diff --git a/Tests/Data/ThermoRichardsMechanics/CTF1/CTF1.prj b/Tests/Data/ThermoRichardsMechanics/CTF1/CTF1.prj new file mode 100644 index 0000000000000000000000000000000000000000..eb12a092527542ea3a28afea82ef8a031a00963e --- /dev/null +++ b/Tests/Data/ThermoRichardsMechanics/CTF1/CTF1.prj @@ -0,0 +1,871 @@ +<?xml version="1.0" encoding="ISO-8859-1"?> +<OpenGeoSysProject> + <meshes> + <mesh>domain.vtu</mesh> + <mesh>boundary_left.vtu</mesh> + <mesh>boundary_right.vtu</mesh> + </meshes> + <processes> + <process> + <name>TRM</name> + <type>THERMO_RICHARDS_MECHANICS</type> + <mass_lumping>true</mass_lumping> + <integration_order>2</integration_order> + <constitutive_relation> + <type>LinearElasticIsotropic</type> + <youngs_modulus>E</youngs_modulus> + <poissons_ratio>nu</poissons_ratio> + </constitutive_relation> + <process_variables> + <temperature>temperature</temperature> + <pressure>pressure</pressure> + <displacement>displacement</displacement> + </process_variables> + <secondary_variables> + <secondary_variable internal_name="sigma" output_name="sigma"/> + <secondary_variable internal_name="epsilon" output_name="epsilon"/> + <secondary_variable internal_name="velocity" output_name="velocity"/> + <secondary_variable internal_name="saturation" output_name="saturation"/> + </secondary_variables> + <specific_body_force>0 0</specific_body_force> + </process> + </processes> + <media> + <!-- Some parameters are mutiplied with a time factor of 86400 + in order to set the time unit as day. --> + <medium id="0"> + <phases> + <phase> + <type>AqueousLiquid</type> + <properties> + <property> + <name>vapour_density</name> + <type>WaterVapourDensity</type> + </property> + <property> + <name>vapour_diffusion</name> + <type>VapourDiffusionFEBEX</type> + <!-- 1.0 * 86400 --> + <tortuosity>86400.0</tortuosity> + </property> + <property> + <name>specific_heat_capacity</name> + <type>Constant</type> + <value>4280</value> + </property> + <property> + <name>density</name> + <type>Constant</type> + <value>1000</value> + </property> + <property> + <name>thermal_expansivity</name> + <type>Constant</type> + <value>0.</value> + </property> + <property> + <name>viscosity</name> + <type>Constant</type> + <value>1e-3</value> + </property> + <property> + <name>thermal_diffusion_enhancement_factor</name> + <type>Constant</type> + <value>1.0</value> + </property> + </properties> + </phase> + <phase> + <type>Solid</type> + <properties> + <property> + <name>density</name> + <type>Constant</type> + <value>1650.0</value> + </property> + <property> + <name>specific_heat_capacity</name> + <type>Linear</type> + <!-- 732.5/0.44 --> + <reference_value>1308.0357142857142</reference_value> + <independent_variable> + <variable_name>temperature</variable_name> + <reference_condition>273.15</reference_condition> + <!-- 1.38 / 732.5 --> + <slope>0.0018839590443686005</slope> + </independent_variable> + </property> + <property> + <name>thermal_expansivity</name> + <type>Constant</type> + <value>0.</value> + </property> + </properties> + </phase> + </phases> + <properties> + <property> + <name>permeability</name> + <type>Function</type> + <value> + <!-- mutiplied with a time factor of 86400--> + <expression>86400.e-11 * pow((1-0.44) /( 1- 0.44 * exp(-7.0*liquid_saturation)), 2.0) * + pow(0.44 * exp(-7.0*liquid_saturation) /0.44, 3.0) + </expression> + </value> + <dvalue> + <variable_name>liquid_saturation</variable_name> + <expression>0.0</expression> + </dvalue> + </property> + <property> + <name>biot_coefficient</name> + <type>Constant</type> + <value>1.0</value> + </property> + <property> + <name>bishops_effective_stress</name> + <type>BishopsPowerLaw</type> + <exponent>1</exponent> + </property> + <property> + <name>saturation</name> + <type>Curve</type> + <curve>S_pc</curve> + <independent_variable>capillary_pressure</independent_variable> + </property> + <property> + <name>relative_permeability</name> + <type>Curve</type> + <curve>k_rel_L</curve> + <independent_variable>liquid_saturation</independent_variable> + </property> + <property> + <name>porosity</name> + <type>Constant</type> + <value>0.44</value> + </property> + <property> + <name>thermal_conductivity</name> + <type>Function</type> + <value> + <!-- mutiplied with a time factor of 86400--> + <expression>86400.0*(0.78 * liquid_saturation + 0.5)</expression> + </value> + <dvalue> + <variable_name>liquid_saturation</variable_name> + <expression>0.78</expression> + </dvalue> + </property> + </properties> + </medium> + </media> + <time_loop> + <processes> + <process ref="TRM"> + <nonlinear_solver>basic_newton</nonlinear_solver> + <convergence_criterion> + <type>PerComponentDeltaX</type> + <norm_type>NORM2</norm_type> + <abstols>1e-8 1e-4 1e-8 1e-8</abstols> + <reltols>1e-10 1e-10 1.e-8 1.e-8</reltols> + </convergence_criterion> + <time_discretization> + <type>BackwardEuler</type> + </time_discretization> + <time_stepping> + <type>FixedTimeStepping</type> + <!-- Time unit is day --> + <t_initial>0</t_initial> + <t_end>14.0</t_end> + <timesteps> + <pair> + <repeat> 1 </repeat> + <delta_t>0.0001</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.00018432</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.00071568</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.00429408</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.0147059</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.03</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.05</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.5</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>0.5</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + <pair> + <repeat> 1 </repeat> + <delta_t>1</delta_t> + </pair> + </timesteps> + </time_stepping> + </process> + </processes> + <output> + <type>VTK</type> + <prefix>CTF1_</prefix> + <timesteps> + <pair> + <repeat>1</repeat> + <each_steps>1</each_steps> + </pair> + </timesteps> + <output_iteration_results>false</output_iteration_results> + <variables> + <variable>pressure</variable> + <variable>temperature</variable> + <variable>displacement</variable> + <variable>sigma</variable> + <variable>epsilon</variable> + <variable>velocity</variable> + <variable>saturation</variable> + <variable>pressure_interpolated</variable> + <variable>temperature_interpolated</variable> + </variables> + <suffix>{:time}</suffix> + </output> + </time_loop> + <parameters> + <parameter> + <name>E</name> + <type>Constant</type> + <value>1.3e6</value> + </parameter> + <parameter> + <name>nu</name> + <type>Constant</type> + <value>0.4</value> + </parameter> + <parameter> + <name>T0</name> + <type>Constant</type> + <value>303</value> + </parameter> + <parameter> + <name>displacement0</name> + <type>Constant</type> + <values>0 0</values> + </parameter> + <parameter> + <name>p_ic</name> + <type>Constant</type> + <value>-75.e6</value> + </parameter> + <parameter> + <name>T_left</name> + <type>Constant</type> + <value>393</value> + </parameter> + <parameter> + <name>dirichlet0</name> + <type>Constant</type> + <value>0</value> + </parameter> + </parameters> + <curves> + <curve> + <name>k_rel_L</name> + <coords> + 0 + 0.01 + 0.02 + 0.03 + 0.04 + 0.05 + 0.06 + 0.07 + 0.08 + 0.09 + 0.1 + 0.11 + 0.12 + 0.13 + 0.14 + 0.15 + 0.16 + 0.17 + 0.18 + 0.19 + 0.2 + 0.21 + 0.22 + 0.23 + 0.24 + 0.25 + 0.26 + 0.27 + 0.28 + 0.29 + 0.3 + 0.31 + 0.32 + 0.33 + 0.34 + 0.35 + 0.36 + 0.37 + 0.38 + 0.39 + 0.4 + 0.41 + 0.42 + 0.43 + 0.44 + 0.45 + 0.46 + 0.47 + 0.48 + 0.49 + 0.5 + 0.51 + 0.52 + 0.53 + 0.54 + 0.55 + 0.56 + 0.57 + 0.58 + 0.59 + 0.6 + 0.61 + 0.62 + 0.63 + 0.64 + 0.65 + 0.66 + 0.67 + 0.68 + 0.69 + 0.7 + 0.71 + 0.72 + 0.73 + 0.74 + 0.75 + 0.76 + 0.77 + 0.78 + 0.79 + 0.8 + 0.81 + 0.82 + 0.83 + 0.84 + 0.85 + 0.86 + 0.87 + 0.88 + 0.89 + 0.9 + 0.91 + 0.92 + 0.93 + 0.94 + 0.95 + 0.96 + 0.97 + 0.98 + 0.99 + 0.999 + 0.9999 + 0.99999 + 0.999999 + 1 + </coords> + <values> + 0 + 1E-24 + 4.096E-21 + 5.31441E-19 + 1.67772E-17 + 2.44141E-16 + 2.17678E-15 + 1.38413E-14 + 6.87195E-14 + 2.8243E-13 + 1E-12 + 3.13843E-12 + 8.9161E-12 + 2.32981E-11 + 5.66939E-11 + 1.29746E-10 + 2.81475E-10 + 5.82622E-10 + 1.15683E-09 + 2.21331E-09 + 4.096E-09 + 7.35583E-09 + 1.2855E-08 + 2.19146E-08 + 3.65203E-08 + 5.96046E-08 + 9.5429E-08 + 1.50095E-07 + 2.32218E-07 + 3.53815E-07 + 5.31441E-07 + 7.87663E-07 + 1.15292E-06 + 1.66789E-06 + 2.38642E-06 + 3.37922E-06 + 4.73838E-06 + 6.58295E-06 + 9.06574E-06 + 1.23816E-05 + 1.67772E-05 + 2.25635E-05 + 3.01295E-05 + 3.99596E-05 + 5.26541E-05 + 6.89525E-05 + 8.97623E-05 + 0.000116191 + 0.000149587 + 0.000191581 + 0.000244141 + 0.000309629 + 0.000390877 + 0.000491259 + 0.000614788 + 0.000766218 + 0.000951166 + 0.001176246 + 0.001449225 + 0.001779197 + 0.002176782 + 0.002654349 + 0.003226267 + 0.003909188 + 0.004722366 + 0.005688009 + 0.006831675 + 0.008182719 + 0.009774779 + 0.01164633 + 0.013841287 + 0.016409683 + 0.01940841 + 0.022902048 + 0.026963771 + 0.031676352 + 0.037133262 + 0.043439889 + 0.05071486 + 0.059091511 + 0.068719477 + 0.079766443 + 0.092420056 + 0.106890008 + 0.123410307 + 0.142241757 + 0.163674648 + 0.188031682 + 0.215671156 + 0.246990404 + 0.282429536 + 0.322475487 + 0.367666388 + 0.418596297 + 0.475920315 + 0.540360088 + 0.612709757 + 0.693842361 + 0.784716724 + 0.886384872 + 0.98806578 + 0.99880066 + 0.999880007 + 0.999988 + 1 + </values> + </curve> + <curve> + <name>S_pc</name> + <coords> + 32993541195 + 10647976718 + 5494686811 + 3436098248 + 2387284340 + 1772765022 + 1378288405 + 1108199533 + 914179244.9 + 769523336 + 658425423.3 + 571008930.4 + 500825590.8 + 443509711 + 396013825.3 + 356154423 + 322331359.8 + 293348711.2 + 268297051.1 + 246474112 + 227330102.6 + 210429260.3 + 195422329.1 + 182026538.1 + 170010820.2 + 159184754 + 149390188.4 + 140494827.1 + 132387264.1 + 124973104.9 + 118171907.8 + 111914753.8 + 106142298.5 + 100803202 + 95852852.4 + 91252322.38 + 86967511.75 + 82968437.78 + 79228645.43 + 75724714.54 + 72435846.03 + 69343512.94 + 66431164.94 + 63683976.9 + 61088634.37 + 58633149.63 + 56306703.59 + 54099509.33 + 52002693.95 + 50008195.97 + 48108676.02 + 46297438.7 + 44568364.26 + 42915848.51 + 41334749.89 + 39820342.79 + 38368276.16 + 36974536.81 + 35635416.77 + 34347484.15 + 33107557.1 + 31912680.45 + 30760104.73 + 29647267.23 + 28571774.92 + 27531388.9 + 26524010.26 + 25547667.19 + 24600503.05 + 23680765.45 + 22786795.99 + 21917020.75 + 21069941.22 + 20244125.65 + 19438200.71 + 18650843.2 + 17880771.87 + 17126739.01 + 16387521.68 + 15661912.34 + 14948708.65 + 14246701.89 + 13554663.68 + 12871330.17 + 12195382.81 + 11525424.32 + 10859947.74 + 10197295.82 + 9535605.804 + 8872732.355 + 8206136.359 + 7532718.109 + 6848555.855 + 6148473.073 + 5425271.517 + 4668243.441 + 3859897.447 + 2967221.695 + 1908654.154 + 453206.271 + 108606.4381 + 26050.23014 + 6248.951646 + 0 + </coords> + <values> + 0.01 + 0.02 + 0.03 + 0.04 + 0.05 + 0.06 + 0.07 + 0.08 + 0.09 + 0.1 + 0.11 + 0.12 + 0.13 + 0.14 + 0.15 + 0.16 + 0.17 + 0.18 + 0.19 + 0.2 + 0.21 + 0.22 + 0.23 + 0.24 + 0.25 + 0.26 + 0.27 + 0.28 + 0.29 + 0.3 + 0.31 + 0.32 + 0.33 + 0.34 + 0.35 + 0.36 + 0.37 + 0.38 + 0.39 + 0.4 + 0.41 + 0.42 + 0.43 + 0.44 + 0.45 + 0.46 + 0.47 + 0.48 + 0.49 + 0.5 + 0.51 + 0.52 + 0.53 + 0.54 + 0.55 + 0.56 + 0.57 + 0.58 + 0.59 + 0.6 + 0.61 + 0.62 + 0.63 + 0.64 + 0.65 + 0.66 + 0.67 + 0.68 + 0.69 + 0.7 + 0.71 + 0.72 + 0.73 + 0.74 + 0.75 + 0.76 + 0.77 + 0.78 + 0.79 + 0.8 + 0.81 + 0.82 + 0.83 + 0.84 + 0.85 + 0.86 + 0.87 + 0.88 + 0.89 + 0.9 + 0.91 + 0.92 + 0.93 + 0.94 + 0.95 + 0.96 + 0.97 + 0.98 + 0.99 + 0.999 + 0.9999 + 0.99999 + 0.999999 + 1 + </values> + </curve> + </curves> + <process_variables> + <!-- ## Displacement equation ##############################################--> + <process_variable> + <name>displacement</name> + <components>2</components> + <order>1</order> + <initial_condition>displacement0</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>domain</mesh> + <type>Dirichlet</type> + <component>0</component> + <parameter>dirichlet0</parameter> + </boundary_condition> + <boundary_condition> + <mesh>domain</mesh> + <type>Dirichlet</type> + <component>1</component> + <parameter>dirichlet0</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + <!--- ## pressure equation #######################################--> + <process_variable> + <name>pressure</name> + <components>1</components> + <order>1</order> + <initial_condition>p_ic</initial_condition> + <boundary_conditions> + </boundary_conditions> + </process_variable> + <!--- ## Temperature equation ##############################################--> + <process_variable> + <name>temperature</name> + <components>1</components> + <order>1</order> + <initial_condition>T0</initial_condition> + <boundary_conditions> + <boundary_condition> + <mesh>boundary_right</mesh> + <type>Dirichlet</type> + <component>0</component> + <parameter>T0</parameter> + </boundary_condition> + <boundary_condition> + <mesh>boundary_left</mesh> + <type>Dirichlet</type> + <component>0</component> + <parameter>T_left</parameter> + </boundary_condition> + </boundary_conditions> + </process_variable> + </process_variables> + <nonlinear_solvers> + <nonlinear_solver> + <name>basic_newton</name> + <type>Newton</type> + <max_iter>50</max_iter> + <linear_solver>general_linear_solver</linear_solver> + </nonlinear_solver> + </nonlinear_solvers> + <linear_solvers> + <linear_solver> + <name>general_linear_solver</name> + <eigen> + <solver_type>SparseLU</solver_type> + <scaling>true</scaling> + </eigen> + </linear_solver> + </linear_solvers> +</OpenGeoSysProject> diff --git a/Tests/Data/ThermoRichardsMechanics/CTF1/CTF1_14.000000.vtu b/Tests/Data/ThermoRichardsMechanics/CTF1/CTF1_14.000000.vtu new file mode 100644 index 0000000000000000000000000000000000000000..c05154e4137771321bbb5f9c0c035d4b181d38db --- /dev/null +++ b/Tests/Data/ThermoRichardsMechanics/CTF1/CTF1_14.000000.vtu @@ -0,0 +1,49 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor"> + <UnstructuredGrid> + <FieldData> + <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34" RangeMax="125" offset="0" /> + <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45" RangeMax="103" offset="232" /> + <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="800" format="appended" RangeMin="0" RangeMax="0" offset="316" /> + <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="800" format="appended" RangeMin="0.44" RangeMax="0.44" offset="424" /> + <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="800" format="appended" RangeMin="0.16362331728" RangeMax="0.59707482996" offset="532" /> + <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="800" format="appended" RangeMin="0" RangeMax="0" offset="5388" /> + <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="800" format="appended" RangeMin="0" RangeMax="0" offset="5496" /> + <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="800" format="appended" RangeMin="0.44" RangeMax="0.44" offset="5604" /> + </FieldData> + <Piece NumberOfPoints="402" NumberOfCells="200" > + <PointData> + <DataArray type="Float64" Name="HeatFlux" format="appended" RangeMin="-30862.721222" RangeMax="31070.436497" offset="5712" /> + <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-4.6488765664e-11" RangeMax="2.4129846558e-11" offset="7052" /> + <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="10378.284757" RangeMax="31421.572806" offset="9412" /> + <DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="0" RangeMax="401" offset="15096" /> + <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0" RangeMax="0" offset="16036" /> + <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0" RangeMax="0" offset="16120" /> + <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-344709930.11" RangeMax="-34704966.778" offset="16212" /> + <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-344709930.11" RangeMax="-34704966.778" offset="19104" /> + <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.16338363584" RangeMax="0.59722436856" offset="21996" /> + <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="0" RangeMax="0" offset="24868" /> + <DataArray type="Float64" Name="temperature" format="appended" RangeMin="303" RangeMax="393" offset="24960" /> + <DataArray type="Float64" Name="temperature_interpolated" format="appended" RangeMin="303" RangeMax="393" offset="27540" /> + <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="3.4889780193e-05" RangeMax="0.0025407372815" offset="30120" /> + </PointData> + <CellData> + <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="36040" /> + <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.44" RangeMax="0.44" offset="36108" /> + <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.1639507282" RangeMax="0.59687055643" offset="36192" /> + <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="0" RangeMax="0" offset="38316" /> + </CellData> + <Points> + <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="0.10000499988" offset="38400" /> + </Points> + <Cells> + <DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="41216" /> + <DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="42836" /> + <DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="43320" /> + </Cells> + </Piece> + </UnstructuredGrid> + <AppendedData encoding="base64"> + _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF6dRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A9dSrDw==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPRM9Q1srTUTU9MNU20MLewTAUAMB4E/g==AQAAAAAAAAAAgAAAAAAAAABkAAAAAAAAMAAAAAAAAAA=eF7twTEBAAAAwqD1T20Hb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1wBkAAABAQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAALgAAAAAAAAA=eF7txUERACAIALA6kIIidLKTOazB3x7c9ln2uROv0rZt27Zt27Zte8kfUeGsdQ==AQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAAGQ4AAAAAAAA=eF5F13k01N0fB/CksrWQUGTp8ZRERUkL+bQIUZJKIdGiFFKRtEjSXhRKyciWdfqlHi0oSZYxGIxlxqxmvkqRR+rJVpafc57Pee5fr/O+n3Pvuedz77nn3L5VduKE72XQjzKcIzqU5cqBiXpsV5R+UC8HT1Q+4ZfuYuNymIxusjN6xrcoB0f09qt0S6ut5RCNsq5qhLR5ESeum+5rFVwO49HPM4v2iy6XQxsqUHdtXpxQDkJUQ59Gq8wph5moj8eix9Pfl8NBVLe3bFwTuxxmo+taDY4ndxJ3XF9qUDpEDCwz51xUq4AT6NtHGxxoBhXwBq2pDA7csqYCqtG680FsT+cKqEVvH2flTPKtgGiUe6Nu1tTQCuCjScd5vKx7FZCKCpatuJCZWQEi9FWIsZv5e+K5TQ93GzcQeSHh4bmdFdCCjii3smhDxFVqrmYMdQZYoi4JRkanjRjgiioWF2e+tGWAAvpPRFm1224G/EBZ7VPuXQ5hQANaGyLfrR3JgCb0javCqeXZDHiHuke3u5QWEatiAibX8BjAQJtt8t87dI+th5bW1ShYK1ZCCeoQ0yV4rUP8mqurmbyqErrQydaCDLktlTAVvSZ84H77KHG9up3Z18uVsA4Vh663ZaRXghA9PawzqlxE/PHn87QmYSX0o3Je/6uc/LMSpqH5MyJa8lWZUIIeiuBNkCxgQgBq7prkcNKeCStQEy592q29TFiMHr+ouUkpnAl+qLtCtobKAybsRD94rhmf8YYJZWivecp5VjMT+tHSEfdpwYNMKEd93lM2l1Sr4BC6JGKNmtLyKliARi7qnC+ztQoi0NhD38sPBVXBLfTIUvN6m6gq8Eb/Vop/GvW8CjrQqk3+8jurq4CBxlOaNWt6qiAOPRYYM2XnlGrwR2NLZfb8NquGO2hq8HOdb1urIQUtNDXVOHC6Gt6gvN4YC/O4ahCiQf+j5Z8vqobT6Gy3VWtN+dWgh0qO0cRbZGqgDTU4qZ9PadfAfDRU0KrmalcDZ1Ff4ZxNu31qwAcNYj6R9MbWQAD6oKbAl5lXAzGo7ZucnfqtNWCN/jqzQr5qpAb60RL/UZUOQxaUou5F9ZT3RhbsRrfQVhm9C2KBPSrDUzetvc+CXy3/urPnHO0agwXb0QVffxXs6iTSNsZmFc6qhWTUolEysMmyFgC16/19c49vLdij3ddlDfMja+E7KuWUjQy+rYUOtMb8J2+IqoVGVL7XOClXvQ4U0cGuEBMPyzr4hVY+D4t/GFAHVWjtpY2dfXfroB7NvB2cV82ogyz0ovWlUn5XHYSj607n73dTqQcr1Hr7yM38ufWwFuVH1MTtX1sPArTvqFrf9R31MIA22STzvx4jfnXaISO5VA8d6I98J65Mcj10oVPlasz8XtaDPMpjceyVGolcwQWnuC9jGf165Nathols6EYtb6q6aWqxAdDa64lVMivYUI9aG+w9G72ZDTboAva4lb/82GCMDqVeTWVGsGEEjfJTOvVXKlGs6pRrVEDMDLv6PYtL7AXZQwrdbPgHLRpo4A1PbYDXqJZqgtbHeQ2git4x3DXZwrYBLqPpTyMV8/c0AA2VWb7q863zDTBi/q+yU3fVW8QRL2x5HemXT1xyaHeqCZt41++Prdk/iFf2+K/7R7ERrqLfhllbOEaN8BP1ddDrmbOhEQJQhu/M/qU+jVCBFl+Mjb4X3ghv0bBlQ86CtEYIRXlFJ4zz3jYCF5V9dSmwW9wIMujzRNNq58FGeIrWlhp8+jy7CZhodtxjtXTzJshAZ1cV/d7r2gS6qM2aJq0rJ5rAAfUa3LcgKa4JDqDhc+gi4+dNEIEOW7B4X5uaYADNfavhV9HdBJnoYF//y2yVZuhBX6TdD+UYNQMd9X8g9bri1Aw+qK1Z2LqhI81gg/LsX/XGRTUDH7093UBue1YzxKIP9tGuvaxuhmT0utyXZ0/bmyEGvWGbovpNkQO30StyVZ4aczlwA/XOn5a42Y4Dh9Btex0aCvZyYAf6u/bkj+VXODCMKto+/+dtMgeUUEF7x7udZRzgoyWjV50mi4lZDPUB+jguPEGzt/drF2uOZdT387DDWysuHEb7yj/IZ+ziwg/Uakbr7aCzXFiFFhWs1bp3lwv56JQDfKuJr7kgi/pBKF2TzYV9aIUzLNP6yYVidF5f07ztU1pAD/1xhb3FcnELdKNnp+0u+Mu2BYLREc79D0uOtEAfOjmuZs6liBaYgJbylWafSW+B9+jHO4dM+4tagEKjZ4bRv4hbIAbtKvTTLexrgW/olNG0bdyZPJiGqjqXXtxjyoMZ6MoV29ytnYl1dvNcxh0hbi2x9vpxnXiVKrsXmMKDy+ipdL0R/w88CETv01+EGPB5EIt2crnaI4M86EB7XlxzH1Dm/6fuLhOHL4v5oIfam/p9/GDDBwf049LIDekH+dCOzo3L07ofygcD1JWycj1A44MHGtqnzEz6iw/hqPn6Ts7tej6sQMUxbmeC2vkgQRd+OBG1eaIATNGEyETGBS0BpKCDNPcox5UCGEL7boyasB0F0I9+v3angeErgB70KN1N/fkFAfih3aa1Szc+EkAXqmG5x5eRJwB19D793bm0egE8QB8VKs0N/iSAJJQZZPgiVEYI1ai8jJFOsRqxJvFD6lXTsTqqnZMS4WYjBC30YzMj0GWfENrQ438KSy4FE7802fvTo4XQibKf3ZN1SBdCA2oUq6VYUkyctDY4fmmjECaiEvUkXe9uIYjQ44mV2cMyIvBH5TMf3t0xWwQKaEZEscnuxSLIRF96fJ40aieCPJT5sH30ursIGOhp2RMcRpAIzqGp8y2YjVdF8BgV71OkB6aIQIQ29Qsbe/JEwEYPi84sbKohOr6v/s4Wi2AL6nPnbqVa/1gdjc/JmJkmL4aHqPT5/cn9emJoQ6V0UfzgkrGMimNdtMwdxsbRoNXKZq92i+EUmuYbc2tjkBiyURpH75HLZTGkoF4ex4S7aGLYhwqeTTcdfSIGITpzu7qpchlxhZ3fF/1mol0hpfxHlxhs0IATwrKiITEcRSNKKs/oqrZCOKotv221k34rzEYP6VutXLCyFXxQ7aR52sN2raCDXgm76nl2TytcRbPi+UtfHyXKqrC17l8iWjKf6R24S/xe6OCbm008N7XZV72AON4lldbKGpuP6nC2dnQJW0EX5YZdmrP+eyvwUIPLq6/8Hm0FQzShI/+8v6LkPyUfw372qUhAil6vtDuvM5to0TLeMFhfApZo7kx6v8dC4pfXJlHXzYjpVj9zVlgRt0i7PlpukIAjOjzrm2GBI/GNYyy9dAcxcyc/6oynBDLQvQtpJWEHiZIJrM99AcQVMq//rguWwErULCJLb+oFCZijC079vFJ8RQLGqGKMtV/VbaLhpMcyu+KIVpsfuZklSQDQ6UOw/kW6BFTRWW8SVSqfSkAL3e9R1LbzpQS8UYNXJ46ZvpPAfNS54nDugzIJbENFrdfSVrOIqd6HdS80SiAFpT++ZdkrkEAO2ki7uVCdIk7VbA317JTANPTi5ZMqe3skEIFucmsenzJAvLvg/aeKEeLoPFNVVTnpf14qn1enOkUKEejIcyeVRWrEcLpDtZIW8VuiwfaBP6TQg05gqXx6OZ/ofHSGfYiJFLaiix219WeaS2EhalQnOJO3mlhekbxg+Xoinb4b6uyl8AT1DzB0CXSSwlG0vTr9p/IuKXxGt/bIcmI9pLANXarvWD/BWwpmqKetrIXPESl4odqjJW25x6Wgg04fXj+7L1gKqugzv2xnjfPEWVIvp3URxET36Ltwg8gQG03belsKleijPyxjjOOkkISeke0ULkuQjr3H/6rMThhYkSoFFXTHSPVvh0wpuKB+cZ3cuU+Jw+PKn2rlSWEIVeu8r15XQKy2V6Vnv5NCFXpwVveUleVSOIDK97pO/sWUwiTU5Ilq5KF6KSxCC6PWHFVulkIBesD83DcPAXHrWu64nlaiMUe6SLd97PxQnc9y4oedY31FM1/V17b1SCEDPUzTyz/VKwUfVONFwPGM30R3Duek3jjqPwP2//XKeBLx5vI9S6MUKbiB+tyc8+W0MlHHWNe0bAYxKjhkarQmBZFo4itd53IdCmhorpy3KOhP4rc6yvDufAq60WR9SbHBIgqS0PjAErmlS4jv5LZT9OXEFr01d9IsKOChRt4ilsFaCoxRz7g7bmYbiB0mywqe2FPQiWYc8WCnOlKQiW7M85YZ3kacP/f8ddFOYsCo0qimBzH7dOZguxcFOejPeHlZhYPEnvnfdpUcJna41+ozj1LwBQ3PCck8eoIoJ1y8weMU0cEl92XPGWJDVLsOI4yCRnTub5cFGyMomIcyb01fJ3+N2LtfPvD0TeJjjdcSwzsUpKHd4pOsJ7EU/I0q0zpe+j4gznkYcEOQQPwpT/O8kEwUxeReFKUR/bOnuB7OosAPfRc88dYLOrFzm7Pn/GfEXpObzvvyKOhDnS6L5YtfE3kstseXQqLNE4uqRcUU2KJhgRvU7D5QcAEttFX4FVJB1AvsKr3IHNs/+tTjSNMj1tj9Q2WUHyXE11MwHt0bNBCa0kSBF+r3mfE6kkuN/cv+1djeadJFAQUL0WaHN4peYgo46KbGbRMdKAo2o5qHQwbMPxHDM+NbDTuI1p62kyZ1UbAezZq70bvtG7EvL2Hqsx9Ec4XFj0P6iDmakS7mg8Q5700bO4eIN/aYKD0cpeAaenmwdLqFbBtEoI+0l1sLJ7ZBIrqm0DHgiALx/Mtlk0aUiPvn27ednkYsi060HjedeDxXxfWIGrEw5FRbm0YbvEE1RaFPLLWI/wdkbNNVAQAAAAAAAAAAgAAAAAAAAABkAAAAAAAAMAAAAAAAAAA=eF7twTEBAAAAwqD1T20Hb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1wBkAAABAQAAAAAAAAAAgAAAAAAAAABkAAAAAAAAMAAAAAAAAAA=eF7twTEBAAAAwqD1T20Hb6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA1wBkAAABAQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAALgAAAAAAAAA=eF7txUERACAIALA6kIIidLKTOazB3x7c9ln2uROv0rZt27Zt27Zte8kfUeGsdQ==AQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAzAMAAAAAAAA=eF5d1m9I3HUcB/BjD0bUEFkRI8Y6TGyZlIiFiMgReyARIWPUGCMMpETWuC0LHzi7loisZZdZs8zt5tx2mcltc8vcn6611jIrGTEkhhwhIT0oiT2QERH0ff0e7Hzy4nM/7ufv9/1+P5/3xcYG/hp+fjERq9q/efKhxXyskid9/v/fs43BncHUS+o97AjmU8HEPvUbrr+l7nW9z30OBDPvBlveu9P5gWBykB8Emw+578fB6uFgKfMjwbsywT4uHPX/RoMrXD2mHgtOn/B8J4NpLmeDm8fVn7nvhM8/9/3J4MZcMMfYKdcjTwd3ngmOcWgq2HnW+50LDvKZL9x3Opjl1JfBuvPBchaYu+j92XopWJP3vByM/Dq4m1WXPR8vc/ybYMmV4P1s+Ta4pF5Q110N1rLsu2AvW/nLteAm/sOt33teVswGX2A1sz8ET0efq3fPBUfVJeqnfgz2q39l7CfP5fo4a32+l81cYMnPwdvqMvUNpnmd98wHK/koq7mNL3MPk9zPIQ7zCI8yx4uc4XmOMstTnCq6zz4e4jtMsZ2P8zk28EGu5znr0MoDbCxaxzE+xj/sxwKT3MRr9nFb0b7nuIVLzkkrbzlf3bzp/NWzgn3O61p2ONcrznuS0/pgA+f0zToe1E9L+u1pjunHB1inb1cu+D6HZoJN5sCyOdFjbjSYJxlzZp3505ELps2tVfMtZ95tP+49zcvEkWDLUDD+vto8T3UFY3VsYavre9WvquVGPvrem/6P3EjIjbjciL2tTgcLTMuNZrmRkRt5uZGUG/MfeT95UWB85M73S8qNuPde5gZ5UScv4tYnKzc65UWBq9ax8GlwQW5My41OudFWlBt5lsuLIU7Yt+YoL9gmN9rsc4N9P8gm52FBXlzghPNSKyfiRblxRV70sM/5q3ce13OoKDc6WBPlBGd52Llfox/K2KZfflfn1RX6qpJx/dbPXZzTl3fzX7br46qi3EiyngPRfFDXqLvMj5mi3HjSnBlQ3+Aa82mH64NFudHLLfyN5ebdrWjOqW9ygld5r/lZwSo+wa18ka8U2cs0o7w4UZQHk8zzbDS3eYzHeYZRboyxgyMc5Gts48NsZpQbj3AtD1uHbqZYzz+tYyZa32i97ccltrOcs/Yx+r3Qb9+j/U/wunPSzdvOVy8Lzt8OxtntvJawy7n+23l/naP6YCOj31ul7NFPi/qtiR/qx6WvglFu3KePl/V3lBsN5kDOnPjE3Cg1T6bMmSrzJ5MLrppfBbmRNe+y5uJ2czNtribM34I5nTDPU52N/wG0gEzkAQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAyQYAAAAAAAA=eF4t1X1QFHUcx/HNBDFBabJicqqjVDQLDyu9SZAlM2GSOisEC20hKESHLnwI89JfhUqUepkGKuqqGAqpq4AuJLEpTyYRhSEyVhc5Qs9HTaSlY/4+n/vrPd/lt3vLPr0URRGHH90YoyhKW1VOTd319voroqdju1iXtltW25OEep0JqHo2BrVlRKHWwJ49aNyovWjOUFQpvFSK45zuRfW2TlTpaEStu7lOJL1dhuMVNaHKkIOchxah2uJVnCOzUJFWzsbMKMdxvatRtSQTFbmPo7acsZxLMjgPuvMAjvfLXFT9IRL1XhuMig1TUX1foCHrKwxHXf8MRrXVHYew/udrqOfCq4dljVlrUd/VdNS72IVaZt8RWefiAfbOZlRv+hwV26dX4Tz0mWx7MBoaEoB6nllRje03LkVtf0ei7Zt+QX25jUdxvJxFqHn55mOy++IvsGeXoUq1YsoGlZxCQ+vj0Ut/VaGO35bUyMZn/4jZ+fkkzGG7fkWDcmajrm/n1/L8g1B7iIbtfXNSMQdVBKLOzk5sN/5cizlr6WbMBWYy5r54H2b1pxtQxxsmmhU+l11Yj/PwdOfw9+fNxGyLa0JdC59D4w8/iv8vNKIa9VQkch7P65F38hqvz4tBaNiJKFw378qDaMsYC9c5evOflbJm0rOYjXcXYi4+V4r75Bjpv493DUKN1lG4v6l549Cs7bvwfLRffAPPhfNiGp+PLZMPygrXlo+xX8SCCpzHpBBUHM/Yj3lPF55nZ1UyampX8V7Y1QV4T0L/uIT3zDktju/bgx069j+/boesq7ZhG34vvHsL1l1t/xD7D9R8gPUxf3tkNU/wOll91O41ON/mBQJzRdESWTXlfLqsMqRxRp3cLyrQJas85HLL6rEL8mVDp4wplB23POR9Wc87EzbJti+bVSSbMjp3q6wZU7tdNnr78F2yz6aV7Jb1PR1ZKus2GvbKOnOTy7A+um2/bEHA1grZYkfEAdlZ99UelLVvHm/IGu9dQQP/efGI7JXLCZWype7gKtmuJ75Gj9+yrRrnee6lo7LTErYdk/1P6zexbvZ+fO/OLc+olZ2Yfc8nsj//2INOyd97XLb5gKiTrZv8SL1sVHSQdb1i47R5sspSRyXm7oCbPpOzY1Ea+kFcjaxoTws/IefbRw87KefJ3mx0a8dhtC30MnosXW2Q697asBZtzW6TFRM/Hdkou6YhR1ZJfeL5JpxfThmaOqpLVrw1OqhZzsuSp8iKXXmZ6LjnN6JLvqqTVRM+7pW1bmsY0SLr+yNRVgnrmHBK/v3u5mRZpbInE3U/kCtrmSvd6K378mXFy28WolEX12H7oer1WG8NoxvWTXNQcTPd8PbQDbWGbmjH6YYaRjf0Rnqgz6UbtkN+NwLPot7TdEN5kuus+XTDm0I3tBS6oQ3zu7He78bvL9OVdLphe5puaOvpht5JN/RYumH10g1d0A09gW5Y/9ENb7PfjZEBdGQM3VBP0A37TrohhgSgeh7dsL6gG1YX3RAxdCO0m27o++mGUsbvjbGSbviC6YbRQTfsH9ENrZZueAy/G1PohhVLN3zD6YbnDN1wFNKNeEE3xBZ+J9Xf6UZBAt0obqQbBefphjP/lN8PutEXXI0W9NKNlKV0w9FBN8xqutGSSTda/qUbznq60RVIN5xpdKO4nm6YJ+mG8g3dEC/RjbAjdEN/km7k9dONccvphgijG+oKutFSRTeKk+iGdyzdULLpRuhOumEbQjccx+iG5z5eD4ffjYJMuuHy0g3DRTcu3E83GjbRjZR0uuHW6YbVTTfah/M+ltxCN1y1dKN0Nd14by3d8A1aieci5Te6Yb1ON/YV0Q17CN2wJdINs5xumCV0QxyiG+pcutEeRzdc/XTDPp5uaBF0wwhYDzeMZrphdZ+DG8oNX9GNXrrhjaMbth66IcbSDa2TbmhH6IYS4XdjKt3wqnRDxNINe2sW3LAy6Ib9BbrhddMNI41udE2kG9psuiF20A1ToxtGAt3YVEk3rvjdaJ1KN2zhdMO8n27YIuhGeQnd+K6Ably5RDfWDNCNx/Lpxr8JdOPx2+hGSTfdcD9FN+5NpRvBc+hG3wq6MXoR3ZjRQzfef4duvG7QjVkP042BGLihbI2lG6/43VgVCDdEut+NZrqhDKTDDVHqd+P893BDuecM3Rg8gm5MyoAbYrwHboiNi+hG/SdwQ+nxuzGGboh+F90YcQfcULLH0g2RBDeUv16jG21+N2q+hBvKhHK4IZ46CTfUxH64od56hm6YTXSjlW5YpyPhhjp8Fd2YV0Y3ygXcsNx0Q008et2N/wGoZReoAQAAAAAAAAAAgAAAAAAAACAZAAAAAAAAhhAAAAAAAAA=eF5d13lcTfkfx/HvCGPLCGOPYcqkQalEZXmXJKmUNS1a7rUmkoSEUzGyjKJkK2u2FqURIzRnhpIQLVpkCc1MFEY/S0Py+4xP54/8+Xp8Pnc53Xvut2fQR92tXZZWyL1aJrh1Dbouf+iTaaa2vAIv/3ETB+LMl42g5vsQZsNiUjbNhvvmN8VV3hWy+K3RcvsOT5yKmxpXYkVt8cRWx8EL0zdHdZMHVMjSIcNq39tesNau9Dv8FXXn7pH9p3oj5tzY3LUP78qicYdL25LZyEzrsKZ/FvV4o8Tpkz2gHqq7/PRB6tqw5evWzMaT66/+zguj/mGnRcdET+woM/90VkVtpRuyYaEXnl8OcV4x7q4szTzRdewnL7g8X7FIcwDNnQ1rRkR7I+1w4p3gT+WyqJ50pDTZG+O0NNa+rqBO+Nu3fKInlryrqonOpP7x1WSP+Z7IVJW4RO8rl6VRrjdfuXnBduugDuGraZ7ulpPawhtx2hfH6rhS22WG+J/wRtHjqjcrR9D+4ghHCwcfXJHP9A/vQvPOeclzhQ9i9qZHJL4ok8V9ze+f9/RCTKZ+fMebZbKUbTdq9DkvvOq/SuWQTO0SP3H4Em9EB36TOXAz7de5tavR9UFWlf6c7XOpW6rLfSt88JdfaUWkJfWc47bTd/rgbN3kbdt6UzvUvU2/4YWDPkF9z9eXyiLq9U9lEd6o/erypYUlpbLUEGBr5eSDiNvzvban09w4cLFeNxVirT6e1f+Z+mDhac1VKqysiuykmkv77W630Mj1RteMPt8JS5p3rj3YvtEbtxwmTtmlTf3P4LZPi3zQus0Zzez6Elms+Uvz/XEVCof8W2lbWCJLLXcGhWerMO/+sjbLEqn9Ik5/MvbB5nnhUy6sp/2j+qsSb/kg89uVqZWe1BfmDU1JUyGgVxfhZUatFecQHqzGVsejDnpa1Pvj4+810uuJunEWT+/IUprOTb92KiwZlNThzGXqiOX/S32tQrZr521n4qjLD68feVWNbknxz2qW3ZHFpfvOC+aocMh9RP7kSdQRp9wHrFXB/vGbQ091qB0zTfr5qZHUZnWLxoZiWcTY7jt2TQ374Y+NAouKZemUXf7KMBUOTwlNnZhE82Cr1xbaahS6+VyoCKeeNLSFcYc5KDQ3apnuSvvDwzTyuqpxJba4n9Yw6gffB6+vVsGr47kl0W2p+7iG2hSrcSult39JZZEsum18rrFbjXGbXKa/PEvd/kioe44KA5wzwtpFFsnSm9L8yyfVMIzbN2PvXOrYFO0HB9ToHLloR8Uo2v8urK1fkgrq302NNb6l+Sr3UQ2hagzYdPfjndpCWZo75Ru/CWoEFC/Wi79cKAuDreppW1Tw9ZavmcbR3D/K5aazGitqOwxxDaQ5fv16/TEVqs1Pyu8mUWsZqd67qhDyae1Zd13aL7DVKaXrsQnweKnRWCBL3vqmQ1/7ANss+j8vof49Vtemswp2DR0tjU4XyCI5/2XkCBUuLlvsdmQzzX2vyVdtfTAwaGUfxznU7nPlbik+6OUWYLQEtK/ZfZ3DSB/Mj9wabNyb2iwyvu8Zb6Q/e39197vbsrizzMf8ax+0ORvkcr2IelTE3/0GeePxn6+0/NNuy5KwPnt+oDdyQnDSdRvNDesMrvb2hrXlG5e7vjSvzVHpjPNCiX61lGRH7ThslneoFxw/hK+sG0S9d+iRsmeesFtS8nhEW3p8m8h/xn7jibexwzJeF92SxfkAd8nVEw3GQ9T+O6kLnazuFnqg3eUPHsLlliyNVa1bvccDJ2J9/n3eh+axC8zfBnugZ/TJw5GP8unzL9N+quGOxSf/t9b4RL4sumY8eKDlDqOCLk8s/WmuEbS/fZIbFpv/cWnASJp/aD1O38kV9jV9l4a1oHmQiaZxmCvCGpcfOHPzpixdTw7dWToLvnrZlmLPTVkktRpYmu+CgMxVqSlzqQ986LS5zgXbP+5Z+I8J7X+dVGU91gXjw7VWLNKgefedCZVTZ+Kf3HAL3eIbsvRy05vCBTMh5QXb+B6lPtbrJ7+HM6B9P/htWdANWWRYV2n9OR09eu3KmGlH85Sdr357Ph16pZtmRvSleeSQG0WHpmPk+t/3/lF3XRa+cypdY6ehdvTg7NO51K71a6vCpsHgm6wuRw9Q5334odWSadioMXzdETqfhLe796nVU7HjpJtnvON1WapQG9QPnoq0CdkJ2no0X7B3+Bnqjg/uuuZ8RZ3uob6fOAX5yUcunK/Ik6WQXf3bv3RGj5A0b6dzeXR/RK15/cgZZtujzoZGUzv82mVNkTMGuZ7wy1lCrdXHa/rXzrB+l5uYa0+96cHUNulOkDIONA7/kZ4v6cb1FwlO8No9o6KyLfXUb4akBjuhMWRI35Tqa/R93Bh9NWQyYt5Kg5fmUue6LxjVfjLMdEN1rE5S/6RfdaPWEW7ffxc/YTP1475O1Xsc0fJt1xUBdC+IDPv7SVYOUL0vnxXqQD3mfmvTYnsstNyzL8KQOta0wCLVHlWZ+Tq5XajXZISZb7HH++Dl8/Xe5crinldc4IxJcHWLOti7glq9N7pGtoONncPPg2Vq75r5g2LscDDeTDv8KPWZ71YtWmYHu9H1I8QW6l3d97jUTcSPy613pflTN3wKf1Rki6W5+pvnzaS+eyFg935bhAbmTksdQ/1Ez3dWoC1uXpuQMnAgtXn3bp2n2iLJ0yLhsia15ZNOR6InQCzN1Tn75iqdf9lFywtsEFd5YNW+B9Tza3pmxttg6OGXJ6quUrfOjAgPsMFm3VdDPE5Tu68cP9PRBossc2w/7qX+2OHQq0vjEdzp2YHK9dS9C3wD6qwxo9+2+rgl1NW9k3ZcskbM88rd2a7U88x1UyOtUfn0ztp+NtShQ37ZO88a7apO2CUMo162YIXXYGtg2If6qdrUYbqVWbPHoeFcQ+uNbamPvfaJ+mQFh4S/3NVvc2QxrWewSb4VTt3b8HLNE2r7LQ5/HrJC9S/l1jm3qYNe2passkKas2bmyCzqmX2mPxpF+x8brpckUbe/Fzl2gyX2vHQJe7WH2t3n3yeGljDJrTM4GEFdc2fzNGEJ31f9XmxcQZ1m1COtCMisWDBy/9z/5teWeCYCQw2rlz6cTp0w/umf4cBAk2832o6nTq4fZPAtMH97v5jnJtS1F1LK24/FjClJ9kN0qe1w6u7JMShz3qUvf0vdwn6lt+MYdN601y2sNXWeatKa+tFIiK686/8um877v/LnHB+N4tIVWpuqqXefLg9wHY0reeOu5JZT3yv4/vzVURh8tFUn0+vUhhvLvU5YYH9g9a7+l6gfbNteNMYC96YEnl2QSn1xRr9f/jRHnG9wTuUh6nY3bJ5HmUP/2fqJ4THUXW+l/jPWHA8y9o+YvJG6sP6dZZ0ZEj8UXLcKpg7SO7fiuBnENNNgdz/qf7a+uWRghqxPKd0Pev23f02n48iR0EuPfGI7jTrK82Bp3ggY/2wcPMmW2v+HvMigEYjynTl+9SjqrLK5W3RHIGmdjmexIbWTf8D8UlM0RLcYO12Xesyy1MItptBvfWtTQ8//3r/KPdTKFK1Gbm9/rSN13gT34R+GQ2+pafp5Dep6Sy3t5OH4Y8rDmPz6K7L4dbHapsIEsv6FPj+8oHb0aNT2NIFjllP7h0+o5xY9bq1lgtlOG7Qvl1N3ezzVK9sYCy2mxN28RV3VQ7NmtTEi9x3y/JhNPbuhtb+JMVLLHrk7X6TuvGzEby+MEHTK7EhuOvUxmy2nEo2Q2c/BxecktWs7zZ7zjZCmF5yhffC/11cZPhhohFnHV7Z6H0udMHxpbMUwDO6VV/HuZ+qs5altDYahT/WPtcM2UAfqhLheM0SPdAO/X0Ooo3SLzdYbIn6dde85gdSJGF8IQzhuvPPUeBF1rZwtGg3wXb1XKx01tb9D+cQ1BqgtaJtk4k7tNHuN7aeheHHv2MA50/57/qq06+FDUajfpeCMPbWte+3xdkORonmu4/fjqS3YG27sDSjeSGNvkEfYGzPYGxCH2RtW7A2IJm/EsjcgPrI3zrM38IU3IJ6zNx6zN/CFNyA1eeMZewOiyRuz2RuQnNgbyewNSE3esGJvQBxhb6xgb0AMZm+ksTcgRrM37NgbkNLYGwfZG1C8cYe9AcUbMnsDUpM34tkbkO6xNzazN6B44zV7A2IWeyOKvQHpFXvjN/YGhAZ7o4q9AUnN3jjD3oBwZG+cZm9A2sbeqGJvQPrA3tjG3oBkxN7Yyt6A1OSNEPYGRHv2hhZ7A4o3brM3IDV5o/Hrz96A1OSNYvYGvV/2hpq9AWkRe2MnewPiWDNvQGryxmL2BqROzbwBKZ690Zm9AXGavRHI3oDYxN7IYG9ANHmjE3sDUpM3jrE3oHjDir0BYc/eSGNvQPGGLXsDUip7Yzd7A4o3atgbkCayN0rZGxCm7I0k9gakh+wNf/YGRJM3itkbkJp7A4o3fmBvQHrN3ujL3oBo8oYBewOiL3tjBnsDUjB7owd7A2I+eyOYvQHFG7PZG1C8IbE3oHjjAXuDPg/2xnr2Br7wBr7wBsQf7A1L9gakJm9cYm9ALGRvGLM3ILmxN3qyN6B44yf2BhRv7GRvQCphb7Rkb0DxxjP2BkSTN7LYG5AM2Bv27A0o3shnb0Dxxgz2BhRvWLE3IFo38wbEr+yNWvYGpCZv9GJv0N+PvXGOvQGxk72hx96A0GZvdGVvQHRjb3ixNyC1ZG+EsDcg3rM3xrA3oHhjB3sDoskbi9gbkE428wbEIfZGGHsDX3gDUnNvQDT3Bt2v7I0f2Rv0fzh7ox17AyKZvdGbvUG/P+yNEPYGxCL2RgF7A8KNvdGfvQFxjb0RzN6A4o0U9gbEPfbGYfYGpCZvvL7/2RuQTjfzBqTV7I127A2I/uwNP/YG3e/sDVP2Bv2+sTfq3372BqQI9kY6e4Ouj72xir0B0eSNOvYGREkzb9D1sDemsDcgNrA3OrE3IB6xN5zYG1C8YcTeoPOHveHB3sAX3oBYy954zN6AqGBvBLA3IFTNvEHN3ohgb0Dxxg72Bv3esTe6sDfofGZvhLA3IMrYGxJ7A6KKvXGSvUH3J3sjmb1B33/2Rgf2BsRD9kY6ewNiAXvDnL0B0Yq9EcjegOKNaewNiE/sjTj2BkSPZt6A+LuZNyDmsjfy2BsQ4eyNtCefvQERwN64yN6A4o189gbE0WbegJjB3qhgb0BMYm88ZW9ArGBvRLE3aJ+9cZ69AcUbp9gbEB7sjb7sDYhn7I2F7A0635p5g+bNvEHvr5k3IJLYG87sDSje8GNvQNg08wa+8AYUb9xmb+ALb9D3j72Rw96A4o2ShM/egDBib+SyN6B44yp7AyKTvbGRvQHRhr3Rlb0BxRtGZz97A+I2eyOLvUHnbTNvQPHGRfYG7bM3urI3oHijLXuDPm/2Rgh7A+IieyOWvQHFG6qYz96A4o2yVp+9AcUbLdkbULwxir0B8Za9kczegOKNZ+wNKN4wZ2/QeczesGVv0PWzNy6yNyD+Ym9EsTegeGMjewOiE3vDh70BcYK98YS9Qd8/9kYcewOKNwzZG1C80YO9AcUbi9gbULwxmL0BxRvZ7A16PfZGzU+fvQHFGxPZG/R49kYZewOKN3LYG1C8kcXegOKNavYG/g8Tq82vAQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAnwIAAAAAAAA=eF411dViEAQAQFG6e3SN0TC6uxZ0jrGN7u5uxqjBglAwCCWUUBqTMEDBAAUllVDCIJQwaB443JfzCTdFiuelZCqmZhqmZTqmZwZmZCZmZhZmZTZmZw7mZC4GMDfzMC/zMT8LsCALsTCLsCgDWYxBLM4SLMlSLM0yLMtyLM9gVmBFVmJlVmFVVmN11mBN1mJt1mFd1mN9NmBDNmJjNmFTNmMIQxnGcDZnC7ZkK7ZmG7ZlO7ZnB3ZkJ0awMyPZhVGMZgy7shu7swd7shd7sw/7sh/7cwAHchAHcwiHchiHcwRHchRHcwzHchzHcwInchIncwqnchqncwZnchZjOZtxnMO5nMf5XMB4LuQiJjCRSUzmYi7hUi7jS3yZy7mCr/BVvsbXuZKruJpr+Abf5Fqu43pu4Ft8mxu5iZu5he/wXW7lNm7nDu7kLu7mHr7H9/kBP+RH/Jh7uY/7eYCf8FN+xs95kIf4Bb/kYR7hV/ya3/BbHuUxfsfveZwn+AN/5Eme4mme4Vme40/8med5gRd5ib/wV17mFV7lNf7G3/kH/+R13uBN3uJf/Ju3eYd3eY//8F/+x/95nw/4kI/4mE/4lC/Gn5KpmJppmJbpmJ4ZmJGZmJlZmJXZmJ05mJO5GMDczMO8zMf8LMCCLMTCLMKiDGQxBrE4S7AkS7E0y7Asy7E8g1mBFVmJlVmFVVmN1VmDNVmLtVmHdVmP9dmADdmIjdmETdmMIQxlGMPZnC3Ykq3Ymm3Ylu3Ynh3YkZ0Ywc6MZBdGMZox7Mpu7M4e7Mle7M0+7Mt+7M8BHMhBHMwhHMphHM4RHMlRHM0xHMtxHM8JnMhJnMwpnMppnM4ZnMlZjOVsxnEO53Ie53MB47mQi5jARCYxmYu5hEv5DPFzqWw=AQAAAAAAAAAAgAAAAAAAACAZAAAAAAAAHAAAAAAAAAA=eF7twQEBAAAAgiD/r25IQAEAAAAAAHwZGSAAAQ==AQAAAAAAAAAAgAAAAAAAAEAyAAAAAAAAIwAAAAAAAAA=eF7twQENAAAAwqD3T20PBxQAAAAAAAAAAAAAAADPBjJAAAE=AQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAWAgAAAAAAAA=eF5d1ek/FYgex3GloUwyitK0FylLEjcdmiLZQsbapkyTJBkpWm5hzr5YjyVLKET2HFuMq/RNg2rIUlJKF+1OjaVl7PdBv9d94NHn9fr8A+8tHYu0OsPK8FKdsfFkOPP/ZdCXhPWvdXIsQ1uerFb3/DL8Pft5r+BZKXR8POdZZpQiaEb96UXepdh+6UCT/LpSfLV7eUPpUwmaFwhC/lVVAt9fjgjOMkuw96981w7LEhia6fm6KJYgesDAWdpWDIfFixIvXyyG5uTWFccPFoMr5ksOrilGhU2g7Nm/Jaj7lK1ffF2CzxrbPWaHSNB0VL1aaCHB0aQVHA1FCdSPuRjfzy2CUnpI3RVGERBY59x69xocT7zudd57DRs5PbkafYXYuXOXnEVQIc7xhLJVioWYtnPhQPLlAmjfsln2Wr8A1dqSitg7+bCVCTdL25WPY+pLrRT78mCpWms0EpKHyeOZxt7z8nDT/hHbIScXjmXXh3J+yoVYr40R1JYDm5Kzuf1Hc5Bf6W4wKZMDE2dz65TEbOQf+PN2zfpsSMdu/px69yq0R0UqxoeuQut9cRB3PAvLHn4/fjwxC/yiE9kmhlmoP692/31zJoYkaZWefpn4+mnJYMHsTNju75+YVXAFt9gyIi+7K3go79aU8SEDd3x/75opzoAvL9I22yADT97F5Dl2pGP/UifDdSHpMBZEt/5bIx3OQxWrRxrTsLDttVX9mTQ8WN51eP2qNPyh3M3uvHwZMx4VMWzHLsHYOSBA2/0Skh9lhDy+mQrtY1ou/eqpiDArixdFpuDWtlUy80eT0Vfeuf23Y8koVO/11X1xESdD3GYucbuImhYr9eHmJGROHxLKOyRhllyZMLM5Eb77OCfGXBNh03m9x7MrAQ98dJ8m+STgrXztx+Uj8Zjc421dEx4PzeGR0Dmr4iHRuWprVX0B4hF/9/rdFyB12a0b/k8cAlrKP4xejMPEJzNenmkcXoXnxeu8i8WTaQzxxrhYKFf3nDHfFgvzrMUjdwZjoBYXujMzKwYHvF7Hmu+LgUmJ7w8K82LgluXhMacxGuP6Ko+CRdHoOCfubreKRuD0fMGmmdHgdy7UrL0nRqJK0CL5KDEi484zlFzFmPHjtizFJWJUZj6uMG2MQs+e4H2eh6IwplpmqTIeiQuNanHlSZHoM7CxeLkpEqWi0mitzghIllhomjAj0GfHcE/WjEBQ0wN5/5ZwVLNmbvkSHA5zh37TKp1wxA/Kt/g9D4O3imcEUxwG55Pd9g0WYehWfT7wcSwUxpOn57aUh+LFZ6OIBv9QMHerdqbrhmLbptZTalIR2KOGpsoFIvisfSZ98psIiZuVP9roizCX//OGtV+EiFh/WMOhWgjF9sB707hCaDY8GNxgL8QXC8HXkgVCLJ8Me7O3VwAfhnBYTyKAlyxPeCREAE37ctFjewHC3x4J2b9UgOnDXeXP/uajocRHP+A2H6m+zzIM4vkwt7beOeHDh0xiS2OlKR8fZg29tlvAh45yo+DeRx64h1xX2dXz0Hyl7XRlGg9nNPjWI+d4yAjYFj3pykO03P77Nfo8zBrcLec+h4deRtfaxj4uogP3Ok67x0XPx7sG73K4OGFsnXVGyAUn+21BtjcXN3b89WesDRcKNtsVNmpzcfrxd31MRS6aS98XefdzAJli9d42DqTBFbveVHCgwSgfDEnhIFc6p76CxcG+3bLv+Ec4SOxjPOyx5yB/roNerSEHz4xakpcv5uCP9qKoT7IcmK8/N91MyobLgadeqo/YODG3ecTnJhtjc9VFxjlslL2zKgyOYUNheFHZumA2rjX4sa292UhqGP69zpkNp1MTMrlb2ai58fjSqDYbR0LLm6rU2Hhq8NW1+zs2PNuV2D5DLKTkdqg6dbPwg6+ccdwDFpjtK/11b7LQMhIp+LGQhdsOEwf2pLCQ18byHAxjwVVLX/TqPAsyRkxlPV8WjBU8Eu67s/CTUuRkhT0LZ+Vi/Qe2sKCdLWt7aj0LZrbvV5qtZMFjSKXKSYWFQqM1o9lyLMyuiKreOszEKf6+w8ukTKRumUizfMFE8vaEzyWtTFTtClD7tY6Jf64/f+tYxURk6pVjzGtMXKzVre/LYOLNf9RMYxKYyCc37pIbUnKDQW6cITdsp7jRSm74kRsu5MY6ciOK3HAiN1aQGyJyI4fcqCU3xsmNZnLDi9xYS27MJzdyyA09csOQ3DhEbhwnN8bsv7mxg9xoJjdcyI1AcsOe3BgmNyTkhh25EU9u7CU3ysiNDeTGDXKjn9xYRm6sJjfmkBs8cgPkxhdyY+bnb26YkRsgNwbIjRpy41dyo5XccCM3TMgNN3JDh9z4QG5Ukxuy5MZmcoNJbmwiN+LIjbvkxiS5kUhuHCQ3npAbdeSGKrlxiNzQJjdukRv/JTfGyY015EY6uZFKbnwhN6LJDcXP39wYIDek5MYCcmMzuTGf3PAgNzaTGwenuNFObviTG8HkRjy5wSU3ZMiNW+TGe3LjK7kRRW4MkRtl5MZVcuMDucEnNyrJjR3kRhi5cZzccCA3OsmNTeRGB7nhN8UNDrnhR24kkxtK5Eb4FDdWkxv95MZScsN7ihuryY1IckOG3GgiN5LJDQa5MY3ckJIb6uQGk9xomeJGCrkRQ24okBsvyY0IcuMNueFPboSQG5Xkhjy5cXKKG7fJjZfkxnJyo4DccCc3MsiNInKji9yoITcsyQ0ncuMkuTFKblSSG7PJjWJyI4HccCQ3qsgNL3Kjg9zwIjdSyQ1lcuM8udFKbtyZ4oYLuTGd3DAiN0zIjVPkhha5sYXc+IXcyCU3vp/ixmVyI4XcuEFujE1xI4nceEVu/A89r88lAQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAWAgAAAAAAAA=eF5d1ek/FYgex3GloUwyitK0FylLEjcdmiLZQsbapkyTJBkpWm5hzr5YjyVLKET2HFuMq/RNg2rIUlJKF+1OjaVl7PdBv9d94NHn9fr8A+8tHYu0OsPK8FKdsfFkOPP/ZdCXhPWvdXIsQ1uerFb3/DL8Pft5r+BZKXR8POdZZpQiaEb96UXepdh+6UCT/LpSfLV7eUPpUwmaFwhC/lVVAt9fjgjOMkuw96981w7LEhia6fm6KJYgesDAWdpWDIfFixIvXyyG5uTWFccPFoMr5ksOrilGhU2g7Nm/Jaj7lK1ffF2CzxrbPWaHSNB0VL1aaCHB0aQVHA1FCdSPuRjfzy2CUnpI3RVGERBY59x69xocT7zudd57DRs5PbkafYXYuXOXnEVQIc7xhLJVioWYtnPhQPLlAmjfsln2Wr8A1dqSitg7+bCVCTdL25WPY+pLrRT78mCpWms0EpKHyeOZxt7z8nDT/hHbIScXjmXXh3J+yoVYr40R1JYDm5Kzuf1Hc5Bf6W4wKZMDE2dz65TEbOQf+PN2zfpsSMdu/px69yq0R0UqxoeuQut9cRB3PAvLHn4/fjwxC/yiE9kmhlmoP692/31zJoYkaZWefpn4+mnJYMHsTNju75+YVXAFt9gyIi+7K3go79aU8SEDd3x/75opzoAvL9I22yADT97F5Dl2pGP/UifDdSHpMBZEt/5bIx3OQxWrRxrTsLDttVX9mTQ8WN51eP2qNPyh3M3uvHwZMx4VMWzHLsHYOSBA2/0Skh9lhDy+mQrtY1ou/eqpiDArixdFpuDWtlUy80eT0Vfeuf23Y8koVO/11X1xESdD3GYucbuImhYr9eHmJGROHxLKOyRhllyZMLM5Eb77OCfGXBNh03m9x7MrAQ98dJ8m+STgrXztx+Uj8Zjc421dEx4PzeGR0Dmr4iHRuWprVX0B4hF/9/rdFyB12a0b/k8cAlrKP4xejMPEJzNenmkcXoXnxeu8i8WTaQzxxrhYKFf3nDHfFgvzrMUjdwZjoBYXujMzKwYHvF7Hmu+LgUmJ7w8K82LgluXhMacxGuP6Ko+CRdHoOCfubreKRuD0fMGmmdHgdy7UrL0nRqJK0CL5KDEi484zlFzFmPHjtizFJWJUZj6uMG2MQs+e4H2eh6IwplpmqTIeiQuNanHlSZHoM7CxeLkpEqWi0mitzghIllhomjAj0GfHcE/WjEBQ0wN5/5ZwVLNmbvkSHA5zh37TKp1wxA/Kt/g9D4O3imcEUxwG55Pd9g0WYehWfT7wcSwUxpOn57aUh+LFZ6OIBv9QMHerdqbrhmLbptZTalIR2KOGpsoFIvisfSZ98psIiZuVP9roizCX//OGtV+EiFh/WMOhWgjF9sB707hCaDY8GNxgL8QXC8HXkgVCLJ8Me7O3VwAfhnBYTyKAlyxPeCREAE37ctFjewHC3x4J2b9UgOnDXeXP/uajocRHP+A2H6m+zzIM4vkwt7beOeHDh0xiS2OlKR8fZg29tlvAh45yo+DeRx64h1xX2dXz0Hyl7XRlGg9nNPjWI+d4yAjYFj3pykO03P77Nfo8zBrcLec+h4deRtfaxj4uogP3Ok67x0XPx7sG73K4OGFsnXVGyAUn+21BtjcXN3b89WesDRcKNtsVNmpzcfrxd31MRS6aS98XefdzAJli9d42DqTBFbveVHCgwSgfDEnhIFc6p76CxcG+3bLv+Ec4SOxjPOyx5yB/roNerSEHz4xakpcv5uCP9qKoT7IcmK8/N91MyobLgadeqo/YODG3ecTnJhtjc9VFxjlslL2zKgyOYUNheFHZumA2rjX4sa292UhqGP69zpkNp1MTMrlb2ai58fjSqDYbR0LLm6rU2Hhq8NW1+zs2PNuV2D5DLKTkdqg6dbPwg6+ccdwDFpjtK/11b7LQMhIp+LGQhdsOEwf2pLCQ18byHAxjwVVLX/TqPAsyRkxlPV8WjBU8Eu67s/CTUuRkhT0LZ+Vi/Qe2sKCdLWt7aj0LZrbvV5qtZMFjSKXKSYWFQqM1o9lyLMyuiKreOszEKf6+w8ukTKRumUizfMFE8vaEzyWtTFTtClD7tY6Jf64/f+tYxURk6pVjzGtMXKzVre/LYOLNf9RMYxKYyCc37pIbUnKDQW6cITdsp7jRSm74kRsu5MY6ciOK3HAiN1aQGyJyI4fcqCU3xsmNZnLDi9xYS27MJzdyyA09csOQ3DhEbhwnN8bsv7mxg9xoJjdcyI1AcsOe3BgmNyTkhh25EU9u7CU3ysiNDeTGDXKjn9xYRm6sJjfmkBs8cgPkxhdyY+bnb26YkRsgNwbIjRpy41dyo5XccCM3TMgNN3JDh9z4QG5Ukxuy5MZmcoNJbmwiN+LIjbvkxiS5kUhuHCQ3npAbdeSGKrlxiNzQJjdukRv/JTfGyY015EY6uZFKbnwhN6LJDcXP39wYIDek5MYCcmMzuTGf3PAgNzaTGwenuNFObviTG8HkRjy5wSU3ZMiNW+TGe3LjK7kRRW4MkRtl5MZVcuMDucEnNyrJjR3kRhi5cZzccCA3OsmNTeRGB7nhN8UNDrnhR24kkxtK5Eb4FDdWkxv95MZScsN7ihuryY1IckOG3GgiN5LJDQa5MY3ckJIb6uQGk9xomeJGCrkRQ24okBsvyY0IcuMNueFPboSQG5Xkhjy5cXKKG7fJjZfkxnJyo4DccCc3MsiNInKji9yoITcsyQ0ncuMkuTFKblSSG7PJjWJyI4HccCQ3qsgNL3Kjg9zwIjdSyQ1lcuM8udFKbtyZ4oYLuTGd3DAiN0zIjVPkhha5sYXc+IXcyCU3vp/ixmVyI4XcuEFujE1xI4nceEVu/A89r88lAQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAASQgAAAAAAAA=eF6F1Xk01QkfBnCq1xmSSrSKFm5Rg4lJWs6j0iJLXilLwptkMvKqUFSWEHJLk2ljarKM7S3DkDAtsl5L18V1ce/l3t9PJ6QpLYqU3jmn71/3n/nrOec55/n3+cyZ4rT18WANHEz8t4Xq9GEH5WzqsxPDooc0avHINylSxbwWOte3HNZ0q0W56dOQ6RG1UP/yXfXnjFpYHuh95sCrxQ/neYtL3tbCpzJd8pNuHYxy5ve52dTBwmbZdfXgOlgVR7vn36yD0zgbadZQh9yytCLXt3VQnXR+5aNF9bDuUDs+1akeEZfrB4Vn6jF1w46TUcX10OmfOqDx9O/eJIyN0uJh6tHflxpZ8zBPaNL5bTgPxuuEaUFFPKB/XCVkgIdT581THfUasGindemUPQ1I9zjWxk9qgFqMdFkprwGqz3muMSqNuOLmPlnduhGX1kcPeUQ3QutBijfnYSNqUvq17CYaca7+2MDpzU0QygPtO+KbEF5VmS1raoL+ZPeCTxrNEGCTr4FrM4zDfrcbymxGmcbdUOVXzQhUCVC6YfkEVv3ZghNxT1C6+JNUqfsJZs66FKe5go+jY0FxZ07x8UdajNuKFj74c2zZNMMWvD97p3/vmRaMhJWV1Xa3YNw8qvDgAgFOiy4bxtoKsFOml/M6XICgGu2Dm/IFuBX6+SnbI8BSwfTRuBmtcBet3+K8qRUZFxP3hJ1oxUCEavWkglZ4da/P9WVbcS3ViD9tQRt0MnhuM3e1gV++t3MksQ0nvnXZNlzTBsfsZbcHJ9pwVWzTrr2mHSvLyjhqIe3I8LtpZFPYjitztHYzQ+1Q7azSeGkoxDDHwLnEV4iSOZOj3mcKkZo54aLMCqEuWMT/UbcD+re3q7/b14F9TtPfR6Z1YMbAeSfV7g54LPny0myuCJq7mu7WO4uwcYNkWlaKCEskg5+9WkU40OGcEjKtE9dOK10YsO3EgE3TgtkJnRjrfRo/Ut2J4Yp5E8+VurA6eVL53nVdkHkcKn0X2gXXjdG7Boq6YHxRdi71eRfuK997tsugG5cSvD44eHYj6Kra9TOXu1EiliyK4nejPbcw5Ld/iVGgq2ppuE6MWdxXA45HxQh4MYmbnyPGARdOjItEjMS3J2ZfmyGBukUULKwl0LW6/0w3VIIP74XlRnkS1JuZ3TWTSLBta9mbvKlSbFWZl9+/Tgqf6NKMnwOk+Hg8iJuWJkWPdIOya4MUa/3FFm6jUmwWJ6h8NOgBt8Lhyx6nHtSkufeui+jBxthDlcL8Hij9+6XVcEcPLnfmnu7+0gNT5vGNT4a9CDSavlDbuRf5ESmZz0/1wsLHZ1deVi8O/3k28kZzL2Ij07ncd70ILplc7LhAhuVDN4L1N8qg+0rgH39QBmmSaus1rgzOo28qwotkWBkQa3+yQwbL8fLvz47KMFYwJQgacjiPxH3u0JPj6viypROmcox+/KRds1EO7wr/QjMnOca+O972jY8cdkpvRIePybE49rBFUIwc2nFNf85LkUOzLH25f4YcHtozs+b/IYfJhG5h4GM5JuW2Z/gJ5HDYv6R8mkyOXPOSif/8Jcdfkdr3isbl4Ou8TtFRY1DqftbOYC6DBy9ftPUaMPjFztJjpxmDJxeTh0KsGHxMtd12y57BGEd0UezOgPvipPZDPwbDbjaq7sEMhNOzfIujGDxd6RDJ5zKwszwymneNQfDqByqNWQwcPMeacwoZ1HF9RjfdZxDQeaPy13oGLQ0tXY/bmL9/6kXs7R4G4mcJO10HGJgXPk5e9ZaBt/TXqsHPDAL3DR7y+YZFgu+VoixNFss3KF8o1GHBiY5JT+Sw8D+K7atMWZwqb878zZLF2tT9VqabWbQVuNvesWOx6L8/xL/ZzeLE3cXKKl5/7zwvjA/6sbjLMYm+FcRC5BX244owFtvjdA5xo1nEBFxNrE5kUVlQXDjwE4tHVR2+y1NZuMi/jzXLYPFub7zLrHwWpYGClIYiFpe2Xa93KWdxYVWw96NKFv9LEBco81jobz81qNfCwmr9fNMFIhY5t5IevJGycKrKTnrUx8LQq6Iv7TmLOgNRvP1rFoeuvjOSfGBxcHPjxJYJFre1jPSSp/RhdfXen++p9aFgvv7uyhl9SOAkbc+f3YdccqOK3FhIbhSQGxrkhim54UdueJIb+uTGWnJjE7nhQG5kkhvq5MZ6cuMsuaFGbmiRG+Hkhjq5oUVucMgNG3IjidxYSG6kkBvq5IYauRFFbsSRG+rkxn1yI1bBjUhyYwm5UUdu6JEbBeTGEXLDmNwoJDfmkBtB5MZDcqNRwY235MYwuRFFbtiRG97kRjq5wSE3PMiNLHLjGbnhQW6cIzdUyI1mciOU3LAnN26SG/rkxi/kxkVyY0L01Y0P5EY5ucElN0ZbvrqhQ254khu65Ia3ghtW5IYOueFPblwgN3rJDZbcYMgNY3KjmdxwIjdMFdxIJjcCyI08coNPbtwhNzTJjSMKbiQruDGX3BgmN+rIja3khhW54UFujJEbXeSGMblhTW6cITd45MYacmPC8asblxTcCCI3isiN1eSGP7kRQW4cJjc45IYOudFFbjiRG0bkxlpyY1TBjSvkxoiCGyPkxg5yYym5oanghie5YUxufMn56oYtuZFHbrwgN5rJjWJy4z65cYXcaCI3xv7BjVZyo4/csFdwYwe5UUNu+JEbjeSGI7nRQW6YkBue5IY/uRFLbuiTG/rkhh+5EU5urFFwQ1fBDX1yo4jcEJIbO8iNKHKjgtx4SG7sITeGyY0SciOZ3EgmN/IV3FhLbuSSG47kBofcqCY3DpIb+8mNbHLDnNy4reDG/wHW9XMHAQAAAAAAAAAAgAAAAAAAAEAyAAAAAAAAIwAAAAAAAAA=eF7twQENAAAAwqD3T20PBxQAAAAAAAAAAAAAAADPBjJAAAE=AQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAbgcAAAAAAAA=eF6d1Xs0lekeB/BdKlZkmDS6TBdiJ1Quh043vpIKTS6RZCrbSJymXJ7nfd+N0cVJ7aamSMolVomNUSnG1E41KYyuwnTldNGcSiVUdLU7+6z1/HPetfaaM/P8813f33qeZz3PXx+JRLNS5fhvSLri/jc1c8eEOcY3NstB8yqjy5LkWDGx2HQ7lUM6J37gt6vlqA/e4eQTJse5joACp2A5rnTXKcf6ynG6wi1qyDw5ev3uPlLPkmOYYe3I13+T41WLraTDRg693qW72s3laOPzL7ePkGPPrN5THUZydN+R1fboyqEOftfb75OAJUs47897BSxuLTol7RBQFJg4x/V3AR6Hu1tDWgRU2EcWfdckYEvDM738CwKS3nb2XToroEa2Yd374wJGDmlOnlQmINB8rs5KpYBEvcrxB3IFZH2m9G7bLWD83/WI1XYBLUtv7CT/FCD/h1/m+QQBwp5Tu4fHCUiIVb+IixKQntd4vClUgLR1a9vUJQLMdLvC8n0EfNzX4vP5PM2+AvehChcBAybd+FHHWcDEWPWglEkCJtQPH21gKSDb9VRQ1pcCbJrrr9maCChpO0nr9AWEbTnsFKEjwL4m4juDDzza/t2wXPWSx8SRjrXfPuUhXVF6QtrGI1c1KffxbR5eC5Iiyxp5BM5Uq5Mu8FAkllcsquZRGtNUaKfisTY6qsLkGI+FP6/pJynh8fXM2OaX+3lkm/xL0pHJY1VEcO6LVB4eL650vVHwWOQSeVlvIw+Z/P18s3geh78Iy3KL5bF+8MmtUVE8GrJmzs+S8TAv23L/WjCPCb5XLYz8eUwhyQuDvHgsuTV5tnI2j7K8gEcfp/MI6UqOCnHkkdPYml5tw+MOzYueYsGj3CG8f+GXPDIqPIeaD9P8b9OJ88ohPBrPWTx1GMTDaPjblXVqDi/V43xlbzhsf9gTodPFYZZk/eFDTzgs1kkwWfaAQ6e/QmZyh4O8wE3Z1MShYe29yr2XOFj2rlz1TQ2H59KaX51OczCwtcsz/JlD1qHyqx1HNPeUW8uaizg4HRtn+st+DtYbrtw/msUhvT38RPEuDsGx3uHKbRyevtO9VbKJw9hRqsEVSRwGS/LrqnlNb05+fz2aQ8yw9oOdkZreXz/VMIzD3r6sAocQzbkq+8chARxKlxrYfP8VhwnupxecnqvJm5X+Pa6a/xTdHu0wjcPthxs3EwcOZa9nJKtsOIwzv2QwwJLDSOdbav8xHGJLHacpTTXvlJic6zPi8EDQSQ4ezGH2RecglQ6Hg96ONqP7KDoPLtVJ6aVYYri/tquT4qdJIwJC2yli3VXZzW0U+flVeV6tFIpNdfNrr1NUpf2Y5N5AcTc0R1pbT+G9Dp5e5yjOecRfb6qi2G304djySk1mB9R3HNGka5LhhmIKlapIMSyfInXdxTFHcigePyNVnhkUaeXB3k92aO4xnXZlq4Ji4WdnZk5OptCZNTDleiKFU71z+nqO4v5t+8W20RQpHtcutERSrNaVvPghjEK5fsDR2V9rekSj+l0gxdzv6y9W+FCU5/TXi/GkePNF0cnJ7hQWU9xuds6kyOqTLKxwphiYHWgUb0eRveOskZs1hW23n4e+BUXxjPPHbo6m+GH+IW+lKcWit1MGCsYU5s9XN3rqU0x9FVQwZiBFgElpXI+aYLSfyfSrbwlKfNLeF78k2C3NKUp5TuCrSHQKf0SwfJRj1pz7BOG64fXSOwSFd11Vg38jkNmURXRdIfjFfWnzzV8JEi879ZytJoC1urq0SjM3/DQls5JA/5OO8+Yygk+jvC9xJQS7auMfRxwksC4ITwnOJTBbGFr01V4C9esaD/c0gqOeF4OmbyNQJA297pBCsLixoNJ2PUHX1jvdE+IJpEayZAtCsEV/cqj5GoI4X+MUs1UEe6eZvjKTERjV1BWODyE4s/Z4hjSQ4OmjhiprH013cTW28yT45g2/09mdYNkZSzuXWQT3ahw65k4lSM1WnfW1JyhNGFQYYqPplt4ZqywJjH2M0+lYAtNPCdnJIwhmSNIK04YSPHTZdeTAEIIDjzrLynUJNrZ7FtT0I6h4uHrzzQ9xyPXx8nvWEwd75gZhbixnbliJ3DgvcuOMyA0TLW48ZG5kMDdeMjc+itwI0uLGTyI3Epkb1SI3Fmtxw5K50SpyQ87cSBS5YanFjUQtblgxN3KYG9YiN2QiNx4wN6yZGxOYG/tEbgRpcWONFjdymBuRzI15zI0ALW6sY25cE7lhxdywY24EMTeOMDeWMTdyRW4cY26kMzesmBvXtLixTYsb3cyNeJEbUuZGB3NDX4sbzswNmz/pxhjmRrTIjUzmRrvIDSvmhlSLG0eZG2NFbsT8gRv5zI0XzI0gkRsxf9GN9P/TjSfMjVTmxgKRG/1FbtxjbmwSuVEkcsND5EYvc8OSuZGpxQ0bkRvbmRv+Wtzw/wM3/JkbK0RuKJkbYcyNM1rcOKvFjTSRG+P+pBuWzA0Fc4MwN/ZocaNd5EaYFjfSmBslzI2dIjeGi9z4nblxUIsb+5gb/wF6dbY1AQAAAAAAAAAAgAAAAAAAAJAMAAAAAAAAbgcAAAAAAAA=eF6d1Xs0lekeB/BdKlZkmDS6TBdiJ1Quh043vpIKTS6RZCrbSJymXJ7nfd+N0cVJ7aamSMolVomNUSnG1E41KYyuwnTldNGcSiVUdLU7+6z1/HPetfaaM/P8813f33qeZz3PXx+JRLNS5fhvSLri/jc1c8eEOcY3NstB8yqjy5LkWDGx2HQ7lUM6J37gt6vlqA/e4eQTJse5joACp2A5rnTXKcf6ynG6wi1qyDw5ev3uPlLPkmOYYe3I13+T41WLraTDRg693qW72s3laOPzL7ePkGPPrN5THUZydN+R1fboyqEOftfb75OAJUs47897BSxuLTol7RBQFJg4x/V3AR6Hu1tDWgRU2EcWfdckYEvDM738CwKS3nb2XToroEa2Yd374wJGDmlOnlQmINB8rs5KpYBEvcrxB3IFZH2m9G7bLWD83/WI1XYBLUtv7CT/FCD/h1/m+QQBwp5Tu4fHCUiIVb+IixKQntd4vClUgLR1a9vUJQLMdLvC8n0EfNzX4vP5PM2+AvehChcBAybd+FHHWcDEWPWglEkCJtQPH21gKSDb9VRQ1pcCbJrrr9maCChpO0nr9AWEbTnsFKEjwL4m4juDDzza/t2wXPWSx8SRjrXfPuUhXVF6QtrGI1c1KffxbR5eC5Iiyxp5BM5Uq5Mu8FAkllcsquZRGtNUaKfisTY6qsLkGI+FP6/pJynh8fXM2OaX+3lkm/xL0pHJY1VEcO6LVB4eL650vVHwWOQSeVlvIw+Z/P18s3geh78Iy3KL5bF+8MmtUVE8GrJmzs+S8TAv23L/WjCPCb5XLYz8eUwhyQuDvHgsuTV5tnI2j7K8gEcfp/MI6UqOCnHkkdPYml5tw+MOzYueYsGj3CG8f+GXPDIqPIeaD9P8b9OJ88ohPBrPWTx1GMTDaPjblXVqDi/V43xlbzhsf9gTodPFYZZk/eFDTzgs1kkwWfaAQ6e/QmZyh4O8wE3Z1MShYe29yr2XOFj2rlz1TQ2H59KaX51OczCwtcsz/JlD1qHyqx1HNPeUW8uaizg4HRtn+st+DtYbrtw/msUhvT38RPEuDsGx3uHKbRyevtO9VbKJw9hRqsEVSRwGS/LrqnlNb05+fz2aQ8yw9oOdkZreXz/VMIzD3r6sAocQzbkq+8chARxKlxrYfP8VhwnupxecnqvJm5X+Pa6a/xTdHu0wjcPthxs3EwcOZa9nJKtsOIwzv2QwwJLDSOdbav8xHGJLHacpTTXvlJic6zPi8EDQSQ4ezGH2RecglQ6Hg96ONqP7KDoPLtVJ6aVYYri/tquT4qdJIwJC2yli3VXZzW0U+flVeV6tFIpNdfNrr1NUpf2Y5N5AcTc0R1pbT+G9Dp5e5yjOecRfb6qi2G304djySk1mB9R3HNGka5LhhmIKlapIMSyfInXdxTFHcigePyNVnhkUaeXB3k92aO4xnXZlq4Ji4WdnZk5OptCZNTDleiKFU71z+nqO4v5t+8W20RQpHtcutERSrNaVvPghjEK5fsDR2V9rekSj+l0gxdzv6y9W+FCU5/TXi/GkePNF0cnJ7hQWU9xuds6kyOqTLKxwphiYHWgUb0eRveOskZs1hW23n4e+BUXxjPPHbo6m+GH+IW+lKcWit1MGCsYU5s9XN3rqU0x9FVQwZiBFgElpXI+aYLSfyfSrbwlKfNLeF78k2C3NKUp5TuCrSHQKf0SwfJRj1pz7BOG64fXSOwSFd11Vg38jkNmURXRdIfjFfWnzzV8JEi879ZytJoC1urq0SjM3/DQls5JA/5OO8+Yygk+jvC9xJQS7auMfRxwksC4ITwnOJTBbGFr01V4C9esaD/c0gqOeF4OmbyNQJA297pBCsLixoNJ2PUHX1jvdE+IJpEayZAtCsEV/cqj5GoI4X+MUs1UEe6eZvjKTERjV1BWODyE4s/Z4hjSQ4OmjhiprH013cTW28yT45g2/09mdYNkZSzuXWQT3ahw65k4lSM1WnfW1JyhNGFQYYqPplt4ZqywJjH2M0+lYAtNPCdnJIwhmSNIK04YSPHTZdeTAEIIDjzrLynUJNrZ7FtT0I6h4uHrzzQ9xyPXx8nvWEwd75gZhbixnbliJ3DgvcuOMyA0TLW48ZG5kMDdeMjc+itwI0uLGTyI3Epkb1SI3Fmtxw5K50SpyQ87cSBS5YanFjUQtblgxN3KYG9YiN2QiNx4wN6yZGxOYG/tEbgRpcWONFjdymBuRzI15zI0ALW6sY25cE7lhxdywY24EMTeOMDeWMTdyRW4cY26kMzesmBvXtLixTYsb3cyNeJEbUuZGB3NDX4sbzswNmz/pxhjmRrTIjUzmRrvIDSvmhlSLG0eZG2NFbsT8gRv5zI0XzI0gkRsxf9GN9P/TjSfMjVTmxgKRG/1FbtxjbmwSuVEkcsND5EYvc8OSuZGpxQ0bkRvbmRv+Wtzw/wM3/JkbK0RuKJkbYcyNM1rcOKvFjTSRG+P+pBuWzA0Fc4MwN/ZocaNd5EaYFjfSmBslzI2dIjeGi9z4nblxUIsb+5gb/wF6dbY1AQAAAAAAAAAAgAAAAAAAACAZAAAAAAAANxEAAAAAAAA=eF5V2Hlcztn3APAKWcdYGhFS2ZUoGaWTiBaJVu3pqedJ2dolFSVJtGuRCpVESZRhqMOloUyUxFgzjCUmNCTEGH7f7rnze32//XdfT8/nc+8955573s/8llGnb1gqMHm5nr95aB+lkysz1BfjQNQNp/E/33r+ArC3+P/VH7qKZu7Qwzfxlhu/l/Zi9179aeo17EcMVJIkr5P1Zl278/wUpy5D29yzKcft+zDbSVqhRvd1sPvxy3NndRSZ2qWdCdK1DqBgtzg04Jsi2xGVemZ7P2N0/zz4wsF7fdnYI5UaB7MtIcZ48cnuSQNYnK5X4cu7gzG/210Ppg1ivfn8RoKKX516dp/BLMLARLv1sj4k7Ym5bFXzPZs2fET1vteWWK7S2VRbMoRJUtIGztFdipJwj+LxnkMZX863yRjr3hZR1z2UmZ2rb10YtxBa1mriDrXh4nlLMOLXSTmfHymx8x/7D1Rbuhha+ur+4Ow3gnVI/8zfcdYXb+tNN/C6qsw8+fOtEKudVvp+P4ql/OacbrdEAto5X55lzlJhvvPH11z9WQUmX3DV3vzdaDZ04dLEI8ameDqZzYsKGcsc+P6YAQ48Xz/zzThmyufjAHdUH1w6MFyd/X1lqd7Wm2tw0PHSE9FDNWh908Nwr7yL0fN3Guzo3RuJtRPmod2vLDB3z3hW9RNGh34XAPtbRlU8Wj2RDeHvc0OJy4PbLrMms+OpB0MmfViKJY7LZ0y6NIWdG6Ou7C+LgtUB16qOT5rGVtaa3D6xNwRqpYNyHpprsnnHtMb+8MYL3h/sv/2i0nR2NW5bhW+NN8RsiPI/cnUG+8znJ4FhqRn11/vo0HwdpNilq/dd6Fcdsf9BGO/c2Fh9Rpc18O9LcfTHeM3ZZnpMgcfTB/SzTkSskvuRubr+blytuBmGVwa5PAmYQ/lUuhZ69/+gblGkL+IViM+Mpp6SvjZgkz6BwyOnLTDz5y/HngWAiL83lCen5lVI5jF7vr8RGOfa/ffOD8asoTS/+mSLF76dUZ/8unk+e7OpVsHiRgIeOavT7u5jwr6sOXCtvmghDNZsvPAmayEbw/MxAiOO5fb3DF7EKvl+y+DdVe85/t2mTHnDN8cpa1LA8G6m3soKc1bJ938rxoz3NJv5jwV7q/hH0psOW9Dsyl4wScmSqaTfwbaY/bD4cL+Qeg8rNtdRamo5fSNm1Li7e/dZxi7Z3HjcnpqM1S9fBE2caM32Gp2dYqURi+kO9tXdd23Efsai6+G1Z6+32DItn56ATYdFhpUpknV2THLikPK2xSHg9iQgMuqWPcs93vx+rXIhDPpw2dzomQNzbnw76H5kBQwyvdWanbKc4UrrGQMyAsHiWmbe02FOYr+8cEJChs9tDWemdSi4/ZalPcbHeyk533Nm4x9KO9QVitDxysr6mHWuzP/6g+zHQamwb8Cae4bubuxAUEDX5cYEGBn8S1e5mTsr5uMkKOxdqnLpjAd936QQ9h0qVteUrGCJNdGamSeLMdAvoS36hCd7MWPO9UEte/D2g4QZ92QSltZznhIPQ3viPbnbxRJ2eXW5RemzSjj70bDttKuXyMd9MFlF5/n1Ki/WcnpOxNO2TNwcJ7VRU/RmK+SL7zg9r0KrxDEFRlnebHXraKPgd8UYELRKZcQpb7aW17M0zMz2CHpsIGV3eT3biA66i+WdEqRsg3S2Y/FNE7BW3O31NVPK2nrmZ3cI51qkPpoxSMZ2FJZc+m3cQbiVnh8cOFXGyg6qnzf9VATtXiUXRi6QsdofP0dpVVcDvtl/3zxZxop69mPpUeiI26brEy2j9+06ABDnvbP1qIzqSecJiP9yob/GrzKW1X+gx7WwXJDt83VQ3Suj8/q0ACvv9Xpr3SxjrjzegfinRpVZzWWZyP9gGDKuLTMwXcbMlj27eTTLEUYYqV4tr5CxnXy+pRDt1mWXlyVjitc0l5j3sYKn4Rohb+xl7DjP7wjMb2zdvHuFjN3h+5GDYwzbDvcxkDHNnuevO4TnH67fNLvjP/vhsOyB66p0bE3atyr5T6mo/+Wo0Sp/zL9GyrL5/LNx98YJcqP9xeel2RCflFgv5yAV9TMDzC78lLNkgpSd5fUoCVXPV/xU8cibJfD5ZqGlwtUhGwu8mR3Pz93QIH26uVeEN7vm6V80qjgCJmb1UXM09Kb8sduHr/tvUMts8xL3hQSqrnyY9/mCl5hfAZhYfzBcvNWLNfDv78R+kaPTRhp5iXqZA53ShIsb30rofW4FKHH95cn3v0jYvfoWg+F/74GLcekqJlskYn7p2KAlP9lhtoRd4fmYjj76iZkPX3myOQXpHm1uG7F7hNY6602ezCAywjZnUT6aDTmpav9pBfMI/flguHslerxrsk33WcHCG/etUJq0Cm842xa1PvcQ8w+FiXGfVJZt8BD7lQ7Damrr/D64i3jHwB2/pGqnIHexfxk4yvKSddxjN1bOn6eDU94vvNt3kxt7we8/T2huqTm4SN5NxHc7TjjU6Rgf5yrik4+9tJ19Z3xwYSOSIw+Y+/vjsKOxawwyXcT7EjA8fNfFS6oubDIfh6HlIFNZ+2FnJkf9A+hLwWz2LGe2jMdrEyidLqx5ctyJzeH1LhXVtY3n/23rJOKVD39NH2YufeIo+omN+Ojnut666x3ZhJ56UXsAa5v07Gr6OjKTPT0FLRqGJJXMfJK6XMx/CyYa3IxYN3u5qJ8FePpO6fDqJgcRjwzsFx4z7aafA2vm8d4M7sZNS9/2cmCBfH9s0WrDpRNP8u3FfZiJN3u3JOYY2LNI3g/EwpDHO2yv/GHHXPl6fKD064d9c+PsmDUfrwfFF1M6GybbsWIr5xcRp1LR4vae9uyrtqKfyYSy2XP+SQuwZVP4fkVgeGlcnx+VbZk2H+/E2CPLy2PqbMR8c1H+fF3pxGAb1ovvZxLe2h56qtc4G1EP0tEuW8/UJteaRfH5hYLKlcIN+p+WsSL+/i2goDyrv6/1MhHPg3gy1KkzoXapyJ8cPLy8+KWL5lLRn22HYrn6d5nZVqyG3wehUODa/4VZbyuqv1dKoEN1aeWG0CWiXmZAh1qEh+ZzSxbAxwkQ0qS07YaDJXvP35cHSTNblxfeXCzyIQ6Cj3ZJltkuZt3Bce6n073QxLVg7p9NFsyax9MXctSPFN9YZsE6xefyCj/IvrtuzhjFAw7oXJmbudxcxHsbnO8FTrJWMxGvFNAoD7szwcuMlfD1b8DfAzte5v9lytx4fQzH7+TXjnodbSryNw0/3m2VGzPElDG+XgmmTjVp9yxaJOpLIvZuvvjPiR8XsTL+vDWAbMzWYY0LRbzCwCgoQmm9z0L2jOfvFvDXuV9385uJ+H4+tjrur/TNM2E2Ij/MrBoXDJhjItaTAEltxqk29xeI/kcCqi/eP9m+aYGYvxTjLpsNTFZfwJpEfdPblOznUj///+dnd3i6Upv/fJbD82E7qqmHv9EcOZ/V0n7gepOGUPN4Y1HPg3HF0X7aSQ/nif1KwpFyBaAM81g8769XQNVKvXzPXCORL7sw/4ie0Y3PwKaL812xKGObpw+I9ayDavxjYGSTITvPnxcLziPzylLmGjIZ3++18Djs9Nek0rki/kmg/bNWkd/oueL/E6D9nJ2+UpqB6F+9oWHE4w2xfQ1EvfPDr9ee6pZs0Rffj8K47eSNfn6y3Z8cjdBKeIP3i/GWOCqbvNHO4zEblZ+QN/h952kHWvbkjVzuDQM82k3eUOfncxHEzidvNH8NHt6o9r7mzkfyBuWLNnxdRd5QCOnJz6mAef/tjUWoIrxB4yV4Poy8QWMT/CK8MZLfL7pQK7xR88J/ydvTNvi+gbyRw+e3DPb2J2909vSn9iuxaQZ54zKvDya46wx54yTvN1dAWC55YxfPBwsYIbxhxftlKzyXSN74wONrCS+/J2/c4vllAeM1yBvklwAMrSBv8PupdT02fHHm3vjC96cP1AlvnOLvXwuKv5E3kK/nP/3jcvLGet4f2qGFPXmD4hUJa4PIGzz9OkJgpA95Yx/vj7zglPDGr3y9PtC0kbyhyuPlDnVp5A3Kj+UoN+u/vRGKOY7kDbqfnLG5i7xh/OT3F+l5LlCUSd5I5euNgpIT5A1eH6sCobMveSOW19cgvGJI3kjp6Vdnx0J3NXmD6rkfXE0hb4zj84tGRTfyRry2xqqxKRK8L7zB839CPAYjecPYVUXBPXMhhk0jbyTyfiIIb5WTN2i+XqDYRN5I5v1yGljcJ2+84vkeh0Wq5I2Sn/R6n55iDI7CG+7PG4L3DC0A3Qryhpnwxj3hjZnml7eNHhWHNsIbej39ycVt+MaevEH5G4+qh8gbx3l9cgMNA/KGqv70ule9g+HaQ/IGHZ9C+P3j/3rjqwV5w1nG+2n84X+84QHdO8gbim39zgSO94W2beSNd9xnBdhaT97g53XELtgpvFHC60cUZASSN27y+yEFQvuSN5bw/N8PKUfIGzx+JwtRUUremNzjR+VCzL9H3nDn/VgZpCWRN+qFN/Z9Jm/U83zMA7Wx5I1m7o10NNtG3tAqUHi9Sf8Elu0gb8ir3PU5l1WEXoHkjVm8/8vC11nkjUx+XrdiyCzyRlx53c5M1whw7kPeaBfe2GtK3kgU3nieSt6oWqA/HiPzoU5C3qDfB6ohuJO8oaBXdSXqSDlsFt6gcRkECG/s+kvn4xD1Kqj9Rt6g+pIFK/eTNyZxrxWg813yRrPoz4KENzSFN7zHkjeGN1/Wfnc0BlqBvEG/b5TBJw/yxqz43BFO0aGotpG8IfoDbGgib/D8W5SJA4Q3+Pm8UopjhTceCG8MSSZvpInPf7lL3qD578Yp4eSNC/y+yQK1ZPIG3X958Ep4gz6PwfZz5I2dwhsyefKGE59/OsT4kDeW83EQDBfeoHpWiDZ9yRt9xX1eKrxB9Xk/7BDeqGSti2ZZbMJHwhtUXzJBW0beiF/X9ck5tBjDXMgb5fy85cDgePIGnfdE3CW8QfmThu0G5I2JwhtzVcgb9HvdXjw3mLzB68/TY2jZQd7QqlLRtFvtAqedyBtfknr6/ZVwLJa8QetNBQmSN2j/doL+KvLGa+p/MN6CvEHncTNe7CJv0O9tW7HtBnmja1ZHsuqZxThCeIPqSzo+1SJv/Dv/jnLyBp3nICwX3hD7j7UDyRs0Xo9+whu0XyEw8xR5Y+jVocF/mDniKOENuq/y4LAOeeMU7/+c8fop8sZE7o0SVG0kb4Tz31c84HMKecOdj5dCp/AG9bt7sfMWeYPisQtfh5E31vL+1hxUF5A3HPnYCVrDyBs0/704W4G8MYzXP3tQEd6g9a+Hjm/kDTvulQVY0kbeOCK8UfYbeUNNeCNHn7wh3o+KZeQNmt8eLC8jb2TwcTI+PUfe+MrjlYFJwhtTRf1XyiRvfOaf+2JzE3lDm5/nQBg3irxB9aAAK/zJG7vE8+fbkDeUef+TBIe/1HFvTOLx3gRPnckbfD+nlsCg8eQNQ37/JcNj4Y1Snl9x4CK8ITwDurPJGzT/rXCmgrzxkufndnzsTN74t9++q0beuM37nzA88VWJe4PmnwZ2uuSNFuGNjj7kDapniTDoGHmDzuM2/BhM3hgg4lclR96gfj8XHW+TNyLrzl4fPycSH04mb4j+GV81kjfo/bEQeJ68QeuJhD2h5I0S4RWbGeQNincWvrIlb3gIT9ULb/zbb9e+IG+4U/7h+jbyRgyvP1E45VfyBuVTNMyLJm9cEPOzFd6gfNyKY4U36HzvQMkC8sZh4Y3DR8gb50V9DRPeaOANgim88iVvOArPlB0ib1iTH3CFCXnjGHkIFtSQN4QHoFKZvBHF9zMENILJG7R/8RB+hrxB+bELVlwkb4jn4deR5A2qP5sRm8gb04R3/g/ZGEcWAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgAAAAAAAAA=eF7TjOk/9FXjjr3mKD1Kj9Kj9Cg9SpNAAwCM4SseAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFgYAAAAAAAA=eF4NzH8g1PcDx3El3Zf8znfnO6msL1+adPuWEnYvmWhNtWIiP5Zfo/OrrdGuWj+2hqnhK9EuPyrrixONTotN5Me5c37c4fw67j6f9zHLrwotctn6//l4qoRj4X6aZghOfaPFtWpB/PnopCueLfhjNPt5ZkwLKOblvOTMFri5Rd6Mq24Bi/Onk7OyBaM21cvv6ArRvC1E9WKbEFsXNrLvhwjheq6XG/i9EPuO/Hd65r4QfGLwNE4phOXadSuqdFvBKk88nrurFcccj7NOcFrh+SS1avONVpiallW2Slrx0WX3MS9NKyysVi+V2Yuwz9j5oiREBKO2lvcHr4mw0yRaNtsuQoTzdSnRFuNQvGsJ31mMLnt1+Uefi5EumL+iKBVjhLcsvDUuRtstkwov6zboS+JOCcLaUFoYVT9R2IafmR4TkpE2XLBoc7SzkmCr73NeaaQEJTLm6aFSCS5ETmY0TEtwuGTFuOW2dswcjnrL7lw7pj+oCk0StyN43uKHALMO9N7VYZh+2gH+qPizsnsdiHjbq1J3ZSfcI+Ib5T6d4LBG1wbc6cTUtUzXPk0nwg5qRpc+6YKLHnUgtKILDfvriFpbCsPYSJP0bVL8PnT0D+dwKaZW+UydyJLiC46s3qVZirCi5PjtL6VITvM3TbeTwUnDGtoTLIMwRazPvipDkzjmY45IhiPrYm5+uyzDoYLFq0Y7uyGdVX91O74bjRWMrb7F3VAfr1+corvhWmEpjrDoAS8wb47v14P1w15fPMzqwXTNUpe0owePfrb3t1zTi3BWZar23l7I8yyKsi714pHDb4H6Tb2QDjJMnLTkMChwTXBgy5FZ/3ae+KwcObV066paOdKLPUjnghwvVbHnqnb0wfb6MbJwsg+zOfsD0qr6UB1+8N9BT/ugV/BKUGffD/Ppj70NOP2gDQ23dNzpxz8/DHnGI/1IY/u47F0/AOe5xbpZ/wFEOk2tP589gFrfkzMJnQNYDkqtETEGYbNnTYJs9yCMv3MMXOQOYrlpVvyschD1uz0lphODSE0O8jmxcQjXqzRmAr8huLlya19fGYIi73VX7uMhpPA/W0W/GIL3NQ0/arMCc7qii97BCpTHm1l/naFA/0nDLx0bFRDk8qa4cwpwupKOFW0ahlaD4Iy/7zDunr3KNL80jL9uDaxOrhrGbFlaUDs1DNfb7xXaGY2g/ETPjS2uI7A6aD9pGz2ChpZ3aouyR5A/UXYhrGEEgbaskbmJEbAdCk07zJSgNvCGmFAi3fcQdT5aCS3e3rr+TCVOf2NWmfJQCbeLxZrblBILP3YXzjBUaLy21+V9BxUOGx1h/+ajgp9c/p9irgpvuS+36BaqgCqXVWeaVFjaHKNjPq6Ced/kTUcdCgK/iBo9JoWkBT9jji0FzzNZ60J3UbjzOo6x9CEFVs8Oy8KjFDb+KPB1iaGwo3ErI+EMBd6lvEWPy2+8nZWDkEchRxG/mc2nINQ15zfXUGD6cO0mRRRsdJbKa/spfB5YLXf+ncJ4grXexXkKbSVfaaZW0nj8q8uzjSY0Hv5UY7RyA40yy6vMXHsa5emazrFdNJxqlrdre9Hg50dZu/vSaNK18/EOpcEuCjPSj6dBC5J+ST5NI3A9d7YhmcZ9LYH0URYNz4lGzi8FNEL3KZ485NNITawIS3xAw7zqQtDzxzRuSB+0szpoZIQpHXYO0Hh0eTiXoaZBDsT61U/TcLMVmWUs0BjL88ix0Sbg0vUGlwwI/GSSQj6TwObTRma+FUErl54Pfpfgbp1e4tPtBCubDO9Fsgl+UpPvn3kRvEwPfXLwEIG36R6Ps0cJunT9l0+FE8Q2hrD3xBJ4fOD759iXBBmz+yYCv37TN21/UPIdQXudqlT2A8H5unu79XMI0mQ6L7YUEFgXKOM2/Z/Ad6wscaacYJNCUJ5ZTWBctzp7TR1BfnBxyrFmgqjod9szJQTvuUuu5He/+Znrq1IGCf6XwUj9hCLY/w/dWNY4QZK7qHp+miAnJDIge54gMk6VbbxEwLB/lc5ZocbTycaAIoYaz2fq5381UIN3s/9A9Vo1JvivvDL/pcbfFSE7Og==AQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAAHQAAAAAAAAA=eF7twQENAAAAwqD3T20PBxQAAAAAAMCXARkAAAE=AQAAAAAAAAAAgAAAAAAAALAlAAAAAAAAHwgAAAAAAAA=eF512Ht0z3Ucx3G0mB1JS2u5tZDjcjQasRBzOUiMxBZiORKOy1wazXIy2sz9ttyyxWjMNsPMpeUIuQ47HbmEg5brjOMIR6z6vHe+r39eL+0/D/y+v+/3+/5+Pt89y5V79s/KFfazq/3/+dON937tObS3/D17pST7cwf5d82Tnv3/A3qNyp+0JFI8ruzfR4kfKc7qeiV2mHh+T/ucEeL9Njdo7ps5Wrz3LPv8aPH5O8PnLRs7Qfz4DTvuJPGar1Wp0CQxRo/7vn2fKeInph6O2ZMaKx6fZd8zTnzzpZnFfXZOE/ctuz5fi3+6Nihnwojp4n1/tPOKFw8+Nc190RnifiV2vjPF21a8WL/i9G/0+79u1yFBPKp1m0vh8xLF7/e26zNL/MORNm9J4iHT7brNFr+0/FHfovVzxMNy7HrOFd9wqF/Vplvn6fmWXef54uMfbnMHXiB+K8Gu/0Lx1f5JYVFX1Xul2H1ZJF6h8c463xSrZ2y3+7VYz7fD9Scb76lXL7D7uES8R0TAuROP1P/6w+7vUvH0sV3y7peqD/z7grvvyeJVEiYtCfT5Vvynl2we1KNXp0W381sm/kYjmxP133LdZa62XDyhg52uemhB+SaJASvESyLKFjLxlKJmvpm1VoqHj7N5U6/wZMjVwrqrxPMSbA7VP/dfsO9Bw+/EA1NsPtWPNNqTWiN4tXjcdptb9WZhJXHtW6aIXymweVZPjqw1YFibVPEuf9qcq5fuWL/qQND3el++svlX39ypnd+ZNPXEyvZcqEedPDXlZoM1eh+T7XlRf3ngaPcAqN8OsudI/eC15/pXbbpWPDXTni/1mAnudHPU/Vrbc6c+vPTtkJCQNPH9++x5VP9o1tE1XfLU3+plz6m6b/Wh1SJD14lfPmfPr/ru1MfuwOpLPrPnWn1Mk0VugNbrPNyz51299o6GgxbsU38cZ+vAD+KFHfe6E1bP8LX1QT3+RERo7mH1QUtt3UgXbzHgbvrBHuovBNl6on7taoK70Op7N9k6s0F8xXg3Vn3UJ7ay9Uf9g9Lt90tPqdfbb+vSRvHOSe6wkeorw225Uh8T4Jaf8+qTL9o6liF+aJ1bHgarzxxtj7t64xbVs7teUY8tW/c2iR/bt8ktKOo1Ztt6qD6qT6c5o6+r7wq0dTJTvNrl391Aq19It/VTfeQ4t8uWqO9+x9bVLHG/fyqfSYtW//gXW2/VM+a6x/e++pO+tg5n6/ep6cY5Rr1Vka3P6lkZ7vY+Vn863tbtzeI9Q93pxqmnlHOH3aNecuhf96OeesjW+RzxoZt6tEoKU++2wNZ/9eCJy8b6z1C/09/2BfWId92ueUD959q2X6h3LB/sXkC3iDe8avuI+otHYt1Aqz/ItP1F/fzCg+6E1WdMsn1HvSTCf8beo+oRbWw/Ur9bZ/Du7lW2ip+u4OP2KfX8a/YLlnraUdu/1GdlP3ALtHrgYru96vFfuMtcqF4cafud+qq27rD+2/Rzgtw2GKI+wsdta33VA2/Y/viMzzlmr5nqt7Nt31SPW+y2hTPqQ2NsP1XvNsAt24G5Orfv2T6r/kpdt6wOUM9+3i2TseqBN+01UH16ge3L6o1y3LJ0Ub3aUtuv1R9OdstGne3iFwbaPq6+v717fKPUO9ez3+PUsyq6cV6j/uot2/fVTx93t7dIPX+LvQ/k6dwmu9Otr570pb0nqEd/Mtz9qJ/tYO8P6h3rb119N109s5K7u4fV44tL3cKhPuKkvW/sEA/f1t0dWL3lMnsPUfeZmuw2PPWxg+39RP1s2BW3YKl3ezPRDbR6cGX3W8Fd9YASe5/ZKf600C2TzdWLcu09R33lcrdsTFD3ibP3H/UxQ+wxUn/Y0Y3zKfULDdxYPVDf7+dub4D2qI133GVupb7QTjdSvZkddoo6OhX3K3QqdnQqdnQqdnQqdnQqdnQqdnQqdnQqdnQqdnQqOa7XqdjRqdjRqdjRqdjRqdjRqdjRqdjRqdjRqdjRqeT7e52KHZ2KHZ2KHZ2KHZ2KHZ2KHZ2KHZ1KztfrVOzoVOzoVOzoVOzoVOzoVOzoVHK+XqdiR6diR6diR6diR6diR6diR6diR6diR6diR6diR6diR6diR6diR6diR6diR6eS++V1KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KrkvXqdiR6diR6diR6eS++h1KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KnZ0KpkHr1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1Oxo1PJ/fI6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6FTs6lcyt16nY0ank+3idih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dih2dSq6n16nkvLxOxY5OxY5OxY5OxY5OxY5OxY5OxY5OxY5OxY5OJZ/jdSp2dCr5Pl6nks/xOhU7OhU7OpXMrdepZG69TiVz63UqdnQqdnQqOS+vU7GjU7GjU7GjU7GjU7GjU7GjU7GjU7GjU7GjU8ncep1K5tbrVDK3XqdiR6diR6diR6diR6diR6eSefM6lcyt16nY0anY0anY0anY0ankvLxOJXPrdSqZW69TsaNTsaNTsaNTsaNTyXl5nYodnUrm1utUMrdep5K59ToVOzoVOzoVOzoV+3+HTLn8AQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAAnAQAAAAAAAA=eF5dilXYEAQQBP+lu7u7u7u7u7u7u7tTMAhbUFDCFpRQsBMUTNIEBZNQQh/cfdi7l/ludhIS/r8k5Ptk4uCTkh+ETj4Z+WHo5JOTH4VOPgX5cejkU5KfhE4+FXkidPKpyZOhk09Dfho6+bTkZ6GTT0eeCp18evJ06OQzkJ+HTj4j+UXo5DORX4ZOPjP5Vejks5Bfh04+K/lN6OSzkWdCJ5+dPBs6+RzkudDJ5yTPh04+F3khdPK5yYuhk89Dfhs6+bzkd6GTz0d+Hzr5/OQPoZMvQP4YOvmC5E+hky9EXgqdfGHycujki5A/h06+KPlL6OSLkVdCJ1+cvBo6+RLkr6GTL0n+Fjr5UuTvoZMvTf4ROvky5J+hky9L/hU6+XLktdDJlyevh06+AnkjdPIVyZuhk69E/h06+crkP6GTr0LeCp18VfJ26OSrkXdCJ1+dvBs6+Rrkv6GTr0kmwDv5WprhnXxtMhG8k69DJoZ38nXJJPBOvh6ZFN7J1yeTwTv5BmRyeCffkEwB7+QbkSnhnXxjMhW8k29CpoZ38k3JNPBOvhmZFt7JNyfTwTv5FmR6eCffkswA7+RbkRnhnXxrMhO8k29DZoZ38m3JLPBOvh2ZFd7JtyezwTv5DmR2eCffkcwB7+Q7kTnhnXxnMhe8k+9C5oZ38l3JPPBOvhuZF97JdyfzwTv5HmR+eCffkywA7+R7kQXhnXxvshC8k+9DFoZ38n3JIvBOvh9ZFN7J9yeLwTv5AWRxeCc/kCwB7+QHkSXhnfxgshS8kx9CloZ38kPJMvBOfhhZFt7JDyfLwTv5EWR5eCc/kqwA7+RHkRXhnfxoshK8kx9DVoZ38mPJKvBOfhxZFd7JjyerwTv5CWR1eCc/kawB7+QnkTXhnfxksha8k59C1oZ38lPJOvBOfhpZF97JTyfrwTv5GWR9eCc/k2wA7+RnkQ3hnfxsshG8k59DNoZ38nPJJvBOfh7ZFN7JzyebwTv5BWRzeCe/kGwB7+QXkS3hnfxishW8k19CtoZ38kvJNvBOfhnZFt7JLyfbwTv5FWR7eCe/kuwA7+RXkR3hnfxqshO8k19DdoZ38mvJLvBOfh3ZFd7Jrye7wTv5DWR3eCe/kewB7+TvIXvCO/lNZC94J7+Z7A3v5O8l+8A7+fvIvvBO/n6yH7yTf4DsD+/kt5AD4J38VnIgvJPfRg6Cd/LbycHwTv5Bcgi8k3+IHArv5B8mh8E7+UfI4fBO/lFyBLyTf4wcCe/kHydHwTv5J8jR8E5+BzkG3snvJMfCO/knyXHwTv4pcjy8k99FToB38rvJifBO/mlyEryTf4acDO/k95BT4J38XnIqvJPfR06Dd/L7yenwTv5Zcga8k3+OnAnv5J8nZ8E7+RfI2fBO/kVyDryTf4mcC+/kXybnwTv5V8j58E7+ALkA3skfJBfCO/lXyUXwTv41cjG8kz9ELoF38ofJpfBO/gi5DN7JHyWXwzv518kV8E7+DXIlvJM/Rq6Cd/LHydXwTv5Ncg28k3+LXAvv5N8m18E7+XfI9fBO/l1yA7yTf4/cCO/k+SYkCt1/t0NS4A==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAASAEAAAAAAAA=eF4txRGAGgAAAMC2BUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBA8PQfDwEARBEARBEARBEARBEARBEARBMOhOLhj4CDnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bh/7yt0ce+8e/nnjqmedeeOmV19546533Pvjok8+++Oqb73746ZffDvz5FHTIYUccdcxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0l7898tg//vXEU88898JLr7z2xlvvvPfBR5989sVX33z3w0+//Hbg76egQw474qhjjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgob/87ZHH/vGvJ5565rkXXnrltTfeeue9Dz765LMvvvrmux9++uW3A/8+BR1y2BFHHXPcCf8HMhRf7A==AQAAAAAAAAAAgAAAAAAAAMgAAAAAAAAADAAAAAAAAAA=eF7j5BweAADDigcJ + </AppendedData> +</VTKFile> diff --git a/Tests/Data/ThermoRichardsMechanics/CTF1/boundary_left.vtu b/Tests/Data/ThermoRichardsMechanics/CTF1/boundary_left.vtu new file mode 100644 index 0000000000000000000000000000000000000000..8dad35520eacd65dd4258cda72e63aaf90c80d45 --- /dev/null +++ b/Tests/Data/ThermoRichardsMechanics/CTF1/boundary_left.vtu @@ -0,0 +1,34 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" compressor="vtkZLibDataCompressor"> +<!--This file was created by meshio v4.4.0--> +<UnstructuredGrid> +<Piece NumberOfPoints="2" NumberOfCells="1"> +<Points> +<DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary"> +AQAAAACAAAAwAAAAFgAAAA==eJxjYMAP/qz8eMk3KcAexgcAPtgEpw== +</DataArray> +</Points> +<Cells> +<DataArray type="Int32" Name="connectivity" format="binary"> +AQAAAACAAAAIAAAADgAAAA==eJxjYGBgYARiAAAMAAI= +</DataArray> +<DataArray type="Int32" Name="offsets" format="binary"> +AQAAAACAAAAEAAAADAAAAA==eJxjYmBgAAAADAAD +</DataArray> +<DataArray type="Int64" Name="types" format="binary"> +AQAAAACAAAAIAAAACwAAAA==eJxjZoAAAAAgAAQ= +</DataArray> +</Cells> +<PointData> +<DataArray type="UInt64" Name="bulk_node_ids" format="binary"> +AQAAAACAAAAQAAAADgAAAA==eJxjYIAAZigNAAAoAAQ= +</DataArray> +</PointData> +<CellData> +<DataArray type="UInt64" Name="bulk_elem_ids" format="binary"> +AQAAAACAAAAIAAAACwAAAA==eJxjYIAAAAAIAAE= +</DataArray> +</CellData> +</Piece> +</UnstructuredGrid> +</VTKFile> diff --git a/Tests/Data/ThermoRichardsMechanics/CTF1/boundary_right.vtu b/Tests/Data/ThermoRichardsMechanics/CTF1/boundary_right.vtu new file mode 100644 index 0000000000000000000000000000000000000000..27babf8da1af02a742faf97f6ae93a7e93505d5e --- /dev/null +++ b/Tests/Data/ThermoRichardsMechanics/CTF1/boundary_right.vtu @@ -0,0 +1,34 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" compressor="vtkZLibDataCompressor"> +<!--This file was created by meshio v4.4.0--> +<UnstructuredGrid> +<Piece NumberOfPoints="2" NumberOfCells="1"> +<Points> +<DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary"> +AQAAAACAAAAwAAAAHQAAAA==eJybNRMEdtozoIFZUPE/Kz9e8k0KgMsDAGkTDcU= +</DataArray> +</Points> +<Cells> +<DataArray type="Int32" Name="connectivity" format="binary"> +AQAAAACAAAAIAAAADgAAAA==eJxjYGBgYARiAAAMAAI= +</DataArray> +<DataArray type="Int32" Name="offsets" format="binary"> +AQAAAACAAAAEAAAADAAAAA==eJxjYmBgAAAADAAD +</DataArray> +<DataArray type="Int64" Name="types" format="binary"> +AQAAAACAAAAIAAAACwAAAA==eJxjZoAAAAAgAAQ= +</DataArray> +</Cells> +<PointData> +<DataArray type="UInt64" Name="bulk_node_ids" format="binary"> +AQAAAACAAAAQAAAADgAAAA==eJxjZIAAJigNAAAwAAQ= +</DataArray> +</PointData> +<CellData> +<DataArray type="UInt64" Name="bulk_elem_ids" format="binary"> +AQAAAACAAAAIAAAACwAAAA==eJw7zgABAAZAAMg= +</DataArray> +</CellData> +</Piece> +</UnstructuredGrid> +</VTKFile> diff --git a/Tests/Data/ThermoRichardsMechanics/CTF1/domain.vtu b/Tests/Data/ThermoRichardsMechanics/CTF1/domain.vtu new file mode 100644 index 0000000000000000000000000000000000000000..a4a5a2711bf0807d28a6c8b2acad5fd36af64161 --- /dev/null +++ b/Tests/Data/ThermoRichardsMechanics/CTF1/domain.vtu @@ -0,0 +1,34 @@ +<?xml version="1.0"?> +<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" compressor="vtkZLibDataCompressor"> +<!--This file was created by meshio v4.4.0--> +<UnstructuredGrid> +<Piece NumberOfPoints="402" NumberOfCells="200"> +<Points> +<DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary"> +AQAAAACAAACwJQAASAgAAA==eJx12H10j2Ucx3G0mB1JS2sRLeSQU6ORhNhwkBgtbSGWU8JBI41mORk28zTM8pQtRrPZZnkmOaI8P52OPBQHLXpY4zjCEauu77o+/3w+2n9e+N2/+76v+3vde1epcu+fpUvsZ1un//O7+de+6z20r/w9e410+3Nn+Xet0u/9/0P6jNwxPjNOPLny38eLHygr6n4x6W3xHb3tc4aL91/XtFVg4SjxvjPs8xPE526NnrNozDjxI7/acceL13+sVrUWaYl63Jft+0wUPzppf+LOnCTxlCL7nsni685PK+u3dbJ4YOX1+Vj8rZVhJeOGTxGP+dLOK0U8/MRk90WnigeV2/lOE+9Q/VyT6lOm6/d/wq5Dqnj8C+3PR89JE7/e167PDPFXR9h6SxePmGLXbab4+cW3YkpXzxKPLLHrOVt8zb7+tZ9ZP0fPt/I6zxUfe3ODO3CG+O+pdv3niS8PTo+Mv6TeJ9vuy3zxak9vbTi9TL1gk92vBXq+nX+5k39Nve5hu4+Z4r1iQ84cvaX+5092fxeK543ptvl6hfrAv866+54lXit1fGZowCfiXz1k60E9YXluQsegReJPNrd1ov79RneZ6ywWT+1sp6ve7nDVFmkhS8TLYysHmXh2acvAwseXike/Z+tNvdqdIZeON1omvjnV1qH6u8EZu280+1Q8NNvWp/qB5jtz6oUv13m4ydatesvI8uRObbLFLx629ayeFff4gLfb54h3+9nWuXrFltXLvgn7TO/LR7b+1dd16Rh0Klc9raY9F+rxx05M/K3pCr2PWfa8qD88cJR7ANT/CLPnSH3v5fter/3MSvGcQnu+1BPHudMtUQ96wZ479WEVz0VEROSK79ltz6P6azMOrui2Wf3ZPvacqgfWHVonrt0q8Qtn7PlV355z2x1YPfMde67VR7eY7xbQal0P1+x5V2+wpdmgjN3qt5NtDnwufjxqlzth9YJAmw/qKUdj223crz5ooc2NPPHWA67m7e2l/kCYzRP1y5dS3YVW37XW5swa8SVj3bLqp/5+W5s/6q9UbLpecUK98R6bS/niXdPdYePUl0bbuFIfHeLGz4/qE87ZHCsQ37fKjYfB6tNG2eOu/nTrusXdL6onVc69teKHdq91A0W93kybh+oj+3WZNeoX9W2hNicLxetc+MEtaPWzeTY/1Ue853bZcvXtz9tcLdLn+u+ap3IT1N/41uatesFs9/heV78TY3O4WL9PfbecE9Xbltp8Vi8qcLf3tvrdsTa314n3budON1k9u4o77E718n3/uB/1nH0250vEh67t1TY9Ur1Hhs1/9fD3F40Jnqp+5XXbF9RjX3S75jfqXzew/UI9qmq4ewH9QrzZJdtH1B88kOQWtPqNQttf1H+ct9edsPrU8bbvqJfHBk/ddVA9tr3tR+pXGw7e3rPWevGT1QLcPqW+47L9gqWee9D2L/UZxTfcgFYPXWC3Vz3lA3eZj6uXxdl+p76sgzts8Ab9nDC3DUaoDw9w21qMeuivtj/e43MO2Wum+h/Ftm+qJy9w28Ip9aGJtp+q9xjgxnboRl23L9k+q/5IIzdWB6gX3+/GZJJ66G/2Gqg+5bDty+rNS9xYOqdeZ6Ht1+o3J7ix0XCTzsOBto+r7+nkHt949a6N7fc49aLqbjmvUH/0d9v31U8ecbe3VH3HF/Y+sFnXbZY73Sbq6R/ae4J6wpvD3I/66c72/qAe1WT98qt56oU13N3dr55SVuEGh/rwY/a+sUU8ekNPd2D1NovsPUQ9YFKW2/DUxwy29xP105EX3cBS7/FUmlvQ6uE13W8FV9VDyu19ZqvuI8fdmGylXrrR3nPUly52Y2OcekCyvf+ojx5ij5H6zSi3nE+on23qltUN9T1B7vaGaI/Kv+Iuc1v1eXa6ceot7bAT1dGpuF+hU7GjU7GjU7GjU7GjU7GjU7GjU7GjU7GjU7GjU8lxfadiR6diR6diR6diR6diR6diR6diR6diR6diR6eS7+87FTs6FTs6FTs6FTs6FTs6FTs6FTs6lZyv71Ts6FTs6FTs6FTs6FTs6FTs6FRyvr5TsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTyf3ynYodnYodnYodnUrmm+9UMg99p2JHp2JHp2JHp2JHp2JHp5L74juVzCvfqdjRqWQ++E4l99F3KnZ0KnZ0KnZ0KnZ0KnZ0KpkPvlOxo1Oxo1Oxo1Oxo1PJnPedih2dih2dih2dih2dStaD71Ts6FTs6FTs6FQy33ynkn3Edyp2dCp2dCp2dCp2dCp2dCp2dCp2dCp2dCp2dCp2dCp2dCq5X75TsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTsaNTyXPhO5U8175TsaNTybr1nYodnUq+j+9U7OhU7OhU7OhU7OhUsq/5TiX7oO9UMg99p2JHp2JHp5L3Sd+p2NGp2NGp2NGp2NGp2NGp2NGp2NGp2NGp2NGp9L3iv04l5+U7FTs6FTs6FTs6FTs6FTs6lbxv+E4l89Z3KnZ0KnZ0Kvkc36nY0ank+/hOJZ/jO5Xs775TyXuR71Sybn2nknXrO5WsW9+p2NGp2NGp5Lx8p2JHp2JHp5K55zsVOzqVzEPfqeQ9xHcq2Xd8p5L54zsVOzqVrFvfqWTd+k4l69Z3KnZ0KnZ0KnZ0KpkPvlOxo1PJevOdStat71Ts6FTs6FTs6FTs6FRyXr5Tybr1nUrWre9U7OhUso/4TsWOTiXvIb5TyXn5TiXvJ75Tybr1nUrWre9Usm59p2JHp2JHp2JHp2L/F4dMufw= +</DataArray> +</Points> +<Cells> +<DataArray type="Int32" Name="connectivity" format="binary"> +AQAAAACAAACADAAAGgQAAA==eJwtk1MUHQYUBN/Gtm07qY3UblPbtt0mdVPbdmrbtm3b1s7Z+zHnzp3/bTQajWbmKdO0vLl5uhrewjxTDW9pnq2GtzLPVcNbm+er4W3MC9XwtubFang781I1vL15uRrewbxSDe9oXq2GdzKvVcM7m9er4V3MG9XwrubNang381Y1vLt5uxrew7xTDe9p3q2G9zLvVcN7m/er4X3MB9XwvubDang/81E1vL/5uBo+wHxSDR9oPq2GDzKfVcMHm8+r4UPMF9XwoebLavgw81U1fLj5uho+wnxTDR9pvq2GjzLfVcNHm++r4WPMD9XwsebHavg481M1fLz5uRo+wfxSDZ9ofq2GTzK/VcMnm9+r4VPMH9XwqebPavg081c1fC7zdzV8bvNPNXwe8281fF7zXzV8PtNQGj4/r9LwBUwTpeELmqZKwxcyzZSGL2yaKw1fxLRQGr6oaak0fDHTSmn44qa10vAlTBul4UuatkrDp5t2SsOXMu2Vhi9tOigNX8Z0VBq+rOmkNHw501lp+PKmi9LwFUxXpeErmm5Kw1cy3ZWGr2x6KA1fxfRUGr6q6aU0fDXTW2n46qaP0vA1TF+l4TNMP6Xha5r+SsPXMgOUhq9tBioNX8cMUhq+rhmsNHw9M0Rp+PpmqNLwDcwwpeEbmuFKwzcyI5SGb2xGKg3fxIxSGr6pGa00fDMzRmn45mas0vAtzDil4Vua8UrDtzITlIZvbSYqDd/GTFIavq2ZrDR8OzNFafj2ZqrS8B3MNKXhO7JDpeE7sUOl4TuzQ6Xhu7BDpeG7skOl4buxSaXhu7NJpeF7sEml4XuySaXhe7FJpeF7s0ml4fuwSaXh+7JJpeH7sUml4fuzSaXhB7BJpeEHskml4QexSaXhB7NJpeGHsEml4YeySaXhM9mk0vBZbFJp+GFsUmn44WxSafgRbFJp+JFsUmn4UWxSafjRbFJp+DFsUmn4sWxSafhsNqk0/Dg2qTT8eDapNPwENqk0/EQ2qTT8JDapNPxkNqk0/BQ2qTT8VDapNPw0Nqk0/HQ2qTT8DDapNPxMNqk0/Cw2qTT8bDapNPwcNqk0/Fw2qTT8PDapNPx8Nqk0/AI2qTT8QjapNPwiNqk0/GI2qTT8EjapNPxSNqk0/DI2qTT8cjapNPwKNqk0/Eo2qTT8KjapNPxqNqk0/Bo2qTR8DptUGn4tm1Qafh2bVBp+PZtUGn4Dm1QafiObVBp+E5tUGn4zm1QafgubVBp+K5tUGn4bm1QafjubVBp+B5tUGn4nm1QafhebVBp+N5tUGn4Pm1Qafi+bVBp+H5tUGn4/m1Qa/gCbVBr+IJtUGv4Qm1Qa/jCbVBr+CJtUGv4om1Qa/hibVBr+OJtUGv4Em1Qa/iSbVBru02hS7X/bCFLg +</DataArray> +<DataArray type="Int32" Name="offsets" format="binary"> +AQAAAACAAAAgAwAALwEAAA==eJwNz5GCYgEAAMB3dwtBEARBEARBEARBEARBsBAEQRAEQRAEQRAEQRAEQRAEQbAQBEEQBEEQBEEQBEGwENzAfMB8BUEQIkyEKDHiJEiSIk2GLDnyFChSosw3FarUqNOgSYs2Hbr06DNgyIgxE6bMmLNgyYo1P2zYsmPPgSMnzly4cuPOgycv3vzyIfgTBF+ECBMhSow4CZKkSJMhS448BYqUKPNNhSo16jRo0qJNhy49+gwYMmLMhCkz5ixYsmLNDxu27Nhz4MiJMxeu3Ljz4MmLN798CP76EyJMhCgx4iRIkiJNhiw58hQoUqLMNxWq1KjToEmLNh269OgzYMiIMROmzJizYMmKNT9s2LJjz4EjJ85cuHLjzoMnL9788iH450+IMBGixIiT4D+YlV/s +</DataArray> +<DataArray type="Int64" Name="types" format="binary"> +AQAAAACAAABABgAAGQAAAA==eJzjZIAAzlF6lB6lR+lRepQmgQYAHKoHCQ== +</DataArray> +</Cells> +<PointData> +<DataArray type="UInt64" Name="bulk_node_ids" format="binary"> +AQAAAACAAACQDAAAnwIAAA==eJw11dViEAQAQFG6e3SN0TC6uxZ0jrGN7u5uxqjBglAwCCWUUBqTMEDBAAUllVDCIJQwaB443JfzCTdFiuelZCqmZhqmZTqmZwZmZCZmZhZmZTZmZw7mZC4GMDfzMC/zMT8LsCALsTCLsCgDWYxBLM4SLMlSLM0yLMtyLM9gVmBFVmJlVmFVVmN11mBN1mJt1mFd1mN9NmBDNmJjNmFTNmMIQxnGcDZnC7ZkK7ZmG7ZlO7ZnB3ZkJ0awMyPZhVGMZgy7shu7swd7shd7sw/7sh/7cwAHchAHcwiHchiHcwRHchRHcwzHchzHcwInchIncwqnchqncwZnchZjOZtxnMO5nMf5XMB4LuQiJjCRSUzmYi7hUi7jS3yZy7mCr/BVvsbXuZKruJpr+Abf5Fqu43pu4Ft8mxu5iZu5he/wXW7lNm7nDu7kLu7mHr7H9/kBP+RH/Jh7uY/7eYCf8FN+xs95kIf4Bb/kYR7hV/ya3/BbHuUxfsfveZwn+AN/5Eme4mme4Vme40/8med5gRd5ib/wV17mFV7lNf7G3/kH/+R13uBN3uJf/Ju3eYd3eY//8F/+x/95nw/4kI/4mE/4lC/Gn5KpmJppmJbpmJ4ZmJGZmJlZmJXZmJ05mJO5GMDczMO8zMf8LMCCLMTCLMKiDGQxBrE4S7AkS7E0y7Asy7E8g1mBFVmJlVmFVVmN1VmDNVmLtVmHdVmP9dmADdmIjdmETdmMIQxlGMPZnC3Ykq3Ymm3Ylu3Ynh3YkZ0Ywc6MZBdGMZox7Mpu7M4e7Mle7M0+7Mt+7M8BHMhBHMwhHMphHM4RHMlRHM0xHMtxHM8JnMhJnMwpnMppnM4ZnMlZjOVsxnEO53Ie53MB47mQi5jARCYxmYu5hEv5DPFzqWw= +</DataArray> +</PointData> +<CellData> +<DataArray type="Int32" Name="MaterialIDs" format="binary"> +AQAAAACAAAAgAwAAEAAAAA==eJxjYBgFo2AU4AIAAyAAAQ== +</DataArray> +</CellData> +</Piece> +</UnstructuredGrid> +</VTKFile>