diff --git a/.gitignore b/.gitignore index 400380fd4ef29e2f4f7e72a17c6857011370e5f7..1c8d2d8653f4f5f011ee4b7c7bb26eef884e9927 100644 --- a/.gitignore +++ b/.gitignore @@ -38,3 +38,4 @@ CMakeUserPresets.json nohup.out /Documentation/.vale +.ipynb_checkpoints diff --git a/Tests/Data/Notebooks/.gitignore b/Tests/Data/Notebooks/.gitignore index fd3eb1669c06a212034c1643f2541c04b24b19de..c1d18d8a8b2915831736a3751989f9819a997ffa 100644 --- a/Tests/Data/Notebooks/.gitignore +++ b/Tests/Data/Notebooks/.gitignore @@ -1,2 +1 @@ _out -.ipynb_checkpoints diff --git a/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/axisym_theis.ipynb b/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/axisym_theis.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..5a58205fa8da453d7f090a42537780138548dca1 --- /dev/null +++ b/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/axisym_theis.ipynb @@ -0,0 +1,648 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "ac287b2f", + "metadata": {}, + "source": [ + "title = \"H process: Theis solution (Pumping well)\"\n", + "date = \"2022-08-24\"\n", + "author = \"Wenqing Wang, Olaf Kolditz\"\n", + "notebook = \"Parabolic/LiquidFlow/AxiSymTheis/axisym_theis.ipynb\"\n", + "web_subsection = \"liquid-flow\"\n", + "<!--eofm-->" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "c3848074", + "metadata": {}, + "outputs": [], + "source": [ + "#modules\n", + "from IPython.display import Image\n", + "import os\n", + "import pyvista as pv\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.special import exp1\n", + "import vtk\n", + "from vtk.util.numpy_support import vtk_to_numpy\n", + "import matplotlib.tri as tri\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ffd2a84d", + "metadata": {}, + "outputs": [], + "source": [ + "#settings\n", + "path='./'\n", + "fig_dir = \"./figures/\"\n", + "data_dir = os.environ.get('OGS_DATA_DIR', '../../../Data')\n", + "out_dir = os.environ.get('OGS_TESTRUNNER_OUT_DIR', '_out')\n", + "exe_dir = \"/home/ok/ogs/release/bin/\" #relative path needed\n", + "prj_name = \"axisym_theis\"\n", + "prj_file = f\"{prj_name}.prj\"\n", + "pvd_name = \"liquid_pcs\"\n", + "vtu_name = \"axisym_theis.vtu\"\n", + "title = \"H process: Theis solution (Pumping well)\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "688250b6", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQ0AAAHICAYAAADk7syNAAAAAXNSR0ICQMB9xQAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAABl0RVh0U29mdHdhcmUATWljcm9zb2Z0IE9mZmljZX/tNXEAAGKGSURBVHja7d0vVORIuwfgliORSCQSORKJRCKRuGnOiEXyKa4bORI5EolYEVBIJBKJRCL3knRmlrD86e76k0ry7DnPufd8Ozskb5Ki8+uqemf/+9//ZgAAAAAAvykCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQiM9+aezTaf7a5oU+0AGP3vyL/+3pwdV7v/8b3aVh9g8GPc92rrzTFuMc5tqRHAkuOpIjDYm3cR8u0/O33241n17PbZPxHct3/fRfv3n7Q/b0PtASj0JXmnfSk+nM2r09nx9c/Z/Kp6dvvsn7V9u3pq/57q+e88W/zd1b6Xb6DH8W5rMQ7VY1LQOPf4Z3ybX50//51H9ViqxgDteKsIDOJGXcwarAPCs2c3kYLBkEDxd5i4J0gEIPvvxb/+3nh+ud1rArz6ZXcR7P3Tk/aluw0TBYlA/PFutxljvl1dPntIPq79+bKkGdf26mNwLYBJjsGKQLE352Jm3882pPuncDftbMSvrh0A0X8n/t/fX5pArp4JM7+67zEgXCVIvGhn7Wy5hsDK49736msz5vX7pcjLIPFuNr/+YRsHYFJjsSJQ1A35b1D4MICg8D2Pz37VsxBdUwDW/p24mF1z8Pyi+quYl+aQl+16ufRxte/aAh+Me/V+q/NFQFf6mFad1MfrugGjHpcVgd5vwsXS49OBB4UfLWU+soQZgKV/LzbLjq8uBh0Sfvyy/dAEiN8rs/OB3+PebvMFyfDGs6dmNqR9EIGxjs+KQG8332y21TYweRphWPhafY7n9Tm79gD853fiYvnxUfGza+K7b2YVPZ+/+wAmOPbVM6oX2y6MYTy7sHQZGN04rQhkv+kWYeH5BILC9/ww8xCA5ndi0wG06f75OLGw8L+zD+uGA5oNwHTGv3qf1hxNTXKrx3RfhABjGasVgWw322y20XY/nmpY+Hrfw7pxig8UAFP8ndjsV/j8Yjn0vQpTNFA5rg7dIzDq8W+z6YI87i9CbgSHwCjGbEUgy402mx2MdM/CGHse2tMJYEq/ExfLkMc3uyb2C7dlfjDG8e9wMjOrj69/uubA4MdtRSDpDTabbT+rhIOfOnW/AIz+ZXn3+UXyVii4QoMB3ZZhPGNgvQXB1Max79WWaw8MeuxWBJLdXIvZhVNochLLTd1J2r0DMLLfh3WTk/n1D0HgurN1qgP3EQx8HJxiYLgYv45cf2DQ47ciEP2mms2+PPspBFx7r8M99xHASH4nfq+2J9gROf4+h2brwHDHwakGhpYoA2MYwxWBqDfUbLbZzpgTAK6vnp25734CGPjvxONqrtGJF2+Y9Dg45cBw4cJ9AAx6HFcEot1Ms9mOZidRHbqvAAb4+7DujDz2zqD59zd8cG/BwMbC4+rE+HV1614ABj2WKwJRbqRFYPgo6BMcAkz69+Fff29qdpLI92rHPQYDGQufn1fjVuPe/QAMejxXBIJvIoGh4BCAxf6Fzy+IXpJTLVHWEAUGMx768kRoCIxjPFcEgm4ggWGuPQ533W8ABf8+XMyqefSCnHRfwzP3GgxgPLQsWWgIjGdMVwTWvnlms22BYTZ1nbfcdwBFviDvaXiSxbn7DQofD79XW8ZDoSEwonFdEVjrxpnNNp7dC/Oyuqvr7v4DKOoFeccLstAQaMdETaCEhsC4xnVFYK0bZza7FOL14sL9B1DI78LFjJoHL8XZ+B0IJY+Jx9VBYWNGvWVE9YZboSHAkmO7IrDyTTObnQ0wbLt9Vr0y1JmSNoIH6Pt34V9/b4yg6cntf16mv13dFXy8lXsPCh0T/+/vL71+iVLP+P529Wt2XM1n36uvSx933cCqCTuvfzz/9zdCQ4BX46QisNINM5vtFxym1bMfT+tuw3XjkGdfVjivuqHLXvvf/yp8r8YHy5QBen85vhlOMPj8Mlw3JjiuduvZkSufb70Eu/5vj6uj5u9ahItPQkPgzzhxXO33FBY+NOPbX39H+WzcjO91iFgHkHGaWwkNgWGP74rA0jfLbLZZWJhWdxU+r2fepQjR2iDxpN1LsLTg8Kd7EqCn34fzq/OCQ8LH2fH1z+YFPtJL9Lt1WMzQ2a+7GmeZofjt6tL9B8WOi1UfHdXrkC/peS3C0IuQL27cH8Cgx3dFYOmbZTEDr5ROwvWMwM2M5/61oPP/7av7EiDz78Lj6rC4oPDfZXn7vdam3uOxno2YrhGCRihQ4rhYf4GQ+8uRFZYgxxvfrs9Wnn34PDa7R4BBj/GKwFI3ymLpbglB2ekqy44T1GH72U0p+zS6NwEyvzTGWa4WNUib/fX3ZnG1+neJ36XQEEY+Ntb7COb8kuS42u3tXJv9bKvTpX8XHF+fuUeAQY/xisCnN8ls9qWApiEPJc2sK6gZzL57FCDT2F/SPoZ1GPe92hlE3f6doXMfuhTRfQhFjo2X2ca+46qIhoBLh4eFHC/A2uOdIvDpTdJ/QHZRYuOPdsly3/sd3rhHATKM+YuXwzIamxxXe4Ot4/Oxr7332XF14l6Ewp7pRWOop0xflhT3ufdPePhWDer/rcCZ4AArjXOKwIc3yKL5yVOPjU6OCq9PPQvzR8/B4Y57FSDhWF93D+5/ZmHdIfRwRDX9unJzgZ73bATefZbzjIMFz66uw8Gmu/y/4eFjvcerewQY/DivCHx4g/QXiNXLobfVabmZmO5VgIRjfFjnzBiB4V29xHekgcPO0vUdaQ1g0M9w3fwo0yzrAdVk170BjGacVwTevTn6m2X4NMTZc+0y6r6Cw8EErAADeyHe63mWYVUvf5tAnXc/2TPy3v0IBT679ey6LGNhdareAD2M84rAuzdHf7Pn9gdar3qp8m1PNbM5PECSF+Kr2x5nGP6q9wubVL2Pq/03G6ZYmgxlPrO5mqAMpPETwOjGeUXgzRujv1mGg97kvK1bH52mH9y3AJHH9OPqsL8Zhtc/1L5ZtlzZFwwKflbr/VZzjIkaigD0M84rAm/eGP10TP45ktrt9BS4DrabZuLrUQe5u89OW/W9Xb3y88W/P2z//KRm90Sued1ZfO+Tmv928eLPnba1/6qORV3LwxfX5/LFtTt/8b/vt9dudzTnvugI+tBLYHhczd1/E3ze6oYSzXL4ulP3s+Prs7bT9Fsu/vy55s9Wu/V/r47Jrs1OU+MmzH5R9/nV+bvXqLl+f67PUXuNdkZXm0zjovuQiYw12+1Ys9cda5ptAF6OMef/+R3g9wCp7ktF4J0XxYfMgVc1ppDm+Z95D6HhL/duU/vttv51uPEYOoOzruuzg2cb6vtmvXfaev9KMG48tKHiyZjCqMKv59d2a4qbwGv32IaKB0Md2/ubZTjtGYYTC6HmzRL02OH04u+7eP77TzRkWPG6/PX3xr8v688v5v92wo3fDb1Z1tu+7A9431KhIaz57NRfTtbPfz0OLJb5P0YcY26aoPG4OqiDSPVGaEjsl8a9HgKvnZHV8EsPwetTrmCrDRbmbShQLdkNu2qDpaNnW5GPZ6udzZZ6aXgdRB5MfHz40gZBv3qaUXvRznwb7JcM7fPzctbe0xLP9u/Zfaexx8s2aP+ZcMx6GmL43tNehrdT28NwYi+HB21I+NTDvXXRBOHur7cD3Prluu5S3neX9Po4BjRTqAlZc9VnosFH3TW+eXaPr3++mGX2uPq9Vf93w7q/XtVhu/kiZHH+96ufe60J6ff6HAcX17OZRZ77M8ZjE0zWs56fj8HYj9CQ0BfIX7lDgJHWsY/ZhoeJz2krUrOXpxjH2s5y+9VDne/b6zuZl6926el5hNmbsYOonQHVMNbzU/sR6Zr20fX9Z+nhYbNMNH9g8GQ2wAjHzmYWSbOE9bHXQOrlfVYHlxNvKtEEEIvZPXdFXJe3Z4uelx7wNAFIvm0b9id1j9ZfNKTqTH1cDWoP+WbMiv18Zd4GpAkrczUNWvZLSl8kITRkzZfIjR5mD43yg2tPsw3PE59TFfl499Y8ju0Ex7Lu8tlR7x3S7lV3U0hQ+O7S/NizVwfy/JwGhO19Pz8Pqb/kCLpWiwYcufcxLLYerPWCuL9YHlZgIPWyO/fEZpy0XwhcFH1d3lpmWOjLfd2cxF6vqcaQZmbh5LfCaLZxSHdPnSR+Pjba2ZH3BY8xj80xCg8RGrLCy+RR5hfHUe/d1MNsw/uBBco/1jiGswJDq9MR3rt7EWfFZRtP6sY3E/pC5maNY/hZ2DWrl2gXNbsu60vwi6WjPoOMJizc62lpe1B4MPbOtO11qYZ1Xd6cHVVcJ3HjZKKwKc+S753ia5EycPt29ZRwzDnsrZna+uOLppoIDVnqpTLn7JOnUl/wI9azj9mGW4nOZavPmZFtiPVQcGB1M4b7ebboNn05sLDwdQOO09KWvyZ6fu5X+PkHBS0tf+t3wbyccKHZayjvB/UBN0HgRdhc1tKz1Web1Mt1R3YvNstnh31d3ltWuFtMjXMGIxNZVp9ti4zj65+Tr0Pk2daDH3OsekBoyCcvlbmXJk+iQ2QbYAx+X8M+Q8NCZxe+F1gNtlHKbNGluNRgaZ3lr8V8Y9pXaNh+cXE+kGt2WsS1yr2MaGL7dI3y9/xi+VkZexaabbK4Js1+cM2ehU8jCwxfOi8h5M28L+QkZhtm2yvy+Xkvug6LLuaDCQ2b3wVjGHMK+lICoSHlBQb7Y5gRV2Bdd8ewr2EfoWE76630/fQGH4i3XxiUsEdkihlsRYS4fYSG7d6FdwO7Zr0Gh4suqnlnDPn8MeDf74slhMNe8vrOkr260/OAA5evxTY4iX+t7vqefZf9GZjIEsps4VPB9Uz+HEdantx8STGuGc3nfscjNOS9F8yce13dTaiuXzLP3rpPdB5ZQ8Pnf74OfNbbfCD3Zx0s3Y8wMCzqWuQODdvlyE+u16ovvxlmNVgGNI7f7YuA+X7UgdQAG080TRPGPbvwvZC3t70Oo3e2XeZ8J7BMOWMIVWRAlGm2ZSUwvBrcDFSEhvT7UpszODibWG0vMr90bww5NBx44PFS0d+Gj6jOxY85OUPDdpn50K9XL2Fa1tlJ9TJQ3QqH+Tv9uDqYTDB1fD2Iz2vtrM+LSYWF/1Gd9vM8pO7y+6bH2feqqCZaCcaZw2whbImduRfbPhT9zIwyMPzN5xOEhmR6of3I7sTqOx96fXOFhj3UKvUeh0V+qK1DmYmEhZ37rZ75O9bQcDas/QuX8TXrNXp+ATWLi2Je5EvbO6/gF8g2MLyddmD4J+T92cMzcdLT+d6PecZh01wp3++j4rYjyLLsPSB4HnVgGFgbhIYItWIFKZP69qKHUHY+kHM4f/UzfowwqLqfldfJd4qB4W+XYwwN28BwyF2v35J1v7+sS5PrmR06JgsMh7Vc7bLIayIw7H25aQ97wRazNDt5bfOFUkU1mMkSmH67Ctoqaza//jHuLyA0Q0FoyH9faHPuZ/hrojXOufz7Z4LjTxoajmyG1GtVKUH5LH/DoxId9VD3ZKHhSAPD7NdqlnUz/+tBNUuiCQz3zWIrK5wRGJZzrZrtFvo954sxfhHTbIUwwS+y6vu35KXJvQblQkOEhvQYJOTsUHs40RrnDMVuExx/ktBwhEsqi9xTr72Gm7NhN5eJ5Sn3svFUoeHIA8PaQ33fZgoNHzO+nG367DGg39+LWS+Pkw+iFg0oiliy1i4NvBEQlnGtmiXs/Z/zw9hmHTb3ea6xp6DGXFlmWH6vtgLu9/F/WSE0RGjIGy+0OYOEYr7Jylzjo5yhyEBCj18jDzxeB1WbPd+DlcDwj5sRhIYPE3l+ks/Kyzxr4NbnjoH9/s46C7X4MOqmiGvST/ONoV2ru1x7URa2dP92TIFHxnu9KuJ86xnEqRtNBYxjTYf2acxWFhoiNKTzMrudc9bIhOu8l/lFeyvy8W8JmsoPPz64fnP1/4/TgYeGU7IznhdeS5OH9cI+kRfETMv6Il2TI9egrPGmXSpe2vlfzL5XXwc/Bj2fQ7aaFTALPsuS7OPqZM37fDN5oCk0RGhIoWHWfsYXvyI30h5hOFvbjXz8Qo+BzjZs772nvmf2tTMdX7ov4Hp8zXQNPD8FL+/POmvpuNr32WMwL+vbvb8gLpbgVq/cF7D09WtP1+TrZF7a4405e1muTbnLxauhByDNrNE898q8gHP9VerS5OfPCmc93cOPb/we+FeK+0NoiNCQVy+zJ1OYaVVIrXO+ZB8IPYp0nvme+zLLu2fpy6XnB7MlGsC0oea8p+XTd7MMTWo8P8GSzlLPuj+RrsnD+H3d15559QtzPdNmiWWlTai5mAlZ9XCc2Za+vromd4UGUyUvU37IMYNsAM2C6mXLB4Mcj46rk1xfUvQ+7qbewzFkaXLOL2x+/y5YMuBsandc7Tb3yiJ4Dauj0BChIa9eZs8zvvj1/g1Wz7W+y1jro8jHLvQYyFLLV9ftNON5Pc4We3duBBzvRv3lQubrsS80HIQkH2Dbl5RsL60+dwzk9/W8Os06i6RechsQKC+Wh17/yDyDbX/E12T5QK4746fvLsLvLtXNc40G0SDivgnbB/QFTtuMKU99emx2VM+KLXZpcr5l4uex7s2mnvVKinXGpREs7UdoSNyX2Zyze/YmXuucTQtOhR7Fush0v33NeU4xl17XwWrGGZJVhmvh+Qn3M8m1qWdrZXtZtZ/hIH5X59xDrN53LeIssKapT74ZklXGa7JTwFLxuya4XGIGzotZP4ezUhrpPNcwQ+hT+mzDV0s+r3+EdNHNOi7l6Cjc6G/P0lmOLtylLk2ux7eEX8Q0z+YqS7+tikBoyKuX2Zz7ig3iF3PCWv8c6jLYgYQeT20Ift7OsNtrnba1r//dQyHHup3hfrvMVPP9hOeQayb0TuJrMZTQ8H72370nH0tZopxiKXmWmQ09zcyi4Jfz1C+IOV6+MwVR7fn0M4OtmaFTnYbOvqqDinam5H1/IVmmpijDmG3436Wghc+sytIgpA3Hexx7U8/UrQLu6/vEnw/y7D1az1pdBKCPJd4DCA0pN8jK1SDhSa2zdrC9jHzspYYeT22w9HXJ8/jSLqG97/m4TxLfaztjmT2cKTj8kfgcSg4N79qxafuD46+XjR9mni2d5X7L2onVN/fl/56uZ7TlCZDTj51ZgsP0QVSPs9fOUzyzvTVTqIPqDPtQDmy24X/2uyt138Ms+/31uDS1mZmbftw9KvL3wvH1z+z1bra0aL7IeCzheBAaUnaItZHxZW/yeznN8naqvol87CWGHj9DlsS2IUhfMw+rxPdajn0BDzM+O6nDqqdZwoYohT4/N+uEcLNF45qbno45ehfljC/w9jMcwu/pHPsCHlf5xs7UsyYzBFHZZ67Vs50Sh7rtDOfH7KFYpu642Wa6pnNf4szwZn+6LPfJ9VkP55b+d/GaW0EkX5GQoVHRh2F0vcfn7yZTdXDuC06Ehrx6+dsZS0gykHrv5lxmOOLQ4y7WctL2vPqadbiZ6D7byDCD+Czzs7OZ4ZyOEh5/Sc/PY4xzrWfLZpyp/lv0/UBX2uNnIPu/dc6vXha56LxZDcKiY+RJM+skd3feeuZF6n3zMr+MN0vRkp9TlW7szD1rrX5xzvTC3Da3yL2UN8uXFyPqdH1bUhfZbPutfrt6yP+FTfKl+1XAOHSYMqCWSSA0pPQQay/jy94v9RYaxggNZgHdeQsLDg8T3Wepl8Hfp5yV90lINcjZ0AU9PzezuA1rDnJ/YZAgNMzVNOI8+zOzCCUeB/vCvpjxle2FvZltkXr2UuYgtD2vk6EGURmfz8X1ydwUo31G77M+V5meqabJVN/Na+KNRZe59u9c4pm4G9N90t4rOxnOZ+0vNxJ3br8o4b4CoSEfvfAdZnzZO1fvrN1sxxganiYOdXIvVb5IdC6pA9C9np6fL+0s05TntpXw/ur7+fmR6NxOMp9H1NAlw8br2fZ+e+PcLkfxwp5vSeV94vPoZ+zMMesrQdi2aB6S7T577CsUamaP5Q3XsoUUiWdo9REe/uq723KGLwGyf9GVOJQLXgKcdLn98/WUSSA0RGgoNOwrOHgY8LH3sn/eLO+ek0n20ctwDhc9P0OpZ1HujzQ0PEx8XXLucRh1g/Z8L5zVadZnpdnkfDQv6k+p93zKsAy237Ez9SzKBPu/ZQkSeg50ewnXMjxP3XPLtA9fVtc/+tqHrp2dmidIzzQzOvky/W9XQc0hk34BJzREaMgAQqycM0TO1DtvcDCS0OMp58y2dvlzzvPbi3z8l0MM1VY4v9R7G/4Yw7PfQ+C+k/F8ou6fljGUOMr6rAy5g2kPMzWTz8rsualC+r0N41+fjMt2i1geWB9HxvHoMO94NMLgsH6eMs2Czj5eZRy3sswoDrzfZ4s9dwc/oxOEhqz7onc6hqWlA6r3ptCw7JCqvUaPGc/v54Cu0UMhz1HKYLRKdMxbYw0Mewjco4YTGV/SD/IGEBm6AGd+QR/sS2sPTQV6CBqijp1NI5xcwU8pe9Xl2Nftz3h0/TP7+eWcOZp3bLrMPeuw/n2Sazl2hnOZJ3/GA5sbJQ0Nv13dyCQQGiI0FBq+rrnQsMDAo8fn4ibicadeulvEbOFZ2uYb0ZeMT+X5meVr9HQZ7Zhz7pmWuQNn0j2Y+vK92h7kS2vmjsm9BA31i3nEpYz5Aqb8e41+8tzmmm1428/5jTY4fMi5xL3ZpzRHk6vIz3X2QC7C0uT2C5dfY56JDkJDSgpHDtVcaDiEkDnzjNDHiMedemnyTiHP0PbQznMqz88sTzOhaDOasoaGiQKv3l7E+pDopTz5Ur9yZrJtD+U8s9y/mff2W/Ia5Ztt2EMn7za8PhpNV+UeQ+hsS74TLmXPsj9jhOPPUOv7vp5HEBqyzAveudBQaFhg6NH7/kKZ9zbcjHC8XxLv9fdY2HOU8lznAw8Nf/Z4XX4OanZuztAw9/K1cYaG0T9HtJ2FUwYYZY2dKc810v5uGa5JtqWXRYbYPc1+fiPAvh3prMNfOQKgput2puXXCQPkw8THHrw0efH7NMMM2fq5FxwiNERoKDQUGi7lNsXy0DXOdy/jtdobwPEWsVH8i/O9TXiu5wmON9fzU/X5/GR6bu4jvrDsZnuR/F5tCQ0LDA2Pq73Ex13W2Jk2qIkydmabbZd5n9EV7sl5pvOf93qezRLbke29mjkAev45d0OekZshIL8Y1DNZj88RQk4QGjLk0FBLeaHhp7PZ6p9T0LW6z3StjiIc64/Exzgv7Dn6NYTlr5mfn/p+3ej5umwJDa+KWKJab64uNFwmREscWvQczLxxX6Tcm6uK9FzOswQhhc7qSb6MvLCZlm1wfz/C8LBKHQA91+4k09h7FP3Yc8wojvTFQIYvl14+lw+5u5uD0JCSQsNTNc8aGj5GPu6tqd0jswF1g82wn+FuYdfmdAih1BSfn8RLx2vRuuhmDQ3zN0Ix03C5EO1yTNf98/si6TK7+0j37sVUlya/qEGOEO2+mPOtA6Q6LK4Dk3GNW7cpw+ksewIunpfoHX6Td4CO+MVAti0TXs9WzbwXMggN6ePFW2jYT3CQJPiYaGg4z3StLiMc62PiY9ya0Nj1IDQMOte7ocyizjajp4elkELDpev0OKZl6b2Ght+uooydWYKjQpcmv7gvz7M8U4UthayPp7lHx9Uo5TxpzXLtgRl5LEvekTjyFwPZ6vzGEuvSvnxCaIjQsOjZVEJDoWHm67WT6Vo9BB5njm7PRS3jSj12CQ2DzvViKPdj1kYomZcbJX8hG0FomGWWTmFLYFNv6D+YZ7LwGTzJG0T8+0ztF3n+zbM5ov0OEyzvfXGvHGQ6h2jbTC32s0z8hU3kLwYy7mv4/qzVuvO4PQ8RGjLy0PBcvWfbQsPhhIbteT9lul4bAceYuvlEUd0/M41dG56ftc81x7YXW4MLDedV1uszO77+KTT89CUw9T5V5Y2dqbuABr7QZgnLvl09lXZd3hibdob4TCWow1aW5eoZ7rm623GSGuXrNn43mLE3wZ6leT8vfHJu9Uxksw8RGiI0HG29dzPW+ybysU81NLzJdL22Ao7xJPVMyPbeLcn5EEIpoaHQ8N+X8+uzvKFhdSQ0/LRGJ4lf7h6afTNLknrZa+ASxixhd4L92aI/v80y3SzP1HwQn58XIWo18DHsPtUssWzL2SPN0E3+nCfas7TAAPu++SKosG0wEBoyvhDrMGOIVfSm0yMMDS+EHlHO+9es/NDwR8b7aiq+en6Kvh+jfUAey75W77xkCw0/vPYjWv5YisDZVFleyo+vfw7iM2Pq5Zs9zICOMK59HfbWC9dJtmrK1tQr0pdfyfctTbTsvvDfq1UzU7vQrvAIDREaLqtS7+TLSF/6GfnYpxoanmW6XrsDCDanZNfzs/a55pjBPrzQ8NvVZfZr8e3qTmj4YX3Gt+9j/9doN/B5rDIc43wgoeHtUEOsDOHhVjNbbWgNU+rj/evvzUT3y32OmW1Rgt+0x/iYtGN16cvlfy9f/l7tyDoQGhLr5W5faJi13kcZ630S+dinGhoelR5S1c+WkC+6Q8/PRELDHJ1a21kAPbxYfx1VF9LoMw1H2GF64NcoS9B9XO0N4jNjnlB70FsHLRqmNN2WH4bznCSabZh6v9JYXwwcX58N+Z4e2Cz+C+EhQkNivNzlXC77oN5Zl5EKPeKcd67ZoQcBx3gv5PP8CA3XfjG/yfThvZemGM2ytUX4UCWTq4bxQ8P7Ab38TSM0zHFNBtJAIEO40oQKo/h8XTcDWezjWv4znWi2YbY9egOX9ye/Rhm+FBjg1haVxikIDSn9RfalSe+zUO8zaHnl4ELDndJDKgGf0FBoGPQCk2+p0Ui/8c/3sho9NBTylRca5ngOtwbxXOWZOTa6VUD1fnazLEu7Q6SabZhh9nQ9q3PN5b91I5UhL03OXus04eG+DAShIau+3H3J/CK+PfF63w211hMODXMF60dCQ6Gh0LCP0DDjjIGB7KUmNKSPa9TMFhMa5g4Nb0f7mXvRHKTMYGcx23AjwTkfZnrO9wq9p7Mtt2+Wxg9qWXz3uQ9tWoXQkOkFWU8ZX8Qn/e1G5lpvRD52oWGB515fZwGf0FBoGPSSNc+5v5DQsIzQsH5hF/IVFhrmuo8ShDWJQq8cY9P9GMekV/fVTt2IqsBnJfo7URO859nHdq1wLvlWFpn3K223/xjuvsH1Fgi6LSM0ZMkXvJz7oc0nXOecS8EfBnr8QsOy76sp2fP8TCY03M84u2SUe/sOMjTMdczTCw33Aq5JlgYDg3mu8swaexzjmPROPfcK6yifZFZc/fdmmSm5YtiUfMzt6fdr2w36cbBjdv1MaJaC0JAlXvCqjC/iPyZc572Mdb4UGkY9d6Hh9FjeP5XQcPGBP98H9IEsjRQasub9vfbY2S4nFRrmDQ0HU4+IdZ0XEvLcJzq/3Uzj8cGKx3WUeNbczx5/B9Z7Nd4PeOx+HEpXeYSG9PeCdzHkMGtAdT7KWOczoaHQkCBfPD8TCQ3zLeeKHnwJDYWGxQlY6laHEEKy7KHhZGYa/uf5z9X1/eOQfSfJ+eUJsC5WPKYq8e+HXfdUgPpz0IpBMEJDphVmnWV8Eb+bcJ3PM9b5IMHxCw3TOlrz2LYFfNHde36mExq2LzO3Q1+SJjRc+Zi3B/tyV66gsdPMul7qMfo9DT/8wihnI6y3x7STNKFhhiY6KzRzSb6HbEFbf9TXdNj7HI7vi02EhsR5wTvI+DL+FHsGz4DqnHPvyB2hx6DOu3ZY+PFNydzzM7HQ8Pj659CXpAkNCz3mKQnsDt7sOSc0zBsafru6mfx7UK6Ow2/X/3LgY/JRETXucWnyB19KVQMey3dlJAgNef2Ct5P5hXxfjZP7kuAchIYFPhdCw+gePD9TDA0zvzSO7AO50JB6pk9oF85se7H99ffmIJ6rHLPF5leVd6EM++31ENpmCq2qJY/lYoq/U9sxbYjh4eMY919GaEjYC96XzC/lk2uGkukl+rfbAYdnJYaGuQLf3YKvy1Q8pVjaLzQcQGiYqWvrbM29oISGQsPCA8Moe2FlWzI+kJfhTKHh6LZLKLze2WaeZ/sy7JMQPvm+wQUtTR5ZeHgb+kUQQkPGF2rdDT3UKry+1dBD2QmHhruZrtvXgYT+Y3Uzi9wxWWg4nNBw8cKYuZtmog3whYZLHnOzn5nAL8ZMqZCOyb3cR0MJDY+vz9I/U2Ut6+w/OEw8I+6NGV3JziVXk69P9mVM3uDo+TkZzP01uPDwenITfRAa8vFL3kXmF/RBfGCLVNuNzLXdE3pEPe+D0p+JTEt2T0fqYN1Znp6fkYWG364ufRifTmjYBgTpl+w2s5dGqA4CIi8JzBbkDiSwr2cBpq9HVdznrp7Hstyzzv8Z/D30yRLr5Mfwvfo6uPusDg+zf+ZY69o+DWU7B4SG5HnJy9lBuXY4odqOotHMhEPDXEvLSw4NJ9td0fMzodAw976GI/owLjS8yr70cLRjZZ776GAgtbjIUIu5++513TN3VE448zXbPqHvzDZuvwh4NMZ+9LuzWRZ/b7YhQkOG8EK7mzk0nMweKvW5ZqxrlfA8phoa/spx7QKP8T71TEPjpOdn9KHhX39vZv8wPqBlVSMNDdO+qA1gr63i7qVmdmby++hkILW4G9ozNYp7MPfvgsQzX/MEUm/PWE0eWo7kd2hbq73nZ/6X2YYIDSn5hfZLO0stV7j1OJG6bmau60nCc5lqaHg7gNDwpuTjQ2g4lC0usu81FKHjrNAwKJS5GfLSw1GOlXlm3BT/xXW2pdrH1Z77rrf78Pc12E17LlkavNy/HYRd/7Q0eeXQeqPp5p3jSwPbGCA0ZI0XvZzNOmr7E6jpz8w13RF6RD/vx9KX/z7/cyk0FBoKDSMc+3F1kn+24fCXBw44NLwUGhZ2L2UIcj/bg62QZyrP3nojasg0tLEh20zDfA2GvmYOX0e//UNd02ZPyBwNbT42uSamCA3p90XvpVEPQHWAl7med0KPwV7Di8DjPB9qSCM0FBoWFRrmerl6vfQnUvdZoeGKx52jScBAOvUWcy/lmO07gGXjyTvOLkxi1c9692HGfQ0zjBF5ZtF3975rAy+z32Jcv3r24WLG6GNvwaHfZUJDaF/0cu9rOOrZhrP8HalPEp/PFEPDk0zX7izwOHOENLvGSc/P2EPD5vhzzHT6b4hxN+RlysMNDTMs20u89HCEoeG5F+BmWedZhjpcuOfeDW2PRhUa5mj09SqMT34PD/zLtqDwsI+Zh8/PhLFBaAh97Gs42tmGPcwyTD4TbKKhYa4l+/uBx5mjQ/fcOOn5mURomLuL8juzNISGGULDHLO5dKctM6wpvAFIni8v7FP2wX2YbauKLOdT75GZI2h68SVJ0j35nv/uSd+f36vtrEvoFzW/NDYIDeH3y96vHsKu/RHWMfcswyrDOU0qNMwcom8HHmuOkPqXMdLzM4nQcPFy9dBLcHhcDfL34WBDwxz7xn27MnaWdk0Kvy4Zn6dd99w71yDf8uTHfOeUZRbv+Z9QS+CdI9w+yvgZZfR7SCI0ZPmXvf0eQsNRzTZ8/mevhxoeZjivHKHHfSl752WavVd7GkjA6cOC0HASoeHig3iWpYFvvkAOcd+gwYaGeWbfGDtXvS55lt4Vu59fPTs1y/P0198b7rd3A7aLTGP+bcb7ajfL77B6XE09U3OCS5M/uK4HUx8zERqS/2WvDh8exxh6Zarfdg/1q8OiLxnObSvT+dzmOJ8lzvcy0/neRDre2wzH6gVDaDiN0PCvvzd722y83rB+YPsbDjU0bMOBW+FMcYFNlWkvuZ0Jn79uqB8H13dZ7sHMM15nabsZ/5kxn3R5/cSXJr8bHI5kKT1CQ4bzcnveQ2hYB19fB163jXamXO7a/ch0flsZz+my52uZc0/Kn5GOOcfWAnNjpNBwCqFh+3J10WtwOKCgadCh4fNLu30NSwvNci0NLW8f0XxfWAx3D9UM49l2trH+uDrJ+2xlaP6UPJi0NLm3Lxt0UBYawosXvt0egq9/2hl6gxyM2hmaVU9h6+YIQ8NoYdoAgvOjSMd8mOFYfbsrNJxOaJhrb7UPZlMM5QP6oEPDPF1FjZ2rXZP9TM/YUx3STTIwjfgsLZa9VqfP/3dvyF3gX5zPScbQ8GCUY7Xgqo/fw1+nOjsboSH9vfQ99BQc3g1xCWQdcPVUrx8Zz3Grh/M76eFabs7ydhH/OrDrs2eMFBpOITRsziXHLLTP9ocaQLOCQYeG+Y7d2FlisJF5pteH513PMsyzN1m04OU/HVzrJlKFd6b+PLjNsGVBjwFYtuX/aYL+G2Pkh8/jU+LxsvjPIwgNyfvSN+8pBPunnbE3mG8qM70g9zrLsMfQMPt+lxn3Mvw9u/ZLxGPPsTz+whgpNJxMaJjzJf6j2VCFv4QPOTRsX6LvMxy/sXO1l9+HTM/XQymz42YDa77xyYzQ2yEGDJm70d72dI6Hgw0NCwr5Jxl4m+UpNIRXL31fepxt+E+7P9tG4TWq9zC86LFGPzKf71aP53qU6RwPM5/XeeTjz7WsenAvAkJDoeH6L1i9dVJ+9bL0fByFLv0bQWh4nun4jZ3lBWhFBBFZt0OItMfmUs9NPVu7sCXg757PYj/Jx3zjej/7SmbqGi+06mfcTDuLdATbDyA0JP6L30mPIdE/7aypIpuj1MfVc6iadZZhAaFh8kCkPb+nzOe0G/kccoWeD0PcRkBoKDQMeMF6KOKFabH076i4+3vooWGumTf19dNJedlrsp/12eox0K3viaxLYiOFeEt3GG4CqusfJd/77Th/mfme2+8xXDofXGBoafIy1zXlOPKoxkJDeOvFb7OHEOUtZyUtV+5xOfJL85GGHlln5r04t3rW6G3mc3lIcB5fMj6zv4yTQsMphIZZQ6Xl3Ze0ZHnwoWHOmTffroydy4dSOcP6x172l6vvvZx7zH27uox4fZ5WrnHdZKSw8LCXwLDnZfGL5jUDCw1LmRFccDOQpDNlNfQSGsIHL38/CgiKfjdI+dpzLeqX/psCanHb4/mXcC9cRt4HsI/AsAnDE12n84znMDdOCg2nEBq2L8h9N0V580N8n7NV2pfPvWwv3AmD0qwzbyItDx39uJmzi+3vffgyBznZx5VI40XQFwXNPq3XP0tYatrM8swdGPa4NPnVmHc/qNCwx2XubbB8U+oXd5mC4MrvJaEhvPfyt9nzMtzX6i7F25lr8LXdY7GUGuxMPDSMFiK353Q3putYL3ke896aEa73fLZotvTYOh/R8yM0TP1yWepLVhMeXp/l6tDbvEDVsy+XXZ44hNAw+8yb/kODlQKi42rezoh7bJ1neObyNyKqg4Hv1XaWZyj/EtHbqPdEpJmPz/fWQR+z7tox7GFqAdi/oWF1OqDQsNfA6t0vMAr44u7fY7z+mfganA/ldxZCQ/p5ATwsKCz6rZ7xd5BqX786mGzDhRJmFhYR0BQWGr5cur6xxrl8aa9vX4H4XeJrdZ/5fC5K2kLgjS8+jj55lk9G8vwIDdO/OJS/pGsRslw0XUAjzuRpApzFMu2LHpenHSa9vvlD4Ytim9ssrvfRq9k12ZcL9nS/PSYOqPd6+QIiYrgRvXFLPW7Vsy4zBIjNz8i5JPyN576YLwOGszS51718PxwHf3/Z0Oe+qPXzmPwLlqqIz5gIDSk7OKwKDIxezjr72QYDu6u+TLahwm773//ocebZMuf5pcd7oMTQ8J92D78fy8xALSAszBLutOfYx/25X8h49TsoXHbcuh3J8yM0zHF+w5qdsVhG1Sy/q4+7VYefrTeCot//7qD5s/V/m3tGYV+h4WI23eSWmP8nKFw+UEk/dvYb1J9HDt43Zv01oLgdzHVZhB9VO1btx5iV93wdvzazsftualWfW4aZrCuE8tUgfo/1PDNztvxegVWuGf+dcSXH7+iC7luEhpQbGm7PymiKstLef21o8J7HAZ3LY58vyYWHhi89tEvJT184a693SWHwVuJr9aXHYPS2j/Dw+Z+99lqvuz/llxE8P0LDHOfXx6b55AkN++2UfdtHeNjMeqvDlHW7bmaYKTnL2Vn4/SDgaJ3gonmh73uG7uLZ2Yt83+QNc+vn8r9ffsxffgHywt7i3zf3dWGhWFmztQps8lXe0uT6y5R1vqzL0PSnmS2aIzDUuVoWpAgU9iLI2/YLuP5DCA2H4Eem6zXv+Tzv2jFjL3Yg184k3H8RCA8hyBUajiQ0/BMu9R9kCA3TvETPez3H5gWwCUT2Ygdy7UzC/ahhSoZmFr1fk/8EiHX9mmt09EZgtf9vsNVzUPhH/P0zB9l9t2/1s13YdgRZO8cPdWlyaNOfBMvu61l/zR6Gua5dAZ2rERoyrODwQuiTXSlBgNAwzkzIzUzXq8/Zhm+5aZeR14FSvR/pbmvnxTF/ffG//3bS/jeXs7TbJAgNhYarBjDlNkYRGoa+RD8UFDTc1KFPG1Id/Amnvlc7L14gv74RXp38WV6ecrZVjtBwcU3KWCIvqBIarj9+7Rb5btffkvnlQre+lybX42usc1kEiPN174XmS4k+VjoU0OkcoSHDCg03ClvmOXZFbJYsNIxmnvmaHaj50nZH8PwIDfuYgVBSwCQ0jBWIHKh3WUFIM7Om9BlRJQYuifYha66HGq/wnFz/LPbdruQA+NvV5ajrs2iwUnWW3f/H1fmnjVgSz66WgaAIrPvy+yhkSO5yVlBHWqFhsNuertsvtRcaCg2Thhl1F9FHL8bjCQ2b61rPCFHzomZPFbZMeQjXZp5w3BtO593+g6+H1HvbBV/PUmfNZxzzBxmqTuQaIDRkuMHhrpBhOoGh0LD8UOqD67ZZ2DJloaHQcFSh4YsX6DJfury8rHdN6/3/zCItKjRsw40LdV8qqLpM/HxsqPPSz8h+8e91ixlt5c2ULSBsnXhoaJYhQkOCXwzrBgdD66gsMBQa9uFXz9du3zUQGgoNk4dMGz0vIRIaxn9Z3Ff3wkLDxXMmzP18ZlvyfeBmZliPZpZWkTNHC1ia3NZmZ6LjyJO9DBEaIjgUGAoN86ifj80Crt/ctRAaCg0Tn/uiq7KZUOlewPeyX1NLYosKDdtrognHRy/6ufaZ9CXJKALDFyFwpX4DCVTz1F/HZISGRH1BrDuePgodgv0o/DoLDddzUNA1/Ol6vOur0FBoGC/UuD7z0pzAi47Bma/nT/V/95p87eWalLicsozAcM84J/BaM4w/LOpeLmQfyEmGht+ubmQcCA1J8ZK4M7Nv2rrqwHV/ANc4R+hxP7Jre1bgdbz0zL1pcwTPj9CwpGfte/XVMsqoLzEPvV7Pb1eXrsMbMiyDFVqVFxj+GePUfhSBYXM965ny5XQovyiqNtPq3P6Yqus6QkOoXxQ3BBIru3s2iIE5V+jx7HAkS96L+sDz6lqeefY6nsby/AgNC3vWFs0Czr1Ix3gRv/7Z+/UUUv0nqOr/mlQHE3uhLyIwfBGmWKI8gsDwz/Us5ffV83NdWF1uJxQY7sg1EBqS44VxPpLQJ7V6qejGgK5rttBjtujOPeQl78XuTfnieu4PvMYx3QoNhYaJg43DmaYBQbMMS9mQvW2O4lou3BZxTRYz3qZ5Tb5d3fX5kl/PSPI8tGFLYUHXmuNb//uF1iH4//1d1GfoSWxRsfg9KzBEaEjWl8addhadQOKNgCL1/mljCD3qGZgDXa5cfGD4qsae0wxhm9Bw2qFhU5d61mE9U23qs6LWm0W1W9S1rIOSOqyZ/PWpihhz2muyNaHZQH+WcJaw75vnobkOvTe8i3Y951f3PY/5v4qryfiX4t/rlIzQkD5fHutZh/Y6/HfvwsF2ouoj9Kj3mWtD1sEsSR5KYPiixhvtcU/5udwc4/MjNCw2PNwsZglY+YHhZal7K7VLzy8mPbOqsKCkuSZT2HtyEaTPC/xSZFoNg+qZWT0tC08bGvbcZKjQGZuz0rpLx52tLDBEaEgRocTZhJcs1+d9niOYGGPoUYdwAwi16uDpcODX93SCz2Z93fbG/PwIDQt+5r5XO5prvD/TpLTZhcW+YPe3FLPYsKS9JmNdMlv0rLZ2RtYUZnyel9LdN8E13Opx7C9uafKrL/zGc283Xz5cn5Vab4SGTDc83Gz38ZtKePjYhqWjWLLQd+jx/M9BobNWL0Z2jacy6zBrkC80FBp+/IJ2/WPEIceybmfH1dEQl/m1L9lTmXV4PoRrtJgJOqLwsJ4NNKBZbe3en+ObmbW4DoP4QiMseO9pNnyBS5M7dak7TI+jIValQzJCQ0oPJuqZh0cj3kvtoV2WvTGy69Z76NHeO+cFXefRLUtp67zzrBrhs3n/7EdfgVOG0LuI+/H5n6+pn71RPnfNy0h1OKm9werOq8fVfCxLo5rZo+NcwnbfBNsDvE4jCA9vh9xgo515eD7ovVwXx34+hbDwxXOz2cs1G0gw3jYAGt4XRYsl9YfyCISGDC2c2Hv2azb8Lq4P7SzK0X6gKGmmVBtK9Bk6n48tFH6nztvtfT3k5/O+lGcz8Qy8+jyLWWIyS7sX6enon70mfGqCjrEt87ttwqfj6mBMjQPefKFc7O825Flu9805jCQoGWB4WI1pv7zFnofV0aC+FFnMKjwa6zLkT69ZPU7n3vZgYEtlm1nm9ThZeii+uJfnU72XERoyroBit50FNJQZiKMPCksNDdvjqfc6PJnl67D82F7vyU3nb2t90Ab8pTc2emyXWB+VuIS1rWPMe7bIPVPbWcE/Im9HUddtPrnnr57xUb+4DnP5a9UENcfV3hT3TWpnjx40ezTWMzzKvlaPzT1W32sj3hT/RXhV3n6iixf7k7E3JViE6tW80C9FHpsQ6Hv11btZO1M039h1PpKxvowAsbluzQxxy5ARGjLqgOqwfeksZZnkXftyfjjR4KjYPdnamYfnCWbEPbUB1GFJs7gKuRcO2hD1tufn8qY9jkE9l+0szsN29uFFO84t66wNzAfxhUX7hdBJe9yrnOdFW59JjrkfvsQtQsTzYl66Fy+VVTsz7WRKy/hWvHZbzYvlYhbibc/X7Ka9XodTfalsA8TDJiztI9RdhAtVGxRO9RpsNtegr2diMfPxvA3Ld4xTb1yjXDMOxzSztv6ibLH3Ye57+ra9n0e5fRJCQ1j2JfugfYn81b5UppiV+PuF9bS1N4WlqEMODV8c4+8ZcRdrhlkP7bX/Mdb9ChPdGxvtc3L64vmJGeA+tn/nZfsz9ut9F9Ue/sxw2F0Eic3yy/MmiIi9DPB3wFHPpFjMHtwXDkYJrfba61a1Yi6ffWyv2eWfayYY+SzAWlyPxUzEKnI4VQmolhzPmvu1CRKrxZ6aEcew37OfLdVc7prkmeU+uKXJK4aIu+3s2vP2nr6NGBDO/S5GaAjLh0W7rxy+CP5ee/1nLUP4vMbFh4YfHPvXN+6JE9e/t+fzvWfz8NWfG+2eZ5A5mNpd2QSXExcboPzrcBEwvtLM1Hrx50a8X2TPL/0fX4ffYZTnKM01qPd67V6Hozfqf6D+UX9/5GmIcnz90zjf6t7P8//8bhZ208d9qgjAUoPFgENDAABghc/+9dL5PEuTd9UbCh4LFAFYarAQGgIAwDQ++8daGv7JnrhqDYWPBYoALDVYCA0BAGD8n/ub/T1zzDKc7tJkGMx4oAjAUoOF0BAAAMb/uT9PAxRLk2EI44EiAEsNFkJDAAAY92f+XA1Q5lf36g0DGBMUAVhqsBAaAgDAuD/zZ2uAcn2m3jCAMUERgKUGC6EhAACM+zN/jgYote/VV/WGAYwJigAsNVgIDQEAYLyf93M1QLE0GYYzLigCsNRgITQEAIDxft7P1gDF0mQYzLigCMBSg4XQEAAAxvlZP18DlHpp8raaw0DGBkUAlhoshIYAADDOz/q5GqB8u7pTbxjQ2KAIwFKDhdAQAADG+Vk/VwOUeeXzPgxpbFAEYKnBQmgIsM7Yuflsrx7fXqhe+NH+b/NnO2rW6zU4fGbJHDC9cfK42s3UAMXSZBja+KAIwJIvXUJDgOXHzDqoulhjHKxDrA017PUaXLoGwKTGy29XvzKFhrfqDQMbHxQBBvCg1hsTH1d79XT+N9X/7vnPJH75EhoCLD9mXgSMhftq6BoAZHvPyNUA5bg6UXMY2BihCFDwA/q92n7+BXu+wsbCv1KFh0JDgKXHy43AsXBPHXu/BrvqCExivDyu5hmXJm+pOQxsjFAEKPUX+PVZSR3JhIYAS4+Xu4Fj4YY6ugYAWcbL53eHTF2Tb9QbBjhGKAIU+GAeV/uBU/93E7yACQ0Blhsv5wHj4L0a9n4N7tQQmMg7R74GKJYmwzDHCUWAwh7K79VW8L4ix9c/E7yACQ0BlhsvfwWMgxdq2Ps1+KWGwCTGynwNUP5Jvf86kGicUAQo7KFsmpsE/2I+T/ACJjQEWG68vAsYB83E6P8azNUQGP04mbMByvyqUnMY6FihCFDYQxllX5HqNMELmNAQ4POxUhOU4V+DXXUERj9W5myAclwdqTkMdKxQBCjogayXJhf6i1loCLDUWKkBh2sAUP5YmasBiqXJMOyxQhGgoAcy1jd+x1X0mSpCQ4ClxkpNUIZ9DTRBAabwzpGvAYqlyTDs8UIRoKAHMsZ+hvXeJP/395cEL2FCQ4DPx0pNUIZ9DTRBAcY/TuZsgHJcHao5DHi8UAQo6IGcX51HCA2TvPAIDZnMc/h/f39pZv0uPlDffvLM3TbPrQ/E/DtWaoIy7GswV0Ng1GNkzgYo9c/56+8NdYcBjxmKAAU9kPOri1K/zRMaMqEP0ndrPnsCn6nfP5qgjOEa7KojMOpxMmcDlG9Xl2oOAx8zFAEKeiDDlwrcp1ia3L6ICQ0Z/zM4v/4R8Pydq+HE7x8NOFwDgPLfN+4sTQaWHjMUAQp6II+rvaDp/9+rnYQvYkJDxv8Mfr4c2UxDPhonNUEZ9jXQBAUY9xj5vdrOOMvQ0mQYw7ihCFBcaHG/1i/l4+og8YvYZobQUOhCf89evZdhYV3LGdg9pAnK0K+BJijAuMfI4+owX9fk6x9qDiMYNxQBCgwujquT51+2j0uEhQ/Nn/3r781ML2M3iUPDbfcAvT1736uvQR+OfZvuHtIEZejXYK6GwKjHyOPqIFNoeOtzEYxk3FAEKPoX++7iG8HqtOO42k+5FPmDl7F6r6inRIGh/eDo+3kL2Rjc0tKp3z+aoIzhGuyqIzDqcfKvvzeCtmJZco9ngSGMaNxQBGDFl7J6mfJZvf9WhKCwDiAvnu2rLb3f2/WH3PU/IFtaamzUgMM1ACh/rGyCw+sfzfZGcULCenVU1Xz5+r3aUmMY2ZihCEDAC1rdHGWvbmDSqsPE6h3nL/7coRkdFHc/a4JC2HioCcqwr4EmKMD0xs3v1c7zZ5ijP6uZvl1dNgHgW46vz16sejpqVkRl2iIJ6HGcUAQAJv/LUBMUQu8hTVCGfg00QQEAeP35ShEAmPwvQ01QCL2HNEEZ+jWYqyEAwKvPV4oAwOR/GWqCQsj9M5t90QRl8NdgVx0BAF59xlIEACb/y1ATFELun9nsqwYcrgEAwOg+YykCQOaB93u1NTuuDhcbSdebSv/ZZPr8xQbTu/U+e+qV6ZpMoAlKc0/Vft9jjRcbnH+7+tX5dyO+BxfL0Zvn7+d/nr/n81757xtgE5R2Zt5u25jqd5Oqy1eNq07aP7NV/DUNuwa3K/6szWcHbY1+vGj4dfmilnXdjOEAwLA/NysCFPRA/vX3Zt1Q4d2X+vn1j/al9vD5pXc74gv0VidM6AZZ3UDhuDqI+bPffaH/HaotOrn9ereD26Jz20ak+m+8qsPPF+d/+SJM2Vv1Zy5q/Pz3fbu6WzqM+nb11Jx7XfPI4U3bLe/jGr+85xJf8/9cg2a58HvH1R7T4lrsL3MtXvy9bwtrgnLy4d/92vO9kKWWi+fopK3bPwFum5pnbvbyn/Gwey/8DvhO6vNc+u9b/D0PS5zzY30PrhAinQ+hCUobdh3VP3ON46wDsYMVf95uGzzWIdrZi3CtehGu1eHbZoRzC7kGP5f4+zfaYHLVfRPrc/2a89kBAIj2+VERoJCwcH51scbLfBUamDVhQB1OFTC7qm1GsfqMrzoECAy1mvBpuTDh98+8q6/bUuHcIuz4J0j985YMRz4Nz9a51+p7ZI0ZWCteg5MmrFnn+n9wLZprsM7fm9JxdZgoKNxa+5le9j48ro5Sz0BcBNorXLPj63dDn6Yzdv0lw6o1qf/8kuNrPVOt5CYoz//stKHfPxE8fHbMz/9srxiuPdbHGHiOIdfg8IO/d7MNPB8D63YxhBmbAABCQyjtQWxmsa0dPhys/XProKyg5g/PdbjpI4RpQoVVAsN/f+buJwHoRfyw6fosJLBpZ68Wt3dfHfoGhnDz9885YOlxKt+ufsUPC4P2ZVzVY7Lgsw62Vw8979+py85Ks3tfW2JWaMlNUNrA61eksPC1mzocfOfn3uQMTyNcg613gtbzBHU787kHABAaAsu/IIeFJbvrh4bN8tt1Q4+bqHWog7uwOqz94t0GfOsECtvvhDdV4sBm7fAuKMj8dvWQ7DkICzPr63/09j0euPQ4nSri+HHeY/h5ucyM29XGpXpJ8urH8c61D5thukRAX2oDjnbp71OiwPC3+u8/evVzN9b8u/YDzjXkGty/8fcdJa7dD59/AAChIZDmBfmlgOXJYTOwrqO+9Kwd3MWoQ7N/3urLdd/4ew6yLYP9YDlmstAwsM4fHlfIbLAPwvMoS8MThW1Rxo51ZsimmHX4vdqJOCaerDMD943aPAVeo6VC8tKaoLSh3UXisPC10xc/fzfWbL8VznkeI8BrZyz+ylSzuc9AAIDQEIj/gvxif7G1f+5iSe5TQEhzGLkO84AX/KAX77Vmar2aaRk0azPy7LqP6xx4nBH2VXwjMN4KDHee3psRVtxehoGhb3NOfc8ufH9f0a0o98M6wfZxtf9iLDnMORu0pCYoa+wlGNNhQID3GHjeIddgr8fa7fscBAAIDYG4L8gR9kVrm0OEhEc7kesQEoJcBP7sNWZc/jvTsrcAZ9EAZCNjOBu0h+YHx3QSWIdf79zj20UGhp/swbhEwHpf6Hndx2iQstb5tYFlxMBw6dnUpTRBaffge+wpMPy9VHlv3c7Mged+G3DMX9rjfuypZps+CwEAQkMg3gtyYPDQvlwfhczsSlCH24A6rL+B/rp7Kbaz/HqZYRiwTDx4Ofy8Oo1+7UMa4LyaZfbqXA+LDQ3XCN3bELTUwDDKtgVr7vH6+Kc+MbtGLzGTt5QmKPXS3p4Dw5ddkB9yNgcJvAYXBYStJz4LAQBCQyDWC/Kn+7gtFx5pgtIGDes2QdkJnrUXZ7bh0yqNKOo/m2JWX0D9Q5cmP7wfRAc2V0m4B+Aaddopdql1xFnI6zZBaceQ28jn8elS/BKaoLQdku8LCAx7WaYbeA3mBYStdcj6xWciAEBoCIS/IEdqShE2u0sTlOaYY85qyri3YWD4dBv5GTgKO/frsyTBeFrnKz4f24MJDEO3TVhrqfr1j/o+iB3sLtk5udcmKO0su9uBB4Z9NUGplwbfFHL+hz4TAQBCQyDCC/KfF/O7oJ9dVhOUkOAofxOUekZT6JLauKoVr33IsT9GvfbPxx44G2z7g/Mss3PyCjPxmtnIoZ2lX4bdTU2q03qW8guH7azMi2g/Z829Ddc6hhTh8JLBZ99NUJ7/+TmCwLCvJihPBdXgxmciAEBoCIS/IMeYzVNaE5Swl/4emqAUOOtrhdmWwSHLCsuhPw3EwoKdm6TnWcIswzhB3mMTzC8zc64eG+rlvuGzXw/WfB7v1wop48/eXeqLkT6boDz/szuCwLDPJiilsUQZABAaAoEvyP++1M7XD+kCGkRoghI6w2u/DlSaJZUxZyu+0wzknesftiR4ib3ekt+HSwQ7zSy6usN0OYHhxWrhboQ9M+t77IPZmOnCytUb5gSHyPGe14cllyb31gSl/dmx9zGsnp22y3332///Z4ZQrq8mKOvW56heTtz+/zGvwVefiwAAoSEQ5wU5pAlKHVglmt21VnAXtlQ6fxOUFZZON8HPB0FRtGYqK4Snwee94h6KHwRTVcB9uPYS2D8/P2z58kXS8WEx4+8pd3DXGZ/CAtfzlX9mcGfvpd229171Zo0/2CfzVWDVWxOUyMuSfz3b/uTn7bR/bkxNUJZtUlKHg5sfHMNppJ8199kIABAaAnFekAMCk6AZbsfXP6OHI5mW5SYL7N7bZ23JaxQ8427F5erhgfX1WYTrvhV4zufBxxCyV2DADNfkz2hgmP7nGNbb73OtfTbb5+Ak2fNYB6D18/7GM9mOxefN/VAHycs+tz01QWkDvCh7Ca4a2LUhXexuw1sBtZgnDAx/LRvsBu5t+efn+WwEAAgNgRgvyEEdbANn9h1FrsPQmqAss3/c/hrHchv4c29XvAdCZpGFN3AI7XYbMNM2TnAaHsp98Ezs9x3qBj+ba+y5OovViCUgwF8xsOqlCUr930YIqO7XDevq/+7Z3cCboHwWph6ueBxfItTkro/PIgAAQkMo8eELe0Fee5ZVcU1QQpZK99ME5ePAcM36RJhltVKAGtjs4jb4uoeFlvfBP7/e77CnGa4fHtdiuf5DQFh3EysgCwoN1wgug/Z4fW8Je+RO76+CouxNUCLNMnwImd3XHsdGpP38SmuCUgeGO2sey1lokOuzEQAgNATCX5B7bIISe8ZO2FLpopqg3NdLbtc+nr/+3gwNSFa7/4L2tQxqhhM+ky58aXDg0vRkL/dBx1U/n2s0PXn/WAK6T684Izl6E5RFYJhuNmh4A479NX9ujFmG+5FqUC9VfhpRE5S1A8MX9QgKc302AgCEhkD4C3JA99rAmX230WsxjiYojyGBYZRaPFsxnArtoLx+QBoyy7au0V9/b0aodXFNUIJnGUbcOiB3g6LoTVASBoaRAqLNNX7mZoSQ7jJyHQ5H0gTlKSQwfHFMQfs9+nwEAAgNAU1Q/g3uxtEEZY09DN8J0+6zhYbhHZTXCmWaGZVB4ej1jyi1LrAJSmCQ+xhzFnDQfp9rzEiO/DweJR/DwxpwPKz5M08iBGPbkeuwOZImKIeR6nEvNAQAhIZAaDigCcr/grsGF9IEpTqNGNRU2ULD8EYg8zWveVg4FGFPzVKboITtsRkpTG2W7QfNRl7ry4XAmZ/JZ4G+EQ5lb4ISodHGWYI67I+gCcp5xHpUQkMAQGgIhIYDmqD8bxRNUG4j3xfZQsM2qHnIHVIFzfCLFAiV2AQlePZxjDC1rkvY9Vn7WKL83Pp+TtSg5o1wKKQBx+kaP283QvOTFB2kTwfeBOU+Zl2EhgCA0BCIEQ5pgvK/ETRBiR6iZg4Nw/YWXPmFP8KS6N1IAV1xTVACZ9qtHV7Xe1O248JtlGfi+Zle+RhiNUGJtE3AEsFQ9iYoEWbVnSWqxeXAm6DsR66H0BAAEBoCAQ+dJigvQ6vHwTZB+Xb1K0E97rOGhsfXZwHnf7fG+V2UcP+V1gQlQtORo6XGnXom4XF1UC+pb5fn30cJ6wIbAgXP/FwzxA4IhvpognIf+DO3E9XisY/ALlITlMsE9bgTGgIAQkNg/YeuzyYoITPZ4jdB2R5sE5RIHXzfuD6PAcd1v0YdDnLdi8FL4yPOIiutCUrwdSjFmtcoShOUyLN+PwmGsjZBqZuFBIZjN4nqEHpcWz1dg2jdkt84rofcDXIAAISGMK7QsL8mKGEz+2I3QTnIGZC9qkNoE5TzJPdG2DFVK/+88D0ut1c4t5Cl0A+xlsaX2AQlYhOQHq3fiCXC+V9kHcMzN0GpO/sGBmRHieow5CYoF4lqUly4CwAgNIQhPXT9NUHZLmkmz6CboCSY1VTPXMwdZAbv7bjkzLIIswzn0epcWBOU4KXJfauPPfD6BDdByTjLsA2GcjdBOQ+cUbeRqA5nA26CspugHhuBx/Qr530MACA0hDJDw76aoBwEBQOxm6CE1aG/JihrNHrIEmbNq9O1fm7YUt35cud2/TNon7yI915pTVCi7K/Zn/uQPVab8w9vgnKbdfzupwnKfV/h3CfHFdL0o88mKLeJ6rFTYrMaAAChIQzlgdME5XdQstXXEtEIHXwPEoWG8z6OK2jm6xL7XDYzKINm0q2/7PXN4ymtCUqM/fx62b/w+meMWZfBYXnkbROWCIayNkGJsG9gqq7JG+0sxiE2QZknqkmRy8gBAISGMJQHThOUOEFJn01QIi9PjRRm/bNO19pFPQI6KC+xj2JQWJ2g4UxxTVCGtJ/hIvw9X/deG9Lz+EEwlLsJymHumY1LHtd+4HFt9XQNgn72J8cVus/ijs9JAIDQEKYdGmqCsghKLgOCi7vAOpz3dQ2ShVkBy2YDl61/GIIUN8uwxCYoIcv083lswt8UHcPDQtPb7GN4/iYo5zlnNq5wXD8H2gTlPuG9cdtXTQAAhIYwhgdOE5Twpcnfrn4FXoPbUkKsaGFW2L0R1qTkg9mvxc0yLK0JSnjzm5Rum1mogXsWLhEa3pX2PCYMhk7X+Hl3hQZkDwNtgvIzUT1Cm6Bc5L6XAQCEhlDaA/ft6mHqTVAC91YMq0OmbsHZw6zj6rC3mrwTKJc2y7Ctc2lNULYLCQjvm+0L6pCwHisyLfmNMPNzP+v43U8TlOKCqAhLk8+GdA2WPK69EvdZBAAQGsJQHrbQWUUjaILSBFQhwekiKNgNCGnCmqCk2s8wNEgN3GMuaPblOw1YgmbVJphl2BxTeU1QAjtmN/uUrqC+z6rTRr2/auJZhBmex82sxzu8Jiiniepw2Vdwl/sarHBcZ/YzBACEhkBIQLA/9SYoUTrF9tUEJXAvxXePKTxIDZ4BFxSmvdEcJLjhT6pl4KU1QUm4n+RAxsT5kM6/hyYou4FB1EmCGmwHHlOfTVBKXa5tP0MAoNzP7IoAmR62ZoZPP7P9SmiCEmWWYZ9NUAL3UvwgONkPDFLPIxzDSay6tNf5LuDvSzPLsMQmKM/PVkCdboY/JgY1Jcq+B1wPTVCOAsO5w8Jq0HcTlFTLtUOXJtvPEAAo9zO7IkC2F+RhNkGJFJYEhqb9N0EJ2Evxw2MK6SQduJ/hi/BqP1Z4FT6bNNEsw8KaoAQ/E4lC7MxjYkBTouo0+/Hmb4JyWtL+ffUS2gizDPtsgnKS6L74ZT9DAGC0OYYiQKaHLawJytqz/YKXikaY9RXeFCM8uIvQ8CP6/m9RuucG7mfYHEdYsPwY8To/ptqnrrQmKItjuv7Z5wzTXsfDQpsSfRAM9dEEJTQ03I1cg9sIoWGfTVB2E9wXddfkp8Dj2vYZCQAo9nO7IkCGBy28CcpOT2HJP1HOP2yWZf9NUCJ3kP63LoGzLyMuUQ0K+9pZeIGNRpLN5oxwbBflHVP+mXZRz314TVBCZ9ltrvEzf5QSktVLnSMEhqFNUEKvwUaC+2IeeEy3Q36OAQChIRDjQQtb/hkUWAXOZrqPcO7zKIFhn01QInaQ/nM8MWZfRlia/Od4QpaK1gFQ6PLfeh/EBMHsi4DurrSALqhBUaJl3BnHxKE1QQnZX/BhzZ95XkJo2DY/eYoUGm71dA1uE9wTm4ENUGpHQ36OAQChIRAlHOixCcq3q5u+QsMmTIqxLLnvJigRO0i/OJ6LwHpEnf0Y2EH5KGx/urTLTSMshT1Iclxhz+agmycMsAnKz9yNLiKEhgcRzrteEnwXKTB87PEanCe4J0Kvz1OK2Y8AAFE/8ygCZHlBvugrsKqDvz5Cw3qvvcCfHbcJStBMs+fziNgII0LH5OhBZlAH5ZDu3AtV0ufve7XT17L4T+7Jy75C9ALGRE1QPv+ZZ313T47Q5KOUJig3dQAa8X7Yi1CPQe9LCgAIDYF44UAvTVDal/OgQGfNkCZuYBjaBOWvvzciHEOU2U3trLfw2gTsc/nmccUIMgs5lzfO7SDw+JI0Kgiabfft6mmw4+Ewm6CELM/dX/PnnvYZSkWYSRe7CcpTCSFdeyz3EeqxM9RnGAAQGgKxHrIem6C0wUTW7rxJAsPQJiih++1FbNQRuCwz2fLM9rrlDwwTLP3+b80DG84k6Jy9OK7rHyUeV/LroQlKrtDwcd3ZdQkCw76boJQ2+3LQ2wsAAEJDINZD1mcTlNDAchGUnawUzoXMqiyzCcra9UgSGNb3xIpB7grH95g1MKzvlQwBUHDdU+1pGBpmJl7WnXBM1ARluZ97ECGc2lvxZ9bNPS4TBIZ9NkF5vY/gYcBxxApTd3w+AgCEhkC/TVBizB5bBDsfBnaL5YbBAUi6JighTT7edr5KmNt2Sr6M87PTdc0NbMzRa/fnT87rssRwLnjZdM4a1mNJE/Y9P+eBy7U1QVn658aYXXe/bFjX7tP3kCgw7LMJylt+rPjzY4apZhkCAEJD4M8Lcm9NUNqfHyW0e2t222ImY3WabHZhGU1Q3m+OUocoHwSqzV6Ki87CsWbwPaacmVffbxlDwyrjM1iFH+/HzTfaJbfnzc9actlwlL0262cv1czTRVB49J/6hT6PmqAs+3O/RAqpPgwO27Aw1ezCEpqgvOeuncH45YOfu/Fs3i71jjXTcWuon2cAAKEhEPsh67EJSvuCHnPJ6W0TjNQzt9IEcaU2Qfmsc3A1O74+W8y2/O3qollKPKCZeVGXcX++xHo74zN4GS0obvYh7Fzn8zee8fMVns/bOMf2fFyBHb7bkPCgCY8/fr7XDnw1QVn5599FDMl+tfsk/vYrUkOPITRB+Wzvx6rtVv2yPpcJfu6Rz0UAgNAQ+B1Y9doEJW4oESksWifELKEJSv+1u0x+vx5Xe5man5xlfQ7jNJ9JMotyETbHDLCvfyyCv+f7/oNZqc3MyPrPHFcnzfL9Vb7cCLgXNUFZ+eefZQr1VpkpN9QmKH0b5B6kAIDQEEgXwvTWBKXHwOTDpYVrhYalNEHpz2OWhiExGucsM1svwn292jMQ2KU44b579RcDA7wfzwOexyNNUFb6+buFBV/rNgLZ6ukalBS2bvlcBAAIDYEXYUV/TVCKC83qJhvrBCTlNUHJL1H33ndC5sfE57Kb/TnM/QysuBdp0L6n/dyP8/WvRdC+mZNpgvLqGB5KmSn37GQETVD6cOAzEQAgNATihQERmqA0x/C92i4gaLhv90vbXyM0LLEJyiACmjXrdVNKmBbtnHLP5ltx78nBzTYM2S5AE5R1juFHAaHXfdsU5GIkTVByso8hACA0BN4MYHptgpIlCFpmaW3b9GKtmZdlN0FJ7PpH9ns2XQfl7MuSX4VVj9mu2xrdjAcz2zBg24SmCUpIc6CJNUF5dRx9zjasG4Vst8eyTuOUPpqg3BcSGJ76LAQACA2BtwKr3pug/BsEVYc9hQy3LwOUtYKR6TZBOe/lvk21lLeHZcndUC7bvob3a44XG02wWn5ouPbM3+AZlRNrgvLqWOY9hV63v/fia2caDqUJyk4BMxTPfRYCAISGwHvhS+9NUP4cSz3DJ3cX5XovwVfnsFYo0lcTlMXszNt+wpn8yzBfBDtf4weGebslvxPKbQbNcsswO7RZwl96cBgw208TlKBj+dJDCFYvRd54cQx7A2mC8tj+t1s9zjic+xwEAAgNgfcfrgKaoLwKJLbzhCZvLylea6lwr01Qrn+0x5wzOHzMvQQzynX65Br2uSy5G1pdn2VYmvw18DndCdrWIO0XAZeB9dcEJex4NjOGYGdv/PyhNEG5fPHf77TLq3Mu5d71GQgAEBoCn4SG/TdB+e9Le3WYNDisw453Qq+1ZrD12QSl7VjchGh59oS8/b33Y+/3bszQKjBES3Bulwnv/5sox7gIbs8LCw1vQ5cHa4IS5ZhSh2AP73X6HVATlLNXf8fXZ3eZuktv+fwDAAgNgbTBS8QmKG8Eh7sJmkLcN0sPP5hRtta+igF1CJ4x92pPyedjOUkUuN73PbswXbDW3zLrd89tsVT/PEFg+BRzH9L2ntsrYNbhp8/2CqHhfaznMVNoGDKrbyfhcW0/u0nQHfmwXgb9wc+tci/TXfMa7Lzx99TLu88S7vtY1BgOACA0hJIfrIKaoLx5fIu9084jBCV3dRi45M/cXikAqZcyBgQVQU1Qvl09fXBdLyKGMfMi798YTUPq2ZmFLEv+IJC7i3QtL9bpmLzCsR4knSH5xjLkZj/Q2CHoOls2LGYvH/RyjyyajzzFmqmX4PhOArs7/9POwDtc8uedrvh3//gohFzhHJf9eXUtTj75+76uGX4G1Q4AYLDZhiJAkpf8YpqgfHicdXi42OdtlWWDj01IssbsuGaWVx3m1bP2mgDhDfW/j9AlNbQJyod/dx0eLv7+VZdb3jbnWMgy5HfPL2gvyD+z7oo+xxfPwNcmQF8lQKyDrEWwdpSzo++f+25xfW4jhIP1zNmqCejrZ7J+9hKPPUuNAYtxYL+Ee6jtGLzbBmYf2a9nAPZ0fIcrBmF1sPlrndlx7fLow09qsfuygUqEc9z85GeetD/zywp/51YbCt+tMavwpI9rDQDQy+dhRYAED1ZYw4Wql2NeBBLvv8zXAUkPSwTXPp/AJigrhE5bbd0O3qnbXvPvE85Ei3vvrrGMPOPy+sTPwEZ7LfdeXcOT9n/fDenmneSY69BzcWzzD0O4l/digedBhHthEa7ttgHmW+HaPOWy6QHXbfuTuu21/34QYzgAQNTPSooACR6soKWE5e0DN9BrENIE5XCSNYvRYTuwwy4AAACFvCMqAkR+qOrldyHBy3G1p46B1yByE5QJ3bd3gYHhQ87lugAAACR8T1QEiPxQNctUA4IXywZjXIPdIewpWVTNQvcxFHgDAACM6z1RESDyQxXWoOBWDSNcg5AmKBO8BoH1+tPt2r0HAAAwondFRYCID1Rw+GI/wyjXIWTW3MTCr6aRRvg+hndTnJ0JAAAw6vdFRYBID1Pdfbje0y1sL70ttYxwLcKaoAyy8++a92y99+N9YGD4VAeP7jsAAICRvTMqAkR4kOo99EIDw29XN2oZ4VpogrJ8reZXF8HLks2OBQAAGOc7oyLAEg9K3Vn2uDp6dtgEhL/Nq9N6OWt48NLMcDtR6wjXKqQJSm0iy2yj7GM4v6rccwAAACN9b1QEWOJBiTIj65Mlnn/9vanWEa6VJiif1yjGPobzq0fL6QEAAEb87qgI8MlDUgcsKQPDxvUPtY50vUKaoMyvzkdfnxj7GC5mxh663wAAAEb8/qgI8MlDEmv58UcztswyjHe9wpqgzEdfnxizZr9d/XKvAQAAjPz9URHgk4cktMGJoCrftQpvgjLqLsBR9jGsn4fnOrvfAAAARv6OrQjwwQPyvdpKvJfhzVQab2S5XqFNUEYchgXX5t+Qe9e9BgAAMIF3bEWADx6QultyymXJGknEvl7zgAD3brR1+evvzSgzZo+vz9xnAAAAE3nHVgT44AE5vj5LuCx5X40jX6+QJigj3qfv+fyqCPfsrVmxAAAAE3rHVgT44AGJ0TTiv+HU0+y4OlDfBNdLE5Q37uHqNMo9+73ado8BAABM6B1bEeCDByTODK1uE4mRN9vo7VqFNkEZ4V59EfcxnLvHAAAAJvaerQjwwQNSNyqJFxpe1HvLqWuia/W9+qoJyqua1EuKw4PuS/cXAADABN+zFQE+eECOr39GCAur2fdqRz1TX6uAWXUj3M8weObl76DbPoYAAADTfM9WBPjgAWmCl+sfs/nV/aqzs2bH1YmwMPP1Oq6OVtzX8HbMS2/bejys3PCkDsvtYQgAADDtd2xFgCUfljpArGezHVeHi+YSLxxXe+2/21WrIq7VZns99l9dp5Pf12lKM+hm36utd+px+Kce9toEAADg5bukIgAAAAAALykCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANChCAAAAABAhyIAAAAAAB2KAAAAAAB0KAIAAAAA0KEIAAAAAECHIgAAAAAAHYoAAAAAAHQoAgAAAADQoQgAAAAAQIciAAAAAAAdigAAAAAAdCgCAAAAANDx/6Dfdq4bkpSWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<IPython.core.display.Image object>" + ] + }, + "execution_count": 3, + "metadata": { + "image/png": { + "height": 100, + "width": 150 + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "Image(filename = fig_dir + \"ogs-jupyter-lab.png\", width=150, height=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d2ff19ce", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAADCCAMAAABAOb8GAAAACXBIWXMAAB7CAAAewgFu0HU+AAAAt1BMVEX///+8vLwlJSVdXV0HBwcwMDBGRkYAAABOgb0CAgL19fX5+foUFBRCQkL8/PwNDQ339/hXV1fm5+fAwcE+Pj6hoaEZGRmmpqZnZ2fu7++cnJxLS0sdHR3j4+SHh4eRkZF8fHxjY2Pg4ODHx8fX19eXl5c5OTmrq6tvb2/S0tJERESNjY3Nzc3a2tp4eHiZmZmysrJZicKCgoKRsNa3t7i5ubmFhYXE1emqwuBplMh5oM7Pz8+5zeURYZ0lAAAK2klEQVR4Ae2diXqqOhCAEaE5cUGslUqLVY9atXbfztL7/s91J4FsLIpaPRJJv08GCJB/JgyZJFDDKFOpgVIDpQZKDZQaKDVQakBLDTjNWLrWElNAneNgWlk83HvIXDwsKgMP1cVOHaUJ7lOsCxSadoLCdR1ZKVOlHaIxYOPsXltWCjZbxoCH73oDD55jwN2u3sCd6JblVfphrDcwo+PAbIPuyxK4tLBmGiirtGYGTeCUFk6oRLMNpYU1M2gc5zxAph/fqO162wwarUarFZgjbRlLsFIDpQZKDZQaKDVQaqDUQKmBQ2lgMX38/NB8VEnS5dcFIinQvA+eE3csygs/c75NZ6HfYrwIT3UGZWw9zIGRdwL3sSMMDODPTA36LhfCviA96gvKyDoKcI9t1nf5oAB/6gvKyQKZ+BRGhz8lYNvhetBXqJmc2KroiynI6h9m9CS2ureXYru20qh1OW+Aka3ryRxh/YmfEBoYztf75cww6tf6E48tXCWVd4FR7RSI+x6yafu5hhCZg6e7jeu3qBHN1AoQvX3daxQKevqsEcKdiOwMDakENtaXeEocVpTmKJpnWj/TlnhsIeqwKPIU2RG6tjYmDgs8c5QqyGLtSrAx1rB/S3JYhLmP0E8GXz/DGhJLDouCtpCYKq0jseywKLAtHBg8j7WzMWthsVpsGG0sd3fodh/3G8h2BSyRXnFT3uBqZeOYw6KgM+zJwFCrNfLVcYdFSKH7UjykyAZXH+KEwyJ8UfhAxChpQwyDSaKFxegMIwofxAZdbNz3sNTCEnwsfBBb9CBOc1iUkYcPmhFXRUgokYEowgdpO9zHqNjt6oElt6gkNEMKH6TNRSfOcFiEUA4fVGJ8Ja0XSyQhoZtVZDl8kPKQp1NRiV3RhyURMVEJH9hGWAKxVVDiTIdF8dTwQSVGhSQe4CyHRek+kRI+SMS1Ytq4E3W6SySKOENq+CDtBOLi2bjfSG9hca6vePjA90BLu3jEro1Zp7sEIovJ8EHaWzziEead7hKHIibDB2l37a5YtXogdbpLGIqYEj5I+4tFvKKFJZjSwgex1ygScUoflkTCxNTwge2EZXGIXZuPEkrlT4jp4YOUrTDEVWyxUUKp+AkxI3yQ8hWEOI/DolQZ4UPRiHM5LAplYz58KkEqYgFsTBxWTSl05kpVGX1Iz3b0xLW1LSwB9poZPog81Fc/SevHJlbXt7B4kVeEDzxP+HQ6XuI1IaHEAWJi9EHdzdZqTYSOlbiDUzvdWdFjy5Xhg5T3eIk3cFiUJ8jZJ3usxLV8LSxhu9Xhg8hnHCnxJg6L0qwJH2LER/fWT+4WFgdZFz7wjOCrwXMdGTG8v5E2SigVOiGuDR+kI46OeFOHRVjWhw/5iYeBadqmGbwaxlkk7nXG/cYOi6KsDx+SxL/e/ry8/P3PlfZQ0Z0EKJjQybr+B0Ltn2zmWzzj96yv7nTPukbW6EN6/loTBz///gjTy69EpiY+Y9sQ2vMrQsvVne6sHPFlFcmTl+J7E+u16u+XiBcWv+MmbCIJ+CZx9Hdu2KyFJa6cK3wQ2Q1f4v3xI27jwwH/zB8SSqUHMV/4II55E/YF6SUWhh4MmDgsPlVUlC6HlDN8YGfyFV6o1GxHuDwY8HYOixTSDd99UMudvfZfDPivmvVQwEuEl+qV86/lDR/CM6o1Guq0eqEmtitRQmh/TquSPg9LLUvWWu7woT/uft6sA0ZBb0T/ensE3tphUR2sDR/OO5efozuTfCkBB3HgP6oeD1Klt3dYtLCZ4UN/DKBnFDR8OxMHF9VfR3APb++wKHAifADQm8iiAnR4VXkgbcZ6DDj2ID6EhZcIbe2wCDEPH86TFr2tElClOfVbIf5DG85UcfTnAMCVjfqwRNGE1EKPqkWRF4LGYOgRne4fmTh6y42fbDdgf3rneWZzZhh+1uQTYweHlbAoA1Usylmo8IStd4k4VqENYyfgp4bZ9Q1n0mu77YZ6Xb62jcMC0JhFW9kW5VcigjPH6OLcYJ76b/JToDsAOyPUjhqqz2Zssr4oRTtr4qjIwiVi0Z7sdSOLzvOMPpCz+DDPZUTqufvf29vb73N+Zi74Jv8gKjRZRy7fkUPooSa/h4YobmF/cG03HxeVPC0sYtE0UOp1oSR5w4cH+HbAkpXcSan3Q8+CD6JaHunxgA+jghjk7/GYYeuBndyomzHgqYUwhmdG9WlFMJsK+hg9Xvi5c48+VBqo9Swd9r2iY7J3P+l5hyrwTfh8hN/bWHhGcucFZSXOFz5MMQoW7JDvXz6rs7Q7yoy5e2LcKEkWFqBsv3fbZg2GVUXMET44c1Buyk276rQb7RtJb0LCgc61fDS84cwTPhcWpbWc7IHnaErVlU+hyOvDBx+mbFW5S1EO/qYVe9WkQA5G4LotDIlIBDSXReNlXBs+EHe1v1iPFgccRLxYfH0c0kW/cyhMZFGXZ9lMyAwfotNUWvt0V+FF8gP3vh7czfgSuRPhg5oD3vLap7sKLwZVOvOWOVcsPBhBc2y3xMOHtNM4EMnv1V2FF60i9V97jeWy2MwLE/IuhOUXNxN5/8byitEHvwnBibvxGTc+YIYQxAwiKV4advJ0txh5gIzMeSWzSojTZEjZow8T8BB7HkAIy+R6yjigLz1uIUOb83okPrsfUpu32ttW7szRhw9wV4riMzT2DZuvkCXFmk+XyildeEzTZLPmZ//pmvY5bVe5s959gPkxwZdy5T2utKP/00cu0VdqNNny3m4hfDuQG5a1Z165Uxr25KDMlB4+1A/jrlip3Gvciwru3+VtxELlJpbftHIv0po5Pgz4t11WnEMsX1v2MyDXLu08E2NZifpTVrlZdWd7spdp4cPB3JVUrP6rbcGI+nDT52xYuRHx3DkrdzJ8eG8h60DuSiIG0XfV9bxrvHJf5lHXGR6qJwZ35R3MXamX3n5NVO61zZJY+FCHp8Ct9JDYvgyHPjLy3Nicd1Y2S9TwwYfvbbP+tEOXePfrOXkqtxI+wMwUBN1SRU5R5UYXy4zK3cfiy0v/zF19r4bXeG4RPsDcGO/+e6/9z842Js0SjFvtpOfuXlVojxVxV3Yh3VWGVkXllpsl/iP5IrG9rFN35WYcW9TNonJ3ombJwoT4kiR7hqNPIRYVLqvctHKTNjep3DBFM0rY7qphWdbxRdzOmyUVudd3WESU3GWmlRtDH5FIjZXtk9xnPuKM41cFGCmdZ0dc7h2K9insCw+t5x3OVJBD4bUBKYkvPxak+JsX80PCjXUOb36yIhxRh25eni6KUOJdy/jEcRE+AZ8F6oKx3ygd2Vs6u5oy63hn2aLA3j/pxMoq1V63+91ebz5z93qN8uSlBkoNlBooNVBqoNRAqYFSAzprYOo1Gg1TnjNahS0efyNWP3bnwTaxNC2pf4FRJ8+AcnFVUb1Bpig99OhZYk1LqbpoID6FxOnBuKmWmAKqOnkUU+A+ZqcAPEEWu2t7zikAG7fs+yv+kHxFXVhfS6k6MbrsX2vB/ICTAK61UDhDCWawngSwMQo/5TGG/3ZwGsBj1HDhfp3DVNXTADZs8o8Pa3OAPhHgJXnd8oqMOpwIsE+maY2A91SAnTYaLgYnBGy8I++RNrf0r9JtOuvOCXCbGFj7Ku28W9c0/h9i+mqzA9MB5BlrVAka/UxbFnmTG4j6Nvkx6RvejWuNEEuUUgOlBkoNlBooNVBqoNTASWngfzSwuBMjXFO1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<IPython.core.display.Image object>" + ] + }, + "execution_count": 4, + "metadata": { + "image/png": { + "height": 100, + "width": 150 + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "Image(filename = fig_dir + \"h-tet-1.png\", width=150, height=100)" + ] + }, + { + "cell_type": "markdown", + "id": "4fae4b91", + "metadata": { + "tags": [] + }, + "source": [ + "## H process: Theis solution" + ] + }, + { + "cell_type": "markdown", + "id": "d6228a95", + "metadata": {}, + "source": [ + "**Problem description**\n", + "\n", + "Theis’ problem examines the transient lowering of the water table induced by a pumping well. \n", + "The assumptions required by the Theis solution are:\n", + "\n", + "The aquifer \n", + "- is homogeneous, isotropic, confined, infinite in radial extent,\n", + "- has uniform thickness, horizontal piezometric surface.\n", + "\n", + "The well\n", + "- is fully penetrating the entire aquifer thickness,\n", + "- has a constant pumping rate,\n", + "- well storage effects can be neglected,\n", + "- no other wells or long term changes in regional water levels." + ] + }, + { + "cell_type": "markdown", + "id": "3cb1306f", + "metadata": {}, + "source": [ + "**Analytical solution**" + ] + }, + { + "cell_type": "markdown", + "id": "78ebe4b4", + "metadata": {}, + "source": [ + "The analytical solution of the drawdown as a function of time and distance is expressed by\n", + "$$\n", + "s(r,t) = h_0 - h(r,t) = \\frac{Q}{4\\pi T}W(u), \\quad \\mathrm{where}\\quad u = \\frac{r^2S}{4Tt}.\n", + "$$\n", + "\n", + "where\n", + "- $s$ [$L$] is the _drawdown_ or change in hydraulic head,\n", + "- $h_0$ is the constant initial hydraulic head,\n", + "- $h$ is the hydrauic head at distance $r$ at time $t$\n", + "- $Q$ [$L^3T^{-1}$] is the constant pumping (discharge) rate\n", + "- $S$ [$-$] is the aquifer storage coefficient (volume of water released per unit decrease in $h$ per unit area)\n", + "- $T$ [$L^2T^{-1}$] is the transmissivity (a measure of how much water is transported horizontally per unit time).\n", + "\n", + "The _Well Function_, $W(u)$ is the exponential integral, $E_1(u).$\n", + "$W(u)$ is defined by an infinite series:\n", + "$$\n", + "W(u) = - \\gamma - \\ln u + \\sum_{k=1}^\\infty \\frac{(-1)^{k+1} u^k}{k \\cdot k!}\n", + "$$\n", + "where\n", + "- $\\gamma=0.577215664$ is the Euler-Mascheroni constant\n", + "\n", + "For practical applications an approximation to the exponential integral is used often:\n", + "$$W(u) \\approx -\\gamma - \\ln u$$\n", + "\n", + "This results in an expression for $s(r,t)$ known as the Jacob equation:\n", + "$$\n", + "s(r,t) = -\\frac{Q}{4\\pi T}\\left(\\gamma + \\ln u \\right).\n", + "$$\n", + "For more details we refer to Srivastava and Guzman-Guzman (1998)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f6f31590", + "metadata": {}, + "outputs": [], + "source": [ + "#source: https://scipython.com/blog/linear-and-non-linear-fitting-of-the-theis-equation/\n", + "\n", + "def calc_u(r, S, T, t):\n", + " \"\"\"Calculate and return the dimensionless time parameter, u.\"\"\"\n", + "\n", + " return r**2 * S / 4 / T / t\n", + "\n", + "def theis_drawdown(t, S, T, Q, r):\n", + " \"\"\"Calculate and return the drawdown s(r,t) for parameters S, T.\n", + "\n", + " This version uses the Theis equation, s(r,t) = Q * W(u) / (4.pi.T),\n", + " where W(u) is the Well function for u = Sr^2 / (4Tt).\n", + " S is the aquifer storage coefficient,\n", + " T is the transmissivity (m2/day),\n", + " r is the distance from the well (m), and\n", + " Q is the pumping rate (m3/day).\n", + "\n", + " \"\"\"\n", + "\n", + " u = calc_u(r, S, T, t)\n", + " s_theis = Q/4/np.pi/T * exp1(u)\n", + " return s_theis\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a24764b3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEaCAYAAAD+E0veAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de3xV5Zn3/8+VAwSSkEAC4RQIAgoogoIIVVvQtoo92daOWuvpacv0MG1tbUdrf89ox2emh5mxdZ7W+nN60FY0tpU6HnrAWvAwCiIICAnImQQCgWCOEHK6nj/WSowhgYQke+/s/X2/Xvtl9lr3Xuu6ElzXvu+11r3M3REREQFIinYAIiISO1QURESkjYqCiIi0UVEQEZE2KgoiItJGRUFERNqoKEifMbO7zeyR0/zsnWb2876OqS/1Mr9LzGxrH8Sw28ze39vtdNimm9mU0/xsn+QlsSMl2gHIwGFmte3eDgWOA83h+7/vzbbd/V978/mOzGwlMAsY7e7H+3Lb3dy/A1PdfTuAu78EnBXpOPpavOYl71BPQbrN3TNaX8Be4CPtli2NdnytzKwAuARw4KNRDUZkgFFRkL42yMx+bWY1ZrbZzOa2rjCzsWb2hJkdMrNdZvbVduvahmbMLM3MHjGzCjOrNLM1ZpbXgxhuBFYBDwE3tV9hZg+Z2U/N7NkwxtVmNrnd+vvMrMTMqs1srZld0tkOws9/pcOyjWZ2lZm9GC7aYGa1ZnaNmS00s9J2bfPNbFn4u6gws5+Eyyeb2d/CZYfNbKmZZXcnaTO70syKwrz2mdk32637vJltN7MjZvaUmY3tYhsrzexz7d7fbGYvhz93J6/p4TYqw7//R9utO+nvXmKDioL0tY8ChUA28BTQerBLAp4GNgDjgMuAW83s8k62cROQBeQDOcAXgGPhdu4ws2dOEcONwNLwdXknBeU64LvAcGA78C/t1q0BZgMjgEeB35lZWif7eBj4TOsbM5sV5vVHd39vuHhW2It6vP0HzSwZeAbYAxSEnytsXQ18DxgLTA9/B3efIt9WvwD+3t0zgXOAv4X7uzTc5t8BY8L9Fna1ka50I69Ugr/xcmAU8BVgqZm1H1462e9eYoCKgvS1l939j+7eDPyGYFwf4AJgpLv/s7s3uPtO4L+AazvZRiNBMZji7s3uvtbdqwHc/fvu/uGudm5mFwMTgd+6+1pgB/DpDs2Wuftr7t5EUDhmt65w90fcvcLdm9z9P4DBdD5m/t/AVDObGr6/AXjc3Ru6/tW0mUdw0P+Wu9e5e727vxzuf7u7P+fux939EHAv8L5ubBOC39sMMxvm7m+7+7pw+fXAL919XXh+5dvAgnCYrS/NBzKA74d/478RFL/r2rXp8ncvsUFFQfragXY/HwXSzCyF4EA9NhxWqDSzSuBOoLNhod8AfwEKzWy/mf0w/BbaHTcBy939cPj+UToMIXUSY0brGzO7zcyKzawqjDELyO24k/Dg+lvgM2Ev6Low7u7IB/aEB8Z3MbNRZlYYDv9UA490tv8ufBK4EthjZi+Y2YJw+ViC3kFr7LVABUEPpS+NBUrcvaXdsj0d9tPl715ig64+kkgpAXa5+9RTNXT3RoIhhu+G32b/CGwlGB7pkpkNIRgiSTaz1oPPYCDbzGa5+4ZTfP4S4HaCoa3N7t5iZm8TDOl05mGCQvAycNTdXz1VbqESYIKZpXRSGL5HcIL8XHevMLOrCIfgTsXd1wAfCwvoPxAUrXxgP0FRbs0znaAntq+TzdQRXFnWanT3UoJwP/lmltSuMEwA3urBNiTK1FOQSHkNqDaz281siJklm9k5ZnZBx4ZmtsjMZoZj79UEwyLNHdt14qqw3QyCYYnZBOPyLxGcZziVTKAJOASkmNk/AcO6ahwWgRbgPzixl3AQOKOLj74GlAHfN7P08MT6Re1iqAUqzWwc8K1uxI2ZDTKz680sKyyq1bzzO3sUuMXMZpvZYOBfgdXuvruTTa0HPmFmQy24d+GzPchrNUFR+UczSzWzhcBHOI3zFxI9KgoSEeE5ho8QHKh3AYeBnxMMz3Q0Gvg9wYGtGHiBYBil9Sa3P3Wxm5uAX7n7Xnc/0Poi+KZ9fTiMdTJ/Af5E8M12D1BP8K3+ZH4NzGyNr527gYfDobK/a7+i3e9iCsGlvaXANeHq7wLnA1XAs8CyU+y/vRuA3eGw0xcIT4S7+/PA/waeIChGk+n8XA7Aj4AGgoP/wwTj/t3Nq4HgQoPFBH/f+4Eb3X1LD3KQKDM9ZEfk9JnZjcASd7842rGI9AX1FEROk5kNBb4EPBjtWET6ioqCyGkI7684RDDM8miUwxHpMxo+EhGRNuopiIhImwF9n0Jubq4XFBR0u31dXR3p6en9F1CMSsS8EzFnSMy8EzFn6F3ea9euPezuIztbN6CLQkFBAa+//nq3269cuZKFCxf2X0AxKhHzTsScITHzTsScoXd5m9mertZp+EhERNqoKIiISBsVBRERaTOgzyl0prGxkdLSUurr609Yl5WVRXFxcRSiiq7u5p2Wlsb48eNJTe3uhKQiEm/iriiUlpaSmZlJQUEBZu+e3LKmpobMzMwoRRY93cnb3amoqKC0tJRJkyZFKDIRiTVxN3xUX19PTk7OCQVBTs7MyMnJ6bSHJSKJI+6KAqCCcJr0exORuBs+EhGJR0cbmth9+Ci7Dtexu6IOr2hmYT/sR0UhhlVUVHD11VezZs0abr75Zn7yk3cewLV27Vpuvvlmjh07xpVXXsl9992nb/oiA1xDUwslbx9l16E6dh2uY1dFXdvPB6rfPbT7oUn9c0GIikI/cnfcnaSk0xulS0tL45577mHTpk1s2rTpXeu++MUv8uCDDzJ//nyuvPJK/vznP7N48eK+CFtE+lFzi7O/8hi7K4KD/c5DdW0/l759jOaWdyYpHT40lYLcdN4zJYczctMpyE1nUm46BTnprHn15X6JLyJFwczyCZ5QNZrg8YUPuvt9HdosBP6b4KlcAMvc/Z8jEV9f2r17N4sXL2bRokW8+uqrPPnkk0ycOPHUH+xEeno6F198Mdu3b3/X8rKyMqqrq1mwIHgu+4033siTTz55QlG4++672bVrFyUlJezcuZN7772XVatW8ac//Ylx48bx9NNP6/JTkX7g7hyqPc6u8IC/83Bd28+7K47S0NTS1nbooGQm5aZzzrgsPjprbHDQz01nUk46w9MHRTz2SPUUmoDb3H2dmWUCa83sOXcv6tDuJXf/cF/t9LtPb6Zof3Xb++bmZpKTk3u1zRljh3HXR84+aZutW7fyq1/9ivvvv/+EdV//+tdZsWLFCcuvvfZa7rjjjm7FsG/fPsaPH9/2fvz48ezb19kz2GHHjh089dRTlJSUsGDBAp544gl++MMf8vGPf5xnn32Wq666qlv7FJETVR1tDIZ4DtcGwzwVR9l1uJbdh49Se7yprV1qsjExJ/iWv/CsUUwKv/FPyk1nVObgmBr6jUhRcPcygmfD4u41ZlYMjAM6FoW4MHHiRObPn9/puh/96Ee93n5nz8Do6h/V4sWLSU1NZebMmTQ3N3PFFVcAMHPmTHbv3t3rWETinbtTUdfAtoO1bCuvafvv9vJaDtc2tLVLMhg3fAiTcjOYO3EEBTlDmTQygzNy0xmbPYTkpNg58J9MxM8pmFkBcB6wupPVC8xsA7Af+Ka7b+7k80uAJQB5eXmsXLnyXeuzsrKoqakB4BsLJ7xrXV/0FIC27XemtraWIUOGdNnmjjvu4KWXXjph+Sc/+Um+8Y1vdPqZ+vp6Ghoa2raZnZ3N3r17295v27aNkSNHnrDP48ePk5qaSnNzM3V1daSmplJbWwsEd37X1dWd8Jn6+voTfqcDUW1tbVzk0VOJmHdf5ezuVB539tc6+2tb2FfXwv7a4FXb+E67ISkwNj2J6VlJjBmXyuihSYxOT2LkUCM1yYCjwasRfD/s2A87eh3difrrbx3RomBmGcATwK3uXt1h9TpgorvXmtmVwJPA1I7bcPcHCZ+JO3fuXO84dWxxcXGXd+9G4o7mjIwMkpKSutzPT3/60x5vMy0tjUGDBrVtMzMzk6ysLDZv3syFF17I7373O77yla+csM/BgwczePBgkpOT3/XZ9us6fiYtLY3zzjuvxzHGGk2nnDh6mrO7U1ZVz7byWrYdDL7xv3Wwhm3ltdTUvzPkMywthTPzspgzNYOpozKZmhf8N29YbAz39NffOmJFwcxSCQrCUndf1nF9+yLh7n80s/vNLNfdD0cqxlhUUFBAdXU1DQ0NPPnkkyxfvpwZM2bws5/9rO2S1MWLF+vKI5EOWlqcfZXH2g35BK/tB2uoa2huazcifRBTR2Xwsdljg4P/qAym5GUwMiM2Dv6RFqmrjwz4BVDs7vd20WY0cNDd3czmEdxtXRGJ+PpSQUHBCZeP9kZX4/5z58495X7uvvtu4J3hrtaho/brRAa6Fnd2H64LD/o1bA8LwPbyWo41vnPwH5k5mKmjMrh6znim5AUH/6mjMsjJGBzF6GNPpHoKFwE3AG+a2fpw2Z3ABAB3fwC4GviimTUBx4BrvbMzqiKSsKrrG9lSVkPR/iqKy2ooKqtmS9lRGv+ysq3N6GFpTM3L4Np5+ZwZHvynjMoge2jkL+8ciCJ19dHLwEn7Ye7+E+AnJ2sjIonB3dlfVU/R/urgVRYUgb1Hjra1GT40lRljh3HphBQumzODKXnBwX9Ymu696Y24vKPZ3RNyLLC31DGTaGhoamFbeQ1F+6vDb/9VFO2vpjo86WsGBTnpzByXxTUX5DN9TCYzxmS1nfBduXIlCy/Ij3IW8SPuikJaWhoVFRWaPruHWp+nkJaWFu1QJI5VHm2gqKz123/w3x2HamlsDr6QpKUmMW30MD507lhmjB3GjDHDmDY6k/TBcXeoillx95seP348paWlHDp06IR19fX1CXnQ627erU9eE+mtlhan5O2j4bf/dwrA/qp3JnUbmTmYGWOGsWjaKKaPCQrApNz0AXOTV7yKu6KQmpra5ZPDVq5cGRfX4PdUouYtkdHQ1MKWA+98+y8uC4aBWqd5SDKYPDKDuQUj2r79Tx8zjJGZuuonFsVdURCR/uPulBw5xhslb7O+pJL1JZVs3l/dNsFb+qBkpo8ZxifOH9f27f+s0ZmkpfZ+JgGJDBUFEelS1bFGNpZWsn5vJW+UVLKhpJKKumC+n7TUJGaOy+KmBROZlZ/NzHFZ5A8fSpKGfwY0FQURAaCxuYWtB2p4oyQoAutL3mbHobq29ZNHprNo2ihm52czOz+bs0Znkpocl0/0TWgqCiIJqPU+gNaD//qSSt7cV0V9YzAMlJM+iNn52Vw1exyzJ2Rz7vhssobo+v9EoKIgkgBqjzexsSQYAmo9F3Co5jgAg1KSOGfsMD49byKzJ2RzXn4244cP0SXdCUpFQSTONLc4bx2sCQ7+e4MC8FZ5Da33Jk7KTefiKbltw0DTxwxjUIqGgSSgoiAywB1taOL13W+zamcFz284xpf+9heOhrOAZg9NZdb4bBbPHN1WBDQHkJyMioLIAFPf2My6vW+zakcFr+yoYENpJY3NTkqSkZ9pfGrOeGZPyGZ2/nAKcoZqGEh6REVBJMY1NLWwvqSSV3dU8OrOw6zbW0lDUwtJBjPHZ/PZi89gweQc5k4czppXX2bhwnOiHbIMYCoKIjGmqbmFjfuqeHVHBat2VrBm9xHqG1swgxljhnHj/IksmJzDBZNGaEZQ6XMqCiJR1tzibN5fFfYEKliz60jbk8HOysvk2gsmsGByDhdOGqHzAdLvVBREIqylxdlyoIZXd1bw6o4KVu+qaHs28OSR6Xz8/HEsOCOX+WeM0FPBJOJUFET6mbuzvbyWV3a8UwTePtoIwMScoXxo5hgWTM5hwRk5jBqWeLP4SmxRURDpY+7OrsN1bT2BVTuPcLg2uFFsXPYQLpuex4IzclgwOYex2UOiHK3Iu0WkKJhZPvBrYDTQAjzo7vd10fYCYBVwjbv/PhLxifTWsYZmXt5+mOWbD/DStsMcqA6eG5A3bDAXT8kJewK55I/QncIS2yLVU2gCbnP3dWaWCaw1s+fcvah9IzNLBn4A/CVCcYmctrfrGnh+SznLNx/gxW2HqG9sITMthfdOHcl7pgTDQZNy01UEZECJSFFw9zKgLPy5xsyKgXFAUYemXwGeAC6IRFwiPVVy5CjLiw6yfPMB1uw+QovD6GFp/N3cfD44YzTzJo3QlBEyoFmkH9ZuZgXAi8A57l7dbvk44FHgUuAXwDOdDR+Z2RJgCUBeXt6cwsLCbu+7traWjIyM3oQ/ICVi3n2Vs7uzt6aFdQebWVfeTElNMIvo+AzjvLwUzh+VTMGwpJjpDehvnTh6k/eiRYvWuvvcztZF9ESzmWUQ9ARubV8QQj8Gbnf35pP9D+buDwIPAsydO9cXLlzY7f2vXLmSnrSPF4mYd29ybmpu4bXdR1i++SDPFR1kX2U9ZnDBxBHceEkeH5iRR0Fuet8G3Ef0t04c/ZV3xIqCmaUSFISl7r6skyZzgcKwIOQCV5pZk7s/GakYJXEdbWjixbcOsXzzQZ7fUk7VsUYGpyRxydSRfO2yqVw6fRS5umdAEkCkrj4ygiGhYne/t7M27j6pXfuHCIaPVBCk3xyuPc7zxQdZvvkgL20/TENTC1lDUrls+ig+OGM07z0zl6GDdNW2JJZI/Yu/CLgBeNPM1ofL7gQmALj7AxGKQxLc7sN1LC86wHNFB3l9z9u4B/cOXH/hBD44YzQXFAwnRY+YlAQWqauPXga6fSbO3W/uv2gkkbg7G0ureK7oIMuLDvDWwVogmFjua5dN5QMz8pgxZljMnCgWiTb1jSXuNDW3sOlwM88/uYnnig5yoLqe5CRjXsEI/unDE/jAjDzyRwyNdpgiMUlFQeLGvspjPP7aXh5/vYSD1ccZklrKe8/M5VszzuLSaaMYnq4ZRkVORUVBBrSm5hZWbj3Eo6/tZeXWchx435kj+dQZ1fzDJxeRlpoc7RBFBhQVBRmQyqqOUfhaCb99vYSyqnpGZQ7my4umcM0F+YwfPpSVK1eqIIicBhUFGTCaW5wX3irn0dV7+duWoFdwydSR3PWRs7ls+ihSddWQSK+pKEjMO1BVz+NrSnh8zV72V9WTmzGYL7xvMtfNm6ATxiJ9TEVBYlJzi/PitkNtvYLmFueSqbn8fx+ewQdm5KlXINJPVBQkppRXB72CwjUl7Ks8Rm7GID5/yRlcNy+fiTmxOd+QSDxRUZCoa2lxXtp+mEdX7+GvxUGv4KIpOXz7yml8cMZoTUUtEkEqChI15TX1/O71Uh57bS+lbx9jRPogPnfxJK6dN4FJMToLqUi8U1GQiGppcf5nx2EeXb2X54oO0tTizD9jBP94xTQuPzuPwSm6jFQkmlQUJCIO1Rzn92tLKVyzlz0VRxk+NJVbLirg2nkTmDwy8R6QIhKrVBSk37S0OK/urODR1XtZXnSAxmZn3qQRfOMDZ3L52aN1c5lIDFJRkD7n7jz7Zhn3Ln+LnYfryBqSyg3zC/j0hflMGZUZ7fBE5CRUFKRPbSip5J5ninh9z9tMG53Jj66ZxeJzxqhXIDJAqChInyirOsYP/7yVP7yxj9yMQXzvEzP5u7n5JCfpOQUiA4mKgvTK0YYmHnhhJw++uIMWhy8unMyXFk4mMy012qGJyGlQUZDT0tLiLHtjH//2ly0crD7Oh84dwx1XTNNcRCIDXESKgpnlA78GRgMtwIPufl+HNh8D7gnXNwG3ho/xlBizemcF9zxbxKZ91czKz+b+689nzsQR0Q5LRPpApHoKTcBt7r7OzDKBtWb2nLsXtWvzPPCUu7uZnQv8FpgWofikG/ZU1PG9P27hz5sPMCYrjR9fM5uPzhpLks4biMSNiBQFdy8DysKfa8ysGBgHFLVrU9vuI+mARyI2ObXq+kZ+8rftPPQ/u0lOMr7xgTP5/CVnMGSQrigSiTfmHtljr5kVAC8C57h7dYd1Hwe+B4wCPuTur3by+SXAEoC8vLw5hYWF3d53bW0tGRmJd/fs6ebd3OK8UNrEH7Y1UNsIF41L4ZNTUxmeFvsT1OlvnTgSMWfoXd6LFi1a6+5zO13p7hF7ARnAWuATp2j3XuCvp9renDlzvCdWrFjRo/bx4nTyXrm13D9w70qfePsz/qkHXvE3Syv7PrB+pL914kjEnN17lzfwundxXI3Y1Udmlgo8ASx192Una+vuL5rZZDPLdffDkYlQALaX1/B/ni1m5dZDTBgxlAc+cz6Xnz0aM503EEkEkbr6yIBfAMXufm8XbaYAO9zdzex8YBBQEYn4BI7UNfDjv77F0tV7GZqazJ1XTuOm9xRo1lKRBBOpnsJFwA3Am2a2Plx2JzABwN0fAD4J3GhmjcAx4JqwmyP9qKGphV+/upv7nt9G3fEmPn3hBL7+/jPJyRgc7dBEJAoidfXRy8BJxx/c/QfADyIRjwTnkpYXHeR7fyxmd8VR3nfmSL7zoemcmacJ60QSme5oTkCb9lXxf54tYtXOI0wdlcFDt1zAwrNGRTssEYkBKgoJpLy6nn/7y1Z+v66U7CGp3POxs7lu3gRSkmP/ElMRiQwVhQTQ0Oz83+e38bMXdtDY3MLnLp7EP1w6lawhmrRORN5NRSHOPbuxjP/90jGO1L/F5Wfn8e3F0ynITY92WCISo1QU4tTxpmb++ekilq7ey8RhSfz0hgtZMDkn2mGJSIxTUYhD+yqP8aWl69hQUsnfv+8M5g0+oIIgIt2iohBnXt52mK88to7GZueBz5zPFeeMYeXKg9EOS0QGCBWFONHS4vzshR38x/KtTBmVwc8+M4fJIxNvkjAR6R0VhThQdayR2367gb8WH+Sjs8byvU/MJH2w/rQi0nM6cgxwxWXVfOGRtex7+xh3fWQGN7+nQJPXichpU1EYwP7wRinfXvYmw9JSKVwyn7kFeiSmiPSOisIA1NDUwj3PFPGbVXu4cNII/u+nz2NUZlq0wxKROKCiMMCUVR3ji4+sY31JJUveewb/ePlZmqZCRPqMisIAsmlfFTf98jXqG5u5//rzuXLmmGiHJCJxRkVhgNi0r4rrf76ajMEpPP73C5gySpebikjfU1EYANoXhMIl88kfMTTaIYlInNJgdIzbvL+Kz/xCBUFEIkNFIYZt3h/0EIamJvPY51UQRKT/RaQomFm+ma0ws2Iz22xmX+ukzfVmtjF8vWJmsyIRW6wq2l/dVhAKlyxgQo4Kgoj0v0idU2gCbnP3dWaWCaw1s+fcvahdm13A+9z9bTNbDDwIXBih+GJKUBBWMSQ1mceWzFdBEJGIiUhRcPcyoCz8ucbMioFxQFG7Nq+0+8gqYHwkYos1xWVBQUhLTaZwyXwm5uiBOCISOebukd2hWQHwInCOu1d30eabwDR3/1wn65YASwDy8vLmFBYWdnvftbW1ZGTE7qWcJTUt/PC1Y6QkGXfMSyMvvW9G92I97/6QiDlDYuadiDlD7/JetGjRWnef2+lKd4/YC8gA1gKfOEmbRUAxkHOq7c2ZM8d7YsWKFT1qH0lbyqr9vH9e7vP+5Tnfdai2T7cdy3n3l0TM2T0x807EnN17lzfwundxXI3YfQpmlgo8ASx192VdtDkX+Dmw2N0rIhVbtG09UMOn/2sVqclG4ZIFeoayiERNpK4+MuAXQLG739tFmwnAMuAGd38rEnHFgrcOBgUhOcl47PPzmaSCICJR1O2egpnNBb4DTAw/Z4C7+7nd+PhFwA3Am2a2Plx2JzCBYCMPAP8E5AD3h88DaPKuxrzixPby2raCULhkPmfoSWkiEmU9GT5aCnwLeBNo6clO3P1lgiJysjafA044sRyv6hub+dLStQA8poIgIjGiJ0XhkLs/1W+RJJjv/2kLbx2s5eH/NU/PUhaRmNGTonCXmf0ceB443rqwq5PG0rUX3jrEQ6/s5ub3FPC+M0dGOxwRkTY9KQq3ANOAVN4ZPnKCk8PSTUfqGvjm7zZwZl4GdyyeFu1wRETepSdFYZa7z+y3SBKAu3PHExupOtrIw7fMIy01OdohiYi8S08uSV1lZjP6LZIE8PiaEpYXHeRbl5/FjLHDoh2OiMgJetJTuBi4ycx2EZxT6MklqQlv1+E6vvt0ERdNyeGzF0+KdjgiIp3qSVG4ot+iiHONzS3cWvgGg1KS+PdPzSIp6aRX54qIRE23i4K77+nPQOLZfz6/jQ2lVdx//fmMyRoS7XBERLqkJ6/1szW7j/DTFdu5es54rpw5JtrhiIic1CmLgpktCOcukh6qqW/k64+vZ9zwIdz1EZ2jF5HY152ewk0ET0orNLObzWx0fwcVL+56ajP7K4/x42tmk5mWGu1wRERO6ZTnFNz9CwBmNg1YDDxkZlnACuDPwP+4e3O/RjkAPbNxP8vW7eOrl01lzsQR0Q5HRKRbun1Owd23uPuP3P0K4FLgZeBTwOr+Cm6g2l95jDuXvcns/Gy+eumUaIcjItJtp/WQHXc/BvwxfEk7LS3Obb/dQFOL8+NrZpOSrHP5IjJwROzJa4niv17ayas7K/jhJ8/VE9REZMDp9tdYM3vBzIaFP3/BzG41s0H9F9rAs2lfFf++fCtXnD2aT80dH+1wRER6rCdjG9nuXm1mc4DPA8OB/+qfsAYed+fby95k+NBBfO8TM9FVvCIyEPWkKDSaWQpwI/ADd78LOLt/whp41u2t5M19VXz1sqkMT1cHSkQGpp4Uhf8ENgAfBp4Ol3XrkWFmlm9mK8ys2Mw2m9nXOmkzzcxeNbPjZvbNHsQVEx5ZtYeMwSl8/Lxx0Q5FROS09WTuo1+b2TKg2d2PmdkU4NVufrwJuM3d15lZJsHNcM+5e1G7NkeArwJXdTemWFFRe5xnN5Zx7bx80gfr3L2IDFw9ul7S3WvDy1Fx9+3ufks3P1fm7uvCn2uAYmBchzbl7r4GaOxJTLHgd2tLaWhu4TPzJ0Y7FBGRXjF3j+wOzQqAF4Fz3L26k/V3A7Xu/u9dfH4JsAQgLy9vTmFhYbf3XVtbS0ZGt0a8uq3FndtfPMaINOPbF8bmDKj9kXesS8ScITHzTsScoXd5L1q0aK27z+1sXUTHOr+n5MwAAA92SURBVMwsA3gCuLWzgtAd7v4g8CDA3LlzfeHChd3+7MqVK+lJ++5YsaWcQ8fWcNfHZ7Pw3LF9uu2+0h95x7pEzBkSM+9EzBn6L++I3W5rZqkEBWGpuy+L1H77229W7WFk5mA+OEPzBIrIwBeRohBOvf0LoNjd743EPiOh5MhRVmwt57oL8hmUouksRGTgi9Tw0UXADcCbZrY+XHYnMAHA3R8Ip+R+HRgGtJjZrcCM0x1mioRHX9uLAdfOmxDtUERE+kREioK7vwyc9BZfdz8ADJi5IY43NfP4mhLePz2PsdmxeYJZRKSnNOZxmv705gGO1DVwwwJdhioi8UNF4TT9ZtUeJuWmc9Hk3GiHIiLSZ1QUTkPR/mrW7nmb6y+cQFKSJr4TkfihonAaHlm9h8EpSVw9Z8CcAhER6RYVhR6qrm/kyTf28dFZY8keqtlQRSS+qCj00B/W7eNoQ7NOMItIXFJR6AF35zer9jBrfBbnjs+OdjgiIn1ORaEHVu08wvbyWs2GKiJxS0WhBx5ZvYesIal8ZFZsTnwnItJbKgrdVF5dz182HeBTc8aTlpoc7XBERPqFikI3Fa4poanFuV5DRyISx1QUuqGpuYVHV+/lkqm5TMpNj3Y4IiL9RkWhG/5aXM6B6npuUC9BROKcikI3LF29hzFZaVw6bVS0QxER6VcqCqew81AtL207zKfnTSAlWb8uEYlvOsqdwtLVe0lJMq6Zlx/tUERE+p2Kwkkca2jmd6+XcMU5oxmVmRbtcERE+p2Kwkk8vWE/1fVNOsEsIgkjIkXBzPLNbIWZFZvZZjP7WidtzMz+08y2m9lGMzs/ErGdzCOr93BmXgbzJo2IdigiIhERqZ5CE3Cbu08H5gNfNrMZHdosBqaGryXAzyIUW6d2H65jY2kV114wATM9SEdEEkNEioK7l7n7uvDnGqAYGNeh2ceAX3tgFZBtZmMiEV9n1pdUAjD/jJxohSAiEnHm7pHdoVkB8CJwjrtXt1v+DPB9d385fP88cLu7v97h80sIehLk5eXNKSws7Pa+a2trycjI6FbbpcXHeaGkiZ+9fyjJA/yRmz3JO14kYs6QmHknYs7Qu7wXLVq01t3ndrYupVdR9ZCZZQBPALe2Lwitqzv5yAkVy90fBB4EmDt3ri9cuLDb+1+5ciXdbf+T4leYmQ+XXfqebm8/VvUk73iRiDlDYuadiDlD/+UdsauPzCyVoCAsdfdlnTQpBdrfDDAe2B+J2Dpqam5h0/4qzh2fFY3di4hETaSuPjLgF0Cxu9/bRbOngBvDq5DmA1XuXhaJ+DraVl5LfWMLs/R0NRFJMJEaProIuAF408zWh8vuBCYAuPsDwB+BK4HtwFHglgjFdoKNpcFJZvUURCTRRKQohCePT3q21oMz3l+ORDynsqG0iszBKRTkaJpsEUksuqO5ExtLK5k5PoukAX7VkYhIT6kodFDf2MyWshrO1fkEEUlAKgodFJdV09TizNL5BBFJQCoKHWwsrQLg3Hz1FEQk8agodLChtJLcjEGMzdJU2SKSeFQUOniztIpzx2drEjwRSUgqCu3UHm9i+6Fa3Z8gIglLRaGdTfuqcEd3MotIwlJRaEd3MotIolNRaGdDaRXjsoeQkzE42qGIiESFikI7G0srmZWvXoKIJC4VhdCRugZKjhzTncwiktBUFEI6nyAioqLQpvVO5nPGqSiISOJSUQhtLK3kjJHpDEtLjXYoIiJRo6IQ2lhapfsTRCThqSgAB6rqKa85rvMJIpLwVBQIJsEDdOWRiCS8iBQFM/ulmZWb2aYu1g83sz+Y2UYze83MzolEXK02llaSkmScPXZYJHcrIhJzItVTeAi44iTr7wTWu/u5wI3AfZEIqtXG0irOzMskLTU5krsVEYk5ESkK7v4icOQkTWYAz4dttwAFZpYXodiCk8y6k1lEBHP3yOzIrAB4xt1PGBoys38F0tz9G2Y2D3gFuNDd13bSdgmwBCAvL29OYWFht2Oora0lIyPjXcsO1rVw+0vHuPnsQSzMj8/LUTvLO94lYs6QmHknYs7Qu7wXLVq01t3ndrrS3SPyAgqATV2sGwb8ClgP/AZYA8w61TbnzJnjPbFixYoTlj23+YBPvP0ZX7fnSI+2NZB0lne8S8Sc3RMz70TM2b13eQOvexfH1ZTTKjN9zN2rgVsALHjk2a7w1e8O1tQDMCZrSCR2JyIS02LiklQzyzazQeHbzwEvhoWi3x2sqifJIDdj0Kkbi4jEuYj0FMzsMWAhkGtmpcBdQCqAuz8ATAd+bWbNQBHw2UjEBXCw+ji5GYNJSY6J+igiElURKQruft0p1r8KTI1ELB0dqK4nb1haNHYtIhJzEv7r8cHqevKG6UlrIiKgokB5zXH1FEREQgldFI43NXOkrkFFQUQklNBFobz6OACjVRRERIAELwoHq4N7FEbpnIKICJDwRSHsKWSppyAiAgleFA6EPYW8TBUFERFI8KJQXl3PoJQksofG50R4IiI9ldBF4UB4j0Iw3ZKIiCR0UThYXa8rj0RE2knwonCcUSoKIiJtErYouLt6CiIiHSRsUag93sTRhmbNeyQi0k7CFoXWG9c0xYWIyDsSuCgEN66pKIiIvCNhi8KBKvUUREQ6Stii0PpsZp1TEBF5R+IWhap6MtNSGDooIg+fExEZECJSFMzsl2ZWbmabulifZWZPm9kGM9tsZrf0d0wHq4/rclQRkQ4i1VN4CLjiJOu/DBS5+yxgIfAfZjaoPwPSs5lFRE4UkaLg7i8CR07WBMi0YBKijLBtU3/GVK6iICJyAnP3yOzIrAB4xt3P6WRdJvAUMA3IBK5x92e72M4SYAlAXl7enMLCwm7HUFtbS0ZGBi3ufH75URZPSuXqM/u1QxITWvNOJImYMyRm3omYM/Qu70WLFq1197mdrnT3iLyAAmBTF+uuBn4EGDAF2AUMO9U258yZ4z2xYsUKd3cvr673ibc/4w+/sqtHnx+oWvNOJImYs3ti5p2IObv3Lm/gde/iuBorVx/dAiwL491OUBSm9dfO2h7DqYfriIi8S6wUhb3AZQBmlgecBezsr521FgU9hlNE5N0icpG+mT1GcFVRrpmVAncBqQDu/gBwD/CQmb1JMIR0u7sf7q94soakcsXZoxmbraIgItJeRIqCu193ivX7gQ9GIhaAuQUjmFswIlK7ExEZMGJl+EhERGKAioKIiLRRURARkTYqCiIi0kZFQURE2qgoiIhIGxUFERFpo6IgIiJtIjZLan8ws0PAnh58JBfotzulY1gi5p2IOUNi5p2IOUPv8p7o7iM7WzGgi0JPmdnr3tV0sXEsEfNOxJwhMfNOxJyh//LW8JGIiLRRURARkTaJVhQejHYAUZKIeSdizpCYeSdiztBPeSfUOQURETm5ROspiIjISagoiIhIm4QpCmZ2hZltNbPtZnZHtOPpD2aWb2YrzKzYzDab2dfC5SPM7Dkz2xb+d3i0Y+1rZpZsZm+Y2TPh+0TIOdvMfm9mW8K/+YIEyfvr4b/vTWb2mJmlxVveZvZLMys3s03tlnWZo5l9Ozy2bTWzy3uz74QoCmaWDPwUWAzMAK4zsxnRjapfNAG3uft0YD7w5TDPO4Dn3X0q8Hz4Pt58DShu9z4Rcr4P+LO7TwNmEeQf13mb2Tjgq8Bcdz8HSAauJf7yfgi4osOyTnMM/x+/Fjg7/Mz94THvtCREUQDmAdvdfae7NwCFwMeiHFOfc/cyd18X/lxDcJAYR5Drw2Gzh4GrohNh/zCz8cCHgJ+3WxzvOQ8D3gv8AsDdG9y9kjjPO5QCDDGzFGAosJ84y9vdXwSOdFjcVY4fAwrd/bi77wK2ExzzTkuiFIVxQEm796XhsrhlZgXAecBqIM/dyyAoHMCo6EXWL34M/CPQ0m5ZvOd8BnAI+FU4bPZzM0snzvN2933AvwN7gTKgyt2XE+d5h7rKsU+Pb4lSFKyTZXF7La6ZZQBPALe6e3W04+lPZvZhoNzd10Y7lghLAc4Hfubu5wF1DPwhk1MKx9E/BkwCxgLpZvaZ6EYVdX16fEuUolAK5Ld7P56gyxl3zCyVoCAsdfdl4eKDZjYmXD8GKI9WfP3gIuCjZrabYFjwUjN7hPjOGYJ/06Xuvjp8/3uCIhHveb8f2OXuh9y9EVgGvIf4zxu6zrFPj2+JUhTWAFPNbJKZDSI4KfNUlGPqc2ZmBGPMxe5+b7tVTwE3hT/fBPx3pGPrL+7+bXcf7+4FBH/Xv7n7Z4jjnAHc/QBQYmZnhYsuA4qI87wJho3mm9nQ8N/7ZQTnzuI9b+g6x6eAa81ssJlNAqYCr532Xtw9IV7AlcBbwA7gO9GOp59yvJig27gRWB++rgRyCK5W2Bb+d0S0Y+2n/BcCz4Q/x33OwGzg9fDv/SQwPEHy/i6wBdgE/AYYHG95A48RnDNpJOgJfPZkOQLfCY9tW4HFvdm3prkQEZE2iTJ8JCIi3aCiICIibVQURESkjYqCiIi0UVEQEZE2KgoiItJGRUFERNqoKIh0wszGm9k1Xaz7/83sopN89m4z+2b/RSfSf1QURDp3GcFcQp25EFgVwVhEIkZFQaQDM7sYuBe42szWh/PJtK6bDrzl7s0dPvOd8KlXfwXO6rDuSTNbGz4tbEm47J7WJ+OF7//FzL5qZulm9qyZbQifLNZpb0Wkv6REOwCRWOPuL5vZGuCb7r6pw+rFwJ/bLzCzOQST8Z1H8P/UOqD9VN7/y92PmNkQYI2ZPUEwceEy4D4zSwo/P4/gyVn73f1D4baz+jxBkZNQT0Gkc2cRTC7W0eV0KArAJcAf3P2oB8+v6DgD71fNbAPBkFM+MNXddwMVZnYe8EHgDXevAN4E3m9mPzCzS9y9qu9SEjk1FQWRDswsh+CJXo0dlg8Fst29s7nqO51Z0swWEjwDYIG7zwLeANLC1T8HbgZuAX4J4O5vAXMIisP3zOyfepuPSE+oKIicaBKdP6RkEbCik+UvAh83syFmlgl8pN26LOBtdz9qZtOA+e3W/YFguOgC4C8AZjYWOOrujxA8drKrk90i/ULnFEROtAXINbNNwBJ3fyVcvpjgCWfv4u7rzOxxgudX7AFearf6z8AXzGwjwXDUqnafazCzFUBluxPXM4F/M7MWgrn0v9i3qYmcnJ6nINJNZrYOuLDjsFIvtpdEcFL6U+6+rS+2KdJbGj4S6SZ3P78PC8IMYDvwvAqCxBL1FEREpI16CiIi0kZFQURE2qgoiIhIGxUFERFpo6IgIiJtVBRERKSNioKIiLT5f4lz2Mt+omQ9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "Q = 2000 # Pumping rate from well (m3/day)\n", + "r = 10 # Distance from well (m)\n", + "\n", + "# Time grid, days.\n", + "t = np.array([1, 2, 4, 8, 12, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100])\n", + "\n", + "# Calculate some synthetic data to fit.\n", + "S, T = 0.0003, 1000\n", + "s = theis_drawdown(t, S, T, Q, r)\n", + "\n", + "# Plot the data\n", + "titlestring = \"Theis: Analytical solution\"\n", + "plt.title(titlestring)\n", + "plt.plot(t, s, label='r = '+str(r)+' m')\n", + "plt.xlabel(r'$t\\;/\\;\\mathrm{days}$')\n", + "plt.ylabel(r'$s\\;/\\;\\mathrm{m}$')\n", + "plt.legend()\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f748dd1e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deXhU5fn/8fedyUZIyApZSCDsEBIWAwgqCgIqqIi1Vfkq4t66tbV1a/trq9YqX+vSVuq3tSriRqwLgihaZREXILITFllkC4SdAAFCSHL//phJDJDITLYzydyv65orM+fMnPOZAzl3zvOccx5RVYwxxgSuIKcDGGOMcZYVAmOMCXBWCIwxJsBZITDGmABnhcAYYwKcFQJjjAlwVghMnYnIwyLyei0/+1sRebG+M9WnOn6/wSLybT1k2Cwiw+u6nFOWqSLSuZafrZfvZfxDsNMBjP8TkaIqLyOA40CZ5/VP67JsVX28Lp8/lYjMBXoDSap6vD6X7eX6FeiiqhsAVPULoFtj56hvzfV7GTc7IjBnpKqRFQ9gK3B5lWlvOJ2vgoikA4MBBUY7GsaYJsQKgakvoSLyqogcFpFVItKvYoaIpIjIuyKyR0Q2icjPq8yrbHYRkXAReV1E9olIoYh8IyKJPmS4AVgAvAKMrzpDRF4RkX+IyIeejAtFpFOV+X8TkW0ickhEFovI4OpW4Pn8PadMWyEiY0RknmfSchEpEpFrRGSIiORXeW+aiLzn2Rb7RGSiZ3onEZntmbZXRN4QkRhvvrSIjBKR1Z7vtV1E7qsy7zYR2SAi+0Vkuoik1LCMuSJya5XXN4rIl57n3nyvHp5lFHr+/UdXmfeD2944zwqBqS+jgRwgBpgOVOzggoAPgOVAW2AY8EsRubiaZYwHooE0IB74GXDMs5yHRGTGGTLcALzheVxcTREZCzwCxAIbgD9XmfcN0AeIA94E3haR8GrWMRm4vuKFiPT2fK+PVPV8z+TenqOlt6p+UERcwAxgC5Du+VxOxWzgCSAF6OHZBg+f4ftWeAn4qapGAZnAbM/6LvQs82og2bPenJoWUhMvvlcI7n/j/wJtgHuAN0SkatPRD2174zArBKa+fKmqH6lqGfAa7nZ6gP5Aa1V9VFVLVPU74N/AtdUs4wTuAtBZVctUdbGqHgJQ1QmqellNKxeR84D2wH9UdTGwEfifU972nqrmqmop7mLRp2KGqr6uqvtUtVRVnwbCqL4NfBrQRUS6eF6PA95S1ZKaN02lAbh39Per6hFVLVbVLz3r36Cqn6rqcVXdAzwDXODFMsG93TJEpJWqHlDVJZ7p1wEvq+oST3/Jb4BBnia0+jQQiAQmeP6NZ+MueGOrvKfGbW+cZ4XA1JedVZ4fBcJFJBj3zjnF02RQKCKFwG+B6pp8XgM+AXJEZIeIPOn5a9Mb44H/qupez+s3OaV5qJqMkRUvROTXIrJGRA56MkYDCaeuxLND/Q9wvedoZ6wntzfSgC2eneFJRKSNiOR4mnYOAa9Xt/4aXAWMAraIyOciMsgzPQX3UUBF9iJgH+4jkfqUAmxT1fIq07acsp4at71xnp01ZBraNmCTqnY50xtV9QTu5oNHPH+1fgR8i7vpo0Yi0gJ384dLRCp2OGFAjIj0VtXlZ/j8YOBB3M1Wq1S1XEQO4G6uqc5k3Dv/L4Gjqjr/TN/NYxvQTkSCqykGT+Du5O6lqvtEZAye5rUzUdVvgCs8RfNu3IUqDdiBuxBXfM+WuI+4tlezmCO4zwirkOTdVwLPetJEJKhKMWgHrPNhGcZBdkRgGloucEhEHhSRFiLiEpFMEel/6htFZKiIZHna0g/hbvIoO/V91RjjeV8G7iaHPrjb2b/A3W9wJlFAKbAHCBaRPwCtanqzZ8dfDjzN6UcDu4CONXw0FygAJohIS0/n+LlVMhQBhSLSFrjfi9yISKiIXCci0Z5Ceojvt9mbwE0i0kdEwoDHgYWqurmaRS0DfiQiEeK+tuAWH77XQtyF5AERCRGRIcDl1KI/wjjDCoFpUJ4+g8tx75w3AXuBF3E3vZwqCXgH985sDfA57iaSigvPZtawmvHAJFXdqqo7Kx64/6K+ztNE9UM+AWbi/gt2C1CM+6/3H/IqkFWRr4qHgcmeZrCrq86osi064z4NNx+4xjP7EeAs4CDwIfDeGdZf1Thgs6dJ6Wd4OrNVdRbwe+Bd3AWoE9X3zQA8C5Tg3uFPxt2O7+33KsF9ssBI3P++zwM3qOpaH76DcZDYwDTG+E5EbgBuV9XznM5iTF3ZEYExPhKRCOBO4AWnsxhTH6wQGOMDz/UPe3A3obzpcBxj6oU1DRljTICzIwJjjAlwTfI6goSEBE1PT6923pEjR2jZsmXjBvKSZasdy1Y7lq32/DlfXbItXrx4r6q2Pm2Gqja5R3Z2ttZkzpw5Nc5zmmWrHctWO5at9vw5X12yAYu0mn2qNQ0ZY0yAs0JgjDEBzgqBMcYEuCbZWWyMqbsTJ06Qn59PcXFxo687OjqaNWvWNPp6veXP+bzJFh4eTmpqKiEh3t281wqBMQEqPz+fqKgo0tPTEanpRqsN4/Dhw0RFRTXqOn3hz/nOlE1V2bdvH/n5+XTo0MGrZVrTkDEBqri4mPj4+EYvAqZhiQjx8fE+HelZITAmgFkRaJ58/XcNqEIw59vdPD93g9MxjDHGrwRUIfh6w17++tl6TpSVn/nNxpgGVVhYyPPPP18vy9q6dStDhw6lb9++9OrVi48++uikeRdddBE9evQgIyODzZs3n/TZe+65h8jI70fOVFXuv/9+OnfuTK9evViyZEnlvI8//phu3brRuXNnJkyYUDl9//79jBgxgi5dujBixAgOHDhwxsw33ngj77zzTh2+df0JqELQOy2GktJyvt152OkoxgS8+iwEjz32GFdffTVLly4lJyeHO++8s3LeDTfcwP3338+aNWvIzc2lTZs2lfMWLVpEYWHhScuaOXMmGzduZP369bzwwgvccccdAJSVlXHXXXcxc+ZMVq9ezZQpU1i9ejUAEyZMYNiwYaxfv55hw4adVCSagsAqBKkxACzbVniGdxpjGtpDDz3Exo0b6dOnD/ff79XInDUSEQ4dOgTAwYMHSUlJAWD16tWUlpYyYsQIACIjI4mIcA/NXFZWxv3338+TTz550rKmTZvG2LFjEREGDhxIYWEhBQUF5Obm0rlzZzp27EhoaCjXXnst06ZNq/zM+PHjARg/fjzvv//+aRlVlbvvvpuMjAwuvfRSdu/eXTnv0UcfpX///mRmZnL77bejqmzcuJGzzjqr8j3r168nOzu7cttlZGTQq1cv7rvvvjptOwiw00dTY1sQ3zKU5dsKuX5g+zN/wJgA8cgHq1i941C9LjMjpRV/vLxnjfMnTJhAXl4ey5Ytq3b+4MGDOXz49KP3p556iuHDh5807eGHH+aiiy7iueee48iRI3z22WcArFu3jpiYGH70ox+xadMmhg8fzoQJE3C5XEycOJHRo0eTnJx80rK2b99Oampq5evU1FS2b9/O9u3bSUtLO2n6woULAdi1a1flcpKTk0/ayVeYOnUq3377LStXrmTXrl1kZGRw8803A3D33Xfzhz/8AYBx48YxY8YMLr/8cqKjo1m2bBl9+vRh0qRJ3Hjjjezfv5+pU6eydu1aROS0I5raCKhCICL0So1mRf5Bp6MYY87giy++8Pq9U6ZM4cYbb+TXv/418+fPZ9y4ceTl5VFaWsoXX3zB0qVLadeuHddccw2vvPIKI0eO5O2332bu3LmnLUurGaNFRGqc7q158+YxduxYXC4XKSkpXHjhhZXz5syZw5NPPsnRo0fZv38/PXv25PLLL+fWW29l0qRJPPPMM7z11lvk5uYSFBREeHg4t956K5deeimXXXaZ1xlqElCFANz9BHPXrafoeCmRYQH39Y2p1g/95e4UX44IXnrpJT7++GMABg0aRHFxMXv37iU1NZW+ffvSsWNHAMaMGcOCBQtISkpiw4YNdO7cGYCjR4/SuXNnNmzYQGpqKvn5+ZXLzs/PJyUlhZKSErZt23badIDExEQKCgpITk6moKDgpH6IqqorHMXFxdx5550sWrSItLQ0Hn744cprAK666ioeeeQRLrzwQrKzs4mPj+fw4cPk5uYya9YscnJymDhxIrNnz/Z6u1YnoPoIwF0IVCFvux0VGOOkqKioanf0Fb744guWLVt22uPUIgDQrl07Zs2aBcCaNWsoLi6mdevW9O/fnwMHDrBnzx4AZs+eXdlGv3PnTjZv3szmzZuJiIhgwwb3qeWjR49mypQpqCoLFiwgOjqa5ORk+vfvz/r169m0aRMlJSXk5OQwevToys9MnjwZgMmTJ3PFFVeclvH8888nJyeHsrIyCgoKmDNnDkDlTj8hIYGioqKTziQKDw/n4osv5o477uCmm24CoKioiIMHDzJq1Cj++te/1ti05ouA+5O4osN4+bZCBnaMdziNMYErPj6ec889l8zMTEaOHMlf/vKXWi/r6aef5rbbbuPZZ59FRHjllVcQEVwuF0899RTDhg2rGMuE22677QeXNWrUKN5//306d+5MREQEkyZNAiA4OJiJEydy8cUXU1ZWxs0330zPnu4jqYceeoirr76al156iXbt2vH222+fttwrr7yS2bNnk5WVRdeuXbngggsAiImJ4bbbbiMrK4v09HT69+9/0ueuu+463nvvPS666CLAXQiuu+46iouLUVWeffbZWm+3CgFXCOJahtIuLoLl+XbmkDFOe/PNN+tlORkZGXz11VfVzhsxYgQrVqz4wc8XFRVVPhcRnnnmmWrv5zNq1ChGjRp12vT4+PjKI5KaiAgTJ06sdt5jjz3GY489Vu28L7/8kptvvhmXywVAUlISubm5P7guXwVcIQDolRrN0q1WCIwx/u3KK69k48aNde4DOJOALAR90mKYsaKAPYeP0zoqzOk4xhhTralTpzbKegKusxjcHcYAK6x5yAS46k6JNE2fr/+ujVYIRORlEdktInnVzLtPRFREEhojS8+UVriChOV2hbEJYOHh4ezbt8+KQTNTMR5BeHi4159pzKahV4CJwKtVJ4pIGjAC2NpYQSJCg+nSJpJldmGZCWAV58tXnFrZmIqLi33aUTU2f87nTbaKEcq81WiFQFXniUh6NbOeBR4ApjVWFnD3E3y8aieqavdkNwEpJCTE6xGs6tvcuXPp27evI+v2hj/na4hs0piHhZ5CMENVMz2vRwPDVPUXIrIZ6Keqe2v47O3A7QCJiYnZOTk51a6jqKjopFvK1mTuthO8sqqEJ89vQZuIxmkh8zabEyxb7Vi22vHnbODf+eqSbejQoYtVtd9pM1S10R5AOpDneR4BLASiPa83AwneLCc7O1trMmfOnBrnVbVq+0Ft/+AMfX9pvlfvrw/eZnOCZasdy1Y7/pxN1b/z1SUbsEir2ac6edZQJ6ADsNxzNJAKLBGRpMZYedfESMJDgli+zfoJjDGBzbHrCFR1JVB5Z6YzNQ3Vt2BXEJkp0XaFsTEm4DXm6aNTgPlANxHJF5FbGmvdNemdFsOqHQdt6EpjTEBrtEKgqmNVNVlVQ1Q1VVVfOmV+emMdDVTonRZD8Yly1u2yoSuNMYErIK8srtCn8k6k1k9gjAlcAV0I0uJaEBsRYlcYG2MCWkAXAvfQlTHWYWyMCWgBXQjA3U+wbtdhjpaUOh3FGGMcEfCFoE9aNOUKedsPOR3FGGMcEfCFoFeVoSuNMSYQBXwhSIgMo21MC5ZZP4ExJkAFfCEA951IbZAaY0ygskIA9E6LZtv+Y+wrOu50FGOMaXRWCIDeqRVDV9qFZcaYwGOFAMhsG02QwDLrMDbGBCArBEDLsGC6tImyC8uMMQHJCoFH77RoVuQftIG8jTEBxwqBR++0GPYfKSH/wDGnoxhjTKOyQuBR0WFs/QTGmEBjhcCjW1IUYcFBdoWxMSbgWCHwCHEF0Ss1mq827nM6ijHGNCorBFWMykpmTcEhG7HMGBNQrBBUcVmvFFxBwvtLtzsdxRhjGo0VgipaR4UxuEsC05btoLzcTiM1xgQGKwSnuLJvW7YXHuObzfudjmKMMY3CCsEpRmQkEhHq4v1l1jxkjAkMVghOEREazCU9k5ixooDiE2VOxzHGmAZnhaAaY/q25XBxKXO/3e10FGOMaXBWCKpxTqd4WkeFMdXOHjLGBAArBNUIdgUxuncKc9buofBoidNxjDGmQVkhqMGVfdtSUlbORyt3Oh3FGGMalBWCGvRMaUXnNpF2cZkxptmzQlADEeHKvm3J3byfbfuPOh3HGGMajBWCHzC6dwoA05fvcDiJMcY0nEYrBCLysojsFpG8KtP+IiJrRWSFiEwVkZjGyuONtLgIBqTH8d6SfBu5zBjTbDXmEcErwCWnTPsUyFTVXsA64DeNmMcrY/q2ZeOeI6zaccjpKMYY0yAarRCo6jxg/ynT/quqpZ6XC4DUxsrjrUuzkgl1BVmnsTGm2ZLGbPIQkXRghqpmVjPvA+AtVX29hs/eDtwOkJiYmJ2Tk1PtOoqKioiMjKyvyAA8t7SYDYXlPDukBUEitV5OQ2SrL5atdixb7fhzNvDvfHXJNnTo0MWq2u+0GaraaA8gHcirZvrvgKl4CtOZHtnZ2VqTOXPm1Divtj5asUPbPzhD563bXaflNES2+mLZasey1Y4/Z1P173x1yQYs0mr2qY6fNSQi44HLgOs8Qf3O0O5tiAoPtltOGGOaJa8LgYj085zZs8Rzls9KEVlRl5WLyCXAg8BoVfXbk/XDQ1xcmpXMJ3k7OVpSeuYPGGNME+LLEcEbwCTgKuBy3H/FX+7th0VkCjAf6CYi+SJyCzARiAI+FZFlIvJPH/I0qjF923KkpIxPV+9yOooxxtSrYB/eu0dVp9d2Rao6tprJL9V2eY1tQHoc6fERvDDvO0b3TkHq0GlsjDH+xJcjgj+KyIsiMlZEflTxaLBkfiYoSLjnwi6s2nGI/9pRgTGmGfGlENwE9MF9UdjlfN88FDCu6JNCx4SWPPvpOhvc3hjTbPjSNNRbVbMaLEkTEOwK4ufDuvDLt5bx8aqdjMpKdjqSMcbUmS9HBAtEJKPBkjQRl/dOoVPrlvz1MzsqMMY0D74UgvOAZSLybX2dPtoUuYKEXwzvyrpdRXy4ssDpOMYYU2e+NA2desO4gHVpVjITZ6/nb7PWMyorGVeQnUFkjGm6vD4iUNUt1T0aMpy/cgUJvxjWlQ27i5ixwsYqMMY0bY7fYqKpGpmZRPekKP722XpKy8qdjmOMMbV2xkIgIoPErp46TVCQ8MvhXflu7xEbwcwY06R5c0QwHlgsIjkicqOIJDV0qKbi4p6JZCS34u+z7KjAGNN0nbEQqOrPVPUs4GEgFnhFROaLyOMicr6IuBo6pL8SEe4d0ZXN+47anUmNMU2WL53Fa1X1WVW9BLgQ+BL4CbCwocI1BcN7tCGrbTR/n72eE3ZUYIxpgmrVWayqx1T1I1W9R6sb7SaAuI8KurBt/zHeXZzvdBxjjPGZnTVUD4Z2a0PvtBiem72BklI7KjDGNC3enDU0UkRSGiNMUyUi3Du8C9sLjzHpq01OxzHGGJ94c0RwFTBdRLaJyKci8hcRuV5EMgO5o/hUF3RtzYiMRJ75dB2b9h5xOo4xxnjNm7OGbvX0AzwNrAM2AUOBXCAgryyujojw2JhMQoODePDdFXZDOmNMk+HTeASqepeqPq+qtwCDcZ85ZDwSW4Xz+0szyN20nzdytzodxxhjvOJLITgkItkVL1R1MdC1/iM1bT/pl8rgLglM+GgN2wuPOR3HGGPOyJdCcDPwvIhMEpG7ReRfwIkGytVkiQiPX5mFAr99byWq1kRkjPFvvlxQth44B/gISATWAKMaKFeTlhYXwQMXd+PzdXt4b4ldcWyM8W9eFwIRiQduByKBD4B/qeq+hgrW1N0wKJ1+7WN5dMZqdh8udjqOMcbUyJemoalAa+Bx4C/AQRFZ2yCpmoGgIOF/f9yLYyfK+OO0VU7HMcaYGvlSCKJU9VFgl6peAIwFJjVMrOahU+tI7h3elZl5O5lpw1oaY/yUL4Wgon3juIi0UNV3sT6CM7ptcAey2kbz+2mrKCqxjmNjjP/xpRA8JSJxwH+Al0XkHqBtw8RqPoJdQfzvVb0oPFrClLUlTscxxpjT+HLW0Luqul9Vn8Z95lAacEWDJWtGMlJaceeQTny1o5Rpy+wsImOMfwn29o0i0gX4DXBUVe9uuEjN0z3DuvDJ0u948N0VdG4TSc+UaKcjGWMM4FvT0GvA28D5AJ6bzr3aIKmaoRBXEHf2CSc2IpSfvraYA0esmcgY4x98KQRBqjoTKANQ1Twgs0FSNVPRYcI/r89m9+Hj3D1liY1zbIzxC74Ugh0i0gFQABERoIW3HxaRl0Vkt4jkVZkW57m19XrPz1gf8jRJvdNi+POYTL7asI8nP/nW6TjGGONTIfgl8G8gSURuAnKAvB/+yEleAS45ZdpDwCxV7QLM8rxu9n7SL40bBrXnhXnfWeexMcZxvpw1tBn3jvznQEfgc2CcD5+fB+w/ZfIVwGTP88nAGG+X19T9/rIMBqTH8eC7K1i945DTcYwxAUy8vTumiFwIXAcU4j4SWAHkqepxr1cmkg7MUNVMz+tCVY2pMv+AqlbbPCQit+O+1xGJiYnZOTk51a6jqKiIyMhIbyM1qlOzHTyuPPz1MVxB8PCgFkSGit9k8yeWrXYsW+35c766ZBs6dOhiz0BjJ1NVrx7ADuBK4CfAn4BpwAZvP+9ZRjru4lHxuvCU+Qe8WU52drbWZM6cOTXOc1p12ZZuPaBdfvuRXvfvBXqitKzxQ3k0te3mLyxb7fhzNlX/zleXbMAirWaf6ksfwQZVnaqqb6vq71X1ClXtXKuy9L1dIpIM4Pm5u47La3L6pMXw2JhMvtyw1zqPjTGOOGMhEJFXReSXwHwR+XU9r386MN7zfDzuo4yAc3X/NMYNdHcev/jFd07HMcYEGG+uLJ4M9AaSgItF5OfAcs9jhaq+7c2KRGQKMARIEJF84I/ABOA/InILsBV3s1NAenh0T/YfKeGxD9fQMiyYsQPaOR3JGBMgzlgIVHUW7lM7ARCRYCADd3E4G/fVxmekqmNrmDXMm883d64g4dlr+nCkpJTfTl1Jy7BgRvdOcTqWMSYA+DJCWT8Raamqpaq6QlVfU9X7GjJcoAkNDuL/rsumf3ocv3prGZ+t3uV0JGNMAPCls/hVPLeXABCRBBG5rP4jBbYWoS5eGt/PfcfSN5fw9Ya9TkcyxjRzPg1Mo6qVg++q6l7g0fqPZKLCQ5h80wDS4yO49dVFLNl6wOlIxphmzJdC8J2IjDxlWmh9hjHfi20Zyuu3nE3rqDBufDnXrj42xjQYXwrBPcATIvKmiPxcRP4FbGygXAZo0yqc1285m5Zhwdzw8kI27ilyOpIxphny5V5DBUA28C7QGvctJv6ngXIZj7S4CF6/9WxU4doXFrCmwI4MjDH1y5sLyv7o+XkOEKHuISt/r6r/UNUjDZ7Q0Kl1JFNuH4hLhKv/NZ9vNp967z5jjKk9b44IPvH8/CWwUETWicj7IvKoiPy4AbOZKromRvHOHYNoHRnG9S8utFNLjTH1xptCcKeI/Ar4JzAYyMJ9ttBG3BeUmUaSGhvB2z8bRLekKH76+mLeWZzvdCRjTDPgTSGoGC9gPO4rjFfjLgRdgNwGymVqEB8Zxpu3DWRgxzjue3s5/55n9yYyxtRNXW8xMQAvbzFh6k9kWDAv39ife99axp8/WsO+IyU8eEk33KOHGmOMb7y56dxJVLUU9xlDK+o/jvFWWLCL58aeRUxEHv/8fCP7jxzn8SuzCHb5ckawMcb4UAhE5BvcO/+VFT9VdU9DBTNn5goS/jwmk4SWofx99gZ2HTrO38f2JbpFiNPRjDFNiC9/Pl6BuxkoFPgZsFlEtjRIKuM1EeFXF3Xjz1dm8tWGvYz5x1ds2H3Y6VjGmCbElwvKdqjqx6r6pKpeDfQDXmy4aMYX153dnjdvG8jh4hOM+cfXdnqpMcZrvtyG+qSRUlR1DdCz3hOZWhvQIY7pd59HekIEt722iOdmrae8XJ2OZYzxc750Fr8lImnAJtz9BMVA9wZJZWotJaYF7/zsHB56dwVPf7qO1QWHeOonvWkZ5vN5AcaYAOH13kFVBwGISGfcF5XFAc80UC5TB+EhLp69pg89U6J5YuYaNu09wgvj+tEuPsLpaMYYP+RL01C8iNyB++ri7cCbqmqXtvopEeG28zvyyk0DKDhYzOUTv2T2Wus3MMaczpezhqbivuvo48BfgIMisrZBUpl6c37X1ky/+1ySo8O5+ZVFPPLBKo6Xlp35g8aYgOFLIYhS1UeBXap6ATAWmNQwsUx9ah/fkvfvOpcbz0ln0lebGfOPr+0UU2NMJZ+GqvT8PC4iLVT1XWBUA2QyDSA8xMXDo3vy0vh+7DpUzGXPfcmU3K2o2llFxgQ6XwrBUyISB7wFvCwi9wBtGyaWaSjDeiTy8S8G0699HL95byV3vbmEg0dPOB3LGOMgrwqBiAQB3VR1v6o+A3wEpOG+2tg0MW1ahfPqzQN4aGR3/rtqFyP/No91B6zfwJhA5VUhUNVyYFiV16+p6gOquqrBkpkGFRQk/OyCTrx7xzmEBAfxxMJi/vzhao6VWEEwJtD40jS0TET+6Dk6MM1E77QYPvz5YC5IC+bfX2xi5N/msfC7fU7HMsY0Il926mnAtcAOEZkmIn8SkZ80UC7TiCLDgrmxZxhv3nY25QrXvLCA37+fR9HxUqejGWMagTeD148UkRRVvVpVewDtgUeADdhQlc3KOZ0S+PiXg7n53A68vnALFz87j3nr7E7jxjR33hwRXAVMF5FtIvIp8BjuEcoWAw82ZDjT+CJCg/nD5Rm887NBhIcEccPLudz/9nI7s8iYZuyMhUBVb1XVfsDTwDrcN50binu8YhuPoJnKbh/Hhz8fzJ1DOvHe0u0Me+Zzpi7Nt+sOjGmGfOkjuElV71LV51X1Ftz3HPqyPkKIyL0iskpE8kRkioiE18dyTd2Eh7h44JLuTLvrXNrGhHPvW98F/GoAABWSSURBVMu55l8LWFNwyOloxph65EshOCQi2RUvVHUx0LWuAUSkLfBzoJ+qZgIu3J3Sxk9kto1m6p3nMuFHWazffZjLnvuSh6ev4uAxay4ypjnw5Sb1twCvichq3P0DWUB97QmCgRYicgKIAHbU03JNPQkKEq4d0I5LMpN46r/fMnn+Zmas2MFDI3vwo75tCQoSpyMaY2pJfGnzFREX8COgF7APeE1V63zSuYj8AvgzcAz4r6peV817bgduB0hMTMzOycmpdllFRUVERkbWNVKDaE7ZNh8s47XVJWw8WE7nmCCu7xFKerTLL7I1JstWO/6cDfw7X12yDR06dLGnz/dkqurVA/gM6O3t+31YbiwwG/ctrkOA94Hrf+gz2dnZWpM5c+bUOM9pzS1bWVm5vvXNVj3r0f9q+kMz9N6cpZp/4KhfZGsslq12/Dmbqn/nq0s2YJFWs0/1pY/gAeBZEZkkIkm1KkfVGw5sUtU9qnoCeA84px6XbxpIUJBwdb80Zt83hJ+e34kZKwsY+tRcnpi5xvoPjGlCvC4EqrpEVS8EZgCfeG430aIeMmwFBopIhIgI7nsaramH5ZpGEt0ihIdGdmfOfUO4rFcyL8z7jiF/mcPLX26ipLTc6XjGmDPw6b5Bnh31t8D/AfcA60VkXF0CqOpC4B1gCbDSk+mFuizTOKNtTAueuboPH9x9Hj1Tonl0xmpGPPs5H64osOsPjPFjvoxZ/CXusYqfxT0OwY3AEGCAiNRpx62qf1TV7qqaqarjVPV4XZZnnJXZNprXbhnA5JsH0CLExV1vLmH0xK+Ys3a3FQRj/JAvp4/+DFilp/8m3yMi1pRjTiIiXNC1Ned1TmDq0u38bdY6bnrlG/q2i+FXI7pyXucE3AeYxhin+VII2gD3ikghkAesAPI8f71f2hDhTNPnChJ+nJ3KFX1SeHdxPs/N3sC4l3Lpnx7LvSO6ck6nBKcjGhPwfOkjeB13R/ECoCPwB2AVgKp+V//RTHMS4gri2gHtmH3fBfxpTCbb9h/jf/69kLEvLCB3036n4xkT0Hw5ItigqlM9z99uiDCm+QsLdjFuYHt+kp3KlNytPD93I1f/az4DO8Zx55DODO5iTUbGNDZvxiN4VUR+CcwXkV83QiYTAMJDXNx0bgfm3T+U31+Wwea9R7nh5VxGT/yKj1YWUFZuncrGNBZvmoYme96XBIwTkS0iMt1GKDP1oUWoi1vO68DnDwzhf6/Kouh4KXe+sYQRz37OfxZts+sQjGkEZ2waUtVZwKyK1yISjHtgmt7AAKyZyNSDsGAX1/Rvx4+z05iZV8DzczbywDsr+Oun6xiSXE7/46W0DPOlJdMY4y2ff7NUtRT3GUMr6j+OCXSuIOGyXilcmpXM5+v28Pycjby5dj8znpjF2AHtGH9OOikx9XFBuzGmgv2JZfySiDCkWxuGdGvDi+/PYunRWP79xXe8+OUmRmUlc8t5HeiTFuN0TGOaBSsExu91jnFx65izyD9wlMlfbyYndxsfLN9BdvtYbj2vAxf1TMJl4yEYU2tWCEyTkRobwe8uzeAXw7vyn2+2MenrTdzxxhJSY1tw3dntuaZ/GnEtQ52OaUyT49NN54zxB5Fhwdx8Xgfm3jeUf15/FqmxLfjfj9cy8IlZ/Oo/y1i69YDd08gYH9gRgWmyXEHCJZnJXJKZzLpdh3lt/hbeW5LPe0u2k9U2mnGD2jO6dwrhIQ0zcpoxzYUdEZhmoWtiFH8ak8nC3w3nT1f0pPhEGQ+8s4KzH5/Fn2asZsPuw05HNMZv2RGBaVYiw4IZNyid6we2Z+Gm/bw2fwuTv97MS19uol/7WK7pn8alvZKJCLX/+sZUsN8G0yyJCAM7xjOwYzx7i47z3pJ8cnK3cf87K3j0g9WM7pPCtf3bkZUa7XRUYxxnhcA0ewmRYdx+fiduG9yRbzYfICd3K+8szueNhVvpmdKKq/ulMbp3CrF2xpEJUFYITMAQEQZ0iGNAhzj+OLon05dtZ0ruNv44fRWPfbiaC7u34aqzUhnavQ0hLus+M4HDCoEJSNEtQhg3KJ1xg9JZveMQ7y7JZ9qy7XyyahdxLUMZ3TuFH2en0jOlld0W2zR7VghMwMtIaUVGSgYPjezOvHV7eHdJPm8u3MorX2+me1IUY/q25fLeKbS1exyZZsoKgTEeIa4ghvVIZFiPRAqPlvDBigLeW5LPhJlrmTBzLQPS4xjdJ4VRWcl2BbNpVqwQGFONmIhQxg1sz7iB7dm67yjTl2/n/WU7+H/v5/Hw9FWc37U1V/RJIbzUrmA2TZ8VAmPOoF18BHdf2IW7hnZmTcFhpi3fzgfLdjB77W5CXTBi9xIuy0pmSLc2tAi1q5hN02OFwBgviYinP6EVD17cnUVbDvB/H33Dgo37+HBFARGhLob1SOTSrCSGdGtjt7YwTYYVAmNqISjIfSrq0Z5hnDf4fHI37WfGygI+ztvJB8t30NJTFEZlJXNB19Z2pGD8mhUCY+oo2BXEOZ0TOKdzAo+O7snCTfuZsaKAj/MKmL58By1CXFzQtTWXZCYxtHsboluEOB3ZmJNYITCmHgW7gji3cwLndk7g0St6svC7/XyyaiefrNrJx6t2EuISBnVK4JKeSYzISKR1VJjTkY2xQmBMQwlxBXFelwTO65LAI6N7siy/kE/ydjIzbye/nbqS372/kux2sYzISGR4RiKdWkc6HdkEKCsExjSCoCDhrHaxnNUulodGdmftzsN8nLeTT1fv4omZa3li5lo6JrRkeEYiw3skkt0+1obfNI3GCoExjUxE6JHcih7Jrbh3RFe2Fx5j1ppdfLp6F5O+2sQL874jNiKEC7snMqxHG87rkkCrcOtXMA3HLwqBiMQALwKZgAI3q+p8Z1MZ0zjaxrTghkHp3DAoncPFJ5i3bi+frdnFZ2t28e6SfIKDhP7pcQzt3poLu7ehU+tIu/+RqVd+UQiAvwEfq+qPRSQUiHA6kDFOiAoP4dJeyVzaK5nSsnKWbC1k9trdzFm7m8c/WsvjH60lLa4FF3Zrw5DubRjUMd6uVzB15nghEJFWwPnAjQCqWgKUOJnJGH8Q7AqqvG32QyO7s73wGHM8ReGtRduYPH8LYcFBDOwYz/ldW3NB19Z0at3SjhaMz0TV2XuliEgf4AVgNdAbWAz8QlWPnPK+24HbARITE7NzcnKqXV5RURGRkf559oVlqx3LdrqSMmXt/jJW7i0jb28ZBUfcv8fx4UJWaxdZCS7ahRXTOsa2W234c766ZBs6dOhiVe136nR/KAT9gAXAuaq6UET+BhxS1d/X9Jl+/frpokWLqp03d+5chgwZ0iBZ68qy1Y5lO7Nt+48yb/0ePv92D19v3EfR8VJcAn3bxXJelwQGd0mgd2oMwX4y4I6/bLea+HO+umQTkWoLgeNNQ0A+kK+qCz2v3wEecjCPMU1OWlwE153dnuvObs+JsnKWbDnAa58tZmtJOX+btZ6/fraeqLBgBnaKZ3CXBM7rnECHBGtGMm6OFwJV3Ski20Skm6p+CwzD3UxkjKmFEFcQZ3eM51jXUIYMOY8DR0qY/90+vli/ly837OHT1bsA99lKgzrFc06neM7plEBSdLjDyY1THC8EHvcAb3jOGPoOuMnhPMY0G7EtQxmVlcyorGQAtuw7whfr9/LVhr3MWrOLdxbnA9CxdUvO6RTPuZ0SGNgxnlgbfCdg+EUhUNVlwGntVsaY+tc+viXt41ty/cD2lJcra3YeYv7GfXy1YS9Tl2zn9QVbEYHuSa0Y1DGegR3dZy7FRFhhaK78ohAYY5wRFCT0TImmZ0o0tw7uyImyclbkH+TrDXuZ/90+3li4hZe/2oQI9EhqxUArDM2SFQJjTKUQVxDZ7WPJbh/LPcO6cLy0jOXbDrLgu30sOKUwdE9qxYD0WAZ0iKd/h1jaRFkfQ1NlhcAYU6OwYFflRW0/P6Uw5G7az9uL85k8fwsAHRJaMiA9rvL9qbEt7KykJsIKgTHGa1ULA8CJsnJW7ThE7qZ95G46wMerdvLWom0AJLYKo196HP3ax9I/PY7uSVF+cx2DOZkVAmNMrYW4guiTFkOftBhuPx/Ky5X1u4vI3bSPbzYfYPGWA3y4ogCAlqEu+rZzNzuFHiyj3/FSIsNsF+QP7F/BGFNvgoKEbklRdEuKYtygdAC2Fx5j0eb9LN5ygG82H+Dvs9ejCk8v/oRuSa04q11MZb9Eu7gIa05ygBUCY0yDahvTgrZ92nJFn7YAHCo+weQPPqc0ph1Lth5g2rIdvLFwKwAJkaH09Qzgc1a7GLJSo4kItd1UQ7MtbIxpVK3CQ8hqHcyQIV0BKCtX1u8+zOIt7qakpVsLK69+dgUJ3RKj6Nsuhr7tYunbLoYO8S0JstHb6pUVAmOMo1xBQvekVnRPasV1Z7cHYF/RcZbnF7J0ayHLthUyvcpRQ6vwYPq0i6VPajS902LonRZDQmSYk1+hybNCYIzxO/GRYVzYPZELuycC7k7ojXuKWLqtkKVbD7Bs20EmztlAuefmyW1jWtAnLYbeadH0TrUmJV/ZljLG+L2gIKFLYhRdEqO4ul8aAEdLSlm14xDLtxWydFshy7cV8uFK9xlKQQKd20TSKzWGXqnRZLWNpkdyKxvNrQZWCIwxTVJEaDD90+Ponx5XOW1v0XGWbytkRf5BVm4/yNxvd1feVC/Yc0ZTr9QYstq6i0PXpEjCgq04WCEwxjQbCZFhDOuRyLAe7iYlVaXgYDEr8r8vDh+tLGBKrru/IcTlLg6ZKdFkeopD9+QoJ7+CI6wQGGOaLREhJaYFKTEtuCTTfRtuVWXb/mOs3O4uDHnbDzIzbyc537iviA4OEpJbCmfvWU5mSit6epqVmvPFb833mxljTDVEhHbxEbSLj+DSXt8Xh/wD3xeHL/I2M2ft981KItAhviU920bTM6UVPVNakZHcivhmcraSFQJjTMATEdLiIkiLi2BUVjJnh+/kggsuYNeh46zacZC87YdYteMgS7Yc4IPlOyo/l9gqjIzkVvRMiSbDUxzaxUU0uescrBAYY0w1RISk6HCSosMr+xwACo+WsLrgEKt3eB4Fh5i3fi9lnnNZW4a66JYURY/kVpWPbklRft205L/JjDHGD8VEhHJOpwTO6ZRQOa34RBkbdhexasdB1hQcZnXBIaYv//4iOID28RH0SPq+MPRIjiIt1j+OHqwQGGNMHYWHuMhs6z7zqIKqsr3wGGsKDrOm4FDl45PVO1HPhXARoS66JrqLQrfEKLont6J7UlSjj/5mhcAYYxqAiJAaG0FqbAQjMr5vWjpaUsq6XUWsLTjE2p2HWbvzEDPzdjIld1vle9pEhbnv4poYVXk31y5tomgR2jDXPFghMMaYRhQRGlw5hkMFVWXXoeOs2XmIdTsP8+2uw3y78zCvLthCSWk54D5zqX1cBNd0LGdIPWeyQmCMMQ6r2jE9tFubyumlZeVs2X+UdTsPs3bnYdbtOkyrsIP1vn4rBMYY46eCXUF0ah1Jp9aRjMxyX/Mwd+7cel+PDSBqjDEBzgqBMcYEOCsExhgT4KwQGGNMgLNCYIwxAc4KgTHGBDgrBMYYE+CsEBhjTIATrbj7URMiInuALTXMTgD2NmIcX1i22rFstWPZas+f89UlW3tVbX3qxCZZCH6IiCxS1X5O56iOZasdy1Y7lq32/DlfQ2SzpiFjjAlwVgiMMSbANcdC8ILTAX6AZasdy1Y7lq32/DlfvWdrdn0ExhhjfNMcjwiMMcb4wAqBMcYEuGZVCETkEhH5VkQ2iMhDTuepSkQ2i8hKEVkmIosczvKyiOwWkbwq0+JE5FMRWe/5GetH2R4Wke2ebbdMREY5lC1NROaIyBoRWSUiv/BMd3zb/UA2x7ediISLSK6ILPdke8Qz3R+2W03ZHN9uVTK6RGSpiMzwvK737dZs+ghExAWsA0YA+cA3wFhVXe1oMA8R2Qz0U1XHL1IRkfOBIuBVVc30THsS2K+qEzxFNFZVH/STbA8DRar6VGPnOSVbMpCsqktEJApYDIwBbsThbfcD2a7G4W0nIgK0VNUiEQkBvgR+AfwI57dbTdkuwQ/+zwGIyK+AfkArVb2sIX5Xm9MRwQBgg6p+p6olQA5whcOZ/JKqzgP2nzL5CmCy5/lk3DuRRldDNr+gqgWqusTz/DCwBmiLH2y7H8jmOHUr8rwM8TwU/9huNWXzCyKSClwKvFhlcr1vt+ZUCNoC26q8zsdPfhE8FPiviCwWkdudDlONRFUtAPdOBWhzhvc3trtFZIWn6ciRZquqRCQd6AssxM+23SnZwA+2nad5YxmwG/hUVf1mu9WQDfxguwF/BR4AyqtMq/ft1pwKgVQzzW8qO3Cuqp4FjATu8jSBGO/8H9AJ6AMUAE87GUZEIoF3gV+q6iEns5yqmmx+se1UtUxV+wCpwAARyXQiR3VqyOb4dhORy4Ddqrq4odfVnApBPpBW5XUqsMOhLKdR1R2en7uBqbibsvzJLk87c0V7826H81RS1V2eX9Zy4N84uO087cjvAm+o6nueyX6x7arL5k/bzpOnEJiLuw3eL7ZbharZ/GS7nQuM9vQv5gAXisjrNMB2a06F4Bugi4h0EJFQ4FpgusOZABCRlp4OPESkJXARkPfDn2p004HxnufjgWkOZjlJxX96jytxaNt5OhZfAtao6jNVZjm+7WrK5g/bTkRai0iM53kLYDiwFv/YbtVm84ftpqq/UdVUVU3HvT+brarX0xDbTVWbzQMYhfvMoY3A75zOUyVXR2C557HK6WzAFNyHuydwH0ndAsQDs4D1np9xfpTtNWAlsMLzS5DsULbzcDc3rgCWeR6j/GHb/UA2x7cd0AtY6smQB/zBM90ftltN2RzfbqfkHALMaKjt1mxOHzXGGFM7zalpyBhjTC1YITDGmABnhcAYYwKcFQJjjAlwVgiMMSbAWSEwxpgAZ4XAGGMCnBUCY+qJiPxLRM51OocxvrJCYEwtecbAqOpsYIETWYypCysExvhARN4WkWdEZA7wmyrTewDrVLVMRNJFZK2IvCgieSLyhogMF5GvPKNK+dsNB02AC3Y6gDFNTBbuG7sNPWX6SODjKq87Az8Bbsd9Q8T/wX0/oNHAb3Fo4B9jqmNHBMZ4SUTCgTjg0WpmX8zJhWCTqq5U922MVwGz1H1jr5VAekNnNcYXVgiM8V5PYKGqlladKCIRQIx6xpzwOF7leXmV1+XYkbjxM1YIjPFeFu7bEp9qKDCnkbMYU2+sEBjjvZoKwan9A8Y0KTYegTF1JCJLgLNV9YTTWYypDSsExhgT4KxpyBhjApwVAmOMCXBWCIwxJsBZITDGmABnhcAYYwKcFQJjjAlwVgiMMSbA/X/H2IsAoIeShwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Recalculation from days in sec\n", + "Q = 0.016 # Pumping rate from well (m3/s)\n", + "t = 864000 # Time in s.\n", + "\n", + "# Distance from well (m)\n", + "##r = np.array([0.5, 1, 2, 4, 8, 12, 16, 20, 25, 30, 35, 40])\n", + "r = np.arange(1,41,1)\n", + "##print(r)\n", + "\n", + "# Calculate some synthetic data to fit.\n", + "S = 0.001\n", + "T = 9.2903e-4\n", + "u = calc_u(r, S, T, t)\n", + "s = theis_drawdown(t, S, T, Q, r)\n", + "s = s-5 #reference head\n", + "\n", + "# Plot the data\n", + "titlestring = \"Theis: Analytical solution\"\n", + "plt.title(titlestring)\n", + "plt.plot(r, s, label='t = '+str(t)+' days')\n", + "plt.xlabel(r'$r\\;/\\mathrm{m}$')\n", + "plt.ylabel(r'$hydraulic head\\;/\\;\\mathrm{m}$')\n", + "plt.legend()\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "271ac1cc", + "metadata": {}, + "source": [ + "**Numerical solution**" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f66a6aec", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inspecting vtu-file\n" + ] + }, + { + "data": { + "text/html": [ + "<table><tr><th>Header</th><th>Data Arrays</th></tr><tr><td>\n", + "<table>\n", + "<tr><th>UnstructuredGrid</th><th>Information</th></tr>\n", + "<tr><td>N Cells</td><td>354</td></tr>\n", + "<tr><td>N Points</td><td>476</td></tr>\n", + "<tr><td>X Bounds</td><td>3.048e-01, 3.048e+02</td></tr>\n", + "<tr><td>Y Bounds</td><td>0.000e+00, 1.000e+00</td></tr>\n", + "<tr><td>Z Bounds</td><td>0.000e+00, 0.000e+00</td></tr>\n", + "<tr><td>N Arrays</td><td>1</td></tr>\n", + "</table>\n", + "\n", + "</td><td>\n", + "<table>\n", + "<tr><th>Name</th><th>Field</th><th>Type</th><th>N Comp</th><th>Min</th><th>Max</th></tr>\n", + "<tr><td><b>OGS5_pressure</b></td><td>Points</td><td>float64</td><td>1</td><td>0.000e+00</td><td>1.247e+01</td></tr>\n", + "</table>\n", + "\n", + "</td></tr> </table>" + ], + "text/plain": [ + "UnstructuredGrid (0x7f1f3f9f78e0)\n", + " N Cells:\t354\n", + " N Points:\t476\n", + " X Bounds:\t3.048e-01, 3.048e+02\n", + " Y Bounds:\t0.000e+00, 1.000e+00\n", + " Z Bounds:\t0.000e+00, 0.000e+00\n", + " N Arrays:\t1" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mesh = pv.read(vtu_name)\n", + "print(\"inspecting vtu-file\")\n", + "mesh" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "9e5ae5ee", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "inspecting mesh and initial conditions\n" + ] + }, + { + "data": { + "text/plain": [ + "<matplotlib.tri.tricontour.TriContourSet at 0x7f1f3d90e850>" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD8CAYAAAB9y7/cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9e7BkyVkn9svzqtet++jb3fPonpFGQkgezYxAEpLYhV0ReEHiuSDsRcDiZe2QZcCBIxw28hIOO3YDh4kNIgjHai2zCNtrWAkZSSCEBCgWEGAjNLNiZjSj56xGmp6Znunu2/dZj/NM/5GVVXnyZObJPHXq3kK+v13Uc6tOZebJk+fLL7/H7yOUUpzjHOc4xzm+/uCd9QDOcY5znOMcq8G5gD/HOc5xjq9TnAv4c5zjHOf4OsW5gD/HOc5xjq9TnAv4c5zjHOf4OsW5gD/HOc5xjq9T1Ap4QsivE0JuEEKe0HxPCCH/CyHkKULI44SQ17Y/zHOc4xznOIcrbDT4/wPAWwzfvxXAK2b/9w4A/+vywzrHOc5xjnMsi1oBTyn9MwC3DZf8IIB/TRk+BWCbEHJXWwM8xznOcY5zNEPQQhtXAFwT/n529tl1+UJCyDvAtHxs7Xiv27m7h5vJEFkSwKc+aA5QSlEUEXwkAAgubw2xd3CMwCMIOj0MuwGygmJ0eIIspxhub6ATeIizAqHvIfQJXrx+AI8AO5e30At9HE5SxFmB3Y0I4yRH6BFQAB4huPXcbYS+h527trE/TnF52MEkzXE8zXB52ME0zdENfdw4jrHZC9AJfBxNUmz1Qtw4jivXXB528OJXb4IQoHfnDrqhh5Nphu1+hKNpiq1uWLme/304a5f/C2D+3/zaSZqjF/oAYPxsmuXoBD6I8BmAeV8ncQbPI+gL/YrfQ/qdqg9xfPJvp2mOJC+w2Q2Nv6cA4ixHN/Ar7cnXiu3L38nfF5Ti9ijBxQ32fVZQUEoR+kynSfICeUHnY6prT/X94STFZi8EEda4PH65DVU7quuOpimiwJvPi0tbSV7A9wh8Qmqv1bV5adhB+dfqa5O8wDjJsS3cM1CdB1MburGZ2knzAp7iHk2/0X1e951ubDmlGCc5hp2qGC1AcTLN5utfhm4e6sYyzXJ85fOfvUUpvaS8QAaltPb/ALwUwBOa734fwLcJf/9bAK+ra/NVD0b0f//im+i3fvzn6St+/Zfpm/6399Jv+aX30tf84r+iL/n5j9LX/Xe/St/wC/+K/j9P3aT/4X/zXvpj//Q36bs++Bh97No+/fBnnqX/+T/5N/T7/ov30t/41Ffp49cO6G986qv0T794gz6zN6I/+OPvoT/2U79GH7u2Tyml9Dc/9TX687/9GD2ZpvTDn3mWPn7tgP7lv79Fn7pxTN/2fb9C/6uf/FX6zN6IvuuDj1NKKX3s2j591wcfo5RS+vi1A0oppe/64OP0yecOaZLl9Dc/9bX5Z+I1P//b7Dc//T3/nP7c9/8y/cSTL9Cv3RrRd//Jl2mWF/R9f/U15fX8b94u/5dSSv+vv/xqqS9+T3Wfff76IY3TvNSP2NdHH3ue/tmXblT649+Lbcl9/Lf/96I93W8f+eoe/cDDzyh/z+eWUkrjNKefv36obG8cZ/R//MgTyvblduTvXzyc0F/+oy/O/755PKXP7Y/nf3/ma7fpk88t+j2epvSf/d6T2vZYf4+X/v7Io8/Rg3FS+kwcv6oN1bhV1/3Ww8/QR756u7atf/p7T9KTaVr67Gu3RvRgVB5XnOb0Fz5cHr+uzf/545+nt09iq2sfu7ZP//X/+3Tl89/81NdonhdWbVCqnhPejgrP7I2UY6SU0t/41FedPjf1M4rT0hoUweWJCtM0K61/Gbp5qBvnJ558gQJ4hFrIbUppK1E0zwK4R/j7KoDnW2gXBAQqqpy8oKAUkDfvLC8Q+NUdncP3CLKCNZjmBUKv3SAicTwUFGHgISsKBJ5+TCZQSuEpNBSxF7vPqiAEyrltC2lOEQXLze9JnGEQNTtknsQZNjpqDQkARnGOgfD9yTTDUKNtLVCesGE3wNEkbTS+OgyiAOMkq71upx/iwGIMh5MU273Iqu8L/Qi3x4nVtbp52+wFOJ7Wj78OncDDNM2tr6cNFzXVvDe3jhNcHnYbtbkKuN5dGxLuIwB+chZN8yYAh5TSinnGBO2gCTtq635VEfAFRWAptLOcGjcDoPliAYCCApHvIckLRL56TEbZDSDOiqWFpA6+R5DPNjuPYP7fNqgbNwAkM5OZK8QXbRRn6BuEtAkncYaB4ujMkUub5/E0xUbXbTMZdsNWhJgKNnMMAJu9EIdjGwGfYLtft4Ex9Ds+RvFy93VhEGFvFFtfTwhBlheVz3c3IuyN7DYbABglOTY0z51UjE4Mpvf8cJJi6Lgu5v3ZPkT5d5pxNkHtyAkh7wPwZgAXCSHPAvgfAIQAQCl9D4CPAfgeAE8BGAP4qeWGVJ5sndyhqE5EXlD4Ndoy/za10Pa50GPtGptFXtDSA6WUabBJViAKmgmpOCvQMQp41fjtFod4VS/yMU1zo0BsF3ZjHCVmDd60/+YFdTo5TdMC3bBuQyq3F/rEaWN0hY1+Ia5TE8aJ3uYrow0Bs9EJMIrtNe8L/Qj74xSXJFv3dj/C/ijBle2eVTt7JzF2B1V7uQnHsf70RhWKpC2aKIjLKJUq1L7RlNK313xPAfzMUqPQ3BOBXoOnFEo54fIsTAs59D2kuWDOqZHwSVbW1Au6OF421cLjLK8R8O2gG/qYNBTwuqOtCYQARUHhKQSw+EzygjY6Bajaqn5XBgW1EGxtvXztaWguwripoGrSLgFxWhtMU48rAt4nxHCKr+JokmGz57aObx3HuLihN18Z11HLc7o/TrFjedKywfpksvJnKM+YToOntMXXpApuXgFQMbOoFm6Sl7VtOovY0GmSRaHZoQTEaYGOpda1DHqhj0lir22JCD0PqeJoDejvrj/bUFRosmGcFgLDvdpimuaIakyDHDbCw3a+XDYCl2fQxtOilKIT+Eiz5Vuz26jLYP4aw0nRcJdt+7FePJri8qbbCcSE9RHwChCDDZ6iuY3LBkyDZy9zamFPVtmcTcOTNwQVTCaaLC8qZqO8oGjiz+1FeoFr89uxYnMwrft+J8DIwoFoQp2JrQnqBNuwu7zj8Gia4uJGB3FWP99tC49VOdV17doK2lHCHN5tbO6mPnXtk9n/c21vFUjzApHfnlK3JgJ+MfXydGpt8LR8rW6RNbVplQR8XjYVqB56mrs5RG0cqCYTzTQrSjHSgD62tm4f7AQe4lStmarmj5tYAKAfuWv/g8jHWGOftRYKNU7UtmXZNM1xcaOD4+lyUTNHkwz3XOjjaNKOc/a0BZALbAX27ZMEFwZ2ET5N+4yzXKuk1Y2zF/pWEU3Kts+4Yt6aCPgquHZu1uCrn+fS9QVFrYNUhTAg8yNjmhcIA/OL5Bo1YmNfzw1RQbFCmDMBr1nEhoWmExI8gUxGVzCxMA2+uvgJ9EK2H/lKDZ5Sai0UTuIMF/qRlSZsA5MWBwDH0wx3bXVrNXhx81NhkuS4Y7OLQ4vQxjZNNMs4C+uwbLtH01SbENQW9k4So51dBwqKy8Mubh6rI4K6oadVcC4MmOPYBaY1OIoz9CM37X5tBDyXPxUTvNbJWrbB898xM8XimzQv4CuEZN1rYbLBq5AYNHilzb42QsaMqeL3Kq0eADqBXxHUNmKBR9fIYDHa7PO+8N+27fueh0JxYLCZZ45RzATliUbgtu0uPZ6m2OqHtWaOjU6Akxptb9Cx0wjbVv58TShiuU83GzbB8iaaojbfY3ncHiXY6Tc7JWz2Au2GfMkg/C8NO7hxPHXqy7Rhv3g0xR2bbjH5ayPgdTCGSSoWhewEywqKULDV2r4zgUcEE41lFE3LJhrj79McHUlb15louqFaUJudR3R2NC3/Li8oBp1grrX4RJ2MBrjHioxjfQyzjDjLsbsRGUPxXG26puvHSW6VdLXZC2uTn+pOC7bIC6pM1df1uW2RFDVOcmct0TUZ6SxQUPscGQ6uXJqeFacWUaET+EgUJ+CmqHMGq7A2An4xmSj9qw2R0nzM4tEXf2d5oXywda9F4HvIeJhkVp8UVVD9y6ZaIHJYpQiVoCFSMhKL2y6/iCzqptwmpZQdI6UXsO7+46zATj+s/G6cZIzTJ11ooMrxato1OYJHSYa+wwIedAKcNEzIcRWvlMJKy2TZrRbaucXmU9fd0YwLxwYUFFu9CAc1JoP9sX1CFM/9YKaIajLSOkdE2eBoks05YbROWHK69+l60FkfAT//L1L6xzWPJM3LR8x0lrHKU/NrclcXo5AubNuZxaJAbLNuC2x0gpI2oLLPqz5Lc4phN8RU4UQ13dMkybEziCr2xUmSY6sXNg5pm6Q5ehoNcRTnGDhoj6HHqCBUUCXC1aGNZxx6njHxyEYY2EZDHUzSCsmXCTYOcU50RUCMvgR+7XY/xM4gwm2HbFMdjBEwS9qrmjzbmyfxnKyuqRA/ayf42gl4UpbvlQdb95xlDT6fmWgCz0OqEQYchKw2M7Han911cVZgsxs0OgZPs5xp4o6RLjzxST5BTVJ2hKelLVmTAq74bGzgl1GZueperDZfoGhNTA3H0xTDbojQ94xO5FGcWdMrEBCr9caVBBsumdsjFv0SaLJpl8mvELHZDXFkEZ6aak7rJpg2jkmyfHa3y8ZQFO37ItZGwFfngd2oOP+eRVZbmhelV547WQOfzE0uyu7AHKu2iSynGf4UZwW2eqHCUVo/humMm8N14xoneYlKt+5zW4ySHH1DzLOrwNa3w/6nTgsVYYpzb+sYbnN/hxMWVWKy7wL8RErQCc0bU5ItcgZs72O7rza7iBgnmfY0Btjz0fA5CXyitFnvbkTYO6lv5/Yowa5jpMyRgdLXRomp+84Ft8fthYtyrI2AlxcemZtoFp8HXr2AlzlhsoIi9AhC36uNIAj9BdtkHXiGqo2gdxUO8oKZpjk2e6FVSKDvoXSfKlu9DXQOWxuHM4dq2bNQL3utKKrRYk3YMCRUyU+EgmLY0KbvstnztVAXkjnsBtiycNgCwHbNRnAwcY8g2bRM6jKJtu1+vc1fhM6Wv2H5XPYaxNPfOolxUcH1LuM0TDQ3jhYmobawPgJemD/xlCLKW9/zSlq4CllRVJ2ss0IgaSHuyFWEvofU0uud5AX6kW+9ISyDOCuw2ava0X2FSakb+pgK9zDN9DZvEyiF3mlMmmstpnZVqCOtMo1DJxjiLFc6uAedwJlFsRdVHdg2MAmMgjLSPFUUkwqbvdAoSA/H6dxxavvcCHHjklHBt1DIgMVc7PQj7J1UBbxtxnpW6JUP3b2M4szJ7+PSdt13MrKiffbYtRDw8hSIj1NcIL5XT2ub5Yv4eEoXTtbAq9fgAwcTTZqxcEGb621eKhbto74uznJsdoPK8VUV/tgJyp9NUzvCsrYjAdpqrU7oqsbNEqaAjW6gjJM/mWnIHFlewCMEniHkU4dNR8rgVZCDdUNzOJ7LKa5tp6BLe1Ggd5qvEroNRBy7R+qdzjq0Yc5t2sZaCHigLBBEyl9aEvBercaczUw0hLCsVm5KCX2CNC+LAyqF1USSlm8C1+DbinONs2qII0eaqVkVuwrbqyo5Se8EbUcM18XTq2D74jcJhZymBXqhj06g1q5P4rKAH8V5Y87vYbdqRrEKgbTVpFsWuKcduljX3zjJlvLp2IBv4MtgZ6AvguJ7+gQyZmazW7+mZ30wThslaq2NgBfXgSjgRXmr89aLyAumwRMsriUgs81h8RAogHTmteaLMHA00Wx0gnm2qyvkh1nH/a56+J2gbI4BgG7DSJD2NTd+wlhuA6xzfKvGzRNCdPd0PC3z2BzNolaaQJVjYAOT4BPH3YZAXud49CZ2c1c0cb7KuLgRaTNWL250tEVJLg+7ztmsKrx4PK1QKdtgbQS8uAjFUKeyicbeCUpIOas1lKJogMXOzrsInUw0BQadqtnEBWKscZy588Z3Qg+xJFxchGpbQl1uJ52Zm/oanhobJJldyJtKeNXSv0p+gCYZghyE2GelnjXxFHD6cdl1/bFY+tUK+L1Roi0CYss+2Ql8rf9vdxDhlibKx4Wp1bQRJ1mzYIm1EfAizBq8FCqoS5MnKD0QkXoAYBpmmrNKTbyNaGbGsUE60+Btrtc9uE6w4LuJ0wIdx8pPKmHexI6swjJa3zhhjl0dT41Nn+NkIXRdhZJY6k/1W/neMsf6sZXcDMu5Gs9CRAF7m24bAnlVXPBttMcdyhyr2IBMz1c3PpnTynRt4JuT284SaybgZ6YSnQ3eIYyRgJRMMoHP7PdyjDyPrS8odXpQcba8DT4SaHpN/PC6hVWXNanDqjXJSZKjHwXod+yiQFQ4sazHqhIIJtqIZdEN1QybNuDx7QCL8LFxzrYRoXFaJpom60p+fsuMtc3NgSdxtYGzzGZdKwHPH63vLaaEVjR4dby83Iaswauuy3KmPVDMom0s8sMLSue0B93QXyqKphN4iHMmAF3JyjiavBBpThEGLPlLX42p+aIcJ4zW1DWGXexzbCieLKJRycAl7k3lVLVt72iazsvJbfVCHC3JLd8EpqQoW7OYCkPLbFMZbW4+ba6FvVG8tN2ew56eov2NYI0EPJlLZy5oZYXAJg5+3hpBrbafFgsbvG0MaprTeQz1MuYQCopO6M81eJ6VqCywYWFmcMEkZdmoPUPpvGXATTSuEO/JNrxThbY1JjYWdj/DblARZJUkPajNL2lGS+1YccLrIqAcaH3F67b7oTZD9WCSYGewcDab2mcZ4ovvLwxYcWxT38vAq6E6dqU55r/RvUfis7LBsve5N2o/yQlYKwEvaPAa5kabKBoy/1evnXKkGRfwlDFGWmgvaVYgdLHXGr5jGm55jK40wk0WFs9S7YY+pi1whcgviejEXIZAShefLP7uNMIIj4W4eRvCro2umhO+FEjge07FpGWw2Hb313e7F2F/pN5YVKF4umckX7vZDZQnEs+rUng3we6GPkwRMBfb1glxkS1ylbBZozdrCn83xVoIeHkNcUErvsYU7lE0eaEXBARMw/c9HjJZlHjjdWA1E9XXyTQBdeiEXsWGrwqXVNPxNhdskxmfTHcJDX7Zo7XKlm17T2LizmnYlxn518zhq9h05HFvdgMrioFlcDBJsGVJ6yvClEwUSwlRG119DsL+uEx/oNuMdxzpCnSEbxcG6ixXjlujGLuOGrDIFimjzVoCtiYaW3ZZF6yFgGdYTINoCqeUs0NSK7IxDgIozTniJ2kuavB2HCux4bpIiIoRx1HqX+LWkU8kplJ+yqzNBgJums1MNFIIV1Pna5PNpt+AFoDjRKjHGnjm0NZleYCAarGPyolF+pvZ6VVlDC18PEW1tJ7quXBaXxuoTEg22OmHWm1/aqB9FnHBkUp4d9BRXt8JzP6uJpQD48Rc11fGMvQcywQ2LJOotRYCfj702RxwxyfAwiQ9og+H1LZJyJweOKdVfm2Kmd17boNXZ4vKMBXXjnzfyJPOqBDMN8KKdpQXautc9LMCJqG/qDvbWSI6xJdCUEWBohOwg6h5hM1IiFvfaLBR1AnoyvUU8GwI2mdYJuX+WIrJZ9nK1bZYycfFOpGfAcc0dc+v4GA0vcudROpoFGTs9MPG3PK2nDVNUcfaqRPiQ8NJyAZ7o6RRkhOwJgJ+ATZBvIYqpQt2yGUi+zjhmAlJbjbREMIiaNJcvxGEPplHxah+q9LwZZgyWtsU9DJhmCt3t/jbfgNh3Y/Ki95FwxklC21t0PGNL09b9MOmNtt8LkeSZl5HGcyx3VdfdzRR2NU19yh/7nmnn1OxrG9CRlHona+uFMCXNjrabNbtXqR9Tpc3u7ih+Z3NWG4ex9htGLK5VgKeP9ZFuCKdad8LjV63SZvWhC4EUlx4aWbeBMJZHL2JLjcKqjZ1/tt0FucuZ57KMJloVGhLuDSxx3OhLDsexTHpxhcFZdNKnOmdhrKAKArMn5XJTqyDac48i6IvricAFxxKZfg2eyEOJvXRKdt9NaPk/tjelHPaEKOTRLS5YR5MUm0JQtfnpptjALi82dEK8SanTBE8R6cJ1krAc4jhV7xC01I2rGJR8GARZSNfsyjOreoqnBUjMGn6OgEf+d48zr1Ogy8KOMUityVc+g4p1QAQBmR+L70lKAk4WGKTnT1UTiFvs7DxUMNAeVqgtLz+u6Ha7Cc/d90JLM6qvP7rQlegSyZqM5791kncyLyhrousp1DWFbZfpr82sJYCXoyDz3IKD6T29k3mtyxXh0DqjtoqXmmR9MqUuKSysXPB3/HVG8A6oKsREDqmvH4YzK93pSRQYRzn2NAUAllWINWGYwrtDy3szvJ4whU/V7sC3e5miGWudYFu/LdHCXYaRAK59CFHBtkgznLroja2OKts1rUQ8FT6bzGTNacUnmc2wdQhVWjdpuaSjFYKQtho37qIjk7gzemAbQXBqjLbdPA19lZdMlRPsLubCjuIL16SFQgDtflmVFP+rSlcnccqCoH6qJkAx6eclbqMwFgXdsllTA+rxN5Jog2fbBxJY5jzNuiMdVij2Z3dIIVQPxLIi2Jp73jmGGOq0uDrqj0RVAtG5AWF5xHGOZMViHzfWtiwo3X9mPmCE7XUNl/gfrTQ1DMhe1F2rNos/HGSoR+qtfQ6wq+mJjq5qpNYn1SFJhEwm71mafq2aDuT+RxmmHhoVjHve6MElxtGydRhjQQ8B4XvefNpzAo6C5N0SCSQ3gdel5VdW480rwqBcBbiqBtGOTSQIckKRL43N9FwDhsbmNglVcKcV64ywVZIirHYogY/TvN5PdWepc1R5pexIRCTwTdIW4jPYtAp29RlauA4y0unCnnMKsjfb0R2TrSmwqFtobIqc4EuVPMsyba0EUMGagPZD2KLpoW5bx67J2nZYu0EPEWZTZKHOZmWeFaUo2QIysJMFSZpenxqE0099QEHnUX+JLOY+bqiFSqYwiVVwnwqONNUi8mFBVGMaBFNMTwDFmgWQjdOslLCkC0GHd86CkF+cWUN/mSazRkd+d+uxT5U4YSyiUp+BjqT22kml5n6bYNhdKevLprd1gbFatRW14EuGscEFq3UrAaADk2zWWXK5DaxdgIeKNuDs6Jsg5fXoUdIhQWPkPKGkM0EojiFpiWnCoUMPGaDt7EWFZQ5fXnkjDweG7BwSfWiVUVGMH4Z/ePUOVFVmKSL9kOBcXLSkERs3m5iHwopYuDgxJVPCbJ/4DhOMRC+P542L/bhAnljAfgpqJ2avi5QEaYdSXVqTUg02dyMcKzqi9CR6Omgu9/djY6SrmCvQcWmWy3SFKwSyySqAWsl4Cn7/5RTFbBJ5ppPQdWx7IFHEEt2VabBL66RNfw6ZApeGo8QO/sOBA1+ZqJxAV9cphqt07Sq3cdpga5Bi+mGPqaW1L1inUzR/zFOcvQdBXwlTb6BP8WlLquqOpMoMMQYet31dVAV67CpXCRrjJuWSUzLQCWstvshDqV47v1Roq35KQvng7HaRt0NfSU9tGpDMaEbekplZFszX6ax6zBOcieaAg4dU2gdmlY3u3kc445h1/l3HGsk4BcQqQp4kQ5dunjgE0zTvFwVhjTn3wB4Kn/zqeEavM7MQlFPbRqn+s0hVphjpmlVqy/owiyge2lU0PGMqJzPHDb0BLZ1SGVEgT1NtKvAbmJv7Uc+Ro4vq6rua1NO+FzBV+MCFQXBsUaD7ymylG+PE23ykAoXNhz5aDY62BtVk4Z0ZsFVmjhkbPdDHGg2ZZ0JCQAuDbu4cWTOZlVh33GuZVhJMULIWwghXySEPEUIeZfi+y1CyO8RQh4jhDxJCPkpl0EQ4T+YDd6ba8sFpyqAWgv3PcYPUTHRcJNOg+OWLpnJuoKOZIOXkeZFxbGn6kvHfyJq8CWNX9bqhc9carVOa04D4hjrYHs8F9sqakJETZvBODafMmzGXHeNTdQMIShpeqqNpGlyjExnYByHYq50glK13i4MqnZ1mQenDsOOWxjpdk+fMapCE878pmavS0M9XcHlYVf7nY5O2WYsy0QR1gp4QogP4N0A3grgfgBvJ4TcL132MwA+Ryl9DYA3A/hlQkhjcuNApcFDrWmF3ERTcbIurhFfWI/MqjLVjGGZOpZcg9cxVMYNTDfzvqiazkB1wpmWbOmL8n51GrbutGQbJSD+txiHbjunY8UJwqU8ncsLUdeuygZqE/c+6ATOWr7NeIAZk6SlVtfkNCViy1HYquAqoFROaxO0fO8Gv0LT06TODAUAm71AySIKmOdglTZ/GynzBgBPUUq/QilNALwfwA9K11AAQ8LuYgPAbQDNAoOpRnOl0GjwBHGaz4uEUJRNNPLDYrVZC+OU6p6F7sEzG/9iKikWGqiqLWZfd3dWhrNIHtmOLIPfu8psswxszF6ytm5LRFZKempgFzeNyeV7+ZpjRZSNDT3CpqPdGTATY4nzehJnGCrmR66B0CS6RIYuAc4V8n2tIltUxq2TGBdXFF+ugonKADibcFGbGb4C4Jrw97Ozz0T8CwD/AYDnAXwWwM9RSitvACHkHYSQRwghj4ify1OiKpiss5UGPtPgQ9FEA/2iDD2CaVoYizK7LuhKPdWa37s4X7NikVzUDaqJUqpFw+gFqLbqj/gbcUG2sQDlPvsNYsRP4qxiZjmrWGqx2IcLVLVb63CSZKUIHw6ZMZPTXMvY6oWlk8XhJNVSASxzQm0CuY39UdpaUWsdxnGu5YjX3f8oztCLzO9mm9mscunDtmEjZVS9yyP9bgCPArgbwDcB+BeEkM3Kjyj9VUrp6ymlr9d3Q6Di2qJQJ/JwGzyfJAIYE4oCnzkbS205JCCpwKo8lW3iJpgiZEzXqvioVf3xY+REo8E3fWFts1VF84pJg9eNYyIV2FgWy1TnGWk4curmQmbLtMGhhvnRljJ4S2I73B83q/p0GrjdIPLFFSZznW5N3DqJcWnDHLXSpknl5nGMy0tEydTBRso8C+Ae4e+rYJq6iJ8C8CHK8BSApwG8qvmwSCXunWnwXsXkwTXyUpikIoqGI/AJJmlurUHbPMyKBm9zvWX/JUepRoPPi3LxYO5QzeWEu0YAACAASURBVC2KmLikwdvMhVz9qCMwbNoeXwudmQ71ESRtVHCS21ONpc2SbhxH0zJVMIccTqlrayiFk5oKR6+S8lgFeZ5ti9yfNpZNgHLNZr09ShpzvdvAZoYfBvAKQsh9M8fpjwL4iHTNMwC+EwAIIXcAeCWAr7Q5UAq16cb3COIsl5ysZRONOLGh52GS5tXMVlL9b0LUtAUyRDIzGy03MWSpyhDtqCoNXpWh2p3XtVS/tKswd3ABMZaSoeocbK6CRSzXx1HH4e56v2dlDtJtyKKD3AS5MM5ZJOy0NXerfAam6Bqgfs22aaIxVQtrI7u4VspQSjMAPwvgDwF8HsAHKKVPEkLeSQh55+yyfwbgbxFCPgvg3wL4eUrpraVHh4WwpZpY12DG027Lxhb4pGqikeaRz2voexgn9c6g2FGDd4n0EGkDOgoNnpljitKicwmJVGGZl8u0ecntRhp6ZRX4yzGKq3ZqMRHKRiO36s+BYtgGywosmyIqTdtr87cUVDl3rRaxFtqvC6lVwVTP1mZemlISuF7fJAlPhtWvKaUfA/Ax6bP3CP/9PIDvWmokdWMAtDb41CHxI5yZaEKLohqhTzCKmTlnAn0kiKuJxoRKtIGgwatoedVavVt8te2itA6TtHwYgyjA2LHSzSjOcGWnV/ps2Yo5MlTJPTKqGbowZjg2KQUo/37OHNrC81rmWhNcC8e4YqtXLmjeJBHo5nFcWUOngU7gO0W2vXg0xV1by41z/YxgOiiiaAgWxGK2p5nAUzhZNWAafFablJTm1GrD0MH0wrIasPr++aIRsdgIqr/LaXkzZKGXblp0W2Cx4ooatopx888m6YLwjMNFwNsIsiZFkjc6AU6WrGrVNs7CRLPTV2etNtlAVCeB3Y0It4Qs172Rnrtdh2lazFlRK31azJnqnePQMWoCwGVDkpQKTekURKyRgKeafxd/yTZ4QlgMOsAEl024UegzjddkduHdhL6HkYWJBtDb0WzA+Oqb2QS7oYdYYY6hwv+KkGkIbGl/beEiVPoRY4ksirIPpK4NeT66oTfXGtsQajaJTLLA2uyZwyLXzUTjeZhX6pqmuXVUVx351XY/UiZGqU6aJug2/37kYxwvPjdpxNqcgiXXiCmb9ZKGEA1gNAdyVvCq/T1rIeDtbrFqayOCcy3TFNaW4XtkJuDLYZIqhD7BJMlqBfwyC4aCMt6ZwD7MUkTk11eaEiGHTrqwTJoWo+8RpDWFMuR745WuJhruG1vUOsVqzCcyWH1Tt+zbYVefxdg22jDRbPejOaeKi5ljf5xgZ6C/Vlfda6cfYc+Fj2YQ4bZCUC5b/KcNmKgUdjc6uHWiFv5nMfa1EPAu4DQAHLz6DiusXU+ERQiQ5GYysbmTNfDmNnjttS1ojCrqAVvoa3Eu/rfUl2Ti6AoFPeruxfR9P2IbhZPddzZ2F574JpmqnBM+y+1OeeKc2j5fU6SLqYqU6Ui/Suz0QxzMtMmDcYrtnj5UTyzo3TR+facfYt9BwG92l2PaZAlL7ZeABGZcPpp1YSpfqcKqzWhrIeBdbrEoFi8pT83mxbltKYEZGVj9dRG3wdfY65eNSIgdyZvsUZ1Z2YYtmmgCz6vVwsutL9rvd+odk6bswbpKT8u8CBszm/pxXM5KXfbkYIujqT5qY7MbVmrAmlAX4mc7T4z5kD2vVEOKx7EtFPKwya1QIfC9cghnzTCXMXkCPGHJzTZfN7dt4zToGtZCwDMQzb9liLwvBGROI5s7cr6XIC020QY/kaiIl4X8AvoewTjJrG2gy0LmkmcFPdiY+pGPqUFIy4vfIwQ55b8NjHzXphd6FNtlrjYV8huzsn0nUnGPpjQErjiaqBOYAHdOeB39hCsIIdbCTGU7boJFecn63JJlcTTJnBOWjiaZNUtnG2BZrKvlylkjAa+GLBhygZuFO1ltE5Jc4XsEeVE1g+SUzukURCHXBJ3Qw/E0a2yiMUORgSklVoj31nMMcetFi6N7r8aWz5y76nu04fO2IfiSI4QWv/UQ5wWLK+6KAr55nDEzrdg995GBE2Uo1Yytw8Hk9OkHbBOtbLFvKGrdFlxZRQHg5skUF4erHZe4qe6P0pXTNay9gJeRCqYYAibwAa7B2yXY1KFOXovcM1HgIXUoCC2PpRMwAR/53grscW7tifZ4EQQEBa1q0CzmmQknZnvUt82qQelC06r9yZAJt5R9KLJcgcUmlknmhUmDClUcqlBKFdsmt8fqhI3JnquCKUmHo6B0VqPXLjig7Xj5Og72PUsBv2zugCtMa9QFLiY0nSnKxCzqgrUX8PJ7keV0Tg0shkmmxelVdRFrUoaGgto2r20UeIjTHISQWcz72T0SnRbOQjEVIWuhfa3UUVJliHQBi3U39+VczQnNIxuY7byOE96+8lN9aCgT3HXFNobdECdxdqZEY3VcRmnens/JVSlqS3Ca4FK7QIfb4wQXHOvMqrD2Al5GXhSCBr8Ik8wN5eRq4fi8xUpNTVgDRXQCH/Hs98tE06jhdmOiPV5EN/RxNM0qJyRVxqdu0bJKS2rhazNKG9phVwFf12+c6WO+N7pBxTmqjo3PrF74UZwbHc1DRX8q8LqldZExqvH+/wGHk3SpEnjLIvS9WlMjANw4cncSq/A3RsDzV6TkZCWYCyTbELg6BD6ZJ4DokJY0eKJ9YDaj6QSLRKWmhUCWxfyortFm+5GP26O4ooG71EpNteyBVfGnEohRwCJ8TMKSxfjXh7/agIIqi31wqMLh5LENDWXaZNSZXrZ7EQ4mSa1Q5k7bLKdnxta46o3D9wiygs5OhTqlQT2GmyexNvPV1VRlWk66tXZp2MFNTZy8iLbYNv/GCHiOXMj6ZGGSPA7ePorGdCpnJhezJEgEG3zH95FYCjkVxESlOLVnmWyKOm2yUDgqe5GPvVFiFVK47Mu9TEUcAtJqMsnRklE2ncBHmhdWc1JXZ9VWg+cbTxu1Z5uCm5Mqn3MunSW73Z0V8d47SXDR0YyhKyjvim0hj0DGTj/SRkZd6KsTuFaFNRLwZqoC/orkxSyGnbBPubLNIzHEXxUaErLKAhP+Dv36jEwxbjgM9Bq8DcQCyO2baOwgCiBV6nc38LFvKeCbCA3xETH2zBWcYqh5Y5dBQLTFPky/UXddPyeyA1iGa51SF7g8M5trdQVKmqwN1W84342Nw3nZvnQw0hUYvhOd6qdhIlsLAe9ym9ypavObupdGhdCvNzswJysbQWRwsuqge09Xl/DEYKp0xTFJqhqO5xGMkhz9JQSvrWwaKcr1nRV0xT5M168Llol20cH2/nYGkTJu3iNknnlug81uqAwhZabBYikn+bLgNN2679rkd1oGayHgXV4L7lQ1p+gzcLu8uDCVgkb4kSkqZjGGRdFrbg8UYbofk41fLBziAj13uZr7xQQVWyMA5DX0DhwqoREFJsdS+fpRnDeOTTcKIMdpbVNY13LUW3a1Co0vK+xrKdiGlQ4iXxnxtDNY8N/Y4MJGhFsO9AYcJud4m3O4zIHKNMY2sRYCnsE+k5VS9bfyhKdFWWAGFsI79ImWvKugtNIv22gWHdcn7JjJweoqs6tgW+PVRrMYLxEbrgOry2oXLmhynImc6OsI5nhbHy2+Dt3Qw4tHsRvRmEVijm4NcwIxW6V72Kln9VTh1kmstc3rnk9O3QuHLIMbp5DFCqyVgLcFrRCOcWRCCCUw46cRtM5AoW3PW+UEY76HNFNfk1qYfKLAU9pKvZnjKQrU9L7l+9AnbakSjuKsQFdp2ilPko2AjzUVmWzWfl4UyoLpg459vLwp+sNUWEUu07gs2DpwM711Q69RJa1VyBUrW3k/xNO3RlZCOwo83DiOl7J5d0Mf08zedFFfOk+N/XGKbccM0f1Rgl1Hh23T50ZAWBjrKYRr/g0U8EyQq+aWRdgsbinLC4TegnOD2ddnBaCF9U+AOd1A6HtaO6FewCxGE0mkSvPPZ2aKqEaDB8z83KliDFNFeCAV/pejF9nZBlUvlk54ioJElwnYt6iQpGpPhqpc37yPTj3tscsGYBu1IqKOE37dsN2LcP1wYnViu9CPcOsksTLTAXpTSJMSezroHqeJ+sIUPrk7cCUn039nUxhet4GlRaFV8FzxN1LA54WaZyKVYuFTSeAHQiJPJmSNEkLm2hpL9tHbyE3UwYBeg49mCQ42nCqmSBKVts42hPJnmSIrtht4Ky2nNk7UnCvM9r98vycG+/xGJ8CxYxUmk7wfdkPn9ja7IY7jsoC33VTaNu3YmLJ4TVwbRyUr5GFvD9fdz2lprjroxlXHqHmauHkc41JL5pv1uCNH6MwsjMqUlP4WCchCb6GdJwI5GcGCV9602NOsQFizCKJAr8HHeWHl6DTFw8dZNYxRxTCoCncMfA9Nk2510yIKknGi5uA2zanJbCZjpOGaAWYVgGoEsoviuNFxL9vXDb3KScVEssZhM3ZAT6amgv2GYXfdshnbHHujxFlTbgvFKdIBmzZ2Fpihn8vbowS7LZGxrbWAJ1BPVJarF3oqME0CM4ZJ4W8WwTLT4EUHrEX4IG+vLspFp8FzzT3yLQS8EA8vv6gy3S8fl3yymGa5xi5fh+aapJFQTNPswIJHnsMU9toPaxy51M1E43vEEJ2khmojO5yk2NRkw3Lo4sZl1CVDcawoXN4JOkGqCsM9rb4PzpimgOPSRge3DLVZC+oWnmvCWgt4QB0CmBdFueoO5Z+XBQArAiKbaArldzaaUWxhogl9tbMvmmnu7MGZ30BTPLxKgweqwmWaFujWaI5tw4b2V0Y/CjAWtFezhqWft7oXQg5/zS2LvrhCHr+JC57DtnrR0SS1IhCbakJdTxOrjiZKG9R/uNWi6QMAIkOSYy/SE83tbnRw85SyWVdf7aAGlDLBfDhJEEyZQHrfp59BL2OT86G/fg6v9lLcPE7wp1+8gQ9+5jlMkhwn0wyTJMPHn7iOv3r6Np7dn+Da7QnuudDD3ihGnBb4wCPX8LbXXcXHn7iOvZMY99+9iT944gV89PHruO/iAN3Qx94oRuAR/NGTL+LGUQwKig9+5jncvdUDBcWHPvMs3v6Ge/DJL97Ehz7zHP72yy/i409cxwNXNvHJL96sXFNQihvHU2wPQjz81du4OOzgc88f4Zvv3cZHHn0eL93t44OfeQ5vf8O9+JMv3GT3OPv9xz/7Ah68soXfe+x5vPKOIQgB/uAJ9hnv632ffgY/8Jq74Xtk/tkfPvkCfuyN9wIAfuvha6C4B5/80k289t5tvDCY4vcfvz5/4Xhf//7mCSLfxz0XevP7Yd+zsQGYt88/533wcQPQ/vaFwykOJuk84eVDf734vdjujaMYv/XINfzdV16qtKcaA28fAH7/s9dLguSPnnwRb3/DAQB2qvn00/vzo/CfP3UTN45ivGS3DwD4wvVjfPnGMe7e7in7AjB/TvP+Hi/392dfuokHr2yV1rM8/vc9zNagCLkfAPjAI8/iP379PfO/P3/9CBcGHdyxuRBI/+dffhVvffCu0sakauujj1/H33r5bsWmLD43DnlOdW3qrr09SnDt9rhizuLrVsaH//o5/Pib7q18Ls8tx198+ZaynY8+9jweuLKlpJKQnwHH7zz6HF5xx0blc1M/wOKdkvHs/gRfeOFYabq6fjjFJz73onYT+uDsPVRBN3e8TxecuYAnhB2HLw67OJmyAtdvfehefOKR6/A84C0PXsGNLx0iznK8+ZWX8fzhBN/+ikv4yGe/gCjw8PceuAtXd3p44MoWXn5pAxc3OvhY4GN30MFDr7uKB69s4a0P3IUHr2zh7u3u3JnyA990NwLPwx8HPvodH29+9R24/64tPHh1C2977RW8+ZWX8eDVLfzwa6/ioavbICA4nKT45nu38dYH7pp/Jl/z6rs3cWnYwWY3xD/+tvuw2Q2R5QUeurqF733oTjx0dRtve+0VPHR1GwDw0NXt+e/f+iD7no/X80ilrx+Z3VPge/PP/uvveuW8vfd9+hoeurqNX3rbg3jZxQ1EgYfPPnc4/573dWnYQeB5uDTszPtg3y/GxtuXP+fjBqD97T07CU7iDPdcYAL1h79Z3e6tkxh//5uuKNurjuFq6bsnnjsq/S3OQ5YX6IUB7r+bvejHU0ahy7/f3ejg0mZH25c8ZgCleQSAn/mObyj9DQBveeDO0mdve+0VPHhlq3TCkvuhlFb62ulHGHaDUrjfj7zuKl5992bplCq3BQDf9eo78NCV7crnACrjlZ+rrk0A+KFvrl57PE1x74U+XnapLDjl52jqD6jOLcdPv/kblGP5e/ffgfsuDpS/kZ+B+Ln8LOr6yQsKimvK9l5+aWMud2RcGIzRCTzl7wCUZIDt+AHgjs2u8nMd1ttEI8S7i49EZx8NJOdFKP1tii8vdas5XYaBHRGZuIB4aGScFoh8u2OzKRmqE/iYLsF9c1bQmcAmiZkmt4zmx/5c4gHvhebyhCo0Sf8fRAFGNf3Y1obdsgzDbOIgbhurNtG45FZwbHZDHDmGvt4eJbjQoOrSrZNEy1o5TfNaU29bWGsBT6F+qQJPTdUZSDwyvsf+tqkFaeOYsuGdibOidIRO8nzOGMk5NOrigDuhPhmKJdOskuei+fzYcl2LGCVZqR5rnWBwdXxy5JJ/wMZ6K3fVhKHRpuaqLWnWdk/PUigi8Notsdc2VM+QJarZj9nkydJtxBc3OrhlQdUrwpQVa0KW6+tT3DyOcdlRE2+KtRbwgFrz8z21I1MOuQuFqBlAHRsOAKBynVL1WMycKgyppMHHPLlJSHKqIxTrBL42bpx910yDt3uBmguGusLbKowTe4dg3b3bVEWyRROuEFUSz7Ab1GrdtsWe+x01x8tpgDqEaJrAi6DIYNWvVntvg45vFY4qgmVWt+uwPhibN/TQbydvBFhLAU+lf6sIPE+4anFd4JM5Pzz/Oy0WfNwylcG8R4p5+KMuiQowJ0FxJFlRmtS5iYaHSKb1CRWmWPllNHjGY6+4fwuhbvNy6zJWmTapPxnYCo6lTA+KWzTd9ck0qzjw6kw0J0m1opQNOykLiz2DQi9U/1xktFWv9MIgwt6oqkXvDjrYc9SuXdE0Br4RBXZNJqvp+8sGumFXrKGAr4fJBi/ayAOv/HKlGkZEioVtPp3RG6gQ+vU0A0mmsMH7ZQ3eTsCrhXg39Gu4bPSLkSVE1QmS5iYanYCfpO0QmNUlBLWZxKKr5mQ6BR1N1AVCzoKAzKbPScoyjwsLc87+2K5Qdh10m/RmL1Bq9meNs3h2FwYR9kftUF6sl4An8/+BSbMo21KFRCbJ9hj6kpM1p8pEJUoXbaYG21kU6InIOJK8bIOnmFEhzLJYEw2Zl9yPjrTK94jWvlpnglFltwLlOfQIGttvdWRm4yRTUhioYLLFbnT85hq8o+xn9V3LY64zIxxN9CX+2kDbWZj74xT37vatygoejFNc2ugs5f+hBsbGNpk4A5+0ZuJoCiNPDQgzJ2uUxTbnYm0EPKOCrYdHCDxN5qlHysLPlzV4HYmP0HGWUy0dQeDVV3uSNXj+X3wUNlWbAk+dDVuHpCYRSyfgRfRCX8lXY2NG0RUUGcc5epbH+26oN0/5SzoPXaZUlU3ICMj0wjAvaGX+CWlPMLu89DZ9HowTvHR3gP1xvYCnFLg4jHBgca2u/yOF2WsVuLgRYa/FRCJZriwLCjpz+K4+2WltBLzt2uU2dNVil4WQrMEXRX2mpUmDFxct1zJlbVPHVc8RK9ggxfZtjss61JlgWDEP8yPvRXpWxqYRLHUc82Kr/cjezk4ISvPlqvWYnpNKQA27oZFhUtd/fWRQ+6YAm/aKgtUWteVc356VyqtvV21jvj1qx8xThx3LcdriwqDd9gCWh+Ea0dMEayPguSmjDv5MA7eRNbJNHqjXRBODDX7ersBKmWrMPjoUhb4oiBj/3kSWxgpWSRFppj+dcOgohSOD45dDpzVmhT48VcaGJfEWwGz+unRw5fiWVKQ7wapDVM1YBVGWS5siWZ8JurBPleN6FWh6AlaBgDiHV9ZFHBEQ+GR1NXZFrI2AtwUXFKq5kT+T4+JtIBcJUaEjMOvVmUVcYIp/t4GKVVJG3QutMtFkeYGNTqAUbrKmuGzR7bpQQHH8w25Z22+1HBvoTEFYPA8CYuxD913duLgwaHpCatInIPCSt7xx3DY4ZNsozMJZS0127DYROcqRI42DnuM0HbdWkokQ8hZCyBcJIU8RQt6luebNhJBHCSFPEkI+6ToQ24At0clI6YIOOPDIvGjHYkyuo7DjhRYTelQFOFyQ5QX4/iDGvzcZe3MGyQVUFacmaY4Lg8g5c5DD/FKXl7utlgjMskRXmLGpMsmYXs7KZucgyXS+D44ksz8FnTV0hdNr8xQsN5q9WZZoE9OJS0JVnOULhdJBKN88nuKSJos1yRZ+wNOgLq6VTIQQH8C7AbwVwP0A3k4IuV+6ZhvAvwTwA5TSVwP4j5xH4mCDFx0e3CbPHHBqwVD7cISvEwMlMG9HzGhNDDZ7G4iJTzZc8SbEabU2q5yir4I4P6prJ0mO3Y2qgKcKfm1TX8toqJTSynNk/gJBw5Zs8suAgNQ6VevgEh5aRxnMzR51aznO8vn6rZvvVQqYJm3bClFOwbw7iLCnEfC6/l3CMfcMdAMmjA30GzdPYlzePD0+fBvJ9AYAT1FKv0IpTQC8H8APStf8GIAPUUqfAQBK6Y0mg7HRWn0hW5WHN1Kqtrc3QVGglkogFGzlpjqhNhATn9qofCQvbEYvbDc+nUCYpDl2+lHFRKOq36p7SXuhPgtVnm3Vy6mqZCWHkxlt8g2WxkanWrbPxURzNMlqueA5bAV8HQ4nrB5pz6FM4mmBz8+yvhCeHCdTQNvg4kYHNy3t6aJTuK3NcF/gtjFtaC7BBibYvPlXAFwT/n529pmIbwSwQwj5U0LIvyOE/KSqIULIOwghjxBCHpG/W9ysOZNV1ODFBCWWxdpQwEvPrq56UegveKCXtcEn+UJImuLfRbgcF6dpUUsFwO+LlQqs3ss4YaXyZPlfFx0jjrdJmriIE001J5NNvjIOx+Xh6qyTn8vRtJ4LnqOulONkNtd1JobDWUm87X6IgxqKhNNO4hH7a4OPpgkYSZndOhTrG7QVompbzOPOrS5ePJpa96mDjWRSjUa+2wDA6wB8L4DvBvDfE0K+sfIjSn+VUvp6Sunr6zrQwVNo8ISg4hArt9/uUbQjsEraVHkyIZ6FNuYzpss21rf4ktjEvnPoeGF46Ki8yFUl+nRzzXhqVBql3dyN4ioNAFB+8TY6oX4TUTgyScvxzTKmaX3Og4haZyxIrWY+TdlJZ7sX4tAyZr3t+Po6DDTZrMNu4Mz22AS293Ba5f1UcIkmM8Fm9T0LlNjurwJ4XnHNH1BKR5TSWwD+DMBrXAbC4sfrJ5Rp8LNQQiw4ZFbBoKfTJgJvcTS0CT00IclzbHZDJxZG0zzJdvxJmlfs8jpM0hxdjUauOtVMBH4SkxOQgMyyQO0WrErgMA3evFF1Q69kk5+3N3uOvahsJqrT+F2hei4EBJ4HbbQHKytpv35sNHNgRtNR46w+KwG2q3GOXthoL97cxRluA5e5MrUvZ963UefWBJuV9TCAVxBC7iOERAB+FMBHpGt+F8C3E0ICQkgfwBsBfN52EPPpsLLBe4IGvzhC+f4SNni6OL6LDyebFfGWBb1Hlg/14pimBYbdYG57X/bYLNMFyBq8Lwkb8d4mSY6+Q6k3MSxzUmOuMVEJ27B0FgUnmZMipYRFo3sJx0mOQRRUbOrsb7WwbNN8sdkNtRsJK+lXHxvOx7PloJm3hUli78cxgT+fza6aUXJoeB51bcrwyPIhlCWTUkvrQWzn8mZ7pGI61D41SmkG4GcB/CGY0P4ApfRJQsg7CSHvnF3zeQB/AOBxAJ8G8GuU0ieaDcnMRVOywVPMtZ/QUYM3ZQ9ymZfmBfpR0Irz1jSOXqi3v7ouLMY2KdQeLShCQUPshuWCIaLdvc6co9NQAWCcqkPjbNC3CHdsmiUKcF6ZoKKxb7Sswetgqrl6aFGzVUTo24eRGm3BQrZpne17f5yUKks1BX9WnqfmWiHEnGdgalPGruE00OTk0qsr6t4AF1rOuFXBalumlH6MUvqNlNKXU0p/cfbZeyil7xGu+eeU0vsppQ9QSn/FdSC2cfCet+B4p1hkhfoWPDFiG3lBURQL04O42DnSjGIQ+bXHqGWPuh0D/4ordIRfHL2wTEUwEezulJojiEzClNnv1ZpoXUKNi/mmCY5nGZT9qOzojQynCmdBYxCQG91qNA7HKM6xYcHT07Y55VjIKu1FnjEG/2DmuAW4Gcw9Oof5IxYKgG662tKUdwd6rpcmfVwednHreHlhXCL281afzbo+mayW9ykuc0oXma2hT5BbaNqUzjLTCsqKc6j6mH2Y5AV6FgJ+2UWpKvDBn3vdiy3zfnRDD1NDqKW8AZjs7i6YJHZl50TwsQ+0DtgFmmaJ8rF1Qx+eZXp4ruFSMcGURawrUAOwtWMTVVGXq6C6zgRRK9/uR0bCsbxYFMrZGUS4PXYXdKfFQ8MRBfYnHRts9gKralryRibjtCOX1kbA17NJspdTfPEoaEmDzyxMNGnOolayvFhUX9J0nBUFBp2glgN+WdiGR6rAYtEXCyr0zZTGMtfMJLXPfq0L//KJ5uit+R1PBFJlz9rCtoxeXeiriBNNxI4JxzUhkW2+2G20dTzNsDnT4Ld7IQ4shfZ2L8S+waygq4S1P06w01/MT9NYeBWRme70tIxSIF9HNGtbxs3jGJeH6kQmm3KdbWNtBDwAo42GEFQEOE9wAmDUzmTHaT/ykeYUmUZTm9vgs8W1JvhLhtv5CqetaDoyZWfKiUx1i7cjbSbM7m6ZCGUZHWALXo/VZc0vS91qM86TOMOGhhSLEDVf/tE0tU5qaoKVEI3NJj7wPdgqu4Fvzg3YJXAq2AAAIABJREFUH6XKItV5Uc/xZAM54atJIW2gPst3FFdDgG0gmrNk3DpJKsK/LnFu2byA9RLwBhCoX6x8RgFsKySyvEA/8pEVMw3eMMFJXmAQBUhr7ONNMupsUWaYrN4/j3u2hZz9yaNTmsBFW1ddP47dKz0NOkHJXm8j+FyF4/F0UZlJ/u1mN8SJQqBMEjPR27IC2tZE00b7y+D2qB2HrA57oxi7QhHs3Y3IudRfXdYwwIpt6/hkTGCnRfXzuXUSY1dq0zTv2/3QiqvfhDUU8OpMVqbBV4Woa4JQmlN0Q2ZXT/OZBq/RntO8QL9Tb4O3odJtik6wKNGXSRExwMzm10IIm4hlXnbViUPX3ijJ5nH0tn3KGbGrsGmmGdXaUVkyjvqls6G7bgO293wW5eayQk3d0damNEmKUm3YJnV6Lw6jWvrfQ8vwVReImbE2uLzZWTqbdS0EvK1FTKXBpzlFJ/Cs7O8AW4C9cGaikcrrVa7NKQthtBDwLolKLiYdkZ9GJcynmX2mKkfTl83md10DK6L8exM3vg5tZfiZYBKMpoiYVaJtrf0saQrahGlT1fWpz6q2b1v7mxafUyeoVy7rsBYCvgpVjGzVBg8wDb4zS/XXoRT6OIuMyXI60+CrD0Q8DQRevX0ycjTRuGwIHSGuXXaoAkzbbIuPnkO3SE1JRhxy4e2i0NfhbGJ2YGGeZY520xhNfdpAvj7028+Y5mDPuip45I1dN1ep5MRzseG6CKZVs1C6MoKeVkbusv2ofh/6yxMMmrCWAp6tyfJkEEAZBpkVzPZpGxKV5pSFPs5t8MvDVYNXhUXq0A0X18ZZlQ4YWJ6dj2MZLYv/dhAF5Th7Sy4csW9TCrd6Q25X4Iovom/gODKhyZh0tuHDSYpti2Soo0nZwdc3FAk/S54VgCsC1ZPQdj+0KgIuYhWnA9X82EZsuXx3x2Z3pdmsayHg5duWwyGBGTGU4qXJC2Yvta24kuUU3dn1unhnV4EZCY5Q6+stE2wif2HfV5FXneZR20Yo9CTK3nGS13LIyHBhnpTJt2wIu1ywWVOHVQeZC97mOekE/MHYLtv1YEYVzOES/uiCNrhcLgw6ysLYFwZRa8Wom5wGTPBIu+0BwE4/xP5oddQTayHgyyAQ53CR8KOOomFOU/tjM3cCLUK9ltdkKjwrxExN61LYQ+S9iYWi2qugVXUpDKL7bRSUy5uNkwz9sN6RKvbNImWkxC/ht2UGyVVXdWpW9MOFC56jG/rKfIAkKxdT9zwoTxWjOMNA2FRM0SJnbYNnm091bDrNvglYFEqzzUI1PzuDqHF7gIbqwzK+vinWT8DPojD4VHAfnMkG3w18ayerskh2JXHCfrgUtFJAlwllfSOqqBubh8wihkip6Lf1OE+hwK8Ko1if4Sou+KZCe9Dxa6MolmEWVBX9sIHMBb+MSUQe41YvxJFGcIsmLJf4dh2maY4waN+cY+KjaQuXhh1txacmuLgRGYuF5AZ/E3A2UU1rJ+AJZoJ8Nk+BT+bTkhdFRfhmBbNLuzDHVV42qU3blHZt+wQwjcamcpOpe9Eubys4EotasxwmeltX5AWd92s7VpaMVZ4fLY+NFBHR5tiB+sQeHWRzmurlLizKKaqw3Y+s0uZNsHVOH4zViUsuCkOd4FsVdCeipqgryrJ3EmtL/J3VHKydgAd4HVEGxuPBol1UdnYbDb4crVH+V4XQJ848FiUSoZroBRV3vfzC+YaK8WI2qq1WMK1JxBFhKgBt82Iva6OVtThTn57E88K0f7vNYZUgIKX7iBSb1iip57jnbYkYRH7lHnVQPQsVd7/OmaxiklSZ0EzYHyfYOUUeGhvU1Q5uQnNw86SchCVCTtCybdMkB2ywdgKeafCLG2LmD2aqUdnZs5yiU2ODJ6hq5CYRxJygzcPpCAGa+mJ4O11DDdM6xkgVppm6WpMK/ShQCngW/bNaXh4VTEReQNW8c2Kw4VLQ0oax6jA1jq1e1VlrW2e1Ep66pCZ4MEkq6fQ7/UhpE08VJ78L/UjJR6PbiG8LdUiXga6ojGrztIHOYXo0ybTPxaS8iKRsMm4dNyvgfWlDz4ppg7UT8JgLcvYgfc+b76iq55EVi8xUHQJHjVwVppdraimqdl9ug1/G7G1yxHYd6IX5+CZJjo6lgO+FPqbJgh6Bt9GPfC1VrC6mXd74msSQ6+qxqjDoBEoqAQ55kxp2qxp/HVQved2phXGmlAWoKxd8E6jW5+E4xXavLHCZgLcTJJsa5+1xnGGocCxPUzemUZ1Ge3uUKLXg3UHHmVd9u693QN88meLisN0TR1YUWuFvWju7G53arFsT1kLAy48zE0w0gc8Eu05poaC1ySeh4JS0ES/s+rIA5bVXVZWfZHANPs2LuQ3XMWFzxhGvFjydoKrB60I++ThdNPhu5GGcMiEpas+9yMe4gabE0TRCYuQg4DtSCGqclZ2EctGPYSdsFCXjin7kYxxXn5nupRfRNCZbd900LSoCl7GM2ikNvobHfF+jqbdlItsbxcr2L2hKAAL6ebpoEJxjoRSljDpysLahm2tbrIWAFzEPh5zNFdeGTadST4qwIaSaOCPb7402+KCqwadZYZ0xSmZjTvJiLnB03Ca6BShy0MgQ+cX5opJZJWWkmSJ6SINIoBwWE5WYBs+EY5oXJZoBG5slq2jvvkEw1klLSmMp7GwU5yXq341uWcNXUQ/UCU/5Xm3qqi5jVjmL6IsmOJosioiIaGv8RQElI2UTIdiL9H4mE1bxLFQKW1tYOwEPlJ2pgTfT4B12TgJSUtVdnaaMeqD8IJOcHbFUlZ+q45n9JitmIZGMI5szX9rANlZ+rqGni01EZy5RZoHWhKqNk0Upvm6woAkYNyjwIdMYVMaieUl1L7YNTqYZhp2F2WAQlTV4uRhHEyeyWB1pWdgKkCac5q59NGnXpnhJHZYpz3iWaDq+O1ZYm3XtBLxopyVY7M51CpD4vezkVGnwpkcRKCIK0pwirAkzzKVxMu4YJqgj4d/SuDUvqmxqqIOunqr1UZ5SzXF+IcjF2OVp6k71a6q92sSvYPP9cZyWIlVM1ZWAmfnCkbztaMW29FUJ6WXg0r+r6WJZzn9bLFsQpC1saZK+2sBaCHgq/YdYWzXgAt6hPW6i4S+yq5NVaaKZ2eBNSGcmGQ6uwScz806SFRWqAf09VBNBTC+VWLiDL1AbTYhfyxLAqmObJGq+eVGD10U3yH2ZhGt/RRmpqkITpnlkXPBmYR1JeQwncYahYwWos4QtmdyqoTNNbPfbpVjQncqa3G+TCDag5sS/wmzWtRDwMuaZrESIcxYyWuvAWPQWf4eCyUX3c49gznXjk2r5Py6kCaC19yVZ2VMuCnbGV6MuZyajiXY0TYuKBp9phLYKk1TthNUduxkFAbt+krhr8zJcYrtXiSMLc8tQ4qcpFBFWbb2wtuXojKydZ5TFPO9fMxcXBpEy03R30F4GatOKTzpc2lCbU0yx88DZnbjWS8DP5ofLVgJRg7fX4cnMBM/Xe+BVNXi5NWbGKea/l/vjmaCRQrufXyOZYLhA587WOK3X4E3tm47qWVHMyxdy6Mw2qnZcTS6iXXyc6sub6TImZaHTj8qVmkyQY9lV3+v6133GYbNZbXYDLVWACTYvuRzTPUpy9BXJUCo/gIr7RkXlcNbmHQ5GtFUV5HLd4GVwcaiPlmlykmGni+qzP5pk2gIhTTOW28BaCXg+BQvtmcyP9S5BCISUBYiKu0V+hMwsQ4Xvy1dkOXOQRr6eOVK2sfOCFlnOOGRs6ALEOG0XxUvOnAR4BIylBp/k6DbUwkdxjoEmrEwHOXlJJikzYZUVtICqM7qaSRo4MVi6YKtXjpe3TYY6mCTYUtQC1SUwqbAqIaRrtykNhAsGivBUjkYZ1xpBdON4ikuaYtssk7e5j2aZKJu1EvBcxOfFQpP2m9jgZyYafmRVOVkXYJ+HFrzfBKRk7pFhEuCEELYB1JhMXKNntN9Ts8OQUpTCT3UmGhtMpd/asEaOkgx9yW5tXbbP4KwV+7CF64vuSWF5FV+JpVlFBZlI7HCsFvByMY/jqdoPoEpKsuYvyurDP+ugc97XjaWtzcY1PNWGM0Z1P4weWq3k3DiOtcKfw3S/d2x2cOOoWZTNWgl4Pq+i/dsjZGZusXdEsCiaRUiiJ/xWbIE7YglhGryNIzY0RLfUxcoXksNPJQe4KYffRx1UC4M7dnUmGh6xEmcLLdrFXi+DUmjD43TPbBzn1rHtMlR8M21BNV7Xoh+6jdVm/coVq3QZkDIPvu4ZLJMoczAxa542tv3jOCvlIVTasAyJrOvLxNWu60P1G1227DJgwRfmtW5aG1u9EAeTZj6JtRDw8rLMC3a7/HM6y3sqKHOA2rRXUBijXuZtg20egUdK/DO6HdVUni/JHZKhwISGTMXaCe2qPZl2/O6s9FusidrphoxyYJLmtQuvCWy0L7HgtsvvgBkdwRIRN64a+7BbpT8o5RdI45apgl1QZx7i2O6HOLD0A5SoI2o0alGQ7o9S7Gg4ZGydl/ujBLsDdw4WGaMkN2YzMyHo5hdR8eXfOolrx3va9vRlkuTWQsDL81U1p7C/87ywSqQgs525NrsQiyzZ0C9r8LqXwCTgTZqsCqoMV5diILpxLtgg1TVneWHsSYNkJVfoXoYspxVzlq02FylOW21FiqjGO6zJdpXHdzRJlQ5PZUJeDXRzstULcWhpWxfbkCtNidjoBjgWNs7YUNB9Z1AmHMukerAcJuejC/ZOYlw0CN6LGx3sOXK2XNzoVPjdVeRqMpTJgUsK/V7YXqETEesh4GfgUzRPdJIF/6zghQ0YR40pbImBZ8mGloWzw4A4JSCZoEp8Cjw1LbILOiHnFVHffy/yEad5xXbeFgIFlw+HrfbsUh7NxLxp8zLWvZwbnQDHsb12aHJu841omtqFzOogKyS22B+nFfpfjp1+iAPL8nGb0qa3P06VlMBUo2S4ghGz6TeKJtQDbUbrLBuZdHmz29jObsJaCXj+num43V1S/QvKmCg1XczBnLFlQjITGNPkIjRxGR+UaEIhhGfCur0MKuHUnROVqe+nG3hMgzcUxHZZsPK1nJLAOfpJuBeR2KxOAA8aVl2yhaoykslEA6iP1aLdnJlx6jXbNswBYhsH40RbwHuzq2dYrLQp+cT2x+1QAtf1uQ5YhYlG3jDbwloJeD5xufA2ifI8szC7cFCKUnalTtgwDaNKEaz17s8+9j2CSZpb29xViLNF1Z9uuHDeLsMUCGCeXKVDMGPfpBTWG6YL+rMwwqmCAM3azl4TKSPCVOJvVfZSk4lGBzEE8qghF7yIJvdm4vXRldGzgY4S+Kziv1cNl+LbNnOwqs1rrQQ8R5kZcnHjLho8BUUobAaZxPhXduASEMKiYLjTs26hR4GHUdz8mE1BSyYaFv/udlyUE6s4FnNmv2gqRSVqfmtKJuK0wKO46ki1xaDj29dljcrJPOtas3bYDXA0YeMcJ6sxjy2LtgVy0w1j2UpGIpySJC2udXFwA8srbMtgLQV8uej2YsKdbPCSdpoVVMmXIsaCu5wQIt/DKM4ahxYCM4eOzwW851w/clqbGbv8gmnywvcEJ65rAhRHP7KnFpYTZjYco2x6kVfLhW7aAG3nqCtFSNlobW0I3HXJXFVB5vXhuDCIcNuRj0Y3V73IXlmwwaVhma5AF44MtKs4NGlrrQQ8X++5cCOiPM+LAr4lpzmVwiQ53e/8+9m/rJgIuy7NqbXJJQwITuJsKUcZsOi7STk8U5SD8zgcBYnpes4fNFoiSofHb+uEk6n/OgEfBqSUjbzRoOgHH1ehKbSyrlg3Yc/K/1Xn3lTEQwfdvV1yqIpkMz/yRn3jKMZlTSLT4aRaPasJht2wFOFki7US8By5lOjEwTV40yMIfGZHpGBJRTzpiVMNqMA/VcWl69CGBl9qT6PJAJxbp3rXdbVKXUw0q0CmCDlzFTC6ezS1M5jZ5HU00xuSU3YohQe64CSxrzYFnI1N+izt4HV97wwi7I2qwrcT+K1Fq232FqaxVeBgkmj9KTeOY1zetMsDqMtmffFw6jy2tRLwYpgklT8EkBuENEfgefMMUY8sqIKzvEDoeUbxYlOZhyMMmIC3pf+tQ2TIkI0CD5Mkrwgr09HwrEHRhoHIrVwfByd4G2uSY4bdsKThq8rp1YG/jIzky358fGW3KXStipRQ935PwzxUV26zDdhmwcdZ3lhh05nb2npH+1HQqAKV1d0QQt5CCPkiIeQpQsi7DNd9CyEkJ4T8iMsg5KkRn3dVg/eMyy7wy1TBnIcmlWzwqjZcTDSR7+Ekbr4gZPgeEVg0y6PrBj6OpllFk9VlqraBZcIkTXAVGi4Ft6u/LRf74NiQCnPPTXRF4RRVRCmLhqnjj1f+1mLOTLWIRbAsT70QkROYlh3X1xPEfItbJ0ktZ8wqcSZOVkKID+DdAN4K4H4AbyeE3K+57pcA/GGzoZDSYha1cA6bKJpACvViVMGURdFYFOywNdGEPjOprCLMUEYn9HA4SStZr20lkagQeF6p8EqpX4t1SKDeRLn923Yxjx3qscr9H0vl+jhU/CwUlJX3s9TGeUy7KiPXPK765xX4bI5OpmYeF46DcaJNXgJYAhPPerWd9yx3y/FQrQleqnJZ2BCAAc2KuosUB/ujREvNYEJbp7F+tBwFhwo2s/8GAE9RSr9CKU0AvB/ADyqu+y8BfBDAjSYDYc9PnCi2YmQN3sVEAyyyKtOchU3OwyMVv3Ux0Yga96rRCTwcTVJ0GsaUN9EM+pGPqSKKRVXRxmWBM6pd+0WcL1GPdepAlwy41VZliSlqx6xV3LPhGs6RcjBJsK2gAJZxOEmNZqKhQwITx8FEn/HKQUAqCWAibo8SXFBkt7qCbWD187A76GDvxM0xK0bErCovxBaMNdLdzm6Czeq/AuCa8Pezs8/mIIRcAfBDAN5jaogQ8g5CyCOEkEd018iiqLxxU9TNv2yiCX1moskKGw3eTG/QJlyEYifwlRp8PdhEqOLl60S+LvW7Fy4yTJugb6jcxB3ibUHFkc+h6uUkTq00ZoDR8C6TeVjHHng4SWcbjl6weR4zK9UVJRdLJdrWsz2wyEwVE7dU03zbUiOuG9OeJWFZk9qm3dB3TjAEJAK3lkwrruG9NrAR8KrZl+/oVwD8PKXU+OZTSn+VUvp6SunrVZ0QoeWFicYcNbNom/2rNtEUFTpc3ZI6rXRoVpTE7tpOwE005cdlKwybFJLuhj6OpmllU+QOSZtpUo2ub9Dgu6E7n4hL33XIFPVbdegEHqaKqKc2XvZ+xNg+60ySMnd8HWxs+jyaa5IUtSGuO4MQ++NEW0sgL5pTUAMLIarLkpVhysRtu5yeNXW5i1ObkNYjnmxm/1kA9wh/XwXwvHTN6wG8nxDyVQA/AuBfEkL+vvNoFOGANrY3EVUTjb5Ahwniy8B5YurgslDCGjoBEZ5HKg5VU2m/BdgNqMiv6ma1H/nYO0kqL24v8rE/TpxMHyIYlXGhXMiDzmoY9VSQe3fOA9CsS5FjvylslYztfuRketGxXIrY6YfYt9SCubP69ihREo2t0oSow2mFhNrmrbjeW9uOVpuV+DCAVxBC7iOERAB+FMBHSoOi9D5K6UsppS8F8NsAfppS+juug6la4JmTVfXIeN1V8W+Ax8EvEHikURhWJiRGsXJy5ocZeG7hXp2gWvqv7uGKL74drTBrb5q6l+MLfQ/H06xCLdsNfNweJehZZKiqn5v+BRw4FPIgkKoqUfl7d5iEg8npLOJo0pwLvjKempuQKRrqcDBJlWX9RGz3I+xbZpDyZ3kwTpUEZmcRkdOoDF+D1XJpVuvVdMpqXVgT9+IttQKeUpoB+Fmw6JjPA/gApfRJQsg7CSHvbDRSBeaLWX5RNaucmXOqNxt45VJmOuraumlK82Juj9dTCS9aMcWxqxA1oCYQoXJ26jBJc3QbVJSZKDYGzyOsWMdMs0800Umm+dUt/H5on1IuVzRaNVRFP1Q4mtZryTm1iwqpe5ddzIkUFMdTszMWcKuNy1FQe9OWC3g0URswJRI2yU3Y7oW4PUpw6yTGxQ21f+CkxofiiguDyNmJbPVUKKUfo5R+I6X05ZTSX5x99h5KacWpSin9R5TS33Yahfh7eYB6Y7lSTPhSpmvoeSXyMtulmwo2exsq4ch3K9TBNPj6aBSdMORl98xg7WUNncfjJFPaVsVCISyM0S1OPdWQpAW+VzGF6e5fZpBsw3Vi0rhURT9UmCRmEw0hPOqlJS2/JdOSCGezwpKKqu8R5elotwFdgQ4XNyJrugIbcDqOvZMEu5pIoRvHegqDJrg0rBYoqcN6ZbIKi2+eeafT4DVOSk+y3XgeUV5Xt8zFyBM9/e6iFTub+AI2GrypwLdYaT3VZvgufmt6sXUaZV5A6SSLBZKzsYZvhkC/mY4SfVUh+7J9PkaCvV5+xiyTVi95XGUSi3Cw50rXYdgN8Nz+xI4L3sqRbe/sOwXCzEqfNrggVYfikKtGLYOdfqT1LfBxum5shDBHsu700iQL2zRnoe8hdzxdrYmAF0OOytBp8EyANLG32SEVbPA21Z5Cv77SkzjaTuDXHj8ZwyTX8mn1u1l/sWO8twzbKAURXIhNNMLa9GRMC9+WtpjxxbdrojHa4H0PbVgLNrshnjsY1x7d2xbGq7SH6zYi2z51xGKhb+f3sIFnKD5OQZU1guvQpglNHo/+OzesiYBnkKeDVVvSafDLaSRONngL7Vxlgzc5REKLsnamUnTiyWSqZZW0W2C6MDcdxEdi+q2u97FBg7eFHBIXSSYvFnarv/+zSmcZdgMcjNPWEmrcwvDabxNYfjPqBH6jSLe24BGCF4+mjWgKTHPahN530HFznNdhPQS8KnyGf2XS4JdYE0VBjQWyZRt8nXYum2g8UnUQib3ZbFCdkmNIP1bGuCjRGFjEPM9/v0TxCV2hcVPXJg4dWbjYaoHMhHJ6TtemkLnrl8Uq4rHd+j/9Pk3wZ3kvLtjuh3hmb+xEGrcq1NVmdZ3R9RDwGlCYNHhF1ivsk39ySuEbJKDIHx96HpIaDUO+hhA0pjvlL0bHoMEzCGGQFSKy+sgZjkkDE82ysDm+dgLfOtJIJhADHDMTG2TRnrZNexmw+1td2zJyDVWzK3RVy3S4MLAP8+S4OOOLb2JSaXsNbHSCkm+p0p9je2st4AGDgEf1COQ3jHlXgdKF49Kk6XOwaxZ9e6Re669bT7ZVnuKsqAhzVXKTiIJirg7UV4bSQ5s52IJA6TtU4hlIUTWuYavy723QPKmpPc02rq0JwDA0cOfIcBXOKiF3MNZzpCvb0KwjFqVibzrZHXRwSxNKqDtRdMN6f9hpos2Tz1oIeN3tMBu85jeKMMnQL4dE1vZbabvFjLqZBr/MDh9owseEXgAwzVPehFRmGxG5VP6wbYqGJjVmZTBtxq6NSEocG3bMFXDk/Ai5CIgNmlIF2yArCuMJk+NgnNQmLwHAdi+aM0rWwbYgOMAUGZVStT9OsLuxPNHY/jjBjsX9cbhGsy0DXSGelfbpeP1aCHg91HS4PLFGFp6sUK9+wnV1WVcBAoKcUisGTG0bSwhdsdDASiMoNEvO90wavN14Bh035snyb83a/7BTLvox7LoTPR1PM6twxyrq73+S5OjbUAVbCuNhN8CR5Qa2r6EeUEEkHBMxSYrGBddFrCqJSkYTRWyrF1pvmk5jMawP25KlHGfuVaCU2btvjxKcjPO5HZRrbn/0uRdw8zhBFPi4fe0Qn33us/iOV17GyTTD3kmML794gvd/+hpee+82Hn76Nl599xYmaY5bxzH+5As3AQAff+I6/uort/HdD9yJP/7CDTxzaYyn90a4tNHBOMnhkQS/++hz+NBnnsPb33Av3vsXT+PLL57g8WcP8Mkv3gQFxWPXDvCVmyf4ue98Bb704jEef/YAH/rMs3j7G+7Br//F0/jH33YfTuIcj107wPXDCXYGET76+HXcf9cmPvmlm7h7u4cv32Bt/pMPfxb/0w89iONphsefPcAvfPgJ/OIPPYCPP3EdD1zZxMefuI5X370JQjAfB++L3xOA+Wcf/+wLePDKFgDMx/u7jz6P1790Bxc3OviDJ6rfP3ptHzuDCFu9EO/+k6fwwJXN0vdi+wDw3r94Gv/pt90HAHj02gEef/YAAOZzAWB+HwDw9K0xrh9M5t/92p8/jf/s2++btcvmGWAnjUev7c/NKXwO+Np4/8PX8COvu1oZGwC8+4+fmt8XAPzhky/goavs70mS4+ZxPO//8WcPEWcFvuWlO/N7EAsnFxR4/8PP4IdfuyBKFe9ZvlcA+Def/hq+/zV3lTZwcfyqMcv3r7vuE597EXujpHSCVbX1yFf38cUXjkuffeJzL+KVdw5x74V+6fMPCs/T1OZv/tUz+N6H7qooJqprH712gI8+fh2ve8lO6XN5rjj42pfB17mMR68dKj//7X/3LF52cYDXSv0CKK13EfKzEfHYs+p+APV9A8CTzx/hdx59XjmGUZzj6VsjbZviuyJDNxcA8Lnnj5Sf63DmAp4Qlkg0HETo+wFeOJrigSubeOG6j8D38J2vugN/8ecRtnshvudN9+Kzzx7i+19zN778yQAXNzp422uvIs5yvO11V/H560d4xR1DPLzRQUEpvuNVl/DQ1W289YG7cGW7hzfedwGH4xQvv7SB+26PsNOPcG3YgUeAN75sF88dTPHQ1W284b4LeON9u3jo6jYICB68uoWfeNNL8LW9EV599xaG3RAPXt3CD7/26ux6du07vv1leOWdQ2z1Qgw7Ab7vobvwrS/fxSTN8U33bKMTeHjgyhYevLLFrv87L8NDV7fxwOzvtzxwJx66uo3vf+hu3H/3JkLfm/f/w6+9goeubgPA/F/eP/8dgNL1D17ZxqVhB2994K7K90eTDPde6OPe3T7+zjdjBzx2AAAgAElEQVRerHwvtg8Ab7jvwvy//+G3vkR5Pb8PALhnp4+TOMM9MyEj/l68lyQrsNkL8Ko72YsnjnWcZPjxN96r7AsA/u4rL82/k3+b5QWG3RD3383anaYFLgxCfMPlIfu+oOgG/vz7kzjDP3zTS0rtiWNW9f+ffOtL8bKLGyUTiTgG1W/k+9dd990P3ImXX9qobesnpDEDwDO3x/i2b7hY4nNPsgL/4PX31PYLAP/ob78UL9kdVLjcVdeyaC1i1S4APHD3VuVa0/U/8aZ7ldd/5eYIlzc7yu/E90HE97/mbrzqzk2l01Z+9jZjKyjwD76lOqcAC3K4MIjwyjuH1d8VFA9c2XTuD4AxwkaFNTfRlFHmYHZPT9fZCyktZ2zqjmuynVeFNC/mIZCh75W4uAHMyoOZB96xoiFYQDUPdVw1rsUwbMdRaOwyTaxNozg38rO7HKtHSVYiSBvF5WpJx9MUG4rqTyZsaswTbcC2MIotPa6pMLSMCw6EY6M4w7BhScVlwGztdvfOcXFDXeAbaGbGnDrmj3Awv0Iz/8TfyCgaF2KqBSnZ8mFYXEAUKDscF9+X+9ZltIpjTLICHmFtqiJTkrxAVGNHK2ewchiyLL1q0hRLktIL+IIu/BvMd7G8Y6pnzedu9+BGsXt2oW2vcp7AyTTDhmMc9EYnaCjg6++/7bIEh+PUqioSAPQ7bkXIXcZqIv1aNS40qPhkQtMAipsn7XLUmLAWAt4EnaOO6cHlleXCt0GwyIT8/9r7thjbkvOsr9Zt37r79LmNMb5gJ7KQLGSCZZlIoCAkBLZfBiQeHKEQoViWJSzBA1KMIkVBvAASPCCFRAYsBYSwkAjCQkYhikCAQhI7mRmfsce3eGzPmTlzzpw+3b27923diodatXetWlW1qmqt3b37aH+jM92997pU1ar611//5ftlDZ4Q5sjlETmMEtSOsiAVNHjVVjAt2uN6bbmm+atRpa0P4wCL1E5oj+IQS8+YfRGTJFTG8Ppk9AHMbHJgKCYtC5YuzuSlZbihiDAwl6zTo72dLvPYBsusvYCH6zU5XB7v7XF/BGKuCDtmv6vg8yJmsf1Xk3eyGwJeM+imxCWqsHS4xMGHwUaAMwFfv5hIJcB5aXQZreKCWGvwVE3UleZla+k9O6538fgQSylePg7N5iRxlEYxqyBkgs3CGCWR8jpi0hhgNuWIKClFaKiR2/tilbNoW7lG+r2/DJv+XQfnev3+btDxzvjAZ/h14xWSfnaxXdvRN3ZDwJug0+ApbTxgpnVbVkkS8pIoaK3YNtfouY2PCyhVkQ4ZGw1eXa5sZZGZx2zw9qYOViVJph62x8CBW96EsYajfb4qapTCY4fSfL51Mtuv63+f9Tkea3SZFR61dfvBtjJvXV50vEZyHzCadh07e/dggGeOGbDsPs6nCOduX8jvlICXlXJ1+jhjhWNO1vrMigL/ySNPUtEck+VMwNuU/0vzct0H1by3Sb22KeeXF+Xab6Cyt7eNgtg2G9u5OD66ealbvPOswFgwtYw1phwXZJpCI1rsCK3AdJnh3kFi9QK3EZzXwfciw1ZOrfICcUi2vvM5GkXaUoa68bp7kODpxdWZjg6H5kS8vrAjAl6YIdL4yzt5XoKP0qYAVU0cn7ckD93cmGgokoggtCiZlRfmaj2pgWiLt9dm0S6F6zAbvP/2chDrKRH4+IndDgixMrFwzFebClAAMHYszacCpxz21YJsZEybIPIRVNNFhvfdGVvVUvU10ejGzLa9brsme5zOskbopQk+xWSADbeMCrq+scJAV2eieeFwgCfT5dbvsyMCnkFcrFw759o6B7ez24ZJcgfp+h7STx3iMECWs6MyyYbcBWmuv5ZcfcqEZVZgUDkFA9IUBlWu7/pvkyDUCQTRFyCGmI6SQKnx6xaPTJsw0XDMuAjry1WOO+Ok5qswCqYtaI3KQjIt/oVFWuJdR0NMF1dTXPwqYPvieDZLa7H5bTi5TJ1eCBwsxHT7kTqEMOXKJ9t6kkTWQRAcl6scE0dSwJ0S8EBzHcqLPqqcoyobvAp5Wbev24A7Xbm9XXYSCkc6XZdDtyDM8e/1e6kIxnSwK+/XxCjZOF/HycaMM4rdFhBFPaQ1DNSUuTYRRhyzVYE/cWvoTBCmg+4l57pDOBhErVvvcdLu1Ab6NdFQMPbUtiiwbdqFi5IicVCUzuZqGoa8KNe7ZNf29mXSYooawQtHg1pGtEsbXP0+j6dLvOvW0OmcnRHwm+dUfwClZIoJQ1GDb39YMv+M0j6uGGexyEebBt/FIy5OUHX8uxoi14weGxu9jUCR2yU6Q1mRaya4dAKq6+KZrYqGhqIbW54pKJp6+rZHTxIz2Zlq+h2NYkwN5hcKWgvRdbm2DCbo2o/jOB7HraahWcqSy1zm9CBqOvlVcK71CrW583TOTD2sBoDbC76v6BVebPto2D6mtftT6t0GOTnPBjsj4IF6dip/rLKmF3FCMcsxYs5It24SItwHQJb7Fa22QVpsbOmm+Hc5C3eVlWsTjR6VSSUOsXRMLlnlJY4nyVpTH0va/DyzX1ii4C1KioCohfFslVsRbHFMBhEuLOukyrCZPm0UuyrlkZF6bSe7VcZ0mTc03LJUJwASEByPE5y1RIqcOphR8qJEEBDcmQycQh+7bhJOZivcmSS4f6BPXNK97ONQH6HmoiA8qwjZXP0w54sMx6PuLJu22CkBX1t11cCVkiwPg8CJ8z0rmAZvrKCkWRCmv22/a4NY3UgX/54XJSaDqDYxCweWykEctMe5SyJvkRa4PY7XmpkYaSP6J1wxT3Ntws08LRqJTcYixEFQSzTqmiVJQWs7qsNhrKUQLku1dhm3zE+bucJfgm04X2QNquCLVY5DRUYuBa3yHcwmmvOKndLGkX6+YNmxx+PYuchGF/BAhYOhO8XzPcNLwQVlS8EgHZ5crPDC0dVksQI7JOAplPJdY4O3tyfnJbOVxWGdW101dQOCdYSOHfxsaSJW2cburIt/X+Ylbo1i6+pGcvvaomxU7Z9nBSaDaL2DEoW6sQ5ly1jM00IbGcHC6Bz9JcL9VFWddFB1Qd5BqfILOC7THBNDlq0ONnPlYsl45k3aJlDRK0g7nvO5XkO04S+nlCX9HA3beXZO5ynujJN1ZFsb+MutrzBJn8uYEq2uIvlINK1eRYjrzgh4PrZyl0vJmepatSkvmJPVJkbehopg3dyenFHcRMMTo1Tx76uswNEwamj37ROkEs4Wux75Wou0qIU2diluIJ43T+sx8W3tAOzH2miTtbjEoaQRmsb3YpnjaBh7j4np2lyLtrGZy9eZLrOGBr/KC6eydwBwPIlx2sJ1Pk8LDB2iOvhYhQruJBVsBKDr+IdBe6izDcS27UIugg47I+Bp9R8q+yxZe8nrx0UCxYAN8qpyURzWU5FVTlZOT2AbfhkFxDpuXYdVpSlnhf46q7zE0SjuJdtUBdV97Zy4G3Dbb9tYmAjEVOcmDrQNXSvSu5S1Y9WcWD9cXvY2ERQXS2Zm8Skowaqg1cdR1Orbng9v16HFbkiVi2KDO5MEp1vmo/F58SaWzmLf6wMyIy7datQSsCMCnkq/iIMny3J3Db5EFAasRFtpfiwuadRpUWKchMaXjc2V0qLE0TBeb8VVC3DFTTSSoAsDrF9a6p75v3hK2rQxm4TDwkCdWpvUlQlABVUfDloqM4mINDsVOfdAp9FOEvsErLygSKIA4ySypl2wBRfSQwXHkA/OFvZMkhysJKb9OrORU3we3JkkOLkCwjFX4XnfkCBlvI/LOAnH3hrFW8+H2AkBz0HRZISUt1NhiwYvfkPpxsnKhHcpHSvZ9ysTjc28yHJaad7dFiC/jklLXWYFDodxw3xjzzppuL9AedAF87SwZit0wbiHpJXZqk4FLNuuWTQIE6qumtnRMPJapDa7vr5qfm6rfKOvLX0QhVbrpktbJx4hlLfHCc4sd0x9mGVeOBzi8YVdNquvpWCnBDyHqDmqnKyF5GRVZhSCVYcv1iaaOo+MauoklZZvg1VRYJyErLC2ZiLaPo62Ah95oQ7TNDkBGdr7sszUdlSlLdxwvUXKxqMNpmuo7um6UFXXuGwU96hHmlyuchxWxT5cF5Fv0Y/rZoHUwVdwtQl7XfimDl1NF4yuwG2XEAT2dMLi87P1KcgYJaF14MSpA5+/iJ0T8ASohYjJ8pYQMwc3EY7j5hYCooy+WU/m6geLFLEb8KygOBhEreySNhhEG+eqqUKP/N1A4HH3XZgm04oJclvmWa4V8F2EWdID++CFpLFfVjw2te8di31wsOS07XGY9KEp7oJD8FwqDt4mSOWXsiuOHPwpImzmqvzyMcXj94XH06VXeOVOCXjO8S5mqNp4vNWJHagJ9KgSFMpMVuEYWydrlrPYdMYe6b9oKGhlanHMNAWtbLSm8/Tt4qO6TEtrAW/qJ0sGa59OtmNl4uxxRSFlM8t+APEF4PoycrFV+2ilfWj6u7BbOJm58cqcXKa4e9Au0PTEamRrL7NpFUHFcdfSdq96/rbPJiva60iosFMCHmjX4K2vI2jwgLqsnQwWRWMXB58WJQ6q6Beg25YyDolV4pA8YQc9mGgWWYFRYjcNxMmoWjzaxeax0GYrPyZBH2GWl/YcOF0wS4t17LyuPvC2cV3Cfp7Wd3htShQLQ20+/0Vaj+6KNEV4tol3Lpa4L5Tcsw29ZElo7maWLtgxAc8GyWSDlyeGWFtUPk7U4OXom9pVKbtOHNpnyaaCBh9VLwYfEPhpGgREG9/O7J0G7V3ILehLU/bhGTFhJiQSbVsodTVh2GY9TxcZjiozxeHQLimrbxPNNtGm5NhwR62vBfUcPpmtcFfYCdz1qBDlEg6pwjwtaiY+WzyZXl0tVo6dEvCVhUYS8OZzeJy7DALUNPi2uZUVdiYGsV2DipDMptLTtqALq2T1RdWdllkbbQXAVdpvZyvzInLZLWz7BWF7/XMhdv7WyI6kqu+2m8ozcmXFB0dDc8if69zRHX82z2pcOSzk0i208d7BQBumuc05Pk9zrxdDF+yUgGcSnlQJM3axtUWp1rwJcUuIYoyRbqnUQcVv4+KcBXgoaD8LVyUAFllRUQmr77FMy0YSk5VzySICRrVlFs+zFVirvFhz9PQttLe+IyBqTnjRjnpoQQVggi8r4fE40fLGnM1T60iNrChrXEh3DhKvknc66PrG6vRu7hsZdt26a9wed0u0cjFP+lyrT1gJeELIJwgh3yGEfJ8Q8gXF93+LEPKN6t/vEkL+rE9j+OMwVUSSkRdMW5UfckCgtLnzo+Q75I4avIikpcC1DJFrfhtoy0Jd5n6RMzZgxRbsTA++W/rr4gC3vf7BIMKlYgzE42zttrq2L7JmWKrNuNwaxdpY79N5htuCdmx6RqfzutP0cNDCvLkDjl4O09jbZJf2TU+xzWzWVolGCAkB/CqATwL4MICfJYR8WDrsdQB/iVL6EQD/GMAXXRoh9o8A4Oy+oktPNwR5yaJJRG2dVlmY1uF1hJktuKnHdbyTqL2GapfjXcEEfKB15C0USUl9CcGRVHhbrkHL7zNKAu8sTVNop83ic+mrzYtIvqeOE75PIcfCDutRKW08PwCbezqNN83rO7uDob54yZn8MnDMerouJzOHbg5MBuYaADr47oCPx/oXbh+wUVk/DuD7lNIfUEpTAF8G8KJ4AKX0dymlp9WfvwfgvT6NUWnwlLIECd0iK0qKQVyPlS5p+wSSv8mLErFnJEXsqMHraIF9oOaRYQuVsUg2J+vGhFNHq0ZtIRgng7qAn6c5xnHT7jhOIuvC2/LCEOPYo2C7L0v5hWWDQ8/sVkCdEKR6LqpqR2eLDMeKCki+uGMwZbhyFclz5/ZEbypyuY4vdAL5/mF7haY+d4T3Dwet2ay5ZA5zgY1Eew+AN4S/H1af6fALAP676gtCyGcJIV8nhHxdeSaV7N+UC2v9zbKCCTM5iSkIsKYHLiy4m7OCIg4CyOXlbOCqkQ+isDWxyRaq83nc91DgcBeRF7ThTLMp62fTVjk2X6dVTpIIc0veFxmiA/ZgENW4avo2xxxZcI7L99RFY9m0Tc6y1dW/zRTlDc8VQn+ZNXl3bOdclxeVDPmedyfJ1pODfCqZtZmaAPX4+frVhnHYKjueXqa4b5EToIKNgFfNSmVPCCF/GUzA/6Lqe0rpFymlH6OUfkx9A8qvA1r9VVQhf7qxKyoTjbigSom3gROO6ToDyl4GvlWbOAul8tLVS0u0+dkwJPZhlhtpNHig6Uj2WQwqyOnecvzzum1JWNPgXYqCz4TiwwdDd84RF7CiH/UFLzsY+ze9bIT0kSbaRvWyYC92Seh7EI1xBIE7N48thrF7cp8OuhfnPUMCUt8JUl1MLW33e3q5skr6UsFGwD8E8D7h7/cCeEs+iBDyEQD/BsCLlNITn8awIJq6Cl9U9nSTDX4QB404dPEymYLLRR7SLGcvAU525jKxdQ8oCsnaeSu+AERqApfKUW2QhSTjqrHTykeJWts3tc1GY1mk9eLg/H5JVDerMbOSnYmspBtBNhmEDVNPFydZIDB0AmwM5XGRtew+Ma2KfXDowilt56fKlHPVdAWumq0rsZZuLI4Noai+L65MUwL0/uEA73gwUdpAjhxygc2K+hqADxFCPkgISQB8GsBXxAMIIe8H8JsAfo5S+l2vlvBrSX/z8mV8kshzpShZqn8hOVnF6+Rle13WvNy8BOLQLcRSh0EUYFUULMpG0Nh1hT1EsBBM+zaoCMt0NngVRhpzjghxUbjwtAcWk3PmGSMsmrsA9UuttYqR8P3hIK7tCFTOw4tlVktV71NgyotZ7p8rVrm9rXxb2vo8LbQ1AFSYLnIcjbq/QF3Iw0SYxuHp5Qr3DpuUC21rzVQHYZsRRq0CnlKaA/g8gN8C8BqA/0Qp/SYh5HOEkM9Vh/0ygLsA/hUh5GWtjd0RlDJ7MTFo8FnBik+LNviS1hemyuasuh5fqC688CZw2/wgrgt0G1raNgHKz+dtVvHSBKQ9FG99vsZEIzLlscgk9rtYhNsFOmHoS00gg0V+uFVBapzfYnOXycm2nS7fZ9w1cPUhi89maS37tA0nM7VJQqfwELTXj1Wd44OTyxR3J+7mkquuxcphtaIopV8F8FXps18Xfv8MgM/00SBZYSrKstLg1cdzG/yzIoWoqNRNNEIIpEUbuElFDMXzqhATMu0rCd2jZmwjbXi7bMwxJoQabUcsaDEWzDijJMTcMd07zUvEkZp3Z7Yq8CePu7NRHgwiPL1McWfs1LQ1DocR3j43RzVQipqWfTRidnpRKKna3EfJQ9dr7UI5ufNFhvccj6yPv1zl+KDCbzNdqjX7WxVls5jh2gZOV+ASCQQ0n70tLpYZPnDXc1J2wE5ksuqmKgWLgDHF2BaUNmJ75TquucL5ZIIqESkrKOLIbcuXVBQGLuYMDl0Bbo4m8Zi9OcYFozjEMuUCPlpr7aaUdxH1eqx6LZ1nJGuvIwy8SWixqkwbDbws65WpVnmBONKf78JHxHE0jDC1LPa9C+iTFM4GlNqZ6WptUfHQaJyN9w4TrTNV9yK8d6A/x4Quux+dHNvmS3gnBLwJuWSDV0Gu0yo7a7OiRCxNMNOQqqgHGJWBLesiAzfRuIRR8gk0iPTFAFRj0abx69LnVRBjscU48FFc/133QtEtgpllURAZLpWrGlE8UsbnbFXUeMYZJYI7bYMI+aWiQ5/p7LugmcvQFb7oyyQ0WxXr6CkRPlW/TNWbtkE7YPzOYW26YucEvDwQRWGOogEUNm3pYGaDl2OB9ZCrPwEbAa/bTNTrjrI2c+dqIpQCtI2xNwnsTPAp8PsONC8R8XvbOPcNWVnd+SpG2tg6sMRxmRscTSZMHOqyyrhcNsv18epNQLdiHxw2Y1FoKhrZONK7mGi0nC6SQHGtuKQSWHc8k5dc4Joxq0NgoCvwFbimZ2L67ngcb23cdk7A83nDx75YZ7L6X1Iu+NCGOAwaiVNZwQS1DhQb8qeyEuRRSNZx/CWlSB12AUwgq7USMTJi7WxtKWTtElEzT/P19ZNoE+IphzbqoNNW5FBIWyHFkpn8zE+Xq6wu0FfZmoYYqAS+JODbNDgfjVSOvAHsIpe2gUMFBYFL6OcqL5Tr6fbYnbp3F2HL9NkX7h8O8ESTPbvMmjtMF+ycgJeTnorKhlpSNS2wDXSUwjrEiqgIG950rllzDV5GmpdrhsQ2mFjylpn9dTh0Wa2qIh6MyMo+pMtF+/PRwOS6rC4CdpHWXypyMtBlT9E7bZgu8kY8+q1Rk2LX1hzTheKZmSfqgvh0nmqdlPIu42yeKasz6bIyTTb/vkwTfZqs7h1sL6ZdBVMR8ifTFd7VIfpm5wQ8B3/seckcpr7eaw4+AWyuEClMNKmQLKUTMNzeXtKmwCOEYJU308Y5XIRWm/dfda1RstHg2+61dKzTujC0pw/7q2pH5QLxpdJM1mrOq7Y2+wiT6TJrmIJ0Wapt0Jl7VFD15VARCqqroKQi33o2s6cV1rUBqLI/LbN0fe9hk3MiQ1wrLhgn/qZEHc4WaUMxcMFOCHii+r16Xrw6EYV/NlfbPWUEpDlhskp4x0GgTYJKKzMOJztrfJ+3l4YLyKY4uM4sJdrIbTGM1JwmqsW0SN12CHNP56kORaneAflgGzHftoyVonaqepH4putPF2rOmYHlnFDZn3UVlFSEY771QRvXniR45liswxV3D9wLgujQlmF7/3DYSlSmg9kJ678WdkLA18Bt8NWfaw0ebIHo+mpro+e8MG2HywPOnawsjlutEXATjM6ZmhZ6wblJODJrHJS22+VUkyUKA3Al2MbG7BLWtjAIeJ/IAhV/zVVGjfRxr4OhmhO+D5wp+GXONUySXfviu8uwacPYg6nTFXc8/QKqNl+szA55HTGdTbz9tpLPdk7Aa6cjhbcNXkQk8cLobydFGVRauSrChoO/BCjUGugqa9fgxZBA+RLc4dnVXNUGV6Ewz/IGv7wKtpO4rVyfC7bhMLUZn6NhpOSEN8HkyxDt4JfLvBbqCTC7+JGDVm/LgaRLgOsDKs3UNZqnDaJi0xXvXKxqxbZlcEuDjOuoxcqxcwJeJ+J1Qo1PPlOkjTjocUCwyktGH8zj6x0mFKvepK9pmUSBMgaTUlqLxNEtKDncMS83zIWDqFu2qoy89K/BKSLLqTHCyBW+vDQ28M4mFSaXzTUOW2qUqnCp6fdkEDYYM2XhKBfrAHj90v744X2Q5mYuc3kdnCnMT13h88xV58ylHApbyAyhV4mdEPCq4ZeFNdeKu245ozDAIi0QV/b0klIEDtdkSUtmJ6sJ4sJUOcvkpJ5VxWUD9EuxClSVnXoq3dcWpgnY7wwWaYGxR81Yn2Nt4GNKSCJ3x7CKzx1gdVR9qGhNDrqr4qM5k0r7tbXj2WyFuwfN4/OihIkv0IfueqDgbzKhC9VEX/H7rtgJAS+CRcwoEjt4bLmckUrUv+sQhQSLrEAcEMQhWcesN9uhjpjhPDWqh20Kx1Q94FThLJUpCpi9nR2jSlbqUvpskTVL910XxPEsqd4HkBdlJwesj4JwNIzXtlVXKlsXTJeZMpKFUSG4C/gsp704Q2W49P/ZPMXtib32qmOefDY3k3zdOxg4O1Ntqje5wjekNSD9hYzWrtv7FbtCY2rhH3W1PccB0+CjMFjHmquEL6/slBV1M4apuAdg7/GmoEw7lxagTEy2ErbegzhoaBxdyv8tNaX7bKHTaMQCJ33ZwPl1ZmlzmyyyXNrcsw1ym8SiH+KOqss1VShLKDmTTDkRvrgqp3WqmOM+OLk07wSODcXETee4OJB9x8zm2bNon7ozuI9i3Lsn4AFlCjGltBfnItfgo5Br8HqnThwGmKfF2nHKP0vzspcFspJMOjx6Rez+SkiOUnGyqDJUbYXmIi0xTNwzS9ugS6qSwZzGdi8Cjtmqaac+8CyUrINcfk1k6pwumhmpV42uNAVdj2291ha8snlBjeZPE/WAzzlhUFcaALsx8h3HewfN3cTFKq8Vf/HBzgl4Ao2Ar36GgZmXRn1NUQMPKhNNsGYO1ImWOCSYrYqaAzEMmFnHFqZDxczWOFLvDFZCSGSomJCDDjTBbfQLbTCFvy3SorH7kSf/OAkxr5yH9hE2zQgSOdNVhE/SklxoW9yVTTUp/W38JV0Vgr417i4C3XSuTPzl2u5dIVG7dzDojXbBpk+qZL7H58tOWazADgp4EKgFaPWZaONmL4Pqa8v5GoekcrJubPAqmy4BqTT4HHHU3bmr0mpEJkMdY6Kq3KAIlePV1NZC2rGYsjx9MakWeVsClCpLsg2q0n5y4W1AM4dgJ9hMhbZ1Mf8Hgya/i+t9TfBxVl+HsGTJS/6CcRvOX59cjDuTpEFXYDOeUdAMw/btk4kyxBY7JOAJQJvbYw4KIdmJn0GAohrMorTLdI0CpsFHQYAoCLRxtxRsSzirTDQdelXrgwjRRGOypYtCWB6aoUQrbDI5ARUNwZYdq7ygtuwwkxcIT+0uy/pLVrWQagJO6uBQ8k2MB90KiKsKbYvtUPlZjkaxc9y7L/ow0YiCyCWaapGak3Zkoi6bHdQ2TDoi5Dq7IkwUB7Lfw2bcTdz0bdjGC3lnBDzPVgW49iUPJq2KLQuCgGx44MWaqiaEQaXBhwRxFDQ0WhFxGGC+yjsJeLGtMsT6m4MoWAtqPpFs5r1cnES02auwcOSZ8QFnnZyneY25UQZ/qS2kRClXjUce28PBJovUp6i5qtB22/kqfhfX+5rQ9+I/Hm+ckiaiMRmn8xS3DceqzIgmHI0i53wBV9yZJHjWkY43K8zx/Bx3JwOcXG7utcq7KYhdsRMCnqz/pw+TBLiWHjQ+A9gbOgyCVu54QniCT4C4moy6xROFBLO06C2JxzQ9BpYx7ioSMw4K2poWvWzRwPpEW5QOazutCjmYt6K6sFUVJoMIl3bO0GUAABCkSURBVAphK/sETO3SzQmTxqeLezdVkdIVyTC2rwcTzfE4xvmCCaK2hKhREqx3ROxlYO/4a2vrnUl/XDE6yEJXhK355tksxT1FNSkZ8gvunQv7LNZtmKd2QsADggavs8GjGWfOhDWtfReFhpTWCpQyQjFCyHqjoDolCQMs0txqZ9AVqrqtPuHeqvR0ceIsc70GH4UEWV953YB1qbY2Td8VLDEpX5dL5LiUHLTz9GryAKaLXBt5czR0M+1QSnsRBKzk4sa8adIyj8cbDbjtWKAuGNvaemBwkPcFsaaBDNuxfHq5ciocznE6y4w7nm1jJwR8wxij1eDr2yQCsi5AUXABr4iyMVda0YNH3GyD90XWHOKQWBXTaLvmUkpZl8sFmrjkxfqrVvcjzGmrg/iNKfJotrJzJlnHzFe7OGU1J/HvlTqxyHQvH4fddKlPVb81jp3quS6yppPX1nwgwiWzksWY25s4XF5Acmb3VSex2UKuI2ALV+K+vrETAn6Nqlh2yVV5CXnR1OCLSuPMq+13VNH1ukI1r8KAoCibi6GgdJ023Sbk7O/fzySQzSKsdmrdCaubcGJJPhtwTdm2XaNEPd1EX4QOLMPXbXdxucpqGvulFEM/9SjX51OWbb7SRxMdJGpzkg6M1yRpfCabTcQKY23tbTvOhYlURFm6Zf2ettAatIHJA7e1aKp05rtTEvvs0v8uWenaa/Z6tQ4QrCXagZUjZQhkE01QvQAcNAiPtvI6q4B5+9cHXCcZY7Tc9MqlVJ8uQYlgE/vPbMbsj3ESYZEWBm13g4UmBd32CZhi3XX3vpBYF1nI6WbKLw3RI43CIB6LnY0b1UbeAFU9V4cEmjMFX43Khr7Myq0709tg2rmooMtWnae5VjkQcdujJqwqwUiFbWaxctw/HOCkisApe6qJsDMC3gaFVApPfGPnlfCPQrdEJB9kgm03CQMtP7wvumw1CUhNmAyjutA2XXtUETbJk1IMQ+RCHWgmBImQH8EstS+Np2rjJAkxd6zL2rYzoHDfObmYaA6Gzfh8fVvMkzYgBAVnJJVMbKowx7NFe2TMtuPkT2Yp7iiIw3RQMWICTPCbeGg47k7cQxRtKQ6uIiv47iRZ12Y9mXXbzXDsjIBn8bAWx4lJOthok3mlnUVBk663ESrXMq/b2pEJ9VnjKMBqixp810Wo4q/RgfHsNDsvmm7G8u9pYdXG+creoalaIJMqmanTy2/LplC53ZwkzKbNzHykH5+jKjZfW99U6tzpzF573pagn61yTCyeeVuElC3drq4mrHgPGaYdlCvbpMt9VWDmZdaWJxdLI/e8LXZGwPvMsZoNvnLARgFB2SHKIApJK81rWmwEvK8Gz+z7/W41VP6AQRTU4uTN57PJLk/KkUDFOow3dvc4DLRRN7KhLCvbqZRNYGGILlpU++LatuuLc8LbaHSqMnwieAKRrXaYW4y3j1bq5ECVdpO+sI3G6hv3DwfrHYGLoBaVVV9t3iZayQY7I+DbLOeq7+QwyTjkYZLme5k0dFPFJo5UMtGkFYWti7M1ERKbjG11mCDDOMRK0jhcF5iKPlk0y3Ct3RW2Q3NVPOU+cOW1SSL9C1DGdJE3KjKJaEukamvLVcJ1LewqRPONy7wUk8iuGzsj4G3AJ225rsK0SSrgTokoCDYZsR7lvxKLkn5iBSPuZI0dNXkXzVqGbrLJKfu254lYKRKlBlGAZZWEJWvSuvqzgJ+GvNLYYQFX7bFf2BT98Amt5MjK0qixcZbRPgX3tl4CrruNq3ipixTWtuBsk67t4zzzXuGrPT+T3RLwtQdQH1Sm4W9i3nXDEIUbbgs5asIGUQvfOwCkRbGOVIlDsq7k5BJNw6gJWgSG44IeSiGRMgja08hVZFoyhbEIm4LCgL39Ww5l7BNdlMrDKiFpG3b8m7K7sb3/nUmCU0fCsW337dYoxpknV9DMsVQfJwB8emmu4WpCX4J+pwS86hGrJn+uKNLB/xSpClQ1R9sWk42JphAKM7BiDM2EojYkFs5ZZqdvHqN7+G0hkUMplly1qFy5atoYI10xXxVax9x1mh0OhxEeT5fGvu4K1a0tKCjy0lwKT4Su2pIMvtuxHY8DDbWED3T3vHcwwFPP6k2+Dk/b6B8RPr4OE3ZGwLtoRioNfl18W/hMpjaILMwvNiYa1atIJv1qw0BigVRBFshtGAqmFPX12qMCXNP3TeGPtlNUPE5V0GNzXMdM3w7ydxSHeDxdGe3kNslFXdrV9wtkFId4+3xpHW1zahm6x531tmNx92CAk1naS/909xwloXFt6EBAGhQXtrBJ4Ns2dkfAQ6YYYAOjmvy5pW09L+rpxVFAWiMxbEw0KgzC0CjgAynCJbGwwas44k07EL6b0EEW8KoF1cZGKWOheSH4iuLcED1gKmpuY35yQRwRpEW96MfFMlMW++DwdUBfF47HCV4/mVkJ7UEU4snFyilxyRYm/v1dgU80kM85YcCi+J5LE42tVCjKstF95YugKBELca5xGGh5oTlsTDQqF14cEaWJhjtqZBNOGLQX2VVxxKsSXWwxshRALhMzM5RSE69ikr22d5sZYsXHA8ZBL6KLxn8waAqdtDAXsRaLc183bPp+PI7x6GxpZZK7PYlxcrmy1kgJ7IvkMNpvd4ekDq7PfWQoMelNV0D0nFom3D8c4NH5srex2C0Bb4ms0Kd+146TCIIiTSKPiLai2jokodoGzz8fRM0kjLYuMA2+PvFMZGFtaDPh9An76VlfQqYFdWHYKrOqTpu+ddXlDz2E9eEwxlQqFGKVvGeZ5Nc3OMWxzVo6HiU4dQj9cxWMzzTmn7YCNjIm0jywwb2DgXeRDh18n+fdyQDffjTFCx1L9XHcSAFvmyDECci4JhEHes5uDkL8FpuYhSaenlRaeKLQxnXgi2MQN2PlbaNWdG3kY7dtgSJfXrdIoyCwZtE02ecZ7exGAAWkSVkh99l0V1UZwDaoCoXYVNCaDOxI21TFaXQFa/q21ydR+9oRwUx39uJFJ+Bd+WxMwlo3Jrcs6Qpc4WuieecyxZ2eKIatngAh5BOEkO8QQr5PCPmC4ntCCPmX1fffIIR8tJfWaZCXFDY7mLykiIO6Bq8SJhRosFT2BW6a0Wn4xnMVHPHLvGjUJK3D9uXXT6acDrZOZ1m4GevJGuzzcpy6j4AWEQbuyTqqQiHniwxHI7OD7kgqc6eDKtv1QiEA3Zy923ECPpuZKz/J0JkeTy5T3HXgs/Gx55uyZLvMI99ShNTA+OqK1hVOCAkB/CqATwL4MICfJYR8WDrskwA+VP37LIBf66V1GihrtqrCKYu6F1vnQKWUIu6QRi9DfDQ809XGqcoXJRcSgYIZc5WVRjuwLRYG+l43qCex7QttXBXotoOB6EvaecmFJHKpeLlMXLctTBeZttgHx9HQTsCraIHP5hluSZ+pOOOvGqyt9oJZJwttQzM5eASPK3Tn8KQlV7jN6+3BZuQ+DuD7lNIfAAAh5MsAXgTwLeGYFwH8O8ok7+8RQo4JIe+mlD5quzilzM42qyrwXK5yvPnOFKM8RwDgtUdTRKscs7TAq2+eI8tLvPboAstVgVXBfn/pjVO89vYFXnrjDEdDNrCXqxzvvHWO1x5N8eDNc+RliQ/MJ3jpjTO89vYFXnnjDFHAimpfLHN8+9EFJoM5AODBw3MQwn5+++0pHjw8x4M3z0FBsciK9WcvvXHKjn/zHA8enuO1Rxd48PAcl2mO0SrESz8+xb2DAV55eI5xEuIbD89q5/Hj+d+vVtfh11Md88rDM3z38QUCQhrnAcC332bHv/rWOWarHEkYKr9/+eEZ4oAgCcP1ddj30/Wx4ufiNV5VtE8+/luPpnj96Wz93YOH53jwnuZxp/MUL/34dHOccG35WLFt8ndyuy6WGf7wR5vr/vE7l3h6uVr//aNnM/z42bzlevX7yff/ox+dNjR2uf2vPDzH9x5f1o6R78POq1/79ZMZbo3i2lb9az98htefzmr3/H8/OMH774xrL6vff/0E9w4GSMLN9XTtlfukax9Qf9Yc02WGx9Nlw+79rUdTfOutaeMaumvzeSlDHk+OH57McDiMlHHmr2rOefDmGR48vKW8v+4cCoqv/fBU+d3FKsOjs6WS5fSdyyX+z/ee4qPvv628n24cAP1Y8Ou6gLRtIwghfxPAJyiln6n+/jkAf55S+nnhmP8G4J9QSv9v9ffvAPhFSunXpWt9FkzDB4A/DeA7Tq29ObgH4Ol1N2JL2PftZmLft5sJVd/+FKX0vs3JNhq8ah/b8KFZHANK6RcBfNHinjcahJCvU0o/dt3t2Ab2fbuZ2PftZqJr32yMsA8BvE/4+70A3vI4Zo899thjjyuEjYD/GoAPEUI+SAhJAHwawFekY74C4G9X0TQ/DeDcxv6+xx577LHH9tBqoqGU5oSQzwP4LQAhgC9RSr9JCPlc9f2vA/gqgE8B+D6AOYC/s70m3wg8z2aofd9uJvZ9u5no1LdWJ+see+yxxx43Ezcyk3WPPfbYY4927AX8Hnvsscdzir2A7whCyA8JIQ8IIS8TQr5efXaHEPLbhJDvVT/V2Q47BkLIlwghTwghrwqfaftCCPmHFT3Fdwghf+16Wm0HTd9+hRDyZvXsXiaEfEr47ib17X2EkP9JCHmNEPJNQsjfqz6/8c/O0Lcb/+wIIUNCyB8QQl6p+vaPqs/7e26U0v2/Dv8A/BDAPemzfwbgC9XvXwDwT6+7nZZ9+RkAHwXwaltfwGgrXgEwAPBBAH8MILzuPjj27VcA/APFsTetb+8G8NHq90MA3636cOOfnaFvN/7ZgeUPHVS/xwB+H8BP9/nc9hr8dvAigN+ofv8NAH/9GttiDUrp/wbwTPpY15cXAXyZUrqilL4OFkH18StpqAc0fdPhpvXtEaX0j6rfLwC8BuA9eA6enaFvOtykvlFKKeexiKt/FD0+t72A7w4K4H8QQv6womIAgHfRKg+g+vnCtbWuO3R9eQ+AN4TjHsK88HYVn68YUL8kbIVvbN8IIR8A8OfAtMHn6tlJfQOeg2dHCAkJIS8DeALgtymlvT63vYDvjr9AKf0oGKPm3yWE/Mx1N+iKYEVPseP4NQA/CeCnADwC8M+rz29k3wghBwD+M4C/TyltMn0Jhyo+2+n+Kfr2XDw7SmlBKf0psOz/jxNC/ozhcOe+7QV8R1BK36p+PgHwX8C2TI8JIe8GgOrnk+trYWfo+nLj6SkopY+rBVYC+NfYbHdvXN8IITGYAPwPlNLfrD5+Lp6dqm/P07MDAErpGYD/BeAT6PG57QV8BxBCJoSQQ/47gL8K4FUw6oafrw77eQD/9Xpa2At0ffkKgE8TQgaEkA+C1QL4g2tonzf4IqrwN8CeHXDD+kYIIQD+LYDXKKX/Qvjqxj87Xd+eh2dHCLlPCDmufh8B+CsAvo0+n9t1e5Jv8j8APwHm1X4FwDcB/FL1+V0AvwPge9XPO9fdVsv+/Eew7W4Gpi38gqkvAH4JzJP/HQCfvO72e/Tt3wN4AOAb1eJ59w3t218E26p/A8DL1b9PPQ/PztC3G//sAHwEwEtVH14F8MvV5709tz1VwR577LHHc4q9iWaPPfbY4znFXsDvscceezyn2Av4PfbYY4/nFHsBv8cee+zxnGIv4PfYY489nlPsBfwee+yxx3OKvYDfY4899nhO8f8BztiP66rSIfwAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\"inspecting mesh and initial conditions\")\n", + "#file\n", + "reader = vtk.vtkXMLUnstructuredGridReader()\n", + "reader.SetFileName(vtu_name)\n", + "reader.Update() # Needed because of GetScalarRange\n", + "data = reader.GetOutput()\n", + "pressure = data.GetPointData().GetArray(\"OGS5_pressure\")\n", + "#points\n", + "points = data.GetPoints()\n", + "npts = points.GetNumberOfPoints()\n", + "x = vtk_to_numpy(points.GetData())\n", + "triang = tri.Triangulation(x[:,0], x[:,1])\n", + "#plt.triplot(triang, 'go-', lw=1.0)\n", + "plt.triplot(triang,lw=0.2)\n", + "plt.tricontour(triang, pressure, 16)" + ] + }, + { + "cell_type": "markdown", + "id": "b327862b", + "metadata": {}, + "source": [ + "**Running OGS**" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "66ef056a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "run ogs\n", + "/home/ok/ogs/release/bin/ogs axisym_theis.prj > log.txt\n", + "computation time: 0.48 s.\n" + ] + } + ], + "source": [ + "#run ogs\n", + "t0 = time.time()\n", + "print(\"run ogs\")\n", + "print(f\"{exe_dir}ogs {prj_file} > log.txt\")\n", + "#! {exe_dir}ogs {prj_file} > log.txt\n", + "! ogs {prj_file} > log.txt\n", + "tf = time.time()\n", + "print(\"computation time: \", round(tf - t0, 2), \" s.\")" + ] + }, + { + "cell_type": "markdown", + "id": "50bebe96", + "metadata": {}, + "source": [ + "**Spatial Profiles**" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "c2f0bf2c", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEZCAYAAACaWyIJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydeVhV1f7/X4tBARGUQWQQEXBiPKiIE46haWZqaakN2mBes/pVWlZfK71mmk3XzOymaWoOZZl5M+cxBxRBQUEZBAVUBFQEVGRYvz/O4cSozKCu1/OcB85ae6393ofD/uw1vZeQUqJQKBSKBxeD+hagUCgUivpFBQKFQqF4wFGBQKFQKB5wVCBQKBSKBxwVCBQKheIBRwUChUKheMBRgUBRLYQQHwkhVlWx7HtCiCU1ramhIYQIFEKcqYF6EoQQD9WEpiJ1SiGEexXL1sh1Keofo/oWoGjYCCGyirw1A3KAfN37l6tTt5RyTnXKFyKESABMAVcpZbYu7UXgaSll35o4R3WQUu4H2te3juoihJBAWyllLNw/16VQLQLFXZBSmhe+gPPAo0XSfqpvfUUwAl6vbxElEUKohy1Fg0cFAkVN0EgIsUIIkSmEOCWE6FKYIYRwEEL8KoRIFULECyFeK5Kn71YSQpgIIVYJIdKFENeEEEeFEHaV0DAfmCqEaFYyQwjhousCMSqStkfXakAIMV4IcUAI8aXu3GeFED106YlCiMtCiOeKlG0shPhMCHFeCJEihFgshDDV5fUVQiQJId4RQlwClhWmFSnfSgjxm+4zSRdCLNSluwkhdunS0oQQP5V1PWUhhBgihIjU/Q2ShRBTi+S9JISIFUJcEUL8IYRwKKcO/WdS5HP5W/f7Pl3yCSFElhDiyTKuq6Oujmu678GwInnLhRDfCCH+1GkMFkK4VeTaFLWPCgSKmmAYsBZoBvwBFN7YDIBNwAnAERgA/D8hxKAy6ngOsARaAdbAJOCmrp7pQoj/3UVDCLAHmHqX48ojAAjXnXu17nr8AXfgaWChEMJcd+w8oB2g0eU7Ah8UqaslYAW0BiYWPYkQwhD4H3AOcNGVXVuYDXwCOAAd0X4WH1VQ/1LgZSllU8AL2KU7X39dnaMBe91515ZXSXlIKXvrfvXVtQbXlbguY7R/621AC+BV4CchRNGuozHATKA5EAt8XFkditpBBQJFTfC3lHKzlDIfWAn46tL9AVsp5Swp5W0p5Vnge+CpMurIRXsTdpdS5kspj0kprwNIKedKKYdWQMcHwKtCCNsqXEO8lHKZ7hrWob0Jz5JS5kgptwG3AXchhABeAt6QUl6RUmYCc0pcUwHwoa7szRLn6Yr2Rj9NSpktpbwlpfxbd52xUsrtunKpwBdAnwrqzwU8hBAWUsqrUspQXfo44AcpZaiUMgd4F+guhHCpzIdTAboB5sBc3d96F9qAN6bIMb9JKY9IKfOAn9AGUkUDQAUCRU1wqcjvNwATXTdMa8BB11VwTQhxDXgPKKvLZyWwFVgrhLgghPhU95RZYaSUJ9HefKZX4RpSivx+U1dfyTRzwBbtoPmxIte0RZdeSKqU8lY552kFnNPdDIshhGghhFir69q5DqwCbCqo/3FgCHBOCLFXCNFdl+6AthWA7pqygHS0LZGaxAFIlFIWFEk7V+I8Jb8n5igaBCoQKGqTRLRP2s2KvJpKKYeUPFBKmSulnCml9AB6AEOBZ6twzg/RPrEXvQFl636aFUlrWYW6AdLQBgXPItdkqRtML+ROlr6JgHM5g8if6Mr6SCkt0HZJiYqIklIelVI+hrZb5nfgZ13WBbQBGQAhRBO0La/kMqrJpuqf0QWgla47sBDncs6jaGCoQKCoTY4A13UDp6ZCCEMhhJcQwr/kgUKIfkIIb10f+nW0XR35JY+7G7qpjeuA14qkpaK9IT2t0/A8UKWBSt0T7/fAl0KIFjrtjuWMe5TFEeAiMFcI0UQ3SN5Tl9cUyAKuCSEcgWkVqVAI0UgIMU4IYSmlzEX7+RV+dquBCUIIjRCiMdpurGApZUIZVR0HRgohzIR2bcELJfJTANdyZASjDSRvCyGMhRB9gUepwniEou5RgUBRa+j62x9F2xccj/ZpegnaQeGStATWo72JRQF70XaNFC48+6sSp54FNCmR9hLaG2s64AkcrER9JXkH7WDnYV0Xzg4qOJ++yGfijnY6bhLwpC57JtAJyAD+BH6rhKZngASdnkloWxNIKXcCM4Bf0QYgN8oeowH4Eu1YSArwI9p+/KJ8BPyo6xIbXeK6bqOdNDAY7d95EfCslPJ0Ja5BUU8ItTGNQqFQPNioFoFCoVA84KhAoFAoFA84KhAoFArFA44KBAqFQvGAc08aYtnY2EgXF5cy87Kzs2nSpOSEkYaB0lY1lLaqobRVnYasrzrajh07lialLL3yXkp5z706d+4sy2P37t3l5tU3SlvVUNqqhtJWdRqyvupoA0JkGfdU1TWkUCgUDzgqECgUCsUDjgoECoVC8YBzTw4WKxQKLbm5uSQlJXHrVmmzU0tLS6KioupB1d1pyNqgYeuriDYTExOcnJwwNq6YgW+dBQIhxA9oHSUvSym9SuRNRbvDlK2UMq2uNCkU9zpJSUk0bdoUFxcXtFsl/ENmZiZNmzatJ2V3piFrg4at727apJSkp6eTlJREmzZtKlRnXXYNLQceLpkohGgFBKE14FIoFJXg1q1bWFtblwoCigcXIQTW1tZlthLLo84CgZRyH3CljKwvgbe5s4e7QqEoBxUEFCWp7HeiTt1Hddvj/a+wa0i3ufUAKeXrQogEoEt5XUNCiIno9n+1s7PrvHZt2TbnWVlZmJuXvfHRlfB4bmRk4xToVWZ+bXMnbfWN0lY16lubpaUl7u7uZebl5+djaGhYx4oqRkPWBg1bX0W1xcbGkpGRUSytX79+x6SUXUodXNbigtp6od2s+6TudzO0m1lY6t4nADYVqaeqC8p+mv2NnPnBR/LqxZS7LLuoHe7XRSq1jdJWPpGRkeXmXb9+vU40JCYmymHDhkl3d3fp6uoqX3vtNZmTk6PPDw4Oln369JHu7u7Sz89PDhkyRB46dEhKKeXp06dlnz59pK+vr+zQoYN86aWXpJRSxsfHSxMTE+nr6yt9fX3lyy+/fFcdy5Ytk8nJyTVyTQMGDJCWlpbykUceKZbeq1cvvSZ7e3v52GOPSSmlXLVqlfT29pbe3t6ye/fu8vjx4/oyX3zxhfTw8JCenp7yqaeekjdv3qyWtor+Xcv6btAAF5S5AW2AE7rWgBMQKoSo6haCd6WDb0cKhOTopj21dQqFosGyeG8cB+OKN7gPxqWxeG9cleuUUjJy5EiGDx9OTEwM0dHRZGVl8f777wOQkpLC6NGjmTNnDjExMYSGhvLuu+8SHx8PwGuvvcYbb7zB8ePHiYqK4tVXX9XX7ebmxvHjxzl+/DiLFy++q5bly5dz4cKFKl9LUV5//XVWrlxZKn3//v16Td27d2fkyJEAtGnThr179xIeHs6MGTOYOHEiAMnJySxYsICQkBBOnjxJfn4+5fVm1Cf1FgiklBFSyhZSShcppQvanZo6SSkv3aVolfEZ1AvTAmMSktQ2qooHDx8nS6asDtMHg4NxaUxZHYaPU1kbxlWMXbt2YWJiwoQJEwAwNDTkyy+/5IcffuDGjRssXLiQ5557jh49eujL9OrVi6FDhwJw8eJFnJyc9Hne3t5V0rF+/XpCQkIYN24cGo2GmzdvVvmaAPr27XvHmTmZmZns2rWL4cOHA9CjRw+aN28OQLdu3UhKStIfm5eXx82bN8nLy+PGjRs4ODiUqu+XX37By8sLX19fevfuDWi7gKZNm4a/vz8+Pj589913+uM//fRTvL298fX1Zfr06dW6Vqjb6aNrgL6AjRAiCfhQSrm0rs4PYGRsjL2RBefyr5J1JQNzq6r/AygU9xo93GxYONaPKavDeDrAmVXB51k41o8ebjZVrvPUqVN07ty5WJqFhQXOzs7ExsZy6tQpnnvuuXLLv/HGG/Tv358ePXowcOBAJkyYQLNmzQCIj4/Hz88PCwsLZs+eTWBgYLn1PPHEEyxcuJDPPvuMLl1Kd4HPnz+fn34qufMm9O7dmwULFlT0cvVs2LCBAQMGYGFhUSpv6dKlDB48GABHR0emTp2Ks7MzpqamDBw4kIEDB5YqM2vWLLZu3YqjoyPXrl3T12NpacnRo0fJycmhZ8+eDBw4kNDQUH7//XeCg4MxMzPjypWy5uBUjrqcNTRGSmkvpTSWUjqVDAK6lkGtryFo19GdfFFAyKbdtX0qhaLB0cPNhqcDnFmwK5anA5yrFQRA2zVU1gyV8tIDAgLo2LEjb7/9NgATJkwgKiqKUaNGsWfPHrp160ZOTg729vacP3+esLAwvvjiC8aOHcv169errHPatGn6Lp2ir6oEAYA1a9YwZsyYUum7d+9m6dKlzJs3D4CrV6+yceNG4uPjuXDhAtnZ2axatapUuZ49ezJ+/Hi+//578vPzAdi2bRsrVqxAo9EQEBBAeno6MTEx7NmzhwkTJmBmZgaAlZVVla6hKA+cxUSnof1pLI04G3+uvqUoFHXOwbg0VgWf57X+7qwKPl9qzKCyeHp6EhISUizt+vXrJCYm4ubmhqenJ6Ghofq84OBg/v3vfxe7qTs4OPD888+zceNGjIyMOHnyJI0bN8ba2hqAzp074+bmRnR0dJV1zp8/H41GU+r12muvVbqu9PR0jhw5wiOPPFIsPTw8nBdffJGNGzfqte/YsYM2bdpga2uLsbExI0eO5ODBg6XqXLx4MbNnzyYxMRGNRkN6ejpSSr7++mt90IqPj2fgwIHlBtnq8MAFgkamjWlp0JSL8jo52dXrR1Qo7iUKxwQWjvXjzYHt9d1E1QkGAwYM4MaNG6xYsQLQ9mu/9dZbjB8/HjMzM1555RWWL19e7OZ348YN/e9btmwhNzcXgEuXLpGeno6joyOpqan6J+OzZ88SExODq6srAM8++yxHjhwppaVp06ZkZmaWqbMmWwS//PILQ4cOxcTERJ92/vx5Ro4cycqVK2nXrp0+3dnZmcOHD3Pjxg2klOzcuZOOHTuWqjMuLo6AgABmzZqFjY0NiYmJDBo0iG+//Vb/+URHR5OdnU3//v31YzBAjXQNPZBeQ26uLpyLCyNk0256PjWkvuUoFHVCeFJGsTGBwjGD8KSMKncRCSHYsGEDkydP5t///jcFBQUMGTKEOXPmANCyZUvWrVvHO++8Q3JyMi1atMDGxoa33noL0HZ/vP766/qb6vz582nZsiW//vorH3zwAUZGRhgaGrJ48WJ9F0h4eDj29valtIwfP55JkyZhamrKoUOHMDU1rdI1AQwaNIiYmBiysrJwcnJi6dKlDBo0CIC1a9eWGqCdNWsW6enpTJ48GQAjIyNCQkIICAjgiSeeoFOnThgZGeHn56efUVSUadOmERMTg5SSAQMG4Ovri4+PDwkJCXTq1AkpJba2tvz+++8EBQURHR1Nly5daNSoUbHPu8qUNae0ob+quzFNdsZ1OfuDWXL5zAV3PbYmqe8553dCaasa9a2tIawjqApV1ZaRkSGfeOKJGlZTmvvhs7tX1hHUG2YWTbHDnAv5GeTdzq1vOQqFooJYWFjwyy+/1LeM+44HMhAAtGnlRI7II2zzvvqWolAoFPXKAxsI/If1x1AacObk6fqWolAoFPXKAxUILsZlcHKfdlWxRQtrWmDOhdsZ+tkJCoVC8SDyQAWCuGOX+fvnGG7fygOgtV1Lbhjc5uSOQ/WsTKFQKOqPByoQuPrZkp9XwLmT6QB0fqQPQgqiQk/WszKFQqGoPx6oQNDSzRLTpsacPZ4KgG1rR2xlE5JvXqWgoKCe1SkU9x7Xrl1j0aJFNVLX+fPn6devH35+fvj4+LB58+Yyj7t9+zYTJ06kXbt2dOjQgV9//bVY/vr16xFClFrxrCifByoQGBgI2mhsOReRTl6udlyglXULMg1yiD4QepfSCoWiJDUZCGbPns3o0aMJCwtj7dq1+sVZJfn4449p0aIF0dHRREZG0qdPH31eZmYmCxYsICAgoEY0PSg8UIEAwE1jS25OPklRVwHoPLAXSIg4GFbPyhSKe4/p06cTFxeHRqNh2rRp1apLCKH3IMrIyCjTrhnghx9+4N133wXAwMAAG5t/VkXPmDGDt99+u5j9Q1Gys7N55JFH8PX1xcvLi3Xr1gFw7Ngx+vTpQ+fOnRk0aBCXLmnd8GNjY3nooYfw9fWlU6dOxMVVfe+GhswDZzHh2L45jUyNiDueiouPDQ4dXbGRTUjOrr5fh0JRr/w1HS5F6N+a5ueBYTX/xVt6w+C55WbPnTuXkydPcvz48TLzAwMDy/T/mTVrFsOGDSuW9tFHHzFw4EC+/vprsrOz2bFjR6lyhRbNM2bMYM+ePbi5ubFw4ULs7OwICwsjMTGRoUOH8tlnn5WpZ8uWLTg4OPDnn38C2oCTm5vLq6++ysaNG7G1tWXdunXMmjWLlStXMm7cOKZPn86IESO4devWfduF/MC1CAyNDHDxsSb+RCoF+do/qqOlNdcMbpIQGlnP6hSK+4uiO3oVffXr16/UsWvWrGH8+PEkJSWxefNmnnnmmVI33ry8PJKSkujZsyehoaF0796dqVOnUlBQwBtvvMHnn39+Rz3e3t7s2LGDd955h/3792NpacmZM2c4efIkQUFBaDQaZs+eTXJyMpmZmSQnJzNixAgATExM9NbP9xsPXIsAwM2vBdHBKSTHXKNVBys0fbtyYtN5wnYH49LJo77lKRRVo8ST+83MzDvuslUXVKZFsHTpUrZs2QJA9+7duXXrFmlpabRo0UJ/jLW1NWZmZvqb86hRo1i6dCmZmZmcPHmSvn37Alon02HDhvHHH38U26imXbt2HDt2jM2bN/Puu+8ycOBARowYgaenJ4cO/TONPDMzs3Cf9QeCB65FANDKwwqjRgacDdPOHmrT2YvmBaYkZdT6vjgKxX3FnayfoXItAmdnZ3bu3AlAVFQUt27dwtbWttgxQggeffRR9uzZA8DOnTvx8PDA0tKStLQ0EhISSEhIoFu3bqWCAMCFCxcwMzPj6aefZurUqYSGhtK+fXtSU1P1gSA3N5eoqCgsLCxwcnLi999/ByAnJ6eYhfb9xAMZCIwbGdLa05qzx1ORBdqo79CkOekG2Vw4fbae1SkU9w7W1tb07NkTLy+vag8Wf/7553z//ff4+voyZswYli9frt+ARaPR6I+bN28eH330ET4+PqxcufKu3UFFiYiIoGvXrmg0Gj7++GP+7//+j0aNGrF+/XreeecdfH190Wg0BAcHA7By5UoWLFiAj48PPXr00A8i3288kF1DoF1cFheWSkrCdVq6WuLdsxOndlzg2Na/cejgWt/yFIp7htWrV9dIPR4eHhw4cKDMvKKD0a1bt2bfvjubRRa2GEoyaNAg/b4CRdFoNMXqLGzltG3bll27dt1N+j1PnbUIhBA/CCEuCyFOFkmbL4Q4LYQIF0JsEEI0qys9rb1tMDAUxOm6h9r37IxFgQln0y+Rn6e8hxQKxYNDXXYNLQceLpG2HfCSUvoA0cC7dSWmsakRTh2sOBt2Wb8HaMeWrbhqcIM9yzfUlQyFQqGod+osEEgp9wFXSqRtk1Lm6d4eBpzqSg+Am58t19NukZaUBUDQi6NpVmBK6PlobmVm16UUhUKhqDdEXU6REkK4AP+TUnqVkbcJWCelXFVO2YnARAA7O7vOa9euLfMcWVlZmJubV0hP3i3JmY0SWw9o4a2NienHY4m4loS7gQ1OvUvJrBaV0VbXKG1Vo761WVpa4u7uXmZefn4+hoaGdayoYjRkbdCw9VVUW2xsLBkZGcXS+vXrd0xK2aXksQ1isFgI8T6QB/xU3jFSyv8C/wXo0qWLLJwvXJI9e/ZQXl5ZZEWGcvNqLn37ar1JZJ8+pH74BefkVR52bY+Nc+lNsqtKZbXVJUpb1ahvbVFRUeWuFchsAOsIyqMha4OGra+i2kxMTPDz86tQnfU+fVQI8RwwFBgn62EFh6ufLVcuZHP1UnahHvo+FEgeBWxZ8Vtdy1EoFIo6p14DgRDiYeAdYJiUsl5WarTx1S5YKbSmBujQuysuBs2Jy03j7FG1V4FCUR51ZUN9/vx5Bg4cSMeOHfHw8CAhIaHcepQNdeWpy+mja4BDQHshRJIQ4gVgIdAU2C6EOC6EWFxXegppamVCCxcL/SrjQoKeGoohBuz4c3tdS1Io7hnqyob62WefZdq0aURFRXHkyJFithNFUTbUVaMuZw2NkVLaSymNpZROUsqlUkp3KWUrKaVG95pUV3qK4uZny+VzmWReuaVPc2jvSnvTFlwgg2ObdteHLIWiwVMXNtSRkZHk5eURFBQEgLm5ebnmb8qGumo0iMHi+sZVY8uhDXGcDUvFd0Arffrgl0Zz9j+LOHD0KJrBvTE0apizCBQKgHlH5nH6ymn9+5qY+dLBqgPvdH2n3Py6sKGOjo6mWbNmjBw5kvj4eB566CHmzp1b6tqUDXXVUYEAaGZnhrVjE84eLx4IzK2b42PnQnBqDHt+3MCAF56oR5UKxb3H/v37y0wvKzgU2lC/9dZbHDp0iGeeeYaTJ0+Sl5fH/v37CQsLw9nZmSeffJLly5fzwgsv6MsW2lAvX778jnq8vb2ZOnUq77zzDkOHDiUwMJCTJ0/qbahBG0BtbW3LtKG+X1GBQIerxpajmxO4cf02ZhaN9OkPvTiKMx9/Sei5aHpmZmPStEk9qlQoyqfkk3tDmAJZEzbUTk5O+Pn54eqq9QAbPnw4hw8fLhYIlA119aj36aMNBVe/FiAh/kTxQWPjxo3o6ulFtsFt/vr+53pSp1A0TOrChtrf35+rV6+Smqr939y1axceHsX3DVE21NVDBQId1o5NsLA15fShi6WeBLqPHkLLgqZEZiSRnnixnhQqFA2PurChNjQ05LPPPmPAgAF4e3sjpeSll14C4IMPPuCPP/6o8DmUDXXZqK4hHUII/IKc2bv6DPEn0nDV2BbL6zMgkJ93bWbjDz8zfsarGBioGKpQQN3YUAcFBREeHl4qfdasWWUer2yoK4e6mxXBo6c9zVuacfC3WPLzi88O6NinKx1NWnJeXmXzNzXzxVcoFIqGgAoERTAwNKDH4+5kXL7JqX0XSuWPfOsFWhY05VhaHGGb77wxhkKhUNwrqEBQgtZe1ji2b87R/8WTczOvWJ5RI2OeeGksTWQjth3eT0rc+XpSqVAoFDWHCgQlEELQ83F3bt3IJXRLQql8m1b2PBzYm9sin19+/Jnbt26VrkShUCjuIVQgKANb56a0D2jJiZ1JXE+/WSrfK6gn/i3dSTPI4pfPl9WDQoVCoag5VCAoh4BhriAgeOPZMvMf/tdY3AysiclNYecPv9axOoVCoag5VCAoh6ZWJmgGtCL6SAqXz10v85hRbz6PdUETDp07RfTfoXWsUKGof2rSfXTfvn106tQJIyMj1q9fr0/fvXs3Go1G/zIxMdEv8ho3bhzt27fHy8uL559/ntzcXEDrIfToo4/i6+uLp6cny5aplvudUIHgDnQa1BrTpsYcWB9b5nJzE/MmjHxyBEYYsmnbVjJS0utBpUJRf9RkIHB2dmb58uWMHTu2WHq/fv30K5J37dqFmZkZAwcOBLSB4PTp00RERHDz5k2WLFkCwDfffIOHhwcnTpxgz549vPXWW9y+fbtGdN6PqEBwBxqZGtF1aBsuxFwjITytzGMcPd3p7+NPlrjNukUryM/Lr2OVCkX9UZM21C4uLvj4+Nxxseb69esZPHiw3oZ6yJAhCCEQQtC1a1eSkpIA7aSPQr+grKwsrKysMDIqvn42Pz+f8ePH4+Xlhbe3N19++SUAcXFxjBgxgs6dOxMYGMjp01pH15SUFEaMGIGvry++vr4cPHiwWtfbkFAri+9Cx14OhO9O4uBvcTh7WWNoWPpL2vXxgSQnJHIiM5E1cxcz5t1JDXbja8X9y6U5c8iJ+seGOi8/nyvV/B427tiBlu+9V25+TdpQV4S1a9fy5ptvlkrPzc1l5cqV/Oc//wFgypQpDBs2DAcHBzIzM1m3bl2pAHP8+HGSk5M5eVK7C+G1a9cAmDhxIp999hl+fn4EBwczefJkdu3axWuvvUafPn3YsGED+fn5ZGVlVVp/Q0UFgrtgaGhA95HubF4UTuT+C3j3dSrzuGH/bzzZc74lNi+V1Z8sZuz0SWr/AsUDT2VsqO/GxYsXiYiIKNMiYvLkyfTu3ZvAwEAAtm7dikajYdeuXcTFxREUFERgYCAWFhb6Mq6urpw9e5ZXX32VRx55hIEDB5KVlcXBgwd57rnn9IEjJycH0JrdrVixAgBDQ0MsLS0rfQ0NFRUIKoCLtzWO7Ztx5H/xtAtoSWPT0h+boaEhY96dxNq53xGTl8qqT77l6Xf/pYKBos4o+eR+r9lQ342ff/6ZESNGYGxsXCx95syZpKam8t133+nTli1bxvTp0xFC4O7uTps2bTh9+jRdu3bVH9O8eXNOnDjB1q1b+eabb/j555/56quvaNasGQcOHKj3z64uUWMEFUC7yKwtt7JyObSh/K3qDI2MeOrdSbQ3akF8fhor5yxSYwaK+5qatKG+G2vWrGHMmDHF0pYsWcLWrVtZs2ZNsa6fopbWKSkpnDlzRr+fQSFpaWkUFBTw+OOP8+9//5vQ0FAsLCxo06YNGzZsAEBKyYkTJwAYMGAA3377LaAdXyjcVvN+QAWCCmLr3BS/IGdO7UvmzOHyragNDQ0Z/e7LdDC2I6EgnRVzviEvN6/c4xWKe5matKE+evQoTk5O/PLLL7z88st4enrq8xISEkhMTKRPnz7FykyaNImUlBS6d++ORqPRu5HOmDGDgwcP4u3tzYABA5g3bx42NjbFyiYnJ9O3b180Gg3jx4/nk08+AeCnn35ixYoV+qmnGzduBOA///kPu3fvxtvbm86dO3Pq1KlqXW9Dos66hoQQPwBDgctSSi9dmhWwDnABEoDRUsqrdaWpsnQb7srl89fZ/dMZrBzNsW1VdtPR0NCQJ9+bxLpPFnP6dgor5izi2Xf/VcdqFeDn4zsAACAASURBVIq6oaZsqP39/fWzfkri4uJCcnJyqfS8vLIfshwcHNi2bdsdz+fr60toaOn1P4UtgpJdQ3Z2dvqgcL9Rly2C5cDDJdKmAzullG2Bnbr3DRYDQwMGvuCFqbkxW76L4FZ2brnHCiF48t1JeDRuyXl5hR8/WURB3v258bVCobi3qbNAIKXcB1wpkfwY8KPu9x+B4bVx7sV74zgYV3wdwMG4NBbvLb+/vzzMLBoxaKIXWVdz2P5DJLKg/H1NhRCMmv4yXqb2JMqrxOwNIye7tHeRQqFQ1CeiLjdoFkK4AP8r0jV0TUrZrEj+VSll83LKTgQmAtjZ2XVeu3ZtmefIysrC3Ny8WFpUej6Ljt9issaEjtaGpd5XhSuxkoshEltPaOF953gqpSRpbzhxXMUq34x2vh0wsbG4Y5m6pqzPraGgtJWPpaUl7u7uZebl5+c32PUsDVkbNGx9FdUWGxtLRkZGsbR+/fodk1J2KXlshccIhBBdgPeB1rpyApBSSp+K1lEdpJT/Bf4L0KVLF9m3b98yj9uzZw8l8/oCvpo0ls37ESfTDL63CeS78QH0cLMpq4qK6ekj2WUcxelDl+jaxwsXn7vU1a8f6z75lphbqZwIj2Bwr774DOxZ5fPXNGV9bg0Fpa18oqKiyp3m2BCmj5ZHQ9YGDVtfRbWZmJjg5+dXoTor0zX0E7AMeBx4FO3A76OVKF8WKUIIewDdz8vVrK9cerjZMMzkGm22/coEr+bVCgKg28d4THtsnZuyfVkk1y7fuGsZu+4dGdajHwYIfj+wg63//blaGhQKhaImqEwgSJVS/iGljJdSnit8VfP8fwDP6X5/Dqi1IfmDcWksM3DBUBYQt3FLqTGDqmDUyJCHJ3ohDGDLdxHk5tx9zYDPoECefW4c1tKMQxciWfXxInJv5VRbi0KhUFSVygSCD4UQS4QQY4QQIwtfFS0shFgDHALaCyGShBAvAHOBICFEDBCke1/jHIxLY8rqMKZOGYaRgz0TChKYsjqsRoKBhY0pA1/wJP1CNrtXnS7TpbQkdm6teXH6q7gZWBObe5n/zvma9POl90hWKBo6Nek++sUXX+Dh4YGPjw8DBgzg3Lniz5nXr1/H0dGRKVOm6NMWLlyIu7s7QgjS0v75f7569SojRozAx8eHrl276v2EEhMT6devHx07dsTT01PvTfSgU5lAMAHQoJ0C+ij/dA9VCCnlGCmlvZTSWErpJKVcKqVMl1IOkFK21f0sOauoRghPymDhWD96uNtiERRE4+NHWTi8PeFJGXcvXAGcPawJeNSVmKMpBP9xtkLBoLGZCU/PmEKAjTtXRDZLlywncs+RGtGjUNQVNRkI/Pz8CAkJITw8nCeeeIK33367WP6MGTNKLSjr2bMnO3bsoHXr1sXS58yZg0ajITw8nBUrVvD6668DYGRkxOeff05UVBSHDx/mm2++ITIyskb038tUJhD4Sim7SCmfk1JO0L2erzVlNcikPm76MYGmQUHI27fxSjrFpD5uNXaOzg+3xqOnPcf+OsfhjRULBkIIBk95mkf8tUZZv+7+i41fLlcrkRX3DDVpQ92vXz+9vXS3bt2KLS47duwYKSkp+n0ICvHz88PFxaVUXZGRkQwYMACADh06kJCQQEpKCvb29nTq1AnQ2mN07NixzIVqGzZswMvLC19fX3r37g1oZ+tMmzYNf39/fHx8inkbffrpp3h7e+Pr68v06Q16OVSZVGZl8WEhhIeU8p4On6Z+fhhaW5O5fTsWgwfXWL3CQNB3XAeEgSB0yzlkvqT7SDeEEHct22lof1q6u7Bp9QbCMhJI/PeXDB35KC6aDjWmT3H/s//naNIS/7FGrokpkDatzAkc3a7c/NqyoV66dCmDdf+fBQUFvPXWW6xcuVLvH3Q3fH19+e233+jVqxdHjhzh3LlzJCUlYWdnpz8mISGBsLAwAgICSpWfN28e27Ztw9HRUW9PvXTpUiwtLTl69Cg5OTn07NmTgQMHcvr0aX7//XeCg4MxMzPjypVa6dioVSoTCHoBzwkh4oEc6nj6aE0hDA1p+tBDXN+0iYKcHAwaN665ug0Efca2RxgIwrafp0BKej7uXqFg4NDBlRc/eJ2ti9cQlprAqg0/0+mAG4MmPdVg5zMrFHejKjbUq1atIiQkhL179wKwaNEihgwZQqtWrSp83unTp/P666+j0Wjw9vbGz8+v2MY0WVlZPP7443z11VfFrKkL6datG+PHj2f06NGMHKkdCt22bRvh4eH6bTQzMjKIiYlhx44dTJgwQd+asbKyqrDOhkJlAkFJe4h7lqZBQVxbt47sAwdp2r/yLoh3QghB76faIQwEJ3YkIgskvUa1rVAwMDQyYsiUZ/AIO8XmDX9xJDWGc7O+YvjYkdi3b1OjOhX3HyWf3BvCXPjKtgh27NjBxx9/zN69e2mse0g7dOgQ+/fvZ9GiRWRlZXH79m3Mzc2ZO7f8uSUWFhb6fYqllLRp04Y2bbT/Q7m5uTz++OOMGzdOf5MvyVdffUVkZCR//vknGo2G48ePI6Xk66+/LrUfwpYtWyr0/92QqXAgqIGpog2GJl39MbCwIHP79hoPBKANBoGj22IgBCd2JSILIPDJthUu7+LnyUTvdvy5YBURGYn8sHoVXZ06MuCFkXfcxk+hqGsqYkNdFmWVCQsL4+WXX2bLli20aNFCn/7TTz/pf1++fDkhISF3DAKgHcQ2MzOjUaNGLFmyhN69e2NhYYGUkhdeeIGOHTuWudNZIWfPniUgIICAgAA2bdpEYmIigwYN4ttvv6V///4YGxsTHR2No6MjAwcOZNasWYwdO1bfNXSvtQoeyLuKaNSIpv36krVrFzK3fOO4ap1DCHqOckcT5EzEniT2rYmu0AByIUZGxjz25gSefHgoFgWNOZB8ku9nfsW5E2dqRa9CURVq0oZ62rRpZGVlMWrUKDQaTYU2rlmwYAFOTk4kJSXh4+PDiy++CGhXXHt6etKhQwf++usv/TTRAwcOsHLlSnbt2oVGo0Gj0bB58+ZS9c6YMQNvb2+8vLzo3bs3vr6+vPjii3h4eNCpUye8vLx4+eWXycvL4+GHH2bYsGF06dIFjUbDZ599Vq3PoT64q9eQEKI7cFjWpSnRXejSpYsMCQkpM6+iS/4zd+wgacqrOC/7gSbdu9ewwn+QUnL49zhCt56nuSs8NbUfBgaVa0bevnWLTQtWEpV9EYmkvZkDj056ClPLmmv217dVwp1Q2sonKiqKjh07lpnXELqGyqMha4OGra+i2sr6bgghyvQaqkiL4DngmBBirRBivBCiZUUFN2Sa9OyJMDXl+l08y6uLEIJuw93oPLg1V8/CnwtP3NG+uiwamZjw+Nsv8czjo7DHgsibyXz9+dfs+fF3CgqUtbVCoagedw0EUspJUspOwEdAc2C5EOKQEGKOEKK3EOKenNJiYGqKee/eZO7Ygazlm6kQgm6PuWHfRZB05iq/zA0h/ULW3QuWoLVPR16c+QYPewXQCEP2xB9n8UdfEnOo7Kl7CoVCUREqPEYgpTwtpfxSSvkw0B/4GxgFBNeWuNqmaVAQ+alp3Dx+ok7OZ+UuGP5mJ/Jy8lk/7xhnw1KrVE+3Jwbzr+mv42fRmmviJqu3bOSnj78l41L1LTMUCsWDR5UGi6WUN6WUm6WUr5bV33SvYN63D8LYmMzt2+vsnPZulox61x8r+yb89V0EwZvO3nFzm/JobGbCY29O4PlnxtFaNCPmdgrffPstv32+jOxr98+m2gqFovZ5IGcNFWJobo5Zj+5kbt9eqRk91cW8eWNGvOVHh+4tCfkzgc2LI7h9s2q2Ei3d2zD+o9cZ0WMAVtKM8MxzfP3l1/yxYCU5WWo3NIVCcXfuGgiEEIOFEA51IaY+sAgKIjcpiZyoqDo9r5GxIf2f7Ujgk+04dzKd9fNCuJZy9z0NysN3UCAvz3yTIb49aFrQiNArcfzn0y/569s1yuZaoVDckYq0CB4H/hBCJAohtgsh5gshnhZCeN2rA8VFMe/fHwwMuF6H3UOFCCHw6efEY69ruJmVy89zjhL594Uqt06EEHQdMZDJs6byULtOmEgjglPO8J85X7Bz6a/KzE5R49Sk++i+ffvo1KkTRkZGehsHgN27d+vn/Gs0GkxMTPj9998BGDduHO3bt8fLy4vnn3+eXN26oIyMDB599FF8fX3x9PTUrzIG7Urg9u3b4+7uXmxh2pUrVwgKCqJt27Y89thjXL16tUau616gIrOGXtSNA3wORAPxQD/gCHDPrzY2srLCzN+/TscJSuLYvjmj3/OnhUtTdq86zZ/fhJN9repP8UIIeo0dxuQP36C3sxeGCPYnRvDVv+ezedFqbmVm16B6xYNMTQYCZ2dnli9fztixY4ul9+vXj+PHj3P8+HF27dqFmZmZ3oV03LhxnD59moiICG7evMmSJUsA+Oabb/Dw8ODEiRPs2bOHt956i9u3b5Ofn88rr7zCX3/9RWRkJGvWrNHbUM+dO5cBAwYQExNDnz597rp6+X6iUvsRSClfkVIuklK+AASinTl0z9M0KIjbsXHknD1bfxqsTHjsdT8Cn2xL8pmrrJkVTMzRlGqNXRgZGdP/+SeY8v6b9HTogLE04MjlaL767Ct+/ewHrl1Us4wU1aMmbahdXFzw8fG5o43K+vXrGTx4sN7gbciQIQghtK3hrl311tVCCDIzM5FSkpWVhZWVFUZGRhw5cgR3d3dcXV1p1KgRTz31FBs3ajdG3LhxI889p90wcezYsfpWR1EuXrxI79690Wg0eHl56S00tm3bRvfu3enUqROjRo0iK0s7Pfzo0aP06NEDX19funbtekc7jvqkMqZz14UQnaWUxwCklMeEEOX7095DNH1oACmzZ5O5bTuNJ71cbzqEgcCnXyucPazZsTySbUtPEReWSp+x7TA1b1Tleo0bNyJo4lP0z8sjeP0WTkSeJiLrPFGLF+Ha2JY+IwbdvRJFg2f38v9y+dw/DzP5efkYGlWv97ZFa1f6jZ9Ybn5t2VCXx9q1a8v0CMrNzWXlypV6K4kpU6YwbNgwHBwcyMzMZN26dRgYGJCcnFzMxdTJyYngYO0M+ML9CgBatmzJ5cult1BfvXo1gwYN4v333yc/P58bN26QlpbG7Nmz2bFjB02aNGHevHl88cUXTJ8+nSeffJJ169bh7+/P9evXMTU1rfQ11wWVCQTPA6uEEJHAMcAbqB2jnjrGuGVLTHx9yNy+HZt6DASFNLMzY+TUToRtP8+RTfFciLlKv6c70MbXtlr1GhoZ0eOpofRgKCe27ifkYAgxOZeJWbsSB9kU2wIzPPt3raGrUCiqZkNdHhcvXiQiIqKU+yfA5MmT6d27N4GB2k2etm7dikajYdeuXcTFxREUFERgYGCZLezKOIf6+/vrxyKGDx+ORqNh7969REZG0rNnTwBu375N9+7dOXPmDPb29vj7+wOUaXfdUKiM+2iMEKIHMBLwAaKA92pLWF2yeG8c/p16YLZsMbnJyRg7OnIwLo3wpIwa3cWsMhgYGtD5YRdae9mwY3kkm7+NoF1XO3o87k4Ty+rvoeA7KBDfQYHEHY3g4F97OJd/lV/2bWbnnr14OLchcOwjNDZrmE8virIp+eTeEPxyarJF8PPPPzNixAiMjY2Lpc+cOZPU1NRiO4YtW7aM6dOnI4TA3d2dNm3acPr0aZycnEhMTNQfl5SUhIODdlKknZ0dFy9exN7enkuXLhVzQC2kd+/e7Nu3jz///JNnnnmGadOm0bx5c4KCglizZk2xY8PDw+8Ze+oKjxEIIayBiYA5sAn4TkqZXhMihBBvCCFOCSFOCiHWCCFMaqLeiuLjZMn/pWm3sszcsUO/2b2Pk2VdyigTGydzRk3vQpchLsSGXuanDw8Ttu08+Xk1Y4vh5u/NMx+8ir/GF1/zVuSSx99JJ/li3uesm/dfkk/X37iJouFTERvqwoHeoq9+/Spv/75mzRrGjBlTLG3JkiVs3bqVNWvWFBtbcHZ21u9mlpKSwpkzZ3B1dcXf35+YmBji4+O5ffs2a9eu1QekYcOG8eOPPwLaLqDHHnuslIZz587RokULXnrpJV544QVCQ0Pp1q0bBw4cIDY2FoAbN24QHR1Nhw4duHDhAkePHgW0gTkvr4HO3JNSVugF7AM+AC4Ce4HbwOmKlr9DvY5oZyKZ6t7/DIy/U5nOnTvL8ti9e3e5eXfiQGyq/KvbABncd6Ds9NEWeSA2tUr13Imqaivkakq2/N/C43Lhyzvlqg8OyXOn0mpGmPxHW27Obblv1Ua5eMZn8qMPPpQfffCh/O+HX8ojv+2Qebl5NXa+qmhriNS3tsjIyHLzrl+/XicaxowZIz09PeXUqVMrXKYsbUeOHJGOjo7SzMxMWllZSQ8PD31efHy8dHBwkPn5+cXKGBoaSldXV+nr6yt9fX3lzJkzpZRSJicny6CgIOnl5SU9PT3lypUr9WX+/PNP2bZtW+nq6ipnz56tT09LS5P9+/eX7u7usk+fPjI9Pb2UxuXLl0tPT0+p0Whkr1695NmzZ6WUUu7cuVN26dJFent7S29vb7lx40b9NQUEBEgfHx8ZEBAgMzMzK/wZlUdF/65lfTeAEFnGPfWuNtSFCCHCpJR+QojjUkqNEOJxwF1KOa86gUgI4QgcBnyB68DvwAIpZbm2oDVhQ10Wq+f9gN+y+USMeYXRH06pUh13oqYsixMi0vj75xgyUm/SxteGXqPaYmFTvW6csrTFHjlB8Na/OZ93lRyRh3lBY1yatqDHsP441OGOafVt9Xwn6lubsqGuHRqyvtqwoa5MIDgkpewuhAgG+kopbwoh9kop+1RM/h3rfh34GLgJbJNSjivjmIlou6aws7PrvHbt2jLrysrKwtzcvNIaotLzWRR2kwUHvqHR1SucevtD2jmYVbqeO1FVbWVRkC9JPwNpkRIpwaYD2HQUGBhVrU/yTtrysm6SFn6WtJvZpBneAAktCsyxtWyGtY8LBo0qM+egZrXVN/WtzdLSEnd39zLzamLz+tqiIWuDhq2votpiY2PJyMgoltavX79qB4LHgd3ABKALcBB4XUpZ9rewggghmgO/Ak8C14BfgPVSylXllanpFkHhmMDCsX5oMhI5N3Ysv3oPpv/c9+jhZlOpuu5EbTw9Zl29xcHf4og5moKZRSO6DHHBo6cDhsaVs5GqqLbY4OOE7DjE+Zyr3DC4TSNpROtGVnQODKBdL79a2Uqzvp+670R9a1MtgtqhIeurjRZBZWYN/ar79XMhxDNop4+WHk2pPA8B8VLKVJ3Q34AeQLmBoKYJT8pg4Vg/3U3fhqYPP8zI3bs5fGpMjQaC2sC8uQkDX/DEu48jhzeeZd/aaMK2nafLIy506NYSA8OavTG7B2hwD9CQc/MWwb9u4Uz0WeJupxKzaxMWO7bT2qIFAQ/3xsmrWs8HCoWiDqlwIBBCtAXeBW5IKWuyA/080E0IYYa2a2gAUPbjfi1RcopoizffIHPnTgYf/QOG+dellCpj796M4W/6kRh1heCNZ9m98jRh287T9dE2uHdqgajk9ph3o7GpCb2fHk5v4FJsAkc27eb8lTQiss4TsX4V1j83oY2tAz2G98eqlX2NnluhUNQslencXQnMBOYBCCG8gLellM9WR4CUMlgIsR4IBfKAMOC/1amzujRydsZq7FiurFxJ86efwaT9vbGAWgiBs4c1rTpaEX8ijeA/zrJtySmOOZ0jYJgrLt7WtTKvuaW7C8PemADA2aPhHNt1mKSsK4Skx3BsSSx2NMXNyQn/YQNoZmdd4+dXKBTVozKBwEBK+ZcQYg6AlPKkLhhUGynlh8CHNVFXTWHzr0lc+/13Ls+fj/OS7+tbTqUQQuCqscXFx4bYkBSObIpn86JwrJ3M6TTQGffOLWq8y6gQV38fXP19kFISseMAJ4NPkHw7gwPJkRxcFIUdTXGxdyRgaF+aO9nVigaFQlE5KnM3uCCEaANIAKF9tLxvl54aNmuGzb8mkf3332Ttvze99QwMBO26tmTMRwH0f7YDBXkFbP8hklUzDnNiVyK5Ofm1dm4hBD5BvRj7f6/wxoxpDO0UiLuRNVkyh8OXoljw/WK+/fBzNi9aTVrChVrToahdatJ9FLSrhz08PPD09CzmQvrjjz/Stm1b2rZtq1/0VZRXX3212OwtZUNdOSrTIvh/wBKgpRBiAvAwcLJWVDUQmo8dy9WfVnN5/nya9OiOaKDTye6GoaEBHXs40KGbPQkn0wnbdo6/f47h6J/xePd1wqevU62e38jYmC7DBtBl2ADy8nKJ2PY3UaFRXLydwZHL0RxZFo2NbIJjc1t8A/1x7eJZq3oUNUdhIJg8eXK164qJieGTTz7hwIEDNG/eXG/6duXKFWbOnElISAhCCDp37sywYcNo3rw5ACEhIVy7dq1YXYU21Js2bSI1NZX27dszbtw4DA0NeeWVV9i+fTtOTk74+/szbNgwPDw89DbU06dPZ+bMmcydO5d586q1TOqeoTKb1yegvfm/BriiXV38TO3IahgYNGpEi7feJCc6mowNG+pbTrURBoI2PjaMnNqZkdM64+DejJA/E/jxvYNcCCng6qXa36fAyMgYvyH9GPt/k/l/H0xjZM+H6NDIjjwKOJGRwIr//cLnH8xlzSeLCdu8j7zbDXRJvgKoWRvq77//nldeeUV/gy/0+tm6dStBQUFYWVnpfX22bNkCaOfUT5s2jU8//bRYXcqGunJUZtZQf2Ac2rn+J4FwdN1E9zNNBw3CVKMh9T8LsBg8GIMmTepbUo1g72aJ/b98uHopm7Dt5zl96CKrPwrGqUNzvPs64eJtXWvjCIUYGhnhE9QLn6BeSCmJDz1JxN6jJF+7QsytFM4cucSW4H3YSDMKEq7SaVAvmtlXz4H1fubapjhuX/gnmOfn53HTsHqL/Ro5NKHZo+UbL9akDXV0dDQAPXv2JD8/n48++oiHH364TOvo5ORkABYuXMiwYcP09tGFKBvqylGZb8kq4BVdGR9gOOAJ3NcTxoUQHBw4Dr9Pp5G+bDm2U14BqHd30pqiecsm9H+mIwW2l2hOG07uTeavxRGYN2+MVx9HPHo6YNq06nshVBQhBK6dvXHt7A1AeuIFQv/ax/nki6SIbJITTrB/8QmsZBPsm1rRsbM3HXp3rrbfvqJ2qYwNdV5eHjExMezZs4ekpCQCAwM5efJkudbRFy5c4JdffmHPnj2l8pUNdeWoTCCIlVIW9o/8UhtiGioufbpxeK2GgO+X0Gz0KI5mGuhXIt8vGJkIOvd1wS/ImYSIdCL2JHH497Mc+V88bTvb4dXHEbs2FnVmq2vdyoGgiU8BsHPbdppmS85GxpFy6zonsxI5uS8Rk73bsTNoSmtnJ3wH9MDauWWdaGuolHxybwirYyvTInBycqJbt24YGxvTpk0b2rdvT0xMDE5OTsVu9klJSfTt25ewsDBiY2P1Fhs3btzA3d2d2NhYZUNdSe4aCIQQK9DO8T8khHhLSvl57ctqWPRws8Hgg+nkTxzHgclTectnHAvHdW7wq46rgoGhAa4aW1w1tly5mM3JvcmcPnSRM8GXsHJoQsce9rTr2hIzi9pvJRRi2MiYrgP70nWE9n3y6RjCdx4h+fJlLhVc59y5cPb9EE6zAlPsTC1xbeeKT1BPTC3uj268hkxFbKjLoqwyw4cPZ82aNYwfP560tDSio6NxdXXFzc2N9957Tz+LZ9u2bXzyySdYWVlx6dIlfXlzc3O9FXShDXVgYGAxG+pmzZrpbagdHR1Zu3Ytq1evBv6xoZ4+ffodbagdHR156aWXyM7OJjQ0lPfff59XXnlFH5Ru3LhBUlJSMRtqf39/MjMzMTU1xciodr25qkJFFP2I1hm0JTBICPEacEL3CpdSPhCtg269fPl1xAQ8fl3CB63b0cPt/t/e0cq+Cb2fake34a7EHE0h6uBFDqyP5dBvcbj42tCxhz3OHla1PpZQEscObXHs0BaAnBs3idhxkLORsaRmX9eOLURcYlv4IaylOS0trWin6UiHwC4Y1bI53oOItbU1PXv2xMvLi8GDBzN//vwq1zVo0CC2bduGh4cHhoaGzJ8/H2tr7QLEGTNm6LtYPvjgA6ysrO5Y14wZMxg/fjze3t5IKZk3bx42NtoHt4ULFzJo0CDy8/N5/vnn8fTUzlKbPn06o0ePZunSpTg6OvLbb7+VqnfPnj3Mnz8fY2NjzM3NWbFiBba2tixfvpwxY8aQk5MDwOzZs2nXrh3r1q3j1Vdf5ebNm5iamrJjx44GaaBYYdM5fQEhjAAPtMHBV0o5tTaE3YnasqG+Ewfj0pjyUyifRv+Gfcg+smfNp+voRypVR30blN2Jimq7ciGbqIMXOBN8iZuZuZhZNqJDN3s6dG9J85a18wRemc/t6sXLROw4yPmEJNJuZ3PN8CYAxtIQG5rQspkVbTt50q6HH0bG1Q8M9f03VaZztUND1levpnNCiC5AlJQyG+2MoXC0thP3PXp30nGd6OYQyKmRoxCzP+CwYyu69fSpb3l1ipVDE3o+0ZZuI9w4F5FO1MGLhG0/T+jWc9g6N6VdVzvadrGjSbPqb6dZFZrbt6D3M8MB7aZLyaeiifz7GBcupZJecIOwjATCdifQaNcWbIQ5LZtb087PE/fuvjUSGBSKe5HKfPNXAJ0K3wghbIBuUsr/1biqBkZxd1Jo/90iYkY8TvZH71Kw6VcMTOp0Z80GgWGRsYTsjBxijqYQfSSFA+tjOfBrLI7tmtOuqx1ufrY0NjO+e4W1gBACJ6/2OHm1B7SB4dzxU5w+dIKLl9NIL7jBhatnCd11FuOdm7GmCS0smuPq4Y5HH38amT14f1fFg0llAsEtKeWtwjdSyjQhxCzgvg8EJaeINnJ2xvnz+SRN+heXPpqJ/Sdz7pnZAbVBE8vGu7j4HwAAIABJREFUaB5yRvOQM1cvZeuDwu6Vp9m75gwuXja4d2lBay9rGpnU31O3EAIXPy9c/LQWWVJK4o9FEH0kgkuX07hScJPwzHOEB59j0+FdWNEEWzMLWrVpjUcffyzt7twvrVDcq1Tmv/KsEGKwlPKvIml1N3WkgdG0b19spkwhbeFCTH19aF5iU+0HleYtm9D1UVf8h7bh8rlMYo6kEBOSwtnjqRgaG+DsYYVbpxa4+NjQ2LR+u2KEELh28cG1i7Z7T0rJxeh4ovaHcPHCZdJzs4m6cZHIyAtsjTyERYEJ1sbmtLRrQbvOXrT261Cv+hWKmqIy/4mvAn/pNqU5jHYxWVytqLpHsJn8L25FRHBh9hyim9oTMLSvPu9+WXBWVYQQ2LlYYOdiQY8n3LkUd43Y0FTOhqUSfyINAyNBq45WuPm1oI2vDSZN6qf7qKRmh/au/H/2zjswqipt478zPZMy6QkhCQkBQg+9hCIoKIu7dgURxW8XLGth7X111XXRdXV1wbYq2LCtXVEpAtKl9xIC6SG9JzOZcr4/7hASSICQCTOQ+3Pv3rl1nhxm7jPnvOe8Jya5a8O+stx89v66mZyMHErqqsl1lHM4r5h1eXswfKsjxGWieGM6cV3j6TVmCEGRIV78C1RUzozWzFCWL4QYjDKieABKsPje9hJ2LiA0GmJeeJ6Ky6/C8cTDrIt6j5FDk5tMfamiZEGN6R5CTPcQxlzbnYKMStK3FJK+pYjMnXvRaASdugeT2D+chP7hWCJ8Zxh+SOdOpF7/+4Ztu81G2rotHNp+gKKycspEHbtqstm1M5sfd64hyGUiRGcmMjSMxL496D4yBb2xw1acVc4RTmdA2ZNSyr8JIVKBne4pK7841XUdBa3FQrc3X+PQdVPYd999vPzI83ywKa9JcFnlGEIjiO5qIbqrhdSru1GUVUX6liIO7yhm9edprP48jdAY/wZTiErwrWH5eqOR3uNG0nvcSEDpPtonoSv712wjLyuP0roaCpxVZBaXsnFFGtrlPxIs/Qgx+hMVGUHXlF50GdjzvOmhVF5ezsKFCz2SfTQrK4sZM2ZQXl6O0+lkzpw5TJ48ueHYzJkzyc7ORgjBokWLSEhIaLj2rrvuYv78+Q3J3qSUzJ49m0WLFmE2m1mwYAGDBil9XX766Sdmz56N0+lk5syZPPzww4CS5XTKlClkZGQQFxfHF1980ZAA73zndD6NP7vXfwH6uscR7MHdhVRK+b/2EneuYEpOpvOzzyIeeICifz7NjQ/8VTWB00AIQWSXICK7BDHyyiQqimrJ2FHC4R1FbFmcxeafMvELMmAMc5EeVEhsr1CvxxWaIyIhnoiE+IZth8NOxubdHNq6l8KiEsrr68ioL+ZgbiFrcnej+0FLCH6EGAOI7hRJ0sDexPXrcdYH5nkCT6ahfvbZZ7nuuuu4/fbb2bNnD5MnTyYjIwOAm266iccee4yJEydSXV2NRnOsrJpLQ/3jjz+SlpZGWloaGzZs4Pbbb2fDhg04nU41DXUznM636s/u2sAbKKOJq1HiA/2A4cA5YwQZFRkcLD/IhC4TPH7v3b1H8MOgK5i+5Ws2vvQ0axP/TWpPda7e1mCJMJNykZmUi+Kw1tjJ2l3C4R3FHNpeyE9v7UKjEUQnWYjvE0qXvmGEdQ7wyd5aOp2ebsMH0G34gIZ91tpa0tdtJ3PvQYpLyih3WEm3FXAg8wi/Zu5A95ViDsEGfyIjI0jsn0zCwF4+Pxq6cRrqiRMntmlksRCCyspKQJlY5mgOoD179uBwOJg4cSJAk5G5R9NQL1y4kK8apYr/5ptvuOmmmxBCMGLECMrLy8nPzycjI6MhDTXQkIa6d+/efPPNNw05jaZNm8bvf//7E4wgPz+fKVOmUFlZicPh4PXXX2fMmDEsXryYJ598EpvNRlJSEvPnzycgIICNGzcye/ZsampqMBqNLFu2zCcHqrUmxcQM9zoQ2AtsA35rP2me57097/HDoR8Y3Xk0Jp3n+og3xASeuY+oNb0Z+txzbL7zbpj7Cqk9Yzz2Ph0Jk7+eHsOi6TEsmuW/LCc5bgCZu0vJ2l3C+q8Psf7rQ5gtBuL7hNGlTxixySGYArwfcG4Jk9lMn4tG0ueikQ37aisqSVu/jZz9GZSUlVPusHKovoi03ALW5O5Cu0iDRfoRYjATFhpCXPeudBvRD7/A5kdw//jjj01y7zidTrRtnEwpOjqa3/3udy0e92Qa6qeeeoqLL76Y//znP9TU1LB06VJASU8dHBzMVVddxeHDh5kwYQJz5sxBq9W2mIa6pdTVahrq5jmlEUgplwHLjm4fl2JiGOdQJtIJ8RP434H/sS5vHePjx3vsvk0GnCXdCFoNg595lpLHH8L10dtojN4ZZXu+IBoFm0dekURNhY2s3SVk7S7l8LYi9q3NBwERcYHE9QohtlconZIs6PS+naLabAki5ZKxpFwytmGftaaGg+u2k73/MMUlpVTarWTbS0kvLOK3wgOI1T8RKE1YtH6EBllIHNsfu60encE3TbA1SeeOJpy77777WLduHTfeeCO7du3C4XCwatUqtm7dSnx8PFOmTGHBggX87ne/azENdUvpptU01M3T6nqnlNLBsRQTHkEIEYwyDWZflMlu/iilXOep+x9lWPQwAg2BLM1a6lEjOL6LaOgNNyB0enjySXLuvIvY/7zaIUcftxf+FiO9UmPolRqDy+miMLOK7L2l5OwrY9uSbLb8nIVWryGmm4XYnqHE9gwhPC4Qjcb3mpGOx+TvT98JqfSdkNqwz15vI3PLHjJ3pVFUUEKFrZZSZw3ZFWVE1ydTVFKMkDC4/0C0AzTodDoMJiN2l5Mgi3cfPq2pEbzzzjsNM4+NHDkSq9VKcXExsbGxDBw4sKE554orrmD9+vVER0e3mIa6pXTT9fX1ahrqZmhNrqGNKA//nUfXUsoiD+l4BfhJSnmNEMIAmD103ybotXrGx41nefZy7E47em37/YoKmXIdQqcl7/En2HXzLPrOf6vhWEcfY+BJNFpNQy+koZcmUm91kJdWTs6+MrL3lrLuK2Woi8FPR0z3YDr3CKZzjxDCYgPOCWMA0BuMdBsxkG4jjnVHllJSmJ5Jfnkpfho9TpcLp3Rhczmw2R3U2K0goba6Bq3QoNVo0Ov1GPyMGEwmhIf+dk+moT6aOvrmm29m7969WK1WIiIiCAsLo6ysjKKiIiIiIvjll18YMmQIl156aYtpqC+77DLmzp3L1KlT2bBhAxaLhU6dOhEREaGmoW6G1ii6HGVmsv7AbcClQohiKWWXtggQQgQBY4GbAaSU9UB9W+55MibET+Db9G/ZeGQjqZ1TT31BGwi++moOFtfi9/I/2DVjJvzpJnWMQTtjMOlI6BdOQj+l11ZNhY3cA2XkHignd38ZGTuKATCajxpDCDHdg88pYwD3gL1uCZTurSMk+tj0nS6nE1ttHfXWeuz1diQSp3RhdzqxuuxgqwUJWjRohUCr0aI3KAahNxlb/QvWk2mo//WvfzFr1ixefvllhBAsWLAAIQRarZYXX3yRiy66CCklgwcPZtasWSe91+TJk1m0aBHdunXDbDYzf/58AHQ6nZqGuhlanYa64UIhegHXSCmfaZMAIQYAb6F0SU0BNgOz3VlOG593C3ALQFRU1OBPPvmk2ftVV1eftKDrXfU8kvMIQ/2HMjVsaluknzYly9bT8/P3yYtJ5ImhNzNjWCi9wnyr/fpU5eZNPKnNXiupKYSaQkltIdQr3c7R6MEcDuZwgTkC/MJAoz31Q9Hb5WaxWBqaRo6ncbDY5XDisjtwOVxIKXEhcSKRotH3X4IWgQaBRmjQaDVodFqEXuvxJg5PBLLbE1/Wd7raDh48SEVFRZN948ePbzYN9WkbgRAiXkqZddy+T6SUbXqautNbrwdGSSk3CCFeASqllE+0dE1b5yO4f+X9bDyykV+u/QWt5uz8Yy+c8w5933uZ+rAI+r77JqYePc7K+54u3s6rfzLaU1tVqZX8g+XkHawg/2A5pe7J3zU6JUVGp27BdEqyEJ1oabZXkrfLrS3zEUgpcdTXU19rxV5vx+l04pQnMQh3E9PRGITBz3TGYx98Od8/+LY+r85HAHwqhIgDDqPECayAJ7Ju5QA5UsoN7u3/AQ974L4tMqHLBH7O+JkthVsYGj20Pd8KUGICL9rjuXrKXYz/+l0OXTeV2OfnEHTJxe3+3ionJzDURKC7myqAtdpO3sHyBnPYtjiLLS7loRgcZSY6yUJ0YhDRSRZC22kinrOFEAK90Yj+uF5txwzChr2+HqdTiT8cbWLCZYf6OqhAqT0gFIPQatEZDBjNJrR63TkTKFVpXa6hkQBCiG4og8lCgZfaKkBKeUQIkS2ESJZS7gcuQmkmajfGdh6LQWNgWdaydjeCxjGB+mw9YvJ7HLz3HsTs2VhvvZWIu+9C+GgVtCNiCtA3zLMAYLc5Kcys5MihCo4cqiRje7HSXRUlAG2wuNhQdUhJsJcYhF/A2c8rJKX06EO3JYMAcNjtSg3CVq/UIFwSF+4gtXSAwwa1VQgJmkZxCJ1Oi95kxOBnRKN+3tud1jb5t6bXUBhwHUpNYDdKL5+6Vr1by9wFfOTuMXQI+D8P3bdZzHozqZ1TWZq5lAeHPohGtN/Q/sZjDFZkw8hhPVn79jvkv/g8vPkmB9ZsQvvEM4xMSWy4Ru1V5DvojVo69wihcw8l54yUkorCOrcxVHBwRx6bF2Vw9HsXFG5ym4KFqMQgwuMC2nU8g8lkoqSkhLCwsLPyC1yn16OznNhE5nK5qK+zYrfacNgdOF0uXFLikC7qXU6l+0d9HVSCRiq1iPqqOrRaDTqdHr3JgN7P2CR1hMqZIaWkpKQEUyu6rLemaegrYClwO3AAGCmEOCSlbHPzkJRyG3BCu1V7MrHLRFZkr2BX8S76R7TfdJPNPcxTe8bA269Q9smnyGefpWDmDNY//y9GXDhU7VXk4wghCI4yExxlpufITtD5CKkjRlOUVUXB4UoKMyrJT68gbZMyKlWjEYR29nfnVAoksksQoTH+aHWeeeDFxsaSk5NDUdGJPbmtVmurHgbthcvhxGG343Q4cbmOBasluP//GBqE8p8QaNw9hrQ6HVrD2W1q8pWya47T0WYymYiNjT3te7bGCAKllE8LIa6SUl4ghLgaaL67wjnABbEXoBM6lmYubVcjOBkhU6dg7NEd+ee7sN09i49ums2/bLFq5tJzDINJ16TWAFBTbqMgo5KCjEqKMpW023tW5wGg1WkIiw0gsksgEfHKEtrpzMxBr9eTmJjY7LEVK1YwcKBv/qBYsWIFY8eOoSAtg+w96RTnFlJRUUmNzUqNtFOtqccunMcukOAvDfgLIwE6I0EBAYSEhxKVGEdcn274h3g2sOvrZedpba2aqtK9tgkh/KSUXwghVgLnZHo+i9HCsE7DWJq1lHsG3+O1wJZ50CB6fPMlm26axaB3X+D5YeMZHjHcK1pUPId/sLFJrEFKSWWxlcLMSgozqyjKrGT/hiPsWpkLKL2UwmICGowhIj6QsM7+Pp8moy1oNFo6JSfRKfnEWrPDbqcwPYucvemU5BUdMwmXnVxHOYcqiqEiA9K3wFIwSb1iFFoDgX5mgkMshHeOJqZHVyISY87JzK5nk9YYwYtCiFDgU+BdIcRaoHP7yDo7TOgygafXPc2BsgMkhyZ7TcfGai2zR97OX5PXkbjkC/ZN/gNd5jxHwOhRXtOk4lmEEFgi/LBE+NF9SBQA0iWpKKqjKKtKWbKrmtQchEYQEm0mPC6A8NhA9zrAKwHps41OryemZxIxPU80CelyUZSZTe6eQxTlFFBRVkG11Uqtq54SZw3ZNWXI2lzI3QO//YJWCvylEbMw4K83EuTvT3B4KFFdOhPTqytBER1jzoGTcVpGIITQAMnuSWleck9X2Q9ltPE5y4VxF/Ls+mdZkrnEa0bQEBO4cSipSb9jw48TqXryCTQzZxI8ZQqRDzyANuDc7qao0jxCcyze0H2o2xykpKrESlG2Yg7FOdXk7i/nwIaChuv8g40NphAeq9QcLJHmc2pkdFsQGg2RiV2ITGw+qUFlcQl5ew9RmJFLWVEZ1TU11NjrqZV2Suw12CuKjtUmfgG91OIvDZg1BgIMJoICArG56kkzhBDTq6vHm518kdMyAimlSwhxEfCce/uDdlV1lgjzC2NQ5CCWZi7lzoF3ekVDk8ylwPDfjWFtwkdkv/YafPYZ+UtX4Lj/MYZdObHhGrVX0fmLEIKgcD+Cwv1IGngs6VldVT3FOdUUZ1dTnFtFcXY1WbtLke4xDlq9hrAYf8I6ByhLbAAO25llDTjXCQoPI2hMGD3HnNg13OV0UnQ4m7z9hynJLaSivJKaujpqnPVUu2wU2Kpw1iumu3NxFiwGg9Q1GIW/wURggD8h4aGEx8fQOTmBwPOgRtGapqFtQogngWeklK72EnS2mdBlAnN+m8OhikN0tXQ99QUeptleRb06w3/+Tu2Wqzl0/0P4PXI3W9deTcrTj7E+r0btVdQB8Qs0ENcrlLheoQ37HHYnZfm1lORWU5xbTUlONRk7i9nrHucAkL1sNaEx/oTFBBDa2Z/QTv6ExvhjMPle4rOzgUarJapbAlHdEpo9Xm+zUXjgMBtXrsNfZ6Kyoooaq5VaRz1VLitHbJU4611Qmq70nVyq1CjM0oBZ6DHrjQT4+2MJsRAWHUF0ty6EJ8Sg1fl2rKc1n4Y4lOag24UQGzg2VeU5Mx9Bc1wUfxFzfpvDssxldO1/9o3gZJgHDaL399+w/cnnMH33BVvXrGJB3z8w98EZaq8iFXR6bUNguTG1lfWU5FSz4dfthPiFUppXw+7VuTjqj/1+Cww1ERqjGENIp6Nrc4c1iKMYjEZi+/XkYMmRZlOH2OttFBzI4MihHMqOFFFZXkVNXR11Tjt1LqXpqb6iCCqADGA9CCkwSz1mYcBPo8ff6EdgoBKnCI/tRKceCfiHBXl1DMXpTF7/O2C7lPI697aRplNVntNGEO0fTf/w/izJXMKs/ifPaOgNNGYzA//5LAsSBhL53lzu+fUdzPbd2B59FGP37t6Wp+KDmIMMmHuHkl4oGDeuN6AEpitLrJTmVVOSV0NpXg2ledVk7yvF5TjWhBQQajxmDtH+hESbCenkj8nfNye+OdvoDUZi+yYT27f5mKLL5aQkK48jB7MoyS2ksrSc6po66uw26lwOSmQN2XXlSKuEIpS5HpeATmqPmYXOgL/JRGBQICERYYTHdyK6exfMlvZLbng69n818IwQIgrYhzJF5XaULKEftpuys8iELhN4afNL5FTlEBt4+oMwzhZr04t5tTSIG/82j5UffcxNO3/m0BVXEjJtGt8PvJTeyZ2b1BDUGILK8QjNsV5LiSmN01a7qCy2UppfQ2l+DWXude6Bcpz2YzUIv0A9IUeNwb0OjjYTGOK5uQ3OBzQaLREJcUQkxLV4jrW6hiNphynMzKe8oIQqd/NTncOO1WWn3F6H1VkMNUA+DVOAGaQWP2kgISoaxnlW9+lMVTkTQAjxF6A7StK58Sipo0sB33tytpIJ8YoRLMtaxow+M7wtpwmNRxqnJoWztsdsbn93EK/WbaDso48Y+c23vNtzEjx+O6k9otSRySqtQqPVNPRcOjrmAcDlUnovlR2poexIrbLOr+Xg5kJstY6G83R6DZYos2IM7nVIlD+WSL8O38zUEqYAfxIG9iVhYN9mjys9x0opSMukOKeAiqJSqqpqqLVasTrtaA2ejze05l/q/6SUKUc3hBCvAQ94XJEXiAuKIzkkmaWZS33OCI7vVZSaFM6cP45hfU5/bp41g4K/P8fM3z7l8Iw1LLjhFl4tC1ZHJqu0GU2jGkRCv2P7pZTUVdkbDKK8QFkKMypJ31xI41xn/sFGgqP8CI5UTOLoOjDcN1M3+ApKz7EwgsLDaK7xt7k5mttKa4ygUggxWEq5GUBKuVkI4VtJ9dvAhC4TmLdtHoW1hUSaT5yr1Fs026soKbzhQR//wftU/fgjdc/8g8S5f+XV7v0YcOnDgGoEKp5HCKHEIIIMTVJqADjtLsqLaik/UktZQS0VBbWUF9aSvqUIa4392D00Ar1ZUrVzO8GRflgi/bBEmLFE+hEYZkKrjgI+67TGCP4EfCCE2IMSH+gH2E9+ybnDxC4TmbdtHsuylnF9z+u9Lee0EUKwK3kY91zyCA/W7yFm0WdkTrsB/zFjiLj7Lt4rNdM/1qLGEFTaHWUsQwBhMScGNa3VdsoLFWMoL6glbVcmtZU28g+WY7cdyymk0QgCw0yKOYT7YYk0E+SumQSFm87rlBvepDXzERwQQqQCV6HMW7wXeLS9hJ1tulq6kmhJ5Ku0r5iSPKVdU1N7kmMjk4eRmjSZtTdMYeGz85i6fQU1117HyOGjeTJsFA/e8XslxqDGEFS8gClAT3SAheiuFgCslmzGjRuGlJLaynoqiuqoKKylorCO8sI6KopqOZJeQb21UeI5AQHBxoYmq6AIZeCdxb1WezadOa2Zj2ApcJ973MA53WW0OYQQzOo3i0dXP8oPh37gD0l/8Lak0+KEGEKfOHj2ftYevIErD6+h5N35/KNyNet3/czuqTfxeq5OjSGo+AxCCPwtRvwtRmK6BTc5JqXEWm1XTMK9VBYpJnF4Zwl1lfVNzjeadQ2jsi0RJgLDlFpEUJi7yclDqb/PR1rTNPQg8LIQIhN4REp5pJ00eY1Lu17KR3s/4t9b/s1F8Rdh1pu9LemUnDyG0I+QadMoXbCAIe8sQPfCvfRMTqH/uDuRXUepUwmq+DRCCPwCDfgFGhpqEo2ptzqoKrEeM4lixSiKs6s4vL0Il7NR5NpdmwgK9yMozETg0bV7CQg2dugMpa1pGtoCXOieh+BnIcSXwAsenKXM62iEhgeHPsiMn2bw3u73uH3A7d6W1Ga0QUGkXTqNB4u6cJ9tD5FLviF71iyMPXqwPfVSoq74A6k9OzWcr8YPVM4VDCZdQ26l43G5JDXlNqpK6qgoslJZUkdVsbLO3ldGTcURGs+Jo9EIAkKNbmPwo6RSss+Yr2yHmggIOb+NolUdfYXyE3I/8DrwLDBLCPHI+ZKEDmBQ1CAu7nIx83fP56ruVxHlH+VtSW2iISZw8yhSky5n7b6bef35d5mVv5aeC16m9NN32Tz1ekS/7mr8QOW8QaMRBIYqD/GYZvpgOu0uqsqsVJVYqSyuU9YlynbW7hJqKyTLdu1tOF9oBP7BBqWZKdRdiwgxNnptQm88dwPZrYkRrAa6osxXvB64GWWk8WwhxBgp5S3totAL3DP4HpZnL+fVra/y99F/97acNnFCDKFnJ3j8VtZkT2G69gj2eW+in/8GOr2RlQlDee0vMxmhxg9UznO0eo0yriGy+ebfX5YtZ1C/4VSVWKkqVQxCMYs6ctPKqNlY35D59SimAH1D7UFZm5Rahvu12WLw2VThrakR3AbsllIen9v2LiHE3uYuaA1CCC2wCciVUv6+rfdrC7GBsdzY+0be3fUu03pOo094H2/KaRMnjyF0o/+Y0fz33R+p+3ghF2b8hvaO1WQMHkzI1Kl84teNfonhatdTlQ6HRitOahQup4uaivpjRlFqpdq9Li+sI2dfWZNusaDUUvyDjQSEGhWTCGm8Vl77Beq9ErtrjRFEAvcIIcqBXSgZMHZJKW3ApR7QMhulS2qQB+7VZmb1m8XXB7/mhY0vsGDSgvM2sLo2vZjXc3WMvu5GPs+s5d/BOeiXfEfeAw8w2hLM952HoLn/Fkak9lObjlRU3Gi0moamp+aQUlJf56C6zKaYRJlNMYoyK9WlNgoOV5C+1dYk4R8o81n7hxgJCDY2GIR/sKnRayMn/hZvO60xgg+BO9zX9AeuQMlC2k1KeagtIoQQsShm8nfg3rbcy1MEGAK4c+CdPL3uaZZkLuHihIu9LcnjNH6w12fvYuqFg5i1cCtz515H/8I0yj7+mD/88gvyj8tY2XsQH4f1Z+5909Wupyoqp0AIgdGsx2jWNxvMBiUjbF21nWq3OVSVKYZRU2alutxGfnoFNeW2pr2fgLgxnv9RKk7XXYQQv0opx3pcgXLv/wH/AAKB+5trGhJC3ALcAhAVFTX4k08+afZe1dXVBAR4Jl2rS7p4Pv95bNLGYzGPoRdtG7DiSW2eYNGhehItWnqFaRu07S1xcrjCyeSuyry4mtJSMr/9lYRt6wm3VuAym7EOHUrdyBF86+xEYrCOXmHHgmTHX+8JfK3cGqNqOzN8WRv4jj4pJU4b2GvdSx1og2sJjjiz6WvHjx+/WUo5pNk3OtkCvA/8BXgeZUDZKa9pzQL8HnjN/Xoc8P2prhk8eLBsieXLl7d47ExYm7tW9l3QV76z850238vT2jxJS9rWHCySA59eLP/142550+2vyG233Cn39k+Re5J7yp0TJ8nHpz4k1/62t8m5aw4WnRVtvoCq7czwZW1S+ra+tmgDNslmnqmn0zT0HpACRAOXCCHuRpmPYDuemaFsFHCZEGIyYAKChBAfSimnt/G+HmFkzEguiL2At3a8xeVJlxPmF+ZtSWeNE1Jgd4/k/xZuZd7799Jz30YqvvqKaVu/wXXTt/yaPIAvQnoz9x616UhF5VzjlCMkpJTLpJQvSSlnSCkHAEnA4ygzdg5rqwAp5SNSylgpZQIwFfjFV0zgKPcNuQ+bw8a8bfO8LeWs0lwK7LnTBrK93EXIlOtI+ORjui5axOEJV+HMyuC2dR8ResNlZN9xJxU//MBbi3ezNr24yT3Xphfzxsp0b/w5KioqLdDqmSOklA7c8xV7Xo5vkmhJZErPKXy872Om9pxKj5DzJvv2STlVCmyAzTKQv0ZewPR/TGf9ol95xJSDdu0KqpctY7TRxPro3uhvvJrB117K+pwqtdeRiooP4lNjpqWUK2R7jiHI3w7bFp5sB1hdAAAgAElEQVTRpben3E6QIYiHfn2IGnuNh4WdmzRuOrr3kp785e6r+FPAGIre+Zz4998j5MrLGV6WTsCzj7F76AgO3H4Xb8YUMzzSCMAbK9PVGoOKig/gU0bQ7mz5AL6/F2xVrb7UYrTw/NjnOVRxiEdXPYpLuk590XlOS01HO/Kr8R82jE5PPUXvNavYePuT/BwzgJTyTAL++TQHUkeRNXMWQ3au4LF3VjaYwVFj6R97YoIxFRWV9qNjTSra92rY+F/Y/xP0v7bVl6fGpHL/kPt5YeMLvL79de4YcEc7iDx3OJ2mo3VZFfy7Mozp9z7MzPUZvDbQQMLeTVQtXYr/6tXME4K0XxP4euRo5jtjmPvnS0lNCueNlenqhDoqKmeJjmUEccMhqDPs+uKMjABgeq/pHCg7wBvb36B7cPfzcqCZpzi+19GIpDBuX7iVudP+j5EP3I/tQBpVS5dQ+dUiLN99wBxAt/V98seOZXDyQO76RcdLNw0/4V4qKiqepWMZgUYDfa6EDW9CXRn4hZz6muMQQvDEiCc4XHGYx9c8TnxQPD1De7aD2HOfFpuOcipITQrHlNyDLbpQ7iztwZ96BpD+/WJmaHJxfvcdAZ9+yrt6Azt+TaKyV2++8s9l7q0XN9xLrTGoqHiOjhUjAKV5yGWHvd+f8S0MWgP/Hv9vAg2BzP5lNqXWUg8KPH+47YKkE8YUpCaFNzyoG//Kv+PakVzz1zv4v67XUrrwO+LeeZvQ66fQzVHOmF++4KXvniXy1uvJ/+uTVP70MykWDXcu3KrGF1RUPEDHqhEAxAyEkESleWjQjWd8m3C/cF4d/yozfprBvSvu5b8T/4teq86Z2hpOWmO4YBQ7opO50zmUS40F2HYe4AbdEZw//ED5Z58RrNHwXveefLc9jv0XjuX1QpN73ma1xqCi0lo6nhEIodQKVr8E1UUQEHHGt+oT3oe/pf6Nh1c9zJzf5vDEyCc8KPT852TB5uMT4hmunsT/LdzK3IefZkBNHjWr11Czdi1XbF+C2PUzQ/UGgrIGUzxsOObhw+gf3anpqGg1xqCi0iIdzwhAMYJVL8Ker2HYrDbd6tKul3Kg7ADv7nqX5NBkrku+zkMiOzaNawsrso+vLQzCPGgQaZdez4ML1nCbpZyiVeuYkJdNzb//DUCY2cyCXv34/PFl7L1wFG/k6Zk7fYhaY1BRaYaOaQRRvSGiF+z6ss1GAHD3wLs5WH6Qf2z4B1HmKC6Iu8ADIjs2p+qa2nQKznDWXnkpMxZuZd5zCfQpTKdmwwZqN/zGtEMbYOs3DDOYCMoYQNHgIZiHDKZ/eKxaY1BRcdMxjQCUWsHyZ6EiFyyd23QrrUbLnDFzmLl4JrOXz+aZUc/wh6Q/eEioSnO0mAcpp4KRkyYRNGkSa9OLefydFcwMqqBw7W9cdCSP2nnzQEpCdDreS+rBT1uiOTRqOG+XBTD3j2PVGoNKh6QDG8FVihHs/gpS72zz7QINgbxz8TvMXj6bR1c/SmV9JTf0usEDQlWa47RrDH8a5/7Ff7lSY5jTjb5lmdRt3kztps1M3vErmr2/MBjQb4wnd0AKfgMGMDA8kTs+TONVd3OSWmNQOZ/puEYQlgSdBii9hzxgBKDMavbahNd4cOWDzPltDmXWMu4YcMd5O82lL3PSGsO4cQSOG8fa9GLueX8Dt3ayc3jleq4xleFau47Kb78jCHjf5MfuX+L4vn8/vrGFMO9PkxmpjnpWOQ/puEYASq1gyV+h9BCEdvXILY1aI/8a9y+eXvc0b+54k3JbOY8OfxSN6HhDNrzJadcYbhqu/OKfOFrplfTYAIaYbNRt3Ubdtm3ErVyH/9KvuFe64Ne3SYuMZGRSMl/VWtBdexHC7DqhtqAahcq5Rsc2gj5XKkaw60sYe7/HbqvT6Phb6t8INgYzf/d8Km2V/H303z12f5W2c/IxDEkYYmPZ3XsEdzKcmwZFs3bxOh5KcBGddwjNzp1MyVgF278nEDgSGMH8gf2IXZ5JTWEfUizR3KEGolXOITq2EQTHK/mHPGwEoKSiuHfIvQSbgnl588tU1ldypfZKj76Hyplz2jUG98N8WM9OzFq4lbm3XUNqUjjOigo+fO8n9izfwCRDGf4H91H46y8ABAPvR3Vi06ooCvv35euaAOb9cRIj1UC0io/SsY0AlN5DPz4Ihfsg0vM5g/7Y949YDBaeXv80ufpcBtYOJNIc6fH3UfEsp8qTtKHYzisVoYyePIn7jgjmThvIsFAt1j17sO7eg3XPHvpt3Ir5+208BLD8DQ6EhWHq2ZPh0V14+4gezfQJDB87kHUZZWrTkopXUY2g9xXw08Ow+0uIfLRd3uLqHldjMVp4cOWDXPPtNTw7+lnGxo5tl/dS8QytGfU89cK+x2oPo0YRMGpUwzk39wtl/dLfuC9J0KkoG+u+vZh++4077XZY8x679QbKAqN4d3A/4lblUlOYTEpg+EmbllSjUPE0qhEERkHCaKX30LhHlBQU7cCELhN4sNODfF73OXcsu4PpvaZzz+B7MGgN7fJ+Ku3HSUc9H/fgTk0KZ0i/Lkqz0p+UZiVZX4/t8GG++ewX0tZv4wJdBeatv1G4ZBGgNC19EBzK7mURLOqZzBKrP69fewFDovwA6B9rUQfDqXgU1QhAaR76bjYc2QGdUtrtbaL10Sy8cCEvbXqJD/d+yOaCzbww9gUSLAnt9p4qnudU8YVTNSsJg4EtujCepxvTZ1/I7A1ZStOSBWwHDmA9cADb/gPEb9yOcdWP3OK0w/qPOQDoY2KI7d6Nd8I7M//Z39gzagDvZEnmzhihTuijcsZ43QiEEHHA+0A04ALeklK+clZF9LoMfrhPqRW0oxGA0r30keGPMKLTCJ5Y+wTXfX8djw5/lMuTLlfHG5wntDYQPSIp7Nh2air+qanKOeatTB/amSW/bOPp/n4kVhdiS0vDdvAgfmvXcbvdDus+ZBSgW9WJrKQkhod14sN8DbqrxyC0dWqzkspp4XUjABzAfVLKLUKIQGCzEGKJlHLPWVNgDoWkC5XeQxP+1m7NQ40ZHz+e/4X9j0dWPcITa55gXd46nhjxBAGGgHZ/bxXvcqoawwlG0T2SWxduZe60MaTe5jaTA0f4+1tLmRbl5OCmnVweUo+2MAe/TZuYabXCb58SCFQZ/XmvayJhdT0oTkxgsF8Yf/uuhkdnTiC1ZyfVKFQAHzACKWU+kO9+XSWE2At0Bs6eEYDSPPTVrZCzEeKGnZW3jPaP5u2L3+a/O//L69tfZ1vhNh4a9hDj48artYPzmLY2La1NL+bOT3cy9/ZJDdt/XLiVuQ8MZGRiKPa8fD79fAVbV2/jEouNqPoyqn/9FeeXXxIA/BNw/jCHTeFRZOpDeGdIb7qsL6Q6P4EBukDu+PAg/5k+WA1UdyC8bgSNEUIkAAOBDWf9zZMng9YIOz49a0YASsK621JuY3in4Ty97mlmL5/NqJhRPDTsIRItiWdNh4rv0Faj2GQz8nJ1JKMnTeQRd9fW1KRwnJWV1GdkUH/4ML8u20z+rv2kiEr8li6i4Nv/AWABPtDpyfshlBXx8Wxx+PPf8QNJzvOjXhdH/2j/kwaqVaM4NxFSSm9rAEAIEQCsBP4upfyymeO3ALcAREVFDf7kk0+avU91dTUBAWfWvJK871WiClawZdCLVAd6JuVEY06lzSmdrKpaxQ/lP2CXdsYHjecSyyWYNCaPa2mtNm+iajt99pY4eW2blT8PMBFnrCPb5tew3StM2+Sc8fF6lmfZ+XOKkT66arSFhegKC9EWFlFwKB9RWExsbTF6h73h/lKjwRocyn59KLroCLbKEAb2jaZTYiTO8HD21BqavF9jPYcrnCRatPQK0zaU294SJ4crnEzu6lu953zt37UxbdE2fvz4zVLKIcfv9wkjEELoge+Bn6WUL53q/CFDhshNmzY1e2zFihWMGzfuzITUlsJrI5WYwS0rQGc8s/u0wOlqK64r5pUtr/D1wa+J9Ivk3iH3Mjlxcrs2F7Wp3NoZVdvp0/gX+VFtjX+RHx9/OH4bjgWzpw+P58P1mcybFE+Kppr6rGzqszKxZ2WTtesAmvw8guy1Td5fGxKCLSKa32x+RPVIZHmFjimXDWfAkF5sshq48/Pdx2adi+vb5L19qTbha/+ujWmLNiFEs0bg9aYhoTzd3gH2no4JtCvmULjsP7DwWljxD5jwlFdkhPuF88yoZ7imxzU8t+E5Hl71MJ/t/4yHhj1E77DeXtGkcm7gkfjDcT2aGga3DVGeH42N4stV+/jX6HB6yWrsOdnUZ+dgys5mwP50DEu3MVO64LdPSQdChOCD0HAOLA5EhIeyVxPKWxem0DPfjE1U0T/CpDY7eQmvGwEwCrgR2CmE2Obe96iUcpFX1PS4GAbeCGtegeRLIW6oV2QApESksHDyQr46+BWvbHmFKd9PYVzsOG5NuZW+4X29pkvl3KU9jOL2hVuZO20wqZMuARoZxdDO/LhiJ38fGUYPVzX2nBzsublE7kzDnnGQy2yVaHYvJtutIwT4wBLM4R+DWB7XmS02I/8d3ZfuByV1tZ1I8Tdy50eb+c8NaiDb03jdCKSUqwHf6iJzyXNwaAV8fRvcugoMZq9J0Wq0XNPjGi5OuJiFexfywZ4PuP6H6xnVeRS39b+NAZEDvKZN5fzD40bRPZLbFm5l7rTRpF6pHL9r4VZGR0vW5rmYe3Es/XV12PPysOfnY8/No2RnGtb0g1xcX4lu3wpy3TqCUQLZBd9aWB0dzR6nH28P7Unib8VUZUUz0OHH/fN38vzNo0jtFtFqo+jIRuJ1I/BJTEFw+Tx4/zL45RmY9A9vKyLIEMRtKbcxvdd0Ptn/Ce/vfp8bf7yR4dHDuTXlVoZGe6/motJxaItRACfkaPrzUdMYqnx+16YX85eFW5n+53geXp/JvD8kMdBow37kCPa8fOz5eeRvTeNIRjZDZAF+X2zhiNMJQBDwFmD9ysCm0HDyNWbe7ZVIzFfbKY2MYjB+/PPLUsT1oxgxuAfrsiqaGEXj1B1HtRzdPt9NQjWCluh6AQy7Bda/pnQtTRzjbUWAMgvazH4zmdZzGp8f+Jz5u+bzx5//yKDIQdzc52bGxo5Fq9F6W6ZKB+VkRvHGyvRW5WhqEp+4UImNrU0v5gHrVqbfHM9zG7KYO6U/Qy0Cx5F87PlHcBQcYf36PWQdyKKf0UZA2h5K16xA2u0EAH8D+Pll9gqBMAbwXudognM7kx8ZSffISN4K9eO1f+4mITaQFbXFzL15TMPD/3yOX6hGcDImPAUHl8I3f4bb14Ix0NuKGjDrzczoM4MpyVP4Iu0L5u+az93L7ybaP5prul/D1T2uJtwv/NQ3UlE5S7RHfKJhOyUFv5QU1qYX83hWDNOvjOcudw6nkV3DcJaV4SgowF5QwE/Ld7Bt20HGhkFnvQ17QQF1O3fiLCnBH3jAre1agK81HAgLpVNEJPP9Lay5+2NKusWxqlTy5sQU+lRkU59jpX+4sU1G4W0jUY3gZBj84YrX4d1JsPgJ+MO/va3oBEw6Ezf0uoHrkq9jRfYKPt3/KXO3zeWN7W9wYfyFTEmewtDooepIZRWfp12NIikcXWgoWwwR/ENnZ/odl/CI2yiO3k/W17N+Sxovf7yGkcYK8vOrmJpkJtpRjaOwkMCiYlIL89Gnr6cbEjZ+TqZbZwjwodmf/G/9WRMZTprdwDv9uxL7cxpl4eEMtht44csiNFNGMGxQd9bnVrfYLOWNGodqBKcifgSk3gVrX4Vev4duE7ytqFn0Gj0Tu0xkYpeJZFRk8PmBz/n64NcszlxMQlAC1yVfx+TEyYT5hXlbqorKGdHeRrEuu5I7l+Qx9+6rqM/exfC4vsxcuJW5NzZ9ON84pDPfrdrDP8bF0MfkwFFUjKOkBEdxEfm7DpOTmUcfXSXmVYcp/l6JjQQATwP8DPsBk87I++FhBOyOJDssjMTQUN7WmvnsyZVk9knghxwbr101hCFBEulwnDR+4QlUIzgdxj8GaYvhm7vgz+vAL9jbik5KgiWBB4Y+wF0D72Jx5mI+3f8pL2x8gRc3vciw6GFMSpjEhC4TsBgt3paqouIx2moUJ5tnAprGCIb3iHR3mx1I6thjA/EecCrxi+fdtY0RcUE4S0pwFJfgKCnmx5W72bj9EOMjdaQEuHCWlmDPyaFux3b8SsuY4XTCJhgAsAzS3H9HuMXC+4EW0hbr2DPhMr7Q2Jv8LW1FNYLTQW+CK9+A/14EC6fA1IXg7/u/rE06E5clXcZlSZeRVpbGj4d/5OeMn3lq3VM8u/5ZRsSMYFLCJC6Mv9DbUlVU2p1TGcXpBrqP7j/92kYn9J2UTK9zNHam3zaBx49rlgJYm1bIIwtWc0OPIFZsPMA9QyNI0ttxlpbhLC3BUVpGxMEcVuRJpl8d7zETANUITp+YgXDNO/DlrfD2RXDD/yC8m7dVnTbdQ7rTPaQ7dw28iz2le/j58M/8lPETj695HP06PT2NPSk5UMKY2DHqnMoqKsfR3s1Sa9OLufOT7cz941hSk8LpO3qAO/V409Qfd7vHYHy4IYsRSWFqjcAr9LkSgjrDx9crZjD1I2Way3MIIQR9wvrQJ6wP9wy+hx3FO/jp8E98f+B7nlr3FAC9QnsxJnYMY2PH0jesr9odVUXlFHiyWaq54yedJ9sDZqAaQWuJGwYzl8LC6+D9K+DyuZAy1duqzgghBCkRKaREpDCsZhgxKTGsyl3FqpxVvL3zbd7a8RYhxhBGdR7F6M6jGRo9VK0tqKicAW1ploJTz5PdVlQjOBNCE+FPi+Gzm5TJbEoPtevE92cDIQTJockkhyYzs99MKmwVrMldw6+5v7I6dzXfH/oegISgBAZHDWZo9FCGRA0hyj/Ky8pVVM5/TmUUbUU1gjPFLwRu+AK+vwdWPq+YweXzPJ662ltYjBYmd53M5K6Tcbqc7Cvdx6aCTWw8spHFGYv5Iu0LAOID4xkaPZSBkQPpF9GPhKAENELjZfUqKiqtQTWCtqAzKE1DYV1h2dNQkQNXvgkhXbytzKNoNVr6hPehT3gfZvSZgdPlZH/ZfjYe2cimgk0szjxmDAH6APqE96FfeD/6hvelX3g/tTlJRcXHUY2grQgBY+6DkAT4+s/wn8Ew6CYYez8ExXhbXbug1WjpHdab3mG9G4whozKDncU72VW8ix1FO1iwawEO6QAgyhxFr9BedA/pTnJoMj1CehAfGK8GoVVUfATVCDxF36shfiT8+iJseQ+2fghDZ8LoeyAgwtvq2hWtRktScBJJwUlc0e0KAKwOK/tK97GreBc7i3eyv3Q/q3JX4ZRKpkij1ki34G70COlBj5AedLV0JcGSQLR/tNq0pKJyllGNwJMExcDvX4JRd8PKf8KG12HzfBh+m5KmogNh0pkYEDmgyXwJNqeNQ+WHOFB2oGFZmbOSrw5+dew6rYkuQV1IsCSQEJRAoiWRElsJFbYKdSS0iko7oRpBexCSAFfMg9F/gRVzYPXLsPFtEqInQd/OEN7d2wq9glFrpFdYL3qF9WrYJ6WkxFrC4YrDZFRmKOuKDPaU7GFJ5hJc0gXAPz/5J4H6QDoHdiY2IJbOAZ2bvI72j8as994EQioq5zKqEbQn4d2V0chj7oXlz5Gw7zOY+xmEdYeek5WpMGOHQAduKxdCEO4XTrhf+AmT69Q768mqzOKHdT8Q3CWYnKoccqtzSa9IZ1XuKmxOW5PzA/WBRPlHEeUfRbQ5+tjaHEWYXxjhfuGEmELUpicVleNQjeBsENUHpn7Eup8+Z2RIGez/AdbNU+ZF9o+AHpOg56XQdRzo/byt1mcwaA10C+lGijmFcX3GNTnmki6K64rJrc4ltzqXgpoCjtQcoaBWWe8t2UuptfSEe2qFljBTWIMxRJgjCDGGEGJyL8YQQk2hBJuCCTGG4KfzU1N4q5z3qEZwFrGZImD4tTD8FqgrVya92fcD7PkGtn4AQgvhPSC6r2IeUf2UdWD0OT1YrT3QCA2R5kgizZEMjGw+FW+9s56C2gKKaosorituWEqsJQ379pXuo8xa1tDD6XiMWiMWg4UgYxBBBvfS6HVBZQEVBysI0Afgb/AnQB+gLIYA/PX+mLQm1UhUfB6fMAIhxCTgFUALvC2lnONlSe2PXzD0u0ZZHPWQsQoy10DBbshaDzs/P3auOUwxhLDuENQJAt1LUIyyNllUo2gGg9ZAXGAccYFxJz1PSkm1vZoyaxml1lLKbeWUWcsos5VRZi2jsr6SClsFlfWV5Nfks79sP5X1ldTYawD4Ys0XLd5bK7SYdWb89H6YdWbMevMJa5PWhEmnLGZd022T1oRRZ8SkNWHQGo6tdSaMWiMGrQGDxqCajUqb8LoRCCG0wDxgIpADbBRCfCul3ONdZWcRnQG6XaQsR6krg4I9ULBLWY7sgt1fKvuPR29Wag3mMDAGgSmo0dpybFtvAp1JGf3cZG3CaC2CqiOg0SsxC60eNDr39vndpi6EINAQSKAhkPig+NO+zuFy8PPyn0kZlkK1vZrq+mpq7DVU2auoqa9R9tmrqXPUUWuvpdZR27Auqi1q2F/nrMPqsGJ32c/4b9Br9A2mYNAqi91qZ95389Br9A2LTqNTXmv16IQOnabpohXahvOObms1WnRCh1ajRSu0Dfs1QoNOo0MjNA3Hji4aoVHWGmUtEGg1yn4NGrJsWewr3YdANJwrhPK6YUGDEKLhnKPHj24DTbabnItA+Z/7P3FsrXIiXjcCYBhwUEp5CEAI8QlwOdBxjKA5/EIgYZSyNMZuhap8ZanMc6/zoSpPaW6ylkN5FtgqwVoJjrrTeruRAOtbOioUUxAaxSSEpoVFKOc2eS2OvYZGNZcWtpvZN6y2Fnb5n+IvaMcveAsPDx0wrqYG/32n0nY66HGgwwpYBdQhqRNgQ2IDbEdfC5RtJFYBdqBeSOqR2LBhFzbqkdQDdU4Hrroi7EgcgF1AHWBHYndvO1Du4UDiEOBE2ecAnO39zPyune/fAkIqn5ZGn8om28o+iVggTjhGM9c0OUce915Njosm+07Qddy6pdc3B14GjGvhLmeGLxhBZyC70XYOMPz4k4QQtwC3AERFRbFixYpmb1ZdXd3iMW/jeW3hymLqB6bmzxAuOzpHHVpnDRqXHY2rvpl1PfbaavwMWoR0IaQDIZ3NLBJwIaRESFfDazi6ffS1bPQawNVUkzz6bTnuW9No37FzwGGyUy289VFtTuMxHMYgajz9NZJgBIwnf+tT4nA40OnOXJtE4kIxByfy2FooxqF8AhodE8fOdzU67hJNz5WA3elEaLXIo+cKpaSPHj/6aXK5lTRsCxquodE5xz5xsuHTJhstAFKc5Jj72qPbTpcLjUbT5BxOuEY23SeOndPc+sTXstn9zZ/bCIfe8884KaVXF+BalLjA0e0bgf+c7JrBgwfLlli+fHmLx7yNqu3MULWdGaq2M8eX9bVFG7BJNvNM9YXG3xygcTQvFsjzkhYVFRWVDocvGMFGoLsQIlEIYQCmAt96WZOKiopKh8HrMQIppUMIcSfwM0r30XellLu9LEtFRUWlw+B1IwCQUi4CFnlbh4qKikpHxBeahlRUVFRUvIhqBCoqKiodHNUIVFRUVDo4qhGoqKiodHCElM2NafNthBBFQGYLh8OB4rMopzWo2s4MVduZoWo7c3xZX1u0dZFSnjB37jlpBCdDCLFJSjnE2zqaQ9V2ZqjazgxV25njy/raQ5vaNKSioqLSwVGNQEVFRaWDcz4awVveFnASVG1nhqrtzFC1nTm+rM/j2s67GIGKioqKSus4H2sEKioqKiqtQDUCFRUVlQ7OeWUEQohJQoj9QoiDQoiHva2nMUKIDCHETiHENiHEJi9reVcIUSiE2NVoX6gQYokQIs29DvEhbU8JIXLdZbdNCDHZS9rihBDLhRB7hRC7hRCz3fu9XnYn0eb1shNCmIQQvwkhtru1/c293xfKrSVtXi+3Rhq1QoitQojv3dseL7fzJkYghNACB4CJKJPdbASul1L6xNzHQogMYIiU0uuDVIQQY4Fq4H0pZV/3vheAUinlHLeJhkgpH/IRbU8B1VLKF8+2nuO0dQI6SSm3CCECgc3AFcDNeLnsTqLtOrxcdkKZMd5fSlkthNADq4HZwFV4v9xa0jYJH/jMAQgh7gWGAEFSyt+3x3f1fKoRDAMOSikPSSnrgU+Ay72sySeRUv4KlB63+3LgPffr91AeImedFrT5BFLKfCnlFvfrKmAvypzbXi+7k2jzOu5ZEqvdm3r3IvGNcmtJm08ghIgFLgXebrTb4+V2PhlBZyC70XYOPvJFcCOBxUKIzUKIW7wtphmipJT5oDxUgEgv6zmeO4UQO9xNR15ptmqMECIBGAhswMfK7jht4ANl527e2AYUAkuklD5Tbi1oAx8oN+DfwIOAq9E+j5fb+WQEopl9PuPswCgp5SDgd8Ad7iYQldPjdSAJGADkA//yphghRADwBfAXKWWlN7UcTzPafKLspJROKeUAlDnJhwkh+npDR3O0oM3r5SaE+D1QKKXc3N7vdT4ZQQ4Q12g7FsjzkpYTkFLmudeFwFcoTVm+RIG7nfloe3Ohl/U0IKUscH9ZXcB/8WLZuduRvwA+klJ+6d7tE2XXnDZfKju3nnJgBUobvE+U21Eaa/ORchsFXOaOL34CXCiE+JB2KLfzyQg2At2FEIlCCAMwFfjWy5oAEEL4uwN4CCH8gYuBXSe/6qzzLTDD/XoG8I0XtTTh6IfezZV4qezcgcV3gL1SypcaHfJ62bWkzRfKTggRIYQIdr/2AyYA+/CNcmtWmy+Um5TyESllrJQyAeV59ouUcjrtUW5SyvNmASaj9BxKBx7ztp5GuroC293Lbm9rAz5Gqe7aUWpSfwLCgGVAmnsd6kPaPgB2AjvcX4JOXtI2GqW5ca5tjuYAAAG1SURBVAewzb1M9oWyO4k2r5cd0B/Y6tawC/ire78vlFtL2rxebsfpHAd8317ldt50H1VRUVFROTPOp6YhFRUVFZUzQDUCFRUVlQ6OagQqKioqHRzVCFRUVFQ6OKoRqKioqHRwVCNQUVFR6eCoRqCioqLSwVGNQEXFQwgh3hRCjPK2DhWV1qIagYrKGeKeA6Mxw4H13tCiotIWVCNQUWkFQojPhRAvCSGWA4802t8LOCCldAohEoQQ+4QQbwshdgkhPhJCTBBCrHHPKuVrCQdVOjg6bwtQUTnH6IeS2G38cft/B/zUaLsbcC1wC0pCxGko+YAuAx7FSxP/qKg0h1ojUFE5TYQQJiAUeLqZw5fQ1AgOSyl3SiWN8W5gmVQSe+0EEtpbq4pKa1CNQEXl9OkDbJBSOhrvFEKYgWDpnnPCja3Ra1ejbRdqTVzFx1CNQEXl9OmHkpb4eMYDy8+ylv9v745NAARgKAomU7n/Ai5kEXtBEBVE/t0E6R4kReA1QgDXnYXgeB+AX/GPAB7q7rWqlpnZvp4F7hACgHBWQwDhhAAgnBAAhBMCgHBCABBOCADCCQFAuB0XXV02NxQR9QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import vtuIO\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "#Read simulation results\n", + "pvdfile = vtuIO.PVDIO(f\"{pvd_name}.pvd\", dim=2)\n", + "xaxis = [(i,0,0) for i in np.linspace(start=1.0, stop=40, num=40)]\n", + "##print(xaxis)\n", + "r_x = np.array(xaxis)[:,0]\n", + "time = [8.64,86.4,1728,24192,172800,604800,864000]\n", + "\n", + "pressure_xaxis_t = pvdfile.read_set_data(t, 'OGS5_pressure', data_type=\"point\", pointsetarray=xaxis)\n", + "\n", + "plt.plot(r_x, pressure_xaxis_t, 'x', label='OGS5, t = 1728 sec')\n", + "\n", + "for t in time:\n", + " pressure_xaxis_t = pvdfile.read_set_data(t, 'pressure', data_type=\"point\", pointsetarray=xaxis)\n", + " plt.plot(r_x, pressure_xaxis_t, label='t = '+str(t)+' sec')\n", + "titlestring = \"Theis: Numerical solution\"\n", + "plt.title(titlestring)\n", + "plt.xlabel(r'$r\\;/\\mathrm{m}$')\n", + "plt.ylabel(r'$hydraulic head\\;/\\;\\mathrm{m}$')\n", + "plt.legend()\n", + "plt.grid()\n", + "#plt.savefig(\"theis.png\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5366c257", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAEZCAYAAACgkSLOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3gVVfrA8e+b0CGErhQhFAFDSEKRAAoEcLFSpKig0tbCKpZ17crC6ro/C6IiKqsIWEAsCLquq4gQEOklVOlECCASSqgREs7vjzO53FzuTe5Nu0l4P89zn+TemTnzzsyZM2fOnJkRYwxKKaWUUkqpghUS7ACUUkoppZS6GGjFWymllFJKqUKgFW+llFJKKaUKgVa8lVJKKaWUKgRa8VZKKaWUUqoQaMVbKaWUUkqpQlCsK94iMkZEPs7ltE+LyKT8jqk4EZHbRWROsOPIDyISLyLJeZj+hIg0ymMMU0Xkn3lJI4B5GRFpUhjzyk/5lefye/lFJMJJs1Qupy8x+1J+EpGJIjLK7ftfROSAs79VF5GrRGSb871PMGPNrcLc70uSfNjnNopIfB5jyHUdIhfzShKRawpjXvlJRDqJyJZ8SCfflz8vx4H8Wq7cKNIVb6cwzvycE5HTbt9vz0vaxph/GWPuyqc4B4nISieu/SLyPxG5Oj/SLkjGmGnGmB7BjqOwiUiCiGTZ9saYSsaYncGK6WJREvKctwpDSViuQDkH0tMiclxEjorIYhEZISKu44oxZoQx5nln/NLAOKCHs78dAp4DJjjfZwdnSYJHK+3+8baejDEtjDEJQQrpomGM+ckY0yzYceSVZyU9mMtVpCveTmFcyRhTCdgN9HT7bVqw4wMQkUeA14F/AZcA9YG3gd7BjCsnuW1lUCq3NM+VSD2NMWFAA+BF4AngfR/jXgKUAza6/dbA47vfND8pVbB0Hysgxphi8QGSgGs8fhsDfAZ8CBzHFuBt3YbXAWYCB4FdwIMe037s/F8O+Bg4BBwFVgCX+BFTOHACGJDNOGWxFfN9zud1oKwzLB5IBh4Hfgf2A32AG4CtwGHgaY+YvwA+dZZ3NRDjNvxJYIczbBNws9uwocDPwGtOuv90flvkDBdn2O9AKrAOiHJbzg+d9fgr8CwQ4pbuImAscMRZz9dnsz5yitFnWsAw4Bdn2p3AvW7D4oFk5//HgJke833TWfcvABlAmrPtJjjDDdDE+b888KqzrKlOTOWdYZ8Dvzm/LwRauM1jKvBPH8vdGJiHzWMpwDSgikf+ftRZ76nONi7nNvwxJ3/sA4a7x+tlXgnA8872Pg7MAWp4ridv+xY2j32O3R+OA+uBpsBTTt7Yg22xdN8H3ndi24vNV6H+5DlnnBbAD87wAzj5HWgHLMHuj/uBCUAZt+myW/6hTv44js1Dtzu/h2Dz7q/OsnwIhDvDIpw0S3krb8haXux2xj3hfDp4Wa6O2HIk1fnb0Z/tU5w+nuvIbbud43zZMdXZ7k2Bk27rbR62HDgHnHZ+KxtofnJ+H44tF44A3wMNPPLJCGCbM/wtQNyG3835MmUT0Nr53eexw8t6mApMdPLxcWCBRwzNOZ/HtwC3OL/fA5wFzjjL/x9sGfcft2m3A5+5fd8DxGaXrjOsLLYc3Y3dryZyvgyLxx53/sb5486wbJYvx3LXV1rAjcAa4JgT+xi3YRHO9ikFDABWecz3b8Bsb+vJS7kVCjzN+WPLKuAyZ9gbzryPOb938rZfe1nuqsA3Th444vxfz9/9GLgTW9YcAp7By/7ikYfeAv7rpLUMaOytbHKb911e9oujzjbq6Py+x9kuQwLMG09gj3Mf4XHMAC4DvnTWyyHOH0P9Ocb5Wv4bsPvfcex+/6jHProdm8+/Bup47N9NPNeJ23rJrN8sdMY9ic1Dt3pZriucNI5i65K9/Nw+PutOPvepwiqk8/rxttGwO02as9FCgf8DljrDQrA72d+BMkAjJ0Ne67nDAfdiC70KTjptgMrOsCeBb3zEdB2QjtsO4WWc54ClQC2gJrAYeN4tk6c7MZZ2MthBYDoQhq2UpAGN3GI+C/R3xn8Ue1Ao7QwfgD1ghDgZ6yRQ2y0TpgMPYAu68h4Z81pnfVVxMtIVbtN+CHzlxBSBPSn4s1u6Z53YQ4G/YCuH4mN95BSjz7SwhXhjJ74uwCnOHyjjOV/xru2kW8X5Xgq7U7TxtoN62YHfcsap68TRkfMnS8Od9ZB5QpXosXP6qng3Af7kTFcTWxC87pG/lzvrphr2QDfCLZ8dAKKAitj8kVPFewe2slPe+f6i53rytm9xfp+61llvH2Lz2DOcz6O73KadDfzbiauWswz3+pnnwrAH6r9hT37DgDhnWBugvTNdhLM+Hva2vTyWpSL2ANvMLS+0cNt227FlQSXsweMjZ1gE/le8s4zrtqyZy1UNe6C+04l/oPO9ek7bpzh9PNeR2++7gb947hM+1pvneg40P/VxtukVzm/PAos98sk32HKtPrZ8vc6tLNoLXIktU5pgW+CzPXZ4Wd6p2INxZ+z+/YZbXqiIrfwMc+Jrja2UtPBcP873RtgDfwg27/4K7HUbdsQZllO6r2MrKdWw+9V/gP9zKwPSscem0tjj5ymgqo/ly6nc9ZmWM7ylE3M0thzr45kfnPV2GLjCbb5rgH6+ylaylluPYRsJmjlxxnB+f7sDqO7M52/YCmU5z/3ay3JXB/ph6wVh2AaJ2X6Ws5HYCl5mnhjnrKfsKt6HsSeupbCV1hnZ7DcJZK14pzt5IRR7srobexwrC/TA5s9KAeSNl5xpy5P12BoKrMVWNCtiy+2rnWH+HON8Lf9+nBMi7AlPZv7qhs3XrZ103wQWeuzfOVa8Pcd1W9bM5SqNLUeexu7z3Zx11syP7eOz7uSz7Ax24e3vx9tGw+40c92+RwKnnf/jgN0e4z8FTPHc4bAH5MVAdIAx3Q78lsM4O4Ab3L5fCyS5bfjTnG/RCXMyR5zb+Ks4X1CNwTmxcL6HuGdYL/NOBHq7ZULP9eHKmE5G24qt7IS4jRMK/AFEuv12L5DglsZ2t2EVnGW41M916Bmj32lhD9IPee5Ezvf/AXc7/98EbHIbloCPirezTk/jdiUhm9irONNltppOxUfF28u0fYA1Hvn7DrfvLwMTnf8n41Yxwxb0OVW8n3X7fh/wnbf15LlvOXnsB7dhPbEHEM88WgXbdeAPnNYSZ/hAYL6feW6g+zrIYX09DMzy3F5exquIrbj0c4/LGfYjcJ/b92bYE73Myr3r4EbeKt53Ass95r0EGJrT9ilOH8915Pb7UuAZz33Cx3pzz3u5yU//w2kEcL6HYCt+DdzyydVuwz8DnnT+/x6n/PBIM9tjh5fxp+IchJ3vlbBX1S7DNi785DH+v4HRnuvHbfgebEXjNuBd7MlHc2zF6mtnHJ/pYg/+J3Fa5JxhHXBOmDl/3HHfDr8D7f3c7p7lrt9pYSt9r3nLD8A7wAvO/y2wJxmZDR7e1pN73tmCcxzxI/4jOOU72VS8vUwXCxxx+56A73L27x55oiK2xT67ivckt+83AJuz2W8SyFrx3uY2rKUz/iVuvx1y4vcnb5wh69XWeM5XUDtgT159Nja6TeftGOdr+Xdj6xWVPX5/H3jZY986C0SY8/t3flS8O2FPyNzrPp/gXKHJYft4rTtl9ynSfbz99Jvb/6eAck6/pAZAHeemn6MichR7NnOJlzQ+whbCM0Rkn4i87NwIlJNDQI0c+kHVwbZaZPrV+c2VhjEmw/n/tPP3gNvw09jMlmlP5j/GmHPYy0J1AERksIgkui1vFFDD27SejDHzsJfz3wIOiMi7IlLZmb6Ml2Wo6/b9N7d0Tjn/usfs4keMPtMSketFZKmIHHamvcFjWncfYFs6cP5+5GM8TzWwZ/E7vMQeKiIvisgOETmGLUgyp8mWiNQSkRkisteZ9mMv03nm5cx1WIes2859W/jiKy1/eOa/FC95tBJ2HysN7Hfbnv/GtlRm8pnnsBWTC9YzgIg0FZFvROQ3Z339Cz/WszHmJLZSMsKJ678i0twZ7G1fLIX3MiEvPOeTOS+v+wyBb5+iri62dShQuclPDYA33MY/jK1c+LOufeW/QI4dF8RljDnhxFHHSSvOI63bgUuzSWsBtlLQ2fk/AdvS3MX5nhmjr3RrYhstVrkN+875PdMhY0y623efedCPctdnWiISJyLzReSgiKRi98vsyuxBIiLYk9fPjDF/+BjXU3Zlyd9E5BcRSXXiD88mBvfpKojIv0XkV6cMWghUEZFQt9H8KrOdculQDrPMzzIbY4y3eoQ/eeOgMSbNx3wuA3712N6A38c4X/ph89WvIrJARDo4v2cpS5196xBZ9+/8UAfY49SpMvlVZmdTd/KpJFS8fdmDPYur4vYJM8bc4DmiMeasMeYfxphIbLeCm4DBfsxjCfayfHaPwdqHLSQz1Xd+y63LMv9xnh5QD9gnIg2A94CR2EtsVYAN2INQJpNdwsaY8caYNtjWhqbYy3cp2DNMz2XYG2jgfsboa9qy2D6XY7Fn8lWAb7OZdjYQLSJR2O3pfjNudushBbtNG3sZNgh70+w12MI7IjO8nOLHdoMy2KsqlbEnA/5MB/aqxmVu3+v7OZ03J7EFL2BPJsha6AZiD7aFsobbPlbZGNPCbZzs1vUevK9nsK1fm4HLnfX1NH6uL2PM98aYP2Ev1W/G5jnwvi+mk/WglSnLeiJrRSnb/cjLfDLnFfA+U9yIyJXYg9WiXEyem/y0B9sVxb2cL2+MWezn/LzlP7+PHW7cy+VK2Mv4+5y0FnikVckY8xcfywPnK96dnP8XcGHFO7t0U7AVrRZuw8KNfUhBQHJR7nqaju3WcJkxJhzbn9jrtMaYpdjW1k7Ysta9sSSnfc7rthSRTtj+yrdgu79UwfbD9Sf+v2GvisU5ZVDnzGT9mDZLmS0iFbBdV3LjpPPXV3kUCH/yRk5ldn0fjY25PsYZY1YYY3pjT7JnY69MgUdZKiIVsevRW1maXZmdk33AZe5PZCKAMttH3cmnklzxXg4cE5EnRKS801oZ5RwYshCRriLS0qmEHMNWNDM8x/NkjEnFXlJ6S0T6OGfIpZ0Wgped0T4BnhWRmiJSwxk/L88NbSMifZ2M/zD2QLUUeynLYC8DISLDsK3JfhGRK53WidLYDJwGZDgtnZ8BL4hImFN5fiSXy5CXGMtg+3gdBNJF5Hps3zWvnDP2L7AF/3JjzG63wQew/SW9TXcO27VjnIjUcfJNB+cAFIZd34ewO/i//IwdZ9oTwFERqUsOO6aHz4ChIhLpFOCjA5jW01bsVaEbnW39LHa9BswYsx97Q9GrIlJZREJEpLGIdPEziW+AS0XkYREp6+SvOGdYGHZfPOG0WP/FZypuROQSEenlFNB/YNd55r78CfBXEWnoVI7+BXzqrfUG2wXqNmd/bou9ryLTQexNgb6e+/4t0FTsY0ZLicit2G5w3/izDMWRs/1vAmZgL92vDzSNXOanicBTItLCiSNcRAb4OctJwKMi0kasJk755vexw80NInK1iJTB3nC3zBizB7vNm4rInU5eKu2UtVc403krixYAXbFdbpKBn7D3eVTH9nsmu3SdMuw94DURqeWsl7oicq2f68VdQOWuF2HAYWNMmoi0w1aos/MhtvUw3RjjfvLms8x2TAKeF5HLnW0ZLSLVnfmnO/GXEpG/A9m2RnrEfhpbZlcjsHL3C+AmtzzxHLmsbxljDmIrgHc4eXE4vhssckorr3ljOfak4kURqSgi5UTkKmdYro5xIlJG7HsQwo0xZ7HlfmaZPR0YJiKxzjH4X9h9K8lLUolAX6ce1gT4s8fw7PLQMmy953FnX4rHdrOc4Uf8XutO2U1TYiveToWxJ7Zf0y7smd4kbEulp0uxO8ox7E1cC3AqlmJftPO/bOYzDlsRfRa7c+/BtuhmPpP2n8BK7J2u67FPIsnLc1u/wl5Kz7x5q6/TYr8J+ySOJdgM1hJ7p7O/KmN3yCOcvxN7rDPsAWyG2oltyZqOrZwGJC8xGmOOAw9iK6FHsAX41zlM9oEzD89uJm8A/UXkiIiM9zLdo9httQJ7yfgl7L7yIc7NTtg7sJf6E7vjH9h+m6nYO6O/9HdCY8z/sH0j52FvAJkXwHw900rF9kWchF2Ok9juSrk1GHtw3oTdLl9gW5r9ieU49macntjLeNuwFQ6w22AQ9gaX97BPefFHCLalah9223XBLi/YPPsR9pLxLmwB+YCPdEZhD25HsNtuulvcp7BPx/lZ7OXa9h7LdQh7leVv2P3oceAmY0yKn8tQnPxHRI5jy71nsDeRDctDegHlJ2PMLOz+OUPs5e0NwPX+zMgY8zl2O07H5rPZQLUAjx2ZpmMrZoexNwbf7szjOLaiehs2T/7G+RvXwPZhjXTy0Wxnmq3YCsxPzvdj2LL358wuX36k+wS2rFjqrJe52NbbgOSy3HV3H/Cck0f+zvmWTF8+wjbGeJbZF6wnD+OctOdgj+PvY28M/B57H8BWbNmdRvbd39y97qSRgi3rv/NzOowxG4H7sfliP3bd5aWcvRtbkT2EbVX154qOL7nOG277RhNsv+xkbH0E8nCMw9Zlkpx4RuB0EzXG/Igti2di12NjbJ735jXsFZMD2GO/5yOnxwAfOHnoFo/lOgP0wpYdKdhHQg82xmz2I/bs6k5eZT4tQhUDIjIGe3PAHTmNq0BE6mO7GlzqHLyUUkoVUSJSHntzZmtjzLZgx6NUQSixLd7q4ia2r9Yj2DvLtdKtlFJF31+AFVrpViWZvpVIlThO/94D2Ms+1wU5HKWUUjkQkSTszXjZPaxAqWJPu5oopZRSSilVCLSriVJKKaWUUoWgWHY1qVKlimnSpEmww7jAyZMnqVixYrDDuIDGFRiNKzAaV2BWrVqVYozJ7bPTiyUtswOjcQVG4wpMUY0Lim5s+VpuGz9eb1nUPk2bNjVF0fz584MdglcaV2A0rsBoXIEBVpoiUI4W5kfL7MBoXIHRuAJTVOMypujGlp/ltnY1UUoppZRSqhBoxVsppZRSSqlCoBVvpZRSSimlCkGxvLlSqeycPXuW5ORk0tLScjV9eHg4v/zySz5HlXcaV2CCHVe5cuWoV68epUuXDloMSimlihateKsSJzk5mbCwMCIiIhCRgKc/fvw4YWFhBRBZ3mhcgQlmXMYYDh06RHJyMg0bNgxKDEoppYoe7WqiSpy0tDSqV6+eq0q3UvlBRKhevXqur7oopZQqmbTirUokrXSrYNM8qJRSylPJqninJsO8f8LhXcGORCmlVA7OpJ9j4oIdLNx6MNihKKVUoShZFe8zp2DhK/Drz8GORKmg+vrrr3nxxRdzNW1ERAQpKSl5mv/QoUP54osvsh0nISGBxYsXu75PnDiRDz/8ME/zzbR//34GDBiQL2m5e/PNN2nWrBktWrTg8ccfB2D9+vUMHTo03+d1MSgdKry3cCdfJe4LdihKKVUoStbNldWbQJkw2LcGWt0R7GhUMTBxwQ6i64XTsXEN12/Lk46y7fDvjOjSOIiR5V56ejq9evWiV69ewQ4lWwkJCVSqVImOHTsCMGLEiHxLe9y4cfleGZ4/fz5fffUV69ato2zZsvz+++8AtGzZkuTkZHbv3k39+vXzdZ4lnYjQukFVVu8+EuxQlFKqUJSsFu+QEKgTayveSvkhul44I6evYfEO28K7eEcKj876heh64blOMykpiSuuuIK7776bFi1a0KNHD06fPg1AfHw8K1euBCAlJYWIiAgApk6dSp8+fejZsycNGzZkwoQJjBs3jlatWtG+fXsOHz4MwI4dO7juuuto06YNnTp1YvPmzYBtYX7kkUfo2rUrTzzxBFOnTmXkyJEAHDhwgJtvvpmYmBhiYmJcrcx9+vShTZs2tGjRgnfffTfbZcrIyGDo0KFERUXRsmVLXnvtNQASExPp1q0b0dHR3HzzzRw5cmEFyr0FfeXKlcTHx5OUlMTEiRN57bXXiI2N5aeffmLMmDGMHTvWlW779u0vSDc+Pp4nnniCdu3a0bRpU3766Sev8c6cOZNrrrkGsDfbDhs2jJYtW9KqVSvmz58PwKlTp7jllluIjo7m1ltvJS4ujpUrV/pc1nfeeYcnn3ySsmXLAlCrVi3X/Hr27MmMGTOyXYfFhYhcJyJbRGS7iDzpZXi4iPxHRNaKyEYRGZaX+bVtUJVdKSdJOfFHXpJRSqlioWRVvAHqtILf1kP6mWBHooqBjo1rMGFQK0ZOX8O4OVsYOX0NY2++IksLeG5s27aN+++/n40bN1KlShVmzpyZ4zQbNmxg+vTpLF++nGeeeYYKFSqwZs0aOnTo4OqCcc899/Dmm2+yatUqxo4dy3333eeafuvWrcydO5dXX301S7oPPvggXbp0Ye3ataxevZoWLVoAMHnyZFatWsXKlSsZP348hw4d8hlbYmIie/fuZcOGDaxfv55hw2xda/DgwTz33HOsW7eOli1b8o9//MOv9RMREcGIESP461//SmJiIp06dcoyfPDgwbz00kte001PT2f58uW8/vrrXue3a9cuqlat6qogv/XWW4DtEvLJJ58wZMgQ0tLSePvtt6latSrr1q1j1KhRrFq1Kttl3bp1Kz/99BNxcXF06dKFFStWuObZtm1bnycBxYmIhAJvAdcDkcBAEYn0GO1+YJMxJgaIB14VkTK5nWebBlUBWPWrtnorpUq+klnxzjgDv28KdiSqmOjYuAZ3xNVn/Lzt3BFXn3YRVfKcZsOGDYmNjQWgTZs2JCUl5ThN165dCQsLo2bNmoSHh9OzZ0/AdmVISkrixIkTLF68mAEDBhAbG8u9997L/v37XdMPGDCA0NDQC9KdN28ef/nLXwAIDQ0lPNy25o8fP56YmBjat2/Pnj172LZtm8/YGjVqxM6dO3nggQf47rvvqFy5MqmpqRw9epSrr74agCFDhrBw4UL/VlA2MtPt0qWL13T79u0L+F6v+/fvp2bNmq7vixYt4s477wSgefPmNGjQgK1bt7Jo0SJuu+02AKKiooiOjva5rGAr/EeOHGHp0qW88sor3HLLLRhjANv6vW9fiein3A7YbozZaYw5A8wAenuMY4AwsY9tqQQcBtJzO8OouuGUCQ3RirdS6qJQsvp4g614A+xbbbudKJWDxTtS+HjZbh7s1oSPl+0mpnYFurfM24tXMltbwVZ2M7ualCpVinPnzgFc8Ixn92lCQkJc30NCQkhPT+fcuXNUqVKFxMREr/OsWLGi3/ElJCQwd+5clixZQoUKFYiPj8/2mdNVq1Zl7dq1fP/997z11lt89tlnri4YOclumXMjc72EhoaSnn5hfa98+fJZ5pNZOfbk63dvyzp58mTq1atH3759ERHatWtHSEgIKSkp1KxZk7S0NMqXL5/nZSsC6gJ73L4nA3Ee40wAvgb2AWHArcaYc54Jicg9wD0ANWvWJCEhwedM64fBvHVJdKxwIE/BB+rEiRPZxhUsGldgNK7AFNW4oGjHll9KXsW7agSUr6r9vJVfFu9IYeT0NUwY1IqOjWvQvnF17p+2mrcqlM9zdxNvIiIiWLVqFe3atcvxqR+eKleuTMOGDfn8888ZMGAAxhjWrVtHTExMttN1796dd955h4cffpiMjAxOnjxJamoqVatWpUKFCmzevJmlS5dmm0ZKSgplypShX79+NG7cmKFDhxIeHk7VqlVZvHgx1157LR999JGrldrbMl9//fVZutyEhYVx7NixC8bPTPenn36iU6dOPtP1pWnTpllawjt37sy0adPo1q0bW7duZffu3TRr1oyrr76azz77jK5du7Jp0ybWr1/vc1nB9omfN28e8fHxbN26lTNnzlCjhs0jW7duJSoqyu8YizBvDx/3PEO5FkgEugGNgR9E5CdjTJaNaYx5F3gXoFmzZiY+Pt7nTJec+oUpPyfR/qpOlCt94VWbgpKQkEB2cQWLxhUYjSswRTUuKNqx5ZeS19VExLZ679WKt8rZuuRUV6UbbLeTsTdfwbrk1AKZ36OPPso777xDx44dc/XIvmnTpvH+++8TExNDixYt+Oqrr3Kc5o033mD+/Pm0bNmSNm3asHHjRq677jrS09OJjo5m1KhRtG/fPts09u7dS3x8PLGxsQwdOpT/+7//A+CDDz7g2WefJTo6msTERP7+979fMO3o0aN56KGH6NSpU5auMD179mTWrFmumyvdffDBBzz22GPZputLxYoVady4MTt27ADgvvvuIyMjg5YtW3LrrbcydepUypYty3333cfBgweJjo7mpZdeIjo6mvDwcJ/LOnz4cHbu3ElUVBS33XYbH3zwgeslOfPnz+fGG2/0O8YiLBm4zO17PWzLtrthwJfG2g7sAprnZaatG1TlTMY5NuwtmP1OKaWKDGNMsfs0bdrUZGvuc8aMqWrMmVPZj5fP5s+fX6jz89fFFtemTZvyNP2xY8fyKZL8pXH578svvzSPPvpotuOkp6eb06dPG2OM2b59u2nQoIH5448/Ap5XWlqaiYuLM2fPnr1gmLe8CKw0RaAc9fbBXgXdCTQEygBrgRYe47wDjHH+vwTYC9TILt2cyuyDx9NMgye+Me8kbM92vPx2sZWNeaVxBUbjClxRjS0/y+2S19UEbIu3ybBPN7msXbCjUUoVsptvvpm9e/dmO86pU6fo2rUrZ8+exRjDO++8Q5kygT+cY/fu3bz44ouUKlX8i1NjTLqIjAS+B0KBycaYjSIywhk+EXgemCoi67FdU54wxuTpjUs1KpWlYY2KeoOlUqrEK/5HCm/qtrZ/963RirdSF6khQ4ZkOzwsLMz1TPW8uPzyy7n88svznE5RYYz5FvjW47eJbv/vA3rk93xb169KwpbfMca4uvAopVRJU/L6eAOE1YZKl+gNlkopVUy0jajKoZNn2JVyMtihKKVUgSm0ireITBaR30Vkg5dhj4qIEZH8eYyE6wbL1fmSnFJKqYLVVl+ko5S6CBRmi/dU4DrPH0XkMuBPwO68JD5xwQ7Xa78BqNMak7KV939cl5dklVJKFYLGNStRuVwprXgrpUq0Qqt4G2MWYt9w5uk14HEufFZsQKLrhTNy+hpX5fNI+hYAACAASURBVHtTSCMEQ1z5PTlMqZRSKthCQoQ2DaqyUiveSqkSLKg3V4pIL2CvMWZtTjfT+PMWtLsjQ7h36jK61i/N2t1nWRAK5Xb8QMIZ/9/olxdF9Y1LF1tc4eHhHD9+PNfTZ2Rk5Gn6/DRt2jRWr17Nq6++6jOuzJfD1K5dG4CRI0cycuRImjcP7NHKP/30E+PHj+fzzz8PaDrPuGrXrp3lVfbevPXWWwwbNowKFSoA0K9fP95//32qVKkS0LwDiSsY0tLSiuS+V1S1jajG/C1bOHrqDFUqBP6EGaWUKvLy67mE/nyACGCD838FYBkQ7nxPIodnwWZ+snsm7KvfbzYNnvjGvPr9ZmPGtTDms6H+PqYxz4rq8ycvtrhK0nO8p0yZYu6//35jjO+4unTpYlasWJHnec2fP9/ceOONAU/nGVfFihVznKZBgwbm4MGDAc8rEEVhOxa353gX1CfHdy84luxIMQ2e+Mb8+Mtvfo2fV/PnzzchISEmJibGREZGmujoaPPqq6+ajIwMY4wxK1asMA888IAxxj6vvXv37iYmJsbMmDHDLFy40ERGRpqYmBhz6lT+vjOiuJbZ7uVVXr3wwgt+j+stLvdY3nnnHfPBBx8YY4z55ZdfTExMjImNjTXbt283b7zxhmnevLkZNGhQvsTtK64pU6aYvXv3eh0vv8pwf33yySemRYsWhTa/QHjblkOGDDGff/65McaYP//5z2bjxo3GmAvzSIcOHQosrvwst4P5VJPG2Jc0rBWRJOwb0laLyKW5TXDxjhQ+XrabB7s14eNluzkU3kKfbKKCok+fPrRp04YWLVrw7rvvun6vVKkSzzzzDDExMbRv354DBw4A8J///Ie4uDhatWrFNddc4/o90/Hjx2nZsiVnz54F4NixY0RERPD555+zcuVKbr/9dmJjYzl9+jTx8fGux+R99913tG7dmpiYGLp37w7A8uXL6dixI61ataJjx45s2bIl22XZuHEj7dq1IzY2lujoaLZt2wbAuHHjiIqKIi4ujtdff/2C6RISErjppptc30eOHMnUqVMZP348+/bto2vXrnTt2hWwr5XPfJNnZrpRUVGudJOSkrjiiiu4++67adGiBT169OD06dN+bg1VXMTUq0KpEGFlUuF1NylfvjyJiYls3LiRH374gW+//ZZ//OMfALRt25bx48cDsGbNGs6ePUtiYiK33nor06ZN49FHHyUxMZHy5cvnOB9jDOfOnSvQZckv6enpwQ6Bf/3rX/mW1ogRIxg8eDAAs2fPpnfv3qxZs4bGjRvz9ttv8+233zJt2jS/0srtupk6dSr79nm+BLZ4yMjICHYILpMmTSIyMhK4MI8sXrw4GCEFLGgVb2PMemNMLWNMhDEmAvuq4tbGmN9yk97iHSmMnL6GCYNa8UiPZkwY1Ippe6rDkV1wylvXcnVR+N+TMOXGgD7lP+2f/Tj/ezLH2U6ePJlVq1axcuVKxo8fz6FDhwA4efIk7du3Z+3atXTu3Jn33nsPgKuvvpqlS5eyZs0abrvtNl5++eUs6YWFhXH11Vfz3//+F4AZM2bQr18/BgwYQNu2bZk2bdoFFYCDBw9y9913M3PmTNauXevqQtK8eXMWLlzImjVreO6553j66aezXZaJEyfy0EMPkZiYyMqVK6lXrx6rVq1iypQpLFu2jB9//JH33nuPNWv8O8l98MEHqVOnDvPnz2f+/PlZhrmnu3Tp0izpbtu2jfvvv5+NGzdSpUoVZs6c6df8VPFRvkwoLepUDlo/71q1avHuu+8yYcIEjDGuk8fff/+dO+64g8TERGJjY/n3v//NZ599xnPPPcftt98OwCuvvMKVV15JdHQ0o0ePBs6fMN533320bt2aPXv2MGfOHDp06EDr1q0ZMGAAJ06cAOzJ5+jRo2ndujXDhw9n8+bNgO2SN2zYMFq2bEl0dLQr3/tK58knnyQyMpLo6GgeffTRC5bR14n31KlTGTBgAD179qRHjx4+l8nTlClTaNq0KV26dOHnn392/T506FC++OIL1/dKlSq5/s8p3SeffJLTp08TGxvrWr/eTsj9jWXMmDGMHTuWb7/9ltdff51JkybRtWtXRowYwc6dO+nVqxevvfYaJ0+eZPjw4Vx55ZW0atWKr776KqB149lA8Nhjj3H69Gm++OKLCxpIPH388cd07NiRqKgoli9fDsDhw4fp06cP0dHRtG/fnnXr1mVZnkxRUVEkJSVl20CxatUqYmJi6NChA7Nnz3ZNm5SURKdOnWjdujWtW7d2VV4TEhLo2rUrgwYNomXLlowaNYo33njDNd0zzzzjOil19+GHHxIdHU1MTAx33nknAL/++ivdu3cnOjqa7t27s3u3fZbG0KFDefDBB+nYsSONGjVy5RdjDCNHjiQyMpIbb7yR33//3ZV+ZsOStzySmceMMTz22GNERUXRsmVLPv30U9cyxcfH079/f5o3b87tt9+e2Rsjx/0mPxVaH28R+QSIB2qISDIw2hjzfn6lvy45lQmDWtGxsX0iYcfGNQjvfi3MnQb7E6Fxt/yalVI5Gj9+PLNmzQJgz549bNu2jerVq1OmTBlXK3CbNm344YcfAEhOTubWW29l//79nDlzhoYNG16Q5pAhQ5gwYQJ9+vRhypQprkq7L0uXLqVz586utKpVqwZAamoqQ4YMYdu2bYiIqxXdlw4dOvDCCy+QnJxM3759ufzyy1m0aBE333wzFStW5Ny5c/Tt25effvqJVq1aBbaiPLinC7jS7dWrFw0bNiQ2Nhaw6y4pKSlP81JFU5sG1Zi27FfOZpyjdGjhtw01atSIc+fOZTnY16pVi0mTJjF27Fi++eYbAJYsWcJNN91E//79mTNnDtu2bWP58uUYY+jVqxcLFy6kfv36bNmyhSlTpvD222+TkpLCP//5T+bOnUvFihV56aWXGDduHH//+98BqFGjBqtXr+bhhx9m7NixTJo0ieeff57w8HDWr18PwJEjR3ymM3LkSGbNmsXmzZsREY4ePXrB8mWeeJcqVYq5c+fy9NNPuyrzS5YsYd26dVSrVs3rMlWrVo34+HhXWvv372f06NGsWrWK8PBwunbtmmMZ4Gtdde7c2TXOiy++yIQJE0hMTASynpAbY4iLi6NLly5Z5uVPLDfccAMjRoygUqVKrsrVd999x/z586lRowZPP/003bp1Y/LkyRw9epR27dpxzTXX+LVuMrf3tm3b+OSTT3jvvfeIj49n5syZ3HHHHUyYMIGxY8fStm1br+vl5MmTLF68mIULFzJ8+HA2bNjA6NGjadWqFbNnz2bevHkMHjzYtU58cZ//Lbfc4pr/sGHDePPNN+nSpQu33Xaba/xatWrxww8/UK5cObZt28bAgQNdV0yXL1/Ohg0baNiwIUlJSfTt25eHHnqIc+fOMWPGDNcJQqaNGzfywgsv8PPPP1OjRg0OH7aNniNHjmTw4MEMGTKEyZMn8+CDD7oq//v372fRokVs3ryZXr16MWnSJGbNmsWWLVtYv349Bw4cIDIykuHDh2eZl2cecffll1+SmJjI2rVrSUlJ4corr3TlrzVr1rBx40bq1KnDVVddxc8//0xkZGSO+01+KrSKtzFmYA7DI/KS/ogujS/4rUWbzjAX+zxvrXhfnK5/MeBJTh8/TlhYWK5nmZCQwNy5c1myZAkVKlQgPj6etLQ0AEqXLu16K19oaKjrsuUDDzzAI488Qq9evUhISGDMmDEXpNu+fXseffRRFixYQEZGBlFRUdnGYYz3NwCOGjWKrl27MmvWLJKSkrIcSL0ZNGgQcXFx/Pe//+Xaa69l0qRJrlaC7JQqVSrLpfXMdZBTzL6ULVvW9X9oaKh2NSmh2jSoyuSfd7Fx3zFiL8u/m20D4U/+djdnzhzmzJnjquidOHGCbdu2Ub9+fRo0aED79u0BezK8adMmrrrqKgDOnDlDhw4dXOn07dsXgKZNm/Lll18CMHfuXGbMmOEap2rVqnzzzTde06lcuTLlypXjrrvu4sYbb8zS1StTdifef/rTn1wn6N6W6YorrsiS1rJly4iPj6dmzZoA3HrrrWzdujVX68q94u3J1wm5e8U6N7F4i+3rr792tSanpaW5WmdzWjeZ29u9gaBZs2Z+NxAMHGirSJ07d+bYsWMcPXqURYsWuU6KunXrxqFDh0hNTc02HW8NFKmpqRw9epQuXbq4lmXDBvtKlbNnzzJy5EgSExMJDQ3Nss7atWvnariJiIigevXqrFmzhgMHDtCqVSuqV6+eZd7z5s2jf//+1KhhG0Az19eSJUtc+fnOO+/k8ccfd03Tp08fQkJCiIyMdHWxXLhwIQMHDiQ0NJQ6derQrVtg9bdFixa5pr/kkkvo0qULK1asoHLlyrRr14569eoBEBsbS1JSEu3bt89xv8lPJfOV8ZnKV4VqjbSftypUqampVK1alQoVKrB582aWLl3q1zR169YF4IMPPvA53uDBgxk4cCCjRo1y/RYWFub16R0dOnTg/vvvZ9euXTRs2JDDhw9TrVq1LPOaOnVqjrHt3LmTRo0a8eCDD7Jz507WrVtH586dGTp0KE8++SQnT55k1qxZfPTRR1mma9CgAZs2beKPP/4gLS2NH3/8kauvvjpLzJkFdCb3dI0xXtNVJVvbCPsinZVJh4NS8d65cyehoaHUqlWLX375xa9pjDE89dRT3HvvvVl+T0pKclUWM8f705/+xCeffOI1ncyTS/eTcm8n0Nmls3z5cn788UdmzJjBhAkTmDdvXpbh2Z14e8bquUzentDj64lk7ifexhjOnDnjM92c+HsilNPT0fyZz8yZM2nWrFmW35ctW5bjugG7vd0bCEJCQvzuE+4Zu4h4XW4RybZRw1sDha9GGIDXXnuNSy65hLVr13Lu3DnKlSvnGua+zAB33XUXU6dO5bfffrugBRp8N/Z4WwZv8bovb162ZSANOOnp6ZQqVSrH/SY/lcxXxrur0xr2ZX9pRqn8dN1115Genk50dDSjRo1ytXZlZ8yYMQwYMIBOnTpdUBl1d/vtt3PkyBFX6wjYfnIjRoy4oO9gzZo1effdd+nbty8xMTHceuutADz++OM89dRTXHXVVX7dNPPpp58SFRVFbGwsmzdvZvDgwbRu3ZqhQ4fSrl07unXrxl133XXBZd3LLruMW265hejoaG6//fYsw++55x6uv/56182VmdzTjYuL85quKtkuqVyOelXLB+VFOgcPHmTEiBGMHDkyoAP/tddey+TJk139rPfu3Zulq0qm9u3b8/PPP7N9+3YATp06lWOrbI8ePZgwYYLr+5EjR3ymc+LECVJTU7nhhht4/fXXvV6G9/fE29syHTmSdZvExcWRkJDAoUOHOHv2bJZHkUZERLBq1SoAvvrqK1fLur/rqnTp0q5pOnfuzOzZszl16pTrRL9Tp05+x+Kva6+9ljfffNNVcfN134q/y+DOVwNJpsx+yIsWLSI8PJzw8HA6d+7suukzISGBGjVqULlyZSIiIli92r6Ze/Xq1ezatSvbeVepUoXw8HAWLVoE2KsomVJTU6lduzYhISF89NFH2R4Tbr75Zr777jtWrFjBtddee8Hw7t2789lnn7nuacrsatKxY0fXVZtp06a5GmB86dy5MzNmzCAjI4P9+/dfcC9QJvc84jn9p59+SkZGBgcPHmThwoW0a9fO5/z82W/yU8lu8Qb76vgNX8CJ36FSrWBHoy4CZcuW5X//+5/XYZkFNUD//v3p378/AL1796Z3794XjD906FCGDh3q+r5o0SL69++f5XnX/fr1o1+/fq7v7q1S119/Pddff32WNDt06JDlYP/8888D9qYVb91OnnrqKZ566qkLfn/kkUd45JFHOO7RNcd9GV9++eULbhQF27XmgQcecH13vxybma67iIgI16VRoMBvflHB1bZBVX7eccjvFrS8yLxB6+zZs5QqVYo777zzgvyXkx49evDLL7+4uo1UqlSJjz/+mNDQ0Czj1axZk6lTpzJw4ED++OMPAP75z3/StGlTn2k/++yz3H///URFRREaGsro0aPp27ev13TCwsLo3bs3aWlpGGN47bXXLkjv8ccfZ8iQIYwbNy7bS/jelmnkyJFZxqlduzZjxoyhQ4cO1K5dm9atW7sqbnfffTe9e/emXbt2dO/e3dV66mtd1aqV9fh8zz33EB0dTevWrZk2bZrrhBzwekKeXSz+GjVqFA8//DDR0dEYY4iIiHD16c9p3Xjb3u4yG0jKly/PkiVLLngSTtWqVenYsSPHjh1j8uTJgG2QGTZsGNHR0VSoUMF1NbRfv358+OGHxMbGcuWVV2abfzJNmTKF4cOHU6FChSwt+vfddx/9+vXj888/p2vXrhe0crsrU6YMXbt2pUqVKl6XtUWLFjzzzDN06dKF0NBQWrVq5XqS1fDhw3nllVeoWbMmU6ZMyTbWm2++mXnz5tGyZUvXzbLeeOYR9+mXLFlCTEwMIsLLL7/MpZde6rph2dPx48dz3G/yVX49l7AwP/4+E9YYY0zSz8aMrmzMlu/8nyaXiuuzV4NFn+MdmHvuucc0btzYbNmyJdihZFFU11dRiEuf452LMtsY8+HiXabBE9+Y3YdOBjRdoC62sjGvNK7AlLS4MjIyTExMjNm6dWv+BuSmqK6z/Cy3S35Xk0ujQULsDZZKFWNjx45l+/btfrVuKFWctWlgb8pa+as+ClapomDTpk00adKE7t27c/nllwc7nGKt5Hc1KVsJajTTGywvMsYU/CVqpbJjG0lUbjS7NIxKZUux6tcj3NyqXrDDUeqiFxkZyc6dO4MdRolQ8lu8wfbz3rca9EB4UShXrhyHDh3Sio8KGmMMhw4dyvKEAOW/0BChVf0qhfoGS6WUKgwlv8UbbMV77XQ4thfCtfWkpKtXrx7JyckcPHgwV9OnpaUVyQqTxhWYYMdVrlw51/NiVeDaNKjKGz9u41jaWSqXKx3scJRSKl9cHBXvuq3t372rteJ9EShdurTXNz/6KyEhoUg+wk7jCkxRjUv5p22DahgDa3YfpUvTmsEORyml8sXF0dXkkigIKaX9vJVSqpiIrV+FECEoz/NWSqmCcnFUvEuXg1qRWvFWSqliolLZUjS/tDKr9MkmSqkS5OKoeINzg+UavcFSKaWKibYRVVmz+yjpGedyHlkppYqBi6fiXbc1pB2FI9m/WlUppVTRcGVENU6dyWDNnqPBDkUppfLFxVPxruPcZKUv0lFKqWKha/NalCsdwleJe4MdilJK5YuLp+JdKxJCy2o/b6WUKiYqlS3FnyIv5b/r9nNWu5sopUqAi6fiHVoaLm2pFW+llCpG+sTW4cipsyzcmrvn8iulVFFy8VS8Aeq1tV1N/jgR7EiUUqpIEpHrRGSLiGwXkSd9jBMvIokislFEFhRkPJ2b1qRqhdLMTtxXkLNRSqlCcXFVvCN7Q/pp2PK/YEeilFJFjoiEAm8B1wORwEARifQYpwrwNtDLGNMCGFCQMZUODeHG6Nr8sOk3TvyRXpCzUkqpAndxVbwvaw+V68L6z4MdiVJKFUXtgO3GmJ3GmDPADKC3xziDgC+NMbsBjDG/F3RQfWLrknb2HHM2/lbQs1JKqQJ1cbwyPlNICET1g6Vvw6nDUKFasCNSSqmipC6wx+17MhDnMU5ToLSIJABhwBvGmA89ExKRe4B7AGrWrElCQkKugzLGUKO8MHneBqod257rdDydOHEiT3EVFI0rMBpXYIpqXFC0Y8svF1fFG6DlAFg8HjbNhrbDgx2NUkoVJeLlN8+3jpUC2gDdgfLAEhFZaozZmmUiY94F3gVo1qyZiY+Pz1Ngt57ZzDsJO2jRpgM1w8rmKa1MCQkJ5DWugqBxBUbjCkxRjQuKdmz55eLqagL2ySY1msL6L4IdiVJKFTXJwGVu3+sBnnc1JgPfGWNOGmNSgIVATEEH1ie2LucMfLNOb7JUShVfF1/FW8S2ev+6GFKTgx2NUkoVJSuAy0WkoYiUAW4DvvYY5yugk4iUEpEK2K4ovxR0YJdfEkZk7cr6dBOlVLF28VW8wfbzxsCGL4MdiVJKFRnGmHRgJPA9tjL9mTFmo4iMEJERzji/AN8B64DlwCRjzIbCiK9Pqzqs3XOUXSknC2N2SimV7y7Oinf1xlCntT7dRCmlPBhjvjXGNDXGNDbGvOD8NtEYM9FtnFeMMZHGmChjzOuFFVvPmDqIoK+QV0oVWxdnxRtsd5Pf1sHBrTmPq5RSKuhqh5cnrmE1vkrchzGe93wqpVTRd1FUvCcu2MHiHSlZfltRKR6DwAa9yVIppYqLPrF12ZVykvV7U4MdilJKBeyiqHhH1wtn5PQ1rsr34h0p3Dt7L6mXtrdPN9GWE6WUKhaub1mbMqEhzF6jN1kqpYqfi6Li3bFxDSYMasXI6WsYN2cLI6evYcKgVlRpNwgO74B9a4IdolJKKT+Ely9N1+Y1+c+6fWSc00YTpVTxclFUvMFWvu+Iq8/4edu5I64+HRvXgCt6Qkhpfaa3UkoVI31i63Lw+B8XdCFUSqmirtAq3iIyWUR+F5ENbr+9IiKbRWSdiMwSkSoFNf/FO1L4eNluHuzWhI+X7bYFdvmqcHkP2PglnMsoqFkrpZTKR12b1yKsXCntbqKUKnYKs8V7KnCdx28/AFHGmGhgK/BUQcx48Y4UV/eSR3o0c3U7WbwjBVr2h+P74defC2LWSiml8lm50qFcH3Up32/8jbSz2miilCo+Cq3ibYxZCBz2+G2O88IGgKXY1xPnu3XJqUwY1Mp2L+F8n+91yanQ9DooU0m7myilVDHSJ7YuJ/5IZ+4vB4IdilJK+a1UsANwMxz41NdAEbkHuAegZs2aJCQk+J1wc+DMnj0k7Lnw94TFe2hetS3V181kcaWemJDSgUfuOHHiREBxFRaNKzAaV2A0LhUMcY2qc0nlssxclcxN0XWCHY5SSvmlSFS8ReQZIB2Y5mscY8y7wLsAzZo1M/Hx8fkXQN2zMK0/XeqcheZ/ynUyCQkJ5Gtc+UTjCozGFRiNSwVDaIgwsF19Xp+7jV/2H+OK2pWDHZJSSuUo6E81EZEhwE3A7SZYryJrFA/lq+nLdJRSqhgZ1rEhlcqWYsK87cEORSml/OJ3xVtE2jpPHlntPIVkvYisy8vMReQ64AmglzHmVF7SypPQ0tDiZtj8LfxxImhhKKWU8l94hdIM7tCAbzfsZ/vvx4MdjlJK5SiQFu9pwBSgH9AT20rd09+JReQTYAnQTESSReTPwAQgDPhBRBJFZGIA8eSvlgMg/TRs+TZoISillArMn69uSLlSodrqrZQqFgLp433QGPN1bmdkjBno5ef3c5tevrssDqo1giUTbCVcJNgRKaWUykH1SmW5o3193l+0i4euaUrDGhWDHZJSSvkUSIv3aBGZJCIDRaRv5qfAIitsISHQ6W+wfy1smxPsaJRSSvnp7s6NKB0awtvztdVbKVW0BVLxHgbEYl+C05Pz3U1KjuhboUoDWPASBOk+T6WUUoGpFVaOge3qM2vNXvYcDt7tQkoplZNAKt4xxpi2xpghxphhzmd4gUUWDKGlbav33lWw/cdgR6OUUspPI7o0JkSEdxbsCHYoSinlUyAV76UiEllgkRQVMQMh/DJY8KK2eiulVDFxaXg5BrStxxcrk9mfejrY4SillFeBVLyvBhJFZEt+PU6wSCpVBq7+KySvgJ0JwY5GKaWUn/4S35hzxvDvBTuDHYpSSnkVSMX7OuByoAe5eJxgsdLqDqhcV/t6K6VUMVKvagX6tq7LJ8t38/vxtGCHo5RSF/C74m2M+dXbpyCDKywTF+xg8Y6U8z+UKsvO5nfD7iWQ9FPwAlNKKRWQ++KbcDbjHO8t1FZvpVTRE/RXxhcF0fXCGTl9javyvXhHCoNWNuWP8pfAgpeDHJ1SSil/RdSoSO/Yuny8dDeHTvwR7HCUUiqLHCveItJBpGS/TaZj4xpMGNSKkdPXMG7OFvv39jjKdnnEtngn/RzsEJVSSvnp/q5NSEvPYNKiXcEORSmlsvCnxXsIsEpEZojIUBG5tKCDCoaOjWtwR1x9xs/bzh1x9enYuAa0GQKVLrF9vZVSShULTWpV4oaWtflwcRJHT50JdjhKKeWSY8XbGDPCGNMaGANUBaaKyBIR+ZeIdBaR0IIOsjAs3pHCx8t282C3Jny8bLftdlK6PFz1EOxaALuXBjtEpZRSfnqgWxNOnc3g9bnbgh2KUkq5BHJz5WZjzGvGmOuAbsAiYACwrKCCKyyLd6QwcvoaJgxqxSM9mrm6nSzekQJthkHFmtrqrZRSxUjzSytze1x9PlySxPrk1GCHo5RSQC5vrjTGnDbGfGuMecAY0za/gyps65JTmTCole1ewvk+3+uSU6FMBej4AOyYB3tWBDlSpZRS/nrs2uZUr1SWp2atIz3jXLDDUUopfaoJ2FcNZ1a6M3VsXIMRXRrbL23/DBWqw0J9wolSqmQTkeucF6VtF5EnsxnvShHJEJH+hRlfIMLLl+bvN0WyYe8xPlxSIp5+q5Qq5vx5qsn1IlKnMIIpsspWgg4jYdsc2LUw2NEopVSBcO7ZeQu4HogEBopIpI/xXgK+L9wIA3dTdG26NK3Jq3O26KvklVJB50+Ldz/gaxHZIyI/iMgrInKHiESVlBsr/dL+L1CtEfznITirhbdSqkRqB2w3xuw0xpwBZgC9vYz3ADAT+L0wg8sNEeH53lGknzOM+XpjsMNRSl3kSuU0gjHmLgAReRj7yvhdQFfgXeAwUK8gAywySpeHm16HD3vZl+pcMzrYESmlVH6rC+xx+54MxLmPICJ1gZuxN9lf6SshEbkHuAegZs2aJCQk5HesAenZKJQvNh7gtc/m0qqWPfSdOHEi6HF5o3EFRuMKTFGNC4p2bPklx4q3m2HGmJjMLyLyNvBY/odUhDXqArF3wOLx9AWC0QAAIABJREFUENUPLo0KdkRKKZWfvL0szXh8fx14whiTkd271Ywx72IbaGjWrJmJj4/Prxhz5apO51g/fhGf7zjLPb2vpmLZUiQkJBDsuLzRuAKjcQWmqMYFRTu2/BLIzZXHRKRN5hdjzCqgaf6HVMT1eB7KVYGvH4BzGcGORiml8lMycJnb93rAPo9x2gIzRCQJ6A+8LSJ9Cie83CsdGsK/+kaxLzWN137YGuxwlFIXqUAq3sOxBewUERkpIv8GzhZQXEVXhWpw/UuwbzUsfzfY0SilVH5aAVwuIg1FpAxwG/C1+wjGmIbGmAhjTATwBXCfMWZ24YcauDYNqjGwXX0m/7yLDXv12d5KqcIXyAt0tgEdgW+BS4BfgBsKKK4iY+KCHfZFOm4Wl+/C7mpXwY/Pw9HdQYpMKaXylzEmHRiJfVrJL8BnxpiNIjJCREYEN7r88eR1zalWsQzPzFrPOePZi0YppQqW3xVvEamOvVGmEvAf4N/GmEMFFVhREV0v/PxbLHHecvlJIge7/J8d4b9/Ay28lVIlhPNytKbGmMbGmBec3yYaYyZ6GXeoMeaLwo8y98IrlGbUTZGsTU5l3u70YIejlLrIBNLVZBZQE/gX8AqQKiKbCySqIiTzLZYjp69h3JwtrlfLt4mJgW7P2md7b5gZ7DCVUkr5qVdMHTpdXoMvtp5hV8rJYIejlLqIBFLxDjPGPAccMMZ0AQYCUwomrKKlY+Ma3BFXn/HztnNHXP3zb7mMuxfqtIbvnoRTh4MbpFJKKb+ICC/2iyY0BP7y8SrSzuqN8kqpwhFIxTvN+fuHiJQ3xszkIujjDbZ7ycfLdvNgtyZ8vGz3+T7fIaHQa7ytdM8ZFdwglVJK+a1ulfLcG12Wzb8d1xfrKKUKTSAV77EiUg34DJgsIg9gX7ZQoi3ekeLqXvJIj2aubieuyvelLeGqByHxY6ocWRfcYJVSJZ6ItBWRWSKyWkTWich6EdHCJxeia5bi/q6NmbFiDzNXJQc7HKXURSCQp5rMNMYcNsa8in2yyWV4f5VwibIuOZUJg1q5updk9vlel+z2KKouT0C1RjTfPB5Olvj7TZVSwTUN282vH9ATuMn5q3Lhr9c0Ja5hNZ6ZvZ4tvx0PdjhKqRIukKeaXC4ik0VkgjHmI2PM48aYEn99bkSXxuf7dDs6Nq7BiC6Nz/9Qujz0m0SZM0fgy7v0xTpKqYJ00BjztTFmlzHm18xPsIMqrkqFhvDmwFZUKlua+6at4uQf+qQTpVTBCaSryUfA50BnABGJEpEPCySq4qhuG7Zdfi/smAcJLwY7GqVUyTVaRCaJyEAR6Zv5CXZQxVmtyuUYPzCWXSkneXrWeow+IlYpVUACqXiHGGP+B2QAGGM2AFEFElUxtb/2nyD2Dlj4Mmz5LtjhKKVKpmFALHAdtotJZncTlQcdG9fgr9c05avEfUxfri9GU0oVjFIBjLtPRBoCBkBEBCjv78QiMhl7cPjdGBPl/FYN+BSIAJKAW4wxRwKIqWgRgRvHwm/rYNY9cM8CqNYw2FEppUqWGGNMy2AHURLd37UJK349wj++3kRMvSpE1Q0PdkhKqRImkBbvh4H3gEtFZBgwA9gQwPRTsS007p4EfjTGXA786HwvVi54pXzp8qxq/wZp6QY+vRPOnApecEqpkmipiEQGO4iSKCREeP3WWKpXKsN901aTevpssENSSpUwgTzVJAlbcX4QaAQsAO4MYPqFgOdbZnoDHzj/fwD08Te9osLbK+Xv/s8hdnYeBwc26CvllVL57WogUUS2/H979x0eZZm+ffx7pRI6IQmEDkkIJfQeFENRAQuuBUVsay9Y1nVt+9Nd1323q6trxYoiYsMuoihBuhhKQgsEkN6REqQm9/vHDCFgIBlI8kzI+TmOOTLlmZkzT5Kbi3vuouUES190tQievbIT63fs5a535nIwL9/rSCJyGinxUBMz6wcMB3bg6+nOxD/s5BTUc85tAHDObTCzuBO8/83AzQCxsbGkp6ef4luXnpvahHDLG7PoXd8x7dtZ3N6xCpvzY6nadCjN5o8he28tNjQ4trO//OTm5gbV+TpMuQKjXIEJ1lylwLvGpJLo0jSav16UwoPjsnjwwyz+c1l7fKMrRUROTSBjvEcDd/if0x5f73RbILEMcv2Kc24kMBIgOTnZpaWllcfblkgasLdGNs98l8Nd/RK57Zxk3wN9zoQx20he/irJfS6DRl08yZeenk4wna/DlCswyhWYYM11qrR0YPm4onsTNu7ax38nLqN+rUj+cG4rryOJyGkgkDHeOc65j5xz7zvnHnHODXHOnWrRvcnM4gH8Xzef4ut54vCW8hcmhP96S/mLX4bq9eG9a2DP1hO/kIiIBI27+ycxrHtjnpu0nDdn/OR1HBE5DRRbeJvZm2Z2DzDDzH5fyu//KXCt//q1wCel/PplrvCW8hcnRfx6S/mq0XD5m/DLVnj7UtivndFEJHBm1ss03qFcmRmPD0lhQOt6/OnThYzP2uB1JBGp4ErS4z3Kf1x94GozW2Vmn5rZ42Z2WUnfyMzeAWYAyWa21sxuAP4BnG1my4Cz/bcrlBJtKd+gE1z2BmzIhLFXwqH93oQVkYrsWiDDzMaa2XVmVt/rQJXB4Z0tOzWuzd3vzuOHlceuESAiUnLFjvF2zn2Lb6k/AMwsDGgDdAB64NvNsljOuWHHeah/SZ4frI7aOt4vNSHmV9vMkzwIhjwHH98KH94Al43yDUURESkB59ytAGbWChgEvGFmtYBJwFfANOdcnocRT1tREaG8em03Ln1xOjeOms37t6aSXL+G17FEpAIq8RhvM+tqZtWcc4ecc5nOubecc/eVZbjTwVHrfHccBuf+HRZ/xqKXb9AygyISMOfcEufcU865gUA/YCpwGTDL22SntzrVIhh1fXeqhIdy7Ws/sH7HXq8jiUgFFMjkyjfxbxcPYGYxZqZtiovxq3W+44byil1Cmw0fwbd/8TidiFRkzrm9zrkvnXN3Oue6ep3ndNeoTlVGXd+dPfsPce1rP7B9zwGvI4lIBRNI4b3PObfv8A3n3FZAlWMxDo/5HjFmLk9+nc2IMXNpM/yf0OW3MPVJmP4/ryOKSAVgZk/7v0Z5naUyax1fk5eu6cLq7b8wbORMtuzWnB0RKblACu8VZjbomPsiSjPM6So1IYarejThme9yuKpHE1ITY+G8J6DNRfD1/8Hct72OKCLB7/B8mKmephBSE2J4/bpurN7+C5ePnMHGnfuKf5KICIEV3ncCfzezMWZ2l5m9BCwvo1ynlcPrfN/VL/HIOt8hoXDxSGjRFz69E5Z84XVMEQluX5nZDKC+mV1vZl3MrIrXoSqr1MQY3ryhO5t37efykTNYpzHfIlICJS68/Vu7dwE+BGLxbRl/ZRnlOm0UXuf73nOSj17nOywSLh8NDTrC+9fB4s+9jisiwSscX5sbDjQHHgGyzGyhmb3rabJKqluzaN66oTvb9xxg6IszWL3tF68jiUiQK8kGOn/yf00FqjrnPvTvXPmcc25PmSes4Ipd5zuyOlz1IcR38O1uOX+sh2lFJIj1d86tBML8bfBFzrkkfMu6PuVxtkqrU5M6vHNTT/YcOMTQl2awfEuu15FEJIiVpMd7gv/rPcAsM1tqZh+b2V/M7NIyzHZauPWshF+t6Z2aEHP0+t9RdeDqj6FZb/joFvjh5XJOKSIVwAT/UJO9hYeaOOdynXMzvQ5XmaU0rMXYm3tyKD+fy1+aydJN2qFYRIpWksL7djO7F3gROBNoh281k+X4elrkJB21xndkdbjyfbY3GgBf3gdTntA63yJSwDn3e2A4vmVdNdQkyLSqX5OxN/cixOCKkTNZuH5n8U8SkUqnpFvGg2+74m+BRfgK7yTghzLKVSn8ao3v1bkMXH8jW5oP8a3xPfFPKr5FpIBzbgUwoCyHmpjZQDPLNrMcM3uwiMeHm1mm/zLdzDqU1ntXdIlx1Xnvll5UCQvhipdmMmXZFq8jiUiQKbbwds5965x70jl3rXOuI5AMPAxkA93LOuDprKg1vv87vBuxV78BXa+HaU/D57+DfO0CLVLZHZ5vA8SYWcF+5aU51MTMQoHn8G1J3wYYZmZtjjlsJXCWc6498DgwsjTe+3TRLKYaH9yWSsM6UVz3+mzGzFrtdSQRCSJhgT7BOXcI34ommaUfp/IpvMb3Xf0Sj4wHP+9JiKwJ0/4LB3LhohcgNNzbsCLipa/9X+8BUswsDN8nkJlApnPug1J4j+5Ajr9nHTMbCwzxvw8AzrnphY6fCTQqhfc9rTSoHcUHt6UyYswcHv4oi5+27eHBga0ICTGvo4mIx0pceJvZbHwNfNbhr845fY52io5d47tnQl1f8W0GZz8GVWrBt4/BL9vg0tchqrbXkUXEG7XNrIFzbiiAmUUCbfHNu+kJlEbh3RBYU+j2Wk48l+cGYHxRD5jZzcDNALGxsaSnp5dCvNKVm5tbprmubuoI3RvGyO9XkJG9ipvbRxIZWnzxXda5TpZyBUa5AhfM2UpLID3eQ4D2/sutwHlmttU517RMklUChdf4Tk2IoWdC3aNuA3DmvVAtxjfk5JUBcOW7UDfhxC8sIqejS4DHzawesASYB8wHMoDRpfQeRVWFRU40MbO++ArvM4p63Dk3Ev8wlOTkZJeWllZKEUtPeno6ZZ2rX1/H69N+4vEvFvHc4nBeuaYrcTVPvO9ReeQ6GcoVGOUKXDBnKy2BbKCz3jn3lXPuX/4el67AK2UX7fRX3BrfBauedL4GrvkEftnGwZf68tlHY7yMLSIecM7d6JzrCjwBLMU31rovvknuq0rpbdYCjQvdbgSsP/YgM2uPr/0f4pzbVkrvfVoyM64/ozkjr+7Ksk25XPTcNJZs3OV1LBHxSIkLbzNrUvi2c24xvo855SQVt8b3UaueNDuDjHPHsepATc7PHKG1vkUqr9865+5wzj3vnLsB3zKvU0vptWcDSWbW3MwigCuATwsf4P+3YBxwtXNuaSm972nv7Db1eP/WXuQ5x6UvzGDSks1eRxIRD5S48AbeNbO1ZjbFzJ43syeBVmUVTH696slNn21l2+WfYUln+9b6/vxeyDvodUwRKV+7zKzL4RvOuQygZWm8sH/y/Ah8G6ctBt5zzi00s1vN7Fb/YY8CdYHnzWyemf1YGu9dGaQ0rMXHd/SmSXRVrh81mxfSl+O0ZKxIpVLiMd7OuV4AZpaIbzJPNPBkGeUSv2NXPenRujkkj/FNuJz2NGxbBpeNgqrRXkcVkfJxPTDazBbhG9/dDii1/4E7574EvjzmvhcLXb8RuLG03q+yia8VxYe3pfKHD+bzz6+WsGjDLv51SXuiIkK9jiYi5SCQoSZ1zew2fB9rrgPGOOfWllkyAX696sn05VshJBTO/gtc9CKsngmv9IeNWV5HFZFy4JxbBqTiK47r4euZHuxpKAlIVEQo/xvWifsHJvN55noufXE663bs9TqWiJSDQIaafATEAn8D/g3sNLMlZZJKgKNXPbn3nOSCYSfTl2/1TbyscTZc+zkc3Asv92f5+Gd4MT3H69giUsacc3nOuff9O1j+VxMcKx4z4/a0RF69tiurt/3CkGenMvun7V7HEpEyFkjhXcM59xdgk3PuLGAY8HrZxBI48aonBRMvDybArVP5uV4PEmY9wqUrH4F9Oz1OLiIiJdGvVT0+uiOVGlXCufLlmdrpUuQ0F0jhvc//db+ZRTnnPkQfb5apE616ctTEy2nbGLBxBD91vp+Y1RPgxTNhXYZHqUVEJBCJcTX4+I7epCbE8PBHWbyxcD/7DuZ5HUtEykAghfd/zCwaeBd4zczuxLfLmXik8MTL4T2b0ezCP8L1X4HLh1fPhRnPgWbMi4gEvVpR4bx2XTduOasF6WsOcf7/prJgnT69FDndlKjwNrMQINk5t9059yS+ST2N8e1mKR4pcuJl4+5wy/fQ8lyY8DC8M4ywg9qsQUQk2IWGGA8Nas19XSPZve8gFz03jWe/W8ahvHyvo4lIKSlR4e2cywf6F7r9lnPufufcwjJLJid0oomXVI3mxfqPsaLbo7D8W7rNvhuWTiiYlCkiIsErJSaMCff0YWBKff7z9VKGvjSDn7bu8TqWiJSCQIaazDOzP/l7v8VjxW03375xbS6d0575Az/gYHgNGDOULaNvpFOcfnwiIsGudtUInr2yM09f0ZGczbkMfmYKY2at1oY7IhVciTfQwTe0pB1wm5nNAjKBTOfc+2WSTE7o8LbyhaUmxPyqEP/tmLmk1fs7bX/5gOv5GBt/HoQ/A4kDyjuyiIgEaEjHhnRvHs0f3s/k4Y+ymLh4E/+4uB1xNat4HU1ETkKx3Z9mNsjMGjjnhjrnWgNNgceAHKBHWQeUk3d48uW4FbCz14PYjRMhsgaMvgQ+vQv2aey3iEiwi68VxZvXd+fPF7RhWs5WBjw5mbE/rCY/X73fIhVNScYdXAJ8amZrzOwb4K9AG3xbFT9QluHk1ByefHlhQrhv8uW+pnDzZOh9D8x9C15IheWTvI4pIiLFCAkxruvdnC/vPpPW8TV5cFwWV4ycSc7mXK+jiUgAii28nXM3Oue6Ak8AS4GVQF/gB2BV2caTk1V48uXFSRFHJl+uzoWzH2Ncp9f4xYXDWxfBx3fAnm2afCkiEuQSYqsz9uae/OuS9mRv2s3gp6fw34lL2X9I636LVASBzLT7rXPuDufc8865G4AzgamlEcLMfmdmC81sgZm9Y2YavHaKipt8Wb/tmfTPfZy1bW+BzLEcfLozE0f/m/YNa3gZW0REimFmDO3WmIn3nsXAlPr8d+IyBj89hR9Wast5kWAXSOG9y8y6HL7hnMsAWp5qADNrCNwFdHXOpQChwBWn+rqV3Yl2vTx8/YnhPblwydmMav8WmQca8Kh7kdT04bBxgReRRUQkALE1InlmWCfe+G039h/KZ+hLM3hoXCY/7zngdTQROY5ACu8bgOfN7HUzG2FmLwEHSylHGBBlZmFAVWB9Kb2unMDhyZd/mumY3Ot1uOgF2L4cXuoDE/4I+3d7HVFERIqRlhzH17/rw819WvDej2vp+0Q6b874SRvviAShEi8n6JxbamapwMVAe2Ax8PCpBnDOrTOz/wCrgb3A1865r489zsxuBm4GiI2NJT09/VTfutTl5uZWqFyLt+Xx+rx9XJgQzutTlxPVsR7tOj1N2Pw36DnjWfZnvENO4g1siU1l8fZ8Vu7MY3CLiDLP5TXlCoxyiXivakQYDw9uzSWdG/HYZwt59JOFvD1zNX+6oA2piTHFv4CIlIsSF95mNhH4vX/d7lJbu9vM6uDber45sAN438yucs6NLnycc24kMBIgOTnZpaWllVaEUpOenk5FyTV9+VZenjKXl67rQWpCTKHJmL3Ib9GLa99+l+ervUXbRf9iZ1x3Xt56CXcMv/RXw1dKO1cwUK7AKJdI8EiuX4O3b+zBhIWb+OsXi7jylVkMbFufP57XmsbRVb2OJ1LpBTLU5H7gKf9Qk/qlmGEAsNI5t8U5dxAYB6SW4utLEU40+TI1IYZbhl9O2s4/802LB8nbvIS38x8gNfP/YJdGAYmIBDMzY2BKfSbeexb3ndOSyUu30P/JyTzxdTa/HDjkdTyRSq3Ehbdzbo5zrh/wOTDBv318VClkWA30NLOqZmZAf3zDWKQMlWTy5bCezblpUXvGdP/Yt/b3gg/hmc4w6e9wYI8XsUVEpISqhIcyol8S3913FoNS6vO/73Lo+5903vlhtcZ/i3gkkB5v/IVxNvACcCewzMyuPpUAzrlZwAfAHCDLn2nkqbymnLrDm+/c1S+R1zK2M73FnTBiNiQPgsn/YP9TnWDeGMjPLzhea4CLiASf+FpRPH1FJz64tRcNa0fx0Lgszvnv93y1YCPOafdLkfJU4sLbzKYC64CngIbAdUAa0N3MTqlQds79yTnXyjmX4py72jm3/1ReT05N4c137j0n+cjmO9urw2Wvk3XueyzdWwM+vg1eOpPFk99jxNtzaN+oltfRRUTkOLo2i+bD21J56eouGHDr6AwufmE6s1Zs8zqaSKURSI/3rUBD59zZzrlHnHOfO+dynHN34ttMR04TxW2+067Xuey+ajwP2j38vHMnrSfdxOTov5EassjL2CIiUgwz49y29ZlwTx/+eUk7NuzYx+UjZ3L9G7NZsnGX1/FETnuBFN5xwCtm9oSZ/dbMuphZpP+x88ogm3ikuPHfAKmJccT1upJuO/4f3yQ8TI0Dm2HUBax9+hwyZ3171HM1DEVEJLiEhYZwebcmTLovjQcGtuLHn7Yz6Okp3D12Ljmbc72OJ3LaCqTwHo1vYuVMoAXwKLAQwDm3ovSjSTA7PAb89n6teOCnzsw4/xs49+/U+2UZ7cdfzLZXLoFNCwuGrWgYiohI8ImKCOW2tAS+v78vN/dpwdcLN3HOU5O5Z+xclm9RAS5S2kq8jjeQ45z7yH+91Nbxloqn8Bjw1IQYeibU5Y4xc3n2yqGk3nsNq8Y/QfS8F3Ev9OYXevDaeX+kYymu/y0iIqWrdtUIHhrUmpvPbMHIKSt4c/oqPp2/ngs7NODO/kkkxFb3OqLIaaHYHm8ze9PM7gFmmNnvyyGTBLkTjgGPrE7Ti/7EW90+4dlDQzgzNIuOX1wAY66AtRkeJxcRkROpWz2Shwa1ZuoDfbmpTwsmLNzE2U9O5nfvzmNDrpYgFDlVJRlqMsp/XH3gajNbZWafmtnjZnZZ2caTYFTcGPDpy7fyypydHOzzMGe751nd4XewZia80o81T59L1vTxRz1XY8BFgoeZDTSzbDPLMbMHi3jczOwZ/+OZZtbZi5xSto4twL9asJGHp+7l9rczyFy7w+t4IhVWsUNNnHPfAgWz5cwsDGgDdAC6o2EnUkhRw1AuGlON5y/7LT23fUy9KU/T+Osr2DmvO3XqD2Z6TltGvDOPZ6/s5HV0kUrPzEKB54CzgbXAbDP71DlXeMmiQUCS/9ID374OPco7q5SPwwX4TWe24M9jJjN52Va+zNpI78S63HZWIr0T6+Lb4kNESiKgDXQAnHOHnHOZzrm3nHN/KItQUnEdbxjKvE2HoPfdRPx+ISu6Pcq+zTl0yPwzMaP7827Pn0htWtPj5CKCrzMlxzm3wjl3ABgLDDnmmCHAm85nJlDbzOLLO6iUr5jqkVzaMoLpD/bj4cGtWLYpl6tencWFz07ji8wN5OVrIx6RkghkcqVIsQovOXhYakLMkaEp4VG0OO/3PB16DmumvMWDNb8hZtp9kPkk9LyN1/b1oVWzRkcNZZm+fCuZa3cW+doiUqoaAmsK3V7Lr3uzizqmIbCh8EFmdjNwM0BsbCzp6emlnfWU5ebmKlcAcnNzyZg5jZbA/+sVyvR1EYxfuYs7xsyhXlXj3Gbh9G4YRmRo+faAB/P5Uq7ABHO20qLCW8rd9OVbGTV7I2c0G8A5GwYwut8u2qx4A755hGvCqzNmaj8ifvMHurZvf9TQFREpc0VVTMd2ZZbkGJxzI4GRAMnJyS4tLe2Uw5W29PR0lKvkjs11NvB/+Y6vF27kxcnLeXPRTj5Z6biyRxOu6dWU+FpRnuQKFsoVuGDOVlpUeEu5KlxIH1izgCv6pXDVmLk8e+UbpJ6zhrDp/+PqhR9zaNwXLPm+PyO3n8WzV17+q8mcIlIm1gKNC91uBKw/iWOkkggNMQa1i2dgSn0yVv3Ma9NW8tLk5Yz8fgWD28Xz297N6NykjtcxRYJGwGO8RU7FCZcibNAJLn0Nu2sumfFDabBlCm/k/5HUby+FeWN4+btFTF++9ajX04ooIqVqNpBkZs3NLAK4Avj0mGM+Ba7xr27SE9jpnNtw7AtJ5WJmdG0WzfPDu/D9/X254YzmpGdv5uLnp3PRc9P4dP56DhzScoQiKrylXJVkO/rp26tx0+ZLGNVzPH+zm/jll1z4+Daum3Uei0bfz4+ZWb7jtCumSKlyzh0CRgATgMXAe865hWZ2q5nd6j/sS2AFkAO8DNzuSVgJWo3qVOXhwa2Z+VB//jKkLTv3HuSud+bS+5/f8cTX2azfsdfriCKe0VATCSrHLkc4vWVjznj7HN4asJe2a8ZyQ/Y48sZ9RPbkvoz6+QyevfLqgkL+xcnLad+oliZmipwC59yX+Irrwve9WOi6A+4o71xS8VSLDOOaXs24qkdTJi/bwtszV/HcpByem5RDv1b1uKpnE/okxRISouUIpfJQj7cElSKHogzvzJS8FBj2DnbXXOY1GEa9rTN5Kf8xUr88F6Y9A3u20b5RLUaMmVswHEU94iIi3gsJMfomx/HKtd34/v6+3JaWwLw1P3Pd67NJ+086L05ezrbc/V7HFCkX6vGWoFLccoTTf67BiE2/4bqet7Dlh/f5Q+h0an7zCHz3OKmtL+TN/hdzzdtzuKpnU0bPWn1UES8iIt5qVKcqfzi3FXf3b8mEhRsZPXMV/xi/hCe+zubsNvUY2rUxZybFEqpecDlNqfCWCuPXw1AakjbmLF47vyodN38C88eSsuADvolqxvOTe3NTr6uPKro1FEVEJDhEhIVwQYcGXNChAcs27Wbs7DV8NHcdX2ZtJL5WFS7t0ojLujSmSd2qXkcVKVUaaiIVxvFWRJm5pz4M/hf8fgnLUv/Jur0RPBL+Njf+eB7bXr0UlnwJeQc1FEVEJAgl1avBI+e3YeZD/Xl+eGda1qvBs5Ny6PPvSVz58kw+nruOfQfzvI4pUirU4y0VRrHDUNb8wohZCTx79XiosZXN6a8Queh9GPsNVIsjtcPlvDr4PG4YM5erejQ5aiiKesNFRLwVERbC4HbxDG4Xz/ode/kwYy3vZazhnnfnUeOTMC7o0IChXRvToVEtzDQURSom9XjLaeOoHvG4VjQc+h+WDZ/J+HZPQePuMPMFOn02kC+i/sTPk5/nxs41Cwpt9YaLiAT5VgAvAAAcSUlEQVSPBrWjuLN/EpPv68uYG3swoHU9xs1Zy0XPTeOcp75n5PfL2bJbEzKl4lGPt5w2iuqZ7pUUD0nXA9dD7hZWTnqNQxmjeTz8DQ7OfovtG/oS3esqUlsO4tkrOzFizFzOqO+YOmWuJmaKiHgsJMRITYwhNTGGx4a05YvMDbz34xr+9uUS/vlVNn2TY2ld5RCph/KJCFNfogQ/Fd5SaUzfZIyY15lnr76BpGob2fz964QvGgfvT4TImqS2GcKDrXrzQEZ17uzXUhMzRUSCSM0q4Qzr3oRh3ZuQs3k372esZdycdUzcvZ/R2RM5v30DftO5IZ0a19ZQFAla+u+hVBpHDUWpn0LDoU+QM3wmn3V4AVqdT17WOIYuvJWMancTM+OvzP9hEjgHaCiKiEgwSYyrwUODWjPjwX78rkskZyTF8t6Pa7j4+en0e2Iyz3y7jDXbf/E6psivqMdbKo0iJ2cm1YOkK5m+/BzuyxrMG2dsIXrxGK76eTwhX37K3ilNieo0lNSUSwqGomhipohIcAgLDaFDbBh3p3Vi176DfJW1kXFz1/LkN0t58puldGtWh4s6NWRQSjzR1SK8jiuiHm8R8PWG/2d4L1oOuJ4F7f6PkPuWktPz72wLqw9TnoDne5L61fn8r8E3fDZpClf1aKKJmSIiQaRmlXCGdmvM2Jt7MfWBvvzh3GS27znAHz9aQPf/N5HrXv+BDzPWsmvfQa+jSiWmHm8RiugNrxpN4sDbYeDtkLsZFn3Czh/fpfeal5gUCcumN2H1notp0nsYqQmtjtsbDhofLiJS3hrVqcodfRO5PS2BRRt28dn8DXw2fz2/f38+ER+F0Dc5lgs6NKB/q3pERYR6HVcqERXeIsWpHsf0ur9hxLZmjLy4Pl1/mUbcnA+oMf9pmP9fiEkmtc2F3JPSgUe/W8Zd/ZKOKrIP94gX7LhZaAdOEREpO2ZG2wa1aNugFg8MTGbumh18Nn89X2RuYMLCTVSNCKVvchwDU+rTr1Uc1SJVFknZ0m+YSAkcnpjZNSEGaEetnrcyO2sR+7I+4cwD03BTnuAal88FtRvz2YxOZNUYTrseZ0NIaMEOm+oRFxHxjpnRuUkdOjepw/+d14YfVm7ns8z1fL1wI19kbSAiLIQ+SbEMblef/q3rUSsq3OvIchpS4S1SAkUVwN3atYF2bZi+fCuPrE7npR4bSdzyLVetHE/IhE85MDmGiDbnQavzSW3eh6t6NOGZ73K4q1+iesRFRDwUGmL0SqhLr4S6PD4khR9/2s74BRuZsHAjExdvIjzUSE2IYWBKffq3jiOuRhWvI8tpQoW3yCnKXLuTx4enkZgQA4wgZN9Olk79kJClX5K44EOYM4q8sGqk5LXn+XaD+NfM/fRMqFtQfJ+oR1y94SIiZSs0xOjRoi49WtTl0fPbMH/tDr5asJHxCzby0LgsADo2rs3Zbepxdpt6JMVV1zrhctKCovA2s9rAK0AK4IDrnXMzvE0lUjK/KoCr1KLlgOthwPVwaD+Lpn/G4kljuSByLhHLZjDIQpj7VjI/db6QZr0uhRjfmPCiesQL94YD6g0XESlDISFGpyZ16NSkDg8OakX2pt18s3ATExdv4t8Tsvn3hGyaRFdlQGtfEd61WR3CQ7VAnJRcUBTewNPAV865S80sAqjqdSCRUhEWyfeuE+2vSiOieTSsn4Nljyd5wedUm/NPmPNPiG7B+nppLMluwj1p5/DmrNUFPeKFe8OL2spePeIiImXDzGhVvyat6tfkzv5JbNq1j4mLNzFx0SZGz1rFa9NWUqNKGH2SYklLjuWs5FgNSZFieV54m1lNoA9wHYBz7gBwwMtMIqXpqAK4UVdo1JVq/R+BHWtg6Vf8PO9TYha/yUgOwZwnuLphKs+Nbk7ExVfTtV3KcXvDQePDRUTKS72aVRjeoynDezRlz/5DTFm2hUlLtjApezNfZG0AIKVhTfomx5GWHEe+f+djkcI8L7yBFsAW4HUz6wBkAHc75/YUPsjMbgZuBoiNjSU9Pb28cxYrNzdXuQKgXABJfBl2J0ltbqGXLSB6+xyiN/3Io24CfPgiuV81Z2nVTszfmMLgRom8PiWHqN1raV33yLqzN7UJ4ZY3ZtG3STiTVh/k9o5VOLBmAfdPPkDzWqFHHbt4Wx4rd+YxuEXp7eCmn6OIVDbVIsMYmBLPwJR4nHMs3rCbSdmbSc/ezHOTcvjfdzlUC4cBm+bSNzmOPi1jtXOmAMFReIcBnYE7nXOzzOxp4EHgkcIHOedGAiMBkpOTXVpaWnnnLFZ6ejrKVXLK5XPkrc73fXEONi+GZV+Tl/Ul7TZ9wqjQcRz6uSo7m53BiwuaUeOi4XTp0NH3fGBvjeyCHvHbzkkGIKLx4d7vDgW94S9PmcuzV3Yu1Ymb+jmKSGVmZrRpUJM2DWpyR99Edv5ykO+XbWHs5Cym5Wzlk3nrMYNOjWvTNzmOvq3iaBNfk5AQTdCsjIKh8F4LrHXOzfLf/gBf4S1SOZlBvTZQrw3v5F1Ap7QQerhMNk95iwY7F/FH9zV8NBImJ0BifxZX68aHM6twV79kRh9nfHhR64drmIqISOmrVTWcCzo0oMbPS+nT5yyy1u1kUvZmJmVv4cmJS3nim6XE1ogkraVvXPiZibHUqqo1wysLzwtv59xGM1tjZsnOuWygP7DI61wiweBIz3Nzlm6uRYOzzoKty2D5t5DzLXkZb9I6byRTQsIJWdeDS1O68cjbS2HYJaQm1T/h+HBt7CMiUrZCQowOjWvToXFt7hnQkq25+5mcvYXvsjczYeFG3s9YS4hBpyZ1OKtlLGe1jKVdw1rqDT+NeV54+90JvO1f0WQF8FuP84gEJzOIbem79LyNVyctpnf4Utr+8iOsSKfJ/KcYBewf+zdIPIsVNbsyJSOau/r2PKo3/DBN3BQRKT8x1SO5pEsjLunSiEN5+cxfu4PJ2VuYvHQLT01cypPfLCW6WgR9kmI4IymW3ol1ia8V5XVsKUVBUXg75+YBXb3OIVLR3Ny3NdAaGOK7Y882WDmZyBXp7Fv6HS2yv+AjgIUNuappN54bPYnIiy6nS4cOgK8He/Ss1dzVL/FXhbk29hERKTthoSF0aRpNl6bR3HtOMtty9zNl2VYmL93C90u38PG89QAkxFbjjMQYeifG0DOhLjWraFhKRRYUhbeIlJJqdSHlYki5mDcmL6dbrZ10ycuEFenErZzCY24rfPQcpDdjU93ufL48npcuvoJu7ZLpmVD3qB5uOH6PeHEb+6gwFxEJTN3qkVzUqSEXdWpIfr5jycbdTMvZytScrbz341pGzVhFiEH7RrXpnViXXi1i6Ny0NlUjVMpVJPppiZymjhS4naHLdUdWS1n5Pfw0hdo54/mb2w0fPg3pSaQ2683YXh2YubxGQcF8vB7x4jb20TCVisfMooF3gWbAT8BQ59zPxxzTGHgTqA/kAyOdc0+Xb1KR019IyJGVUm7q04IDh/KZu/rngkL8xckreG7ScsJDjfaNatOzRTQ9W9SlS9M6KsSDnH46IpVFodVS6Hkrkfl5sDHLX4hPhQXjaLn/DVoCLGnBpuiufLm8PiN/cxld2/+6R/xkJ26qNzxoPQh865z7h5k96L/9wDHHHAJ+75ybY2Y1gAwz+8Y5pwnxImUoIiyEHi3q0qNFXe49J5nc/Yf48aftzFyxnZkrthUU4mH+yZw9mkfTvXk0XZtFUz1SpV4w0U9DpLIKCYUGHX2X3ndBfh5szISfpsGqadRePp6/ut0w7hn4rgmpTVJ5r1s7fsyG1BYDmL5iG6NnrebChPCAJm4W1xuuwtwzQ/AtCw8wCkjnmMLbObcB2OC/vtvMFgMN0UpUIuWqemQYaf4dMgFy9x8iY9XPzFyxjZkrtjHy+xU8n76c0BCjbYOa9GgeTY/mdenWLNrj5KLCW0R8QkKhQSffJXWEr0d800JYNQ1WTYfl35K4ZyyJwMH50ezbn8iHXQaw3UUzLO187jhmfHhJhqmczPriKszLTD1/YY1zboOZxZ3oYDNrBnQCZh3nce02fJKUKzDKdUSPKtCjDexvGUXOjnyW/JzH0u27eX3qTl6eshIDGlRztFk8geQ6oSRHh1IjIniWLgzWn2VpUuEtIkULCYX49r5Lz9t8Y8S3LYfV01nxw9ek5s6nSsbfaA6Q9SiTYtqT830K5A9i1qEERnyQU1A8l9YwFdD48VNhZhPxjc8+1h8DfJ3qwIfAPc65XUUdo92GT55yBUa5inZuoev7DuYxf80OZq3czldzcpiyPp9vVh0CILleDXq08PWI92gRTUz1SG8C4/05Kw8qvEWkZMwgJhFiEknufI3vvl3rWfjVq7Stvptaa2bSZfVr8PYrdMeYUieZaot7Q24PUht349lhHclcu7OgWD7eMoZw4vXFNX785DnnBhzvMTPbZGbx/t7ueGDzcY4Lx1d0v+2cG1dGUUWkFFUJDy0YI94+dB2pZ/Qha92OgjHiH2Ss5c0ZqwBoEVuNrk3r0LVZNF2b1qF5TDXMgqdXvKJT4S0iJ69mA7bEnQmHeyj258K6H7HVs6i2ZiZkvgc/vgpAarVYUht1Z9UnbXltfnWev/xieiY3LnIZw5MtzLXM4Sn5FLgW+If/6yfHHmC+f31fBRY7554s33giUloiwo6sIX5H30QO5uWzYN1OZq3czuyV2/l60Sbe+3EtAHWrRdC5aR1/MV6Htg1qUSU81OPvoOJS4S0ipSeyOrRI813AN2Fz82JY+wOsmQ1rZtF0+xe8AvDuX6BeCqmNujG2ZysyloaR2iKN6Su2HVWIB1KYn8oyhyrK+QfwnpndAKwGLgMwswbAK865wUBv4Gogy8zm+Z/3sHPuSy8Ci0jpCA8NoVOTOnRqUodbz0ogP9+xYmsuP/70M7N/+pmMVdv5ZtEm/7FGm/iadGxcm45NatOpcR2a1q2qXvESUuEtImUnJBTqp/guXa/33bdnG6yd7S/Gf4D579DyQK5vGcPMaBpFtebjlG40cQZ7uxQU04WHqZyoMD+V8eOVeey4c24b0L+I+9cDg/3XpwL611XkNBcSYiTG1SAxrgZXdG8CwJbd+8lY9TPz1uxg3pqfeT/Dt6kPQJ2q4XRo7CvCOzXxFeTaYbNoKrxFpHxVqwvJA30X8PWKb1kCa3+EtbNpsi4D5j8N8//rezw6gdSGXUht2AXWbGPhqmq/2l3z2ML8ZJY5LK4oV4+4iFRmsTUiGZhSn4EpvvnZefmOpZt2+wrx1TuYt2YHk5cuxTnflKCkuOp0blLHd2lamxYx1QkJ0f/bVXiLiLdCQqFeW9+ly7W++/btgvVzYV2G7/LTVMh6D4CbQsJgWVtY1BkadoYGnUlt1upXvdQH1izgin4pAY0fP1FvuZY5FBE5IjTEaB1fk9bxNRnm7xXfte8g89fsYM6qHcxZ/TNfZm1g7Ow1ANSK8vWKd2xcm06Na9OhcW2iq0V4+S14QoW3iASfKjWhxVm+y2G71sO6Ob5CfP0cWDAOMl73PRZWBeq3p4Zrwbs9upBUswnpLi/gYSrFFeUnu8xhUUW5iMjppmaVcM5MiuXMpFiAgrHihwvxeWt28Ox3y8h3vuOb1q3qGyvuvxzIcx6mLx8qvEWkYqjZwHdpfb7vdn4+bF/h6xn3X9pt+AzWjYXpcGZIFVjZidT4jqQ26AibD5C1JvS4w1SAYid1lsb4cRGRyqLwWPGh3RoDvl02s9buLBgrPnPFNj6Zt953vEHLrO9p17AW7RrVIqVhLdrE1zytVlFR4S0iFVNISMG64rS/zHdffh5sXQrr57Jh9uc0yt8CGW/ArL0A3BJeFeq3g+yOEN8B4tsXDFN5cfLyE44dh5Nf5rBwUR5aI6ZB+Z0kEZHgUj0yjF4JdemVULfgvg079zJv9Q6+mJHFztBIJi7exPsZvuUMQ0OMpLjqpDSsRfvToBhX4S0ip4+QUIhrDXGtydnRgEZpaZB3CLYtg/XzYMM82DAf5o6GH17yPSc0EuJac2t8B6jaHiI7QlwbiKhasEoKUOwwlcPHFDd+/KFqteO9ODUiIsEqvlYU8e2iiNqWTVpaD5xzrN+5j6y1O1mwbidZ63YyaclmPjimGK+IPeMqvEXk9BYaVlCM03GY7778PNi2HDZm+grxDfNh8acwZ5TvcQuBmJa+3nH/ZemKGsWuplKS8eN5e3Zs8OhMiIhUCGZGw9pRNKwdVbCKSlHF+LdLNhfZM96u4ZFiPCoiuIpxFd4iUvmEhEJsS9+l3aW++5yDnWtgQ6avIN+YBatnQtb7AFwHML9+oWI8hdR6KaSemQhA5tqdJRo/3vvRrevL+bsVEanwSlqMF+4ZDzFIiqtB24Y1aeNfgaV1fE1PV1NR4S0iAr6FZ2s38V0OT+AE+GU7bFrgK8Q3ZvkK8xWTIP+Q7/GwKr6hKvVSoEo7CPUvjRhVp2CoyrHjx0VE5NQdrxjfuOvoYnzKsq2Mm7Ou4Hn1akYWFOGt42vSJr4GzWOqE1oO64yr8BYROZGq0dC8j+9y2KH9sCXbX5Av8H3N/hLmvnXkmJoNC9YnvzWuLVRvC3m1yj+/iEglYma+MeO1ojinbf2C+7fm7mfxhl3+y24Wb9jF1GVbOeRf27BKeAjJ9X1F+OHe8VbxNakeWbqlsgpvEZFAhUVCfHvf5TDnYPdGXxG+aaHvsnkRLJ8E+Qd9x4RoC2URES/EVI88ao1xgP2H8sjZnFtQiC9av4vxCzbyzg9rCo5pVrdqqeZQ4S0iUhrMoGa875J09pH7Dx3wraqyaZGvKOcvnkUUEZEjIsNCadugFm0bHPk00jnHhp37CgrxxRt3MbkU31OFt4hIWQqLKBhyApehwltEJHiZGQ1qR9GgdhT9W9cD4IWrSu/1Q0rvpURERERE5HhUeIuIiIiIlAMV3iIiIiIi5UCFt4iIiIhIOVDhLSIiIiJSDlR4i4iIiIiUAxXeIiIiIiLlQIW3iIiIiEg5MOec1xkCZma7gWyvcxQhBtjqdYgiKFdglCswyhWYZOdcDa9DlCe12QFTrsAoV2CCNRcEb7ZSa7cr6s6V2c65rl6HOJaZ/ahcJadcgVGuwARzLq8zeEBtdgCUKzDKFZhgzQXBm600220NNRERERERKQcqvEVEREREykFFLbxHeh3gOJQrMMoVGOUKjHIFj2D9npUrMMoVGOUKXLBmK7VcFXJypYiIiIhIRVNRe7xFRERERCoUFd4iIiIiIuWgQhXeZjbQzLLNLMfMHvQ6T2Fm9pOZZZnZPC+XCzOz18xss5ktKHRftJl9Y2bL/F/rBEmuP5vZOv85m2dmgz3I1djMJpnZYjNbaGZ3++/39JydIJen58zMqpjZD2Y235/rMf/9Xp+v4+UKht+xUDOba2af+297/vdYnoK13VabfVK5guHvSW12YLnUZp9cvjJrtyvMGG8zCwWWAmcDa4HZwDDn3CJPg/mZ2U9AV+ecpwu/m1kfIBd40zmX4r/vX8B259w//P/w1XHOPRAEuf4M5Drn/lOeWY7JFQ/EO+fmmFkNIAO4CLgOD8/ZCXINxcNzZmYGVHPO5ZpZODAVuBu4GG/P1/FyDcT737F7ga5ATefc+cHw91hegrndVpt9Urn+jPd/T2qzA8ulNvvk8pVZu12Rery7AznOuRXOuQPAWGCIx5mCjnPue2D7MXcPAUb5r4/C1xiUq+Pk8pxzboNzbo7/+m5gMdAQj8/ZCXJ5yvnk+m+G+y8O78/X8XJ5yswaAecBrxS62/O/x3KkdrsYarMDozY7MGqzA1fW7XZFKrwbAmsK3V5LEPxSF+KAr80sw8xu9jrMMeo55zaAr3EA4jzOU9gIM8v0f6zp6UfuZtYM6ATMIojO2TG5wONz5v8Ibh6wGfjGORcU5+s4ucDb8/Vf4H4gv9B9np+rchTM7bba7JOjNjuwXKA2O5Bc4P3vWJm22xWp8LYi7guK/x359XbOdQYGAXf4P6aTE3sBSAA6AhuAJ7wKYmbVgQ+Be5xzu7zKcawicnl+zpxzec65jkAjoLuZpZR3hqIcJ5dn58vMzgc2O+cyyus9g1Awt9tqswPneftzmNrsklObXXLl0W5XpMJ7LdC40O1GwHqPsvyKc269/+tm4CN8H7EGi03+8WeHx6Ft9jgPAM65Tf4/vHzgZTw6Z/7xZR8Cbzvnxvnv9vycFZUrWM6ZP8sOIB3fmDzPz1dRuTw+X72BC/1jiccC/cxsNEF0rspB0LbbarMDFyztj9rsk6M2u0TKvN2uSIX3bCDJzJqbWQRwBfCpx5kAMLNq/skUmFk14BxgwYmfVa4+Ba71X78W+MTDLAUO/xL7/QYPzpl/gserwGLn3JOFHvL0nB0vl9fnzMxizay2/3oUMABYgvfnq8hcXp4v59xDzrlGzrlm+Nqr75xzVxGkf49lJCjbbbXZJ8fr9sefQW12YLnUZgegXNpt51yFuQCD8c2QXw780es8hXK1AOb7Lwu9zAa8g+/jmYP4eptuAOoC3wLL/F+jgyTXW0AWkOn/pY73INcZ+D76zgTm+S+DvT5nJ8jl6TkD2gNz/e+/AHjUf7/X5+t4uTz/HfPnSAM+D4Zz5cH3HnTtttrsk87l+d+T2uyAc6nNPvmMZdJuV5jlBEVEREREKrKKNNRERERERKTCUuEtIiIiIlIOVHiLiIiIiJQDFd4iIiIiIuVAhbeIiIiISDlQ4S0iIiIiUg5UeIuIiIiIlAMV3lKpmNmrZnaemaWa2WOl8HovmVnv0sgmIiJHU5stpxttoCMVnpmFOufySnhsBjDEObe2lN57HtClpO8vIlLZqc2Wykw93lIhmdn7ZvakmU0CHjKzS81sppnNN7OpZhbrP66l/3aWmf0OqO+cW+t//hn+Y2aaWTP/9YZm9qP/+rVmlmFmmWY2pYgMrYGlhRtwM2tmZkvM7BUzW2Bmb5vZADObZmbLzKx7mZ8cEZEgozZbxEeFt1RU7YBc51xf59xfgUnOuZ7OuQ7AN8BQMwsDRgP3OufaAUnAEv/zU4AsMzOgCbDKf397//01gAeAXs659sAFRWQYBHxVxP2JwNP+12oFXAmcAdwHPHyK37eISEWkNlsEFd5SAZlZFSAa+Euhu68zsx/MbD5wO7APuBhY7Jz7wX/MQmCe//nhzrmd+Brcle7ImKv2QBaQB0QBT5hZV+fcjiKinEvRjfhK51yWcy7f/57f+l8/C2h20t+4iEgFpDZb5AgV3lIRtQVmOecOAZjZNUB3oJ+/9yQbX+PZHsgo9LwuwHz/8xf572uHr3E9rCuQ6Zz7BV8PyzRgpJndXjiAmVUFajvn1heRb3+h6/mFbucDYYF9qyIiFZ7abBE/Fd5SEbUDMo+5Pd05l2tmlwCp+BrmbfgaYsysCzAMmHfM86OBvf5jWgPn4fvYMsk5t8c5Nxb4HKhyTIa+wKQy+N5ERE43arNF/FR4S0V0bCM+CrjLP5mmJbDCObcHeAvo6J/Ffj+wA1h8zPMnAP3N7D3gMmCbc24T8EczyzazOUBz4PljMhxvrKCIiBxNbbaIn5YTFDkJ/sa9h3PuoNdZRETkxNRmS7BQ4S0iIiIiUg401EREREREpByo8BYRERERKQcqvEVEREREyoEKbxERERGRcqDCW0RERESkHKjwFhEREREpByq8RURERETKwf8HkkD1m8SnmdcAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 864x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "time = [864000]\n", + "pressure_xaxis_t = pvdfile.read_set_data(t, 'pressure', data_type=\"point\", pointsetarray=xaxis)\n", + "#plot configuration\n", + "##plt.rcParams['figure.figsize'] = (16, 6)\n", + "##plt.rcParams['font.size'] = 12\n", + "##fig1, (ax1, ax2) = plt.subplots(1, 2)\n", + "\n", + "fig, ax=plt.subplots(ncols=2, figsize=(12,4))\n", + "titlestring = \"Theis: Comparison analytical and numerical solution\"\n", + "ax[0].set_title(titlestring)\n", + "ax[0].set_xlim(0,40)\n", + "ax[0].plot(r_x, pressure_xaxis_t, 'x', label='numerical solution (ogs6)')\n", + "ax[0].plot(r, s, label='analytical solution')\n", + "ax[0].set_xlabel(r'$radius\\;/\\;\\mathrm{m}$')\n", + "ax[0].set_ylabel(r'$hydraulic head\\;/\\;\\mathrm{m}$')\n", + "ax[0].grid()\n", + "ax[0].legend()\n", + "\n", + "##diff = np.setdiff1d(s,pressure_xaxis_t,assume_unique=False)\n", + "##print(diff)\n", + "titlestring = \"Difference between analytical and numerical solutions\"\n", + "caption = \"Differences are due to different boundary conditions\"\n", + "ax[1].set_title(titlestring)\n", + "ax[1].set_xlim(0,40)\n", + "ax[1].plot(r, s-pressure_xaxis_t, label='')\n", + "ax[1].set_xlabel(r'$radius\\;/\\;\\mathrm{m}$')\n", + "ax[1].set_ylabel(r'$diff\\;/\\;\\mathrm{m}$')\n", + "ax[1].grid()\n", + "ax[1].text(5,0.7,caption,ha='left')\n", + "\n", + "##plt.savefig(\"theis-ana+num.png\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "78afcf25", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wed Aug 24 23:22:23 2022\n" + ] + } + ], + "source": [ + "import time\n", + "print(time.ctime())" + ] + }, + { + "cell_type": "markdown", + "id": "6fc2b0c1", + "metadata": { + "tags": [] + }, + "source": [ + "**OGS links**\n", + "- description: https://www.opengeosys.org/docs/benchmarks/\n", + "- project file: https://gitlab.opengeosys.org/ogs/ogs/-/blob/master/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/axisym_theis.prj" + ] + }, + { + "cell_type": "markdown", + "id": "2ce44abc", + "metadata": {}, + "source": [ + "**References**\n", + "- Rajesh Srivastava and Amado Guzman-Guzman (1998): Practical Approximations of the Well Function. Groundwater, 36(5): 844-848, https://doi.org/10.1111/j.1745-6584.1998.tb02203.x" + ] + }, + { + "cell_type": "markdown", + "id": "5ac32c64", + "metadata": {}, + "source": [ + "**Credits**\n", + "- Christian for the analytical solution in Python, https://scipython.com/blog/linear-and-non-linear-fitting-of-the-theis-equation/\n", + "- Wenqing Wang for set-up the OGS benchmark, https://www.opengeosys.org/docs/benchmarks/liquid-flow/liquid-flow-theis-problem/\n", + "- Jörg Buchwald for ogs6py and VTUInterface, https://joss.theoj.org/papers/6ddcac13634c6373e6e808952fdf4abc" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/figures/h-tet-1.png b/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/figures/h-tet-1.png new file mode 100644 index 0000000000000000000000000000000000000000..31086d630ab6e104b37ffa7efd310a37bf4d989e Binary files /dev/null and b/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/figures/h-tet-1.png differ diff --git a/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/figures/ogs-jupyter-lab.png b/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/figures/ogs-jupyter-lab.png new file mode 100644 index 0000000000000000000000000000000000000000..b6a2d546b6af297f4bfe1ed9779fe5728eaa9002 Binary files /dev/null and b/Tests/Data/Parabolic/LiquidFlow/AxiSymTheis/figures/ogs-jupyter-lab.png differ