diff --git a/ChemistryLib/PhreeqcIO.cpp b/ChemistryLib/PhreeqcIO.cpp
index e1dfd16138dfaa739a170eca054a376fd3e68efc..0d970b81088745e6b9fccb1eaf6dcd93d46ee089 100644
--- a/ChemistryLib/PhreeqcIO.cpp
+++ b/ChemistryLib/PhreeqcIO.cpp
@@ -373,6 +373,14 @@ std::istream& operator>>(std::istream& in, PhreeqcIO& phreeqc_io)
     auto const& surface = phreeqc_io._surface;
     int const num_skipped_lines = surface.empty() ? 1 : 2;
 
+    auto& equilibrium_reactants =
+        phreeqc_io._chemical_system->equilibrium_reactants;
+    for (auto& equilibrium_reactant : equilibrium_reactants)
+    {
+        std::fill(equilibrium_reactant.amount_avg->begin(),
+                  equilibrium_reactant.amount_avg->end(), 0.);
+    }
+
     auto& kinetic_reactants = phreeqc_io._chemical_system->kinetic_reactants;
     for (auto& kinetic_reactant : kinetic_reactants)
     {
@@ -449,8 +457,6 @@ std::istream& operator>>(std::istream& in, PhreeqcIO& phreeqc_io)
             auto& aqueous_solution =
                 phreeqc_io._chemical_system->aqueous_solution;
             auto& components = aqueous_solution->components;
-            auto& equilibrium_reactants =
-                phreeqc_io._chemical_system->equilibrium_reactants;
             auto& user_punch = phreeqc_io._user_punch;
             for (int item_id = 0;
                  item_id < static_cast<int>(accepted_items.size());
@@ -502,6 +508,8 @@ std::istream& operator>>(std::istream& in, PhreeqcIO& phreeqc_io)
                                     item_name + "'.");
                         (*equilibrium_reactant.amount)[chemical_system_id] =
                             accepted_items[item_id];
+                        (*equilibrium_reactant.amount_avg)[mesh_item_id] +=
+                            accepted_items[item_id];
                         break;
                     }
                     case ItemType::KineticReactant:
@@ -537,6 +545,12 @@ std::istream& operator>>(std::istream& in, PhreeqcIO& phreeqc_io)
             }
         }
 
+        for (auto& equilibrium_reactant : equilibrium_reactants)
+        {
+            (*equilibrium_reactant.amount_avg)[mesh_item_id] /=
+                num_local_chemical_system;
+        }
+
         for (auto& kinetic_reactant : kinetic_reactants)
         {
             (*kinetic_reactant.amount_avg)[mesh_item_id] /=
diff --git a/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp b/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp
index 5f2058984bf90fc62d4688b70ad276a204f09789..f7d976d3a59a5f1ff61c3cec44ae0d13f972d6da 100644
--- a/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp
+++ b/ChemistryLib/PhreeqcIOData/CreateEquilibriumReactants.cpp
@@ -50,8 +50,15 @@ std::vector<EquilibriumReactant> createEquilibriumReactants(
         auto amount = MeshLib::getOrCreateMeshProperty<double>(
             mesh, name, MeshLib::MeshItemType::IntegrationPoint, 1);
 
-        equilibrium_reactants.emplace_back(
-            std::move(name), amount, initial_amount, saturation_index);
+        auto mesh_prop_amount = MeshLib::getOrCreateMeshProperty<double>(
+            mesh, name + "_avg", MeshLib::MeshItemType::Cell, 1);
+        mesh_prop_amount->resize(mesh.getNumberOfElements());
+
+        equilibrium_reactants.emplace_back(std::move(name),
+                                           amount,
+                                           mesh_prop_amount,
+                                           initial_amount,
+                                           saturation_index);
     }
 
     return equilibrium_reactants;
diff --git a/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h b/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h
index d15aa0605fe70812c1c009a0d8ea20e226a56b2c..c0cb33ac7cd6034362c9385fa1bcaa0b3ec47c23 100644
--- a/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h
+++ b/ChemistryLib/PhreeqcIOData/EquilibriumReactant.h
@@ -30,10 +30,12 @@ struct EquilibriumReactant
 {
     EquilibriumReactant(std::string name_,
                         MeshLib::PropertyVector<double>* amount_,
+                        MeshLib::PropertyVector<double>* amount_avg_,
                         double const initial_amount_,
                         double saturation_index_)
         : name(std::move(name_)),
           amount(amount_),
+          amount_avg(amount_avg_),
           initial_amount(initial_amount_),
           saturation_index(saturation_index_)
     {
@@ -43,6 +45,7 @@ struct EquilibriumReactant
 
     std::string const name;
     MeshLib::PropertyVector<double>* amount;
+    MeshLib::PropertyVector<double>* amount_avg;
     double const initial_amount;
     double const saturation_index;
     static const ItemType item_type = ItemType::EquilibriumReactant;
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj
index 166f906007d4f88c38a0550c6ddc78f8c31f9321..084e1ff25c77f3e590c31b482aeedf507828301f 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite.prj
@@ -633,5 +633,17 @@
             <absolute_tolerance>1e-10</absolute_tolerance>
             <relative_tolerance>1e-16</relative_tolerance>
         </vtkdiff>
+        <vtkdiff>
+            <regex>calcite_ts_[0-9]*_t_[0-9]*.000000.vtu</regex>
+            <field>Calcite_avg</field>
+            <absolute_tolerance>1e-10</absolute_tolerance>
+            <relative_tolerance>1e-16</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>calcite_ts_[0-9]*_t_[0-9]*.000000.vtu</regex>
+            <field>Dolomite(dis)_avg</field>
+            <absolute_tolerance>1e-10</absolute_tolerance>
+            <relative_tolerance>1e-16</relative_tolerance>
+        </vtkdiff>
     </test_definition>
 </OpenGeoSysProject>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu
index ff27e3cc8d371d45ea75aa14ead50d6b0da74026..575e1ca0b1f5e5c541048f684d87bd71f7250cc4 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_0_t_0.000000.vtu
@@ -1,36 +1,38 @@
 <?xml version="1.0"?>
-<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0.00020724232948"     RangeMax="0.00020724232948"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="64"                  />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="40" format="appended" RangeMin="45"                   RangeMax="121"                  offset="116"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="7.9018483123"         RangeMax="7.9018542964"         offset="204"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0"                    offset="84"                  />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="156"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="7.9018483123"         RangeMax="7.9018542964"         offset="240"                 />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.00012275787026"     RangeMax="0.00012275787026"     offset="276"                 />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.00012275777026"     RangeMax="0.00012275777026"     offset="332"                 />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="9.9999999786e-13"     offset="388"                 />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308416694e-10"     RangeMax="1.2308416694e-10"     offset="444"                 />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0099999978e-10"     RangeMax="1.0099999978e-10"     offset="504"                 />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="560"                 />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="608"                 />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="0.00012275787026"     RangeMax="0.00012275787026"     offset="332"                 />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="0.00012275777026"     RangeMax="0.00012275777026"     offset="408"                 />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999999786e-13"     RangeMax="9.9999999786e-13"     offset="484"                 />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308416694e-10"     RangeMax="1.2308416694e-10"     offset="560"                 />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0099999978e-10"     RangeMax="1.0099999978e-10"     offset="640"                 />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="0"                    RangeMax="0"                    offset="716"                 />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="1"                    RangeMax="1"                    offset="784"                 />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="660"                 />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0.00020724232948"     RangeMax="0.00020724232948"     offset="856"                 />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0"                    offset="932"                 />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="1000"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="704"                 />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="1064"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="1612"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="1892"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="2184"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="1992"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="2292"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="2604"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAACAAABABgAAHQAAAA==eF6zSuXje6apbW81So/So/QoPUqP0iTQABbmuLA=AQAAAACAAABABgAAFQAAAA==eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAACAAAAoAAAAMAAAAA==eF4z0zPWM9K1sNRNNzCyTDFLM7Aw1UvJLCqp1DMyMDIwsDAwMjQ1MTUyAQDHWAmtAQAAAACAAABABgAAIgAAAA==eF7LXxi0sX62vIP/5D3ydaP0KD1Kj9Kj9ChNJA0ATZuB3g==AQAAAACAAAAoAwAAGAAAAA==eF47urdBWEhcwf7oKD1Kj9I4aQC6LAgBAQAAAACAAAAoAwAAGAAAAA==eF77tm+muaC4gv23UXqUHqVx0gCroDNnAQAAAACAAAAoAwAAGAAAAA==eF5zsOtpmDm90NZhlB6lR2mcNACCA1gYAQAAAACAAAAoAwAAGQAAAA==eF674vd47uJXD2yvjNKj9CiNkwYAwQcXGw==AQAAAACAAAAoAwAAGAAAAA==eF7TCr1rZ3f4tq3WKD1Kj9I4aQDwYnWvAQAAAACAAAAoAwAAEAAAAA==eF5jYBgFo2AUEAIAAygAAQ==AQAAAACAAAAoAwAAFQAAAA==eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAACAAACQAQAADgAAAA==eF5jYBgFgwkAAAGQAAE=AQAAAACAAAB4CQAAlwIAAA==eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAACAAABABgAAvgAAAA==eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAACAAAAgAwAAxwAAAA==eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAACAAABkAAAADAAAAA==eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHQAAAAAAAAA=eF6zSuXje6apbW81So/So/QoPUqP0iTQABbmuLA=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAFQAAAAAAAAA=eF5jYBgFo2AUjIJRMApIBwAGQAABAQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1tjTSTbdISzOxMLQwTwYALpgEyg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAIgAAAAAAAAA=eF7LXxi0sX62vIP/5D3ydaP0KD1Kj9Kj9ChNJA0ATZuB3g==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF47urdBWEhcwf7oKD1Kj9I4aQC6LAgBAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF77tm+muaC4gv23UXqUHqVx0gCroDNnAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF5zsOtpmDm90NZhlB6lR2mcNACCA1gYAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGQAAAAAAAAA=eF674vd47uJXD2yvjNKj9CiNkwYAwQcXGw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGAAAAAAAAAA=eF7TCr1rZ3f4tq3WKD1Kj9I4aQDwYnWvAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AUEAIAAygAAQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUrjpAGtiHeMAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAGAAAAAAAAAA=eF6zSuXje6apbW81So/SozQGDQC6PNxRAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAEAAAAAAAAAA=eF5jYBgFo2AU4AIAAyAAAQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu
index deaa22638ef622b0a732bad76756f5cb3e1fceda..fd76100dfb4ee5b21b9ee4cff7c4b0f59be54f15 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_126_t_12600.000000.vtu
@@ -1,36 +1,38 @@
 <?xml version="1.0"?>
-<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020778709107"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011426227364"     offset="1160"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="40" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1444"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4139755208"        RangeMax="10.706653219"         offset="1532"                />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011426227364"     offset="1180"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1484"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4139755208"        RangeMax="10.706653219"         offset="1568"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.6549977288e-11"     RangeMax="0.00014796551902"     offset="3484"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0017379366e-10"     RangeMax="0.00022972185327"     offset="4384"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.0020000068653"      offset="5304"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230838233e-10"      RangeMax="1.0164120584e-07"     offset="6400"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999816987e-13"     RangeMax="0.0010238807394"      offset="7316"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8412"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="8668"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.6549977288e-11"     RangeMax="0.00014796551902"     offset="3540"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0017379366e-10"     RangeMax="0.00022972185327"     offset="4460"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.0020000068653"      offset="5400"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230838233e-10"      RangeMax="1.0164120584e-07"     offset="6516"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999816987e-13"     RangeMax="0.0010238807394"      offset="7452"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="8568"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="8844"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9724"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020777369025"     offset="9920"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.0001140730616"      offset="10580"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10772"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="9768"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10836"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10676"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10956"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11248"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11764"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12064"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12376"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAACAAABABgAAUwMAAA==eF7t0GswlGEUB3BpV2KodFEiU7tN1ju0G62kvNPWtFuu3csUKaPLoti1rhkZ0UzJXUjElFa5xyApaRWlbehCl6ER3YsuGLVL5zz7qZm+9LGZ3i+/+Z/nnPM882pp/f/+5nt5flfu11Q27e3UYr0pWY8WRScUZFlSdPwpX3PlBw7t4jnX5qIDRXeVl2y6akfRQ20MZyHkvNVhx6xWULTdyaJRA3uKTulMlgyC4R6NggA+RUdeGZnoD/2yec18uQ1Fb4j7PvOyLUXzjno9e86j6DcVstL6JdCvdevEci5FJ7HeK7rBV8mGPQ6LKVrYZ2dRDU6qvfAs05qi94vam26A7RsjuOZgh42DXwz4cewp2wJktaYrVoOhqjEzJRiUbVITDZqtyRj4BNafqWYqQP3TZ7s8YG/P7fzj68GU4VO5hnCvnJv95TXkvXkipQ9kSxNWggR05vtlN4BO697p9YAfmSqeEN4vMLa5xAVNE1VNUrB1/wyOH8i69s1UDqrV3CfnwAV5L2KbQX5xkvt9sGDq9uoh0Gd6Jvs9GNXfTH0Fw3xc72nB/ygwXaLEPG32UifMXPsmcwYoTlu1FfODkdYgNEKaVzcGfSVljxt/gnr2tyRq8LI5x3sCnHOGh5twThRrJcc+q8CKGCZkx9ycbm1wm6jhNtYrsxWNOHcpXiYeBS13+t3BumevjhT7CsPdtHFPceWbfsxDwTq9mHn8BDH2FfV5GeDesPT0txPBh6KeODynBB6L0L5eTiG+d/4xlw94T7nedSMdyLYh3k9xfrSmrhnrx6WFbfhuRtKhLbgnI58ViXPdNaM87DM2OsjEe1TRSjesV4WrHMah/ihoIBPn5IJ3X7Ae397pie88UFD/A+sN6vOPMA/0r8hC1XONTHB/zj7LEcybZRkCzD71QmvUeGR8Bxq30sUVvTnfdx9qkVa3G70bNBaAancsE6NsbYEETUxdGIi22OYHo8+PBEvRw4oBGZnnOBHbAwtD0NIOZ6Ku4+RQ9NtgF8lr7RxJbgtgEwPFHkTdMmdisf0B4jhjD9Fg8DCxb5k/sVQtJQqZEmIUI4QYPUVGdJ8VSsxJ09QZmZo85KZx+kuNnVUaX6s0Rn7W6KYf9pu1c/6c/1V/ASQKzAc=AQAAAACAAABABgAAwQAAAA==eF5jYBjc4PdL3p0x+w/bwfgHSt9YOK2UtF/QWJcodEzQftuSGFeOfll7yR8r9rt8krE/uf679LZHsvbrC9QKX72Wtb8yQ/ni7Quy9mFzXr5k+iJr//PfEauLi2TtFcXapJjOyNp/fNYT4ZIoa599Nbp/VzdQvtL97Wo+Wfvfe+e7HLOVtZfdrev/f52Mfckrw2UH7srYz7/vOetmy287ZrXaraqTRO1h7trw4I/HssQrcHeOglEwCkbBcAcAIsdNOA==AQAAAACAAAAoAAAAMAAAAA==eF4z0zPWM9K1sNRNNzCyTDFLM7Aw1UvJLCqp1DMyMDIwsDAwMjQ1MTUyAQDHWAmtAQAAAACAAABABgAApAUAAA==eF61k/s31VkYxg/lFobz3d8zWnH0PUwu0STpQlo2mshdKSOZGopkqEnumgkVJ1YauR/lGhFFKpdc3qLoQjgat3QSIUmsaJk50Wx/xPz0Wc9az95rv8/zbkued2C77xrsKJ5eq3xMCTp1V6pOaFJg9rUjfk88GxZ/OHMpxo2CiAz+pjQpBOyu3b38EhriKYVJpwlN7NZfLjszroE/J+56AAIK0mPXBWhhDlyoENlm8yg4rpmQWfmNh/9e7fa03Z4Gtfwk5RkuB4QoNRT3dTfu/mvS8H0RBx7pC1WGBTTMlrtLnTXhYQnb5r6oAA7YHjpgZ6DABrnFqiSuPA/nV7ezcwQM5t3idr62YXDDgtlM6DMGqwxWfboyw2Al2fR7Eg8Y7FjVn8iqZHCbrVgxsIgC46SkUZ9OBmtOpuvEfGSwdtv60PIhBkvZLub7lTC43d57NuYygy0v7kuOvEFBf1abqVYLAuvVu1kyzxkcZaEtPculIb9ycdVNQwRb9ZULFIwRzL9NHtpliWALbt2RuZyH39vFOn/4h8Hj9sUqn4oRvOa76c/5s8Eny9vmnAUNcnMdBSsUaPAvkcb6qTQIdgS2GtbQoFGrfc54EIHR7YgxLplP1v2MQaIJgq7pdzv3jzB4TL5owGUvBaFXxdHFNQxW7vk17GM3gxUbjIs0WDS88nHH7ntpmNa+drRYjQb9G8EFNdsRyKuv+7owxwbVLVWOZuo0TMnvS+0gc3iH227WzUew83Cetf8EBb25Li/4J2kIu3tK5EFyLW+ZOxjexuCR3nv9HY0M9jBOj37lQ8OVEL/e3HEEjRU6akNVFGjKSZQdGUPwolOqqzYSgePGUR91PRpaRuR87ZQRDNQmfviqSINJvt+2iToEfU5d5pIbaRDJvlUJvkjDU/6K+OdpCPT6WfserkNgqRgy70XOb2KrF/iNIPhyPk/r8iiDP2sIMuorSB7OF1Q8xQi4oizdKKJL7Fk/BYgQRJTrYKdbFHAT6iP3lyLwz9jQ6aRCw0rb0qnvZRGkOce68vkIvJPDAqVnEIyPvUyVIRw5Eaex5TcEbTUbrRys2SAR52n0hfT+cq1iy6cGCrbSb6/LJbChiXZ9cqqVwbl3HtFN0ySvbLXaliYECVNx1bFEr5XgSsqVUrBm0vBAIenDQ1RYnNOGoOHxMEs8IANN5+1zOMtIf+G8RKfvaODSFimD8Qgq7qZPH3BBYHEsLkyrgfhVsxuE2hRMKJsgRPZhjLE98f5fCnzoM7nXyFxlapsXjitTMC3/Zf14BIIHw55hPg4IxKbZ8sHNFIyKLbDHYQS+b0JPr7pDweH6lExBFIKjepUPJ8k+TvV3O9ekI9AZ9+iT5ylB6UuriY/dCIR3nIx8VRGc5pn8PBGKIM893aqE5PvjzQBx4SEEyPKCtA7pYeefe9RcghEIImtOhiog0OB7xDxZhmDvqGnAqyMI1vgvaiVnIuB9VgrRE5L75KZnSohfZbkbZ3srBV5Doi5pLQTqZY23csk7Qw2CypZZI5htilEP96LAvG6yWZr8J9Web9aSlxFEenLFsgI2uMRmXk2qpGCzk3+0uxoCwwjf1c8zEAxa2c1WEr+psNOqlfDNDuu2e7oI/uAuZFVpI7jyJGdr/1nie6HiamqAYIOANXn/BIIVPfNgU4QAD5fV+tkgWB7k2tJhjuC2s9c7fzaC+LGDdr3rEbDqJ+/P/07BzOMB3i/kn0SsMvV9HELBLrOTLTJBZN8mLo03hFNgct2iyDqMgvbymBROJAVHUqJEXhEUNATVLdQSfd3hpkUw4Y08Mz3WaQocivmFw0SLYpzrdImujl7s1ibkqLaxLQizYpuCjAglOYlCZ8Jw82feS3TJHy9wIuyObh5YonC0epsl4Zk09/glHcJVEC7pD5lyPUv66utzfs7/I/8DmHXu6Q==AQAAAACAAAAoAwAAkAIAAA==eF5jiAg7Itl1y3bVrJqtguIK9gf22N3bt3OS3d48T/XVoavtHP2ec/jf3Wt3M8lnfcGXM3ZKN2bbvw2+Zbeo/76LjMBzuysz+lTZNn22q7C4WvfQj8H+zssIjgOHOe0jtJOs/CcJ27v0hSs+S1G2T+HuvMZ2U9E+LjHymUCZor3KrVLjywyK9u8sVrHyVSvYV7ZwH9h0Vd5+28kDxmwb5eyLtqla3W6XtW8pCJ9/wlfGniXihcTmDhn73v3PD/+UkLX35XhatCZF1n5yQB6fzn5Z+xq5CQ+9xeXst7xm9d2cLWdvmJcke2+XnP1iYY6VAizy9v9LuicwuMnbu+1zcuZpkLc3WLKoa/pGeXvVrce5Lt6St7/ixC2z+be8vdxH2XslXAr2JlJLMw4JK9hPPHWtSVRKwf7U/mcSUnIK9luudBw0UFCw38TTLPsFSAswlLw+CaQ55t6x5gDS+X+kgz4D1Rkw/Q7eJatg3y57Q6VHRsHeZvrhzaXSCvaX+neerAOaxyHQ92ODpIL9v5knFIWBdA7z6z/NEgr2EXMMN6sB6RrRnwcfAOMjocXg7Gwg7XNR0bkGSMeu1beOA9Jlmz7NdQLSbhfYH+gCaXmmrrmKQDplWcAvGSCttst7nQiQnmWipM8PpKs+aPuLA+l9rU7WIP4ce+eXIL7DKYNKkLo044fhwkBaKLBilRCQblad5Ayi9d7KsIPoeU0fHoPSB+/ctedBtJSH3BEQLfZq6l4QXfns7U4Q7XH12XYQnbXq5DYQfaRND0zrHbsFTl+d7OvAdE7gNDDt8roTTK9LagbT8fwNYFo1sQ4iX10Lph/xQ+gHNyDpdOM+CF2wDEILr0Sl7y2E0LB0TSkNAIvYKrQ=AQAAAACAAAAoAwAAnwIAAA==eF5j+DF3sVTnbdtVs2q2Coor2D9Ysm3vG45uu1enOK1NFi62m/Wsrfqa21a7PCVTq3MZR+zmTt5j9tr3kp3WzRks6q337fYLTnu8LumV3bslehLcBV/tekxvv7i0jcH+mabvpR5tTvv5ei5ztqSL2z/ifvTld524fes5E63XXpL2b3QiT13ZJm1fc83l9L4vcvZ5e+Zqis5RtE99y/THOkLFfoOh8/smPg37uo7zBrafde2Zq5Zu1JfRsz87jX1t5Dodey5ZoUM2S7Ttk2YJb2Fv17K3k0jx21KgaR/Jde/CvxQN+8LlV1dEp6nbn8v9VehdrmZ/KSV83+yZqvb9H1wmrD2nYv+9WbdYVlzFPvPSOzHlYmV7m82+iv6PlOzX/eW//jRZyT6ntIv7wTdF+wefyx5+mqloXyG4d9t6b0X7pspDApO5FO1lPzpnil1VsDf+NI1hw0oF+8N7kmvetinY1+z6+qEgW8He88WMwj+hCvabfR4Hlroq2POtbX33yELBvqs0hbVIX8FeeeKDZ4UaQH6cWn+gsoK9r8ZsyznyCvYf3q5f/VVGwT5svn2fmLSCfUd9lvoJSQX7Aw/iKx9KKNgvzm3XcgHSr++Xi98CxpeN853EyUD62BK3wylA+lLO7yg3IJ0x4cE+IyC9X0TFWg1Iz3y2L1gOpK58d4okkF7heCFMDEg7nDKoFAHSacYPw4WBtFBgxSohIN2sOskZROu9lWEH0Q6tHx6D0ofp5LXnQbSUh9wREC32aupeEF357O1OEO1x9dl2EM2z9uQ2EP2mRg9M6x27BU5fnezrwHRO4DQI/bATTAelNoNpJqEGMO0XXgemn9XWgmkuNgjdchuSTm9sgdAFyyC08EoIfW8hhIalZ2rRAPlzQBE=AQAAAACAAAAoAwAAIgMAAA==eF6F0n0w03EcwPEjtTiVHoQZx+kcFucQJd/vZ0W7aRW7FcU2P+riJPkJW+W4LSksaz2MxFK7o0ONozxeDiPOOM93Kg9x6YkllDsP1f7p7/56/fX+7x3vJJFwoggw7XEVP8wjUV3y57HbkQSojH5W+hEEiJW+9Hk+AQo3Nd0zjABLzVy56CQBtlVSygpb322Tc14DAcfKy9mlbgT84h/WEBYE1Ez7t6/OR8C+x7O1TcURAEus4VbfCFhjtwiHGwVQl1avMrIXQKUd90hrNB80MfStAbk8KDnuIEq7Fw5He+XKPGEYnCvirpQdPAMZppn+rlOhkOvCiGyID4HJRarZ148n4cbdQWfWcS5MDi35rJZxIC5hRX1/YzA8WxgJZL45BryWilTjvECobPpkaJ7JBA9RF1um9IcSBlP26jMDAnKCXoqG/SDppjQUcfZDaUxKlYTlBQ00593uje7AssnVZrDpoBRHPOvf4Aietj124lx7OJ2V7zqntga3fvFE7wNzcAh6JwtXmUFnR/C0H88YlPaKaTPaBuheD2FVX1nDOvr8Js7KEm6Nqg20v6PDVCQsphrN4CGnsdU5/gROm0lmWFmN4BDlCffT3b14i4+CeLe/HbeVPoqd0DXhtS/sznxJNda5HaKpKWUYy23kn1yf4FPyHIX6kgK/OPg8MuO3FN8vo/WtZ0nwn8E3qsQUIU5ifrFQnL2ImRTv5WWfKFzSwnlL5YVgwjHasN+FjYu/j004hTLwefcch8oUT5xQ40AR/HTELF5PDnOAiuPJxdHNJtvw9kHpDmW3Aba149hVHFhCwQb1lGjtDNJpdmnfXx9FkophlB2tRaMZteMesmZk8kP2Lb2gCgU0niq8NqtCzR9is8f889DXjnGP2Wopigsa8Zj2uo5k2VyBydlUtHencZflHiGyGKr2LriQhM6ILLemb7yM4q7ezlw+kYgCKXyDtgUSYY1hyg0NiQYSL3bdek6iTpfQbp+nJLJcf9nXUEgiCS3rjmkBieIPLxrX5ZMoIZkda61XkGo1oNX/7Rs+yX2ld6qw1alI77/v/+dfzFlvtQ==AQAAAACAAAAoAwAAmwIAAA==eF610v8vVXEcx3FRqC7u2mV9Wb5c19facs3WtN6HKwszypSt3FAZRu5m5U5EYSiVJUWI3aLr7tp1N1qXRNdt3Wv5mrqp6dY597r3GFeuVLdh1ufcW39CPz323vvH15PHe27TH12EPWzzINrmcYhW9zOFHWcx3oKpYLc5Hvv5VVBZFYNhJZxb5/KZQVioIpVtPs7E3O4llY2LXLHrQs2lltptWOVer/oN101YZJFRPhBhhoxAu2VNiAmelrskDC3pIFMY+yJWqoc0ljjxxKIe1tZXG8NDDeD+aqllx10D2CqiBk0rBngrnBgpPEkCrYhR7S0jIcy+SXhl1xz8WmteF0hImLqj2mAwSKgs4TIcWg0Q6tdQHeZugJ654bq+Vj2wOKzEQS89zPj+zvUTzcJRtfyYc8gsCEtHuFlKHdSE94zWpOmAHizK22qng/LimbLuLi1Iu4K+nzqvharR10pHLy34inM6pSQBcnywvuIZAZN7Lk/73CagRpFIa8wmwP9wLxkXT4D3UAAt4yAB3S59nJ0+BPAYWZ/a3Qh4n6kPS96OZF7N77UlIJhPfxOwjkND63TMITMOdeIf/PsrOOSJnbpXTTiQ3MfYxjcchpMjaiWLOCSVS04rjDgIxviTm5EJTlJ16wIOdN5NaTzyI1e+4IyckiUYCbRbzkhKoAo5nMY+04+8EBX3rhMpeMBRPkLiubnXJEibG2UVAqQhvU5G3fYT80dEyPFizUUhsslzOfUJsoVdOtCOfFk6lkI5bvTwp6Snf3GkVEXtM1O98AphkdKU0kdSZqmks5S0Hgcd5WoBU0uZreqw9GXbkGFRExNpcT8/2KL6QID1X8WyKLJnWsRlnhalbKtbPv/t9INVZbPVf/3+L/8AzuzANA==AQAAAACAAAAoAwAAIgMAAA==eF6F0n0w03EcwPHKqYVrnWoeSqVJR55Fie/3o2Jlnn6RjlAeEmWlHz0ZiVRqsbDKc50RYZ1cTI9otFanI6UrnDSHGNbUsVTT/unv/nr99/7r3T5OnfGOIEDnjWVaQR6Juh5hk5FwAk7e1BPYqC2uKRMsDSMg81afReJ+AtqMRh+nhBDgOnQrjbePgP5FQkZLEAHiqhKjA8EEqIgRs/YDBDQPpDS5xhBAE+bnnhYTUFF5cZSn7uTOmBvOyX0hpOHa5tAxH0gWcIWTld6wSFKdPGHsBVpbKSquPxNKPKhVwya7oH6bmODucofrz47WOozvAFoHOxYNbwdNg+PrWFXbQJvd0x0Z6QpS5YB1BB2DobM8OyXBGayZE5dEoi3A5te9DlzlCBMPbKObOPbQDz8u2urZQh1B4S/nWQJuFOlV+ppBEeeFRgNrPVjJzM9qy41hoYTbpqo1gsCf/o11nvpAi7lfyb67DIpjO6t8E6igqx9q4/KZAh9ivb5oxWuAtNlpyJ6qwllNDjFaymnsN1eQ+ztIgVkFQbfXyEYx5XDH0FX6IDahjNPDpnrxpH/vw48W7zFd+FUpfdOO3e1k0uCANlw4dSlEHvkUlzC/zOgWPsDflyZG339RjZe4xPXwVvCxzzzbvl/m+dguK6Pl1fdr+JynvaBh6AKWFHgo6rWT8LmWsaKk3SSuXz32STwVhT8oWj9yM4Lx8prU6DzabpwOhpNdc27YLtsho/uqEz5SqqH1ts0Kc1dbzU4HrsMvNz0f2V+zAu91UzheCVqMZ8uj+OXhf5B0wci7zIFvSDRPUWHvPIgcA2b834m6ESnQ4b1OlSCm406XQu4TtJaau7F3Qy3iVDt0SIZLkV93NCeVcQMd7LisihNzUHhnZ8ATj/OIUToYtSAjCRnMZ5laN59CfV+ryw7hEyjdLce5SxGPmGzaSiEjHq3yVPUdk5Moje9+xr2VRIaR5XSLeyRKkGlYmvFJ1N+k1GkoJhErjbFHt5BEY8qjOa35JJJtFCtM1bbUPj3Zo/5aoGjcXK+2LOku5Y7aMB/NqDy1/77/n38B3nZ8uA==AQAAAACAAAAoAwAArAAAAA==eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAACAAAAoAwAABgMAAA==eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAACAAACQAQAADgAAAA==eF5jYBgFgwkAAAGQAAE=AQAAAACAAAB4CQAAlwIAAA==eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAACAAABABgAAvgAAAA==eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAACAAAAgAwAAxwAAAA==eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAACAAABkAAAADAAAAA==eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAUwMAAAAAAAA=eF7t0GswlGEUB3BpV2KodFEiU7tN1ju0G62kvNPWtFuu3csUKaPLoti1rhkZ0UzJXUjElFa5xyApaRWlbehCl6ER3YsuGLVL5zz7qZm+9LGZ3i+/+Z/nnPM882pp/f/+5nt5flfu11Q27e3UYr0pWY8WRScUZFlSdPwpX3PlBw7t4jnX5qIDRXeVl2y6akfRQ20MZyHkvNVhx6xWULTdyaJRA3uKTulMlgyC4R6NggA+RUdeGZnoD/2yec18uQ1Fb4j7PvOyLUXzjno9e86j6DcVstL6JdCvdevEci5FJ7HeK7rBV8mGPQ6LKVrYZ2dRDU6qvfAs05qi94vam26A7RsjuOZgh42DXwz4cewp2wJktaYrVoOhqjEzJRiUbVITDZqtyRj4BNafqWYqQP3TZ7s8YG/P7fzj68GU4VO5hnCvnJv95TXkvXkipQ9kSxNWggR05vtlN4BO697p9YAfmSqeEN4vMLa5xAVNE1VNUrB1/wyOH8i69s1UDqrV3CfnwAV5L2KbQX5xkvt9sGDq9uoh0Gd6Jvs9GNXfTH0Fw3xc72nB/ygwXaLEPG32UifMXPsmcwYoTlu1FfODkdYgNEKaVzcGfSVljxt/gnr2tyRq8LI5x3sCnHOGh5twThRrJcc+q8CKGCZkx9ycbm1wm6jhNtYrsxWNOHcpXiYeBS13+t3BumevjhT7CsPdtHFPceWbfsxDwTq9mHn8BDH2FfV5GeDesPT0txPBh6KeODynBB6L0L5eTiG+d/4xlw94T7nedSMdyLYh3k9xfrSmrhnrx6WFbfhuRtKhLbgnI58ViXPdNaM87DM2OsjEe1TRSjesV4WrHMah/ihoIBPn5IJ3X7Ae397pie88UFD/A+sN6vOPMA/0r8hC1XONTHB/zj7LEcybZRkCzD71QmvUeGR8Bxq30sUVvTnfdx9qkVa3G70bNBaAancsE6NsbYEETUxdGIi22OYHo8+PBEvRw4oBGZnnOBHbAwtD0NIOZ6Ku4+RQ9NtgF8lr7RxJbgtgEwPFHkTdMmdisf0B4jhjD9Fg8DCxb5k/sVQtJQqZEmIUI4QYPUVGdJ8VSsxJ09QZmZo85KZx+kuNnVUaX6s0Rn7W6KYf9pu1c/6c/1V/ASQKzAc=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwQAAAAAAAAA=eF5jYBjc4PdL3p0x+w/bwfgHSt9YOK2UtF/QWJcodEzQftuSGFeOfll7yR8r9rt8krE/uf679LZHsvbrC9QKX72Wtb8yQ/ni7Quy9mFzXr5k+iJr//PfEauLi2TtFcXapJjOyNp/fNYT4ZIoa599Nbp/VzdQvtL97Wo+Wfvfe+e7HLOVtZfdrev/f52Mfckrw2UH7srYz7/vOetmy287ZrXaraqTRO1h7trw4I/HssQrcHeOglEwCkbBcAcAIsdNOA==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1tjTSTbdISzOxMLQwTwYALpgEyg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAApAUAAAAAAAA=eF61k/s31VkYxg/lFobz3d8zWnH0PUwu0STpQlo2mshdKSOZGopkqEnumgkVJ1YauR/lGhFFKpdc3qLoQjgat3QSIUmsaJk50Wx/xPz0Wc9az95rv8/zbkued2C77xrsKJ5eq3xMCTp1V6pOaFJg9rUjfk88GxZ/OHMpxo2CiAz+pjQpBOyu3b38EhriKYVJpwlN7NZfLjszroE/J+56AAIK0mPXBWhhDlyoENlm8yg4rpmQWfmNh/9e7fa03Z4Gtfwk5RkuB4QoNRT3dTfu/mvS8H0RBx7pC1WGBTTMlrtLnTXhYQnb5r6oAA7YHjpgZ6DABrnFqiSuPA/nV7ezcwQM5t3idr62YXDDgtlM6DMGqwxWfboyw2Al2fR7Eg8Y7FjVn8iqZHCbrVgxsIgC46SkUZ9OBmtOpuvEfGSwdtv60PIhBkvZLub7lTC43d57NuYygy0v7kuOvEFBf1abqVYLAuvVu1kyzxkcZaEtPculIb9ycdVNQwRb9ZULFIwRzL9NHtpliWALbt2RuZyH39vFOn/4h8Hj9sUqn4oRvOa76c/5s8Eny9vmnAUNcnMdBSsUaPAvkcb6qTQIdgS2GtbQoFGrfc54EIHR7YgxLplP1v2MQaIJgq7pdzv3jzB4TL5owGUvBaFXxdHFNQxW7vk17GM3gxUbjIs0WDS88nHH7ntpmNa+drRYjQb9G8EFNdsRyKuv+7owxwbVLVWOZuo0TMnvS+0gc3iH227WzUew83Cetf8EBb25Li/4J2kIu3tK5EFyLW+ZOxjexuCR3nv9HY0M9jBOj37lQ8OVEL/e3HEEjRU6akNVFGjKSZQdGUPwolOqqzYSgePGUR91PRpaRuR87ZQRDNQmfviqSINJvt+2iToEfU5d5pIbaRDJvlUJvkjDU/6K+OdpCPT6WfserkNgqRgy70XOb2KrF/iNIPhyPk/r8iiDP2sIMuorSB7OF1Q8xQi4oizdKKJL7Fk/BYgQRJTrYKdbFHAT6iP3lyLwz9jQ6aRCw0rb0qnvZRGkOce68vkIvJPDAqVnEIyPvUyVIRw5Eaex5TcEbTUbrRys2SAR52n0hfT+cq1iy6cGCrbSb6/LJbChiXZ9cqqVwbl3HtFN0ySvbLXaliYECVNx1bFEr5XgSsqVUrBm0vBAIenDQ1RYnNOGoOHxMEs8IANN5+1zOMtIf+G8RKfvaODSFimD8Qgq7qZPH3BBYHEsLkyrgfhVsxuE2hRMKJsgRPZhjLE98f5fCnzoM7nXyFxlapsXjitTMC3/Zf14BIIHw55hPg4IxKbZ8sHNFIyKLbDHYQS+b0JPr7pDweH6lExBFIKjepUPJ8k+TvV3O9ekI9AZ9+iT5ylB6UuriY/dCIR3nIx8VRGc5pn8PBGKIM893aqE5PvjzQBx4SEEyPKCtA7pYeefe9RcghEIImtOhiog0OB7xDxZhmDvqGnAqyMI1vgvaiVnIuB9VgrRE5L75KZnSohfZbkbZ3srBV5Doi5pLQTqZY23csk7Qw2CypZZI5htilEP96LAvG6yWZr8J9Web9aSlxFEenLFsgI2uMRmXk2qpGCzk3+0uxoCwwjf1c8zEAxa2c1WEr+psNOqlfDNDuu2e7oI/uAuZFVpI7jyJGdr/1nie6HiamqAYIOANXn/BIIVPfNgU4QAD5fV+tkgWB7k2tJhjuC2s9c7fzaC+LGDdr3rEbDqJ+/P/07BzOMB3i/kn0SsMvV9HELBLrOTLTJBZN8mLo03hFNgct2iyDqMgvbymBROJAVHUqJEXhEUNATVLdQSfd3hpkUw4Y08Mz3WaQocivmFw0SLYpzrdImujl7s1ibkqLaxLQizYpuCjAglOYlCZ8Jw82feS3TJHy9wIuyObh5YonC0epsl4Zk09/glHcJVEC7pD5lyPUv66utzfs7/I/8DmHXu6Q==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAkAIAAAAAAAA=eF5jiAg7Itl1y3bVrJqtguIK9gf22N3bt3OS3d48T/XVoavtHP2ec/jf3Wt3M8lnfcGXM3ZKN2bbvw2+Zbeo/76LjMBzuysz+lTZNn22q7C4WvfQj8H+zssIjgOHOe0jtJOs/CcJ27v0hSs+S1G2T+HuvMZ2U9E+LjHymUCZor3KrVLjywyK9u8sVrHyVSvYV7ZwH9h0Vd5+28kDxmwb5eyLtqla3W6XtW8pCJ9/wlfGniXihcTmDhn73v3PD/+UkLX35XhatCZF1n5yQB6fzn5Z+xq5CQ+9xeXst7xm9d2cLWdvmJcke2+XnP1iYY6VAizy9v9LuicwuMnbu+1zcuZpkLc3WLKoa/pGeXvVrce5Lt6St7/ixC2z+be8vdxH2XslXAr2JlJLMw4JK9hPPHWtSVRKwf7U/mcSUnIK9luudBw0UFCw38TTLPsFSAswlLw+CaQ55t6x5gDS+X+kgz4D1Rkw/Q7eJatg3y57Q6VHRsHeZvrhzaXSCvaX+neerAOaxyHQ92ODpIL9v5knFIWBdA7z6z/NEgr2EXMMN6sB6RrRnwcfAOMjocXg7Gwg7XNR0bkGSMeu1beOA9Jlmz7NdQLSbhfYH+gCaXmmrrmKQDplWcAvGSCttst7nQiQnmWipM8PpKs+aPuLA+l9rU7WIP4ce+eXIL7DKYNKkLo044fhwkBaKLBilRCQblad5Ayi9d7KsIPoeU0fHoPSB+/ctedBtJSH3BEQLfZq6l4QXfns7U4Q7XH12XYQnbXq5DYQfaRND0zrHbsFTl+d7OvAdE7gNDDt8roTTK9LagbT8fwNYFo1sQ4iX10Lph/xQ+gHNyDpdOM+CF2wDEILr0Sl7y2E0LB0TSkNAIvYKrQ=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAnwIAAAAAAAA=eF5j+DF3sVTnbdtVs2q2Coor2D9Ysm3vG45uu1enOK1NFi62m/Wsrfqa21a7PCVTq3MZR+zmTt5j9tr3kp3WzRks6q337fYLTnu8LumV3bslehLcBV/tekxvv7i0jcH+mabvpR5tTvv5ei5ztqSL2z/ifvTld524fes5E63XXpL2b3QiT13ZJm1fc83l9L4vcvZ5e+Zqis5RtE99y/THOkLFfoOh8/smPg37uo7zBrafde2Zq5Zu1JfRsz87jX1t5Dodey5ZoUM2S7Ttk2YJb2Fv17K3k0jx21KgaR/Jde/CvxQN+8LlV1dEp6nbn8v9VehdrmZ/KSV83+yZqvb9H1wmrD2nYv+9WbdYVlzFPvPSOzHlYmV7m82+iv6PlOzX/eW//jRZyT6ntIv7wTdF+wefyx5+mqloXyG4d9t6b0X7pspDApO5FO1lPzpnil1VsDf+NI1hw0oF+8N7kmvetinY1+z6+qEgW8He88WMwj+hCvabfR4Hlroq2POtbX33yELBvqs0hbVIX8FeeeKDZ4UaQH6cWn+gsoK9r8ZsyznyCvYf3q5f/VVGwT5svn2fmLSCfUd9lvoJSQX7Aw/iKx9KKNgvzm3XcgHSr++Xi98CxpeN853EyUD62BK3wylA+lLO7yg3IJ0x4cE+IyC9X0TFWg1Iz3y2L1gOpK58d4okkF7heCFMDEg7nDKoFAHSacYPw4WBtFBgxSohIN2sOskZROu9lWEH0Q6tHx6D0ofp5LXnQbSUh9wREC32aupeEF357O1OEO1x9dl2EM2z9uQ2EP2mRg9M6x27BU5fnezrwHRO4DQI/bATTAelNoNpJqEGMO0XXgemn9XWgmkuNgjdchuSTm9sgdAFyyC08EoIfW8hhIalZ2rRAPlzQBE=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAIgMAAAAAAAA=eF6F0n0w03EcwPEjtTiVHoQZx+kcFucQJd/vZ0W7aRW7FcU2P+riJPkJW+W4LSksaz2MxFK7o0ONozxeDiPOOM93Kg9x6YkllDsP1f7p7/56/fX+7x3vJJFwoggw7XEVP8wjUV3y57HbkQSojH5W+hEEiJW+9Hk+AQo3Nd0zjABLzVy56CQBtlVSygpb322Tc14DAcfKy9mlbgT84h/WEBYE1Ez7t6/OR8C+x7O1TcURAEus4VbfCFhjtwiHGwVQl1avMrIXQKUd90hrNB80MfStAbk8KDnuIEq7Fw5He+XKPGEYnCvirpQdPAMZppn+rlOhkOvCiGyID4HJRarZ148n4cbdQWfWcS5MDi35rJZxIC5hRX1/YzA8WxgJZL45BryWilTjvECobPpkaJ7JBA9RF1um9IcSBlP26jMDAnKCXoqG/SDppjQUcfZDaUxKlYTlBQ00593uje7AssnVZrDpoBRHPOvf4Aietj124lx7OJ2V7zqntga3fvFE7wNzcAh6JwtXmUFnR/C0H88YlPaKaTPaBuheD2FVX1nDOvr8Js7KEm6Nqg20v6PDVCQsphrN4CGnsdU5/gROm0lmWFmN4BDlCffT3b14i4+CeLe/HbeVPoqd0DXhtS/sznxJNda5HaKpKWUYy23kn1yf4FPyHIX6kgK/OPg8MuO3FN8vo/WtZ0nwn8E3qsQUIU5ifrFQnL2ImRTv5WWfKFzSwnlL5YVgwjHasN+FjYu/j004hTLwefcch8oUT5xQ40AR/HTELF5PDnOAiuPJxdHNJtvw9kHpDmW3Aba149hVHFhCwQb1lGjtDNJpdmnfXx9FkophlB2tRaMZteMesmZk8kP2Lb2gCgU0niq8NqtCzR9is8f889DXjnGP2Wopigsa8Zj2uo5k2VyBydlUtHencZflHiGyGKr2LriQhM6ILLemb7yM4q7ezlw+kYgCKXyDtgUSYY1hyg0NiQYSL3bdek6iTpfQbp+nJLJcf9nXUEgiCS3rjmkBieIPLxrX5ZMoIZkda61XkGo1oNX/7Rs+yX2ld6qw1alI77/v/+dfzFlvtQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAmwIAAAAAAAA=eF610v8vVXEcx3FRqC7u2mV9Wb5c19facs3WtN6HKwszypSt3FAZRu5m5U5EYSiVJUWI3aLr7tp1N1qXRNdt3Wv5mrqp6dY597r3GFeuVLdh1ufcW39CPz323vvH15PHe27TH12EPWzzINrmcYhW9zOFHWcx3oKpYLc5Hvv5VVBZFYNhJZxb5/KZQVioIpVtPs7E3O4llY2LXLHrQs2lltptWOVer/oN101YZJFRPhBhhoxAu2VNiAmelrskDC3pIFMY+yJWqoc0ljjxxKIe1tZXG8NDDeD+aqllx10D2CqiBk0rBngrnBgpPEkCrYhR7S0jIcy+SXhl1xz8WmteF0hImLqj2mAwSKgs4TIcWg0Q6tdQHeZugJ654bq+Vj2wOKzEQS89zPj+zvUTzcJRtfyYc8gsCEtHuFlKHdSE94zWpOmAHizK22qng/LimbLuLi1Iu4K+nzqvharR10pHLy34inM6pSQBcnywvuIZAZN7Lk/73CagRpFIa8wmwP9wLxkXT4D3UAAt4yAB3S59nJ0+BPAYWZ/a3Qh4n6kPS96OZF7N77UlIJhPfxOwjkND63TMITMOdeIf/PsrOOSJnbpXTTiQ3MfYxjcchpMjaiWLOCSVS04rjDgIxviTm5EJTlJ16wIOdN5NaTzyI1e+4IyckiUYCbRbzkhKoAo5nMY+04+8EBX3rhMpeMBRPkLiubnXJEibG2UVAqQhvU5G3fYT80dEyPFizUUhsslzOfUJsoVdOtCOfFk6lkI5bvTwp6Snf3GkVEXtM1O98AphkdKU0kdSZqmks5S0Hgcd5WoBU0uZreqw9GXbkGFRExNpcT8/2KL6QID1X8WyKLJnWsRlnhalbKtbPv/t9INVZbPVf/3+L/8AzuzANA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAIgMAAAAAAAA=eF6F0n0w03EcwPHKqYVrnWoeSqVJR55Fie/3o2Jlnn6RjlAeEmWlHz0ZiVRqsbDKc50RYZ1cTI9otFanI6UrnDSHGNbUsVTT/unv/nr99/7r3T5OnfGOIEDnjWVaQR6Juh5hk5FwAk7e1BPYqC2uKRMsDSMg81afReJ+AtqMRh+nhBDgOnQrjbePgP5FQkZLEAHiqhKjA8EEqIgRs/YDBDQPpDS5xhBAE+bnnhYTUFF5cZSn7uTOmBvOyX0hpOHa5tAxH0gWcIWTld6wSFKdPGHsBVpbKSquPxNKPKhVwya7oH6bmODucofrz47WOozvAFoHOxYNbwdNg+PrWFXbQJvd0x0Z6QpS5YB1BB2DobM8OyXBGayZE5dEoi3A5te9DlzlCBMPbKObOPbQDz8u2urZQh1B4S/nWQJuFOlV+ppBEeeFRgNrPVjJzM9qy41hoYTbpqo1gsCf/o11nvpAi7lfyb67DIpjO6t8E6igqx9q4/KZAh9ivb5oxWuAtNlpyJ6qwllNDjFaymnsN1eQ+ztIgVkFQbfXyEYx5XDH0FX6IDahjNPDpnrxpH/vw48W7zFd+FUpfdOO3e1k0uCANlw4dSlEHvkUlzC/zOgWPsDflyZG339RjZe4xPXwVvCxzzzbvl/m+dguK6Pl1fdr+JynvaBh6AKWFHgo6rWT8LmWsaKk3SSuXz32STwVhT8oWj9yM4Lx8prU6DzabpwOhpNdc27YLtsho/uqEz5SqqH1ts0Kc1dbzU4HrsMvNz0f2V+zAu91UzheCVqMZ8uj+OXhf5B0wci7zIFvSDRPUWHvPIgcA2b834m6ESnQ4b1OlSCm406XQu4TtJaau7F3Qy3iVDt0SIZLkV93NCeVcQMd7LisihNzUHhnZ8ATj/OIUToYtSAjCRnMZ5laN59CfV+ryw7hEyjdLce5SxGPmGzaSiEjHq3yVPUdk5Moje9+xr2VRIaR5XSLeyRKkGlYmvFJ1N+k1GkoJhErjbFHt5BEY8qjOa35JJJtFCtM1bbUPj3Zo/5aoGjcXK+2LOku5Y7aMB/NqDy1/77/n38B3nZ8uA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAzAEAAAAAAAA=eF5jYBicYMd2/ix3C2n7DPZfD4y7tewntacc3mCpbe/FsT9jl7W2/ZONc83qgfzfbDGL35pp26dcilmmaaJt3yOZfcTbSNuedVLYih4DbXtR68XNFfra9hYNu/3W6GnbBzlHnwsA0hxPtn8xBdKlp3uylgPpN++X/roBpL+um78hCKh+7mSRE7+A9LE7W3VzgOac2b8q6ByQnt4n/s7aUNv+UzVHWQGQFoidVLkESK9Zui3rJJBmFvrx5j2Q/qPSVf0TSEfN2twDos89Y7RmArpLdZvJtP9AfkyJz6w/QPoVl4AQM1B8V1W+KEje6/OaSwxAWm+i7LTfQHmX+Tvngvgrp0mXgNQJXzu5jBFIC+79VcUCpOuPyoSDaKYtuz1A5n46wF8GMsdBzOAkiH92xskXIPW/nmycDaJv1D49ChLfF5XjCuL/2HlSB6T+2scP20D0Gcd5HCB77kjkW4Bov1lqISD6yy3+FBCdtkg6F0TfOmVcBKKDIrlLQfSZsrllINphUWU5iK4T/wimOYMNK0C0TW8wmA6bnwqmK0TywXQVYwmY/t9ZBqbLrpaD6T/FFWC69BSE3vgVQvtzV4LpFiEIvUOStjQAVFTonw==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAbwAAAAAAAAA=eF5jYKAu+P2Sd2fM/s12G6pNfVdtF7XPONfUtMxB1t5GoN8t4Lms/dRZbbH5j2Tte7uWrsrcLmuvF/eluL5M1v7X7M8Slmqy9icurf8Vf0zG/vVcfpmYYh77DQ/+eCxLPGJHyN5RMApoAQBFXSj2AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu
index 161a7a16aedb0b035d9afbae074a35dcb629cf5d..db07ac80a1b9a7d87dfae3d064d28dba6dc1074c 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_168_t_16800.000000.vtu
@@ -1,36 +1,38 @@
 <?xml version="1.0"?>
-<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0002079611847"      offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011486476155"     offset="1312"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="40" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1648"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4123443047"        RangeMax="11.066217869"         offset="1736"                />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011486476155"     offset="1332"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1688"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.4123443047"        RangeMax="11.066217869"         offset="1772"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9292480354e-11"     RangeMax="0.00013984685884"     offset="3824"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0001656496e-10"     RangeMax="0.0002563186457"      offset="4836"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370029184e-12"     RangeMax="0.0020000009808"      offset="5876"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1.1338827972e-07"     offset="6992"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0176191739e-12"     RangeMax="0.0010434187383"      offset="8020"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9136"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9392"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9292480354e-11"     RangeMax="0.00013984685884"     offset="3880"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0001656496e-10"     RangeMax="0.0002563186457"      offset="4912"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0370029184e-12"     RangeMax="0.0020000009808"      offset="5972"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.230841961e-10"      RangeMax="1.1338827972e-07"     offset="7108"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1.0176191739e-12"     RangeMax="0.0010434187383"      offset="8156"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9292"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9568"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10448"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020794851664"     offset="10644"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011473804317"     offset="11376"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11592"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10492"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11656"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11400"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11680"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="11972"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12584"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="12884"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13196"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAACAAABABgAAxQMAAA==eF7t0P9T03UcB/AFfiM8JaHd5NAQEtjeaYCCw8neG2IaIcElX0Sx4NzhDUEGY3zp5FA8lojrJEsiKL445OCuHVu5cKUQlHQGSKwb0zvwjgKp2QQGhDLs9Xp7/Q390ueXxz1f79fr9X7fh8P5//svv9Z+/2Jd4jXxv1k82u98ySuIfuIVtDl82JfyA3hOnz2EcirOCT/zJfR88YnFFVGErjIbkoiU0A9/KOmpkRBauEbLq4KsCTeQy2JC7bz9f9VSQr///FmdXURos7txRBpJ6AcZQ2WZEYQK9Dt+OrOb0IgtW2cqdxH6i3d2/vtCQpWOg6qMMEI9UoT65HBCtR17G4d3EPrWZp/Tp3YSGlBTWioMJXTeW2aZAruXIuPFIYSmm2XKfjD1kD5FEkzoVvUt622w80Wr487rcG+b6MFGyH5vnD1VDtm44bbmKrj29zXBiaDJXBdYBrbyen4+Cmot3s5WsNp9+Z0WcLavdEQP2vk+if1gst3wdAQ85iWYC4W9f074RQvB8UudFSdBzUebKhNA+aDr2N8gibmrvQOWpHuGrIN3KruCmu5DbnMf3pYGeUhtajkARibwRZfA+pjrV/LArptfpPwIjtqcj+tBeVNuoBnkLuXvMYHSep3/JOj/aU3P1+DsTYluHFw/y/G1gfyk0cp50DYqFS6AZbkLOgfIOZL2cBF8s9zl8Ar4jyGXp31Wgm5TlRedUHcbe3ncFbI85I9QPO8+pjK8ANbfaAhzARu3iZvQ9pmAxmXor/ObDMC+DsUFB+4ZVL1W/gzqp7+7uxvntnTdy8T6cud9I/Z5NF8x4/68TbJUzDH8iDLMk52ypziXORFcgXs7Dgiy8Nyrb9VqVKFpz8N9WblF1bjvgZv/K9inqbUs4Xv8+5I/xvkGUU4O5syvguc54KOB6wNYV9gdD3HPE8FUMs5lzem+wVwTuzER+6rSXI24/wbdPoDns02Jx/GewLi2EnzftEIShnsshtXz+J/Oydf34lxvQMMc1o90l/bifJR6gwQd8113At/hZRnwRLnWC4Noxtmjtei3B8s9cG+1eKcd80r9opBl4/5X0dj0JwloWLxwH8obiktH1Z5nDqOd1iY5+i53QoY6TNG5KFciz0Znbl3NRzNcHyvQmLqWArQ1u1mJXnz0qwq1vR3JNLaoC9GCk9uZ0S52ZvsuE7P4S0ERu29kLTP6XizTaRUxrx16jzmmTWJOxGUxj0/KmIIyBXO6IIe5z65k2sT5zCirirn3twKmdKCQuZD63CppETOe+9x/AOBJvAY=AQAAAACAAABABgAA6gAAAA==eF5jYBjeYL7l63XCvpL2s7ZeLE9oE7D3Zznnc3eurH3ULLM7t1/L2L/cYJakyS5nP/Vj7OL7f2XtZx+XnpjPLWd/sPT05EIZOfsQ51v3X/+QtY+VWmm2h0fOPtspPSPjpqx9oUvpt4APsvZG2kW+QZtk7R9c+/Vt8ylZewdX909XamXtg87UPQqcLmtff+7OU31bWfuemWkzdkfI2hvOOOZq/lzGflFg/rRaLln7S338a9pLZOxtrySGTVwjYy8z5YB+gvYruzuLeY+9385qD/NHe1OPwvld/Xb4/DoKRsEoGAX0BADyVllAAQAAAACAAAAoAAAAMAAAAA==eF4z0zPWM9K1sNRNNzCyTDFLM7Aw1UvJLCqp1DMyMDIwsDAwMjQ1MTUyAQDHWAmtAQAAAACAAABABgAACgYAAA==eF4NlHs41FkYxzGolMXv/aEL+c0kKZtalaImR0OqLSWFItKFZmhZdLOZUrqwGezEbLVDLltCW0l38kqmWiTUbKlsyBqrYTdtdJE9f53nPOc55/2ez/t5XovsT95dfDviGFM3PeLkV1jyXFbYt8kUy00qCu2aTXDLR/vJomAzlPZ4+ZfUmaI2xaJFuY1Brm+tAwTbEAKh1c2BAjL3Gl/fT8pgQJF9enQAixrFn90qjsHONNfaxvsCInlXNLVRyOJOvsFpWytztBZKo5pztJU/OLzMFJ4xx9X3REMNJ1g0FGlnLBwpIEGrvyp5FmWOJsd0rNYlMijNm6x+quAT7d5+99/H80lQTeCL0E18snXEOsceBYODflkZygYGdc/9qxbkjsZD6hT9HhFHNvS+GH11IyAzJWtbwmRrUiy+9FI1xJF8H7H/wDOOmK619Ii4xRFJ6/wceTFHjMZ9GmNaxmDIzOGqzw2ArywlClk5R0RhhUvtKgFHFY/NVOwA3B0Rfj3jXwYzRZmWaVcY/KibE5MykU8alpN5D0fzyaimS+M7bgOqrAUFw/1m6Ok7/acxE1js5fRVoXYsNgkSPU+lsxjwUBrnuJ/F14Yb+2sM6aq8fT3tNkc0dwzvqgsZrA6vENvUcaSTi9vCGgPWhcV7e7dzJOmL7Odx9zgSKZJdLNNlsSNhOEjlz2Lmb+0zeJ4srth8fEfnEIN5VrceX3AHPDnpvX+1O4vPIg1So6aw6GJs8zaW1nM5s+aDfSygReej7FWJLA6bRurOSqY8lu0KD1Vx5Fxywa2NVRwJC31+6LOYRX3jgX5zDWD+Y48FIyoZnP4oafMkZ8DkssX5e7oA05y7FpwPYXHhlDUGW/dxxHkj/5ejOiyOqD3gKasBdGk9nFywksU925+GzQ6iub0qD+4WAvbVtU3c+ZwjKaGhTZ00Z+e0QU/NfUDjrtzlTq84YnfjRb+8CtBGK0+KsWaxKCT6idFRBid0d7TI7gDqLhd7aM+bIW/fJkt9XxbPVq3+9eppFru7ctvjRwK6xYtPD6xncd1ZvbYqmkPiFhrjUQ0YlHzHKjsY8EPIx4DMeo584Q9cXvKQ/m9pcce0vYBLVmV4688DnL1I3T6HnreeaNK5ST3jWZoojruwGL/c9mLbZcBF839ky09x5K90NmXZ34A11lptXB5ggpPkRslNBsONWt8p3TiSqpsQ+fYAi86OefIiWrcsecXxrP2A/m8eVTo1ARq6r1c6XgOcu/UU96we8KDmre8rV8D4PFvRT1EMlr0O6zU2ALQzr0/aWQ74pWbMijl0/94hwq92JWDAH+/KPcSAsUWiyNoKQLOpJ+7yqCcLykoTTt4FDKkVx5jLqUdvTBRKUxaHXHu/cf9AfTafP7tPwOKTkiu2a8ayKH0am9dkAhgtCXAwZChfudlav9ccSe63UBcspT79qj7aEAL4JGyzNFrLoH6vXsegD+CMUpf/JP6APuoOzbAbi0Hp4XNrjwPud1R+Fl6knPsP3Y4ZpHlfp7tG0jp9hdb6o/U4UsKzyU9VMfjOT9w2rRsQfm4Jxn8AJ86rn3FGAfidc6L8BgfYZulYuJf2b7JPtnD8BUCD2WLJ208MNr3BoVc9DNo7vWd2bQV02NUbGHcJ0GhJe9CR7YAtq108hfTdfeJePGHM4HBb4+XwFsrJ9ca3FXNpP6a1Gx0pA3Ty7uZn9ADKCmaFL1UBztwXoHfBA9B+T5Usinokz9qtY9HKkRxnSWy7NWB//bnsgWOAH9Vzei8yLPpWakYKkgGrNacyfCiPhnANSCSAnUbb0nYfAPSNlonlDoD/DLb4JTYDhg2cvxxM58TKjEmlOjzAYv+xpQ+iKK/xeoFT6b2K+43ivAEGc22frLNbRufYQf4kJfVj0NBLZ/4XBo+uKmp+qqS8Zzl8f4zmzS93FiYFUm/DzmiuSwEfHItbeJKe+/FyhA9ozl2BlqVu0YARh6YfrDgLOC6Lv1fgBej8aXGXYgPgHZ7KqtEJ8Gv/bukFmtPHJTilooLBDc8P5+6kHvDyF337IYbB1LK757uiGfwfFwjqiQ==AQAAAACAAAAoAwAA5QIAAA==eF4l03kwlGEcB/CVZktu1r377mujsI6hSIf3N2nSjDbrD7mqzTFJtY5oLInWagwzzDqGmlBE0TUsWceQTSlXrhzjnIlJFBHKoKXnXX995vs83+f55/k9FG4QV//smAv/ZkKNtgEODWpy6qWBSILNNYoWPkolnDS2ncKp+UTfgPxUPe8FURUxPp3ErCOw3CPqErtWYteMiMY27icCWl1Vli5PEg7+vT2v7eeIjqIl++hXq8TLukZrQSEF3pR3ZGj0qIBI5Jf08wYNiq77CMY9WbDK7uLFe7GgiFC2KzFgAYS+/SLrNIVEl6kYjUhT4FlpyH4rm0L5VF9sWioOUbZhFTQKDqMi9dn1MQwKl7b3uDUxIEVCoR7vpkPYSI1ma4QJfPCds51Sp4O1Y0OJOJgObPegxfIKOjhUjrixNukwdX49l3qGAdNazaWaOQxoqxZgnEkGVGHmpZKDGEhjgsY9wzGYVdX6dUiCQbp8VHx/EYOsC9L4zxZM0Ouuj/W7yARn43SP2jQm+Oi7umxVMoE+Isw80c8EalWo460FJvQKs8UyJRxUS1obPPfhULrmPtmkhcPhoeLFAD0cWBFb3ARDHDziBhPijHHg+WVcyzPBYe9uaYQKHe0fa77yD+Vpyqc/Vcg09dPFzsgNy5VnZagf5E2bpyPnTO7a5Bjh4L4ZY6mPlOeHOUrRvcz3szreSF/dnG9qSE/+/MQEeufBbFlkAVKc2UUkIzcepxgGIm+r1bp5Ie2KQ466Ih+0sPk2yLqhRCUzpBO/eZxB9trkpTSk2sc79/SRf5XnLHSQz8MdzXWR1Wx+CJn943IDyWwb/DVZD8nx98PIc1azcmdyPc1Qu4zsCQXL7qQczkltUmI0dIGcR/957jCpakFnO2nbWt470rG8p42kZgck9aQil6Va0oUf36WkgqhzCsvaVxRznWglU9j98InCluGsHa+mKlzen6xwxlqo0DkvUWF8/c6/+A9EzzdtAQAAAACAAAAoAwAA+AIAAA==eF4l030s1HEcB3A1dT3IU3EP7Pqec4eLy2iXit8nkpaoMD1cqZmHLqHzeKfEdZanVu0klXTJQ1lTVnkYIunxYlZTNIqsJtfuYjhOo/r+fv312mef9+e/98fEKPJbkTXoE590psGKjsCyLKntnSqWONV1LEB1UkGcd3PhjetVRE9F/MgS8W1irCzsXGRCHcGe7pC77GglXocOsfL/viLYfTU1Wxb3Er9rq8LcTIcJ03AvbZGplmihZTcd6Z4ixI43Rpmxf4iHHcWBgw9oUD7v+y20dA3wtUyaKtsGInRhyuFEW5AbDbfyH9BBpGazRvYzgemqqxcV2oFRGxNQmMCG1HSL2jv2HBDZTvUV3uRCZpHVessXfLgRs7TgPVcAm/WHPPd2u8OjT6Vrc2PXw8yMRuwRKQT/CsPGIYkbjMYpZd1SV8jYp9GNyddBaUFJ/YJSAJfmUhZSVS4Q9dL/0fc7zlBkF9Ke/NIJzAYqtdO/+ODR9apN78gHSWLb1SQJD/Z5dypDWxyBk5d7+SfLEVj10bSwQi5YdCw6ELOMC6t8vpRXFjvA1XtHMs8KHYBdd3037yMHIlNaHzfkcWB6+aVw0XYOTGZ4l1SZcaA/zSCc/4yg0UKo29CAwHzaYzK8GIEx+cpzaQaCrbbSxuooBBefhkQLQhHYRpi5BvgjyJyaZ4s3IVC+lRr63RHUMv0GdwgQVK3TuPvzENRZq5rlHARfJ7yPl7NxfvZpWo493uvwAQuBk7jVrpeJ4ENEyM5F2LUFDrQTDATz13LFJtiBJYzABtyLzl3BOgU2nT7XeBg7mqv+tg17WK1e7Inlj8oqnLCSo+00hB23SV5gYaNTGPfpWGHUSI4NNkh8kL0GKxhb8FqNLWBY3bXGKmSTgaRBQb5WpMSARE/2Uazb00+6sqxLQ/pmtuQZqemF6ifU7PywmVTpM9FEqv/5o5FUlhxMeVczRfU6S9BB2VNaQdnZr6KMicunbLfPoTTnKii9SrIoTzf//4t/fbRDeg==AQAAAACAAAAoAwAAMwMAAA==eF4BKAPX/MQpvVlOYmA/N+QE9z4+cj0jz2Q+M2JgP9R6Xdb8YWA/Jqd+0JdhYD+cge6u+mBgP34+jZn/X2A/Z4+w8oJeYD8oYOsOTlxgPxAPPRodWWA/Yp322JJUYD8oFsFAS05gP/pPEcnCRWA/aao3Ylg6YD+3WyeEVCtgP0y2WwDuF2A/zAJxmYL+Xz98JuaQrcBfP7DLZiFKdF8/3YXEfGcXXz8o0pGkBaheP3RDyvQ8JF4/4SQ4xnqKXT/cRhubd9lcP3CZg3BREFw/6O7rtrkuWz8JTt419DRaP1B8yUzVI1k/fkKVUfv8Vz8QjHwMgsJWP0dj22M7d1U/OM1k3GweVD/KcY4F1rtSP7xMaCFvU1E/vBovwODSTz/r05XnDgRNP5ytWzmIQko/3Ip+H/GVRz+H6yTdHQVFP+jClSv8lUI/trEUcVtNQD+LxJxstF08P9g5EZ3jeTg/DmVTacHxND9DUq3ltMUxP0SzZOoi6C0/Hxt5cyXzKD8SpWPRBaMkP17AULxS7CA/WvmEBWeEGz9T+30ZvS0WP7/GR66/uBE/lKRClHkTDD+MB1pQRQwGP5jx+qIeKgE/Dur2Ypx++j5T0d26k0X0PjQZ79IFwe4+4OQ5X7Ug5z7IxanVVz7hPmYKtn4uftk+PCdHBwyv0j5O6EYjcCfLPuDfHHKwkMM+Pv7EBen0uz7NNFxPQc6zPjiyZAP106s+ZFNIjA5joz6OZvL878maPiz/PBoOW5I+YCcxZ77yiD4OiXoz2dCAPrbXwBQMfHY+ThFbgUnSbT7E/klLCp5jPg6FsAmDmlk+rR8gYVmTUD4+13pY6UpFPnYKojhHIzs+Nen1S8woMT6/j1KyZIglPpLPwkui0Bo+7t4WrC+SED7bJzVdj1QEPsVi/GKtw/g9lRjgbev17T30bDYDtwLiPdG+YxbuidU9crxNrEGpyT18tTe9iIm+PSkfhdeOOrI9mkILKEb9pT2Gh51zPBmbPf5p5xkXU5E9VRKq6uFphz2mN0aYtgCBPWqZr3Mjvno9ZK3EcJWodj04PlLFGmF0PQSgiUZPH3M9os6GBwV2cj1CwWmCAQAAAACAAAAoAwAA7wIAAA==eF4d0ncsnAEYx3HzUlU1g4haOVGOWg01nheR6tWoLYdY7bUENaqOSlHaWpVGLiG0ShPjzEQHzRldYjSokCJGk/e98Z7Y45SjtO/7/vXJkye//75yAf59J+kFiGGPCda0hsI4A+25sMBB4sxHt6VqqchesmrXTGgs8lUh8UBrOgi5ODhQuargjRgr79erWzkhxS53ehjVVkjeLF2+xdoEYcs6Y+gGOsiV4462ea4Kkr5Z1rYulkN+Vl//5hh0CN7ORkBT3IGHwptlCRpikOo/DmKkiGEyP0zLkiuGhlblJPawGHw92wKn5HHIOKa9qQvAoe+XjvZKKw6OFbYlzmoSMHg97mFdIIHJRTnZiw0JuEaVprE8VoE3lBC4NrYKVQcPnAVXV8Hs1HaCNy4BRv9Z6+9YCZgMcxlu+zjsSBpORM9xGKN/n6rXwyHKfVMtol0Msa/KG+PcxeBaZMIVzYjAnO9QhyeLAFcusL1/TgQfhsHYtVMIRuNZNlphQogujXCyUxTCWXDTeUO+AJ7pFK0rcQRwD8nXrXcREPt+BXclAegPF773mcOgI8SiM7cLg011/p+75Rj05+r6PUrBgOaLKbFCMHhrb7qcDBgMeSeemVljMDrvz9u7hEG2QfetCi0MJnJHjeJUMEiKjuzWVMCApUJPYf9FoUrbcWD3EAVWxunMUykKzB+2y7JdFD7GcnVl2yi8LI9xLd5CAU2t9ircROFG++h0zQYKG6q9NjqEZSc0aeM6CvGa3VPxhOqR3k8sCIudyur2iS40/C7vLRBuHeUsjRCmXTP4946wtlIlkLS+J96njXDE0S+GNFV5JKiVsHl2mckjXOuI8uogXF4yFJF3TXjwbfK/UpuV1kLITsyZaybM4HtySE8zOW6kn1cy9UgH2ZXypJzecCnZaUVe6gaprjxfQjq4viciFbBChaRLcwkC0qPsearrTy0llA7MSEofngflItOe0i7QkrJhhU75JdOM0srTlPI/3eKpPw==AQAAAACAAAAoAwAAMwMAAA==eF4BKAPX/A8soz9NYlA/BNdwB/PmcT1G19bSRWJQP07lb0c5YlA/CgDKHiliUD9HbxzcGmJQP6a0+kYbYlA/fmmRJExiUD/dF/B642JQP1riXGV5ZFA/cEy6WvJnUD/Qw4R3+25QP2Qttl98e1A/cu78fTSPUD/g8pdqlbRQP76g1lZqGFE/kqY9iNjxUD/amhx/XbxQP4enTOW8eFA/sCZwajwkUD8+XZXtwndPP8/DXGK4eE4/vNLwHF1DTT+8/0A1lc1LPwkGGNz1Fko/mLuJoos/SD8uIHWOvzxFP+ZBUorwy0Q/Zk9+rRzxQz8uMQgBQP5CP7KxsZBw+kE/3t7XWhfpQD+M6MI/85o/P+COtMu2VT0/cIiYWFkJOz97pZ/Y5bw4PwSJJ9lWdzY/0GqRYVo/ND/gUKtQERsyP9SroJzbDzA/hgRVa5VELD/AswYf0KsoP0kGY0uFWiU/UneIq9lTIj+2dEMx1TEfP9CnybhnUho/vASHOyUFFj/qgUHsRUMSP58hIP4GCA4/HtYOx1F6CD9cS+OyIMcDP+q8XrPCrv8+1tUEntAn+T5kcQn5lMzzPjIdCSIq5e4+Zw3snD7l5z7AuEkkIVLiPnsoMbWY2ds+aFgnbA781D5afa9Jr1nPPn42Re15N8c+/DKgu7wLwT7q5934/tC4PnAQakke6bE+FajaBFqiqT7Fi9SPajCiPnogswiBmJk+3MPR4rzbkT4GdpDwXLaIPgFcoxbx9IA+F9ISIg4Udz556j5D/yZvPqaRhX6f2mQ+UOZAuJmxWz72qU7fdT1SPkp7nYKr1Uc+sIsoQrHlPj5q3OFBNN4zPtjzANvxWSk+Yr48lW4MID6Xi6P8uikUPta32pYtJAk+fQyH5DIe/z0q7qWG+R7zPYiQWaVkV+c944HSkmhS3D1NcNnLNRnRPebevo4MlcQ9likC18PGuD3FJTd0ZvqtPSTxLtc9YKI9olifP0Ualz2cw5J6gkSOPeZDphkmCIU9Vh1wzkhwfz15/FVyH195PfVB89Ws7nU98CM0ETT/cz2YoeDVhupyPQc/aEjLUXI9cKwg9mEBcj07QXOIAQAAAACAAAAoAwAArAAAAA==eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAACAAAAoAwAABgMAAA==eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAACAAACQAQAADgAAAA==eF5jYBgFgwkAAAGQAAE=AQAAAACAAAB4CQAAlwIAAA==eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAACAAABABgAAvgAAAA==eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAACAAAAgAwAAxwAAAA==eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAACAAABkAAAADAAAAA==eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAxQMAAAAAAAA=eF7t0P9T03UcB/AFfiM8JaHd5NAQEtjeaYCCw8neG2IaIcElX0Sx4NzhDUEGY3zp5FA8lojrJEsiKL445OCuHVu5cKUQlHQGSKwb0zvwjgKp2QQGhDLs9Xp7/Q390ueXxz1f79fr9X7fh8P5//svv9Z+/2Jd4jXxv1k82u98ySuIfuIVtDl82JfyA3hOnz2EcirOCT/zJfR88YnFFVGErjIbkoiU0A9/KOmpkRBauEbLq4KsCTeQy2JC7bz9f9VSQr///FmdXURos7txRBpJ6AcZQ2WZEYQK9Dt+OrOb0IgtW2cqdxH6i3d2/vtCQpWOg6qMMEI9UoT65HBCtR17G4d3EPrWZp/Tp3YSGlBTWioMJXTeW2aZAruXIuPFIYSmm2XKfjD1kD5FEkzoVvUt622w80Wr487rcG+b6MFGyH5vnD1VDtm44bbmKrj29zXBiaDJXBdYBrbyen4+Cmot3s5WsNp9+Z0WcLavdEQP2vk+if1gst3wdAQ85iWYC4W9f074RQvB8UudFSdBzUebKhNA+aDr2N8gibmrvQOWpHuGrIN3KruCmu5DbnMf3pYGeUhtajkARibwRZfA+pjrV/LArptfpPwIjtqcj+tBeVNuoBnkLuXvMYHSep3/JOj/aU3P1+DsTYluHFw/y/G1gfyk0cp50DYqFS6AZbkLOgfIOZL2cBF8s9zl8Ar4jyGXp31Wgm5TlRedUHcbe3ncFbI85I9QPO8+pjK8ANbfaAhzARu3iZvQ9pmAxmXor/ObDMC+DsUFB+4ZVL1W/gzqp7+7uxvntnTdy8T6cud9I/Z5NF8x4/68TbJUzDH8iDLMk52ypziXORFcgXs7Dgiy8Nyrb9VqVKFpz8N9WblF1bjvgZv/K9inqbUs4Xv8+5I/xvkGUU4O5syvguc54KOB6wNYV9gdD3HPE8FUMs5lzem+wVwTuzER+6rSXI24/wbdPoDns02Jx/GewLi2EnzftEIShnsshtXz+J/Oydf34lxvQMMc1o90l/bifJR6gwQd8113At/hZRnwRLnWC4Noxtmjtei3B8s9cG+1eKcd80r9opBl4/5X0dj0JwloWLxwH8obiktH1Z5nDqOd1iY5+i53QoY6TNG5KFciz0Znbl3NRzNcHyvQmLqWArQ1u1mJXnz0qwq1vR3JNLaoC9GCk9uZ0S52ZvsuE7P4S0ERu29kLTP6XizTaRUxrx16jzmmTWJOxGUxj0/KmIIyBXO6IIe5z65k2sT5zCirirn3twKmdKCQuZD63CppETOe+9x/AOBJvAY=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAA6gAAAAAAAAA=eF5jYBjeYL7l63XCvpL2s7ZeLE9oE7D3Zznnc3eurH3ULLM7t1/L2L/cYJakyS5nP/Vj7OL7f2XtZx+XnpjPLWd/sPT05EIZOfsQ51v3X/+QtY+VWmm2h0fOPtspPSPjpqx9oUvpt4APsvZG2kW+QZtk7R9c+/Vt8ylZewdX909XamXtg87UPQqcLmtff+7OU31bWfuemWkzdkfI2hvOOOZq/lzGflFg/rRaLln7S338a9pLZOxtrySGTVwjYy8z5YB+gvYruzuLeY+9385qD/NHe1OPwvld/Xb4/DoKRsEoGAX0BADyVllAAQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1tjTSTbdISzOxMLQwTwYALpgEyg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAACgYAAAAAAAA=eF4NlHs41FkYxzGolMXv/aEL+c0kKZtalaImR0OqLSWFItKFZmhZdLOZUrqwGezEbLVDLltCW0l38kqmWiTUbKlsyBqrYTdtdJE9f53nPOc55/2ez/t5XovsT95dfDviGFM3PeLkV1jyXFbYt8kUy00qCu2aTXDLR/vJomAzlPZ4+ZfUmaI2xaJFuY1Brm+tAwTbEAKh1c2BAjL3Gl/fT8pgQJF9enQAixrFn90qjsHONNfaxvsCInlXNLVRyOJOvsFpWytztBZKo5pztJU/OLzMFJ4xx9X3REMNJ1g0FGlnLBwpIEGrvyp5FmWOJsd0rNYlMijNm6x+quAT7d5+99/H80lQTeCL0E18snXEOsceBYODflkZygYGdc/9qxbkjsZD6hT9HhFHNvS+GH11IyAzJWtbwmRrUiy+9FI1xJF8H7H/wDOOmK619Ii4xRFJ6/wceTFHjMZ9GmNaxmDIzOGqzw2ArywlClk5R0RhhUvtKgFHFY/NVOwA3B0Rfj3jXwYzRZmWaVcY/KibE5MykU8alpN5D0fzyaimS+M7bgOqrAUFw/1m6Ok7/acxE1js5fRVoXYsNgkSPU+lsxjwUBrnuJ/F14Yb+2sM6aq8fT3tNkc0dwzvqgsZrA6vENvUcaSTi9vCGgPWhcV7e7dzJOmL7Odx9zgSKZJdLNNlsSNhOEjlz2Lmb+0zeJ4srth8fEfnEIN5VrceX3AHPDnpvX+1O4vPIg1So6aw6GJs8zaW1nM5s+aDfSygReej7FWJLA6bRurOSqY8lu0KD1Vx5Fxywa2NVRwJC31+6LOYRX3jgX5zDWD+Y48FIyoZnP4oafMkZ8DkssX5e7oA05y7FpwPYXHhlDUGW/dxxHkj/5ejOiyOqD3gKasBdGk9nFywksU925+GzQ6iub0qD+4WAvbVtU3c+ZwjKaGhTZ00Z+e0QU/NfUDjrtzlTq84YnfjRb+8CtBGK0+KsWaxKCT6idFRBid0d7TI7gDqLhd7aM+bIW/fJkt9XxbPVq3+9eppFru7ctvjRwK6xYtPD6xncd1ZvbYqmkPiFhrjUQ0YlHzHKjsY8EPIx4DMeo584Q9cXvKQ/m9pcce0vYBLVmV4688DnL1I3T6HnreeaNK5ST3jWZoojruwGL/c9mLbZcBF839ky09x5K90NmXZ34A11lptXB5ggpPkRslNBsONWt8p3TiSqpsQ+fYAi86OefIiWrcsecXxrP2A/m8eVTo1ARq6r1c6XgOcu/UU96we8KDmre8rV8D4PFvRT1EMlr0O6zU2ALQzr0/aWQ74pWbMijl0/94hwq92JWDAH+/KPcSAsUWiyNoKQLOpJ+7yqCcLykoTTt4FDKkVx5jLqUdvTBRKUxaHXHu/cf9AfTafP7tPwOKTkiu2a8ayKH0am9dkAhgtCXAwZChfudlav9ccSe63UBcspT79qj7aEAL4JGyzNFrLoH6vXsegD+CMUpf/JP6APuoOzbAbi0Hp4XNrjwPud1R+Fl6knPsP3Y4ZpHlfp7tG0jp9hdb6o/U4UsKzyU9VMfjOT9w2rRsQfm4Jxn8AJ86rn3FGAfidc6L8BgfYZulYuJf2b7JPtnD8BUCD2WLJ208MNr3BoVc9DNo7vWd2bQV02NUbGHcJ0GhJe9CR7YAtq108hfTdfeJePGHM4HBb4+XwFsrJ9ca3FXNpP6a1Gx0pA3Ty7uZn9ADKCmaFL1UBztwXoHfBA9B+T5Usinokz9qtY9HKkRxnSWy7NWB//bnsgWOAH9Vzei8yLPpWakYKkgGrNacyfCiPhnANSCSAnUbb0nYfAPSNlonlDoD/DLb4JTYDhg2cvxxM58TKjEmlOjzAYv+xpQ+iKK/xeoFT6b2K+43ivAEGc22frLNbRufYQf4kJfVj0NBLZ/4XBo+uKmp+qqS8Zzl8f4zmzS93FiYFUm/DzmiuSwEfHItbeJKe+/FyhA9ozl2BlqVu0YARh6YfrDgLOC6Lv1fgBej8aXGXYgPgHZ7KqtEJ8Gv/bukFmtPHJTilooLBDc8P5+6kHvDyF337IYbB1LK757uiGfwfFwjqiQ==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA5QIAAAAAAAA=eF4l03kwlGEcB/CVZktu1r377mujsI6hSIf3N2nSjDbrD7mqzTFJtY5oLInWagwzzDqGmlBE0TUsWceQTSlXrhzjnIlJFBHKoKXnXX995vs83+f55/k9FG4QV//smAv/ZkKNtgEODWpy6qWBSILNNYoWPkolnDS2ncKp+UTfgPxUPe8FURUxPp3ErCOw3CPqErtWYteMiMY27icCWl1Vli5PEg7+vT2v7eeIjqIl++hXq8TLukZrQSEF3pR3ZGj0qIBI5Jf08wYNiq77CMY9WbDK7uLFe7GgiFC2KzFgAYS+/SLrNIVEl6kYjUhT4FlpyH4rm0L5VF9sWioOUbZhFTQKDqMi9dn1MQwKl7b3uDUxIEVCoR7vpkPYSI1ma4QJfPCds51Sp4O1Y0OJOJgObPegxfIKOjhUjrixNukwdX49l3qGAdNazaWaOQxoqxZgnEkGVGHmpZKDGEhjgsY9wzGYVdX6dUiCQbp8VHx/EYOsC9L4zxZM0Ouuj/W7yARn43SP2jQm+Oi7umxVMoE+Isw80c8EalWo460FJvQKs8UyJRxUS1obPPfhULrmPtmkhcPhoeLFAD0cWBFb3ARDHDziBhPijHHg+WVcyzPBYe9uaYQKHe0fa77yD+Vpyqc/Vcg09dPFzsgNy5VnZagf5E2bpyPnTO7a5Bjh4L4ZY6mPlOeHOUrRvcz3szreSF/dnG9qSE/+/MQEeufBbFlkAVKc2UUkIzcepxgGIm+r1bp5Ie2KQ466Ih+0sPk2yLqhRCUzpBO/eZxB9trkpTSk2sc79/SRf5XnLHSQz8MdzXWR1Wx+CJn943IDyWwb/DVZD8nx98PIc1azcmdyPc1Qu4zsCQXL7qQczkltUmI0dIGcR/957jCpakFnO2nbWt470rG8p42kZgck9aQil6Va0oUf36WkgqhzCsvaVxRznWglU9j98InCluGsHa+mKlzen6xwxlqo0DkvUWF8/c6/+A9EzzdtAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA+AIAAAAAAAA=eF4l030s1HEcB3A1dT3IU3EP7Pqec4eLy2iXit8nkpaoMD1cqZmHLqHzeKfEdZanVu0klXTJQ1lTVnkYIunxYlZTNIqsJtfuYjhOo/r+fv312mef9+e/98fEKPJbkTXoE590psGKjsCyLKntnSqWONV1LEB1UkGcd3PhjetVRE9F/MgS8W1irCzsXGRCHcGe7pC77GglXocOsfL/viLYfTU1Wxb3Er9rq8LcTIcJ03AvbZGplmihZTcd6Z4ixI43Rpmxf4iHHcWBgw9oUD7v+y20dA3wtUyaKtsGInRhyuFEW5AbDbfyH9BBpGazRvYzgemqqxcV2oFRGxNQmMCG1HSL2jv2HBDZTvUV3uRCZpHVessXfLgRs7TgPVcAm/WHPPd2u8OjT6Vrc2PXw8yMRuwRKQT/CsPGIYkbjMYpZd1SV8jYp9GNyddBaUFJ/YJSAJfmUhZSVS4Q9dL/0fc7zlBkF9Ke/NIJzAYqtdO/+ODR9apN78gHSWLb1SQJD/Z5dypDWxyBk5d7+SfLEVj10bSwQi5YdCw6ELOMC6t8vpRXFjvA1XtHMs8KHYBdd3037yMHIlNaHzfkcWB6+aVw0XYOTGZ4l1SZcaA/zSCc/4yg0UKo29CAwHzaYzK8GIEx+cpzaQaCrbbSxuooBBefhkQLQhHYRpi5BvgjyJyaZ4s3IVC+lRr63RHUMv0GdwgQVK3TuPvzENRZq5rlHARfJ7yPl7NxfvZpWo493uvwAQuBk7jVrpeJ4ENEyM5F2LUFDrQTDATz13LFJtiBJYzABtyLzl3BOgU2nT7XeBg7mqv+tg17WK1e7Inlj8oqnLCSo+00hB23SV5gYaNTGPfpWGHUSI4NNkh8kL0GKxhb8FqNLWBY3bXGKmSTgaRBQb5WpMSARE/2Uazb00+6sqxLQ/pmtuQZqemF6ifU7PywmVTpM9FEqv/5o5FUlhxMeVczRfU6S9BB2VNaQdnZr6KMicunbLfPoTTnKii9SrIoTzf//4t/fbRDeg==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/MQpvVlOYmA/N+QE9z4+cj0jz2Q+M2JgP9R6Xdb8YWA/Jqd+0JdhYD+cge6u+mBgP34+jZn/X2A/Z4+w8oJeYD8oYOsOTlxgPxAPPRodWWA/Yp322JJUYD8oFsFAS05gP/pPEcnCRWA/aao3Ylg6YD+3WyeEVCtgP0y2WwDuF2A/zAJxmYL+Xz98JuaQrcBfP7DLZiFKdF8/3YXEfGcXXz8o0pGkBaheP3RDyvQ8JF4/4SQ4xnqKXT/cRhubd9lcP3CZg3BREFw/6O7rtrkuWz8JTt419DRaP1B8yUzVI1k/fkKVUfv8Vz8QjHwMgsJWP0dj22M7d1U/OM1k3GweVD/KcY4F1rtSP7xMaCFvU1E/vBovwODSTz/r05XnDgRNP5ytWzmIQko/3Ip+H/GVRz+H6yTdHQVFP+jClSv8lUI/trEUcVtNQD+LxJxstF08P9g5EZ3jeTg/DmVTacHxND9DUq3ltMUxP0SzZOoi6C0/Hxt5cyXzKD8SpWPRBaMkP17AULxS7CA/WvmEBWeEGz9T+30ZvS0WP7/GR66/uBE/lKRClHkTDD+MB1pQRQwGP5jx+qIeKgE/Dur2Ypx++j5T0d26k0X0PjQZ79IFwe4+4OQ5X7Ug5z7IxanVVz7hPmYKtn4uftk+PCdHBwyv0j5O6EYjcCfLPuDfHHKwkMM+Pv7EBen0uz7NNFxPQc6zPjiyZAP106s+ZFNIjA5joz6OZvL878maPiz/PBoOW5I+YCcxZ77yiD4OiXoz2dCAPrbXwBQMfHY+ThFbgUnSbT7E/klLCp5jPg6FsAmDmlk+rR8gYVmTUD4+13pY6UpFPnYKojhHIzs+Nen1S8woMT6/j1KyZIglPpLPwkui0Bo+7t4WrC+SED7bJzVdj1QEPsVi/GKtw/g9lRjgbev17T30bDYDtwLiPdG+YxbuidU9crxNrEGpyT18tTe9iIm+PSkfhdeOOrI9mkILKEb9pT2Gh51zPBmbPf5p5xkXU5E9VRKq6uFphz2mN0aYtgCBPWqZr3Mjvno9ZK3EcJWodj04PlLFGmF0PQSgiUZPH3M9os6GBwV2cj1CwWmCAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAA7wIAAAAAAAA=eF4d0ncsnAEYx3HzUlU1g4haOVGOWg01nheR6tWoLYdY7bUENaqOSlHaWpVGLiG0ShPjzEQHzRldYjSokCJGk/e98Z7Y45SjtO/7/vXJkye//75yAf59J+kFiGGPCda0hsI4A+25sMBB4sxHt6VqqchesmrXTGgs8lUh8UBrOgi5ODhQuargjRgr79erWzkhxS53ehjVVkjeLF2+xdoEYcs6Y+gGOsiV4462ea4Kkr5Z1rYulkN+Vl//5hh0CN7ORkBT3IGHwptlCRpikOo/DmKkiGEyP0zLkiuGhlblJPawGHw92wKn5HHIOKa9qQvAoe+XjvZKKw6OFbYlzmoSMHg97mFdIIHJRTnZiw0JuEaVprE8VoE3lBC4NrYKVQcPnAVXV8Hs1HaCNy4BRv9Z6+9YCZgMcxlu+zjsSBpORM9xGKN/n6rXwyHKfVMtol0Msa/KG+PcxeBaZMIVzYjAnO9QhyeLAFcusL1/TgQfhsHYtVMIRuNZNlphQogujXCyUxTCWXDTeUO+AJ7pFK0rcQRwD8nXrXcREPt+BXclAegPF773mcOgI8SiM7cLg011/p+75Rj05+r6PUrBgOaLKbFCMHhrb7qcDBgMeSeemVljMDrvz9u7hEG2QfetCi0MJnJHjeJUMEiKjuzWVMCApUJPYf9FoUrbcWD3EAVWxunMUykKzB+2y7JdFD7GcnVl2yi8LI9xLd5CAU2t9ircROFG++h0zQYKG6q9NjqEZSc0aeM6CvGa3VPxhOqR3k8sCIudyur2iS40/C7vLRBuHeUsjRCmXTP4946wtlIlkLS+J96njXDE0S+GNFV5JKiVsHl2mckjXOuI8uogXF4yFJF3TXjwbfK/UpuV1kLITsyZaybM4HtySE8zOW6kn1cy9UgH2ZXypJzecCnZaUVe6gaprjxfQjq4viciFbBChaRLcwkC0qPsearrTy0llA7MSEofngflItOe0i7QkrJhhU75JdOM0srTlPI/3eKpPw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/A8soz9NYlA/BNdwB/PmcT1G19bSRWJQP07lb0c5YlA/CgDKHiliUD9HbxzcGmJQP6a0+kYbYlA/fmmRJExiUD/dF/B642JQP1riXGV5ZFA/cEy6WvJnUD/Qw4R3+25QP2Qttl98e1A/cu78fTSPUD/g8pdqlbRQP76g1lZqGFE/kqY9iNjxUD/amhx/XbxQP4enTOW8eFA/sCZwajwkUD8+XZXtwndPP8/DXGK4eE4/vNLwHF1DTT+8/0A1lc1LPwkGGNz1Fko/mLuJoos/SD8uIHWOvzxFP+ZBUorwy0Q/Zk9+rRzxQz8uMQgBQP5CP7KxsZBw+kE/3t7XWhfpQD+M6MI/85o/P+COtMu2VT0/cIiYWFkJOz97pZ/Y5bw4PwSJJ9lWdzY/0GqRYVo/ND/gUKtQERsyP9SroJzbDzA/hgRVa5VELD/AswYf0KsoP0kGY0uFWiU/UneIq9lTIj+2dEMx1TEfP9CnybhnUho/vASHOyUFFj/qgUHsRUMSP58hIP4GCA4/HtYOx1F6CD9cS+OyIMcDP+q8XrPCrv8+1tUEntAn+T5kcQn5lMzzPjIdCSIq5e4+Zw3snD7l5z7AuEkkIVLiPnsoMbWY2ds+aFgnbA781D5afa9Jr1nPPn42Re15N8c+/DKgu7wLwT7q5934/tC4PnAQakke6bE+FajaBFqiqT7Fi9SPajCiPnogswiBmJk+3MPR4rzbkT4GdpDwXLaIPgFcoxbx9IA+F9ISIg4Udz556j5D/yZvPqaRhX6f2mQ+UOZAuJmxWz72qU7fdT1SPkp7nYKr1Uc+sIsoQrHlPj5q3OFBNN4zPtjzANvxWSk+Yr48lW4MID6Xi6P8uikUPta32pYtJAk+fQyH5DIe/z0q7qWG+R7zPYiQWaVkV+c944HSkmhS3D1NcNnLNRnRPebevo4MlcQ9likC18PGuD3FJTd0ZvqtPSTxLtc9YKI9olifP0Ualz2cw5J6gkSOPeZDphkmCIU9Vh1wzkhwfz15/FVyH195PfVB89Ws7nU98CM0ETT/cz2YoeDVhupyPQc/aEjLUXI9cKwg9mEBcj07QXOIAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAAgIAAAAAAAA=eF5jYBjaYMVZ5cr1odPtsn7+4l1SrGIvEnZOKkZP2/6EGp/GDEdte+bn/HlCQHqf+t8ecXtte6PQ27tm2GjbR3YxLf1iqW3PJnfSiNlC295JzVnkrqm2/Y/n+v2KJtr2fTc/ak000raf+CLwUauhtv2BtxaSLQba9guiul590te2z1mj8n8ykH5y59LqLCCt9uPdkyYg7ZRlN20NkF7Mk6FxGUgvqV02xxSob8ekbI54IH2KJ8vpEZD+LjDv5Rcgvc/T/VUQ0Py3Z/NfNgLp81fPqWwC0g7+nzYeB9JG0kuKzwFpxpsLnj8H0l1SEx5+A7knVcvnO5Dey/1rFwvQnZwpATsYgLSYh8FnJiAtX/I+G0Qv4WJPYQTSDl9u7wbxz+8LDWQG0u3rLN1A+uKU/d+C+OoBpx3+A81L6pCwBInn/Z/YBBI3D/rbCzL3EeNjRpA5qw4WJ4H4Zrz5C0B8poVP2kDmLj43wwkk3vujPh+k/4nQkqn/gOYtOXE9BiTut8SjCaT+V/U7W5D6PbpftoBo9WO3/4PoM1sW6IHsOxAx0xtEB3xKjwXRPBUuGSCate56HohelXiqCET/ZFEtBdF75nWWgehpnNHlIPqHzFUwnXNYugJEK0S5gGnn2mgwrTo7A0zz/c4H0xLiJWD6UFwZmJ4zpRxMv9OuANMAabnbbA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAfwAAAAAAAAA=eF5jYKAvmFMeJ7zrpYh9iH/TlDsusvb2gaeaWpjk7NfNK570QVjO/sY6R+4rQH6ec976O09k7TkbzZSa98nan+RIzprcJWvPtkVx/1cvWftXX6Tybv2Qse/YaNHYM0HG/vGJvxePO/2xa2/qUTi/q96OkDtGwSggBgAANIwujQ==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu
index 28acecf9ff5ea9d36604635af3ffc518bb1c9691..f5e5e0b4f931ec9f30c64d40b98d6017be2dafdc 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_210_t_21000.000000.vtu
@@ -1,36 +1,38 @@
 <?xml version="1.0"?>
-<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020802794323"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011493059061"     offset="1256"                />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="40" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1656"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.3009809909"        RangeMax="11.109644851"         offset="1744"                />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011493059061"     offset="1276"                />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1696"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.3009809909"        RangeMax="11.109644851"         offset="1780"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9831747643e-11"     RangeMax="0.00014207824195"     offset="3836"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000053025e-10"     RangeMax="0.00025917159252"     offset="4892"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414884478e-10"     RangeMax="0.0020000036603"      offset="5980"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308420319e-10"     RangeMax="1.1468387829e-07"     offset="7096"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.9273209465e-11"     RangeMax="0.0010528545293"      offset="8180"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9296"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9552"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.9831747643e-11"     RangeMax="0.00014207824195"     offset="3892"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0000053025e-10"     RangeMax="0.00025917159252"     offset="4968"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1.0414884478e-10"     RangeMax="0.0020000036603"      offset="6076"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308420319e-10"     RangeMax="1.1468387829e-07"     offset="7212"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="4.9273209465e-11"     RangeMax="0.0010528545293"      offset="8316"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="9452"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="9728"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="10608"               />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020801033368"     offset="10804"               />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011489500356"     offset="11512"               />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="11760"               />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="10652"               />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="11824"               />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="11560"               />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="11840"               />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="12132"               />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="12752"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="13052"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="13364"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAACAAABABgAAnAMAAA==eF7t0PszlFEYB/Bt253tRotqFqVFSKeQWruKDpvSBRtjqnGZLi4lly1DKVGakhXJbCatsrqNVIsmYqZWhXRBuiilRZqoTZNMCFvqecz0TzS9v3zm+5zzPOe8h8H4//3L357WnOMjnib0b54k5Og9L7WlP/WFZa7rrans4oLxuW6EfjYuMwrUIzRs+mCU2IPQWOmGLqPlhL44M5HlAgYoxJ4a0GA1N3OnO6F24T1z14gJZddOvqWkhMpfmApvw5x7laNLMl0JTfSa31kDRnySmF1ZSuglYZ+2w4XQSk7D0mZn6LM/OluxhNDXqYPT+oSEPif6ErWI0DTpxJuRToSaspW5y6AuJHUJ7xYT2n22K1YqILTd126c5yJClR1TXP2hXlghGIpxJHTZiaZRJtRPVKhLFAsJDTXXnnoLMg3aTHodCE22ST/sCHlOaH3YPsh5fFFHNCgr/XKVD4ZbGZrsBjtIRuhM0N87ir0R7JIVR9iD3N6cWh7YtPZUsTGYKdIUWoA1ZwUsF5BhFelsBL7hMRvl4CRuzbXNoPOsb2k3Qb8epX0paPFNY/0BdONdZA+B9zg+Chu417rT0pP6oJqhGnYAu70aZs4D30vorkPgqo9Z36XgOUF/Uj14rMywpgCcINeIH4PiYvccNXg0JD6/Cix8UxWCGuse+eE7/NCoDzaDzTqbuGFw60OS1Ad+NV9+ox/MDYjJ04K7I++X6MCF2RmJTHjX9sHy70OQHT02/2ZBfvmlmPsb75vV6o5zKN+kEvf12tcf+QXZPzufjIKtezNOjoN6kFmsOfZpX7/rHg9GrFgXgpmoVFOxrzGr4DAD9M1epYd5brTuMq7XbgpLxfxMv+gpG/zKbw3GegIvRoY5ZU2RKc67y/4ZgOeEW21PwXPTqxMqcB/rdH8jrnPjIqqxHq16n4b5wvX8dsxttsxLOOdJk+157J9iacfB/7oQ2BCI57od3LcL1xMPKfuxb4uuRY71/Z3Hf+G+7qoJY/9n6Rp5Hu+fzO9cj+dmBM+Ow/nuqdWXsU9WntKOfd6KH+m4T+7k8gHnWmYHeY+9QwonCOfFz9B6Yp9RAb2D+9pabNloXs4xFZ5T0jvggEpEEi+cV7QtfhhzT0JY+dj7t1xNRs1WHhhBV/vKX6F1g0obvEcl04mLqps+eqCiB1UC1IBXvQG1GGD5oNZ3b4WgyiR5MLrdZ2gHOpDrtw01DJ4ag47sr4tC/wBY5Zh2AQAAAACAAABABgAAGQEAAA==eF5jYBgFyGBOVbVH1l4J+8DdBSIlynz2fwqEnNW6Ze2nM7ot3bVWxr57rk/2Nm45+6BEXXbGr7L2EwXEDojKyNm3xnI331GQs9dlXF+7X1TOfufyaT+vysrZG6fY37HmlLPnfrf30FQhOXt/4yXTYr7L2qcqH/KRY5SzL3E/uXH1HVn7ygmR9UIvZO3FLHKWuO+WtWf7qq0YdlLWvvf7Po0TvbL2EvdrPmTNk7WvK/3lnhgia7+//EpES7asvfjzWVqKQrL2cWHypTpasvbNLyebnN4nYz/hmbKO+QMZ+7wjL6Kt6nntdUr2lZ3qlrF3qUo1XLTsph1fM0/krowvdjB/Oxay8C24uRzOHwWjYBSMAkIAAKDVYE8=AQAAAACAAAAoAAAAMAAAAA==eF4z0zPWM9K1sNRNNzCyTDFLM7Aw1UvJLCqp1DMyMDIwsDAwMjQ1MTUyAQDHWAmtAQAAAACAAABABgAADgYAAA==eF4NVHs81mkWl0TDFu/veYxLye9FUjJDUi2ZnlxKZiQl5c0lNpeM3qYdl1nbasaI2pJ7wi5Rbz4vbULWtDXTd7ZYEXJZUSq3GPWJCpuSt33+On+c53zP95zv9zxPkiuDzDdYMh/tH7+eO7gYnU3eETMLdGFMIrak316Mj5ryP2n8SxdfuIRkVmzThbs8dOeoTA/t8ZX6ofXL2aB/6IWNbRbMZOhZxM/lejDQH1zWNyuBrpvituKQBCmeJgFzuRZs1fCXVa8DBHyRN3ip+TrBHw+ldbTNmLNzRb+5+2dQaA49Gnm2kCK3IWtvnLM5q/m1v3RBP8XYAfbplWMCHs97ZYuXZuzEzMTLciJlQaWHSZCaGdt1e52aYbaAg2otbUUDAm4crZM7+kiZvSR8dIlCysraQgLWrtXHtLvxN0a2Alw0snqLB0T2pPW6d0yyALfwbU4OiRKIV2RfJa4mSLsbseU8E3Ay5cb8Sz0Uf3n2eeY9iOxhzstfcl4QmKfIzjRfJWj0bRzQiSewaLzw5D/rCGKuvtBjZlK2Pb6jpMtIyjTfdit+PEOQmKC+00dDgE+WTkLWe4I1x0ssy5dS9Ef1p1qnUvytM2m1qy9FX+bkpit8fpvdrl3270Wmut/mlH5CQOqbsQrH/4rszNjd765xnAKD1JN2L0SmzOwMeKoS2YD6m5bsBwTphc9VI+soDHOMunsdKFozPjsbd1aA6fDA8aJ2AadsvgkyVRHo79P8JIXnDbcmZg51EhgcN0+SHCCIO2j9uWQn77/xgIHfPCnzodcbsu+I7N8Sy4yyWyJzjG0xfMj5mjxZMV2wgOKWwU4njVcS6J04dqPGkeC6X8OlBCOK4rbZTHNLisNzpWRJi8giA252t4gU0It1Tu4jcJE/9ahKorCO3hPy92UUocudJmPX8v6V+8b9ukR2QytdrYbjuI789IPRAMHNs0UH5veJzPQfWgiuJQibVqrtseF+KdduetxBMFOtV4gLBCtbNy8KLRDZeqr0MHGjODZq6+VdR2E/6Wtd709gtVBxeZU9hVdokvzLUwQ6iywcXjcRRH1oPXfciUJctfltXaPI5ieY1fzzIoHpz1PvSw0oPiarNm0NIGDFb+qr74osz+unQ7tVAvIePlOvcKbo6ur/8zyua+BbZfUvqSLTCbGU+74m+BhT15M7KeCr7rlhXVeCg9EhpeGRIksqyzW5kEdx/7bSbsKe4AjeNn0iJdis4ebVz+tiVZlzepMEXYMeO3afJjjvsa8g5DBB4bv3AxaFIjs34eLsvYlg+1adrKJqArs1VlW2hQIeGtXaVB/l+4jq6JDf5LH1d9ivIGit0jLc0cp9Ume1oLaYQKWfFuwYRfCH7/PptQiK3mn39cb1BBOptT3R4RQFK9Tbx3y4rx0L/I72ElQHDvck6VOsNLGw8R8TWbh20OWT6hR+jYExS2UcR7p34gHXTVPWmWpzhCI2waD6sjXBqGLl43dZXGflnUqr5wQb0ipWhL8hcN/Vk6EWSeEwuwyBiRQbnrs2x2eJbMuemY26LvzdlPNM2A6KtO5xuZucwjNr05mSMAKNE0s0+wc5/7MKzaW8fzCGO5J1KIR0Re49L84/+l6GdgzBqbIy2XYrCnnLxqn9YwS/z/vB25L7fDykafzrEYLe8kj14q0iC1kVVKhVRjCVfue02hCBuk4wW2RO0d5nrN2hR7HZQlYcsIJi4d5Hs9lVAjpq6pKiLgoo/FDTbtIrslfrj7TW8fmvmnnvmEoX8LTBbqiqhECSoWn6/Wq+h7z6HNdpguDPGu0D+X30+i/1DKvkOv7vkvE8zs/7ygat+DSC1U8//lZgRzByODruwSMBKiG/+fQ4geNrQSbjPDz6lPnlObz+0F9v6WtTKAfD4lQRBLfUjhnY8nuQnV/TpfuYYCimIv8+94lRcNzufbUCzCJHJrfFS5D8qSSw7CWBb0dz5bVzPFpkL8/4lvssPdekZBfBFscPORfbCR48mjGaaCDY9Z1lrNKBwOadXfkA/7/2L/529iS/B52UKPXTngRS2dDC2D0i88y++etoPsH/Af116gE=AQAAAACAAAAoAwAABAMAAA==eF4d0nswVHEUB3CNVRmvzS7L7Np7XZJI01iVpHvsKs9ImmJ6MYXkMSIWSVZ/FDNl1JSW0VotSw+jJNFY6xnDtlOMGRVlMLIeizyi8eh3++szc86c7/njHI8W1cj2xO9HxPPxyh0sHNwU/QX82BNksyWf/0EbRaYdnNmp5KWTE7dZokh5DtlkdFQslRaQ4k8+Y9eWZGQgP+p+BvGG1PLtfiu/NpKLfe+dZ2Y7yaqckhum8j7ydG645ABtmHTJS/fK1Jkke560ExYri2TbxObSWIkOmO9OyLvepQ+OmpFGny9MSGSyGG+KrCErxE59toQAncP0Q7IMAopCeGGNAQQY+Jjq+DEJoOvqR5V+sobaqueuF9KswSbSo1LLsIZkUyetTIrD+MSv0HAch71Cm3cVThhU7FwfVBhxQTQUr/T+xoGb3Q4hMMCGBPVDr9OebKh0vbVvoJoNeJ6Lz5kFZEsAP8WJA5wyl/yNWA5U98wpFa84sH+88JHbLAeUIvFP3NkKBNxaZVaKFQiHqktF9VbQNCLkx/y1giBeZnmSGxcIbz3a11Qu5MdL/INquBBYez7RQMOFhstxxSo2Bj3prbfnfDH47K6fG3MdgzLHdputYgxs/dfZtHoM6qayGX59GLyNXzq2axIDtdDzz/waBoZGfrQVPRzyJJ6Xpw1wiB6YLE6j42Bv3LTczcChNfoU09kch2/Hq+JU6K6M3IuznRY4PKjMvnLOEgej5aKFp8jXtnjaM6RwUG2ehZTX+Yb7IlWE+4ttSKJ0rq8Nzbmq7tTlIsUCRaQAuUd2NdQQGb1KSodRfrCka7QGaazhpRcimzp2T2YgP/YniS4hY05O7/BHHmWpilyQ0g6NBEM2rz3msZERK6xwc6T91L1COnJQcOguA6lOrfpB/WUN/b7UFDmkMGmlpDGOm7CQhoKsFKr/2Gxpk6rLdUfjzJAbDYUOTGTXlt5gKsciNbiN6k+E5URQBpudtKMsf9m2Ts0nh2aPUmptZL2Uzrqrnf/3llW0UP4D5Gg/3g==AQAAAACAAAAoAwAAHQMAAA==eF4V0vlPk2cAB/AWPLLgNEBroYg+fXvQVikIhhQNzxehC2JNSIsjiBEWPOpRJTFMipECUhtQgscURbLKNqgJOhTSFUQmEU1A8QglngiKKLpKZkUEj4q+/enzD3xKIlSG//YNJAxN7uwMFBB09VVWr/QmU09/bXiz/wY6n981wm3No40leqm3z0yZJk76cGAltWknGWHFKbrYVLxi66N6+uNwku239c1U8yVw3po9HbTljWmsIKibOmvaV0mOuKjboMvovTxIM89P7DY1vqL2+4hrqByn2/UGc0+xl04MyHKanbNgLFtTFesOwq2wTvp8Ow+aiEnLyTc8OJyGF4HVfHDbDjwvLJiPKsk2tbhOgEHqp4iWhiLIrPVOi8Iw9nbgreVSOIYC3MtzDxEYrifMXu5kMLfkSlunVYpnWuHXujwFnrx3v77MVeHY8NGySG80HpVx9/ipo7Gge7pIVR2FrYnfstb2qMApu7jW/i4SD1XJ6R5+JD78udAxU70EPTZOdOu6xZAIOWm6IiVuuk5cOFyvgFVpzkvok+NueP+ZwRlyfE7VJPYnRmALp/dItlWG9+cDOrLvSzEk3B9Ts1SKVM8vyfmnJLBbUhOTAiTYPxCV9aFCjPGxE4PFPDFS0nbIDzcyUDn6XU4tg8Je3b+GKRFqr0aJZ/8twrIZRDO6Q4QmgdU/LVaEvU3xTLGfCOV6I9P+kGC63ZGi+YdA2fZH+6aTBLZ1WepdZoLqFn1BxzaCKwe9orZMggeZgtZ7qwnqSotGa0BQHvr55+NxBHdiSwSbowhyPfXlrQqCqRjm92QpASdkY9ctEUH+6xzPokUEFYqX8uBwgqJdt3mWMILSO+4bGUICx8Rp/q+hBH7xTMztEILRQ5HxOlZLrTl7kv2mlFfBwWrMGTdZWJ8V/rQsl3XLlPFmKqssaZVVzfr/mG3zElZ/e5hHzCr54WnwQlYSd2COkPXMPJNWwGr3HzHyWacv1Sh5rD1clz6YNaRAfy2ItTK3fJPPvQE6mc+Gc9e++t7nZ5aO+Dwq+8vlM+vTx26fj0+fverzO/l7Rfc=AQAAAACAAAAoAwAAMwMAAA==eF4BKAPX/G5nAcpPYmA/xbpMy9Kg3D0qFVzFRWJgP8qCHAQ8YmA/4Hy/OSliYD/bwFRdD2JgP9ohBbvhYWA/GleM4p5hYD8IFpDTMGFgP1IPImqUYGA/N0Pl27ZfYD9Cwuv/dF5gP5727pawXGA/KrO8B0VaYD+6KC7891ZgPyopYKmOUmA/GAOdP7lMYD/yU811HUVgPw88VQhOO2A/Bk8qmNcuYD/uEJu7Lh9gP6TdsCWvC2A/XnbpuZTnXz9ouQjlh61fP1m5a8PeZ18/yU9rVCgVXz/PqoyF97NePziD/OECQ14/DuhBKyHBXT98wiL7WS1dP1h3LYTVhlw/5nximjfNWz/I/m0aRABbP2ZEem5VIFo/M4/RVAEuWT87IeVJUipYP4DeNljNFlc/OomB+jL1VT9ydF8ZxsdUP9/EWD/okFM/H9494mlTUj96F9DPIRJRP17gkl8XoE8/+DYV6iIgTT8PlvIBN6pKP/iV9w3LQ0g/OyCyDdvxRT/Atw3S4LhDP8CtKsqfnEE/6EZxvlpAPz84nPUvsos7PzyN/5JtHjg/8tNTBzD6ND8Sf4/EOB8yP/soFoAXGS8/aCyP7ReAKj+IC8UNXG0mP/SKmpZc2SI/YWo4e7d2Hz+iRN3w3BMaP6RoShR1dhU/GAZ95HyKET9XgMDChXgMP+iAYuqG8QY/DrWSWghcAj8sn6bMKS39PvB29mxHBfc+TTd3BzoJ8j49nQJ7SBDsPrAkDx4lruU+iIBqe7Sh4D7C0Jod5lbZPjoB2r4wK9M+gFSB5cDMzD7gg9uYK3zFPmYMcK6V1b8+kOMLDARstz5UakgjMB2xPobM5N6b1qg+3JmV377moT4XtrmruqCZPnsiKypaOJI+MnxHz2u7iT5iEpbqVQyCPhmuZGLUJXk+JtBlYihncT5KmEetKu1nPuDFn1CxVmA+UlqVDs0qVj64ORGOr+BNPkcBHr/jAEQ+kbilZoacOj6Smcc3O5YxPlrNZ3WwGCc+JZAwMrojHj7gRm9tpIoTPviERvo9Lwk+1sJvwiEiAD70LtXP05L0Pdi5MW3fR+o9pBfr9sdv4T1cMWDrAQAAAACAAAAoAwAAGgMAAA==eF4d030s1HEcB/CY8jBJLmutG1YxpzyUlak+v2hqloo8nqeKsspTllORuAhni2RyzblRoQvn2pDnSI0rD0foSLnf7+5+d6666xgJbdf3+uu1z3vvff76fIrYLFujD1lYh136wvPvOCR4hi3aW2divvmsW8LB29j7pJIFzZtUzLKn7EyMcxLGs+KnJJ6IxT6Kyi+6RoZizNdcLS3vFGbMHgvk0byw3ccdqIlqd8yvUpzlzXbE+lghRLHEBnPsOxjvzKVgTIez+eN0Uyw/Znlsh2YDRp9TCZQRK/DHbHsuZe4XxG9zepKqJsFk+4BFwDESBGMptX9DSfjNHaAPMUioVk0x4zgkuPjxos4OkyBvNtepTBSw7rPTYzBQAadj8x4V1isgm+J47s0WJRxN0NnYMpUgGPCNnlhVwprucF1Q9jy8OH/J//v8PPg27net3qyCr4zBm81VaA6rpWpOzsN0Ot4j1CrBZYLTfqxcCXRfVbfMQwkjRTV7mGIFdBawW0UMBQTOptVItipgtotqQxOQIB45kpN3hgTLcFvPcrUciob8y0xK5HCzMqXf4JAcOKXR00MSGTTRXRqwYhnMjSxNJnjLQGgu5mlWpfCsPeV+f5sUjrT024XdkUKW16acJB8pfPL/UWJAkYLPsJ0QVxBg9c6B7OolQDCzyMrlEhAzFRbSm00Ag2ORvR5HgFsIrcAwgIDM6tZfwUBAhQU/o9SZAHHnzLcMOwJEs3MMnjUBLdFkeJ85AaPi5msZGwn4vMU5vFqHQ7Jpx3X1Gg7UGYNI9xUcWHdrffyXcJgsu8xZXMDhPjU22UmLQ/C+wkWRBoeItECrTjUOOaP3Dq39xEFbOTodhRyePMCW/8DhxgDLOB/5RVL32BP5VryjfB3d29OHAToJUvS4xuwj0qhinNKGpF8Qd7YgX5Xk3uYjDbL2pjcgL/SwH7xErnkeHm5C9pLJbrXIPkvjlTrk9K6DQfVIIb/Rhoe82t1Sp8/fRxk26Xuj6xVmeu2NlFU1+j3cjgi95tY0F71akr/1fy7r1+n/wfGK27Lef5fJtNE=AQAAAACAAAAoAwAAMwMAAA==eF4BKAPX/ChojjdOYlA/cxZZdpYWyz0Xj8KNTGJQP9yNwo1MYlA/ZglABU5iUD8XpUU6UWJQP0eH1LNmYlA/OI7ir49iUD8YnP6n4WJQP6RLG3R3Y1A/jMjFko1kUD/C8zu5lmZQPyP4IpQralA/caUShoNwUD8MH6HUgHtQPwKl/jpSjVA/FJmkcP+oUD9gSUBagtxQP/1qUvH9P1E/YhJR9Rc8UT/wDK865B9RP1ChfHUE/FA/abGbS9vOUD/sHUC/c5ZQP/az+4GmUFA/Rt9+BOH1Tz+wyn9+7yRPP+0C/7RGKE4/nGqK9U75TD8EXZ2tYY1LP6TrMsc4xkk/gmJ1N83HRz/oYSkxnepFP+rPBrFQekU/ifoetd/GRD90weYu7/1DP/ydeUHgJ0M/SeJq701FQj+UlneppFdBP8QwgEfCYEA/Ir9mR5LFPj/8AGaxHcA8P5oOejQLtjo//IZQdESsOD9gTERyv6c2P7ACG4snrTQ/SfkxrenAMj9EGUp1++YwP2W0RFO1RS4/ZIKwTb/uKj9kvwWwwc0nP7VY6ojo5SQ/24Errj45Ij+pIP4hG5EfP2K02V0sJxs/2H9FxQsyFz8kcNVAb60TP3ysAFSskxA/olebiQG8Cz9dgaB4yAkHPz5Yqa+tAAM//rkPY48g/z5WbmtdXlD5PnCknRXjcPQ+nqOY7K1j8D4jGCBolhjqPgpG8zz9oOQ+BqcWUSgx4D7BdGIKUj3ZPgqwmQFciNM+Eff9wwUFzj5yEdbHD+jGPg2tx908W8E+PvsWskgeuj6Smtehv4OzPhUjgaxh9aw+JEFHTllWpT7iHECq8DmfPqEbdrUjsZY+tugMeHJgkD5vsZsv+HmHPr5n35FetoA+9q166Pahdz5EYwyDpJhwPmzPOP0cJ2c+3oqoMZgKYD4m1Y8ZhhRWPqi5V2aqME4+snr1Tr+ARD6Ri9IPO6o7PmYS5h7VijI+EAC6bMGxKD53/zEmfFYgPn3MWj/4ehU+xHwuGFQQDD5OMIJvJzgCPqRGeorYg/c9mR22kVku7j1mTKQUjknjPX4mDaRCttg97iojnoV10D1MbGXtAQAAAACAAAAoAwAArAAAAA==eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAACAAAAoAwAABgMAAA==eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAACAAACQAQAADgAAAA==eF5jYBgFgwkAAAGQAAE=AQAAAACAAAB4CQAAlwIAAA==eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAACAAABABgAAvgAAAA==eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAACAAAAgAwAAxwAAAA==eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAACAAABkAAAADAAAAA==eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAnAMAAAAAAAA=eF7t0PszlFEYB/Bt253tRotqFqVFSKeQWruKDpvSBRtjqnGZLi4lly1DKVGakhXJbCatsrqNVIsmYqZWhXRBuiilRZqoTZNMCFvqecz0TzS9v3zm+5zzPOe8h8H4//3L357WnOMjnib0b54k5Og9L7WlP/WFZa7rrans4oLxuW6EfjYuMwrUIzRs+mCU2IPQWOmGLqPlhL44M5HlAgYoxJ4a0GA1N3OnO6F24T1z14gJZddOvqWkhMpfmApvw5x7laNLMl0JTfSa31kDRnySmF1ZSuglYZ+2w4XQSk7D0mZn6LM/OluxhNDXqYPT+oSEPif6ErWI0DTpxJuRToSaspW5y6AuJHUJ7xYT2n22K1YqILTd126c5yJClR1TXP2hXlghGIpxJHTZiaZRJtRPVKhLFAsJDTXXnnoLMg3aTHodCE22ST/sCHlOaH3YPsh5fFFHNCgr/XKVD4ZbGZrsBjtIRuhM0N87ir0R7JIVR9iD3N6cWh7YtPZUsTGYKdIUWoA1ZwUsF5BhFelsBL7hMRvl4CRuzbXNoPOsb2k3Qb8epX0paPFNY/0BdONdZA+B9zg+Chu417rT0pP6oJqhGnYAu70aZs4D30vorkPgqo9Z36XgOUF/Uj14rMywpgCcINeIH4PiYvccNXg0JD6/Cix8UxWCGuse+eE7/NCoDzaDzTqbuGFw60OS1Ad+NV9+ox/MDYjJ04K7I++X6MCF2RmJTHjX9sHy70OQHT02/2ZBfvmlmPsb75vV6o5zKN+kEvf12tcf+QXZPzufjIKtezNOjoN6kFmsOfZpX7/rHg9GrFgXgpmoVFOxrzGr4DAD9M1epYd5brTuMq7XbgpLxfxMv+gpG/zKbw3GegIvRoY5ZU2RKc67y/4ZgOeEW21PwXPTqxMqcB/rdH8jrnPjIqqxHq16n4b5wvX8dsxttsxLOOdJk+157J9iacfB/7oQ2BCI57od3LcL1xMPKfuxb4uuRY71/Z3Hf+G+7qoJY/9n6Rp5Hu+fzO9cj+dmBM+Ow/nuqdWXsU9WntKOfd6KH+m4T+7k8gHnWmYHeY+9QwonCOfFz9B6Yp9RAb2D+9pabNloXs4xFZ5T0jvggEpEEi+cV7QtfhhzT0JY+dj7t1xNRs1WHhhBV/vKX6F1g0obvEcl04mLqps+eqCiB1UC1IBXvQG1GGD5oNZ3b4WgyiR5MLrdZ2gHOpDrtw01DJ4ag47sr4tC/wBY5Zh2AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAGQEAAAAAAAA=eF5jYBgFyGBOVbVH1l4J+8DdBSIlynz2fwqEnNW6Ze2nM7ot3bVWxr57rk/2Nm45+6BEXXbGr7L2EwXEDojKyNm3xnI331GQs9dlXF+7X1TOfufyaT+vysrZG6fY37HmlLPnfrf30FQhOXt/4yXTYr7L2qcqH/KRY5SzL3E/uXH1HVn7ygmR9UIvZO3FLHKWuO+WtWf7qq0YdlLWvvf7Po0TvbL2EvdrPmTNk7WvK/3lnhgia7+//EpES7asvfjzWVqKQrL2cWHypTpasvbNLyebnN4nYz/hmbKO+QMZ+7wjL6Kt6nntdUr2lZ3qlrF3qUo1XLTsph1fM0/krowvdjB/Oxay8C24uRzOHwWjYBSMAkIAAKDVYE8=AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1tjTSTbdISzOxMLQwTwYALpgEyg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAADgYAAAAAAAA=eF4NVHs81mkWl0TDFu/veYxLye9FUjJDUi2ZnlxKZiQl5c0lNpeM3qYdl1nbasaI2pJ7wi5Rbz4vbULWtDXTd7ZYEXJZUSq3GPWJCpuSt33+On+c53zP95zv9zxPkiuDzDdYMh/tH7+eO7gYnU3eETMLdGFMIrak316Mj5ryP2n8SxdfuIRkVmzThbs8dOeoTA/t8ZX6ofXL2aB/6IWNbRbMZOhZxM/lejDQH1zWNyuBrpvituKQBCmeJgFzuRZs1fCXVa8DBHyRN3ip+TrBHw+ldbTNmLNzRb+5+2dQaA49Gnm2kCK3IWtvnLM5q/m1v3RBP8XYAfbplWMCHs97ZYuXZuzEzMTLciJlQaWHSZCaGdt1e52aYbaAg2otbUUDAm4crZM7+kiZvSR8dIlCysraQgLWrtXHtLvxN0a2Alw0snqLB0T2pPW6d0yyALfwbU4OiRKIV2RfJa4mSLsbseU8E3Ay5cb8Sz0Uf3n2eeY9iOxhzstfcl4QmKfIzjRfJWj0bRzQiSewaLzw5D/rCGKuvtBjZlK2Pb6jpMtIyjTfdit+PEOQmKC+00dDgE+WTkLWe4I1x0ssy5dS9Ef1p1qnUvytM2m1qy9FX+bkpit8fpvdrl3270Wmut/mlH5CQOqbsQrH/4rszNjd765xnAKD1JN2L0SmzOwMeKoS2YD6m5bsBwTphc9VI+soDHOMunsdKFozPjsbd1aA6fDA8aJ2AadsvgkyVRHo79P8JIXnDbcmZg51EhgcN0+SHCCIO2j9uWQn77/xgIHfPCnzodcbsu+I7N8Sy4yyWyJzjG0xfMj5mjxZMV2wgOKWwU4njVcS6J04dqPGkeC6X8OlBCOK4rbZTHNLisNzpWRJi8giA252t4gU0It1Tu4jcJE/9ahKorCO3hPy92UUocudJmPX8v6V+8b9ukR2QytdrYbjuI789IPRAMHNs0UH5veJzPQfWgiuJQibVqrtseF+KdduetxBMFOtV4gLBCtbNy8KLRDZeqr0MHGjODZq6+VdR2E/6Wtd709gtVBxeZU9hVdokvzLUwQ6iywcXjcRRH1oPXfciUJctfltXaPI5ieY1fzzIoHpz1PvSw0oPiarNm0NIGDFb+qr74osz+unQ7tVAvIePlOvcKbo6ur/8zyua+BbZfUvqSLTCbGU+74m+BhT15M7KeCr7rlhXVeCg9EhpeGRIksqyzW5kEdx/7bSbsKe4AjeNn0iJdis4ebVz+tiVZlzepMEXYMeO3afJjjvsa8g5DBB4bv3AxaFIjs34eLsvYlg+1adrKJqArs1VlW2hQIeGtXaVB/l+4jq6JDf5LH1d9ivIGit0jLc0cp9Ume1oLaYQKWfFuwYRfCH7/PptQiK3mn39cb1BBOptT3R4RQFK9Tbx3y4rx0L/I72ElQHDvck6VOsNLGw8R8TWbh20OWT6hR+jYExS2UcR7p34gHXTVPWmWpzhCI2waD6sjXBqGLl43dZXGflnUqr5wQb0ipWhL8hcN/Vk6EWSeEwuwyBiRQbnrs2x2eJbMuemY26LvzdlPNM2A6KtO5xuZucwjNr05mSMAKNE0s0+wc5/7MKzaW8fzCGO5J1KIR0Re49L84/+l6GdgzBqbIy2XYrCnnLxqn9YwS/z/vB25L7fDykafzrEYLe8kj14q0iC1kVVKhVRjCVfue02hCBuk4wW2RO0d5nrN2hR7HZQlYcsIJi4d5Hs9lVAjpq6pKiLgoo/FDTbtIrslfrj7TW8fmvmnnvmEoX8LTBbqiqhECSoWn6/Wq+h7z6HNdpguDPGu0D+X30+i/1DKvkOv7vkvE8zs/7ygat+DSC1U8//lZgRzByODruwSMBKiG/+fQ4geNrQSbjPDz6lPnlObz+0F9v6WtTKAfD4lQRBLfUjhnY8nuQnV/TpfuYYCimIv8+94lRcNzufbUCzCJHJrfFS5D8qSSw7CWBb0dz5bVzPFpkL8/4lvssPdekZBfBFscPORfbCR48mjGaaCDY9Z1lrNKBwOadXfkA/7/2L/529iS/B52UKPXTngRS2dDC2D0i88y++etoPsH/Af116gE=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABAMAAAAAAAA=eF4d0nswVHEUB3CNVRmvzS7L7Np7XZJI01iVpHvsKs9ImmJ6MYXkMSIWSVZ/FDNl1JSW0VotSw+jJNFY6xnDtlOMGRVlMLIeizyi8eh3++szc86c7/njHI8W1cj2xO9HxPPxyh0sHNwU/QX82BNksyWf/0EbRaYdnNmp5KWTE7dZokh5DtlkdFQslRaQ4k8+Y9eWZGQgP+p+BvGG1PLtfiu/NpKLfe+dZ2Y7yaqckhum8j7ydG645ABtmHTJS/fK1Jkke560ExYri2TbxObSWIkOmO9OyLvepQ+OmpFGny9MSGSyGG+KrCErxE59toQAncP0Q7IMAopCeGGNAQQY+Jjq+DEJoOvqR5V+sobaqueuF9KswSbSo1LLsIZkUyetTIrD+MSv0HAch71Cm3cVThhU7FwfVBhxQTQUr/T+xoGb3Q4hMMCGBPVDr9OebKh0vbVvoJoNeJ6Lz5kFZEsAP8WJA5wyl/yNWA5U98wpFa84sH+88JHbLAeUIvFP3NkKBNxaZVaKFQiHqktF9VbQNCLkx/y1giBeZnmSGxcIbz3a11Qu5MdL/INquBBYez7RQMOFhstxxSo2Bj3prbfnfDH47K6fG3MdgzLHdputYgxs/dfZtHoM6qayGX59GLyNXzq2axIDtdDzz/waBoZGfrQVPRzyJJ6Xpw1wiB6YLE6j42Bv3LTczcChNfoU09kch2/Hq+JU6K6M3IuznRY4PKjMvnLOEgej5aKFp8jXtnjaM6RwUG2ehZTX+Yb7IlWE+4ttSKJ0rq8Nzbmq7tTlIsUCRaQAuUd2NdQQGb1KSodRfrCka7QGaazhpRcimzp2T2YgP/YniS4hY05O7/BHHmWpilyQ0g6NBEM2rz3msZERK6xwc6T91L1COnJQcOguA6lOrfpB/WUN/b7UFDmkMGmlpDGOm7CQhoKsFKr/2Gxpk6rLdUfjzJAbDYUOTGTXlt5gKsciNbiN6k+E5URQBpudtKMsf9m2Ts0nh2aPUmptZL2Uzrqrnf/3llW0UP4D5Gg/3g==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAHQMAAAAAAAA=eF4V0vlPk2cAB/AWPLLgNEBroYg+fXvQVikIhhQNzxehC2JNSIsjiBEWPOpRJTFMipECUhtQgscURbLKNqgJOhTSFUQmEU1A8QglngiKKLpKZkUEj4q+/enzD3xKIlSG//YNJAxN7uwMFBB09VVWr/QmU09/bXiz/wY6n981wm3No40leqm3z0yZJk76cGAltWknGWHFKbrYVLxi66N6+uNwku239c1U8yVw3po9HbTljWmsIKibOmvaV0mOuKjboMvovTxIM89P7DY1vqL2+4hrqByn2/UGc0+xl04MyHKanbNgLFtTFesOwq2wTvp8Ow+aiEnLyTc8OJyGF4HVfHDbDjwvLJiPKsk2tbhOgEHqp4iWhiLIrPVOi8Iw9nbgreVSOIYC3MtzDxEYrifMXu5kMLfkSlunVYpnWuHXujwFnrx3v77MVeHY8NGySG80HpVx9/ipo7Gge7pIVR2FrYnfstb2qMApu7jW/i4SD1XJ6R5+JD78udAxU70EPTZOdOu6xZAIOWm6IiVuuk5cOFyvgFVpzkvok+NueP+ZwRlyfE7VJPYnRmALp/dItlWG9+cDOrLvSzEk3B9Ts1SKVM8vyfmnJLBbUhOTAiTYPxCV9aFCjPGxE4PFPDFS0nbIDzcyUDn6XU4tg8Je3b+GKRFqr0aJZ/8twrIZRDO6Q4QmgdU/LVaEvU3xTLGfCOV6I9P+kGC63ZGi+YdA2fZH+6aTBLZ1WepdZoLqFn1BxzaCKwe9orZMggeZgtZ7qwnqSotGa0BQHvr55+NxBHdiSwSbowhyPfXlrQqCqRjm92QpASdkY9ctEUH+6xzPokUEFYqX8uBwgqJdt3mWMILSO+4bGUICx8Rp/q+hBH7xTMztEILRQ5HxOlZLrTl7kv2mlFfBwWrMGTdZWJ8V/rQsl3XLlPFmKqssaZVVzfr/mG3zElZ/e5hHzCr54WnwQlYSd2COkPXMPJNWwGr3HzHyWacv1Sh5rD1clz6YNaRAfy2ItTK3fJPPvQE6mc+Gc9e++t7nZ5aO+Dwq+8vlM+vTx26fj0+fverzO/l7Rfc=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/G5nAcpPYmA/xbpMy9Kg3D0qFVzFRWJgP8qCHAQ8YmA/4Hy/OSliYD/bwFRdD2JgP9ohBbvhYWA/GleM4p5hYD8IFpDTMGFgP1IPImqUYGA/N0Pl27ZfYD9Cwuv/dF5gP5727pawXGA/KrO8B0VaYD+6KC7891ZgPyopYKmOUmA/GAOdP7lMYD/yU811HUVgPw88VQhOO2A/Bk8qmNcuYD/uEJu7Lh9gP6TdsCWvC2A/XnbpuZTnXz9ouQjlh61fP1m5a8PeZ18/yU9rVCgVXz/PqoyF97NePziD/OECQ14/DuhBKyHBXT98wiL7WS1dP1h3LYTVhlw/5nximjfNWz/I/m0aRABbP2ZEem5VIFo/M4/RVAEuWT87IeVJUipYP4DeNljNFlc/OomB+jL1VT9ydF8ZxsdUP9/EWD/okFM/H9494mlTUj96F9DPIRJRP17gkl8XoE8/+DYV6iIgTT8PlvIBN6pKP/iV9w3LQ0g/OyCyDdvxRT/Atw3S4LhDP8CtKsqfnEE/6EZxvlpAPz84nPUvsos7PzyN/5JtHjg/8tNTBzD6ND8Sf4/EOB8yP/soFoAXGS8/aCyP7ReAKj+IC8UNXG0mP/SKmpZc2SI/YWo4e7d2Hz+iRN3w3BMaP6RoShR1dhU/GAZ95HyKET9XgMDChXgMP+iAYuqG8QY/DrWSWghcAj8sn6bMKS39PvB29mxHBfc+TTd3BzoJ8j49nQJ7SBDsPrAkDx4lruU+iIBqe7Sh4D7C0Jod5lbZPjoB2r4wK9M+gFSB5cDMzD7gg9uYK3zFPmYMcK6V1b8+kOMLDARstz5UakgjMB2xPobM5N6b1qg+3JmV377moT4XtrmruqCZPnsiKypaOJI+MnxHz2u7iT5iEpbqVQyCPhmuZGLUJXk+JtBlYihncT5KmEetKu1nPuDFn1CxVmA+UlqVDs0qVj64ORGOr+BNPkcBHr/jAEQ+kbilZoacOj6Smcc3O5YxPlrNZ3WwGCc+JZAwMrojHj7gRm9tpIoTPviERvo9Lwk+1sJvwiEiAD70LtXP05L0Pdi5MW3fR+o9pBfr9sdv4T1cMWDrAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAGgMAAAAAAAA=eF4d030s1HEcB/CY8jBJLmutG1YxpzyUlak+v2hqloo8nqeKsspTllORuAhni2RyzblRoQvn2pDnSI0rD0foSLnf7+5+d6666xgJbdf3+uu1z3vvff76fIrYLFujD1lYh136wvPvOCR4hi3aW2divvmsW8LB29j7pJIFzZtUzLKn7EyMcxLGs+KnJJ6IxT6Kyi+6RoZizNdcLS3vFGbMHgvk0byw3ccdqIlqd8yvUpzlzXbE+lghRLHEBnPsOxjvzKVgTIez+eN0Uyw/Znlsh2YDRp9TCZQRK/DHbHsuZe4XxG9zepKqJsFk+4BFwDESBGMptX9DSfjNHaAPMUioVk0x4zgkuPjxos4OkyBvNtepTBSw7rPTYzBQAadj8x4V1isgm+J47s0WJRxN0NnYMpUgGPCNnlhVwprucF1Q9jy8OH/J//v8PPg27net3qyCr4zBm81VaA6rpWpOzsN0Ot4j1CrBZYLTfqxcCXRfVbfMQwkjRTV7mGIFdBawW0UMBQTOptVItipgtotqQxOQIB45kpN3hgTLcFvPcrUciob8y0xK5HCzMqXf4JAcOKXR00MSGTTRXRqwYhnMjSxNJnjLQGgu5mlWpfCsPeV+f5sUjrT024XdkUKW16acJB8pfPL/UWJAkYLPsJ0QVxBg9c6B7OolQDCzyMrlEhAzFRbSm00Ag2ORvR5HgFsIrcAwgIDM6tZfwUBAhQU/o9SZAHHnzLcMOwJEs3MMnjUBLdFkeJ85AaPi5msZGwn4vMU5vFqHQ7Jpx3X1Gg7UGYNI9xUcWHdrffyXcJgsu8xZXMDhPjU22UmLQ/C+wkWRBoeItECrTjUOOaP3Dq39xEFbOTodhRyePMCW/8DhxgDLOB/5RVL32BP5VryjfB3d29OHAToJUvS4xuwj0qhinNKGpF8Qd7YgX5Xk3uYjDbL2pjcgL/SwH7xErnkeHm5C9pLJbrXIPkvjlTrk9K6DQfVIIb/Rhoe82t1Sp8/fRxk26Xuj6xVmeu2NlFU1+j3cjgi95tY0F71akr/1fy7r1+n/wfGK27Lef5fJtNE=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAMwMAAAAAAAA=eF4BKAPX/ChojjdOYlA/cxZZdpYWyz0Xj8KNTGJQP9yNwo1MYlA/ZglABU5iUD8XpUU6UWJQP0eH1LNmYlA/OI7ir49iUD8YnP6n4WJQP6RLG3R3Y1A/jMjFko1kUD/C8zu5lmZQPyP4IpQralA/caUShoNwUD8MH6HUgHtQPwKl/jpSjVA/FJmkcP+oUD9gSUBagtxQP/1qUvH9P1E/YhJR9Rc8UT/wDK865B9RP1ChfHUE/FA/abGbS9vOUD/sHUC/c5ZQP/az+4GmUFA/Rt9+BOH1Tz+wyn9+7yRPP+0C/7RGKE4/nGqK9U75TD8EXZ2tYY1LP6TrMsc4xkk/gmJ1N83HRz/oYSkxnepFP+rPBrFQekU/ifoetd/GRD90weYu7/1DP/ydeUHgJ0M/SeJq701FQj+UlneppFdBP8QwgEfCYEA/Ir9mR5LFPj/8AGaxHcA8P5oOejQLtjo//IZQdESsOD9gTERyv6c2P7ACG4snrTQ/SfkxrenAMj9EGUp1++YwP2W0RFO1RS4/ZIKwTb/uKj9kvwWwwc0nP7VY6ojo5SQ/24Errj45Ij+pIP4hG5EfP2K02V0sJxs/2H9FxQsyFz8kcNVAb60TP3ysAFSskxA/olebiQG8Cz9dgaB4yAkHPz5Yqa+tAAM//rkPY48g/z5WbmtdXlD5PnCknRXjcPQ+nqOY7K1j8D4jGCBolhjqPgpG8zz9oOQ+BqcWUSgx4D7BdGIKUj3ZPgqwmQFciNM+Eff9wwUFzj5yEdbHD+jGPg2tx908W8E+PvsWskgeuj6Smtehv4OzPhUjgaxh9aw+JEFHTllWpT7iHECq8DmfPqEbdrUjsZY+tugMeHJgkD5vsZsv+HmHPr5n35FetoA+9q166Pahdz5EYwyDpJhwPmzPOP0cJ2c+3oqoMZgKYD4m1Y8ZhhRWPqi5V2aqME4+snr1Tr+ARD6Ri9IPO6o7PmYS5h7VijI+EAC6bMGxKD53/zEmfFYgPn3MWj/4ehU+xHwuGFQQDD5OMIJvJzgCPqRGeorYg/c9mR22kVku7j1mTKQUjknjPX4mDaRCttg97iojnoV10D1MbGXtAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAA8AEAAAAAAAA=eF5jYBhZoPzW1L5f7lz2zMrzH7Qza9hb3S/o/qmmbZ9zSE1ztbO2/TTpZao9QHrB9b9Rdx217c+cFv6p66BtP69JtG+FrbY9+wQFFlcbbfu42St1za207UMjmYzCLbTtg6xC1K+aadv3Pbn6Vd1U237fDNn5Z4217T8tbvq9w0jbvirnsvJuQ217hzmbzwsA6YRDjUolBtr2P7L+J3kD6Vk2f0ysgHSVjZK4CpDWO2SpLQekkxIvzFMH0kVTHtlUAWk3Fo+YzUDasMVB7B2Q7rgQJy4NNO/SMptuXSA9dXa6USWQFittVtgGpJcq8L85DKSny0k17gPSHG8Ov7wOpKUfraz4CqSd90WovwfSIf9WiP4H0h2y3T//AWmhfS6af4C0+IpPcgxA909vFX0Akl9UrcnCAuR7/ayzZAbS/RO+eDAC6bK0DdNB/AfTHcVZgXTNxu4gkLrJokbvQPqOr93mBOLvE1imClJ/IPeCIxOQzv25OgRk/qfcxc9A+t/ts3YB0YYXTp8AiV/QW1YDUvfsYwEfSN/r5Xu2gOjbyWckQPZc8P5xEeTeH7tNkkDqlx5yyAfJ//F/pAQ2fwXHLBC9xbvzBYje/+eVNMj8Ku9gWxA9q+1xEIh+NG95AoheV6yaCaLZ3mblgmgAlSnPKg==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAmAAAAAAAAAA=eF5jYBgcQOlNpOak58L2XpY6JQUysvZ5/212RjPI2XNvn6BYKSdnX3xl0e5TknL28ivrzr/glbOP0t5caPtH1v5b9kSJ+Eey9n1iZx75HZK1D3o9t0dymqz9vLL0C5/iZe13yd09ryYna8/1Itqg8byMvVF25KXNS0Xt5z9MfZp06ZWdYyEL34Kb0+0IuW8UjEwAAJZ9Njc=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu
index 3a5e9974bc6cf4263e85edb1cecc213b1d002b29..40d58692361bee581c9790786ea28e18e92a7754 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_42_t_4200.000000.vtu
@@ -1,36 +1,38 @@
 <?xml version="1.0"?>
-<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.0002074844728"      offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00010839228942"     offset="748"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="40" format="appended" RangeMin="45"                   RangeMax="121"                  offset="900"                 />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.2221301446"        RangeMax="8.82977"              offset="988"                 />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00010839228942"     offset="768"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="940"                 />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.2221301446"        RangeMax="8.82977"              offset="1024"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.5355916701e-11"     RangeMax="0.00013466334639"     offset="2140"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0645059941e-10"     RangeMax="0.00019864539794"     offset="2660"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.0019999933749"      offset="3184"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308369597e-10"     RangeMax="1.0391383165e-08"     offset="3828"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999816987e-13"     RangeMax="0.00099999986574"     offset="4348"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="4992"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="5248"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="9.5355916701e-11"     RangeMax="0.00013466334639"     offset="2196"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="1.0645059941e-10"     RangeMax="0.00019864539794"     offset="2736"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="1e-12"                RangeMax="0.0019999933749"      offset="3280"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308369597e-10"     RangeMax="1.0391383165e-08"     offset="3944"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="9.9999816987e-13"     RangeMax="0.00099999986574"     offset="4484"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="5148"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="5424"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="6304"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020748443714"     offset="6500"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00010786054294"     offset="6932"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="7060"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="6348"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="7124"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="7256"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="7536"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="7828"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="8052"                />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="8352"                />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="8664"                />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAACAAABABgAAHgIAAA==eF5jYKAv4N5fe+hjtow9jL/hWO/8cze17F9X2j7791vdvqbU6XqxhLb97Z/yc/U5te2XWglW7FfUtu9W8r3cL69tf8zh+baTKtr2SvwqP28qa9uLxngWe6hr2098X+ExW03bvnW3glaIlrb9vazAXRGa2vaFX5gUruho25+0b7W5oK1tv+deoccjPW37Sx+ftogD6a13b2sZGWjbr3F1WXxIH2j+nXsf+Ay17eXlfhw6BRTParFi3gjkG8W0JzQD6aodBcEHgLTm7MjA5UDaJ1Xz3isgzXHFu+cLkFYxzBD8D6Q7r31f+h1IM7QfNGcx0rbfvpyxgBFIe4l88WMA0o/PCDCA+GtXbUlkAtKuBQn5IHFrhofbmIF0nx9XOUi+KexwAEi/xqYjD1mBtNJsxgIQLX7hNg8bkF4cH70fxP9/8skfkPqkSVt0QPQBuYs3QObwzwjr/Ad0h/753VEgcyK1rriD5B1c+5hB9mmZ7moB2f/BZNFnkPj+U7MFQPrq7wtdBInncQv5gvgxc68Yguh5W9emgejl9dbRIDphvX8hiN5qNiMHRF+JXlIKor+57ykG0dsnxpeDaPFXc8tA9I7JvBUg2lPlEFh85Z4AMF/lrDGYXq2XBabtA+PBtPmmYjA9bUk+mN6tXw6m560qBdMncirAtMhriLjwAwj/+hYI7c9dCaaf/YHwd0hWoojD+KP0KD1Kk04DAF842/E=AQAAAACAAABABgAAXgAAAA==eF5jYKAMuItN/5h5mtMexj/1t+7J171S9ttMeR477hSzb3wWGCWaJWP//Mq5dduUZOyt1smYTTLgsi9yFFBnjJWB60vwfBpuxvXcDrsto2AUjIJRMAoGGwAABAkaRw==AQAAAACAAAAoAAAAMAAAAA==eF4z0zPWM9K1sNRNNzCyTDFLM7Aw1UvJLCqp1DMyMDIwsDAwMjQ1MTUyAQDHWAmtAQAAAACAAABABgAATAMAAA==eF7t0v9P1HUcB/BREGWKu/frTqEk3kfIOnQoTTLtRu/gyPDk2ynJEQgmCoEwMRTkywUHnfLFcZAaIDgICAJRhKFzF/AsgYTJsEzThXcL/MKZbkItJxb18e/Inx57/vDaXt8+TlpQ/0ubUpSbcobvXWcIX5JnitrE0JyQ2DNnJaRsHLhWFsawxGWEpZjlCHJsV+yfksMS0Rk+3qIUW7acbGxfx0XkT+NeJfdliI0/9VegjrBKlaownuFipfGJ2+XrXMyWaA17DjNM95a0LR1hUF/Sf/bIzgU5VZS+Eka4WpoQ6PwCYVh3pqP1PBeH1xVNzi4jOPyr2TBm5ML2ft5yy49ceERvNTXVcZF2du6x4WsuMj+cr2qO4+LtUEd39V0ubvU90IXkclH1xmtR+yW/HDR17/XionH9Hz51O7jws88d763k4sKQ8ZuicS5qpg7Ziqu40FTfzlg7yhCfxeyJmQS9KdZH0UV4PPTVW+e1XMS1+jp/V0toUff4Jn9EmD4RbDMdYHhv0rWBFRH+VN2NawhlmKlwf16pJyznaxbszSFMjv6+x+8kwdPgremPkGPZJ0O9fi8R5s2VtAEEQ32DNrtbjh1FXQ+qXQjHFlW3FXJCeHz/OVcDw0hFl1OnitB/OiDgeBKDZ2CDe3E5wcXRvLsxhyHadVNpnY1gXK1zqNIQLC0Fj8rKCLczsv31KwhJnfq+5ERCwNlLwfsWEjQDzSErfyDssh4w70onHL1c4+NZR7Bf+OeG+pgcTokxNTFdDIG6sNDdxTLs2/qyfpWWoZCeW+GbT5jNX+yWPs9wRd3Ir0r3jKJa1YyW0HPRSzUrk/pYOjzw8EXC5nTZhFb6g2u5kQMeFoYCxzv20XoG5+Dp1SE2htfH7uV+K821U/bO4ugYwnZz6sPCbYRkNE2tkeqS7ltd7AWEtVmfvpk2wfDFwbIPbg4yJJT/3VHexxBbkRZkvcWw+dTE9znZDDU347rPZTI4OO8sbs9liDkyp9gm7SdtJvXgxTwGi7Ij5V1JlKwPcMtnMGsqf5uUsrrTY5G/lG9sbD3tLdnk/cRNI6l4dUwWKFnHa+889Wfj4K8RklnuC68ESfpnbFc+9YT189TIZz7zf+p/ue/9/g==AQAAAACAAAAoAwAAdAEAAA==eF5jYLhcLWx2y3bVrJqtguIK9jcOcMyY6PDALq3voXw1+w8743LHbbK/OO39Akw5320WtV/yNjGsd5mivVhB5yTle/L2KU73ZyhfkLNfonFTOWKKnL3pctZna9/K25/5n9OkKatgH/SzNu6mtYJ91VHZiet9Fex3lzudux6sYH8mQbbBMFDBvuBIwEcTTwV7lV//JzLYK9gb8uv/v2yiYL8yzGQypw5Q3YSiQhFVBXsf87NhfAoK9stmi8nNlFGwb9r1+G2clIL91Jn7dv6QULDvSv43TxtIv3sa1bQW6A+dW4YFSUC6ZBbTDVsgfWRzubYakH7O33taHEg7vM90EQDSn8wKjEH8oxfz84WBdISoUokQkGbml2QD0Uxcr6+BwuVtjfhhEG0h8GYXiDbYOW87iL5j678NRMvUnIGEX/4sMM05qx1M35zcAKb7OOrAtKZSLUT+PCS8l6yF0MIrIfS21RCafQaEhsXLKD2wNAAktSh2AQAAAACAAAAoAwAAdgEAAA==eF5jYHjXctrpru2qWTVbBcUV7BXm7TU4vumuXVfYg1zBpK92ZRWBsZtq2Owfa2UGLNAQtv/g91HzEYe8fRVT9PvaTCV7trnu/566qtnrb1z7M49Ty/6Qe8uzz9fV7Fdt2fTYo1zV/uy239mNlir2xyJFPJbqKdvrPPhWKx2uZB/SfzPq+DpF++v+9xpL9BXte7vDGl0uKdjbfe4SD5qgYG/VY7/KIVnBXq3+jG6Lq4L9s6Y2uwlGCvZPPFklH6kp2Lsxu1q/klewT+iOXfNIWsG+J1Zz5nxJBftvz62PJ0so2KvHSpntAfrnTZLVslQgzThjspAVkGb9J7pOBUi7PXyUKwWk/1n8XSAKpI9ezM8XBtK/xZVKhID0OXZJNhD97cera6Bw2VkqfhhEWwi82QWiDXbO2w6i79j6bwPRMjVnwOFXUzQLTEe0tUP40xrAtAF3HZgOkqgF05znIeG9ZC2E3rYaQrPPgNCw+BilBwcNAHc6LoU=AQAAAACAAAAoAwAAzwEAAA==eF77Ep3q4pWUYM9zVrdx5vRC2/6qwi2d+gn20fM2KNuui7fP9zm579ncOPvu84rV0fKx9o9WiO9fqRttHyJ4uEv9QoT9nAfPJplLh9lPmNCxdrZusL2ZMpvTRp0AezMNz3qjWi97n807IwK5XO1VEtfbLTR2sC+fecoyQM/CvuPlVlffGkN7tVWaHLmNGvZtKu99Xi9RsN/1LLb9zWtRe92Gh9x5jDz2Dieiv/nEMNr73PxmrPLsi93ha6eXFha+sKtL/jz32qnbdqet1Gqn7T1n5z9ji1lHzwG7zA0qu7WjN9qtq4+Qkt+30G7H4oWvfm6YaDeB4bv/QvNGu5924jqNsQV26S6b2ralx9nd2f5JL2q+t92EQ5/WneqzsLvJfKOlKFHV7oj4hxJPOyG7kNMhCzW6/9l6vgmXPanw0tbX/v9ms+QrtpzKvVV3Cg/Y6v5Tvnnr4Srb2fcO/9lrM932gvw133fv22yPOjwPduCssf1QqxzRnFxqa+hY19L9uchW2u/R3EChItuE+I373A4V2rYoqvpYLSu0Nbf42zR1TqFtJf/PY1YzC20X/9yhoTSj0Nbm5jyvg8B4+S0/i2c2kIbF0yhNXxoAEXJlWA==AQAAAACAAAAoAwAAdAEAAA==eF4TzDivtTPAzW7OYvmHi189sJ3W1vVBdzKP3bEvV32ijVjszJ9pMSVLfbMNmLn+xdr5b22/RCsqTDn5xLba7eyt5VbPbM3OpP49YfDMdtcXreSJq57aatxRPxpc/sR2De9qZ4sjj20X1LIlN8o/tk056ZkTOemRreu7PP3rco9s9/xRa2E48tB24l0XEev6h7bfdq1+pun70FbONGEmk9ZDWzNO9hJ7oYe2AX12louYHtpKsKdXXPzxwNZunYL08U8PbNtsf061eP/A9suiU6xqbx/YHjueYsf15oGtQVDB4uTXD2znaPTMZgbS/UbdZ68D/XXJ3vXALiCtvHb7gRVAWqL9afx8IK2Xtd1zNZAustjCuQxIn0qTPbMESN/xk3MG0QFqVpwgWui/9UdQ+LxcV/UcRF9Lm/YYRD/jFHgEonP3VoLDb/EFBzC9a5M2mP7ySBlMn1NQBNN3NBXA9KxjkPA+NhtCw8J/lB6cNADbIdGHAQAAAACAAAAoAwAAzwEAAA==eF5z5OJa55sUYM9zVrdx5vRCW8nexOmhRgH2kp3blucc9rf/brtsxr6rfvahyvcEDxf42s+YHtOvsc3b/o/dAa4Jhh72Ndtl5HYlu9iXMHxcearWwV5p2aUHJ1/Y2FfPY74secHcXmdWhGQVt7G961L5UyFtuvan1BWNhLTV7DksT3vukVOwv+l/ypNpq5j9jNR4ozd/+OyPbJaZI1rHYj/vGxPbFvdfdjqHD+37FfHB7sSzg/yv9j6261I9c1BQ47rdm8cHWJXTTtnVLDjFJuK6165mbp/B1Knr7abqT5SdOWOB3aJVng8i/0+wc7m+7bX9rwY7vcO3X07tKbDbwHrw1+3GeDujBPOUYH9fuwSZ8IhVK63sLp1bIm6/R90uc51qWPRGEbvoKZ1PU9cz2indkXB4uvatra0Ay8GrrTdsJRua/L6KHLGt+Z8xJaNng+0rscVGQRlzbG9t/vy0XKnbdqae/Kv/sfW2K9XONmxfV2bL800jYkFhse2Okzl7Mx2LbHel/pRsvlxoO6Fo/dPsNYW28XLVkXvmFdoyrLeuZ5tVaHvvQHdP0oxC2xZ2TcY7wPhIuywyZRmQTvBjTZ0OpGHxNErTlwYASBFinw==AQAAAACAAAAoAwAArAAAAA==eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAACAAAAoAwAABgMAAA==eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAACAAACQAQAADgAAAA==eF5jYBgFgwkAAAGQAAE=AQAAAACAAAB4CQAAlwIAAA==eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAACAAABABgAAvgAAAA==eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAACAAAAgAwAAxwAAAA==eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAACAAABkAAAADAAAAA==eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAHgIAAAAAAAA=eF5jYKAv4N5fe+hjtow9jL/hWO/8cze17F9X2j7791vdvqbU6XqxhLb97Z/yc/U5te2XWglW7FfUtu9W8r3cL69tf8zh+baTKtr2SvwqP28qa9uLxngWe6hr2098X+ExW03bvnW3glaIlrb9vazAXRGa2vaFX5gUruho25+0b7W5oK1tv+deoccjPW37Sx+ftogD6a13b2sZGWjbr3F1WXxIH2j+nXsf+Ay17eXlfhw6BRTParFi3gjkG8W0JzQD6aodBcEHgLTm7MjA5UDaJ1Xz3isgzXHFu+cLkFYxzBD8D6Q7r31f+h1IM7QfNGcx0rbfvpyxgBFIe4l88WMA0o/PCDCA+GtXbUlkAtKuBQn5IHFrhofbmIF0nx9XOUi+KexwAEi/xqYjD1mBtNJsxgIQLX7hNg8bkF4cH70fxP9/8skfkPqkSVt0QPQBuYs3QObwzwjr/Ad0h/753VEgcyK1rriD5B1c+5hB9mmZ7moB2f/BZNFnkPj+U7MFQPrq7wtdBInncQv5gvgxc68Yguh5W9emgejl9dbRIDphvX8hiN5qNiMHRF+JXlIKor+57ykG0dsnxpeDaPFXc8tA9I7JvBUg2lPlEFh85Z4AMF/lrDGYXq2XBabtA+PBtPmmYjA9bUk+mN6tXw6m560qBdMncirAtMhriLjwAwj/+hYI7c9dCaaf/YHwd0hWoojD+KP0KD1Kk04DAF842/E=AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAXgAAAAAAAAA=eF5jYKAMuItN/5h5mtMexj/1t+7J171S9ttMeR477hSzb3wWGCWaJWP//Mq5dduUZOyt1smYTTLgsi9yFFBnjJWB60vwfBpuxvXcDrsto2AUjIJRMAoGGwAABAkaRw==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1tjTSTbdISzOxMLQwTwYALpgEyg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAATAMAAAAAAAA=eF7t0v9P1HUcB/BREGWKu/frTqEk3kfIOnQoTTLtRu/gyPDk2ynJEQgmCoEwMRTkywUHnfLFcZAaIDgICAJRhKFzF/AsgYTJsEzThXcL/MKZbkItJxb18e/Inx57/vDaXt8+TlpQ/0ubUpSbcobvXWcIX5JnitrE0JyQ2DNnJaRsHLhWFsawxGWEpZjlCHJsV+yfksMS0Rk+3qIUW7acbGxfx0XkT+NeJfdliI0/9VegjrBKlaownuFipfGJ2+XrXMyWaA17DjNM95a0LR1hUF/Sf/bIzgU5VZS+Eka4WpoQ6PwCYVh3pqP1PBeH1xVNzi4jOPyr2TBm5ML2ft5yy49ceERvNTXVcZF2du6x4WsuMj+cr2qO4+LtUEd39V0ubvU90IXkclH1xmtR+yW/HDR17/XionH9Hz51O7jws88d763k4sKQ8ZuicS5qpg7Ziqu40FTfzlg7yhCfxeyJmQS9KdZH0UV4PPTVW+e1XMS1+jp/V0toUff4Jn9EmD4RbDMdYHhv0rWBFRH+VN2NawhlmKlwf16pJyznaxbszSFMjv6+x+8kwdPgremPkGPZJ0O9fi8R5s2VtAEEQ32DNrtbjh1FXQ+qXQjHFlW3FXJCeHz/OVcDw0hFl1OnitB/OiDgeBKDZ2CDe3E5wcXRvLsxhyHadVNpnY1gXK1zqNIQLC0Fj8rKCLczsv31KwhJnfq+5ERCwNlLwfsWEjQDzSErfyDssh4w70onHL1c4+NZR7Bf+OeG+pgcTokxNTFdDIG6sNDdxTLs2/qyfpWWoZCeW+GbT5jNX+yWPs9wRd3Ir0r3jKJa1YyW0HPRSzUrk/pYOjzw8EXC5nTZhFb6g2u5kQMeFoYCxzv20XoG5+Dp1SE2htfH7uV+K821U/bO4ugYwnZz6sPCbYRkNE2tkeqS7ltd7AWEtVmfvpk2wfDFwbIPbg4yJJT/3VHexxBbkRZkvcWw+dTE9znZDDU347rPZTI4OO8sbs9liDkyp9gm7SdtJvXgxTwGi7Ij5V1JlKwPcMtnMGsqf5uUsrrTY5G/lG9sbD3tLdnk/cRNI6l4dUwWKFnHa+889Wfj4K8RklnuC68ESfpnbFc+9YT189TIZz7zf+p/ue/9/g==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAdAEAAAAAAAA=eF5jYLhcLWx2y3bVrJqtguIK9jcOcMyY6PDALq3voXw1+w8743LHbbK/OO39Akw5320WtV/yNjGsd5mivVhB5yTle/L2KU73ZyhfkLNfonFTOWKKnL3pctZna9/K25/5n9OkKatgH/SzNu6mtYJ91VHZiet9Fex3lzudux6sYH8mQbbBMFDBvuBIwEcTTwV7lV//JzLYK9gb8uv/v2yiYL8yzGQypw5Q3YSiQhFVBXsf87NhfAoK9stmi8nNlFGwb9r1+G2clIL91Jn7dv6QULDvSv43TxtIv3sa1bQW6A+dW4YFSUC6ZBbTDVsgfWRzubYakH7O33taHEg7vM90EQDSn8wKjEH8oxfz84WBdISoUokQkGbml2QD0Uxcr6+BwuVtjfhhEG0h8GYXiDbYOW87iL5j678NRMvUnIGEX/4sMM05qx1M35zcAKb7OOrAtKZSLUT+PCS8l6yF0MIrIfS21RCafQaEhsXLKD2wNAAktSh2AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAdgEAAAAAAAA=eF5jYHjXctrpru2qWTVbBcUV7BXm7TU4vumuXVfYg1zBpK92ZRWBsZtq2Owfa2UGLNAQtv/g91HzEYe8fRVT9PvaTCV7trnu/566qtnrb1z7M49Ty/6Qe8uzz9fV7Fdt2fTYo1zV/uy239mNlir2xyJFPJbqKdvrPPhWKx2uZB/SfzPq+DpF++v+9xpL9BXte7vDGl0uKdjbfe4SD5qgYG/VY7/KIVnBXq3+jG6Lq4L9s6Y2uwlGCvZPPFklH6kp2Lsxu1q/klewT+iOXfNIWsG+J1Zz5nxJBftvz62PJ0so2KvHSpntAfrnTZLVslQgzThjspAVkGb9J7pOBUi7PXyUKwWk/1n8XSAKpI9ezM8XBtK/xZVKhID0OXZJNhD97cera6Bw2VkqfhhEWwi82QWiDXbO2w6i79j6bwPRMjVnwOFXUzQLTEe0tUP40xrAtAF3HZgOkqgF05znIeG9ZC2E3rYaQrPPgNCw+BilBwcNAHc6LoU=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAzwEAAAAAAAA=eF77Ep3q4pWUYM9zVrdx5vRC2/6qwi2d+gn20fM2KNuui7fP9zm579ncOPvu84rV0fKx9o9WiO9fqRttHyJ4uEv9QoT9nAfPJplLh9lPmNCxdrZusL2ZMpvTRp0AezMNz3qjWi97n807IwK5XO1VEtfbLTR2sC+fecoyQM/CvuPlVlffGkN7tVWaHLmNGvZtKu99Xi9RsN/1LLb9zWtRe92Gh9x5jDz2Dieiv/nEMNr73PxmrPLsi93ha6eXFha+sKtL/jz32qnbdqet1Gqn7T1n5z9ji1lHzwG7zA0qu7WjN9qtq4+Qkt+30G7H4oWvfm6YaDeB4bv/QvNGu5924jqNsQV26S6b2ralx9nd2f5JL2q+t92EQ5/WneqzsLvJfKOlKFHV7oj4hxJPOyG7kNMhCzW6/9l6vgmXPanw0tbX/v9ms+QrtpzKvVV3Cg/Y6v5Tvnnr4Srb2fcO/9lrM932gvw133fv22yPOjwPduCssf1QqxzRnFxqa+hY19L9uchW2u/R3EChItuE+I373A4V2rYoqvpYLSu0Nbf42zR1TqFtJf/PY1YzC20X/9yhoTSj0Nbm5jyvg8B4+S0/i2c2kIbF0yhNXxoAEXJlWA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAdAEAAAAAAAA=eF4TzDivtTPAzW7OYvmHi189sJ3W1vVBdzKP3bEvV32ijVjszJ9pMSVLfbMNmLn+xdr5b22/RCsqTDn5xLba7eyt5VbPbM3OpP49YfDMdtcXreSJq57aatxRPxpc/sR2De9qZ4sjj20X1LIlN8o/tk056ZkTOemRreu7PP3rco9s9/xRa2E48tB24l0XEev6h7bfdq1+pun70FbONGEmk9ZDWzNO9hJ7oYe2AX12louYHtpKsKdXXPzxwNZunYL08U8PbNtsf061eP/A9suiU6xqbx/YHjueYsf15oGtQVDB4uTXD2znaPTMZgbS/UbdZ68D/XXJ3vXALiCtvHb7gRVAWqL9afx8IK2Xtd1zNZAustjCuQxIn0qTPbMESN/xk3MG0QFqVpwgWui/9UdQ+LxcV/UcRF9Lm/YYRD/jFHgEonP3VoLDb/EFBzC9a5M2mP7ySBlMn1NQBNN3NBXA9KxjkPA+NhtCw8J/lB6cNADbIdGHAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAzwEAAAAAAAA=eF5z5OJa55sUYM9zVrdx5vRCW8nexOmhRgH2kp3blucc9rf/brtsxr6rfvahyvcEDxf42s+YHtOvsc3b/o/dAa4Jhh72Ndtl5HYlu9iXMHxcearWwV5p2aUHJ1/Y2FfPY74secHcXmdWhGQVt7G961L5UyFtuvan1BWNhLTV7DksT3vukVOwv+l/ypNpq5j9jNR4ozd/+OyPbJaZI1rHYj/vGxPbFvdfdjqHD+37FfHB7sSzg/yv9j6261I9c1BQ47rdm8cHWJXTTtnVLDjFJuK6165mbp/B1Knr7abqT5SdOWOB3aJVng8i/0+wc7m+7bX9rwY7vcO3X07tKbDbwHrw1+3GeDujBPOUYH9fuwSZ8IhVK63sLp1bIm6/R90uc51qWPRGEbvoKZ1PU9cz2indkXB4uvatra0Ay8GrrTdsJRua/L6KHLGt+Z8xJaNng+0rscVGQRlzbG9t/vy0XKnbdqae/Kv/sfW2K9XONmxfV2bL800jYkFhse2Okzl7Mx2LbHel/pRsvlxoO6Fo/dPsNYW28XLVkXvmFdoyrLeuZ5tVaHvvQHdP0oxC2xZ2TcY7wPhIuywyZRmQTvBjTZ0OpGHxNErTlwYASBFinw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAIgEAAAAAAAA=eF5jYCAPcO+vPfQxm8feb8HTQ8+yNO3XmBvuuiigbT9Db/3S5Qra9l+Ws94IVNG2v6z68O5HNW17I2HLomua2vayUi56QTra9u4vVj+r0dO23yAokP5LX9u+qPb1zTcG2vZ+Hx4YzjLUtr+kmXppM5BeNcdq63sgfY15Q/RvIB0z/eFlJiNt+2kFTcsZgHRlb1cGI5BOWf51Gkg8lMVFkhVIz9matw9EXxRRuMcMpCfeONQEkp9vzFkEUn/GfONSkH5eUz0bkLh86PUPIDo1pNgepH7RrC8JIJrr8+c8EP00cEMJiH6+918ZiGa487wcRD9zcaoA0V/3p4DptNWFYFontwxMv9OuANOlpyC0FEslmG4RgtA7JEfpwUwDAMA88zo=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAPQAAAAAAAAA=eF5jYMAP3MWmf8w8/dPuwMyjj2fvlrDfEjuBJc1Nxt7Dh19x6S4R+wTPp+FmXNftCBgzCkbBkAQA6DoRWw==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>
diff --git a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu
index 89fb2ba64e1192e750206f25c8dc1b2e73ec5674..ecd9b665fd5d6ee0430ceea7feb41e8a67121217 100644
--- a/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu
+++ b/Tests/Data/Parabolic/ComponentTransport/ReactiveTransport/EquilibriumPhase/calcite_ts_84_t_8400.000000.vtu
@@ -1,36 +1,38 @@
 <?xml version="1.0"?>
-<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
   <UnstructuredGrid>
     <FieldData>
       <DataArray type="Float64" Name="Calcite" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00020748447701"     offset="0"                   />
-      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011285916729"     offset="968"                 />
-      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="40" format="appended" RangeMin="45"                   RangeMax="121"                  offset="1192"                />
-      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.3130635493"        RangeMax="10.363801764"         offset="1280"                />
+      <DataArray type="Float64" Name="Dolomite(dis)" NumberOfTuples="200" format="appended" RangeMin="0"                    RangeMax="0.00011285916729"     offset="988"                 />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="1232"                />
+      <DataArray type="Float64" Name="pe" NumberOfTuples="200" format="appended" RangeMin="-5.3130635493"        RangeMax="10.363801764"         offset="1316"                />
     </FieldData>
     <Piece NumberOfPoints="101"                  NumberOfCells="100"                 >
       <PointData>
-        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="8.9879233764e-11"     RangeMax="0.00014319773969"     offset="2876"                />
-        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="9.9977461634e-11"     RangeMax="0.00022016863864"     offset="3612"                />
-        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999816987e-13"     RangeMax="0.0019999934163"      offset="4352"                />
-        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308418728e-10"     RangeMax="4.9169659852e-08"     offset="5244"                />
-        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="0.00099999980435"     offset="5976"                />
-        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="6860"                />
-        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="7116"                />
+        <DataArray type="Float64" Name="C(4)" format="appended" RangeMin="8.9879233764e-11"     RangeMax="0.00014319773969"     offset="2932"                />
+        <DataArray type="Float64" Name="Ca" format="appended" RangeMin="9.9977461634e-11"     RangeMax="0.00022016863864"     offset="3688"                />
+        <DataArray type="Float64" Name="Cl" format="appended" RangeMin="9.9999816987e-13"     RangeMax="0.0019999934163"      offset="4448"                />
+        <DataArray type="Float64" Name="H" format="appended" RangeMin="1.2308418728e-10"     RangeMax="4.9169659852e-08"     offset="5360"                />
+        <DataArray type="Float64" Name="Mg" format="appended" RangeMin="1e-12"                RangeMax="0.00099999980435"     offset="6112"                />
+        <DataArray type="Float64" Name="darcy_velocity" format="appended" RangeMin="2.9976852e-06"        RangeMax="2.9976852001e-06"     offset="7016"                />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="98704.543993"         RangeMax="100000"               offset="7292"                />
       </PointData>
       <CellData>
-        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="8172"                />
+        <DataArray type="Float64" Name="Calcite_avg" format="appended" RangeMin="0"                    RangeMax="0.00020748438092"     offset="8368"                />
+        <DataArray type="Float64" Name="Dolomite(dis)_avg" format="appended" RangeMin="0"                    RangeMax="0.00011261625408"     offset="8916"                />
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="9076"                />
       </CellData>
       <Points>
-        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="8216"                />
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="0.5"                  offset="9140"                />
       </Points>
       <Cells>
-        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="9124"                />
-        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="9404"                />
-        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="9696"                />
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="10068"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="10368"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="10680"               />
       </Cells>
     </Piece>
   </UnstructuredGrid>
   <AppendedData encoding="base64">
-   _AQAAAACAAABABgAAwgIAAA==eF7tzutLU3EYB/DVdJkrvC/DuZhsKp55jUoNOWX5Im1qKiG6bqZd1BSdzI2ZmXShnK6UTHLTCPJSUqFpiSkZXqgE562pNJwlCxPzbpm3nueMXvQvVOfNh+9zfs/396PR/q6P11e+zbdqB/k73/GcMPf44UayLc4O6XtdyOJutjLNgyCj3ZpadDyCLDz5QpXqTZANUZHKNS+CVO31/yT3JEiLeE50NeSlubLle+4EOXl7fSgZ9qwFjXy+gCBFS2/kOnCtIDariiDIUC/nillwKiasdAw85jJZMQB2zqu95XAua4HFSgOLzev0CujTZvdudQXpjxhM7PUztKdywbfJe8J5cP+ipdn4Z8h9DELOg3dci5x7NgPzQfoBcRfkU4viWBkY97RGEgzv1zmO2lmBcf1Br6WgnyzBKQIsmQqJqwC17HrbWnBwIL+jHzQ/kdo1DBI5Te0/wQUfTeUGH4L84LiasQSZf5mrXAevmrTOzoM7OSrGAuhv9bV3FRRaWzUvg4V2uou4V6PcpTYBNT2bbq3BvEi9Gk6HHBj1oNsU3NJs6YTnuHlCEwY4lDRGx/85BIeFWZJdd5AGFgbEy/FebluwxUbIgiu5N7E3z9R+GXsGZkd6sF8tFBdg3/FE90zMmyWHVWj97RU17g/YKI5iv+xhkQD3Js5Znse+wMkLDfh/d6vQDc8LOO7p2EMPkN/F+xtd9fF4zl6kmcR5h0HzBXPXK30lqrDNdcfe/MD7TNQsiB2BpkzE70NHztgloC1t07GodvRdCiq55JSI0hpqxeiTmZg0tCyKL0HFouUMtMshJhO1G++k5t+l01TWlVRTtnX7StFyHYvyvXMsZa5DCKUhNImS6D1NyRxOp7wuSqXkH5IY9+szKB9/zKQ8wjVaekNKqdhv1EZvVPvcqGHFaNY3o2FM2R++3P7ff8lf5ifUJQ==AQAAAACAAABABgAAlgAAAA==eF5jYKAvSGZ89Ero+yc7GD9D1ETwu4SU/QeWas+9XcL2O7U3PekJlLWfmsN9Zek1GftFZvu97Utl7b/M+LTr5lRZ+xN3v6+LM5G1z5lYPE0hV9b+dTynxLlTMvZLddv0ngnI2q/xclE92cRuf1WH32b6Ihn7Vz7TJwm0TbQTW+h3S0DiNdzeUTAKRsEoGAWUAQCwnjNjAQAAAACAAAAoAAAAMAAAAA==eF4z0zPWM9K1sNRNNzCyTDFLM7Aw1UvJLCqp1DMyMDIwsDAwMjQ1MTUyAQDHWAmtAQAAAACAAABABgAAmQQAAA==eF7tk/1XzFkcx/WgI9qTuZ9vp0j1zUZpy2ptjhJuepKnlZ5MplFJIhaVzGB6YKsdejxoO5UJ47C2J2tLi8EHoSbloSgPk0Un2lpNpzazWtNev+2fsD/sT6/zuud+7r3vz713s77Aw/eSA82NEI+bNU2AVfd2FteuIOho+zbU4Aqg/LqzSrGWYBg1HV6Xy+EOct5j4isOlV6vGszGT6c5x7XtA4X21NRKLBktJninYOblw9QCnbxFV3OnEUzh34U/G29Pk5wv6ELXcGhn8mDq4EUONTZLJ4h3TMZ12nLXukbAuHC1d6QJ4JuR4biC+zxtzahd2+wGaDDQeb6+m6d/3WjzPfs3T8MWKTxuFfJUpHzYsjCfp/tfN0n6Z/B0tonAP7GPpxVW8rh0JU8bdPNL8g/x1KV5ZL3nGsAmo0vqliyehvukRgiqeTpXVZYous3Tz/Whwm+LeZpik7k7/S5PYzV/Nvv6A44c1+46xnG4ql5TqZHxNHGPxLPXkENp0aiuMomgKtZ8HTcVsFbR/3FpBMHujm3ixiIBXpBtGXoxxFNB3IhjQgRgon208OlKgmWn5podDuZQsvaq7rMRwGzhhrNFqRxmNzt/iPyVw1hrLyjIBuxpmjDmV0VwH3E31McTRO9fuuJ6BWgcu2CSnTtgrv/c2a4bAQceBo+mRPJ04rz6CNksDr2M2vXKN3a0+49zV9O0gME9eFxsBRhgn77n7grAxryhx0f7CSqLtNJL6wEllcWBuVWAPuM8DMk1wHGTottSIjkMsZD8IE/maeaRBc9/vsPTK4fNnMQXebokXlzgYMVhZXL574tZP7fOOwCb5gN23Co2GcgDPFEwaWtfAuCHo+euxbL7TPV/t13dAGg85mL57BTgV0cDuHABh1EWOdxjFw5rB3bUnAzk8NDObddF3xFUFI+eNG4C1Fd0VT29CZiln7Jx2Q3AC/tfCN+yd2Ejsh1a9iNgm/62o5rl+f5rTWRpDWBo3sI3Y0mA61WLw32fC1C1UNWuZXXS3dF1QakELUfed3V5A7YeySIiIUGN2PxlcBTgfWdbY3ksYH7SGXVNJeCXkOZlMgNw3scF3X3HACtsd+btZev6nbA87eMJmOFZ9sh2iKBsyRlFeSBPpzl8UaqLBxyfkiE8qSOYELRxSn4cT+c4+3bqSwGrN1vnHNgMeDnrfXZIK/tPe7RmK58Clk90iAlJBByUTu+3ZvVFy7e3tAax+QMNOeX3CA4/Ci3020DQoC8talUAYJLjiZd+bH/bbSE9o+x8g+8MPSM0BM1VbbzBMMvzwSdmshTwoUQI37QQ1HecHuOiWd6Y6psKxs7sLMd0lrd3tfngEyHgT5ZHknN+IxifmbgpMJj1T2otU18j6LbPpsawl6BW1PXAXUKw6jWxsNxFUCKP6p28l+CWkB7T21KCofVqt0X7CEYRZd1NNi5/b7TiMfNZr6qXFTK6VoXNnCIjeNBueeMg8xvhLw+6M5+TKW+fyfjIdDVZzVjxJDnDiTFE+fbUJy8pky3xYewrMe345LpOSPtERVdmQhDjbhuzNp9/+f/8b/Afv6L75w==AQAAAACAAAAoAwAAFgIAAA==eF5jENgUumHLDdtVs2q2Coor2C9Zt+CWvsc2u7VHZ83y0LxgV7K0X0xsykM73YOnGV5yf7S7VbQixWbPP7stX8Lid/dx2vvNTPy4p0/Y/vnMHeavjyjZX9oq6pUopmh/9UTSSZMWBftGrXiDhnPy9rsvr+I6VSFnH1G1sLY7Vtb+R2d54DZ1Wfvd0/KuFavK2R+QsWzqqJWzTxSVLWC5J2e/W26Ge5GFvH2N1Vxv63Z5+yfsbdc/n5C3v35FkY/xr7z926bDfX8EFewnv9v9Il5ewZ7L/eOk+eoK9vtS3+7epa1gH7LkbuluHQX7qA2qMhuA/DWtSbtDNRXsrVk+fStUU7Bf8aHgaY2ygv2FtSEb9igo2H/je7E8Rk7B/shS7S2lMgr2Inx/mV5JKdj/2Np054Skgr3AumelLyUU7Kd/mVwSCKTXhzA3PACG16Knc0snAWm5o0uKM4C0af/C1dZA+ivT3B0GQLoh5YiQMpD+XBXYLg+kv02W4RUC0nUv7KNEgXSFaYenMJB2a+h4JgKkf/DuzgbxHbfUzQWp8/m7Rw9EPzzP8wUUP1W9sVdB9KMF7UdB9Kz4sr0g+lhZ+k4Q/TI+eTuIXiGatg1EB4S+BserUOcGMG22bgqY/rW8HUx7LWwE0wzP6sC01cJaMD2HC0KvuQhJFzXbIXTBMggtvBJCb1sNodlnQGhYOhpuNACZFjmXAQAAAACAAAAoAwAAFwIAAA==eF5jcPh11bP6tu2qWTVbBcUV7A+/mO/GdmGjnUNajFj3ypN2Zdf55Nv7b9vdcFjpmG7xyk5BqLpJW+27XdMS7w2erMz2stMNTV6p89rHOHs3uj+XtG8JLQ1jTZG2jz4tciuOSd5+SefReTc/K9ofelTw43C3qj1b84bgXjkte55lDSaLbuvYb5g/xXR5kpb939VFP+V1Ne13LpP4O+mjur1XSNZh8+Nq9nM/Fx9u3KpqH8R1wDF/v4r96S/fer4+VbbXK0v4/V9D2b5p+eaG/nYl+7rlGjcYGJTsUy8E/hWboGivlLdsrqupov2Tkk2GL94o2Hcslfpnv0XB/lzTAendHQr2Rs/3znyVrmC/q9FDebG/gr2LuEEwo52C/aG6UrUCQ6D6nybXlmgo2C8t3R4/U0nB/tHjKzotcgr2VYIubuekFez3hzV6ckop2H/iuVD7TELBXmfjl/16QDrizq+WPcBw3LQwc3oZkH6rlV/sA6QN4nPzjIG0QNXssypAeu69S3EyQLpJn3uqOJB2a+h4JgKkf/DuzhYG0o5b6uYKAWmfv3v0QPTD8zxfQPFT1Rt7FUS3LW4/CqIPhZbtBdHvctJ3guiepOTtILqEL20biJbyew2OV+v6DWD65oYpYFppXjuYnrCsEUwHXKoD03cW14LpOVwQes1FSLqo2Q6hC5ZB6G2rITT7DAgNSz/DlQYAkUQ5GA==AQAAAACAAAAoAwAAigIAAA==eF7TcBf38kpKsOc5q9s4c3qh7eaNu5vEYhPsRQz/nOgLTrD/cS2xaKtzgn0gmzCblHaC/bnDTdLX2RLs/96fFdy1PN5eSogpzUM23n5D0o+d9zPi7Ps+rnwg0xprv8Pv+s6WvBj7NzGv1h9UjrZf21Mpb7Is0j5+4lMu5l/h9tOk/VdJqIXZT7qkevajcYi93SWrtot6QfbbSpwTvyoF2DfsOCH9y9LH3nQbp1JjoIe93s1ZX6MXuthvyAkKCLFytD99KcD5doCN/X+OG4KBT83s56qqpZaYGdlzzXpc29agY98xxS/g4HtVe73/v687zVawV1rOdPLZLgn7F8aRRcdlhOxZ49Z5S0ty2fvk20vr1jPZ//2vmtZ1+qedyC3X0oWbPtr5CWXWn3j63K7tsNCGzEP37XaEdjO8OnrF7mPIDs/VB07ZLel7F2/z7YDdIrkQplq9rXZvnrZH9PGusuufsu1QzsT5dp2mbd18NybZTSr8mLZQu81O5Y1148KtlXYH1SWzuFNy7RL6Fbe2TUiwC2Rd9/NBZpBdVj9r8zYDF7sLfL2FMddN7Y6kzf69JUDdTkfqyzm+iRJ2BS+i3b/3cdoJsmf+nu7yy9ZhifgM7o2vbFlD/U4+vXXLdp2R0a61V07ZCgneb+86ustWtElUpPnXKtvfib/sdTnn2N79ab53mWi/7ZkE+d+O+s22vzkyi15pVdtOulr+4NyXUtu+SWkLzPuLbQ8zZh/Qryiy3WW9fsq6X4W2QTujr187VGi796hmjfOqQtuanHDG/vmFtrGVd+9+nFVo+9S92fDfjELbsAKjWg0gHVcjeekMMB1lWdpuWAGkXwWypk4H0rD0NVRpAF1kabE=AQAAAACAAAAoAwAAEgIAAA==eF67cm/S7MupWXZzFss/XPzqgW1jU0WUYYSFndrUxvwl/7XsDMwEV33+LWX33XvqjzUbee2kkk6XzjnEaLeF88+j3Zbfbd1+u3+4o/LBViXj7WtOmye209YvOKTH/cy2tjc20yH2me0n7uPFmZuf2dppLVedKvjc9p+XokG3x3PbRwvzdJ78fmYrZxHT+Vjsme1P5fCa/21PbT9E8xbbfXxie4SladX2hCe2DmbSVz/feGwr8k/289KYx7ZfWK3+33zzyHbSsY/BBV2PbKXKH7eGmD6ybbrz/0vB24e2pwy1vj7e+NC2Sm9jT13jQ1vGYNE0keiHtlzidzf8tHlo+1ljpddv1Ye2k+wPeO0VeWhrxDU1g5Xjoe2vFzKrLvx7YFu2Qvt42I8Htg7GNYf3fn5ge2Z/9bWlHx7YLsxt+ln37oFt21mTKzJvH9juzfjJq/3mgS1H9fG3va8f2KakST+1BNJzrpTJvwaGo2DJlrNXgXTMwXO39wHpN5FBh3cA6YLQ02dA4XzVTIl5JZB+4tD2eSmQ/rsoe9IKIF3BwhK/DEinTW7QB4mLPNXvWwKkXxyeaAmipzw5wguizyxM+g4yR1xD/A2IlkoqewaivxtsfAyijZMiHoFoxxmbwPH6hiMFTCf8sQPTao90wfQJQTUwvSxfCUyXHFUA0+sNITTrHUi6YNsJoWHpZKTRAHngzrY=AQAAAACAAAAoAwAAhQIAAA==eF4LsdKa65sUYM9zVrdx5vRC25ldcrzGcQH2erkTxB+FBdi/YOGvCfAOsH/rkPXiplWA/YlZae56qgH2ZsEZMgIcAfZnf7zdvmSPv/37L7vv6931t1+ne9lZN87P3qH7TZfVeh97qXWTYqYu8LLvaPdzDBTysA+zLb7GIudqf+G6r57KFCf7qhNz132Kd7S/ujlHMTTN3r5vp+f1ySw29vrPpzzPXGJhv2aaYltnhKl9afy0zTeMjex1nqyNVu3Vs5dt6Nh1yFLT3uP6tO+ytSr2+9w1XgrHKdiLva88cX67pH1dX+yWbfeE7ZdPL+VuM+Sz55+kxefYz2Z/Jbn267LJDPY1Lv3vZn39bueUvKToGftHO6e18RfVLz63+znxyHvXpAd27Os0dp3UvWa3Ie60xMzus3Y1206sCos7bOfiluzq8X+H3cu47RpGh9fbcTQcPHL+3mK7kg+fVhjXzLB7xssbm7Kj1649SZXD9WijXemaB/svfiixC5CYuoYhKMOu6xf35WvXo+0cbK7nzs/1twsQt+u9W+toFzPf4nOoibHdhRPW3vZnVez6PJ4mmtuI2Z1bUWtVXsZuN1+1+tuH4h+2+89qGIkbvrR917JRqnDjTdsz+5PWmrGcsj2Um3vYx3eX7cTncxevuLbKdssRV9dQ4zm2VypWSvO39tv+P3DKs7al2fbG96YDvDOqbV0FF/oWmpTZCuet22K8qdh2zdXMwz1dRbZORiec/jEX2Z7KbzpXdrzQ9sCqzVHVawpt2dKztk9YUGi7YHaDfcbsQluFidPnGc8stFW/cC3YekahbRBjleUDYPpZ83G7+RYg3bfskMZcIA1LV0OdBgD0h2saAQAAAACAAAAoAwAArAAAAA==eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAACAAAAoAwAABgMAAA==eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAACAAACQAQAADgAAAA==eF5jYBgFgwkAAAGQAAE=AQAAAACAAAB4CQAAlwIAAA==eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAACAAABABgAAvgAAAA==eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAACAAAAgAwAAxwAAAA==eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAACAAABkAAAADAAAAA==eF5jZqY9AAA7kgEt
+   _AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAwgIAAAAAAAA=eF7tzutLU3EYB/DVdJkrvC/DuZhsKp55jUoNOWX5Im1qKiG6bqZd1BSdzI2ZmXShnK6UTHLTCPJSUqFpiSkZXqgE562pNJwlCxPzbpm3nueMXvQvVOfNh+9zfs/396PR/q6P11e+zbdqB/k73/GcMPf44UayLc4O6XtdyOJutjLNgyCj3ZpadDyCLDz5QpXqTZANUZHKNS+CVO31/yT3JEiLeE50NeSlubLle+4EOXl7fSgZ9qwFjXy+gCBFS2/kOnCtIDariiDIUC/nillwKiasdAw85jJZMQB2zqu95XAua4HFSgOLzev0CujTZvdudQXpjxhM7PUztKdywbfJe8J5cP+ipdn4Z8h9DELOg3dci5x7NgPzQfoBcRfkU4viWBkY97RGEgzv1zmO2lmBcf1Br6WgnyzBKQIsmQqJqwC17HrbWnBwIL+jHzQ/kdo1DBI5Te0/wQUfTeUGH4L84LiasQSZf5mrXAevmrTOzoM7OSrGAuhv9bV3FRRaWzUvg4V2uou4V6PcpTYBNT2bbq3BvEi9Gk6HHBj1oNsU3NJs6YTnuHlCEwY4lDRGx/85BIeFWZJdd5AGFgbEy/FebluwxUbIgiu5N7E3z9R+GXsGZkd6sF8tFBdg3/FE90zMmyWHVWj97RU17g/YKI5iv+xhkQD3Js5Znse+wMkLDfh/d6vQDc8LOO7p2EMPkN/F+xtd9fF4zl6kmcR5h0HzBXPXK30lqrDNdcfe/MD7TNQsiB2BpkzE70NHztgloC1t07GodvRdCiq55JSI0hpqxeiTmZg0tCyKL0HFouUMtMshJhO1G++k5t+l01TWlVRTtnX7StFyHYvyvXMsZa5DCKUhNImS6D1NyRxOp7wuSqXkH5IY9+szKB9/zKQ8wjVaekNKqdhv1EZvVPvcqGHFaNY3o2FM2R++3P7ff8lf5ifUJQ==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAlgAAAAAAAAA=eF5jYKAvSGZ89Ero+yc7GD9D1ETwu4SU/QeWas+9XcL2O7U3PekJlLWfmsN9Zek1GftFZvu97Utl7b/M+LTr5lRZ+xN3v6+LM5G1z5lYPE0hV9b+dTynxLlTMvZLddv0ngnI2q/xclE92cRuf1WH32b6Ihn7Vz7TJwm0TbQTW+h3S0DiNdzeUTAKRsEoGAWUAQCwnjNjAQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9I1tjTSTbdISzOxMLQwTwYALpgEyg==AQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAmQQAAAAAAAA=eF7tk/1XzFkcx/WgI9qTuZ9vp0j1zUZpy2ptjhJuepKnlZ5MplFJIhaVzGB6YKsdejxoO5UJ47C2J2tLi8EHoSbloSgPk0Un2lpNpzazWtNev+2fsD/sT6/zuud+7r3vz713s77Aw/eSA82NEI+bNU2AVfd2FteuIOho+zbU4Aqg/LqzSrGWYBg1HV6Xy+EOct5j4isOlV6vGszGT6c5x7XtA4X21NRKLBktJninYOblw9QCnbxFV3OnEUzh34U/G29Pk5wv6ELXcGhn8mDq4EUONTZLJ4h3TMZ12nLXukbAuHC1d6QJ4JuR4biC+zxtzahd2+wGaDDQeb6+m6d/3WjzPfs3T8MWKTxuFfJUpHzYsjCfp/tfN0n6Z/B0tonAP7GPpxVW8rh0JU8bdPNL8g/x1KV5ZL3nGsAmo0vqliyehvukRgiqeTpXVZYous3Tz/Whwm+LeZpik7k7/S5PYzV/Nvv6A44c1+46xnG4ql5TqZHxNHGPxLPXkENp0aiuMomgKtZ8HTcVsFbR/3FpBMHujm3ixiIBXpBtGXoxxFNB3IhjQgRgon208OlKgmWn5podDuZQsvaq7rMRwGzhhrNFqRxmNzt/iPyVw1hrLyjIBuxpmjDmV0VwH3E31McTRO9fuuJ6BWgcu2CSnTtgrv/c2a4bAQceBo+mRPJ04rz6CNksDr2M2vXKN3a0+49zV9O0gME9eFxsBRhgn77n7grAxryhx0f7CSqLtNJL6wEllcWBuVWAPuM8DMk1wHGTottSIjkMsZD8IE/maeaRBc9/vsPTK4fNnMQXebokXlzgYMVhZXL574tZP7fOOwCb5gN23Co2GcgDPFEwaWtfAuCHo+euxbL7TPV/t13dAGg85mL57BTgV0cDuHABh1EWOdxjFw5rB3bUnAzk8NDObddF3xFUFI+eNG4C1Fd0VT29CZiln7Jx2Q3AC/tfCN+yd2Ejsh1a9iNgm/62o5rl+f5rTWRpDWBo3sI3Y0mA61WLw32fC1C1UNWuZXXS3dF1QakELUfed3V5A7YeySIiIUGN2PxlcBTgfWdbY3ksYH7SGXVNJeCXkOZlMgNw3scF3X3HACtsd+btZev6nbA87eMJmOFZ9sh2iKBsyRlFeSBPpzl8UaqLBxyfkiE8qSOYELRxSn4cT+c4+3bqSwGrN1vnHNgMeDnrfXZIK/tPe7RmK58Clk90iAlJBByUTu+3ZvVFy7e3tAax+QMNOeX3CA4/Ci3020DQoC8talUAYJLjiZd+bH/bbSE9o+x8g+8MPSM0BM1VbbzBMMvzwSdmshTwoUQI37QQ1HecHuOiWd6Y6psKxs7sLMd0lrd3tfngEyHgT5ZHknN+IxifmbgpMJj1T2otU18j6LbPpsawl6BW1PXAXUKw6jWxsNxFUCKP6p28l+CWkB7T21KCofVqt0X7CEYRZd1NNi5/b7TiMfNZr6qXFTK6VoXNnCIjeNBueeMg8xvhLw+6M5+TKW+fyfjIdDVZzVjxJDnDiTFE+fbUJy8pky3xYewrMe345LpOSPtERVdmQhDjbhuzNp9/+f/8b/Afv6L75w==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFgIAAAAAAAA=eF5jENgUumHLDdtVs2q2Coor2C9Zt+CWvsc2u7VHZ83y0LxgV7K0X0xsykM73YOnGV5yf7S7VbQixWbPP7stX8Lid/dx2vvNTPy4p0/Y/vnMHeavjyjZX9oq6pUopmh/9UTSSZMWBftGrXiDhnPy9rsvr+I6VSFnH1G1sLY7Vtb+R2d54DZ1Wfvd0/KuFavK2R+QsWzqqJWzTxSVLWC5J2e/W26Ge5GFvH2N1Vxv63Z5+yfsbdc/n5C3v35FkY/xr7z926bDfX8EFewnv9v9Il5ewZ7L/eOk+eoK9vtS3+7epa1gH7LkbuluHQX7qA2qMhuA/DWtSbtDNRXsrVk+fStUU7Bf8aHgaY2ygv2FtSEb9igo2H/je7E8Rk7B/shS7S2lMgr2Inx/mV5JKdj/2Np054Skgr3AumelLyUU7Kd/mVwSCKTXhzA3PACG16Knc0snAWm5o0uKM4C0af/C1dZA+ivT3B0GQLoh5YiQMpD+XBXYLg+kv02W4RUC0nUv7KNEgXSFaYenMJB2a+h4JgKkf/DuzgbxHbfUzQWp8/m7Rw9EPzzP8wUUP1W9sVdB9KMF7UdB9Kz4sr0g+lhZ+k4Q/TI+eTuIXiGatg1EB4S+BserUOcGMG22bgqY/rW8HUx7LWwE0wzP6sC01cJaMD2HC0KvuQhJFzXbIXTBMggtvBJCb1sNodlnQGhYOhpuNACZFjmXAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAFwIAAAAAAAA=eF5jcPh11bP6tu2qWTVbBcUV7A+/mO/GdmGjnUNajFj3ypN2Zdf55Nv7b9vdcFjpmG7xyk5BqLpJW+27XdMS7w2erMz2stMNTV6p89rHOHs3uj+XtG8JLQ1jTZG2jz4tciuOSd5+SefReTc/K9ofelTw43C3qj1b84bgXjkte55lDSaLbuvYb5g/xXR5kpb939VFP+V1Ne13LpP4O+mjur1XSNZh8+Nq9nM/Fx9u3KpqH8R1wDF/v4r96S/fer4+VbbXK0v4/V9D2b5p+eaG/nYl+7rlGjcYGJTsUy8E/hWboGivlLdsrqupov2Tkk2GL94o2Hcslfpnv0XB/lzTAendHQr2Rs/3znyVrmC/q9FDebG/gr2LuEEwo52C/aG6UrUCQ6D6nybXlmgo2C8t3R4/U0nB/tHjKzotcgr2VYIubuekFez3hzV6ckop2H/iuVD7TELBXmfjl/16QDrizq+WPcBw3LQwc3oZkH6rlV/sA6QN4nPzjIG0QNXssypAeu69S3EyQLpJn3uqOJB2a+h4JgKkf/DuzhYG0o5b6uYKAWmfv3v0QPTD8zxfQPFT1Rt7FUS3LW4/CqIPhZbtBdHvctJ3guiepOTtILqEL20biJbyew2OV+v6DWD65oYpYFppXjuYnrCsEUwHXKoD03cW14LpOVwQes1FSLqo2Q6hC5ZB6G2rITT7DAgNSz/DlQYAkUQ5GA==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAigIAAAAAAAA=eF7TcBf38kpKsOc5q9s4c3qh7eaNu5vEYhPsRQz/nOgLTrD/cS2xaKtzgn0gmzCblHaC/bnDTdLX2RLs/96fFdy1PN5eSogpzUM23n5D0o+d9zPi7Ps+rnwg0xprv8Pv+s6WvBj7NzGv1h9UjrZf21Mpb7Is0j5+4lMu5l/h9tOk/VdJqIXZT7qkevajcYi93SWrtot6QfbbSpwTvyoF2DfsOCH9y9LH3nQbp1JjoIe93s1ZX6MXuthvyAkKCLFytD99KcD5doCN/X+OG4KBT83s56qqpZaYGdlzzXpc29agY98xxS/g4HtVe73/v687zVawV1rOdPLZLgn7F8aRRcdlhOxZ49Z5S0ty2fvk20vr1jPZ//2vmtZ1+qedyC3X0oWbPtr5CWXWn3j63K7tsNCGzEP37XaEdjO8OnrF7mPIDs/VB07ZLel7F2/z7YDdIrkQplq9rXZvnrZH9PGusuufsu1QzsT5dp2mbd18NybZTSr8mLZQu81O5Y1148KtlXYH1SWzuFNy7RL6Fbe2TUiwC2Rd9/NBZpBdVj9r8zYDF7sLfL2FMddN7Y6kzf69JUDdTkfqyzm+iRJ2BS+i3b/3cdoJsmf+nu7yy9ZhifgM7o2vbFlD/U4+vXXLdp2R0a61V07ZCgneb+86ustWtElUpPnXKtvfib/sdTnn2N79ab53mWi/7ZkE+d+O+s22vzkyi15pVdtOulr+4NyXUtu+SWkLzPuLbQ8zZh/Qryiy3WW9fsq6X4W2QTujr187VGi796hmjfOqQtuanHDG/vmFtrGVd+9+nFVo+9S92fDfjELbsAKjWg0gHVcjeekMMB1lWdpuWAGkXwWypk4H0rD0NVRpAF1kabE=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAEgIAAAAAAAA=eF67cm/S7MupWXZzFss/XPzqgW1jU0WUYYSFndrUxvwl/7XsDMwEV33+LWX33XvqjzUbee2kkk6XzjnEaLeF88+j3Zbfbd1+u3+4o/LBViXj7WtOmye209YvOKTH/cy2tjc20yH2me0n7uPFmZuf2dppLVedKvjc9p+XokG3x3PbRwvzdJ78fmYrZxHT+Vjsme1P5fCa/21PbT9E8xbbfXxie4SladX2hCe2DmbSVz/feGwr8k/289KYx7ZfWK3+33zzyHbSsY/BBV2PbKXKH7eGmD6ybbrz/0vB24e2pwy1vj7e+NC2Sm9jT13jQ1vGYNE0keiHtlzidzf8tHlo+1ljpddv1Ye2k+wPeO0VeWhrxDU1g5Xjoe2vFzKrLvx7YFu2Qvt42I8Htg7GNYf3fn5ge2Z/9bWlHx7YLsxt+ln37oFt21mTKzJvH9juzfjJq/3mgS1H9fG3va8f2KakST+1BNJzrpTJvwaGo2DJlrNXgXTMwXO39wHpN5FBh3cA6YLQ02dA4XzVTIl5JZB+4tD2eSmQ/rsoe9IKIF3BwhK/DEinTW7QB4mLPNXvWwKkXxyeaAmipzw5wguizyxM+g4yR1xD/A2IlkoqewaivxtsfAyijZMiHoFoxxmbwPH6hiMFTCf8sQPTao90wfQJQTUwvSxfCUyXHFUA0+sNITTrHUi6YNsJoWHpZKTRAHngzrY=AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAAhQIAAAAAAAA=eF4LsdKa65sUYM9zVrdx5vRC25ldcrzGcQH2erkTxB+FBdi/YOGvCfAOsH/rkPXiplWA/YlZae56qgH2ZsEZMgIcAfZnf7zdvmSPv/37L7vv6931t1+ne9lZN87P3qH7TZfVeh97qXWTYqYu8LLvaPdzDBTysA+zLb7GIudqf+G6r57KFCf7qhNz132Kd7S/ujlHMTTN3r5vp+f1ySw29vrPpzzPXGJhv2aaYltnhKl9afy0zTeMjex1nqyNVu3Vs5dt6Nh1yFLT3uP6tO+ytSr2+9w1XgrHKdiLva88cX67pH1dX+yWbfeE7ZdPL+VuM+Sz55+kxefYz2Z/Jbn267LJDPY1Lv3vZn39bueUvKToGftHO6e18RfVLz63+znxyHvXpAd27Os0dp3UvWa3Ie60xMzus3Y1206sCos7bOfiluzq8X+H3cu47RpGh9fbcTQcPHL+3mK7kg+fVhjXzLB7xssbm7Kj1649SZXD9WijXemaB/svfiixC5CYuoYhKMOu6xf35WvXo+0cbK7nzs/1twsQt+u9W+toFzPf4nOoibHdhRPW3vZnVez6PJ4mmtuI2Z1bUWtVXsZuN1+1+tuH4h+2+89qGIkbvrR917JRqnDjTdsz+5PWmrGcsj2Um3vYx3eX7cTncxevuLbKdssRV9dQ4zm2VypWSvO39tv+P3DKs7al2fbG96YDvDOqbV0FF/oWmpTZCuet22K8qdh2zdXMwz1dRbZORiec/jEX2Z7KbzpXdrzQ9sCqzVHVawpt2dKztk9YUGi7YHaDfcbsQluFidPnGc8stFW/cC3YekahbRBjleUDYPpZ83G7+RYg3bfskMZcIA1LV0OdBgD0h2saAQAAAAAAAAAAgAAAAAAAACgDAAAAAAAArAAAAAAAAAA=eF6F0r0NwjAQBWCzQUZIQ+8JkEfIBngE1zTcCB7BI2QEWjoWQMoCId4gSPDO0j3JSvXp3Z8b7/f6vp2fF1fWn7vmdGCEE2U1QE9zPJ86fTUc1Fl9b4QOLtvfutlcYLKexNr6EQbobZ332n6GQnsDHMmB9J09dvlYa0ftP8gXnGGBQmYyQQ8D6fT+ivcg/p3LMMEJ//GKHEidi3a+1fWeUJ/v8p5Qxp0vvkmKjw==AQAAAAAAAAAAgAAAAAAAACgDAAAAAAAABgMAAAAAAAA=eF4N02tME2YUBuD6Q1TEbVapq3OrgsXVUhBk2lXFt1LEyaaCuCJQKjK3UQUrar2hMVZEvAQ0ki3h4mzGrC4hmaPIxEVhMcaMW5Soa7KFBbGLBm817kW5eL4/z4+TnJNz+RQKeQ4iaUp843g1sduouTKvgHjmTNyR9y3huGCLOf0N0fdvyX9tXxO26TWe4CbibnpLzmxxzXG/at1XxK0/BrtL8yXP0PvHmzYSvycYkwN5hLHQOjpNvFTv+m3FBiL6n6rte+yEV+UzXMwlIlb3BPw2orYseG6iqL6uzFmcQ5xhnKowm3gvLq27Nos4UeA81rmeGOepsIxmEm5/w0isOKrsbN5gJfamDhSf+pJ45Q4ztK0jtl/VB15kSB8vV56LFIsMjuyMtcTApvLw0nRic523y5dGPL57s/zhGqLw3UDSNPFpSshIympi20Ft8+5VRLDZUnzhC2Ln8/xo/+cEde6HoeK+jZ4fFqUSiurWrC0ricN3eqfWfkaEhCm6OlYQRy2a8pEUInR/YlKseMJnG7YvJyY9KblcmUxURtVsa7UQKnuL/kUSUf2dvz9CnNk9eHbtMuLH8eqsw2Yiymyc6gPx0x5rZ/9SQnvJdVQl1j+qWpaSKPFI39CuJRLP7mnyLibmnAk6/1pEXGxX6kPF6LHx/SYT0bAk7ezmT4lYl3N9jZH4paFiSsdCYn6goWN4AXFZ01kWI5oyB8z2T2R/lWFDFQmE+Za+6fp84saYVOfzeCLV5JgbIXYVlz9IjyMyfvbWuecR9/tuZjbGEvYZAWV/DBHICOkIF4tOasuWG4j/b1jMu6KJQyP5b87rZQ4L3b77c4nvt3q2ThC13ladSSd30tvb5/hY6qoVddVzpE6aJrM9isg9lqgc1hJP2mztBnH/m5IjubOJiQk1qIiU+W1peX0tgtDV+xufzZJ+/h4smiVaVGpd+kzi9ipj3yENkVdmrf31I9nzNZf1wYfEAVZNDhffifP9mTxD8hT0lLo+kDye4NLz04kmv/L1PfkXbwGyqpEwAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAegEAAAAAAAA=eF5jYKAPULk8X9xiBb99hLxmUXuqpv33P6+XLdfUtl8SxSpmbqhtf81fZ66Qgbb9Z6fzr5j1tO23C+0LaNTRtl9232HiWW1tezVHOcW7QFqp9JZyGVB82xGn8ihdbXs5j7S9bkD1D/bNl2HR17bX0eUX4waaI1Mb/XwRkF7wzO2YLtD8c8tCC1OBtEVbg/UaIF04q+7kdSA94eZRs39Aus6fv+kPkI6ZuO7PFyB9ZOLf4yD+/KBOXmYjbftN25s+MADp5R03K0D82t8SLSxA+veVDF0Q/1ZD+FGQ/B2Xs06sQNpygaYBiG/yYU8nyPyjQS5VjEC+EfulUyD1NtdjP4DEZ+heYQGJZzhFaDIB6ZMXbxwH0T3aE2VA6qxnOHiC6HOizQkgetmGshwQff1yWxGI7oiYUAqiC5gEy0H0K46zYHrTNXWwO9UUg8F0x4R0MO0pXQimk+pLwfS/unIwPSW1AkyXnoLQG79CaH/uSjC9Q3Jk0gAhYuf2AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAVgAAAAAAAAA=eF5jYCAPJDM+eiX0/ZGdTm+47q2LYvbqZ+JiJEVk7U8/j2juaZW1n7V966L9AbL2J465K996K2MvtjLi+V9DEfva6Mdxjktu2xEyfxSMgsEAADFTHYo=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAHgJAAAAAAAAlwIAAAAAAAA=eF591EtI1FEcxXErJGcKEdOgBBdJYNEDKqQgqcBXRo8BpWBc5MJoIWYgLaYIIyWL1OxhRRjVRBaoWPZQ0TRn0jQnH6njK2sEZWIWQjELF2n3uOwL3eWH4X/vPb9zJyTkf+vHvn+l/2dtqs9RAF9Y8iJ43lRRwNZYBs/26/e34cGT97Xga8b1nYfwss2NscWBx/Dupe8/hYdVO/MTrdXwtBxt+wJeElfeEYyvgV/26Tx18NkjiVavsx6esEXnfMkcLDvNaoCXzur8r+HNrvis8o438JlHutc7eORFs62tEZ5o132b4Lm7o+pSfc3we9HKoQXu/mXxOvNb4XN9yuc9PKZ20aw2eFyycmuHNzU4zIE+wI9uUJ70mRtBBQQ/v7jD5OyCR+SZ2Lz0Z5PK3w3fe8hcK/YjfLBJ29JPx58yqxO+UKl5dcFvhfrMhelbCzTHT3DXtN0Mhp5p03y74YG2EbNxD7xwm+ZOX19lrlv8GV6/Sn3ohac4erXgE371xAM/e9zEHPUFvrJT/aFX7TLbZvXB553qFX3smnLrh69LUt/oJ/4oT3rlW/VwAD5yRjnT125SP+mZ08p/EH7ngXpLH87QXOjR4frf+ArP6NK86DcL1XP60B7NcQge+Vv9p9tqNF56RY7exTB8INbEnE+PGNV7oR+rUB9G4GXpekf0/hX6e6OHt+p9eeGHz6k/9NLtend0j1+9oq9+ol6NwtPt6hX9epS5bpDe41GvxuCWK+oV/eB+9Yp+dV69God3v1Kv6GG56hU9baN6NQEvmVKv6J13FTM91KZeTcKTrWZbB73YpV7R3RfUq2/w5QnqFT1pTr2iFz1Xr6bgrmz1ir4sRr2iHxhSr77DL5WqV/T2FPWK/hfn/pddAQAAAAAAAAAAgAAAAAAAAEAGAAAAAAAAvgAAAAAAAAA=eF5dxcciAgAAANAohOyZUhq2bLJ3yB4hiaz//waHnN67vECgrpGDHOImbuYWDnMrt3E7R7iDO7mLu7mHe7mP+3mAB3mIhznKIxzjOI9ygpM8xilOc4azPM4TPMlTPM0zPMtznON5XuBFXuJlXuFVXuN1zvMGb/IWb/MO7/Ie7/MBH/IRH/MJF/iUz/ici3zBl3zF13zDt3zH9/zAj1ziJ37mFy7zK1f4jav8zh9c40/+4m/+4V9u+P8PcvwndA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxwAAAAAAAAA=eF4txdFGAwAAAMAkmUwymUySSZIkmWQySZJJkiQzmSTJJEmSTJKZZJJJkkmSmSRJkkkm6bN62N3LNTc1tLjVAbc56HZ3OOROh93liLvd415H3ed+D3jQQx72iEcd85jHHfeEE570lKc941knPed5L3jRS172ilNOe9UZr3ndG970lrPe9o53ved9H/jQR8752Cc+dd4Fn/ncRV/40iVf+do3vnXZd773gx9dcdVPfvaLX/3md3/40zV/+dt1//jXf/4H8McndQ==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF5jZqY9AAA7kgEt
   </AppendedData>
 </VTKFile>