From c90fe84193298cf2cd5ad417df4fbd022c15b49d Mon Sep 17 00:00:00 2001 From: Lars Bilke <lars.bilke@ufz.de> Date: Wed, 15 Feb 2017 15:09:58 +0100 Subject: [PATCH] [web] Added heatconduction benchmarks. --- web/config.toml | 6 ++ .../heatconduction-dirichlet.md | 72 ++++++++++++++++++ .../heatconduction/heatconduction-neumann.md | 76 +++++++++++++++++++ .../heatconduction/validation-1.png | 3 + .../heatconduction/validation_neumann-1.png | 3 + 5 files changed, 160 insertions(+) create mode 100644 web/content/docs/benchmarks/heatconduction/heatconduction-dirichlet.md create mode 100644 web/content/docs/benchmarks/heatconduction/heatconduction-neumann.md create mode 100644 web/content/docs/benchmarks/heatconduction/validation-1.png create mode 100644 web/content/docs/benchmarks/heatconduction/validation_neumann-1.png diff --git a/web/config.toml b/web/config.toml index 3211e8138ab..07c75370488 100644 --- a/web/config.toml +++ b/web/config.toml @@ -33,6 +33,12 @@ news = "news" [[menu.benchmarks]] name = "Elliptic" identifier = "elliptic" + weight = 1 [[menu.benchmarks]] name = "Small Deformations" identifier = "small-deformations" + weight = 2 +[[menu.benchmarks]] + name = "Heatconduction" + identifier = "heatconduction" + weight = 3 diff --git a/web/content/docs/benchmarks/heatconduction/heatconduction-dirichlet.md b/web/content/docs/benchmarks/heatconduction/heatconduction-dirichlet.md new file mode 100644 index 00000000000..abfa8862249 --- /dev/null +++ b/web/content/docs/benchmarks/heatconduction/heatconduction-dirichlet.md @@ -0,0 +1,72 @@ ++++ +author = "Tianyuan Zheng" +date = "2017-02-15T14:54:02+01:00" +title = "Heatconduction (Dirichlet)" +weight = 121 +project = "Parabolic/T/1D_dirichlet/line_60_heat.prj" + +[menu] + [menu.benchmarks] + parent = "heatconduction" + ++++ + +{{< project-link >}} + +## Equations + +We consider homogeneous parabolic equation here: +$$ +\begin{equation} +\rho C_\textrm{p}\frac{\partial T}{\partial t} + \nabla\cdot(\lambda \nabla T) = 0 \quad \text{in }\Omega +\end{equation}$$ +w.r.t boundary conditions +$$ +\eqalign{ +T(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr +k{\partial T(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N, +} +$$ +where $T$ could be temperature, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$. + +## Problem specification and analytical solution + +We solve the Parabolic equation on a line domain $[60\times 1]$ with $k = 3.2$ and $\rho C_\textrm{p} = 2.5e10^6$ w.r.t. the specific boundary conditions: + +$$ +\eqalign{ +T(x) = 274.15 &\quad \text{on } (x=0) \subset \Gamma_D,\cr +k {\partial T(x) \over \partial n} = 0 &\quad \text{on } (x=60) \subset \Gamma_N. +} +$$ + +The solution of this problem is +$$ +\begin{equation} +T(x,t) = T_\textrm{b} \textrm{erfc}(\frac{x}{\sqrt{4\alpha t}}), +\end{equation} +$$ + +where $T_\textrm{b}$ is the boundary temperature, $\textrm{erfc}$ is the complementary error function and $\alpha = \lambda/(C_p \rho)$ is the thermal diffusivity. + +## Input files + +The main project file is [line_60_heat.prj](https://github.com/ufz/ogs-data/blob/master/Parabolic/T/1D_dirichlet/line_60_heat.prj). It describes the processes to be solved and the related process variables together with their initial and boundary conditions. It also references the mesh and geometrical objects defined on the mesh. + +As of now a small portion of possible inputs is implemented; one can change: + - the mesh file + - the geometry file + - introduce more/different Dirichlet boundary conditions (different geometry or other constant values) + - introduce more/different Neumann boundary conditions (different geometry or other constant values) + +The geometries used to specify the boundary conditions are given in the `line_60_heat.gml` file. + +The input mesh `line_60_heat.vtu` is stored in the VTK file format and can be directly visualized in Paraview for example. + +## Results and evaluation + +The result, written in the `.vtu` file, can be visualized with Paraview, for example. + +Loading the `line_60_heat_pcs_0_ts_65_t_5078125.000000.vtu` file in Paraview and Plotting over line. Compared to the analytical solution 'temperature_analytical.vtu', the results are very good: + +{{< img src="../validation-1.png" >}} diff --git a/web/content/docs/benchmarks/heatconduction/heatconduction-neumann.md b/web/content/docs/benchmarks/heatconduction/heatconduction-neumann.md new file mode 100644 index 00000000000..0cd3cbfd809 --- /dev/null +++ b/web/content/docs/benchmarks/heatconduction/heatconduction-neumann.md @@ -0,0 +1,76 @@ ++++ +date = "2017-02-15T14:54:12+01:00" +title = "Heatconduction (Neumann)" +weight = 122 +project = "Parabolic/T/1D_neumann/line_60_heat.prj" +author = "Tianyuan Zheng" + +[menu] + [menu.benchmarks] + parent = "heatconduction" + ++++ + +{{< project-link >}} + +## Equations + +We consider homogeneous parabolic equation here: +$$ +\begin{equation} +\rho C_\textrm{p}\frac{\partial T}{\partial t} + \nabla\cdot(\lambda \nabla T) = 0 \quad \text{in }\Omega +\end{equation}$$ +w.r.t boundary conditions +$$ +\eqalign{ +T(x, t=0) = T_0,\cr +T(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr +k{\partial T(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N, +} +$$ +where $T$ could be temperature, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$. + +## Problem specification and analytical solution + +We solve the Parabolic equation on a line domain $[60\times 1]$ with $k = 3.2$ and $\rho C_\textrm{p} = 2.5e10^6$ w.r.t. the specific boundary conditions: + +$$ +\eqalign{ +k {\partial T(x) \over \partial n} = 2 &\quad \text{on } (x=0) \subset \Gamma_N.\cr +k {\partial T(x) \over \partial n} = 0 &\quad \text{on } (x=60) \subset \Gamma_N. +} +$$ + +The solution of this problem is + +TODO: is not rendered correct + +$$ +\begin{equation} +T(x,t) = \frac{2q}{\lambda}\left((\frac{\alpha t}{\pi})^{\frac{1}{2}} e^{-x^2/4\alpha t} - \frac{x}{2}\textrm{erfc}( \frac{x}{2\sqrt{\alpha t}})\right), +\end{equation} +$$ + +where $T_\textrm{b}$ is the boundary temperature, $\textrm{erfc}$ is the complementary error function and $\alpha = \lambda/(C_p \rho)$ is the thermal diffusivity. + +## Input files + +The main project file is `line_60_heat.prj`. It describes the processes to be solved and the related process variables together with their initial and boundary conditions. It also references the mesh and geometrical objects defined on the mesh. + +As of now a small portion of possible inputs is implemented; one can change: + - the mesh file + - the geometry file + - introduce more/different Dirichlet boundary conditions (different geometry or other constant values) + - introduce more/different Neumann boundary conditions (different geometry or other constant values) + +The geometries used to specify the boundary conditions are given in the `line_60_heat.gml` file. + +The input mesh `line_60_heat.vtu` is stored in the VTK file format and can be directly visualized in Paraview for example. + +## Results and evaluation + +The result, written in the `.vtu` file, can be visualized with Paraview, for example. + +Loading the `line_60_heat_pcs_0_ts_65_t_5078125.000000.vtu` file in Paraview and Plotting over line. Compared to the analytical solution 'temperature_analytical.vtu', the results are very good: + +{{< img src="../validation_neumann-1.png" >}} diff --git a/web/content/docs/benchmarks/heatconduction/validation-1.png b/web/content/docs/benchmarks/heatconduction/validation-1.png new file mode 100644 index 00000000000..d2c101988a4 --- /dev/null +++ b/web/content/docs/benchmarks/heatconduction/validation-1.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cf053b68c78001596079ec663c8bca99ecec8ad17a430151a41a9526f6fa0955 +size 167096 diff --git a/web/content/docs/benchmarks/heatconduction/validation_neumann-1.png b/web/content/docs/benchmarks/heatconduction/validation_neumann-1.png new file mode 100644 index 00000000000..470e24c1a67 --- /dev/null +++ b/web/content/docs/benchmarks/heatconduction/validation_neumann-1.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:559a48389b8f605a3085f016f8f4125ded01a8ac8764b983531c9be02356fa35 +size 217769 -- GitLab