diff --git a/ProcessLib/RichardsMechanics/Tests.cmake b/ProcessLib/RichardsMechanics/Tests.cmake
index 0880f32929508435fcdf1fa4e72b6328db3860fe..33d5dcdedbc37069a9fda18d3809ade57614f1af 100644
--- a/ProcessLib/RichardsMechanics/Tests.cmake
+++ b/ProcessLib/RichardsMechanics/Tests.cmake
@@ -58,3 +58,24 @@ if(TEST ogs-RichardsMechanics_square_1e2_confined_compression_restart-time)
     set_tests_properties(ogs-RichardsMechanics_square_1e2_confined_compression_restart-time PROPERTIES
         DEPENDS ogs-RichardsMechanics_square_1e2_confined_compression-time-vtkdiff)
 endif()
+
+AddTest(
+    NAME RichardsMechanics_liakopoulosHM
+    PATH RichardsMechanics/LiakopoulosHM
+    EXECUTABLE ogs
+    EXECUTABLE_ARGS liakopoulos.prj
+    WRAPPER time
+    TESTER vtkdiff
+    REQUIREMENTS NOT (OGS_USE_LIS OR OGS_USE_MPI)
+    RUNTIME 17
+    DIFF_DATA
+    liakopoulos_t_300.vtu liakopoulos_t_300.vtu sigma sigma 1e-9 1e-12
+    liakopoulos_t_300.vtu liakopoulos_t_300.vtu displacement displacement 1e-10 1e-12
+    liakopoulos_t_300.vtu liakopoulos_t_300.vtu saturation saturation 1e-10 1e-12
+    liakopoulos_t_600.vtu liakopoulos_t_600.vtu sigma sigma 1e-9 1e-12
+    liakopoulos_t_600.vtu liakopoulos_t_600.vtu displacement displacement 1e-10 1e-12
+    liakopoulos_t_600.vtu liakopoulos_t_600.vtu saturation saturation 1e-10 1e-12
+    liakopoulos_t_7200.vtu liakopoulos_t_7200.vtu sigma sigma 1e-9 1e-12
+    liakopoulos_t_7200.vtu liakopoulos_t_7200.vtu displacement displacement 1e-10 1e-12
+    liakopoulos_t_7200.vtu liakopoulos_t_7200.vtu saturation saturation 1e-10 1e-12
+)
\ No newline at end of file
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos.prj b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos.prj
new file mode 100644
index 0000000000000000000000000000000000000000..9259d88c9758695f5525787b42bbdbd903e2244e
--- /dev/null
+++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos.prj
@@ -0,0 +1,416 @@
+<?xml version="1.0" encoding="ISO-8859-1"?>
+<OpenGeoSysProject>
+    <meshes>
+        <mesh axially_symmetric="true">liakopoulos.vtu</mesh>
+        <mesh axially_symmetric="true">liakopoulos_left.vtu</mesh>
+        <mesh axially_symmetric="true">liakopoulos_right.vtu</mesh>
+        <mesh axially_symmetric="true">liakopoulos_top.vtu</mesh>
+        <mesh axially_symmetric="true">liakopoulos_bottom.vtu</mesh>
+    </meshes>
+    <processes>
+        <process>
+            <name>RM</name>
+            <type>RICHARDS_MECHANICS</type>
+            <integration_order>3</integration_order>
+            <dimension>2</dimension>
+            <mass_lumping>true</mass_lumping>
+            <constitutive_relation>
+                <type>LinearElasticIsotropic</type>
+                <youngs_modulus>E</youngs_modulus>
+                <poissons_ratio>nu</poissons_ratio>
+            </constitutive_relation>
+            <process_variables>
+                <displacement>displacement</displacement>
+                <pressure>pressure</pressure>
+            </process_variables>
+            <secondary_variables>
+                <secondary_variable internal_name="sigma" output_name="sigma"/>
+                <secondary_variable internal_name="epsilon" output_name="epsilon"/>
+                <secondary_variable internal_name="velocity" output_name="velocity"/>
+                <secondary_variable internal_name="saturation" output_name="saturation"/>
+            </secondary_variables>
+            <specific_body_force>0 -9.81</specific_body_force>
+            <initial_stress>Initial_stress</initial_stress>
+        </process>
+    </processes>
+    <media>
+        <medium>
+            <phases>
+                <phase>
+                    <type>AqueousLiquid</type>
+                    <properties>
+                        <property>
+                            <name>bulk_modulus</name>
+                            <type>Constant</type>
+                            <value>2e9</value>
+                        </property>
+                        <property>
+                            <name>viscosity</name>
+                            <type>Constant</type>
+                            <value>1e-3</value>
+                        </property>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>1e3</value>
+                        </property>
+                    </properties>
+                </phase>
+                <phase>
+                    <type>Solid</type>
+                    <properties>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>2e3</value>
+                        </property>
+                        <property>
+                            <name>bulk_modulus</name>
+                            <type>Constant</type>
+                            <value>1e12</value>
+                        </property>
+                        <property>
+                            <name>biot_coefficient</name>
+                            <type>Constant</type>
+                            <value>1</value>
+                        </property>
+                        <property>
+                            <name>porosity</name>
+                            <type>Constant</type>
+                            <value>0.2975</value>
+                        </property>
+                        <property>
+                            <name>permeability</name>
+                            <type>Constant</type>
+                            <value>4.5e-13</value>
+                        </property>
+                    </properties>
+                </phase>
+            </phases>
+            <properties>
+                <property>
+                    <name>saturation</name>
+                    <type>SaturationLiakopoulos</type>
+                </property>
+                <property>
+                    <name>relative_permeability</name>
+                    <type>Curve</type>
+                    <independent_variable>liquid_saturation</independent_variable>
+                    <curve>k_rel</curve>
+                    <!--<type>RelPermLiakopoulos</type>-->
+                </property>
+                <property>
+                    <name>bishops_effective_stress</name>
+                    <type>BishopsPowerLaw</type>
+                    <exponent>1</exponent>
+                </property>
+                <property>
+                    <name>reference_temperature</name>
+                    <type>Constant</type>
+                    <value>293.15</value>
+                </property>
+            </properties>
+        </medium>
+    </media>
+    <time_loop>
+        <processes>
+            <process ref="RM">
+                <nonlinear_solver>basic_newton</nonlinear_solver>
+                <compensate_non_equilibrium_initial_residuum>false
+                </compensate_non_equilibrium_initial_residuum>
+                <convergence_criterion>
+                    <type>PerComponentDeltaX</type>
+                    <norm_type>NORM2</norm_type>
+                    <abstols>1e-6 1e-10 1e-10</abstols>
+                    <!--Toleranzen pressure u_x u_y-->
+                </convergence_criterion>
+                <time_discretization>
+                    <type>BackwardEuler</type>
+                </time_discretization>
+                <time_stepping>
+                    <type>FixedTimeStepping</type>
+                    <t_initial> 0.0 </t_initial>
+                    <t_end>7200</t_end>
+                    <timesteps>
+                        <pair><repeat>10</repeat>
+                              <delta_t>1</delta_t></pair>
+                        <pair><repeat>9</repeat>
+                              <delta_t>10</delta_t></pair>
+                        <pair><repeat>11</repeat>
+                              <delta_t>100</delta_t></pair>
+                        <pair><repeat>3</repeat>
+                              <delta_t>200</delta_t></pair>
+                        <pair><repeat>3</repeat>
+                              <delta_t>400</delta_t></pair>
+                        <pair><repeat>7</repeat>
+                              <delta_t>600</delta_t></pair>
+                    </timesteps>
+                </time_stepping>
+            </process>
+        </processes>
+        <output>
+            <type>VTK</type>
+            <prefix>{:meshname}</prefix>
+            <suffix>_t_{:gtime}</suffix>
+           <timesteps>
+                <pair>
+                    <repeat>500</repeat>
+                    <each_steps>10</each_steps>
+                </pair>
+            </timesteps>
+            <variables>
+                <variable>displacement</variable>
+                <variable>pressure</variable>
+                <variable>sigma</variable>
+                <variable>epsilon</variable>
+                <variable>velocity</variable>
+                <variable>saturation</variable>
+            </variables>
+            <fixed_output_times>
+                0.06
+                60.
+                120.
+                300.0
+                600.0
+                1200.0
+                2400.0
+                4800.0
+                6000.0
+                7200.0
+            </fixed_output_times>
+        </output>
+    </time_loop>
+    <parameters>
+        <parameter>
+            <mesh>liakopoulos</mesh>
+            <name>Initial_stress</name>
+            <type>Function</type>
+            <expression>0</expression>
+            <expression>-((1-0.2975)*2e3+0.2975*1e3)*9.81*(1-y)
+            </expression>
+            <expression>0</expression>
+            <expression>0</expression>
+        </parameter>
+        <!-- Mechanics -->
+        <parameter>
+            <name>E</name>
+            <type>Constant</type>
+            <value>1.3e6</value>
+        </parameter>
+        <parameter>
+            <name>nu</name>
+            <type>Constant</type>
+            <value>0.4</value>
+        </parameter>
+        <!-- Model parameters -->
+        <parameter>
+            <name>displacement_ic</name>
+            <type>Constant</type>
+            <values>0 0</values>
+        </parameter>
+        <parameter>
+            <name>pressure_ic</name>
+            <type>Constant</type>
+            <value>0.0</value>
+        </parameter>
+        <parameter>
+            <name>pressure_bc</name>
+            <type>Constant</type>
+            <value>0.0</value>
+        </parameter>
+        <parameter>
+            <name>dirichlet</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+    </parameters>
+    <curves>
+        <curve>
+            <name>k_rel</name>
+            <coords>
+                0.2
+                0.528
+                0.536
+                0.544
+                0.552
+                0.56
+                0.568
+                0.576
+                0.584
+                0.592
+                0.6
+                0.608
+                0.616
+                0.624
+                0.632
+                0.64
+                0.648
+                0.656
+                0.664
+                0.672
+                0.68
+                0.688
+                0.696
+                0.704
+                0.712
+                0.72
+                0.728
+                0.736
+                0.744
+                0.752
+                0.76
+                0.768
+                0.776
+                0.784
+                0.792
+                0.8
+                0.808
+                0.816
+                0.824
+                0.832
+                0.84
+                0.848
+                0.856
+                0.864
+                0.872
+                0.88
+                0.888
+                0.896
+                0.904
+                0.912
+                0.92
+                0.928000000000001
+                0.936000000000001
+                0.944000000000001
+                0.952000000000001
+                0.960000000000001
+                0.968000000000001
+                0.976000000000001
+                0.984000000000001
+                0.992000000000001
+                1
+            </coords>
+            <values>
+                0.0
+                0.0
+                0.0
+                0.003125124673949
+                0.020823885169721
+                0.038518821680155
+                0.056209865519575
+                0.073896945473639
+                0.091579987656767
+                0.109258915358633
+                0.126933648878653
+                0.144604105347267
+                0.162270198532675
+                0.179931838631514
+                0.197588932041764
+                0.215241381115967
+                0.232889083892571
+                0.250531933802915
+                0.268169819351031
+                0.285802623763035
+                0.303430224602408
+                0.3210524933469
+                0.338669294922165
+                0.356280487186422
+                0.373885920359564
+                0.391485436388984
+                0.409078868243118
+                0.426666039122081
+                0.444246761572863
+                0.461820836494194
+                0.479388052013308
+                0.496948182213303
+                0.514500985685365
+                0.532046203874627
+                0.549583559181513
+                0.56711275277159
+                0.584633462035706
+                0.602145337627643
+                0.619647999987513
+                0.637141035234136
+                0.654623990276238
+                0.672096366947284
+                0.689557614907064
+                0.707007122967474
+                0.724444208378889
+                0.741868103439419
+                0.759277938533726
+                0.776672720324285
+                0.79405130322659
+                0.811412351361665
+                0.828754286640385
+                0.846075216009299
+                0.863372826201009
+                0.880644225491632
+                0.897885694137663
+                0.915092266056643
+                0.932256968686883
+                0.949369276790233
+                0.966411379494378
+                0.983345955951454
+                1
+            </values>
+        </curve>
+    </curves>
+    <process_variables>
+        <process_variable>
+            <name>pressure</name>
+            <components>1</components>
+            <order>1</order>
+            <initial_condition>pressure_ic</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <mesh>liakopoulos_bottom</mesh>
+                    <type>Dirichlet</type>
+                    <parameter>pressure_bc</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+        <process_variable>
+            <name>displacement</name>
+            <components>2</components>
+            <order>2</order>
+            <initial_condition>displacement_ic</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <mesh>liakopoulos_left</mesh>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>dirichlet</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <mesh>liakopoulos_right</mesh>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>dirichlet</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <mesh>liakopoulos_bottom</mesh>
+                    <type>Dirichlet</type>
+                    <component>1</component>
+                    <parameter>dirichlet</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+    </process_variables>
+    <nonlinear_solvers>
+        <nonlinear_solver>
+            <name>basic_newton</name>
+            <type>Newton</type>
+            <max_iter>50</max_iter>
+            <linear_solver>general_linear_solver</linear_solver>
+        </nonlinear_solver>
+    </nonlinear_solvers>
+    <linear_solvers>
+        <linear_solver>
+            <name>general_linear_solver</name>
+            <eigen>
+                <solver_type>SparseLU</solver_type>
+                <scaling>true</scaling>
+            </eigen>
+        </linear_solver>
+    </linear_solvers>
+</OpenGeoSysProject>
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..cf591bd9b129202aa94a13ccbc43400b8bcf8ebe
Binary files /dev/null and b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos.vtu differ
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_bottom.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_bottom.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..29875ddc521203aba5372b5c901046de739a1290
Binary files /dev/null and b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_bottom.vtu differ
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_left.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_left.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..df3696b3e378b913b33cc12315155eaf3e4ca280
Binary files /dev/null and b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_left.vtu differ
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_right.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_right.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..2868f7249e5b93dc6dcd227714fc88fb22050d07
Binary files /dev/null and b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_right.vtu differ
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_300.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_300.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..e5e2a13930ff1b59ace2dab2fed1b097fca4dffa
--- /dev/null
+++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_300.vtu
@@ -0,0 +1,44 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="232"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.4907993665e-07"     RangeMax="0.0014481134587"      offset="316"                 />
+      <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="12336"               />
+      <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.98847713651"        RangeMax="0.99999999822"        offset="12432"               />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="5575.8784125"         RangeMax="16654.883057"         offset="13628"               />
+      <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21976"               />
+      <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="22068"               />
+    </FieldData>
+    <Piece NumberOfPoints="203"                  NumberOfCells="40"                  >
+      <PointData>
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-7.1106508263e-05"    RangeMax="5.0168914433e-17"     offset="22164"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.1100376965e-16"     RangeMax="349.67091785"         offset="22588"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="0.00054085007471"     offset="25636"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="2.1425341523e-06"     RangeMax="0.0014573756943"      offset="27604"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-4107.8241262"        RangeMax="0"                    offset="34276"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-4107.8241262"        RangeMax="0"                    offset="34972"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.98829320267"        RangeMax="0.99999999146"        offset="36320"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="5576.1229133"         RangeMax="16695.55746"          offset="37544"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.4476297205e-07"     RangeMax="3.394922284e-06"      offset="42944"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="46096"               />
+        <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.98908963445"        RangeMax="0.9999998886"         offset="46168"               />
+        <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="5576.1229133"         RangeMax="16515.122492"         offset="46640"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17"     RangeMax="1.0049875621"         offset="48120"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="49336"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="50068"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="50240"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1NbLUTU81N7YwSzI0NAYALeYEjQ==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAFCMAAAAAAAA=eF5F2Hc8le8bwPFj77333mTncG4cI9kzq9BBGalIKhpCoSGpNFRKIpJKUh2dK48KLVkNkjKiqMhKJ6Jfr+/z8Ovf9+tzva5uzuN+jrv0RaeVDhRE3XN8Poh1f91YzcWiWoYQrGv+VjnJyg8JN1jPbNYYp5P6jv3njRmRnbIFxiCuXrRNeKcKeOE9FH3J+8+/C97eWWdlC1uCnS68XiUCZu1x/Y94qehOcnnJ9Ku+uorgV80GlaLg2epPEYtTgmSxQ2abfcfpoltwP19WtKrljhkMcpC6bbgNwBjvgRSD+3rEec6ZZg/YaXczGXEtoEgeUBrYao/A7/rkj2vjdV1dAc9Sd0oAJT1lZy/NGJKI/X09cN/S/KE9vcMCwvmSBIZ2Wi72YOSE+6qJaqax2grwH74d93PcAoK9xl+2kuxRF4l/m8Sun3U/JDV/HpkWh6ldscEawUYgpMUnmsIyT66a4/vPxd5Yuk1ZW4DTqMDCTWFNCMR7SGbibix6Mif8oiMMLYu/nX7IHPreTZ9KlUaIzSFLZRKbrzPe7VA9FSwMgbeTBhOOWYHcE5phNp1J7rHF/bcbHxlUTeAvaXN0QaIxdOM95NngHt/z6OEeKSosL+fj7tImA5cEz/FQQzN01p4UHc3Kho08evixOpULVLw6PxoHUeELx67eewNMMjvhdZm1LrxCurDb71BD/qgpcOI9+BIe4tE/aqpkAUYmnX9uslpA6JnNb2nLzVG+5pYfPnEcWNPBVcy3VdwQx5uNvjNcYPUfzeDjm7lr+TVwb7u/L/9UhB5McJ19gkJdIALvoUEb91ydlDu73MlwKnrK21OHAsNM4YJKPyq65nRmdiSPB/P+3LmSn0UMOtYMZHde9oHZkjuxHG+5aj874J48yXnth5g5+DdoLPCud4bPeA+JRF/+k0+15bY95Dw0a6tiE4YzpV+btPmdUE0UxpFxVwCD7Eyx61dl4MeVDEvVB4FgQ+xPj8A9m6uZL387gi8/qKx+r1zgLN6D8DrcDwWsiQ2zcwFaqGDyNQUD9PK5Y3FavDNKXrXJb1BYGLPeoSXluEUe4p7f+pTvHwzJUh8WYg9N0qX9cL9QLljeftgWVLm5Xr756ASteA9FPrhX1upoXJ13gxf3D4XtGTNFmSvflg1+c0WDlh9idTRFsSsbBuisAUqg5z0sfjwkBPLWwT67e9N0WTLuUlu4rlXT7MD3YlKF1EYP2I/3YLAc9+b8yYWSt57wuCNr6luGFDJtiL7uHOOBaEoeaZsp4hjXTc/rNAUVeBewfSZKjwZJi/sr4N5zhCtj95w9wHubtzXdvmCF9wCyuE/fC93Y1ukNAtHP+P/aaIGRlLgT+2Y3NJx+oOdJogQmNvSgJnlUCS7uG6x/viIMKB+Xd9VukrE8kIa75dNLlrdq7OC64N2o5LNOYIL3MJ6Ke/2rayG347wgtHHfXqWtMiDV5NfcqWGPBqYDtLcdlsLyrWu2lStJwNVA6ok7njTguepdHhIgZnljCvcdb+pHHm6ygKg9P7Scnd1BEu9BexJ38OB93/zMEVx3HdSJ/m0KwyOapQEMY9QXrZGkWiKDGej7b6q6zA5/vewezxmFQ6GYArdUppBlWxTuM2a76+0HNUEs5smqK5g3jOA9BK3HPepoe3WzlxnIsERtd2RSwaTjk114lAxKMJEorf8gizUE71lelDfKiP2rHu85RwMp3e+DO/wELJmE0/IfljmuFwb5sU2xx/Z7gyneA8kU9517bjtvk1aAropQ1LvJHvZMDjMso/RBSqT6RvusPDZpyPHEKJuEDnNM7HJxooHk/K31X6IlLMcJR413hEZWqSJsA1XEYo0XHMJ75CmKu5nSmxlWRyO0OD93yohzZK0d5P3wpA9IKWF671+/dLQUR++Lk58ptYZCYP7Aizts4pbD47j76V6xtNq8HBmtSKAf83SHo3iP8iZw/5T77aLIFweUXR3CX3DYDlYXNddn9jqAtO2s4DJdZawpK472WEUKqd91rNpcGAbD/vytJzf10MlU3DkyvpyZKbNERRYlIxx/AyAI71EX0SuJdOvXPXZCmvnzB2/Iu4FuQnibkaE9qI5/E9xEUcGezGT3HdSVQNkzxXfvGwVCWvLslWyN7/RlE7i/3bTP+VWKBfJR49k5XeoP2niPGon+2+ZE/ozXjuiP6oZXAcK+8Nt2pvd9KhXIlz4IVrqrYs+jSmjepmLonem55QcVvQFFszFyXb7TlYtxLwtWYt50M0dD37nq5A+vAibeo3qif9DM+33FkD0685vbmvw2AMwZvFIyfhR4ejn3Tul3Vaw5Jy5TrUUInZb6G1Kh7wWRGW5HHLdM0oNKcDduNfnjfdkYHQv4Y3SbFAzL8B7lEX5Ln579wd0WeS4LutYXthpcKo4JJGzTBHHjeTstFnWszjTwsYX6LCUUPbmaM+YKCyWOTUINwrWOhKMd0Qt7FuTRjZCn1jfcgsAZ75EO4dV5fzh+1eogS71J9cja1XDeYVCjZLsYcq6LaymX0MDI63y4b5Z9ZhxY8Rtx9LqAdNRX/uo/PLVkwk+fZ345qswD9vSTzc9eBgEd76H8Ae7z8WOcZ90k4YGEdvK0SShsnuuyZBNSQW3BnCtv39PAJn34hOTeTzF8P45zT8mugIVTu5Mvlk6RqYR/az03/4xDEmouH5wnxfos9pBA+IX1989FHVKDlhHVZaVjwbAhwbpBTlocDWtIZvC1aWJ7Sj2aiiK/MAKqZrTPxLhC1qYP9gvLR8nlhD951/aTbYIHdq19sC5pyAfi8B76CGfX4PpwlF0Kzv4a5V0dGARQpubX4MykkCY1HkQOa2G086L3DRybGX1n9XfrDLgD9TS+vzDhbz3LH7YG/2AEsT4QPZvnAzfwnkEjfNncel7X9jnGAo+vsRs5ACJiV0HEcTZU/4u3qTNHG9N4G+cy++QtQ85ZYb/Tfk8o2lE9E6czQTdi4t4bdtMz3PE3I73y2ky6gz+k4D30ET3bYDpHRBwnDPgPhak6BUHEId4n51xUkav4hozLV3Uwc17WdheXn4xPG4fatJ1coXthZEvTlzl6AuE/+N0oY+ekoFK7UrC0xh824D20iOF++oUuS+OkOvTbDI9Nf18N6bN/P164YYiKjJ7ZxDfpYglHX2e7JrDC89Mpupx+K+AUsf+ii6lsE4nYqg56hdcDBLkDIQXvocgQd9GjO+uDNExAUla5WFRvLUQ8bik7aWqIqqQ131Zs0sMqRMzTbmqzgv7W6aFSRUco//5qveHPbrow4eJXpm/PqKnDXpHlyRWnfSAM72Gxb2Ybe9z30Rhm84TE1qSHQrFQbskjLWUk8Wilbd5RfczCZGFw7OUk476hUXDPkBuQiH9pD3HXP/8y1Oa9OPS3s+qszvGBq3gPikTf8cYgPS1dFWbqeKbumAaBSd0b8dm6fgo1LrZ82y0DrFhEveB7WQ1Dcqq1l8/YF04R+/dtwP3PI0XKz+G3jJYTrIVP/XwgAe8ZCURfRZ0t++U3yHj4qd32zE8/eEpTUrbrkQRSeN2WnjXLMOsOg+HBc18p/GqpVU2ZvrB2IMWweKKPvuiUN7qrrfYJIKPuU8mXLrgv9iiN8NeyGg8eGMoiH0PJ5yDnA0eesrq/BlOwM4usP7zPEEvPFzoa/psT9ci4K3ie9Fs6nzzCy6833dTfpYOe/tQ34UtwgaN4j2zNcWfeH9xDOr8cSRWPKzskuEJyz4KWez8Vqtj2Zxf6G2Gom2dysFQMkZSldV36fP/dU8jneh5Mk0nsuLP4pa9rfG6OflzU0j14whH24D3KI/yiFLWJO8ABZQ7VXOe/ag/0qvDy8x720HdmE+1cpREmrS79cNJDAn39GHtnX/oqqD9gccev8iE9oQB3em1ZkMwlC8QeEvFhOtgb7uM9WnSZO/tJa345ouL48Q870h3hl7CJ/61lVOgKubH3joMxprBe5QzprSjyNWGGXj3x/98faiju5A1Wu4wHzRBr60NdKQFPYOI9UiN8l/XymC0H7ZGRvr7PjX/3o5gBdvYcJQRVyj8utHYbY+pXdOMFw4QRR8Yq9tgIezhF7C+sgvt92ZeFLlom6EioZqzeWnfYjPdonOj7Gr+0ZstR0d7Zv5tHfX0gyqi+t/+5BfSxPeNvMzXB+FyOdV+5xYe+3vjRtNaJCgK9K0aq+b6Raey4F2asO+V2bxkKAoG9IUnesB7vkRHhQcGiDEk7CnJJ9MljafEDdKv15jkPXVjWe3b+aIsJdme+c3lj4QKFzbHe075Lbel8kgn37nqUmjWrjPoeUO3lVnqDOd4jOcIfVVUErFJZhvRtDl++1hYMNzh3p7VIsEPV/Y1jXrGmWHip+cAkrZOy39QmdTZGB819xPdfdLEEHku+sd+UazWCN4sDfKAW75Ew4faMRz3fWbiQkoCe9avktUCNvv5KxWqSovzAviC3wRT75HvJ2MmikfF4dyKbmhEZ7b6gZxXbXE83IvwHQ4I2lf2FcXRg4oXJH3fwwnvGOOCeeKy/gLd/mlHB8r6aWyUcPqYv037ix41mz6aRwiLNsFi7iacL3j0MjJi/eD5MwtU7NnRzxvxl3G6vjyGNecJ7vAeM8Nar7ixfPvDBgTnBKwJvw4FX2+G2TaMYqkquizZgNcdufj+ADNi+MCjr7NuWs1OW9l903cj1rLxZPJD2NPdN9rwXcOI99BGesOL16pJSyX/v2+VKeUYRcLt0WiW3QAZV7W19MrLWHCP9tAo0bh5lzLEGFW7LNUM7FGJn+eaGyWmEJ97qp3hkCYPOQoRWZqU3VOM91BMuyt7jLu6nAI9cO3wdXCMgYD5+ox2bGtKU/yVtybYc6/BinqepzDDUnxu9dt+tunQ+43K4W4ncOFFwWBo4madkD4X7gA/egz7Ry3MJpW16ogHsgRs2WvbR4EXZ0BOGpQ4qoituOHBlOaaq4ZdbHjLPEFOSP2w3ogiZchokysJ5OpXwNPKDn4nOymDB8uw6q683NOE9pBFuxF/1zntIHya7Yky8X4aA87rl+797aiCa3SFpTi4L7M5MCHfsSybDf92NVP7O75TO8J4Zm2YmmUr49CWPJqcMOUjYhFXO+K6AQLwHZcInWe1LC2K04XyzgtbfzCCgDcTee6r+laKeGKblcdMCq7L02U/dXMfI9c+/YPBKfenzpUy4s7TtRv2+PsaXuJwRi7QVEIT3DDLhyjzTT/ImRxkXifn82i6b/HhVgXTZZHl+IBnb29rxq+jvNKX+90hMnYgRKFZu39Z1ir+WSnj/e+trFFcpdGb7hG28gyMI4j1SJvxFukPOygp1xN2b7jEeFQAFDcOx6yK1gDazzkmOQca8Xn8SMLaco9i8GzitRTED6ekTQqtYGOQiwi/Whl+vMlZEx5M/CjSMu8FZvEd9hPfblB4+9FwXZbD3JAbnBcMrc8/4I1KaQDsUNPwuxhKLiHQljd/9TbGOlAvKkuBdOp8Ewi+00OJdMuVR/EGhLTMLLos9CiGcIyMwPs5TBzUKJ+V4aQYBT9ntpLsv1EFZ0f3QGUkrbPtk1eQNMybloJfHWtE10sBN7E8l/OyntcYDXbLIY5/DurnbrsCL96hPAXelRh4/9w4tZMN0CI6cXQ2dVTydr6tUQXlUbHTbHissNL6QlPDwJ4V0v29gRP8bpUZppvaRzFfyopfwG3caqUgjRyth15x/fz/e4j0iEZ4XptDJGquBbqx54Bs6FQzNUnWMC+kysDFRqNLMmILxCyka+leNUtZtsOjtihNY+nylEf7o5SO27u3CyNSi4rHgZXdox3uUQ/iGd5fCr1oooJvE/J5z7ce1HPjg3/02bmqQgtWlst7PZ/RSzGVz3z+p+MvIHJE6IhH+hU5i4g4KV2mcBSwowHp7G8+YG3TjPeoj+qhvIrpnrYSW5o9/n5trc5yk0JwcQlK8EJaBrN/fcWhk+OWh3eE/OdHYeubtBoM5OpXwJMqLxLqTXxinC0+sOJfiA5N4z1js605E3ls5Os34KVParT4XAs1FZbr7CvWQnV0Aes5jjX2Myb9FEyXBPDF/8XzIhB//Sn8Y/EoFlC42ca9294F2vAdbwq/d5w+UKzYEsqb1tOyxNcA+8EV2eYoVoqFYebkGa2xmPokjq00QTnx+6P3ejRNc+C7ZVJ4Ws6QSfi9PteWapDEInqdl9FzxAT68h3oK7pvST7138rOB0cX9qTGcutnWqP6N0vlLJjaY5+P1acGGIrDvMPPGx05h4HfyVs880E5OI9zgmEdknJApVE01SPLudIUXeA9Uwi93UU3TRqj/3v/eWmhKBwNWd1JlYA0FiVuX/lSetsFKNn5fHdolBI+PFiZvXma+9PkaR7h/3agNf8qNwaufNi5d4A51eA8jhC+4TTWPBthCdsNmH/kbgXALPUZnjSxRWomuV9EdW+yGr8AdLl8B6Do19ibMlgpPVxD7E17izCaRa28EJ0eZPEKGblCF97Do9M/rTN93o6X5KzgETiW2L0ck+rFX9uJULF4z8Z73UV74df3IyvbLJiDuLKSZ+4hUu+ituSOPnbYZwA6ZLQWN7ivBDu9h/B7uT13mKkPUrCCg65Fi3CV/2FlV/MXmrREauxR1eDSZit2NSH7EVcAGo8T8pfMhXO4ZtSsNNICTS2Dr6zgX2IH3MED4SZjoXetiCiLNuhzb+AKBdi8hUfKuBho/THE484GK/bGeP7tnxW/Gx90G/Uw3Moze3nLSzKSfTsrB/QWn0bttXPLQQbKLeqfsCn54D31E3x7WptH0URtasOPfUrcFwWB7/c1IAzVUb755bKOMHfYqLP5knO8MQyayrNt3nx1kHX/OjgIbyEWEH7oqf3LhoTQ0Rw19ZZ/whs94D4ue+mCz6q1fGjC6PHIT/+cAiDqdwJqz+d/zlbyzNCTDDov0vpxkIj/L2Dl8t/tOmdfS+TgTvjmu4OKZn/JQQZP5yPPv938d3oMb4RosHD6i1Tpg5DCXxbrbHz6HKPvX3NRBfVZZIe7f7LApu06/30PzS/N9if0XvVySz78gXxmMI9wvPU32gW94DyQK7i8dz+3dutEA7q7Ruz9W5gvVW+YbBqp1EHV0b1Ctjj12cNd67+sj8wy6difL5G1vqOSufkpV7qMvOjXmMH/ZKWUQbtiTP6LkvdgDifCXyrzx0gkGsE3ednhOwRd0qWepV3droqCZbXTP0/aY+odSoyL9WcaiL56PN+GR9x67t3MpQBSkNhiy+oAO3kMw4RlzN5ysH+mAsXBZC8cBPygWtIB4JzVU9DdOepDdAcNsPgufiJ9h1BL762qLCFivfEOmEW53ISFt1YD00vxCvIc+wo3f+ilGiGtCxa/t52RCAiC/f9RJi1Me0QRqmtWcHLDE1tNiK73GGWV3dOe5Z50gjEsfOap8oFMJrx4MiRmSFIUNn9d2GJg7QzXeQxHh576OZP7hV4YshcIF86O+QBVO0k86/56hOi/Q3kR3wJKP5c0+Eqmi6BfOPpNvcVk6HzLh2vofX1d0tFNEOUJEJSodIU3ov56yivAiU+lvg0W9S3175O7mOylK0Pc9+k2sniN2qX8kca/PJMW+ZbXRTw1HQMT+pFHcLSqYj6x8xNFm8dXVB77Yw0u8R4v9q03nXvNyqaJ7xP+fGqTEPrtOHWjzKxUZ8Y6YqMJ0u8yDX5SkxEfRqQlOQA7T22k7epmeRvjWteeTqatkUbaMmPAWOTeww3u06Mffh9oUhmihseDjZscdXcBFOOdPbaYG3Jf9C++/OGL8Hy04TQV+U7YR8xfPp57w+1yydZzP5FCFUq/8xihXcMZ79IjwGj6/UFqZNoq1i2C5Iu0O3k+Z0ylXNKHP4u6aP2tXYFwXd1m5h85Syn54n91Z4wdtofj+ymTc52+eZntprYCaNa7pRN9yAV+8R4v+luK8W21SZ2n+ASEzKs+YFhS52o4Xl63AVI9Ujx7rnqOUTm5YpyrhBBXdrF4xNSX0esJrq4sY1wcVEe9qOhefhSvsx3tEcsP9Ge3rnjWxeijzakDElYPmsKHpuvuEiR4k2Ra21Go4YX+G13y+U/6XghmWnmnO+v/3G2cIX0lTjTyaq4LG9ruHDzusgAi8R4WEizuk8HBrG6IatRfPZzdSwW2PVvC7HcuAajZX2XbZCdtYnPFjI4MFiWkctE+Ln6DsfI/vn0a4YXTS8JMKNZR32flS6327xR6RCL8put919VZjdPYh74LLAzdYz12sUV5iAPXLPh6W+OGEHdG+e2oflQVdbok3EC5dCc2HW3rJdp/pRYQ756Yyk1TV0Mh7ss2JfQ4QhfdI2RB3jmdlmetmjVAJ0e88vbBr/qAWLLwPqyvZuhK7r3I9SjFqjiKZbZexvlp36XyEe3B/3XtVIjNSEdFYWCW/HbJZ7JEi4d6U184PZ3RR5d/WE8N/7OCo5poO33gVSDvYO27KXIkFTY5eNHebpmwOp02nXyUv7V9PuMTlACvlDEmUMB2zZe9NKhzBe0QjPG8wKKuWqYbOE/trxoQ8/nVEGUhOjq/Wr3TGIp6k7PvsOEUJT+LVfHLXG2arEoEzvevf/RD3n++s1hmvlUCuEetP9nqQwQjv0aK/LnpxIn9GFb2Q2VYd1fjvfioQdNK0WA0OdRZe+d3hjFnNWwtGds9Q2JM7DVVO/P/9K49w8SNfgpqDZJBVluIWUVk7eIf3KItw7ZdKv/bu0UQtxPyM237R8Xf/fb5ifqUcCXPBRE1ZC3rjZyl/duDzF/cnxeK+jJrvEe2rsDQ/Fe/RYr/r99bVcey6/54Pei96C8xB56/TGddzmpBm1u/KUu2CPX93LWCl9yzFuFD3XVKTBWiqidTL5uyiL/qhnxObQgwV0Jai2NYn8g5ghPdImfD5FPl9fkM66KCCOWfEYTsQeO9IfaKjBg/v8okZr3DFSjpqjlp4zlCWEfOXnj+EFwuZqPs/kEYnrpj3PIq2B2G8R3WEc22jmOROaSCTFYdiv9v5wNtNmW3ZCUpAslz+ntbliu158eCplvskRTBFO31ilTpa3F+Z8Ac6id0ebuJL+7/Be0QjXCJhdf9TFlWkIa7LJv41AFLlatimNyhA2lp940QjN2x3vPLaMcUJSrRqePmrUk0gxWczv+9PIC/6MZ3iAvN5UWS/Q6TSZsgK9uM9ItFwj5Orexn4ThmlfQ5UaPhNhepoQZtVaxRAJCtXpv+FGzbenpTzVmKCImuYwGV5efnS+ZAId45Rf6Q0JYqO1/DoC7wyBTreI0HCX788Ob6uTRldjjqbzfVmP2P4dkxyjZsCkCrHWbyj3bH1Zs9q6/gnKIl3ft39dskJ0tqCX4xxJdDrCV+4cuUrz4go8i7fIiplbQ5f8R7VX8MdpW0SS3yijEz9C9Vj//3cN3jYhnCyCkO9fMrp8AZ3rI/pfoi1eIBS5WuR4WtlA3d0z/tcGlS2TCO8+nDHQlYFO6pq2hMfFeUAMXiPFvvV3w9cdwoQRe9qfnmyfTWBYoqIq8kZBRSkIbAJi/HAqqrTlB0sJxi3iPmLx5NGeNRz7dFYWTFIuT/kn9DmCCV4D8cIf3Nb+qDdlDI8J+YbbZGGs80miLrskr2CgCc2PC72+HE/B3glM7q9Gx0hWt6koFeE3TKNcL9NHyr5VmjD9zm/xq2iVmCF97DYfx3bafbqgDkUEPu1HTkbmL7XHKVNZccUxHti4x8x8k8OHhAiiWzz266DlvEKnbt27xa5fhL3pMznpQv1evDpcvJA1Wsx9BLvoZ7oqQerF2yLyHBsx2jgyHM1uGp1PcdyrSliRlzxu6zghfXXTm/dlMMJnxWejibz/f/7Q1Ik7vyxFSOrWHVAYMsder2eFarEe+AhfH+7HuWJ0XLorlSr4AtYifZ/wR5O2Bgj6qsGm+svvLBX+To3h0TZIVIlN6n8+gylWias3+j8OH3RS9wPGVxz0ISAK994P901QJl4D9QO3BtkSnd4PjSFXmK/PdWhezI09RApLVOZTdYbKzcTWGZ99i8j6cT22jUuIuDuxJK67+kIuX4v7o/3JgweyFKBbuFtewp9FdEuvIc+wjODlNSeyxiC22C2WP8vOeSk0Hs/qpobfffWqnLY7o1lmWzcrYr1MKwIXzyeccJbdGaDDQf+MnQtq74yPPsoh/AeOghXvLyR182VH6yJ/uzKHtsLZxWgXuWZ7f4Ob2ydXOePa1YTlB3E/jksGdGni0RrF73o6ye5WTkx9JTiOZA2+Z0h4fxfj/oIn+YcKSyZVkbZD5z8lftX/bv/rxCzGFSHPsF9KT08PthEpZ2amQ+Tsrv1ysWs396QtrVG6GHGVjJJCHePaxLy+5mySE/SpRhdWw76eI+UCQ/adv106L/70GJ/sOi7cUqnOlRb54Q3xvlgy2auha+1Z1KCm87f+lDy/+dPPeHMwkBekWFZpDg0TFnnhyAL71E+4d2KqoqNvVpIjEWQv67YCQZI+d6M5+qQtvGky42XPthGW8miQ6ZMStb28frUC06IlITvv+gleQXMwk5ZxL264WvjPBU+4T2iER769FSJfrsWitj0ueONSwjYG8yLD7lpAK1hvG4rty+mO1uzZeAZk/LoqY9FOucnyrgi9dmRiWvkRa+J23ArNFUO7VTNOuIi6AAr8B5RCZdsNo1UWa+NhOXK3RKGaCDZpW+SLq4Fty7a/05O8MW2RPxwDPswS8m+3hCygfv/53OA8ONVMY+7XiighAkNrS13nUEY71EJ4QOPn8/qJ+giEWJ+b0aIl8IHbSjamW+a2uWL3XuuI909/ofi8izheWyHN6xrXGnApHTT6wmn77z99Sq/MuKg3K03t6JCH94j0i7cbzLCj5N36aNr05fC969yguJPYu5Zb7SA1HbgzIykH/ar7RQHb90cZeJ50E/viD+Mio6eBLubE+S+VtyfnU55yd2oiCCEV1nDyAFK8B7VE27zoClnpYce4myrESZt8IF91mKKUvtUYbPjT/0TmX5YyzdLDZOcnxTJmzqBKd1m///+kPBIeniZ2meppfkZeI8yCM/feT+i0EwDcRHzO5Zp9HmFy0IfPfyh4bQf5ipw/2BNzRgl/enrbY+jyJBK7F9POOmdS7oNlwhaHfptL7eh+r978X89Uq7F/UN8yJbPFopL84/+Yv5pbBIC5SsnmkqWr8JSsxBPcOoA5dgppnv0OpN/z98bD8GEtZZE+IbCF9TfGexoNC4h+JaNEQzhPaovxd2Xv0RpmakoKiZ6jaYA81Y+NmSReAKtrlyFXf0ZlOKv95YRnms/VVvn/P/3d8IL2K6fKDnFZPQT8zXxHmiEHx5MH7Rs54BCYr7gpRGZgh0qKM3mRLWQqj8mVudq17lqmjHRx5H2pscK1tpVL/wOE7EsIjzDG31tyZEEFsdfLM838yNFvIfFPoEpymrGqg79RG9zsJE710QJFY0xClpi/DFmTJqYpPYkY+jSgPDNNhf0oN1rVPmpoOWiD360P+iuJg6F5jHC65OoiOiBRnhqe0eTy0cV0DWS88tMk0Fn5nNav5D/MA76mvKqf/bHnNRtTrVtbKOUxtNF9lCNls6niPBhrgCBcotJyjF27ooceSeUt/BfT7lOuKJD7qyALgn1E/tZsTsx08o0of5uxc6UyABMYdfFsNSwf/dnLicGRrJG3B34/n2Edw2MHlW2VUDx542yi6kUZI33aLHnnpJp8J7SQaPE/KkqB0r9zn/vFz/CtnbcCMAatt93ObBsijKf+qL84ZAuMOtfvekv4ailEv7Ws9ojwkkCXVf78qPY0h7It/7rEXUM9xt/dzoe61NF2Xvxvv7IqN3ABy3UqD1t4WcWiP1tCvvU8GSOUSFX3Sa42mPpfNoIt7Vt3PmqVRGYdqfbRTx9gT33vx4WfXx98MfuAD142sNkMfRfBWK3nxheEqCitIiDf17VBmKGLIr7998UhdprZ84FzAdDp8TryiNmSpYkwgNMW70zas2grSy3ckbVEpTwHkiRuPcnutUfi7QHafoZ5poWW/Q/94NNpA==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAXgMAAAAAAAA=eF5txWlM0wcYB2AYqOB0tKLRQEQlFEsXhCmGKB1qBFxV0DE51jGEiQeegcXVq7AKY1MnAQlGFKK4/RG5jGzqJpVuVNNaLWC0IFKhFKSwItTZIi2t3RcTk72/58sz9uhDp9M5tmrsfzd4HtOi3QenZ6ET9/I90Jt0FqcD3KsRSOzg/pH6HZPgH92mzrKCuVsnuOPg6NEPlpjBE19q1pjAnMgfqo3g3gV6Zgg8xcVfpwfn2I2JWrBHWevip2Br6ipBO1iTYSpWgHMVUnYL+ED54We3wO4pKTfqwDM5vs0MWMjiGM+BDTLV7FPg7DCT+Di4SRKkyAZH93w/ng4+ka8pSQJ/xAmsiQIPW2oLQ8FD4Z+GBICPtt2+PRNcPYOxWd7S66Y17DSAMxdem6IGN/k7Iq6DhSNN4ZfAm1fKD0nAF8IXLUsH5x0vFMWCE9gObRBYuWF3mTv4ctX9jpcOelxbTPtdcMC+fbYycJumVpMLDq4Ibd4MzipOqVsADnB8cscVzFv7S+cDO529cq2iBFzoPf1sFtjnucAzDByv7PMxT9J3r57jpwZfEh4wFYBNll7/SPCtjSFSNvgrkUvr3zY6o3a17gdXpfZn8cG84S9EfVb6d0m2qDyw2JtRCcCSJZ9F6Sfol7/ZFiQCJySzlMvBNW6hNtkbuq5REBwDrg4oU02O08WrjY0HwXu/vbjIaKGn5VkOngXLb+6SOcx0vY/cNQ3sO3VnkfM1/VUGk/85OKF4fmvFv+9PfPeJQ93dIeCJnBnxma/ohn5ma7mJXvmEMfiBI6S6EP4Y3b6pa2n8KN0RHtfV8pIezGL9Khuhzx3I5P5upC9tu8JjgQ/zxXsMw/TlXidX3BiiD9knhVYDfXRhBocZpMvlsfNjXtB3jV8p2j9AL+pwGzXo6TrtXO2WPror3437tY7OXsF7caGHrpyXHftQS/drUnx8rZt+5Hlp+dUuerHZcbSkkx7nndu4voPukrA90/KY7pG//Z+fH9Ezcup82e10XvqbM6lqeoEq+bdSFd3T63Rgj5JeKmpObr5H9y6SifNb6F4GSXfBX3RzfZhyUEpPc98Tyf2T3jln2pqnN+nn4iOElY30i+sGpDEN9DjG2V5aS49m/7Shvop+74+76vOV9P8AbRaUWw==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAUhgAAAAAAAA=eF5d12lYDHobx3FLlpMkkb0FUVJR9jJISioJCQlJu1RaRWXaFzXtddpTkUORo025+aOUNsoSItRRaCPZsj3neuY3L04vP9f3vu/r35uZZorrax+p0sbrC+u6/Us177HiNr6lZjsbbGjQIalDHf+3IrrrX3z/9FhZJjqwj5wndv5n31ea75nPJGtn/W1AO5PFLJ/VKzHVU8mDt2XuMet0vksGX22Kb9pDQil8L0U3TON71al5P88W2ZJ8Et8q6Pnw1sXP73xwtKAQIYmu70EcdqQ7qu3c97vs5Wi++5fov3SqcqBdw/l2RD83gu+V19fsPBDlTm0/Jv/fVujKP/meOdx/TfASN6pQXrebRmmyJ5tXJ/9uusveLOL7r+6Xn3cP2NMi9Gb0B/DaO5J1K8MO0rZF/+0e8IjwMVctJ7lQ2/hnK4x36bKFR1PMZSLusipRvuse1OwQCfagpaL/7cXwqZHDhB91OJCCGN+K6BvhptqOYCFLNwr4rH7S46Eh88kaVNDYeJc9gp2S0q6e6/ciyS98e6Prw41TAgrKTh8h7le+uehh8IVxHflBZq5UGG6UV/VlG5tPH12SpO4y4Qi+ZTdq7/hyJ4gCh/Ri2OHg1S+S7kH0I4pvRfSx0fDcF4dCxh+l3ncV815lG7ObBkeybz5uYEe6+N6TGNwqsiaSNqIz9FhY60Zt1fbkQNrVy/cddDtY/GbsqmF79WnGpmUZg1tM2MGXvU1dMQ2sHt7X4meXNSqehHT43o1uC6+qsPYuaA2i03p870e/Cvcf7H13qtqW0yS0oPiAqynzCr9jpmvXwJJG8V0vkW9m7JhAU2EP9CD4+6+Af26vCyBV2AVdF1bVunk+5MwRzqVFM5Y5iJux8X2fL3NlG5jUYr6vvCntPyWZREnoY9Gb4bxx07wni4aROTwC3QnOlV6SLdFkxBn7XDry/LsDLGOr7JiS1nrmA/tIxyXsyE6l7Gd8p6B3wGF/qP9h+HcUKcIx6Kvh0K4d93rjLUhM2V7o4C9z5tDtmSdVXM+4cKdDht3zhmTaC9uip8KLvo53Xi0UQEdhS/QgWEJb4/iJUGOyy225kfPEglXe+T7d2qmeFcLTd1d/ev4qlUzgW+gB8Ppk4yPnxoXSCPgaugi8Ok+9TLXgCFXL6J3oKLRi0rnewRcV6lk3rNb+PjbDOZ2MYEl0G7jdwjft9V8RFCjNtwR6GEw72gwURX1o5FYpw8waayZ36Kva3BH1bAK8uN5UmTcpnc7CC9AL4G2aW8o0NCLoGayA/gKed0JXrG8rl97b/FpU+ZctU+/W+e53tY7dhzuiHTd9bEolfVu+V6Orw/+Eu9WEVpwkNdv/7i+H5XC/iNs64V3IIaZ7OKm8zb2OOcDCfe1KVZbJ1AdvQq+Cx416VKc+MZR4sAF6ALzM1d5v1qQTtHJzmNXCU/ZscMOKVEuDOvZGn+9rVornPGel0CwDvn+h92JeMsr288a9cWSC+W/ohvCERG9fkxEhlPvpH22pQAfmeDpscdvYOmYKH+0zOKofGkfcz3y7oxvD8S4rjAoXxlLFwH/3y+HxH14PLPsVSRJ3M2JDljqx16NaK/bdqmUDDXyP5u3+fTI8nBzQu9BNYW3JfVvVVWIop+G/+5lwduak6/NWxVHh6lTtJTed2PvzzZIDybUsEd7x9tJrw5ST1Aj3o9+EZcs8whbKJlAW/AE9E658bBugZZJIN2bnsQklR9ii86eMY3fUsiLYacW75dwnwVQBL0Yn2HvW8Gmt/vEUMKT7wclypzn25xLpyuirat3nndnhc4ciVcVq2TW4X3flOJG3QUSwA/p1uHKv9k2JL/FkANuib4GNt2wwON6SRGuUtdQOqbswxbffW5531jAd2O/2JM+UAj9qVeJbDr0NHh61yL35IY/mY14JXQ6eUC25vO1zAkk57+7OX+LK2mZZvTidVcPmwE8tIra/NA+mz0f4bkX/Bt86G/NR4+9IUnP+b1eH976OGVjCi6efRYfT3y90Y7GG99oO761hv+C0cEWLvthQEivmOxpd4F5XzV3fZkaSKRyPLrCDyKI0vfxY0ox+xY0hN3YjcmST6rIapgUf/3NOmOrok5QPV6AXwA26LdJBD2LICb6GLvC6M56lAz7xtGDJBL3bV9xZ80feHIX3d5gqnNFh0nJgQzAdgp+jO8FGhy2Di1fG0ndVvh+g/4Lt3IrnTX2cSG0PVksMFnmwvp0zXGafv8P64WmJs8o02/xo+kO+36PPgd89GHlto2UcOWH+LfoRWEfO50FnUgoNWnyfIq57lP05tbJrpP8dNtaSb3sz4fXKjb6UhR6Dfh62CHZe7iUfSdaYT0a3g49J3+p+I5NMpku0ZGp0PVlFvZajypo7zAKOmD9Xya8whD6r8n0dfRC+eHluiPPkSErDfCV6OjzXd5N4jkM8RQyPXOCnd4x98L/dv+9bNRNYVmt35cRZUbQK7kEXWCE6SWZ9AY/Kh+yXwZp3fQ/ez4sm0a5XQTZtx1j1iqtTDzZWs7FwlWWp4gzrKBp8x3cN+lf4g8b5N7N3hdIuzNejG8NfjRIif+nz6KTP1Ofr3hxny743SzWEVzMPWGOb3S7ezmgKg5ein4DDvOItK4OC6AWsjv4cbuN555yzDabOiZuXTO/1YunXPs5bpVPNKgUu/Ph6XUkU/YDPoL+Fy4ad6S9Y6UeB4nyfR+fCt6otrhgHcUnvdXjowhBv5hARZ3JQpprJwetDOo6Vy8dQNeyKfhku2r32xJ1P4aQNu6Cvh28t3furQN6PjslI370T68OunH1zdtKzKmYCq+/97V5yKIQYfB09Hw4IGyGemxpGM4bsT4GfD7q9FRIJJec9lybbZJxgv2+t/nIrsYrtgBv3fDtTvZFLpbBQBb+fhac9kJ/TJx1KM4fsT4OLAk/10QUerXJU7QiQ4rKxvx3+meZUxZTgvp55lTPuexEXnoh+DN6QbXwyQjaCFOFx6ApwTk5vdEVoNK1dFPadl8tlYZ7cK1MUq9gK2NE5p/txzAGygaPQLeHDRjObrB6E029lvkPRf8EZL1tbjZ8lkHPfK7Gkxb5MfCCaN/nNbeYEP/084pI/14pzGJ6Cbg/vUzqxYEsRj1p6+R6NLvC9+ljnm60pdHDypSNWvr7MebG6fBK7zQQ27zr22POQG8cZdkF3gS/aF7b/PBdKq2FHdIGH7dcdbWacTmZuumP+EPVj45u2berxus0OwKa4f3BIt4CXpB9rbTp4klbAo9EF1kte0TWYkEFrHrWnnk/2YzkudnYaq26zdfCnAzuyLnZ7cLSHdB34fJii8EajcDoGn0UX+OvMZuWcmZn03mBfSX6PH3t6/finwYm32Uf454hxMqpLnTmNcDP6fZhys5SEQiJIYgvfz9AFVq35y95KNZM2WUib6/v4M7MZkaUXGiqZAbx+6/oPRfvMOAqwCboiPKY9UjyjmkdO8H70I3C9pOeExPY0OuP5UqRLNIC9dM06bn6ykuXBXsc//5Gxfw9Zwy3oh+BJworlxZ3hVAy/Qi+BNRrUeo/6JpGT/VnaaxHAQoVq44wtKpk7/JSUfk8NW8CxgcPQ7eAWzTUjlv/7/bkPDkbfD89WXeXuVxJPe16cSjb/FsAac2O7XWZXMlO44vHLBpEj5mQypO+Gtbpa9m0S9idH+D66EzwX9022pXhY8wKZpJ7phujWCmYML76s+7ndzZ4CYCl0Lmy6M/zRjQ++JJifMWR/+e6HUsmPYumFtWNMWEcgG/XLrbOypII9hV+3K1TYvztCI2z4Ho8+DBa1dzZXuBZCcvAE9Plwadwx+QPZCf/+/9vw0IobxPqkHzvtdPv3ffCkdjMdw+kbiTuke8NBannWO0YFkwnci74bdtgdoXnbPJ4+PFWcrjkjmD3SUBt8o1rBuuEevWS9E9E76Af8GP0brPx4ztOs08EUB99Fj4VH3rMe/6M9kaa9OsNM3IKZob9/mIVIBZsEbzYbr1cmJs8ZA+ujC8Enx+pXdfz7+/rpS7710AWWu8CbIvY9gdLmChkFTw5hon6WKW41t1gSXC+S+OrZeF1ONiyOngnv3xnMHW8aSllD+ilYcF/e6kDn5cshrIG7MS8o5BabDz8olTn6W3g1mcD30XfDZVfERFl5CK2E76ELrID7ZzZP6h0rHsoO/fb+ucX8FhN4neXXsdeMNnDCYEt0gWuvP1Fc+5FHf8G26OfgL9OVm0XPJVF+b6D0mJJQNuq3SlG3zC1WCPfgPsFC6DfgT07pLtOyefQMHoP+HM5vXdfvYvsndUV+NRxlGsbO/HptH/riJvsGm428GJd+TZN+wbnoo6L4ThGV6LDUjKQy9HR0gvvw/qWHinJeUxibGbCjPvfKTbYB9uiRk6p9sJkWD+mr4JDi1PnbnYNJEZZAV4ZtFv0d3rcygdSVfneutT3J7l4omv/86E22CdaobJd6dsOZ9OAG9O0wN3KYj/r2UPKAm9CPwrMGKnKNvsaRcZ/OwuTJ4SzoiQRXfOVNZg5nZmzWvnzbiwKG9DBY1WhSUqZ4CF2Ew9ALYCnc/5Bmprf7WDirbsu/FSF+k/2Ek0d9SC30daIZ6XzXoEvDozcqVczOCiDZIV0Ofjt2T9tFuVjy6+WK5ihGsGYF4b9sm26wMDgR97PhJ+hn4R7p6JnC/kH015Au8NINOlW6NnG0fO2pxt7WCNblbMXTirnBVsM3+08vlglwIyu4F90G5tIY3s65wbQOfoe+HvY6sSzv9dl4cherMuzQ4TGHu50z5h++wbzg6Ka8AVehE7QFtkPfBi+w2dO3YziPzOBD6ALHBjoqK2yMo5U/ZrxmIyLZuN6Xx0uUbjB1eGlZ8qGNY8NpPiyMvgA+kq3z4L1GJK2FRdA1YG1dv02Ro2OprtPBM+VqJDst8vSZTi9jjfAK3G8b0jvgdKPxM2s+8EjlDd956Krwxfu5J3YHRpGE2KfKeIko9tBuYUniHcamwxE3FesU4iNo9pA+FxbWeDzpBy+cBibwXYsucHTqSL3F46JIxtsiJtM9ilVHRmf2hjE2BxZ0gavQZWG52mF/kzSPlsI16AI/b36/qFYvmra/u7/vfHMUqyj8Eqqlz5gxHIn3y8Ll6PNgwf00uAk9HXY2qP02rD6WjtfNtnOZGM3EZfIsROQZ84YrWlYrPd8VQJawCLoVrLB0a897x0BisBS6wKYJ6ya4OUbRFYvm+i/u0Wz909alrg+uM4Gtt039Iv40iOrgjej1cJ/0sEuHDfzoNbwVXWBz7A/8CFfxehbN9rlaZt7ddZ31w5qW5gdzm31J+Cffluh/wI/jm8XziEudmN+D3gE34+9vmhb49vu0GJYqw1tuPvE6uwc/7FHZKPbCnzrgTPTX8LTYn6Yaw0PoGZyDLrCdhchEbbMg+t22Vnivfww7kv/ZJirxGvsJP8L9H7Ar+jfY+VPQu49mwTQAO6F/hIe3dDw9/iqEfuUNKlzriWFL1fanXJO8xr7D+Sbyvgtcokkpn+9N6Ipw3U6xo2dYEM2FtdAFFtxfevBWkIpSLDOW+cyzbyamCkdnnHkrz/MnbdgEfQPsuWX2x1/Lg8kVdkQXOCDMMyBb3IWuzpdRf5oayy7alf8Zv59YKXzysnlTkW403YUL0evgvt9tjS8f+FE1XIJeBTdatJ8/NtWb1N959fmJxDGhIm7Wtc6rbAX8RltLb/crZY41LIFuAZs2z11YbnWC3rzlu6OQ3zvhm+F7vOOiQqgkXTFWYUsc81ETVcnMusoK4TeGwglb3wcQD3ZEPwlPMJDrebrRl/rhJHSB32G/eSBahFcRx5rKizf0KV5lD+DweRcOqedY07Mh/Sm8c+V1r8kix6kVbkYX2LXqnFBdywlaovcl8MOqeLaCs3/XmpJypgLP6ln3fOCRG1nAm9HN4fcXkrR1I7xpDLwQfTTcjventmrLT+LGM71imzOHXcpZMuzeumTGouQIaoBN0evgsx/tVO4GutFt2ARdYM0PPkG3EkNog2tXTv73eHaoT2fPxGHlbB28pz+v1WilOa2F7dHXwEUxnS7jdH1IGbZDV4K1cb/8j6jZOh4JzFd+gVhReBkrhffifj0cil4Hl+D+WdgH/YxgfjtLGD7bhYwPxH9SvpHw7+f5I0MD3TK2Hbbgtne0j3cjfVgWXReum/vXwvvdXOox43s4ejdcbrJZtFz8BBn8fugRpJnIbIIbO48+ucL04YO4rwVbo2vC84JUrwTqc0kdtkIX+JWr1vrMKB5ppU0ZfF6ZyPI163yybf7dh7UlC6U0h5tzTOBSdIFr8P5wuA5d4NTc5sJy3Tia8GjYzJZJf7LKsi2zKuWuMBH4YVD/oK6oBY2BK9AF1uy58WB9owe5wL3ozrDkV/26+2I+5CBSNpub9idbXPClIu9KKRP4tmR7zo9xrmQCy6MLXFshbbqad4TMYGV0gb0SdY4XON+8qrHeRX6eXBKzOJ1xOE6vlK2BV9m2eD4UDqB/4Gz0NnjasPEazQ3O9F2Db130QdirrTBr4igLzuEwdaEozyS21ny5yn6RUmYHr7cctbyo4hgthuejC1xYfqxdSNmXLODV6Jbwj7AU0dbrTjRuQR1Halwyuy7Vp7/mVAkThbVwfzncgC7w2C/W1RkOfqQP30fXg7txv7/K1CMvNZmZt+TaSC4vYV/gpowS5dsWfrS6mm8P9LVw74H0ssQpHjQZtkGfBCvjfbUXvy1p/5jMpIx4mYVfi9k9eM6OM0k7wq04S+AX2/l9BTx1QtMfBZFbOQoFfK/EvsDak4cLjQk+QCXKNXNG8FLYFaG1w2qiilk5/EKIMzBcz43TAN9Ab4QVf5rY/1b04HTClehv4DumIbN3nQvgmFxInjhbPpWlFfXtfyFfzPbCI0fGG6tJLOXYwKfQ7eFSrbZQQ0M7TkI+3/roArfgfXYfDnSEBKSyk2Idw2x7ipgD/MHjvHptmgGNgi3QR8MnCpPcVj414WyCj6Hrwb75jb/dK3Zx9rmK2nXLpbG89bbTvoYUMTPYCd0avohuC09YNVHl7atZnBVwMvpy+Cj25b+U9WypTWPXXLsXBcsWMTn4J94vA19Bl4Z9aqRG2WQtoG1wA7rAzUmPWq28Y8hAd5rNDqV0VizxvXdhVyHThy/nC/9jJcYjb/g2usBjDB66SExypQtwC/qFIfvzh5lOv/Y0nb0fTPjiFVbIZGGh/sMKR8a70gp4AH0pvFg9bIyvhCe9+L3n/36MLrDJ/cyrkeMC6FtRRs38kAw2/6XqsIYFhewzPDJh9Ku6MQGcD/Bs9F7YRH5tSvdUH8qHRdAvwMoqjknC45P+/f3e/YHzPoO92zXT7Er/ZfYeTnOXWj79iQznDdyFLrD7+GchP19w6QzchJ4LT9/WqHm/O42M1axTVxtlMvewJrPpCZfZDniQzQl87edCSrAJuiKcPRg1y7YtkDTgQ+gCz8D9vfMerzUpyGQV5aEHPFddZqawsoTlxNm1EeQG30d3hauURvpEkhflwsOv8rvAj9S+v910258kYysP5nVmsueOuflPhC6zWfCiisPepXNW0Y8YvqvQv8PPTLpkv/3k0lP4EnoLLP9TXi2lmUepanpamZtOMV/lXtPkvL9ZMmzx+MdtPw9nTi4cji6w4P7pIT0HXoD7km335sedP8Xke5aK7DH6m82EP0ede/QkxY1+vuJ7IrrAp+VSGwpeHKAtmN+KbggL7rPrl2Y5dJxiKsvuLDsw5292HS7z3h4avsmJkwXPRM+Ev3a/G8GttCcr+P1SfreGq7G/a7Dp/TmDLCafJZTyuOES2wnPvRercv1tIDnCaugCt+O+D7wBXeAK3JdcNlDRWZzF1k9YN8zw+CUmcEzX9sn37njQangXOgdO4kjNqlDaxJGFN6AL7I/9UVLCXyI+ZbFy6R/Gi/QvMYFde+o7dz8L4oyFS9AFXt8+vDRV1ptzX5LvGHSBEysbq0zjjTme2xPNTlpks4chOoolPwvYUdg86NqqC9X2FAH/gy5wQ2tR35U4f86fcDd6AuyI9y0Jla0JuZ/N5Prjhq+9WMBU4FXzq7mjLnpydOEV6DqC/llfVmXOUc4CWBZdYE/cn7K/XG39lBxmUqhSpehfwCbDMx2a7hc3WpMeHIS+CU5nhgvy53LJYh/fTy7zu8Bx2A8Jy8s8Hp7DBiXuJM1WK2Ch8DbD6pGzfoVSAiw0hd//hKMPXLCoXBZFqfBodIGNJJLiPYfHUH9R2uiiEaeZch97rNh28d/PZ75PjDBY8HpkIkXCJ3v5PQp2PL1iof96d+IW892BfYENVa8t8VXw4vwPERpFUA==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAHQEAAAAAAAA=eF7t0L1LQlEcxvGLNIiEmAS9TJZDL0YkVEL3glm0NNXQ0qSBEORQhJvRJQgcWmu+0L/QECh4B8cGkQYHB8eokGiIxuA8X4f8D4R7lw/nOYd7zu+Zbtzf9B7jDct8X7Zs1WRvyDFHhjCKEzgl3Tlckdtp9tHdIM9I32G9xTmbdRY3ObeKibrRy0h/Dw9l4liuFeRnUT6dyeo5OYYv5TKWLmT3lP8dSadg7neLFaP3cWfcWbp1Zk2PIXrs2P8d9NlBn/wHvzHM/PTqTuIMc9OrlaSXBfKBKaR3KzW0P08ew77e4yXpc10u7srnfeam1zd6eKXfeF5G6fn9RLaxTB7hfDMnHw50/0vJmB+/MnYjZd71ex0YGDi6/gHVchkPAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAzQgAAAAAAAA=eF49lnk81Fsfx3/2IUqWsWQZkpkhZUmmaU5+IZmSJkujnmzJktxI1G01XRXV9LxSrjYyiZseKu3SHMmtK7r1oIdHWoyl7DXZUoyul3Nm5r/P6/s+n/P9fc+Z7/e4WOTkpQYdcafy/2Ugbokia3pHqIEFFe7E9I8Ef62RDupPvsCaBTjZad9eb/gf1oQgpFa2217cgjUNqvMjRpOzJFj7gLOaKtbp9R0K/kvs7h0SapeCt/83cds+ulfuDxfmrbOZ/2QAa0eg1jl6szVLqog/dAq9+oU3qFh/ice2bTAcxloX3riwoPxK5wjWDFCtf+7M6YpvivXu6tye1oLvivVZttcPtZ0bx3oR8GzoiVLJkSn27zPL+LPm5k+5P6C3Zwt6egkS+8NjeXFqAxrKpNwve1Vn/LuFKlgvgmU36ZfuRapi7QEbo5ZIMwrUsNaFn9XmN+wdUseaBdy+F2c/W0fBeh2Yq3Jg86NKTayXgfIzWpzny2dg7Qh/WFiwkpu0kRYEQhPLL+IowUwc3wBDjkd236Lp4vhW+H6EcC7RmY11ODxtGePOpOhhHQOVGEJjr9n6eD0HDixv1ppvZ4C1E4zxnNSfF2iINQG1f6jVpp+iyrXgL0e9I5USI+y3HlxujPZf422C4x4wocq+tLzKFMfjIFspXVfE11bottW1arXcUc60ZunDNPJz4s4SJTCtSan49mK9zK9MJTitE/WhLC7meO2AHtK0bxyBks35vwuyxGg/GYd0HzfJNCpBfkSj2HLjyvZb+/qQlmhA1mKLvb9ES3C8g/Pny03R7ZRutF5AALPUmO0Dqt9QnNSAnsS75Gd2Omi/yl5xTUfCmkOHhxEvVYW/Vp2fDBbNRvk6zgE5jVwbn+sE0jRNWJbY7TPr4WvkJ1IDS84L4y70qSE/njZoGHzjMtIyA+luQ1CQs2eux6NBxNdZAqlSX5iW+P84fwqoCvU+7TCrHmsToLXnwA26tAPpbiuwItityU2HQH4CPcguWeqXU6yJ8jF2hYRSUmearBXx8e7QIl/6aFWeKeLDF0HB9aQ+6lYprg8NzLxa17I+kIbiGc5A4nkv48gZGfp+ChMmnmC/OKGugvyrlsP+K9zqxN/Vkd7Pg0NESphJAh2t1+fD0tWM8iFrNRTfsx5W+bd3lKy1RPGj3jDwaWB80X1cPx4TPm17wvVstcX1WgbIapbJALsLn7cBiO3ylb4c1Ud8mSegVbiZW7gYIP4CDzjO3BRvpVSNeB4DxOk+0UndQsf8Rthi9GRL+QgL8cMBMGPHigXjo2li2+n+mEIejF9Ktkw8Qf1AYg1t3zY8DtIzQOsFU9+ZQ/c2cE3B+TiCMocNVy2LGhFPs4XbSq6UNHoOoXgiFRCOL/svT+ZhnhB0dImKEua3YZ4KmLWeecpeuigfyWxAdo2VZnY+5cj9vQ5QmokT8n76t1j7p4VpWs8IPn8GCBe6dYzbNSn4/uJnQcJB3F+fu4OkF6wIWb8m8hcZQcLvQRS1954i/7hUJ+ZPZ9xv66zAFv/OGJkuFfGOhlDa63bxaOEnRf4tdac5rsny/lvGsbWaZbFLTRnXp50juNMvvqqN7z9Bwr0Zzp/SK8YQn0iHsSUC/x3N+LyDraEgyV/yNeIeR+7Pi6xYcEN/AvGihaCk5qNvmvkg2r9yTCwRDHWfdXuvyN/O9eDhX1Nw/xbZA6+wmvvuifj+E2Xi8DAK51JMo7w+cIH99qCeJCUS+ZmDzdG2sWl8XH/iq5jMCvbwLaxR1PO2SNax2UXe7yWcjHxPYWh6J75fJpDcmVI9WvcK8yzob3x3DZDheZBIA6oZEx4zxvpRXNAl5oRfcsl/owHl/v3fKcO59Xg+kKrA9endd06LDXE/HOeEx2jRVd98wd9Lg6H3Tp8U38Lzg9QApwK0WQFZw9jfGjZFHDSh83SBnG8xzcrpvKSFeCkdnuvdU7565Dv2U4ZEn7eWLr9Jcb7eyZ46uy/gfl26BNaNHqG0teB8K/WhJHbnHdGPj/J8gP+HEKK/EM8j3lJIvaKU6t4whvKh0aHIbsPoh8cT8vOCn/jcyLgIPK9otiB4mYM6sxb3Z1IF1LmZdv8mxf1xyl/gl09J2IPnmcgW2CRYxuy/jvtX5VwoMC/3O/WhS9G/4r1SF/RcxPOuzhlUTIzmUpPw+Z5zhFlZ2dqUj3ry+gBGxnvfVzV4Hj5fDc5tenM5pX4S5Vu2CLSHrW0LdJ6jOK/SVP7xeary+bgc3D4WuZlhbYjiPq7A2Kuq/pSPDvYnBMYhPgGavnh+klbA7Lfak7EHlREvJMGWYbVroa8tgdzfQ2hucC0fz9fStVDLO2GkbUIf94c54FSzZY7mi1FFPUeZUupqTTx/HT2hrrB6yLsG/1+aWXCLXfWSVraZIp+Nj7lpfofwfA5nQ41q6sWgFbh/Soxg7rsY5mcnM/y9HOC/lH3AQdsM8SIecDWbLfmUb4TiZSQg+OGZN+Pk98ELhionhaYWm2PeFxg5aB8tmo/Pc6pfN1VWp8dV0BT+yQP/IcbDLREfHQlEq476yVj4//VHABAWd+tOGOD9pvrJqgeyI5yzNMRrbwUWCbtmVGXifPeHAO73vAN3lszDfBB4daLQdPy4FeLvxoL9ZnZGoV9UULx7Jdi3MuzlwRZnIPcvCQBFtUJrxDfzwbYGB///FjsgXtUfBA1cDTMewPNt6v13f6lpel3uXMRXAlj5QLXvIdsYxYO58LMp792kO37fECugXclAtvdjG8STbGDDvfaxq9UE3+d5MKdjx+sdRy2QFgSAcuWqbfsG5yG+zgPktz70+H3RLAXvHb0198ouhryeULhh+9t6Fh3xGevhWAcz4hcDJop78WD2a9P1/Eg8X6fetwWFFZmPzzAQzwiEu/QK403anVD8+RookoZocY/J3wcMSLJXJNSq2iHeJxQwdnb9MbQX1yPRHeQWvC9K4rso7vOu+pzrh0/aI95jNyhlCjduNcbnZRwFnjcY3H/4VlF/8A8phdGYAQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAowUAAAAAAAA=eF6F1mlQU1cUwHHQ1KYidWGVQFmUTRGCsgg3AtK4IApasDiyKDiiAjIG3BUsM6wuiBKpoFaguDAqDiOy+KgGhAxaUUZhEFNUqLEIjQTDLks/5HnevNPO9H37fcg2+d9zrobGfz8zz2gX3Pv7+P0vNnxaEqJMKwGbRDmvVslqwJcmPS/s4TeBb4WPCWMutIEnNFpuHMrtBEePPinVSvwAzjWb+97rgRL8rGb9ku/9B8AxW57c4YtGwZm27lslOhoPvnisY9apJPep4HLrvKtxJdPAxuZVniGi6WDf+Jg2kvIteFXGzsJ5+2eDfwrfZHWwWQes4NoH9Yfpg0PFDs46BnPBCU5Lyd4JHtglMELRrm8KvpMfu8HM0Rz8yTO8IaTPAhxxZdq3vo3zmffTSq9eKLUCD22O9Q9utwEn6SauCdRdCObV3csqjVkEFqr4H/ldDszr93n2bBY6glfmpNpZXV8MVhYtsswxc2I+/2Gt/+sSZ7CDfOSwb6AreF5l4C8r5riBTRqWV2zodgfX8KwLdV4LwDnau2T+vR7ggNKmtMHTXuCBtVNLRyuXg/FzIpbdY4eE3eOdSHaP45/ZPRaFsHt8PNHM6jFjmN3jLVN2j50Sdo/hYewetVCPF1CPkahHqRm7x644do+GqMcfUI8S1KMT6jEA9chFPeahHltRjytRjztQjx2oxzjU4yzUoyvqUYl6XI56/Ih6PIp6XIB6NEY9GvxPj+dRjxtRj8N0j8WKEV1yt5vSQI+PUhHhV70N/v9uqdp9JSb8lQ0qqjyJ3etLldxtPDGfmZd/qX3tMy/A6WAnVSFl9yw+ELygJboSXCxSu9o0wW97wjAlQr3b+b29XSVuAFv4qD2gr8nd890k9ccY+zzYiEMyr+Q3g5+cVjtuVKNSfqCNCghjn5eyb1LbNpq/Ab/mqO1cfObwOu4AyZxknyfyznHG0S452LVT7bAX8SNRaUqSP8I+b4QzESberAAfmaK2h00W73bVC0qI9kNtvWWs7cAn8O91au8ZKajTjsuiItH+2PbVmLS1cQgcz1FbPKqfKd7SSemh/eJ2smBFods42PGE2mVX+7cNTblBfNF5vzm+u+vcJU2wM+0HcsPouOMqIkHzwCXWy76qm8Ocp91qm1pkGAXU95DzaF4Uzjzi1Z3CBQfR3jo5POgTkk0Zov1W1aRdoyWaAQ6h7ZFeLDhaJqVWof33RiXcywuaxfwe2hXHM3ck98goAZpHUfXHUt5cngN2p/0qhZdy5MRLEo/mVckt/TIjXT1wKu3YsGPZ2fot5E80zxyTxNdc7hqAubT7hR059zl3SRCad7XmAn9JshH4Iu2d0ziCfsteah+ah78J+Bujkk3AJ2kLf0xIdgr9QFmheRnAm3z3dbAZmNA+vyx2tkbzc+oGmqdn++emybSZeXqA9uUChUKSJKPkaN7ueDRx7LFsHngN7WQT+UnrvudUIJrH0Y5pblypJTO/aGdQ4S3RVc1EhOa1dkT+WGejNTPfwtUeXG9fE021kh40z4OIg6a03xa8gvZ1kVvfObe35DCa9wfTi24SgR14N2278l3xM+2aiD7aB05GhlOUV+zBlrRX13P9OBEviSfaF8Y+Zr+25fLBerSz9gaLCiKfkgG0TwTC7TH3VYyX0q7zXBsxJHhKvNG+mZFy1bwifAnTG+1U33U5Z1vfU71oH/UMG3v0vGPcS9vkoe0hG7sOCu8rQwl1My/Rhfn+tL29q51EP7cQe7TP1vd5nzPlL2V6oN2heCbbv6+FWKF9F5qw00U5yjiA9vStRbYGrq8ID+1DzqbG2vy3BDwepHZ5f29ou1YDwfsyb3K+o7xzGTiX9nSHZSaPZS0Uvt9l5QzGP9Jk9mk2bcHikXQvy3byr/uf5YDeBgvm/tdHu3LxqVTRRRU1SO/jfwAJTNEGAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAaxMAAAAAAAA=eF49mHc41e//x4WPPcqMZK+MjMJ5c9vjHHtTMlPSoIiGlggVLe2MlpBkfcI5efEuLYVSaRiFhkqLrFL0+1znvr+/Px/Xw1/nujzu5+t9cLHSV6dqO9Q9xztP4tdNG4/55aYJtbOph1l2X17N2m1Vo6gFwddZyHtj6Ek56dEmZnTfJbHBKUZS9xSn7JExnJh6s8pezgK93POiJ8acn9408qRzVYEk9Wigvn84zgnKVyldaMr3Qr47/JXjPkvQmRdFGlR4JCnFz5+33bcNhYAKnn8ENvqjcmF+Zv5zGXohrykn00SY2h7KmxK9ZTm8Y8zS7ntmhJpa3MS87BTpvbtS5OyZ7xh3D10WPVSzArKlzbsi3dyg4qZkQGCtCn3QZXvZ4EExTqRcn73FmSiwaOmod77sBM8k9yYb5avTh/aHr9/MK88xNEoeDRBlga9p0hvFUl3U+3PrbJUYLfq2jMc2G6FWdsLMsyvPLWyBteWB2ZGD76wcI5QnJildOv5IS7XTxCfG9sm3PJNd7uDAya/eOmmORJYWzvFW0KfvlLYLps39y1h6Za3P/WAGFH3cUtg9wANnehI3PP5nIZ32V6DGLeIL+/v61j3THgFgqtL3j2QcCwZXs0QuphrT9pnKRvdj1Tm93y42irKCwb/2+LD/MnsIqbo0eU/AlPY6kZBm5TKPM/CQxzZS2gpW29YnhS76aDXWflVgyYlFdCIf3Tpt/5ltF5XLp2vJQkFDT93zopTQVpH5M9HGZnRp99mohgs81JBc7NsUXXdULse5YbrRBH08GceQeG5O21y9e+Zyuyil+EEi2r1AA/mtWh4TUrEQREq+zcvZy6DlwuZny+QLcsZiB9beUjUBMfOILYxQPfiWda5Bx9WSDqqsNbT6KsyJnRB+dDBHF908fhp9cxaBqur3RfYKiC6dEZ+/1eQ5eyj91LBKhhni35N2ib3ZEa0MlXntN2VNq0d0eQs3aFHJ/oJPAz0Wo+4r+Zd2X7NF6c6vFb5/taUL755NDJbXpjIOR3t9uWoGAu33ZXn26aBn2aVH3k7Z0ZsC30dm+8lTc8KEFFb5G4NAxrVjc01M0Mzej83PhB3oC03GCjUZclRK7MaeFaLe0L5CeUPCVR20WGeQc0/TkXZ+plofkDmbChv6ce5jsjts17v+4O6HBXDKbmTijocT3Rd3xyOgVIrT7/S7nWPvCOj91mqXMkOwaAs5PpLmTDPsl49sl1Dk2K873sW87AVyD7PifjMXQ+yvK8ppLS60i8Q7zR39qpxNp19VU4tU4ZqGk4+0hSaECe1LuafMoiVcjzTFiEhzzN799bTS9of8if1RGSkLIfh0wIR+litdUvDvlPHz+RzJOMFgm0RVeKnbNajJowHPlVNCzfncaYXbint2FUhzmn/82TM7xQS1lKwvUBxUB0u3dxI5xzxofRf7o20t4pxTX3n3rOJ3gPjCfqvNBxDqCNaVGkVedK5gVsCNTj0q5zxrtewdE3izKOmk6WYzZJrf+c1/xptmW6U1t2prUS3/spqR/nRDm9/n3Z7TejA6u+582Fcfulfotf3rPQocvaFu69Et7hD26VZu5xM9iEzLWm045EuHLte1u2+owvm1bkJVabsHEgCBlPjlxpCvfufd7Qk/mieZ72abjgbnmFDbxT/6bnBjZG1tp4QyNIPMUJRMAJ0RW3KiUWYOJ9yudcnuUiNUlpJTBH76SNLATtPfKZAOGHLaNeapRLFi7rd5hNsibzovkGVhChWXayrGs4LoNbf8NjiIqnMaRyIbHY7ZI9tdxh8PpLPQJaEt6Gp/MO3g0THC3ktRCrUbrirIrYB03EeQ0cB93Et4f6potXumu1Ux7iPER+M+lhCOFM6IRKstIRP3Ed5k4j7uJiz1NjfYJZGCc7iP8HAz7mM+YTGNbyG7nFxQEO4j7OXHfWQR3h1toh8ry4/GcB9hxT3cx/+xzWb5Z3nv7WEn7iPSuY37uIawlw59MrLdHoxwH9GD2biPioQniqS2v1FbCoG4jyBA+mhMWHFamN/zVhgMbub2saGN9HE74YeG4j4Dx4JhMe4j+CzBfZxN+LZDxJcTJ6PAF/cRCfXiPsoQ3ljyU4TSC4CFuI9oZg3u45QyZp7O3GXr1GzBB/cRPSB9NCL87UINuzXeDzxwHxvCSR+1Cdto8az/IBINdriP0Ez6yEN44NRR69eiK6Ea9xGySB/TCId8fhywSzcMvHEfUTbp43AMZvWU78ve8ocCD+4jOkP6WGeGWbdO49Nug3AQO8HtIyonfXyNe4nO1bU19qmHAw/uI6xYhvvYlI45ZbA3P5AZDvdxHyGO9HEFYR61/PilD5bCcBu3j3CN9PEi4Q5vGbUco2UwC/cRhkgfm/dgNjxpt0rsmx904j7CEdLHVMJS5S43vAqWQiLuI6ogfZxagBn2r0urO+wCeriPqI70seIdZpWWSjthDSeQwH1E60kfq9ox8+YMt+4f94Uq3Ee0nfQxiPBE1lCS9z1POIL7iKRIH2fGMXfI1HatPzzd8AT3EeWr4D5uIaxVWtrOyAwE0kc04Yr7uInwtj/9Kj9yF6BY3Ed4RPp4uwCzuZDgZ06W4//6CKp5uI9rCW9d6pF3+o8qEvLn9hFFzMF9XIx7if40y17ZFBAFAbiPiEX6yP6Ieaeuc93cwBXAi/uIgPTxfANmvumKt8I91jCI+4jSSB/VCPctuv5R6hUFd3EfoUgf91GZcG787mx2vw/sxH1En0txH780YS4VyqgYV2WhpbiPsFwY97FxJ+akrqKspp1hqP5uj1d5ox6nVRb38RC3j8ZwIKRJeaekKhSUnAt4WOuEilNKi8ae9je1md1RLFwwwqC+xbxVWzsb8rAH2ZXYnyb812S7/DyOGihZ7Tkbay3JebYG97WC21cGSMUz/aSEF8Efd1EGqDsgR6dMtR/0dFMak6G2aWSGkdFdmaqtYAdT2MM+G+zHCe8f3cfDlLOGrxYKH/MNZDmu6bjPB7l91gGRFptXw8IOsO2HwJXv0s4oiXVq6tNhYZov56WNrhAf1effW9iq4wdbsAdD4uMJl/NNJdSd+e//fuPwE6+L2pyVW3DfS7l9t4Fmp5zPVvwskEsQvFIT6YtWWL5avUBbipbbc/lg+X0FSpU3ce3cvgiQxx7yzLCXIFyyiJVadMgSRZ11Olofw8tZJIjfB/xeOEJurnDL5H/7I+XZjU8345hIbzxINzlbnh5h1b5c1yNFRSW3yBx+HQ2p2EPpCPZrCau9rwws8zUGxf3UgXbJuVQs2d9/uO+LCmzsKWWk8vkCulMr+SnAFOpm11Q8nlKiRVK0qiJe8nIKvdNvrCuPBhvsEUsKe33CJpMTfzsTHMBq+765AfWKVBJ5n1K575MlWmIXlOS63Q9649JZT7cy4cj3zxJxVmq0/+1zH3YtkeH0/hsuIsEMhm7sUcww9o2Ee0xem94u9QGlxxmtyWY8nBHyvplw37fFiHHaI9D/ZxAwNq+a2TFjAJ+Np+11ZmnSfwvSThUv/8Xm7RMvSxy0BzPskZAJ9lqEX52zV5s1JwQU+Abq+tdLcpjkffThvo9zQSr6X41My0C419UxzjeigKS05dJEO7TpDRMFYdcefGfsPcZ8W2fFgg7sQYT4CsLfik+mH9gZAv2e4zfym2gGh7yvxdz3tbOBx/j6+a/IH4bF3K2+5emg2TJr0i5eXkAb+1lO3Qrjo3753Vpm2e0IY9hDojT2Twjzza6I1bu+DHi09+bo8ney08j7bMJ9n7Xhbuiwo1tFABjnt4fZ9Gii+Gam7eFDBrR7QGSKsfsfRtQZ4fWL97sDhT3sIF6KsPXjjMGrs5aB5WbRNe2/xShzcv+4cN/3YSveXT7pk5I+UHb1bqXBNgpcFkffyE43oitsnd3a8+Q5pT1xT4RHg6Aae3TQDPtNhA0aTJlHNnuCypOqrzyVclQu2Qe63L3AQMtXoepUbzewXmO5zeSdExSGVuyqdTShixRF5epb1DhLkucIy5u5gT32iCcMexnCdvB0pEXZHZ78mW8YteYnQ6wa7wsP7r4wQTulR3cWRnhB4MvmnZlTxjD5+sz0oYemdH+lcK/SK3FOa3/lj+WJ2sgPe9RP/GLCh3VqL1zwXQZBms/Vo5L62TIP8T7Zyd0nLxs6Yr5VOCZ6A/VkTbdArCSaOpPKEx69mE6rDQ+iC0cYnV5/PrUzXZEF9lBD/PvHmNvl370Qy18B70523bEdHGaHkH3jwN03YuB2PK59zM0H3OdUHD2drYt8lCbnUnzm9JopKv+9nBCVoFWbOrrcDjGxhxDi+QkfumvwaNvCaOARE/jks6OXEUH2URl3H6lBTVZxpYSnG2yYa7vOoH/YSjIxXMez0oLuOJFl7Dx1il3Hyvyg910cUrBvMCDenLB6S3MmPwqDL6rxp+fOec8OJfvKjru3lBHVabzyhoQrlD+MXO+aYQCu+5d87Iql6M5mz7SHEVKcHNbHmSVB81EF9siF+BDCameVEva5hcIeVV1hxc+DjJ9kn/3k7jNFFB7kWZrh4wkt7c183ZtUwSdRsnyxiRUd+sPwyugVXs78EqmNGTzmqBV7tI3404Qje+cYM43DoGrqsNH8M3M4F8i+k+fuvSmrwUP5C3dSPpA3xL659KkJYtgHoQfC1jRfSJWx3npFKqzm9yj/fit0EXuwJD6ccJhOqJr7+TCAfOsvEfWDbAFyP49z9+EiUHdxfuOT6w1j63ThT6k9mmt9aVx1zIZWzX4b/1Jck/ok/feFWKUejGMPbxH21wm/km2wGZ2zDDJtIseGLCbZCWRf3uDuSyNgM12O036uYHDf7mUqmKH352Oyv26xo52Hyr4w1ZUodSXJT1WNC0ADe3hO/MsWzO/kXt24NxoCUi2NvN/537BbyD79xt2n8nBw4Elb2ZgH7Fh7+uypcQO0ipFyKTTNnkY3bpp23JShhA+8Kf6u5Am7sIcA4qUJ1+9IVxDsDYQi5+IzbQVTbJl9eN9OcPetGried5DTfu8NyfW3PB4LGqK1E8lsr5MOtG1SffrlKlnqtciptc4L/WEj9rCeeGHCZaeUrC/PCoTRMwfMI/4MMFq08T7u4O5jeWAkPpdXXeEJhQavO8ueDDRoTos/vst2pP2iGCk3CwbY5YKcrayLHjCqz/VWMcTfJlxBvFmh+cCe3gnGI7KvQ7h7WwF1vbGZujnIhHZBxSaB+/pQrPgXej440W6JRq9fHJDnxPy+umnM4v89+pf4QMIFpjcgPcMLcpPg1mzGDCOG7HNF7l6fj8TyhOt2rmJCYKR69KGDJuBrW/CQo+VC32l7WbCJR4Uj9FQ82azbD3yxR3uJ5yN8IffSxWV/jGHhdK0+Zf6DEUP2/Qx332uiYRNU2N5qB5/6LstmRC+EiZ7wpqKNTPqsu/njst3zODRj/IPXMn34gj3S6MU+inAuqLn8SHAGH8azJK/qLkYHuQ8ucu8DGeQYnlnXetYeFhz4sKRtyQJIfFFQ/OsJi+6UG15Zsk+eM37WihnQqQEG2KME4q/mYI56Iyp7WdYX9Je7c6pPDjPiyH2Ryr03lJGvunifbaY91EuaagY26kJtnai0ibMb/Xv4n0n7B/KcWS7Z2cxFC6ERe3SNeEvC6i+O78iK8oPytiuHZu51MYrJ95sW7n0ijTR3PTpcw2cHgbGazSqj6tCVcVBhoNWd/vHBPPNciRSnVfPYj6XyFrAMe/SS+IlVmDv7npzI2TYXdUf4XkgR5qeOke8/d7n3jRRyUrjEX//f77Pxge7X1YoayFNLPI6O9aSflTBfuZ6Xo77HCxf1xNhANvZwhngRwhqzHhilnDSCfyPPLci8OsNmkPvIg3svGUC4pRi/S5kZaK0u+xTASyGZ6GL/i/O96fhdtpVCHH0qfL26nNorU6SDPRgSfzoWs1yxmXylMAt1Xtqqok7LUgLk+1M7977SgpINb4cnTRXAUG9qqdEbScTnq1PluMmHrs2THTxh9puRHEqXLexRBzHs4a0P9p4LMC8nfvus4Nj2peKUAbnPgHufKSL9MWWvlDJLkCsMFpnzUQ+qrHOi7qz1pdfe+3F7ZbIyhzXmMXPXzP5/HmUTv7EAc/HyhP3vO7whxqbesVxmFrWO3HfW3HtPEYVqdeRLFDnAtarYWy9bDaH6rMOvLRv86AXt77rMS1Q5VicGNwlpWEAV9ugC8TOVmO+EitgwtVdC9+uYr9a7JxmF5D6c4N6HqmhW6mmXgaz/7hd2VInGoA7sdBo3OJrhT3c18jqeuq/E0R3+we48ZY6SsUd5xL+vx9ygKjYkeDgYIr/9fRqcO83eQO7LRu59KYHO6XccPdlnAGl8V48WnRBCKolHUUh5AO2UH+/v4/+XgWJt/PqmPCALewgiXpxwy52wop/l1mhPc8J1/xV81DS5T6u49+k8WCf+sWQ6zRpNCgaJl1rwwjq/RSKag4E0c17S75QNPBzRv+3zkqUtwEuI61EB8Vvx36PHWo7ZHRo+yH0Tfax06z/U7DJ83/py7111NOQzbibx2BDl2t5JefpoIXqgO2bhvziYXrr2VVbNBy2qogxW8Na4wgvsoZf4QzaYD+ds2HJYOwD2/mg022XHoJIE8X3M5N7LDLj5Zf/mhnpF9H+N8yu0AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA5wEAAAAAAAA=eF7t0FtLkwEABuCB5oaChxzNqAvbXQpqVpiYQjWwsUBrptjCLFwyKiVM2sxqfslnrliablQLnc5mHrETaLV8ITAKq2UxaVkYRnlhqZRUQulF79X+QbDnJzwSyT8V/saqvD27oP/eY84t2A+TMKZO2KlHilYcTzx2FMqs1/fmXxzHq5GJjLdllTBrbs/K40yQek8p60arkTo6IVdkm7EpeY2mKVnAkH3viC++FlOtS+6YtSIe5UT+FZXnYXD90lo3W9D7xLHPln8RLTdPetfVWSFNXHpuKGlAW4Ks6Y61EYdmr/3RPb6MmDnf+4Mhzdj+tOaWL8cGwZNlnOyyI92X5Hmw8gpeWlTvPBeu4tJ6f03BKgeav6jPKu5eR5hRO953uAWDC0bbT4UT5bv1GTOyNkSUptnV0nasUNW/2Sp3YXrxa2jkhg4Ijtg+5YEb6PBr6iVON3QNP47kLnTidFVn0sfiLkx9yGvt/tQN1bOi1V6hF6WiKtaV2Q9jz7ffYxEDYKOkko8n+HiGjxv5GB/weI6P0Xzcwsd0Pt7n42c+DvOxnI9uPjr5KONjOx+L+BjNx218FPmYGfBo4aOVj+F8fMjHCj5G8VHKxxk+1vLRxcfCgMdJPu7go4GPpoDHoKCg/9cywbBXdA==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA0AMAAAAAAAA=eF5d1GtU03Ucx/EdTDcxFWQJkSd1ns5R5LjShhKXo4Ea4hkgAoGciSQpuUQOEGMpjQ0H4zLG2JCcscG47AaieJkQ9e1QXkEXERioh7xFHZXykkkpPfDz5wH/J+/nr9/n+2exXn5ZQ5XSrVs2U9ojuyw6IZny5H0Rfh+k0duxysHln4qJF/rTyb8uZ9KPZ68F/bI3h2SRx8e4PnnEdn3OK+rZTyt7rnG9N8roXf4bkVV8OZ2pjjs7sKiQbhknmjwXKOmbqDkvlLxiSjf/E6sWlJDjnCFJH19GtZZc1+IiNbGXT/Sm79RQnR+nql1dSaljh59v69aS558D13dM09H7FwqODUTpSd4VKhmxVlPgwIquznk1dKUkfLir9EuqWDZUkDDfQLrfIr7wPnGEZkhiB1s+riXnE4n+qbeJMmLSgu5x6mjWrtXVEex6mh6u6g/mmml0/P4rc95pILnBq4W3vZEahiJVLFMTbdM83hP9pJkOSJtX/JpipVs3thptt20UflH0ukvuoF3KcC9zSCtJ7A+e9c1qIzCycuCYDcd8OK6C46Ipjgo4esBxDRwD4dgBx7tw/BaOGXBsgqMJjhw41sNRBEcPOK6DoxKOIVMcS+CohqM7HL+GYxYc58KRDcd7cCyEoxmOiVMcR+AYBsd0OOZNcXy5x2DKQbPhGrVvXBSyNo4SUDGc54dy1/9+ZgctQPfDvf8Th4d9aDddRVfiHa6vuuTqdts32cV4F6nbVcmd2iySoMw7LVWdey03LJf8UDne7fvZ3jOFD6V0EX0V7xhwwrcpqSWf1qICvGv783/5cUEF5EQD8M5/pzo5gqUKGkeZdxcabAHZbx6kaPQ2duB6qtyyeWER9aHMfenyplnd/VV0CBVjJyWCTYOeG0ona8Vu3nKq9MN7y2kJasSO4ifeOzXeXEEfosyu+m2KNvUzDf2MMjtzK485z16mJRaagt11jDnviz6qotMos0NbsmPjEauOLChz36lhI7rh//S0Ey3ETm9cOOUrFB2im2gQdlvYFtgTfKWGlCizY35SRat7zGHyR8uway1HK1t9x0BlaCV23ntUaE8t/4p6UA5233mMVyCMNNJ3aAfuQLckYzRTY6IaNBN3EZJ8edS3uI7WobNxJ8VxKYLu8noqRWfgbj4zdoob680kRf/AHQkusRJ9zjfQGlSBu/Lq5BsqJxqJizL/K5nAJLVsaqZ8NAl3J54u7PWxW2gPytxhm/+Luz/wbNSK3sRd6voTk7va7aRFmf9dvCWmOjClZbK7cbeOBxpFg99RakWZ/+H/He5YyA==AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAdQMAAAAAAAA=eF6d1H1MzHEcB/BahFTurLVMOJTqWNIaovYVDeWpix6cFrasB+ahIbU6i6SJWMlCImSSZrORpQdXl6fqauiiXVzNQ3Wtb09Xulz5NO+/bjObv15/3f1+9/6837dxIHp0fJyzshiZz4TSohn6UXJu+Zi7jkydvNmti2xuCvBvIQWfTL8oyHlOWX6FZKbNQXUq6Zpkrw4jzzmnJ4hJu3T/dz1jnOmFmW33SYctqpQQ8mPwy8MjBs4CJCmLL5Ce3p2ThOT1vXlWp39x9tVFadk2Su9RsPCoM7nwQJUkWM9ZnXMjixzh7HWtjSTkJ2d7FHP084c5y8h2H5LrOPuQ7+u0bJDeW9F8KKqfsyuFRWd293I21bL4uWUPZ7H1kfIILWcdy5uCpB2chdX0dbV+5SztnOmKVg1nhfMbHq1VczZjn0w7qOIsf2lVW1MjZ4NPIqdUveFsSZav90U5Z29T1enTn3FmkLXcGn1I31duIZx1izM/5FiBHMOQo8goRxVynIkcRf+Zowo5bkOOK5HjNeT4DTmGGuWoRI6vjHK8ZJSj6B85diHH8L/kaI0cbxrl6Ioc65DjOHLsQo4+yPHBtET1hMXwCXLdpNGNG8htcAdyTjEznzlCnoW2yH1oZ5NPL/kTynAHU5MFmnbSHCpxl+Fw5tdI6qEF7nQgN76lhDwC7XC3YIGjNofcBc/jjiXJLq9iyTK4CHe1cFz0wJe0hqdw54SG0lIrMhEKcPdI0aPJ9WQMHEQPtq6qPpFMSqA9ehEoNKhdyCCoRE/8G9Y3Kib6AjegN+IbbhUBpCtchh45r7vTXEs9EsPL6NWsVr9pHuRs+Bk9y5Me6k0lb0MJehcaZ6KUU++k0B49dOrcHtdGPRRDBXp50nWjbzv18jR8gZ7eM3PTV1JPi2AoepuwRvv42BB9Dqahx/KnUZUG6nENrEOveURBimSAs35oi57rZJaB0X3UE5iB3q8s0yz14pythibYwWKB4G5lN+UGo7GL415J+390chYPNdhJtyjCseA7PR8GYzcZKrOeH+2cXYTJ2JG1p/jb9c/0PwFvY1cnWrNzCz/R74ZTsbOxHfuide/p/YL+mIPdOe0dzgyvp5yhFjvMiqsIraihfUMH7LK/2OP19zLaDazGTrMDV0vzH3N2FQ5ht2uFaZuK73G2Hmqw499LM60JAQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAArw8AAAAAAAA=eF5d2Gk0lW0XwHFJkalSSR4hSYNZKsqNRBkbRCpTEUkSMibzdBxz5ilzGhUJydZVRISEMvY2KSppViHe1nPv86xVH39rfzrW8r/2vudpJ9/+2TVXMzt8MPulUTvRWUdbtVwPZMRq1TjZzN5Sg5qkiPN+icnQA2I/g/aYx4YnWxqOwbARm+6G17vIVLev4IjSA6K6nbZUqO9S+8XBUCn+mTPqoDlxmD6hkO7fRuKX0d7+uPusJEc6KHXbDwu625AfL8M3ODS3khp02qyrChrmudBlUZitpHGYTJ31n7QTbCUf0GOr2d6tNsmHqvk/6s0WOpFVHyTGc2xaiAV6TSinNZtsDgTljtp9PulCFHI5DkteuU8s0GYLpha/0A+DN+3rlsp+cSOWuiZb2SebyRh6+aPN/euKfMFpdT7IuXsQj5IEbz29ZsJy6LPd5j/PM8A2ZW6/5bQX8V12sYU7tYl4o6s+cPmnxHoAVZ/ssD7lJGHALIG9r+4RNXSuRr6kyngCeBjsNzXY6EcadbqltZXvEUP0hW2tVp+zk0BNw8VI930AkchRkHoZ0khE0cNWr/tExr3gSJlop8/eIPIwVsBIv6uBOKD5tqsb7HMPozxftKun1QUT9eSXOvErGogP2pUBCq28DMpGJSSSTTWUrM/Jkm71uksc0XoTLVF5VgepFqmbV+tvhBF/efYS4fv1pBF9wf367lemzpAzY4xtzrYI8nGWpnKSWD3JQGv1pb/cBXZU1aGQklkvGEQynZpp5lFHrqPDrnSczeM/QR1YfS6dK5pJAi1nOAS33CFu6K3c4wUFP12pS+FRm722RhN5Nq/XG1bcITXo7Hvnr99ROgGvL2i9aReIJSf9hp0yA26TUfRh/i+Tsm+dYMry56ern+OI0kfX6M5+QrisaGsu+i7b5xcFTzuNK4a/xBOOIxcq5mwk5AX61wyRY1a7GNBfd/jz7PEE8myH0YxHyrdIL/qM0xQw+YLgXqKR0jXeRHJxWfljg3EgDWhZwa+l36WiQGP+8r0zZJNIfJeJzdP6GqKGlokzLVIotQDT5ev7hC2SiVxOtMJ00k1igo4OfVen+C0ehG7LxWlmphA5/76E5UeryUK0FIfP7lZxSzjtKshoeZdKlDnyDdu23SAx6NzXxx7xf3WmtHrl3q/dkU7et03siJKuIuroV59+XRB4EwACKlQrV2MG2ffY9eAnwUoihN6/N7xlxPs4qBfWNU6YZJGqF101+dwVRAtdUgHlRV2qwGU54fJkPJv0Hq1ON+K8TmahJ0tURueaMMDfKWRzTnUOObXIKuwSXznxQyv+dPwWpxpJiSjvfrP6fi652b3JJ1z0GhFGq4l881WWjQDz/HauxffyiHqsfmzJxjKyHy2kVJczweVEjV78aKHxKJ/oqnZyz7QtJSyPX3OU1Gn0pUSDJ3h7vhSQ6l8GLUfTrhJhNJVXpOsuEUA59lwXFFlRRKrq50lcqLxCXNA3mNNeWU15oDOS9G8Ps7CP29FzOAxtnlsz1N5N7vm3hxnYxxG0ivLzW662XqBtTPeQvYfuI8suSdGytxiekCFB99AC+8iypP8/m4SrQqjPj+kevsU+stzTaL91+t5mKhh7OI59DEXPVtjVGlEWANPz6B7KYB/ZsI9s5VHy2REBoIw9lMM+rkNPToanxG5OgVDsoQX2keU01Ya27eYZ8AZ76Il9HEKf1tLpm3ye9F8fvbGPNuicxiVp+1blQAL2MAb7GIs+H/hU17k/AXgM6R72YB950UI5fNoWCb7Aiz2Uwj7yoEst5p8ixvHwupTuYQP2kWWx+peRUwO50I491MU+siwVsSlCsyAfDLCH67CP+uhu/bIYlY504F5J9zAE+8iySnjuiskHabASeziIfVyFlh5eZeFTlQFnsYfi2MditKBmrvOnKxnAhT10wT5yo6/GsQtuav89j6B7qIh95EbPfiM5AI9ToA976I59ZLmaXd967oI0EMYeKmAfhdDBzXrvXOriQaeL7qEQ9pHlC1bpD/pKUuAx9nAQ+9iN/q427pQ2EQJiSXQPW7CP4iyn1vLOfxQEktjDSOwjy811QkKkLQ6ssYdK2EcrtGbMVEO/FRMIoXvIj32sRbM9Pta3RW4jyLrRPXTDPsqgr4lJWWfMTYTPPXQP27GP39ANFV11l4vsKW3s4UHsoxaaZ23lRIRBELgW0D20wT66ocuXGdzoWWRFXcYeLnGi+1iCLr3baedZegbUsIcO2EdNdFLS0m67GfmwGnvYin2UQee93LjexOUkCGMPBbCPIuj1d2beMh7yhCzsIQf2keX27z3K3oMxYBVE91AJ+3gALXvpu/QcqzBKvZfu4d27dB/V0NdemQ+miWZQr+Ym/9FHXy7aN6+s1x9ytYDC9Hl2A62yRCEvY7xBvJ2onqF91tD6n3ULjUA87c85y5eZo+wVttYw/YvuaRb2tWSKdi1j/VLrfhcQ5B/YsGevPlntnWkjHvOALJlLe2K2oxR7yCngmU9bDudz0N2rB7kE7/hAK+6vX3F//YEeUYz4/OxzAEy+q1/xvGAPub3dteBOTxuJHaEtKeMT82xBPNh/pN2Gcwc099MJda24w1StGN1zY+z7GtyH3XhcZqZrh8F1eeF1zgIHCPeHsWuBkm1EXoF2XlHfzt2qWbAT5zNwzrJQ8ap89zAvak33n++DMzpy1g+/xJVRYF3cf7uw9xCpa5pYctillVxD13fvY3dOy4P+s7RrcT6ArjBM2SI85AQ//npfZlnS7tHyT50vEQsVDlPyd88fIaojuhPBNS0kBe19zyWH0ykPhI7QVsM5y7cqCtpcTAOhWoB+jyTxfWKim75qfy2ziocvXwe3ioY5E4cipsILrhaSi9ZMdymf/3s/7vhC+yjOO9Gb3K6rWAXFwPBf71s3+lVTa+Y+syQoXnaJzK10JdIX8/Ykmt4nGeh3Y1/1OcoDwAKtgPP9aNuKpKAdi1IhCd/D3fg+pqH/6RcJSmg5DZTbvpHLa93JSxH7p0X5zWQLeiz9Vmi1RxgcQr/AOcu9S1vNjD1ToQvfU1d8Xx+hg+/UiBvMSYARpbkGDTc8f//uWIk1H5vIN/QS3XG91KQguIZ+iPNydJ6UvGN7TBqo43vshu/zNnSTB3Otzc7TULBWR7xZ34fcbdU5rqjeRC6idx+LTjOzZcA4uhnnLL8fc510eZsKT+ro9zwA3/cBNLNRRb/WLRry/Rc/0Rz2JUoT3aJt0fdIFPpM72K2i8ZJIBBAWw3nLCfWlw1RQkwYw3upBfeD52hNrvCpYsMIUBYXe9CU6E+unRs+t2CgkQigdRt3yWqviwAQo12J8xp0ZJeYwQaO378P94lVuF+MoN36hn1qXjFBUJ45EVscSEJ8Am8IyjQSXrR545QlPLOl7sr9Oa9HFw88kNZQTINQvNc6cD8JQw+Iff7nS8/v/18Pfc45/MGEr8NY7/2pBnIAvZJtC+9y23BKFj0L5zLo5Y2yMps088Ee9xkV3G8c0M9443ar9EeD4yExG0P/EGIjHFdV0naXOKOr7eOqKmf5UTl/zc+gDey+BgZO5gIX7kMyuB/xord6nc/z04+AbU/zMmx+hpKW4sSRE8vuEl30cctFfiuD9cEG/RDndmi2rQPdQS/TYfyv+/MHWoWtc262Qji4L2t7ZB8YTkbEelzMPOrJcfQZ9pZXHeP7KC30O5xvRh//pnT+PF86JOE+NoT7WTya6eSgduFbJEQs5zCJWMggPMF2mR7NdSQY7XNZfHDI9wQVjxbAOcvBLTEnRHrToRD3ORHc7wrQpka7rPRrouHMaJgYZ2UkYZ9WvD4iXkfOoVMVk6Nlbb2pZ2hOnD9Fz27g1VGkMsAY98GTuB9aoLVOH9pi+i0KFGSnhzSORJGWkutST7zvEE20FGPyvnbeYQhAd+I8EH3vjVNu749UeIz39ircL/vRzVu2LuxyCge70UD+QpkY0rGG+/yRjtvkODrzgNVaxn17yEL34Pw/S+7jk/hf6n/3O2s/fYteE8EeZVwYCbqTwq8IexzhHX3mWyl7m7B81fD3etkYCSZofpyboo/Hn61OMU8Ebas/7399dO1qRt4V9WiQ8zt0OtcznjTHJeSOMglRRMtkD+zZORkPeug2nOujKyu9T6/POA0M/F7w0YHej5noNt4B09mcTKg+1N363TOBaPX9T9m96xZh+eLHukxNi0gYQ+/F+Tf0WZxP/7VfT6EdeYUu+q8Jg48vNLgtQ06To5fHHOJTa8koOljRNrwsLhQG0U44f4lOz+x0N+CMgtf4veIq7ueDaEXHT5/u3wiFXCnxTX1ZiaTQ8WZasjWQLLRB2wy1p6XxUIouw3kZeuFDzp+Oi5xBDvf5YNzv16DLOIJ4nG75QdfXBN7Y+iTSdrNC+4NMDXmIts/cwdOu6gBP0T04f4Zmv1n+tOhXMJTjPWCI98FV9Lni08Yv1gfAWvd3hZcnkontB13z+Ww3iRxaJbCO0yruIAih7XD+nxllmzZpxYIofm+RwftCBH2nUCC6YE4A6Ew/8grfkkpsIh4OeffeIJvRk0pxKd61jqCAtsW5PJpZXfaBbVs8WOD3GlG8T1gW7hA2mWl5CjR4q5cFZqcRkavf6y/dqCLq6JENLhs73dxB/q85yxdu6/zaXGJKheP3HvYH9H0TinZMc7sIv/8+U6taKFGeDFIj+sFQPa+SsK+mHa+UGLli5CSYontxboJuqTm0b+jnUSjcQN9DUngfnUN37lu5N0L+BDTLNUuwx2aSWxwabM3xFaQNzVfMZ+RR7kLxyNN+iHOWK4oPhzjphVFrWN+b8L6SRYcO9odd2bkHwt35HUdWZpMarSNCPxjXCQMdLWg+crPsAJihz+KcZW+cW+E99hW/Xx1As0szVVSyvWA5m8WS2r4z5ON4yvdTzHLCssVajeVLff2hedr8X3fivA396FigM5GJBibec8F430WiL4tpv38bFAh7Nx7OUjPJJZ7MjgNLUq6RPegFmTn+0n7uQKGP4lwdnTE5UldQnQ9L8B4sx/tQCG22wUTsu0MgXNpooJOrl0ei5UYtMi6VkYvoKLc5LffY3alqdBbOq9ClBrfCS58kwTy8J2fjfcmPPsuUbzyXcAS2jHd8vLA9nwjmc2T2tJUSLXSp/ZctD89HggdaA+ee6GRpqyLGtpPUa7xHN+J9OoTebTQzw1ziJGW9O/VA1KECcpehK1P56/d9ih4R5PE5cNwdmOhBnEei+T6J7H+VHE054ve+H3jfOqCbOG5z+B12pGKYl3J9owvJ1KKm9GUbr5JYtNMvuQ/yt8PhHJpfkJ6fRz8c5nyt0JMAbt30PSxdR9/H7ug+ieV8386ZUf8Ht9iB2w==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAGQkAAAAAAAA=eF5Flnk8Vfkbx4XRqsUWWSqhhah+yuQr6ScxmUlpYUrLaEgJF2XsayWRLQklu5trj5CHr6tuuMsQek0qlWqmVExliqTyq3Oe6ff97/26557vc77n/XyeYyP5Ptws1JMcGDlkeSpQQusXz5m1/aAL2TWyP3ligIQmTBgJ/Ds4Gv5we6v4/REJPfwsqnP2oSDwtdePbHaX0Nz94ReS9wVAgHAs3H+vhPak+I86x50mHSvUNfTtJFQp2TD4mlIkmZogVZFjKqF+oelDUuH7YdnkBXZZ8yW0omIkQK4jA1I4Br2PZCQ0ObBK0bOuGDwPG7ye/0hMN8u9sU7TywHjI5PTFK6K6QoXU5N1HWeh8KnOq32xYqrLlem7HJQLc39xzahyEFOPZEfjsEBfeLHKSpenKaaXfthrdDe+HHxTnNb19oroW6rdbLkzh9gE7u7vSRFR5xkG8p2COLgWVrRX10pEB1asU7r/nAsPdYM0zAaFdECPe1Q35xKsilkVHRsnpB8Sl9YY7iogvCK7C0e0hXSbfXG/qa0bhBssPPhDWRs9KpKJ7RtMIhqTdu+3NWqjtp2l3DPCBnBO46QX5bdSV/WW4pPy5cCzNGgIlW+lvOM/DiS1RpLbZh4TOtxa6H9vf/B7NVhNxhpCHh+/coPqac1cvPh4E5lyv7Ded0hAORsbgpe31MCcDq1NtloCui3mnFHL+wZQtXHbkGVynWq3emu0vhGD3NbZdQ/NrtHX51vi7Q+JQL7dpcPBoJk60bsdou2VoFr1/Hd9WT7NsNA5lMNpAZs5HkvKjzVSHfdouUxfHpQu3bHASVhP3W6dz+RcTydeEz68quqspYrPJSd1FhWRfoXlT/hp1dTm3TtLU34yHFfWV/5JrZKWt9RZlzQ0kiVnFqq/Oc+jv91vlhMbJoJu6jHv4865dP3LdqUfz/Oh8+ampMiRZLon+JzrnWkXQEsnLEnWM4rO1J0W+SHCg7igjwJbd427/i5kO/o4/CDxk8PMWLiFPj4Lq3uzuecA+KGPr3IU95TFO5JA9JGuinOYpX6KdKGPMdLzbjyZ5QbS6GOhtc944qYToI0+7tP/JEy2KYBj6KPg6oq1awdL4SD6aLUzZ48mPx8s0MdsZSX/2LBDcAl9LKOhNhMd80ADfRx2kDU5VxNAHqCP1WNjzyrSS+Ak+miYny9nvCWDOKCPJ/zMVUNyXEk1+linuEx3XnH6Nx8FzPNcBEf0Md5T7WiNVz2pQR/7OiYdvH46kTijj31PdrRm3T5FPk9kfVwIt0NmFAFsQB/VxqqGTZTLoAZ97L21zSfWv4C8RR/TVIMN+8/yyJRG1scF5qEua4KaSWMv6+PT656iqVbF0NjO+vhAxtbSuFIEb61ZH19HFMzPUBV+83FSyM+qXUuFoIE+9tqvTPS2TIKBy6yP8bOD3Lb1NoE8+thsdkfPowlgFH1MXVNhvF4xCqrRR620IFutq7nQjj7O60yzvZLKg3z0UWXGyZQU6ZvEDn00ll8SUbQlh/SksD7az7nx19ut9SDbwfo4tYWz4z91Apihx/qosvDVZvddHLIXffw8/mXt5ZC6PM0pX3mC1Je1j0MAeZJa8Hr1vv1kC/payPu6/EE4w+lp1G8SWoTcijymSQemyMZAO/rM/MwLh+qB8awXHAktRgbkwMcmbXZhoeCBvmsNWNCI75zghv7hw6muEprnNYdsLAqCDmSn5dEBhkEHwQf7YaLfvId8aVeivTzRztFRQtOY68OIIXIWw0lEiP2ynVkxZPe9SzvGrCR0J/Ie5DGBV2LW52Aihf00xHA4+HrBYisjCdUJ6e7ZsnE38UFO3uC9+lNKHMzHfmPOczwdBvOULYcVJVSKWRnwGDnzvfxQ99xciMB+/MRczwUN58KXwn/EdBx5LvI2pr5CcMZ+TWL244F4evsUv3Yx9bwa3yLtXgDtyM++5uOLXFiJ/fyRud85WBZv38nLE1Nppp40sEQ+ID5qrOIYC7nY7+z7SIV+pQJLBV8xdUr8S3Blx0l4iXwi5Va43qk8UME8MH9o7JdinwCvI0sL7MzE9K5i07rQD75kBHm9+ZlmdcMTcA/zgj2fHNjFVxB+/izC88mFTci+WtU5LtFl4I95YtC1yJCb5Uzs5OabV9WL6FbG72RIRF7F5E0Z2Yx5w/qWTLTudLuOeIpoBfJoD8vGNbFHrM3zoRnzaIipJwymDym526qL6DCyPHIJ8/986MK8MsZ6jm18MU2nSUg3Yj2nkHdaej5b51YMFphn0iTRa9+E82SUM2vX85+FVGRyWrPgFpcYeLPsxeU6vgqpI9mYd8HM+ReSWn03i3cv2uivzPmnkUzkh5EGC8uu+BC3f+czcz2PZNjG/J3k3UaXtfk83qmfTbKRyzIvOjeOhBAZnN9bGJ9KwSjCTPv9QCt1QJ6HvOaN+p/ctRVgg3l6hvHtMiTFdVn85NRK7/tonv7uDx5kIbO+VUA25u0iZv98gHGnTTm0hQYw9ZWBrNRuhj8Ff+2f0/AA87iAOd9cEiKWoQMK/+dMZLV7VvUL5vLJO/x+YOtvJPF36uZOd7xBdyAnINd1by0ZoVfJY8xz1Z6IYJmpX/IJOJWtcQKayeQBF6KR2fqq4QXmvT1zv0qwcV78oKH8Ou5XCUuRL37t3ywBfMJ58JR5fiE8iuiq92q6RgXT/1R35AtAJZJldab+30EF54Xar6u9S5X5UNJqlG5e30wtmPO+AWnIHkw/C0AT5wnb/1fAvVbY/ctFPj7vFQhEjtJsM6kIr4LJ+P0TwnAjXOb0Tb7VTWk/U991OILMvq8mUMJ5xOS9VB1c5PXfD1nZgPlQB3eQzZj6+HAT51W88Snxc24J5E5yHzTffZUaH1Q6122XTg5MZrnl48fS9d3ZxAXn2Xs2z0jT8veHNmyo+TfvyBPkASZf88kTnHdD+LvP59GS4JeX6RjyauQ+Rgg7iMN5WMn4kkHG26xF2gllNB95i5hlNq/4xBTn5Shzv1qSMNLIXcwrxHysJebDLGczflQRy7PsPK2cJ45xL80G05i0VGvTC/Qfpt4GUIhmeZjhEhjEeVvO7F8PB0J4ReV+Ud94NjI7j2pBVpedx/8DIAjZFQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAQQEAAAAAAAA=eF4zfW1w5P//9/Y62+pu/AXSRkf7HvwA0md05Dk+AGmlLb/mPQLS7iX/GS4A6aWvDLq3A+kjgeumzADSl9qMM4uA9NX75i4uQJolxsSHF0jPPnyi98y/9/bip7q+NQBp06+B/ppAmn3hFdMjf9/bXwjLEA0A0qWXN8md/vPePuiFoJ0xkP53q0yg7fd7e5vbqdcO/ALqN92d8uAnUH/PUaGHP97bf2XRW7rv+3v7O5+4TUu+vbdfU5gg9OfLe/vT/3gX+n9+b6/iqa+f/vG9/Rev0sOW79/bi6a8fbjnzXt77zgr1ycv39t3LnjSufAZ0D+PX594/Oi9vae+qdz0e+/tefRPii25+d5eZokE0/vLQHf2rVQIP/ve/mnMupVbjwLNv7t1wZ09QP9N2F40ddN7+5IqSb/5y97bAwBSvrofAQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAANAQAAAAAAAA=eF410H0wG2YcwHFrdVp6tPXSsl7ES9lcCKWjXqreOi9de9cXXTZTZ1Flali8XUqDhYi3YF4a2onEFNGZd+WpH+IlQZjOO4tZe22v8XLrikrLeufx5+e/731J3ENBc8PmYMXjbvYRRyG2dMcCq/raeK1g1KU+Z+v7lTeQ4koCiVkj4Kqx46UCIwlnLQpNvBKd+JvvC90XIvndU1IwlO94ayZJSbaUjDhkvVPhRwLgwMpaA8NYClJs4f5bWzU66cilcrZLME2FbrFCNzhiGL7Hnlyd+PXdzWxkFLJF7q0KgdNyT0VyxxAcwbalm6r/28xBlW+eniMwwyGqgm25uH8IErEXUj7t1KzMQ9UGQtBoiQRyDc83/+og8LH/Kd9WMmLmo+NRFHmtNQ1kx2/IKsolQMAmP6nn7z3GQSbWGj59bTEw9Trb0GxVDCTsZ4pOim5kHjpn7UGUeMeDaNjjB6szYvDBnr7uUHGKw0GCxKPzZ1/QwVYxSZBmDsBd7N9USDUJfmwUQdQfEecnQvuDFw805/ohAPtl7PQv8+0f/pDZiuxKBmTFM9p0SP3giP0RZciOmMBGvtHeKgfUk0F17JLX0u0+uIat6UbTJrmw0RdU/cDziSngp5fT+lDaC17YjS6Ndiq+mYgq43ED3/4ETyrz5T8a9EIQtvo+qqM4lYnCDaTjNxipsKo/FXEtWgRh2LPasRkBdBa6b6R8JU2LBRrJQSXRkh4oxSYEaVFcMtIQLDP1VVrS4eNtqyY5sQdE2ISRzMt1ShmIYr793DkkA0YfNpnMx3WDP/bbxY5GW+t0VLnMUBeQsmDGTLUqZKwLhNg+oRs6A9tpyOKd3jPYkwNqywv0FvMuOIkd2caVRHKzkWUCNa8shgODOblly2wAa2y33C+DBkdzUC91cng9Jhc8Zv6yof3ZCbs2lTHvtCYzkWLRWfXblDyIqF27ySl6/KFrx4IJx1oNPRbqMiE6zJTmQ31oe3HBdQSd2JyhYlrmQBJa+S/3YLboZ5htb3ZfIXXAEvagAXnDxv8OcqC9EtQqCiBsxfObw0rtYI/9yUKNbLo/EXltj8emuhVBSNofz+Om28ADu2j26Ng+tSR08eAjA8a9YjCuWxcJ21ph11Y2UbesmiOQzWdDTgQ1LkgJK+fP8Fpg1+QGWr7x53S0aCEx3JNdAv3KzkoSTjM8xXZn2r8ZZ4U5udLUQ+Wm94DnGnJsg9UE7thf7z1MuWhJQSeU/HQfz9yH5c3C9dvsRjDG1pULq7wzktBp++BSxytl8B17LEC3sAHssMX6YV1bPemo0N7Ho8yLB4kWy35cYT3suvZqid4lXgIK2hxbrb5QDifLlUumpL/Drv0e6c1V+/ijvMtFARlUPrxkeZJa3tdBLvZZMy6/iUp3YrCFZfRMAbzWFt81sK+DXQdWiRTvqcnof6MrrhI=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_600.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_600.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..0e899050ee8fb9acf8d14d015ab9f1ccd070b800
--- /dev/null
+++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_600.vtu
@@ -0,0 +1,44 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="232"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="7.4762067922e-07"     RangeMax="0.0018081464529"      offset="316"                 />
+      <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="12244"               />
+      <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.97981764827"        RangeMax="0.99999999419"        offset="12340"               />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="6956.5796161"         RangeMax="16652.385216"         offset="13576"               />
+      <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21856"               />
+      <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="21948"               />
+    </FieldData>
+    <Piece NumberOfPoints="203"                  NumberOfCells="40"                  >
+      <PointData>
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-5.7666949967e-05"    RangeMax="4.1470733098e-18"     offset="22044"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="1.2946468968e-16"     RangeMax="349.53446763"         offset="22448"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="0.00076027175773"     offset="25492"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="4.481253518e-06"      RangeMax="0.0018172262622"      offset="27440"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-5167.7628041"        RangeMax="0"                    offset="34128"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-5167.7628041"        RangeMax="0"                    offset="34812"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.97956014865"        RangeMax="0.99999997206"        offset="36140"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="6956.5796161"         RangeMax="16689.045658"         offset="37388"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.1048884295e-07"     RangeMax="2.7533428278e-06"     offset="42780"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="45828"               />
+        <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.98068054213"        RangeMax="0.99999963559"        offset="45900"               />
+        <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="6956.5796161"         RangeMax="16526.44613"          offset="46388"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17"     RangeMax="1.0049875621"         offset="47852"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="49068"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="49800"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="49972"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1NbLUTU81N7YwSzI0NAYALeYEjQ==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAA0SIAAAAAAAA=eF5d2Xc41f/7wPGDZGRvCsdekd3hvHDsvWfDioqKtLSlIaKkJWkpQloqGZ273oc0ZKRIUkkaRhnZZPy6Pu/X6Xtdv/59XM/7us99cc55i2r3ZFUX1wrk9TjVhkvquiVviH746KYlwDpRPCna94FJrdQQEmZN0xg2R//z17eSgw3jvOFs+cDhu99lEJXsgaGf/p9/8ewRUh8KgSFfsU+NyqIgYud4cmd7ELIfy38+F9DzWPnF/viNQ4uhS7t4YPyGMWju/ya6RGSGlvqZdP4Pw2Wpgl7A6r5jn37OGBaQPRhXkS60V3r/8z0r4fjGK5eiPtjAmG1t5YKKAERzY365ozj12NywKa1nszbs8ev04bhpC4vx/jnWpCeJsFSf+bvD8FvrmetDDjBK9lBihPsi++EonuVw7uaG63pR3tAar3T2ZLgfGgKlpa5TFGJEZGqfSoUG5O26fv/6PXsoCd6VIJYraUYtI138j+L2D54uYHncW8LwNANayB4SSkgfLKfylAUFguvuqtu/j3gDcgh2eDvqhurCucdlH/AQoZs5WNVtVCgpKTzeH+YNt98GtNXFiZkxg0m/N6fXdP6uDbxR//Vwp5cjmJI9NKwkfdVrPbptphcc2S8sb//YG1iXtockaVqjovk9pd0bhYhzBaKUuglx2P/z1msNpQB48W39HfsMMTPfeaTn8u4JKVc3hWMPB9I+nnSBR2QPMtyk32za2X6pwBacEwqapBy8IFZarOeWxVJUV+ymm6wrSiR62MW4Ci6AlS/5nezblkGUlgoz4LOQ2eAd0gV1IqopHHrw+yhlpae5N8SQPVDukm545WFA4GVz8OJcsy72jifMK4wUMDmhhFBdqdrTNAlCKjySnr95hBkjWJi7VT8YNN5NC55SEDIrqCXdiWVxvv2WFHidk313scILKGQPAvWkU41fNx1RVIUgYS16WL0D5Dx6sPnrXSnI6aIqcPVKE/kP9j0/va6X/uU97x0kHgYOeP8A7EI3zuSluAmi3tEI5XJzT7hN9oi3h3T/kmsLTOdkkZM3r2sGpxmM8wy9jg5WAd7QP+NmHbJEteS1296pY3TB0B3GtXvDYc/p0P563+ryF9ij3c9bzM7JoE7V8VvjLX4wSfZIM5z0wqJnPCV66qjuc1GN4U0anBkSFEunKMPTVSsLmq3kiQ0JnzZZj4zQn7FEG7+4hEN3hV6CR+mzct4I0vV9kmIvWUijI+u2Ffba+sJpskcfsS+/6syQuqyKLu7KO+fxXAd0P2n53Mulgt39kBtlnlRCrEvSxCBkmO47055VUhwOO/D+ytiHAzZettwtiao0Vmyqvu4D+mSP3LDzZtft2CGsgvb2ahm9s18Iudm/1aw+qYJEv/AiD1cl4rPrrTvSzhN0gsNFiWUbBtH+C+W5K7nNcrBn930UTRqQQx4LfO0O7feAIrJH1X2ki9l1LVz1QwMpvQtqywJ5EH93smt9qCF4jYQXiU8rE4d/1Vy8tYob5d9KN58tWgH8Vpncc6kUs0bsJj7cntLlGqhun9/RvmZPkCF71DFM+nkJt/OVC0zQbBGxSfcyA953LEY0L3PImLpPe39TlZA3ehTxKkcIybX5B2anBsDw+hzjBeNTNMof0huk0vlNp/XRXdMJw9lJL/hE9mhwknSt5DxNH1VLFKL/alPGEw/I2yC1iO+eBUQprx6Qvq5G/Eri/uLmJIo69zY4Zvv7QcBu2a0H5n2nMVRIrz3r9kxaxwj5bgs7ombpA9fIHjVin9eloy3EaY0CT2WN8H78+/6w0PWaezED9Bt0IjRWaBCmU+2PPm0QR88WGqgrf/WC1gFNvarb/bRB7G5tVRJJaSaoLICZsHStJ7tHQa9In5qaH9wjb4tCqS83hqzwAj2ONMhMtoGOnUMtpoJaxIHY8uzYE5Lo49bldWIlLuBXljtnWPyLlrWL9LpFZhFDP5eizIqDgTfCXWEJ2aMX2AeEOo9Xm9mjbqUZQ3k9LzCLak2/4GQDOafiv3nyaxMl8VSC6iSJgL9yTrTUEUJ4PPsMLvwojztNemdSzuO87KVIJbjFK6/SC2hkj1i4n4uH/Jzfdohif2ASHH2BM95zxysDK0iK3XSe67EOcebSHp0CDTH0RWSJwLJYQzD3YH3oXDVWHrmR9Kud85NfKxuj3bNX6Quy/77/kD26hnuWx9krHz9Zo2XCR5wLty+DYwv736x+YwaJzht8yjbpEv1H7y5ZISSERua2czS6KKOGouTI1H1j5UEupK+yivGcLdJHXJSW2ZoNXuwesXAv4P6NZnDaAt1/f/zcqYJQWOzXwbM11gRYhk6CnRv1iKzf52QWDfGiKfn1up9PqqAHVrrP1tr+KG/EfqxxvtCfIh00bfYg/vJub9Age9RhRLrjyeHUsqM0dNGkRe9WcBjsmW53+BKrAVLUkJ4GMX3iHK+/RobDH/rjLvVKo2XiaEUUQ9TRYl4FBXueZYlXEkMBpR2nFBS+8IS9ZI9CsO+5WON6/502Us5klC19sQLybUbHo7ko8EJdpu5mnz4hWt66LSf3Df1uyPZr+hmKIMsbODIVMleehb0kbr2kz80ROvfCuRCrbR5wgOwRC3vesuL57YGcqPRuS9yVc0Hw4jd3T0vxND3raMeB6BgDQuWo7paL9xqZY+qsD6y1aqCVnuLwJHeoPA771xUer8WShpgDRrVn+Uad4DnZMzuw+xR1KxOxFMhcn/Zhy3I/YBV9/SG+SwJ1cD0IOeBsSHCl1CRcf9vFjLireGXJPFNYmjb9Mb3sZ3kzdkIg0yFhIz9ce/GnU+akA7sH83mk3/gAUjVbpUHNaMH2i7IekPqrim/yKxVRdx8xP69mREypzipxXh9mBiUS5oE36RCF92dgf7rN5qRZgyRwr9aZ/eJmC0fJHrKwi93l9JBdpgJ/Uoy0g4zsIG2totD8Q3qIevRQMzXfiLBVF2g6UMUBsrahXu4bbGFW1OceJ/BVULB7PXrDzL2nAvUPhfa4ZHrCBbIHtm+jbQr33WUAhjK1YxtDneBPxPm3AzeskfQ79bHig8bEJxMk+eSEBGhi38I/q73wl0TFixbSN23qzQ5rNIXznig8bpU3cEb+18Ma7Nd6bWialnZwZS77yUEjV1Dtv63RXuqKRJRrpK3DTQi3xTvDlJWo8IB7bWNCggv04/0TlUhXqBq9UfbVGlYvEQx5KeMPimQPHVTS55vVE+qEJ3Cs4D7z+Z035PcK0v3PuqOcTSt8SjpNiF2BWjuraEpgvFVS6vBOJ7DL5CuYx3pfTsGu7fqa/kHWFia7r+UkpzjCVbIHEexa1Ju/qoa8QMn2wZ1bSh6wLv68yaE5ZzR1jHZjptKUsEmQOf3ZRgF0j8ff/b7EGyj431bsEy+9BBVeMCCTsOOP9nCDaLIHW+x8hxU0O567Q+GK753n3F1Bn1NL//5aB8QokpzneGUpke7ebmIuIQfUEClXwdYAMMT7F18nPeVMzqPKXwhM7I7WvvT3hsVkD4nYofZbvHmRM3SaymeWpXnCW9eTUb/LrVHjRf+pVyo0YjJi0dUfORIQK3hdQrrDFwS3V727YNxfzsLeFCkrqvPFFFxbJh0+r3Rk98DAjlrfIiF3O4iO7KwasvUEk8zQubFvqkiLY8taOW4zIrmvP1ncZ4J5V9ZaTzDe5999aNgzvVd82T0pB1fLZuZPfHcBB7KHJxTSq7YEx5kNaIAOh+gfqos/THCm5r6T1YWwyIzmyB9mxLo2Z6gYoKCHcbs+dr93h+CyU9Hf9nCa5WAX2vGO0fZCGZXkrpF3MnQHPq7/ehSH/Qby4Pv69/17UWPxaaeh5eCl5lhgkEaDxhlxzSXrzAn/DbbH9p0QQE8+JRbXK3jBlzsFVfu2N9HCZkmPoGSlnrizBNn6nCrL/u0Hy8ge6WO/f3IgK1weIY7g6lyTiRDYq7uCM/c3A3bP8yh74U4n3PyT7vaUi6N8+Spdtz67f/cZxP7yAMR++myCPD9XGw7G+UIC2aMR7PNa02isKFtkpexSrvojDDxeiBncumgPg/wpDqsMEBE3EnVBXEsWCcuYaP5YrQ/38P45C0gP59aVGeqio72bqx4y6N7gRfaoGPu9H5fzXlU5IYVFCTe0zofDxhc/gr1z7SFR87zjxVJEXKlxOJe3RBZNHzXPj+4zg+/P34T6BHfRWNhf7aIdMh+go4RWxYhtqYEQR/aIokX6rivCv+1rnFB9fd6Vs5tWwUhwgkQRvzVcitq8p+2CBcGpcz98QYs4urSh7eFH3XYm+z4i0aQXa/78tZhiihTW9WrwHPBn90gGu+mTksT1SbYou3qzkOL+CBj6oZPJ/Y0G1OvOd6UPWhINMlZ+3yYE0NneJ+pNvkaoBe/P9oyWi/6Kovqoa/uDedDrC2NkjyjYW2vuU5UPIpRaKZBy5UMEGF0Je60LxsAIN0ge47MiSo7Um2cr8yIplcDM1KOWSETu+JjwzpbyROyZXBJhzdXaKMv23ETccR92j3Kw030eyuxnLUXz7b36FvZHwmGF1CxD1yUQtndxjuGwFdF153lmjCknyqQn18SX0xH7PlHYjf+M3TU2UkUGToY2t3h84ADZo/XY5bkV5tb8MkAaroumpMwi4eKUTzqfghpk1J1auTSWQRjfPPh9/+kJutD/25/t177f59G2XYhq3WrTevZ5QwHZow7s4xu5as/pa6INgSXigq9WQapfin3h6r/Pg2sS7U/fYxCz0lJH34v20gU/8Y4kehmj7i+bacW8vGYM7MltxwoVegWQy/JLgc0cfpBC9ojtK6UXbP9aIIv0qLOO6VKR8PLRNOfYelnkOmT9rVPTmkjicmYonu1jUhe9KbnnpfvvPk7YbfYl97RHicAxTzOOi5b+8ITsIQj7t0/cP98ryAOfnCH9VG0kcG7tEFvtaYgYCVwHDS5bE5U82lzzvbiBPZ8zx73o9zdmuT72r6NFp9bkakBcRGOv29Df9z+yhzDsL0vsm1ZPGsNRw1Wx+8bDQcqoe7QnxQQlFq88ee6bNXFiW21dtwgfNIU8OvXiE0KDG7f9Pna+khaGPUZkoZZqvQ5ILY3Y+lvCGSTJHnKwp1/ZL8xzgwaGwTya58ZDYKRkl8ya68boxHreI/UrbQj+G2/UHgvwwuRX5rHclxr/7rMDe37owJUzN7XBiXGGZx23E/STPVzALsNv8mmmaClYpa9N3+S5DOpMBemdNUZ/v9+V7ON4a0Mc7nifcIqXB06dsrE6F68GgyUGHyvcmsuLsXfcfiLHc1QLgmz/HOsqcoRasoc47Nc2dxeNFJkC3/0lH3xF/cHmhVtob5AR0pc9knJ6oS2x7pbmBsmk+TDPJCNwso0OlCWf1bc3PCxnYD85HPBwyZQm/EhfVz859fdzl+yB3Vd8ei1wTMsUZHc9UTYZCITC5PhVS0sMkfMq1agfZ2yJV48U88KecoNXRrgk91O1f+/P+tiFtyekHVfThPtJNPP9/K7sHsSw6++biv+6weTffD7HnNWHhA0R9QbhSBOxI0wapD7e4OaGGWNy/0E9cn+2p01dWzngpfH3e1nLlkX9HsBP9kDBfomq8sWs2BhOhZ8acHqyHPq3bbp6S0YfMU77hsgE2RHqDJvqMOCEeldm1bp0Q3AYa9o3r3WqnO393Aeanj5XBdEZnls5kq7QR/YQhv35o8mHZnGG4KQR4qIWFwSjC88uY02poNzIl0XVzXbEvRbFua3W48zynqnRinaLf/fJwp4tGnpOvlYWKFNX1FXiXGGK7OE+9kyp3ZP9nerQYJW+V/SCPzjp61acERFGFBPr8Thve2LJ8vifXhKdzGdiFno3rVwgzNpiLnHBBI3teXpbpUMF54EQ3t+S7KHDmHQUwT3V/FIU/IMeF8889wFvQVUP/Q2CiCqfk1KVbU+sKubekq/4hamQipYejnECFa+ky5p6XeVsL9zc9IRjlhPOKM6MvHTwBj+yhzDsu2DzqECbCOz8I3hg9p4fiLyfGN+lqYwaN87v5JNzIMpD2gMfKo8yZfF89n1asd+LGzymtUka5q3VfDQ64g4SZA9D2O/kjdi8qVMFW2pLQ8dWL2i+HfWxZ3QxyqnaQPc+50BcGVrEbGyjQM7VDes2n7OHu7Mrjzx/QDFLxM57+s+i63eVQS1mpGbQyh3ayB6o2I+PnuX2zNSHGXHLB73t3hBXtJla47gEUWK41enfHIjgLcstNhlzQt6igkcS4AWnIwKqNb48o3VsIJ1z6PhnioEqBK69cqzXzB02kj2wsG/J/Va2udcAGr0TbkvmeQBfd0O0/pbF6OTnE1tWrXEkvAoYppBOgaB1t79wNLr+u08G9oaL220cg5XBLPxt4kC/O/CQPWzEXpVyh7nRVR/y8X45ajr3z17SQgwfhcoj3Y5Ecql7iNCbGeYKPB/h/anYzzqHXjt2hArmeD7uge1KH0cS3gfpwnLcr7/cST38VAV1/A6INTFxIsb4ssISucaZgZaDHwYJW9jLWdV8T5+3gu2fr/CarTksC58PKQko7HeAKLIHFvbYnNHFY9fUIevt2majlT6Qs9VeoGDBCN2wcJD/8EMnIsXFTVfJ/znTG89n34eBPSg5K3Cgo4d5ZMeRIY2fjuye6Y+9cabfwHVsjLn04xJhhognxB66yqQlyUNiSGpBi5Uz4TduJ0nT+01nCGZsk4lyhvUuorWtr7vLWdh5EpUjtIXEUVNqn4xsnT1cJnvE7kc7doZFdFORKZ4fsC3/9ECpEuQwddXj0p2J2yjjaMalEXrUT72GRY2OcGyRgswB8xZaB/Yth16WnWqXQvM8+hfteOsOgWSPWNjv7KHlV7qootW4z7wj4j5kJAnNR8yEaNIuRI1I3zLO2910xcXJ9c6Rfv/uw8J+bTjt6+bQBYgDz08ie/QKu4+3R9Y9Z5l/8xNfez+R7P7D7Ai0H5u77EKs99pi8tyikX5WPDA7mBYIQXj/HOxVwH1nD9cQfcadnM8gezq7V7h2OyN5fI4eiefL+2t87MgfZebYpUiWDroQhfN2pdcY1dC5LfpeL4r1BY7pGNsAsx/lbNdueWrVNPyTPn4E5oraXNk9PQx7yJkxweX1E3QDwT8tVV/tgcq3o5M7RQDE+9dKOu11JWJiCugfszvo8/B89n1EsHd8VqM8XMeJ2PM1yB5ZYBccKt4REiiC9PH8NqPYG+4K0sA66yjZxudG3FlWLP6su/ff/Dz0LEXa9xMtDLuhy3L9fa2C6HuJ17KULgfoJnsUlkU60/JbzJrdckjpY3Zcb5orFDQq3dXpkYSwNI7E9pV/+6xI8+HEHrr1l7AFHKWOkH+nVDk9voZGwV469nBflLMA2pQqHt13yxYekD1iYI+NiJVxkZVFxYdtiiNqaSCluKhP+jUHfCuNW3Wyz42YtvQb4nzUTHcWq9z0XtDm330oZaQ36N29HkQZp49ftb3w/j0DlMke/cJ9af4a1/Koeejoa+4pzTFtuPJMSsQzbJCe2PnZziHBnWiNtKZWCj9h7sWejPdnYb+iqBFkpfqd2XRh+/H2dGvIInsmu38zpGDsWDXENMevXyhp1TzbYT6UuCbiQn2TO+G8p2nkvHE784HneAv3UTP4dnCh87HAJhrb/9ytpZiwKNAfdqvu7UcnGD70Xw9sXzQyfaClQhDq4xcmacfaQHUFh5pQggIalEkKpER7EDHV/Vl8xG9mDXb2eRqx/zgGO2pui8MVP8n7nx1coJTsoQG71oNL9t3xSgD2TAUfKSeIlumJsODQRJTafDGjWQ+i5nqh8a/BP8xKxkWbHSsC4QDen4G93kZ8044ZBRBF3/cNy7nDbrIHtjvpJvQu36cDNyVWlO987A4sVfdVycoqiPFjA++2AE+C53VG6HP7Mea2I08m5/E5Qcg1w/ZmveZyCvaRIAPzyfsy4GjS4rz5hS28IXtg95mWVh6Mn2qwZXPGfZrNYhA5Gir8ZyMfOJT3daUMehLzj0bw15//RL+4Sqn4tV/gv/uEYb+5dFpz+3oKGtTjt9i+1w74yR7FYj8wc6N4q4og0m6zM44+PB+0fk73HGpbAgz7sggPey8iyTV8qOUIJ5psJV0zn9w/Ebv7i0yD8uOqaK3kzOSyaiPgInvE7gsvufjutTREUu94jq3fZAZaIpH0yg5DyPFlyPVu9iJmR1er0Ca5kcYxv8SRBEew85Xbdn6us5ziR3rWMQs74VBNtPfN9S63CXNYTPaIgT27odGq+/Lf55V2rWyXYBpoL/rW99heHw7J+O3LqvIibhzu+vl2kBNtG9Oas9dQ+fd8UYj92cynqBEONYRqT5vcnFNh9ygbOwiE33ifa4hU9jfXj8lqg5/XC8ZOfx1gfVr7zUHMm7ir9yaqq3GOrnqu2XDoqzFi75+DfSQm4dj7PCXE9fO9nJkqjd0jKvayM526mZ5LEBW//qPvqQV88zUgUbcybI+1NzGZtyomuW6Kvi6m+V5MpztMO/t/t5YbpuVgLzyw84BOhTxaxhsTtOchA3aQPWJhJ3TrT2eHaiMjBfN8l6fecFesss+0VQ5c9hj0cp/2Jq54HfwpZzVAn9UO0Nmdzfe/z3fsMcNezbO+ooivdmvrrTpHqCJ75IY9eo+BqxxLAe25ZCzrYO4EgzUcJutOzDI7Xl7ZcvyHN5F7+8CE+8vX9Ek8n70/pZZ0VsaVLCfmMP3417wF2RN2cOHlfz2d7aXmJ97P7udASu9r7o/Nt0cZDbMZd0SHmIyb9yL3SfsQ6yZSRAx5n9KrPJMMdS95QcS274N1fYm0MOwFAkqS4NtFj6a81HnTZwJnyJ5OxR7YJ9z04N4Ifat9cuaak2N0+w+RFXljfCATa5MpH+ND7NtedSmN1k7P4ag1WPDL/n/PX9gzILUxourv75fMVMhjWSNYSfZIDnuDloVu6SNBtOW51Mz2pSZQqqH2lrZZEij6b54zq3yI1WY5cvvGuumqxV2vqvloiL0/20dN6s+33lmAvnWdm/heSYNKskdU7Lv1dpbznpBBlfj1r5H/M95/UQYS64IPpYz6EBa9ukmeBb/oZ341W+xrdkAZZ3eGXTtRXZ6Dvf2sw/uq58Loy/M3BuYXTdg9otSTTm/L6W41XISqI1uL1g++p9etmRPeKbAQujXtyrZ7+BLrnjg87d89QPfBzr5PB/bnaYVhD7eJojFf9Zm351ShgewRuwfLwu6xPwoo+KK2ZBjvUmRazKXJtVseOg5p964p8CXcGu5wOmr+pnPh+YykHW2cY09oYUmkX6695XeKRxyt6eBcrV5jCCZkj1i4v/Q6cGtqJxVZtjWVfaSZgt5d9+Rv8hJA2WMSY/zRl/h80GbZynVd9OUvqWsbxaThyuD57Kg8WbPE3aRr+Vy6uHuCD5VyHWKoZSDQIXvEwh7OES+mv0AabYx1TPRZjcBx+pl64bQAGmo4W3mf5keMet2OftTewZTxj9gyccD5389PB3YHsVcxXKV/n++qnal2y+3BhexhFvuA4zmWTrYIrMT7VQbwBzoc00RU5SlJozN+xPeTnpk/T00zF+L58q5amu/iZ2lh2FfSLyHre4rg/9NX0CzSChrJHhjYzzs11zxRXAzeeP+XEsz2lFvaiGHt/VW9zo9gRA+bxwjOMY0apH/xF/Gj+KzNKa3N1bQOBukHx5lSm2lK0Mlnsb99LTd6TvaQiPst+2UPmx7XA1Gbad5gVyOo1jB8Vn2LiuIEvvRvX+xPaI1b7OiNHmYeqifns++TiH3XNetIqxRJmH/TobFy1BLVkz1cwu73w0ySc6EKmE19ftS/LRBV9+aVcpbzI9a7uKkXR/0JNwnllkuyn5lqeL7ixp9zqclcFdRW0j+WSZmaWHGACJ7/jewhB/fVi6NPmJ4XAhM8v+X4RiWD+J9MxsgJWf5n/oTmppLH02MEXWiV86Mle2yhVq1PsXhxF43tvAHpmhMVX+gTGp/kLFINUTPZ0xOxH5B3qBDZNkB/uGyX0u1UH7RDfDnfnxOqcOHUSdVN2gFEQa4p757f43TXgd7y3T3o331ysLvA2gXL0+VQTrvb/h3z6Wgt2aNU7EldYanaGRooTfKBsOBTZzSU6ZHoXGoELMNTS1rTAwgFirVy9e/5aKD+tvM2FVlE+3XyovxjkYoO7D0t7SkPN2uhEjxf+Ox/PWL7idLMeQdOmyJB/Pr3pDXv0ow2hkS6kNrxlwFEdv6vxvFKHsS4ueyyxoQT/OgOeIgOjdLYTnkgvDF/mTZaLaxm/TDwPXMT2SMW9lbFoa1rw5ciN9z7bk3NkX2qDZn7/Jt9jAKJvacfmX3QnKNLXnOLpqv+7/93crBn/dqztNBRCeVEptBWrtcAO7JHqdj11Kt4TIr00KflL0fSfhug0avvMqs3ykLikwsHpS4EEhlltrnHzvfRvWrzdCWd7ZBvD7k/pZr0UKfmOd/1Imhe1nKFgm1caJrsEQv34bIMV1MVefRskXFrsScdPk5kL9nr08NkrBeSiGkLJPTrL2vs3PmI3rxDyV/gviVsOTX9S7m0q5yF/cfWSogJ6qC/G71hk8xUAr+x/3o6BTsMpPvd5OijBy5vDH573QXO8vRNKF1VR/fPq/W+dQwirr8x7LIImmKK7LL79EGV+r+/b2BfDBWbDWjyEGv6lmdVghXkkj0cwR4f3vRAq08L3PF868/RnQ82LEWJtYhl+SCIEHu9sZjPbgGITyc7ic34gMCGhYubbKTMWNh3NSV5lFvogcNak1jzFjNwJ3ug1JE+0rpdZulbc3g9UzEQtkgXnTqTeSPhjTlK7BfODR0LIk67WKZvpglDTJKbyZG4N/SOlesmzaeelbNdUOJUgbuXAeQ46IzxEuJwhuyBgt0jJGTmaIUlMK9K+D3a7QAxLwO2fogwR10DBzaVRS0j2plyY0VlQtAT45cW1mv67/erA/sl6Jf5ymsAxv3NCnYXGLCG7KEMu5OSXFOjuSUAnm8xJ2VBGzVDlN+jVsIflhHauuPBX02FwIdaZDv/hxfk4P1Zg6QbrnZJ3VGpD/l4fzOyBwbuHb+9LZQAC/DGffyxYjWtLhpicW58rKa4nEis6ixI+/t58STsB/M4Dweq2tm6RtF1iMb26UvNPOri+tBd+ejTsAcf7CV7YLvJ95vZDw8j+MAzHZxRSUORK7YZPn5ggk4mru0szVxOLE7d0CllzwdP3rLWqWX87/sPC3vDXpGfXDyLYThBQblmXBpWkT3UYlf/VSUU3k6Dz3i+s5a5le8hQ5Q4GzrfSWgF0eo9tujqMW54hud3Vuh0MuI5KihzpF97tP0Zs0sDFKM9r+pf1EH2ZA/sXmq49QCPqQnU4P7w3pUqvzV0EMVx57Z9/iuIc1v8hrvOzzFvuvT5uDdaoZd3Kh0W6UqZMbAvrZfJ2JasBFvDtayrVKwR7oHlQPr+Bc+VYhcugV3GToPPeP8+f95av7v7WQ3zQZfTi1NvVhCUuvPJfyiX6BflP7YGhyr/+/lhYWd4X799KpdFj9avaeupdUCM8v96+g/siZqhv3iS6+k5eD/zD0vXao7pQGKKzMJCz5XEbOGLrnF7CnqA53MUk/uznSWdrntSQBkJOE8KtozbIkuyR5QjpIdyntFv4tJHBJ7f3DRO5Xr69/M/9YmxTvZKIr14RKWueZr+fk2sWJUxAxnoZerp3phXQcEuRxnVMp1SRD3LS/jVt5iDVPN//d/5pJ+Mjr92IXQxKse9vl/bbfdDC9Er+awWfvlgYr1HQksJ1yDTLz8542jLsv89v2M/+EhAUOKJKGhuHzFxmQuCYrKH29i7f+z8Zp6kCKKbDu4+Q4+CfvGetYWq5ohxd8OO3svBRHH+jm65WCHwxfOfLVSIT62TN0ssJv3FJa4T0h36IPO1Zn3DA3uYL/FfD5R7pJtrTlSvH7KAVrz//wFzjTbDAQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAfQMAAAAAAAA=eF5t1e1TEwQcB/DjyRMEFDFnRGVBS07RRaFyes6U1ekFIXQiS/MkLY0FjcAO81qMiwmbqQx50PKBE3UgY1OnNm6CPNxgPMjDFFAHjK5kTB50w+k2Rr3orju+v1efP+HDjzY6Z2Ym2PxZRqX3iCkTjbtXuAgP6GruOQmT7bsOviS8FZpdaCVkMAvsk4Tn9H3JJkI3yZ2RQcK7X/pl9RPWyr3q2gibiwZ6NYTJZzjB1wm9G7MF5wk3Oj35EkLRFNdNQJh/09G1jzBhPMa6hZA3eiptLeFnfrlzlxCavZlqqwu9UplbP0CojfIX3iCc49wUIiace8nM/Y5w1/vuZ9iEZl6GZB5htZAtNU+jO1pSlErCdyY+jc4gPBjyqyqW0FGyetqHcFmmKrvBiXr1Mp4VE2qOjV7YQviisYhrc6BRQa9ubyLUBh4oTyHUy8+q/QjPzt9Tr7ejNtfnramEvUOZSZ6Ew958Y8NL9O2Tr8jiCIsc8Yq+F6hHjCn4OGHY3ktif8Ku4dpxkQ3d8LFPwWrCpM221PLnqIdjzbg/YeDXC7yuT6FKTvFkAOHTn38I/caK+khX9HgSWuKXfhhnQROCIwpPPkNnbuiHQwk5ldrAnU9RryN/10gm0X2MNwvmE37lMohZE+gf6izh1nH0k/DOstox9DXLg3ebn6ClsWveajGjnFOqkFWEhvt5suBRNLKtycfdhDIX9W9PHEEl6Q/tzMeoSS7uGPsL7bjqUcgilO9s9x/8E133+pgtZxg1pFmZV42ocVWdZt0QqrIrR9QDaOch6bJuA3oi8cffIh6hSxTaKtGDf5+b5eHG2Phf+tH0MFfbzV70BJvfbriHCj6q0N3WT7B/mqUjPKhZ040u2N3tV92J6jMem9LuolUs2RuR7ehUfVGEWYfe2XFoStSC5sS5v+erRVc+ilYIGtGUy32dlnq0dSvn4co6tJYxmJCoQZtyqst+r0G5GyyLc2+hz79oHkpSoazzR1J519CFPfw8WzXatb5KmnIFdcQESDdXoKPbNrn2XkQDZCUlvDJU971mvfs5NGx/d1flaXTRUcW3a4vRTN/wBmEh2jGQH33hGBoZdHx5eT7KFnxgLhX978b/nOOrVy4VomPTIwrhYVSRJ5u3OAu936S7/CQd7S9Ry0t5aLY3K+D2flRiEgy27kEZbrz8Ci76D9gDirg=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAHxgAAAAAAAA=eF5d1Xc01+3jx/GWBpVUpH1TIncpDVJ9VKRBRRFJCSlEsiN7y/axZUsaVkZDXVxZISOrVCirXaTSon6d3/v1vs/5+vNxntf1Otf7KDLer1zNJzu05d57x3RhxYd0iivjzxPORfQWCRPTCsYl6Jd8GQ8e7l2wbaomZ8Ew49voUh8Zp5cof/LV3keWCmTejbaQoQnmUnFxSx5S6zmMQ3QGetT3WZEps/63RwsxbtJpzuaRtyKz+RlHoXfBftFa8v15buS820ohNdGd1GHgRfCCCQ+pmSfj1TvlnS+buhNZd8Zn0R97MJ7jmCyqecCLfHFhbIl+wJUxr7ruoEFLMJHU95pVJrCPShQ0p4b1NNCS44y3TOre/FXGk3QdYyyCfhDnzY7zafcfcSbyhoxF0cPglXbF2VIzQkj9uL1O3r81qEjkXcvoiw20aDzj+zdeRAXcDyan0Begf4Q1gzWOm6R7kQcTGC9GfwtrTnln88wshExrfWy+/MthOs8ufWvCiQYaA4fvc15aHxNOuloYz0FfjT6yp193n58vsX3MeAG6DyzOKxUW2xRIAsLXdrmZ6dJNh7lJ37Y20DfwrK96Wx73RhFVeCO6F+w0pkNpqWcwORfFeDO6D/wgbnzlQv5AkrBzsfVDaQOafSeve+y4BpoF/8x0y9/+JJZowlno+rD2oQXiMklBpHEX40L0FviIi0CbmrQXMa64aKu38gQVW9gsNrWsnurCi/Ubx523jydjYBH0H+WMFRqT3pVmBBDNSsbi6Kz37TXkbRKzI3mn+SwXvj1JRw7ufW+SWE8T4cDpV3Ku/EwkQub/2/ngw3etnxjZcAnvGcbjNZk+GS59srBD84ktGXjVs637pQk9fEXRzPFYPX0BPz+4Y7FLciL5AOug98BaKdHGjvxhxOQ1Y110I9jj3dxo61hjssHg7syMHjNaNCz3PvCferoUlrnPt7VVI4mU6DO+g34DFkpaZPvDJ5TUj+p1MN/6ayp1yw4RmbluHzgp5vTD8YG6/l91dAkcqpi53rY+nvTBH9GfwPkjExfdGx9ABIUZ96HPhC2frpt27OBhsubYpZUdDRZUxSLiAh+po//A5P7dUj23GGIA70c/BO86ka5xYHUg2avLWAldBb6XKxNpYOFMaq8HGs5XtaJZThtMxF3qaB7c+PDF9lVD4aQJzkMvgzfKT8ncKBBMvHMZp6K7w3uuPN8kLx9APJOftTpKWdOKMYt2hmnX0ROwl0hwRNtYLnkC16BXw7u7tJKuiYeSAbge/T3s+rljUnhKCLk29u3qzmwb2vbBurJoXh09D4/cmzOt+HUQeQ4/Q38Au67/FS3ZEEAq4KfoFPZuPdG1+3sgKTb4HrB1lR19+bRaqfdZLY2B/WNtI26m+5KOUb0K7o74vsBqix/xgt+gu8LXfSQlllwOJNrr12kZ8J+l1xxertW6WUvXwSJDIqL6f7xICJyJ7gAvfcx9apYVRKzWMU5DN4e1rT6WdswMI66tCe0bwuxpTtYGMa59LdWDqzO39x8+YEEewYXolfDSQZfvykZBpKSF8VX0Irj0oJOZZ1AUKbKdZMA/6xwt7PIXqpOrpSlwdXbc2J41epxFdozvoM+AD6Upblk6J4hwcL4AXQ6WlOMVWj45nhQ4n/Jb8uUcHdH8oKciWEvj4Tk8WvknD+pzbOAf6MZwrqyWceNQMBF2YTxOi+mstymISugNxxOZ/NzoyrNOdEx34esLjx5QSXhlbUGXhuh+zqs8xr+7mN4J77La1mcjFkgMcH4S7rMuHuyZqBAXQ/JeD10y+eVMJ5x2sXgf/YDmwhz/DFXrzzpECx6Hrglf5k3L7vnuT6JgHvRo+MDKes++qkjy8dKsNZc6XGhLVGySvfUD+gm20fg6J+mLAcmGm9BZy1xVTXk814ecy2Dcie4IF/JHzFg6kUukzfOD7ki70Q4St7dn3QO6Fo70Msxf5mpNVsHP0FfDqzT/yDcNexIu3I0eDpd0rzMrzvAnvZOPjrv4xY129V74tXeohr6G71jO3cl1tyf8Uxh3owvAM0jcNLM57sQMfovO+qbireUePe5E0dlrpc1Jd3rdmNP2trGGqsBCmy8/lV/rTrbC2eg74Jx6b6On3wPIETgL/Sh8NeDlryOR3uT35S1fL0t6UOX1k7Ntwmso/xXGiehD6CroY9FnR1x4K1MTTDrQFdC7YJlx9yq4Qn7kTsvPux0fPejrsc2evzVq6GPY11BZXcnOlyTAXeiZ8DXvzdPzsrnEGn6Kbgu/OaG2ZF1cCPncfEvTTd+TFqc2zctZXUNntDCWlUhutsv0JvXoBeidcOfc3rHTHnsRJZy/i74bPix40Kg7259szht8tEnci85WexN2dLCaasJK9xcI5VsEE1F4Ovpq+Mc9r8o5AufJAXgq+kG4OvFcQuZKP2IVukLr23svajbyZ/LUgmp6Hq5WK1tUsTGCKMKG6Kpw3Z7c2of5wcQY1kc/BV9RU9jj3B9AjO24PSF63vSFTkl2c0g1PQfP31+kUBUbRmLhXvQ0OMSg5e7xXC9yEn6Gzu6ZyfeJ9+cEkIhb7SUCEj40inu2OHN/NY2FGwTrjq7UDiV5o/oNuM5O7MfLRl+iC4egsz4ZmCF+/CmXJP9cFh/e70N3Vq+q9571dx9ePf67gsYZf1ICq6IXweLflmV1Pz1Pzo267wCHORy5U98eTQR1nIp3GfpSuQsjIsb9VZQXfqN1cwdPUCAxgbeiG8AHZw6d+x3AJbNgDvpM2DtOaFKH2QVyYLhT8NFKP/ps3lYlq+tVdBsc5bx3sZSfB3GGu9GtYe3xRa+0ZcOIEtyJrggvEvj0cObHBHIsYdvp49/8qF2ch7GTdRXdDbclPVEZ4D1NsmE39FT4TNb08gavYHIGdkY/DVvs6SzMkkoiK48n8x07fZ727f2k5axaRefAUZyUmpqvdkQYfoU+FZ5+aq1CaVsEmQC/QR8LzzmhbLfxYDJp2+BbqCDnTy3WDHBLBKpoJazKLXfKvD2PjJFjbIc+hN5guCi2hy+c1Gz4314NB+8fTslWSiHt082PLeMJoOPm9NeNbblP6+HKfyc2hy205OTAPOiX4QUe4Vrr08KIEfxbiOknYcNkWZ3WyBTyVuZUZaRTAM0KWBEjlnufdsLj+26f8ZrmyBmBr6N/g4PnH9p95Uwo+QrnoX+Gx+zfKvzSL5WcHisU+o9KIF3xSswlw+o+NYRPmj9P3xdozzk0qqvDqcq/T3Z+DCFb4eXo8vDh/Or0mNcpJP7BPe1rc4NomsJiw+Xr79No+Fcv837/Ud0XXq67Z9Op38GEp5ZxNvp4WMC+nY5kJJNMbpxeCTeIrj2pnWAjcJ9egQcKt1zUGLHk+MCr0b1gq+U7Jl25GUacRnVH+DNRKRpfk0KE3rar7DIMpu867TXlWyqpMGwVJijS9NWEMx9+jb4APkAiQ1Y/5BKFUfe3w9E6pSv2n0olNtsWyzauD6HxWjH8k6MrqQtsj317OGFU798c8Wzd/VDyEb6E3g8PVTdUyDQlkS3L+gyLc0Po10L7i67WlVQFrlg5p3x6qANHCv6CvhZeqvLtprCMD6mAx9xgehVsbfvH+sDf3z+5KUY2jQqhdM2bV59jZSppIZxWOyAQI3CCkwlLo+fAWbpKgReVvEknvAH9ObzTT/nFS5Mocjj3yA3FrFBqv0BLseBHBT0G34m/EVA+9jjRha3Q9eAn/LzNzl+9iAxsgs7a6JGHtNBlLonq0uMvexdKo28kOB19VEEvwBoz1op0XrUnBXAi+i24WaSQWzfWl7COG9WjA0wVf0pHEpFjJ9cLHgqjab8bKhtjK+gyOCZMolZm53GyAE5GXwQrTzcq3jboSwTgRPSZMLtv2W6qY1QeRjN2jBPYcbSC2sF78X4P+DK6N6xt+Tn/3fEAwp5PH3V/xbgd01bnR5NNYvoXp03g0jWCO6KXbaygW+BA6ZuC98wtiAq8Gn0PPEH/utr8YV9iC8uh28HOvEY1EhcjieMzYyVbKy59ft/v9e+RcuoCv+IT4cRYn/uvd6Ozbst5P0Vhjx+5AL9EZ90XHjjms2g4KQizeNn+gkuDzj2Qe3yvnN6A9+n9VEqT//vzG9Vvw+Px/iTYDz0ZVl+YJ0NSQklA60r9GpFwKlVlOPdrYjkNhC0umXg9SvEmQfC/6Kz3Tr48cWtsMKmGZdFr4O8y5UmBGlwi6/rqphs3nLq23Vqx+Xg5lYNNsb8DdkPfBUdNSk/c5etPTsI+6Cdgad4fXWfFgsgfiZTpsuMj6OPXU7d6ipfTCcsZN68KKUr+x5MMoLeiD8KDJlIrfr08TzLgCvTLcJFb87WsSyFEzLFuWbBSBBWb8u+H3gnlVBJ2fPUjIDwtiAjDS9DnwkNaihbpXecJL7wAfQr81mJx6VHRADJlzQ3Zh7f+vued0dpL1WV0Gqzxc/t38RQ/Mhv+jC4Ep3693T3o7k8mwJ/Qx8NOeB/Pm8RdM1dE0sr6iw5GwWV0EnwI+19eM6boX+Fk7P+Gy9BZa+K+SfWhq9/ORNK7DkEts8zKqBm8rXJoUNXZnVjBBJ31ovN1XVUfPMlRuAhdF+6t5NXarRBKVEJXmU58GUn9/lQ66kiXUWV4C/YPwf7orHXKiyqPS3kTMzgE3RSOTNabJ+4RQCS0Jq4QPBJFD3qPWZI2VErFYaP8az53XH3IYVgXnbXaO80zjns9yXxYHZ11CPZT4pSf5aRE0Rei1k4pLaU0CXbc5/vFQsibNMHv0BvhyUbtF06Y+pMsuBc9e9R977QknYfzoun0gxFnneJKqRc8zNv8+Ml0LjkDT0U3h8dh/+yo+6ztsb8j88uzgfBoKutbaKWlV0q3w+HuWSn8oRGED5ZEZ/3nJLOvAMugK8K22M9WCtxz6lk07So3Cs2R//t98KnNp9SerAv7r78Y1e+2XKUxV/2IDdyKbg3vvV7Yd8bAkxS9+9DZpxVDvTTeJf7LU0pvwcbYz4c90PPgIuy3wf7orNWxPxSmaqnfEkPX9JpnZTy4R1mbYD8BFkW/AK/3Nks6t8uLnOMy3oPO2iHxlMMzQz+inPE2sW9hLBWuDqvXv3qPsv4j6LLowB8vMnCJ8SR01g+KdikcOe1OluL8THTWqmclPn79YkvUeL+M5U2MpStr13kFWd6jqnD6fq5g3Q9XchKWRjeCzfzaB/a0ORN1WAr9ANwp5xzEeWFETE+PGEotiqM7Gh7L3d5wj5rBbL8Eq6Kzzi2rbn0l7EpOw0rorNnvD9764+07kzh673Hg/M4592gIPOy9VzUwyY5wYYrOelyJy1vjCT4kHC5FZy2Rq3NH+oAbGV8ra8n3MY6eaqp+VfWc0onwMvSPDxgbobPe9tO0YbySL/kMn0RnvT9hhmqChjdZomX3TdLqAh1fN7EgP4PSZfCIxGC9WE4EMYL50U3geosdsXKV54nVqM7awb+ie7KWP8lPihFXpxeoN19a5B5fSm/BLx8Od7Tu8iZesD26Nxw4ECzV5uVOKkbdr4TTxOwD9kw0IRJNz9rLd8VT577cmolqlIrBVQrGQgpXIshG2AVdDuYJ5kkRE/MgSrAH+nZ4Y1nYoP2gIqmcsJgr0xhPnUqK/1BhSkvhDaVMl+RhHIIuDu9OXdom625JruH8WfSr8OIPYqdHfO1IV/v+8yMiCbRW+sjenE8ltB0eep5+klv/9/9nB+PJa5h+FuYN+lgh2n2WPIOl0Z/C2/nsXezCbUlgtov6wpwEauuu+qfXq4T6wTGTAvoXDulximFf9Dvw2IAkQVqoT6JgZ3TWZfoLsuUXGpFWt2sLOZsTqXqjwvV5wiW0CV6mu2rxS1crTigsjx4EWwvNHn6vZ0tSXBm/fMj0JPgzvn+/gF3rk5BEus/ksPihJ8V0L/x85r+ez+38iQusi+4EH9d7uokmO5Ms2BI9E54+5oWQikMI+RJ/LHiyaBLNdmmxsjYvpp9g2xnivIczd5B2+BI666uHQqJOzvIm7+Hr6O/gm2J2/dY23mSzxO6dsgVJdDB8X3Hw+GK6CQ7DvhU8MYLprGd3F9Su5nr81yejW8CZitLZrxM9OG5hqxoteZJplXWqwGAFoayfStaRePMgEg+3o7M+K+PkcsjUmhyHr6OzHvGaOn3OyFqO8XBBuOL+ZPpzwpXlc48Sytpb7XhUhYkncYb5eJjuBHeWpBSIvrUgRvAw7rM++n6wo73aiugabdQUTEimm6Jytm39cpeyHutcUOK625ZzBN6MzpovS3NX8HtbYgerobNuw/cvjFpULFCTTAV1Kre+uHmXzoc1N6/ZkCTrxVkPL0dnbT79V8mPJdbEDzZBZy3brJhj812Ik9vcotUsnEJV/KU3btp/l7LObWJ6BrwdnbWksai0krwBuQbvRmc9UhYqEnrChtM9I+BThFEKXX87fm3U2zv0Bczuqwkw9kffBz+O/meoLNWCFOP8AnTWxulCTrVZ1kSNXLTQikqh6vHzy/1z7lBVOGPt24R6cw3ScZfxzwtMZz3v+tCsfSoOZCbOL8X92XD6tn1D+mIO5JE2p2rr6xR6hzsQoKhyhz6GxX6FivpF+5AqOBedNa97gkfWaw/SB5eh98Ls+8KHWhdLbkylGucr1IdfFlHWEthvhJ3RWT8Ub+zwrHUkt+HT6KzP4/0C3a0fm0+lUjJfWk83q4jOhDXv1Ue2xu/klHYxdkZnLW7fcej2FwWOJs6/RT8Ih7bPjZ8lZEmaBD2EF9NUGlYW4Z2sUkSb4b9/Yf9/vxdOQmfdp3Zx2vVTjpxxQozz0FkXSnr8iqiM4OTsllI4JZhGnU2/X+1+c5vmwgbY51FmXII+Cf6C/SicN0JnnYd9g8tzPi3clUZVZqsvrr1+m+rDs6869Klucyf6ozp73uhafNs0UwtOLGyLfgFurn3Qb2kayvGS5RpOSkmjV90EhssP3Kas+6p9RUzjHDge8DV0T/go/wqZnI9nOWZwLLoprFyy8tbUJh+OTeXUtoEff/feN7SRz7eoFVyn8VD5s4ImxwceRPeGzbHvCg+gu8CC+P5Hyod2NUldpN+k1yXuJrdoM2xdvE4jboEPqYU/oT+AN8a0dm62FCIj8Lw1TB+GXXA/K5tExARcpD0kdaGE/i16DTba00BuzQgl1+Fe9Gz4pn7N+g3EkETDj9BZKyos8cu8f4ZzbOaSLt3XF//+uxFImMhzix6Fe69a7S4dcufUw2OVmV4HLxrzI89n0zZOGPwY91krVkVq+6yyJwb6hfzhi9Np0SVJS7WHN+lxWO1fg3GJqxxJCzwzg+msa+XenBhjfIwsh0NxXxKeNBAncSnel4i0Lze1c0unTZ69d7afvUmXwm5P5eqLo4+QyXAx+hT4+bh9xtk9jv/1O+is//Qz+6qaiZXaXenURS9xotyim/QALHZi3OXih6EkHL6CHgl7C8a2KHTZkVa4Hf0RrOPkL+N834Qjel7Pd+L8S9Toss6uo+9uUHFYz79uWFljBmcVbIYuDZdEqUd7OO0n1X6MF6I/gLlzn97ieeNJcp/kq+1yu0Rb0p1OxETeoHlw+9vKc3+UbTiFcCv6LTjA96jfRlNnEg+XoLMOx/7Q8knz/PsuUf60BI/mLTfod7j/s+KL9g9B5D78OpXpNXAZ3q8kyVgR93fA73E/uYW3tFUkg3ZMqP30cfoNmgZ/Ny/MVlguz7kGv0Bn3aAuzD1rsoMUwn3orCP4ShwU3ttyzCfmNt8MyKCbTCWVUu8WUgvWU3TlDIU9STKsi54Ga02wG+DKHSQFsAk66zjsa2042Bf7NYPmNPrFHDxVSLXhLdhvgCc2Mb0R/uFwM0zcxphzEi7AfdbbcP9rJm/L1XWXab//3WGvTYWUta5SaqrcCifO2izGcwKYvg7uUfxov1bHhVOF81W4z7qnrW1344Ar6fHLDzdPu0x7cxO4Xe8LaDe8QSQhQ0hJj/MBfofOehH/CjWe1V6c6ecZ81xn+lR4L9730vCI+pqZV+iHRy4S8okFtAfWwv5z+CV6B5wSs9+nIdudo3yCsfxjpqvA5tjX1n+jK6VxhfLJaHQnWBZQTVi9/m7Uq3wnzjy4ez3T58JW0ZEjG8zOkjV6jNeisxbE/ayjyddmVV2hGl/+pDQvK6DZsKtOcGhAVxTJhbXQ82AfY8vn70SjSCSsiM5aePL1/njbdPJKW+v7901XaXDeNf0p7fn0HeyCfWVYAJ11ldThdiLnSa4cZjwrn+mXYTW8//8AzEhcPw==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAADQEAAAAAAAA=eF7tkT1qAkEYhgfWICIEzRKCEsMi5IeEgFgJu8V6A8EzSCorD+AcwSPkCNuvJHuEFClSpLAKKZIgiLgKhsB8zxTjDQI7zcP7/cx83zvjh97gOzx+VuZ8hcIFVFqQp8K31M0vD3SGPorQxO299h5F3oO1ufBT8ton3iS+o/+CeB2W4VLy+kzq40v67tBtYXYL74X6SjjrCBPY6ZL3YRUyd3wjDIaGsYqjifHx90kpKs15Z+4X9v6w+5NP0OytVtbn0M3b/i3xNfw58HcDX6nfo+271t8Kvu3QHn7Z/1nRd8LedXxDZzWX+lS4aBE/Rwfuv6qS6OCauobMMeobPla6zJVPCxYs+H/5B3t+FyA=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAyAgAAAAAAAA=eF5FlnlYU8cWwCObLIEGkC2ghAAmskigQRYzcDWKiJElIA8fW7SIKJa6EUEEI/JcKFIWccPWiIjgUrS1iJr5DMvT1FaJUgQVISzFBYQIIoihPj5nkpf/ft/5zZkzc+89Jy9b/IsKwo4FkqnD7kc6NhC9hIzU5nk/kPTlRwOT3UbSDyntmFlQr5O7sPmFArMvCKVPJFsbDGj8ceK5PMpnEDNJlHXK+U4dW6nhaO9Ojq989P/r08oMmtPG1fnBpwaW8B/KpGa/jTlrBstvTGnyH/zJVLbum2kNJwXVnyo1JBFqDvh04eOb5FmEev2sn7WKve9pafi3tW91Va46mCnw6Z/CjEdluph94WJR42Ck7mzMTGjG9rvmlqWvXg+2b1/aTpk0wMwG+13ryhv2GGnyjXfLe8iGxphD4eC1jxcfiE0w06D5osPBH2gUDZvZMGisCTUzIWx/9OFYqynmYJhz5GXv9TozxKIIKDt684LtWXPMfBDaX9aZVDoH81pgdcde16vQAnM8SB/6eNStxBLnCwXbQ2ntumIrzL5wLCy7QlhvjTkC7rPTBwGdNnh9JHSd7HpLJ9viOAccl8XeVQbbYU6Gp/nXBnaVzkUs3g6PXb9+OH9oHmJpMmjxueGV7ULDvB5Q037+/v4AZpIXjJL850TRJfV5I8BlKkg/OLeW8wV5ntAsKXJoaJkhRPG7EmWMW1ODnQ5igTmkRLz86Fzei3zSUwmzqiLoa+6Q5AuynMHmeX89jCVNoXiRNdw/Ebdtim8J0HoL0NXkXjAS1oficlOQt1oYxQ+zQPml45ysP5R+Yze1EdMo4G9QU/jHiB5i0VvOCp2S4HOp/6D9rN1B8Zy/JJ8zTFB+EQscoAcEd5XPRqywBo699Cu3k0wR0xzhsCLaIsmSjM83xKFSpHWX79tjVkgSfm29+CriE6qv2hlu+aqrMvDKANpPbgtzBsP8qx7rIj+GBbi9gkxVA74vgSkQ5WmPuMeqz2MHJ08LFaLnFmh/nieoXL4gxns/vg+pBVBy9YoPBboiP4MBzJrPPnDcg8+zxQt2tfY3cicMEStt4HDMHtUAcz7ydbgglnyhr5BLQXEWG9w2jsq48QKfV+YHbo7bW81z8EO+ajnYfIFInCLpong1F2i16RzWqnVC8UkO6Inn35K9oqI40xew4sp+CG7E+8td4GNZWk/CgDnyrUMgoUpuqck0wHEaWDq+JiaW5obijRFAkeVIvltijuImfBBjGV3OT/ZGbPlvcOSO1u6hK2x8X6vAVcfWad6mVI7Vl/6YTni+G790878tuP9QoR2tbmHKKVyPeObcO68tutd/HD2fmX7Tti7lm1GiF/ts8DTlxdsEQweUn5h57q1Pr+S3SLBPEoXmxXtzS4aQL6LBetnx/MwcCn7frCHJpXpzduRFjtoXlr0ktu0Yw/kNoMPcxCsdaS9RXDQmEQm7vl9x47amHpUzr9tfjPurwAGoaqJd23l6uH4nGP5t57lCgxc4PwvcEtR1J8txvxU4AUq38w2rpB4c75GItrhu2Vhdoal/s1ibmZWr7r8kOC1KfHB+BN+3mAHrf+k9r/3mo7oekOEUVJtrj/uxmA5zNgmzVWUG+P11gIp0Z1Pmrj7NeUWmIU0Dd/Rw/n5JcMp0RlYlDX8vSon0oFZhbW0Dzk8A8k+XGyOTcL9WuMPc56Yb6x+9QfkUZpD0bvP1o8ltmvq9NvxeesCYjPyt/jAnPL5qqN8Y1T/TrylNefmXdumoGUztUGSvluD+LvWAr0IOG8mj/kb5w52h9F1lqdT/NUe9vp5Zu6e5Hvd7whMK9E29mkxaUJxYAq/+69a4iGeg2W+O2UlgaaXu/wzg4eQnPTCKv9dwJxDuHrN34k8SPj8BHu8OPHMmE88HkjfQKWjIZUL19+AIpBXuJ9PzuzXnFb+rPziswPNjqz/oNT53orUGv28CUygbpNg22xlqzlvCuFdQvlo9T/QBQ2d2QP5GG+SLzUHK+uofKzu/wj4LWrqfiw+RqueNDvz1+XsV+yQJxTu8AE3fYbhhzSxcP0mUd9+KddEPzx/lIihL5DVvmRpF9yO2h/KB2oV++ww1+fUOLfMU3qIiX2QHq8nsR9u+paN8cjrcNF1zpPAEA/sEHFDNnkrn4vmlDABkj3eyja+peP9eTuXjkFM5I2TsLwMP08V6OW14vs3Mp/XX65b+2GuN/T5OsNf+6aonuP/M1ENae5i1dZs98icjoR39scNVBn4/Ocvg3bThsTM5bLUPBBmZc+YV4HnIjgMU7e+aLVpsUVxhD57VRKzTd3ZX1wOlt69OfrfBAfnMMBjVuIS5dhaeR4JAqFzcnmBe/AG/b9HAS5TDYC+nIz9UALgGsI5R6oz8lEiQutf41HkR7scz/1cWWb49OenqiHzCAq5J1H59vgjPD2oUHLKtT13l7qO5/yLqlFEk1Qn5nXFQUHX80PtKIxTPYMGQZzE/PFihxPVwwMLncrseijPyKevggeGU0fI+hbrfwJJRMm+sST3/lkGv+TvjgynzkT/JhynTT1LzpnA9pCUwjv/es+KYB64nGgbUmKxYZMNAvjgYKj9bGS09iuenggdJv1GG/V/04/0EQAX6DQRuTOT7rgGS7esKhLp4/ih9IKlhQmCWPA/vFwL3pPs82xeyAPnhPODAv79SFeuI758Li2ZtW2x+Ac9XEgXQ73ZcTtjpgnwBG3gYunQ8Kvka+VJPYBMyEpWdCnD+IBC0ctXAnYuuyCcZgaVVFbdOrsTPi7ABLBPqw2LWYuwTMEHwoG/HsBvyC4XAsO7JJzrDBcVla0FQdOGSQLsl2A+HTKvE+TxiIfKVQeD9bmlLbD1+H+PioOSDy673QT6a+oW/rybbnvVA/qFUOGfBXu5niPOLQ6FeWnVpEGGNfR6IHmqL7zjEQn44HxavTDpQJsf110fCV325/q893XE9EdCl45ea1JWeyCcAlD6k5J5uxv8nkuIhxcl6eWabLc4fAv4H7HvByg==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAkgUAAAAAAAA=eF6F1ns0lHkYwHGSW8dlZBIJlUJi5TIYbzQskoq0ShdK0sZhapPYaMM2lY3FqUlbpNbKLCFOl8VrayaZdF9GF4VKIjHWaA/Sxp6z83rmvM/uOf3++/w375zv73l+Skr/f0xyD8We8uFfm/SntKGvKjSqwU1dMqZV/D3w3FVTe1jSVjBvwKupMKsL/Ioz12ZltxSsudqS9WPKX+DLC1OP7ZOOgZ/6RepOM1O+PunpAlVBOFsVnFbfHnFcrAnm5YhKf7qlA77YaPxAbDodTMZuFLQxZ4B1fRtMGn0NwTUlqm82XTEGe1/nKh3aagb2usoNsSieCw4WBrC4pDn4rf3sCTfZAjDjROITbz8r8HKtYY81ImtwuWMExyPMFrxgZULwfp3FYOY8u+L6VHvw2m3ZpSpqjuCMMlHgkwIn8N3kyuzuFc5gjUfGlj3armBCvy7wzBs2+LB/SXKbhAAX+Kjqpre6g/XGArT5I0vBZ1xmdH4/0xMc0ZXCTuJ4gbdsyevzTvwSvLnvlX9anTd4x4rTS54wfBW/17yJPRq/DJy0fsj6bK8fGJ914fQeI3fRewxro/eYuJze495+eo8xS+k9rg2k92iBeixBPf5WTO/xww16j6+z6T1yUY/pqMcXPvQes1GPRqhHC9SjG+qxGfU4yqf36IR6PIl6nI161EI9+qMeeahHMepRBfXIQj0eRD3mox71P9Pjts/0GPaZHh+gHpOpHsMXPb75OEOrTgkdryNmt1rSoqEP5V9N/7XFIueBqma1usIUeq8OwSIO91yJYr7Zy32ZV5tlsqGfrEqk99zyKGRTQVg9WHhPbpnGC9njqBZC3EHvXVn8LMiySAJm35A7O2nhUKb4D8LBn34fYmafVREefQlOmyV3mc1G1ek5UiJGSr8vvDpNzZ1TesH3a+W2Sgrpu1v5nnBE810tWucO+4wMvDpKbnG50h6Jdi8xhu4bb2bysOfpEbDUQG6OZ9usS755JB/dx/jNeaLQfePgkTC508sWc4/vlpAidF+FE1EGb01UwEcoSwatr7KKJshedJ/j/Gx9cnarg6dSztheJAjTHSad0P6ZNZ5pleGqBU77JHfuulNO6492E55oP62JiteR1TDA6pSbh17m5teOEAVoXuT4KUVvO6YPDqGsq3LiY52sm6hB86SCm7J6RbGBomfKOkH9z7cKmwm8//hslsquYSNwOOXQrAiv16ndZDWaRwYbNs+pOGgCHlgv9wf33vdPbbpIFzSvMk/YNaQJ5oATKCv3lAcV7+0k2Wie3cz1ragvmwcupTzoKmNe+7qK9EPzLqfqUpJr83zF91Lefyrdz4D/kmxH87A1lJGRaWip6INyto166bu8VlIV7W/jHXZaB1IXgqdQ1r/wdly6s4VYiuape+13Jh3TbMCWkzZ87vHtNyeJc2je8hpZKseqvwDHUk5y3jqa+sMdwhTN4+vM5Q7+DQrXUBYOFC8T+FSSDDSvjULH/D9yHMAMysUbS9eej31OBqB5fvuX4JHBhwr/TtmlXS39yrIu4jCa91JtIf9eHAvcT5l5vjpOs/QZcQftA5v2hJ4l1i7g+ZRTf7ZM6BrNIaaifSEICJKMDytcSDmfvXLBwapGwg3tk7LC+wYdrW7gEsqVa6YwCmwfEjy0b8ybDNSuSpaATSi7xXDETVkdJN5H7uUXOHFvPMCelKOk3k3OFhdJBtpXi/6OLlNP5yi+n7JFyuk2PfseAu+zT/63hatK/2vmgHHIHImIiET7rtJziG/8TOGLlLNGRUV/tvSReB9eGtKvm2ao2IeVlGcs5ur1lL8j8b40NXoQeC3SR/H/UG6a2OdoZt1J4n26nRmj/FqocBTlPYTHgXx+J4Hff4LcBg07W8X77xzlMOf5eubbB8nJ9+E/akm61A==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAdhMAAAAAAAA=eF41mHdUzf8fxytUSJoqkqLtlqbup/tuT0njtqShRRkphdBAZmXP0FJKQqIr9+rFRyFKJWlYReObaEghpfg59/3+/fk4D6dzOjmP9/P1UXk3jbW2NRgtPrr27J3njeaM2LEbDhVzKV12iEfwxFnW8J1H6wIP+qNB69axgel/Hqi9MJY1WKBADTVt+MXKtIdvJ4123L5rhYqF7NOyDCToKL8mz9xMEeoTp3Nn/TJ/0H3uXSy2VwsKbgbV93XL070Dnyye2jUw3zvrCUhdDQXTN6W6er9UYffh6KrAOmX6RmS2iXbiGLdj8U9/WVYYDPmttJm50xryLVxOP9NWo0NdDgrbxkzjVY3mpRaf8AbOSp2ePxmOUFAnwTyQpkUzjtzTTmTI8rqOrvx6W2vZv5//0NXR3QK6xzSm7RnSoSt1Kl/teCHD+xUteaanwBaJX60eWiL2jZXecM4jQEefvnRmqpliQQ9XII3D/TGmgGpbExx/rdBENSZ5kVfWGNI/41ynlaqMMxcOGyj+J2QCh1venrhU5YGCVH8n37tkTC9WKnvOdV9ICbLL2lNn2sKXpCOSxqeWo2du4a8tO03oh/lntqoqqFAfk9/QDtW+YHmdthpkIMgqM54Y0TCld6YscZK4JcErSY7eYVXiBqlLzoPN1RWw3mXWjsxYRM9dlLHVXkOV19VuUtViLQPNNjtNGcUI1sdmH5SrMqcZt19deMyay5NVK5W7NM8FOa35xN4ZrQGR7QMf1Y9b0iY9EaamggK8D2FOFftOr0Dj+r+lFFUQshH72Z9VYUUb1gR25H5UoAb/u5+uPL4MxR/p0pvNpNDcus2LJ0ataa64aebSO4qUbkAjR5pnBJVBCj2zpU3QTY7n9QZDW7owXaFtwG8OJfPw5jZhpAerD+pciHw4DX28Mf82d6sdvdRkVPvyGwFqzZn9H2+8XwbtdNHbeTwjJG+6WdHvgT29XvyW6GFpeWqnTfrIcIoztMbbFsUI6iFGyuLWdeKO9CoNs9L/vktR+ZsUt+474gANzblJV1O1IGZNyorctcvoJ+b0YyfV6bxxk8GJ7EpbcGw/4XLWeaDcO/j4x7qnTnSZ+oyQgHmD3Bx9j8Mnm3xAqBJdHDqjDMusl6+uNHCmy3Q+Glbvm8aLn+4+GTrHHbKLjitI+kxF/WbcpJDCFXT+iLsD69RX5jOVlUfkn3Sy0renen1apI+0a4JdsrRcaVWRoLmoYg5VXfLr5RVzNuScFv2S60tBZ8ODRp6fG51d+ugtQ2khL2SGoNv+sxpgEl76ya5IDyzX7reK03Kn452fbg6wUuR9948b1/xmDYdTbp2ab/JfeUxvy/XTf9xplu+Xd8p/fnCl22xohpwFiDtmD3a1KYGS3UhWwTs27TwiuuBE1ixe9oD3dkaBN8qNFaxJTlgEC/OX/XCs8KArW2R7johK8k5dPkiZvEdI0KZ3no2CIfr8OKxcqcSTnnw0vy/uhzJlsOjHRiEbXVCSeW7dGTcFhcza6Puy0ItenjdDqUNzjJmyI6VDcATBkFKFh/ckggUO0QaS173pn0+WvoilGTytwz7Cy0ssgPO5c2OvwxyY8kfz6el7PvT2HJVZNRxhXqf606+FYpaIzRqrkl1jhTqDo6LkmlfS/cXFAS5LDam+leZdIdkuIG7evb7kuiV6+0y5z2fClz4YPjFoEGBERXv2NSU/sAHOrpUCVzhLUaT4kg1z9P3onb3d95rKtSjTre5PXjfrgHlNXeYjygQEWktbJLf401V5Me/3dKvxIjfKhjdesEP1NpHNG5JsUdPWsNa/TwLoAQnRZL8TRtSMnWrRp1TCYA7uI7QqhfP7qEg4ucI409HJjvUJ9xHUNXAfewn/PHP+lqa3N/ThPkIy6eMnwikbsvv6XNmgifuITG/jPioTzjl0KbWCqw4M3EdkRvqoRNgjfrvCitcM1Iv7iDQscR/fE/YWvs39c4QN13AfkWM97uMFwifLp7IORbn/+/n8PqL+cdxHMcKcKZvfmPWHgAjuY3kJ6ePdQsz3lW5uk+pbCRzcR9Bk4j4mEB7yf10ub28NSbiPYLQI9zGI8PhsOKsT5w4fcR9h2BX3sZywWMgvMU859//3EYncxX38cw3zNFvx9zqL//0dcB8RyxX30YEwd0RBQ9Y4DGpxH9Fx0scDhA1y7fYeDwkHN9xHdI30UYrwTe2vJm72a6Af9xHWkz4WEG5s+jHoVBQC0biP0FmL+6hJOGlK292pV1fCPdxHANLHHYRLUIezQmgA6OI+QjvpY/sBzOk2AhGjVV7wFvcR1lK4jycJbz7aN/fhFXd4hfsIvYdwHy8R3uCUsypmjRt04D6i3aSP2wgnq1xed7F3ORxv4/eRtZD0cS/h9l4Xw0h5BxDDfUSXSR+fVmAuC7PO16MdIQz3EcZJH6UJ/wgJ0uG42sJV3EcII330I+zTHLlqjp4DpOI+Io+XuI8zCW8sLY3bc8we1HEf0fAa3Mf2tYTva/5OF/KAglR+H1kJpI8huJesXaqoResUG4niPqJi0scgB8yhH9QELyU5QSbuI2q6jPtoT9hx0qyao+YAQriPoPQE9zHdGvM+CSPr+55usAX3EZJIH8ekMQe9fd4/oeKHJnAf0TnSR2vC3gPSHen7A+Ao7iMyIH2UI1z77kVk7FpXIH0E0RDcx0FTzIpqpoyi/1hoBu4jCFXjPuaYYZ4z3hyrG2QCxbiPIEn6aERY86rgn5jl/rAO9xGxW3Af71RjtouZeX7ecV/Ui/sI0nG4j+GEBT4sebpFcC2yDbTb7Khgw0t7jvejMr+P7oCEjtuwLzOQ2LuRu6mzglDG74Knf70/P+hzELBePyxFvWwLk37wxQRmYg9rudiLEnbKzv596oc9VBaYxCdLCfN4hrivg/y+OsP5ptBtW01t4c5f3VcXb7HRsdBpowp3ROgLBcoRIrkzKAfzS/cGbLyAgz0oB2B/g3Dr+vxtkeAFEZZMN8FgWWqhIO5zP7/P+nCy7nteLNcF7B+aXWy/oY4qa8vUnqTJ0OxM7ye/Tg8zd/jE/pmYEwzLsYeXddhbE26tV+pjbLIH1z2vwiKuSFKNZP8a8fuugJKHBm0bVrFhCXv/piwzDagN8b/SZDGfro+xPfFSf5g75MtO7E4MBT3skWkY9qqEI++Nbijpl0IGAW9e2gjNpBrI+6DLfx9k0O2MyE8bO9zAkD3NVY5rAp0jwUXSEwvp6DfSJZxAYZ7MlLzuqc9XAxN75Em8GuEf3Ji9O5eyYNe0R+qBedJUOnlfvvDfFwP0+MX5w50GbHB+WymzP80OPtQtDtXw06DHFavUgz9K8zpsX5kfuOgOLtijkBfYmxK+c8yqwbLfDdQLu6qePRKjGsj7VMx/n5jo4fTRIg0FFyjoFD74cuG//2+bNl+c8mAxvUrEep6MohTPZEbRjCyZKZCPPdIl/jDh5niudf4BP/BsF9Wt7BrjHibvmx7/fVuCNp5M9aA3uUOeOcdtv6UuLFEO/FwvpUcrn41Takv7yxV0v6V5cQML5WKPjhB/kPAF4W8J504GwjXv0gU9vyV4S8n7+Jn/PnaUD8RotN5gOUOl2Fn7pKi5aGTKncDkZQZ0SVtjXaHNTyYztjihx2Ux3Mce1k3FPpuwjNzVxYk7XMHcYln94p+zeU3k/sjjv6/yENeksL3a3RFiN3+5ENRgj/Rb1X+W7DWi2+zkernzVak79aZvakSsIA57cGnB3ouw6xebhJPFtuA8OpFeeFqSl0re50T++2wDOWW5rbadbjBZ4zZL6ZkbsjjKvDZZsZT+HscwykfqVGjOibsvJ9j/9+BzBPsOwjXxh31KXjtDzCvx6f6eM6mN5P7p5L/vLOBOzDLeU7ECMtz9OuLHtNFswdjwudMo2jRq9okfXaPMCZW+i7wl3nAdezgmgP1GwufMvpvvafGF45/7DpyuUaXsyT5Yyt8LDHT1jfgydo871CfDprYPdsCY6nL32QoWbVu2dNfMiYW8JIvll0oTrOAV9ug58dmE7wS/jlCNCoWMgajD33RlKHGyL+L5+8IM5XDi1n839IRSzb5+hoA97IuISXibYUY/UGHszXTW4K3o0877+ZWFyrBH6uuwTyXsarnjembGmn+zIFKq0WKMySH7pJK/Txhocl3IY6GXbEC/f94yMjSCmERGjsGIBS3UsaPi/RYZ3vD5fIVZy1yQGfYomfhZhLM/Ct3cJxQO3aXtjoHnmplhZN9Y8/eNHOK9eyy094U7eO86+Lk9Qhl5DVt1d2pa0V0pXlfmHv7L7Olald0u5Ii8sIdw4hUJP1sUE73fOByC1VgJgwkSPCGyj3r5+4gB3bHF282TXIC7+uulM9dN0dkNoil1/tb0ludF+vnflKjplxe0rNEzQ6XYQwHxYYSHtF/13jYJgFqle7tGdYR5/78/I/j7SgsCr6SuennXCRTjktKOqTGRbYhqRM8ZG1p/JByGGcpUBXVtX+qWWaCEPfwNxr55G+ZHhZ8vJLr4Qxan6e+VmcPcPLLPbvP3mQZ0L9wtHctzhTzJ1efnP9dCWWE1RY+bbGlrBc6BfRVi1JracYMzuqZQiD3cId6XsKxZf3xa3UqoWXu2+fbCHuZDsu+k+XvvR7nW8HKr6fpucD966IjWZg1UHSXcOX2uPV099UlM1RpJan3YqKT8Fnt4gj38Ij6K8EW/lEQTjhto2n2sNNNp5naSfVjP34eqsCV5i8J1uxXwNjPO2iHAAF34cCI2ZK0DzWSaabrYz6EKX2vpllPL4TX2EEV8BuGvIkqm+Tb/9rd/v29v32nmKNmX9fx9qQwxp7YZhYgshx0H032+fhxjSRQOzThw7999rvhKXrewiulTzb38WdMeZmBfbkm8IuH2i5vkp4awQVQ2KqhabhrVRPZpDX+fKiBV39SAzEfLoGEkrStm9Tx4nUKJM+Wc6NQ/d1gJOUK8cKVEtv0eLyjHHr0ink3Y+tyjxnYFO5A4H1v7OrOFqUf2bT1/37ax3m07a3uy3Bk+f1ATuLdeCtBguKxj4nLaMnQ0pOr9JFdbWqRctc4bhrFHscQXEK7e3Zp38ZYDHDHPCtiX1c/cb4X3sQB/L0sgx8q91U9+2UOT7q2rKwVEoLssOuTkgDOt2fErcUBiiLuo9UziwWBr6MUejRCfRPivXVqag6ESWKaWJjY1/eHqmuN9HcHf19/Lvxu9rZ4j5giTR2B7dfEi1Cu/30dgnQudI2ujHd8mSW1liLfVHrOC39jDQ+KzCBeFKi/yb3MEx9zim5lqwjxBss8v8Pe5Cli7rHh3Y/6/fW4yoRm3QQI0uQOfDg250j02BbEh3wR5qyT6n9IxvhCGPQokfg1h49Ce5C/zdJEEVZ4k9+IxcxXZ99H8fa+FOm4cefhZzxiaJ9sivgsaw3p5z13plW703ukPapZ6LuJJDkSY7vdYjF5jjw4Rv41waK3mz+/yS0BAZp2ip3oEl0m+n8zn3wvKyMpR3pmzzAoiR9ya/nj8+30S9L9MO+1O298Cleh2Md6BF7e32AZqo1jskQPxWoT/01T8fS3LHjiOmik/Glu4N8h9Afz7opnlebbFonqfGRyD1IbQSgmYucn67PxINj31OM/rUaAAbzh73QzOA0fIwR5JEG9PeEFo6oS2gxF4vNiYddW3lSlG7pMe/n0ijga/sQW+pJtAU1ph0L2tKvBQ0/ZunIsHfSnV2+7hT0lelGbzE2FzHdSMPaokPp7wHu55s5wvdsiHs2BC1kqQkiDffzL49400ynh64MkUdQo8pF5ETimTQn/qz1WUMj3psOlN6fMURam3o+WnX9k7w1bsQeIF9n2SmEUzMzbrDUyyXq499lIv+yO3hHw/GubfR4sgZ6H0nstipnAq3yrM4pAa2ijWMRjH8KKjxrxS51nIUUK1dRo+YkqQgT0UET+XsLBAbX6clx9iZqfFcDbNoWrJfeXAv7dGysWXly1p3y2GvCB85qqj2pB76qTqZm1vWmtbZsropDKvZp2Xi0apGvLHHh0lvq4c8+tnvNW9Irbot/1N6VO9EpQluc+a+PcZA+2aOV0ZnKegh/0JJoUO+rB7l1cT29CH7vAo6XLLXsiLktKrjVjqC3ewR1uItyWcy64Kyv2zBG06vfO9cY0Yb/D/37/4950wGj8snVSzcaLcCHgx+kwdlHxR7Uuzw0p65FDYjHpfFcrF+9qNY24MCMAeXIhPL8es8+bNHj01NjR2f+PFj4ryZMh96Mi/F/VBb7uXpnSjGXBgUL5L1Ar9/Jq8+W6EL71Xkz0aU2lEbXG8xxrbII9uYQ/lxNsSFhOMNx8M9gT9Y+MzIw2n8qLJ97dx/n2pB0U5c5b8F28AI4kSfVNEEArYHd5ZdnYVHb/j+qIX+voUqJQnJ2W4wTD2cJV4U8LeswfN7usZozn5gxPXl/zmCszG92kR/z5Vh/Yc74ILxoZogfvV4lN5DeXZnxyfnWr0o8cuta24nPGFy5k85F8XrQWTnnzP6ibeww3zcMDU9S2Jesip6/WEo6woNUTuW2P+vauBOJMiFbGNTujxfbFZMo9U0Gyl9JYZ8wNoVnroUNeQAsXdZc1cN+4GUx/wPfTNx34u/vdgX2yn6SEfDqJnjoGX61Jq0xZ8H7/l38dG8Co/y69Bxgn9D4T4V2A=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA4AEAAAAAAAA=eF5jYICAt2pP2cKEwg90VZz3nSqcfuDRtBm15QGFB6zb73B1SJYfKFV/u4nhWc2BspzGGw3RjQcUCmexPHVrOTBt2TGhu6btB74JbpPV1uw6sFFzgdsSxd4Dvrq/nkoITDiwh1Oa7+WkiQfYtLy+npGcfODsas2lUUunHIj88zLLxGzagQUMr4s4z04/4MiyO29a1swDTz+ucl/GP/uA0CLNB0J75xzYM1342dHieQd23OS/EyO14ABjiKtBLcPCA6e8e4Ivv1l4YI+k1bwf9xcdOOGfyzDx1uIDlxU+bPa+u+RATm3J38cvlh7IuHHlr+K/ZQdmKF2bfFt2xQHHLyv9vnqsPCCcLl+Y3LDqQIKd1zeto6sPdERee5MosfZAnuknKaPqdQekGCKYb71bf8DhpNSrsF0bDsQapkXxtG88wPlvGod/3KYDpdNTY946bD4gGq3gflh/ywFoMDK8hoZjLzQcH0PD0RYajiXQcCxBC8cp0HD8Ag3HNdBw9IaG435oOHJCw/ESWjguhoajEzQcn0PDUQAajrug4bgNGo4M0HA8gRaOp6HheBUajoXQcMyChuM0aDg6oIVjIlo45kPDURYajvbQcIyChiM3NBzLcITjKBgFo2DoAgAE6E4FAQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAwgMAAAAAAAA=eF51lG1Mk2cYRl+maSwsgtRtUIcWNz/AzEmVJXNTC1FQUHDBMKTVSZjgsLBVAbdIsRgMRK2ilRZFWSm0Ih9CW+IIMr2DiIBjVUFFwDilrVqgcQYMU0F/eL2YNNnz5/w/97kehnn3hufbOLHe39PBXy0bCnnJ9EhdJN+zUUbf5PW75/vuoYwFwybGnkWZ0pwehTiHBLJTU21huaQ2tHrfD86jFzMu+C0KOEjGAG1Yub+SNnzx0ubjVUBN3FnTnx4/RpzAiNG/fFXUWRWgj9efoM2vn6Ys+0pNWmZwF7dTQyFTL6apU06S7d/KcINnMXnrAv7x/vM0NWl49qu7S6jhnme/hK8lt01rlsiZUuqIPBzTNVRKTb7LS8Ye6KgtOpU51ltGXYJn5sj75SSVp48PPNHTjp7ucf8JAxXNvaPq86ugkJFzUaNrzxEveY4sUVFJ21ZGvAi8WkX5m+8MJfjUUFrwc75w73niM3FTep21JGrnO2Ib62hLUFL8h3lG4k6op0VvNVGGZrtkWGSmj8SC8Ctf1hM0MoPwqITHAXhcAY/p8Jju4vEEPI7AYzU8RsLjZXjkwuMtF49l8BgKj4/h0QseG+HxAjwy8Njm4vE6PN6GRxk8psCjGh5FLh4TXDz+DI9+8LgKHuPh0QMeM//H47sew2kQHIJXhlO6cFtUArmBh+F5QYzi89BeKQWCbL/Tjy5vebMsnbzAb3GHuLvWrS1vfpske5clzFhQzt/7aDGYgTtddyqdwpv7qQNk79Z3qM4j4dIB6gULcccwyUqf3Np8Wg2O4q7dfotMyfpDdAM8jzvPD43gDmqPkD+4HnfPLXZ/qbhZQAfAS+jg4UmTmzj2OFnBaejC4fi6U/VARU7wBjrhdXPzr6UW0scg201WtsNZ4qahbFCHjn75oOuZpbiIdoFsV7xXQvHsFadoJmhHZ6/XOVQS+3vOQHePT89OlBadIRt4ER2q9b6WVZt+JxX4B7rsVwdyUpVa6gPZTu2WJyEVmaVkBdvR7RXhwNj2JB01g2zHzfUxltVbyqgF7EDXUQ2L453ictoIdqNzQbSp55NEPX0GpqF7R2X5+P7dBnKCP2EHCvnttgnl2UlqsAuph0i2w1xBO0F2J5U11h+qre/J7qbxVv3Sa3OrJsn+RyORBbLWtOpJsrvaG26d0tFeQ1kg+1+18Od5coJrqRX8FLsz/Dgw+jCujs6C7H8WJRfpjAIjrQcl2KVZk22seW4kE+iOnV6OyBaWWExEILvbNf81fxfXYKYwkN3xW3wnWbY=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAhQMAAAAAAAA=eF6V1GlM0wcYBvCIE48AanBGGzyyKA7j5hWN4vFKqcYjZuDECxwgZVPQupFlMRgUUGtqE0SNWhzOY4CyTkyTTjYHjAShqNUoMO24U+ZRIHvBokWgra/x+URizD79vjT//Pu8z/NXnfF2eb1MF5y2bLfY5W2rfyEqprktjWLR+Afj/hBLHCWPj4i7c40bw8QmW8UTh4cpaZ2rI038M1RR0e9mau41FceLVVFH3dcGmEJpb0FzP9P0iR2G7j75ffpW7b+vmc44UlvNvUwW1dj7sS55blD8ZPtLJk3NpiWLephiIv0UX71gMgxNCPmiiyl9QfRy3/+YlBMr09I6mC6usCmLnsv7hc3yOfGEadTQfZ9OsjP5atQ9q5uZVhy+vHZkPZNK++WhyL+Z/BOMswMfMDmSdI+W3WGKzckuKKtgGpj+dVB6CdO6nLQLu8xMZn/9kFgjU3tmnJMuMWUPVyU+Oy3v8VRhnamT9zhwdc0/qUx5+aN/u5kkz7Nv12ZtYQpHjheRY/egHK+/J8dG5Jg8KMeWD+SYjBwNyLEKOWqQ47cfyDH8f+aoRI5+yPE5cowblON65HjjPTmeQ44ZyPFn5NiJHJchx4Uptfq3LoYG5BrXt/2H12ICbEfO5+tsOxziZTgOuZcUDSu3in/BK7iD762Mg5fEkdCMuxwt7n+YKB6DibjTBn/tiAliFKzD3SoXB2TeEC1QjTtum+/zE4mx0Iy7Rt1ONpnEbdCGO/caFrpHiQOwDHe/ebw9b41YCuehB1WBu/KTxWoYhF44PdF3NaIL7kBPppz+uDBC/ARmozfB6iv6ADEElqFHm8JdmvxXTNEwEb0qWnm2a6xogjvRs+4NU8MinEw9cCN6pzRaAmO6mVbBLPRQ7WnSz2Gmb+A+9HKCs35Gdaf8HxiKnjY80hUGtcv3Beagt7qUhr7gZ/JcWIAeG2PuBbS0ye6gD3rdNLu8dEkrkx1697zredbm/bnzGplOwUXo/d4Qj7X4MdP3cCl20PuZorq0hqkffoRd/DKncPKCe0y/wlbsJCPCZ66fhekI3IzdWNaubPi8nMkKe7Cjrcud47W/S/5QiV2Nqf1O57rOFAivYWdPI5UedQFTB7Rjd8E7ax4af2SaCXXYobX5mCrvONN9eBK7HOZXZ5qayTQCpmKntZV3rnamSF9hLnarcxxsuRvPpIdt2PEb5Buqqg==AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAqQ8AAAAAAAA=eF5d2Hdczvsbx3FkpEVE4hgHRwktUZy+ZGQelJEKCUlLWie3pL3uUm4tDe1EcpIoqT65VFo0rKyGliY6jtGP4vd7PO73/cf5/fl8XP+/Ptf1mbg9a5H4pTm6f1vKXln7Rz2tWyX0kakPagdMnuqMWV3m9ipmCwVmpit0fq4jtbVCWxRajr8+1pflbtn/emb2fvrUt6x686460twq9KtZEdNGS8ewtFqlMWGSFvRi5unvd7JrKRTWSK5ZMMEqmXWU5PM1So7TqbrtTToytVQPP79jnLi/N5mlSxXNSC52JIt4BZNXNjXkD9vKmUxyHgpnSmV2W2ckutDADpmlcVUP6Vup0BKaSdNcN/mzAg0rJ0MfV5I4mC7PV3xICfCgqqrY883e3PYh6ZLltu5kYS1TkOX3gHbB7uov1nSN2MulyNxj+5Z4UfsSXqt8RzVdgWV6W/JzzZzZNl+B2hdFH3rx8R/XR2uryR5e26IwtJa82JBlrpfXAj9SL9iY0ZNcRVOshPa2LvJ48CyKpcdPFktZGEBjW+c8PTGyiuLhW/ZL3yWHhrBFDqEqEhp8up/Xn+d8qJJkYbtTUvUr/zZg1v85su60bjC5SMeckCipoP3wQNUoiYCMIE41vbnj/p4QimpxDlk/r4IWwZYDxxa3qgdxWevNiqodz5Gp0aE52n7lVAhvKrizQnpkALfbXEfAPRRQ1pfTld+77pMJbHqA4j4YOzKNeI3W/vbztN7pcPnlrfdpBSwuXx5cTrbM8BPvxvCIcPL9rChlmF1GIk8/9mLDf976s6ZlaRVi8yMo74j4jrlTy6gdVs77c+cjPT7be/9JzsVtkRSS9FJB+Uwp7Yc19WtyT772Za6R19Ts3aPINUb5zdnOEuLBZlsMFM0Pe7Pm1ZpRarcvkMm+flnbHSXUBGfUvR1nPj2SfSzdsjJuMJrE31qq9hXcI5GrnbXX+68LZfnjW1p462JJYsySJlWle1QAvyhW6lycOIcbSFWdmRAdR2+czL8eukA0CHvLd/yYpSRglQ9ti/oGL5I9N5iaKU5UAhd7T6qybzdnKocbJu44mkB388TvOw4WkzLcPMF5t0a5J4sI7llR0pxIc4LeqDt3MBL5U9y63k2Bp1mm0YIFC24m0az9y5cXPyuiDFj+QFtSjEwE57ms66qnezJFXNLam/+wkNzgK8M5RpmhpziBaZP0yJ0pxHW/aa6tKiCRF8W7XLR4aM0OO3Xv4lRS6fLrl/qONXfIDPa68VP3VcopZhagn/1ochq5hkY/kX+RT/thI+eQua0T3JjKiAY6KHaJ/v7jeLx2720S+YlgVk+brRs39DzINmT4El0NuzTDYPRtGvlC6OFcgwTNWcEssjE/QUzsMg3cyf/RsiCPouFYufo6STcvtnOSF99W7grJ+a/uN9+ZS7vgoNummoU21mzVhP6VDhoZFHGMskwDbtFK2HBjrt2LX324yp27wnIOXKV57sXv9MpvUi3smqk9uvxJMqvYIexhB/p4H85Ylqjr/8pbJwd9dEUfRfb8ljq7uCKc7dr+7z7qw6/t3HSstARMu17Yw0b0cSXs2s/fIDPbnD2/J+yhE/oo8sDhzu6lwVbclP/roxw89GiU1SE7ATNCD9+jj8bwlf1qVsdaQ1kpeiiNPpbBbUNm257fS2Lu6KEt+ugNp7kpnxwtG8XmTBD2sBd9nAV/L0x8m6viyfajh7Xoo8if+FtmfHwfykajh0roo8j/Kem2V9ULZUnooRT6KHJOvnvrXssENgk9rEUfJ8Kr9puukOpMZoroIQ99XAB77pVeapebxlzQwxT00Rm2P3tjyajnKcxIT9hDO/RR5OgJNqH2AUlsO3qYhj5ugz+p9n72a4hklujhJvTRCg75tDRh5thYZoQeeqKPJnDh4f6pA5vCmTl6eBF9FHng+Zcfg+vPsWXooS/6uBzu/LpRY55ECLNHD3noowNsulS7YiAvkGWhh/roo8j+X+u+lTv5suVlwh7KoY9asHePxHalXj9WiR5KoY8ix9bM3JY45MXWpwl72Ic+6sGxSv59BYG+7FiNsIfn0UcLeO6jc+T/zYf5HhL20Ad99IK35D1zTH0mYOno4Xz0MQ3efuadwmdHATfPWNjDM+ijyPKHd8UecQlgquihCfqoAW+cf9uD7+HLatFDC/RRZMsLEj+C+88yd/SwEH30gDukDeykx0Vz2ehhMfp4HeZiWl2uzo9lBuih1DZhH3fDqxyPfXWrDWY66OFj9FEXVryqXbznFo9rQA/lC4R9FPk3baXPBjedmRx62Ogn7KPIVe780zyZGBYqI+zhVPRR5P7BssPKqVHc+N3CHv5AH8fB6jpHnxa6pXIaesIe9qGPWzihPW/xvy06YMXxJlwrumC/nOLsVGJj59VTxFShq2usxoxV+ZPVSgkdgXkdnDX0hnp3+zKNVf/uaxn6ekrh7Ji6Hi92Qmybm9+P3TQ3ssjhQloduY4Wun2yV2jn0zAmNlboeZiLXLSzpSd2dTjr3yzscTf6vAj7bNK7iSOPaQazEZtmO9WrH6aswpy2kaPqSA4+qia5JnJ9Aju/Weg7mIfD6UcD8kY1+TBH7LsP0HcL2KiknCezRsCkutvXtL21IsOMdbanD9bSYJfQkx7HZTxem8wyMD+IuchXNZVLdUr0OaVS4XvgjPdhFmyxxCztdmcI6zBNX9JUZ0/r7SPiJFkN1cPhoS+/ByteZHcPCL0Gc5FtQ0uvayjw2BDeE2u8L32i9+bM9oicmQIWOLJXrTnLmZ69cyovmF5DZnDm398yDVTPsUz4FeZX4eomvZ8dgyHME/t7L94nK1hc13iG4eUgtvBZfKP2eR5l/KX9WxjvIY2Fi9h7QXSnLtN8KvRlzEVWGL5/U80smjXjPRuN960evvLZKkrsTSizuZl9ofykG41oy+2Oa3hApnD4dJuaVZt4XAYshXkmPN740qQ3k+JY2nfhe2iC9zEd3jxq9gGvEXyma3czpFDdk5pY7LZ2zQe0Ds5eXbjgiYolI/gt5iJ/XWb93qglmBHujWa8ryXwWYt26w18PyaWsfrzFWVv2rxMPMs5vJrk4VmDZw5lLnRnjVeEXoN5EzxT/atiir43+wXvcSXe58Wwyp5r8su7QtjBnI8Nvyv6krx+z/kDH6vIDQ46nuvqVy9gZ+AJmLvDLoamD4KD+UwG77ky3vfpcPmFNYm3jYOYa37jXVklfxKEnSy+ZlBFHvDyjoOTcy+Fs2VwEOYir1eIDvJqjWLjE/69H4jBzg90PlbfPMdmDTVPaVgSSM+m6+o53qgkSVhtyYaAgkF3NgF+jflE2CEpu6hkWTLbhX2iEvvFBthjeH6gVMd59lQ7IHftiiCy1hgIuytbSXfhpnBJV2fG48pgF8zL4UXfzOafmJfKeNhHTmE/sYfrxo0bV5AhYD4jpwrmbD1Li7p+c7/sWEGucFvPjQ30KIj74//mW2FaU73bzCyNSWOfOY/9RhI+NT77H/Pgc+y33satm8xDqbeZZ7jqaTkpwq/++pJ9ZJ0fdxB+h/khuHnIpyYoJI3Z4l40xH7kCMu0zNB8PSKYXU8+5vxorYDUe7r+iVleTrlw2ZeMC1ovT3H98O+Yv4PvRGwsyWqJYdbYp65iv7KFA3Xf2olnBDCFgxbLphidp8QfdeWPYu7TLFjqzuT6c1O2sDFwHOYiRy9KH1ooG8NWYR/TwX62Fjasy+sbkj/LnF9b6v3pGEaNFYHdP4bLiAev0Ggf8lQ9yRLhHsyT4JJnBuHNXyLZ79jneNjvdGDDvXmS+n+dZSoeXbc9w8LpzIv8xTpHykgDPil2ykW3zYcdhwMwt4XjU35tvBQZwu5hH8zCflgKByja/e8p5zMpjTyt+vwI+rvv2NL0qlKShX2NxSbI/RLIxOGPmI+FY0qdhq+FhzLRPumO/VIbfiFnoez+IYAtEajajH0bSd4/y0/vUy+lxbBGT1POtUQfZgKfxdwYzjJt2Xhio4Ddxz7qh/20HNatKZ1eUe/PAlMT99VPv0DSeyJOusWWkMj8D7ufaUuGM1d4IuYiv04yakm/7s2KsM9ux34rsnVITU2JA581971r7twbTfzdfQmLxpRQI9x2VEXxF/UINq5f6HDMxWFBiKTP8e++TBf/BW2dwv14FWzvcfdL8V5ftlPi00iJhBha8lDTN8ThHhnAwQU5H0Zs9GRGsBrme+EnGueieMUm7Cv26YnYrwfhy4mGd0O2+rHBB1oOku9jyfJxVVdlC9EQfCNwf2fIdA/WBZtj/hY+kTWrtWW0P2vEf0UD9vNmuP+03N3jPF8m+fh1Y9mmi8TrzK4eq08kARfFfr+tzI9iWrAH5svhQls1mcoMay4I+3wE9nt/+Nhj0xyZMkd2OMt918zr8XTEa8fPDt+7dADWNPYL7NWw5BxgR8yd4cNfh3sb+TZMBv8l2bgPpOCr5/unWya4s56LB0PF5ybSZfenjk52xdQBF070Vik0Psa1w9mYv4EXzv/1/adxvmzEWeE9sRb3hcjvj1ZEf5znyg4M3QpfZ5BEH0ZnLFQ4wEjkfXrNn+/0+DFT+AvmIh9q+6Y+8bMDi8Z/jQzuE5H/KXpucq7TmZ178nTvk2nJpBKkvvJ3gyIS2bk3WGdzpxUXBKthzodrasUW+1r6cLa4Z7xx34isJxfTslzPhb0x5ip1u5OpLGwgeN3WQmqFDWUbvMwk+OwLXI/5Z7iqxXHYwnMlZ457aBLuI5FPTN5yzVH2JKud4j1tNqVQaGmEX9LWAqqDL3fHiQ/HmTCZqUIXYC4N1/Ro9aRqRnOEe+oD7qt7sFSef3w5t5k7qxVmPi45la57yg6V7bxDwbBWVuxJc60j3An4Iua2cJFHxTcJ5sXZ4h7zwX0mcpRkn+8W+TVcfBaLiA5OowaWMlPpUD7FwG0Tn54v3BXFvOEKzL3g+ELb1Wv22HI/cM8F4b4bhgWJ0XN/LlrBPr5eaOPieYlu+HQUrj95m77C7e07j/6cZMWewZGYi3xVLbjqvKyArcA9+BD3oehezCrrUTC3dGUFL2/qb/JMp8ZLbkejI/OIwdrcja8uSXu4VPg+5imwtXLDvlKpMLYB92QW/t82wYp3i5VMTO2ZztjsJ7eD/3d/2ijrpRTl0io4elrhx2SbEBYD78Fc5LqK2o1dpY5cM+5RZ/zfvYFzHoUU1I5y4B4F3gy3S71Cr7Ljw1r7b1E97CCxea9DgAWT4gs97oZwPh5eu2HlL4bLjnPz8d/ng/t2Lhz18pNHAgVwXQeSMidXZpDHp5/JTxbcom54dHaK1qBsKHsA22BeDWt4VvVed0pjSQbCe1jrjPA+Flnz9zuzr08L4P4LwDKztw==AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAywgAAAAAAAA=eF5VlntYTekex5MkY0wiabbpwowkTUODJu9UpyjpkOzuIQmnImU6xKR0Z6PLHl1VtEu1U7vLTtf98tZuX9qSjkIpuTXoqnkeupBdHbPWj/Oc9d/nWc+6/dbn+31fh9KQpHXdpxF7z5pNjZpNhIzl1YQmhKLcAJv2qaVNJEI3p610awAWGFuo+yxpIoKNca5qy35Dcme26ZWFTYTtZ3wvccQdh957fMBnXhNJnjg7XB/ljfUSUm9Hz0hJkN3N0HXSfHTqgq7Z9bdS8t0lo9BG9RS0Yr+lJqtXSh5Wvt5wMuoaanvZ+7C5VUr0NTpWx+jmoCwdpZMaNVLye39MWvH3OWj7WwXhV5lS4kPdLxuNLhzcYxUiJXnnUaHix1ocMxTTw3SSksQIhT9v9/Cxk/kTbov+p/PKKQ0PCgmeW+z9cNOEhBjla5T74Wz8cJbKyIp6CRk2tlR/MlCGV8alXlWKkJCh/6j4ieLZ+E2lg6u7qYTIyQrh5u4a3HP0q8dJg2JiGlz2UZuZgX5xU67XSRITo4KlwVPHM5FZg+ETL2MxqbTSG5cd4KKB42mCiiYRORJ4UXvYPRHV5rx/6cMUkbiEc/zmV0L0ayzD7nZbI+lw7z+veDEdjfycF7/EupHY8y2OhDvW4Fm/RHpHFAtJt0m8Vv4DAd5zoXVknZKQ8NAjr645LXjCgrHZxr6BMBNfTi+/wsET+S7PL6vVE9/LGXYBauHonuibpD8O3SIeuouqHN5X45awbXf3pWJy8MVGxZuSq4iVXr/jUU4dyZ+cXK7lVYbXKfTbk9gaohJuY7ssoBb1WKH0XIsqIqqxVh3n8fEleZVsw90KIltrwaoKluG12Qb1U2vKiXe7vhE3OwhFOHEyv75RRFYP3rWvfdGIsr79qNVckEeMdyhPtplJ8IUN7mMGe7PIG4+BnalbKtG+MLPZrprxZAvSiSMOxWje1NutNwvDSEZrnG1UeyhKBB8fWSdi08FYdBV8XLprl5lyoAOuAh8fOGYKCl6HfPGx4mCktx7DG4eAj/n7k/y3cZKQIfh4cJm0mLUgD/mAj/tX36+bFxKEGODjNx+2KwfW+qJ28NEo6Scrl9ZMxAEfBfcdeROk6ouPzYei9AX3c1AX+Mig/C7Ch8HHRmp+XGwNPrIKC7WjTTD+Dnzs8BlLi55IxgPgo+2trnkmWTnYAHwsT2RsfHY7AMvBx0K/u0dGlHh4HHzkUH7zkQP4yGuZs1RlfxkyBx9NV3oSzT/zUQf4mP6wPUN4PRzVgI+O6qc0LpfVISPwsZmnxTje+ilU4OOH3YNLDKZv4VYT2kemeZJwmVEhXgs+elLzFOJO8JF1dkfFysgibFdA++hV4h43PP/faK6Y9nERkzk7Qz8XxYOPP7al/7MqtQiNptE+upwsF1bMr8OFM32Uj87Rdl6HnWpwM/g4dJHJVll+GbPAR33cGaa6uhU7go8PqLxglOdM+2gAPlZr0j6uBR+Pr6N9fJqz2LM0IQ9XnqF93KdquKBNXIl1ld5RPjKcuye5jiHoPPgon/n7CEOus1flCj/xDPAeYBs3/6fc7kiUBb4qKvx9+CP5+Kr2jZ94NvA0cO3wm8VZ77ZjPvg8Rt3PB0UcW/x10uIm8h44BnhEHMjOnvZF4+D7m/PPdC2m/NB8fTvb3AVN5CzxG9bP98RqwDa7S6/xG+xQMOTBzpk6UF3ctyV6c5rID8BiYPp949AKyMssipPRlfITQd0f/sfXgY0twte0rc9F/pAnrWDdZw2KwajztO3UsSEpyQ1kILvriagbeKshz1HFkv0lb0z2K3GVCwuFsAzT0rqkJKTXRLYzPBWx/o85SAZ5dKJeNwW9963vHxNJiRuwgh/NJ0a1Nx7wT0XpkNdT1PVF6HRHpq1RkZT8JAvq9VjDQSxgM1/9H7W3lSEbyDP1eQo89Otjbv+Ti1IyB9gMuFEuL9lyPx09hbwfpJ5/COm8c+nL8pUSNvDkW5oZj60F3+tU4gDogyLqKMBud/faTltISTGwPXDNnq0HIqtuYDvoiygtmUl5RAlunljZmagmJX2Z0gTm4A3cCFxL9VEdng998ihIK35ORy6uu5M32tUjIXrxvUGTq0vwKDDbzY27MIqDn0Df8KnnX8Br+T279uV86hdgLWD6+nK8AvqI9p+LJXV66VmeEvChEHcCK1H9eQqPQl/dTB3yNSwPxhrEU0FFXUKsGZJXo44ZeAmwx+aAPkvfMtwFfeZPzS8WO/bqdS8UikkAcCKwmJo/D22AvvvHs/XBycxspN9XqqRzSEweL663PDMZjQ2AH1DzKEA/Qx+2UP1Qg8LMhR6XZkREGbEDvWYVoyvAuvS80Evoyx8o5qP6sJ3qjYkicuzOifUabpmoF5j+n7moFPq07NUmxnxeCQppd9WVq4vIKur6OnQeeIzKLw9pQ9/6gL+9bq0hMQmN5F/Ab4BH6Pmhe9DHTOo8H1v3WUUnfxQSR2D5a5qzqLyV4efQ185wnmXu5OGxWwh54eMU4IVUXouwJfQ52+Y306lkMe5aUL3jPa+BdFPzI1gM3L/ofqfs3R38/HPfU37y8VSMX53Ks/rP/Ys5sTQHKSvnBbtfxfNgPdhL7Rei0PbxayLVLYRsp3yowO4TNKtAftRhvciA+dqPdfZOn71JOMCTozTLqP+dhISwnpyk8l6B5Ny5s6vzBeQQ1S8c1ABsS/uCrWD/Y0T1Ywh2HSnQnLlSC+9TjQ8D0/+Lg1/AerQN/k/bsEVk7NHqL/3TCdwO79MP69U0lZcy/Idh8dW/1CqhX8pxMXAJ/T34GKxnHtT9bmFVzelVrSw+2Q0sWEqzFrV+CrAtrHfgC14ykOLunl0CeUnB/YM0j4JvA7A/o31tRDPnKg6vl3EJD/jlBZpdqTzeRizYv5nD95058MLv6Lkc4gn81z6a6fw14XRjej11oM5L8H7n3yNU+SnEBTjMleZBmM8C2P/RfV6F7/XLLrXgMOIKLBqk+XMehhTp9fi/jZO4kg==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//qsyXDz//+8/gPiI9fj/7z+S1w7C6P/vPxzjpQXM/+8/OcrurqD/7z913jbtZP/vP+RVwhAX/+8/fqDyd7X+7z8bbcuBPv7vPxBp/oKw/e8/MrsovAn97z/pY4hQSPzvP0X0tTxq++8/efoQTW367z803p0TT/nvP/7bGt0M+O8/hywTpaP27z88D7UIEPXvPxtWKjhO8+8/bqMr5lnx7z8s8Hw1Lu/vPwAl9qPF7O8/yWms8hnq7z/eEcAKJOfvPzxkP97b4+8/0oh3RDjg7z98K/LQLtzvP4BkP6Sz1+8/2ZuHNbnS7z9+zbcTMM3vP3ss65wGx+8/Uq6pqijA7z8HC3kzf7jvP7DlN9nvr+8//MJOY1ym7z+szWopopvvPylXbWaZj+8/EoNQbxSC7z91TbrL3nLvP2JRCSm8Ye8/0pSyDw==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAKAQAAAAAAAA=eF41zn0wG2YcwPGlu2K4drHqoas6Pa2+6eLd1MuKY2fdUKs59bKhXWc1b2uUlDRVLyGaRDQRr4lQxtLMe8XDD1nipR0Vc+uJqPe3vphyW9eM9W5P/vz89f3uJzZ2cRMcgR9vw+cfHgXRvv9tsHo/s0F1DV149xzl9nYwmBd3JXJFIzCJbb9+RDeBR0crvoeSR0nfgETaNEvYNQKvsBclW0oeMJHp8twns4tX4GK91/fpkb/BXmz/2DsgcmGhrYjaU1MjCfBZAqfUAD2CNey2hJeJ6wOFCAirH6nFKfDkebK80+wRNGKnZfb0prgzUMzv5SpnVipIfna2Yqc+hCBsBWErw7YyHx1tlnDlZAoQZluXSyeGwQL79Z3cPQ1v8lBQfDNDSqKCCvHPzdkPQzC2UbqHYyiVhjbqPLbqjtPA10FPnFI0BBps15P8jnEbOrJr2phwPZoF7wessMI3BsELu4Lkkyxk5KOCDlUP0Tobitnk7sbAQWBgz8jM7T9XF6JQjdp44lQuTJl5+iT9MgAB2B4urE5uNhtNO+e0nnWhQ4rtOruHOAAT2AvU6+9Y/MlCIYT9TAv/AjixZJVxL0kBQdheYXXWT6cZ6MCqyt8vphBW1akX3MflYI5tqlZEsP2YCASXUx6fZYL9ytKrEkc5yLAJunfpgUtZaF/kJQfjr1gg2B6RPy75FUywZ1zKP3RyoaNbk9/6/JjEhllF7vL2vzLIwn4WVUj8CfKQd+ZSO5VdBLQ/Ok6eiZaB1u85regzNXRkYNvmNNrBgY21y3a1g/1giC02JDpPFNFREPN0nM5iMdB35OlhpH7QelOXO+agzEYp1ZVho2ZcMPySQ6bw+0Br872Tn0710dHw2nP1QggPcoLXKk7s7oMh7FXa4PXot//n9TcJ+hUlYPPQPouR2AtaP1iMSrespKDNYadEgxd8uDQ2uDQwDaA1y1bvNakxG3mOTapkfmWQuSAZ0gkAcMc2U70cN3KloGFxxvmD98uh4OYXO/NZPaDAnt8jD78y9wN6URZZqGdZCeKM8aTk+G5Yw96OvunRfiYNJWpairwCq2DX7vpjpuEItM6j9d6tSCajGuV4iNJEAN500seugV0gwjaxElmQ/zFCT0PdBjyXBSBjr+d7+UtBa1rUVVLmVBpaMaaZHAIhCPo5t6v8O0FrcsREJW+Z7JbmxI7RFVSDiErUyIIeQDr2d2NG6EZZvFuLGHF4+SJYRsKD1l93QDM2K65V0dt0FempjsVdo9ZA9615qTe5HfSxLcVl3VZv++wnzQF+1FqQ1lBiecVtwMF2bMuJFR5IRVwdibI9/x6ExB33EXa1Qgn2X5GHy+b6LyJNbnNRfHUd/C0pZ888a4E32PTT0ht2CcluGeFVDR8M1IPt5o5AeaQFtJaKZcJS3xz0H9QVx8o=AQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_7200.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_7200.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..44e682debd85944acbf7007dcf9e14d0c5ffaf4c
--- /dev/null
+++ b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_t_7200.vtu
@@ -0,0 +1,44 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="232"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="1.5455309316e-05"     RangeMax="0.0030141607995"      offset="316"                 />
+      <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="12208"               />
+      <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="360" format="appended" RangeMin="0.91830090575"        RangeMax="0.99999994956"        offset="12304"               />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="11574.294442"         RangeMax="16611.463277"         offset="13624"               />
+      <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="360" format="appended" RangeMin="0"                    RangeMax="0"                    offset="21900"               />
+      <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="360" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="21992"               />
+    </FieldData>
+    <Piece NumberOfPoints="203"                  NumberOfCells="40"                  >
+      <PointData>
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-7.7327375375e-06"    RangeMax="2.4038939039e-15"     offset="22088"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="6.7342959073e-15"     RangeMax="348.36371955"         offset="22680"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="0.0015470183944"      offset="25820"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.5789773421e-05"     RangeMax="0.0030215823157"      offset="27756"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-9171.7452016"        RangeMax="0"                    offset="34412"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-9171.7452016"        RangeMax="0"                    offset="35100"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.91770223947"        RangeMax="0.99999975748"        offset="36436"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="11568.424255"         RangeMax="16633.267752"         offset="37736"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.3171142463e-08"     RangeMax="3.6922036413e-07"     offset="43116"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.2975"               RangeMax="0.2975"               offset="46332"               />
+        <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.92032865196"        RangeMax="0.99999683727"        offset="46404"               />
+        <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="11595.152046"         RangeMax="16536.793734"         offset="46892"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="2.2204460493e-17"     RangeMax="1.0049875621"         offset="48356"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="49572"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="50304"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="50476"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF7NRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A+2CrFQ==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1NbLUTU81N7YwSzI0NAYALeYEjQ==AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAtSIAAAAAAAA=eF5F2Hc8lf/7wPGT7FFm2StbZDucN469Ze/MjBJpaZCONJSSSqiIVJIUbZyr7qOhQaWihKwkIjRQSn79Pvf79O3fZ6/L9bgcx30UndRt2Bruis6u7LjPMpqwlPG515jdpQANjP2a7wXno/a7s1oBcbPUnQmkG9SuDfK4aA1vVnN8rnyyBBWTPRzaSDqFm8dcIGQ5XONWOnQm4C5Tb/rCtrO/HJBWY+l0Vs7EnTQBv75EljToiJ3oMbwsDxr3m6Oc62apH1mk85vPfSUuWsDAOTqX0QcR0CJ72FpHemFhq8lVHxd4HX3AYuStAdR6qxo9L7BB238IBQ9X8BKd9wZ/LT8rAe7iC09KvlsK3Xj/qinSL89XMHxPocJtnfA/rebL4CbZA+sb6fraZYZBbvZwL/3k62ptaygc+dFf0kdHWmXhsw8kRYhApd44h3IxONfbUHmu2wRYm96Mbuj/QKWfJv3zt4k0/SZjGFjx/YCrjgUUkD1oYL8z/r063t8WQpYl6AU+sIOdzBHk+NAS8TPEfiU6SxFbm4t4zw+LQMbkXNzpcDpI6sQGvijvp3rsIL1LuDhCqNsQDFPT9QO86JBG9hCK3Wnzvh3tpdbws+u50Q1DW2gu+XDNo4mGflyO/s1/W5Eo2hx0gUdHGLpETuk8S7WDonsyYeWN/dRq7E06znbDE/ogxB+btzHcGprIHu5jr5ilncp9bQUbdYw+mrpbwxDn4BmPSXOUG2tMKCgsIVgh/APTEQthoWzonp0SrkCRnLQqTj9VCzGkf3bf6NEYqw/9eenbM/tsYZTsoQX3/p5xpYl9lrBOb+4I7DWDGskkw24RGmr0oKZamqoTU8ePRJnsXAiMA6u0YqX8gJInnmnMKq4l3EnPC+cbNN6qDx1xVxa37bOFKrKHq7jvTWDNqXBYgWGXVk6BowxKWDp1N1GXhr6b0ExXLNcmtNul+zaeWQgP521IP3JrBTAWk/vXG5Nuvu7U9nPZ+pDQIznI3GkHa8gesnAfv1cqvEvZCrYEIhbaY4PkQjxDFbeboi1NZaecrugQuobGjqoBAhAjd8m5oCIMZjMSymK6ecwksQ+fl7s87K0Llm+zFMSNjUCe7CEX+7Z5plxcQ+aw6RbvwUev3ZBlgnW6RIQq8r1pxLN7QI9ghGuHRvX9YP7MXOchfjgCdMeehtpc5Dczwy5r6yaRVCgD6/rrrx5QNQRzsodk7MpvGh9bp2nA2rv1VyT9vRDfjs0T/kMU+MEtScRMGBBJxR6Biy+/opWava04cDcSfuL9e7GnqmU3dr2apN2/Ke8++lQPtMkeKfKQ/sA7o1MqbD56Xa7y4/IuX9R/VHq8/pg0bOFBuuZKRkRQgjp37ZcxGmvxQyfemUj4dbXw55vVY9RH2ENMvbeIa4ogP56ADMW/7xNDZI+EeUlHGT3jXzbII4XR1NSUIR901SaUxdeuDJskveLalpoQmwOO3BEdn6QtKw3fpjQvEvYJ8nUcVPpIzcWe205JfuYjiSKotz7+4KDCTbJHO7AXHtSVHD2minZ/7Nc3T/ZFKTRtPpMYDWBoxpYmU6mE7U/hbc4xv2kHVI+o3o6KgNaleYIiHf3UQOz3tlbHZaUrIF3JrAHvOhpsJXs0oUH6geBEas8XbSRIEYtRK/JC1wI9ZVXe60JN97kmiVVmxDUrN+fun/NQPl/eYl+OFfCktuM3+jRNpfaQbo1SS/kmlqCl+0r2R5cYwnWyR8LYba57vXlao49U+0s3Nz9ajgbvi5zMf2kK6Yypnd4baQRN841ISb0AOmv+ffvS4ADYVTG47fHGeWY/sBsc2htu2aCLbp81tnuarAdDZI+qsP++4Lb9kzMNdejPyh0ocEBwefboUyk6KCo7mh/aYUFE8el/rr4tiiY3j87OOHrCfm71d57eFLMa7CJfnA+ZPTZCojHzbDiv6cBtskdU7B3PzxzOXGeDqtxslUM9DVCLt5RyTYYl6A384J6qtiQ0TTTeqDWIIHlz46kHHzzgl7/4Drn3s7Us7OM3XzcqXTFEWe1XVhC3naCJ7BEDu2LNl5HfW6zRppBCgeX3VaH/F8e1THc9SEs1awhdQSf0Ai2e9f7kQDknLnqf6qCBnLHUkdACobrr2Me9jgz+ElBFEh0Dium5TvCe7NFW7O3lT5qJKgO0oqzh+bpeG6hQj1Gof0KBoV1T6XeirIkNit7rSrJf0Yh1ufKOaeNMkcZ8XovbQnWU3aT/rq77dfrSJO3lUzeerBlnuE726BHuexIOCemi+agld2ffaJcnqK7a7x+kJolqfTluPZmxJqQFJMflZEeZxebXz5bLCULxo476B3vGa9n+OsHzZYTOQjBa92qfyUlnWEb20I49bHWi+LsLMnCI12wyPscbTst8n4loMkSqF5sf9c3ZEBdGxud58fNAgkvVQt4KHch4uqpd+IJg3Z9K0ncuSqZNHtSE9si24bt/nxvOkD1w4H5W0kDmYpUJfJEulgle6wnbnym3HGuko+R5BR0/OO0Ix0+Cdk/3iMHvwzdatzVbQWvhSIeZCXcdHTsvn5qSc4Ux3HNc/21xpAfsIHtQxF6dcHbLWlNbaBJ/sSBcxQteCLOq71KtEaWbd19bkR0x3bCP+5qAOCj0CgS6nrWACqk/Rtsnhcxq3pHukRG1rppmAim+N5yGK82gheyB3VOcDwub1duCQ5NFuK2wLSi0MJ03skzRzVudnkdP2xOPLr3KzDwnABs2SVRlTbmByVzgZ6oDt1ke9hxmjVbbBV1YEyDzPNbTDBTJHl5hJ+xN6lWMaXB4MHDRhQBN0J0di2uU10LJhy9LepU7EE7V6pPWcX+Yn4/Z8EXVecMCaXJ/BvYdG4vWu3YpQlBWqrFVhSFokD2UYp/6erT88ogOTKTfteZaZ4D6BSce118zQJQr7/MnLRyJd50Oxc/vc4HyftueL9KBsHSz9Yy6vVidHvaWe9ZXxlQ0IIi27EV6og+MkT3kYrccKrztu8YYvIe+Sa8p4ES+xzwXKq90QrKOfPNcbZyIfZuMrHhXysKmBMcS/rMh8ELzfdRKP4W6Hw6k37wqp6Cy3Qq+Wj2SZn7whnCyh9fYx5aYLj4z4QpacUWvvOTVkNaR1lDDWz6I8k43odTBmTh8pz+g9asaaIRX7xZfsAKU8P41XaTftX66fmiDM7wqNLxQHxcAqmQPitjbh1s+HjzmDxoH+a+2XOAF4vZDp19Nvoih9qp1frcz8dBKVHjOSAMWzkhKZx0NhWbtNBtdu5FaPezl7s2CtLcuIJi8Tc7riQUA2YMw9mNcT7ROvgyAovSCP8c2GaO0x3uA8scTSW5VSOzrcyH8Vufv9Xi4BMLChJ92vYwECv5XtYV0gZVrwlrH7eHmzP0FwdP2gHsoxl6Vv/XgpxQfsM4ZKfwaRUcpldkRghEuKLkpgYv44Erc1zT+Q7smD/lmTowZ4Viox/vTsSdtE6xJ5LaG5NvNOdl87rCe7EER+67l3r0bTDzADM9v1V2ZfmLQBnme3GvbnuZGnNw4+ombsgjODLVNhHuvBI8ku9qKN5O1ith/uyqYFcVSQX2NupKyHh1wDxMnSF9+uyHkZLk9uMV/cpCRpqKaRQfUGiJmaH2SGQ66DHdCUaUxfsH1Z8yd/XwDK3li/t2HIkX6j+dhEf3cX5jV/is2XrtgA56L/+uZL3FP7zz7zcb0D/Nsnp964VFNlJT4KyGHbg0R+ducd2V6EEGiEZyN4uJI4JfZYi/DKKgQqLKZAn4zFvbf68Q+//0ZRS2hmhmXv1tDCtmjXuz5a/cuVb9ni97tezlQWS8MvHU224x2OgDrXIiMi/Ry4ujeWWVxQ2m0SP6aoMzOlUB5dCJ/ytK1llJO+kdpjsyfCyzQc7eGikUp/rCA7BHbX60q+5P/yBlxjK5oevlbD6reRqeOpztAePZP610LPIlD6zcO2C+TRpxHcpon5ML/3ScLu+MU4zuL3wI9jb4jaffch92jPdhfxn01bb/vjJKq5JvPztDBZWZXWmWqA/Ta2qe8P+RJ5KwYObdZWxoVdMrH3jjt/29/YTvSz7+Yi8nitkDH1+2b/GHqDR5kj9j+MsZmnVSDM/J3CZv75uIGmRJr03vq7aB0T/z04k5PYtKeISGhJIlY7zlunTodCAsa3jTZHRqjsrBPqz2/p3LPHN0/miO7qdSP3aMW7NLyCkochCPy1jnqGa3qCRG0R1K311rArHwWfUmoF9Hy8ErILSUR5IWdfR9ZBdJLD7VEu1EM0fYbE/1vwQtWkD2SxH7IP3iLRBcdLVT6ZZJ4yAvqXK+aMFfpQ+mt8/t033kRIUcbba/ZcaJTnQcrSs5awk8WuX8y9gMTZ3iGtqmhVVf3h4Yu9gYge8T2efLaJV5fDVGzeLTc5p/eIF/P+S38gRbQqef7l2l4E3z7zcR1NOdoYqemDN8IaoLziInXD0FWbQR2lxy+ojZHJeR52e/gysXuoEj2yBO7ykj2sd2VuqiYHnZNRNoXrpa/uMO/RB00KhUEeiq8CROh7yIuYzO0r6PmT+tfm/67jx72iQsetsXdcmhZxT7GqmZ3uEz2SBb7Eg3hea0MLbRIQ5ehOuYPFkdP7b/BWAItMoWGOZo+RFTu5YVx16Zo6aLMhMbIb0z2/hPYPUz3exzSkUJCZbc3JGV4gA3ZI0VZ0uVj8tYoB6j9m0+vn516bi4N9GNl+QEbfYjyHP5tA3vHaO9WUTXvMBHMJpk8bFrFYcb2r7qs/SvHhJGuzb23/pNeYEn2KAJ7l4DVnmYBefQ8aXbJtl/BkHb9qsG755xoYGuhV9l3H2KRV8v3TLN25of56DI3t92/+/RiP/JocJll9wxTAE03h1R6QwrZA+c20l3uuF0ResMDTXh+oGl7nv9udZQbliP4eaMv0bU20fR6xC/mIJ7vqJSlOR52ozYCu/nRa2WZK+SB+dCFvnmJG/iSPbB78Q8PZBK/aEE77j8HPvCTEFRFdIfpwq2EL3EhLWju5I4fzHceE7mrKGawLr28tG6QYqaIXbr2pN9vbRkYlThnbhiiAhxB//XA7oOzatp4ZTWgMzKSaRShDYVyx0U7JXiA6Vu/NsDKj5iIuNQ10d1Be4/ns+/Dwt6y6b5zwdNZWrJuW6LCXiXII3vUgj3tsa5u3Tp+VCZRLMLbp4QGv2WtzXDVg4jo7Q7GhB9xeFG7yf5pDuSZF3Ds4hZ3KDEwaLJKE6tjYc/4aTkbzaeK/K39P9E7eeEj2SMG9uyp6JvrKw1QmcYC9IpuhBJPN51Yvc4IGIHvFzD4/IkCR5eivCYepL/9U3hKhQ/U8ssZ9xY31JZidzLsbli+Ugtltz5TaTU1hmSyR2zX+OSr+261KXLtSdjhLmwCelXxk++djYFxXCNrKMufsDkqqnvwIe8///f+jP2r52f6w1Rt5Joo/57v+RJ2jzKxR/zROtkWRUXPvp8zojeoo7GbXJ4rlE0goiNxnhdvADHa3UHsvseHvPH8Cvb+2IuSfhOWR5ciK3QnTX+zJoyTPaJjzxGdx/ss2Ay5454n4M2RqRlDoChdF/PzDiASjxfIXrfmQQ9vztd0/SMBOxc++1qgyGHG9kCL2ePRTZoo482Vn17vacBN9kgR+5zz6kU6703Qxfdz+vRaW5D6MNJotFkdODX4KqxeBBDhRdpLrT1/0Q5lM2b7nuv9uw8vds3mKRF7V3k03Shc07jMBhTIHn1VJz0+cN0o6tNCl/H88uSzpV/6BICyLAxpeQYSjwQ8LY3Me2lJmiw9fUUE3bcdt99GlDq2m9EGe3bPzUMF16v2tXnYQQHZo1Jd0u02UGvSJxai4qslTXERzsDwfXw+MEkYMS68O9l/PJDYF/np92LF90yjOUrCpiZ1MHgqnVarOr+O7edG558PM+GCGb2stJ3HXWEn2QPbl5fGng95KQp1B6y2ffjy9zlO3NBc97sxEpRClxwkg4j6oNaJewf5YOYPOZ99H0nsp7TiTUoClsItlYmoA/PdwY7sQRG7QYl77aCqGRxMtWpIPeoGN4bNVKMHbVFp1ok7lflBRLaQ6ReW5mIo3TIb+XCTKrqnrmImcFLGjIGd/9LeyFc1ZpDhXFud9MAJ6skeIrCrNUXYnmxygLKQHjGhE0HAy7e1c/+kPWKFrIkQ7Q0iIjZRbgcdkoK0zz3jHlpG8DvPNT2z4x2Vgd1Drc4lMggBVa1F+4qyDbsHtq9fLCWWou4MF/KWXUyJsYfAnAyb57J26IzcO+OPK4KJORG9YqlViyEbz2ffJxf7kyNPL0hMm8FvKaoo84Atu4f92INz1VO+8jlCFZ5fIbb/gpidDWL1uAtAZzBx6nL49rc2EuB63HS8P9gTcvH+pdit5/p4n+SZwl6DePvztXQ4T/bA7m34TN4mjdrBJTw/dEA+eFTMGjH2bml5qhJCuEkH+7zsFQNrhc21k8r28Cx86PMZ4Z+1Edj7Vk+OKQqawFaDWMpNTwsIIntg92vU95/lzrUFC9wLbVCt7L5sgYY2Zu7hLwshtrK2G29yEPnn7Pv0Yi/UXF8mqGkIq76vvrbl73M5L9nDV+wR6+7+sqBYQxXHWn73c4YQISdUOmBshiKicpCjQijh8tRmmV6gEOzRSV34pM8PnowK1BffelvLwL58aMzvh70enKLMf5qUZg0ryB7o2K+kTJ771IvgMp7f+EFqJLfBHNGnvk7MxoUSX56qad1RWQg+Y7fuitgEQrCY+jzDo2PUCOwFzS/MI+z14WvLk9imb67wiOyBgl2LCKvRKLeEMI3se8aLpWEtv+l+ZXsbdOie4e7jA6HEcS++x+J2EiDb+Gub3uP/ff5iYH8cthXU800h3pTLXajMB5LIHhKwrzQKXHLusx244vm/lPpOpWk6IlbuRinjyBWEOZpLezIpDTJ4/kK8P9tnJhQtxwctQEE70XCxoB9wKP/XQyl2Y76MMeMsF3jDFfUmQe3v//NptVQYckSM0LCN2RdWEKeufa6ofiUDxUdTG0bzIkCv10rXInG6lu3fiYWaAu8sIVHZd9uzZE92D6wQ0m35vhoei3KF/tfj1BRRewDa9pn+I/aovmyOmaYaRmQevL9xl6wU+O+7tXz/W79/92nBLhR+eTHn///d7EPIzNzOAGCSPZzBvuSpxL4NN53AF/eBKmo3yy1sEX24dH7S6TAiLu4kPShm0b+v/30yY1/Y8N/7DJGu9MeNe/Y1Fc7NZuuMXvYFX7IHBu5/55p1e/E7AK/LiLqGyCq4tKqxSGA7HbFi/ErDhsOIW192/DbUFwPzW52BKyhL0PbrO6X3DY3Usl06dvBk4N/f1++SuBY+HHCCm2QPbL8S5y9r8N4GQhhfcguTYyCAf8jkRZ0B8rMQphatDCceBvvmf2jigh8je21f67n/u48n9lnF7UVPlmqAv39bZ0etK4SSPWRhX3Xs6rD7BmMYvx/NPEL3hQ5OoRdLB0UQRaLp+duecOKA05lnB9oGmKdvkvuH4v3ZLvvmBmeuDA8crmd+6vSlwjDZA9tfJfat7maIg4yHk/DeXmsIW+Sw2uT4HI3R8vZwtVgEcY3iOd0a/ZLJcWaH95lYc2Bd3Hmyd66dWordQGB6fW7Mdyal8BbdJn85iJM9k92P8Au1SkhxQOzaHV2lmU5weOKocsJ+eXS/gVI97hlB7BQ1yqc1fmG6m82PUNdb8L/3H+zPfr9OuX9TDJo+93z7XW0PO8geurAv3ybMObtdCSLx/PM6rn52BVqIck29eVlOBNGukjeW8e0P84jfjtMKRwLABu9Pxx4nsyVeVEsJOGY2C32zt4M7ZA9s770id/T6Jl0o29PD82P47+cD4sTL+Pa/z48Lz07XXYkghkxmMg6cnA+izsMKZ+wMkCjd6dDw9ftUtn90k/rmSqiCepf0h+QEBzAleyjF3sbVEdXhagiyuPe+mAqRUaYoKvHImvyxCMLh+anJ+VQBWGr8hK/omdO/+8RjFwl/Xxelpwt1aTejbU1MwI3sIQV7x65ltKjH5v/2SykILQ8etUCMJkbfeu1I4tW109ctVouAJPE2r2SfH+pj74/9ZK0/CzwNQfTO54ihJlVIInugYx/PuMu3aYk17NWVuHT8tzk8dlm1JjrZAtFFJ4oaPCKJnp5f6pLKIuDWbjH/a48EcjiY1Lt0aJZKwe5RbMi6RTGESXehXWMB2ugR2UMEdmUlI+bGLjrcZSxWKx2whddSBhfjkTGy9GdZG2dHEu3fd3/vvMULg2/I+ez70LH/yvepCF+tDa/xfNyDC3bp9ruaK32o0ILnP3ox+apTWAsxTuQOVjyMJIZ8NAwWBvxhvsLO3p+F3febVcvyV4qwsOapZwmPImKRPZRif91pXn+7UwcapgbLi0KdEc0v37/RSwWxuESU6z5FEvbV+8VZ5dPMuPsp/DNpsZAs7lVZWtBRW4p9klIXkkKTBrsSl911DtzIhOwhAntzpXrQKQd1aLtK49R9+YV2c0nTjRUziuiy0qO8O2pRRJv3RJvovW/MEuzs+9Rij6I6JiiPSED7Ya1nBsge6ske7mBv0tknzFq/BEzDVkwJijrA+oE5zU/2MqjUYgfP/agoonn0om7TnXFmhNTp18uWOSL2/r3Yn6xt2/bshAj8OrqUa2KBEmSSPbD9eGTboXsWCsDuufa0v+4yWIQYGX25R3ZHEax0kzd1r4eZXvky09pMe/i8K2Bd/c7dVBb2MtVyt+wKQSgRVzn40EEFCZA9lGLf7EeIXE+UAru+/jbhPY5oICsIzfVzo5wAHUOVhiiiMvXkwjtnOpiy1RtH3S///nefXOzlcXTWWPYsU2PzuqMdMjT0luyhEHvXtNufFFN+0MF9e6BijRtnI61UZ2vbjd9RhGdxieDe0uNMU//a+Ff6kYi9PwP7d7rThqQ1wNx1NZq1qGAZgoD/eiYL+w+364dXUB8zF6x6qvtBxx9sGhpODZYtRL3b9HysFKKJd/3Tq7es6meWEtwbC33CkeEHR3XxfGEztuu/lV/9IoETeg2STfNk5qEU1n89lKaSfqKLCC2TF4XrSg/pzvN9UXCrxs2Qs4YosGs1LSA4mijn3lL7oYsbwltYOhc+qfzv7z/Yv7Y5qBwL0QQZEaG91DWWyJPswQZ7a6tp4o8dJlCJ91tei9x0Kv8+31qcW7L2WDThwi918eYhcWhcO37FqfPv778IY708SeE6tjfNcExLPzMB6tP+bN5KHXAke6Bgp78tUVJBdsDE84Pv3jTcPGeHelc7C9Xciib6bxH6o8mSYPCwyrWN1xkWjGQJZcVKmLGwm9So0a/K0GB+y5jr4dtiKIDsge0jtWN1eUJOEFfjlRFHtUOxYqnZj086oRvyJ345fo0m+N8+obSclQV9PJ99Hxb2g48vZc/et4LgbfrJ7b7WEE/2kM/uk/Kyo/XcQDRkjeYtazHYttLqvQzVDbFefhruWbqSkJ799DFojSKkz1v0tq41AOyEr7TeW/OTyvYN604kqJjaQGfkPItRDTtIJXugY88XKdY9rukJWng/15FNRil3nBFLdsHOVo+VxGaOD9Vq03KQvXmrRJO6HuJ8ctBLx3KYysA+esx0QuEUHR6iliHOBFPkRPZAlyNdOXs9f8h2d3Cg7L61TsoCOM7eeESzpqG1A1yvP2StJI7/jHMNrFsIecffaR+uDP73/pyLXfnFw8+PCvShv7TTR/qYN5Ike9iP/XyZ8stYqhVo4/3i9/+yDVrKixhVs5rTd1cSeuuX1Uot6WLuwfNPfd6Y5lKpXleKvTuW56qC8RwzKdvR+uclNySQ/V8PFOzULfNSoUYAzKdpXzKve6CnE3Z1WRuWAGtOIeXkwErCI1NBR+TsFK1dJ1ux/n0Q4pWSTBtd8IPKwH7wxQHOg7JSSPjcm8rPU+aomewRnaL4n7/uHermd1JDlwLivsZK0+G6yqfa1W4WoFuxR05BPobYfTm4SUNIBL0y2m271Cb+3308sY/cdj20Y9gAqQamtr0tcUVnyB4ZYO+L693U8ZCOruL524YK92etdQKW5+f7ZQExhGlaoqv7OlnE3v/WOUfmoUilOgb29Y4b33VmWyGfelrZ/uV0VED2iO2ZBdxGV2ddUZ2I1BLq+dUwalAo/S3NCejcv3d93RJDrC46IjjCkEWLbJe7SPG6g8LpzD2hCUJmDOxdb+GdTrEVUvNLfmu5why6yR7ReUgf3q2VJizkhs5bbFDYbh4P4p6sfZvuWYCrx6nx3isxhNWPtOZkbxEUIkc/NFKs+b/3H+xfYuam/U0M0cEXSlK5j5WBQvbIGHtl49puXkFr5I77RRtLgU9aFSj59ODnn2IIP89i/Y5DP2hy1ILvvWt80HX2/sdIl3zE40yxlEFvfgZwP3xtA/Jkj9h+Ta6Vg2upBkq3imsPaQ2C1TzK3QE7pP/u6T/3QCCWCMut0rvwZoyW5vYgr7DKD75vPszKin1NZWBvOKYmcVpaBO3xSE76ypKDXLL/+/ohnfu4Kad7sDzS38QxsCE9AlJoj+59qdYA1XMZAovtYomcxWujHOA37fOwhWk9Y8G/148wdvN5K0Pn9yggDR25jJal7rCZ7FH3WdJ75RblbnNcilTtyrafVIuF7DqrZhlhA2A5X1ocnxZLbPpmuyiUmwupYd+3bFE0i4erju0hN1teXPVSR+LpYUJpq73gMNkjBvYSU97lH2uMkCHePzJKPtXDUhdYPy/VUYpjCc+cP8zx4/OQicf1SZO/35fTl7TTKl2lzdh+uzVn6ZndS9CJF1Zip9T8IZrsEQN7NcdC4xhvfVTD6Giz/hoHNUbzAqxyB2lT/J1nLrbGEsIBc1vX2NYzB5bzMsvdw//dZwI7nSdjk7TSO+Z7j5YDVxh/n68N/+uZCwRIp8haD1a1DzMLHhjbf7ANAh+7OQPtLD3EkuHN8ReMI1iZpzLVLOcD2yPY+2Nf9mHw1fUAVbh/JEOquNYIVpE9UGRJXyO+Yf7EuAE0XDFH0i5RMPxje8vORANEqSzszV4aR0i2X58R28AFy89vmOTaYwuvMlMFcqr4zdjeo6v93PGJOsR927XyW4IBzJA9sD3raOvyDzLGYNGy/40J0xk5bb45s56mjBJevtHZGx1HzNrcPf2MOsk8uu6njrfY/z6/52Lv5VE/U75vMYQdvl9gAxbgQPZQjF2HGHt2oF8FKs6EZt1rlUT0Dtb7TzyPmYyZRak7T8QRpQddtlYpF9PC8P75s947tFKk6ljYWQTfPFcNFo1xQTCj1pKOhHv/62lsj9D5tJ5e1UwrwvuNeWvaRzbJAOOFcYNHfRyR6Hd1s6jOBI3D3eezv40rmuqf/vQsdJEZBfsJywz65IQIelzwRe7+ATeEe8T24I8S78+9VkDXtS72fPhjDVpZjR/mtRuB9idurdyJOOIJIcz4Y8OLrtl5yvTvUf73+tHDzlP7ZHfDkBYKu/aoc5O0F7Ike+SKvark0Y3IXlO00m74wrYvgahrhdLtY2HWQJ/ffuSFWjyRrKXSX2cqjp7i+brvyf3ZviK+0njXGhP09ZHXrqIBB9RD9oiB/XZ/zM8DH2yRDN0oS/BxHCpr5QzTyrIAlkDVYV2HeCI3uqhmbJkIMnz1sTtQ3xjyDoRl3hASqaMLkm6ZqdkpLGyIBP3vNxLBltBJ9oiC+91TElxin+howOGBrpOvF2qxubXzzQIOlKnzcLgyNZ5od75W0s/ZxizA89n3KcWeLH5WS9hzminkpRfoYRoGW+z+62Ez9t7KS683VHOCpUnozscOq6DIO0hhgssasTz6rdWvxBOPm49wZreIQY2e2anvoyFw4dsJaXq+hhnbm7nSe0VnjKHk4elF1dtdoJrsgb6c9N6LIzvmMWyBivf7P+CIStM=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAvAMAAAAAAAA=eF5txW1QkwUAB/BQCHQIeJEELhooy6CQhECcxw5FYHrEezoIJTAokJyCcqKbKw4ETwwCxXQ6sTbijqmZGy9BTJCY3hBJXvScQIASL46xgTAB6ctz99zt//y+/Bbk48NLS5PsBZO9eQrbBYrl7Aw3HcWuGV8UDFPsdi0ipI3ipLYBrYjibrP4Gj7FY0IvPYti/YBd/+gb3Eo173mLYrG5nX8QxfHTWRkti7jaOJZ5kOIYD6u1HQu4aIWzypHiL+XTO6XzOF/vGfDgNX6YNxHTb8Q9aAw+h+J1M5Hmn83hjqcdFyxn8dlTUv+wV/i2/ZbWc9O4z8otygIDfvIvca1Uj6dzAwetp/CEzUeO757EN9Q/XtylxbN9g9u/ncAPmtv/njaG98xXyrxH8T+ucKUWI7jefmN63TCe3fjLRMwQnhQgbOgdwPPWrGCw+nC/uvDgSg2ulnza2PsEb//whGikB3+0hnfBtRtftpZWsdiJ33Lqm1I8wMWqM2ZNarwwKvRS4D18T354SkUr7hGi6MxqwTUlHJqoCZdGTKaI/8SZF7fyt9bh73z/Dc9Cjt9NVZ2ouokPuRSW2FzHXQTchKNVeLD52YDaX/HUhFbpUAUeHhSbPiLCMyRxO+6Wkx8gpn3AiL1dhu+dyt0Y+SN+Wb3Z9e9CPF0X734sH3+iFnpVC3HFzrJoRQ6u+ipZ7J6Nlz09qdHxyEuJi0YNrKI0/B73oc2dFDztWa7AIREXMlXvbufiZ+t/+M0nFu86d2PTe5/jfleF/3UE491ai1T+NvIu4ofuM0/HtuCH+vIFHt7kPOIrp6ssSj3xLHqo0ykmeSax39WC+DBnPLQ47tUBx0l2iMlu5e0Bw3aT7PUm56SOX//YCl8eYYxethx3dq1gG41a2JC1mqPU4b0Sm8eccZyuFMga/sVH3p4tftOrZb8wuZz/vMP/H/zQKqfK9So8vef2kWeNeDTNsEpVg39930HNlOHJifTkqGs4nSXrG72El8/NetUW4zcCq32i8vCL/SvnSwV4TsNSRPth8uPEc9v7mZ0p5EbiRtfBY/X78Bl73ltx0fjgR0H3m4PxApee5gg2bh1jSIjchH9itdfg6IYrfCwFnPfJa4jlq4NaJLa4RL6rWmWmZUtNZpyR5p03voTpU9/JQ8fxnxiydUoNeQlxc+/PXRu6yO8QK8/PP3JvJW8irgnfLdLJyRXEe9ycjuqq8Re+N9tYl1+yn5u875xvPKcI338hLFOTi9u+dvBKy8TVic1ltUn4/xbjEfg=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAHRgAAAAAAAA=eF5d1nc01u0Dx3EjhdaTSuUJFSXtoUS+EppCaSgNJJIiIzN77733DCEiEV26ZG9lJD1pGJUmDVr8Ouf+3H/8+vN13tf1ua9z7nO4hSQ/7hksklMQn1dt27utnWYsZ9mGk0OS9ikwEn/1DRIsr9reTNo8dZk5a1leip68huWvx+/VyMtzENWR1rbXGgwtiIuwWb+inW77wrLExXa3w6tPklWjLBeit3xmOX00+lPbTXWy+iPL+ej+cGDJK9eEm6bknWL/HePuo1RO7Ly1+9x26qPEcsjdKR/Ngy4QfVgevQQ+PFXQ7r/Mi+QJ7kujf4K5lp8RlL/gSI6V16RX7DlD9bQFhDN52+lLeHGsrXK8whUSDuv81UsVbLfYdNsSVcKyPvpJ+OqQa17zOVfCk2DiFHbOgNbsUj429raN7oQZ97P/dk/aky1wLbom7H39M5fXkD0RSWS5Hl0cLin1e7SE04XonrLL3ZNhTGua9cyTa9toLGx+m0s6T8yVZMD30WtgjuwA8Q/VjiToNMsN6GHwopePz6ekO5J0WXfzoQ+mVGH0wPBAQRulcO8/egkcv7zIHlgOXRPuM1o4xh/nQhK3s7wLPQmev5EricZZkS7H9DNzgq7QkeLL7X5+bfQtvI/hmSqXH0pU/uqnYLdv1yz0VV2IqxPL39E94EPvK49prTzO/LhfvV9uvQ3NtQ29vcmgjc6tYjm+j//N24OxRBE9Bf0IvHM2/0ibpCs5gfPX0M/ABzOd7ried2a6r6nv0VKxowotE1aWB9voB9hB6duxkyviCLvLovfDm+TG1KcPmpHQTJbl0aPhj79WdD7x8WGW3U8L3/TWgU6dzHdYuLqNroHlL0acN9JMIAthTnRROF19l3jUF1MSD09HT4GvhthWa90KZO59+GnqUeNMWzboupfztNEK+OC9wYbLV5LINbgdne2Jxm2b1lYZkydwF/p/8OpAjUGf1aFM7V3t71YdLpT/NHX5+bGVVsOJu42+FXUnEU7CMh/6JLqQPYff0C47Io0+C30LbK694dSmlBDmgKFaxPI0N5r4+3JVdGMr3QsLzE//2SecSNTgJHRVeDRQZcxOyZJsgBPQ18NZR/nMLy0KZXrnMhs7zT3opkRRnq0ZrbSDbZcjFpo8CSQJ3oweB6fulw2eE2BD1sEr0dfAaytOHzTeEMR8+detL87Zkz6f/DzfPKiVfoDPn10WebEghhxezPIr9KPw1gPCmvY6ZkQQHkRfCO83DYsPX+7PlIv6NnxT96aVr2c6TTNqpbfg7ZbGXBw3wgnXEpZr0H+gp8+cnbVDxJiEwmXowfArk4DmDE535oxYyK1Dor404oHE63jlVqoG+8REzv3c5U9S4Tj0RPjQ3u/i/QeMCBcchv57GcsK1k5xzdKmzNCGiBUv1/jRe9wmTR3rWukjuCU/3tHnlB9Zv5HlOvSl8GHH5H0vXnuQSpyvQL8LbxYoi4rYrUfatPKKH/z0p1Leb8S0+VppA5za/tMz4LoNWXSSZRn0eXB/N9f7FupBInB+LXoY3C59d+BciTOpd69RrmwMpOkz9O2H+1toM/x558w1D16sJl/ga+hsbxH49MCQ04sEwWnofvDFFdZ77z0NIEvqpmrM6Ami9T+39Qm1ttCl8OuVQh/eDO4lknA1+mq4LUhobDLXk1yEa9HNYNOtUx3umQST8AzN9u0dwTST93p7TFYLjYXH5bUaVyoZEU84BZ3tN4uUIioZbxINZ6GzzVmurHLj3wDi/CrH2qwshLrN/7dqoVsL9YLfDqksebTSnpjA7ujWcK90eTn/K19yBXZAt4R3fdu4Yd+pQFJ0xWLwnUIo7T+4W2GncQslsMbTxODHO+yIP/wEPRwu/tFWP1RmRUbgEXS2PZYssCYvnIlbebNdh0QYLVI7rn1zTwsNgGPvhd35nuFD7OHr6C5wV074bGpkRRr+ut8If1rNkbPWzIAc51rxT9mscOp0wMhx6bIWehLOCwnxawkPJlawI/oV2L3i2dUjhmYkFvZAj4Zdufq7S4+YMvVzh8q5I8JpzhKpTIUZLbQFdhTgjyw+HkE45/1/nwYvFXl0TlUqhJyHCbohnH02n2eZnCITd3zvYMDVCDq7dZp50lAzzYTLVpx8uM0ummTBc9Fz4WcSE2pz7waTYng6ehl8LdlXTiVSj1FMuD5r4dlIann1idwEbf7z+4nlX7p7SzrKYog8bIKuAj8+UsjLWRZOpsGn0Hnh39zjUbKPdhHeL6ELV76OpCn/HYgSyGmmorCJW0SpqloM4YPj0BfAR7cu1vLQtSNb4CR0Bj6zLvlbH4cFEyIUuWJvaxQ9fWvC/rRHM02DX+ZIbzwSkkQuwWroVnCqUsHyBgs3Eg8fRk+E63n5RW7zODBPFWKkDG9F0+n+BWeztJvpO7jTS6/OzjeN9MMz0F/Dwpc0Ettu+5BxmAd9DC7Cvs5NzuCtsjGUb/TCpYJ9zdQQ7kzKa/s1kUKOwVPQteFbd64U3s6xJ+owJzrbIuGD/mOalkykFXdAn2gsdfF62zog1kxjYFtGXHF/Uiophn3QS+Bk98cXhj2dSSDsjB4Aq1mMNSpcM2Dodh5fT544+mux8cZFE020FB6q3WczTySZjMG8wqz+Bf7aUvNBpsWJfIX50NnnW0wW5gmkqJJ630M80/3iaJHcUt25r5voPXjqkc3OOyVTySO4BL0TzjKYljhlIIzkw6XoN2D9uZZc8oImf/4/xFWuMY2n0085R62730Td4UneYbI7MI4UwILo2bBNVOOGl74hxAueg+4Myx46cVdXwJGccBx0UDuaQM9dfdayL76JqsHbM7R0MvjDiSdshu4C193a8XHzsmByGr6EzvZv10ge3lk+xOhtVb1zbwIt53AKl/JsonqwzurAkvG2COIKV6HbwudTiqd1rwgjdnA1ugUsG/S76Ea0P7kqyzkw814iFaA57zbrNFFLWAY9FhZGD4Fv2GuIHzcKIjawCLoF3MzT4zCwKIjw+cpPxqYlURenHuXNsk2UAzYPIiOPll0lyT4sW6AnwZIB55o0eIJJBHwJPQaWln8sFtASTBrUijVl5iVTgXCrWTPFmyjbp6tHe9+uMyB9sBD6c3imScYrgSof0gjPR2dbcInD1iUtIUSjqkN9nWcy3acQ1vr+dyM9CPvL9c9TXWxJDsP7/+oF0xdr6ej5kp2wIjoDX4vU5DimFk7SpUf3iI0nU8N3+YGtjxppCizkOK7zTnIjKYet0MtgzezQ5jxuP/IS9kJ/Dudg//Xv+JDTsik0s27wfkRlI2X7MLmS+8bMlgzAeehD8N13IQvOtQaRSfgmOscEyxbGgp9GB6KIc39A7PecFHrgzCHJo3GN1BXuU/l4QafchdjDe9EdYM7wHY5OXsEkGVZDT4LZ+2INjmkRwql06MvdoHmWjXQF3Iv97/UsP0L/BfuusF3zz1tvsh7n36CzXYX7U/W/z4jVTqWK9HlQ3ZlGygdPj3fQHBazIh/PsSyD/h7Ofv3cu2XqWTIH5/egs63iJqGzQt6Q2AtMyepqT6UNnIItZ7c1Ujt4GvYd4Ifo7PNCAzMc10/XJv5wF7of/Lxp0u7SdW1mDp2lNEcxjRopqfBPzGmkM+GQiKdD0ot8iS7sjn4Gtj5jfoaLezcRhS+hC8NKLZK7zT+aMbPKDl9+4pZGZ47abY772UD54aKa2cc8DEPIElgIfRncx1Fsu67RnMyDBdEXwgIda8Ne+FgQPnGzf/O/pFE12QXWs7saKNvL0Pnhg+jT4Jmqkek3fHXJpBjLqug/4Xpr0do9fPrM+4DAOlf9dOrtWlTmdqOBsr0W+0sDWY5DF4E3yqpsEwowIPdw3gq9Al6E+0nF54/Oykyn6vftDPmiG2gMrH/SoO+D7WESDu9CZ/vjPmU5xUIbkgsfR2f7eejbSGcrF9IwndfDfEEGXSZm+PSwWQOthQ+8nFqRUWtMqmEx9Cq4u/tN84iQM8mHhdBz4XfYf6ObdavbK4N+cDuqkbi/gbJtrWI8ddVrG/Lir/4afpCvKt7704WEwO3oobCAc/Kqdzae5Nw3HxnRhgzq/+7ef/xSDVQfFjOOGz4koE/Y9kS/ABfKjMsPmnqT87APOtvLt5iP+2eHEI4vIiozZK7R5TMuXFs5s4Fyw2OXWPtzYUl0Qfj3lUEx55s+ZAW8Dn0ZPBpk16Co5kNSR4pOfc+6RutXC5juHqqnWbDpr+lF/Jx6TARcjR4FL6kStsz/6EEC4FJ0X1h5mYT/eE4kefHWQvfHm2vU68flVdFt9XQIzjutkevyxIxUwFbolXBZc3XiydnO5AFsjv4QlucL+x016kqSn4XFGZ7IpCZbVfU8s+ppBnwf+5mwMTrbc3gL3b6pu5C8v3o+LIv9yI6iru76THrZfFX8FZd6GgNH9f8SvzzmT3xhA3Q/eHhZvoVLggMphq+gl8AM9jfG6z7w48uigSZLO7KN6qksvK0lxbqoxJVIwG7oq2B1Z5EZXV9tiQYchn4QlsF9m5mTRyxssqjPnQAvfaV6ag9vRr8Ke6E7wZMj3VLld51JDByMHg/nDV5OLtU3I1WO8T1ar7Ko95Qf25curqct8Gcq21+gE0ZG4DB0tlWMO5IUxh1JJeyOzt6rwf7ptID19ySyqYTSqi3beOqpDrxAYL7UyasRxAOWRveBxeYoTPZQbyILz0ffDjt1zz/SKqRJmt5u41oYmU0fVmw/X/G0jj6ATd45ntzknETY7kbvhO98PTK352wIaYUfoLez72N/hdRAp+mU6/SqrGqM8u06ugZm78vCjug74IkNiuPmaaFkM2yNvgnevupxv267LeEM2fzYSfk63dLqHLY9qY5OhcWMXo7LnEkggn/1RfAG1YMtO0UCiGMwy79bWN0B/mgkfGRBtivZ2pz7387C6/Sd+zNpH+s6ysAtQTYPzp4II9rwZ3S2Z6vv15Z4GE72/nVfBW7D/VvTVjznXpJDy7fL/9etXkdL4U/4/KNwMPoR2K7ncsTIwVDCz8tyF/psuD2aQ6ti0zUykCXcVKqdQwXefJqRu62ODsPr3irKZXfoMJ/h+ehjcPcmEzuz6Z6EO5tlQXROeMJjdrnFr1TCiErmP2nOoWOWnjwV/9RRRVijc41E3GMfwvZX9N3wpey9ypn+3sQB5rVidUdYTVNFQuZjCMmLkAqbkMmlg1yLJ9pe19J8OGeY9f4C+Dl6Iewiu+6/CT9LUgT3o9+Ev3/2mPTKdiJMepT9EdtcuuP71kCXB7VUDhaKTm4V17UmV+BD6Gw3up4U7hj3IwqwAvpO+OSKssALxR5E44hMfttgLm16opx+JLuWHoUrhM5PFJXvJx5wHzrbxf19vZFSbsQT7kV3g9n7J6Y8ebFfI48eqtAok3Cppadg9/e1H/yehZNO2A69A9bOGvn687ML6YYd0Hvg6xzitxXKgohyY/JduZA8evnOaHXRhVq6B5aoy59xca0powobobN9sqCpJbLXjfjBLuhBsDju/x7XMJn2+8/7mq5dV95ZS9m2zBn82DbmQWZ/Z9kGfS68JbfqgFOOBdkCe6FLwYuwL7ySZ8lDwxs09alWcNfCWioC77qz3zFBIIxZBaehs704vWj/QVU9UiPBsiN6HbwtdSx4ZNCaiG5zLtbKvEEDOyeWyHLWUjE45hn/01nah5kyaZbPot+Bp0Wphj/casiY4nwmujlccXyTRXOCC7G4Gl59USCfqt0oueDRU0PZnot9B1gV3RH+EMnaj4ZPoMfANdiXu5fVYe+QT2W9TQvb82soAz9CL4WN0AthDdu6x9/0TjFubKO7w57/WK4KtvRkkl+6lESW59PztdZ0enQNTYJnXd20QWQ4jVyED6EbwSt5qsXnlikxnLAk+q8X2MuUSREJXs98Ei1WHRUooM8kOR7PvFxDP8P8Kaz+E36D/gs+ccVr8cxWV8K1hOUP6Nzw0la1TmM/NxKplr1j0d4CejrAe2T27hoaBW+NO97wwcudaYd90FvhZoNd0w9vPUM64CB0tpVw37Fh25R3BgXU7IfPadF1f74/2L0jYoujvBu5Dcejl8IC1zrFSr/oMvGwJ3oc3BUxx7Cv05351fbcIDeugD7cEePbOaWGTsDpy+9KcBvIMBztLHeh/0YPEeJrSeS0YXjRe9CnwTq479jt3XCpvYDKeGSV+Dypps5wnNN/rsJXEhl9WAz9LGzqLK8S9P0iEwerocfCi6ulFAXTw0jGG40LXB8LqOPA/L0Xq6rpNbjGUN2okcQxWbArOttcMoVFtw/IM0eHWf6NzrZe4KDi59IQRs9OiUNT7CYNCzkZ3xZTTQ3g4Y1m2j0eZ8ku2BJ9N2xSU6U6+MmOOQa7obP9AO97wi8VlaP557x8yqfNptW0F57CWWAgnuNNnsOm6C/hZXvrkj4oGxEbWATdDu7BPteTQyMcVn/uX2w5MKhZTdmOOJN/Unu1J/nSy/Jp9FG4rufQ2y1XDzHjsB76D7iVf3zn71cuzO3xxs0D2TfpVtc7KV/WVtNiOBz7jfBO9AaYd6pIkFihI7kJr0ZnW0D9qYH3zEMkSlDZqu7pTboyJuMb95Q/3z+c5rOzy1MogqTDEuhsZ9leCNnT60Lk4SfRrK4A++F9QQm9so9/3qQ71HNTXd9W0WC4e/3GAyPxlxhd+F/0s/DuIpGB4btXmIWJLKegC8IxDwLH+qttibNk2P5d6wtpxbhXyLbKKuoCh/aesDmQEMWkwt3ombD9/TM1uVeCmQz4IXo6vAbvaypW0bp5tpBapuo5f4isomx7YP8dHIA+BKsvXbe2VN+H0YJF0E/DWhzPU4Y3+DGG/Ubc9s6F1Ler/ZG0YxVlO/rJNz7p95HMOlgXfTWcF3W9/O1za6YTfoHeAce2CN2U8bAna62OJRgVFVLxao0bQYf/3IeX79XPNb+aweyEpdAV4N/xi9pcrbwZcfhf9OVwMvYF+BSlTwwV0o7CTvdXK6voTDgJ72/lZTkZvRG+6KGtrtlvz1TDiehVsM6sMfejsZkkNeg052PuIpqxcvLW+OwqGgdr7n1/x6vYhzTBtej1cOSXRreO49bkYjDL8pKsznbCotjs9CsZpPvGM3OlrUU0lGOT8fuB+7QDzlIzyNXPNyB34avopfCY1vGQpWk6pAR2Qr8N++B+bYvuQJ5hEVXpObf85Z37tBruHd4dU7k5hNGAPz9i9YPwvfOxR7tuOBP1v7oaHOCoMyXuWSR5SERr+zyKqJTwPonS5Pu0HSYJak8jNoaRHRUs+6Mz8HLv/PUyJ7TIVPgUOi+8wKZ0ivHWBKKQW/WElBRR34MRWsqWf+7Dgn2pG2ZxqzCrYDt0cfjk4nT56d0+ZCyH5RPoP+GtknMEUxPSyKbY8yPxb4qom9uLgPZ99+kWWBZ9I+yOvh4O5zvx0KonkIzGsHwK/TPMfn/tR+NQu6m3aMw8OVHDDfdpHTzq/s+7L/lnSSUciX4fflT8TTs9IYx4whfRveGJu+EJeVIZZFqBiU+t9C16YDDgp8eU+5QHPuNY3uNZGsdwwLvROeHYtV9k2ws9yCL2eXRhWKPm6Ltc7Ujy6vJlZ4ELt2hp8bNHaT2VlG12H/6rsy14RzvM84Q5WWnK8hC6JNzT9oxPcVMyKTyQsD7a4xbd+O6RxfeKSpoLS/3sG+bZ70Juso1eAGd+tHTdftCUFMHS6CWwuEl94bEGT2aityl17+1b1GTBgbzU0Er6Cx7XfLy4NzuUCD9h2RddFOZtfJYtcNSOrIHD0dfBX5syRJV+H2UmDH/M/z50i9oo0iEVg0rKcYHlfXj/NjgRne1yg6Eb/jX2zFY4BV0a/oH3xS83rljKXUwfLMklJw9U0ih4bsnD6CKxP38fYQv0FfBh1cVf1Pf6MGxbo0vAfeey+TSeOZHDfBZhazcX0wXNLs4+opVUHT7E90tivqEOowYLoR+EXWUfeJXvD2R04TXoenDXlo7PBYKRjP57G0MZvWJ63VpTqWSU0rOwBvZPw1noWrCMznmdgV3uTAD8EN0f3mN5OGX9PxnM0f1PPSYdi+mOwPGNDj2UHoRFJ1cvMqs2JwSORL8Lv9kvZHrphR1J2MdyRQCrx8MxF+bMEb8ZyHAubHp06kYx5ZO0F1iZQyk3HIh9UVgUfTG8dk+vEd/9WPJjActT0L/CSVLfzeTOXiOyg6WSZU+LqUvV5OhDB0rl4dBbIhGNZdFkN+yIznbehJV2gKUXKYc70ctgGbzvf9DFjfY=AQAAAAAAAAAAgAAAAAAAAAAtAAAAAAAAIgAAAAAAAAA=eF7twQENAAAAwqD3T20ON6AAAAAAAAAAAAAAAD4MLQAAAQ==AQAAAAAAAAAAgAAAAAAAAEALAAAAAAAAJgAAAAAAAAA=eF7jur64wJbrsj3XKD1Kj9Kj9Cg9So/So/QoPUqP0gRpAGoQpIU=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAmgEAAAAAAAA=eF7t0Nsrg2EcB/BXFJJDcrFEkSuiJDmU1XIhRBGFOeQ01Ig2RCNvTI4XDnOW1mIbyYVTylpTckq8ObQLxWzmghtk5WJKz/f3V6i9N5++v+d5ep/n25p+LlWl2swc+/jfQ6iNNkFRGinkkxHlZEcj5F8VlB095JUa2i7HoUQ5DRNLF6AxXQura1ZN9Jt1WCDfgmE+22TcHhRNHMC2aRuTb4h7h3VqWwaTMzihYuQL+x7lJ1B+5GBzjtPrYW/FJ84t1NhZtjRJXdjXOvuI9eDcF2SL1xhMiXmCfskzODcZYUXeLdpA7hLukIP6Fpkfi906UxV6FKhH7o16DAmlXuZjyWIxac8lO0tIdy0510z3cLZTtlKvUcoBKJGNkDkTNK/TwGFf6je7ZQXeeevgWcwa3Bw3wkyNAHfiH2iuFtj7ebfhHr1ohu2YL8v28c5Byy2bc22Ts9gnrnzGekL9DcuSoTIncuDSFbIrj3qRFKpwPivymu41NIjsH36KXBCA3vjv22PkJPMoU3vRP0Xv5n76PHr0+H/9AyKjae8=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAEQkAAAAAAAA=eF49lXk8lGsbxx+Z6LSISEQMEalTI2tyMS1KSWnlbdHoMOhFqyU1eiyJsgxzGlIYomLU0a5y1ySl06pyIqkUKm1oUaTe93zmuuO/7+f63tdcz738RPRd4JxLveiqPy7r5r2rAfxNSZ6phbxWV0b5xyXCEP/eS76d/dzKrFavKuqm7Ei6p/+IHPimjzLDnllmydPNUuH/8tel55wNrOBQ5pMxEtMHlxrU++t+/np3Wr4OpjyLKKySnKQjNfi/+p9MvFdyM1uT8nIyszvy0H3zEf3cUDVq7sXj2pRXksbAaT/+6zySsjexN9KMqriqS3k1OT12Uc0OTz3KQUQkurYk94E+MhtCsnqmlb71NkBWbCbxoYc/z2o0ROZHkS3DdOrjVhjR9TGkIzt/WUyDMbIsgeQMtmtRL+XSehzhl6z02iU0oetjyJyMNXePmJhSP56o5pks9H5MmZ9EOg/424skY5EV8eR2+JvZnHlm/f3k3x8X/vOTMjeKuJ1+f+jRcXPqJ5CT0tHVX9eOQ2ZjSPA/TITuCAta304mbX2tZXCJMhNP7libFrYHW9J6OIlvi63yHzEeWZBMnhofCwytoMyIiNegoNMvVlpRFpB4Rv1iQR/lf+c9UrfQY2fOBGQ2gkTmPJEG2E1E5otIWN8aVb3blGU7CcfplMd6vzFKZh1bCH+IZadVdWcl9uMA36Vat3TwAWdczyFHunvzX50YRLD/IJJoWJOkbfQdfVaDSLepSpk1KoCsQpreOa3+1taKdfcp5OSXoU+OqQ7Hus8MYtVxIOTb2k9Yr3UnJ49GpjzZoIP9gxaTpycHpMUY0t8TriD3bXP/t/6KJnKZH3FWN7mfazQAWUVIiiYH5ks01JCLQ4hd9IFRLjv0kJlNJKLFm6Q+0FIy+zCcqMnHT22XmSL/iCYpi23u9qiPRd4vItFDpRFjV9N5z8SSz+tPffI+a6Bk/o0EIkk4MuHV2BFKZg13kc+lA8VkERf9K8mE312gs8/tDX6fSho50ZUVv7VyJPopaaTIc7PWs4Cvyv0VeIvJ61AN6Y98W+XvK9gMslbFr5LVtlSyLDWDeMpvLwqZb4XzLRCT5q81c+OefVau507OIFUpX8TmOuhz92cSjbkr7L0eY7/mf+t1Na6RfaYzkCMySMzEv7eUL3fE7/GWkMKw6FVtQlesB2aSlJ47z6R3eMp680EJaYApGqkC3B9ZcAaxaomEGdbGOE9JMonyVhxnvQ1wfo6YLGnkfayZi+v5zrtJW2Mvb+18M/RFu4ix66PQSfXW9L7sJlMsH2rcIO54XqpRRODyodpOstt5nDIfw/n3Ow2v6Ne97c+7UPOu6U4FDPoCc8LIJtWuSg/H+8rwyN8OaRyzyF7q/04kgX5mD4K+4XkwHysZaZa2q0V5v39MbulRF6vKR9aER9rquxbMfkHv91DgpSd+sHreQtfzoK+x70lczW/oa86AMTGj0zVPfMF+rAkw7JNu3UHn+v2O4vqzpmo0T73coEjNdpEoEM+f4U4ChQ9n8/N5DdR3B69RBXubLGi+Bi2H8kyRUG5RQ+vTge+Qclmc10bnF0CKfpvfOXeat7z5UMr9FBJn0Iu+wAOYdE9zrY3NdL0Q+i7xvuwIovnb8B/43HG7acHx99R3A8Vf11Vbeh5RPwzCklVsPyfSPE4KBmFl1A3PMbq4/0k+ECapj7t0zhTPk4mA0WuMRPUHjdFPCYaorxbjrZuGYF3mC4pbt7fOqzOkfjRMLH3LbllD87o1HNbdWij2nKaK9dIAqF275Ejh+2H0PceCUJyj9umtKforRDC7o8HZ+o4+1vnBUDpkmJraNit6vxJAWpxn5BZJ81uThe0jExsKI17i961YD+NePHV5XmKDvmIPZP9h2TBHhea5Dwu6ZMWIgcld6O/ZAppXPPbLDX+jvyeGpke9kvpkmu8vE6GCc1gseszBfjaR8CM1U/VdqSX9Xgk02Y0cVqtJ833LHuhc5yNPCcL3xRyIAa/OU13LhuN7Z1gpzIpd6jJUinnPcsUgshLqfTtjgnVbEWxql93bL9Gi8++DsIrz8UJ9zHvWXgJH/3CxXG6MdTY8AcYcMvTKDXSi+5kHiRs9rlbk/I5++15QT55cYpSL+ch83AlLcvZqT+nBfGBkMijMYn2a9CejH5ADhoPMt4IBzdPyXRDiJG87p6ZF+xeCunBs91IPHvpluWB8sXXoXQ4P/WEpMHjJ4nH1E8fR8yqCcq3KU9sHWaNvngcXuYeW7XMYg/1mpIPj6Vep3WU079lD0Np3+YtXNfqMej703TTs1tM0xP4D0mBnzbfyeh0L2v8wRKy/1lwZM0XpK9QKYZ2Nqb7FrklKnx+eAfyu+mbSSd8LewRedvqbyh1ssP/JQnCMdDN6Y4N5x/SJYe7mr8zZKA96vnLIq2+uHdiBvqKlEBRmn9q3ruxQvle+fiaEucf6zwycgj6/DKouJAjOFNli/8p8uLvp2LO/2h1w/tw0qI1/OzqpvIe+xzLwLVgsKfaxQ3/JQShXaHFannJwnq2ZYOYrP7796CzsX1sGnOzuxRcG2yt9PrcI3oWnhk6U4X3kn8kEPb8s8e5wL3p/ysDnaFf20/Pos+X5IDu7eWnjKg3svzMdTILN7G1u2aMvk0PIc5tFX4Ic0G8vgPtNvNS31+n/02sSqLhcAndT6H1jS8H3qmByq44jzlNVANH6VTeYREB/ngQEqzdmPQ2wJb/6l1Vd3512EX3GUQYDcnw91bjT0XfPALPd5XHSK3h+DL8EhC4zeQ8Dpip9RUoRZBc/yR1ejP3Y03shx96xa8anyTi/uBiSGnWt9w92UvrspQzYMKetd986I3wvy5Khb9qC5X+K8TyYDQdhvsXdoxfKqD9xP5T1DC9Zn0//Hwr2gOKVs2+ox0/M5/Ji8C1ic7TnT1P6jJsMNCO8HoRH47yKZxlQN3V+3o0/6f7wCuDDT/8d219T//AeKI/T/i7TMce6Awtcg+pXRa4T6P7nQvX5Kuvbsc7o6xTAqTXybXur8H0x0nRg3639fkFzMfoCGXhZeyY9GgVKn5VlQI/HtxjOc7qfDxPB50Zt9qgLLsjvP5L/A9D2H+Y=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAAigUAAAAAAAA=eF6V1ns81Xccx/EjTSzRlpzUKmsRhSnkOL+Oa7lzuiHZykq1FCG62MOZtomlhy6PKUynMhVGwnI5P3GUirJjHXRyOVo5oqXhkOOUy/44P5/zOJ/t8eix33/P/84fr+/7c2i0//5inmRIr8VlVE15Z1B98MET98HRhqMfCwM6wSPhrTnHC/vAB4YD6d+uloFnu3VeeTlPrXrKv3emBOZkzwDPHZgjtrHXBX9d+t1DrnQOOKu27GFBwzyw/uwqPR3zRWDeLUZnldYScL32ow2tDkbg+08TVhSUm4AnrU++1Y42A3OGwhO6GJbge3XWecItq8BlkcKy0nRr8F8ml9wj3q0Gc7cF8sVxduBxt8p17YZrlL+Xea7CWWIPZvpce/ymyxF855u2/JZdzmCNYiePPJkLeM/dmrag9HXgpRfUvR95uoG3O4wzBmZ6gI1yDz/L7PAEF03UGfAqvcH+1zfZmeb7gn2komm7/NaD+yKSfVhfbAD7ybk5yaEbwZE3rHxZ8ZvA87ebx9hf2Ax2rNjGiq3xAwcvdElv6/MH03NHrN0XbwGf4jpuzdsSCMaffZVqj3sCVHsMWaTaozbqkYZ6lLiq9shFPTb3q/bIRj0eQT0KdFV7TEU95qMei1CPPajHw6hHPuqxGPXYhXpMQz2+QT3qoB6tUI881KMa6jHkPT0Gox6N/2ePXqjHV6jHzajHCNSjPurR4T09GqAeT1M93p2f4jzz/DhJQ5/t1rCkBzvC7Kfs0aywREfUvuz5IOkgUO11R9puWdTFUnDPaYXTOO6eOo2vSGagas+/TnNyfzHZBK6mKexaollvu6CPnI56p+t306N3d4MN5ipsfMdiTvGiOiI1TPU9FI5p+iZ9LwX7U5aO7j20VNxGNA6pvhdpAz0uM2IMnErZf/iRBbtrkOhB76kmR3TkQ9Z08M+ULeV7JvmCG2Qdem8nbXwZPPZMcBBlHbOdfdkhQ6QcvcfCqAkLzfKPwCmU1XNiWF0nm0kf9F6nlVltfeKrD+4vVTjjYKOnz0WNSg56z+L9Ah59/wLwVcpNRv0T2sOjZAt67/QKoV1toiF4oFzhS3ndKaaOMoKL9mCWi5FzVOZn4NfOCnvl956JtJUR5WgvKsISm/4eMgZnUx4rNretvNVBVKE90VVzy9BJWQ4epSncaLperVW7iZCjvfmlJO6DrFALcDLlDtejekYNYjIW7ZH6sZeZvLUrwePxCgsSx9PG2yVEDdqrJbOEk8tirMCGlAVyTxunhT3Eb2jPOPLVT2Pv2YBjKZeviq4N7r9M9KK9i73WwTvLYIBjKPt/KQ55S8jITLSHM451PvF+yARPxCvcwuceDmJLyVG0l+mxX9n/wGGBz1C2uTDGiSzqJXXRnt4uqxZqmir3tJLy7eculzeFyEkbtLdHJ9fzurOcwAcoa7E1XhWvGCL5aI8dlw+03jZT7rEd5fgF3nPr8xJIdbTX4V2Wk0n31oJDKX+aUZATJ+4kd6M9v7lQXrY4whVcMmXvAJnfgQES773oHN0jzNT9X2bEP3t8cLyF3IbuwZsKryx/qdKDlAU+ibkVJg9I/P/lRfZ5dvUDL3Av5dNa++hZZj8RJeieDE533ftjsQ94hLLF0p1XRtKHyY3o3nzulxmfmssGm1Mu3WDAFDInSG90j1oL/lj7TKR0O+Urkobji6/yidfoXp1wHPvz0HOlk6dsbldz2XyMCED3jEmIPI4OK01QvsmpO1UUV0tEoXs3bMxitsxS3rtByly9M9/Wb5cQBugeFjYZBR+yUN7D65Qtk0T7spu7SXwvQ2QFbm7+ynu5g7Jlu4lklFZO4HvqsDfcZWVCANiZcqjwbO6gxjChj+7tmndaGz8hlWZQPtK8Ro8fNEJO3eN/ACBq+SE=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAXhMAAAAAAAA=eF41mHc81usfh42SEZEkZWdkJqvn67ltWdmKzOxRNE5oKDsVRYgWKTmSSrQ8D598tZA6JZWUlCJJGRGK4nd+z32fP6/X9f91vz833XpCIDzBDcWNWVhE3P5l4jm9tHfloYXU3DeytUd2VDPPtT1uq/a2Ru3rtebYRAvTohl5ulKmgpRglZl8gq8uyDtHD0UEmqPCjedkZIYU6KMP7v5OihCkRMTrkFO6DQhu+7uLJ8ccsQT4EgKSNOl+AYmQi7x9jLVjA5PmJsEwumPquL+KLHS7aIm/OahHH41slmHXfGUkLeceusEdDiVMnhbDFh3gXaMy0drKoDf0q8+oaEyzzooZS90+EwxbtqdPKfpag16nmdULSRPapLpx9EEUP7uNR8t160o3+D1pbrqdZy66dtlx19NKc/psXY65nN4ky1b1KrNAiUKLJuNVnxjbokzj/JU/XKxoweFcu5loYYov3c+DVl4NOgufz5euUkONGooHdEet6fP7epIqXBZQ1tPngnpcPOGwS2qRvI0v0q2dyArOtaOH9nnc2dGhSr1LCzqW2+wPpsMVJqKrnNHE13z/jasc6Jj3pz9JtyhRR9+f7KiR2gz2EsWjeqKOcPgqw/zPEyd68KLfk0pRWTZjvfgyMQiHgFdBE45zHeH0y2PfDt10ob/sLK5VUVdhM1YKnWix9IJ32XtL8idWQfvbC0XA40YPrrPs+ioowU7Vn/M6RGIeMtEvNV/Qqgr5nxuTuZ3d6XzFPYeED8+ybAX1o8aLlyKLx480jxfroq7yS+qWp9bRUWYXV+l081EaJyIDklLM4N4XNPt7oREExFP1m3vX0yORuW0iTyXYzU1WW/R/e4MlqyglpxeBQ8FDn1AtT9oiMI87lV+a7ZqfPqC7UhLUTXLGGZsn6hiTTjNSsRvoJXt2Vx3JbGTt2hd2UzB9oq7qxqKZn4KO6EnwibAddV70VkbTh4YgHar7sopOuoEBEt2evl63xxrNGAiJ+nD50KOWsuIFX3SoxoHFlj1BbnDkft27f7pM0Pz0eP5aS1+6rcI30MpagzqjLLxvHfKCmM5jhyJuOyORZCmR3fv9aCn19h/ZQfpUX5+H6pzHQXD3Y9PfxRM26DPdHpf0wJ9+uPKSzbb3ulSwDXOOdY4JuiNf7B0v0clMm5fB+5Y7gD58i62X+JiXEjXubpv+ZIw2JEUd2mKvh6rG3wTyng2gQ96lcX8AecrTIGPYPcMM+OW0YjUyrVCUBCNRzTiQjsnJ6a4s0aHuV2vPngldh5y7Tz5u3auB5FKezDd/HUivmk626F+2lDJcsP1+XvdmKDz6QyDGSx4xzowpo5ggOqr8RsNibzGqu9D6s429KrrSsqaoZfWXOqVwd/v5IsH0FG/6ir8bfzLaRJPk+vujkd1gnVNMgx3ib2KuLikLpnXPbywZt6Kol4/bfss6u4LIc+eQe71uKDX52KNB4xBa/ftf/SdfWVCdciFXNK95gpZsUsSFp4uA52/+wa7nIfTa8KRDTc2DLBZX4YbwCB+kCPeW7C90hR9XS30CIkLpXul7FXym5uzFoUI1munqIHymdkymSAqWdvrmBk6H0h+PLZL8FbaUbdYQY5ufOVPH9op9X7eTgqHSy8ceHw6jwyYOVq0WUmefv15T/G17GCht+if9Hzsm0lCOup8hHU7bj1AqQts1qJ/nx+6Y1vlC/kI9mdXcIsAXpViRWhFO9x6QfsY/xsNmyG84suQBD4ymT4pX8tvB6N3w+kLDCHpf8PebN84bsS0Cywy3MGXAU8BBqmp0LZLsWnuhpiGCPiP7p99xI5P6pZ6hdH7+ZriJ+wjmApacPtYSPp2qzNtsX8YswH2Es664jycJHx23Pul62waW4j4Ci/RxMWEVmNWJ7DcDPtxHiCB95CEcYMQ9rv/RFQ3gPqI4V9zH14Q9Xt0qKjPyQQW4j+iFFe7jQcLKiVJDOlc8UBjuIzpE+uhBWEF1mBaq0kCncB+hnvRxA2FFBYWb03vcQQT3ERxIH0cnMOtH268syXcCQdxHiNPEfXwshvmcdphCrYEp2oP7CA5s3EcnwqEFNuvzBRnIAPcRjpA+LiA8Nbtz72CNFXLAfURqVbiP/ITlvz999cVlIWzAfUQdpI9yhDXavCIHDZ3gDe4jaiB9vEL4R+fP0VeL1oEp7iOaIn2cQ3hv2fWViXbe4ID7CE9IHxcTLh+tz9sbIws07iPKIn3cRnjLGYWIX7VLgIH7iOxJHz/XYN68KUxu925L+IP7yOyYwH2UNcXsaDOp4LfMHS7jPoIH6aMt4ZbUJMk09fXAg/sIU6SPrG2YSxWruC8b2cAu3Eeo3Y/7OJ9w341HipcbRGEr7iO4J+E+Tr/B/KJoceXAOUNowH0Engbcx1DC7UvVEiyCt0OKLKePdbGkj3UKmCfvHyi93csAN9xHGCF9nEnEbOEvfnei3QJmZDl9BFvSx0LCL6wM5vZKuoIB7iN8TMZ9vPses9SYy/KZCFd0HvcRUkgfHQi3XBLv4+HxRZlPOH1kjpI+ljzCXHf//qkbN61BF/cRshtxH6u+Ya6tj3Md5/VF83Af4S/Sx7I2zKj055ZzMa5QKsPpI/pdivvoRrigsz8z3MIYqeA+optVuI81dZh5crW0K5V2gQruI5IlfbxbhDkv1SBt8/sgqMd9RAWkj+qEs74lyGUvCwJH3EewJX3MjMRc+OB13nZ/K2jEfUSXN+M+aophNtN60hYjEwYSBzh9RNtIH31wL1E2V8vZMK2/UCruI3wmfXzFj9lNvieRdT8AJfzMmBgU0WXn/sb7sZ7TRwvwfej+OSRICy0wmh2lLzkiy6azkwezRuonb/GcCDaeZexWEj4j/VAVBLCH7lvYzyPslpee2OluBBnmt7O+e/GzY91xXws5fTWEKcZw/Wbp1fBetChA+J0lCk4Sn462k6Id5uQePDcxwxjhuX5k1S8z6MIe9idi3044QxZ0fhVbwdYfjRLvXguxb/jjPstw+rwKer+VNtePWUDBRoE+g93maIszI95ktSpteHLFzM2WOZS6T9MF600b/vPgSfwRwqsdmysypfQR14miP3s3ljHW8eO+4z28CoI7tdde9zMFaUsHiS0nNNDWW/rz9vfq0CNrTqfFdfczygYLS686hIIc9nCM+IWEJS+OTJ/K8kC08JCXmZ0oxUfehwnO+yCCjsYwPir7MyC7g2vbE/cVELbENfylpiG9/u7pwLH5k6yc/KjJas1QOIY9iiE+mbDYigJxue8+KNynntmnMZ+yJvsbvzfy6NMCTxf3XRToZx/YaHLHBDSTJlLcYpj06SvuLVlv5rNbHha32ZX7gQH2KJL4ZYSTj8rFHlB2QgJl76N3jH5nqLzF71ME530yRIV3Prile5nBN9fcvmkhA/CNp+74+pnRtjt7pbu/fWdlOrhm5svqwAj2yJv414QVtb6vcelDIPrU68EXq2XsRvK+pXDet/G6dAMf89IL9pC5eBtz/AiFdC49bv4wa0HbF9WrrBQWo3JvHRJ5MPWImYU9zCU+grB7jcJ0WoALtHhveOhdwcUWJe8jfi8Z0PpYa1hB0xpy6qrUX140QU9qOl3yzq2hy6Of/7qgtIjK8J+v9TjdFfKxhx/EbyXsmGw6L9pPFeT797tOt35kzZD74wfnfZWCoesrvlhF28CtazJySvuckbyNAPdaC1t6KiHpq7GDOmW1+sNlyUvecBt7eGSNfTbhhqDkV8c07FBK5/ixc5ISbDZ5n+M477MDiH34MTt6zRnEQqL8XwyvR3q75aI/fLCne0fSsm4+06Q2zTmZNmMT9p+Hgl3YDwZjfrDm1iXdhbYo4Z/y4+07pagq8r5TnPfdFF5dOJz1w/rfd6XVP+AjHzd6uSTZWjvJkX4TtuDag0NjLEhQ4NWO3wyG2EMj8QKEbbpj3b7/u1+e5R+i3NM0KTGyD0w5+8AYpbVzf7t2yxkcJ5J+NPz7Xq7N/GWeJuJCc6Eo7sQDauz27g7XAYtAcMMeJRK/kHBl3nktfxMD2N+X2jHWJk69JfvCjbMvjFFgdEhT0LJ1cD67NdiB6993XPag2XJfV7plR+dZRV5F9vVtPBJR79f+55GiHPaJhF0PC7H00p1hGWK+l3/zk/GU7JM2zj5RQM+vVfQ6KzrB7EUny6J3WrC8Qk7ofbkb7fabmRU6KMzu0bbKsXy5CP5gjySIryGc0m8vxGPoCffzOj9cKhxm3CD7Rp+zbyRRWu3B7MZqB7jX3LfS5J0gGtt9wrXkhzvN95aerDk1wPCIOnH82fHVcB97kNuDvSvhigZpRskTH9jhtce3UraPsYvsI3xPKsIZk92Bas3G0Bp73+74P8JQtq52q6fpetpD7Ey11l9TLCuhp+5MfUtowB7dJX4LYZ82NJZ3XgJV7fOadZ/XwLpB9tUNzr5SRxZ7ek57RhgBl+ugWVM8E/xOrjjYf9CD3rT4ZbNOpwJ7+VxeG7MvlsCLPQomvtoF8zif0fWOiQUowSzOSThuihFF9pk2Z69potn2Qr/ri0xA//GE2Jq12vBLVaDc9JknHSqVG9ETIMbODVxjnFqqAgzs0Sfiux5hbmqM9TG1soLsmNzGWjF5ti65f/U4+66PWd2RNHFvyh6uqEcYFnsixCeFrlgv8aKpn80alUHK1PEb924tKR+qq8EelIhfSzj/6/L4ripHaM3x8JJ/N8jaRfbhKc4+NIaSEdBWk7ODjtx/LkpM2qFamS6Dz37e9F1m0yrHem2qyW3Tm49qhvAGeygkPpVw83GvXwuq7MDjefGBq2Nz2CyyL6c5+9IQdgms8LNbYgVlan+VzFezRO9jUtMFS3zonfQk1RKoRnmkVj+JFXKAEuxhhHjf/1ht6f7KbiN4d+B5aZ+4OJsi93s0Z59qg23pEQWFZht44b8bVAtsUNw9vf0ne31p6p7nr+YGHWohL21xXDkE2rEHB+ITCPeo7pmMWKWJErZtOz0Us4StSu5/P87eNYXir/518b3uILuxUnLOm7WotWS2bq+yP934ZKGxo60BxSNZIwXvvEEGe7hFPMsfMxfxtnOY9ihtgOVG/g9qOPt4Neyd7Y1P6XKBeQr7Cls0GcjBWJRRGLKRFtrcbT52ZDlVua+Xb+8HJ1iEPeQQf0Ees2Bcmp1jvQeoyt7W+D2Xi51B9vU1zr5+VNeSujyBXW4DX363x92/tRxV3OG6OuwSQOe+HbOtvipGhW+qkn5A80Ef9tBC/AHCUT3im6gSJ4j89JT6mCPMbiH73Jqz15eDlXDc+NVWK1Dd2MMO0jFBXtG5UQVDAbTMyrdV9FN16vTQlV+aEwyQxh5iiC/0x9ztXqC6xsMZbfOOWKR+s5WlRPb9N86+1wfGga33BpEBEj7uXr5xExNZeTSYG2QG0srf3Af3Rq6gXpoaze2pHGSKYg+exB8rwPxoTO9wMu0AzSPbZ9bLTDIQ+T9ZwbkXlsFV2YcqRurLURTDZrPiV2V0UqH5WL1KEK3yMe24uYc49XTs1dy7AwthO/ZQRbwgYctOXq/8PGfYkKyoa3CLzTpL7otczn0hCtoZpj31tYLoZbhZw1CmMMr01NJTuhNE92065r7qzB/G7V8zXfs0Zpgt2MNJ4tUJ80xjL8U1kNaiOMMYCMP3yRvOffKaWbc4RbJRVRfxt1sr5ftQKPjtJqandzC9JNx82dJsdarnAbcs1aGHRl9yPNgRn0zY7d3E+I3gCKTelJJHL5/LniD3jRLn3qHgbY3/gh3y86Di4ZXMP/edUbnsqWmb0WDaift39s4JM8q6KzAj5bIrXMX+3zsP+6lmzAo7v36Xy1wBC+nceSmyCygjch/NcO4jC3B0inx1Pp0C6lnTYPNxc7Sjd277p4MhdNEUKlF8qUsd5fTLD1liDyeIf96KeYDTvxlml8Tl5zbSKtQS8v/Uwrmv5qCYQpFg13lL0fjttdmJXywgqDxdRk42lLbZV5/wVoLBvuG0+3qDZCSawh5FEp9HOC7j3nrJDg8wfibGHghXpFaT+0yEc6+Zo517R5tfr7MGpbDZSQ9DS9jldGa4uzqUnuzQCNxzW599xZeu0O60AAnskT/xeaGYC4nfF7bv5sDwAopB7jsjzr0ngOLZ31+8CLWHddwhvrzvVwLv38lCklZh9DeZrPJYT0V2dUN8Zq+IGYRgjy6WYl/EhXl3X57MdOE2EF059My2eIL1jtyHFZz7UA1l5Sgc9lYOghmB5NilCoPMEcHO85dehNExgt5j2Z++MuQcH720HfBDFoIcXycuhH0wH+ag6NixC1mhYPV098lYky8sfnJfynLuTQ34urjgy1o+B1jAr3q+7JAq8mh7pXUgOJyu8Ig8atu3jEr8fPqvTDV/EMEeThIfNg9zomeg/aNIEVjH+EF7Dw+z7pD7tJ9zn84wizfure3NtEfLWS377/QbwZoBPvWjI+H0zbIOvtDOVewO8//34U+dLvZoO/E7ajDXc/rgi1LyFxo6H5eitt3D920f576l0Iq+PPUab0tULVGqLuoyDzloNX2piI+gjw4/HbgwwEeteVDmfPqRLnKQ5HgwJ75ZHLPsnHWVD99uAq0JJLR92Jy6+hbfx7Gce5kJ5zw8XjEsRdH/AA0JTt0=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAA4gEAAAAAAAA=eF7t0FtLkwEABuDlhczBgs+aS2sZ1FWBOE0sEItUxGF0FvkYTBIvYqODkLQ0BtFAImaSW8aKrzIjNkM3T9905rsGGt0IReQWQ7ZaotmsLiI6WBe+V/sHwZ6f8CgU67w//kpurQUppSfm1nbAs9OakAU7qopWogPaG2it/Xp23tGNmc3YvSg4Ic49lJXOXrgMq8HqLXfRvCff8cgtQWfq9t7pegDZ9X6r7Vgf1Dcv6q9v6kfnoXf3wm8eI6qZ21fW+wQnc16ol0UPflYdbUrpBiAkTa1H4k8R77hQsK1/EIMtH0/5R4YQXHreprvtwx+bKjdi9aNGVde+ahzG6IIUMx8cwVVLvFLcNYrylkrrrHIM6rxEaejzGAzz+TkNr8dRftnV7gzISGTtSHXdD2BN3xdu6JyA50vd8d/nJ1G937F8Swyi7ISY1NdMwV8/6/5U/AzbA7FLb3XT0IZ6rNnZQMm1wsOvrgARs6QyfgeSgk3jOxeCWQ6fXlgKgY0KHx+/8dHLRwMf2/j4ko9GPkp8PMPHQj5O8nEjH+18jPCxkY+/+JjLx0U++tMe1/ho4KPMRzsfK/go8LE+7fEDHzeUrD96+XiAj8V8HOZjAR81fNzLx2jaoyXtMSMj4//1D6HjXs0=AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAAyQMAAAAAAAA=eF5dlH1M1HUcx9EaIZOHg8NLA9SyVmkmEGFGRICUp5UZ3tjFwkR8iFsRgYnoWA4cQ8ZBPEgQHvFwB3d4csdxHAfqG28ptRZbzgKEEBQQVFRGqHRif9z7Nza+/7z+f31e76+Tk+PpHj5RVUgUmHTRDlRIjkD7QvqwRZSNyPW3+xoleUh5//5XPfmFuCjGq2OiEsi7qy0uJWUold7tiHr2JySsXZ5fW6GCX3yh7kflz7CUXn8u85MauBWkBeR61yEn4mql7YoafT7dG4PL6hGzpMttQq7FbOT2XZN+jRCNxKd8PHQaQ0e+WeFbdwZnEkd3Gk1N6Bi/cNDvpAGPM129etON2Oy6JeNuXDNaBlUDSeEmHFMMhcnXtCAkMSz9kosZbsuGgzrvmCHtWb5EdrkVIYdLM0raLBhevGpSWdWGuYAamyzHCu29LTvsye2Ieit/okjegeBP5SMBm8/CuO1Sxa0N5+DfNnDob7/zkHQWpzs7A4FZKz/88yjQm6RyjZsBRkSZPoavO5Fkse0eHO8ENToZ6HGKHnX0KKXHg/T4Gz3G0aOKHg/Q40p6bKdHd3rMpsdeeoylx//o0Ysex+jRuMDjHD1K6dFCj9n0GEqPInrctsDjDXpcFOjwqKPHd+lxAz020+MKevShxzfosW+BR8UCj44e42Ag9fRavfjKXyZRGurIe/TsKdbst+V/Dy9S6Hem3viPsTgHs2Q071D8+b5+fbkSFWQq7+Kr7/k9fnsRVpFdvJNniuH+d5dL4U1+xrs9XPqrVS0rxxxZzjvaN2XVTfdW4um3HdzLu+6b/ehRi74KX5L+vPPEYWtCXnI17pBW3n13UaM6K7AWe0ihA+mB+jH19DyPs4uAdTuT7GYNXieFvZ1Ubq1RpjegjJSxG81LS0MUoTpoSWGPx8Wx46eezFPo6lHT/ovBNj3s5A125vmDMqAqsgneZBO7M2tiRsdeNKCVFDrsN+2NynAxYoAUulz9S0P0nltGrCE/YKePU1MbT//RjEVpDprZra863D3BaII/mcWO+2969BeUtuAauYldV79TIIvKMENNerDzdQ+OnjqxqxXrya3sPvyV2Atp0RZEkMIO8sKumrxea0M+eZ27SC4fiv1WbEUK6cSdxBTO5DbYrZCRwv/zQKzw7xppx79kBHcUGj09NtzdgY1kIHc13V0A9/azmCKF/+rmsR25X2jOYZT05e7UlU+9OVV8HtXkMu6w9nl5wu335hnEXTofGlwrsQLPkMJOB8M8CpyDOnGNFHb7cuLq0K7GeQo7/h8hBXs1AQAAAAAAAAAAgAAAAAAAAFgGAAAAAAAArQMAAAAAAAA=eF6Fk31M1HUcx1tyxYB4aE6QYxI+MFIWhxNG4u6DcClS2VERod5yeS6KLdkJN2p5HXMZY2XU8Il4EEsYQ0cguNJTka7AdpBagAQMvFiXyu/74Y6AA8Tr13j/dRvrr9c/t/v+9vq83opa2yGPhynmSs3IfZnxqwbdn8vM7rjT1fOIySf2h4yKBaaOHQvu0XmmlgxH3rFZporx9qbGaaa6yBftYZNMR+p/d90WTI5PCgpv3mN6o/B6se8Y09vbB04ahpk+Sk4re6KPKeWFdWZLN1Nsgu3CZ1am5szAygOXmFRhpVZdE5P+6oj1lW/k/7XcS1Afl9+7/FJ9VAnT5RX2clcR0/7YKl1Drvx7o5SozmYKGw5c3aBhYmu4/a6KaZpyXCNKpiljXFGFQn63qz/JVwi64Jw7GtkrqLqjbnffJUEhpe/MR9UI8ouZTJopFrRnU4Y6Y5+gIefTJYFpguz1y3oTowSlHO0LbVuQKLW9c/+HdyTa1mX4y9gs0c9Kw/VTJRJNVNGKWzqJFPAY7eXxTS+PVnhshcdT/+MxGx71Xh5TvTy2LOHxW3hshkcLPOrhMW4JjzNLeGyFx6olPOrgcRgex+AxFR5T4FHj5XESHj2nFz3G518MeihzExgJr2vOaLd3/ucZfBaeHWaVK1nmOKiF90qf4Oc1MmvARxsW76Dd4Kv89SFTFmjBXT5wPafumWMygedwp2emMn0S3PL74Fe4m1r/ZID7H6Y0sBp3zM3Zag9wMuWBJtz1YOK27nfHmYrAUdy5uTqnTuGQuwC1uPtbarOlf1S+F7gHHdw4G3+lf4CpByxAF55w/9qFW0zLlIvcjE6OvJr+9dYbTKXgWnQz8OUO/8prTENgIzoKLs7NV7QxLQdj0FWkKUdnbJA9gLvQ2cuarDxHpfzd4Gl0t9t5OC7zC6a9YAM67LeZVefMTINgK7osG/x4aCJf9gvq0Gnu8GFT6F7ZJxiDbm8fa9oYtpOpFwxBx7b1U4P3NzPdBP9G14aI9PBPo5kKwQl0vuZEt3osmGkdKKF75epamp0VtAoswA5WtpvOW+4KigAbsYsDT4XXr+0SZADLsZN9v4Taos8L0oN+2E25e0b1fZmgE+Dj2JHR4tF2GwQdArOwK9fy/Md2vSZoGuzDzvxen9RlbhTkD/6B3bWEaH48GyToIpiEHa50vt+W/kCiCHALdnn1+Pxv63+S6Bq4BTv9M/G7zuQqicbAduw2YC5U9d5BiYLAB9jxv4oeeU4=AQAAAAAAAAAAgAAAAAAAAGAZAAAAAAAAoQ8AAAAAAAA=eF412Gk8lmkbx3EVheFJktQ0I6Fsw7SLriKUDFHJ1sKUJNOCLCVkve37bV+ykz1bi05OS/atRQuVaiKiZWQiZTzzPPf/fvn9HK+v33kc1+acn57v6ditcbyxQnrvjl6qksVx7xR/I2vkw/Y//TQlpRZb0P7s7P5l/+ml4f4cT++XWxOyy56sYJnMT6g/T1VfXOdprOmhFnDVlqkWsT4/ErfszD5T5hIVVBPIMz7cQ6thPqU634uCGSRwyFE+QN+bntWYMn82001ZsIFluEW+ZTZRuC29uemrP9Vc27r+UFI3XQ3HbVSaGLHMIM8VT4fK5wbThzMlvbe2ddN2eOn8nrPZKyNJ4VU7Abf9ETT/vORl3qdd9DpczegrftZyYXbHVpfeno2iYf+8lVe52EUN4JPrqx5HX3EiB5Mum43vZ9NLmjoJG5d3UTP4QU/45+YcNplf1+urkhNHtYN/MvyhupOuhp2rXTOLdyWTmeQL/VZTCTThpFhJqXEn5UvhODBlT/btuTwyPq1qdEQ3mY7ffDWx4nMHfQUXbR0NK+PNIbsKjmjNxqdS8Tu/7tSK6qDb4HsCd/RjLeNIofwQ++fhq3Q4Z0OqjEoHzYFfmkm4LXfQZoJ0TI8arMigQrd5FtzobKcBcIxxIettjCmj9/7LYM6OTPruXeWBz6fb6T64Sz21LoHxIC4yZy/ynciirKhEvfsL2+k5+Kid/Uj8UDxhTQu2mLGy6bRoV65+Vhv1gXkMRX3/CjAmTwqGfgvNz6ENp0yXH97ZRvvgaQ11bdmJjeRCeezB0LZcGnHnL9Uv/a30ElwmHiUg0+rI/Fqj/l57NI/S/bpR4i6tVBXOVNkwskk3krzY+1dzxqJrVO5WtnelSCsdhfWD/un4ahZHNuns1Q2XKaBHBF4YtRa00G3w2ca2WoOcdPJ9Lcv9752FdEzlF2k97RbKu45jEUelbVVLLjNbred/qDcvot0STuPrnzfTzbDFnKUbn5sb83Y3y+O5QzG9Mzhr5ercTN/BqzYe1nH+zYPct1A8uz6whK5ewf66RLiZPoCfHVGeXSQSzQQuFFfMTSmlZ/7wG5zOuku5ltirb/2wNJ+sqV4QHmVaRt204p+sUbtLueYvVxV+f9Wa0fcP0G0ZLKMd9hu0WD1N1AgeVjwkneJewHiVedYP21ynUtLZ3yWsm6gnvJBveBlPfjiRlrcsezV+nXr1+O3rnWqkXJ+b1vv8/hubKO8f+ZjvUE7t5v58lh7cSFVg6S2bem11EpjX5/tMlP4up8flugM9VzXSfrjo+7ftoh6nSObaf5ItXCvo8QUnDx8pbqBcaxxp3FQopE4k3t+Sl5quoGsV7KyVmAYqCYesK401fplFnNsDp/9wraSimUzaYEc9tYc7AsLuXHJIJCFTTUdl/66kT5b92XrSvJ4GwKpEbkjpqgap0tYZ2OxQRWMyanSKhygtgb3updZ8f21OJr8bR/qMVdF2snM8w57SGbhr9Iqy7GQekcrn9PAI+rgO1hR921pA/ty+hsXp4RP0UQau+9vwWCefP9keyOnhdvRxA5xQv3hIfMKD6Ilzevh9G6eP++APDp+OexdFMDPooQv6OAULzTaFvlmVwDTf4vRQA31sh2Xyv3r0irGZIPTwCfrIgmXWhe7o97Nl2tHDPPSxF2614f95p0YUOYEexqGPVvDBX+tyo5aFkHnJnB5Goo88cOI29i+mWZeZ2VpODzegj3PwffO+U6p6zsxi9DAafRSCixc5Lx4z82GEv3J6+A19FIWt2jVW6KkaET308Ef08TfYrGQypqI+mFihh0/QR1v4XSgr4kprFHmEHm5BH5/A1r4PHE32xBMj9HAcfTSENWWdlbdOWxAf9DAYfWTB0eYO7DPDh8gZ9HACfbSHxWpdmkd2eBNv9DATffSCZwY+zkWNRRIGPTyFPm6HZRg3Z+vaaGKCHt5FHw/BZT8ed10Z7UfK0UMR9JHrNIk+/apCA9KgzenhGvSxFm6o04t4KOhEVNHDGfRRHbbaUyJU2FFCVqOHzegj17JLe6RP/+BCTu/h9HAEfbSH2zc8SZor8SLl6KEI+lgJ7xczPau8O5z8gh7uRh/l4KZtr23v94UzNuhhKfrItdlC9vT5rgRGkMXpoYkDp49CsItXRLXFKj+igB72r+H0URl+FrfbXL4ngdmIHvqhj7/C7xjHJeffhRMZ9PAM+rgWHj28qVZ+9BJzyp7Tw2700RZ2Wmp8zfj3KpKGHh5DHzNgBdORVPfqdNI0zunhuDynj3dhUfl/wgQF0kkCeqiEPnLdMhzcXyTgQ9TRwzj0UQ3eJVvKCojNIgro4Vb0kWt580jjxxJlTNMsp4eGtZw+tsIFsjq9L8tTmZXYH4+ij4uzOZ6vOvrcg8+O0f7U3TNygKHFybEXVdb20tjPHI+Uvx1kRE4S7/ccl2AeCq/6YcdWXyNXooV98zH6yoYlfEevGLk6kWWp567EWNvQZh1tk6mxHmoGb4l7q9q72JP4pHHchbkXrMBTFFOp5UOc/Dk9VkSf4+B0BZGT7q1exPBK9rElEU50oup8b0hIDz0FG47xrP6SFkvWe3E8r5oz59p23j2/a50OzIAYp+ef0PdxOImH2USaLxPdhiz2hjEPyjtX6iGh2EON4UJm9E3us0zyFv4P5uPwElevnNtfY5g0vAc2eB9SYLGPvCWqbGeiY7svVjbLl6bMnm9MaO+mO2HN8nb3AzSTrIFTMZeCXROsZ91qExhd7Nu78L7shm/+FP5yZbgL8ZQMbvtiGEhvjwhfWWTXTR3hFM+rC09oJRF9uArzPbCheObh38qDmeNKnPfoBd4nE/hVidcNvr/dSapFcdW9b6FUOXBU2lKgmybCXbLqjzJCzxATeB3mXLvoHw9Nib9E+vGepeF94/rcwxitqqQAkpRj2qv+IJJm8xf0JuZ30XQ42ey13sIWfiYTzsf8Ksz3rUTh9LwwMh/voRfeR0HYT3hXHivTl0TUdLo9WBdDq/eZWV7f00WT4LNdzYIpghFkHL6FOdfNbDHtV2XWJBL3hgveV653X2ydHqn1I2wz3aGwy7H0P92LHK8Od9J02MS4kN2YGk9uwsKY18B3Ol49ldFjMTN4jzfhfebH/ZLK1tJTFw0lcSvj1up2x9Mjlf+4H/XvpMWw82uDiQ01WeQavB/zfPjs67jcL0b+zATun3C879x7aPQ4I/0txY+EuiwIeyGZRD0CxrrfSHfSMHj6qsjvAib5xA++grk3HO8vEpLjb8soYx+YxH6gBM/cZlmELQslLn7J9Ur2KXTBEa945YYOagdvePx+8vfoNHIeXoz5Kdizpmx8useRBGKfkMR+4QMvNe+s1uuOIn5q894I16VRYVo4vtGqg16GsxqehnSXBBJvWApzT/ja1JIFye9CSAD2kRfYT0Jhg9zJHxxLg4lh4wNDZVY61dGI6X4/20714ZeKX3KGHA8QNVgD883wbHqZ7NcwNknBPvMT9ps02ColcLn46SAS/mdY0tfCDGp4bL/8oeR2Ggk3hgUJxL9xIjWwMeY34aqMirBPVxPIxDhnH2rGfjQJqyX3NqRYuhE7Ud78vt5MWjdPvOu4aju1hWcviqTGz/MmV+AHmHvDffILHRPlDzKV2KeSsF9xvbT0unzecVcyJu3wY+lkFtVQW+66uK+Ncp0tHrB4KMObvIQ1MX8GP7qUeefwPn0mEfvYF+xnCTDhj9hnneVG7v7A7++4POff+8n2+UGHNloL5/SpikgJW5NceAXmV+E4gY+r3Sa8SSf2uVvY7+7DRj6CKfvfBJCZzz//JrQtl0oJnc6VE26j32HTpac1xmQVidIkx+sxXwvn6TfafNMLJprYBy9iP9SBVZVrxWV3skjxYEyyrXkeddxicIKV30orYfv1W08EpV8g9fAFzBvhkTPu4S51LMKPfTIX+6UgLLRo0crQDm9iJzxnfOFiPmXdCgs4qdVK7eGbPYuEuvsCSQIchXkKvGzK4JhqlyuR0OPso6rYT7m+7HRB0XKxPykbU50vEXeNNteqn6p93kKrYVZ6yWbjxxnkBtyCOdcBA/IWp6dsGRvc+8ew39rCHxrsNhalRhHNzqJnmuUFdMJvcGuQawvVh8Ntkmc9O+LJUfgL5lZwNOah+H9wE/sx184REjtbX4SRXyXlSwc6C+lnZxZfrUgL3QJ3P2JvIWb/fv+wkAtnzrVz3+2gKWk20cA+3Yb9ehes+3ZvRsRnP7LaeFtpz1ARvTWgnW18rZnKwvPJd3NtWW1yCu7F3AZe5/T73I3VIUQG+3gr9nOuea0/Sj4550OGpw+cWzRbTJ07cgu0NZvpKPz85J6CpytdyMavHAdgvgkOa/Osl6MhjBX2+XcSnP2e6+5jBkXl3Y6Mx2V20x+ipXR/yY3T/k/uUm9YpWv1W7W9CkwZ/DvmlfBPsrLdO5yDSCvuAS/cB/Vwqbl5WM20FTMoWWUwIVpG78nzPBU+f5e+hjuTPv7FokZkCn6L+Vc4N3ku3ulLCLmCe4LivvCE7480qqQX7mGme17aFCWX0Z6dicEPee/Sb7Dwp6alMTfUGIFejvsx54crMJfC/5pc/L+RhJeOrcgfWGrPnHPT4jGVvk4Tow6n9CQ2UXvYNEOurTfagbGEAzA/BtsfcHkjk5jDeOCeEcP/H3f4wKPR1ldu2iR7un3jm2vXqbLPrYzJX5poDty77eKMjUEESYelMM+C3+n0zxe+c5J8kOPcQ0a4jz7C6SrGvK1JLsRbPkZPR6Wc1k0HRKnWN1J/OOn//UpiKuABzLn2Ff1f/9SZXbinPHFfMfDP9i/Ca4RMmcMuJql2FeVUt+lAScTBRmoBt+bF5Maq5jIH4B2YH4K39G1f0K3GJvy4x7xwn/HChZEyIbHNvmSuZNBRa0sFvc6z4ez7Nw30O1wrfni8ptyLPIUTMee6APNbuOeccN/dgB0XPZw4axVApIsaB8iNCupgFGuh7dxApWDNpli9x/bupLmQ482Yd8GDVmJZnmeKiSD+l0ng/5kAPH5TivfGknSyoOxcUPPWSvrv1vfNn7eBzoOvzb64/NAjiVkFn8B8DRwZs8tOdHkWMcE9+T2Dc19y/Xp9+3n1e4HkfX9Hpm51JbVcrl+cGV1PR2FbK9GKp1VJRGGAYzbmSrD7vOUKdR/0iB7u0TTcpwaw3MDdijU+AcwZgQsxv2ysooqd3l5BkvX0FFzT878+qBFvWBdzX1jk/31IZMR1OPfsCO5bMZjPuXayUNqbube84/GRkio6LOcuKldI6UPYMrp5+FO2PdMOv8S8ERZ6NJJyty2PlOB/oSf+H5bCx8zXJfp36TP/BTptyh0=AQAAAAAAAAAAgAAAAAAAALAMAAAAAAAASQkAAAAAAAA=eF5Flns41NsaxyVK0QXtonRIilCppMsSadNWLltFObHpOPWcSu3ihMgtuYRchzGcck+5M8Ylby2DMKIRI5RuiFKKI0kqjn5rnXN+/31m5nnmXe/6vO/3Z1Fs6OzHikJzG+JsNBo4OHxnjcE/FP8OTudu1UnMsFiu5eo3ebEQMJDfqVLPwcNv9LM2K1+BKeHR+NFaDpZaGCIUm1cAHn5LHFfyOZi3oM/m/pxymD/yTmtrJQdrrnHACn0s8A92DKwu5uDtkekHPlqegcCmZ/sMszhYcpKrk7miBnKbX02vSuDgOTHryzbYYUh3tm9rv8LBz/Ly9NpWFoD1mfNu4MzB4xPFpxenV0F0msvHzZYc/OLqi6O5v2aBxgdjq1hNDhYPfzXQVlaBbGK/u2iJcfD1swqFqnrXoTK1IdNMmICrS/rP9QlqYZVni+muuAT8I32J2h7TSjD4smRi/4EEnOcSkSP/MAfm37W0vi2RgLfd7fo1w6kd3LieHtn5bNyZKsdZ/rgZLnPHG8PM2Fgw+tj3cEEBxKful416Ho+j1Vgb9xyOhEXZrW3TTvG4dC47+KRTF0xZ+HjJdsfhfEWfsUu/82FoLHiTikkcVk/0luW63oe1ChklbqksPN5xeIr7Xgh3dWoGjw/FYi+/aSW91UJolvx6z0wjFm9j+vkQ6jWDVGIOxeAgT67FU987UFl67U7m2WhsY5euVvy1GpxSO8bnDkVi3Y6vRXa8DhBf83Lcv+saFjcu66o8kwZi/NFHbSlh+Mky5Z5oBxGS+NHX42V0Fedk/tFtGdyG3HNn3Ru9G4SD/+a72PlDA9T7+6lMyV7B4qeCvNzEapGWupVr8G5//IztFRQ2zUUB+kELL8V44XSZ3igdCxEYbF/fInv4Ai70Lk2Jz60AqYr6OzdSnfFDF6UGF6VCeJEVoMaXssfaDT8/4CGfVquAQVNzHOFrxeLnRKCGeuJjerPkMqk0N7SO+ti3hD9XjncJeVEfK3eXBE8bBqJo6qOx9K4Dx2IK4Jov8bHAaI3O1pw0UKI+fl//ef4v0zxYQH1UFxe/pv7PdBhrJD7O8ZDZ5x5aBT1NxEeFuZbxw38UQRX1kat13ClKPwcmnYmP+yzn8k98qYBj6cTH9Nc7rD1G00B/mPh4KSL4vV6eAFlRH3UYX5yQVgrxMeaLjPbugXooukh8FLR4mp8wiIUC6mP4kSM93gIu6ALxUXu+fnjzkU44Vkx8fMT0swmSSoiPE0u3eHR3FoF+GvHRnm9hGOeZBkuziI8yR5JlnOS7YZY58fGDhPk8wTsBTHwiPpqudQzMu94Ilr8QH5f3xIb61YrAdCPxUdW4STdRuR3WzCE+cpn+3gOhFvHRYeKUZ8KNUnhdQny0pj4KEomP+oy/QtCnPkb/qehWNlwF4nXEx+6kOgEu6kK6U8RHuSzx5cp72lByBvFRIoi1zEOODyIf4qMMf3VIp7wIRWkTH99ojxlfNhGhES3io+Kwoq1/cyukaBMfv++Iym7+rRqe1hAfB/sb9U59y0fSOcRHY9PKkXmH7sOq08RHgY3Z/KKuSNROfZyannn8QpCZmZZQdYbFxWYe/xC0iPKfO/sU98prok3U19+W1/WPHXKFCMczso0zvlq3aWy4lbIHZVHWiuh1nVx3Ga5Qn917twl+94tFb3YFCKzqOPhYdP/90sP+SMOAcLyt7a3FAf5QTH3PYZ5Y8HsVIX2i5v8sSTl5YsGoKOUmLKX7OWavy44fcUXAnhxHqfc4+KnrygjJjiwIpPz95/mmC0GdzkvTtoiVN9tzYSBI/2xUGQcHrBRsK/JPg7eUZdZlz7JYkgs76Twdsvn55IOmeudxXh4HH6X8jXIi6+1SlyssePqAzFvtwtcrbPlcMF6XKBGSwsFv/1UfefBdObDVCV8IHXR+7VkNI3QeNQWuvUe1eCDOcjzhHsnBXky/MJTHEdah3wfRec1j+sGFva6mtYMXOTif8hPKG5nfF4EBzRdy/nLITJS2NHKYyT/mqQBryv1MfaUgpPljxZyvFFoNlwx27OJgG8o+ewhP3D8XnTKVB6M0n4gPlUj7g17f1FIOfsh+f1K7iI16PxIuEx3K+4JLkCbdF+R8lUhWuyBXajABbyb1InnKkV+/2oVmJSIHmm8ezO/LwCip4KphSQI+yvhzG0ISCJP7agBvmn/f6HnP33uSNHIhgfg9w5+qCJN+VsCiCbKPLJj6uSAmFx5wYH0CtmR8DkBXZQmnre9stT12AzbRfZV8bjnan90E/Un2g7xuNlYb2o0vS+bBIQ5hxW6TytXKImik+4zc1wPY+dxVztaPjQsoP6TcwvjYBNU0fz8z/W0Go+HP63yWsXGDSlOoc34RbP9E+Batp4bms8lLXfe4g4VwXj2CdzIjHnfKVxn5TrJQ5lrCO2bPPgjaJSB1m+zLr0w/Wmb2v7S1nWo87U8LqJ0mLGTqEcFf6D41+PeK17cMRfDepsUkjRVH+9cMFX8l3MHMWz140fwnLIQIpWS7oHEWjmXmsx3MlQn/YP6vAVhLyT4m890Btb4DOvb7WbRfHbDCm/Abxs/HEED39X/rX9X6o8ctMvZ/9e+gbM34KoIH9P2C7B8hrOIdWKBfE4M3MPXfhyMVhPWZ87WAF33/8ManhjRuJoPJPIWTiv3ReCz0pYrhj2zkKE1YV711fe+cQhjjkTwoY+4nFXb22p//NhSFh5n7uwsfBghXMP6LQC6F5IUPrae67N3JwfcReAut5y6XcBzTLyHsVid5Iv/pU7mcRQZ6cu5ymEp9OFY6eHB2ksYD2O9K2JY5bzxoVJO8mSS+o5LVE2+HvEJpv8qRyhbCOoZ+Wq26rciVvh+pMvv6OSp2rBOvmxeCu5n7a0Pp9oQfMj48QqrZJK9MmXmpR70P4iuMXQPxcbuCjGJ+GPKuI8xT973yfawQZHxJnmUy91mJ0iYUZEx5l3EG5TMSigyT+3mAHmmQvCP79jHKtZDMyU7xoff5GIksCQdL9zReZ4mQrw7Jw3fM/VSjSb8u9sUwD2zAzEMDSJwnTOZVBK16JC8Jt8DxraPlyzRd8CJ3lZd88TLoRoSZdk03wYZqkqeHmf+/iWquOkyHiZ3AdpSz2IRvE4GhOYHk7S0Ga2C2qorpmkvmOJfytxFlhucx+7cIbcckj/8DfKP/lw==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAFQAAAAAAAAA=eF7jvL64wJbrsj3nKE0WDQC/3oPhAQAAAAAAAAAAgAAAAAAAAEABAAAAAAAASwEAAAAAAAA=eF4BQAG//vchBV75/+8/jkct6sL/7z/ly96CNv/vP6uV1fE9/u8/QLoFHcj87z/EslqfxvrvP8zYg9Qs+O8/JFJNV+/07z9sxRyyA/HvP7BRZilg7O8/fjoQlfvm7z8gBg9DzeDvP/Is/9/M2e8/127IY/LR7z/VNQwBNsnvP+QNpRaQv+8/VNZ5I/m07z/ENtC5aanvPwxtfHLanO8/BJ9J4kOP7z+pAnuPnoDvP05i8uficO8/58leNglg7z/c+pCWCU7vP7JSK+vbOu8/F23T03cm7z9M2luh1BDvP1yijknp+e4/9M7WXKzh7j/QdZH5E8juPwkSDb8Vre4/dXxwwaaQ7j+uSqN7u3LuP9x1h8FHU+4/Qn9isT4y7j9cqYekkg/uP5k0lh816+0/Zz+kwRbF7T+LUAAzJ53tP8D7txJVc+0/qw2vSw==AQAAAAAAAAAAgAAAAAAAAAAFAAAAAAAAKQQAAAAAAAA=eF41x3k0FHgcAHDtyrERy3tIPbPvjWR2w9vkfrOt0FIbOVauiMrR4ZYzoTmMMY7GuIYSsjOucc3OZvvxdYcxo5XSUvIaix1Snm3rydo/9jef/z6ytxLpshcZBFxOioXJJDA3/r8ftU7r79DzKKE6+ib7YjiMuDj7/iOXAgd/5xhjJvlEJprLrA/+sjARNoQxk0ymFFbx9+WT/F/xspFbf13JEfkNUN0R3DD4Rgpe+I3B2qbv1FOQS6Q752DdLajajhkoH5PAcfyNt+t6erWpqIeQN/reIxd6ljVvql6WQDc+maHm+YaagJ4HtAgfb+XD0dwVYoi6BJ7gPy66sLTCzkb5989OOkwVQb1a42QFbwKK8L9W/ovQsEZBFb+J06YOsaHD3S+k/YcJqMLPLSeEdRmloVo/10VWOgf2SlTj7/4pBj7+69L1ygo6E90yLDVxlZSBT9e/GeeoYijAX/D/BG9odFR9/XPWS0IlUOhyiYwohrv4QSpPF4NVmKicwu07HFsF2kFZZeb943AbXyN1oXBBXoxK7HfJNHvvwH5oWrU8Pw4F+LFmvkLh0UJ0cmDKw5xWAye+Z0vWtsfAFT/g5cAXhjV0RHvNqvzYdA/cgj1JP3HHgI4f2GbtkC5nomIdZd70ZC0826U3EWY7Born9EpMv+0OR8rGcfsFm3XgYa+frDU9Cornrct07IsT0K971Kjx+vfhADHyhXfcKIjwp2x0NajqGWj3ptEpDbsGMNGIajDVHAUV/JGK7/jyqxTUMc/mRvr/DPHWpy/QeI+gE1/1SrqO5XwWomju+CSk8ID5gEW/5PQIGPhGvZtnbLOy0Zjc9jODUj783uMQ0fNiBMT4ycTqTH1uIXITN885djTCKmXehpE8Aqfwp1yOT+sxSpA3gSSYFTfBpyTa7h7tEfDB5zuIDJmZNJTuYyeQLjbDzKxzvQ9/GFLxG220SvOEVET66BWtut0COeMNjc6Ow6C4o4EnPzbCCnWllwxe0RHAxVZRFHVmCBQPDWON3+E4ovcE4ekNnTZYJCk914wZAsWDxAei3sXFIfXJV+HN3DaYO1aR90R5CBQvOye5NZd0ieyZ5qR0ltgO2cWBVdKKQVA8nEmZqNGgkB9+GLOU8dvBLufBvU2zQVBcbalA/pCZjhpI7JMuFh3w9AO92LZvAHj4oeHaIRbuVLL5dd/qy50dcHDQq7XQewAO48fsabvKTUwmd7fOxztZd0KG0pFra7J+EOFLbbRdq2k5SK95YBaJOiH6DCfAOakfFF+LYDnXlpSgJUE0Y9imC6wXWVtU5X5YxudZlfoRRflo64/xWtdfuuCa/o8ttbf7QHGuLnGfrnEiClJPYJtZCsFYnJ3FIPRBIP5XKxwNMjWXLNMffxbUKoRN0wwd0yYAxav2JsQesmKg/wAysbeyAQAAAAAAAAAAgAAAAAAAAAgTAAAAAAAAbQMAAAAAAAA=eF51l0tTU0EQhcW/pNFNV/lvUHZs3bHEHQsWPCKEAIFEjCiKxnKBpWVJqYhvfKOiouLjJ1jhdM+tOaemN1P9Eb7pXOg7PVOT/eidOkIx5RzrZPr5dMbbwo8f68da4vXs8z3hyDaEw3Mn8fPOTw/2455w+DcTn3H+6OFhCEe2LRyeJ4nPZvU8Ew7/88QbWZ0vhSPbEY59Xyc+l+37Vjj2fZd4M9v3g3Bku8Lhqfh8Vs8n4fB/Tnwhq/OLcGR7wrFvxRezfb8Kx77fEm9l+34XjmxfOPat+FK27w/h2Pdn4svZvr+EIzsQjn0r3s72/S0c+/5JvJPt+1c4sn+JR8B/1pjj/26SPj9s6Ke28BPU14gRy/u44gOH64bwGvU1YtTOUF8Hx3tlk/iYbVFfB8e6LZz7GjFu3NfBua8RE8Z9HRzrjnDua0TduK+Dc18jGsZ9HRzrrnDua0TTuK+Dc18jFoz7OjjWPeHc14iWcV8H575GLBv3dXCs+8K5rxEd474Ozn2NWDHu6+BYD4RzXyO6xn0dnPsasWrc18GxVn0d5y7WIct5vE/OkSfeZxWfdg/6Xc931DNPnmE7SbzunljZg2xVPEeJx+/X6D0THjy3dfEMEY/3V75/NVfg73WLPCP2mPhM9n10PsFzvi2eaeKz7inNM3iP3SXPqNdT8YZ7SvMPsvviGSAeHp6XwoM6H4inRnzOPaX56rDMwS3yjPn/f8Wb7kGm8xj8+j5nPp99L53fsO9T8owb8wX3lOY9ZHwujBvz8PA5Eh7U+UI8zBfdU5onUecr8kwY85Z7kOn8iTr1/GK+5J7SvIo635CnbsyX3VOab5HxOVg35uHhczM8qPO9eJi33VOan1HnR/I0jHnHPch03kZf6HnN/EL2vXQ+x756jjNfcU9pnkfG537TmIeH54Tw4D2mHuYX3VO6L6BOnTeYd92DTO8XeJ46nzC/5J7SfQR16tzCfNU9pfsLMp5zWsY8PDwXhQfPUz3ML7undD9CnTpfMb/iHmR6n8Lz1HmM+Zp7Svcv1KlzGvOr7ind15DxXNcx5uHhOTA8eJ7qYX7NPaX7IOrUeZL5unuQ6f0Rz1PnT+bX3VO6b6JOnUuZ33BP6X6KjOfYrjEPD8+94cHzVA/znntK91/UqfMz85vuQVbN1f8BLvwybg==AQAAAAAAAAAAgAAAAAAAAAAKAAAAAAAAAgIAAAAAAAA=eF41zNejCAQAxWE7o8gm0TWyd8h2KQrZZMveIzKyk71H9rxkj6KMrJLNX+XBd87L93R+xYq9X3E2ZzOO4CiO5HDmV4ItmM73HMPRTC+/kmzJdMZyPMcxvfxKsRXTmcBJnMj08ivN1kznB07hZKaXXxm2YTpTOZ3TmF5+H7At05nBWZzJ9PIry3ZMZzbncg7Ty68c2zOdeVzA+Uwvv/L8guks5I9cxPTyq8AOTGcxf+ISppffh+zIdJZyOZcxvfw+Yiems4Ir+TPTy68iv2Q6q7iGq5lefpXYmems5XquY3r5fcwuTOcX/soNTC+/yuzKdDZyMzcxvfyqsBvT2cJt3Mr08qvK7kxnO3dyB9PLrxp7MJ1d3MPdTC+/6uzJdPZyP/cxvfxqsBfTOcCD/I3p5VeThUznEI/wMNPLrxZ7s5BHeZzHmF5+tdmH6ZzgKZ5kevl9wq+YzmkW8QzTy68Ov2Y6Z/k7z7GI+X3KvkznPC/yAtPLry77MZ1LvMLLTC+/evyG6VzldV5jevl9xm+Zzg3+yT+YXn4F7M90bvIv3mJ6BazPAUznb97hbaaXXwMOZDp3+Q/vMb38GvI7pnOfD/mA6eXXiIOYziP+y8dML7/POZjp/Mf/+YTp5deYQ5jOUz7nM6aXXxMOZTov+IovmV5+TTmM6bzmW75heu8Am5xyEQ==AQAAAAAAAAAAgAAAAAAAAEABAAAAAAAAXgAAAAAAAAA=eF4txREAg0AAAMBmYfgYho+Pj8NhOByGYRgOh2EYhsPhcDgcDsOgO7myOFQOrt04Ojn77ItbX31z596DR9/98OTZi1c//fLbH3/989+bi9NR6crBtRtHJ2fv0SYQqg==AQAAAAAAAAAAgAAAAAAAACgAAAAAAAAADAAAAAAAAAA=eF4TFycOAABJ1AOZ
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_top.vtu b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_top.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..5e06b39cc50f79f56d8ac07c57f6a0c7b1d3b1ce
Binary files /dev/null and b/Tests/Data/RichardsMechanics/LiakopoulosHM/liakopoulos_top.vtu differ