqSPaO13gUaZOUHryCRd4VpdfSHVhJEijWTK7C4cFm7UjPDsRvvVRln6xEy0slAxm7R1Y0iobLD7fCcngVmyxdiDhhqEv9/MOMIXvtzpr3I6N/PaaK53toD100ORvZRsYRv9l2uZqxyDD7gXNw22oOCVAULRpQ8i2l9hpi1b8SbxG5uxshWqc9G+jjo/IZDnHqn+qFd6LJo6/hT4ietoy5UDARxS8eNQ7GtqCBJnFCBpyCz7fOe2yu92MuKd+EooqLTgp5MZxx6gZOhJxzE2VzViS8G6tJn5AqVTsnpFAMx56sZXKXPuAIWFnFr6oD5DNNSC0VjTBs1Exb/nABzx1/pqgeK4JHB4lZlXuTXhnkP6kNKcRlh9thZ23GvE+moeFUrARLY01nMdtG8EwKyDIk9WA/Ta5sXGrDSg8725HJdQAvtpUTZJNA0pOiTNce1wP08eSz8hL9dgOrtYes64DvfD3NsvfdVD6mz1XF1CL0BSFV9cZ6nAmPFPhc0oNzBL7aR4K1EJV8rjfr6ZqJBFW/kTK12BVXuGMIKkKV0jjhZOEavAdO3juOnMVeH6OfxMMrgJ/yldqyFVCvX0tQ6OyEpTzVwP/2lVAYie5UINcgWS7xwes88rhzxdwkPVEBUgvjeFDLkNPTZOIu3Y5iEcjVHiFyzATj30eMWXYmTdskbIpxfHn/YPUo6VQu3Y4s7amBAYVMnq7/KUYqQ4+EEVXAtLA7nsN6xLsfs8tKNYtxsQ6s+xeYzEEs+8m0JQVwVDZ/tssWzFsiSlCroeLMH/cL/vXsyK05mpTUFsXoqBXm//Mp0L4S/Yyh/a/xzLFJqvJ2ULwhtClMl59jzIHlYik8PfYHLn7dE65AMtqRTvBvwrApe52WlMkH9+Uymcj+/LxmMvaR+1IHp7fODsnWZoHnZS9jVqKXMjPhzXpJuTiFqsjwXkjB1/E7XRmQt6BUMjLbraajbdKp1vy/XPwQKQxy2o9Cw8DnhCS/bJRP35Kzu5vJhT7Pv1NDMqCXxQpRZMxE9UxxgkhbzNBkvzitieQgTqBiEjV3AwQt265qiikg+/dO+tPH9NxPvmyi+iTNGzfY12fm0/DxQ85z70iU0F6nXTQhzENP5+/zhFqTUGBKHebv3QqrP5ZwJG9ZAw97Iv8Yp0C2h3BUG7pZFyxn7+pnZuMww9of4t6JUG/xNthfTEJ2XGQ049KRH3PfY8g8SQkHFtfpbmYAM1l0VhaikT4v9W7zTUZB+E3KlFBafGIVmE9bBkdC+XawWoT9Tjk7bCttTz4H573TreaMsYiiGEvYJk/Bvc7p3u1BmLQvt12o+h3NBi5L3pQZ7wFtYhI4LeRKGyyX8oT94pGwe0y8oW2SLhPGaUUGkdh3K43OqA2AkMZvz0UNSKhSfN4Pr4mHJomWnJNdyOgdp0YI9cShjX5QzWke+FQ7xBUuvrlDWTjhI7464VhmeqAp+bPUCTeHF01sH+Dizh9QIctFJW8QTI3I0JBOcwbf8Y/BFvNPzOonV6jmc6CMeLHKxS36q/mfw2GXW/DUKB5EPbeiAzw3XqFKwEk69jNFzgVZ5K12fkS91NjDHTfBIIjzIyzQucFumYd5AlSAZBKTsz7/TcAKxt8UnLrfrjF0SqiXuCP6W42F/9qXxwLYC1Qt/QD18+xkrZQH8zctkkLlfKFmFP4yThbbxgbdQzHsfkgTv90WqShF3xKVCgP7XnBmaYn+ba+J7z3CfDarXvCRmXRKp3oDu3H69cGFz1QU+N32f+PGzgDg14w0rqDhtLivyfSrhisilNqueqGrmel9r4RztBwTXt5MsAF9RslP+gonUATR7NLmHfCibNhJyS8HTAiO81W+8gRqnzcOVfZ7XG725vGaM4eIqsjZvr1tqhvEch+62OHTtcpy0lnGyh09ERHidtiPKzsO811a1jcc+dM2bBGbZKYHDOfFQptTx6lbLfCnWfWPZknLBFfJcu3o/UMHQJ+7y9wWkDkcz57h9xTCBcGv7YXe4LQkp8n6RXNIZ+We4mZYIoLFyXFrc3N4CscUtBSbIx8FfqWrBwTnPtTPHOXi4AKkTyiJbUx2svfuTvHG8Jkf6bdS0cjZOuF+bFfNMDuPxnbDfsMMX5PQGt3Rh/c9AYyC2mPsZN1RJH/nh7eTfhGzz/Sx+XahAt++3RAO+L4XU5NFzsWe7eYhrRxJIQigpLlEfjNOQilfQ9AkJMmH9jRwsNTgkqvfmiA04NyRIfqAaaOpZPLRe5jM96jjeesBjQEHVzsXqiha8ud1txJHUWjSns7lPdws6GsyGfiHtR3C9lzI1XwhiK+tsJIFVXy73jn/JRxkqdcxIZKBUntBdJZTHegUtwhdtpBCQ7Cf38ktt1EZrdIlybLbbjECHVxv7uBXxMej+PHFFGVUrX/RakC1uhSkrSI16Er0Pev+6w8XrbmpM4vXoMr6ajf/y7/h0syjdSbQvKgD7cXHcqVReWllAePg+VQnv1v4HdPGVz2WAlkZpRFmPwljoxpKZygomPq0pXGgq/ucWrPK7hLOizCNSwJGJ8kuN+/BE+BUx31IZfhpTF6kESQwGUmm6SvbhdRvPdg5HeZOP7qTZDqMy/gtVRslLb6eaAsntWQXRy6UTn/iaiLQYGXcdj8mxiyDbRu7Yyew/YJFjYtJjH8H/itDT8=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIQsAAAAAAAA=eF4VVnk81dsX5WogKWOUDHGdUqLoZaxOCClEMiUaSeaxki5pQiV0TXFFXUKo10PeU1yVookeDZeEkoaXMvZDht+6f53P+X7P2Xuttdfe36/q5r0l+64Q6vSmUkGhmNDNOx7G2R0h9OUtyylnTUIzjBaNjRUROm3Wu6UkgdCAXJWSpUFCvH28G1aGlNDBPcnrCyMJdbGR/V52gdCdpStMB24SOpqZbHQ/e7rW5vutgVE8dxcqiExJJrTmdczCHl9C/1RTqWbcnaj9oKoi7uhAaJc1e4n4IbzX0Ag3SCLUXMS4XvIMobOE7npmAsdis7Q75Cyh98xZcyxyCDWekjW+XyXMmxv7lOGPfXr0I92wY4Ry3rmMC+OcW1+3x7doQk3e5j7ZfpzQ0Lp0Ca6sMC/CxOCgpQuh1Gqr4rvlhHqxdXwldxKqMPuvsRFLQi1CF7/KvEuo4lUSHh9A6Fz5EX927VSt1vuixN3AwyS6/i4nCVVqCTDR0RTmpc6aFVMYQuhqn66Vrci7epL3MecAoTk5cmGj4NNr1NzJSiF06fC0xLs9wrzJl6mGosaEpliU6750JfTc2a3PkhcRqp0vbNiiRuiUib+u+zlCW3OMElf2CfMqelIZtdAr9blnwMnFQjy72t7z7asJ9dfseeiKvJ72lWuFkG93+fYMSeyb+iVkAvcSuiZq5v8urwUejumrH4ZCPPMbyQmc/YQmdXfvU3Mk9CynsOM36qnbXqh4Djg/zGH6ZXoRKjUcKVICPbzT+FJCVwl94PvbZBee7zUuq79zmtCb7MmFB09Bf4viw6ExhHKVExdKob5fuOftXQ6DZ3fSiXTo4Hx3wrUrWZh3raD6+lK8N7AvkjzrQei6lTpv1JH3o8KRvYXe8NuKufySYOBuiLbrjCVU6NuJksHzhJ4IMr+xYQfq1vFT1TKV0Bffj6fPLhDieU9pqgvpoy4nXLQ9OKO1HIWehGHszUS1ZMTBr7pi6+93wNup8tyg+JsGtWUP7IhFXDGnfV7ZjcK8mR2HlZYu+13bVJLU9A484lrvuJ6G3lWNJ5PmASdL7sOjOjEGL/r8mcge8PNsdpdYYUboERu/+NEhDdqzaoZNJuofd7huMJpF6ALbuKqIg4RevNzmKPDZwrqX1nvgO1Fya/QTdO3cP5QkNgO6Ky+S7kd9ZPRdg6VtCJ1nYz+bAV+oT0dRcegq5+1Sq4r7B26zSv6yILTPu806K43Q2NeynCXg01I//8kv6PvJqEPlhS6h7X42Co1RhD6Rip/iGqJPmjaMh0K3VcxLHiSe0PU+G41nIF9ukFTsZZwbSFNRHkefVLRLnG5DHnU9hxBl5HU/s+6zHvwTKjLPoxg8Nrzt/KSPvLtqZCKCkC/MuZ0tjXPcrr4Z5lno08GjlY7ogxVdeX5bgX+b7z1tkzjUvUp5NQ0k9Pwfb6TeRRBqZPv2sS7qtrJ+p3wP5ss/Ygp3dyNeO/tWLyMd/L41tzWjzw+I+OhNQudzaaXjoTh/lTdUwQyFf9YcjP6Ae8FtMafZ0HPOHOk9lYTQLD7L9w34HHGOCT92FHOGZZBBf2vQ5uPTegHbCR3a2yDTBv5Eje/5GHpUFGXNy3GHv+w2jpUBL3Nd6qQCeLa4co5OYW5NzB+h7Vjz+IyYmnDowhjZqQzdeqotU2KAw+erTdlX+OfvB9P/cIPgkzzmU7VEQm87rOJswfl0o+VR7+F3fVfm8hrMk44sFW4JeJku4DGF8d6KoXqoH3PEzWO9SYwP+tbU/EIL9LtWzktYgzgtMguvbkU9nosszdbkQB/5jxtuQ8dtwcdu/sxEvqkwjauo/6Wbvw6HgZfb5taybVivHSppEMFccNr4qdceOoRfqi02Qh20h9VnGilivjbd2xQJ3OEJCTWeqIdeo77Te/jbcMn8/A2op3eB/bdl4K3ttEY3FKtE/1CFA84XGXC0fKHvLaHuW/3wd8jz9rmj6NeRxN7ENNz39l7nGALcRq+HS6fRt7LfTVZZIa+utvjxU+BlVqmXGL4bvjmlKWcHX51qdc7/Ezi3lJ+qCwQ/O5+4OiXUeZ5q+RUl+CCpeiBXCnjsFPdf68fKOsotGkG9+36KPWwCnqhgM9cJ6PPvUFDtS+gcPPmz04yN+X0xLJ0CZ3nYYgVp9JnPNY6lGXRxMLgqNYyVv8LZNh649eezcwfQr4yIDoVxPDfco5fpCl8cMhTbkYHvXE9caXA04lp0JQ32Yi39i6n1CnMhe2mC9jnwdG+L1RBDnCmF5Co96FTS9MifwMeM5W+uZIF/9qItdoI5LPNSuyrpBPYr/15fhjysidi+Ruyn3HcFlEOfIpv91xPg8xlnPC/2g9dLvaF5qhmE/vLa2S44x1cWGbDHOVXfx1Jy0PHSr4qIeuTnnJkQeYV4578v6+Yjf7CO/JEC8FV65F3ti3Oh4qtf/Im4989nGTiAV3VZnI7EJdR/YrNtmBPiNDZK+YFnllbjITWc505rVc8S9OvXHzco/FWUycjefRF1Cvhi3S3w+ZV1W5eAb2UTj/8UegSuPuqsj3ipJeWyy/H9dk3JePoOfSTS8dZPBz73ChHti4Mv3GLjpRTx/VXvsH5WAxzmyUw5Z/hftZ7vdhj8GsQZfR3gwyyL26V4GfF+nNQ7DV7s2c0Rp4D/wB/DFm1YB3hz2Sk4116g4ecBHMVj7I4q5DGwWLP2PuIuTHzFtEY975Bd9gewl/YL9v6M9+mmxqyP4Ln1i8bQJuB1NG1974w4E1M/bsYjv8im6xcFurqp14nOQl7ntou0Enw2Sbrql3LRhycf1LTlEbr/R9uyCsRlHnrfVggfHo24qbQd+gQbTEbx4TvdQvGqMPD9IK6fkQEekb+l2/9FvK/qDN8swXzpDDkli/ueH0Pev0Z99bNXO3Z7EqrckjuVjzjpiUdSrHA+s4rZIIu+HbeP2FSLuKPi+SKm0P/Lg/HIKuCPL03rjtsFvfn8F2zEGdcbUuUib/GE5IUu+NPFzELjGfL5btPkLkG+YR1W5SPMZ7/e9LVDWLP9NzxgYo5bxSvUyyBvT8Nziyn8F6xf9qO+GvuWY2PXAzAXLM2ac19gv1mzoMwL9+YULZ7MgU6HqhutXyDu4Ll19wTziuMy8OwpzoVnbPpyB3FZ6Q1pTvhuGs6vud0IP4kOftBXBM7hS3yTg8B1Y59MYBf6ZKb8wxtd+fif+ZE80ov6Rqi2/TcF/LoX7E+EZAOv5OJELvKe8eVKP0K8cM0NQe7YBz63TZxE/ZODbOVVUddsbgSzDrrE1DyoCIZvR3hVr1egfo4LSk2voy8WuX25q4Z95a27j3fBD6nTiYObc+Ejbj3rI+7J1zR/OoZ7NSprS9JQt7V5ncKj+L4EXrPSzQfetZkuWicFfaDsdEAcPFRrxyw3A8fnVQ/UFmUL5tbc0w2Yw1ePsf5LQ/x1UQ+VXKBD1a9tBQzgLKivtIvF9+K2CsenDvON0W/cfgTvExlew23QIT9QIqkjRRAvLUAIOL49Wr9EDv5MKo7g5cFnBTkJy7uQf2PV/FdP4NekMCXmMfii/6CiXiviKYuLVZ7AfHSz0fHIRT3GxvZLPYGOLTceTuhjTktyt0WYw1efRaU+BGPeljpYRAoBf+Nxot0L3yz9RiInEV90YWyfPOLZr1D8pYn7C5QMZ/8HPnkaY4XWiH9QqDogAnirwrNyXsGPrRoOX4eBw1auM2o24ms3yvLjBPPTSkpW0Keeqrq1LOyD2GetBP8NseL+yS6Y63l/lL/9X4ygDut3/gLeh1411pLoM4bWvfmbEK9RTH9/J3T7P29QTOA=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+gsAAAAAAAA=eF4NyGcgFYwCBmCVWdkZhQhRUUYh4bxW2WVkS/ZWdrL3SvbK3ptjixSplBkyykhKmZ9KpIHufX4+hE8vnPnXWpH+PH9+SeAhDt2RuhMY0ArJeepflY9bQe82s07H0AofDSJ7iGYr+Cf+ym2XtsDESWayYKEF4wTia2mZFpjVqa+y+bTgwh/3lc9jzXjyIcVvm64Fd1rnxDedmyEZIR0iUdEMjlSs21I2Y5C4/XVGvhnafvW3ZYuboERamr4424ST71Xu+ck1QTP6XaqeTxNG6bhqjn1oxG3rnthTrE2I1ny/zRrUCFFK4ZfGrY0Qvlir73miEfHNnZrr+o348+Bw5NnnDeAx6v8z+7sB89RCPLBrgMFo6J1TOQ2YtW6pLKNuwN7LEr1+uQa8Slfyt2qqx7I2G+nzxXpUW1N8dTOpRxVH7Hva+HrMbhmJD5PVQ8Ix+Fy1RD0s/CNC79bVoc48kzdtvg67vqE/HU3q0DQUvNYXWweOodM5xVR1eCFZ8UBJsg6hDVTkci5EEHN0AxiGiGB0p5Nve10LsoyzTUcFifD3/v2hSqQWga1Db3Jja8HMGNbGkFYDF+GepqyvNXAsMEtc3KmGbWaS+EHdGuRX5ojx2lRjcuoU80JHNT5QndHqHqmC7STpMR7+amyXEbIfoQrmAfjWlVyF00oSDVR1lRju2pVq3V+FNekQqVLuSnzn6an6516JhQjlwZj0CpwR2B5OXqxA5/nun3U0FZj+I6bhfKMC7iL5OgxR5RgruUQMHy9HaxHbrfID5bg8ax08ca0cG6EDg07BZRCkuWNiOFCGKyTBVIb7ytAvaPyKQq0MF4QWym1CSzF9qUNtur8U6YpikvEUpchjHfQfvFoKKmluhYH7JfBbDFycfFMCuxkBSxbmEjBp+LNuGpUg1v0Lv0N+MZY0trLZFoqRrafB80SwGP3auUzKt4vRI/nw7+FHRQjXc2B23ylChuUzdU21IkiMMsuk3StCvYlrR/BsIUQPh/BVsRdhOajzZ6ZrIRb3QiKqiIVwckB5KkUh4phvkCcqFuKS1kKqY14B0hp8jXWnC+AXqODLLFkAn9a30hvuBdg95HEiYSwfhLWeu+Y0Bcg5E3p91DUflSWl77Ir8zGrVvt7gi4fF8dfiuQq52Oft/GckGUe2LSEnj4ZzsPVPDvl4+W5mL9MntjEmAf5Dr3jzt9ywJFZMkBvlAspWjEbOukckBYpWPQV5eAVxarQTkw2BPfxmo1+y0baJfJnvLNZ4KueXOGQywZzO7dpgGgWasK2ZApSskBbXW6xG5OJEaPpas3VTKyqTaqmfXkATWeyDK7LmdCp9qqUufwAh/OqM8kKH6Cvy19oqTQDpp9qlDf3PcCZwqbCmEMZIMmWN563yoBILcPsUfd0MG20lj7tSwfFFMlWzGwaaDwPssWcT4e+962dUdU0DJjffS6Ul4aGCoezi+2p6LfgGyijTsOj0z1zHWdTofuz0HsxIBVVm+nRKkUpYPkrybOwkQKNI0OdIWwpSNWQs062T4H+9Vpx07RkLB4ZH1/5mIyLIde7RxiTMf41X/yDaTK4OwT03yQnYdfe0N5+NgkcBlYHDZmTcC1YzMXPNAnCzy0ZDLMSobZhdov2YyLG84Re9nInopPTsZzVLhED90cLC6oT0FFUExb3LQGmL6zFJy8mYLy9/p6tbwK6ky4Qu+PioUIdYZdJmYCbP7vanevisPaUfVRKOB5jzVaZORP38Ym9YWdEJw50AYL5svvuQ0Kv8+5n3/tg/FhsfVk4Fr+t/NusymOh23xuINPyHuiv9bsT3t2DcfHFXaGsGIwd9i43p7kHxrdWDpsT0aD2cct7rPT/p00dnGSORrf55yW58Gg8PPL2VJ9RFMjbxW+874lC8iqh51FhJF5urrKHHo6C0mqiRM56BGYXbyVw6UXCh3JR9yYhAkoubbZlRRGQVmCV+5EYjuKF6QeUW+HQ12G5qbochlcWNlZiquF4tstprKcYhoBvNaqcRWHgcunhpSoKhcHc1yMP/4VCs39+/TpZKBQ5tF5/vxmKlXatc4KOISj9/PDVk2ch4HiVlxE8Fozq9MhEeoEQTCb4cCvLBWMjgP/PTGowhkRyjrjXB0Hmnzf9EdJgxIxUErd4g9DgxMlT6RmELnM6q0iJQOismTueHA/EmjP3zwKBAGhoqdCHvgiA21FF8PD5Y6nWhVe3wx/9T2Nf/+DzQ8C6zZ/QNj9QZaZm7Jz1xS1tRo1fHb6Y5bBd4pPyQWxYl1hWjw9sls5bmVy9i/KRH/x6E3fxdPTr/khbbxDusqwxrHlj1WSQIjHiDqYKPF4+ovBGPKnNjlWVF7a+6HVdOn0Hblublf+Ne6JgR73SR9MLyUvBrMzknmhR5rG38fdEVe6vgF4pD1yL3GJdJnrgu0Wwxw8vd7R6KlKuL7rDM05AOLDVDUxrRxvMTrqD3lUh1WDXFXypig8F7dyQaj/s5ajsinFR+1mZOlckpsx2FmW4oN/L4l/grgveW7LNTE3fxrukTvq5ay4YjxlktU+4hWiVKeG4q7dx6tpzk76rzlho/p2rTHELBx8xTEwwO8FQmnfhea8TmIso6m2WHKC5Ph09neqIWu0f9trP7EHndKHNytEB+811TVzL7PBWjyLuoqo9Iv3oZ7JSbBHi3EsrJGqHsonv3RUxNjDirznDxWOLcP7/etyiraHvtVnxid0Gm6wznkMJVihXcLuvxWkN7oxckZR8S9A5NGTKnrGCi5vX2ayHFkhfPugXJWOJJZf/XrS/NcffjWBNEkMLnDsozdpLYg7RChvyQD9zzLkEcOUImyGWa89ouswMA2/J8o4Nm6KszKx5svkmHMjPD89p3MDQ+zM+NAKmOE1z+oD4lDEk2UW3yYgmuPmhaKDXwwicHOvfHOSMkZFLrX+ZwxBsNkT+5XlDxDSPPLz+Rh++3+mPCSYY4MZ6GGdRmh66zpXQzqnpIz+SNH3aRhe0TSdnao7ooW71OUuFwnXwZ2TRy69cx6/cb+qtgjqINVowVRrQAeWL0/3EE9pweK/x2K5dG9lFti4Ebi2kZVhKazVp4SoxP4XmnCbcn/5grG7TRHKkKDE9+iquS56YUk25hjATT3vFAXU4pohJve7TwBOy9Ax/HjUwFdDSgFkdBrVeKplxKnjZLpT+w1MVbTaylNuHlfFO4tglpWVlTJtF6nzLuYJFEWu69NtKENZlEl+QvQwaXgNDGcoroKOVnT6/pQAG9VnlzAZFjNmGHSK0y6PtC50tzS0FHNR99tk2Xg7R/RJCO5LyeMWvq8LiIYtsJ6HiXiY5xM6Mv7N7TcBNfauOKRJZxAgYvdV7I40gXVKDC1syWBxUDxvcuIQDjzT9FkmlMZa2vkQUlMQA59K7KqFLEMga+v4pUAJaPmyTNh4XMa++aGqwKobG1u+8f0fE0ZFNEvzb+QIs5O+cNFISg5vUWns3+Xns/f6R5f3mPK7eyKdrbBJBlQ15p5anKJi61y4NewljZeeX0IqACDza1YR0Ms6BXCflUfSaEHISaVYf2Ari8ZUhmaXSs1CJIw8iGp6BIp/vOHu4AKSEP0pNOp3C/eYTEnbhp/E0icXaLo8PFkwMepSl/JAdn4hv/coLik32cqPPJ5HiSvx10YQHHw+aqr2Q44Xa36gg+08nINDwx6W7jRteYetHpkK5ENdFXdyrdgL1Iw7dIt7HcSGqgGxhjRPHe1UulDGxo6/c1q3FhQNqjwz7gmaPImc/Z6MrFxvM5vmCtAdZQEZSKn/nNytYRVaaKz8yga/vj63tb2Ycb1fi02c7gm3R8JgfHEyIuvzmo4QnA8ZZ/4vfsmJEjuUKmcE6Hc7t/t1TGKAHD/PklSgqWlhJGTT+0qKDdBnLiwrnw9irrPQqXaLGMjN9lRD5QRDSFahlLA+hbE+1MWiYAqzuxmOU9FT4Vf3Zna2fDKXpxmPrX8khycGXV751AFJTn/Y+75GiVeLp3KDWflRlbYjxEw4gKef4SOACCZgGZ1sK6vaB6saGpOvtfwQdxq2/p26QYFn68aknHbuEsMHOKrnCPQLZ6I4S1+YO4drpjMxclV3C/wA1U8+tAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+QsAAAAAAAA=eF4NxWcgFA4DB2BCoXD5pxQJJaMrI5v8sjJKlNkgm4xUR0aRHS5n75JxNrnjUImQVDKLUrmKiCgyU1Lv+3x5RmOI/Yf6GhBW6B8wyHcPiQUSbB8cG/D5wJvPH/MbkM/ZfbphuR6tDRz8/xQboB+558g4uR6x7Wcors/rYZE/KX5ZvB7nPRaEpM7VQ+tYsrbjgzqEpnQPGy/XoSThsl6DeR3ahaae9FPq8OlDoOOlGQbmrSueNUnVYeW+00pCHANTXokM3nYGot6Ov9osxQC59XnhY3sG5n602i111GJkt5zy+7+1OMh26r6qWy1qbZQZ5rm1UNma3f2WsxatmTqS+1AL39rX5q8rarCJ/4rduZEaLBbJTOwzq0Hvvg9cM5E18Fc/wD60RMcYi0TDgHQNNDcncA7douPMW4U+Qh8de4vij0jr0zEc2kK/409H+Xjj/LMZGrz1ggpCROnYsCVXg5FFw435g/3lnTTwtl7HpD4N99Q/uYldocFCUE2g/Us1JNqNAj6K09C9+7vJIb1qLGjOSLbnV0OhmF9QmXoXmb3TXsdYquHiddGpdP1dZJHyG0843MWY2k52imcVGu5+mOxur8KFdN2mTy8rId8c2/9Apgo92YmnsjUr8U1IVI4/pRKG3fQwRmkFxkM7n3WvVWBdbNu01LYK7Er2MZjwqMCXYFH5uRvlUNDbbWLzrhxdZLuV9atlePglOHrHsXIse38dcLpYhtpU3gjJljLwvztrwTpZCpuZrtEA5TIwtswQ3jqU4qvAqAJndSnYfQJSxpglSGDHnx7pUlikWzjuPFsCe3/z1x3FJTjFkPsveLgYP+feGnyVKIGyA4O4ZlcMySdur2VLilExrqqR8bkIseNqgqkyxdBsKujQ8ygCneSexkcrQtmXDo9/81R83/hxOEelCKMdpXUtwVSsyyEGKbRSoRDVoxrOTcU0JYKn+xgVo0dVsg9lFeL2eS8Zl3eFuDp72O+bdCHi31ldWDxfiHfvO31iHhZgRGjGz3e1ALPbO5U2niiAi/j84gdKAQ4pjZIuTOQjdaU0df+eAsRyKc5WXM/HGjmH+3RjPsJncpyatucjIHSVx87i//9Izr5Vl4fMqQsXDs7m4fT5Antd8zwIr7YtvCLnIYgEFevxO5i62EtSk8lDF/eUZa7kHSxsN8xpTL0DFpreb1PvXHBLv37mN5SL1NwFAfv626BtjvdM25WLjjVeWtu629CxIpN4PW7De+ejd54nb4HVU2luoOEWZqg8n0yLctDY77eRyXkL4rZHWZ1Ws9H+5gqLkG0Oci/0F2RZZCO+ynlvBCMbG75v0pmkZeHVzSefuPiywX5S4YouIQs694R6Cr2yYEMe+3HnciaqbnZG6XdnonPP25D5Nxkgfn3Z/lkuE8LKKmuyhzPwN4DsRMrIwC46M9qkIh11Hw9ZfWXJQCzpisLh7emQpzdWqXunQ8f8P6zFpmH8xb+Ms8Np8NPv5wpaS8VJ9SZ7veNpKHaz460kpUL0b5nrRFsqZsVvTsR8S4G+/oChhnoqjFz7Tde7pyDz4RmqEiMFQq3PxXZ8ScZWTS3tLrkU6C5X2zxwTUZlc/+GpepkDDgNEJhfk0Bs0WItlk8GzHliAnyS8JC4YD1Yl4Q0F3GRiJ+JsE/YbBOomQTbRTnLhbBELN564xPzJBFVFEbHI95EOBqwyf0yS8T+cPGCZo0EDME0M7IpASsjXqVJdhRwLywr1TEpaIx42fQlKh5WD07tv7yOAt+tMQaV9Jv4644HZfviwUzvnu8bIcMyWM/e+NRNhKtr1OluJcPCXHFah0zG1Oxc18LxODw5auwT3hqHrk/1LX3kWFgctTFaWY2F3NDCuc6uGGwJHBJJVY/FkWcZbX2bY1BO/cjUD46BYQrTcOD0DRBMFx+uPb4BJ/G57Ccl0RjLb1ev5L0BH4pvadpKFB4otu7UsY3GRpaxEiWTKHAQk0m06ih0bBoUyCiKxEF278RJjigsnd/CqGCNBPGcPu/wuUhI7r0d4+IQgUCddy+uNUWgVdBruL49HL//5k4/FIlA5yOievK+cPBFBL+kRIRjvXir11RaGGguvnvHp8NAGCwIrmELg8srnu4a6zC8MqM9Z/qGIsOc/nWqIxSGhEGjRy+vYyJ78H2oWiiyDS60WLeF4JumTFCf3XXI588Oed0LxrIBa7P0iRDIOc0xvzCuIcX5VdKSUTCsXLlC7jZcxTq3LZ7CRtdA3Xa/o7IlCOxkQbEbx6+i+Ynkrhe9gTjgOD0hcjoInRcrdRbGAhDauGjc7RkIFktlDT6WAKh8uyx5LSIAJ97knuES8wclwXBAIN8fSdQytS6DK6Cbz7lEtl8BTUaoVMfXDyEshQ9qvvtB1+YxzbrYF3XvRZvIwn440hpIWWaSwGFKu/nbzBdHqfYD3EIkzOsJ+E/FkTBsGVRz3fYythMK5o90Xgax8heLdtEluGs4Z67yXoanZ32E+vxFiE0RRRZtLmHXIX9+G72LYLX4biZc+v/VBSU3qviAzLwo0rLiA4Epk++2s94Q3zB1w6riAtSt186F0r3w0NxTeMDNG9EaG92Mgz3xMtOHQDjgBU6xAyMpJz0gu1OcOrrmAVYq67Ki/HlsyJmv3v3mPD6mRhWxb3dH/BnhlfL77rAUaxl5x+UGIeMhCbMiNzh8LBFOYHOFHWOiZSrLFT2JY7krHC7weGAjczLDBY9r1kfOEJxRHxg9b3vbGZxsqg0Ge5xgKtXqMVbhhFOy0nPv4AjPyeX2h22OCNFIIVx3ckB4ozS1acQBVYWqNVwJ9iBEFvs3cTogtSf+TkHkOfA2mV9NVrGH1PGESuvftjAr5rokMWyHb1WqnB9CzmIpyumJlI0t6mE59GnzGQj/C2MOjZ6Bn4JE+cbaU5BoveA3cvU0jtdpF25wtIHoweUj38VP4eeCydvrItYYdLvYXfzGGgLp9iEik5boudpw4l6WFQTnXMrimy0Q01d2t8vdEkIhVBf/fHO8mL8WeVPPAtM/OIKiE0+inxKRWUA0h+HrqTwn8gkckfrMdl/0JJhqQl/vJ5nB46cvS5DoCeQNNve4HTFFIrpWE/aZ4WWiM/evEBPkbDVpOxZxHP56nTIhXUdhbZJc0d1+DNqSoppmB4whR5GSX91xFBK3ZxWfFBrijukjn/1RRnjZqFyuSjRArVRya9M6Q4gtWemuf6oP42ZfK86UIzA2TLcgk/QQl3yQ6qqkj2G9JZKUvC5ejB9QVv2qi7RV3mWNf9oQjTPiYVbp4H50WIkM8zCeXRJCQ7g2Ti/3eDNSgbefveOIbocRWvw73eXmITS+2BitXaeFE0vVe7TzNBDAFFFZu6eJW9EeF4V71bCXdOuP05A6on78kXy/TRWlBG4jc341LPCNb3UOVIaXHQl0FxX8IngIlswrgpt/V5xDvxKyve72J4UfhBhHX7OVhSKYydflxKQU0DyUuOnGdwWE+df+tByVQ+XqoaOzOfL48II9z8deFpw7BH+k2cmh6IqtB01sPzg6it//cz8AivvlYMr6fTg8kZkeoUaEcP2vRCMeaVSHNtVOEmXQ++avkIyiJNjOTk74akuBKivSdzNQAlFJ9l6efnuhZRE38eL9bty591ZD9ukeqJYMBjicEocqm6E8UWk34rw+efb9EIXU42rP0SYxNH5Trj+nvQukJVZK7zlRKPJ8D5LqFca+wKBRsYMiaLhmbekUswMCMx6yWa+EMPaUxy/WQxBqfO5/AnK3wzq8+KkGaSt4nHtpsknbEOa9miGQtwWnu6WjPMoE0LXt9fm5GX647qhrmRj7D9Mtz1822m7GYdaCX/Ha/Fg8O/Fj2yAfNgqe5z3cREAJQdhlYS8P9llvVjWo5MWLDp2TvVXcSNcS+MUhsAloy+187coJTXanh850LvhNG78PNF2PGP4RanvIBiRbqVcpubJjfVUKH+EqB5Jt6Ut3ytdB6+nTP0pFbOBZZGYfEGGFTHJZ0Yk1VmR/UHSeifunZWLs+I8QzQL1ODknivmaFqKjPTPIf7V6+LpX6PdXtWq3fdjzX/IfrUk7e4n0P7+1GANHW4gmq1r/A7gq264=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA3QUAAAAAAAA=eF4VVHtcDWYYVrRJ/UqkdFFyqWwTqWhZT8rt5NKkmFo01snm6CAtvles+6F0ikhyqUN02WEoolDaTzK5VqJNVkLUiNLkpO3dX88f3+97n/d93vd58u54ygrrCemT0mTfXCRo9pR0JN8jPLuktlpzm/Aywd10dg2h5deFHZbXCR+Mm4veXCW8Dz0f91slIUL+ccPuckLn4Od7VvD/qNs+2vYXCLZ+ijuvzhL0FH0jis4QOvLi2yJ+JYwm+xXOakKhXE/5Jp8Q1Oqboj72/7+WcOkRgldviL9lNmFzaKjk7gHC1HcZIfGZhClDvcpd9hL8YybKn+4i/Kufr0hXEsa0DreZkUxw6Alb1K4gNFlM/HxvPKE/U37NPYYge3TA7elWQq3u0f3JRDDRl3yYvIlQXHd2Q/1GQqTDA2Oxnt879HotwgjRq6Y6Xf6REB/2uiE4lPDD49eaAd/znBW9Rapg7jNOaewVxO91LY4tywgPjxWOjl3CvI8iu20WEwJn6lZe8WF+P5tDK+dzX83d+7UkBPs5ATWqWdxv2kqJlycBS2psnrgT1NfPrY13I+yOhLvtNMawlLxqJ4Lv6dPlsskEg7fmWYYTCT1eYn7xBMK29oK2AFuCPOhq4oCxBE+3gun51gSlvvsoX0vCplxnL81IwgDd0ivHRxAqnAyK/YYRHqfVO2obEgxzrZec0SNYTu1yDRnMdeu/6TXVIcwMMSq+qUVYtmXH9oR+ASPb6H0eGgHfULNBff8IrA1M7CrtFsiUmqdEvRHwq9ismfFKYKm1k2xwu0Cb6r5+7XOBPteu4apWgaT09yXhzQI3Nho7S5oEtg+zqrb5Q2BKYt75fxsEwiPP+rTUCTgmi4fX7wr8eVHrxLlbAm4SzdiCGwJvx+plq6oFahQjE3OuCizLXjX3eKXACoOcgKJyAfUuD7fqiwKjn4h1Ty9w3Z4GhV6JwMlRi8ynFwuQicO1iNMCnn+JaRdOCgh9eytdtcBuQ89p0gKBBUWPJbeOC4zwSBszO1egusXs8O8q5lcnHA7OFrhzon+oziGBOX2fdpRlCXj9vWFSQqbAC2On1pUZAj+9N7L028M6mJR0BuwWMGjvjtuUxnWWKfvVSoHFh2+kanYKnFccXRuSLHDKRut22w4BSURW947tAtFZZlbeCoF4r/FKu0SBpydLFbYJAp2XZAvnxgs4WN+0To4TiCv8Z3pXrEDkSGljNOPDBK2JLowO9j3LjRj/aqpNMWHctlT/3mzGCT0OTjmMzzSzfrHl/41ZnuMaGb+t0I8s47ox5uOlN5hnodnlnCHMb/Lzz1cE95Phd2CuWZLAgMDj+19wv/ZmvdrtKQIDi/LPjOK52qosSmN4zhUSe33TvQIPnDRbHu3j+cylF+tYnwa5S3Af62UVeaTOj3UsjNKRNbKuGWXlPqn5rPO6oUkbWH+bY+E60acEvGNfKy7wnkz37iux5P3p/ik3z78kkDvf3TSQ9xxSr+6ZfE1g6sEjrZ/V8J6Di9/M5juZV11pHH1fQFpc+0UD31Omd6e2N99ZpfviBbXPBErfkXpjB+8hM7vE7q2Ac/8n7zr4foOSYpsrPrL+jUPe5gxkf5QtzkjSJdw/vWn6FvYFVil91rNfDObJPVZbEKpfuMYtt+FcK+3MWGRHOBRsog324b2zegFj2Z9rcmQe/a6EzJfha2pAyDPuPpLM/q63i7n25TyCzhznW3VfE1ZbhVUFcj4oewIbrwdyDmQGLBr9HeFMwridQVJCaeBdw61rOFcHqaKi1xGkFgfTpRFc37nb5XPB+Rv7lfQO59cXrv4z/WMJ243shp1LJHxVZeD0LonwiXbbeKNUwq1GlUI3nfPSd9zQpgz2dfK0VGUWwVF297n5YUK+smtwnIrgVpbUUpXLfGOa/J7lcU6npBo2F3KuydLl504QduyJspOe4jy0LH/wknN7rWOt90zOcYvcApfVJTxXmMZ/Huc7Da9yfFBKaDMcpPO6jPAfscfnaQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAKQYAAAAAAAA=eF4N0v0jFAYDB/AbN2uat9LTKurJy2HzlmcreelrMUwPQuzKW2iySs5OLHFENHl/CeWl41wo8pLXFHeHOy+Fw7m8V95uKMq8ZbT99PkHPg9njvo5Vo7j4ZWl95bBbniyKh900HocU0uUyFnRGH7jKC6XRY1hK8xnn7/yGIgFyfpanFFwqbsiJzxG4RxziJQqNoo6kf5xw4IRRDQNzw+Zj+CNxKVD/rPDoDkpyW0mDKOS5hUZ+t0wEhs+D3w/NITjvLsvfo4YgntK1S9l3wxhpUVTbrVvEHHpfne1aINY+Lup2U5jEPNvwi08BS9Blgl56RrxEr3BJCVT3ZewmxG1yY4LEbx09kJrghAsl6IcdwjRIkxdGl0cgPr/VleOMQYQ2zChed1pAGbEGXmG5ACekC00GE0C0HWOjYddESBxTq/wiKYAttx3820T/fDu7tutl92PFqZUrL9jP0wjWcwomX6QDxxpvtTRB06ypKFqdB+yIiw9So/3gRuTHi1O6MNhku2aamMv3Ng5hJ2hvaBYp063GfUifUL/3Y+bfCSRssh/NPLhrcf3SgjnQ4++ZeVkysd5e1vzMQk+pOlzt1Q6eyDwE1mpJfUgTl+7etKxB0OyzstnFHpgdfPweVleN95R1tUFTt3AUX9/gqgLk5ffXk0I7sLgBznqNekutHw0uNHMeIGUYEGHp8ELnAksPO3Y+xwRWxL6GRef49hlCQ8ViecYSUjmrOV1gkYNN5JFJyS7su55j3bA60V2yWpIB1b2K+9sUuxAmnUhpa6pHbl0H9txz3b896yrqs4X7VDNVnVglLQhk01UPuLQhh3y07ypjzyQXH1dHjB44BAU34RZ87CfnGziscZF16DQ7KcCLv6jMkPXs+NCm2E4t/tTK3Sp93KXSlthIHdwL8u1FSqdyAuSbkVEvq2LPKsFRKX9p5N+a4GBxmDslGoLSHnGPVJDzchblZsTS2zGcu9CbKNZMziVZ20NNjggxNuy/So5yL3Ndydf4CDB2SL3rRIHuyhCkfoIGzUBJkXi6WxYCsTNg07+a/ukbuh2NlSq619L81hIuxX7SjWShR1Jm+0NYEG0b7E4bb0J+dkKFekBTfD+pF3gv9iImpmJgT2+jTCM7RS7MfsMzBDDU0yfZzjVcDKIOvMUu6XmCya9n0LbJbFsYboBAZafZOLON6CHlvC+QvQERN8V4zMXnmDGJq+INl+PLYef6vf41cMjpltA+lCHEa3DJ/Kv1CH54l3HmPVaLI4qqA2F1sJK8d7bVLFasIpNhDU3a5CSE7fLTKoGRYo/jBunVqOyoYhSuKcaPSm/S0bRq/Bo+duFYbUqkE0H3SrLHoNXG5oso/8YIW+5ZRusSnz5FbkjzKoS47/e6Wb2V4A9cSD8d/cKTE5We4jPlcNn7/4K+6BySPoy7KnEclx3VoicUinD30LDzWfHH4GtarQR51mKqt0BKpQbJdDU866LKnqIMbFvvOe7HsBGQ0W5ebUY6c9tP9NQLsbRPy9+bmxXBArJfFMxohCnODSn2er7uErcXG6aZ6LO2Uv2KYmJgwyW+IZXASYsuHqZBQyoB5W/LhXl4xxRY5ejbj60ByypzGt5GPhigVTdQUeUdFJrpiIdJy1s/LiiXJhJP7Y4kZsD4uzr+jHnbKzkeDCzDmaB6KK1/c7CHQgP7Nv4szUTvgtSN3MKMpCy41NDY2w6/p/xiH7q2m3Ycl4d9aSmQSGfkDZNTYXO1yP8kZAUiKrsTIwSknE1/vbltcIkPLNPvi2WlggrB7WoaFE8tOd4XTbWcSg6PfWtGucWot0CfxCYx+CvjPX1r4dvIiVkbKKEFo2Pwj9SzQ9FIfSE0baMD5GQlzLfeYITAeZiN2s7/TquR/HZtNhwTPIySuO3hUHGOCxwm3woxh0pKg/0r4GwnV/88MpV1J7765ZpRxDKCYT++98Hwn5uTVOyNgA2JQXKDGsqeqac+orX/HF3J1/LuZYC8sCRB2tyfnCa/Tm8afASDI5xng61XIB9vKmfe68PIhfV7/d+dh5j0/cYfg6/4McgtmtWmxf2enxZn3/OE51zma+WtDz+faGjo6R7FiYmztO+W274BxwpHXs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAKQYAAAAAAAA=eF4N0v0jFAYDB/AbN2uat9LTKurJy2HzlmcreelrMUwPQuzKW2iySs5OLHFENHl/CeWl41wo8pLXFHeHOy+Fw7m8V95uKMq8ZbT99PkHPg9njvo5Vo7j4ZWl95bBbniyKh900HocU0uUyFnRGH7jKC6XRY1hK8xnn7/yGIgFyfpanFFwqbsiJzxG4RxziJQqNoo6kf5xw4IRRDQNzw+Zj+CNxKVD/rPDoDkpyW0mDKOS5hUZ+t0wEhs+D3w/NITjvLsvfo4YgntK1S9l3wxhpUVTbrVvEHHpfne1aINY+Lup2U5jEPNvwi08BS9Blgl56RrxEr3BJCVT3ZewmxG1yY4LEbx09kJrghAsl6IcdwjRIkxdGl0cgPr/VleOMQYQ2zChed1pAGbEGXmG5ACekC00GE0C0HWOjYddESBxTq/wiKYAttx3820T/fDu7tutl92PFqZUrL9jP0wjWcwomX6QDxxpvtTRB06ypKFqdB+yIiw9So/3gRuTHi1O6MNhku2aamMv3Ng5hJ2hvaBYp063GfUifUL/3Y+bfCSRssh/NPLhrcf3SgjnQ4++ZeVkysd5e1vzMQk+pOlzt1Q6eyDwE1mpJfUgTl+7etKxB0OyzstnFHpgdfPweVleN95R1tUFTt3AUX9/gqgLk5ffXk0I7sLgBznqNekutHw0uNHMeIGUYEGHp8ELnAksPO3Y+xwRWxL6GRef49hlCQ8ViecYSUjmrOV1gkYNN5JFJyS7su55j3bA60V2yWpIB1b2K+9sUuxAmnUhpa6pHbl0H9txz3b896yrqs4X7VDNVnVglLQhk01UPuLQhh3y07ypjzyQXH1dHjB44BAU34RZ87CfnGziscZF16DQ7KcCLv6jMkPXs+NCm2E4t/tTK3Sp93KXSlthIHdwL8u1FSqdyAuSbkVEvq2LPKsFRKX9p5N+a4GBxmDslGoLSHnGPVJDzchblZsTS2zGcu9CbKNZMziVZ20NNjggxNuy/So5yL3Ndydf4CDB2SL3rRIHuyhCkfoIGzUBJkXi6WxYCsTNg07+a/ukbuh2NlSq619L81hIuxX7SjWShR1Jm+0NYEG0b7E4bb0J+dkKFekBTfD+pF3gv9iImpmJgT2+jTCM7RS7MfsMzBDDU0yfZzjVcDKIOvMUu6XmCya9n0LbJbFsYboBAZafZOLON6CHlvC+QvQERN8V4zMXnmDGJq+INl+PLYef6vf41cMjpltA+lCHEa3DJ/Kv1CH54l3HmPVaLI4qqA2F1sJK8d7bVLFasIpNhDU3a5CSE7fLTKoGRYo/jBunVqOyoYhSuKcaPSm/S0bRq/Bo+duFYbUqkE0H3SrLHoNXG5oso/8YIW+5ZRusSnz5FbkjzKoS47/e6Wb2V4A9cSD8d/cKTE5We4jPlcNn7/4K+6BySPoy7KnEclx3VoicUinD30LDzWfHH4GtarQR51mKqt0BKpQbJdDU866LKnqIMbFvvOe7HsBGQ0W5ebUY6c9tP9NQLsbRPy9+bmxXBArJfFMxohCnODSn2er7uErcXG6aZ6LO2Uv2KYmJgwyW+IZXASYsuHqZBQyoB5W/LhXl4xxRY5ejbj60ByypzGt5GPhigVTdQUeUdFJrpiIdJy1s/LiiXJhJP7Y4kZsD4uzr+jHnbKzkeDCzDmaB6KK1/c7CHQgP7Nv4szUTvgtSN3MKMpCy41NDY2w6/p/xiH7q2m3Ycl4d9aSmQSGfkDZNTYXO1yP8kZAUiKrsTIwSknE1/vbltcIkPLNPvi2WlggrB7WoaFE8tOd4XTbWcSg6PfWtGucWot0CfxCYx+CvjPX1r4dvIiVkbKKEFo2Pwj9SzQ9FIfSE0baMD5GQlzLfeYITAeZiN2s7/TquR/HZtNhwTPIySuO3hUHGOCxwm3woxh0pKg/0r4GwnV/88MpV1J7765ZpRxDKCYT++98Hwn5uTVOyNgA2JQXKDGsqeqac+orX/HF3J1/LuZYC8sCRB2tyfnCa/Tm8afASDI5xng61XIB9vKmfe68PIhfV7/d+dh5j0/cYfg6/4McgtmtWmxf2enxZn3/OE51zma+WtDz+faGjo6R7FiYmztO+W274BxwpHXs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAARwIAAAAAAAA=eF5V1N9Lk3EUx3E1ozWWzrX88aTTtHQ+ptOcpjeRICHeBrJ2oWXsogj/gEgQHBIJ4q8bRwSLsYt1kSwoiS5CJCRMI7soEwlButBEzX7NuYI+by+6enGe89055/vs+X4Nx8easkfbF/bOya4CuVoqe0rk3VMyVCE7q2S5R2ZWSxPjJnnWz56WqWLpcEkPcSv1X7Fuyi17ibfKZDf1EpXyC/2c9BtgrlAt/etkkv3ZeF7IOpN6diymjoO+oZPyIXM+IG7Nk4YhY7my3ylvH5fhHDwmg8Ru3rOL2H+Y36ORISd/fPin9acM/JEvseOX/IrB3zK5T546CwnF2+RvEjclZRzbyK9gc0qOo22PPriPdWnqM4gm/eeZ8xLxNPll9jlkkdFDcpS5guw7xlw++qx/k1d2ZBbxAPkUtlDnObanq34E03gvftyi3w1+H6Xvu+/yzq68z3s2mDfCfqbZ32O00HeM9XHiTf7HNuoGeR6mbyXzbRyV1iz5xiqHj8hGm/yEt7LlM77Lz3ynVfny/QmZwbm7x/l+SrzGd7xLXMJ5s6OL778a/dSfK5Q+6kWIL5Ofou8M+7Dgjp06nJda1oW4j+Y4P17yfezjNXpZX8C8bvpXcK6GyV9lfYD4Be/Hw3yTRbL/jFwtZx/cL/ncLwnyNvKL5KMYOFjH/TKC17nHGnCF+7KU9ZGzsof7abaBPE54mZd6Tu6tWI3sqJfz/H6hUS6dlz7iJ01ymedvm6V50I869eTD9L3G827u0SXv/3Ne5Plf38MDTg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7gUAAAAAAAA=eF4Nk4kj0Ocfx3OVHKuUEBMVK8eIkFTeikSKSkoiCxUlFaGaaEnpwjKJnw5jolFSroaooRxFjMTkyBGVxPN5ouz3ff6B5/V6v9+fSZOE58NRoCz2rCuZISUg5EjBHo41/WPvDntx9LoGu+t4cETWjza+defQsvZfd92No+rh0KNtOzj26R8wltvOIZM6cLtqK0emkrf66S0cGy71xK3czDEk6inDHThigjpOZm/gMBx0Ix87jkb31v0LbDkCG50726w5FGybtl6x4sgvdqxxWM2xzbB+lZQFB0+zz3+8kuOqSo1uyHIO0xjb342XcbySqFQcMuEIPmZ1Kd2IQ/FjmZiHoeDhgaMqizm2Nxd9aPyR46udmWeUDse10vxXa7U4YGxsL7qQoysj58lDDY6IuYuXHZkveMVm3flRnaNGUkejT5XjYEh6wk0VDvlhzekuczgKd6ecnqXI4fZafbxGnkPc4frBMzM50p+o9GAGh71pgsvYdxyjmQp1OTIcifN+W+MrxWFxRe4vTUmOPunoxW8kOKLCZNOuinEYjZ5T2SzC0eIt+avMf4Rf/j09pfwrQWuzWEjoGKG+Imx4KSccXz6xZ3iUoJF9vO32Z0KtxpdNXp8IgQmBlaofCXOnjaxoHiQ8PXUoJ+Yd4TD/sHBdH0HFd/818R7Ck47+mcVdBF+nPZFBHYTZVd0T+u2EEvNdAe9aCXvvt/f/3kKYsch1p2szoTCppWH2PwRPuW22L14SZM80lkTWER6MbzJa/ZzgdvBFxtdqwpS369VynxHuOlf95ldJcK5dK72onCCyujys8zEhI281SywlbNYp3belhDB+Y2XHd0WEFPm/nCoLCXbnTKtP5hNGJnItzHIJif5L8kZyCJZ92TpZ2YT3O/SS99whXKn7U0E9k2C+RutiSwahvzBNNPYW4bKeRvD6PwgrU5LfT04h9CqqeTy6SYi+mNR89DrBVFR5g2ESoTMw/vFgAuH8gLzpH/EEQ/fLWTvjCK0N0xcoxRLCbS5drY8h6BZLT7sQRWgyiAy3ukgITZs8NnGO8INKuF/+WUJNtMjbQxFCjhKh27XDCVLHvj7vPin4fDhqdS1U4POgwq0hhJamAP0ZxwlH7IZTnwULuZb6KYcHEjKN3kevCCCszfCZTIcI3ap9x+/6EcIue33y9iUoS3btnr+PkPuze2vrXoLDp7aNcbsFXy+XCntPYR8tzcun7hJ6tXe6V7ZT6OPxyx9+diVsWLoxychF8P+zVu7jNoFb3e7sLSeh57in335yFP6VsvZX3kSwCn3S12BPaPts4XZpPcF/b8lL63WCR9tyGxEbws2NhcWFawhLy02WBFgKO1v2IF13lbCDOwZze80JY/Pvxt5YQYiJ15XabibkIns7dKapsKOTC0erjQlbWKpPxBLCoM/8N+YGhFPtN7Z80SPMcVStuqdLyKlMxH5tofcVSrkaiwhvs+O02zUJIZqzbsYvIMgnxszeNE/gnTbtgrSawBt+QeTv7wVePjXohLKQp++ZQRMlgkyn+K5Ps4XcnX5pyphFWF71n52nnHAv5iFl308neN8fM2mSFXa4KDgzWppwNWl0nu1Ugr6cf7zYFEJlxJBskThh57jvqUBRAvMb4HqTCBe69x7o/8ag7tzTlTzOkFfj4bzjC4Pdqo5aeWLoyHWzfD7CEKTdWnB2mEHmhrPeqiGG5FlNKePvGUwiHec8GGCo/lYXdaCfwf2wvcTCXobRnupjHd0M511shxI6GdReVHg5vmG4b2n1WvZfBpuCMoeK1wxtuigPe8VwKLnIbFkTg7iCWfbnBob48/mamfUMOpOM/7f7BUNpQM4MtVoGp379M6+qGN65Zn399SnDiXrtw3YVDHLW6b0SfzOkPtR0LSljMNVPqQ9+JHClqK81KBa4lK4XDTxk+HxRxTC1gCFCNOGWWx7DnCAFVcUHDJkDsZfr7jFYuMtNPX+XobEh6oRlFoO3jezIt9sME0XnvPPSGWIMJNsPpjFopJ121Epl+D+tW0qKAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHAYAAAAAAAA=eF4NxXsgE4gDB/Ca6pdo3S3x08mhmktKsbt59OsrWQ+H6ryurCz6XeL0y1KEHOO8WnMs72ea837N3HmuaVP8JFN5HpE329gp0vv3+/zzMbDb63LpjhKcVTlMubUS31CTTlgOL4BfTMg3tlqAI8u5Tpg5D8qK7PHiJwXC/KJVHl5QwKb2hw1mnXIIO9ZTzczloLuratwvkCHh0I2KJ1tkWHpNbD0dOwfFcsqM28dZjJV9HykKmAXvYtL7+PkZeIccq6rwmYGBptEbg9lp5GyRWI5cmsYE/dDUoHwKygp2wEbmFCKK5Ncuv50EkWwRvsSaBGsy3C6DOAn6imWic9YETq+cpegYTyDPpk9ntnkc8UGeJ2tOjcPaymOOOT0GV46Kjt4vY1B2Oe2r+ecYep1+itgheAn+8pecn0+9RHbZ05FI5ShcXW7peiWOYrThlaoKZRTSZ7TpuqoRzGUscKUfXkDvSOpO2L+A9dawjuWcYYjWcf+efT0ETbrhdjXHIfCFld84lPwFD4eMmXzVv5C015b12XcQiza8Q67dA7Ds9k3LsBiAfYrKDhGvH9l+cfUNpH5wxcF2YZF9WDX3kfB5uReDucTd+/160aa53VZ1qgcGhqGykPM9OOPMX7458hwLKowzaxjPoSbcQ1kz/gx3erN6mN7P4KeiV0FTPgVJcdiFGfwUrFuXk+fXPYV6yoJLVXI3BBZ/F5WTu+HsPyUeqpeiJ1CNSDkhheCHAxrOnV0YJZi1+6zqgm2DQ3869QmMrOToYnbCpOS82dvqx9DudqSuW+qA5hfL2pNWHWA3e8miov8LpQt5a8/zdritPXm0ldwOjmjYkxbahvvULTxazyMc0NGI+2P/I1RQz/XGJj7E/E2/lPLXrRC2QVvTvRUl+qnyGokEBK2ylaD9Erw1XO/sdlcM2zdfMw5piDEW81vLrvgHCNNN9VBReYDSqCivlrAWGJWTzd0+ipBRuSuuLkyEnF1XbAYIIiQNNem6b76PKtPvBE5kIa6/iUj+9WAz9p5XvT3o3gTSQe7wgbBGRL06YZ1a0IAJoXjseXc9mHOcCy8J9Yi6QuopMq+DzuOFKq2rf8Kr+cLIVv4fMLcJr8xdqoW1fuw491//X40VMBknwFi03SRrsAYPKNFr3U1qYLaS+YEey4e9yVdHgiarQc8mVGQdqcY+ucy+obQKJHfdqBaNKqxE6L6iqVSiqf+Sbe5EOaTSa+v9O8ugjPxAymkuhTpriKVaW4INdHFvSk0xwgWnVxvVF2GqLWT+99ZC7CtgGi72/w6po7+bcrEAdkbVjOjNBdgpkzqnW/LwQuOGH9H7HjJLM/Q7MvMxT95dLui5i/nPsbVVW+4iuIij4LnngVnncV3hmAvji7sbtRazwZM2yrh5WRhL68SeM5m408fWrNTNwIfkfPUJRRpyzPmOqY9SoSgwn+GWpmCbQkebl56MhpGRoqTEO7CgnyUYcbkQZhsVUnKScKI4xiGUn4jl7nMBHV2/4SG3xKJPloBi388Sh+McrGna/i3nTzaWW0yzjb+7Bbb+j8JGSRyS5JaQesZCck1M/rgpBga2bVp9Hb/izQuNtMXkKEQvFG+c9ItEHlYTDzuxoE7akXqPFoG+4IqULNtw8I3lNHZuGJo8EoKYnaHY6AudbaQQ0Bn76eKfb2Dd3swDmUOBSJhO/nKUcR0ia433XSsB+DQw7VV87yrO+RwLqmYwsRh0gbzHxB/phsTYi8QrEIZSys6998PNvCfskhVfBJ7aI3Pf7ANdZXyJoZ033m031W7P/An3XRi1a//xbzRAn1gU74X+r3b7R+70hGmhf1pgLwNfqOkfGzT3gFbQEQeenA7J8egYq4dnwMni3y4U/4hjkTICYdwVxE2bIv5j4IKWs9fryeFOeCVa/Uvgu1MQUBN8xQkn4crW4ypCHZHvvzbv6w32sNcrlH4vOQ7vuYHu1qKjcG2OM34noKFYti0kfOowcpzlLKqVDSR3j9LI1da47DYY7HD7IDwarxaaLFmBB8sgzXQLkJ6Y1xsHU5HNbstkZH+LT+oVMaYbKfA2Ie/sHjaF54P2GB8zU/wPu8QIKw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQIAAAAAAAA=eF5VlEtIlGEUhg2tlBlGs7zMRae8Nd5NGzNTi0AndCFDZUFBEOQliXChgduSgiBCZSRyk1gRuhkXDkR5JUEXYbSoERJFaCFqTWVWjhfwfVy0ejjn/8457/n+7xxLtD8nuS9Q1ntYtKeKb63i+aPiPJzJEZtyRU+GOIT9kvheh7hMXpNdjEsQK46IZ2El59PSxY+cN+H3pYkl2WI7OjzUazkmvkHH43yxrkD0Zolt5J9OEd3Yy/RRhL6gWXSRf/UAdW1iT5w4ECNeOCg+22UkNIg3OL9kEav34w/lHHZ78PMO338XXRvi3T3owvb+ENO3xNmfoiVc5zrIY/grfvonBrGbN8UV/D1ropW4SyHcE/Y54kapf5I4xz7/f3nq0OMkvgZ/Lv09CBM7jaKP77fgE/p6Td7f32TPoe/DkliJnjH0nCLeBbPWxXrqzmMncD8e+qoKiPf3yj/BPc5Sz8x3O/3EoKuAfG78RuxQdCX/Ec+g7yl9rZI3Gn8eepPQ5eO9XI0Sy9C1EMH9mcRszvXx3saZ1014+ZDo5t15ee/XmUcD73w4XnTwzuOZx3BsJ3OQiv2IOTAwly925wGG8b4bOWfjP/9iHlbwv4sVu9HfhT8EfwN7yZMobmHX088U/bSxJyb5XkM/N+E1/Gb6Lacfa5K4SB8z5LvNXhnLFPO5r6/YI+zBh9in2TeD7JtG4q+QPxK7n/3URb2BPDHjuFh7QvxCnouFYgR7KZH95STPHaeYQp7WUrGY+OZiMUCeiSLRj78V3VN876b+c/LbyP+KfWssEe8Rt06dbSIj/Xw=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+wsAAAAAAAA=eF4Nlnc8FIwDhyWriEr1klVCHaVBeIWvxpH5KyuJcLKKrESEEkki4khZybqXjFPSSTYRzh6RdfaIZEb59e/z//N8nvbcq7KEu3PgOKPvTsmaQ0rCAvP6oTlkptIGe43nkHBj+6ed2bPoql2YO8Y2h3PJYc1VXLMgPh53i7SfRd79Ru+9N7+DyPVmiVT7HccT5b5ub5nBVUZ6WZvUdzRXBPKnKsxgLTdndjR8Bo2TM9bNr6bhx7uUG7UyjXAr1IVtm8aZQpG0TtI02NV1X7d7T0Fwt2BQBn0Kr9NqB+OnJyFsGeSzoTIFRf+nJ/rNJ8HbOXe5LXcSJHZ2gYj2CTC6HhcKi0/iFkhMmToTCEmP5eh4OQEjfU2i2OdxVJuqvP2xawIPS+LUF86NQ0nPSMA+fBz0PZ7mOyvHoOt/KkKGexy0t0O/3IljqFli9jkfNoYQph7/PbWj6FHZrJ24fQxnjn24O6U7ioaqwptHyaPQmO3wmu4YwYjSJbc5gVFUymvx77AcQVq4x0R3ygg0JKp5L84MI4wS9IBxdASptolHUryHIfZQaJmleBhf9q1pMXMNQ/gis4ic9jAUKzosrBIYeF2wq+fmNwa0FxddSk4wsHWB/Xi6MwOXP2lQuGuH4PSLcqSTlYG9hZzyGpZDoNge3rwcN4TMeqKr7dogBLtD5/6cHAJbfDTNMmYQPHdNNceaBsG1tzTq2MlBuLcGBGc4DkLLzzqyvm0AxRKm0qe4BiGxK8Nc+vYA2rke9sdkDUBZ93CVLv8ARnkbLrzXHUC5941/de72I+OSYqzYSD/m4oIzzWr7UCxsc+/ssX5EsBiylPH3YcWtT7PYtw8/pbbft3f8hmShMf6Apm9Q4KyP1KjsxYqRjv5j8W+o1tNo0xfuxf6WWfdyn174K/8R8fbuQanR6ZMi3T2omeu9Tu35ipoK6euR8j2wIja3T6t8RfSZwBM7Y79C/3RwpVBqNyYZ98vDfncjUlKaqsDdjaVlc//1a92wpcxoH/fqAu/h6j+69C4UWg3eXBvvBF2pg91LqQuVgWW7Q0w6YRBB93fJ6kSHScf9tsYO9DkUBBFEOuFUEsNeT+xAMZlLLzqqA9yTjkdsStrhpGh8NYurA5LBMXExp9pBYe5Wtghqx8suhrIhrQ1R9BlqGks7kl64ckedasOvnGzKrYA2dIX7ntIoacWOp7LHStjacOiskMB1YivWChwivUNakbc6LTXd0AKz0HiZxJ2tmPh2dVuVcQtqzjskicS1QKknOG5ypBknSp5EzB9swbG9SZ/13JvB7uQwuq2gGZuEhXJ+sjXD6dZYqq1aM+I4bKMqXjRhcL/v0mJXE8SlHzEKjzXBOj7xVI5jEwTkqq9ERdDBWWY1EczShMcGHYa9VY3wnI09s6pIR8DDdQv5Pw0QEY03XHduRLY6LTFSsQHMOVtHt2Y24JxaoX6/Vz1UiQw+3ol6lLhM7dlS8gXbU93MNkvV44FDVf0G2xcQtZsc6py/oLOB+oqqVwePmP8UL9HqwHc6beuO5Fq8p0kdjWWvg7hWauXWxc94Ku9C9zOuRZbfhbanWp+xeKxl6VfWZ2Q2uQSGp9YgvnPH518sn3G5IPj6b+YaJPBNZjlZ1CBy+qppjVU11ubjDDVLqqFzJ/ROf00Vnl/zL/TeXw19p10S8kerwH7z+Y7Fh1VY1zm7XhJbiZV9PEPps5XwHo5jc2CvxGpqy2zglUr8fsZhd8SzAi3lPMT7dRUQU3AlL02V48Z89dEnShVob6hSo5HKYXGQeDo2rxyiBPvbN3rLkH05SecloRwSD/6z+G1cBtXtUjcCU8ogqkR4YNVVCrXywR+aomVw2y4bF2FSCi3LRq/+5FJsu6tosPypBO3/s+qXkygF5wZ7u1TjJ3TfJbs8Ni6BlqpIPmWoGJsU9D/9tv+E0VwVksn6x7/9ym7OvfeXi7TRDwp8xAYfp35o3EekB4pYrqsUQdq6gORTXIQn67I/ym1puEJZj7nBoCH0bF+jDfkD9PoEN85w0+CeeYnWWlOIcCGBf2aVP0A3eHJo8c97MPE40a+4FqIohzT8QfE9jCWfBrpnvke7j3kll3cBftw1YiZMFEBU0Xe2p+QdulyJHlZSBah/yq2/e8s7UPcneO90fYc3qvvG0ozewkaMtEWs+C1aJOmX/DLycTBS0ush11sonI8JC/1DxZXF0geHLPLxRpv6pdSYimGVD7Kr76kgt7glc7zPg9z2/rkxXip8I4IWDfjzIM8U6Djslgcfr90/yX65YJF+/6avMxdS+S/3e7bm4CMM/1QjFwsp5TzOOdkIa5EcFriUA0Lv7KvFZ2/gtWSzcF4uG6VPVjDlkwW5xX/7lgTfwNugtUTGORNr5gQ3Ds4s2Hsrm1Ht/8MWq5PvLJgyEXLbKE/zOgUfjWI5GOsUmIlbMwZcMrBwwEHKjYkCnin/IuN76SA3XT6yuDUDa82SP6PJaVBRd7HVEUxHwWKY2r28VGSI9btZyKZhlC07bbU1Bff28Evw6qfiwtGy4+Prr/HolMQDTc8UEDJnpI4ffg1TJgJt6vVraG3YrXywTIa6crFhb3syyKS3O+3iX8H9grbeJu5ksMwZcuzvT0LBz38cVbVfYe9CVmadRBKoWQH/+oUnwewVxShqPAEqOR0UtXeJiHw1Vr31aTx89jHKxQwToE29NF6hGgfmWkPma0zxuFYW9v3x7xeI0diUQi94iRucW35JVsXiKzmRKOP5AjNCJjudYp5j9/NZvsvnYhHSVLRf9FYMKvV4Q7kEnkNLz4HEcyUatiUjvnzr0fio3v+cSZsMvq9fKepjZNyZ9y0qVYvCN2W/tGu9UQhmWZbcqxWJvEbaxL89kfDI85LoNH6GKFNL+WeMZ6go3dZY5hSBboWFHrnFCKgb8z1PeRqO4pc85vM8ERAS1OaPcH6KpB07isJkwpG/7Lw62xKKt9KErMySMLD60t1XiU/wmRTCc4AQCouBbunTtY9B6q8S53sdgjbamyYT02Dw3RSsEjzyGLl7Arf0/AmC0U/m0KrqR9CfIWw1yH2ISctPJmlOQfi+4bNh4hyIxYOb1fUPPsSAbXJIgEoAmEkbNIuZAIiy2VVb732A2O7469fKHmBVo80garM/QqhdPT+S/VE86WuVvnoPyekhfYkR90HIEb5ut+KHcs5gTtbQv3xLuXj6bl/MB74LcSH4wSxpOUVJ8y7ufNR3zrjgAx7Fzf+Zkr1gJZ2f+y3MG6zPElix5AlSBLFVnXEHUkdy3vA5eCCXvmtKSMcTGYhLlVhyx+wN87jYL7exqVp+Iy3yFjxCrXetmrnj9qR0x9ezbrhWLLPNc/MtzPbJgIPNFY4PiF9Milyxm5vTzK3bGWNLeRxjAS4o/JPr2OLlBAsP6x/W5s6gMaTtXUiO+DnzUlA76ia+r7hlO9jdQGyQDXn8kQMCjrgZXg+xx7v5YxSdl9fBTje4eaDOFqTvbNyH6+ygSQzKMTxg89dXRobSLltYBYjr1JCv4dk/CqfPeVrjDrNUiuY+K+SzCcWyLlph+Xa+TG6ZJZoqzRqNgkmQnb7C2+tpgVKymhKvrCUeiUU7OQVfRT61+zJx3BzvGrLUXc+b4g6TRVBHuBn4oktdKIdNIHyHRm8wvwJb8rqZuKwxnGesvhP0L+OEr4rVJjMjjJyrpjPbXwK4v25yTTUAU4AawTHREHkqMpczOPWR4id9OnVBH5MjBNbfoRfhfZskMm+jB4n76yqtkhegVWRXlL9wAbt4H0K3TAesFfwSoQr/wzebvKihK1rwjewZNy3URmCFE3uKqAYeTc53/LTWhFhTzoHJnep4xqJT+ErlPLwSDhufkSRC4pOULBVqeNQSuHjK5ixWXmUfr7I5h6jMdy5VlafRtqZZSsk7g4ZlYW+ec6pQHZeRUxY+DetPN7ctVCpDXOGQXLohMEgy+HFQ5dTffzPNkc9SgsmhblGdnwq4r1rFP6CiCPlHA7dcR+WwQ01YaWybAqSS/O7VCp3EUbXj08uCcmC1i2LUpcrAM8OS9OKWLGbrBwn/RJ9A1EUb4xBxGbh7cH+h8p2ANTOXh6juCfwfSrcMNQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+AsAAAAAAAA=eF4Nx2c8FQoDB+CEKHtWoltxUbKVjPoXkZFRxFVmh9CRrIySPUJW9qgOWZlJ9pZNssree0uSUrzvp+f3tJlt8K1YrMOPRUBNNW4dd/gH3/xmW4fez7X8UoV1VJzU0fF5tobg14cehs2uQffYz/LMuVVYv/RYOHd1DbHaswW2yqvo0NXRdE5ZxV6u+52BnBVccJr/fYdqFatE/7ER1hXUtRykGLNagVbDVSsXt2U0H95O+NO7jKW+bNrUxSXwfrMn5GIZFO1NXHp6SwhjjGVeyV6CY7V/WHDrIjTYZXrecS6BxYeTWfrSIihfnHP8FrKIk8Fq/DofFrB/jCk2jXwRW/rlFwbOLoDl+eOMpscLUHcKSitLn8cfBkrm65vzWNH9t/MbzzzG1hjPCdjMQ274Er1jyhzut/qb6a/OoTPL6/Ml3jmsux+j6bOew3Fx0lP5zFksaLVHvPg2ixqOnFdPRGZBs9du4+c4C9WY9obRkhmQdbCIZv6dwcfvi6Gm8jMgnqc2++E3gwGBuFKKzmnEmGxUGzHPIHOJg6rYcBrj82rb46+nMa0eZGi/NgWz1N4FG+Fp1MkvvBf1moJxtvEjqtoppKlR0CyyT8FRJCspUXsKEdemwiNzJpEt9sKVf3ESj43HnE8rTkLiPxOpN56T4PEXOJI0PoHYDukjlMcmQREW2/nddQIdZQPWikUToArg5uc4NoG0eONiI60JODkUvKctH4e0H8FeeWMcwY2FHPX64xglflL582Ic69e5BaX2jaPXv2TD5tw4GDokn7WojOE0ddeDywVjyGOhTnKPHcUW4TvNgb1RzPmItPktjIAp0byIR30UbT4Dil0XR1D2VT08hDQCRkHqgBtRw+C+cpfy/NYwbga6n/29NgTTj48j6TSG0T7RwFSlNoTj6iw/qLKGoHVkSTgsdxAVL4XIjxwaQgnPgSwC8yB25SrHRKwGYfDk74KAywC66QXrFLoGIEB3mTg82Y8wk59sKlIDSDNSH7fQ6Ef8KXqiaEo/1lWSeRuq+vAydClyjakf5lYmmBHpA9eAhKuzVx8SeTSsK1O/4peFiWzNj6+QZbWikeP6Cpsxe9Zy4ldEXC0mmcd8gRWnp4/B9BfslbEOnWL9gsvvzU4mGn3Bp0GqdIuIXsTsCeQTR3oh+9eeUoitF6of0rhrDXqx+MiczyKuBy50pYHh4z3Q5Ry+R3uiB5SDZyS7zXogvWKmyPi2G69phYKdV7pxldnN0lKiG1rnzU48duoGc7ROPl1dFxr5IrPbybsxsqvJ9P1GF8Y3VdnuvegCj4JgFsN0J1y6SWay3F0w1ctu0nPuhMewcbNCUSdG6lW+NtF3oqzRKNVZtRNBy0sDJPXPuDpAWIxu+Iw7cs9De7078GhotNxyuwPv+N57Han8BHlLJ11d4Q5YcseO3f7djnMNuyS1+5+Af4e+Bci04+mta03Sb9uh3J5sEOnRhl3NbHm65TaI9/cwWra0IqcodKBArA0TJ8PlfrK1oohNzJ/raSt4KFrshO614PVWaLVUWwuyz9Zb7pY2QzhknHmbswUyXXmSukzN8B4bNleya8biO0GJ01ZN4Lu/uczR1gRx78m/pq2NWF3vP2zM14TpyQOPdwQa4RLAlErt34jAnq2ekbAGLM88i6FcbMDdtmrXv9v1uC5z/IKSZgN8M+g4r5vWg3lKhK2utB7SCbSt5d0fcZf7zH4z3np8F48rvnT1I16Z7DvMHf0RDtMj5k0ldaCKbc5bpf6Isl3VJCWROgxHnrUqc6vDwTqmB4WZtYgzmRZy+VkLF1cfdjL+WjTS8nIdt69FAtHnzD8ZNZA5Qv8q8VsNNCJ6HckFanDg51+9ebsaeJZ3Ml81qUbJkXH7xZVq2HmqGI3aVkGtwOOT9U4Vvh45s1TlXwmacx1hivRVINAdVfmcXAHLHPVDd3grkWfhGfCrrhzOa7fJouUr8LUwToh/vgy1XbJFE2blsPygIaHIXAaRf4TG+YPLYLtAfxBXSmEwI5alU1oK4WjC812HEjzv7irUWSzBvXInWtucYsTvpNGznShBHxNR3nuxCMSCLlG328Xw5fLVPnW2CLrcsgfc44qgUoAWGbtCJBdWDFKMFCJhYDCzsuIDBmWYCX95CkF8oEwbTfMBt5dqPujYfsCBkjsFBYYFCDzWIr9XW4AQho0kyqL3sP98fGyGvQAO/FLCT5jeo/HyqZxfD/+vzww5hW0+lriX+c58yodFxg32sN53eKznetRcKB9iR73TGGTfYepbewwp4h2kCkUdZtXzcOp8AlnIrzzo2KmL6ArmYognYjmqJxc7+08HarHkINR3a1m6MAeSh2L/VO7LBvX6xRbDV9kwaF4muvzIBAV2CdMhWaiit+Oy/PYWDgahbbl+meg7MZdrs5kB6+IMYpLvWzz3O3PNYTcdJ5KnKEhBGRgR68rQZUgHvbhBSkhsOjrqM7z2eNPw9Jddwo3sNBSJUnlqKqQiasPe6VNjKnLIJt2F76dAVrTl1+xcCpgiFbw9o95gXFWe0Zvh//9y+J1AUzIO1b/75HfxDTzdbymw7CVhJFkzoc82GbflrKO4Liahc15O43Z2EnSsePeJeJIQp1P8ZHOZhM1DkqrG0a8xm03wCRInYfts5Q7l+VdwkmVKPbjvNRz1yW9xTiSCxH2QFJTyEr9pEjmsYxJw88KDBnPtRIwpu/xp+C8e4fn6XRYMCbAq5w1f5YmDs7bIkN6XOHwPTNd8vxODfRaXn1GkxWJcsTJsaDgaNTubheKeMXD1P/BdojkKqOjLzL8XjaPEn6/9KyOxrSv5TEknCq3kFmsvKyJAq2KrXKcRCRmx/KQrDS/Qv0teP38zAlI3mrRl+8LxLH6Dw8/oBZLD9fx1N8Kwo6j/6+6jcMRSyzIYsIfhaWu1gnJkGHqkfmae8QuBrPT6BwrnUDwhUHJFrj+H6b8ce7n9wXBkpJ97RgxC5sTbSW6V54gZKnFL2ArAmptf4VZbIKaIvdaG4c9AF/2Ht8QgAIYsUhpmMv5IDk4u3dn1R2NGvOKVTV+8LSJIaef5IXdEz9ev3Aei1x3KtK19sfrPaHVzmDdeFCTkhcn4oEr9hEiivReySa9nEtm9seEolBtF8ASpIZWGds8TcV8eZKkae2Bk/28Bh00P7HJWe6d2u4E4vKX7ddkdO1yjKn5/XLFdKpLIcNAN+xhWtO5ffIKQwTSjBllX1LyV8POJdEFEc3nCv/6PQSNnv4+WzBlHNfnp7s0545bxD+FzXo6gELPmrdR3gqo6S6ns4Ufo561iNZ19BLlcKmfjanukDvUUx3o7oLiW1XXCxQ4zTNGp0eL28CAT3KJUtMXiFx2+5B+22BtRUWPmtoFXlgUPWYsNBFzy5tJPWCP+6DGZ33oPcTOTq1GCwwoFVDeFWq88QO7dsjePRO9j5cqkNJ0SEbyG7KrMZhZgNN9VtCVaIos3sK6h4B4iTa70Z2SaY0P525YGpxlurd2bsaa4h3hW71CXlwSQThL8Ap1MsX1dKerw+bswK92grt1PwPEAe4u/08Z4m9qjtpRiAvo0BzOem0ZIUX2VNqdvDJuHjzR89xuAeHeDUk7LEJukXgLjwG28ZRvJIWPVRweN8dPCnv/AFJu6/+BvPVx742T6fF0HxKA/3w3I/wPpaPZeseAtmHlSjP0jpINbmpXBDgFaoDRJ5yI6a6M8U4l5h+wmWOlyGrzHb0Ln/a/T2VGacGWx7CwxvQFvMUn5WV91KHXdgB25Jvj5bt7JYLwOgmS/5mlHNYR3ZNKTmpVBH2u7oMuqitkc4QWurGvQ1jrm/nJUCRxyKScDChWw1J1RodetCCvuHSm3GXnIdgZWzC1fRZrDpcT4C3JIC7Lj3BKQxwHnh/ID2ZfRtN1sbRJ8BU902LMXPC5hkKotgZnhMma5DZA2JQNqLS6JdsOLoNLJVKDwkMJ0Oqs256A0aueH/N1uScLP+/p6dcgFhN815503Owepfs2aftfzGLwzu7lTJA6vow77a9Il8OCjXf5tbTF8/+gpRDgsDibxUn1BbVE0ZZz/QRwSBfPCRZPfIyLQXtsV0mMUxf8ATNcEBg==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKAsAAAAAAAA=eF4VVnk81FscnUFIabH1RIm4lXoxNQrpdaMQ6iFbk4SEslOeZIsYkopkbVeh0mRvwYxX8RLaKCqFbElFVCjjnf66nzv3u55zvt/fVH8+3lV9mlAn7vs5f1wl9MB2m5MbwglV6tWubtlC6Jki+/V2cYTe6vmg8OM4obe5ksWeXyf5fQojuRNahHZnFb5RDyH04NkFJ/sSCb23TvVd201CNdsTRp7sInRA/eTOjhOESvQq6OqGEXood8DgXQChWT8uZyfpEbq0oqPCwppQhbnXfZ4dI1Rl+frE1bDfLxhQnnGYUGZCbvsGD4ZgqcGKZXaXCOVtHjQ0KST0Un2EZOEtpsDMY6/3lQLUW1WnEHiQ0JTz68MVYgi1rTZ1qkAfM9oeWXo3TPCd3idvLalhCHgZlf8ZORD6ydy9UxJ5TPWOBMnsJHTlHbmauM2ENn/ZXJxnRGi+kd/ITtQZ+K2nM0og5LdYhApPPGAIlAYSun2afvG/JOXlPnrLEIh917ESoM6tk33aF7MJLdTuVObBr32sIbjGn1BlGhdpiro7tgd471RlCnhMf1c3Tby/dX/asINQRbnbqZqtGpS7mLtwTiahwpZoD7Ek/L5oxE7+E1OwJNFgLxt9SbK+0sBOhsCh6vBVzhqm4LTvK+McP0JPp5FdWS6ERlW5ZM0IxP2ZGi8tmNA3Gw9XfUshdNHWY8+NdzIEU3L0B8PB46wQD9Fud0JvnOraN62IUEGzXoivD6GdC238y/YQ2vVq340eV0LJEWazbA761w760izPEMjbhwwaRzIECfbRnDjw5Ej/ni95myn4cU9U1Rlx5Y2Gt3L+wUnNuT1LhXx2EN0vlU7oc1l+RizezRR6PMeBz7cHnJH54CdKukX50l5Cw+MqZrdCP0WLjdM6owm9LL1LxhH28/2+uxnaEmreK7TPTIMuF3eHkwRCK0qqxmw2Edr2YmR0Qfk4/0pV+bsd2oSONfdILkS8t03X09rQR+Ce7lkfmIT20Xp6KYpQb6HKGf10piD9qWBtpvpPvrPucOxXxHPl6sWloJ+quptJfeBR2aX/QsYmEUH7sMj6OtTFyHKoGBed4C/zsFrpfJTQJKvazh2xhB7Ls6iqDiJ0x70XFyy8CC1QXqYgiv4P6lxZ/ukkoWq2eas/IH5CSKl/gS7s/1m3xBR2UhzDMi1TQsMm95okcQn9z5S3qewcoV63lrCz9xGafNOpKBN6bPNUKJ7EvF23PX5IDXyFVg5es0Jeto3C2gbMTegL7f13IggNIPV953Fn85bkOMBeLuNh0ifYOdPQjRzEO95nX58dSmhZjJfY9AuExs5Qm3r0EKGTEneDHwDngPj613KemCuHcmE+TsHMscergLfjZPXLcMzPyOZ+GRnEmzf1IdkA/iRYI/t4wMnhm4ykBfRFotLcatBnv1emxCXoXuOF0qsuzPl9Oc/FO5MJXRN6PagAfk6Xzz/1O0CoVkyv9eNThF6r9btcADy/RgxayALHib7cjBfQyz0r0WDVoN84Rf3lAx0LNWWH7VHv/AXBp58HatBfrD1PD4BPdQ1hZTDiHeg4WjT/pwZ1iJz3uI6DOl+ORKRDXzNjp/64j/iKPM/pdbsJtSx6I9RAXusJFlsBfbauzK8oAX6x09ky0tCdrsvGoUbEyzzgqGIJ3CZqBH8MQUdODQLTbryHqbQfMsTd7cxHEyfsuZf6XI/jvtD73KAJfeyRG0+y14pAl05rBmz+BP/f+ereQsTZcu6SUaI3oQYdhxLFcf5ZYFnwH/CyPsmwa0V9FtF7us2Ac0WVTva2VOAh//G6FvreNyf1Q0sGoeN6l7tbsUc3pAdlboC9eUHyj7tHCOWURG+f4kxo7+27PlPgP5wWo34XfI77fyh6twz7jflr6jPgVGOwQbwH7/ESR/QDUWenvTvLAHz6cR+c1YAuLGv++uELfBll47V9wO3qFO5pQ8S5cDVJejf2Tlb7wALVePAaP6sxGb+/NDl/ygv5I7vXLp6H/vKtFPlJyKORI8ILhH9eqXWANPS6UTTkXQL2SKbzypM3ofvt/Wf8fKEDeR3Lj8rQKZHOvBgP/UQ2P5ojjvgL5qb/fRa4xtpMVTUGL1K829scMR+utm9XWaO+jlnFqj/xbta66N5h6LM4cWFJAfKH08cVsph707s1l3cgf994lt834CvudCiYjT2qtrRaMxj9enwpfcHD2ejY0yOGOI3uOa0x2M/Tqs2c12P+aS1L8yb6qozUs7qPvONHZB3zoJczVVMOlwH3c5XZR6RRh8mVT0qLMec3fb1GiqBTX9uU/CHgVC4YFVkEfIJUurzdkee5m/iNZ5gDtTKl9G2YF+e+uYM64KE/On50CHoq1R1yGEX8hckxiQ+RL+XEVuNy1M0frG2TQx9als3CGtQ1KbQ4Xo8+djkdT3wDvlQ3JY4aYu/P8WOfNoK9zgahuRniPf9XYNQJ+5LhWvH3mDsdsVI65kgoS8e2dH8kTubqLZPAeWhs9Tpx8MBtelluiO/NQGBkpSv4sGIlh3mjzrUVLg/N0GellEdqKvAYC9z0QQ96Hvvhvi4QdXA+3xXbCPyDdmbfnw0cvW7q2R1FHa/sQzu8gMvk4PVridCZi6LiT1vgM9vO6FoB6la2Va1Twe9hu5u2TIGuhZxlCwqBl3fonfAE6Cek/0nxNry3c7tLW1DPkIlxjyvyz+vqt4nC3dLBNiwQ+VJdIqW6Ea87r3GaLO5qbm4Re9G3YvHcR/3Y1yyV9xKZwLU20pk7C/WunKO+rgd2pkn/BmSgP8NdrtrBsPfgCJ8PoO4n3Asla3IRT11sidJZQqffOlafApwebkpu5AAHQf7s8gzwOVkimfoAftzHr1mO8Gvp0bc+AfwaQn4ZGKK+gHTpaQS48CJtxX7P58t43/Q29EkF5+gn6FOu49cVPuoi5Z+drOHf8OY+4wp4duj0Nz+KuCzpb7YfcW+t8k1OwFw8iZUm/pijs3VqbtrwcyypCRFBnsqEvPYB9HFWPEBcDHct/mLNzcDRhLk65jW+I0dOeQqkccbV8CzzsvA93XitfSX2yli8eX8X9HDRO1QQgHy3Stn1UcDRoEmtwAh7N01eMWk77Cd9PNjLf+M8O4H9+ujvfRlh7AM8tut3MwuhA2ab4RgH8S4kuS59ind/H72DDbA/oHUsxAHvOV34VgKHFd7V4a/343uWUxEmg/8/uwuVR0fB87Uu5aN90GPMgxuWYsDnsf3BCguc7w2bHVqQ57VihtV58BD8LdKuAHq4YJ52UAP7YORRU30j4g8JduhHAPe4ppkWcuC3OF9ZtQi8J+cvZcwGTin7J6u84feetabO7iJ4WnXn2BD8SpaZy/Tif67mtYyVOejTsnef+yjy2CR9lWLA/l+1aBMz4N7LVvE2RfxJY5kv4jjfVJnn2sOu68psVh/4EL065kKBe4bj21O70eerU3xrWfC9PLfeVQP7vXBoo9bveanrTpUax1kuJVkwhLkgGdm7DYAb535iyxrkXy8R9nMMeXdotqxoAH/9AT1lUeDFzWSgeC72BsP8lsRq+Leoljc7AR/dlLjTKdBhNruj0R44Jcv//fYVdJAW1GL5Frrh5rw+VIw9QlL77Wqx12ZKs5zaUP/CcXnrYeDUV/yhOQPxg4eXmcljP3g+j6o4CT6GI5TGEtCPbfFSrRnwr/D5s8kQvGld1t1fgPisn9HrJlH3u133D8tBtwsOTD2cCt515b4EqSCuqNddTiz8t9z+PkGBx6bpD4gSTmv7ouIpmJ+PbJFgEcT9PLpilRz+T35Naw5NQX7em7/O9wO3/wHly2ymAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAAgwAAAAAAAA=eF4Nluc/FQoAhkNFJSllrzJSyEhGcl6UXbJFKmTLTnZ2RMoK0bEOjpljnkQukq6VUVEJl5QZQlHI7dP7Dzy/53mf1h10OTpHRXCAx9iU6FNMXBL1Cb5NBdXOZrX4ORWy5jILzAeocKRMcIfpUdF4OVx1taAWnGElgzkTteBo0+s9o1SLddbxWS7/WlSlCc1+eVuD7kOEoFXmWhCGMuRWXGrAr7wcJldUg7PTtAv2DDVo0KIuflKtwRy9v7tyXjXkO53TJoerwSvKei9QpRraz0kpJv7VOLx/oYzzvyo8nEiKE2GvxvrikzX2kCp8mth6dZlaBb4vwZe8D1eBcSRef960CkVso1HirZVotCeuD/+qxHIDjSAcKlEYbOIrQqwE+1p0CXlvJcYzfE07VSrRucxx26a6AgX/fNveOlkB2rIPC54WFRAIvTq670EFyqXE5Xp3VECv1FCiVK4CzccvRfhRKBgyvCGUMkbBNxOjVWcLCr5zG37ruEeBc+ovYt4uCkSK/dI1FCjoVCbTq7iXw8Z9JfjA63IsXis5W9fzBIE8HTUcYuWYy0kYL5F6greXHd5l3nuCZUHO+gMpZSDFXKnNWCjDjZGVxMmNUkgIisjvNi5DAFFSTtCuFATLBraJhlJE2jwzaOkrwXh/CpfA0VLc0uoi1qMENMuvvzclleAPtblqF6UYkmdilKi0JWBq3qVUcKQYmREXy7a8iqHV3f06JrUI6a1B/UmTRdCvOLdGYSpCN+szXZcrRbjuyGd8ILoQok/qKZHvCpFgnOZWSFeI7/QTYQMXC9Gsr95zI5SM6fKlK2ZdZJBlVneb0ZBxKvRNO70OGZyrpsV24QWY05W6MNRZAJ895NMP6Augv47gbt0CxLMnnOuKy4ctcXFq8E0+ePNSbdhY8+ExOcOxYp4Pn3cXjzll52GcyTKTayIPbDNVgo1ieVjP3smm6ZYH4RnOTcZ6EprP97B5bZDwr+ERXT0dEv7r9yGkxJIwWtz9PHQ4F5HE0aMl3CQEOHOspXvkolJrJKqkPBfmzClFD+lzYfSzhj7hXC74cuVSnbNy4He4z8J4KAcCTMmBrAo54Mk/TljyykFSSsuR+LfZUMlkDbBiykETe49xv0c29smtfHxcnI0R2Z+/B5iz0ba1/2SmZjYy6z+PSVzPQm98/YvG3ixQ2Wa1eQszMdscm1TNkgXvP2/5XRaJ2MEl3LPfPBN7n5c7MJ8h4vO/TTYdJCLsXlpKb8Q8hvT6Y+v+xcdo4/d+KTicgUkH7W88Ko8h9k+05W3pDHTbWirnJGdAeD+97WZMOn47E8r1ZtPxkShxIeXrI8xJWKXzq6WDJb6jVEntEXQY6Yg7ch9BldItNVWQhvd823RWaB4hU5UmP2ZPGjRME66M2aSBRuDyKIdXKlqY6YqaO1JBSVFdjRlOQdwRPZ6Yk6lgqi7806+dAqlrT9skslIw3/NYYvLZQxRevPKavDcF5/sWxhrEHyLLsM9/8vZDWEvXx2qRkhH9wVJoYikZB/Nmm8O4kiGtYm2f5JiM6uE2+aspSdBqXRycGU9CxrR9ax9LEiwOUuX/u5oEbqXTZm+SEjHV5OTsOPx3BVwZzVgTYcus6hl4NRFUX8eDZhkJiJF1dN83noBhJen29iMJ+K7tVszukIC0f/rzckrjsaBbfuf+Yjx4Q63lB+XjMVRLibMPiEfNdsGqlvsPME0X6pTOEI+vBvmNLpT7eFRDP6Ao+QB0VoRM4kAcFPwTt/Ub3ock2zpJmSYODAnJQV8C4jAg6OioJnkPKp0az20K7+G96FRP+vVYPOaI9SF8iEXR5cltkhkxWBwSK7ViisXKqV2uKwN3/3qWm/RcIwYhFif6BlnvQiIuYk4l8i76suzEOsyjEZ7SaTnSFg1yakt7fW4UHDq8+cMZo9Hyabcicf4O7p2cT+I3iUL/dWOza4Q7+LMp7kwm3cE/7wLOLSdEwrZMjcjwIxKMz92stacjwHXypf0p7Ug8YHa5anIuAjEPaXT5SBHg/0QvsosUDlphefanW+GQ+sq6ZLQjHC+c4vq/XwvHeU8/KTHnMBwImepsfBEGtZqnGaFvQ2GgXJS8XzQMS3rhQpoqoaA+Vdj89DAU/bxpbF4VIVh1Dzh4cHsoFrQyKn8IhiDC7ZBwsXcIin4OO0bJBUMr5rSH0LtgCFsOr+eI3obIHBNb+MvboJueOycgHIR/qwWOGzcEYUZP8N2ycCAWTjJsi6gLxK4HPJkb4gEIFMwzWGsIAM/o2DdhRX9QM1QVM9r84UCf72ih6wcTBidxkwE/FF0wZoiy94XriYjvB+Z80fyFd2/CHR/I5Pd31dP7wtsqi8a25BbKEjNfnj7mA+NUFsq3d94Q0g0o99e7heKvYTysO73x9v0pV7sgb6SGfwhvV7yJKLlpnunym1BdUfdbvuWFV+/Y985PeiFVYFgmmOqJJsWBWkshL2iZfX50adMDo6XzDWIOnvBgsAxw1vRA9m7acSWKBxiGr7aS0tzRXzdLF7LpDt3f9F8+DrnhWa8i6+hFdyysEg87xrvCYaRe4b6uG6Tt7Ww7dF1gsquOrEnvCo+X/iMDrDcQO/tkrrX9Bpj7JOvsppywtnwsceihMzhvTXkYvHDEgRG1ZhtnJ3hlCdt4kB2w7/zsQ3ltRwTvbvuckWz/t4txbBLSDlASiu8oirFDdJSpNL+APQwt3V573rXFY5Hois/cdtC+Ixn0Ot4GCw8+J+vz2UIrt04+Ofs6rNoWcpSP24DQbiiT8dQaf9QZw6OVriOiJK3r2XsrMBppmm4zs8ZlnTbe9m1WkPxIszc40Aq9DYvCRElLTAQEWQ2RLf/yV1LC2XsVZb7iLYM113Anz+vT6IUrsNQrucMkehUyfItMsh8vI/OnMt3OcgsEzNC/b79pjvW0qA0nlctQoJW2VuMxQ8f8svT0mBnsll+9MHpjimCpw0Ji8ZdAY4Xjf58GlAsjOEd1TPGNzyJnyM4Yp2Prv5YdNAH1Z/7horNGIOe0cKnOGGH0mKcJVcwQYxyPHDS6DCFf5/a2/LABhqoq2hyeGWBwOMKPcEQfDrUpavrV+riiEk1kOqEH3e4N7tI6Pcwu6zSl3tWF+suyWe3ki1irqfU713UeFSo/dXo6LqCPVqYwSEAHmoO0vGA9D/0bTZfS72uB53xWwbK3NhIrRdhWGTXRWg4tjWlNHPj0wmqRqI5Gln18qW4amJ8LPzuhrAbOU8r2SgzqkPM7OHXyx1nwrdGYpFeew9boPnbCM1WIKDZ4MbmeRavD6nf7ByqQNSApbiiowkPrqxHbTWWo/xShtB9SQRmt04JDDwHWEnmvPm5TRtDHpjmTN2cgcIfBReaHEq6J8qR1L53Gkz828ZPbz2Bg5+/1cjEFEDw9vpVInEbIpSi6iWA5jHsUT9vdlEeZXoDbpdlTeJR+RHa9TxZRT3/G/3KRQdRY7SlzjVOoc43uaNl5EnvUG0t835yEWGcOX1W1FF49ufFa31saNqndmr23JBHNmUiYEZVCk7OClmHaCQSw3Rq4OyeB3xkXt6fbiyE8+rzpVIE4gpM10srNjmOFxX6eO1IUz0oOGQzeEIGCcKGuQ+QxnHxR7OeQJYxN4QBnhoKjeK+xRKIuCCKwyKTB/IsQFj239ihYCOBT/OlrL1UEMZ2xleD4+TBKJQrCW+qOQJ79l+DHcH7UjfRUt+scxsLSrzEpX17QmksKTczxYaXpiQH5EDdkj5ITat15YMsS9CVkmAOTx5x6Pfi5oHNmJs2gmw2GMYkWPr/YYShb/Lp4/BBep7qE2P9iBVOcN8GU6yAC86VJyzyH8MjFf03O+wCG7+uQf9iwIG+Gl/PSPDPOM3awnOvaj6tqcS7Ru/aBqH7s1Zo+MxR9C74WuTDCwLgpo2BqLxK1zNoldu5GUd6WmNL1PbiSq/wmpJceufRVSwz7d2HPSFUyV+cOVC/9Wplf2In8E/INhT/o0Pejkffrn+0Q2dix2q1Pi99RVL2jBDr4nPj+JXhiG5btYrpyKDQQnRKx93DbIvyOot9/7Mo2iCdnGzU2bBKUt7t+UMn9Q/g9/cqVf2WD4DFLas3U2iT8D7NT3QM=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/wsAAAAAAAA=eF4N0YcjFYgDB3CjxCkrI+VklZE4ChG+REV2hET2OCNlj+ztOXvvvZ7xjOehNJAS8iqiRIUOhS4ihfr9Pv/C5+hqMFWFSkFQiFbAOGsnpgS56WfsKOCykJp7V0bBy/xj1yibHVBrPMvx+zQFC+SGCx8JHZhJeJrsNNiBR+OJwl5CHfgaksAnZt0BnzzNc3bdZHT5+09f2iSDx076PMWYjLsxZQPPk8l49V7F/tZqO1aK3QZ7xMhgXJP8kZLYjqfvTMks/e3QfN46xi7WjrWSzMo+m3bsz0+z3hhoQ4nOL/mpX23QvCTRfca5DUtTDGTj4ja4Obs/e83YhihHTrETaEPOeJ3JK2IrFvu0rK0/tIKyubtwwrAVn4Na/liNbkWvG+3eyY0WjHhvUcbEW8Gx345psrAFHrN7n7NRW9AQb3NR/HwLqsMzWkv8W0B3J3n9ySoJZYJ6FaECLZAwv6ncnkdCRTDDi/qnJNjJGqktnich5Wiri6AfCXtevObu/7cZRk8OB74TIuHaJMFARbMZ/DLJ4v1lzYhsa+KVr2xCu2/CDV2aZpDITI61DE34rqDcY2TbBAWb9r3Jbo0QF/b/NNLfiMCFyXvvXzQgxFbgZbdEIwYKRK7lKzfgUXO7DEdGA3zlNKLaa4l4mGL1dGSXCCFZoxUxHiK+sNBoL7gS4bpBlP0aV4/JAZK++Zt6NLMt/GDYrsN+fcb4w7r1MG/3fGV/sw4ZUtnRog/qQDZ6f4V2sRYZey7PB8jXgaR2g+O1bS3meRxOMzbX4k/Ozcz56RrUC93bfSZeixTTUfs/LWvAtJ86MVBdA67xGs6Qt9XQPmWsvXSsBhuc4lK716sR8Wh6QrqmGtzpROWcuSoMtjXyZkpUYzuU44mmaxU4WN9ks5KqYPvPKfffa5U4QdCbKVCowifag5QHIZWoV8oNln1YiX1f5ZQi/6gEz51llhHdSiy+zC9QyavAM4UXJxzfVOBWR6nfsngFNFs7Pb/9XYHGn6K34u+WQz5U199nuxyNYyIKzEblSFHR35xJLodQlaLvjYUyoJYu+6RIOUqF4/8jhpUhqf8rs8WdMpDOrzj08Jbhrow+63WTMvifmS0oJJei2Pq+56kvpVDi/GKrYVyKT/rsGy8JpTB5SFU0+1iCt2aHfRUlSiHQ7W1eLFqC2UfjRXcySzCS/mTHwKMYcmxWQ76TxeCH9yGbjiKE77DcyDpaDGUmQmsvXRHMPzL5sbgWYURBftrtciHke5vXxyiFIEyFzBpUFcDl3dKBacZCcLS00ttv56OUcY7uiFUB/LhlqvJM8vFr/6BYVHs+fAhOmoukPJQXCs0xseZDxS8uQIMtDylO3tQK9zzkNsutl3jlIvTXn/HnR3Jx9MfxiLWJHHyYFHo891cuxl6E/5ZWy4H40ISjd04OuksEEvSI2Si4H22+RJOD2cGW02q82dgzvt2s5JEN5owL6rsJWXj9QiHf8m0W1PbuMAftZiKNtGynqZ+FmpZItgbvTCR+e+6y0JuJ7Z76pfjlDMRobl46q5SJT6ufjBhcMjDlF1At154BetEZ4cP/psPX+orG8F8ZmPC5b9HtlI7ug/NMG83pCBR8xzG9lAYPdV36apl0jGwdTAzwTAPJbufqODkN9EvHBKK+p8KulNsiUDkNtDSyZusRqbh48s2t+EepyJdqfXKfJRV9fPSyPwxTkVl5sPre2RRkz1wojO5JQcDK5Ya068lQDJ9TJE8n48JA48N/Y/7Bg+azMl50yfguZa7T0JIEVRHue3Un/kGVWcYm9QMB+nZsDpeuJuEoz2anBjcBJws2Vs8RCPjKXE5d108EoyuNd+TDRLwgWPZTCQkITqHX29pOAK9Fsv3T4Xgs/hcglKmUgHNxogNU9nh0kH0/nA+Jh901O90xizh8NAt7sNsXB91DbsWPamLRsKap2sASh8XlOWLWVgwUB+QFz1nFYthZiyinF4PN9zt+pOYYkGykeHOqouF4fzhjcW8MvmrYUYi00bCfyGN/ax0NY613BEfbKBzQFh693ROFgcmydx39kRD+MbV6lz8KNExXVNJPRIKzq3E8OSoSjoQ3np+yIlCUnS3+8XMElneJ4a30EdgTKUBtNYsARxpxeNonHL3H25c/DYTjSkSHwf0XYWhbGpoJVwyHuqzygFlvKPS16MOp18PQca9+xr0zBLISj/vEjUKReyp/7t/221iKjM3Z0A6Bx+PSqCZKMMLyyTf5tG/jSrvacMODIBjw1R2P0w8GG025yNBoIGaYPFb4LYLw3zif1vp8AARNXA1H3AIRsZCvxkoTgLmxGcnbUQHQ0PxiwyToD/mMqtdcZf640fFBdfiiH/KpCm7R/X7o0zvTeM7HFzFfRu+3rviiqqKXbFbtg6hxmV4Cny847phnbE57Y49cedpPQx9cPCLy+o8j3vhYvRD8KdEbY7nilDArL5SJW36/8NQLWyw5e9WrbqFziblom8ULp/Q04pXWbuKZQJ/QN/NbCEna4DbXvAmde95X+GpvwjTglzSzgidG1e1FH2x5gjaOZ9PqiweKuB6lmhJvQE061yW8xR3BtcLHxpw98LDYzfNSiBu0X68dYpNyR6qCwVLGZVdM6bo0zO664oTa6u5pmb+x3rNNEZ74G7Nv9Rr38LqAs+D77/ouF+youS29YXJGGzHjpGGVM7bslEVS6J3AGRD/5FOeEwZTLKu39joiwXVW5nKOIz77GRJW2RxANVn5YVXkAPPdi/cuithjhbx+a55ojwrW7e9vYIdb+1aG7vbawTRPlifM3haV/vP1PR9sYUXs6GRKscHhernQHkZbUMSuNpRHW+MdaSAiXcEGlQ5Husx+WsH9y92QY2+v43Djdc6ZUEvIdww+FzO3QhgT7fx79mv4+MV3aXL2GkjWHmTmtqtQIy6Hfwi2wM0s7aZ9duZ4ncl/eUXoKmQlRefD+M2QtGw3WT1hhsHw3Xj+xSv4QAm07MwzhXdqSds/90zQsyDYNexyBT/5nT39y4whMhSTnKRpAr4yl6jY1MvY7eEtL5c0BnM6e709wQhXd0UPdAlchicd71pXmiH+psQzBQkY4X2s/nvnCwZIrSPvST1hCDdB1SM/QvVgSZv/UjdKH/peQ0qhwzoQ2ea4O9KvC7m+2zqGUpcgHj6ltn1YB5lTWxqPKrRwwHM19GSMNuJjZzrPSF7EMr8/tYdOC81MxkYMj8/DVnTGgTHjAh5W9dsSvDUxoDXV4iR3Hnp3EsLFZDTA7XVQ48ySBn6/t6BT/q2ORjYy73TjOXyO8GuTmFZDYvZFHUqkOgRFfaLbM4EXSWLZks5qaKI/2OCYpIKgDZZCdbIqJs0Lz6iXnoXG+xqd3U5lUE/3RvGNKqKBS4HNYVIJ+QFpSlM8Z/DY/YilMYcixCfExBwC5WGqnGTU4qgAPimCWM3aaZROTeXbPpdD7qtTH9IiT8G6ruiZqclp9Dk1QlBMFhken4/ErchCY0eLwXT2L9xYkbf4UiCD7Ib1bk8baWRdv/Ar6/pfuNccEkUSPImmXcrGbxcpfLf8nJXMcAKDqzrNUYqSoJ4KqNU+II7YtrmhRUkJyPv4ykicFsVWcdMvH3UxQOvnXFLgMdidZI1w8z0O89hvP4emhNH87LqB9GMRDOoFEWyvCmFo1FdTUk4Ysu0tt6n/CaDNvTVktkcQXZcOjFurH0WuumDxqLUAat2188RG+XA1dZRG6BQ/usOzvOzjD0Ok6LZe3ssjmOXiTklwPQQWq7RDgcW8mE+xeHfWmxuSb6sGpdN4IPuY0sxVygmySnqhax0XhlqZI76uciCyx35yYf4gxteiFu5YsWOb4QBbsjoHOAhJPIfGWTE5oy+k1sMGujnhxPXjB2BD2rK62MCCYckzXqONf6AhKIaPgWs/pKm2C6+cGKFmmPzGoYUJnd+e/Qg0YIDE2zsP+0P34W5q3bCc0x5EuD2RYgvei5Psfuyl9XQYDNY5Il9FD7eSjyQpflosHhO7b7RL+//f24TVxN+qT4UnD7LH0uCJtVBysvGuqpHC1Ywcwi9VpqAQodaubVXTFQPDg+k7qk7dNJeyd36qltiLL0rqbav+D/mf4/A=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4VVHs8FWYYJlmULUqZS0OkVJrrlPJMljmpQ26JX50ykdJcTjb7XlrulEiKpLm1Oqm5JUmoMzaUSzKa0majJJFUzEK1b389v++P732f93nf5xGU1GS96iK88fxuv0cNIVgp7PCLdkJHkf30iTZCktXyvjUthOWPo4a1bxN0RxY+Ga0neGr1VP1SR/BSM/ZJkxIeVpzPFPH/94s+lF12nfD90ed3R64ShqqfLbhSRqj8O/xpaAlhwFQkMi8kfFA6M+VlAWFPgndy4XmC7aJWse9ZgnDLHjetXILAy1PQfob3XX9id2wmYTx0ldQinRCRuDKw/zivdzMj4UQK4Zq9rK5NEkGUKt4ylEComOO/Ij2W4LMhptE6ilCklWHVf5Bw5zg7nUQEibfbpHEYwdIzJeTeAV7vbb8qCyYcitR6o/k1f4+rmN3cS9ia0NO104/zspWZlvEhfPlIrTx/J8G3o0DVdjvvozNq0reN0CaV6ES7E6YmA8d0XQgfyS2pq3UkrHq9Ktt7E+GyaGGWrIAw2GrTkr+Bz3soSWC7npDT+kr3kTVh9+yR/bFWBMM/4q0NLAm1fSUXbpkRmvZKpQHGhLD09VlzjQjknLup3JAg73j1qacBIbCqP15GjzC5o2htgTbhkthhkbMWwUDB3HbqY8K5yqpayQLCAwfVctd5hB22vSYz5nKeHtruZXMI7Qv7V+9WIBhXOr5Rkyf0Ni4ob5UlTPuEJMa9YzBUFp/6fIpBY+VHM6cnGMgt5HXVGEOE0CQ54iXDP5ouUzYjDPHeSwIUhhiM3rQodQww3HvbNz//McP5r2uuiXsZumTGzQQ9DP8+n2rUfcjgZCGufN/F8IV5kWNfJ4OzsvDB7XaGWsnLwoo7DDG6zXoXmxkOnJ7Oyb/FkCvqjcurZyhu9rCX1DFMNO33vCJlaLDUs7pVw6CWIQ7qv875jpUlzLnGUJ9orbG2nGGxxceNoZcZVDu3WV4vZvB7IvuJYiHD6I/6lr4XGTrtagV3JAybNcMW251jWOfwKLspnyHQJThnZy7Dlb1/KstnM3x1Z3ioOovh7g8en8ZlMnimLn/sncHg0fCvputJhiH1y6OeaQy7OiZjwlL53FGn3xWmMBz3aTo2dZRBdLZ0/+4khjrr2W1PDzO8dy0YO5zI+XqZf7IxgUHoZpqyNJ7h2MDtBIM4Bt2qGKF9LMNWi7+0k2IY3BpU1r2O5v2ywrsjOUrVNYwsOLo4zBWpcMwMH09eyDFEbuVvdhxLGpzM8jjOywn8yYD/F8b463dz3PvM9NtqXnd0vb1vM++jXj+RN5v3z2wpr2Wcz+bBLnv1Iwx6f/ScHuR8W+9byw0lMxz9arhsEZ9rMNyvKorPGagUqqSWzuDe5hTx5ymGqVBpTSfX59dNaTunuV5bB2bcc+U6xsaEBHRzXV8EmTgdK2D4TT/uSAjXv1jvuXxkKZ9za3Didb6nFxHalVp8fx5x7zUKbjAo3uhQ8+J7vpm+ccK4kaFbIuhf3sKgNGvXKzt+JypV4Qsif2cIck416vr/ntSr5TbyO9vy62JhxxOGb7pdig4MMwjmRFcufcX1cx0ZH+b3K/YS9/38luHSvhmv8+QIx3NcTx1RJMw/e2hdOPfF5/p5TsHcL2mOCTZ7NAlSf4/YHbqE0CXqmVuWEuITN8iB+5BVrPXS4/4MEF6webeaoGxXFtACQkbGmnNJ3N+HTZpurXHgOVYf1dbpRGi2utnoxfPhL0nxw9tehHnbS511dvEcMohI3u5LKP7bUOXgPsI3qycPRgYR3qWNnfQNJZRobbZcwQhaeWl+d3l+zVK9uMEtmnCm9rv5FfEcbUTm40cI/tFmS1WOEYLOPk1UPEHQCfFT6ckgFKwLTU3JIuybrzCokcNzQKg/OyafYLq6/FHDOZ4z3TLuTy5w3sWXlHsvEdxaJUEVRQR9o8RlvqWExb/UPXjGc3tCoc3hC57jOstyPttzjZAdP+juwPN9wLfE9H4VYe7dIfkX1YT/AL5t7A4=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJAYAAAAAAAA=eF4VyXk4FAgDx3EhijdN8WZtq+ddN227ilaR/XW600p5azztDAkpIU2zJXKEdWYbVzlS484t9zFmxhgGYzBDzsFSGkeHfTKl1e5+//n88ZWR+bcpfHr/RNX29i/g7MyZcDkghrbFmEfQ8iQscn4L3XdvElNaJgeHtSdhxN01vY01gdLvVYUStwlw1sU//C47gQSVYa5F7jiczS06R63GETrvbh4gGcNB31db/kocwxaSX0Sw6RgcZEwp70ZHwbdX7P1/+CjOO6leKjcaxaXtDwirgyOwXRY93BMyAqNJA7aT4QjC+xas3EUv8Ej/9fCF8H+sSPn2mPELUMyInQTxMD4QhZc5icNQ69HMImEY7Q7KKxNvhzCf5//hJ/oQJNqk78JchhB3yUONrjQEzWcdBnSGCElujMm7FBGKNtTmm30nwnJN4GLnH0J4PiCq78sUomd/amzAWSEIM3Z5kVuFSLdks67yBsELSDfXjRpEudoLcunRQSQI9KPkZAaR+d+ZVd3WAXiS98moBg/gSIzhy85DA7BsEyyd+Ksfzimm535r7UexydWLiaH9OLw7w87lWD+SvZZOTCr88y3iYnW6Bdh/P8ZOP0mAawOC57NnBVDS+vIn8RsBTqWEeRK4fRhytTYQufSBus70l5nng0A4civxNh8+bt7Xg1T42GCcHMGm9+Kz316eu3kvMr9ROH92oAeart5maVd68Cbeh6yj0IO9ZClT+qQbsYuvLQjoBlmq+NhzggfSM+WS1Ts8yGUmb2do8kCM3ulfz+hC/i2xo9i9C58WhnR+UOzC19NPTtNLOuFQH6Fl5tyJI91e3LlPXNgI3rkW07kYQe703ZNcnPl552E3aQeuV3sct83tgILoZs4+pw6ogy9R/8LB7o+m2SulHPinNmi0XeDAx3ksh6rCgafNsqtaWzui5hjnkq63Q7w3JG5Otx2bl+f6toyyUUFrkcjeZ6OEnx3XepyNWQPVU+ZrLDQmbGT6VbHAN4kjnfNhYQ9HPntJiwVxSvq8wTgTCREbC+VSmfh+qucE9WcmpAuVxsHKTOipxE2rcNsQo+M2pRvRhnNRw11NaIPXttKi5I8MXC6bqUi9wYD9jXV6wNtWVK83D2n4tiLsYpnsPUkLDG4bnMnzbgHxrTU18FUzHjcu5c56NuOEKKP8zcsmbH60gxDv1YT1/1S+q5xvhMlVnZ+IPo1InBgtDFlsgFxVYoOGXwMSJf8b0ntfj2NNNPunlHqYEOVdYj7WQe88TX80uA7l9lrLNNk6eNcLhmuja5FcYrjj+JZaKDssiC1pNZDokgMKNGoQf8pSOTLnOWS3r78Z038Ot4F6UlV5NfgtPg+2HqiGzBVmxVpbFV6tkbrv2lXhSlOZIE9YiYKYo2G/kioxxZxzl1uowIqya9VpagVY1kvOgfIV4FC6Iud0yhGzsEGm9WgZcuhfr8e7l2LOy0ff/14JxMWBTZGFzyA7c/LyIr8Yl7Mu6LFXi5D1IUveULsI8sLeTZZOhfiV1yizK7wANJWNRElNPtSEtI+MxTxwqZvVmvXyUMi9obh2MRd9u6N/TM+lw7fpzlzp/FMo4ctXZ42fYkemPjUv6AmUZoRGNbwc2NwM6krXzEGS0R5qx3w2tOXSTtlnZ2F2jMucdM2E8TWr0oxvM3BeSUX14ZuHcCz6U1bCScePDhOJWblpkJKZ7Na4VKRMkQvPBKUg5kzoEffAZFg3xma8DKThpqHjyPidB4g8UGR9KPF3jBgJKNKCJAQ6d9Jlk+9jjbOTFjWfgKRFyrjjyXion7Y9qM+KhXg+3lFkFQPTfoaCxlg0Zu87vS0JiYKBb/5jq72RCLCWVUt7HwFpXdUue1Y4yBPT3co5YRiiRfeExIVCPc6OlbDpLj48osZuUgvG59lSs+IDQeh77dz8jHILvUdbMo/xqLD5ijCXv/8mrFedLJXqbuDzio0J/WQg0nRsZ4qkARCGqh1yrfPHMMWbI93mB/8y80eMkasoSCGLRtt9QFYvjCINeMN3hNQ8sMELrY519X7Ol8D24AVkdF5Eg71Gz1MPdyia9Lxf2eOGavXSw1rGZNSauW26tv4L/gbAoxqPAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJgYAAAAAAAA=eF4VyXk4FAgDx3EhijereLO21fOum7ZdRavI/jrJkVbKWzw1Q0JSSNNsiRxhndnGVY7UIGScyW3MMIahMZgjxxi81DSODvtmrFbvvt9/Pn98FRT+3yRWPj7Wcrx1HqxthWKPvRIY2I75hi9OwLbwt6jddycwqW+5T2QwAXP29qnNTDFoP2jxZd5isNYkP/6uKEaqhohtWzQOdxvbnlH7cURJfWxCZWPYd+XNpr/SxrCJEBwbYTUGFwUr0ofRUXCdVV/+O2YUZ920LlaZj+Lilvuay8MjcFwUPNgZOQLzCdNON7MRxAzM2fsIXuGhyVvRuZi/rc787rDFK5CsPXs0JSJ88uRfYqWJoN2vl0+ACF0u6kvi90JIi0M+/UwVQmZA+D7aQ4jki77aVDUh9J51m1LpAqR70yfukAQoW/eixPp7ARbrw+Z7/sOH331Pnd15fPTvyUoKPc2H5rRTcdxXfOTYdTKDOMPghObYGMUPo0r7FZF2aBipPJN4JYVh5P1zetmofQh+xN0KWhFDOJho9rpn/xDsOngLR/8ahHum1Znf2gdRbhl0IS1qEAd25Dp5HB5Ehv/C0QmVv79tcpJhHw977iU6maTzcHWI93zmNA9q+l/+8PyWhxOZ0X6a7AEIvRxMBR4DIK8xQhSkXGhqHryZdouLQO+Aa+EaXKyzyIjtpL7E5+BdHB+bl8j7VuXs6aF+6HkFWGdf7se7lECioUo/dhHlDPnjPiTNv7XVRB+IctVHfmIOCM/UK5Zvc6CUl7GFrseBZ8K2kEZ6L0puSlwlPr34c05o+KNqL76ZenySWtEDl8ZYfWv3Hhzs82fP/snGMd4Hr3IqGyMomrpznI1Tv2w74C3vxrU63yOORd1QEdwo3O3WDR1wZTpfWNixYlWwRGMhJKtJt+McC4HuY4VkDRb8ji16aXd0IX6Wfib9WhckuyKTZ426sHFxdmDTaCeqKW0yxXudqOAWJLcf6cSMqdYJm1UmmlPXM4JrmeBaJhPOBDKxk6VcsKDPhCQzR2o6zkBq7PpSpSwGfpjsP0r+hQH5XI1FhDoDxhrJUxrsDiQaek8axXbgTLyotwUd8N9MK8tYoeNS5XR11nU6nK+vUUPft6NurVWoe6Ud0RcqFe/K2mB6y/RUcUAbPN87kMPetOJR80LRjF8rjgpyq969bsHGh1s1U/xbsPaPmg810mZYBhn+7BnYjDTxaGnkfBOUatOadIObkCb7l9D4YyMOt1Ccn5AaYemp7JG40gDjsxST0YgGVDnrL1IUGxDQyBO9SHiBjAqzrUc2vYC6y5zEjlIPmREx9KluPVJO2KnHFT6H4pa1d2Mmz+E91EioraoDty3w/ld766BwmVG92lGLN6uEvjtOtbjcUskr5tfgaeKh6F8JNZhkzPoozVVjSd2r9iS5GkyHBfcw5WqwSL1xs4ZVSJxbp9B+qBKF1G/WUnxomPUPNAm5WwFJeVhLXOkzKE4fvzTPLcel/HPGnctlyP+Ur2xmUAZl/ssNdm6l+JXTrLA95ikoGus9ZfUl0OZTVujzxWCTN2q3GhejlH1ddfVCEQZ2JPyUU0TFlZbbszTpE6jhy9enLZ5ga54JuTj8MdSm+eb1nEIcuxHem6NXiHTzneRuaQEMlLJPOBfkY2aMzZjwyoPFVXta7ne5OKumofXg3QO4lv2hKGPl4CcXcVp+UTbkREZne3IWMieJpafCM5F4KuqgT1gGHJqTcl+HUXDDzHVk/PZ9xO0tc9if9jtGzHkk+dN0hLn3UBUz7mGVtY0SL01F+jxp3PV4CnROOu4zYSZBIk1xFdgnwmqQrqI7loCZe27vKyLjYXql5JH9rjiEOihqZ3+MhbyhdrszMwZE8VSfemE0hJSE/sjkKOgkOzFTN9zBfx+SkzZoR+DzDM26fG84Bt66tz4j3QT3UFveYQ4Z9l9rzpbsuQHHZTc7tYbr+Lx0zJJ6PAzZho7TZfJQ8KO093s1hEBECmDJNwfjaqXNQ/pIEMoyiYLRrkCc1ymNJwwFIGiE0Dq0zh9014bGYPeLYPpyQnN7LqDJWbf/ia8PVC37Py7t9EadDu2AvgUR9dbeG66uncf/ALlzGoo=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAIgYAAAAAAAA=eF4N0IsjE4gDB3CXR+RKR0X3E50r7jREnKHzHUZcSCkWV0fEkpTp1wtLEwlXsZBHRPP+KTPKI+U1CssjhLwZhuF2dPLI/T5/wsfvS/fxcw/n8VOGM22GNI/s9dUjxv1zIMdXZBBM5rBS/2vZ6+RZWJvN8URfhfAqT5Ko9xRCfd1f9gBvBoI/dYgHiDOQ1zbY/iZzGkOhOc/fb59GFoFUfzJiCmrzbwXOawKE/B18u+qyAFsodauRs5MYjrjOfuYziXvNJ5fUBBOo6hSZDJ6bAEf14kTvzDikV0r/u5k2DsUdilf9vvBh4Ol+a5HBx8xE1uGkLXyMXTkdezxlDAuldANlwhhmXy3uElSOIn+BfpRzdBSefdenaRMjGJFT3rX75gjG2s/pcpRGEBl9nbGneBhVV9Tu+x4dhsSHoaHQ+SHQtyaoesQMQZ69uklcfwglgmOC0sJBdPX/E9e6OgDyq0QN2A6gkRXI+5zaDyV29N+ChT5cjlXeK2vfhx8a0zTt8j7hUG/YVIbMJ6xa7Lu9fr4XqbFhFk5tPSB/dygpyagHlVM9e6tY3SC3ulaUy3cjOsralh76Eb0e9RLrn7sQr9lO0L3QBVP5UUuZ8U5MWRKFge6dUOqgLgUPdsAuc+vvEm4dWLjfYyAx+gHya+SPNOoH3LHgPrecbweFyXei3WiHoZ1swqxUO1LI4c6FcW0g2jDyCtTbYBpH4/aVtYLLZ8rpH2mFUp+V4nFeC75RIzb7iLXgWIftp0TD96AEjpi30Hio4dr98oXdDGqUjrHUYtP/XxuV+SZNyC7Snr0d3ojJtUnlzo53cDGT/Y2r/g4OlJizlkFvsaejOsuyswFBE2VRL3Qb0DC31h0RUw/R7MbEggUuCvy6/rPDlYsbhj/PcerqYMw1XLmmW4dJzWgn5/RaWMelnDHbVoukG5J1P0fWgFotcUZcvAacd1Nnq+nV0L8ZZuy8VoVB4q2oUnoVZq2qyD0bqiCqtP/RVeEN1A+WlTqqv0ZS4ufEMNNKiKVcjOl1fQWfxanhg/QKLLQ/IidklmP+wdp4R1sZGJ5l1OENZdBoJvTkEEuxSbhUrBjwEh5rLqPfF71AcJc7J22xBG8oThPMX0sQqWd2jX+3GKsDq5OMXg4aVQgyrjocvOUaiJ2KKIKXf67NNT4bvdbh7BQrNkjHvRzK8wuRGx1zp3pbIaorPn+xFH+OY+f2HU4bK8AKaaecP+9/MHGh70ytzIfRRaO7MiV5YI3/0xfPyUUOi7pRsywH7af8FrK42Uj51l5L1J0Fnc2Gp+ZFmeDc8/AKV8iEb0mAS6IxCzUnZAO2UJ/CRkVBoyk5A2EnQ4qKO9PR/9eL8sLt6fBqfSRiuT6B/U+kEKF9GqTd+XWKosfIrnRaZD5JAV3S2kbLJRkZDh2qz1WS8M0n1vYx4SPkxHg7JzQkoEc6d56ZH4+prad+YCXGYZ/SemFszEM8FlA2aTKZkNo4+0w/NRbvV8VOBBXFYMMyM7Cp5QGeqb489HH6PvQVeO12NvfgdanA/N7LaAwPHskj/BKFK9v4jRV1dyEuST7ceiYCqRqX9dbk7kDEJP34sSkMf405PBXF3cbAHEOJfyEU5nQnJQtHBvbbSKY/tbyFfF3bJynkEDQ2VFCi0+g4/ywzksYLgpG+q9Yu+UAUf0fzrfW9Dr+v7rbJfVfR3Lm2e8jtCl7lvpdpXboMoSPbP/dpALTZB8PYbjTQGQN6Wjr+OL2i8tB7yyV0Ufk1p1cugEwSpuctnYfy1mPrrgo+KB7Qeq3xGxUzUQaEd8leWOZpN0huPIt4CZZKTqQHxh5L3wrdewbLpLbsq11uSJ1+6dlL/AOK3uHerJnfkXyn8olJvQt8zfZnZddSEO3O2Llh1Am7bR7EXVQ7Ac3B/Tz1EEfoaVvFXl0+CmKqXnDtfQd8O91SJAyyh3Zw/WvVTbaQctadO1xnA1efr0JuziE4aBOslostQTJOYoaMW6DYUSzR0MQcUpdyKepsEiwDm9Lt/jSF73lKq86iCfz0j6TuSDTCHu+b3YQbhtAKoLxwe2wAU+mVDL3N+jCX22PW1q8H4cHN6T4H9PAvfOMZ9A==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_42_t_4200.000000.vtu
index 016453c312b24901f0a3755e45498c7c5668cfdd..4c93e917d3a12c088f00af5db0a5c3e77723978d 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_42_t_4200.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_42_t_4200.000000.vtu
@@ -2,37 +2,37 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1.1237817035e-25"     RangeMax="0.19916715655"        offset="88"                  />
-      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.2814381014e-26"     RangeMax="0.19443991936"        offset="4348"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.0905030206"        RangeMax="11.374851275"         offset="8608"                />
-      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="1.1237817035e-26"     RangeMax="0.019536841467"       offset="11984"               />
-      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.2814381014e-27"     RangeMax="0.019073134071"       offset="16256"               />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1.1236136102e-25"     RangeMax="0.19916715637"        offset="84"                  />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.2808077138e-26"     RangeMax="0.19443991918"        offset="4352"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.0450808931"        RangeMax="11.374851074"         offset="8612"                />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="1.1236136102e-26"     RangeMax="0.01953684145"        offset="11976"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="4.2808077138e-27"     RangeMax="0.019073134053"       offset="16248"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.901338801e-08"      RangeMax="1.0000017857e-07"     offset="20528"               />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="6.7273878204e-24"     RangeMax="0.49525962578"        offset="21820"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="6.7273878204e-24"     RangeMax="0.49525962578"        offset="24024"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26228"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27052"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.9013387863e-08"     RangeMax="1.0000017857e-07"     offset="20520"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="6.7263677058e-24"     RangeMax="0.5"                  offset="21896"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="6.7263677058e-24"     RangeMax="0.5"                  offset="24100"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26304"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="26664"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29120"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1.1819577146e-25"     RangeMax="0.19658768643"        offset="29188"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="31380"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="28724"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1.1816749956e-25"     RangeMax="0.19658768601"        offset="28792"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="30984"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="32232"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="31300"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="33836"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="34384"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="34896"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="32904"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="33452"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="33964"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPRM9A1N9VNT7FMNkg2SEsx00vJLCqpBABQ9AdBAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAWAwAAAAAAAA=eF4FwQcglWsYAGCriCSbq4zMhnKF6vz/970IIasQqVtmjuxVSEZmXftIKSGyd+mggYMjRZeMjMqIrJQiGUn3eSLuS41q97XBZOT0QdOQl8CpT9v64NELSOEL9wWbNniY8PdHr1utoF71KrmD8gK+chT90g9nwmhVTcQOmVYIcFQ08fRuAd124k06LxMIrF7ARW2GZW6xwUssLfDzDmNsv1MTeO3wDe1ebQK+uCLhFSoDQqlcES2rDEi3DmkM9G2EvkHNq/YsDLg1PHs9dUsD5G+aO9DE2wgLVkf2sFOeQ05BxaGlo/Wwtv3TM5+ApyDwI2NYP+gZDIxY9ogz62D9U/z+6von0HOYLv63dC0cdKmI8eCvg63vDhYvXKfD+7ZjiVU+NUDbOKt5m+0xGDepu9R8fAzUWQnT0zceQWamzmCtXTUwE1l7XGQeQpWEhu7c/EO4rCYZuvyiEpZeyxtFxFfBLMnneGK9HKwLL+QVUirhAWekjFpsKdw82/Pm99cyMLGVgLqDxUBs+lJMxJbARW37mzMbBbClo2SXrFYRiBQVlFbO5EGW2g+fSvEC4Onfpfh+MReqxwcNmvnzwOBjKK/4zhy4V6DNLbE7F54e6vBbdMyGRyU6CVbn74NqTcOH8pv3QFbDiPnFOQvcrrl9lcq4A5bF8hXlRhmgvjU/OvXdLRB+Xibk4ZoOCs2KbPtO3gRJ4Su73ZrSgBJ2/1jP7xRQz3/t8cg0FQL3btbQf58EaPTHzF/8KZD52RwffRsPb1O3nzbjSIJcA0ufStMb8LM78X2tcRxIpbf03pKKgfDGSIrVXCw8Dbvckq4ZCdPhXYv7R6JAylG3xKAsHKp3D3EOSEeAHOuBFc/GEJCzXdAYKwmD3bF6JpyFQdAX2CrcvBQMyYKld19tvgysG6PNrPyBoFzV5XC12xfe6Z8y48vyB7Ox2L2Y1Ru25Pmsdt70Ae9ujiNHBN2hK39WY2+/J/BFm+haM6ng+62LeWy/KwgZSStwcjkBd0hNZbSUM3jQUw1vttuB/5TN/bg7DoBDuWK+sZ2DPaJ4aW+SLcRWG2ikHj4N8q8+lRRMnAGXivmCEilLyKMwAhHVCr7Y2bEu3T8Bzwo/FcfTzOHuoFxR/SljcIoVPmd9wgw+jXuZMc31IZwRW9S14zh0jueHrv+lA1f498kp+OoBnk1MeZ+oCX4O1NvyMdpQM3x2NlmVgL7kv0wvXcHg9V6+7rK2BlxUsZAJ2jgM3VPNtzaUVKGlN7/1vrsa/MzOoDpeV4ZCrqwXNQ9UgLNTqoh1QRF8U914m7n2QnEfp6iijSw8ltQe1hiXhzvFLexCB6TgBV/2RECxDJx/WyBwZqs4DIvW8Ka47wDBJwmr+/iEQK06fZL/PxHI5qDtkeXYDg7TupNaSAAiSDVrlbAt4LTz+q9GEV6Idf8xKoA4YNGHutYrzQnlVt5PyzlYQHTbO/HflmyQbh4/36G/isN7lCqif6/jYbkHS9aTizhK0ck+bugnrkvyMd2M5vE1PnGm1/J3vE2TKsznN4397ptM1SnN4QWJVnt3oXGcsCfU05hjElu7iemcq/qAlTwEJWhKY3jwM9T2cPfjuZ64hbWSIWw5ph/h2PcGz7m2hySX9mKpRXcp8dh2XFXd8nbLcidOCHJYB1UmvhYyedA1rw2XC31836XXiDWSE3fJ/WjCWn1m6zzztbhdXYP2WPA5nj11uqJk6yPs7rq+og503LslxnWNqwxvX8vSDVyrxH5a8yIFAvk4vPzB4Y7BIux13LD40PNsPOjU3Jh7PxdjpzeOTPN0fJxDQTK6/h4WKy5r89lJwzwnLIiioDTcU+jPudIWh3daeXA2LCRhsW2fAgKyorBZ0gU+/tDrGNse5kpTC8NqHi4ZSrsiMPVfm48HyACcO/hypig/GMdMFibThXywn8jIYRlnf0yLVVlGny9iBy9d8dIpT1ysGCuXuOGALSyMBMgnzrij3GhJLfcf3FNkrH35rh2WUN/uJfvZEt9YbnmxW9AGlzLepE3vM8PCAWVaIjrmePRdvs1K9zF8qdeBd55qhLOUlUykr2nhuxMdc/umdHCqNy4yKD+Ce1vnZeUeYrzcfUiyrl0V0/bF5bCEaGABzcWpo/578S6pO8r3fFTwVP/2V2occljtFL22l1UJq1Vp/wHpnTg8VVTHPlgGm5BC5w0UhHEMx8b0TjdxPLSt47/fBdvwa+4X6SPeAthqU1nGFuXNuEuCh1pN58aBmgaZX9hYcNocT9GsCTt+K23Kwi20jNZTRQPY3v9CA+NZVWx3vqGRRV/DTr4faCKR70tY/xRyOeJzTbl/DkWKVyx0iYyh73R3+4tVE2h2ACpt/QZQs5Cb6OEHH9CH4B7Py5ffIM1tZ/nh7z504t1C8MXpNlRQsnxXQvM/9GVJlCx9wkAWDPmqqHgm8tSjDxxRrUPd5X9GBgrrUat5wkvGSBXyGDEBNeZjpHR+1FL/RBEqnKWahX4oR/3E5HD+5H00EjenwDKQh0btbPpmdNPRhXsic3uGM9Hy03nPsc5ktHBgqfR0603kJ0P/oMV/HSlqpMevliQgiemY/siMcMTPOxZjlxyFCo1L36k+DkBpF6QureiHoEMVLjvlTLzRtlBHx0GKP7Lk+Wmpr0ZFpdcqjXlq3dHDaAMBxqQtMnZ8oLud6YjqeUY07yVbIbrV4Mbr9bMoVipPso5qhnQrK9raVS2Q5njy44YuPbTH1/arj4QRag14aWJXBqixd/b8gZijKFD5H0RbUkcOtlEiWWIE8vpvuP3Xhf3INnD0Vg5TFcHK+RVVDnkUviMyUHd1NxJuNmBX4tiJZAefOdd8l0G1Jr8yelmEkO50KTWiSQx1KgUrDt/gQefuqPnx8/EjeJFkWDbPhv5h/UMLCeREixJfJ9hZ10jJKxXcpjIsqN5e+MtA73fy8iJ1Wlf2J1nlpRB73G2aZE9rDJq2+kqqaOmZ61SPksP5kf70lglS8uLDcNHutyS7WeLJR47vSZmTV7WPyHaS4S+DJB3te0imXl2K4yEmeZVHO43i+Yo8E+DqEjL6jMxwFKNEsTSR4x8tH9dkPyLX6BNhe6/WktSEJWuX/GJyJDdA7ktOJfncZpOXsEAO6YB1FDJo+aROTJIzEXSb3LD9Ezqdnkm+Vq9tXEhIIjVCnjT9oKeSn17Z67nbRpM0dyf/NbY4kj7aXmWnFkLGp912npm9Rlr4BOU2nPUjNVmElXqiAkmGSKi1vZsrOfRdh5as6k0uFmc6KPnYk/Tsw+dsFJzJ127vipNeWpOa5dm65dLnSYNZEe6xHDPyW050e/SUBXm7zO44zUSPZNqMFmzeakQWs29ymhxF5G3pO4G+7drkYkegu/Tvg2TmenQvbfcRUs6/7V5UzR7yJ4/qgkePCnmcw7Fo21sZ8rPWU8O8IAWyfZ6hp/9KlJT+teghxiJJdipqH/39kI+UChwOuftHkPRv3Lzrs9gmUiXh0tmUHG5S1F7KaoZ3ndidqD8uWMtK3khQOmOTs0CUneggIX6ZSJVr8hp8Mk2MW/C4rerOE3WUtrQex1GCoWO4qlI/QfT3bQxO0fuIlcXZbOrVd4QMzXxA8FkHcdV+bKZZtZtQ/h0CkRtNhIvhCTkzgTbCJLA5iCZSRxyfkY282dlAHDXEB/PiK4n8fUWln/5UE9/Vl9rVe/IIsg3ZeT8qIZy9GYfmGjII+QGTh4uaOYRUQ9Ak43MKsXfoZANty21C1dc3cdPHWIKd7tW9MzuRYIn8lqdyOoyYPhSvafgqkmiw6ugqCfAn9q3U/wwxvULQa+t79Y65EWF0O9dvX7yJM7W8Uu1x9oTOrtCaurvORPX8QOKquTWRs/xv1L/L54iXwwFi6ROmhOfPzqu3jC2IHcYWsnmTOoSHWhb75wxD4vjkzLkkW4L4EBhsseqpRcjdZhT0z/xNHLucUirep0EwDsbG515UJJh9PB5VH5SJcSUcPJQqSWjaz+hyRcgSQ7EiDSe+CxL0Vte+YwHixOz1D1fk1rcQ2w1/WA6kbyfYkpuN3D+xEHOS5tn6mZsIqqTgs9M/lihHg49wdYitU+afW3+zvzJH4UkRVp5GC5QnayXn9nl8pJzsCp1qzZyiDAk2bgqe7qdk7wWh4bvDlNbzTHFZ3U5K98KpP/L9PRTZErmhnmQmxWdmW1THxVeUr90e3E0ODMqZ005sZSrNlP8ByFDexg==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAWQwAAAAAAAA=eF4FwQcglG8DAHCECsmObFmR4lC6932eh2zSXyoqyrhE2URZpVzpIjuuqHPGiRCyZ0ZGoSSFzwpF9jijIt/vVya/zEbB2tCFknP6ruNtqJ5FP4Up3oqkWQSgU0MrSpyL8O5ibUGBAuYv/2S0oIXv/wlVzDWjZVUBowtR75BNiVj52kgTUv6o82Y6qBkpcd3MKOprRCbb/7LGvZoQXgQ9OPoakOLegqfObo0oYfL9Pu7ht+iWWrhEpEcD8lmsJZX11qNMtX/N7gFv0fiMJUVqqxbxpHiOGfHUI+18py9kQg2i8x9Jjj9ei2J7Ge/kAqoQqf+ZCfNGNdoSOlah1VaBSkfpvYy6SnR9yyZuQ7kcPZQP15gUqUCLjpbDedRSxOkZOLcSWobIpyp7oveVII5vUoCbWYLU7QU1+7KK0TOutQnXwDeIVpS6XKtfhBZqTXkNeYsR6XZCzMDYayTSqV/eXVyIhMobdgpfzke8UV0/vbsK0NyHfv1Lv3NRH9VTl2CThw4ZSdW9L3mJCvMMjHlZctGb3Cja+VgGevFCl8Tfno08805//h6ZiTyS0waUi7OQY5pcuUx2OkoTFkiSq85A4cPsPXnf0xB1TaUsZ5yObiH1z6v+L9Cg+5l6Y9U0JAuTBmqupKAzElG0d3LPkVPoiT/80VT0wTnIM0zlGVJr+RcmsfgE2egaSe12T0YxV0292h8moCt7Lqy6/0hEyclIvvdcHLKM/F1LToxH+1+iBFpONHIh0XZtBMSiZU5lh5OckagpWO1lrNBj9FY8eMu6JgIZHtLVyUumIPPnsiqwhYzSG+Rzvvg8QME7lCTdpe4hcxV9atjzcHTX9fbv+Nt3UPXw6zQR4bvo7OTj3TFGwcgLV8K3s0LRhMRG1hjlJjqkNOTvnRGIkoaGz86BG+gP5ZNL8b4AlER+5OJ/3gcdfMzJZbHhi0xUhxcu0TxQ6ivT+COYN3JUZqzTtK6heT7pR3H5bmi/kBWmZ++MzF52bPKTXdDwqh7HEq8TciyJ/vJjioSEOGd8la5dRs5LDpJ4hwMqOHV9k0y+gNJ27e3lQHZI3WdC65H1OUTwIdMycm0QUWgyTavtNBItvCs21XgG/TL49dOOYoEuTM7/KvKxRPRocyrd1wT5iYZZXzQyRwf6/U7Pqhig62HTUDTSCBUy7WWnEnWRnMNJA/b4E8hYfOualhqGYm4TkpxvQ+T5p1MqhXAUPQrsPCPO1EGheqSP/gIENNCqGR1+UQtF1BCIW2fVkPFqsNqJKHVkuToYIlGlhGYMCc0Gn1UQn4b39B65A4jE+az9e64Cahg0u1DVKIWi5V4wl3xl0WiZNkpniCJFdd70g+wSiG8zj1hXJIh8K7bqCtxEEKls41Cm/V7EEiTj/WycH0V0GG8Sp3chSzsgxhLAgyyNJQxMq3agl+xbMD+eEz24EzPFkN+Gqr/EWBv7WVF7ofQDfvIGbPytRs1Q3IStSlxSVLgCmV0NRdfk1mDTPtlDBNl5eFdwRm3j4hJczbyY8/r+JPRpNja4Jj8D10o+WWVYjEHRdfM8B6Uf8AIrrfKHyyBMvDJi+817FGo6fx1x/dsLUwRlZmBIPzy2I72Be/0TfEWx910t7oHu/jpHqiTfQxbFZK8d9l1wfmvA1JenGV61MDDLvtAKVUQCyXfe1EGr28XGZZMN8JXY8FPMtxx+kF7QIZGq4ZhW3pTyYBGUZ2FtyZwogZ57JGx45V/BtsB7p8o/vIaVRdBOJj4TTh2auSkk9xI+cfzfPQ5xGhz8E1sSbZgO7bb1Xg75J8MbnVPtyU9TYKX5/sqvjDhoB4L4b35IhJUsWOPHO4+gplHat+gTMRAG7fbl7QuH2VpCbVXeEdBy6MXPCkYodMxW0Jal3IWLrnb/Ce8PgEpTnl7CakFQYW1WZcHLG57nT6/hvu0HlbQvHxy54gpnO9mX2dfdYXs7wLP2OkHuBfr47C1nGFH9bTH19UUYcsqni6PZHl5/Nee2N+8MfEAZv77H1wZeyqw//3fxJKwlZ2l5GpyGOrxxmoHQEDrSqVRLR1P4lcDR5CqNoCi7lAwz9QQMvkRcFH97FCZNLcX6QAw+vW9Ff01VhyXnB5/X/dCEeplRTWdUlOGP4aeJ+qxqsO2sTva3aFnoBcvDpcUUYK+ueE1PgBi0FnXRXKZLQfQva2TcQwD+9t11oFZDBIbNG89+pXHBEbYHhjQePlgXJsP8q7EDOi5bdFer7ISBn6+dPJn2F0RczvOyLWSBiVXkkC/fVkCQHzNxbHsdcEy8o/71mwWR6RLifseXwPTO/2m02E2AnDODtyrzp4CCc04Lfd8QMA0J4K3N+g54i+I/Ddd9AdOHK13TNPrBqYMJCuyUTpDySIdRsNINGvSY6jObzUDjlfb4EKUd2ISKNfxuqQV+Cr8gSa4RXAsYDAgSKQUzS1ogq7QScH9fEXbrzgfhBhr5zzWKwS/SeMwAdxaQmq9MFSrNAXQBxzSTnOdgV/krtmbZdEDQ6Q/nHU4ERz9d1VSlPAXu7zUPB1o+BsNMc6mvK3GAqmVjWx9NBvExWgkVmhRw6ZnF4Yb2EEBpjKi2z7kLPnXfjFWWuQE6qeLHjcpvAVtna+9MUXeAxSkMXDXwAQ8NfCRZn5DADQmHxE0RV3CpR29SX88WNM8Eedu0OoA51VIzp0UrYHczbppsbQP0XtzdddzEDOwhLDrNaVmC3VI6l/K1TwBVibLAX4FGwD9e2MmbcBxIGjO9MBkEvojxHPVx1QBuoYZq/ve1gam6QTU7hzJgqfgzsl2uBpQTGf2WUTLAw1pVMjFUHrwxf6Ih8U4EsNky4ryPSQAzoOj4zXQvCNEXnCi9KgiWy6w1225yANM118DWTC4Q7KokG+u2hXPZTeQQDNnAPxNM95csEz9cOCDIw/kbPxcoIH+PPIOLnGZ7pCm5hBfYpW6ItI3hUtIeDkyHSTy6Y4fi/LN+fE8WXzn+YwRnfb49H+nZjTuZFRzuqOrFRxTLHR+UtOJ2Fw3v8cZ34q9m4aSY2Fs857PCdUfRZvxFq+Ex+6+l+CSz/56JcTU+73X7D0jKx50PMEPWQovx9fNn536yZ+K9Wvd0I7lycFrSSv42bwo+2bXDDiyk4Zf/cjr36cfj+xx5JOmjSfhOQ/7Vw/SHeI2Z1dzT4Wj8Sf6xnONJYXjOA3zUv5OMdwN3lmLLAJxiq9CjxxqCj9bYc89seuAaX/lXtL/44rVhNI9bMldwzNlcyMHsGk7RV/Sgb17EiZafvNG6A+5kMUxPFrDCSSaR1m011viGqrLnqpoJvqGhN+/hfQovuN01ZaOsi1POKcpZXjTAY23rxtTjtfFVHotORXUM18vxFIptPoSbu5hqjB8g4KFZbr6ZBw/gmaTKkUuHlfFz4h7/yw4Tw3ViZHtTxWRwl8S01L4VPrw714Ov/rowXvwz405fOCc+XPvTaNqfB5+ZfSJoN7KFPXRLCT4wwYb7nUm2ku5YwWhP1sQL9vzGps6ypcwcncYk9+v151IXMQNagXWL9XdMqM6twnP9B+YfenBUdvor5u0haNjIPYTRXCeZEnpdWDH13m6HIz1Y11BN9n5mEzZXZlTYcrodS2Xelywwr8IYineENYreYuRmVtXw/4owKemTAWxbpRivtJkd5R0DQydJXTcX87CJ8gmV53PPsQ6Z4I5qzgxs15DmUhsjARPM5VUgbVOxHur46+Y2Cpa94FYv5hqLFVyhlyZMhmFRwUMR4ffvY/dvDQ0HKARgsvkMmyytECz7tMeDajEPbME3Ot4l0BfzNdS9e4ObhD2gv6TxGrpiDkXSmlwz57HgBTspWqM9Zlv/FsSYW2IPuwszQMtZ7BTNeOb9KUOMa0E6rlDFHDuRWDlwvA/D4JleryONepja6MKgshoB+3iaS7uOcAyTO1mj6FeihJnSU1XMDQ9jFgSGyPsxKUxblxFqU30AO/9iYO85USFMo3O/WUCxGGYl+rnljjQXllAs2LlayocVdAhrxSyzYFf4GO+4yjiwGWmllYb1VWLQM4saMaVNYvXENFuZ4yzRPcF45ylsmbi5TEg2txojCk4Krfc9nCR2vibbk5O/EVfd4vhULw4TrV4npCxqdRGhWe3KLv8eomi7WOYf+yaiom3PsfSNNqJcXm7NzuEK4k5mpuT+j/XENN5FqXujhcSoKzLLzUMlxCBbwTTtsFyiy3Gepsdf8on/B530xL8=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAwgkAAAAAAAA=eF7VlPk/lesaxleFaNAkEom0no0inMQ29bBDoQENxpalScaOrQzVVuYhZSiJUlHSjpBNhlgou7ZUdCQUGRpkKLQdQjrX+/Y5538465fv57qfe7ie+33fNZr4NLK2iND3t66e7BcQGvB3xR5ONKHNG37bG7qDUE+90ZLmfEJT83kzSrMJVbEIti9N+S6o25TXmxNCaFuvWN6HQEJT3DRVI4MJ7RRVdr2Ugvy4Vu1nkoTmX3feWutP6Khy+92IZYSm/3rE0jOI0NiVHpWNVpzKZfnOXg+g7/jocE1MCF3kofKPz6cI5cZGBtJ0QuNe6/snbiU0PnnoLl+f0NkeM2rrrQmdtiTOmDPvm2D/lsMJRcmE/rFp1rAb/OhV10oegf/vIaMjBujLDzmVqbitSbAxp+66XQmn8qvlpE4A/Nrd2iWhLgef8jbPO6IItf+1zPE8fNpndXbrniD0zPuSnYqIhw8U8ojXd0G2mlbItAuEemk/iY8NGBf8VCb96ebQhKD6ZJuhdgTu87n9dXseoftn+qRPDyN0uru5hJY5oTWfPUQVrsC3WthFvv+YoEJyqqbGj1DHbbKzv8Jf4BNNcbsNhH4UDmnd7kRolp+f6rtYzA8eKnvkxKm06gjUPbsEvjbUBX9dPCWIjJUpOKBI6IPC4DNZzoTe5duO5OO+GTpFLsbHCS2dv/ZEZ+ukIHygv/EPdUIj7hn3dOlOCOQvfFI628WlmqusrsVgz0q/H5xY5EPotTeZ1brY59obSXdKEglVayx+WAEfOZXW1cqXCXXoKpvDH+BSa6n+Bg6ev3pDywzllYRuvd/yxNuOS7190tq+bCc0V/F8h3sMofKtxN1oeExwuj9F0qNgXHDTWDv/JvaTZrNaXCRvUmDV4Cr2E/bzQS1EUIT99mqLNcXAd8CwvrcVaCHvsveUBKGyZj1rDiOvODO99iN8pW1869MpQ2hL49M180MJFd70XGHq9DfBtGbvxAA8d05Vv38n6pvatafkxrl0Qn3lyfBwQhM6rtYcwv4UV9e8eZk6KWjniCx+hef/L9EqI1m8N0Pev2/RQ55GhS8//SShXw4bHM2u5tJdY8HveuCv8rb8+wL+uGDz+rhvsw0nBSuVTI0eMvtO4oeGgZfScm8XoO7mnC/HJqDFn43FDO0ldK6UWEyu2phgoa9V0l3cv/GdeuB57Ge4cJWtFeZ9ld52tucMoS58TymrVyOCqKjtxT2RhBLxQL4v3j+Xx/51nqhrklLZtwP3G3O53O+Iev1Ry5nF8YS6j+0KdUB8rrnk7QLkr3cqOqaBvqrdjxRTwZqiBr3peI+46mt2M/s5big74p1K6DrzJBklxBfuzBGKwHdmOCq01Qt9g1UjDc7hvaR1eyuTGP126oET6pq0nIYd8V3//WfO6yWgmXZudwfqD53fXvv2NKF15Uaq748RultXesF95JvWLvq5GPuIXHVUUx79H0+PyKqH35AGB6/vqIsTnW4bi+eauPmNk9BZfH8hS/eIJ2BvVYeCmrG/CNtRXhXYFS23Pw99jCVHJBfgvEdE1cwO92q8Ipv5EP6E63uMEtGnq6rCXhXP6UChuMdF7M9R5uuBKcyz1CrxVUCfbxGK+5g9xG78pbsSurfHRuYJfAsu7LAMgL+ABS/vZKOuovnkhjTU7ZJLmJuNeZpct4EwvHcpC6WUvoAR7lsKnPE8MnrCkudhvlthSGQP+v3aNb8xPw7fRbStmjL8HrXlPZHC+bRjW0qzwAMqTZoP4a9gPCewFOfr04+EhkFvzfgkMMd5QpDgnATm+tEFaetwH2XewPMMnGcFpBckYd8+O/vVHiNPdY9w7jfco+bFVJcXfPz+1l9JGnnl9nqzj+AeWYk7o7zhp+bA9chP+D6uiQz2a+Oev8xZ/+gj4ncdHpt9wT3ffox3voy6E3+qVR1H34W9FwReOA/cJm/F/O+fo3Wta1HXKT5SPYV928i92JGK/i9nPD/XgXyVUzrjBohrWVWcE8KcrrkiOwU47zs421MI/qROPR5xxj7KeNLcEfiXzHC54495/PfXVv+G/kIPRF9NQT+T+kpXYs7Vubyw77iP1GCwvT3yZw8csjRFfxdLiUsy6DdSfSxtM/L06/1jTPC9LB81cd2CeRqZB5OXws/arQqlKuBJrnfkFcRjm/eGMuebdepr6hH38w25/hRzLQq7B1XRT+zUqtAczDfIfZqVgX0o7O7uewG+8X8SF4Q6sWcHzydg3n2vG1wH5PeF33Ociz7KunKSHOS5TkyGL0W9TFNg2wf0vWNSIBYMZrrqz2P8FbrnKEwDcyaSS/5CvsHe+lYdnHMcFz44hH6iQmdsy9EvTrf/1C7o5YlBQtWYl7x7n50M8qK4WuEzQWVh/opyxIc0YqTzwOcStzUuo26DDC+ai7oOh10OydAtWmft40EHG727ioj/fDH5jRz4winFVh4svjfFS0f9RZVrezLA6FmVIlfBQR/Pcoa6E9WlfshTFLsvzux7TYDONuZ9C+v3HszFPnjGKXJElEujX+mkGopxadQ9m+osES7tPdG60XcmlxrGFdqfF+bSVLmhPCXEeWbVjY1CXPpO8cMqfcSLapa0WkC3rIvjnQWNbA+v6J3BpSL+Xhpy0FUNUdLXoXkWcjf/ApVCD/X5goe9pu05DTp8aVfdDq5Ybmi9D7QzdTA2BPfd1yrcBJ5xjklcA5rPOW6sDQ7M5ORxmbreklYV8MDNcs5yMGWyJGQF2Gs2fnQpeMOV3yYLbrXY7S4Fqt7KFJEG17sNWS8Gg/gtByXBTNk9fYtAjvycGxKM737rzwtBy29LfJi497aXpoxum3X8CkOXMs2mBeCFjtAFjDbZ3hnO6GfJCjkMHSezrBkGdBh6MkzfbbiaoczaTUYMz9wul2TYlt+gyLBzZpYww5F358QZepzQG58P3rohPJ3RQV2Rw4ymj5L/zTC1za6P4eeE+0MMTXpzPjLkXVk/wDC70vgDw3b38B427mbC6pyW/e8ZWsgmv2U40T3I6hrf590Mw1YbsvFr7aasVr0XxFLIKYONi85XZrXJwY9dDKXiJ1n+1LiGPTe47sFy/444Np7OX8vqvKWrWKYNrWD5zxoP9tz0tQ1LPQ8/lovq/Fl+0pBn86zMHFl9LfY7O3fdH8vYePRVRZYrYxaz5Dgosaz/WYGl/S9clsPGUiyPWcqw/DP+x/nieZIsGy7NY1mercKy2eGHPp4nxnIR90ee6jPCklc8i2Wf2Q9/tz7MZ2mi/sOXRscPJm32Y/de3yrCanMHV1aXUU+WTXlugwTU3xfI6qhlR1htm3yCJYf9zf9f/L/6/5X/AXo6wAc=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAYgwAAAAAAAA=eF4NzocjVW8DAGA7+5oVkUviZhQXyT3nvK+RQmbKKEQ2mdlk7+zxKxmZWdl7howkI6KEQlYhq5DC9z1/waN8jy1XOyAZ+q+Xop7kKZCGb+T1iewkKCMVJR6OT4ZavYGlMd2J0Ih1raRDMQnO7Rhwma4nwMDIC17MtonQLe52dQt3Asw7eymjLzkBttU0T4SkxcGTeXn7kuHxsHJ9NYbrRCxsl444lP8ZC42sPlZa+T+GC82dVOv3YmAQVHJ+ehwFJbFhR/OpaCh9pllzJjoSZobYDr43jYJMxn4XrfARsKSgPdl6MwKq0OSmWnWEQQq6uS696HB4aObpy2EfCh0Epqg+XAyDQYfFNoX4ELjA6/yD80sIFOqzWdOfC4Jui211t54GQ/Y5C3GTskAoKp+x9cY4CArgkjtn6QIgPmxju/hiIFyRR1+EjPjBoaVOljsn/WGU0LQyeYUPLKhl4jyx7AsPOES6igu84HaCp1L1sDccMwjB2mo9oCjON6xgxBO6miq02Ey7wfbvStunf7jDbZN4326eh3CwpidYkscNPlsnpI+4u8AED5rTh1au8CzvHvX3ISfYkspB5vrWGYYl0d/9M/8ANktbvP0Y4wgPeLLTpIXtIMO5zBcGdfawLIl6v++ZNeQOSKmrYrKFLA8pGotRS+hr/VPnT4oV5N66ZpnFYA5v9Ny/zqJmAXNdCxA5GjPY8z1JtUD0PnQpq+XqvW0C0449qUlXTOHUlB++eeMOLHHrXFGdNoJdjA9r4yb04eAuh6jUE0NIl10NtGluw2Y+/k/6mXrQV3ZJaNbnJhT1ENWs+KELNc1LCykltGH54O9QnK8OVD3l07GoqA4H2Dhe2KdoQvuLrEpdqSowz9+bq7RQDdZmOBuf1FaGjYz8ZerC16Fn69x+oK0i3JCujp2gvwp7+meIr2ogJOUt+x+rKsCOEP7WUiIC1+EcpV8TBhUfNd14JS8L82jbols85CArya+iY1gKUnCKTNO0ycDfN5aWlUcl4IEG030vfyL0vWCRmuIpBi9u3begNboEo/Oljy3ICTDV322XO0AEvitpFH8iJgidBDPXqrWEYEAxU1vJIh5S7+X3XW4SgF9ZlEXKZXjgeqKQUrkOHzxfLdh73usUxJS2xYlnuKHGzOSvFXd2+K6qQlC5khPi2H+4m3GyQCJTjq37b1a4r/NSIyCAHkpS4ePL85ng8ME1ui+d1BC50EmMvE8L9/SuHxcMkcMANWeb50eUMGoAHyXHfAi+v91OTtMng2KMCqfJc/ZA7fRZPYqcA6DV1062IbwDKoozMkKzfwNfJTKB2N2fgHg/jyokeAvE7BTQWW+vgMy6rQ+zSmuAe+3Zk090CyA0jKGavH0JuBC6K3gZZ0Fjc1v8AzAPNANoVSWyJwFlI7V7z8UZ8JAimCHS6gNI+16eZar8EeyxWHR8khgBQlY0Ci8CR8HP5cN89px+cCSWlGakNwhaGTJ5EVI3YN/p0ZOR7AOH6T2tWxOvAHUgja6jSheId6sczjhsBBGcry1Ov2oF63pl2/QJNUDlqmzun/B6cHi8j+OIKAeo3MZHuswqcG0n3fJUZyFgFJzy5nUrBYq/glRxTrkg8U5wjZleAdgOosKyIzOAYETSM6bobOD/gCTsQ/MfcGA9GnRISgOJFEz9x78SgPWL+orIhmQw0tkRvUwfDXwU6ase6MaBzyYOk07bISDxnonXnmIEePCfpcBLH3+QYHGDVfRdEGA81/LRjOQJVBhGg+6K+IIHyrJZYUUuQDv9yjJa7gb8YzvJDN/YAZxezCq1rRP4FlZ/nUrJAsjsnXfNGrAGkenCdqGpJiD+/ERc818zoIowD4qd0AeCPAZ2R7x3wf3kYGNTdR3QW8GIFFreAu3zJhOt66qAaouxiylTE7CdWwgwNFcCoo55Z1tWrwHGssmlzXUU8PPG9GjwKQCZLwImR5Ey4JlGrfK5cDlASmgYrTq8BLi8F+XN/xLB8J+63dd1woBMqZBiW1QMvPzCJPQ9kh/s+TM94J8WBJKTHIJuc1ygwufrkN7YWSC5f5JTHMcO5t0ufjRoPgl2OqS+WVEygjVhpbbNRhbgVzSNd3xMBX4QurRC4mjBYcpQfyfbEQYZ9FasjsiB1w+VcNu931gELbPfX+0DTL7c1tGYchPj2dUSL5HewQLfGx8fqy9jadaqY5cPVjFdQv6iw+osRqGwq+uvt4C5XrArsAj/hDHz2RodB89g3L/wajlt7zHDE1lNuybjmM0YOFTJ6sdmXJiLShaGsCxcvpWjRxeWWKKUnK7aixVFWmhRJTRj9LqE8QLGDizur0v0IFsNNhjUMRTN1oDpvXzUUKtfioWvnqv7GVuJ7cu9M9RIyMP0rTaUk+sLsbKw1WqD7XTMRlPVjfgrGwv7HHfIv56M7TxJUlWVeop5cwuZzhrHYFE5DbFUIBFT596/dpEQio3vWy6xR0Rij8nVcJfT/DCCbQExwS4Iq53gKqVRcMO2QPMLYpUXNqTtLAnyH2AGxLbGNG8XbOGaytWfshaYMyPbZkuVDTb2OIBrOMAIm8V3b/rYm2GEU/tqQ0y3MB7D6y4pUQbYuNOkQY64OibpyD3GraCDEenaKgjdSlhRcICJKUkFKzxZ/EauEsFEJXl55/7KYy6IaCmNsRS2RHbHxalXFmuYKAoZohfFnHl4s15kSmAZuYtSC58FMHO2uYF8CWGMk0grSVDgxgR2tmnyCHhMTovZJE2eDVPqWtq663cSe2j6gSFInw4TusUqVQ1w2FLboyeKieTYP3UqNvUyasybIYDO/OY+qvZbSoiK7gjdFavpJYxsoo+/ZfTZ9f1C0eETtuGXl9HEuBS4XbeGXnC9dKqEbBYdaNoMHx76hubiJZqqaCdQEZFbeK0bU2gqg6anivoQWvHM0uNp3yhK+CbYkDHYjfYlLs4sDPWjb+xu+3ZGtKImRs3h7+s60R2hMJqJqBrU5otVqu61RjQwPW+VprkEPcVn122SWYkG/Oy0fqmQi2ZOFkz9rn+BLrs9ST9YeYoOF+2Zj1E+R2VHxRV5/ySgR+PSXm/Op6Kqpq3NR1wRaJ9D7G7OYAw6Kqt3O8Y6AH2zX0+m9yQEXXfpnl3XcUcHnt8hqWT5oKl7jkst3x+g9UcZZytxrugI9eeb/1LMUeKypRXe1wYt3zCU1vG/g/ZIptoYJ5miOrkr79uWdFBc+w/jNzZ66J8lp87lCyro/GZHQdFVTXSm8+J3opo8Kk12VRdnfxV95kUs09yUQUXqP5zlCUXQVc8now9DxNF7GuKnOcOIqEvbfMvDD+dQaQON91tLBHTKY2taOosb3TkzmnulCY+yty+Pu39iRa/Mc+lSO59EBS7LNpxdPoF2Dl4wusnGjN4sj+e0/nuMqB/asyjxU6E/EsZOZd37jUR719cvrB4gyg40uKqoNaRV+p9jw98tZOKV9Kgc7Tck8P7uY3ayFeQzn83w4d1J5PiXueS946/IXtqVM62zI8hOvuijKc1xhH1l0SvCpRdxv1Fo32T4Dil59DkxYaQNEWTG3lp+7EJKQoZ2yt7UINoluVF9VE0IIfGh4BqpBBmiHBcXflqJsJc+neO7l4OIv47UWD8sQFaKcGXT//5DLslSKNGczUTmzY4GaCzikBbHwvpJhWTkk7htKo4tFJlY16L84hqFjHlIhCF+PkjjuVttDe8CkbhEkbxudxfkrdxRoPAFD4Sv85nY5rEV4rijxtsk7YCkHRnTU14zQTY4cGnTJHMkvqvLlWpFF5ERvVO0oG6IkGVrTGgQ1JCIP85k4znaiJV3nryeuAKyKXZsQpxURpJMLWfsn19GBjdl2JYrUOSPkOoAa7k4MhJE/HMwT0Rev5qFZh7nkGCxPFm6XgJCGyBeVhbChQj1MA6wATyy4KzEE9rIgpw3Dsi4rcaJOK1GLE4uUSP/ukyb7y4x/P9pw2hY/I801sMczXGVAkk3GqOvb9km2bHmbcUu7JG0myUlOD1XSFKZRSjTlQ2SsYL+QPDKV1KPfZSnnOkCaeOEf399/wfS8nR4VEf8ZxLlypW5ctoB0uYNnIbDjfck/GJR//WETtJlCbMx1KeXFCPps3Omv570lad1bvJSG8m4++Vb9kdlJEV5qzX7xWpS+fQ7WXN8HmlZ4F1xlV8RSW4pk4OHKo1U3yBIzGt/Tqq/zavioZBIIvBDWUwglfRIp4plZPQxqefuOKVKbRzpfwt/yQ8=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAYgwAAAAAAAA=eF4Ny3cg1WsDAOBrJiIjTscqmqLIrPP7ve9LwiF7c2VLRBknI9l7rxNKZlIysskI126IU3StoqyLcCiU5Pue/59EjaWgXNZ0VFN8yWohOh3tQbOI4dNpiGquxu7zNA2tv/scOKmbiuR2lu6df5OKlj/JdV7wT0GmMivqzN9T0EcXviA1/WTUOvz9rcbRFNTeZt0S3JCIrr5zHjEpTEKDHSJU89MJ6FVKqXg2ZyJ6XB/4jvFRHBrgy66ihsWjGbelO5WnYlEbgVhAYYhDiaVTwvfqo9FurCTFPS4G/RYIzJvTi0JurHvFNSLRaL9yqOfkRgRS3Zu8GNQciUzzuyRrC8ORjd61YlbHCNRSxh5dbBWGclZPf48mhCM3Y7biNbFQZDARYA5HQtFHVsvtB7PBSPrVaKFTfghiZ3MlLeYGoqb3cxK3loMQmadXXckjABVblowOP7+LNkFx9qSFP/rzLK/EPv4OSttlJZ6x8kUPD1OO3gj2Qz45PqxmvrdRjgj3O/kEHyT8wYIeU+qNgvPjP65VUVDj00Ght9ueyJvh1NOmNS+U5UK+LGDjgS51G4lQyZ5ojpG30K/FHR0NiLr5yusWinnyrOf7kiv6oWpwfz3SDdlYH6ibvHIdGRZM9e/1u6A6fTB5YdwJvd5cuSMAndH+5fSA91kOiMBPzzk+7YiuzQ62k8PtUN6QZuN0lT0iE8JUWGVtUGqu0eX3FbZoGeeQjqn8G93ZL2jwuOwqKnrhn6wXZI52DDV6j+hYIml1S0PzTBNkX6JJUMDMkF9V2xvPLUP0kr698trLGHU1oRvkB/rookPBQsGqAeo0uOqyuKmNNGIm1Bss9RADTSFK8KwmcpcdOi+sdwXVMAAn4wE1pFXuyJFdo4GIenaRa0OXkKuBZbhv8GUEZrt9gqSV0YM3Ygaiz1QQq/2DjRetGFKQdOe8awrR+V+sp0MqlVBH2A96yY+LqM+V+XD4aXm02PZcL05cER0almueIJxHuR0v0soGZBFjIS2M76sUgmFDB7lGpZHStEvZluFplMY6yb/16Qw6sCj1RM7lOGq8NidLyzyJNBz+BPjwiCGhrlMExRVx1LXNerDVSxhJxEqrquccQbaH/RLi8wmoLyqMeURXEFHdDDljkvjQKC1xzHWIHy2ZNFH5xbkRxXDgaxIbLypiIn4IjWZHRweHp/7UcSJR9x6vmFYWpGqwXvHekQ05HDTRWOlgQJcoXN5am0zIZND5o9jibzg1lStIJv+FRqJcUrl8t6CB8qGyj/6/4JczvX5yO+swlvnt/nnKD0h+UNTb/XAFfpMqL75pQod6/45Z1mUvwInvkjbMS0tw7u5a0e3GrzCB0Vyh1GUOVkx3ejeFfYZWX3zptavTMOv6WW114igsZcdq9PMmoE1csF3yynvI1WHa29U1Ahs2pDzdU95BLvneuSUuGuT6d0ddcLEPMicI3cpIfgNzcfvBjw874QQHtf5KZA90kekix756CdMfzsyL1nXAwoH6ywmCjdCszFa9tasZnhmXWjcbqobCRrHdjfV18BFjUBGTZjkMuY0uaC9XwuhCrbTwF8WwR2qQ5bjuM8jEDWeX7xXA96oHXzg6FMFeA6aZT8ezodrCR3pTRB70a/aKpM5QYbiVgBSjdhZsLErr/b4/BbaY2BKOVKTBnYc2S1nJMfCD1NEDa48T4HDoolB/RxjMaY2lC/0XCc2iPSiU9LuQMHCIf7E+BCrcp3V41t+Gmezbz7tv+UNLZrW8OYoH/OfL/uc+ut4wkKWl2fXLddjPeN+NgLtDlj0nclWXPYx7RLDxP3QNvi+Z0z0OraDm75Xc7kJbuNdqRT0gZwL3074NczBaQKPXO4cI7XrQ1sba+V67ITRd0p5Pb9SAeqP8Ydlc2tCdC3n4VqjAMH7D1cm1y/CoGnW8SpsEe/fldPLKIMizLP9iNlwO+tQ2rDNJKcEu0STJ4Vkp2PUsUTfu7Hn4XdveQsviBLQ8EQRyXSRgpJOBWrX/EZj/jWZc1CEOO2fL/KVPESCvQqBRZb4QbB+WtOr9ww39gDrfmM4hSPALv/5tlg1mSHTsLfdywgV+WoKmHCPsWTfkTHrNAtWuvhyYTfwFYhXE+neH98CgZcK7gyYb4LunBbei/Ba4wDPu2UZYBtky84xzU2vg2K3C/oM2M6BywSs5KXQBCMpLv8m7OwlMFn4LOXZMg28U2bVS7WHws96p8HX5KAi69XPZpn4AmL5iUcmIoYFy9ohHI8Qe8CGXEtxd8wq0uA/aNrW1gRUNy2dCcp2gUsClXLqzHmx7daWKJjcDW4fpUxe0KkG7KfnX2Zc1gP+SEYuQ+hPAxtJSaYeXgaZBinJ1Vj4Yav8ZVXOqCJT1cYkO5mcCsRILD8KLh8BYrLPd5FUKYIg+I3zlJhXE6Ws429Gigaabyp8hpkSQXCBg0/cpBEy0de7qp0aA0s5knpYxX6BKCw2QFg4EilDYmzziAZ6Cc1qTKRQwn6ETkt/kDBLZ/ZXeM7oDbzMNxcdVtmB1T1Sixd0RrMtuHqd6mwHt6c8Zpi+swJN1v+eyXvqgPq/ztq2EMbDwLXr5dp8GoO0+7pa9pA0+PJbibCIqgz+qmr1D3arAIKz0pMgdRZB5GE8pyseAGUvYvQFjabBYQZzMUJMDEk/ll9+9PQHceSTn4/89A3Y/ifG46oiCd9aUmJxScdBDGGClsvIDTFgnl7xCBN6/E3YqxDmBm6bkObEdHtClwrNgcZoZnKdJbNybYwPHJKZadMd2cFlHZnqKEgOgJyj+VlTawLnT+7Sv9Wzh1kYffwjeWcT51VoCfRzX8Cj8coem0hc8nj+S0p429/+3FPJ53yhuSBPNb2H/jNMleSXypYZw+W0jap7+MC71LVJQObYXf/STVTUCe4tnuEv/JSbUjq8mkH1GmLtwn14u/Wymenyllol72a4Zf/6rJ5F+oALXCo6r2aypxtnZmRrpAUU4aPBOk4kowbPt9gh8M9m4DtuJddy+AK9p7J4f2kzDqypcszmeZuK805kcnR2xePN4g1goXwo+S1OS0vYLxaOuVlzPp0Xi5ied+hxLffHhG0bnzDICcSkNbvoSkwdemjJw7RYbBSfybprdf+yEF83QpOwP38B3rSFmefEqzlc7UqmjY4/n5YylnKg1wndvjrceqjbHV8gJ4z9itfDoC7va1kX6+Him6V+nx1TwD19EJpyd1fFambnhmF0lPOxYvYHpUYj/uaZN/0mUwXf1ce4QTB7/wBgZN59xAt8iCurKnpDEBwNkFBMWhfH/LuJq+TLiuK2pUfyWGR9+9m/neLrFYVzTUUvl5Nh+fN8nAyFlMjfOKeBU167CgFuzF7EfaWfBB7699Clm2sL8/h3XvcC6i/Wx+YvsK1nBIoTtiFfMN7DLd+OeL1+bwTaqFGKo//yHcUQ/+NV+ZBzjWo3zlhWfxv5Z0rvPx0TDDr9eutHcNYIdM/t06etsL+bNa2NDuziANTbGL/4pa8NqfLef09m7sOhJhrst27VYn8T1058SmzD3LK3j7C9LMdXXqz9fplVhqZnRc/PGhdgp+m3XbPwJRmwyPEOQz8KWEl0vyVXnYlr9vV5by8mYedqF9hsqVEzrai7BfH8k9hFkmQjVxWH7PjD63agOwGYPe0gqZIZiXtUFAgVKXtj9kTrYc9IXi/hZH6NFd8amHljfkfK8iY1Rl0NVPG0w1WaOiLA9B6xkKswiJ98Yg9rqshLKllgViTH2yIEr2CPpKreHSgbYDduZK2kNKtj8mqh6RIo6FkUxu9CvoYTNNlSKHEgGWMTwtetNfuewG7VGRC9XOazWkmiFrR7DHBICrwRfl8BsnOT7g3gFMVauU/WZuUcxDiJr7DAHD8aWQKS0N/NjjJO/KqjqrJhDY3PwrMsB7Mt97XNc/LskZa7hlD9JjJiQh0PkP5vrpAJBLZNbStskjh8RfjfrFkjib0funUhbJWkc/oJ8+aZI3z342bqTZkgHy1Voe7MfSIYNhgEtLWOkr+Wry1Uir0mLoxHMt6yHSKvBhskM6R0kaX4oUxHZQ3IQWc1Ora0nlTc+5qiUbCXZii7R/fTLST6Gz7qn3leTODYUiTmfC0mpsU+8xclPSbfbDgpYnskiOXLbLz8RyyMlcm26be0lkZbIEzZCv9JJYaYmu7SZcBLNalErwCuW5EwIOT/4VwAJiOj87VoVQtrhLyFay90mHbF7pAAnfUn/A/upzGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAqAMAAAAAAAA=eF7t1PtP01cUAPCh0M1pYsJjIfiYJTLDI+BYIcjgSAczYrZluDqgGcMRM7YCyhhQdiTFqckkAefKqwKFKqKjTEqBdgSkAsLKlAmFFjRYHs6OYcawUFj3+GHnfvtfLPvpk3tz77kn59x7MyT+WWoLQqLmVu3qNMJW3balpAkEr9R3njnvI1hzDMmqewhBMh9+4ghC5Jd1JY4hhPyzpx41DSCIpeL5FAPCR+nGQp9eBN9JoXnme4S7k79gWxfC4cyZmEtahLAJW8z5NoTirLdWylsRMkWvemm/RfhhSqixN1OcFyp4oiaEhNHkskcqhLbTEvPXDQhp/NfP5NUjhBRmB5bWIuxr4R95oECozHrZ/0QNwmVTh3J/NULeTvcDwiqEvyRym6KSxhdb7AfIgC2p9gCy8tg1dRq5KlfxFkivSD1PQ+sLnmu+PUz7d22uE/tTXLHo4I6BywgSuUeOsg5BVh24rlUidHzerXY2IpwRJqxKrlIc31cMbpR3T2CQVneD8pZtiy9RI/z+UoXt/ZsIzdaIwIh2hOc/3pjz7ESYgoexSzoEv9nCdW03gnv6zXczqV72jWfx7lS/p9aW4vP9CMdttk+fDCJ8MNJxkD+M8ORc6HqUEeFNn59ig35E2BP+icxxF2F3jd5QM0rjFDeFN/WpP9TGzx6jPgnnrI3jCItJ31zVmhCSTiR+1UT9jBaUj0snKb7Fc3a/GWGlqNbPRJrem10WU/8P5Rvax8nuvbomwRTVX1O8eIGMjBqRjpETa9P7XqT7sZvfpYomdyRbjmeQf0+E950lxWmt8/Xk/UNjZi0ZXHAHB8ls0a9VY6RsKX/0IalIs6gXSN/rvdcXybA7PP/fyKENac4K+Zkt5J6dHJ5+kLtGCjwGSh3k4zekUetk9MaHCmZx17qBucmyfIsp897VyJSfizvF3GK+ImAa4xscbP/FTZ6dTH1fZx6zaCg5grn3aPA/7JyyPVYj82TBoIJZ3b58khkbnHCE+eex0iDmQlbWdmZx0gUney/9Rfk2ZsicwcKUizdGmOnT3xmYoa2n9UwfkUc70/nFH2pmbsnWG8xwHu8acypMf4U5X7XWyHyc3dDANPcolUzdUWs9s2f4bc4y35/rmJ2zFZw7O1NdmkI5MWM7p7zSyb3r8aeLnN6NM5y9bpOcfuWjnHEOI6dAM8S5OWXQNd/Qz5mbfZuzVGXg5AW47LvUx/laqssYH5dxa67/JMHk8rDmf//L/gsw3HnVAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+WHF721Vst8/jOmrJg1EIDts+SjVrELfPymgjEDo0t4/6BfVIqhi3j9tgFbDfvHdP/AeunXwft0/RG0Ka3QK3T+s6AQzdpPcP8nhtftXGdw/GiAelHWb2z/05R8sKBnbP/nOb8DKkdo/EhpwFb8E2j92tX4Yc3HZP3JPQnVm19g/0vmVJDA22D/0duO1g43XP15dRRI23dY/VX4Oe0El1j+A4LGLyGXVPxYoqhAYn9Q/gpbfkafR0z8gsD5+GP7SP/MBdfYzJdI/rAHIRedH0T9GR6knP2fQP5hiVQ7ECM8/tYya4RJBzT8Wk2bv9XnLP/f4wKcBtsk/9JZwAMX3xz+aY5I4u0HGP2ma1p8+lsQ/zoKPzHz3wj/9JdiVbGfBP5K+3R6Mz78/Xv89V/nzvD821n4ddz66P2QLpRHIsLc/2H+aKhxMtT8aov1fFRGzP0FPZILP/7A/toojaNUvrj/cvczVL7GqP6wU9MNNgac/ldm/zCmdpD+AopbpNwGiP7D8MrIGU58/3hxmuJYjmz/um9k7PGuXP1/SMIPiIJQ//xNxdW87kT9JRgLb0mONP257qAku94g/fCCRwzEghT+0p5OM+86BP8xPDAFF6X0/JGSm4pUGeT+SHlS/Ytx0PzRiOfxbU3E/+3M0zMesbD+OAaYZ/qRnP5SZkV15bWM/7W6b+GTQXz+EoqdHc/VZPx2Jh2HcG1U/bKrxiWgbUT9mt7QUqaJLP8jOQwOAP0Y/BsA4bkPaQT/Y2GewEI88Px7CXRo1xTY/sS3Fxv0YMj8ONu048q0sP/QWNTefpyY/VygWEXjXIT/c2gpqvwQcPwx+oc137xU/SF9qS4UfET8s52jND6gKP0J2jS6nsAQ/kFJ666ADAD/AfdAdvrj4PnR0hyWlB/M+VNz9tt837T60kcLCA1/mPuY8kc5uFeE+djTLkkEG2j6Gi3oQgMXTPnyvaWhT980+BvQ5RPGmxj5I7iL/yBTBPrqG0bO6srk+nIlA6ORIsz71J9i2FOCsPg5DoOczkaU+ZkeSr1ASoD6k2FES4eWXPocSfqRUupE+6SlUUT0+ij7GtLGltGGDPozpCHX7kHw+GE6K47YBdT6izD+LdNRuPiIIk8R7k2Y+2TLpsnh/YD6FKWzXMhBYPmXMx/x6g1E++DAW3U9xST7uKiaWxXFCPrjjTYq9sDo+mQhK5kFGMz4CmmTJC8krPpZSjuBc/SM+7PgqkJe1HD6dYf18IJQUPtBzs8Cqcg0+Uie8I0cIBT4QPRYAk/39Pa+uY3NIWPU96nmY665U7j30G9QjX4PlPfLlVZJxd949HpIzHoiJ1T1pHwuQXGbOPTSCoTB7a8U9T7YKjPEivj2epfEMniq1PR4dqECcr609mjVrcPLIpD3AcGVZlg+dPXtJIX4ASZQ9yAUZucZGjD02JjVevq2DPSKFJbSdWXs9TLqWU3b6cj1W1Ebc70xqPfocbkqsMmI9OIegzdAlWT1en3PqA1pRPQp011dv6Uc9dgq4CCh0QD0rK4si9Jw2Pcp2H2RoCS89qdRItWNFJT0O+7u+QR4dPe4Pz4+E5xM9NaIgP2UtCz0FpxuVyYcCPbQyoFXZPPk8jlmRf0Eq8Ty3Io1PDVLnPL6Of0QWpd88CiHYDsxx1TyUSm8dmgfNPLjfNJ8zoMM8pyitSWaBujxJSg5BtOCxPMEVlADeFqg8/JxWoBM2oDxoDPa8eMuVPCHlL1fYRI08fxT0lQuigzzMx0Ep1056PLf3OPB+m3E8mpEIcB2LZzwErWqFhnJfPLSu1XT8+lQ8oToxFy73Szx5AZPtdp5CPC3/xRxqxDg8aezKiM50MDwx6CFvttglPNjDpd9J+Rw8ck0VCcQxEzzvc7UBOmgJPL9mT2eozAA8UR14xPkx9jsQP8TtHkztO8Bp+kmeUeM7rKyr2A512TsWz4TsUcLQOzA5NdNRDMY7JcwCz/L9vDtwFH8IiA2zO7h5y5nLCak7bE26jRN2oDs6IpvLwZmVO76XyhwGwIw75GYwknPNgjtEunY0PKJ4O2YiengLH3A79BUefIoUZTvmVQNvg4lbO14xjATT91E74WXEC8ltRztt8FwtrIw+O9amcA/m/DM7aoHEBE+bKjvCRKcKxOIiO5Mo7Po=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+WHF721Vst8/jOmrJg1EIDts+SjVrELfPymgjEDo0t4/6BfVIqhi3j9tgFbDfvHdP/AeunXwft0/RG0Ka3QK3T+s6AQzdpPcP8nhtftXGdw/GiAelHWb2z/05R8sKBnbP/nOb8DKkdo/EhpwFb8E2j92tX4Yc3HZP3JPQnVm19g/0vmVJDA22D/0duO1g43XP15dRRI23dY/VX4Oe0El1j+A4LGLyGXVPxYoqhAYn9Q/gpbfkafR0z8gsD5+GP7SP/MBdfYzJdI/rAHIRedH0T9GR6knP2fQP5hiVQ7ECM8/tYya4RJBzT8Wk2bv9XnLP/f4wKcBtsk/9JZwAMX3xz+aY5I4u0HGP2ma1p8+lsQ/zoKPzHz3wj/9JdiVbGfBP5K+3R6Mz78/Xv89V/nzvD821n4ddz66P2QLpRHIsLc/2H+aKhxMtT8aov1fFRGzP0FPZILP/7A/toojaNUvrj/cvczVL7GqP6wU9MNNgac/ldm/zCmdpD+AopbpNwGiP7D8MrIGU58/3hxmuJYjmz/um9k7PGuXP1/SMIPiIJQ//xNxdW87kT9JRgLb0mONP257qAku94g/fCCRwzEghT+0p5OM+86BP8xPDAFF6X0/JGSm4pUGeT+SHlS/Ytx0PzRiOfxbU3E/+3M0zMesbD+OAaYZ/qRnP5SZkV15bWM/7W6b+GTQXz+EoqdHc/VZPx2Jh2HcG1U/bKrxiWgbUT9mt7QUqaJLP8jOQwOAP0Y/BsA4bkPaQT/Y2GewEI88Px7CXRo1xTY/sS3Fxv0YMj8ONu048q0sP/QWNTefpyY/VygWEXjXIT/c2gpqvwQcPwx+oc137xU/SF9qS4UfET8s52jND6gKP0J2jS6nsAQ/kFJ666ADAD/AfdAdvrj4PnR0hyWlB/M+VNz9tt837T60kcLCA1/mPuY8kc5uFeE+djTLkkEG2j6Gi3oQgMXTPnyvaWhT980+BvQ5RPGmxj5I7iL/yBTBPrqG0bO6srk+nIlA6ORIsz71J9i2FOCsPg5DoOczkaU+ZkeSr1ASoD6k2FES4eWXPocSfqRUupE+6SlUUT0+ij7GtLGltGGDPozpCHX7kHw+GE6K47YBdT6izD+LdNRuPiIIk8R7k2Y+2TLpsnh/YD6FKWzXMhBYPmXMx/x6g1E++DAW3U9xST7uKiaWxXFCPrjjTYq9sDo+mQhK5kFGMz4CmmTJC8krPpZSjuBc/SM+7PgqkJe1HD6dYf18IJQUPtBzs8Cqcg0+Uie8I0cIBT4QPRYAk/39Pa+uY3NIWPU96nmY665U7j30G9QjX4PlPfLlVZJxd949HpIzHoiJ1T1pHwuQXGbOPTSCoTB7a8U9T7YKjPEivj2epfEMniq1PR4dqECcr609mjVrcPLIpD3AcGVZlg+dPXtJIX4ASZQ9yAUZucZGjD02JjVevq2DPSKFJbSdWXs9TLqWU3b6cj1W1Ebc70xqPfocbkqsMmI9OIegzdAlWT1en3PqA1pRPQp011dv6Uc9dgq4CCh0QD0rK4si9Jw2Pcp2H2RoCS89qdRItWNFJT0O+7u+QR4dPe4Pz4+E5xM9NaIgP2UtCz0FpxuVyYcCPbQyoFXZPPk8jlmRf0Eq8Ty3Io1PDVLnPL6Of0QWpd88CiHYDsxx1TyUSm8dmgfNPLjfNJ8zoMM8pyitSWaBujxJSg5BtOCxPMEVlADeFqg8/JxWoBM2oDxoDPa8eMuVPCHlL1fYRI08fxT0lQuigzzMx0Ep1056PLf3OPB+m3E8mpEIcB2LZzwErWqFhnJfPLSu1XT8+lQ8oToxFy73Szx5AZPtdp5CPC3/xRxqxDg8aezKiM50MDwx6CFvttglPNjDpd9J+Rw8ck0VCcQxEzzvc7UBOmgJPL9mT2eozAA8UR14xPkx9jsQP8TtHkztO8Bp+kmeUeM7rKyr2A512TsWz4TsUcLQOzA5NdNRDMY7JcwCz/L9vDtwFH8IiA2zO7h5y5nLCak7bE26jRN2oDs6IpvLwZmVO76XyhwGwIw75GYwknPNgjtEunY0PKJ4O2YiengLH3A79BUefIoUZTvmVQNvg4lbO14xjATT91E74WXEC8ltRztt8FwtrIw+O9amcA/m/DM7aoHEBE+bKjvCRKcKxOIiO5Mo7Po=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAARwIAAAAAAAA=eF5V1N9Lk3EUx3E1ozWWzrX88aTTtHQ+ptOcpjeRICHeBrJ2oWXsogj/gEgQHBIJ4q8bRwSLsYt1kSwoiS5CJCRMI7soEwlButBEzX7NuYI+by+6enGe89055/vs+X4Nx8easkfbF/bOya4CuVoqe0rk3VMyVCE7q2S5R2ZWSxPjJnnWz56WqWLpcEkPcSv1X7Fuyi17ibfKZDf1EpXyC/2c9BtgrlAt/etkkv3ZeF7IOpN6diymjoO+oZPyIXM+IG7Nk4YhY7my3ylvH5fhHDwmg8Ru3rOL2H+Y36ORISd/fPin9acM/JEvseOX/IrB3zK5T546CwnF2+RvEjclZRzbyK9gc0qOo22PPriPdWnqM4gm/eeZ8xLxNPll9jlkkdFDcpS5guw7xlw++qx/k1d2ZBbxAPkUtlDnObanq34E03gvftyi3w1+H6Xvu+/yzq68z3s2mDfCfqbZ32O00HeM9XHiTf7HNuoGeR6mbyXzbRyV1iz5xiqHj8hGm/yEt7LlM77Lz3ynVfny/QmZwbm7x/l+SrzGd7xLXMJ5s6OL778a/dSfK5Q+6kWIL5Ofou8M+7Dgjp06nJda1oW4j+Y4P17yfezjNXpZX8C8bvpXcK6GyV9lfYD4Be/Hw3yTRbL/jFwtZx/cL/ncLwnyNvKL5KMYOFjH/TKC17nHGnCF+7KU9ZGzsof7abaBPE54mZd6Tu6tWI3sqJfz/H6hUS6dlz7iJ01ymedvm6V50I869eTD9L3G827u0SXv/3Ne5Plf38MDTg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7gUAAAAAAAA=eF4Nk4kj0Ocfx3OVHKuUEBMVK8eIkFTeikSKSkoiCxUlFaGaaEnpwjKJnw5jolFSroaooRxFjMTkyBGVxPN5ouz3ff6B5/V6v9+fSZOE58NRoCz2rCuZISUg5EjBHo41/WPvDntx9LoGu+t4cETWjza+defQsvZfd92No+rh0KNtOzj26R8wltvOIZM6cLtqK0emkrf66S0cGy71xK3czDEk6inDHThigjpOZm/gMBx0Ix87jkb31v0LbDkCG50726w5FGybtl6x4sgvdqxxWM2xzbB+lZQFB0+zz3+8kuOqSo1uyHIO0xjb342XcbySqFQcMuEIPmZ1Kd2IQ/FjmZiHoeDhgaMqizm2Nxd9aPyR46udmWeUDse10vxXa7U4YGxsL7qQoysj58lDDY6IuYuXHZkveMVm3flRnaNGUkejT5XjYEh6wk0VDvlhzekuczgKd6ecnqXI4fZafbxGnkPc4frBMzM50p+o9GAGh71pgsvYdxyjmQp1OTIcifN+W+MrxWFxRe4vTUmOPunoxW8kOKLCZNOuinEYjZ5T2SzC0eIt+avMf4Rf/j09pfwrQWuzWEjoGKG+Imx4KSccXz6xZ3iUoJF9vO32Z0KtxpdNXp8IgQmBlaofCXOnjaxoHiQ8PXUoJ+Yd4TD/sHBdH0HFd/818R7Ck47+mcVdBF+nPZFBHYTZVd0T+u2EEvNdAe9aCXvvt/f/3kKYsch1p2szoTCppWH2PwRPuW22L14SZM80lkTWER6MbzJa/ZzgdvBFxtdqwpS369VynxHuOlf95ldJcK5dK72onCCyujys8zEhI281SywlbNYp3belhDB+Y2XHd0WEFPm/nCoLCXbnTKtP5hNGJnItzHIJif5L8kZyCJZ92TpZ2YT3O/SS99whXKn7U0E9k2C+RutiSwahvzBNNPYW4bKeRvD6PwgrU5LfT04h9CqqeTy6SYi+mNR89DrBVFR5g2ESoTMw/vFgAuH8gLzpH/EEQ/fLWTvjCK0N0xcoxRLCbS5drY8h6BZLT7sQRWgyiAy3ukgITZs8NnGO8INKuF/+WUJNtMjbQxFCjhKh27XDCVLHvj7vPin4fDhqdS1U4POgwq0hhJamAP0ZxwlH7IZTnwULuZb6KYcHEjKN3kevCCCszfCZTIcI3ap9x+/6EcIue33y9iUoS3btnr+PkPuze2vrXoLDp7aNcbsFXy+XCntPYR8tzcun7hJ6tXe6V7ZT6OPxyx9+diVsWLoxychF8P+zVu7jNoFb3e7sLSeh57in335yFP6VsvZX3kSwCn3S12BPaPts4XZpPcF/b8lL63WCR9tyGxEbws2NhcWFawhLy02WBFgKO1v2IF13lbCDOwZze80JY/Pvxt5YQYiJ15XabibkIns7dKapsKOTC0erjQlbWKpPxBLCoM/8N+YGhFPtN7Z80SPMcVStuqdLyKlMxH5tofcVSrkaiwhvs+O02zUJIZqzbsYvIMgnxszeNE/gnTbtgrSawBt+QeTv7wVePjXohLKQp++ZQRMlgkyn+K5Ps4XcnX5pyphFWF71n52nnHAv5iFl308neN8fM2mSFXa4KDgzWppwNWl0nu1Ugr6cf7zYFEJlxJBskThh57jvqUBRAvMb4HqTCBe69x7o/8ag7tzTlTzOkFfj4bzjC4Pdqo5aeWLoyHWzfD7CEKTdWnB2mEHmhrPeqiGG5FlNKePvGUwiHec8GGCo/lYXdaCfwf2wvcTCXobRnupjHd0M511shxI6GdReVHg5vmG4b2n1WvZfBpuCMoeK1wxtuigPe8VwKLnIbFkTg7iCWfbnBob48/mamfUMOpOM/7f7BUNpQM4MtVoGp379M6+qGN65Zn399SnDiXrtw3YVDHLW6b0SfzOkPtR0LSljMNVPqQ9+JHClqK81KBa4lK4XDTxk+HxRxTC1gCFCNOGWWx7DnCAFVcUHDJkDsZfr7jFYuMtNPX+XobEh6oRlFoO3jezIt9sME0XnvPPSGWIMJNsPpjFopJ121Epl+D+tW0qKAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAASwYAAAAAAAA=eF4BQAa/+TQTBArJKck/zCsKwPEGyD/0H/65HunGP2dbsL8y0cU/3pexj4S/xD+ZpCbAP7TDP7NbmrCAr8I/R/pYTF6xwT83md8e7rnAP/J04XSMkr8/yn/0MPy+vT+GAsHNXfm7P+ri8QDnQbo/A9Gy0M+YuD/00b0cUv62P3BgydSncrU/g0QwFAn2sz+71RsMq4iyPzYBomW9KrE/zUZuV9G4rz8csqv5mDutP8QyBHX63ao/OgcHXAagqD/a7s2PsIGmP2BdfrjPgqQ/80ThCxqjoj+3cYiBJeKgP6r2hVHOfp4/YBbJTmd0mz+l5KlNgaOYPyJs0RVMCpY/OJM3W8Omkz/bhf2PsXaRP6WKOvhx744/TI5yp7ROiz/QrKSH9wWIP1IBJFzkD4U/6saP2RBngj9b8ISZDAaAP/+ABjLlzns/yYjGL+YLeD8EfRNaxrh0PyzDfRKHy3E/oLz3NzJ1bj9Bu48F0PlpPw/la+vGE2Y/8s739RCzYj/JVsI4pJFfP1a/F/Gdjlo/B3XYkPRDVj9UhSNWwZpSPzL1p7K3/E4/s9L8/Eq4ST+leulREUdFP9kmfBWBi0E/Rri7HATXPD9tBj3teKA3P0teNS9QSzM/I1nt+2lpLz+9MUZbYn0pPzD6pPquniQ/ijJBcwGhID8edy+Q9rwaPyQ3FHCfbhU/gnZsiLIgET/0rN6peEsLPz5wru3zrgU/4jKm6lUtAT+NE1vPKSP7PjKmBKxyYPU+7ytp9vnK8D7BcFt+ZE7qPkCjImldjOQ+KtKPHqEA4D7iX2ZVZ9vYPqAmCgH7QNM+6FMZe5G/zT6I/CSY1evGPvLSuH96ncE+hoXDx2ABuz4s4SrU8KW0Pvp+Y3v2fq8++vfJpzn2pz6k2Ia1bS+iPsS0e8EliZs+kv0AAg7MlD6GKykLO1ePPjTPJcREj4c+OedQUl+rgT6GMhLmbHF6Pn7+Q+XrvXM+e/w6CHVpbT7/PWqbZdxlPpwAet6INmA+Upbqmyb/Vz7gnD9sf7hRPitYBbTzHUo+HYl6naY0Qz40HJfmNjA8PsX/YeDcpDQ+K7+TIT8tLj4Ol2PBBAMmPo523CFBBiA+aiAJpDNJFz4diZZA7+IQPpQQXALfcQg+iJaqI+yoAT7pWjM8Bnj5PdzrCf7oVPI9puTAN1dX6j06aI6qHeTiPdb21WNMDNs9jsWXQFtU0z18Q3UMQ5TLPaDbnvYYpMM9oPpaXIntuz2amW4Ee9KzPeikJNNjF6w9W2TpglPfoz2jf7hgChKcPfR1co4dy5M9zquntZ3eiz2WerQv85aDPR/a5agVf3s9IhfnwH5Ecz0AR9PRKfZqPYD19qvo1WI9ujHcnzVHWj3mZ6pzwk1SPTUr+VEZdkk9ksinA/CuQT3uRvEpGYc4PUzw5z6Q/DA9YAryOLx+Jz1X3bC05TkgPX4b1AKsYRY9xq7yh4DUDj1O5EfvlTQFPRiJJv3QIf08Giu/ag/88zxag3MBGmLrPAd0ZWR9vOI8EN0gamWb2TxJudxfAHrRPCGpfZRP08c8ZRBnN2I4wDzuTB2b8Q62PBNr89Ah9q08kMwky9hSpDwh9MfzEYqbPAJaucHzopI8PBzk3bMxiTx0Qz8gjQKBPEq5x2VJ8XY8On2Ev8LobjzUpetgQcxkPIYNPngf9Vs8nMbO6jPFUjwuBKH5TC1JPDZRDlbz3UA8yGQAIVqTNjyIRhbBMS8uPBujD/pZKCQ8dvXaWjDlGjyDxj8QjewRPFKnPr++3Qc8NEDYjgi//zsccPrLzBf1O7y8Zm5pAOw7vT8JSIKR4jvo5HQ9KJrYOweWBetmSNA7yyPoMWqIxTtMsXN/FHO8O3S782/FxrI7Fn+ZllPDqDtsyBfndFCgO6XM5tKqepU7mhTysBFBjDv03T5zvZGCO/anxWMVZHg7bong6skIcDtQbUZrQhRlO6tzsorCpVs76jIGBfIfUjvFwHkTyMFHOwJt8YNBID87tgcqqnhfNDvDBMp9KqQqO1k7BMK6ZiE7yCdBysy0FjsFD+OT6pcNO/dXi/baQQM7Vk0m4pIG+TqB+KDSzD3wOoblFaN5BuU6vZ//DC1C2zpa0RzG27zROkrKmS9Q/sc6JBZqhjdKwjryQ/gRAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQIAAAAAAAA=eF5VlEtIlGEUhg2tlBlGs7zMRae8Nd5NGzNTi0AndCFDZUFBEOQliXChgduSgiBCZSRyk1gRuhkXDkR5JUEXYbSoERJFaCFqTWVWjhfwfVy0ejjn/8457/n+7xxLtD8nuS9Q1ntYtKeKb63i+aPiPJzJEZtyRU+GOIT9kvheh7hMXpNdjEsQK46IZ2El59PSxY+cN+H3pYkl2WI7OjzUazkmvkHH43yxrkD0Zolt5J9OEd3Yy/RRhL6gWXSRf/UAdW1iT5w4ECNeOCg+22UkNIg3OL9kEav34w/lHHZ78PMO338XXRvi3T3owvb+ENO3xNmfoiVc5zrIY/grfvonBrGbN8UV/D1ropW4SyHcE/Y54kapf5I4xz7/f3nq0OMkvgZ/Lv09CBM7jaKP77fgE/p6Td7f32TPoe/DkliJnjH0nCLeBbPWxXrqzmMncD8e+qoKiPf3yj/BPc5Sz8x3O/3EoKuAfG78RuxQdCX/Ec+g7yl9rZI3Gn8eepPQ5eO9XI0Sy9C1EMH9mcRszvXx3saZ1014+ZDo5t15ee/XmUcD73w4XnTwzuOZx3BsJ3OQiv2IOTAwly925wGG8b4bOWfjP/9iHlbwv4sVu9HfhT8EfwN7yZMobmHX088U/bSxJyb5XkM/N+E1/Gb6Lacfa5K4SB8z5LvNXhnLFPO5r6/YI+zBh9in2TeD7JtG4q+QPxK7n/3URb2BPDHjuFh7QvxCnouFYgR7KZH95STPHaeYQp7WUrGY+OZiMUCeiSLRj78V3VN876b+c/LbyP+KfWssEe8Rt06dbSIj/Xw=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAYAwAAAAAAAA=eF4N1YcjlP0DAPAzQyRO9jpSZI+Me57n+xUSpSK8RhES3iTrCKGQkU42KTsjZe9VHA5l9GaFNOw9MqKs3+/zT3wCbAu/aw12QhpSqPLVwA9wsTHzWE5FB/RuKvOAlp3whqDvjFtyO1QxVUvsJnbANsdlnH4QFb5kCIwQJLRDpekVY1f3NlggQx1KYaNCrmzdIianVph8QPfDG9cGBav3Z+Vut8A/EymhfX9a4DC6L7DjRIF1Dw2ftP2hQHGmb+2+ns1wvPxFiB2OAml3CpMSmJvgQZeBagtbM+y4tKlKR3wHxY3ddLa038PfNOQPHj4NkMJttKjn1wgVaH/+4KPWweUMKaTyfT3cEBc9pShaC4M1ZRLucdRBdRrv6vUn1bBqP+tlmUcN5JN3N3hOWwU5hW971UxUQZctmusWkRUwROv8dK1tJQw2rvv+L6EcvihlMlpaLYfTrrmR2x2lMNP+g1lIVBksni3xM9orhrovvpS+JpbCicJiNZWIQvjxq9bc/koRNF7sNKlTfgN3KiabkYi3UKM38s38QT6k8Impi58rgOP/alFK53PhqY3x8FK+fLg+dBoZ23gFX55TtW7lyIUdLKuifELZEMfOJCwg9Qq6ZWWGb9hnwl1tzyyzm1nQze4UbUliGgy0vrew7JgBuaY9OERTX8C9ut2+YoNUuL2k8DrhazK83Mutds85BY5ynxSTuZYIuRJvXrzbkgRXRnAO/ftxMPyo0LOKqwnQ/1H3Nb2xGPjNOO+IAEccrCGGk7SHoqASnYSXIX0MZOXF55ZejYQPrl3lqLtMhgY8EvTPRcLhI1yfs9lSBKS1clhL0XwMNaqaCfI/QqEita5fvygI6q0bKg2LhsDp3adabs2B8JrDntX420fw/mVS3JHXfpBg7m/VuuUPabSzRj4y3oeLTe4MtBy+0MSs/GVAnye01ah4yp7hBbXclqwAjTvUKFyS+y/RA46OwngNvAvE1akmS39xhQldSwnmVCdIXYgX0JNzhrI3fjkfYboNmzfY98JEHKGdOVtEYpctHDAgTZJf3IJ6Ij4ba7TW0CwnXF4mxgYa90UlJKhbQHaB65yvp65DdtHPO29FTGGqBdaHOZnB0Ow7F7ayjKBb0uDvqHhjOEuIFW/65zKcIMtkmhsZwqOubXVUYz04Ntoi+FnwEiQrTQ/t8etACV9c2ClPXVhAczgyFq0JhXgT5iTCtSCC97CLU0Kgo4x8v/cDAMWnTQk+WqrQaXk11u9AHV48FrN5IKkE5+6GS2W7qMAR6QTm209kYblUgEhtjgJkTSk8Q7t+GgoyM2a3MklDE3Y579OW4vBPs7+R2qQEHLTkfMIlLwITZymqvm8I0FvM2ec6Kx80KDsfHOciCAs8Yw1l2bmg8Yq7DmcvNyQa1geK0x+HsmgxUQvjhL0EdjbFR8ywk8iWT+Fmg2Vre8/wGD181rlcMih6BD6VddcqocfBRRlSw74pLYx975/do/cHBCcGJ4Xv74GddAsDi5kNQNaKWSGP/gYV5LkYRmwVJPYcHrht/wILjDUG7KQ54L8Ty1svuQRuapmmuXBNgt/HDQsu08+AdfXICuuyb2Bhi9M0XnIchGFDAgMsX8AaXYrV7ttR4GCUP2w/+BmUpcWNxRYOgOlEchFfRBc4Mm/ixbL9CbzkkXDTVKIC705ytXNuJ2D0zdD4rNsMftVLkk9utgD9GYZo1tVasIP8i1Tj34GIOXWxQtYKYJ/pGKAKq0HHpR2hXaYiUGi/VOj7txQUuKdn5nPmgeeT6cPdIwXgbOY6Xv1dJih8OoXkZL0CN2sQxnbjFFA3XD8a9j4NWMz7a3sKxYNbjCJdBX5J4NmnIspOJxnYchSQmtZjQO52FoNvRihID+iq5Hj4BCCXdD2SVB4Bo2nIJyUWAq6ZNwcpoD6g8LAy902ePxAfJjDXcHmAvL5lKsHRC2xNDRSAxTugmRywVDjrClJKWgqiD24Bh1mWUrTeEcxwRjacfWUFvvX01dx/aQv08cp0JxdNAW8CyfsM3hK04ah08zKGQFFauZVbxxgYYZm7O30XAPMZup5VJwNgudHTJhp8DjxIVfeTndUB5x2bzC4Wa4D6b8qbJ8sB6BXWSq/rUgINR58hNIGqoEnv3isdL2kQQtealuahAIx+MRifpT8JSHWdNwZpJMGZguV2TVEh0KUz1GDnTwCXKIZr+qdOgMoMx2Thu3xAQSon6yD/GJhCwnl/unOCApLjWRZZRrBbPSFSVc0CNoXKWFdocUB2l1du8QodaPVMzWDh2sYir+ur043tYlYL107SvVjDpkL2Bz6xb2IV8XOxQV9mMUbBdn25L0uY4I8Fp8/c41iPGPnXnbIpTM0j3MKWNIzxLZCn1HO+YfMXOufu3/+MeU+eyIGKg9hjVX8p57lOrOnYAxdBzV5sU2y5urCeggkTvXTDoqgY/YlL4USlOqw92KVy5PV77KGQ4/mWH2UYp9XpIRVqFSYdpMegb1SACXLonHr0rRjjJc1Y5s9kYcbs597jhnMxt1SbxwvnU7C08UmK9Pd07P1HzcXxT7HYRnqjtmV7IlZGVniqxfEEcymZt/379hkmi7c0Ck0Nwga5BYXsYkOxe7EBYcpVPtjXtegLf/QCMRC0m3DyijtmL0HYHiF6YeZWPPt6Kk6YcfYfftZaF8y+fy6MMmODiYzQDR6n2mPTjDaTabFmGGt0T3vv3g1MJK40us7JEGsQmTXuVjLB9qRTrzX/p4tF2q2VeAoYYPz6GZJ2RRAbn9CdkQ/Xxg7YNQbit85iJp7t/2XwItiO6+PUPQc5bPdyJ+8rqhKWb0+KUKaXwCgWpdK6f6Swqv2DD5L0QtiVN+UTNb8IWGThZ4lBHBeWFnKa83ELL4Y/WzT5PfIo1kYzPMfBzoG5v/3QVbRKi6XduKLy0PcIdpdESKKn+YuOuJb5XCXgsDcPXRxGBn6hA6vSD3XFf6OAKC9ncHcONZkR0583W0Fzz9W16VT+ROmj8mhr2qbQbP5kQd6+IfQtMMFX2o+hqxwtJ4jin9BQe8Zse7t+9PnFRrHbalT0Rly6PuL6EW2cYpR7+LMRJardqgzFtaBVtqJobWYF+n2cS1ImoBbdM8nE38l7g+oz+CYvZ5eiucSqtROc2WiQ1AdqanweutB9kxf1e46qLmldn09JR39aHyVuPItBW8IuWWxVJ6A7J3iWXGzC0O4livYuLRm9ZB0dY6cSiLLUj2zMLwSjf63FlJpvkFA177nx/lBfVC/JcNPurjO6oEfLEKfkjubzSjVIetihI2uRA5anHNFHNKNisR/M0d1tz8Fi0ZvoKuMXx/FsQ3TeiF81fNYE5ezc/hV/RRf1vzL9zxFWA9Tv0Dxx9ieGMj09zk/q0kJV1ThbCPvKaI23KEuilAaKt7/zNLzmDOo1u33WrV8BrSZtjbEPEVC3Du1veX6nUAHm/U79jzzo2ZDR2/w4YdRmN0zxsJwdZdaNaUw9xKN/9Qedl3gZ0D7FkZ34bBZ0WLD3xCLbHqKz6/qXq5YGPfIhLeZ69jryT5RPjWbUNpKf/I7na/0c0ph0x3P3/CpCsHrdMmD/ExG38bqt9H4KoekOi5yvHkQ2G4oT7wR8RZLKuQ25G7uR/u4nt6hKfYioed7xsIMWpOGc8ZVrnJ0I+QyPeBJ3HeJomFzx/FMTIsqpwpMfVYr4BRrszR5WIhQbO1P1/lykfcg6hVTxFpGwziauNqUiVHr79i3NbIS0jeduXYxD0rON6xOYnyN5OsdwDBMRCLNY8ahwZjQyw2HLImfxCFGw6avS+/gYYS10MXjl44W8+m2u63P1AZLjQvwhf+EuslMfnjGz7I68GFZ8WEK2Q6pyR9IzXzoiyvSyZ+qNzRF3XfZGw21rxMqg6/WxqatI3YGmrOllE+T/g80yz+ggIm4uoZapF5GekA5Fq5sIkrfSun7d9RyyknuFujuniPDfyV887FdFmLwZjj/59zSiyjSVqDMmi0jV0sJ78cLIlAOrmnCwOLI7uC/tsIZHlC5e8OK/z4c45iwUHvxlRtqLa1a5U44jeD1PAcoUDnFlrxq2SmNA2NJp+ykbW8SsMypcPTx7xBWjY2DIb4n43eGwPghbJxaNWTj3ukwQ34jysOilzxLdh+OXW2a/EPNUc2NVXn4nMnd84prV+kTUGN7ccB3qJ/aW4NUXo6nEyJQDUVenj8TOH4txPLcoxOLOz2z88q3E/wE3ZdJtAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAWQwAAAAAAAA=eF4FwQcg1H0fAHAKLSVE1CWjJE/Lrvv/f79vZGSVKzIiUupk0x2VSuFBJCukB3EIkQjZwuXIeCtZZW9CyqzI+/nYZtznDiLq4HP8rAZ9sA48/56Nn9vJgR+HdJBtFQcU6z9db+auhQPfSl78ZtXCPYgRL5pig1TeVz3zkHew0DRYttBbA5s3vCuauMkGsYQHGbkd1eDrMfVi0KUGtBO8PXg7qqCquy3RzqEajHp3S2zqeQvavY3SwU5VUF3j7VrYWgmJMuYNjsy3IHRBOFpipRwW5BW+a/NXAnpL6fdTLAOulO+siGPlYFCr/0maWQIh6YYmc9dLYWhzBVu5rggWZYmBtIpimGWUxy/JvQFNjWU0KloEap0hE1mxBbCU2fxr9nYhnH1Q2xu6PR/QHx3dTXP50CX7A3ek5oHEoe8z9Buv4XGj3t/yE7ng4iW8Q2tLHtQkBqd9GcgBg53d1R/zXsH1opMSIheywacidsW1+SVYLI6YW/3KhOze6nOKplmgxJvZ8j4/Hb7uplht4coERZfQfLOwNBjcEeklWP8cyIXKkf7gFJgGu+9yeanQXjn3XvJ5MixfgEzpUhb8by11JKv/GWQFl9RnDCZBHsNkcZ6RAHmNmp90/nkGAc/pf8suP4XVAhn2O+l4ABkWRSg0FlZG88N95OMgXPJTEmXmMQhT1hzf4BgD+fe8Q+sDI8HA946I03AUyJWx1VtNwuGBl1eXX1QE+MouvU/MCAX9cpe9S8wwcGdfizLgC4Z3TYyesG0P4eiRI4dMywJA7QyPQ1ZMEHiKXjHFtX6gHmjT8dntX5DVnNR2lLgPTX1b2T7xvtB0kUc78s5dYKz/VScqcg+mAv1OP9K+BUd8W/1XU28DncMZHgjyBIviQ8WurBsgczModApdh1Hxjal525mgxoSnDDM3mNHfo2645A66I08MLiQ6wbRtWs1hwhW+mivpPVO2h2VP/4HwbAegv8zyVbe2Aw7arC/kdxUaf2po/thiC8UaLWIjY5cg/PiR/n32F+ClbLcZ2WgDair7rfz9zOFkqjXiA0u4RWEEPjhnAkye/N+sTFMwihEYU66jQWhZ/tWx6rNwOdHtolWQIQyOPTyQ52YER3O41ya7nwTqlcl6C219kKE1Zk3Ka0J8zwGWWLA2zBepO45FHYe6mx2xPBEacO2+1KDyQQJG6ym7r9zB8Kd+zPepoiqYu5rX7Jw7CusZYvuYQoogofJt0tdCGY5PmbWvGB+EPvtuH42QIxDw15V3V8k+YLmqm2t9kodmMarpFmkZcE630xnI3AvyAj5zJdUS0Bx7x/inuxS4+PI+T04TA4OHeXvleSjQxpUaUJErDJfs9onlOIhCxYWaVynWAnBItqswblAQHOtu3CUm1oPtUc04LiY/tPdWtemWrAXXs4O12RF8MOhmviZ9zyqeGhV+XN3JDYK10zQhvyW8yDn3JEV2GWdLCgTH4lncMdhnck16AXt8MItQlJrGk8ap3ksWP/CmF3N/cvxH8WrblWj7Pd+w/WfrZyzDAey+krVis28YJ1uc0Bi52oXvNEyntrv24XWzemft/7Ti+Nq1DuDdiTncdEn+xQ8478Zc13xeC0bGTzklu97jrpVOCo91M2YL+lS787Nx5vLDz8/NOVh8A03d53UF/hodnV84WoWjj9kcIN3fYIsNLwcuXSrFERHh5vu7cnGkq45u6lA+tpQ4wCOw5wXu6zwjVtSQgw/m0/okI1JwrKe+kIh0Ot6m8Eafb2ci9go4LP9IKxl7g+/xHkYMZtEDvWOfPMUnmo4caE8Lx0zDgljPhiisFlLj8uHuA/zO5zPrkcYjHBTyYG5Lhy9usey+WOoagKlKLpnFabfxdFF2ulTQPdw1NN4vsoOJF1XjKKIHb+ISP/PY7y6u+Or8Dsx/xwPnP7Rt7L1MxyWc/a95Fx3x+522BakCtjhG/bzHlJcdjv3CTInPscDHoltZfGxrLNbAmRHIOoudZ6fWb3E3xSenminLMwY4QNkhw1mThgWtRmpuYC282futJu2iLmYxNsTY7wbM96M4Ye4/DVzJjAmmvFXFlOZyPXdM4I7lcaFXsUfw2sC+vZXDSlirUsfeWF4Ox/IZntfkPoiFl7/s7giVwnyhAdskxffi+mdmDp+Z4njXMC/fbJIE9pNNvzDkJISfufSUliuIYoNzq6z2xI1Y9bJCfiL/VkzTLfZaVliLm0WxW5n8Omws5bTJ8NkflHKDe/D8Ky7cJNTC29o+i6LrZ6mDq4toxbzOatljEmXRTCI8jv1Azp0TFbWWQ2h2plamJHsMeZzVCUve3o0UT5YHlqf2I8Lf1qa34jOSGDHbnqTQiSYVLX7yBDUhk6vZ0jmzH9G73beqvy2zUcryyaieoHp0OyDs0e/acnS3NK3sknQ10lUS2HBLtAAV8zK/pxYUo6DdyUMOH7NRhCbtnwSFPGSiUSL1dVMq2js2dEqkIAMNrrY76WbEo+PbDHzYUsmIeGiyTaAnCukKagz9E/QEWYYJ/bph9BDJsCPi2mbDkcG1wPHKUD/04UGkerFSEOrLNpivqvdGSsIZKjYZ91CKyO2d+yWvo7jG0UHtN17o0jktxVQxR6TpaEu7qumG6G53U7gfX0Lkcix1RZSOHLwEWZrq5xE9VG7IlGODkqPEmmxnzqBA5bPB/udM0TypU37spB56EOz1aUrZCOWuM/2SraKBLE6hbRM3tNFRxjoBN8VjKDe8WIuUBDShYpftRldAdxkTbxn+Kuj00UprXl45pLv32QuuooOIJvVZjxYiiT7l0DOibu9BuxMlmijvRNHW1X/PuKlREMv4qWqHrgBKlw+gF14RRhTlxHd1nrwohyJyuC5lI1pRtRwPc1ghl6Joskpaa1Cf0vr6cak5cujQhgp+vl9kbmlpz32/b+TaFLW/Srt+kOXH/+e5vW6APD0/9HfOZpRMVtdqmY7rJMXDF0LRcC8pqd1xOcT5I+nQnVHVWNJKCt76yR2QzyETsJSeQEQTKXNKzniH+FvS/cmanxfF2ORWgysN1m0F5M+AUEJXp5TMaixk4+hsMu76y98Lt/PIzMIXXqM8KaTErleTwRszSFVhdzcugaek4DX7FvT9Ganm2jPZcSKCrKqZYyf1RZPrXrJfHU4KJGfUaa1xPaFkhfdTeWq0D+kW5+bDbPIjS7Febp4Rk5xRYuZocHuT62JEFr8tO5Eh928Fqn52J7OTH/71krxM1tez22z07MmVvj3TScsW5OjriR5YtCH3jKj1xgidIXX2/cqqKztHvho26pg/eJKs3iZi6ux6irxfOmtiJnecHFX1fGhkoUny/7ZYqxihQjI06aX7jhCkKqOhJJx9gEyRz9EbklEkn1++ez11vwzJOuWqbH1IjjzMRDszfMTJqfHqtHhxSTIoUvtK5+xWUitpSuTtNRFSceilX6cvHym3fyXyG4OfzA7Bnla9K0SC6UbTPUNrSOZ/rlaSjbPE8NZ/aTmbfxGOztsOTalOEMli+zkvYmcI/rIvIZxz/cT2m+4U18VhgqyxTJGZaCOqlwZN2Zu6CUGzsNTd6s1E7Vz504uHW4jk0aUCylwNcU/0+3QdrZ4Y5x7HufolROlpjwnF3LcE43dqgP/pXOLHT2vMu1JApD6w+BjyLo1Iep+/cGsmi3gZGf8taSqesHrO4lTwsQhjmsjHhrRIYp397a1XV2OJ2+lSlpy6IOLXf/end9LDCGbwN5PIUR/iz+BL5n1/f+L8fcEa171MglMdppSs7E089+05ky7uRHR9cXxjfcOdaLO60n1+0yVC3CRoeUmTTsQrhIh/mDAj7ngrjNpXWxOPDSUcTusbEUeqZyq5ao0Jw1jzhqOntIi4xH47eXl9IrndmSbaThDnI/zmn1SpE9ouDf+ZH1AkQF4dv1ZQI+QjU/ovv95H/Dl8z3PuxCGC75XcPXq/BFE8tpLFKJEhNi02iXls30bsWB10NMoVJ5JthD3OS2wkRHVaLagFWwmeJ74L//vBRfC3nKkRK+AlaIWjzl0L89QMZd3ogb3L1EiZv/ONNpPUohzBwkTqT2rMLi1L4swA1c7PMoEWOEpluR+X/RTTTg34tPjrqkUP1e5YzKyKSjN1/JLZ2GFGC5VumGCcYF1DfT9yd7Z4qY5Ktg1LL30posaN/Ozd1FxJTd4z5pbT/YrqlB69i/yST+X4Doyp3M2kKg6dM9/8IZv6f6Iu9YU=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAuQkAAAAAAAA=eF7Vk/k7lWsXx7dsQmVO7e0Ykn3TRDvJluhOORVlyFQiUoYUSQkhG5sMHUO1kVBmChmuSIcepKsMyeugk/OKdIqkMqtM73qefjnnT3ifXz7XWvda3zXc9+NRU8dtrkR49fm/Lo0QCG8M7RbrikVYb45xov8MwkzHoTrzbISnZhnrvcsRtmVMTztFzRMTU7sGK68g7F11QAN5IlzD6Ks9zEVYYFh6XCYTYcv5t+VmGgiP2B3Xfh2CsNZB9VhCHOH0+1toG4MRjhk91mDBQLhdY1nlYjjC07bjqS1FCEvq6c3uTYC83EuPrdIRXlr4waq+epG4sktueNIU4VFOsU39DYTte7dcbVOZI7oNfa6efAj1D7ia+IAOq9OJ9p6HsJDiUY65P/Srvoe+R4VWJzQasvBKhFbH1I0aXwNxO8TymyJBP9etys/8N4T/5BdnnYI+IzmFkS+iEaZVKWR/iEFYN0wpyrl9kUganPzdsGaR+EW+TmJiK8J2wvTzB+78IPL5Bqui+QjTTUMDFC0Q3iSgXyBxFWHNY3f3W5ghHFRdmroC+uvRfffAMPQbUW6TGO3qgbBvQTKvMQJh4TvOjNuwp/aY1fUX51nY7+9nBjshvyrKUGpBmlY3yg40SHaGeKLIbIxJq5N9sszR0p5W51pmbj7MQXiGL+53AXQmeL7RooEIsyeN8pqg7t5fsckR0CtoIDL3xU4T6cY1epoXEHa0FdB3PYzwm/G3A+oBCO80Wr3dZB/Ct4aTuN9SEA7/In++wAHhWkV0kpuHsIYv+1LiwxliU+g4LWWGhZf+mWnRZIjwxXmty5ddZ4hDX40aXpog3CGh9IcnvJuShVF61dMfxPMzcbU3SllY5dPNXl24D4fbf9cteMwTK05a0s7B/iuXaOQqRSHscYjJTwpFWLFHoc8eaGszewxtgHel0su6AXPFdqi7lSQhXPTum1wr3H9hitZxeiTCk0ucEzKfzhFylcq6b0GHGPE4KwD3pl9WMTE4wMIT3zMbqyGuRd7OmM6Ed/z4Vkwld46wWsqx58D7K9SNJx6lInxu0mF0A+SrR7sfol1G+P6QrcmOZhbOejA9sBzq2/gXpJhHzRLIoYCT+ssc0bG83zsR7ic1d80dBagnrHIynw9xCtiPqw314K4EGsDuLn/JFf/EwrYXrS0bIb7nTEDiZnhP79rKr/RBHptzuJiXiHAXZ5Og5OYpIvKDKm0V+N2TTlg5wL6kDXNG+0AnL8t0QBT+s+6dq4yl4Z1OpVvkuMD/8YD13qsa3mvi7B7FbvjveFMh4hWQf97XYWIS8i+NnORdhfsIfnL0ciXstZX/mHY/DeFTs89M7oF//wxnbG0cwq9UAgMGIC/EJ8N5EN7DM4nkS6LQp/MaSbezcE/lpkw6D/RnnmsrqIdB3LX0CkeYh9MQ0u8GfeyWGUsdDULY+qn6aWvos9rlCV8NOGhew6+AftuDZOO6YE4b9RIuLx7hXpat9jWYa0xfryb/GsIick552aCzy+lz6znQLdRuZNoBvTccbE2A+req50alIS5uIU7xCVk/OEWvCfp3E91rRe5dYKVrqgb0b/ndonw39M3T2ctehHqtIVzlWojLJ44LCkIfHdsM79XD+f7ujxEvYO7k+KmuAKgjmBEsUAz3n5qvlpoBeTkip7SLoJ6MmKdK5HX4D5aP6U0Aq5q+6+RAPS2b5gwJ0A2Zj0kJJveQnNZWBv0vEd8uoAP3oXZ0/vEqsj9Hh9ICoIvwYpwC6A9/znF9BPcg32ngGQH9Xiz+dtcYzkPTvobIQt3mLXTeNtCXMbSpzoZz2Ze9SUkwb/wXLNcCcTIH9ifPwxxSDK/nXrBfrkKaOAPistOfTvhCH79ZM6eaoU5F3suzX+D+k3vau3Vgzm8RlRUfYW5bsXD2BJyfL9M+eBvyVHmxxcGgq/TKosQLzrN42QY0YG3fcMtWyBPOMSxbgPesu9Fo7y3Q3zFXGtkP8RppZp/0wa+auCuCDnVEOgOMCTgPNI1wokN/W9P4I06wj2VlW1dPQf/KFS2F/lDv9IF1ay+D/sZMv84FsAVQh64q1MmzU+AuwjxTLs8t7SA+c++6fb+CvlZnfYo86AmLh9w6CHHl/upRRvB+HMp8XEyhHn2VF58J/fQca6taDzR92BJxB/w7n/4VRp4b3O140g5+m+ubctqg7tiL+K+bQK8hYSisGOrjVL/8bNhHxJ7Z4S7gTf/K+BDIk/N+n3QN6v1Hdkb1KMSbFAXaryB1jtxdSYM4n+y5SCbka9BtewdB1ziHEA0DGkXskyD7432oWiMA3F6eW90E8blCjT0cOA9YlGv0Br1Irtth8l1uNOm6agv2SjMvegPUE9tvcEQe4uQeGEcuBbr1HVOpBb+XUSajFJhm28y+DXmCv5vFsCDP/9GJoylgBzCD7RKBszqqVWvBXyWT3qcIDPgae1gZ+GO3kFMW5PvrlJzIBirwW4UzgZqSF2pJVtwupQVAnLh1lzi577kG3bWtpG6G/49S2MeKFJlplggL21v5ehuIsnBCj2Z+gTAL598cV7qwlIXtlHFMshALL4lbWaQO/sPtmiJddBbWH3rivgP8Ba9V2k3Abszk8G4AI0s8gocFWTj5vrueItixbLZXLtjRofPyzcD7N6Q6LgCvM5bExwH1hVNFrICJV5yVXIC1zw+yDYD1Oj039wP7/djRmsCggTC2DtCBcCpiARWf7X61Hhirf5OmBAywLQ9XAX7mDwUygYWbDXp/Abb9KPFaBUx4ay/MAHpKudusBK4/xvaUA3qkdX6RAXJuqebLAsu9asalgZkKyb6kX9DH2Ji0J6uJbJKW97NeSwHlhEZlSXuw2T6GtFF/UinJDSZSNiSDMtK8SV7uj9UkGc/w20NS8+04g+TFjxJqJK2HBERJdpbOS5HsS786Lwkkck4LkXb++PQUaStdp/0gqajd94XkMl9lyt+/bGSEpNPK8FGSZ4PvDZN8IfffTyR9RBIpW0+/5yPJtM0TgyTfOGlTfkEnFmXvzOVTlF8R/4GkZMobihVNy4dI2mznUfZMI6JYNuxAcVtdBpXX/66RYjGr5z1Js4hwyu5jJVA8XhJLUensC+q8Qb+S4sjiK4pNWq8pjn0NHvyn31H9EmUzEoIo5tzkUsSePhQV9CMoisn+zLumFUrRaNfP8/JDfhSfuYRQZI/99KNID4rrXvIoflC+QrEqxoXiCd1zFIO+/9R7cOenf9fmQIrMSY9/6XPFAigOHu+g9q789Thlu6s9pWy1E88o1ossTCBy/nt/UHZCuMgkaTsuSFOkUZ8kvuAr+i/7/5X/A/bJvi0=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAYwwAAAAAAAA=eF4FwQcglG8DAHD7kI4UOSspkTIiqvd9n+dB/n1IVmYRjux0hKyMroxIRkS20pWVkZKSkVVZSQhZmRVZGVnf76dDXcoyCE5AlcXWxHXm+yje93IDKSseDZhPHw2TSEDOTu1F0fVx6Fp/bGGNRjy68tpNzGYmFo219wWQneOQSFnHyzfCsQjy+WU1JcQiHhfpYXpKDLrJ3cWsFHYP/e7NSKKQ7iKtWkGS+uxd9OBraaVDUBQan4ogz1hHo+o4Zf/k7Uh0cKDc167/DopoKjH/ficCPWVc6vlsE4nsWTxPOkiEo6SKl+mOc+EI84zKdKi5jZg+d7aY3glDwxHnbu9xvYVkFarIXfK3kQ6niydDgo4alcCSwCAd3UvhWTYbCUVHxz2rjZNvohK3SdVLhSHoe7jSerNVKKL8Mu4a5gpGF3rtNp7Jh6DQs5UV9I5A5KTreOCCYBD6S+M3Z37uj6K2r0iTJgPQiDy561muL1JOjzYpbfdDCpfI+lUvfBDnPuxBbsd1pHv+SovTgBcyus1gpfz0Rg2pJtH1otdQq39TwjFRL+RGuZnf4e2B1KMyZTYdPJHDXK3UdNtVlJkM+Dw/0lAB64zf2qgbGvZvme6Jdkf487hXx6VdkPcxkQbzclckHLm+p/mhIxreFP1SstMZPVYc+/KMuIzIotfc1+47oMzDW8EZO+xQ3WAzlU/HHolTJU1OcdgiT/Ymu9wjVLT3+36dRpNLKOWimzh20gbtfETVq/xzAQUFiwjpDFiiP2IlQzHdZsiqbdhM+YEFimAcczTgMEE2IidZzNNNUdibCt1hfyNk/+y29/Of51G4f81HVkUDpOLw6BlvgCGi8QozT2joonmPyWnX+3qI/4dfUF2iFvpD6TXLZ+ggZbFfCYIG/6FNV7cJXen/ocrmy7KhzhpoTGRvXTe3JsoZV4quLkOoNtWiaFtbHa1dL+EpUMJR7DVri8DXAI1zfk+oVjuBbLYret74nEJCBlJ/atqVUXr5GwlSlQrq16rcd6ZTEU3b6Gb4BimhNKXylfvXjyKOFkobp6UCeqQ+Y3KZWQYdiio6LxIsiy6rivk9OHoQ9VJjYJn+IXTH9N1m3rgEMlR0IZ94LYkCEvUeFqmIItLurLdFhvuQjtAumUO+e5GXQMEDJRFhVLBO0Z723o04+vpC/isWQAsFZW9sBfgQs/roK++/uxCP8t/q4GButOsrlff5453ITc3UebCWHXUfck6LoHKiivpMoydtzCiW43Zd5hYrejyWLIaRN+HuLzt+pJgxoZo+9hTm7BW4sVQ2ypL9DzZ02Dr9kV6ETJ8Cd9/O+gsNg4nKu8uzcMeTzzb0m/Nw55a2l+PCFOw2uWA+cvo3lGCwTvdyjcHSbW1elncT0KbS+q8YzzBM7Ovoc4OjUMSjsF0x6xusy+ffaJD/DlV6FNMiHLqgJmVc2va/Hjjan372m2IHVEkFnU9COmEzdTNwT/YHKOgkkWZl2gqn+usKcKwejln28aoea4JGAaH/W+iuhqMTMu/dteogrZXMlr5ZAVOdHWuFqt/CAya/xXfElkErvawPa2EvoVNL3pU94UVQ9JcCB3d6CWyte/9uby0DakkzusW88uGynVwK79Uc+K9Qiotqmgv9ElMbsiLSYJRm8vjOO1nQ69bvZH+OJNjZ3qPrHp8C1cYYUkx/YyGRjwtFvkqAomuS+6a470BMb9viyvkYaM32SY+2QIeuiTNbKxrhMK34WF+BfxBsrMECjrSEQtqBQAcqdh0+FaZIW8oGwCk2K56wpx6QvKrsCIq84MGRtmcWzS5Q9EhMMYfzVfjOpreZ7bQ9NL3CypX5yRFmOTyRv514CWq9HGR+s24L7y+SqHIkM7jkK0rZFrsIfV5Q2mx0DaHdFatqxmVjOFdDDqma0YYHAz9GktP14ESj07aF3WnId2jtxZtfZ+B0IvOT+RkCppXZq+rtU4eMWp6ZrQgV2LpZOHsg7BTUYB1llG4qQL2IvdV260qQ58a5xPpyaZgR+PzdwpGjUMnqfep0xH5IVWhd2T9wEL7ucej0GqFA1xaRDLMv4tDEbzBRjnc3NHrtT7OoFIRCH7myHVl5oMt+B/n5Cj6YzXG9wD2KDXJwWi/TYzihRH9+Uh3/Flidq6I6bjFDp3lNUZeVv0Dy2U2FDYN/wPbev34r1jkgMhRXnHd8EfB/omQynZsE5Knh+BP/foFX8V0W7r+GgdncjaEg0zFgsGOv3uWwXuCAqUoz0b+DmDL9+uyqz2B0ulh35dJXkMAyXqid8QG0Sc4F5o+1gTpxgQl3nzqgKsgul6bdCH5YT3Owx1YC9caN0094aoDjJyNyG38ZKO1QdY/ifwWKRfK8ys3ygerTHOk/d4tB2ouTI+diH4G0PK6fCS8ZYEnxmpfFQipobMibVlrKAkWmSeGSMwkAm5Sf11ZOBreoRQdHrKJBnJMsOzuMA7IWOZ3yMreA0lWz2D3hEeBFnsdX1ZRA4PvQKD/WJRSISl05QVL3AudW2g2VS3yB6q6eFfjYDZQ/bD320M8D3NE41zF7wh44PRNNfVviBAa52gbbgy3BSIGdc4CrLVhwq/nattMYVJ7fL5IYaQ7M9d6L5MjpAqeBQB0RdUOQ7ml/8nD9acD/jofDFtMCQq2r4VgxDmjTIfEj62pg540hRZKVMsgIuS9AazwB3A3VYTv3EXB2uJ2Pka4IIlwnysf6JAE5t8c1V1EafNGfHJdRFwYhwUY+j2QkAMuB4v4UNX4Qq1cTbRkoCERJlMpQMy5wgW0HdxnkBQZP5PhOxzGDORl2hm4hOxBedC62M1olBp5fW2Lj2iJ+vFw+dbhjjpAqOmTq2rREGB/bJoWrThI0PkO2xfLfxIkqxq08pmFikCWM3NH2g+Cpr9Iv5ewmmFQX+/TP9hOlvrxntHXbiFHB3OXkpk7CNHZSM721nlgsnbo73vaB8NkOAHXhbwkfC9Ptz+W1hP26eVR3ZBkxYHgTMz5TQXA6y2STKvMIZ24jFev0YkJPoOBHgXoOMbc14L388gkRrZ6quT6VTHzNoql2sWYSw+525WJrsUQxuZT0QSqR+EhnN9+mhBOXzE9W5rRGEyZpTHJ3HYMJIZHrYaYP6ETSd4rPrKE38RS/uKCV4U/kyJq8eDvtRjwMxzKKeT2J2Ue6wxv37QjrA+0C+wOciNYHvsuGQReItJNcI1bxNoTNoK/puwlDAtxhZv3gZEpwj+demzqsReQdPhz2TFOPoJbqXVTWUSNsjsxM8rpqEl27+g7rz6kQeV4dXaK3cMJT+uklL7oc4X/3q4/AbSWi9eGIiFfXAcKu0VJzYUKGKH0876mSIUwYkwVWT76WIMhZRy/69O4i7HvFhthpgoRCSmHevkkS0ac5aXmen0zciaKrOq9v4/GrFE7N/WyEBv1NTqb1X/xtb/XbiV//cHNjyfXSyN/4EjtrScX6PC7YpUjCOX/gq05a4gJMU/gLaueF7YvfcI1HZXK220P4OmnXgarhDnxAek/TgN5X3P8GHIzwaMSxBl3ZNxYteK/XRkh8RxU+BOTWHHrqcIkzx848by7DFfklD39ge42zJKqxzWJ5uH6ZrKFMcjGeypWJ77fOxmXtpAZnN3PxwRjfJ4MbSbjRiEYmp3g63mIBXnDZx+BJxwc8+tUTcG7JgvJd/LdwI7WCe8OekbgjPSwKBvrj1ORHSa9bQvDjwuV5jd4eOPvQ2T2yh33wihK9xIVtBzyHlEV7e/wKfn5h3xzbmUu40M0B2++YHS7usoOJbeo8nhP6LmBc1wKnTR/P05bRwRd1n9Z/yTbAu9+a0fTl1HH66m52uW//4QbztsEWmar40kru5Z7nBL5So588XiiHr/70H58YVcItWQ9GyPscwC+e5FHsa5DBz9KuzkA6Bb+f3Fr1HUjgakqBv0kVfPhEtBnbqLYA3tPeKT02zo7T9n75aT2+Aw/iKsHXGBvYqPFvSeXTLDh25DNPV+UC1nCKvsvlxwo2e5SlZd57CsOg/7sk1T9YfOTGENfkEFaX3WmlZT2GhdEjqj41d2EeY1KUqJg+rOKbuHUq6RNW4ynrX6LzGfMIctJou1eLhUYsD9D8GrEo9V77/OaX2Cb39oqKQhUW2HTP90ZgITY74evOMV6K1Z7xOdi+7xFm1CBGlg18imGZPNeNWFKwe4uVv4OrMrHeal6bPygOc9+jNGkukYjtdPAzrP4chQUx9LXfl8Rg/wcfx8WNAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAYQwAAAAAAAA=eF4FwQcg1G0DAPCShKwoO+uNhGzu7f7/53lQIYRC9giHRIpDRraMcFxCWZeW7E7EiZxEScNMJPSG4ozMPonv99s4+PFaEcdNZCS/7vgj6SZapSwkDihSUeJyKVdIKRU9uaQRO2qehRLv3MzT6M5C0cEmnf+GZaLhCyUm7CuZiPsjX9JJSwqSiNfvNZLJRJPrH15FP0tHNZqFYzYlGSiiqL/QTjENBbkjlXzedOSLO31mu5eKkr6QmrLjbqB9q6MJNYdTkEkqWzl5ZyrqfvxZ4VZ9EiKkyEX5pyajHwJBj6csriNp/t81tQeTkIOwb8TocgIitXw4HtWUiK7B2zpPS+IRy9uohsMzARXIvs586BSHxDhW/iaJxKOptNLqRdlYVDp01B0OxiLzHpu9+ZPR6OIevwoSLQbFB8icnim6hg4avcIDWFGowoFgT7gcgXitDFgD1ZFIwKy7ctQ+DH09+qvJ/UY4WpEaUlJyCkVBXaGaF6OvormUWRHb0GBEn2OMa6eFoKvyfmwp5UHoYO2nH4tPyOiLVpjKu99X0O0Y3kbGYiBiPx5tLex6GWkYvTuabXwFRXekM68+90c1+ZSMrsAA5ByiObky64vMa0kNS4l+SKYqp3fU1AdVDG9Nb7+5gD6ktfzv3xESupzNnScMvVHz26WcvjwPRFH803howhM9Gl0bNo4/j8zZDvdNPHFHTZ/wIA5NVxTrtejcV+WGXvYfdEmucUQDP5/FPqhwRp+OzTZZRNmhgWJsVfq0A3IR4o20y7VBr3RzDXQwWyQ0Xrx8Zf0sMpqLEOkOtEY3GB4U4zuWaPqeDV/JwhlkZ7K/YmbNDNkd/pj2zMEC7WDYvBQ/egp9eakUKGlhigoD5Qqt359E6pV6hvm1Ruj+gEvDYo8Bipj/pzE0+gTiP/vlfpSaHtKT44+TKtNHElnHDRnNGHIZTSJFnoPoBeeRwJgaAloA43plq8dQMZXdIV5RG8kOOeakyumim2p8q19ENJA7zaSn4r0m6r93a1roPxVkeWErku+zGiqcyGP/fVYR+SrvCF7/qoTKjqetaF04hH43nr3em6uAfgn0t4Tsk0VB2AE33Xk51CQwEtMcKIkGTxm2GhZKIw398PkbNBGkyn8gYNBcHJmXVbonZwgh7eRx3Ys9B1B5/tvRA3ICyD93hzaFUxCFp0yaxiVxIxJZ1Ge7jhfFmFT1JTfvRtRfoZL9npxofVonb565E7lFnuo2WduFfFYYHnIzm5Bc6OFlbLwDCQIZfv7QdeiqH6ExFLYBdd25prT+LEFR8b2x0+RV6KdQG9xRMA9niBZ7A2x+Qf5S9k91+T9gFw/1N/vsLFRhbK4HN/wHUxsfFZVfmIKXB3/OM+LG4AvJ7n/rFibgH7aCOkOxz1CW5XXoTPEXGCdI7qLM98GywxTVV+2DsIT3g+OlzA/wuU60FYuvF74duaAoMfMaUq2+OuZSumG1xKWgoYKXkJvNPMEssQNGntdcT+lqgevJ6hel65gwhxWZkybeAIXdbNub25ug1D19bbseOtRuxvY01tfBNoUcGfZTldBlyD7MjFUDDcbvbMc3PoRlyhaRh8zL4JxRvv7crbtQeMtFmuRxHz4Mfxgxdigfara7FjQlFMNWH8ft7O/ZsF+HXs9mlgeznggrrnJlwvqyndelq6hQsi0w7jYlGfb+sGcsPkiDu72ks94w4yCz1CZM8mcitHgqeCT4ZiSUWRaLmqmPgZFDJ80C64NhWfLFMx0BYfBk7xznNPkytD2YqhRqHgTrRi86XfzmA/2+vVEUxf2h81uttift7vB6w9+5sP1esLSce488dILzmNTejhI3eMlNXZpXywZqvjMJ42GzhznmXZMirRbQj076dqv1LIQ5y/HZDUawImOBWMBnBrn2XpsMrdKHqrIjYV8XT8CzTqWpdDMi/G+4nSqkjmBAdxE2Fa8FvaqxdHYVAhQZOD83MKkCD1klM1OPakCl7v0/TezlodAr7R9FF45AhbwJsdowadhQqt93nykHv7IShdUPi0BxCSu+JzQJyG5870PnlgBUbdwuGD69H54JlxGcn+SEEFp3zXXywthMSS4TLTbYKbB2N+PtbkiOu5Ywlb4BCLHMkq2BbcDBLWctYLMMzJUtqnW114Gw5ZhmqwgLjHMxQ6bGFwE9uc9GwPU7+LH0i0CJ/QEWh0m5tMhRQKbr53gyJ0B7tnJ8hdkAsGCFWnVXfgYfhGWZbvXvQaX4/1pzknvBWqQV/kmsA+h0bRI6arvA940YvOnFC9CTpqAmqfUSnChlN1V/WQ9UbyRaSlOaQNcnRt6/JjXg9R72eNWWWiDjXfRQwvARiIpyI7vjFeBqeGwtPY8GOhsrBJ8evg/adSeYH2m5wIQ7giDaWAAOcajpnOvKBGvZfY9NL2WDUrsgHvfeJNDWdrmzd1c6CN7N0//6awwQ13VJO5OVAMpWp+ufD4cCxWLzk+qS14DDP6+njQcvg6rdz4ZGM8lAsqni0F2GN6AXh+3oZ/MH4zu/Pn7wxA1saeXXP/f3BFHsBp3ZQbbA+uYzZ9tGJ+A7c0xWK9ASSH4w2Hn+iDVwmht0fr/HCPwXxZeiZWAGTPk9IxlieqCExrLofXUc/OLvYR4M1wWBo7ssHtAwkFqb5//BWg2k/hFyzz2pBXxcyXEf38mDoG96tLQhJcBitU74npYCaU78XEXlcuCcul9uNscBUPC11fLUvBgwC2x5WS3HC9rvdz2W/bMPZDv7BToosoNhXtWinClOMC43EGEx/AcPXpf1ziLsBGsq3dEEwjL+3bJ2watjHedgmyuTCJ/Bvezn5kI8F/EvonRgQviG55B6+ZjUKXwspFp5fM9n3Ct0L7mZewwPWxMtoqn04GevlcnTLAfwDeUahl5KJ35dVpI7EXuHRx+h+ctKtOLiL/y3Btnb8fRN98n8XfX4LtrSG9b5Jvz1HVP7JZ4qHLZbaq7X0nHx94UGSxH3ccNHykgj4TG+E6T3C33Px5NFmryB+11cX23Vu3eNitPfnsZ4SnPxYuHhxpfMFLwt3CcjVigTH8YbSsyuxuJOHIGbtN5EfHFQ2ZdUHoq7JF1bt825hs+7pLixdl3GRb+nLQZwknGqgePK7Qck/OeXkVl30Yv4kljufsdjzri2rhLB/LQ77tey67DCUyucqU0OPUC3w9XPU8vWUkxwZtXhdy73LfHNrf50xWF9fJnikubjbYhzVIRSU/4S8MrCV3q2MhBvkYCkDTF1/NLdj+UxmDbuKf7s13SOPL7X6sSWprwyTrxsn5c2I4kfY7ml0tTl8NZneuPrtkJ4gcCJsV/2ojjBlbWgMMyFs5RVrugZC+Dcr40LmPo78XZdmTfSrbtxlfaS1492rWPEE6L7iBx/sSF/EoPz8TwmGbh8xMxuGUtz8aye8/qOCR8v+nSr7Sf2pQGANukRrEi85YSW3ATmGC/vu39XLzYn4xnyvH0QswMk1++TnVjuUkhL37H3mO1GzK0dlS+wmaCiR0vc7VhzS0hL8++nWE8634OxdAY2rpK1n6elHDP8wxRupT7BunRMLH9al2BsnZJChfgjjGyod0ZMOw8bZGy+0qEXYUWBzOcbLArmc3Xphr9+Njbvzchz4ErEOuizx6XqUjHZ9QAUQI/AFCliJEJuLHZmoGr4HiEQe4opUd8ohGJ2j0XOmf/yxjahH9K4cgmbM7eRMLziivkxuh4mbntgW43TkcU0a0zxz8caFT0HLPXk2IIUjymmFi9PzSecwarfD/ukP9PH/HSG22IzDTEZ3cmRRiMCdtRl4sZ2BsBSNwf/UK+qYsahe7rcfLWwqBV8gmfhHyzPY6XB2ucIdq7ao1xUUBxLf7+87VUkg10Rqipx27sPOyVmLmXTdACLq7Ajl5/kwFRmaDZrPjwYN/1qdpvQX6Jm8p0txQw2LNngoPnM6hIxx95bxVn3N/HY8vU7Vk9/EDMfbRo9z1wgAlcY3iY4Tqwi1S9+Tv9OlBR/vHpgsp+YCm2yMpuGiZcyehejJd8SAT//hUrnHqL+77NLp6hMorXznpN1CR1EgXoN5U+19cSMaIt/bis1E+3VODdcLCuJsxdqosh9dGK84rszI2MlRNqIq6qVcSlx9mgFJUspj1jql643JVtM1PuWw/DYziDiZ72cVDduErv2zUq4fYsnfpOiiN27kkL86B/003QznGgrIxiVUxVDpBVIJGVpBhMp9VeN7n8OJf4fXwjVWw==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5gMAAAAAAAA=eF6d1H1MU1cUAPAYXYcwiggbRowbXYyVOGETsg7kWAhOypQ4lYms6Bj7sBWEQSJw3ECYCh06NiZQaaEgogijULSoQ8uHyMfKoHwpyjBDYbCAIJa6Eo3bva/sn5cQkv31y33vnnvOO/fdG1B5Pe/JHYStc7qqhLHaLoS7+nX9vE6EWEPw6mw9wrWgNN62VoTXDHyNsQkhp7DG4VwDwoQ4rStEh8C5042v1iLs6t/UM3AFwUYRekR9GSHuZvOmHzQIspzNPsfUCJEt8VOnykk+p2AHTSnCmx5JldMlCF3JNZzdxQjCPzNP/l6IEDQc05tZgBDu5XY0VonATclaJ8tDiFj2m6hfjiC2suV9lotg2JeR756D8OHzMwLfbARJ6csj8tMIGP369HvEU4srH68hGlXPLoYRdV62nCHq/RWcSjLfwySsu0Xi273dQnlk3aS1zs4NZxDGCp9E5isQmuUpJk0+wtmGveVmFcIvmSKj9CzCymfH6xaRuiN6Rqu1FxAe+W/cklyGkHX1jbGPKkh/tBvWe1YhVHTverj8EkJitMz3Ly2CPj5xVnMVwVH0ePeXpF8j/pKAJaR/g6cDU47VI6yOzjs03Ihw+/MYf5dbCPz0B7OCFoQf9xz0c21DaH3xIHXmV4RvJItu5rYjPHVzUDp2IIR0XF4TSfYrTnZgSGUgcabOEg3Zx30K7++Ku8l+Wm3sie8hfUuI+sO9F2HbbMWqLqLSVz0V2ocgD99RbSCeP8wt8biN8I+6eCyduGWiMaGTuNOqnG9N/o+UA5IiL+KVij3hnxKjEmU3UomDvUuHlMTshFV9GqJYNION9P0r9jmdRPm1rPa7xJDJ8bIhokuJ/vwocbzanjdBVDslR00R33F+Wz9NLDbcizESP7FukM0QU/cfFpiITWaxnKpdb9RRO2D8OrXmrZUqqluVTzR13FblQeVIFTM03vuE3SXq1wJNLHUsN9iTWvSC/5zm+f6LgRbqZFu9nOoUMnGIKtf6BVKrPNNdqd1CqR31xM40Mz0vx7PjRqhHfXR9VK7901aqe9rPOqpUcqSG2rb0pSpq4Pa/y6i1STYXqGjPOUcV9mmLqMsKjSqq/quCAupAfX4+1e+DQSW1pG4748cuDxVU8/BPjN9e3Mvo2buBcclBO0Zuhpk51/vvjzLWqgYYp617GMUZ7YwrHrUwTt5rYlQFNTKGKeoZedF1jBGlOkYB3+Li7BuMzWEWHW0s7jBZ7hNuqcV3NRab1Balc/fN5jkDWfdQwDxuZcmOY8uOf581Fi2w3nx1sOv5v8//G7PrYo8XihfNM3+huufLy+7LQt/1LxFWfWw=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+QAAAAAAAOA/9/bngWtDIDugutCe3y3fP7XrhIZ62N4/EgO0Hyph3j/VdO8T5fHdP1Lajg3Vft0/O5GzwXsK3T9zY147dJPcP0LISoJYGdw/4dvkb3Wb2z/47M01KBnbPzyg+r3Kkdo/bHhkFr8E2j/rjbIYc3HZP0A603Vm19g/rVQ3JTA22D9e+6m2g43XP5xXLBM23dY/NRkZfEEl1j8pn+KMyGXVPzZfBRIYn9Q/+v5qk6fR0z8KeQGAGP7SP2yZd/gzJdI/DaoTSOdH0T9boUcqP2fQP1M8ShTECM8/ul1Y6BJBzT9s6/r29XnLPxXYNLABtsk/NFnHCcX3xz9I6chCu0HGP6US46o+lsQ//D9h2Hz3wj8AFliibGfBP57iADmMz78/exVCcvnzvD8ORRs5dz66P+xmjS3IsLc/svGBRhxMtT9ERJl7FRGzP7q+bZ3P/7A/nXKSnNUvrj9HSygIMLGqP7dZ3/NNgac/tF7x+SmdpD9NudgTOAGiP84AkwAHU58/rYOAAJcjmz8f8ax9PGuXP5nX177iIJQ/ZAgeq287kT8YhvI602ONP+eM1l4u94g/GrC4DjIghT98nnzO+86BP4iF+XNF6X0/hktCRpYGeT+M2iEVY9x0P7T0pEVcU3E/V4TxSMisbD/lo9mC/qRnP6Qs2rV5bWM/eNQXjWXQXz+8Y4zGc/VZP7CuD9LcG1U/hLiA8mgbUT9TtxbkqaJLPzBbdcmAP0Y/STMfaETaQT8b1rR3EI88PzQUpEIzxTY/2Lb6yP4YMj9onP8y9K0sP1Vs2p+epyY/hfSZTHjXIT9Wk2GSvwQcP1uqVRd47xU/IgCfi4UfET/zcVpEEKgKP0jUuZOnsAQ/c2vjP6EDAD/CzQanvrj4PqvzWZOlB/M+O5OFZOA37T6R2YtKBF/mPqv1/zdvFeE+ETGDNUIG2j5YP2eNgMXTPrxoZydU980+7ZCt1fGmxj5eVoltyRTBPr5f5Vq7srk+KwhRZuVIsz6C7o90FeCsPn5rAXY0kaU+8UkmGlESoD4Kh3mx4eWXPqTsBxtVupE+Ryl4AT4+ij7ZCD4otWGDPldkFTb8kHw+0NPvcbcBdT73LdNcddRuPjjicF58k2Y+HGKeI3l/YD5G+ip8MxBYPozr6nR7g1E+rwzri1BxST5wsBYVxnFCPp8zP0K+sDo+8mRIa0JGMz5CrE+JDMkrPoxIwGpd/SM+kgvLVpi1HD7NU3MLIZQUPqhLqYyrcg0+j0h2tUcIBT6K0e/Pk/39PTgGWAdJWPU9To/Zva9U7j2uOPe4X4PlPf1PcGVyd9493Rlxs4iJ1T2LtMJiXWbOPQv57sR7a8U9u86tXPIivj3JX2Gfniq1PaXu6Q2dr609QrMIAPPIpD1V9R8ilw+dPecNLgoBSZQ9TDwIfMdGjD3Kp8rlvq2DPWCVZXCeWXs95RkZ1nb6cj32RvSQ8ExqPeFpUMesMmI9sysDetElWT3nSUJhBFpRPaXqX/tv6Uc94xAfeSh0QD3fCdC89Jw2PbG96jdpCS89z3P6RGRFJT0vXWuEQh4dPcQNrxiF5xM9sMMd9mUtCz3vLpMSyocCPUkPev/ZPPk80IAy9kEq8Tw2fkzyDVLnPBZpTx0Xpd88+ysio8xx1TwBnSbimgfNPEmXGh40oMM8+9jE5WaBujz/Mo2ZtOCxPI9UKHXeFqg8WiQmiBM2oDzik7uTesuVPFPN0prfRI085GOh5AmigzzY6ex80k56PHe+2yeCm3E8BDY1JR6LZzzi5AspiXJfPA6eGaL9+lQ8xNUp1S/3SzzLnGv5d55CPDKDv4NrxDg8RmTodc90MDwwWau2t9glPOdQzLBL+Rw8ZCVpYMUxEzyWuiUMPGgJPNvjtwiqzAA8M5RsFfwx9jsjV5nfI0ztOxKNRwmkUeM7rMVhLxF12Ts1sOPmUcLQO9kfqRdhDMY7jYte6wX+vDvvMg12mw2zOxiRxNalCak7M1YDMFR2oDs9F4+9L5uVOwn2x5qauow7k/4IyofIgjt8/2RGL6N4O1KrFxG1HXA7lArtP98TZTvTT8nEG4hbO4MKtIEW91E7hzLxR8psRzthjCjAe4s+O9UKX14k/DM72vp1xlGaKjsE2UCyC+IiO+4H7B0=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+QAAAAAAAOA/9vbngWtDIDugutCe3y3fP7XrhIZ62N4/EgO0Hyph3j/VdO8T5fHdP1Lajg3Vft0/O5GzwXsK3T9zY147dJPcP0LISoJYGdw/4dvkb3Wb2z/47M01KBnbPzyg+r3Kkdo/bHhkFr8E2j/rjbIYc3HZP0A603Vm19g/rVQ3JTA22D9e+6m2g43XP5xXLBM23dY/NRkZfEEl1j8pn+KMyGXVPzZfBRIYn9Q/+v5qk6fR0z8KeQGAGP7SP2yZd/gzJdI/DaoTSOdH0T9boUcqP2fQP1M8ShTECM8/ul1Y6BJBzT9s6/r29XnLPxXYNLABtsk/NFnHCcX3xz9I6chCu0HGP6US46o+lsQ//D9h2Hz3wj8AFliibGfBP57iADmMz78/exVCcvnzvD8ORRs5dz66P+xmjS3IsLc/svGBRhxMtT9ERJl7FRGzP7q+bZ3P/7A/nXKSnNUvrj9HSygIMLGqP7dZ3/NNgac/tF7x+SmdpD9NudgTOAGiP84AkwAHU58/rYOAAJcjmz8f8ax9PGuXP5nX177iIJQ/ZAgeq287kT8YhvI602ONP+eM1l4u94g/GrC4DjIghT98nnzO+86BP4iF+XNF6X0/hktCRpYGeT+M2iEVY9x0P7T0pEVcU3E/V4TxSMisbD/lo9mC/qRnP6Qs2rV5bWM/eNQXjWXQXz+8Y4zGc/VZP7CuD9LcG1U/hLiA8mgbUT9TtxbkqaJLPzBbdcmAP0Y/STMfaETaQT8b1rR3EI88PzQUpEIzxTY/2Lb6yP4YMj9onP8y9K0sP1Vs2p+epyY/hfSZTHjXIT9Wk2GSvwQcP1uqVRd47xU/IgCfi4UfET/zcVpEEKgKP0jUuZOnsAQ/c2vjP6EDAD/CzQanvrj4PqvzWZOlB/M+O5OFZOA37T6R2YtKBF/mPqv1/zdvFeE+ETGDNUIG2j5YP2eNgMXTPrxoZydU980+7ZCt1fGmxj5eVoltyRTBPr5f5Vq7srk+KwhRZuVIsz6C7o90FeCsPn5rAXY0kaU+8UkmGlESoD4Kh3mx4eWXPqTsBxtVupE+Ryl4AT4+ij7ZCD4otWGDPldkFTb8kHw+0NPvcbcBdT73LdNcddRuPjjicF58k2Y+HGKeI3l/YD5G+ip8MxBYPozr6nR7g1E+rwzri1BxST5wsBYVxnFCPp8zP0K+sDo+8mRIa0JGMz5CrE+JDMkrPoxIwGpd/SM+kgvLVpi1HD7NU3MLIZQUPqhLqYyrcg0+j0h2tUcIBT6K0e/Pk/39PTgGWAdJWPU9To/Zva9U7j2uOPe4X4PlPf1PcGVyd9493Rlxs4iJ1T2LtMJiXWbOPQv57sR7a8U9u86tXPIivj3JX2Gfniq1PaXu6Q2dr609QrMIAPPIpD1V9R8ilw+dPecNLgoBSZQ9TDwIfMdGjD3Kp8rlvq2DPWCVZXCeWXs95RkZ1nb6cj32RvSQ8ExqPeFpUMesMmI9sysDetElWT3nSUJhBFpRPaXqX/tv6Uc94xAfeSh0QD3gCdC89Jw2Pa+96jdpCS890HP6RGRFJT0uXWuEQh4dPcQNrxiF5xM9sMMd9mUtCz3uLpMSyocCPUsPev/ZPPk8z4Ay9kEq8Tw4fkzyDVLnPBVpTx0Xpd88+ysio8xx1TwCnSbimgfNPEmXGh40oMM8+tjE5WaBujz/Mo2ZtOCxPI9UKHXeFqg8WSQmiBM2oDzjk7uTesuVPFTN0prfRI0842Oh5Amigzza6ex80k56PHe+2yeCm3E8AjY1JR6LZzzk5AspiXJfPA6eGaL9+lQ8xdUp1S/3SzzLnGv5d55CPDKDv4NrxDg8RWTodc90MDwvWau2t9glPOdQzLBL+Rw8ZCVpYMUxEzyWuiUMPGgJPNvjtwiqzAA8MpRsFfwx9jsjV5nfI0ztOxONRwmkUeM7q8VhLxF12Ts2sOPmUcLQO9kfqRdhDMY7i4te6wX+vDvwMg12mw2zOxiRxNalCak7M1YDMFR2oDs+F4+9L5uVOwn2x5qauow7lP4IyofIgjt8/2RGL6N4O1KrFxG1HXA7lgrtP98TZTvRT8nEG4hbO4MKtIEW91E7iDLxR8psRztijCjAe4s+O9YKX14k/DM72Pp1xlGaKjsF2UCyC+IiO+mX7CA=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAASwYAAAAAAAA=eF4BQAa/+b/qGAnJKck/MD6pwPEGyD/IONi9HunGP7C2tcQy0cU/7ghalYS/xD9WUCXGP7TDP4rMy7aAr8I/SN6mUl6xwT+C3Tsl7rnAP/9Ho4GMkr8/dU+yPfy+vT9cjG7aXfm7Pw7RhA3nQbo/OjIm3c+YuD92/wspUv62P5Ym6+CncrU/+JsjIAn2sz8OAuEXq4iyP0JqN3G9KrE/HY4vbtG4rz9WxPgPmTutP6ZP1or63ao//XNWcQagqD+ELpKksIGmP0YMr8zPgqQ/5Ix7Hxqjoj+28omUJeKgP3dgSnbOfp4/iE83cmd0mz+i3aNvgaOYP/fVQTZMCpY/uvIOesOmkz8sajmtsXaRP46gaC9y744/RDUx27ROiz/mi/u39wWIPx6JE4nkD4U/vFsFAxFngj8iMqG/DAaAP8xS+Hflzns/doGJb+YLeD9ayLKTxrh0Pz6ObEaHy3E/7Uk7lTJ1bj8sW0BY0PlpP/anADTHE2Y/m9LANRGzYj/7s0OppJFfP7F2dFOejlo/1jyH5fRDVj96HCCfwZpSP9Yd9TG4/E4/9KRDa0u4ST/Y1XKuEUdFP+OMSWGBi0E/0Z/QmgTXPD9G6aJZeaA3P5m9C49QSzM/nj9HpGppLz8UUVnmYn0pPyZo1WOvniQ/gIqlvQGhID/haVj99rwaP/6wgcqfbhU/NEa03LIgET9LLg5aeUsLP6BcdZ/0rgU/O63yflYtAT8Kqn+cKiP7PsLwdB1zYPU+9wm6I/rK8D6zf6SyZE7qPqqpUqNdjOQ+MglsV6EA4D67oLe8Z9vYPoz3nFr7QNM+dr9wEZK/zT4I8FgT1uvGPvwZ5OJ6ncE+IJE3ZWEBuz52RNBP8aW0PpCK6Dv3fq8+oKqePDr2pz7wlesnbi+iPgxIe3AmiZs+3vdNhw7MlD4o+X/VO1ePPqK6Nl1Fj4c+RhjDxV+rgT7/q7qTbXF6PmTVh2fsvXM+2jgpy3VpbT6Ay+YsZtxlPqjry0qJNmA+sNPTPCf/Vz76FXzjf7hRPq2zUWT0HUo+6keDH6c0Qz6AovmlNzA8PkQV6GzdpDQ+4id67z8tLj5iVedXBQMmPrCMpo9BBiA+gDDcQzRJFz4+qKy07+IQPtIVparfcQg+kAxlneyoAT6m5/LrBnj5PSA3qHzpVPI93FfX7VdX6j30gDstHuTiPSguCh9NDNs9sBVvxltU0z2ionvLQ5TLPYkusX4ZpMM95UvcHYrtuz1IPceNe9KzPSRJxpVkF6w9tsGTDFTfoz0GPyIjCxKcPdi0fhcey5M9Dx6Ndp7eiz0BFTu385aDPSTBBmcWf3s9UVMORn9Ecz3WfwiMKvZqPUJW9i3p1WI9+MoWVTZHWj3t2Mvxwk1SPUNHRgEadkk9t0NLffCuQT2pwX/SGYc4PfxChbOQ/DA9NF8S2rx+Jz2UFNkj5jkgPRSY/JusYRY9TpyuWoHUDj0HBAyAljQFPQ8qwsPRIf08v7fM8g/88zxJEKm7GmLrPFTnr+N9vOI8pqz1F2ab2Ty+tnPWAHrRPHpuLTZQ08c8zFSzpWI4wDzKoRoy8g62PMcvSaEi9q08EzI/W9lSpDyQXNG5EoqbPNFyq0n0opI8YoHsl7QxiTyYtBCejQKBPJhqBQpK8XY8DpQqf8PobjzABNrHQcxkPL78Jvwf9Vs8bKz4TjTFUjxHi26kTS1JPGKFXvLz3UA89lYZZluTNjx+Ga37My8uPBOeHF1bKCQ8KMZrFzLlGjzc4akqjuwRPOY9VzLA3Qc8sAlXhQq//zsuKwskzhf1OzIXlEVrAOw7ot4OlIOR4jv6wxoQKprYOw+TykVoSNA77sx8L2yIxTt6PVdrF3O8O01IwInHxrI7xJtgd1bDqDvsmdqxdlCgOwnNM+irepU7WDNe7RFBjDsLuRlgu5GCO1hRY8kNZHg75XiSR78IcDsovwUPKBRlO1IlHnOFpVs7dFLTQK4fUjt3V4Q2MsFHO4ywp4sKHz87BAh72H1eNDsfv/TS5qIqO3zhRqvqZSE7FpCiUMCzFjv6AC1GlpYNO8ErFHoPQQM7V2Sbc8cF+TrqRwNtdj3wOqx+uDoLBuU6jIecv3tB2zrfXS6/8bvROqwkiSwt/Mc6O9Re0BhJwjpNEum9AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_84_t_8400.000000.vtu
index 5876ea2740cd4d82297a83bb84c9d91c2ff18c69..b6a9e934feca809ffc12663697958dca645e4fb6 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_84_t_8400.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_flag_formula_ts_84_t_8400.000000.vtu
@@ -2,37 +2,37 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="25" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1.4127140281e-14"     RangeMax="0.40366029894"        offset="88"                  />
-      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="9.3134341226e-15"     RangeMax="0.39893248979"        offset="4300"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1859980316"        RangeMax="11.374501369"         offset="8508"                />
-      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="1.4127140281e-15"     RangeMax="0.038817474711"       offset="12304"               />
-      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="9.3134341226e-16"     RangeMax="0.03836283101"        offset="16524"               />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1.4127145823e-14"     RangeMax="0.40366029868"        offset="84"                  />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="9.3134377903e-15"     RangeMax="0.39893248952"        offset="4296"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1766482528"        RangeMax="11.374501553"         offset="8508"                />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="1.4127145823e-15"     RangeMax="0.038817474687"       offset="12308"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="9.3134377903e-16"     RangeMax="0.038362830985"       offset="16520"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7959455949e-08"     RangeMax="1.0000028822e-07"     offset="20748"               />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="4.6907487645e-13"     RangeMax="0.49525962635"        offset="22564"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="4.6907487645e-13"     RangeMax="0.49525962635"        offset="24744"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26924"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27748"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7959455969e-08"     RangeMax="1.0000028822e-07"     offset="20748"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="4.6907505907e-13"     RangeMax="0.5"                  offset="22556"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="4.6907505907e-13"     RangeMax="0.5"                  offset="24736"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="26920"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="27280"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29816"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1.4496702943e-14"     RangeMax="0.40026926123"        offset="29884"               />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="32060"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29340"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1.4496708628e-14"     RangeMax="0.40026926061"        offset="29408"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="31588"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="32912"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="31904"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="34516"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="35064"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="35576"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="33508"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="34056"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="34568"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAABkAAAAAAAAAIQAAAAAAAAA=eF4z0zPRM9A1N9VNT7FMNkg2SEsx00vJLCqpBABQ9AdBAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAANAwAAAAAAAA=eF4N0+cjFmofAGAysyo7GkQeimwl3fePZFUk2RkZ2TObsimUla2yd/bMDpnZjx1lvqLMo3RU3vMPXN+uyvSMdReLKbBZLiCNHZuCnMDEue95k+DN6k0byzIF3hbtT8K/TcAEP+mEuu4kHLceVYqWmIBavQQ9/TcTwDBdOsjsPw70ofxqU/8bh0f7lmGnBsfg4eEXtmmJcYgTowrL5h6DievhFoYhY1AsS34h14MI1XxNHkZTRKDgaatmHx6FAckzuWMiRPiy0wM7QqNA534u913EKNhXSp3njxwB52xLcZK1EQj7G2xQuj0M96ryPd/cGoFGalT6WHcYukzWdMPKhmHm9UFfcNsQjDclBfwHA72jW1Cj8BAYGr6oZwsegkqx47GisoNgCRfaVJYH4TXtiO1pwgDE5LAOZ3UPgG3uxxACcz/kqodJ81f0A1WysoQM1UcIuHqKsy3jI/SY3Km9QdIHhyLWnIaJfSC25XlU9LAHLCspx5Zje0G1cnXmO1kP6BW7uarE9UBOF9q2ZugGwz+z4J7aDeJM57vjznSBQdxP3vv5XTDzvJnMWKITHt+Kkl2t74QnMVun6+98gFisZckw+gEINdyBSU4d0GT/PrtlqwMqkud6vie0w7O8go4Npg6wrbmtUNLWBpH/rLZHXWuHt10HjoO776H+675tok0bcFX9z1npwnu41Ae2B6/fwxzjki+9RStYWmQGVIy3QklszISYWgvoGJeRVjG3QuDFALeu6SY4t7NptVXaDG97z5r1OTeCdKnnh03ZJuC2858UZWoAk0W2Vt1PDTAS7NO90fwO1m8sXT0bWA+/M0h//XCtg1R8xeay2DsY2yFjB8la0PkR8Tn+Wy10X7s503BYDQpSpqnC5TXA9MTR24RYBWudnpy//Krh0UmpWZ7KSiguvOe5olsFZum6iXupFRCyKzu7JlMJAYfSO12R5TCZQFe1z18BxrMze+ERZUDop8kh4SoHKQ/THV3eUliJPtGyzVUGRcWWMSIKxeCmIP/VWacEapXXkxy9isA1fC070P8txAZ2GC+2FkCpIA/XSmMh9MTbaGhy5oN1Cn+qJV0BzB1wyAQ/y4XIkT7tjw55UJbyZu0SdQ5cvvhDhLiYA38pnJOOpmRBwhoH2xXbbGD0TCtqR5lAN6nVWkieBb1cP60odtOh3OGWxWRpBrgSPBvnH6VBcapctIVdOsya+WTJc7+GRsvdM2sub6Cxi+Pn/a0UsKbwqpcWeQWZg+UiNz8nQcD7cucFuhSII4Rr8X5PgCshb8IPqZOgL1FDbI89HnIucs5m8CSAELvGiRaTl0D6irtp6H4czHb9NX7cGQN088YR4WWxYEBdOMGlGA0/FCC9iysGVlbU7SRbXkBOAU/KtnYUvCB/QJ7PEwFb2/otzGnPYaWPocui9hlEyN/4p4ctHPaTFlyxZyiccNJomW1+ClL6rkH7ZsGgoT0dxBEbAgd6DZdMPAPhKesSy62oIGjvH2dQqfQHp17iNVQVAJSPrBYZzvtCuZW6U+gfP/hy5yffL4IP9AsOIJepx0DL9sqAYOsJGyYG5tT7XrD1m78hbM0NWO06u/i0PICY/T1TKNMFOOpMw3u/uYKTj1GabKQzzLOOqjA0PAKtVnESPm1HeJPe949QoxNgptfHJNZswTu01YFxyh7CBjJMF4etwEb+yr83Y2ygTs3er47SArafpDIZp1jCuYvh3XGBZhA1taT167s5eHyxEMoEE5g5cZ2WLdQUoiYMFtqdjEAmdev4UcMHQN2mPXp3UB+OJ3fQr04bgI26vTWK0YGa6D91aeZ6oGzB0OFZrAmbiSGx/ara4HdtTy6eUwPM8qz9817cg00PpaO+eXeghO70J5JTd+HARNfD8fUtkImwU45YUIWk+kslGbTKsJqRTLlGdxOyT8v69i7fgKjOxnipQkUY/0ZvkMN1HWYIHYcJJfJQuDTD2WcG4BVAuCB6TA5IF/No1blk4KKmfZV0MIKVa9wCvQ8vA4mX9k7hY2ngzCzAHbwSYChK/lTnpyQIpx7/qXhHFFD1OLPjshgU6lPKeZcLwe+H9RovpUWAVI3uQbmtANxQcpDwGrwIHdeDzLbrzoNPa8lL3EuAt/Sb0VxPz4H5gaIyrzovhO9KCRY/PwurjhEJ63e44VlEoEriIAfwqQisurmehlpyKy/qZlboVWAmLB05CeyagZJhckzgF9KYTiLOAgOvr7erKB6HE1KONI83T4Adw3BUvRst/No7QOduMQCXb8vVf85Swb3KgsmgsKPQ1Gb7wteJDBj3j5VKPKEApev1eX/ukEBZ3qD+Jt0RaHYgyktoHuACz2l5TYW/2M2LjPvu9A9s3kARJKP7C9Mp/TEqY9rFz0Qr5WqF9rCFbfwR/+5NTN6makRVsI2Vzp/aJHFYwyZORYyZFt+xo95JQd+tZax0W3n6ksMqNqddDjl/aQEzO2gXtssv4URxws8/THOYgSRHtbzrC950r5yKGZ/EPVauv6ubZrBH1I2vA15EvO1xiii5NI5NRvpEeqeGcCDYiz+aGcHvP12Tpyvrwx46fpV9ZIN42HTqslF1J95Y/6+wew9+7Sf+eT6xDV/ZOTSXnOvAZ4uqb4c/bMYgPOi6z/geP+fW42cdqMN/i97Q5Sw1YEVLpyp9ySosrhg2v9tcg7kep/2ucyzDm9pDpJHBFfiwJMnStrwQi1aLVh6eLMGC9i0yjVk5ODs8LWbfLh/XCgTUFgVlYHHvaPa8niwsEOGyzqX2CqvKaxtzk6bj+0fa2ObHEnDgKdnq+clkPJd/ObLYPBabne+Zezkeh3NPTwVrx7/A+vlVH9Y+RGPLGu+hD61PcRhLTl7sXjiuZXVkKqcJwhNaC1+LMkKwZuGxSWcfXzzx6hufjmYATrXPopIw8MR0iqHFJO98sOWg3DqlkwvWWIirW+Rxx9cz5OP69x0wpbTvxbg8Z3yfwd5HJssKh1TUCPecssOqS7ZFJTFmeMHXhEtczwJT9IhVctEY41j9CFWFJhNcJ7lh4xini8t3RExDzhhgxsob++6O9zCBsmChQ1YbM6nbLSeUqWFic4RPSvxdHKTvdrAkqowFQze4xltu4eL5p2PrtPJYjShJ+P5JATNZE06nbiPMe7fpo7S4HA6gtXuw538ZP7KXmhGglMGtAk8WWe3EcN2Az5k1MUmcV57gYDAuiNdeHb9KkiqCU4O8ST6G8eEfPFwzN/4VwG+zttROJnJjVe8/8+43eXHrwVUzTltO7BnZUCOXdxZzzL6i6tdmwReyj+ok57Fjsb/thML441gz0l/pmhATltf7PHS3+ShuS4+7qddLjzcpWswXd8kwWboctT8nFS7YP2yjWfyLajKEXIRWSPGQxvbf7s8/0Qs1nRbO8gO0xpey/8F+B0kO+iibme+hZ/bUo6XW35BLLa/jnP8WoteTdCr/vIzYXFepKBy+IuGuifHrw1+Q/RUCzUb0IlJt6VOyGp1CDns2HB0n5hB/00+N/v5R1Kv3hROYJtCE4rzjVa0BpGzytVi1dBgtxLSxiIh3IQFq8puujH3I85bPSn3dezSX/SCxt7wD2dyfPXaMpgERaTZdeJNb0O8I9l3WlCokLVEY1sFWh4LTzmkN6peicO0jLkTdCiTVzFfqS8xD5iOG1VarRaiRzdy9ijUTXea8f3FXLAfRpITSmdinIq+NY8mYJR1FS+SnpXTEoRIjq+ZnxkkoJlQsudA6CpGM1k9yPIpFKp1GwYb1T1FTxW3euoUItGKqSDu0EoD8DJ3PBNGHoFILdefGf70RVclVf7pWP1TCSi9noOaK5DJNfeq/eqDEtaXpiacOiH79rIjgH2fEc5WV2PDNAj2nlzjqTm2LqGkphiJETRBxkfxLr4o5mtr690humx7qb9IR7LIxQmK3qR0iFO+h0HVPloed2qjZpSxbdug2Oj919Vko9V3UX/JR51OgAvrUwqRI5qKC7KZMl2poZBED8cy5qD/X0duyYJfBlcvoUJhRI//ONfSkeJEQ2CuKoorvLl9ikUStZ9m5D7wuoMjbN02JD4RR+bfck/TveBCbIMuitz4B9RPj64XDTqNUlEnLbceNokmbE/q8WZFKou8oiTQHYg1rPvi6cgIVaJDw0sgyo7iKkxtNg8cQs87bntXG4+j/ZRHg2Q==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAMgwAAAAAAAA=eF4N0QcjFmobAOAQyk52kZWdvfM8d0JWx8nOLrIlM6sIxWvPzBKikJEIL9kjo+yZZERHKSMqZHzf9RcuqXfmlPHsU9BspsJ3mjAF20Gb3ocWk8Do+4eKuWcSvL4SBZPyJoDY4XC5l2YSbAesnkd9GwcvMfWFt4YTELezFXsgPw5PuP/GKeaMwzzhhPFWxBhUqN2sF/o+BlyEHk6nD6PggyK5M9EYqBRa6RlKjYJiWv6xB8mjMKf+B5XFjECZ+P7U4rcREKDhY3D7Ogz0+W9MKy6NQDRfqOwDnWE4+5ug96FwGFKeTtf8KB8Cu8KuPfNjw/DSnC0gi2UIHBOoLAXch4BNIkrjXuggVMqEyEhNDILSgROb0OwA/K2XcvJQG4S17n/ePmzthzTymvVK+wGwU6tjky15D5viXtvNOv2gZXfdeDXjHUTxXh/6JfcerqQRpF7G9cH64eovLPgOkplkTRwIvfDnqP+tSK4+SMqnlDwg9MBMuJ3Gm1O9YDXMs2Kf0A0yH45z9HH1wNKTpvex2W9B5DV+lS/YDS8uaC/YlnVBZuZEmLT8W+B4TmUz1dEJDTOZCq46XTB9PNZ0Yb4DuM4qn8c3OiE5nX/c42gHiDsryOWEd4DLiDxrgFg70LOKJgcXtYNBzSH9ulkb8O+v/hwZboOiMzHzfbGtQGcT2JVC2gbcQQWmZJ0toBuqcq1aoRWEV0guxZO2QLE7gfecVwskCTHK90Y3gdbGp90Vu2ZIa5IYITnVCF9ycC79aiMcGt3YqXndAC45J2Zrw97A1jTrwIx5PeTzV1pN8jTAKQFWJlcqIsiyMcza9xFB5Pq4rFFHLXQZTRsZh9RBhUCMeTyhBijeWixlo1pQUk+NoDN9DS0s9dviFDXQWBJ2rEeiGgzFNy6STVXDZDF9cSVjFRgv5M3Q1FTBsid6Wn9YCepmh2/w41ewY8xROvr7JbSm8U5Fx1eCDgH/mlmrAJb5ELH5qJfAFJFV8Z28HL6p/VNjw1UBLqybMSUSpeDzXeJap0oZUHym1v/PrQRmkhaKu9xfgMclj49ujUWgl3qyR7K6GLSVrOoOuZ9DQIqXaR9NEQz9+8TNKr0QXsgMRpn6P4Ms12IpxF0AF/4cH0/8XQBuX+5Y/tuQDx6c7h6ikU9BYzNCFjvlAUmeIOOYcD70yw9VlArkAud8UrPsp1xwMDyccv/+GLbFrNTGNJ/Ap0eWN76WZsNjQxo+3l+PoL7c3PVrXCY48GNqv/YscLYsvxcenw6rHjQha5UZ0KAiuddW9hBiPtVvZDenwX5ytFHRtxTob+KsCFtJBdVJsg1R9WR4YOu9kCubAscyHi1jYiJojTerrmQmQUB5dnhGUjwUH7U6oc+RCNLyv4N9PsfAxKb4bV/nOIi6wXlzwj4KlH7m97APRkPEFZPlUJZIqP+BXho4EMDtyZ1muc37QJ+QUzsnHAE+iblaVTthsJs8zXSf7T4Qf5wMbBYMBeaVHbVDiTCIutZNqvs7GBL6YxLY3e+BBtWkhNfnIOhIGRFUzbsLtmuPr1UyBoDtPLv4x5JAWOwdXfkUchvCZvKye7b8YCrytPyqgA+EmkXkrgT6AjvR5ctPMi+gvuawcFHJG9ypVcr5TnqABWds+IaoJ8h/Y9Yk5rmB1wfngKAcd+grWLh60dsZwmgaGITAFZoH0Z5yqgMMybq2nJBxgjsXUnp1D+yAJGmXs9rbHkhugNbdF9chQWVXZnbXFnI9vGkvidnAiK5hfF3bNTg87tc64mkBt6nFef1irOCOWLvjc86rkGjCAF77ZvDu0yMJNwFjCC16c7lsyARIuDv4PMMNoNh8XJr90BDsxKVKC8SuQIeY/1etu/ogEUCdziV3Gdhm+zWnCHrwN4vWKztWC6RnF6IysnRgn67rB5OhBlTHdgSG8WpCdCoTxeqdi3C1J/o/GyZ1qF1k2GM8BKhmWy0ksVeFYA/zgtv55yF2x9rtBhMGjr9/dr2HFf7/sauo90sJxBlk/c+EyMLNyCJYtJAHWm/uRdYsKRCCMfElRRlIuZlrOSImDqT+HmNxwZIwzdbJ8GVQGO5vVMbuXBCDb4VDi0nUAhCmden5OUEh0D80a1Lu5QXH6nb2qWx+YHaWks7aPgMxp1c6VON44A++Z5cocAqyHBLPqE9wQt1ROoIlGStYHDi1/NZnB039emznfxLURCJrxj2ZIXLWft/AkwGUntIZUvIwApnvreacOmoIbRYkTcmgg++M3s+sDSlBgo60/GbncSh2DeILTScDQxIlyqMvyKE0+Wwg980jIEPmtukvQQqznfpR88F/cT2jcvp9/wMs3VNW0L39G3N2FnUnBO3gyRwzz0qhTazzotdiTvMXHpUv/bPzeQ2ns9MZVddv4IOqWzr3gr9hH730Vrq7P/BB4MfHY9tLOPuDnORy4DI2GfwbHy+5gMkDKgtMtRdx3p2qMDeGT5iCztKYp3sOh/ETZ3TfT+IkGV47t9ppbOFbkDbnNoqtGfZ4habGMbntcG5j7yAe1SB57/l+GD8kU0/ZS+jDFKasco8W+7FI86m2v6ldOOTVBvmicQ9+VUG4YODfhl/rsupQN3VgzxTzzkzhJswz/+j64WYLlkxwXdJOq8NFqwLYvKQBP5KuoVImrcYTbeUnT0bV4H+rFgMDVV9ie6vTh/6Gr7BOMItrqXUJVhxP1iloLcN+TP2W9uaFWIdOjAhcRVhYRHxEWi0PLyvuveS5/xRPfRhrSZ/JxksRQqKuhCeYVm9j8rJPGiajm/w46Z6JR+2eBCUyJOOK83d1ZwNTMVGXLYuDPA5TSNdb0volYrHZiaY6jUj8l0EyIs89Gj/1MJiWyg/Dys0JCm/FH2C29mfpxN67eOyF8OHmz3u4MeSQ/9pbP3zaJFsogykIsynftxLZ9MIjNLoxRZm+WKP8lgGNkDv+Hp060CPjiXOmqRIMfjli08fac0EWrtjSzcT1EokdLv6ngO9GnT2udV7Xoz9ljc+zCWp9V7iOyxQPN/kGTPG/D2QINBctsOpSLYHzvQGWNRA0o4kxxstOCawCz/7BpCWv1uGIPiYQ5qKnTDWxNr3RddI+HZwR/OP7T7OLOENpK6ePSQMn113LHRxQwW9ieTtpEy/go6KuY9kP5XFtWj5n654S9jpXm+tcJoVtOmUm0ixk8XHqS6Jc+aJY5IGPn9eUBC7VmshTSDqLK4hD1wfnhHC+3MgR5gFu3Ol2tb3akQ+bbtVY/hDmwLcKLZvKlbnw8sBMXJAxE35yRzxSKJwVi335ILWQQI8vkzfICaox4rtv7eJobh/Dz1kmZO2MaDCILxWErpLiULFgQfsNcrxkEPE5R20fKVfRXj66cwSHmXX76KX9RmrxItYhirtol7fy55bTBhITFClaU9pCxlK1xlHvvyFaqqzNbOE11B3MKfEsaxGpuF0Z0Nz5D73ynSJtz59F7BuCRGnXBZS2GRispjqJtrprPIrVPiKh+sZW8+Rh9HM+5rxD0RiyXSrll3N8hxr8zNYXkwcRJTivkVZ2IiLzcX0b4x60/bhExDqmBdG+clk8Y9KOdF6fmgiWJaL1QoXKr4GNSNk3x3pWrAopLLoE5XvWIEWym9U5fGVIae/DQgNDJRo7oVXYdfoZ8nN3oFZaKUb983NnzdtykXZIkap/0VPkMKSeYmiTiVboq2qUux8jm4hzllXiKUitQooVEdKQzepFCrQdi/qUyYIqKZLQcZNwl4tTD5CbRkIMT1UUcnrmaKrlew9lLpXSGduEI7pgo4KVdn8kYZLYViB6F8lmNNhoP/JC+89vfo5f80W2XxMqd9Zc0a3QA5qeAA8kqmhvOLBxA2W5LLFY1TkhqQhj7mPWNijILuzC5gNblF1swk1+2xR9Na3Z4K23QLzENM/tCH10ZIZB3rLeCHEP/ldAENJBZ38ys2Vt6aGufsd1uxA1FNRDRvGQRRM1a815BR1DiEVCkttVRhXx0Imb5qfLoXMaL+KHM5WQUwbNmUYqScRLXVS0TimDNhyjv+wPCqJen2druupiiFjmkGtYyoPIG6+aGuzyox3eDOKyKgfqvpIC43xnkItCgiV79kn0Joy2kCjCiuzzOCjT2miRBV1pY7HtCaTq2SMU95QSKRxJ7djvokJnT/Boj24fRWFYf8mYmQL9Dy6LzqE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/goAAAAAAAA=eF4VVXk81O0XtWbI9stSQijzTEj1KioVT94saaGSokghKTL2jF2JyJqU8FZKoSSllJYhEaGFRJaaSKWIipDwO/PX+dz7vfeee8+9z4zsrNnOO4sJfSdRdukRl9An7S+eLfIj9L3fhtkNHoS69Rc8qSkklC7e2BWYCvTv3uY0PMmdU2aUcPskoZaVX8WWBxI6Jh0iNRhL6F6Xjy3KiYTGlH2/2Ns0xVW0v9C6xg51jjtLCp4nVCs/Lst4F6G1N7PLhdMEys+Nqf5Zf4xQl7lK3+f7EnrGbfqJ6mRCeac2fYnOJZSxVE3cZweho+0SI5/WECrpOnPRfSFCr78KOFmzdZLrN8ju0T5KqJO68xKx/YRKx5ZFDUQTqp2a/7Q6hNAKlU4N62BCORceVItqCJQz5Vu4STsJTdgivGjuNkKHJF+prED8u9JYk7TDQAtD0woXQtNKet10Ma+asiiv78wEN3y2j7x+GqHh3t+dlxaPcgtuPLO5IydQfnfP8a2emwh1FSgk5gWEfl9j+ccAeXK82LGVe8GTJ/ajNYfQEwZbvcIKp7j7WbLGmvaE5t3Y72VgS2hg/rmX62ErsFO2OUCnb4FBO3ROE8pdr3+8L0SwXCbstkET4p4r3dspJzjJnVFWMXO2/DA3aOTl+G1zQns433ruRBD6tTjp5IEYQvUHD7JPOxGaI7BLtl2H0MMHLvmwLATKRR+kWTVCv6oatWYFB0Jjz6rywnnD3GeMBiMVxK8OIjKx2Juoyxezfw8SmsVZzgjNIvRc7UlWAHRdc1VJYeAioeK86sf3NxPa0dAplplHaGjz9go9N0LZm2xnZZ0g9CerT2wL5p+cMSBSljLJvSgvU9WBu3giYK3AfPeXe+jeJvIqjFD/2bFd8p6E2hjOm5fLJjS6NjosGbaYuUbkRAqT+o+YrZ+J/c0JGtE7nUBojfz4GwnDCe5357NSE7gTzg+jFhfvCW7h8nzbAtzra03fqYwAQjWrd0QlKhLat2NgYD9s9zeBmuHo62HzhvM90N/dK/WLJ+4hweNXw9I4xFVUyGk4EtrqfmMPO4rQUya1f9WnTXHtPCeqbGHTRFXRHrlJ7tXRt5rVPRNc8+hP+uLoh63kLXctHnvzlUg/Bf6bYsbMUNyRRI7BcXPouXDa5/5vVoS2Gcn2MtFHmPlEnRd49aqEug8cINTUUCTlFt5P6+rpvF8ZhGZsYC9iH8f+BdLVi9xxh+PuTg3hhJZOxuhWgq+z+fhVtxTMJ+exTgp7crC3vCeIu3/Qa+ToyiG08k8S1wn3WVj8oPQo8kLtv6SMQr/GGLWf47iLAkl96+vgM+2wbmwA6ia0JmrDv4/rVnoM7++AqdZee+jfHJW3URd1luqLD2XDzwuMcdgEdKy3+/EQ8cJPW0QvQk92u9Tho9hzUZ2Wlx7eTXAcKVjoTaiizc+REujy6BBd0IE7fn1iXpcP3nNxUcCfl7iDyfTLHcaov2JPgYo/cKhq8Kwo4itq2FICRwj9p+SHUn86oU+zlhmF4C54+Rwb3ilCDd6LZizh133gKbkZ8+VJJhOC+VclcfY9g+42Wmar1dBf+xWpBEPkf5y7ZHo2dIsYk9Pfgj33dv9XOwffX/sLjVmiTsyW9PrVQElpkaVmyOc1bTj6AXNdOfiCZY288Jpb0jKYT/ZFQrAf4r7ZXPt2GftpcuyXL08idNrDJgN1YJP9h5Z3yEsdbtwehXt5K2Iels5/B2rPDUvx/b3dkO9n3Lv4wlMH72D/L+dnPTSPJHTXE+mFXehf27KJ0YW6nRZPSwjiNp8NylkJHZQr/9QMwG9qKvXuA/oI6h+5ZY47KUrVCHaEv8DWI+Ic9NygrWjQgvji4NpNmrgLzu7kNCG8j7Ls3YvvY66GyOAjuZjfUN8jugt7cjY/pcS/p6R5+fZp4P/8P7Wutei7UH7r7sXYs19MNisNfT857b7iPOo7dL7huOBeahr/uo0hji0nbTAHd8gI0tNVRP719+WCM2H3nLxreQ556sauPt3g/WTrtXUp+szWfNg6At23ryl5thr9/fy6XaUc/Dbjjw7IQ9dK8dma28CzLjQ4yhtxnX6rK6OBO+xThS3BZzJ3Kv024lgnxt5loN6hmNvLp+Ge2AqXGwLh/7DZbRYDv39pC2S0VkAHnbPCfvOBF0KEt//Afb1yGuG2oZ9qz/gkBvrrC2BJvETd66M3Q3+j/+/KkzsSoc/CLT/FS7G3r6XX9Ougt/eswWoPxDvrffKvA++UyD8VCujrS3quVBXirlapMUzhz6RdOYJ43zKxVq/4d9Dcn7HSDv0lHHgU0I0+guTzWJnwD1r+19eC+c2qo/7jv2vf+vyH/XgfsYIhy0f5vwM/GmVeoH61iFucHvpNdK0/HApdMqw8DBmoVxepqaeL/VSsXSvTg76Vc/K+58NvoLBmehvyDrk+CuPzlLV5eq7F/YdOfV6njDm5j7+UV+P3YZrwsq+Z2JNElo2iCfIq+mSkjyAuRFK81xjvK9fhDjcWfQV6maQRxEWLzW55D55838ZBDvqu948fnYU+38gHivD1DLVwiToCv9jFpcN2iFdf9dfYFvHtsu0jo5hbxl+ozRX6JVckzR3CnrI8mTk/oWugo+WvF+AvsXZkKWIe28dDdTr4nWpx8RxcjDwVs6FODdTZvzbZ2xT5PuvO7LJHvtd1peYS/vv69ja+DboM2l//MB36T7YXCKbge/+CpLMV8L+yPJj6HnmVq5NkFKFL/Vl343Tw/sz4HCOI+NCXZbuCoJMFU2x0H/yHLcbCf6P/urhgt4vI06j6He+BOINzgkouiJN2aKo+zZ+jIzIxEzzv17LbUxGvFm5xtwjz30pxM3kDXZ5HDfn1gn8BS0DgMuaItcs3eIP6MpPk2Rb4d5xQDZBD3W7e3cyV8KcYKKsz4RdfEXNFH/6NvR+YFaj3NIZTUAs8WFv+zhc6zBItuJwKu0rXRdEHvEVWhWI9iN8btT8iFjpeldQqj0NfAt8i1JnAQ6TbZBHuPtjJR9ge7+zzpyO8DeALY+ynX8FnZeUb0YB5ap44zxDGfMlt8wJ+oE6/ffJra/CkkqFLNfCXckcluqHfg9xD2qqw3a4IjR9F/hnJyryP4JGdLmffhTr/DGc7SOD7kQ620E3wpCuZ+xyFX9Zure4s1I3XXqbIQh8uQlyZVuQXjK9z4eG9Dey5r+MIvmGrD1FjQNO3uiEViPvlaPmb//9KbfWK/kX+QGRCzSp8TxmQY3WDx/aSNKMD+W45Yapq8BfrHGtfxX93NhM+lfC7xwnHn0d+6maz7GXoQ6X1cVgk7JxWx32pwNsLBna7A2OidCMCgI0LNy+xAc8eI4/gj6jnuts0sp6vd+Lz+a+B5unWF/h74UhoxT3l/+/2jRvdA25VPamzHHlTBpJ1N2GvL5vXuRh2adGi5kLYFbfZRjqwL29/Nq0AtkWb68xrwNyS+3Jz4S9ibS7Ogy3Pi/isBlvVTFpBAziyKpGThD2L6mfaJwOPHWz6owK/lnx3byLsjVKdIny7wLX+OB/9cu8FNqJORn9z3HmgZzVDjGCuRxzveTKwn/vpNcmJM6nJ8oWH5SWYlCW2JCpXjEnDmTsTPRhMulHlCjN+GpNKT7I2acLPq41ddFOUSYc4Jm9Z8H9RehIlBfvacKb/PmDjm5qUZBEmVdZlaL8GznT65aEHnKHdu8QVuP2Xbkq/MJPm/n7hOAN2WOIpdy7shPSErS3AQ+zC9VeBjBs2mbeA/weorFBgAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAOwwAAAAAAAA=eF4N0mcgFXofAGCpJIrIHh1KCUlGRs7//yM7myQzZGRlh5AZ4trZ28E1ykxFIesauVG2DiEjVwrHKFLv+/35+FRz7OyWxJFAUPyt3twnEgTblRTbUZFAdZXq3Ut9EpDY9ouEfIpg8bhTvFpXERB7WC8Ify0E2SOBmz+vFIGoK8UwwK4QTvVKNVLqCuHfQnkvgdkCmG71JlwV/b8zpTYUvFUAMV2TlcvlBeC59V/j4dZ8+Hu9reW/8wWgQGosvtOZB0xdJV8jr+eD22X+Kbd3uQA61WKzZnngu9cTwzyVAxSlfALZIReCtNz3VdeyIfPLjQd3/XJgU//bwYO02aBbaWYbH5cN3Ka/jhAFsmCqSd9c/O8sKDPucl5SzgRRqX2yVlcmRNjDX7uOGfCbk1FpdCkDyqrCup1S0iEq2nqonSED2ofLR0Xb0uDZs/f8tFfSgauU65EcJRX+6O9Ssh3T4CmbrliEUCoM2kUreuemgiuPue8h28dguYpio0Yeg/zCqHNtUQroFXMn9TM9Bs3n46/CFpKhUqby9RWDFBAvsApwv5AM1djpbW9aMpCejfh4+SaBZ6OUnOenJMglC29G/JMIPY88Fi9cSILBPcuhPM5EIL85GkgJTIT9qiEn39l4SBTIPhNCSoCXb5q1nqbHwfruIUZuo3gY8vRaHzX6C7J0aj2qGOLg1pOUnq/cseCrm3VGYjAWaG6Wkr4sP4Kuf4fs8jNjoDfHnLmrNRp4Bz8Q1pwegQoe9A3KjQINBZsggnI0LCzaiDGER0LHzxAZobNR4BXm/9nL/SGI6Gr+fZQhEmRDnmVW2kVAqcLYfPPvCBhhZO+uswkH5VYpZqWdcPixY5YR6RAG2V4Jtmk7YeBVJUQv4B0KSq8WJRr+hEIq/UREVHQIkFnvyuYwhkJHb9aqiUYwSPHlVKoJhkDxl/TTp5KCYMFvqMQu7gH4+3U+1vkSAI7utdo1HwPBebun56POfbD8cZXRWi4AGA8wWNV1+sF/uS0v7Ev94X3DgOErDV9wnl/Xe3LaD97T3Lb7OOUD5e2rPpxV96BWdTdxI8QbNNQnRxPVfWBALSKILOEF3RTGzLV1L3DYkSO4UTxgsrOyhqnCE3yW7xAD2t3h7+0qsx53D2j3JpHTwQ0O1ygszqm4Q4iNQ6gOmyuw6s8HXDe4Cx7fjLWyaJ3BZQx7dUi5wMTrFYc1VkcwKoSZOAknkE3fv/AKOUCqj+Khs5p3YN9tI9Q02A6O0m86fQuyh2Of3u6fmbwNIckZDSp9tqAev7Bqq20DHGcWBwLFbkM4Q/2m1bgVaH1/mk5+Yg2aajbeZZuWIJjSkFeiaAWx0ZVrS7bm8DCgSZN/0gKOZ1Fmpv+YAMdPk41CczPQKKUiz3YYQ5ZbR8K5oybA3WFfgqqNwHqCQZhq+gakK9Nlyb4xBBK5adJv4jpUdR2rZ9/SB5mxJ1sjPw1A15/ixKOlB2GVU5dMkT4kfTHWPxmlDaS2k3EJyrqQ8PXjhWv11+De8WbmLm0tOD6YcN6TUx3e1mWbziVrwDSh/ZTocxUQFtRkiTihBhIcr91EI5WA+a6Nin6HMtR9zBWQi1QE0y5VdKjsKhTMu0SZ2AMQvnNccnmlADKp6aS9k0QYIywPftpE8Py0+J4/oxwI0gZo8HVegY2G/C9ihtJgO7MiPzQtA7/NyC0NE5JwrZbFzRUug3ldjNxMrjhML7ysLZyRgO75VrXsy2KwcF9/3qb5EuSdrnWtTBeBokuLrX2FoqB9fuagiMl52G8nxIGoMJzItfgz7nEWrBWfBqexCIJG/BP6HxOnYZ0n3/ofXQEQ4iuP1Irhg5f6yZvqY/wgIPrNRvIHD3A7XRMSVydAeRG7NdGAE1aefZY2vcUNKr4VywR2Nvh1RefK2hI7cHyh6IgRT4IH/UXJtlEWWBpNsU5/cQIiAzu8A/mZQdiepruS6jgs2btM6AUxQu5fZzkseI5CDQx3iGnSg6ZKZwzUHwa9kYrK5pwjENtvl1j1ghoUCmss428fgjZeh7vavFTAKPKuOCb5AKQvU5vP1u5hgiP1iXr531jk6t4aY9sO1q2XHU/Z+okzOzNZmW5s4mO6bzX9YRsvzX3qqbFaxyfoDL1O0VLw/4tLLxevYvu+/g4GhTX8dHJGShUtYzsbt5n9uhV8Wn6PbchzARsOTNzRTVzC1V+pI9PF53CJBZ+dCvU8DoqmV7k8MI1DXO87JW/NYOvhtQwaukncqMTOblRHxhtO1+nbd0YwXbVU2kniOF6MTTm+EfwBv/cTi913HcYXm5LrLLgGsNo6LR3l0nts3E4xT+Lswx4jFb7+s/14LoXNn0LuwmJX9ds8ZXrwKYme51i9Hfct0uulqHZiq+YKyueHLVjnu0CUxfobrLBlzCXu2og99Tl6ixRf46iguxz9Ag24WO9ZmdbDF5jN2L/5Ulwtdqd19zCOrcdScjTMhWxP8ViYrPpl6Ro8XpXlvs9Yhn0Yuh9yTVTgYgsZz8lpEo55/DrDQrwUi9peWvSwLsA36c0ihfWKcMYtr0bG7SxMOOIrviySh/cs3rx3O5eGddX8K0cGMnDjmEh4rXAy/j7GQZdn+Rhb3unzGGiNwzs0EhydtYnYXb9bSl4/Gpuv8hLj9GOxvsmFZKbxcEzgHxgL14vEmcl+5CrhECw0w5JiLhGGGV0J9GZa97GA+GG6zwVB+PDWSeJrUx+s0avn2c/ih23avJt6dT1wnNpda6sYLyygGOj36bALHrOKVaQvd8Pa9cfYlortcfuqYvSdbEecFdlG90zZBhvkSRuGPrXFE+t+nnOuFrisSNivvNIKN/1JT6usMMZNIeX2yqOmeJhrSz6PyhB7Gx7guppkhHPuH64P9dXBOhpjvGd09LG1Cc29Nht1/KTfhuZskyYempJ02g5Uwui7C3+WqCqWlqwqK+YE/I1qu1P3uSIuoTr/ka5bFo+/vnXPEIh4vMvyYm+DJFZKwi2uQdKYZTdzKkhXDPesxNRtzYhj/+aRzcXh8zionnyf1uYCHpizeLVRfgZHhmVwvX9wDisTdE1aOAjYIN5bx+lffjxKMx+uEseBJwtYuxJP8+B995pUXrOT+Lnz43omSTbsfUfHyN+fAb9rjHkYE8SEswp42AM3j+AzfdpqQg/pMUv/O86kf6kxyze7uai8w5jwKF+2xX8f0dCpc0RvUeGCmeTYz0w7KOTbre3MpF20qthoP3pkA/0+m88q07OJ2qRpNbcEviIT3ps6yfJrSP2oAI/G9wV0XCjqR5bBMnq5WZ6PmGcRfdhbP7XGz4h+Jh1OPJpEex/ax/+pmkbmB2a9FDOGUXsiSZ5lZAw1SiQfyf86gPqs9l3sAz+gFra0y0UNPcg3wnclgNSPaPdaMlw5OxBXCdlOQ/AflHdLcNMtsBkR9nbleHjbUPx9WUZK03M0v+Os2efQhHKkE8+1BdciHVsDmkM3n6ESuZvrTl8qkPGP0XINnWrUIeEmx1dejLYpUQHSDGXIV+3sSlV1PlLI0mLr9ylCmdRLrReVM5D6sbLAas0ctDB4oNIkIRntLlDTWpSlIi3xH6RO07/QPEH7iXx8ImKIvFZaUvgQ8R9sNddTe4RutagmqASEoAXa6GFp1XAUuB9a4cnqj1xtByNWTYOQ3auVm3YnvNAPkQc7kYb3kPOMSzPfuguKc5szSthyR8skZ3eudTukVKRllv7KERU3Nwar51qhknuGGQXBt9F+upmaEb8J4lNPErQMt0D8B4IPPtgzQP2vSc9/6txAjpJ0zCHFWoi/ypQjZ0wPEZcn4m6nqqCY66n27vYaiN+XTqoGKyC0qPPLml8JzUbyVj9xkUXlV+3rVXuIaNCqsvzXDQnUS+xwtSy4jDynhrX8w0TQNrdMPa38JfTCxIb6ZbYAIt/2P+NidB7NM08GqoydQo+Ndqf0ZE8jbP4mnOo4O2oVtFQYU+BGCmfpTgZdZkIfJO7lUZuzIMZ2mSstFUfRW8LvnAc2DGjonJP5McJBRDxXpshXSoO8WOVKpX1/EQXXJ3lbp6jQdc6ZEJuLW0TK0ZFQJa6fRDc1bB4Q/52Y96iioadqg5h5onJvo2CJyP3L8ZPUzApxOEuceXRvlvjHL4PRYXeeuOzdl1xeTCbyXKXSk5ecIY7Hs9z87TlBrF9XJU92TxL/B0MZy3k=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAPwwAAAAAAAA=eF4N0ocjFWofAGAiR7JlZCUlsi5Ogzrv+3MiZIZQiEPKzGycEEdmSGQmZGTPkhVXVqGysiOrEq4Siuzve/6Ghzij9tjLKAuCfovT6zzLAj1SOv/km0x4uWHF0s2XBbNi/74yPJ0Jx0+UiLBGZMI0z9rrrRcZoCT2rMCJPhOyJMRhTTYDLmhfcePwzgAX3+NxOvnpUNtFfEH4kw7Kr5QjVyTTYWNZecPMMx3c6LpllgyfAuOAmRX916dQYiG0lH4xDQreln7Z+Z4Gr7cDlhavpALF0/tA9q9UaCdKOo56pYAeW//mzFYKdF9tqTcNewLSZcvGTRwpYJ96ZMI0Ixnqu2wvSh55AlxBbuYf6x9DLevaSzZyMngmiNbUTyTB+IIZkzPlMfxl6gvjIiQB7bxE/7GgJDDnIVg1KCaCs0lxEqUoEcLV4Z9GSgLQ1R4Q/TqUAJursZwscfHwqfuhc8WeBIg1yk6LeR8HH93uNrzD8dDcfHREnxAHuuXr84LUODCqq5NR0YyFXpv3hNSKWHgpV5KhFfEIKkZih7RWHwGxfb3mZm8MsBj/CuBDjwDMNUprDsTAGS2v/7ZDYqDVnQTs7tHARJa03+iLhvAn52gjYQ+hf7NuH5NkNHA+d87IUYmC9wIf2IjrUdCg0rR6YykSOuPcTtiWPIDs/guSUB4BX+3cLsU4RULugdaUbZ9weNZsrVcjHwEk8z0HS3Tvw712D/2+9fuwqlWseE4iDGhJiyc/d4ZBnyQ/94fdoeB31ki0uyAUCEfl54k/g6Hi82hsflQI3A57J+43FgRe1TZV17yDIXGn4lLeQCAkvRzQ3+0aBLOU6uCygXugOiDIHugYCPHxKwpxYwEgPsSR8tnlHpSNRESf/0mDs7TQVG5qAMh+YxOY2k2D7UCx36IRNGBv1jhxX9sPLj9MfLal4w8xrDKbX5N8wdJkKdk85i4I3j15q33FG3ymDDa1pn0gH/q7JOzuwF/baw412t7A0MK98HXiNhzVrzn6uJ4KotutZT9cbgHb4QdXe8i34frmVQtx5pvgev2cp2bfTaCLeMdLeeEFa4vXrUZu3oBbCpWW/s6eQP/B0cThiBfMhZKLjIgeoDBntNP8zQOme1dYc/e4wz878Qyvy93B5QOJFDp6HdpnvxdqirnBF8NH/n2NztD72yHX9Y8L6GxNHi5ucgSGtipZj2knyM2i3L07Zg9XC74UNi45wEl1ynzOvmvAlMPu17bfHkJ+xVnT7OyA7uHSsSnzq9C1RznCtMMW+NqM/W0qrkBtvCOzq74NVF3ruvVQyhZ0Tfn4GTutwedok3VROQX+KpJMH8hehtT7GYyThVZg8/4DfW+lObDQhdzaL2IJlVrCdhLOFyFqjjB0qeYSGFAjGD9omsJs4EjbDz8zUHdTGyXoXADK/pY3+11MIHsvdXiflxHU+siUCPsbQ7539bJ8/XmQDU3bUaw0BMnTT1XETPRhd78PaxzHeQjsoNjNuehAU5y6wSa3Hnyze5GPG7RAyc72zmV1bbh2OrO0UEcDwm/a/tNTqgmKSioi3XvVIaT5mNqC4Vm4ubb23+UtMjyWdKqxlFSDIMUKBxERVUhvcHvaJ0uGc+xn6se7SMBP/bHLuB6DXJ3vcFaFCjQ0jE0+vHUaOGvGll59OwFpwl22Hr7KkPLMsjDB/BgMyHbynn13HCbaIndm2JVAuicvKNGcCOTHQmEaG/+AnCbN64SUIuDs4rLd6rIwoPVj3s5SHljGFg/RL0iBp0Rw++suachrFnCuXpaAoOvGriUZkvAkMQiUtA+BeIVd8Wz7YRim3ni6PicG3EssA2Wq4lAysM2nmiYCO4TugaitAxDj+pGDMrEfdgkIin5dFwIexLd+NZoPIquXb35zEQCubOFDBlk8YJ8t9oFZixfWG7MVNti5gOlcu3lRADdwS4cWnIljA4OihJOsnJwwWyrAH560B9iX0tJc+/bCzIXa3SZCTJD1PuwPgZMZUqOt2uPZGUBok1bE3MII1gxb0jFX6YD8LI/+zxQ9lO9VIkcd3cTUU2djiY3b2D/Heazq0F/848JI8tyVdXwmxeQ9Q+5vbKAlY0BOXsHPX2wXtWYuYrPM9AQvo2Vc96q+nsz5E0c1iz1P8f2FLVaIIsmxs7gzsdVWhHce6xKTWuyqv2HdO7lfzMa/44rK56dZHadwrRK3TTD5K1Yp1CWsHBnHKd5Tb/olJ/FH9wdWE/qfcIqIimwS/Wecl8cvoi43gPdu+gzt9h7C6ZN6+3jyP+Jd0q3lc6l9+Az7/OLbi1043z1XLMmkBx9vl4iR13qHXbLxzCuBDjwwEM3Kv/MGl5pJuF6ltOGFIK2JVEoTrmM9LD9g24IreTWy/HLr8S7Vhx+1mRrxpaVPfTKBNZhY+0R+7nIdNv6u772tWIGZrV73kRKrcF/T3NRo7HOcXObKFhxfjhmucLH4Chbjk6etfAtPleFW6VBvcbY87MHnF9IxXIC1FeoOuA1mYdHKydcmsjnYqy4lcr9ZOu7TFM8z0szE9dNstI3Pybgs/OJOAG8aDmsdjW9nTcDfV/62TFUm4bEhP752zkfYn3CDsVI9Dsf08q0bPHiAJdpPNzMnRWM1Fr0wzYNh+NKhlJztAxF4kPhWzLUwEPe58UdNHgzBPRnhM630NGxdFaR3hnAPh54+Yn95lzeub2fZNDe6i9Uyb/TeF7iJ/w1m+SbceRtz8T7pEeH1wJdsqXzXdLzw5LJnelWaM/5ySOhKl4obtodf/45rX8P1fIPkBRVHLBVdOJC1YoNh4L578UU7PL8aHqz33RLHVtAd07Wl4MNVnzy1Tpph9nFDU96L5nhsm50il2aEh0tXtvQkTDDXllW9Qbce/iPY/Ft56TzuWCgh2/Rr4hEvEVljUR38fEgmYHq3Gm5tZTzPU3AWvxjvt/psiPGNjHKmV5pkHB2sMbxHTBlLV8WUcoScxps1O+550kSsN23h1z51HJdKLuS7O8jjW/dMhM5TFLGwbtpgNq8URpzNuDhSBl+Qu9skzHoIvyMzu7h3SuCTHZxsm/tEMU+92cQe0kGcO/GCKlrNj59O2tEeE4Wwgoclc0kRN+Z5d0LwuBsvNlfhnKyyZMP+47wv3D5z/v+Jx3QOKwEz+I8T+GgsWOMg5fY5rl3YDvvzH3vHiOd5l+nytTZRO0c/9ew5OqzAX26iI7SCht3p1xq911CmMlF/TXURUVz+CLJ9X0YOtRn2P7/OIeGoTOcLrAuI4Y7hXbOfX9Goe4/ikvwMsrIZHbRVn0AnTPSeGndNoViLIckZGEaV/IZ1WPkzIgyee5YV04sWPVhWZ/IHUON/HQRH7U5kU7MWPPegB0msE2d1HFtRhhTnBJPUe2QT6nR5iKsJtdEH++2stSCXBJ2ggyO1yGfCyPiSfAPyl1otOOVRgeo6qJZ8P6tRqHiZRLVPGWqcxqy9cuUooKrIYZdBPpo7jqUMqcXoo8qGoqN9FgomWD0ITclBldM2KauVqWjM0G0zyDgDsXTfP79anYBkbkXRMoKSkZlg6GsH8xj0vKBXVVc9DjXjgoIEajhC2ZwE4q8opGzly71zNAgRWNcaQuNDUZjeloJSiR/isTDZDPgdgByKfx19YXAbWb9fdVrT80GV60/n0so8UACqzpSru4Gc55NJ0d1OqL5INWXZyw3tpT85ekbXDtnbNMnY9tqjCZupNdHnVmhEv/FsIpMtCpx9krYla4Z45ntaZpAF+sTqGPbE2xAdsoM9+g8voEHG4QhVE200aj959+e2PrLdyK9c6FJD015eDiKmmuimqfWHkbcI2c6FG3hGklFTNWtU3KUTqF0pcfKG5Snk8UYk37NRAVn8EBkve0tEYk7qNCaBo4jslNohmiWHiK8Kp7tbxJH12b/m9+SPoBzzw8KSe4VRIV9uDF+8GCqBEJFTP/ahYMnCOyXNAkiaP4emosSBzhAYlG9TuZFZ+rTFpgoBrWvTiNTgvajp2SJVSIMeLTLcH2L3YUT+DcWKbQVrpPfqXrmCXtukgvmM/xLZlklC0sGRe1JXSGq+g8R5jXlSo4L3OLntF+mn0MR6CP030gPVUSXq7AyJ/rXfepTVOGmpkyUoLmyK9EWP12Wsc5D0g28inqNnhLTZcOoVmv1IWvowemLbuZ8U8Il2irO1m2SX9EmksKCH9D8qWso4AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMAUAAAAAAAA=eF4l1Xs0lVkUAHA1om4hPZRqSlJdZspz6iqzqyF5hfQwipm8yjCshGKHxlCainXTNRUhMt4TyWusIa63vDJSE5V0e9xWcZNxywzNPp+/fmud79vnfGefvc9nWrbNL+8ewvoTVUkj9xESTGznu3UjnNf36ZzTiTCvP7HqjzsIsi92T3g2I6jOulY4uwGh2dRNXlSLsGej9OPuaoRBgcnAaCWCuPPmvYvlCHfiK3mGJQiSJmlJWxHCY+lWtcO/I5iEth9QyENIX1YhuZyFIFzcPWFwHcGuTKrYkobQuNLdy/0qrescdnH8MsJbC/6SxESEnZ9FCQ0TEOJjU9O74hE2b65RCTqHoNEiztc8g9Dvs9ivIQbByfG3vcejEFLfZl8wiKT3tVU8RxDhjUSwrvo4gpvcJigxGCEnIe9hWCBCi5Grrn8AwkLbg1aBfghWYf7bzvggxIj4W0q8EZ4XLjsn90AQ+Q6d23MQ4fqnW+J2N4QF6sFN3gcQpA4HLFa4IIRbJYz8tw+Bf+zfhGl7EV5uCpDq70Ywe9paenYXQmGZdcECR4QXLoKALnsE+9beqJqd9D4Y2Ly0Q0hZZzNpSfbVmaQ/tUWwqXD4WEHqKYWf6SD7xzfGrKLnfN3Sjgqy8r1QFk/x1TpJ87JovtMe0eMTDhTXz1P6ldZz+q9M15/W59vPGI6i7xk5kh/S7YxQr28S7LofYWXT6ObPaR98H5UqddpX0Z3w8xs8ESaV372OPUR1kGjcPs0XwUs7/3maP51X774bbpQvYdCa4A0hCD9Jcj1WhyF8e2m9cHUE5TNkE8+I8m6gPH1w+yn63h0FAtdfKN4UbY/EIYyOa5yMuIAwfNLL9ySdp4K/50DgFQTfFRofHVMon046mprpCEZ3/T80ZiIoCo2znXMoT3aSC835VD8vrkQvKqRziNHK/qaYxdWdtipF4JnW8vgVFF+UcWyA6u/qLl/vwCqEieWD9Q9vI3xKntm1TIwgz+ubKahHqPh0yXBdI9Wxjmj7RBPlb9XrwNwWhJ7qGarGVOeDS81FyW0I0ZnlSZJ2hJpu8zY16oMIUBpc3oWgG74tZf5dhCsl4tphckz74dxS6pelr15ZeP+F0O0SpTK9B6Etas2cOHKkKumuMvVX7pPqviBSa9rYxW7SI0DRfnUv9VmZ6w5/0vr+s6x8MvKGKPwpmSW6VqdG/aijVHlwI/lBNqjtQh5tkTSEkD/XNIzEkT31Q1szyIAS1423yOqE/p21ZOZs86E2UskmI6SXFPaEfPWY1CuuDZaQqo90AqVkW9+D79+SA4L0ABnJs86tZ/eAK98hepQMtelr/IccMtLLHiMtxVsFcrJYrecs0/JDTQFzUuFYLvNNugM3fkj0eh9T55nvQuaXneWtLH6/aTEy5zi785lmTpq9bP7BseRTzK8PmwiYkwPtQ2z9BzLlPKbyIgtfZubRUn1mquzw+HtSvdi2lfndI0EaM05VHspsDt3izMyNEJsyWyd0tZiRDUt5TKXnZnK2z3o145fMDK2cv5leR206mKGRHVwenikM/8mclASUMYvUF91kinLKC5iGsWtzmZuszbO4ecrfXGeK1/IymApVp68x9YIc05jrFV1SmT6zRSlcnkXyq8zY4ROcwrlLOM/qtSczteqEnAOH3DmN7cw47X9cwanwZCbnkKucu7+PJ0s5I2c94RTOus/57kEX54LlbZwaQc2cWXYNnJbBdVPjN2o5LcJrOP3ib3PKZNWc03+YMq9n6n+hlzLl//QiOQY=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAQQYAAAAAAAA=eF4FwQ080/kfAPCopA6V3YqSxpW/h1fN7SKn+30/rFoUf+Ry8nTzmCGthSMUQigjNIX6ezh1hTzchM2zYbGY2TxtiJLqrxx2dIz///0+5pUeeqFmEoQjjirq8VRsVpIxmHpmEiL87LAP4xPgzY0LuRw+AcJmbg1eYwKuC8tnZE/Hoc9WatdMHgeLjfC77AkZPD8rT2+IlsGRmbGALm0Z+CjmscF6KRgoLInDrlIoOHaayP9nDBwyjL/k5Y9BSMMRLhmNwQ61DFr11CiEReUcH04ahXPBrfXFxqPwuRrxNglH4KQuO1AWPgIF9zLf6+qMACdue01l+zD4OE7FhtGGgaC67OC0axgUXsxCw7ohcJzWTJJ6DsFfVP572y1D0FPe1Xn+uQR+yjmaInaQQGIC5UKFXAyFuIFo7gMxdE3nTo+fEANJ0BgvHx+EsG36b9/cGASy86unybqDQFNIdgoaRZAC9xPyLopg9m4jblI+AGu0FeU7zAHgsPtJOQYDYKm6nv13oxBwnS4JlU5CKEtI1ct81Q+Err5brLk+OFm64MJS64Pj9/hbW41ew+K/VA85nhJA2+avBhkevaCv4f5ZyOiBwu84e8Nuv4J3dNMfpvL4YLT+DSe1ohu2ZPp+ed/SBSoLXdmRok4IjmtO75jhAfojmea42gEJR3mjz3Z1wHWKsYm7UTtouJs2fDnVBv8259LmfFshZpQbUqXeAuads1neHk1gv9edJmNzQcTTuKukxYHfBQUb/0muB9JO/UvXlOpgv7zloX5qLQRIh39DumyYbvvxkHVbDYj3vbuTzqgGRijJ+gqpCpI7Z8+ZKb+A7LMHWtyaygA1OOl6sZ7B8sIO5qH0p3CnXxIUXFQK/IUdqz2iEuBYD/g1EIoBvG/OpacVQjM9NEP14GNYTrQ1jfPMh4KNs4OFfQ8gZvf5iwF0FrTTVVC1VQ5M468S7bEs2I2T/rLimwmB3cIsvl86MAwtFWl2afCs0I5XcP02tC4XtF/9lAh4Avd9Vm4CPPYtPlcaGwfLpAnmG9NYeJLlvMrrjoIKlqHcpD4CKDiR5MnqNQhMez1vmHIV7m7398azQ4Fz61LzHnEQmDKI2iV+l6C9vKpX7OYHDOY7zcxybyiKtddRFHqB3bGsP9Vi3ODXUcvdGWMuoDv/MeLAC2e4Uuuv9+ijI1SxefEuyvZw1OKwUFNsA5kTxNs4s9OgSv+Du4wjAzl4MdutHYHQgnaz7IAlKK3M6BjomcOGmd/btZck2DT4+ENVLhE09DRzfnhkDB5LP9pEUw3A0yZxzqJbH9QfpKxLww6CLCmYddBuH1D/ZKz4LeDhl59yQ36jaIJBRWvPVR8NcO1uY1LMt4OG9Rb9iqkt4F9rOup/Ugno/kuwEqtAl2qj9pyOXEGBbAul83ZLyPK+fPdsxTxS3u5hUyv/iDTSR2UlljMoJaQHb3RhCv1s70mYs5IhnweR2LxiCNW7+0YvlYkQdb/1WumZPmTRa9bflcBHDFHZPLevA60bHcpp+7sFJQusY3lNDcgiUdTNr2EjLXy2FedRFXp9k9VBL36OUgy58R8cShFvsk29WKUIyX/PoMkN89HYk5+7PxfeR8ZqBJ4L6R5SK1RMJtnfQVn3qUmLJUkof1yhY0GIR5SIzc1pu6LRGLnC2MstHHFcj6+fENGR1pvI/MsRQQgvSyRX8/2QI1sv6aUdFd14PSEg3r6ISupuaekuO6OC/tpt/5g4IC3BKQbP3gYNHtzmsPpfMgqyxpEkwRjKaQ6nUIbNkWyvdHZv7fco5lNpb0OQCRKccaLuJx1Ge1qeaOA9CYi1WcahnNBG8aSNSu3LOJS3/7CZz6Q6Eq82Bq7NqyB/eW5TI0sJDT2u2xnw1yr20pbKd8iTY19/PaC3FDmPCYLjcBKlD9jL1ocma7bT2Aurh0yGWIoZDA+nFh+WYBPP7YRX1ISYTl1Mk8KZj41seNALgtqxfa51VtqjXCy0nWJA21aLbYpdLKbVV2LBSkWsrTNPMXL+d0Tn1SLMixB1Q2drPuZj/dVk8UwOZvC/V95EGhNzqFTWL+9Kxnz8ra5h38RjdIdsJ0VcFCZ/K4hm6lzDdMpm9UniEOxTz7eCk0cCMNfuXuf4dW/s/9sNDk4=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAQQYAAAAAAAA=eF4FwQ080/kfAPCopA6V3YqSxpW/h1fN7SKn+30/rFoUf+Ry8nTzmCGthSMUQigjNIX6ezh1hTzchM2zYbGY2TxtiJLqrxx2dIz///0+5pUeeqFmEoQjjirq8VRsVpIxmHpmEiL87LAP4xPgzY0LuRw+AcJmbg1eYwKuC8tnZE/Hoc9WatdMHgeLjfC77AkZPD8rT2+IlsGRmbGALm0Z+CjmscF6KRgoLInDrlIoOHaayP9nDBwyjL/k5Y9BSMMRLhmNwQ61DFr11CiEReUcH04ahXPBrfXFxqPwuRrxNglH4KQuO1AWPgIF9zLf6+qMACdue01l+zD4OE7FhtGGgaC67OC0axgUXsxCw7ohcJzWTJJ6DsFfVP572y1D0FPe1Xn+uQR+yjmaInaQQGIC5UKFXAyFuIFo7gMxdE3nTo+fEANJ0BgvHx+EsG36b9/cGASy86unybqDQFNIdgoaRZAC9xPyLopg9m4jblI+AGu0FeU7zAHgsPtJOQYDYKm6nv13oxBwnS4JlU5CKEtI1ct81Q+Err5brLk+OFm64MJS64Pj9/hbW41ew+K/VA85nhJA2+avBhkevaCv4f5ZyOiBwu84e8Nuv4J3dNMfpvL4YLT+DSe1ohu2ZPp+ed/SBSoLXdmRok4IjmtO75jhAfojmea42gEJR3mjz3Z1wHWKsYm7UTtouJs2fDnVBv8259LmfFshZpQbUqXeAuads1neHk1gv9edJmNzQcTTuKukxYHfBQUb/0muB9JO/UvXlOpgv7zloX5qLQRIh39DumyYbvvxkHVbDYj3vbuTzqgGRijJ+gqpCpI7Z8+ZKb+A7LMHWtyaygA1OOl6sZ7B8sIO5qH0p3CnXxIUXFQK/IUdqz2iEuBYD/g1EIoBvG/OpacVQjM9NEP14GNYTrQ1jfPMh4KNs4OFfQ8gZvf5iwF0FrTTVVC1VQ5M468S7bEs2I2T/rLimwmB3cIsvl86MAwtFWl2afCs0I5XcP02tC4XtF/9lAh4Avd9Vm4CPPYtPlcaGwfLpAnmG9NYeJLlvMrrjoIKlqHcpD4CKDiR5MnqNQhMez1vmHIV7m7398azQ4Fz61LzHnEQmDKI2iV+l6C9vKpX7OYHDOY7zcxybyiKtddRFHqB3bGsP9Vi3ODXUcvdGWMuoDv/MeLAC2e4Uuuv9+ijI1SxefEuyvZw1OKwUFNsA5kTxNs4s9OgSv+Du4wjAzl4MdutHYHQgnaz7IAlKK3M6BjomcOGmd/btZck2DT4+ENVLhE09DRzfnhkDB5LP9pEUw3A0yZxzqJbH9QfpKxLww6CLCmYddBuH1D/ZKz4LeDhl59yQ36jaIJBRWvPVR8NcO1uY1LMt4OG9Rb9iqkt4F9rOup/Ugno/kuwEqtAl2qj9pyOXEGBbAul83ZLyPK+fPdsxTxS3u5hUyv/iDTSR2UlljMoJaQHb3RhCv1s70mYs5IhnweR2LxiCNW7+0YvlYkQdb/1WumZPmTRa9bflcBHDFHZPLevA60bHcpp+7sFJQusY3lNDcgiUdTNr2EjLXy2FedRFXp9k9VBL36OUgy58R8cShFvsk29WKUIyX/PoMkN89HYk5+7PxfeR8ZqBJ4L6R5SK1RMJtnfQVn3qUmLJUkof1yhY0GIR5SIzc1pu6LRGLnC2MstHHFcj6+fENGR1pvI/MsRQQgvSyRX8/2QI1sv6aUdFd14PSEg3r6ISupuaekuO6OC/tpt/5g4IC3BKQbP3gYNHtzmsPpfMgqyxpEkwRjKaQ6nUIbNkWyvdHZv7fco5lNpb0OQCRKccaLuJx1Ge1qeaOA9CYi1WcahnNBG8aSNSu3LOJS3/7CZz6Q6Eq82Bq7NqyB/eW5TI0sJDT2u2xnw1yr20pbKd8iTY19/PaC3FDmPCYLjcBKlD9jL1ocma7bT2Aurh0yGWIoZDA+nFh+WYBPP7YRX1ISYTl1Mk8KZj41seNALgtqxfa51VtqjXCy0nWJA21aLbYpdLKbVV2LBSkWsrTNPMXL+d0Tn1SLMixB1Q2drPuZj/dVk8UwOZvC/V95EGhNzqFTWL+9Kxnz8ra5h38RjdIdsJ0VcFCZ/K4hm6lzDdMpm9UniEOxTz7eCk0cCMNfuXuf4dW/s/9sNDk4=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAARwIAAAAAAAA=eF5V1N9Lk3EUx3E1ozWWzrX88aTTtHQ+ptOcpjeRICHeBrJ2oWXsogj/gEgQHBIJ4q8bRwSLsYt1kSwoiS5CJCRMI7soEwlButBEzX7NuYI+by+6enGe89055/vs+X4Nx8easkfbF/bOya4CuVoqe0rk3VMyVCE7q2S5R2ZWSxPjJnnWz56WqWLpcEkPcSv1X7Fuyi17ibfKZDf1EpXyC/2c9BtgrlAt/etkkv3ZeF7IOpN6diymjoO+oZPyIXM+IG7Nk4YhY7my3ylvH5fhHDwmg8Ru3rOL2H+Y36ORISd/fPin9acM/JEvseOX/IrB3zK5T546CwnF2+RvEjclZRzbyK9gc0qOo22PPriPdWnqM4gm/eeZ8xLxNPll9jlkkdFDcpS5guw7xlw++qx/k1d2ZBbxAPkUtlDnObanq34E03gvftyi3w1+H6Xvu+/yzq68z3s2mDfCfqbZ32O00HeM9XHiTf7HNuoGeR6mbyXzbRyV1iz5xiqHj8hGm/yEt7LlM77Lz3ynVfny/QmZwbm7x/l+SrzGd7xLXMJ5s6OL778a/dSfK5Q+6kWIL5Ofou8M+7Dgjp06nJda1oW4j+Y4P17yfezjNXpZX8C8bvpXcK6GyV9lfYD4Be/Hw3yTRbL/jFwtZx/cL/ncLwnyNvKL5KMYOFjH/TKC17nHGnCF+7KU9ZGzsof7abaBPE54mZd6Tu6tWI3sqJfz/H6hUS6dlz7iJ01ymedvm6V50I869eTD9L3G827u0SXv/3Ne5Plf38MDTg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7gUAAAAAAAA=eF4Nk4kj0Ocfx3OVHKuUEBMVK8eIkFTeikSKSkoiCxUlFaGaaEnpwjKJnw5jolFSroaooRxFjMTkyBGVxPN5ouz3ff6B5/V6v9+fSZOE58NRoCz2rCuZISUg5EjBHo41/WPvDntx9LoGu+t4cETWjza+defQsvZfd92No+rh0KNtOzj26R8wltvOIZM6cLtqK0emkrf66S0cGy71xK3czDEk6inDHThigjpOZm/gMBx0Ix87jkb31v0LbDkCG50726w5FGybtl6x4sgvdqxxWM2xzbB+lZQFB0+zz3+8kuOqSo1uyHIO0xjb342XcbySqFQcMuEIPmZ1Kd2IQ/FjmZiHoeDhgaMqizm2Nxd9aPyR46udmWeUDse10vxXa7U4YGxsL7qQoysj58lDDY6IuYuXHZkveMVm3flRnaNGUkejT5XjYEh6wk0VDvlhzekuczgKd6ecnqXI4fZafbxGnkPc4frBMzM50p+o9GAGh71pgsvYdxyjmQp1OTIcifN+W+MrxWFxRe4vTUmOPunoxW8kOKLCZNOuinEYjZ5T2SzC0eIt+avMf4Rf/j09pfwrQWuzWEjoGKG+Imx4KSccXz6xZ3iUoJF9vO32Z0KtxpdNXp8IgQmBlaofCXOnjaxoHiQ8PXUoJ+Yd4TD/sHBdH0HFd/818R7Ck47+mcVdBF+nPZFBHYTZVd0T+u2EEvNdAe9aCXvvt/f/3kKYsch1p2szoTCppWH2PwRPuW22L14SZM80lkTWER6MbzJa/ZzgdvBFxtdqwpS369VynxHuOlf95ldJcK5dK72onCCyujys8zEhI281SywlbNYp3belhDB+Y2XHd0WEFPm/nCoLCXbnTKtP5hNGJnItzHIJif5L8kZyCJZ92TpZ2YT3O/SS99whXKn7U0E9k2C+RutiSwahvzBNNPYW4bKeRvD6PwgrU5LfT04h9CqqeTy6SYi+mNR89DrBVFR5g2ESoTMw/vFgAuH8gLzpH/EEQ/fLWTvjCK0N0xcoxRLCbS5drY8h6BZLT7sQRWgyiAy3ukgITZs8NnGO8INKuF/+WUJNtMjbQxFCjhKh27XDCVLHvj7vPin4fDhqdS1U4POgwq0hhJamAP0ZxwlH7IZTnwULuZb6KYcHEjKN3kevCCCszfCZTIcI3ap9x+/6EcIue33y9iUoS3btnr+PkPuze2vrXoLDp7aNcbsFXy+XCntPYR8tzcun7hJ6tXe6V7ZT6OPxyx9+diVsWLoxychF8P+zVu7jNoFb3e7sLSeh57in335yFP6VsvZX3kSwCn3S12BPaPts4XZpPcF/b8lL63WCR9tyGxEbws2NhcWFawhLy02WBFgKO1v2IF13lbCDOwZze80JY/Pvxt5YQYiJ15XabibkIns7dKapsKOTC0erjQlbWKpPxBLCoM/8N+YGhFPtN7Z80SPMcVStuqdLyKlMxH5tofcVSrkaiwhvs+O02zUJIZqzbsYvIMgnxszeNE/gnTbtgrSawBt+QeTv7wVePjXohLKQp++ZQRMlgkyn+K5Ps4XcnX5pyphFWF71n52nnHAv5iFl308neN8fM2mSFXa4KDgzWppwNWl0nu1Ugr6cf7zYFEJlxJBskThh57jvqUBRAvMb4HqTCBe69x7o/8ag7tzTlTzOkFfj4bzjC4Pdqo5aeWLoyHWzfD7CEKTdWnB2mEHmhrPeqiGG5FlNKePvGUwiHec8GGCo/lYXdaCfwf2wvcTCXobRnupjHd0M511shxI6GdReVHg5vmG4b2n1WvZfBpuCMoeK1wxtuigPe8VwKLnIbFkTg7iCWfbnBob48/mamfUMOpOM/7f7BUNpQM4MtVoGp379M6+qGN65Zn399SnDiXrtw3YVDHLW6b0SfzOkPtR0LSljMNVPqQ9+JHClqK81KBa4lK4XDTxk+HxRxTC1gCFCNOGWWx7DnCAFVcUHDJkDsZfr7jFYuMtNPX+XobEh6oRlFoO3jezIt9sME0XnvPPSGWIMJNsPpjFopJ121Epl+D+tW0qKAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAPgYAAAAAAAA=eF4FwQ08E3gfAHCWPCsdSY8kIXoPC6d52f//E0rkPmFoXhK1qA4tNBlXNJ8kkbcYIk0xuk7CzkXkcG0aeZvXxaw7DskeL1FUz/er2vz4E6FwENJExMXGkQHgOZ4pDzUYAPpYteuVC/2gevCD6lJVH3yIeeS6otgH/BeCpTiqGCqrpK43eL1w0UhuvKTQC8wfP82J/Xpg9sAJo8313RA2mD1VotsNdjUaSuyELhgwbttdMNMJFkGKelPenfCD1fbylxlvIYcWWSiN6oBbK+Wje862Q8uF56XXPERAd/Kb7Dz+BkRdcEnFqQ2oB0m8bS5CiJelaMk9BCCgpn6KOvsajD7s5hZH/QXEf7l29PRWmEu/rPHrsxYo0HdwDBM3Q6w4T+nB9z+hivYl1Jz0J5Q2ZobtoDcBl2KvEFD4Cn7bGx3aXtcI3amWs75HGmCO4pJ1arAemva4uLRG1cHI3xWKifovwEV+3zSnpxayF17HTKX9DjetvOqu0PjwbceCs/H+Gtgoa9m/VrkaFoQu1vLp52B03JAqHa4Ee8+I9lbxM4gX2VnqVlVAWrQncut4CtmTU7qfV59AUf9849+4HLZyhJ/eZfLgUPD8Md5KCSycaUtRZD4G5+XW/iLCI1DjfbEgP+RCg+PDiTC3h1Ddj3+f3lQEonPksey2AsgYFw44p+VDhsDUTZOZC0Fem+XqMTlQO8ZPPF54D7YMWU28HsmESI+KK2ybDNhXumATWZUGR49ZszWSUwHHvAv0H0uG2sSyU5zgJEhI0NZO3ZYIDrRS9rqVBDhce8Kgbw0btEXiXc3m8eAXKilzVr8OXg1nzPgKsRBLiZXmmEYDuzrq8MADJkSZ8DRjHSNhr5ATWbozHOivwllF5gyQiEygeCwEvhBDTXIqL4BHUIIwuTMIaDfIao6WdNgX7XFfIgsEwn/0CD/fOw13nqbIdcS+kMawSP/IooHOd6cDxb94wv8ukwILe92BSg+Qj0a5Qj5TdvprowvYmtCHjmxwAu3wb0kKgiNAWz9pXDhhBxN/rPdLDrCF7Pz1Ugd3CswP1aVYX7aE+sk+2Q+qFnCIN7/WV9sM3DJRhOsmEnCdkfO9gv1QpJi7ktO0G24p5YdwfzaEvkiq5o5kfTg5JeYoG+iA7S7sypRuAVGI3rSD9WaQTw6My7TVwezGeFCYdAO84FSvq/cgwvl3qHCQqQSrCw7xTBNFqI7ot28RreKQPCX3o1uXsTOF1lmlv4AlNqKK4r/kuLftfZzb1DQe7j7I9iJN4Pr67ZwFy/d4KNfS6VnXKJbMakwbOg/havYzf0KFGM/d0jErHOrCOtr+K9Pe7TigdMOW7v8K8FTtVq5KXTMOJtxrHzF4hVvHY/JOeb/A9X2rzntYNfjWJPm6IasSa5mdS6k59yv+N6YiyIdYihe7iOfLSrhYRtwoNt1biMPU4oMCT3KwfnAcv6ggExuTdxCz0+7i5X/UKEa+SdiRz7tm4pWAFaxY64hOcbh3MMsnbz0LS2jTbovCSNyr1Mn6ms7ADGm6JyHgIuZUjv/DWKTj26czevY/DMA/Zt0NYnn74PsS5sz2AQ98aV5/aY7pimly09R3y07425D/tZBIB9x/g/d0jaYtZlG6Cu7aW2FK7Gpc3Ftz3LDoe9lEmYQF1PZQot1evKoapSWQG2CdIyt3TJK2Y64tlWT+XRPbH+WSI8bUMeHrHymeLSr4s3scvzJxLV771uvi4BMF/JvrztPhgs9o48rtos2T84j8kUfj13xEGeOqlOGSCdRx/TpDy1SG/H22mWbPDaNolRDyTYYY+RBmwhdDOpHyT+9J3QZCdGB5psHOohnpmY835bq9RNoBgQ0zND7a3SNU1V1TiX46Zvc8YqQMsXJHO3seFaNrNlS92TcF6IETsUI9IxvtVCnfdFUjHbHrPXtvdyQhM+lw1j4WG/nebr1KP/ULuioh+6voMJHRQaHqnSIGGjB8/JHz5TwKW1KiPXl5BlFPluXwNf2QJP/V4avKnkhJI3OohHECeZDlHbMsR/Syz3aNYcJh5MV4I7PZZo1uPs27OXDJHO05VNkUPGOE6Bv8vzUn7UKKWcxIPy19FOKiazHurYWkoaNqLA0NROL4Sc+6b0T/By5a82c=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXQIAAAAAAAA=eF5VlEtIlGEUhg2tlBlGs7zMRae8Nd5NGzNTi0AndCFDZUFBEOQliXChgduSgiBCZSRyk1gRuhkXDkR5JUEXYbSoERJFaCFqTWVWjhfwfVy0ejjn/8457/n+7xxLtD8nuS9Q1ntYtKeKb63i+aPiPJzJEZtyRU+GOIT9kvheh7hMXpNdjEsQK46IZ2El59PSxY+cN+H3pYkl2WI7OjzUazkmvkHH43yxrkD0Zolt5J9OEd3Yy/RRhL6gWXSRf/UAdW1iT5w4ECNeOCg+22UkNIg3OL9kEav34w/lHHZ78PMO338XXRvi3T3owvb+ENO3xNmfoiVc5zrIY/grfvonBrGbN8UV/D1ropW4SyHcE/Y54kapf5I4xz7/f3nq0OMkvgZ/Lv09CBM7jaKP77fgE/p6Td7f32TPoe/DkliJnjH0nCLeBbPWxXrqzmMncD8e+qoKiPf3yj/BPc5Sz8x3O/3EoKuAfG78RuxQdCX/Ec+g7yl9rZI3Gn8eepPQ5eO9XI0Sy9C1EMH9mcRszvXx3saZ1014+ZDo5t15ee/XmUcD73w4XnTwzuOZx3BsJ3OQiv2IOTAwly925wGG8b4bOWfjP/9iHlbwv4sVu9HfhT8EfwN7yZMobmHX088U/bSxJyb5XkM/N+E1/Gb6Lacfa5K4SB8z5LvNXhnLFPO5r6/YI+zBh9in2TeD7JtG4q+QPxK7n/3URb2BPDHjuFh7QvxCnouFYgR7KZH95STPHaeYQp7WUrGY+OZiMUCeiSLRj78V3VN876b+c/LbyP+KfWssEe8Rt06dbSIj/Xw=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAANAwAAAAAAAA=eF4NlGcjFmwYQI3KiGSlohASkhEJ3fdlZ2ZvkZSszJARygopZBRlhJDsvUf23qOMECHyhKyS9/0H58M5Z8E+atnFchz4rc2Jo4bHYTJIe3o1YwympnIpoxjHocQ8zTd0ZRQk77uOaRiMgW6imHKEyCjoV5cZGyWOgruP4QCD3wjwcxdojH8fAWMk8YyldxiUbiWe/iwyAvLp62Fp7MNguGBlfTNwGNQ1Di6+dx+C9yjf03R8CPpJWstP9g/CGTibNSw4BAahQzLr/IOQzsubVRE2CDMychcuPB+AvWaXK0TLA/A3PMos71c/3Ksq9UpUGQDCsmKht0E/RDhvG4fk98OW4OHegMY++JiQGlBysh+yljyDqgX6wN8rpoYpoA8U/h5/JSTVC67GQm1K873wMKHN6Qx3D0w30o2mtvWAU3pFGDdDN7BOesGFwm6g/8EnIUnWBSpah9kbU7rgEN/5GjmiTqBQvs5+M64TTKRlaIQO2kFmf/TzfFQHhF9MnVklbQeyj1c9laLbASYWt6yPtYGocJS8W0Ib7MzUdUefbQWW4294jTNb4a+nIoWZSAt8O8uhsFjZAmfFbDkq1ZthNWXM7thgMzwleR78yrEJPISufKgjNMFC/LXe1dhPUDlO0/GTvgkmfeOVcxsbYeSGVPuLa5+AIV3MtXejAa5eB6c4m0ZoOEnrfp23AQQXXRz/vG2AyNk9f2rLenhH2RRUOFIPXY5vZ4Rv1MGJT3VHihnqgfaklW/r5xoQmlhxJuTVwnTutF2nUzWcdlbvXZOqAfyQZVaIvgr01lvbDSaq4OVTQv/P2gogxDnKsT6phK+fVUm2H5RD52iCi5hwBfC+42EH0TK4ktyyGLNSBsvVqt+qDkqAo+NhmkBBKViRK/ubDxWDzjVbzl3fEihkWpjnKCqCVSuWxwsGxWBImEn6nVAIISvT88uSReDNH7/X+rwA7GgDq3cuFMIA4ei/0LB8qHqln0PEVgAaD26TGHLmQTMDf+svtnw4506bIiifA0I2Z3ad9HOBiCCT6eCRDfWaTsVP/D6CtH2d/Vx9FmTr6gosVH+A61dJzHWYM+EWx17WPaosiDTXVwp4+h4SPSXvdtlnwCRHwM4l8nRYd6eGobl0+JG5lU4Rnwr+RuOcV23TYGSztPwTegfrlbndHw6lghIhyfXwRjKEV152GctLAUPff0Mzzknw93ztG0u7ZKgbk66SZX8LbTbcYssuiXDRiOuYCSEejmyt9YsLvoEucYKC8vQr0M6xejpLFQ9LBXM2nKuxsKvqm3xA/grsDsoUfp+MAXs6mvUUjlgQT2nlrDN/Cfdj2Pr7jKNBezfO2bslEmqiXRND86OA6ZXLEptCxP/d+ha2skUCkZPec9G6cJD2oar5pfcCdOoXODM5woBxu/orQ9IzON90MG9Z9hSoAjkYOphCAVucisIPgyAMhU9O1gZDo+ps4o5FAGgLayafjgoE58daiuYPnwBefiao8sIfMlQzzysV+UEbY5YuKn4M8sxfaGi4fGBkLzwxaN8X6D45aexye0Ex756Vy7g3aJZhf27bh7CVk/SMfMcDDAbpp0OWXeHLEl49r+sOtonyTfzvXCDGTTinY+UB7HvdqJV67gRMmuw2x6qcwWPng/h5PQcICGihu1TtCGl5fPIiy7ZQ4+f3nm78PpAyNUTP9VvByILcJZVIGxByPZRbfsQSem/JyZnF34OhDY2N6CcW4Ptm8cnu6h0gLXqk8w7MweKeswhT0G1gsEjlaXI0hdmq0CsUN28B9QQfg1avERykyWotfjYBXS3ZNBSpD2xrkttJdwzhjan27sMcHRjv3ujoVtODZlM65xhmLfg54VKUEa4NrcF7Zj4Z6rDnzUtJzKIJulPSzQ5vVcCqTDMhbFYNvrwm2kw5qgiyE8Say1TKcMciubpjXg7mSHTHrnxQAOndmJfpbDJAycovGZcrC4n7Wj6dFgC85L9NhWikofyB720NNkl4HTJBKxGAwEhCwLXjrhj0UgTKZXuLw0BtnF8TpwjUx5T26G+LwhMSNYHr6kKwdy9Jy2FeGGZuqid6FvCDldL3oJfighDaZ5ZVYMsD2aZ3Qzx6+YB+ICX2VzkX7Nf8HMQd3MA2w/SRLfgcnLnl4sSpwQndZWzSOc9Y//fcPeuH+v8rIDqjGdd7GmJ7djZdH5wBJW0NT/LaE/D55yO+bySngBf8hEOk6cGDJCOJ6DIjJN+Yr1VSOA4Cf0KPeK/RgiwJa0il61FQUw8RPadyDITSxyQ2WcmgegwP+YdQQCO/ZbyPIynEMvcWiTw6DArku1376kQQNerluEZFAvF/l16L6PzBl/SbXuvI/8OmeWcNND9vYf/06T5Jg13sZsAWlE+/gd2P29mX8f/GKhE9En5ta1jJZt+PLOsXvpbjS0dsv4yP2rdLv7NcxVgyF/sQ5rGPx5GtS/aLeElN4hnXpVlMaLpU9kn2G56d9NvYp5/CHbtHNQpav2KebcWuyJExrHZtZaOk5guW8l4b6fEYwvIltE2i30bwvbUFlo7xPuz+g4bN+csAphp/x0KV34kNpGrDOkl78bFwAoNpSQvm4V3vk3drx42nRRpm4hqx3jUqOdGpJkx5AMyhd2vx4y+khjt0DXi1mor4RE85dg8Nmk77VoXnr6jHGokW43lrqN2oLcVmhFsL5Q75WHyL/3t4QCH2Nb2gaFvwAZ849PzZwalcXGdSf746NR3HuS257dhlYtnJ+A/Z/ilYelSOLKM9FZuz9k2y3XiDxyKwLjtxMrbZWKObGY7FEVmV2TNjr/El3eAXOXeiMLnI1MTLkWhc9yPkhV5MOH4QstW23ByBE6OovzbXB2NjjU/FUb9DcXBOGFcBpT8mHevcy04JxCZmh/45eflg3flYcX2dx7jd/ii/iMlD3KjoN0hU4YW/76UeI3N0wYyHVCbnONywzCoe7t6xx7PfatWiM5wwj2BDiWSqFebb2b7fzmKHXZZGpnIjLfCqRo/+ZUNLzBjlT8VOaYbpOuh95GvMsaZtaJlDtAHmDDlSGnjWBJMwKYq7O2hjLS4J3mYpPXyVtk4rLv8GfptIVh4fo4lv7ifpzQsp4jkh+aCROhV87DAx+8pRWbwh7ey1OiGP7y6ovk74hXCTkAKdxGVp7KCy0vzbTwzzLSqr8R6RxDzEZFeY7ISxi89Tr2VhUTzmyrNpMnIRV29FBBIlCGIWBVq7rpDzWIRwXFd+jwfPlEumn4pjx50kZHLuypzYIIFlldmWGYf/q9CWyWDFty/edO3WY8TC+TJDrzNO4jU86PMh5jg+R02WfY2fHjuVhhlp1VLgxg2pRcMOajxlLd8/t0GKy9IbA/yYybBYVPz9o3P/UNUv4WH+BWI88+JjQPv0NiJpA0OWgj/o5fgF85b768h4fL/e4s5vdFuJzS3fegVljMt0T/kR0IEYy1rB9DyiFIuMP2y/hJjWTMRl+78iZooL3j8j5hBJhONXq8FxZNYn29lEO4U8C3fbursH0diJhjSgH0Uft/e4JHV70GZXKtONvH6Uc+tfiuDlVjRylXz1AV0nYm1R0Koqb0DsUX0MnQVN6LKfcgkNZRXySU8W4Xpdh8g+9zoxxRejvCDrM81M5ei+O+FEn1EesiWc+jZkUIhKeM/K+g5lIC61K7etF7MRf4/A9+IT7xCfs2TehnA6etkkWW5+PwHxVQTtY8ZktGnMfS6hKRrR62D9ELNXiIJVxizb+sX/PL2qzM5RKHvJ9bRpZTCCftOh8tkwpHboi3ffwmN0b7M91Z86EHm+/8NSs+eJSidXlajrfdGm0JtGkxsPULBzBX3Vkjt6sy6UOBZsj/QryVIv7jshfZeT96pXLFESaJa6kduiLIYQ/EzIHDlclb7dqXQHOWisZb5vNETz7lSEVhtTtHPHczlMQRvxcOtm3m3RQ4fjTplJ96mihkeqW0HkmijhIsxNPJFHhwcml0ldlNDp5mjVMkop5Lyk8/bFvgzSeUlD07cghr5fZqHMUr+GouNnEp50CCG/uWR7AUZR5G95qOePBy/iuH1EYPiWALpzNy+euoID+ReVe3kZcaPmEB5vwZAzqOBj0SN2O3bUPqvH2+V5Al0veuRLLH4aNai6OS0v0KKo79RZlFIMKL/Kua62lwZJ3G0XW6o+jv4DM8rp5w==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAANQwAAAAAAAA=eF4N1QcjFWwbAOAyCy2riCPJikKZ6XluI8oo2TLLrIxCRkSyskk4VhmVJMqRjOwZDtnjSFFINhmv7fuuP3Ed87hKF8VBAQ/T5ZNcIRS4rE96sGsyAOVeZxnYmgfgREGq8LOMfmisG7rawjQAjq1170Kn+mDRym7sq24/WBilR+9I98GL4KAY2Zd9kBwxbrgc3Atit0QrhGZ64VdW0Ynbgz3Ql2THl4R6wcnSWFtXogeO3CIyBsX2QG39tkJeeDfU/9wZGpvqhnUpMRaHyS6Yn28w/qjaDSdxjEyQehdMvkvQHnzTBa+LpkpnP3RCtEzfrvG+Ligj8T9KZu+EZC4OCwGnTkgTi7vi96QDTgeHS0v0d4BivjtBaLgdmEHe/r5yB/iCdlt8zTcob69aJdm0g5QeiSCZ0wbHpu7vVKl/A5fu6yZzia2gKWbQvyLVBiPyTjL5kWTg8hrcxIKtsEtzwNQ2pAW0LY3cnhLI8H2rS2onpBk2xqU1yo+3gLDQzwWb6CbY7PrGQyY0Q661fXdEyldoK14uzhRsAqmM8QnLvEZ4UOQTck76KxjNxFtT6htgmV8M2as3wo1BerPfv+qhrKNSAVs3wNOeZ9/v09TD7wt5F14G1ENfWDzXQ9E6yOaKJfpm18G9zatsCzdqIX1Bda27qxbW0Nc/5IgamOCsIT+nqgXaP22m1A3VcLj2vk2hTA0IeR7TiKKqBvLmO8EzLtUwMM+l0BJWCXvXt2hmrKrgA4Htx97jFSCpdyHn0FwFFHCepC7+XAapyX/+FvuXg99x0sAP4y8QMWhuN8BbBt+6Q7jtGUrBzTrprw25FBhyubFefTEom8mb6z8uAWWlXKuokCL4CbFzKagYdIKeRR80/Awq38h7xeiKoF3F8EizWCEocPzUoKYUwvZ2CYnE/AkWbln/YSr6BPn6Ve+/7JKAxpDYgF8UAM9Vl8Ke1XwQ137+KyyKBHLpEbQ/5z/CFKFe8ldoPgSVB1fN0H4A7wDnRgvCR0jTfJqSI5YLo+Er9xou5sHvo5o3JxxyQHZTp7TR6T1IdGhPO1Rkg4v3mQHxwneQ70pp3D3xFozHhW3JTNkwK13pZUZ8A1uJfImGnllQr3cP0InX8H6Yaixm9TVIkEbuaJVlgvkWo6/I01dw08JLEd/OAKVqM55e4UyoLtYtzxVIhxh+/VbJn+ngGiL5z2nmBTwppTftvZwGBm5t3pO5KRCkM3vh5Eoq5F1l9J+MTILxTLOTHnXJEBgblRAQRYT053bx86REsH4seKQuLx4In+TpU6sSAEZDb2dPPYec6rw6/+k42Gg+RCN6KRa4KhlW0yWfgxVV8wYujYEnUXf1ppOewYE8razEZ1EgJynGp80ZA46Uo+kPRsOh11c60e1OJBx2LI/otwkFkRs8UxwdYbBUY0rnz/4UrvJItuvYhkAU4et3qaVAODQ12zMiHAzFVrxWn9b9gSnCRjzwWCAcgcrYKsEnQPfis9mumD/8NIkT11j1hZlC17ccTn4wdcfT2GXUG4zG5PUUM3zgSbNmCIn5Ifwn4m44lOMFleaFh4cfuwPlH1dt87IHWKRdM5oTeAAiC1A/7eUGe3vZ6JaoXaBTyp9aWc4V3AMiyHws96F/7lzmoogzEM7a+5RmOIB3nGiB90snGAhzCldyvQN0VLYqQmAPEvreIvJxtmBA8V88cv424Lm7qxo7VlDG0KFR6GoDX5bv3Pd5fwtKr101H96whMYL+Qaqohbg5rVaWFJ7E2I/sNL0OJuAaGv0bY9wMyDzyrx+y20EbZM0j122b0AV0cjWQUAf6NeKg/M6DYBGUlLfOUAHKkcu23Hs6sLnzfKB16LXQUCn5ZiajzYwaxEmCFKawNe3k0oJuQYqs92lKRFX4KWBWV9isjoI7Jk5w6arAjFlF6v8T14G3m05mHukBJuv3p66yXoJiD1+t1h2AVo51Yf22ihCnt3GtnumPKQb5Ldas2II9fis9qBLBo7ojEVeW5GDG/9RynkeS4Jp1P6wMRNp2Pp8jedYsgQwke3ujcueB5FvlOpu0bPwZ7aCKcpXHEyfU1n96RAG9jGtyXUFUSihUzkVyygAp61Ji2cEhYDYVfn3QstJ6AtOv05JOQWBzoY3ktd4INiSMq4YyQtTYwH2MQLHoSXxvMylfm7g36IOMqU+CnL7L9esanPApWhpGStPFjg6jEh9zmywQcW1rON8GBxiPdTpeZlhlo7w4WUJI0xrhczHJh6Eyt/+yea69NAV5PnSsWE/DDVpnnhCpAYJtfgd6ve0cLZDzf+E457/P1C67ClGBSO+VYW/fDfxfSaHgkDPHZzpqTfatLaKPS9Gb0d7r2OdBfkcktASNpMNSRm5vILb5T0UNkbn8ehAalDhl0V8m33pvp/vFHbQ5t846DOLN7Sj83rXxrHgm0aNv15/MVJVjokS/40NJW/kGaqN4YHNmw8cDv/Ej17Y6vA2jWDJkLpGjbYBvFqIrzsUf8dX+P0ejTj04NpJVgYhSh9u7poMrmjpwGGbxALnti7sXk+x2oom4wmOUqrUsW/YlI0xaTOuEV8JoqWM6jfjXll3go5nLT7+a46PsbIeN8UPRSUJV+KXI+5Ku0vVmD5Wr0wtoQQzcrMcMM4pw3Pz+tNyVIVYgd1gjjm0CDN43rX2UszH1qwlo566BVhdxlEz1zwHq+1jO/W6Jg8fMlNVszF+g/fbE9OAkI0ZrA82nVPOwLP8ehm8ga+wSsxwEfFHCu4iZnDah6Th655p/ZoPEvDv8eW+AackXP/jqF/M4VicurioOewVhzuOq+Zw0kZi2dp1ywMeMdjiIWN3icpTzK3jlJjhFIY3iGhRItMfB9yr0vx6NginS1XWlbb44KpBLbblf35Y2llR6+ZXD1zQKaCXyOqNE4zeB55ecsG79RaF2UlueHBLNIlJyAkL/jm/0nzeGXNkktp0VuywA9tbvkcm9rjFcDFDda8VzuoeNrcuscEzk0O5h46b40YTT+8ZmVvY6cwP5VPthlhElW6ESckEC2avkbnbdPAN5P+KKVwfj6t+fyqQdRWz+DCLKezRxtrGMxMUw8u4xIG3mYqsjkVD/eSWbijhbMvCZTKrCm67/oa7s/0iPjgdwHgwRgG3CF6XT42XxgunfWJqtuRwkeOZpTt5EvhWz11JookkjqDmySdkiuCUcNqDrhQxHNpkxST7jB8r6w8PdowI4f1OC/ps7Sdw3CflU5/t+PDFP+Jjs8Kc2PTTktHHCwQcza617q3Pig1V6aiEA45ik4zi77+jD+G0KmqioDIzFigHlgPu+/CC871vVnpMuNuL5aD/HBU+cuJWus0iLX4uaBaSpryNRPRnc2jW9+AtwouVawmryKvnw7/HshvoSSKv4crtRTTEzs21ILeMeDKXF0PbptCqglR2qvA8Cio1zc5KHkP/EbJMrqxPoPTI9Mq6zGHEr7bCf97+N3LUTTh0SXEARW4f5shRHkIKHVkSJrFdaE/W0wrb7F7kmr/aIWXXiv7ZBOiNx3ag4ehmV2pSA2ps4p620G9GTUznYszDq5E7KjI+YVCH4F+cy2PJUlRmGWY75VWBIoXde4dFPyFTBQG6V85FqCCg404aXx5SD+zWLD9MQgysPmJfubKQlNi+PLnpdyiQli7auDYdpY1+KffMfoVuztKc17NIQnq431m+6QVibDHp/XT2OWKWVXmDQhKQhWR/BVqLQCT2kj8kumdo7zmLFSVKEIrXSj978lMoyvXSqL7i5ofGTv8L1bcIQK1McUozdZ5IPO7jozciPmiVZalPLdUFJU5U3Yued0NZVsvWG/P2qNHpjXvzw/vIuFtisH3RGgUdaPlsVnIbyRRlT+0zt0Byq33FS0GW6PbDrWJad0NUM1nymu+LCTII5xpdC9ZGv1JOl5t+0UMPye+uhQqpo/c91SPJy9fQhu7Ze9aPldF/cusp8eyX0ffcPeKP9iFE1U6IsT+viDQOHR3LJEqhBsdnUt1Jcmh1a+ZpBYM46n/579Qi/XnU2RXgv9MhiNY6E7I1L4miGR19Vr1cXsRR2DOis3EKTbQct51U5ERNZVuM/Xw8KNuC+IMjhQUF+JqjL6ePogwPLXJC7QG06HZGPMfyCJJm/14f+Yoejegjt51GBsTpmt/ds0aDfIzOeBiw0aH/AYSA9Gw=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAAAsAAAAAAAA=eF4VVXk8lVsUNdQVKiLiIUPdQ0RKpRCngegppUKKkKIkQpIpuRIiMmcqVHpRRK8odYkM1xhX0vCiDEkpynsZ4q371/rtffaw9trnfJ/9bjWh04WE3hb+cPspm9CJ/uV3P/oSar/wr9HKc4TG/3Gqw/gqoUI/O1fapxO6oKYlM4BOsc9+UjahSYQa+fduuutGaG5Q0haBC4QOxuu8aoxF3HfHyZ+bCb2sa86vcZhQn23bNQ/jvOLE6t1d1oTadI0vlxAlVJLP1FwiitDa6qvPV+QT+vFbTZVtPKHOSpn5hrmEGsYe/HrNka9CObPJQCWD0E6OSCEjhNC6/nvFYw9/s59WxPUN/EVoIsOXj8+VUGW3QG7zWUIL9xBndiChebMKXvmv4Kt48MZw3GnRNPvmmJHXl6OEXujUzTyXRegsgV0m8uBlcD660RN5K8wmkjeeIHSb8bAhE/OxrlolruycZFvIfHX/YsVXUaPnt2lMn1CFhpzdggHT7O5ml5ptpwiNkwqTFYG/oXN48GsKoUmCJ7klmHuW91zj9w8JdY0May67M8N+m93bV25CaGqIdtgCJ0KHio4xWeaElkSKuc2eR+hzWyWb0FRC9wsxY2uO8ldUi+mYavkQKi/RLzEcwVdRpzQSkZTNV3E17USnrxKh/sWbM/KCCQ14FFLqgjn61aOi1oKPXpGHavgdQvPnt2obmfJVDF5a1vIJenTVJm+Q8iTU1+yG0rrPTDqjFeHsfoDQdIORtdPQvWLaNIuD8+0HasU7oY9f9ij3Qvo02/HgdmaeBqFhx/4oEIHO/Y9Xbo16NcLWtz73U9KOULr605kDkdifHWeebt4UmyaPKe8TJlTRYL2M63lC76QHvMvAXD1BZQmV3oTqNtIiWy9CFyp9PKQLXr8Kv1prg/e9K+M9axKY1Op6ZqcM/KP+j/ZeiiO0bbXbG8M1hLbIJyj1wE+ltY8IyE6wGdO228s8CJ1ySh/9GEro+jveDGUVQjvE7zm2+RNqLFKgMYL7xflPn6toOsNewhDOlztNKNdlp/xG1DUu2SKnbI+817p9CYh3Kqjv5bbNsB88tEmNga47VHPFWN0z7OhbT5JbEwnNWWyVE3YJ/X+nBBxkEfomq6JEPYDQeWy/UxK4l9el60KOA1/X786tiSBUpyzuZxT4Rps52w9gj1nRzswl7uiXdEtMGXV+uoUufF+EvdswRVXDCdWybnwRcZLQGE9T9QLw1BjRdVmP91SlfL/tZjL2V2V18CP2fIHZrvYEumZamre7gWf4y+B1TuBn5aB5MAN8NlsUP3wBHqfrdx7kBw/OO9GhR9A/YZP/qmDsuUMh48EK1PnzxNvQVTjn40yqdbsQuuvN3xarUefQ2Fpbj4uEyrRr+NiAV1+Z5rkaxGsliAssg/+C35f6aNTJVtdSF8P3IiZBScsM+uX/J2FfhfP1yWHXZFFHTsTLRhr8504xfgXHEPrW1XtwB/zeb+vu+UD/gvbM5mrs7baHxEceDyulLK0hvHPRnpicDNzDx9HeL28hfpvO1s7yMNyjU5s8PfBO3b9E/6CwR4z9tjsiP106Ik4P/Ex3GD+ZQF2HWV9apy8TKn4/y9UD+6/fo7D/A+pf7w547gp+6o8v8+8HCspldH0Dbp1doXwaGMTRVy9HnN6LSt/nqHNU2KdDHrxvMpIunoEOk2IvUj5F4/0osbXv4tx/qMfcA9+JjneSdrfAY3F5ogtPn/NNrh6WQJ9Dvi0LgghVq39YNAiM4Fp6muDeWDRVTh/C99VGr9i3CHVlNX3/4vPDvju93dWwV6X6QQ138HBaePTSJHQ+9mCsIzGN0IxZm1sC8M4Cm78xYlBHcUb3pg/mZv0KuamOfolSbtmi2ANrak6SLe8elnp3WUN/6V2mvbXY0/77r042gLf572MblqJ+TLPrxBnEHXGwXz6NOty7aVZ6mMf5YmuDGXho9EqWLkB/v5Bua3H0O6PdmvMY9XxZCfwa0H9pRlVDMeypsHlL8qHLqWH9Rz+QZxd7aU8q6mXO1A1bYL7WT1Ymf+K+pzRJmG9EnMSBkMpXOB+4kZ0uxNsPGVscDPuG8IK0eajrIbKBZQU9k313hj7FXN1Cdds3Ajn2ZZxg7JVPzCC6FzqoKJ5sFgf/4a7sLG/ciz/MtkrthK6NjBIPM7yXxZHs0m7wyf3Bmh2OuZ8zw8tHEX/nxvjc5ZhH/E1wVDz62zUvM9sMfswqL20t3LcfyolOnpgrcq6kFxM61RqYBHKAMqUqPavBY+8hVnka+LLzxqt2YG+1CXLrejDX2fT+X7boUzzGfNeH+o76PQ8y4B/SL0jqQv38fx0MW8DTanbu52H8J6xL/Qd2Qe/ut2PMQMwjkr3jnTPynLmiocHoF7L37ps5qFetY+TZj347uGl5fdBnrQIJvg3/3Oj5fq/hl/vN+ZmOPp5/x9zegrmHBd6XyPHelVM9oxb3oYCbuiQDum054rVmE/KmO1tXshDHaLk+boT++sMveyLAy3J7YTpBXIMda+A9+vy2nP3dH7xnL5WfkknAd9r0/WQX9Fx/MjmYBT8junhwH+KT/glebYV4RaHPfb/A39+mpPEw9JtZoSy5H/p+fv0kYRT3KDyk8UML+jtaNkpK415IKUaVaOD7+EhI9o028jSdvOqUUad+iYqDMfIdquLMbKF32MXvT+9jHs22ydOvoUugUmeTKPTSl730LY73zmR7wyvh7xh1DX2PvAT+PVNS0CXF6aF2MvqmnJD25Uf8ZMaE+Rno5DwUPngE/tfz47z+BX+V4O82ucg7I28bdBxxqQeuiDgj7soa9Ucp8KfyPw5JR5/9A09a4hG/6GZ6fiHmry74ovsSupydznEZRH+15ZOjN3jz37dc/hL1m07Lsi3hn/O48Jgk6p4SJwn68A9aOkjx7tXKwvNZa+BfvUpJoRL1DvNfza0HOq6P7vCGDpLzrbPjYec98xb3Qt/D7YKCfYhfLlsbEAEdbZ6uKI8CL7HBDfJM4PW6eqMVuL8NV57N7MN3a6tJ6Ttz9KtewzH4jH4jg3rBTZin+WqkmCDm+1qc6TOCOh6JyW070ce/fDq3Dv4J80Bh3n8mVnZsmQLvvZrqT4Qh/595rFu96BMbzd73AXWsFx60E+HpSTYIFKPP2RBNrzD4a2UkNGVQd37HXmlV8GjTeyz2CvlXzXKcu3Ef/in7rmGPfpNJOaxxoK9FXmAl4jgz7v8JA4eGZIs2I7+0jltvgPO42J1qH9Hn3yUOwm+R/5KvfrEi/L3dJ98awF9iscqnCv5FYuyL15Cv/1wkSxc8MndtOnsOdvI+hks8MDtpp8NRoFxNWogvsHpuqs6eON53+VlAL+oF/rI/1wg8EsdYxgXat1pk8/ay5Z5OVC3w4hJBozJgVmScxjrklf+5qKEYttZ5zXfasDNVN3XcgW1cHWSoAXtXzgDjNuxrukGLCoAV9o2SKjy9n7nfuwV723rfAUXYoVckpZSBQ/OD/GOx5w+NUbZxwNCnnAl5+Kt+cwcvwRataprFs/NKqyJ5uOuDjH476nw15ERdA5otbNQgmGtcLv6BGOzNOYmrFgozqW2fGkNKhElzxDLv3xBiUt1f3Lbjc5jUT/mI6kUGk4oKHT++FP6hzONSxbOZ9O97To2q8HOm9dznwb6/TsHuCLCwvUQtbhaThgv4TbYD28K+v18JXJChWuIMFNWacvsqyKSa/TqDC2Bz5QuL2LBf3Rh36ATGXx6pygc2PPT+XQL8H2ANXS4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAANgwAAAAAAAA=eF4FwQcgFWobAGCJ4iazMlJGlJmVkc73veQIkXGQa8tOkZFNxsneW/aok5E9GiQkIiMVkjIrXP6yZ/Q/Dxec33kUVwxUqWm60xPFYPZN8pEdVTGoKTv1PdMrBv8W64fCnkVQGnovQe1NEVTTjIuLLBYC2xrLxrZiEdTeWzL0tyuEgiyOptXaQigS/ddTYKoAFmhD+C6LF4LqtLThOcsCYGQ4UDlfWgC5L+1aaF/lg2v1Vut/QgUw4Kla6tiRB2p/hZbDDfKhc+7p1J3+XOA2UbowZZoHaXb2CazfcuBfwkWBrw65YD7HRK22lA2wsR7q4pMDxtFxdAfpsuGZ265jfFw2iIllMRAEssDo2pKV1OMs2NmzcJ0lPoCKqgdTWm8ewAGdj4k7NzOBq4KiNjybCeQW5l6nlAwYalgZaWfMBLsA6THxtnSQIJufpVPMgNjW3LiLq2ng0BW8lX0zHdate2TuC6dBAJHuyt3cNHAZ7PensU2FstaGhIihVDg+A641RSlQJRed1suSCq/uybeG/kgG8RPMbYqkFPD1qA9yFUsG2fyOge70ZEimP+3n4Z0EloNk5D6RBALfHLfudyZCo3vDf2JiSfBdN2UkjzMRVAZVglcDEgG2hDy8p+KhIWpXNLg4Ac7E/jGoyIgDIrse+0nDeOjaytweNoyFsSc/fCsZ42D+d977xZMxEDFcLyr9PgYOM2SUz81HAdB8cs5/EA0zGrJcb15Fwu7is3NLTlGgoRYfFJgbAZ3SkmE8xEg4EE0jz0gOhz/qMiAsGAHtPAcWPFzDQNh5qpKeMRx8fXkKy+3ug6S1/uLL/fvAz23TX2tNhs9jyZwqm2To0Y3ND3cIhebLA7fSN0NBj0WJVeBuCEz8OqLY8DcEprMHYyIig6EzxgdymEKgfENz11gjCM4ZRtSqnQuGARomydNJgeDIeqvOLu4eSLjtFWrP+YPteSbT6rEAsEt9NjSm7Qc1nhbcNy76Q86J+tu1HT6Q0BffYU/xhdLfMlZNGt5gxOBv/oTfB7ScI93GvnnCRwX5UM5KL9i+8jlnJfguLE5MTyeqe0JZyPGor9IeQPen7+HSsgf05N0XubPqBrnMp5tZytxhR8tVzb/dFZp+frV/6+oGd/85tZIBdyCtXnh5WtUVJj9cSNc+4QxfGDiSDEgucITFxyqL7haIObVHvL5wG+aKb/svHb8JN25xrcVJO4ELwxw0IQcw+hTCLqjpCObWGqkmQXYQxlkQ+CvQHvxOhTIJfLGBwecVXao9tpAhPrtve80apqNIUwESNlBdtkpz47MVkJBlydcnN4D3k0NKyZoFHBF4VPlI2QpMBQwY52zNYE5dyInvizmcOK+/N/7XGITyPJmKzEzhzI7A5tRrI3A6mFN+lt4Y3K+bvkJVhtDtUUOkGr8Oi8HNtQqt+hDpKrLmM2oAlH8te9jX9aAX9x8d3iYBveuXYG4tXaCQM9RMkB4MTcv7sUVcg82Xj58mEHWAND9Hulp3Fc6E2Su+uaYFzXysWu6c6nBiMCZoOlkDTLV/gnijKhyj75a7z6wGJ9uy48XDVWDvbryd3msisFqQlC+GKwNdqoIpTcllSCK8aDa2BxALX9C83aQE9L5Hh3bZCLB4IZ5mcg3BRAufsB/TRagJu+nL26EI4UQ3Nkl9OeBvDnT8OC4P1QW/fzaMygDX35pMZ5CF3SfvLCZzpUCVo/Bz4aQ0bHoIx2bLSsDsGV06m5eSIDcq+6Q8QxSqOToPvCsUB3GnSYKosRAIzqt0g7gItOnKy4y6CcLf9ruN6cfOQfb+C8WtUX5Q2LdP6dQRgENSxBqtaF6wdqrn0xjhA9rCH1UyW9zA2P/bT0qdB7KSXSkEEic0KSYEm1iehIpbf87xsp+AKrOcgKVZdhDk7guXILBBz51al7bhYxC355OS8ZQZHlvSlQXwsYLE4DeeJ1RHQfq0j4JeIBO4B83bm3PTg72qNoek5hEgyRHeQx0tvC5x3HiZcxhIfYS+yqfU8EXXpSDehgYWxgWKr52igrF+ofHo5AOwdfxPw1TNLnYfHnOvu7SPY3WyLzG3beKinlrR1PVtTPG5rMtyfQ3XR71O8IUNzDHSsVxttYx1aZ9TTtOt4v2auhvzD/+H9WeavzMqLeEnfdmqV9A8ztBo3N+rXcD2NsynPrr/wER7Tg+dxFl84W1zeIbUNB7lKHFUpf6OBV0vKckOjGPuOzk3k9cncbzIetKhf77gHYNvzIa1X/Fn6W3a9s0hvJfunsBG+IzHyh8fXQn6gHn7KBF7zp+wRNL1LnOuAZzAMHR0VXIQyxnEZCZx9mCjGaMs36leTI5de7n69Q1+pMZwyEP+LWZe+DaN1dvxUod+fMqVDuwqrSH9PawFD+8vlJkvt2Jbd5KalPNzvPsig6pYuRmTuVou9Ao0YK8Zu36tsKc4Z+R6r2RcDVbvKIwwiqnDDkiIu/BEBTY6H0SSlavGLApVzntMJZiZNj+Ka7QMW73xd/gyXown8XySuRQFu/8OG3G7UYCXisN8RXSL8EJ73gOmjSx8Q8efdV40D5e3j9feOZuO63LKY4YGMnGvFXaoEUnGA/8oL+ZapOL+G++UB17FYXmvob3XNYm4dVf26CW9SGzl+IgpTi8GX6Nvdmf5TMYtH5vqyLrh+C2tRUelSDCe7x71MpMOxbbnImdNtPzwsR6HiemCQGyv/T/+ZhNPzHrHQb/3mA82qC8p7dZxw0qDTFpW0R64LuWzzQTtbcwgPCF4pPQO1k08c2T2oT32P8jt45h9E7up/TxUT7TGnSWZmiEVtphMm3x32tkcJ08VepWWW2EzN8H88jIjXNIwcYs4bII7M5zU86j08cRckMDlJEPsRUv1PsRbG+d9txA9o62H1xptUtus1bHTUSUBwReaOKqcN3IjQAVvRfdDlvgVnKyqOfWQE7BuqMG0TqMyvokEmI50KeD0HPEKfSBgLz868+4GGZxgzbDkHCiH2QfGJe7pSGDpnanx9UkpHJykQZj9JIRVeslv6azFMPHx462V0jO4rKvUfPDeWbweY9DWwsGDGe42RDj18WF+F+Mx1TgOXP1xTDCJnxuXGOePnzJlw5XxFBpWmROYosjc7+vLiJ8Rf72NDmTBjwed/QLWDuNwqYRG4bAj2Ema+lZSHzX2JJeiyDxaLKZe1dziu4ey0p9ZR65T4a5ql40Zlk1ErSl+JytpB/F5v2sePryCJNPFvOXfrqGrK5xD6wKLSFCgMyf50hKK53eP1vj9AzWG8nhlk+bREpX3JmKdQkTB7a9qz2fQB7+ZHuaoL6jMicqnq3IccQXRTCtnfkJmh7qeHxsaQR9o5RryFwdQ67uM9/YBH1B3B0tLUcNbdG1QKzKguBdNizYddOF8jYiH9iY1znUiNnb3bNeAlwgdtMniPtWG0GZN0uqLRkSTRj3d4/ACdTQcj20LqkFeMhR/mn/rEQfbTvytuTJU8ARbXdWuQhGU2Dre0oeokUBNL89Ygqzk1h9XVeWjIKk+cq9nESoTTtOTIGYiIdIHwWrNHBRZKnXSJCEZ3afcjjYvSUPR6666b0xiUXAZhZkQn4gqhwtFKIVhiKn254auWhSilqSsqfoHI5WaF1flr5BRLnOcqsdxX0RYa7/4yyQQ2apqDtgxe6DktY6QCH0vpE/z041v+TbibrB+lbDuiqItu7e5lu2QVd0/fzKabqI2L5459VwrtKGYyVoYZIMsfPp/GPIZo7L7mlMWZHM0RE7yv7dLQg50QSo72teR8kBHV/BDLVSyepicM6KLxhsk2G3TVFG13/JhN3sNFHu2OrsaK6HLq+Je1nwq6MdZU82K2wqIFA+31N4SUFfbFZ6969LIfV9py6JAFjHyluz5hooiiqXDSfpLksh2VDDiWbYAat6ib71tKIQMDm+qXBk5jU6QvPX1FPgRUXWK48BRdkSy9lsaUTqJNJcyQwNlWZAgoyb/QbNjaOXwr8mWMnok78lnHWTNiGIvj35m4DmIEsxmPvFSDqFM8wFLee8/BO75uphX36iQ0TO5Izbn1wnv6/MEiVzbhNZLtSIB8b8Ja+udEt2VKwTLwoj01YJZgrvaYprs5ALhQqhq5PDuFEHSTOqBw853wk7FGZ2yh18J9OFuLy7JTBIi/8T/3XcfJTS7eMaOdX0h/B+Mf8h+AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAQAwAAAAAAAA=eF4N1IcjFWofAOCOm5lZZkYyIhmhFM77/hJlr1OIJCTZHBxkb7JCxypkRbZyFYoiCZURqURGKG6RvcL3PX/Ek3M9MNOLVAjpj3/v0S0qBHtZGd7x1wXgtNbJ2MtdCF9MxZ4bqxYAx+E2Ieb4AiBNtbZsP84HcrFqhROhAKLfCKttSOfDvUdaZDb/fFDIuZCuW5oHzqVq/9Kv5EHgO6ekVYk8ePneetvMMw9UxvWPLxrfBzFKhy1h8j70KJSt5l3KhSA2pZ+7P3LBN59/beFaDlj5sYo9+JMD9WFvXIe9sqFrmUyY2c6G5c/2r0xj74FWftqlVrZsmKV2TJrm34VXNrRXJI7cAzID+9UPzVkQcOVuA4vaXRAcbGxqHssEB441JmfrLGjxd0rkoM+EDo8XX05EZoJdXIbtS/kMIBPUcqwrMoB0rkuxxTodPOYrRSY/p0MtiY+LiZoGknd4PeoY0yGkUaQw5S0VWMN327pwGnzxzx01oKdCbZr3wkE/KhzPkDiurHkHsmdUmXPq7sDxKtZirfhUaI3bHNZaSwUnFaNmSn8KfLLSi+ZGqdAokFzbcCgFHKZfze9Ep8BwQ4A6q0cyTMa5OG8NJEO7z7+xX2Nvw1G8zksnkQxib1tLi5WTQCVElltxMwm4KTR7KIsJoEdqwrZVibDuGCAHtfHwnuaBTYpTArCx9xftBMTBrmSASYNsPHw9uylZpXcLbAM9TQc2b8Hc4yhlbfFY6G74BCPdsVAWP8D3jjYGhL4eOtJbFgOqVd1LinNREGuWdK80KRoYbxpJBX+LhH2xq832/lGw8UXI5uFgBIhuGJnSukVCZC8hsWYwHJQLfbgiHCNAsFP0NPVbGJzq1ysccQkHo4TcDKO5UBgilRbt9wsDLE9zaII2FNIYJbaE4kPB++Sc+i2dYGiat3u8rRsCV+UyGKcyA+F3VchDi5QgyJWzi+hc9QdpwQJG7ekAsDjzdFjc7iYo7qNQGnT8wby/dGtyzBcoWgFKWc1+0P2Uv+m3iw+El9J59qn5QuvlmzdEGCgQ1hwWrDlAgak56mHrx14w9Pma01eKN7gdUXAIcfaExFsHbByOeIH6KcpTkiIZyFDN1DZFhpbwKZ4SRg/4T7WC9UWtB3y2CDOOGXaFhT0xLZrC7tDJL0EdaHEGyaP2z91WXGCz7/XpylZHkBAhqJGnncAuKT856NsNOJYW+qJl0QFk+Oh3izntoSuUJaWD7wb0NhaRQ+3sgDvEXHPC4jqYlRVmm763BUNt4RSbumsge06Qz83ABhJfzcfclrQFPr8Vpb3dV+GJkphHRa01BC9meSdKX4F1nmHR8XIrSLrRIdT/xAJ2nmlT+QQtwcuwK0Tc+RKkhXsvmzeYQ4zpptA7TVPwbN8z+TvYDN67hqzQ616EqI/Vo3wuJjB12X2B04sExy6PtwuEXACaIgMmuWYjeIH28ig8MYb54cVrwiYGINHqJ0JlM4Lb3e3xsy66EKZg5fd3vz4EO2l245dasCcu9f4VDR0gqdX0leueh7y1r6S+ak3QNp0j9u7TgOfWZ+zmjc/Bh0tkRqttNcjsOfrZUkIdnlAZIwUFz8CppL/PBqTVgI5+4s9oDxGquIZOXWjGYOtrwVBUpwzWYqP7k31UwcHSQOjZlBII0sglkwNPA41Ie3+6xQmYt5qBc10nIUiDJD7DqgDXd36WZ1gowvf6093nt+TgP7EjmUqS8lBeMvuHVkMaDlvlHL9uKQtu8hFWhHlJsEg2on/ZIwXz/Ffz6pfE4YNbdnFVvgTQPh1xV9ARhY3suLGZTjGYWFZ5uzkrDCHaTnsfnRGBlb8H7M/kCoJnXq3U7e1D0DrDaWY9xgd0Ge8cJzf54UeAiIp9MjdEfeJunHLhhYvTUZaGhQfAYkyPkVGLC2jvrlzbYuUA7qHElIqw/fDkzhKtOpUF2mlvOjCzs4MkDXKIy2SEH/LpK24D+/7/pIu+CT8dSI9RzzKwM0CZzWWGdNZ/wDfG9Q9D217IVPthk3J9D0S7SKKVCQJ4Hx2/n3T0Lz6cSN1UbNnBbvcyZetF1/GQsOnS7LVN3N94iGVvyTJWdjmbpXZ3FResvhx9U7CA/VckP3iRlnDUy1Sas+xzuFRj70h24B/8wC6KePfODDYq980Q5PqFJQIJb+3qpzATKXnVbPQHxnrqysyOE1h04JVNlNokrqs9v7VyZBRnD5e0fJQYx2s/awzHDIZw+0N/oUzCCH67RGTTkBnEdzjTO2n9P+PBpZdMB0o/4IvHzEtmcwbw0IOBX+2XerARZzNfpkkfrkiQzpXV6sJW9RdmG3nf49B1Azme3dd47ft0xHXrDqzteGN/rnUrNl2nXBq0bcO+ddo7wSXNeJaYSKtL14KfznKzSUc0YH3KdNDsledYyk4oa0e+Dvs3bxNQxlMc3H9zfvjOI8wuECgalVaLc0iCzIEHK7Fir05EuUoNpl3ncBdheYir5FrD3n8pw5z8VizunwqxOOl1jYl0MRaefOzLZ5aHraWUqCTNAhzXm2W6NXIX1wVyfwzjysXnjs+5dzKn42ZqZfbEk0ycVl+00sGeipsmI8bqNKi45XvqK8PEROzNWlfEkJmMpVjqLDUPx2KvptfeO4ficYvSwV3X8gicZjtgP344Gqv3e/S8IYTifpkiubP04bjZR079Co0/thQ51WtBCsKRSr8bb/FS8LI/tAt0+2INw60WQS4yjrtJoLHX9cJdEcVJT3Od8cxpVp0eZXfc8c963aiOPU40yz0xr+yIqbo5HwtXbXCKwIBz5SU7bHf4cYL+D0tcNyZ1Us/WGltJvQvROmWGxaWNrbkuWeCt86c9ZHJJePZ7ErOBuAlO+ugxbtirj81Zn9AqLxrhrcllO5uPmvhbc6LhBSFd7Kq4WTBNq45PtA15Hig7h1VH/HNGjDFOIqRINGqq4cy1EQ4m4dO4euLVf2zRqljshVDhQylFbHr+zL+dEyexsKs+gewgixku1usYWcvjoakWkWIuSXyz+ltyZcIxLLhgQyPILIpLKDqPPbrFcW5uud9fTiFsXdnPz0Q8jD8eu/VBqJ4HR9rLT2Yp8uMTeu9IVRX78YkANdeT7lyYjSftcr0lC17Iql51H2HHSvihTgkzPRbSDvDjDmXCNUKTHdocNPi2gY3Xia69uCnwe2Sp1l8kH37j1TntPdhOY/OFLv8q2qFQyK3+G6jB2aNw48wCYhB4H8DyYwkxB/bOz03OIkLWv3QmzPPoIn3tjNncJCIEBlUuyv5Ek1m9Mtc0xpBc8h3CxZ4JFCn2vPonfEEqD9fN4PQIsjhhzVaU0o/WGmfJM6WDaGyXp8ZRpxsxaFdPzyb2oRqmA656jm/QnNWwL73kW2QpHtD2maMVrSibrOxutKHyqF0xka/P0IAyV4257Et0UWBFQpVch0o3ln9xz9Wj+sjq6PqAGtREiQjsl6lFnhlTOzSGpSj99oVBY79KxCPMUex4oxDtZjBzxmYXIx8PD8P1Jzmobs7ZLupCPgrytBpaq09Hswl9wgWRd5FTi+tRR4sUJOLK81xPg4rKbgnoZ/jFIV5j0zbFP0mo4/JI0u7RSOTDyECKTYtBQyqi8wpVwairyNg5fDkMHedkefbY0BeNkaM4N/UDkGbncfP7NWSkT6YTk33ujVouDU4m9zqh8Wkpm2Uvd6Qy+Y+lup4dmvvl12LbfwNZENqfHXpkhfhvOT3NoLNFRnN+8jvSZkgg5Ah5Bl1GbqYha/f8jZGGS228we2LiH2xXFHNRAfNMQqqz+8YIGsV9ZN/etTRQTDfFjTVRN/CheKH2xH69uTdC88ENfRaP1kwzVwJiWgVxFEsVdB2yTKnV8txFERUtXrUrogSkoVF6HmPos+H4xMOFcogLLN9ta9NBH2JlpkNlz2CqBpv+iT2CaDUibm/3GnC6HLBxQcqvznR82HFg9WveFENKUhXRYENeVI3q3399iOVJsWlv8r0CB5lTPtF7UM8zBUz/OcJ6NQCixVbwF4kJxvwpaNsg/h728iN32uHeIXi6JDJskQcKvETZspZJdoam/z+df4X0WnVR/9sxx9iBcP3yBjCFNGi89qg38xPYrrCYsdtq1HiuvzUNjV2glhxlZlxtPsT0ecWlz5731eiRTnXKTzzgXiTQ75tx/kjsXzFvJT9TS9RujIutbysj/g/jZjAFg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAKwUAAAAAAAA=eF4l1XtUjVkUAPAYveUKoTKeNVMtlbT0GNkyKCupCEkaNQq9Nb20iYlKD7X0YOhGKqXbU9NDWtLL7aXX3CjUeBV3JSrXI2pi9vn89Vvr+75zzt777HO+LcW3UyW9CGVe1Zx6Vsczav9BMGzLKjPqRLBUg8iiewgS6bCvB5sRJucmPFcQIgjsQvVK6hBm7jAdtr+DUKotHvhQheCTG3k/+SaCTdNDBYMyhGfemWVtNxDE3hq8Q4UICyHGSSoPIWRW9uDFHIRvXiVTq7IQgn3aZrSkIxwz0HBzTUOI/zc2eeIiwnQPntr58wj5M/GcQRLC7qLajK4EhNl6JUoBcQjN/Np81WgE1RliT2EEQtWny7tCwhH6DFMTV51AkC+SPSBBBIMRGd07IQhjP1kHnA9E0N/n9zjUH0Hui7O2jy+C4zWHLf5eCMbKPhuiDyMsc1i+vsyd4rZaFDf+O8KMxiVnd7qQpybq250RXPM8m9ydEJIsIjYtcUTIrveW/LcboVN9OGnaLgSFndlD+vYI6Sl95bHbEbKqggvm2SFsKHLy7bKh7zWkTtVuQ+jPXWsltkbw+Ozx1YKUaXXIeL4VQSv24JdK0sr5r+gOMsjcPmIFvX/B7+uoJCXmCWMJND4tuXtODs3n1Z8+MWWLsLzFWOYCrdf0uF3bh9a/WRU4Gk7xHJeeDBI5ILyeXRC4by9ClMDb7EfKY2y2oFqZ8nqjpRlvdACBJ180fOYggkurcsc0T8pX7+qrdB8Efzxc7Ez1UrLZH2QUhLBeWtpNMxTB/FJeomYY7d+mPsXVVPfOmvqBzZEIj0oTftkXg6AbcmLbkXgElQmz8LBEhJF1md4naT91mhte+F9CkGqOnrS7jDDFK1RXzUAIfS892XiN+qK5V+CQi5Csm5zSnI8wUGcbtaAYwf5hj+DXv6lOqsExW8qpX8BXSasSgX94U+gz6j9Pt6+H/KupT8Ldmh7XIHw2ChYtqkewjjNUNLlL7w17DXUbkbqw0nKqCaF3sSRA0EL1LBzjGVKf/+nPu8Bvo75C97TBdoqrQdTOo3NQKBcysLgLwTYq5cpcOh+pH8frR0mLpPfK5SKKU1+82b0bQTbBfdb0+1TXFZKZ8aSWra1I9gHCZv/f+gPIo1XhKSLyW06EjWYP7fsHoaUPafLG73o+OWg1cPw56ZBe3cCj89ht/oOrMTk1Nm+FI6ljP6cxiPRaPiyJJ283KW3IJFsXBBuXkq9M3m2rY+c5zH6kjdRwKQ7qIVuEJ9c8IYc8WwIHyautOv5DpLqof/9b8p44y3eMtFHPv8vugYEO29MfyMjtfY0fyVsV2tc/ke+erjcZJ/lvRbFM3eqaAmYpP1DArDW34Z4rrh/azVy81kOF+VKnopWNX3XmBjI9FF20mJXCBT1sfp/M1Ehm9jRDE6Z8RdsIW18tQSaPmS+30ZOZuLVMn+m35tDEe5ZfqVUrs51nks50WvPpKHOhEByY5ZI6U+atS9pLmXt2qCswHb3Nxlmeoy2rxcyJJ9cfMVP3WnUw39l0cHVQlh29zZz70reCafpsfglzZfHNAubSuJ8FzO2WG3OYosI3WUxrR4VM5ukHUVeZr1vs0pndH/dcYS4zTrnMdI8ZT2NKjRzjjFFX45zUbeczLW6d4zy735XT19aMs/iPJZxnnspxTt8zzt3frfwhziiVp5zm8r2clQ+6OHPnt3Em+jVzmtoLOZOONHBqXqvjVImp5Xx4oYazVnyHs8nvuys7v/8v1gm/+z+P5TqYAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAQQYAAAAAAAA=eF4VwQk4030cAHCkWCElJW+O9BLzOiIq+f++ohwvHoo88Y7cRZIz1ytHuaNL42XejCSVaTkaWswxS1qLzRxzrFiHhFwl6n3ez0dM7H/j0KGjEiGb4o2RK9/b0Y3GYPGx4t74d6Mgma+fNxM5Cv7rZZYS5EZhlwclhVE5Akem35A7LUdgc/lY/pNRARyK/qLQlCAAJc5OS+ZOAWxomLbuow2DbcOaLv/UMEjquRqwvg9BaqLndFHxECwtkZss0RDcK/12liochGx96QP8tEG4ij9EK8MPghbhebsYZwBiWs3OCqIHwI2mKlLdNQC+NXeoNW180PiVlBgVxAfl5hKn4/J8WCFBqfbTfiDpsa8Me/aDrl2eyE6yH65TCzpPPOCB8f5NmVwnHjjaG5ysXuACK4GZ0FzIhSL3orcjh7mgKexJWRjpg3A1i3fjl/ogZ2KxMl21D3yitsj3POsFptJ4apF7Lzww37FtbOEN1If5rsvJewNjhfbG+VpvoM8nO3/xGQcMdZdSa45zoOjltMb1F6/h20aPNOJnNuD/rjhFlGHDw1v3pFp1XsHAka1azkd74MU6Q51rhJewhdk2w4nohvAIF+WojBcgs3nNRFjEguVbsvSs6i4QTyueE7UwwTLItCC2txO08YE32ic7YP5D4HnnlXaofi0YqZJvB2FyvMFfOm2QsdxA/3KUAWfxF0M/+7WCmvHti49lW0DdTLXEh0CHD/dFkYK6ZsjKERHFlZpAvrEBV5pOgxDZyIhI8adQsce8QiOrHoJqIy4j1To4bC8yOMJ4AmnqtwtyI6gg/2jI4YLRY4hOl/EzkaCAcGiV50F/CIO0vv1exCqwiVG6+3tuJWy66Z58jlwBQ8/m5F72loPVGi6uUb0Mko/8+JWbXQp+zX110mr/wkGStGuyZzHETLoulrILYaCWFBcYRgRB0FUC1SIf4MA+B0fsJuzJHIhY9rsOElKunSz/XCird9fNcciGd+0as6T4DJA4bzsV/ukKtD71krlVkAohLX6hFYnJQFeZYo8bJsL2dDOTzq44aFc6iP+DdhFCOK5SlSuRoNMspaKTGQ4MpZZaxbpQ6HSTxu3gBgNFwptQ7n8GFO+TpXge/qAfT7W5/sgHdqTQYlZLvUDzn2Ex2b89YOOXJOdrQ26woud3X4XiAksmXcdKPjqD28cAqpuEI0hGa85s5dpCkwTvmoLJMVDADYotK1iCHeV9sEcbgvEWNFGjYgZi7ZRpzd2mwDrXuOtbgxHYn90YX1tgAPHz45eMS/BwT02hP8FbC6Ke1xke6tKAlsyFMEGUGoQ23h1Wc1AGJEhTD5hTBO5IYVKM9VaY0l7sC/eVA6J5XZq1KQ6CB7rlqoWSQMw9xQiwEgcXUz+55cRVFDqf/f5o7DJ6levPP+4wj5wCqrpF1TOoZpIpW7/wEZVvM6eUm00iTXHOnPZJIbq7OfPTlIUAjZLyts+s9qMTk/7e8w97keFcN7/Cho1Ov21tZKay0KPBSxPN7HZk/sP3KmOxBUFseFIHvRH1tp7hsJ7UoXLhZ4emkscIduDGw8oeoPWjtnc+OFUgxeeV+LINZDS/rf/OgnYx4ixwv02X3kaLTdazbkY3kHgAQS/dMQc9v2nE+lqehuzv/jx5UD0F7d1krZojn4CuyRxI8PKIRt5d8hbmvWHoz/tVuNCLwQis2khUlj+6OVrMbnDwRj+rRVaGGe6IoB4Tq7rkgq4o0sjfdZ3Q6zzCdIejLWpxxFFXpiwRa13hK945DCnNXWBY802RsXKPrVL9PsRtkvZvCtZFFC8G/zcjTYRrlAxR9FRHeJlYB5vDO9H+WqvdyucVkDr3+4TvmCyiPPs4+2NmA8qy6NeiE8VRYNaWJ4GzK1iYKuGYc9EC1jG3TzgfO4Ppr/Lu8cQ/YBWnz5N+2L3FsDOShyO5wxhdI062XJOHMTyr9ofJcLCcr9vc1lxYGHvPiQlScBtWzbwzu3OwGQsXZTwMkqrHtn+5EhJMq8Gu6on0N0xWYvpyv8guK2Ss+AFRV2V9MVbJtqR8tcnHvH/GahoG5WFaSdN1j5jp2AnLc0JsUwrWwetcWk2Ow6pr+Mt5uyIxjym/USNuCOZ8+TbhqF4g9v6z6YuUNR/sP4sYCpQ=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAARQYAAAAAAAA=eF4VwQk41HkfAHCkmEIKJW+O1Y7X8ToiKvn/vo5yPHgo8mTeIXeRrDPXylHuqC0N69gMCcVMk6NBE2Mc0zU7mDGOcUwx1UrIVWLbZz8fCYl/TUOPnnq0fLofRq5978QwnYLVxyr/TXo3CdJFRoULMZMQtF1uLVlhEg4SKOnM2gmwmR8g99pOwO7qqaInk0I4HvdZqT1ZCKrcA7Z9B4Swo3Xefog+Do6tWwaCc+MgbehpzP42BhkpPvOlZWOwtkZut0Vj8KDy60WaaBTyjGSPCjJH4Yb+cXqV/ijoEJ+zJLgjEN9leVEYNwJedA2xxsERCKDeo1G7BaD9IzUlNlQAah0VbqcVBbBRDpW6T4eh3JBzfdxnGAycCsVO0sNwi1bce+YhH8yO7MrhufHB1dn4bOMKD9jJfckdJTwo9S59O3GCB3jR6/SViSGI0rR+N311CPJnVmuzNIbAP3aP4utng9CnOp1R6j0ID632K0+tDEBLZMC2/MIBmCpxNivSGYAh/7yi1WdcMDFYy6Ce5kLpq3ntWy/+hK87CZmkTxzQ/7XmHEmOA4/uPJDp0nsDIzZ7ddxPvoYX20z0bhJfwZ6+7gVu9EuIivZQi81+AXK7t8xFpWxYvyPPyG3sB8nMsiVxZx/YhloUJwz2gq5+yG+s2R5Y/hBy2X2DBY1/CifqFVkgSksy/r9eN2SvtzI+n2TCRf0rEZ8Cu0DT7O6Vx/KdoGWpUeFPZMCHOnGMsLkDcvPFJEnVdlBsa8VVZtEhXD4mOkbyKdQcsqrRzm2B0Kboa0ijGU44i41tmE8gU+tucUE0DRQbxlx+MX0McVlygeZSFBCNbfIJjEcwSh864kuqB4d41fs/F9TCrtveaZfINTD2bEnh1WA12G3hEtu0qiDN5vuPgrxKCOwYapbV/AOOlct6pvmUQfys52olpwRGmsoTQyJJIAy9QaRZFwEcPeziit2GQzkj0euBt0BKxrOXHVQAVS3eBvkuefCOpb1YnpQNUpcd56L+ug5dT33l7hRnQHhnYERNShow1Oc40yYpsC/L0ry3PxFYqsf0/0e/AuFcT5najRjQ65BR18uJAqZqZ5NKcwT0esni9vPCgCLlR6wOugAqdWQZPiEIjJJoDrca/GF/Oj1+s9IX8L+PS8j/SoCdn1Pdb455wYZhYJ06xQPWzPtPVXx0B6+PwTQvKVeQjsMv7OU5QrsU/6aS+SlQwo1KrCvZghPlfRihG8F0J5qhqluCBIsyj//JAtiX2g5+bTUF54s7k5qKjSFpefqqWYU+PNBUGk7204HY580mx/u1oTNnJVIYqwkRbffHNV3UAAkztYKXVIA3UZIab78X5nRXh6ICFIBk1Zxpb4GDsJGXCo0iaSAVnGMG20mCh0WgwnrKJopYznt/MmEdvSkIEpx2WUZuwfUvxY0LiDrbJ9+y8hFVK1tRqi1nEV6Su6R7VoTu7875a85aiCbLC/ctbA6jM7NBfsuPBpHJ0ktBjQMHnX/b1daXwUYNo1dnOjgsZPk94AZztROhhKjUHkYbGuy6wGU/aUbVok8u7RWPEezHTUdWPUTbJx3vfXCrQcrPa/WrdpDRsvLwvRXdMjSwwvs6X3kXrbbbL3qZ/oYkg4mGWa756PltU/aX6kzkfP/vs8e00hF+l71GvmIyuil3NNmXEIf8+xWtrQYjkWNdPS7iShiysesup7GD0O3JMk6rix+SoIjtTLK9EUErPkFjzQNlqtDJ3wzcEKeQON/j6og6XXG0jTlb1L+t5A3/EoZUl35h2gss0BG1146qLYcRr102qD3MAFF9mYL/mOIRrk06XMVHC+nJJbg4nDiAzJrsflK7rIS0ed9mAqbkEfXZx8XvCztQrvWwDoMkiUJy9zwJWdzAIjWIp9xLV7CepcOi5YQFzGiT/4Av+QGrOX+5/LvTWwy7IH0ihjeOMbQT5avxfIzpU38kUo6L5X9R9tryYGOcQ2dmysO6sca+e4sHRjuwKHH2o1CZFmzf5+vhYXQqdsNQbLRjthYzVvhB9tggY2UPSQbq28uwOo4t5YtDEXb+7wS8SWghppM639zQl4Wdsb0kwnalYyx+79pmWiLWQBWsFx6MwQhzgZOmvHDM/dpd4knDEOz9J4sX6Vv+2D8+8AmSAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAQAYAAAAAAAA=eF4FwQk8FGgfAGBETbTW0UrEulYaOSfL0vv+Wx0Masc41riiXEWOjBk7zrBKY4XKbRqZUPHLEfZHrTDOzdmMs+wku7YYfNYRtet7HtnFrXUpziTMmEuut81MQOz8vuorOhPgXrNJjbk0DqPUnxU3G8Zg9FyYyyfJMRjqqtlOdhHCdve4S0qVADa5q6abEgJI9NxZF3q/gnBpb5P9z0ahnscTV2iOwgtjrT2paSPgHCQ4Uioehjxzgs4H2jDMGGrXPs8dgqNPrvBEzEGwby/68/DFAXjCKahJdH0J6S3fLg87/g4/fP1FjBy5HxwWxTXqTn1gfR1prrj2guyW0WfmxR5YedlYWc7shvRFbfuAnC6QUJtVra7lA8W6wilc2AmeweK993Y6QJ9hE00y6YDY5I5o7YB2KGKcl/HjvID4uCzmQGsbaLOIW16nf4P47AMcn8ln4GCx6tbFbAXbbFO561ot4E5bs85/9SuYan9M+5DdDOmdF/gxHk3ge3/KxYjYCJQT10gyu59C1JLIdmWhHuj3bnmJpuugm18n7BLWgvicr71mwxN4FHngrPNgDYi0PI23Pj+GDX/ZoTn8CARGiTIzt6tANZz8Y9WnCvh7oLdYkvEAmiVD/uRK8WBu3PykZdl9CBVeWgt3LgPXBk7nghIX+GXHtvL6S+FgleyKQ3YxZEdXB6swCiEqqU5GKS4fxDculjhy7oKL+tp2z8xtIPSk30i1yQU79tZZekM2cJl1D5TZWfB0eiTF9y0bCnmKCQXBGRBAeWWZpX4dbrYV3tv7KQ0mGiOOj+1KBas6A9xJugby7GPjDopJ8G6j0btJIh545st7Csx+giLfI0ET9xiQLPvMKt6ODjf/srxTqXcV/CQG87mkSDBVHYspfxsGi/+l+OfXXQKJUL0t9nAQEHsP2dhZBQDpi1j+61l/CLvi7Rh69zykv7AkaQi9oIXbNrDE8gDrPN0L5QluMKXRmcsRUCFCpKwhYlJgpp9c+2+bE3xpc03nzD4y6DWw+iV6T4N+pn8wZ94W4k9+eYvtdwIMdoysT1OPw36dqdfWUVZAJlYelpe3AGyxccJLzRw8PsqPUZRMoCj/QuHdUiIQ7O0tCtr1gcPtyrofqgsuatLfaLO1IGhetny3ziFQ0p6nMkQHYJSr/P6U9X74W+/X2Vk1Reg1cD0fLtoHG7+x9zxzJUA1T61ykiENixEtHIaxJMwdGS/kv/yMI4lJd84c/IgZx85sN2itYUua+VB59wrm/aL3yPnDAvb19CxyN5nHYRlPy9as3uHWkJfk2pE/cGuhmkjXYQp3FCSflXoixBFX4jQ5UyO4PtNUsEAbwCVe/1sd+aoXZxpyU+RaO3Gq2LlhRucFri8nR/rQWnAgxY54mNWInaJ7gnRZddjBzOtyY2A1fvxecM6TUIltp5Y9Hlbcxze4+nwzAw5OOOd23v/HAlzMN2/ilt7GrkmtCnnZt3B8VIjDUa8M3NVhmG3snoZTbjodIpCTcff06eQiWRZOTNqMWe+j4w4jk5J/cyIx8c7rHCm/y9i0lKoetR6As/qIUoZlftia1dvEonlioma7meaEKy653WD6D4OCuflXl958JOPk8u8Gw+incByVsbxL5QQeKCzem33yOzzY1jORPETCVXUPdox3m2AD9RwRwdYAj/mU0XtXdPCqU6iWSYYGdlga4pF2VDBBX3wn+q0iVnML0nbny+H+PdKG9ddlcKiGRPfkYwm8arixdLV3CzFpyopfvf8HefxHJTQ3LqG05jH+dMU8OhjfMaVqNotMTaeEeavT6GHAm6b0SCEK5FGE62HDqMMptWdUpw9pVbNJJy060UTuOr3I+Tnyqi2xW/JoQooqfUzNXXVIbPOISp95iI5yLRwFvHJEL+ZNLv9eiqQn6o8r5eYhIz2rxFjlHBTjc5nJHsxAnvFUBSIrFal20EmBPgkIjxIX5A4x0ChN4adMbiSKm3yaVbgdgjL1A4cfP7+AiHMJTs0q3kihO7gvdrcbOkWefFAZ+QOiJMkHr7Ds0JnxNbpu2veI8+5u5nF1ayQL38tMRpCQS8DPiSHio4i+7xibn/EN6reae+OtqoUIjh8Ef9FUEVHN9heWsjLK8G93DKAqoP8DgA7oYw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_0_t_0.000000.vtu
index ac922e193acf3cb7c544adb0b137348612a3a0b2..3f3096c580fd27d4034ef5f16b1a4072825eb073 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_0_t_0.000000.vtu
@@ -2,37 +2,47 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="132"                 />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="232"                 />
-      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="332"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="4"                    RangeMax="4"                    offset="432"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="84"                  />
+      <DataArray type="Float64" Name="Productc_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="184"                 />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="284"                 />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="364"                 />
+      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="444"                 />
+      <DataArray type="Float64" Name="Producte_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="544"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="4"                    RangeMax="4"                    offset="644"                 />
+      <DataArray type="Float64" Name="phi_Productc" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="736"                 />
+      <DataArray type="Float64" Name="phi_Productc_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="816"                 />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="896"                 />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="976"                 />
+      <DataArray type="Float64" Name="phi_Producte" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1056"                />
+      <DataArray type="Float64" Name="phi_Producte_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1136"                />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1e-07"                offset="524"                 />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0"                    RangeMax="0"                    offset="608"                 />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0"                    RangeMax="0"                    offset="680"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="752"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="824"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1e-07"                offset="1216"                />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1300"                />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1372"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1444"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1516"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="904"                 />
-        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="972"                 />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="1056"                />
-        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="1140"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1596"                />
+        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="1664"                />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1748"                />
+        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="1820"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1904"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1224"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1976"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2828"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="3376"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="3888"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="3580"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="4128"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="4640"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7BJQBL+VS2I4GufJmc2tm3btv18ARw0fQE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHgAAAAAAAAA=eF7zWL9n1qfrVXYeo/QoPUqP0qP0KE0GDQDk38XsAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KE0GDQBOJu3oAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7BJQBL+VS2I4GufJmc2tm3btv18ARw0fQE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHgAAAAAAAAA=eF7zWL9n1qfrVXYeo/QoPUqP0qP0KE0GDQDk38XsAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KE0GDQBOJu3oAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_126_t_12600.000000.vtu
index cecab419273a0c37e16ebda1c60948a4964e5f24..794e27312b70c6f146e822c9ea73ce103a064cbd 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_126_t_12600.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_126_t_12600.000000.vtu
@@ -2,37 +2,47 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1.0048507259e-06"     RangeMax="0.34807972024"        offset="132"                 />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4312"                />
-      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4412"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.2234973518"        RangeMax="11.360581605"         offset="4512"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1.0050265216e-06"     RangeMax="0.59435303216"        offset="84"                  />
+      <DataArray type="Float64" Name="Productc_prev" NumberOfTuples="400" format="appended" RangeMin="1.0040294161e-06"     RangeMax="0.58962560511"        offset="4260"                />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8440"                />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8520"                />
+      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8600"                />
+      <DataArray type="Float64" Name="Producte_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8700"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1812311603"        RangeMax="11.35707323"          offset="8800"                />
+      <DataArray type="Float64" Name="phi_Productc" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12628"               />
+      <DataArray type="Float64" Name="phi_Productc_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12708"               />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12788"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12868"               />
+      <DataArray type="Float64" Name="phi_Producte" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12948"               />
+      <DataArray type="Float64" Name="phi_Producte_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="13028"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7457470659e-08"     RangeMax="1.0000035682e-07"     offset="8332"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="9.4320360441e-08"     RangeMax="0.15056953086"        offset="10272"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="1.0607049812e-07"     RangeMax="0.4985590547"         offset="12412"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="14572"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="14932"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.6914860758e-08"     RangeMax="1.0000037422e-07"     offset="13108"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="9.7946879851e-08"     RangeMax="0.5"                  offset="15056"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="9.7946879851e-08"     RangeMax="0.5"                  offset="17216"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="19376"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="19736"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="16992"               />
-        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1.0049256264e-06"     RangeMax="0.34623319695"        offset="17060"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="19216"               />
-        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="19300"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21796"               />
+        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1.0051042971e-06"     RangeMax="0.59032689812"        offset="21864"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="24020"               />
+        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="24092"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="24176"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="19384"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="24492"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="20988"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="21536"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="22048"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="26096"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="26644"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="27156"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAHAwAAAAAAAA=eF4NlHk4FPgDh8OSyn2UQoqKohylcvT9uLKRcq8rm2uUn3KG0uEot0gr6UCpnNHMOJLJTc5hBkOba6MaWklRSbG//nqf93nev99I5uYTfqsHMHS1Yvus6QBmvSc7Eu9zoMm8Ui4yyoH2d/pDfR0OihTNmc4hHLT3Dfv2s/sxu5Roe1KYg94ntbNBvv043pBfcyqvHx/O3N6uItAPgRv0lxEG/bh91vLhz/t9eFS9+2XJUB8yoxPEvpA++F/mUJbC+nA4UPOl5Egvzl+okw2S7oO+juac04Ve2BkdrBQu7wWlrdmtVa4X4XM81SzbXpQu7wxyqWXjooP2QPU8G5YXrv8n5c7GWe9xlc4MNnwLl0I+/8ZG6LL4kRW6bASU8ot+LmSBXiryyHGUhf5af6a4FQsiN+qtey+z4Lfss5A90wPxc0TddwcLBBkt1ujBo8IPikYPeyDAlVPZd70bRvKBjhNfutGdRXM25zJB4X0kV2HWjfmKvaGxhImIZvUCeg4T8fa1J97d7ML+90ncgW9dOLw514Qy14kuZd5FOZsu1HpS55asOvHfnHRtRGknMrzz04qpHejuJLaLQp2wON201UeiAxtXNj6MO92B8VparWZoOzoV5bmKrHZUs/XLVgy3IdBdTaV1TzvO6+Rps43bsNtguMn/ThuGgjews0tacexg8BqZ3351XmKrKetbofT0nQ/DrxWtRW6xCnEv0CCmlWM/9ItTGb93fG1Bg56nw7jZC8To2hu6n2xB/3J8rmt1CyauZrD/GWqG4MD2201qLZDdN0c5aN0Ma/fReLH7zbhZxn2Q1NYEEdGjcobrmvE5MyKTatiEzEmqtE1qEyKh7Et73ghIc4INVjUhjtudnqTTiNKZ2NxVMY1oS+Nv1a9qwDERa7Vi3kZIPniv2rS/ARmNXz4pRjcgJVBZTJ5RD8MXhuL+fA1I3/aHmBnq4fctUiklth4hNpEJyYl1uGsXMnlpTT2ia6QnlG/XwlNKgidqSx34Gj+d9SypgdiVkNyH2rVQq9E0RPNz+DjXRZ80r4HQxVW1jFEGRuq9mrs8niM4tiPo1c9qNGq5W/ZeYmA6MFwra2M1/isKzwjProa/wZ2rAibPYNUgyt/W8AwtD1yp609X4VT8WduaySo4Gp848OrWU+SHRn9wlaxCqIZetUVHJYa9b/WUGD7Frew1gyHLFaB+EbpIC67ErE9Qv/PeCkS/1R48XVgBVU6+E09QOfgtE2Imx8shHbWJ4k8rQ++JTzrKm8ph3nFqY/E8HY+nnklouJehXpaxj6FHx5mE76dW5dHx08t/V14sDZ9GKtjPZmjIzWjJD+JQEdE++fp3PRq4E9+JsgoVlS1DStVJVHgoxYykL5Ui/bNr0676J2gmvPPN9BJ0XZpu7wwoxYE38/nv/R+D548nDxy2l8BnSXRQTLsYDrMhb0emimHnW7raiLcI3uVuBj70Ili82D8XO1iAzsZaa77LhegYWyPLLc+H70RzcLlLAbqduiJP3s6DW79M6mX9fBh4X/cVjX+EPD7uh5CteZA9YmE4evEhVv7NP5iy9hFWPVBw45x/ALaIgQVL9CFm9CoXP0flghVpl6wj/gAhdeILWtfuw+iRB6d1Qy5smNaDKXn3wMoJFQ5Vu4+ZQTf1Hwk5cPgkUqBveg/6Ld/NuANZ8Pr8XkGJlY2hqjtpLbvv4gmftypLKQs+xZqGZ+7dRvu32y3ucXfgOZqh2SV3Cw+l5ybKFm/h1OqPf98ruAluKlUm62IminS3O9cbZ+Dnt9SbM6I3EevALz/3IR3VV1JMztBuwO17R91S3l8gzZe75t3T0WIdlpztdx1tvI6tmpv/gjInIjjVJA034qXecGfSkNAp2Bejcg1yLXbyPR3XIBl5NICyJwU6kQLT2j6pCOWWHI3VSkbH5KXzXxyuYnqYMVBvnojB56ZVu92TkC2a2Od2IR4Sd/RNDK4kQP698vDjF7G4FbfW0Ks+Ds8bb16cUIkBtz1KYEIqFkcPpNkZ5l5GWqXL2GLkFYgOaWBZMxqbhN92vOW7DI6ViKDlYCT4HsgbvbobhXWnG526FCMw6Hhuec3hSLw/mPL7VO0FLJeZRDrJXsKylYyefVQ42HTXLa9az+NrXVdswMmz8DJxXrt46xz+1+09cjcoFEkrBMQ3XAtD4uouOsk+A1WFcy/uFoTgJWs6qXYqCLd3iOhOvg5GgXqGXqJtIDpcggVP6AbhZXu8tFq5P0y2/LiTQA3AgQrrDMa3U4jcE7nteowfBBq33uv0+x/6uTxHjcZ80ZPVcj9s7UmYxoTk7/P1wbhWAOXjvxS47KEIZWw7ASVL68Cz05540slzJEOEgqmygy1B0h5InvQ8H7fJE//Ti7l+2MsNdO8lfpaTO+Z6zAWUS1wx8kPbeMT/OBSKfsy+7nOGco7Z8peAY5gSGtp5aL8jsjtCSizoThDNYa0VGbBHENslOUzdAavsy6zlCm1hP7B/teEbOzB4h+pTS6zBWFW8WNplgx/vhw4F1VlicMr/89s3VqgVbuXTOWsBvujzJvk2R3HF78jYzCUzDO8sWlTceRg+iVMLpkxTvJ5j8A3YHAIjvHkpwtUEjMM85FnNQVSM1zOVdxjBkprE3HLSGJY/P37atssAph7rjJkWhhiWW9MW3q4P9mpT/igmwfFEH/vl6zoInvcSee2hB0YCK+I+dS9mWZ6DM1b74ZlsbDSxYQ/WsgUb2anaiN6uIx/RoQl/n9J1qjK7sWNtP49SkDo23izWUZ3QQEAsU0O3QRVfXHwEpTg7oXAyMtUgTAUdTUcKl6124CXzI002cStwte7xE3Vl0NoKLJJmFUFP3M5a8N6CC8c30m1zN2FThISa6sxmGO7K5dzaJY8bG8/amIUrICzI+IdD2nqM7jkmvJApCznrWePNbmuxlNR6gLtDBo7vqh9TUiWhYbve+/AWaaxboSxZKiWOegepJZVzEpAdU2+eYQqD32jnvWkFMYin7U0v+b4KT7muDhIKQhg+9LxTOVsAP1zlj5dGCIK5/vST9BI+lOU0ZPDa8uMa8x+nTFkeWHeaqb5I5kVMrz/XpHqJxPEdTKEorAAvZTEnh/WdLMRcMg/m/UlW2oR+kjrxlagJnoj+zWqBzPBul6T7z5Ebd2rMMmW+kD8T8u+ED8+Sb8G6StpHPhNKBE1fyOgDidBq8pFv+EjKlOrelXpNkcC/Tn+tuPovaVV/MO4n/I7MhTnJ/PEvl7xfkGzfqjpBZi7U+qa0viGRxlyFp6X/kDL7igQ5iXESJ9UtQpUeIfIzo9/+PDdGgnYHHKs68TdZVrP08AwZIn8+qbMRxQC5lukip8H7kszSM3M7EvrI7MbJM75CHFLatznNaD+b5PvK3FC53Ev2uvTbZZ3rJitj+EZzHFhkpVIqV2JdJzmkKGs28r2L/JUexae9p40Ia1baMnrayc6HITVCdS3k42kEuMi3kiYruaCVBU2kofJrYR+7mTwqXksret1AiKKg4MXRRkL73bndyq2ePBcb0y3e20CiWnr2vtpdSz7urVn3d3YdcQhX6S5d85wEOFBDc0kNUSjMqtTVqSZCGw5IBusziKG69oWyJ1XEJGE8wDbxGUleGlPa7PWUvF2gN5rKVZEwSp6DwpFKUkC5LrNyspI4OBqF5HlUkPkj08vtbyqIL39X5lBWOTllEHlXaE0FGZka63u3UEbMt3QFetuVE8d4zkC3XxlpfXlnzp1RRt5sm/Fy+kEndrufHXXW++Vl2ssfb9NJm4ZLhSuLTg66SOjGm9PJkRjZAskwOvncaHwsdeWvBWq9ZuSp0cmIfgbjZQ+N/My1P0WboZGrgz1ZKfdppDI5+uZOBo1oON7dt/U8jVi8+2HufY1Gkr4VJVi60MgOi1c3/j1FIy1PDUa/GNDIHnE++XhLGklTKS/fqUoj/3kf1tm/j0YKpcbntNbTyDPpG4GKSjQyufHCYY/Vv/qYLvU0CRqRLJRq3LNMJanli/c+/EYjHA1Omv48lTwayepkfKeSHR795UrTVOLRuk06c5ZK+jSm5h+/pZJzieoNe6eoJFpYS/nZP1RC8atO9J6gEqoPvdV2hEp0G61SZMaoZGS6RIQ5RCVvRt43BQ5Tyf8BvNMOjg==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAADgsAAAAAAAA=eF4VVnk81dsXJZGniG5eytWgHJSpgepWHKEyFelRz5BKaTBE4aGLjMkQMkUkkpKilKm4FyEUDch7lEyVTJXopy5+6/51Pt9z9t5r7bX2OZ9vjJTYzY4iQtePbZ8oukPo+7h8BvscoQkBHioyGYQ2Jol8thwS4HZkjpP0EkIDgzS/so4QekPFZsh2L6HFqz552V8i1KxnGU/dm9DutFjnQWtClTnfVkdHT3MK3I5LHPEiVOyZ5ac7ob84Ic7ythZ2hP5nZHrFIH6G07jwylvLYELLApaoamYTam58v1AQ8W8+5ZgophG6On3bwIajhH6PPc/VZAtw9c+nSekWAqdEPljJj9AzkxlRwkGEspxOSYZeI/RkRpC2sCmhb9csYqWkErr7/dLwUnNCeTpHHUsyCc3fkDIkYEPohVXdlTvlCJ2bFLr8dwChicsUJUvPg/cyTvLXOEJLXhuu8NpP6Ll1rOa3OYTGB9X8KqkX5Ook9DGM0O/TkPY3TeDndvptuC3iq0YWXFkI/JjbdxanXCWUuS3rd3UuoUet9m6QQHzzAOMVO4vQE3JtxTLuhP7qz9duB5/i2lUflvUIcEmf//JQX0Lb5MOfGaLePDHtXcvuEnrWXmW07MkvTg+34rCyJaGCE/pB/SrTHJeFL36YChOa3V3Ka4glVMRg+SN1Wfhjws7vDCTUPSLDk7GW0B8m+pxaqWmOnLYVc6UBoUN71lwuv0Bo+oexnDENQjMnW3tagWe21GTiN/yv8v+pt9OBUIV1UqsqYwhtbV3pJMfjcfR569hW4O26Y+Th2GZB7puM6T8nFQS468qVvmUfAM+eOYVs6Hf1XICoHvBfREU/aPUV4PatvDt+yp9QLWtvXbHtUxy/iCVdT8IJ9XnVcqvyIqG9yycEmH8TuqS58lwicD0FV1k8vEkoW/rxWyXw3PDg4t2t8Oc996GToiqhtzRtNTQwP+3ZVSwx+HytdLelP/DEg6RPhUYSqq5oEJwPnQWY2qLTYfDfoqJ+Kh94E8xb+pKECnmEz7UOwXmS+JhQIqEOD6NSm6IJXXts2FUM/WVsjZP64jnNWeQqW1SNvqzORTwaIjxOedF4wdQxQlXndjazErD+0yzO90tDQH1WCfo+u9BTazPw4rNEXsTWCHCZbR41gvqEPtuWIdqJ+XUvzLLNwZweZoudFEb81PVWkXTwXvp494Z/wMM2PPJ/EocJ/cTUMhaFXta174w0LxN65N3SgtnYF4pxfWWO+BxGxdgS4NTv61orhbniJU4fkHYk9EqktfYk8lqnV9gkY/W8FsZSxFycHq3RH4oi1GX1CffUG8CdX79VFffmsZ1W+QL0W/a+LSkB/Uzy5nWosDG/P92NFkVg7j9Xm50Gfke9+a9mrFGaBeYj8C0n+1K0BngkqZk3q+HeWnjkfaxCP7selO/aCF0LTePDze0JfcXOf8DHV6hbbv0Luh37/GjNFfgZX7nEatU+6BVr+PgW/M9zmfnfEvCpHTzE1EG8yv2tRiGhhK5x/+TDwv5B1vErfthvzHTmOCB/vVlbjg/8GvFg7joEHb4oWJkEoz/2beVNxuBz80Bz/h3MyycXvU1tp3BfkunSfXgH/oyQ/WED/Zk5NSvF8b4ZDxjuTUCdly6/HT2w7h+6vbsWOriwy7fvwH0QHg8wzYIO8w806XUgz81QtK4PfSpeMn9wDvdCWdq97ip0aJfQmenEu+e183TXGObBvklojwT8TBT/VzAP/bVIGu4NAu9hL6Oraidxv861n9+Db89jZR4jxwnVnZyvb+aD+2iZdj8VfroMp6rooI/Iec5vPmDtFE7/owx4U/XHnf8GzzRrNf0G9MeL1B9aAH4cVtHIKHDibBs5ceBzPtuxuhA+3ZsyDZSBLm+cts9egn7mjCl9CEHc0yMnV+xB3VmMqQgO6nkcbEp2Q71wNePN/HdEuys6zgV9rPdkbKjG+sA68VM3/B/8t3d4EXTw7m4wG4AOptM98eH8eYvK+6nGn1NL8T4+v9x2TfmXwF8uMbXHHP55r/56KQp+SvY/zstB3oju1Ks48PkvJKctHHlburREnkL3HdKsqHrEGfyc4W2Dr3uJj041+nssNBrOhF6jx2O6l+JcuvlpbS/q3w1d+iQR+y8KY+T9od8WE/oqD9+pGdd/dqHu84/+nUPACRhky3+DDt/DnCsUwK90cUvffsTN17tbp4FvDscuLxdzrzCZMt8ZusS45r/5Dv9Oiaf/4RQPXbIc89UQL30yb/oevz6jTkcfdTNvyXfXoK7b9oNF2Xh3OOI3TMuwfk9KZA2Dv35X2/FMxKtNS7c8hn8LMs+INaDu7ELDXB3oIMzeknUZ+IwVEVL8+39LtjGqn+/PE80FsvBjGbc3lH8vLyq5JMzFuX5VBM8T96uiyU5VDbqURnA3p4Lf38L1uYvB4zkrIVAnmdDPnYcutcLHzdIuJb7gcXpiQVQG+Gq8d27ZAn71Woo7uegzKUdLtxz1d222a4oBv35bpQunzmBuhC/OLoOvo6zFt2o88R8gt2sW5c9hd/KBGeieu/HAAXPUCS/fEtyO/KJ7P0Xc0KdQSJfCKHi0q0nPLkLeTL9v1QnM8w175SRZ+KZ7ufxIPHjIfemvjkP+Sh9XCf59jRn+qhiGuvHOr28fxH5X/wKFTPTx1EiHa4f/j/G+LJFn0CnatyFUEf8FBxsaXpug3oT3HP8Jvv8bPzYqAKe6+En4R9Tzu9hotw16edWW6Nti/zZzUKEJ6wlXhkURdHPdfsJ6EHM5y8JpYBJ8OL9r+05gv7xDa1MQcEV3tl6OQH1BxgyHB58CRwpnO6PPbWst7I9Bp8iAQIeLOH9uPeY1ijnzT37p3JdEaMr5O0YEcxRv3Gz4FPUCFYav7IAPzJ39XGH4VqAsMlqA/gT6v5tWAsdmXkuUDfT66HtkWyfq3GHwLqqC98PeSxHPgLPILf30IOYhtOTMzmjkO9aNazAQb283JGaMe3gkeYo4QbeGHTKLbyMuOVY9TAZ5e5/E+7wGfkzHnBsmyKt0uNPUDry4D6lTduDHO2O2tYg/B34pNTY436TmX8R/RzbJlkvOx/+M/7eF15uB412c46CO90Qp/aN8NeLeOwgPaGPeetuW3e8Abrt7y2w18DVW5UjsBb5o4V3RR9D5YFex7T3En6jWU2bw70H5ikdPwMuqZ95Lc/hV924qsgL81wa/01iIOgN1z3cXI98s3UllFPlW6kUWwcjnfomxUYaueRWxz3qhT65635w8+JuVpHvZAHkeEt8H/8IqdTPjIUX8il1ln/9C/uFXL9MGgOdX1emriz5zX3MPiYDHDYZBE8V5x3+ONTcxT+HZZL0k6qqL6xkLYA78TgrdjoAOZ92Ozv+BfJ9KnUY29mW+T7qYQw+5kJ/0GdZKhfIBL6y1/r3Bs+DvKjkzXinqXVh+vu8p9m2rmmUrgMvUyxIXQn3n/YwwE+DTfD2zCZx/W5unuBj73nus3mvi24EzzjVCHd8mPy4PuKWqbeO+4Pl5+EIp/31TCNhxXQb1igVklFjg5yz4ZrgBeMG2Z501+T5+eTG2CfO4r6wgIArnLn3ai3Ohr8kK8U1yKXgHHJUWUsSLm6dFOPB5flQkivAxtrsnPR7fs8I2dPD7NHn5+WYa9LTya7q7ETx8W0KMShH3YsfmBAbqhZk5TXiB92Xvlz06iFM1TF9kifMAIsgxw/2Ynrc+0B5xjOPXBpnop15eso//LigN1c38A5z7v1xTRFE3ZOVUwTd894r7r8xG//8HPstrtA==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAjAUAAAAAAAA=eF4d1Hs4VVkUAPBeSiRMmi5SYqLGMzMosUJiKhp8H4nqhqg88kpqeUZSHp+8QiU9JA2uSde4lygh8n4mlFxK06gwnhWadeav33fOPvvstddeexk7rtw18ALhlbvK8HgXAkeo+q1uJ8Jy894lUe0I3RProptbEb6Mxe+XbEFYIPbG0rwJYajbyi6sAaGtnWeZX4dQXaAq215L44tL08eeIbw54JsvXI1wLnhQh1VJ/49N/FG+AsHKolZN/jEC96DtQVYZzX90KUK4FEFYsz5ilEfPRTxo+YuMWZZ6j4tQuLn05OlCBHW3qT/0/0TIHK3Q/JqPUBUU+56TizC7VJ5vfx9h4QXVhLlshOjyFezULITENSmrN91GCJdUyS3IRBDc+iajnoHwxOYH1ztXKf72okTxNIpP/CLHNwVBnvW2sSERIe7pnpXrLtN72dVXXOPI2OGU7GgEC/b4b31RCLbm5tNikQjDw+GT2uEIV3YbZtuGIqw/nxDoHYQAilbTEWcRHux7kpdwGqHBqsfwqh/C2YDtHje8EW65LPp2wxPBNGK48bobArrV9aYdo7w80N+SfBTBdwN3LN4RodbUa3/cYYS+1ye4cQ4I6X1lPol2CPr1WyUybBCOm8QoF1gj+MR3uNT9jqCWvCV+1Bwh6af0IMU9CHW9bTIuZghHB7KPF5vQ98KX/NcaI5w5iuwrOxBSv5ZZKhsgyCU7Bbfq0fwme/nUrQjNMb1nUAfB0Mr/WfCvCOWVUaZ3tCj+rgaNT5oIYne5nEMadM6N/wqm1BBOGdV2lqgiJBd+DM1VQVDo/FBa9zOCd4qBqQyZN+LKu7YZgc3eHWlJQn3MxDay2NZt/QHymHHVRw7pVKq8Up++/9LbObuA/uNdqTE9R1bf95zXonXs3rM6M9URAvM5czspjtH5p/x1FFdkn4qIBsVZuv8dx4/i/mimsWmY9jHk31KctB1Bd6e+szsgpGWITnkZIXi0LBDKpHzELs8em6T8PN515LPPXorbrn+RBOVRa6OUZCPlNdzPqeeuLUK+0jahVHsEkfRBhQw6DylX5yKuE8I7ab52jytC5QeBtIg7wsspmV5DL4TrCi++IZ138sZCsaIAqjc3zeLhQATNCjm+bBhCPy9/3Og8gsMRM3eHi5S/sTJzl1h6fqUzdpDqzsc+QbAjGUFJTKpblOrzVOtQTfk1hJwTOR22VMfhzdxDbVTXXgP8LxpU7wPn2gJOUv3LqLPexOYhdDk+8IwuQJDmnEp1pXsTYr1iyYYiGrepjeUXU14dVuhpliDwywMMIx9RXbfVzfHKaTwqY7L+Ca2z5+/G8qd0DkfO7U2sojqNDNxnRve58HtyU18NnZPvza4DzxG2Dohe4NO9H5AMW/y9HsHZ/XaESiPV+/ZlRobUH2Y+UDKbEcJGQr2UqW/8siSOPUu63Ve6UE79RPxmubRXG+0jp2a3OPWZyywdg5tkCU9XUrEDQUiw8WUaWbEwN20R9SOVPHkLR3KtjeJgEanV2qS3kPqW3gh7kwnpm7rWN5Ss1NZreUiqO+V/FpAzqf0eItTXcmrW9KmRabFvn5uT2UL38o6Ra/ismRDSbkffqiQyJETucBZ5/JGU6kNy9Ti37jHZMKkdWkfyJPKj2smqpHTZXnKyysdDQCauUsoeIl9b3Bj5hxw9rOX+mTThsHTHmPX4TZ5Mf+ULBypNkv1hu/ynmPl+ee7TpFNBI2uGLPXgXGI0zD3znJHL5Qr+f98R1MNobpBXwqicufQi4/AGthljjzNvlvmPdYZjLmNWpoQtI56cmWfW0VN4fY/RWFfJmlEh4tM8E8fVpSsLGINbtZwZdZsHZRmzPqV1T5BDE03XGdVQxZUx7hZHhzFUTlSCUeiFxiSzr/8AjWcVaQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJAYAAAAAAAA=eF4Vzns81PkeBvBa191q1gqtWPcIOaFYhe8TYSmb+9GhZIsinYouLsmlg00RiZEIa9jGYFyaco2Z3+/V7uhoFukkITq5FiGSLjq/89f79fzxfD7P9dsh9/sdaRhxdbzLPKJJ0N6knQ+ZPJa4Ur6RcVh7sK+IsTMz7nwi41DQL+X7Gd/zrrO2Mqo+XfaQZlRP1VwlcaAhbfNAlMm4NO7wajfjpzdrx5Z30uAvu37kMh7UDXV3+X/+e9rrQXsaX9Vb8kMYp9t9nEbsaCTFVJl5MVIRGbU1O2hEZz6jP4L599pxvTmj/ftBBQ9Coz1tmONjS0PL+0GQjQ3Tj6KOr7Sm8Zkd5le8jcZMnYaZkhWN7NUNB3wtaUg8Vpcf2srsv7Tpe3NzZocWZ65pM41Wbh9vYROTr4529xrS4CVMfuunT4PVEsQ6rkPjZDcnUl6DRtWMYFxNlYZbvdqrvLU0lGS5byLWMD1Jy262LA1xVcC2uWUKPtf9+k69o5AieEzkpig84Fw5kfuCwpUSxVjWEwr+KzTTfR5Q6BD6f/RuofDbzxlH5yspeH3jP7G+gMJQR4JydSqFgLSbDrlnKNglbaltPEDBSUFc8eknCnqX//jL6W/MvSyRdbwiBV/n/I70eRESEmT8/XtE+IPV9KGrVoS29qbtA2kixJ3qDT4aLIJrloAKsRbhWW1IdztLBL3zi2mJz4WY2lB+I6WKcexsaneUEI+jqj7/YieESO99/1Y5IfYZ648WZLdhTjKuEabchqnRQsuJzFboGQ7s2SLXCk/d2RfHou5hXKpSKHzZAvXfv30T6NqCTZ/pCynVzfDWiw0MZzXD3k0wdSS0CRMyp2vuChsxd255sFqpESpLeUO84AZMiv4USgnqcflmPHv9inoEOhoMe+66C9uXegOK1+7gUbpsN9UngOqI674ObQGGm2cFeSG3Iai9/z67ug5x9U3hBou1iNTQftmAWphJ/hzmp9bARrPUpZdXjZGUF2NFTnxc1VqjGzZWiSF36eNj6RXQ3ONo3bCdB5c+KeOz01w8tN3lyy+/BQVTtbbhY79DeZV2V5JVGebr5VW+rC6FVpXNB95kCQKyPO4+7voNnWXf+7RRxRj1nKuwOFcE6uK/H6kn34SiqVzWEU4+9PfStmb/yUNn64Ry3A/XYRXyJNgmmo1nMXVix4lsyJt4pwT+8xpmIvjSdjJZcLMudb5ckwn3/oGvygeugKfetMUlPg3XsqZy3jhcQsjMPd8Ek4uIcd1+VvJjCsTPa5oLDyahuuQph1d5AbYuXlocpUS8sqgPP2weD4eKt7IyEbHonTH/7/GRaGxbrHw+lxqJfxRNVo3sO4Pq8f1+Zf6nwA+3PFHwr3CUZPudTC09gdzb6zy9Lh2D6rDlo57bodgeM6kUqX4E05e5DzvbgnDI2eQkN+8gjg4rCBfKAtEbnHbvvmg/5O1TG/LS/bBxqK7qV64vHrl5hymv9sHrpApFkzpPBAWLrdVy3BGs4aareuBntDn6vVNecoFPnEQ8P+0Eu1LT00ZWDnC+muzR1WGHsNwIif1u4Gzm3p7OSGvcMA8xkl5rhSYpF42c7yzg3qN21yvUHA93zmhOKZjCu4awi74Yw0bNdDR530ac0y++eM1oA2IPrlwy3K8Drga/sadLE183/9Vu+asadMq2GWqL1yGDMprakKQEqx/dEtmV3+Ew/3TOnRAWTARiC7bmN9D3Y9OqobLo3zOj+NJcCtNHMqk7x1bAu2DHbKjCJ7IUu5BxZnaRaO40++ByeJ5o2a7T2us/SwrHbwy9jZsiK2LPR/nJTZBVydHlPIsRMtRt2CzzdpiUhu8Ik/EdJNmLzp9v5T8lrjrRG6dyHpPK4s0qPcbdJMnIRYFKl5CCrM5DvrfaCQk4YLlw4T7pd3KN65GiSOFI3tMYnVbC+nr+p4/GjaSOvyZ38IuASIJZARrxtUS6JH8hQaOKSBwc7oRt4ZIiJ3F/gUop0dI1VE24VUzWVxuMLGXnE9bmZU56J5uorbKVy+vLIsUd1C6DDRlEvd9Xfk1LKvH6oYnzzj2ZBH66V+YjTiT2qk8MujbHEZXQsBeXCmPI/wBfawYJAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMQYAAAAAAAA=eF4Nynk8FHgDB2Abq15ZhZGrz7yivK9rc6/W9vuqZL2FCGuXojD4aKMoXhpnxn2WK6FerNw5Km3sMo51jts0mDHW8q6joSatI/G+z9/P4X3t33gu8FHE6V1VDqETm35Kf0A7H62LQdvCAj5oPVnFs8F8SDC+T4EdHzFn/e/s1fz/zx49arKHD81GE6PBiWk4pvla9dZOY8X8wSf1uGm8+Jg2MHtpGueSx40/6k3j7eazwuvi07gcoOP61SQPDV7dTY7VPDALHJc7I3g4qJkiybDjId4mVyNdlQfjrGijOSEXKdNZEuFtXNDvlvg4Z3CROGbx/rYbF0euSeuytLnYMO2PubQ5BXK3wUilcwq1YiwPSvoUuGzX/UbOU5DKyNoTrjYFu1jfjaXlSRBwA4MbJnF7OnmUGjqJYDWuNReT8NfPfFchNokf/n7qCaN7AlPtVgbeSRMQFd8wOWc9gYS180RDagJpLcp1OywOUqeOCzqSOahTrzsTdI6DipEF0S/2cmDLpzHutr1GVWS2wRj9Nda8p/M2jV7D1/rL4BUBG6lRSh3VJWwMbPkM6Duz0XNs77chUmw8i7V1CmOOo0w2/oVp4DhmWy+11qmNI1f5fDJvZAwb4iWf/xo5hqLGLVF7nTFYyDd4FHBGIVT0pD6KHoXAucndRWsUvHuJleyREcT1F48fChlB+YV/GKpRRzAkP18k1jaMpflb2Z2ew+B7V2gEiA9DiXrgnwpPhpD6uYxcl8UQdpmWbip9g4id/duc5N5BvFKSUA47NYCqYbOOglAWVLZz/yis78dzv8XChsU+rHPPy8qo9AE1m0feO/ZCymTN8F5SD+4IeR+1md1Y2Ik7IrreBdU/xrccdbrAWq0/7uP5G2Z6V1zD8jsxeWfpl4nxDnD8ZZ8zD3ZgO80oNMS6HQyLV+XmyW1wKhbwaSwmgp7S7KnSTNi8KLlZ7dQKkTnJncenW5Cu8el2DPcXXPUylb0d1gzup3AL7rEmDGm7ZB9m/4wIWbZyRupLvJ2hH0i50Ih87rK3i+ILXOREJJI3z7A1XyF1o7sBsqHqmSo19Ug1FKkKLqiDa/DpsfvZtSh2j94vZ/AU/jnNpUNW1TibN2jgHloJpeIvIlqbyuEmpIqOHCwD5U1H4fWQUohef3PV5UMJ6P0Uf8eYYvhXfRDsUy+CZRQk5ScfgxHxWEbb7BGOI+z+0dV8aF3x4FNb8yCsP74kU58LscSlhOX2bASx3Iri1zLhfnnWnHn6Pnr/4rXQqjMwV2Obd8ogHfLx8atfl6bAl9fcHiWfhEG+2dKfjfFI3JjifcaIBU2Lb3yNHgNVy5fmPQ+j4SJu7cmaiUSFEueY371wSMV20St/uoO4zt1Syvq/YZqSo5gRHQR2u8g+XfNbMMtck9Y0CcBW/mL0rPMNyPVddBiyuw7eU2rp8klf+Oo/6J0L9AZXMcT3d4EnTr7qV3AtdceKD31OO/cKNEzt1/5Lv4z6nMo+Ow1nLBv9S1xdxwkUkQqHuEgH0N8H22gdvggn9yilUuEFmNy0lUtQs0Jb1/fVcS2WaLplHKDQfBZUBv/JvQNn8Hx+t06lzgxneLn2XnonEVijWMUNO4ElvdXdq18bw5U23zrvbIDe8D+v0sZ0YbXxo9jmCR2U2TISop00cNMn6pLbu2O4Mpz0nfamKghNIkrcXQU1Bq7pw2aHwYr5bVXeQQE19/UFGcsUPJwwc9n6SxofQ8p1OgalYBTcqL7HQwJS6rVhhzLEoe8neUjGQhSDUd4DXjdE8CZzfvz8Z9sk344unzCyTval/Seh75s1ImcoPWOv9Y7QqGY2+xUEZFb3gEC3cIHY6K4UFLHmyBmRzJnY1N/JEstj1y2XRwznKVH+ixwS6LCca/VujKz/SomwyBomZR9q/VroLLKT79b3U103ob6kvLJ60kGSc97XPjBjkmhmSde3Pc3E8JNQ03y7kaiVUhbHPzSQoDy9of05tSSoc7tMI6mSNIydOqrHLiW5kkizXiwig2F+UiuWj4hKqvHbHyYeEGG54Frmd1nEWGbXcs/DDKJgzFhQPZhCJiUKj5yQjCeco15udhIxJD1KEKu/E0kKAq4oSwjDyP8Afc8T0Q==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAMAYAAAAAAAA=eF4FwQk4FGgABuCmVdkWKZGdMJIUNkVlrfJ/mkJJacdRyJFoWblLUYTqQa6c68qGqEaYQYcjDY1bwoyhYggb5cxOjkq771tc5HGoZJsA0hmPn7c978ZM7PenR050o2+szDF7mo80vV0905F8fLmuRrHczMed9P2ku4YHsWs79gba8TAcsLBIX+xCk0EVf1daF2bsz0ia6XVBrlBbNfp1J1x89dfPXO7EDC/idCCtEwlaq223cDvwST1tzax7B1SrK6z6pTvgJ9ovavZ9BdXlJoaS3HZQjxdWXZVvh77BrngF75cYpOXfEza2IUaVQatVaYNQc7i35mordH72n+0StmBPJd11AS0Q+IwyNPKakZpePnlGvBk9+2qv3PFuQlafsdfb3ka0xH79TfpgI7j2zYn67AbUrgs2t1ZuwEOFaV/HhHrMaQ/uYYjVQ7fNbV4jkAvGO6rT++kXqDeUPxHm9gJOGiHTC0N1oI4zM00d67DueOGif38t+DozUv72tRjLLJc2HuCAEj+ePu7MgSB4z/b6jueYHZPxsxyoweq8Msnrn56hJXrhncWqZxAp/bqfq1yNjD7Z0wKDKgTEBY1EO1RiMNTq8Gh4BeTlxsPGmU+xrP+8bJbgCR4c+XhwacUTqJpKMGV+e4yKrXyrEe9HkE9Mmz7PLMd5UaR561gZvtokpU1qlCGDYcsY8ilFQM66ZaxKNqR39hy0F2ejnf8ne8aGha83fTveOZSgyWHeoWltMWiKXVty2h5icI7ucDG+EP3xEflWtkzEcC+rGG1/gIzTbo1Hxe9jw1+zqwLGC/BvefXDOkE+1sqox+i23MVk7w5BV30eHB1uHEhtzsUpncqzwd05SNB18Qv/cAf3igdot1fcQYfd7O4bFtkwEoYKWwqzkP772R/GZTIh9oW7mhOdDo2X5otKMmmwSO+71PMgFcpTzawy8xS8cthqHCiWDGPmqPpYYyKEWi2FVekJYDRpXWIG3oJaqEbxy/Y4KLvJ/WNQH4MhszCTL903cdJqOPr4sii81fs7LvJABBgNEvTh7BuYCZz7OXvtdciLVq+YzQjHxKJs/nr9MDjH22r69V2F6MqHM5s8gzFGqSr5S/UytocnHdtDCUTQH7oX7SgX8SY5t9pz8wVUBC8581z9UVEvlrvQ4Is0riPP3MgHQpGbsKDGE5N8mfmVWz1wM+H23R6OG7LLPj6lR52Fe6y6Y0SwC/TbLZWXMpwh9fv+NskBJ4y5clTD4xyQdzd33iPXDlyP+56mn0/CUC+1sy7cGiWyc0XFxpbYu/KFPc2AAea0V7S583EMmmxS9XE9ip3tXyfErU2x5TkjROqWCfYOD93OkjRC+OGCo2rNdJiWXKMGPTOEIOn+++BWA7hjlD0dpA/r7RmaTaG/olpLLdy2ezcuNftTrXx1QO00tVc6thM6vpkKW1t/gUj2jyyaizpiik6U/HNKDaXq7lJ1hZtxzFveG4c2wUNNMtnXUglMnrnYthQqYqbeGl432gCuwp9RvTbrMVGoGDnesBaJ2kbLR1augcu+ls+OEj/hHO+c7HjcKnBObcg7EioGH7MU+g4+BS0T3yiR376T4Av7LkR9+EKoRVMVMXbzhG7ur7XloIgwv/sM9CR/IrMn9XnJYVMk0S7VSyfwI+m3CAl2/vaeTOi7U20Xh0mGWTvf3ekdYYRZX4swERI9luNArNcbMp8X++Rv5R4y48b5aeMRPmHSFJMe9XeS3FLPSK/kV+S+ipX8JfE20jGUqblAaSZSUW/kdns1kLprP8ZN7uOS2bPxfTJOdUT3ocLykFYO0QsxvmfzoYaMuJ3L3ZZfTVJPT44IKisJvS864AfFCqJ3+fC/uzhPyC1XBb2kjMdEzWKD/tO8R2RCpYB6nl9O1q8S5BaolZNbLD1X+ZQyolDEe22zsYxY+zW9LnhUSg7PyH166VRKmoLWSWyklpKJ6c8yRgNsoqLzgOpQzCaEZlZbf4NN3uTUxSu6sMmVkZwlcohNmhr/m9PRZhPtlKpSDSU2kWLcfRYoxSadxRHaCRQ2MYio0Po2xyINyUsj9lMsUmAv8dZ3lEVEBnO9a4ZY5HMKRVNXyCJOrmbutD4W+R8bfgmXAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGwwAAAAAAAA=eF4Ny2cgFXoDB2BlJ1GJTpHsUambJNH/J6KMEpKGK0LDipStYWaVlK0yChV1zsGRWY7sPQ8ZkfBGJFREeu+n59Nz6cDX1gXmJ+yucsyY5hgG+3fNf5uMP+Hj4tjETPQn6NOt009+GoLyi+UsT8lPkPytVJd3bQixZk9uV+YOgVm7yXSWZwgikm+Up3SHUHrBz0noySA8j+TUz/cOwsPS9Lmw6iBU22kpI1cHcat+2m0y9SNOaaWfovMNwrU31N+qZwBcW9ceZhh+xKs6uquv0AA2zshmMoIGkGLSZbHXtB9Gxo7nzjL7cTejstU/pg9nknj1Elb2g3ZXi/Nkby9iOWUabHX7kLC9bDBduheT2T2TtMheeHNUqFm5fgBDWSXxWvcHiLo4Nd0o78FBTsukFNkPeJeremhWqAfxcVMxCp492BQjYUFz6IaN1Q0d9sZuuBCj8uxKFjT3ONlKyHRj2GTNkR5JFqp1azM8brFQxZRvUwzownxU2deFgS7s+P5EL2a0EyHDCWuSNbuQ0P2obvXRTljs0xQ1edaJFxnJHkGMDmwxHJUU5O8Et+ODl7OSHajknHWq8+hARVZFu0F0Oy4+6zC4PtKOv5tH/Pw52vGaWmrIebId3bfsPCO82uDlxbfqSm0bpmWMkyy/t0J4Kd0qE23gTRXnnnJoRXn2lHb6m1b4SMx+3fmlBdRGWrP5nlasdN5SRbncgoeyMXZF9Ba0lIuZarGaIaJY6vFOuQUddduKPYaaEGPNCH3r3Iz7CWmDb6cbEf5mylTUpwlRtxe3cnM2IoDW4hAQ0QhDOQet/VsakDa8KXAorQH64Tzpuhr1ENsl9UCqrB5LXuFfKOfqcPipzNLegTq8tm9VTwuuBe/pdWW87HUo4rOXbqLX4KkdRSpsey1sHHa0RQxXY1No9K+MMzXoyy5727ixGlm2aleMIquhuHHP4C2TKqTe2Wfj9r4KxhOadbFRlWitiv+9kq0KP1mTdmzt7yF8kOPzFCohztkp8ZryHn6mN/bJB75HxojNyEPbCkjLnypIaajAqLMY29NcJmiB8Y76lArILXDZNnMxYV4r9EXEnonsqEP6qyzLcSnZRWqp7D//fLp8pPAderimX42LlIP+wIblt/Ed4oLX2rCuvcPzz0wX8qsMYylJYk4v34LeZt6lVVmKPfHCDQvXyhBI03OeTSyB6+CxXqJbip0f9V3VPYuRKn3irJx4Cc6xSeVy/VuEhMIdOY//FkFHlHX9oF4hVGzPDkWNFeKGY1xtt8YbSAfxRYx3vYHt3KG2QtUChGeq5cY3FoBsS5FsU2MgtKSj+E49A0asmxEC2vm44UXfl9WSj/tujXxWpnmgPN6uN9KXBwHeESrNPhfLjl7dO6Zz0TgcHTZzhw54LM9fWZWLCBVxN8FXNDTXq9ATttGR3uDmuNBDxa9bPuPxpjQ0CW8YTFxNRdp+NuOz/lTECZfNVYS/wnb301HJV14jt7Zo1p0vB9f9JlJKx3LgfWlgr1z8SyzL338145iNmW9nBbL/eQHW56FtQn9foJa1K6CXlQVqCf+L+UfP8eic746wsEwwIv0SrutlodhaVzJcLwPKhlazlisyoWfO3fVa6BnWRy1vCal8BvdHqrw1E+n4az/1oSzmKTbUyb9JbUqDnKe9YqdrOtByWoC3NBUB61YdjjudBkZ8j2INIwUC4xxxLYapKK/aO2vk8QSdSZQsfYMUfGyJa+mPfQRamJdl4vPHEOU8m1hRn4Rg+8BNGm3JmJNldw/ZkIgEPh7qSsEkmOpISWW7xcNG/GHL1fMJiNh0WIY2EotvNxy7+Wvj0B9Hfq5ziAEHG/+SsXYs9NfrahqwP8RSHMuvqOUhXp9yFm/NiYZ0v/XEW5cH4K6/f5lifx/xkQzrbslo+GcKL8WqRmGYxWJ5jEbhkou1mPu2u8i97Ny/1f0ejgjfFZrgjkD2bFq4jGYkiN2BKnv2MCQbyGb2KYQjzrl2vFX0DpZXk9tSu0NRKnS+askkGFq+cmFd5iG4/Fl9tPppINrz2vjbEoIgPynXL7g2AM8v8nyf+RmAs3kjfxixt5HzFU4izv6w+Of+2uQ9t/DqvV+t+PIt/Ag1Xavf7oe9msfFBgxuorrPYa3HZR80m1c6sGp8obGDnS1WwQvuNgFP2Fy9YSFH2RG51gOx3k909ml5Yk/sNzND8evYFHTm5sX97kia8nFvPu4Gw6+6IgHm17BGwKVQ/Kkr+E+y34yIu4pwa6bRCREX5I1z50fPu0Bj/su/ssZOUOZRkrrw3RmqDkcdpLLt0aNkN6e83REbG+84KmpcwgMF/59cjy8j9Kxs2+gfO+RHEwkf7YswWm8QJDNlg6fJAXVaFDu8LVG06+Q9jzQF0woNURt4HjSO4T5mhXHRA5YX9KzxPkpG/eOVfzFhFxZWpn4OvGNsXY2hZ5BSa7KmfYcFTLy+vC35bI6AvUM/2mxOQ8jsQM2ojxnWpN/7Wdd9EuO50dJMfVMsveaYW3XnBF6q1l/gOmqMEI3hCWknE8AgXvDkn2MwemudOhFwHIsbfCLrCwywbrHIcTrqKIITVeKMmUewOn08VsRZH1IH+G0PCutCR2zkumv8YcyVD/fZ5mhD57jahRBeHdxc0WfE5n8QF3MoacbFWhiJN3qpKAbYpdY07M7SRKaif9qFZHWkyLLoozEH8Ct79oyb5z6ERugmeR3YDwfL3x3MLBWYF/qsViSqOBP0jekiowyR7Tvlmu/twcSm2D/7xnYh5VqHd5Tibsx13rPd0LwDFmv++oVw70Jk6RdjiqYidBiBL0M0t0NiWqfmtrAchu4Fs5f1y0OtcjFW8Ig0zFoSWkd7ZXC2/0i0c70Epo4bPZT7Rwr7Wi3+t3eXOG4o3vEs69gKzRMnUGK4GWXMH3u2+IpBJfjwct+ACOQz6Zbt9RQ06Hws4uoRAuPxM16lcGEwlVZtVtu1Dtvap9J5Xq3Hhpy7TOQJIG4nd5ODwlqoJHjN9Cfywc4+W6J5jB8XRy1OxLHzwOxM9mM77lWYtJ7XNBnkwCkDaa7INC647s7s7ZZYidMKRty/XrCDJVP1Td77L/EKvrGXtX4FAtfbvEo7tkiI6FSHX/ofQmWa+dpn/yKdW2coC3kLhH/NzwmHwDmSwSj2cz7yk8zQMg5HV38nV0/zewUYzRJdqp/nitYpklOYLzVcPE32ZBzOrWOME9kHG0cLV0wSecbm+Sfbxsh6nci2q7JfyAzXcAlF7DNpWxSXkWkbIf7aP5U4fYbIYPp5CavZT6TCiiZw1HmAMGVvTzV4DxKl4g/hK8M+kJFdnt9G8/uIiaVYjoEyi7RRGv7yCvYQQe/jITzmHYSs8Z4y/9ZJvmVtnQ/+3EoC9YqMyg+2E+5lrqNuic3kSvD9p4G/Wgh/ZaL9JE8DcVOatmnlbCJBz/S/ey/XkFqRWzeWXtcRyuaWdZyXqgj/w6Ctrd3VxPJHihq7ynsSb2b209y5ktCTIqQUzJlk77paXg7rCrJfe/zcFuY7YnPIYs42vZy4KmT6+naVkVGVJ3yfFN6RX6qJj8qiS0hTFY/6YkcpqXO0OKb9vIiYhfLVk8Ji8ub0/IXg1YVkf8+hr3XfC0mK57PmGWoBMdU5X/3D9Q2hjgZcexLBIO+MejePKRUQ6cvuuUJx+eSRHuf4KXEGWTlZpEepzSPjo7KKVur5JKRu82CQaB7h/ySZquGbRwStPzhsicgl2389XFTqyyWf86teu6zPJfskOpxPnMwl80f9NApe0YmpRIFyyCidnHD1s3p3hk7kXbsOaofSSVUHW2i3EJ3svDjPvKtOJ9ILQukFH2hEovh35chvGvGtqae4vqCRjRfdq+QracQh5d6mC/40coD76MvIeBpJKG1oV7OmkdLrk1+i3WjkfpeAU7XOf++5RsjcCRq5d8DHn7KTRnqL8wvT1Gnk5rb2hfOiNML2lbFYKEsjlrnsIguraWRt9yl73w00EvjsR8MxNhpZEDt/zpCbRlZnijp9/0El2nYbjLMWqWTseT8lZJJKuirVdsvPUMkRcX1W8yiVFBSmD/mOU8mPL8kzL4aoZKjOvOPqZyopd/wqJD1AJc+q2Q7//kglHXxVp+72UUmYjaeVWj+V/B+F9wXEAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAHQwAAAAAAAA=eF4Ny2c8FXoAh3EaRkRZoWsUkkRWQ+n/Q64iiVQqIVIRJSOKEBFKykpWVoSic6yDCDnmIbI5xjFKwlWpFKnbq+/nefHcy5obDE0cxffFU4E7hkbx4YFf0aDiKEozLL+WOI3ihW5M41j5CFJuP7eo+DWCxMz0fa8Oj6CnrsYmOHwEBoK5WZ7jLBTkSjcobhzBRHiiooA3CxLlJY8pNBYsslecCRNkYZbTTFvkMAtCIcU/ay2GQXdrfF7YNgxTR5XDMtFDYC7bqPCFYxiKjctfbmobhIiJeSpTewhBbvPWtfyD0OVKyTnvO4hIR6OOuSMDEPENkQupHIC9sJFpZhwTNWYUf40VA0jP4mG0jfXDNL2WYW3ERNtNpsQF1X641AfPL8X242hwLb9lQB/M1sx1L5vowyWeM8aZ3b3oNUkTsdXsAyPsV9oO5V7Qq6y8+O/34jvb4Wr20B6k7pqj/57owcUy79uL77vxLUy8QEavB0vzboPrDnRDGT+UXNO7EfnoZanh8y545MqtG1rZjVc253RCBLuQv0UjxMKxCzEZ+ql0n07Y8V15NNTxV3cVfP3YgQGv1iQLdKL6VFMUj0UHhPU7P9flduBKM2PXn5Z2SBkcVxGW6kBrpgE3fV87BB/M/94d1Q4v3tyPxuVvsffIg/1Kq9pxb+EeT8zOt3BmbOcZufUW+TfYnt8tagPFS879INtbMP/IH9u8ow17Hh2bs/Frg1yghWW1ayu2iUrwiLO3YceS4oZjvm+gG5Ii0rGqFZKtdjt/hLfA892WujDRNzD79lM29kkzwtua7Q8ptmB9Z1mfZCUDgsuf9LHva8YZLf/hG0NNmEkI1Yy1ZkDc78uq5GVNkKk/L7p4swk369ny3RQboX9/2ZP1TxtRz3KKmDzRAEF6sPnE2wbI3zfk/XSnHr3uVmqH2BuwMsG+w6O6DnF8Zkla2+ux7kfX2su/amG19VZWxqU6fNwyHFu3pxanlzIKruXUgq/8QYiLHx3Pvjx+mjlFR9TzgvAz9TXIpi32SqvSccWz9k2QYA2uZj3Z1+dVA4bf+66Os68hN/Zd5XXDa/xS+9ixt6Qan5yCnN+Iv4ayQhhoa6pxIImm/vlKNcSkGbwal6pQPqFiLMmowpr6hXWmCZXQFvnRbqBQhQT1WU1Bu1co1rz+qE2kEptW/vv8kUYFhvdEGA+OVuCoW4p9M285hvW4tJ8Ul+PIn8288dNl8BLb/W5N5EtQwqPqZzpK4XQ4lo3/ahncVymrFr4uwYZkrl93rEtRv78wvb+EhmQP7nIX0xK0utIDjIuLoSVBDaMY0pDtzhmzVFYEaS3G6u0Hi7GCx6Wjq64QaYcYbDNHihB39YRZbV8BtAq8MutsCsFF5VEpm8tHY5nH0gvPAnzlXu+eJpQPr9Dqf2Kj8+E62PbOUYuKnQ/Z2S+WUBHrNW67wpGC9u6GqyJjf406oJ2v/QKjJ2X+hApRMOUoxJ1XkotElmfw2bg8ZH3d9Llz73Pc9VeZ/SqSix9F4hm/W3PwM2vr8ZTUZxAkySHsztkIrBM/ulczB3wPmqLzxbNwnEfXL3UwC0/sqzTftWei0VhXOTX8Kc4ZrddzjM1AurSQDL9RJk5knasTsn8C9iBp13LhDDQzxzkoeun41Bl06dpUOj4emXPhVkqDVGxD9JqWNHzkEIqYkk6FQ5F8qElZKgaDD7ZISqfALJvGsawgBRFlas86jz5GgG0Wve9SMth1VOLl/BJRv51HLO9uEo4033QvfhWPT8nL1bkrE3DJ52EZt2Acan1vJzhzxsMn5lrIY+9YTLQxrWztHuFdQlbdp/kYhNVf32Xd9RAXs03PXg+ORgXxqWedjMFWIfmoPIUo2E1uYVh9joLgbx2xFUMRcJLoP2+cEIlNWrtjptIfIJJ612mjeQRogqa52d/C8T7mQu5B2QdQ2+p08TQ9DPFBYY9dV4QjQCG1tzH/Dt7LtRjls+4i76nKXFNlCB6Zt8iqDITizUv1hZ0fb4PPd8NL+rdgCF5t0phUCULGc8k9B7beRrS7RgEt8hZ4RTUVonwD4TLIx+/LF4D/KHdk/aYCIEDj2CyWfhPCdbUZEy7+2MveWvz2sS+sHaZLc9bcBGOd4MVU2RsYqPC7bHbPB+e3nJl37boOpilHd5ScN94eawj854UnAr2YPh8nruGW4IdngS+u4nRZYfb2dg/4i327mNjphqXTYsrWo+7wEM2YsvnHFVe5FrwtRdzA6S95YSTwCjLuq0VpOLlA9pkky1H0MmYqD9FmapzBL1GlJ2TjiFsx/g13p5yw4WrwFVWWPbYxmvkyD16EQZ8d96nI8zjFHTNZyboA0dJr2frudnBeFO7wf3oO/W++O7QH2GKs50PFs8SzyI63JItlZ3DFvoZfscIGc4rHdejqVuB7UxzEy3EGae2XpB5qWiBCxrztz4fT2Dj+akg74ATClipnXvCcwj6dus8NXMfBy73zhJCzOe4ki50MazCDYshr6mm+Y4jIM6yVrTCF8Fnb7b/Gj6A2/lpuP/0wJBRvXMz6zwQUvtRpdgcjlK722vnC2Bg3moU4XawNIHs11DdM5CDylOTTTVP18SP6RQdF6QD2mlut1tmsh6xTC9VB9/5F0g/bmoP/6cAywGlD77Z92D+j2zXDBE7GtPGM8umAwhO3nENPC8qNsA4zJIi8EetwjUcTcsoTvCIDu3Hy6eXpawo7MJGvNaTYuBOrJXRZkzHquLN2PM2IeztQ9uXsEQNVvMtlVFdEq8H/Ctfl7OvKEJEZFV9jpwJWAS0noHML3K7ZNQeMbMVvwSbHHbHyiBzXY950UMChuLB+D5osirNFndiPbcIj49MN2YobcUB6VnYsTgYpP29tkO2WwjNHW4Mp5Q3Q68mx9mOux6SoGoO5ThLzyyTD2U6Kouzc4egiU3EYyq+4L6ArjEvcBfPcv0UwvHIn4b0jACmJeyut1ghhv1KeR+2mNQhqWS532Wct6Dq2r85K8OKLm6TlZg8+aK9K8vF25YKz+FeGrv8qvKsvn3feuxI6Wk5OS9yc+CN/8oOVyzKoZ6l5RixbAXu52LhtbGwwPyFWNGDJDlmJWlpy5SJ5+XJdiKH0b9LP3GGkz/OD9DisrZqRWCBS+8UozI6vhMaya3dL+U6q1MOCp7i/EMtD19Nk4+aIWbk97Q5mCW+TwKjJz0/EdiQ1LFFgiiy4DEl8uTBDRCxdDHM9J8iJJd4iHe9JMnqaunnCYpyU8S0sGom+J0q+Z5m0vBHir+ToukdpjIQJMLU31gyRFhter9M5LNJrMFxl1dpPqp/Gc3UtHyTl88W9DMceEnArWifrcB9Rr49pZgV2kuag6lkhmW7yeTmlPYK7nWxO2hOY7dhBLLS3yq/qbiVJGqoZJmJvyefQVrXkXc2kU4gFQa03RMPQd9ZVtpFkrqv8bsJsIiZaC8vX3q4jvEGhc5qL9SRWImA01YhO1PZ1NPiF1pIHa2NaHjq8JlLi8XxGHjVEK+bfIOu2KuLaVpz4qaCa5Ok+1zOdfkX4p/XZU3dUEalz7S770ssJFLcE2H+oIF5+ZqzoojLClufENVD/kqgee510V7iUHNV3bkj8VUqgWvDPeRqN2Dsk67deLyH8JxJyRCKKyeMkHkNXDRrxNq6J5YwvIrN7tDZIyhQTAV9P/ommQiJcWrO5eW8RiWR2llyXKCTmVLakDJ9CMmYRauIWVkAe/Bzu6x0oINMW0/5HBQuIyX1XXffjf5tr+uShvHwyfiBESv99Puk5/6RK5lQ+6ecv7KkKySfFezk8JYTyifqZzq+ju/OJI01AbqaPSiwuc3hvXKCSBJ8SgbRsKrlbclPGgk4lqq15qvH+VCLxJle8MpZKzqZOKHicoZK62fbpRlcq6eU+Lsv/L5UwrFTNtx+lEhu2HLHLyn8teFYxu5tKuDkV3OnrqeT740A+oU1Ucnx31NA5XirhXOyYGBWikjtLh+Rr/lBIUhJzsJyDSgolt6qd/0YhEe4lbRKLFLJqUl5gdppCOCQNzOM+U8iuo9viBd5TSNE9HafeSQqxrXwpnMCikCfZPa2Pxv5+eXHhTgMUkqLUy/9iiEK8AxKO3++jkCmR/4RWMylkTvnWCv1eCrEZ2NLa9tf/AQVY93c=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAFgsAAAAAAAA=eF4VVnc81d8bl4qMjJSVEDklSUbd1E+OipIi4UaIVBoIIZWVrRQlK1lJRlpmSC5lpa5UMiqFL2WVUvh2v8bv7a/z+pzzPM97PM859wrVNV5mFxL6aU29FikhdCbizBOdGEL5XBNb1J0I5THbXBVpzVXl8c1xz1ucN1/ff9fIg9DT381ri3QIzXRJ9fayIDTygm28hjmhkxKbYz995aoaa7rfWy0/p2r4jnv4dW9CjScEqi3NCP2g8f5P6WslamBx52UO6luP39KJukXojZrclp5DhDpsHTU64kXoq+6l/ZfOE3rxUcyw/WVC/UIrMq1DCGWT/8Yy0whtV82veGNM6NDqlK3UhtApbnaqxm5CK+wZ0x3YPy5Q88Y9itC3W9PUlRMJTVfILLvqTmjtvzkTAUGEzpEP5xjemWFpPVmkcmsf+Hk+Zt0CzrY4m5d2EYTuEbSPEzlFaFRFW9Wzw4S+eSPMMAffRdKhEdxHCa18Ls47N4DQQ+s1DrVmIO5Z5YBbI1dVfXR7iwbwFg13mg/smlPl+aTnalokoSH1A/lR9oR+6TdaIEgJ1ZTK815iRWgP3/jfZ2GEJnVkc4k/IpSX8LfuOwO9hWLmtsDTtovacHJ0mrWVra2n/oGr6m2P5LOlyA+yVwzeDN1mLkH9btfRl5lLe7qjCX05Lm+7t+4vy+jQMncrX64qtuUGw6MuXFXaWh8SrrlMsRpcVojZo08L4p08D7oQqqYQkpGiRGi595c2rVhCx99cJiHAnVz+8NEKV0KljNirko4QWhQsfctWZop1eJnt0M7lk6zB1C2yq3H+kDmanIt6WzmLqmf9fZsdu0/ZY06Vf7LJqdHJaZZHTl0xx4DQd1EhZ76qcVjq4zcc2BcI5QxIr7oP/xjiHa18Vwgd/SPbJRtKqOPWehNx8Oj6KL+wOhz8vkdHsH0JrSv37/HdNMkqX1jZcvUcoS8MryQ/l/uPpZYoeSAJc8J80V8eAj79eVLdC03B2zuDLQd/GtRGtdIx39P6Ed+tDnFYgeMxPX7BhPaK/9INyyOU27RkZRf6pa3vUCqSQKhXadaL3dC7sXUXZXgSOrHxm/L0Gg6rwTytshjzNBF0oNrpKqF9c9l3zyE+Ljuf6xzyv/kVvByGDnPRfeTDXUI/c97+l7uX0GvDBTIBSYSqmu/erYR5yjmv4PjYn1BfY1uef5HPDJRtGtxOqJH6WTVF+PFE6fnQdR/M/8Y+MX/4tOiAdMJb4L2pnS4cukTo4ldG22uQp7cuRugK7qG+t8Sip5ivLc9GSDHmd8XlkvKVjsA77qCnFg+fxB6mPUPdGzZmfc8LCFUPaPmS4Aa8PtJ+F37LeoidCcf5MQuFPfvh9/Fb+ZYrUU/BSvj2BvT16ozK7Xt4D/quj/QpQb9vxn+rHmLeDLLkg3jAs+eiW8023MuuFPWwUPBz8V2osh7+SkTO8dyCezZf1Xl7Iu5TrLWP8Tw/9LFa4vYA1hJBjw4RxF0yOamQF0co1+2lvH7Ylwy0l4wHjvqRidrZ+75S5w1LGnrvDS75nzd8uG2hcTkOPBlT5cU5uDc+bd03b2M+fhto13wCfllpgWMY+P+qi3hlhbgBhyMdyy8SmrvjW04j6nhridVwo07QVo+7BtA9YijP7gKP3YV5xb/Bt/GAYUouVjNBfZWKa4Sm9gfr/gwktKntvXUG5vJ7JF+3GOpdZJ+4MgOebNa6SHX0/zVDX20T+h8Qet9ABmvdQXP1Npyvb2aomoAXn91Pxj3w0vRSmZICDzklxbp28MscCFF4jfnV1fCf1w093vVefTKopxzz1kYfvtXHOntnAn+e9rEVrcgrV+Stjj1LqNDYkUgJ6N7G2yptDP/yVjgPisI/z96qU2zg5muUr8xEn75qhsmE49uRbzGDiTo28s6TPHiPWUEFno+BZygSLhcI/WtaP1RuQp8VVLSkn2LV42lffR/4S1xuFp7EXOkIly1Qgq6XbunSFYgv3TbQyI97uGhvevIQ9gXP+zT4QyejVUReC75+2ru05z34bXyQo70YfqptSrpSg7XKh3FC9Cahy5L024vAS9mqUK8YOMuEOl1CwaeQjvRKo14GU3NBHr43NzvyjuPceTAlzgv94P2RuikKOOkN45wqzIcfYx13Fu5JYqNq7Azqrxbojh6GzmtTL5m1yDsvPtE9H++iaOPMqx/IP5HrNLwWvmTlmrob3iDUKv54kQ7qNa01puLQld2g/HkMfQrjPSVpAR4jVlI3E8Hj0s5Pehsw751Pig/VAFd0IeO4OOKWnM771Ym695v2aAZjv30kMjcb+yKCJlmO0DeXPHoXjPyphrC0eMyNePLN4VH4IpnjVG6BuNbpDm4fzNXThk6ldJzvX76znu807vFrNnMacxG3tjlhI85TJ4YDfoDP4LrxBDb4SmyTVChAfvTydeFWwO23Fgz9CDzXQPVzudAV6Tm/cAJ8B88PGMUh76KA+Ltg7L+yEXrVhvyxTa6Wx+BLo7CurjXeAbfCAOW18Kt4Z+X4N/Bwmf955C/ej48/+S6wgOMqJ/xZFXOZEZLEO4P3q53btGUl4vYuEYk5jHVwqKC2A3yfizwJzESdpsUSJYOo25mywGUjfO0i+hIRKZh7f40YDupMRmddjZu9v9RJRRD1tTTY4pWYX/dqBucf6OVPkU3sBb8DLn73rqQSmrDvbAED+rSdy52PIZ49zM98AN2KDr4++4HfzPOT+RM4RY1CzL+YVw8d31Oa2N/G8finH+t940f5PZjrL6bLeO1Qp1Vg0lQA+2U7ZqKd4c/JEX7+s8n4PY+2cRLDffqeZbnJCT5lZA3pnpydz8uD/BWoq2LLVboa5x86Bi2s8V00JtNvBD5nLE+b3gUfFZPkVavBY2EhT3gBcITqXD3XAsexUW4gGuvRG9b9R4FH7gyVKUF/zxL+4ST8PmjI5dmWwy9FPv7eLMynYWxW/QzmOKTQdFsm+hA7cmSzCN6tmeqYTwmIs/xUGSYOPYe4ShNn/69tuZYeWYI5FBOyvtuF+Kg/0cKngXc4XuPbZfBbfDjL7h6+F9yIdI+A//+O2Q4bw9/5ypJBAXhXKo7t6yiHHsfp5i2y4NXwt2e0Grrn9t3W3IH8sgYzrgjUbwlcXTbrQ5DMZ09j+OO3szCgFPuFWnKua9A3KXW5LCnoP/C5pVkZ9Z9+77qxHHxSHg/7ZeG921XSG3QVeb6uzmk8qLPkG49eAPxYO/9dGAf741aJgmbwd/1B+VNT0CuTUamxCnH9jKM2rvDTrY3pdRh1L078krLCPK90mGPrivxsydBV88H3a8eCcW3ERz9PEDICry18k+3rsB8+917ra+iMcShKDoG/n4XfzxPFt3oqV5sk+AUxOZKa6F+vnTW/M/xZe8X96+ycdXhGaB5EfWYzW247+JHjPx46w0eZLeKn3uMexCjTHX/A51hvj6cNcPwcWXHuwE1fzldtCT/6qE2nKPalTM75W2Bf+HG4si78Nch/ovgDfcw+5jhVCb65OYeL1mP9vYqTlY+14/weLi/g2v0+4bAdfpiN1AR3g9+67V++RwPPSm2y3Ah1mA4tAkx81wjoPJiAX9xFSTJxwJNVFS17AX/iLZxPzN6v+7puPP9Ar/vLYmUP8Oifx3kggPptvZJz7eFr7c7WzhfQ1TJa2+QDnXf01HsqsT73MMwoRz/TNhiwL2DOTu5q+jGJVcVB3LBk9r3kLHP9inprTLSaN4Of6pCTcQB4PK7P/jiB/PPcYXaKqBv0NEpxH/K8t88b2494J5c58brg+X8XQWKxAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAlAUAAAAAAAA=eF4d1Hk8lVkYB3BLDEVcLbIOMbJckfUmPZVuhqn4DClbRkMoU40keZipJJK1bInGljaFhCRbLi32JRHzoZREmjCyZJvnnb++n/u+9z3nPOf8nmORV3Z1vBOhIOf81L+k0ZBG/vVWhM1jnbZ8zQhPw4xqXOoRGldarF98hvCyiK0RWYMQvf1iofwThCu8Q7w75QjWn06yOKUIt6JXcGuKESYST8ZaP0AYNPJY0p2HwJ6bL3G7ixAcU8UbuYXgPyRl6peNoKf3kjOfgXBQMrw15C+En+d7FMRSEBKW+xjFJSFMLi01kI1HiAvy08uIRXh7NHmnehRCTNdCSl44gm6SpplxKIJ+LcelMhhBoUlAyuI0zWN7NLg1EKFub+8rp1MIheJjGwdPINjm7ur29UEI7X42zH8U4YRHaealwwgf2gdAxRMhw5Ir8NANIbPohtFuV4R3/fvZH5wRvDc8Mg12oHE9418o70XoyFKCWhsE6Sph1hFrhC82XjyZXQhZKeP99RYIvZ9SlobsoLrzj7wzM0P4o6FLVXQLgponN7FzEzl9RiKPQ/seKRQQa0j7uqOhMUgPYfwAR9ZPB2FpicCfyKZ1ga9WtAZCrqWC1301hPnq3sgBFQRnOykhtjJCdsAa61BFBNGbvd++yiEMKPbfDpJBMBbSF5eXpvfJsgMdKxF09PsXcqQQKrmW+umSCK8vWbkXLkewMBjBYTGEv+0j3LnLEBYVZyVqRBE4UZGHvUVoH/TQ2fQ7hNs2jbUcYYQZwdX4qxDCCP6y+fESBDHTfZVccrjtTRIfeTa23mxUEGFZWpLcKvr9oqTM4XdyNMheTJC+e/Zbyeomcn2aMbuNxrPihjVK0Dz75dV3hNG88SPHrnNoHaFnM56oiCMkyycYWkgguEXZOmazEErm5i1NqJ6hPMdeIarvYkVLvrAsQvlUn+wmBYSybf7GGUoIFXxp741UEVZo5tbOrEPoVtcyH9SinOrbX5uj/fXhjrcaGdD5GlytuEzncIdVsVp8M8I6jWbvzG2Ux8VGPWtzhI9TBnUSO6l+VZEzb+icRSOUrpTvQXCc97PJojykHE4ei3KhnKlMVAVQbvKVheXcvOjcTvseMz+CsCqgyULpOOXdgd/m80mEnQlhTncolx43BVz3nEHYFxh64WMIQum1LbrulGdl1qPBGsr3KVsnf5HLCG3diW/ZiQhhCmbuulcpx++CA1jUJ3Lekl1N1DeOFyaPe1IfbZ95cqqb+qrPb73NOuqzjD6n9N3Ud8YHEkx2F9A5FhdqqRUhVPNp53U9RNBMbdI+SP1adtfKpKGM+skuNWp5JYKlsYygNvX11tryeHUewsKAwT6BWgQHzqzf46cIUSPxOnbPKSeT7a0tLxB6sncV69D9MK3zGXwbqD9U69tSGxHuWWn03GuivKYVVt2ke+TQRpGhiBaErhTPQie6X3xMagPXtCE4pfPH8EiJxWP6Lu0IqnFJmUOkc+4GUc+XCOElzqGdpL2qlJZpB9V5O3MmgZzPmRkYICd6ItrZrxB+EDqX4k3OvNcUzCJZCwI17aR1gXX4Aqn1ce2YCt1vUw4VkVzS47XhW1fyeOkyrwDSubMjJpq0FBgsSyeLk6Yt88lzYe0XysmDhZPVz8lvfRyTNjLuRw+NbnLs/KuaN6Su7bzJBzK9YaxwmJzTGd37D5k127J1jJzVxmjmfm2uNrf/Svp/7/lgkhzibSyYInmSqe7TZGCIfhdj508Fa2ZIUT+WLmNUVZ0aowBXeMn/zzOeNzL/4/XIhDOa3VAzYcyZcH3PjOevkHyR8UuLtA7j9ab77cx85VHdAYx1gkVrGfUKVJqZ9UirdJxmHFC3M2SMlVEcnSDTFvPyGXO+PfBn5LjomzOy2r4oMIo5f+Vn/A8yMgJxAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMwYAAAAAAAA=eF4VwQk81gcDB3ARGkXZB+GlCEtsEnLN/+coj2HVDGUZpvKGx5UZPcndw4pJq+cpR+bKEelxJQ9zRo7H8Zyex0ORzNqmyM3q/bzfr4TE/71Ez9pd5rgLhbgz7n+TYvwClEnXDkxMwmnZ+tP14EmYxHxyVEFqEn7kb//5T84EEh50lBuZTsC51dr6IkuMzF0TflJBYrTt03n5RlqMrvWqdK2ScSS3OSjecxwH7Z4n1WtGBJHf6wJ3qgjhTD2dnw1EmCW7PVtmCXFqKcrqdpQQTPtAbX91IT7qbdvt2TmGNaW01LCQMSzb8mfLlMfAjXRM2WoXoGTSkPrfUAFUhF+uvlIX4OWPMfXkPj6aIlfJW7F8PN6RlptpwMePp+ST1Md5kKgb08rP5CFYVcJE0Z4HKqXiYPAyFx7vb+mXVXKR18da/t2fixJLvkylKhd7anRD/Ic50En0HhWmcfCao5e8y54D6ffKvosbbFxTCBDHN7DRO/OnXEUEGxstiVmBRmxETD+srJobxebdZZuI0lH8Or/QWxowiq/Yion2+0eRsunqZjE5gmP1XD4lbwQbZ8rvffxuBE7NxvNNaiNQlM23NWMMw3p7w5KR8TDo1t1sh+oh/GRkJ/e94RA8V2b8zlWwcEMWvsRnLJyWP31DUDIIB/JigZrOIEycBtve3R9AVJpGrYvGAKKXHqmp0vvxG3PyIUmpH2suGRdGMvrQknO+tUymD0c88tg9Cc8RunaWbrDWi73OWitD4b2ImXFZaJrtQY5dYMvfPj2om3AcusR+hq2Up395kZ6Bux56qJzZjeSj0X/FGnfDIvk6a7KoCzR1Pm1RuQu3r7iqjKR3Qpc7uHVnswMnLvs+uhDWgfIgnvy5qXbY7Ekzr/doR9jnllmS2W1wOp2iPXf5dzSwFNPDz7dCnF349cKpFgS5x8f0gonnpGMCN5Nm5O5nfifWe4rF9w/Ojmg2wSK+aCFJ7QnMYldIzmqN+DLKfT1GswH2K8ZRAfr1qFKiBnia1WHayc0wh1QLzTwtcrQ/A0WNB7L0Ex5DJc2RPUSqwYDCwpAgvxqB+hK5XRJV4PbpS01FVGJLlcGJnC8Hw+Q4o/JyGaaWv9hdp/QAw4aGX5U+LcE7nnv/L2HFsDONC4gwKcKs+YFSQrIQrZEX+7o7ChCfO5B0KScf84vemUa/5KLWN4G4lncPgjoN+lY3HYNWRpxtsjSsauyQXP7hNmo8jCoO8m5BpbMr5JVfNhwdvGt/2HYT1Z3CvEeRmdAyXTWclrsBG/bgbNVgOuQTVFmeDVT0hdDmtLpSQe402e68lIyKq2cs9pCSkB0nd40SlYB+mm30Z3fisLLgK9Xz9jICvJ32bk+MAenI0EyxQzR0pzvvx5tFIZuRJqS6R2KDJ964bRoOfpBh15wCGXonHqvlmgTBZ4h7PI4WCEv7GJk8y/N4LiUNl08D4BVqvl9Vxx9ZZCGjtMMHTT81PVGjeyOFzsjQa/VCuNjizwkjD2wIk+6zXnyDdzNO0a8KTkL9hBUt+K0rFL14JcJiZ0Rm3pAqrjuOkBBG/pqyIyicN20dnXb44smbXp0LtqhPLdxp3mqFssFhmzNJR3G4qe6SxgNT0KM3KanaJhiLTmDt5X6OhRXqrax5A5BaDZp1U/Sxj3LzlUrqAbjX/+Ep/Xo/RPI8nXJzTWSUZl7VslCDf92zD4UtyqBkx979plEJH+ZEep+o7EbekcPi0PvyyBU/bbpYLQuvRjbN8fh2nBqIT73usQ3/0AIWauj/Evu0vbytbdaJpEIP8eSVZaKXbGVaf2yRUPzgVcOReUvo1slGrJ98Q+x1XuqYdZ4l7k6JFByE04Tvme+vMwUviHWPq0erxSJiw6y7ObaQT4zyeCXpchxiNfd94Q6JEULysHwbX9RPML6uOPhvUg9RbNlLVRV0Eu1F13L2JLYRtU/ajafcmglJnfiDHvMNxKD2C/NGx1qip6ar2CngEXHi0GxYk20FoetmvuvcQgmxMz/HVeZsIZFRfohJYuYRHx+evPRzB51o/lu6qq3gVyI4TVbQZ3qTeNlpUM/quk5Y/JHAsjOgEq2OzuxNSjLhw6NoWvskEHo74w5cLL1C/A8a4xABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMwYAAAAAAAA=eF4VwQk81gcDB3ARGkXZB+GlCEtsEnLN/+coj2HVDGUZpvKGx5UZPcndw4pJq+cpR+bKEelxJQ9zRo7H8Zyex0ORzNqmyM3q/bzfr4TE/71Ez9pd5rgLhbgz7n+TYvwClEnXDkxMwmnZ+tP14EmYxHxyVEFqEn7kb//5T84EEh50lBuZTsC51dr6IkuMzF0TflJBYrTt03n5RlqMrvWqdK2ScSS3OSjecxwH7Z4n1WtGBJHf6wJ3qgjhTD2dnw1EmCW7PVtmCXFqKcrqdpQQTPtAbX91IT7qbdvt2TmGNaW01LCQMSzb8mfLlMfAjXRM2WoXoGTSkPrfUAFUhF+uvlIX4OWPMfXkPj6aIlfJW7F8PN6RlptpwMePp+ST1Md5kKgb08rP5CFYVcJE0Z4HKqXiYPAyFx7vb+mXVXKR18da/t2fixJLvkylKhd7anRD/Ic50En0HhWmcfCao5e8y54D6ffKvosbbFxTCBDHN7DRO/OnXEUEGxstiVmBRmxETD+srJobxebdZZuI0lH8Or/QWxowiq/Yion2+0eRsunqZjE5gmP1XD4lbwQbZ8rvffxuBE7NxvNNaiNQlM23NWMMw3p7w5KR8TDo1t1sh+oh/GRkJ/e94RA8V2b8zlWwcEMWvsRnLJyWP31DUDIIB/JigZrOIEycBtve3R9AVJpGrYvGAKKXHqmp0vvxG3PyIUmpH2suGRdGMvrQknO+tUymD0c88tg9Cc8RunaWbrDWi73OWitD4b2ImXFZaJrtQY5dYMvfPj2om3AcusR+hq2Up395kZ6Bux56qJzZjeSj0X/FGnfDIvk6a7KoCzR1Pm1RuQu3r7iqjKR3Qpc7uHVnswMnLvs+uhDWgfIgnvy5qXbY7Ekzr/doR9jnllmS2W1wOp2iPXf5dzSwFNPDz7dCnF349cKpFgS5x8f0gonnpGMCN5Nm5O5nfifWe4rF9w/Ojmg2wSK+aCFJ7QnMYldIzmqN+DLKfT1GswH2K8ZRAfr1qFKiBnia1WHayc0wh1QLzTwtcrQ/A0WNB7L0Ex5DJc2RPUSqwYDCwpAgvxqB+hK5XRJV4PbpS01FVGJLlcGJnC8Hw+Q4o/JyGaaWv9hdp/QAw4aGX5U+LcE7nnv/L2HFsDONC4gwKcKs+YFSQrIQrZEX+7o7ChCfO5B0KScf84vemUa/5KLWN4G4lncPgjoN+lY3HYNWRpxtsjSsauyQXP7hNmo8jCoO8m5BpbMr5JVfNhwdvGt/2HYT1Z3CvEeRmdAyXTWclrsBG/bgbNVgOuQTVFmeDVT0hdDmtLpSQe402e68lIyKq2cs9pCSkB0nd40SlYB+mm30Z3fisLLgK9Xz9jICvJ32bk+MAenI0EyxQzR0pzvvx5tFIZuRJqS6R2KDJ964bRoOfpBh15wCGXonHqvlmgTBZ4h7PI4WCEv7GJk8y/N4LiUNl08D4BVqvl9Vxx9ZZCGjtMMHTT81PVGjeyOFzsjQa/VCuNjizwkjD2wIk+6zXnyDdzNO0a8KTkL9hBUt+K0rFL14JcJiZ0Rm3pAqrjuOkBBG/pqyIyicN20dnXb44smbXp0LtqhPLdxp3mqFssFhmzNJR3G4qe6SxgNT0KM3KanaJhiLTmDt5X6OhRXqrax5A5BaDZp1U/Sxj3LzlUrqAbjX/+Ep/Xo/RPI8nXJzTWSUZl7VslCDf92zD4UtyqBkx979plEJH+ZEep+o7EbekcPi0PvyyBU/bbpYLQuvRjbN8fh2nBqIT73usQ3/0AIWauj/Evu0vbytbdaJpEIP8eSVZaKXbGVaf2yRUPzgVcOReUvo1slGrJ98Q+x1XuqYdZ4l7k6JFByE04Tvme+vMwUviHWPq0erxSJiw6y7ObaQT4zyeCXpchxiNfd94Q6JEULysHwbX9RPML6uOPhvUg9RbNlLVRV0Eu1F13L2JLYRtU/ajafcmglJnfiDHvMNxKD2C/NGx1qip6ar2CngEXHi0GxYk20FoetmvuvcQgmxMz/HVeZsIZFRfohJYuYRHx+evPRzB51o/lu6qq3gVyI4TVbQZ3qTeNlpUM/quk5Y/JHAsjOgEq2OzuxNSjLhw6NoWvskEHo74w5cLL1C/A8a4xABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAMAYAAAAAAAA=eF4FwQ0g1HcDB/DRlKZ5HZ1I5D29UEiy3xc1KbSzGqIws8PwWBQ7b0mlkpet5K1GL97uhu5/5GVRXpK3Y1Scl+O605WkISUuPdvn03N6s937CTGOR2cV+UeKQbaalwTJiiEwfmn4dZYI0ydDWmeNRcj3vHo9pfEZ+Lmyhv8//Ay0smuqLIEQDQk9gQpqQvw4Hpam6TaORXe98Y7UMby7EfSlIk8Ag66q4DFlAVqnXV5uOjIKmvZyyFTRCCr/klQrvRtGuaFaeIbTMO5L/6Z7Xx+C165x1aD3fAzwQmPK3PkQsqL8VKlBeE9pl+eqDSJWPiJqG3MAgUyHni7RU7ywaV3j5/YU6sa8zGf3nsCT4S7Zs+UJTBJsmhNuPsaK36WfkmmPITE6X+x8uR/ZMd+Ntyr2w6VrWH0qvQ9JciV9HKU+WGocv6Vl8jcUWc7r/rHqRaomw6nNuQcxcnsm0v15qB5T17JK6MbGzKHIsoIuCERzywMPO3Gnrlm/fKYDRCp8rrmhAy3y8TmKh9rBoNfoxV56BJXhMLFrRxtS1iwVxaxuw8Fy04rXBx9CstK3Nz+3Fbwlb+uYFy2AKL0kyqYFqdkj1mcymqGbHJKWN9kEg3TbP9hOTehw3Nb+vfsDRFntdNdZfx9SZ55B3mwDJk9/y6C672H5qAnnu8q/8LV9nllIbj36f+1niy7WYdHtgSMruRbPo2wjKpJrwDDJE49evIsB+QT2xtxqrNx952FERRVSKjocqE4uKpPYqgPTFHpKYsw6NSjUlaXS4vZxEPDokiPnUyWy9A8dyGdWoKGj9m2abDkCpwrW++eyYXegUGPKlgX2QvzEv69K8cHjyRcni0tQOZ8cqxVeDNvP1SJb7Yugc3P/8d26t/HDnIUZXeEWAhxm/HkyN3Ht1AidueIGOiourLXTLUB/bcTIvwevwylPTq3tcj58uKNMpde5uM8bTvTzzMFstyFzO/8qbg8oCmV/zsLUuuBzzkpXQN9cJPn10e/g4kPIqszfoPgmKKG7LwPSszS6fFEawoeomtvZqehqXFETW3oBSR17y0IGUlDgukrquuEcgjfRXsqcPYOzfZetgmSTIRd3/s2xvCRoSNzXZmUmwiU/lxhrxuOIc+u3Lj1MLNGP1otZMSj9snhquPwkToSLnEyfRiGDu0t7cH0kdI1+Sp4//wtsPkuzd9L7H+Tdhu+YhYXCI+4cRXsTjA0x3CXODQakni+Nq88EwnyefLX6SgAstrUv1XT7w+sjX9z7vS8OD5lG9vn4YMpTMrKvyAsq8Qyh1yYPzFMuaYxXh6Bp68lSH3NHzNvBwy4ydKTIa306VuSKTh3lHMvc/bDcshR2hO8E7YsZetE+exHFly6W6Thi2tpGJVDLHkVl5WyjPDs0aa+PW/DeBZHCvV+io6xR56X0vnBkBx7ts2p4fsECHktO5qozW/FqV20i3d4MMvYvJBukxmjvOlD9UcUQBmtd1VwSNyJ9v89CmLUuTikY2oYHaqNSI2Gr1wANDpGOAeu46lhIihfqzqhCZU8pv+20Mnpk1FI9mtfA98ZZZqLcatzyyLgd0SwHyZa4uaAXsuDyzPkngz+DKKfMQZm5TFrm9LspziLxFg9ZhjPeE66c97PUS2/JpLN0xkJ1llRoc1wdBa9JQcLhn1abTpKA0zLHCz88J1TU5rLtO8XEgH8kep4Ski+iWY3vCkeJasOJQbbeEDHeK7E11x8gtsw3+gZXHpP65FRDv4A+0sT8JshvVQ8p9ZXU7uZ3kit8tmaobjuJM/yYU9H/kLwbZGdrCFpI7x59dvP2ZlLQ9Xa/7tUHJOCU+7RgRyNR/li1xsHiHmHmFbBMTtUT6fgZlxMqdcTm2jbn1rEa4j/c2Gs9epcsvJqtt5O9Sw54FNr/4FpNdMprq4yqq0hGqFum2LKKlOxcZ1PYxSVkzrRfJpJLpH8sF+8w4ZKNI+ere6co0rVWb5ZXS5Gnh/4RM9Mp8qfmmC/jZ4qstDeSHnOjyN14mo6vFUWaFNpiM/QoUvdNZZOtCkXui8yye1ZQxGSlppC3yCHjtQol/BkOSZqOPloyySGh3rETihMcsiN/YYuSkEPu7CwUTAg45D+ZlAU7AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_168_t_16800.000000.vtu
index e47032786ab27b07537e5442057cb67452d06a24..2dcd1e594f1ae643eb1c02fe0c4dbb73dd86ab88 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_168_t_16800.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_168_t_16800.000000.vtu
@@ -2,37 +2,47 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="6.035529713e-06"      RangeMax="0.39772352902"        offset="132"                 />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4284"                />
-      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4384"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.252143801"         RangeMax="11.359886552"         offset="4484"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="6.3677258441e-06"     RangeMax="0.7929049719"         offset="84"                  />
+      <DataArray type="Float64" Name="Productc_prev" NumberOfTuples="400" format="appended" RangeMin="5.7438323429e-06"     RangeMax="0.78817754474"        offset="4228"                />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8376"                />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8456"                />
+      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8536"                />
+      <DataArray type="Float64" Name="Producte_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8636"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.3164524592"        RangeMax="11.355713788"         offset="8736"                />
+      <DataArray type="Float64" Name="phi_Productc" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12576"               />
+      <DataArray type="Float64" Name="phi_Productc_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12656"               />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12736"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12816"               />
+      <DataArray type="Float64" Name="phi_Producte" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12896"               />
+      <DataArray type="Float64" Name="phi_Producte_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12976"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.6897310278e-08"     RangeMax="9.9993379911e-08"     offset="8332"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="5.7396657591e-05"     RangeMax="0.10092749908"        offset="10348"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="7.6755263495e-05"     RangeMax="0.49903414924"        offset="12460"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="14600"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="14960"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.5924873781e-08"     RangeMax="1e-07"                offset="13056"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="6.1567053508e-05"     RangeMax="0.5"                  offset="15092"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="6.1567053508e-05"     RangeMax="0.5"                  offset="17236"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="19380"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="19740"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="17020"               />
-        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="6.0823452762e-06"     RangeMax="0.39587943314"        offset="17088"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="19232"               />
-        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="19316"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21800"               />
+        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="6.4179215253e-06"     RangeMax="0.78813603499"        offset="21868"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="24012"               />
+        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="24084"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="24168"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="19400"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="24484"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="21004"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="21552"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="22064"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="26088"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="26636"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="27148"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAABwwAAAAAAAA=eF4Nk2c41gsARyNKQzalsnKtjFBK9P8phKIoiUSRWSgrUsgWMrNdGRGyt8her+21KUJlu2Xdrnn7eM7H8zzn3l+1W2NnhxCx2/WBmt0QxGeuxXF2DiK5x/lU0IEhiDEoJq6YDKIsZdR5O2kQ6lUSL3N2BtBbF8wvJjOInYoz1NbRA7hKvfFWq3cAFn493CqnB/C9pTonwGoA7Lpv9OW6+tEo8tjry74B3IhgNda17AePGn3D9dR+bPvqRcUd6IcXnSnllHw/sqgfT1N96MPhfKeldxN98PB7evXN1T5QC71i8HPvg/ekAs2VhV6EsklSR5zoA9/TpVne4F4Ekh98bWrohZxX7I0Tp3uRtH1TnMO8F9efl5jJD/Wg0vDF1UjaXiQmGR73cO0BU3Y8IV7Qg48aO3995evB4PPf5BmdHuxhOyiu3UnGxEX3hkqKHvgFBxVOO5LRL+qWk5VBhhpHonDQCTJ+/8tFUahJRsy88Y5yZzfCFY0lO3e6kfXGyIHpRTd0rWfDNj90w1ubPD8n2I0Ltjke0jrdsJfTje4c7EKerbesx95uvM5zJpX7doHHhp1hoLgLOTKjRVnSXQihsxWXMO2C/CdHbsWBTmg050yHHO7CaIfhFbELnfiXk735R3gnIicegjmlA/ybcoPvNzvg7q8QuXioA3gda2Vg3IFao7P1pU7tsG41W6XtaodcTai05XQbTH+z06bJtkPR+FLyHu027Ikr5RL60Iaek2bPXEmtMDCgHgk82oamWJI9WbYVAYrCpK7XreBvvSi1nteC6ll311mKVihEnDX8JdACDvbC5n6HFiRQ+g/kJ5KwUeV4M/gfElR46+9IHyOBk3FmiMGcBBfn0lbXqGb8olW/pvWtGYGLOvvdWP+wn5uftkEz+o7Fnj4X0QQlFW4vpq9NWF5Ku5bA1gSXdG8p9/tN8B+atSqMacQZ2fC+txON+EumevoxZyPmI5+6mZo0omWDd7M9pQFfHbeceuca8HHG4kCLSAOqMyppJmwaILz1IuheST1Eg30L/Dfq0VhRsM/vUj1aVi78bPOqR621nJxiZx0MtpN1EhnqMXxqZSpArw4r/VzhVG/rUPuf6ejdhVowaj8LWBKpQ3kNz/E8l1pEeIYfNa2shblo6wcvhlqw9nAo66vXgntha6Q/pQZqp2XO9E7WoNc6eTlBpgbv1t/zNjjWwIJ5r+lXcjXOyNGbi9DVYNtwqTXkUTVYjqUm7ntfDcOHlcN51NVIz0g00pKrhtJXuxqnS1Vg5g1c4iqugqUDy5rhi0q48BaHmy9WoitUy4O17BMChAR7XgpW4nDNGkXw7wosn+FhMzD9BNe2Ze2W8xVQ0BjZokqrgNkYZVW1azn0LhaSTOfKwd6ZW27V9BGsv6lKPMXLwZClLNDF8BFOhW2Pbzt9hN9yJtO4fhkOP2f+OdJQhkM1O6fjs0vRbWvhfYi5DBT+UhepKEph+YS+d86oFEvM73XptUr+fDTU9qS0BK/58F9VVjH26hYWxxwqgd2E9hg9TTFq3xUImJoWw4nuGA+FcRFuxVfP99QWweRhME9QfSEcIyWtx7iK8DDreEAZXyEsjA3Yfd0KwZ0SrOHqX4AxMyK/7VsBHBcz0seW8lGwp0o580oBjpdJHhi+mw/VExKn+Ary8eSLv4AVKQ+E8PH/pDnyMfCybjb2XB6m/WMsp/zz8GLmjMWDjFwwp8oEiG7morglc6meIxczzNbudI9zkavFTXY7mYPE/HVVFlIOLMLv5OVwZMMzY25criwbWhIjfsxsWdi7UDyXlJ0Fw2sPxPOZM7FzLPCjbHomKp5yfH7F9gHxtx6X0KV/gOF273ocZwZ02Yw0j2dngNXpyPy8cDoGXm1vmJSmQ+kC/7wT0tDxxXTXYlMaDoU+3618+z10+zn8Cj6/h5m4wqqmXSr0hp57l66lwo21RiQpIgV/P2CN2GJJhcRcxYxY5TuIqQtvuJ//4xdFLm7NJsMh95yvstE7qIanW+w7nozv44OBamHJMC1U7rqhmYTJ0s6O4KYkhDT84h0IToRFSJMxPUUShMx5zcPICbjqU1hFQiL8tWPIHkcS8O39mk+ZRwKCnCrclFrj4RJcLlUS/RYLsZMGI5Z/gzR5f+2WVDyISgWjYvY4/BqPc5f/EofbWxdKSd0x6OZkPmkTGIvklp4AqrBoMPHGK5NVYlD2/SGlpn4UxKdvidygi8aUeghnsmQkKuOi2EZHI1EqttY8zBgBCaGN6PulEUjQ3Sof33gD4cqR1urYcNzfXg2IWwzDv2G7V775vsGAu1/awmwolhZ0PuW6huFHnKp20c8QBDR8yKR+GQoaD21Z8k4wbKWD+OpehUCszPM15+FgeGYHOzbGBePhiFzRPzaBGNZgbe2zDoKmT3mMSVMAPjJOmDFVvIZ4cZqhuog/7B27PVfYArA/0Z1Z690rkHJFxHi9/GBKDtE5LuyLydHhTZXdr8DkJFKgXO+N+ucZxw+E+uDVk5UCBwsvHLIrot4r7g3h1JcXlHg9MTE3SvllzBPN91lTbsy5o1Nv84dAvAdePaMwPlXjhmVngVOej/74nNlah5SXWJ15ruat5AYG5nPrTmKuoKFI+1Yv/hL31vpWBMWcsfplUDLtpguuBZL5uFWeIxoTea/1X6D281CJx4tnOKlzY/uehxNUxqX6bZsdMPmI7zxR44j4v3toWYSfwqrPkVOVzQHX0rILvVLtsMKnYPPB0x471K2Ss1K2iDUjbrvQ2EF2RfCOyWdrWF7uH55KtIG30t0szognyJzPsz+obo2gutXW541WWC27d52Z8cmfbtpN/V4W6NpeUVTpsERqEXttttlD1LDmlPbFPUIGSdpT39IMJrcHK08GmoOa5siNm6EmSIo4apubYIr5T5cVd/qMMBoZsN5FNsZfdaz+X6Qe4Lx4Y8WeE0YQi5BftikwgI1kcxUpyBDtCQMbGlfuY1JqICOVzQB+Qo/Z2Ff0cPdo8ycDm3vYbq7zinLXheZ3mV20P+5C7uWxYZcLOngyqBqT6HMH5vrTtfI8t6FA9WkiSFMbe2UnH9iL3kKBFKPglStaGLu6+Lb63k2MLh2sf2yiialud46+Ag0MHyOyclNvQOTZWneQgDo6j8T099JooEi471eFgxouB2l7e7NcR1OUtNzrgSuw+bEw3qKpip12yR+DFsoQoLS//a5VBa6rzk/mJS8j37tm4/5TJYjEydJZCioglv4ynDUUweQcn8hx5RL2GwUr5unIY9fFuP2/QuUwv5+FusT/IuozuSTZKQlwPJpWIkhAbEGWmtQJGaTkC/sK18kiI8pRQcTzHPiTrOK+7Uhj3Nmwlp9LCsxrvrouTmeRsHzgVvGSJBiO2I/uEz0Ducjeqrv/ikOCfujCWVZJDE1xTZ4XOgUZ8XzzcVFx2MrRC4vQiUB50zzZd1oUChTCsryHhfCohs+DruEk2rse/LQw44e+icGl7nkB6JUv8cis86IuR+yIlw4f6JidzNaaeKBcfL41gJoXu9xT3KzauBBEXyK1b44bDAvJ147u4cCPKJVhUWou+KRsrEy2s6O3j3opJ/4YNs6LKTtMs4G2hue0rd8RcKtohypdY0FZ/1jqyUZWLIZJ7er+zYjVVUOWTBVmbN40Z+r4Sg/hKv1beYcYYZiYYZlBcQiMEVuBnnT0aNBsrl5+vx9r4VO7JPwPQnrFVmggbS++CqtGWWnvA+WR3J8Km1RwpCz8ruK8B+6irFa0MZRgD465Q7W0G+m3Ck6UO+2CsXzy5HImBWjjDDjsRbYI/qlimw21HSKusfNwUPd/xKk6vQLeog3ib/PDY2H9a0Qc6e2sn8dvomtGp9RYYoVIsXpqaZe9SpQfbIv9MfKLoLXc3ykuvExI0Rd7ksP/IRRkDF0OrvwkRo+2y6n/nCPMuvqE7DYXCJ+DKbr+H6eJ2grB6CyfWeLOdtje0pnvRFiy/pd+5yliwzF8QdV+kjAQOkhD2/eNMBVYH8u5PU6YCEolzXtNENf1fm1vcIwRwUaV5xwCvhLrMi/oGuU/E/vlfASde74Q6/y8428uDBMdMkWnyWojxPcdncZo9SGijIlniqdoiPgf5ZQNBA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJAsAAAAAAAA=eF4VVnk8lVsbPclFqUQjkiS7g1JoIKptigznGkoTZZ6HkqkIDYqoYyrRQS5JmfpwdQnnJEU3FIWUKZFUKm4KkW+dv97f3vvZz7PWetbe+zV8piEXk09otttkavUNQk99/ax64BShHnMFsiVuEdo4PFUTqTmLd7iybZ7eP4R+y7crq7An1I2jnLPRjdCytrpD864QyrD0KmJFEJq1OPJaLIvQOL8DC90PMXiz5crmyUUSqh5Tv1goj9A9j+2rsk4SaikrXVTbxOCtX9e6bbkdoa7nLplVob7meMc9HkUeAa8Ro3hCo1hO4alihH6aval3upPBk01tXVBdQqiJou2goDuhq7YPLOzeTWi/fuXlCjahz/cWaO73IHR0e6GpQAqh7+QKowN2EnrW0Kv9X+Rj9AS/PIW4VV8TQnx1fnOp8saHcohba1sx7uNJ6PaWFq2AbPCSWdeov4pQotayzK8A+10lxx0FBXiMmzdEi8DbQz17PeMSofY9lwb+F0aowmicyN1rwCkUflUjmdCE8tJX9+4Q+nOzrs5/PtBV746KdimhL4yfybueJbQ5+fXY5UJCzzR99Yhcz+CpKLgE/gCupHDjRU6JhH6J9hFy/pvQsVLH13c2MnheYVkOW00IZZnHro4tnuKmLu2UYh8itCEzJsE/ndAJtc3Zh9cSOv6PuspUAqFPct1Krh+b5OrcMFB0C5zh+r2I3PRUhVCD3MvVueegw2PmIAf5PjxprHkeR+ivFLGlj1IJvdOZ/DIL/QztmCs4ADwjPnmZewqmuSamt/2F0fe2jnd6utd+c02ZsZn+c35x5zdzSnxQ19PwA2cF8igJNRTG2qBvYkRbKozBK56vpD8NP7j3eBePV0xxw62WDyucBk/fYi2Pi4Q+C//mrbuJ0LcFwhL7DhN6Y2ulcx988DlI69gsrD98L386zJXQYea78vAVhEand3yUBu41njZ6O3cQWnVuq1xADKFFQRb7JaC7aHnGGe8cQveFH+XSYEKtd+RZacPfu6JLc/+wJLSOdkuWI+/Zlbsuqp0ntGYVxzQ1ED7PVU86hD5eaXjDES6Z4dYMmw6K1k5z335llWx7N8O9mXU5v9Wf0J2tjlcqEbdh3PFuigyhu20UohcehE6sZLnlZwgV+r67StHwN/fS94gD1VaEVs7UsMVDwF/NR+QkvmfEhhuWRxMabn9X5if8pmj5914H4H+WckTPDr4dLDsa8ghx4teEqwPhg1wjdzYTeT2KGW3a8Buz6PagdSih91zNI6T/IrQzb+7bK37Yn7lI182R0JiHRUEj4D3VOtf9B+JtVLP703EuNfQ22/L9dtBD/YkC+Ddu9GVOgo+ETZLUiVhC807sr/sT5/JXk8FwBc6/g9Nvb0P46J+90032V6H3EuXGL8jXmeE9aAlfSIgIqQlfJvSBRI5bL/zUtVmcpu4n9Lyv2YSFN6G1mafLg7C+pl7S/GQAfNmxIfFP9F1AfqRsLs6DrIPWxwXgzWFNzd5zgtDDYRLxSvCd+ipdQQMXQgusFBdsB6/xIa+6d8BX2uXR/hQ6xDmWuvkA13DZ0wNS0LGSK2f+L3TSXnlp8jjwPxlS6byJ+2RVyqaObei3kuHISu0kQt/UN6Y1QrfJx/W2R1DvVNCKvPnI+4d0YE8F8I+d+/KzBv7lWKhM7oIfiK+5XQf09Uzb1fXiAnRskt+7D/OfkwXsJ3F+I0Z0pfui0J9Ej4Yz4HfXqueqrzmhIZI/3icCj+WrW0HD4Gt5lsObjXVNndO/TLygl1XZeSfoHzDi6dIJfrF3BP1GMH5rz+53hF66i8aCnKCLruEde2F88zbUbtqMfembU4qccU8V3C5eP428ogMfOkdRX9lC40k8dNDhipyyhS+Dl6149B54DXNCAz+h75rGt1fEQ9c+p0HdRvDNN6vMLUS+XRbNHZrI473QVf4I+F/aFvVsDPUaPo0OfMH+jV1ObMUgQk8GR/u1XCd0tfNE4XOshy6sc+zGfS5UZx22BHosVzbXGsP6mzOPLgWB9+BK5Qp9+KQuv0+mHf7ON2y3oNhHvM2PigPPvK29lt+AY8rsxJGb+BY4adi34d6UFBpTb8Z+J/v/pKoQV+rgIByA9cfXGeHLgGfILktOD76czjbeYQSdtqxWY0aDt1f9ZIgX8EsNbRc+hfMsma3sqgS/vt8hk5GI9S9/N265BX0PatgOhwBXwNtDUz7wrzCtD32K/Im//Wqug6cdN7zbAOfG6l1vugFwJDRcfLAA94nJrb/018J3Osl28n3wR/fcMBdR5NEvyCPpyHNSVWzJc+Br0/M75waexjvHJG2hT4f1dn0m1qdmx35gYt3oofFpDu7pimrZhpe4z16WqLq9QXw4tWReQH/8OEduJQBnK1s8ain8GWciPr4Y9Z9F5a8XhT6ZazUG69FfDkNXsQQ49v2wslbEfDLJONGF/LajSQlMvG8/xFxW8XE6fA+7L4J567qbx8cx7k9InODfHzEn5/Q3w7+FrIGsUdQdDFMvDweOK2skrsqhbpm7cw0rnNAWaS3TQxibshNt9KHP9bo9zreRL+JC/Hw28gjJn3UMxn7D+LRtqjhXwm27ZIwwP7acpRcJX8QOsWTToIO3gkb/Mvh0wDa/jQM+gdwqkgNdmCzhG+wo/n2l0S2Cfu6pSVfqAQ45uxeNxfBTU8ZghOBNQm9d1DkYhn6wAlXX/4Jv6yoy3zwEPleB7Hwt+NdU9Ak7Bbop/YxT5QGftteAPv/9VR0+phyCfGxqHGmB+2KO+FqjT4gbSjle2g58VQJM/WTo97xSsc8I/kl6WeKqiPMV8sBnTy7856O6c2sp+ARLZu5ogZ8Mztv2b4O/9LYHjGby8Zcc2TYP82oOdxlGeDdHhTa4qCDvX51zkpnQm31NhDmNuPc5Mc6vMd+l5nO5C/PeObz8fvApEdprYAve6vJ9900QZzSLUzgLY+PjrLsqwHHhfIjTUeBPP3YsaSnwPWwPOWWOcS3rTagbeB8JS+kQhy8DX0UpByHvOvWPco3of5Oqmr8Q8rQ8Zsp8h79P51ReFUWftN3XzGWjj0Z5+wQDoYPOcQdjvg/SmgV8HXBOZI7OiDxII/Sr83OlC8BTrKgk/xF1f0TGjPDfi/QOydqdwO3tkJXSjnoGSpOO4sDp9oqe4P8HWep6lf+CPkPyy14sAs77GbotUdB9U5xVxBZ8W369MpADbqsxrctjeHeciaA6/xwyP9nrfoNP/PfPEb7N7+NpN+HXGP+bEjdSnEHoTNdnzT9Qh0y1TDzFu7hkhYOkLPZ1Ri3KtgM/TrNWiSxwhq1LGi0Hjl5RXqUR+nptwbLXmeA1/qIu7Tr0t1hZ0quAvNU9Yue4wHM23O93NPjekL2/bz3eh9Ud3fEe8GPvmd2zTLDO7CtdzQKP1eza0LfAFRRfm7ELcQ6h8609UGd5kXvcG9Sdjkt4fwBxxXcWKN6HH/YtyxQI5b/bBTNdlfBh1vuAd/z56ljNNa7oC+vD0F4XjOmn2D/TkGfiwOJMG8THbxkqtsDYc0Pcdzb6+K35mNRW5G9h//C3AK6VPoozgXwfHrcJuQCd/zOIyFyD+PNS/RusMHaV1qlhQJdW34UOZojPTH6sWYi+H87c/OE1vuK97el8XL9fxt7jgYfyHK3beeC58OmkqCbGB4/Xcwi/j9ITMpPQqVhrk7UcB/+z2hlmrKP4LxbxvP4UfEYbg+tVoccWl1lmE1jXq5L352GeqTKvsRv3hVnDEudU6M4cFrrZAxyunteCtXBelc633gpEPbYFHf2IeuFiTQozOK//B/o9U70=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAxgUAAAAAAAA=eF4NlXk41XkUxkuhS/dasmQZbrKFkZ0uTtRQSqSRaywla5ikScox1Y1Qyo3KOshSSE2EJImp7FkjjcrIlmWiGjUoU3P++jy/5/lu55z3fX+X5yKbdZ8jJJWcUj1BvJxutXPxGUKYnbtJQy9CUVJUwNkehPdp3K6tTxH0LFQ8l3XT9/EnC1WdCFuVbyUFdiBIpnwWk25HYHP37b3/BOFb9qdAj1YE7QP9cvPNCAUjlq78JgRV1x0s5UaEHDeOanE9wh5OaNT6xwgv95SKlzxEcDGpu6P5BwJHu841sxbhjv7wIOMBQry7rv6h+wgiUKL/9B6CTt5Ao04VwmfN0V5eJcIRuwtWHRUIIZ1+01LlCFHS47XOtxEUd2ekJZQg8LtMPOt+R7DlDr6bvIHw+rCUIbMYQerUG8a6IoRpXx8XywIEr4ufv9hdRfC3nn/lkEf7+TED23MQZvQ1hqyy6T2WpW3fZyIMWy+LkcxA2OYx8X4mFWEh2WT+UTJC+MfsaP4lBMFg1RNOSQh3HYt6RS8gZDIjwx+cR7CRnnX2j6c6GOF+Qmfo/Z0VV7JiqF6zpUt0ohHOlMfF3ubReW6jpronELLF9inlRSL4hg3ZMSMQ+qaEug6GI8RycttbDiNUyokFKBxC+KHIt9k3BKF/d7daQTDCkr0ZDwb3I7BK3J9L+COoG9ytt/BByPAPGvHyQij7Ty3zhCfCPX+ub4obQtZFxdoiLoLDgYANlc4Io4tOYXVO1MddIgoNDggfYsonm7YjRKw2vtG8lepjT3KabRD+EtA43bQJYcjlTVTTRoRfgx02t1hQn8UHh9s3IOxyt7/QZ0L3Pm2OHTVEcJf7W3ZBj+6PX5UrrYtgpOSZaK5NuuMoeP+sidC1XiD3uhrCJGN49KMKws3Z+m5HNoKWn71MzXekg6m+IHMFhK/1Nomdq2lfSv4OlKE6PYZDLKWoD6j0WF6S7lHcLy8lTu8bKNyszUKYCvIS8V5J+uCUG1WLkG53pPOMGQgdBmm5z4QRAo6GQqYQQlC/zky8IK2feGGcvxzB7eaXmDfLEJaKXDV1Ie40C4mfFUAQ7m3MrSPKxByJuk9kaZSKTxD7GZFMW1qnnqMh3UdkHV6ZlUbnqEQ5/ZNA5xrttDarpHu4NW/9JVYgnMuO3naF3uGd9EvUXlGav8MLnhMTQeNkVnyYGMKtAq27TRIIJvpbPthRfUEjfnMLVK9vcL9HnxzNz1Dq3IAi6Xa3yWMm9cmhdUzZby2CgdCp1CF1hHqVoK88LeqjTxXDmvrdeE1xl7IBwvKhFhc5motfSDdPh4MwG3lW3QUQLAam+Zdontoz+z8N2SKctvdOAJp7RZhobIEj9e+hCEuW9NGgbc9NcEVIEU7IECIdCf20XIG3DyHtx651c34Ix+K46wKDEATC9iT2kC5tw+SmDUmvhtF/jscdJR29z7dpJ10/4R+cWkp699PY8HLtafKjXeFGffLFbGuGjyb5ZVHPtko4EaFOTuZZO/lqu8SWYxHkt4YtOnGM3xA2yRmxjpMv9bSKrXpyERxrNY+JXqP8snxlqEa+1pM/Kcsmv1c0sqe+kP9lVjRcripFWO3cxHahnGjtU6vsvUPzD89PN6I8iWR1a4VXI1gbfxtKr0FQLlF3yKEcOh9RJxlPueRbljrGfYQgn3f9vAjlV2H5/Mu8BoQ1PkfK11C+WfXPLsZR3okk6xX3tSBovp0sY1Ee9t6WXqXfRnVI6bQA5aSTRVKvGeWmkJaiEZtytG2sZvQTsez1xtfVXQj21QaKoZSziaYTZ2Qod20dM8RLiDH8ohQO5fH8u4//3iNqRgUJ6lJOv0tWSUglrhkcdJojfr2Sx3SgHDfKYYZmErt4guwRYqxqd7VKH4JpaluPO7Fj/NUsn9jKDEyrIeaxD+mPEb3XCykx6H8gtWT8mibRPF54ZjOxcNpg1I14q1le4QCxVtb8XATxf8rF0Gk=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAADwYAAAAAAAA=eF4N0Xs41GkbB/Cl5dKbsJJK0zqMkZySQ0X4SkJlRdmGNdaad8u+Q2w5xSbpoIheOY610Uwk5xmDmQebUyeHtRi0W8hpXdWSQzbtiN3fX5/rfq7nue/r/j7bYjrD2YMEU1xv+r1NKjDRnVf4kqpf/SCXdYByg2KHnBnlW20tEw3Kx37lC38NEFTOrbOUUib/L6K9jPJoW3laPOWkw4tAD8rifV4amynVnnnEDfUTFLQ3hOVR9utIG7wpT+S2mSlRekjt02ulBALxfBmLUqy/ZLfSR52vaMvlUN7fvrNyB6V5+buFml6CuCanqL2U61a7BkQ9BMfmuwoNKDdzr3PSfiX46Qv+nbluAmOt3UIXyg7VxsVbvxDsG6yo6u0i0Mt/papAya18usO4k8C76MOiUwdB8+Ss25F2goupn//u9JRAI7nZ3PAJQRn/ROXfjwh0GK0Xah8S7GiV5/q2EbCqM0UTLQRRsWfcvJqpfk3VVwoeELQWD7t0NhIc8f9Ns7eeoMcv4/MKCcGZxBA9vzoCtwc+MYMigt2jLz/VEhI0WsoMdSoJ1MNG28ZLqfmLEwy/YipHe/baS3cJzj2aTT5aQPVXluo2/EiQ4zrDbcgiSFfZpeSaRuD55HH3sWSC3hb5m9LLBAl+noyfzxM8Z+2pko+k3n3Ci88OIYjdd4nO+S+BSE+NHepL7U34yPAgeK//nfxTJyrnHCWbZWvqXwx92rQMCSI1zYc3bKHyol01lioR3Nbv7HRekoBfKjzpPSmB9kN7zPwqweJBx+MyIsGbYG3OKb4Eh3snrGhJEvhsO8NRDJXAyq9jStVLAsfPbLvoFhKkOJjdM/2MuqeZlrrlrRhXZEyP/qdi7BVq3jzCE6OcYfDudLQYYzJTd+MjYqhk88URNDEcbMY67P6sg43idUm0uA71d+9Fbk2og1IPe1jbrQ7MzPK+C8p1EMzlB1h11yI7wqTPIbUWy9UNA/mHauG9kZXEXFOLwHan9ND6GpQruhpNh9agYHCb0QudGtxP1FY91CNChCT448E4EYba3cWT20WI9X+Sb9tTDebNo/kBUdWYDSndGqpVjeQA1dFLjUKor5R8bGQJce1FSan9sgC+s1u2G3IF0Hj9MJlnKcDjghk7Xl4VDDZPMxt+qcT6SjPu5EoF6k0rvz1rUoEpf+l0g285LsqdlWxJLMPl7HTrP4SlcFRZc/DccAno0uLHJmtLoCi9asCyvg/bjHN/fs0uhrlXgltK2j3UfHpLaNNcBP7awoj6+ULoNL1nBjAKMUf7j0OU312kjtN6DmXyMZVRulO3h4e/24KroMrDhIND5qTXHTjrJzVmmRegXm3G6tij23jOTIphs3+CXbhEQVcpD5pF8k0jdbkQb3g0NB7KxXJa0CjHPAcW07m3S5ez0Bk069XVk4mlZLXOuaoMmK7n/bgzNx39H0ZO5KTcQpXz2ynT5DRExweJxuj/h9oO45Qy11QoPxs/lRV/A6av6OqnO5OgfGBY8Z3RddSMrWG9uJ2I89ZqLd30qxinKcQFN17G91s7wlyCLuGk3MMN0/QEdLuwl1sn4mFJey08zItD6pDDz4HxP2Bg1zc35s/HwGe/x4khbjSMFmLGVnsjoZn4lZ7F9ghwB0/3ueecxbM2y9f6umcg260m070Whrx3GzWkshB40g3sNfI4GDk58Hvhye9gkCi64uFzCh6nIp9Mff8tRgK173hWsPF+T6w0bl0gaPrTtFH1AJg0dwnCD7NwP/q6YJX4wr6pfGTGnwl/UTpTavElPpq1GgdZH0foklLtNbYX9iu3MMNDjyIutlDBM9AdUYyPWq7cQ/jKRjzvrOKKi6ZWVvEPnGGVEmERXugETu+NpYkGRzzf1OIskHPA0PHeJbOXtuAz4hKOrd2Lq7L9q7kx1lC/kO+oaWQJO95qhe3GXfir//WbzGAz3CDmCx/WGyPGt4nTp2SIbk37FVVvBhK5dtmsV3ooa7JRYTTpwPbliLp30TZ4lQjefmGnBfc+S5d9dpvw256tVq08DRx4U5RKC1NHyD+Ti1eq1LBwy3s9R6aCfwFFrQW5AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAIgYAAAAAAAA=eF4Nx3kgFIgCB2C3cpQisoRkba6SVa7q53gi7KBLrDxHpWTdIevFOmKNyhNrx7Yld+0sSkqOSZMwM5oGM4Y5SxOSc1pitXrv+++TU6mdsZwXw+LRYPiigRZeM6MvXeCK0Z0tMfamiBF1bvdlerUYa5wl3ckCMVLfHMuojBPjymTnnuXjYng5vG+YcBTD1vBJTKyhGNHZxm+vyouhR9RMdZkQoZ4ceCOfLoLo6ZWSsD9FCM3hsOnXRbjZqlZHjRdB5l1YgMdREdhpQRYBtiIEZJDD5rVE6L+3zWbTohDm78JePmYLYem6HDzWLETQeWX568VCTDfa89rjhMjPLF48SxCiWONI6DULIdxvdG+zXieEtpqRmZdEAJCCL/KeCtD1QX1GVC6AhdrBhOMX//+xwyInXwFMTbtki3YKMNjnVu0rK4D55sSc1FE+6j3YAevu83HlGY3+OY+PvoFrmUdD+Bgug6aKLR+imBlNg/V8nJF/rnJVyEPbuEPKsfs89KieYcXn8JB/6Gju2AkeKhsK/6naycPfTo2k5pVRUPV3PdxAH4Wkx67yAWkUWiW9D2+eG4W2cNyBvm8U29ONL9srjEIlxYEpYY2gwWf9pf6bI7i3pXNgOnIEAqKbjZvNCOw4Gmv9q1zQzKxr8rq5uL7pbl1cIRcN7U6k3KNcJBFSvu7W5ULsZ6llLh5G3NX9hJaqYSRr0sYiIodhv5WiZms+DE5+m73JNAc2mf6q3/7Jgffbish//8CBJ+yT6y056Or1JKt/YGMLUXvoWj0bCrSKjZZn2Cjanzz1zoiN5fj6gE7+EBIYryjNpUNg+mrIMwhD0Nu8gaioPIRlNsXzLGUQZ7UUn80nDSJBVkbzrvkg6uVX126IB9CXNj796MYAnEfdpDoeAxD5x3A7V1i4xTXTb/qDhaH08NWlYBZaicoxv6mzoOfPDyT8+ApWFd4Rh3lM/DIVG33QnomZg6cj3UtfwnNujZKy0I8WpRXCvE8/XlCyAhl1DNQaO6aZyjHwhJn5i1EwHdxOW8ZoCw0jTE5A4kYaziSb5W083wfboqTSAWovOlWiSoT6vbid9dHnZEoP0vbJGkYOvsCuO0Xi3btegOpt0jJS0I1Bhwlp3uRzHPGnSCM8nuNzTOFscR0VWmELI47rqQgPYe79KfoZCC58acFAFw5Ry53T7buQ57PAnXd9ClZCe7ybLgUpq8rpNn91oCXzTs4/Q+3Y92He7k1rG7RNT+7QqXoCC89N6ZziVsi+X5si5D9GhGXfqQfZj0A+USw0z23BJJF0QVz4EMuKwrfS8mY4aCqMZzc+ADeluJtMvw82KTEte7oJfh2cWt0tTdggyDBYyW/AN7TLvlGLZFD9V1yKYv/AGuPTpwuf7qJSIevQUmE9Vqiqm42s68BS9ysZfF2DDUuce3O3qqFS9p3VkagqmMhNejFdK0Eh9czs2XkHq16/7nD/qgLrnBa0SvfcQsdtr6wvh25inOjc7JRUDiuF5vLm1l+RkaAooWmW4ZFNjICXUwqdEyeDDqiWoNAk8I5bbTGiI4677D/+X4SpX59L0ClCX4CkKXzkKlh+uwYzaoio+W2H4cuSn/HpQP4YrzoPSuv0rJzYuUj0uK2dvT0HnlupE97ELDTUeVnaavwEyVxG0LNTGbB4T6v5m5GO1Ew34Y/n0nDqZxdep3Uq/vW16Zi3cTJU+2Mauh2TkCPu8eSnJIAg4HcEcOOQPtvvtrshBuZtGp/1py7gfkmuamHIeYSTGIkdypEoUOX2fzV2Gp7BGeudp8LhszKnvKAfBmGo0rjTbAgk22Q+Uj98j6DLTl1fLAPxJkR3nEE+AVNd58e+Z48hVFmu88uxI6hVhHp5kh9mE9zlPbK+Q2OuUiPtBy+E7nX9z6tqD8jIcZsnjNzRlJ0YpiNwRajvbl02yxnm+7Q50o8HsKfdOIRc44jf13zYOxrsYDArVXdR3AuWVqlvVZUNzA//FVuQZY3X329VrrCzgs9pqWHvkBlk5qKKyl6ZQml1iRRqbIKSb2XlJd3boTcg3ZgQYQh6+BhZrV8P8ZkrizUvtsJLyr3YFqKNKYNLZbFtWvgfdicScw==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAJgYAAAAAAAA=eF4FwQkg1IkCB2BaaVAhZdEheSJJJVo5/j+sLC9JsY5JyDpi1maTCh2udUyTpElkSqPIlTfCIEYjjKNo3IOyyLUWMZNJlvZ9XwT9MUvZpR9Bnv7+rrMCXBy8c/trnACpdSNO57cLoHU2vfMjuw95uq1TQSf7ENIgKdw424uXvyvd60nqhZW9T1uddi9GBy/OdvN6YD1wQ18+oAe01WrpEFIPyP8p9BMXdGOh7kvdY4duSH9SJQeLukDOk9AnZ3ShZSJyxdeiCxf1foq8OdUJlhfJ4M2dTuySG0nTMOuESoafKm2yA1Kxz9aS6B0YHbeoTLXsgNLAfNCeeT4EivbBLVl8PM7JE5135CNciW2mtoaPoMuEzM3Ad/D61CM3xG+H9/r5NTom7VBT4Xv8ktOG7vcuT6ib2pAbtXo2PfotHvAO6yYI36BgPiLrpN8bfCaPkoX9rTgoCNvi69gKh5Hoe8zmFhhmujzIsWpB5VGpDZTaZnBrgltnTJux8dDQe63qJhi337dSNGvCsKzFroJaHhIDt5b/bcXDzyZ3TDuaG2HeukXWxbERz3kxzLD+BjQLlq7u9W3AJmOhfeh8PSZjqbW21+sxnRdS/mxDPXQ0PbbRHr0GV2Lx68KB16hIYST2NNTBjK21/hC5Do4FclPSC1xQ8ZZ9PImLeFmWupQmF/oxkgPHr76CuG38qH95LYqHUHhsgYP4SBptaT8Ho8kBhQG/18An5bQ1vbwa6R/JVeErL8Fjyb5VsnmJkxXD0Z6pVQhRY59xGalExbUnsksGlag9ZUG3SKhAK/er674hNjJ/lJaq+YGNKZffEqbvluOTxKhdhbAMlCR07XQug0TCpOTuylKkLRt+bdxRCsO5F9slEl+gL65boVtUAm/p/UWWPiVobjJese1igf8p2WTahoU8qeTbxyL+hyX1J3ZLlGIUy9tVD/o8B6t8KeyLZxH2TfBa7L0LMURlaH/wL4BYcv3n/Av5oN766VJZbB4MDdt4qxnP4LN2mBNfngt5zt8jJ3pzwHp48YL7ylNQT5SOZWs/Rbpp3bW9bk+Qc5j2buFWNq4XejSKmpkwufIrXV+GCeMo2+ePHB4jfq2Zxw2DLAxiV5FK50Oo8ENEK5EM0DfmL2w/kInTXyqDKHMZWPQf/r6LnY5OMT3TIuk+FouulDz0S8MEbebHjmP3oNdylcs1pcPXWGhwwugujhy8GnPGOBXEUGhJq/UdDJTKfhdKTkF22l6ujzAZ69raJTmWt+D0PSc0O/smpnUEGpzNVOS4HS4svZ+ImWXK1J69CbAXdnu8av8D61r279wUEwd7LxkexzoWtf/Q/0tWjsGo/SHSDXEUFOQazsa03IBukOvmwLpr+OxP/rWvKxJiNeXBhX/DkZarT+q3voL4I7lpLOYlMAPC76ZvCcPxirijZVmhcN4epaaNC1BVS1BUFoWgJpNsdCrsPLKrc6UVdINhOOFr/noNBYkKSRqNq+fgfOLBaLRqAMYL/lI/5+yHAxFzmsKiX8Af+8P9kYYPBBRXpxWWN0TZmdPmpZ7Y0/fv61OGHnArMjRJGXWHS0lnZ2C1K85URfC8an6GZ9bqQZWPTvC+PDxute8UrtvZOr9Id8S3D8o1TBsHMF4pKeqlHcPmc92PiG12UKlVZ+/usYGvi6V2GMcaySH3RZMdVhDnCNY5y1ti4WacedE4gZ2HZoMOikxx7mHoPMnqCJarFjc6tR2GWzxX1TvFEFVdvd9a4g1ApQXuTi46AM8dnMmBf/bB7Wz+nxlzukjL9FHN0tVBipHijuF8Lej5DWTU+WvC1k7/ffVpDfx2OzPajKSOYk6UyI69FVLfdIiwKhXMyjMYR2SVIWx4SyWYSqDL+Ja9uqyI+onORncFeXgu9g2nZsiBpuA9kh1FAmeDAaWpZi0cvNzGSDbfIcG+MLZPSRIPLGm2lebfiIkG5Qn3+mWCofreV/75F8JEb2pT8PxnYsyMYrQ+TkiwmJ7DEV7zhOalDiMf8Qzx1DcgYhvzL0LsGH6hqXSCKO7gL+tpjRETOiqW7XMjBCNpK2N5wzCxpjaawZT7QIyVzFBLGweIdzK1LkMx/cT/AR4mDL8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAAgwAAAAAAAA=eF4FwQcglQsDBmA3WSkXIatr/aWigUrE9xrZJUKIIlIKGVkJSVmpZIsGbmVlH3sLx7HXMbN3RqVrdEL/80TCYsyYYx75sjbwspiH7ZXv61qhcygsNYp2659DENNg4DGmOYzsKXKVMZiD1eR1IfGAWbCHkZfW2mdhafg4W5FhFveo80d6dGchnK/afS9oBq2MAh862mdAp2QfRGadwekCTeHFSzPoVFRaPBkxDXm7w9li/dMoI0WwF/FPYyWOtOxiMY1WTSYzzQ9TuBEs8LZnbgqBspcaJqSm0BNh8EPFdQpLHWqMftWTCGyZqyn6awpjkfTJfPqTsDCn5EiGT4Jd+jMtdXICW1VHjiaITsKT3+6WuOcEvMl3X20WTCBEL0P6BdsEzM7GqWvrTEC6SiG+9+M4uMYNXXwmxhHY2jj3S2kcAQu8NmEPxlHTzXj1x5cxBDP32tznGUcKhUGr0GsMFwvlik7mj8E9hGenCv8Y9HnTckr1xxCrX98u4DGK2H//0mSZGsXxzBNNBytGwNW4h7bv0CgkYy4OxjKO4GvygkaU4wiqaja5rQyGoW4lcda5dBgic3+/8/z3C/iznw8mMQ/jcTwpp21tCK8EV27xXfmCgOe1lcYXhlCuOHawOWsIZVkkRaaUQUg70aLTGYcgqu421kE/CBP2baWM64NYcYm0SLUeQLbc687qqgFMZxZkP2rox26LZYlR4QEUN85R9ST7kXudJkt70o/kZZ0Nlug+bOqlCDIu9kGIw9Qtia4PRgU32deN+uCbEF/G6tiLLz0v7GpqeyHpaWiuOEZF6vKvKlPpXnAPsYpKGFKx7+PpbNJ7KrL/XpylNPWgV0Niu4GPikUZURLbuR7cjQvJCAjvwUZeX9pyVTe0E4sbpll7sGPp0iELohtZMU+ffgnuhvei9Fujqi68/UVctGDuxoKV3TuyShdiK7jSrJ92QdM6n5be2InLulAYZeuCT63ry1W9TsjWFg2QozsxwFrm8GaoA7n6ZKe9Qp2gzszXx9l2YCzX/mhxegfKRb16y761g71M7fynMx2QlDMebOBsR/uNk44t4e3wjr3dD/k2fC41WikubAPpgPRdrputMFnwzGIdawXdcNx96ZgWRKVWGObtacVUVYJ+cFMzIj6XrMSjBen17+/tpG9Goa/adL5bM2RcTEqj0YSM+JCmhewmUAcj9ST8KHDuWCyVWqZAP6Yml1TXiLXB+lXXExQoXWpKENnTiBsbibwf3BuR5ETTsDIlg3fpP468ajJqJqT23UprwMSQmcgzNjLEGM0pwlv12KtR2ydm2QCrtVpHP8N6UFwXmO8U1GNrZo+DR3YdDr3lZdBjq4dyu4Db+p46kCa1Vcl36iChUP1sxfEzzj5OelXT9Bktpb9pV6i16NpmOS517DPED8U/EiNqMZ3Q4sUcXYveKDcmpNeAcWZdVf5PDYqcV9sT+WoQV5+dWGJfg9m8ffYKz6qBBxqr94erkZmkVMKwoxq37Lqm7upX45t2V9X4aiUojH9z8oVX4dY1yfdTSxXw7zgl+yKgElrp0pFbC+VwmlC9ctCvAoF/Kzzj+V4Gl4AbR5r9yrGPg5mHn1YK//v5YzeDytDUsVP+J0spcktrzk5FlmI59ejD50IlcL+e63XsYwlkcn2neuSL8f1/M8ZSlcVouytbWWBWBLMBHfqBoSJo/mMkut+/EHwN0oKcfwrxhnHX6Y3MAsTZN6dTxAuRenor7uQoCYbHLfmWjArgNWOtXM1NAv0xnqN3Qkh4F23kGqKfj/YCu+1jtfkQ5Byt8I3IA72a44/DdPkI0B6Ze9GfC4bY0kwt1TwcZMxbSxXLxUqqHI9PaC4EI5t4yu/l4HFOi1J+fw6UPM8rOIZngyOv1WHoSA6UHSK2uNWyYNrP9YdCnw3Sgpevzo5MyO/ymvQty8TmsMHUcmMGivoOJZO8P2FzSMh8NC4dHjH5NtoaGXAWub9r0zkNvzmemAoJpCOBvPVbzDAVnyb/e8W5kQrxRUue00hBhgrdAfqRFCgwKe7ikPmIZMO3ze0tH3HGoF4t8vgHUE//FDOu+4Dds3fn4k++xy+SjbdH3XsMUDOKGFT+Rap4STtb6794rZx2Idc4GY8fqJXShpPBsUaV9HJLglmQgxPvehJmVy+xKSYk4mGrQeE53iQ0SCYtZ4S/A8NYYb+ZciJoPoJDSptv0NM+r3tv6i2YI0Tnlt1e4wNL94SL0RtIzxVx2m3H4wLdc3p7agI+3dfUvR39CiEl/Yp7b8TjawF/0Gv5OCybhnAL/vUKhe+qUgqXYvDf4lkWuU+x+Ke1NMk2Kxp5t+VYBW1icP2Oj6eVdxTCEh1rXCWi0VJpe9HAOBKxXwmVn9uRaLd/6TVPRMCdTtdYfTQCqfPfw7ukw7EaTNkh2BIOQb+XG2XSL/E8+G2kSP1L7P0VY5rs/QJLJw94MkWFoZhW+I9P+jNY3qUYDpOeI2HLydZi+Smu9A6oCS6GIp5bf/qdRgjGdnWdEZB7ijOvmZiiC4Lwe5297ERCMJyZXilHywaCh2NQgMQRhOx6Lp31licYJAvvoyUEYFfFd3NOt8e49OSC1xW5J5i1lHUnjvvDMUG5SXLeH6pxyg+pND9QxB44UNIfQa7Wj8Ey6yFSH9kuh/j4wdqq298oyAeG41JeETW+KBboqVV/+AA79M1HyCneeB9tL/Yz6j6+NbRsO33ygt3S1ef/kD0gek1mUK/NE7o7vGfCudzhf9ir7/BuDxgE7dXc7+2Kepr2dOMNN2wGrSuGb7og/qNH5XbvPTwyEPhBiXKGoYOOQPJ1F9gfz9NIVXXCaXlTtpf0zjjxe5r9EPtdjPvzF5t4OKK8I/r8Ro0dzmw57CdzOMDw0Sv6rPjbcJW8rKHZcwevW+91a8bdwoPuc5td5bYouJxzpbXYBlpXmqZvU27iZ9pBRjOaNahcrcFCGzcg3kz5tt/MCiMO+mE8Gta4nXQ599KAJTLj06MCSNcx+GaF+fnMNazUhTKlEZaQ+SlcX6BrjlPN829yyVchlvs6dHnWFNH5Rp0/z5lB+z5NQTHbGJpO8uw7V0xQFzCQXJNkhMPSWozfmi9jJUXdtrzcAH3szr7z7YYYNWzIfbGljxEdSqLM70tw5n+YUX1dDwOkDgtVHX1wace4UlovIC/S2kv3wUWo3wqd8efWAdsvkQG+xPN4bRJXZhujifB84+AwOm246n4vcDqvDofI4s6bcRoQ+kNt6JM5h7xrlUbl1mpYeSKVOqupgvuC8k97r6kiYEs8TDtYCVTtL8HSgcpQT1NhSxxWxAFJmxHhTOBGzem+lRV5OF1lfuf0SgGGfrKsu3XOICRlH+ebZjlwPGKUcB47BcGSr7+PE7IQYpwTMMqSQXq4ht6exZMIXFtbFcmRQociv0NohzS0ZB09zT8fR/Gpl8FbMydwxrK85ZmPJNQnz14tvHwM4tD3zwg6DIdsw5YIGQlwfBIKGB48iJP99Ca3rh5Cp4AuPcXpfzhlL6vV2HoA3noBRxpURXH5p7uKkK8YBjNWj61dEMaPcn/ymq0I3Pwtj4py70f8H18BYU4h7FJSuLo6zwebPbfr4vMF0Emdajbj3If/FTP5R37ihVxvlk9KABc6e45X6q5y48CGwTlxRU4oCE9tagXuRXexeaieNDt2rw+83mvKgYBR0YdSVbsxXaPJvtbChgQ3YljLhwWWkzuWrS6xwiRWUW0wmhEmPuYnFmSZ8VWdldL+hx5Ch80kh1wZ0Faixtec/xfC0gy+52/vgJ6LQr7BxT8Ef3S0lGMbHf48CfH68+k3ERHGe4SreIt4nEplUXfdIGbzNsmDqjSCnKB6izF+ldA0/KVjfXKdyGN6SChw/STijNPfMj38j0jQrHBbHvhOqESaXTvNv0J4sZzy1GxYIqp60qlk2jfiWEm6ZaP+V+La/mfujCqLhPvnWpFg7Vkie45di2drjtgWWCk6lDJFvOCpfycsMkOIsihueFyfID6yfl/c+XGSyJjQb2zzGCPujtqJXggaJ4w7FekOjA4THcXDUYuho0TlSnXFzfwhoo2BLs247wvRi4WDOgWDRMwJ+gAekSHi/0fXGLo=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAABgwAAAAAAAA=eF4NyHc4lgsDB2BUFA2jkJOQKBwjez4/Qmmok8qKbLIqhJAKhVBWr2RkKyNZhSR7lb3L3vtFL1nF9/11X9d9tEtgbnJmCkePq3KWyU4jJ83/sp7FFPwNLGMVcqfwX15LRvHwJDiqnvDfF57CvY3aCDHjSfiy3mwoTJ+EPGmKumJoAi4vO74wCU5iIS0/yMFsAoaXzO75Z0zARuWujNLUOKZanD4fEZ3AK/VuPp4745h5Lp3yPX8cyawSNuxrY2hM5OgMURyHl370bU6fMVwurtlrVTMGwXqpU4KMY+DnTvLR0BpDfaaqtWzcKMR0M1lFh0ZR366VoCI2itvGhM3Bu6PQj9xJoHIEYXPri0vUo5ixSX0tqDsCed00xnLSCEReXqT5Sx5GKfGR00NoBD/eMhV98BvG3EsRvcOVw5Bj3mJQPDYMfeaZ/SSDYYxn8ilFfx1CwU2ZZ5OrQzgfspRQYzCEtzZc++lJQ/AeOCh4Z30Qf32M11YkhvD85uBEk+Ig6gIM5M+lDYLEfNY0zmcAZKuz3UfJ/9em9Wl7Yz9sjGLfGEkPILhx0/7mP/1oeBoWv+X1/+eGqoRdH7o9n82QW/qQR7I6q17Wi7+ZNNW8vH1I25hf9mPrxTUDfveQ+73oZ1usITv8xDJJNvhk60/osm652Df/QFJSVMTgvz+Rm32lalX0BxyNU5TTAn/A6NTpdK/wHlTKcN13m+/BvBdJcnu9G39PVgipafVARUEkxNysG1V24s/+FnVDUUz7WGpzFxao0htfH+9GZYmLcSHRhYPM13X3hXXBz6JqJDi7E/d/U8ov0nThjEe9Ow9fJ0ak9udddO5Ew0wjvWlMBzI6IlepZztgoykdf4a1A7ai9iQTsw4Il3pZVIW1w4pFOsl4oB2PDt8ub2Fqxw1VAbPlG+2wdZIRNAlvg6LAPinmvjbELb5SsGVrw3hxU/6Hm23geyTfMBbbCodU9xcVo624dzOrqpK/FYmyzNHKtq0QotGX38ppAY8oRxvXSgui66SsA9CCZ/w7b2l7taCrI0635E0z1GSOJP480ILIOCvZ0YomtO0Qm1RXacacpXO102wjsgTaBy5YNSH/W0i2AXsjgh/HfMsPbcQcnfds4LkGKD8Uv3O7rAFCh2uHFx5+B8+kJtmS8h17esl8roXfcIMxqChI8DsOSdq9Y/xdD5tWrydNFt+g6v0qPUOmHh6UTM9/UurBcWpXqYxnHeLnTm6aTtXB6aJrcXJNLR7z/s55KVoH99/lSyMstYhxynoX716LrZC13hHzGoyWf5Fxra+BBP3wVVJRNT4r++/Zc6QG7/2Un84yVWO/A4XhrGM1pHpa5rvsq+BUv5l2rKEKqnqMhucaK+H9d8n5uUAVpIYWKZJilVAa/W7iFlCJdhIVa1BEBTjdarJ7yBVg8FtJUKGqQPHq0O9Y7Qpkl/VGa9iXY1Vciv1LeTmIrAfmL/vL4CEppsEvVo45hUvp7FfKoFsWvrsloQyUvAstYcGl4F6bPfyetQyc/sG1Uj5f4eGaZmnGWQr5IHfdHZ4liLhhpZPM8hXNGSOi4w++wO0yxZiWsQRNdaeeVnsXw55dwdaJ+Qv4or8fCn7xGdxjvROdHMVoTqbhFo4vwr8ZOnXsAp/BupJoGFhQCM2wAe8TSkXoHWPcInUUYK09nYasXYhbtFI+cqufwD68lKrrUoD+E/HCZlyfoEK2VrgW/QlZXzPPUWl+hE3wnaXG6o9YF7OJ2nqUD8bxad28lXz84jKXuliYB5udhbq/BPNR5PnWvXslF3UmA/xuFnnw7AnYGyybC/mYu8rSKbk4KadWa/I4B1VJqibsMzn481u3kGjMxtHLDh77JXPAv2fl0CGubHymKsmi88lGVLKt3bvZLEgr1TyaeP8BI4JLe7sT38PlQj2Xl1EWOiOcdpHMMmEhlM//leM9xGWF9MuFMzBe+jX8wWAGsjYW6RWo09FzR9M2+n063olw7hjuf4dbOT6p60/SwP18F31Y5Vvo65vyuli8w7VQ6fx/c1MhkhZKWrj0FnWBT64Hp6Vg8/SSq5pKKtQymJdfpSXjU87+bS3FFExSrBSP5yah62D03nUkI8o204WpMhFzjhu8By8mocNy66NiXwL+fKA19jJOxGZL8pzX33hsb/PZcHomYCyZUCjhj8eET55jVUI8WlmH97388AZlgWrXk2PicFA20JCWJxZeU9meqrveIJrIYPZNiEbf76m0fzxjoJ6yUFsjFoU/OlIswzuiMSNMRefRFImtOzFDZ16/hhnVfs1r7q8QGpAhsK0YCcY5O+YdkhFgYr/y5zM5ApyPbDulN19i481st2AWCaxFj0+8aQ6HpMC9hT/uL5E287BkIjsM7EkPpwavhSOm66F3yZtQTMzLc3sphGHNXuJ9U2QI+n1/iD8XCcV4omhYkFIwVgP7mLKFQ1B42Iop1vg5tO9Zywk6vMBcDw0nX1QgpL/EuzTFBsGJzP/IbfoZfjVzLicMBcCOCEwna/rD46jf5XXZZ2BI37HRU+MLtVsZ0ydT/SDWa/4r6OpTXC82Y/A94YuNhrgnRhQfyDX8CjP78gQS3KJXUlO8ERTJEM1m7oM3RlRzBdZeYNOuPLbG6Q1Wcij1PPEYmR4X5AymH0Oc/sAx+XMPUZBK5yMb+AiPlpmpNSQfIG6U2/q4uSe0KTxRJUru6DiWUyVh4AGbvgc39MzvQ1r+uekxRzeUshnED6S6oJlR0yM32RVZdXM8rDud4Rp7hyn1lzMsMCTU4u6EUgaTA9/078FqL8uP/j2O4HdqerbQ6wh1RQWFI9l3UXtWhzx/zwGX7qou/Oy5jdMF8oZJx+/iaD1Po7OHHbzkUjam2+0hpRj3cUbdBh1D8uyJfrbQiqYtEZS+hVvcu/b9Z2qN4IoqQ/nzlvisTSeyYGKF6pGFMN7H5pCenpP1e2KBduyOZugyBZvhkopYnRks6agbjp83gYgYLYVZyBTFWWsfzT8a4StxQtMuwxhOpp0jjHsNYSPUv7X14iZWgl/5cJH0EUW9TK2zeQM0at89bmvqoj23RaMoUg90dpE0LOLakNBs0OE218EZ7cQAReVrmOcN1n6nfx0OIwdSFZy14PugvJPkdhWzA+sBXk3/wf/A1Jrs1ytYdU3m1Ay/hH2HjVvY+P+D6qB6YFTdBYT3+7IlGmritWdEa6TsOXwbjWVVzzyPy55+zLyDZ8DAqfF4UEIDDAGUlkuFaiiT2xemsagOQ5+zV+6XnQYVidr7S78qwlR9OHYvKyOWyXI0fk0Fi8cl+Z7HEXgyH2UYqqSMOn/FQJUEBdQ6N8x3aynBWJAnxnpSFoMzk2NCjvJQuipRU2wnjWIKg1h8uwxOzJWnU4QkUdWnV7DiIIUceuLhfW5x2KRuNqhrSIDEx1A9oS6Gosz1qxxap8Cqtr0ZICaMiQRapcVDotjmTFXjOiEIqoy1r3sHhHC9TWm76NYJVJ1PeiG6chJa7otMneTjyF39TfG9xg9i1THWKu8YJAwWPDdWeJGaklbKmsMNopXxgGo7D6yiGc6/ruLEFT32H3ZNXCBn2lXvfcoB9wtLUp/1juBw6Oyf1ig2TGa1pxXhMKIkMsv0tg6ikCvcntuVFec44oqs3zLjqLBdWfoaC051jmuUBDPCN/ND9ZkSJshUbXIbme7D5/vqWz2eB0BOo5MS3EePSx67XWPmGeDTmujSzUIHjzNtkpTS3fAYizf6Y78T13OpF2hnd+H0ol4TFwsNWITjraosd0Cl/voRrtVtQrlS842KADVqGhSoGPGH0KExp9bR3iJM881DpShrhMe/C/6+jRuEt2SkydHdv4ndL/kFFzJWCdOIU3JuThQizGhaOGZimThr3Dq0LbREtG9kfPrg9It4V7zB1KBFJvyci/kun18kLtaun4qpmyEklXv8TlbPEXTRMrIvMieJa2JBa/S208QI3xpLHmWM2L2hFiHuPkGcZF4X0SeNEAXO3W6RU6PEg/J/OPIChwh6OxLt+6xh4qCX6I096f0E4y4VD+OQQSKpfFmjbfYnIdy9ZBFi20cklg0xp270EI21OhO12z8IT3JxjDlbD2HqyXek3rWH+B9SEwgJAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAHgsAAAAAAAA=eF4VVnk81VkcfZSEMiQvpWJSd4yoKKEJN7uWl0IiksqSJYwtJInImiUjIs/WZl+yTHjPFipRRNkqaUqNFiOhMMdfv8/9/b73fM8533Pve7zsiBszcxuoGFN6rXQ5oal1K/yvHiN0Wi9hrfQtQo2SzkkqT22ggnONQQcKCQ1VHsv27efhhkt+lMm6Qah+o6HJHycJ1dsi1lh4gYf7w37fJoXrcxwzrZU7JC7xcjc675PYao66l+65M+sI3Tl0o4iVTahLdI996F+ECmgcdPPMIPSLrnAga2QDVWQ/nn5lRSjD86ztIkdCe8d01eriCd2eGFDPDCDUo1IoTBHrdfnu7i6uhJYMLI4VPkRoy5MxsV+8Cb0x4bxtxUFCVQwHt2aGEzrXq7Iq9BKhU9ZfuOFnCPULbW6aAN88s0op/VUMbsAiV1FNM0Kv/AhuZPgTqlxttt8Pded/GoTcPE2olefX/Ipg+JFod+awL6E8f+66Z+lOaEUr1+GVE6EZBex9gimE3g2PvsV3n8ENvzXOskTfhaPG/62ZYXCXy2fRcex/LZZ79Rz69hpIb+SXAc8T3hF60Gk+7RdbDx8MKqabducQWpiWI5R0llCbZw0lJ4yB+32Pn6XNLMeb+f6IsReDy/8qyPGRKqGGa+13a+8ntEBhjVM5+MgHWxgKnyf0UvuEhD5w/D14y7oUZjmNio5entFznD8G6gsDiqY5NYvVtxoYEJqi8bDLEn0EmPbbCi4TullAQFka/k6bdZdaKWA+hqZBYdaEtlmpnzD2IFRMaZlMOnLB66ms3xdE6En5Y98d4T+HssOP6hEqrRk9KQD/tvxrFpK/icFl3kg+eiVihqP6TaHqLvR+bXkm8uoIgzvLOpHkCx/nbD905MUS+lmu1vpcNKGLBp5NNMOn+KaBm3XphM5udSy94klojcXOLX1+hEr+vbarJJDBnXTcaVuNOQ/9HDu88A7y6myYev5PQm/9vl1wAH4mSP1WudCH0FNnXDeaaxD6757BzvfFwIv06bvDYXBNHrPamJhPFHsjNSogtOO3n0LMKEJXPljpVHGV0IBamex2U0J77IIa0wMJdVI8tf6D13x+Y+7nJBIqvt3fVxD5U9r28bIS5l5T/8+z9+D/s6DNtQh6Lqh3dxjD/6s86zRzkcv0/8o00jGXKC1Zr7RzhPrwMyOboDO6R6PpHXwkqQcqFeHfO0HTBkv4omaT5HEevgs9MOvnDSX0omLqxZQIQjUs5Ozlwgi9LlbmO5+36DU+ySn7wF+RuI6Ap0TW+M0m8GJpbTXqx/p0rPxQaDKh/NKVZoWYM6s801AN53e43L3z7CnksKRkbhfm7ihS1FUKn1uN2+6qxxC62E0tcNN1Qt9++yBgbELovofZzS+gS+JFYLEmfGW+i50Uv0JonVK8yMkT4LNC9+4lG0KT6mvaq9wIXW80GukIvyJ6f2s/hHP09D+xpxnQq9LYXGaMOVmxj7oaIK9rq90+xEKnwqk+/4PA22uYweKLRG4/D0bMQCdXT8SgHfwat7VemU4j9OHygxJX44CvK7NHCPqu/TtwxBxPO96pI8rAi3TzcHh9kdD7tVIVeZhny+bvx40TCM12DHhgfQG5+qKinoD9tlOH4nSwL/aGe2gIzu+DVwt6VFB3ZfjA13fIv4D+4mJB+G6Y2lEYgnmffRpgkAj/HHqzhy+A14egJPHHuE9uOHunDKLfXTE73q/gNxu1idkdghxm2BqPIA9Nx+ds8uHn/mGVhpdYH2hZrs3GHPdydp/ewSZUNXF9ojhwHw53HnPG+2lnF0dp3Dd/f79WG4a19kHrHQU4T/fucn8RAK8818EhL/ihnNv5vB913nV5b9IcgOtbsmAQ54Uay3dGuiCH2nlHfyBXLAlrZfUk+P61PeQ25iYat0yZA12xncvNHiOHrb9/2szGOdA4lilkBXxZK5L6FPXhx3SG2HgWdeS16GHuU5Vck3roaHmaYP0Sun/tT/q7AvhhkiJTY+A3vjhjgRh8KH03GuACfNHp0Cey8MHLd9rLB3mQu5ilNe//2jcDq0eRg6Ot/tec4bdwbuqudNTX2+mLXMF3kXqNvW7g9dDFRbwYvIQjlvPz4ekTOigwCTy/LPO+TvA45Jdi2A9/4gpF+Z0w56iON9656H+Waei3EOdn34xJvzR4sT37r23DvfXouGttM/C3B29hOcA/YT9B2xHoS8xNigpB7hTUvxgWYq4L/QoGXqH/sEJsMsX3T+LXGQHQ+3bC1zIFei2HLQye4vvlvzi88eDjyCtc8w08RE17Uh4BZ2z6cv47vM/tlaw1xn1+ZrWUagjO3znF6ZyXmHNWT8XABPi37l+Q+wN+51QHB/WAj5fV8+de15BPEx37BOhJ4xOxeY377oSEbU0x6tRsU1WzkVuewI5qWfSzMctyVsW+O5XjmkugizU6oCEHfnZ/7JU4hLrFIacCB3APuJVay1nBjyMe+kcnca+dbr78Phvvd5SvOXwTPEM7VWxrwGdlzHIPLvT7ywUy533MnV3aZI71yooMgUJ8XxY93Ns/z3uRRFQK7oVFdglhceCl6aj+cB/OUbV3nbMo5mofE/HTG+fQee+lt7PQIRojN8kAP3uRJxEOmHO55OSUTiqhrpoeOnPAc9gcra0GHjwJugbJ8FmYPq4rBd4GzXtBxTh3k3Nl2e2oa1rp1WiE88KgXZb3kcf1OpdNe4Df3JecdwHz4LxmRAbBl/XdacZN4J+fna3WhXnU9Oqsygdu1S8GfX14iudLeL+A/i/P74v3od7E4vN3Rfj2RkI05iH0eDYkfjOAT/9Y1NSPY34iutq7LLDPcolsVSNw694s2pmFtcyXy9ceA8fBnq0cA/6vE+LnRsG7LTOhpQDrchaf4FJ8F/xUxIwH/0rzMr2zyLFWjqDvIczt0xI9SUnkv/yjc9Ya5FSiIlB5KfqmMd72M6HPPtuzeSmeb3atWDyKfizHaosS5LG0+cX+BtyPg278ZvroJ9pZVWGHebt+aujWxnel5/ncQfBOeB+nI4b97HEepmzY/P8db4Fa9NNu8XKKRH/fMAZvJb5v7zAZiQDfLclSE8rIX1lsZdwB3FNpW4W1YtDXRCuj7jD2Vxd8FLmNutrjHys6oCN+Q2TMAHR9V9kZuB1zjW8YapcC/4Pej4rVobtuaYyPOupEXtgIjiB/LvxiVs/Bs1BhyN4LeJdK/WZCwOOlAH+UJp47mZmcOMyBymR6bQaeus8LJ1PoiXs+/nMWv5vv/wm1FUCd0dlE92fQ35oo2+2LfLiOuButz8T/DktPzyDk7M56lSHP+f8VKndq2PDB6WXTiy7oiuxu8FgC3E98axkbwZM1lGB+D/rnkidk27DWVzTRCUe/7G0Dp6eBf13tYowA8NMmzNTuYe4eedfvL0Se2m4LxXHAP91PozQcfD6Obd/tAH7VO5ZMzPd7YyqvMgsdb5cpF+kiX+XprME1wNFt3StSCT87njFX3UKdkKWCo/n8fo8tlYp4n6Ch4iaDvsl7/pz4jHXs/vBffYFTNLLRVAo+i580VClAf/4dT+RN4Ov0XtVoNfi5nJx04sO9MiWR0dYNPBf9xzcX4v3Xe1pfKuHHnlcfBIPxv1rp002jOvDO4DtXbQQ+9l99xfaAR7P7tkp/5CJn02DSKJ4z4UpCtcCT+6mkRsD/IId9ex30C6drN16EzrFBuarXmK9u1erVHqi/rvOOYw4+dbsjngiCn/HtWV+jkPn5XFQ9Ad6FZcc62qArX6rn5Drse3S42VoS64CuncFm4HmU6cDzAefuf7bUXTY=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA1AUAAAAAAAA=eF4NlXk8lWkUxxFlTV2labnRwnRN5VaKLEeJEp+yTxLRCKUkUnkObRQlcZuEqWSL7IrQZBlkCaV7bSnKZJnKMoVSaDLnr+/nXZ7nOef3nt/vNc0tuTHyAgF3rhX4Ez+c7cm5I0Lgfp6wFHuO4FycW7a3ASE6Z4naVC2CqqTFwvAqBLehuQmLKhDO7duRmlGKsDIt6732I4S4mivyVYUInzlbTSzyEUa6hfEvcxH62jrXuWYhGE2TmTuYhvAsO8neLwXhjVox53siQrhW6a7g2wg9pkf1ZG8irFlRJhLEIHQ8tV49LwohyjVlf5wA4Ux+U+iyKwjLtt3KTL+EkPbbjW7NEASW8tmwMAjhi0Fgm/4ZhNaXQw8fByDo5NtNmPkj/OFxPrvJD8GuW7nPwQchN9nlQY8XgvwPx9VengiO9y3cv7ojTAY1ege5IujPMHee6YJwo8Hb9KYjgl7wp0283QhW4j1OD+0Q3kWVF5haI0gXf3F+tZP0GEv28zJHKHphqyBhSnU/azeONab1KtXa/M0IRy6pSNYb0LXWxXo3XYTscJXsadqkl4S7KHkdQtI1BeetfARFO965gZXUB9/P/RoPQVB3fjOoI+xNTzIdXEo6B4YVxakghMo6NVovIh2V1Jvl5iPM6YmYXTcXYbuPVGcYB8F7S+xlK0WEeqHYOa48gmTfmeUfpRECu43f1UghHD3ZaJQigeCUl/8obIpBl5qo4+R3BlqqowZe4wyUuPuDD40xeByctfvYKIO1ek544RO9Zx6RkTTEYKsPp6Shn4Gdh8QV8fcMFEzDpU36GGShiXpMN4MLWuID37oYeCSuOXDoNYNWoxUlH18xqB+7NDu0nYFxxvjttW0MSrNfp442M/j20v5Eg4hB8MEdbsXPGVzVj2ipesZAvSxg1YcGBpGJ6m959fQ8dIn7xScM9mx9oz29lkFbM7/1TjUDg20ry9yqGEj+kulr9pjBy3/WH7WtZMAPsuZfqGAQkSCp/qacwffR/mIX4inLNKuZxJ/zhRvf/8XAUHNz0UdiVOjYhBrdr+13XhJODPX4pLmM1i890cwZJB60Etx4R/u+0A1jynSexeGRzYzOj+rLcp1F9ZQf1tfopPoi5BWLO6nei9wuJQ71cdpQWSaQ+poQDhkvaGJQwR0zGWxhkFrZu3f4BYP7snEFKzoYtO8J3HL1DeluMNXCIx0dVMNlh0lXT58P9n0fGOg4mstK/cvg7f2HhjtHSF+zkJEy+k7zJn8ds51kYKNqOqkghuCRtF3wThLh+Ib/1LpkyI8BIbNHZiKU2tVGcucgNAUlPNlLc8P3TGjKW0w+LDhWqLwcYdi80TeU5u54jL6YhCbNmfykbbAWws3OzgPSNLeK3dobIwwRdozdfzrbhOb6bzFtgRnCgUWXb023JF/l9K33JX8kP1htI3RAeB3LcV5MPmIC4dvdbgiZYjXBZ8lvJf69igJv8tXKR8dDyJfJd+0b9jGqc3rVTtXTtF8dz6Oc/MxZ0JiyKRQhPupqTfxlhEYZuNcZSTkh8vcbu4bgEOFjMUg5MRANd0spN9IjpeQ84xHu3hOtGU5CSJEyHLdORehK7nWNTKd+XsfEpFIO5X0K6IilXLK0HL/unkfnyIebzSpAELMPiYkuotzILlw38Sf5r0luUK8EobaNn+hYhnDQi2fiVE59l460QyVCoZeWpwTlYeTp8Vnp1Qh1UeeH1lFOKszXUr/zhPLKP6Rvog5BzmiD/UbK0U0XMNPlKYJN8D4532cIK6xtEo80Uq5K5P++i/J2bnvy1Coh5cn2EfFR4ibgZt2lPH77I0h6RxMCb0vmT73EbRGPWryaETRiOzQGiNejHaccWxCeGizUqCK6T088taQVQdc6rPg4kTNDJa6CWAIqQqk20nEa96sR0UFHlMaIS8XUvDOI/bd1qluJz3OKlb4TG8w2ZHDpv9DlMJqnS/xxxZdrQyy7ae7vTqwsUM05Rvwf+D78QQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJwYAAAAAAAA=eF4VzIkjFIgCB2DWvShWK7tvahxJzkS7KvFzDHIvNabx2qjwttxHhd16RY4slUexbY4kWlu5ckxNjjEzZjBjhnEzq7deGUZLjmcJ+973B3wyMv83CRvzN9JaAw08sAnvS97/G/JkZ885TIih0sK1X7sgRrWJE1FDTox2g8hh4v0JaEu+mrO0noClxNctijeOt/baDNXz44C42W1FYRybt+yE5uVjoPsPHXvmPAZSoqxM7NQodC4ZLiWkj+J5CVwajEexfX36cwv+COh5jXlj8SN4o8xcon05gljS7kQWYxhGnDOha+HDiNLPUCNrD0O09RNL2D6EHwfC5yOihnA64uiSPmEILipUzHcNovpJjasweRAtT0+lMUwH0fOe8EPbxABKfdg1nXcGEMgseyYiDaDlM4bM1J8ikClHbD9Ui8AnUebXw0QY5DW92Ngtwugx6q6loX6Qsm63jOX2I0kqMan16kfugPyHGOV+MNWPlexk9WFhNbf5YUofQngCuqpjHzg+Wfr+Mn24wT0eENsmhJzAlhZ6XQiPZaMSU2chrp8x9m5VEMJVpfu/BK4AlIvftjvkCBAy5ty811+AP+fdBrp2CnBEbmHRj96LnURrcZJHL8hDAWz5UT7OFxH7JBf4sPGpnCNu8MC858EtusMDaeXjENWQB8fKHT4er3pgtr1YN9S/Bw/2uimUznTjRtKHuPnUbjhPyj7y3N2NzvmwvApaFx5uy1RZIXfBwEnxnsUiF/6G0T+RcrlIL59yN7PkIiKknTbSy8G+QvzmEMPBNppBEVmTg9M+4T2q9Z0I/n3dlULuxAttz0XTVTb6lpYFV35mQ3bzkKIj2GCSDr0//zsLwQdk981lsFA0aVHRasbCfQet1kEhE18UuNrtu8xEdkJyTBWBCTvnC/YnGB0wVWBY7/quA76GwvwN9Q4Ex01Evq9nID5FUiahMrAY374p2WoHj0Z0nH3cjvqV16Yznu2wFO+5NbXQBvOYz74ZKWjDdbJ3MseuDWXmqd+HdbbioFzWgo1WKw6sdyeoBbXAXXAyY67qNb5kxai/W6GjZfdZNyVnOh7dX2afvv0KTjfOBcuMvwR9blhb1vgllBNK5RMv0fC3JjVcZTaDaOLXaKHVDL3b1zQrzjZhLmch/ZP6RryNOVl7Tr4RnwtmzswENEAgkkY3V71AIHFb+vxWPVwM5N43BNRjb2RPoFl1HQrM9Oouq9RB1Shh4FVoLWgOquEEZg0KZ0sr6XtqwIhTsbq6vRrJT6hTWaPPoNPgUTdZ9RQkvZtRLdd+hW+qkk7wqSoctfolbdPuFxi7p+r0Gj4BU8H+otyOStzmq7pwlSuwQb+76S7/GFUUo6YqxXL0Vnp9VNV4BE7+VsNN3TKE5YRr2h56iKa/H0qwopRiZ0nc/NpaMabl8sTuAUWwy9ARU9t+BvvraI7x4fsIfrlFrW4rxB9rgQlDAQVYUmuKSF+/C9Xy8tDC5/l4GzZU9yY6D9nuPJf9+BcuRxL03Qi5sIvYNzyteAeOmnKfPtjIgZ809ClZKRtV2gW635pkoVFbaq4clgnvYvnZclo60glFvOQ9aahUMWjqfpwK24j9H0VHU2DLtQ4VTF9DrM1D7xm/f+KWkrR0YfUH8D85HKzLSkb2LuKJyReJuMWfVCpiX0Lt8TQSazUB/6jYiO5xj0dUSXGvaXMsdhzMeHbOKQYH9B63r/Ii8S4kPnabezgaV9Xu2S9+B0nYf7xE3DDUHL/Wb9kVgv1Sxes9C2dR/jolx8b+DOq9r/h/FRj0v0+RH5V4CnoBhFVBHxWOXSm1zqEUXDl29MgbUzJIsl7Dy/rH8aoow2nL1Q/jy16/Uox9MZkZZV2v6YUk3+e2Jo7uUL8qDrasc8V5lbQ/7gSRkP1NlDSc5ISMd2Z8q1MOmCa1eni62MGNdzHpgdER+PsXmimctMHSwAmnH3sPQs8s1+rrTCt0Gu31WP/eEnffHpyW8TSHZ2aQ+qMtY/TosqX9akbo0Mo/HXRhDzZNVvlSDX1QDrtG6y0R8e9lPZ9ZBwJubhkGUmW+gCDk07obFtogiOUm8nla6O8ouxsn0cT0B47IqVgDfwFIsvxQAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJwYAAAAAAAA=eF4VzIkjFIgCB2DWvShWK7tvahxJzkS7KvFzDHIvNabx2qjwttxHhd16RY4slUexbY4kWlu5ckxNjjEzZjBjhnEzq7deGUZLjmcJ+973B3wyMv83CRvzN9JaAw08sAnvS97/G/JkZ885TIih0sK1X7sgRrWJE1FDTox2g8hh4v0JaEu+mrO0noClxNctijeOt/baDNXz44C42W1FYRybt+yE5uVjoPsPHXvmPAZSoqxM7NQodC4ZLiWkj+J5CVwajEexfX36cwv+COh5jXlj8SN4o8xcon05gljS7kQWYxhGnDOha+HDiNLPUCNrD0O09RNL2D6EHwfC5yOihnA64uiSPmEILipUzHcNovpJjasweRAtT0+lMUwH0fOe8EPbxABKfdg1nXcGEMgseyYiDaDlM4bM1J8ikClHbD9Ui8AnUebXw0QY5DW92Ngtwugx6q6loX6Qsm63jOX2I0kqMan16kfugPyHGOV+MNWPlexk9WFhNbf5YUofQngCuqpjHzg+Wfr+Mn24wT0eENsmhJzAlhZ6XQiPZaMSU2chrp8x9m5VEMJVpfu/BK4AlIvftjvkCBAy5ty811+AP+fdBrp2CnBEbmHRj96LnURrcZJHL8hDAWz5UT7OFxH7JBf4sPGpnCNu8MC858EtusMDaeXjENWQB8fKHT4er3pgtr1YN9S/Bw/2uimUznTjRtKHuPnUbjhPyj7y3N2NzvmwvApaFx5uy1RZIXfBwEnxnsUiF/6G0T+RcrlIL59yN7PkIiKknTbSy8G+QvzmEMPBNppBEVmTg9M+4T2q9Z0I/n3dlULuxAttz0XTVTb6lpYFV35mQ3bzkKIj2GCSDr0//zsLwQdk981lsFA0aVHRasbCfQet1kEhE18UuNrtu8xEdkJyTBWBCTvnC/YnGB0wVWBY7/quA76GwvwN9Q4Ex01Evq9nID5FUiahMrAY374p2WoHj0Z0nH3cjvqV16Yznu2wFO+5NbXQBvOYz74ZKWjDdbJ3MseuDWXmqd+HdbbioFzWgo1WKw6sdyeoBbXAXXAyY67qNb5kxai/W6GjZfdZNyVnOh7dX2afvv0KTjfOBcuMvwR9blhb1vgllBNK5RMv0fC3JjVcZTaDaOLXaKHVDL3b1zQrzjZhLmch/ZP6RryNOVl7Tr4RnwtmzswENEAgkkY3V71AIHFb+vxWPVwM5N43BNRjb2RPoFl1HQrM9Oouq9RB1Shh4FVoLWgOquEEZg0KZ0sr6XtqwIhTsbq6vRrJT6hTWaPPoNPgUTdZ9RQkvZtRLdd+hW+qkk7wqSoctfolbdPuFxi7p+r0Gj4BU8H+otyOStzmq7pwlSuwQb+76S7/GFUUo6YqxXL0Vnp9VNV4BE7+VsNN3TKE5YRr2h56iKa/H0qwopRiZ0nc/NpaMabl8sTuAUWwy9ARU9t+BvvraI7x4fsIfrlFrW4rxB9rgQlDAQVYUmuKSF+/C9Xy8tDC5/l4GzZU9yY6D9nuPJf9+BcuRxL03Qi5sIvYNzyteAeOmnKfPtjIgZ809ClZKRtV2gW635pkoVFbaq4clgnvYvnZclo60glFvOQ9aahUMWjqfpwK24j9H0VHU2DLtQ4VTF9DrM1D7xm/f+KWkrR0YfUH8D85HKzLSkb2LuKJyReJuMWfVCpiX0Lt8TQSazUB/6jYiO5xj0dUSXGvaXMsdhzMeHbOKQYH9B63r/Ii8S4kPnabezgaV9Xu2S9+B0nYf7xE3DDUHL/Wb9kVgv1Sxes9C2dR/jolx8b+DOq9r/h/FRj0v0+RH5V4CnoBhFVBHxWOXSm1zqEUXDl29MgbUzJIsl7Dy/rH8aoow2nL1Q/jy16/Uox9MZkZZV2v6YUk3+e2Jo7uUL8qDrasc8V5lbQ/7gSRkP1NlDSc5ISMd2Z8q1MOmCa1eni62MGNdzHpgdER+PsXmimctMHSwAmnH3sPQs8s1+rrTCt0Gu31WP/eEnffHpyW8TSHZ2aQ+qMtY/TosqX9akbo0Mo/HXRhDzZNVvlSDX1QDrtG6y0R8e9lPZ9ZBwJubhkGUmW+gCDk07obFtogiOUm8nla6O8ouxsn0cT0B47IqVgDfwFIsvxQAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAJwYAAAAAAAA=eF4FwQs8FIYDB/DGXEL9vWJ/tuVVLSJ5HIr7oboJM/9DSV6ZxFkeY/K4qX+LEToizxPHkWXJ6+Sx6TzuiPLuvG4O53HSMD4xarbvt/T07H+CzJdAlynlCWvEqL3b/behvhgWTVkE+uNFvMki/iGtu4hNzxOWJZULKIidGL50YgGJI/VfHWfPg19e+o+y1TxyAzNoB7rmoD8/NKnoModmJ9U59RkRNKIDjmmHi0DY3lTSkhRhZ+3bPYo5s1jnMi3fHp+F9oAd4XHnDBIFa+VnvWegExJyhb09jffPD916lz2NuQEfj13TaeTEilLuPxGi5NQhv6L1KaQwPlNQOT0FCcWsiqXE3/Gwt89yP1+Ae5dd5CK/EKD46uB3CvGTiKKPLo3xJ2BV2STfajQBZ35Obn3GOKIJQ9erN8Zg8uDPxDL3MfQXxcgkcUZxSiS0ddQbhX5jVuZCLh9U46P3HPbxkW3NFIfSXqO9UjbCbn0E+guvT/RQR8A8Zmf+Zn4YY20h44XfDGP/RmPUhGgINvLWrAcBQ+h3j1HnLg/Cw1aF7R0xCK6BTaj73wPwcKyMqUgegFlAm/q5Twaw28dlnaf0Q+Nnn6u06D4kJrkdkC99hR5bvWvrgy/R0qZboiD1EoZa3x/3tOxFKCG8nXOjB6VunASDZy/AauwYztrpBqXM1ENk0w1B1dZxmbQuUIRkxvYkDwVH6M4lBjxkm160fHeHi/u2Sk2iqU7EXjL29LHsRJ3QUMmjsAP9AomDvI86QPAz3n0Q1I6Q3xrKfh1pQ0UBxVz/TBuUcp4aTtZzcDdx39fNxzgQVKwF/nDmOSJVa643WbTCk9yyqUD8DTR758kw81/hyPWK41i3oPWcqHnZqRlGCasffvdrgmKw0ec/0hqhzGrz7Sp4BsP1M0U5nAbkN1HXpt+wsVtrMJ6uxgZJxsrswdf1eFbmayFIrkO63qOLri9qwQ1zdHi7vxapo98TMi/WYIDZW2lWXo2TKxuymRtP8arEZTeUVYWt2B3Dee8nmPAgdQxq/YJTTUvTymuP0ZC3W5PG+xkst2179fIKBOVUFzLuPcLqkz+oazfLQTgnMHkXUwYJJ6pRMo0FTnztmbs/lSLde0uSn1+Chlam0/kGJuquuMxyxoth0iIp/kSqGItHJA96hD0E/1XsfPU8A9aRWinLQQXIz5Mnt37Iw9u9FCdBYS7ceD+MbTnmIFA99kL7vmxEJ2wyloezUDsybKddmYkS4qpYlX4fThZe9jduZsD1jipvJS4de1SnxK7SdKSacCyenEjDTtDhUavrKbBKV6B7cZKhZi834/dFEs6mNlWxWIno5KnVRJskoEqjKJg4+iP04i2LTVNvg+DtHdVP+T/8wrP+8tS9BQHz9m6ETjy8iLnOPynRYF/1qUKtRix4Zd11z+yjIT74fsorPQpyNk9VItYi4ZBjttsVFAGqrzGB+D4cg/VSeozSMEjjlj+nIwQ7Cx+xhUHfYo5/43CcGRWpzoLFNN1A3HS3Kla3CYC/MOZLqxh/3GakQW3QD7IP92i/JV+BUEkqdbXGByY+CTXGsl7wNIoxCM/2wIvI/PJiZ3dsXs5wHSNegL/g8gaF7ArvgS+PXaFRULb4SOo23xmiFdpWCssJutV8n74JB6gQ/tKkOZzHWthIR/A6GWID+wM9vWfRMGD6X+GwLfR1JFJJe23Q8MYlypdLApV+qOUk7zRWMh/dc5W1gEphdKYznYi5XlXiya9MoJefVHPB2ghV4m9m3fwN8VzzQ5YmVR/2W5SjRV660GrPCNFiHIVkp2253aHDWNKMb1if1kKAiWVc1KQGpNtCdZhKn6OxfEi+u08NO+TN8htCVSS4rX4WZ3UQhnKM4sYZRaxdVFeu5cqDPcDuUuLtR/wvxVf512TgLvOqeTZgLz42r4t1a/4YVTUv7+CSBDQX8xLkTu+Bncz/hpJrP5DY+kuB8p7bJOnoh+Mm1zZJZU+zVpgvNkgr1+WoirF/kj5dXT2SNL1CIgcXBC+eXyYp8oNM+7XFJHLeZKWO/zzJ/272d62SIpLcjPe7tH+mScrctJ4k9hSJTPM19jknIBHNt14bLk+Q/gXfMwbzAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_210_t_21000.000000.vtu
index b5f10df313653d79df43293748402eba2727c48d..9ebeeb85fd33a2da1e58bd00607759c790ec89d0 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_210_t_21000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_210_t_21000.000000.vtu
@@ -2,37 +2,47 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="0.00024793009488"     RangeMax="0.43099912361"        offset="132"                 />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4264"                />
-      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4364"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.2783029045"        RangeMax="11.368152136"         offset="4464"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="0.00027583457702"     RangeMax="0.9914569129"         offset="84"                  />
+      <DataArray type="Float64" Name="Productc_prev" NumberOfTuples="400" format="appended" RangeMin="0.00025718475614"     RangeMax="0.98672948573"        offset="4208"                />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8348"                />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8428"                />
+      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8508"                />
+      <DataArray type="Float64" Name="Producte_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8608"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.5522719622"        RangeMax="11.424197413"         offset="8708"                />
+      <DataArray type="Float64" Name="phi_Productc" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12576"               />
+      <DataArray type="Float64" Name="phi_Productc_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12656"               />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12736"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12816"               />
+      <DataArray type="Float64" Name="phi_Producte" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12896"               />
+      <DataArray type="Float64" Name="phi_Producte_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12976"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.6502545125e-08"     RangeMax="9.999216538e-08"      offset="8328"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.0016334970816"      RangeMax="0.067652703299"       offset="10372"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.003028241352"       RangeMax="0.49935259054"        offset="12452"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="14596"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="14956"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.5007747788e-08"     RangeMax="1e-07"                offset="13056"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.0018494118115"      RangeMax="0.5"                  offset="15132"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.0018494118115"      RangeMax="0.5"                  offset="17272"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="19412"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="19772"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="17016"               />
-        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="0.0002493315339"      RangeMax="0.42915611893"        offset="17084"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="19216"               />
-        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="19300"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21832"               />
+        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="0.00027741804061"     RangeMax="0.98594517481"        offset="21900"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="24032"               />
+        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="24104"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="24188"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="19384"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="24504"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="20988"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="21536"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="22048"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="26108"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="26656"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="27168"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+QsAAAAAAAA=eF4N1WcgFQwDhmFFpWEkMksIGWWUKPRQdqJkZkVRKSkjZZSZlZG9RRwrWzbhGMlexzm8KiWbjJBRfd//+/d1G06UcbAbjeByDbeRe9QIgtmZw+4uDsN4vu9fl+gI6Fw2ra74D0NlKYdHq2kYx94N0rPxDOO0nUtciMkwZAyj9aarKDj03JPcvEpB+E9/4V49CigKEoT9YRR82b3ITF4iY7WSLPZAhIIfZ1hrd4aScWXwLNtCKxkXnFJ8rp8k49X990uRVmQ8YuO60d4xhIiqZTtLGjL2Bp6RtLEdwsBmMZ1B+hAepxzTEWMYgib1Pjt75SH8bFT3YS8m4ZCEYkbJJAnnx6kFBPVJMFYgy7EHkRBTM2amvzWI1ngHv1QxEkS/bHJlpA5iVul7uMbgIBxf+B86qD6IX9eu8TO5DWLJpGwhZmkAk6xuG6t8gxi328srnTCAvoGLhJWOATzOHxOYUx7AWvu5OFrnAeiet7tZutQPHuFINUneART8+MMSnNwPuab//tp29eOYs3Sig2Y/JgbL2Ctd+2F9a+yE1VYfaC2UuhmF+5FCEqYxz+1DUNrRh/aUPkzsWrYwM+mD/LEunpGAPvBcP2F3k74PpFOO4mqyfTh+++8jy4ZeUCzrG8rme7FUfz3YwqkXyl9Z2Y6n9iKJl4/WWLgX7ou/LIP1erEups2k+bUH9B7V3T/39UJrEf9JxPSA589WhlpDD0YYXhXt1e6Br4LPwainPWg7ldbYs6cHXUt9Jn3iPfhskl9H690NR8Fgn63+bmyrTode+t2FPlLu9gm1blzJ8X2hadcFQuHPTsG6Ljj9ilU5OtWJJxKJPstSXTgi+MyjxLIT2lPipd4Fncjbnvy8+0sHePqb+UjCnRguMKU/ZNqBA7rf3cYzO3BZ3nSl7792aJooeGQLdMBR57COolk7qKOZZrgz26Hl0rBhOPYJfyrU8y8KtSNopXCB2foTetLSUg/kfQLzTzn2R3NtiFk2LH4q+Qkj9XUuVo5tmGTwavesbEN7099ji38+QtKbyMh3sQ22C+qs+wM+gr7F2M+g4yMekBdSi1g+IvIopzaH4Ue0nRCe/Py2FV1OSi+tf7TivvCdEyGnW1H0xcpL2rEV/GnOpVVNLeg8J+nuT9OKfH0S2dygBSqHJNt1o1tQux3M9Wy2GYbVIV0xQi04RUmc3uHZjJ5Y2XXNumYQfI61rLI249lB81I73WaEUgeqXC1sAoP4v/yt2SYEBXTR0Wk04RI5yWHOpwmyORt1gj+I6E6yzJXnbkK1opp0oicRozsU6WeriCBfdJCx5iZCBCK3Fg2IoJTHp3rWNaLxtoGH+lojWC+7WMyYNWLAiii3HNUI3YPlTxKpGnHQoS1n4mwjVtR5FiPeNiCmIquBl9KA6fGtuQ7VBnB/44pJc2tAeef3kEvz9aDstb9mydOAIF3V078i6rHI2yto1lqPdJLn0RHZeiwZvLQMf1iPP7Kq96bbPoBdzNJ463A92J55D7kc/YAuGfptYc8PMKqNjr3lVAfKtE9YFakO0a7V3xK7ajE72eKcfKoO577oMh0TrsVhlkCJHv9asESm5kz41YC2mZle/UcNHjg/0J+ZrIbJqnLqTqUaqK20Th3XqMbPMxTCWno1GnnrTMPyqyCjwUnNTfv/7umuEQGWKvDWJxGdbKuwqyqn8Jt7JVZcJrlXByrhMvreqG6qAsbXOF1iLlRiJK/ZrVSvAusMCeYGORVYa3kz96GpHP8GkgLE2CrwtrAqa0SqHJaD1aMc/uVwPU/bsDO7DBe+2T5k3iyDInfVR/GjZYidd3BlfViGiC98IhZR7+E0etyee/w9fJJPJofSv0dWbfu8oMl7xBXM7KoIKEWiW2+5KKkU2x7JjqTdpRgU6W4V0ilFeHiG8KRvCZJz/C5x9pRgLv9C9MTuEpxoJz7/o10CjlWJ670BxZhQptvq6C2Gh+GgSjp9MSotVO+81CuGtZXVSZOoIlT8EkoRGCmCaryT0tqRIth9TMjJsSxCC6F0yC6rEGbujTUMc4Voz7U1aTlTCCXp3aevOxfCPcL364JvATquT0bY0xQiu9qpYAchH5WVVziHBAows1d5o74tD/ycHtPOavlI1nUnn1h6B888Wx+ibR7iGwk5UlzvwPHhIV9Z9DtofFvfP66RC76Jg9Ak5mJIsKBP3D0HEpFZr7xWcrBLnnkfe0k2Ml8/29ATzAG1uNh83FwWsrXSMohm2WghyY8VCmXhdmAia1tcFibCou2MbTLhHntW5xY5E3/nXRGTT0DG6WL+MI5MmA4XMFiuZcD+3H6lKzcJOGNUW1CpmAFe2kWH2OwMuC1SSyaGpaPTaDnAbi0dUd2aVHu+vwVTVrxFj0o6/hopiP6WeQuRNWNSRfxbhA5ze9mGp8FairdGYDkNmxGHq2//TAXzM2oy65U0/OfS4zSinYoA8a/kgNxUcLVyinWXvMH3wQ1tF7pU6B4lnJfnfIMMK+1vE/ZvsHOYxVn5QApStB9Vx5an4O4Fh/MbU0mYqtFnvBqWjDyPf4GhHYmg5ti2nrdLAv9wlA5VeQKsO+W+3tNPxA66ZjmlrHi0bbDQ1V1KQNCj56M6b+Ig9CZ6bEw6HscXpNj5UmIRPz2V1SEZh08XWThy02NQMcm46XgmFsQMTpWvhdEQVPp3pFcuBsbmEVLlxCj8K/ytOHg5GtXEeK7jo5EYXdBifWIRBcWTRVtsfyIgfHAPTaZ7JKr/qKj780Vg/VtDyI03EdivuMp962o4zgkXG3q1hYNA55gf5/0aAw4i7Awbr2HDwirFWRuG4Wti+5dOvYauZvOedxuhkFdlFjh8PwwWNjMkO98QcIaLhFBuhKKlku6n4ZFgEJ1Ke4izwVAAjxwagkAb9FmY6P8KHgUTC+uPAnF5jGokTyIIhfJUtvqiAZhWcJUwmggA3Q5tY9EVPxQw1u+LJvjj6t2pYI3mlyjfe//cWXs/XOj4EeCe5gu6rrUtWvWXuKpesBwe6IN1jW+/RoR9UbNO3KXv7o2EfFk5V1YfbOJZTJiLFyJvNOgV03tjDxWN0H4vT6wYzVerMXqhgolrLDjCA6MW57X2cHmCX/aLYpXpC+w9xkoqlfBAesvjEfdMd3QNvGU4lfYccg19WwvUbthsjKOaXHFDY/Adx0h7Fxwc+ZDKZuiK5dFPzqvLT6Hot+u3Rtcz7L7h1Bru44xNtn3LO/WfYlzYNWpJ4Akibs46Ni08AX9WQnIkxREnsxRNmWOdoFCqJPE3wQGl5HtJj685grODR7jY1h6O/HNnb3I4gOWeu5CY1mO4s4UoWS4/BpWj890NuUdQWFbavUl+BB0z+XxBh4eY6DleaZBghyjtjaY9fg+Qs0gYW0ixRUfYNmdUqQ2Y2k6LNNfdR6WIyafPm3dRyXW4cHztHg75SqwtG96Bpqd0oKnqXSSHnLo10WkFWb28RekCa7BVOT5pMbwNrx/WRwJPWgERNZIFvy0RbBEnY9NwC78Yomlq31kg3tBsdPWeJV4bcxYxOt7E1rYZvZKABZ5fcpAiJJhB9o2W8tqMOY6W2nzVsjcB/8qpvb55pggvyJbztLmBgHudosHhxsi5+/wVwcsQggkfm5/GGkFN6cnauUp9lI3MBmTWGsB13+6Kdwf0kBJ6xzWOSh8Xja0oYa7XsX4kaYlirovROZl9PjQ6MNXZoz5D0YH5DI0WB+EqRpfMTGxtr0G9V2+WqU4L+vQCJfvYryLnr9kLNhNNDNO7sW2WXfm/p3UDY3wakCL+pp+zvozLBME/G0xquGL+qj0c6lhkkvGWEFTBVNz1A6kXVCFLpJGwNlP6/18sHy5bKIPU/YU9rewiRMtu1+lmXkLBg1/BkycVwRQu4/71wEUo7A8J5vQFDpxgs+sPUwCT1OkbyhNyYHOD8GfLC1gz0QnIdTuPuIVqs7phWZRSqwtNqMjgsjf1opTfOfxWyqDvUjqL7N40G/M70hgXWqzyfXoGYa90X+S4SqHrwc6QW5OSmBdPvxvYeho8RffTvydKQCOut/G9jiT4GF9c3ZkvDmmBm5wcohI4KSBBiIA4GDvOzMY9FMf/AKyvCII=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAMAsAAAAAAAA=eF4VVnk81dsXJTRfY8qQhOeYC+WR/OogNOiRV0oZMqUIXRkaVCiKMpcpkqmQMkQodW8PvRLXkC49paQoyTMUXob7W/46n+895+y99lpr73NbcvXomUJC314dUu4pIFRBsa1o/yFC4w0YT82yCGXfjXp/pIuf3fRxwfuPlYQOV/9cPehFaKa1vNkKZUI/hE5vFrlE6EUDq4IPFwn9+O3Z5SRfQiVFdRQHp/nYEao1/olRhK7QclJvSSd0yPZAtP4xQpdU3hSYWjnDsvjzys8PpwkVld7mG3eL0Nu3cnYLTyvTZwUbXa9EElo+9DiOX4PQ/EN6WyWYUyzlpOvbZIBDnpYtCMe9zvoe3pUThNbm+6UwoglNvLKgswf52X9mJX5G3vUXVoXoeROaV5NcN5CD84JZfZFXCC3YZMR+IMtjiUz094mj/nTZAK0uC0L3P/PX5OBc3TqhkQeIu33AYd6hckKlfSPfj2+Yx74uYMNdvI9QhtpSu883CE0qb7UgHoQ2WWRfYyIuo/yWgVs+oUpjxh251wjNEIsX+ulD6Ji+dM76e4SqW7ux7qEuUcvBt+/LCA0zKX0clTnLGmFMG31OIrThryLvO8cJ7dve5nu2htBc18qxrlI+tm2w+CTzLKG8vDV+4ZoTrMfjWX0vYgltbOAmdyQS+rQ5167fgNAt9yv0OsBD2k3L+Dn9WmXGIzc78ViOW2zXdeYRamByXox9ktDUEEaTThihh11utC6Efgfq0jtPphJqPlq5TBNrGT979Bx+39aRq3HhPo/1SCF8bxHyB43ue7JqL4/1H2NthyG+Pzm4BC9bT+i50kAzZgJ07/eWtD9MqHZ0a7K6Nj+7RajZcBy6F/bdW5kmwMfePXO+cZknoRrR44ECTEJ1/IbnVW0gNCKUcBhYA2wdTCKB+++1nqXzrxM65bstOxTxBm7E+T9VAJ/iy5lWfxJ6M4TkhZoi/+IzI5wUQtX0wpz9cgm1kbX8bSaD0JlHC+174gn9S6+oLxb6itb6ZhcfRF1rtR7mhROqWdAjnYC11Mxh0Qv4qLdkL68SvDyt738ZmDfL4iT27fTZC58YBywsFuGxWN3hAZNH4ceQXttzqDvdcyjxTZAybVQRCDi7mtB9wzoqX/0J5fxz4pPkb3zsbzpmOYn4zuanGdm4p5/gcrYPfLsdLozThs6FnDJ3BeCpdPeSXxxK6NpXkybcnYSOyB0qkb4A3lWEvBLAv32jHFMJvlJsbI/ZCJ0fVptck4Cf9Qcbp2ahk+TvMYos9NOQhQK3dz/4cDyozgFfwbv/l6uZRuj3zI5icfhYzUC28jl8qb3HOe8reGE8KVrlhD5ve37mOBffhcrmp96Dj1UV5uHLDxB68vPWfYOIP/Bp5PAG+PeD2PTdmKuEGmXca3sKf1W8ctFtgv9GymwZ/cBpdFd87J0N1pGljE/OhK7kCfVoxhHafTfaKB7n9ZxnJHpxLl3e8oSmC6HW3Pked44QOk97nC9kF6Gma3lH9sE/rcVf7FbbEcoMsux9gjif+WvMDHHfjmu7suAUfBr6XT4FfCy4evCpUgR8vORwXRf6fER9h0pnMKGLNr9b0y9I6P368dow1Fc4qRURH0LoEVud9I/oO+N2Ou2O+TARqiTVDj6THx8eDkLc3jzZH+OIm31q6+gA6pissn/zN3zzfuCOZwj4azr0PdjrPKFOdz6nbQeepszudQ8QL3Pstcsee0J/XVsYLIpVqk2rRAx8HtoqzfkP81D6eoHNN8S3LrLhKu1Gnr40YWP45/LChhkh+K3SkaXuAp5HeyTiNkH3F/Vie0yT0Zdeh8frMQeY5i9OvYZvPlcYVmjA15MRiy2bob+1y8xpXejOf/5RoAfu+cVueVgGnMwNl54lgBeZMS1+H/DRoh9zyhPrjwIDDVPUGy4rUWqM+f3zYL51F+JUJC1jrAXef/jsFJOA93mUxverqOvuC45wMvpzcEN5kyH6y25v24mlwCFkZm49CVwNadeyS+CL2HzTDAbu19pZ3TaGHwTemM0cBz9fbH9WZcD/A0rOVYqoz+TtL5n1+B7SX6oaiLn4a7X20Uuo84f4vcF48H7AP4H1FvqLF4k6uAFXSUD39+Az8E3Mq2/dyMNJaf2qBDzDga05fuCheNJTuBF1l025u4RA33fPStq34Nx8e8ccXeQf9fDx9kafMZbrelD4sCrhgtsKfJ+UaoupOUcon2CxFRN9V9BbllqJuPbZ3bnH/dAfhnK9hegbQTGRjn7g3Om1fn8OeNnjleD4HP7lbHEd+Ak+truve9kAnkba617fx75cb9BeVeAdTYtKeI31l7aAgzV8GVOT4jf3joXKSM+EZKNfU/l2tiHfr87Cbkn4qUn9hGsk9occijv/RT6mj+a2ZuASlVmjH5UJPm7s6MjDHNzlTSVn4Vs1FXfdOvCdayHg1g1ej/bOu7wJ+TO2Dfv+FQPe5RzMsqBDwy259RvBd0501qM1iHutWnGUBf1zXWQuWWPemSk2hc71fcqtaok36PsZ3VQpBTdCHZcs+cIC/onI32ub4dMuF8vt5ZgnEd3KKT7g7d1vZmsmUVf7zo3WnuBzZcVWKTb8LR1XIvEF/AhGtbpPo69vXIutSMb51a2OC1PhmyM3E1ReglfhzDzPOb851Ro41sKnzF0G0XO8HqyxrP0O3CcO1Qq64V19GtreJYt5nnV0+Mwy1DXo5Crc6UoovThYNoa4dbpj/jmX4fsEh83y0HvXW3Z3C+roLtDmPAauUKW8yUHcSwmeCt8Ln6VZfOG9xbngHLF71vCJQtalV8mYZy8M0sW0cI9PofbHRvApdSx0NiEIPpplX5yAPpkKAk2D0Fs85ZiHG+peXXZOqRhxf30tmPgKPhUCjP/ohT4L2FLOMejnYweT7twGLtG4aNVduL/sPFf4A3i0/HhGcgb+1p42XjaNOrn7DRoKEafDe+EVAeAbsFlw3HOuj2JTxvbgXGp9dfzo3P8UWcnZh8h7P0MpoBQ4/+Ozkn4A3v4J1BQPBg/rjPxO+yPe5qLlrZLIq2uuUSc2N6ev3nfn4t66oXdv/0Xd1QVuE3mB4C9ds3kV/LVlc0pwHfA69yXvkEVe36iM5VJ4d6fLY3000C9BnTsz/gV+Ha6+uTn8dTnr7P044LIK2fPDFn4VlLLabQ5fjXFOpk+BN4ZSaXUT8NAjd/RGoKdO1K5GA+yfDzqdcAx6/F7T+lEK+U+pen8rQ5+1OH4K3468KrzMeHPEa505+sQJ+FUiefk2WC+4X9a/Ajz63355hID/HYu8uF3Ao58rFaGHuv7+Mvxdce7d8tefXYH7KhIpj2pwbv4piatNwCPSyWu4jXNxHfs2xeD9TXf2yYjCHFTlWczm4J6qVSqXhfgR0UerzgGnQuT+dBH4NFf74bnl4Ks+RLh/bu42v+TJZSNOfNb5+QS8asxGLAmCLilLWk4HgkfmQ449xRy6Y9eg0wMdjSKb1zphP0zqBd9R+OKJfUbvH/hd/T91iU/43dK0vtoRfDw/HiemOPf/VEU61hbfRvLKIrXQN1FqgeEEzvP/iFtiCz4Vl+porYcehVOqPf/D7x82ldgY4V55WH62H/zjKiSqthx18TzkM4LgR9OHTAN17J/cbNrQh33pxXfNtiM+aZMXyIEuozLF/a6YKy1hgiOSiLtCzjtADftZsXtGksDL9FSVyE/cD6vyIhnI9/4m94MB3uGxg73PX6P+2HuGLmfhv6Wx+btM0M/5q06ytdCvcjU7g+PwLgyobYwRwv7Ndp1aCejCt2h6fhR4NKmXUduAeJPkusBZ+HWVqQnHHXj+D4z6agQ=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA2wUAAAAAAAA=eF4NVHk81XkUZTJlT4qhYqphImlQiXg3kdETWUrR00ojoshSvytLapR9e5ZeSCLJkiikSMpDjZSyjRZaxhISDyXL3L/u5/Ndzz33nDMaVsU/0oaQ4l1wU+0Bgryl4/K4VoS3D2ahtAVBlpcl2/4KoSluJHr8JcI2ybk5C6jqzOm2UG9GsJgU9ma9QBD4WUhsf47Aajkyj9OEsDhBYO/8DEGyZWTYtRHB+EhR9dF/EALjfcpdnyJcyH9T7/QEYfPgh26HBoSDSdzRbfUIY8nrBvXrEBQTbap+4yMMmdvbidUipHp5Xul/hLDb+GBsXQ3CjvFjMhkPEepfjkr7VCNEf41kTAi/otINQ+kqhHX7zE1f3UfYk+EUlHgPYfvrrFabCoTHUk26YncRmrMrw++VIUz/oVl5pBTB47BNucwdBD0d1l8lJQhZBn8WWRcjHLDND+otQrh2SKISbyI8k2y0nldIPEmWrYjOR7i/02fx/DziqST11/BcBOt3JgqzOcTL2ZjPHtcQ/lPzDWrNovu33t3Vu4qgHHgwmHsF4dYWx/K+ywja7F/M9NIRTp23WxCcipBsbTBVzaO+Rq4PTKYgaPLU6jSTEX64DXk6JCK4z1dtCkhAsLft4vPi6H2Py6yiGOIjsk2xKgqhX8PI+HEEwjKHkbSaMIQedJW7e57+7VGIz/mbzi9SnIk6iyDy2t7U/QyCm7q8nXEQwqOmiqUyAQjVxV5RLYjw2jCcF3+K5jfepG/mh7DK0tN51BvhELdHLtkLobc23lLnOIL47UzpWneEudnKB6zciG/Pk5YvXBB2VUr2mB9GWK+Sa3z/EJ2/s85f9QBCodnHW6F7Edji5dJdexC+WmY90LZHcBzImfS3Q2DEZKerbBFsRd5I/rBCKD08eFLLEsFPpCFxvzlCRelb/gUzwj++1C9/C/HxXUvh6WaE60vurP4ECKfbv7B+GCAUCbd3S+kj8B0WVCjpInQV5HtrrKX7uan1G7QQpNIiAk00ETrym12sViGccwpwclyJ4NvxwfGoCuk/zMwiYDlC+IS+boIywo272RqFSxDSQ3PYTQqkoxd15RNyNPehpAK1hbReK+PiJIOwsbdvTa4UQoiOi/0PcZrDcXEjjihC+8pY8yc/Iwyv/vaBPQdhxLclsFMIIaxZKSF4hoEX6eGpG6cY6I/UXywxyUBI2kDk6AQDtzUe+o6NMSCze+tOWQEDkaoz2dtGGNAtKvuQOcxAeVV7sOIXBpS4s71Fgww0ltYGug0w4JS/iGf2mYF943NC2f0MyJ/dH+TVx0BKz8qS6l4GtkZYGOpRZeK4Kzp6GMjkn7fPotrFMangUY03jJKopNqUHTMuQecqAwLEL1C1/olToU3vTN94yhGjd9cMV6nOp38ygjdomdC/743KTmQTjhSO3uP1hCuMFfLvKOHk7SlhvyPcoimu5yaoj+iI9E4D6i/3eWNg3ncG+F9iTptS/9W2n2pEZxm4ML18mUCYfMrpM5lLvFVkTT5gEY9suTqxixIIJ8yu+8vPJx8cwl23ZRH0vXweecpTvvS3trAXI4SKiEWxaG4f8y61slcgFBuFx7r/TrpS84+4SvOe8pOPGliD0JnhY2tKuojJjo3P24AQ31sqpGSIsLpY3irZCKGtRUlbwRTh2+eZvWlsyodk8QSV7ZQPOYuS8kinHs2FG7R2I3yJdbQr4lAuHr/WqU46Fwgk6nnOpJtNQ6uEXRE4Q6rqHA/KuauF09fIP5xjgsn3vrTvujxSivy29JKGrmog4R+7nqIWgqDG5h6TD0Xg1vOjB8nHNbmsgXzyt1KJdtIO8v2UY2dZF5fWG7qTd1BOpAuck/MuEe5vDlq9lCfc70KjopmkU7evZ6SyKUc8RyPGKJfuLdxUU30DYa24eMOxAupn5LnyLOXajEqcwJPybmrHxcGa2+R3YX7ZCOWi+doEp6lyhMl5Hjs7KD9V3jqEBVKuPmy1aeuoRBCKd/NspLz9Hx0w/0g=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA9gUAAAAAAAA=eF4V0Xs81PkaB3C3SraUtmxKFKlUO2lLLjl9SGoSa0lesymbyxziGLFE05EyTpLbuF/WIozLYOb31XFJXpOOpGYlOcelw9rGrsu2tmy5hZ3O9/z1fj3PH881uH2nBuNK0JnVaeTTdhbK8csfq2jMW9q2r+T/ecE//5FLlcsDZ5Kol57vuxRD3TSbPx5CrSn63cmLyglfm+ZI/XBFWHaQajbwXaQ+dd5R+UGVOrF9y+bRrwj4g++etlM1PtGaKaV6tUfejqHe+7w3kkMtt7EUs6jG3D3aatRJ47LUHheCC+bzesXUX6xe5ARS/3XT4P1+avcbjQ2zXxKIznWONlA7Q+RO4dTVUY5mLKpWaWjEL84ElnmGKjnUczfkdQ7UHWYevCkngpGxUZ0cqlpLBd+KynHOE/Sfon1bjy0LpfJORPQuoxqdGXmc5UgwKOyu3Ept8684Xn6S7uHP999BDZqPe1bMJviqMsd8A3Xu2wgPwQkCA92tr14fJ2ha0Ll6ijqV6tdR5kDnzFV4zh4jIAHKR6AO3noguG5PEN4sWNV0lODp7vr2UTuCtY3fLF9JJdzq9dtsCX61sN7+OQhMGgLc9x4hONp7SbLlLwQJr3nGKjZ0zj727R5rgjOyyO8zrAgq9Orn7SwJTFWTdIcOEZQIup0vmBOk31V2dR4gYM0L7hh+QdBSNFPsYUZgq27JD2ERPA7Nr/TfSzDNngyz2U3v8EA48XonQeBP2cMhJgQvnYcmO4wIKgftgt4aEqTEfuCN6BPoD890FOjRP6rGKfV0CZplG13PrCNwW+NZd1KboL8wouOPlbRu372xE8sIigYKdY+r0LzFztVjCwxMVZr2bZthoFUZlDH1hoGRz29/Ok0wYN8dGGMpGLAmu6+kvGSw3OfTPN8XDFIyel6JnjA4EGZR7fSAwZMn+htc6hlcfx+vXiZmsN5lxPRoEYNr52fWbs1gwHUUGxy8yWBdcGJheBSD8CyNH/ovMjjlfr7/9FkGPkvcheGTDDSjuq6EWDKwlW9uWDRh6P9YFvx1DObiC8LaFqUwzjgS4dYtxa4tSh1hiRTm2Q7FQWFS8H/udemFFD3vihxkWlKkLBY2bfy3BEpRtPZArgSu3K65KU8JJs8VJn6tL4H28C6flf+txeKhUMmHzFroPb/lYeJci+YhtlaCWi3SDU5wjOtrYN3X3TrtV4NHXzQ9/qhTg2Thoz/ZLdVwF+fp9vtWY8XZ38frNKvRkvlr+LhYjB/tC6ZuOIqhX3FeljZeBc7pTSG7YqsQ9yLi/tebqsD1bOUfZipxTe1h9qh9JQzUzy+F9lYg1XV3wpJfBbzCNGZL3pWj5J5MFnetHOX3dVe0aZbj/ea10dfTROAEjFsqNoowYtWdr1VUhnR2ww7j7WWwVYOXW2UptG1P5bXuKYXBHzY/ZktKMPf0+F2lWQmY/auV2+7egaxS0bXb/A7i3yqs7RuL4WVqb5ZlVQwDi+25mVFFGMv09P4sphDmnwma1eO/h+6sclWVsACuAXUK94Lv8K3bSK6bOB+5ommT35rz8EoY/NyvKxdNs7Hv1UZzwJ5Lf7HsYzZaVss4Yv1s2CQOLZoeycJl/tztZt9MeNT4rUtJzkD6TzkPeu6nw+i09Ie6N2noTmgMct+RhstJ2Y9f+gixXlNT8ZCdCg12b/+KvmS09q38hgQnoUWu9BlZk4i9aH/T0JKABEPVM/bhtyCvO+CdeSgeC/oDQqn6TZTdrjqdMRiHKW+um4VMgD09nPtJ1bHQ9FmRea30BtiBh9e8E10HZ0byLJkbA1ZJXqg0IxraX3o/m+69CsORTW9V9vKhrZo8x8uKwuGF2LEenUhIFQhuLo6AV3SWvNYuHEPWzo1m02GYiJbz2hpDITl2ceLnxEvgLYqeGLzi4a8N058kdPwNHWtcmlc9CwT37/VLD98GQMty+UUFyx8t6sHLBxO4mJeU519V8cN/TLRTTTN8cHZ0fzPb3hvCjgN7hj+9AGdfkYP1Bi+08TkOdr7nsH4wMjfmoCf+B+gxBWI=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQYAAAAAAAA=eF4N0f8/1IcDB3DTksxUTHx8V1mLx81lS+Ls1fKljz4+SylTEsUsX6IQfRKJfFlKRNeVypcknYhj59TJzddzvp5z7tyX99uiwtFWuoStPvvp+Qc8d9mH5IeqSRj472TV9B/DDM/ct2+CRNCt0w3vRCQ0tvq0ka0kBHnjv2TVkUhL6NSbLSYRliDatyqXRGiXecBsEokC1jOzzHASbNOkfKkfiVt53g/H3UgsC358qIJKotZyba6lOQnni3kbf1hJ4sesTbqb1QSU6SUmXWMEUvaHUlb1EuBMpploNxK4SjLqa0sJ+M3zOlZcIuD+dfq/dBMImA60xXKDCLw4x8oz8iJQKeVQzBwIhNDCP/JNCPCSjrPNlhFwDD71wVClhN8Rm5T6ISVeOi6XzDUpUdgXfU9cogTDNDn1xywlfC4tLSQeV+JZ/P47W3yVuL4r822ukxJqY52UNHMlfrUYYOtpKqHVs9HQ4YUC1HVPV6q6FRg6kv1xa7UCuV1PA4zyFPhQIErOilWgryKqJXOfAlW/BcUbOCoQf7hu2s5IAZNsekT/vBz6pWccFyRyuDRr5zAb5Yhf2lY8RpfjVN+x8hun5ND6PqJT5CuH9Fa13eXNckxdC1G36clBi6xGgkqGT9eKrcu6ZHDIuVLjcVcG9Z9ebw+nyEDrSPtb5S+DUTJVOO0gQ0KaY9wBXRn+ejg1seX5KHLWVdikNI8izD3xG+q1UfzFEX22K2oUiyeiH3bvGMWV6xZfVBuPYvI+6fZmVoqXdipcb5ViW9fs6pt0KRrY/h3vw6UYPiqMraNJ8daPt7VVTwqqQsN105gE+5bqGidqJTDm26repEpg8WCN3V4fCeJ8GUoNSwn0timS/54ZAXch8o7n4xHUy1+rZJkj8A7TpDbtHYEgc9W+MfMR0N8lh+6eFEParihYzhKj0ov2nWaSGAnqshl3NzFMPW779+n8Y8bzmCLhMH6ItvJ/dH0YpTuZsSsDh2FofSKYaT0MM/7g8oLnIjCDz+W2V4pQFXX05PZIEWYtw+O1KSIs8HbXWrwaAsPmv4UZNUNgESVTiB5C4tWlER/KEAQLnPEnKiGY3PHFCw+E8PZbOl4bJkT2nrj5HeuFKPzPBPd7chAl1i98WDcHYTyb03Bz/yAsev7n/8nqQdjPmLjICgaQPb2BKdAagObu96njp/vh8trVest0H4xTu/mDB/uQ8tWry3xBL4JVnIP2zr1gRH320vhBD3icgrobRj1AZvF8Z4YAe9BbxZ7rhvBbeuS5I904ONYb5zTAx6cacwULND7u5hVayZldCPIpnlAbd+FdgWBNSFYnatOtqLR3HZBxm3SLfupAhJJ3/4a4HV9eFVnv9WxHPHu0kmhsQ+6HiNADtm3gqIkjitutSJesSz2v3wqB38mAo9m/wYzQ2cb4yANnSWfO5TQPb9vf8HsmWuCkEV4VoHgKjqp8aL+kGdw8O4OXYi4WXddXO0ufoCGQanuGeAwrLRPXvskmnC366e6BeQ5YhkYr3XQ4WLTnvmJaN8JpbDK/1pWN+AI36YnDv2JDGM1V60IDLsVltGbX1OOiTeD45wQL/Z7si5X6LLBOueuGe9fBmRZtFZhTi6GyHZ2WxY8Q2/2RaeBQA7ZVfXvpwEO8t34iGEysglqTDC+zZUIetCLQYLISLcP8i6a193GIk7SxJq0Cnrfo8qage3jWvjj71c5ycNYTJ393uov+mIXEjm/LUJ5zZ0e9cykurDpwNmNXCagBsb9/yb/zz7/w8lG920gw9U0K/rkIM4daB5uHbsCh5faovg8DPp/Yp80RdORI6KI/Uq6hvNE2ptC+EK+PZ2hH/nkVDslc5SIvHyy1E6W7JA+x01f21FtcQUTThp5A48tI3FyZf42Sg4GpjmeBgb9AGDpFe1yRhVjN7ZseaWdiZ+oyLbe0Cwg7ppCk6Kdju6HF1zGc87AZEFJs4lLR+MRNEJOegrVRZd9d8jwL2r33lDeUM9D1SvZY43Qaf3zObEkPSYD4fKfBhkfxOPSNE51qEod/S1d4Z5afBI9B89DcfQIuy+qZHk7RcGet1rZZFwVGUer5tugIMLyaaa0Ix/8Bs6Ysig==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgYAAAAAAAA=eF4FwQk4FIgCB/CPz7DkaF2lhDQ8pJ6rkcQ/2WWzjlCObI4cSVNry7XUZlAxIbU5Q0hqTIphRu4xBkODcY2r7bFfwiuk0bQh7e/n4f7O6ufYKUQli7rvK06hkjnU4VIxiUoFgxPDtpPQf7cl13t8AqTtp8OXLk0gIjBEt0xxAhqExxFx9HGERhpZRx0bR9I5mdmc+TFc5IgeTKeOwd89e/q40Rgk4jvvveUL4aR80bQkUojndCNRgpoQ8srLY7FNo6ibJxfeOTMK8iGN1S65Ufjp6oeo1Y3AokUhMN5/BIcYlBMi2RGIT1ygXmUNI1n/8yn1kGFY/q280ag8jOxmYkM4ZwjKKtPtmpeHsHGk322EOIQ/ggPy08cGcV/AHDp6axAZsukHVjEISR/CStEnAV6Id9nZPBXAxCA1aCBYAOesxtvumgIYcop2J9EHcPa2kwNJZwDxVY36jTn9EN8tCP1OqR8smZMFO9P6MDfnRVmS6oOIUtKZkMQHn99v1SrBx+Eo1eLqpJeoyCeMuBBeYv9LQ15WWi+EH3pDo5R6ERSu81CU04PNPTN5sjo9sJ30cKup5CFxPeWfWRIPzm71rDJuNxSvh43+7dmNL4sjeaVvurBmIeUxGdMFuV8yo1PluvDtIDny8YNObH2JFjNSJwbyuWt6/VzMmbDYV85yQSDuZ5pJcsEv5ZbZF3dA0m7AhW7dAVfFL1mhkxzEjGu5XYznwOwoO6t9Jwc/Ssz6+LW2IyVYnmN5ph28d0YfPGTa0Wqdvo9WxYbTthQ26SQb2/sIWz+st0E0zlsYcmtD/nCGqlJFK9imdlVFmy0wiF/eHefbgkxjv1e5rGaEkCYSxGrN0Lwn6M6IbcJVFrnae6oRKHR3c7VrxJUdx+bP0xoQkTu/UKnSgAV/kyVC4gusuWg3xS7VQ9Le2n7dvx6/KDbl3hpkgSy9TZfowEKKf7kru5kJ9WcbnX4HmNih/tr/4/M6hAtJWonGdcgrVreUoNdCzoYid2lvLRKLtP8zUMWA5mlFbzUzBpSqHMPsXtTAryY19viRGijfte5FbzVSVxq65b2qQd1lJBXR/Rw1jUGh5LfPkHr3zG+ass+wlRK9P+a/VZhky81F+z4F6U2K3vabdEi9pj/3fVEJr7kuiuUiDV5t4T3P9GjINrmw0Rz0BIx7bwMDSh9jaGsu4883FZhP+4vmvbcC9Grh97ToRyDqrf91vaMcI02i6neq5VA1cKWMn3uINZnd2k6cMtyUzjhmq1UGxkmfx4yrpUjsp7aVT5dgoz1eUdmxBAJVe43loAd48jXkUfnhYvj0fY2z1SpCl+c5DaZ0IUKTF4kS4gKcSqUG7Hifj/+dV5r5PJ8HOzUVuaz3ufgUpcAYF+dg33dd1l0yOXCeWNVw0c4GSfvVtwCbe/CNlCKvBP2JMqZn88f0u2hhDwSfaL2DMvM9OtLiLNTFrKuKzbNgu0llED9kgrttJiAzJQPE2WvmEnrpCOOJ3ngMUuHcZjPgnZaG16ky5jPOqZBqoAWzd96EvsvS0Y5P10Hs5V2un0yB8fC3kvDeZDi6FMWUcpPw9WncR8MeCpwO0XN7xxJR2CL9+c70NTT0UT+NEv/AzqOkzf8nXEFEncotr9l4FJjNW5YE/o7EhrZXTouxaP7RnDBFjYHhk6WrIwejEe/gPVcvvgzePzdMZLmX0MMm1P9U8ht0zP3rv1AjUbitphYyv0JH57hngsoFLBvn7amyOg8rolXLTNw5mCRbHDEQnMX7lUXD27Zh6BtYPGbQEYKwtUqm/OlgOFqsRfpuOQMH45YAo75AvFoJtHG1D0DZMH91Qek0MtObLG5unsI8ZQ/ttoIvvimZsiOtvaHQx9J4eOMkCg9TQpmLnijSLjG0/NUDWkumox2y7lgTCwxU49zAubH4c5qsC3zpUythnU7gS54KcaD9BLKw03GB4YDmoVo34+kfIGGvS17fb4/AazmEkCI7CHOWC6oNjyDbx4pzp9wGPD2Z1bq91ki0r5BXnDuI41vKm9WFJBzy0921fc0Cr10912O8zUF6VFzL/2yKffeXDygumkDrC4On7m2CfwGjo/4AAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA9AsAAAAAAAA=eF4NyHc8FAwDB/CInErLijZRympYpX6irJQeziYjm6xKZEaD7EiRGRlPZJ+9zkhnnb3qcGZmSq+uwfv89f18vqs+2islpsvw1mIf2lyxjDJjz7imxiUYP19Q/HlgGUabzO9vEV2Ci+g7taXAJaT1qj+Le7EIuUu69scXFqFu4CEWxLSI2m47+QrdRbBHP7XvcV6AoNPVjKyGBeQcOpvjMTYPTqmMoW+nF7D0kfPhHe15rM+p671In4fJ60LrmpY5CJ96fyJk7zyeHhk+ra0wh53+Mw87wufgHNuvebLiC2brLm0yYJuDWNGzcUh/wT9ynMuCAV/A15Y+Glw8CxmEmx7fmIWmi8N+ZqlZrDW8O2XqO4uU7YZmqaUzcEjkkqvfmIFpFGzN5GegdTleViVwBuL6DydlGqYxvHh57Avhv6eyRh/WmMbjr67zqZHTmNQjCnMOTGGYFsZlyz+NL/NjlgTLKcT+Iu6RypgCo2SNn/FtEhzj1Hyms1PYEd7LSwucRIcsX2lzwySqd2kq5vNMgndP8xYfnUn8sY0NsH03gdslD3wPfJlA5Mr88MalCdQk/uVL9Z3APcIRovMwHZYfFHo38UzARBgs+XfpiCToNkvl0UHslzhYuYsOxkDeVjl1OjIyC/qC34/jpG7f0OaZcTg1yfhyXx/HwhbjOxGPx3FR19tJb3kMLGQN4T6hcTzzztun9nwMvdt1TDs+jKH5e/TmSekxRHj5ht11GAP/eISdUsUorl1LRP2uMUhWlRSvsY8inUmCz9h5FGJ/xDUHjWkQk2KRs6ujgTstlDxY+BkJQXW2iVw0eBpVdC1s+4wgLk3FBYfPYF2TvkGw/QQx4q8AteZPYIm/KH/owwjC3uYfyRb8BDnhqHwhkRGIzFcKbQSO4IakweZd4cNgMlSox8ww3C1F4rp/DCG5ZrOS6bVhaJaX/jI3G0JXXO1ZLdIQeE6xzhW2D4Ks0iPOITAE+2lmuYoLg9AZblt9FDkIlwtnJh3zB/C8IcP6PdMgTA7v2F4nNICCEFqS770BjGqdXMxK7Med7q3Nc/P9YIu/vr5/bz96ZsIlZi37wRI41LD7RR8S13dfdRzrQ9mXzAVvrj64torVO97sA+nyWyVibC8IiYOqo7RevMlsag3j74VkwU9yuXkvKk8SYw+l9qAv3eHMt+keHNX++3lDpAfNgfnlvk492Cf2Y+NoSTc0ylhydX52Q0y+zeuxYjdi4izcbj/qRpAX9wJvdxcu9ne/rNrTjf8FRAj03OrCn3D3drm0Lizq/vybu0YF4Z7x1IhUF6jsEY+Tw6jYsNXviaNQUfOSg54kRMVVj4i39uZUGDmwVSr7dWKkREExZLUT9CnDZtXSDpScuyp++UQnDjBi1k9/b8dIYRbT8q0OKO15krd6uh15hZlfH6S2Y/O6YJSPextsBo65DtDboKwl4lZd3Qpj0tVzq8faYGBxwCWd0IoRK+nL9S6tGGbZ8UVAj4Ls2OoP4tUUuAxc8hLJ/oi50w0SYhwUeNsyWLLXW8BtvF0r1+wjaKvH05/rtaDTlMyXUtoCtsxTpIGiD3hNyq/93+4WENXiB+w4P+DJwkrlG+cPiB5qmTjn3oxCn6ymF9RmKNlWrMp/aoJbHKm7/mwz3AoqLCyuNCGWzZOXL6EJK568jYkFjWgU8twSvqUJLiKOtPHDjRAVFLjBebcRIxWlo0eiGzDRZk9/PdmAivP7Cf8QGsCe4z/Lr98AudJMuoU/GWf57lMCO8iQuZ0nffV3Pcpa6aIUFTL8BW6xrXvUw7nH7et4Qz069xlFOzPqUNXsf6pWsR5fi/cRY7zrYGmWoKLbWIe/QmF/zZjr8L2Xrem1ah00V/t/xXDXguvpzQVCci1IBM0fISdroNd4kLy1sAbxmQ+yo5SrQew5HnyMUo0DLd+vRFlXYaG1S0J9pgplCQ427iGVWKI4ct5kr4JE7m8esZIKXOkqWL8uWQnebfotqRPloOxnPs5uXIHBY3S9ep5yTGqESXiGliN330uC5/UyeJgRD4TWl0Hq/shD0rNSpOzYairxuxS/YgXbbVpJULDubLohV4p/J9y1vXaRcOFZWyDNiwROZurwqEEJ+LXeinwgl8B7ujH5UWYxZqwpaQyOEix2do3pM4ogap8rY2VSjMAf155oaBZhktruz8gvQpYea65mdiGOrobcziAU4fKX0FottkIsv/193tiyEJdHBt2U7QrgIxnqvq2xALuGSsn7OvNBLnr+Nf1YAViSziw1yObD9Ec5mS8iH+N5pBkzjTw4DRaEk1bzkG6zui9D/D34euzESN3vgV2JJuf35qJm3QM8ZblojjvKYGHPAT3N71ZFeg4GE7hez2x6hzRtObWnr97hz5yEastGNqrKnRvMo//FTsswnVDWbFzhpTLEX2SDKeRRHN+eLNiospv3JmbB2UTMX0coE0mPNhfJ5GbC+pexoTAysE4XmrnYkIFihx4XN9O3IJmEnqCO/qeto/ThJ+n4TM4c7GJ+i5+lfxR4itIgv5tx54RoOrgsYxTPT7/B9JWTg3VGaaiOamZ2P/QGF5xOXveKeoPgDmv93JupcJcqpim0p+JOXp5gS1oKqMoqVj93pEI3lshs9DkZ1dp3GoN0UyBX3N341DcJyZLH6gtUkkGUkqyaPJGIG/nfpJIXE1FdHxgB+mukTBfHZyYlIFv+L8UqPR7P3zGFvjJ8jbran0NHXeMwt3OYgSPxYA+KY1JXfYUdBwWM7b+9QjrrfMcbkZdY4IkxmGp/iUqXbrXfXLEIcPP65VMUC7H7uW8Pb32BDikLPqa0F1jdrOA2SoiByp575ucTYvBYymYXy+5o7D4Sfp2RFI0pjk3FhgLPkfzEOpnt3XNELhOt8+SjsJ1XOOpUXRRm3O56dZhG4kifX4QSLRJKGRJJrLwR4G8RcGJnjYSzoPl3Sb8wLKfVkRNtw8FbY8hNWgtBE68woXYgFOcGdQmi/s/wZzwldYdeCC7EmjSL7A2GsrZ3/ZHpYAR85JBSqX2K7Eq+q5GPgsBJXcjiu/cEz1JS1VdOPcVQWaKhnNxjLNwcWRlZfAx1r2/0C9sewe+gfO5M6SMc1Eg5VzsXgHi/BwdyIwJRyUnu0hl4CE7JlFTy3QCYbYsJfk31BzWwmFJv/RB5VQi5keMHe1r6ZyUrfwTfaM0X7/SBjElOZtOoL56xyfIS2L2hJTyTd3e7DyraWC5yGzzAGUb4qxZNL6g3Mp48r/HAlXVK1J8sTxSrGGiVy96H271VcQ1eD/Rl5o5Smu+B9OCA/Y84d0zOWRPZbe8iaMtq/DnJe5DcaUMq33cHYfOy/kZDd5B/2mlYaNwV3vxLUikxbpjTmvB9UeqC+FVrYS1zV2yVXJMqlHcGDweZteaiC8QvKJEfi9yGY9xXDwd9J4gEW80RzzqAul1lao+WI5wOqn5sNbLDhe/Puo/a2WOobuVwdpINIpuIfXoJtrCj7ObO/22FtWu9tvZz1hDzjWHKcbXEwdHIVGEtKwQwBIXubliA+d+lf4jdt3BpZS3jc5o5BLtcTTrsLHAqgLhBNTGDSfOhzLu85rguVRZ1X/8mrD33+lkXm2Ly6udPEvuNYU/RLps1N8EZV67dlSyGEE6k2DhIGYHC4RYuuUsfog4aPquiBjBGrUyhvC5YGvmz3ijrQU3y/vsHQUQ8sbrGHuWvA86MDXrdihZc1dpoTEPaSLZJ6KW7/wN2h4iOS9e18FGb0K7KcwNnGUkcJNoN+BUxy8wkXMOmm+0C/rs1oTr5sbDu/FWUhfx0p77QgO+3pGbrLWrobJdpCFBRR04oe7rsL2X8NeWsXRJUhcCOY2QK1xUoj9IibY4ro7i0ZXuRthKSdGhz0VqXYZFI/TRVfAlILudWS1HELVMNgThpBdgVVIva77wEapzMb4v3FyDrd9woRR5wj/nWH3DyPA7dYXc0fimP5Z2qe0QmZSHEeoi5QewcYr2Uvz4clgYhzNv04CZZlBta2VlyScEnf/4H7x5pHCvoZ4tMOoNZrhM3JRzPgrxN8Ztd5GnYF9uHbz/036c0eVdxnobdBzZdmupp/B9XQgqcAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/gsAAAAAAAA=eF4Nlec/FQoAho1KQoTKKCPXJcRBVuhVRLKii4pkdI0UEtE1syKJzERkh3AQIeEgOxkHJ7K3OCorUd0+PX/A+7y/ZyXi0M8zSssYocyUa8csw86X5Ss5hYozuT/O1WxQsVFukByzi4p09dtbMhZULOdn0Ga4LEG9eeLsQtMSDu9v9WMeXoSUj0bnhvQShKQHhbp1FhFh4eVumbqI1nxmc2r1Z8gOFdwWYl3EMSanqquEz2jvFtZTvfcZlIe/a/mzF8Ac1cmWu7YAA6OfZ0T5FrCLKPvF8sYCWsyEqlyfzEPLf1+0xfQ84ggk9e+c8/DskFBPspxH3gR1uDhmDo89hbjYRuZAdr9k8YRzDuJdJqtlV+agEDIalZkwiyASuTB4dBb5z4vkPhyahbB7F4unzSz2SYTT7MucgZ4GsTF4fgbu34gl1sdmwPtLPDrn1gzoW7dp31ZMo+TLruP9W9OIU5Gt4NKcBkHm/LU9odOQp1/KdOqbAp2m5TeVA9NQNi18+tp2CucSE1/YZk9hmzEmcHFzEhqfBh39Fafw+dgenV2RkyDXM/IFdkziRnbU+k/hSYx2idXYWU9CfEkyuqNmAs6vHc6J/JhAKK+gguOlCZz3YxmtipnA8y5f3t61cQyaVCbySk0gj4tw52fMOPaHCJSf7hhHwI73zyZlxxFxgMbjqOM4Xn2RWvTtGwOhJ1CylWkcHgmZH1s8x6Ac5KHLWziGd6k7ZqsOj8Htwq/T3EZjmPpBo/ssdBSlq3Rn7y6Pwtf1etgWZQRhnlT2X6qjsBBd+hYoMYJjkTSqryJHwMYuxCUWOIxHFXomkVPDuFGwQRr/9AlxAk2/AlSG8ax3rDVF6RMaLxI3AxI+oY2B8bhx4hByD1LVA9eGQGA+ILi5NYg366ULHiZDoJVgW/K1GsRE+u6/jasGoU25SjfU+hH3RR+eYxUchKdO2DKt3EfsfdY2+/TBR0xG/eM9l06B4UNq0uI6BSbCt/0DOSi4IXmOsPkvBaWBgr+aQwYwlRD3oGxgAGKz4bz52/0wo+5sP6A7gFc2mzxH3PuRsjzJz97Qj+SHFM8jX/qgdUptIlmlH+KfpWvTbvaBk+B4/2VFHzxuBqfHLZHxlSPzrbxCH/71sFxZcSbD3zTolHQFGVK1plUlq71YdIrZfKxMhnqpyd4Wr144Whks65N68W0uT0psZy9AGtCy0O7FwQvi9z5E9aC8gMmyvLcHfQZ7Qwv5esDhFZauZ9kDn76oqbeF3SjRoc3gWe6G6bqA06paNy45qR3k9O/G5RkZRu2+LpzOZxggcHTj5HZDfYljFzYspobsXnTBgNGkVXRHFxzfvFUiogsjEgkfNVQ/wNP95x26kg/or/ZTkbzTib+eyLpkznWCzbl2dLvkPXasGV6RE+pE2iA/7/OVDjRtRfhmWr2Hy7viEgbFDhh4dhqPZ3RgPdj5npB/O+4ctMwemm+H3rhW8WR7G0QEyt0CZdux+XLwpSJvG0rs+Xe1+rdhK/EYP4dTKwR9jvQkd7fiIJ3Lik1jC/jjTN8sC7eiiu71P4f4WuAb+LmyxKcFwQ8rCo55NeO+7RjHAKUZsWdDXoQNNWFOo1pfX6EZNxXOSh5BEy65qUvtSWyCKvO67XzWO3xnk6nc/vkOYjysld2s7+AXviHJZfsO+rr6re+9GyF10GGfQXcj9gqvOXYtNmBS3IM/Fo3I4Bgf7rjagMjcfuNBYgMigrWdyvvqMfYpj8op3ID4qJDX/vr1KD8ga6WQXI+qDoco/jYSOOptrOQO1EPt43um+2dJaNT2HqWLIaH4oYBnfmsd4ktjGGLZSWiXH7e4p1cH0Wr+U8OxdTBV/Xv3Vk4thAccJXu56+C5rdt+tKoGbBr7L/adrgU7R5b73e63OKXp+FzatAZLA00z5KVqeB3RJme5vAVJgHpThLUa3Tty6A5HVuMRu3mLudwbjH50yw0oeQMt/hh+K8sqBFQtltYPVmHC1pVBMKoSpjYkz1aGKnwzJ3iHNVbgjrRERaBSJUQCpMbu/3wNJp6BxBHnCpwJK9pkVH6Nmr8z8przXmO7+NKXn97l0MnVHpRYKEfSnpxzRg1lkCNSPLePlYNKL/R5jaUMQ+Z7jgvfKUMN69pRivkrHKZ6cMbXv0J7D7PlXFEp8i2K/jvJ8Qrk6o1HBxhKQdQWPLTXvhR/tZl9NrIuAXWQ/Hu1rgR8bRLrEaRiRNvxek0eLgFZ86+7FX8Vg6eMW7LNtxgERv7AhnAiOgjHaZ5OEhH0k9SitlQEcXerQxq6RLzZF2p8r60Q50RaB2/fKkKyTK6yRFEBDLPnZAcNC2Hxa8xdOOklygIqT6QqFaBB19Xa8FE+qsTV0rNFX6Lc9fCb2NA8rLXwiPXx5aP5mUAEOSwXdQt6RNZDeSjZIye9/vgF/MU2rZUFciHqb+M9+jwH2n2XKlTFX/z5iSvZvTwbhXJLttsqOSh2GvBN7clC+tGcK1eMs6GhPVZ6ei0TPE/4qzXdsmCTMNN1hi8TdsOE9pTETIRUyxtG6mXAnlyxpvMuAzNqNs07A9Mxc732x/GNdESczeqPrElD0u90WjWpdBRUVkpw0qQBqbWLF26mIUtCyvuu1nMs2offMC1+Dpr93y30jqZC5jeLvfV6Ksa8R+h3fHgGDeMrs5FxKdDZXE+d8ktGSnxF7g61ZyBkB1pUKyf92WdhIWItCXdD92pfpHuKFbqalu9lT2HPx3M6uPcJ9E9+KmC/l4iZ/67RsBUlgNQwEZJj8gRMdZU+72LjsVxAfz1IPgGTLalit4Li0Lnh3uYuEA/ehbLUUZ9YBHSOzmtxxqFFx+HDJ/8YmJzwHWjaF4vtgttexyOiMca66VLDFQNtoyiFkvTHqFOw6vshGo2krcobgqSoP72KTNM8/RgsVZkpSV2RaPvCkXbzWhRCThCV6AmPkLN/mu0OXySCDwdmsD1/iPl4peGVoAjwje1vvSQQjpUh9ZyFrXCoJJsGuRHDMFN5Xu5rwAOYzXAXrhuEgrZvd0wSdxiYXc7s9/gVgkmloRD/2vtgsA6if/AmGKHiHEzybiH4JVhb2hQSBMUtWl0jhWBInrL40HA1EI6Z52ocdweB4HLQmUszAJfDk7l5ZgOwM85Z1lzpHhJ29k5+6/nDcDOIKvmjoj52+lG7P96HOcaKPPDFZwvxyyxpfn96Kspzu9IbBiIdfLP1PsjulUmw//0f5E806oxveSGawTkbZnfxVfVwnqTOfzBg0VyS7fAAQdAonpHoCcc6dUVfwzsgb/l9f3nUA3R93OZXF9wgdlz9rMlrd+irKqlwx9+G7L7XgVoX3cCpdOTdlwuuCPfvUqxjuo2FNItBKaFbIBsree3uvgUVgSwXPnoXjERTyA45LthavVDBM3MTTwlC96wPOUM9mD4zZcoRpIVuEWvGm+hfvXLiLs11lKfZsbtxOkImbFTsoqI9fBRUpHRVHODg48q6/cAWL5x0G9P97HDhSIOQ2MY1PJM8qqY4/C+UYMNF9LIBz5ztPOXCNTwRelFpd9Aaqp1Jv/UnrKGoW/BVtNUSrn5LezzvWyFPo+lSDf9VUN3jmuRPW6LkUZ7+OtkctrMTcatHLEDJ6JJYLbqMpSM+tJZzZtBh5dhRVHgR/boHV4p7LoHHtPafMx9MsOs7g8nGqCke5mRcHmM1Rt3XfnaTvSb4O9VGrd7pAl6U7a78YvYPKg4NZx9dMMST9auC+5qNUEBeN/P2P//HLwkik74h7MbWuIwt9aHVOj79dMQAjbvj5+4u64D05lCkn5EelL6ZSdzK18ZY3O/v06vnwOtirx3zWAu79B/E0TecRaDMnjb91DPQqG/MQ5UmsvTHFzR71BHbT723PaCBWkkTe37R0xC8LqK4zK2OPRT1YUqKGjYKQ41++JxCtBTX4r8OJzEUpHySmU4Noysxy1JdyiCmkK4ya6vCoDq3VMZFCTyz82MqLSfwVL0oZemsAvoZF4wv+yuiiz3ZwdBcDmaSvMtht+Rh7lA/UlMkizWqFUUo9Tg4Ltas8xnIoGx7vpFlnyxoYgzbrc5LQ1rH0XKkXxq3fg8dpgwSoD2UOElllsb/mDYVRQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAANAsAAAAAAAA=eF4VVnc81lscfkkR6lJmud0oJ6NkJSPvPYpkr+xIsikjoqLMhpWSkU3TzajsUe8bDd0GiVsUKUpRQmnyuo+/zues7/f5Ps9zvr9fQO6Y3fPieezf3gltK2sJTTp+xijFjVAxDtNbuYfQLu0LFV0/ZGn501xZ80pCRxTcPupp8rDLFsyU5l8kNPaA7KqlHoR6J5r6tMvwsK+yVE07B+axnxsy0hb587ANAlu3HJycYu3X9botJEOoOWdy6IUDodHi3Xaruwilr/XLNhUTutrte8nsoCx1VJixjMwg1PA/fmuLFkJDM5oVbW4TKn/ZuNkrklD9LC/HDTmE2ixYmrmDTWhOEXVbvANjbOCEdiuHFZZRFL7xCKGlOaWjvA1c7BbvTcdMswl9UUiC990ktHa07d8zBwlVOPzGqf6bLF1Tx3SuNuRm3xsJ0loeQugWhYbC2kuE1om5ZH7Lm2aJfTeRiztB6CqzL728C7nYQVzSU/PXf2U9Z56XvLyR0CeHlDYbFxBaZaerIz7DYLNoulos6hF4yzM4IDPLGmt2UFPzJ3S9/tEvbjsJzVgd+VFeicGerVTs1N1HaOsJV/fhU4RmUn8hK+RdL/DKLz6W0JUD1/1l9xNqqhR9Uy+Fwdbn7HKWEOZib0pPfSDiTKjW2tRI5m5Cl3AKPYgtobtvDq2ZCiOU76D4VHs6oVapJWFaRgz2kYlP1by/OKwGy3G5NTEcVmO/2q+bfoRqrtxbvxx8lllpTqxLI9RAL+2ocTSh2+85njPZRqiu0lIPRejaP3whosmVUL37mR1D4FlzWbjPUORcnhGF0hhC/7yuL+xICN2bV2Zy+TihZ02bhJwbUJ+UzgJT8WlW24nScXlTQj8nu/DL2DHYQ7P6yzXcofcff1iqJRAaubgyqAt8KX7mTpBGfnqj4LRPIaHuIiM/tgQSKuh5I6cccWuI4ykNdS527YR4L18ooVdrErXsSgkVls5T0kH8cPmqu4EW8EdxWDIHI7PygedjbUIHEh6kzvHq/6NI4soVBnu+bfLW7dBfr1BFt/Ma+F2U27wedXiyVbJFUwjtvJqgux/xHkn7z4jAR6MbFL5+jADP298NboZOt4d8VBPAr2zBvyPPzxDanHXdi5wk9OILTWlx8Ogfzah5D39+j6y5lwSeA1gqkSJZhP5Wc3MlQYSmmw/O+roQqvHXiicWhwhNudS24YIioQ7hUTNt4KXNk3PZ3ZpQJbkPcu5JhLIEjXSz4Ae/+FDWxF5C+xq9TymDN97Y4JG0p7LU2XTlpAX8GXxc+KUFcJ5sOLjfLJjQtPdvkxnAmV3loJWPdXWhc7a76qCTlmp8CPxj3aQuJBNO6IUu5Z78PYT++9eHn5bA47Io48CTfELDem98j4H+PFZenVWoK3vrsOhRH0KdNJ+aqCL/lOrJ6nx7Qou7mI2tiJ/9+5RmIvi6LmKatRx1LlD/rMSHerbxMypToOvZnkmbUvhmW91/20KQR2th27Qy3ts7QaNFXxHv5etjgeaZeMeiHV5mOGeSIRbLjffxKnEgcAL8xdVt42bnEmrJ/TIzPJHQ1/VjtVFHCZWSKX25FvF8d3jQZZiv5fMIiUY89Q5qPg/nBBuHa40OECqXvG/mMOYiLcGfdLGfu5XXnol6buVElbtCr4TpZR2JuP98NCyhB/6QdKj5cfA0oXk7WTYVc7irHihrwJcfLPjFbVCP0NIpQw1fQu07yZXUIkJLdA+434aPzplZaRYdJtSZ9rypR9/5Rzt7WS/W496aCBfFERrvdiqoFHEM94otXAYfa0Qwj70Bvg8RZYq8WoTanhi3LUyF3h/SQ/uAr/iwg4wZ9D+w+4PDV/gvhisgSx7+2fgyf3PAdkJ3rZtVbIUPH1z6tGIL9OjuvOm/BvkrhI9IvQOfcpbt7aNRyN9y3vYa6j+hFrT9M/jieWt9zucYoXdtb6/NB677K0aELoCHWxWVAXP6HwwWPO2MuALHZMIc8C6Oper8pQF+Ah3kVALgF73O2+3H0Z/2rVv3MA98TLzb18uZ4/s3/xcdnBNa0V5mBl8kPL5+qx/1j4pzmXeC9wOjmXXVyNtYldbxJ3AkzXNn2GG+51Hd1Dz4fV/CJ3EWeHNXX/9LBn3T99p7i3HUX53GrLGBzzerakRcQ/x2RkELC77k+13raI28ijO/TeOx3ipVYlwagO9Dn1q6EfJeq9g91I99DTPf3iKM1/ds68jAPRmzJwPl0DelgVu8DPjPDEtkfIPucQ2pW7jxbgpfjb+2gZ8vWdx0VQXOzdercrtw7mtoS4wBcCjwzQTPxZ883BTUAV3kipP4dBE/+H1viTT6wcDQ3WpZ+LZYe4NhBXz8yXpxfQbmE8/Mw8Tge6ZBXXIZ8giGLbXrxvfjVGeB2GvovsP06StN7H81H9DaD93YsnVTJjj3rfbZ5aZ41HN3eo8AdElQGbuzGvwbZppdSoI/NVz/qz6OvMm1jtNGGNconjfWhb9GNbgeXsGcN1tqsg71+ndYpczx9Mhb8qQf+mreHTH3PsQ1yJ9tuQYd+gvORPoBx1Xfi2cksR+TY7tUAXN7poBVJXyb+dFC3Av4tvKrWnxB/zDYtcrtJ3AIvLRSf43vxKj5licpwG3f5xJyErgEaiU2lUO/yZnOj9/hr1j5ytNrwdOXkLEjK8CfwOeZZynQg6mT2PgBfat2vlXe3/DtrtioTjX4YUJQe3AU776woXTQPhn9lOHiXwtco3wLnMa8CJXgleTLgT/HOPJHHyCucF501lb8P3wSUOtJRZ1aQaWSl7DuulBsrBl1fI+wEa1H3FzVPuMm4Ja5/zxuEL78EilWqX6W0Ctjiw3y4b8VblO8DeDlzrg2XxLwP6pfHvEG49QG6YkS8GniX/y3CvytcmxiesFc/evN37kDh46UodIo8u7aHpy8BHXVyNTFdGHe7JIXuhU6KiSZNm5F/j96rBrtcM9KYiCWgXjK6sdXCSF/t/DO1Pm4J9pvrX4R90r+TrTmRz1d8975qeKdyodYTUiAJ2lZ0yoBxNtQJPCGF7xGrCzeJoqRJ1YozxV+DFUrO1EEPdflJK3aAd2L1Lje/pzzzT3X/V7IL6tfIGCC/Vy7eJdexPnHbNg5H+sLR3WqUuBvlbN+YatQb5afplwA9FS05qvuAR8cX+fXs6hzlse7RRfnqzx+MDfm4bzz8KHD0O2QdJWqAvrZm/dJT53xfmbio5mCqKfIPupcJnTwjSxu3A0dMuoly8uBZ8fPLbYf5/ryxAIjZ+jQPd58yhPr8gXTdz7hO9I3UudoifWoWwy3FuBSr5aajALe8/tFpTXAF29N66+n0IFlzDvx51w9y/TuOWB/3eM+PWX0Zf3Cvv5nWO81fCV7H7zcCW9LaAUe9X9WaRjgvmLixiB74PaclhLaC1/FSdf7aGNfvDLw0TvUwUp/5cUPXk877324CPxPht4WWY/++qR6p90g+oHS+Utm3bh/IWLHkiHw1Jh6kFkBvANni4UY8NHRG48PyMHnz8Jb0z2gwws9y7duyPs1MFzkO/IM+lR3PsC5I2/V9ILA68XKJp3FwGtu/urpD+x7CrJ9quZwyx3nEUP93E6Obt3gL/LezihpvIezYg2ZMTh3TXnYuATxU4UqUiSwvrLIOpsH71VRqs/TH/l9GwnnNN6RpPfA1Sbks1nN374bPC8ktR+f4F6/x/2FmvDjQ+P8XkvUac09Pv8C/NdtqU+eQ0e3Oqez5XN+TrTJTAfOtBDOUAr4+ra9O4Yffe2eBHsXL3ip7pvRzgf/1WF3wg6DhxveFtHZ8G/KTs6NeMRV5u91ysF66ZKVj50w/x9wU0zvAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA8gUAAAAAAAA=eF4NlXs81ncbx+eQJzSlAyVPiiij6Da08MlhUqaEyRojZXPoUa8Oz+q6tMp9F5VTJxMKqVtzbrfuWCXVzYNoouSw1tJWqC2aO2qt9nz/+rxe39fv97mu6/O7vu/f8sorOX92MUyXDTfGX2F8Lu+oONvOUH3dtvq9Noax976r4S0Mj04ty38aGeN+rDdJrWe4eknyTa8zerbOlpfUMuJK7fudLzHONPno1V9kbJo53dO/irH408u5PZUMZeqihRvKGKMnW9///TvGpyOO/tvl4vxQpM7fpxkpRRU+sjyGns0tK71cht1AdPXhLOFTcn6C8XGGmaHZklOHGTWOqYEWaYydswNiig8yyhPXpdslMW6Wye4ppYwpj4ODXPcw1tjDSJXAmDtvwSLfnYyEGcuV7dtF3d3Xq9ZuYWRLR90exTMGSqOiNsYxtLNanV9+xdDPj2nas4FxqaTCSn8dw3tXxfqsMMbE3xamzl0rctguqVIEM6qkL554BAr/kQjnjlWMfx4FVm34hPF1XVzcqA8jsnfvxkMfM2LshxvMPBiF8gsHLrqJ993qbqxawlhUqZYOODE27jHskTkI/wWed2bbMw5O3pVYZ8uQRxqNRFgzaKXMWdNK5FvYHF5kzsjxtiI/M8b4SUuy1DMZvhXq5rzpjLN+Syw+mcZ4+MZO+dqQkaU5fLTEgOF43fL2F/qMVz3diVPGM0rrf6xt0WYciA/LTdJgxPrcknz8jqBe55Sn/YYwP1ryunGMkJ2TGZmuJkyp6R4NeSF0xbveuc8J/0lPlrx8Stjknjq3uZ+g+N3/p4LfCH/HTN23q49w8avL/mEPCMVtxtvcfyLEHamwsu4mLLMuPmfUSXC93+as20F41/j23xpthLQnk4vetRBM1YNzNJsJRl86D+r/j+DuPLDWVEWY8WF2t8M1Qo6BXntgLSFhh0JJlwiqDqlGcTXhyuPPnPouELzMhx6YKwhveVb6pkpCxqVtv9SXiTqDQTusSgixrpZax88RnjoWfGQgJ7StbOrNLCSMi1ZU2hQIf9NlKbdPER4kx67Yn0t45rWlzTebYLxZqm+eRej9dkitn0lwOZOdonuM4K2O7pp5hDDsET7glUGw8j3SKU0jDIVo1fakELQTVDdWHCLUlFpMunuAcPTwwjuULPqO2ujmmkRIajaTme4nTPrLqXfmPkK3XJtcZASbZp/MXVLCC0XK+oeJhHNOAYYxQj830r01VWjkVofL/XvFfPsPvO4TGnJv80ltcW7YKS9fLbTHM+CDRqENa05pxAofpdP7U5yFr7K61VYi6tjGL9QLFXVddr4NUIg+VPN1MheL/rT6MvyeHyTk903uuSP6b29J3zso5jnVWhZvd5jQF7WsQn6UcG89S/xEDt0x9S3mJwgnNGfZWou8hidHPg7PE7lm1cSoThP4abjOGpGzzvfBf0wrJuS9jLbRLCeUGqwvn/G9qD87YGmoklBmYpnW8IOY4xtPi5CrhAsmiZsNxHdvCHe4MdgocpgQ4d/fSgh+vdh+nNiblKD8KI8ugsO+/rvZ9wmhmbVBEx4Rkh0lBd+Kfdxi1xzt9AdhcP/d5YN/Ehw76u6WvSIUqg4d3S32vOnmco0wsf+pI1U5nnoMxVh1p90khkbsfOs5RoInH7gbTDUV98MmUEtH3LdUS7909TxGwWXJ0p8XMG5r5StqxX0dLZx4/NhHjG0FcwrCljKqS+qKjLwZKzVM0up8BV8ME/2DVzOaXGZp3RO8GLuT0LU0VDwX8cT4iODKf+/n2DZ9yfBpb8j9VfBnW3Co3qPNDH5R5npDcGrCmy4jGTH2+o6dtNjN6GwzHSkUfLPy0v3ivWSG+uZpN5cUxqrQN9OCMgQnI17JfI4JvtQ4uE8X3MxY+8ykIUdw8XzI2ErB1d1lx+sVgrMqrZStI2cZj2XbH04UHI599vLav0oFx+w94nvLGT8PnTmZdJ6xVfrhkK7gd8SJArt1Sob1hauzpNWMHVuK9mz4gZGUb/58SPD+WtXi6+PEf+P/SuPkYw==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAIgYAAAAAAAA=eF4VyHk4FAgDB2BZZ+lARRS7dEmMFLHFzzHPWudTrVWbcrXOtRiFmmyOzbGWXCU6XLnG0c4QGtfMGDPOYabBGI0r2ZLP9oWkPPi+ff98paT+NYnorKGBdScPMF6pDJIJE7hrveFvNTYOls+Z774EjWM8NVt/x1fj2O7gMKf9YAyU6GmFY8fHcDizMSSEJ4H5ofcrWwIlOGlNz1qWlWDAy83UsOQlvO5GD9TYvsQu6Tga6fUoDs1sk0QkjsLbb5LUoDcK2YmJXEK/GFqXiuPHrorxmK0c1KIhxu3F1eyu9hE8Hx51Wf9lBO0i/sJPu0fQQs+ZErFECEJw4rUQEfw95N2O7hVB/XN8/2rPMGiXnKImyMOosNsxJdQfRsyTstKhsSGYXF/zn8oYgjVJenCROIR4uz/zFb8MooR/OkGbOgh+RJiLsf8gJt+qdVtqD2IquKDPekSI+TyemVmWEJ1Xiz5qOQvxSWiwuKAghFZSuB6N8wLVnsa5br+/QGge97tJ6xfIbPnH1nHTC0gcHpfeZQmwHMJMpscLkLMkp9xIFODoXGFAirwABexVhlEvH6LhG87l6Xz0iPc7z7nyoXvSXeqLBh/Kg+8vFrEHcHR01lJ8bgAl1dsdc6b7ESpHOiCM6Md/l6fJKYr96CnXWG/I56F/a43fDyY8+OmohV3k9YF9tWqE69eH9RmyV/amPpx2MO5qetyLGe78wMlTveC9kTGVHe3BA4v++n3kHtwfvywXrdmDrc0Qa7R1I4ZMEC95d2NHDL9CRr4bwT8GTBFrujB1PF+Z6tqFI202LVZrnXhI1jn/oawTGkVv7FvOduIbrW3zD9e4iDk4n5xSycVlTYlr/AUuaE4Rkb/Jc5GZtyoV2ciBQ/ebJd8ADmRDi2CnwUHMNwHNqrwOSC+TCJzYDkyX25z50aQDxs1WzNZ3bJz/OnXHSiEb4uE97Wvn2aDx1e26trOh61Msc7arHf46dNfMuHb8WZebHH+qHZqzbnP7llk4eG6k4xKNhelktctmv7JgQW3boOix8I+cilTV30ykuei1nihhgvfttTIrHyZuVSRadX3NRFiai2sKg4G4eya2PpYMKC/Y71Rqa0PGldDpm5Zt2DDMMChjtIIy8pskxroVrNKVc+vsFrjvZl9Xs2tBU9VTLqunGZONSeeWXJpRa9I5WiZsws4tiwLBhSaoRGUEhozTIalJfxT5Mx2ft6uZz7x7juDZrNl60nOcCFw4PbPSiGLap5qw2Ebs7UiguCk0ou7voeycjAaMvI3tM9rTAGKlA+1gcT2s9xcWkPXrceVV0xKh/hlmIjyVHPEMF9QIloLuOhgJksRdrnVIdPugbT5Zi93b1C2PBNf+/y/alq7Q8NFsUe1ZAg23jNgkb1Ua0vWHO58XUaFwu4zINaLCtj4yxCDuL7Q6BcmFFj+F040O7V85Ndi3ZT6Y+K4aCn3ynirK1fhwqWRjybwKJ9ZCujf7VmLe4EBseBYFdKKqgmN7BTrdvS3qlsrBZET0duuVg79QK1PjXYa4yOEm8qNS6DBOqZ8ZLQHVgki21yzBqI2uc7znE1Tqfz+7s7wYhnvzwzUWiqAwI6RXWhXhRL1YW5JVCMPdNz8lCgog3qUq9/Z2PmYO3g5cx2O4B5remZV+hBKj9wQO7wEIGmQrSmEeVtUVByk3c6GU76Qq8rgPe5HZcQuHHKwm+YS/triHB78INQXmd+G+rJ/+lWU2jBkTztcdsoAPZ7Ye9szEqnUSTz46A/sbw98q26SDnk0VGT9KQ39bZqqdXCrOUl9ztGJTUPP0DiFO8Q/I+orox4qTkCpn8nHePhFpXmOkEKkE3EsL0vHn/I6hpDfMpNx44GS1SfSNOOwqTt74j38snmULzTe4t3AAnXM1omhcjJq7c2jTTfQeU9eptLkBg+gqJdLDKBzNoao0bI6E0SEr/9r0a2D6Vi4V6F2FYtO30s0iEjrf2ZKJeWFwv2YYs/llCALSZXLKyoMR8FNKwvH7QTj8xF6pryIA4ozzrz6/9EOzbnnUqpEvTLgTFFPKFRyuOFLx0c4Hpo57FPJVvcHb5yGhqnlBl2mz7QjfA/8D7AcVKA==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAIgYAAAAAAAA=eF4VyHk4FAgDB2BZZ+lARRS7dEmMFLHFzzHPWudTrVWbcrXOtRiFmmyOzbGWXCU6XLnG0c4QGtfMGDPOYabBGI0r2ZLP9oWkPPi+ff98paT+NYnorKGBdScPMF6pDJIJE7hrveFvNTYOls+Z774EjWM8NVt/x1fj2O7gMKf9YAyU6GmFY8fHcDizMSSEJ4H5ofcrWwIlOGlNz1qWlWDAy83UsOQlvO5GD9TYvsQu6Tga6fUoDs1sk0QkjsLbb5LUoDcK2YmJXEK/GFqXiuPHrorxmK0c1KIhxu3F1eyu9hE8Hx51Wf9lBO0i/sJPu0fQQs+ZErFECEJw4rUQEfw95N2O7hVB/XN8/2rPMGiXnKImyMOosNsxJdQfRsyTstKhsSGYXF/zn8oYgjVJenCROIR4uz/zFb8MooR/OkGbOgh+RJiLsf8gJt+qdVtqD2IquKDPekSI+TyemVmWEJ1Xiz5qOQvxSWiwuKAghFZSuB6N8wLVnsa5br+/QGge97tJ6xfIbPnH1nHTC0gcHpfeZQmwHMJMpscLkLMkp9xIFODoXGFAirwABexVhlEvH6LhG87l6Xz0iPc7z7nyoXvSXeqLBh/Kg+8vFrEHcHR01lJ8bgAl1dsdc6b7ESpHOiCM6Md/l6fJKYr96CnXWG/I56F/a43fDyY8+OmohV3k9YF9tWqE69eH9RmyV/amPpx2MO5qetyLGe78wMlTveC9kTGVHe3BA4v++n3kHtwfvywXrdmDrc0Qa7R1I4ZMEC95d2NHDL9CRr4bwT8GTBFrujB1PF+Z6tqFI202LVZrnXhI1jn/oawTGkVv7FvOduIbrW3zD9e4iDk4n5xSycVlTYlr/AUuaE4Rkb/Jc5GZtyoV2ciBQ/ebJd8ADmRDi2CnwUHMNwHNqrwOSC+TCJzYDkyX25z50aQDxs1WzNZ3bJz/OnXHSiEb4uE97Wvn2aDx1e26trOh61Msc7arHf46dNfMuHb8WZebHH+qHZqzbnP7llk4eG6k4xKNhelktctmv7JgQW3boOix8I+cilTV30ykuei1nihhgvfttTIrHyZuVSRadX3NRFiai2sKg4G4eya2PpYMKC/Y71Rqa0PGldDpm5Zt2DDMMChjtIIy8pskxroVrNKVc+vsFrjvZl9Xs2tBU9VTLqunGZONSeeWXJpRa9I5WiZsws4tiwLBhSaoRGUEhozTIalJfxT5Mx2ft6uZz7x7juDZrNl60nOcCFw4PbPSiGLap5qw2Ebs7UiguCk0ou7voeycjAaMvI3tM9rTAGKlA+1gcT2s9xcWkPXrceVV0xKh/hlmIjyVHPEMF9QIloLuOhgJksRdrnVIdPugbT5Zi93b1C2PBNf+/y/alq7Q8NFsUe1ZAg23jNgkb1Ua0vWHO58XUaFwu4zINaLCtj4yxCDuL7Q6BcmFFj+F040O7V85Ndi3ZT6Y+K4aCn3ynirK1fhwqWRjybwKJ9ZCujf7VmLe4EBseBYFdKKqgmN7BTrdvS3qlsrBZET0duuVg79QK1PjXYa4yOEm8qNS6DBOqZ8ZLQHVgki21yzBqI2uc7znE1Tqfz+7s7wYhnvzwzUWiqAwI6RXWhXhRL1YW5JVCMPdNz8lCgog3qUq9/Z2PmYO3g5cx2O4B5remZV+hBKj9wQO7wEIGmQrSmEeVtUVByk3c6GU76Qq8rgPe5HZcQuHHKwm+YS/triHB78INQXmd+G+rJ/+lWU2jBkTztcdsoAPZ7Ye9szEqnUSTz46A/sbw98q26SDnk0VGT9KQ39bZqqdXCrOUl9ztGJTUPP0DiFO8Q/I+orox4qTkCpn8nHePhFpXmOkEKkE3EsL0vHn/I6hpDfMpNx44GS1SfSNOOwqTt74j38snmULzTe4t3AAnXM1omhcjJq7c2jTTfQeU9eptLkBg+gqJdLDKBzNoao0bI6E0SEr/9r0a2D6Vi4V6F2FYtO30s0iEjrf2ZKJeWFwv2YYs/llCALSZXLKyoMR8FNKwvH7QTj8xF6pryIA4ozzrz6/9EOzbnnUqpEvTLgTFFPKFRyuOFLx0c4Hpo57FPJVvcHb5yGhqnlBl2mz7QjfA/8D7AcVKA==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgYAAAAAAAA=eF4NxX08EwgDB3BXql03n0+d4nOndCKnIzn0hvwqnbcQl7hzHiZ5mfNyRWJqXjJp5K2M8UxShpG3RM2NNTtv3UnGMGSbt3k9JFxv9zzff75HAw0nhlP/Bn3NeMFraQH+akmkd+4LWKA7v5Py56GstmSqZTAPRhyZ0MScA+m7ecGTz+cQ6XEwWPnaLE75V7c/XJzBi26SJCNgBhX6RD2BdBpYdVJ87zmNUhpzz+CgAtp5X5RU/6zA5vMNDjVDUxiYCe4WeU9BWdtXvm1yEsFSc/iETsJb4xKLtz6BE2/yGjVpE7hxZtzvuuoEQsciA3oejCMok/5Q7fA4TNOTlaw6x1DSFkFxJo1hbspox9F1OSJz7CeWM+XQ7Q/bQTkgh4La0t/aKcOByY6oHrIMWqkX7RlbZag6ncD74pEUnCO3bA1cpJAc91uRz49ixmt5ssxiFI9yvxIWpr3GQDZ7Z+PYCJSeKtPnzEfALM6d1ssZRvu9NcOLb4dQk6z7a5bbEPT+cJCXcCWgZ6ot5GpJkFHWqO6RMohgi2CidG0AJOkUY0/AAOKVQopVBvuxxS3y/D3HfpR9mT/YIRRjnr/ASLAUo5t/ZUsztw93JTPiiGN9GF20bGVye0E28G7TtuyFrWJ0nCAU4cqs+AwcRKhbvubGE/dAGqR+Ndq3B2N6KyeDll/hH8LGqKQbr/DOj7MkVHuFwGfhFbsquqGc3NWSaNWN/G0PPymevYTDtnOU1sUufOjTVMrU70K0XK37SNBfeDKzL55T8SdcEs3EA8sv8PX4fkmtxQsI/vIb0KN34gAt4bz+UAds5Qn65Qc74MZ568W82Y5XhktmU/I2zH/dapd0sg1F5U9dAx+0QhL31DeW0IrE4a94vN/+gOSs7cTOYSGcdG1yKPZCjFptl71ubIE83Gn9kFELDgemu4WXCBC1q6OGriXA+ruZ92EFz2G9FHJBXfM5OFuHHa8U8hF13d6Huo+PWl7eGyePZiRN1v/yIrQJV3kuTM9kHpQ75dx59u8QmQQfD+pshFmzeGvTMheLqgei+vZw4cVtsGK5PMOXTW+zNiQ/xYzg8uKyoAEsarSd54YGrNTfnzWwrocaxyzhXNoT1LLbtJoldSCyQPTWr4Pp2O2N2nGPMVlsq/J+oBZ5NsLr/YdqIaXVrpQyakC2Lv6Z9L4atR2RAwu+1dA7bdqYUlgFr91VOpVxlaBuSenSC3yEXs0fK0fdKmC5rnu5waEcnj0vN2XbccDhVZb8x7EMddPWH1fdS7H5Ui7TmlyC2tDnhcbxbDwZr3K8f68YnTvpW6KFD5E3TvEo/PsBPvZ6q3z65v//G1Ua9VMRlBJua6xl38femJjTpMFCRLzs2pu/txDByx8Eu8YK0HN5+z8nU1kwdN2VHX7iv9CMiNWP/TcPfQHTZOMOJoiiEUMPVi5s07BDGJODgiXdIouLDFDFN0cz3LKhmSIh3/7xLs6UU6o+ud/BKfvH+2v8s+B0gxfzGzUTyjqUTZ/fy4BFvtnx1Ix0VI1t+2XqzW0sBPHTuAGp0Bh578qapUOwMteyL/YWGAJV/qxWMpyOtkXTREmQp1iw6XdoGHdQb8/yScSwn4rB4eM3MKVVc4yom4BcGx1OpUY8fLyKttfvjoNUbG5AcadigZHu20S/hlW53WxoLwW2PhdS20yicec1m7+h9CqsMyd0SEaRqI96tKb1ZwS8Pp7Np1PCwdA1JIyZXYZAu7gnnHgJGsW8b9RHwuA4y2St80PwwV48ZdLyK8TJ045RcjJMrbRj4nYHwoj4xlIl3B/syiyXadlFCFxumY8H+sJYZrpBvPkCbHTMREVcEjzcAwlhm73xbUquPbHZEwY3wyxUWR6IsRilZRX8hOrP5sM4z92gsJcP0ZTPQ7A2QfLxOwfX6WyXLLkLqOxzIbEUZ/AJigoTdycoHZXdbVecgS5pVrjCtoNrZFqNaroN6lYT9jMLfkBZkihGW2QFZ80fonO+OwV/Aq3kswcnkEg0Ko+/YonOjdT7YTJz0OkmW1eTj+Fsouxb55AjyKeVHrS8cwgEX6XH3ptMoUZyO9HYbwy9On+yo6Ex/gf3mRygAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_42_t_4200.000000.vtu
index 625e2e5dcdd01dd823257d9c08aedb180b916d38..fb5ba739501c67080a5bacbf430ac04e07e3c6b7 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_42_t_4200.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_42_t_4200.000000.vtu
@@ -2,37 +2,47 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="0.16351358002"        offset="132"                 />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="3176"                />
-      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="3276"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1398819035"        RangeMax="11.380598805"         offset="3376"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="0.19725255355"        offset="84"                  />
+      <DataArray type="Float64" Name="Productc_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="0.19252549835"        offset="3136"                />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="6140"                />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="6220"                />
+      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="6300"                />
+      <DataArray type="Float64" Name="Producte_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="6400"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.0196076726"        RangeMax="11.370097561"         offset="6500"                />
+      <DataArray type="Float64" Name="phi_Productc" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9884"                />
+      <DataArray type="Float64" Name="phi_Productc_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9964"                />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10044"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10124"               />
+      <DataArray type="Float64" Name="phi_Producte" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10204"               />
+      <DataArray type="Float64" Name="phi_Producte_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10284"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.9068690731e-08"     RangeMax="1.0000017697e-07"     offset="6756"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="6.6791065206e-24"     RangeMax="0.33512674653"        offset="8060"                />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="6.7454581976e-24"     RangeMax="0.4967925768"         offset="10264"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="12468"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="12828"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.9012756358e-08"     RangeMax="1.0000017858e-07"     offset="10364"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="6.7263880017e-24"     RangeMax="0.5"                  offset="11736"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="6.7263880017e-24"     RangeMax="0.5"                  offset="13940"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="16144"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="16504"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="14888"               />
-        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1e-06"                RangeMax="0.16165486554"        offset="14956"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="16564"               />
-        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="16648"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="18564"               />
+        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1e-06"                RangeMax="0.19471667569"        offset="18632"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="20244"               />
+        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="20316"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="20400"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="16732"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="20716"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="18336"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="18884"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="19396"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="22320"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="22868"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="23380"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAyQgAAAAAAAA=eF7ty/k71Xkfx3HJWEoRKnGEECFSGcvJ502kKFJaFHdjLbKmDmMNRckuEZVkje74nnPsy7Em+5IoY4mxZBklkQp1f79f1/ww/8D90/z0uJ6v63pZPHU9tO9aHQSoHTdd+6EOJg9M2Wg/qYUofaH6v0TqIFBqO0drew1c+nol1/tILdwbdj4bzVYDjW2LbJOeNZDY78g1vq8aPs/k+JZmV0PIcXte3stVILf/tqvmYBXsMWj2dNSvhC92feufbK6Cjo9zIzKVFbAsUWAKKSz4OsXunYnK4XflhIhm0QoY9E+tM35RCjxTu3P1k8tAVI1d9KZpCQjy0OoE5UrhXVsuGzZZBFtG+qcTS4rhnC59Am4XwsStO9f0TIsg0//mtnTlAijfKvkxcKEAFLm9vhoPMeFEo9l4bUo+OCweUGEmMWBTfDq/32kmLJ5UKNH5jQ43JLqsxYUYMPXIKMReCYNOEZ3vIgMYxE3+oIpvygXJvZJ7i6zyYMxxW41y/zPQPfeoLlz8OcyyfL5grGzo03z9wW0+Bwb5vsdplGRBc5e4FPfwU5hQ5bPUb8kAtv3uwu/GMoE62hWt+jUNuJtq/OzWZgDfw8z6Q1qpwDCkcM1opIHeuPhg7IMU6DCb18wIfQLqdGckvzMZ1oWecVUbewyzCY/cdA8/gGNa40vukw8hJMvw1qvE+8Ah0bgtVDwJULW65QIlHiorFjewQhIgTPBCc0j7Xdhy15VDYPs9uCdmaSKNxcCvY4Ll+qOx8JJNR9XROwpu8Iij4TfRsCt424l3k2Fw+YKH5qUPEeDRl+BUmXMb2BVU/qgOuAPhibJcQ8XBsH5CobLZ+ha0PDXsGea7ATH7T4rrRd8E6iYuN71nAWD3XuBFKUcQULqlwod5/aDWniNYz/M6RKWImcZreEGo6vhwraUPzC7QQv27aOA8NurCKveEicyagpROd6g9qbyREnQNDLLq7bUU3CB5Lmx4IesKfBKD6rY8R5hMuNpoe9QFmkZYV/c8vgQKZjatW8cdwIhiPma72RY4+GmnjvJfBBsF3Z+SHFawm+GqurPMGor1o/OVyi0gYzqe/oD+G7jd6q0d3m0GM9cCF5nF58H+1Zx6m/4p2DjwTKft6hlwGMpePjZnAqdKnglubz0Jneu8sy2ox0Czezqu0eo4PF/3phncDkNsoQTNTcQQDI7dFxe10wX19IWETemHQKu31D/yB4DIyM9v7H/qQEkmJWOrsSYIJzLP59K0oFGeO0Q1ShVGB+4el96jDtc3BkyGPFKB7piPmGHLPuhg77zZyVCEVEObyHzZPfB+YiaBZSwL5gN6Vb8ayEMx94yd/NAOqHntax1/Ugb8Luxaz+m3HfhMOddZgSSUCfUEN0QKg2/JgY78LlGQOsWxU7dMEHIZUwH/sdkChxqynG1S+aD9bEGE4ddNIBP4O/WMMQ8MfuJS9GnghR1N0Zv4VTnAS9tcIW4NF2jfp12bFmWDXzzznueZs8NLpdjEO9nfUKO9UV73wRVk2MaaN3KZR28P16ZRjBaRkklW0ne9WXS8/bGvXsQcigt5qXF6dhIph37bXR85g96Mp1c5Fowinq43Oqdj3qNSZDq2Nn4IZVtMZwT1/IncBmSsKPQ/kLiEd1Oc5iDysHZ9setRN3rK9oqpYP0W2axzTaVldCK7cFkVrvYu1G3P2U+ltKKkhbErW7U6kGz+r6Kpxg0ozMlouXW6CR3p1k1jj69DMt7XxAUf1qMlqQzbNYXVCHLW1iwdqkXjJfzJHSss5G4Q1TnEqEJvk0datOPL0ADvi9NarhVo2iV1jcH3YnS+/ypPqG0pMhD5oUBfKkR7ooxP2fMXoyOyCjGXPArQZVVH5gGDQtRgOXDEwjgf+fOIXoj/kI/skuJ4m52ZqD1wwlTnPRN5yOv7D9YykHeYmVOROBPpRkTnPNBloL8uasqN3mYgyeSgh1wjdBQmQLeT38pAw16yLj5JdDSntftzcjUdbTj33EHMlo6UQj5bOwfSkfKnjUmeVDqi8lACLpygI/N7lAwZMTrSVgt09tpNR4pT4z/jOOlov9BKV4kAHRXbxIZ3LWCIX35NWs8PDEmmj/s7TGKoNte8ffMshiCDvv7AEIbapu+py49hiG9EesajF0PNGV60bQMYej2Cqfi8xlBgjVON7BsMJTvSJF51YMjxR9vzhlf4P0rxoFQbhj7wKDrdbcfQ4yXlLsUWDAlw31nSaMWQb6rZBlYThvbO3HEOasaQQmlKL6MRQ+6Lmj06+C5np353tgFDqstyPmb4TgvqS7TBe8rivwu5uJvDmgNWXmJoeU5jw368Zfx6mUy893zJo/ThhiXL0fxxpS6qDyXhWh70EDPDFZhnxjjhbqkUiTyA2z/8EY7ibkdiDXK4X8zrTuzDXfz5LlkENzh8fNcO3JwA6nV+3J5IrpHNuHrxLw7x4KbT58U24MoV6Uhw4EZFcA9w4raUG3uy4aZNODuw4xp07RhcqcfQnewk+ImrvzmfcxmXZ1hkDbGbbJEu+Y4r5UC9vIT7mvNm6zfch/MRhsRO9TSTJZo26HudkCptxviK6+1jOUtoGSFsSdilmBdGmHbwwk5C7Y45PUJJgamVRdy1bqcFiVZlPRgmuvBj/CyhsE93K+GZgKNvCfWbeaoIV6xOvySM0nYpJCwyCSojtL9dmUfodfgwkzDRSPQZ4cWCyOeEQqYjWYRKKvHZhFlTTzMId37rziT8RNmeTiit9oG0NXtDGqG8/iNSRvmJVMJgVj5pk23HE8K+J0Jk813yJPuKViZpvYYm6V3D86RqFvyk0/Y7SRcffE4hbKhgJ5vS/I7sMyZTpJO3X5FKPeslVbRuJH0q1UZarVxL2udcT/q5n0XaIlxNKrRURurhX0Ea+6WE1Gq8lPRWTjFpuMnqrtBaRHpp1+ouI7vaVjdW9SwuJG37uGquy6q/ZK7aaLAq1WLVUelVz6qt6i7wz52N7Z/73/23ETMF//qv/zf/B+V+yVE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAxAkAAAAAAAA=eF7VlPs/1PkXx6crsVqmRNmUMm/F6q4W0TurCFmhCN9QGJep3CoNGkVm3DJDUm6JoUYqFCNhputU0tpSbOuSWxG1RO7G93w+fvr+Cd/55fk4533O633OeZ/P+McKG5sfIRy/+OlFzXKEdyoaj+49j3D7n3JZ8ZcQzsZlb1duooh5Nq+iX0Ochv3aBR+MEU43aXy4lonwF6t8e7cghOdkFnrdj0P42rbtW3/yQbj7O850DqaIM/IyBR+jEfbPLl5yzHhSZNLYxX3CQPhFSqNHiw9FzOp7Fd/BQbhVHHpKZ+ekaF9Fj4I26GUu6UwrTEP4rdTyRLcawnW5ZnSm+iyx3DClqLAM4dWlUVVhsQjrcGz+kY1BOB/n305KRNhGhzMw9yTCOQ7JnxdfAN3vd+Jy4hFeWJum1RBOEceviOTHB0MfBXESVTOE9TbItqVGE/X37ii7iHCyW+3yyAiEbVnBql5Qx+K9mvxOuM/qH6XBppFJkbFltTAsB2Ear16rcGRM1NJiwpZkwTy4ZvVGkQg7K9teSUhB+AItPHHvHYQ9GOZ1v1GnRHwv32yJKcLUUpPQ3BCEh1h38g5BvFhlH6/iEMJu+1i2y8IRLsi8I6y/gvDakYXP5WqnRN+sbwY8tR4RBcrcZrhDv8Gf7ZyrFRHWDTTpVdBF+PjBKvck0PFzbyy6AeeV/rP5PPq0qHFRH9saI5ynsEuDe3FC1FUaU7LSDuGmPfF0E5iXz7m01l4rhF2slWe73UL4Qatt+wPoq7Quu7JYBeaypZ129RrCn1zt3NZzJkRVk1rXlVwRXsNvqMs2nBTJxf1QXcqaFDVYHlnTvxfhkY+/71/hgbC7AXXg/gGErw63mqW/p+HDdVmrzkN9B04j7X61KRFTQ/jzIdivsqqxQOoZqFu/I9cE5kE1C9qGoK4tteteOWUiXLijwzcX8hxW2ylv/c+YiFPc8Np2LsKGhq7tqhBHf0op3OOAcNTcl8p/n0ZYy3+/0cYwhGsb6MeGoB/zKkfXRsjnRYz+9a4C9jvI9Y9ZP2j4Kj6vnw37V3J58xAd9jXNtaJjEfCc5zdxEMyP80w3lBEtFf3zTKVpEPbSzJSt++rxpOj9yydvdlXRsDBf3NIEe3U07VWuIuQJHjhtrYR9q+QMFunB+62Y2Nxc6D8haso8b+cQOyXKeCtgyoLONVaSphnkle6XpttyETZScPjMOIcwRXbQqhr6Df02rSOAefRscGRfYiPMv7fP2QX4edm0gAF96AzEjp4DJvbIKemBHlf2o6YI8o3m6U5rwTxsqNxbdlDPG7evp2dFIdzHcVYIYcG+fE/JfQl9NbC6fBIyYO9jmg2U4Xs4r9RNrYS9vy9jUDUNXHaxtXoB8PD1CWk56N84MyoMh7weJ6PeN6C/wPBenzboohWXWMT3+u+/YzUboZ+vfB3f9VBHqcEeWSK+emPV1WDQ4cdOpevCPTtomj86oa9WuufBqGSEo9k/VtFAz5v7Q54HOsZvOp7dB7/IxTLXFPw7dc6uXAd+7wTzmCGgTad4Py8JYdP4TW6KCQhf/KNWXhP6NOKaja4H2+bufO91cI9KT1NOFezVcItpTzec7xpoFvZDvW9PBE0FwRyvamiM9AEtSmUc78P3fdJLlRMJ97k7afbmw3ucelD2uy38fyTH7myazUO4fHukEhf6Wdj9Xl8I5wZZHl3D0K/zsv2pxfAO1e0PGFNwj96t5GEXqMOk3KNIHfou863xkYM49NUsWgT6TDtBmxyc37QKVs4/C981G9Mvw3lSZNAifehvlfqWoHuQl2lUyjsMfaAQ+mM29DHtNdkQDXmGZ59Lx8A/uuA41RbqWVJnJsVQ5z6pYSCxr/yjzZqqoOdgdl2JDrYatZ4iA31Ssoe9vMAvFirH1UIdZyirQu6AP6Ylo3sE7vPzlfRlgH65X+rsPDiXLTqaKoZ8LJftpg5xev3XnANhflGhq9gI7tP8rrbOEvoVuuqOP4P6wmRbAncDxzJyLN9BXuK2F3IBoLMhx/Z2MszvxPZwWz24Z2RZtfzfEOec+PbuDogLM+8SB4BOjKNeKQP6cn9tR60Ebp5fc/0viKNLf1LvgvsPePb5NcO7Z/lPNlTA/bWdJ2uKoN6F79WlBaAT7kP5VR50EiRJehrArXn6J1NAx8u/QrMYziULv3Ceg18n2tfPldjDgsxFayB/ivuxWgB1ajW315hCXEd4+kroED8RyprOh3k11TAbiPd6GnVCQnzngYahugyIP+JaYC+FuOKyuHNLwZZ0Sm5+gvyMCHP7s8BdTniXKdR5nZNcQAHKt6arvID3pVpKz/wG5yUrdjv5g+6W7Q+XVkFd4g9rTRzAzi5J+/AQ7jnFFGmoQdyz4/JeMkCa9m5pJfhdB9rmFgHb+OnT6yDeXOdkKA14Wu2K+WXQGR/82YYH5JUzC1YT/X1taVQHxlya+mMlsOQ41zkH8m/59n9dDjZjFmPONbCZwsT7BOmCT1sDwO/wUCCvBhRadM6TgN6Dn+p9CmBu9ZezlmvI0vANr7ZNvy2gYRfmq7C8+TSs4jj2i78MDdtpjeinzKNhe/q9cRr4D/Ujxtu5NNxldsXNAPyupsV9FmBbbO/cmAycao2I7plDwwcPXvRbDva8UFzKB9uxk7PmBZBRMnUjGPj10gKFC8CSgLWz7YFFATKqnkBtjs5qY6CVN427h8jzH2WtB6b86YC2EZSw82lA57uJf2oD+SEVo+rAyLDFp1cBDU7lhCwDbr4neP8L8NE4z1sF2HskafZS4M0AaztlINvPymcJ0NtKoXcR8PnvbMFi4NJfdQeowC+WNUGEvz10woKw7wqs+QSPFYw3KgE/ffSiEnajHE4gbBfPljKCnrnTdgTvutn7Ewzmrd1I8INkhylBNd7gUoKXv8/TIug010KGoMXx90oE7ZvqJhSB6rej5hC2W4T6EGEfTdkySnA3W/U7wRM9OwdJf8eeXoKvC6/0E1SpzPtCsCZumPR76aeR9pHsth6CTEWdTwTbnJy6Cc5xo30mOLE5kaTDaDl5vulaPcnTHkOkP359HGkHN24naZXqSPLmII88H0otIbmkp7+LIMskg7QvVKeTHK4WkGQllpPndi2PSHoPvCRprP2OZGJ0CBknuSUh7cNUJmmzPWJn9DuCSPapnSG5TTOB5Lh/NMkzHWdJvn7iQTJtIILk4/KTJJuvzuRNpIaT/IUZNnOfJ4uk7sdQkjmBMSQH/p2JS1edqas48RjJ5/Ezeh/2cUmO3ZqJc3/eSs6d+mZG16KmgbS/ubwgOb5wchABD6nN+F2l1CHCfidUIUkhf4p44OmS/7H/X/lfAL3lEg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAsAMAAAAAAAA=eF7t1P9T02UcAHBUOBKRuEsqvIhrKoJBfouJ4L1dXJ12cIqCwEYW8f1iAXlk3hu8FsQB1uXEaARzom5TkUkgCgoM5JtNRL64DU+RCSNxxqj42qS7ej+fXf9E10+v+9x9nuf9PO8vT6huOMfDiLC7prl8egjh7b7m85vvIZTVRbS914+wQev0/f5ehIRd8euFtxEmE0MbRbcQzD7Hu2M7EWJ8R145cBPhuVeedp8WIf6LQK99TQj+fumWA40IK9YcfivxKsLdRz3huXUIvUWD88oaBItOGjBajfDalCEosArhklNHheo8QqhN6bJNhRDF00RPnUX4xJz1UX8lwlFoso0qEKQugQ/Wn0KQjVzOUVcg7LEaliWUI3R4Fvl9+CPCEce61YoyhMVPlyauJUX6C8ZpGYLe8fFRF/qOzNtemE7mj+WHeND/0zlJz51o/ZTRGhRC+41ddCmulSPo1t1UJlG8LEmQZC/F94l7PV5M52nc7DxXr0QYvxqJPDrvdcG2+5qLtM+Oye69dJ/g7rAZB7rfyzMK3o1ahIxn5qjsegSVbGLctwGBdzBPOXAdodBv+1xaM8LT5bKHFsqbyLt1ZQTlUWMr+UvWgcA/nDKk7UJwv9J1rJ3y7RojvnFGhzBU6twQ10P1SijI+v0Owju8k8nxdxH2b/U5Ud2HUGzpizZS3Z4IqjJMAwjJ3t8M6AYRRpe7qWVU12bNixvD9AgbhcNNT8jh0LRysQGhK6N2hYnMjN0TLKB+SJes2VpC8pw9HxtJedxZR3fqD2mfKWQnOeXu92cyuZQXkF9AZltTlpwmg1Dz2RXypY8DfuogP5hXYz+56H3v0AMy9VjaG2Ok099utgky7dc3hZPkCz0S6W+kPlVq+oP1oa4bZ8jbxSnfzpKuR/j8OTIyc7GEebKgsYF5ubajntkSXvUD0zQxm8LkP+3yZ67iH7Sy9Rnr8quZ+tYRMXNTUsgmZvR97QKLozOs6mR+Hny8lPm1SCBmastddzMDdzX6Mhe/nF7JDMsVLrB5ibLmjzNFkiUGZqU+4Wfmq+ZgLdMhfO015lfq9hqmp3NXFXOD/Bc1s67Mco4Zoa88wyzqNZ9mzptLFJxbSk8xVzsMyZmP/N/n9FKZKpiHCk9wptliOK9dCuBUZLtxqp4tcHOdGz3B+V3qQ862lkFO3/Q7nILZW/b5r+nkXBbbzrlT0caZKW7ltFVrOeXzLZzNUrtbhHZ3eNgVzNjfk3cH7P77vvzvf9N/ADJWe6U=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+Xa5F3S3ctU/pvh5rComIDsOh2DlFW/VPyV62fPbadU/XhqYbKBi1T8x411Y6ljVPwMgHhwxTNU/BoDMPN071T+ZScLbSSfVP57yQfrGDdU/tPDeiZzu1D+23yBFDsnUP3ipKUBgnNQ/xBgnFdxn1D9AureE1irUP20hB1i15NM/IGATSvWU0z8qvQ24LzvTP9AwsNYf19I/JpoILKdo0j+QhboS0e/RP+bC3hTVbNE/5LT4+Bfg0D/A4UFqK0rQP2AhwmuYV88/pAoCT74Lzj9dfipA2bLMP1K84yA2T8s/CKyWG1HjyT9c9hx/x3HIPxhBptdI/cY/VIt+04eIxT+wSzB/KxbEP3A9gVrBqMI/0L8CuLBCwT8aAkWJX8y/PwCTkfp0Kr0/vidWfxejuj/w/fEUMTm4P4hlo9Ia77U/BLMq55vGsz8blxJm7MCxP09K4ON2va8/UrYDeXBArD9+m8eSOgqpP7hlVrd6GaY/2PKx8iJsoz80uj7wjv+gP0il3FBCoZ0/9Y+kir63mT8IZtwMGjuWP1IQGieKI5M/k6Qgqx5pkD8DPrZF0geMP+HP+4082Ic/omf2W2M0hD+2wHC51w2BPxhPbCjsrXw/nKXJEPwFeD8WuRDoQgx0P6wYHOMXq3A/lMiWfY+daz8AI35eGMtmPyrOkLT1vmI/wgnAfbe5Xj+8ywj1nhdZP2BOFqzQa1Q/ULnmCx2QUD8sZA3z4MZKPx2z3WSekkU/OlAU06pSQT+qrVYu+Lo7P1Ghw3+5HzY/2JFPvGCYMT9AeiRzbOYrPz6KA2xODSY/WFetpHBgIT+Y3uSdnU0bP4CSHgf2YhU/V8ilt/+zED+uIC0D7QMKP68n2laxMwQ/YLmMZ3dJ/z5VlhFC+Sj4PsZT65kBm/I+n78pbRaU7D6c4Xn72OPlPlovgwUIueA+lZvhqPB72T5T6CWyN17TPshZ8hdvXc0+5JyWYo00xj6WEUiT8r/APrr1vf8qNbk+AdL8Py7ssj7ccHF7dVesPryqGUzBLKU+kpQEND2Rnz5WVMXF93mXPsIRxrB8a5E+oQBqRkPLiT5YNdgsCg6DPsKVdwV2F3w+o8ycvKKpdD7dBYI4BlVuPkW1Mlx6N2Y+RMrIXCs9YD6Fzv2y0bBXPtDSbtIAP1E+LupwoioPST4dcS7GkCtCPl5MXql6TDo+NNSAAMv+Mj5gYyzoWGMrPoJyXEEgtSM+6BC+2iVPHD4OP9iwm0sUPgBlXz4rDA0+Xa6AWfa/BD6gQeEMs5f9Pf3HlhKkEPU9qJb48RTw7T1fsQmZ2TzlPbnOqBy6FN49EEKD7ItE1T1kJErEFwbOPQSeVVNpKMU9uqDGHqHFvT3l0KewzOm0PbpntuaxVa09PzgMB6yKpD0RcH26crmcPW71aC2DDZQ9GrmS4Lj0iz1bp13FO3WDPYzU6PjiC3s9NCPBoRPFcj2XdlI1tANqPbD2a52CAGI9leoChi/hWD2madjrICtRPSjzCxN0qUc9KMokvo5IQD3cHC8hnGE2PYf0ceq7uC49ypDcSZ8OJT3bJ6zk/NMcPcAqmLM4tRM9d0cxpVrpCj2q36GO0VkCPaAxbBLP/vg8CBxHjHAA8Tx7C0ZGvxnnPOC+eS5cWd88IA6CMe4+1Tz1lovSV8PMPJLiFxN0csM8vMgq/SREujw/v/dWvbexPBSHAcYi4Kc8zmJBm40RoDz250XjxpqVPKrXQcX9A408lpYSLuZ2gzxrvWvUfhV6POHHWgFtdXE8vMQsSJ5YZzybb2XdnC9fPE5/w4GyzlQ8XC1Z2Ju8SzzwgQK8xXdCPIoBjvVXkTg8NvrRRSJTMDxoS/7ZWawlPIg5Iljmvhw8Jbg/JmALEzwj7RZGyjUJPN5uK2mOqwA87EvnnZAG9jsc1TVMPRPtO+hfMUhiLOM7/ayNNVlE2TvHjsMqfKLQO5Q/Wi694sU7KZyLIKrHvDtRNOXUHOqyO1lOJyCV26g7SF9pROlXoDvysZBJdHKVO5sGqDMUjIw7/K37FLergjuxL7YXVnZ4OyoXRPiAAnA7JGfjpXLvZDtw/SGXT1lbO+LkX0l82FE7tFghJfZERzuk8Et+SFc+O6nnGDGu2TM7pNo5K8NrKju74iGNaMAiO/yN6z8=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+Zp2jxdzy98/fFtBhDxPIDs3dcVsRHbfP2JRyHWMHt8/BjXDRfHD3j8r39rIDGbeP6q0EzNtBN4/wj6QBZae3T/KCB27ATTdP/ZrVyYkxNw/V7NUg21O3D/lPds0TtLbP6JohRo7T9s/2AQ0YrLE2j9PUM2sQDLaP+JDNlWGl9k/8P+BoTz02D+zNSuiOkjYP/aRTYJ5k9c/4fWJDhjW1j/ErIs+XRDWP1Liypa5QtU/5BWjRMdt1D8gdm7lSJLTP5dVJfkmsdI/ou8LEWzL0T+wzzraP+LQP0xYsmLC7c8/0Q/I7z4Vzj8Oo3vWpj3MP2x0QISvaco/QxGBqwOcyD9LvFEyNdfGP6wQljawHcU/YzxRj69xwz8IyIkdM9XBP7r7SSf4ScA/xqm0vOeivT9KIZM3oNm6P07o4ITUObg/8qbRTKjEtT/QkGONrXqzP3Kv2TLtW7E/mAzuieTPrj84JNoerjurP51T9VSn+Kc/iXP9m5oDpT/Ev0XIy1iiPzxYzH8t6J8/G4GjuRmimz92i2CxINaXP/w1f4DaepQ/bn71J9+GkT9Av6GE2eGNPx+HFwAPYIk/4eqnAid3hT/hPxOg0RaCP2Z1HIeHX34/XVI5kpRneT+IkwioqCt1P+KNhTfsk3E/8dFDsJUVbT9o1xEvxPlnP8L247HQsWM/Trp5sRsfYD8GLEK1Zk1aP6ywMn8RYlU/qqxu3UVTUT96lVybSPtLP3qXjrKThUY/CSOIXoERQj9aLN6k5eU8P5CyegcsCTc/pPc24CtOMj/8OIt9xAAtPxOz+wb05yY/ns+92EsJIj8jtJnGt1EcP0aNlLvAKhY/Cnx6Gw9NET+ODznb1O0KP6D64Uv15QQ/GldmWT8sAD/xMq1VfPb4PpTjqo5zNvM+pmlwEql+7T56nxRJaJTmPkS0bkCbPeE+l83hUZBC2j51z21aqPLTPopMj6vKOs4+zrB71DjZxj6ZOUd3KzrBPlJXoS8y6rk+5ShH4vJxsz6zPKZWuBytPiSz4i/jvaU+EioC8CszoD6clwAQGBaYPulwPsGh3ZE+jpTd99Jxij75lqg4UYeDPrJjmq+3x3w+GoJWK3YpdT78R0IfEQ5vPjMcvWwnvWY+ov/zoY2dYD5WNW8KjDtYPuYT6XenolE+TIxmlRCeST44Wkz01ZFCPtvAExWa3jo+3ztiDf9mMz4yXPJrtPcrPosgo3eNHiQ+zYReQLrkHD7vKRImirUUPt1BZOD0oQ0+RXBdsq8pBT5WwWoMsyz+PQY2pRV3efU9gul8ElaD7j3fCKN0HaTlPXgXOiJVpd49q/xhGaOp1T3HUVk4N5POPSLA4QLEisU9SIZ7Z4ROvj0MJ5W76ki1PeJPpaSv2a09sfXJVh7mpD3T0iNp+jedPbiVIKDsZJQ9ULmkvFNtjD0W4oiRUciDPSYhYzY0fns9Z1qgQZ0Tcz3X/fuTeG9qPa5m7k5ZSmI96NKpVzxGWT1aaF/TLnBRPR5+Rcm1B0g99VRNvM2IQD1nExl6FLk2PSzzD4GsLy89tF7SM2NfJT3ZJjgLikEdPYEjSf9t/xM9kcxlgMRNCz06p5eFrJ0CPc+bNoRoWvk8sKHjfzE+8Ty1shV+6mznPEZyYPM9yd88+2GJVRmK1TwS4hn+OyjNPAG32xQWtsM8MaLPZ7ieujwIYj0BU/SxPIypq5sYMag8Wtai45ZHoDz3v9EJ1eKVPJwzWT/5Y408ZldlWMG2gzx06n1nYWp6PDw0BYTJrXE8DmGyNGOjZzwLoKjjs5JfPK2hvwJLEFU8Ia14q14TTDzyn40pGLFCPDsCYbUD3Tg8/tWpaAiFMDxgVWT5GO4lPJXZoCJyFR08+BKsFUlEEzxxrtnDkIAJPAC6Itii3AA8liDiY+9G9jt9qo6NlmftO1RlKU2ZY+M7ZCkNp5KM2TuIJ3lQrtHQOw516xFeIMY7I08LLhIYvTtfytyShR6zO1LVS9vYH6k72O9MaVWEoDvc3LPtOKyVO54gHggm14w7vfO5RXPcgjv7ECGDkbV4OzBbh1h/K3A7+NxqxJIkZTuCz4+bJJ5bO3b8TggXBVI7wYYbLNd+Rzu3s2tonKI+O/c785QQCzQ7BAOK8uytKjvcPFiT0+8iO8hF7gE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAlQQAAAAAAAA=eF7txfk71HkcAPC0tGLsiqdy5JrRFo8mbJQtnzc5su5cs4NuOTro2PSkeFazyxJS4XlsBznSTo7vuCfDjJGjxsyS0lTuSig1WrXTIPv9fuc/2J/39cvrXdweb0POPeA5L+asGmqDWS2PpzRKG2yU2pZv2yYE94Oa23tiW+GJs9yRViKALI3Wzv5GPkSqP7pavbEFtmiJv3Ko4MHPm6K5D2yaYHVh03tRMxcUUrdPJTsbofDVdbpwuh5sRAGqVy7XQctEdFyaUy00d8hM9eTV0OywmIlxObA7fIeg9TcMnmlpbz7MrYSc/WEuQ4nlMD5f9iGbyYZHM5QBU5/bMFvrxNNh3gIqwytVnFgCe0+ORuY3FUG6STrlms5NMDMa68fUCuDGlLN9mN41aH+R1lMRng9JoNfwtDcP/PvGo7rjcyBS5YcUO8/L8Pe9PUcueGbDg5lON9rbDNjGiigW5KZBt8DixePMFKiMlSh0eljgP5/xxyIjGWTGOeq625OA8ibZYINPAlQe3XDOuCse+ufl+4b+PAmz3hal+ZPHYDqU2Z6/cAQURpdMS4TRsH7VxBqpzkHoimUalAzvA3q+7vev7HcDPali0PMkE5oYfo6+u4JhqNvy97rhnbBMZmtyReIDhSNnTX9q9wAneUdY3q+uMFBWuaZU5gQTJhOLY6NbIURVMlU+bA+WPZvFE7W2oNEt8jdKpoPZAf1yhWg9NL/bFLFX3xzWJYu//oBMYU3U8jvIxgCiWacD/b9dCZ+vu1JbXmrDeQdBTbSmJviqxRsHXFWDolSdS+KtKtAlijO3jp9DKzSdvesGP6KWi8UXTGJm0FjqSE0m/w2ShaPkvbRxVO1T4OZSP4q6vvyVKz01gC5yCnnsxX4U4SWKQXcfIlXLyT12Igliags1t1y/j+rXhY9q5Lcjo6igK18Shci2zyv7pZ4APQsOWsE/z0NFay+oxVRxES/oOwElpQEx6V7Uh8N1iGZ3LvDMjVpkkIWsU9g1SB7q9/HBTDXSSzg4CZHVKESqr6K/wEFTYWxrrUoOuhHnH9l+goPsEldqHXbnIN9x3zS/tRxkvTgTU0bhoJcd91cHKzB0wsKsjP8WQyldNGrNGIaOuvrZeDzHkGXfNwm9jzGkakeNEvdiKM/bivFcgiGpyq6omm4MPek87mgqwpBEOs1Q3MdQJWadao6PvW/bkdaFIXX+0k49fDbXNbqzE0OM8xg7A9/BMJexH/+Mv9prF3wNsYxCx0fuByKM8QWpZja6+LO0QRtN/HBqaZIafmPA7mMq+IdahrK+dGBo/dnXrHn8u/yqFXP4jQvqFAW+lH0o8DP+M7/wXjm+weCLU8Qn0m7bEeu0FqgTfwrRn/wHvyFRu4+4KK+qjbjYQ95ILIticYh/UQkuJzYT8m4Tjx+HW8QaliklxPOng4uJrzmyiogDWB9uEjs9zCK32u5Jfmm/IfmI1VwhMVfrFfkyg37yKaGIXCK5Rz6i4JO383jkCbF3ydMXGsl/nGsgdwlWTn1UTx6arnxpoHJjuvI7hsodlitfskR55nTd//+H/wWJnmqlAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAzwgAAAAAAAA=eF7t0Ok71Psfx3FlmYvSkRBpUSpEaZElp88bIVtZpuwpSpQszals5VhyLJFsWUJCES3fwVizT5YyplDUIEuL/FoUWWKa8/1+XefG+Qd+t86tx/V8Xe/rc+OzRrTjmHNaK1CaDOwSoA3KY3mhQRdbIE4wZOqkXCtcmciwqDvRDDKcsdx4wRZgbf+SzLR6DDY9dnYa44/hXZDq6y5DJlBVlt1iDjIhSIv6SkK3CY7+9eOWV08TRMwc9MrTbQTTqJY9Nt2NwFXVKrhh1AA5g1TFtJ4G6PFbMSpuXQ9vC3ImzIbqYdvxhDLD7lrQP1vkLTVSBwNtd/azhWvAZfTCaY5YLWj7NFBmzKrha8KiS+vMHoHfaZuL85mVMM/JTVydXAWZvPoVq7jlsEOl6POyTxXAPfQrIO50GeibB/erWZbDNmrQy/T3pbD3WTyFxWSAY+2eft+zJfCF+yZSYn8pzO72feC0pBgsYxTnDXqLwTypRiCkFAPX5fIrU/zo8NB7nb346wcgmtgaq66IQar8n6aqp+9B4/ulVckd90Fz2o4WKlMIb5VeKL3xKALRrdKiq0fzwS47fucpxbvQFJL69suL2xDUL+yqIZAPOu3tdPZwLrhdHcrczsuD1TwBN9qyHPAU5+jLyuTC2qdq7FO22aBgO0LJsrwFqmy/zxbBmSBuHSofaHET3sY6beRFpYOxhMbGGs0MMO1RiNFvTwHvWlZItH0aLNGRqjM1SAbRlR5LVUuvQ/Rzvd1LJxJgN9LTrt+XBKnv9xUe6LoGY/qa9usoCSB5wHX9sZZYEEqPOEWZiYNLitf4Tu2LhtCu9+lciIGoh7aC4ZIREIeSrUSGIoHPYukRF83L4Oju6fT1RTgUpml1Zd8Jgc7Xg+OWMmFwdoTTUM4IgjG+8yntt4OBN1p20u9mAAw8O1yw6NNFoGbqfRbk84WHeh4XQdgfxEV2VO1k/QFDel55E6nnIZ/fYNcWrg9w3KacxeJpcOz7SYVlop7gq3zH/APbG95VT/m217uDT2Ue76WiB8iwWRIsAVdYxVp6LUHWDbZsneOdaXMGrlV2HivlOPSnObnY8zmBVGeyptvVY7AmvPWci4YdfC80Fy8edoD+ym7p1HWHoSwonxnjZgMV4U/SmnMsYT5kMnIokQrnes/Wsu0OwFWTqIyLVhZwwF24cNbGCEKy4v5wlTOFMqefItJy+rChrliuydcQIiWN5R4m64CqvIZIUowecKtOztqANmyQajmTFYHgtq2gwXoLdZApm/bIX6IFLeZudfYaO0E0QISWEagG331rT6rlb4VRtYAQasl2eLG971eRmCJYqB5wmdqsDKO2mp6B/vKwxOV6xrbFm4HqeKue6bUOYm2bTgg/WQ+mLy+795rJQHeYw5rs+6uBn/Xa3chCArq06ad7lq2EnzHDtAoDMdifeoA/OUgcppzWICkBEVCv2b1HN10UhDdO2Ec2CECFm27afB4FAmdOt8RH8UHo9611ea8Xg/bGa7Na1J/orL/n72mUX6jB+skr/W+TaODR4yu73k0jpjrDnH13HBlJGNdHLp5AjnN7DmpdGUOBgsttk+ELMowwEhJSeYdaHXb4FMqOoqNvV3HSxwdRSZ7ivKXOCPIX6htW0OYgzZjrPUv6BlCUZPkyKaGXiOv7vVSsvxc115/v5f/xHD3xXJprrdKNxB5I+F1PYqHO+LA3zLBnyEQ7P/Hc3Va0t23GLMv6KTrEyZl2ec1EFNqqn6mfmpFkoZ/ykY8NSNWr6+qV0CYUVeHq9MSkDlXQwNtqsB499Qgo72BXo/MPHFKMSmrQODWoXXNTJaqQ3lnhmFKFRKa7VuTLlqOI67nzxuoVaKu7fsTGqwxkuCLrrLtrGfrmHyAyebQU7bn3pvISPwNxtDmlrIASFMcXnVs9VYIOd4CzH6sY+YzmzGxWxluh8d59k2KE5aakWcUXI//w0DqtUTpqD9G+4LSmGI1R1D+aZNHRjfm5byrNdBTESLL9cJKOtg11PGq6TEcMMxuxkL10tCPzz9/ZVDoaD/Bn3lpLx/8nylZXlY52af0Wc5dCR1QfzxFBCTqizCjbZ0xhKDAjkb+VhyG+YUnBuY8YUtrwv8/McQyN9708eHsQQ/nBn4TuvsNQr+uuT42vMKRndkj2fD+Ggoyif9C7MTQWGvLmVA+GtjycuDz7DEOXbaqMZjox9LytIRo6MFQgbZbLYGOonB0srduOIeZkSoQVC0MNvHex7U8wtJzdtSjpKYaC33PVatowNN98xO0gvlsknvkx3YohZ+lZmjO+B2+X5rjj7ZCtbMfAHXKP/X0RbsEINVUTN0y0zq6sBUNHNnlbD+DyZFUOB+NG+wQoZeIeq3zqY4f7qLFT1QtXgZZ6aS+uDi/ghBlul8mAjxLu+OaVcmq4soMpkrK4ix22VW/AvcTI6hTDVRTYYiyF+9xAJ1gYV1vvtqsoboemmrEArnCW4W8UXPnyr4l8uB6zyTGLcYt61n7nNmPIKnaLLQ830iFHYh43yWWvOLGb675s/Ilrya98YQ6XO67TPYtLNeVYEfuVi4IqRK/t0gknLElNZszgMjyOTRIWX7J2IaQtOneV8HL/mAJh3GCfIeFM2tyvadwy2QIJoluP2w4TvcUt+BuhjYhNB6HQvk+9hLZ8x+sJa7hNLYS9nkVlhPI7OqoJw6kfHxKO0QJLCCdHNYoI52nF9wlLWqbyybumB3cJOSpltwk/XHl/h1DOWiGPcH/ELKlW34pcwum5PNIbY4dzCJNWVJGqq3XdIqxTkiZ7j5o/2duzCkifh2uTmgk6kq5XWE66/JoCabTqZDahzgV+sveaDZJ94fkYKet+J2nA8CvSm+faSHn2HaS79JpI6xOaSV2/1pIi5QbSv0Qfkdrn1iy8K1tFarCkmjSisII0xqKSVJlVTuqmtLBvUlho57AFfSvKSHUXL/QDr4UWvLNgm/GC2o4Lvt24oI3GgjTxf+98fP/e/+l/jP3M+M///L/5N6m+zYI=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAArAgAAAAAAAA=eF7tzmc81vsfx3HhaJwrkkR/MpI4lFEZGd+P1UWhkwY6lEpG47qSHXXMykzJldUwCxm/y94jMspIdilRisrskq3/7/fzODd6PP73/3fOrefj9b71PnnVXCXjZx3YVAaMpSfVQ1dGbsCbj7XA90HEOvxGHeQaO4XItzyDooceA830WhCd5uczqqgB6spanUCLZzBxvueLe141HLN6IadwoAbaxbxM3zOfgsqbPvl5ajWsGw2aiM+tgh3Ha2q4qU+hmYtV0lNWCcV9Xt4BhlXQyM5tSo2tgIqT90f8zCphryS/lFJ9Gfheswje014Oc7NpV0rYSyGKV32wj6sMchwN5gUMi+GCiGazin4JRNz8PhwcXwix1iwFH0YRxJR5fDrGVQAJbG86FycKYIPvN65nl/OAs9qCNW6ZD9Hsrn3cCzkwL/901/3OXMj8sovuEpoN06KiaTpWOdA471GnKMeElz/+yto8zQR955ADX0qzQE6A7+iZBxg4vJGNb9HIgCKPS+YBaZkgz2YMxr1pcN11xWyVSjpo/eln4BubAoUyrLVJH1OB8Y1Bu+TxCM6tUozUYT4G1QUxjkX3JPjwWscs/H4y7DbjZn66mwDvZjXD7VMToUraWaipLQ4OD1rEubXHA3Op+LPZiQcQnPJq3UGROFg911dTfDAW7kepZZdR7oOLmMvIzqtRYNosUNMnEAMGYuoL3/sZkCh/T97SMhL6c6QYP67cgY65NG2j7ghIOKfBwW50GziyjIQiAsOhdZ208qnom3DRiGd4kHYL2rDhzRMzQSBICf4Z/VsoBDBVlc4zb4BBBWqyCQ4EvwrVxuNl/kBftfiw1e46NCbNC2oL+MIx14S50ww/uKMl6r7ByQu0st1aQ7l9wJH6ZuqcpifYcJ4uCo29CuIMV90sXzcwGB13lom9DAKcDVUmqs4QKWN6V4nXFdiuFphIHbkEVuWBE9TvjtCiflOgP4oG3ddkbC1UHGC4rpqvV/4stGrztbx+fB6UeE3G+i1sgO4+eGXUyw7CZxKFmZTTMGLmPrbykzXUCHiaudiegMkDgrpnnp+E3k98kXp+x+DJWFngnIYljIW7TjqYHgWDv7uuDaWagSKPF5WrwQRMROxX7ak+DN1NunwuIcbgnzb2tcvxIHSH1Xx472oA2/kZsjP7DCHL1CJkg4IeJLO0xKvCqMDfW5JXF6MFSiOqmV6ROoAKP7vzqamDarGa++MgBA2ZtCQLLWXwHtXqObliD5SXxTh+EtsJA7NBchH2u0FtKH103HEHPHMy15+IUYBx1OMw2C0FcsILcdHjMhBm2yR0RVsCKqqP8/9okIREcZbsXXZR8N5xgxYTLg52p3Qpup8FQYqmamulJwyV2QXRPyb5QNPxWVtE+kY4PV0RsTjAAw6vhFatklwP/oocflT6arBO4eV9MkuBK8Iqr3oRJ0hMyotMb1wJ3bzyEQcE2GCr6ybeayfYYasad0HSzVmEIcXOfoVFZNwTRUnYx0LS3nssdu2YRj0XfOsXhMbR2iW3vbK2k2hRhBW7dG8YXY+jPKerj6Btc9Pu5jYfkdluuYx36DMSGFuIYxm+R7K3GlqyAgaQxmrqz3eyr1GyJ2u/W/pb5KQ7bdEl1YFEfUM573zoQt0j+cZD0IqkbFOzz51sQ5TvTpKf6Y3owXlpy+GSFlThzhniUVqHplc0eBruf46OzXoBRbgG6cl2/Om/oRYJqY7NSJtUoSWapvuhjqdoSENN3t68HHkd6TbhMa1EL1rDtGJ4SpDtZJHh312laH3Cnr/PhhYiTUETK6vhImTsuNdVKSkfPWL30RLMKEDpooM5fgp5iHdLm2bibB56uedWdNvGXHQ+Q0JfMisX+Rqte/1BOwfNbD8zyMrNQW2oATscn42sOSNXrZ7JRvNOe3tDpbORtFvLtZKz2SgyRTpptImJgib5ypqXmIjbe2pcMIiJHm3qGkrJZCLRZPZqBzMmWk9rFi92ZCJl87sqOYpMVHFkUZ2TykQuU7WdyfxM1JCoc7xsKxPZSJRKdbMx0fzQmuiVFCZ6/8QjzGkCQ4kBnZxFsxhqH756aOMnDH1Q1U5V+Iah5LsT6gVvMRQTWOmsNIAhvr8Wp8K6MJSj/HC89zWGBBn7giltGOor72G5dWDIN0jvfXkLhgwjhOb8WjE086Vc+WgThk7p608/bMbQkJkU550XGPrp7DPl14ihsojYEMPnGIqSEsifwz0+87LjeAOGntJOfu3F/Q/V4AGzHkPit7QT1+KtEc2xSQlvxarCKDfcg54Smm/qcAce7/odbxNGoH8M3lGMO7+X4fpcvLd4Hvd0cXSjP27nJr7Y/bjrk9ptLHGld80xd+L2qF2lA66NDFeMOO4Cx4scGVy6yBE7ftz2wDWDQrh/9EzkU3DX0daa8uJemNEK5MK9xRB5tRo359D1bezEvkPYkxOXRWet+VmLoYu3vJhseNvZb+9ewFtOeZx9CXelYOn+eVz6b3Gbif1mzY2dc7i8ByXrCLMEDtBmcbdU9nYQfovIG5jBte7Ztp1o+X2XfYiW45rLJZROttQkrDW+cIrQRLR4LWGb89g2woxR12/TuLvleJYIg37s7SD03hDYTxi4SfwZIXYqtYmw54+hIsLtXR0VhCHyItmEuhrq+YT19oXphPq5t7MIo3gWUgi3ZrLSCHm22T0inMKqHxPKcj1MIux+GJZM2PLtTCIhzW8NuYtnhiSQv1yWSL24ZuIJVZSoZA8t3iZbrqKOlEPWiNR40YF0FIRJ97srkd6MnY8jPNxOIXvd3kGya6UnSEGik7RzyztSd+wF6TuNVlIsrob0q1U96e6+CtKuM09JQ3JKSfXo5aTZbsWk3Q9KSKu5ikgzWpf15SwkVXBado1RAWk7Y1nLt/mk2uzLLeaz3G6FyzbsWzaTvuzHrb/ujut/3dnYft3/6X8MHcn7n/2v//r/8L8HBd18AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAyAkAAAAAAAA=eF7Vlfk/1VsXx2U8JE5Kg5DUd5vHiHJu7WO4KkTDY6poEJIiGUqIjsx0TB2PITNdQ7lKnZKOeERSSSnqNpAyPSRD5Todd32//fT8CY9f3q/P2p+19trru8/mvjecrl2PcJDtiePhDQjXhqodDcpAmDMytiYuFuHerXm52vyfvKYIb4nkuwgXnwos/uaFsHuPiQyNjbC05ccI410IV43qLFzrB/k1uk3Yns8LPfLXpxbHOd4pRbHwmxD/rOf7SC12aEvhdq7W8AWEDW1aD3W5IPzYpS6hBuq0xr4jRH8QOCz4M13mNMK+Y4ZMnzSE37PT1mg5C3j1Du1svwMIb7KIv8EuRjj3zlbdhmkC5xXZfLgZhnBDh76qUCjCTQm74j5Af+Hq2q9wAMKWpcOsxDgBT/+pBfMD1DMVPmco6oOwzqsUsV0y87wXY9HlD6Afaw437O84hAPHxyfmOAiPM5NrBgMRdmsUaGQbIzx7fIlL3iaEvwsliPtsQbjManeT1HmE7Wz7RnfnIMxlR7sJqwo1PnQKE9ODekrHPN55bhDwDqwSU7L0RXgguSI1GuqEHiq9oHAE4Y4rKE/LH+GAdZqXbhgiHOlptVhdXagxKa9femkSwla2jkptfAKvOdrFJUYI7PvxoUVN1k/eCsGpnPKDCHsf9Y0W00V4z6RxG9lHbLX7xT7ov/XBY2+B5Dyv6lJWrR+XwKyLEgW04nle8KTU6ub4nzy/7HShQXeEfzt2tfWOI8LOZxicEC2Eddk3/6ZdRliGbtFuaoTw7Z7vk5X5CJ9sqlTsi0eYfjVk5gScn9HI/CwTzucprdhWsvASwtF6sk9+7EXYqDO7QwS+o//lkgxL6R+8Khdc5tFDYP0mpa3j0Qizs9Olnmj+5O1xHrU+m4ywbI2g6BV8r1k1licT5nW5UWsyCs59OdSVdjsF4RMG95hEAtybyAfSLrDPkNfsvMewgCfX90XmbiLC1ZoMphf9O4+zynOqJxLhZ1J2X99CXeaaumJ5mNvrkvNq+eBb8hvTZMIc4elgoTF/abiPVkSyCJwnNO/DYkYu+ANFf0+GuT0ITHoRDv6KXocDlc8IbLb5X9E26Qj74Cr+15Q53pvv6R2rsxCeCGNF1MUgHFxhHZEE/RqwTlaeAUoFpiYxIN90SP+YfS3CWrZOS+PbCNyPDrm1pyKcURRXowXnXK8dVj4J53skrB3qAXk9hZ1G3iYIFy0vv14GfZl9y8tPA4p+jxpbBvUKWze6MmF+rxmv+4ZgHrqqqiePw/0c/XrDZALu/aDFGY4n+CbO9rp2wu+V31bHR+EIT4bTtE3A15pq2jQG88lhy3tp5iHsonjFJhP657vIOpZA3rX9Dq6ZsN9QYFWEZATCBYtPXemHuIq1nqAN5mL1Q/SqGeQr9B97eRo0717LoN5FhEfss8aigUJvGt6tOocwq2CnmzDMP4cvadAM/vFp+vlDcB+UR7xFqiCvSVT+gQvsO7WDK8dgwbsiHjktDPsUreXe74Y5eOunr9wH+cONbcS/oR/xoned56FO9/BItyt8/xwL+Xsr4fymOxgHJqHOoAE7joB7v1v2U/95OHeaivunatjHBJ09dxh8QhsRzRrqad32cvoCfeq3/TfXCvax95papAN9hbxboxIKefaOuTZHo+D9u3N8hA5+HrvFYBK+ewBXg34Z9PFrvymHwLshN25wShPyA1zjumOBQR//sLeDuNGboswC8GWsT1eNgr64tq3lGbAekV2/RwXiYtXFhRLQl93rw17hcO72krbWRMjjSz5W8oPvqr74wMJ48FsyMkYuge+Ka4ijEcxFan1062voT2OFQioPdPL0jpCvUI874HutHO5RleloAB/6ppWaLzCBeVlal7TIgv+NFue0GJzf3NktJhDiTmX/eW8O9OnJXGgMc9B71iiRC3MbzPTbfxrqarzaZiUC+38T3988B77Uay7B8hAv1TzttQvqJN2LyhYFfUe2c6s3zE3MaexWAeR/6JQfXQD979GgtzZA/kJv9eCT4NM2WtbtDr40DeajFlgn/pIwWg7xfg81eXnwKfp+WSOAfVjVs58LoR+3G+bfBdC3qsHhfBeoa75uW58VzDHTJkRrFZw3cbvWXjv4vVxKHDezAr+w9YjxDqgTt3y3qwLU7fXakKkJHLZb4iYNJFyqfch1RcGGsk7QbX+2pj2BcwTN097oQD1dXBhcDftPTc5ximHezTGH+ruBQbvuXzgHeSk6KalpsF+MmrHyXvAr1aQ5L4I6nv6JdCHwFZUYRitAfr68oHcQ6uZM90mcBxqOqi0i++vwSFBZAHxmIMJ9CP6Niz72msJ6uIRssz/UuyDZ5dQA9dpnVic5gUZ8adEm2K//Vr3zKvCZLRaJkQDWv5RWbYB4hlDgyhqgddVFA/I9y1XWTyDIe3XdbG8W6OmtXq6pwLkeyVtrIb7/Ysp7ZWBK8Rln8v7J1s+5F0H+89+LDhcDP9W1iBcC5TV8G0hWvO2eOZ1M/v9+KkPO2ybATrkD6kWZhUzWkO9xhcEYQSOwh9GQ52ZJAptWShdeESew3LKPKwMlCCwtmRTLESOw8cmZMnWI39PcK9YtSuB36xSOMCC+TiP2mQ3o2fzNFzKADinMsBERAl9/n2CmDLqqaehEKWh9u2TFduChygXPA4GbZUTZKUARW1naHmBmbrTKEeAV/oD+ZmCIg1XONmCpPT1eDyg++tbQBMjRsKsigNyl615pAotCsoRWA7N19CNVgfzax2cVyPwp9htFoAOr4sRy4D7H+6Irgc36N/fIAxPebji+DNgQQBtbAly9dl/pUiBjadekHHA4PyOIjHdvsthOauuBu8Ukn6Hy3sXARM7PpaRmd7gnkHroaGwNyZhvyxxJLrfh+JN8sSpSj6T6qzxLkl0VEgokx44oqZEs2jxPI3nMdoEcSQvd+J904NTLo2KkbjMdmCH1ltpvsySDOe3jJN+rraTiZx7KjZG8y0qdILndO22EWt8yMEpyoOYypZsbO4ZJGooqDJEs2Iap+B9LNg2S7JdlUxyYYH8myRKZoZgSwqfiWrYcSkdEMij+ObKfong+h1qfF66nWE28/kRSJyyZ0g7lZRTNL2ZSNMzqptarRG5RxDs7KHIN2ijefxJM+WYGnlD6bGY6pbuMfsWne8MppjT7Udzpx6KIVMMoVjpFUgw95U/xBiOEoiDqV57B14Bf/hgfihpPoyl+VomleCvhCMXDG09SDJuNolhX8CvO1D9LUWH6V37trl/1I6XOUBw82EXNXeXLQUp7q7VQWu1wK8X7NMEUAjZVPqc0m0WbJrW7QI6iEPVHx4FBkv+j/1/5D6OKug8=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA4gMAAAAAAAA=eF6V1HtQlFUUAPAxCkfAWYwQQ3vwclJiBx1gFqgTlLM80oZ1IisQH1CSriA7SXbo4QuJhw9CchdYlny0y6LA8lJei6zgmpKAgEREQiakgiCwIyFNnfvt9g8zzNr3z2+++zj33HO/7waX1OWMdyMEmdzWqBotbEewn7TxX9iK8JLo9u7Eawju1Q7lblcQur/ZpLjchLAx42pyQiPCgcHG3520CLKsWv/eGoTAPo8QxXmE5MY0+a4KhKqTnhMiDcIiL+8oYTGCoiXiDVERQrDtncBEFYL61qX3qs9Q/xcb1C+eQuircpKpCxBKkjwVW/IRRq0eC4PzEO552thF59C6YYZtVVIE51fTEoQnEOwG3RY4fIcw0XAkxz0boe6zigUpxxF23/1Y5k6ucTvV6Uim2vKTwsnEfRmSXvLmssM1RTT+OXFNbBPNDwuvUjlT3I9WiXQ6GcJB35jlBbkIb3as2Fspp7gu6p9mFAiFZX4YfxJh64WUry0p7x8GAlNqlAh/OlbzDqoR9lQPHIs4h1AxUl/gW4rAv7xmsUM5gkHduGKkEkGSlpxZeQFBELMzZ3stQrYh1n8+1a8nv8sl5SKCmOfTNKhDKA1QilyaEZL6py/56akOfy9sdf8R4UHIULfhKtUj2WdQ2kL7L12aZX8dwaP/vkFM5xU/1nK0oA1hKnzap4zOMcNjw1Onb9D5aqe993TQPlfR04kwL+TdqHZS/LDONaKL4liN/9pGNvz1gt7rJkKafZlFKvm6xulIK8nvlPha0fcRemN/sR+Z0btvx1ZyZcDm5v1kZqb1UB65OLKkR0M+svvkKx1pa1kobSX9dXuv95CbXN8/O0COybuUQ2T2mXbnYVKpnx83ShpKjl17SA6LlyVMkL4Dw6mT5Nqj3woMpOVbcVKmWjejZYqjR+uYba5LFcwtMa/FM90S8ryYYaulk2z+LZ5NObP5+DkJc33Qem9m+mO3GbZOqPxnPVMj0EqZnz9/L4655HxAKNNReWglc/n9WB7zn4BDU+x/AaXkDrP/0/oupuxDwxWmgH9WyxS9nFTFjB19upQ5z+uRmhm52lrJ3NX0zGnms3crv2cWBU0omGNf5udz8erlcqbz2r48Lk7DOs7tTrdzmZN/ZHEeKPyA07uTz2mxg8fJS5/i/uvNvw1x1ip6OcetOjgj01s4l4zoOR/80sQpf0fHGZV7kdM5voEzWqXlFLxi1CK7nlO/0aidtdEwg/E+WaQyKtAY1RUb3Wm6b8Dk2yaFJkNm3UvBZtqDZvUL/2e/ufhzOde4J23/7312PnPlZ27f5vJ90nXN1Xl2vH8BxRF4Ng==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+QAAAAAAAOA/lsg0uW5DIDszKRQqUSzfPy9wOwuF1d4/x9NCueZc3j/4k+udcezdP8tQVJ5JeN0/wkNnku8C3T+HVkiH/IrcP0H4Qo8JENw/o08d4WKR2z+MXfyQZQ7bP2+c+NBrhto/srwfTtj42T8nlCO9GWXZP8qbFsmwytg/UfISYzUp2D8SeoT0W4DXPzXlVQL6z9Y/yiNhEgoY1j/0DwuZrljVP+0V+MIzktQ/joPW+Q/F0z/5YRsS4/HSPyhhWR90GdI/EgAZ/a080T83G6apmlzQP3OeaDy79M4/DCtptlouzT+TjS/QmGjLPzCAORUEpsk/qsQJ9iXpxz/idW6wdDTGP/XvmjJGisQ/vjN3Y8Tswj+pO8sl413BP0VA7aiwvr8/FoVpuivlvD8CVOYNjDG6P3TZgrOTpbc/7evjE3NCtT9i8tptzQizP3a4/YHA+LA/p/EBwd0jrj8xlQuHGKeqP3rPIrvWeKc/YMVoEBmWpD8Zzb+RWfuhPygEN8FSSZ8/p7KKqZobmz9b2TefsWSXP66exnqMG5Q/n8w9zRk3kT9kD9Vhz1yNP3sAIDKH8Yg/KVxaVqgbhT9eL8S4WsuBPwd4Rsx8430/19BTof4BeT/NFKTbwNh0P1d0gbt+UHE/mrlTPkeobD++76E7d6FnP/Qun1m4amM/v0HLYRvMXz88TeSJH/JZP1W5U3BJGVU/V/7GS2wZUT/ICmJvm59LP04FArMoPUY/spbgfXnYQT/ALw6IVIw8PzQOZPcewzY/q9gCGWsXMj8qQliGkassP9QMFfbRpSY/5KnztR3WIT/K31xntwIcP4ebEcHy7RU/UmCy32IeET9IO31WX6YKPx3RR/llrwQ/UBuw7rICAD/nN8VPXrf4PlLWCr6hBvM+WnbRE2I27T7tvsqv613mPozP8b6hFOE+tB7U/BUF2j6Iw/a4pcTTPjj73d0V9s0+8hXf4Aqmxj5dlzs2IhTBPsjVY8DJsbk+CR2kPDdIsz6brWzmGt+sPlA43p2AkKU+2QTySNARoD5x69aKKeWXPhxMQMDRuZE+FHfS/4I9ij456BZPMGGDPkRaatc/kHw+6ofOKTIBdT78lH8gudNuPsSLhLT3kmY+2F+L0ht/YD4c4U11sA9YPvCt66Qfg1E+Tb8EH9BwST5BcXtubHFCPv3dVFNBsDo+Bc1+h+tFMz6rPGflk8grPnPmu9EJ/SM+epm3sCS1HD7ujsAx0ZMUPnadzXo9cg0+9Yr8+vsHBT7PU/fKK/39PWJPx7YBWPU9wzZeIE5U7j0Mq9cHHYPlPTP5emwXd949wo/EwkqJ1T13kQwvCWbOPebzUKJCa8U9J2uF9KQivj1PnI5Gaiq1PcqGmV9Wr609W5a2XMPIpD2xdrMGVw+dPYdsGfrVSJQ9eBBRuo1GjD38jOY6mK2DPXn2G8BqWXs9KEDIWFT6cj3coNmdwkxqPRQ5ljiOMmI9sozs5qglWT0q89p86VlRPdnkE2VM6Uc9m1Jy9xB0QD1QsKe81Zw2PSMPtGdACS89AeE6c0lFJT1Nz/1UHx4dPXAMkw5u5xM9h8LA10ctCz0P6AJstocCPRe8SGfAPPk8UgYoUzEq8TxGXPVb+FHnPA4giCj7pN88SB05krpx1TzcINOUgwfNPFFpBh8loMM8eHr8olOBujykBBpCqOCxPPJmiK3OFqg8En3Idwk2oDyQs5LFbcuVPCaaflrPRI08D/Gnm/+hgzwwRwKCxU56POGpUf15m3E8eeg95xOLZzwbutRbfHJfPEgVjan1+lQ8L2w58iX3SzxpLarecZ5CPEW9GgNkxDg8ws7t38p0MDwOEQokstglPLcT2PZE+Rw8ZtVDWcExEzwVlWFEN2gJPGL+WTqnzAA8x+AT1fgx9jtlLfEqIEztO0wxE/ihUeM7oC278Q512TuzwaW8UMLQO3Y+OvVfDMY7JMJi8AT+vDt/Jzslmw2zOyTJr9ilCak77jP1dlR2oDshpYZzMJuVO4tNj/+buow7lXKc/IjIgjvqF1M1MaN4OzB6DZC2HXA7dCW/f+ETZTu1VP0TH4hbO6sEkeYY91E7yJ7bss1sRzuOxcOUgIs+O6ayisQn/DM7WYWAnFaaKjsi8/VUD+IiO8Ob85A=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUwYAAAAAAAA=eF4BSAa3+QAAAAAAAOA/l8g0uW5DIDszKRQqUSzfPy9wOwuF1d4/x9NCueZc3j/4k+udcezdP8tQVJ5JeN0/wkNnku8C3T+HVkiH/IrcP0H4Qo8JENw/o08d4WKR2z+MXfyQZQ7bP2+c+NBrhto/srwfTtj42T8nlCO9GWXZP8qbFsmwytg/UfISYzUp2D8SeoT0W4DXPzXlVQL6z9Y/yiNhEgoY1j/0DwuZrljVP+0V+MIzktQ/joPW+Q/F0z/5YRsS4/HSPyhhWR90GdI/EgAZ/a080T83G6apmlzQP3OeaDy79M4/DCtptlouzT+TjS/QmGjLPzCAORUEpsk/qsQJ9iXpxz/idW6wdDTGP/XvmjJGisQ/vjN3Y8Tswj+pO8sl413BP0VA7aiwvr8/FoVpuivlvD8CVOYNjDG6P3TZgrOTpbc/7evjE3NCtT9i8tptzQizP3a4/YHA+LA/p/EBwd0jrj8xlQuHGKeqP3rPIrvWeKc/YMVoEBmWpD8Zzb+RWfuhPygEN8FSSZ8/p7KKqZobmz9b2TefsWSXP66exnqMG5Q/n8w9zRk3kT9kD9Vhz1yNP3sAIDKH8Yg/KVxaVqgbhT9eL8S4WsuBPwd4Rsx8430/19BTof4BeT/NFKTbwNh0P1d0gbt+UHE/mrlTPkeobD++76E7d6FnP/Qun1m4amM/v0HLYRvMXz88TeSJH/JZP1W5U3BJGVU/V/7GS2wZUT/ICmJvm59LP04FArMoPUY/spbgfXnYQT/ALw6IVIw8PzQOZPcewzY/q9gCGWsXMj8qQliGkassP9QMFfbRpSY/5KnztR3WIT/K31xntwIcP4ebEcHy7RU/UmCy32IeET9IO31WX6YKPx3RR/llrwQ/UBuw7rICAD/nN8VPXrf4PlLWCr6hBvM+WnbRE2I27T7tvsqv613mPozP8b6hFOE+tB7U/BUF2j6Iw/a4pcTTPjj73d0V9s0+8hXf4Aqmxj5dlzs2IhTBPsjVY8DJsbk+CR2kPDdIsz6brWzmGt+sPlA43p2AkKU+2QTySNARoD5x69aKKeWXPhxMQMDRuZE+FHfS/4I9ij456BZPMGGDPkRaatc/kHw+6ofOKTIBdT78lH8gudNuPsSLhLT3kmY+2F+L0ht/YD4c4U11sA9YPvCt66Qfg1E+Tb8EH9BwST5BcXtubHFCPv3dVFNBsDo+Bc1+h+tFMz6rPGflk8grPnPmu9EJ/SM+epm3sCS1HD7ujsAx0ZMUPnadzXo9cg0+9Yr8+vsHBT7PU/fKK/39PWJPx7YBWPU9wzZeIE5U7j0Mq9cHHYPlPTP5emwXd949wo/EwkqJ1T13kQwvCWbOPebzUKJCa8U9J2uF9KQivj1PnI5Gaiq1PcqGmV9Wr609W5a2XMPIpD2xdrMGVw+dPYdsGfrVSJQ9eBBRuo1GjD38jOY6mK2DPXn2G8BqWXs9KEDIWFT6cj3coNmdwkxqPRQ5ljiOMmI9sozs5qglWT0q89p86VlRPdnkE2VM6Uc9m1Jy9xB0QD1QsKe81Zw2PSMPtGdACS89AeE6c0lFJT1Nz/1UHx4dPXAMkw5u5xM9h8LA10ctCz0P6AJstocCPRe8SGfAPPk8UgYoUzEq8TxGXPVb+FHnPA4giCj7pN88SB05krpx1TzcINOUgwfNPFFpBh8loMM8eHr8olOBujykBBpCqOCxPPJmiK3OFqg8En3Idwk2oDyQs5LFbcuVPCaaflrPRI08D/Gnm/+hgzwwRwKCxU56POGpUf15m3E8eeg95xOLZzwbutRbfHJfPEkVjan1+lQ8L2w58iX3SzxqLarecZ5CPEO9GgNkxDg8w87t38p0MDwOEQokstglPLUT2PZE+Rw8Z9VDWcExEzwYlWFEN2gJPF7+WTqnzAA87OAT1fgx9jtMLPEqIEztO2g1E/ihUeM7ny278Q512Tu1waW8UMLQO24+OvVfDMY7YsJi8AT+vDvoKTslmw2zO/TNr9ilCak7aDT1dlR2oDvfpIZzMJuVO65Nj/+buow7i3Kc/IjIgjszHVM1MaN4O8V4DZC2HXA7OCa/f+ETZTtNVP0TH4hbO8UEkeYY91E7up7bss1sRzuVxcOUgIs+O6SyisQn/DM7WYWAnFaaKjsi8/VUD+IiO4kk9NI=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAmAQAAAAAAAA=eF7tzPs3lHkcwPFxKZeajkskyWrXpXYNLdtFje8nQ4o2WpdWEQeLHLK06tRYVjoZ6/KkJmezqnVb65R45qbJpQYzQ1gixq1JiVyWlt22XGuf55n/YH/en17n/cvbYEJHeX66BUo8JHWnO5rBZ9yVvVUkBwPN0nfJRTK40XvLuZ0rhdchpfUu2U0wuS+rZyWzEY5kuJ80zW2AZ3pDM1UFEnCaMudWBj4Ei4F1x/xz6iHvQmhjVnst7ClZ4WRvrIFxo+rUa4lisPAB2xFlNVTra/8p8BeBVTDd0f2pAKxeePt3J/Bh0GeWnm3Mg1HP/hrIqwLGKnlamNldwHI3dOCNt0HwqucXVkY5FNp3WRqeKgM/Rp8NLaEUpNqzvXJuMRTrZ/+h0VsIhVeTtSNP3gLjLk/L4NACULYupkdxr0P2HUlE/XIePOewdkcWcKHBCKXtPHUFsO/OygTDGNBSag8LXLJg7bu3dw4sccDuaZ1yq9YlQHvoYQshafDV+c+ZfrRUeB2UrlUvSwK1WYWwWPMcsMu87Q0FidAguum5uTkBprH0WnZcHNyu+b226000mHqd6rbXi4T1ksM+N/Ew0PxIFn0NCwFtk2xX3Zzj4Gn2IO6q61EYvBii71fgAy07G5O++eAFURfbMfs6D+KnyJs5tB+CzPblbbniArkTxo5JL5kQwkkJGL27C6ZGxdeTjjnCi/gB4Uy6PRjg17Z3FWwD9olxzd56SwjUyBwRSSxAjzHLYq6YQoymfPJylREUGpjUWofpgzG2re6zzjXwfL8pm+W4GlLOfOm6ia8Gio73P0czltFjnRYHZsxblG71QctWMYdiada+URHTiDPH3Ntf8gr9KC2KOWsyggI8nJT5a5SoSd4Tyk3oQwc3NDjf1XuCBidyNul5dSI39SPxOrRWVFn2bD75pQx9vNb6xBtRI0qxceocYkmQBT3mt6yGOuS3M6DR89l91CLfmzFffg/VOCd8L18QIWNDxoiYJ0Q7bjlUSMUCFBY4V+G9zEdpY7af0OL4qFhj2LRdnY9Y6vkze/k8dLSNl9l7hof+ToyxLj/IQycSL2Bz1jzU5PfgXh+dh1xah+0clnC0Pi11IWQGR+2VLz61eYkj+kCTxo0hHAnHLk3RFTj6WqPv1XwXjphzq39a7MARClv7+FE7jqLHnx7Y3oajBwpGx6pWHPX3OghtH+EobmKL6eUWHLmVxU+ZEcZv3BDQ2ky0u+9DjHAd8n4cTigU68y5EY6I2S12hNjm8Alzwu6g0RxDwtXSv06vIYyNca5YRXign5WrRpjCt/z1vZz4DH/LXSY8UpxqtkS41RwzXCTssSkJWCD8Qn2pZ57wKkScI9UdDt9F2jfYpUN6PmJ68h1hZVnRE1LdHwylpCmdzPuku8P5PNJ5xpkK0huy7nLS0CCvMlJhXG4pqUlsUAnlB04x6WLlP0WkOyZzKTHZIcr8QDPKse6lQtJBbIzS8qCCsnO8jZI9JaX0oUso4/vrKIO5NZSZK2JKj6V7lK7+KoOU1ZTHM1Wq+6o0t1N5Z5NKJx2VNJrKnBnR//4H/wXi5WtRAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_84_t_8400.000000.vtu
index d59c7ebd963473e519ca19713edb3a3ea4e801a7..eabfa8022cf2ceeee207729df9ef4ba23d8e488d 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_84_t_8400.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant/1d_isofrac_ts_84_t_8400.000000.vtu
@@ -2,37 +2,47 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1.0000000139e-06"     RangeMax="0.2740144549"         offset="132"                 />
-      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4136"                />
-      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="4236"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1972051653"        RangeMax="11.376883668"         offset="4336"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Productc" NumberOfTuples="400" format="appended" RangeMin="1.0000000141e-06"     RangeMax="0.3958011479"         offset="84"                  />
+      <DataArray type="Float64" Name="Productc_prev" NumberOfTuples="400" format="appended" RangeMin="1.0000000093e-06"     RangeMax="0.39107372637"        offset="4076"                />
+      <DataArray type="Float64" Name="Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8072"                />
+      <DataArray type="Float64" Name="Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8152"                />
+      <DataArray type="Float64" Name="Producte" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8232"                />
+      <DataArray type="Float64" Name="Producte_prev" NumberOfTuples="400" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="8332"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.1477479318"        RangeMax="11.360847528"         offset="8432"                />
+      <DataArray type="Float64" Name="phi_Productc" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12220"               />
+      <DataArray type="Float64" Name="phi_Productc_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12300"               />
+      <DataArray type="Float64" Name="phi_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12380"               />
+      <DataArray type="Float64" Name="phi_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12460"               />
+      <DataArray type="Float64" Name="phi_Producte" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12540"               />
+      <DataArray type="Float64" Name="phi_Producte_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12620"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.8189930306e-08"     RangeMax="1.0000028141e-07"     offset="8128"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="4.6054963517e-13"     RangeMax="0.22463090125"        offset="9940"                />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="4.7926827108e-13"     RangeMax="0.49785021688"        offset="12124"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="14308"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="14668"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="9.7956137925e-08"     RangeMax="1.0000028826e-07"     offset="12700"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="4.6901069494e-13"     RangeMax="0.5"                  offset="14508"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="4.6901069494e-13"     RangeMax="0.5"                  offset="16692"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="18876"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="19236"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="16728"               />
-        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1.0000000142e-06"     RangeMax="0.272162611"          offset="16796"               />
-        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="18876"               />
-        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="18960"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21296"               />
+        <DataArray type="Float64" Name="Productc_avg" format="appended" RangeMin="1.0000000145e-06"     RangeMax="0.39251789261"        offset="21364"               />
+        <DataArray type="Float64" Name="Productd_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="23440"               />
+        <DataArray type="Float64" Name="Producte_avg" format="appended" RangeMin="1e-06"                RangeMax="1e-06"                offset="23512"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="23596"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="19044"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="23912"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="20648"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="21196"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="21708"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="25516"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="26064"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="26576"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAmAsAAAAAAAA=eF4d0nc41W0YB3AjZLaJ8GalVypERTy3SKkkZI9SMhOK8CayiozsmVEnbTq/g2Nvjr2PWZFQLzqvZId4f7/++lzf73Nf9/X8cT8KFg6l6XSBCTWV4f6oCwJkZsQSxjqhajVVR2sv3j87zLp6txPsDvv+d6qwE/4z1/1yZkcneH7e+o39YicsB8ZgymYdYBLwYCSgowPk4rZ67HzcDswTPsb8rB2w7FHPpkBrg4ziZIvx4+2gYt/flrbeCg/Of5FfcWuD4efvP5qrtMIag/uA9btWYOOVTXD1bgH7RqEdeyZagAnFUz4VNcOHLX7BB6VbYM1loZ+02gQt8/bUZIdmUJHw3V6j3gSlx85zWmU3gdZfmfPKoY1w1kvp2N3ZRqDM/t7J1d0A3RakiR8qjeBBIm1TEG0AG1jKLX/QAGxPZVMozvUwHEzeM9ZdDw1VYcOh5TRYUxsSthavB77c1pNFW2nwwduQScmDBn9rjA2o29VBq32t9bXGOtjnVKkhWVELDg58KZOidSBopv/y+u5aqPd+Z9fqVQvSvjZ8bHdqwFZK9BYvvQasq9gEOXuqgX4wYogsVwPSVDfrO0rVUEpe7i2MrgYY65e/mFIFYtavBGTmqkDc09hQeaMSQm803+IxrYJjoYX/NnVWwLxB4etmv0pAWgmvr7wqh2Zj3QBvgwrgrTquzhNUBo4kcrfCgXJYnBPNGLUphWI1n2RuzjLYbLIivXS2BFL8tSr5GSWw/naW3VqpGEou3Tns2FMMWplFUor7iiDG+G2sYE0R9E4e+R4uXAixpQxnoBaCeqSutv/uAuB5JHhkLqcAVjRUaTJCVEidOueqm02F4HVS0guxfEhQZf/khOVDvGdXMdfhPHDmbnW+VpIH+peU2T00cqH8U6DlxeZcsNPzJK9YUMBO9Znq+REKJEyU2Bf6YPBdtJfHdQ0DmptrQaAmGa5wpZC7RTFwF5GwsUzLgSTLNSGhqPdwK+LQHkmWbLBUfSBp9182tE27y//2eAuxBovxZNN3oCnw8wT7wmtQyrXJFeh6A6GziTqmga9gG13gVKnxa5i6oCjLLvISesHtJTb5EujU4lZhWhYcGR6U2Rz2AgbMeAKe3X0OPO38Ci3HsiDB+XlIrBoJhusm3q7NkuD+9bXwb7zPQPvo0u2k0mfAG7nstrs/E8KkwmYfxzyFzWoxHH3Z6XAijHQ3fTIDvtM1n9SmPYGciverHs1p4DdCfhr1MgVYRjY8LWipIGfrKDDYlAQrS9IFvwaT4aDf2vJh9kTwj1UY+ZcjCaqZL5nvsoiH1MxL1WTdBJg4Jrj4uyEWBnSbmNpy4kD55hVzPZ0Y6Pn5dipHMhaOC54x6GiPAmqOp3l+bjQsKe6/u18+EmYqM5Kc3z8GCTmrN8oVYXBebSKJWSICEr6ypd33CMX/N8LIrn4E92ULhhwMHsL+fxJYvoaGQL7qQqCJcTCclGg9tMPrAdA0A6++8gsE9q3HDRPDgoBu8/rKuyZ/GKpKD6FVB4Bp6jUp+xt+cErbhjwr5A/dNnF1IoE+wCGWtu/Dfl94zsQ2JtTjDQvI7x2H2V1oK3NpY7vsCbp3Mjv4ar3g3rtA4RhhD3Bn9BRn2NyB0t55kh/PbdD4Hq/gcswdzqZ8XifJuMGTdv6Y0yduQaZddFzXv87wMLOpmGvABcLnbBteNjtC7DW5VyjyBmi35pJZlu1AcG/kttPRDmBvG1Zg6XQdpEZXkOdHW1goPdLuKHwNgv92VLV2tAGG0LUxUU5rqPBVqKQrXgUZp3sHbE0soUPJK6rm1mVImzgYpLphColljiKFX8xB4pLoCyVmYxgN747GMBOYXTlQZWV0CYZIH+Os+wxB9eG7XfLzeiB/P091/ZwBSOx8b+aUcwFCUp3hFIcesA7JcQwxzgIzR6nTp806cOUqk2Vx6mlo4dqt7uStDXL29pXf32nC/ay48ER9Lagj9y1q8p+E5D1mm8mPNGD8qwBP71M1aI3c5jDCrw59oTdDG54rg4ec0rjxyAnoooo/S5Q6it/VHas8oeMQFf7h64ndR8BRey5urE0RLjfWmU+6yEH0YEOwCUMelK92GImoygK7pmlGPP0QBIx6aQQf3Q8JfhlfjDxl4H5Cpr1hiSQMHC1jcOXsg/O77iV0FIgBm20oadBWAp6/EYxmUxGFAS3DmebovbApSLBItVIQTvdYVGmCMPxmuL1/+nUXSHAfNnTk3g3ONXmlJ5O3w4HBpaYo153A9aUrVvPRFpju3z/Yb7INpic/lTHyuSCotVT6ti0v5Nuyug8nsgMJSVx2Hd0Msd76ycz8rKDMrhbWyMkGZtRrP+yEmeDSqTclOXXMkH59ufPjwVUk5x54smftNwofFzf6NrmI8qYC/5k4+wtJT935wqM3h8pNCoRBfwElK3qntWnNoKiLebosiz+RfkK11WuX7yiediPipNY0irhirrEm8S8adXeYjHswiTLLC/dHhY+hK31Pn24K+4rk6FZWU49GUK2wc/BjxVGUJaY3ILrlE6o2jxVc6BtGPcyyjC8j/Uh8Q9EpXf4DIgfnbFqy60GGu/ginlzqQ5F6dV5mwV2oSdttmEeEjiwishOH1dsR6/kdZiO3O1HrludZXTrN6MirsYMG91oR/5a/5x05G1AyTWOdt78RGf648WOLWR3StQxROd1LQzR/Zddx8RpkTo8ZumtRix6I/NLiNqhCk0pDx+MNqtHjhxeWRN6WIxHHQdFbupWoJ2tAnqpSihJlj2x2jy1D0dGDtpFqxUgs/22JrHEJOrNBvemSUYhuhraP7g0qQgLtat5ROgVIXC4zN4O9EHWJzjZvVqGiQgH2J1JdVHRofFDGwiIfyThNp4/05iOx2O8jnK/y0NJq0YwSVz5y8m/ETu3KQzOTVD4H2zzkybXNLTMzFynoRhVpjeQi/QPlKr3quYjNQJDyzSMXic9IPkyYpyBp1nMG7qK5SF2jNsaskIIc+seNFwYoaL0lckr9IQWlm4a6yj2joB5Lzq9zlymIw7zMOcCDgmyQz55woKCwQ6bzNXoUhOa8xHz2UdBhH6vPRxUpCBveUx60nYJGp87cdxehICYhoW0kFgoqZ1rYZ8hNQaXKncpsixgKOu3lzFjDkE6/3dwmBoaOVPW99/2JIf+70z8Ex/H3IkVflwkMvfFqiO0fwpBgAjlC8wuG1tNnur8NYChyvGgp5SOG9J9Ib2XpxdCatkSkeD+GxizjyD+7MFTxmbSeTsfQGV5my0cdGDp6lF4/2Imhq46rLS/aMPQs0fdFTjuGJqKkF2RaMbTpZmXiL1zNiy+SWVowFFJ49VAWbmYrXWBPM4YittBOpeCa83QG2TVhiM+O71sjrvHToE+DjRiaf8jrtQ/PUyckPJ3xXNOewvYalzsy21cA1yuNs0wLV1ncNLG3AUPSw9Nuv3CVhf8KJ+FqTCdfqMA92a6z1Qf3yYeeh9G4o/eWYiyJuZ8mkjdxexQreLRwzdP66fq4DZll0wq4efIBNFVcxXrWDUlcq6mhKFlcToEz54RwU/xeC+7FXRl7vmM77vQ3o1B+3CqZnEZuYr7BSGELbsgvzmV2XGg8H8+Je3ZW+Bwr7q6kJG023IpkLR8mXOvaQiYWXKWb10zW6zFE5hTx38D1u2lUsIa73rY3+TfurNCZf1ZxTYNGJIl++Xd46Aquwo0WLqJv9N7o+oVbj5UqEr2IS/kZIvN/94slhLj9n5dxdX+RBYic5iIVTeS1e/0lhFl8IYaEeimlHoTrFsnShCrDH4HQqJ7GRjhTyLGbMH7WhLGES1neukJong+DhIMtEWOExquMZkKjOy+7CdVcFaoI0wNWaYQNjQeKCL8K3C8jFFuQzSUsDbGnEi4epuYQ9v0Wxv7s27j+9s++FdlswrjTi6/+9KKn3hAK/nXiJSEd7fvTg+2eF4Rn6e//aMmfkUWobtj9x/8BPkw1qw==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+goAAAAAAAA=eF4dVnc81W0fNlJWVi8NWeEuaRBFpdw9klI2GVk9SamHIqTISCQlIYrsTqJl5rHPURqKxpGQkaRIkiLpeDnvdd6/rs/1++7r+70dyl/TwzbWEWp9I7aClBF61XaZWctxQhXf2S2PjyZUo0yNsX0bP8tIyfvTBIvQI85XW6qcCJ09vr0+LojQDX+VFefCXzuqOFLuAqGxpxUyPx0idGTEepNuFpcZtVLYUwf2csnEYtkYPpagn3mPpxmhR0nCJQNnLrNo4qVO92lCnw1XeeZdJ/RK1ouqlbGEuhU8HzRAvstcCfF5awjl5G8y603iZy0rU8g5U0uooG2H7lzU5ya8dw2MIbTk9Mi1yXRCb8S7ObMPgqsNHle9QmgQ21dRDnP826Olcy1nmmlkd2OG40CojbH1ndXoUyIslyP/D6EPsqdeGSUTujAl4W19FKE5p7znTDkS6hy5oGZ3MepfaPe5uZ6fJR+f5/46gdCK8nTjmuNc5qHPDN1rqCP49XFG5TlC9yW9vb06nlDPtEcWUiWosyJ7VclJQkPnKW4uTyVUvHtFk7kVoU2Ncb/WIc781gfm3mXTzJrkZYr+YYSqhZjGfEf+OQGyo+vippliGX9U6h/8lzk3ZVG3iSehBixunF4Yh3mnptxD3JrQh/PF7tVDL07zsvVThwmV23Lba+8ydcrRbh86Y0roaEWgfN71P0wP9uRgxE5CvTt/ZD5G3UtCDJMsL0L/vjdUYJVNqIC4iVVdAaGF9wZlzaHH3UT9ryewj2ldQ83/fp5muulZR0YsJLT+2rswOf8ZZs349iViMjNMF/eySUMfQne/f2zLcMH9fIm5v9mP0D43MXkGP3jarpKrkYSWxVy49qRjhikxkivCDid0c3mnbkYEod387nyOmINxocnIJJFQLw8po5ZMQv3G7ogtDyXU4m8hgxCLP0zjCZMv3bsIVR483miPOH7OmEs39njh6KngfOzL7nbjUSmghkyDyMXbhCa2Ncxtwj531v3MXlFOaOr6cYteDdzBYieLJPSj1nnIMiKD0CV+/zY0I64jvEFZDnfoY71JaZswH+v2AkGFz5ij/UgPX50phxlpbxIssAf5C19LvIbeuxXNR1fh7t7USb7lwx353+c3CoMOT61YWpGPuMwkqYG77UKESgvLyjdjXsOXbkKBiOM2cVeb4D4WrbWUYoLPjEvn6GIfA3/Z7IvGnY62rnVZCvT58PlVM+45zuTHZXX0Vav8lr3lDKGtF3IOWuNO3AbkOwtxV0cbigpl0X9x1D/jcpi3sDth3mHoI+d4gLUhGHtcOH0xjPcuq0PdLzII7ZdgMqyQh++S4zAXftMpb+6Hnif08DtvueXIc8Rm6c/nQMbBvf2XYa9yDXpof4nQ79dPiQ5h3ujeHUIW6GeH4IERZfg9WfdNahT5OL1V1QGYyz13pI2eIlRJ9xnjA3h/S2C7ciChabo9b3IuE7pxtlWtKvIks9dHySHuk4tLx1LUnx+e7iqE/XfL/OMYgnf0R0sjMusi9tTxK+oy3sP5/XuNMjFfZ5mKgMtZQkPqJd2SoUP+utiu5ji8l8n4lc8w74f7fWdXom9N9pSSJ+yKAnE2Jqi7rS+UW4K+Aw0mx79CXxU3hRNvUef8mPUNivw37V55VSURetBLecIQ8+5P1bRUBfLrP796HH0c5x85kIq7edTic6wO8SacMtd+1HG8ZXx1MXT4IT2luhx9SVo+NZyPuHN7RN2MEDdPU9/wMOp26tAJfl/sq8azRxz2TGZjzzt8d+DkdJZDH07wNs1AfL/rkSsoiXzrZkSUO4GZYmtcJKHLDovuATncy4knh3d7QL/F0nwN0rCLXLRlvcF+M/cJKnqhr4m4xIlR1LV3feknDj9T/yjH2Zhv7P7TCmd8Z0vlsxcDU6oNqpyQT644ckgXeVZc/uwnj30VHWQYzOBeq5eJthpjnpY9+3VVoJP6m3WLBhAnssNw7ATmrv72MnI34sxUJqMfYS8xbzdNymIeYs3QiMU+V+3c8EI0hFC9m3V5KuB6FeI3FVBPiTYEzIHOpkrjoe+wtz2Pa54kAp/5NRU+Ql4bIffHIeDWaW8++6Nvj2NmThGIHwud8vEDJjJsazcCC8YCLE9iH19C94eaoI/TpWJd6fDX6O+kj9AnyTjw1BF9H7G4PHd+CqFdKf1bG/HOWkm58zH0sdM0LugI9NpmvzsgHXdIatIj+jCvcODs2I3w/zl7z68+3t8jT9On9tDx03jlZif4/96/IFcCdR6yFp69B72Gf5RuvgH7Y+bJbmfE9UdJm5vBPlCzOqUNcyzY2rd1EH6+u7asbUW+WL/IRB/Mmb/h+7QluOmuxJQh9MsKOiPMew/h2h++VqKOR59g0QPe+6gO1J5EvM02B1WC/vhMvbVTwW0VPBf8RJ3J5qGPFuCiXYOyG1D/y+fr4cXwy3Zarx4N1GcIpGni/h0KBQ99he46Sf3il9BvbbKjghH00DH2PkZwd52D/+EK4r34NwnkSmKPiokaE3rQt+tkXWYl/F9sHwsQRl8Dr04p6STzft/P+z7GHnoHS3NzcH9qu35Mz+H9zq5/+f93aVZ5upYD+/HDm16exhzt0uyvcehzC9ffTh66rF3I9N2BvVlVfu/+jT19LJXwikCeuoE/EuWIW6G4RLUL8+w82JZzB/768n611dBtDT3rYQn7lwb3u1XIm19wO+8Q4lYd6R3I5P3+mlutUYWu2dfz8z+hHt/8K2w1YPLRjLkZ6O97k1vIMOLN2kL2+2LuiKB7ozLAxDlZwz7QJ1N5/a0JzOvRmjZkjTtpu9XxbiXyf/pV3r0RepfuWbVoA+KtRhJyilAn7r7VqVHoK5ikcCKJFzfqkNUFe1lzkPhV2IvURtmu4Ia21j8U0YfRgVEZNvwVm61nGpF39dSNZ1uBd7jP7Yfhn7DjzO8k+Be5z+oNwDyqfreZo7CXl9pG2qH+x66ODA54SbGHzm/cjX7+zbhA+NuOf2vxgX+img2rF/bh5JYBE+hmvjyWn4G5JLyFvnegv4xzbO1a2LtmJdpVgAd9Fw4ag9/7YMl6PeQPbI4XqId9KNe6Txl6mb553hsKHd5qBPe9Rj3PK05fjMFttmyxz0e9S9eydBp570O9SGwr4p34KkwieL8DF10XR4PrFmkUFyAutdKKG4Q49VBJvk2IizPMZrXDr6rZrJs3R5gyt14HdduKfNKE0Y9xlt65EsRr2vR4luL73qIzQx+ABazDap3I43vu4VJFxN2vpit4/yf6/XWX8QDf85NFrOaBP8xbOUcP+VmlERFj0CdTm+9bAvIq6/MHDSNuvFxGJRD8C//5CRvs39n7b51+fD+VmmXZBJS2f91uAbt2a05wPXj49kDXJzx78JhKJVDhTpmoPuL6dG+WlYD3TLY+1AJP37264S74LlPOck1wX/bUH978G89ZCd8Bmv8KF12C7xWBgnn54EtvDfQq8e7wJ99cFaDBBk5APOZ+VC5udwnIXr3592J8P5ba+ekieKgfvwCPLxyOi+bhR8UfW5qRR/Te2phs4AuHpxtV0Leaw6SaKPjRcysNpUTU6Tcqe0RSVJ1unsxjXp+jTs213rd7CatTrSBb89jZ6vSk4JiIKr6vG3umVSykTtOMjWSW4jt/YY6HKHh4jEmbB3CJwy6J87PUqVO28qxXwN65/q2awJRtBhJuwHkMrZcDgup0gDx4LwY+EZ3yqxp8WkJlHxt40L9RpgAYPyr2oQj4P3z0aL4=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAALgUAAAAAAAA=eF4l1Xs0VXkUB3BNigazKsJopDQizdJLFk2zjUh6qdSSVLqKhrwKy7BDEllEkpt0c+uKoihKSC7FHbmTPFIe6YHKs1tSdDGV2b/TX5911jrnt/fZv+/vHOOKtc8jmxFMDpUJPrYgtDzsmGH9BKFtclXC2CMEl9G5BlfqEX6ShZTb1yKkKIng7QOEnNHEhHApwg9KeinK9xHiM63tYiUI/R4TUhUqEGYVlkX4liO0docoPi5FsPFTMzEpQdhmPTwtogjBXmLaIC1AaLYpPq18A2FYdkVoeR3hW6atqW8OAk9leTE/GyH5XmpqwSWEcs8HvJqLVKfyYd7zCwiq7q8se9MQDI1Det6fRXhzQCgYTEGQnb7jPZiM8HHrhuSBkwiO/kL3dwkIdYt37pbFUV87781+H4Nw29XRbygKQX9OmtmESIStxqJjmocR1hdc45uFIow419zeG4JQ6dTsLQpCEJh2rxkIQJA09yluOYiwYsUmrzpfBP6RYRc3b4Qke0GD1n6EgHiD0rd/IdxcUvnLa3eE+8bKgwpuCAd1PhvZ7UGAo08ySnk0xz0Nhi67EXp9nJ2WuCB8iA3LW74L4e5IdWDIToQHX3tvfdhB9w0cWn6RlMpjoxPJpRpnqkpIwYvQxjl033G/iYZS8k27w/Ncer515v7L9bSe8reljxZSHXzaZPnQFUGryNg7Yy/Ckzk8jwLq6+g6Xuco9ZmP4/qB1Pex7ZN09XyoXvAXT7kfQs+fNxxH/en61Yv+2fT++6es/ORJ87i2sVilgeZTnZR11T4C4Y4W/7fOozRPuWpHJM0VkiTTFh5HkItdtTtPIIg7eTz+KZprss7fNrQ/Og7hM97RfvV6/zM/ToiQZevYoZWOYPtHYs6pTOp7fNdaeRbVPXCzdiXlwNwtMs2fcmHkkRUURTmpvb8uKOgWgmu75tTVxQhVCSbThylXR66Opx8WI5h2/GfeTbkzD/ASGVEOpd88ZLaUy8yuBUFWVQhFgkdN2tUIP8tuPKul/MZaRce6Up7bynaoNNUgOChm5M+nnM9aZtfFq0OIvjJzQSjlP/lalHpYA+X+k8jCnc7FQNyzFWaNCKK0yeJB0iRPYfPZxwjzAvviTej89EV1Dd0kVZx8xg2bEMYqjKYnkk0aNhF9ZIKXVaw5nTu34CVOYaTcgjexhHy68d/jMrIlfm67Np1HjWyjZiDHulYt203W+7y5juSiOOnrJHLqkK7bJfLumpP5heTBVT6/S8jK8GrPOvK8Ywq/hcRNdVPaSZsiP7UuMnJRTFsfOTKml/mO1HGel/KBrBaYN7PvQHaxR9QQ6Xugv3SYXHyxIPkzuWCbqp6cPLdJzZdZk6FxgulvMD+OqSDb4sU80jhgzpR094+w5+r9JuYz+UpjrsyF9uJpzEVz4yvY+lJr3QBmuFe+ITNd37iD1Y+p+lXITO4Yd2Huk741YJ4rHB78RK7nq0mYQQLVs8y97uIAZt3qVgfmYXV1M+a+DG1dpo4wSYn5RclgmL2n1u1DXczQMqtWZsQ6w1rmD09fSbg5bF4sZgb7NxcyXzam5TN/dHHMZYpN2rKZYT2TLjM1dcUZzFs9r9OZtjkeImagosUFZlOM7XmmX260kBnlJEtjWloEcKo6qXOWT5GeY5ZUx3M6bHfhPNlrwTmepstp5qnEqbPhM/f9/vK1l1Oe95LT7Ewz5xi/gdOwrYYzV1/Kqbm9itM2UMI543oFp53zPc6O4LucsaJyzlTt7+p0fv9fGAu/+z+0X0jEAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAARAYAAAAAAAA=eF4NzGk81HkcwHGSYxyLhMWkmqU0azUkNvr/vmJCsjMK29SKLnZplnGVHENNjpL7viKEaV1NkqJpIgbzL2dK0s6qlFlHiUI269Hn9X7yWVzem9EgwCGrR9fIzvwYtt4rxyhs1W1NZ48arpZVXajR9ACHtZI+6o+rdf7N5kUYH4cGtnV03n0cCtaUB1xsweHg5nW225txYIwb1CbdxSHIL5qedgcHDw9zn223cYjJzMiy5eGQXJJY2lGLw719CjsKb+DgMz6XUnEdBzO7+6fbi3Gw8D1SN5i7+ikguVSnrlq5jrIpHgemFKYqFYnDMGGaox2AQx5/l7rJMRxGJ5od5ek4mG6kyZ20xsHRitD2nwEOEYIT0mlKOEiJ9AYGpkXw/PLWcxFPRBD2XmXD7hsiGNEpKe06L4JWJVLqczcRxC3TFDf+IAKrr1Ni98lueNW2VLmrvhuuRuLPE/27YfKdzmeNrd0QZEirKRnugltDbjMKcV1gxn6xZGzcBfykbwe+iDqhUqMo66h3J1D3c22OLwihYiwJqcUKodfEhBGrJIQH5ePB7xM74DR/8Lq/XAeQoyq/OxLRDr3tzgmLkkfQQHyzqcr9Efibh3vjzW1AYpOin21oA56O3BZqZCtM/jrpn/XsIaRnpoS5Ux5C+KWWbxrxAujsibnV1fQAnuyTHms5zofgpyl0iuJ9+KG9LPvArWaY+fNfdSfPe/BlYf6ttfJdcNr8qznw74DcnDHHK7QRaopLTuSZ3QZ/+k+M559vwTNZgtZ8Kw/MWd/JNOTchJ3iYc1HofWQzF6jENlcC36W1EsOJdXwzfVvoSD/BijofnNI/asKWFAqMh2ogBd9Wtx59eswofYxZ80fZSAwuPL20NNrQH2tJt17uARsdBlF9pIi6KErnxz6pQByZB+EOY3mQrbw2iwzJxvETT+FjIZngtbKcId2XDpIXLNp4XdSwfG1ZlKubjJYVdB+j1dKhI73Dl81UQL0s1jUK7Wx8Opw3qzJYQ6cOV0n72h1HmSN9OWPFrJhIcHTMp8UAf5uBdIuUmGQWuYa2GYSCnqjB8jsyiDovDjBdTvFAptAi5mnfCYsBSV0BWzxBcs8xpLKvDdwowg5s5tOwktCOVnx2jFg6l1t7x/2gIq15cz0RQYcqaUmyWS4Q3j+xRCFvIPAOMo2pK/QYXlhc/vC2f3AHrRcoCU4AH9k0CVSnwoJY6ZRweQ98Fuw/fpCawz+oFw1Yzz7GUjq9Sx99Z2wMJjuXzxoCrYK+9aVbzSBC+c4aae8t0HKmGekt6chaJxa7Fz6uBlYsxFx2pr6QDwTIx9F1oGmywKOm4wmkHSySzdx1MHxdPpWf5IKGMEoJYeiAOLlGmMV5bWgxz3x2TlLCnZPKDdWn/iKcGYe8cf0z+iXu6TDzWmz6AJV00wUPY3EAb6tCVIT6JK03tvC0DdId4W+I6BRjK5vezmfs2cEvTcm3BnfPoQsaolRafL9SGvK5WKEzWO0m2rwKbheiJQdlx+/29KGOmw5HHcJHw1tXZojTDShPm2Xvn5CAzIckNrQol2Ppu1mz2NPuMiz0COUVFWOeCvButsvlKB7wsVcA0Y+UtM+mZ6+nInMlT7okW+mooNF5tIdFy6juTLuHjXZWESsESi+KYtBzjvtOxEtHJndfshraw1BMhm60UQPFvK50h5VxPdFKaXJLuJdp1C3ljGlp9kLzcWtNQofYaCqJmKobaArKlwvkeV60lBm0ujgoToHxPLzMxwPtEXUWP39H+t2o6eT5rViewsUouA0Q7U3RU5pztJDAjJqKQ5yVa03QOTpwMeunzaiEJnv4WzZ98hSPnr60OI61G5c8p/GdhXES6KPvPaVQ3s1VRn/UKSR1Y5GwbD7EtYprq7eaTiHsT9Z2TUKp7G5gVzeq4h32JQBW+7Fm38w2p9dprPWI5h+QZlSN28QwymyMnrMHmzG53gvpV+Iuaj63LQgtGL1swGJOg7NWEKNwSgxvwGT1FVpza+vw8L1X0Z/8KvEUuddOFB8DSv48LHPKyof+zfZbu/EWAYmqZ+q+dCfhJGPTD1ZdygO2xPASvFtisFCvHjnVOXOYcz+L5NmD4MwRbb8pfj9TOzMDPHnlUfemI/Eozeeexz7H1Wb8oQ=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAQwYAAAAAAAA=eF4FwQk81HkfAGDCuordRj5EjpBBGcfMSvn/vpSyjs3kpVdKhpA0NCNaVxlHrtTkXCu12jJjckXKsWJI4cUbMQwzQ27r3nF00LbP81W4ZtguHAOqU4S/SEjB5iIVEwqKx6BhyTY9O2QMWkjk8nLiGGS9mtqe/DIKfnsI+825o+CIA1dm0ijwrtoQPjmMAkubxfNXGAW35P6yni4RHOZK+xtniOAS+6KI7iyCmtOhmgXyIiDe/i8p/60QXA5LIkqCENZDHOymbYQwxwkgqW8KIOrvnzcXywXQHtBvT/YXQGows8tcXQBqsgHGcd0jIOtwU97g5ggo+GYQlU1HYN7scxNeOAymh3LNz6cOQ8V97dZsi2FocerLqR/hg1PjgGwdgw8/f3KTi9bnww1pOm3hzRDcCnIN+ew/BDPRPQtZkkPgoZWiwLk/CEVJ1kyC5SDMq8R67+vgQdg5xiLViweVNN96zfkBqEunPif8MgC7O5t/L5ccgJKeIvrjtH6IntmRq6fcD/4tH/Ans96DZMNPhka495Bt5Ry1mtkH3emeG2+U+oDHknMYTuuFBdPmZh+pXvjHyFoH//H/cDfwIu/KdA88MxLq4t53Q6Juwq8Vr7pAUb7pMa/kfzBp/YONQU4nfFzVoyFGB8hLX55tC2mHl4xpsrf3Wwi1EHeVur4BrSAx2e1EG/ArFnRW0Guw/bP2mAbWCjuTjVQu27ZANWlr3c+RC7eKr+mqVDWBZrZ9/lNhIwxM6j+nqP4JtKNFyxsX6uHG2qfq72trwcXsRDym/RLuvuyNWv61BmqH9h2J0X0OB9gOyrqNVUA0UI+UCnoGCVIj42edKiD7ZL20zmwprL2b2PMDiwOGFOH1hmQ2oL87oxJSi6F7HFZKnz4GsZ5g8uziI/hw0DQ226UIWNaljcycB7DDzMTySUcBKD7w2PpskQ8M/ixnV18u6PhcWnQsyoarqP4npYeZ0L5y8n0wkwlhT/7pJZEyoLAq3MQOnwZa23+dDryYDLQAxXeF44lgH/ciRPJhPNym3E2oM4yDBZKcpfONGIgmE0U4YiSI+9I5w8cjoNWnePfgkzDYjON51rrSQDB7f/VYDBXu+XyXf643CCjfiMr9WQFwmHjMn1XrBz3Gf2VXECngap45biZ5HtIjtqdeGniC3bK3j0+7O6hEpTC+45+GpN1LW425p2C1wppajXeC6rVX9/TcT0LTvAaPKnMcQleeX5o2sYVEs7PoCv0o3J7Dl7hhVhDekyVz9IklVOT95ns70wwoffo3VWZM4Md4Mi2Fbgi6ITvLGBw9CDaVaiuM0AFbu4k+FK8Baprp4YRVVeDLaQvU1XCw1rSZ0tWgDPi510/zyQqgFRlKbuyQgdi9DjkHJXbAhIAnmKr6iu64a5hthX1CjZGsLTW1dUQufMt2iV1Fl5c2/PMkFpCqO/fMCdwMkh94oKUkPYFSn6XHjXiJULUU/Uj32BCSjiSQiH796IxX0lUJ6jukVhyYM07tRHuPYnLTaW1IJvDKV/t7XFQg1cz9UNqAbLz/E4VoL5CEXlkDRqxCezf2EqwyS5Eu9wxBahcLiceSPE0KH6FTzR8FqnsKkXG7coLquTz041Tv7Ie2TLTEWZgat8xAFHF10ivPZOSNE3bMlMejUw2Hth2WY5Dct4KMR7LXUerrovPUs3Qk4z95TdXxCrru8KIvjxqA6gh+E4rdFBRfrfCt1cULhTKHPQhMd4S8Iu2CdpKRkmI5NEs7otihAMaBqONIKvfd5IUTCMkx75ixb1qhh5+3gmpIFmgFz0/UMDuIctpbDC90GiCFyrEUfq8OqhAnsW0W1VGEhTr70DoO6Y6Fq3uUK6HfbAd3dmTIojb6bNvmrh1ov0R4ZkzxFiYOtqph621geM5hi0T9VSxjNLLG9vc5TBzf77zMncCKNxF3O0WIDRqVHPlYxsOqjSXk3MJ6sV0rlcdISx2YIG8+tVLUionDDzg13WrEykol11+nvsAG9J2kpbBnmEndJX5TRAnW1Nhl7xv4BzbJ3l/mwLqPaVZ0WkhyczDtblqBQIOJ0YL3fYl1TsECLU3zJ0PisQz6dXMGLhrj3dgnkZJ2DXMv+yLn8UsI5lTytbKPE4iNtjTPjfv6Yf8CFgD5nQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA9wUAAAAAAAA=eF4dznk81Hkcx/EklVVYV3JEiiEpR9jE91OIcSQkoZRyFCFplpVCiQ6r0mAoR46xlfAb5+TImMIY95F0KNUYRCX3Mdvsb/av5+P1eLz/eE9mHK1WOtsNquT9xt+EuuH4GdcFlfQu0M8s8SbodYHm1QSWZ3InpJlZ+aawOsCOUqIrxm8HL/f30a3G7RBE9IwdDG2DyoAtLvuxVvimIaooMskGDq24SVmfDRd1OIl3wlrA2u6rrEcdC8wJXb8urWbBxKT953mnZgiVCvZgZzfBKX7Z5ZkfjUBKkcwJM2+EJZfeDCfKS7Ae436L//4CJs9ExcsTX4BVNwNE85mgME+MPLaSCedLdz2Q824ALKc+37SJAfa9S4l92gxIDTImsgn1sKrjp8wErw726JFuqryuhQH5A4rhlTXQNZ49vfpBNRzjGzzgXHsG4xf13muQ6FDuLPl0+EwVaIiV1+32rgR2qsV9U+8K+Duzb/da/3JY0eBAriSVwRr547ST8aXg1yQ2p5ZFA4Yw0US6FgMms+u3ZEYJiNRJQI1sMfhx3qg0hj8FTNXQu5/7BGp9ts2Lez+GtlNHWDcn/oEhK2f/o7EFIMxuibxHoMIUOcnd6E0eVMtbpVun5YJPewT/uU8OrDWKTUlEDyH3y8aG3XZZYG8TYZdhkAF7h14nzBreh5Rilt+YUxq43qBMiF1PhWLH3sTPfcngZXE+ctiEDPE749Si6UmgqdwuJH7gLpAufrnB/pEIVZW5DzNDEmCz8wVLOcWb0NejPlnwLR6WSobcKrjXgKs1+DZrVSy4SeVdoO+/AiEpMuYFjtEQyKTMRh6+BG3Z+6yTUiNAfON1h1uS4bDQqj2+gUGCqKGXAXM5oTBlsNw8UxoCUsJFGt8/BoG4tl3VVGEA6M5le219eRqa8pgXx9R8oTbUQWSYeQoO29s6LWZ5Aa8zYpDs4wnpPXZdEZPucPXcgsL0gCuMdghv+yjrApVXdz6mZDtBWr5F4OKgA6ycmqW/X7IFWaN1HUk3rWEg7rJ6Q5QlFA9Tohc798HzGOXvtiMIqMecjCSYJsDfaM/fqmoMvDFurcS0Acw7Np17qKMHqj3SSwPXdSBBV0wqyFULtnN1npSUqYOm2coMl9tq8EThJL29SAWohSame/kKIMk7KBS3IAdt7a+Yo7HSYMIhdpveloQ/jtqH7ly/DrSdyaMFtWvAD6x/H5ZYBf08kcO3JlcA96yZqFsKD2WPOJ8e2biAplTl+FTHGSTDTJkdUf6JQovkZmfeTKAq/0+yLJdRxLd5ymm5xUFL85wQ0xOfkD76uSB6YRBFxugWgugbtLLdk2jj+QoV2itolzn2IN0k//yD5E4Uc9RiLMmnFR35ari4Z7IZdVMXZbQ3NCLJJ74FO+uZqErrbP3BHgbqD5dOsL70HFWMiignc2uQm5q55GDLM/TWwvxRsyQdKUUHy1IeVyJLRZ4+Ja4CbSf4cDLTytE6657R7IEypGNYf8LVrAy5bHdMnqovRYVofHbQoxTlRxgHXhMtRX3rXEgEFg05SIkV0ck0FPzu86NqfxoKqxxbQyDSkFFVwAp3HRpq4ehlLW+goeOJa5SWV9OQCmNL71+LGGK0bnJq+I6hq+lJRpZcDJ2Mr7mT+BFDVg0uvnvfYkgjlOog1Y8hx02Kr5t7MPR8c0CSXheGhGJq6VodGAqLmt5/rw1DvrGx3odaMSQXbL/Dg42hXbt/lFNaMEQls7RW4LrGfTC7xcJQg8y7jB24ujF5sSPNGEIixwIx3OC+u61xuOJVhHc+uJRR2xA73LrRTW+NcYkDIc2auN3seT1lXNIw74CMYB9x5fJ63C9D26zW4pZYetiswpUo/mUmhBtaUz/+qwn/rbyH8C+ueqd05zJuSnlhyxJuc7KnsMD72zcFLeJaWQUuL+C2/RlFFbh0KMdHoJJytYFAtXquuMDcP3dNz+Mq7PX7INCV3tIhMGhB7sX/HXK4WmAwYpcJ5MqNFQvs5xELBZL0Mx8JnCvGCgRaKvlSBToY0vMF/gdZVB7RAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAkQsAAAAAAAA=eF4dzXk4lG0bx3EaCq2WFEKbIo+USFNcZyFCkq3FG6IkqQhZGksTUYmIpBkij8Ya95B9aewm+4y9ECYV0S5h8t7389fn+P6O8zquAFMv532f+oC9QDnRZt0PqK2Il76rD4RuG86M0PogF5RJSyi9UEot+hw01gsGDO/z95t6wLWLz1VT74VRVfpVOxm8fc6FygT1gDab+fXGlW5o3asUbN7RDQ5WdffG6rqgaMzpU6dSN+i6/dZ6qNgFPUM28UlBXTClVzYYHMiFMWV5as4AF5JlU7XShjiwXLl3cYbMhU32MVozehwQxNQveydywEq20eVyVidcfdt+R24JB3R2Bm3iS3UCw3spe/RSJ6Q3/4x7eqsDtqRPOrF6OkBqKFE2arwdfgdXJGUd7gBJYZ3h/tY2ID9ZQVd3bwfB/uSAleWtIDGgmbFwqg0C3Zv+lc5tga+eF+oyj7SCjM3CyTFGM9BeRDVuRS1w7dC+607PX8MwN+bv/8jNsKsw+GZIJhuYnkcS0P7XwKoUS9tb0ATGghyDioNs4Ks8FblS0wg9TWVl9UebgC7Doa7vbYC/q4yNjto3wkFe/E/Vb/WQVB9opXe9Ab60TojR19RD9em1X2gx9fB9Bd/MVqsORItVzEwK6iD60pCjg0MtHA0rNj88UAuP3KsfpETVgORO1xnq0loY1BMir62tBqCWzM9o10AlTci2cIEFd9ktn+lXq+Eo/chH/wMs8Buh2LhmsYAu5cIp+VsF2sdDw7CeV3C44vbCi+hKiJxqNK93qgKPIvZM0z8V0EfNbhL+UwG7LZxmFjllQHYYSHd5Ug4UV0qLcUgpbIz3rBrRLwPhs/aLSbolIJ5Kl3CbLQFt4ZzRH4LF8OmgyuRcUTG8o70r1usohODRa6N3gotAaHX2DmrGS7Ad6fq93LIQSu5r3Hx+rwCm/Lbl3tj5Eo6n7IpP88kH2gGZsNdSBaCdTJu6dpkJS/rbdnwVyofUWs7LRTcMDrv+8h76i0FUknchZSIX+uLosWFLMBjqaXTTXPMCruveks5TzIXhnYqnBIyzIU77W3+AWQ74J+wvwuIy4RfbmWMSlQXrAp9Ui/9IB8H3z+Q+jmRA78okgU/nGEBlDFbKH0mH0MnWz7/G0+BCo6pJHus5tAVOWn2j/AvsQ6vMT5umQS8IbozanAp+bi3inA+pMGQRvdRvIAXk71KN2I+ewZ9DR3kZhslwkcYb/mCdAlssfUdD/yQC+bWoQKrxUyjJKn5b2EKD75W/WIfEEmGHeFWI46sE8HAX5r6ZeAJsL97ovx3xsEdHLjlm4jFwWRW0yMU4uEzzmfYXiYc23cDYbaax4PvRhPNMPw76NZ1TrubHwHoPAY2V9IcQ4KzJsNeMhlX6k/mlK2NAZFIxjZscCWfsGNf2az2AFROdJfxlEdA0ItJmQb0P9zKcWeLJd0CCyZmK5d+F6D3WozynMPB4sl2kJz0cxp77Bh6xCAW7CJ/8icDb8CDBet+ai7eAFIq80wJDQM9pIEHy+U1o9aGa9KVRIdrvIOvsiiAwPnjZrmo0GE5NG0U8kaCAMlfxi3ZNAHhcKlhbcMoPDHtDzn4d84ffda716QPXIVI7woCr7wvilXetouK8oJH8I3p80Bu8Y9T7Em9dAy3dHJ5ZridcW+n89oSeOwyByEUzpgeIbD4xcLnfDRRceeEJDVdAJYPmxaq9CPEV/vYvqJeAOrqldmTOGVbsuKgEkS6wvYAcX+F3DlAIO4I0dh4KBjO0Q7UdYS0f6xQMdAJnQd+Y0HP20H+otzrW5iz8WLvkH0adLUj++DjZ3HYGpON/VrPvnARt2Plt2vY0KHpJ7J9iWENe0ffU3YYnIMou0j5H2hIGxI3XdYdbwT0xppB/ijl4mdrfK1pnAaqxAn1tCaZw7vQep0dvzWBWI8lkuegRUDOXr9wlagIiN+foX3kGIONjudc5wxBcLkRsOLxJDyQ33I0/n6sPZVmXxCNcAMYTopY4rDkECorH1+3cdgBSyudsJu7ogrT/PXXPK9rA93Nytw4hw0DKYcq0miYs0ty0she1gGw/YVp0ejd8rPAdU/miAYWBJdqUJjUweFCzK8BgF6yVawkJCFUBmXa3LYYfVGFcT229DlcJaNzBBy/HtoPBQ9+W7NTNkBm9vIt/aSts2NpjM1CvCK7ye8Sm3TbBTJ5lP1VMDhzNC/tcc+VB2K7DxHlOGsTTDFZ7Ixno2q1jIBMsCZwek/Jx97VgNuFl2Re6BqSTTowFqklAzQvzuICfyyEo8WDWfNMqOG2ZhomnLINV4hSXERExUDyvZlP2jQR3Q2pdOHxhaNWMElTiCAAvc2N5XNQS0Cd5lQvbLqC/95k3j5ssoklTY4rDyG/Ek+qop9nPIca8h2SN3E/0plgnlaw1g4SWBYptm/qK/rcwau/H/I4Stm202U79jLb9acgQ9f+CzEeKIqqEPiKznN5pLnUC0Ric9ab6PHQjW3qN26lxtK5HOnJIcQSttWq+vWNwFClZPLQNIg0iVwq7ZOHTMNr6kK2Sl96HHHcmrY4Wf4O0vhTru4t0I7rKpEy2aC96c7p02HgZB4lqPL/Mwbiot5Um916qHXVQ9Y6mTHSg9ODjC1qzr9EB6ZGB9agVhauqj1fGNqKWFupQvBcbVW6Pw8Kb6lDJ36b2MKsG9Ctw3CU2oAY9mhRV31Zdi5o+x5ZJ01jItj5M1iqtGrnfOn4Wk69C7/UkBZmdr1BkonWC/uNy1CXJMEyfr0D3NT7siQ4vRe0skodDVhlaxlT4cLu/GCVbN4a6NpQgtxhklE0pQrK2v/SO6RQjR12B2DsOhUij6Ni6yflC5PFeyVzF/yXqzk+ZH//9EilQSQHMqgIUNFFTqaP0EkmQ4mNIygXIN6HoWe+NApSTTWv1zs1H9LzgQviWj9z/ROZHHs1H6lsLwqxu5aOEep93XXwmIpGXkleq5CNz1UhmahUTHXhqq28xwkTfHdejhQgm4u8MOVGfzkRp+QuJ3ueYyHNuy/ZcfyYiy0k4SeozkZ+/HYlrzUTeF22ooMJEm39IGl7QZqKsNayhF1JM5BN7avCbIhM9FvswbSmEv2Mc2me0koli7Ot4J35jyM1xxXLPvxgaD+fxl09hSNZ8q/uL7xjqF/j8YJyHoQXa5lnbTxgq+RJx12cIQ3vZni7zIxgy6uQoOfVjiPXAsUj5LYZKDzymO3ZjaGuH9f6YXgxdkJmiH+BgSHhkDvvBxZChgu6NmnYMvW3rEtvQiaEj0pLDna0Ymn0X3vmuDUNOjA2fj7ZgSPrKzZWb8P2VmWXFhmYMlc+djK3BzZASUVd/jSFtu8znGG7gsdIv19kYOnDW+80AbpqcYN77JgxdTBVDmnjHxBmFXMdboO5TbD4uieTtqoBL8+1tN8OdvHJheKARQ81RGkmLuHstZGMZuBR+JakWVyny4uYg3FoFA4U43FXfRD7a43ITT75zx1XuVeca4lY7yX+0wj3x8qmRJi48rTiNcFXFrgptwy29T6lRw500Vl8jhxug+11wE+7DHcaZErjk2fX71uFqODDJK3AdN6oWr8YViTYxW4ZrcSR6VpT4b+HkPRJuvOquOGFcqQv0bAHcU7Vp5CW4CS7FlL8NGLppOp21iJujm9i5gNuCmZbwcXvCyyPncUfbSbrE/ths6PEccTc5uoHYGWXXB//gXrMw0iP2q8bHjhPdzUxOJJymRr6fxfXMOqhI9AfliTiiNVEAi3CvltQpwutXvvoRNvvr7CA8Y8fXI3Q4W7GMMG3LGdn/mt8y9RvXsad5nvCfP1YDhAKO3TxCy4XSZkL3oSdcwlT51yzCR9S8BsJPH+glhJ1+QpWEEfTgfMJ6eF1IaLvv+wvCJ/nOGOE1tYdZhMqZTjmE1QPrMgiDOG6ZhC1R1gxCa0GDdEJesPpzQlJY/X/aZeelET5t4P3n/wGBtEfgAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAkwsAAAAAAAA=eF4d1Hk0VG8YwPEhSbI1P1tEZQtJlFTkfSJKJY2UZIsIRSJLFLIVEoqUsiWyx52xlYy9kX0bS4jKEkKSkqX87vXX53yfe+5z7nnfc66qSVK0cXwPVO7XFjZZ9wFKUyLaGMPdcNZyeIeTfg8oqB+o2qzUDZ3HKCkcsd1QOiUh8Ny3C/i3s0nRhrtAgnufhl1rJ5gUhEfFqHSBnHKpkKd0J6TLPfOpCO6EPJLdmTYfJvQHkDftHWCCNaXw79UPHQClIboz+5igoWdGPrq/AxLfa2yafNQBM7XWpmeetcNGZ69fW3+1wzDbg7H7K22gaHj+5F3jdpAwLLT4atcGHJpBy+TyNrg1Gadk0tEKzduEouiybdC29gS1T7MV1ghyW3vHtEK5mdHzGtsW2Hn9Y4/O2laIh1iVulPNIHKuoXfrTDPMGLJ701ATqB1TMH7Z1wTPJ5OCnfY0QsXGyFH2pkbguCdQ/W1nA7gftK/cU9MAN+WNb21SrAfrxcRkkcp6uHh0NPfrnjowaI+Tz66ug5NxzeuPwnsQ4QwJ7Wx4D1XeGJKj1ILa072L9z7UgmCsF83PlgErpaRz9EkGVGXt/HIo4B3I1ionXFjLgP1sGQIWKTWAicjfuCT5DsJmHno21VWD4deF4uojNeBHfnXmzq8qwBjPR65dqwbuEI9n3jJVwHXYNM0yoQomr5mfzjarhLpoXrPw1kp42xglxhlbAWF9h9WmOSpBwGutlDS1HEry1jl7H6kAitaVBJ+DZaAKxgbW5HKwv6y64b/2UrDasb6H7wUdBorqxftd3oK7/KuT8+ql8HPQfrFFtAQ+WnHZcX8qgb9a/WqjLa9Bz6OVeTziDUj7lG8QiiiG8fMy59OPvAaDWVF1E6MiKI5MbBZZXwz8K3ln02ULoTLnvmpCZyEcfOy75RdbAVzM9WVI5xQAtb2//MA3GtCnRNZk388H3ulF+uU+KrDoxeyTuEEDv5ji9Z6dGJh7LCXddqBCwHjE+hxaHkRGtl4pvIyB0aZdO0aaXoH5dZsqu6FckDa8lOi2nA38wUqNbeyvgF8vT0URZYFroIC5n0Y2gE5v5WBUBkQIdeRoB2dC4a2jNIPFNLC8WqY1MZQOiw1+FjpuL0HpbKeiqmEaqJ70o7uTUuHatGbeV2YqKLPJtT1OfAHSmyPyiuxT4LX2v5tG+snwTX0q/AzPCxgantlvyvscSnwtPzu8ew65g2Vq96oS4MPCYuoh0SQ4sfn9U9PgOOBYm3lsS1M8+OafCzNwfApBffa6yUnPYItiNSnY+Ql405aSxh7GQsH4QR/u6BgYuhPPzZXyGAQL5a5+a4+GYqlLs0Ltj0AmqeGn+K4okLrFf45XPBrCJabSE9MegPZbxqPJOw+hSO3Oi0LnCGAu/juTyvEA0reT7XwYYZB2n0TRPR4ONZ1W76z1QgHLL1fOLrgHXCkXKbtJwTCpvl0W6YfAe4sjuvmDQbCJx8Wvnv8uKO/S+547FgAG0osZwuxB8PiexYsfwv7wrlmpbXZLAPjaGow86/eFaOMn17db+oHGxeGF/U23QDKw6pVAqA+8mdDfe3fFE0zss4cWYm6Cs1ZBg/U1D/ye+I0bv9wAe95B4RZhN1D+zFLk5eAOwoFXBofnXcBMTOEgl4IrBFg4bh7mcIbcgd0tuVtdYOlYU6/lA0d4kKaBLoQ5gaWVJV+GzWX4dzKBzrbLAc6/dLnPGmILuqVeokHS9sDdPzgrOWcNJ5TUc2zsL4F641SWeIoVzJVtXuv/4yJoSjarJYpfANm80G0cby2B7DC7jmlrCrpaX5OXfM3B4YqU6wy/MRg38n91+3kenN1ruLK3nIWHL7JUmHVGIHlet9nc9zSEdajuFlwwhC+UxAqSHAXG1knu7fE0gH2eV4uPKenB0N5fYukB+vBnnOzXH6oLS4xYHezxcTDLru4QPa0DVedUa+5vPQpS5REL7j5acPqCUvJGfm3w/sEbfI7lEJwrumMsYquJn4vW3wMZ6mB79qLRL2EERuv6bnD07gNxqYM6n5YOwBPezAL1EBXYpjU6IWOjCrctRW74pCrDVAXvdLTWHnCZWIHaw4rACCpycApVgv0Mv18Z43LASklNfmusAKfV1aa6pWWgM8p3Q8IhWbjtIjdSPSIBo2JIMa9ICjjMvrgOCW+FxR6hf1qZ2+D9AV2mt5UoUI1ssvZvFIfJ5v8+lIIQNE1cPxUavgmm1Uzq5wv/g6msDc0VuQLQnMsSMZrHB91F8tPcF8iw2dZTwmEfFyi/ncryEOSFI0Is5nc71kGqVm9cpzYncOVIljCE2WCbk9uH7B3sUK04NUf5ToLFwPjB7VRWWKxL6qwOWkaej8RuRvmsoCGea06jK/Mo0kju/Yr/IqLP161pU5pDL2WOh7qc+o1myr/qfl+cQVo6MUG7q2fR+aiLKqUPJ5H8nrmH4ZHfkZayXqks9xgq4dwakxwxgS7d3mFeozOMBuhSVD6LUcS/0b5RUvwzks6+05j58QtqNfDVpyz2I4OwFkrT0CAad3yt0fmsBzmJrqmMZe9D6TaerG4LTNTA/pZOX+pCZVm5aZT5NrT7DGvT8eQOlGJx6VDcXDMizw5Peve2IvJ18b8lPfVoQqXyyVrxJjQvNt3X5V6LFA1NxrEzdWja7tRIXk4N8trMYeKiykAbVJfneayrkJRPJMfhtGp0ZXYDhSWwAlXkjkR3hFWiurQdolZzdJSxb/lazMty1F949/bL62+RGLtR/XlmKaqydqFa2L1B8f6upMzgEnT9xLtwR3oxsvKIzf6b/hpJTcYFnLQuQt50E03mtmLEQd+tEXy8EJWcoCWzjRSi1m7DFzJ2BUhCYZ537zDuZEy5YV4+GtHvJVnzF6AOLsfW3yL5iK+JHOfriM9Fp9sdUmhI7beQkuAIDVXZ3PDVOkxDNIF7+ryeNHQq4loJx28qOpvEtHLYSkPLrYzfYq+p6A1vp4hgLxUNd4WxRtylonnL6c2lyVTkE+qnNGtBRR67Yl9kuFHRPk1LxjmgIrcy9r8ZFCr6E2fSKy9DRRWu5ctze6hI5eTwkBSZiibcndxFxahIJotphVipiPFlQHGWk4q0M5P4Un5hiPfReixkGUM2FzIPZXzDUGK2vb3YDww5cjdM1wxhaOlzdAv/GIbWGHhRwj5iSIbMKTX7CUPJAqxRKT0YYom39jPow1DrG/MHtUwMSU9ocw51YUiTccyqvA1DKd3ZHHYdGNpTrRJk0YKhuKqq4qxWDPXykxL8mzAky8wrvtOMv6dMTuJqxJDWMcZCN+5j1jLD8XoMDS+n84c04E1jyLPjnf+cNOmPu71x7MjZOgz1feKML8T1zxsqaXiP7/GdjRPE+9mGl1OWeEdI+3LF4ZrNzIrx4AakXpVXx/V4bbPSVIuhmP7IjzO4F25lO8TjCgaOWBTjxv3cKOWB2/Bd/cc93I1eK0nGuEv94Rn2uCwFzSOauMXPVTT0cVlPDzso4b7xujF2AHd2kkKSxB0oi9WVxw0STy0Uxg3U7Dgujntcu7+DD/dG8zoRAdz1GY8aOXHRLtmNPLhMJYYyOy7pdiTGgVvhH5bLilsglxXDhisW4cVCwmXb6e7Ggls1cPDPXwaG2t/YkVdwredkHZdxVe/6aRHzYw1R+L8YQ0+8dn0hLI4pM13EJZnOdRHGPD2at0B0RRAX0WSTIQWizatNXQmdX12t/4NbSEtaIcxxVfAjzDQ7mkE4eVdDl/BvibMtIbuEnDjhoZBBFcJGxXv/5nGV5p7yEk2TaRkl+s2u+J+Ej+bZOgn5quMHCCt58msJhWw+NxMW69HphK/MRasJ28v0iggf5OuXEB7eVoERGsvT8wm/tyXkEA77d+eu7g0Oy1x9nrY7m3CnxpF0QotQ34xVXeNfElIC/dJWv0vDKZVQ9zbP6vwRykohJN3kWZ0r9Z1Z7dCDnqv+D2L+KnE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUXqUHqVH6VF6lB6laUwDABEbjxk=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA+AoAAAAAAAA=eF4VVnk81HkYHlbZXGmRMxnli0RkV4j60k4qhQhJVMgRLTGFsORIiNzRqUKDsq4ulVFaHSRDKUdRqalNopRoYp/56/m83/d63ud958dbSetkLQ6hIVq32m5eJbSsPf2kej6h8+c+VBL1IXScXfxvs8M0d1Vaer8i/O/TPs+PTifUbSOvdTiQ0EcjXsPWfoTqutafzFxD6PJzOnwTG0bjnM02LEUHRuNJlqHJQCShzppU6pQ+oVKrR8zk/iZ06WKZdl4UoREDOnXdxwmd7pKM5dsSKhZX6hjDJvRkn1+iaiqh0XLSJ31OEXraq6AzLoFQ9vR/x4qKCT0cv1FqoQehUaX2ZUUBhKZ2L3k/vItQ2zWHbxu4EKo8mmBQnERoSr9UeFEOoaum7dpPo57Hj8vbFfYS+tneiGsDfqVb1SsiQwg1lJo/ZBhD6IiEwjEWUCefvYhhT+jGTS3BHZjL9m8nk8vgLXJKz+lMEKGBKQ78HujwvcP12MQRQhkRG56kDDMaeziDpv0phP7WcTU830Ck8fhD35DRcEI9r8tsrxYh9J1rbnvV74QanDnKXgBdRPw23tdG/zvsxyK3oG/hkdhH4xGEWtXvdHDcQOhO/55NG34hNEn/eULhIwG3JFr3sMJmQt+s5sR0hUKH0g1J86IJpevLUj5hPr8vngJe3BS3oLJ6LsN5itvSrJzRZsponNCemuG3ltEYrNK9IQt6JfA37nqI/rSn8+0SdULbJl/uXZtL6Oq88BcLDxL6wdliuLuQUD6JXlKyE3zDLXt86RT32jazV+rQTc3F6Ld9mYTaucmuOWOKPTTUZd04RKj9/Rd5ismMxj1hI/ncI5PcMbkvkyfTCB0wM3PSCWA06r5xOOSHuDCj1zmS0HmOqfPvBpgjfM05CTHwN/mzbUVGHqGlDR/iDKDrlpIuUwF4MdkJa/0rprm6Cy3etewjdG1FzdJX9wTcFz5aNgLss68zZ/tO3Ee3s6LsPQNCVddEZG36i9CaE9F/fNUm9MIIz6S3TcBtdRvP3Iv5eqpGb2zFfNPfmEHOmGPOZaZ99WHc0WnenqNWhM7l2EuHIq4kreKFvuRPrsP+4jiNREJtNBZwcrMJbb7Vedcpi9Cv5Y4hcsivau/duAdzZbz8KTJaSWiHw965HXNwf313vbi4X765cpE/8k84iQp24z683SVUPgLLtvnv2epA6JT8060huNe6m63iSsm4x1PfC7yA//3r+HIe3o/H8W8swb1py8pkOaGf1/22qsQDhMrsVXBthL6VwQN/nQcuWG7yR5M/fi9u8RoroJuysYq/QTzijJUaHM8TGruKQ7pjoU9oyacDGbirpjvKdZjzzsQzQSzybfrfvxCD7iu7s6kn7ooZcI93Ff1dH0x9W4348NfsRRVAhX9Vct6C30ZvO95t1K+ztG/zg+0T4lRYi/00bpFsOY+488+M1stjr8GcT31XMG/wtWILReg0uGib5RDiq6795EpDR4d70pfysL/ngxVnBrCHNM1TN7xgR49c9NUvILTVZ0V2FHTXbV+ssRn5nszE8fVxhGaFiSYbo05OKbMjEDzTz5oLNuN+kmZMjQj7uuqsCd2O+r3lg/13oUdqbfOVYvg7W4MNlTH3Mr2I0++gR8KB5npp1C8LHVMwRV6Ce+tkPPSQeOpzURp2ctrbemvw8q7d8e465prZcq7mHO5nf9P8Dit8X5rENNX2od79IRtbFvoMWec8KgPP3OvHpkXQP0f0oZcT8sXGuWkvj2JP2m1s4T2MPdTUuAhdcnTaZjsjvyklR8cD8YnLSp8vRd/0qK65kvCvOshwGcfe/TSZr1dCl0NKHnd4yP/wWo51FDx3jfnnjWFfwd7Z057o+/SZkYMO7iV+sU+NHuolVM6xyoU/puLGmVF8xz56RpT7Qi+DUO/ZiYjLXkFC3iBubIdj5xD6vLC4Ii2GOt/cUuInUH/MqT1jJ/QhMVV7HIX6xDpOf99PqKbtxBNTzD+avmvHV+iir27TW4p6I0tr+JXYS9svHit2Ij9XV1v0V/ANMg955oa4tmrfiBzstcvuntYT8GhQZKn3Ib52/XqpfPjfeHQuU8cdfvw6u04f9b4GSkcz8b6FOdB8BDgiMFb/E7qMrnAJFuD+guzG+W7ge8a093YB6jSzCqOVwGs4Y+nlbPBdYPKhWniPSzo+1k5gzoPBPA8H+K0yf25wQB2mMUfFG/eUflmV3Qp/t/jL3ZKYN2zJZgsR+McynXsy8ffKRUJu0hxz7N7XKcNAv+1yC+/LgP+8o6vZ9UBWz+ofm6FfQ2xYsjzmLnFTWJeE/s3efWezsN/azwbWHOxh6abB9GzsMSuwuaQE96io/qSXg77nxRW+1qPP9X7zfBXM4Xq3i09xT9Oy4ql90GOd+yH+S/DZYh5hpgP/WErfkAr4JL2Ry3EH304fppML7ov94tfWCPCp9phVfQ556bnj+2/Bf7xMNjIcOqT+uDnxAXV3HBT/uh11ji0Pkk8A38l6Xsgr6K3k5R7fhXu97lJ5QQ/xvRMr1Q6Cp9U744RPmPviMUubNuRpl7fsXQD/j5thhyju6pWxgd1e9O2bimEQ+C+E2h+0xXfKk1qpvzpB6E1e+y5N8NHX12XzEHeVKxqTD32ujG9xU8bvsCEqo6IO7+EctX9+QA93jtb2YvAOHfrSVQM+9TtGAqrRv3ib0qIB4OPoMGMe9IifF3aED32dWDp+LPAxO9Fr4g1913WMLpZDndGmfdxyzKXAjImsxt69fetYw7BVGzKlBIj/+FO59i/0yfS0bFEUfucMY4t74WeoEdUU8D3CV92VCn0EZ2KM5PGeMqKikoG6jE1LLKawb1M3haJivFsWtBb6gX9Uv/pVb/h9Ry1mz4d/f5d7/yzwZBVZp9+DPeDvZ+ELvnnjfGMe5l8m2qUg/K5ExtdUUdQpWLPVWfh95FuXOkWjjpfq50sm2JdhTEGbcP+mvtXjUuB144ql0hDswDtiVprg5x7mPjcJe+qYlJW5Dzs5pj3CFnPtsBNxewe9At5Nytijzx5Pj64M9PGYo5ozAj6SEZlTd6EvO/S2xB/IWxn2iLUYuC7UO08N70FPCq0TkT9cXvp7KPJ++7T8+Uv0l1STFZOAP+BBQmk1+oREBhkl4j3L/ewrRdQN7LR/RRDPjNzR9hT5NUR5+QDmjWtaVSS8L+/dEzsnwEevaZfbLcSdP93aPwtY/0AvfxXyFWLHrljA71KoKPca8ZXTJyZ7kS8RWCszH++Fpvt4Fnj/cPCbbxPeS1hVCUXIV9Nsy10GHqwGw8gDsF1Zr7dlAx/EvncPAMYa/xm1D1hWWmy4CX3WGc6OGES9T/Vmsa3A/X8HkMdAm+47p28BD1S7HLoL1MgdtLwGPLvMepEp8mK8Vz+ogd3cY95nCPtLZdnji7AjNFot9YT/V6SEzyyH3dI+PvcCsMc+Wk4T7/llktUc2N/Dl/OF95Gk+1CeCeSedtx/BPu+kui6JRO48EH5pBre5Wf+8154b1VRl8WEdutsTooQRc3qJDpRx9H4UmoR0OPYeXGh3uwTdqmzhb/bS1fF5WdpUabmZKe8hBZNk3bKLRHXooZu/ReCftWiz5O6ZdNmatH4vMxNC/HuO0txRs0MLbp+t8Mlbbz7Gfp5SsMW5ObZ+gJTVsRqZIpp0fnJml86gU/N9/QYAVdVxZT7AAeXuft+/EWL2vfHDM6BfZQzepEL2+WH05anQD2T3Q0VwO5b1YJa4P90cVfnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAKwUAAAAAAAA=eF4l1Xs01GkYB/BqOy1tx6iNdqNNulknx9pyqcZTSmgrhVx3yqWwO5olIZ6SQhNyraaLcWsoibbUuiUGhWRChHXaktJKh1JhnLLs8/7663PmvO/7/N73+X3f39hcv5P6oRPhL78Kzu0efq05jxBsogVXpjQjDOrP9nBvRIj9MdJgyn2EZmH89YR7CL+8vjr0QzVC9+mWoWsVCP4xVof4txHaTWHzg2KEasuNuc63ELR4z+S91xGy+RZN+wsQ8tsLZk9eQUjO0m2Nv4SQ8NLMQ0uGoL/ScF5+Bv0OctvNlyIc/TXyavM5BJOB6RHeZxBkyRcCJpIR9t4dWypNoLrLyt34cQgT6vrPX4gRVF99m5UUhQBqlukbjyJsHE8enTyMUCbT7asNQ1DPNWs4G0L7bKvSCDqA0GP4lY97AM37aBDkJkKYNNXU8hUijCQddTzhi2DXkAcVexFK7KbzvvFCmPFovdYBd4TEh7xWpYDm+V8tkbrRuHWKl6cLnafN5OAWJwSrwDUywU6EVhO10+fsEUbts4cndiB8qPD2lWxHKDKyDNtli7A8rT7ddRuC8abqZfFbEe5rKtYotyBoH7RtSiP1oi1Sj5Dv3o/OzSD5wZbCcdJyeFtQKs1Xz/QpCqX1T3c22Z+jejzbYN4o1bcbfGJzxg7B1d17OMABIWTPZEacI8LjwDG/bmeEqV3N80S0b+MKyaefdiH8yVs4S88D4ciOrn7bPdQPUfbTiz4I64SvX2lTP06UNlWWU3/kC34bCNtP666Ja+2DEWrmJkRYUF8XHbNYYxGO4FK7dda2Y9SnvESex3GEXRGOouBYhGkRQmEMvS+enmfgmRQ6d2WorkSCUFXo6iC+gPDH3clFe9MROp8cVepfRBgzOJHUmUP5uxTznw/lRL0++0ZHPkLLwe9CllCOJC/2oe1NhH1VqzY7FFFffKWNRqUIm62KNvVT/kYa2u3DKI8No4rnPXLan5Gf/uIahNVtDoXmlNsVvhamP9chzJcNFk+lPItG7wiuNSCI250iTCjnKmLr8xkKqr+7md/3EGHOZaXmHLoH34+rduu0INSHhzhqsPthZWH+nizrG3MqbqXneFoJfNqoTw1q49MeI0i9VnUmkJFvXoartNP4jGBREPm2rlGtjeTHry9a2oHQldSYLiIFJWbv8kld4dnSHrJQ3XSER/cx1P5prCkpN7ph6UpKQtJ6gsm4Zd6qieSp53YOMrL1vLnVLdJK3ulaTRov/0epIPn11uEdpPJk1Npn5Pmo6LBesrz3SVA/uURQ6jVIyowfBwyRjm/s69h3IFknPnqYjM6rqR8hhw2ac0fJW0OFZkryZtuCk8wZEwMFzKTKk3nMnSsd45izU3uduPEygQYzU5jzgK2Pq5Yis/+TjR7TMW9KB6uvnhJ1nDn/g7YZc9N4yVv2fB3rj3nMwD1GQqbx2hxDZmily6eP5O+fzR8wdd+vyGRmOQ2EMmP9TZyZ6i23VzMDQhfrMF9Fas5k1umZKdk5fZ0M+5iJ6pe6mDpj1k1M8WHFPeZw/OAd5sybomKm5LNGITO7p7iAKVddnsf8W77hMjPdZiCbqfhXVcZUBouzmF9H7shkblBxzWBqdZ9OZ/pLlGnMujeHOH2153NWGzyUMp3LkjnF7p6cgdv5nAWBCzlju1U4p7ooue+3QtrPGaPRzblOtZOzvL2FM1dTwXnK/z7naodazpSAu5xLcqo5NWOrODvPyjlr+io57/l/0aD5y/8Fv/aL/wP5iDpwAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAQwYAAAAAAAA=eF4VwQ041HccAHBCJLKO2+Zqo25KLxiLFvf/fWU72u6ErLac2JnRKSddeZno0hs7nHlbdZ687+YtriJvHY5IXnZ3OK/nlFLhOe8d0W3PPh8Njf+Nw45Wkl40+2fspW8il2mjgGLVB+ed8jEgJDInRSFjQGUotldvGINonwNmf96WA24jUELs5FCuuyA60TUK3KhGBSd4FCokjxzmtUYh8hf7OHbeCNT7L/9g5TwCqdjV7GnFMNQojuaXs4chYENKTODOYQj+YNL1b+sQHL+59Cj09BAcNSjqvmMwBAWbolThgkEw/K0yfPTEIBiVe7U3rw/A0+QwmW7BAFT3fixP+24ATguruOQ5GZgu9h/S/FMGuhGdb4swGSg1Ovm4l/3gxufVWPzeD/fTpdMNNv3wjO60XNXXB4ksoVgZ1Qc3k5psXLf3QWp9oZIn7IVfrFtTJf69YCZ82fTsXyn8uHuuN/SuFB6sXqAUOkmhxp16nDYggWnLQvK1cAnk7c/Xw+tLIJMykqCXJ4aAJZWuv4MYmh4RekgZ/8Bt0kxNYU0PzEyn7zUd7gbnrQtXOla6wLZO02DepAt2JNGEMutO8G1oEHW5PoN3lgl9Nqc6YO+4y/mg808hp3jzpOJGO/D4a5bGvDbwotv/FVvxBIJk2ybyWlthE0eE2zjSAhGDRjy7RRF86ueRVmkoAkaWLklvXzNQ4yScRkoTtLUFMQTjQijh2Gfl2T2GRrOP1aSUetD4fHySvlQL0vzkUPmvNSA5qm5iTFTD+17H0rLQKsB4V8466DyEnWHFb9kl9+F9ZoXV7CkBeOLLSN1mlZA+L2PkjpfDG097llVOKeAWeS7eMcWQtD2yZfUCH3DznIDnnCLQ8RorK2osgJHElUNNRvmwWqYUc2Jy4eJJLIyrfRcCeb5fO7jyINVgl7Ft3S3omVkRxPtlQXlc5C6cbQbwZ7xDBTZpQOHtryD+lAruOD+Kq2cyiLyHrbsdfwfwmGuknrkJg2aPVw/Lr8GpAwQHlBQPph7hZCWLDcae1zcdNo8F+7CLyvTaaCAymwdNyiIgWjoV6z/Hgq/APOLc5XCgOfNnPYuYMDYUSs1uDwH7yRybz3yCIcDxs4hVr0AoMWbFmhXRYRY/lRSf4Qf0PY/p2eE+EKgw3z0gOQGILB0f/MsbDgap11InPKGK1T79/QoVPsXXLAk7jwDZhB1kY02GPn37YfIWF8BvZeWqahBQBQX0d3hH6N/rc7Kb4ABHjQz6WwR28KOaam7NtQGtw3ZDpKy9cLlHntjtswuWm917bol2wrfGH2WfCDUDrw6vbm1XAnwTf5d/fgYPK45ORpEuOHB0/MJtjbYFKna35X5kuwlsb/ewYuTaUNprsVXXWRPuaOq/SYlaR2Mtq9Q5lgq9K7A8NXJkET0gHvHx/3sWuT+8NkCde4vKo2JkOw6+QoJEN67/seeoYSHBgE0aRVeFWmnMVRnSoeX4WxdLEVOjfrfrNz3IPaZ+0fvyU5QiIqm0u1pQhJ0VIXa+ETWbPtt+pq4W3VdfnLasfIhCXlsml/Eqkfj5Ng+nnBLkfvg4P9i9CHmsbO67p52H4tZ0mqYteOjvP+Bq2t1MpGdUOxL/5R/IN8URJ/iegybg/EJz3nV0dihw383Pr6BlxtSs0jAGLXTRh2g/XUT4DAazUnwOvWigaW65EIJUy3OYoi0Q2ftKMrwoP6PieaLI8PpJZKE8qL605I2C9ROKL+3xQO0rwkIF5QjiErUiEqdckEMd8V4hA0MuG3Tns/sdUKq2eVr/A1tU+smTMcnpfShMbMot+dICoanRXDXNHKWIX4znHzJFJ49xE+RnjJHJrHbpDbkhopf+ejBLuRGZiF3bKjM10S3HHew+5XtssS6RTLy9hOE8hl/ZRs5iNOPXD69rvMF2EQYJmt+9wNSN5Xi1dAS75xwUlfxFP1bgprOct1mMWSV9daDz2FNsf0fau1qGCPvwuvRVx0A9Fu0fZxG+sQq78x7nvFZdgZkv4l1UE3yMwvmwyFnNw5iZ5/aotHhYz/pkFMEtA+sjd1xeCE7Bqs/cuNPy5AZ2KSpgOU3/CtbgyfTbwI7Gxn/YqjmwjYU5bXbGE3vPYuvz0vTI/UEYcaq+dGydjv0Hj1sIhQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAQwYAAAAAAAA=eF4VwQ041HccAHBCJLKO2+Zqo25KLxiLFvf/fWU72u6ErLac2JnRKSddeZno0hs7nHlbdZ687+YtriJvHY5IXnZ3OK/nlFLhOe8d0W3PPh8Njf+Nw45Wkl40+2fspW8il2mjgGLVB+ed8jEgJDInRSFjQGUotldvGINonwNmf96WA24jUELs5FCuuyA60TUK3KhGBSd4FCokjxzmtUYh8hf7OHbeCNT7L/9g5TwCqdjV7GnFMNQojuaXs4chYENKTODOYQj+YNL1b+sQHL+59Cj09BAcNSjqvmMwBAWbolThgkEw/K0yfPTEIBiVe7U3rw/A0+QwmW7BAFT3fixP+24ATguruOQ5GZgu9h/S/FMGuhGdb4swGSg1Ovm4l/3gxufVWPzeD/fTpdMNNv3wjO60XNXXB4ksoVgZ1Qc3k5psXLf3QWp9oZIn7IVfrFtTJf69YCZ82fTsXyn8uHuuN/SuFB6sXqAUOkmhxp16nDYggWnLQvK1cAnk7c/Xw+tLIJMykqCXJ4aAJZWuv4MYmh4RekgZ/8Bt0kxNYU0PzEyn7zUd7gbnrQtXOla6wLZO02DepAt2JNGEMutO8G1oEHW5PoN3lgl9Nqc6YO+4y/mg808hp3jzpOJGO/D4a5bGvDbwotv/FVvxBIJk2ybyWlthE0eE2zjSAhGDRjy7RRF86ueRVmkoAkaWLklvXzNQ4yScRkoTtLUFMQTjQijh2Gfl2T2GRrOP1aSUetD4fHySvlQL0vzkUPmvNSA5qm5iTFTD+17H0rLQKsB4V8466DyEnWHFb9kl9+F9ZoXV7CkBeOLLSN1mlZA+L2PkjpfDG097llVOKeAWeS7eMcWQtD2yZfUCH3DznIDnnCLQ8RorK2osgJHElUNNRvmwWqYUc2Jy4eJJLIyrfRcCeb5fO7jyINVgl7Ft3S3omVkRxPtlQXlc5C6cbQbwZ7xDBTZpQOHtryD+lAruOD+Kq2cyiLyHrbsdfwfwmGuknrkJg2aPVw/Lr8GpAwQHlBQPph7hZCWLDcae1zcdNo8F+7CLyvTaaCAymwdNyiIgWjoV6z/Hgq/APOLc5XCgOfNnPYuYMDYUSs1uDwH7yRybz3yCIcDxs4hVr0AoMWbFmhXRYRY/lRSf4Qf0PY/p2eE+EKgw3z0gOQGILB0f/MsbDgap11InPKGK1T79/QoVPsXXLAk7jwDZhB1kY02GPn37YfIWF8BvZeWqahBQBQX0d3hH6N/rc7Kb4ABHjQz6WwR28KOaam7NtQGtw3ZDpKy9cLlHntjtswuWm917bol2wrfGH2WfCDUDrw6vbm1XAnwTf5d/fgYPK45ORpEuOHB0/MJtjbYFKna35X5kuwlsb/ewYuTaUNprsVXXWRPuaOq/SYlaR2Mtq9Q5lgq9K7A8NXJkET0gHvHx/3sWuT+8NkCde4vKo2JkOw6+QoJEN67/seeoYSHBgE0aRVeFWmnMVRnSoeX4WxdLEVOjfrfrNz3IPaZ+0fvyU5QiIqm0u1pQhJ0VIXa+ETWbPtt+pq4W3VdfnLasfIhCXlsml/Eqkfj5Ng+nnBLkfvg4P9i9CHmsbO67p52H4tZ0mqYteOjvP+Bq2t1MpGdUOxL/5R/IN8URJ/iegybg/EJz3nV0dihw383Pr6BlxtSs0jAGLXTRh2g/XUT4DAazUnwOvWigaW65EIJUy3OYoi0Q2ftKMrwoP6PieaLI8PpJZKE8qL605I2C9ROKL+3xQO0rwkIF5QjiErUiEqdckEMd8V4hA0MuG3Tns/sdUKq2eVr/A1tU+smTMcnpfShMbMot+dICoanRXDXNHKWIX4znHzJFJ49xE+RnjJHJrHbpDbkhopf+ejBLuRGZiF3bKjM10S3HHew+5XtssS6RTLy9hOE8hl/ZRs5iNOPXD69rvMF2EQYJmt+9wNSN5Xi1dAS75xwUlfxFP1bgprOct1mMWSV9daDz2FNsf0fau1qGCPvwuvRVx0A9Fu0fZxG+sQq78x7nvFZdgZkv4l1UE3yMwvmwyFnNw5iZ5/aotHhYz/pkFMEtA+sjd1xeCE7Bqs/cuNPy5AZ2KSpgOU3/CtbgyfTbwI7Gxn/YqjmwjYU5bXbGE3vPYuvz0vTI/UEYcaq+dGydjv0Hj1sIhQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA6wAAAAAAAAA=eF6tlKsOwkAURCsQCEQlAkFCRQUhCASCEAQfwH/yKwhERUkQCASiApKKigoEd8xJJluBOrnP2Ta7k61vq8X5s8/ETXAb3CGvvmPwhPiAeIt5cRksgnOwAGemXpr91C0xl9Ihp6DLi3lwEhwHR6be1T+24DvYDKyzj/W3YWresTXzrq9D/hm8B2vEYhW8gNcENVebmLoV5kXq1Yba9zD7qTP0PE6Pe5y+/rO7D6n71iHfIN8n9ryQ7/7MHrH09N2pe6n5DO81N+9V73yofylP33C+NtSfnK78Tj5Lf9+hXqJPMXXYF/u+YqjQSg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA5wUAAAAAAAA=eF4Nkns8ENYbxsulKZeKFCNFkYoU4ielR1K5lObSdS6LGAs1JjKlXxlZSJmkmkgJY8lyHUktDSW3qFSkRFJI5z3RZef8+f087/N53uc948aJ58dRN1OytjuD4VxwxE+lPhwr+0Zf/biT47FrqIeeJ0d40/vWFx4camuD7NLcOErLB6u2fMvhsjjARHEbx1Bmf27dZo5jqr6aUS4ci+J7ki2cOO5IeMnxjRz+e7sOFmzgkHvtRn72HH94dOyaa8th37r12eO1HAM2bZtPWnPEVzrf2WjFYWDUtGqSJUdDlkPJDQuO3ep39COWcygm2p43WcZxRfq2yqAph9M+6/jspRzv3lRLehpxHPdEmPoSDqP2ijetizia7c29EvQ4Qq6XPFi3gEPVxMRBQpejIqfwZrk2x3ezliz7aQ6HdFL+n4s0ObJl9LR7NTg2RGSnpqsL3yGdKdu/5kjxzoyapsJh8Uhz7I4yR7dD2u5oJY6Ym+o9mCrymqVuH1XgaMmb0Vgox7FP67c1/pM4NE8q/q0jw3Fb9tiSTmmxR6R81ilJDpX3sepO40UOX5njcl8I3k+ivrr1kTDFSTLiwCihrCZy+H+c4LX8s8/we8LkgvDHue8E1/7guHNI8NSQ2xpvCQqTR1a0vyaUHtpTmPhKcP5G165X6P13/S7VI3hXn1Jlt+CbfI7s7RK87vnnxU8FX7kj+FUHwfOvp33nHwqf+a7uru2Cn33YMv2+0Ctusb3XLHh067UjjYKPOS61ahD63fdyPtYL/mL97KJaQsnWut8Cbwt+d53s/FuCW92KfHZD6Iut2Onrgutd/8HlmuDpFl0KFUKv/Pem22WEHbFm9QdLCPJfiizNi4Q+yLh4pFD00Fugl19AUHI1yPD5k1DV+McMzTxCwJoFcQ9zCOrlWRJJlwj1Btqh6y8S9mVmDEzIJMxXne1ZlU5ojzvbHpZGiJZQ22B0lmCyN+XG61TC835ls4sphOMeJ/LdkwlonTJXNYnEv4s/1ZRIOF0pO/loAsHG6Mhh6zgCZU0Y/RxLyFQ/HFgSQ3BIHP9izy+EEekD2xYeJiTv+9jw/KDwfxtm/fsBwn1PKtscQQhpD148NZygvH74Qm0o4a/rgWqHQwjOJgPHVgSL+Ry/CbSHkDSrN/xyIME4aeeQrz+hRabbe84PhOAIj46O78X+w4+/SfYmFHpvr3HwIjg9al8+cQfhncOmK9XuhBM3m+f97EowMvvm7NLthOa8u4pvtxCCtOxjLm0iKJ7899N3zoQC2bVBao6EjZE3e1scxL4jlm7x6wmxvtea19oR5j1ZbjPehnDDsayybA3Bo8bUOHg14ZP51Wz9VYTUy4azXq4kLNW+nHRuBaHplP6kbeaEQIXcA0pmBLlDuu/rTQhZdMHvF2OC1a45nSsNCZ2d51w+GBAiXDTqrugT1GpPY9dCcX8L1SLt+aKPwuSFT3UIg/OmpafMJRw9kzjdUYugO3XyUdnZIk/U0fH/zCS4j07cu1+NMBYQ/dpUVfTeLbVjaDrBcMv/23KmEe7Wf7H3UiT4WUZUz5xCkC4aNW2TJ2QsCM07JivunPZey3Yi4YlSUIrkV4TwmEH5CimCyif/QyES4j57+rnBONFPz/cBfZ8Y+rf1dGeMMUQ1eG799gODxuquu8rEUFTitrphhMFBv6M0ZpihN32rwapBhv3T2zLHBhiUf3X++mo/Q+6XxoSAPgbLYAdp3ZcMbb31+7qeMwS42g6mPmOQaqrZ6dzJcGaN9SP5JwxG5dUbax4x1BrgVuQDBo/MCvNlbQxMxbzgXQtDXFyJTl4Tg5aEyRnvewylIYVTZ98VOfoXRz+oY+hxz/94/F+Gn1sW/mhfw6Bkk/1S+h+GSxU6rteqGSwMM5tCqxiaLmquM6xk8FFLq+gvZ/iQoG50oVT4S6VecitmmBM2Q0PlKkPxQNKJxisMdjsUJ/56meHZ/YT9q/MZwuzkRz7lMihUxfoWZzOcN5Z5ujuLwTQ7ynnBBYb/AN9wSO0=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA8wUAAAAAAAA=eF4V1Ps/03scwPGDnLRWEQdJ41FLN8VBSo983i5RTpYomnKPkmvkmpK0lBKJLqJCkdtO383ItUM2abS5zIoUJYlaUa1RjfP9/vR8vP6B1/J7Mk8lvT4oKE2UcANeAMfnS6zVg+fgZmmh++qXGAycT8XX7xSDYtLHTSO3e+FCrnrdfqkISEUG77WcRPChKthIs6IHXAsabtLIPaB2bmh3VXg3+CTsnLIVd0GEs430C3RBgMVEwoOKTkiKPdsbp9sJBk7URgZFCBfcgxYrkwRgHqFl5vOrA/af5i1ifG2HEtKIhfcXPkyo+5PfTD4FhndY1PR0GwTFV/jmzG0Dx+xL/mydJ/B5L4m6ybQVXqj/Iddx5sGMbxbNJYoLYVN8endeC4h2/WWbyX8MC/28dFLkzbCCHXi3ZGMz+KG3tycjm+AIO7qCE/QfjIkMimunG4GaV+c9eqUBNtIpQlPzehDMxvCuDtfCfAX5+Tm5NaB6d/xQrMdDwNCaZyOrqsFoCjLt5RzoTjbUujxQCVIJNf0hjw26DWZkVg0LojTfaYRXYXBn2DWMG/sA1pJWNk9eZ8IWU5Uc1F4Om/7ezT2pVgZk1q3PJ4JKwHC/pbeSuBii+07kdu8pgo7BE85Fw3ehpPe9tvHZQkiUqNzX31wA/vUkl61Td2BDulVEVsEtcOWIBQnBuUBr8i2nuObAzPPZppue1yGfmcNVYlyF5ervTPyfZEFct8lYo8EVsBNlGJILLoMJdZh0LigdxgNCW+5zL4LAUPe5y65USHpvGe2pfA7ytWXXc0YZ4JDu4Nb/NRnOf2JOSqmnIcRDnJ4hS4SmIdPGwPEEeJm/tN6ZEg82iT8ZlhkxEJKAIrdYRMHe0VCvaO1I2HlwWfDWNUchy24ZS7EzBHxMSGPVhUfA/k/7KFXuITDJVVAbWu8P/pKKObb9vpD2+ArJ7Zw3nGFI59c+PQDFQZnuAxF0GM1ODsuIcQXOpo91VkIX8Ag8kDJ9bDds/7FkGbvOERZbv1KizHMA1QSDsbJWO7C0vtAnGrWB5bICu8V+VuAdWmSetm8rkOJjnA7GbYZPt+gvOjQ3wuUFLK2jVBOgCG531K42Ai1p7p43VWvB6qLy3riXBhCTad0pSlkBDVoZN0Pv60PFrFJftIcuXEwiMUN0tWEPo2X2VKwGsG1HdNa5q4H+yh16DV4LgMNalBYvUgHRsTivVtkcoIfve+2BKYD+jsWUdd1yFIil6cv1plFTn7j/5GopwhQwMyfhJBrM+JaoLZcggf12SwfbMUQqjdJ4SRtB1zQiUhkzb9D298zUxpjXyManMu/OQB8KTOvasGCeGH21MzJYONCNvL7PDU3d0okm+TeCVy3tQGtP0P3KzrShLVkbrOam8xDPLK59gNKC1NwvjZvpNaOytywMkz1CxvST4dEODejfeGmXTLsO9Sh+q5I51aDH0iW83y+rET9+VW8tswotdzy48nwNBwk2DuvKJisRl1acE+pcie6tv2TdL2QjYXp+3tHDbLTr1CNyhDob8d4d+zktZKG4Nhp/KIeFLrqp+mWGsRCd/9Dk204Wamdyhl2MWUjVhfzaSYeFAunZ6s9UWGjG+0Psu58YSgpmVA98wdA4bS5XfxRDsR6npjYPYYhhrBPG68fQZ+UfQfFiDJnLjxVr9WAo88d5m/BODOUn0OjuAgw1pAp+V3dgyJLaez+8HUMTNfTxcD6GPJ5fCyh5iqE/B8/+IOPuqLgxP7sNQ7sai3TNcQ8kOiLJEwzRV4W0c3C/u7rpp+JO2Bv7HyY6r9iThvtPKXO3BW5ke9TwGlxOi+o8Cu4hNdaEBi4fP9ICXMMQSaEK7qD6tow5uNUa+ZEKuGl9LuqzrRjaKvu2TY47UO498gu3MM+n/ycuOeX1IsJCeUzMNK6x5mFFwnTTyrIpXDfn5EDC7I955oSKNmQ1wqEjHd9luJrM7EFCH0mpkDBP2NBC6GncWUdYIqFyCI9L1z0gdAw+Xk6YL24uIVTd0VFM+D35eBHhzGb+PcL/Ad3oHF4=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7rfbt1wfdjG+x6R+lRepQepUfpUZoEGgDl5keNAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAygAAAAAAAAA=eF6tlaEOwkAQRE8ikZUkGBSprCKVSP6TH6lEFleJLA6JuRG85OUgQU12dnb2Lt3blv5+3F+fpzIAx4oH8Bdg+DPq6Js4fjtB5jvhzZ/ntn7WhzEx+a3EwQ2wQP+aP3FF/BB+BZqOvGGr3mKrJ/Ke0S8VZyD5W8UJcQvpG976ms8keju3+bOP1Vu+5WP97Xu35inzat+5YI7Nh/3+jTxn7v/tXBa8T75jvudf95ftE6tLvhc99yH10Q3QjeC5R1nPPvwPVP0bnJDKGQ==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2.prj
index 416e5ff01fd6e2126aec6ccc7adb53345485c16a..09f01104e2923b84bac86d92e726c15cbb1b6761 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2.prj
@@ -340,6 +340,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>KineticReactant2_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>test.dat</database>
         <solution>
             <temperature>25</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_0_t_0.000000.vtu
index e39b0f40bee2e0c3b8e058546972abc3f8d8c7da..170f656efdcab0551b2aefa1719e4e78ea20aa8d 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_0_t_0.000000.vtu
@@ -2,34 +2,38 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="1"                    RangeMax="1"                    offset="132"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="4"                    RangeMax="4"                    offset="224"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="1"                    RangeMax="1"                    offset="84"                  />
+      <DataArray type="Float64" Name="Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="1"                    RangeMax="1"                    offset="176"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="4"                    RangeMax="4"                    offset="268"                 />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="360"                 />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="440"                 />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1e-07"                offset="316"                 />
-        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0"                    RangeMax="0"                    offset="400"                 />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.5"                  RangeMax="0.5"                  offset="472"                 />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.5"                  RangeMax="0.5"                  offset="552"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="632"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000"               RangeMax="100000"               offset="704"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1e-07"                offset="520"                 />
+        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0"                    RangeMax="0"                    offset="604"                 />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.5"                  RangeMax="0.5"                  offset="676"                 />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.5"                  RangeMax="0.5"                  offset="756"                 />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="836"                 />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="100000"               RangeMax="100000"               offset="908"                 />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="788"                 />
-        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="856"                 />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="992"                 />
+        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1060"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1140"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="936"                 />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1212"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2540"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="3088"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="3600"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="2816"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="3364"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="3876"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7A5w78bJCyI4GufJmcntm3btv18AaBV2YA=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7BJQBL+VS2I4GufJmc2tm3btv18ARw0fQE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHgAAAAAAAAA=eF7zWL9n1qfrVXYeo/QoPUqP0qP0KE0GDQDk38XsAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBB/YMo/QoPUqP0qP0KE0GDQDwruFYAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBB/YMo/QoPUqP0qP0KE0GDQDwruFYAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHAAAAAAAAAA=eF5jYACCrB8ODKP0KD1Kj9Kj9ChNBg0AkCJIQg==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KE0CDQDlx+y5AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7A5w78bJCyI4GufJmcntm3btv18AaBV2YA=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7A5w78bJCyI4GufJmcntm3btv18AaBV2YA=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7BJQBL+VS2I4GufJmc2tm3btv18ARw0fQE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHgAAAAAAAAA=eF7zWL9n1qfrVXYeo/QoPUqP0qP0KE0GDQDk38XsAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBB/YMo/QoPUqP0qP0KE0GDQDwruFYAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAGwAAAAAAAAA=eF5jYACBB/YMo/QoPUqP0qP0KE0GDQDwruFYAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMArIBwAGSAABAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHAAAAAAAAAA=eF5jYACCrB8ODKP0KD1Kj9Kj9ChNBg0AkCJIQg==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGwAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KE0CDQDlx+y5AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_126_t_12600.000000.vtu
index 1cec3f8488bb82ec242c5dc73fd8b9aafc3afd67..d75b5850a79223530c45e5ef31d3f15a88511b1f 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_126_t_12600.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_126_t_12600.000000.vtu
@@ -2,34 +2,38 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.94004510377"        RangeMax="0.94338695706"        offset="132"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.4678015424"        RangeMax="11.397634744"         offset="2272"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.94004510377"        RangeMax="0.94338695706"        offset="84"                  />
+      <DataArray type="Float64" Name="Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0.94052093437"        RangeMax="0.94381056977"        offset="2228"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.4678015427"        RangeMax="11.397634742"         offset="4356"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8356"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8436"                />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0000020518e-07"     RangeMax="1.0002440189e-07"     offset="6272"                />
-        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0.00047596918672"     RangeMax="0.056613042941"       offset="7844"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.44338695706"        RangeMax="0.49952403081"        offset="9364"                />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.47169347853"        RangeMax="0.49976201541"        offset="10796"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="12288"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="12724"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.0002440189e-07"     offset="8516"                />
+        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0"                    RangeMax="0.056613042941"       offset="10092"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.44338695706"        RangeMax="0.5"                  offset="11664"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.47169347853"        RangeMax="0.5"                  offset="13172"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="14792"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="15228"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="14792"               />
-        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.9400686285"         RangeMax="0.94338695706"        offset="14860"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="17296"               />
+        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.9400686285"         RangeMax="0.94338695706"        offset="17364"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="18544"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="16040"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="18904"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="17644"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="18192"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="18704"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="20508"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="21056"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="21568"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJAYAAAAAAAA=eF7t0flXjXkAx/EiadNUutrX276notv2RLRI1I1EmkKnxVbm1rgGbdZscSyjspQyU8ZyW00ZQi6lps2tFAbJKPIUydoyn+9zjx/mnDln/gE/vc7785znec73fMvY59huLJr6+a4Nv1OVpuJ4CrOfoxffOtWzDUYMftHdN42mQtyFilawcH3PFTs1muJ6qHxsQTewnDTvoW2dhvOSoP20MFeeOk3JUp1T1ODFGTX6yho0Fdtt7V6BHl7VWX8erftiuX0wLNSR9fDWpKlrV0WvXqPjjK/yH6GdIiXW74RGlyO2/qBFUzdkfCu14a6csIBJ2jTF0VNvEqC1V6u9PIrOOn9fMBvK148sMtLBd9LfRrSiG6J4mQL08erGRxHwZkJ3tosuTdX2t1q+Qt+JEPBvoic9jvFPhOn6Xha+ejSl0PbW/QvayHxcUI/O53VKpcI5X/wUA/TxfDQ1bwIsqt7l1QDXpQWwtkGJBi2unwFNDXLPrJCECzmxrregoU3Prq1wvk+ThLshTW0Y5WV8QEctL80vRZcklsXEE6UTjc3YNDVvo7TRc3QIi7crG+1x5m51KAw68129nBFNRSutcLuLlggsfMNHD2pZ5HBgkMWJkR5Y4Lzt0S9Qt9T39QJjmlJ/Uy+lAie4ygsr4KQDkSqbYcyA5w5tE5oK+HBqcjdaoDXXNhVtq/nsuTcsuca79RSKDmdcLILJJqbes0xxv2n9K+Vgu0lV+Sk4vTFaKg6uk92p+hmWF3GPCGHt0Wergs1o6tAMWVV9GJBsefYc3BTxbDsfaqaUd45DQRintxFOvHp/QrA5TeWuWEmxYdP7VwYFMDy2fG8S2afMdR6CbKOMRiEM5nJ8PC1o6r2kg6wqPLhPJ3AvzHKXcY+E4Qrei0SwaVH4mnMwNEl6sZYl7o3aefQt+vHm4uBIdKNf+x/O8GZdVlA+rPHK7d4CV48qBfbAAYsZMtXQLzw2kG1FU/6FfTbj6B/3DAZHou9fkA91h6k1n8JyYMjJ/u2bSFvfixPBWv+HFaVw2KUhWd6apvQMLAZeoVXuOJzwROtONLY1hAv+Cq3hwRuS2vwQyJqzd7gAcpZ8X78byt7QdhTBoe1uFpVwbHRlqqQN/ndW9tgL9IaOqgdWaNMhHSVV2Bm/3ycE6g92ZXnA+JQlwq3wIS1wjIHcj2Uh+cQos+79cHdxwuhtmCQ1kF8Cg7dlXemFVcV9m9ugm/epwzK2NJXhM3/te3S7wobdJugFx3/fyIJrpYpPzobp/Ki86fBywoOO5fB0k/frANimnO6WBOuM/SNjoFb09ta9sMk6QyIFuij6nsmF7X7JbUdgIvt1eSlU6ZnTWwgd8n/SEMKZg0KvK1A+b6RLBFkxj9/VQ7eyQ3LP4PG0LXIP4G/ZUVUD8M3F7KO9cLdX5thn6CHrUvQOHnrzol/KjqYuKM5cNo5+0Vd5Ygq6q1uxWgY2Nq8xYUF5zYMDSjBooma+FpyX+5OUOmRbmVkZQMnyaWq60LWvpcsYrii85cmGLYrVd8zh2YoD2abQdHOenDW0j77uZgmXlj6ptIXXuzI8bODE9Ytf2sMPI8XldrDZVOOSA7TqX1oxHXqei9ZwgpO1RFxHGOV/wHkGfGeyP4fsyvGfNGbCywLp02RvGXOtI52k9DSOWHnSLtAZNpi/lSZSPJ3LxIrRqBRizdqHUhzy/rEnXaRj2ZMp0gO2JXrEuU6Gq4lTzD9xiUtzb2cQjy1p4ROX6dXlEi1ctxwhDuUtLybK9e4oJPaH2l8lJm78u4JoZJkpJC54pHuDw5x7TT1RRhhUS1SfmdxEVJsa+ieRs86/lahX19JMVC5xFBE7Kx3uEefzU9qIjWatzO7hEN5OrF3Yx+wROwaZFpXlM+7ZH9RBbGfpMV6adIgxXS2BcZFBFePcjgJGpzQRY0L3bcbmZc8ZC359yMgaG2AsT37JOOHse8aXzkOMJ1o/M94u+8iYGTXKuHDaCGPR8BjjVBOx8b3jjI0JYp22SNwnhnHECjrEjgjEblSQZAwaFLeBlbj3aIp1dBFr6SDWx1es+yyxgQvFNviLbeP+e//aX10W8t/9zW9+85v/5z/WFH2SAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAlwsAAAAAAAA=eF4Vlnk8lVsXxw9SoZQmpaTobGQWRZItU3OoG1EplKQ0oUSGdCUKSYYQJSRSbgqhdbympLqVIjSgiJDhZnzOOc+7+uv7WfvsZ+81/NbaZ3Wieqn0MzFemb2M/sPjhP41da5FjstPOJB39ltPjBgvwaOEI/+Y0P07O6nuCJfOyajx1h2cgGcmryJnvyDU29jCZoHdMGTNSlmjZcKH74Fg52QgxnMwVnErLh+Gkb2C/QqJfAj7VtrV0SLK803v3GdZRuj02N0SttcJlVJ2F9o/IlTnwJvdi7cQmhUoPjDTgtDQ84sLvOsIXRkhOWe7I6GD75Wme7oSOsTZMdKrQ+hWlUOyosG/YZfLuW3S6iNQFrtxwgbXu/x7dk1PI3RDxmzZpaKEyggENXF4jumOnMttVwltdOKXBJYQ6lDdsdvGl9Dr4o4ymY8nILjQdH1LEaFfp2SfmhtFqNa9pqN+yYRKXxqce5YQ2uSmFZOZQ+jyBjv39wmEHpPQmgiRJbSEf2l4sgGhfZKfW2VMCTUkK2qasjEOm0lpXjcJDSjvbmraRKjlglqJSjyP2XchRO0KodRkdee+IEJDBClVQXiu+vYd1tqJhGbE+4kv5IjwVCaMagNqOLwsd+W6n/id3P+WHCmoJXRuzK7QFD1C39QvJg/UCPXPPMquVsZ81JeMCIEF69Of1bZ7cHhN2dxH87q4NMXwtls4xrtV8/fqK+iPYum+jW54ntpuY6VAINTXva7OF+uRxFQIbJwIPdn/Q3OhJaGfituc5DGuqp9NTX+ZjcP8khinjGJCF3ZHJ0xGrjiQKAaY365ctQ9qywVgbdt9TjuJUK53iO+Li4QeEjHv7LcTQLAf30YU7086bNdhi/S7khNttwLzYf50OMuE0LWexuXLbQlVfXmu89EytHecmLO8nNCiJNO3ZxkhpIWVTorOQl3eyt3y0oxQY93kJsFLBhZ3c3o1nFmQkm0VlRLjQ8WslcsfYp0WzrYJeW3Hh1kybgbyewkVsGHLBqr44PyofzBQn1BX44Jc/8Fh2OyjEL2FFUB/U42HwaRx2KKqmx2FcY1t4E4WNeDwFD+ut1V/QGi+QWRsG+rTqnmjpIQtC213LvkpYL2yyyPndmaibvUCq+N6BFA0Z2tWUgChP3WnKuqmog5SpcbtcZ/8C/WEs/FYp9XXw6+iPgI/Cqb7Mly633Y5yZlGaHe3pkXxQ0LN7W8sWpRO6M2xrIc5Vhye/ICRfuFGQnudvPSkEwdAM3VKf8ckQn8fVjXwvYb79bsOH8J4vAIaTlRHEGozEjVBD2C9lPeF5mBfSVd+iJHEvIVXjj6PycU6W+sFWBZgP1jm1D+6S6iobMNm/QpCR+/eES2zwrrLBAxZXSb0qL9i9lM7Qg2Y+s0FewgtjFIwmq9FqMitahtPVUJ9/m4ca99M6JwizeZX1ybg47XFheFYz9ocExN57NMNsQdeifQw8O7BqXLnUkJPPQs0UEJdbHLy/+WpQejtofq+AiOsQ2VO0LkxLg1a4hguRJ0FifyTWRqDelqUL3Y5A+PR8Uj1x/p590dskHrDpbX+UgcuoH5bn0cslHUmdFV9+YNc9HtgTFszH/vg+rh14bguoXk+sT9dA1j4UkPP1KGeNSoktHW8CS17Mu/DI/TneaZsagn2z8STaQHVMwk9/iA5/iPWbWn92/xJMwTQ0N/mVox++Phd1GjaQGipxOl7fjgXNBW81h7A899G/T3fywPv1/W2lnAntE7liaYMn0urzKWUFq0hdPG6jq7BQkIb9A8WuO7EOcK3VG+/R2jN3p1ZJVhfh2VZw99R96WivxKuoM59TR8e+XmQ0Fn5HlEBwYTev/z5vgJ2suds1y+3cQ4WGIQOTD6DeXsWcif/PqF7BjQka5P44LNc62j+2wmQW+/vuV6b0GIIurNBjlCL6ddt/u3iQ7e06vliP0KjA1b29+/9DdEuMyzC5jFQePNF/CGMTz19yHrAgYGwtKnVEfsYCDZ0HHfnjAIrliZ9GnWvKqo+nvpoFApfzmj68XYMCswsxosxjvx2g1tjoQJwlt6v2fJsBFaZFqeGERbWbG/lFUYTquxamnROg8PrZV+HyYqw8F5L0+hCIAvBWrnxxSMsFO+5F78d+6EnW191AHVhv8WrzArjWtRUEPoC9bqqb9XbviQu9bn0dV43+unWl9N9VInQjSdvaCthnatlViw8gfXbELfuc+svLjXvSNI3xHkc+tl7aT7qesTPXq1QCufcCrvwC3heebRcJeEQ6jJfu+3XDUJXf9hfo4TzOfgQvfiydhQSFgXOrsR9VhVlHZ8qCd33JHn9+aeoDyl3/370MznTZZpKI5fyxzVej+Lva84MLtPDvpCxUHSSEiPUMYWn98UG9TcnbebVrRhHMq9WwZ+FWX0hloXo7y0BO+XNdAFU9S9IW5IyDn39xXeqNwzCbF/FL12op9yGx6ZhWWPgIndJTrlrApQWyJdVaAnA6tSl7hg5BrznK/pLOIxCR6dB2cTQCNydkcrp4TAgnzTHeVbqGMSq7Niddm4CtFr+J2mqMwpfDTzbK5q5dB0v7oSUMx82VSxYpJrHpQUaELfUZBzsVm2KvI95V/E8eMpJ4zeMcG/eN0K9Fha9S+ju5VLNoasNVccIndrWJ673g0vleUZfTkoyoJu75JY1zhHDzOOn9+N7oZ8QfFoteQL++xaflPGM0JYXQVfr8nB+n91ZYvxiHFb+Wjl8Pv0TCHY23u8d4lKP9OCgHvtx8KubFLs9iw/trkHjPkvGQPLtiFFRhwCm+f5UOzpZCOcjVNeQrUIYDyvQmXtICM65IUdvKwlhy0Rkl6BSCDzlLUWx01hIuP9F79osITjqGv0wd2Gh6nbbyex6FpIjvXLqClhInGlvy+5iwUMxgTNqw+H19abckBfn8ApiR4yq/2NBlj538Vfh8GoP1nvfD2Wh5cnjHS6RLFRoO73yPcuCoepo7ip5Dm+M3fs0/RgLcfJmjZ8ns/CtYauP1EEWjvnnbTrmwULd1zfNMXtYqEno27YD36PvD7bpyO9kwfxUac5mBxaW0bTXUdvwvmXvPNZsZ8GtKGKSK8a3zlV6zV1bITC7OLXFVkI4Pj9+yHuTEK6JjQx1mgqhR/sfh6d3BNAZdn53/RohSLscbL5nIgSvSld5dwMh7NXSO9u2WgjBjz4ZxuoJwUc0r6JoJeZNdsnVdTpCCGlvvSC/QgjTTHqMnS8JQCHcUcU6Avt2poJ4+1M+lEQd2C0TJoC0TZG/NPIYGLD4Vz75IQOMP/7PusfAi5OD/X/nMtB0bm60XhYD/Flr9UWyGbhg+2nZ8TsM1J08YsZkMFDEdyQyt3EfBCW4pDPgW2QzUzKNgTcTIbvUbjEgPKnK33qTgYalia8tUhmoaRHf8iEZ34fGZ7ezUlBXaataryUxIHGMfW2J657L0p+cv8FA8/bBp3K4vnV5+McbiQxcDu74uBDXl0S9jW5IwHtcBHlmuP5Xu2y9NtqKDdt+XkaKJ1RX3Yln4F+3xptDSJ3uoDhNpNyCh2uPI2MP75api2Ngc+mMHaJof5/R7HAa7b2/et5nIAN7DrVqI7UWDE2yR4qnqHQMX2egfHbj9Xlomx0221mJtiB3tPkr0lwr/9sNZNxR15Z8pErqil1nkLrCKX4RSNXbw3cdkYy7S5gH8r+IE9VmyCi9QBEbZJJ48Q0t5Olw5frVSP9nhi8XIwM2zpuvggxV1+fP/PO9gCTNR9qYGweKI50bd32WQq6Em71MLAP53x8aiqCtfny29m+0DbICPceQ6ZEp9X1I5dPj9oPITKPU4C6ko3K7Vw/yy9J3U74jTTP6QjqRry8khbQi+3odjrQjL766WfUZ6XJt1Pwrcv2DcNqCVJCc988nZOLEQqkm5JlqrmUzst5mY1Yj0jy8ZudHZGOq+1ADUjTvlNWf9dq1JXl/7O+a2bV/+H9KUVgJAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAeQQAAAAAAAA=eF411XswFXgUB/C8LhUSRlJS8lqkxL0kLD3srby3LMoUUdgIsW2yNN55FhclkWpjvZadpmUNK3ntbUNSpNW6Hlsoj2bZHlv2e35m//rMb86cc35nfjPnV9Uj5M33RVpLSK8cKXoaae3vrpL6AeepsujBJf2R1kfMJY04sDGpJGo55C4L+E2B7OUrq8Dro3Zea6DHoaM318OdqoXj2jD/7byhAey9dyJ4C/SJWajkQp2aykkLqNoUoWsDhZ5u3rvh1Lz95b3w7G23LicYZRYicQAm8nO4nlD7WZPfYfhy8+tsXyjiKzUFwJBw/YlgKPvoM8VwaC3OMT8Dz43VHIyGzRyN7+LIe5YFyfCY4J/adOjcuO1RFlwvNTmRB2szpxcKoIWNnuJ16DQbtqEE+laUbqqAW9WKeDWwcl7H8g7lj8ha18OCG6ssm+BT5aW8VmgXUWgghOHC9LVdsMc/WaYXKkpvm+6nuQW7ugfh6GN++TBssH8e8wLuiMh1eEX9Mv5VmqV4e07PHFwdKUp+T/fucOctQL3OkwMSeKdJu5xwGXg70URSDkpyq5NXwgu/B4mpQLfi+0Fq8Fad7oN1cLfX4LqN0MeM76MLrU1acg3ggEJV/Wa4abtftwmc8rbvNYN9x4Vt26Fc276Sz+GM8Y6InbBhjd6WL2CIY3TfXtix0BnoCK3kqsZdqL5k7ZcHKC9DUOpOecF/vzhIfQayVx6G2fVm2j5wyKFa0w+mVT9Z6g+36KUPBEKJuF8FQfDZL97mIbDr+5DWMOhoMrs9Alpqz1w5DUVr48bOwBNa7apR8NRjETea+rqKWZ2j+fiHjGJhivTWZfHQ+aGwOwHu1TsdmwRTEy5qnIcOx8+WpkAd12vqaZCbGRaTDjVNT3RmQJsP8ssvwCUhw9yL8NjcKacsmOXp5p4NX0VruAhgxWyARQ5MXNWjnAvH5eeHyLaxiKI8mB8443wJ3jSUmiffaLhmXob6mqfU86HvR7FisqUxR+0K/Nr1bgoZfVX5DWlzVM2lANrneZSSr/X3vyXX5SXaXoXiSgHx5NaEoLtkua3YOzLSO9WgEL6zDPYg+VWcODLsVXkpaatTLSSNXx4ZJwvFOVK0B0zrhtXJKQ7PlFSxteCTzVNanmRHkV4gOTES9i3pJjBKIG/lxV4gw72y8slquZgbZLffsXKyXPfoT+RoY0Yti2svNJBlDzuaydSRj23kp0M/CsmwqckHpE9dUzd5Tc7iEVla6/OYdBbf1Ufy5v7qJ+dCXQdIC/WMZ6SafdEfpOL51EHySOZXz8mRMuk/SSP9IubG+A1DrM43F5lG+2aZ1Zd2itj9W84zLVtamROy75jtOVrDbK4f9jDP8AKYvU1xzIHcfOY9YSUztLmBaXfyPrNz+gkzRTDEFHa9ZFr9PM0cMp5jinTfM1VXfWLy8sTYvk7bL8l0y+Uw7/rJMJcYLmPOxCxnusfJMu1D5Zg1e+SZRq2LajisYCaJFlVcrcCU91pUpnhRwZ1Fw5UW/4v//43/AMZTNxY=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAUgQAAAAAAAA=eF7t1ElQkwcABWCBBCwyapDRAS1oC5aiY0FmCFrhCSii0EDZRECMFFwCIsomWFAppKyZmJJFFmXNxs9iQKQK6ogLiCgIBWqtbA6lUB1ZpAQV+yeZHjvTS289fZd3eJf3pM+dVkXbAI7VE2dC3xHYFByQwN7ng6RMv+tFwyEYbJsSdtmGw44RZuwxw8KRUu+MA/uiIdq/UsCnx4AxsDq31Sgewj2sO3OvT8GreYK3/uFp6A7GeHqLU+A6HmR54+ZZMFvk8U82pEJhNuZwSPgdurluskTtdLgQ0yMGx9ig/KpjvLbve1h2sWPqtmfCbnGy6X1ZFqodn+4IMswBRZlGi07KBWf13hrqMAeFJRxzjjkXiyTtlKd9XBh83JQ7mnUegbS6njoHHp4ZvX/l9JoHhsPgJLf0B1z7qnCq2DcPC7ks3ZO6fNx+kOxMaeRj8rR2096jAgRcMc2INBGiVmvqunO7EAlyfuTT0yKYpK+psd14AW7veSLGswsIMfrgsCEnHzo5zPq2Lwtw73LtcquJAlAihg975BfCKWj4kfXuIpxsEQT2/VmEDtaA2XbxRdh1820jfC/hRo6r30atYrg1tHpQAooxdacuq7m6GFttwo0DqCWQhG7W6QkqQUob09tGUYKlQYa06MWlGFWu2s0NKYX1b9k6vPpSBI/P7YrTL0P/rWKTrcwyHLIzSxy8UoYuN3PfI0vKIV7YntbFLIfztVsNqxvKYfTMneG6pAIHp+tsvJgVWJOil0q/UgHOOSdr5Udi7Ph8aQQ3RAyGtOH5G4UYvYy7d0z1JGi/Krj3NlACfyuiOaFagndHheHxWlIErxOs6faRIsvtRd+BCinCFsnjXryRghUrFJjulMFbWfTpbZ4MuY6nREnPZWid4Ju8/EwOtvtuz+tRchi77H/EVshR0XZufmZKjqsSm3nFF5VIWrYuLfFIJZybbW2XF1VC+yLLzKujEjdm5zMtlJWY9ck+y11LoHyEF1PuQmDMQq+bHUrAX7GlPzKZQBhVXyHKIyB9vMfLX0qAVfW1wVwjAXF2/+HuewRKY6dpjk8IBI/k+2X/QsC7Y0BPf4RAuP3QgvbvBF7FOy5rfEng8Y7OtG8mCVi0uFLtZ8gca/A+c5aArCrKQHuOQPa5nqYtSgI0/ZT1a+fJPifim1pJ8+/Se53fEkgQNYbmk6Zs25PVT+oTcXwbhdwXx7Jb+gnph0itcjppiH28cidptJ9llScpvfGPTf6kDzxoqYGkeYZhQftJo3Qu0Q+Qrh8bjWCSpsa22BwkjdtVW6NyttPqg8qhmxPWqh239nV6qhyd7Q9VOd6RFKXyxK2MOJVbK+8nqjwz5PWtyuSHXckq3QPqU1T21Nmr/6ArOV1t7I+X1WZT29WuOPaz2vT0IbV9K0bV9haMqf2JOq7WsF1jFl3zL5zjGv3Pa9xcorFQqtG1RuPff/RPrlRotKv6d/n//W/9C7qwRBE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAEAQAAAAAAAA=eF7t1PlT1HUcx3FnWRCQ0BTNa72ABJXCuMLAl8hqiGBR2IaSKa5ACk5AHEq5ylWaRwMhoIyJF5AQKFcs18poeCEqilCfQ1ASRWRZgwDR7bvL9E80/fSYec+8f3y+Ut4aPukwyNGgFBVHbSS4XvjdjjNPOdb9Ig2StHPsnnszMPMuR+OSxpA3rnIsqWF7jtRy9JzNzZ9bwpGZfo0W5HLI1z+b6ZbNMeJXuqXpBw4jp/ry4GSOLqsac9FODlLgHZaznWOwfsIN6WYOlarsnacyjs5t9zMzfIS/xy7alR4c15s3y4edOMbNM2s4t4DjkGubdfhsjtMdUYpFFhxKv+TbvcYcoZIKScVLhgdrSz5P0DAYe1ll+D1iuMVL660Ig4v7hPYXNxmCXutQt1xiWODRoi5TMiyOyOKZRQyOi1qrFKcYVvYiaWsWwz7JLpeAgwwDz5fdWZ3IYFjqHLA8jmHjGvNLbuEM9SRmyntBDAnWc3zcZQynTJRyTx+GWsP+Db4eDOd79riud2Yo7n79edhChhP5n+xLmMNwVSJ6dXQyQ1v1bz6VpgwqD1n071qKMeKQGO1fgpn5a2yeUMRsax7x5xSTGrMUyXcoXAZK7lZeoRh7g77sq6V415wO2JVS3E89WBeeT/Ggd4zs3DGKCZqz1YNpFCJLovbcSzF0IL4/dRfF+09jmzqjKK5p5+91+4KC/ujsnLGBwib9ylD/xxR50+rGB6yiiKN/t6mWUiikxzR2jhRebrbSHFsKi00h82fOpvB1tvv2uAVFYrK38WJTCo21r8MtLYHsw/Ds5H6C0BQDQ/9uAuMW7wjPdoKxM+zsAu8R2K/bX5XbSJBu0Fdgf5HA+9PCQFEVwck/pxy2OU+QtM3xzaJ84d5atDEnhyC4o/K4yRGCqd3xTepUAscTWUOf7SdYfWHiyNoUgu1K1Zo/dhOo85719sQTvK06EPF9LIGV40/WRVEEQU8G5R99SVDcXPs4LJygum7AqX8rQTaJfnU/lGChsWGadQiBTeEF91+3EEQqfdIPyglmzRDXHdtMIO2zPM6DCFasnPrKS3Dr5OBDzZsILCDTxgkOm4kfOQhWL4+s1QqddCVtudwqmBRg/6JKcNg3ouuMYOA819MZgp5m+SX7Be81lT9LEqx2iIxTCKYUdv4cL3hRoxi3Q/Cl761lsYJnJq03jRGUpsxbEi04qKkp+kpwbkaav06p1GyazlnSRI2uU17e0KZz6RTTqzqLr09X6XxY0FGp09LcqFznUfHpEp2rGu3P6zxs8sE5nXlODfre5aYxend2r9BblmWr12niNL3fxI/X+1BtojfwmpFe8Qux3u4hA71fB49aMX3U6MejeyK5PWrr5VFFNaP+uzf/+9/wHzxSPEk=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAPgQAAAAAAAA=eF6l1Hs01nccB/C5zfRYx2IOC5NDWuTazK0+LtFx6bCSuzxYsaMkyyWnPDJitCe5LeS69bh1pihpkpIx6ynGs1z7fpzKtswwQ66PfZ/nt/7onHb/63Xe53t7//74/E6rrHynuozAd5HotzAi4OneZr1nDsHVQ+sydwohnhVmwB9DmM3+oZ41irDoM2mzCxG2CnoFmQMIazpHIx70Ikzpxa7VuI8g3DRYF/oNgqNakF99K0JR3j5ZiWaE0146De7XEHj7Xwstv4yggr6qczUIapaRfBcewthiIefzUoT2cWOTlQKEdKVTj71zESpLxrMaziBILlwH5XQE21q7p7HJCBH5Q9yhBLpeNWBoewwhTTfrbuVHCIbRvkHrIhAeaKZNnQij9ykcifs5mPbeGD7vG4Ag18o/zPdCOKE2/hB2I+RLa9pddUUwUWsp1N+JcDNDc+yCLcIIu1B/gzWC8XupwcVmCNujrTLUjRHuaCnwivXod7MC6jZspH4WX8vTRDAS3jq/ZT2C/tpPjjW8iTDH1nOwVUAw0JZYvbcGITk0hOcvg8C6WmP5yyqBVz81beIsEnhEPHSVZgl03fkwoXqSOslvsRsj0Cs3ODb8hIDK7IQwDgkIciOWlAcJ3N7bgQ0CAmcTE2u8uwhw5T33LXcS6FGPmC9rIxB0rzneqYVAzmrTj9PXqbI5O4qvENBxWl/oUksg99sny4tVBISZmHrxCwJSM0sH2SUE2nTcFpQLCMwXKZV35xAgjfWK3DMEtEvy7N3TCWx300lWSSEQlc3L/4lDYPGi2f3WeAIOt09KVkfTd45caCyLJFDGzVP+MpxAgmH7w94DtN/HcZ4qwQSqaz0NTgYQMIlhuSj5EOiHt7L7PAikTXtd6nYnsLrg3y29i4C3sDk0zolAZz9/2cCRQEqInHCzPQGtEHbFIRsClp7Pns1tIzAx1N74tRWBmXNdWX0WtGfUcZN3zAkUhOPRBjMCy+ylgvh36f4ZS07kVgKQltSZZUqgrm9EY9iE9jnAc95JnVFMCuwyJvC2zLruw9RHm+Q52lRZxfqOp3QepEtrODeobayk3/Kp6roWyKG29Jp8cJB6y+jcSgA1psL86B4q7+z5HhdR5gp8HKn9h/xi7aiRmhY3gCoQRH2/jWokbEmxFp8LK7WiKudskRHpa/FGkSX1phR6iRzpcNossmrDKXmRCYW2C6I5zex/PC4ySkpmVKRv8OsjIvkOvw6LNH1FakhkTEzPgMjKYBWx5YkV4jmfKA0Rm7NkKXbHrJZY1btKYr1T5RmbZMVempMWi2wpsTbJkmKvTDP/jdxrjPapjD3xjAH7GRv+0NmL8XjIi3kukNHOnTHS///lrwIYeY6M0oEv5ufrza6MYXsZzZ1enjU8GAW7/5nP9//dfRnvv7y/rh8j8flrfTz/3bt/1sPdjTHJ+b+d+x0ZfPNJAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAUwMAAAAAAAA=eF7t0vtTzHscBvCiidkcJaE2q7JtrVqVaBUzPuOWW6KQ2Z0mpmzGkTTnMNGITK5RbGjSuiQrk1ltO8qo5BxdXDKlpJwpWl3MMamP6xKbb57Pd/3mX/DTa555PzPPL2+v5P4GwQRKjJp1p0phe87LidETKUmNMiusJ1GyVzIhRgvP++R5Lnam5NjxweIemCHRcPtcKLkxQJ2EQkoeV8d8NMAPxjWaJa6UbHwRMrYDKu12rUyYTElFYbLSDAMdL8mPiCipK1b2OE6hJN5tTKwG3v8mLPVwo2RTeH/7FSjd8+qZtzv28v/UXYW77I0KiQclt2YWduXDmAKPxcKpuL++cVANuXlVWlsxJfUdFy7vhtGKW+l9cDBoS6jCk5IUg/1AHXSNFOwOkFByoLfsTS5UftweOgzfCU9nxHlRsrBob3kdrG05+lTijV6Kw4t0qFYkPDVCWfznyhApJT2Jo86ooWrbl43/w8gTIo+50yjJ0Te1HYfdzpvTn0NPH7nUx4cSp1fZ93bCnJLmDf/ANGWoydaXkrbuhUfCYLWtSHgSyk6Ldc2wfkQRGSejxHsy1xoOtwb8nZQBtbfXO9RCgZ/5phk6q3SqGdMpGZ1UIVLBqw07XuZArkCmvwevRciPfYJhqv6d7n6UDPmXJi2HXrNtUv+CkcWJ53Ih165vug0P5d11NcLuUNO+YZj9xMlqij8lyXcyLs6Bvu7q2HXwsSY+PBGaHh7achCOlvVU5sGakS6rimHZsny/f6GDDd3cBPuEhwVG2Kgd9u6HcYW9LV+gW9oJ8YgA/Et873Q7mGD6LhgPGyPqW1xgdtLFS24sL32U6Qkru70MUqh7VyKWwTFLgob8YGrZyNUzIHe0PHAm1MaKbs6CsvI/+oJgr33aczm8fDjr7GxYHaf2DYYpwfM1zKr9nW+ZuqJo/xA4TZ8Zwxw0r9jPXHC9II/JLXqvYwa8tqtghtisr2FadXU+ZDpLtjYyZZqsZqYpqLSFmdkkbWWmzxe3MYWiet6SiOBnzNysNN6wPXreJ4YG3jnWXbyqeQO8n+knXkPNV97tVUO8nZkc7wXdMO8DpdV/zKhai5u4n1lszVsit1i9yGLWSouOERZbIy3mrrWojPrtb3/1B2+dzq8=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAJgYAAAAAAAA=eF7t0vk3lXkAx3Ei2TKUm33r2pcklGt7lCwlxVVSKirH0qq5TLcIaVUj40QTbUQNpuVaG5oypVvEEF1ENZU0IT2UtFrm833u6Yc5Z86Zf6CfXuf9eZ7vc85znqeMXcR2ZtHUz3dn8DtUaSqKpzjvBXrZrdPde2DI4BfdH6fRVKCLUMkSFmzpvjpTjaa4rlM+NqMbWPaa99HW9sO5sdBmWrATT52m5KiOyWrw0uwafRUNmorssnKpQA+v76i/gNZ9ucomABboyLl6atLU9WuiV6/RUUbX+I/R9qESW/ZDwyshu77Xoqkbst6V2nDC8WDfido0xdFTbxKgtTeo9WWisy48EMyDCvUjSw118JzktyEt6IYwXpoAfby68XEIvBndle2oS1O1/S0Wr9B3QgT8m+iJTyJ8YmCyvru5tx5NKba+dfmCNjQbF9Sj83gd0klw/pcFSr76uD6alDsBFlYfcG+Am3f7svZAiQYt7gIDmhrknl0rCZdwIp1uwfM23Qd2weaFTRIu02lq2ygv5QM6bFVpXim6JKYsYitRJsbIlE1TC7fLGL5AB7J4B7LRrmfvVgdB/7Pf1csb0lS48lrnu2gJv4I3fPSglvkJDvQ3PznSDfMd9jw+D3VLvV8vNqIp9Tf10lPgBCcFYQWceCR0ShyMGHDbp21MU3VDpyd1oQVaHtZJaGvN5y88Ycl13q1nUHQ05VIhTDA28Zxrgu+7u3+dPGwzrio/DWc1hktHwc1y+1U/w/JCboYQ1mY+Xx9gSlPps+VU9aFvgsW5Irgj5PlePtRMLO8Yh4JgTk8jlLr2YEKAGU3lrF1HsWHT+1cG+XB1ZPnhWGio4uEwBNmGKY1CGMDleLmZ09R7SVs5VaiYouN3GGa5yLqEwtWKnktFsGnp6o1FMChWZpmWBU1Zue/PfIt+ElccEIpuXND2uwO8WZflnwdr3HO64uGGUWW/bjhgPlu2GgpXRPqxLWnKp6B3xjj6h0ODAaHoBxcVglxgUs2n4BOwOat/7w7SVvejRLDW51FFKRx2bEhQsKIpPQPzgVfoKXdsT7qhdaWMrKfDxX8F1fDgDUltfiBkzT88nA85y9fUH4RyN7TtRHBor7N5JRwbXZckOQP/yTm5Yy/R29qrHlqiTYZ0lFXhGl6qVyDUH+zMcoV9ccuFu+AjWmAXAbkfywLziGGmXakwsSh69DaMlR7IK4EBe7Ku9sCq4t64VujsefqorDVNpXgt2vQe3aa47aAxui7jt+0suEm6+NQ8mMwPy50Fr0Q/bF8FzzR5vvaFrSrJzrHkfiOf0AioFb635TBsskqRSISOSt5nc2DbgoTWDBjDfl1eClOfzu8pgLZ5OzWEcM6g0P0qVMgd6RRBVsSTd/XQuSxd/jk8vjte/iH8NTusagC+uZSd2QOl3NLGPkNXOcfCdzD9zct+6Zk0dVFpzspx9MveypOT0Z1dStWysPHeRmMWVND8aUAZ+ktp5mnBhTk7pdUh29LU0gDGF09T04VOvc2dRnBtwS03NmxWqr5jBs9VHMk2gSZxufJW0Cb8D2cLuKL0aaU1Odee4joDSm1Z1mcDP4wUl8+E90w0LtvCgp4VFbOgW1G4hj2cpCXi2sEwnyMOs+E749QTZFfZ+kljDrwikDlD9uYxpzrSscrPooiVp2b6OcAGs7cyRIqnc4VYMRqWSKzZ9EiaQ84fe9pJOpI9iSI9YF2iR/Swn76BONnsE5e4Iud2CvHY8mY+caVeXQ7R3Ck+gziUu6qYKN+zr4DYH2RzjRiz/e8KoqFFmpC4+LHuDQ7z3hvribJC/1qi+pyEJqLa1KA/iZzNPi1Evbrme0SVEjsRsaPS9j5xET+xldho2sLsrrar24i1S3qZPWTfINOisjzGQ6n+7cQ2lh7j5YnpjMlq0YxLDaoYPdrzGe13ixiju24z3lv5gjH/l0eMrLEBxvKEPsZdue8Z+xyGGE+2fGa8XfaRMS1slHHJtBHGwuExxqnGYrf2jDM2Rou1j5d4QAzmiBW0ix0RiN2uKMnoPyhuA0txH9IUa+co1sJWrJe3WJe5Yv2WiG3wEdvK/ff+tb+6MvC/+5vf/OY3/89/AMfUfz0=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGwYAAAAAAAA=eF7t0vsz1Xkcx3HEWStSiY47STgRHeK41FcOuWw6bqlcKikdUlIpsWNN4YQu7pdKRSeXKEpYg9SmUumCqQhddqjp9o2Iamvb1+d7Zn/Ymd3Zf6CfHvN8z2fe8/nMfLjzv9rrq9OU+9Ubga1smnJ+I/7cjl711k4ohG/7BbFbNGiK09jDVYaaTeH10zRpqkVBpaUWXSwKqT+PXmKySt4f1gnEu721aKpZVU1tHC3VcEyaRkeaNr7IhixRs2CfNk3JqlclmEMbrfANejo0NaAf3N+OZqkqO9ejG7RtZNZCyzT2W3ddmirnlIyMoc01hkP60IIUhSoRHPb4cjJCj6a+qfdw2TAgu/TCBJySs11UCu3j/HP36NNU0xuXSi5sV93uOnkWTSVkXDjejK6oXdeRiTbjGIc5w1W66YZqBjTV2yMndRMdVO3lV4DW0Knd4glzL7ID2LNpSkY9t/YO+riPKy8PnVqvfM8TfiiihqcZYp9JytWb6PeFoXvT0e2s4FwXKA5THZWZQ1MzVD44XkRb2TY4xqIvDdXcsIJzDpZvfg2lqRGLCviY9VN8kBFNVReoxWoSi75G3ILbXiWeSIeC+zqLeMY09dvGjMpP6PEspfEStLOw5PAG+IBnlDPZhKb8lqpF3UWvGGtX34aWd3bj2EBuh2DfA5j2Y97to1D8Tu0Zj0NTH3cEBkjB29ZxhoXQ7v1YZwicca/bfwL+nNy84DIUCRN2+s6lqbEJRZEONOd0J5+Bft6O13fD582cFDlTmnqXUz3RhV5dNRAbiHZPq1XnQMVc/ppquMtFPO8XmBlbaydthn8x0GPThU59v1fRGx1lWG5tACPaFB4cg6bVQtNtsGdGUcEr6NQWpdEKH2UdWm41j6ZuJk6XUYAdW6yn/AxXUqcGfeBBnaErl6F3T/yVQjiwkN4lZ05ThptfHn+MfiAQz3VFN9Q5xutDm+6VT1Pg4v3d/usg/3VQfhuU3T5qWQzHDKR9pCxoKpQ/ovIYfbogd5odmrbX/siGnyPCH0ZDTaPrz7xhiFKHuAxeW72oax9cm60Y3wcfDXbebIGcvLhApfk05aDR2TGMNhkPc12ILv2c3qsPA4sMHTdBGZHfey9Yy5rqmg8jChPZCVBOnBp8GZp4bPasgHUBrOSXcGhhUlYX5PertCpz8f4XTi8/oZ8sEipZoaMcl/jqwqS6sWh/KN8Z0OUEIx2+0Tvh+q1ZwvUwZMhJlAvlNq1lJ8Exir3oPOR6tQwWQ8VvJ2fehnbSPp0t8OxMRfXnZM/Cit8fwphZ59y+wp0qG3WGYV6y8Ox0S/zrhD3pLOgsqvWdA5eNJ3A14aj1Oz4PLrYv1p4Hz2Xv3u8GD9hprqKgV9RVhxXwar/J6DIYYRoYth4msWZ9CSLnZNu0tkLP0Y0p4fBbX3BMHFzz1Kt0Bwy/pS7aC7PK3kYnwNB0o4h0WNZ5SUoEeWGZNlnkXvahmw7CG2535Qug+JrGrRw4U2/5xFFyv9ZNtodhu9FsrWIo+7H07jFoVR96SAx/nZRQWgLrh1jCMmiReeL+KdgSs6epAu46I9xeDlWDcooq4cZZBTmnYdSfunpn4GMD46VVcOoKTd+zcEGgWSWZZ1456FxN3tHdcYnMb7WWSNXAis+LD5P55rONmaRVukaciHfWZUmdg01zUttIz7CN9iOdfEHfiDjU5JFNHIyLjCYG+g9fJvIKBsqJI1r2g8SM3T2dREGG5Vdi5OTed8TcOmvl81BZ44gcMaZXVYt49IyDKvGHNq4h0aohSI84wM+fS2z7YmVM9Lkub0EsmltjRkxcw7YkhlbHzycecjFfQMznq1kRjZ0KrYk1GX3M3Et2vw1xqqYS44ZdZjzihFsv0wZP8plen7KW8WXYAOMk30bGmFQFW6K26SjTQalGTLemsRk1/rBlHIi3YLxX48JoU04xGsh6MmY6uDPaHvBmPGInYEzb4Md4fMJHskfPn9GSv5yRb7qCcfJJyVzrjqTrEiUWW6xkFLIkRkdKvOcr8cQhiUlxEnnFEivyJF6rlLi4XKJfvUSPaom9jf+c/93/ZXDLv/d3v/vd7/6ffwHLbtL0AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAlwsAAAAAAAA=eF4VlXk8VlsXxx8a7lsyJFGklJ6dkiQUUu1yEVGGMpUSiq4hKYkrriGFlBAZQpmHpLiJhkWmDGlQKEVUkqlUHsN5hnfdv76ftc8566y1f7+1d8mNjQ/FHs+oGmwR1yzxItT/aOTiMqdBEE1K+TQUO6PqbHUBS/5fQgcyPm3dwGHTzIAjURvGpoGl/OTSgiZCjf/w9FlsPQ4/0ncYqm7jwtKwWutDWjOqxI65eldUj8OepxPGy5K4IPc2bOBLl3CVldq6wwaPCNVwKZhjcZVQXsN9vk0poT9jlQ4tNSXUarnEmIQ+oc0Ld5b5NBOqMmudlOV+Qi+vDBL1dCZ0T2sAZ1iNUJk7oSzh4N9w4MlXZ7G1HGhN2D9tjusKVR9tRTMIPdcbJr1cmFBtoaGGBMwjFRx7sfcKocc80x8EPSBUZKPxAXM/Qktcchfm/jsNoRH1hl33CbWdfd174WVCw8y/uf+dSmj9N3lxf0LoUZGrV3IKCbVXeeX6+hqhozUKP0NlCC3q8vs9W4vQnY6Le+ZvJ3TBfNmGt/mEtpsNpJ9KIzREUent2134vDd7Ti3me7LCKVQ5mlC/obEvDv8Q+m1BUd0/mFeXY2y2PonQA+NFwnIsoSrfopf1gQ2sqhfKRs2D+B3nirp7WSOh3sHZ4dc1CLVs7SK3lQmV6L/N11lF6P1z9hN8EMCmpNp1lm6sqpEg0RLpATb9npHgEon9ujd06kRjPUGX7I1dMJ/wlKZiEBD6Wuplsx/qkRnQwjM/RKjTWiNVOQNCzYK2OshjX/7Px0v26U1B7PKMQ9kVhM7yTr42GxmQz5kJuL8eN+3fKK/hwWqfX2fXpxAqdP6wX9N5QruKaga/W/PA+euQuTD+/1i44RcL5JhBSYy1OqEWwYbjudsInVQNr15jQegfFT39pSsJ7ft4SWpNNaFxSrTBn+GDE3vvrJhcQg06Y/a06BG6SNx9hNvCQLHnUJ6KowBy4pJYc2dwYc66lxolqJPMlqH4Z9Zc+Gx9U1f+IKFQ3W79vY4LxdJp00GahCbbjxz3HRuHLdOBM0wFPPjctzlPc+YURLDLI4tR/yss824hLVZVWIiX5drbqEeb0dVe9KdfhFXO/ywEkC9hGrAM9RJTdJHuzyH09DGLswlDPFhQ2Z6XEoh6D9mt2JBO6Idzx6ds8L0VSTbX/BMJ7dbriLqC/pBjVYj7MWx6wXHlt6x56H/uRv2KEkJNUwuXLMkkdMrgze1CQ1ZVlKKzZrkxoeO+U4WiST9AYBP2/ctMQmeE6mj5xaF/I9a7uWI/4pFDJ+qjUF9B5TQ9Qqje5tPhhThX5+in2Lm4b50feE9jiwjdqrgt0KCM0HDd3LbSPEJ7jDtMNGsIvfQlWviRIX7v7/PT8CKhL3cP5lVaE/rvgscmZfaYv8dJZ5Eqoa+sFpl7riaUC7rxfSaoU/6BiWdx0+DI1S2PRD3TyMJt8jinNWsanwgNMbC0x6/a8SGhC+uitBTRF6X7+kY9VdD/q/VHyzYT2r8vJ/jsJJt+9i6P4qPP9NU7ch7GYn+usSlx2YResHLNCED9ouYm7xN5waZLIPRIGPp3c2uHnIwjzumK4pIirPuD7K91d3AO5jW/KJ/agHWM57c7BwrAlZSfaUY/u6w1VVPzwfk3MX9TivU87JvMfIDzo3H7a3i9BKFaX12SOlG3jPFGnZniPFiz2fZYBdZxrShrw1sjnH8H1cK/0Rdpcq8MjmD+Svv3sqfccJ86jCznHCOUb1m3fT6XTeern1ZaokvoyVkp38bKcU7Gre87W+E55iev0leAuozb5j1AfU80bp/6jL7fe889KRp9PndPgcfgUUJNLujHBAZjP8kkaRmHD8MDb3tu4jlI7WaNzT5DqGvpnaw7twgdXmf4/mkKF9IPta+883IamlvvHt+5ntB7betyjWQJfZPSZvR8gAv5/3MIqfib0Ge/Bnb8OPgb5BKL9C5IMyB+JCvRFftz9vBy/mHHgPf5yA9RDgyoDexy+Is1ASGlsWK+6Huxu/fUM0onQM7zxLuvLyehr1tnqgL7+OmRnDoZzoNWzTPyXY850Pna+OYFIgDvnV+rymNwX/t7Us+qsKpsWkSjZYQEUE8idMOCBLDwZWRSBUcAUU7JiZY4D7laqqt/oC+k6z0eGWJfPvy88Cb066HMQ69HUthUu71T+hvWyU5TyZBF//WE3F+viDqfM9WUO4H6jQT7f/g4yqbCj25rauN5LOzmv/wO+lr4oYtKuQih6QYekWGYb7Qps56wCM0vtO0dTSY0L/94gyKez+cDJzVbGidgV33wglp873lf9Zf3tXi+aKTvDKkktKDZLeA71ulSVySi1MGmHXqqrRP43DCidKUGzkW766mDIjMIjbxxRqPbnNBHjw0kruwmdKIprHVZgACcdHn65VjvLyid90KUB677DO8pXJ8C0Z1d0vVGY1BiItU9gH5yNxvTvJA7CVc37pNYNTANvuQ31KjyQJClNBAry0CPfW3hHLsJ0Ix+/X76JwfS/6oWG2IxcEfN6Lxk+iTs8b3rnnF2Gv5sEdPYrjYB2p7nP9a8Y9PkGpm/RRy50BjDq1cqZtPdrYZjCtumoKt/y6VbuO+k93DfIZXfUFiRcWsz+tXfasG1b8Ns6pZR2153HO8rfaU/NL6yadOK8ErvuQzUT2neMMNzRLkkxPcw3hcDxZa7lVOnwST7ekr2Y0JzNOKvNBcTeirS7vGWpilIYE6dC8x8D2KiPsXDP9nUrGZjyJDNFEC6Q5xlLhdyDnzsP60wCeNdZ7fd/8ID4QBXFY/ZfDgoRnXIbj7s8OWoL3TFeGOa401FPvSb1nzi1fJhf6JtRvw8AZRnPloRJ8kH/z9Xl/7pJACzSA2r/DYB8LSsvZrLBHBVsk1KYCuARzWV3znmrCq1UZVg+VmsKp0n4eL1vwQgv3aJRYASq0p1laXkrXAB9IrPkXK6JAB20AdzP3/U7+HswE3yeA/cCD+YeVwAN27oW3yYLQC7ZbBK5KgAFOMspj3dBKDH5LrH2gtgft3wlCXeRxI68Y+XWAlgROmupomdAC6p93pc3iOAimev+JstBaDtnnfbCfszO/6qOdeCD4OT99IqDPnQ+cK6xGcXH2ZXyE/0b+fD2ZH+LZVZPEjMN4hv0+VD4+H2XwXb+BA4KOl1TIsP9mEW1b06fMiaPPhPvAYfmmeFSFds5EPobev2HWp8uFjV3iCvzoeSFnLSMYIH17V3njKL4sE3Q12FvkouXLSyC51/gQdLRU9NqhQz4PY0ST21hIHw5XSRZwEDz9ijnHNFDARKrk7TyGWg+0iSnlA+A2tFXTZ5ZTHwYIueJZPNgOGu5xrzbzKQINSd75TJQPC+9fPmZjBg0ibpqHyDgYe9/tzdaQzszix4qp/OQFI9uLxJRV9HRxblXmegozOEE5fCgMrq8mEDXPfw2f4kJJmBWzFSz2Rx3ahvRCgliYEGzZODcrg+933CZPs1BjK7JL/r4fqji1ZEDeONeeI20cgXn84MZiUysJ3PdP9E3u9XS12HrHm409ILqc2/t6I5gYELoTxrYYxfaG9K9sVY+lbDeDby5Os2KzXk3mBfOxvk1g5ZyrmK/ckGiMpgbBp9LbIW48AzvxQ/Ig335jDJyJLwJOG7yNRoB/szSHcpx4goZGFid/5+5J6XMRFuyH3ubXV6yOFiF2Fz5OcOjXRVpJXHmjYd5F0hla6lSMuKagUlpKNSE1cCGfDJPG8Rcs2By6dnIZ0WX+oUQdrePD7KxOP/Z77aIITxu4nGtb8xDnXt8ZpExg/UF48gh+cMGY8hY/4yWD2ANNtlojuE9OrVafyEbC1xWNOP3Pw6xfwjsqmVs6kP2RCucv0DMqtm/8IeZF/rM4suJEfSPfk9UuHpK7e3yK2TSmfeIcPT/cY7kMdMLaETKVzZrvBffCL15Ln/aKqx/3k7Ukal7Pt//D9NN2dPAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAfAQAAAAAAAA=eF4l1Wk0FWgYB/DukG6pG92K0SJj7yZarn1poVRkNEOW0nRDOLl1ROrWaA6StXJtkXFbzHCSbeacjlITZZlzHUtEEsJMIRqUapTJ/J/3fvqd58P7PO//vOc8r3PpvZy3TyX2XK76X7JnEvvnI6XR06gD0w2uzOqU2PO/bnBQgdt1/45UhafrSuVqUN9ugr8UrpX47V8Gf7fdn78KVj+UDevD6OgPawR0rueI2Axmh88UC+HtB8Uj1lC7JsJwE5z08zzoBNsaXLJ3QnGWZ7MbHOEeU/KAZk4ZQh/467OqgAPUR/gmzR+2bONXBUNh1OrXYnivw3hROGyfnG15CnYPlvtGwcs87R9j4HSFbW48DLv4sSIFprdYtUmhSGXkdRZcFj82kwtTHY0WXaf7vA7TKYBNNwpNblEugcy8nOZNG9jehhZd8+0r4SeZhm0V/GPJXPNaOHA0TyCHPfUpy5thoDSe+wQauFuNdcLxXxxbeqCeYEfRALTa1nt2EC6WZLqOUr/Yaf4EnPono/U9/ErcH/8Jbpv2Mp+BNUNHu5TwTiXHM8K5sDlhg/ICeE+vLF4dRslDOUuh9tWGUC2oecewcSXcfLhnpS58Zu4sMoSj62oyBdCCX1JpCj/bBrRsgEUilycW0NJPXmcDb9buKnCg2n5LxFYYsMTIbDuU7o56uhMazzSF7IZqaiXD7lCZV/GdB1x1Or3QC7ZmTA76QqOONPUDcOquhb4IVkrKvgmAWx93zA2C+stSukLgQPmD9FDY3nrQ8hgsfnesNozmuk3YRMCQneNXImG+VszLU1C8ul7zDHRt6hdGwbuuHLufYKLrvrXRcMGc9fNi4aZGecs5eMkkMvo8jIxL1U6A18WnCxPhiOnVFcnwlnfY2RQYbnek6QLk/8dTvQQHcwaEqbBo/LibFPJ8Pb3SYPwZbfd0yjMabJ0ByzVbF2dCL7UPfaRhb4QsC849NP7tZWginP2BtDXeczEbZuoeX5FD+cY410jNRxlaV+CjfdWJpEXy4rfk7kAt91z4scC7kJQYfv8vWZ8Yt/lnqKEeHEuuTAqtJiUOnCnSzT9JkAdvbxd7k87XVGJIs9GiQlJkWiYn947+MEzazFKZTXvApmJgBSnkmW8kz1hZO5Nqb/R8yNZcoxDyYmfYSdL/8tpzZFFW9CUyx0uaQ0qXnL1BOh0OLCLNXQ79Rgb1Xqgg1+nN3Cft3v/5kOSYfqkjl58vlZOl3SON5DinuoVM9rFuI6fbRe1ktq7jU/Ll0KtO8k7Bni5SczzlOSkQyLrJ8vSkHrItbm8vqZQ35wWZu0bGlMbq9JGR4anMVx4TzOyrW/vJ/LoE5uFHtUwd7hRzKEtvgMy8uYP5an0wM6E6hsnPy2E6nShmnmy+z6wVNTD3TnYwG9P6mBEdQ8wX/mPMWPv3zEjBJ2aQxhdmZRKH7eskb2VmVpoK0y+Iq9BkHjM5XJW5MXE+8/GJBUz3LTzmrhqFubsWMr88V9itocb87KMw7qbCVdUKLXmK/+KdssL/AYxFPeE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAegQAAAAAAAA=eF6N1Hs01GkYB3A0w7psUXt2Sx1sVFbayCkSvi6lZZ0oxFJMdilCYim3EnLXymWMawzGjPlFxqU5Mlu2jTqTElq6HLdKRRddXGtrfzNT/zhnTvv+8znv+z7v857nPed9ZGQkw6x2/LjPewL2iuMtoSGuKBm4w/vJ2QvT9VrJ1O2+uHL86dDqlwEgNtTLqnqEYIJ6x8HPOAz8dJ7J7W8ikLfHwXty4ii4Tdej11yPhiXja7VdrGNQnjlv8OfFOHznHPR799p4dDWcsPDLT4B/kCYnUu4khDkfHqgEJSHqmcwyrb5ktGUkhzVYpmJLT4xGBycNRQ53t3ouzsDZqUS1kKhM3F/oVkcdOQXn4lM6p3SyYFwtpNztywJFrzVzNO00lq5o6G0wz8ZjzX9fWE1kY2r70KssZg4c3Ytfl7nk4kRBgHyofB4SemOtKfw8jNHlWt386fAVaKQEqudj0/LXF6yF+VjPzwu8G82AsHRFnZF+AbiUHMaO+wVwW/fRfG1GITYyaY3XthRBt/2cqt54Edaljux3KCyG3uGRGwZ2JaDep3v0TZfg9tFBTUtWKfze5BkddDmD0BxbV33ZMqS2XXWguJdhUVdDmqC2DAnmvsvcqeXYGbRhQa9nOSj9tF2GvHJU+S5WC/mKCRuVpXZZXkwIJtIXZDcycXNmZnu4UgW+FZapm9IqIGerGTnUVAFLZx2XA8qVyFS2SrxFq0S64FLz8uZKuDz+eYetchXUqY2GTrQqCLIV4o2bqlBw2spgVpEFqtvCg1leLGzsbh6Y5LFgS7/yt4ZCNQI/0NvfeVTjxR+E4EhtNYrv5ftGyLKx7zx9RY8zG9OPH/Z5V7Ex3FYT/nCSjUemDLrGNg6etJdq/5XNgY5SJCNqgAMmm67+fE0NVo3ZOV4IrkHH5b03kng12Loyfu7t6xocv2E4x1vPRYzC94mRB7gwjTMyUi3h4o1JgKZTJxdHguZSV81yEcRJi8vSIjBmlB1WaUOA8JfvSfIhMPXKpD8wloCnsyKPkUvgB217p91sAnaaO1Vm+ASE1P79Pe0EwmXeqFl0E1gZV+iafo/Ay+hBBaUHBJomhj7IPSWQb2OxiP+cgNySrsRfXxGYYdpSTd4SYDkNddCmCPCLg1XkZgjsD+tt3TxLoEX22GqtOQIXD0W0XiV932b8j/U7Ai8YfJ9C0gem9mn9pOmhh8wo5P/S0+1hryTdHCJbaUw6tClidhtp7i+6Zx1Jl7c8+3E3aaibWrwH6bMlv3nuJVVSOmPsTcp7OnqQRuoffdlwH2nvtnN1Im1u6X0U6X9p3ED0j6P6uhxFTs/2+4is6okKFvmoPSVc5JaajkiRscNOMSJTOm/Fihx0ajwmcqTRRNwPBmNOit0jqBfLogrFlh64IzY4aVhsoOqo2M7iJ2IXUcfEdtyUaGYg6S/ahyU+z5R4rVBiPUdi3Kc+pP9Jq09+7k8WX5ibz1s3l6LZPL8UL+38/Pvmr8+Pl3aPtP35+aTl/7/npL3fl+qUVt/n+X9BRkGdAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAASgQAAAAAAAA=eF6N1GlMVFcUAGBAsIAjIIiRViIgVIFOA6Igih7WluJA4xQctlLLWs1QCsiiNExlsS6IVSpLsSxSahFwZBGEERibwgBaEdlE73sXDEalllV2ZXpnhv6ZhOD78+XknHfOfS85V0FB8gxAS73SjehDCFx1XM6dH8aQYuReWzaIwaph/HVkDwYb832Vhu0YmFZzTVmNGHDmvVCjKgwHrfRLy65iKLqXZGZ3GYO3SCuw4ycMQ82C2tBUDGzn4xpKxzGMZPpzC7/FULO45r5zEIYgRu32VxwM+R8MZGexMDgo7xJ/4oDhek9Q8PxODK1mDFGFGQYx9JuEb8awazia99F6DFxO6sNRVQzlzFr92rc0nPKt+ippgoZj3sZZB57TcGWo+k9jREOFq9bgwgMaVHSejvU202DO7h27WU/D6NEcnM2nId7ukYD3Gw1Vk5ByJIeGoo8TbXzSaQict+/en0zDi3prH8d4GtieGs124TT0vIrdsCeQBg9zA9ZeDg1CzfpgJxYNfbpTAe4ONBweP2HrZ02DmqL2JNechrbyg2eSDGiwYSot5uqSurYWVp06DRlenJjHYgoYqmGx4tcU2P9R4rFtmAL1hK43npiCtZ05vNRuCra/V91T10bBpvvU2/FGCkwMqGlmNanPTm8KL6GAO63AqcijoGa29PZsBskz0ZjTaQr2JCdMXUykwHEiruNZNAXM+a2n7Q5T4H3J2jorgALln9vmpr4gdVuaNH0+o8ByaKZfuI/MY+VNMHdQkGFr6lxoSsF8SNjWTZspyLdm/liwnoKoE26qlurkfAbuVp1iBFnW4ZdTpxBUf79KxfMfBIr1bpFOgwh8tZhM/z4ELrvTBFf/RtA/OVZm8ReCYvtyfyUBgsTHGzK3VSJI9tvxIb8EwWgP/1BhIYJrQ3UFar8gMFxI6Bi7iMCrNGfuyzQEjB7tN14nEWiIhB5PfkDwUDgy+m8CAtHdc5Fn4xDMuOWb8KMRDM3NBrO/Q3BgsvElNxxBU+/0zqkjCCLmYhYHvkFwx1AlwySM9G24s/dWCAJBB+tSejCC60zlprwgBJyFLQU4EAGbvXHRlXhWJ/R819cIbFw54njiDEP5uRWxaH9Uo5jsyfipkNZHRL6PxYKA+MA58sXvRJGxbXEWEauUVKURz/TXjKQQ11pGxfOIqoJn1xKIDTO8NceIngGd9nFEUz0/9VjihQtGu2OIuoqN/KNE5pUMT4l9jgw9iQWfJk9I9vRmg6hfYoS+ertEbvf7Qonp/Kd1Em+vW10j0YhRXCWxo8uiUmLuus8rJGrZiqT77q4WK9V01EXqk19NpS5o60nlJmhKtR9Tk+rbvlqqUKwsNXd2ldTZCJnURpk1L2X3CbdTJq9N5o0GmeI6mQtL986tJe8u2bykSC5uWUaRXLxcvXxf+fdXmrtcfqX5y+Xf9fv+z7e+Y3/5eKU6eVf6z/Ln/w9qjTb/AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAnAQAAAAAAAA=eF511Hs41XccB/Dk0kzbLDpTnjoqqanOioiwz2gjThe5JYdI5jLhzFTYnFOeUDxzm53lEmEO0j0Zk9msKU9ujy4SPl970tPSxaVFcbDvOb/v/tgfO/+8nvfz+34/n8/395zvb84c5W8A+veo3bdej9CXVtLs9IrA+Uy56N4IgcBHsZO1QwQ+5vF7dB8RcCxSECEhUOcebJ7VQ8AkJ93z3m0CidH2C5e2E9ge9NalkJsEnMb6RVeaCAwtt5un1kCgSCSocf2JQNykZkjJJQJjMtGi8SoC49riVqGcQLBugbT0NIHMxxvMpvNoX37yQ+/vCRQUPMuuySDQrf4z8FIJPCx1eHL4GIEzRb3pvRICzvKej+zjCMg2Zd+q+IqAQ5DPvgWRBISC4yMJoQTuzIpjnwYSuGUR/trHj8DB8tao1t0E1q991g9uBMyf8h2ubqPnWtGYv9aJgGm00VCZPV0flb92mS3tsywlsNCSQEeiTdqSDXQ9T1deuIaAywd+l5eZEIhJi78gNyJwWvu3gnWGBPaqn4irWUjAbP+az+x1CZTz1Wbb3iawKWy/3FeTvtfqqs3PZxEOHTevl04iGN/3WKX/CuFxfZjkzDBCxWhro8MQwrTag6G+QQTh8xczsQThalbkFO8BwkWvG6TmDgIePVLl3YFQqu61V9GCcH1x5Ovi6wiX2hrinRsRpLP1j8fqEOy1cj4trEawcDPMF15AiL85qJisRHgqIylnf0TQG546EFCEcMtk5xteHjVPv6QzB+Hrc1f00jMQxFmyLa6pCMF2K48ZJCHsSJLn/iVFKD5l2d4Uj6BTd3TumYMIWn5ltcVihJVpMt75cATFkub+28EIfEmsl0EggmeRl+CoH4LkSx2h/h6ECMHi77o9EH54sftipyuCwxPfTo3tCOOKhpBYZ4QVXa0KgSPCc7H2jOkWBMOIgPKITxBiQycmxu3o/3SkufYPG4TK8x3Z3dYIbdJvzD60QsiXkJgaS4RV0VN58RYIg1o2UvFGBIEssSXbHGHdnwNL+8wQyiLkLk7UcINE/44NCEVzFnRGUb1N5kuNqb9qX7nxhN6H5JIq6TXqL1qJL3OpJ1dbEym1qcUs6ADV1+zktB/1ZYVVjDvVO7ugS0jdd+LOHkcqRIoOO1CtDK2vAfXz7ui7dlSbvxuTbKmllaGnbahnU9dpKg2wff/UZurUOO5WKmhyNlXKM0yerzQr0/6N8p6+1/bwmVKfaY1HSo183hlQmuAy2qfUVkO9V+mbmK4epcEhBip7D5Wr7vlE8X6VOjObVRrPLFdZ26Kv0ufEfJXnauapFE9pqMwNUFdpJZmrckzBfTd6qjlbvuUUiTmrQzkTfDn5Ppy/7+IUenDmO3NOsay+k9V14fTfxhnDsp4npwfbt4vlBJYPsTrWrI8B63/ZlVPmxfmuiDPMm/NlIOcOlkf9WR82TxWrs5XVWcpyCuuz0Z2zzO2/OZU9X8TW+7P9biyfYvksm6uVvSc/9l2eYPk4q3OXzeexlTODnV/Kzr+anf8LNoeAzUHYfl/Wp53VLWR9hpk9TMLE//Hf5/8ABLvzlA==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAVAMAAAAAAAA=eF7tze1Pk2cYBXBQwkhxgkwdPFihK4UKtYKzFXTxji+gc4iCE9OGMAMW42RInAYlohimMhS0DklHFVHrC0tHaQQzQOaG4BQDFhFYRKlQFg2D29dOZrV47qf7tn/BT7+cnHPlCs0ZaRdMo8SqX/dDLbxX9nB6ynRK8pIdKvePKdkjmZZqgCfDy0Ni/Sk5dHis2gaLJHrn3gBKLo3SqRxHye3m1Bdm+Ny6Vr88kJKKvpjJfVDtvXNV5gxKGs7nqB1wrt9pZaGQktZqtc1vJiUZQZPS9PCP11ytKIiSjQkj985B6e6/esOC8a/ya+MFuNPHqpKIKMlVnB+ohCKDKJb7BP3jS/u10LmoyeAppqStr+LsLpii+qVgGI4pNsepQnBn9hlthYFJgl2REkq+G6r7Wwd1z7bGjcOnXGlReiglS6v21LfClq7v70rCsMv1fVAAtarMu1Yoy/inMUZKiS3rg+NaqPnm1YZHMOmIULRwFiVlJkvPYWjgNhXchyHhSml4OHrbses7YFlN51dX4ZKUOLtnBCU9g0sL42Gzp5A7CmWlYmMn9HKvIlNklITNcHYnwIvyb7OLoOHKet8WKJA7Ljugv8aoiZqNfXaDUAMvtG9/WAadZ2Sm6/CnROWhlzBeM7IjWE7J1aja7JUwXeGRtw0mVWed0MHcXpPlCjxQ/nugFQ7G2feOQ4tlqtvMOZTk/Fp0agGMCNamrYO39RkJWdB+88Dm/dBLZmssh24TAlZXw7rPK+W/QV8PuskCh7mDAivsMIyHjcBKw1DXKxiUf0Q8IZKSDRlDs71hpv2t4CPYkdjWFQAtWadOB7G84lZxCGwcDDVLofFpjVgGV8Yq3shhXt3ENVHws8L6uZ9CQ5rw8jwoq/9wWAGHfPLvK+HZgyU/zofN6dqIaJgbvVjPbNrX/4RprEqZEwNnmYpTmWOOL/Yxl/x8ppzpXPbMyIx87N3AjPFYf43pNtB/k+kv2dLBlOlLOpl2RW0Xs9gi7WYWLBb3MDlhG29NYnQvU1eSzxu/28R7x9zOu8B9gFezaJR33uhLXvO1f3m3Nr3h7S928lYYx3lvqN3+ZCa3uNzo/C+L3XlrlC6bl7ksWeXSL9Fld5JL3Zcu1cnvfe//fQeJxswKAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA7QAAAAAAAAA=eF6d1CEPgkAYxnGi0Uh0s5AckeT8GEYj0UgkEvkIRDcLkUgk2oRGJGozGnje4H+7HZh+e557EZ13F0T9YX9/H4MdjGAsExhjjs+HcrPQ4M/1LXQ9Pz1nX9D6UT5kh2w2skWuYeXpC1nKTKby6sns186vnTMzrHPOtc7fZ14g+3+/79Ls+ryz5z1mLvl/lo6e2fbDTXK/UJuz/dfJXo6OPEE7TzynPEdct8x7w3rXvcL7gvfKCbK3fJYXmcordPW5LB0W0PpK1ittZCsfskM2e+RRvmQwzH6QzQnzm+HXUG497mQsI5nMfgGdUa27AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_168_t_16800.000000.vtu
index 14d01bc47b9fbf4a2e1afec821db41b1c5ca90e5..fa372e5112f18534d3a5a5c1640fe066aa9ff823 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_168_t_16800.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_168_t_16800.000000.vtu
@@ -2,34 +2,38 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.92006021879"        RangeMax="0.92594828333"        offset="132"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.5542361529"        RangeMax="11.439786828"         offset="2832"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.92006021879"        RangeMax="0.92594828333"        offset="84"                  />
+      <DataArray type="Float64" Name="Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0.92053604938"        RangeMax="0.92635557455"        offset="2796"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.554236153"         RangeMax="11.439786824"         offset="5496"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9592"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9672"                />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0000020518e-07"     RangeMax="1.0003191639e-07"     offset="6936"                />
-        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0.00047596918672"     RangeMax="0.074051716673"       offset="8596"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.42594828333"        RangeMax="0.49952403081"        offset="10448"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.46297414166"        RangeMax="0.49976201541"        offset="12200"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="14008"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="14444"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.0003191639e-07"     offset="9752"                />
+        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0"                    RangeMax="0.074051716673"       offset="11408"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.42594828333"        RangeMax="0.5"                  offset="13280"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.46297414166"        RangeMax="0.5"                  offset="15072"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="16888"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="17324"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="16512"               />
-        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.92009169496"        RangeMax="0.92594828333"        offset="16580"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="19392"               />
+        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.92009169496"        RangeMax="0.92594828333"        offset="19460"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="20944"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="18060"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="21304"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="19664"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="20212"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="20724"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="22908"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="23456"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="23968"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAyAcAAAAAAAA=eF7t1fk7VYkDx3FrQ/Qtekqp5psl2yClq0IOkr1bErrZZhKVSm5Ika3sla2UJLvsqciMrS9PxQ1JdBs7KUIOpqkIaT7n3B++T//D/PR63p/n3nPPOXdbQ4oq3GGThG9+3XpZeDlN5GvkaZLIFeXbvQgKymz1PeZFEnfHE+RG0E/fCmeaeJMEp2wqpwF7/9ExPzkfkvhVOZabjd37jp3gN/QT4b7SICitXKv76gxJNNRYGx6AhlmJSvm+JHHyd6cL6tDioBnH/yxJXN3r7SMAE7kW6yzPkcSQqfC6V+iWlUuUpf1Iov1soF8Wdnn9hfEhdBDDOtYT2kZEu5f4k0RPxZSDDlw2IZN15jxJbL799J0gjBjYlKQTQBKf7AyUGtF9jooWC+jPy1qUYmBRikfNo0Bcd3T3+z3Qzspr6nwQSZxivHJbCkXl04a2BZOE3Hm53GZ0z6Rj6kf0HbctBRHQLmv12oIQHLfRk60P37F0fnW+QBKkqsHCF3SIk8oJyYskUaglsa8Qe3Y50+Ax+g9PYw9HqCcr8YYdivsxYrZ/CUx+zrX8OYwkFEpDhKvQCj7C4Rx0vub+i26w87BQjGc4ztdc8cVSKMrWclsZgftR+NtYOVrxO9+ySnTgUdfX9vCnx/WX7SNJwv1r0rUFtED7WO8s2u2+g0IaFC5vFUqKIokM1xVXdsA8mw4BzWiSsGLIN3aidy4+3NmElpUa7/OCvdbtUYcukcTK+qZmMVjrHLFiGjI/ySVmwOv5fQFRl0niobLNdgbsVtn6ZPUVkjCoqqmsR/tPTo7mog+zqqVt4eUh1ynNGJL4L3/JwbfotOnPHTVorvRHfw+oUzCfvSsW99llMGgaTWRzbZrQmft7jgTCkKPd48w4kjgjo8MQhJlTR463wpitrNEwqDLMbdsTj/vbFRe2CPo+CJR/DgcadMTCoHRexW+mCSQRHfDAnx+6NfZfqoMF8bs7/OHCOdPsbVdxHdWHZT+h4zLNiorRRR+Z9u4wWVk7Z/01ktjRdii0D13796m4eHTg2S+pe6Fzm94pvkSSGB5xKqpFb8+cMzyJ3uf9V7E67CqfFe+A/fb8OcnwyUBMi/51kki5MZggBCfDF0flwt5X78+egFHn/7dD/AZJ8HNcDrShGdHfSQ+02o68zVrwU8aaWy8gI1tYNAnqxLgYqyfhe2HyvGca3cen+Fc0mpvPLLGBG96WpQzBuhOdIffhzSl7c72bJMGerbIRg53cY3PXoFqvkaoLbK345f4olD1Zt6gCnj4+cUI3GZ+7x4HD4jB5+NvGKzBq47NmJ+iRkTPXDSNTxivvwiJXjZdKt0jimNaWB/No3cqR+17oreljpaawx2JVWjXUn2LVJcA5JZFkwRQ8P6epuwtdweHLNkWvjYwUkoGiQeaPLsEsyU5dV9h3QXWsGZoLC4fnQpFJUkn8Nn7Hbli/eY+WKOb6m6GXdojtVYDH25XfhULGz97th2A5a5PLIyg613biNvSS1Zz9DCs9T617DVU/+hb8kor3pSduWBz6cc19nCGnPfiZAVRaNWcfDwO+XGrwpnZmv3MdNA4UGsyB6XcOXJikusFImgu1BjqerEkjierdZWwBOFYzomQMAzKej6rBP//YfM+DMkQh1A5+zI5xSIQ+M36GQfCNg6RGJWyVqlLIgd4V8mq9kJOwVvMZnJm4ZrsAwzdsdP8Ag7UflqxLJ4kOzS8tYrDq7jldHaheKeSqArPqk/jtYE5WioYJvPe6WIgNnw63ah2CjcccLKPgfHhegD88LMMeSIOtJvriV+EjX77GMrhk9sNYHgwoDlzOgaxaK7ka6vHcl5xOuMw6uPYFzBxiTY/CPa3zLQOw5uhE8QwsM6l3mIJzma3zwhk4rsWecwvU+YknfJZA96e6M8Tg4rKJgrUwLF81ayVUT72toQC1Wuq462HJqlW31GGSkfYbZShxmvWdAR/sYnZtguy8W6d1YePsmtfboKGixGJDKP/74KgeVPFJ7zKGLIUaFSM48zlzxhx6jDoWm8InOoW+THgt7GWYJbSWsXK3gmJuxg17oKOByKA1/Nbce3Ef9bqy/JM21Os4hDfvh3KRy9PtoIHqm3u21HUplgqwoECpBnGAUntC9iDUOWAVSu0PQ73E7KHpf6ovUXthRPpTqj8sjXWm5M++ynKAtyNTRSgTthq1UB40iYqh3KWWouwIe6NeTlPtE3rVk2rti9NmlA4alrmUqSGJUZRFLmovKZky/pWUPUHfpiglfTj9lMaLZkWcIFv5p3mq8R8mTfX1KwYSlKfjdypRKpVKyVDWq67eTFm1qE2V0sTMcjul13I2g3JLU4QepeSDKh1KDX2mIeVInLk+5Z1qgV2Us/PxOyk7iEljStWzo/T+VcrClPLDlQQTSuUFPTPK8a4aer85MkL3FuVYWlawkzllcfB6WhWihDa7OpR2mc0w7S73Z7RpOWIWlIMrZ+j+kyNPd3WeFO27GwxaqWZVWvcmfdqsBW3abk1TWlU7I1qm4G7ab1HmtBIae2ltw5m0Jox9tPYKVrQCwda0t9p5e6btftoVJG+37eH1+Zs8LbfY0CYt4Sl5jCdpybMmkucGX55H8njWx/Jkl/AcL+T5vYKnXznP0Jofd5G6H3dJzo/7jaZ//df/+w+D2YUWAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA5AsAAAAAAAA=eF4Vlnk81Nsbx2esSZFCSinFCZWiiCydiKJbSJI9l5A1hG6Xyh1L1i6JlKyVIhFJJM+kEi1KZWtuSUjUtXQtY5bv93d+f81r5nvmPOf5PO/P53xHcra5LQkRY/8mt9q46jjC3IpCiuswCh/8P3EyDoix59tuGpd7j7CvbnWd3ow6bj7kU9cywYOlqkl7jb8gbB7itLbTfhqKdl1L7DQVQHTzXteeZWLsPUmvrKybpuG89bVci0sCEN/gZXBqUJSdJ5oasPsRwqZrs9rtLyI8/Nb504J3CFOlhQfW7UO46K5JtqoFwrbqBo/W9yO840f5sKcLwsxsmccnvRHWu5fNU9BF+OHFgPgB9ymw5eOkcekZ6NM/e6SpCGGV3NR+xUKEL5hujawQQfgJwzHqYgfCx9htBuMZCMe/m6KHuxBel3JxRvUBwrF+Ql2nboS9Tpvtt+lEWGNY94kGG+G7OPPQ0haEldO99bVvImzCUlV4+Rrh48v52xi5ZP1JJ6/fYhC2flE//vTyDCTdl3LS1ZqBBmUsKl1G6rqP6pflI2yxlx+r8v++rD7zJK8iLPGwYOxGGsJ79TMsfpxF2DBi9YY6sp6/QDQ6j+x7RDzRdCIYYZHej1LREQg7OR2wkfYg+gcXh7eTcw0ukWmMNURYtFvwb+dmhBXo8RP88wx2VnLC1747IuzWS5z5LncQrvILNlI8h7CrzrOY/Y0If0y5f64yG+G5U3aas7cRHh0ttLJ8gvCmgQqp/McIM5rqv8seQfjSQzfLKhEaWNZ6Pau4DPa/q2urC/Yg/Dn3rzM1tQirn9U7/CfZ/1ZNmsKmczQMt+SaPzrEg+dyZ7aaEP0fVeJ4+QsIvxr4HnpiFZMd1NWWFNCMMOta8kdWA8J+V8s+gATCu018E6aNyDzfXBbuqZ+D9xkXODo6CJvZNu+RJOvtVVufDvTMwUB/nO9Nor/cIq27PhsRln0i1nPWicEeU9ljeHQ3BcOqkwbBhAfmV3aQy3xSR+eHFsduBkL3p4/JE91yef9923RXAHlXn/56LY/wyXrFn8HfBdDf1zMkrkdBASp0/DxJgfLQxbf/1BFOJuJqJ3Yx2JbRA8nDVQgn7dO6EFRDuDrvzWxWpUHuisOqb9cRjto2XPqFzC1mNooxeUoAK5UjA/cGIMw7V8ixIHPXW1mv5UL02CAqvu1SDsIR0GdeaofwnV9Kf99kzcK6FauSptUQbp8dDPW5RbhAhjfzShAey3v3PWsdgx3jGZjCcEY4LD+o5YfHHESvFKk0mlbH55jhzKjzCNsMl/+YJH61nRuNr2aRvu0XWe21RbgrTr+ggvhq2UbpnbI3EB4p8jY7QPa/vCrm9BbSX45jDG+oAuGDnXIj258ivE2L37D2EMKO+3XeY8KL20/fnUleCK8IrIvywAhfzbDRz9yJ8M/Bmwyxx3ygFlpeWkx47la0qVpTifD17aFZ98kcP5T2xq32JfyIpbwdJPXENlVGOBJeQ47McDZkkueOSoqFBxFuCn4mf/v/c5b/fnp5wxRwdv3+640ZwosTtpi3Ep1iLB2N+64QLld+XPKV+CDiwVGdV518cNC6MxSfTnzAlLr3xB3hfkduu/xRonPOH/NipBAua+7zn2GQfjyPPrXwpSA02K3UmvzfaObEsbOnEO78J3ORJuFqFpWqaKwmfnyoaN+mj/DCOGa5yRnCZYzXdoelDHaf6dvLgUQHp+6O+yXWCGf/FmUzR3KCumGxY4vBNDx38+Vm2RB9qxxccon+68ZT3rQp8OFI1LYvz4gf7xlaDaoQzkPed4aX+SO8vvdKnBbhyORQmlM/0UV/kFlWSHLUrUY3lwOEj9aOdwWkzrmj/mvKYxGW8TwQMJ+iofWw+6Ojeghn5QbEl59G2LmxYUs82UcldOHg9Zc8KAzmj/kSLjV2cUSu5s7C4WVSablxCLcWa8rbalKQJ1VzRpnkXbpC1IKFJG9Z4bdGpY0RTl1vkxeejLDUWCcnMlsAbqXbDsraCUCuaadP198IG/+MQxPE31KKHz0aaAGE2W5yN6d5oNzGVygi50+4YhXldZwCNYlQi1AThKdLJTNsXBnsd5/0DMxIvYg27Q+mJTQw/zFZ0FNMg6Si+0qWFB88eDzDz2kU9Np9zftA6qx9Fq+xlOThmK1tfDipZ/ZgdslEKcLersPOHSRv+puu5linEv3DNis5kvl0F2e/LenmgXdxa4BXpBBiR24Z+gHhYkLsRhHJNeXfzUVLCI+jg6VqlCbCGckJRv7En1sOCmsNd5F5Ly9bHUL8NTo/eaEqqcP6cU7OlKOOq12H7OSJT66GeR23eEb0GpnZIFOPcFzry/nLCI9/puoo/2VF8lGo9P0buQ/ExbgqVSHER3VSuhZbEXZw6V/faY+wMOj63x0OCH8roYvU+xnsu20Snx2JbySNP3l9CaNhvmiCVPFPPhzabndQifRfeQNnrFiLcMA8tTCPKnWs6tHZMJrIB9n9E7lVKxnsShmfLllRIZRlaxbmEb/UhFub/ZxUx0bbZkseLOHClV6NBbpd6nh2VXO9xjyED7n1N06Q82vKFzp1nZkBWe+PnjNpAuhR8Q6xuDELtYh1YuAgD/aH5e+RIP7q6q2dbiO+b3ac6rh9j/j9U7SbzTd1XNPyyNOY5NTJH+nnU9rVcXsiN+fXEB9OdEjYFlST+37W+21lE+m3M9BAU5oC1ZTaBnPC+zJVef9V5URXvv/Sb4S3mqbcnW0kjwwO5kZokzwMOtv3zkmF8HtyOxav4kGpo0UQp14Im34d0xreSoOSe2xBqlAIEQHPY3zaGWxJmYl+N3cGe22WeMAaFy7kL3KK3D9NwT9XSrnOqQz2wwTLkMZ8AXT41oV8iaThtb2mwoVgwl1XWMXiLAHE5jWIv1FgsE+2WPYlSTPZKfOpLJzOB5+ohBpOEwXjx2qcPf5isDWC/42eeEzByDqvIJaEEAJcX3yN8qQgf/3yrleyTPbyDtNA5RUU3NYOSZtdSkHR9OkP95IpmLhTsdCkhMFODJXc0SlJQ58IJ+r2IxpKXlhsjJycg8iCrPv8aQb7ce+FU2snGezVMQqXAr/QIG729j+/HAFkypTnfR0VwHfzjjMbJoTg8G2SU72Ghvs3lsV9f0PDr6Rd1yKYFASOFD/wmxaC8rrEit9EKNjBknW/Re4fy8GmJQphQnBxi8/InMdgZxwsbt5tQUPYJeuLG+NoYAQX9c1OCqHOf/2pOU0BiP7Hc6p8Q0FwQGNH9k4a5izHdZWVKNDu/GMk+x4f6v1u1I2Z8eH3nIXMdDUKopU1cg9sFoL8E87PeXFCOFMtOFInPg2p9RtWso0o8M4WUVQcE8IRjylOpFAAx5a1sP0lKLjAemgYt1UItzLLnVgsIUjnjWd0lFHg+95A9Q1XAEMmui7cBiFwhNKXXYz58G48bSqR3P9vz7tqLyZ8drYEFi8q5QGTIxVUtEcAnsmIuenDHGx+1W1f00zWZ9IyDbJCqB37aLUhdA7sDi1POGzGg6nhT0P7Zvjgmj9n73xcAE+qX7c7pPBhs36+b6wzDVYr0pzf6QjBztBYuew6DdKHH6Vn36PBoCx9ATeZD1ZLPwakbqRAjvtiWmtkGnIateX1X8zBw9CTK8PH1HF38/ZrYyQ3WxKjsVgmF2R2z+1dQnzCsa7rKzZVwxntUiz7wRlwq/pjSLJXHSfuU3o9o6aO//BMDN9JfN2RWCAtrk3ei6Ljor46CsFn3uVFZucFsFanX8Ma8yHJ6PNLpwgBxK1XpFpW8yH/NPfCZCB5L/rWHBdkLICpV0F+DKJHRfbGyB4yz1x4LXeOy4OinQETyvOEwC82HXMjunhTrsB8KATZYaacHMmPhLPmPuXVQpCLHn/pWicEdQmrhGxrCtbUOkXK76dgmYfWcwULChpOsD037iH35g+jva2tFDwZ/atb5SUFh7teUxNGNOjLTOVtfE5BxbEeHW1DGmIFuwYebKdhQKl8ea8+DTNNv/zUDGhofJb65xzx89SB0620Hg25as+OdfFpcq7GX47kd2nVswxn8p1VsaU1nXz+D4iVMYE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAuwQAAAAAAAA=eF4d1Xs0FFgcB3CVUbGYyaNi9DJE7RBt5b2lhthSFhsWHZXy2LUqdUpTKpTKYxuSSq+p3VrN0ZJYTamtmTzGQRqZiaVDtew0iI12TNrvz1+f8/vd3733d/+49/bL6pePtKV4KR5tM+O8TPFquTzz1Bji3D+P/KWjSPESuuk76MG4jFK+AfRm76tjwojyKFNzyLDZHmkJ83tzrs+jcYGyzwY6hPhwF0O/iBeJS+AZs5Mly6Cb6ZZ3btDUPcpuJaxYdHgLD46drDnvD4utlj3bALN86xghMOPHdJdw2K2zI24zjGpPKtwGn/cIpXEwR6odTIT81EMWybBtk533fvj74H87DkFdxvCpNKg0MCnJhGczwxqz4dtU6TsBXKcOmV4IOw5M51yEJYJODyH1/6Il6AaU+L+OFdH5R435pdBZ+G12BXzKvlkkhp+/+aL4EZS37L8rhUvG/6mup/OVhz5tgkd/E8vk8IVKv0lJ+W6P5k7Y5eXT1APFAxYNvTB/RPRUTfuGqKuHoDW3vnwU9rc63dRCl41G5yYpU7wO5fgd14Pvn9ftMoD3W3d/zyS/s19lBr+qqrO2gMZRTlPmQs161y5rmnfxj0o7+NHjaBYXzk2MiXSGvg6Oi1ZAQ9mNIXcol+ZXrIQrF1fu4cHb0gZHf9i/Nfd1AI1ryvOC4CuXAY9QuNNG3RUBk86F8qOhVKFgbYf2W1lX4uEx0VXbn2Bsuu0vuykvcrXcB0sYuzL5sDZr67vDkK294pMBOybfKzgBr0k9O7Lhl/VV5gKYvFTMK4B7sxpjz8OI3COplyCvPvqEEOo+Gc/4Fap29iUXQwmrIqQEDp/QLCyjdYWBqrsw/GHo5SqqT7iz+gHlO6cpHsEUHb0ICWSqI5tqoMm9WicZXHWbkdYIT/cqHz+DF14z38uhSHjAUEH9DQzNbIfm/wYxO2Hz1aMjr6AicUd9Dzyv8/7UW1rvDcu9D95wf9ymgrEJn6L7oUb2RDkIN3fN/noYildMFXyg/gMKW0ah96sOHQ28sqaPraX64lbbcVi5p3qODu5rzgep7mQoT2cpp0DfoIYLDIqNFq6fCpOsNqmnweDws3x9mFW0cMwAfuQExBnCc4EhNUbQkZFtxoSlbv7BLBjf/SZtBuSIH1w3gfPDl1aaQvM7t8Rm8Aef3DJz+HPq2qKZ8Cabt38W7E8f9psNt22WGFnAWWq7WnJjq2CvJfTW7LZgw0Uaz3Iy3iZ6jRV8WbdeRgqqd/rNgZkHXR+SAX5M7lxYdisyj5yhnzlE6q0b8p8Hx6w+FZGcREYf+UwZ4zgfevQkJ5Fy8TEROXJG1UO28wbNF8De4k4e6VKjTSJ9DmYXkhyX5vukZeKkTlJ7K0xLSrjGs6xhm32wE3m/O3QtmfbEL5LUzw9MIi8dLzhCVqZ6nSYFVfGXyUlcDxEZKG2qJB25qx6TVbrFMtLTfoGcLFBVt5POefndZETm3V7y2APnfvIzhz1MxohSR8muffFjpO2G3nHybZjuZHrHk4NqdSfe8+WeU8ng0ITp5L3SMAOy9KSxIenMExiRpxP+NibLrpmwSJcaixnktOOfJ5zDl5iQDpZxpiTTXjWhQrJ64t/4H/I3GS8=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAASwUAAAAAAAA=eF6V1Ws01AkcxnEyQujQ0WoUdg9dFquwm5WdfVArapJbLrGaRETaaYhyy7pncTQRleRu3ObyJ0ehdnEmGtmSNulCdJGiaNLisPufmfbdnj1nX33ePG9/3x/nia020wwQMl0r1D8QMPX1ikr1dkP0qT0tF0f8MNw9nX/HIhCbnQKodHEIgktd0/d5MxHi99nZPMtwBD1cndWlFQm2S0jnn++Ow6PpNXtdTwwmRsN3u1bG49Ernw3XrieA0VET2WecCEJ/jHYwPwl3cxyqTyxJwda696NqYamgPFagfn4/DRvupIY32JzCZuU4vRvVGeB+P7jNZ0UmKLPJmszoLGSv9uQpjmSjsCTbMNswB3JVIsrg/Ryo6bZmvcg4jb2aDf0NNDYeaS1M2r5jw4k2PJVTegZXdxVOF7vnYjErZClraR7ab8bZUZrzMBWzpNXz0Fl4XdZLP6yTD778dIudKB9RNXmHB2MKoJOyhmdhcg4OC+wCp0fn4Kf1F8048zwUMhmN3dYXIBTwNYxeXwAldCSIfr4Qtj4jvZscL8L/t7N773+8CI3IIX2byiIkzuRZhLpfwmSH/R4T+WIcTeimU7yKIRfblNHGLQZHFEb1UixB7H66Qr9PCfS061zNiBLYxY1qMpVLccTCfmeOXymw31CF3ViK4CjRnmPLynDQOcV6C6MMoJzrHL5chitWO+aDVcvBaH/wqo9Rjrq55PN6TeUoCE/VpqtWYLnjylAfRgVuDgReol+ugK6Yc01/WSXUW9Xu9vtV4mF/y4vQhkp0TjxWeK5UBRYz/2sb3yqosVSS4vhVyDNwmS2kcHDQIK2kyIsDpkFbSmIdBz+WzfIc5KpBNzE1mnKrxipzw8WYqmrYEh7fvJqrxrXA6oFvnWqwKf3p25CSGvhrNyScFNdgTETNitxei5ddWRrO52uRkRQ2rzpRi+3FPOMa1KFmff5+I3Yd6LltppnP6iAQ+Dzu3VyPgSr3XVPp9ZCTp3VODdbD2SS1/pYJF0s3Wzj8HM9FTLqpjdJtLooss829vuChuWFUN4TFw7UutfaNHTwU8UbnRCp8TBSUxwnN+LAvknt3wpuPdX5K8/cS+EhIaba+UcVH49UcM8tePuQ3HnZRE/OhZJ5pZ0QVYMVOA0cWTYAf+hqfdDAE4JSoHltIFOCD32vfhTIBuFU2wtIOAYJbH/b0PhXgo+18YuCiAHlh7uNOVAJvV4h7oswJ+AZsOdTnSIA79OVLj30Erg59yFEIJxAx/7jnUTIB998TBt/kkndpkO+9tYwA+55+mZhHINfcWo7aQsBweL1I1EmgNUYxzegWgWfL7efc+glwrtM8ggYJRG+0ikgaIkCsMzMVjhKYDO3+Y+dLAhq+8n2m4wSe8Gd3pb0hQDt8hho6SWCV1Ym8ibcEVGYOtOhPEWAJNC01pgmsZwVlikh3Hom1931P4MVrobGIlOtvFaEvJtA71r7oRzq22iE5m3Rv/K9CAam9MadFRBp/0l/whJQtTvjpDWkzX991hnSmqZGxQLrSs4uxhOxP9lrqc0XSBDO+tzLpKdMD6stIn+VaWamS9l3QWapGqjOge1qiuKZrUuLu4civJP3aItT3lDgTVcySGFtRnSxxqPRQjsTPEykFEq/HjxVK9IpWLpZYy6SUSqR83FYm8fZ79XKJwu9+kWo4OCC1q0JZ2sm342ulKl6xlBodbyc1aN5B6skHdKmLG3ZLXZ7iLDXAzUXqslsyuVqy7k5byxx3lpm4T+aaAJlth2QePyJTHPbvMj+546jMf7r+f7X7pE7Ep7/A+u/930icEtg=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA/wQAAAAAAAA=eF7V1Pk31Xkcx3FUk1RyzxTnTBnVEEmlxS4vRUKWUaQkisiUbUYZbbiWZsZUHGWfFCVZSmQfbkYUQo2i5fNdUvay08Fcme+9zvwR89Pjp/fy0/PChqmbWyZYICMnvmIHQePdX0/f/sTC6Z6pm2I7i9BVz50TW1k06TcdU2hgoV/J8JMFLPpzMrNWPWCRGPeUzs1kcfTgwArDP1gI7Qo9nsWw+EqrutgzkkWPcqWs1BkWVK6ld5ovi4lquWZTdxZVVUWbPzmy6DzxLjHBipvr1Zkx286i8YX70SktFgtXL3qSr84iWu+Nio8Si4z3ASEaS1mU20W2DEqz8FIsUSyZZvDB4YFr2AgDaXPlBLtuBn+zhdXKFAOdbXLt/zxn4Lb4/VBbLQP17W1DReUMNv2YxCbmMdiq8frPkFsMzAYRcTyJQZRisM6Byww+jxq/3B3OYF6h9oEdQQwO28jWGvowqKYC5Q3cGISprLTa5sjg1oLyoyZWDATzxl2stzMo6OfrHdRmcP8jb9R7HYP0rH1RYSsZNChKfUlZxuBNxWOrMhkGzcaOp97O0Ojt8gycGaMRaJ5lo9ZHo+ZQi9CepXHyQnxI5EsaHQnZrWX1nGmPpocFNG7bJ3xeX0gjM4IIfLJojOWYOeSn0mC9oksnrtAoFXp3m/xGw6U5/l1sMI249pr0zgAae87kaRj+QMP5+yXn411omPpdix3bS8PA/WvvfRY0MiTXSVcY0bgYnOqhspXGk1tq4bFrafS7RrjOUaLRo+Uz+fNSGiM9qbZDC2hMCFsPe89QWKX5bN2nMQpXzprn+fVRuMNI9H1mKUS5lL/lt1KIvGQQKveUgqelw5v0Kgpy7/s6dIsp+A/OSW/JofA6p3eJfxqFLYzzBl4ChavWA9NFFymYecWGuoRRUPomqlwmiNuv2fSg3IeChJvaGV93Cgop9sprDlDIPefQ1m5DoTQw6EmaKYVz1raWnvoUnAsn2zZqUgg2mFKYUaEQt/fe5MvlFDTjTCoKeBRi+IL5yfMphKrukrw0TbBwMv7w5VECfvdMeFovQbqJEb+BJSCDvE2ybQRnO1O2/NRIICWR8VFYTaC65JBfURmBULfE5+Z9gjXMHulnmQSJapXpxtcJilB7RyKBoGPIz0YhmsBJtd7q4i8ERru3X/cMJdCee2Jn7mmCzQqPFrkFEMicz/f43YfAMFnLTN2L4N716uVwJ9BIqWuscyFw63Gtr3EiWGGXvHajI4HfGt1XUvYEplbDD/XsCJKUtRc32XD3Ko1ciqwI9sT4Sn60JKCz/dU9Lbi/XwyvVjInkGgMOCm7i6BCYC2z3oxgoCpk98mdBFoFfA3GlKDWNEXPg/P487TkuZwx8qq8UhOCiBKDkbOc2tpdK6w5r807MqDG6bFfVmsxp1Pd8OoJrhvl7rbGPZw23w64UJz+47aXX3AWy8vzmji7+Zl76zhLu5Q6ajgttgadqOZUH2vJrOL8blHzsYeckq/LLgg465Zd7a3kDDuUeU7klb/yN4k05p/+IurUaEEpETkybV0jsuFUeqFI32262SLHePtvitSpa00VmVjbmSKyVHYmSWQ473GiSGnZLwkiry4LEfuqf4NYi2yhuIfCI7RY8/F6sTfmCMRqFRSL7dIvENsSnSd28/hdsaGTuWKdj806xZvV8sNsZ288mtXg7qw1d2b9r8P/N/8FD3VJOA==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAKQUAAAAAAAA=eF5d1Hs41FkYB/AK5bKb8iB2qWFzqSRSKlmvocva6WKKMC4xpDu6yGWF3RWiy5bZtYuQyyi2tahRLUaTkpAtlyLnnFrRuhTZkhSzZ+ZXf9Rfn+dcnvec9zzn+R7TGb+r+45AXKUrx+csgi3ONbabRwisczEsOTFEIFJth3lDH4FXKT1lat0ExjwG7dcTAktamlt+aiegWtcd1NZMYGhB2PTZdwhMmHaUbr9FYI2en2eZhMCZX3ymTa4kcMzNSORcTkC4TXl7TgkBHcLTHSkioGcT0sAREugbS4/JzSZwc8By8XgagSTN+C73nwkMZw+cFp0kEDB4BbSTCLSWOPSGxRHYkvLwxMNoAqvK2hexIwiEGJyuP3eAQPghnp9GEIE2VuLQ4R203ox94f18em/j3aM8bwIqkobgBjcCh/UGEGwi8Jsiy+HSOgKL9cTpZmsJVCWz+vLZBB75ppsZ2BKwXJbAz7QmYBe6MlnfksB1wxnCzAW0bzXvUgNjampksZBFwGKiOmPhlwTMph+NEGkRGPFdsJo9g4D53MnSRlUCd3b4C72UCMSXFNk8k2Kwi7X6K2YMg/pFFxPNVxjmsHdGFw5iWOhSL3bow5Dj39rX+YR6//FEOMGQIea81e6g43t7iagFw57g3EL3Jgzfitd6vavDsDRN9N/ZGgxLDnFCnMQYJMf5d4evYBhsdNPOvIihUpJgxynGcLB+g9PYeQysOhXrojwM+QItRZ8sDBPeTaUaaRjebBew6wQY/nGSFH9/EsPYedG7lUkYgk81mYzGYaibvttCFIOhu+Cp1qFIDJ2cvPvLQmk/EZNC3wZjEKz0fla9C0Nkq7594jYM2aWFe7i+GHp/DN2v50n3K0zh9rpieD3wctplZwz60eapiRwMxatfT/DWYGixcbJfxKb3MVztrWSLYW9ejweypvXYml+XW2Jw9JqvkWKGYah+fn+ICYZh24ouZ0MMGy6YGFnp0/5bo/pn6WBIMxpPlmpgsDa5H9X3OZ1vMfBpV8bQbkcUGhXoe2flxt6cQOAexbGofYPAdER67e+XCJbPzbLvHkSQP5KoM60fgeJoo+6KHkT/3r3Q6McIJPF/lHd0IgjLfyjiPkAwvG9e3NNmBKvO+HCzmxC4ZPNdYusRXB5fVpBci0CUFmB88zoCx8LsjVbVCG4dvWTYVoGgOsVvaskVBN/VPyi9IUKg2fHFV1oXEeS4Pz6eVYJAwA0IDChGoDzpzwD+BXqOeaMgtYiqn7F7ciHdXzBKMs4hSGalxwcWIGjaNqeYJ0RQ41oeG5qPoNlzuVZZHoKkofBT6tRv+lfYJOQi4HUZH9Gmzn4hNrqag2B/p712MHVmYWPGYmrbgPP6KVR7QYpyJ82DFx36byqpdqYHTgipPxyxCBNQn0BCWjz1UU/4zCiq5VUT1kGqmWrYoiBqppJp7U6qo1JyYiDVVtI8L4CaPaC+n081Na5Y6kd1jurd7EtVVX9atpV6618vR5nHZ91+KcsjxXObq2S2dD34VebyKtsYmbN5nXtlPn9rzJeZw+byZDrq6rnKnPrZ71yZw2TXRpnxaHi9TP9o6TqZgSr+cu+pSeW515kolmsfkyq31iNabuHlILlrpAFyo1W2yp3r6yk30cRDbk+9m9z4SYxZMVvkpq1gTFJgvPGcyVlz9D5v7zL2NTMq1jFatTJuuM34qIHxYBUjq5Zx6Cpj2w3GYzUfq3yN8UO+f6pNBeMmCeOd9/UtLjFGiD4ef1j/tM7/Myg5XQ==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAANAQAAAAAAAA=eF7t0vkz3HcYB3DdtkRMxDWEJlupnSmWiGPiaHgkYcWtxBGLarZU1QypI6irlkgcce+6CSIRsVJSSTWxiavYMCzClIhJS2LqE5FNWyTRPt/df6M/veaZZ57nmWfm7SwK0/vqLIGqUx80OX1HYE4+bEw/lgDL7U2TQhwB3ZGj+n+g+x9VsXvjCcRILgIvgUCAcfLMt+cIRM8s0iGRgG2h/gGVJAITvw5OLqLiHn27tmQClQ33OPHfE7g8KDlhm0LArsZ6iZZKIPL2tvUQWqN+xTsnjQCnv4nJSieg6fXlEC2DwDGmM+MeqmM5yIr/gUDECTsTZiYB3uiBJ4uooHTUv4hLwC+7vQqyCITeZ7auoRHTN7L42QQ6Z8sP2Z8n4KDsdm0FFZubS3JzCFgtdqgYXyBg0adHG0On9kiGIy8SSHFMC5fPxTkV/YV6dDvfk2mZR0Dhuq/vQ7RltZL9RT4B5dhkeInGMPxo6QV4Pzb3itIlAjaKcYY8dOR8dAm9EPtv5xab0bcOSqoGRQT2lYUatqFuoeZGzGICRraPtVpRsVr3C0YJgV0Czc46NKraj6NZSqDO5eH7+eha6njZv+jHR7q0zpYRaHw8XrCEsvISNt3LCQQp7gT8jB6+e+fmJzwCK8ZbcrmoY6Oq6zr64+8+Rd58AhpNKuIutCWyQlW9gkDgjI1XDCr51KlQhGb/pTTBqCTAPT2rnoImlf7NnkTd+N2tjCoCanmcnXj0Dd2ZPYju9uh8oFaNf7evmoWgynTrm1fR489WbdbRyGsO0xY1BB4NF6cmohoD+6x6UPl+3Q+30aK+l8uWtZiXzfH5WDTUkPa8HeU5TyqtoJe+zjq5vw5zMx1W74V65/SrctGclY2GLlTS7eHxFN3isT7aW0/glglb0Qb1rzXS4VD1eJZnLhrQE97WgdJbdA9PobD7zNJr1Oi2r1CjgUCchXDCDGX8pKPtifaECGu/QTmJtLBMtOpWQEIlumKV8JsA/fNIRHUfaqPROjCNbgYyOcuoVUBg9ms06J+9n9EuE3jgm1aujA4L9lzVRs26Tbh6aPMhAzsj9On81Jo5WjfJbrZBzde3kuzRvjFBpiPaFS035YzeCO1Nc0c7+kUVXqixgsTMB00W9gf7UnsDk/X90Riy0RCA0kfqp06jaSN8USAqEvFL2KinprZpEJogDBdQFs93qwSjc1zHYMp3czEVlKnHpwcpz22feU65wM+ghaDiC1qalO6N7QzK+5XxJpTBghBLyqbeg7aU+RFuxygnglwcKGlBUSzKV+IXTpS5UTsnKVd23XWm5GaAC+Wzd5VSrz+ZlWq/+J4r5agVXeqOqalU+WVbqVmOLKktQ65SLdieUifbP5c6buAjdeHgKamrPTJf6fpKlWPL3EiXqVkjU9Au8+gdmX2/yGQJZRYMyOSL/pfyPwqpORc=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA0QcAAAAAAAA=eF7t1flfjHsfx3FtTik35UFkubUYTWdKZEKlq9JehqRlWs+RQohRidJGO9qIJJUWLUoozmmjbmRUkjJOqyWk0lUdN0qb876ueZzH/bj/h/PT8/H6zFzL93s9rpmlpBTjGo8kAgrrVirBM5mS32OOkES+1Kyts6GY4oaAfb4kcWMoWbkf/eidRLaZH0nwy0fzHmP+eu9goLI/SfzCTBDkYu53zUFsGv1Q4lVZKFRg1uq9OEoSj2tsjRyhUU6KamEASRz8ze2kBrRysuAHHSOJc9v9/EVhisBqufVxkvhgLrH8Bbp50VymQiBJtB0LCczBPEtvZugDOpRtm3AY2kfHeZcGkUR3xaiLLpw/rJhz9ARJrLvy6L0YjH6zNlU3mCS+OBiqNqBfua62mkF/nd+sGg+L031q7oVg3XFdH7dBBxvf0ROhJHGI/cJrHpRSyfywMYwklE8o5zehu0dcMz6jr3mtL4qGDjlLlhWF47wNh3kG8D1X9xf3kyRBsgxnvqHD3dQOyJ0iCU0d2R3XMWdWcgwfoH8/bOrjCvWVZN/yIrAf/RY758K0pwLrFZEkwSgLl6hCM/wlovjoQq2dp7xgx27x+MNRuF/L1c/mQSmetteiaOzH9V8H76JX/5g1vxIdstfzpTP86UH9GecYkvD+nnp+Bi3aNtgzgfa65cLIhBJ3W8RTY0li2a6FZzfDArt2Ua04krBhqzR0oLfM2d3RiFaSH3rlC3ts22J3nSaJRfWNTdKw1j164RjkfFFOuQovFL4Kjj1DEneYdpvYsEttw8MlZ0nCsKqmsh4dNDIykI/eza1WsIdnPniOasWTxL9FSp3eoTPHvrbXoAUKn4N8oG7RVK5JAvbZozd0DP0gX2DXiM7e2b0nBIbv7RriJJLEUUVdthhcTu7Z3wLjN3AHIqFan6B1WxL2tzMxcjYMuB2i8hR6NupKR0KFgopfzZNJIi74dpAI9Gp4fboOFiVtbQ+CM8fNczeewzqqdyt9QUtnWhSXoIs/c5y9YRpTJ2/leZLY3Lor4hW69r+HEpPQ3/2+ZWyH7q36h2alkERfv1txLXpT9qTRQfQOvz9LNGDn3QmZdujkKJKXBh++iW82uEAS6Rd7k8XhSNSc2HzY8+LjsQMw9sT9zTIXSUKE7+HYimbH/SB90OqbC9Zpwy9Xl15+Btm5ElKp8H6Sh6lGKt4Ls6fdY2juNOPPOLSgkFNqB1e9K0//AOsOdITfgokDzpb6l0iCN1FlJw07BPsmz0P1HmOWB2yp+PnWAFQ6WDe7Ah7ZP3xALw3P435InwxM65tecxbGrnnS5AZ9ruZNdsGY9KHKG7DYU/O56mWS2Ke9/vYUWq+y/5YvekPWYJk57LZanFkNq4a4dclwUlUyTSwdv0PZjV2d6Ar+rFxz9LKYGHFFKBVqee80zJHr0POETqGswSZoKSERlQ8lR0hVmSs4/qLt24/oM4WCIAv0vHbp7Qy4v435PgKyV/i17YI6rms97kGpydYDV6CvktbEV6h98NDyl5D1OaDo5ww8l+7EPhkYKLD0d4fGLWFPDKHq4knnJBj87fRjP8jnvHavg6Yh4r15MOua48kR+J8HxgoCqP2m/eHSTKzfspwnCgdr+lVNYfDVpwPq8I/f1930gTtCGBEO8HNuvEsK9B8PNAqFb13kNCthi3wVIw/6Vaio90B+8jKtJ3B8+Lz9DIxatcb7EwzTuVO6PIsk2rW+NUvDqhvH9XShRqW4pxrMqU8VcYB5OemaZvDmyxJxHnzU16K9Czbsc7GOhVNRBcFBcLci700mbDEzkDkH7wXMaiiHcyc+DRbA4JKQBXzIrbVRrqG+L3jO74DzbcNqn8EVvdyxAbitZar5DazZO1wyDsvN6l1G4WR2y5TEVZzXatvxGer+ZJK/yqJfZ3izpeGc8uGiZTCykJWzCGpkXNFkwNsNdYKVsHTx4ssaMNVY5y0Tyh7h/mBTn5twOtdCXsHlI3rQZGzpy43QaLXsHCOo8lvvgD5U88/qNIVcRo2aMRz/mj1uCX0GXEvM4UPd6wEceD7yeaQ1tFW08baB0l6mj7fB9s2SvbZwuqnn1A7qukoiI3bUdVyimnZC5ZgFWQ7QkPX2pj21rtVlolwoWqZJOFLqDCs5QV1HmwhqfifCV9oZmv+r+jQ1vx6d9YjqT/MS3ClFcs9xXeCVmAxJyuQNxs2UTmax8ZQm6ulMV+gY9XyMav+Ic4ep1jk1ZkHpommdT5kRnhJLWeyh/pySoxhUSdkdOj1KKefPf01pOntC0g3ymD9NUY3/MAWqL5w1lKU8krRFlVK1TF6Rsp61ZB1l1exWFqWZhfUmSt8FPDbl+sZofUq521W6lJoGHCPK/kRLA8pr1aImlBNTSVso24kRU0rWsQF6/l3eypzy09lkM0rmjL4F5VBnDT2/1N9P93pmAi03zM2SsiRsJa0aUUqbWx1BO9+uj9bE+wltZp60FWXvonG6/+Cr0F1dIE/7/iKbVr6JRevdaECbM6ND26VlTstyMKbliG2lnY61pJXV3E5rH8WhNWPvoHVm2NCKhtnSXm4TzrPtd9IuJIVz+25hn7gk1Hq9HW3qXKFy+4SS1kJrYoSuChC6p0BofYJQXqnQoetCf1QIDbwrNKLm/+d/99/K8YVK1gm92PiP//g//wJ9fYH9AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAxwcAAAAAAAA=eF7t0/lbjfkfx3FaR9qEOjUhytJCk4hCt0KbjMpUR1osbRJCShoiWlRSOlpPy6Fo0XKSJipLo9BCMWlR0kRpuSUmNQ2Z1+c+1/f6XnNd8yfMT4/r+b7v+7rP5z6fT9KEo2HkUZpSz3QU+Q66s3h8bz+aylvObRxAx0pFNm72p6nTnldN6zBf/UMkd8kxmtI9PeKVg3lJu7yCcABN+c/5tCYE8/GuDKOXpDuUKpyhd07KHP5xmqoT7xpaCW1qjl0/Gwj7859KwDZ2zrDtzzRVXPLFrROtW536Tu0ETXmIreXnY97RX504gr6d3FocCBvuXJxacZKm4rmbvE2hhudBtbNBNGW8+MMrWehSWidkcYqmWgpMJFvRn0dnpUmdpin5kLJRLuY9QmVjT9B5JYVcFxj9QWVGdDDW0ZwipAKXWZUPWpyhqbX6fUteoY1yP4SLnqWppEVfZZMxX3ZDa6ASzQ02q9gGLfXaZH1DaGri23Kt6bBN02VycSh+l/DC3ffQC+8uLGlDW8tEuByBX5o5uufCaGpH6MOFalD626yTeuE0FbjdpPQZWsZW4lI3+tVxb7kgWODeGRBxjqaUNDLWqMNVOz8u1YmgqQQ1U90mNPvz9eJmtPXYwwk/WO9xeNqxSJqam3g2TgneMcvSZUXRVNZPPZPlaPuo7OWl6L0eGw13wKaLXeI252mq019y2ziaq55bMohWjOEaxkHnYC+DM9E0FX7UXkgL+n4NSmZdoKlztSnpVejDvM0v8tCyc2sV7CG7VnN4bQxNbWsy9u5H/2l9srcOnabomhYAo+ZcrmTH0tSKs1GF4vDEX5+O9sDeAUVeHFx6o1HW+yL2Tbyn7xw4msW58BF6qTRrZMFpO1I++cXh/+sqr9aAYpqU4Z+wqsffpAAOfW7zCeDQ1N3jewq0YZJZTdQYHH3QOlkAC3Y4xR25hPXs1NHXgopen0No2J1R7XwNHrcacHOLp6l04fc+KtDEMmbFS3hNSehQAjylbvjpxwTcf4u9UxKe4ltcuQcNnMzWB0GtlOkmPyTS1MjEIrkPaKP03zpS0S6nzVucoY3/hOe0JJpSkRWNrUOvtGoaPIzWrL++Xg8+aM9zb4c0h9OXBjc7d7RTyTQVTEuHicKt0SXmV6CSxwEVL1gpGVoikoLvkStysx7tkc1TdkV7yiwwWQpVZ9qfuQ9lbio0R8LghtF+ZS7OtfDKPe/QhqX11n5of9/HI8ZQZotGRQPUt1MNToERqxw1VFPx/SVjZ39E/+ZRmOqHlnvukm8CK2N8FB7BxsQOiyR4JHowUSEN+4C7bbgfTd/Yp+qGzomX5a6GRnlryoqge4qzTQiZv8xiT8C+ReEzG+Hyuk+ixuk09VS75TULLj1y4H4Y/MK6VO4CxdSco+rgy1iJrEx4SXm6p1QGTbUPBKX1oTUDK2y3oM8/W5uzBC5yu2UXCR2Ohtd4wKh7Zt4P4amenLFMWEwXJUzlYR9f7Fv3Gr2Nrd+ujy5yDU9WhJKl6it94Oqx59LWMGJPfU4mfPBMjhsKb/Ue0G+BA7tjNtwm82jXt+KXaSrOgys2hD7FkijUQ/e9Pd/7PbzQ+zhhD+yKqXljDsN0VHnRcMu9MiE/OPaaX/8LTLz13igD1s5do9wFM0xnZT6CnCnlsSJXcA4mhTWH0fPO+2svQa9786J1JqzZJD9uDqXyxwv1oLFc6fu9cCjd8IY9VLWRVAiHxXeEe/1g2JOQo5mwSNTUkgMbn3rK3IXbb9YPFMIWy/GBFigUZfTwMXR4Gy8zDDvUnd91Q2mqN0QkE+eJFrcbR493/m7PQrfP8FGUgk/qxmI0YGeM5joVqCUz3XANzAja2KADJ2cH7beA/A6jFiNyf/cSbTZ8PkXNywo6sAw4rvDtLrt4J2jCm1d4ENZacPbvhT2OP8UFwB/3VAn5kudeaNgGQ7/yyr0nYBrrwrQI2Hx6/i8h0CWuqjoGKumJTTlPrhfJp8dDb27F9jhYZnU1NwWyE8LaEmHAgplf06F9lx0nFe7imuZegVfFQ9N4UEfeuPoqzDW+PD0LfuP1uuTAIf6q99ego3JHRB5ceijbPheWGPra5sPV/VLs62Rdv3IbCqBcg9okmSs0tX8rhIXNxvbEq7u3jhXBqFLbg0SH9KpKPnmvzaAVUXFD6Y5ieNKREiUukAxsJSY1beUQ1Qw3G9yA2ql/iBCdLrqFEm+ZTjgSffap3ycuzl7HI867tPw98bXBo2Zi3MgR2RI4whr8Srpyu5UG6Sbj7crEayv564jHIihd4uNuJUti72qHjcQ8kbt2xIbo76yZ6+6RzsQ3D5wciBt/X+VK7NDV3kWUGbHyJAZKz3cncucb7SMqHCraS8ytZu8nFoit9SZK7Xx+gCgdKME4bU7nQWKZoxWj96Z4HyLPfQWjR4D8IWJ59zOmKwoOMO1rtJ5xvDOXMcwgkpGf/Zwx1PwOo+SCYcZf779mLAuZepjoPDLGtMp9KaalncQZf26bzdidN4Mxc9n3jAMeLMb1aXMZ37xUZjTpUmEsKprHqLNlAWN+5HzGHh1Vxg23BfNljwW9OUhgjpoa49BnQQfsFHSrqcDsMwJnHBZYnShwVbRAd75AC67AwZJ/+kf5Pw24++/9P4NrBH6tEihe+5//+X//Bqt/mQg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA3gsAAAAAAAA=eF4NlXs8VFsUx8ejvLqN8kxJZHYoQnQr0o6UN6HkTYpQrlKSSxQhPZSiqDwTSpeiVMo6pYcoJaESkUgkj5rxmJlz7v5rPjPnzFp7/9b391sSKmu85f4Rp+zmLDKtCEf4nbXEKmbLIBimDHecdRanpE6hkTktCG9hL7lrzOPgYfdKeD46DbW+Cbam3QgvVPZht7pwIcx4e0qrmQC0i1K8PswTp0J6DrrY1HLh87/SdZYXBeCf17Uq+psY1VpuEbrpEcIfFfWaXDIQvqGh1TnrHen7y9VpiT3Cfhm259QtEW45IPtoaQ/CrX7+/f6eCN87FwNROxCuKYmaUjBEuGl/Q3Sfzx8wPhvWPiLDg7qXgX61+QiP5MT0KOYhfMds6YGbogjHpTkdzGhG+Jr83VUjZxEeZk8z39tIX+EZnvo9hDM/qa1wb0f41FVnB8dWhDddCazTohBO2V+/Vek5whbf61bqlSCcVmKj0PgaYVfn8VWsLNI/NHCHXSzCKw1QMZXNA30PkNbT4YHqZntxmesId81Cq67nIOyRpJO8kNxr45XlAokrCMfEFo5cO4XwV47PpqF4hA+99VxWTd6vErkUc5nUfZt0xWw0DOFH3sukYw6QPictHWV8EU6IyY9oIudyt2utObIaYbltb4db9RF2+nYyip/GovJrxXu//CdK2SvESXv+h7B/poSJYgrCbkF7Yh0eEn0fsFPKMxE+XnpZa6IMYeXgTdYb6xA2PS6UzHmM8Lj+zj62H8IhtryMClEGQpNGf6lNsij9639V5FohvDdcNK7yDsKLTUfc/iX13yZ/Xbk8hQHtecdrH22dhsADOkZrif53evckyp8jOsvfPLRfTYTyzg8+HvqE3LNY+VPCA6KvdMhzmEl46uk8wjVBuHksKtDm/hTYzZj/3sAAYZFOGSsJ8n5N/VR234cpaFkTEFhC9JcVLb4WqIvwfrffvHh3FvU98hK1cxMNBg+/GoYRHsS/6Pt4SiOcMVDg0bWZBxefyv2UJ7p94Fws0b8lgMkG1sBreYTDh4Iz/xkQgKLc9V0zjWk4K597t2uMhob2c0V/7iJc3BX+ZnQDixq2WpD6vQLh0sj69D2VRBfJWxZP1Bm4ulxarb8IYR/VM8XdZG7tmoc0xqIFcKz0SahtKMJJqqkdlmTu2i6ZOp5ED1eJ8ZUXLyD8+HyuRfFmhH0HWytLEiagZl5mClcTYS3Vj3sDSxG25euWXC5E2OGH2vD5JSwqVgKdYHkgHF1f/3nIdwoiuhXLTLgcnDhULHIwDeETETVDY8Sv5Wy9pNsJCBfGf7S2dULY5aJd7k3iqyY1rfXsawgXpUWZO5P6EebJh1dUI1yr0zjdd5NwP6n9Y81TUv+cISzeSups0X2PCS9yD3ssjwcg3JZrFeeLEd5meWBd+nqEu1WbC0Uf80F2tl7OXMKz+7rkWxrlCFcvl7x8l8zxna51yqIghDVX32r+Rvop6wVFuhFeFX/1dS5LJ/cbvzo/z5Xoc+HpojIy5+IYQzfZB38gMiFS8MYc4dwTxpb1RCeLpX5mXy6Rc2UlKH8lPqgNS8tpaOVDgOX6gWOnyXNdk3t1PoQzWW6L/E7Cy66b8rFSxB93XGJ5LIQ1FudGWwbRIBxXL7Uh/1d6kxQSH42wsfOorDbhKq44R0NrEcK/dhhtfbkS4T9V+2+sjSNcXtfX36LEolykRC7tJjpUBldWF9oQPg/tdpwiOeHVWTVuuIoLZmhg4rwjyQO2vGcW0T+ukdP+UoEPrz8mfHlG/CjlsPHbQsL54JXmiOshCDsWZSfqEI6OfUh17yG6DGmkl+aRHI16bJDVAeT8Zi3vckmfo03+GjeOEF/5+QZJ0wz0+h9/tNOY6Fh49diNwwiH1jauOEbq9JXIZRc1ToNx3LyRIMJlvYZSzaWsCUhVOH8qKxFh0bq1447aNNRu3xQ/n+RdzUDarL9I3rZrsH/KmCJccefo5YhUhKVDrJ5GZgrgk2WvGXuzADhSewLbzhD/zCpCo8Tfkfkjdg8YAZh5lM20YKahZb2OYj45/6zBGP2AcBrwagWrvWsRNjJVjnL0YlGccLvV5qSfqrpyhlkhA4NL5r5oL2DA/m/730ek+PC0lf7SeYqGPO+vOe9JHyOdz9pKJA8zJwKSIkg//sLNCqPFJAe9xn2aSd5Uibpl2Zwk3M3ZUGuXzcEqq26pFLZPg6hPtFlApBC4DeHfg4APQ6r7ruWTXGu4lyBWSHhUuJyvTWsjrDvaYxJC/MlWVry/egPhwH+D+j/EX2JxS2arkz7hBoeRWQcHP1sd7SxPfDLbgQq3fIbwWpMA3dn3EU5/dVJmHuExWX+56lFrhM27dg70k33wXOWwWsU/CHMXmBtZGpH7Ntsta3VBuKd8w9nmLQg/23wkj9PDop4bHOlyI76RZGb4de9jIP7KbX7+Tz70udq5KpP7azcePbtgMdkLkuLhvhUc/DtjiBpM5kNOS+alClUWVTiQ+pktJoSmJ0M5l4lfdpYZ4Z9jHFxfvzTxvtwkDFeLihm2cXBBbny1liTxnUr1w1Fyfquv4VptcTx4YWASwjslgAj0V9uGaxOQLsW273WdhjlhTtYzib/SYmdOvCS+fyPIfldWRfbI5x8Rjv0cTHW07DQlOYUa/ntwoomDTb0Oj4318UEodtsp9zbCddbDb8trEV4ROtylJUODSkxYjQXhPXfHUIjaDYTP2aso9xPeFgmzNr4keTQe4hqpR/JQbVZ2p/tChE2eVAaJV0xDcpRgWcd9IbBnxiz4bsRAzGBo4kmhEA55/IkObGJRX/bM6fL2YVGeKzUm1D0nId9ZMdiBS4Nxmcmox0kWZb6Fa/EwRwCifzSNuyPJHrqhNJIexoB/hRGee14AgazMn00KLKrlzvEPx2VEqJXHHBbg03ww6H5Z0FFLQ5Eh5eJ7lEX1jSXvHX1Mg++RK9sSZgohfV5K60F/GpL7f7S8YotQB6aee89fQMPBeOrwhBINLAfUUJVKQ/rGXum1hSxK0m/QrFWCgf6LlfvKHjHQOtfEMnJsChZe1a7mc1nULl/VmMVjLIrHU7+yu5sBmzB6SfAFATzskK/8OiiA2Rbi35eNCsH5s96MSg0G7kmZ9A28YUAnsYATKULDuoIgr2CuEOKpwW32ojRoPmc5XCT7Z53Fn88K+4QQfLfzXboki7J6M+hjZcnA498KanqJDDhfuvlqckwI1l4DddPaAvgYWDNd/oaGP7WGthfWM1D6rW1gvjINc8T2Mxeq+BCa16U6as6HxPIOp9OaNDjd37XCRV8Irl9kFKUShRDGZx9+MIMLOgV6yykTGrSYi8sVfwmhTQY6IoUCiN3v/TpkJg0Kv3VFE42EoNepZZWQIISivjav5utkbqmc902TAmj4eWJ04oEQfG/b/PYw5UMCHHJMIvs/rzZhWJbw6db9wYddPA1JdbY5eVYC6I+zn9R9PwUBE6vjbz/hg96m8tb7bCHEHfPasXTvFAzVbFfcZj4N6y6sKbDn8aHk7oNh93AByNkuiNhygg+aEVw63oMBrq1Yb7OBEPbcSc4uLWKg+vWUamYVA4EvejN5qXzwlA4uPqFLAyeqTY/zgwuMyljPioYpmHugem3ELw7uei927RfJTSUlN7ZI+iTMKa3dLEd8ktT+7/YGM018b/3fc5leHtSuqRZKfOTgspF576c0ObjCew0PE1/379OXnaFH9hlfqPLVTQgLLoWXr08TwOGcjR1WmA83d0bqux8QwM/QQddni/igdXauzMjuKeBu3ntmt6kAlv7ytmA2CYDK2JXaTuapYdv2KmlyGurLx63mSwrhfhxt4k10EcnauFukRggOODtWluSHncdGkxu3hRCtNnrSq1oISqk1wZk2NPyQTd0m70BDnHrUTQVLwvfTcUtdKxo+VbHN6+tpGNz197OFjTRs3ZckMmbCQBPnSJbuCxp+75i/Qm81Axu8Od/vrWFg2WOk+HEl4SmlP0hzFQP5SW4Hp4ifn/qJ1zHGDAgyX4a08Rno8AscdSO/X83rn+FBvs91dW08TT7/BynRJjo=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAuQQAAAAAAAA=eF4d1Ws0FGgYB3DJJckwudXQdTRGtovtOJJLtx2N6ZStCGFbSqXamKjctouJTLKOSZJa1KYka49yXbE17pdDpEVabEyxg0RSGuz/8el33vM+57l8eN6X/8eT5JHWUHtZ9kF9k1eh9sctciIUOBunmd1Uagu1HzNs2qgG5XpDZzRhVGdprQ48tVpdzwCuTfvZywh23Y6+uxSunNPRvwJeG+atModaYX+fWAsn1S9nW0IjA5+BDTB72w/cTVCmdt6HB4vEVckC6GNg2eQEr/BqVF0o//GL6/fBTxOH/PZT3XnCpIMw/t87FX5Q8UwxfAL6i8+yguAxD+6WEOj77svhs7Bq9miMCAZp6GZHw4Ro94ZYiouqGJBAh/cuGkmQE65h8itk7++0vQNfdjfvuQ+fmfUeyYJtHdrhOXBauDs2H06xM24Vw9Rl8zKfwp96QvIqoHP9f6W1sK/MrbIRvnArrmuBJxvmNrZT3yW2zztpPo5DYw80TmXV98GF3VmVg9BreqB0BIba1eaOw950iwwFlHswbsxqD7U/E+l4SQ1mvK45qQmDXwR66EDO92ab9aFWeQ2bBWM8LGYvgbo7rbvYsOVmYQGXtIm4sgoe8vP1+hZeN1+z0gqub7g/YgNLyhLyN0HtPQWneJAvq18jgEGJcb074eDb3Kt7oH7Me1s3uEV/sMsT5vS6hXvDzybtzEPwiwcz7SiU/Xab4w/jMznpgdD3lbVRMJSMC6PD6f6fAwPnoXAozSEShjH+TBTDkGq717FQr6rIQEJzrC7mJcLt1xqOJFOc5MK5FLi6xFt8B4qlU5H3YFlIf1AmPKGZ75INL0ZPmD6CgpRd8jz4dMAttQimBzzeWgIt2+a0PaV4hapnOfT87NVYBSMfVFvUQRNlNVED/KjxStpE87/Q+dACo56HabVBZc1Rww44f7uzTifli4v41A23JRyu7YFPpodj3sIIGdOmHybbSFvlcMx30nuI5hwrax+GzaqsjaNw9151yRg8tiupeRw6vXutNAF7LfuNFfDwvZecKfgmrHSxEvZ1YrhCRRm2ipjts2GYa/1NVfjjXNMd6jDf1HVwDnyw7nr4XFiYYvpVExo67PTTgoNClyoG7f03sfo6MNtS4MyEv/fKRPPhorySu7rQzn1dgR7Fdz8s1od5NnGPDGBgJP+WIdUx4oUsgBLxqONCWOpZzmDBEhm3mrzeITltRPkmA1nG8OEXu1xy+xLv7xbBqzU76kipVOi4GH4Is/6LLNyis2oJHM/xukqqMaJHSD5/RLCU+lwxeYtMFKj2k7mXfdcsg1ZlQQHkwntRWSSXL+8hX3KHDZZD9UudPNI/TRFAtrnGJpGmjs+fkBkbZnWSW4vcFWSEgrGADYO5zhYku8uNT0YtE3iRO0S7AkiPx4kXyLFA+3hyrexoKnmabZtFfqxsLCDjVmyWksUHMutIG6PlLeSUvLSD5McnvCG/ns3rI/OY64Zm8m4zHiXTU8+Nk0vPHP1KZu7tmyJ/iVJRpnfcX1itQma62qmTl/yPaZAclX2a5JhIW4t0cpQwyIbj77RJnxu6TNJKyppPysTTM9aLynXJjYv89Eg7c/mMrZVbZ/6N/wGZtBuiAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAWgUAAAAAAAA=eF6F1Hk41HkcB3AKJeyqrbbRMR1am/tok2vf1nag6UA5qmXKItdmkbYcjdsKiZBIzLgmx8z8pOyK3Y2dsqN59pGSSeTIlQpRSbS/Of7fzz+v5/O8v9/n+fz1lpOTDj/IsURtmoC98ovfg4MOoaC7k7B1csd73vpExd1e4J8befbVaz9UGfPk1Q8HYVyxk+ZtGoJb54ntD5eHIecozWN6/Bewa1vDtVrDYX1ZbaljaRRU3t8ybPyDgZVOgaFtOjFoq4n+1jsnFt6BVPaZBfEQZM73qwYmIHxMjrK+IxF/pSSG1Fj/CvMHEevuspORRxPtOLIsBdVv45YGnU1F12cuHMW+NDjlp2mmaabDtEygIOpIh4L27dTB5ItYtaamvcYqA8PUuVffjWdgeveziXRmJhxc8ycLD15CVK6fUrBSFuLaI20U6rIwmr3gtotvNn5sWJcUoJGDbasn620EOTCsywoQhV+GoGANx0Q3F2UKmZf3deXCXe+TlU7KFVCY9BstFnnI5HPVtV/koTGtz4d2JR82EX1CQ7urYAxmH+54dxX0xB6qdWkBLFdnm/gfvAYH4a5DuvKF0MtsoSm4FoIWfzO5oboQvaJAiqtiEUxO0ha2HynCR61KRyOiCKVp/UuDFjNRYblrT7o7E02hmsoZN5jwjxYcOrWEhVD3eAtzOgvqy3Kbn9Wy8HKP/ewJlWKECjtH2ujFcFWPv7LuZjE6wxO+pKmUIMRzhf8ReglO9Htdo9WWwF6N3UhdUoq8VtUH7e6lKOyrH/SvKYVw/unC54vKsJ+Rs9X6aBm8YpVjI7ll+MfIYSZfoRzTeolFBa7l8DVuiI+pLEd11QzHVo6NXnN97QknNo7ZaM6Hl7HR/LfzNyMf2HgbyX68fd91aOT1vvYruo4B/RrGuanr+PoJJTVsdwUcelPVD1ypgGJG4KzKywqI6jg611EJP/OcY9oZlRgvbdBPGajEmpYjT4XbqjDYeHDvRFIVDDSsmidEVTC3T6i6r1sN+g8mttFR1WDX6Vsv+rcansFpxq4bONggP7DWL5gDJaraHYMmDn4b6v8gUOYiub04km/EheWQ3PgZNy5yqxbNPmRwcUpUZ3G3jIualReNTIVcGGYEOKhOcZGYlmKjTeEhsGKTXbAVD3Natd1NdNIJlVNzMTwkFb44OsfiIavDms9s4mFT15NWYS8PjvazMV7zPNj5HxzdRyFQP/mm9bQxASdLc982OwIrWFuGnD0IyOVOpy8MIZBX+rS1K45A2GmGaOwSAZ+WbLfvWQSKIqmsKQ6BpCfmcpR6An0XtASCZgIRhoqJ2vcJfC7Y+cGpnYBvjJWzj4jAp4/bQ2N7yHzGUJ/fT0C4s+XRniHy37fybfqjBMxyZvYmjhHY7JZJ8X9F5pvPZL18Td4x6llPnSBwoWSpqfokAU6gT4qAdNgnYtfRNwQ2jvB1BKSWx8xCqVMEekbvzLuTijRs49JIh6P/5PNIt+qW1wtIuxnHed2krHeMk2OkNjVUx7eka2/foM+RRrjcoy8g+ydrC+W5ImmOHtdtMelyA0+1JaSu2WZmKqT5eRpKqqRRHWsvik3n3nslltsTpifuLxaf6iL2bGhhsNj4Ynac2JFrvuli684pXBYbET6cL3YqbHGhWIMgBabYmDc7WGI9ptSKxSpZnJfIFj2WWM1cLOnJ5oHNEm/dNJX4OMJGotesrUSjTppEofZ+iUFxByTqOztI1GmRev4Lae9qmUv1cJBq6iG1y1vqqkCptj9JTZDtuj9LLZf19yOZTJlqIVJ5AVJjZO83yvLjoVLtZPuQzAaZ92Ty/8f/AMxBE2c=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAHgUAAAAAAAA=eF6V1Hs01nccB3BJJ5nbc6ROU9Mcyr2aiJE3uSWXLoRkKFLhoUaNWrlltVKW7TyPUjouo0Jyv+TSRFHEKlq+vwvSlEqUDAv7PQ/7xzn7Y99/Xud8vp/v9/P56y0hITpdwK85gqoNBA5KNmcT+1nEqjmV5XazMKgeGj7YzsJYx7zwy/ss9AzGaoU1LLoEzQFqRSzcDJbl5GazyGiO1Ta7xMLznuLu1p9Y9DTcKguIZ+FifURe8giLtwKv4LQQFiWTnz209mPhJ1v21Rt3FqkqXclCRxZWUsZTtpYs8tr9/McNWTRqy94r0GYhYfFMg6/Kze8Pi9JdyCLIPf7RO2kWuXply8omGJz0LPKJfc8g0kNduLWPQVpvcZ06xaBgo2L3320M5in1DHY0MNDZ1jFYUslgIPwCm5zPIMLsj1tRmQyKP+BE4AUGGfrH1+04x8B33OKJQxyDl5VGOzZEMHB1lW8w4zPY9fLwItPd3Bzd5Y7r3RnEK1T6WzkyECh/9HayZJD1PsZkpxED6i/eh2AdBiP5bqdjlzP4TV1yMkWZQe2du44VMgzK7dwPdU7RWDoUcHhqmIaa+zVnzX4avkGPPrmyNCovC6Lin9CoyLjeXtFEY1vFnYmhGhoBPsIRvWIarpdIDf8ajfXlttsLUmmMRCeWj/5Mw1Oa32f1I41V3YKupOM0ut7Vp78Io5EXl69rtp/GOh+FYwJvGiuOXU4adqHxxUGlYDd7GufldKSrzLl5gtQ9GmtpeBRqxiVp0VgQcsJnriqNteCPfbeQBkZTNw8uoHFGpsM3eIpCh3mrzpthCjXRG/ND+ylkvJPoH2EpHNhZ2RnTTuGp0DRa8QEF+03bn6XfpqA03N9rXEph4eu56Y9yKGjWvFI4kEbheJeXPk9IYXXQwERJAoWskKRo71gKRP90pUwEBV/DlqJKPgWLQM0jIX4UtNJc1VfsoNCZsL2j25nCyNGIe2nWFJTdNm8K+JrCxM2xjlWrKRTbjy+e0qAQ6nBj7IkKt2+mVVUhj4Ln0Zr5F+dTCNS2m3N2guBmv8D33AcCqb6puLRXBKoG5jH3WYLzPbw18h0ESzpSDL5tJggcz3z9qY5z0iu0pIKgYU0ZP+MmQRu7Tbo1m+Abjep0iysEciYNVyWEBN7PQ50XJxKk6zU5Jpwk3D6WVwKiCWykgmxyIwkWfX5HdncYwemEgj1n+ATPcgxttfcRSFbUqcCPYLKosbnRmyBLwrep3pOgmn9Ra5U7QdUG46eSrgRe+4dqTbYSNJkYybU4Ewz9bu5d4kiQmxcy5/Umgue1B7QD7AkK2SE11Y0EdmxYuLwdwY0HTjJ6tty/bVEO4TYEKI/RZawJBh1STPZwRrenXZTi7NdZySu3InApNX1/lHOO/Z9LnTg95u0a0OQ048sbynHqtwypjXK5ERO02eIlp7r6gDfFOTpvy7nHnLTqIl4L55az2S6NnHpvVXvrOTNMIoLqREo9zr4tUvHh3lrOx30VP9RwLlH/5VU1Z+ve7O9FChsL1oj0PxU5Kcop1epyIrJXyrleZNyh9GKRg+bG10X68jwyRGbdb08VWdH8IkWk7OKpC+I+hbvJIjuVJ4Uid6pEiQ3/qC/WofCTOA/999Fil000idWSrBFbWlgq9qRpodjyxHyxuYN5YpPHc8Ua7Z02hzftqZ7pnF1ZP23bjWndr04bnDlt5Ewer57RZsZ/c9piRsv/Wcese4v/eDe7Pvuf2f3/AFPGQB8=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMQUAAAAAAAA=eF4t1Xs01FkcAHDC0mNP1slzk0eLkgiJpL5GR1ZTi42VZzVEkcdqMVlL9tAou3pQ0zLbyGMU1axHQ2gpRZpkW+VR7r1ZItTJkV7C7O83v7n/fM79nu/5fu/3n+9VUqLPc/hZ4scOvYigLaO4zeMdAUeBKKhnksDmJ9yZ+nEC20yN+jVfELjCnyVsQmAkIML+dD8BcV6uX083geIElvaKhwS2hmtURd4jsH0KBdXcJvDSdLO68k0CRUHWEu86AtwZtcjiKgJT54L031cSmF4Y/4AtIhCpKUgvKSJwatTWbq6AAMfo2NDuswQEgldnJCcJ9Ko0gM4JAkMlbmPJmQQqhM9yn6UR8BT127COEOA7npFeOkzALTxwn1YsAbZ19uQvBwj0yOK5ExwCHQ7RHwNDCCSXP4h74E/AxuoVgu8JrJ8wcru+g4D7yuZCKw8ClgnG42UsAtK4QisTF6qPCY9zYQOBh79uyjG0JeCgoym6sIaAh25ItYk5VS8nRSwyJiBceEuw9msCoSrHj0i0CawNW+PO0iTQYKQs61xEzXsgTBSsRsCpqtL5tQzDkQz7xvQZDPdqfC2WvcNQ7XowreINFfeTNruNY0C7n4wPDGNgDQ/OcwmGE7XszzpPMeg8iSGSxxge7S+p2N2FQbfVI3i2A0MkT/L24h0MZSnseM9mDPwUzqOpGxiyuv11LtRiOCrmbWGLMQRLv/OcuYzhbePCDZWlGNz52qqhQgx3d3VVaxVgGIjKZ3XkY7BxvS3OOIlB9apkdtMJDO8zuyw+ZmLgLY5eJ0nH0Fo+qp2UgqHFq7TXMRHDZIZS4uc4DJc2hrxuicJQ32/omr0fw2xVxSGfvRiUsxITlgdhMJ9V9hnzw7BiZFq93hvDtWRrfjYbQ6fTh/nAbRgELp6uNiwM3xq4h6i5YNAXjgSgDRgcnZdtrrPFsNXPUivPinp3s+VEvAUGa2ga8jbFkFRqYWZviGHN49QJXT0MywzncmRaGM6b9aaOf4nBrt0ktF+Dmt+ZqHSqYAjllRxtm0egGcde1/4JQceE7NY/0whm9ISuL94guDeZrac+gcBurFN/4wgCaeq/iWmDCFZxr9U9HUDALngm8elDIIxanTnajaD9bKhPURcCrz84vkelCPgfHMtz2hEsyQs3b2tFEHalyMu+BUFW2nXTniYExsJ9X1TdQGB+p6/6rgSB+7DBSu1aBIcCBn8XVlHxsPCIcDGCU6p/hXOuIhBt6cznVyKYMxNEK1dQ/Zs+EsElBI9MCo9FlCPwjTESB4oQGO2tO5pYhsAh2km7phRB4Xvu6aWUv73d6MwroeYcMc/SoSx702zWUIwgatBVJ47ym8udAjvKFZPeOxdQygR5GgPUPnj62PDTTcoMy8O5IkqLX9Yl51N6OvEKjlHaDnG/SqU812hh/BPlsFqyTSzlogWr2g9SPlfOyY6g9GvtXh1O6Tu2NIFDyTZocthHufzHsV17KUs0Rmv20HWGgrfS8tTvT9P7yKp419+0M31952n/rHZJp33hPxBDe/idOYc2Zr1PIK2+7nI/2iWqV3xoTz2P8qJdPTC1k/Z+tmwH7bx6mFzvxTL53kPHm+XWJvHlRgWnyVURx8otUt4vV09pD5MXGiRXzSBA7nSbv1zx5A9yFyczLrVkrF/A6Psfs2cdehjNHzL2SRlzWxnr7jLGNjGevc0418Co0c64vZGxV5G//g5jucIMhWUKnRRKFfkvmxm3KO6ZNxlZij5J1xlbFP9DpMI0hVyF/wN0HTCbAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAANgQAAAAAAAA=eF7t0v0z23ccAHDLVtraNB6OMc1p5W7RUPVwHrLy0ZWgHkejCGbNmJk76TwU8zSi2qBURQQtRbWqokO1tXooZTRkhJaNhusmq5sPJb2t1dX2/ib/xn563fvu/XDve7+9JTHmX57CqPr4e42e32I0pxkzQUvCiOn7plErGSOzscO030HTJ9XsvhSMuMpzqDIVo1CrjMffnMYo8bGcgtIwciml7SWnYzT50/CUHCTfo7m2ZmAkqu/lpHyH0ZVh5VGXTIxca52XSFkYxd/Zch4Ba/WvBhVmY8QZaqQzczAyDPxihJSL0RG6N7UXNHEcZqZ8j1HcUVdreh7MHd+7KAe5gkcnyvIxCiloq0Y8jKIH6C2rYNzMTZ6wAKOOWcFBtzMYuev4XleAMjs7Jb8QIyd5O9nqLEb2g+akCZD8vnI0/hxGmR7ZsZp8qCPTFurAreIAumMRRlo3WKxxsHlFxP68GCOdpAz0AuRSQ0g5JTA/iX9V+zxGjF3JByrBsTOJ5ZRSjGy35+RN4D/u2roWZZBXHn2gFfSNtrOkX8BozfWpUQso0+teo5ZjtFNs2HEZTKgJ4RhexGjBa/zdYnA1S1rxLxhh32l0qgKjhqfSkiWQWZT6yk8Ad9PaDr0HHrp/99b+SowUVq81+KBHg67POvjDb8FlQUKMDBrJsk4wLqFKV78KI+E0I5ALKj/2LJWAGpvak1QRRvlhs/qZYPrFv9hTIF/Q3UKtxkiviLOdAr6heLOHwd3+HQ/0amDvthXbKNDX1PnWNTBneYWxDsZfd5+xr8XoyeiFrDQwaPBDpx5Qc8hsxxYoHXix7HgJ/uWVdD4J3G9Jet4GznhOaSvA81/xvEwvY7Qoi6kLBIMKh3TzwULFRn0naHPb3/8Z6CBgfrSnDqMua/YuBlhRY2nCIWIpL4APhvbEtraDlGazQ9Mg2n1y6SVoeYfVb1CPUbJ9/6QtSL1tYhwA9kT1X/oa5KSRYvLA6q7QVBGocEr9VQz+6RBXMwgyDFoezoAOYXTOMugUGl7wEoz4e88npCsYPWBlC3TAUfEH14xBbpd1vjnYdNDC1RJ8Nj+9agfO/8xuYoB266/T3cDBCXGeB9iZqDHtDd6M7sv2A9uHJFWBYPwOpW0wmNE/FMkCbcMzaCeI/nijPhSkjNVNh4HZY0JJOCiRCMvZYIChsU0EmNofKyaU/tJNjgTn8j0iCd/OcasIsz6dGSY8vXXyOeGCMJcUBcrOGhkS+jW0UQkHRCnWhJHiKEfCxr59LoTFcb5HCCcjjrkTkiISmISbsjVPQn7CthehYud9b8L8XHSM8I+3IpU3FmdVusnf8SF85ERRuW1jo1Jz2UUlz4OpsnnER6U9O0DlVNtnKqUWwSoX9h1XudKjdtOMpVKDrXYjR61hrVpxm9rDd9UO/qiW16u25KFaoeR/Cf8Du8A4hg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA7QAAAAAAAAA=eF6d1CEPgkAYxnGi0Uh0s5AckeT8GEYj0UgkEvkIRDcLkUgk2oRGJGozGnje4H+7HZh+e557EZ13F0T9YX9/H4MdjGAsExhjjs+HcrPQ4M/1LXQ9Pz1nX9D6UT5kh2w2skWuYeXpC1nKTKby6sns186vnTMzrHPOtc7fZ14g+3+/79Ls+ryz5z1mLvl/lo6e2fbDTXK/UJuz/dfJXo6OPEE7TzynPEdct8x7w3rXvcL7gvfKCbK3fJYXmcordPW5LB0W0PpK1ittZCsfskM2e+RRvmQwzH6QzQnzm+HXUG497mQsI5nMfgGdUa27AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_210_t_21000.000000.vtu
index f780b07e7de75666d042c1b87cdb390f34bf99ca..a583733e6b7728aabfbcf4e90e1d201376a50a5d 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_210_t_21000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_210_t_21000.000000.vtu
@@ -2,34 +2,38 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.90007533381"        RangeMax="0.90918206064"        offset="132"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.6158956657"        RangeMax="11.470198454"         offset="3396"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.90007533381"        RangeMax="0.90918206064"        offset="84"                  />
+      <DataArray type="Float64" Name="Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0.9005511644"         RangeMax="0.90957363404"        offset="3356"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.6158956657"        RangeMax="11.470198454"         offset="6616"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10724"               />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10804"               />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0000020518e-07"     RangeMax="1.0003907831e-07"     offset="7484"                />
-        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0.00047596918672"     RangeMax="0.090817939325"       offset="9172"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.40918206068"        RangeMax="0.49952403081"        offset="11240"               />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.45459103034"        RangeMax="0.49976201541"        offset="13248"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="15224"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="15660"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.0003907831e-07"     offset="10884"               />
+        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0"                    RangeMax="0.090817939325"       offset="12576"               />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.40918206068"        RangeMax="0.5"                  offset="14628"               />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.45459103034"        RangeMax="0.5"                  offset="16636"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="18616"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="19052"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="17728"               />
-        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.90011476143"        RangeMax="0.90918206064"        offset="17796"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21120"               />
+        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.90011476143"        RangeMax="0.90918206064"        offset="21188"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="22968"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="19572"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="23328"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="21176"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="21724"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="22236"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="24932"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="25480"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="25992"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAbwkAAAAAAAA=eF5V0nk8VXkDx3FbSlz7GjKyl7aJSOqnEi2TFEKqoe1RkiyNmhGFogVlr6bUkHkiW7bKyChXIsugxb4vdc9Ftqx5vufc1/PH/PV+fb6ve8/9nXtOYN4JXckqitiH2r49WUmR9AqhTP1qikxYueSGYv9zj1e1RQ1FhH93Nk7C3uWgE3roH4psXFZtU4h9uCChybuWIrdU9UTqseevta24UkeRgHedjv3YLysXOsTVU0T79nnLKezhnXsuP3pPkb9CnOtEIDf26t6sDxRx7ZKZk4evLjcWv/hIkdjVC9+pw3O/vKgv/kSRnv6c9Uvhq+4HN0obKMLeGb57FbyZNPulrJEiP7xZIGIAZaUsv5Y1UWQ6P/6EIdx8YOhBaTNFdg9lexnAqR2npotbKKJu+FZrNbzVoC9Q0EoRmbW7g5fB5YGJeVltFKmLyY3QgAOLyaLkdor8Eey+XQn6dHuuiO+giFlN31MxKBSSOhrSSRFr2ejKWXRZ3/7TZ7sowhFuv0NhzwmifnfupogB2ajSgH1Wq+rS9h6KzHUp2rzGrtB/evGqXoroHGgzS8UeFG3kI9tHEcHBmd6b2Mfr44LH0XLsFgsf6Kwzaf2hnyJZwVwXOygVWdKY/Zki4utvrzOAM3XHNCK+UMQh3rJaEg7Vmuu7cihSwH9ck4Pmdysf30hR5E29g8lr7El+zsEyXIqM1V2Xvo39QYTbhx60l/Wx9FOwzs52IHeAIp53rCQ2wg2XAiqDBimiIZq6lgVT423P7h6iyMlFHVqN6KLtRn2KX3Hfj+1bk7APFF3TbEcPES8Xd/jYOWfFo2GKWNnEZK6Bszvl57uO4L1I1qz8hjb5USZDd5QiIvWXnj3HnnyQpduH3ntIwuc8bDU57p04hud9eSW/Ecz0vxB5cBznN9viMozOtn16Re4b/sfVKTGp2L8VHdtTgRZ1Lkk4DOMGx0f8JyiiaP31ogK0qy/2WDVJka1Z4Sbl6IUVWqVt6Mi2qcpfocJUwMSNKXzOMcpUDzpxli4wnsZunhPyHt3QEjTejs4VepEZAMd+6y0JmaFI2wW+5zrQ1DDVR38Wz7On42EleuUT/fnV6ODu56c8YWsY+4LHd4pkOLUvkoHs5soG1hzud0FG2lN07ep7KinoF28vaFtD/chrluZ8XPI27dEVDnpKbcCpGX3Uwr86GM5ELnby4ueSctYBARXYYHPGQliASzasj/shC63RaKwWjxb+GrTMHCpveterI8glvbrnNN+jq+4F3M9Fp3FKxY7C2qpHlpuEuERbld0zhBZdfqurHJ2ZXZL5G1y+K9p77zwueayu5CEERQ7yTX6EYXYyS67DoHjts07C+N2oeRUS0HZ63+dmuMTQzC0SqtV27DswH3uItJAMjB6VK2qAmwMqY29BhzWbNewWcMmdtUWa4pDfICe4Ck4/M8wIhd8DnndvFeGSuicBRvzQfGuCeQEU8vn80hfWtmQ+WrEQ52gpsqDQZPV6kQdovR6rmkOwxir0jIQol1yx6jxQjc4b62z2Q1sqlHA3QDaJ2d0PWTYkOAUGW/e/3SPGJUMr76nLwZtTmruewwIBnTcXoNq8qMbFLJyzQfOXbvTBiF+9A9EvWW0rt0NLpSVK3fBZzu9jqfC2dc27LeJconUuqUwMZreWRzyEejGmKW7wupr9kVkYl5JytwxeSni+zV6CS07/tea+BtznvXZTBlwirJLtBxMNpKzmSXKJX+KfTXVow84bZxzRlbFKSnpQMYLzOBVOR+ec8oOlph7T05AlUvCxEupoOh7fIYVzq592UoVlnz5zYuG1VvHJkzD2F5ewDuj4vSUrD6b6z+1cKs0lggrKIXzQdq2gnifUTZv36zb4aCpFKw/mOTdfD5em3xPDLZNw3t8thbVQ4UhboIkMl7iMWErJQdO+vp7zcCbdIcQOevjfcM+H56d3qUdD9hYx5RFop3m8vQbmf08e1JeFe9vZotBWPYE6CreGz9aaQ7FXJjJ3YYY/v4gfvO/KPloNdXYYnMiCksJRnfxyXNJU0j3ajZYzEQz/EZ1o5JYmD4+wrri6QKu05dEWkO/VQ+9weJudlOIDORrTmc/h68bDww+g855DS7rg435l9wq4cXX524XyXHJVP1NlFF1Y5v94FdrR0VhQGTp5iZXYwoT9shpmcJPHcRVfyDKc8T8CbWW/5cbB2HzpRZchRz83Og/eWzf9LQn+tM60sA5q8A+qvIbWSzoNBunreL8Pa4MXkmv4RRS45JODk/UUWpmrtEwdfXVAxE0GlolXPjOCm+qcepZCOWPhnJ/gB+WaN2aQL2xK2xla7JpQtoPG8nMqXnB/aCD1H3juYegfgVA0bMPW8/CBuhb7FpxTlV9zFUoGn45KoK+vzCqJo7/XMqryBG45pzP/EeQ/qOGVD4MO24llwYvpqknF0GClbXcBzHKOLymHmWVXH7DhK770nlqY7NG0two+PZah1AgHdS6yPsBLDaNe7bBt/J/OZvr+FqUL9sIVbNWeTrgxKKflC/y8z0e7H84IOEsPQjOPC88oGM9yfjoMY/ysngzB0dQ7lWNQMHer9Cic2CvpPQHVnDiT47DpfGnmFOyw/uQ5Cbd5PouagakqiSHT9HXzq3S+wwMi9ZazUFu42XeOPp9KayG977idEManyCWB9mqj9G7FfefJj+aUdY/Qe7uDvL4AHC72ZtO7q5Lpa7qNI+XP0E6kqWwQhIqly6bo3sB6c5/uzy1GJ2h3bg6naA8bTRTTdiaoLBWCDR1nF9CmjlzZTysxqWRGqy7780VaTb8iN1p5UfY9WgWb0jBasZ99c2i/ymn8l/aPiA42bWiix1+0TXv06mhr3SYqaMUVTVpoX86VfaS9a17dTSsVnN9O65Dh94U2ycu9j/aIU94A7Qb3MxTtueQPX2n/LtQdov0oqzFK6+XbN0x7aN0/Y7QeA1+Y/adOkW+0Sq8Oj9MW5nKYljXwZnSdCJug5VwyYlRP55+kDZAtYTpgxIbps9a6jE2zYYyXl3sw+mbnMfKpPGRU1ahjdJcvYZRu7mW8dryZ0cZ3lDFlC5fxZOMs48v2CUYfI6Ep2u9dfIyWEQsYjS2FGVPPijLe5Ygw2pxhMXq6ijFKFIgzaojyXBMjwRilynNSV5JRvo3XAhG8Xr+fp30VT91UnjcneE708syTlWJMFOZprsbTRJFnrR7PXdo8nQ142i//d//fHqN/+z/04h+HAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA2AsAAAAAAAA=eF4VVnk4VWsXPwfdEBkaFZXpJcONlEb1FkoqUqmUkHArQ4nKEJWh0ixTiGsMRZkyZFhbFN1CJENy3UqKaDSEc/b+1vfXfvZz3r3Wu37TOvNKBgv3Doox1f+orc49Rmhzvn3JoHU/XM6XmSLXLsYMq3QK3HsJnTzPrGzpiDoVye9Ne/J9HPzeVK6T+E7oKc1C/6c7huHfsZW2LWsEEOB840nVfTEm5fVxyRWVw/B1vroVvSWAK0cjWlaHiTGKce+Ob6wg1F160ZsdUYTKvFxgWPSR0PAFhZEaWwnN9Y9QVjEl1ERS9k0F1ve4O3rYcR+hu2aVK/o6Efpyuc+xWYsJvfpi1vLs/UPglGWSXyY5AvIm6XPj6gg1avliNCuJ0MzQisx8EUIPTjHIimoidN/i1spv4YS2Gmy01+oj1C1zn/ybFkKjviiLncb32qYmi0mfCZWcom1d20Goc0PVi5gufO92Cfn4nFAxBUnDx+8JLYzykxaJJbST7znZMoBQepsNmBExAqNxj0QvqYzA3IaIBdJ3CR07+9+Z7ERCw/KJvw7OVXF4Y59kAqH8CrG92VcJvXWnfcuPs4Qyi7tVyvC8MOCccTLW/ba2Z+9oIaG3RQdqe4sIFbhviVaxJ5T0NU1qZgiNHN4dVLqCUAfXJilZfcRRaJK9vludek+VVpB5Ico8DAxe4Hyf0JjqQD3Ni9hvVZDIOrxH+cVzpkw0oZ8svVMDGwg9xOeJP+skdGj05427VYQqOF4c3OZA6Oq8RrOYGEJ1ns99elxBlDH45RtutInQtgfKfg5phP5ki9Jjsf7F7gdsVrMIo21a7GA8exxc3d7EuyQTekFuTnYf1nucHcG+VBNlTL77/qmO/debvBjOfETowu7kjL1TCBW5a/jgOc5dbO1Y4hBJaNHefuHZ1YROwJaUeqwfHnJSRGXFGJh+N2+ankXo9cj97zr0CNXY7pkz7wahx6TFOpeUiDC/fLrMmDZ1OqcqnvdGnlDV31o6yvf4jPK16z98nQnlZWsV+08WwOaDN+oWBxK6/aZG9pxJQ9DOmuqno64+f7v/eJr5MJyaP2hUnU6o8SMfiyMrRsCzN8er9Briq+7Eyj/G7yJCr2rZ8JmfWTajNTjHFP2K5twM7JdoplBTSei2PPsy75OEJpx3OPwY57qXoknDMgm16rK9MIS4+C46c7AkiNBrxVX/nQgYBlX50y2DA+pU8YNBZ2Ue8jUxTykL+0VfcdJbTzgwPW9Rbuc7AY2ZV9La5PGcQWDurt/qdLJdfDWDeMU4ZfTuwXmeyXbq2Z0g9Ev3Onk3K+TT9ZmdGv7+zm1Q6s491HGyYt02fB6KjtpSjLiuVCvfYZiN57PuNGQ/IfTcACNfj7yf+brs2IcwQp8HziyVR5/l7VuS1IP45AVc6dyxktAjJl9X+r/g4JTjuh1nKKEjJYYvK/IJtfn7i8+h7YTaaxytzzlA6O9uQ4MOrH/WOU2tBnVQvtOf/o5A3fVEVRRYo76OG80cWkDoFpkImRnTWLigLKj9F3kPC3Xt2xiPfvPVi3NDnygWJFQ5ueL9rk/8WiqLPo2vkS3COrMvPWvaZ07ocpnGiTtHCb00bFbzGXmXiDcP5t8Yg09JBx+V2HIQW7ih454toWZGlVUO59CPxnX7RoBQaW3LokrMj7Uj0Qu6lmJ+zV4QZxeMfPmEtF66xGPuClTvXUPffEiIbSvbhfj9WFs7+BD1nxz5vXnNOHh0njMP203onnVXhx7bELrs3DE9zWXon6RzezKHhsBXOal5ZzG+D05ffQ7x+zUSzo96gH01una6oR429T+Xit1IaJ3Vu7ceeJ/bEn4yIV6Eil8y19G6QOhAkNjTRdtZoLURpjsUCA1MSarVQ92Uv/KJz8lFPaU7KhqgnrquNTpvK8A6NVy2NeaDzRqudTbmUUFJvnYb8p8aazbxDz4HO77s1iwh1EBcv/wfoTods/I4vf4KoceTd1UzPRwMyH7ihrXHodJALFzlJqFKkdszZufg9w43nFtVeIy4v5kZu2sMPG9m7KY4h2rh9Q0mdSw8LDa8n2iJetF3OGJ+ncccCFD+YxXm6/qfp7mQywLwL7vmd1+Lx7i6/X5CVBDfgu7N3614zPlDGe8vXiZ056TQwAu3sc/0qgMbUJ/2ftuD3//fT/oVLStRJyKtnenr8NwWq8qRceRPYKxUdzz5N2zrOr3xQR4LtQcle77NFUJOefmHyjhCLVrMQy+jvp9UqcR6YL6oRdSqvsY5bltc/0sd9SWuQNTr0d9uS9T3jyMPsmrVV639sN++Wbar8B53dEf47U8J9e5tdr+H+yk9p33qOOax1sjagGBHzLMNst59uF9c/Fdbyx/CPXXhhL4u8rO9KUap3QTnfpEekrcZeR4Zt749ymOW1VudDkIfWZZ8Uuj9zUFy5Xl7q/VC4EuKSFxA/HVSTd3PahF6w0Ny6OoixN1o+dQ/E4SQeN5jA1+fhTchoy2hqcjfgyk56aXq9KDVs4PVswldfEBpqODVKIQ0Bp5i1xD69ojhlctqhMppij+djn6euyyZdTkxBC5DXhv4gyx8+jkRXYn5WePT3hWSLIRvT+ZzV3HvTvp2YKDSndDgr8W31uG+0fWL7OEkMT86XL9uxDkstvJaXqK/V0xJ6XCmHIR5ravfUopzfozhNeEeOlvo2NVYIYQXoe80/TAPtWVMS3rQJ0seFoa/Kse9XW8pb7mH0MvGR4sJ6lUz3FPnrS6h02COT+F7DpJu6ZvJeY2D86QS2UZvDmb1Ty1X6xJCUkzpyNZqPuOSmpo8bROfKYG9eVKo47oU3Z7DM3lMm95hD40zHJQMmj8cz+VAV/zlpYRkFpRt+1rjr3MQJZqQn4X6kGsxak89w8KlgJgnI3/wmTfRBv1hEgIoCzZrWOjAQqiNbVKuEp8xSjXeFHCag9V7funP8BGCZeu20Zm5QlgoltojbctnxK8HWTcXsSD7yu1v3RYBvIuAp9XbeIxEmxXfjGVBp8onSKglhKN3DY27pXjMEWo7U6lFCDJymTWx3TwmzVniJC+Xx9Q+chaU72UhKEaPr23AQWuD/c4EzMkj8w7UKSnzmGNph50GglgoE1u0u9SRg7+3Vv/3/T8WnvjrSpgs5MCbF3TKIoOFzOL9UydQ7zyvxo85PCF07JdS/Kd8DNTk1D0G/uVA5M9bX1yaWLi/xdsk/MQ4NGv+mnp2jxCcUno3vA9hwab4+UV7NxbiJmnY5L9igWu31dbEXHmd8cBaFHO39y9D8/nAwZkDe7j6HaNgOe5WFt7Jwbw7Xl8tV7Ig3qqzKruFhRmK+5KVJSdAROF5lK/FOEivCrs2/8ME1PONVI9ncHBPKrQtegUL8/neF0FDCIK7ic4q5eMQkWEneSBVCOfNO3bb2QvB4plWs3mzAHgvHzWU9KtT6yN/ft37iIORlp1Onp/VqahjeuBY4AT8u6SUl6YzDoPtD1WKPcfAJr59VWTYMNwMviX2G3Nf0z267ZYGodyzNTvNldF3tnPchB0cbG5WtSgyQl5uvdeX+zEKFkfJj5xPLKSKrl1a8IGDp+VRcdNFx8B7Qf9dTU8BrLd+6/4J933ppL5PJ6YjXg0Vj52G1elNPV2DTaGEfh/Wtxain1RzZP84qUqoedbWhkjch9G7l7239x0DyQ9D27xd1KmUjIVcB+LKnozSq8L/H9U/bG9K2OE+kx5wFHeZgP44O3PTrxMg6NSpkcVzL6qDBea7hBA8uSxWdGACjB16J/qQJ4X84pvzKAsxGgmddzD/1BIj7ldi/iitTMvZtYTQV4kei9boCSCTeT3jNerOS0Ri6fsLAjivHGK6y1cA2i6fr3X9EEDuhgjuQ7wQouXsFmsrcnCtUe3wo/MseI4c6e9eKAS9Z2rhfoVCCEnSTJ2COjWe7iVlvYgDbWO4t+APHhPeceyjRgoLia1Fm2xes+Dq+tanIIQDLvFbMh/x7EnuGDKeyULW33kp6Qo8piCNvfHUkIP04Ts3S0/xGG5+YaUF5pGou9Hgyc08ZnmDqMs0Lx7zP18iFbc=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA0QQAAAAAAAA=eF4d1X80FFgUB/CZtmhnrDj5saFtFEVJitCsJqSSSuikiKlGiZJCSSM1JA0yIjFhhFiixFaWchZt7GLXVKYZzGQNkjY5KEV+tN/XX5/zzrv3vnvfOe+8oZZm608yLmupXDw/v5PLenFTN3ES6+T66FeUdi4rn0kzV4HjERXn6NDuQESTBtxht19LBw4N+/vqQ3+9qwUMqGcpf2sMmSu2rlwBfVQ7gy2ggpFcthbSTwYMMqGD6xETexJXl8jZBNXTpJku8L6X8/Od0JXaM2c3VMm+ZesN51IFgfvhyXX5wkNQbXV3QyCckTmPBEPqsELvFOyKynY8Cweq+AHnobck78pFGH5poIwPnxr5ipPgSBhlKBXq1L6gCWHdrJfGIviuX2VDPpQ9DvQsIucvnD52B7Z7P7lQQfqdrEqphBUjyrzHMPOZXXkdPJ3YXNMAq1IT/myGTk+jnolhevAtmQTqiiYVHVD1VFx3Fyx139jTC9ny1T0DsDXSvfs9LLbJU4yS/CMM2Wc4+Ps/4ilo9qmokdqBe9G9+1gFut2Ql9Hh9IhFrgbcHVSSrA0rIjdF6cFOg5mARbDE+LmHEcw4Xs00hdbuvzLMoRG7crYljFpW228DmfcaGu1go9WTAge40PcObzN0Wsz13gaHIw3XuMFHoemqu2FB9N+dXtD29cNSNlQoHbl+kFfktzkAxprP0TgONXhashBoFnguKxwObTD2jYSt/37S50FWoFQWC3sYRVfjYbONy2YBrHufM54Kj3FiijJgdGOrRzYMzfX5kgsjblNzCqFSK2V9CWzjKNrLYL5txYn7cNsFObUKFkuMkmtg/6SHbj1MD1me2QDjREG6zVB6sF3QCluWLqe0QfUR/WMyUif8sFgO2Xk1Zt2QtlES0weDfmE/H4DmDPqP7+GgKd9zhMSZxVwZg2EWhdUTsPR81qtpeKt63jgV70qrvGSuCmQZ6MyjwVmdkzR1Yu6cKU0o4XQptaH44pqaBfAE417CQnij6bsdhjB3QDnLGO66NF1qAmmHf3A2g2qlLdJVMC1lbI8ltOFtb7GGxtbXLZhwpld4eT3cqTR6Zg/3udFpTvBdj+HaLbD89EZ3F2jxxpW9A04dXObjBs+pPXDZBYO9uk094X+UrIm9JE4ord4HPbbyj7KhJ+U2/SCkVFqK/GCCxdJF/nD4DC8lAPYFOX08CkNPhm85Dp32GySegNujWLUhsOmv/t4w+OUtY+I07LKfnDkDFzvEjZ2FPn0SRSSZ23PqQRTJf6l9/gI01bSzjYYRqYLeGNhPWcWLhaMSR/U4yKj/kHT5W7/BX/mwcVEfJwF+L+BXJcJpeholCUpvOv4sgGpmbQHJZA5VfvxVaLeuSJQC625HFKbCBcIteddIndmclDRI36Ubfh3afqzamU76nJ/5UwbMDJvXS7Q6ECwSwqleNdcb8I+XDmPEDxK/a5nknIYmkyzIWdL8kPiK/4iZDZc7DP9GpDjVrhTBiSBuNtHQJmx2DoztmDhMHI33qScK4t/o3IS19q/9iXedcyqIxVl7PxNbfffY5kKhh/wUkTVueJdYyTukJJonSDXzYIN5IYtoyh09QhxsFycRTdZal3/b1/rYSuzuSHtL5Fyx+krc62+jTv6N/wFt5TD0AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4d1XlYzAkYB/DUoK08K1Q6lNqEZmJRbdL0TWSpEV2kadtaI6nYZGvpsNGdKTVpOogm0zGZ+/j9rCNWh0GLDlvS2ta1bKtVPO7W/qa/Ps/zPu/3n/eP79t8f7VF0jLgirn/0gGQWBIZ/mPethCkFYadr30QheFr45XdK3bAPZBjyXoVj7j64IJvtyUhPsqcX/HVPuy8Z12snZMKXlB8+9sX+7GFGOE5daXj+cN9m4IbD2LoGXtR66UsRLe1pPbQD0Np95QZW5mN3tL1ogP6uVgjfvnQZHceaL8bWM7vz8ei7rx9Kp9CuBtm2l4VFUHqPbiWPYsL2rsc06S0YpRYb5VNfVCCE4ISxxLHUug13aAN9pfCZN6F4idFZYgwVfWpmDwMzZkYXf2Ch0Dm8FhpfTnObTwxXhd6DP8Vx09LnlaBK9czfWlnKzCWrn9h6y4+wjW2BYlWlZBPGT/ve6MSP7ZUJA6mV8Eq10a2glGN9RO8qsChakTN+cSkc2tgwI1WX1t1HKRMPtN55DhC9z/Yyao5gYfRD25+uaEWyW38iP43tZDG/mHn03gSpW8rViSEnsJo27owxpQ6+OdcY9HC6/A2jSi6KK1D1q3dluFTBdjIYRn0sQWwMBcHL1MK4Jv50DTJsB6xy9cFlEbV40Wc42c8dT3CU26EpRidBkJzV3lGn8Zcw+r2Yc1pnF3p/yHOWIiC1rvPeqKFEL/PqbElhChLzrNgGTfg7CazBHZ0A8oHd5xiaRrQ+b651c6oEXkdJr19UY24PHT+SYKqEQzGfYPH05vQblrl6hPZhD99jLMz5U2oexn27gStGft55YKT4c0I9RzKPSxuhoWtn3y9ngimjsPOYyEiWIVd+JTeJAJr72OPZ+9F4AZxhj0CW3CwylsvQdCCwsHU+p9etcBLYtKd+vUZRBz6WLG55gy8L+KDyfMzMJR1GYkhBinl33ThiWE7ULyZ90iMbfGnau66S1DE1hAGhRLw7xLSmfck+EGcz9VzkcK0wzCi96AUK4UW9oW3pUg7VjJi7yBDfOeattp9MtBGDZUf22WYktkXbWcsh3/Z+IRihRyjZl+5uUfKEb8l0VicI0ercE3ubIkcM3i+TYl35Jhg1KeQE3J8Rp/76uUCBYaOZSxwCFQgu8LD2DdVgYJZ3wlDTipgJIn8Z0unAtPMrg8EjCqw/q9DW5abKyFd7e5n5K1ExrSQvb07lPjmddmR4mIl3PeI5nlolBjPSkrvGVLCZNdtGZumwqvAZ5weugqJXWOdriEqcGJ4MVlpKiw92vNGIVAh92+brR1aFXhVsU6af1X423G+Ks1cjYkOt9YZTDWqPv8vgLNdjYAjB9KSC9XYeac2xlmmBlGWPyWjT43kFD/fsHdq6o6phvXzNNg44hTDWq1Bo/2aTi+OBgsj+OkReRr4e/Xpc5s0iGzknyavahBe16bf/kQDt+78tioaAX1vO7qdPYH5dJvLvl4EarOu/z4WRqDA5YKr7R4CHPnu5RdzCNCMvAO01QRiY7hfMCUEGKpj/HmXCLRZpxz//hYB4aFDRsz7BKyvHl1XPkLg+nO7W4ffEPjgYPOLrT6JPbNiWBnGJO4pAxyVs0l013mO9VuRyBIFa6fakxCFfpSEOJH4uvKo011nEtnVZf3iJSSIXQOej5aRsJU/317uSu0J6f1d7iTy/aL2CjxIPHJ1jprvSUKb/oX11lUkMtZuyg3yovKRbaOWTBINAhfPnykbaz3fu3uTGBDMKq+m/LgjIfIJ5Q/0t1fsqd7MVQXEbaLsvZTtk0zJHw2ScCnV5xbz6ygd3mVnyijtF28oP0f5b2dh+xXKp2YXtVrKqOAOxq+Uly0/sW9T0tS1TT2UVkcrWX2UosPs/XcouaEFrN8oH+t1/6nzReEq/37KweTfeDoXMg07dE73LPhL5+aTNp90uu1x+FzX79rLry11lm1g2uusFlo56fQ6H7ZYp3nAAbpOxffDjMn5N10uOhnNnCU6uxq0k1rHTJ/8F+yUZZP+D65e89I=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAwAUAAAAAAAA=eF4d1XlczHkcBnBydojSYlXSMehyNjWJHiVJUklFarvlKrk6tESHnIXQjCtHiWpWhm6E1tGWkjbX93clS6JRSJJof9Nf79freb0+z5/PJ2VqT9asbg73cs07lacTPPpr77acNg4rrzgE677isEu/3k/ylEPt7NrVY6s5zL7FJpys4CDPv5Srf52D5HgNI73EIdT3o86c0xx6lxauenyYw1BhZXHYbg7vjG6pK8VxoKXO4ec3cOiuHFXnEMLhzp2imW3LObxZ3yQRu/B3rVZ9jnYcHv0bEtoj5KBqoPZQZsLhkPVLQYQeh4vNW3aaaXEoX7q7oX04hzW6JbolP1m89roekPiZxXAnI/HSFhZPuMJKI5qF1dxRr37Uswge0dzx7D4LE7tnHUXlLGZsOsFJClhYmL24sTObhWM7ktedYLFfN97KJ41F15d5jYuTWAwptPSxj2UR6Kp+f04Ei0o6eoxNMItEwUSXuctZZCuXh853YVEx5Kv/EjsW1+QJ1r6WLK5+0PgSbsriQq73/sSJLKp1lX6d+o3Fy5sPXMpUWNTNWx5F+hi0vg2L7utkEO2U6zrlPYN7fzT0enIMtqZk7NzdyOA/cd7Tsn94z//981MFgxxPcZd5IYNLyVRFRC6DznxHL1kmA27NodLuowxKe8Nb5u9j4F+X0ZQez+D4q3sX3mxh4BFXYDZnLQM/95E7MvwZOESeSe9cxsAmZHS49yIGFweaDr9py+BgfOYqgQUDjZwpSenGDAK9kgMG6TFQ0474HqPFYIUs061DmYFt8NPA8D4aHldqTds6achPORREvqdBbf/W2sXREBtkk4SnNN4eHb5rVA0NOu71iwt3aDinf3ktKqah5NN9tiGfz+fKVDeep9GbwQo0xDT8U+fJiw7SqLGQBPon0jiQmhOvEkujxMfcsTyChkHwx6KIEBpHbaWPjHxocFHG+zhXGk0exu/PONAwmxH5MWA2jWaN28cE02mIpjPURwGNaO+0yhvaNJaeEy88qEHDSO322sBhNPR+VE8W/aRQH5+0a/QXCr6e1zZ/fkdh8jDBz0aWgouwYMKNRgpV26Y9y66m0JAuNki/Q+GKRo9SUjGF8E/nomOkFMZ3zdgReYGCaXrLmPUSCo/a3jmsS6OQerhWOSKZQnZ2wLotcRRG7bm2YcdGClM88w0PhFGwF2ufOe1H4Vzl8W6ZB4WSLsOgGicK0qFqWq22FNTu3w9TFVKQ5M6vm2lKYVDCqZYAfQortqkmHh1LQZMW5dWNoFD3Z1ix5mAKRSNFy4J6CN7mbz58s4NgvWSAfFILQX1JUFAWQ/AgT7Ja2EhwWpjZ11RNUFO2oSDvLoHm7uYd4lICj6DiFmkBgcArsq4jh2BSyvigtZkEBuqL+3QyCF5HjR+rmUbwy8KtzzWFwNd4wuOX8QTXFoiEpTEEsRrf3do38n1xqXuT1hGUjn6yOTaUwPBy6PV6f4IR4unyVB8CyyG6JVc9Cd60rzwpcicIpg1+N3IhyLkVcGujE8HdqX5TtRcQWBiIXPTsCTo1y9xiQWDf0NI2cS6B+yx59Ggbgq5Y2SBna4LmmA+pFVYEJmoJWustCT6L/IoXCQmKS7WrPS0IOoY5f0qZRfBQNngyNZPAy0pY7cK7/cjlrOczCJ4fi3oXw2vjaGVtwqvnKs38wO/g+0VuyWW8S8q2yo7wxidvstvMu3+LzSkf3gjnN2sceaXj7A9Z8eZaygVmvHJrLtKQN02a36jDq1QWRcbyGk47O1GLV/bK3FeDt+o24zqS93N7fe0IXvumukI13p6wAa2qvL0PxnkrjHIibSq8Wc6t5xWa6LDhClXaDixUmLFkk7nC4mPO2go36FeoKwzUmTBU4Qtl6wEKbcVWvYp9d9+T+F2hB3P1m8KSg9u6FFZW5X1VOLVJv192TFX/Pxiol9qvh/rqfq+rufbb4m/b7+EXs/r9H3AgJhs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAApwUAAAAAAAA=eF4d1HlYDVgYBnBRlEiSpuWiBVGXQosSr2tpu9S1tZcsV8lSptzimRbGkohUGJVdkdBGZSwpYVJporLczjnMTCFL1lDJnHv/+j3nec7zPe/3/fHu0f/RYNDD8Eau16WqT+AlqXJa1Mkwb7Fp4d73DJs1QyfWtjN8SWsr1mxl6PLtmDmfMdg0PmxMecIwsLp1ffNDhveW0Voj7zP0jntaFPIXg7NgmX9xJcORg0EDVK4z7PEeUyIpZciRqoecLGTQZ34GnXkMAseIWnEOQ3tXZvyp4wx33kya/CODIUl3x78+Bxg+Hn+TWrKPYWXHFeglMTQVznoVvY3BK02+Vx7HMKf4iZVoE0OESWrN2UiGGJnfMp31DM3Gie9jQ/k87Q0xr5fz3GPXfPMLZNCorA2v9WaIFbwhWMhwWNV41uV5DJMF5ZlCF4Ybu43bs0UMz4IzhSZODJPsdy4/ascwY+O03SMmMdwy1c45asn31gwsMhnLPbQ5P8eYwbr3ZtYEIwah1q5NJcMZOoMt54q0GSaOVvlZN5DhfuiKnAA1hh2FeY5vf1LMSJhyNb6LYsilxea6XyhGiVbHneugmLC4pnxWO8XJFU3tLf9xHz3vjWEUWeXibr2n/P1gHStppFgbfuqcTz2Fe7lLQE81hW1GyacTVRQ2MnGEWzlFZfLyho9XKDrqvPWOXqK4XrlzhjifIqrGw60rl8K4WsMu7zRFdvpw1aBjFL2B9UU6GRTfQ9JF1ekU/7hV5m/ZR6GeW9IzLYmCRtebf9tG8eBumHVJPMWnT23DZZspRoadfGS/kaKnpTuqO5xilcXCtzfDKLpXqs5MlFKsadqwdkEwheOL7xsE/hS1M3s8Xy2hEFY8ViuTUOxZ1pGaKKZIXX2808+ZwlU4z9pKRPF05SKoOVFIbuuZETuKRq+vT0smUbRM9VqVKqQoepZeFW5O0Vah+8XDlGL2JfuvViMo+mYuvaejT0EuvFv3VYf/g8tzMphCp73G7I46hUomsynoRzHuWOuwrF4CTyK6ues7wW/uvg6bPhNcyEqNC+sgcC323hfYThDa+Muaha0EKnLxULdnBAP0Y7eI5AQeSZKr05oJQrQO37BvINAlkbttawl6d0aZ2t4lWEHattlVEpxvtbrscJ1ggcS3dEYZ91rT/rnFBDJ5sofHRYJ7H9x7fHIJTqimFkhPEyRq9U+KOsZztC8v3p5BMJ2ahBw+QDD6dt2n/BQCvyq1iurdBJJIwZIXOwguz5rir7GVwEI1K9c6lmCkn4NrUAzBxXkJsrRIgu2tBQUN6/kektpiwzACOr4+PkLK8waUejcFExi4fbghDiCItZZHNnsTtBXZh8QsItB2SS6w8eT3OZAdryUm6DM9WVPDhWBM3pl489kEvsb7XqwFgbN1lmHLNIL7B3vORE8l+L3OuUpkS1BwONTBaTLBOWmRb6gVwY6lf3TeEfJ7pOz197EgaNkyYb5gHIGPbP8gnbEEc17mB00dTfDAeOKhZFMCkYEgZ4gJv2Nai/m1UQSm3yNlKSMJ/LNkV3eNILC9+1glW0CQfvOLMzMisEyZmWTLdTCdKD9tSGDeOlhqwS3VyI65ZUBgFrI1bR3XKNtQOpbb5d7Y8Jr3XVG94+er3K25mYID3BYrr/qN3LoC88oAruuyPx+7citvlxk7cCMrjtQJudqFv9qYcaVaJ+4acYMvduroKTzaUTqUu7FtSZgWt1Du+FaTG3fEU3sg9+uHgxfUueUv1p8ZwNWUvWzrz7WIDvFT6OaU8FmNG7RqUJ5CjfHrZAqbz36WKAwcFm6nMK7ztpnCjLwyPYUx4uzBCp/rLh2g0GPIkH4KIxIFfRQm3DfqVfR7kXtFj8Ko6MfdCiP+dlL6Tdqk7P933SlKawxXKhVmOivdlDZF6Tkdc6V9HUcpPf/RQOn/vK8UAg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAEwUAAAAAAAA=eF4l0Hk0lXkYB3BiEF1d2SpKkUmmkcJhjHoKI1ESgyK0IArV0B0alFRnVIzKrSRtTGO7aMEwMYYsU1mbbNnX6Pd27Vnvned971+f85zzfM95nq+/RmdIUTUBR9bzZ601BBo5Q1GTtQTY5nMUq55Aqb/XmFYDgcTIxBvG7wg4u6rVWf9HQNvoQKbLewK6RTU6Xo0EMt3GrAKbCGRlG8twmglY3lEN/KWFQLORxNmIVgK/9p389twHAtZfN0SHtxGQL7kbF9pOoEF6m0VQBwGxaxuTj3cSqNrX+NSzi4Bra+Yph24C6dUa3eY9OP+cJLm5l0DwYW6beh8BwcWg41L9BDQ0/8im0LIdd3kNAwSkqgu9cwcJyDgHtXA/Eogb0JMNHsI785xn9g7j/cedUjd8ItD34PpycUJgtw7HthFdfMrXPI0ioBlSLwj9TEDfSvmCNZ/AlZa71UojBApDK3s6UP45QemTUQLzLSkn/ccIWIWuGt40jrmo1waj6Ly7vF3OBAFhp41pwCT+59k1s36KgJqFXmwXKs7mTt/6gr1oBJvaThOoNtdxWkDtnNg2vBkCeWnRK91mCRTc5ldKzRHYOXrfMQcdDhsvdpknsCbGSm4BdbUe/+7hAoGKCYfdOwQErv1UbNGFVoTHrA0XEpjVWD6oKkbBJoM8bg561L5Ib6c4BVcro55/QOO9PbQDF1EgZvT4kgAttkx+f02CgvkzuSorJCnwGNG1SUZP5Duf/uYrCmxbomOeou+UVR4aSVHw/R3b9Hy0cONZnrE0BZ8KRtNz0ZkXYimbZSiImJpIyEB9b6nHai2mIOXgq8gENN3dhMOSpcBQrtz/HJphl+vDRyMuO3q7y1Hgt2vY71/UtKT0jMESCp4ItK8komy+W6o4i4LYmsx6b1TsmKd0FerpVWijI0/B5wKJpMuoQv95YQ86zeMEbV1KwUuzDbNclO3fFk/QSLN3ljvYFMgus5eLR4c1uUN9aOnj3i4DBQrS3MLGzqMhhQ803qJNNjF+ysuwn9MX6w+iWbyy/Y/RplPRYgOoWYbi6/WKFKjbPsw7hk6YBVT+jrIMCxa60fzUMld1JQreutR0/oh6rFkdexU90jLvU4Jy+v86MY62meQnrVOmYH/7AYEj+tZC67dI1EWYtY+HSq4q2tmE9ultDRKictfdGrVVKAj3iQuyQdc7PN0TgE72S/rGopYG+yt4qEmScsAbtOq12+FBNF2onCauSkEDpWC7EpU8rbR3Mzq14VORFaoVEPrIFd1VWyIZgJqr9o6Ho3UPVoXFoKm1RRmJaI2u/I1UtNTTDF6grZ9NXhWjOUrXt1Shhn9a3qujcxW3FZtRfd/e9A50ju8d3IcqBShdGEJXFwT2U6jKDy7Zo2iY/gh/Al3SFJ73BfXw3qswi85W8FjzqN2h+vwF9IJC+0oh6hPSuV1sOfb/oXmLOOrHKp+mrXNKS1iEypimqEmgN88Io2gbzSyaaDu271ohibpz7PfQalov5dCqZJdzaSNM92TRchN0/qFt7IirpR24GtlK6+xV1kMrYE9+pLX3uknRqj8TjtCus7o0zuwrekzSbnHIm6L9GJz9hVa36Mg0k+vuYZxdu22GNocbwfhyMIOx/N4bRrtH3YwR7SOM8e5zjAUxi2Zpt5+QZkzOkWU8QpYwrjgqz3j0wFJGGUk24/1gkSUvRb7ii8xkKTD+rSaSrSOyTV/kIUOR/cYi/wf6Sha/AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAdAkAAAAAAAA=eF5V0nk8VXkDx3F7Cdm3kBFZipaJSPRTiakmKYRUQ9ujJHuqEVmKFpQkTVMU6olsZUlGRrmyJAYpIvvWPRchWfN8z7mv54/56/36fF/nntfvnHND8o5pS7yjiH2EbcXxaopkVAlk6dZQZMLKJTcC+6Nd3jUWtRQR+tPZKBl7l4NWxIF/KLJheY1NEfaRwoRPPnUUua6iI9yAPX+tbdXFeooEve107Md+QanI4VYDRTRvn7Gcwh7VuetCynuK/BXuXC8MOXGXdmc3UsS1S3pODr660Fzy4gNF4lYveKsGT5960VDykSI9/Tnrl0HTjsSrZU0UYW2P2rkKXkue/VLeTJGf3swX1ocykpZfyz9RZDo//pgB3LRvOLGshSI7h59568OpbSemS1opomZQsXQ1vN6ky1f4mSLSa3eGLYd6IUl52W0Uqb+ZG60OBxeTRQ/bKfIgzH2rIvTt9loR30ERs9q+p6JQIDxtLLyTItYysdWz6PK+vSf9uijCFmr/g8KeE0r96dxNkYJNG5SbsAfrvAve2kORuS4Fm9fY5ftPLl7VSxGtfW1madhDYw19Zfoowj8003sN+3jDrbBxtCyr1cIXOmtNWjf2UyQ7jONiByVjSpufDVBk4frb6/ThTP0R9egvFHGIt6yRgMN15rqubIoU8h7VYKN53SrHN1AUedPgYPwae3KAc5g0hyKetVekbmNPjHZr7EF7Wx/JOAHr7WwHcwcp4vWHlfgGaBocVB06RBF1kbS1YjAt3tZv5zBFji/qWNqMLt5q2KfwFc/92P5zMvbB4ssa7ehh4u3iDh8756xIGaGIlc3NrDVwdrvcPNdR/C8ealR/Rxv/LJ2pPUYR4Ybg5wXYH+4X0+5D7z4g7nsGHtxw1CfpG773hZW8hjAr8FzM/nGKfDPb7DKCXrHr6UXZ73iPq1NvpmH/XnxkVxVaxLk04SC8NTQ+GjhBkbs2X8/LQ7uGEo9VkxTZkh1lXIleULW0rA0d0zZVfRbKTwVNXJ3CdY43THRgY9+y+UbT2M1zwt+jm1pDx9vRuQIvsoLgt997S8NnKLL3LE+BFjQxSPPVncX37Om4X41e+UR3Xg06rLvghBf8HMk65/GDIssc2hdJQ1ZLdZPYHJ53fmb6U3Td6rvKqegXFec0raFuzGVLcx4OqUhPuchGT6kOOrWgD1sE1oTBmZjFTt68HFIpto9PGR6w97QQ4uMQ0/W3fspGJzQaqcajhb6GLjeHShvf9mrxc0iv9mmN9+jSuKB7ueh0dpnoYVj3LsVyowCHaKqweobRInrXuyrRWc9Ks36HejtifXYLcojGYkUPASi8n2fyA4y0k15yBYbGa/o5CXGI+g3BKnFoO71noAUuMTBzi4GqdR179s3DHi4lIA1jx2SLm2DR79Vx16HDmk3qdvM5RHZNscZCyKufE/YOTj83yIyAP4IKurcIc0j9kyBDXli8McG8EAr4Drz0h3WtWSkrFuAcrcUWFPqF3nrhRLROj1XtAVhrFeEpLsIhF60699Wg1092tgSgLeVLOaaQRW7u7IcRO0lYKgyz7q/YJcohbrp31WThtSmNHQVw7Zzmm3NQVfBG82IxnLNJ41Q3en/0WZ8Q9EuxtpVboaXiEsVuuCb7z29p8LZ17dvNCzkk0Te5XBQ++1wZfR/q3DRJdYNXVO0PzUKpR6l3ymFwQsEv9uIcMvB8zT11uMdn7cZMuERI+VkATNKXtBKU4JCApEef6tEGnVc9HdHVcYqKOlAhmv04DU7H5pwIgGUmHtPTMEKw8EM1fPCT49Ftkji32kknFVj+cYAdBy9/Xjh5HMadconsgI4/WrPzYFrg3PZlUhzCL68UzgNt1/LreEHtdMGzv8CUqdSleTDPueVKFHysZrB5Egr+3VpUB2N+awsxluYQl1FLSVlo0tfXcwbOZDiE20GPwKvu+fDM9A61WMjaLKo0Cu00jrbX0tfzPRrSleGQ/N3tLBFoq5ZAHYaV12frzKHoK2PpOzAzkFc4AN5zZR2ugVrb9I9lQwmhG528sniPJd1j3WhZY/6on9FJhm7pcvCQ2EVXF2iVrhdrAXle3feJgrdZyam+kK0+nVUAN3w4OJIInXcdWNIFH/cruVfBAr3KigVyHHJJN0t5DF1UHvh4FdrR0YhfCbb7iZbawoS9MupmcKPHUWV/KGYwE3gINsl/z70F4/KlFl2AbN3c2Dx4d93092T46zqTonqozjuk/BpaL+nUH6Lv4/M+sg2ee1jLKyzPIR8dnKyn0InDisvV0AJsYTdpWL6w+rkh3Fjv1LMMyhoJ5fwKG5Vq35hBnsgpTWdosWNCyQ4ayc0pe8O9ESHUf+Dp+xEPQqBIpOmWMzBRbSnrOpxTkVtzCUqEnbyRQN9fSaz0Fv271jHlJ3Dzaa15KZB3v7p3Pgw9aCeaDc9nqCSXQP2Vtt2FUG9/fGklzCq/lMiCr3gyeurgQ49Pu9/Bp0cyFZvhkNZ5sUYY3DTm3Q7bxv/pbKGfb1EGfy9cwVLp6YQbQnNav8CBPb6a/XCGz1lqCJp5nHtOwXgx56cj8GaA1ZNhOJb2R/U3yJ+7RWoMTuyW8JmAqk7syXG451RZ1hTssP7oNQlL3Z/fmIFpyknh0/R9899p/YD7hBssZ6GmUIv/HH0+5c9F9L7tdkIkjwKHhNirjtF7xcBbL140u7x7lN7bHeR0+eBIiQ+L3rtkTV7TbRQj50k7ka5syg8VypZP0W0q9uYe3QOthsdot2+KomgPGk6U0HYmKC8TgE0dfvNp00Yv7qUVn1Q0o1WT+e08rUZAsRutnAjrLq28TVkkrehv/jm0X2XV/0v7ILqDRRuR5PEX7R4rnXraOreJKtqFCsattC/nyj/Q3jGv6aaVDMtvp3XIDPhCm+zt3kd7yClvkNbU3ZOiPf2w8Svt30Xaw7QfZNTHaL39+0ZoD6z75xutx+AXZv+1U/g7reKrg+O0RblspmX0fRhdJyInaNnBhoxqGbyTtEEypUwHjdow7WetzfhpNpLxgp4Ho/+zPEYe5fuMKur1jO5ypYxSLb2Ml4+2MNr4jzGmbuYwHm+eZXzZPsHoaygwRfuji4fx9ZX5jEaWQoxpfiKMd9jCjDaeYoxerqKM4oULGdVFuK65Kc54Q4XrpLYEY8wnbvNFc3v9Xq7277hqp3G9NsF1opdrnowkY5IQV3NVrsYKXOt0uO7Q5Oqsz9Ve79/9f3sM/+3/AEuJHzU=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAawkAAAAAAAA=eF5V0mk4VWsDxnEvSZtkzBAiGRIqJ5Smh3OSEzIkRJI5mW3b0ChJNJAyREQ04NB4ikQldQzhNZVQMjSg1s4YEvXea+/r/XA+/a7/vda1rr2etXmelxt+a6YII3qoyAqe3HzJW7SVIrPhs2v9Wyiiv6lqmcZLinRIs5xisdtdKzpGXlGkYLJRJht7tXZ9uE0bRfLF4gPvYV8fdInh+Zoiv11RdKvG3p6RZsBqp8jy93NGX2PP4tdjRHVQJKf0ltIn7IdSBvef7qRInEnm0Ah2l1Ct+KQ3FJEZMnT5gf3E1pDN6W8pUi8owuKFPu56OZldFHl796iWAPSI6bt66R3u0513mgHdO4atMrvx/FrZcwx4J7j1eloPRZgKmoYC8NfQTN75Xoq8bv8rnReGaHfbnurD744Syf6B5ov6cifyPUUup9dYj2JXvZb4iPmBIrIrTf7+hL0qz/CA+0ecC/XjeTv2aVnfQetPFPHbahdXg/1R6ZH5m/opsqzr2c/72O0/9H9QH6BIp3SJRg52W2NJlsggRXK/pwuewj7wnFk2jtZreJMbBCfl/Mpff6ZIWXH/2A54uCow4sEXvF+Zxi99+ES5fziVoki5s3CVFHSRXq8ewqZIz4lfW8fRuRtey2/7iudUe51pxJ63c2mryhBFJpxuJ+Rjt1eJM5tG150y3B4JgxwCYxuGKaLz6Vi7DUx23xiXNUKRdYVdymrwa4Ojpf8ozmuq9LcJdOtyrXcGYxS5IHKQ8Ry7U6eM/pxximhtjs0/iz3K5/jOevR2a2MxBzi/v3nL+W8U2ZYlY6wEHyZ48dpNUGTxEU/jj+gh16tnpCcpsiPxrEQ+9lo2+1Mb+rLl1G1v6OJwTTx5Ct9ZjldRHeaPaIpZfqeIhqjInvdoXaPe9wLTFDHiO8q8hH3WUeXMY/Q91j1HW+ilbCcU8oMiSabzZYVgQ9orN9UZilQMfLr5GL0j9WfSK3TmyxyFIKhovepy9CzO2zrDSxHuqa+OW/mTIktKVp2uR5sxFS070GZCj8+EwwrP5PGjvyjy99lsPyXotvTYATUeNtnOo6NVjV7Ma9RXiz50uL7eF/4Zpant+x9cP9pguQCuU890EuRlk+m608U30f+0fQ7OQ1/hd+XdBlcwAgN+52OTPX1XdQfRI1cibd6g35vftoiGUbksZeYc9N+d1nIwKP3q27n8bDIbEUHuoJ+2u0enozcU9MoYw5rrAjLL57JJpalPdxtaV/JDxgN05irvZC/4x/Q2UWMBNgk1WWEwjo5elRbWiHY3F2uMhKJvJJvs57FJjqy7PQNGMKUWv4PbJ8NaE2HvnK+ubgw2caq8tFkK8hVSmR/g5niNonQ4YOjW5CHIJhdTfYTkoMBw1mwf5F9w2/0i9AwaUd0jxCbmZabF0jA8MN+0A/JfiZuTBDVCxPyt57PJ0jsllvMh+bg/oRraOaulR8PQ2hW31wuzSfeYUt8U+oHvwdYb6BiFcU0/uONg0XeFBWwSVvIlvAt98LuQyhl0grNNtTksOPLBZgq2T7LkHsLxichTbiJs8tgvI1QVWrDUa1/A+y0irxNgdu5SMR1RNmmzlzOaQE9qlbunoCVG+O/vgibzDCon4YpGad0ncCijR3unGJ7Xd+GJEjzA/J5XDLsq6ncehbLitToS4viu0TM879AZD5Pr/dGPMvxKDeDN5sv7q2DYlGt0EqQsddYpSOC97yu5fEFXFJ4UYaIbqykrI67Tz+HNhQz7FMhKzJxdKMkmW7QfhPSjeb50yniiw3ZvyF8DV7IHtt2F38vavsXAbzICWbNQT7FmdwvkdwkVNFmIc9Cy7pWHe1aEJCfATpc7UZ5wQxnZ+BLaqy4zLILKDrJzZaTY5Lr4uMIIWtVz07ADWvq2jbwuzCumZtJhwpqYDaHwS4ObdjvkO18VeQ8GTLw7JimNc1G36x9BH1id89MCbTDKZGnDuJrPObGQT3/3sr0w0YYn4DE8UG4/JxseM9b0GIMNtfmMV/T1b2UxajL4XzEzDRjwnLHwS3t4QyM2ZT1UZMVZxcKT62sX+8GKpr9m7tHXn7S2XYTerPmdPTBh34on1XDT832fBWXZxLUwsmMUvTr1xsrV6DSBVHV5WM73s9ABZlSFFP4B17rVux6BM4NOe/fBdV0fbXJggUP/7njISI+NqYRKZsLnb8GA5azpXuiw3UigCWpSjJJf9P0+MU+/Qtb4rgq5Rfh+0lH/CMHsNhN5feix5KKMOizMTmi2gC8KhJ4awpLVA/2e8MqhmX92QoGRhd4HYXH8+ZWB8JnF8K6zMKmCT+A43EAC/5sDhRfk2F2AJwxv1N2FEUJdGgXwZU2fSyX0LjWLL4XXOh0zm+Bx84yEGpg24xLfBesjYja0wQtxapsHYXDEw+t9MEPzSvMYXB/5rIsNm0iAySz9POee0UmY8jWphF+OTRT0uid5YO3IXl1hmG04/HMeLLXe0SQBE23DFonCSs2/LsnCzfNeO0nBdifmzcXwdoJpuxwcWGgkuRRWv7iRpQQZu4R71KCVlf1TFWgsJay8HGbWDlstg80NFwa14JoE292a0CFngfFK6FoX/k0bshTrjHTgV00z9VUwjyVJ/Qa3WRf/ovfcykWWuvTvlTp9ajWUXjLF0oMbU6Jb6N3OpNhLH86Kb+ml92sbHbTWwKO2fk/ovWU/VU/3psSzLNpbmUkWa2GYqb0ArbB9ZjEt0/rUYVoFm3MMA/g4Zslbut//aWFGNxW0S53WVl4ikvaMYaMb7YuG1Dxah3lR52j3u8lW0x5aNHafNpiwumlXeaxtoTVK0RilXWvFN0Ar1x3Msw76hN6foluU908huq++9eWnDednSdA+ihIUod3HnyxLK9m0RYrWUUplMa14xC05Wqnp40toN1neU6S9U/AfFdrDskXKtEd8WlVpm4c6OLuPhpo67eSCYDVaCQ25ZbSq7mmcvVy3jtN97v4cU8W3atBulJ3L0dExl2NRL5NjZlwvxzLJCo4ZfcLLac86T3C7RYvTCv7yHCd2/M5xzaQ+xx4ta46N5ls5Mpx2cXvKlmOQsxvHkavOHP9YuJdjWLYHx1PGPtz7M7w5+vr4cXTf4sux840/R/tFXOXqAjgGm3MN3BfIcb8Y19kWrncvcu2RD+KoNcHtLFNuz+pwfebFVc+Ja89BrtbBXAePcfWI5Dp2kmvACa4ziVzD4//d/zcq+d/+D7Y+7nE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA5gsAAAAAAAA=eF4VVnk8lWsXPaZCXCKiKOE85lJJaeBBhroyZKgQ6qbboIQIkSEZ0mAoGcpXISmEJDLs16ykMmVKdJJSlAonnPOe77l/vb/3d56z373WXmvtZ/7b91LnCUGq/oXq1qJTCN8+5Ory2/Er2M3LLlrcK0hF2L/lnBhF+JLDdMWGGSZukfxc0Dg5Bx8NK41FJhFO6q/RabKfhvldQa5dhhwY6djdWFsoSEkP2d7eVDMN5zjq5jiVA6a5Tl1b4wSpBR4sX4tqhHVnDPrtryN8+JWiftknhNNM7l5T24XwZLTuKmUzhO+ni/VXk/rOjJKjB10Qnu6LUAg6hPAyDbFTS9chvP9HZnP+/iloGOz6Vik6A/2HMpentyAcMdqzbelthGPTIbeEH+Envmp519sRfufytOZHIsIl2UbummMI187aSPV3IfzhnKxgyH/vm59bC31BOPnXIsfmPvJ/uvDljUGEQy5ZRn1qRVjh/fcNdSyER/5YifOnIfzbS2KhTSjCccmKj2WSZ6CzdXPkReUZuHIrVUn8AcHDNxCWn4nwhW3GZ7UJrmpt2zHRWwjfPTSzL/8ywg5/+q1+hiNsvatfuZKcv5rnZ3qH1JWp+ObMLkU4wWe8ebQM4XrNPSnK7gi7tfQKdVAIr8pNiKwwQNjYakBMci3CMxOqBSZDTJzjPSon8VKAcguPVvIsRLjiSLSueizCzd1H+Y1JH2avQ8yoFMIfxyPr3CuEGySnFj4fQDg48VPCg1qEi3bwxm09yLvakOWNGwinjjk3+coLUJOSUUnbdpD+LhkGe2Qj3C4leS+N1F9vWs7J6+CnbOddWCZyc6B/1frm4TsI89Ob8sdIPXfJBdw3qgLUj803VjPJ96XMvkzff0Zw+F/JdV6E8PEH2x+1EtyxLrvLPa4hbH6niBu+FWEP6d1320h968dbFysbzEK39tH2JXkIZ6WOfejTRbhg9GrBigRyfptEv145P3XtUZk51cPEBu0yfP1SRL8b67VXPeSj2F72P4M8EZ4rcXx2diEHhOUjWtadQ3h8lfroMqEp4G/asjaH6Op97NZE6Z3TIPjwfWk4wTc5tM/imMEM9HAq/SquIBza4kxL1ZF5l/dd1tzHRx0vtmI3EBwGIg86inIR3rHUVr6hBuEVohaVpwMQFhYPP1pHcAl3GeG4+2TeRqExU4SXJ0H1/5RHIhx42E7VP3QatEazeybGmfiVuuVATTHCkuk2innkeyvqnVebIB6YT1XnuQXNQ7u0zJ4eKSYejrb0c/rDxGuy7espwtcy+ZOjewmeIeOBNW7+BKfrV0kvO4QPGdi7qZLfTZzjxO49JDopf9VsS55rleysnhJe9TYZ2+vnI+ztduJVfiPCOhfPSLSRuZ+/IeP9MQ7hc3InSqWIzxQS3mWMEH6c1qW/sd+MsMRej6KzL3mgLVFuGYaJL0rGX1WXEH4W+vse2Y2wvsWr5oIDCN+46riuj9R/4T6s0kB0ENGAjf4kI/ygtbnisSPChRGLJKaUyJwTRwJkpGkQ1h1ueE/mvp2v5otFBsK2tVfTvIhP/sfbSR06jrCQb9nEBkmEJ74KS5aROicPBr5x2Ynwv4zhuXvexF9OX2u/kLkX6l35wJcwC+8c0jvKXXkg3p3U+9AV4THFEMojAuF/Fse4zADxOVPqUQ3Jj/G995cNbiA+qDRIdTuP8Gjs4smLFxnUfUX/vCvEN8JvHTsrnRD+vpJqmnhC8s9m3rjLcA6a7wruiNuD8DOD4F91+4guDXpXq29EOHqWZ/RgagoOxkZ3ODwl/ZQc2RJB+Ev3Pc93/RHR/806By+iB6ogUCzNgvjySu+7k6SftANmElF+JAc/a2trxiB8FEs0rtlNw+C3l9vt5RGebS1r1iW6GQwMzygoIrl3ep/CeqInE1aXp+1jhGXDvuU7knzw9Bl5K0fyKGxHtVYPmX8H23z+BXm6dk/uUS9HeIkLp+oFl4mXsf1DTC4h/KqsuZYa4cGp+in2tNYcCOSIJionIdyitCVXrgDhVtPfnm+VGdS1aVd+ntMseNWf3YMJjk7pe/9sb6Ehp3FnfqYNwqah7BM7rzKoM+ntQltIvi7XDxS5EM+BFSWFoYWaDGq/18EmpEz8MudqNWnHoARCqlmx8QjbPU05F3OT6MO74oA50Wf0733nWcRPsh9iuzYTnVxMacwxJufaVCwf6pP8qTuaOux75w/sXlG+61ExDT4dL77+WM6FVTq5H2vSEV5QtuVCPNF30LYHqSdJvuTLPlPpJjguLXH5l0n09VRGidmWQ/QyK7J/jszhrHTOZcdghCtr2C5bSB+FNiN8vU1Ex2LdJx6S/aRzsu6vOZLHzZFJoecPkv1jt/T0GNkvAfLujlJHEIas4nU6ZD595wsVerf/5++YqOK/ES4Ll3O/yWZQb+6fOhtJfJT2OWPd6B8e/BC3v29nwgW5gnrhGMJ/iU/fsXBNhD/+efHr8hqE+50MlVbf4kJIx5fTfGtp8HpS3XUhC2HFroLrORVMXCEU4lYvR/S20rmqtJMN4Yuy/WlDhBPX98fFq5LciBxpXEL8LNYtZHvEfwrm0yac+SZouJ4wkFJD8rOzuf5X1B0umEwq8C6TvduSrThecwLhA59qU43JvmEdFPnEE0V4k3nmdwuCY2WJaNcb4u9IQbNeT8yDmSjzNqsKhMsHkhntZA9pzGwcfF3Nhb1l79SDSR6+3WhUPkJ8YlVSldhZhXDPWispm71kf0UkPEVEr48LFHTe6SCcrV/kU8riAbt3QHGx3xz4nVkj/vo0DyqC/nqsOsiFqsBb07vq+aiB+Je3pXfwURKO14vFiI7fumwfPirLoNLMy+3VwnggajeYNVfEg/EDQoa37tBQm9xQnHGVBy1ONwLyiD7Svs5EZYXRsHzjn5qZBXxU18XTkXEiHKi+N1il4UGDUnhhRpEiH9U8l2wVGsKDvQWaajKBXJCIDV25tIgL5oqdo+KufBRKFvHuKKPhjSirR6eLA5w8wdZ6Wwb1JFVriSVNQ8rxgWtcTS7s/nDaYkiMQf07FLBSsYsLKZPPm9KGGNRL/mg/RhGDWn2ihlvlTMNrk7EPmut5UKBx2eEWycmxTG6N4ioGNaA8vWU8kgYPB0PTioM88GSvaZkcpmEXR3zWVIMHXsYsD+tcGpoO9sb7El3KJtu/LmBw4eKMgciLqlmw0P9wfPw9DxY05PYcbqeBtShdNdGf8Oup9zxsLxdcA1iIFUWDanXSYXcvGkwbPbRKOmlYZh6gpU5yxS910lGA5K52/jHLlcCDPS9U6trs2XBpVIJKHOCBf3DPD5vNNGj5Dxvld9GgG/urdJXoPFTt844Psp4Dnc6JpJUf52Hj+1wF31weRG74/SbFgIb68cpoUOPCRKuJrXLVHCwX11h8IIsLWkIZLm7uXND7PNO+s4MDSXpBbeVfmVj+/epx52c8OOvMPuTzhYnDfi4Knj03D5FjZews7TnwCdSWe+ozC2faZDSuxU2Dlfr2YTbJ/RS33z2pagifcVjpuHMVuc/omXty+3iwZFuMTdk2BqWiJCG9+CcbhgPFhAo/02Cw3nPb4488OFxn5i0jMAvbOxtZ6j4cWPas+MRnsu8FKl3lA5bQ4GIVRB2aZmJOZvu6HRcQvmmm4sglfrpuckYoQAXhl5EJbdfIPhxKmxXyCJoFjZjfhqcPM/HorN7iPsLrOp+ezbXk/hEgqJwk4kb2muJlf+HD8/Ah/pyj2fd5iFZWb5Ak575HyC7424kLux74RQuMz4MzS2dujMzJr5t1aQWmoYpVnHOP5B/Dbk9hDcmfWNWSAic9ct+SMdpqqMuBtZJqKt1Ed7XHbmmzYjjgWv95h1MQB64GC0YP/uSAlmLFzMcMLthwFjC1FHjQkTnu8SyahkmNsuwhDS78Dqa9g0u50Lsm7OwiolNPh78+OqzhgXV68H2lBQxqWaluq9pdGu6xjlvu66bBaMol4HEUDzJSdG7yET69LN1/mcrSoJI3eidHnkE9bbsd36TPg9Qqh6SKMwyKfT2/2prkkbW84reAvxlUXOouT2k/BvV/p5sk4g==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA0wQAAAAAAAA=eF4V1Xs0FFgcB3C2wqHQFoq8NkIeefSQ1ZSRzCo9T/TwWCaMHhRijfVIxUSeTYWZEfI4qTyyZdSclKizlCEyldGOTKKW9ZrFeu33/vU59/7uub/v7497Lq1SkDcmYlKqeoUrij4yKak21YmzWHNvmXHk3jMp71a3b1eA0mXDUSqwY219szrU5Cuu1ITT9DhvHRjVdqXYAC6ViAeN4dcamqU5PGv0McQa2mhlVGyCpeGMvx2gq1uQ6Q4Y+yrV3wVqZXfluUF9D1r7Ppgh7l1yGOacv21/DF7XSA/2hVzropwT0NFc0hQMS3pooyEwbkisHQHbUrjUaNjAZzHi4D+NhVcvwrz4gQoWNDHyFqaRXLFyw9kw98Vb5RzYNd9pzIOq3xW2F8HB2mCPMqinP3fqHnzm1RBfDdfO8LMewQcjvYVPSP21Y9UzWHO1WdAEA3JTXjXDkSexbUKo4H9b1AkXF8+IP8CCC0mST3CDl/PnPnhAaPN5gNQjD0iGoDulUDwGnwYaiCahM/+NcBYGycpeyn9gUnp+uv9EAWayuytU4MsB6wJ1aBxVnqEB70e7xGrDulXzDH3YaNJ+0AiyztU5mEH6/gcGVtDl+KPFdnBWvr5/C/y1tumlI1S1byh2ggLLewm7oIES89huyDM1tN0PbZg3FA/D7qTXH4/Cb3UP7/pAx1Eqkw63h9N3MWCt/RL1M5CWsVJ0DnI2/M6JhEInY+8YuPH7vzoJ0HNnl+gS/GW+NPMK/HGr2650aPotfyqbnKcnlt2EncLWg1yyH+r1XwFkV8jnl8Akvaxt5WT+o+L3FfCufXVoDcmX3C3PhzktRhkC+En+kNZz0i96fV4TzLx5WqsZ3vN6n94Kbxitl+uAL0Z1TomI0QHCbjgSJrCQwFO0zkQp1C31aR+A5pYqq4agkiHLYxTm7068KoP+liV10/BNGqdnDu6pU5uSx7tiFJcrKcCzmppqyvCzdEZZFdKLl8wuh499P/VqwBaWrWA1LNKvTNGFqo2L3A1haH/vD8awjTV31xTK/JbRLKBueUvXBpjIk3nawbLje1o2w4sStrUDVB/JSd4GlaRGbTvIfToqyjshddhwkytcFed8wA2aSPf6uENWgInXfnJuocbtEGz3kZh5QBtlzvQRqJXeVXccDuxjnfSBJXJ3VPygxgM7Hh0mWKzTD4QWpxOyGHBN2M6Jk/DrmUjXM/CvyjWpodC3mVJ/DnKG+vvCoWe/wfR5qO8yMx9FcqknyaKh4GmnOAZqe8/+EQtXtGjExcNNqx3tL5A+7PS+RBg2bpVwieRvp6omwa0t42nJZP7CkAUW3Kgt9U+BUZdZ/FQynyNbLg323KL+nA6nbTsYGVBBkXUlE1ZZlfGy4Ls7v5Vkk1xlroXXoOa8XxYbVrprRV6Hbyf5+25AumKe3k04EaPWR/QMDuHlwMDWpXtzYbfYSUaUiejX8mDyqz9NOXDcpPkhcXPMYwcu1HMdqSVOUOsteZB7gsklnqSGL86H179MBxAbYryeE3VZXzVvwQjql0Cim0t+NXE098gk8bmPp30BtPHtjiBWThneJ47HnuglPkvqWl4I15mXUIiekWNBRCupMI3YZLe5irh20UQrsbKHPUhUy9q4QMwO2qJK/o3/ATAoM0I=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA4gUAAAAAAAA=eF4l1Xk41AkYB3A5KkaH2uhiEHoydBEeGl85KsxWQnmwlsKWo5ViC12uQUgzGVeucY4wl/n9JCo5UlnVpKSVrErr6dSW7uxv2vefz/N+n/fv76uk9P8c0nFbdR8k3NSft0RHeaN0eFCy2TMAH8T6bLVNIeg6Nj5i8joMjWvF0+b6RuG12iAr1PoAmk9KbO7+FItcf9av798cQp2sN355bzwc8mdpba8+CtpHcvXFS8eh7Rl5UM5IhFx6wj40LwmhkXTBYeUU9HK/P9aMTEXcC6VF+gNstGeyD0gd0mF3J0HvqiADRawHzn7zMtE4mawVFZeFodk7hWqj2fA8m22UbZQD65obqg8GcqBm2po1lnEaOkul/VImB8/o315teMPB+00jEzl8Ljx8zr4t8zqDYwVh06On5yK1/4ijanMuxnnKrTv38hDappcWsTgPlkveXnC8kYeVzbkRD+Lz0VuyVGhhVoBaVW7+lqECBJhPMRmZhVjID2y6ZlcETrdorunzIlzOHv2NVXgWSBjtW+1ajLQxnu/Ah2I4sx/RHapL0GPIswj3KkVR70Zvs2llsONdY6n6lKHuJJHR1lgG/ZHIRT5q5eDHsFT6/cphvbx++xpJOR5kP9aKmslH8fqN7jkBfHQfNFLnNPERduKGd4xGBaIDUuxsAyugPa+gc0RWgSF3ty97aJU43zc4Lg+sRDstpVCPqIRlcqoOi1YF56AF4X6BVfB/FlLKklXhu6bgIl2jGkq3Ne/0B1RDOnlhLFxajXbLYZWnM2qQaZRv6eBfAw03WtIRUQ081HZ8Oqtai2I+t7zEpxaGXkMpifW12GfiItqsJMCw1YjphKcAygGtU/E1AnCTn9qMfxag1i94xGZLHez59krh5XUIexnLP/auDqOk5u3YTeegl/U1d1vhOby4ii+aL8+hur1Xox71SG7m9Zlz6uH0JGsb50k9tu8rLRy0asD1PTJCJb0BVx4RjXP/asDPLexMJfNGdAzO9L1ztBEJLToG6bcaEdiY/dzAUIiXQ04dxQeE0FVWl3ztFOKP5P5AOk2E2cVvv4ktRDhHt15n5S+C/q4IWn2yCFyhU8r8BhHySx1rIu6K0GzBjyG/iRBhs/Ddv8ZiWFYkGBtuESOi0obmGCvG5OJdlZ4lYqxq9X+xo1sMBv36ffdXYgRNntixVlsCJsvKRcNegsgFnvvvhEhgpMI5mZUlgXOSQNdGJsGFnKh4+ZAEvKO3hH6qUuwPGQ+WM6QIHpvotvSU4lMcJ+h4nBS2UvkHcbkUVVq6O7t6pBjtDjWRvZZi0ldfGqfdhM6pdRdnMZtwb9t39+DdlPLDcdHpTfhqUhJkKmxCyBP2tIT+JqTLXRy9PzVBnYydydeVwdF1eRBrgww6CU7d64NlmBLx4n1TZfDN6FfOrJFBa5xXQV6V4em9DuXOMRkevmN35KsSsPChM+gGBAwtll52XE9gRfz1hxPeBBJ1Wi319hEwy4pc25ZMQDjAdO8pIPDMOHMZs4HAcPgZnu4lAjp9B4t+v0kg3vyEBnOYQMT+Uxu5zwmcL6TfTPxAYLRvSbueMgnrrkBWAo2E1153I8l8Em/8bScGFpN4Hba9R82AhCH9a4OnCYnkPadMBk1JaEefHqhfSeKW633bJ2tIsLkvd3MtSajnMAZ6rUhMrA3YX25DosTYNEDflkRu5LIlO+1IZFlvTfFYTyLKq+PVIiaJf4rMbc9TOhfYfrayJ3G5dB63gPLYrnD/Mcpt5h+vGFC9SSfc92yl1OpOcoimTHrj0ZBJ+UvbCl4ZpdL3pCNCyvsMV26L4u56eucVyi86bT09ityny+xPyvwlU363KAUtxTVySsbpPFY/pXWa36G7lDKPNNY9Spdpt/9WOMK2cxugPB9zj6NwwmZml8I027RnCl1Llk4pvLLPcI6i31ltk4sUmm1mGijkVC42URh8wXuFwouuhxk/9sgRM4VzgnrNFT4VBK9UuLWq54dJgTN+/Iu8mDU//A9Gk/QmAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAwQUAAAAAAAA=eF4d1WtYjGkYB/CWrt1UFBXLSKSRSqGkQeavhDDKIY3Z0kgJaUR00LWFmixLRbYDqaiIzEqiVBTZ2EIOVzk87ymnq4NSKqRF+848X35fnvu57/vL/9HSUp9m9BXa9g2bQbDcaFFicjuHOPMVZapXHBxufuzb2cRBZCO+Mqmeg53D1+r0Kg7NaQ+CzEs4eDuYXlQVcMh/EGftfIrDunuGGx8d5fC6trIsKIHDGrfoEUOiOXSk+Yac2c6h9Ideg1sAhwD9MvsOKYccQXNGuoSDq7ZocLELh0tNAYEDjhzqrPXvFVtz0FrwUqgw4+DUvmvvNGMO26QJT7t0OPxtW2Za9p3Fwd9K5HE9LPass0hf1cIi7+3VGguaxWV3w1f/PWbxi9Hr7me1LKxXP+u+VsGia/cJLqOIRZTzi8q9+Syu9kIZfIKvs4t1kiWx8B9Y0Lg8nkVbxWyZaxSLVV4jap0VLDa2Royet5GvmzZRMl/K4oBBReBCCYtUk09+K1xYFPTsn+MzmwX5MrI3xIZFf5H3n3ETWdRYDPmRacKi6s5dSbkui4ol0nAyyEDwMShisI+BUHrBY2o7g/Xbnn7z4hjczErbm9DIoDyvsKm8joFX+Z3vH6sYBMrTP9teZbD2FFWluMDA+fritcXZDPr3JV/vP85ApqNoWXiIwfRXac0psQy4rn9y3+1ioIovmua8lYGT3CAmzY/BlJislL41DEx3GoV4L2VwYriNzg0xg9Np2ZuEs/i+V6bGp1gxOBuilA81Y+A7RfE10piBS122Z/cwBj7bmzaEDNLIu/HQpqOPRvxZt6LQdhrmiV/aPnM05MJ8sr+JhsclnX2G92noxrx5kXuLhomq942olMYGn/6cpxdpBEqL9XacoVGQywpHptPoylvQee0IjRUuGRv84mhYZp2L1Y2i8crfdnGFgsaa6A/XFAE0ut1VDyxkNEpSrQ5xHjSCNlm1Z7nREEhCP8jn0lhvWv2XcAaNse4M9UFIIzkwqaZSQOPerfQlR0bSqDOp3rrhFxrvzO5bir5T6D0av8+ol4JO2JWwnlYK9uOE3xtZCp2SogmVjRTuJEx/ll9Pwe5sunnKLQo/TAeGxJdSKNI+ExGpojB6qH1MaC5/70LL6G0ZFCr6W92CkygE5z8cplBSiFDJg3dFU2hKvbI9ZgeFkvUXJx8OovD2vCDrlC+FLdWp/cWrKRhoWfjfd6ewVFvfuE1M4XNtbZCeI4X8/IUN9jYUEvdntsgnURBF68UdH0OhkRIVNgynsPL3oNJR2hQ2GYrW+A8QRBaEHb3RTeB7VKtzSgtBb7G/fx5D4J6TsdmxkWCXXfZgcz3B8ZLtRYW3CW6Gv45Jv06g51XaoioiiBaHNnSfI8gMH+e/NZtggdbywfFpBD1B48aMSiLwsfIc9DhA0Gg14dHLWIIBd5Hj9Ug+N8Z+9ezaQTBTmXgwPphg/qQnYVGBBFFVgSWP/QhOqmZ0JsoIwsaZll32IrDW9TkpWsnP9d58rIWEf+e5/OYOd4KxC33tBIsI+E0lZq4Eb+3KPaNAgA8tHRPnE9R4dkYYzSMoSSoeumwOwd2E94lVTgTHjPcbb5tNYLTCt3SpIz/vbUG91yyCT6OWfTzgQLCyTNuSsifQcXOsl/D+lHw+7/lMgj9ywlsjebeKneZY8x6RqrLf8zm4dpWnspwXt3cXH+Ot2bfTJYz3jnJepozX3+vdlsW8mye7Jjvxzl3UKZzGe0rMhU7mtSy/2Die93RVOBnDK3bKmWjMa9xm6zOSt7Ke8TDgde15/HA47/nWhqv6vO0hWm166r5PfvVWO1tKOnR5w2VtZ9TqCNkQtee/HF6iVuG101atc+YygVqZZdUItRZWE35WqzSco6Ux2+mbOt/zlXFf1QrfX/6iVpq857PauXcLP6l93TpJ4xazfzX/wRbzRI039DdrPGHoofHkRrFG8txB4/+cNRlWAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAqgUAAAAAAAA=eF4d1HtUDFgcB3AOSZ5pNV4xqj2yKSE1SvZrcvQwNi3by5RHGZOk0FNnKSQq6UGes6VSSUtDTGHzCFlbzEaTyL2XpSKPrMojbfbO3H8+557zO7/f9/fPr18/7XuKM/cEPQPHEtRsz69x7WawVxRJG98zOGlieyrbGdzMhI8MWxhOH+plEsbQ5rfWNvMRg3L/Pq/GBwx5m8XGk+4xLFwz+Kz8Twb3D0RaXs3wymyefv8qhlzpdJVnBUNsj548/yxD10HpuI+lDN0GG+skRQwyQ0V8wXGGjLaZs/47yhAoTHrum82gULzJUqUzPBpwCYIUhucFzq9iEhlKc5v3NW/juYoe2Yi3MBwSZdWejGBwXrN8tVEYw+Lpe95vDWZo/LYx9nUgwx279Z+XB/D5xXXhdT4MNlZvCJYy2L0WOl9YzOBifvWYlSuD5ebJ7YVihtrwY1amTgwlprsDc+wZ1Dvmpk6cyesFhkU50xhcxwScM53CEJMaV1Y0mSHH4LrCegLDygHJW1TGDNZB0xaKDRkqhP2/3R3C9w0OKvLXYxCdLXV8+40ibrvt5fgeitvlv1iM7qYon79u26kOii1etVed2ymor6b9yQsK8YtnfbGMIvW85KvgMYVAs4GpGijqZQWnfNUUxjdc/XvvUITsVnXm3aTIiZNsdL9KoYwLrP9wkcL6gY8g5zxFrXL3j5Iyir01Hu49JRTzqgzsS09QfEszHrgil2KRt/qc0VEK4eoD4jsH+H9Bddn2dN43T9U7N4VCHqW2+JxIIb0WMkMVT6F402ocHUdxJDD/oSiKoljzNfJrOMUli6Vvr4VQ3JQNnL9HRlHZsCn051W8rvXLJhMpxVBx75JXXhSa6016lZ4UT1Z3ZO2R8Dr58Y/LXXg+u8UzbMQUbUHLoOdEsf6WwJzYU6i9Pz1WzaSomuO9NsuKov+zAzfDLSjmV4/u9jCjeHtO9MlmIsWuEyv/MhpLMbD03YZPRhT33VyfkeEUope15jWDKW7lsdnKAXxOdst3ij4C02bxteQvBNZz/By2dBEk52dtC+kgeHPcJz2gneD3h2PWL20heKaWjHJ/SuAg3Lpd3ExwMsHz8txGAjeDI1dE9QQ5f0ek2tURuCRFmtndJvC+35poX03Q+NjmgkMVgb67X8WPlQSqS5rMheUE1+6neXicISCvF/X6lhBEfc5Uyk4Q7Bw2KCUylyD4n8DyXUcJEppN5UeyCd5V3e0sy+B5qvSu30klcA018WpLIjjgYCs12EEwTF9RMmMrQcBSB7cVsQRxLgnR+yMIVjcolfVhBE2edeXjQwgyjdTxG2UEd/0rfDSrCKSif69I/AkuWjVHNPoQbMsXyWOXEYQ6pylnLyGYmlgYP0JCUDIvbaiBK8Gmo8XxFgsIMozT20JBoJyiGP9kLkFSam9xzBwCRY3LTbEdwd6sYAenWQRDAs/5BdvwfP6HP9ZYETRn7JP6WhKsTLH+yWQqQeKvmcOMphDM7ixbMed7goWW0w+lmRGsmGpSNNKU4EreE4s/hASG+pHRGZP4vqXRl5MnElTXNfUvNCGIqe12YRMIxmXPT7HjamymN58YT9DXNlxmyfUaURh7YxzfU7Zj/wZuy8nxsincSo+G+tf83uk1OHZd5rKTx0yyuT/M9FZHcQNKLar9uZmyS01u3Em3Kic7cP2qfrtrxZWf3jzbnNs3Mu/2BK5j0UcjAbfgcEfFKG54k1fICO4s5vh2KLcke4nhEO6IjoOnB3P9WVixPjcs9GXrIG6kTL5cq61lQpced43/sFKtQtMN0Vp98ro8tYYND7fXKui4Za51XXGlQGuvpHC41rLRK/W1Bo0eOUBr0k6TfloT1BP6tPd936LrvVrbYpq+ahXVOuk8L9fo7v/Ezxk6JSPX6AzKdNGp3mmrM13PQmfnNKHOkBfjdP4Pa5wSfw==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFAUAAAAAAAA=eF4l0Xk41VkYB3DLHURXV7YWjSSRaVESY9QbGsQkUbIMGktDgxYyKEqmnlSkcpuxtWkaO2UoJkaktCCabNmJ1Dmuvezz/n73r89zzvt+n+d7nuOr2h5cXEXAjpt3v7maQH1Qf+RYDQGeyRTl1hIo8/UcVq8jkBiReEX/DQF7p6WvLf4joKHnmLnvLQHt4motz3oCmc7DZv4NBLJz9KWCGglEXFP2P95EoFFPPDS8mcC5nkNrT74jYLGqLiqshYBsaUJsSCuBOsmtpgFtBEQurkk52E6gcnf9PbcOAk7NmYdtOwmkV6l2mnTh+ddkzoZuAps9+C0qPQRKzwYclHhPQHXFXzkULTdOyKrrJSBRVeSV30dAyj6gif+BQGzvOunAfuxZYD+x6yP2P7g3dfUnAj03Li8SJQTOrwqyqkfnHfY2SaMEVgTXzoYMENAxUzxtIcB5U0KVwiCBopBnXW2o4ORs2d0hAtNNdw75DhMwC1n2cf0I5iJf6A6h0y6y1rmjBB53Whr6jeH73DomNMcJOBivi+lARXn8L9c+E0hQCzS0+kKgykRr7wxqvZdnmTVBoCAtaonzJIFxvuCZxBQB86Hrdrmo1vGRkn3TBJZHm8nMoE4WI9/enCHAGbH9wXiWwMWjJaYd6NOwaLWwOQKTqov6lEUorNct4OeiHjbF68xFKVg/j8x7h9Z5uGr4i1EQ0bt9ZhY1ME55e1GcwvSxfKXFHAqug9qWKWhqvv2Rb76iYNUUFX0PfaOodFNPgsJ3f1ilP0CL1oRm6UtS0Ho4lJ6Pbs4TubNBikL4+Gh8Bup9TSVGfR6FLqcnEfFouotBEFeawtF5Fb4n0Qzr/AMC1PicnZeLDIW75h99nqPBJWXHdOdT6J7WOJ+I8gTOqaJcCjHVmbVe6BYvN8lKNMm9yFJLlsJAoXjyWdS6+9RcF6qXGRSwZQGFR0arJ/koz7cljqARRm+2G/MoSC+0kYlDNdX4/T2oyK3uDl05CmnOJ4ZPocFFN1RfoQ2W0T6KCymUHPmt9kc0O6vc4TbacDhKpBcNTZN/oSlPQcXqZsHP6KiR37M/Ue6mwplONDS93ElFgcIlx+r2Pajr8q9jLqDuTdMHStG87n9+GUFbDB4kr1Sk4NDqOGuHvjJVvxSBxs1k785COcuKzRtQtbVbAuZQmcvO9RpKFLZ5xwZYopq293b6oQ/7ON4x6HZdh6dZqEGyot9LtPKF8099aPqcYpqoMv4/lbNagnKOKOzagI6v/lRshqr7hdxyQnfUlHL8UBPl7pEw9PWNZSei0dSa4oxEtFpb9koqWuZmBH+jzQMGT0rQgYWXN1aimx5uT3rN5J7+Lt+I6nh3p7ehUwKvwB5UwU/hdD/6daH/e4oqfb8vZwg9oTMoGEXnN4QVfEaTPHbJTaIGFVncadR6f+2DGfS0XOuSOfRAcPs2kUUUnJoaN4qiPtyKL4yye9LixVApwztLxdGrx+YiGeuNTBsY27btWMxBXYJsdjKusFgQxKiUU8FnDDfcmc3Ij9d6zKjQGlvD2HshopnR3rO8i3GWN/aB0cbzKmVUuT83yLjS7MwIuy/vOsa40bZgnPFDYM5nRu1i9y9srrOLdVJt6wRjLj+c9VFfBmtF0ktW61udrOGtg6xxLlOshdFik+y9jyRrSq40qzuZz7rYQ5bVw3EBq5kYj/V6oNDSR0KfCIRmcuVY/10qlKcltEVH6P5NQt/rC/0ftjQQmw==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA7QAAAAAAAAA=eF6d1CEPgkAYxnGi0Uh0s5AckeT8GEYj0UgkEvkIRDcLkUgk2oRGJGozGnje4H+7HZh+e557EZ13F0T9YX9/H4MdjGAsExhjjs+HcrPQ4M/1LXQ9Pz1nX9D6UT5kh2w2skWuYeXpC1nKTKby6sns186vnTMzrHPOtc7fZ14g+3+/79Ls+ryz5z1mLvl/lo6e2fbDTXK/UJuz/dfJXo6OPEE7TzynPEdct8x7w3rXvcL7gvfKCbK3fJYXmcordPW5LB0W0PpK1ittZCsfskM2e+RRvmQwzH6QzQnzm+HXUG497mQsI5nMfgGdUa27AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_42_t_4200.000000.vtu
index 9bdbb2a41b312c3e59741b74286c82b10b74d2bc..905f54c194526d60b8448eb0ab5db18bc90fe1b6 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_42_t_4200.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_42_t_4200.000000.vtu
@@ -2,34 +2,38 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.98001487373"        RangeMax="0.98038568164"        offset="132"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-1.9633917377"        RangeMax="11.386666572"         offset="1092"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.98001487373"        RangeMax="0.98038568164"        offset="84"                  />
+      <DataArray type="Float64" Name="Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0.98049070433"        RangeMax="0.98084383287"        offset="1044"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-1.9633917362"        RangeMax="11.386666532"         offset="1996"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4364"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4444"                />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0000020518e-07"     RangeMax="1.0000845502e-07"     offset="3508"                />
-        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0.00047596918672"     RangeMax="0.01961431836"        offset="4368"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.48038568164"        RangeMax="0.49952403081"        offset="5120"                />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.49019284082"        RangeMax="0.49976201541"        offset="5836"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="6704"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="7140"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.0000845502e-07"     offset="4524"                />
+        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0"                    RangeMax="0.01961431836"        offset="5492"                />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.48038568164"        RangeMax="0.5"                  offset="6380"                />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.49019284082"        RangeMax="0.5"                  offset="7220"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="8316"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="8752"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9208"                />
-        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.98002249557"        RangeMax="0.98038568164"        offset="9276"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10820"               />
+        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.98002249557"        RangeMax="0.98038568164"        offset="10888"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="11436"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="9824"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11796"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11428"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11976"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12488"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="13400"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="13948"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="14460"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAArQIAAAAAAAA=eF7tzutLk2EYx/GmRgXixMPESouUVOzgo2hMFyObY9m0BuWhWZ6CDpoTTdSEtkrBnGgmuvBQmrMsEbVNUpaVZSs3tBampXOR4MyZPArazFx23ffohf9CPK8+fH9cLy7jLZPn+QSSPWq/xYcHem1zGa4HO5l6ZzHIKC/K0IEPDX5TCvBSYSNpc5pknxOcrDNCPxBp4gKhB/l9oW5g61JyayJY2fm+LwIcEQx8LwEf+08GZoEJU0lOSlDCjS+vA1PlxX7joMudqs/9IP3Nvf0bzpDs4bKf9Flondlutxd0ne94CB0syGE4cMAwS2M0AdL1xEwKODvcEicAE153dYvBbkVUjAj01tldrQFNkfM8KXhWUhGqAJ9mLBPN4OLGVXIA7KiYduoFa+NjGwyg7Hfh3EewaKwtegGstw/tN4JK/4k1WiLJZn3qqVmGdjmsVTlCT8hpuZtBE3OkzAOUOLelMECLO0vqC0orL6bvAkW+nhoCFHdzHu0B08zaNCbov5AcHAwyHL1kbPDU9HwQC7xRuSmPAxqSvYcOgSNi4iAP1IcJCS7I3trmehTkS16WHgHlF3L3RYHqWY0DH3y2KO2IBpOq1ibRnlMge3EMzDSyA5D3pcL846CfXO2G7CU6lpCCJp0SmTm5whWgfzzHtiNnbs9dQSptA5KQtC+ptUiFTFOCvPmB1Y5U6X2akU/MHirkiaAdXUj1TtdXyFE72XPk5a+uauSfCLd+ZHhW7DukezbzLb7/Vj2AjGn6hXebRI4G2SIh8d5ONuAe/JGNHb2mw2otPVhTsQnLu27AWsLNWGHQAlbaZMFmV69gCdUGLZLFXcOt5tng5pfRsAdWrR3ZajVEaIvN32tVVGR1KN2qtMZqXqlVx7vrd/fm9fu/pqSkpKSkpKT8X/0L7uGbJQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA8QYAAAAAAAA=eF6d1GlUFFcWAOCAIRpaEEUNsgTF9EMQQQgRjAGuEo8QEHO0nUaFNkQDRyAEtMUFEjBgy2JLgiIIhEAQEZDGlXXCa0QExI1VxLFjjEhwyYjdNtAbedWe+mGd08PM/PrOvVXv1at7b5UQGSoOCRT4N/NVUcJoBN4cUcvzL1/hOeY1f1m5Iph979a1Td1s8OTdLE/VQxBjy6tclK3BSS9eBtYWIhBsUlu/xx3HgZkuNXPdNTgsLKXUIFiFv0gaDltur8GvdjpNk5VpcKO3velFfwTcPRe/17+AwJY7PvjIbRwX7f0qtPxbBImuHUNxUhW2qlw29Y+HbCiZ5f3LRCUCxZajUt9KNlzifuQhylJimx8C1XmBCCTx5QaFJUrMSd7i1bp4AnNinoskG1WYc3eEFZKMYKsyk/1Bjgobv/xuuduvCFJjMw/xvkSwmrUtg30Wgb+7ueTcjnEceS3L6J/mCC7YPf9ikLzPyk+V0uu5CE6FLfK1JftY8RtEAX4INDyF780yBCvOWOf27lNjftuUzjssBC3Vu1qrKpV46MBm8Z/uT/Fa/ienR8oRjJzenDSLo8Ge7k5TJGsQdNuJCwctERSvWT6ADyOwaVjYHJ2A4Mp7Dat8ziB4y6lpa3oOAj3pONdZrsRFvHLhDd4Ezj9qVbzvOAKx6NNt0yOVWFwUPzX2DzYYShf4TVmK4GlrgKGXI4JnHpncOSIF7jvmnzPmOYotvt6Q4FTHBoOMqr1JDQgKApTLio8gOPFwf6fwKDn3NccBdTOp+6wTqfHuCCKHMkpDosh7NtdEWa1GcLdjx3wHe3I+/Qi+UfgEzis4nJqJEBz8t2PknDoEoWkfwmny3IyzD/r+EavCQXHWluJMUserDj671Ww4ldK8KslYjQMLOiIEIgQzMkK3W5D+3ZfJvjJ7H4GdX/H6PhMEi9Lr7C28EcQO3OHUPZZjlot57ckrCK7X2zu+W6XA6dnnK5xPIlhyo9WigdRPMWR3ufExGxLFKZdcq1R4KKT3/Qa+As9UmWyrJ/PVtcEi2uWyErs+6a/9mfQ7/2HXZ6oFKvzzvLYeT9NRfK6nYGtniAI/TsirX9qvwK7mxWHvhg/iup6uW4Y1CDzc+esHXirw6pb6/MCeMcyJGnvlR+bwWDo61onl+NYSs+CaAgS953KahotIH8VD6kft4/jzzPbwzUIEfiatjbGnEIw9nRv4ThWCXJ/fZZakr/LwI/sizRDklFx6HDnMhmcx/h+G7mSDLNfa6LcuNig8WR+bNrEhYvrd2cNzETiX+lrONiVztH1DgdyQzKPGzM3EFsF+9zDJDC8EQfULj2isyH6HOwU2AgSqZ5+cawsh30X06I9xP5G5Vec1s0ndFj9I9Okj57erLQw5UIvg17T508dI3K9yshtvQfB9gEtTGvnOZW9xKteSOd+ryTk5TvqetU/l+ZDkfZKC5jlbI6g4eqfvPOmbrHbjfeUMBMJv+vOSSJ6bItxaT/rocp2zaT0xQrVpYN1Msn7+Ui8NiS+umxjlLkFw02WF2UGST1vnJM0g8cxUo+0xxN5Hv9xpIP5erTdYvISak2QHCXFP0hF+B5HNTZOPES8aVwQ/IerFtN42InM3dOXFbn2iZXvMhBVxIl/gPIc4kvB2ij2xa7d+zUKicehVN1fimYVjUkfiCel90QriRwJ5oRuxLosTsZLIa9wZ4EksvTq9ezWxqIn1jTfRoeSeky/xSkVZ8BpiT2ci9iNGjEYHfUbM7hs+u5ZY7fKs2J9YcsBi8Toi7AjgBRAf9Gxs32VD1smklVQ+8ulQJ5/En7f8axWlVVz88d3EaTDgQGmDntvHElUx6QNUHOpVlk/F1iYveJTTRr57QWmZWNZMadJf7LiH6JHoYETp2VGxhfJwtsibMvngx/GUZ3g3wyklJSuPU573kRyidMvml1KeLa0uoHSaV3CBMvdb00pKsX63mFK99EktpXDA4RqlmfuuFsrMPctvUbYa3L5OGeQ93El5OTv7NuVUYXA3pYHsZBdl1kubHspqSbs27yHI0MaGiUFaG0vatJbLRVoXRP2pNavonlblBqXW8At/afW4p9dLKU94nRfMn6aNk5e99oD/a+l8x4/Gb8jez3ojbit9rc0PrDeu03nb7aw39qOl76Nl5ul1tMz7b8QZ/8frk+Vp6XPryk92Hvo+Wma96Dow4/9X5j50Heg8HTPrQ98/WX2Y78O8/r/K7Cu9Lz1vtMzn0Xnmfsz51HW/rv7pmlPmHDDrzjyHrvmnZa7XlWf2le4b8zqzr7quTzZvzHlhfk90frI66aoD8znM9ZN9f7rmhNlHXXnmf4beh451Pee//f51zQPz/Zn76ZozXf8PZj/o9X8DLjQKcg==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAYwIAAAAAAAA=eF7t0+tL01EYB3BpU4yN0pjM1JS8VHMmm5GY2A80ETRbM6flUtOIZeqyrKatcl3WxijUTNMu0MRVoqucijLScFo2uhpTFnTTKNcVwf0yo4ie5/zoRf/DXn143nzP9/Cc8yPiUfycU0218O3b9C/U1LNVVu0vmN+YXU+8YDZ0nPH3AS9F90o4oJZK1/qBSfyFlgDQxdY7gsDR2ujPYaCwUOyOBFtkXV8FYH5iy3gsGLzH2r4GDKQfKhLAqHWV3PXgVfPG5mRQUEKz08CVN3jZGaDTUK6RYK7xpX4L5jXtLc0Fn48pouSg6lVyfwE45BwKLQafTnyS78J+VZyy3XiPA4OSUvA27623EvPpC/UVYBklndkPLmqzhh8E5/g2oQrsMNZzqkG72zByGPvOUjlHsJ+/cvgoWDxFc2vAEMtYvAZUp/qlHAfFA49FJ8DysAjvk2DMwGob+s70W3EKpF1182iQe7xKC4bHGadR3mVz2mk8X9N8ERWmT02iOwu/LNOB1xrms1BdZWwNOlnS1IbOTS8dQSMVta/R97abbtS5IdgH99cpUgSgDXmccDT/+qEYtE68YC3Zb55XEno2vycZdbNkaWjs7JIMdJ80cBMal6TbjGboqrPQUalPNpo5nCJDz1FUDjrzkZ2L+ha1Erm3QraiO1KPETP77ETTeRZ5X12+YuKfAhkxcqKC6P9NSxz82UhM3N5KZHE7iaLQbqJR1U/k990hdn+4S6SDbMTlrBFi7+J7xCL5faJkxSjRoWFMmGW0CR4Qe5SM7XWMJguj0fG/V74z/vsvHj16VFN/AaYcFQQ=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAEgIAAAAAAAA=eF7rvuQoXmBob6/zqWf+MdEp9okfIsvbIoPtl0sF7Z77KM4+oeHj9IvGqfYN7zIlfb5k2ccc9u+Ijyywby4QmTbVvNheYolS7wmRMnu5mvgjPz5U2DccXTNJ7Uy1/f3A9b5By+rslSrmKu7b32Bvva3S55J2k/35FS8iU6c32y/rvFVeytRqf6Wua/nvnDb7m1LJLx5ea7dnOREU+ta+097R573btOVd9hfduhae5emxb0p8bbIzt9c+8PYJ99rjffYpk4v2iHNPsL+gq1zcsmqC/b72M1Ny7Sfa/+CKMI86PtH+8jutKW4Ok+wD1ibsebVikr3BrG0ODxkm28t2Ji5b7jHZ/lT89us1jZPt/zn/ltNcO9mea5fml71nJ9sX7ZcMjno62X4Gv4bQn6+T7aNsd+5PZJxib7ppUcYfjin2fAZVgu94p9jnOHKvERCcYn+1N6+VUXiK/e7+RRx6IlPsFXZsO3ofSEu6pS13A4anZ5DD7wYgnfz5f8pCIN2wUFRgM5C+9dKyZQ+QvrNZp+YgkFbqtOQ9AqT332KPPgqksxpeMoLig+sWXwiItvF9Ug2ij1i86wPRe/yfTwfRMoXCc0D00hl/54Lo6qO354HoJ0b24PhcYZANphmy68D0v31tYNrDrQtMTzvbDabjSiHxH78DQovdgNC/XkDo7jcQGpZORulRepQepWE0APpwDA8=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA9gEAAAAAAAA=eF5r0/u12PjHfXubQPZpi/fdsz+ztqNy2Zv79lHrXJJkH963d5W/EDPj6n37expn08VP3befc+Re46x99+03rly+UnHzffuK8tN31yy/b59U8U7GZs59+7X+W1PPT7hvf8Hx5La01vv2tRKf+Ziq7tsvM5qTuzDvvv3dYwZXXZLv2+sqO4a8Cb9vr7LrsNIMn/v2k5/s+eDheN9eqzZ0KoPZfXuL5hO+h7Xu23fv+jxppvx9+455EWaTRO7bLzl6UPQIJ9CeaxYtfv+B7r1+dkf413v2Kjab1Tjf3LPfM6ErpuvxPftLYXun/b59zz7nj2VI4dV79o/nfHn98fw9+94vM1tLT9+zD5jcYvTi+D178yiBPN2j9+zPl+5VUDl8z56n4FzUqoP37MOm3LVbcABobj3Lk5f779kH3Su1LADS07JfyCkCadEo+6/vgOFlpbHy+Xkg7fOoVH4vkJ6zcAnzJiDttLZz6mog/YnV58NyIJ3Eu+HlUiC9Y8e/c0uAdFvFHnMQ/dzR9gUo3D2LdfaD6HMT/VeB6CklD+eD6DqV/bNAdNUJxxkg2k5PcDqIFpnWCI6vVTftwHSqiQKYdgkXAtPflHjA9M4ETjD9y5ADTO9dBYnnhxUQuisRQrtEQOhP/hAalh5G6VF6lB6lCdEAJjANvw==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAagIAAAAAAAA=eF6Tl/57UfLPfXuBecynA+Pv23d4H7EJ/nbfflqo0sa+D/ftV7Nl6J15BaQnPdvM/fS+/Ym49w6+9+/b/7h4+cqEm/ftQ3c+zbt2+b59lEM5n9y5+/aGy29tSj9x337b0pTozYfu22/vqWRn3Hvfvkvh3LaA7fftJeNnZC3aeN+ea7qC1rfV9+317yUK+iy7b19cFlexZMF9e8Y9q7wYZt+3t/J+sixx6n372/cqT57pv2//Ol5H2rPrvr3c4wdcj1ru238ukXFaXn/f/vvLtDurq+7bh6yInMxSdt/ezclV72jhffvNa+JO/829b3/kh8yqHVn37Z8F//r6Ix1o7vczh3al3reX8XeS/JJ8315Hm2P7tKT79i92xQlMSrxv/9UyXfdqwn37b4fy5AOA9C9Hpk9fgOEi8nWXzA4gHWBZ0j8BSHOtnV9VDqQFJl75nA6kv33d1R8HpFv8LzFGAul914+cCgXSBlxqP4KBdAnHjS9BQLoqtj4dRCfa3pMG0VGL5b6Awt3Latp9EH3quPpVEC20+cN5EO09Nf4siL7yUOEMiJ41uQMcTx4nHcD01Rx5MH1dSgBMt2pxgulXXGxgunYtC5h+wQehnS9A4rl/JYR2nAmh2aZDaP8ZEHpzH4T+049Kw8Rh6vZMhdBLFqDyYeah092zIDQsveGio+ajug/GL5qC3T6Ye7J6IfSMmfj5MPW43IlOo5sP45PqH3T3k+of9HhBjw9C/iCVJtZ/hOINV7ogNt5wpUdCNEwfurlycyE0rvC/OhtVHuYPYv1PbDzjCndc+YrYdEFsOFCaL2DpAwDi6/MaAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAeQEAAAAAAAA=eF67d+6nUkTMe/ssrR/FfUD63rbrKw8B6VdZv49+AdJW946eVIl9bz//8oxtQUD6wL6rvXVA+p3o3YAVQNpGjp/xApD+pHl6/lcgbSZQoCcZ994+2jJmnRWQro14qxAFpLt2N7aXA2n2vqrHk4B033cXszVA+tLpwsbDQHqm1rtjN4D0xM/FnG+AdEWDt+9fIP2jOG0mT/x7+63LDv6QBNJHwi5XqwLp8oKNlvpA2vvLtABzIL3jd+dTWyC94ZeosjOQvhnrZu4OpN3OmgV6gfRrLZznA6T5jh719APSnza8LvcH0s/EJ3oEAOn2Vw5XQXRqwyvDQCDtd7ovF0RHWYhPBtGLwoxWgejmqXI7QPQ5obADIHrnJLGjIHpd0YnjILrPyeMkiL76XvIUiLbL6wLTF/cfBdMzW5+AaR3rL2D6v8wfML2NgeE0iO58zQimD1xmAtMRLsxgWq4SQjdNhtB+cyD0lIUQWnLpKD1Kj9KjNH1pAHq80gY=AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAArQIAAAAAAAA=eF7tzutLk2EYx/GmRgXihoeJlRYpqayDj6IxXYxsjmVqDcpDszwFHTQVTdSEtkrBnGgmuvBQmrMsEbVNUpaVZSs3tBampXOR4MyZPArazFx23ffohf9CPK8+fH9cLy7jLZPH+XiSO2q/xVsAem5zHq4HO9l6JzHILC9K14EPDb5TCvBSYSNpc5rknhOerDNCP8jQxPpDD0b0BbuCrUtJrQlgZef7vjBwRDjwvQR8zJr0zwLjpxIdlaCEH1deB6bIi33HQec7VZ/7Qfqbe/s3nCG5w2U/6bPQOrPdbk/oOp/xIDpYkMN04IEhlsYoAqTriZlkcHa4JVYIxr/u6haD3YrI6AzQS2d3tQY0hc8LpOBZSUWwAnyavkw0g4sbV8kBsKNi2rEXrI2LaTCAst+Fcx/BorG2qAWw3j643wgqWRNrtASSy/nUU7MM7XxYq2JAT8hpuZtBE3ukzB2UOLUlM0GLG0fqAzJkF9N2gYssDw0Birt5j/aAqWZtKhtkLSQFBoJMhqeMC56ang/ggDcqN+XxQEOS19AhcERMHBSA+hARwQe5W9tcjoIRkpelR0D5hdx9kaB6VuMQAT5blHZEgYlVa5NozymQvTgGZhq5fsj7UlH+cdBXrnZF9hIdS0hhk06JzJxc4QvRPx5j25Ezt+euIJW2folI2peUWqRCpilB3vzAaUeq9N7NyCdmdxXyRMCOLqR6p8sr5Kid7Dny8lcXNfJPmGs/MjQr5h3SLZv9Ft9/qx5ARjf9wrtNAk+DbJGQeG8nG3AP/sjGjl7TYbWWHqyp2IQVXDdgLaFmrChgASttsmCzq1ewhGqDFsnhr+FWC2xwR5TRsAdWrR3eajVIZIvN32s1o8jqUJpVaY3VvFKrjLvrd7fm9fu/pqSkpKSkpKT8X/0Lp0GbNg==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAApwIAAAAAAAA=eF7tzfsv1XEcx/FJds5BHEfSlLbk0qoTm9o5ynEIZWJsjKK1znE5W3MklR1DW2winR0mh0PkHEdp51iuTRedVcdw1kVswigk5yQ6dERoZ70/n+/6oa2/oH1/euz52nt7J9dxWJHnjNxiitL6IGguV9+8BnbyRZVJYGPOaG87mJPAoVWCkwOec5/AQdc4Xh/ap1aWHXhG7udAD/kqtLe36gsHOrTIVucO7h1U9gvA5ivCiShQSA2RSsBUUdO4CPyuMER3gr6/XPvvgOqOpfURMC6CqdSCyW+6K9bBgvDDF/TgiIvKzYUPe+at/VQwJsO5gQU+kjSNeYJ3p/nbY8CUsIG8YLD64Y+CNNDonL7tLBjJi9UXgDViU2MWSJmOCpGB9SVmphiMZwhr1eDkproWORisql3pBnupIz4dYFtXQtxrcM+RknYtOJNI7x0DDazmwCEwr0xxahZ8F6Gb+QjuMLTuXgRLZ7Pb5sCWHv/AnyA7//xLE9gXGT9qBg9cbmJvgHqe3nlzkpF7VfHVzwJck0n2UcEM9rLJCqS88AiyAYfT2VIa0uR2YwvoHxAebQsmcjN97MFX8qQoO9Dr5ORpOlgXkPkU7Z2cUE8HMKVh6DHax53OPEA9taITIGX33GgMMItfOYaa2VV6DLW3xuyOvP1ElIp8ztgZi8xfSMtFZvsdv4jkCiXFSO3bb/nIXHpQGb57liJGbhSqKpCcYlE5sl3sVYW8pJuXIl2khTKkpWkU776akGrkmlaPd+PCfdy5WhF2euADtv5ED9ZgvY4dXprHDvVQapBFLAtsodwO25pqg7W3ZGAFAjrWt8YRe2iC2EMFWwmphEc1hNerCPMWCcffE8qsnIg/q0R70YneRXP6q/+odvx3k5KSkpKSkpL+r/4G1BglLQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAzQYAAAAAAAA=eF6t1HlQU0ccB/CKyFg5NIC0nFU0G0SIpDANaNUfQ1EJYi0WrYJBqD0ESpFDQLRUaGm0gCBqRRERhABKoFIBFVhRwIOCATlULFoVWzyqXAmEkHRfnDdTM2UydvrXZ/a77+3u++0v0Y4SOAuSZPio0+zQlDAE7wlGLPoDh3F9KTy1dEIgt9pxcv0NJjzvlx7dPQnBI+cGsc1PCuxU7/5JVQ6CCyPcMybrRjF3nmm9ibMC24fGB0/ZKMeu4YfAxVaBb9UUSAeLFPiXRV8Y/7ISAcu0IkGrHAE7z6XyIXcUi6a7fF68E0GdWcRfcYNyvFXSrv3gPhOUfHausoTsp7d4wKOECZy7fjzRgTE8a0rE+JFPEAhnJ2rn5I/hHV5Biy7PV+Jp+WeEPT5yzLOz0gv4DsHM5CyzuYfkuEE3w4VbgyB/8cAP/EAE66URe5llCHzreoQ/bxnFa/KfGVSbIXBkTQ7oJd/zWMEf+vUwAs/T2z1YZJ0/j7HLVnkiyJzkxWspIt/rci2mI3YcG4RP7ujSRfDdPe/vS0vG8KCU59Xp/AR7VFUW9heTOk5l+hp+rMC8zlKdnuUI1pX2CXstEAic07txMoLn+qn1YfEINnHy3FacQhDyQf+mHw8hyNruGeggGcPzbQ0dm/lK/NA4/ETsQQSDhpeX64aMYUarrtW2B0xYEFXqPdkBAUhX6C9lI/hDL6HAWCTDK9eu1R5ZIsVuYS1pC84ywfDbqzGJ58k5FQ7cvFQEl41FrSkZCDgx7rfHLyF4Q/h09w5nBHzBXWFAKALTiKxQS3cEuZ47Z9nZIuAVTInUD1Jimf/G3fsQguj3nENmnkVwZPvnUEj29U6dI167TY7N1zhaXNhH+oVxUitqnAlZG49CosE4Xjx0LjhJhCDSZCjMnNyfW/78clMrBHFFhz7qnIHAiztjvrkbgqTk9MCzjyRYb9i66kQ9AoOsNOM3S2VYcDrpJOcEAgfzCvPzpH69Ia1ltY+YEINkz51K5fhTUwet6kgZ1mrp9D9H+qvkJJ/jeHEMF+xJqzhG7tsL+ZqNz5Zj97JohauRFF/S39XdFiDDf5lNknBuyvCM9LpdFUG9eHVe+7x3KhB8bRPM7h6Q4Vz/T3M2tI/g7qhdw56kDzkKHe12LMFPkvl+ldmkn+5o1/UdR/DB7U5l79VRfOt6w5YNKQhE14xqtxUgsFmfvk6nFEGR3rxBC3Kvcc8UX4W8jWBWpGVJSB8TRr+oaQ0OZ8Lc4XhhTxsT6q64VRnWMcFhtuvQnyYInAR3ZEZGpD82LYyUTENgv9nOagYLgc9VcfP0pQh06g3CFJYIzI6/m2CdRPp10cbCKwEIypvGUuOOIlio/+wCk9Qt9qnfsk5y/seNYv9dVeS9WptpI2Ssu6yLNdqAwCrEoHwP+Z2vrP0m14v0eUo+c98ouXf7eyzOfZILR9qUDu8gkFTH1p4m95b99azqsekIDiewExJJHn/xN9dz5B6fZPu6eBOn5oY1fshAcP/i2bkKMlbu/6Z/nT2CrR/9OPV7kh/psnmxl4xvGnn4byXenpbRcZ5oEXP6fh5xyf5e2x5iU01ZeBPx28qG4RHiwbd8/B4THRjpYn3SdxE5sVFaxLiHAqUlUS8jkjOTGJXKENgSv/SYVzmHyFjdyHUiGgeMD7KJ4fHFokXEvW2/53CJ3NXNW1yJCQtveC0hHnifcd2dWLx0X4gbMdpHYudBzMzev345sa97d60nseoYfwOPOIeRUuZF9DkSnLeS+NWKFtsPKRN1+KuI1QrR1Qhr8vu0FpdQeU1B/o1IMi4oPuNGuSyz5nAUcWZG2gJKjqEfexuxMHPKXWrsx0vJpsZRhacCKJdO7nhB2df1Rz2l5Lch+2hqvT65HiXH6aYvZdrQ226UvIZ3d1IOLAsKpmwKTz9ImZN8SUCZ5DtVSCluPJVNeU3U+DOlaA77FOV54/hqyg1bWBWUe8u7Gik3e49eoGS5BDZT7nlhd40yaPCemFL51O46pc+CljZKR8tbrZTjLuIblJbaH6uUDnzWTrn8loXKYolI5XGTZJVrzDpURvMuqtSV9qu8++h3lZklCpU+74+ofDCg3fHPnB733nkpa7PuK2PrNN1Xclo6Z27/93k6b0o3UNkc99Irwn+Xfm6i+dd1ovXoc02Ua5qfaF06V39fvR7qdVKvp6Y6005Uf/WcPgeda6qbpnpqqo+meU31o7+Dzum+oc9PS+ea6qt+rv+77urnet1+e91607n6fluLGK+ovs9Eufq+oZjxWrkm6fOq3/tEufr8RP8bdP5//2+o76/pOU3v/dd1aP8GiysijQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAtAIAAAAAAAA=eF6l02tI01EUAHDLzT7M1FLJzMycRZaaYcYCXThipKW5zReGkVEunA/SSjNzpS7RoC1Yc1tWmhVRmo8QE8t8VD4WlGllqWQwCh+RbwxMO+f+15fBn7/Rpx/n3nPvPdxz776qp/rJj1l83ZqOmIK+LH5zgzh7HuLrGuVlC4hTpGKuFch9Mx7MAe/OKBV24PuCmmpH0F5xs8cZPMTzGNkAZiz3m/IA1caqMU/wSay21wc0xDXc9wN3WhoSeOD2oDTrQHBr+f7iIFAlnWYJQc8KB0kI+K4oSR4Gdun7C8R4rjolMQr80ZmwKRas9RfUx4FXJ5td48GSruHYY6DTDY5Miuern4UlgpV7v7CTwSGjRpUKzkrDf54E5aUN7qdAkWvLtjMYl6g4maDbeGHbWbBmhh95DlSuSm7NBqMHp61zwI66t7vkoG2wneACeCL3te9F8PBmLjsXLOr0bkE3ls4n5IH2RuUcOjHXm5EP3uKVfkMPpFcIFWB3TLEO9ZJ8HUJv+46uvwQmpcyJ0HS5Tw66KLxWjm7RrW1D+zKvDKIzssoptNpmnRX2jzty3BEdZnHc0fajp73QR7PL/FEHZ4sAlLXycRBq0yQRkr7XrA5BP/GdQtHwacVBVL87U4RGLrAl6J46QQT6YSwwEo0eZUWhi/FlxIlql2j0ueA80bu+gyjSWpL3lbtiB5F9JIJo3Z9KzGvNJ975pSbGxZQRv39+QBxwqyVOyOuJ9xobiYUjTcRRuxZi5+9WYlrIC6JL6Etio+crom025YKR8qG4nVghozSoKG2rKLsHKJN7KHkGynw36r/4OVIGOFHKTP+o3KTGZLFJrVmsMxunky7vf9czyVSnjkGm/Zn2NR/XM+SZ3zNTHTqzdeb5dPNL7SddfX/HNTR5S72Pf82jm19q/XT+AWQLGsE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAdwIAAAAAAAA=eF5jYIAArU8984+JTrFnEXi3q6gg1P6czbVNHsFx9nckFNpZ3VPtJT++e6D2PsteYs06RoGoAvudLNd90syL7b9t2GlxVaTMPr3SMf7rhwp7HfW+avUz1fbRTz34g5bV2U/Z8VNz3/4Ge3lbG69L2k32wnlNUanTm+0rizeWlzK12ncunbr8d06bvU51wouH19rteeNDQt/ad9pb9H1wm7a8y/7C8p6FZ3l67B0y35nszO21fzzzjHvt8T77FaUle8S5J9gzn1Upblk1wT64+eyUXPuJ9p4eEeZRxyfaM+RrTXFzmGS/ekr8nlcrJtnzSW91eMgw2T72S/yy5R6T7Xuub71e0zjZXvPjTznNtZPt3+/X+LL37GT7tD8SwVFPJ9tfaVYX+vN1sr3GhR37Exmn2HfmL8r4wzHFXpG9SvAd7xT7n8bcawQEp9i71+S1MgpPsW9rWcShJzLFft/mbUfvA+lqx7TlbsDwPOXs8LsBSP//+j9lIZAOnSUqsBlIW7y0bNkDpKfs0qk5CKSzOix5jwDptbfYo48C6aqGl4yg+GC9xRcCovuCn1SD6D+u7/pA9Hqf59NB9MIK4Tkg+sa8v3NB9MQjt+eBaE5te3B8Khpmg+no7DowfXhfG5iW9esC0+LnusF0Vwkk/sv2Qeja6xB61gMIffUthA79DKHvfoTQTtB0owql9aG0NpTWQaN10eQJqdPFIU7IXB00Pro8LnNxqUe3D5f9Wjjk0c3VIsDH5U5C9qO7l5A/iNVHKBxhfD0c5hCyDxeNy35C6YFQ+JOrH+Y/XPGFK3zR+eg0qe5Ddw+hdEtInpC/0d2D7n8AUGQG9A==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAVAIAAAAAAAA=eF5jYACBB/Y2gezTFu+7Z+8t5Nrb/+q+fbWa7/Y1D+/b5x7++KXw6n37/3J2mxRP3bcvdf25f/q++/Y8C8+kKW2+b28pKrt6zfL79t//NmnZzLlvf/CEYNL5Cfftdzw5tD2t9b79JZMNfExV9+3nqKzLXZh3357zk/ZVl+T79osrnELehN+3/xB4WGmGz317Fca9Hzwc79vrJoROZTC7b3+68YTvYS2gvUs+T5opf9/+y7QIs0ki9+2PrzgoeoTzvv32gxYtfv/v2VsePLsj/Os9+1dGm9U439yz39PWFdP1+J795uS9037fvmc/hcsqpPDqPfvOzV9efzx/z/4Sx6zW0tP37CetazF6cfye/fFsgTzdo/fsFVv2Kqgcvmc/v/pc1KqDwHCYcdduwYF79ktrWJ683H/P3vp1qWUBkG4ufiGnCKRvRdh/fQcMrwkaK5+fB9IZj0rl9wLp54uWMG8C0kcXdU5dDaRb2X0+LAfSmVwbXi4F0lEb/p1bAqQtS/aYg+gyV9sXoHDvrtXZD6KvT/BfBaJNKx/OB9HMcvtngWjZc44zQHSXjuB0EG0+rxEcX3Pv2IHpSZYKYHpimBCYFlTiAdO1CZxgut2IA0w/Xg2J59XFEPp/LJQfAqH9AyB0FTQ9aENpByhtDaVtcfBtcPBt0NQTUoduvhUOc2zRaFz2EKsP3V47Anxc+nGFjxUBeVzuw2UfseGKy7+k0rjCFd1/hMKdkD244oNY/1jjoIn1Fy57cfmX2HSBK76J9T+x6YHYcEYPH0LxiIsGAIrKCJY=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAFAMAAAAAAAA=eF6VkllIlFEYhselsilzjIxES7tptxvrolw+NbU92ixFmnG0GmiRbNNEUKOoLDV3TUqx0cwlUEvFMMrMSs0wt4ToM9OLDEpyLG3//zmvFw1E9N88POec/zvv+c5RKOSvj1TXLFq2aZgaEwqa1o4yxeUUBXcPM8UMRH2tHWKytHXqVQ0yHdR/543MpAjY75rSy9R/ISmgu4NpIN7bbl4bk8WAVYXuCVNF+Jvgqgam4FmBU8zqmc7O6KneWsPkMJ5xoKCCyd13/pLPpUz3y7S2m4qYOE4dpc9nCigv2aDIZVJ6DxRpM5hudZ562prMtHjzMof1CUzp7X3K/jNMc0IdfW7EMvm82v+qNJppPDsozfIkU+Fqv+WPIpioXN3y4zDTA8XcktoDTPo9X0fHdNL+ymcNdfuYHof42BvCmL55WtVkhjKdb1SrUrVMR3x1Ll0hTB1t4U5bJQ6S+SeD1Jdj43WOtRJdvY4nX5aYejsvOlKiZ0bniE6moS5ZrZH78sIsSKJ1R2NzgMRm5YKxHRJzzV8atkv8qYnVyVy54rWDzLTieQa578dXZbLM4paFXTJt7g4/l+mSrnkmM7DfuVWmf9p54z2deOJlZGS4k5G/7FRG2i2dauR788lGHi6zNLJ+kmBzu7hnZ73gmuuCXWmC0fmCFRmC2izBD5mC0+CTTGgFKkAHsAr/uWcLKpMEo+APsY99Ht7fVUE3vEePHMFzyHUpXTAYHoP/t6DeCOqvuyzYk4xzwqfDo3FeFf47hJxa+L1EwdPYPwKeAo+HtyDPW9S1wj5DcE+4NTwe+46hP03YdzZ8MvgF4+2pgv4Yd7uC3OhXP/rVCu7EeBtynUGfUuHr4PXoWxjq9mI/DbwD8yOo1wUPxPww1lvDLbL+9In38g75P8JP5/5Zn5BHj3x+Jvn2muRTm+QzIF8nfLdJvukmfTUD54KVWOeBe7fE+7kIj0NdG+S6A6/E/4XwXZg/inMMw31x34k3BdfCX0/Uw3otzlGNe1yE968EbUGbf7jKhDb/OT7BmX9ZZ2syPzH+G7PE7us=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAeQEAAAAAAAA=eF67d+6nUkTMe/ssrR/FfUD63rbrKw8B6VdZv49+AdJW946eVIl9bz//8oxtQUD6wL6rvXVA+p3o3YAVQNpGjp/xApD+pHl6/lcgbSZQoCcZ994+2jJmnRWQro14qxAFpLt2N7aXA2n2vqrHk4B033cXszVA+tLpwsbDQHqm1rtjN4D0xM/FnG+AdEWDt+9fIP2jOG0mT/x7+63LDv6QBNJtEZerVYG0VdFGS30g7f1lWoA5kN7xu/OpLZDe8EtU2RlI34x1M3cH0m5nzQK9QPq1Fs7zAdJ8R496+gHpTxtel/sD6WfiEz0CgHT7K4erIDq14ZVhIJD2O92XC6KjLMQng+hFYUarQHTzVLkdIPqcUNgBEL1zkthREL2u6MRxEN3n5HESRF99L3kKRNvldYHpi/uPgumZrU/AtI71FzD9X+YPmN7GwHAaRHe+ZgTTBy4zgekIF2YwLVcJoZsmQ2i/ORB6ykIILbl0lB6lR+lRmr40AOZz0Y8=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA7QAAAAAAAAA=eF6d1CEPgkAYxnGi0Uh0s5AckeT8GEYj0UgkEvkIRDcLkUgk2oRGJGozGnje4H+7HZh+e557EZ13F0T9YX9/H4MdjGAsExhjjs+HcrPQ4M/1LXQ9Pz1nX9D6UT5kh2w2skWuYeXpC1nKTKby6sns186vnTMzrHPOtc7fZ14g+3+/79Ls+ryz5z1mLvl/lo6e2fbDTXK/UJuz/dfJXo6OPEE7TzynPEdct8x7w3rXvcL7gvfKCbK3fJYXmcordPW5LB0W0PpK1ittZCsfskM2e+RRvmQwzH6QzQnzm+HXUG497mQsI5nMfgGdUa27AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_84_t_8400.000000.vtu
index be16efc53c897e3262518808047ccb3c1be8bcda..7966f940d82845340a30da6dbeb64a5972801047 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_84_t_8400.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/KineticReactant_AllAsComponents/KineticReactant2_ts_84_t_8400.000000.vtu
@@ -2,34 +2,38 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="0"                   />
-      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.96002998875"        RangeMax="0.96152386461"        offset="132"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.3220673995"        RangeMax="11.385200885"         offset="1684"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="0"                   />
+      <DataArray type="Float64" Name="Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0.96002998875"        RangeMax="0.96152386461"        offset="84"                  />
+      <DataArray type="Float64" Name="Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0.96050581935"        RangeMax="0.96196442347"        offset="1640"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="400" format="appended" RangeMin="-2.3220674013"        RangeMax="11.385200885"         offset="3184"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="6816"                />
+      <DataArray type="Float64" Name="phi_Synthetics_to_Productd_prev" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="0"                    offset="6896"                />
     </FieldData>
     <Piece NumberOfPoints="201"                  NumberOfCells="200"                 >
       <PointData>
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0000020518e-07"     RangeMax="1.00016585e-07"       offset="5336"                />
-        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0.00047596918672"     RangeMax="0.038476135393"       offset="6596"                />
-        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.46152386461"        RangeMax="0.49952403081"        offset="7732"                />
-        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.4807619323"         RangeMax="0.49976201541"        offset="8820"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="10064"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="10500"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.00016585e-07"       offset="6976"                />
+        <DataArray type="Float64" Name="Productd" format="appended" RangeMin="0"                    RangeMax="0.038476135393"       offset="8312"                />
+        <DataArray type="Float64" Name="Synthetica" format="appended" RangeMin="0.46152386461"        RangeMax="0.5"                  offset="9560"                />
+        <DataArray type="Float64" Name="Syntheticb" format="appended" RangeMin="0.4807619323"         RangeMax="0.5"                  offset="10748"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="12148"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="92718.236819"         RangeMax="100000"               offset="12584"               />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="12568"               />
-        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.96004556203"        RangeMax="0.96152386461"        offset="12636"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="14652"               />
+        <DataArray type="Float64" Name="Synthetics_to_Productd_avg" format="appended" RangeMin="0.96004556203"        RangeMax="0.96152386461"        offset="14720"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="1.685e-05"            RangeMax="1.685e-05"            offset="15580"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="13500"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="15940"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="15104"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="15652"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="16164"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="17544"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="18092"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="18604"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAaQQAAAAAAAA=eF7t0vsz1Xkcx3HK6pDcSoutKYbRMntac5bY6IsaxYbKpm3tqKUhKjYUxm2LzjaikiGRXNJBcdydhOO4n+MyLrVZI5d0Vbtf9xPLsK/P9/zUX7C/+Okxz5n35zPvz8zH6WdHvb7HNCX4mN59E9rvV79mW01Ta6OtI+Thk3pRKx+uJHxaCIBxC41/6jyhqaE2juMLdHVjdPVl9LKNu789pK94BI1D59BnPnxot69VwbmGppTWsSw2wQKDrQElsHuz+2gIVHwpLlevpalxYzPPAbTVBfYzf/SVkEWhBQw/VtbbDvmpGvPJ8IP0cZFBHU3NsIZUp9BjB3N9I9BHM0UKjlAxv1+xD2b6bBvMghrjFVxDIU1ZG/2SNIfOi8n4cBF9V9zPPgDH9Kc5rTCKM8tPhUUTmqc21mPPYA2td2iKfSLCA21w5oYnBz5SNI/Kg4FJXamRcHFwzo+GS7uMq1vg1j1LezkimpoOXduyHm7ZxFO+CFMNBXUucLbfRVQFjeOycxNhXMpR7zk4L7ctvBdKKM1l0waaOrf7mp0a5FaOXj0Ln6rbLjlCyYgu6wG0fZ5WEAvn2bqRg9AzfvqHWnjda9e4WiNNtbOyX0+huyranezQgayVYEO4u8ukMJAYcWrZDW5pK/0iGz7t2HGZC7l3yt27oNVojnwFtPG8WvwJdr38OmoEXjl8dc32Jppa2KC1wIJ8XzU3e6i8TRj0LZwVX3rkBy3SYyaOQhuBq0IC1ArtPhcGdyZpexZBfUpvMo2cl09r7YDpRttDn8DjmYuc9/CMnGDdXzArji5c00xTE7F7smfQVoXS775Cqx58vH8DjGQ39pjC/E7dFQNYV3STaw9j1Es7v4fl3rkex5vJ/+IKnGF2XrmXH3GxX3wSfhxzuh9Gzi3GqpyHrw7vYP9B7qs9nRgNW5/ZaSdB6UiqbzwMqRwKzYCPpkMe3oYz4ZZ+PDgwl3Q2Gw6X6SvxoT7vUEcBdEpzCa6Awp88Xpc0M/+voxqalLP6q2D8AaudQmis5NdUAyXdA8IGGGuXLKkn8xFDqc1wH6+F1QSX7jUMtJJ9eh/ca4Fh1bfSxbBBIOC1wdOlaXMSeOjOW0virSzzpXbyvtG9/sT3KU9FHTDTjHYjHnNUOdIJP0m3KBC9747UEB1cHWKI9q7SdV1QLuDsCOkBo2lr0skqjnrEm9eEXsSwHJEL8Z+eoUjieaHOb8QFafENojT0Ry6x+HlJOjGR45vMzPMK7xN3mMdkEk1Ofswnak6Z8oiTWUcKif8W3HhIFFtc4hP79H8tIuqYvComqtt+w/iiUVRC3GDpwvh2xqGU+PvsWsaU2QxGyjyIsUbUw8heqWK8bTbB+E4ywthmLV9GvGsyz/SF7vVM90UqMvInNRhZA6qM3he0GOULNzImBX3JaBawmVElQZtxWFlmkKUO45o3sn6TIGtTH5k5NTK5PJnifpmVEpluYzJ7h2WeGP9cekbm678/71VXXXXVVVf9P/0PtOPk4Q==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAkQoAAAAAAAA=eF5t1Xk4ldsaAPAMoZIjRXFKce3FyZCSOazMRKFwFQ0qyXQqRJ2OVIZImcdCHMKJFKcyL3Z0kySk6IhoJoXwbXtv23339vQ8x33uX7/nfb9vr/Wutd71bSOTHIm0RP56bb7WPaXHED6zzlX96qth4hN+fPsnPf56+rBX2/FfEW6uehb3aJKGkc+4e8EMkzjHC4/8kYcwKnlzra9skphs4A+KtmKTgppF1E0Xvvr+DIm0cgGEn1hl9RXeYZP2CqOY8C+zRKJcR1qpFuEkFfHtsskIB8Vmn2d6I3x6l0zyKhuEV53/00t+E8I3m9vGVhQgfGvBrs8vJBGOt25N33wE4e4Lmx4HQp3P9dTiLAQoMi0dlUv/94L6xEHhffH0HqKduZhv43mEL7ODT5R5cIie5HSSdgXCMdt7k3vdEf4iWjXSfxPhV1fTBJYlzZDehz1HH1giXHwqvOACrMddtFaqOQlhqyCFFzIXEeb7fa3RT7ow/8LSsy35CK8+1uSmnY3wztRzjHwVhFesDtibFsMkPsFhMT0V02Rq1CFDMQfh7PVb/J/rTxNGV+fzj+YI+7lEbn6WibBlxG6/zksI63gKPVAKhnW63TzYX4xwn+wRIc9UqLOj4JDZpVni0edj53yPQ/avMB52gHpasodEdZsQPvldq0bkF4RN7Fn290QRXrhMZGhUGGEBp5DaAOEF9Xkj5pWU/wwxj2Vo+VkjXFRQoHP1PsLKqht3d6Yg7K2xsCk+A+ETznEB8fXwvPThiqcsGpYoO132K+zrQHnetAys9zLjF6eV+ghXqeypb1vPId9wQuTQXRoeP53SHQj76Sz/Rd5NDfZJ6L14bwaHlDqGxOlC/Uuw87MXYQh7BlZ5CR1lEhHbbk7xPYQ/pu9Cq8MpovlUISmBTsOGirSJsJ8RZkhJm3ruQDhzcrnefyDecXpn2uUGhCcO5Lkz/mQT3RVSw743YL/sBGuUliGsWxLthJLY5Hb89dCxiRkSor55Q+jYK2J3W6j/KdRNHZ7yC7VgkYg9s+9KXRF+61efSVUxyKG6scH+AywyEHa/3Bj1G13u+z4aN8QhZjZew3JPadhOUqLXF+oc6C5vvCTDIa1xfRHdhQib6try5d9CWJ0RUbTuOw132iX6fIF6SCPNSawI3t9RpVzWwCbXZiL/XhCN8E+DwVtr4Xebm2bvDoKSUgvVaxMQlv8tzj9vPcLD++//PrGMQYa8d+i4F7HJWn2VN7vKEB5bPVWsLQ/7WTJGDiyYJQnXv/LJmCGs8Ea72+QLDb/wd6Nrjk+TqEcjL+nKCC+/veTIXSXow6gPKi0xCG/E32o4QdDXVg18slmwbtkA7x6o09H0643xPxE2K9+WuBfunY8jW3MN1LU4r8FxGx3hVquGwDLYt8LST86R1BRpKaHfzt+O8NmawU8BOxE+oqt6umaGhuUsMk/OOMC4bA8x02YavhGhHX0lgEH0z9xntkLdZq258SuM4fzvTFu/lOSQ0HcROzYsQjjuWG17CNyXugdP6JEI+u+ua5kv3IdyT/FUuhjCxw9RPUUaCEv/+rt7rDWDRFYOLx+BvI/8axUb6ItSqYqNRqYIuxTneJyB+9MsOdHuA783DbapOqoF9yk9V85GFuF1ykqb8lWhjzrPDbw/yCL3Lcfe7FqDsLXH0KpxD4SXyhR5G8E9UI84PJIEfTQk+LVLRBxhB/m8EfY5+O48T7GyGKbhY4p9hyY+0rDg+iXp++GeDZmE9subU2SP7yYXJtyHXR5IZVQR4cli/cb30P+GW9sGj03QcJr/uNJxyNsNiD5Th/N0mexfkAHnU6MWXJcP83ZoJljbQ7/IuWjP0I0Q9nBjvfwJ9t8jt/mCnyqLuI8uGjaPQljLSDWto4tJwh5yltyD9ZUmshpsBNik15vu+pGPSYL3Wot+9RsnF/3eJFqPTpO37mvvfGcxycYOWcO2PRQJqn81kmMxRbIOnLpGP8kkO9pvJs50U+SXkrohWyaDbGMvP0/kp8k1B60KrSAWKar57fWWARpW/rzUhc3PJt5+6c+EbKbJ1oBzb2Oqpkhc6wfpOkMGsQtqrLLpZxBlY6bIKGOK5M5u3ORiSsMHCsUkdrfPEk25Qvcc+J7fTZ52snrDIWvG216EuM+S3w7vL+1o4pD0HuV9Zc85xH/5V+mL0J+ubpNlteocUmfkj67D/dJQvOEfWALfv6MNWmoHYd1xhqfz4D5Zxqo6pkkjvNZR3qLSCvYvevGJU9BXmYqLDjuJIHxPzNvYBL5rLM9bi/xlpghKOKLoAechue+tbzX0vatfiqkJGiXxfUk7N8H/V8rsOYMGOIdxwUCrvywZZCTkr70UfPclSxucxBsR3rAq99YEfN9ijy+JCY9H+OCLpobsLhqeoi3W76hDOKqliNkE/XeuRj9M+wUNrxu/cWwY4tpeNs3eFuazU0IHNzNJ99S18kI45zsG3x47qDIJc6Q7xnAjkzQPh8duL2CR8M4QsdL1TPJg5x9rV+axiF/iVfv+fBZRajiaYSvLJOVRLSvf57KIoaZnYK8Mk7irjJk0rmYSe51QPb5VTJLDr0ZPlmaSqQRGx9rtFFFLUxISsadI1mNLyYdWFDG4fb5H1YYir+P0k1Shf4+MDTqvt6TIk5p3F7RNKNK/VFL8lSlFtPhfFj/CFMntzPJdZ0wRPufjSx8bUqS2OfruWyOKhGQ505UMKNLsxq4Tg7zlF49bnfoUGXJwqondQpGWUxFhtXoUmbkSW+8E+bY9WdV/61JEkmocd4a82GLmRwWIpcaKAqLAzyXJC+J1YJ77GTsHQW+xTQHSINbYoLYHPCsxeKZCmyKi7ej1CMjJLhT3AjdMVysng+7eFTnKYOgJnSe2oMZhg4dMLYpEnlU6JAmxb+KzR50Qn9Hcp/EZfFldLfgXyKTNRjWBiq53Dl0FW78EVRaCBT5bGJGgSE9aZgLY59PwOQg8ubelLRT0Dj/93As8fr5j0Qmw0bQrdD844FQt5wGGLM9VdAGfd3QJu4HOj4rrHcBVjuu9nEClCz3ptqDaR21PO9Dgk1CGJSis0BG2DQy2s5U0A//FH/jaHPTLdxwxBh/MxAubgnqDFt0YnH7oJ8nN9xU1njUAbyUoXzXizl9Q+l0P/OCUYrQFvOEqnKrLnVfNZws3f1M6olcHfNeDdbh5dauMU9z4WxaniGtbR5cp15Ob9fZyFSBIgevhzlENrpP90VJcDfw+r+G6U+9nMa7KlaYSXBPOSS3lqufEWcJVNil3IdcTqe0iXLPepvHiiaosnjpmcQJcGSpFvNhYJFOQq8bHGF7+w4cMXnxF+w+eVpeyeFbLzfnj/YrSRJ6z7Hu8cWqXpgr+0+itlbz8yptzWgfN5SvZ2TynD9/i5fv6554PXJsbP0cvhaeX+F1e3vZzzrz83w658+r7Ma7/obm8ytk0wX+Od5A2t57dR+fq7RpJ460zbmvSPH1n5/I/niOZWJ66Ick8L3ak83xfkswbZ9WBufeWFafOG998W6LA/1Nhcm7fY0Vi5xl4PYH/n7GwZwovzrW/yDNbJZqn0IZ4nmtTL/PeE2ycO6/22OR583BOxc2b73/zXpevzD03zuT5X8gTI/M=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAkAMAAAAAAAA=eF7t1FtM02cUAHAjFsGiAtKLlptE0YkMmCtJhXW1ExyCeBcrl9XaaEVhQ3SM1mWGVKoVQh8UTKktBi8V8VYGXiqXIQNxQIY3OrFFmWC1WKsymLCo53z/7MH3Pe7pl++c5Ms5OTmH7vVb9EiPnL9l1JHB/EPOD9Y51ePwltf5WydY5PyKBavC3cGYkgIFHezjnm3zBlMONfowwYvXTCIOOMzeYwgGQ4OG++eCEht7ThgY33FTEgn20J/ouSDzSpxlMcY7m6cJwKL8T4Rx4GcHBLuWg63lrfqVGP81p20dWBLodIjAM4E2+jdgx5glVAreOJ8Zux0spM1IysZ/V8WvzwVZk3ek/ABmV/Wu/hF0fz3wVQF4IOLWQhVYza6nF4E7xwb7NGBTo9R4BBwpSZBqwUeDel8D5nVbTZXgMjed0AhKL3Cbq7G+7+dFXgLXOKWHakGP/v7bV7GO5VpaAzhUfTCkGQyYdXV+KzhoXsy6BYaPffqiE3z4U8uZbtBkjkm6B1oCnt6xYJ9u4YKHoKJMpenD/FBhSz/Y3dbVOwAanrPu28EFuyNrHKCS8XaXE9zk2sZ4BYoS9mvfgPa8rIkjmF+6csXf4PDvOxVj4PSZnOJ/QHnpLwXvsF/1g7QJMO/HJ19xJoLs8comNzChW59IA3MKDfXuYLb6O5YHuH3+M5EnmLrMsX8KOClAoqODxjiB3gsM69pbNBV0t/vKpoFFge+jpoNZR/kOtJ3Wcdgb1DAMET7gW2vVdfSRvzXWF0yv51xCn0THz5oBOqui8tGK42e7UPOSPI4fmOdYIUbvltmOofHfdt5FZ9bV0hignz00Cg1Unk5Bg/g1+WhsT30Zurk9woTK6DvaUaW4zYoaWaUv0RNrg9+jo2qjF+5DrCSTjUZ660JQkysrDK3i0xehng1aHspL5X+JJs1mLEUvlvK+RgXnbiSinyfcTEbXlYlWE8tVa1GNVbweVbtcG1DfXOFGVDmaIUKFs5M3ocW1zFQ04E4DkSlOTEP/Km8iyvxD0kl8US7xtKqOaOM5idEx/mS/eRlC4sHizcQhroLI3aYheimPE/c9uEDMTDYTZeYW4pHsDqJHzm2ifG8PcYq2l1jnsBFLNj4mNpz6k3hYPECU/DxItF1+SuSb7MTq8GfEE7WUR794TtRUUo6/oVR5UnfKL4jSpaD03kJ5v5FSVvOxW+9R/nvn/ve/9QOBZxQfAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAMwMAAAAAAAA=eF7t0/9PzHEAx3F9M8WIHYa6qFuT8iVm5kteRRQpdr4kkoxM5st1R46aJdcXuU4d1931hft83icSXboVQ2VjZa6xiDpFORULdZ0SGvP53PFPmJ8e/8DzKWgKmizwB4S5u97w9ATl+VuPpUdtRNnuzXeLTDFY/daibFwQB8e5e6asG9gPTiU/c2eUAJKwSXmKRSIM2bllP+Ikgl69/+E3sxhZQx/l3g1J+PRGtJ5ffBJGp+iZNbUp+FB9LfGZbyq2Lv4QsFd5GrdFoSXH7dPwWv3l3ZiD6ai+4jBlenMGUvTpIn3gGYxtTubWl2QhxO9V8PYJUrg/l4wXnMhG188tOieTDHGnZTwZLwdSucHxVXMOvJzvZXdn5cLlTkWTPkCOug3DvUFmOfrCWvpz6PPoPn7Cotl0Ado5nU7CkQp4hJ4NdLytQG1bQGVkfB5mG1yFB6YqcWzJEfEKgxKF58OvGZNU4K1y0/j7qeHzfpi/pk0N394CMVeaD41nRez1pQUoHz1pck9PAcx1VFa9uhCSPnWGT2gRjqT4J3cOFkES9S6wir6I2A3RiYi4hKCBq3t/Dl0C1yHgKb1eg3mb41fRlAacQMo9pV+DTLHxu245BdVgdHBhJoVfh8duL3tCId0+tT/SlYZpmgvtFk5jdLf2XL6EBoeaNzG3iob+6J0HnSYaj/3iNmqcCapdKi9YZhFk/Ep66hNCkOZrv+JGDMHwc/+8wQSCw13DnmmnCHK8aX1HNsHalV0xZ5QEKgPuD10kUDSG6FRagg5N2B7DVQKZBMaOUoJNyxx4bmUE20qOntLrCNrfv2hoLCcYo1/oo7pJEBHsWO5RQdBWnOCUxMj7Vld7i7GFMqnaGVN1h/Z9Z+ytiOhxZnpz7c2I5DDyPcYZpzL2cC2tXMbk+pvhMxhrvC7XeTKOGzH7ihfj5ydCX7bT6fMzxawxl39oWS2lkTWsjfNLG1jNC8uaWBM+uxtZF7VKW1n717W3sYYIFa9ZP2m/WhXazbL2bx4Itiro41uV87ZZHfVyh1W/qp1WpxXHWs3j2r45EGUzVWTzYJpN7z+2SG1SMpt/f/vvf/8FfwM3tRmMAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAADgMAAAAAAAA=eF7t0/tPzXEYB3DMqIX6gWUtlyhLLpsu6Gjei7ByPdLOnHLrIk7HZaMks+65pJPruunQOpy1EolyK3VwGudQSu1kfT4fIV3UKWeVJPL9nu/8E+an155ne/b88n6nLB7OdxtiaDO6heacIdDfOn38ZjeDtNgneEYrQ5xDXVBmI8Nr0etw21cMogoan13J0FOoLnAoZci8oiNFaobQQKO911WGEfG9sNrzDBM8NGV7kxk6HCumjIthaCnyk+cdZBjS2LzxCWGoqrrv2i3h/kZ8yMzYwN11Lhtd682gbwgJHfZgsJozqabEhSHds9npwCyGGx+PxC6cyoCA5PpeC4YnTuUzyn9RbPYv3ZVgolCJHTPE7RTR7J7GsYXCOcCm9WcdRVnKx76mFxRJOw199x9RRFbnsczbFE3bvj+OVVEkzy9KkmVRjPyiy7crKLTaaMP6RApL18CwVdEU+3x/t3kdoJCsq5OtCKY45hs1faWEIuhzv+eaDRTFasVOsTeFyBRwKmQpxcyDKeEnF1A0fPV6kDebIqH5W867aRTuftkW9lYUPolX5seNociSTb9pNUjg2rG1XPeVYHL7+pHaVgLb1udjXAwEcYeOHut+Q6D0Ubq7aAnu6mvHDlQQDOoqI4LKCIajrIrltwlyxknJogIC/5rT4fn5BBr5pQGdkkB6dP+tvGwCo8JGa5dBcOflU4nLZYLxjZ4bqy8QPMq9HlibTuBdk9q5WsHNsrnvpqQRNE4bmuhwjmCqnW2XPJXApIy69OUswRYnw+dEzjWFsSe8OFdK36Zbcj6ThmnbuNyoJc3Des6us6OWTzgXvhdfu8NZ7TbRooBzd/WnSSpO1XJT/XXOLM8yjZJzj7V1ZC6n/RKqusrprI935FU2+zbxeSyUL1DzpkXapfJefHYhhtfStvcw73Pd7gjeunke+3h1D2V7eZ13yMJ4jYEt5lwfSlQIikLN9kduNJu9ydtsd4vIbE/SMrPaKg+zmwzuwj5CsMRVMM5a0G1U6M2RH4LGAUGZSfBvr/7733/ZPwhfffU=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAggMAAAAAAAA=eF6d1H1QTGscB3C0pRFN7RTKaqoRjbxMS8Zk7/2VP+QtNTFFxkthpElRQzLj3js0XkKX0MwSeW02TRO2XYq8tVFZKe1ENs/PTHY3tbJWdbN68ZxznD92Jxn3r8/85nk5399znnOOTexv8OhDSDR53HquIhAdqZKs7EFYvsr3ZrYJYa9Twix1O0L3Kb3cSYdgWfMpJBwR5moaNSeaEcbU6JKbGhFMAenOXnUIA/5vbm2tRlgkilsrf4xwPnf96JEVCMdi/JSRtxEKtjhuvXwTYSLGevQUIYiCd6iXFSC0W879feUiwhNjoLj/LEKW28HW1WcQZPnGHOW/CKO+lsH4LITQkoUf0jMRkqXabO1fCBtkzbNDMxDyZ+Y8k6Uh1G2PjRMmI5iDDpv2JSA4L9q5pyMeofbPpN7YdQgH3tanqGMQHEu/vYUomss1eqFiOd3/aErejDCaK15ivBaKcF1aLPaRIBT6DKZemIcgmZ6gmByIoPZdMDY/AGFzhiXPdyqCMDqsROaN8NquqDJwEoI0qFJ+3x0hOtOrJdKFrtf3hrePQbg0JVyQbY/gerfWLWQEzS8e22j/jYAppVCr6yZQ+dlvwGAi0JUaP8LdSMA/uHzBbgOBFlGEp3srgUdthn8shEBNIgbN0hI4e88+RvmKgNKuuDNXQ0CwSSVvaCCgL6uxbHlBYFxFaVPkcwJ+EY6bjj8j4GbAAPdaAkmmvIJ31QTio+qLDU8J1BqqunyoV8tdEw89ITDHpe+AC7XstNMuZRV97qq7S9KoAmGSOZQqanrwhxf1ze22pwJqWpG41UzvzQ5F0j49dbByUECoLRZZxGuqUmqXqaH26HY6vKR6+WVsq2fmTVsb94L6PudQeR1T+6REMV43hAgZq7undDD3can8TCOjOfh4FaOdZnEFY05W+h3Gh6tvKBgbTnqWskYFyRk1/gr2Pnv7JrPmScJYtePErCtKprLKpd6swoTJrA5lk1hfNnuyHknjzJ3OKZrAuX2Q+15UP8QuTueRnlZ1SB9n6n/W+vcMPd+2zurn9P7EWfqZU63nHDAPX8/u5BzfNvT4/h85mj5yOliGr+/1cnZ+4eT/G7zzu63z2o7/TJ3ROiff56/W8Tn4XLY5+fO2Hf9Vn3z9f/vY+MHawnZOFXKaO4av+fm2+/D+7jmd6xh6Pt+f7XnZ+rP3zfsdEnekww==AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAZQIAAAAAAAA=eF7tyNtLk2EcwPGQFmmUGm/SwbNuGus4wWVZjxcVKzsQShJprnpL7CZFnBbJMsOtlnlarqNNWmpOmxsLpk43nZRmikaBbuEhZWG2p0SNyRT7Pe/+hG539eH79YrIydcaMIqcrC0Ka8HoGydVWArqhS5fF+lCRyXdilGw+ImjD6xlZwTvbcPIGGSMkoNO1orPAij8K+9NMmJEOSfoZhCvHB/1accoUMTjXwY/S1xZLWCUdG3J+g6MwmtbH6SDe7g52RqQy6uIXwZ1J/J+C0wYbegvlFWAS95+G62g1Ca+G2LGyPp819Ql0Febz1OBnYmtWZPgs/ZTytBOjHZMlnWdB1k267AcbEornuojP/aXfVUXRspReiIGbIsUfKXB/GMOSyU4Ea9+awbXhI9UzYAmzUABZcEotdtOHwADdHdOCsEGhX9cERg9HbhdBaqotBAL+P30SNA42CMJiHKB7Fsph6hujCoKcAYXDB1TvkkABwSb1iWDNUNHqq6AydenU3LBo5Ke9CLwgtVhLgX9vzSUPwXthqszr8DbjXE/1WDx4tlGHZi5LemMAbRFJy0aQc49frcZFJUPDVrAG4aY+Pfgi33ssB4w9bVZ0QvWJxx89xE8bB+X9YF1Sor7CRzOk78kRlzUzhH5W6t394OrFaZzRM0Hl4jo5HvJiKGsksfE+1hRQ6yuf1hHzGVnq4n9O2ebiFSsVEOcX5Y0E2PmOVritUdSxvkxC6NJ/INRp19iVHG8dUQb7ceoL6MY6dkAxoXEzYz7fbcwym66pbRuOwbdysfdpk+7zfzjFs959Ojxf/0H2wzu7Q==AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
+   _AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAbAQAAAAAAAA=eF7t0vsz1Xkcx3HKchS5lDY2U4yWmD2tOUts9I0alQ2VpW3tqMUSXWwhx0Rt0VnjstQZJZdc0pFwXHNcj0Mu57iMqM0aiXRba/frLpZhX5/v+am/YH/x02OeM+/PZ96fmY/T944GPZU0JRpN7UqEDvs1Y+2qaGr1FdtwRVhdL2kRwuX4D/OBMGa+8XfdapoaaOU4vkBXNV6puoZe2uNxzgHS1z2DRqAz95mfENrva1FyrqEpVRWW1QaYZ6QfWAy7NnoMhULlV9IyzVqaGjG18OpD24Swn51DXw9dEFvBS8dKu9ugMFlrLgn+NFVZaFRHU1OsgXUT6OFDOf7haLcMiZIjVH7Qq9wDM/y29GdCrZFy3jYxTdka/8CfQedGpv91EZ0m7WUfgMOGk5wWeJkzLUyGhWPaPuvrsWewls57NMU+Ee6JNjqd4MWB+cqWl3PhBX5ncgRc6J8JoOHiTtOqZqi/e3EvR0JTk9zVzWvh5g2CNReh/nZRnQvk9rtIKqBpTFbODRhzy813Bs4pbLnUDWWU9pJ5A02d3RVrrwF5j4aiz8CnmnaLjlA2qMe6D+2ep+RFwTm2XkQ/9Iqb/KYW/ua9c0SjkabaWFlvJtCd5W1O9ugLrOXgbXBXp1nBBWK4z5I73Nxa8kkWfNpuco0HeXfKPDqhzVC2Yjnc4xVd9AF2vtp+eRBePxK9autjmppX15lnQaG/hrsDXLNFHPQlnJZezQ+AVqmRY25wj8hVKR7qcLvOhsEd/E1ehdCQMhhPIecVU1raYarxVm41PJ6xwPkTnlYQqfwBM2PoglVNNDUWtTtrCt1QNPvVZ+h1hyr3q8MIduMTc/igQ2/ZCNYVJvIcYKRmScfXsMw3x/N4E/lfPJEzzMot8w6Any/3Sk/C0WGne2Hk3EKU2nn4+ogJ+1dyX+2pG1dgyzP7TXw4O5jsHwenSga46TB/MvThbdKXrAMEsG+GfyYLviw1VBXC9OzD7XnQKcUluByKv/N8U9zE/L/2KmhWxuqtgHEHbHaIoalqwOMaKOvqEzfAKPskWT2ZDx9IboL7BM2sx3DxbkNfC9mn+/7dZhhWdTNVChtEIkErPFWSMiODh++8sybezLRcbCPvG9p7jujDfypphxkWtDvxmKPa0Q74YXazEtE3bbCGeND1YCTRwXVWpRMqBJ4ZJN1nPGlLOknN0YCYGCv2JoZlS1yI/zwZiCCeF+v+TJyfLUogznK/5RGLnhenEm9w/JOYeUHBPaKJZWQG0ezk6AOi9oS5gDieebSA+G9ewkOi1OqqkNhj+GMhUdfsdRFR0+4LxheNkmKiurUL47upgyXEX6ZXM96aTmekLIMYayRPGNnLFYy3LcYY38sGGVttFUuJaWZzTId0rWW6J0KZUTiuxcjqW8foG6LDqFiwnpEf9CmjReBGRrX4TYwv18gNstZlXPVW3m/j5W3uJze7Ri5PIFfaK/eRTK77sNzul3JPjHwsPSX3zd8f94orrrjiiiv+n/4H+Xbj4w==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAYwQAAAAAAAA=eF7t0f031nccx3FlJ2pdYpe5nZuUJhZmbmLxPSouiriuLoaM5q7LTRFzyehuNtYdVm5KDJWFrka65G5yVeRuxpElYg4mY86343RDRHt9vtdP/oJ+8dPjPD/nfc77fc6n/UCeddXvNBX6zPK2EK6XFO/Qr6cpueK+d2NoZ5Gy7s/o7tUfau+FCw5OXXPQKcN83V2Yai7yCLhLUyoWDT2bYHTD9VvNUMZNKeoczGgsHDNsoCkW98LINLqGI/PiDLrSqXQLH2YMGTydhPJp9Twx7As6kc+RYL+F2d6P4CnDcPsrMLM23PQQPB/ren8Oro7q/K8Z3tlyagP3Hk3VrZUk60DPqJMhRdAhvmBlLDyxmH12BvrzH+1vgSID42zOfZriRtRcUYeNwmspmbDomLhVAJNoH/9hKDyysbcSxonLdYwe0FTOx6F/yMCF1g/aoqGgbLjUGU4fqvSvhmoHp2LSoZKi7sg8NHEbN/gLSr4t5Nk20pTdokm7KnSZyaxIhB35er5e0CfGW7YWrorWHMwic82Ojq+gvqzQ7RFUuF6daNxEUzvlzolZUPS3fHEwdC2vZTlCjji9NQeaP/HyTYTVncUjHTBsq6SwHLIdSl4uwjthzkMjUFIyIWP8kKZ6d7iosOFx5Xvy+2Cwlq6TPbx+M5mVDGNpTeFBSG8/r1gG+22yC7PhUIMt+zF8sWeyvQGukptQmYfefodfj8EAWxkt7Waa+p6XrrcGnlwn9ykF+d113M/gcJXI0g/+GpLyowvU5E+6JsCI+PqGMLjZ2DQyC96KS1qZAr0rruWVQeekVPdCqLVbOPgQnhCE3ayBNqV25gPwhUW3Vhcs2RZT8hwq92kU/wOnP+l3XNGC/xss4s+gL87OqCmhrTd4GMvD2GsCEx2467vp7arwlbpKnhGMaRde3UjmCqgjljCpySrIFBbcdemnoNrZrlwbuK9IMMSBj02GD+yAb1ZOFe2BY0YZI7tIV+e78qFzxysjLlQs+Pe1F3y5zyjIE66Ym7rnC7m9l274QCu3pg5/aJ+koOcHN6c3WwVAsXh2bD/MfjijEQQ1xh+wA8ldEVfTgmFmsncTeR+VN7wRAisGOpWIvyk8P34AsvR3soi7FSK1BFDy9UAL6ZieqHTStPUEj3g51XmU2M3TrSLyXhpqh0K3wrFF0qKcWA7pII/cz4lxX64OIjamzPKJrP2pccSFX1wPErvnqn4gliT1HCVauSecI57JnPiJaLDe7gKRGqbSiUefzWcRAzXWZhKVLQMuEeO5+heJo2njOcTDMTqM2fFPLxPfnfZjzIqIziWKPPQZ0x7/yXh6IJ9Ru21VHrNfMMn0oq0B01xPVUZ19jZGAwUzxorbHMbhIXvGusg9jGYKuxlDXXiM7V7ujE8S+Ix9fnsZ34o9GDewpQZ+48k4z5Y63SbVMEvqF2+lqoxL9VL7itFhjdTwTVIDdKTGblnqG9Olym6Vesx8aS+77LLLLrvs+/R/n5Qh0g==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAggoAAAAAAAA=eF5t1Xk41NsbAHBRUrdIqHCz1ZwsV5TKFo4167Soyc1yRSm6iTYtt5QoMlnHnooQlRTJLXSkplIScf2QaENJpSzfMTPG753x8zzX8/z++jzvO9/lPee873eSW17PTU0Ur/pW/ti9KAjhZ6wjF7LavpDunE76JxPxqub2tS+D9yCswNwe+3SIhsOudzGujHLJlYapXy/nIFys7mfcUTxEGjodA8468Ik6x2zo2u9TqlB/RlqJBMLq3rpN+bf4xD9xKDyib4x0S85X1KxEOFRRiq6ShDBt+rKT3F0Il5MjiQucET6aGrtDYznCBypcfshfQVgpT76nWQHhIf2u1BU7EO62HK05AHVW8Dby1khQxCB6bn61m1hVaHfdD/WHraSnWFNsWRjCt/bKJRb7CUhxxg2W4d8Iv95rwGr3QTjeL/Jr5zWEfQ8hA1nWKCnce8r/oT3Cyke8rpyC9ahw6+fVsBAmu9WalSIRnhaabiFjjLC96sPQ57kIZ0g/8DS8iPATjw5O7m8In05hRaQyuWQOrz+n9e8Rkuatnr4kC2EbflNFk+kICd9g1dRjh/DPesaK+kyEE557BzZGIzz908dqzUMIv2CX+3ZeR3iORIjkzhSELy5r22YbPUb+9E1x3HxHQF55rvyyAeqx39g9y5iNMEP1l0opLYTfS39df2cWwkE1w9/6pyMsY+FTtn+6WNXO5ZsZ1L5RUq21xDjQEfbpA8M4owzhIhsz98ZkhD/PXfQ4Ph3hvmDtA/FVUI/8L+p1PBr+lMq6vQf2dVOvIl8J1juHt/r3+aYIW56ckfdSW0Ca8zvP95bSsGp0XssB2E/VLMZiz6VwLuoqM9vTBWRrRkKcMdQfsS2tvjkc4RV9Uc6S/lzy4vio4PodhCNvPk9QjqDIsXtOBQnVNExzV6LClRHudCqz3bkW4W/12eZPILZzjU899wDOoW2PBucqnyyb9vLL7jyEdfRdHmrKIpxncYNJY/HJ68gomR+Do4Tue6bf+0sbOVk6v6cO6u7Z7O8duoZH8ltiPxd5IEw/ev/90D0OsWWfH+3YyiNjjeepWq1OC+XLOy7H9QrICZNdmhp1NJw0zEgJLUXYdWSJVLSSgIxgnciWfIRvn98lnnsD4ezSsDq1ARpe/dBndx/UUyO7arN0Aaz3+tK6Ww/45FnrxXaxswgzmbWWlXDfzqgdd96DLkwH/coEmAOlxQdztBHOfKpvPyjLITRLB1WfAj5xZGu/3ViM8Eo1v0JDDbhep7lqq9gYeXeyYYqSLcIpDvw26z4aftp8TW/lzxESEdDWWq2D8I/cP3eWaiJcUnFI9zkTYb/q6EpBCMJl/5ESV7kA/Sn5Ylcr1GlPF7vy8yrC827vSPSCuVudKLNqIdS1OLpmk1M1xBYOIcWwbx9l+jpOU8OEXsW9lUtHuM5MvHe/K8ynctCJilEaLgioDRndAP1u5apnU0PDbk89Ys7t55De7fck6qDuLp+FyfJWCG9J//6+WUFAMjjGXnozENay++PVcZiXkkjLZ2cQwmvMltzeDfMQt7A5s1oa4eG2ha8LDGCdQcO5MY4cku44W+Er5M/Ah8MZ+sLpdPkyCxuEHyUX+f0F88MsYDb8Cfe3Jsy9578K4UVnJdWcVWAe8myX5eoizP5Wq9vtyyOSd8s7Ni5EuCq4c95PP9iXTx67LGAOfn0r18GCPoooOVsjNQdhH2lmL/8kfGfaqcVrvtCw7oNGzcEeGk6Lmx3pDXN2QicpXMuOIg5Z5U5cmIfvzn8o9i9B+PoOQUkX9L/nhqayoEEafoO3zAuGvJvv/Tp9OE81Ors/Dc7nZZl1ZS68V096lsN66Jdgn5k/qy1gH9IGm2Vg/ys/sNYG6fLIOxmlT3ZRCGuee7q86R8uWdEtP+UOrO8X9XfHXST4JExBQ+3zFC5JNlNIHwz8SZ5Yd2U79Y+QpE2h/AEel2Te0j1Y706RocfS6dlrhklwhF9n9UEuea3kNTDaQpGF3cv16FwOGYiS6SAaI6Tava9jVQiPbMTBqSbvaPirEzuGL84nVYVBe6c7jxCPqk17Yu4Nk3cX6EX3zTmk3LfdzaWTQxZR9AP9nGHyYfmpV242NHylZHT+loYxUuYY5ZMF3/PAZ9buDm8FpEu1sf24zxgZMIq6+4otIPwAt23FTQIS0BquGAn9eSOMVlOpLyBF/rroEsyXb6zzvgOFCM9ffnnlUl/oC27V4RyYp47I9YG2sK9TNr2wueuA8DbVQp/D0Fdem7Q3M6QQbpFbZWkN3zUJH0ZKg/IwcS0KUPSD8yjVp+0uh74PXBBh5Yz6yaXSRvvl8P8lRXcwewDnkOpsNnbbnkN+sEK9KPju383JYsx5hPBUvagbg/B9GzF/Fh0RD3XVLqy++A8NJ47wTF7dh/MaGOOyof/6AxafNmymYcGa50FfIPY6YofWu0Ads3M1fFdwyeHmWyX5cM6XTg3XbdDlkrH5g9Hmy7hEv8cumX6FR4L6nsoXaXPJx9+stefn8IiBa9GWzlwemWaytspFhUuUYwdpXdk8si6vO6NdiUvUa8d2P/qVS0xruSumLOCSQZOhtiRFLol6jXxV6RR5k8qpnb6eIjL7rW+yHSjSq67rqetMEctSiThd6N9q03o5bXuKxJ+SogytKSJJFZi12VBETHYfowZTRMLLTlzdiiKdKYf2PDOnyALzjg0fLSjCTnxRp2kGzws8NyoN+b+qr99uNKXIWzmte7GrKWIzwuFXmlCkdrX3Jwbk1yUc/dhuTJEpx64VuwnzY7OP0yBWzzNPPAu+ZVRKxBtRJGWb0YX34JvPgghFMHZrjJo7OLRf/9rfhhQxVMjkfwVp6T5rAkB2bJB3EvirPyI64MjDAI4LmOfRWsldRZHILQN7FSA+/UH9ZSPEprF30WfwgedN8dtgxV+GMWwwT84oMAPUGfUsywftXxV/OwPKTvuekwByFhSSEDAu4sLdE2CHHb8mAHylF/MmGDzyqIflDW7/rKLlJ7z+5k367+DBxfuQJ6ie7zbDFZRLCU5hCO+vaPqDDpof6m1ZB5qFyC1xBBmeLJYzqHpi0N4OPMMcCbYHx9ICSq3B7tc+4rbg21iPx5bgRymjFiswq+iqogV41M3/CRYaao9Wg/xQ5hszsI4qsDABL2ey9UzBZKaVsTF4qq/jntDLFVOvGgnfwz7xXai7vK6X0JBs6XChhTkDBkKdnyk4CM32G1MRGRmlJbR0GMsK7VpUsEBo2KzBmUK5GjNnCz1mVSEpdK8SR5SP98iaKrq/cjw/4jgeV4WOe/G3s+JCvcXOT4o1jc6IjLocIfLYIpbI7lGmyL1LI0VuXJ8sIfRB2HheLHU8v806QZSXfRgliiUqT4t0jIma9PwDruP5oBnj7720PXb894hEkQY9TIl/X/ecMx7PW50uUl4iSeTJtakiZfYliNbhanBBpPSZtKn/zuvYJf5fJ36/Lj/+vMGGOJF2TokitZlpIgWHx/OLrTIn/T6Rnyo7fp1zUqzIWKn/uSlDZElK8qR8V2GS6L324amTnifXNX4eCt/PTcrfqWCJNA2ImVTHRH6i7ol8i03ypPOaiCf8LwiEJIQ=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAGgAAAAAAAAA=eF7twTEBAAAAwqD1T20LL6AAAAA+BgyAAAE=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAyAMAAAAAAAA=eF6F1HtM03cQAHDCghOqHe/HKuKYwLYi0hGMICsNiEOpNYyBdBZWagtb5wMhMgWZSR2rOg2ImyxF25huDsGNQEFllE4Lkce0UyuTh5YNxqMWKqAwHk539/2xf5oQ//rk7nt3/3xzF1+tVUzez2dn/GNJ9+zOZxesOyp7BvGX5S0Ku658No/uFb0ENAb8mkcDGycn2pxB61yWiyfYE9zBZ4BlnXtUq8Ck21P9AaBB5L2aCdaOtolCwXVOfyvDwTFtXFck6KjW0zlgmPDtmDhQcJSTswUcOn5DuQ081Lyv9UNwZ6DVwgcZvibax2CVQ3egGJTXSKM+BTX2btw94BHupuRc8PtZ6fYD4JrLvYmFYNv4YKwM/IDVESwHTX5NtBNgtGWorwTMNosrvgXpVzeLFeCAo8pVBea2Z9aqwaDp8pgKME0drr8Esr4ICq0BY8fFX9eDWvrA3QbQGKlw0IHDPx/z14MrfRreugG+Oxrp1QFGjYWM3cJ+dcvFO+CUeQO3E1R4Dhu7wID5YM4DsOa6vKQPTHGRt/SDqU2G3kFwuY/3HyOgSBKqsYDzb8zmWEHmXJbHBMiLKlI8AU/n7bafBsNit22dAX8w7iqYAyUrGCefYf2V67LnoOBKj8AO/vu0coJhD8pm1ddeAY2dygQHsFumaloCbvgq22spGOdj5juCeTmWIifw/PuiszTwcDRHuQzk3z50YjlYaHL9hA6uTHrBeg18Wsq2oINzv33jDPa4q9a6gM/NlVr01OMHUa5g601GDcr8M+51N1BdzDqIRhRWGdD8oM8Z7qDwwlYhuneT6Ry6+vCte+h8cb2DB3hVH8hClwp+3I6WcTUH0bYLTWXoGuPaWnSv42ft6L3M1oeozu/MY/S7+FUv0IyTFctwH4Izpd7om/Sz/mjn5G4mWh1OC0N//0URgcqz2NHorln3jahEGhGP9umaE9DKqVYeOr2Pn4jqL8mT0PJ6YTKa2Dyegnoci0lFHw6n89EtvryPUL92zx2o1KAjeqcmCNDsc9eIZW7+aag4NJeYfOoysX+9lejLXkH2O1cYQ5QVZxBdQgqI+0UlREPxeWJIXTWRu6OR6KxpIVolN4kN++8SRwrvE/1Ke4l5j0zUnPS/iBd/GiBuThskdlcOEe21w8SUuhEi5x0z8U4dJW/jI2JRFeVMP6XOibpT7zEpjxygPCOm9C6lbGykzNFQPqmkTLIbJf77lIpfnaFcv3D/shf8/x7utFG0oMSmTmLzvlifbX4xxYvEL5v/sj5bbfsXy9vOtc3/B8r+GXQ=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAhwMAAAAAAAA=eF6V039MU1cUB3AYsMTFTZhOlJUfdVWHYALbjEQHXyDdYBNYgowmMgqLSIYbGy3KWGsWqnSV2jJgQAsUad9lMvxBoRV1zimZifxBgxuDaYENAt2yMQKWrZpKWPZeH/5j8vLi++eT9+655517c46fH/uU17//m8hO4Ij8+6q87F1ETTpt6fulCL8cpQlKO4R+1V/T2xYPo/n1Pv/gA2V4b70zo3h3OQ722hLGNlTgqjKjwHOvElVzDuV2hxJ1N58NyT7zObZuvhJ3/UYVfikuPTIScxw/jqqSig0n8HJJZPdnT6mx0Pjf7NrSLxA777c56o4Gd3WacntyDeJ/PhYx2K1FZ8a4OO95HQz3q0PKFHrErZNYg2Zq0d9WK6oV1UHVPRQ4fqcOeWHX9H9o67H4nW3UntiAnYeWF1LuNcCTc9ddR32FN7WKJXNOI3LSXUHyp5tQknUqOfBKEzZ5EvslJc1QzAbLPwozQPD2kcrUIQOW2zPPOpVGGAoF5vjYFliXlrPfmmxByHpTZYSuFaHptsLze9sQkLExdG6uDbFrKe1giwmDn7RqotPbMS985ZjL0w51oiv5EnUabkV+BbI6IMg9W7zyoAObhhNvU++YIYw7/AZlMaM7lAqvcpsRnjrutSZZ0NORLzadtMD753N5PcMWFOw97pYEU1gJeYYSZFLQWzq/bK2mUCKIe6H+EoXY0W9vumYo+MmK9pvXEOxLu9i4tIOgKEV5OzqN4OFR/9QLUoLkhPhmj4xgY/7yFrWKwNlnsU/rCajfXdIaA8GUGgMPThPsNqZZjZ0EXYp9RUPfEOiL4Jw+R5AQEyAS9BB4Tx1V2a0ENVNjjp96CSY7dkUb+wg+TAnsjbQRCE2yICWtwXvrxmXaAsuMcYrWZv/4Ay/tiYtZc2vofpP+q5FsoI0XrnOG0X6/bWkigrb0h75MIa1I9PWtLbSp/ju7XqINGJbHMH36z6snKxnF5x92MpouSK4z7tpzzsE48FrPKONBd7iT0TKhm2C8Jp6aZDR/2vQr44j5vk9pwA5f//fOi30uLGb7DN56wGfbSL7PXHuBzxVS6LPiRXZuBnJZF8pZx6pZh9SsXTrWWS1rUgPrntW5q1q1dFXZqo/msozjXcbho3U5R/yT5uOT7398dcgf+84n3z6uerjO+3gevrx8dfHdK9c6136++vjiuXzSOK76/gdq+BEsAQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAWQMAAAAAAAA=eF6l03lM00kUB/Cqa4CALl6BoGRRUUPR3cQCCwp+YQWNAaJ4UA/WpXJuQbMbxBrMioIiUgHxAlE5hIAHindVxBMrsUSKQQOrMwNqcYuuIIIXiv5+v+I/JE2bOP988iYzb15e3ohE/GpB2ytJ5IHtBPNGBWRmtzOkTghWVbQyuFW/7v77AYOH66wz4+8y/Cz5cC33KkPrvrroCWcZQiWOxyvKGUrqUsTeBxmW3rFdVb+T4cntKlX0VobF/knDBycxvNgXFl+8hkHVZ33PP4JBZqOa/lLKUDi2JS83iMHvB88vc/wYTj6IiPzozlArtrlzWswg8m2etPonBs/2hOSpoxnipFvvd1gyHJ+mclR9pshZfvaPlC4K6VLn3JDnFE66czedH1P8F2nb2qulsFc+6Xx4m+LTmqbO85cpNJpilldJERr+riq5lEL+S8UW+X6K0RbMc1kWRUbN+qbAVIrzHiuifltPsWhun857NYXPAq185iqKvLnr7GdJKar/7/YKCKIYWpa1MsSPorZrybYID4r82LSYf1wptnd6Xyx2othV8/pA4xhOn3zLcdYUiui9LptEFCNk9mXWbwl8aheqNC8IWrSBn+pbCbKv1IjETQQLItYqXt4jOC0pcBOrCYK09YN6qglk6qtxYRcISLL1yfhKgiFWy8m0owTz/02PKSkhCEzb3aMpILir/PNEcT6ByylbtUMuQYbumlS8h2DTG6/gGzkEeRVFK+qzCeyYUj87iyBRMbFxeCaByum9xfgdBHonu/Z4JYH22LrdbRkE6ilNz1I5yYnkDd6cg2Iasq04Q6VRah03N9dlzR/rOBvTv1hd4Qx7FFJ4irNXYmF5lLPy1lObUs5EdN0v4tQGXLhZwJkz5sfEQ5xWnrT0IGdsw2Zn3j79vIf8PPokuJbzpm90UPL6V+ck8SbYdfzFm6kJj+N1nOIey+t7SR7Nq/hdHsUrC38szHV3WpbgYa9IwVtJwYJHgv0Eq3QzBBUpvwqW1bgLjmxxE8yMN2gz2eCyYQb1vYZ/c+ODwdoeg779/2lEh8Hm/ljf77N+dQPiNjP3TcXGNPddU7GpcwPzGou/3XtuZt2m8ppb38B3ze2DsbpM1WMsj7H735vHWJ/N7Yup+RjoV1kycaw=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA+QMAAAAAAAA=eF5d1HtMk1cUAPCaARJnFlZbNhCYGmAqqKGMbRHZsWqsBggVN2DUbYJzKFZqAUG2oUswyjCCovhaN1EcogSl1IKID+ThAyiCNXWEcQ8JQkUYQxgPgcm+r9/xn/WfX859nHvvuferSMT/OiFC5FpmqmPQc+j8PcUIwokjhSrLIMLt7j0T118gDEg+aHPqRvC9MIXBiFAQ+p3/0TaEqAvZX1jMCMbtcqlHM8JxjaM+7gFCZE+HylCD4LgsaOaMWwi7w5aWKysQLjo4xJ3XI9RkqVxGixG8nHc1BRcifGKn21eQj1A97Cf79wyC/5wDXVF5CKai/tzyHG7eWCU4ZyFIS1f1pu5H0B5rz27fi/BLWdsyeRpConduY1ESwsvU6BhxAsI6/8zB9G0IncHaPX2x3D6C1OPRXyGYe1o0TZEIe/WTHRDOtbtFrDKGIECmRuerQGiKX9H/uxxhzqkS2fwVCGe9pxN/+xihzGub0d0PIckzcPZZH+48yRO6Bd4IlzcqrhbNQ8gYulzrNxfhpl+t4bYUYUOyx59KJwRlx3joi1kIVZJQu2x7hIiyBslKEYJqwWyz/SSD2h2X2rtHGOR0eL22DjL4cmusSNrPIGDxjcAUKwOJW5irtIvBFFp/mmAM2uIxYGk7119tH1n+lEGIQ8nAiScMVu+qM7S2Mki583Bi6yMGF03XLEoTg30bHbccbmSgn0QfaQODqle6ws4HDFI3tZRY7zM4Nlr/z3xO7d134w/eY7BZMpXhxNmU8/bu8noGpg1V65M4w8XqITnnGsudIA/OmxXP79txKq7Iuoa4d3OoUp3ew8nqpu0Y59XRorA/OJ1Ov7X/Cae7VevwmDPQLW17C+f0IlXMI87CzIM3mjkXe2rCeavZSjFv85hnH/8eC/R5Zl716sP1vPlP193iPZeVep23V1lq5I054nqNN3ZNgIF3ia/R9p7N7yfYfP2ZwuZOR5nN3FJvm85H59lM3uFu8+SVuTaXM+F76PtG0GWJ4Ol36DuZIfh4xMXm8JigmEwYF+waFsz7W1A+KBg1KjizW9BAceuAoPqV4FqaF0/zDrwUTLcKFlNsoXGJFHf0CyY9F8zuFcwhtdSuovELKf/3ZAz5I/kh+TWN30Tzn1G+UIp11K+g/QRQHTzIn6n9EuVbT5aQKdT/LY33pXqeId8jK6h/LdUrj+p1iur9K+WJo7zLaV+L/hL8geqXT+32NO4uqaX5A5RvC60no/UzyJ1kIqkl08hosoH0oXvW0//tLHo/NRQ/o7iZ1jtO62ve3APtP+R/9VdRbKV730znEtO8RvIjOtfnVK9PKa6k/sg390wWk3E0Lp/2paRzPJwQ/A9iFpm6AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAAJQEAAAAAAAA=eF6V1C9PQlEYx3GCgUAgGAwGNw0E5gwGg3NGX4SBcIOBQDDwAgwGAsHACzCwaSAQiQYDgeDmdTMaCATdCASD4X6f4Hc7u5f02e8859/uOffUWvnx4dPPRe3so/CIfJD/z9GvjacxTrmtcZ6vifUSd2TVekPrNBLjN++FK/xW/sIc53KBLziTU5zgWLr9AQd4hz3slnijXDbO/bftF+2xzm1i3VTdOebLsKOcqd+2+62q9x/zdWTqe/cxzi/Oc6iccoSP+IyThFGP+xb3Me7nZ8K430tcY+r/cbvd13/u7HfA74nflXO8VLZXeI0ZdrGn7PY+3uNQDlSPPMIxTio6xRm+4lwu8E3muMQN/soa7/mavFK9Tr2Ju8p2D1vYxpPCP/ECtGs=AQAAAAAAAAAAgAAAAAAAAEgGAAAAAAAA7QUAAAAAAAA=eF4Nk2k80FkUhu1lnahQJCpGxdjCROmNZIlUaKFoLCkZNCQqqSapRtFmZEZKIgwtfmUpMSpkLWlICkWRRKp7bkjzv9/vPc95n/eKiAgnkKPGXLzmdTpDRXj0zuIAjti+kXe/+XPYeUVu1vPlkH7y5WnPZo5au7AVaV4c8XeGytdv5HAyCjZT8uCQy+zPrV3H0TB9m1asO0diwpskK1cOVwk/Ob6KQzmq68D1lRxtA14U6MSR5tMeNMeRw69lw6sXdhxznVrW/WnL8aHcrX6VDUeBaZO1zFKOqByXontWHFYz6/WjF3GIn3G8ZGbBUT2xWnXInONEtO2JbFNhznCFuK8Jx7QARKkbcXQ+L/3w9CeOrFWWfgl6HCEPip7Zz+MwtzBzEdPlELlacP+2NkfdbCOLnbM5kpPzr/6kJfDI62n3anAYHsxOuajOMc50JnlOF/banhE7RZXjfKfWaP1UjmD3tNC4yQJXjfobKHJMWpLiOaLA0VWg8rhATuDXPbv8VxmOuFSlOzoTOTyVEo06JYV34+SzzolzSIwdU3cV5WgNnXhK7jshvyd2QuUYIc5DPDpmhODduH/4Z06wWDYeMPyFoFK850XuJ8In/a9r/D8SHqVHVGsMEv5R+by49T3haPyOgpPvCFtEB3VX9BKsI4LOS7whzOzvm3z3NWHMO+Dori5Ca3P3uGEH4aaDT/i7dsKpux19l9oIwSabvDe1ElZcaWtW/o/w44z1jo+eECROPS07+pjQJeVqatNIKN3zKGesjpAy5Kx5q4awy7/2bEg1wbXNXnZuJcHQpXL/q3sEufs27K9/CX0//7vdvYxwP8+qS6GUcGHWnbXVJYS9fy6sO1BEWCdXuNTyFmHBgQWFnwsIiuy6Xv51wmCgQXrAVUJ9xz8qWnmEHLd5x9tyCEceZomduULws9KOdM4kLC1IH5DKIMzQ1fQtv0gY+Tu1NSqN0KKottIklVBwOPne+xRC4ujUhZnJhKDQ0/neSQSHnklzpp0haHucONd0kiDWKPtDfALhpc3RQ7bHCbeLpEbGjxGS9A+FFB0hhKaL9uw4TLBVifGYf4igHD/W2H2A0COy2/Z8jDBnJ5WsiyYcfBduqLiHsNJ7+HJNJGF6c4jaoQhCt/1A4uJwwXNpoBTtIEQZ9+65FkKwyfL/uO1XgoL66y2ztwt+Eje3t28VcpJ8uTppCyFgt2eVix9Bf7B1kbSP4N937Y0Kb0Jx65Mf924ixDivTjX1FLgqGpQG1xOkzZ2OXFlLqMt9+O0XN8JxTbswtTUE57P3e5tdCPIy1l4nnIVc95U9sVtBiP+0yEHUgeC4teRuyXKC1AvzBeHLCGWrb2brWwuclcYz3y4hmFheO3NhMWHgqr6MhyUhc05uzOSFhM3ndL/UmRFUFTIDDy8QenlwducSY8ETXXD/akBAkEbtDX0Cdf6FoPnC/u7TbmnPFXpakzS/Q4egvmTKxeQ5hKaCk8prZgn3dH+Il9UkLEqNF30wgzCkKLNrnxrh0uG49+bThL6MSvh8VCbIhh5syZkicHZ/d/JTEvxsiK6YMYmg2TBi3iJPaLSOzEuUFXpW+GWWozRhrl5YsvgEId8LQ/KlEoTYqcG/R4gRjI/1cwMRwfv41uC+bwxxYW9ep48yGPb6btj4leHZxq6GqcTw+2OvZY2fGfSXtxcfGWb4r2SDgfUQQ7RBS8boAMOsDLfpN/sZqlSbEoL7GIKOu0jqvmVQFKvf3dXNcCvCcSjlFYNnf5W/WyfDd2/b5/IvGdKbK1ZVPWewcUDl/mcM3aWllhYtDLHGltc/NTPoZBXp5DUxVKqZ/b3lEUNAYoGiZgODlKRR3LNahktR+WOnHjJYfZj/m1OVwOuT/VbyAUNYi86msgoGBaeMpshyhtxyLXvjuwz2pmml/bcZXmWrm1wuZtirkXLFq5BhymkVDdWbDHkTzp5+fINh+V4l6T+uMbwcSti3LJ8J/1z+87dcBvm2Y9sKsxkurpzYEZrFYHYv1m3eZYb/AbiPR54=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAZAIAAAAAAAA=eF7tzdtLk3EAxvGQjDRKizfp4PkwjXVUcFnW601hWUkoSaS56i2xmxTxUCCihlst87RcR1u0pmk2NwymTjedlGaKGoG68JBime1XooYyrZ7fuz+hW68+fJ+bx8EvLUurJ6z/uDrfp4GwnwXx4iJYL7a52GjnWsu4RsJ65jywdkF1QJLnvibCGjwMgXK44PjXeR6Kf8s7YwyEZRbGuDq488/xYedmwrpnBIsuwX6JLaUBBkrXFq5vIayvuvFOItwrTEvVQGFwafgy1J3I/BlpJOyG7lxZKVxyct00BKWWnJteJsI+rtg9cRH26bKCVbA1qjFlHD5qPqX0bsXveHHbOehoGRqQw9qEgokuuof+mFzVRljlMDcWApv8Iz9xMOuY1VwGx8JrXpvgGt/B8mlo1PRkM2bCxrdPcgehmy7vpBhWKzaG5cOgKfcdKqhiErzM8Ev0oMco7JC4Bdrgt+y4w0w7YUuzSZIQeo8oX0bAnsjN62Ih9/FI+WUYe20qLh0elXQk5sPzQ1ZTEYzury55CCf1V6afw5bqsO81sGDxzCsdTN4ec1oPLUExiwYouCVqN8GMkr5eM7yuDwl/C5/sD/DpgPEvTIpOWBVx6M17mDcxKuuClUpG+AEOZMqfUv0uaGepom0Ve7rhaoXxLFXzzpZBXRA5yKjejoX3qbeJ4hm1oupuJTU9ILWG2r1rppbKhEo11LllSR01ZE6gpV69J+WdGzHzGnO+8urql3hVAicd1cK58tYXM7zcjBvvfNQW3gMuW3llN+wyWrstvXblo3YTp+wm/7JLZldcccX/9R8X4O/uAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA7QAAAAAAAAA=eF6d1CEPgkAYxnGi0Uh0s5AckeT8GEYj0UgkEvkIRDcLkUgk2oRGJGozGnje4H+7HZh+e557EZ13F0T9YX9/H4MdjGAsExhjjs+HcrPQ4M/1LXQ9Pz1nX9D6UT5kh2w2skWuYeXpC1nKTKby6sns186vnTMzrHPOtc7fZ14g+3+/79Ls+ryz5z1mLvl/lo6e2fbDTXK/UJuz/dfJXo6OPEE7TzynPEdct8x7w3rXvcL7gvfKCbK3fJYXmcordPW5LB0W0PpK1ittZCsfskM2e+RRvmQwzH6QzQnzm+HXUG497mQsI5nMfgGdUa27AQAAAAAAAAAAgAAAAAAAANgSAAAAAAAAkAQAAAAAAAA=eF591n1MVXUcx3GjWEANnWKbOZmLaIBJaMRyhdUGSrCk66Cn6x+wgTMzlEayoJwubmoTFC1M0iKvChRXRYwHA6V7CcQgkJAHH9CLw26iM61buQr7fe6fvbfOn6+xe875ft+/MyZN+r/r0jP/lYafHYvdBVnwXp/nwa+MFI1bGtfBJ3x/XwTPytplrs3wHN/vlMAvz2kMtY2XwjM9+v2P4F/ts6+JD9oJ92bovrvgybO2Or0Ru+HTzup5PoPXpMQHDdor4CVRes4v4NWBj5vLDu/0Pf8+uKcjYtlW5354QKXeqxIe+YG5raUKnpSt162Gv54QcnCx+0v4pjDNoQZe5Wded40D/r5b8zkID2+9Y65D7GSJ5nYY/nlLgXmgWnjco5onvavcawZ0hD345lwH/yPfjG2QXnxF8z8KfzjdvFbo1/BjLu2Fnjp/ubnq4WMV2lcDvHCy27wwfeo67bGR879mNYuhx1u13yZ4T+eAufEx+KontXe6X6V5Xds38E+mq4dmeHRRl7nobbcCTSct8NcyzZhDjsNv9Kgfum2hue2yE/CZDnVFHyrW3FrhYYnqjZ7zt+ZJb6pTh9/C73lDc6anPqQ+6eXDmr+TPWxTt/SYJO2FXnhnvunZBW+v177oU3LUOd0arj22wQ+cV//0mzu0X/rTKToX38E3+r4P9L4mvS59Vq56aIeviNA5otddVCf0iTKdrw540hL1Q9/hr3NHH2lWV/S5eerqJDxvjrqiu0bVFT2oXF11wtMt6opuD1BX9PET6uoUfEG+uqKvj1ZX9J4xdfU9/ME96oqenaau6IfvU1dd8L+c6oq+qEBd0bfNU1fd8HMefU/oj1SoK3ruy+rqB3hzsLqi39uuruhL31NXPfA9seqKHnPtklkw/bZdXdGt0ZpbL3z4Q/VGf+cnzZM+I0Ed0psqNGb6K/+oT/rvr2r+p+Fl9eqWHjdN550+sFo909d2aV/0ByLVOb3epj32wdNH1T/du1D7pX/8qc4F/Yk/tXf6mTSdF/rbterhR/j0YP2/QT+6Up3Q0zp0vui3wvRdom9fr3NHj72gruj9C9RVP/ytMnVFn/qruqLXpqoruqVGXdFvBpj1euml2erqDHyeU13RT4eqK3puobqiTxlSV/RDseqK/mKpuhqA/3JdXdFLktUVPaZSXdF779a/b/TVGeqKHtyirgbhjhnqiv7CWnVFv96nrujFj6kr+twtui2926Ou6G8mqqsh+P171RW9ZkJd0ZOt6op+tUFd0beEqCt6VK66Goaf6lZX9JVR6ooeuFFd0asvqyv688+qK/r4bnV1Fr75trqiR76kruidR9QVfcVkdUUPWKWu6FUn1dU5eFK4uqJ7Nqgr+qYRdUWPeEpd0dt3qit69m/qiu5vUVfn4fsd6oqeGGRet4A+tlxd0W0udUUPn62u6G3vqqsL8KxhdUX3i1NX9L3b1RU94Ya6oo+mqCt6UZW6GoGH+ZvbxtNdmeqKnnlcXdHvmqmu6PZ8dUV/rl9dXYS7Y9QVfUOxuqLPvqqu6K2L1BU9w/eZpP8LT5QzDQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAeQEAAAAAAAA=eF5dxcciEAAAAFBKQ0u0l5BoaGhPMiuitKi0NZREe6uUJu1op6G0pL33+iwHnd67vICAZi24JQdxK27NbbgtB3M7bs8duCN34hDuzKEcxl24K3fj7tyDe3Iv7s19uC/343DuzxEcyVE8gKN5IMdwLA/iwTyEh3IcD+PhPIJHcjyP4tE8hsfyOB7PE3giT+LJPIWncgIn8jRO4mRO4VRO43SezjN4JmdwJs/iLM7m2TyHc3guz+P5vIAXci7n8SJezEs4n5fyMl7OK3glr+LVXMBreC2v4/VcyBt4IxfxJi7mzVzCpbyFt/I23s47eCfv4t28h/fyPt7PB7iMD/IhPszlfISPcgUf4+N8gk/yKT7NlVzFZ/gsn+PzfIEv8iW+zNVcw1f4Kl/j63yDb/Itvs21fIfv8j2+z3X8gB9yPT/ix/yEn/IzbuDn3Mgv+CW/4tf8ht/yO37PH/gjf+LP/IW/8jf+zj/4J//i3/yH//I/Dvx/E2V5nQg=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXwEAAAAAAAA=eF4txVFEHAAAANBKkpzkJEmSJMlJkiRJkiRJkiQnSXKSJEmSJEmSJEmSZGYmmUmSJEmSJEkyMzOTzCRJkmT20Xs/LybqXazjHO8EB5zoJAed7BSnOs3pznCms5ztHOc6zyHnu8CFLnKxS1zqMpe7wpWucrVrXOs617vBjW5ys1vc6rDb3O4Od7rLEXe7x73uc78HPOghD3vEox7zuCc86SlPe8aznvO8F7zoJS97xate8wd/9Cd/9ro3/MVfvektb3vHu97zvg986CMf+8SnPvO5L3zpK1/7m7/7h3/6l3/7xrf+47++870f/OgnP/vFr37zP0dFvxfjWMc53gkOONFJDjrZKU51mtOd4UxnOds5znWeQ853gQtd5GKXuNRlLneFK13late41nWud4Mb3eRmt7jVYbe53R3udJcj7naPe93nfg940EMe9ohHPeZxT3jSU572jGc95/9sSVRSAQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF5jZh4eAADsVAJZ
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption.prj
index bc31df6f6edc1cb5874c875304cfbcd233e63067..82988e7ddba4a5e40c385663ff8859ab74d8c516 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption.prj
@@ -443,6 +443,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>RadionuclideSorption_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>PSINA_12_07_110615_DAV_s_hzdr.dat</database>
         <solution>
             <temperature>14</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_0_t_0.000000.vtu
index 0c42da12115bdcb7ce790ed6abf6f7b32f94ae89..9e3a4b9b822350e7b6b15d5314e5e8e020bd2a2a 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_0_t_0.000000.vtu
@@ -3,37 +3,40 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="150" format="appended" RangeMin="9.9999869054"         RangeMax="9.9999869054"         offset="0"                   />
-      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="80"                  />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="148"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="10.866820676"         RangeMax="11.271032201"         offset="232"                 />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="10"                   RangeMax="10"                   offset="80"                  />
+      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="156"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="224"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="10.845241766"         RangeMax="11.271031912"         offset="308"                 />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="416"                 />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="484"                 />
     </FieldData>
     <Piece NumberOfPoints="76"                   NumberOfCells="75"                  >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.0010130947806"      RangeMax="0.0010130947806"      offset="340"                 />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.025033100057"       RangeMax="0.025033100057"       offset="416"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.060000013181"       RangeMax="0.060000013181"       offset="492"                 />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.8564202151e-08"     RangeMax="8.8564202151e-08"     offset="568"                 />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.0010000002197"      RangeMax="0.0010000002197"      offset="644"                 />
-        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="0"                    RangeMax="0"                    offset="720"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="784"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="0"                    offset="848"                 />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.0010130947806"      RangeMax="0.0010130947806"      offset="552"                 />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.025033100057"       RangeMax="0.025033100057"       offset="628"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.060000013181"       RangeMax="0.060000013181"       offset="704"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.8564202151e-08"     RangeMax="8.8564202151e-08"     offset="780"                 />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.0010000002197"      RangeMax="0.0010000002197"      offset="856"                 />
+        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="0"                    RangeMax="0"                    offset="932"                 />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="996"                 />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1060"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9999869054"         RangeMax="9.9999869054"         offset="912"                 />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="988"                 />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1052"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9999869054"         RangeMax="9.9999869054"         offset="1124"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1200"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1264"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="1116"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="1328"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="1776"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="2020"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="2268"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="1988"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="2232"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="2480"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAGwAAAAAAAAA=eF4rmDXP499/ZYeCUXqUHqVH6UFOAwBEQIb/AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9K1NDbVTTc0MzE2MjZINTMBADAsBIw=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAALwAAAAAAAAA=eF77fq3g9fndqg5H+X/P5T+q6tD7o3f3kS41h798ketG6VF6lB6lBxMNACWuOA4=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF67eumKjdXMAPuro/QoTQMaAJr9N3w=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF6789zhhduimfZ3RulRmgY0AN6qYtQ=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF57MGFvTNCOdfYPRulRmgY0AHn1VhA=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF67VnXuteixcrtro/QoTQMaAH00XXw=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFgAAAAAAAAA=eF5j4A/h90sKsGcYpUdpGtAAcISAjQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAADwAAAAAAAAA=eF5jYBgFo4B2AAACYAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAADwAAAAAAAAA=eF5jYBgFo4B2AAACYAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAADwAAAAAAAAA=eF5jYBgFo4B2AAACYAABAQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAFwAAAAAAAAA=eF4rmDXP499/ZYeCUXqUpiINAASrQ4A=AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAADwAAAAAAAAA=eF5jYBgFo4D6AAACWAABAQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
+   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAGwAAAAAAAAA=eF4rmDXP499/ZYeCUXqUHqVH6UFOAwBEQIb/AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAGAAAAAAAAAA=eF5jYAABFQeGUXqUHqVH6UFOAwDGODqZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAALwAAAAAAAAA=eF7TmBfZfniDqoPhQ1sroaOqDpP3rFp2pEvNwaXswcZRepQepUfpwUQDAJzkViI=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF67eumKjdXMAPuro/QoTQMaAJr9N3w=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF6789zhhduimfZ3RulRmgY0AN6qYtQ=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF57MGFvTNCOdfYPRulRmgY0AHn1VhA=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFwAAAAAAAAA=eF67VnXuteixcrtro/QoTQMaAH00XXw=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAFgAAAAAAAAA=eF5j4A/h90sKsGcYpUdpGtAAcISAjQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAADwAAAAAAAAA=eF5jYBgFo4B2AAACYAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAADwAAAAAAAAA=eF5jYBgFo4B2AAACYAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAADwAAAAAAAAA=eF5jYBgFo4B2AAACYAABAQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAFwAAAAAAAAA=eF4rmDXP499/ZYeCUXqUpiINAASrQ4A=AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAADwAAAAAAAAA=eF5jYBgFo4D6AAACWAABAQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_115_t_115000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_115_t_115000.000000.vtu
index 529c271226501ed2a20327d65c93dcf9d64c6597..a54ae59675b527d1976f3e6e07f612b318b890de 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_115_t_115000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_115_t_115000.000000.vtu
@@ -3,37 +3,40 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="150" format="appended" RangeMin="9.9986456978"         RangeMax="9.9999738135"         offset="0"                   />
-      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019721673582"     RangeMax="0.00019727890035"     offset="836"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2172"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-3.3995818636"        RangeMax="11.325342851"         offset="2256"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="9.9986573477"         RangeMax="9.9999738135"         offset="836"                 />
+      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019721702777"     RangeMax="0.00019727890548"     offset="1668"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="3004"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-3.3997748423"        RangeMax="11.352302006"         offset="3088"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4704"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4772"                />
     </FieldData>
     <Piece NumberOfPoints="76"                   NumberOfCells="75"                  >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.0010131142263"      RangeMax="0.0010133738838"      offset="3876"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.025033119512"       RangeMax="0.025033378217"       offset="4564"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.060000013197"       RangeMax="0.060000013401"       offset="5184"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.856576195e-08"      RangeMax="8.8586401135e-08"     offset="5636"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.0010000002199"      RangeMax="0.0010000002233"      offset="6312"                />
-        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="-6.0860285868e-14"    RangeMax="1.0684358344e-09"     offset="6672"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="7544"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="7752"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.001"                RangeMax="0.0010168363013"      offset="4840"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.02502"              RangeMax="0.025036843067"       offset="5540"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.06"                 RangeMax="0.060000016898"       offset="6188"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.5518660679e-08"     RangeMax="1e-07"                offset="6664"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.001"                RangeMax="0.0010000002816"      offset="7372"                />
+        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="0"                    RangeMax="1.0684425698e-09"     offset="7808"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="8680"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="8888"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9988736955"         RangeMax="9.9999738135"         offset="8516"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9008"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="9072"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9988736955"         RangeMax="9.9999738135"         offset="9652"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10144"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="10208"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="9256"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="10392"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9916"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10160"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10408"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11052"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11296"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11544"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAUgIAAAAAAAA=eF690t1LE1AYBvCgaCmBmYYRZYG7iFYYMz/CNjc1qy033cpiLYNYLpKiwLJtmki1mYorCTPS2nTmbFQXaaiZNoOKsi0bREaOzAgSA0dq4oo6532u+ge6+vE8F+fjPSf/W0Be/SdBJt63vlzFPOJviH/ObNH2DdxhWvbUd40zu+vKi98xm9pnl4SYBt3BkQnmiDFp609ml0aqm2a+iHfHzTMDyYKnc0zl/bHiMDOyZ7WP96cqjkf8YuqnDj3hfU1/oYZns6Z2Mzf0MKGEKxRbDNx00bPzXHmetYyrsC6s4S6Kctu4oysL67i6l/5ari9+0s71G5JI/ca2y9wCsZpc+yBMVhoDZLBNeIUrOx1NppjSyLG4RFLekUk2eSXkG+VOssq8ndzWqiSd33eRs5EqctXQbnL6g5qMDqIvSskn75XnkXdzNaSwG31DjJaUONHbriHrtVDthZO3YY8LVvrgDwPsvQ7TXmOd+U3IKgHyiBUeW4F9dS5YsADn8tyEZi/O3XgO93CU5pKPFOjnEnHPzzNQ+1ZBtjZhLsvtmMthFfphGebXF4YHFu8gYzvh+Bjm2nwhh0wezib7i9BbX2WRHXr0zi94n/qj6C9GI5+thr79cuwzCE29MrIlFvmSCLnTDBvbM8gNU1Aqg80WaJmQklFrkLuvIn8dhAMaaCuDonVwRgp/h/CPwgLkG0PISUF4ywNTH8MIO3Q4oKsCnqyCS0/A92eguxCWGOHHvTBTB5flwiw1LM2BowoYzIDZ2dCUDj0S+GkLjEn9N/8v/wKqTHjEAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAyAMAAAAAAAA=eF4d1H1Q03UAx3Ew1NhGqGAZ1RoKmzuilIedsGsbD3PQ4cKNJ3lyybDSgQ8IOLRJYo4mKSMgE0NugHIBnjw4AfGkK0QYDeIOHGyBWWqR2BDmuHC7Pt/+et339/t9f3ff3/f9/Y0NT+eZpth83Wj7ZKWZzX9m21p6EOPCjGuiGmLR3m27IFuedXUPfKrMvSOF84x165LgBpejtp0w2CvSLIET+1O18VBffymLXGeGRdwVQ6tx+f6HUOaoFsXBdzzGf9kBqc87xmOgVtw3/wGU3pjgRcOlZxyKCI7ctCTwYMfinr8iYOT101YOvE/1lnNh9OpH/wbCFdr6lGAopE0qNsG0GZ2eDXssooTXYJchrpgOH6cF3XOHlHS+YS28xQkOWp5k8wdubRh8CeNeztSNvzF2S1bcXoS++a2DZlha1rb6IaQ6KGYD5DxaQR2HS6kxWb1QL7gk6Ie7hBNTrXCBpqHrYUk/r7MOPlH/8FYTpMjuSqvgy0P0lhoyf+vCK2Uwg0/x18IkVqTfF/An1wv3SuELx4OeYjI/wmg/CW1PtL+p4CrfCt0JeFlw6BxRLsmzkOs0hstl8lzobu7XZN6hohybGtY4N9adgmnbL4adg14eXIMGdjkbA85D2WLgSAX8PddHqYMKqU/mRXhSE24k6zG/Pe9/BXK9E0zd8NjPdhSD+2782DtwjjbteZu8bzpqcgyGh39bTb6TV6Uwdga61e5jmGCdH1NOvm/VcPfhP+Co11XncxgfkJ5uhf5LJrsr9sHPekRP9qVrKmMbDeOcuED5Kpgnc21fT7rLYUjWwII172aSfb1y87P812FIfyOPCfcLl4d8IUsxk0T6aDo+mEh6CGpWd5JOaipC6VtIJ/9szw6Dlq/mtpCunr5wKklvrQ0d35G+lks+XRkF58SGAgF8yGvzIV2K2fPDpNNjFQoj6fb99vN60vFuozyE9P5rE/X/zmMcEhk5B9KPWRWkf+qrlOwE2MAKaSbnxWJ/LzEZPu6IakyEf+anCFJh3MhCeQrks66HZpB1er+pSoNvUNeKZLBKXazKhF9KfE5kwZUejNqPYACjZHYv7Pbsm5VDeYGzeh+sG7Qd+ARaswfKciFzLCRcAdu4neOH4WhOsoSc+2ahWVkIh6JP9x2BO3UtquNw/QVTmRLSp8tnP4exph29KmhfYPapoWe8I+EU3MxtcDkLRYzhZA0sOiNqrIQ2d8GP5fCAuKea/FcCdMYz30D3woPlOjg2cFRTCyOipcYm+OBaUXwjFG9Sbm6BZZr++u/hf7MlKic=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9K1NDbVTTc0MzE2MjZINTMBADAsBIw=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAnQQAAAAAAAA=eF4Nkns01GkYx2dGZERnZd1zSvk94wjpSlbNo8LsdlmUS4ZmxiKVy5KdaWS10YkSg+gi2pOIpcGWZXXS++vC0nZhyipOJ4ltEVu0uca+f71/vO95v5/n83xLtSpab3cxaFPdOxmwegHrMDNsCZaAnaeltjoqBmWpcSfmFXwm/CMkSh3DYYNcxI4TwYDhlTpr+qRTRNp2c5uFGHCxoOC1117A0LK25EIHwLxe9Y0i1xnyvljREZQM6DFUwi7NABzrzfI/cxXwmiInxL4Q8L7A1Ee0EDCh75y6NhpQOS36quwMoO11F1xzErBBeDHNZoDBohLV9sizgCKT+SwvjfJ5BAzOtb4lh91/Kn/0H4N2to8HNqcAyppLVnTReT50e+XxYwEDa9KHcv0AK9qbDXwiX5B/rCxUTiJAK+2nQw2RgBrPCxxdYoMXzrtdev6CwVt2YT3jWYPCOl2jtC87GYwZuWohojzaotqCg3qATS2Njte8AF+/uPjLsm2AzDJV2IoEwEa9RHVSfDdhNVLvtnmAJgpDT9NvAPe76WsyjIlQoHpZlE09lWpuxC08DJgIvPNHbZpJh+hAx98qwN3jmSZuOwGD67o6nVdRXv6dQmNnwOJP3IFByut5eXbt5wLAYS2jHU4M4GyT5ubXlMvG68Ob7RHU582WAE4q4OlbQVbWcpqTsIAkLgKc+Dem5tvSatK+vsY/3R0wPbra20tB5w73aBnNAzxgvi+CT/058JPtH+yi/0YaGEbFA3qrve7mbwc02Dkp5AsBzxpvPSL/2Ens3I+ZRu0A/K4pXPBHFKCDTDB6Twn4PlMVKvnI4OUy2y9Y2oNFEbJV75MAHzqudPXeAJiUXPUylub+5avjoXUMULL86Peb6bmy6dOeoxaAU0uUoydiAJfwOcqDdL7b40Wm+2wBfZ8UFAozAauUUVqVNC9jvX3Dni2AFzeVVhlQjlCz+GCHXMAcq4OyIdqT7mjfNm5vD1kjS2kzMwFMbXdSDtA963fXy8XUp7U0+cfwHwD3FPqVZ9H7oAKFXCwA7DBrH66h77R1VDk2WwHVPfczq2nP63tzn8iyAYWC8nzxviHyZgJ9jocCnqp1Gkugfet/8M5N/xWDjXlGkj8dAVUjM67raB/O5yXdCy1jcNTZ8k7YUkBxkXLQTAJ4uUFXs5p68X9XcUuP9njIXrKufYRBj/5j89V5Y6T4vuJZYuo4mVYcmhP+zuDTuiuqu9SPeVd/jMiT7t+heK72yiTJlgQhN2OShDQKJCk+k0SqrK7dtX6CrD0ZaN5jByjNyTW4GzJNLuW614VnTpGfS57ZP3KZImsfhjknHZ8mvMrS1kfiaVK61UomtJwhpyfLAx/GzhKuVjGWpXFYzZYHxH/xHBldF2++LITDurHpsRW6HDbhUCX3t2kO68cpyT7VNUNidXePbVoyS4y25Cec28BlOUT+3FvOYVs3u45MTXDYtx/ch5fLuWyY9XXrluZZktzvomecz2VHN55j6+O5bK/y+c60FB6bcZ2JZRK57AJtYmW4mMeefPOr49U+Lrvx8UjcJuSxOq8ifPfv5bH/A30jFdY=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA4QEAAAAAAAA=eF4d0VtIkwEUB3C7uCSlDfKSF8Sw+eD82GJIe0iHi3kptDVx0zbXdJPEJ5sQYRnYgxKKG+KDCubnBcTAFsZEdM0UIZtpEYoP0znmWE7XBiWCidPz9+nHgcPhnPO/cOVS+sM+hVQ+lBt9q18hnZpT2hhSkJa7riajU51/9aQ9XLRXS94VPK80kGyXqgkmtWy3wN8p/jbYPc7tht/f9bEwXst8gpYRmRNWLiT4YfizlWPEnIktAWwYTq6A2SdDrTBKbPoIL3o1HujbO+LWkYW6QB48PJ6ph44PqWY4Xx60wvQ1xgkPksRb8FWUZRfK7twMwhtWznlt9A5swmNr43l/bEn+JEyZ/NYD17gBE9TzTKVwsDmDDz0Z/f+xz3u/bhUWRxwsNC1sPIP333YVwDR1BxcqIxIX7h3UfBmBf0RX62GvbSoLKm8zbvzVcvimE6qWzEJYuLKzWEOGRn+UQLNcNYscPEJpItTbeeonZCSU0KwjfdXGl9Wk4d+OSkvO8rUxGjLG29RRRT5++tWFPH/OHR1UkNeqHL/KSXbT1/iIZF63LpeR0/aw+wH5IjE0VkzGiRYz5aTbWKcoIJfngzl5ZNlldkZCtl/fPxWTtQEbT0i67nGyssnR2CUPnzwDDRkPtw==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAArwEAAAAAAAA=eF4d0mkow3EYB/DkLkor3nhheCMtNWKOGhnlCJPGHE0tNRmh/phjbnNfU0oNm5WiiGJMmReWWryQq4kkxxxDeCFqYd/n1ad+Pc/vOX6/sgdlTNrcVKJ6T68VOeVHuwfnOz2U8nbFTp+FAaJCpyyeioGiPnEzzHiyt0DFRqUSSvLMpPkzrBW6ChZJvU9OG0w+DWyHjIbVAY3rUZ3QZ1TZBT/S7d1QllSvgpo2/z7oVWHqhz/TZYNQ5e0YgrFLDSPwRLc/CnXM2xiUGs7G4cBYqxrO+96QivM/MstsJdMuqklbroXi3RbslG+wXNJ9aqGe7o+3pg7TXIUWqt/sHzkAS+Sd1J9qbYv6fby1Uv8rjVaa63dmleZtCiqiPVx7mGlvvbwrBYzQTdRRncyDWopLkVfBF4GwnOJ786VQohUVw6MEdh485vakU15cDh++clK5UM4ND4EhGpMfFF/tOPB+ksmne1jj+7UPY5jZZehu0w7D9glDOZ2PaxOhiRXKgnffntcFqMMEL0C2I7MKfgvqOdDEWbXhn3hXl2rghtGYDYdWUlzgpux9G//pH/XuJOg=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAMgEAAAAAAAA=eF590U0ogwEYB3BNlgMXvWVcXKS9r0JOcrBQRitmJyTUtNPkQG8uko/eKF+N3uzDzA47acnpzcFhOWirReLk8z0svSlfSflK/v/t4OL063nq+T89PSU7N/0uLW7La7QN/BpJOeCrugzXHkNQMEdgKk5vz+nXBVXuaFinToNa7qn2RPve6MsH9RZsw+tiWmahrSL9tFK5npY20NVmKrXRpIMGO/832kWf7X/nc3m5/FgtdVdSazltKqS92TvkDN0/oVWJbD9AMzK96qDDAo2dbsGzOWqSaGIvDC9FGlI2OXfIP4zrQeg5DsAa1Q+7pQ04M6VC7/w6fHD5oHa0AgVjEfp3F6BRpED79zTr2Uk4ujQB3yvGYH7dCPQdeHhfehBWD/XAZNTJPXo7c8QW+APmXypRAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA2gEAAAAAAAA=eF4d0U9IkwEYBvAdxMOwS0uSkLGkS0qibYcabJUzdTpxn7QKNDOYHpqx+Sft04YK06HiJ0P95tzCQSsR+sfC2aVIzZnIXIvPcBo4HEKlIGpksQ6+z06/2/vwPO8UY6vOD7apF/azFNrFNnW7Xdg0kCdXFcpBMrBULneRsZ3KoJuseR2u9JD1RVVmGOfONUOmw2eBM3beBAOnOCNcO8tWwdTAeT3s8fQWwB/swEWY/Usvg41sRhoUi679Qc5ESLsJpXXBRXjzSt0b+C3w1QVlPbM2KF4QGmGRgb8Hf49Zb8BuJloKMzmhEKYoWgqgxOvUwP+SRDF8/F5VAXnh+22oUJYYk3mPohZ4wRm1wuyVvn6Ya5TyUKT9OAG33YPP4ZPQyBTc+vtlEs53ZHkht6xzwCb5Dgv9Z0zJnC51ag68JHu7N06+i+X4oCi2fh3OdW5EsHuD/KAQik873GNkIhyOOMmHtZY4T5p08eVRcn1O1ztCHmm4E8PkK5e+2kF+/pT+YIi8/FKb/OdAK/Ohn2Q0zw7t6NO8J9jItX+SO93on3nXbiUj+54Kllwyq/wt5FDD0xdmcnLeq7pP/vTv1hvJ1ZREXg1pkB5O3yKLV2avMrhrDfnKyGMXATTqAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA7AAAAAAAAAA=eF67vzWN3y8pwD5vo6IAiHbI0wDTBlw+YLpvUzCYPhYbCqbnbIfQ+05A6P0XsdMHbkHoQ4+HBs33HEIXncPuH66rELpgD4TmOAyhc1ZBaJaNEHrLbAi9qRNCryuH0MtiIPQCCwg9UwRCT/gQAqavnYfQtb0QepcHhF7+DhL+bvUQuooXQsfUBoHpd+cCwbSQKIR+YhwApn8b+oPpPf99wbTGXEh83pL0BtNncjzBdHqtO5he5e0KpiteOYFpKy8HMB0SbQum1xtYgWmPU2Zg+g2HMcT/Kvpg+s9/LTC94qIaxP/OymAaABIp2oA=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/cYSHx5yITG9V4xF6M5jUz2gWU0zu/pWPdc3ZFJXCHI9uDyHESgUhT3MD0PN/0KVPcY0sPakbKM9Oopi+Q+ksD2mbk36DO26PfI/SUVczsQ9KSJz3hHkzj3M1Dww1iDWPdhcjcoCsd49XaP4FEar5D2AjOyJIhbrPRiMP2KMTfE9lBNsbEGX9T2a9xkdvFj6PRVyXqSme/89HF5WnwBxAj6MW7UTezQFPpLlLDaw8wc+XPXgkzWaCj5iH8cI6xINPrDbqTdXSg8+zGGeEAWYED4m0qhju1oRPu/ZYOhr6BE+ALwllyA+Ej5kvnLOB1sSPqw/3mJSQBI+8sQdxAzxET6ENzohp3ERPjeEalw+yBA+WOEauGz2Dz4EZYqWciMOPpDjlaFhJgw+5aQPTDUNCj5MvHQLaOUHPquYJVg5uwU+YSbgxUKZAz6SrLvYeogBPl/aXS82IP89CioHI0hr+z1rwf+W6/n3Pc6F0evf0PQ9YD33Q3fy8T0ifg4pZLzuPVR4x/s5Juo9uBXNuIMa5j2sM7CIFJHiPVoeJ1jT/949nqDXlPK62T3u4hUtIDvVPcKK3zxaa9E9BdYRlwZtzD1Mhhcd+hDHPYwG6rPlnMI9KyPBt1vevT0GqwvvTtm3PSQrewI88bI9YLyno97nrT3ll2L3Ln+nPc2ffwzEaqI9RArzAXyanD1XhVIxEB+WPfXUgBFbCJE9EvhrCOj6iT3lowXcGuCDPRPp9LXTA349QguS6uvRdj1AURTyVTpxPRXW6K4es2k9qoIeGUQ+Yz02sqIr1rNcPQqXrhJMA1Y9l38RMg==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAATwEAAAAAAAA=eF5zUqiLz/mv7NAyUfP9DiA962O7wF0gzcCo9fEtkHa/u+PkVyDttyo89yeQ1jL5L/MbSD/b/uwJiG7qKHX8A6S7SvxzQPQ+W7UGEL38VGgniJ7zcVoviD53sL8fREfqV00A0QG9z8F0P6/0RBDdc8IYTOeZOoBpncduEP4JLzDdke0Lppti/ME0160AMP2CKQhMZ92C0EWlwWBabguEnrsTQofVQ+iZfyHqRNwh9KOYQDDd4A8xj1MBYr7eQ4h9byf5gOlqc28wveudJ5h2m+cBpi1i3cG0gzHEvb+kXcG0hIgLmJ6l5gym//k6gekpvY5guu85xJ9ywRD64Wl7MP0uFkIfZYbQ51fbgenF6RB6gj6E/vPHFkynX4XQ2Vsg9JXpEJqrBUIXFUFovmQIzR8BobX8IPQqDwgt6AShJ9lA6F+mEPqBCXk0AMKkO2U=AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
+   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAUgIAAAAAAAA=eF690utLk2EYBnAwcRWELWcDKQsmFKxQcFiiO+laNdumW1msuQ7IFFYUMdKadiDa0kxNoxblcB7KA34plYkdNygo2WaFNKqhGAWixCrQWqf3ua++9A/06cd1fXif+7nfRyB/paz/LVKU3Vhfq+M8MOROf8o5XHb/YR/np+utQ9OcJabTtgmWi+cXxziFcktkhrPtTnbuPOeysMz0lbNF2iP8zimx8gILnKmBKVucM298VZD1S52Hl/zgXPdt3yPWx/wWA8uTpQ1ZzNiwyM7cLXGUM/PET84x7QZnDVPjXHSRmZjc42L2rbQ0Mi+NhRqYwfTZJmZCRTZp3tDdzKyT6Mk1d+PkR9tLMtqdcZl5rIpP5pzYTArSMkllbwEZCkjJcNE2srR6C5nfWUR657aTzUk6Mm1sB9k4oSf5UfTWnBLS4SgmB7QGMsOH/mqKkZR60buuIZuNUP8Yzt6CI13wbBB+KYfGdugZx3c2ZiHreMgRJ2wT4lxTFxT9wrz9nr/zBTC3+xT6Q2e05KgG/UIm7pm6AEcmNGTnTexlRRP2clCH3iPD/u7F4d6kraRgEE5PYa9hp5pMCKnIB1b0zueFZK8Zvfc9/k9LJfrzfOTqehjco8Q5fqj2KcgOAXKdGHnwJHTflpPzc1CmgOFa6JiRkcmrkX1XkD/44eed0FUDxWuhPx/+jOEdxXnIlc+QrZPwxQBMHIVHWmF7O5Q54NELMGKDr4/DN/uhvQK+3QULTHC5FhbqYZUavtPAqByqVFCdC/ulcFICUzb9m/+XfwAgDXe/AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAATQIAAAAAAAA=eF7F0t1Lk2EYx/HKilAYrqBXLDLUZqGEysZM5+Y0mzo3o6C2oBdXTCQMlpnEQi2lLWevigUe5GuOQmsSFhYtY0Yl4cay4Upq5YGLMBbpEu2+r1/9DR19uL4Hz3M/13Nf7L6gsC5syfrhi16qYbYpWptcTLus8rSdKR02fPvMLE4SPfMy7wfHY6eZ5p8Ji6e4Qyk5v5gfVH1lIebLFeKYMHNs3bVXM8xZm+nEb+btL8JR3nUNrZFzTElUmpP3exHBYj6H6ww7uAUig4m7/s3HEuqWQC03FHKc5Vb1Cq3chMeD9Vz18xIbt2X6/SWuV/e9kTsulZCz3s7LXH+zliy9M0c2PvCQ8wVxV7hO+UrywIKENN5NJlNis8mt8kxS9CSP/BTMIZOFBaTroIqMKVeTPnEhqRFrSEl2Eam3aclIH3r7zWLSEQVF2j3krUnM/S8w77PAr35YPQKn+qA5ABsOwYF26B7Ec5LiMG8K4P0VZeg7J3GOq1XoQ06cM2BErzmH73Fnonel4bsSl6CPTOSTG+3Yg6gWe8jNR69J302OhqFgahe5vRt7nHfkkg+PoAevY6+dYvSTdUoyvAFdV4//kb8aXdClIFvi0fePycm1RejSeMyHrX+7JYuUB2AoAg6oofG8jLwxDE2boUcP17zFPahchPmRGXN/D/x3TyzHoCsaJm6DrwMZZNMMLH0KU91weQdc1gvbLNDTDDtM8F01NB2HsnJ4Sg8FR2GFFo7vhX4VjC6ESiXsyYP2DChUwFVieCYdTqT+X/8AKzp6Sg==AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAyAMAAAAAAAA=eF4V03lQE1ccB3DKEIvWsQZxxNJWpFyRMtIIDldMdRALKbqASMMl5QqUo05sI0dKw1GMGECwcqiggoBgaIJWxnINAalGGmYUAxKOmHBNpeg0tVrCRPp9f33mt7O7773d7zd5RVX3VMNge7y/MvfzJIP9dXO4Ex+zUd8+fQkWCXpPR8Fyij+QCFNMFOsYmSfVuV9BT9PL747C89RURDj0za+wCoO/+W2ZJbJvrQWGwPYbxfGh8N7bH5SH4bKfNIyCDo1LERx4dFV2MhjOcAf7A6DdKVdJIDxOcx/7HNK0+9L84eBDV743rIgXzbOgTpIodIdBlw9qPMn6tPIXjnDS19frU6hpWFNvh6XO4e/shNtK6NyN0HL9+mBr6MTk/GqaYLBrLm/grMNcEkn3foG5O2Jo/xuYk6nnzMCHYqN4ER4KXY4egbv+1EnGoVeJx3wf1M3dVdyHZkpttBzSRdlX78ILon7PRpikkF9pg20Smboa9lr0udWTdWM158rIe6tdWs7Drhzb5tNwaG8u9yx89vE6ViHsqGzI/gnya08k5MPZD2MdCuBn8h46sayJH0uue/tUMMh96aP8beQ5m6oiQQmZnTrtyXszmjXdFXCAKwouhbv7zGUXIVXzbcgFmKiKW70OtfYZz8j+GpINFDmPIUvc0gqdn8dH9ZB1NnPC7sANKXeGH0CfnMZKBZSLz0apoeJx3AfkO413ZA3ryP15HQ0aaJvnt7AMA0Z1rxbIbHNTtALthbwZAzSm6rIt8B9uUDyvt5iVVyy7NpE81pnmLaGi7Ms9NlBfKB21glab92vtoEVR92tbKFDy+lxgTNYbjgOU0reO74Z/N3eNuUK11N9jL9Ra+dQzYZo+ds4XUjefyL3gAXbVfyRvD6Z3fLQPOoyMFRyEwkHaqwNQNsWqJrnc88g66BAMzMkMIrm9LR1hkhwXlzJlJNe1EuEAyXnBpoAJ0oMMidlGkv+Lq/5TpD+CQMEnpC/XnH9UcmF3/qwt6VN6UPCtaBha525BemfNmmw6Tvav0r+MgeaG2Y54WCNX/BUHdaXmC0lw6Br3XdLPf8Sdh1PhkrGH4sHxpOf/psNLubxH38AUptniCchLNlVlQtXOQsb3MJXW2kp6L3dr+j0bHomppZ+Cxsi0e3kwoUU1lqsh/e53KYJs1XtrIihM2Pr6DHzcebu8GE4bmW7n4MTTkDMScn3X4v0qOGz/x1IlOX+4o6wO9s580VYL3ewq66+TfT85WX8VGrZvGW2DO2rSIlugYwrT5RcYNdjeJIX/AwZVOLI=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAmQQAAAAAAAA=eF4Vknk41Hkcx2c65Wodm2bbp9ra30cZazMquyIfq5E87l0NknpmN0Q5tssRCS1iXKnYkEY0WRWtB8X2/cmRFGVjmW5KqX3kSMqMMfvd/z/H+/1+vTeMX3T2Kv1A+FZaxn8JtNh7wRG8dwsAT30pFHvzlaR7RDurf4bBRqO9+nMqGVQ4haZorwSsedEe0fycwZOrrkVM6U6R7qaVMg0XwE0D15VxEYCN3Snj3vsBpVc6KtsyAXVEl8QjyYC/i6qHd1YDvuksHPQLAkz3mn244ckYufVpkfK6D4MB8wXCtacAD03EuXUlAEZ7+gfzNACL1wxL4gsA5/yd9dpoBeD5O+KJqmOAdrH9BrYiQOHNr58pwgBdbSoi408AXvGNVTgaA4b0mDUf2wgoE/lercgFFLtZiUXfAob2zOhujAXU1bNKU3YxKPiia3lYDIOOy021Kqn+XZXzhtyvMmhxThquk9BOHj2+/8DLHZA/aOT70QbQRO5x9pERoMeoS82ACaDBgwT/zR8ZHGnN7o2fYNB1THJb4kr1sPHk4VrAWnu+w5ZdgB86U4IOCwG/X/eva0riS9u6WC2Xzu2A46sLK0hIi+3sz4ZauT6AwaFFFcZHAfusXn/eyOuw/cGg2FgUAGipk/bzkkTAyrYB6/4DgH6pvzr/IwDUF9kEBLgBBlp0Ge6RM/jSRX9p18Z7ZFbyrKlwO8DC4WnFZCBgfsgFR/e9gLPLInswCfCxZaNh8NBVsmb/WPpSBYM7pPUZxhJAeW1IyRNPwFRlgVPYV4DNh3qsnD0A80S1meK3DKoKp4WyQ4BFObzOo/sAe9P/yIYYyvcsJ/4A5R7aW9je0d1LZJJy6eJowIHI8ixMA1R0tMqKaO46hgvfm2QA9jtMTDvYAk6m53MjKMfLeu/rvakOVUvihfnUr/+7F/mc//9wZclu1oCa/QHFydRHZnmg5mWaU7TGG2tz2heNUvlA5h7AO2Tq9PodgDfCz58uovMLzMJ/Uh+kfxP7b6U2vCE3A8POa9F7Vc+HzZtovxoiv+GoaC8T+B/81x1n0C3Be/eZ04CJGzx9yu6PEtn8leENNG8LckQA9D5vyQqBLt3bFrSzJCkScEwy17kgDtAos4Uvy6H+ky/W5i16SgqOLOXOMwNs5f0Ss+8w7efMq5MKymvk7rLc3rMMHlD5cewo93SBtCKK5rVpc/V+1wwGwfJpo7s35RVmIjnjBThdD6e0j42T5raDdc7Fk6TwgbSkKIX2eevz0VdeCrJseJt4y3rAo32iuh+jAA2jjH4rC1WQP+2mHdveKoleaF6nKkZJgvOWbxug/Dblw/ExDzXROuEwevDZNOlLV1mfu6skKrzG/+7SDJHmtGnqtasIT28oxNRGTWr2tGRzNNRku7LvkzmoSYKjf/TcZVxWTyh/CLkzZPHtFvMbeRy2xN6pbWw9l/XIumIR5MRhU0vb4/Wpb/vien7TKg7bac2bV7VLTXgVq9dNTHJYNGhwN/Xjsn7b5Z9s82axcfK0S00L1aRqcPcZN1MuW6LNFTZJOGxR1MiCxiQO27OiJmCrPeB/GdYkUg==AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA6wEAAAAAAAA=eF4d0VtIk2EYB/BWxDQzLzzgQl1biqLm2IKlRn5aWE6Y+3KbYs65LSuQFGKOVRJokH4U1t0E10hzxLQoPAQ27MZlFpLpvFDEU2jU9umiBAk84PPf1Y/39Jze3b6/frWFZYZsEqe0i2WCW8p+3sMyV1ceZZgdLNPB7akbnSzTPfK2IZHO72v9kTZSN3yxyUB+KwwmXSdnnolNZtJ3NLAODSXLfvhwVxaCzT2bhy3kD6dFDLmyWQYWf466AX/xxU/homjKC1djewNQduGxCPFb3VkqaCgV2eG9bb4Hak9qvsD8juQArOdMR+rI9403E2BVqk8CXzypSINF08rwuuHY93jYMtgXvp8etPF4f7tMMAXnX6W/gR9TBtpgnrPOCE9Ur52F/eVDQsj/TFlAnXc0l19DVWdMc7jP0dMquDL3Jw7+FruWMAeLPv4lHLfthee16fImwmjlrQkT+S60VA8F8uFDUBvKbasl9z/Z/xvRJ5+rgx75cUcNqSwo9OIfmrY2RqtJtzWi6xriZ+vVVcif1O6vJDOzS9IqSFmnokhHRgiE0nLsD3T7NGSvPlaqJq2y8bxS1KG4K7xCSqPs3CUy5t8HL0PmjBld58lJziM/R35N3nmgICWCU44zZJx7YjCDfG7esKaSB7FCBOM=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAxAEAAAAAAAA=eF4rufT72PV5M+0X72ToCl00036/5ioJp8Uz7X/YPg6UBPLl/7bpZAFpu71OZ0KAdGRTz7QoIL3F+ANPJJD+cDG2HETvqwyNBtHM50KSQfTSRWcSQXRZyN8kEC02dwlYvKhyaQqITmQ8kgqiX+XypYNoZa6aDBAt+Z8tCyyetiwbzFf3zwXR3PO/5oHouis9BSD6fg1HEYgOXBJTDKK/atWXgGjejvRSsDvi+ctAtNSVIjCdsWMCmM7yyATTG8oYwPSv9Ciw+kOrasD6Tx7JBZsnfswEbH66w3WwfXfkovNBdJ/QEbB7bmqL5oDohaZ+YPe2xeeC3S8jlZcGotsPe4D92arxGRwOU7Pj40G0QFdNDNhdG0wjQbTKkaJQEG1sKx4Iolt2MPmA6MPOgm4geu0zSXsQncz4wQxEX25O0gXRTgtslEB0Sr2rKIhmbHBgA9FbJ737EgGk08x4H4LosPaIUyBa43z3BhA9bXfCZBB922xyEYh+y/HAF0QbVbKrguiblue+hwNp+/p/R0G0VFdWP4h+bfo+GESHJ1ULg+ijB+TPhQFpmy67FhAtU8NnDqL9P/C9AqWjzLsKy0E0ALwLFOk=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAQgEAAAAAAAA=eF4t0U0ogwEYB/CmrZVSO9CcxsniYtoi9bYPZe1CTTOUSVnKRyJDsVJmDj5aaLy+Oc1htOIwdiHJEpZS5LIPJXLYhQsp9v+/p19Pz7/n6emJavwf9uihKfwsdDT9uyA78OY8enM7c3oi8c6ct1Yl+n1Pl/C3ZBm+X+9Cb/kWVJRtw70M68Q3jfzQExn7U/l0QEVfiqmhlMZ00hwDfailr3V0zkZv7NTipC1tVOGi6naqlXyU9Ej5kIMmGuhOPdUYabiK9mjpeRFNyunFJ+86TVHHHfWEqH+ayltpTEP1mU2YXqLdNVR/tsFcNTWL69x3v8Y6K0JZehXaQyuwSwjCPJF/KdhfhEPDAXicnYe6wlnmkjPQYPPBL+MkFOLjUJUa4b2jg1AZ6IXqCjecMLtgf7oZBisboWXMCn1XJvgHNP0jsQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA8QEAAAAAAAA=eF4dzWtIUwEUB/DSYoklIjiQlh+8lGVbKSp9cN2M8pFCOR8whyNSI6eIU6FLGi7XnG5Wd7Xm6vbYIp8YWYgtUknIB6ghTktCR0GKZY1gOUjJ7Pz99OMc/uf803sGBN9cDftuh0KZNsax+jp17OTqZfaSMsPs2+TYGcfV0iuvOdbBJcvaJzi2L7tfZhjl2ChXqGmR8tdv5R02kktv9lQ7SNFQSsc9cmIjtFLAPr7ix31yM7x+O+bHRu8K5q8GpQe2WWrHoaZF+wr+beSdsMktmGBYVkQVjPnmUkH5dPRp2D4vPgpHVTESGG/wBsMuyYd/6Ler4/yw94bsFzSff/8TGrWrXri+Ld8H3buFNRj0SR6Ie7HiWQiUaE7shQuRqQe3DNpIgENzQjK8FpyWAaW7GAX8fOp4LlzqvZ0NSzoDMmH4SI4cNqQz++FU95etnj7R2Ef0ehj3AyhdGMyCFusfn518qXLqoDVS/7uFfNEalgmn6yr1NjLxYrHtLhngKdJZSY3qUdIdsuCpf9hC8vsYMU+uLT8/dBP/nojWzWRUc2t9E1luD+xvICcfzjj1ZGn1ziM60lX8XV1LHuvJkXLItw3Yqkj/W5O9nDy7zMeWkLouQ2EhOctMJRaQFSe1w3lkGb+oPEceuJA7cob8D1mcMVE=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAJAEAAAAAAAA=eF77s/LjJd+kAPvDDQoCfkBawjdGAURHz/jIDaKdlWoEQXTDO2awvPzMTDBt2ukHphc8CgXT/W+DwfSl4hAwfd0fQldHQuhnYRB6RjiEzoDSpVC6EEoXkUjD9BXjkC9AsycNSs+D0qeh7roPdedPJwht7wZV5wKhb7tDaAVDCN1rDKE1TCH0cwUILSQNoQ1Zoe74BgmXs+chdNIaCN3WAaFNkyG0kguE1mKC0Da7gsD0xGwInfwnEEyv7ILQh74FgOnscAj9eLY/mM7fBYmXHVt8wXR8kw+YztT3BtNflnuC6ZKf7hB/SbhBzHnsDKZb+xzB9LnbdmBaht0GTHvesQDTJ9JNwXTqFkMw/fK0Lpi+s1cTTM+YrgpxP5sSmAYAkQDF4A==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/QAAAAAAAAAAplQ+TIzSUz1nx4VBrORVPTQP/6sfMnI9B9N58AInhT2v4tMYTkiVPYaEP1ILeaM9mmhQ+R+lsD2aXYKZSe66PeX3N4HXzsQ9iOGfWf7jzj3MKvVUDyHWPQ+LKxwust498IC/94ir5D0EjdUagRbrPUSpJqjUTfE93RVL2FGX9T3QB6Q5z1j6PRIgjYaCe/89rCz52CpxAj6MG0CYcTQFPkxbZGPO8wc+97xofS2aCj7VjWKZ6hINPvqsRqRwSg8+pRmQlP2XED4GKpJQu1oRPgIEnZdt6BE+yd9OZxw+Ej7fh8hjD1sSPhbca8MtQBI+wVgl++jwET7NxqLetHERPpCKP1s1yBA+JjsR1Dr2Dz4ii+JxfSMOPju1q6U5Jgw+YbTREw0NCj6Y6BdjKOUHPqI7TUohuwU+0jzDUS6ZAz7JuufdZ4gBPpk2MrgQIP89zp0+kBhr+z1ofh0Czvn3PUJDm97N0PQ9lPem91ry8T1108vRjrzuPTktHoA/Juo98sEaPGoa5j2zLIdR45DiPXj1PmaEAN898ze3UxW72T2y04c6VjvVPQpS1fWcatE94ucZ06lrzD2sLH21TRDHPRTSzhBxmsI9PVsLPcbfvT11YdQVPte3PUQwDmhu67I9FPx5ywT2rT1P8K40hoenPU038P1PaKI9romP7SignD1SejfkdxiWPWNCYRmYCZE9UbW0PvgSij0L/zdB5/CDPXgIfmXxFX49J3OlwUntdj0Gl8++6kdxPbdX8nZM6Wk9HNmUyFJzYz2DC2I7fghdPcYqRJHTjFY9tkgUcA==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAATwEAAAAAAAA=eF6zyK2Lz/mv7NDDqf1+B5BWqOoUuAukmU9ofXwLpEMdd578CqQfXwzP/QmkNbz+y/wG0jP2P3sCol/0lDr+AdJLSv1zQPQNO7UGEL38VGgniJ7zcVoviH5xqL8fRBcZVE0A0c39z8H0Cj7piSB66UljMN1h5gCmhR+5gem8E15gOjTTF0wHRPmD6Q83AsD0C6YgMJ11C0IXlQaDabktEHruTgi9uAlCP2OA0CLuEPV/YgPBdLofxDwlRYj5U55C7GOb4gOm11l6g+ld7zzBtO5cDzBtEesOpqNMIO59IOUKpiVEXMD0LDVnMP3P1wlibq8jmC55BvGnXDCEPnHKHkyzx0Poo8wQ+vxqOzC9JwNCl+lB6D9/bCHuvgqhs7dAaI5ZEPp6I4SOKITQGikQmj8CQmv5QehVHhBa0AlCV1hD6F+mEPqBCXk0AFh2OuM=AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_23_t_23000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_23_t_23000.000000.vtu
index e9d011b914471bd95aceb7b6ff889ecd2a59d330..0c7f79f6470890ea649b4a69b2409f8ef6e43c85 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_23_t_23000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_23_t_23000.000000.vtu
@@ -2,38 +2,41 @@
 <VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
-      <DataArray type="Float64" Name="Calcite" NumberOfTuples="150" format="appended" RangeMin="9.9997174932"         RangeMax="9.9999738109"         offset="0"                   />
-      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019717592097"     RangeMax="0.00019729031799"     offset="460"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1576"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="10.814067532"         RangeMax="11.243784374"         offset="1660"                />
+      <DataArray type="Float64" Name="Calcite" NumberOfTuples="150" format="appended" RangeMin="9.9997174933"         RangeMax="9.9999738109"         offset="0"                   />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="9.9997291433"         RangeMax="9.9999738109"         offset="460"                 />
+      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019717620778"     RangeMax="0.00019729031799"     offset="912"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2032"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-1.4192234785"        RangeMax="11.249761418"         offset="2116"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3648"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="3716"                />
     </FieldData>
     <Piece NumberOfPoints="76"                   NumberOfCells="75"                  >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.0010130947806"      RangeMax="0.0010133736588"      offset="3184"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.025033100057"       RangeMax="0.02503337691"        offset="3832"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.060000013181"       RangeMax="0.060000013399"       offset="4404"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.8564202151e-08"     RangeMax="8.858591133e-08"      offset="4788"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.0010000002197"      RangeMax="0.0010000002233"      offset="5432"                />
-        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="1.1604328519e-23"     RangeMax="2.8909564232e-09"     offset="5784"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="6656"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="6864"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.001"                RangeMax="0.0010168380727"      offset="3784"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.02502"              RangeMax="0.02503684398"        offset="4452"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.06"                 RangeMax="0.060000016898"       offset="5060"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.5518578306e-08"     RangeMax="1e-07"                offset="5492"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.001"                RangeMax="0.0010000002816"      offset="6160"                />
+        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="0"                    RangeMax="2.8910332339e-09"     offset="6552"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="7424"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="7632"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9997614964"         RangeMax="9.9999738109"         offset="7628"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="7896"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="7960"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9997614964"         RangeMax="9.9999738109"         offset="8396"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8664"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="8728"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="8144"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="8912"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="8804"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="9048"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="9296"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9572"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="9816"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10064"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAANgEAAAAAAAA=eF7bFLC08dl/ZYfNNUt/3ALS6td2OHwC0uE+f4+9AdIxX7yPfgfS/zetN/kKpI1jt4T/AtId6wXUfgJpjzOlnb+B9O0dc3+DxIWZjMT/AOlV58qugsSPT7waAeJLJqdZgWiV96blINpOXDETrO6EYyuI3p++vw5EL2ja1w2ivb32doBoPfY9fSDa+WhkL4iedkh6Aoheo1vZD6Kl+vaA+WHxRWA6O4d1IojOffcYzG9mVgPzTWXEwXStjwmYvnRNF0wzBFmBaell5mD6/QYbMO2w2hpMF3TYgukHJhCaZTeEzlkJoS+thdDmeyG0zUQIfXkRhC6shdC2bRDaMRVCFxVB6JXBEHpFHIRe5QGhBXwhtKAThC53g9CV1hB6tS2EdrNEFYe5U9gclT9Kj9LDgQYASGV44A==AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAIwMAAAAAAAA=eF6lz31MDHAcx3FiKeKMxjy0Tt3kSqorqcYuutouenCkrmukFZaREovy0JVLta5QSWTGZFwmitWRQhmVhzz0uKxO41wuPZBC8fn+7i//+Mdfr72/f3y/v9/Uo7y53u18oWPwdYeoDr4w0e7FiFMbX3jTXrOxGvq8sZCfaOULT5mMDvZAv2XSIA9o7m5yKRKGRl/24sIXcS6CJbD2sVLtCnUrFQIePK7yNo2BFfGCel9YVf3R+i60mCbjZcGiotJiDu7s9BctfIeePSFREYmuHtNfc4YL+X3N5bAybZZ1GrRxWsQdhxczxirewKvWgkIh3s9V5D6aD1P65x05AHX8bb9CYEzPSUUJdDid1p0NbQO9lG0wZ72/qAZW1R3dPhH/Pvc43KgXHSR9WsNDq27Hds2ElaOOi0TQ2T4pSUBtrNZvgQsGAvwD4dKTD+MS4LEba29Ewx/Gen0WdI/c0JMMM8WeeRfgYVNjm3w4roo9Xwr1ORUlV+CU466e96HV0hmqO9A0+0fZU+iToZU+gvtqnJe/hrVdV4eewQLZpAkd8KyVsLwZapLkAd1wrj6npRO27Jkf9gE6Hnpy+j1sKFwcqoNKzgM7Ld3P/5Wgp3ujTXW90CU5XPMFmlROPtUHPXNl6gGYOFqm7ofXlBGWQ7TnsGLzIGycfMf2K9w9XFpI8zwrbT91/bodCrIgIl7+DUYHx7qQYvewz+QTl3tlZNmCKrdhuCb7N4eMGpHGkLsaxRIywto8nywxS00mpyZIbpLLYt5fJM/oNtWSmdPFavLn75Qm0mx7Tj2pFuS2k2EZz9+SzyfVdZGNDqmdpIf/SA/pJq7VkJZmzz6SSefXfyA56bc+kSEvy7Wkveqbjrw+04/JPdjQS/K4YUz5kpDP5OAUDvPB6nJm+P5U5jmbfma8eRPznmaOnlzZasTc2+3AdB2zYkreCZmrilcw3Sx8memvRMzM/ECml8iPmXdrI1NWJGGmiIOZl74EMeN6Q5g+sw129EmZVZsNbs0KZX5yNeg1aLCowqDWTsacwzHICzYo8TCojPp7/n3vvw2X/59/AEEuacE=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9K1NDbVTTc0MzE2MjZINTMBADAsBIw=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAVgQAAAAAAAA=eF4VU3kw3HcUpwiSBkNKMhhEPEeR3RShIvusK0GIUNS1omYRy5KpI6JuSqSiRDMrQmwNFXZjkpSKI6VyoK4I1YYOcSTVGEemKFb6+tdn3ve993mf33ufnylbmDBw2wDfxV/d6JACLBxo0VrRAxSosZjhewHzh1/nMY0BHyvMth95YoAdMb05YW6AuZP1rOOUT3rFvpvnD1hQ2flwxAUwzDBbUTEOUCc5ltP9GaCnGuuvymjADMkmPyQZsKf/zb4iiq8qMDxGUgHLh8QBd2IBTVwM3nJDAbuf1LwoI575HhVtnXBAhb6PThxOAjRtcVR+cAFQtfqG7ATxs2VqpOyoT7DEcqj9AvBerWBgjd7fexlpHyR9ffEneePnAeE6OyHuHODc1idmGiGAg40zi10JgC9rbjAaKJ/WWHJh4kvSm+t64BLFNtfeDNUbAYqZUSkcP8A9Y49sC7yJZ/udMtOW6lKm3M5+Cnh0tuxUtiXgA78qn1APwA398VIe1Xn4RDs7nQLcelmRlELfwTOfD6s1p3ntyt/NDBlg2qtbrQlyxJO/X4lL/A38rcYQmnfTNUuOQzypJQ1u4AQ4brM/4j4DsGhGxeqtJ2ClyCvBl3h/OGa5b4r4Vpfb+EpnASV1g1dUTwI+F7s/7VUCbAysZ5WTPt/EZN14pHyfRc83doCJiUXqQjPAf8N2UnTtAft1in/1dAQ8ElU5xyY+tZ8sUPgxoFF/meArfcBroxcNT2gD/t5ZO9l2HFD9Q5chGxO6d/hDlSXiG+nr8umyALzMyzDTpThYO3a00wawuqhwLob4zln3t6eT7k3nOfGuA+1fkqaj4Uo+ATtNcy/ySYTmjrQzYNMV5QyPAMA/NSx6/ckvZ7aF+mOUb+iPFHvT3dpEXNltH9qn1rBMOvlD1fXHiEras0bU6/OhgYBBmhHGJb6At5453xXQu9ZiR17hGUCl1Q+WiykfnKOnYUX+5C+W63hQ3Wrp9wO7tLeJQKeANdKzOSqM06A+1Spu8wvyzTDfv1sYBNi6gvM5VM9UVY/Morswmhktv3HonnP/mC5Qf8qjscwg0nfasHBJinhkfbO5MqcBm/sWtnl0d5FD77o56Z7/RUGySnd7XmzJkGMB5hhZD4rYgAYppS0d7oCfLxmbZZLeb6OC14U0n99+cbae+pv8do5tE4rlcn++RHvq5UxVylMdEwwC8qmvaPHxpD75ZMQk8rA78eWZWVcVUCzTs7KkSPPsBYOLe2nvNxvHN6Ypv12gb9xE8UJMxeYhulf0RnSrNtXHv68LrSY/7Pjcnk4kP0hXSK9dp/oy6T3y9uQfjovWMw+qO6raM+RAMVv+6fI06TFfv7dykLAhy+XQ//996lLtii9hcqReydfEtxvhfd+e8O/2GXt18mfJZMCgiGLeHxYuXPKnZhAz5oAVYH3tkG0SxZ3SItc4wjvhjkrphDaStrrLhPPLuTGZhDglYWUQ/gdl6eMtAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAxAEAAAAAAAA=eF7rdFnj4D8zwP7qpSs2VkD6ecn6SfqzAuzlfmtJRwPp3VWxy1OAdJWK17pUIL2i23N6MpC+v6qtLh5Iz+plmhUJpFWeS30MBNJbTs5v8QDSjBZ9UbZAellGeosBkP74tlVZCUifORWeLQSkbz3gXcgIpE+EHpb4ALR3Pf9Mg3tA+vO2Tq8zQHrf9sdHdwHpRg33nyuB9Ff2a7qzgHTONuY53UB6o6JSVh2Qzp41bU0RkHZ7GZOeAaSP3GmfEA+kMzIdhCOA9KpDHy8FAmkBH491PkDaKfRqoweQdtxtrOUKpP+WLGl1AtJhV9RLHYD0q4VKd+2AdCvfkqW2IHP/Je+yAdK3qvu4QHS2ZEGHNZCuPiqoCaIv5194DAq3J9e/bwTRsb9S+0C0ygbLUhAt4NubDKIFfWzDQfSanp1+IDpe9KEHiFY//8QFRP+6ZOgEove8SHAA0VUiWvYg2rMo2g5Ea7JdtgXROkGVYFrsoh2YFtonAaZbNBjA9IeED+B4nGT7DExXH7kPptPm3wbTyyRugulZ2dfBtEfBNTBddPEqmF5VCKHnaELoSX8g6eL2Wwit+gJCd56H0LB0g4sGAExoCSY=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAjAEAAAAAAAA=eF6l0tsrg3EYB3BSCsNwN4t2oebCobS0UpjDMId3zIwwUvI2LHI55bALRRquRnOKZcWFklK2yVl6hyVSikJ2sGlo7sbz/N78Ba4+N0/fer7P8xRczy1bNubfvxa4SsE4S1u2Epz9MNyrwMCcoacRlLnHdajtOKBG32mtEJ1wMrc4F6tiutEv7/NLA0g/CCSo124axjyKc7paD+rt+k0FeNbHt9SBVuZnqhb0i+h+ObgV5qEo8Mr8mVMDOhiNoBpMXlOmVIGJTlNmJdi5FFTIwFD083QFmMS7dJVjzp1IibZmXd/hXkHxUx96IpLy0Y5J640UPLoIW0BdUS/96KKDptA845EIlaRpBOheZVQi+hY+FokOcSNC2NPK8ME3asgQf6Jm7tc7uk3N+1B+wrcXfbQwHlTYGnKjO75eIq+FQxwVnpHebTNzxEW/jpik7iJu7DYRB3blxNRzGbHZJSXu0yVE3mERUbstIcZwWEdMhUSFgrUpnbU4nrU9xN49PsA66GP9+4f/+gslEzUGAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA/wAAAAAAAAA=eF5z3fogJmjHOvsHE/aCacX73nEgenNaH5g++Wg2mF6qPhdM++2ZBabLlaeB6aiYfjCtId0GpuU4q8D00zdZYPrLugiIednOYNonTBtMOz8TgMiv/RILomMir4PpabN3gukH2nPAdNXaejB9e2sKmGZb6Q2m2+6ZgOm4JgUwXbKMD0wvsfwP9sdphU9g2kj9OZh2lb0Hph12XAPT905eANNLhc+A6ZiSE2BaYMlRMO3XfBhMr3x5EEw7bjoApiMv7gfTtZoQunXTPjDtHQOh26UgdMwnSHimXYbQj/ZA6OvrIfSUJRBaZQ6ErpwKoTumQ+gb/XtR4mWo0gC6TjtvAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAwAEAAAAAAAA=eF5jeXXX1/BYud21qnOvRYF0R2VhQcjxcrsvJ3jYuoC06jLHq5OB9PuctlUgmu2O05QJQPqpzYTj3UB6WgSzVSuQ1pPMX1kDpNdMSbtdCKSvZgWtTwHSRmY3VUKBdMGHZbHOQPoxs+EcfSDdJrrRXgpI58Ss2csMpGcVrJn5Bmg/UylTzFUgfdN7Tsc+IO1Q9WTaCiCddSn79WQgbVdz+XIDkC46wduaD6R3Vp6UTgDSjXXz5gUB6fCrBYzuQJrjV4OmLZAu+7bqowmQ9puYpqcHpM1e+WzUANL9Bh+9VYC0QAHrJQUgXWl0UUoOSK9S5mGSAdJxXbYZUkCa5/tOI0kgzReS4C0Bcp+49gJxIJ0ft04JRHtd7jkuBqRNfL62gujLa9TCQfQMEzYzEJ1mdUQORAfe6+cD0Ull0cwg2v/Byt+g8M76lfUNRN+bcfcTiD51uvIDiJ7R8eAdiK5aceEtiOZRlAXTGazL34DoX/8jwbTXeXUwrTuVHUy77PkEjsf06KdguurKHTCtmn8dIi5zBUzvE7kEpmubLoDpO7vOg+kWXwht9RmSHljWQGieQxD6Uj6EhqUXQjQA+icmkg==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA5gAAAAAAAAA=eF6rPJfG75cUYM/AHwKmHfI0BEA07wdvMD1XNhhMvzsPoVk6g8B0q3QAmBYq8wHTPOXuYHqBpCOY/sVlCaY3eOiD6bgvymC6j18cTK9j5QTTcs9+gu0N83wFps2Kb4FpuYOnwPTFht1g+rHeWjA96dJ8MC26fjKY7j/TAaZf+deDaSuRcjB9RrgATD8xywLTDdmpYPpfbSKYXuQbB6Zlj0aDaZabkWDaLzUCTB/WDwfT+nFhYPrA+lAw/cUWQj96DAkvpRUQ+mQehD7kBaG5bCA0hxaEDlKB0Fu4Q1DCe7jTAC7vqv4=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/cB6tNrfvM49lC5qQLsOLDuMD5id1NAPPvVVnsY9vh4+g1l6TPD7JD564JgJdxsoPlaEpshH1Sg+DnqlM9esJz566H8cM0glPjk2xGbcQSI+bCCHI2glHj4ublKPQRkYPl4MA6dKvRI+dqPYHLdzDD4Yhmm7niUFPj+VHTws2f49unHFXW4f9j2obnLEpj/vPQQZle+Vw+U9RgenOIHu3T0eh55MdlfUPVw3N89zWcs9EXV4MH4zwj3GxY8fp/63PfiH/ZreXK89eBUFzIhTpD0gD6C9nSSaPYJW8Vh4sJA9Qud19EkphT1Cwc6T6ad6PSmo7TAvr3A9zPCwuTLDZD1jj4VtK7FZPQLZC7UNn089cBnAzwxcQz0Q+TxJs5Y3PSIYzKk7myw9Fo8sk3VEIT0aA1l2bsEUPXmTlxYs2Ag9SOb27ZSe/TxcMiR9gJbxPMSsZgA1z+Q8oiGhp06I2DxXEm9oN9LMPDA9PFJ738A8FEP93yWxszzR2MqK5OimPMirlJR3kpo8w1es/KO6jjyKSlCToLeBPA08gjajX3Q8hOGKRmxdZzy9M6trq7laPNJGPAi0fU48vGZgu8FZQTzvHyuF47IzPJQlLuPwTyY8cCRm4Pg2GTzOZYGRam4MPDwjOVsX/f87uomweRr18TtOw5Z+rx7kO5LmvClMf9Y7Wqq/vyUbyTskVM2vpPa7O0w01CxkFq87k87aepc/oTs43toN+hqTO4g68ifhH4U7q9fZs9BQdzsqxkwbR7BpOywZv50wQFw7ig1mOEwCTzuCDX/m/gFBO4s2mxYTEzM7Z1wRMQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAApgAAAAAAAAA=eF7blKa698F/ZQd7wdvN74H0ust/a74B6bi2R/t+AulJhzqdfoP4GSHfQHTBr7mef4C0YbN2AYg2mcHQBKLLntl2gWiLZ1x9IFqx4lQ/iN5RNn0CiM5Z+wVM3+mXmwiiVwgagmm+PxZgWkLPBiIeZwumLTZB6JatEJpjFoS+3gihb2VDaI1ICH3XC0K7uEDoSTYQOsEKQv8yhdAPTEZpetAAEA4+cQ==AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
+   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAANgEAAAAAAAA=eF6rTVna+Oy/soNP89Ift4B0i/pOh09AekfN32NvgPR7Q5+j34F0DMsGk69A+k/1lvBfQHr7JQG1n0Da/Xpp528gXXxq7m+Q+H0uI/E/QNr5atlVkPivyVcjQHyf1DQrEK3y3rQcRBdKKmaC6FUnHFtB9KfM/XUgekHTvm4Q7e21twNE67Hv6QObdzSyF0RPOyQ9AUSv0a3sB9FSfXvA/LD4IjCdncM6EUTnvnsM5jczq4H5pjLiYLrWxwRMX7qmC6YZgqzAtPQyczD9foMNmHZYbQ2mCzpswfQDEwjNshtC56yE0JfWQmjzvRDaZiKEvrwIQhfWQmjbNgjtmAqhi4og9MpgCL0iDkKv8oDQAr4QWtAJQpe7QehKawi92hZCu1miisPcKWyOyh+lR+nhQAMA+955VQ==AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAMQEAAAAAAAA=eF5bnhjZ9Py/ssOXR331d4B0y4FDOz4B6fpdu+veAukDXUp/vwNpd9m4rq9AemLG3MJfQPpB8T3fn0A69Hn51N9AWlVImA9Ezys7KPMHSHd/ZL4H4gc9SI8G8WtmRNuB6IxVqRUgmtHzaxaIPutxthVEzxeaXg+iTdj+dYPoe6wKnSA6supGH4ieWtLWC6ITlTUmgOicXz39IPrt4oNg/vFzVWDa1JV9IogucnwO5pfWqIH51cYSYFrC1gRMz2LQA9MLxazAtEKVOZj+lmcDpt0zrcG0s78tmJb6ChHn7Ifwb5RB6Gs9EHrhVAjNXQmhbdsgNE8ehC4qgtBOURDaMRVCC/hC6DuhENrFBUKXu0Ho1bYQWtAJQrtZQuhKawgtbI4q/sBklB6lhy8NACcidnE=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAJQMAAAAAAAA=eF6lz2tQzFEYx3HEmJKyNSLjMiqxJSONUi4Ri8mELko12CI0ilw2kmtFl9FmsdtE7lSmNNOMLBFlI5rSVGu1rTUh26pdt0Uhl99z/uOFF1559Znvc2bOeU6wtWKuoI3vq+4dPzNGw/dNrqyWeqj5vusnLu66Cy9ssm083sr3DRfpB3XC+jGC2llwrX6f+QaYr46scIAlabuLXKDws9DNGwa/XlbkDF0r3XZshTVDR/kEwI6qjamVcI2nNisHzj5g0cPDO9GiJ6J2tF1CnmI92uF2oWk6jJJJ+q7DPXPqQjPhVP1Il37YV7Zza4sKHRKXnzYPnT3ratVomNx4fmEyrLJJbI2AVksvTyqFLXmH8iTwSJmHuQbyageqqqGtV37FAPxbdCIrzkB9MNQwAR275IGDDXwUv9pZAAdLCnI9oHjd/sdCOM30dH4gnFF+0z0JHl607eAmGKo8JhbD/v6d0hSYKu2wPw8H7HK9JYPfaw0WZXCN2W3nIih3eZ57B77aG2IlhzV3e78+gtHn5FcUcLrj9rgWKBHYejyGTpEOrhrYU2qlU0EbRX3CCxhR4PdTCxNDM0Q6+EubVv4KFiwVxndBTd8qPz3tnStMN8J115+qumHM5iHGd7BVee3sW5hv537vA8zs4tW8h/797SaYoC5DGPMRDlI3T/kEm7KLztLc2lFtoo52/5ZJDk/NSvsMtTl9nqTUUmkk76dnlJN1+xXeX2BgrB+PPNlgnUDW73IJJh96S2Rk87RxKeRNQ2EZaVIGXCQTdUdrSGmOpII8zituIm2iquvIksDSNtI+6d0Tsmejqp30dzqpJd3qzF6TXobml+TVy8pOsm1OpI58tln+htwy9paevNDe20XemBzIjMhp6CY7WlYz16aEG8hrD4YxjfblzFOyQ8wK+XtmQ2MT88yiEUYyfYkZM4U/lSkQODLF5nOZSU1eTAsff+b9HwuYny4tZ5YEBTB/VYVw58VBTGNYGNPy5wrmtu6VzIW2nJq34UzneM6o7AjmG0/O+R85T9/g1LtGMu2sOZ3COIN8OMUxf897tv+ff+77l78B9xx4Wg==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAXAQAAAAAAAA=eF4VVGswHFYUbrUmBsV6zESXYHFE4v2IRcQRrNUsFYSyHinWhsqShEWRTKqkXn2YrhWJR0xIk5JE0DER6cR0RJXKdk1HE6+VMUgkXVsitTv09NeZc+93z/nu95177xxJttD7AHAQ2/4ePgNY0hlYsd8SsNGh79ttI0D8Q8nN8wJUdly8v3ABMPu3/QGFQYCpjI2dGTbggEjbRy8ZMMNqNQg/AoxtePtWLAR0Uo9VhZ0AbNqz1eyfDRhs7J56o4Tqjos8JGLKT7nvjSoEXDt++LSY8p6rrJrEVMC6u3JVezrgiu2e8kdpgJMOkwdZhMtJ1NbUZwE+Xo5UZVL9BwOKMHvie59xdta/GFA81cWwKgKUno8acYoEjK65aHkpHPDosk4XKxGwP/h9F+GnlBsILphSvdFIbvPSKeo/OvvVQiZgy/zECo/Of7E53FgVABhw4Gb/6HFAzrV+M4cIQOYg11QVA2hkzriTEU99m6xzVd6AW/WTrSkJgFMZSb711Ncr/2q3bf+bn8cyzsRzCL9Y/JOLtwug4/aaIs4PsEAq5dQcAjRZOmi0bUJ6zxZ9qOUGqN9lrGAD8fzVfdyb9n26hx+JdOk+pW68CAQ0/F1uqUvnbbJ7BiKcAF83JYxMewB6a4XoKnwBs7hikznyYzNv6NxRH8BpqZSp8Ce+z17UtnsCOi86CbJdCSeU9A2b0v181AGugYDJ8yWzckPAcnWMcvWlPXa82bTfDKH6ngV+nmGAvlOy28/Jf3lN0EpsMPmtxQn3ptyugetcTfX5lbJgI+L9Q17gtCvt7yTbSTecyd8I1tDTjwHLCmss6rjE8xkyZaTj1tZ3Orepri7TvZhJ/gysLWS6xJEuPenRRTQ/q1fCX6h5gNVmt9x+oXhvlzGg5gDOZfrI2k4Cai3yDW1jAZPmGnb1aV3Sqhl5yAdMUz1VbSUBLlzp7mTTfpW+bIxH/Qb99AZdyP93Gqvu2UYBLuflMxYoigok1/UI191mLlSTz8PFa3dLCZ91+lbIY1qXOu7lZ1H9f2QMp8ukR8vM+kwo+SwpkF/q+oRwgoIoJeG23y3fWCef9R9oDKrpHsG6U7lKmg8bN3alPeXR19azecSPHXO+S5/OVfwYUyOMBrTQe91eSvNekX745SLp0CsxHRKHAr5qVOvzqa8iJ3ScRXrEGT/h76P+JtaSgkTS0cOsZXWDdHUVbvT2HAUcj+xdkVH8PJIn6KR4qHS5vOQY4F9Hdtga8jfzs/aH3xN+0C7S9X9945ttbkyQ/qOqMnkH4Uz0zLVzaW6f9BneHCZdWnTqCs2Iv/G8Y8tz4pn25dfTHOK/KjBs3qZ1O83SyQTS2W4j1f69FEAdU2Y1h96rwbrX2XXyJ6X6nHUb5bL+gM5UAf0fpddrufRud1xq40X0bmvLBH9+kwPYuqrc1dC/8GpfepwnveN/1zuULBHNm0f3LIvyy/nHOg9QrFyTn7Ck2DehDLSi+B+KQeWNAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA1AEAAAAAAAA=eF77s/LjJd+kAHuTp1dsrGYG2Detl5v4dkWAvaP165yUaQH2dcKarEWzA+yVnXxNpWcF2PO/z/YvBdIbuud1RQDp1KKZXpFAuvB7/xN/IH07R/CvG5Be1rbpgDWQ1pg1mUUfSAssn7lVAUi/+/ZLRBBIh4ruTGYA0sllCd/eAe0VPauidRdIxxskJJwG0jKKa77vBNK6cpxuK4H0RU+BKTOBtMifU5LdQPqUq9PfWiAdqLs1qAhIp1kIyWUAac7omtB4IP1T3e5JOJAOtvq0NhBIBxyomegDpNc7r8r2ANKX+gIkXYG0w5YXFU5A2tp1WbYDkF5mJH3NDkhHvK9dYAukt/xfts0GSGtcv8sOos9ub2mzBtKvWbapg2g1+zuPQOHWs853I4heFPihF0SvePiiBES72YQlg2ipP+LhILqsboEfiP4WdsEDRCevv+kCoqeVaDmBaA25GAcQ/fuRmj2I3poTaQeiP628aAuihZsrwLSyuR2YlsySANNcL/+D40/E8AOYjlJ9BqYfbLgPpi0W3QbT13hugmmpvOtgWqngGphecuEqmE4pgdD/1SB0PQeE9ngDSR8fnkDoJRch9MsLEHrrbQjt/xxCq0LVAQAwVANYAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAApQEAAAAAAAA=eF510mkow3EYB3CEsOYod1aUzfDCm1GIMc1tc8yf5nhhkjMlR45SjnJEydGW44XjjaK8EHshkisamWNEUlvO3DnCyvP8fnvr1afvm+fF9/tUa382dGMq4fl11E3suEqoe5HzRRMqofmVoMwDsv8CV1wKFtq0HspAmaKvUQ6uufDU2eCTRKdFO3XmyWiqY6kmC9yyauGjge1jJQw4UHbdmwnqBZwRvKNuFg9mgHOck+Z08L3XrCAN9A2OFaWCXC8HPymo/A5xlYDGSrVzCliurOclg4/2fEkSGFkn7kkEJbbhhgRw6aAtHZ3e0x/Hg6Gs/kq0m2nwJHlTfhQHMt2vo+hShEcVyp3Zl6L1nMxgtGDF3Qc9qdE4of2/udboEWMwYk/fqzOfaNez/xu6U377hK5+DT2gRRav9+hHxPYdGuT8e4tKFRXEjhwWcbF2i/TuzRsmTk40Ed3Ciol543KiYCqNOLicRGTr44hKhZhouR5D3J0XES9Z1JrRaGI+Q2UHUO3Y1EIj3X32jbryQI2/oibeUJdN/2EweWry4p98ZvIPN2YqUw==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAIwEAAAAAAAA=eF7bIdf6OnDHOvv7E/bGBAHpUIm1NSB6++6UMBCdNPd4Aoh2zmGJA9ErXu0H09+rOsC0Xlw/mN7e0gSmKxrKwXSGVQaY5jIKA9Mb2RzB9EwpTTAddZ0PTDef/BQLoncsugqmSwV3gOlZ52aB6T8NdRD5jclgevYVLzCto2UCprk/yoPpeYZ8YDrt2j+wP0IufQTTC149A9Oib+6C6fQ518C02voLYPoM6xkw3ZtxAkx/nXcUTGvXHQbTHx4dhJi3+QCYfnp2P5iO04LQ8Zv2genGCAjdKQ2hNT5BwvPIZQj9aQ+Ebl4PofmXQOidsyH0/akQOnE6hBaDxofYRAh9Ecp/AqUfQOn7aPQ9NBom/hBN3wM08fs45NHFcfFx0QAY3DwaAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA1AEAAAAAAAA=eF7zWL9n1qfrVXZXqs69Fj1WbvfPK2XvqS9ldmob0yPe/y+327hlE1/JjnK7kC1NYvNOl9tNWMpaUQFU99341/vLx8vttpk6c+YDaXeHoHP1QHpqWY1HHpA2ncLAkAykl1pv4w8G0p+0alscgbSUveUNXSBdMct6vgSQPv7otT0TkD494YLDa6C5LEnuGleA9OSVcyv3Aum8WeGrlwPpqWvCFScDaY7eTRoNQNq+9/fXPCDdZ796aTyQzsjxtQsC0luf3NjsBqT9FHe9tgHSD69zHzQB0tJ6/Rx6QHrzX60pGkB69uP9pipAuneb50EFIG2iG8wnB6Sdys//kAbSyZqViVJAmrXygq4kkOYxve4uAVJfvnSuOJB+qv1UAUSXc/kcEwPSokdEW0F0w9/uMBAtIz7HFERn36qWA9FfP8TxgWixMitmEH38zeTfoPDeVhrzDUT7P7r8CURn5xR/ANEN9Xfegeg3HOfegugXVtJgOpdt2RsQPc89Ekz/qFcH083W7GC6qOETOB5P2D4F0x6374Dp69nXwXSE5BUw/UXwEpie2HwBTDvtPw+mL3lA6I53kPSQsAFC+xyA0EVFEFq0FkLbwNINlD4JpW9AaQDjhSmAAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAABQEAAAAAAAA=eF77s/LjJd+kAHtG/hB+PyD9KSBGAUSLFn3kBtHFk6oFQbSSH5MAiF4WlQamGXZ5gOmn9T5gOmSKK5jmOmIPptfMMAfTjAx6YPr8KiUwbfVaFEx/f8kOpt2+/QDba5/2EkyvWXcTTE/kOQWmZb/uAtN/lq6BqIueD6YfhU4G0/7NHWC6TaoeTKfdKgPThV/ywTSnfBaYZnFJBdMdyYlg+r5VHJiW2RcNpsMuRoLpb74RYDrBJBxM+wSGgWm5DaFgeps9hP7xGBJeL5ZBaK1CCB3rA6EVbSF0nDqEnqAIocV5IXQrNLzv8kFobij/P5QPiw90mgFKM+GQx0WTqp5aNAB2LLCXAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/QAAAAAAAAAAo28Ie8cNLDtIAIIMTyoQPiiYE8qTrB4+wcv5m07+JD40Jrw21RooPmnyPAZz1Sg+ABVElcqsJz6zhu+/NEglPqTODdvZQSI+iUMNNGUlHj5IItllPhkYPnexmCJIvRI+qeezDLNzDD60dXmnmyUFPgbpdrQn2f49FSKlJGsf9j2id+ZPoj/vPTBaruySw+U93BYUM33u3T0msPBbc1fUPT7TnAZrWcs9OQSkS08zwj3fCOrvvPy3Pc6x+QHFXa892Drc3xFTpD2H8KZ6nSSaPZNsxRNVsJA9H+k1QjYphT3MRlZkyqd6PS/tkishr3A9JptLbSLDZD3SH/j9GrFZPbQYwRH8nk89fjVOuANcQz03dm7KqZY3PaQtieExmyw9fcF6iHBEIT1s/3tMacEUPf0NRtAm2Ag9XFm5kI+e/Ty2oUHFfZbxPBWC+UEyz+Q8C8xd5UuI2DwcmlylNNLMPBkM6PF538A8LEOkgiSxszyYdVwy4+imPLtOM0N2kpo83AKytKK6jjzMlVP1n7eBPNl79p+iX3Q8wyMIuWtdZzy6AvboqrlaPKNyTpKzfU48fN3rh8FZQTzw9nxa47IzPEC6vcLwTyY8KmzYy/g2GTzK0ZiKam4MPLeBP2MX/f87u7RjhRr18Tv44rmUrx7kO2UHF0hMf9Y7Z0GP3SUbyTusfCrvpPa7O8ArE29kFq87AMbib5c/oTsn0cXt+hqTOwgyXWHkH4U7CN2ACNBQdzuneQXyNLBpOwX0PKcHQFw7zVU3axcCTzuAVJCTVAJBO+JqilGeEzM7ZHESmQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAApwAAAAAAAAA=eF57Uqy698F/ZQe5oNvN74G0mvS/mm9AOmr5o30/gfTdC51Ov4G0YEHINxC9+M9czz9A2qtFuwBE+81kaALRZc9su0C0xTOuPhCtWHGqH0TvKJs+AUTnrP0Cpu/0y00E0SsEDcE03x8LMC2hZwMRj7MF0xabIHTLVgjNMQtCX2+E0LeyIbRGJIS+6wWhXVwg9CQbCJ1gBaF/mULoByajND1oAGf0Piw=AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_46_t_46000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_46_t_46000.000000.vtu
index 434714a3b462c59be32d30f22c188994e09ad8c7..83d17ec70a2bde3d9040c28b6f5c02c8d93ef77a 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_46_t_46000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_46_t_46000.000000.vtu
@@ -3,37 +3,40 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="150" format="appended" RangeMin="9.999449544"          RangeMax="9.9999738126"         offset="0"                   />
-      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019719986616"     RangeMax="0.00019729031162"     offset="580"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1880"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-2.1782591005"        RangeMax="11.29240453"          offset="1964"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="9.9994611939"         RangeMax="9.9999738125"         offset="576"                 />
+      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019720015729"     RangeMax="0.00019729031166"     offset="1148"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2448"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-2.19110116"          RangeMax="11.308937964"         offset="2532"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4148"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4216"                />
     </FieldData>
     <Piece NumberOfPoints="76"                   NumberOfCells="75"                  >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.0010130948156"      RangeMax="0.0010133748488"      offset="3584"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.025033100094"       RangeMax="0.025033378622"       offset="4296"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.060000013181"       RangeMax="0.060000013401"       offset="4960"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.8564204964e-08"     RangeMax="8.8586335753e-08"     offset="5460"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.0010000002197"      RangeMax="0.0010000002233"      offset="6184"                />
-        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="2.8563644918e-19"     RangeMax="1.806679912e-09"      offset="6672"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="7544"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="7752"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.001"                RangeMax="0.0010168364418"      offset="4284"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.02502"              RangeMax="0.025036843144"       offset="5016"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.06"                 RangeMax="0.060000016898"       offset="5688"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.5518656371e-08"     RangeMax="1e-07"                offset="6200"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.001"                RangeMax="0.0010000002816"      offset="6936"                />
+        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="0"                    RangeMax="1.8066795625e-09"     offset="7440"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="8312"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="8520"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9995395453"         RangeMax="9.9999738125"         offset="8516"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8852"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="8916"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9995395453"         RangeMax="9.9999738125"         offset="9284"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9620"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="9684"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="9100"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="9868"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9760"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10004"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10252"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10528"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10772"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11020"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAkQEAAAAAAAA=eF7tzdsrw3EYx3GSw4VCEpnfJiIlKSZmZpsxP0SWiJHkEHGhLRZJi6Ic5liEFVJyuBGhlLI1Ny6o3Sw1tpo5H0JkDvH9Ps+V8ie4evX+XDxPQ9mi6ug7UmJfNh5vE28KQ9suiNVdTJaVePggNjwR/epzuu+Ib2FOjzfis9409kLkl7Gt78TCtegiF7FeJ5j8IM707PlTU3YHmE+i55zURluwvldOm+t1mU7luA23UR/aE5uomjpnD9URs6WlGvcDBqmr3KQ+qq3jdojqOpvSUSsaRSNUZ8v8MDV11gLNdI6AvTxmlFoq+4IOVgih03biwOvabHCTnwE6ovJA1UEOaJdjW8ZRnwvci8y5oK87CyoicT8JkYOPcXhXo8wEdQVZYLMF/5RsyMCqCSmoZXE/G5OAQg7u8SYxGJGAu5SHbVajV/PpYNA5qpSh961ozasIjA3H1huwE09R72nUcw1VdaIL/ai0DlWrUWsxulSJ+uejGgUakIGusOiq6PcuF6DtQtTORwOTf/e///7lDzLidUA=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAArQMAAAAAAAA=eF4V0X9Q03Ucx3G8FAJmNtIBSRIR4cQY/mBIkfsB4lLk+GHEuJVEqKdrkkXDY6H7gXC7Q+Tg2ikmESSlI0sgCFK5Y/wUnE0JGUH8cgTxY+AYRAr2ev/1uOfn7vP9vD/fT+Ysj2vsY/MUK1HuhX+yeYYW+1AMOtcctl8Ls33dHT3hg+MhV7jw5xu7OBNmNm/zWKfXGvR8yafptWgHZ/W+bnjvjmusGrLlmbml8H3xH4xYyDopcZJBVxf20htwyX9w725o+DHniBOMW26N8IAK0aZ35nvZPO1Wj8ZlyK/T26ZhQ1HtqlkofNhlsMEEkdw+A/epUh1WY19BMffoEnrqvEzuhc5miQ6vhT5V+a1vwZmngm82w1qzvlICnXs21IvgJuFKkJLWd+ZopTQfY52hHO76tkFwHv7QaRe0wseKg8oqmPlRxcIYnPz9Zgzd9/B3sWfpPxi5Y37z6OQ1oX0+6K4zx5uZMHVZuiEMVrCmgt6Emoz7GQfh1JPSS5GwM3U8TgotmqToD6G+ePiJEu7pKLucDh2adzd9Bd+WxA/Qe6h26CauwniPwsQSOPKSZ8Ut+C/DFFUFt8WkbjTBAc2Bv1vg95GPJI+gzNIYYYbqpUNpi/CVCvZnU7BbEb7fBe/+K+dA2jO06GrokBfa3fFWoBvMtn+5ngP9vYyXX4cuge8a+bBQ7lvGheoTvdZYWCYO8BZBYcs1SQpMHmpfTIRNWyb/OwlH7ia8eAzOPddRrYSzfH7MKXhRGyXPhztzXcpzYAGrIPgSHD0Xt1QE08Pr/qmAx5qHRaV0ftbdohs0l743Tw+7U37a8Rtc9Elu+QVuSzpnMkBxH3/xNlyr8D/VCVuvhwa00ffSXw2+D2d6xDIjNLoJPHrhaT9RVzdkCtu2D8At/YrEPhjd36Abhu2mEt9BeNblgwQLrA6z8Eah1LFSM07zXDvTOAZ9mc84k1Dmvb1mguZ2rZdOw4+32gOnaB5vZqQVCl+o5s3AfN1c1yxUSl6203rxTQvjMcz7XC2ZgxIFi2mDTqYhFa2rBPGj1EdCOtPI5ytfy5unfXoNh/Tkmt3sdN7XjA7qhaiaLGqlUBBOvnd0wUT6xc+Vkzr56vULsChkxUpdZ1XtpY7WZgSQjjXSNHIkpE5MBvcE5ZM2oSKLrLG1XyEtiuULZNN4Wx3JdHK+Tp6ePtFCFloZt8mnuvp75KGkgDvkqi9SHpL6jREPyPF1Hf0k9xOrmXQtSRwk5XvC/iL/Bzu7SDY=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9K1NDbVTTc0MzE2MjZINTMBADAsBIw=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAnAQAAAAAAAA=eF4NlHlQ01cQxyMxogHRTrwKWBR4W6owHEKRorIoocWoBQRBJ2ag3EdQsWREER0UVBDJWHCQIleLHCqHKQoofT+Vaa2IBKEWqFFRdCpBFPGIQEjfn/ve2+989/N2VzVY/6yhk2BNjMAvNhBQOHQrRx1HcIX7UKF7PGC70CU/fy2gn6hX7TNCMNZfxfdpIHhSrMwQmANueBW4JP4WQcfhvVY6MeD6zr6zrlsB1W4h/WZfACq2e11t+gHwYIcq+Fgm4OU1ewI/OwS4eVHfC+4A4N0e++rqJMBMcdsO6TZAJ2WhXVsQoNmDaN3PcsCanX+PVe8F3FOyb/ZgGmCy7obR4gTApuGbcSuZr0f354w3SgGt2x3zZjG/tpLmZav6CZ6oNJ74yO47i85v73ICDPhdsWJuCNPP6Ve6SQCv1zkV1y4HHG6KFi6KBhyLWUc1zLd2JKE0WQQYlOF1usEKcNrqdW9HOKBSKxu7ltJBi5c6eNB5rD6uTRGnIfg0bwxNWJ5Fn9i4dQugr/xieb034MykI3U0APC7AxGpO74G5B/Sdr1CwF98NxcdTwSUZYqb7RWA8zXHNG6egEtCDh8pY5zmZdVUK9g7OuBX1isDLFIZWT5mOlbWIr4r49SmuHvqjQngN6b0tTXT9S62e6jZAOivGzW5UgAYudZFWvmIYJNKx4+3B6xNa2/UMn7Oj57Wlc0BrNo9w0xiAXijLnqz50uCq9uU5J93BB/vVXrYjn2gzilr3/Au6Wh2aMmPVbmAmpYCfSPLSy3/1rOC9ckRdWNYzD7GrVJ70cmBcTGftdp+MeCarhXd6ewfSgaNn2VHAq726iiUfQ6YHzFa5bx/gqaR0uIFMwFHKr7KO6EmOC9lpplNO0GN3F1RkKens0Mc17v+y3xM5yR1hunp7ZiFD1R3CKalmhsJ3+vpvbfjiTl8wKOhXa1FIh5nFXlJfd/8PT1W4PF4dDaLC1ed92FchQNBL1e6GGhwwGU3rmeKSvKzPp6dy+OEH87ZvOudpuOhG6pPVxjo9jMtOu1PBupf6Sy0CzPQdZoUC5F8BrfzlLjU05rHhQVnB/01wOMmn4UGn0zgcct16X88kU3SiLtLFbtUPG7Tn6+fp8bwuDO8qGVeEgMNP9xqObmVx3X4+vWH23yi47a+JVnOBjodYSKpieNx88eVg7atBloRn1N+/ayB1tuJ+VNHp2iUg4XAu4dgz8D59y71BG0you40GwhaGf16sLdET6Uph/xFw5+oU7ery8IpgvJTpoHm9wiG9+wydciaoq/k/TevXSVoTOXx24on6KyRgODf9rP+c2xNsGQ8fUcbBOlM7/bb3IyhIYKjRZZ9Hvtt8crG4ngjM0Be3tUovY7dN94qzT1HcMqdvC0YJFhe9zLxyQWCpd2iCTAFfJeLsmRj1r8Wtu6hSQTVDduSI7sJLuCXzBCwfSDVqi7stmZz+H30nMJJgoKPLf0PM9h8ND03rU0mWBbhE6KXLcd7Vf/1CHMIvnjy5YAdmx9prXGs6CTBZp1nSx/bI58Wb8oU7CaYuCR2o0TKzhdmp79gcayXkG5h9f8PzQMaPQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA9AEAAAAAAAA=eF4V0VtIUwEcx/FsIl1GFzkkZRpSFutMxNZDte2ctthWGLm8dIYy1E4thWEtKpijRdMics2BmDWJ7JhR80HRgUVKmZdJsCGaUTkIytboAhVpKSP6/Z8+T7+HH9+Vby5sKbpt5tt7zhv3wd5A02xewMyXGmw6C4yHL45Vw4b63dwJuO2RTHMSyrnGObKn7k+NDSY3ng2TfEv1PMn5YwmScbMB8v4gJyMdbc3ZtLMEf38SISv1Hz0OJdd3oQrOxOq/WeGmD2xKBUyETl8V4DGfwl4Cr3dGpSPwaWbD5kMw9lMd1UNN5UivGtrPtQyr4OK/MzIWpvleuHNg7to7ugx4uONypRzmrXv9Yxn868xOn8fvaCT1YwJe26G7EoNv822Zk/BW7Wh4BAbvaroHYGSmaK4b7hk3+jrgoP7G81ZY7jb5muCGMibNA5kh+S4nbLR8znDAtinTk1rYX7yTEeG4SdxqhY8Z5XsB1iz0aUtgzteHKurROjAWKoQP2vnQQfKUKtcIt08vLR2Ay+85FHr4cr2iaz90X/KKPPySXCjn4DvvkEcLpa78aQ3Mqmg2kCmTqa/UkEt4naSUFS8glXHXIvVf5S+OkOzwryDpKRD8ZLJu1kWWrlbayRV9e6tI2zOlQK7RWs3kzQlzIWkQp0zkfx1sBzM=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA0QEAAAAAAAA=eF4d0ltIkwEUB3DRSPugHlxKWQ6naA4HbSo9KG6hy2ve5qZNXKGIOhBFIcEMDB/aUpSmotuDmpKSOKawMX3x1teFEdJFEk1BMZBtupxZXhM7/+/p93TO+XPO8b+uu5M+ZJIFajedqeSLOVV4IVm08evDA1J8I79ETY4cRD+Db+K/t0GdOKQT+jme9MAVvwQTTL5yyDkhTzLCQU1fF2TGR7m6UMN2M3x7bbkWWlQfi+F0ulcGZ51VfCioiPmL+eafYSy8fCbSwWKB7C68sFrmKSLjIr+2w+4BHwGUM9YR5G+wnfPhsUXdqiKnXhtcSnK//lsS9Fk36QuQQ2v+pCCVvIuXYAjfkZxPbjqETXlkQn+JLRf9c1q8OaT2R68EjrorG7PJIbbZcZ982HMrArrnNbossrxm6SCTFGWe1cGoqydHGeSre5NtsCPPLYRe9c1F7N9ean0OO9nTFBhbJ2bg47WW5TSy+lRggR02WSuMNQZVw6capwIqpYwULnStiWCi/gsfym9X8qAkWMJAz/CCL5x55/qHe1u90iNoZw1/IM88sQeNY/W7UBhj98Dfi492oO9L9TZ8P2dww3LFiQt+ztZzBrBxnFspx9w//QfPDyQEAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAVQEAAAAAAAA=eF4t0k8owwEUB/Bay8EOlnKyObGV1pIDTfmbrbRQGzXDZPlTUnL9NWnSouFgKDG2YisHa7UY4zf70xpqLcWWpWYt5WhNW0vSvs/p0/f1er1ez+NOj6m8551h+y2UxZW6shWnW9DNs8KIzAZHcuSVyA6zUpIR/2cOucNSn0RJak6OYZP3iPoWaG7adwBzS/sweLgHVcVtOM3QHkM/a7BVs0LZzMB6zSJcfZ6BybQWXpj6qR7rgOJ7KbTsCmHzKA8q5MXxsvL1LLRp49BU8MEPqxNKjBb4nlyGrsQ8jDq0MD/bB2u6ZbCtpREqJgWwEKyCc8NcGBCWcO833hfkcz8hpzID1aUU1IdeoHPgCfaYY/BM/wh1bBQaNiNQ4A9DUW8ITlQHoac2AFPqO5pz6YdMO5l/ZWHDBtk1SOrqSMcv/YcxQ34/kPxrMuEip5zkjY38A09ULKk=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA/AEAAAAAAAA=eF4d0nlI0wEUB/AwXDjDajmPNURGlqU5jdSZslbbSiiFck5XbGMQUwgza+TCaDlKEI9Gsmk11srf/lgaxYJis4X94ezQQkkdoghhS/JIO6Zd1vf114cH7+Dx3qqrTJMVqBWPfbuwwoXHy5Zel/bXijdptREt8NJ3c18HXBM+xbkFSxwPjpD7bL83kPkH557chKm7JSqylcWEb0DpeWsTOepsjyHlbz7XUJ+hDBbTTnl1f67ZIOtTUZIVfhDWZLdBgdrls8CUk/7rNL+waHNnI6wfaRy+ArtjHWwTHF5/VWSE7GhJ8RkY5W6TVsAEwXicGlZrLYNHoSbPYZDD5bpDySIYVPbN7oDc7c0rPKhny6uiYY++yfAL+4v8xvxZ+CIoXByHZ9Pkva9g1x3dmA9qxV/UXXBqnmO0w62agKwV9i6fmLxM9R+FpQbICJzeSuh8L+NoYHmEUqeAlqE85jBMN+16J4US+99QAXz5aOBtDuRn+Ux0j/kZJpQOfzQ8+5oKz5m4thRo3RblF8CNmXfLk6FeEVQl0dw9zz186Hl8X7mF7hjO3cuDkfwDJYkw9vZCRwL0HmtZS1bda2iOh67c/RlkoXvddBw8HZpzk45uz0UyZH6oIgtGnorJ6crEnaQ3R8f7H9uNMWSg3hxJBvsnV+mPFBOyn+Q/5pEhcQ==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAATAEAAAAAAAA=eF5d0k8owwEUB3CntbL89NtoaxS1A0tZDpI0OUyRfmZ+s6212FpWrBZ22M9hKHPbwYoif5qUclBKqa2QfuHAQg2lfvlTthaHSWQu8n05cPrUO7z3fb0npAYZzmNuLWJ4+DZUU/pjg7ILxsReGPZbYfySLMmQh49/VUikLEF+jpOZKvJ0jYfvBerLqshIugem7GaodXGwSU45lpQd8CFighZHG1wNtUDpuBHqBQOs4GrhWaia8mXVcH6fgdkyGXy5/sLeJ8487Fx+gmLiFhpvzuGB5gh2LyapPrUNN8UNqFpYgbu5OejOR6EUnYHh9AR8TQowYAtCnRCAseZhODnmgyPtXjg76oZblf3wg3HBnMcJ4wUH9F7Yac69DfIsafD1wfI7K905SD5ryDqJ7n61TqqnSXaAVJjIvXpSrictOnKnmPz9n/9+A/qIypU=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/QAAE+poMdA8wsQfHYUTFTxGBttANATSPbLiWCkjdOk9LcQQiG3h+D0k0SgtKjEEPuItU653/Qw+AcN8ZQkBEz4+IC0QmzEXPvbNAPRGsRo+6A1G8Vk8HT4WCnbBG7AePkfvnL7cCR8+HEr1DGlhHj5ueVqvDeEcPsU6rxEfvRo+roAqvGgsGD6p0sR0U2IVPtKm/osHixI+OkhY682SDz46zAsWeW0KPnyhn4cXxgU+DKl9R3StAT7w0+Ad0E/8PeAzrVOOYfY9bppBgMF68T1PGcYBHf7qPZBwrzArnuQ9GQgGoUst3z3qSKdqK1jXPcb5wyrQUdE9rSAVKJl5yT1WuDV7PpTCPQqTfEBE4Lo9+7V2S65Osz3CgBrUHH+rPQKpKBUCeqM92NYAzNFjmz3OzBXAsSKTPZWnAnpgk4o9ldx3E51Pgj2Ae/srMip5PVxSU1YfI3E9ihN9QdBFZz00p3t6xmpfPRD1D6cnF1U9KhaZSg0wTD1FlXkhZL5CPRYNDHz60Tg9ADyGGtBSMD2K1i6l/HslPZqMpupzLBw9L21J1aNLEj1K4nK0lcEHPQ7UtxgBx/48iGr315HZ8zwm1uHr0HXpPB6id0E4TOA8iEzAkKjM1DzMk+stLXnKPGzGcpOWwMA8JO5n1NcrtTzaIB2PYqmqPNJjclwYu6A8YNBOtzvwlDz2NmIA3CCKPFnw4oWgQYA8t5a55jssdDzWIALDIvdoPKia4VS20F48tCBZFhT4Ujy8Oj/fg0tHPPNB2W+tiTw8xilZ/GxxMTxshtjcMVUlPMDk9S7HwBo8wAAJ+A==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAA2wAAAAAAAAA=eF5b0rhl6eH/yg5qL2ffewik81YfUfwApL/dCTn9DUgfajF/8hNIN3L+Df4NpOetS/sHonViQnz/AGlW24eFIFrn+NkmEG1WtLgLROcYOPeB6AX57/vB8nxbJoDofEPeiSB6VasJmL5wxgVMa1V4gemYXG8wvS4Gwteb5AGm0xe7gemmKxD1Sa7OYLrgvSOYFrjuAKY1ftuDaS5PCP3/sB2YXhIDod25IfSL87Zgmm0phOZqgdC3siG0UxSEdvaH0HGuEPqePYROsILQv0wh9AOTURqZBgDvnD2hAQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
+   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAjgEAAAAAAAA=eF7tzekrA3Acx/GEeOABIUpzRkpSjjQzNjsMUUukkZTjAQ/Wlq3JFaIcc+dKJCXZExFK1CZKnihPlnIVc4VQZI74/b6fR8qf4NGr9+fB9/vZPafb/46QWDa3DteYWo8g0xVz41qgOGJqtBLbM3PXL7v1nvlU6nB9Y7Y9bg++MPcMKsM7s+kkKt/JrBoTjn4wv4et3twpW7fgkzsnPeUtXLIW81Z7XqdxW9z6TNywhoQarrHS0c49j15t5m7t+PRwLcFJndzT+rtervNi3MwtqRb3cx21M33clGk7taCxn+wIEQxwi2Rf1AFqEXXqeix5W5FJriRmkOeROaRuL4s8U6LtQ9DzCnv+QTbp5aIi1RHYjwOV5FMs7ho1ctKcpyC1dvwpXJaRZSNSslmF/WJQQoqCsMdtp5Ph8dilIegDPbyZSSP9L6FGBh8MsPxVTMaEoidt6IQT6DEB3RehrhHOdkFpJdTr4VEBnC+F3rnQqIZyOVxQQYsY+mRApRDWieBZIvRN/t3//vuXPznoeBI=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAiwEAAAAAAAA=eF7tzdsrw3EYx3ElRWgOV9KyQrhwqB82OWy2mU0UteSCcYFyKNqFnMocmlY/p+KCXOxCLLvgiuxiJSWHlOTUaEj5RSk5lMPC9/t8/gF/gKtX7+ep5zmR1VgPfxI16lB3wwZTdqd4kphX7+eBS2a6EPvxzHSYX88emUEX+/J3ZkfdhOeN6V0yDX4yheq5pg9miXt3/otp66+I46ZeJygCTEOY6pb3z8tzLe+CRq+G6zHKe7jSUWQ71zGZYueKrngbV2fPErk2c6ODq3V9jnONeytj3M4t3SR3s8s9wR3N81GrfNPkyb18ilsrfVPfqfKpZ8MzyG2/gUy6KSbrO8rIhzQTmTaMth/DkWTMWyPQnvJSUmg2ktXdJdgP4e7GgY48WtOTqw1asikT8zYBf0UfHC3WkDGbMHdITVok2PdQRFqVaHMvWlqHU0lQrISCv5CcCUaHrKJzduCpCJ1OaLXChQHossDFFthVBWU1cNkIoypgtBbq9bAnH/rVMFYJDXnwOvvff//uL0k4eUs=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAArAMAAAAAAAA=eF4V0X9Q03Ucx/ExDSTgQgYpomLKUhxiQgbpxTa4dVABMuXHmCI/EtsZrUZQIGwhjB/ZgaIHokZwy82G4KUch3JzQcDUyHFM1hgEAcevxogxmDuM6PX563HP7+d79/6+vx/p3T2pz4z+TL08cU/1sD+T4ftCzEV/a3YZr4AP930c7wPPcjgPQmGELFJuGvJn6mYelDqhZYu3re1oSZ+1Vw/tFteBEhhWaXKSwUa+X+VxqH21rlwIzcmCfH/4/VTgExZkaKtnnGEudaVnG3Ta8VxlM2Du2gYWBf24cDR7ET1S886FJXi8mR1BzuvSUnMsMO3r52JHvBe7//3pl2hVpsy6E/2m7cDka/BFfwX7Peg8JvVhQObUqN9puOngatCHsC+69tYFaKXHUD6DQaW0YDls+Lek9TIUsdh3HsPAH2vNrXDZMMubg36u77aTfes30/4i/yG0UC21oYt+Gd7vh76XvtXHE64yApPDYNX2zoKD0O4+0pIARb/2GyOhIvxEfhZ0ePmKJBWWr2s2F8OQTydUudDjfld3Lcz7Odx0Efb2r+mboLE3hdsA3VvUBWroNcw+1Ao7G0eHBuDa4Zn7GvhDly91Gmb//ZPdCIfUH6zaYaKhwHWBOBHd4YJ7V/LzFijwmuLs2zuhhhZ7hQbPqIUxb8EdafQZOjwdl2dmQ47DV/0hMHT2u2UutHBGgqJg7F3HyAyY1iO28OCBj8S/i6DiC6pFACcUZcIi2LbR2TsPHvnEY3sVPJ91Mb4MSq4naG7A1YSymquwkacVKKD+UflAA0ziLzncg4th9RvvQE9hSXUHZEUMB7TBlXXl7m4Y7Lb7mBqWNHmofoPFneu5Grip/phwABYmVTY/g9JY9ygD1AoSqIMw80YO/09YUdMqNcItHVnt43DvlZCoMbL3vLdoCrYorSmTcFvGqeuzZL+O/wzT8FJAdriJfDeT8mQO0mtl+WaYyBpkzkNLlxv3HzLvXEz0AnTkSfWLMExOpRCL4oo8l+Dk0+AzFrLv3NYtVtic0l1Onl9VucySNsQfzSE+5OuqliFb2x1M3DDU5rUC09dO9ZE+dNIkIb2Xp+MQV3KVOmLm+Pwtop7K9bJBt5vFFtJKnSSS9K7ehgDiSSvjcyLNdi2Z+KWqs5JoHKSLibzbh+VEtaawjsh43budWOYraCEeCW3qId4sOPGIGHd0Wkt0TE99StwnKv6D+E3SOR0xY3J8hGgvdTUS36jKGiOeN3BHif8DzQVQtQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAmgQAAAAAAAA=eF4Vk3001FkYx39TeSmbmhl0YnSE3yOs7TSq1ZueRsPa8nJWeZmGJEUbQmgK1XFIYk2RFotDzrLFEaus2Pb+WHnZI510NG0vhpZFtU4aK8bb3v3rnuc+z73Pc+/3+xHIPGz3TbKYJK5wHSzTkv50p9CwA4AHPvy6wjwGUFfUeDtmPWAHSWBOmAGOuPG3HHRnsTbst5zDz1WkT35N6KkPuHNTapLWE7Adlbq/xAGWxD4JrF8NONG2riAtElD+nX7pdgWgOKlP1/oG4OQDhznfJMDzqn42idZLLLkxwSFAj7bNfJbWZSwdajWm54zycrOrUwCdC05JH58GjL4T4+C+HzDCJfq0gp5TqGW2tmcBK8PMlj+PADwSWEYcHQH5E5Vf/J3JYmd6+58hBwFXikwKunYCmkvmZixkgNc27C0L3Ef3TZr9S3wBX60+dscrGDA/9W1XhzWgqNAm32Y5oI/6dc3HrYBel6umnmlYbLZZZRBP/6d5/xLphCXgBYFxql0AoOdXVoIuF8Ce8cf+KUrAwVB9tugooDo+7VPZN4AnK+ITnskB9XSnRCF0jbi6d0m2BNAuRm4Wtw6wfGvJ6m7at7loPOcczZe3vz+mcQI0Y8/LxmjsEy4d8PUCTJcLQ2q+pH1LBTe/3gx46cKwVGpO+26Kdc2eZVHo7GSIVKdzOtO77H0Af/TnqW8dGiZKVw/di0F0zpVD5g4lgBphs+FzAPSzcD8R2sOiaZDAWLz2JcG41ss2PHqv8XSUYhXV7YphReMtDekMWMzdOcpiR/67sPT8WaK407BlkL7rVXX3Uf/Af4n1P7zlVXsBZ+2yeQeTZ8m2zjMnn1gBVrSpl1zJBcxs2t1sYwR4VX79sOz4PHH8vOVpxxrAs1VWr8SxgCr3kc16lgx3ut1nZLsDw3kWFxed0swQNuC+e73ePEkc1j2/h84vbj++5unFRbJxIXngPjdH7PsSCufrFohdiv9Dfzpfd3TdoI4Rw1V42+lNmvG4ZIcatXHoIrH6vu+6RrFArCJfZs0oGc4yo6/UpWOeSALVPeJahtMTp1WLTXncUeddhmNRi6Tg27w9CakM12GWahCczuPqXmj3+91muOizo36f3WW4cH6pcrCL4Y40lVdMDM+Tt4RU5ggXSItj2U893SwmJrel3F02Tdjae42vdQCrbt72e187QxK1y5rU6nlyixn5OWuAxT2ZATFrVdYou9lCosa15FHJVY+8Ui3hzxhUh1Eu85Z5vDhWyKJdzQeJgdUc8flrx6O6ERZv7P4Qb/KJxTrfDSd3h1tigrPtisTuWQJub34oHGTxkXu4SHXdAvP5QplGRLksVnm+eMBizjQjtVlJ9Y3qN+17x2Jwryiyd45F9dO4ySYB4NSNpa29FoBNSp3YQho37Hh9l29PuXj4aW009d3HkOxwb+p7iXY08fgOwM6i3/8o3wZ48f4bxpbqHZbRUHzFFRDejhhr3QBXSfqzjKjPhcrOMi+kOgdtvGdBeUsdy5CH03yvi9F4G/WRFLLWyyhHuUOZ0Wu8KS8FA+tjKaduTC8j/V/3M8H1Kpr/Dz9cCqQ=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAAwIAAAAAAAA=eF4d0V1Ik3EUBvAwR7lM8GOGGLSKYhW2iGLkmv9mtYka7ys2hm6ZLeeSJqZZWw5HktBFCwXNcmb2hZUaGwSbwRInczI/mMs0alE305FvXshiaBT1/Lv68Rw4Bx7O71er78/oWDKsNChyu1lSws7Nci9Zkjjj6rzQxRLp0JiwroclA8VD3iw7SybD5pXr8NTD+4sVMOKXba6Gj9M3PamCn0YnCvSQ/zOeTX1nr12g8/SscRm10dpWfpFmfWyXDjoLmfZK6GvoekDvpapmxVqYYV5SlsGAsCqkgvv3Mp4S+MIqWS+GuwOaJiW8muk/IoedLmZnLrQ5mmSHIVHzbfsg74dWIITWjPqoANprHIItcHlVNfwXfd03PVwMelrPBaNQLne3hqGtT3QwCBt6fStjsH/6WMQFFV8+iAchT+/g+qD9c4r4HkzJiyXfgYGKxY4WGN3wfcYM41sHR6/AA+7J2hr4Zvn0nA4yb9c4LfRuFDnVcMqcmlkKQ69NaQwcie/pLoK+JENvAUwuN6YpoCHhOXcSOrf92Z4Pz1/L7jkBv9VZNARKTLfP5sGj/qfNMljvFAWPQ+N4dT51/tfdkBS2aJ6ZqOs5xkPUqYmyNfr/S+HGaapNWjhAdY98bKN2NFssVLEkcpl6Y0diJfVWAk9Nbf9K2P97fGkR9dGSV0n9B9nPDSE=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA1QEAAAAAAAA=eF4d0ltImgEYBuDwptpVB0IksFhpLIuoqFWsXwzJVktbaSeCDXaxDsJ/oX8HLJWISmrhKgZucxfGOlFBQRcRncdGW5LTC9eCqBGdo4IOQiv6Xq8e3qvvhffTu2+/e7/YpCO9Owe5Dpv0OuFOkDNgk2atftQIKFuVy6m1pE+y51WTdubRUCX5tzb6cQUpimGtUKdx1cPwXIkJDndpDTBA9KoBWpdULNyUj7yBVdNfS+C7HxMMTDP7YmDj8ScezFjr3ygnFf+cQ7A5LFELV7kBESyUMZ4yssbxVA/nXwcGQV0X21NKdtZ0BML3LUs6DekOO/Wg/5w99QmsYkK4EtxxymeKyej0nzcvSX7sQgq0T6q1ReR+6+ygijTyQ3eVZGmmSgzX+rPZQlIifLv4glR+Do2Et3FZ5gJye7zvPJ9UhVi00P1bdvmcNIwOd8C9Sp0Y8jYkrjyyjJ/ZBr91H8jgblF9EEzLiPAqyFb91RicTs63wOs8ZR00cIpiKBdZsuFML5cACzxGIdyeFYdDk+U+GG6lD/KgIOnXf+w9pY7zwSa76RKa1x0XcCWq+gxyzyZOofFPxQksF2qOoYvtOYIfNm8OYby53a+TTfFbx/j8//QAVb0eWA==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAXwEAAAAAAAA=eF4l0k0owwEYBnA1hYsdXGS1gxPla2qxqFlKaoWNtMUQK4ehSZnD2qY2qSULSTOrOaxWbC2WNW1mW2uatkWkVqtxUaux8pFI/J/39Ot5D8/h6fVzTQWJ3y0sOwyOS/99Yx1rGfmfylFGdSIxxVhYqphgFNTFoXFuG35zHdCnOoCKPjvsCFKeVJAarw0aYvuwUmeF0qs9mLfswvNT6m3nWOCC3Qz1DWuwZ0cP02kNLLoXYLlACd9lMlhfI4a8xW7oNDbB63kO5A9VUZZ9KBh/Ao+w9SgF5aoArG5zwmzLFjS4dNAVUcGuEzn8NffD0mon1G00wuYMB4p62VBbZMHh6Bf2vgu9wtnkM+Td5uFmJgu9jnso5t/QfSUFU5IkTHsSMGyKwxlfDOZEUTjNjkB17SUsjYQhx38BbQJy+SEEC+vk2CD5xCWF3/QfZznSmiRTAVLqIV+c5ICD/AMw7i4RAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAABwIAAAAAAAA=eF4V0m1IU3EUBnBT7MUoyGW5abEs2R3a1DZuUvEXmi3L3CSN9JrlB8tbgi0Lr06l8KVoVsia5VqaDqoVQZlg2zLMwMaY4DJGqPsgs0X6cRjpEu35f/rxwOHhHDh5b4efhH8YiFFXtZTwVSBZhr/J44t15J3vxunwmkDOaDwr9Q6BVP7RNzz3CqRvcETWirnjUSH5nFsgW7qq9W1wbll6rgcytZuVj2Dn7QzLY7j9JttH80GfM5Xac29F1wWN0mCOGX78/HTCBE8es813wlB2Qe0DGGMJaDvgkGK08g4U4uOsLVA1UTLTBM2fYkV18ED8flUNHH/xkr0I+aGpxDKYIMqZ1cEBdtCihgquopSFoumSQwyUFQfLxTCoqF7YBLl/+XER3NW9jVuYh+LeK44p6Oz29nvg+vrANyds2Demfw2n2y7brDRHP2y/Dy/85JW3IMukjFyH15o2sDz8fbT/WTn8tbhntQhmvg9r82GjhutQQ66ZfXUE5k5+sLJw8m5ScRbUtJ/9kg7fmBx+Bp6o4ZtTYdXwrD0F+pbVeVLam2Y7tZuqk9mT6d7ubG0SvHq4RSmBY61LBWJ4/rvbnAgv7SqMombujTHuhOtchelUhjcGd8Aik8dO7a3wN1INaxtLqWk+QqjeiEtOdQUkEuqMNncrNeQvi6UOqEZX6R9FyzMi1P/VGh6HAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAWQEAAAAAAAA=eF4t0k8owwEUB3DactjsNxRrbWWkbFFOUqRJSmm/NbM/tGlsk5YyB39arZQkpYmx46zsoJ1oDg4cODhM/rVWikytrKTG0i9ZfsXv+3b69H2H13u995soplm3SS+SW+TGfw9Zp0bwJ1KUCna1BWsFVSJxjWA64YPZqBFyL1bIF0agbcoC+9VkLE91boO8k5NShxneBodh1GCCmynqe5I3wK+lIchuDcJ49QDcz+vhjawH6hY6YbKxA/oZLezr1kDmSkE5wcBcifZpzpawt9L3CXeTr9D3/gg55T0ZuIROySmc+D6CIfMBnG3fgx/bEbgSC8E3dg2eRZfhw04AatXzcN3uh5X1M7DgmYZunRc2eCeht8oFW+rGodjjgMfFMXieGqX5r+1QVEHmXDZ4kbGSiySvIiUZuvtTmIzPkWo7aeolza1kuIlUyMjV8t88M6S0nPly/gPo/Mr5AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/QAAAAAAAAAAQECJjhITFTxqiZ+kMATSPZq84pRrdOk99PsIyX/h+D2KSNv7KjEEPrJcznSG/Qw+hlTELQ4BEz4gK2ZLnzEXPpFneOdJsRo+6kM9xFs8HT4UTERyHLAePiOx5VncCR8+skQ7aGdhHj4x8vG3CeEcPk1GrnUVvRo+IhIx3WIsGD7d2efETWIVPubdQ/YCixI+CjhjpNSSDz44kCqfbm0KPk6huKkRxgU+LoGQi26tAT4VZKvlw0/8PWIkHxeCYfY9jB44P7V68T2Z+jCHBv7qPUQZWEASnuQ9WmfktEQt3z0SXsb2m1fXPRKqcritUdE9c4E9a3R5yT18FXagmpPCPZxWyeuC4bo9Y7uWygBNsz2dSzGkcoOrPR5DJ/qydqM9TlCJHSRcmz06E/NhyR2TPepnOqQFhIo9nsrrIHJRgj1Fc+sWDQZ5Peor/QAbIHE98gUxMEAuZz0nsOKb31xfPevRkpe6EFU9p6ag9kcYTD38zIQKCrRCPWDZcgXCzjg9ldVNX85LMD02f7myCHAlPcKljzFgERw9pzG01Zc5Ej1QFa3E/b8HPcihftaExf48veFp1P7Z8zyGfdXilH/pPM5c7FcNS+A8IW+6QI/S1DzLxhPv5GvKPDxygzQ/xMA8HoKY+VYotTzQnTxQN6eqPCWCKCn8uaA8/A6ORB/vlDyYLHvyeB+KPDYJVVPaQIA84LxBuVQrdDw7ehp5HPZoPBR2FO6Kz148pNdty2r3UjxumzS/xEpHPJFzjrjWiDw8aKA7uPRwMTza4+VXq1QlPIeS41MtwBo83F8OUw==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAA2gAAAAAAAAA=eF67smTL0sP/lR3EKubcewikBZ2OKn4A0rvUQ09/A9Iqq8yf/ATSm8T+Bv8G0nJb0v6BaNfYEN8/QDrQ4WEhiNY5frYJRJsVLe4C0TkGzn0gekH++36wPN+WCSA635B3Iohe1WoCpi+ccQHTWhVeYDom1xtMr4uB8PUmeYDp9MVuYLrpCkR9kqszmC547wimBa47gGmN3/ZgmssTQv8/bAeml8RAaHduCP3ivC2YZlsKoblaIPStbAjtFAWhnf0hdLkbhL5nD6ETrCD0L1MI/cBklEamAR+AO44=AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_69_t_69000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_69_t_69000.000000.vtu
index 872f55899d3302835b9867f16ec6a73365f431c0..a1d28fada61206ae639c5d7d770ad8d46a925910 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_69_t_69000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_69_t_69000.000000.vtu
@@ -3,37 +3,40 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="150" format="appended" RangeMin="9.9991815952"         RangeMax="9.9999738138"         offset="0"                   />
-      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019720863965"     RangeMax="0.00019728865385"     offset="688"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2012"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-2.2964028797"        RangeMax="11.304460065"         offset="2096"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="9.9991932452"         RangeMax="9.9999738138"         offset="684"                 />
+      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019720893134"     RangeMax="0.00019728866412"     offset="1368"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2692"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-2.2830778751"        RangeMax="11.307066982"         offset="2776"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4408"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4476"                />
     </FieldData>
     <Piece NumberOfPoints="76"                   NumberOfCells="75"                  >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.0010131040743"      RangeMax="0.0010133745217"      offset="3728"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.025033109676"       RangeMax="0.025033378532"       offset="4452"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.060000013188"       RangeMax="0.060000013401"       offset="5120"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.8564948316e-08"     RangeMax="8.858638321e-08"      offset="5620"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.0010000002198"      RangeMax="0.0010000002233"      offset="6340"                />
-        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="-1.0293767338e-14"    RangeMax="1.4185403026e-09"     offset="6808"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="7680"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="7888"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.001"                RangeMax="0.0010168363215"      offset="4544"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.02502"              RangeMax="0.025036843078"       offset="5276"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.06"                 RangeMax="0.060000016898"       offset="5948"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.5518660178e-08"     RangeMax="1e-07"                offset="6460"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.001"                RangeMax="0.0010000002816"      offset="7200"                />
+        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="0"                    RangeMax="1.4185409871e-09"     offset="7708"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="8580"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="8788"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9993175953"         RangeMax="9.9999738138"         offset="8652"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9044"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="9108"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9993175954"         RangeMax="9.9999738138"         offset="9552"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9944"                />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="10008"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="9292"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="10192"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9952"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10196"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10444"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10852"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11096"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11344"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAA4gEAAAAAAAA=eF7tzttL02Ecx3HIQsVFjoRdWFI4EwwSUpDN07bmnKXlcjV+CuHEkTo8XKSxQEQR8XwoIcOUgoSauCnNI0oXSU7EQ5J4I9JhK8QCZWpsC+bzfD/9EV109eL9fZ6H79N74DBOBaIVrYJrppcpNT21bzF91br3S8yCI8PcL+a3kKA1NzPGKR89ZO66BwL7TPOMzOhlFq6tW38zLXt6iZ/Z4JFm+5g/i7VfeTvUlxu5tudqxR9m5Jw9giv/sWjm2h73G7hC1X4d1zzRV8Od78ts4X4M9zRy/U/6O7gVnc/auJOzA13capG9k3vU0d7N9b48T07b/GQg2Eme0cT3cK/kScg4r4YsPZVC+kp05M7bbHKi7g5Zv5JHnjDfJUMS4dgwzl9koNVSPXkQhXlWwm3yUMD72ZO55GIu9ji3csjQC7dI2fQNsvY79j9wZJFNn66T4o1MUviiJd9cxP89EszlQ2qy+VEGuaC/RrrFmDdcVZGVm7AsTUnGLsHxSgWpdMGiD+lkdCx6SIZebYau5TTSevrvvXL0uVdw/hIUbkLTbippFKHL3qHvb8DyQbg+AjfrYUoPFFXAMAt8fQ8qTbBGB1X50KqF4TlQrIIPNXA4FW6nw7NJ0JIMPyf+91/yGDGsfR4=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAvgMAAAAAAAA=eF4V039Q02UcB3BAD4QKyVtABwJBCIvbEbshP3I/EByGEDOwG2ymBoJh7LShcIQK0ja4gMQTo3Y4CETHwObJGJY1WMiPhLmYyhjIPMCJK9FT2JD40fv71+ve/3ye9z3P5/krSLh5zERmWvn6kxcmyMxTAtG/R5FDnNt66mFdcNT8J5Dsu77Kg1yVZz0L1jANgt0wTtPkR4UkVdJwLNQ8WPQOgM/K2I5hMPVA6aIrDLiQyfKCI5stgS/GyUxO92TxOiS30RsNcFlmypqFYdMmnQrWdtGDB2DWTs/EeqhNtzPlsONSsaIEil/Q9lXBKd6J09nQ26RdOw5Hm0+ucWAApaeVBxtur74ZD62q1zlJsLL5XuBHsLT2XRsDxvOHODHwuLBZRkh1CEuiQ9HnUcmxxDkLohNs+L56exULKqSNG9Nhr6vjtT3w+bzG7TDRQ1+gz4Tmmf3niiBr3uiUD1up4fJqos8jTmoZ7I/u/KYZdldG6C/CTT6N6Tch1+v5b+1wluLys46Y2+eQp4X8lMWlaZjwOpw3Bv870kqywaDQMto/8IsOs94F9+pgi9SsEr3/Lg/2Rk5xrZ51hz7+5e+FwFJeXYsfFNy1zNKgm9HiRYHhc3HSOOhrW88i3o9SsKkwBfaI5Wo2lNBEHVyYV8FI/BSuHxwRZsGlqabE/XBh+86VfDhEb3+WC+0HB4RFxBxFxZdfE+/NzHYqh8yMeEsJ/MWvdrAaqvZ+WyGBuv5oM7FnnlZ7/nnYEKTktsBtsfT2Bpim2xGnhJEhEWlyaB7MkN6Ce9ye5qlgZfdozhC8rUxY7IUT16U/PYCFzh7zOjhNc6bMwv4t25InYVl0zVsvYdVThaMVLq/UhDhg7yNsd1bsyJrTP+S4I+cPHyA7wwIn2Q1f+Hv23WMkuEUQb/sAPlTzbwVCj327PGPg5YnPXn0Ib5hTV9hw/IhmlQETc3ecT4f6o4q+ZNgW6fHnIWjYy6ZmQruWWyKAsZXD1Fy4gTPaUQwXDLJOIXxlnflYDOdkkqtnICO0fVctNK74OH0H3z679Ucp8W8n5Oo6SLIbGZeh+PsErQye642gXYNUctdWOdxImirqgqEtmYPXYafE6P4HPMt7rL0JBUbSch9kSigevdCfEcO6A0frnnQOwKvH0ub0kMbhqUfgWoxo+T4cdH3H3wDNsZfOmIi+hdULY3C88FDpFNx95QprEh6m1W+YhuyXF994BH+9p3R5DHV8ccYMVC7FffUEzvh6+Vvg/e6HTXMwKuyUN+H/EiA71Q==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9K1NDbVTTc0MzE2MjZINTMBADAsBIw=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAApgQAAAAAAAA=eF4NlHs01nccx3+/p6J6UnPJfZby+yDxaOZSx+UjWniSSy5hk4lGhcwqXcwOyvXU8HhyL4eVMzZtKJf0+1ZnSfRkZUtbF1nuWu4hPPv+9T3fcz7n9X1/3u/3+Wr1nHta8XaWX738joOWA0OMOsTu5xY4dG/ulQy6cGgeNrjO6DPA1r8VR8QGgBtbrkwob6R3w1zn7+IBlySGjpMWgOkNj0dXuQEGNTlmhY1zOHNYoLwpEtC41jZ5ixVgoGzLnzcSAD8NqGl3SwIcUky32BEKePDJZCLxB7S+OZHt28Hh2f7gqcQ4QKxdOLrrBKBw0nUx2RJQ5jHt8/w8YKFXnadOMGCWQczYzyqALmsPfOAp//MXWXw4B7jW2K+tKREw/vWVFiddwDXlOnoiqluov+x+hCrgLfvB51dKOcxffMWE/gBYdsd1hfduQJ2K1P68cg4Lox961BIOPe1r9IOoflyMW1IwAfwxyFw6Tud37CzuMZ/icKBmQ2m85TEH7YoGzRNpgMM73CN6NQDdVcw8XUs4nBx9YDczzeHT+jYlM/ldvumv49venQGMUdX2cvEDVJdwrEgM6FYQv/KmjMP/yhKqWm938ttUYnG/uM5BNF1pOE15hXZeXUSPvnvQ38aN6lTKNn3dlEz9PSghgaaANntVLJ2MAfXUMsx7iwCvLXx5er6FQxtrpRLdWgMscFc42xwLOPOtZP9ADOCyBz7h19UAzR5nh0Q4A94LODvcSXO4XKzVqCmhfs7f7im0o3tHiXRyLwKeGpKV9K0FjD159B/uAGDUw6AGh+8B293PGL81Aiyw0XT7hfqhkJ0fFRlN+aW2UxM0z95D1dy4ADCgbMz6/XsOf1M8sucjKaB0tVnbs02AqX2H3uRSrteYMOWuD6BIOl8nrKa9G3Fdl0n1TsgjPCVfAGrGDcQEfzLH66aqWZnQXE957N0+oz7Le4iK6z8oU9/lifNzlxf5FgN53GaaV3WH1kibC+1Xc4faEW9Abf310Tkm//Knt2dH9K2f5ZtcU8932cv51kOGh7udl/ifLrU1lEsX+Je2AzkZO+X8m+N+3sYZ83yUuDJMPYkhs0xPBbeeIVZHAmUhqov8AY+O8q5Mlvjva+UGI+V8gtP1b2L8WHJ1s+l9mS1LZE+Wq/g7yvk/VpmM3p1iSGunvciymyXMFuvCsUKWhF5TGci8xRBB+h4T2ThD0hbsApuAJXpVAVaB+xii61h5MVjMEqlF2amgRyxZ07DRt62dJQMlr7ZGXmaIzLAoReTFkqqhr/xflLFEoVi4fUhDQIY/Vj+5cr+AbP196p4v7cOvMGsb6iIgvrlu5bvoXOJhcWbeCEPibtg4KT5jSV7OklNaKkvSuu7Eq+az5OUxvQ11gyw5o53Zni5jyQ393v4VF1jS+LVWyJg1S/KTd7/tf8QQvYoxq0a6p9ncZEH0BENeJGmAFe2lIGFqOOuCnBeqQ47B/CJ/NbZHyaKbIffXGCdFPGGIgna4quoS/U+sNUyrRhkS8kAocqmS8/Etjc1XQxmyWvqu/lgKQ9CAWF7vW+Dniqq7mXDK17j5fg89j8fpN1zaxZD/AXzDFww=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA/QEAAAAAAAA=eF4V0l1I01EYx/GmBWVJURixOQMztKJ2oZGNYAYZW201zWqMrW2+LNMudAvXCCQxdKN/onNImw2cFZWTRaUoG6W2hBkR//UynYykwim6oGzsQk37PVefq3Oe73k4nV0Ne8875CKxwHzsFLyXd8t32CkXpaRJZy/D8e/NGTqYkLw8UAEPsvtGyYKjgu2VMCvmU5D2ksRTMsI2rZMPwi2KKti3hfucLLJkrpE3/BNFeih9zzWSAwGOjXxbY+4m7deq28hHHGMNua72Cshs77lvdH7EK2wg4/PTSZrDpg5dIStMSg91RXt5kXLY6t79k7pZU0FAC+/uyDdo4EP3hzk19cd+cVXU9WKGo6S5jMtG7z3L4wXKYKnDYS2BxY61qAwqhLmDEpg+eXJrMfUrM6dFcJi5miWkew3JcD609Mc30v68y6xnP6wb7gnxYSQ43pgB854svd4GdV9XulMhf4TJXcbe0wt/1P2Gq89qrTF4yFneHIXxnfr6T7Dv3S59EE5scBnfQFtTtWcABlk/3wNzLtZH3JCZ8i3eh5uZhKYdVn5uEVlg2DTZcRu2LUhUZqjtkfYa4Mc9hqrr8N+Xzsd6uOnvqlYHXTKnXQVDU0dOKGDKkrW0DB6/FAjJ4R2x5ZUMNi70/zkD07LHWsUweUF98zScW5mdof/0HxW/FwU=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA1AEAAAAAAAA=eF4d0l1IE1AUB/BWD+IIJyNNHzbdg2EWPpgsTXIOg7lybn04Jyk0Y2NMCwTRF91szIbFaMzUKdvDZkKyj0rY1BkizjBk9hArJ+JklCk0MWUNEdPu/z794HDOvfwPx8Az8WtcIwKjv9csIkbzrvHkRPbcp5CCmBEVyxuJxSdTnfBC7p4O/umRGaDk/KkRKpRhE9xyLL+AX4PrZmi9GLHAQE7fAMzWLwxC34pqGM5Xymx0fl1LPWaO03rWlwPaN6AX07lBh/0VrM5fo+/rJn/Qf0fLXvdAltDfAUviZ7TQe5LXDAtX3RIY27laQevvOAW0bzvBhB82T38j524qsAQjre0O+GTc2gaLZ56XwsOMz8kG5Fb+9MC0CkMT3EhXnYNcRbsTe/vFf8+HvrgsVE/M3JoQwVuq8sUHyP/PVQ45s96394kSg4AN2Zcau+4RnY8z1+4Sg9b+Mqhm7A/JiOGFjr9S4o2XN+uh3a+ZqiO2WM5yYEDOMEmIO1Jhqpb4zfisFTLfKLfvEBPRR1p4FNxI3iZWebJNUPDxCg9y5fkhMZGVG2uD6sh1LoxNJ77jPjRx9xB8WprTDJeKVi5Dr1pzjLspCo9FoI3hnYTq7oc2+B/J3iPSAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAVQEAAAAAAAA=eF5V0k8ogwEYBvBPkhzIv5OWA7t8kxLTajusoTmojZUvih2mtAOl/GkLB7GhDbVsbbZh3y7UpkVKIdSUrL602jIHHGYrIlJrOUie18Xp13N4n/c9vNGDxwHd0Z7yMiVA93WXHtmzCqU5H7SUbcPkMTn8SsaZAFysJvdFZLiJzMpJiZrktaRX8z83d5KzLeTSXx/3QnvkEXLMQE7mtmC5ieRim9T36YfmLN3t3PBC5ssDjQVueOt3QsOJA2a4NRjV2eBTwAprFHPQVTwNE0UTcKd+BC7oh6Bjtx/2NWhhyNMOkwoZtFdIYKFYBN+tpfCw93vw1/PgG8y77mFQLUAhdgqVPWGozfqg8cwOO9IzMD01CiMOPfSrumEd3wYzkVbI21jIsbXQsl5F84kSKEsxsDKUxz+IVR+wceUZzi+nIS99gIHxO2jSJOHVRRyyzA38ARRdKCk=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA+wEAAAAAAAA=eF4V0l1IkwEUBuBEjZJgJJolpbLS1sxKWxZuLbKB1S4czKXZNocXYwM1+8i0LFvL2WQZ/s6V04GKK5et+iw+yG5cGGKF0g8UGaYzlUGS/Q2Z1nuunotz4D2Hc6YDp7XpI5VS/5R4w3boM8ZOql5WSms/FWQ0wG6NlH8bJqnj3R0wmc8mOuHNQSOfTFP615LcvTdTVG92s0/IzrIyK2leVZ0ht2os+0i36NF6UuD9PncHRtfbxsiIcwssqble5SI9OQM2MvtUVAWZGdqRT1pXud1k9XPnIs01UfjRQc76HElkXuGBGgflbs642w4v/jzSaofXruQebIPy0V5LCwyW/2Wa4LdXnqVbUJQWFbRBnrb+ghW22oXFtXC5a8J7Fcr6vKpLsE/bKz8PhwQuWyl893B5o572rh6Z1ECdPvxHHvwX9kIhh4Ml8sijsKgzsCUTjpv+OIVQPc24EmBI/0EUDTlhGxMJs3gDZ4O4Q3+jQBaA2b9b1n2BM1/L349Du5gd9kHpA9ncUxhf11TQDxXHU4RdMIIrLm2GoWeS9BtQYooxX4aPf903MnBInLhooD7P0iYd3FYlmcmHe1ZeKxXwpKFEfwIqe3hxxyDzdqfuMNxV5M86BA0ms2s/NHOsZS+MrVHPpsKGOjcngDGf14SnwPn24QX6p//4/Sw5AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAPQEAAAAAAAA=eF6t0s8rg3EcB/ADUWgT9eRg5fCo7ZFWS0nSmp5S0mOMg4Pmd7NhNIVw2MlBhJ7SHJQd1PKjZCkXh2+SbNMWu/mxps2B1kTPYeSR9yf/gdPr8unT+/3pM3c9opUGrOZsfS/8cOpLfzWVt8GNcxsMubuh7YLUPJPs6X/923sWIyeOSWmP7HORryL5+NUFI35yVCB9u5SbfXdCWUdq8zpgBWuHXLMEg+PUV2lspblwCzTci/By3QJPrpqgfrsBmrJ1sDpihGqNQPlLeDg0q4MBFwd5VQOXjYWUq1jF3RNBBd7yGcgmU1A5uIOG5A0sqwxB6yKDuc9T6Asfwf14ADrNfrjzvgVfimSYlldgz/wS9Ka9kD9cgEJqBj5seuD0qhsW5I9Be9QBudwwXJsahNHaflgl2uFbjP7pB/6V2Ks=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/QAF5O7zLQe9o8ZagfUMpjxE2eka8zKkPQbvZFtcyb49qrlO/uOv0D3xC5OyxZ3ePbRt0GgpKuk9+AGfFT0M8z2Sb3R/9fv6PUg6KVARFAI+3JkgHkYXBz6SN7F9u0YMPuQtwkw+rRA+pD2XAiQFEz44pPDBcwoVPgxK2v8boxY++rjLtXe9Fz6KehjDMlEYPoiDAWXOXhg+L1mvZ8nuFz5IueCh4Q8XPtzpzS9I1RU+gNaN9QtUFD7y8m0SLaISPuZj6/Ra1BA+zH+8N+T6DT4oWpxkWVoKPoKZ+w0x4AY+MMZJiVufAz740RnVW6QAPiUQ27aT7Ps9WfeVLjQw9z1bYKIX+xDzPWnXvk8jD+890FEMG9kR6T2XiQ14TA/kPZq5jO9G1t89IGv9s84P2T0CrXt4UJPTPTqHyaDfWs49wDECdDldxz2439SC1NrBPQIW+oJEHbs9CrA4Jfp0tD3FdphrgKSuPXzWKvmM06Y92Lx5YcTgoD0A2A/1dN+YPZ+NWGuXL5I9ZJPSyoRgij0akuqxGBqDPUCSd2Pbmns98u/BNa+vcz1sSstmje5rPXuk8eJhz2M9yHrV2pkAXD18WjmPVaJTPTf7R2hji0s9TpEMtFIjQz2jraPYNKc6PV6JIawrWDI92lG/wIJNKT0cqT0vYlUhPa00FZoGBhg94ls7qeZKED3s7gfEJCkGPYUp6m7ZGv480nj55phe9Dy2sqm4NnnrPAZtVLKTe+I8ZminQLDb2Dz1p81fgqnQPLCj60fmG8Y8guBiBeVcvTw05KxcUYizPFIO8ZTFtKo8arMfUA==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAABQEAAAAAAAA=eF7jX+7Tt+y/skN/bonlFSA9v37tsZdAmiP8zfXPQDrNla3tB5D+93HPxl9A+sIVy82/gfQTnSqtP0D6y55NiSA6Sdi1GkSfCpFtB9EmE2f1gOhpKWr9IPqHeOgEEB1z+yGYnuejPBFEe9U7gukiPn8wLbM8BEy3+oeB6RU/QsH0nIUQ8fnHgsD0oVUBYDqjzg9M3/b3AdO1Ll5g2jTaA0yfm+MGph/yu4LpsM3OYPpHixOYPtECsf/3SgeIud/swbRVIoQ+/tYOTC/ogNB9VhD68W9biP2nILTCMgjd1Qmhe4oh9JdECH0nFELf9YLQLi4Q+ogdhHazhNAPTIYHDQArmEIKAQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
+   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAA3wEAAAAAAAA=eF7tz9tLE2AYx3EQRcKFTqUhZBSeQCtJA9F52Obc5mHlnNPWhbBANE/zIjWDsImIkaehFxNxdKFgE5xi1hQjIhFFPGFDL0SaTEG0C8/ohPW+z++f6KKrD9/n5T0dp0waHN4Iifa1e7qXufbOYt9imm4V/FxkBk8/+/aHaQ7zXd1lqh+Ix86YgVVW7xHTe5hsuGQWh6/bLphCH53Iw8wNjsq7YjqqVTu89zRxLVyXVS655uf/sIdyPx4sVHJdvf3FXH3tURPX6rDUc2ctyvfctaCTFq6np7+DW9PZ94H7dWagi1snsHdyzzvau7n3B8PJqVEP6fWfJwMV8WbuQ62IjL1UkC/9Usmrcg25P5FHfmnSkaZlLelTWUQ6H8HxEayvK9HyyELy9A7m2YkF5Jke+2d888mFfNwzv6Umb9x9SiZP5ZJv93D/q8/ZZOuvHFLoVJJ6l4r8dA/vPxFhnjIkJ9veZOE/RZnkrhDz5gQZadyAFelSMmYRTholpNQNX8xlkBEx6E0xeqUNupfSSdtNtM6Ivj0IZ6Oh/glM2E8jDQJ0xXd0mRNWW6HfGNwwwVQzFNTAgEY4XAKlpbBeA2XPoU0Fg9RQKIMNCjiSBrczYEgSbBTD34//+y/5F2AzeQ0=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAA4AEAAAAAAAA=eF7tzt1L01EcBnCom2hDx8Ao9EK0WETFYBblXD9nczpza1N/tUZ5IWSCRUFmSb4RTJLypSQDiUCTXlYjKkwEXSGiIsOboAK11+FVmlTqqp/UOc9z1X/QhVcfnud8z/ecrrvlZQN/0rM9g1F7p9C46bZpRjit6S9GhSZt2+KccEkLb5kV9i6kTiwK9UqF6ZvwbFbmqZ/C5vHcoWWhLj2W8lvu0z8p+SUcfjAVkzlxLPWydNBcbdeE/Z7gBmn9+OGTUp//nF+67qqlUZr8Y6Va+rq7vFl652haUOoOhFpw7/3jK9KGr71tmBsZaJV+39HeLo0vpMFL11dgLDIB/Xnma9LK4Y2w70Ie/DKaBbfe9EFjghv2V6mw8FMxtO4+BJUkOq/y/N5aZt9zzlkiJTDyjPt2fS6Cx2sPwrdRL9R5+U7DDQ+s3X4AvjxSCL07XVBzFcAmlf+tOJYPU8K5cPKWE4atDli2nn1lPAcOPdoPN3+0Q2cde308G5rr2asZzK4eOtmhwOU5ajDS7gDtC+2DSbP0RREtDtIxA12y0K43NtgZp3ue0jWj9HQHfdVDdTXU1kSrTlDlDM0J0Pul1OCm0yo976ShfPpOoQ4HrbHShzb6IYM69/6bV/0//AtxTnmhAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAvwMAAAAAAAA=eF4V0n1Q03UcB3DpiLwFB0vx8Amk0emPI3Z6sykwN4IpM2SghIPJfIgBecFIiceU4TY2HaMBC5AKkmAEwkwukPDaSSjRwU4ebA8+jBQYKFGoiEIgvX9/ve79x/fz+X4/3w/378TdlrsEu41hPae7R7CdNeYLacji9OdxFyGzZJEVA4nVpe+IoIROuIfBacmCdT/UiQJqGLDe4MVjwQ63yOp34WbLv4Xvw/0PadmuMJc/070ePtgor39mI9jycNmSE3Je77ivGXl9q2LCAd+wZUV3wsqj4/o/oMWjtK8aViiV3Zehtm02oABu3aszl8CAD1+uJMN0L5Y0E/ouUaWHoCiXv00Ev9FySriwcyx+KhJSw1j1LBhY7p4dChsJ5nAwFBxe3BICNxR4DrBhz9NfTGRusRtfRsBnC0a3MOjI5BTFwWXv8sAomPFPkjoFauyhBxOhy+gxj3yoV/0gk8A0dd42Lbx1+9PbMti23L7YAH2cR/gXyfqf1Q5fh8nF64KukH2iir2HoC3/zORN+GWwa+YEeW85x2KDRKpR8wouJgwYZuDqP3n7KJjj9XA7cxVkxNmqNsC541MCKqw27S0loNNs8DpfyPstPpoJH2bMKuhwWKByCodDOSJTCFweYlj48GBg7kYeHEm64iKEff2C+li4mDJ7Uwy9clXfHYWJZ6jhGeT/t6wNPgn3lEmv5sEv/KJaM2Fz8wmGAtYW+PsUQP7aspmvYD/tg/bz5Pk1yfPV5J5wDmh08E7sg2N6aBJX/VoLawTNu9rg+BpV7GXYGrqv0Ag/2Z4tvAaFRzYH9UPfuccjPZB7hCu0ku/MqukahFaRzjYBt6eEONuh/kf3hucwjbKjYRquiBeanLD3OcLT6gXk1L6kEXfkp9JzdW/Bx541FG/oKtLe8YRPzHRmACx68SbFDyZEbwkNgnMFA/47oOSalhoBPShZPhzoE7Wn7GPYnjE2eADK4zSGE5CRXUwI4egTxyEJ9Of2e6bCC8WcU/kwom5elgnpao+lIrJOIU0shexJlaMUHv/vXouarNd8lfgWptcpYypgyNldNxpgleKjyO/h55XJjQZI652vaoLlslWjHZDzemJnG4xPf5FqhCLaIK0LLr0dzLsFf1Iqxd3wlFuaoh9OU7tWfif7f13iNwTVfP0rE0xZ+jnQDFlhpsMjsHfwUstdWOFT/Z4V7rxPabTDyo5HJ+/DsksGv0fQsdVE/wu6bHpNm4AJxNmcMbgppkc+CXOoTbsd8Mb46c4peD56hk76P47ZMbE=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAApgQAAAAAAAA=eF4VlH801Wccx+/3Xv0QI6WFmFy+H+YuWubXrHM/kRZJP8ZOpbooK1RIpXBj2ubKqN3Q+mEStRChH6PJ91lNGetaqaWU3PKjFIp7I9x79+yv5zznPO9zPp/X630ez0lWols1LJ68n+LxzJZPQtvWLM18yWL0nHrLAyLAlo3C0TE3QFmXRef1URZXtB7MjEwB7P3cLMlnBeDyHvu2bAfAkZtfLWpdCXjJrvzg4B7A9MP2z9zzAcvuJq6OZwC39q4VvqK5ry22+42cANzr/MBw6zbA8WhWMETzqSFLVL5ZLL6c7vw2Ph2wf5X530W7ANfou9Q4fAMYN5AXqHcEsFki/e7QHMD51jNPhZgDRlf11C1BwFzTyN3+foD8gjd1VkmA1YU3pR11LA47/0q0voB3VJtjTe6xGPT0qOnDIBY/vfNi8SZrwGC9TxTjn9HTQa4bu8BigvqiZ0QMoH+aKuXpJsBJvUaiybGlnJNy6uR2yoHXKtoZCIBm+/sdr/iweFwwzesHA8DQmBaFcz2LhR9aBoXGAao25RcG2lIuysZlJAowp6R7QcR7Fr2MbjjOdQFcK7aU7JexeGNBZXJmD4spbPjkPvpufdGUpQJHysmAX2JzjcXUi89ljesApx2Rmw/sA9xf+M+Q2h/w2xtyhxlWgG82Gt1v/xJQZObsvehupfjpgyX2Pa6A+rePibOCqY+YoXln37K4LXt3bWcQ4Jj09sAryjFKzi+NpFxKE5OrztB5RXpHtzcKAYVql4CyjykvD/dD7l6Av/l3ToxOBcyKenvktBzwckDBX+8pr58Yu/JqD8DBA4vtLmcDGojD1/5C9/UNPpD2Ac3HywyUov/vXNut3BxAD5uJbs1RwHsJPoaPaA/00jTSWMrR9hFj9IUEsCQx5qo6FvCP2VkmudTr5oWX/MXU46Xz8d3JI0Oc+qMu++9pD05tWflc8kjN3bdRtoXRfphWOG23XTfKCScyRXszqTdr6Xj9DsA0ebNbxBoN97NgB8kwfMf1nzBOtKFe8+t3dklmarlj7Wn5yuwx7rBFU07fLC1nQGz0Ty/Wch1KmbHxdA2X/q/qRWm6jqucVf47z4chUQFOgaf+5BG5J6lLceCTkHUBtqenMMTtQsPI4+M8wgY1vLq8XMd51CyNf1E5wV0w9+sN28Ej4eM7nwcrtFyb32uBop5HwiyLynfZM2RD+/CPPet1nMza5spDD4a4Zj2BvRKGmE7bd8Y4nyEtrmUZIa1a7txwsXGjgiGHAnqvPmxiSJpmvkxL9zipEaxq0jDEs8MwTkk9m7NO1lVqhjSG6z9pfcAQzFsYXO/DJ261MVsKHjPEuzlM4qtjSM1rtmjAlU/GWqyHGCeGqJsrar2KGdKUa9agqWCIbAHfr8GdIcZdyfazXRmSYCEeKlmm5U72eRvGpei4GcWtquEMHhF2dJkkium+UyShjgU80nR+ebJOwJDViuhE6QCLewKWLbLLA2yr1neOHBzm+o5duz44T8c5njPJdpsL6CLsXKkSj3IrpCodR/t5prjW7p07YETH1to4PuAG7W6pgv4LSd1n3WNMAR1HolJLUwH/A1MsHQ0=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAABAIAAAAAAAA=eF4V0l9IUwEUBnCSHqQ/w6yFiGHcEp0LbLFKCruBabfa8tZ1c9WauysFU1orB6OcriFGhTqGiXMwGE4yS4zEIEolW4lMyJxp04FEVGSUptkEjfrO04/z8n2Hw1l98GtMbeLZ5FhP+hEPz7qiL7u/d/BsvN+TLTbz7LaG4JXLXp4taWa6klp51jxx22KF9ZfSE87De6pw7AJ8NnjQaYKfLGWnaR4bnrpDbq6Rz5LfnJF9F6EkknmdjO/WPiK1T4UQKejC4+Ru1fsh8nB5rI1kRovKyJvqtCSyNKp5THn6XScVZFOWz0O9i64PX0SYaj8jJbV1J7YbYfKob00xtL5IeUL7jvxxy/Qw89qC4Sx8KPNwOnjqoyuqga+rowkCtM+PTBfA/v2FShXM6TQkctRrTTPnwvmK6rxDcGaOcWdD07+vwh4oXfpxVw5X3X05O2F7gDOnwCnxZ8YWmCXhreuhb0YhxkFvXMbKMu7uVRYJc7A1knjjM6yvtNVOw+GOdc53cDD1WN0QzDUebeuDNVv52R64Emgo74ShgeBeP7z/RqJtgY2+3slGaHi+KXgL1p6rYhxwIq9g2QbH+xe4q/BVaElaAQcqFcWl0LZxkREpt11u0EONI7BBB1tCSlkh/G3828XDqvzeJjX16Q9MHod+7Q4LB8PetSX50O6QvqV/+g8bUhDjAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA1gEAAAAAAAA=eF4d0l1IUwEUB/CHehmCUJAfES6IdFOkZtEwpGlFqXPqXO4rAjOEu0VmOXbXbK1G4aYThIS6Ygb5IKLMxkWwPQQWiwka102obaEkRSTlB8LEpbPzv08/zuHP/+FwbNF/n74Mc6pp7VP/1TecKuRM5F0c4VSp9ntN+TQvCqFSK+kK2j5fI5+dPTFoJo9Img+byLh74xH8Gr/RBgM/UnehqyfTAc9HPDYo8WSzUJDpH4h7+bYTJjdXuqA7NyO6Zy8XDcx6xVyG/26HloiyE9awjna44vUysI6pvAkbvlmNkDF+0MD7BzYrYYWiXwFjV+RSKF1QSuDgbvG6keTVFgF2bugmoKtF7YFVPK+Fyp2dfJhiuIQBvf7jz6G+8dwlODk1vKont9kLPmiwFkhFP96ZaCYv93oU0FCWCOB+OlnuSXjKtz+gI2Vv2f0mMuuguw0udckjWvL2ECeD6ex0dyN5+rf9VwMZzVNWQ75EP15PFs0vHYItfPihhrSEf/6pI8eSu61wZnRsWU0O9VlvwRLfq7Vacu3l4yfQ4T9zDP6NvntfQ5oL9xjofC0chZG5rVg18qacAVgxkjTDuLBcBM0FM2n8TXihPAYXr7NBGDTVv4D/AacgKLE=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAXgEAAAAAAAA=eF4t0k0og3EAx3FpLDmgcSAvmYOV5LKUHGZNDnqyMHaw6VntsnCww7xu0ihl8rLEtgdLDkpDUnbYhcJawqxnRUYyYnOgvIytxvP7O336Xn6nn7t4PNrs3pTs+E5VLX92pbqGOf1P2nbOwi0vzbku53dypj8fQn21FZZEnZBVLUGZZhnuVhHzKGJdK/FYTWQ6iE3/XdpGNEiJAiEx9kF2Z/aI8h4ik0ZUjjJQcumASd6/nzb45VqEudkLcKxgHg6656D/bhquGS0wbJqAloAZ8g0mWN/YD3WKXig06qDtiIahMiXUb1Nwv0IKqagYBthyeBDPh6KBTMjSCTVn0PsCQ+fXsMF+Ap01HpgIbsC3WQf0GSdhjmcIjui6odmuhrVaOYwHpPDmRwzpBxFMWovgvUAAGU0GXOlLgawihj9E3l9hFhWB34owFPJuYYK6grLKIJxavYDixzP4Cxg3Kx0=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAACgIAAAAAAAA=eF4V0G1IU3EUBnBsBQ6i9aGFgS85u6aou8RGRG43CgwX5KJRa6XVSFOZpS7zls20u7yyqMZMy02MhIw02bKoLIXJIg2XSi9oZBriIuZwNc2tlF6e/6ffl4dzznOyXX2O+fEqRrqdi0gGWGZGFSt987OSsfeWcPP/WIZtrdWd72EZUbl4zT0vyxQmu5bMyNXpaYVvkGUULyh3HdzdnD1zG7aHK0K34OZlQZMdXsvRB5rh5I+FaaJyk/wR8bVkqoHICXxniSJv9VHiM/2GPcRQ3JmtxOL8PwnEd5O6FcT1bTs/kvmyaEcLsb/mVBaxvWth+CaciL2eTjTJRrRNUPjJmNUIvztNsw3wAMVk2qD6MJ9mhTFJQ86rsMtd0GOBd5RfM3l4nMvN4GBg+OWlahjtzaXPwQqbWGqE5vhZ1gBP/lYI82GySDJ9BIor7VEa2BJ+XKqCFH9XtgM+SO0+JIepTMxcCszpH4iKI73k4s61MFioXRaQuxOLVkfw39BS+qIfBv3Ckc/wyoTONQo1bwMPPbD2ldn/BF5WG053QAsl0rRCwVj3fRucs9AXebj4a+zLBZhnOjheDt1Un6EIDj3l247Bjd7BKi3cG78vooYl33zrVNBjrR/dBf/SzkQlPJFwY+U2aLTWlMnIXt+WPBrWTzk8aXDVh6AjBe4vbvRTMPy8430S/A/x0y83AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAWwEAAAAAAAA=eF4t0k8owwEUB/CiSf60LX+TWMvkoB1otURT0yztz8/f0bBGFlmZlvanpbkQbRxcNhzsIHagfrlws5RCDraLPyX/FbbaYVwkft/3O33qvdd7r9f7iabj+hFGFVcOCQ3/lusHJZzmUDqfUy31iTn9qWwRZ3V4AioWDXDzsReuJLvhpbMHXhlJ3wD50keGTaSVd5lXzHvdT55r+Hw96RCQ3080x7ZLah1kuIQURLrgQwWZme6ES0EGegNGmKei/fdYHSz76oDmmBYWMBoYcqnhiayV+rqbIaNVUn2oEWbNyKHzow5ajqWwtqUSFjeVwMR9IXRV5cAd4S/ufnqUga/KJNRsPEPR3S1U1SSg3XsGU58xqPAfQtbEQo89CgMXEShZX6M4uwqNuiBMti/Ahq05mOvxwe0DF5y1Oam/ewqWvk/Cov1xyLyNUd3wKLyRWeF8mwXK4/RPf6xezFE=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/QAAAAAAAAAAuM0viWNMpjzWfz9Ici6kPbRPblQ0yb49MvyzJ8+v0D0xCd0a0J3ePXScXTRPKuk9XIhVQkYM8z0p71SuHPz6PSiZsGEhFAI+94r2rkkXBz6YU2RfyUYMPnjv8eNIrRA+Z9k/OCwFEz7N9hsReQoVPtxzgBohoxY++iQWSoe9Fz4HfJO5NlEYPssDSyrPXhg+8Cb7BMDuFz4+YsKD4g8XPg+vDq4w1RU+pMljqghUFD6lgTupLKISPl90+35d1BA+wMM0iPD6DT5HaDC/TFoKPvTSWUQw4AY+TglLSFqfAz7YG8j4Q6QAPpcX5jDL7Ps94ml11jsw9z0kOsXX8RDzPYwRpNsND+894G0cEsMR6T1k6JRyVw/kPcxUIegJ1t89/DWhZIQP2T1VOaaDNZPTPQHep1I1Ws49RNBhlC5dxz0Q7EMEltvBPSVHqlcXHLs9YDixF/9ztD2idqSz1KWuPURZpJCy16Y9mG9cPGjhoD1v1dZVleGYPaQZihbCL5I90p2tJ4xkij3ksZFTKxmDPVwY6h+gc3s93QDUwMaLcz0gYUG4fthrPV/COxx7zWM9/0sI96r6Wz0sV65LuLJTPVqpt9+ZcEs9amWqLeYzQz1U1krgh4k6PdODgLKeWDI9Wt32rLx4KT2IlymDJnYhPc4Hs3Qo0Bc9yVCpGbhRED3Ahv88oiUGPXm1KQaLIf485KTB3Xtv9DwjFrlUbKnrPIdtk7Pih+I8LnTZgz/x2DxKsAUWMbTQPHhs0y9oR8Y8Xn0mjbepvTwEq5sJIL2zPFXSj3Tm86o8QD8QCg==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAABAEAAAAAAAA=eF5bdNOnb9l/ZYeV3qWWV4D0pcx1x14C6XVn3lz/DKS1W9nafgBpPa69G38B6fP3LTf/BtKGBlVaf4C0w4FNiSC6RsS1GkSfCpFtB9EmE2f1gOhpKWr9IFpQMnQCiI65/RBMz/NRngiiveodwXQRnz+YllkeAqZz/MLA9KGfoWB6zkKI+PxjQRDxVQFgOqPOD0zf9vcB07UuXmDaNNoDTJ+b4wamH/K7gumCLc5g+keLE5g+0QKx//dKB4i53+zBdEgShD7+1g5M7+iE0H1WEPrUL1uI/acgtOVyCN3VCaF7iiH0l0QIfScUQt/1gtAuLhD6iB2EdrOE0A9MhgcNAAkUQIE=AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_92_t_92000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_92_t_92000.000000.vtu
index e07e74d0a6c43bfa73ead9e1b939a869108904ba..a8e093a3b8c439b09fd97672edce50e63619e558 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_92_t_92000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/SurfaceComplexation/RadionuclideSorption_ts_92_t_92000.000000.vtu
@@ -3,37 +3,40 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="150" format="appended" RangeMin="9.9989136465"         RangeMax="9.9999738138"         offset="0"                   />
-      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.0001972135183"      RangeMax="0.00019727889359"     offset="768"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2096"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-2.9715326723"        RangeMax="11.287810187"         offset="2180"                />
+      <DataArray type="Float64" Name="Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="9.9989252964"         RangeMax="9.9999738138"         offset="764"                 />
+      <DataArray type="Float64" Name="Kd_U(6)" NumberOfTuples="150" format="appended" RangeMin="0.00019721380992"     RangeMax="0.00019727890066"     offset="1520"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="2848"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="150" format="appended" RangeMin="-3.2275569238"        RangeMax="11.330036209"         offset="2932"                />
+      <DataArray type="Float64" Name="phi_Calcite" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4552"                />
+      <DataArray type="Float64" Name="phi_Calcite_prev" NumberOfTuples="150" format="appended" RangeMin="0"                    RangeMax="0"                    offset="4620"                />
     </FieldData>
     <Piece NumberOfPoints="76"                   NumberOfCells="75"                  >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.0010131142315"      RangeMax="0.0010133741658"      offset="3792"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.025033119514"       RangeMax="0.025033378367"       offset="4500"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.060000013197"       RangeMax="0.060000013401"       offset="5160"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.8565762363e-08"     RangeMax="8.8586397084e-08"     offset="5632"                />
-        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.0010000002199"      RangeMax="0.0010000002233"      offset="6332"                />
-        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="-8.005646452e-14"     RangeMax="1.2068934664e-09"     offset="6744"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="7616"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="7824"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.001"                RangeMax="0.0010168363051"      offset="4688"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.02502"              RangeMax="0.025036843069"       offset="5408"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="0.06"                 RangeMax="0.060000016898"       offset="6076"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="8.5518660673e-08"     RangeMax="1e-07"                offset="6572"                />
+        <DataArray type="Float64" Name="Na" format="appended" RangeMin="0.001"                RangeMax="0.0010000002816"      offset="7296"                />
+        <DataArray type="Float64" Name="U(6)" format="appended" RangeMin="0"                    RangeMax="1.2069067981e-09"     offset="7776"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="8648"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="44144.999647"         offset="8856"                />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9990956454"         RangeMax="9.9999738138"         offset="8588"                />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9036"                />
-        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="9100"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="9.9990956454"         RangeMax="9.9999738138"         offset="9620"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10068"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="3e-05"                RangeMax="3e-05"                offset="10132"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="9284"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="15"                   offset="10316"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9944"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10188"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10436"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10976"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11220"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11468"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAHgIAAAAAAAA=eF7l0d1LU3Ecx3FIGdjF2jQtw7pwIT0JIc2enOk86pxtekpXWpQssklLa43MsgettgYzJ0YqDCFSdEml0UVzRmHurqYidWEPRDK07JGBrGNRv9/382d09eL95Zwf39850+Yx8fZfVY6kkXlPMWc+Jc1OMjOnHLkBpue53T/H/L702er3THlc58EIczz1gvUb802D2hBlZo04lywwS+cbOySmGLzp/MW0T8f3LTJ161LXc6Wi12t/M5trrn3mPRqnPMx7/odC4HpmZee4CRcdJ7immCsO7kD48WVucKTYzX331evi6qulG9yyR4EW7sTx7R6ucltvKzfRFKJeiHGRKbXL27h1DyLUTWE19cO0NPK0uoB0NmaTzZeM5KhLT3ZP7iHl/lIyuFhGDv7cS9pWmMim9nLSW42W6WFdOsw0wzk3nuuPwolOnFepQrdU4dz8ZMyvRkTSOoY9woewR4cR88Kn2HfTUAneUxjIA8sw9x0tJiuqdpM9L4pI1TDuF5unI0UV5uZxfI/BnkLSdDaf7NViXl8ikJv/wIz0PNL/EiYLWvJOCGZYcsl9M/DeUA75KgntTkSn1EBL6y6yfQr6VsLa/XDVMP7T/S/wiQWu6YIbNsIKI7wV1ZBSPDoUQnd9hFYfjA3ArDa4wwuzz8OT16H9GLTZoLYSyo/AMyJ8Ww7v6qDCAAUB1hfAAQ1UamHCVtiwE37Y8n/7D8WzdCc=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAwQMAAAAAAAA=eF4V1H1M01cUBmC+CsI2yFadk01aSA10FEpAIsxBcYCFjgodkZJOpXxUoqWyDtrGokwUUQIqLnbWgjAUKptoZeBsDTIolYCRVleYMD6CgOkodS7AiOCEvb+/nrzJzb0n95x7k3yjWSN/0lkfOqyPLo3RWddaDcOFyMXfuNg0cDBk/Qof7uLNabOhfXVQkwZ9+g1T6dC65CpMgeqsub498JjVpmTDjR/JZRzoyqu1xcFtNO3LBKg7oQ+PgiKfltIY2MiLp4TAtiSjJQIGpM6qKZAyoOsIhJ9F6e/5wDPXJMFbYEvltPHtKJ01r7uTtQF5KWWQaUeO+S+w9V94fyxIMwzjZe+rn8MocciDbmisVz9+DP0UN3JbIWXW3VtPaHIXXIG/zanoTXAiaSDrLOxLnLFdhAvugb5KuK1oYa0MenLkXoVQsOwgyeBftxwV+fDUrz8ViGFooVafC9fMJXIRcd7alIbIPZR3ognN5l5nYr36Ia8+j9jvsrpOAn3HmIcPwY43sa4KeLONv0sKaaat90/C8AZ9Wwm05x2MqYHJYZKdRJ1NJ+s8GuCdGm3mD5Cq3Hf5Nty3o+d0M7zOUCi7YHkajX0XVk0WcsxQpRkNfQj5+ZvaJ2DcP2njQ/BVuLjIARmkt26zhM2czFWinu1WyQJkl9xM9MC9Ny15/r2OLL36+lMycr0lUfIu7NaxSX7wk7S7zzdD/4knE0QfnT5v4QYQ/X7ZaQqDtgfcrmDIrQn7nZiHDXPGxO2w6o+eAGJePs5fXN8Jn9SmD++GfMeUZzysdUr24sLKqvZTyTBCumf6K2iqJZ9Lhe69XxzPJOYosoC9F36w/O3Kfui8Mv9UAF9kRxblElrlyUJYevSM2yGoIm98JIKRz4pNR+AmhqpADMPqCvqLoZqSulsKx+WdlBI4Yh0XK+DWdPFYGWQeEc0fhznhKW6VcGYob6gc9na5aWuIdYYMZjUMpQl71VDoX+R2CSYORWc3QhL1Bb8OGuQVpT/D82edGM3wdaVuSwdUuEyW3obnViQhXVBffZirh9+1j/zSD6nMmO+NUGawNlhhRV93wiBR17Mq+yQ8MKAREO+8mJxw2g7NsRf7Z2CzhZSzDBvLPctewdgb1VIX/AOWILrsDXLkYut1b+QkGk/lAY8t6m2+8Jblvadk2MnYwQiEe8elm6kwzkN4IALeO3EhgwEVufqDLLi65qyMghzvq35fwoD9FaIE4pxJamgGnOw7Op0Kl7wu/JgF24PXRAJIs4yq8mCQf8bXOfB/0X0r+w==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPWM9K1NDbVTTc0MzE2MjZINTMBADAsBIw=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAmAQAAAAAAAA=eF4NUn8wlHkcft/XIdfGuH7YOzW32PdTjRIj0ZH7TJHKOFfR0t5RSjjdJnYVbruQX1miKNc1pRpGczFHW42ceb9Ewo0i0q3arETSKtJQ57jvX88f3+fzfJ/P83mavTxrZYsBPwt7P1rTbE4KShkfrorH8KRFEQHtPDoEemweWgfIB45mGPZPCW2FE3ptHuB2SM090M3jH1UNZVN9PKrPKTiL5YBPdM36Gz/Td9MV66+KAYtW+RQ0KgBra2PakvMBr+sNPd2nAZXbp7PGMgHrI00bLG0BrZfp/K/8Cvh1ksjLgeLe3dc3AkV1o4e45gvAiWpZn/wMYFracf9tczwWi2zGC3nA05UV6Rsf88gE3VKIqR65kCz+ifqdl2fhuiQGMF5rr0mk6PjXk4z5AGg/5HopLwfwQ8kTv/npgLoCR88KH8D27J7nlpR3u93mmBnFTXmVoUfW0jmNSU9fFo+504+0J6MBH4VMjVTGAXrvEA7HrgTsP66+YJYBuPS20t6knscW+2+GJylPapbeSnYAZlg0VngHA3psWR1YehRwhLf5oVynFaq1+2JlzoB21y5GzNA9crcGnO2lufn15pf4/AjYwc6dnwwCPOoYWXx/P6BJqii0bJbHG/frozppno+jwzZHjUkRu8JTF7VeFgoNXW+LqY+9C66112YBRh0dGc+RAf6tKvd29gI0FDrrVQygfIY5nJwvxZvK/tMLnlUL29ZKuaISHj+kW4dMKAFtf4vxH3o5KIxH3l3SlQL4Joc/pfvE40ikMebg91T/2I2W6ijAhHuZGxS0N6K2lEHDMx69TDDR6A/o4ptj/WEFYFV9+KkDLGDp2Jr32kOAJUv0okgN4ELJrvu3af6Dh8wPvug1CuaBIlvRFsBYyYPPr9Dc3K3qNOvpfiv0vR+fyQHHf5lsyqB9MQ4cVqmSAcOrqg3NRh47p5XiY9+NCdndZrI7tIcPknOfp/rSnixvdpFtpH0q3R0VRO9tKnF7UxdLfYQu7BPHAy4acLOyzQbc6daY9ZLmG3RXo+1v41G6LsTUnf7rtO/Ev8GUL1F37HlB+1/gWjcrSZgUypUTSZZWgA1LvZ3kUsBXT3O6PJ0GBGGXc+VowCehpSU9RET9z0trSvkqFfBd/aokefZHQW/38ERk9H+CVqOuthx5LXz73GT6n0OfhGCFtWw4bUp4XF/XHu81JwS8I3Zy1xnBqN3gF/duRjDI9tRYrGVIb2LrvonVDDmfMPN0fhNDNJqard07GfJn66DFOjuGXPX0d8dulvS7vL609AhLOlySFe40h2L5yoQtqzkSFkpE0xdZUt5xWeJIGBKmMo9fM8cSmPXoefglQ17VKe51ijgi6LJHP5axZE42WzkcypH1F3KCfadZ0uBatGOC8pnzmcPtcRy5e86xu3WUzm9KvBWjpLrp2l77rFnBwXFW7RDAkjFp2p0KX5bc3LXd6swQS7oGvPLdijjStrgswqqMIWlnjaplCRwxCXZSX6xgyWULz8q6WI4Ujgkr34o50tjc4adtYon6LX8l7hJLdqf8rtJZccRGMhdhXMaR/wEFXh7yAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA8QEAAAAAAAA=eF4d0V1IkwEUBuAsMvrSUTKnSepn4bJytH4czYHL0Ckxmf+hfG02N4VRkZY/qKBkdSFeiCC4upIZbQNBLXVLdBalRAQV5c+aE6VBfsFQNJ0sZ+/p6rk4HHjfc95V1SRqzPlKr3n6Wh+MFe+NSJ7mK/mdobkbsLymOFABD+WsbOphUd2iqRLWfvd3kZMXLHbSrUmaIQ27B3mS+RUrNMDh+JhsckIc3UKKVD1j5H3HwB+SkYouG2HFuv4e+YhNsZJC7+kFMp2tD6uCq5ruRLL2eONF8nr9czkZeHksjZwSxiSTHpuRIe3Mgo/215J1DvLNK/dDsu/BPhWZcSlrPxmlGvyfZ3STN5LbY0cjyCtxDiv1+CFZl5NcSeoE9edd6vOkbsPWeQv2fjj8he4zOjO+rYN5gc6gFvZzq7M34Xzez3YOtvUU/C2H1upZeRlMshyR0X25JTNfDO9OlhYUQjbstkEDxb6WBDWMa3Q15UJLR3pdFhTwU8xVyidVyhXQH7TvpVGuyEytFJY1NZSehc8yE36fgtmKIjae5oVPgtHw/TlTuwCauGVXOFSLvM4Q/p46ndu8BV90fBX4YejOp1YfVMgOuD1Qv9x75ht8PHey+SOcbyjxvIUnJDbta+h0StlhuCZbrLZDx+fKkAX+A4hyDX0=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAzQEAAAAAAAA=eF67cbDNzGPRTPsCUd5KXyD9pYxbMQxIlzj7Ho4A0ts93UMjgXS90pMSEF247nc1iA73/lQLos8s/FkHoqc8/1sPojt/mzSC6F01q5pA9NP/MS0g2maeSxuIXqMQ0gGiGYqrukD0KffFPSA6TnFnH4hWsFw2AUQXtIVNAtG5M3ZMBtElq/ZNAdFvLsRNBdH3hKeA6YVnY8D0hbJdYPkT7RvB6n89dQPrz7GuB5snFR8HNl/d9Wk3iF61QrATRAdsuN0Ktv+OGdi9ixP4wf7puuZVCaK3JJ0oBtE3rsfmguhj2rdSQXSUEUssiFaePisIRKskh7qB6PWiT8zB/DMf1ED0jznywiD6brLAH1B4OufFPwTRy3YtPwSirZpa5oPoa38mlYPo7+dKvEC0keMlcRC9wDLmfjiQ3lZ9fgGIZg/6Gg2in51fLgCi/8hf3AeKr42z89NAtI3EVHYQnfY+Y1EokHZpUzcH0Wp7lI6FAOn2dwf8QXSaWs2VYJA5sg9CQHRad8fFICAdc1bOG0Rfeh12KBBId5S9NQfRZ+YvXRMAMqfWSxFEN1jtmuYPpO/zCPKB6IZEi04/IN26ZAMPiD6wSG8pKD0BAA+5JN8=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAQAEAAAAAAAA=eF590U0ogwEcBnCt1S6vkI+kibLCLlw4zGFlDoQdyGXNWm0no3xcpGxqaQcftWZrvGMkXLQaynztpZymHSahTFFqkZgiy4X2PO3q9Ls8/3p6/ue7D8aeSEi76LX1Z/XHOk1Zv3zz0JMOwKRiFbZFqDNJ7Sla/krDaar+oQHZGrwRaEZJLSq62UBTGmrQ0csuKur/N5fL3b23ULma1lXQi1/2CT3RslMqeOiZgVpK6IcUhMcmGkmswNpmWjWyDPenuc/YgAjzi5dgzOGH9qAPzg4uwJN7N3unuG/71AzcC7rglcYJ3a122L0zDqvnRuHnoQ1KOivcVhmhoq8Xmh874FtUC1/ymmDhVj1MHFTCtL4IXg/J2a/mG/+PO5+heeMOaj1xmLFKUGgMw9uCdRgt9UJx0sX80QSUKYfhH+MrKRU=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA6wEAAAAAAAA=eF4d0l1IkwEUBuDI2CJmtaZzrcifYhezi03HB45aQoSuLpxJF5GrLarhhUITGRJiSGpj2nIoK3UiEf0Q4ldaEY1qTiYWlYFFy5wyi6JoxFi5RX/v69XDgfOeA4fTecx2VB9xmVa9vmsPwBJP1cKhKZcpMZ9T1g0fZ43oLkNjSWloANaKUfMglIgfbTQ0Y7RS3w5tNXWqG8vp9cp4MX3V80ZBD0ZfppkP2txzNDqcCFLNN+UQbTVpz9LTv/edoA+XnAdoW0W7QH+ZFRo6IzmppttqmxU0ce7nRhoIC5toR36Fkjp0qS1UfDdZSHc9k63kXZ8/rJiRFRfR0abzubTFZ/3bz3xkKkr9o96rNHlHfYRO5NVneIdPT+Rn6P23W+cuwYi4PYc2efUFfngxuZjug2scVf5eGPtiSPng0PeUtAeqZMGnFzhXO2DogvcMI7vd8H3d3lg7rPmxfkMb+/It0y1wrS5b2sx6vxBu5P7b8Uw99NkabjigMnbruQ0WdqbrDkPnoLW1Ghq7++Rm6JGqNeVwvmPzpACv6B2pndASsIeK4JJ7VlDBgn9hezZ8Ed9jWQ3LvFr5Mv4h15w1/hVG8yYqF+EfRXJhFq4b6/VMw9IH144/gg1+sWsMStLLp25CVX9NZhj+B30bLjQ=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAEwEAAAAAAAA=eF6rPJfG75cUYG96YgOY/pKlIQCiDbh8wHTfpmAwXRUVCqbnHYDQ+y5CaL7nEPrQ48FFH7gFofdD3bnvBIRm2wWht8yG0Js6IfTqPAi92AtCz5aF0HdehYDphvkQmisOQke/hoRLXwGEzrseBKa9lCG0jFMgmDbxDADT3+X9wbTYRl8wvUIPEr5/wrzA9ARnDzCd9MUVTN8IcAbTH/wdIPK8tmC6NdESTPuVm4LpS8KGYFojUwdMKyaqQ/z5XxFM33KSAdOBRmIQ+gE/mF5lxgmmv/gygelzdr/B8c/y+TOYbux/A6bX8D4F0wq1d8H0lDdXwfS+xHNg+vWLY2Badf1+ML3u2g4wfcVsM5gGAEzX2M4=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/YDnyBytiDa9NsR3G7XiCT1WLGP/Fcl8PTF2yMGKepY9tFYItneIqT0aGNDGdM24PRV0eWz8zcU9pZRQWrjM0T2sSczglF/bPdDC5ObiA+Q9Judli3ED7D127RQT59ryPZuPem3Ogfg9wE6gZHXa/j0KhbW/btwCPhPYhtVncgY+vTFPeq8NCj7WTt6T0ooNPtT7ot1KYxA+6Y7zFT7QET4w02tohv4SPmYRCgKs4xM+BPal+Q15FD7ob8w9+bsUPnBTOE+urRQ+/1Eji7dSFD6kdDmsrLITPlRiWcoU1xI+9mTKqPTKET52LG4+65kQPp3P//sbnw4+8vYGVw7uCz5/LEKJSDQJPribDueBgwY+GPiURsrpAz7suFWDT3IBPtYleyiKS/49QnvbA3kS+j2VPhoKiD/2PYcYA0Kg1PI9QgCJXVOf7z3dpS0pQ1rqPdzXDFxBzOU9C2YjZcLm4T3E5loxmTLdPf5N6ws3p9c93Vpas+cI0z16yckQh3DOPWqpJN/HMMg9Tfa9lB0bwz0W0jRi9P69PTkbtmeUa7c9ujtoIYAmsj1wo+Rr7gmsPciFDhkadqU9hGDejoploD1q/gVlXc+YPQeUoAt4vJI9R/sNlfAFjD0EnT+0+fOEPZ5gScwDJX89KiQI7L/9dj3GoAylyNhwPblJVT0ODmk91z2CdFE1Yj2EJMdPOGpaPUDImWNSIVM9Rt5wJqCMSz36JXQ+2e1DPSbF+SPBiDw9lDAcWlx/ND2ilnmcV0gtPb1ZvihNpiQ9v6/UO6A4HT2BjGHQgr4UPW0cC6nXNA49/1oYYw==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAALQEAAAAAAAA=eF7LCnha1vlf2aHnnt+UY0DaIX1W9mMg/W5q15MPQJpn9j3170A64EYH/y8gHdcolfEbSO+7uZb9D5AO+zshEERf2nSsGEQ3fJnbDKIDQ790gWh/3ug+EP0h8H0/iGZbu3oCiD7GxzIRREux6YHpvxFOYHpRiw+YDjsaCKZ3lYWA6aqroWA6MCIMTF9yh9AnDkHERe9B1L3cEwymf0QHgel91wLAtJWFP5i+0O8Lphkfe4PpFGcvMK212QNMc1q5g+m6u65gOmSZC5guq3UG03GdEHceWeoIph2fOEDU2UPouo32YLrHAkKnXLYD0+8aIPQhGwh9ghVCb7lhC6YtNkHo3dMg9PVGCP05B0KviIPQK4Mh9F0vCB3nCqHv2UNoN0sI/cBkYGkAmDNBEQ==AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
+   _AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAHAIAAAAAAAA=eF7l0d9LU2Ecx3FI21VI80doaFCLsCy6cUmZv+acNnPzVK6UMHFMIzcr+yGZkpY6B5spC5xgQuSsaUYi2XSKGHqXUwnrohyRrI2wbkbLZrSe5/u56m/o6sX7w+HhOec8dM4Jj8KS7J/lor6rTOeleN8y89WQMcfFtC/cmPAzUxpmkzxMm9V2PsDc/b5J/52Z/lJatMH8k9ixJcgc29rUE2J+WX9g/MUc9EU/2WQ+S9uzn2stfrf3N9NvaPvKOzlKfIG38GO7nNvlEzVwFc3tBq4m4l471+NzNnPnpwrN3NVvfSausirUyTWOuyzcpZqjXVz5Mft9bpzGTR2MMJGJtbHd3JWxAHWLV0rtTd5HXpMqSGNjJnn3jop8bVKS/cunyA/jxeT85hlyLXCa3BajIVusJeSRSrRICS8f0vyz+8147ukGXLLhvDIJ2lKBc/MSsLcGBFI/h3t4y3GPHhX2/Bnc9+ComhyOLSI7xdgdukKytOIkOfDmBCmZxPtF5haQggR75SK+x4uBfNLVmEfaZdjr1XJSG4a6w7nkxAJMkMvIx24Y1uWQZ9fgyGg2ubIDbY5Dq2ug1JJFWt9CRzysPQd3TuI/PV+H0xfhrl54IAWWqqA2mEGGotFuN7r3M9Q7YKQLHu+Ghn6YeRte6YDXq2FdHZSVwSgtvCnAjyVwqACuKqFYBusVcDgDerJgTBq8lQ4/pf7f/gXcCHm7AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAFAIAAAAAAAA=eF7l0N1LU3Ecx3EWPVwUIlIZiBQnyCjWTZoLs801t7Uyz6Ym2dqgkC50PagsjXEMAima+VBelE7OKmuzDcSrcFJ4UTdShCEkNNnFcOHDJCSdO+L6/b6fK/+Grl68v5zze8oR3LZXmcO6T3JSaGaq0/nOKWbIq1+PMIVN05/fTKfY0DzLXCmS3CvMZI/peZKZN1V0JcXsl9N7V5mVsd2+NHM8fKh7nTk2ORRU+HrXctXcWOuuIxtM+8u6Rd7h1kEn72+WeQN39Kn5PrfYtODiBmR/B7d2IvGAu3S0zsv9PDP6mNt+VdXF/XjwSyf9t3ymm+upHqZ5UP+dOhh+Qj7z7evh6kv+Ug98OEWtFBSQJ34ayaZiLalTVZIH8i+QKU0VefO4lRw315BasZqUyy+TbdOYv/Cg++/C2+qtPe/Gd9FlON2IdRzb0IqA/aQ47HyLfbMkG/bfLpI7FVhlv0T6bDi3NXwR5w1VkHkbFjKTwn0s9efJPhHzaNRErkbMuM8tvEekDPNeoZzcH4cJ5Rzpemcg/XE92SVhnsyUkTkdmMvH0L2vYcKjIwNR6Ejg3SMatFyPngzC0NpZcs9J9EMfOv4VekU4JkFnLrRrYGaulLyuQg9MoAt/QNcg3DEC7zyC/j441ALftMOsG3CmAf6qgQEHzK6Abiu8Z4TDZjirhQYDbCuB70thrBAaT2/t/9V/iYN/aw==AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAwgMAAAAAAAA=eF4V1H9Q02UcB3CRLvmRQ0FOYQSBps4UosloG7EFcUooIFzxI4klzDG8EbTppNgOgQHhJAc7QjAIpxDnhigE8UObTA8DiQo9aVC4wWDyQwZnLWvD3t+/Xve+z/M897nn+dzDWEnlj+sprIUdmXrlBIWlcSCL8pDVDJqkHubGjT5JgT+0+/ZlQEWhg3siFBu3xXwIPxddm4qFZn9j5BFI4X5mi4aSGuHfh6BB+SY/El6u4H16gKj3SToZkGcWrGPDS34uTUGQ31N6hAaZ9y55B8CeBhFtDwwNFdHdoayJoiFDi7flvXXw3fQcgwsstofdWPydwtqaSA/8B87emyaPw0ZVtdcMbL5rDNdBZvRw7CixTpFqaoOHIye+6oUa17aJemgfp15thq4Bbxkq4DvTWXwlPHVfVl8AR3TJhSXwpNPA2Tz4tehAmRjaRJFO2bC+wb4kgN6DA/TjMLnQZOUR9YlgHyJLyhN6ucS5Jf1FfOiW0uZH1Cu6w3xzIfntjoUT0OWqrSQf/rwWrxNCddEjpgwa1sRUKfzx3MitKviww+km0ackk1TeBB3btutrofTBpNd1yFomb/gOVjmo/9PCGTnlp27Y8W/e8C9QYUu8Ngg9Lk5TH8O/wtlpj4j8xvzqU8jlqGWzcE2cMW6DV07tfPoMmrjKu86497JNzwXr4aTpfqsn3BKhWiJBz6DW4tfgDCeE4w2lwvWpxDtejH4xtIPIqzUsKiRdV9ID4aBQHsOEpp7tWuL9fVf96yJghFR6OhzOhwW+T8zT9x6Mwih4e4ldEAfHZjdbY6BVbIz/gFhXp7ET89eYYJxLhe1NxzuT4AZtbToHvpAVMdJgQRftARe+NFKiOQZ11d3pJ+AtSt/uLHjDwvUi5v/1P5/dEcByn0pPMXSmnakVwuBgA1cCc0KKu/JhdPDi1hKY1aLaVwg7UxShZ2FsQNzGMtg/0zJSRfT1W0daJSyS356qg4uc/F01kGq25qqgqH8+pwGqdIFn1ET/F8ZCWmB3YxCpC+pf+fiLdqjuzHTXQgn7JrMXfpv9pGwItjpacu/AqvMHuQ+hsCLdY5TYV9rT8BgentZu00Pp6cldi7DScvSkCV74Q7JqhQq5nbwCw/bKlh3xDySMTNltyLznK6RNyIKFbFdnqCLtZPvAatax/Z6wuXEgbzdsd5vj+cNzUxsV+6H5183KffDlbwZK2TBpeOgyHdak5+89BJMVY5IoOHdldE8S/MSwbI6HX3rIKzkwYgv56EfQ7VW/Ai6k1rhHZcD/AbR8Ngk=AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAngQAAAAAAAA=eF4VU3s0lGkYn29CiU2ji4adCN8zUlI0sx2rPCFbyaWTXbWoVoYShcNslyG62PBJrIlkK7QHhy2nbNo/9L26nGqZFGW0QspMLmVblUTb7Lt/ved5z3me3+X5PabGf0Q+cQUc2RgQYdpmSk6XOf9eKQa89eJ26VAviy98WsRdMsDnDqO9TwDwWT1nFBsNWKezzW2wec8vyl5o5vAtYHy2IittI2BMVXeX6Big6J7EEHsS0HLqqSW6PMDB0Wz3wRzA1oGcjIkqwPyG0dYn2wATHPWRQyMsdvxr/WquArCv9yz2/AR4W1KfKlECDl/NruG+BnR/69Z2/RRgkHSDSaEEULVPNVjhByhMXGE1PxSwpmOVekcGYPWzQzsLpIDyJWrOwh4wtIkzEcQCdgRmNUtWPOANY6qSpj2AJepG9Qk6b+F3qQ2v/2RxJLo2T/cNICePsha/Y1HYJpwstgI0EyWvXPmZxdN/1Sj7ClisD76g9bxJ35Pma0kc4LzksGub9lJ/Nnxqks0E7NEfV7RSXiPzBnMvuvR7HVIulKUnAu7Sd65XHAJMTAkOWxYPGFjxptsjHDBszPugpoXFgsH+ssyvAKPftKTLKb/v1c1SUqjxCh+79dCv0wHtxTYDbhQv3OJ61lY19aku5GZJEuAx971N03YBusRd2vYmBtB67RcHxDWPeVutfd302YCufUVMUhTgpVcG8x3FgG3FsvZzxwFvrMqt9Kb7mFjQ9jTVF7DUdc8/f0cCSiLNzgxzLLr61NZepr6tsWwXk6WAOS3i5seZgA7RnUFcJYtXnRijamPAOz3ekJ9F+wQmkcKQ617a6tyqYV0//1bTU+Gj/3/OXc4pm+osTyazSgB/2dr11J3ihx9NyWm0BfS8otnftQlw1nL7gFcUr8e7MclmM2Cvs93ul+mANsvXfrmY7jU+zNguMQSwDK8Vm9D/Swdjt5tGAC5zSdicVAToKyr4nJwGaPi1KXMO9TtA+sCyxxnwePuZDH+aR5udAZ8CgwF1QeOO3iygY2jils3zAM2VxoP9lJ/vkCJKPIfq1a5esn8+4JTpU3QttOaZ8Au+VOcp9XlzRTmLKbL45Wz1O350ICFw5dsP/J57919fPPqej9pS/MizlOZV9lK5lJvgLfqn1B5pmOTZR6qdwf4feKlepwSq++66I5wmaoJ3S1+X9WPhOC8Zar8zvtXAa357Hq3tZNHGre6jv62Bz4s5Moub+MQndZt2O7cKyKRxzpWcGwZelbF0TEVz1Fvud6BPxBA3Ozvruf70XjXPa2bsZsjHozdF3mqGpMgqGg+PMaSId0ytv8+Q2Xhe/uwwQ9KaT6TqU4SkuUQfuKpaQD7OxNOch5DskktNoloZEmkfx/jVMMToQpDyspOQFGnlcqM+ii94VHCxiyHx0QP31xQy5OfUlzH7OgQkY5OsekE+Q7Rxdvm9Hxii2nL5sFeVgDDtommNNBeNi22D1osZ4uRY8rAokCFzIrbnhv0gIPsr8yK2zWDI6ht7Xz9+xxDPs/MNtdLP/CInM27ZYoZknguwsrcSENYj9MpUE4ZY+yhcNtL8/wd9SQ+aAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAEgAAAAAAAAA=eF5jYBgFo2AUjIKhAQAEsAABAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA+wEAAAAAAAA=eF4d0WtIk3EUBvAMxCQqEAVh4bAbq4ZSmr5z1puKiy7CH3Voq003C53aZLJepoGbEC0jGKOy7KKjKJo1yiyGFcnMUgdCLKK1lTQbQiXl0NE+NO05ffp9OofnOeevK+qv0DFe6rjpdPYxXt5Y8uDnfcavMibt1PYyfjr9cpXhBuNz5ZXmzOuM9yyVbjwNMzrmHMfhs8Dzgw2wZ7jRqYX2J/PFOjiX0qwgL05utpIR/dRT8nvsxwJpqAzk0NyA98gpcuZDr4sst6vD5B5ek3YCSjh3ETn4yldLhoeHWsg82Ww7mTvODORr4ZiGvPfLXUaKl7eLyYzBF1Had2tR8ZL0iM9ayEXvZzlpdxujlOed7+MA+TiV+597f7P0G/WJFI2ZyGJ/W7ye+q5sbSFTzAVTdbCaCevJA5pdBRrYpC+Tq6HekZVJ9xGrv75VQYtIW3IU9rdWd9fAk0aVVQm/2LZwVTBQf+k2oz0dn0YqYPYap/kQ5VbuCCpg57WuYCk8Y+oS9sFHh9MeymBCx3Xmw7WrJeEcuDuumpXAWlufdRMUuJVREQz+XrqbDvP3ZsvWwVBC1Z0MJfwFWwJ/L8w7p4xBZeFCbB5ObEg1RWBT0vlQCG5TW7j38I2/7aoPLk//SR6D/e2mKyPQODHZMARFFsHjgl5pvOYO/AfNMA9sAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA1AEAAAAAAAA=eF4rufT72PV5M+2nT32Z57topv3dOZsknBbPtFcS+BkoCeRvN9uhkwWkW84tOBMCpCef0p8eBaT3n/zGGwmkZ3C/rgDRv337Y0H0H/3ENBCdLn82FUTfzuHOANEW7WczQbS5zPNsEL1rBlceiJ7qY1IAot++9ywC0Ys0zUtAtHvN81IQ/X25ZzmI3nbCH2xPD/cHMD27WrUSRIvGvgPzVzb5gOmg485g9bNW3ATrF98mBDav8/qnQrD5RtX5IHrKsxU5ILq1oxTsLq3Qy2D3OnauTwTRpZ/fx4BoTrXicBAdf4o/EERXZUz1BNEJc085gGg9uXwzEL001UoLRK81uysNouWvMnKD5QV8v0cA6RXC8Q9AtADr1aMgOjnDazmI/vwtqgVEK0xcEgOiBYtO6oPo05FFf8OBtOn+gKMgWm6PYjuInqm13glEy3Nc/h4GpJ+zVywD0dmGc/xAtGd54IdQIP3n1r5uEP2lT0ERRD/7enwDKP6C90tZg+gO/UkHgoF0e8hORxB97L3W/iAg7WPXbwmibzjO3BgIpF9UsmiAaI5Tk+YGAOn5ynzCILreLbjTH0jL7qxhBNFT3hXU+gHp3b4rGUG0MP/xWaD0BADjAx0LAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAUgEAAAAAAAA=eF4t0U0ogwEYB/CsxGVRtMMmpWhy8pWDfLVlykEbRQvLtMtG7cB7GBLGDEtpW7P5epXlZN6M2sjJRzJKE5FWmpaNHCiKg/H+n51+/U/P83+eQP7Uqyrgq9+ZNXS3/msVbI3w9sZ17bxB7qyHN1uRoeFtiJ7AaKEdRsIsWbECrZWr8PibsiKHMicm10rIi1JSU0eONpKiFlLeQbJdZFnKvJSPKd/U5LiSzG0m36vIomLSJiTbPmivzkvyiSVn9KS3gFSFl2mugXTEluCNjGQmPPDa6YZzQ4swTeqCCYcTbuzTnUS2BXienIchoQ3qOCsUX03CODMGLeZh+PvDwMyIEX6J9fDAp4VJt5rm3ynh4EATdGlrYXC3nHr3SamXUwL3qrPgdL8AntZ84v9e7hm+xO5hPBGCkttD6PFvQ9nmOvQf2aFCboEPdhM0pxvhH9FxKYs=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAA/AEAAAAAAAA=eF4d0V1IUwEYBuDsb+RIin6NsBSLpSSHwLBRx+rGXfSrkCBbF8ocURG23LFtIGVT1iSiNV1rTGuy5hZ6WhLiNnMktsoTWplQ1hlpC/yhMkcR6Xo/rx4+eN/35lN0hhyzo3q2WOZodA5wbIf3FDM4p2N7EzLzbJJjK3XfNZe7OVbuy5N5XnGscu1o9jXkNi349BPPOdbx0rChHq477y5pgce27THa6e6+VOCAb9Rj7jtQ2L/XR3asXqgjg1NRDWnYeVRB9lRbcsgI70wjy+VCgnZOhsQYmbX5whB5UPOsnxRVH8LkGokySJq23g+RcT7YRwb82gFSESgZJL/m8ov9H7F7w6R1JE0gW1Lti3nPkK+dfFFZbiIjLssJcu6uVULOa696mqFkMi4jC3jR3ER708v7bXBFu3b4Nkw+jvqtMLs478gtqA9r/DdhLDQeuQE//fnY0AjtyXMJMxyxPV3aAOuVjLcO9l40fq6F21U/XQZ4iHWO6+BfoeZBFez7546fhbulV1xqOLP+i3AathXuqi6FpvmypuPwjIXJL4Kp+7aUspSfkS/Lh9cZ5eFcuCrldUYm5Jmito3wXUWPKIXGb5niEljzS/EogT//zmpWT0LVxJRUhGOdT7rewvTCWFUUdkkPlIXhdEq6LQBD73fUeuHKh60ZrfA/NIA8Bg==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAARwEAAAAAAAA=eF510k0ow3EYB3ByWWRewlpaZodR0qSRUlvWYq29sk3YaVFzHLktTQ7iIsqai5eyg8saByN5aSSlHay0C8prIbLcNOL//f5PyulzeX6/3/d5nl9uPZu2+hz6CXO8xParzOpVCg5EskWCBlWwTDD0VlAqqFwchi3TNrhy64azrz0wPeqCGTsN9tFHD430Ur/omGhAdOQfA3/qh0RXRY/E+/P6achAv7voRjNVN9I6GV2SUN0N808d0vA8zXiprJw+p7phk48u3DlhjZsWhx1w69QOXWec09eaFVqMFubYM0P5gwkuX3VC/bgR7j91wMl3Hc/F2uGgtI3vK7Qweq6BSU0DTMjV0H+sZN/F1dBUVQmvd6Xsr17CvJ58qNB/Yv+1hR9QFXuBFdp7OJe85P9ovYDxRArmnCdwRnEAo/Zt6N3ZhD8mvManAQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAawIAAAAAAAA=eF4BYAKf/QAAAAAAAAAAtGDqiglWCj2j/p4kQBh8PV7VRI+yhZY9Ug8bLrCEqT2sXSTL5cy4Pab25cnszcU9PjaEKK7M0T16ZNz6B2DbPVpMiUQOBOQ9bQLRlJoD7D39vwtp/tryPUrKCSTqgfg9iEk9EmLa/j2pESmsctwCPlOfCbtocgY+xljttrMNCj6bHhvn3YoNPuYhjkdRYxA+2EDbR0nQET5fTLlOkf4SPmT9gZ+44xM+KCL8Bxd5FD460WVACLwUPnVKD6W2rRQ+VXdDq8ZSFD5ar4tqqrITPj5R5OgT1xI+JREiY/PKET47hKaG6pkQPhTOsjtEnw4+RXvKkNntCz5xt4tGZTQJPtJtX/h3gwY+NHH4pLzpAz77+5qUYnIBPnSVgXZ8S/49xbuEgwUS+j2YiNOTZj/2Pf/gJ0Rd1PI9mEWkf7Of7z1NPDKNKFrqPUjkgponzOU99lxSRaDm4T3nc9DiyzLdPcPB7qQTp9c9zu7KLPQI0z1c8MmsTXHOPeIPRLQmMcg9TDJkTsEbwz17l6NeZgG+PRUMf42darc9kD9zy+Ensj2omtln+QKsPQog/qKkd6U9u/JepJhhoD3Yejf3YNqYPfh93EsCwZI9tFgWkfQhjD0TUWvOQvuEPdDYsNH8Gn89ONTBQtwkdz2Svs33aARxPQaiTu+z22g9rNDOvbQzYj2V/b8Oj2JaPdukY1DsHlM99pMeAP2rSz0Ex34n+gJEPTg+/gtKkTw9U/eUnFGYND13Ic/7PVAtPThoY0Je1yQ9Y0/H3R+1HT0QpKAq7AEVPVkFCTWb0A49WzUZWA==AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAegAAAAAAAAA=eF6rlw31FSj9bxclDaEZoPwDUH6DNCqfASYuhUozoMk/gIo7QPkK0qj8BDS+A5p+BhzqF+BQr4CDRpfH5Z4GNBqXOnRxXObC7BUg4D4BAuoNCPjHAI1Gdyc6bYFGw8Q9oHQElE5Bo2OgdDyUjkNTHw2lo9BoAA8D0Cc=AQAAAAAAAAAAgAAAAAAAAGACAAAAAAAAGgIAAAAAAAA=eF4tkG1IU1EcxiP6EEuQsDKxWZAllLRr60PSi09kUrEgoggtibyrQBSFYNKHWi+0gmKS4UaJBBIrsHdjEelKM9m9u+3Nze3q5u7unRIrIlpR2r2V5+D5cjjn/M/zPL/HUF+srbZPYcH8Wq77zt2snsJvt9cxM5vBDHuPPf08g8KlFmb0TAYrPCatqiQDoXEt/yiiwFI46yi6oWDNcJC17VLgb33A5H7J6Ndf0E48kZHgD/OCWYbWttFZWSxDv26h2RVKY0c4zhRcT6Pe+lSz7kzjfLmN//JDQrd43FnbK8FjM5pHTkqYNOoqjCsl5A8N/qnqTqFP39JZpEsheG6VIWeZxLco5xWUJPI3tzW4DiaxyV6qWgcSOJANddZuSKC5xmowOidg7ynn8hZN4PFfsWG6dRy+umvq26SIz+4tjjv7RSwukA1nX8VR1tLOmUrj2OPbzq6/FcOpsqz6TxvD1StOh9g4BnuqmumLReGvJD1FsbeD9BPBwyzpJQLdbtLHKJq6SA9hBHKEP4wKE+EO4fZ9whvCT5VwBnH0COELwnKMcAWwNY+f4/kItZ9wCPA0k/w+XCoZn8vNoyZA8nJYcpHk9MLPkHwjaE+TXB9wiOYZxjKa4z1i1H8Id6nvIOqo3ztsoz4DUKj+G7BU9zU+UT039lGdlxDo/xdoov+eQaLzvZimcy58pe89yNL7Lsj03DG/X8Z/BTE8tw==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAALQEAAAAAAAA=eF471f20rPO/ssMOroApx4D0i8Wzsx8D6RjT7icfgLTMy3vq34G0z88O/l9AemW/VMZvIG13fy37HyC9h3FiIIh+vflYMYie9XVuM4gODP3SBaIz+KL7QDRX8Pt+EM22dvUEEP1DgGUiiDZm1wPTfyOcwPSiFh8wbXMkEExfKQ8B026XQ8G0XFgYmL7kDqFPHIKIi96DqHu5JxhM/4gOAtP7rgWAaSsLfzAtM9kXTDM+9gbTKc5eYFprsweY5rRyB9Mb7ruC6dzlLmC6v84ZTMd1Qty5eokjmHZ84gCm8xwgdMoGezDdYwGhUy7bgel3DRD6kA2EXscCobfcsAXTFpsg9JXpEPp6I4T+nAOhV8RB6JXBEPqIJ4R2cYHy7SC0myWEfmAysDQAAfE/Wg==AQAAAAAAAAAAgAAAAAAAACwBAAAAAAAADQAAAAAAAAA=eF5jYBgFxAIAASwAAQ==AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAaQAAAAAAAAA=eF5rkA31FSj9b9cgA6EZpKE0lN8A5TdI4aDR5B2kUWmYeQ3S2OVh9AEc+mH6DuBQxyCNnY8ujss96DQufbjsw2WvAgGakHpC/kFXR4g2wCEeAKUToHQGGj8CTTwESsdA6SgcNABs6886AQAAAAAAAAAAgAAAAAAAACAHAAAAAAAAzgEAAAAAAAA=eF591M8r5HEcx3Eb2USsX4Px2zAGY2pm/wBTDlMoDn5EkR81+Qf2sG0oBwc/sys/WuXsYKm57GGTLT9iuCgHcVCGzAE1ShaT/b6+x3mW9/HRt/fz3dR84uLeG5c3Vn5+XzJmvy7WG37IT+Fdzs/GXMI7J/V9GG6/fzPmHu419zzAv/T5jXmEr85r/z/4fPDQmFf4cVTdN3jY3PPBG+vXLt0TD7/Z1f4Eft+jOxPhV4/KfqRPq5tEt6ubTN9UNwUealc3Ff7rTt00uP+v9nyCB8d1Tzrc3ar9GfCFQt2ZCY9eq0vv31A3C773Vd1suLNeXQt8NkXdHPjTibr07hV1c+Hbg+rmwR0eda3wqReP0c2HP2yrS++YVrcAftahbiH83KZuEbw9om4xPLKlLn3Xpz0l8Mx13UPvtej3LIWvDelO+nNIXbqvSd0y+FxAXfqFVV0b3DWqLv1bWF36fou65XDLb3XpA8XqVsA3xtSlR2/VpTe2qWuHL/5Rl35lU7cS7plQlz4SUZd+1KmuA241/9f0Poe6VfD1GXXpr+Z7RW8237dq+PKOuvSQ+Z7XwN1z6tKHX9SlB/vVdcJzD9Sl+93q1sIDi+rS/wOLyCXZAQAAAAAAAAAAgAAAAAAAALAEAAAAAAAAlQAAAAAAAAA=eF5dxclCQQEAAMBH2aINRUqUFltZE7IlKvz//zjUaeYyQfAnzAd8yBGOcozjnOAjTnKKj/mET/mMzznNGc7yBV9yjvN8xQW+5hsu8i2XuMx3fM8VfuBHfuJnrnKN69zgJr/wK7e4zR3uco/7/MYDfuchj3jMHzzhKc94zgv+5CV/8YrX/M0//Msb3vKOQ//vAQ48FkQ=AQAAAAAAAAAAgAAAAAAAAFgCAAAAAAAAmAAAAAAAAAA=eF4txdFmAgAAAMCZmSRJkswkk8lkkiRJkmSSmSSZzCQzyUwyk8wkycwk6Xv30N3LnZ4cnfncAQcdctgRRx1z3Alf+NJJp3zltK+d8Y2zvnXOeRdcdMllV1x1zXU33PSdW2773g/uuOue+370wE9+9tAjv/jVY0/85ndPPfOHPz33wl/+9tIrr73xj3/956133vvgf983FkU=AQAAAAAAAAAAgAAAAAAAAEsAAAAAAAAADAAAAAAAAAA=eF5jZqYaAAAhsQDi
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d.prj
index b4e9b29dcc1288da3e409cf910c983fd92b5cb88..ccedee085a1c019cf56808de14702642270c0b6f 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d.prj
@@ -2071,6 +2071,7 @@
     </time_loop>
     <chemical_system chemical_solver="Phreeqc">
         <mesh>Wetland_1d_ReactiveDomain</mesh>
+        <linear_solver>general_linear_solver</linear_solver>
         <database>cwm1.dat</database>
         <solution>
             <temperature>10</temperature>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d_ts_4_t_28800.000000_expected.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d_ts_4_t_28800.000000_expected.vtu
index 7d2091d0d4b6f8a89684ed8a569ab2be09736441..dd92ef13070d229fb7de66ca65f4ce4ed8fd2ad7 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d_ts_4_t_28800.000000_expected.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/Wetland/Wetland_1d_ts_4_t_28800.000000_expected.vtu
@@ -3,96 +3,184 @@
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Aeration" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="0"                   />
-      <DataArray type="Float64" Name="Aerobic_Growth_Xa_on_Snh" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="80"                  />
-      <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sa" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="160"                 />
-      <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sf" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="240"                 />
-      <DataArray type="Float64" Name="Aerobic_Growth_Xsob" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="320"                 />
-      <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sa" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="400"                 />
-      <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sf" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="480"                 />
-      <DataArray type="Float64" Name="Anoxic_Growth_Xsob" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="560"                 />
-      <DataArray type="Float64" Name="AttDetachment_Xi" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="640"                 />
-      <DataArray type="Float64" Name="AttDetachment_Xs" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="720"                 />
-      <DataArray type="Float64" Name="Growth_Xamb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="800"                 />
-      <DataArray type="Float64" Name="Growth_Xasrb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="880"                 />
-      <DataArray type="Float64" Name="Growth_Xfb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="960"                 />
-      <DataArray type="Float64" Name="Hydrolysis_Xs_im" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1040"                />
-      <DataArray type="Float64" Name="Hydrolysis_Xs_m" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1120"                />
-      <DataArray type="Float64" Name="Lysis_Xa" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1200"                />
-      <DataArray type="Float64" Name="Lysis_Xamb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1280"                />
-      <DataArray type="Float64" Name="Lysis_Xasrb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1360"                />
-      <DataArray type="Float64" Name="Lysis_Xfb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1440"                />
-      <DataArray type="Float64" Name="Lysis_Xh" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1520"                />
-      <DataArray type="Float64" Name="Lysis_Xsob" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1600"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="58" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1680"                />
-      <DataArray type="Float64" Name="Xa" NumberOfTuples="188" format="appended" RangeMin="0.00098546868616"     RangeMax="0.0010780039431"      offset="1812"                />
-      <DataArray type="Float64" Name="Xamb" NumberOfTuples="188" format="appended" RangeMin="0.00099866755516"     RangeMax="0.0009986675576"      offset="3624"                />
-      <DataArray type="Float64" Name="Xasrb" NumberOfTuples="188" format="appended" RangeMin="0.00099600798934"     RangeMax="0.00099600799913"     offset="4352"                />
-      <DataArray type="Float64" Name="Xfb" NumberOfTuples="188" format="appended" RangeMin="0.00099340629433"     RangeMax="0.0010091180967"      offset="5032"                />
-      <DataArray type="Float64" Name="Xh" NumberOfTuples="188" format="appended" RangeMin="0.00097663732444"     RangeMax="0.0024020328012"      offset="6704"                />
-      <DataArray type="Float64" Name="Xi_im" NumberOfTuples="188" format="appended" RangeMin="0.00016942343526"     RangeMax="0.0012126016905"      offset="8644"                />
-      <DataArray type="Float64" Name="Xs_im" NumberOfTuples="188" format="appended" RangeMin="0.00010793887096"     RangeMax="0.062872476623"       offset="10528"               />
-      <DataArray type="Float64" Name="Xsob" NumberOfTuples="188" format="appended" RangeMin="0.00096266309909"     RangeMax="0.0041091212815"      offset="12512"               />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="188" format="appended" RangeMin="-2.1004519769"        RangeMax="11.380293453"         offset="14312"               />
+      <DataArray type="Float64" Name="Aeration_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="80"                  />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xa_on_Snh" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="160"                 />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xa_on_Snh_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="240"                 />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sa" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="320"                 />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sa_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="400"                 />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sf" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="480"                 />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sf_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="560"                 />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xsob" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="640"                 />
+      <DataArray type="Float64" Name="Aerobic_Growth_Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="720"                 />
+      <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sa" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="800"                 />
+      <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sa_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="880"                 />
+      <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sf" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="960"                 />
+      <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sf_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1040"                />
+      <DataArray type="Float64" Name="Anoxic_Growth_Xsob" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1120"                />
+      <DataArray type="Float64" Name="Anoxic_Growth_Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1200"                />
+      <DataArray type="Float64" Name="AttDetachment_Xi" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1280"                />
+      <DataArray type="Float64" Name="AttDetachment_Xi_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1360"                />
+      <DataArray type="Float64" Name="AttDetachment_Xs" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1440"                />
+      <DataArray type="Float64" Name="AttDetachment_Xs_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1520"                />
+      <DataArray type="Float64" Name="Growth_Xamb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1600"                />
+      <DataArray type="Float64" Name="Growth_Xamb_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1680"                />
+      <DataArray type="Float64" Name="Growth_Xasrb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1760"                />
+      <DataArray type="Float64" Name="Growth_Xasrb_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1840"                />
+      <DataArray type="Float64" Name="Growth_Xfb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="1920"                />
+      <DataArray type="Float64" Name="Growth_Xfb_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2000"                />
+      <DataArray type="Float64" Name="Hydrolysis_Xs_im" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2080"                />
+      <DataArray type="Float64" Name="Hydrolysis_Xs_im_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2160"                />
+      <DataArray type="Float64" Name="Hydrolysis_Xs_m" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2240"                />
+      <DataArray type="Float64" Name="Hydrolysis_Xs_m_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2320"                />
+      <DataArray type="Float64" Name="Lysis_Xa" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2400"                />
+      <DataArray type="Float64" Name="Lysis_Xa_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2480"                />
+      <DataArray type="Float64" Name="Lysis_Xamb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2560"                />
+      <DataArray type="Float64" Name="Lysis_Xamb_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2640"                />
+      <DataArray type="Float64" Name="Lysis_Xasrb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2720"                />
+      <DataArray type="Float64" Name="Lysis_Xasrb_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2800"                />
+      <DataArray type="Float64" Name="Lysis_Xfb" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2880"                />
+      <DataArray type="Float64" Name="Lysis_Xfb_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="2960"                />
+      <DataArray type="Float64" Name="Lysis_Xh" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="3040"                />
+      <DataArray type="Float64" Name="Lysis_Xh_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="3120"                />
+      <DataArray type="Float64" Name="Lysis_Xsob" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="3200"                />
+      <DataArray type="Float64" Name="Lysis_Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="1"                    RangeMax="1"                    offset="3280"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45"                   RangeMax="103"                  offset="3360"                />
+      <DataArray type="Float64" Name="Xa" NumberOfTuples="188" format="appended" RangeMin="0.00098546868616"     RangeMax="0.0010780039336"      offset="3444"                />
+      <DataArray type="Float64" Name="Xa_prev" NumberOfTuples="188" format="appended" RangeMin="0.00098907629211"     RangeMax="0.0010571948569"      offset="5260"                />
+      <DataArray type="Float64" Name="Xamb" NumberOfTuples="188" format="appended" RangeMin="0.00099866755516"     RangeMax="0.0009986675576"      offset="7036"                />
+      <DataArray type="Float64" Name="Xamb_prev" NumberOfTuples="188" format="appended" RangeMin="0.00099900049984"     RangeMax="0.00099900050141"     offset="7768"                />
+      <DataArray type="Float64" Name="Xasrb" NumberOfTuples="188" format="appended" RangeMin="0.00099600798934"     RangeMax="0.00099600799913"     offset="8440"                />
+      <DataArray type="Float64" Name="Xasrb_prev" NumberOfTuples="188" format="appended" RangeMin="0.0009970044955"      RangeMax="0.00099700450181"     offset="9120"                />
+      <DataArray type="Float64" Name="Xfb" NumberOfTuples="188" format="appended" RangeMin="0.00099340629433"     RangeMax="0.0010091180934"      offset="9736"                />
+      <DataArray type="Float64" Name="Xfb_prev" NumberOfTuples="188" format="appended" RangeMin="0.00099504959396"     RangeMax="0.0010057129814"      offset="11404"               />
+      <DataArray type="Float64" Name="Xh" NumberOfTuples="188" format="appended" RangeMin="0.00097663732445"     RangeMax="0.002402032663"       offset="13040"               />
+      <DataArray type="Float64" Name="Xh_prev" NumberOfTuples="188" format="appended" RangeMin="0.00097948973194"     RangeMax="0.0019230700634"      offset="14976"               />
+      <DataArray type="Float64" Name="Xi_im" NumberOfTuples="188" format="appended" RangeMin="0.00016942343526"     RangeMax="0.0012126016902"      offset="16888"               />
+      <DataArray type="Float64" Name="Xi_im_prev" NumberOfTuples="188" format="appended" RangeMin="0.00015592304613"     RangeMax="0.00084116524019"     offset="18780"               />
+      <DataArray type="Float64" Name="Xs_im" NumberOfTuples="188" format="appended" RangeMin="0.00010793887102"     RangeMax="0.06287247662"        offset="20636"               />
+      <DataArray type="Float64" Name="Xs_im_prev" NumberOfTuples="188" format="appended" RangeMin="0.00011125150273"     RangeMax="0.047146886198"       offset="22616"               />
+      <DataArray type="Float64" Name="Xsob" NumberOfTuples="188" format="appended" RangeMin="0.00096266309909"     RangeMax="0.0041091218647"      offset="24588"               />
+      <DataArray type="Float64" Name="Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="0.00097477187178"     RangeMax="0.0031602973007"      offset="26380"               />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="188" format="appended" RangeMin="-2.1004519775"        RangeMax="11.380293453"         offset="28168"               />
+      <DataArray type="Float64" Name="phi_Aeration" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29872"               />
+      <DataArray type="Float64" Name="phi_Aeration_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29944"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xa_on_Snh" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30016"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xa_on_Snh_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30088"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xh_on_Sa" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30160"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xh_on_Sa_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30232"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xh_on_Sf" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30304"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xh_on_Sf_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30376"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xsob" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30448"               />
+      <DataArray type="Float64" Name="phi_Aerobic_Growth_Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30520"               />
+      <DataArray type="Float64" Name="phi_Anoxic_Growth_Xh_on_Sa" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30592"               />
+      <DataArray type="Float64" Name="phi_Anoxic_Growth_Xh_on_Sa_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30664"               />
+      <DataArray type="Float64" Name="phi_Anoxic_Growth_Xh_on_Sf" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30736"               />
+      <DataArray type="Float64" Name="phi_Anoxic_Growth_Xh_on_Sf_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30808"               />
+      <DataArray type="Float64" Name="phi_Anoxic_Growth_Xsob" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30880"               />
+      <DataArray type="Float64" Name="phi_Anoxic_Growth_Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="30952"               />
+      <DataArray type="Float64" Name="phi_AttDetachment_Xi" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31024"               />
+      <DataArray type="Float64" Name="phi_AttDetachment_Xi_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31096"               />
+      <DataArray type="Float64" Name="phi_AttDetachment_Xs" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31168"               />
+      <DataArray type="Float64" Name="phi_AttDetachment_Xs_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31240"               />
+      <DataArray type="Float64" Name="phi_Growth_Xamb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31312"               />
+      <DataArray type="Float64" Name="phi_Growth_Xamb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31384"               />
+      <DataArray type="Float64" Name="phi_Growth_Xasrb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31456"               />
+      <DataArray type="Float64" Name="phi_Growth_Xasrb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31528"               />
+      <DataArray type="Float64" Name="phi_Growth_Xfb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31600"               />
+      <DataArray type="Float64" Name="phi_Growth_Xfb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31672"               />
+      <DataArray type="Float64" Name="phi_Hydrolysis_Xs_im" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31744"               />
+      <DataArray type="Float64" Name="phi_Hydrolysis_Xs_im_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31816"               />
+      <DataArray type="Float64" Name="phi_Hydrolysis_Xs_m" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31888"               />
+      <DataArray type="Float64" Name="phi_Hydrolysis_Xs_m_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="31960"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xa" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32032"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xa_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32104"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xamb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32176"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xamb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32248"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xasrb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32320"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xasrb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32392"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xfb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32464"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xfb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32536"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xh" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32608"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xh_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32680"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xsob" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32752"               />
+      <DataArray type="Float64" Name="phi_Lysis_Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32824"               />
+      <DataArray type="Float64" Name="phi_Xa" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32896"               />
+      <DataArray type="Float64" Name="phi_Xa_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="32968"               />
+      <DataArray type="Float64" Name="phi_Xamb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33040"               />
+      <DataArray type="Float64" Name="phi_Xamb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33112"               />
+      <DataArray type="Float64" Name="phi_Xasrb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33184"               />
+      <DataArray type="Float64" Name="phi_Xasrb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33256"               />
+      <DataArray type="Float64" Name="phi_Xfb" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33328"               />
+      <DataArray type="Float64" Name="phi_Xfb_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33400"               />
+      <DataArray type="Float64" Name="phi_Xh" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33472"               />
+      <DataArray type="Float64" Name="phi_Xh_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33544"               />
+      <DataArray type="Float64" Name="phi_Xi_im" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33616"               />
+      <DataArray type="Float64" Name="phi_Xi_im_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33688"               />
+      <DataArray type="Float64" Name="phi_Xs_im" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33760"               />
+      <DataArray type="Float64" Name="phi_Xs_im_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33832"               />
+      <DataArray type="Float64" Name="phi_Xsob" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33904"               />
+      <DataArray type="Float64" Name="phi_Xsob_prev" NumberOfTuples="188" format="appended" RangeMin="0"                    RangeMax="0"                    offset="33976"               />
     </FieldData>
     <Piece NumberOfPoints="95"                   NumberOfCells="94"                  >
       <PointData>
-        <DataArray type="Float64" Name="Do" format="appended" RangeMin="0.008018010495"       RangeMax="0.011455037927"       offset="16008"               />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.0003310695e-07"     RangeMax="1.0055515847e-07"     offset="17004"               />
-        <DataArray type="Float64" Name="Sa" format="appended" RangeMin="9.4348193491e-05"     RangeMax="0.15160446008"        offset="17912"               />
-        <DataArray type="Float64" Name="Sf" format="appended" RangeMin="0.0002544569951"      RangeMax="0.22740568969"        offset="18984"               />
-        <DataArray type="Float64" Name="Sin" format="appended" RangeMin="0.00010017288225"     RangeMax="0.014876190476"       offset="20056"               />
-        <DataArray type="Float64" Name="Snh" format="appended" RangeMin="9.6914114281e-05"     RangeMax="0.079427061495"       offset="21128"               />
-        <DataArray type="Float64" Name="Sno" format="appended" RangeMin="0.0001055881266"      RangeMax="0.00036754087483"     offset="22200"               />
-        <DataArray type="Float64" Name="Sso" format="appended" RangeMin="0.00020076318657"     RangeMax="0.065199999981"       offset="23264"               />
-        <DataArray type="Float64" Name="Sulphide" format="appended" RangeMin="-5.3301960285e-13"    RangeMax="6.8883436018e-11"     offset="24332"               />
-        <DataArray type="Float64" Name="Xi_m" format="appended" RangeMin="4.4938769646e-05"     RangeMax="0.001667091762"       offset="25400"               />
-        <DataArray type="Float64" Name="Xs_m" format="appended" RangeMin="9.9666464441e-06"     RangeMax="0.073133531431"       offset="26460"               />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="5.5549999765e-06"     RangeMax="5.5549999995e-06"     offset="27532"               />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="8829"                 RangeMax="8831.01091"           offset="27824"               />
+        <DataArray type="Float64" Name="Do" format="appended" RangeMin="0.00086666666667"     RangeMax="0.011455037927"       offset="34048"               />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1e-07"                RangeMax="1.0055515847e-07"     offset="35048"               />
+        <DataArray type="Float64" Name="Sa" format="appended" RangeMin="9.4348193607e-05"     RangeMax="0.15180952381"        offset="35956"               />
+        <DataArray type="Float64" Name="Sf" format="appended" RangeMin="0.0002544569953"      RangeMax="0.22723809524"        offset="37024"               />
+        <DataArray type="Float64" Name="Sin" format="appended" RangeMin="0.00010017288225"     RangeMax="0.014876190476"       offset="38096"               />
+        <DataArray type="Float64" Name="Snh" format="appended" RangeMin="9.6914114347e-05"     RangeMax="0.0796"               offset="39164"               />
+        <DataArray type="Float64" Name="Sno" format="appended" RangeMin="7.39e-05"             RangeMax="0.00036754093247"     offset="40236"               />
+        <DataArray type="Float64" Name="Sso" format="appended" RangeMin="0.00020076318657"     RangeMax="0.065453127875"       offset="41296"               />
+        <DataArray type="Float64" Name="Sulphide" format="appended" RangeMin="-0.0023043630505"     RangeMax="0.0086"               offset="42364"               />
+        <DataArray type="Float64" Name="Xi_m" format="appended" RangeMin="4.4938769646e-05"     RangeMax="0.0020361904762"      offset="43280"               />
+        <DataArray type="Float64" Name="Xs_m" format="appended" RangeMin="9.966646651e-06"      RangeMax="0.089728571429"       offset="44336"               />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="5.5549999765e-06"     RangeMax="5.5549999995e-06"     offset="45408"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="8829"                 RangeMax="8831.01091"           offset="45700"               />
       </PointData>
       <CellData>
-        <DataArray type="Float64" Name="Aeration_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="28680"               />
-        <DataArray type="Float64" Name="Aerobic_Growth_Xa_on_Snh_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="28744"               />
-        <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sa_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="28808"               />
-        <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sf_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="28872"               />
-        <DataArray type="Float64" Name="Aerobic_Growth_Xsob_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="28936"               />
-        <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sa_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29000"               />
-        <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sf_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29064"               />
-        <DataArray type="Float64" Name="Anoxic_Growth_Xsob_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29128"               />
-        <DataArray type="Float64" Name="AttDetachment_Xi_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29192"               />
-        <DataArray type="Float64" Name="AttDetachment_Xs_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29256"               />
-        <DataArray type="Float64" Name="Growth_Xamb_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29320"               />
-        <DataArray type="Float64" Name="Growth_Xasrb_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29384"               />
-        <DataArray type="Float64" Name="Growth_Xfb_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29448"               />
-        <DataArray type="Float64" Name="Hydrolysis_Xs_im_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29512"               />
-        <DataArray type="Float64" Name="Hydrolysis_Xs_m_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29576"               />
-        <DataArray type="Float64" Name="Lysis_Xa_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29640"               />
-        <DataArray type="Float64" Name="Lysis_Xamb_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29704"               />
-        <DataArray type="Float64" Name="Lysis_Xasrb_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29768"               />
-        <DataArray type="Float64" Name="Lysis_Xfb_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29832"               />
-        <DataArray type="Float64" Name="Lysis_Xh_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29896"               />
-        <DataArray type="Float64" Name="Lysis_Xsob_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="29960"               />
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="2"                    offset="30024"               />
-        <DataArray type="Float64" Name="Xa_avg" format="appended" RangeMin="0.00098546871858"     RangeMax="0.0010779947329"      offset="30096"               />
-        <DataArray type="Float64" Name="Xamb_avg" format="appended" RangeMin="0.00099866755516"     RangeMax="0.00099866755734"     offset="31084"               />
-        <DataArray type="Float64" Name="Xasrb_avg" format="appended" RangeMin="0.00099600798934"     RangeMax="0.0009960079981"      offset="31536"               />
-        <DataArray type="Float64" Name="Xfb_avg" format="appended" RangeMin="0.00099340629548"     RangeMax="0.0010082830036"      offset="31952"               />
-        <DataArray type="Float64" Name="Xh_avg" format="appended" RangeMin="0.00097663848104"     RangeMax="0.0024019929931"      offset="32864"               />
-        <DataArray type="Float64" Name="Xi_im_avg" format="appended" RangeMin="0.00016942344678"     RangeMax="0.0011799361247"      offset="33908"               />
-        <DataArray type="Float64" Name="Xs_im_avg" format="appended" RangeMin="0.00010793921864"     RangeMax="0.061040714429"       offset="34920"               />
-        <DataArray type="Float64" Name="Xsob_avg" format="appended" RangeMin="0.00096266310019"     RangeMax="0.0040119181446"      offset="35980"               />
+        <DataArray type="Float64" Name="Aeration_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="46556"               />
+        <DataArray type="Float64" Name="Aerobic_Growth_Xa_on_Snh_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="46628"               />
+        <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sa_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="46700"               />
+        <DataArray type="Float64" Name="Aerobic_Growth_Xh_on_Sf_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="46772"               />
+        <DataArray type="Float64" Name="Aerobic_Growth_Xsob_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="46844"               />
+        <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sa_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="46916"               />
+        <DataArray type="Float64" Name="Anoxic_Growth_Xh_on_Sf_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="46988"               />
+        <DataArray type="Float64" Name="Anoxic_Growth_Xsob_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47060"               />
+        <DataArray type="Float64" Name="AttDetachment_Xi_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47132"               />
+        <DataArray type="Float64" Name="AttDetachment_Xs_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47204"               />
+        <DataArray type="Float64" Name="Growth_Xamb_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47276"               />
+        <DataArray type="Float64" Name="Growth_Xasrb_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47348"               />
+        <DataArray type="Float64" Name="Growth_Xfb_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47420"               />
+        <DataArray type="Float64" Name="Hydrolysis_Xs_im_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47492"               />
+        <DataArray type="Float64" Name="Hydrolysis_Xs_m_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47564"               />
+        <DataArray type="Float64" Name="Lysis_Xa_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47636"               />
+        <DataArray type="Float64" Name="Lysis_Xamb_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47708"               />
+        <DataArray type="Float64" Name="Lysis_Xasrb_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47780"               />
+        <DataArray type="Float64" Name="Lysis_Xfb_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47852"               />
+        <DataArray type="Float64" Name="Lysis_Xh_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47924"               />
+        <DataArray type="Float64" Name="Lysis_Xsob_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="47996"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="2"                    offset="48068"               />
+        <DataArray type="Float64" Name="Xa_avg" format="appended" RangeMin="0.00098546871858"     RangeMax="0.0010779947243"      offset="48140"               />
+        <DataArray type="Float64" Name="Xamb_avg" format="appended" RangeMin="0.00099866755516"     RangeMax="0.00099866755734"     offset="49124"               />
+        <DataArray type="Float64" Name="Xasrb_avg" format="appended" RangeMin="0.00099600798934"     RangeMax="0.0009960079981"      offset="49576"               />
+        <DataArray type="Float64" Name="Xfb_avg" format="appended" RangeMin="0.00099340629548"     RangeMax="0.0010082829988"      offset="49992"               />
+        <DataArray type="Float64" Name="Xh_avg" format="appended" RangeMin="0.00097663848105"     RangeMax="0.00240199288"        offset="50908"               />
+        <DataArray type="Float64" Name="Xi_im_avg" format="appended" RangeMin="0.00016942344678"     RangeMax="0.0011799361237"      offset="51952"               />
+        <DataArray type="Float64" Name="Xs_im_avg" format="appended" RangeMin="0.00010793921869"     RangeMax="0.061040714421"       offset="52964"               />
+        <DataArray type="Float64" Name="Xsob_avg" format="appended" RangeMin="0.00096266310019"     RangeMax="0.0040119193405"      offset="54016"               />
+        <DataArray type="Float64" Name="velocity" format="appended" RangeMin="5.5549999765e-06"     RangeMax="5.5550000013e-06"     offset="54988"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="4.7"                  offset="36952"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="4.7"                  offset="55264"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="37400"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="37688"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="37984"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="55712"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="56000"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="56296"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAADoAAAAAAAAAQgAAAAAAAAA=eF5zSU3OL0vMSa0wMo4PSSzOdisuSS0w1DUzN9BNTzVKSjM2MzQ01kvJLCqp1DMyMDIwNDSwMDIwNTAyBwAxmxEnAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAALgUAAAAAAAA=eF4V0Ws0lWkUB/ChjJEoMnKaUQu5lKILR5zMlmKUwX6I3M7J/XoqEjIZilwr3Ri3hYncKWmo8CFZyRAjtzFyOSg1Ui3LKGKN2efTb/3387772ft9HcyHnR/kMNijxlXjpzOobFo8wy1koNTgnX0sn4ENR7P2XgkDn6TWhcDbDA7E5y0slzF47q8q/baUweH9ae+iyhnsajTa6kcGw6neYDrnft+oaki5l9O2W4Lef2zvWZFGzw9Uu9Xwqf9cpVtRLvV7wgpCCvIYmGWcmo/+jYHL3g2eE5kMpAM4/na5DBrXV+kfus7gdI2rrn4Gg1tG5iZvUxiUNvNHeGl0z6RIqHiBgV66INY3kYH52X/GtCIpr1SMLEYzWBOYkBkiZKAS7B9Ud5pBeNy5TBlPur/mgsw9fwZyltwDco4M3mq/EUq7M+AYZnllWjFQnFY42GfHIPbcr1YtPAYtMdGmew8yML1Tv1Khx6Ag+aIBcBkMeZUO+6kxuKg4G6+wjcHVoTx7OSUGG1zC6pq/Y3AqLl/i/tcMPqxtCPWVZ2Cnk/E6aBEh1GG8YL0Ezd9z8IrlDMJsUGJO/xzCpHbnj05jCJx9tj5PpxBKhClm5T0Its6RXR//RiiT1Ei2aUVw3335sncnwnQbyGMDQqKrD1evGeH5UPq1pjsIzb71+93rELhhqy7mFSFUlW3qXyhHaF9KXlrKQpDt6R2XK0Cw0JS8NpZG/RMeDxalI3TI86xtExCUwk2qmlMRwg3PZ/0UjfAyaN9D4QUEnknR/pEwBJW0zrqyswiPbi87SQgRire+qI8MQfg5IlT40Adh87y07lAAQlxTS/RXAoS0voSPXZ4Iy/q1agPHEPiaZgEObgh68VX1BvYIvziuFHo7IqjxTZKUbRCejejGfbFDOPluVCLcCsG0WvBewZr2Hu2ZsTqEgNdjpIosET5xNuekmiF0DvzgUmKOcLrqOGePKYKc+yMVJUCQujLlY2SCsLJgY/GKhxCSYJ5ywwjB0CJlWN4YQatar5VniKBf9u/yJS6Csci2XHcvgtljr9VHDRDyT6iru+2m75n/rPT4HoSoM+uutegjBIgyVpftQqg2Vu0Q6CHExJ6p0qJ6coe6jvZOhFKDucp+ct6SF7VxB+3/QfbKXfLI9cOyuroIvrVmTnfJHTkWt/jbEXoecJK6yYlXn09UbqP/7lyvuI7yH5+r1ipQtleWcfEnJTwcoi7pIBQegS0DZA5f8I0KqWLQlORMikxqBb9rIxiELMjMkPWWnYEC8klFXFAa+SYbnZXI6Rib+6aktfJXN/u0EILjAnYskO0DlvV5ZKq6kWMTOTVpcfkk2aWhP5pMCotPSFuSGR7qRe7kU+N8Uw1S7y+FEi5pEN3mLUXGBiesUSY57tLt7zQRavo8FL6QEpU6g/0kE+z8doJUCsld00K+bOtK7CSf8xs+1pKzXdnTjeRUU4BmMdmb/6S/irzZsuCUTc594swUkA8K7XlXyUeT60bTyQi5ozcTyaLiOb9LpHeEh04sOT4QYB1PVmZs6jhLdr+WcY4mzy2DfRg5898ujwhSoa4g+6R4rp6x/aHkC1dlURCZm63/WkiOpA62+pNHpZbOB5KSOKnmS44tLuX4keUtahNe4rk23lD3IdVl5794kLHWjTLienfwkudx8T6RLw6J6+Mdb+QFpOi8c7vYsZ1BS+5k2uzwDT4ZgNs1xFlSNJkltjt1IN6NDBS9HxT7dMsRVbGL/KtMbHXsn7OuZOT2wlXi/D8w4XFkAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAAQIAAAAAAAA=eF7tz91Lk2EcxnFj6oEgpEcTC7GkQMRZaVIoC5U0dGvpo5XOLbdmxYxsvjBdgogviJ44whR7h6Cwg8JXhISkSBSnS4eUwzIV2YqSkmZmI7gudvDAhP6Ajj58L35wcyuKZqOG1Cp5uuCBcZbnMODEGEyU3oVm2WP4I7oDekK6oP1pCwyztUNVbj0sUDfCU/m18NWjOlgtVEHHXjOMD7wOT5ZVwDuZV6Fcdw22bV+BTXNGvh9xCWYNX4Yy4SJ0fTXA3eMl8GWSHk41aaFz8gK81VAM3z7UQONAEZwbVsMVaSHM3MX9SO85WFx7Hu43nIWf9nDvSy2AKas0+3g+lNioUinAaTttteTxfoPqR3NhTSzbFMYeMdHm6jOwa4bOfFbBpRS2y8je7KPGrdPQfIy93sHWTdEnCbS/lHoXlPx/CHuknf1ziC6mUUUZtUvou4NUO66A3W4qWOnGM7qspYM3aOVR+kFBg0JpeQyddOfA216qmaA6Jx3tpWMvaLOVfrtPIy20sZXWGWiEidbk0SwNTUunGTlUfogupNLyA9Qkow8iqWMfvRdOg6VUEkyTQ2lPAE0KpKW/sqHNSw9/p90ealgX73/cdOIL1a/RBBf9vUQ7V2n8R/F+00lLFsXt8817sXHz/tun1uG/d9I667//1dd2cW9Oi3df/9e/fwENVW0rAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAA2wEAAAAAAAA=eF7tzE1I0wEcxnEElcSXFJaSY4YDcwpruCSxEMkoURBsUhKpOA+BL8250ixLVs6SoUzL0OWgdhBBcKnMgy+wETrI0qCUUFiHENEpviBauUGx58HDH7x5k04fvg/8fjuTL2pM1/MzB0JidX5Lon1av/vPL2MfbO9HW87PQ/u6DqY62uGiNQdGxJfCPz4Z992LcPlSBGw5KYGrn39V+32QG4i+Y1tCdxZuQu3VOejRuKFJ6YLJobNQrxiDUW4ntHhtcK1sBCoTemHzu34oclpgiMYKA7tfQ+srMyx+bIJ1P1/C4StG2Chvg96PzXAouwV+2ngKT0QboLirEcbU66HB3gAXVE/gG8VD3psfQae3Dgak1cMPUbVQncC9Qn0PzqruQ89KDbSN62C4VQv/3uT+9lk13JFyDzZq4ISI++LQXeiQcc/7XQV9Jdxdt9iZgzTySyUci2W7brODzHRpr4L/z7Hnetnur3SqmJqbqEpKHVn0/XY5tIexw6fZP9z0Wx/9PkpnWmlaDy2rpSl62qGmpVVUVkCTi2jrNerMo8YMup1Fb1ygW+k0XkHHlXQ0iRbI6ZmzdD2RGqTC3RMnVCIRmi8+vA9sOi10JEboyqmjKRYd3v89nv4D3SU4aA==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAxAQAAAAAAAA=eF4d0H0w1HkcwHHp1OXhLtnZsVyaG4Vyl7lUCvUlF5H09bir0C6t9m6NmrgoHHmIirMeltLTVB4T7ebsFrZFk0soajlPSa1MdOdKXGwu9/n46zXvz+f3+8z8fgXHFk2fOUmJf9ZOr8wMSh6bjdZlHqfExPbFfVkCJVLtCt/l0ZSMrh9L1ImhZIuiVfPiMCVscUrluqOUfDO8mpEWQUmFS2npgUjYN6c1yn6i5FXtp2ZXISUiq657ew5Rklwj/VgqoERQtnqpDZ8S46lkV244JZOtXIlrGNxPPZS57yAlO/6xbU3nUXIxjz2XGkqJOCD/3PgBSjwY0mXdXErumWdyhSGUWDIutP8I8+j2mAB1ECW8EIXvw2BKvP34rPD9lBSQqzEE5oPjxRvmAinpyj2e8mgfJR3P+EYlHEpO7l15SQBz06FuPpdNSdOQjM2COefXwGffB1DimJfKGwSdzylf6/tTor+UEygFrXw583O+lExtMrpT6EfJ2x1xvP98KNm6sbHzN5grbRh2BtCtZYV9YjDU2ueatTcls8G2M5VgeG/wQzalxH1/g1cnaHzetl+0F/7f86gl2tBTRa4mPV6UrPG1ZzvBvEVh9cIC+vWHwbNnQLPdHXnJeyjZVleyeBjM0TWQvfGk5FJ8xw9O0Ixri1Qc6JbJwxdugOrj9RlPd1PCdclTmUGbP26I9YfeEHwn/iKYY53l9dKDEv4828Ec+lVVsfwX6OZT+Q23QXVlH28FGBrAqfYA500FszJ3SlhS7XvjYFzSRcswsOZDTUEu2KE2zWWCZWGOw86gxL6+v3MXJXLW9e0z4JLxJ1dyQM9EW59a8IZyKJ4DDhyelceCvI3ZemvASJZIdwfoolGO/OtGSenQWvVyaGlX7dUO6NNrS/pHwD0BXs/Lce/Ye0YBlid+3pgB/jxTmF0Etl9pdReCikZlehzobqbT5A3mrjVkcsG/DHV2OoCqnRMv3cD0L0+kWYJZm14XbgAzLZR2THBLm874KjDliYa5FJ/TWSn6GhQmrRyZdaUkI7DFbRG0I/MBfwL6pXOIagoszlkmGAFjOQOfx0Cm3taGATDIM088DIaeSN+iApM2vxf2goYimbwDPHnk231duP/jrvFDMCJJ7tgGHvML3H4fXOPgPfUAbL7c85US5w72/CZQVz8/qh7MijCMUYDOR5o4d8C6xqOMOrBQY1BVCwoGS9bJQbUpl1eD9+N8Kn7HfUmeQApenrZPvg26f9omvwWaaObKJdg2sS7V4F6n3hU4b3lc/UUVWGsZJ0NnO499qMTvq1CdvQnmpxxahj174u1Z9HLDjNMNsKr3rgQ9aMUXV4Ar4gymUbP1Im3UI17ohxZPTqSWg2O5Hx+h7wKiWagiIsQfZfokKsrw+yTN79Cgc22RaCPnZhFaOBlmjepaaCgq3l/wvhRkS1SG2LFkTIl90Oj6APrgT0MxaletVYUGhe6KQntOF6Wh2UE2bFTfszccTbiymaDJ3SJP9KpctQ7VEn+3Ge2rLmAt3Bu1Nl9Qy0xv4Z5ktRFawVg1XwKeP9+og/00ijuNLWyv16BFGXV/owm8kfdojIXxG/RWtMlb1Lc/ZgQ1X+w9ira5TbxaeO9Cthr9HyqvjDU=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAjQUAAAAAAAA=eF4NzXs01HkYx3FSRNOI3FYXdFyKE6olUj5F65Iy35kxxm3C/FBbplwilWybUkKptoxIVgmL2qmEiHRFiI2KUi6RUuRanW77/et13s9zzvPY7126p8aZQfzYuOiBIYMeA3t5/UgGrb12zSv9GJgpaU41TWVAtPU29u9jEGn4cKUwh4G8wb7PrHQG55ZLHPIKGTTFGKe65DFoqAg+IilmsCue1eBA9QwPiqzLZ1ClWdq6tIhB3Zlq+7gsBh0WEz3auQwGPRsPKBxjkNT56e+jUgbXhbOSi3Yz2PvziuK3BAbW74RMTSCDHyGjpYVhdH5ye4J0LYPXxe4xAwIGHybVwx/rMQiKmD/PyppB+aqe997jYghaY08asRnUhGeavLgtRhOnf3JBlxga090lzklicKXQVS8SIyW+3jlrgxhVzseFA+FiOOuUs38qi3Exe1BwdYkYvifP2OTfCkTJbunFrMFALOh8N/4lPBBPLLzlPp0LxO19STOi5gfiHa+30JQTCJVajkvp/QBkrt7s/uBLANIMDt6M2hoArkaqKCo7ACmtZhFRMwPw8zrrwohjAF5fylim6OsPf5fjfSr1/tBnKgzbpBvReP+i+7fp/sjNXTLW2SZCRe+cbFenjViVdX/94dki2J8w3y+JF2HLHvV1Gnw/tBY4y6pr/GA3ArnTp3zxxlnSK5nih2Z2yPaJ5z4I9g112uXkizG3qo4RYx9kGh9QLDvqA4NrfAuTnd5QYtVeaX/ujWxVRU2NRi/cs23TkJh7o9m0IEVvkRdkknnm/QleeNAcH3M2SQi1ys2h5/uEiFBedrdl3BOqTW1ZI+uEmOsfHTYa5In3daxz7FJPTG4SXV74QoDF6Q0DpqaeSAlUjzvuI8DzHePRWy4IoGw7/H1VlwcMyktt+4wE6GqKvblM4gGt3uigvEseOLS/S0Ui7wETmz/KZPYeSJtSImzP5OP72/WvvrTxMR5UdFkEPp6QrNYtO/hQUu92aBvggfcifFPfL3zUp53+rpbOQ2pJcN3q+zw4KhhZdHJ4OO42a7HbLh5sdn6w/8ziYcebUxH1S3lYaL0mel4zF3dmjr2OHeXik/vDV3LpXAQ/jWLplnFht1rbkbuJC+0lyen8eC5mqB1bVb6CC05hXegTPhfTYoKju9S5eFHaX+G2iIudy7v7QocJ5q/Q5PgocFFcbW44tZn2U8PGvG4Cw2Jf2fprBJrstcoddwg2ZL42Gc4guHkkz1FaQKCqr7QhLYGg4e0UTvIJgueT6ybGIwlsrVyPMXEE8ouSSysZghuWlXWPQgks11wMzRcQ7DmK24dEBAWK1nt3uhK0OiblOhN67/tB+WF7gqE9Aw4tawlifySXt1sRWDzbovt+BYGawadeJXOCUI6OU/BSAjvHv766mxCcn2/1m6oZQUCcrzjRgOCnDUtWY0hwd2+G3Om5BIL/zHu89Ahqa1kvhToEddLfk0t0CaKUd5SXaND/YWWelVoEg21hOelqBGdTIyIFswkk4erSj2yCHz0ddqGzCEY6+hf/wyLoNnZtGZpJkJMRY1OmQrDyg+u9xhkErsbSP9nKBKnvg+q+UtO/+RzIUaL7bFmIZDqB1rPNllsVCWRmPyp16PzZvsmrAdMI1CemuU5Qb88tcIudSuBjoCj7Si27Ga9dpkD/V708bUR7aPbwGJt2Vk7HNgl10Cs/I3EKQbV+60ALdUmxYbUu9dePzYe8qIouLRaV8gSnTg50fKRqbRtt2EoN81VLlFL5xOGRCXVb81npBuq/rzJvDckRyG1NCGbTdrrAiq6mfTBV+0w7dbWlEyudammrYHqJmrv/Rv9uqkfvECeJqjYnURZEDXe4mhJGlT9cE+JJHcvPvSyiShtOCQnVRXX7Yx71fy3Vhes=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAYwUAAAAAAAA=eF4VyHk4FGgAx3HtpkQpOXpEd71zkCtjmMFvxpWEGFplxdhxlEp50HSgHE+t0kGJCmOLdNBGpAPFIlZUashUKh0bOlGOatq3vz7P93vU7k2wym0RZHkFRLXbB/ft6kMS9bwh12T5+k0R4Yh0uNRHfwUsFXUFXRFeqP4vdn21rztWPes55ffSAzw1bn/ew2U4sPdFJhfL4aQQdofmLcXs9dEplU9dkahX+H1fvjOsT2yPP3vDBQl2YueOLkcouYb8hi4nOEwQSx2cHZBQkjBBwXSE05phoWu3AIcEuYF6Z4QoF+3XqRUC6uRCOdNHAJ7SOWiith3mr+g03eVuD5mHzj6TER4M3CNsikxskTOtjGc31Qb9Ked4Y/N42Gz6wKonkItHQU4nGrytYdqdzO17xkG299vM6EorGDon2dYetASZKfmi68GB1jCjLyRsCTQ+R3zwm2KJqLqvzX5iC6w/c1axedACE4b3B2RuM0fcfN32GV/NIcy8+2X3BTME7krU3zrXHPFVN2sHhk0R8yjEk4jNwFmlFURqTPBWrbbYONIUDMc5hVnnFuNF/lWNhc4mqBntL2i8YgzlHocBsWAxTCouR1W8NMIXli8n53djqGr/BQXbCIXGFoXqh42wndnWNP1PNuSyb5dXvGBjE8frQ/YoC7Jio6ioZWzsNO3ZPxLHQoJGzsHWOhYq64WSCdNY4G851DbVgwV3WYey8yITDfl8F9ZrJjQNNDKq1jAh/XjmumsaEwOnqlKtdJnwWzvj3/t2TBRGnpR/ljMgrx5qEo8ykPX4/K32PAZSlvauLK2mv659W3MkA2NeY5ElqQzE7K8r/uzEwOOJryYHBTAgCdqnc3AuA7FrE83fWzIQOstG/bUKAxVcE3HudAYGmn89Ln5FEFi2R9o4RFAeNu21tJXgcMjql50KAnO3UXnFFYIP9+oWieoJ5vlt0bh0muB8wdDxhosEV4XvdHSzCPzbmjLuyggMjdw601IJFFePH52VTjDO+B+mPJ6gxj++NziFYKj709HSaALxRRWrgG0Ettf0fd5FEDQVTAy9v4kgKZwv8JcQ1Lc8y84MJ6jin599N4AgnS9ylYoJdLdeu2fkR+DyIztW5E+Qp7+8ylNEsPMQW6m6koDD3mE+25OgT1NHJdaLwFQy8iXJjeDJ+AjRbncCjcqWjrVLCdj1YZoLlxGstf7bvsaJwLqZxeC7EDQ22fZHOxCwah00rzsS2KRvy40TEGzeGynJFBJECqO7btsTXJsz+0I1CMqS2ov97QgWWB2ew6LfNnxd3CxbgoCZyQFt1MuX3nRO4ROEbVzlUUgtyvohWsQj+G2P69Bpaom1syTQhkDdPc21ldrxZLVDuTVBbs8CPW3aCefr78+nbfj12PNoquSjwYHTXAK+ve+dfuqRdL1wW6ry07gDUqraqcV1z60ILg7edtShXe+9K/gI7Y2ssfgb1NiMslUiamDjuflSavPk1HEzf5qzM8SGavhabaCXQ9Avf1o5nvbX9t7Bm7QnaZc0d1KnJy/+nkvVXsKVllI3tJaxdlGDOI63DlFzd56sCKMeDFa+iKEuHM4Y8aJapFXprqFmL3IJtqcSPXGNK/XmsldRJtQ7Cq+VXOr70vyqudSZMa8kTGrh05BBXeqx0cYWA6oT11tlCrV2R9o3LeqTjQ+CValxjVdkk6jquVf7lJYE57T+SP6Fdmq0MHaU9sO3mfHfqCPW63qGqAJm8vphqv3LUP1PVLXWDrNB6vZy0cT31K5y98oPVEaonqyfGlkU8/4tVd1id1cvtaiktKWP6nmvteINNXvyVrefP/gwm/ezzQSdG376PwzFb9g=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAArQUAAAAAAAA=eF4Nznk4FHgcBvDpcMVW69knqd/MuNKQyNEUO/ZtosQ4E0KERGocMVTGHUIiWyw2ZzVT0VCJahNy5aFFoUilYlGOkeipVDt/fZ73fZ/v83xpJ+cfltqL4NUwTgtYXQnxuQwjG6sydP7ZIx1DuY5YaamTSSlXwIxq/9GqdA2uBr/XcKQFCMrRCAk7KoQy061tZd1FfO4TFFTLXgbXRskjRlSCdi/vvDX9pVDJtl6mW1KEVvG6Se6rYnz6yAtmmV3AzqO37hdqFSLQLa1+IysPlKmkCtZMPoZdpKrzknJgWa/MnFfIxQrXlRyR8nn82Fq7ozQiG7V/0FwMZrMQVhWtVcE4h8IpqtThmkyIZFcxW1ZmYa5oVnB2+DRM3TTPJMpnIKMz0T8wOgV0plJcin8aFOUZcxXHkrDkmGxmh/YpxKav+NbTloCn6N2/l5OIZTWT2muPxOGm8sT0t7p4fDq+akAsiIK1RoZ7KiUWIyPWp2ifj0NU9e74iCwf0sMxnbvuhiP4jNOrwbRjyNg1ZKb1JhTi1Xnf+Sd4+Cs0qjv7QAjaDiZ9n390FKxfufovuFzsNXI+ovMyCIUnWoYUSg5BsCY7d2fDYcyqGxozHQ8ifsBDTqTjj4qvlGAezweRZjMJmSt8cUuvYNWzqf2wGxrk3nD3xvPZ2y02xe5opfB+Ecp6Qv2N+PHcqAsGGQMv6Auu8BjZ2dB1cw/UPcQy/Ghn0J/b5SwWO2DidP01YaQjPDvnQkxV7fB0tNKy5J092I16tjPLOdhusbs7ao8NwvNi1MRZFtiWqcqRSrREeIwoYSjbHMXyi0+OYSd4lgW6c7LbofW17sE4zwwnmY/YdjVAfZVNgIkiG/VnHwmnKSxE8g3rAxX/gG1Z0BfvZ1vhPycst883QUjER5afJhMMSz5LSbAFyxsMexMGDUHfK5N2V20zYrkurdfe6+O8l7b4358GSCy3c54024QNvYFWW/X0EWZtwfS4txHerKk+gaUeGJGbtbtdN2D2jNHdoHIddN3T+23MSQueDbqXZ3ja0HLrmKgsXo+Azlc7Js4xcOh+R5K5ribocf+NOi5oItkwfT7qkwZeCzfel7m4DrG+Y3nV79WxeIsePz1GA06nu5zz5NTxUKZMrjtZHZ6XOteOW6nhDp098bVKDe0yH0r2XVVFXMREovESNUzlc2+cUFGFg4/rtiKuKnYI3m6LKFeB4cOl335OqMDFiz9ItVJBaWsFpSdOBUFd3cLwSToeGxatpa9TQe4VRqiUFx2KvpFB1SI65h3NU+THaEgOWG/VoU1HdOsQj51Ag7748NbhezQU2df9fLOBhn2LdmvPuNNAfbNKKvstFf3sTW6e8jR4VRqHe16iwtjUMnWhhYr7JgaLzgZTwXE5oPcxnQrFmj652u1UFG7czRC5U2HxWiGiklDRHJ/AH9SnYrr9uZrvAoFac+rYvuVUdAe7l30ZIriZoig2ERO0TTQ5VLURZMUdIcI+Ar/utoHZ2wRKkw7OM/UELVebjTZdJlhWtrAmUUTw4OVC21wOwccEp+ChQgJzvxs+b9MIliptCs3PIggCiSuNI4hqp/OckwlMO+fJ9DECXWpBbEsUwfk6VuPpEMk+zMcVniQ3McfNDxP02wYbNQYSqN7tTZ3yJdjPTdcZ9Se4sHp60seLwNs0dea9D0HGK1IQv0/y9+AT9TJPgg+2XYG6rgQ/+i8Yy7lLsvi6wjlnAlaO/IEFF4LXRW2sI3sImuui9hc6ERTJ+X3P2U0wVJh74m9HAq07QW+XORBcbP9n+ajEEkbfoVo7gkWUlakR9gT88txGgS1B4OdkDbak19K0rK63IQjmXGqApA9TUY+WluQI9oNmrsQ5D4NGnrXkXmdKtkniu+/9QjmJIXvTnmyXSNb39DZxCASXWkdGJXKu9oqEEmspciW3JP4PIcSWsA==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAJAUAAAAAAAA=eF4dzns01Gkcx3FWrqGjUi6VypIUpZJVnb7pxqnh+c2YXHIPGWKMcRvJinU7GozRhEjC0qomI5Nqk0vZyS1tNNHZsybV6WpyS3UU+zz71+u8P+d8n/PYNb9xU2hxYOkuNHR7kAPyVSOPQthR0HWAqe89xoY7ARWhkaMR8KWCN6jpGwm2iaaNAhoL6B6FVRxZOARuLMjsfx0KCQqRjfreMNi73Her6HowaJdZdTh/CoEgR5PLT9uCIDDb8Nb8wDFgxl69x10TCHI167YKzSCwkE3SzQv8QN0yR2mpHwBtvxauaqd8AAwGDM7n+8K7zE+LafHe0NNpomN36ihIz7qYlo15wkrxRPibTi+wq3xQ+43vAaV9wfHrj3jCzN0R66SgIzCfVqI01PSA07Ki/ZJwJizv3z3UNMmE83uPp0vK3aElrHSDnj4TxJXWiYZTDNjufbhghHKH95HNi9qOM0AezZ/ybmLA+rH54apJOizImnEe2sKAdtNHtgVCOmy2t7FokNHBpyuSs2gfHcZbblSpR9OhxnpW21mVDh3dvXl1FnQwNrw++aybAlvtja8m3lKglqX2sPcCBUOyuVDpTQq2xFW3ZPEoCIljhJnnUeCaXH9J7E0BS+K7siWCAol0c6rVHgrK+3wGDrhRkM7vPKa9Ad/lhiY3b6dgbX3jy3xjCk6Ojzg5mlPgIHC2MFpIwaVNnJblSyg48eTh0j1zCJymr/PuqVOQvLB4mPMewWEbhn3oZwTTJW003ecIfFe3zqx4ieCd2K8ouRfB07TqL7MDCPrS5XKndgTq8efnEmQIHPTmZV+aEVzwdxo0aUEQx7j61rkBAXc4dXVOEwKtU595H/5AEJVs9j36GoIfSXUf62oQHDVgmRbWIai08H1Mq0SwzGppgrQKQQetf2FjOQITxwBmQwWCFHl1zM1SBCLmM6lvGYJfZtbk7S5GID1eMVtWgmDUfV3tVhGCtO7MfuY5BMLMwPH0IgTiRWmO3LMI2hV//7NCiP+r8FeMYoOz/fnTAgS58hhWSSGC+nN/es4XIHBXPT2ehffbIWbsbbjt0q9W12BpGuYZ/HwEGTFK/3dYFTWxQBV7rTwzzA1rySg9m5+HoOTJGetH2GirzqhNWGOFmm4I9msOu0HBR/D6mstOXdws9+nsi7jH64wE97HDNbXl4VgdzQdR2dhvAQfndmHZXbL6I9gBuyWLjbAfjHVSNmJdozwyvp1B4LNeGq6Dm9/avFOBu5Gm5qDETsQLUA82N4T3Qo69OHpo/jb2azVNeB97n37myhVs692/im9gP2ZxH1/EstYN+tdi9T6NqJzDvha0RZVhl0h+G83Dlk09CRBiT/9eZ52N1Zq/9SIXO2bLLUsj767miTOwytSbqilYeeMPfirWWsN0axJ22XN9t2SsSFikm4DNvyHqTsSqiFbFxGLjWI6jcVgnrTsuMdja6G0nuVizXVmp0di5Kb9THKyBRF+djV0r8JMTkX5jTyT2lflPSVHY90d/fngC21Uu9SR7urHGRAR2hqnFIjtbI283aZEXdYkY+HFHfTj2Ct3rO7HToNKW+L3ENJYYzLaUsbBQy1chndDbnkh6x7rUKmLxyywH4gt7Ix/ioQ7zn4iXF0jMiDZN/z4Nw/rN+iiJBptcJcQeTnonseCzSxHRQ3OomhiX8OYkcUJM5RCzW2PDiH3bjblEpiDCi5igJwwkHlDyXImKTJo7UW9ZysH/d3udQ8REQe4+Iodq3U/8D2Qmn3o=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAA1gQAAAAAAAA=eF5FVH9QzHkY3hptusRRTbpEV3p1Sj+3uepcXoSU0Ughh36MvRypy+noKmG0NI5+qSSm5EItWlspKp+lzlzaiLiRTUwknaOcXLbddu+7707nr3fm8+N9nvd5n/e99p2H8MIlQLecV6eNZwEODyzpNTf8yIqqHTs1+YBp0/nhVdWA9baJPpIWDeN/75OR/tERK3duuTfpDOCCnYXZuHWUKaL5ZSZZgLVlwXKvw4AdIoE4pBIwOVJ+v/YmYHHC6lkmfhoWyHd9Z7OCw5sUsc3unoplxU08Gr0R8Lqw0NnyIGDQ2hXNjTc0bH1PTMq+LYDWG63nz4wdZZONxdNCCsbYcIYR4dQPRih331Uzi0Ifyrd+XbegIH+M9bnV38paAth51YH4x5/U8+9tTHvQlgYYUFxMOMvsfVwSxIAmm55uC9gLGG3+yrJsP6AsLtlvcbuaRUSJMsqTAG3ee7mulPJkqUtfype0q9jQCRnl7wk4u/K5XP0/nzBly7NSlZaVxVWdFDg74vHQZtPt3P2DfQcu/JwAWFJgb7HnlJZVBM1/IeDiL8cXvRELNCwq72y5eDNglnER8VptVX6wQQIoerhO4SPQsu7DCWEjqwAvF0Xy+w8AKn99oxQ1Ar6rNjB2b9Kw2K7z/i5FgFOaL498sHnN8uKbHHquATrwbGOvVAEeOv+10ZEoQNvDdhaluYD9WVbE197DvNesTc2WG2a7JDgDSqXGrTnegMvNGx7USQHd4wO/cTupZXOcHv/4/raKyeEnUNxWM/PXQnqf3bXtjVUcYMsajWHaFcDWjhLi//bzGNvAesBVHk6k/zmzI7NrGgAbKvOTdb7Zvutl1W4ZYF1wHeEEV9aQnlvO6M/zAk77OV0FHOnuDdXVHfulNlzC4Q8ZPL5rmjPGbPxnbt1cB2jl8mGCrq4gbAlT3gDc684r0/m3O6yC6tdUGIT4cec3KjzJH5BsKaxhgHduBZE/hUaJ2m8bNSwps+vi4rWAT7o6rH7bAdjEN0t38Afc/lZBvljYuZTeZ4csG7TeAMjzjaS6LZ+c79/F6XFOlZKcvpvjM2hC/0bb/EifnLgCI12/PKsn3IlXjrAXMjXNl7+3XWIJv5Ud8xYQL2lkL+E88t2IrpmA81bPKtW9mzLwF/mxueYY5TEYmDgWfgww0CGJ+j0e1z76nfSDVvEfuv5FtfmGnroI+JVpcXdNsZblHvUmPkPHLTbP4+otmP0DzW1/RS3pf0U0ddPf0aOsrzU9V36W0zvXoMxkCof3p03L1XaeLFTLIx9l5/maTfXSMIXnZ8RjfH6Kns8OKznF9fOpRHXoAuerwjHqS6B0BvVJMnBzw5CnltkkXg8dueeIEeV7SK+568N7JnB96reIIj1LJZOnxSTyZMPJpg1rmj7lW+gxQDqM1zfjn130P3p6pJP0BJdHHUUxJu8E+U+6Mp/06lo1QjzclxkT3/H5n3ZRvy9KgpV0b/DvfprPowMiimsmpS3uzgZc15tEOG7vFOSPudhDfbJcpPfdsL0p9fvZfX3e8TkfUmXS3jDKTKVz7PO6453y6fySv9B1zhHOF7X6ujru6vfUji9SCVfep9+jr1pMiLddiN4H4/shT5xKvJwXpFD+iNiH5FvFoN6/IkUnRYnwPsX/AP3Eoq4=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAyQIAAAAAAAA=eF4V0H0s1AEcBnBTZF4jNzMcoVPmJdshoe+5pgslYTqdObcyeclbjHbV5OX37UVcJjEvHanTLLs4olIyVkkWw+SwvKzy2lYkrdG3vz7/PHv27FGqRzmvEnNgwUfiY8jLBX25uLw7KQ8Khya3hR7Mh1m+yiysPx8mQjZWTLwLoMjgnb5YVgAjZrbzCcMFoGS7OpzQY0DZcUlR5cnAw9KKbLGIgUl/8xzIZmBG7mwlK2bgY/uEQF3PwKFfDhxRGwMtL1nrcz2kubuW9SADaUVxxoVqBoak25UlcwzUWmpI8pYY+NQj9Kv+yYCmMmXA+A8D30INu3ZoIPg0soKqtRBEnN7xeV2Ewl3hki0jBGGqffyiKULA5enZp+YIR3g2fYlshAV/m1o9O4QoPdFUhQPCNaEJ38wJoXLK3S5vP4L+3QGVmosgE1seZ3shWIzNKQS+CJrOp/aF+yEcVA1a8PwRtG80fd0RgFChY8RvOIbAPN4KYYcg9ArSeuLCKKeRP5sbgWDSP1qcHInw+kAzzzEKYbio+3drNMLRmBueJhKEi/Kb83AGocmqXMiLRVjPTLVkxSFk3LE36DqHEF2U7nE4AUGu8O2XJyLsLV20VidRvyGrbPU87fJrqfqeTD+4bdUOpCDULLfqlaYiGDhFuPLTKL8mDVKTkvTAXEk6QrDUe2SUNJXZ2fpeQBgSZO0uI53aH8XOkm9N80WcDARbDd+gGPLc9QOnS8gJFfdWJ8m519Y3Q94quz+pmYnQzZnJYpPeG0tcD1LKDawKJOvaxu2iyInmv26JJL6/Yp1NLlmf9coja69KuwvJqM0Pq6Uk5/Y3zSqytVHHvI5sYLlEK8jmyLX4xv99R3qmm8iTU2/GnpAZbl5iFbmT/yC3jRzf2hPcTkZ+Yfo6SG6NcPMZqf15Zfk5aV8vqHxB6gaOanWSP6ZdHP/7DxknVAI=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAiAIAAAAAAAA=eF4Vz3lIE2AYBnAvHB4zj7wSp1QeuCxNEg96NTxKrDym6bp0mQZlagyTPpezURraSoqZupUVdJBGVrbEZBZqKwcmw0ozZjOtmXhM15qm0vv99eOB9+HhVbG2MiK/EpAqWfP8UQJ+Yp7nh28Eso8pGGEaAr5vGnpbxwjEZYpzQrUE7kbnRXSN410wQ7VngsBlBoyrJwnwzxXKDvwiMCBv4g/qCJQkmSXs/E1gouwpp2kac0ZcgdMMgY1KkJXNEkjiezWr5gjYGl9U2+sJ9Gg81JELBBL7n6dyFgmwdad8uAYCVcGcm8l/CDjzbePYRgKifduGTOjF6RHPl38JnJyNMeWacCe9lLeKqm3iU2qXcIdrobBbJsC6cOSRECVKg6UONUuRKxL+EXhfqu1qRD/V1n+ZQJ2uaEYDVvCv6xtq8tCwzG5JA3qnPPu+EnW43ZmuR99Jc9huqwSOtn9vC0eLTlzictAao7auEPV2PN8hQmGyPLAejdHsD3mITo9y3eVocqjUuwedzUgSDKAOy4UFw6iZ5rSNFuUtSsU6dC6nxW0ODfrI7jWgW14tPFuiveJK0yr6U3boifkagWFJ/g8rlOnh38JAc5cdXWzRVt++AHtUYh5vYKKxsFm0DpW2K0Yc0RBFpoUz6iWJsHBBGanjGqo60PXWerTOqI91Re2EzAGqsUi02w2NsjZvo36O0ti4o87hrCzqoFVlI7XZrkpN9S8WWnqgBwXiYKpp/nEatdrQVkLdKzxcS90lTrtHDZrxkVNbBYlKqqDizBDVur9zjLrC5k1Rt79t0FM7Kq6aqKq+/DXqoCza0hN9sMmPQc16HWJLvTZ83J7afaObST07tcOB+h/AM3WcAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/Zry/mLGZ8M/GI3ZduzJwj8uLrBIoB3CPymfvFe+ZME/qkCtMJmhwD+hWnnnb62/P2uZGnVnDb4/zm8MozxovD/qI3Ei3MK6P7ifNSLfIbk/VsFLKniJtz8whj8uaP21P9JVqA76gLQ/D83EKsPmsj/muKbXyl2xP0UFFASZz68/HFaOhAIMrT/IxK7SWnKqPwj6SPddA6g/VaR/hhi/pT+4Z+bkA6WjPzCmPO4gtKE/WFqDACHWnz8wjw9BU5CcP0g8QTgak5k/APU4PW3alj8PtGinFmKUP8irgWzMJZI/GKaYckQhkD/0MCL5iaCMP56aJztjXYk/7GInRCpxhj8oHDK1UdSDPy7noF2zf4E/9wdYXC3Zfj+SL6BDaCl7P3Ec32Bs5Hc/uvCYlXD/dD8tPteYiHByPz8fIX6dLnA/nkBG8shibD9GXxK8qOJoP5JUz5A0z2U/iLMogBscYz/ratVHSb5gP4n8UVWcV10/GV0LVI63WT9fcdzfjYxWP1ZA1k9/yFM/DIjK7NteUT8hgQrCFIlOPyOWd6lz30o/wj4omX+vRz+Am6GZ8elEP27qLWhXgUI/fJ9+ad9pQD8lYs4rUzI9P5oLOCE6DDo/eBJEKoRRNz8ijGvIP/Q0P8y6gbQ86DI/pa/TuNUiMT+MCDI1gTUvPydtEfzGjyw/cFgRdF5GKj9Cr+8z/EwoP4tkGyvtmCY/O7dDIOMgJT/sqsNzx9wjP8KDIW2TxSI/wrV/bC3VIT/XP9ZpSgYhPxDcwjtTVCA/oOTQXJp2Hz+aInIAi28eP1hYf8x+jR0/j3iPh0jLHD8jh+qTayQcPynTG3YDlRs/t1vUJa4ZGz+7w160eK8aPy4gJ9nNUxo/UcFO82UEGj+g6Mj3accZP2n+bi4gkxk/4MW+DWlmGT9rehQ+UUAZP6TUelgNIBk/KBCssfYEGT8xNeEwie4YPwyIekBi3Bg/du3P8kDOGD/2yoSEB8QYP68ZSni+vRg/Orw2n5m7GD9TD0v/AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/RjfEzChG80/jOLJeF41zD8f1Pg1JzjLP6CJhf1SJ8o/EovccYoGyT+6IYrDr9nHPxqwGX64pMY/blA8fIlrxT+QxfSe2zHEP+V6Pzon+8I/eYJAfZbKwT+CGp6//aLAP6nJP0axDb8/YLebGnGovD/APpyVgly6P3Z9gSaFLLg/NtSklVQatj/lrI3QHSe0P0TtasF0U7I/wpD5PWqfsD9uFrmEQhWuP8ikUNLFKKs/clWOh2F3qD+b5/u7qv6lP1JPeKzlu6M/drACFx+soT+sSSzJg5ifP4zITLVSMpw/L6PdN2AfmT/F+UKPeFmWP3RSaxGS2pM/BA7czNuckT+i0gqSkDWPP9UtOfUpnos/eFYb7Z1piD82t3XEqo6FP5iJeSS0BIM/ZsbXdMHDgD9E6HIM9Ih9P5Ds1yQ/AHo/aWjeBg/hdj+cBLG4JiB0PwLCgBlRs3E/nmD1pp8ibz/sLbH2k2NrP77EsmR1Gmg/QllJLMA5ZT8HFBWCVbViPxwSpyRcgmA/3MI8oUUuXT9ZfZyTCdZZPw6MxhCh7FY/TDxR9WBkVD87QIRuKzFSP7lys+NISFA/zV35EIhATT+Y06WRkWFKPxQWYqQL5Uc/zMB1HSG+RT+EiXPoluFDP5ChOSCdRUI/G3Tzd6ThQD9AdFaSb1w/P4X7PiizST0/4yMgb8p/Oz9lhN475/Q5P7asbzGGoDg/epkgQER7Nz/wuZxZuX42PzLPOMpXpTU/yovHr0/qND8f0D4Qdkk0P2wSsR0vvzM/xHWXQFtIMz/E7J6MRuIyP6xXcE6aijI/EF8ralA/Mj9aQEdKqP4xP7I4NiUdxzE/6M2HZV2XMT8Y/kYEQ24xPyir+qfMSjE/I8VVWxcsMT8Cf4a5gxQxP3iKqkNOADE/ddnPTAfvMD83MQtaUOAwP3ittnfa0zA/+DC/9mTJMD+SkXySvMAwP3ZjUAS7uTA/igUTD0e0MD8lhjMSVbAwP0FoqTvorTA/lgrieBStMD8sFVKOAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/aW9rHxod44/8WDslQ+BjT/5bHEV/XOMP2hgnDNyU4s/4q0xWCIjij/Vn4RPAueIP3B+QSIco4c/eCk9C2pbhj8QSLZruROFP9wjTJyVz4M/OAw84TmSgj9mmO13iV6BPwtUZZQMN4A/6qGnHu7wfT84O+3kkI57P6d0RuylSXk/VGVx3wgkdz+E9Wvt4R51P8WFVUW8OnM/oAnYqZx3cT8AjHCXLqpvPx36cLLIpGw/cOnWxeXcaT/u0kW+809nP313JWkO+2Q//LzemBnbYj935MF61+xgP9sanLH2WV4/bqk/IXIwWz9CPBUio1ZYP4xsZ2Y5xlU/UND1hiF5Uz/OOasWkGlRP2JwF6ESJE8/0gXl18vaSz/eVrcrq+1IPzKHIAC/U0Y/8Wvq0sIERD9XFR7rGvlBP/OGLTrOKUA/YWqR2P0gPT8AQ0shxE46P8t3V2Bt0jc/8nv8MXmiNT/Yp+AuVrYzPyhil5FPBjI/Kn9hVHuLMD/ocWj0UX8uPzEDeU+iOiw/LDlSSgw/Kj9vypuvyoMoP7U3zXUTASc/LJwlsf6vJT8a6rV+b4okP/2l29n+iiM/y186SOisIj8wdIBE+OshP0nT4k18RCE/mnzGgDSzID8+io2cRjUgP9nJErVkkB8/jB1V9Y3THj/qMO7WMzAePxKGAuj8oh0/xOH4j/woHT9z3Q/fpb8cP660pNu/ZBw/8qyHJlsWHD8VAtDSyNIbPywlj1CSmBs/pqSgTHJmGz/OTHtqTjsbP6WEbr8xFhs/63r++Ef2Gj9dzjga2doaP3Lsu71Fwxo/R5riywOvGj+qmv+Vm50aP+Sz2Eiljho/ICCQqcaBGj8z1fUQsXYaP4rzrZkfbRo/vAPDddVkGj/k5Edmd14aP4DJ75ABWRo/w2qjAFZUGj/ybpFaW1AaP4KeRG38TBo/FcZL2ydKGj/CGdHhz0caP+xNlTzqRRo/wMUNKnBEGj+eZfWTXkMaP2QAkGK2Qho/dcZOA31CGj9q9VIrAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/VRLivdUVbQ/HpClIrKusz8G8ekx6PiyP13t8/4XNrI/FhJfxrlosT8vBDw/dZOwP0Bk6wADcq8/MGgWHBi4rT9OS8IcSf6rP6CxoL1cSao/Joal+62dqD8YqFwuIf+mP3Wv2ckfcaU/br8GByPEoz9i7RT7VCmiPzJSEDZ9oqA/zvZEj7dhnj+SGO8Nb6qbP/FjR3PaH5k/jFBpl/3Blj8SoXMYRJCUP8O31BadiZI/YgkRtJSskD+kunEU1u6NP5DkJvlQ0Io/+9r9w175hz/IbvhAlmWFP14dM8J5EIM/4gERG4z1gD8V0bo4wyB+P/TDrwZbuXo/iiGjmZisdz/47vOxlvJ0P4Ds5Ircg3I/zupEtWRZcD/ABIB/QdlsP5Cj0IH0bmk/Q+RHiaNoZj9wSPEa+LtjP7GXbxV8X2E/Of2YWh+VXj9+q3YOvOpaP26zBNGhsVc/Ok9cxQfdVD+yvzidbmFSP1ICuLaGNFA/5sfdni2aTD/wGuJCx0VJP/B221ExXUY/xjBGe2TTQz/pP6M10pxBP+7r6Yl9Xj8/jfc2djwDPD/muXzI6Bc5P3Ba0wlvjjY/9mQZjmtaND+Q809b+nAyP/qDPsiLyDA/F8cE9HqxLj/OUUTRbjQsP62yZSkZDSo/YljwNj4wKD+SLMm1DpQmPzrVr7b7LyU/cFCUc4/8Iz+RS9GjSvMiP3vOJdmFDiI/4mv2d1ZJIT+kHLLmdp8gP25FPZkxDSA/fBubS50eHz+cTDoxB0YeP1cxmobKix0/zBscl7brHD9+PrWFKmIcP6WPCC0C7Bs/gBpnWIWGGz/9XVkGWS8bPzX9YWxy5Bo/yKBoeQukGj+a/H2YmGwaP78IcXi/PBo/KiOinU4TGj/GW10mfPMZP8/Ecj402Bk//9Sph+DAGT8xjPnGAa0ZPyAqx6gtnBk/+tlMEA2OGT8oy6TzWoIZP9xmmsvjeBk/1YjVpIVxGT+kodnnMGwZP4q4DffpaBk/8XcwzstnGT9RmFn+AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAA+wIAAAAAAAA=eF4NxX1Qy3EAB+BooReRbKa+a1tbTeu9vfyK1YfOS+XUvJNUTpdeSEguhbualJdeVS5cL8vbGM1p6PSCi8SyXJzrjtIKJS8NeSkve/55BsO6RG/Vjmi8vDi9NssZDnVPPZ92uKI8hDFU0yDE2ecVXZ8DvBBsZTi37YoPouzqNiyd7gfvu4GXTgSL4PpGyBBHiPHEKJutlkjgV3k6yOKn6ezMkhmnpCgpXjVfMYeClL5P0qCgIOfR3ZY9ozAunfjtMdkf366esJQz/HFdoFpVMdMfEu2L0HdGCu/SMpXcFgq6MUaIyz4KE5d8kjsJhe2PP2nHNFJkT/mSsNdfCr9dvxawr0vQkxPwu40jQZQuspLKFSPvx1a9bECE6OJ0WoVMhEbvz6o/RX74KuOZOxp84RBolOeJfeEzHl7/KNcHKXGNCaVabwwcqaer4r1g05rQ7cHxhEfzRa7roDsEih5P+U0hdmcoy+xOuYGtYqZm5c2D1TWmLiJfgL7N8Xnjla54r/cVnm9ygTDwTIp4lI84yU/jSgkf1ectj+zP50G9k680/+iM9L2O5S4xzuhUyWbTerlofm013JDMxYTVVfVyGhd/8zNinl/gIPbkt/H4tRx4kfW2xIaD+2lbteJyNs4w2w8JeGwcntTYUdDkBOah2HZanBMYzcoR0J1g1jdcNUvPgnYpPymplIXM4yUt4dEsGJM1R3u9WchS2xWunsrCw3rNzTEDgTYrNHZeG0Gb4lXdRhUBnatrsS4lqA39l9l5kOAOX9cctIMgt/iWu0U0QeqxB/3dcgLu2ZSNSUsIbqxJXHF0AcGeYwK9mYigsiolsdqdoLtodcQiFwJNm0rTyiYYaO1nmDkSbHno1j7AILDvORe23p7gxZ1EQ/BMAkN+Aa9sOoFtceQBhTVB9LSFp5ssCZ5854VR0wjKhuW3h6YQNHy4t6nTgqCdsburl0ZQZN/xcq7pkRmjIRnmBMyWHvrEZIKF7sqYGtMjO1CYaFofEJ6zzvR/jRg16g==AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAAMAAAAAAAA=eF4NyHswE3AAB/BMpG6h3CU9JI/Sb5t5NPLaV1gak0JlpRsddV5xnYxWRLPDaT2sMnmeeYRlTbWOS5i7utO5ijvlkjN1inBHjxHJX5+7Tw6rUjSnUkH3+IlQTFSo9W4KHXFqRar23+jinBJXijnUrLoWKDPjP2iCmzGV0mrGnHgI/YI6kJPTiMQSRiPTsgFpqa63htV16I0yHP94XIGWJCViDGtR8HRvuXdnDdIdPCvuCarRF5hgwN5ViTKDRcOyqgcY5dxoj/CX4/x7ix0ak/u4oJeknJ2XYedCopOAUoJimaGPF+s2DmvqqawtN5H510LXbFQMmzArPxP3QsyM5jCtFRJI1lWcvc4TQ9YYO9FAy8NkCm9i0vcabGwURSdXrkDu2DXWOpyFfi9K1ZSxEPa8d/RTV9PhXDQ0Kve4iIYlQW41Mw3UnpDY3JfJiBwsOMHPT8Cv8YWp6fpzGKyKabbdHgfetZUfso+xuMRS8chTAYIVgRJfp2hQj8TpKzbx0esys/VZxAnk31HaUScjMHcmS8XoOwZ/h+Vl95EwMHMTpElyHo61dRWEv+Ci00VyqN0nCJ+/l4xrqRzo2BbeWrsARHUJLXdnHYSPzOEejPwgzn+d1J3nC39Zj5F1mDe+OVvdNo/3RKdcHB3Z4YHs5dLgbq47+JNqU/p6Foo3U6XceTcMj7Q53qW4wVPUp/R0dUXevpCXS1dd8JN9MJWuc8aGbtsx6WlneNmoRQ39TBQ8sC4zNWai1KvQ3JTvBEexB2VWy8BipONMRgADmeZ3fg8N0mErPre+9hIdf2cut3XY0VeflhI6QoNAs2Z/TzUNbq8sue3JNNQ818yu9aPh0aBuQ5kVDVThaZFMT+Av+bKb8YlgOoMkPdMS8I8PhJQ+IjCQSUp45QTcsI1f2VICSRCv0yWPgJJNp4wLCZgLYx3bUgmGzbQOTecJMpb0PxJjCRR/BtTsaAJ7ylK/aRQBfY806k0kQbLoYU5aOIHR2wOc5aMEAt9diuxV/wOTIEl+AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAAMAAAAAAAA=eF4FwQswEwAABmC0chyjzjQxbi3pyHbtrjzqP+QsOXGGTp2LdhpaGDYruo55ti5HU8TsukQ1NsQZoYYUefc4UnncWegxWhEl9X1LatmacLgZO1Nj87Z0cTqb+VusPGVB0CudPcUIxNsEZbXiQhDqDA+uWx+IwIZqcW1fPg85phZP3UuyoSO7/5nbKsXksxiT62V34cVy8PQLVYLeJV+t0LWBS+bWLqZpUONt2iNJeA7ql11pZZ0DYB+RhLiwhzCw4X/F9ccYPu/tV2DpFfrkN3I0v0chb1Z0X6OOQZbVTY7yGkFT9n6O7/cRcOup8hWbISgemyHU8gVS9HPqtZvPMZ857rq9+hk4H35VEQo1ML6fpXRd6MQphkdbUbMaJ8kzU5vqFpjZ8275q5pQUGGkfsNWomTWst3Ooha/3ezW6OIaROS+t+qPrcZgl5im5dyF+cx96yWKHK6mXNJ8Wyk4otooQ14JAkjMVlqVFHeUBcy/1sUIp+fFf42TYDOf7c2qyQNdUBJ84VM+9LLuUZVFNpiD/a8Zm5k4sHzva0+iGPrR45IfLZfxzVtPfBOZgYmJww0JIhEmmiZAkwsR5bDbp2FdBLGcQt5jIsTLivpVX2MBFlsHzjcQLiJey7Auvy7EO9sQCyFVAPOHltFiCPGaNuX0WSoA0dFvpeh0CuI6NhJqtMkwotvZqVjJ6DsM7UIvH6srPlHLZ/hIjbR9lFGVhLMP3P11XD7oO3gj/0R86ByvplPSE0HT/pquXOVheVDyoTQpHt0uZQG0ZS7GRnJvW2XH4JLT6EtDJgfhfRlJckI0PDqfZH00iITk9mx5TkgEMs6pXvT+DUPq9uFzvQQ2BsNCiz/2BoFoeWJ3iGMALs06/1uwYUHDqhialh4FcUxQHEzwwpVGjX9ioCcKewwKy/0OQcdIbzSaZKLji6Jo6zcGyJk/t1VauYC0Hh5PIjqB0GKb1t5Fg9h4oM6AQkVKh2aO42iPST6FJDtkC732mAGTZ4PTxUq38WEy/gO/6mInAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAA+gIAAAAAAAA=eF4NzX1Qy3EABnBK9/1N0UptK9OFNUliVNJNT+nSi2iJlXZeFyuncY44U0S6kpG1q4Skl6tLXkovNDVnJk6J2Hk9JK2814Y6Xeb31+eP53nu0RYt4UeJJJigbYoUWRLwoH/c5dgbMcpfl2QzPq5Fdc7f1aHMOCgy7qfelcZC2auT5TXGQLxpND2lLxq+J+UXA0VRKPjx8o10JBxpVduPFhjCcGLwtY1uIBScAePnwHnLUdn+NV6aHIyI/ak8UdkyCEdC9JL2QHCqHh08zQvAomxfu++dflgwf0ba0/rF+JJ3y2juEsA7+3ZkEnchvHYn3HQUzIeri0EtPOSFhVqVbpOjJ5JPzO5Y9M0De7NYTlbWPIieCMtrRLMwy36lZ063O3xuaFZY/XbD5gk+KsNZLpI/7rI4H3dFSY9mgHuNA01NunaiAxtyNc8zr9IZ0qzaUvckJzTwXry6HTUNNcaj/R/iHLE9YoF1jsIBAwpTHLedic45/OidHCa6epVvQ+zt4X8lKD/FcSoEdh/EL/ymwGH82eLCfXYIba1o5j+2xXFzn2yP0BaZFZKtd9omw6LTWF+OmQxVWkIZa4iBFn2bx9wLDFwdO1e8fB0DyrpEyR8WA1N/5s+z6aWQxa7WxzdQOGA16vY3l8LQ4Ls5bBmFI1oB9TuCgn9M28NhHwreGYnbjnAonHT29eTbUJC33JUd+EUQ+bhf4Wok6H63ZkTzikARnMBmdxO4BVQl/dQTqDLlh5ntBD6x7x1WtRCMp4o+pdfT+WehfWYdgaV2Q/jSGoI9WzTBykqCSYpeD9klgqBd190bSwnKdGqT9DwBR+dVklxCkD7t1KTmYoKo9R0PQooIsqLNX60KCcqf99UNq+ldH1tMaFfX/3MKKiA4X51ryFcR9Pi5zBw7Q/++zN2RQzsU1hrGp10h7jjWk0/3LjZE59H2/ypkxdAORppLubT3NLZG02kCMyvN+yltQ5PF1Ez7NmXJeAVtqbVdfDGt77XpG9W0/wHDw0FTAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/TJQvA3huLI/wPk8jB+EsT/Q5xMOJ1uwP4ZHvhLje64/Ikg9aUNZrD8el9j04k6qP8HJQNVMXag/+0s8qxCFpj/wWyjstcakP9gM3/uyIqM/60iAf2iZoT91mX1eICugPwmFVeoesJ0/sy6+W3Htmj+esg43/lyYP7be27JQ/ZU/ot3usq7Mkz/W3vSxJMmRP/gSgnUk4Y8/YX/I9WuBjD98ovQecm6JP4QrFplyo4Y/t5RStKQbhD8jcRIvS9KBP/RxCwuDhX8/PQX8vA3Rez/9CXhvjX54PwfX8vm+hXU/lBmudc7ecj9YOKxFXYJwP6Nk4WEK02w/Gy1CBLIbaT9CrhQ9xtJlPySkbAFF7WI/LouE8QxhYD92ylkgpklcP1yAroMuYFg/+7utGDD2VD/rXs35i/1RP0b7ci3c0k4/yshFF2lcSj9/8vQVsIJGP8DJA4WrMkM/8iZMCjZbQD+9dSBvy9k7P+/HecLVszc/pu3hcOQrND/V/ITaEiwxPwCQX+cVQi0/n4zwA6fzKD8gf2d+PU8lP/AUdocxOyI/YNJWENdCHz9MJ9ToAt4aP0IRd4+tJxc/FWDdS4IEFD8w3FGyZl0RP1prRay/PQ4/kVZMExBxCj/z9/nqKjkHPwKlkO7hfgQ/u6ndRLguAj+2njnLSTgAP3qVR8+UG/0+STpJQTRH+j60QcXV1d/3PiV5RNDq1PU+bCIAU3QY9D5BSii9mp7yPtThPlpWXfE+KIgybCZM8D5a5g81qMfuPuCGcXp+PO0+7kmvqWbs6z4chJOZhs7qPkog1MNV2+k+MpsrdGkM6T7A3z/DSFzoPo1lNQhHxuc+RMU6n2NG5z4YaiILLtnmPpJ66ZWte+Y+ooIxtEsr5j6qb73z/e3lPtyrgLvGueU+HGdAKGeN5T7LeWoj02flPtD2lMArSOU+tiAW2rot5T6sIHTx7xflPk6O4ldeBuU+9oLgsbz45D7eB6365e7kPkLSgkHc6OQ+ftz3dM3m5D435m1lAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAuAAAAAAAAAA=eF6N0jELAXEYx/F/MkkGg2S6ZDQYDDJcl9mLulciXZKkS5Ik6YY7kyQDMugyGAwGGQwGg+9/uKeuM336Pc/yPE+PUl7gtI+mUmGCNhp/Gvo/d3jCDa7RwyXOcIR97GIHHezhAIciy7qLY5wIpzjHRUxeibl9sZd2i/oOezzgGS94xRvehQ984gvf+MFUEDWNGcxiDvNYwCKWsCysYFVYwzo2sIkmttASGjF12dd/k6SNVsQv6YI7QA==AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAYQIAAAAAAAA=eF4Vzn8s1HEcx3HrcDkluYsxCp1f0zJX3brm+B7G0mjRJNf5LTW/Slx+nNzpllo7URy3IrNGuUaHmJmK2DWOQ01skTbmZ7dOy6iVXp/3P4+/3u/3M1ddkioL6KeenpUwiMM/89ukcLMm7zzRxS9nuwSGz2fVEwvl6UHE555Xlm/BKV2Kgmh6PZFD5ByI+1wME3tiJcQK0QUX4mXtiUcF0N+XZSaGdo83xDnQaDqxnAV1WW2x6bB5WqFLg/LADP8UmPQy7FUCFNh6uYpIj5RedRGarC6aRcOvUYM3I+GbvsaVCPjEQyY8Qzor40dDYcwffkAw5KY6aijI1P925cMfJ2eqeHC0sducC1/sUeZz4B1x7upR8nc+8pI36Q3zHfOA9p37KDb85WTQOMPxMt1hJ6g2tlTbkz3hPbotjB9KK7CBPJ+QNStoo2KLLOHqLpqeDgcyvlGmUDX1tt0EXqPq2X/9+6mQFolyGzqyhLs3obGYV7gBh5bs1g1QdW5TtAYzez/plyDl1iFYgMwHlR3zcHEr220WdidF1MzAu7ojFlMwhmtZNAm9GlbWx+CWxYe4Eai90TSuhcpZeeAgTAlN7nwHORqBex/ccXCu7YE6+T+LLlhr+FLUDpNjer+3Qp8BVbwabnvnTzTD99XRQc+gYuf46wYYfZXpUQcPfTTWquCS3zhDCduaWiUPYZ61wlAO/QrTE+5D2sLpyTI4HO4ZLCedRvbKbeimdCknRp06eIwonXOYLiV3Su2KiXPuLFei1Yi1Vgb52XsziJlMxn5iXbd5lxTqhTQh0QRD/A+RZFqlAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAADwAAAAAAAAA=eF5jYBgFo2DkAAAC8AABAQAAAAAAAAAAgAAAAAAAAHgBAAAAAAAAEwAAAAAAAAA=eF5jYCANMI5irJiJRAwAN9wAXw==AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAxAIAAAAAAAA=eF4Vzn1QC3AcBvCOmJdtiGMcuYxkDXkZi+WLHQ1x39/cVOhFzc6FysvIEFlHdrmuvEZH9HIrtZK1OkvOyhl2Z7jtlspbb+clF06nCN/++tzz3D13j23ByBDDZQax1nmc0HwGEU6t61wRg9Pa1hP7jQzqfn/gJJcwcM69mOKkvN4y4evjYgbtZc0lxwoYpB3gLOLfYFC5cWL7lVwGl2L15cHnGRT+eT7aJ5NBlXV6r1XPoHb50+ixOgbjEnq9zicxMOemYpSaQb+FH26IoN0Y10tJGAO/4yPlR4FB4rVpU7QLGVQsCwuSzWLwIndEetckBqbQsuDMUQzehVhtIQMIF3w7xvN7EP5W8Ny8NgRd3MkzYW6EIVfDDZ4nCLXjlDMe3EdYm1+k4VYhfONliZ8VI3zSmL565yGsV+0wP8xG6Hl47zcnAyEAtxtbUhFEamnf6kMIFe2dp2WJCI7qug1PNAgZ9pmWrhiEMlFf44VIhC1fXGLHZoSD0+6mZ2yi7Lh+uGEdgrsmoE+7BiEuxXTkyiqElencycIV9Es+xcVbjqDs6KhCKUJpafb7NgmCzOlxP1iEEDT8p7p1AUJyqfKpJAjhUovdapuHIPAanZA6F8F2VaiPFyN4/B4F7Q1E+GecP+GyCKHRN3xl6xwEPqd5oYxUqtY5KgMQmhQ8hZQ0qFSLnbMR6n7NTjhE7uI+HzaH3BZmjun0px9/6oeVk6/1y6qPkl5DFSpG6kZ4vokH+x/+NTxSLTB3f5+FUOJ9u7eZTJlarbCT0RNFe2vIlvKLA0ZSHnX2Zh4pld/h5pCZTcKBDPJWcXtwGlkfkpOtI83HpU0HyZwG+JxELum/9WE3KbB/LNhF9hQmvdlJVnZHnoonMTDi1A7y5T7Nqxgy1j9/TzRpyRKGRpESASd6O5kniTNtI9/W71k6qI+rtn8r+R+NdzysAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAMAEAAAAAAAA=eF7Ny80rgwEAx/HazcVhbcLBSKHlPpHUDpQ9eGzjGS2WkrdaUbRGDkuSrKG1cnBgLkpcnlrbiRw85UD24iWT9x4pGc9BotTvd1L+AKfP5ftVpAdTzC02RLJxmCmPwvFIGI7Wz0OHFICz35OwIj4Ba2vG4IvTC+fUYVjyNAAXyvqhOt0HU1UeKOt7YKnFDQuC3VDRd0HdngR9S52wcqYD5i864W3MAb2anb+VhqLt0GWgryERvhXRzZ02uG2jQ++t7NdpRKJpI506b4Eba1TwUrOVJgqprAnQk6S7Mk2sUDFAD0fotYvuN9GghebMtM5E7Ua6mkcHdbT4ywYfNSrk6P0zbVapckcNN9SfpeFLenBBP89o9SltzNDe9G99Kbqc/NutE3p1TD+O/pc/ZmY3FA==AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFgEAAAAAAAA=eF7lyb9LAnEAhnH4DhIEDpFIqDdE2CBhOkRTOTRENFwS2FiL0PXDK41IhIgjDRrEKEocXKwIoiSIGormHEoMI6RFSQqhJomCtPB9m/sHmj7wPPJzdi46Ivcf3kjQWrpSG1bzKzBQHIXKpwOe7Rpgurnua1gTFdhVeICPUgYOhi/hgP2EvbQP9cYkzG1tQ8Uegzvn6/C+KcIuNBiPLMMjLQT3npbgeHwRbiQWoLngh8Pueaj7UuF1zgcnbmf5X2dgykbF6jQsV6egN0izLXTsQoHHKl1zUuf3JHy/o/k0FZs0E6QfXnrgodYh2uei7b30rZuGbVTXSd0dtCJRi4X2mKlsolobPTXSF8Pfil9Nrf/LH2CQHTQ=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAigIAAAAAAAA=eF4VzH0sFHAYwPGOMSJqtTihsJW8lI0lZveMhDsvPejqdPNO5OW8pbxEqGu3TjZhjaYmc17zliucFu0oRvTibW1qVBLVSGZaref31+ef774bhbU1elKE9YaoZzW5CKPGw0s3MxF8Gg8Ga6UhzJfGhqYnI+zo6x/IT0DQlbiLt+IQ+sfeKl7EIiQdirk3EY2QMjAYpR2FkKq0fB0egbB2t2zvTBhCQoXJpDCU/vxrL9+IEaZ4huLocwj1pe4z2iEIkrChub6zCCM6KSbSMwiKcfn+cCFCiVopFpxGuK0y43oFI6iXhbLAIIRWtcdYYiDCDPeWXjkiRKiCU4dPIehf7j+uR07NFClFAdQV9fh2+CPcOfE9Yw+ZPNL9pNAP4UFYfeumL0JTRe9WFplbseapQQZVmbqWCxAsOVzZEbL4vPL9BB/ByNX6Qw7Za2XnYkc62bQVf/JBaOziZNeSz42SquLJrwpDuSN5cWV9QZOszrPnzXoj5PB3Oz0idd18o0pJz3Z1fAb5w0q+LCI/NmeXuZPb77cZ2JPzWfM795HSb/JgPXJrZbXirxeCQcuu6lVmZrrjItlj+8V6jkwTuQVNkfxtK7JxcrG2u2mYfOUtrFSTpsk6rv2kX19QZh+Zb1x1rIcsWJ5NfEw2+IZodZFV/nG/O8jOHDOHdnLU2bq5leT9KQ99SNo8rYMW0utqo6CZVAhms5pIVaDLYCPpNJlnyxzy+FXfQE5FXnBmxnMspuvJkk3VdSbqH+UxN6RKDlNyeGhMQf7z0K1hci+lXWEGvNMMZxb0LpxkoqLAgSkTRJozb4gsDJkW0ykaTPMDBpt1pH7m+E9mmX/lElMlifnM7FzlLTD/A3o9PqQ=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAA7QIAAAAAAAA=eF4N0H0s1HEAx3GHogd5CrkSFcZIqE56uA8m8lC+d57Oebq7nx5OqmWLuerI4xGVp6ZTqZNy6iLHOj1sdM0SkxaXMsXSyprSlutBWb+/Xtv7z7dAU50RzKIwZvj40N2DFNjmTB+ZjMIDRROz/QoF1mjYdLaSgsLR34OnolCmNXOWtlDg7n9r0X+dwg65yLqvmoL8tjBsOI/WramCJabQ5pSaG7CXQnPHqlBjDwompZu6waDwTBB4PvelCL5Dvdo79SLc/KiK0qaKkJXE9X3jIIJpyaVjG3RCnFqskPySCaET3x97wRIi2jgpAhMC/JCXVcwVCdC7e81ZtZsAipMXy2VVqdCvvNf1eSgFbU9v9lmvSAG7TvJJEpGMBivVP3FZEiov674zBhLB3DrN97NMxB7/67PDfD5WTpgdz1MmoP3GTE33Px4CIj+MG/J4yAjJyrymiUf34cJ7k47xKKzpKTE4F4cqA5sBd6M4bDlc8Od0bixscl7VWxrFYn7094WZihjEj7cKzZ1iEK7Pqxd3ReMj3yVoKiEantnuscmMaKhcpZSylYv0W0yvmjQu4lp7eJOOXOjXyTfuneTAq9opq6KZA6WGc5R7goONKZ4joaEczNq52tuu5eD5tpNy6jfBgX7lr5FRgsvjUcnWjwiKrHs7tQqCr8aLBivLCZbahgd55hC887wREHKIQPcp064ugYDdJKh8H0kg3em3fiKQIO7L/LRoG901JrUsb4JvbWlOm9wJ2sbUpS4bCJa77T/+04HgmfeOzmJ7AuddtqZdNgTB6u9l2VYErBa9+K45wbRBXW6kGcGx4MmFoGUEGaVSl6IlBOn7iudMTAmmzqj1PYsJ5rZLF1oWEaxoiF94aEyQyPZ5/dWIIGQszYdNO7KT/URlSNA+KGn0px2cSSrSMQi0UwyPfFqBxax6Oy2vybJ6wYD+wLSSDdBqOpzrG2n/tsesLqDt8brakE4rqdu8jE87eyS/lkP7Hxr7PXg=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAA1AIAAAAAAAA=eF4NxXswE3AAB3A5EZdxuYuUTq/fNklLQ9F8sUJWLUaZlnPXcpdX3UJ1aS0ikkdK1Nwp3Mq4IbmKTIokutyNa5XXJY9pccml9/X7/PNxTArsMI0QIVyVKjFeDcW/Yu25jAUhrKS1ly6v2gvp7jy/z7khaKiIamAgGIP6glZHTiC03r5PX4t3YlQ868t4GIDpfSH7N/P9IX0z72s5D2hU+V3P63gY2oOPcdd80BGiaVaWbocqaKlBpPfCJ/tHE257PHGnTnYzfoYLRmp3wvDjrUhqCgv7VO2O9iuhJQeat6DPip19fpKDd2UVb23cOCjkGDLZyzdjsSxBP7SwCcN+JT3X/rii6HimjuXsioHyY7K56I1gScfR0OQCi688TuYaF8id2hhj5WyccTI45LqxscQ5p0LRw8Kzxe9VpiksrDefZmeyWeDdEAhrJplgFL1iBGiYmMqJTfZJY+LeK51EvZ8J4xHzSq0LE3nqrU3tlkywtJ3Zdl8Iqsa548x+AlvG8N8MLcHEOQ/RkxoCqyUfdDIlwVnZnGdEHkEM3zln5QUCddCZiaxUgvQ6W0lMIkHlinzjqaMEqhZ5Y2U0gaalel1bJAFjwPuwWkRQWNZVultIYM5tqLooILjFuykLDCboUxjvp+0i+NHRlmbPJ+i3Tjax9Ce4Xv+SvwsEcYPuE+08gl6/VGPKDoL8wttFYh8CuU3VulhvAsmzqYHi7QTeo761Y9sI9orqogR0of0jt24vgm7/K7/EdIngr+lvT4JSXutsNT2uVtMqpXeHmzWy6WbR8+ELHgSmJ3uie+nLDrk336XHLjp7Opt+40RfbyK9pp1pcZA+4qQr4NODlynH3OlmdvzC9fRyY/GIAz39XZLchu5664XCgh711vqhCZ1TH//zF5egjPOdfKdXRq7eMEdXPxCOzNBDsjoDjXT9rDJsmv5tZq2Jgf7SoBBN0f8Drl86ZA==AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAA+QIAAAAAAAA=eF4NxX0w03EAB2BmHCq6Gk19f4wy0Zt22VXYx1a08tKoHe3o9GLV4q5Wllsv83JJjCtvacXRuzsLlaksrZe70q2dcOtF5RRSKWVOSLs8/zzDtJTM+2H1SC5prEzxrYOEP2hgi2qxu6++pKflGvJyM29/3nUFJD7kqHHdJdRR7Ims+GpQHEZ5GrcS3EWOq5vcNXBXu45t2HgODm1S4eLnpaiYiDb8KiyGVRV3MVRxBh7/Zmqcx9Uw00wWpfw0nPlMAS82F/5SubY8PwfbB1MLC9yyUB3TMf9B53Fsimba0GyUuL/6m3nOJQUeNuir47SHEDiUuSfC/SBe+Oww2V1Ng88Lrd6/cR/WqoTeI5CC4TUxbivYBYbe7VhRbTJEkwyZsisRNif7u5xHEhBWc6HPt0IMB04eS9wUh0df3GxZa0UQ2D9ybV4ZBQmjXTeZL4Rz+JvsPlk4TDU3FcOtAtgOMu1/K8JAOVhv33QKhUQ0Y8vbu2tg7NHpeQNclKsrV1SpViF/wNAdks7BG8P29uJ7gZA91TjQspfDhd7028tuKebx6t+n9vujrVR8Pmb+YqyvesuNKmPj1o/EbY8jfWF4WZBfs2oR1G2hgUHChZix05E+ovIB++H+uZFmb1RbP2WoI7wRcsdCtRhZmCop+5mRwgLN5emfoVksiHNjfyWd8kLrx6Cv+5288Lr7qrm4yhPWG45lX9d54ujZy/UTYxSMCr5K20SB3raJyT9BIUHOOB+0mUJuw7OMCD8KecLGk8n2FARTumjNIIGWy2xe1k7A6ymskLcQ7A3o9XtXS5AQWEu+awiutB6Q8YoI0u09lcdyCLhjG00SJYFjXKKtRk6gc+p0oacSGOas7JZJCawB+uFrOwjqPhxJLk8iOFyq61wgISh98r55QzxBx4qFJrqYIGyrKthjC8EAv2w8I5YglmEZ9xARjL5yHbXEEBjvjgXbTD/acKBmTTTB3/WzpRejCAKWcELZ0/f2v0wyRxLQxcPXtdP/BwplQAI=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAtwIAAAAAAAA=eF4VzX0s1HEcwPG0YtNGHXa05EiMZKZJqD7hhovu+7vzeCi3Y57dVfN4Fnl2Hs517nR5mC5jHkJk1c5TD7TKmlpjoVBYhc5jKk/1/f312vuv9720Kr23/KtAdN5RT57kQ1DmAWPn2jh4GhnQvEc7BuLypZz58kiw4DwX8lEEcKepD2Iv8kDuEtdfKOOCPPkcrZ55BfZ42Stal0Jg/HieuO8PB2JMa9yecYJg7rS++NBKAAhNeko8u/zBxztG51SbH9iM/AsIG/GF1W3nnE1TX+CqlRqlpWyocNqS9FLYkNq402TSyoIGd4lIm8OCh5sz3il6LDAvS1iYHSNAbaFBdW0mwHtdSBnJJiC4ImfKgUdAg6uHlaMn7mIDwbQdAcxLrykRRwlYnApZoeoS0G1b5CrYS0B4daLWwhKCxk/9StkkgjDFzUGXdwh+pD+JDR1AMO9AY4pUCNYMKvZFdyJQpRepWlsQ3B/Uyj3SgGDC4syxLCUCtRvVrqMGgUjeWy6qRJBsy6X/vI3AvmzUeUCO4O6bZdlmOYJwrmIyU4pgwzZa6HELwe6Qsbm7BEHS2lxhfBmC792FKyoxgtFho21LbJhUGtZWioCeO9vDwPKrJpI2SvD/hmZJB3bV3yEvFdulX+DHwE7Viz3NsH5D+39rYE3yLzt9K0ZwPiHX8D3W58XQqz6sq1aTsh1rHVhHrcP+BeKxAhvIPmEqwdLZdpoi7EfLX+Y5WJ5RsGcGlrYsuyDEUupkC8lY1W6LVSJ23SXlyzWsjuHqjgBbSXuUwMceNgo2S8COby3qxmPPOhbYxGGz29WCWKxmLeNDDJY78pkgZRWNzUST3zRaKWlPCWKQpoXPHyQdDDT+GoVVD0d1k17PkFSRdlKqs0it01/Gk84xM0JJKSoeQdpU7+5FmrhsTif9D1ILTas=AQAAAAAAAAAAgAAAAAAAAOgIAAAAAAAALQEAAAAAAAA=eF51001KQnEYRvGbmpqWWVuxua0m12Q7aAmNGwkGQRAEDYoiCiP6Mu07bmfW8XmGP+Q9fwe3KBZvd1hur7/Y9+VbvXIH4fcjOTsKd47lg51yJ+H+qfxwXO4sdM/DnYvwnstw/yq88zp0b0L3NnQnoXsXuveh+xDu2HnPY7j/FN75HLovoWunOw3d19Cdhe48dO1030L3PXQ/QvczdO10v0L3O3R/QrfY/g/csfMe+9/53pKcd9pZRU7XTtfO/6rK6dpZTU7XTtdOd1lO187qcrp2una6DTldO2vK6drp2umuyOnaWUtO107XTrctp2tnq3K6drp2umtyunbWkdO107XTXZfTtbOunO/Rznvs3LfzTjvbkNO107XTtdO1s005XTtdO107Xfsv+7cgZA==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAtgAAAAAAAAA=eF5dxcciAgAAANDMkJFklEghhArZRUYZKbIj/f9nOHB67/ICgT893Mt93M8DPMhBHuJhHuEQj/IYj/MEh3mSIzzFUZ7mGZ7lOY5xnOc5wQu8yEle4hSneZlXeJUzvMbrvMFZ3uQt3uYc57nAO7zLe1zkfT7gQz7iYz7hUy5xmc/4nCt8wZd8xddc5Rrf8C3f8T3X+YEb3ORHfuIWP/MLv/Ibv/MHf3Kbv/ibO/zD3f9/AStEIoU=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAvAAAAAAAAAA=eF4txdFGAwAAAMBMkkySSWaSTCbJZCaTycxMJskkSZIkmSTJJJlMkmSSJDNJMkkmM0kft4fdvVygr6ffAx70kIMe9ohHHfKYxx12xBOe9JSjnnbMM571nOOed8JJLzjlRae95IyzzjnvZRe84lWvueh1b3jTW972jne9530f+NAlH/nYJz71mcs+94UvXfGVq772jW9953vX/OBHP/nZL6674Ve/+d0fbvrTX/52yz9uu+Nf//nfXebuIuM=AQAAAAAAAAAAgAAAAAAAAF4AAAAAAAAADAAAAAAAAAA=eF5jZqYlAAA0sQEb
+   _AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAGQAAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0sKIB5HnehQ==AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9A1NDQ00k1PNjZJTTE0MjcBADJXBN4=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAALwUAAAAAAAA=eF4V0ns01VkUB/CEvELKkJpGFHnevJOr2bdCJmPs4xXDldcl3KKsQimviJQaJM9MlDBGCWUqrVrKWilR8kiiqBkGGanxrJl9//qs7z5n7/X77XXkp1573sxncLC2SoOfzUDDRDbCooRBvxjL3XWBgXuYYnVNGYNMU8FUyCUGuiPh/y6UM7DfIC4xfIVBecLH4ZgKBs3h8ppB5CMXsfYwOn/i2rrKnPJo7XVDMeoPqrtYlkH3n8TvrOLT/MI8o+ICmlfhPyssLmJw1zxpMvZXOn87xR88z2B7b2WAUwGD9nEFQ5tfGAhyI3U2nmOQ91zNcjiNgfXoVC83g8GnIc2w5QkMztkFHhWkMOjISezXjmIw66bcNxvLQDNVkBMhZKDvsTak/gCDwJhzOTJ+DFxLj0jXBDMowjievBv9t6qKUMqbwclGKf/z9gwMbYTbXjgxOPBcy76Jy+Db7+esTbfTHtx9/6vkMPh4RN0MLBg0mAf3BWkweJl4KUlJl4FtVISzvDKDqiJu/f3VDMJWJojVLmGg9jBrv0CB5qQlvw+dRfhduqV4mRiDKF3eabsxhO71sfmdUwhbuzt2uA8g/KDpFPjwT4QeuTxexXOEwzMJTydeIkTstkp1bEbY4VZ8KqAVYVknXwFvIfzTdsyCcx9h/d2Gs3eqESK/67b2rkdIljc4XlSKEJ7D65ypQJiorJ+fz0X4g/f1rXwxwtJx47MDGQiNhR96SrMRpFX3OvyUjLDcIazq/kkE8Zba3B9jEXibwxqECQgfErutX0ciNMSK3SiPRtjzymiXmBDBO07yZlQE9ctdFjYEIjyUstbv3YMg+Po5dpEPgvlIw8RTP4R3eYMaXbsQHGv273HxQlhS0XvDzBlhcTenNMCN+ocEJ1QcEVonPRLnnBDunZdafNAeIUEibVzJAeF18syYvQ1C9vRlyVI7hM5yXv5JHoKscYBn2Tbam3acmskWhCtFvSuVAaFMUlywyQphVk9o+46L0K/qnZa5CWHu2KU+hc0Ikgm2zVxzynLyX9ItEPS1Ayr0TRGORUVLuJohvEEzTS9j+u5XvVd2myDUcNTPNm1EWPGiTKLcCMHhi95jHw7tlZ9UpU31Ly0cnQ2GCGtMFlV1kjV1tjGqBgiVXNXTV0n3fGc5fX2EgoSd7ldJ/SDHi3w9hAwTzRPtZHne172/6SJoVzYuV6Q8fef6UiXKhf6KnsHkBfSISdehOdds1LvIymx/6ZVkace9Ex6kRHe9T90GhKLABZkx8q5Xe4gP+VIqJTSDlLV08VAmE/2wdgv5yXVx1gttBPXpUIMZktNof6OIfLBps9sdkpu449Q+MnPUqD+VrJMIl7IjVQfXlXqTbYHFW9aRPWtXlFmQBYceBUiSo/EpsipktIl0y6gWvfd7fkpz5JSvbk8nqazD+WaQNJUplG0iv0a2pbSS8QO3Jq6TW/n5f98mcwxCtC6TLmpNnVVkpPqsex5Zwl81VkzOTTpzz5CBlsv6s8k16JqVQsZNTAWlk9xqX504UkM5xCGJTHyw6nE0+Wq1rEcs6aTJc44kdfSMfQ+RDt3FefvI4ekB6/1k90GVN6GkVcPG90LSvqSnOZg89d18fAjZETCkISCPKi7kB5FVnRqD/mSqfqZmIJmu9nnOl6z3ui0jqlsdnvfbTYYff2Yjql/r+kvBR9R/2qNFZLVl6Lw3yV/oy+SToZ5660RZYmQoV+SzrK4kLzJsZLxHpIHWzjUiOYIzTKRyctvkz2SMaYm4KP8PhdBmFg==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAEwUAAAAAAAA=eF4V0Xs81ncUB/CKl57Es5KWYk8p0Yoee9xyPVG5JJzfhCy2ZCLRlJJLRiR3uhF68SuXFyLKJWG2LIVhRi3V4zoSZnR5aF4tdn5/vV+f8/ue7zm/17epaclz5X0MGGmvNF5sw4BM4in/YgcGfNoHG1/YMfCmMEZwlWEg2XOjXQEysKY+3En0NQN13x07/YnqfucNym6SvpU6I0pU75271vuB+iN0Zbr5VK8+6tdnSfdEuT1Jf2/PgPe2xjiW5gxnJxs9t2VAItsUu2oPA08bPcUdVgxYC7zN7wEDpQF/VYxaMNAn46bJGjLgqbA41cCUgUi/wbpJEQMP7IdCXuoz8GRVWsjMVsqQ5vFAyMDoWH+f4kYGNGzzRq01GNBsEfpcVGLgN4WSifUCBvh5B5rO8Wm/z8LL3BUZcFoQe0hL0/5L7etVZBlg93l76c4hLBnrmQ5eQIh7uvKm1hSCXpfmsRQJwib7tjrZYQSRQ3V68DiCz26DzJEeBPkavg/TjxC9dkG5ux0hc048pf0EIVL8hexYI4K1ZERdqwXh2WvJesMaBKmAmVnXBoT6qpzNz0oRgre/2t1agWDxVn6+I5fmntaRTSxCqK2vLNLKRHBWqna/nYOwxmFcf9FFBFBL/sEkDSG19k6dfSyCjfZkqEUSgi6vVW9DBIKp3Lqq5mgEx80uqSFnEBI6WcPuMIQq49qr7gEIlW0G/COnEDxVt/I6jiKMuMD6GH8Enpzcz489EfamJLkKvRGaW5VbrL5F+PCiuf2wB8Kb5qhSW1eEat8ZsbIbwvSZmoL2/QguA6XBTi4Ig16xrx8iQpjGTa9ljgj7g4+/+tIOoWhb+VltBwTDNDZ91obu/VQg+dUWwczkfpWqFfWjR959awQn56F3ubsR/EuiDJdZ0v9PrdU8aYFQbDx+unQXgpfWQmzsTgThtACzzOkc3zhdbIawtl6s1AYIXaWtHt6mCHh0w2UDqh/Jjz6rZkLv4jEz/5y0VE+QljdGSMoy0Swm1Qf885WN6D0dfwrMJYUas6m2hgiP2Yq6X8g7PZ3hGTsovxP5/0cOvwxi5w3o/PYPQfsp54qWZIRSlpJqMGoizbK8Ti4jH33eHGdNrruXda1IHyHEk5fWT/pXST1yIo/vcf8nmjSx2Sn1GbkvRilAn9Twy8ru1kNIPLF6l4QMUBGsY0mbed+2evJyn5cokMy70lmQSIZZqnTYkbvCKtjDZH6L5r9apHsC7y6QapFZwwrk8gtNs6pkqOLb3o+6CNnVb27zKBdKLGzHKGsI3IXvyR2iwpIe8saFP/8eJP2+35rSSmpGdPl0kcvDNl9pIGWmLpk2kS7bp30qSShnV9SSwyO9rbdIs2dsWjm5Oig+NI8ccAtMLCTLbx2wziaX5mTU3SB17gp5GeQ3wsfvs0jz4wfTrnDzkmv46aQ05vyRyu01qDZ+iTTeeIhNItV7BrxSuP6vPk7Ek2zYCr9E8rpE9UYsOaqRPBrH7TPtWhbDzSuzeXiBjHsdu/Q8OTPx4h3n5KkENor0CJT2iea+Lxo8do40cTm8hqsPbTEPiyR5L0984lRw7q6KIPkGOpu4LGjok+Ny+LypL+dDkVrEj2T8XH8H5+q3KjzOiTn1vZzyc0P54dw+e56KOd1OqDpyXheYR3KG7lBcyXngoIse54eYkL6zpPTi+DnOQ84ZNZxBbr+3cXZusWI5FyaLSzijgj5e5exz1Mnk/B/LB3bCAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAAwIAAAAAAAA=eF7tz+tLk2EcxnFlKiIIGQQTjZDEIMTZwaJQFipZ6NbSR62cTrdmxRRtHphOIUINyTcOKaPyEASJvSisFEFBURIP06US5TC1pGaRotK0wwiui714YEF/gK8+fC9+cHMrsqb3datV8gTBCSPNz6HXqUF4VNoCTbIncCOsEToDmqHt6S0YZG2AqtQbMENdA8+mV8Khx9WwXCiDs3tNMMrnOjxdUAIfJhVCubYI3v59DdbOGPh+8BV4pucqlAmXoeO7Hu4ayYMDMTo4UauB9rFcePdmNnzzKAcaXmbBmR41/CS9BJO8uR/pvACzKy/C/fpMuBTKvSsuA8Yu0+ST6VBipUqlACdttN6cxvtNqutPhRUH2cYgdq+R1pWfh81TdOqrCi7Gsh0G9lYXNfw8B00n2GuNbO0E7YimL/Kpa07J/wewexvYP7rpfDxVFFCbhL47QDUjCjj+hQoWuvmMftTQV1W09Bj9oKC+gbQ4nI6tpMAHLpozSrV22t9JB/tonYWuttEQM62pp9V6GmykFWl0Ty6NT6CJKVR+iM7F0eIIapTR9hDqH0Zbd1M/KZX40eOB9L4XjfGh+dvJ0Oqih9fpPSfVr4n3Pyt09BvVfabRDvprkd5ZplEL4r3JTvPmxe329XuxkW89t1vNrOf+l5Zpz/2/DtvEvTUp3t29o2f/Agu4bF0=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAA1gEAAAAAAAA=eF7tz01I0wEcxvF1MAMtfIlBElTz1GWoByUMfMmFOEVTB7VIijmnqPkyN53TtU1TM6WWimWiNA01RsGcyFBIJmQ4D3pwmjDILFFQgiKkDiE8Dzv8YQc7dfH04fscfvCTtXuHzhflpWyE+2HZhBtGvffAs9feQrfCBW2br+G5qjcwMWMY3t61Q9PSCzjtG4Sxkj7omO2HuWIbvKvsoZZuuGh9AvcLO6H8Yhf8YWqH0eJH8NSfVnihuA1+77DCkz9boCHTDGe6LDBdZuI9zQPoNDZBs7EZHnxuhN0LRnhda4AjqdxX4hrg/DZVRdXzPyf9GKGHk3aqiddByzs6qqmDijWaPaWF0hj2BzF7vZrqOmph2yd6OZwmFVLZUA3M99PiK/RqDd37Ug09kezxHrZzjg7IabKWKs/Q3jhq9VVByS8aOUq/ztHVBnr6GRUV0JUS+ltKF9PprQh6R0IvHdyHnSHsHT87f49+81KXj2666ZaH+seow0nTXlK9ndY+pWP9dOQhDXtMXzVRXwut1NFQAy2voMNaulwq3MtUNFFNB+8Jd42SniiiAzeFu0gh3BMKhHugA6pvCH2eK2xvjnAPdMC/8n8zPit4/y9VmcH72KN5CExBL0Y=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAA2wEAAAAAAAA=eF7tzFtI0wEYxmEElcRDCkvJMcOBOoU1XJJYiGSkFAg2KYlUnBeBh+ZcaZYlK2fKUGal6HJQuxBBcKnMCw+wkTjI0qCUUFgXIaJTPCDaYYNi74sXf/DOO+nq4ffC9yVOtdSYrudnDYbE6vyWRPu0fv88v4R9qGMAbTm3AO0bOpjm6IBL1qswIr4U/vbJuO9dgCsXI2DrSQlc+/Sz2u+Da4HoO7ZldGfhFtRemYcejRualC6YEjoH9YpxGOV2QovXBtfLRqEyoQ82vx2AIqcFhmisMLCnC1pfmWHxYxOs+/ESjlw2wkZ5O/R+aIbDua3w4+ZTeCLaAMXdjTCmXg8N9ga4qHoCXyse8t78CDq9dTAgvR6+j6qF6gTuFep7cE51H3pWa6BtQgfDrVr49yb3N8+q4a6Ue7BRAydF3JeG70KHjHveryroK+HuusXOGqKRnyvheCzbdZsdZKbL+xX8f5Y938d2f6HTxdTcRFVS6sim73bKoT2MHT7D/u6mX/vptzE620bTe2lZLU3V0xdqWlpFZQU0pYi25VBnHjVm0p1seuM83c6g8Qo6oaRjybRATs8k0o0kapAKd0+cUIlEaL748D6w6bTQ0Rihq6eOplh0eP/3ePoPIqo3mg==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAArQEAAAAAAAA=eF7tyE1IEwAAhmE2SmcghK45pivSLNgETZoNFbYFU7LNkmmiaNNSSNhkF3+GICmCDDpoxHBEdCmMiijH5go31FsmRBAiXtJcDEQ0a0vnpsW+Dw+DTuHR08P7jq7c6fTX3dAEF1/CJ6tSqNdo4K1AyJowIhGix6Zm0Y7oApwUPYPiHg/8LL8Pu+IuOP6hG/a7B2HlzTb48UUnLNLWQtGVZugrq4AmcTUsl5bClK9amP26EL7pVcGhcD5cGlBCpVUO65W5sOqiBHovy+DTUyfhpj0TxjdOQPNcOjS4UmCbIA1eCAuhInoMvvv2x5LwlVOA3r+6h87y78MGeQwWm+LQrI/C24ZdqJvchl8e7sC9jt/QkcffZIxAyRo1t4bhcpCWPPoFDansvshP2FjD/8DCLvNRcWwL1qrZdx+zFz/RQA1tsdOJDLp+ieqWf0B7lB73UNs8bXfSjufU3Efjw3SmnY7YaMBEp5tobiV1GKipnL7X0dMq6lPTnALqLaSe8/S6gsryaOgcvXeGGs9StzzZ79nJSmXJXpP+uw/slyT3W/HhGsw48sj/9y9cZsXkAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAwgQAAAAAAAA=eF4d0X0w1HkAx3FXt4jq6MFgrlzXlUKku5Hazpe6UkJfoWUv2qVFt0edXCidTmq1m1JudbYH55wo8nTazUOxdTpxzXS1HrKF1jLR1CmSitzn66/XvD/z/f1+851f1wevIenPlBSe3O5zPI0S2Qwv9fFESgS3OA3Kg5TYXNgWbBYHXaZJOPGUXND+Nta1mxKPp+dL7WIpWbZ739wj31My4NBbsCOGkuU+YrVyFyWZlo5/bRBTwrGsqvOJpMT9gGT0YhQlFzd7GDuJKNE+T/YURFDiVSkp3xBOiY/qRDp/JyWBY+ubJEJKqlMSxlPDKNn1UJI9sIOSH5qVJi0CSgKOUqE4lJIlfUl3v8Hu12zE69lOSVGTOKAxhBK7kRariG8p8W77LIFgN8ybWDEWTIkpr/twE58Srmfp7PwgSsyc9pyPwn5u3DxCwKNkkPuOZ4U9JFr2YNk2SsKMa4WP4JMb/b3TAyk5FnE0uBwuTUmaGPOnZFX+6mtnAnBOqxCOb6XkS2/dvRPYS1yXr5yBfpZ79aEc2saKf7f3w/0X+44WQcmruEYexf3zNb73YPzwxo6MLZQYOUoNp6A1R/nWrb6UyE228Nyx7xRxuxaj1/kPyqQw+U5nZooPJeoe1dRuOBAxT/nUG/uhTmd3tOiRmSYIHd2afPYyfCO9k3Z/MyVnJnI189Fvi+8kBKIbBhqSzsF0za++T7woqeLv5C5EP/i8VPUj2qQkp7YChg3qhLPghU1hJV5Qu3rPW+UmSn6KN70xAG3S8mzD4ePsmqzTsKV/wWkLGDm+ttsDBgbVd9zbSElndaHbKKx00eScgl1rXbdehdkBuqQgmCAeVyXAcMfTpougUpxpsha+ibmpH/GkZGqOQ48ZOqVdlXsXrYgu6NDDfEP6uBAaW3dIr0OpbuKrNFiTmn1SAdf83bRJDCNN1JIDUGdhqPaDzl/PshDAHh1nPRd+5/DfE09YXLv/iC1Uvu89swImqutWWsD6WMMBG8jxf29hBP+Qz8v4hJ0bmqd/uwH/reW250domtggeoG2Kw7VDMMtfdOi9HCRUvuhH74KWFWrhdHnM+XdcHeVxFUDh/e/FLfDT28rVXfhUNEC/r9w1UiVZSN8XKFa0wwtk4LdbkFhhN9wA3Sqa51ZB8tCVovU8NGSX/bWwB3HzOOvw2KJOugae9/D2DnVMGrmzCtXoeGrfDsVtHYQCP+Ee9K3XqqEBpWZUeWwhcNNqYC9Rm6qUnjYeLywjDU3YV0JnL+5fRbbG9tKPr4CU1ccUDId2/cNFcFTZRpZMRxLi5zGWnDomYzpWj/qfhnO6awqY36wF8kvwcRDM14zrzlnTGHqk8UBTLeRF6mF7PtZb5qYUn6cFVMWExrILA9Mvl4AJRU3B5lLFc0xzHR+sYIpGg63Z7bZvqPMsJCslxfhogqNOev1Hv11rJ3n5mmZDW3mcubKEoMrzO1hG/cy82SKI5Md6sRjTvduj2AezHEhzJSWDG9mrkpjxzSQO7gwC8qyrCbf12e/cFKD+abM1rIvZjMvzbGZyIfZ2fUc1vf3Cl6zFv9T846pSKt+zvQK179kxi+2fMosjbN+xvTviNczF07162M2e77QTT539mQP83+GipH8AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAqQQAAAAAAAA=eF4dz3k81Hkcx3EjalPJPmgraYewE5awO8lRXxlbSurbaGWMGEfuI7JkbONYD+vIUXTMOAq5h0dyrOjR2tyPJIUosRu7sx5pV5uWWGU/H389H6/373h8vz3UPG8wkpJQQ8fNtkJKnpT07ugOp0RTKPxvOoKS+d2nwzpDKbFXPJEdHEaJXXr3ZdtgSjb5bcuvDKHETZE9vDmQksYNupE0iJJHA3u9v/CnZMYodz0JoCTPyqLZy5cSdeL6g6cfJfV31/R3nKbEKLvj6i0fSm4rSrs53pSURjMETNjZVsoTw56UfOVw0KrMC841et4s1oMSixS2lAN7eU6dl7mAEqUMjT/fgjc7W2ZkbpRcFLmYVrtTstRXfEd8ihLDVBWmM+yr1rwrcXGlZB0ntE8F9vJ7JrH6fEoW9JZmh8HFxlGGkgslD8Qifg3I879Wv+BMSVe6fXUOD+5dcGJo4SQlioUD3DTY86aieErQA71HAy6BMb39C/pOcB9m8cMKcMKq3pr/LSXGmfPMx6CB+rJYcoIS830TL9ZA85McBFOOlLBYib4OsL/LGpNxoO/EOn1WCFrw1sZJuZRsMM63lIdOHu6P04J+XpCifwa8YW1mU3Qcvgv62fwVuPjMUssIfB2p0B4KPu3fJGqnlExXDrHkoMeYe1q8oceNRZ0SsOhLoZUyuKtdcxUBB8PyfFqPUfJxVt7mNajNsbkuBF+W758qBBvi3R2sQJ1TH/ju4M4+xecKoG/+rIIOqKoQUTtwlJLjBkEOM6DaQVvbcnCyk1fcCvoaiz9JwOcX06KvglEHdsUIwKf7H9udBbcv7tPkgLNli1mO+H6VbqIe+Aer6JkZqD7eY6kKOi213GaCra59vy87UPI2dbheCbqn8JruDLR6zcn496Ct4brq30AjU+v7U2DgAtt0EGzQmdMbBcf9X57tAe+pjYU/AmVfa+xpBc8ETbh1gOLeXPsm0LppvvEuWCgwja8FJc7Cww3glty9tVVg846yv2tA1eQtd0pBacpaUQVox8gRFoE/abwZvgkue0SNFoApnKlfb4CMFqWOXDDxvs35fHDrp1XaYjDDvkgiAbel+8mugBuGsnWvgX89rfmYA16xMFHGveWXOfdsUF708ADunz+IW74IyvlVtl0CPZ5sHswC56MbhbhH7xwdygTvT3K9cHcL2PgxAyxN14zE3ez4vwewVyUNSNGyuZKqdLDbbL08dvGLWRb2pS52GPphO226AB6b9JtDOT51PFTWyM1AD6ulrkU7dZi70duWxR1p4PQ3PtNowpLWBTTnjIYUXVYN46PRsYmRqIbuHlPU1EjnEJqZwt2Ieqk070Arsrr+SQX5DLY8tlNz2wj21SdSGaq/LrsNtWO4PkK1V+fVov58SQt6OoRfhPocGalEJ5IFl9HvRyR5qGX3oVS0d+u5LJR7tiAeFWsdS0Lbxs8JUU9RuGjlP11BEWitR08UujTCDUUVbHaGo6t5SoGorCogGA2JOOeLvo8O90cZdT96o/kGLB/U6DrLE70V9p0XanLjiADdO3XUA7VhvHFDX8lVuqNV5ior7c1OWHFTTO0pdMB+ZMX/AbsrdTc=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAiwUAAAAAAAA=eF4N0Hk81Hkcx3GULkwXHR6V2pzTo0u1LZX3FiUK35kxM3LP/JJNZqRpeCg6VjkSHR6rwaJVSekwS2ssJRI1m2Q1dkWFIpXctJmO/f71fLw+f30+n6aJH6MrnRnM6jsfUGvOYEBl881MxmD20PvH630Z5I91TWKfZqBZWOrfdYTB+NNce2Eug6zK3M+G6QwS4jR2lwsYbPqmd2LrZQbjvgZHSq4zGN05XLGJ+uTHGu+H+QxcD0ru2F5jYLHWyfpQNoOa6f7q2ZcYpC6W7ht3ioHBhiXJKQoGV2P3xlw7wKD9d+2INo7BsYpaYaWIgXVU0dWCvQyCXcJjFE4MmsbaJd18Bm+u8EMazRiwps03WfM9AxX34Zsdw2K814lLtmAxeKmvWtxaJUZVv/fgd21iuP3tEeKcJMZsvfuzZlwTQxETsTnbTQzdiHbP7nAxepZ3GH6bLEbc7gZe0UoxNLfM1ubfFcFgSs/F7PcipFgWD30KF6Gs4MvX0RwR7gQnTJEvEMHKsvoq20MEcYLcuaQmEDuiI91qPwVCy6srl+8JxN2eal/5+UBwV6WGy40CsXCr+MKAYyDy2Xm2E3wCME8S9XqKOgCfx3TMNQp/FHqo3T5PCkD8N+Xgc40fiiIO5Lhs8ceDj4e3J8z0wwJh7VFJrB96ZbquxjxfLHafo6yo9MWFjQE6ab/4oFIa/kqi54unspthIy3euCTP3hK1xQeWj9ktA5be6Dz2fIIqxRuTjVuXW0XuwHPpxqLmFmrWBRPjOi8UyoJNJMt2YJIrP8XMxgs+Q5XLuuK80GlnF5WVJISddK7kQqcQqQEfqhuGBbg9kpwz4CrEHxNXhQ/uFECQ8CCHVSJAXrRpoXUrH02JiW/ZbAGcMuoPnfHmIylRGRlykY/q2GtfN7R5onlgv32nBR/1JuvurJJ44nX86qDLNzzRlHXeQKLridVTHUqVDp6QqiK9mn/l4Yguq+2Thpq8r9APPAz7ijUh+3mQiAocNd1c2Nfa/dQ5lwdjp6Cv09O54DevVP9Yw4Vk7OPy5x5cOLxoW7otigvj+nv4z5CL/pAQmdqWi53iuZHzn3DQJFN3Rg9yMPdLbptOOgf5Vu5GpioObua8d+QEc6D/SpzBi+UAHD+HUnsOuK2ZkiYeB34X2ZFtMzjwFCnLt9lwEFab0RXaRxDfqPHwHsdB+6Nn5uOfEHx8+2/d5XYCgf4n5fZiAiPWu8nP7hEIk/ZZ92USKIQOToorBKMlx93OxREcdjvhcfIsgerWnyPDMoInQZWnmEMEum8+lJQzBD4dFur6UOpCbWg+n6C/JLMq3o9A5nI4JtKF4N7MlkvOhKC3s1q3z4Hgr9VLHRucCI40VpU2ryEIv3/JtMeeIMLA4vXEZQQ9ea5bgmwJzgvKtO5WBLv1AjdPXUJwVhktTlxE0Kpcoaw0p/vfKNFJm0ew+ZFbh5cZtdD8hXAOva8j9uQtU4K6bQmlt4wJ1GWPBeWzCKS6P+emTyc4KD8u488kyNRZpOhnEcx4825d6DSCFyuGll41JGgpFTT0GhGkTov9QTWF4JyUf7/OgP5B57ejrMkEKQXSh1pq2SHxsdyJBHEvS3dJJhE8tA1bsWcCbWv923Po3OultihQn6Cj3cBlhBqTf31b9HiCscUGSi21+Ez8bNU4Arm2I82Cttp9cIhF29L2hVRCvW5SkJmoR2Cz8J/uBurLCVYVptSyo43xXtQwl8bl5boEufffPeunOtgMP9pDtXOYmaigSh851ltRR0NzFG5Ub5vsu706BIX18UEs2sVVRhEVtP1r5mQ0U/PYzobp1GDn8ewb1EamrOsAtfRpn0cSVdqdqNxJzTItTt5LrdpatUtA7d6bd9OPWpGYJiTU9Y/DGrnU/wEiMJrLAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAeQUAAAAAAAA=eF4V0Hk01WkcBvBBKkXJfnUtnSQpJFHqdp4JUYT33uvarnt/9jA5FWk4QlkS0jImjjYxZSTUoUsjIVLSZilLoyw1SAvllko0b399zvN9z/t9n/Pelo9c66TFIJ2zbUWoVAxvWf9vrvYMWJMvvneYMCCfsuVvBjHYZu5C1goYrJnzb9iHaAb581JV7XYx8HrQayk8yEBlv4tDQxyD+ohfLTQPMCjaO35rnM45yx6XbNvH4FY5O/v9fgbvvtRrNQYykFF/fLSZ3q/pK9OW285And+jbihkkPTqhE7AKgZ51sajEWDASOLkrGYz2NLGapXRYeB7uLblbY8YAYJLjAnta6cyYhZcIIZ0XyV75W0x7kbMhE/4iiHg9Wc2pIph1F78OltDjKYa6B6zoefsk8vNGkUoF/pp+kpFMH2T9Lk2WIRBu66xJWdFkHid8P1dRgQpXs8f5YgQVW68ojbLB/H13et/dPhgxPgIa7WuD/x3ySe+8PfB2ynpnLx8IQrlxi9sHBUiq48jr6gnRPCC6uDpMCEu2vbonsvxhkuZZIPVkDd2TKbnZit647fC1KcskTc+VRnk2CZ44VxF9JnxVi9kDUc7fRz3xB8GEqmCrRc69xfNHfT3RGdpWXHZNU9Y1ETusO70QMnHyZtqyz2x89ijIzNOHlhwKLBBcNoDrVmT81Sb3PGwWFoYouKBKU1ibWHjjir1Q2y9THe08qOcvzQKkLMu3NJQ0R1CxTrjXkcBhiMshArHBbjUNtW+qcsNZSleiVYsAUZv/pIbFOoGc7F9jmyRG5K7lY4elnGDrrdpSCnHDX4mSdMteXxIRm6UBHbxMfYqYaGNHR+XYu/p2UfzYbOm+rH0PQ+pPP8uXz0+1vsmPO/N40HX+bJu5QMepoZFM0PuPJzSEKtuOMBDt01U9YQqDy/zW9Y/seZhpUoUq7uTiwD5Bj3fr1yIVCrSxXlczJ2+bllWy8Xlmr5ph3AubHk76pLTuNBcaLTa+VcuLr5zUcj34uLglQlDfS0upkfYzddNudBqV24PlxI0RV64GDuXC8sPOk19Twh2DLx+/+cQQbuNzledfwgWnwjnlzYT7K1Xi289T5D09kTBzjKCG4Z+8/MzCLaC7InNIRhJYos5MXQetzInOYmgU1vLmx9KkDlWHmkVQZB923L4tJBA7bXrhG0AgVatfHqbK4FKdYBrkDvB4PT3askWAmlBVrqnE0HGMVU55U0EA2FrywY2E0gujA6VWhI8TaxvbbGmfSp6iv3NCOTbDcZeriEoDwr9NtuYIHfjnr9kTQgqErXjopcR9JnZNcoYERxPUfbLXULwooc3Vr+U9rqaP+iqS7B7lgzbQJ/2XaPfmbKYYOw6n6WqQ1DtcmqdEYsgDgO6MdoEShofGgw16fuV/WI7LQJl07STkeoE17LXFQRpEJRWzXomq0YQdCz4/WOq+pvncS0qNB+Ms4xWJagTeo3fWkTfS6hbKKBzcZjS6IAygUCLGy+m8zlvl3AMaDZdpl+ZSQ3sCCxMWkiwLXXpx16qubJHxdQCApbCou0ONKvEB+Qepvn+qvJTzdSrm5L0l1NNXykLRFRxwMWMJ0oETjF3Y2RpXnxzc8pRmofM22Ik1LThzAV86qcQR8O9VHZh92596hmZs+c51JeOuas/KdL/aszfrkRzaNE+cQfNHslviv+jSs1YsVXUFa+2z9yh7vva2J9H3fX3zI8Sas+FnZ8zqOaPsmbnUOsP3eLEUhNNHJOTf+6V+DqFU8OedchFUS8P33nkR7Vv7l0WQu2/Jz3kSS1vsc8TUR86ttlzqYZ1OusF1Lv3PKVOP/dudLnvQs2MvZa2lVrkbOHgSA1lAjQdqEFy7Cs//R+lyH1XAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAaAUAAAAAAAA=eF4VzHk4FHgcx/GhJKKTqeiQR7+ZcSu5Mj7DMCFXo9aRMuNIFIqp6dBTK49o5QglZ7s90arUtCxKSc+qLY1qhaiVXE+O2BxFVPvrr9fz/j7P96PC3ydmPBVinl0qUerwhr+Fp+hn5hakmZ4R+qgLcfSNR7H3ck+cnEBRW4QX9hbrhNzd6oZC+USOT487hpk9fYWvXLD8oTjdEpuh1LqpK7RwE0a1rsZXvnWGK6NROeWiE8rWViX8XitAxtCMZ0sbHwnBpoL6NkfEKVeccHBywIeBSwvb2XxcU5t2ce7g4cBUYBjzij3+dBPo1tkD6eEmNWxvHmY2q+xRXsLFqe0y2xNudtiYoZxtPGmDjxm7HEuMbaGptIDPXWCNt6X9/C9rbFB0o5XbtdMSftPKl+q3WOHUQBB3oHMDspsj82MrLZC0O8K+Ls0cRVteTmu6b0D1Qt5wyK71uJ3wacxH3Rxso1C5j2gdplQlHfvG1kE0ERKYfdgMkm3c5qXTZvDXNppKLDNFSveaFYd0zPAr/3r96GcTzKrL9CIiUyxL9A4i94yhFS++aRhlgivyppLzpUawSaqZr+dkjN3KBiUPqwxxJuXBuIhnhHivrNiKHgOsuBxmmb/dEJcUje3b9Q1w4f5gsWqmAWKClj1ZnKQP3+o9VZ7d+kgUBv+XM8WBn92OmP0u+piT9Ch1Mo6DhtLcdPkDDlxtFELmLOTAfTDk2QJ3DprzD35vvcmGdNYHAaePjctT6WdrdrDxQsCtcU5hQ5JveNpCk42tRzOfNHHZsLVitEw0s8DMC3gsmmLhSsiXR/8UsnDbk/eT7C4LcSc1jjyOYmGxNj/6ejILQ3lT1yYcWUj+vkY9MIAFxb3VGmk6LKxMLDcbNmdB+0mgah+DhYMMP1HBYhbYWnq5ol6C+NSr0ofjBO8uG/RJ5QTeEmlPazvBUoeFLRVVBKtYb9YK/yKQlSfP+6OYQE1FNa/+JkG37KuG5nmC2M72s8+LCLJMfFtTkgnWLys9tzKDoFntGbv5GMHFQ6f7xQkEygoz52SxBI498ywCDhMoSXS9P0QQ3LVYFNoUTcDtceD5BxNET7zPyQ4jWFAhW/U8gCDHws9ZKiIIn6l9YeBD4KFUdEDoT3Chy7PGQ0gwesPkm9I2Ap7guNkqD4KWtGWMA14EK0amP8W7ErS9ihQmuhHw6xpbdm8iiGFGzNdzIaj9V2Z3z5Gg4YIha6OA7g/ZDcY6ELw2dJp/h0/QuPdoQRyP7mbsC862Jxh/KWl7akcQ17G67C4IpgearvlzCSILs1Zz6L0zOyJupS1BhE9CQCPVLbe/VX0jgdVxP/fL1Agxw3utDcFQpMt4MbWg1yl4pzWBXPOMs5x6OtDfodyK4E6MHnMJ7fyN9U26tMOict/FUpfGrEgttiQYqd36bJB6qY0ZZkuVOiumSqlLB40evLMgyPCV8zVoh/9yQpxF++j+L8dqqVpPb/kKqbMZV3Wl1HxOsoIWNarleIg1dURRZbR/AwFLobNyNu3Gkf6x+7TfmFx/3ErtLTL6WkD13GkplVGbX9/inKD+zec/SqfOSf2tYhd1Mvpbt4T6aUnmpBc1L7dGcwdV0VwgtqMSpuieM5Xj27vfmGrd77XNkupz/2KNDlVL0hvMps4fDhnTpM6a+6hBm1rmtIWhTtU/nTKziCqIeylWosY9rCpSoaoWVA98MycoXRR0UpF2cqz9gSnar4ayj81QJ63Cu8apPPbJPZ+pJaOhyz9S58pbTMeoR8qFysPUtnK3yhEqK5RZNEiNKpEMD1FV1yW29f/4uy5rGKB6vJBXvKfmqB1y/XEXZ+rb/GhTXuveH/4PE/5loQ==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAATgUAAAAAAAA=eF4V0Hk4FHgcx/HUiESHpIetJvrNjDGGydGkmfF1FCK0tKStJcfu9JCzcaV02GHGpIkkI8QTjyaz6XEWckQm1tluB08qnkqKXBvSsL/56/W8v399nm9Bmt7FZYILXOpk5ViKXUGFmwgo0wmEuZXuf8w4w6pji/L24P0Q25gSE1rgCBmGmZbzPAd4dJmz4bVoH0i6nE/1NthBvNRnu1uVPVDZdc+rmbaQm1+6f1bbDpJa43nDDRwon7EzRHYArBkYpP3GgpRRLbFjBRuaLjpoLThZg6PuHUlh9F546vU8ojeaCXk8OoGdsAe0zeGA7qAVRIcaXPneuBuesCZoanGWUNH2sSLPxgr0HjZV+pItoCswKdB71AJ4xkKL7fO74JQnmRJYaA51aoU5kkkGvNfga1GSd8EWVasS7bUMmB9xCxenMcDnR8a3Yr4pbEp4Y8353QwY2q/KnWh0WOGqaVA6TocwCYEfr6BB8UDuT14lJnDDQJUWNWcMotdvfQhCGuwVBH3Q1zGGfLVskW2mMUiFG8x+uFPhn4OZubsbqMBmCqdpt43Afkvp+7JVVLg3Fh3O2WAE/EJ1m8kAIwhUeSg2F1NAdmHgZOsLCryiWlSFGVBghaRxi7cfBb78cqVX2kyGt0PtLNM5MlCCO/vHwshwSbeynpxHhrW3U+1PU8hQf7zUz9+DDCW1vbNtn0iw0ZEwZK1JhpNZY0/FlSToj5Stc+4nAe2D4PB9Pgn0FMFrPG6RIHfgrIexHwmGbWqN2DwSBHM7nhA5JCjZUd+94xAJvptGDPYTSXDnv5h+OoMEJuWpmvmrSeDWxj13T4cERd2E2alJBL6BQk0NBYLP22RczyEEZR1RV6pHEbgP31vw6kaQF5LCsn2BYKj23YOcJgQZof6q9nIE3u07PJ9VInh5fKsoqA6B4IGWV50UQVVXotOxcgQq778+2lyEwOQ6c/pjCQItL622vyQI9H7kUnvyESTLPUp9ryEIChpmvctGQFyq7/yajiD9RBpx9iqCqK233ngIEXAXmekjIgQhu9bSjvMRfOR624hTEdQRW8aXLiLYdoTLfJOMoFV+7AXxPILx9S6cBxcQZHuni2VnEdRPH/HQSELgRjM/fOMMgmov6Z7mRASjlUtZ/fEIpPo7zXoSENzsI1QdikMgOuqbRMH3fZyIWvVY/A8/iUMj1iKWvnmah+DLTBa6HIOggnbwjCruBnmooQCbPK0vZZ9GIBtRDy7DvlzY7pIRjeB0S5f2FLZHsfNvFawKvdvEE3u+pvFgShQCy6q+8E7s3ceVZ4hYf4nI2hebdbSG3x6J4HFRUuQ8dm7BUO0sNnlAnVeCdZDDNAfb9qv16hNYQU1TmjoWonQ5ZGxRr9nRwQgEtcWTCbPYng8rt1VhY41Efh1YSotB6zWsFftlYwk2jFnKjcemeqjkp2ID1GocA7AFiVLDcGyVhlmtO5Z6mJzti2XGmTNssLJCgb8Tdkr1ZyYDu/Rn3CITqz3hwEXYGXLGvDFWaEs+pY/d2xe4QMTa03QUG7EHaD0yXaxL9c4BDey/vL6+dcrd6cU9BGxQdy5NHeu6+nb5cjgCP9NJwUrcJ+WZ3ou4z/VXtyiwLBfarTlssmPT/QVsXYzew1lsYkiY6zdsU7OBzzTW+9mAdAYrYXd4TmIZy42RU1jntpqCCWxcjOfVr1jLxV7zcazNdUuFUkG0YuUXrIk+/a5S+p1v6p+xOmgiQylhlRGMYZ3mP8uUPj5SUPgJ+27JYU4pVbHeVGmzvCpE6aacTyOj2Lm5sjXKXr7Jb1W2l2tAn9L/AbiQf2w=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAArAUAAAAAAAA=eF4NyHk4FHgAh3EKD6tky7NUvxm3kFwVQn1zbCV3xtVERjKEZAwxbqmUHEMsNnLkzjiqkUooj46tZEN5FpWUEnIUHWp2/vo87ztqNXinzImH+RXj1ECFRpSNHNhsv7cOAdKhEvEi9YivMU86mVoNlzrTn/fka3FNW4xvK1GJMVrQ0fCwKuQxiu7LtpdjXKblAl+yAoJ1LV7xvFJk16wqWDdYhlGR+JW6pRfBi7WZDh4pQYNHC8vc6gLyD2p2FGsV47yt/d1N5gWIyMpvNp8txNuZvdcLTuYh5HKFycKKfNxpnbPjrT2Pabv+3WWRuVA0c/UwnOfiSZvqxgbNHBiZPBM/0pIJtW2fjbpludhqeKkyaywNJe6O6SnSGeDTIv1D4lLx0IGdkMo8i6eMsPmG4yeRrdeY/kj7NBa497/2PUhG+5URLw/bFIzf1NNcH5QITkPo1I/2JBg4vHk2UxkL28U21zMiCehqK0qkLkah+R82661kDCbasu/vaY0Aazjl+dDZ4+gL+2qu9ZoFuReVCzHRbCQ0DT7MPXQMYUvNCwv3wyCw11L/LzgYJY9CvXWGj+LPF5P9K0oDYKb38tyuziP4SZfRN3I5jB3cLYJ6HSYEkbeYbLYvdDbmcDJX+cHOa0L6+fRBiGUx/ZvoDBwS8NvtS+iI8XQXq5L0xvSs18Mv4+5YO+E2oLjkCbNN9zqeNtOwk1wTj4lzg8LJtPxlM85gXGfVVXFcwLhix9mu7IjkgSW70jdOqK2cos/K2CJqOHsolmYP5R9WW2a4u9H3vWi/eIoN2EWa+a9yrVH3mJH3HrsglxW9+4ukJVaMNPV/YFtB1Dg92rEF8LeJPWG62gJ5cV1jn0TMMXd31/eQ1Tvgd73W1Pe5CZTFMj46FZpidbZHkr+GEVjNegnylca4dSh3/YmhzdDrCehpVdmKVp8omboJA0iqLDfuERiiM/3zhSkrfTzdksg10TOA/H7rDq8bm9D8cO2hKhs9aK15xuv13IgN/toWoZd1wEvjc9+7aiGjT6Axx9ZGbtQMo6lkAwZPC9onczRx3qh51lpXA03vtnnSljRAFXR6xH1WQ9kyCTXJcnWIBNPn+BOqUBiyHjwXrwaa+42KAilVuLFWeveeUgWTVs74sFcFYtHWxj+uqqDVwerlgRplTLb+cW/bchUMj/x4F62kjAxVZ87FYGXc0PYPjbysBKOzyZtEppQQ6tgkRt2rBDNLlk5fohJyI1ZPRUwpwu2Rr4WiuhK8AvLrxX0U8SQkqIHPU4SEhspN6fdUHJ7qTXqkrYgUL4cSi2QqaCdEA8ZuUKFs0642upGK4oQP+2bpVEQ0ZajljlKQWX871luaigev5zK9L1FQL6iqXOqmoGHdkHxWKAUFhU575s4JnZWitFlS0OsWvp1Hp+DlC7tTjYSCQFFm+pABBZMZefp+SwRhY5cXD8hQ0D+5yP/2iuBx+MiS6QxBIDWHfvUBQd+C6YaqAYJ9Z2TfzF8j6PJjHZztIBh83GGmX0FQKNqoksIjiKh+2fMlj+C2Ul/Eq2ICR/sq5uhZguWtNccLuQRk0SalLJHApeNWlNspgrf2MUqfjhMgOeFEdyzBRY5hd9oxgr9Ip2U1m0Bj4spH6yMEcxl6xndDCCSGJ9Om/QgsDId0x5kEsr8aPvn6ELDWcuYnfAkkc88XJx0gYJiEq9d5E1xIlQrV9SR49v2rqRSd4HU5f2WOG8GDUl2/JXeC6v2124NoBG6j4T7FrgTO69R/5e0jMPQ5wvnbhSA88Pc3vzkTbNh5dNW4UEsFRmCbI0GHSfWZSCcCuferuiodCIaoUuoWwi+7p5HfYU+QulXuDoTf7FtsnISwbwcpdgcLjTdIvsu2I5BmWkl1CWVrqVRLCS3jDvxrKfTTVfmBLluCzsyV78aFctbIN1QJTXa2Lb0i9H/Qk5wrAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAApgUAAAAAAAA=eF4N0nk81GkAx/EO7VbToctWeuZwzzhjRuzQdxyZapO7KeVI0Z1ISchRjiQm0hSrjHG2dOrQZuUYSoeQLEpRkiMb5ajE/v56vz7f54/n9XpeT2NSHqciKQcrHPPHMlXz4FejdPXsvCz01O37cCo4G5HPy3PzaqXI+tLdWLJIBvmC0JSRxEtwkG/kz/iUgTZRafH93jTM2nv5KetbOpqeVacV558HU8fYJzgsFaUMSXlhWQr2F0zwQrZL0JPeIG3XTkb3rR49lYyz2Hkk/YNWuxgidfOET5wkNPE7Wt7fOg1eI9uw80cinLsNmi9oxMG94N6DKvV4DJTHtNTPiMFRLOhUfxgLejtXGjz3BCadmoZBeRRy/D4tnuIVgQzFXtGGjkjw43wEdguP4TCElXau4XD9c43ZzbEgcMZzLEOFIaiRCwZa9hxGoklE4cfdR1Cy1bmT6XgQz8Szhm3mHMIB20dBvtIDyDF8E3pJxR9OwbUVVql70cPxPTPK9UV8k/jQk+SdCPQ4/Phcw27sv5TcbaHsjf0+DozjtB3YV3/JX0b3wuyK9G0hj7ZB7Tsvt0vZAzbfaf1bxzwh1hzlLLjtCvelav1TOW7YJKkPkA9uQPvGw3df0jbhyufn3iN/O8FJlOobFe2CRrNlVY7j9rjlL7LjRTlieN3lz00Otnhi/0PXrNcObrpGtZNd12DjfKuxU4l/ILw6vijoxyo8bDEKimoVwsvn9uvJTCtwBTp3xm9bQ7kqxdSrSACX1wPms2dbYkXvGn8le3N0TSw9L5QA6TOjd0Q2m4KZ5n3Rr4qPLXk39TP6jCHd0Z3XE2+CpXWvlBMCuOC887T8t4EHfpqSTaCHIdhaLI3rMUYYW/NTQeuiAabrOhc8kiyHhvT4kLtQDzJ9WkNrrz5OZqxzX1qjDfVqlc+KOrrwNfM0aLjORq2C71/5rRzIdYuar/VrwiA/e5dJtxbelIEnPKgBa90S7sgqTbjPCwjmc9XR2kWE2zvVkfV+ARnWVMOdzAPX++6rwc48IM/DRhW/NastllWowjK0YFlurAre1YxWTBpUgXFUpbNiNwvsNlnMVQsVdEnHDjzyYuHElGBsLmShvvKpS9UAE1OtX3adNGAhu25RsDSJCZ+6t35B1Uwwa096RFgyYbsrIH2KLxMGeb/MURhnYJurDjdcjYniV6xBq3gG7CQbNAIeM7DM1iRquw4Dbyvn/8zZykCZ8cGFSa10rJtz7vSR6Qxku8hy9kro1P/aenl1CR11vHXLh9zoGH13NbwjlI5QlYTOUF063OjKentW01HP+G9+ugIdbVmE66RMR41pn6FKB8GS9a4Oa4cIVEdqH8ySE2weFrnyGgkixY3iEwUEF7ME99XvESjJdvo0SAiettl6OcoIAkv1z3pEEwivRJXPExNIBDeCcgMJ+MLYty/CCCa8e4rN9xDQvNKIqj8BPcNzVpUngbxaseicD0FuckLioIjgxtBAWfMWgrt+cTER9gRVspTHMmeC5PTQQP5agk8rijLv2BJsClsbM2BNwNaukLYLCUZ3abFDBARheXP1hi0J+pyHvhabEZy5KTj0fCXByzPnryWYErwfu73FgU/gp8M51mFMwEp5kOpuQlCqlcuWcgnsJc8H23kEYrsOcbEhwcDVnoSHRgSLSuayyHKCSX4CvynU3lTa4l2qT+AynvktwoDgq5EoJ0WPYO+3d0f51L6kPTy1UJfgVa3yTG1qt8uQdfXrUO9msrZzI7U/HvyosJ7qUwuF3rmUtLh/Cqu0CXZkBj2bR3V3bpDIhWrNtql6ZymZF2YsG+FQ5xssLLSp7jMez8+n+l51udcLSutwuekeyti7cSGnKU+ar4z9nTL/afSEM6W209QmJcpfOeFv2ZTZNI0vE2zqHvG0NBrV31b6Wg1THXZIn/+d8n8GRI7CAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAHwUAAAAAAAA=eF4dznsw1GsYwPHdStqSaaJyyXSRECPFUM1Oj2hUBu9v15JF7W5ItrWEcstJpdZlWbZyV2hzSRc6yCXXQm6lRLocluh2jpJDR5Oj877nr898n+edeR9qo3mXckkQzBzyptW+CALR+dxQb3EANB6wzeBOiEH/AVdXOCqE45zoDhUvEeQ+yW1JdTwG+2fuagW2+0PHXxGLno/7gthB4qZq6wc2zw3eZt71hl4uf8Lhqw98N5EVvGkSQHZW0QaVF0eg97uSHb6BD8o5eptCVQChE9E9prJDkJCn67dNnQfvxcaaHZQnfGrTHClI9oKdbT7N7JNcSGTUBOw47QEu0sq6vImDUJt/9tpEqzvEbtTlzEvdQEe9+paZ60Ew7LvBiBa4Ar8sB3RU3aCB5xZe4c+BLJU0YfUUB+KZRUYVOS4QNKu9foU6Byw2covX/M2G5ngr+ijlAg8bGMrmo2xw8Bb/8Kxgw55hMw/FFAu44yenX21nA7XwnihFzoJhyxpJeTsLlh8OD1thxwIrhsbjxYEs2NCteLePzoJBI1lMsQELLp/pKhzspMAD1G5PfaRgVrn8UE8uBY9OWatVVVFwVjy7QxJOAb9/aFI/iYLddrWqd7kUKCK2yuqFFAiPFvYZ2VDQ45q0zd6ZAmvzm8UMEwpeOrp33Lei4CkvXk+mTYGrseDcTn0KZNJNrlrLKKjjPZtao0FBUwzNx2YeAdv9raJBhYLcUAPdE58RNCSKf/OdQRDPoJ9Xe43Adwws9N4hsNli1xTVjcDkaKXxXB+C5p5/f+5pRlA6yTAKa0ewfr7+/T/3EXzxS/yuU4+g+4Hegv1lCHxmhplxFQi+FS9M/rMEQV5LlkbQbQRTLM35IgWCk70DZqlF+H1P+5BjHoJxS+OLlQX4P/uGNfdyENxg3xGUXUVA14iNqspE4DjwuskrG4EX3/nK7nQEM911i3IyEJiPfb5lcQUBfF3xkpOGwPPIj5lzlxDYajZC8GUEvPSQkbVyBBa28eOj2MPtFinTKQhCN1WLMlIRDFR98PglQ1BQyJi+iOda9Y1BlrgvG2QVKrCCTHRRmoxAZ6mn4BNWHBcpp2M7nCT+zli9w6vTkpMQeDy3NH2CnY6kBW7FvpF6L/fB8uNCypVSBIOVx5lquK143XHXcIuTGakPsbtE3Fx/7HVRoliCLXR/Pc/EZnSISl2xUYVJK7WwJcXyaFNsYENd7I9EBKvMNwuX4n5/ZRlTiXvXE771F6z+YD/qwpq0to4MYB85xP6qwYaXSOUPsav7a0tLsdvqf6b/Tvb9mb3XsD/pNF4h9mM4jZ6GdVGOBWRj0xVXR5Owm+cmeXLsqcn6LRIs+49nIwlYp4LY7LPY1DLpnVhsSHMrPZrsa9WTzmClJYYWEVjT6bXOUdgLqlfVTmHrPfI7w7BtTMMTIdgANbvRUOy67c37T5A7xczIYGyCqfRMIJab6nM6CDuUpqEixhYxvAeIk7pVXSKsyq3FEQFYerXh4+NYQ8+ag2RuP7zkmxCbEbDsGJlrO8t2k64YY+cTjZ8yb/pjY4Qec8Sy/Hwzoj5HL4R4455h+zFy76pkGul9Qy1hpPeyYwqIsy0Sa2KkmbYnURG9aQFx16vydURnt+F+P2Kx1xciv8KpnPiJdr6VCL4HLhGDLgxeJ9a9/BBJ7NNgxRG71EP9iMMp2sHExy+E7sR1XDn/f7dGOBE5nY4uRCeXaHviheClDsS1nQl2xNUJjXuJ/wEPKJrmAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAHAUAAAAAAAA=eF4Vzns01Gkcx3EMueYWIUMX19GWYyhal69IifJ7BiOJIYUmdVQyQm6VFe1uJtdCZCtmaadSWy6TI+myRHajXJoYhcSuEkUu+zx/vc77c57znG968/AuUx0ueJytulUyyAUZL0eXpqsRUM/uuvI2/gBE9U8wJdrh4K6RcyaRFgH7Hj+aSmXth3NCsUKCfxjcfCw3nVcQCod8kq7l5+wDWGGhm/s5BBKj1WV4kr3g5tEqivrKgYG1LYWJO0Kg5VNNgENKIFR7dKWrioNgi8yyp3HHAoDiX0/Lzd0DqiJp2XGRP6wv6wtLFu6GewWHXHJ9d4GLZLw8hO4PzTa2Zh8t/GD1yJNSj3Y/UFLWr580ZMNSoeUrzXtsUPJqjeLY+4K6CnLeWOMLhyWBK3WTfYCvHCa2HvYBc62hD76D3mCi0ZDG2+QDVZo/O/FCvYHKzNKtEXhDckNvetdXFvgwPQNamd6Qmaw4V1zCgm2XNovCX7Cgrr1s+rIfCyp4kp/mkljQdKE+wW4FCwp3M2cv27Ng/VjagOMIggwVQ4MBGgtOqrtVSh4g6FzK3dLYiUA3eEEiKEKw8/rK1DwhAquX7Rz/FAS1/SJ36SwEipadQR8OIMhR4zSJYxDseHRydRobQXJmMHIKQfDRftAszg3BjVLtLn8vBOPnGuqt7BBEKaXmZwCC4hd1FTbrENzVuujmbo0gO/jcM7oxgmHzeG1jBgKDL+lReXQEDmaXbjWsQmA2nhYQuBxBa5u3+LkegrUZ8g4bNBDEZlreVtXCd3kKyj+pIGjznN6+Uw3BX4I0zkFFBE7iO/1Bygg8QyKGkpYgaNbf5kRXQCBf3c3RkkVQWL2Fe1AOwaoX8plaMgiOpPCzLWn4bnea1GEpBOsMz27cJY2g20RP2WCBArpx5O+lixR88OdJdX+nIHbnwYd68xQsOivJzsxQUPZbzFEZvGfzlf+J/EYBTenv2G1417xZbmL0lQLdJP3h11iVkfeMZdMUrO6J4QuwUh8LdJlTFASzjv76B3bWarA79gsFHaN/vhJjE94E1r2ZpCDRcM8UE7c6P47JwV35rO/+VezrJbmCL58p4Ok3ylniPr7mnW8x7m/VEyXPsTP0m+psrGaTgXwillFQ56qHpU0cYv+Ild2c/WT4EwXy3sPGNNxqR2pfPsB9hn0lrhPr0uz4uQhbdMRMKMQq5+iNpGAHNU5xs7DOTM87XNKVU2d52Gtj9FQ/rCDLdOVe7PGWV8Vbsf+WLoRT2DFD2xObsMHiIJEz1nS/Vf567Hzj1kIbbO9AcZ4JeT8ky7fANjReMjLEVjWau6zB3k69MKODjY+xCdXH5vc2vdXEdh3ou6WN3d1hW66KVctqmFPHWjM0GMpYk8k0naXY93mmbgrYtyEssSJWp6SnXw7r6hptLY9lHjYdomGLHfcsyGL7JttcZLBlY3csyB4+Xj8sha3OryqXxrIqjz5dnMD3GvlGkH3kSXbPAu7B02s4ZI+NPK9NOscu4xSxqGbrsXmsyaPCVqLoYvvoHJZr/HgD6ZdaDvGkR9nn7xMTfomkE1k3whCx9q7k+XesZFX0DHGzxxU+0ZypcZvoYCYJIe7j9ScQT0uC7IiJO1q8iFpWzcuJof8FMIgdHbLfZ8n/9wOUSNsfc3xHWo3TNkEUyog6iD/4jvYSTxjNPiS6BKq2ECNs+feI6dsbRUQpZ1chcdFAWE1sK5gWEBnRFVXEHoXacuI862oF8X99kcZcAQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAA3AQAAAAAAAA=eF5VVH001XcYvyXXSFE0Te+ZR7ukl8sWrXqsjJVlHNQOiqaXqWVWwnTpFS2OlzLLS97ZXEYmynX3pe6KvHSoU2eTu5Y6FCVH83rdu5/nd5yd/vqe3/f3fJ/n83w+n+epjykfjy0BlHcJc3WWACrC7Z4YTR9hDntDNlpdAvyhWNuz7DfAWzWfVB5dr2HKf1/k6hoA/tm+r00/DzB59oaBBS6APYPauboJgPfStjaLzwNW77GVuhYDZlg2tV+9AajjWL9Y117N/v6p7FaCI2DNs6yDS9vG2dBt414/X8BTIZcs58UAtlxyUNTWq1mt04GIkwe4OD/7jYv3j7G4nJ6DD+6qWNGqd6iOGDquD6RMsCC50n3YDTB4Rqn4R+7bdYec8ud5m99TpwAezhAS/ie1kvtNEsAt6elU5wORnVWQFHCBQnlwywnApa4v5uWeArwaFrfzq5ZxJvzw3NmCEMDhTYbW2ysEdS+ks5oduXsPSz7/hr7p27uaVeyZrpDw5Is+/Sd7XMMalv+aYWNpjmdqzs/8hvtvHXiy5FgQ4LEdnv0qC0HdjfjTT20yNUxX+rBPaqNmr78tLpAGAO65kEa4Pu4siJGVA+qFF3ess9Gw/vn7PCb70/T7CLvPAM690jcaXQsYkRGhs1quZhKjn0kny6LkrUMLelmaldxMWQM4GrJ4f1UZYGD5Ou14P0DRoqXG2cmAaXamhDflyZKuWU0q5tKXYBVkCWhnoNWYZAv4mZHsfnUF4MDLxPWrMjTskHp/8OCdcRYbYGvecUfFBDd8Kd7LcO9Lk0OAjSL1dEkVV8/6MuEfavVf5HwN0PemBfFfmRX3fqUMUFacEh41Yo5fWnSXhdVxPuusojpJypvE59R9XHSO/YrrgKm+naSrQe/ZneVcfeNgwd2ZSRMM3ywMDKjm/Oc2PGOyL1djhcdo/f/+/d2nmPrXipzmas/db1r2Eflz2NRkbyUDrLi2jfzp/rRVs6FWzVYNdJRu3gF4O6vNJP87wHaJVpTZRsDP9TvJFzotzhSf6OrU/54PYINEVLIyg/O7srA7lONDti0iPCoM8ICXOnLyHbvsSPzktadoT+rV2nDl7uHRYXZkwpTwqRsbawuEjaz+l7WEa6pOjcMutD4HWBZqlT0ZN+ce78eAkVTK06PQnfC8CLjb9yjp7XmVPx97XyP+LkiPE45QbTv3zFLAIknTo8p0Dduqv47wKEITAlZy/brEf5GtLgL8y4Tnvyp6zq4+/zHWsexEcnMhoH+qHs13Z+BqxfUWQZ1/hIB8JLId1J8jVrMpHBbIz091h5lHVia3H7z5PRL19RjpYpW/iHTqWzbq83qthg2FvXEfbjPHN27hhPNdPS/lDE4nZ5kP+Uj8avbcPcGCOoNYPZmXnOMxk883NZevnuc3TPrz8bTv6b1I5beiIo3jIXo3ncEG/PwcOcrzNSoeIhxOJ4WEVy6Movm/aGtDvE/5p1d2muZzjQc/p2u8Ijc/SuT4G+d17T6sJH+sL+R12hyuoncuTw3JJ62HIilvgVk0vW/wPk9743E7v2/ctolbbSMATaNj6X5hqL+1RTygw5rn1Ndg+nKak6DVx6luviO/3/4Y0SPc/kY9FFeqSaX+unp5/tq8+Lrz8x6Sb4Ny7tPpaPLgre//AN7Gqrs=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAFAAAAAAAAAA=eF5jYBgFo2AUjIJRMBwBAAXgAAE=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAzAIAAAAAAAA=eF4V0H0s1HEcB/DY5DF6oMuqc1iJPO+GK/pciDzd2dA8noxLOs9RFtN2+H3WkmvmsXObeX7Ymo7Ow2ENsYiVULk0D5dl52nhj6j0vb9e2/u9z/b5fNJ3OvMZdwKB6S5qM7CjYJnr3LXBE4KxnoU0R1gIaV7DVu97CiF1kOvizS4Cn2DG5mZJEeRVVdaOzhRBdvqiCVOfAqeRLfs6VwomYrq7o6Mo6Og63ncth4I0um6MSERBZvaUg6KBggXDPipSRgFnlSFWjlDgKDWT0j9SwA33+/RUQfJD97xSJQVi0SW3gnUKZtofMSQ7FFy+Kes8sU/Bb5Fzm/YRhKogNkuihRBU/H1iTQ9By5IWdmiEsNJyNFZljPBcQFN0myLUcGeHBHSEX5L1F/qWCKGmtl+rrRAWHs970GwRwiUqswJHBGVoklTBROC4lwfQWQiacmj29UA4k5FmHXodoay++hz7BkJlkt6ath9ChHjeqyWQzOmcD6EHI2RljIwmhiDk7m//EN5CSBnwLU2NQJj0M/WyiUZotKcdvOYhiDlvWSfjEA6SWlUQj5CwVxHJ5iO0lgTTTRIRDJhKwzd3EZx5Rm5e9xAUebLJWgHCgw9grkhGkPl7Vu6mIFgp+yRbqQgaW0t1U2kI/Losg7J0BMbZXQfPDARP178BCiL7ilQYl4lwKrZ4do6YMB5n4XGf/COsybyCODw9wV8hbu/XRF3MIvdqcANuE6eSvSNLiU/k7s8GiJkS+fgyca29aUEzG2FxdOUhnVg1ucF0IfZm+9f4E9kN85bRxKv8P04CYkdmvlkOcaw/nlWgzh1zh4qJhvWTu2VEXZ+fmjXqvlzHtI4YOG3Ha1b3x/aS2omujiNLL4m8gbEvr4gLp1mxXcQg60ahjPht9QKnh+jxjhrvJUoLwv/1qfeZ29yQEz+X+4r7iS6cOa0BomrQ3kbtfwHdXKY=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAhwIAAAAAAAA=eF4VznlIE2AYBvC2iaLzqLxSykUoikucoWGsXsUjJ9Fhs2yYmOgsaEYeaX0eA0MzxXCVx7RpFrXUMgVnYmNSrsQCCTGmmVvaNFPMNmfOUun9/vrxPPDAI3ipbjTrCGTlLW64fCUQs8o43oL6fV7jg56Ab03BuzYDAe02cdCBaQKZl+8x1DMElq8vTAiMBHrEifrRWQKswjLF2R/Y81JyP80T6Jt1jj2yQCBA1SlsXCSQmpSYuWOJgGJ/xIOCXwQSYjktH5cJsKdUtxxNBD489h49ZCbAD+s5JVwh0Dom4YgsuGMm1h9bJTAezI7m/iFgmgoes6I+e794qdYIHPaJtF6wEpCUX0vbRCNDY05WreOvCqaG/ZfAleaUZ1I0QmthzaPDsl5N7D8CQ4pptRwdrK/TGdH7Bv2k/wYBpcy7Mh3tzh6obUCLm849GUIHa/tPm9DO1FSuxyaBrY5vXQdRbmCZSIhGaaZrJKhIXtRXihpbCgPq0GbhCZ4SLakSefaiDzMa9wyiqt+CohFUViTJHEfTL2bZT6Ov4puq59FwQ7vHMjqXw9VaUF6IuXsdLVuRWjdRgSD5BWOLgG2c+LsNylb7ddiht2e3uzqgT/Vaf0dUORRtcUIt9r6lLmhbsWZiO1pZfYa5E12oCGe6oiHxM3qqm7+7wg2VrZoi3VGbSqcRqpJfGueBJtsyuqjPQW/vSXOUTxJVaJXKqTZ25aNUXZ6UtQt9m1sdRDWa2xOou5ndV6lx+eerqJM3Ex5RL1k5vdSwkqNDVN2N7DHq0nC/gVofmvaT+l7bYKKyc+5Yqe1vxFtUTiuf5YXK9/nZUWtf8xyo+VMZjtSBuwNO1MC5MGfqf1S7fDY=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAA/wIAAAAAAAA=eF4FwQsw0wEAB+BjUhyna6n9Z7EXk1J0yWX022q3tOsSI6UmKTXHIlZNinYM81jyipRnHqfLSiF5U5GK0sPF5C5dt0RFRSnV97UPL+TGHe+GOueTjU1vF9IMKpJo1l2Y1wr4V490YtduH1ZZaQc4oTe5YTfaMbV1rk9q3gZlot1ed2kL+EL7bbque+DHkdljjCb8NJGsV6gbQVV1cKUL9fiqSSbPn7+DLaTP7O4PdfCdeDHSJ7mFvBnmooIBLViqeZWh2Q2cGe8YDIiqgeGzvlkJqRqpK9JUlPYKdBe2jZMqyoGSpVP0O6X4RJH/pb8uxoQ2EeLMK4gYDXKlZhdAcJbsIRvOQ7nP76oVwTlY2dIse2KbhdroYLmAkYl/mysX1CXpsOcqeIclaojcnEUOJ5LADZ9u9n6ZgMkiWsjteCUWEaPhjm/iMPe7w0+6OhbkzHx5+PvTGDJ9XhP5Tw4ier82JTIKFobVuVfXReKWupT5KDgcbNnHyep3UvSaCjs3DoQARUe1VrTDIDctP7mjLQh5RErNFX8Jytl/yjSN+yB3ecfRpO9BYUJJZnyvGMk0PztdoDei1izjWKp3QXoIBvIxERj1d9/Ha7ejM4Y5PP1RgBn9QJG/ciuMb4ZdGgvlwdLmhEK8wQNGnjVBbmZuWKyXBCZ6u8KLNTSD7xuhn2x97a7fAM3QppevmM64ll8ZpHRZD59hkXXPhbVIZY1pAoUOMHHRef7ZaY+cwQjuVL4dwjRmjuN0W7hj6FyPjoVkV87J7AdM8M7PRTm+YqB3CT1CZMzA7VpbntiXjoccpyOXT9lAyWowTouwxrGWt8/jMlbh+qBzuudjGlbJv1wKY9NQr8+KIeVa4QB3wr6WsELCRGuDQktFyS8v3VMxFRcDHH6EGFFBT9P8DO0hkN/v5kTPJlBOMrAIPUpgnQ8f3jwCkZ6x+8zpBKLrM+pmjQgInaqc1Z8pOChw4AfrKDDuk33j9VNwbI2lavF9Ckb6nynaWimArKm4oJmC/w+cTZc=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/Vj6uU0jFs0/P4rzd9c2zD+pWTzAwTfLP+K0GQhuJ8o/FqFiJoMGyT/cWwatsdnHP7ImFfS3pMY/SyrBm4lrxT+1XzyS2zHEPwyZ8Tkn+8I/9G/he5bKwT+5B4a5/aLAP8ulrEKxDb8/EnCrIXGovD+MtSySgly6PxeOgiaFLLg/q+w2lVQatj+m65fQHSe0P/7Yj8F0U7I/RP0zPmqfsD/hoSaFQhWuP9UcmNLFKKs/iviVh2F3qD8MFLO7qv6lP0Qz1qvlu6M/91sFFh+soT8M9YDGg5ifP0Bc+7FSMpw/tqnxM2AfmT8n/8aKeFmWPwL5aQyS2pM/qn9jx9uckT/vLlaGkDWPP76g/+gpnos/bH2u4J1piD8obDO4qo6FP1jCwBi0BIM/Q6/7acHDgD+Sf+z484h9P+g+vxM/AHo/67kv+A7hdj9YITGsJiB0P7R50A5Rs3E/62JglJ8ibz9C3jXmk2NrP8fX7VV1Gmg/pvM4H8A5ZT+7ew93VbViPz80NxxcgmA//9yklkUuXT8MBhCQCdZZP2C/chSh7FY/jl26/2BkVD+T7pt+KzFSP5rdCfhISFA/ZCH2PohATT/39+DBkWFKP5IbNNQL5Uc/k2jNSiG+RT9tZuMRl+FDPwqj7kSdRUI/LQCdl6ThQD/OUrrHb1w/Pw5JZVSzST0/9GkMk8p/Oz8dLrlY5/Q5P76mY0iGoDg/bshEUkR7Nz8WI+hnuX42P8qEfNVXpTU/XfWuuE/qND9cllIXdkk0P0rqWyMvvzM/IlkrRVtIMz9oDlqQRuIyP5KjgVGaijI/Bxq2bFA/Mj/aZGZMqP4xP6nT/CYdxzE/y7QJZ12XMT88N4AFQ24xPzJjMKnMSjE/V3A4XBcsMT976CW6gxQxP3fNYEROADE/nnNgTQfvMD8OHItaUOAwPwNkJHja0zA/6cAe92TJMD91ENCSvMAwP701mgS7uTA/mz5VD0e0MD/8JXASVbAwPxNa4jvorTA/I6QZeRStMD9ZfFYbAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAA/wIAAAAAAAA=eF4NxXswE3AAB3BSXV2KI7p+W2PeUc6jTm25b2rzyBgxlGuHhpb3SkuWvFeESTtk3XmEHsrJ0UW1K9mJ67WOPLrC5Uim5ySh+vzzWWhskhwTF4MjmJEbZBWBI0oxWTpxEa1HFK6ioEI4NzmHWVgWYLQml7ti8jxEGR4W1DopCh3c1x0Pz8cSuz3uvnEeTltyFPKXOZDq7xnbfSkbDRUa8QV+Fr4HRV/Wd8uEvKaRNvv1LN4xNB9lxem4c9Jzpt4nDZ3RKR/WWInB08ZpxmipEObx2A8YJ9CxdvCGQpyCb0XJ5Y43k6BcSL7bcy0es5MD3RPvhLj3mv3oBzcWYrG1cMMfAcwevq/YPBIF3sTjM29nIlBNFC1zh/gwug66yCkcC+4mFnUhYXCJj43ZreIh55U2n54WhB7GLVOZMBD9SZtqjKy4+L5q4m3fsC+Yofccbmm8MZNvrqMM8kRD3LT6yUoW6jbSPpPfHjCUbme82LoXhnGlg0vm7pDs96U/9Weg/HRoRILaDUzJonNa7U6IGkcdQ9pdsTWyvJS72gWMc5HB6YVOsBcd+xl4zhHTemncWsY2dLkdPKAPewz3VDX35tghkfk81VjXFoor1i3LzdYQTLVlJBVYQdo4MrRcYImnfIb3VJMFIk9msuY/0+E5MO4nYdHhka7K3NFqjrDzRQrPneao6TNqE8jMYGDG0xa9oYHpOjvg6kSDfu6KqcXaLbAZnS9ZtNuCv0MGH+qVVAjbro0oBVQ0NEttwk2puLjylbpHTYGfbUnApQoKqFerOaIYClIj0o/7MynIzk5UOptSMCdZnveaIyDqXWRomCBL0/mQ3UVQljvep9dMUFr5V151lSCsddC7vpjAkS67ocoiUPVrDVtOEXz6dbvSLIFAoduV2i8gUE96xYj5BLG9X2S6hwieCep0QoIJNiaVHg4PIIivYiUscgjyen1HbA8QNFFfj730IrDhyPdMswm43evtk1kE/ke1Zfz9BD66sqj2fQQdKn+9s///BysWT04=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/Tj4wmSqYLQ/xkMtlKirsz+HSNqtuPmyP8cNYDLgNbI/jSEAwMhosT8M75dBcZOwP/DdBCsFcq8/p5dfjBe4rT8O2MtGSf6rPwAVRbVcSao/j+CU/q2dqD8kKiUzIf+mP6D4J8sfcaU/QXbeAiPEoz9sOwb8VCmiPxh5VjV9oqA/QOs+jrdhnj+Wq3MMb6qbP4xRr3HaH5k/15q1lf3Blj81zroWRJCUP3vLJRWdiZI/fIt7spSskD9aLJYR1u6NP9u2tPZQ0Io/Fr4Mwl75hz9k6Jw/lmWFP59yfsF5EIM/O88RG4z1gD+tCz06wyB+P9TfwAlbuXo/QxdInpisdz+wsCa4lvJ0P3q6kpLcg3I/QV1NvmRZcD9Bu+qTQdlsP8iZIZj0bmk/Y+j5oKNoZj+8CnUz+LtjP7+ONC58X2E/N1WTix+VXj8xTe09vOpaPyiULP6hsVc/cAya7wfdVD9BaiLEbmFSPzbCE9qGNFA/8Z9Z3i2aTD9wBEh7x0VJPzkAhYMxXUY/m4KvpmTTQz8zMVtb0pxBP2SeIct9Xj8/thtcrjwDPD/JqKT46Bc5P5vx/DJvjjY/TEorsWtaND/Gbhh5+nAyP6rKdOGLyDA/7kaSHnuxLj8m6BH1bjQsP8gOcEcZDSo/G/UUUD4wKD/tzsnKDpQmP2l3NMj7LyU/s4Mtgo/8Iz+R9fqvSvMiP/HMSOOFDiI/zKhqgFZJIT83fMHtdp8gP5PZJJ8xDSA/ksl/VZ0eHz+hloc5B0YePwqdlI3Kix0/iur7nLbrHD//u6iKKmIcPz0ENjEC7Bs/5TbuW4WGGz/zJ1QJWS8bP6Q35m5y5Bo/y/KIewukGj/KiEeamGwaP3ns93m/PBo/Bbrlnk4TGj/pOW0nfPMZP0DIYD802Bk/gPxziODAGT+JTKfHAa0ZP/+FXKktnBk/Iv/NEA2OGT96PxX0WoIZP19y/cvjeBk/pigupYVxGT8quiroMGwZP/0sWvfpaBk/fVB7zstnGT9YJFb1AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAA+QIAAAAAAAA=eF4NxX0w03EAB2A3xoplXqaXfcfYVKy8bfNb5fpoiiFvqWbXZV1KsVOrlCtOORLqUM5rd2pdNSRdc0Ta4U4ynChFdy7yck3pzUWdqy7PP8/FB8J9cSoH1Mm3/smo5GPMjr1Ynbke/6J+9tj2eoIjrJopEnuBM1+XTh76IKGzL9+R6YeUiK+TFTIRGlrt+N5RYqSOmv7VSyQ4mHCSRv8tQc9poZBZ4Y+/xpZX2asp5Ay1SZ7kUOiSal4Ev6Jg9nWvcjNNiliLb/JoJymmT9yqKWdJYdnGu/txnoK1qoDm1k7h/SPLGvc0Cv4yhXGAUGioTWb9euyPIytMT89K/ZFtuJLtopfAfrFK3M2TQDvwvYvKFWOrT5spYFqEw9pjjPIAEWpjjBV/i/1wwtT6bt2UL5iFL2zzxL5QJzUrjLk+WN1qd/VGszcaW57Z1iZ6QddDqxfyNiN3jv5eMCPEfpPPSOQTT/SFl4lZFR7ob9zETM/bCFWWSBOZvwFKk0q6VLUeh8JK5u4a3PFsJi1E9EMAh7ez09ESAYhOWXI+n4/utnkj7YsbBC91bwUqNywx1qSYj7uCGRyjbFK7oiZ6p2+4hSsqFR4LwzoeGueKtIn7eJhQ93VybHiQMYUScZkLqulL9hv4LqCkoScLDc642X0n3eKIMwbDQurBdkav1UKS/SAXw0GfApJLuOi4XFcZGc/FKr0pedybC/XQ8dRYKy5K0/ZoF6cI5FOXIjY+J5jzdCpV1hEMkQK9dQnBQt6oZiCTwEanbtqeQnAn5TWfHk/Q3s8bG44miL/+JjZ5F8EDml5esI3gmsKr30xEEJHKTrwtJFgMzNq9w53AOyjsUYcLwf21k45mHIJTny50TzsRrEzcEqpwIGAYAidlLIKc0iK3UiaBMyM9I8eagK0sqDKsIDCcyw2lGASaD70ts5YEjiNRBwboBIMTq4bGLQg8Pp8ZXbt8Z9w9+XlzAq11OfsPjaA44qhKu/wEh16UtPyvn47Z+5f/D8/vMEk=AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAAMAAAAAAAA=eF4NxXtQC3AAB3CmdaXs8shK1NHF7rf1oBaZ7Vvt4qaVVMqIWimXccqFHpQeRtRUS1RYMial0k5orFvrcBc5F6aunasQPeyP3elxrfj88wnm/epvmm1CrlbJL9a1QrUm185kbMYOY0/EI5tmWPlxrzYomkBXv5DsFDaCjKTwu382gFqQPyzOe4iQJxzLJroK7PvkzmDbfeQcXhnTv0+JSmp6csKSe4i1tavgaO9CXGpSVMXXoTTTvMB1u4PwgENWNYpafJtJ74gKroZlwHntM5sbkPQXn0g0VyJ78phXPEWOd8Z5znZ2OZ6+V9qzV1/DdjN9uJFaAp9IeqCNfzF0ZZe8XZVSmFNrEwuFRRgyxI6qmAX4S4keHeNeQHbS3SuxC+fQ7KYfahnIwhIeVTFufRZG9UfWgfMZUF798q166ykI2An5dd5psKsPF+d3HkfE17wY0cVUMH7Pjk8+SEFwkbhxg8sR9GktE5X9Yqj72oTkaTzcRbukXK84dCnF07eXizAvH3dqj4qB1bIWd/uxKKyYzG717NkLp4UZi79xD8r0yTJJtRCZYt3lyFcCTDiW7OzYsQsuU/IRvX0I1r114Ojd+Vjlm0VfnxWEwu6NVaAGwvRZJ9EVcPFB+4bquoeDTRcdyx2SA2BJuBAXrdmKdmr9bp3AH58MGhrLlo0rKluZwOyL1y5NjOsUX8xz3j8O2LIFisWhnXPnN4M5g5OsYR/wXRhDsoM+aHVqy1H1eiPRsLKGZu2Nh+tKHGgiL9i88qeY9J5ILGX8OcP3xOBs+V/DJxbU0hTbe6f/P5Gt1rizYL2KeSLMyISbZpFfVx0TUS/pgo7jTEx2PDNZBTJRbxheWuPMRHfGwZzKaQKG9Pt6z0GC25lE0q4nEO3rC73ZTBAkl8qFtwiShMt+8GQEFZFC7eYCgtlcFmXkLMHzqSHNmpMEPJre49FRAsP89MQxMYFguq+NF0egXjTXS9tPkOEh2/8umiAspyEvLZLAZ2BbiCWCIDbATZn7/388gk52AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAjgIAAAAAAAA=eF4dz21MkmEUBuDHorS1zAy/QhM1zaIZurKyANfMlTHTctMmE0PmlrI0g6WuMfRHaZRzaYQlE3WVic4PWrRUwJmSxIjMctkkpsMyxSbrU8fWOf26dt/nPOfdG+n5JXE0V3GoUVRpk0NgyCmKkdcfTeEkrz22lPZEG2SC1CgK25tD+m4fOrjwVU/En+v9tWY2od9pG1d16YnMfNelqWMT4zrXvpJSPSFFyietmWxCxCl2UwJkP8W2ISpktf6W0z1EiMxpU82yCCHKwkUjaLRv73gHyrzMdROYa7ssNsxjBZFvMWelfHiD+2tub+yNFQ+mLTjnhTJNYL4hhjYGOo6FGl5inx7EGAbVc7afgyg9yaHD98KBmme4NxIh1aK93qndIH10JE6De8XvKx/hvUj3kYd4J2/A3Yb9fJtHBSbzeap7oF/BmfZG7JsHyxtAprF3sR7v2DL0NzELw1evgxnxW3Q3QJtidaYav883MatQmqLzf954uvUa3tFI1ZXoqWXJVdRkXpKANTFNrzH77LLPikGRPKAMnZzU9WFfPuky4V6seEKI/XwnvRsNzQ/bgH6L4FeVgY0t8xdQBv/53sugbnPlq1Lw7/fzV1CqsuTPJRaRTb1wFmKeaj9sRf37A7jYf4oPXi/C/3LzRBch584ErhRC9tTNVQvBwP4dCQIWSY7jqin5MDccWCA8FjH6FMgzc0AL0+LJgrlo1Uw5C/NzHV9G0+Ed15MbnQbz7KDlkFToVzS/G45DdvfwKBxQEZvHTQJdmdoTifB+a7bvdALklo/hrv2w7zXeT2XAndpNe3x3Q1+htQxHsYjDSvELi4B9R5o0eifsdTmfJtIg/7h/sjgEsqB7yRrM+gc79xxbAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAA9wIAAAAAAAA=eF4NzX1Qy3EAx/FTzfdXGz2tNtnV9LBGodQuMvvUXI9iS7ROpBQ9cKI7O8QleShRk8mEHoRCSTvNw3qgh4ujPO7izlUTyzOV56f8/nr9936rGM6b/C4lok2x50BOogJuk9pWno9UoKyqOzC4cxkeLdo3X8KNQUBTBqlIikZnxYFbl5tkUL5WDzkNRSG5RtQgk0ci4adLQML3MMxNzGMcNYQgdoRf3j68EC4WWsZ8LylY0m3y5LQgvPZYL5RXLoC3yKczvjUQqnF2drH7XNwd4LM+3BNBstlV+bDRDzau10xjPb54Z2qOSOH5wF8cd83OdyY0QoNavGMGsq6XdKy2E0JT6NY9570H8vc6ss3M3THYIz5dK3cF13qRMP8+H3N0+lCzr84wjs8sMRznodaYOe6w1wlXH+uHeQ1cJNTubJtgy8Entbuw8IwD1u25UM5PYSNA0PesOdIeB027Xw3G2EEVPts8P9sWb7NHY3itNjjrKYjawLVBuvHQ82Bra6jqJap0u8noYQ7G9okm4dLfx36lW1gIulGtE/Qy4Tw2lJolZuJmdfyamy1W0HbozS/KrHBOGVfp+NkSF7paPKafskTKnxMa6XJLiOtWxH9ztETyR5UXw0ihiFPTpdBS4Jv/cP5VQKFyuN+Tk0pB2uZLfQ2nMDG65c7ILAqcnBVrd3EpcNn+QgGDglDXnrr1C8G6B6+ynUwEJf1Lv+ufEexDHIdzn2Bj4NmUT10EzNyNOTatBG9kA7aLrxK4Zspf7mwk2PBSbJ1bR2C4uCpsXi0BO0kfdOgMgXS70SO1imB/5mX+lXKCJZ3q0eSTBJUdM8rSyghY9kUWOg1Bc1z37eBjBHmLx96ZlRJ4PxmqG1ETpL3gxBLakcZ/bMkR+ltTYFCVENSLpkz7fZjuPi3IyKeVhN4IEdBql3fnPVIR+Fdoowpp338pdZTRDkeMlfNoe/VM02gxgZKj9H5IO7VpfFRHW50e8Lea1sGCpdDQOjVMTVDT/gdt9DhxAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAAwMAAAAAAAA=eF4B+AIH/ZRxzZ9z+LY/KwOWebVgsD/wWiayPKmwP0oIIrAKUq4/JWX+y3lkrD/AgX/X4UuqP6DlPewaXqg/HdDXc9mEpj8kkKG3xMakPwJzoQWvIqM/LmD3iWmZoT8JnoEkICugPwd4KBIfsJ0/2KSGL3Htmj+HazM9/lyYPxyZtKpQ/ZU/0C3/ra7Mkz+4ccirJMmRP5BTmWkk4Y8/aaYR6muBjD++owQUcm6JPyrIN49yo4Y/HpTIq6QbhD8sRQIoS9KBP2I98P+ChX8/5FS4tA3Rez+sf6VpjX54P6gLAfa+hXU/rID5cs7ecj8sOZdDXYJwPwZz8F0K02w//hjR/7EbaT/cm7s3xtJlP62jC/tE7WI/Xm406gxhYD+rMGUQpklcP/LKO3MuYFg/iWjiCDD2VD8wEyjsi/1RP3K/Lxrc0k4/hHVsEGlcSj/1j0IgsIJGP8BXD6WrMkM/ExPOQzZbQD8cLEoZzNk7P5lfoKPWszc/YDXmg+UrND9fXrAVFCwxP+F02ZMYQi0/f+w2yanzKD8SA8E/QE8lP9TO/Cs0OyI/9ril+dtCHz9TSHpZB94aPz1rC3uxJxc/WElbsIUEFD8YTmWVaV0RPyNC6oTEPQ4/TPkNGRRxCj+WETU6LjkHP8qp/qLkfgQ/CWQPeLouAj+fos2TSzgAP97oKbKXG/0+bNC2ljZH+j4kZd+419/3Ph30RFfs1PU+3pH1j3UY9D6Uj5G+m57yPrSNwytXXfE+miMkFydM8D7XjrJMqcfuPmEau19/PO0+IQklZmfs6z5jwtU0h87qPoWCAURW2+k+rZ0y3mkM6T4lehIbSVzoPiwOI1FHxuc+JFN+22NG5z5gzTg+LtnmPimlYbyte+Y+XU7/1ksr5j53ORQU/u3lPhTB5dLGueU+1C0kPWeN5T7obuE002flPrnHjc8rSOU+0afn5rot5T7Wa4r87xflPrcLlWFeBuU+PVmCurz45D61eIwC5u7kPhRx70jc6OQ+dow/fM3m5D7eBmIFAQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAuAAAAAAAAAA=eF6N0jELAXEYx/F/MkkGg2S6ZDQYDDJcl9mLulciXZKkS5Ik6YY7kyQDMugyGAwGGQwGg+9/uKeuM336Pc/yPE+PUl7gtI+mUmGCNhp/Gvo/d3jCDa7RwyXOcIR97GIHHezhAIciy7qLY5wIpzjHRUxeibl9sZd2i/oOezzgGS94xRvehQ984gvf+MFUEDWNGcxiDvNYwCKWsCysYFVYwzo2sIkmttASGjF12dd/k6SNVsQv6YI7QA==AQAAAAAAAAAAgAAAAAAAAPgCAAAAAAAAYQIAAAAAAAA=eF4Vzn8s1HEcx3HrcDkluYsxCp1f0zJX3brm+B7G0mjRJNf5LTW/Slx+nNzpllo7URy3IrNGuUaHmJmK2DWOQ01skTbmZ7dOy6iVXp/3P4+/3u/3M1ddkioL6KeenpUwiMM/89ukcLMm7zzRxS9nuwSGz2fVEwvl6UHE555Xlm/BKV2Kgmh6PZFD5ByI+1wME3tiJcQK0QUX4mXtiUcF0N+XZSaGdo83xDnQaDqxnAV1WW2x6bB5WqFLg/LADP8UmPQy7FUCFNh6uYpIj5RedRGarC6aRcOvUYM3I+GbvsaVCPjEQyY8Qzor40dDYcwffkAw5KY6aijI1P925cMfJ2eqeHC0sducC1/sUeZz4B1x7upR8nc+8pI36Q3zHfOA9p37KDb85WTQOMPxMt1hJ6g2tlTbkz3hPbotjB9KK7CBPJ+QNStoo2KLLOHqLpqeDgcyvlGmUDX1tt0EXqPq2X/9+6mQFolyGzqyhLs3obGYV7gBh5bs1g1QdW5TtAYzez/plyDl1iFYgMwHlR3zcHEr220WdidF1MzAu7ojFlMwhmtZNAm9GlbWx+CWxYe4Eai90TSuhcpZeeAgTAlN7nwHORqBex/ccXCu7YE6+T+LLlhr+FLUDpNjer+3Qp8BVbwabnvnTzTD99XRQc+gYuf46wYYfZXpUQcPfTTWquCS3zhDCduaWiUPYZ61wlAO/QrTE+5D2sLpyTI4HO4ZLCedRvbKbeimdCknRp06eIwonXOYLiV3Su2KiXPuLFei1Yi1Vgb52XsziJlMxn5iXbd5lxTqhTQh0QRD/A+RZFqlAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFAAAAAAAAAA=eF5jYACBD/YMo/QoPQJoAH+4b0M=AQAAAAAAAAAAgAAAAAAAAHgBAAAAAAAAEwAAAAAAAAA=eF5jYCANMI5irJiJRAwAN9wAXw==AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAwAIAAAAAAAA=eF4Vz30sFHAYB3BtjAylWlatleTdnZfIS5cnL0XceH5RIS9FrnZdWF4qyfs4t64XhcskZUStVnmrzHvy0iUipS5cjBGmVi2a1eOvz5492/f5Pi5+7bslBQxUCjmqHiUM4nxf9ErLGDiIHS+eqWBQ9ydFLaaSgZf/ifhemk1szaY7yhnYShvKkkpJvrOlzm0GGqFvR2U3GWx0a7nveJ3B9HDWyjWXGLjnuf2sz2AgSPAOWZ3IwGi+9V9uNIPgy2LfkOMMRqq8DkkCGChUnN7Z8Rl4aFx1vQAMXKeaNsTbMPBUqFnxDBmc0xzMmNRj0BolcbykyWC8817r7iUEY+PhtTrzCO1JuoPaYwim6dJs/iBC8CeR5GMXQuqBqG1NDQj8uQ6B1lOERVZr8bocYeDX0JxqEcK4+9XqlmsI2tYzf9XFCHfTrlQokhH6U0QLrgkI4ZxN2bwoBEHOvHeXAOFN7OHayTAEmaFZ+41ABNVmVY7cD0EoHMkU+yBs9ek827Yf4Zmz70L8XoT5mb7zMheEP0qLDQbOCCizf6+9C0HkrVKFDtRvX6VyzI769MwONu2ge/nqkV+syRUR3XZWCLc4H+pbuQjSZD1hMgeBe46bEWFBedIeq9Pm9Kfcfl2BGcKkfuieL6YI3auUNjwyMdVH/tgEwaha19OB7N0caNtrjCC3NhcmkK/kfWqmpGZ5bdiEEcL5xWa1h+TETl7NBVIQu/8gIwdch75bkG1/jeu0ydyF6tkfhgiZLx/8/kzKGms8O8mjxWan68if2/KXKkhJY86dItIy74lWLtmzZfuSmOQqxx3Tlo3JvZZI8sodhuLIwkn4Fk1q6JV+PUUKR6dKT5IVz6OHI5f3KkHpEWSJU0D6MdI/RdAfRq63KRGFklmFBh4hpL2+emgwWewc/ugIyWkX2S+7T/FsMYj8Dz6oOn4=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAMQEAAAAAAAA=eF7Ny88rgwEAxvHazcVhbcJhSKHlPimpHSh78dpeXtNiKflVb1G0KIclSdbQWjk4MBclLm+t7UQOWzmQ/bBkys9eKRnvQaLU87gof4DTp289T1K+r4h6xOZwPgaz1RE4FQ7BiaYl6JL9cOFrFtbEpmFjwyR8lhS4qI1By+MwXK4agtrcIEzXeaFq7IeVNg8sCfTBpNENDYcy9K32wNr5bli8IsGbqAsqupN/Ow1GumCvib4ERfhaRnf2O+Geg46+dXC/RcMyzZh/OtcOtzepoFCrncZLqaoL0JuiByqNr1PRT4/HacJNj1ppwEYLVipZqNNMN4roiIGWfzrgg06FAr17om0aTd5S0zWdydPQJU1c0I8crT+nLVk6kPmtL03XUn+7e0avTun7yf/yG5C3Ny0=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAFwEAAAAAAAA=eF7LenahsD8wwH7NOTkwrfZofwGI/nK1EUyXPAwB01k/DcH09qWiYHoD9798EP2X6RWY1r11A0zfkTsFpj3a9oJpF/1NEPFHy8E0n/h8MH1p6nQwnaU/EUzP2NENpq9xtEPEmZrB9Mz2ejC9rrkGTC97UgmmE2aWg+lJs0vBtMytYjDtE1QEptn+FIDpk5fywXTi+TyI/NtcML1EG0IzteaA6adfssF0WhWEviAEoSP2ZIHp9QUQusMIQhv9zwTT3y5D6KsbIDTTFAh9qgpC/0iD0CvDIbSaF4S2c4DQShYQ+p0BhG7ThtBs6hA6SAVCv5KD0LKyENpMBkIHSEPoZkkIvVUcQr8QxU8zQWlpkZFFAwCqAR1NAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAjAIAAAAAAAA=eF4VznksFnAcx3ERU+zJntVakqM/sKjHVSJ7vqtErnxdT/Q8bjkydwodU3M8YZU9rLEUnhBi7pyblcf5OGaEtB7r6ZBqOdYyjfX9/fXa3v98Po5DPuVa2Qg3lk3eVtxCMFjhrealIqyGGgjUkxC0JxqCkuMQPrXI39y9hlDpYijaikLof7pUM3QVQX4y//lUOIIYFOEaYQhx3gbTwSEI/I7Ig/NBCDujXbN+gQg9kf+Gp4UImtsJwvArCMY9j+Y1AhAG9TQUvZcRlrqlutkChHZup0GwH0KzZFHo6oswKuEfcvJBcP+VLPbyRrCRi8ZjvRAs5S+0ihABCmMSRzwR2oZnTmuRvh+K2/0vIZQLxtyaPahvbKfsJ2MChl/fc0dwlrU3brohKMaGttJI6ZMdR1UyPtrEvsgVQaXsqPgEab7QtzjlQv8f8xQZ5LMUKztzsvRBW8Hni/TLQSNdSmouJZRGk9rj3Hxrcjvnr1KN5Eh5/AVnBIHOAZtWsrLVPayQnF6WRaeQe48V/PAnq3MzJGdJS1ET5zipp6vUOUz6Xi/w0SJlEevF204IfVxu2RppP5Fs/Y20SP9q+pG0KnXwfkdq2v0UT5L5M511I6RDkl/JAJn4UNO+n9Rf8E7tJacsSk91kbYq72M7SJkoQL2NXBFF/WkmbcRHLJrI++dN6xtJY/XiwAYyZKAKXpGNWbWu9ax7LqTVsR2BnayWnJi/Y8YMcdqoeUnmRcTYMvV2G83VkMKtniymPofHZw7ktu9injEbHK8md87tqWCq3Ey6zbSZVQtmZnYrLzCxOtOCmeAWqs/M8TfaxzSaS1Bl6htyNqvI9dTJ30yJR8l3Zk98xBdmyxpfyfwPr6w9DA==AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAA7QIAAAAAAAA=eF4Nzn1Qy3EAx3HbepTp6HB0y06KbkSkkodP23Vz1Piu1my1nvZzqOu4LpUipSy/nkaUh2ueykPrFJanrXKezoVd4jR5uGquTpTOkIqM31+vv96f+2T9idgVHkTBwTJ1R9MOCve4nStpmkJnfa6n4QyFAdGwNVtPYX9Ak6eikQK35/S0Aw0UshZKJ55doLDluvlf+3EKYs/bq18XUJDr1h0MSqHgVavPDJNQ+K0ywkFA4ZX+igksCmSfa1n+SzVWpJbev1qjhnlCIHmUqIbRrFz+lqfGt17HXd6WZCz8rMgZp5PxXXz53YugZCQUZm1CXxIS+E/LRzVJMLblljYvTsLH50fK6GOJkF8auDvYmQDemtlPPaYnIOOK96fciHi4WMv/ppSqsEIxaGOZ49D60zcueEYciv0cbK9jY5HxQJteoFfiCa2pvv9XAcPZsh62QgF3mV/G+btbUd+wzmCdvxVO7Xn0FK0c6zmvzH4cOQYrw/7k5cegw3RUN4MTg3cddyq/Vsigke9Wu/NlGPsg0qUYoxGa+UXUr4yGrOp7TDwrGje1Edv016IgTxv2r9oWBTbvpNI6Pwq8oXR/iVWKpGPjWRX1UsQKF+2OypSi/cRk14YNUnSzR+bO9pJinySkhpogSHuvnOjqJjCU2OI9Wgn2pituP6olMLHpjspygsfce6IlOQRN/a5C8U4C37Tnc04pCWr8Gyt7IwlU3JwFfUKmiwz8og4hCHgbXB20nODQ1Qr+Mj+COzcsJT7eBJvbCtPHeARnN8puFc8lMBcJXIyzCPa0cMqyZxJYfjimNrkze6MX8yO5BNUYtovcCJwsh300rgT8ZdpRZxeC+qWmXw+cCM70FdkbHAnWblfZWxwIqsSr3oxwmB9hOwPWMw7NEz5sZBNIwvPqVjPSzokaC4ugtZkjKGQ06GzNoYyayZnH7VMISsI9aDOjk9Gnpo5RrIvxLGIsZp07l8rYpQp0i2W0C4qqpYz/AYvrQm0=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAA1AIAAAAAAAA=eF4VyH0s1GEAB3BdmeTlVKZQTclz7tJ1x+Wlq33jokNNupQzpPWKpZKXWte5QisyvUwTxlDJS+RtdIvCagmxcb1jjRz5RcnOHE1Pf322T9rOhTZWkAxxLjFy5nYgXh49GZs8EwDDbenKtDV7kTJRJB5P98P8hYs15pBifoXktY3AB8seW3V0yXdBdLFCat7gBYvkJ8FbJJ4Yz9y/13gaaJX197ZV7cC95Q1M1F0x9IcUbbnZHlBozvySfXSDecQow9/jCsuwgvzoCRHUfrbnBp65wCKPCRoudUaUQ2DOQbUQ55NK0pK0AkQJ6z+x+QJYp4Tc4FptwW+e9Ev/zGbo23Vdd+ed0K2/rHG0c0L+N9O4qfBN+G7m5Vldz8NZaYQwdT0Pp6yr2UMFXHSuqLVO53NBeoTFqg5HiO1OlrDiHTFsEsFL5TqiNLIyoFzLgTBkLdurkoPd3eVxYgUH6i6zsLJ9HFjMuhY38ziQHg+tbzHmIKhPe33lTwKbjMDvnD6CHJHub3IzwcCAr+x5OcEmX6Y3Npdg2H6RW1AGgbrV6YbtFYJHU8kj1xIIjmisQyNOE7xnspjE4wR98am1xeEEX1VV9i+CCXzaEVYmIzAZ78j2DSDQD9U9SPEn+BydF+sjJXglnqxReBMUmbYqVkkIjBbiDYw9CRrlbyXeIKjbJRpp2UHwMCGRid9O0Hqz8I5cTFCufWB/YhtB/eUxTZYHwYZIVAy5E7A0VSH+1MX3G/ntbgRmt2/q5dS+wr+sOVeCWGXTZCmVPVLZdIxqqFpSy6WaXJ0+MLOVQJPZEd5JtUlyVpdQ37EvXbhOXVD2dJ6mSj9wjA5RLR16MyXUarvcIWequ43k1kbq0rmswdVURhujZFOPFL5WGVFDPpg1GFAFT6Nn9SKCPIGO6KgfD69zmKKW1QUMTlD9rr3yYf7/ZO7+H9Q/ExsMxqhvxlSyUeo/ywI9cQ==AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAA9AIAAAAAAAA=eF4Ny3ssFHAAB/DTnTX0YnWS3507HbJFskjivlxe5c2ULnSdS2rklcMluq4yz503R8btMiqkpeS8rrWydeVatLFabR6rLI+rzNl6+Ovz12e2O/r6gE8PjH/PNZ+3e4Dke0dH7CM6oR05XPVZ3Q6ux71HM4kqBAkTr2qPKSHn3lyXnmoF52NaY6r7HdAW9Z59dAU6w3LXAo/XI5YqOrFvrAbi/EHNcnkVWr8vNnuL5fj+wtBoulaG0cjfeklmMXrH5D7cyNuYVkbfryuR4WHfeEnpLimGlbqdQ++vQe1XbDCiSND9xkxnoRTjl2q8MaorC2snXwoC6BmIKNdqqHdTMUpN6nXsvYgWcZulHkmgv3NYMeIlIuass7iiU4C0/ZuFkok40C7zdab6WAxzuDN2DTEYZP5jx/RFwarB3JjlGQFzng95ejAE6+vpr9ZLgiB386+fveSPHU9rK5aGecjKZLNWxD540XprqdvEG7wEUj3VfwQ8Wz8K5t0htirMbik8BIFmyNY72xVB5zwtq5+5QGTRU7nphjM6Bv/msKj7wXQ5E5c654jDlLUd4Xv2QblNfDek1h5fKKLh58F22MLRzbUd4mBydkbqFrQXT+azQvSFtoiiOUUHf2DDXdr+sCyAjVz+lTC1loXJscrdeedZkFNXrX9sZYG+IHVOKLLBExMJM8XEBinLDrTqFiYEogn1t2NM3Ohp1xlWGVCnhzZ19TGg4tNdfAsYcFNxu9zCGeD8mCoOcGCg+xm7RmDMQKTLwmnFV4IW0wsaJx2BWY5vW6aaYOCCx4HpTgLF7JTtgoLAUdaRxq0g6D8jK8iXEVgk/3nHlxA0vc6jKTIJygYzzGkpBKoi0adLSQQas9qV9nMEj+epwrr4jedrNGnNJ5hU6vsDTxEUMreP02IIeEOBXlbRBG8mYMiNJJB23DRYRRDkysp+/Qwj0HKFXpQN813fth0JJfDTCpOaQwhK4/O97TeMVVokfAgmKHA92NG14X/F6j/pAQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAtwIAAAAAAAA=eF4VzG0w03EcAHByydULqjuhhXnI9aCHXbiO+ubhjMx+/xFn5ZxGwmYzh5ZzC10PK8Qs1shuckqeTh7Kw6m7PKRLVtld4oaRp+k85Ol2pN//1efdx+FD/40BfjIUTwvua135QH/IXfFQcmFloirJaG8ClJVm1S0UxYGZ5cfYFBQLATGHOcmXOfDztjA3XxYNO70MmwZmFMzaKA0ti9dAN5Nf0rPJBtOSUtc+dgQgeUKW5XI4dHurKoOaw6CWli50r78CmYpoJ44mFAyavqEtaiiY7u9cyM8LgWBOiMv7AyFgVeZmsK9jQUVTj3IfmwWZBmua6CALbo3pq38PE6CtqWj2fk3Akkov0+QQINSmBrlzCKBon+V40Al4cNG4bfwMAVK/NRRrS4DzusHRypwANoPPFewi4JTRZ4Z+EcFGuv2ITIvAPWBr1VONHTORRnYj2NNUyZe0I7AaFtvFv0HwyW1QXVeD4FxhWjGlCkFEtoiWrUKQwmj1anyOoCr1dLlEgeCV5e7gPyUI3s1te3c/RcD0HFUYihD088STd6QI5tbSxP6FCDrrRS6+BQjCl2sf854g6GJp/rbnI6Dojf65YL3kztfr8xDMmtC6ArEU5WL6ei6C7+vzuY1YPm/lnghrV+gYFoiVulgEOGB9NpI3jLEWtNbzM48RvPw6YPUNa5th1t+FdQocUTVgx/VfDr3AltemvJVjo9R0agF2appuKsEKqs2c72J1FxLpYuwos+JSBpbaqNSnYxVOLcdSsTZq8YQQuxK1uS3A+hAdSXysISbKIQkrkyyZ88jv6KOTXGyc9bIgETtUFvQjATufMUaQnp36NRmP9ZdT80jbREQgqeCE3oKUuXNEdxNbeTW+gzRiraCUtC+tLJtUM9jLI10tFkeStm9xCNI5nW8AqfVxZz/S/wUEWPA=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAArQAAAAAAAAA=eF6N0iEOwkAQheERCAQCgUBwAAQSgSCkAsmhOAiCEAQCUYFAVKwoDQJRQQICgUAgEAgEEtF/BC/ZpOrLm9lNNjNrFg6r2WViZkVlLCder5lDXnnHEo+YYyamuME1LnApdXcr91Tvp+JO8l7M5FyQunuSvudSPOMVb+hzeuATX5I/+Mav6PNvyD6a2BLb2MGu2MO+5EHEoTjGEU7lv6j+3nkk+3zrmvz5A1thNXs=AQAAAAAAAAAAgAAAAAAAAOgIAAAAAAAALQEAAAAAAAA=eF51001KQnEYRvGbmpqWWVuxua0m12Q7aAmNGwkGQRAEDYoiCiP6Mu07bmfW8XmGP+Q9fwe3KBZvd1hur7/Y9+VbvXIH4fcjOTsKd47lg51yJ+H+qfxwXO4sdM/DnYvwnstw/yq88zp0b0L3NnQnoXsXuveh+xDu2HnPY7j/FN75HLovoWunOw3d19Cdhe48dO1030L3PXQ/QvczdO10v0L3O3R/QrfY/g/csfMe+9/53pKcd9pZRU7XTtfO/6rK6dpZTU7XTtdOd1lO187qcrp2una6DTldO2vK6drp2umuyOnaWUtO107XTrctp2tnq3K6drp2umtyunbWkdO107XTXZfTtbOunO/Rznvs3LfzTjvbkNO107XTtdO1s005XTtdO107Xfsv+7cgZA==AQAAAAAAAAAAgAAAAAAAAOAFAAAAAAAAtgAAAAAAAAA=eF5dxcciAgAAANDMkJFklEghhArZRUYZKbIj/f9nOHB67/ICgT893Mt93M8DPMhBHuJhHuEQj/IYj/MEh3mSIzzFUZ7mGZ7lOY5xnOc5wQu8yEle4hSneZlXeJUzvMbrvMFZ3uQt3uYc57nAO7zLe1zkfT7gQz7iYz7hUy5xmc/4nCt8wZd8xddc5Rrf8C3f8T3X+YEb3ORHfuIWP/MLv/Ibv/MHf3Kbv/ibO/zD3f9/AStEIoU=AQAAAAAAAAAAgAAAAAAAAPACAAAAAAAAvAAAAAAAAAA=eF4txdFGAwAAAMBMkkySSWaSTCbJZCaTycxMJskkSZIkmSTJJJlMkmSSJDNJMkkmM0kft4fdvVygr6ffAx70kIMe9ohHHfKYxx12xBOe9JSjnnbMM571nOOed8JJLzjlRae95IyzzjnvZRe84lWvueh1b3jTW972jne9530f+NAlH/nYJz71mcs+94UvXfGVq772jW9953vX/OBHP/nZL6674Ve/+d0fbvrTX/52yz9uu+Nf//nfXebuIuM=AQAAAAAAAAAAgAAAAAAAAF4AAAAAAAAADAAAAAAAAAA=eF5jZqYlAAA0sQEb
   </AppendedData>
 </VTKFile>