diff --git a/web/content/docs/benchmarks/richards-mechanics/BishopsEffectiveStress.png b/web/content/docs/benchmarks/richards-mechanics/BishopsEffectiveStress.png new file mode 100644 index 0000000000000000000000000000000000000000..13fe53eef21022c0ea63e399ccc67bdbb8033f01 --- /dev/null +++ b/web/content/docs/benchmarks/richards-mechanics/BishopsEffectiveStress.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:891fc59993dfba7610a73b4f49f8ce310419a679711c427fa1dc1d5783bc05fe +size 65602 diff --git a/web/content/docs/benchmarks/richards-mechanics/bishops-effective-stress.pandoc b/web/content/docs/benchmarks/richards-mechanics/bishops-effective-stress.pandoc new file mode 100644 index 0000000000000000000000000000000000000000..b35e15f13ad572add18e702c6e354f9d02ea696c --- /dev/null +++ b/web/content/docs/benchmarks/richards-mechanics/bishops-effective-stress.pandoc @@ -0,0 +1,33 @@ ++++ +project = "RichardsMechanics/bishops_effective_stress_power_law.prj" +author = "Dmitri Naumov" +date = "2020-02-27" +title = "Bishop's effective stress models comparison" +weight = 153 + +[menu] + [menu.benchmarks] + parent = "richards-mechanics" + ++++ + +{{< data-link >}} + +Two models for the Bishop's effective stress computation are presented; the +power-law model, and saturation cut-off model. The models are: +$$ +\chi(S_\mathrm{L}) = S_\mathrm{L}^{m_\chi} +\qquad \mbox{and}\qquad +\chi(S_\mathrm{L}) = + \chi = \begin{cases} + 1 & \mbox{for $S_\text{L} \geq S_\text{cutoff}$} + \\ + 0 & \mbox{for $S_\text{L} < S_\text{cutoff}$.} + \end{cases} +$$ +Simulation result shows different influence of the effective stress on the +displacement. In the test the medium is desaturated and then saturated again, +which causes shrinkage and expansion of the domain. Power law with exponents 1, +1/5, and 5 and saturation cut-off at maximum liquid saturation of 0.95 are +compared. +{{< img src="../BishopsEffectiveStress.png" >}}