From d27931f29992bc6767edb345a5e1d26df76a02f8 Mon Sep 17 00:00:00 2001
From: Wenqing Wang <wenqing.wang@ufz.de>
Date: Thu, 6 May 2021 09:48:50 +0200
Subject: [PATCH] [Ctest/HM] Added a 2D test with the mesh rotated around the
 vertical axis.

---
 ProcessLib/HydroMechanics/Tests.cmake         |  15 ++
 .../flow_gravity.prj                          | 232 ++++++++++++++++++
 .../flow_gravity_ts_16_t_40000000.000000.vtu  |  41 ++++
 .../RotatedAroundVerticalAxis/square_1x1.gml  |  31 +++
 .../square_1x1_quad8_1e2.vtu                  |  48 ++++
 5 files changed, 367 insertions(+)
 create mode 100644 Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity.prj
 create mode 100644 Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity_ts_16_t_40000000.000000.vtu
 create mode 100644 Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1.gml
 create mode 100644 Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1_quad8_1e2.vtu

diff --git a/ProcessLib/HydroMechanics/Tests.cmake b/ProcessLib/HydroMechanics/Tests.cmake
index 425eef049d6..d512cc3a64a 100644
--- a/ProcessLib/HydroMechanics/Tests.cmake
+++ b/ProcessLib/HydroMechanics/Tests.cmake
@@ -538,3 +538,18 @@ AddTest(
     HM_NodalSourceTem_ts_100_t_86400.000000.vtu HM_NodalSourceTem_ts_100_t_86400.000000.vtu sigma sigma 1.0e-8 0.0
     HM_NodalSourceTem_ts_100_t_86400.000000.vtu HM_NodalSourceTem_ts_100_t_86400.000000.vtu epsilon epsilon 1.0e-15 0.0
 )
+
+# Rotated 2D mesh
+AddTest(
+    NAME HydroMechanics_HML_flow_gravity_rotated_2D_mesh
+    PATH HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis
+    EXECUTABLE ogs
+    EXECUTABLE_ARGS flow_gravity.prj
+    WRAPPER time
+    TESTER vtkdiff
+    REQUIREMENTS NOT OGS_USE_MPI
+    DIFF_DATA
+    flow_gravity_ts_16_t_40000000.000000.vtu flow_gravity_ts_16_t_40000000.000000.vtu displacement displacement 1e-9 0
+    flow_gravity_ts_16_t_40000000.000000.vtu flow_gravity_ts_16_t_40000000.000000.vtu pressure pressure 1e-9 0
+    flow_gravity_ts_16_t_40000000.000000.vtu flow_gravity_ts_16_t_40000000.000000.vtu velocity velocity 1e-9 0
+)
diff --git a/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity.prj b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity.prj
new file mode 100644
index 00000000000..ffe83a43b90
--- /dev/null
+++ b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity.prj
@@ -0,0 +1,232 @@
+<?xml version='1.0' encoding='ISO-8859-1'?>
+<OpenGeoSysProject>
+    <mesh>square_1x1_quad8_1e2.vtu</mesh>
+    <geometry>square_1x1.gml</geometry>
+    <search_length_algorithm>
+        <type>fixed</type>
+        <value>0.01</value>
+    </search_length_algorithm>
+    <processes>
+        <process>
+            <name>HM</name>
+            <type>HYDRO_MECHANICS</type>
+            <integration_order>3</integration_order>
+            <dimension>2</dimension>
+            <constitutive_relation>
+                <type>LinearElasticIsotropic</type>
+                <youngs_modulus>E</youngs_modulus>
+                <poissons_ratio>nu</poissons_ratio>
+            </constitutive_relation>
+            <process_variables>
+                <displacement>displacement</displacement>
+                <pressure>pressure</pressure>
+            </process_variables>
+            <secondary_variables>
+                <secondary_variable internal_name="sigma" output_name="sigma"/>
+                <secondary_variable internal_name="epsilon" output_name="epsilon"/>
+                <secondary_variable internal_name="velocity" output_name="velocity"/>
+            </secondary_variables>
+            <specific_body_force>0 -10</specific_body_force>
+        </process>
+    </processes>
+    <media>
+        <medium>
+            <phases>
+                <phase>
+                    <type>Gas</type>
+                    <properties>
+                        <property>
+                            <name>viscosity</name>
+                            <type>Constant</type>
+                            <value>1e-3</value>
+                        </property>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>1.0e3</value>
+                        </property>
+                    </properties>
+                </phase>
+                <phase>
+                    <type>Solid</type>
+                    <properties>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>2.0e3</value>
+                        </property>
+                    </properties>
+                </phase>
+            </phases>
+            <properties>
+                <property>
+                    <name>porosity</name>
+                    <type>Constant</type>
+                    <value>0.1</value>
+                </property>
+                <property>
+                    <name>biot_coefficient</name>
+                    <type>Constant</type>
+                    <value>1</value>
+                </property>
+                <property>
+                    <name>reference_temperature</name>
+                    <type>Constant</type>
+                    <value>293.15</value>
+                </property>
+                <property>
+                    <name>permeability</name>
+                    <type>Constant</type>
+                    <value>1e-12</value>
+                </property>
+            </properties>
+        </medium>
+    </media>
+    <time_loop>
+        <processes>
+            <process ref="HM">
+                <nonlinear_solver>basic_newton</nonlinear_solver>
+                <convergence_criterion>
+                    <type>PerComponentDeltaX</type>
+                    <norm_type>NORM2</norm_type>
+                    <reltols>1e-12 1e+10 1e-12</reltols>
+                </convergence_criterion>
+                <time_discretization>
+                    <type>BackwardEuler</type>
+                </time_discretization>
+                <time_stepping>
+                    <type>FixedTimeStepping</type>
+                    <t_initial>0</t_initial>
+                    <t_end>4e7</t_end>
+                    <timesteps>
+                        <pair>
+                            <repeat>10</repeat>
+                            <delta_t>5</delta_t>
+                        </pair>
+                        <pair>
+                            <repeat>2</repeat>
+                            <delta_t>1e4</delta_t>
+                        </pair>
+                        <pair>
+                            <repeat>10</repeat>
+                            <delta_t>1e7</delta_t>
+                        </pair>
+                    </timesteps>
+                </time_stepping>
+            </process>
+        </processes>
+        <output>
+            <type>VTK</type>
+            <prefix>flow_gravity</prefix>
+            <timesteps>
+                <pair>
+                    <repeat>1</repeat>
+                    <each_steps>10000</each_steps>
+                </pair>
+            </timesteps>
+            <variables>
+                <variable>displacement</variable>
+                <variable>pressure</variable>
+                <variable>sigma</variable>
+                <variable>epsilon</variable>
+                <variable>velocity</variable>
+            </variables>
+            <suffix>_ts_{:timestep}_t_{:time}</suffix>
+        </output>
+    </time_loop>
+    <parameters>
+        <!-- Mechanics -->
+        <parameter>
+            <name>E</name>
+            <type>Constant</type>
+            <value>1e4</value>
+        </parameter>
+        <parameter>
+            <name>nu</name>
+            <type>Constant</type>
+            <value>.1</value>
+        </parameter>
+        <!-- Model parameters -->
+        <parameter>
+            <name>displacement0</name>
+            <type>Constant</type>
+            <values>0 0</values>
+        </parameter>
+        <parameter>
+            <name>zero</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+        <parameter>
+            <name>flux_in</name>
+            <type>Constant</type>
+            <value>1e-2</value>
+        </parameter>
+    </parameters>
+    <process_variables>
+        <process_variable>
+            <name>displacement</name>
+            <components>2</components>
+            <order>2</order>
+            <initial_condition>displacement0</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>left</geometry>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>zero</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>bottom</geometry>
+                    <type>Dirichlet</type>
+                    <component>1</component>
+                    <parameter>zero</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+        <process_variable>
+            <name>pressure</name>
+            <components>1</components>
+            <order>1</order>
+            <initial_condition>zero</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>top</geometry>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>zero</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>bottom</geometry>
+                    <type>Neumann</type>
+                    <component>0</component>
+                    <parameter>flux_in</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+    </process_variables>
+    <nonlinear_solvers>
+        <nonlinear_solver>
+            <name>basic_newton</name>
+            <type>Newton</type>
+            <max_iter>50</max_iter>
+            <linear_solver>general_linear_solver</linear_solver>
+        </nonlinear_solver>
+    </nonlinear_solvers>
+    <linear_solvers>
+        <linear_solver>
+            <name>general_linear_solver</name>
+            <lis>-i bicg -p jacobi -tol 1e-16 -maxiter 10000</lis>
+            <eigen>
+                <solver_type>BiCGSTAB</solver_type>
+                <precon_type>ILUT</precon_type>
+                <max_iteration_step>10000</max_iteration_step>
+                <error_tolerance>1e-16</error_tolerance>
+            </eigen>
+        </linear_solver>
+    </linear_solvers>
+</OpenGeoSysProject>
diff --git a/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity_ts_16_t_40000000.000000.vtu b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity_ts_16_t_40000000.000000.vtu
new file mode 100644
index 00000000000..71ffbaf4a3c
--- /dev/null
+++ b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/flow_gravity_ts_16_t_40000000.000000.vtu
@@ -0,0 +1,41 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="166" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45"                   RangeMax="121"                  offset="176"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="0.02030443525"        RangeMax="2.0195018925"         offset="268"                 />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="900" format="appended" RangeMin="201.07362953"         RangeMax="22690.160115"         offset="28652"               />
+    </FieldData>
+    <Piece NumberOfPoints="341"                  NumberOfCells="100"                 >
+      <PointData>
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-0.00099999999769"    RangeMax="0.001"                offset="65460"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="2.1316282073e-14"     RangeMax="1447.210939"          offset="65936"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="1.559128116"          offset="68528"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="0.0048121660586"      RangeMax="2.0728819961"         offset="75268"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="0"                    RangeMax="19999.999986"         offset="86236"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="0"                    RangeMax="19999.999986"         offset="86920"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="48.488247775"         RangeMax="23390.928721"         offset="88616"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="9.9999999768e-06"     RangeMax="9.9999999983e-06"     offset="102628"              />
+      </PointData>
+      <CellData>
+        <DataArray type="Float64" Name="permeability" NumberOfComponents="4" format="appended" RangeMin="1.7320508076e-12"     RangeMax="1.7320508076e-12"     offset="107988"              />
+        <DataArray type="Float64" Name="principal_stress_values" NumberOfComponents="3" format="appended" RangeMin="1033.0289565"         RangeMax="20779.400711"         offset="108100"              />
+        <DataArray type="Float64" Name="principal_stress_vector_1" NumberOfComponents="3" format="appended" RangeMin="1"                    RangeMax="1"                    offset="111260"              />
+        <DataArray type="Float64" Name="principal_stress_vector_2" NumberOfComponents="3" format="appended" RangeMin="1"                    RangeMax="1"                    offset="112972"              />
+        <DataArray type="Float64" Name="principal_stress_vector_3" NumberOfComponents="3" format="appended" RangeMin="1"                    RangeMax="1"                    offset="113580"              />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="1.4142135624"         offset="115792"              />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="117248"              />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="118988"              />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="119256"              />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAAKYAAAAAAAAAYwAAAAAAAAA=eF6FzDEKgDAMheG7ZO4kTr2KSIgaJWCTktZBxLvb1UXH9374LhCtvDlVMcVsbSG501kgDtcrmi/sELsASokhQpEtEUqG9hxpYkdbcbaUTVlrA/o7/BCci+wtfCLj/QAlSj0gAQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPWM9Y1NTfSTU+xtExJNrEwNNdLySwqqQQAU3cHIw==AQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAB1MAAAAAAAA=eF5Mm3c81e///48RiiKpVFbKaBBRWXUdKit0klAUDW0ZCYmcrCh7ZYSTvR17u449kpSUJHvvcRxbv9fndvt9z/Xu3/vt+TjP1/V6Xtfz8bx6SZTOmNI6RQNp6n9Cnpf+gLj//6/z9Adm9/2iMC9J+eMDERq4nvM9erABceopndNUO3V4OLyEw5qBBlj4mpKu/USc8Ld2RijtGuQC2uV7ztHA47S40plMxD9kurWkh6tDtWbxZiZJGpA8ehlqlyGunN0Z1t/7GA7+GP3Yu5UG5pNXq9IaEZ8s976m9dkOvtKa8u5VpQGL4qjnhwIRD3haHRMprQ//zHKux5ymAQ3tDatnMYg/0HOfzh21gwlceyUuc9PA4T5jy+J0xKfOtIgQDrpD/3NK6xsEGih8oLa49hLxX2SLIHKREeTgyBYZxtNAU3d62om3iB+X+RvNyvoaFjXGmrLz0UDPNe47d4MR38MT3nTQ+x0UPhiiff4JDfBclRGdVEZ8tZWnbtbmDrz+c84n6gYNfHjwqrdfB/GCF3+DJsTcIOXV5x5Z7P3td6yO+G2E+N66ExFmvwIgmWk62tOdBpbtHxbm0drovJn73Q3ryAcwnXSSpmdDA7NHg148Y0LxNbd1o79YeMEGCeqtWzo0MNpVLiPOhXg0xx5rO4dQaCkY6B0XTgOWkdlvBKqQfq3ptyPHTB9DUk7U5TpPGvimdZMnoQVxdrf0xlVnb8jm7Lkn8zYNSG+yJR37g3g546DLLalwqPmOtY+vFuM3LNOgHuJdNz6qDjQ9g+nvNSrwuTQgpzx+u80U8dvsulW2n/2hVt3jmCPvaeCc+D3ekaeIJ8ipKKwWR0HxRcdTobM0oHdp9IR8y3c6r/B1DMXvt4ZF9xaPl/6lAeaHUts6fyMOOHG/m22DoP92bfGEPBrIc7MfdBhCvFT30bVi6U+QTHzo/mzHEli7GpF20QbxTK/xIJnXzyFpQSDv0DoNEK7Xsvg5Iy74XHTVBhcCcQNeiqe+0UD8rdnbHe8Qt1xZOlfvEwv95KJeJGgugYbToy9M4DeU/9d/10bCX8Af/wp7G04vgbm54c3pRsRPuu/WeOr2AXqffxuvvm0JHMgYevv6B+Kyd+J3q7fEQ+LsN7MujyUge759+v1IK53bL48POb62h7wcV7Y/s1oCp/KSEm7PIZ7B7sD+USECCsW7bTc+vwSkRRyMz6wh7uDGLjoklgTJP8/RODOXADcbx1DhdcSXhwp1/Ydfwtk1a+834UtAiJimzXQX8fPvHgjsbIiEpkcLxZMeLoGjy5oFOk8RtyLryhV7JMOSYMbXN1ax9Tnu7cj2poXOh50ZnQQGX8H0idIis4ElIC45aWIcgPj8EevoAyrRMPeS+8ph8hLwPKF1nvwJcZf1XQs7K1Nhq27dlgTVZWDj3803Mf6Zzj0Jefc6eZwh4Q/zkIbEMhCIM+FeX0bc9NJEnb0bCeLMrzbFLi2Buvxe1u2szXSuKeFi1nowAwppFM5+tF0G9+X01o8qNtG5m7yrJx5PhKZRoxeTby2DX72li7VqiN/MvveArP0J4nafCO0/vAwueR2aMdVDfPGb5uFm90xIlrd6u/ptGbC071bsGKlD8f7UvbvE3kDPhIjvWgXL4ONHnVnyHOJd3PrUcWIsrJf9zdtivwxk7r1N8FpDPCZGXFv1Ohnijx4TMJRYAXLc7GoUxmo6r9xtekR83QWSM7RM5ravgOVlnqKfWxEnr9YeLJiJg/56rpHFzcugpEfgyBQX4u95n3Q888mGrX/OeZ0xWwFd8rVNWa8odP4jbbBHqsIV4hf+9m5RXwFGrsYDx4iIe6X5qlypjIe4iQd6kbgVMNC8sJbkhvhWpSIPo/M5kNTnuniiZQUI7ArN+PevgM7zfplGRHu6QfXScQdy6go4M8MVE7aO+ME3SW1JfxKg8gslvmXjFXDl83t/6RXE89+9Mb13IRdajjTcFj+zCooZg7TDwxPp/LTDZD9x2APiXZd4jLavAiHtg9kcDoj/O3nB88+NJOj/j2tQrxh7vg9ZPMQbiLvXczT/scuDpJNv46g2q0DlpIa4qLYPnb9yCWX39HgLKee7J6Iur4Kcf0eUYnq96VzUl2x+fm8ypOzIrBCaXwG8LdsIvDaIm2y0fTSXyoeSDBdGXoysAiVNMQGcdBL4P74zfCfD7+m3sGMvSyitYBXc4v+559RhxC1rBtrO/U2G4qP4rwSdVWA568b5eC/imy0Gg7fG8iHpK+7Y0vU18O9BK7dIdjmd85l9NiIcfA9xkxL4ywJroFVvTaIxFPG+T/fbqq+lQlJlWw8xdRW4KYtqmDsiXvLcdTl4rQDi+41ECyLWgOOBtzkBqTWIe0YGjt/2hnhnt7PuD9dA8b/QrdIpiL/lH59IDkjD6mfrHZeBVcA8mGjamoR49t3LDX3fC+GKRqGHENc6sLDlWMLjWxG/vn995NV7SBp9uthctQbG2OXetxsibrdwvaVzPhWy6DtbJQmvAbNPdwUfWyHue9tvo41QCEnZ3CPv3NeB4YFbZ3/4/aLzlFvHK9Wy/KGQ7rUMHv51IK4nUZJRifiprJUzZ1jSIb6SSmy+ja2v9/rptwuI6xMe2P5JKoS9j8oU/b6uA49Plz/Vf+qic++Llr7ycf4Qd2t12Nx0HaQXSsqc9kbcy4JsQ01Mhab6F9KcvddA45fttfG2iN8MreR+F1kEU+J1z1Wur4N7idItBw8O0vnQzjbVHacDYUP051vxd9aB/UD+HpzfAJ3f+5CX8LohFupEEcJK7q4BLyEFk+71fjrPZc/YbWJIhsSeUfzCkQ2Qv39rzOLXCZTf9nYDPfFwjH/82XlvHVC2Co84FIzTOW8ZF4urTCQUGjR2X1RYAz+XFU7gosboXCiO+FeoMxb+2JuQcXVgEZRdOC0NKpE/8u14W/Nx+gZkvLezr4i0CBicuQO/WCEuWnQgl7nuNgx27dnhcmkRqBdPzxsJI94GHjVns9+Hqr0J7X4Ti6Ah+SxrVB7if4yYpd0TneC+tmyLF8mLAFeieJ7VDHHGJyZ1p9xdoU64IDPUXQSyn+WdrXYjLrvnRuKwrCcsSU7c+LywCDi+3hey+ID4l0Kv2Q8P38ETKrqb0uRFcLzQ40y+GuIdgqzGD40DIEuWycra9UWgFZOos7b0H3+1vyPsrmsIJG8qn1XdWASGWa52G69RfLb34dWqAH/o+Ybr1ePiRVCyNaJ174n/+O/hj4fPN4fAdRszj7t3FgHfPfKRkz1IX9VIb1iaKRL+7FjxadtNA8kVt9+pq6L4GyGdWYoKoZBJ02fjaesisFs3KZhdRPFJC62nHp2LgjXHkhT+2C2CCwq3+sMSEH972jXFRTAW4nKzu02x+YRKaHzNt4r487b54zt4PkJH7m1Ei5FFcNg6y0k3BfHQSJm3VMtYSOwfndb1WQSEoBBHT8P/+lef8/t+JkKp3wavDivTgI0x667+GsTZTA6q/LGMgepVPC7JK4vgbofS75LniHMm5bI5J2L9S2ZX5Z8obH31rGOChBFfEnhVbBCQAo8+qPnj9Qjzj+pvK07pI87f60/c4hILJW8xDREEaaBmcIsBnhlxj497DeZ0kmFdl6toPWURdBHdZjRzkP/Ed1bZxvNmQqlFKaWZABogXagbXv+CeITU7BlzuwTItTqntnKBBsZxvlfkXyHOlXfDSeZQOvT0oL7PwfaPePm1shfiiL/6Q3XvNcuGOPn770IyaIDM/vjRhDXiUY1H7QZFkqBl4iWPUhMa6NsTei5IEHHqxu1bLXqZMMyU41b92iLgFa7apdiM/K31vduqr2AOPFsz1b08iOnf8mJtK0X8hebAwMf+FJh8L7Z+IJAG7n51fqb5APGUk/ee1c6TYcGVk955R2mAD2/bXsmN+NC7J75/5vKg5+UXMsZ8S8D/5pt9V/uQP/WOSXZlGUiHHcIrbBx1NFAuo8Id8R7xphZ+tfWuHNihYljy6To2n21lYu87hfgS77oFj2ohnNVgSVbAL4HmrfO3C64g/mswR/V+YCbsLdLR9hmlgbNq7/A2tK90zqg8Ixs8nwuJ+sVnVO2x+c5BqvyVBuIF3az6vOFFkPWOfKys+xJgO1XHcfgx8r8C1XJeNtFkWBbzcq+G2BJYPT0TplPyhc5rVz8JsSTnw+0cXd+qyVj+crwiL7chnovzrS/JLIFCDk8/SjYtAaKsD/O5ZuSP1aKvWySJ5EB/j/g+5vtLoIJZnvR+H+JD50K9H/kVQv/KzSfKY5j+j0HF3/eRv/XKuFasQyuDOMf7OIlFzL9vNN4U24v4592B8cc2c+CscNnoiO8SOK1OPnrkbiOdPx2LIJ2NLoLEK8W5vRxLYDIwdOloVgOdj93CaRUpVUBxA0eG6xeXwajjc5ufxcj/qg2dDxc8nwd5tu2PnmhfAiyPC2bxzIgXEi9vtztRAv0vmPCXYfMbn8HK0zSdWjpX7TEKO7CdAk1PBjK6hywDHIMxb0lTFZ2/NMifuPYtH0rN2V2d4VsGD/3XzvvsQvxXUfWv+a1lkHRmy9sPnktgUDDSwtS4ks7ZTD7IOwpVwtmZh+8ra5cBVSd2UEYR+V/T/aftVZMLIOngm4gujWXQMqtizL8N0rmNhtqCKGs5tLxVuOyAzW+955VnvkeV0/kd/la94PxKeLE9bvE63wqITw808jdB/teowyPCoboQJvdr6c4FLoM3b4TMPDfy6FzJ5Q2P7cUKqLW2a5N9fAkY6mc+I0bmovdL67uncb8Kkku6TeatV8DHWvFSNckEOieXEAjNmsWQHMe7jaVrGeCf3y0tex1L5xp/ZRv7ZyCUCrNkihJZBh14Jbu70TF0bm9KPrdduxoK2V7CPMoK8I+Rudqx9y2d3y15U5XKXwJxc3wpe1mx+aWn/FmzgAOdv006XTFmjK2nQ1LAT3Xs/e3T7SKdMaRz+P3Y67nSaug0O7w/f2kFmM4BY6GWZPB/HAjEqrF9KYG9y5bNPRdXQBGvwudPDal0Hrzz+kCUHwU+5sxzNHq+DJjxsgqHqtPp/LFN75a0xmpIeexiS9FcBaNxzbOLlyvo3GPPpq+zQBlsxdXOJLmtAN1TWnyPtkI6Z78YPnZrF1YvCZQHvVHLILnus1pXFeJHenKeWYnXQJyra0ooNl9w+KwYHTlYS+eVe/JsvGuw/XdqNXGShOkLT0pxXECclVbJOLCvEgot7wjZyFkGPwq7t8zcR/zrXWeO6UM10HM8XYElAfPXN2tfeHsi/6thD2ny4aXwoY9F0zw2/1w6NBbtp4Y418wpk3erEKort2pG5C2DsDGOhkAWxJkKjyUYEaswf/zz84v2VSB7S4XTxxL53wdXnwyfPFIKccODU8vfVwA1hmvp4N+fdO7yxFM0wrECkt4F4M5g83FHX3d3gQbiZarJ1GcKlZB4d8/JyOFVoAXi8tivIv+rYVif9aOlFAqZy37vqFoBqUbZdRw6f+icaC5fFXOlDOIlMxNFPy2DdTvYsV2jk86tIyHHcSUIs5seSwvlYPOhzLnBpCnkf6tz38SumWRD9Q0GhgMBK0BLES8o962PzqM+HezZx5INhUaozKLWy+DeeZUbDXm9dH48tf3qyq5cSJKGUglOqyCsb6Tkx+AInbNxfTYbfIr5Y5+vJ26arADrgcEkG8lhOg9RZGRIDQyFvTGKd0XOLwObob5gHnvk7683ejnaGETCF+fmPKx2LgKpkfzX4DfyH7k3AwTHdR5C4pRZcDeJCpyY7m0TkUdc6e/iLpkvT6Abl0qlmRAVtApyh24LR/1/bI+a5YamBRRV5JC4yrsIHm6VoBg0o3jqia1H6oveQYHIu+wsSVQQ1uFwRfE44kOPtr0pd/eFXBbCW9tEqICS1NAv4I30lx+67tM8EgB/nRFrkxVcBHJOs5TMTBR/bJjScKLuAyxTv+0ikUEFF//9NfDfgfh3/1OMNw9FwqgvjFfwx6iA8ObztNUzpM/5LemhAzEadjD3jIqKYf4o/nhyYwiKz/IpCDZqj4KjUn5/nfOoQJKJ61XqIor/3ts+fJX1E/xxfeZfuDQVSN1Z0H5/DfH1Qq77S4fiYFmtWbG74iLo2HVHhNEY6Wer63md+hcHRXG40/F1VHDSZZHQX4rin+zwOs71LRGandHsdVWmAs9ZT8eqA//R53p9cjQ2BZI8Jr0GL2P6DCyvvP/z/L330hvvnUmB975a+jZ0UMFLZ41/T/7z/B76kQvPK9LhLE8CxfwKlv+Gt+ulFuSv+lRE8BRhMhRXeXDIzgR7vw4F3Dc6/uMf3a35meXSYWvLtSaOESrQ79e+riyH+AljPaWGXWTob5irV3yTCtQ1h2LEw5D+h0Zfjlr2HMjoYj7+gojVp7R0Q9oDFH+qunbubigZFmm9yDjGvAgkz/OaZtajeMLk01iW/hwYwTN5ddmWCniv/VsiiyH+7FHuYo9EPuyofJ5t8wmb7wantNT+It6py0atOYHtv6Zgf82Di6CYdPi02VnEp9+Xil34mg9JrYevnvGnArKxkaBrFPJ/U7w7NleeFUHe4FNWK4XYfMCoJBJP/M/9by/I6U7B/KmsuiD51CLY9+VnFrUXxYN2Hs0T9pi/kg35G/qJCno/WClcVEY8vrtAIUGtBEofLZDcwPy7FNlgxq0OcWk19T3aHIXQTVji7JTRIthkvi76UAzxWRB5IkS4BN536DbaXoXVT25eSSgX8p/GWqWfGBXKIYFyehLHRQO9pWdsz39H3GFGwm72YzG05+I2OuqyCDxesp49EYL8aeTE5k6pNez8pIh1uvZTgfiZX0wHDJH/jHdqcdGUoECi+8CAznFsfmEk+HzJRPEP9H/UvecohVKDS1TNyEUQx1ujo/ocxU+rPrk75VcBKfLXt7osYesvKccFz6D7Wz0X8ZkK9krIMfs3ON6UBlrlzaP4nyGex3zQaVqtHJZtPVgYWr8I8PxSZ2tPI39bET5vEOtMgdf3Z3dVH1gEZNxC19N/yJ/+2uvYe+9mFSTd6Li4Goz53/uCtxQ+I77UuZRCqoaQcELzZT8237fule7iCkP+tS/OpvjFL8z/rbKRt+Ax/QaVGyP36ulcoJLH5+TXatgrWTZzOh+br4+OVfNzo/gTDN2yE5j/wGlcOWTBSQPXn2oOjQ8gfyuQc87qil8VJJjy5urpLwKuzDSWonzkb/3rjriKhdTAY+VTjVpTNID/LGd/hlxD5yofcDhLr0rY+9Al5ZcSDWi2ZV4Y9EX3v2fz8PalAdWwfqfGEOdL7Pz9c3hngDnyvzKy7HW2pFpIvCQYf0dkCUhJ/HL3qEX+Vnz08IHUjCpI8cw9gX9MA9G06lWRO8jfzlhc+NpZUQPx1S/3fsbev1TQ77Fz8sjfkoymDV/9rIMEkss/U9UlkPyh/PqeZ2V0ftSRZyJctRriOReyTNxowOr5iNTlOyV0XkZbcyoj1ELLS9sO/chaBMTLO9k89YvoXJ8cV2tjXg8dpAuLRR2w/AnfEvZY5NA5cT7A1ni+Gg56aGj3ptKAqPj65cQMMp0LUXgPJ4zWwvwUlzjORqy+cDrUJx0ZdN7YbOLhOlcPSVUTzyczsPkrWemAZG8knY99fftCpq0GEjdjxk2/0YDeygRnA1MonZNnMs7G5tfBWda1Q5f6F4G/eiTzHTF/OvfSCS5JTMXqhVvF8Qc235Gs9xfMCtwG/8dJN0x/MCvUQjxD6GLjAA0UtSTvI4i/ovNAvs77n6mY/iwuS2kaO98lhCeDej3o3FrwUXhkTwPcfHR0j/XEEiDzlOXMXcik84F446NGx2qhqdalE7E0GjB+M5QC92bRuZXJhdiUxDqof8LV8zK2P5andnzyGUeczUi5hEG3AVIqucmcHMtg2WAghCUW+V9vYRGG+qu10P8D7pHD1iXwiP3QTrVLiCf/cLgV5VcHe8233LmzvAgoFXe831KR/66pHzJyWquHQicXEkv2LwNL89IPO/7jj8f53jJRjmP1m+pe6LptCSw/GM7cmoPul0/y3RLXwOZJ4tJw8xXqIui9s7OOWQjxMulyNTHjeljmyvZIZdcymF1Ko+lUf6Xz3OWH78+pV0PT3B/yYI0GntbU8ZKkWug87uHun/ol1bCj0IJT+S/Wv/37FOaimuk8eEbjQE16DRRq5z/WxL4MKI7lVvHR7XR+g3aXe9qlEpqWHSpbnaCBjM8qbMt6P+hc99eQS4gf5v/tl69I1WHn0/6G6EvsbXRe/HVmKoCvCvaGtfpvW14CHVI7IvMu/abzCf/I0mxVCPEHtv3mb6MBykEF/k9RyL/vcVzji/atgMRFj4qljEUQxn0/xmcG5bc1KdZk7i2EFu3VYyVYfQpJBjmcn+1B72f3uU52KrbfTlrN9ibTQPzrA96Oj/7SedoNnHXEthx4Zvh28BePRSD0NS4qvx/584nerRN+33OgEHehypOoJdD6dfKejAG6vzbcx7obfygCktQ7WONf00CwmMkp2yTkzy1I4dpMRSGw96fS4zjM33D9i2W3nkH5MUhosN/hDoN/U/0crFoWwMM7GutXRZA/eREwk3fujSX0/eJ7M/7MAnjxzwi0qqL+3yTy70FCvhVku9fNEhE8Dyw/PnPReoj6M9vXkcEhqjV8Uv775KO2BSDUd25Nlxfp/9Fw4j/HHwh/HSm5WKW4AH6qkjhEFZB+ZUjTgTvPgiDntgmB7g/zwD+dQWDFCOkziPl6K1UFQ9rXQxOmHQug1SjpZvcqik8tbVLP3U+Cwh5DEr1gAeDfGZxl40f80u4CS82LnyAPeem0cOQ8IBWx8p8ESP9pQNc3JatYOKrqcl+sewH03t/TxdT/n/u5hIRiXtl4eOF+y43aCwsg3OUDiGBG/LpHkJZgSgL03jbqvhk9D/DRvHFS//EvWyJzNaOFk2Cg4c2QtMkF0DBSel8lGcWvposrHWJPg+37pj4XEBZAov/WIdpnFB/7VHbEcSUdMplqyt9MngdczzPr9HuQv2kytd7QmcyESo/lak6sLQA5anSgihHSf98k9yV9Sza894X9bLLxAlA+WnxsNxHp60Z8kXSVz4GW+emTpdnY+lMSvb7+537Pw22tNsQiFxK2XO7RYqECNrJ7r5II0s8UucHqypoLk0dNvlDNFgBDdLoc+yWkX/zo/hMd4zxIvnTz1WrRPOjdm3Qwtw/5pzXj679j8vNhlaXJhCg/Nj+VfrZYyEPxl5ltmXYQCqCQWr6Bjf0C4GVqDt9agvKrXvm3T7yjEJ6OWnIVrMfery9O7/g2pN8bbanQcK8YynVZLOFksfxjGA0bjiH9KM3H281Li6F/wrb+hXcLQP+lkI18OoonzVn9bLcthZTpAO8L7fOAmKco149D/m5VzTSl5nQ5xN/bUetxngpmpV6/DY5B+b3wcO4QSymF4vYs0h8/LICyw7kvty2jeM1L9X9eOZVDdYFOqYFubH/xjj4hEpD/47r3RPzGDQg9FwUSiabY+rxfS4qRRPkFKHoxXSuugISzKYq3MxeA3nfvgRg/FL9wbJfaJ0MKvLCX0+z5DLb+vAKCpFl0v6k6wCn917ASdniceOvghM1PLanTrQ4o3jkFZxW8QYH2jFqqorVYfT4Ie240iOIb+ldWDNiroBzXhXAm3ALAMXgsD2kjf+l78VOSKX815Hr759lfPyq2PxsUY4yQf135HrhoPVAJuU6wf7HAzg+aorG6VTOKt3GwCJuiVUHL+aqam9sWAGVqRu/8WeQvS76f25vAXQOt7UVtLbKoQKhQ5d13ERQ/Z5p/J+RsNSQHWaTNji8Apc+lOgJJyL9aRT6+3KFfAy2b8A5f9i0Ayx7ZXY/FkT+9+pab19C+FlIeWTkxfKWC1uFMueehiGsdtH6+XlgDDZfbvKwYqeDOze35cuLIv2rO/Eth/VULH8ZWnDh7BDu/2p5IbxYjf3r1GbHs8mYdxG8T+znYRwWGly4Gqo0jfyuS6Ov7kIjpxUrK1XBSAbBeHr31DsU/m3RNvx1RB01fTXSMSS8ArvA0YHsU+duDogk1RTX1EJ+km56/SQX24I/vUDK63/0kWDH77V0dXM6Y1ZoWpoLD2sO/ix4h//u80FnMPrwenqSdP26Ond+W+f0avNcq6JyoYm7oWNQACRdeu3hg88ds7QMzweFSOnftDjL8WVoPW4tzbvOepoKHmRKDZ1OK6Xy+7mDyEYi9T6uPzrPY+Ur4sHDH+GkhnavE/Znr/N4IewceDT8+hvmXezM20dyIZ4z33czRboB4mlV90zkqkPc/NtnKmU/nd6v/RLEoNsLZN2vb89Sx9S99cJdpO7of5txRoN2v0QT5FI73fTuL+fcD0z/l/NLovNzJWmequgEeZmras6lKBZMbjy78Dkmm88ZKpzUR/0ZIvjiWnau6AEi9Q9kvP6L75WN2j3iHnZogwX/6jxwB89ffe6x3sbyn8wun0ydpdxohF5fwfenLVLDN7+9h1yuudM441MDCs6MJmm79dS0XWx+cX0HGkLwdnVcw1/kXdTbB1vu+zxcNsPn9grRYdOs78H88X9tvTe1tIxQaJ2hQdKiA2DZ7J2TUl84P+7nitrA0wd6DAfLfsP6pJWl4WZUYQOfPzfMD3OuaoKKa7O0YbD4jPPb4dPcAmc7NJFpx03+w93dmKUj8IhXIfuckJ0sif6xd+E8qUawRav0507ckgfXXr9z870SR/97b/XTqYH4j9Bfr1NG4tggsz986YsaM/O87I87AiCsNcNY1qttfkQouXB7LVHtZRucnJBymtB83QFJwt6cAH7Y+RjayR6dL6Hw6Uri9pqYBChlISkTpYP79oe+bOLtqOn+hKaRExepbyPuJvrQkFbhMbIrcu1hF53Y+nC7fLeohecve3OMcC8D/mUXT4V2VdH6fL7Mms6Ie5sjt/2Uri9X/RaVv53M/o+djcynY21ADydf0vp7dSQVaUjqObH6NdL6z50X3nhc18ELh+uqTSax/7TcV+/K4ns7bGfYx8URi/nk/yxvCfmx+elJomif6Hb0/0VmqBUMVxAueVdekLgBtnoDisEh0f33Yf3TTz70Stj7sV0lrxvqLQ/vhVSHk3+tU/bdk/s9/izi9GmfE5nvVLnxvE/LfHyPSv1Sewvzzt8wsta4FoBKXxiQwhX7/0JtG/N4pbN71zi+2z58HlH8OdUac3+i8zCJJ33m8HMbwN4RH/6UCkmjhx6nbyJ8XOM2f3vEO879qOzP0ShbA5KbIDuE+dD9O2uY25WGXDYOcT4R2h84D3K9gZ31TlF/lp5+q3GnZsHf3riLdIirA2bv+C+9G/ruyYS5KZ8cHSCl7nno7bAFIfQ4QrC1B/vsOaZtHxccg2GudYn3Bfh7MCpDAbCiaDwrCxVbsz4dAsk3W27NSWP+fUg22Skf93d2l/LuJ03PYeqxr86jTHOh9UeOYG436e5MNYUOUxwZSSpk2xKtmAX5T2WzRH/U/ryJhsYwaGxgovVP730lM379ngRCE9CN3p0s5Xw+Bubvai1mc5wBl+5VmybdIn9n4GXmWMRQmtgRlCFTPAq73VfEcr5C+pS1u9ltOKLSetuauPIW9f+NQ+3gjpC+W39clsxwLQ9e+2PQT50B0yxpe4ArSV466YtfsGwd9+w7d4qmZBTjl21vDVJG+ukXK3EfxeGg8Fb4dJ4+9/6LpMa3jSP+ZhzC3WFMSXBezXOF3nQNKB5IKKw8h/es5RdefuyZDwj+y6LnaWUB2MnE/fQDpr74HxMNqKfDzzdcRv/DY+z8wlLSrAvmfJqJFnGJDFqzeXcSj7jkHwn7sHiopQf5F6KakjORNMnz22Li1pB5bH19V4TuFyL+wXOFntvpDhlItd8Sy1DF/Pf4nU/840o/QVUkKWs6F75hwUtY+c8Bw1c1IShLpm9jeU93hmwe921kdzjTNgt5tkmzbpJD+v9lNvVLxfDjqw7klRwfTF1bILqlFz08wi/Cz1yqAlD1Row8D5kBg4KMJ3H/+f5tTdDYhZLoAyrWame5vngUEpnARte/I3/hZz+vkRRTCH+CBxaUb2Pwh/e669yzK76+M29sVzhLY3NXtHRU2B2Yl7ov+wCH9yR8ibqs1JdA4NeDceMss8D+qsnBgJ9JvY7DZteFaCovmKn4Pms2D1oR/XnumUXz4bX4yiVYOm2OFpL/HzIGnkp5jJmzo+fcObAtyr6iAbm7lfCXfsPop5NJIEUb+LXs2nu2pP4Ti+2elUszngZTvjworPNKPLdIw+7WTAvF35r/Zx88Bjmxb3rQ7KL9u56+LrXYUKP7y5q0nbZj+D17rQTfk715Two6bD1Ng4FQsPtMB0zf00z4+hOI7xLglzlZXwq4j5XruaXPA0rxoIZUX5TfxxvLJ9mNVcEEWr+f8A6tPl77wI1rI/w3qcROIkZjfqrxGyH2LnR/lykFpOih+ts5B3N27GlrOvf0VkDMH9Gvn3C2CULxsbjbPcVo1bJ0V1gxqx+qn+ZO9TAfyf394jye9eFgDiSYMfRF+WH/YTLrzWwU9X4FGWaeYK+Y/W8XDzhfMgaYKWVu+EOQ/LxfHuR4exbi/ZXsspo9zrvQyGUH+US/pu3qWUS00yvGSDomYB0JyJZ9MTqP4qX15Ko9GayEfg0TGevEcYFtsn6pIQPFfAni98i/UQa6Y2cz932dBa/acvMBu5D+1PGsm/LLqoNAWbhe/BGz91xu05LsRx1uXhWU9xvyhtHRVfvkcqMp//i3vMfKnj+ajHC9h/bUhw9IzEKtPSrdSuuk0un/dOlfn+EKoAbYWvZ7TSsPmm5wtK88MUDzBpoK9WgLj+8KFzlRg9eMdZ0JYRPFuxH1PdZ9j/mCUV5n78ywg5ih+qVJE97e3/alN9781wHGXq9Y5WZj+fd0B4RZ0f3vx/aXea/sa4VNuHenMkjlAjhzXTLFF97duzk5b+jUaoQJnZl8ExPZvq0vOCUF0f/vE7sSRhUCsHrXFF/bmYefD30ubj+TQ9w/MYwYvYg83QS52JhWRwjnQIDhownweff+gV2NqcgzfBC1Pn3c5lDcLhO46VkZro/vfHfFjavI2TRB/8W5d5f/023aX+a9k03nh3XCf8kDMP+6Yuz6UPQfWDtaHLhLQ/XDECiU3IrgJEjckFOdSZ4Fp/2x/HgHdDx/J+jM8AZtgTq3TfFQGdj5fktPfPxSH9t+DxN11BU2wi1EoXCtuDuCGZZ679XxC+8Oc4OoW3gSPmln5DARj9c9gIvQ3F31fIRU8tVGQ0ASFVMMEHBKx/vJtVFr+tzWds0TdvhK7jPlXmk5HbjBWn+IHMvbvekznK7t8WVTKMN6c19P+Gqt/6cZJ9xFjOrdLzWi4ltIESdyNScvR80Bdsun7ZBjyv7qjJMPYn1h8UgQ19e0ccLMRJGzhRvz18ZqoVdsmSLmzftrj2SxYLrD5wv/en86r9H70Ft9ogj4xPownvbDzs+3025TbGXTONnquRDW7EXZdDDmb9HQOBBs4/NxgTKNzK2aOHasyjbB/p8SzizqYf/hTLqIbj77/OMhcZ8Kz2gBNj+vefPL8f/cfnRXWfsV0fjue+W4PCav/AT+PuCtzYJDSME3ULaRz+w+vaqe2YP6acjOBWXIWSC0UCPjtzqfz3896RO5m1kOugAwmtTuYf/hiwU47QqFz0H7vB48v5p+fXG46e3YOEDlefttPQN9PN1XNrV9rxc6HL0yev/Zi9ePM7a2hhfx5s8/MDXaHOijwVtVbVxnrX01NYuXSdXRufmFsLMAU88/Hauao++dAc92p/ZO9yL9L9jsyhsdUQw9y8keb0RmAryZxHPBH/lzv1hsCj2o15HLq4bklhPkrUbe0XhV0P73ouelqKlcJ8ZNy+9KXZ0GB2XYZsUPInxv8CvOWsKHA3jqNIwqfZgApIbTEnAnlp8sc3/RsL8a95KO6tmL1b7LUKvUH3Z/LDLzQsjYoh6QbhIzS/lngplW3ZVoW/f4DidE5laZSSLnGcves7QzolQ9RSPNtoHPvmOeviUqlkJgZkL0+OQdMTSqU+6aR/1Y8swbC1LKhOt7W37phFqwrhz/c+hH5fzOGY4ZtwmQ4EztV16GK6auPCtwNRL8/PzqSSVvNgri2sVq+Vkxf9+TOoXJ0/228Q5Mq4B0MySIfnx/JxPwTiVijP4F+f++pf4L5EQGwd+bHUZu92PpPt9g18KLfd9qyb3QzMRC2yPI/7byCna+RUqfcLyF/cLbR1Vd1wQYK5LdYrx+YAepbSWb2/Kh/ci28C/s5YAN1RLJFJ3ymQK8tZ+iTGdSfVkfed6as2cDWMgFGdV1M/+yul19kkT6bjjCf/nAobLh79fz6/hnQocb4V3Yr0o97qK403R0KSdaFkZzvp4CQ7hz+41+kv4329KhBXyhsuyAUlv8/fY8PR74yIX1izwXRBv14aM3dsWt93wwwlmCpTO1E/XmD5+hFnSvxkAbLuWQ9pwD+h42hRzbSb3Td8bmMEA9bFb8uKl/Fzr/H3wQpv5E/ESvcrubvnAJ7CWbbF3hngOzGFfePuUj/6ajZLvg8BbYqqSj9cZsCRL/v4/Y+SP/j8UCbFLsU6LD1547jeph+4D+pD3ZIn7DfnDKzSYZ5ITyEq7tnANeJcdMr15G+Is++hi9UMjx6LMiv/hW2Pp9/+LMrIv2RvScivObJUPxXl9iea1j/GdnCu28Jre94TvP+kav50L+zOjB35ww47nODO7v3P///67tc/f5iPiTuG+zPtcbWRyaLQ6MJ+R+X575ndoB8OMgAd9di+hRd270XPiL9a2L659obCqHhgyvrf3bMgPTJD2p23kifnREsWeYWwrBTtzKtnmDr41Fsl+qI9CU0hEr60wshSfHAsW362PpwsauE96Dn/+BuYW2cVwp1j3zsLmCZAYS9Io6x3ej5v+0s39oSVAoZVBXVo25MARI/KEj7i/xR8jamtN0updDwhR3+MqaPOzb+tW0d5XckFTSQqiCUmhimBGxOg/Wo9V2525B+7sjc2dFQCO31efsbNLD65+I0DORF+v0BH8u3OEBIHs2Su4jpE0+35Z+5h/R17SUfHPiHnU/hZ0/rL08DD4ELWd5O6Pl3MMX/0u2nQOKrHQLPz2L5s+Qn94Uif3bpuQxv6zcKzAq493YZq0/TBz/2NMmg/P4Ks16Jyq6CjtVOknaj06B3/0tyqhnKb5SVpDjmVQVTHEWsdISngGkLv+b7D8ifeX3XpTk8q4JkhX0/07DzgUIeXWr8juI9BU66pzpg+U6Vi4Z1TAPqiUrp0/wov9Cb02Pb1Gtgr5NSzRHWKTCbGf4k9gG6vwxzqRHIPoj53/p1s+DLs4AkwSf9bBzF961+iSp9XAstr86mBTVPg1BjPiihhvK7CD5ckz9eC/GFC9rrC5Ogd498RKca8o8CBHPeaVwt3PD5vp9LHaufzQFXBlEUP0zWOPOosA6a8igKppKnAdF77fItXRSfft02+MKDOliX9rdJ+vMkIB44EVZsiPzlr5asdf2jdZCkl/z1PR7TP6J51VcL3b/K//Mo78DOS6l290BK8DRgGyfX18ag+9c0jr2UnWX1kECqV3sQOwmEUvcqbcwj/6kznPvljTnmvyVKZZIVsPq02VssnY/iK3un5a42YP7CPN9p03kafGxjq4/Co/vbY9zWAhF6DdDyQqKQvMcktn9Xf2xtRv6VWnPFe2GjHupWMBesHMXyb7N/bVCLeMPnx+ZUp0Zo+No4xv3qNDCV78rYXov8bWJxepPLfAN8cvG2SbzWJKBEg7/VNcjftotfIh9ya4C9Ojpylw7MAssrdz3/6SJ/S/tZ8eCLdhMk+DFVcohNA0t7q5x/PlmIE6FSXGojJKryRXPumgS4y3x6ONt0Ou9O54t4f7gRCpV82l3PiZ1vUWGs53PQ/fCcD0+XtD/mD0c4b4+yTAMl0d3xicopdO5CLFOPav9ffEjkvskJIEQOwG/7hv7+jq1JTOfvxUYoIv/9dsUE1p/bfrIe842i8y2Ok9rhD5rgaFKorGc9tj91t3xRvIG+vxAwOOsXE9wIX7zg4TjyaQKQvskEaomG0/lJryuPHCax+WbTNGy6cAbgtpkf6q69Reek5z/cD+pj/ewhP5s41p8cx9o/VkrcpfPLZ1oiqx5j/UI6yFFOfwLgTi+KBS/fp/OgK+815VKx9W80z08PmgG8cm00iSx0v8xSu31WeLMRml4tmjc2ngKUviM8MqtedD5f+bF3y1oDpMgtCE8engCzLkRpuYvudM5+WpDhiWwDrE1jMmjUxvzXnl63MQn093/mVr1JPEENUG7JZ8JmxxSwZ4nQCueLp/Oow7dXbd3q4Uw02/N/LeOAQLvKo8H+ic4ZLrc7GuXUQbxP+PIQ6wzwp5Ym7nibS+dHwmWyOeUwfxt5d9CbMgmMOD833eTIpvNsxkSzOX5sf28RqOZ+OQ5M9fL+Xj+E/L39ALvmNXwtJGqf8v/7exqQXo/NKOkX0fnf7Qr6NTgsvn2wLtR3ElgeHQlTlUX++0exSvi+39j83xgt5nh+HBB/DSoTuHPofKo4P/QTcw3UMni1sTMAq++SgD/pGsifa502mAj7XgVnj55y2Xke258tdrZhh9H9uVH2l+igykqY9XhF6uziGOgVaz71Kx/NB8lvMjkqmbDz7HblY1V17Py6f6QAKKDvR2jesKHyKoSmRPez3ksT4OTYJumlMfLfOcKeXIwm2DzNoaewmTgGcL+T9z7YQL/feFfkSxJXGcS/sk3Y4J8GeD+7hyF2yF9Xn3LoOv6yBJKYPhWsfpkA65ud6/aSyP9f6uw3+JJYBIW8NL7HO44B/F9H4eIm9H3N29sfrIeiC2G/6tX3++amAK67yrVsFfl7ou4jxQMsWZBioM7rEj8BKE867cVH0Pc1jUk5v9O80uGR+6VZH/THgNDKnHlwG3q+8PqggmOxadCUW8rqVA2mL33jE+sM8tePundBho0AiEufebn11QTo7RRZWuNC/j5OXyLELcUXCp2X8Hknha2Px5zW7En0fHXcgYlV6X5wa4Z6RXncJFY/9WuJCah/62nWbjX/bANvnD830bhrAjx0jJPe/R71t/SRtOOt220gNfV+/thbTN/B+YGrJeqPN7Oi8n46PYd6j/qPVMZg/UfqrWJLINKP2z35lSE9FAYq+Dyt3z4BOnpzk/a8QvrnTz7g7RoNgQf+Ptbqc8bWJ6B3l8ldpJ+7T0RBUDoERos4htREYuerOyNB7wnSlw/e+qZaOB62SHdN1bBOgMkR53lbfaT/56+Y2RW7OKjCaTHQYTcGKJobweHKSF/PeyQ/6FssfEqjHjj+AatvN/iZRwPpzyqnGXcqpcBl9V9XV3ATgMNErCz/DNJ3f/mqrMs0GXYtzEXrPRsDJHm/dH1RpK82Eycv8SEJxtabb29+h/VPV9Jn2jLyJ/cPhoo3NJChQK3268LpcZDsmNdUMYv6vwPBgLApS4bU/fcZpbH6wU35B23/hvq/9Vmv7YV6WfBH2PDmk9eTwJSmyKUa8B//uNhzLnVbPtRSrkl+0TUOZDnX+U8FIv1Lcg63dl/Jg2wqnWbbz2H1T7A3UBdF+jciKN5JpFzofzGtts4Gq597lfoJakifuaGBp8eyEBL63NX8sfORyGWhhCcg/Ru/UqNAVAHsvfOasHp0DBDt5S8UZCP/ka0l09bemQ+v8NcJU25h/flhv0NZJlrfQUsNvxenS6Ho4aCgm1njgOxwertPA1pf+QuVLKcVS2Ah1+v3kYxY/vt2g9IadP825dRz9PiVYsi72OtcrI7p13Ol5i+j/PDmOJ0yIQiX75N6jvpj64NnHys9hPR3btmR17WBzd8VTnVKnaOAaMVOcItC/qqSsaru5GQZbO04/XaPPKYf+/TLkhPS539WZ3qZRIGmzOoV7xzGgVS3oYTeU7S+uZ3R0tdwFMgV9HOve/kowNt1wKIu5J/eaopfq+mqgJvtphxX9mL132PGGuiF8muHj8VYZLD1OlLWeV57HLS2VCgnlP7n+9Erlwf/YPkI9wR/LnPD8u/JthG9h+4XbSsJjUU/KVCq7V3A+0WsPw/9Vm3sQ+/HoQobDrqqIUlbamldEOt/5vj9D6pQfl4vnzw0466G+GNXnamXRgFlMXGKOQ75Q68dL+W5sf1Ijj2c4NiN+ZdXZOaXlig/GldiYXZ+DaS8WRnIYxgHVDuTH7sdUH6DQuO3qjqroVRqhydRBMvfZkd8jiv6/3v22fDrzLur4Zk76w+1M7Hzd+WuhWo8ivd0uru/43stpLaHaG7WYPtnodI7mRHl57GANzHuq4E6QfKBKl0jAD8pmLrtNvr//4NH3i3t3FIDSQd/HBd4jeV/6yvRyQX9vjHlw5ntW+sh/ujJbDXPMSCr1zURf+o/3w983LF/C0MdJDpGRDIHjQAhzTH95lHkPxnl5i5L7sDmg0M7LUdvTgB8b9LtH44onklRcR8MqIdSvItuhqZjQKn6AZX0BH1/EFkT80bGrg4SBieLRu5g+olib81vIP8abXg9Lc+hFnqc/CDIyI+tj6zNjh2piHv7gaIz2xqgumJl9INdY0Bc2TNx+050f9vZYHvzwe86qHfgn9LkVmx9IuWc9s8ifzvMwVQTV1cLycr8Xw9g5wueVU/HaDOVzv3KCl1qIzD/f8unyLZuFBhaH/ailKHvHx4lVN4jX62Hpro7K2fJw1h9U6tFXiF/2xMmxJaMzS+mVt0jFtnY+cL8SKakCH0foc7dmDmX2wCJcwoybsFY/fl+zDu2P57Ol4bv/zp2ox5aFuUrTdlh+vtbT0W9Qn+fV5spoHJXvA4+J/pYHzPF9D2vlW4VCqPz+uYpQogONh9V8d/cKT8KCA1GPZQ7H+h8TEzSTmGwDmZqNm/R4h4GeLY7TPYJ6Pvli7aePV2fMP/mp7QxvGMc4LR1n51yfkbnKUxpeSHYfNMaiHsb/XcE8P2q+FKvYUvnM0M+HQkudbC3q78lNX0I4F/pDVKvOtG5csm7c7knaiFJ0X0grhM7X1d9m+UN34D/45bekiy6LvWQ8qS6NiZuBJDCuMTLBF/Qeb/ZDY++lVoo9C3jt775EMClcnRxK92ic+33I4uicTUwUeNlhywR0+81+y3kHE3noFlzc2a9Fo6OSdoUKGP117SdNfjfBzp33M4yv9sW21/QX3mBCcs/N1+W9T/fh6hGCrfPCWHni4H5l1oRbH8GMGWlcaG/P5Q4bu/q4lEDhR5GCH/pGQaPRb80nTqfQOcTP6rGzzFUQ2LG8xS/iEFAKQ0dhi9IdP6y6ZlydkYlJLEkJOlOj4JeibNs46fQ9yf7lG/+PKVTDYVe7Du0NWEYEAhZFgJR6PeVeyVe5DdWwl5pGDxjNAiIaoMtD1vQfKASWqCAc6HAmgPBT3ZGY/V3iGGmxAD570RBUL7rFgWS7fguRxCGwSwodZVxQv5//7eR7czMFZBD+Kf4VSYs/6JxKcOL6P5eOahy2rYWO2+lXU+0ao8C3GaK/ZWf6H7+xMX5pPDJEmjqIPjq2PoQOF7iah3Fhn4/5NjhgKvumL/lniorSB0AFLubT8cU0POLq9TVx33A+nPtOIf4IUw/kmM5Wgb569FGXUPmWGzeFrovtdA6BIjWDZym9QV0nnHOyL3KLg+abkTobjgOAJymm9hBI/R8e96ditMbzIFd/PqPnm2OAMoziZdymshf2ycqHrA3T4VF7N3lxhmYfvjFrCtkNN+cp2XFWX1KgraOgjvf3RgA+OqbQ4/3oPnl92L99l1MiZD0orI27zemf5fzieRzNL8YWuctnjmD+eOla5fqvIYARTnoaIsAWr9uzV3fuI94QeJa3Nc9cgOAWMHqDAxQ/uqTOBmfb56Q4SpfQm8c1n9eXBI0cEH9saTzXGTekDUM81S8miw2AsSt5AXch1H/OdyeTTn80AriNY5cki3Fnu+pGH+uJuof29v5FR24LWFTeqC1bwTW/2dccIz3kf6HLZnUvV7BsHb5Yun0gRHQys6Vevwr0u8G9xa3zQfC1q/12ruw9cOLR101kEP6WmWGl5buBcAPLFvxSgFY/s5/0laPIf1rdgneH0EsnHlIOHSKawQsl7HihCOQfrRuhqdyBwne0r9PmI/G8l+V0dNgQ/oHo5Nv1U1Ew8Mue2sIHlj+0R3p0iuov2+c/ZRt3oO9n9t4gR+MWP9ouxnrZo70+cJ/fXTblwDzqo9xs/li+mwDH371ofud2tXL+La7cdDtVE3Fs8dYfa5MbHV0QfpvK1dry69nwkJBscs07Hwgy+YWsrAi/UA9M44TG2nQzVvrpeQ9TN/SwSzgPdJnn97J3kFOgb2jlsXeOtj6xKj5J4wjf7dzWZmHtiUXNv/dTuQtHwajfQTaA2d0fzVnvHPIyDsbal0z79VTwNb/8A3jozxIv6yWIfDvfjL01+YLbpPD9PPuHrZ+jfTz+nenfZTIh2H3f4xnxA4D8eoPyStCSP+g3sTVLR65sOjbxcP792H1++3z8TfVyB/cf0gUWZvKhr8r5LVJ27D1aX9NuhyN/NlN7XsmFW+KoK9EY2HUo2FgeeSk7ZwJ8j8PzDp69gUXwBvTO7dItGPnm9PQpaCDSJ9HiMOLsSAPSkkZsJhj/ojS9qnvUyha3/Tb12quMpRBIrXczUdqGBDNf7DdskP1QRV8yBf7BXse9u4hEIDps7JK7TdE93NqbxSinFIKIXFg0uBg2QjAMfOzBwyi5z9zYZp5vqccyuk+etO0dRiQBM5XG/1F65ux4mDkTyyFhCGtDJrpIMDLP3ol+hP5o76LvnZLCsXwBylcg9MRy3+BXL3LFT3/ZpP17wtqFDi7VeukZBlWH4qDLJZZ6PlPK1xmVp0rh44fzPhbtwwCnOtezeY/yL89tQEHPpuXQvwtVcUNRSz/wTPu43MoP2dnxpMJxZWQXCk5EPBsCBAM7a92XEHP/6BBxJBbiwKTNV77pGDnM7G56GBdNvJn+4t5q+p/lkNCtY+Z084RQHzCxrt1HOW33VmIY4dlFZQS3PD1VBoCjnn9tjUW6PmTDja3vJzG+g/nky5Dc+z83Chrd15E/q6HMNxMw0G40Z9ab0LB/BFLjfLkBIoHop3s1Zerobd96tuBrkHQ2v2euglRfjUWZA1cfiXsik1+cvxfP8BbJOkcEkf3o/z8LsZtEhRIYWw4omKB1UefgP25QhS//cbzbg8tbN7+bkA85zQIxEOSNwi5KF5B0+ZDSBg235weXv3nj+k/2MUusozuT0OiLUUUlrH3F+DUdlwR05cn415dQs9n28zKfCm7Bpp2M1jZKQ+ChyUz7AIa6PuDQO6JXxqTVZAQ+wLEaPQDIoPzHtU1dP/a/8v9fopKJazof6JC6cT8kfbc6Wkl9PtPtN/vGZmuwfZnZbJL2wCY9VPay9eE/G3P4L7IdN5qeFKOFS/c0gfw398uaRggf/ttzaTz+81K6C9zI/uqA7a/j//Azdgif2vm9eRDkFot5Kp90+tjNgA6Hv0pEO5B30fMWSU0C5pi/qUlDJ+g2weIyf1P9dWQv73WGVrGEYz5H4ZX5kNnMf0LFmXB7ej7iaHdk1YXQS2kmApOqggPgK7UbQS+FhKd6ytmBiddqoaW6qQLhC19mL/RqlfzQd9XLJyvvJnsUAnZ+rVnxL9j+/uxZYLaS+R/b3512meehfm3Me2oorR+0PosX1o5GPERP75pwYIqOG5/VGTZtRcQn6+WK2QhniPD8ciqhwL9q4Ssnt4fBKZ8Jfodbm/oXFje8I7UKWw+s3LUkTzVD2bDTOVJOzzo/EVw26jM6SpomZK3hcTYC3CcrHwPw96h+muL2f3zOgWSJJOL7x3G9ndnmDFFXYnO+fzFFzwSsec3WPrJMt0HSK+ML3mKWtL5RlHHw424Sog3z27/+6gHUBxn/N08X9N5Xek/YW8/CEV1c69FF2D7+9XC5Ee394D++1ulDg+KVEFD35RzyfbY+1sN/knmdqbz/UHhqxzSFCjPcE9p1qIb4Kjs2jGWxnT+XZrKylVbhvmfirlf6pj/2uHF9ccqks73GI+VW+VRIK7WKFGDqQ+Efb5A2s0ZROet3rzj4RHlkBiyJ47R9i/AcTOYkgzR/bnyDa0KKm8J7O080LbGivlH492NrKHo/nv/mO9RfyEIcWIfPsrCXiDk6ji2/Vk4nds/eFlw8EkppFRZ5x8Z7QK4hI9veE396Jwr29bzzGYhzLk1mBWR3g9wz4Y7rRXR/XzkeeV7bNwlUEpPMNDpFlYfhy9Mmyqg3++Fhi0JNQUw24LxOycfpl9wninaOpTOn7G5vq6HuZDUn+4tfwXb38nBR87cR/767DJVoYM3HxIZL3P6rPUA0rGkwzznkb9XspZ3fSOTA4l8gdOLl/8A3J3noB9EoPW1PnjolkQWNJWvl805iOnvCwkcP4bu79m3vLJ9Hp4NKRc4r8V96AFkhZHBr7pofjk5cFZodVsmJG7LdDw70glwRdbPHi8gfY/2HYuZ71Igy/dn+af+9QGcmm7hxSikn/Gl1ijMEpt3WcosDhOw+jsdWDdig/J/NLaHLHbuE6w2KiLLRWH6mvFpu8LR+pQo9V/Kvh8FSY/3nC7uwvRvbC9uUUfzT4mWU7B7H7af6h++S2DrAfiDttuMYmPo/FfJ8KPcKWw/ZlQNylzF9KXiLkrfR/Wzdmbs3VcpZ4jbJ50+P43159caOP77qH81R4GV9U1zaDbT43ghcQBIiT8dYRv/z98fa/aqLKk8gnOlXfgVB6w+vvu2UM3R+U4QkhKpzrgHvXO7LWR7sPPHQTLmky7S92EQiNiU9YdJqhqet4MGANferpjVDqTf8p3WJnXmPZz9yhA8dw/Tz/MiXTX5T/+w+PubFztPdut4y9h+xc6Hb78OXDqC9MPPG+571PURTkTlBL0mYuezKdfpnTlI//dGtwW/chicGRAdGdPpB5RZdcIvBaTvEvNqJS01CJLVrdR/lGH53zewcN2C9B/7KN8d5o2Fy65vbvM+GQBhz43CzQOQ/kQG5wk/82i4voXxDwd2/lGIJtUG/Ei/+AtDzvaSMOjuFB9+3hfT13B0VspF/uONpLJa8EwSDNckG16Wwc4nvtwCNzWknxWgFsa9Lx7evXXcnp2KnU89bX/CC1F//lJCpE1rkqBezq/xHBPs/b4ayNqtifSDle+tMXNlQqmdPZc91voBgUebWjqM+n9m+dFHQhdTYE2B/u5tuVj9GZlb1bAgfU/c4cH/18SZx1O9/H/8KGRJ1kJZTuUiFSIqYQ6KkqQUSXUR2bMm5NYhIgrZ9+yJ5NiXYo6rY8me7NshWUJJZKn0m+8fvzP3T4+X98t75jMz7+fMY0y8XyY8OnSS/chx5E9KM8j5g/mkkahu0PaaAukpJf51neNAPrKiqicD+z8ZTfhesfslNFjrPutNRv4tz05zhL9i6LIZF0+bDGfDQVfKpdGvaP00CBkdssb+ZvXqlmu6xZDOqn+65Q6qLw1qemGi2P/yLNcwsyIFlimkBH8URP1Dprs8yMZ8YaN96VWmTi50Zt+VHpiJ+rfpkff18v/cr5T0j01H+4XpW1NoKzgOLlv3zkTdw99PZ3fk33lhRVDe4WaDXgFa/zh0i2JC8Pnb6euj5+ckX0G2AuJQlxPypySS1knYXzog+A8tuBwenY67Njo2Bk4dO019sAP77+YwvP6+sRieyiyJe3QT+fvP39/Zh/mm/vPz7Er0+7SEIV9tTtQ/lflhOia4/UYnWNL/PKqE996+NXliNwboC1NvuZJx/6rPsPQfdC6F8uOpPZ8qRgHZyd3ucSA+H9SYiVhTvlkIPR/GSVVmo/VTUO9qmxHO75sG9fOZD6h+pC5cOv6dDug7jZgDe3H7f7GsrSValMOFu313KzJH0P5CwMCFCfNb0V81i/WEYkj1s1Sy+9/81rjd9NIUjy+ijpb68vQbSGkSTCfn0IHzPy7qemW4/S8PsRWY6VRAqodVEs9XVB8rHYtneTDf7XZkrW1C9cXv+leRL7NofP04drq3G+dXab1XpkqoBh5m+t0ssosOSG67tBzjcH6qx2jXHdQqYVTyhLtXLqpfC79UN5tiPqw0TT0s4lMCiSrezK5uiB+X5trkhXD/JQolbBVLgtDM5e2syy7Uv8XFZ6s1nzP0451CLIKBVdD57Y2z41aDgOzq3XLaEZ+Phgx0pHA9RuvNFKe1lhQav86XngYZ4fZduai9EcdLhXRbygqr6wjIea3Kc7kF82k0jedM9UIVJNbdu20ZNwCorBJhUpqYT9VcRQq/T5TCiZDWZ6tpqP2PvFjnuXB8izuXSIkoFQZtDt9HBMOAyHf/o40Yjq8rcUty+FEFbV9WWR9Q6wfkBH/qhCzm16fcF4VE+kohRT6sL18E8d2JFHdiBNZ1tT29iBdQ/klOpse2DoGj7P8WnFLDfKvOLOZYo4fGV/QPk6WxXrT/b+4e68D3Jw5xdW1M7iqD9D6hXF5Uv0kmiuqgMYWhU0mxTbHKVEhkjUibvjIIgqauDbt/TWLohyeWvWx5XkN6vuPfnlzI/06QT+4OfP+C5q25uWSyFH4Tjioe9x9B9buAvXAc8++B+lO/gmUgbNwmVbp93wAgmW+utk/HentbzvqlmUp47p7IP0xvugE1xNhZ0gLrCpyhiYcG0Xpsyl1d7DoMyCNyC07B+H3m/XflzstK1UCy4JtGzZU+wFEeDe+I4vc1VvdJWwczVUKqfnNCsN0HxK/8geW3nzL0mK3Z4ivb0PiUjBc9/n4IUE0P23E04P8/HBoEPZIc1ZDe7kxkOdMH+h4r7ZSyCWLoXDcTre/9RPv/R5fC9DK70Pqq/E6LHeenEeS53UmiGPIJVQ9vbUf8xeMJcj6YMPRdrMfUfPWrYFC9tPPxI72AZMdPCMzF5+c72D/psIaUwtyAtFtT998Dso3E6jcnnJ9wJp+TxB8KJLGPJY80I35xNwksE/MC/68bSnIE8JWUQ1I1Hbrs7QGEeh4nsxuAoaumsbLTjqN64Td/1s+0E/HTHS9dhdsMf0kHdsPdP/Ih9XL3mR0qyP8OLZQmjvlo8pgaT3RBKSQJRlHGH3UDgjCTnCF0YuiONQoG7k6FkGzoDdledwCCJ/+wE8GK4T/gNOJxNjUXdgwClQzbfrT+wMOTu/D9cX3tube0lyje7OjGvlL0/Ww4F3PWyQw90+Nqj9/nPKhUT+kTeNsOCORbL4z7zjD0H3q3vIjVmdDseq60fHwfIHzQaLU/i/cPqyHnPDZb5UHqi6EzLvQuQKh7dsvXALdPyMghTHELmu+TDgpCfG2AEPeVI1/IjKHHislu8PckQ+KC9ZSkDPJPpZuYf8L+40Kcsf6HsiFRvPZ7u2MXIN/b6dcvj99n4eVTPLwcjOYzUzj3sn4rWj/bNGpNLRi6SMH3/UOPoqFDsqaH33AvIEgfMeePe8LQndl/i8arxUP5L036+TtR/myHt3d8x9+/S/C5IIdPBDT/+PtacWILIJCEzXbuucbo/+lgUSXBlYeQqCvKMhKO/IluQ6nlhox4L+3mQjt5L0isfv8iuOE9IMRwUBeN8PuNhC+D0Y6XnSGp3v6ly3QzIEzHDU624vfPi9cf333HdwVWHVwyJgyi9VnBQSmuENdX0QMHNY6cNoe5B3Pl+WZR/Uq3CJTRxvyhIZml1Cd7EZY9tBx7L43WR36T/jcDuL4JPBvhVjFQht5ztIyZf5G/roVs7X/4iDVBaZBm4gdTXyXxc7XTgZkyuy59N/Z/V2P/M1PyNhxtumM6yob891Cs/vznfpvk54okmpwRVM2L/fo+F/nbv7jWexb7t3Zs9g1wCoexcmE/thSj/N8TtB4M4vrp1ZXCEyv2APLs3JHX24nq27HL0nK22H/7hum7xatWUOLB0nGfUFR/o92yn/Bj/yJLb0fOvChIiuSfM49A/otlAj7J2P9Za2WTME8QJFut8hc/QP7n1v3spLC/1Lstm1WG7eBT1483buggf5r5i+lQ3H5F20uxM2KJ0Oh6zLUIgPipqP6nEzf2j/Li0X+rFQZXi/4Kzq5HfJK6X38lDNfvQT9X+zZHZ/jL/H2ILgH1z/FjaSYzON7VZC1SWCoNfrigkBLQPwp4qmCvlxnOz7Z3uX3PSiS0IRgSEthHAOGY9raEXswXEYp2zvlXPGCjZMD1r43o+0zJG9ncxv6sRxIVFIkZcJWn0I3ryigIV7qXfHAS53eWRz/myckYeJnF54KkM6ofD5onFo2wv09KXB3/midsOCJA8zVC7dfqUlIKxfkVTtJY0sez4FIhh2WnPqpvW9KygxdxvPekqHCTajw0/ov35iN1xD/NtwTp/+GPIx9qSV7PvKHzU21j6cZRQHjGq1gYhPP7Fr9JL0r9BVy4YHkxWmsY0Pv+bo2h4/hvdbx+nNbJ0OZkttfcVlQ/+F9Z+xzFfPQ6Um3/7yAyJO4deC22D/lH3izrHsL5ORuPctsu5kKe7GVu+HgIEGlq+QKy2L/fvL9zyvIZTD26wBwvOwDIKwKZhvcxvzm5CJIlSn2hBdM2+pd1xI/fWjdVxeB4DouHrEcJ+XBBIiK9TAbxWcOb0ifDON7+U7z5/apUKHZ5maUirg+Qk/NszCUwP618nrA7UeMLKaMazLBlCJDFVa5MKOP28c8Ga9kOF0B6hqzSq8Z+QEogNem54fiq2Ezi/NN0mHpnnbV3E1q/BHSOlhZg/io0lnaaZw6AzuqfjZZYkT/rebY1I5zflgG9xvEwCkwl3bFlmuwD8kkd+pzhmC85+4lap/QzIInrXdzhWVTfDhlEizbh80nOmiYq/7cAuH6eX18oE9XHzYpivFU4Xq5W4afm9kJ4YCP009cTKD+fBhPBRRwfUKN/SbM8A1LdO+LnOVF9WzKNFpXB/NdDYX89zoXyt1I9qaqB+NF3i1srB26f2MXjEtsEi2Dq62zzkYxuYDBCyWjQwPHtP2sN+YSzoPNQT0L2AbR+e5TkPPiG+Y/E+vdN9m2IZ5bsC/fe6AMklVMLoRs4Ps6sYds5iyJI5Tv86nv2B0AXV+Q1UMH82ffspnyiUxak1Mm/zPmC6junquWeOcyP+9eV/9Z/EgT1+GRimqZ7AInLsHb3Lhz/T/rVUscjRXBBLqh1fgbxzXTFjuIOHB82YsWbxJoFB6DS1i/DrYBc2py7xx7f720ZeahglvQQpspPezvd6gbkbuPABjMcPzJJm/z4FO0/zw7NTR3oBOHpzx0lxHA8ncjFppeTBcmr7NTgkSa0v1gx9B2MZuhT3R5XZXuCYOrcLFX+8QdUf7nvz3MmMPTpfze5R95A/UOj2yXKdoCFXx1Knl8wv67cyZt455AFqb6+52QNGhB/RMxt6oxk6LS95TsisoNgk0xAw7B4F6C2+/jGL+K/P/tJeW/N//artNknapyo/URK0/ohHK8Tzv18K1MmTPDMKBrzrwMEl4+8V10w/xLalCm6sQGQaiPWFlyM2v8xRJPtM+Zf2TNuUqpNFEjd2K59orIJrJubHyVvDWPokQf9+ZcD0fgcDd4v4wZB6nLu7NcT+PxZMGT1W/IF1P9szaWrkx3A4OXd5UZxHK8e43g+ZQ3tV/2uLmSsNYCgUKfnKp9w/H5Xgajix+mQfD5M0naoCnR43zB5mYvPv2ta9jPHCARAeyGP0GSrdkDu9zDjU8XvS0+e0lUe/ZmH+HeAR1KbhubPlKXtAX+G/kPxo18LZyp0MaNZCI+WAAK3iS1VBJ+/i/PLTZkwo5/FjQpP/0Z89DZx/Wf8fYYe83NW3D0qB1LDjQ/lRPwLSNaeOe4ddxn6ppn5OVfNJEge+6EWWZcPCByXjOZZPRl6fP7jqsGEe5AkN1EWUYf46AR3Lmspfr+E072aPpOQBUllNTbJ52sBlTwP+a5h/ibX51dHPImDBL2a7HchzwEhs7lbjMWNodspvlK1/uQJwwl8P+UE3gGC0HNZxV22DD3nvlDmyROpkDi2THGwhoCgy1fQkof1qaqSBRmpCHimb5pf9Eoa4vN/5G6q4v8frQjmqtK1RnzXCUCrZSMgdGRJce80wOPDIZ94MRqNV6Nb4Sn73wDCUn/niTemDD2Ih3k2Zxl9zzbJTaMGMYhvWdXVCvD9+osKwuutJ00h9eGXMekUND/oH/1fh+sz9Hmyw1/7uhBPfgAPNWuq0Pw7tXjPy5ChJ6j8rrat9oGEVA/PNOtoxP9ie1JzjRn6HmemsbHyC0BkKcJh76961D8BHQl6uP/YVmo3/anwgWYbk+lZHMhf4lbk6HN8v995TTVkhewAYchjtsmBKOR/SlByQJehh/IkPmD+fAGQzY6siF5B/uQG/uQ0vD901RFj4htF+r5QyGZcCQidG5Ote8g4nr+57NGfC4DgnR4no4/8SX3T62H4fpW5wR+2pSgL8H8t672DAQAAAAAAAAAAgAAAAAAAAIBwAAAAAAAAtWsAAAAAAAA=eF4UmHc81f8Xx2khEkplpEFFKURKg1NEUaIklFFEVhTZe293crn2zJaZvuHY3GunNKRQIVRGiZLf/f31+eP9+JzPeZ9z7uu8nre41hCeszMh8MHdH3/F6JigMuhf+okEV6vVl+1Df9d/+m87zW6GAeWRY0WyV+n4I32U/WoPCcSDw00vHRDBSMUNyXzIgLQoRdXHdDpSdgrll2SS4JRXT38vtyR2jd3aLbGJCTKuAZS/PxOxhm8j99dZEnxbPKz09JIIin17dCjpNwOOsp96JC9FRzPlbFmTIRIcOB3+dfrFGZxyrh/jYDLg94P2w8UP6Xg92NYnppQEXjIcjmVWmtixf0OsqBATck3GhfSyErG53Z7r8Voy5JbUH9iULolKZzwu31rHhHCDtztjBhPxWQNt4NsMCWZKeDfqhWnigV6xmthXDBBXylji3kPHNQPf2mYbSPCbdK/g48Mb6Jtyo5m8nwktk0PszFuJqKQwJkoVJMPo7rGN1k1HMPayzEEOASZo+v99khybiNMrc7Gb2cjwOVouUzVPBw8Oth2IHWPAz4ejwR5vEvGB/ekPvi9IYJp4QffDI2M0SjhXqHuRCY+YtYzH5QlYe2nvZs1zZDDOXs2+56mAziLx67YpMOHVBkqp35cEHC1eO3dcmgxbjzvbi5no43a3woVvrPtZJck+uyObiANVYk9EVkmQefTlN3KnOX650pJeY8eEK6OzWPaWhp/O7bp/xZkMG1pmVGlHT+KW7Ljpbn0mJDf4DMVuSkD/M/1YakwG7Y+82w1O3sKaAcme36z7S/3pE3G9kYBD7+u+c8iSYVK4LGt89h7OLQsfyAllwv7N5TcFz9Iwpyjw77EEMrw81FIteP4MSnFEi0o9ZMIvPwZTwImGDqShe+sDyfAwfIs3Mc0U3V5pHZkCJtjyzJf+V0vDcGMJMyk9MnDtMuCbn7fFX18f+VY3MEFRwroKV+PQ8MSza53jZGh/rXP7h+BZzFtqVGQrYEJ5nLvSM7l4HLLNq0/rJUPqyRd05cw76M28tTHMjQkje+lypl7xWBkcWtWRRgb7uraKAB9HvMi3KPX4L+t+p8x+JflSMcR+72njMxTQbcmYa96mhi57dmVWfWKCTbF1FOkJFZ99z81V3EeB6CTB04SEu9j3k3xi3RMmnD8VFC//l4rXDERTLBbIYDjyobFmqxPGXnx+lmtfJzR/esr12ZuCZhE2fo6uFNis/uRDa/p51Hhj3NO9qRM82I7sNCtmnWuQT68xo8AP8rUIG20r5BhIpPUNMmHgSO6fo8sUrJutPnz6MAXSMve/+h3njEGfa5Y8XVjvH9FZueNKwthLOSMPpymwRd/gZvlvDZyV0bO4atwJVbpFP5i5JJRJYep6vKCAkX2tI7eQDdp9Dt9oycqPGspbEjXPOn8//UsqlQIOiSKHn29zxd5AnRaJjk6YfTlsXyBEwHe78z/ss6XCV3PbxKgjWvgjbIyHp5gVn03i7BpNAgpydK7N1KGC39k1YVYi9iiyxE+Qde4EAWX7D6VUAha9nbzVLkyFwU0+osZl7hjtaNPEttoJt9C/WWBHNPa7iBSu1lIhx5B/bG/dJWRblLq37nMn6EY/rxV1jsbrkcql9CwqpEpPR7gP3EdjzpTrFbmd4DebcH+BNwaV9Aive1n5Bb31O1963BNFOhV52O51gY/z8SyvuRDkc41lLzKLA0XxZ9OJ89poktH2nFerC+qW5tMVtEOxR2Qm5rtaHKyG2NhwMxzRdu2mqo6NXWC77dqNZxOh2O/sDkyuOLiUoRCTUuqN/v3HZmv6u2Bc5q32+1xfTOqinZDhj4chnrLeZWVdtP4dX/SirAvyrhfk6cn44YM1cld2zMfBmp31Fi56D/FMXnFZgkMXPD0YZR7W4Ye5U4vhiZVxUKQuEbf1oB+6kSzUhLZ1Q985s9/vLV1w6o1wvnZAPOzY+o7ZwHkVLbf+x7602AXVKbRjB/hcMVbltd3S3Xg4+jL7bqO8E55e3DSdVtIF9MUstagrbriavfvUTol4sCrTvZf43Q+ZxKnh6bhuiOhkk58Y1EFjp3UPGcY0EL3yzmSC8xrWaA1wyTt3Q9qZb8rcYdfwn4FbbOUZGrjb814oD3NGqmXN7bMHusE08xApmWCAD1Vcnwr9jgddVSO3EIkAXPgQHK4h3AMvI2kL7/odwTUw7JnP5QT4kMZu7sJ/HT/2se1dmOuG4iNvC7ZIOALfZNnRfKkEiA7GDXW7XLBdwm38Xno3XMiP3WtaZw8xV+5VaX+kwT5yqIuvRyDK1/x8C7Y9oPWjsEzaxgcOCZ/uOvs5AdqPyz7pmLiOBccfez1T74Hs7ca3Zfu9Yffl2M7TzQkQZqN02JDTFeW/nen0nukGyQ33z7b7eMHUk5OvbzkngJFTK/GOWhDq7484oLimFxLKBBp0Y6OAj1x9vWIjHVym976w79BHPs6H6Xtf9wD7Ft/pNrUoSFxuE4oaS4RB/d8f88+6YcifsvS9rj1waJAuG5YUCctk2a9h0YngzqHRkHo7GKvzJe891emF6Ye/1fpZc3Wmar/Gd+0kWN4s+4NpbYiv9hdNPlHshYCOp0Ean6mgcXWhJ3NPEui8994y9dUdhVTEz+mw8ttzta93hEgF493Cd71b6FAycVB2oCoEbX9Kurf49sKNvWyJbwXoMG7AmyImkgzLCnH2d0SMsObh0Ybge71Avyr0ZnQ2Eezf2H1KnUsC11c1Lqv/eeBFLv2DSkd64RSZ+xqdlAh3bLLu9kUmQejy8f9yAkNZ+3rnuSOve+Fyu9TVnVEZkGdgUySalwLNfzJr9sUa4d59O06N1PRCNePBvWMOGXAg3tHpzcMU2EYpuVkR74n/JA5fD3XrhRPX9yftk8+A15+vOKv/SwaVlQLFMZ0wXFx7VbVWvg8+E12koh88hhZ+q931CmnQuOVUhJ2ICarrKc/c4e2DJ//cFZUuPIbtfMqq/wmkwfbUtj0RSt74sFbt6Z+WXrg2P2lWu5oLVOm1HLsyU2Hf/id7Zf3D8Yj35VoB6z5wXJtyjHi8EErjEyfXYhoYt+s1K/iaYryS8o7/LvbBSa/Fx++EC6FspnSjQFYaaH+uZBOi+SD17UB56a9eKBhi+yTXWwDXD7nOHzJKA7Wpl1OijhG4lnO6PKOzD7Rj4shc356A2/Pcjzov0sFws9XfBV8TvE9f+clI6gM374zkmfEnkNmu+6mvIB3U+wUn3o97o+2WSjdQ6gMns5DIQcYTsHteUGKinw6pRPnOjg/h6HXyv6Tbiv0QVHKM/imlCkrFTloL7sgE8cSsL4uBd5Aje6aF61cfePelPeJIr4KdI65XuD5nwO/qvEcPhHxRYKFFZtW/D06Pj8nLRlWBSOTdFc6gDNh3tGDVGCJQcCZcaLtnPyh6aftkvq+BidNPDsv/zISMYuameJc7yKidTDM41g9bK63EDJ7UAHxf8yyyIhMWgk+4ZJK9UftwgnhxaR9o5iylClrXwGUBda5fpzLBakBtqEM7ElfG++smGf0QYnbXUzAOgb3o+IpUQTYUtV7NSz1mgYwfBmuz7/aDpseLKq99CNGz3Vqih7NhMi45Y89rZ/SnHVF1bugDl4+sLl+uh885N4x3u2bBn13tI8HiAai15YPc9UMvIHnyVsn2ey2wNW3w5PjnXNh5w20Tx5Qt7tGLlI/I6YcsP+lX3MnN0ORSoeV0MBfWvc60TJG5j+sUQmVfjPbBd6en9uuam8C8LmAX//EcwJ1fjpZPOWPwkPegHJ0Br+Psr9iH0fHaHpgVDSOBbt6jMsmxw6jyy39XpyYDJmbOnl7mpmMSmeJ+Ro8E295yvtWskcfCuxfaDo51sPaN9Y/DLP/6qol6spqbBC+Tv2kvu5zAtl6bqclsBrRyCbvWmdLx7UO70gYKCU5fUB6vctLBHSM3DnzRYwBnsWqdz1giDl3nyTExI4FoZ+tcdN515NfgaMqZ7gBjCnZ+9kzEvl8GA3rbSZChfP3U2JAR9gZEjSk8YUCC2KxD/SY6WpQpE1eySbC/VkvSQdsY88LvbCGbMmAjnyN/OTER92w4uLDtAQkkMyg929XMUe7Lckblrw6IUT3ncflgInZvb4wNP0CCwVshUtUfrNDClPJjtJYBPhnqcLQ1EV0zHHZrVpOAS+T912Pmd5BdTC/yhy0DvL+nZbJrJqKz5ZeC/QEkeCAW0U6VvYfbuitbN69hANeC4JNtYwn4/uG56NrjLH5IWlzDtmyPWbsTwH+YAXIemzfe2pmIn6IFEtRGSTC9/npAav497C44MZ0dwYCC7MNuzekJ6EH6WRpRQAK5VKecOSVHtJb0ODEkxoCOMEvCw1MJ+PBDrVikKQmClkSfJYo6Y+a1BdPOVQYk6YUFTqkmIHBYR2ULkOH27SCZLkkH1C9wEuXMZ0C0ic3f6XYaWl96Knv9LQnkJ7yd/ro4o/UCxf36aQYI77bapWBOw69vpg/WR5Eg632Cd/wNd8x2dljmZ/GLWtvQNrl8GppfdCk8rUgGa2VhD46HD7CDYTWR2ciAg5maSWNHaCja4mNst0ICz8xXQdSvLviYQ3b29VUGdImL0vYw4nF/kjiNr5gEhw/XGRJMvfAWvDp04woT1jNoUhus41FwekKsxZ8M93WvvJwOd8Zh44PCwT8Z4Bdf2lH/LQ7rOI2FJdTJ8IHg+qhjyQMF72iL6wew6scl/XFdZByW+9mnLs6TYI3nZweucj9kyxs+4hvCBCz6qM43QcX+R/fELAbIkH8ktd6x3xVfRsfsvCjF4he7DPa++1S8LX/BYo5KhglN+Z90JV80MeQ9UFXGAP/etqM7eaiocqlZ/ieQwey8+3KCdiC+H3kdI13IhLD+TX9XPlPwTM15nhs8FKg9NnJIotQddy2FTA1fZkJWo3bXBTsKco6XOvN3kWHh6yMb2wE/PPDK7u7SCwZIMTjThbkp6L+S8VbtESv+A+Ete7qDMP1WzJHCRSbkkawe3PxAwjd7/OUTvSiQUnLQDWu8kL20/MduChOeDXNvMrMi4X9Sj/ctnqDAFTn/R++7A5Crg693ZSsT4JxUwRQHCY8J6wt2DZEhDnjWHlcORTWzVTFLtU4Ye7Pm6FU/Ar7opX0s+UWBg3yn8QyHH2Z9p6snv2PClP9GGt9GAj4t87xVUkwBhQcxw8PfgrBezTHy9A0mFAZsYy80iEVV788vD2hTwJ6TTXfoRTguNH4Zk2T5/3PWZjLvx6JRdGV/7nV1Kix95vag/fJDMLzyoYy7E5S2m/ORfkWhY409k2OFAjyn63Km94YgactX95AAJqSn8/h/VIlCKsfIAXsaBcRl17lsuRSJkqc0vku86gS2yNe812tDUfqnh9abESoEp7FvuvQgAA0G6k1/mHeCxpeu5bpXIfhr8V3UWhIVYi81dppwhqEH0cZh/QsmHBCzcWncH4LuUdYbRvZToZi6TUYtKRq7xq8nfDjeBdcOXysk0/2wlQCfdSPjgD2SuNVOPAhfBw77TNd2writi/pdV19cevOf6oJCHIxGmVmd2ReBLaoJa1VZ/OKoSLn2SsIH31SYv73YRAUG9XbxD34CClSfKN39qAvO9wsuUmZZfs/eMi1vMQ6MMfx+2ZZgvOHBtUT83QmXp06IVCi4oEVjvbt4ahzsUfe71KEbiZuuuebeNOyEq+qpNRvnnVFQI8y550AcWOxc2cLbRsBjph/EDkx0wW7rO9yT7DdQ94L9GdH2eLiREp6k7RWC5QJutbJmXeB2hY9dkaiDQwuLm7JZ/hz3FntwbY7GmHdFDaTKTsjwiqtvEL6Ab3tnV00/xcEV7kOH2HqJGGh9o6bCuBuWpz+7mxPvg7TC6on2Qhp06HluOa4YhiKbnhbpM7ogVFTF8mCzI/w7/h+bGdAAX3bNUnfGonhrJYfu1i7YwXaBatv8AHRsv0xKVcbD5FifJY2djBW3v2/Qyu4G9UlOzlsTXiAfGnVV+UwCRPhQ3WslwlFjYCi3dVM31H88d2P1ig9k7/2gvb6LBmGnw+5cFCHg2WdZs3PaXbBhp/Xo+0O+oN8jLfxOiQaLza/LeHLJuKyol8I80APvrp+cn+yMBPVSOwtPnUQQ/EriXW8agT+Pfjmp69sNvsO6czPXo2BbbsZIVG8CNFlN140zCRiQcdUvlMUvI+GmsZsTouByyYvDRYcTYN5ib/o+WwqG+miG8hb3gOKJ3aPu6SyutHm9hunP8rlWVzQ0+KOwZ63/rpSF//OT9SZqLxVmns+yHZhLhEVhWfvAp0Rc+ks0G97SDdKmRRz1Q1Qo272hm6iSCP5RWiOnbKk4xl8hpLTSA+klUpLVuYnwMXX5X/3ZJFAM8FK6+CcKE39F/3fxVA+0di29VG1IBJd5x0OSeXSYXOskRpAkoaw1jR6l0w3fZZ/fjaxKhDNRb5S0pllPJzdprS9UvNKTl2+j2gv6fSXL0RoZYHwuIc+sKBnebLP6+qk2GnuXIgLXFvTAZ9HalGmWPz5l9SeMtpQEbcTH5AEzEk6Mzn03z+kG3simckneDFacK5qRLD4QUruvHPKTisqO4yp7InshR0P2dzrPY6iOEWSGaaRCeIfulLlCLB5+I7dTg68XmnruTNJe5wJnsLkxwS0FmIeHSzfOk3CbgJQ8z5oeeOQRo2VPyoVYzOy7GpwMtXstfpeZxGHcn+FGv7Je2L9Zl3J3uADit+s1b9yXBvwFCVfzpmOx/3v4hmIWPxwc/uP1zKcADD+8C+e0SIU7QXYD55dJGN0wXf5VoQeOiDp89uQrAA37tIgBsxTw2mHTXWoYh48ypu+cmuqFZp+MV/ZVT+AqPX/Lhy3pMDvYT/NJi0EBakGA8Y1e+HthkS370hNw2bWnxzYsDWxHTIft6ohYxGlgIW/J6p+mrC3pXSkwJXArYygVZM4oqGwNo+Ddj3f9d0n2gV75mXyfLVVwe9BYf1U8A0xdg8nSEjHo1XfCWzGoFxQ+EiMaHSohlePJpV1+6ZC7GHvO7ysBRXwS+XtSe8BbjZH/vLkCInM6Gwu60uCd8KmNFmJklJfYoxtwoQ+IfYfGX0nUAL+HfsbS2wwobUra+eddDCY0KesMRfdCrojN9yXZp2DNOXJ6dGsGVD5bubjbPhZv0bbxsuX1gMoGmYCSM9XQOeg2/f1KOgzOO3xm6hFRVmdiPd/VPlA11HsfxVUP9KkV2Vt8WSBGWgrafCEQJX7EC3SQe4EaMnFeVb8WON85V23dkwnBPA6fdD4F4Om56aL4oh5Q11urFJX5HxhwL+nMHc0Asfq7tE+HgvFDfu6HO8Z9UPmf3Np/cY3Q/sJyfPxaNigbnM7ScriP17QmlzzovcBoyhnPMG6AwxKMG46nsoDD3OJbA481puaVx9dU9sBRUVN+ogRCaOXJ9zslMuGvGjHC/8Z9JAcKaSgmd8B8Eh+F70gi/qoXOEj4QISzxYpODUsnUWX4RO2JbR3g5S686ZRIAvLwDI9uiiVCsUdH8aG3ymjKc/nwHc92oFRprnAJ0zBzMUBiXJoI+UYC1euMz+IZQTlpyOmAPfQLoQobEvFCt11J21ci7IoVfGmTa4wFKpyqRmIdMMG1v0hygYZRzIAbrglEuJQldJH03QwJZwau0QPaQeCNlGbDfDwa3nsYFqBIBErMHpoxtzk+1I/rHS7pgE0ncwsDKhJwwUBBJnuZCErBHy5tuGODWTr7wvgOdMCfkwa+kElDGw5qa8hjInz6HNFYtvM+XhbLU7KOaIfrSTIdGZnxaHO950uTGhFO5t0YyJl2xCYuPvXcZx2wWeWMU5h9AgqLzJBMNpLgT27sfHm0Izbotybyy3WA5b7x5J+3aJjfcHJXbDUR3hqE3i76/BAfnS8clie3w38zC/PWJvEoFyLh9/QqEYxceiYyzzzCM23Xsre96oCAkRe0x600VHZoO8suR4I3VdqtP2Rd8Nq+tM6nFzvgzPOeo9FP43Hwhu3U03dEiHz0cY7tqjtu2yc6JpDXDpNuMr/dnsfhbZMCa2tnInimNZ7gdfLCj50hzxXmOsBASWxt9rd4JK4TLRUyJsHlE4b5dX88kfu0dRWveQeocNrxsI/FoaLMNleD9SRYuz6Y+vmzL7685JmaVt8OvjU7z1pMUrHGtVCAQCeCZSpb17oJfyzbS5kN4WBAtaAY70b9eKQJbZq38SaB9i0lrUodX3wbT1Wsd+mA2psXg6e14tBfvDZIQYIEFg5Wl+4N+mMhb2nf2952qHtevoesR0U3gSOzSk+JkOpMopRtCMKfX9Ny0xQYYKLIoyuwIw71Ale9tRpIcNb08qTBvQAkjT7PZU/tgMWWpqfBAlQcCg1ENCeBnZ5kn8tCEP56N7tyfqEd5Byfna/dRcHoB+3vH8wTIS3a3KjPLxTrruump9xhwMO0hejxBAoasm/er81Dhre/VtbVagbjQE/oLcn2DrjgfuLLFI2MkWxWQg75JFDfPXl4Sj4Mm7UG7ak7WPNl9595RT4Jpz75jjOPkSAnWuH39Z2RmLg+nmPOn8WPliobkxLImPjxdd8/ZTIwlh7MX/sWgvdFuIZefOqAd8+CEtzpJDy31mOmisUvbJc58ly4I/BwstlbN9Z8KbhceyTyhIhVdcTn+XdY/CfGHB+Wisbq59djDesZsBon/pWLRsRhjrPv3DNZ/tqzb6KWHI5nNY5fZRNh9cdPiVyXTsAwAbBMO0GG4oGp57Vs0Zh/5p+yjVkHHM98wu/gE4u/Kyuz1jwjAe26cLT/cQLmRx2SXl5h8V8Cf/ULrxgs/nk7upafAo9Vtry9bxeFbyO93t9l8c9w/PDpqdQo1JqoC72aRgaTK4ZfsrcS8N+vsqcUQgdMW9TdjPwagehEOiYuQga7MyBRPU/EPbt595nsZ0KdSVf2OctIXByIbqcYUkAyM5toti4G+294BzBdGCy9vp2iTgnHQpnCLXafyLAn79gVpZ8E3N23S4TB+v0LVJznn58KxfLmjD0ORmQQPEkNpnwlYdO9LToVD5gw+2dx7PDVYOzdrRqTO0aB79uZa06pEPDm7r9j65+y4puFK3gmBWLu/VvR/yxY/t5nE/+OKyTMEtpRPvGlAyp0bFYd+QJw5NflK/59ZHiUcumKxm0K5hX53KmrY8KkQ/hsF9ELQ7UlYw09qSD9+u3zhVQiHvz8UXphmQGcSjnn/pi4o3/s6XOy8xTw7frbn91JRlMTl6P/7WLNx447Ye6+LjiyUerpUX0K+HiJCOX9oeJzvo9Omd+Y4CZk2T5m5YTzvt5qOiyf1OK86/bB2yQkWDzYMinBhN+bDXfk3XFE7tJITlVtKnwXa7pYTKOgkWCB4GZVBsR1fdW6Z2mLomEyxs35FKgeF3qjPxiHyYNfxQpVO0G4L2IXZ9EJvPXuwmg+KQ4W1j26zedCxqwwCxkLOyaM7LF8UlEgC6YdKyf//KLC7b/hVk7VVMyOC8n468UA45iPLzbqacIt0wsSb89T4SX/1a1/VuNR3HTx3xZ6Jzy0sbc0WXkIxFN7JVdvxkO4n9e9m88oeM3e0E+5iglBfj46p8Qfgdu4t2BRWRy8bVoTlbw+HmNem1tcrGHA4rEvXlfnXeDuKQfy5DwVTuw/rb/OIAFlf8ivTenpBPm/3VcED/pBrNCBj3ffxQP9P1ujLRZUDFIU27gwwoSvw/sbrbj8wUinq+++JOv7Kl+k/XPjkceTN0viPQNmf9ntpNT7w9/0r9WfzOKA+6VNc8xqAl6TUzjsuL8L3nWv1WjaHg1WkYEV+q00eGzjzSjeG4ehpmxChAOdYPxgie2FVzRotfAMeK/Gg5Zw4FZBHRpKRvXHR/AzofXi+8znT6NBUXjTBL9EPIS9I4mLkBKx+tjkQpBfFwydml9ynqGC8fYQl1vMBOj5+7tWTjQe27XiW+47dsLk9HOPd6NU0NWba0r/QQOpwXBfgnwCuphpSclfZM1Hzcr3YhZ3BRe+XK/HToO9TRIbYk3p2HLjsKhqZRecTm75Uvg8EWoz+syKHBPhrib3La2YeHTN2wiW8Z2gvrbGfb1LInzhoM9NBSWAga74eK57AvZ3uNfYWjHBlsRfrLorEfziOvbxhdNgqwLD+1oiHSV3yN65868Lhme/iy/8Swfh/PC9QjQ63JeW617vE48bvCk9eV2d0MzbbbGWlg6HE5We/RebCH8DKvXn9yZgfWkE6UUEEzzQxGW9VDqMlmvPq7omgHtl+1eZlUQk9wrbPdXqhjdsorfPH8+FASf/tadGkuAAx5GdI/nx+O/CBnEJzi7oDjVJqI7KgQPft6effU6HQ4VimaZcCShFCJR5WMaEkMxrGaJvs4GTsuXj4dBE4DmconA4ORF7LIrbT7h0Q9WEZtDJnHzo2KHwbX15MnwWi+4h+sZjtfqE4utdXdCVvDWLqyIPrkfe+FLsmAQXz4ZENdynYZst7yW2RiacWJ1VD617DPz6GZ8qDtBhoIXv5M3pBHzKnj/nTe8GlLB93BRfCh4ul/p9d6VCNSVk75e7VLw0l/xuRrELjpt8oDNpJaBxn3/NeGkyKHrlOwd+oqLGfh/bLwwm8O36a133rwgc6laOF5xKguJW0+qI2TgUNz6+WbSlG/hUfogWHKwA/rvu2WY30kCTeC9n8D4Zu259fnjrahccdN/6mmNTOfhpGJZ92ZIKusrV0aNeZHRJ9fXe95oJd8IbB/6beQIzouO7rB8mQ7t2/N0bQhRsSP62bntXN5jX3PVMdawCCsNp/Gd3GoxnDIdkGBHxkp6fh7tOF5w6eCHok0Al1D6rMg8fSQVHtS/qvgsEfLnbXYvyggkcVh7pQpXloMHXcnFcIgWsFUSZr3yIeGvmTqNPD4tvA857UMKfge8HemdVejqUhbkou3AGo8WhP3HyV1h86+xfcz/7KUg1fmo7mJsGTLHFY1brg1DId7k1rZsJSnKbNik1VIGJe+LgikEqBF4bqLw8FoTDxL74jv5uOHG2XtK/rA4sNIr417llwLGy33c82e1x3Q1HZi+Ln/3L9FJ+aDyHKvfBMztvp0OxBYrtFL6Hq3IuRgRW/Ze/K0nqvK+BFdV00jbNNCggLv+hVNngrkM7qrYKtUNb5crSZr14nJEq+s07RwDrubKiEZ1zaOmwvz7Uog06f7iO9fZQ8cGBJe0HYQTIu1acvStXFRdJamLlaa0gmtL2cr8hBWPLHJKU+QlQp7xT8R7XeRwc3fDyv13t4HfQKnLrkXi0syjuOfyHACXeq+7bhC3Q8ffkjIhNG0Q8ufA1tYCKNG1hoxACAdZkaPEqEe7i1ZmhWwrZrbCcv6qLihS82Vr67uIOAkw/rrhgwmWFMX+W2H/ub4dGfeqh9R/icDGnf9t7TiIYjp0qEfzwAD1Hnxw859gGC1LDq0YmVOzwNnl5KJkA3fSwIMeDTljw2D1PI78Vbjn8HTo/Rcajo1sjP4sTwKxlrPCSqzM+/uL2iEOmHXY5e/6MTozDKen03we3EWHHi7qUdFsXVLhmSDru2gYSvwKap0WoGNWURrmdR4DVT/wv4rjcUGU2Pf1bSSvse3s4kKeAjH8W/8LgEQJQrIw2BBS6I/HKr8cHVNvBwPmB1ullKr7w2/DlEosPbKw5XXvX+OA5maKH28Pa4HrZOT/wp+DvLdUihq0EiFB66VixxQ9tofNITG0rZFytzlq/jYyjas23sy4Q4NOvtGxPSX/sD/lTPnejHVZtj60dlqKis0Z+bMtNIizcyXk7OBaA6W/CDmYktMEhy97k0Coy7hjkNs2dIIDAJ7GCR0pBOG7sQ37NbAWvRl7JOR0Suq9jKLdbEWB0p4BnDDEYw4eF1cqs2oFaL/kwO46Chbb8BdtdiXC4OViJTywYtc6wcwvmtsH9hsv72w6Q8XMvSayUnQhla/8bBFoIMqolOctetULriZjVmVYixuBvO1UfAjh9Pkpy2R6GQs4TCWJh7RDLNSA7ZUHGkJ+DsYklRJAI/Nb/qjEMLda7f15pYM3PHvaHoWwkNBknk2oViPDA/rj14qMIdCvTtNo+3QrzxRdfS+YTsNhcwfFdAQG8lxtFdh6JwlIp9wErFn/U6abQ+H4SkeJbnbjuOxHOnYRXqjFR6DFTntX0vg2++r6wPEAn4MpKkXTZfSL49yRZ6HnE4JEumQLDNW3Qrn6hIiQlBtdxhCcYfSQAaW0KR+UxAn7a+j5xicUfqx+TaiT+EVBxeWZNsxAJ5PX/zB4qi8EAobze0h9tUG4rMq9jEIupEy2Jz6lEkAl/ODR7i4AN8Ue32/K3gTGJva25Nwq9aHRO37VEaNi4NBhxl4js+58cjfraDhaOhvz/7Y1BWZWL7ML2JHA2fVFwlIeIP6dTp4y3tAOHiszbd+mR2GfGkGAbIYL1ZIJ+jzgJPQ5fqjwq3QZdEVyL986E4xvVi2Kl6kT4IfhQSApY/mk2IlyDxc/fleD02YxwXGfQv1jZQYK+rLntQ29JOOaR1CJ/vB3eHN6o7akWir2Ff3PCWfww+2ZjhNIGCmZ62wqIX2iD1ymvy/esDcbfjRLSB8hEWFOmsFVPkYpnLDeWKh7tgP2a5jlGhSE4ZhS4bmE9i1+w/PX8GzK27D0X9OlyOwRrMbvfWgcht4Fa4Qk7ElSkhPx4zE1F8l3ahw7DNhDgWtlgoxqAx1x3dz5qJsLxNP5LAepxOCjToeDI4sM8uyvKkSN+eLptUt7dlQzapmr+/EZUvMnck9fo3A63mSaq0hXe2MWXut6/nwRNb6i6cqQ41J6hZV1yaYMNx8qkzN67Y5CXwxX/XSSIcEu9++hFPEqmod7xuA5oefAfj9R9ZxS0ETxj+5MMl3O1lP+txCFD+KT1keR2SL1qe1HvpSMeZqs/oXieDF/rRNrCTtOwX6R/nTGlDSz1jLVOTdqg1dPAwqUQEtguZ5KPByUgrWI0+URlB2yiNgeDnxX2+5/e1nqeAlOv6yzuDcXj6wfJgSsV7fA95u7XtZtvo+bFX7FW0WSI8la1uCqYgG//0UfEclj6JCP9Arn1sV3M5Mv6dhK0bFPaa2mWiLScpODs8Q7oam/O3LpBD8L368wZvaFATBUzeNO6BIx4fiWg8207XNz93y7dEmN4dVNl53MWP73LvBhsKZuIghnqi1fq20BB+mL5YTVz2JA6JCF8hgyhwSdUJ+/TsYCnwXC7KAMuSodGVXC6wRnbarnt3lSonSSKR+gnIr+nnX3amg7IeNnvVZHlDrK8Q5tO5FCgVIxL/KoLHbVqbi4Fv22DxspXH3J5POFIfXHr9UYyPL0w+1H1cRK+2aFWkHWSARS54BLBIwFgrC97wvYTFZKS2bysfidi5/ufik+2d4AUT0YsPTMAuI/O14exU8HU7nxI6yodk2IFzs9MtMHpFS/C7nWBcEBI8PW+rRQoU1wcMpJOxvT8HbLKlgzoeco+vPIjGgxsD3O/To4Dx9O2KXRPOm5MfR9ucawDClY2WDk8joarD5XZ9HOoUJJ9ePMZkySM99tk+ex3G7AbMfg+akbDUlBx8LUsCrRzGXdusUzGHfeLSi5TGGAoejlqTyQVdvJKVyzYxMNuedn6HdJJuIkUPBh9vQP+zqvu6+WgwkOI3PbCJA72KjrG/Z1MwuOZ7f4rG9shYTBB+587BcJ9LnLJXWDdX37nM8GuZKwc/r3zSyEDYh9GPd/flgCptfebOafi4RTHp9939ZKQ7hw88v1OBxgnmk0mzdFAd0MMracrDtZv+y7DPZKE4tsVo1/wt8OnTj39p9tpIG/UVXgqnwo19M26BVXJ2KD++2JEGwPu1Dx6vfQ+DYqN+dk4OmlwYf04STmOjodMRJxWHDtA8vXGD+t3pkFT3pOwu+R4uF4Swzj/lY7XAu4EabL0SWvJlLvjSQrIsj/UtdaLA61erWmN0CR80P6ttu4TAy68tniQr5ANyUw7z9CGBND17XWs/ZuI0bcfX6L7d4Dgmn33OHZmwTmRmKfe9jRobdqat38HHfdyhDTpbm8He7mf/xTXZMLqo55jQlvi4a7vfWaEFx3HWsxXFX4wgDlhruKxlAtFCbI8LgaJ4ODmdPwHa77f/Zv36wvogPqw7FT1xBw4Pe49MzFDA8fUwN9H1iTi+1N3sx1Y+ZeYvzkkezIblPJL9sf5x8PHu9XeZYaJmCIjzCeywIDt6/vf0XiLYOeBh/1dpnRweB02/35zPPbHBHFv8O0ANqOMmY5tBTC0UyKV3JsAh7sl3BrK43DLXE/eHAdrv05aHNohlgdL4c+ayCo0OG7+CSffx+HmwuqSrCUG+FiYtt+UeQIPtKY3n3NOgoCF8TOn/pAxR+6vxLBXBwT279S73F0CdlNr2o0wEearN4c0PSDjrv/2nBH61wZvtzmosp0pggK2f4NFGxMgXeQmicDy3/wlhvdG5hngLRI8OdddBk4rXpqjgslQltFVcFqXiH9+Rqe7O3VAlmhL4fLVJzBojdKmmnTg+yK950MiAX/oJVe/nWuDjb5ZJtNFJWBsfIKnwCcBlJx2199PIGDCZI8O/zcGHGvwebIjoxKI91X2+BxNgZ9fk04OkoLw5oueURm7DkjWUmu70FAOuykNKS5nkkC/apes7J1APPkyX3f71zYoXdRPsvv4BN6Bm5DyhUQo3s50MacH4pEAZ64b4wxIXfufaJvFU1jtcXZv10iFTS1sjEWqNdrywsIf1n6o3LYheNeuKlAqPkY6LZUMVXw7mQVNd/FI+Zf/rD+y9P9SSqHtm3I4sPXQY9+NdLhS+I6vg2aFCZX7VN0kW8Gkwsat4yYZi+WMrjEpsYCK4qPv0s4jp2Yu94arLcB5zr1zH4mID5P26xxLiAE94TsRRy6oY83Fd1kFD5qh7eO3DekZsfihZUvomqhosK1astvCo4HTXtumDKRbofmooutNJTLq3LhkNpoeCxV6axeVnljhzaYgY9RrgZGfAzdrHhKRYa8a+C4zBsxjD1xQtb+H3I+y01ScmiGivFWdaR2LM+dufjxOiYbuxZEDD2StsVe87mCDbCvk9pAYjB8klHIpnHhYHQue7mJrtmx6hOdEhTTWGLTAlfYGlYOHWbxzolvuT1UMlAye/CdX8Qh/++5XuPmoGUhNKFP6KQblavgqv2RFQ9GljLNjJi7Yzf2tPu1YK+RtM1mzrYyEv3LXJnQwY+GcDuWfnaUHSmyslKDebIE3MSnmLO7Agnl2o+D2GLgQcMeFV8ETWzXGw2Jdm8ElOfpvx6MY/Fwi+zioPBra7a3bTmzywkg9vKF3thWcTDscWneR8E6ucl7Ln1j4KdM/EZDhj9KjDjNvzFugJoTspGBNwBntO//EZmNAavX+tiHJANxREhFw16sZzk9F3GZ3jUYOq6qP/w1Eg8uhx6VLFQFoUP+bkn25FXbzeRrsvk1E1U8zHN3CBBCzlaRSpEJQd4hw87ldC7xiJq9w3IvFPZ0SSyTxWOj74aHg0hOCIScoe974s/rLIVgbuSsKt0KKQ9dqNJx7YQ2inqFomxWu8k2/FX5miT0wekvALJ6p6EoZAhxQWS0bqgvDttaf68ydWuCJ5g3jLTYxuCKa6JOkEQsS7xMqmh6G4zcvU4WB4GYovz2upyIXiV83TliwicUAZynDuEUuAkmiyWUi1q3A9TxOuDAkFlWMpA4cMCKA6Z87xtuno3Dkq9TLcd8W8HVqnms1icJzdjKZv2NjodZA+OtCRTTOXqq4XRrVDES4p1FyIRyBN87zpWEMiE5Zic2ExSB3oJa4gFcrJAkxCijjUYjCKkUfIwgg+uYLUyqNgJorvzOORbfAvlDuEdvRcDRId0r/9CkWosd7B7dsJqIRd1bUdUozXNvYROL7HoLBi3O2JzNiIIsv5HhkIBGt5kZU28JaoVhPoKVFIhI/O24KobL8e1hP4Q94SURjfsH0MWoL1M5O7DA8GYb36LY8NF4CpI2fFrBVJ6GeuXzLkYRmiGt8aGZ2OxjVDD7KNfTFwNKT4/YHG0joV3BxelNqK6zZJ9rdmhWKMc+m7yp8JcC7fblwjMVDwan+V6yzWsC89+PRZ3NByHYuT19OjQCq3u8rraUoGN6a5T6f2gxQYhC552oA6pnuoE8cjIU7IT4W8jkUHL57xf9mVStonT1fN0pg6RXv8/yNckTYfaO2KP8JFUePRH39Wd4CHsuL8orb/TFu7tX6NQEE2DuT4DK5Pw4FD1UI1+c2w7nu/07+MfbGJA/Zbh+WvlgdG3GrzY7DYyT73OHmVhA3XRRMHfXD7ovcv3+ZEIGvyDTeuCkOlZNUCH+et4Cp3y/qnwPe2F7D8+sOi09Nr/3jc5CPx2mbopDVAlZ/Uaqcv8ANcyghMQ8GY4G+sSYotzwe148ZXSx41wqlbxI47xq6Isll2O9LORHE369P779Cw1dfM66eYLTAKNtWw0p7J+R28Kw5NUeAG0/FM1WqaGhYHWJdWNIMCxedap6rOaBU2OUWD0kClGcZp76QTsC/1OSBtvlWkBmwY2iOW6J+5S2961tIwPt2T6vn3wRMod/81/y6BYqnzp/gdzJDQ0VqG/k8EY58rdNRY+1XbsvKY3kVzXDxz9QOAV893Px6De9zBwJc4XZ7Kd/K8re/LDhq2Nvg8q8PYvtfXsbx4XX+k1dIsFW1QHBxIBGJpZ3K7R9aoOqiTa4WVRa/Uw9ryLkTwdHTxlVyLx13rnnDo1HVDNTH1ekWfSfgls+ezno6AQq896bERtDxqZb1m7Nb22B/M/cEN48lpLef5JCsJYHL0Qlz87d0jFzm8yGMt4DS2VglD2VrcJKW3vXyFRHsnNg0VPmScBqMa7TLm0FM085f7JQd5DVM/GyfJAD48H83uJ2E5g/DTW9JtkFBoLwWPcITupWvHFlQJENLNlfOurXJuGvbgwdff7TAyce65BpuL/C/wkXbcJYESt88NpL3JKO97orQxJNmeEpIejX3wAtiiTFoqsb6Pvtn+Rs3k/FIdjE96WgbPDy+MJy9JRCCd2vdFggkg+e7e9UK3snoHaFzX2y+BWhj0UzF8QBYCuHwOutPgj96O5XUfZPxy3T9uaDiZsjK2WBZ9iQAeN3LZz57ECFq5OsZg5Jk7N52oyTwVBvIv5qUN+OKhptNrpLFXBR4e+m7s1x2MvJv+3lJfbYFHqkMcN1ZiQS7Yt66bQskYD9Ys+lZUDI6k8ymp9ObQQSTo7UnIkB6HzV/4Q0RDIWTpFRJyfhy6p4pn3obdJZuObfnFxki/L/3uyRT4DNtrknjWzJuWL+2fQsr/jfVJ+lGbGRQnDUb2+FMhqQ3fU4aBcnoRbc5+ieuGdTNlQ24NpCgZrpBU1adBKqHGTkaccl4RSHQW+BiG5CWBEHAOh6sbqUcP/ibAum51RVR7cnIWJFKEJxm6YNwuRy/WBy4CV/u/FBPhsygc9/vmiQjt8fOzE6WfgrUTt5b30eBOSNqTkQwCfaP743iVmGdj46eeqbWBjeOn5rzrE2GQxzX/zyLo0L+SstdtsAkfPiKXj403ALLMbOdJs10eLyh/cwMi/9yR4rm5hfp2OCdLlTu0gxHrc/OKHYkwNOwgZat8yRQ0JwaKa+mo4TrX5/8s20w1abnte94BpTOvP0UqxIHZR32KxV6dIyOa7s63d8Cp2JPD4eNpUHpEYGXyq8oMFFWNtT4OBFf3fuwdfR2M6TIjLZ07UyFM3OjG8dsyNC/57JYskYiKqaFcF5k9deWW1v+lmYW8IpeUCvPioP+c3yXmsQTsbImlrOhtQWe6cuIfqjKgInsEpVlKSp8jj1w/ahuAuqmO4426zbD9Wujd4+Ip8N/xGd/3xSTQXBQ5onDLA2z2ZJVJ6XbgHZ6NeL5n1x4paL5VF0/HuRPaov8TYpD3L3mwx6WfoYSFN2NvmRDea+KhVktFY4oURxetVJRbLOK3pcTzWBBVWlv7s0EctPrPgEJCujIM7f5mlNR3HcfT7lYG1gXPm9dKCtgzfX7+P1cNPgjZP5SRJSMP7O/nCtMbQEjTs1nRSJ5MDhttiBwNQ70mYPOt8+RkI/ue01udzM0CObxygflQOeXUAFaIgX43c5YPXpHRGVJ81uxAm2gMRi3dv5TEbz99ML7lQMNZuKvD7zSIOC0/8tHE8QWuMxbYMq+nA9MG3nlZzlx8EokY93kqxhk39jwJIevGT4aBo4zeB/DXyER/a3vWXzMZWtNU4rBNac6Q2W52sB4S45WAaMU9tv4SpzYlwCi7dt5VqUDMTvxn9aN0BZ4wXXWyZynGDw0H85EnYoH41vmLGHwR4pk/tGxdc1wmX3Z41BgPkxdm9lkoEsF0rzf4uM6fxz6+c16y79WoMbGfPMMLAM9ud9+uZ0J8PiISZhOlyVeuDnymsOzBTL13ZPYHUuh1Nbnqn1jPPSLfcg4GW6Ox79fsrm92AQVOlHY8bQQAnqiPPOqqeC85/HHhTILPLSHUSY81QRt68sOajtE4xOrf5e4ZqLg14EDrztUNJApcNn7HFsTUO8tH08pDUe7j563DryMBNWja04/PqKBX3Y0LTvxN0LLn3G3pd/BqCqpd+JkVQQcSq1s2nFRAx+3aBlxTjfBGLGnKP1YNOYWbV+9uBAFp6DZNcnaGh+3pQT/XW2EI05vOvf4svxUufbZ/DeRkGe0NdbitjWKD38yX97cCPuDw3YV9QSjdvjHK6vVEdASbSTDb2GN78zDs2xmmqAkVzbX8FkUssf+GBpYEw2EUdc7u0gueNKlUPYQK/+LHH8HuXjC8dXeEV3Xz5Hwkn6piDvKBYWSGx1+8jbCYLzd6RaLYGwOlibzNkTA9dtJp20iXbBx7hV54FsTuF/kW97JquHZ0uch1Zujwf4Ep/tLLS90iqsUk2fFD6WIOhQUhKG7px3Pge+R8O1Wpc5TZS+cCOBJ8dnUCEbTkXKuvMHYo1SjZtAWAe/JGSV8ql5YlmAYWzjbBOaTrw/8M4hEyrB08bJ0NGh2pQcaDwVgc6xkjx+rPgpS/rOnu0Pxcruf5ZF1UVA9cG1CrC8A47sd1p7jaoTHj6I4n2kGoUz2gz7xgQio+JzNR+8OwPS1PTLcP5vA6v2W6D3bItD9dIfE46vRELUc83xdQSjyXYqRuM6KLyBgUMCfHYJP1Bo2p+2JAilXUeFt9FBUft+yKWp9I5RdW90GpwJxDegXGU5GwIuVi6dGyaFo+KG3xY01X8yGFp4+uXA0PcERZmofDVN24zt+WUTgnX9ar9ax4rMbfE2aehmM1g1/yK+ORcHTAbmJE5cjsNjiXv6tNY3wSPGHp69/AHKv2aw78CsCtGP6A+fORyDZ5anv1j9NwHWts2qvUSieCPgQopMRDQaN4br0uhi0WBkemfvbCC+LDvZNSQeh81f19A3GURB3q9rUIzEGHZg5HMnLDfBCx+bkEQ5/PLGxy06VLxJeXDh1sjckBsOoJGPD1SbQD7eU1BEPximNj80vRqLhP4n1jZapRNwaZMEf8acRPj3+19kmEYAqsc9m2mOiYDki+p5EKBF/1QyGhcw3wODuH34PbvqgVkx5m5pCJBwXPvtopysRr7dxqs2xN0P3kmSsYU4gShr+UNvKEwNJCrSF6CESZv57mr1jmRVfX7/6HNMPpxvWH+QoiQKikNdg0nMS1uV48m/51gD181E/pL974pq7Bi6xmpGwW+OdpmY+Cf+plGcbsfTjlfp/ynrlfqj14fUah5sxMCwkR6mto6C4i2/Hxp+NQH6h+khAzQsz9u3V55uKguEWR9liEgV5d5osxow0gEh2XIqurCueyXnMp+EUCVHPDhmfcaYgY8OuzESOZpBRFs/kjfHARo1XXqpPYyDwz5fW2Zo4fHaKI3zgRyOI8puf41t9hD6215TJCtFw4n6AaLN/HEaMsLuPvmwA3vuSW8Z9HmBzxyYrt7xIWHcwYc2xG3EobPMkfj1XM2xQTj3yj9cFh4XaXgkuxEDRbkWiUXM89rVayG+caYSwqc6cL9MPMOKut3nKnWi4m2dg9NcnHm+GqidqdzVARaiSmWapLVLoGeOejEiomZ2e+6Edj4F/3nh7svJfIf8s3/HMBsfTXUymzGKBS6LnbvixBPTLeebGHGXVRzLwyPgRC4y7ZdXqWxUNvEkb3BKGaHi+skP55rMGuHQwP67J6yb6sbfts14fBWkvSgz/0mjY8utcxu8NzfCubelL5vZL+LdNmqEwHAvx4f4Vl5sScem7zl/ym0Y4um1uPjdZDj1mb2x6KRwDMNu1ufP//79ejt7j8LgB8oqnX8SJKYDT+jkNhk4UKOyIOpm8moCcEtwtJuubWfyg5rv0Rh1OzaQzydsI8OHWxFZvPzomRJ8yHe1rhEUoo+sQrgKpKqhrnUEMJM/rKfKz0XHWeb48hd4A19b/R98dZQiHC9TCZr2j4NLRtMiJ1ES8NBP7q/5vEzzpnRso7reHbLLozZe3CMBL33+fRzMJlxfzswSwEeoXOBPvf74PbtJP5d62xMBLK5PSyyV0dPO7vCnFrwEiPUUe2H1yABXNKjmhrijwGnLe369ARzPb1tZzLP15kfxT+twZL4CPEh/FCwmw4wMXV4Usyz9v7wyzKGmE+UaOP9KhnlD3bYN/x/lYiB3hscvwTMJBMFxfb9kAgTt29Cu2eUD7MdVWoyPREBv1bc3AFzomzt5WTGDpM2dXvM36WwHwY/al49b3BLjeczLwtkcyHo0OcdHNaISD9q9P34nxB/uQEMIcMRYqZMJrrhUkIb0rLrRUrwFUtPktDev84K6NYZy+FUt/9XcUd3En4ev0KzXxQ01wo0H+14+jEVD36ab9enkihEM9Re9yMoZ2X2PQQxvB9Nm1SmpAGITff1adzEOAwrGTNxTMk1A8TbVQXa4BRhdsmQM9IaB99ODNDYxo4Lu8OEh/TMc5c7uDVGYTLA1JKKdfIsImS6N3MwQiWHEpi84pJWPZHh2ez/aNUBIsQdm+lgB6kvk0JQMC3P7+xaZegZV/0K76d7wNMJQKh6oco8Fw+/Sa7NMxIEnvdd1qSsfQOfGi0LomMHmyQjj/lQyN16x9nTqIkBmtWKz1OglD25g3dtxsBK+Tn8ZcdUlQ+FqJTymIAJY/u0brn9Jx+P6QGWUR4Zs398f4pwRYko2jvPaOgcVbjHVGQ4n4w0j75M6sJhj+LPglKZEG4uq5542kSVAyNjhgeZ6O7p/OW5CVGoG4efa7umUcRNgq3hvrI0D4QUvt7UKJmAQ50wvdCI8WeDKH5SigSuO5V/EtBo4/MKyckUnAmgVJWZGIJgj6X4Xm4U71/4ZxmzIiGRVlZyUrIuUxikj2Tla27D0Px3E49t6bzGTv8baSVRlFWSEi1LcU0fr5/QPP57me933d9/26rs+prhpt+zzQH7LVjkhOhoOWs8Mag1norITbWx/WfuB/F/PIMzMbQmKayCe5kuD3Qj5ONiYT8ShzrHQ/RkBnkTsb/jwDZs9GPmO2TYBVkmgxjbQMZEj+vZTabwB4X94LK79UCJsWMmQPXiSDf0PYylvHTNQZ76uMOc6nk7WHSXNn8uCPw1D1qlYSaDisp3dzZaAoeX9v+jgEE66VxQHvsmBKVa3y3+MECEsx4P4hlY6YsdijtfsDkND7prqrrBjSflhEKF5LgfysXw2Ga6noA/OMT/9qH8yImCetFBSCanMX05XiJOg04SYya0pBpFPFEV32COJ2uVx5JY/5hM+ZX/JYX26JRjwtK8lIw1FQ4j8YgPnIyiF2yjJweKPE/izneL6YAMWqZRIKolKNvdbfB7RmNCPFmcWQfdc189xuEoz9ObNNdTcRMb1Y88lVQqBAc5ZWUrAQLnh9TsXfTISzIWz3KHkTkJnObfYg0QEwrXQUvm35GBJEP7bPTqeAuNvX5dcWcajFY8zKpK4Pvvz31P7P0xIw/TYkWsucDC5qjNg7pjGoykHltM0VBNknBHMM/haClwFd6vNj/WZFf1B0liKg7XfjPbQ8A0DE8RfHElkBXZsnNCqlU6FEQ4xtXCoMxSHu4ZjiPjhdasprblgGFfjnjzUtkmHbzW5cpzoU0QS7y0hxIBA+3O1Q5S8GhpH/dmSiEoGTeSzLqSoETdcIyvEyDQDfp9mRTu0quLOz0VOJP+ZHB+oUrX1rtGyoS6mU3AdZlRrjKWWP4Zo97tfF9GRQt8owcCa1RM/fesjF0SFguf5zkPawGOYi43jelSTC8I/3scoplkivNvvXn4g+UGrt+Oo5hEXETn9TZmkJkFwVsJXIqILKLjWNVaci+KA12UEADDJsdbd1+hgF/649LOdVuI2efaBkH9XoBd10lSEpF3/UzCVgghvCw0hB5Evzolso8kJo8kx4H1BNWRZOZmNRsX18XBkdAbZfdJWt8Dsg2o2JR+JJCIQq7Z1uX8SgB8lG1KLrUTBEH02vo2WPyP+W+Uor94Jjv4Gg401/xDpvWwUIDz+j1l47RdihrSPGLoqwPqBnGB+rkcMiYwHeBmEmAgx4JGCOqwaqps8sPhOPgKAeKfYvNRSFit6ef7IZBUnYfF3ubG9U86X0wPR6LyhJ7URllvuhAoNq3ubj+Z9qv09fXfVCf+asLVBIH+hgGScVd8LRTWJtXMpZAuB1/DMniIPQ1do3YE5AYNpkeSL0ZChqnbhVXr0VBTVJv2RraAOP+2iJm7NoL3CGhSamSvqh8yfvtDd346Hdgk50/nIAij5IdXX064N+yerre2Lh6FDG7JCBiwA/6+erlAvDkdVPjx5JDAKVvKqc4lfByHhK/9TZ4/n3FHGaSr/DkLZog6rLmV64sreyHHDVFwW9u890ugkPded82R2twpBmnC9XsEcfdE+6Jg/LhaG2DUzFOTEC0CtxJ/YY49FUO1r28EGQYqFBQccZhFbUghvov0SBv/LVqPGYSGR3ksde4bAHJm/mU1YibzR8IarmZx0exOITKkme45BOTHtez6M+SAglwZQmYJDglGnXtCwB9AiNpMakBPQpjpZ22wVBlbQjaeR+AApMwVp+/RoFQqHYJQxrNAr6Kpzus9YDAn+6LT4PeyFOuibjw2o8qLFZHLeuKGRmyJddZtUHirOSjcl6IejRxyePXtwlAPGiT+eaeDyiydbdHTM79q9fqbxs6X4oCOvO+PN7FJi8GbQ/zRaHZqKdLgg39wBR7drXV5MeqH/uBg1NIR7M/S6Km7DGoucFrG9ojfrgysi1/7x+BiCrfkOWRVsCMNKZVyXfSkJYrou0IhoIKBZSJtVKvRG5TGv3aaJoUKa95Xi5NBF9PtfM+wHfA8+DFmnuqrmhDfuLreK5eIi0EGvTo0lEpILLu05afXCRaEVfusUPvcjd0E70JUB8hcY/E89k9LKJpzRVAYHz7783L9Z7oqpUFXp/imgYFlv9ONWXhPicnw1a2vXARqxmtJr2IyTBZ41OZ+BhfcCFcuFiEuqdXziTKt8HzRTlqY1yXmj+WuzeWhoBxuN2zBXFU5EbS3MlgwCCXZs61dAOV5TQhQ2Qp4+GCwG3yKUdUpBcCk0c+aUeoDPkL5r+bovI3l3dU4/Fg5Nr+krX02T0DM3dNrvSB2eaNj5RsLkgwgmmW6o9BBDRsf3ZcDIdmT9R6rjCgEDawdXQrsIW8Z8tSWXmiYa6IqwJj2Aa+sGh6bT9sRsaXM8fUd5/gJL6t1+nxeDh5FHm3v//96InFZcS5jmen7n37Pw9O8TK2e2+M3s83zKfw/NXOnoCK9acxAjOXvjLc3vYAnHSri5RiEYDz+2DhmCqdPTlNy3/elc3hJxQch8M1ENFqHBpMAoPGjMM2zSX0xClF+OcBk0f/Bq3HPlkoIeYPk68Gic/5htqi+I16UxEQqQS5dDXC0IduCxFutvo3f6p3BvK0fD895jjplAGymfVs/ni2A0ef0yaG7nPo7svtg+1sXggzjycc5dORyfrzrle/oGgWt5JzYqgCPMProfHyseAyiBvP1diFiJnYpGgCe+FQgaGZrFaDYhMzq7WfRgNnv2liNMpExWOrsd6n+uGC/WVPOwuerAVl2LXE42Hm47rD8vMMlBKrZJIwjoCS7WAT/bG90H+2vfxXOsYkLrSgZu5lI1+Dx1d5TLqheK5vyGUuubAQmzuE+MbDSV3/ztU+ZyJPBQ3tu6udwHv4pHIIp8l3DnDWpl7fH8Xvp+aZ95kIB7Zr8FRQwjGzwlUSp52AwEnQXKzkhgIMJm5g3uSjVajWd7sU/QCV3qgFY7RFSq29e0Us6JhdVPJVdE0C91oHCSQYrsAw7GUIUTqAjktL3XUEvBAJYnzMRLMRO5MGMNbx/1F2/Hy1ZOf/GEq23te/0sM3DTJ6fiikYNsdvejdVp7wK/iamHPOT/gmrbcFxuOBm9j5aT91SxUP2Ajr8DVBTn+79jb1H3gjX5utmgBHlSZeu8YZGWiaNl+tqDj/DBhfDjJRY+B0eS4hXT2WFCh1iNfdshBWq2TU4DtAYWwp3G3vIPhonH3F/rVaKiK1zzP/ykL2QbQX9tb6wR9x6k44rEAkPtIoN16jIelZ6ojk+mZyCyoLNLfAcEdtSvM/t04INn05Nt0iYUGvJKB9WE2Oona63q5e2DzivG/w1QsULZpxa0zEIDcriXnll0W4qA6x7Hv1Qk6ixx7c85hMKM59hea8QC/+PyjiDPRCz7r22SKCDruvy7T7IgBs2GiF3QjsXB4fd4Oc8w3P7IMZI2HukE1oDl8sicK/hYSohLUCPDbd2jh11Emoreba2Sk7IQnFhKO9QM4iFBs0HAZx0OW3ZOt2fAM1BIpyqzDj0CEXWp02iYByml1tdf/xMJVq3T2FuZsJGm+e/ZPVDdMGPlUF6zEALX+WlmcIwEauEqLr1pnoq9i7J3y/R1wgeuN6vUHUWAulNJCPoeHxZMC4csb6aj+RJXjj4Ne6Oa6TF2wmQwfFQYJaqZxYE38ej/LNhMhRTSN4+6GAfELkfKPE+E+zbQZQykBss6ciF5oSkflv/3/+6fZAS5nbvYkPI+FARvi3fJdPHBqNXnfkU1Di7W5GPqCXlA4PIdrYU6H3u7wsL/HfCvhWeDHPJyODF/K2cx1d0HFr/sEBr0UsKOmn16bJ8D03CELG0sa0nHD/IlebAeLodpHM0mJ0Pmx630mcRTQ2o0x3M1PQXc9C6i+2R3rO+Xl9/G9DFBmrCTT/hQHz9/iyHDOaaiHFCdriukCAtXXEorlVGgkI26pOyRACMs1FevuFPTszRkNoqx2KPr68ovJaBLwLkwX3joRBRRRja5t2smohrleP+pcL8D3KkerX9kg6nMHYVTiISjT99U7gWRERtM5GC7QBXVpH86G3s2A73H7VOGiMTAq3YrLKE9E/MquZ9qvtYNq1bxNS14KjMZciGk7GwXDzBiF9Ml4pIZ3PKM2eqy/yxcXGPPy4Koi/wma+Hi4VrN9avd9HIpeyUSvX3aC+JFbDKNeFpzGCG7VasXArac4c26pGIQPcdfIe90GBrKY2cvUacBaWk6CZ4yChnMNASqno5H5gMMgvqAHGm8NtsG/fKD2ZeqvaYgHp/CE2DH2aKTnO9VcUNQJf35L8h7qZEOl0EZm/YMYuNLizt3WEonUPkuz4ovagHEK79JWlgbvzgcKDFJFgdNSZQL5QQQis/jQaR3aA5foDW3FnAtheUe+N/0gHgotOO/M6QajMiynaE1wJ3BHJcy7uuXA1095OIrAGChjfkwGMgFowsGUadC/DXZpdIexlOlAxYPII37jwaztjaPDIz804fml76lRD3y18vIpWS2ESfbPosRUCfCX8Xwp0aAF2qUgbufX7YTVedn8iqIcaH34dmPe6vg+smqP3m2borz7pzjd1duAhsFVmCE4Dc59jDIY7MSDJAXdjQ6CKWJkPYnNv94D9uNJraHB3qjU6t1UPhseYgOm+WJ/KiPCjZmz3926YO/Jz3t2ca5INWVtfXofByuuVu/ZtZWQE2X08M/2Dpjxi3GaemuN2Ay6BaJWI+Cwu770x2sF9MHhm5y/aA/4Jl+MdFf3Rv/4aD9JMuPhMzIK+T5ii5RfNdi2WXXBKOMB6dJdVxRR4/2TdhcH4S7fGW5Q2CDaebPyxxUd4NPufG2hyxpJDNZK276OAG4J4M/QsEZpMj7PZ3l7oCpO6tGNl15I5N35+C3G43woEDKTBS80814YR6TfBdwfKD9R+bmgxKa1DNuPOKh1SWt3q/dAOOEXRnMZHZD20EIqm/p4f86gKavxCIi/Yzh7hd8dhdb1S7Cc7YGZ9+Xj1fZeKME0ZegN3XG+XX1L9M3SH2n+zs45fasLXIL+ehbOPEKfZa4w9izhgNSNVlDW0Rc1b3zffojtgCPj93eb0q3QtubNom89EeDbx5oXFuGNgvKVmw1+dkNVQnwdX4gnsh+8QmVGhIfzLCau/LMYNOwxJqhzvgtkyeNWkl2d0bqLuI/yMxykFV1IcToVihrXp6NKtTrgNK2oRUmRJTqhXcHjnxsBBCGLJFx4ECq4G6MsMNcN8rwjr7fAAxWJfGsL3I8EtjnUasiGQ48q0TDPt06IMx2YZLJxRAplpirWDThwuJxkeM8fiyZLfSV8L3Qc97FL+1yUFgire405MyQCxug0cpWXw9BsiuzQp55uYMkoZtm3ckfaURItVruR8K475EkkBo/EVBpkJ6Y6oUkz+ewwiQNKTIwgFi7GgbJ+zW2vKhy6bdZBbbnfDjn31S7VnHqAfAU+qG4+jIB3e0erJetYFGanfXAxuhtaQ0XwbRKu6GV/zQ/Jt5FQK70XJSAegwpbovGb8Z1g89/sHLucLaofsn9SEIyDZh1qIRO6435ur+NpVdoOqTLxXi5nTZCysYTlnysRUO+l/Gr8VySiYiqoJ9PrBr1RqyLqBUc0NLbggx2NhHMo+ynZmQQ09y/jfqN6J5hG2Zv8emqFVEZIcxIe4ODBgzwTv+JYFKbBac2o2w7Pqexv38zUQ6GGMp3xRBFAStZHJaJIQJutJqYjIt2Q8xR3T+SbHcJfx+2a90ZCtSTJSkpKInq7Ilh2xN4JK4z6/t9NLNCV1I2JTVUcjJHminPg4tFoD3aL+mw7cJ+hriCV0EZWFZqr/xaw4L1q29L8LwZ1dHtb7n7oglM1Xxv1BaxQwJ7y/r3KSCBQfLsWQ5+Mmu5r6ukc55/jJcovvgWG6JbEwn4lGw7yl+4qiuUlosHaeoWM6jYoFXlXXXblFmoVCRRKycZCb114lbpbPCLM/yVdz+mC5jTy6+8+GKBER+/Vd1mRkGq/8CyhOgUFf1kpCLbrgK6J+x8njO+gsCRFUqqD4/dTu120zJSMClo0pPZvtsHQ8KgFPRknEvViMRp4gAWGl3fIQ+ITEVuogZ+D03F+mBHoFHnvovP6qfvqCZHANEpU+9s7FTWfybH7KtwBeUPZj3LuS6E4Sx63xaUIYFQMFj47mozeXnjg9+RHK7C6FjA4dPED7bdt7jeSWHDkp6v+KpGEmD8Gn/pD1wXVl6s1JTj4ocdaG38yKBKKCD9f3nBJQ103b/WTd7fDK/6WTS0kD1izHu/8ugh4CDQO9o9TED11TLqiRytUFyi1tV5QA895q/ys7XDgfChJovk9Cb381LQY3tgJO7z3eiqvG0CkZswrE7dIsCbhouqJTEchZP90ae61H+fCsrh6piEkSL2W+BodAWU/xjv3i1PRcvLw9siXFuh6fdmfj98YhooMJj9XhoOCYazr9kwysqePLhzz64RPZl8XxTQtYZXpiJfMIRJaLXdHE/fT0dHvRqNhqmP9kfLyWoxawHstlsBAjwi4lGmg+e5fKkoNl3/FnNMCDN7kJTMaFpDes2xGFhIOX/KpC3GXUhBX6L1/ajSd8JCRvu3vP2cY+0c9SGUWCcT2atFfZDPQ9DtCa2B0G0zrmyhcZ3MEe56ld2qqEcBA8nbzvFgaSnx56QrRiRYofahN3AN20B9oGpp/NRxeOjeeqbqVgjTEav62F3bADc3uC6LLXkBM/t6WYBQJCaNfDwzyMtC534ctF6nbIBU9inh9wwM0GO3kM3gj4O9wmbgtJg2RWFSIvPVthueCWyflFFzhll5WWfP3MPBLL5OZDUtByyZUCwZmHSCfufxUc8UPsErXlr/oR4K68CncxdRjPqg8dWG7uxV+63QgQpA3LLo/LbrPEAGVxpd/1jqkIYoWtpZ5tmYo4JvrnT/jAZcuq5rqjYWBrVpoUqVNCoqucSkKWG+HS0mKpeYsGIjLHFLG6UbC3bU7riHf09GHJM1rQlKtICPbZ33dKBAeRcjx9n7Bwsh7p7WegVREIyXFew3XBGLO8GgixAfc/8z8xhLCoLOoL9ixPRm1J7w/EHNpB2aZN9czP2Khzu+peOvx/kOm2gezzulIkCZn7W9tCxx+K33hM4ABSi4+sZ4pLJAL+DqPXE1FgSqmvPyfG+Gmj2A9uh4IDUY9fFr3wqCv/RUlH28yKtQ1ivjD0w5PqutffZCKhJpHRqyqBpHw5twsJf5FGlKlHvy0bdYC777V/TlTEg5anM9d5vqwEEfTWo1PSUGiDyjnPVIaIceewBDMGgJpr+5yWwmGgfaZg1902CQ0rbwQ23jsH9Hu++1dQgRwUHy6FWUSCRzSTR5PuVPRkqjB3ZC5ZhDu9tTjfIWDXF12c/sKLMBo6bW1gyT0orU8bYX4eH8yCo1Q9zBQtigUV9jDgOjGJ/3ruwnIJzZIelasDZRjJK47HsTB2bHNManj+URYyb2G6GRUXEOmFaLTDOrzIkqkM1FQKqNvYUPAQmjL1fmzjxIRk/3Db92uDUB/Sb4y7QkWDkve6MS1YuA9kcgy3X4sEssR5XbfagUDs8OdRzSJMBPPu/7m+D6GAU3CAbeSUOu1SMoksmZY5xe+FIYjwEJGl4GdLxY+Mg9hDB/Fo72ZSOEBtgaQC5Qijf0SAUFYHkOzNAxwmuD/SBQS0IpAwfkP2FbYIrpWNJ+bBB/0DKWeHr+v7U3BkxafYxHrj4C9N2lNcPFw7Jn5diyMCSxGX72PBalU90kZ5Wi03UNMs1BaD/1TP98+yo4EkhUJZ04LDAjSXPwc+wmHphQln9CdbwVFhtWlc63JwObcraUsGwlIanQxwAGPnK+n+81wN0F8gaL/ysN4UKcRj0R8WNjr/a08Jh6B1sRLImoE6gFPlDzwzQgPggm+asXHHPrBKY047W4YulYmbF6+1gL/PebMMBBMgYG5xLw/PJHwPCL5yWs8FmX0l9yf/NgIp28+z6CfjQcVKhY+ARIsiI+t6XlVY1BU7Jm7TFt1IPYh1/a9AR7uzL+9FN4eCrI+8xHCRkFoxEmALq29BX6TKVxOk00BOUPLM2kUkRCxn9QyWOuDdP06+5TaG0HQs5vkPU88iOicsj87Fg7qEc+0cFyeyEdMxY6mpQ4Mk1TpSaZw8IL8nOKZc6FAZ+Pse1fLDRXvaXBz41vga/IBhxV7Mtx979p1pQwHh4ty9coPjdHlL0exBuHH+iNd4R9niYHTj2/N02iHA9AYquqt66KSjKLNkoA6KM/i8oZvYRCn/Kan5nswiKdLMYTc00b9uUJU5gPt0FDbhuVfMUWFlsEXmJQi4OAImU2UAjJa58WfkmyDsPoHbZidu2hoJ5EsWQQLskUXpdKp5FBzqDCF20gLCFTTGGROtfd24n3uV8uGQ386obvsmxS6bKl6RFt3zE/xJzBGVabogdW0v5ZkBLRZPyxS+m2JAm4c0g6ztUGZR0nmpY93EUOyjPjReSz85/kktlHiAUp3auEUPfaP0sUmsqEf270xk+73gSccfngPvS31N0Imj3v/Y89rh8r6trqbWSZI0eHPQQp/BOyrqXElk7ohS+ZLWcvkbaA5Uroie1kdedxoCXekwQJfHO9F90+OSGouW0E7pQWsG886zMr8lvfmVAhdpA8HcVGtQI5pG5QQTzfsH9kOt9haze+9NUaYeJqbi6wR4Kem16/M5IWe+XDLt2+3wvOUZx7S7GqoES8G4ofhMNkjH3Jp9f/fxwsTPFtgnS+QiPYGBZBtt7kr/AyDuUmm8sduTmjB2a1qUKMd/H3wbd/BCDl4UN/O/g8LR3z42B8JASifxPLa/fJWOBi+nGomrYpm21JGCUPh8LX+xf1SDR/Urll4HcfdArj4gl3G3VNg4BAScrU9DK5+876de8YDRcWlsngzHfuziyIb76A+8nBgy8WOYcHq28U0qMWg8VcWnQ+tW2HiuuNYRpQyov9DWXIqLRxScWt0v08GIY+xwJn16WYQo7tvvk/ghOEj/bf6wWGQsbBBg/p9UL5IL4fEVhsAe65IA4ce0h0jfW987FOiNYtaS0nhqGV0b9RRtBU2Mr/rzF5VRPkfZ+/8cw2HM0s/Vw6kQ1Gd72T7RFozfBd8QXKRmg+m1BVnvDXC4OPjbuESc3/UWhJ4ayiuDZw6yj9gJ7VQ2SsOoXEXLOjO5VTt2uMQhrMi/VF/C8Tc+DBH9O06yh0tUx65EA4fC2tsTh+FIbG6YGEFpmZY67750drvMnjR9IVkbGFAhpnk7pJAMMru1aAdEm+Dq+sHuhosd1AZzXZ8tQQWqHd0YAMThXgvepAv6bUAfw1pssj1Kwg+cBgRTYZBeYc+8+msCFSYIK/Idex/GazN/IkaUjBEuqvAF42BIsHcrz86MCj8fe00xV4rdDjavbkcroS+vZNMyTmBBc6/XwksHAQ06kXb9Iq6Ba6rlRQbDF1AB67s6+u5YUB3c/5V2nccWuPKS317vQkqKDDKW1Ky8Pn8vb9vlTEgJPDOquZdGHqbxZQf7t8KZIHg0fhCFK0/CY8S6AgHn+Tx7w6GsajCgcFcO+C4f/zDyJEtnAc9F8yGjGQYvO4uH7EZxSMt3Zsc5smNoPOlT+6gAiA0JpZlExcK/SmZnw7vYdFndF7Jm6gVBD/oPlMV4IazX8Z0XFzCgeil3Cr1ajzSGm/6oLrVBIkuQ5aUEzLw+91Sl/JLDGx9OHEbtxeN0r6GRJpuNYDqUn2ptsZtaOv0XIiODgGSxzs/0plx6NpW7J/suhYYUMMz3kGy8JJPg/yOXDiE6z1zizqZiGxC6oRC45sgdMQhwIhICUTm2dVsEzFw8cqB2sOvBETfuhdPE9AAU9MnA99Y3YGegAVzrZVg8LNjd0s4zpfH98vERi62QC5LbY2g9D3wvyxeYL4WBktxlgFMjcf8EPPw1pPVRiD4G9vP6d+DlEzBn4xnMSDPfabQlSQWxT5QipdtrAevnn8Sr6Q0QcH61oe3zUFwapGDMrYzEnE8jlfxTGiGYeXa4Jk8Ixhcz1PRjw+DMszLYCpCEtJx3QJD6UZwSaBQsN/RB7VTQQ4K6qFgRnizedstDsGCteuHnTqgV79Pw5mrC6xPO3GcyYHgMjSSpLeFR2/q8fduSDaDr2yu9J+eB2DbrJ17ZBQGfM/a6n7NJKGA8APa168agL35cy6Fmgk8/cVQLjIQAvf5pQ4j1uOQ3oREopTrcb58yhIfXtEHsc70lbTZAHhKTrT2Sz0KTcb+Ilw41m/6b8B0KNqA+eIoq9k/DDQlhSw7riYhU5VsOUmWBuCO/68lQdgSVP3ZBPsmgkGWc+LX9HYc2j44aXVJ6iksH2VSh8mYgJRt++cfBf5wxaKY0HkjCnVV4mzc9xuBQ7DnxvMyJyhj2sfdrcSASKLAfAZbMjp3T/cE+YN6WD/t9XO30QbCWWLiHy0HwVGwSGa+ejwyeftueTD+CchU16QvJZqDoDgsurr6AeHCqfH9qCiktOeydJjWCLURlk0Lta6wa0P3as8bA5r9Cq0n/iYhmySpEOW9Ovh+4az/Yro9iAqKKyUbB0H4suFSFVU82pGQZIyNqYFEsX4GnJEl5N0CLfomX4hYXLPd1YhCC766zul7DRCT/kuUPs3zmEPZjHe4MXDdUrCPVP34PsyuEabX6+Di1qfutYlHQHFnlJTBJxBCbnxwkOqLRaM3Neif/lcF7ByvdjXUH0IJkX4vW5IPhJsKOdLz4lFhxjtKd+0GWKm70Zjl7QsqEcH5VeWhUJEsm3iuMxERPUoVtaR8CsoFr2vul7mDwbnYfLf0ABhCvaG/emPQz9Bq/nsGlYDNHufYwNrBOZcUqpMe3nDjX9+Bs2IkesoUb1n3rR6qTmVjcl/6QwWh11vpbihwRup777ElopLkOSFKmVqY0L95VsvQE1jrbb8htgD4+bfRTCSPgA6yvq4Z2FRAbcn8fyx+DsBPn9V8e9QLdilVO/hv4tCzrZ9PmEzqIYIKw3jjXTCoLX4US+gNAeoyqexAsTgkbOb3QfZLDTw/8TtvUcYHtFlTbg898Ie/eCd90U08WsObdu2RlMPjaIolml1nkIgbKSKd9wSxMKGjjIVwpFLVTn2qrw4oCs0aGWcwAH9cSNmEQyD/j4jojgYBxRMP9qaXVsPzP3RrTct+MKNxoe5kth+8fpkgQWeEQwOa7q1tBWWguz2vnrbpCpZzRiXE6x7g2BHIsVaAQYeGrXovHevg6FVPku7bMIhtCXG//yYY5Af86frpoxCjafPFrJ0q+Iy3kGayDIBT/2mQW1/2A5nB9glZYywK+G0xr7lYCl+L2o9Cd91AxCRF1dbKA6rvTmUpxAYjOhVRm/rFp4AzHeZZ4sACj/p5Xrx2MPhLKPbczsMieyff+lO7lbA88v18mEoQbEkJ+WYl+cL2zdyZhqMQJBrJrST4pgQo6SbzFIU8gF+33q/iqTsMzSfXNJD6ondGUjuE97UAN9w1zGqw0Nk+L75ZHASLHRLWcbYh6Pd+MJ3GZgXwtYwJvTn2rQlDYSWKcR/YsltL3dD3RbgYQZ+xkWIo5hFy/vyfOwTw7ZFwTrvB6oL77XPxbqiDJfW5nGEtaPGf6RXJx8Lcx/eHMuJBwMD1K2Ov0A9hXn/cFTCpgObdicOyoCBIUgwjZOr5wJLtLlmlqQda9rbbz9UqBsVKS/nZeneg6Dq1vuzkBrQ/tbHrG3bo2+x6vNzOE6iVCPS4uRAGLK2kBiXhgWDlpqJaROKM6KxPbfBuloOiQsgZbvAH8y+sslGPveHXSqPlHexDJD35kCNttgjKXDfPP/R/BOfirr2qDnEF3QObq5JBxois6ddtD5cngI/aUXu+HQB+jirQJRcACdJBaUTf1dEGza+XhtblwJdiIDLe4QYuoZO+l6y8oCJH4zCNWxHdvMMnN6BeBPLUnS5rR8bw3T7l2/5PZ7BSLn8k/UUYMdXgxyMpWiBlj8d054ckFNFqHqU/DQPuEN6MMREJhOTZ+biXmiD3S/S45AlRMC3SW43uwcBkO2PyhA0fWo+8vzp8zL/E5hssfR5iQPJVYEuECAN5TxubKAeo0KsMqrWuzWa449a1ECgiCeL02g1cGcf944JwkqKZHjIkPuXh19kElVyOspf2L8OFoWiy/SIM/Ov1UR7zU0HaF3qt5YYboVKqTPoLuyjQOfNs7/eEQnlSWRJpAT9a+eGYdXOsGVSWjdSrTkmBbdkDB+qwMFDQLcyRumGFlK6ump3NagJh6XWTpDRRSA0c5e3FYyDk9EZsjbQ+OsNPivtd0Ah01A7KXe5iYH+ehkQtPBSeK7/B0TVLoyVmp4UHFc1wicxPv+iJFLDJT2SU2IRBUmdwbdEXW7REK+X33q0JPll9eCW6LgrZ8eR6k3YYUFLlyqdpMkFBUmQCw66NQCOagPt1SQyeFJ+aqZcMBT5zkYTFlzeQ9dmQwH6tZsgUq5DyE5QGReKD/v8uhkHv8kOtflYXxDZrL9t+sgnG6X5WrgSLAjfNqbohJgyYL51sIDG2RG7PDOiYfh37eyLNE5r2K2ByZnV30zcEnrg9N9S8roh0215fcj1sgqO7RmHPrsnCxuNbRpELGDDBUyZ9ofJEQ3LvT8yXNsLnlJidExXiIPguYIcsNhSGi4eVf12yRePfdolqIhvATuZPYhSXGLy++3e+rjcYlt6Rlxe+UEW/Orbxes1NcMEvvfNn+nVILNeZ4CrHwM8Ihk1vGW+0RUbZZmTQCFeb6BbKTCVgBJf/O/JUKEwJu9pcabVHzdIV/f8uNYDjQmEWwosCzsThmvylYNDd0mPPaFFHIw1eIgH8TbB98bFeW98N4FKZ2b5yDQNizXunHe74Idrno/Rl9Q2Qa73/n/VrCWgRPdwdoAqBEx37rh3Ezkjy2eMJD6d6uH61T++oUATU3c8v5R8EwrXp0HMGMRpI4+QB+1pOI4gvnjAm41WAxyMKpbXpoXAehCjaSIPQ4Sd8gyRtA/hQyY021EgB8dyWy1WKYLALScWFHPMttimfU+BpHbwUDQkd9REF7QhrRonxAJgbEXzib6yDOp5jhc7JNsKZqnG/GH1FaHLQd6T6GwKoyqXW/GMwYtf8p1eQWw+bBhx8VDvS8Fm9WOS0XhBEJPdt2Di5ozYjCe7fvHXATX0UVfZLBMSiY6MFvvjD6J36zMTHuuhjzg+uu5gGoE2xMnmRogws9os2O/PBEJyIJ7ixYFBKwqBFTH8d2G3y2LMXyoAIXkV0+TAAZOprihwTPdA+TWak8rE/8o41nfwyJQy2xJpJy/f9INE26nVdnS4ac6mRaH1WD34nfL+RTKuApWXzD8vuIBCyZRBRqg1DUQV51JaTT+FxBh8Ls8ENeNAt9+xGybHPkVHfSMnxQvN2uock1jVQiRxs/z0RgWAvy8uXXvhAmpZwqoWuIcqRTJgV1agHXf14Bu/GOyDXjH35jSgIOC0+UXJahiOBoolD3Y5a4P6P9fFzI3mQOxVYLD3sB1rF8z5Zzt4oXEWya+NENeDMz6lRvBeCzY9iV6davUHhZmq8m7ERina5qa3oWQdX7CD6H0YDkPo9jUd1AcBOa/ue+0c4Mpq+5DvZVgNXd6qJ2O4rwLR9lM4LMV8Y8b/owrrijT5LEwZ6OipAv1xjLuuSIASQhbPgFj0Bl/w6QtvMELH8qWM8FH8KTuTzid9ItEFS+Vm7p5U//N4NqL/GGIEq6w09ClurYHSH7qXIgBKo8ih9/S/fG4za0ww6HXzRm5lm1U2nx+DEmrCVdVcIeLGhmwPkHjBHeC/fX2+CLtPdsjPmqgXPYeKY4oc6oFcX/Fss6bgfuJ6I67SNQM5Xfgq5YyqhZOmblsytW8Bxxbp8ssoLKlcVTgyM+KLQqZIym7VSKM1sFCFNuARLZIodA8/d4LTYnP7fm6bI+ncWj6VODbiFq369o6QPyRJaA1aivvBMYKOcVzoCMb//KvblfjlkswleuEamCpSy+hVZfzxgIuOe783j/J28pfjd2LkYgkakbXuS+MDiSvmnW/mPAEtl9CWKxRjV8F42jQ6vgr3ypG7/20bAnXBGL+OVN5ApEBNF50Sg9TGB+jiZMrBQtG1VoVGHWHYZTxttd6CimDOvofJD+Zs3/BY/FcA+9uVEVxsfcFDUfqd+4gAzz0c9FhNMUY3JTL7Co0rgWv3o4itsAtYrxbWf/nrBzsoMgds+Ap18Pf5gl6gUKoS6fAm8GiCS3zVN8sAN5kkGGkue+aKyeaOgP/25QHuXReffOS4QpXpodf+iHewPW/dRmpoi2ZYTvdin5ZAlEnpCh+UBxMYq09g0ekK9b1QHlwIW5YQEBpftF8HWRUUtQpQWJDaknfVJegSJxRfSf4n7INqxihZjpkz4ryNvIJCDC17kG8eoWlqDLkupwcQPQ9Tx83xN4dcyaFbRiBfYsYADt4lXzbYeMJrK83CoMBwRX6SbcpsrAN8bgoveejqwkoMxTnnoCEHa6s7ZNd5IP7qB4GSXAoVjyodCsxzgr32dbEDBHEyL+Ttrh4xQ1ljarOdBKfyQ8/dcZLICfOhsjNcTd5D5+m9tqzsMlYUz6E415MGE+fC4fbEuaF1W30jptoeIuvDtZ2leyFzvrcf55ETIwohncguyQmZp839UVSZQMbJB3vfQEAmMXdMLDC2BzoyttxUGDwGrVdMUkecGLeP0a/u0oagSp6LuaZUN+4mde2RUBmBh87I24aotBC6sasW+cEfMrX+nc/ujQYi3tuL6IBs0K3q6to7owT1s6aD5qg56xapjRUxZDB+ZNk4/vmcLGwJ2U6cZXeGT3s/FnduB6Duvoy0DQwbE0j7vJVswBDdcW7xXmTV8viMhfOe+K9oh4qH68yAcFteenIxXZoULlj9k3Bo0ILO+i0TtlxaiZqgcjFcpAkGRytu3HeyAZRpHR/7nEeg2DChPHfqiE+cNxJ3xaRD7IO+m5jljiIvLuuAVYAUz7POSavJOiEhIVvEbfTBIE1M8ZWZkBCeSobqxYBUw4Brb7StUR6yDZDK+UAiFpXT1A+QOMLmmr6sT5gxoimRGmtYDnR6PbeOLTQGNOLZtrzcmoFM1Rj53ZAGLO3fPn+N9iO6cPT0Z7uoNUaxy3y5QsYB+EdNss6sCUFZZlJ+RVETnp17JvXbNh2Kbnaf2rxygjLWs4t5nR6DsaC0q2LNDg5bTHAdxSRBxOxZtfTaB2jeHR6+HH0Ae73p7XoAxeiWj++p1hBM8DHdLuKb0XJ6veiikjUoKpHWZpbeVRJBXdtg+vV8euFz+/lmPzAHYMBuVTxkdIUe7JeD9b3PUnRR5IFqTCBV0v64GlZgA7eSbA1pDM0gWfyPQ80ETvSN+khAa4Qi/YwZPf//BCSqvn0ADmxQ064xcbRjiAdPyOMW83FyQ5GRiHQm0Bhs50PZ7Yw+18vqms8uaSGFAtuCjZCLw284V/5zWB4pKT29q9vtQeGH0qLJIHmFbE6rw2w4wu0a45xd5GcZbn30zkpICs9bvovp/eMCj3T+euT4H2AZc3UbndWBHMPuggtUOtuWcBa585YHB/bw4ZtMEIJr6sM/4UR6UP9B/nVsxBgPm1E9STLzQUOgxeDBpD3ciU8gjbl5BchwrufLq4kD2XuHyl3xJ+B+YDu3JAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAARAEAAAAAAAA=eF7tk7FKA0EQhjdgYRWutEwRMMUJR5AQzGHOqBAhGxJC0lgIeQUfwK1sLGzEwtIuEXwCIY2lWPgQIgiikCKQJuTm/wM7jyB7zcc/M/fPzO7d1+Tvw46z5jxnr7k1Ff5CF6G3wSXiP+DnxM8XpuJn8qf2IjwB22CUChPofWgjdOfQIzBGXd2vMwlYAtvMo/449cl5MIfrQ2cgfTOfbqj2KCNvuQ/YQpxzVsGK2vMs9TX7lVDXgS6rvgeqH+uPUN8FI/U+dV/1sWoOnmPMuVCHPdyA/ojvgImK04/nxDzvxaj8odpn46v2rvrzbDR9WtA19gN573WQ+7Efz0d/l5yX/tyPjNV7nNs45JVPlBbfuuv/Y3b5umZv1nkWXt8IGxfChz3h3dLmfHwXfj8Jd++Fp7c29xP/xVVgYGBgYOB/4gqA5dy0AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAdgcAAAAAAAA=eF5dWH1MFFcQ37RNRU3V1poikvZM1WBjyYHYgGV1RUQQkPNA4OTDFZAv5UMUBAV9CgX8PkUQG6JHNUiiNtVYtalbV00TY9tUmjRRk8ZrmgaNaWKTxkaT2p6+32/TXf5g8nvzZt7MvHkzs5cbEZiVEfBpCcs+uh4z2KQpL/+8akTLyrBLfZ0Si3rjWFPtuq8agZVi4/Ls6TNrE4i9xpnjJf25dz/B/nY1sXvwYXQqsOJRI+vHxI5u6ABONX52LXr0YF478G7j/sGImDZ9B+R3GTWJD6dMHW0Fv0G9enDPuA8e6drZxubmPqWEeg1J14C6VUm3GjZ+yH6Jy0BLuR/8ZuBUyOcA50ts9pAvqXYMeCNoAHQD5LuA41X3+DcvCk+eJjHss+xRhPy/ARjnWhj2KbUO+wWoBlqp2rA4gHX45R4C3iRpYNCuR+y09N9OCZt8aiRNk5jxzHWcl2yPh5IBuh60DrSEFHoQT60D2APcaddrDgBXSH494wt5K75V6uP+9hPn2mI0ib1YL8W+VaDrQWkP41sI6rHvCxwGXgOaAZoD2go53mc/8CaJzU+BkU9iB3Cd6u7t/KF11yxTYi/1W/5ISnuqqReU8d9Mu0FpD/Ja7Aatd+xfi3XeN/OVeVwOfgdwmXrhdGlDxM4kU2LeO/OB9sWD8t1Ugq4CZb4yfx35o22GHcy3GlDEW99l32/2AjPPGJ96w/3gw/dGorPMl1CU2OUE39FK6Ge+Ml/iaQfWkyQW3Bdl90PUSr7ZCop4mnh3An7ofmDUJQ33E9pXdfG7im37ck2pl/dJO2g/86QYepqB86BvO3Ai9iNfBetcvmGTD7QAx2FfmcNvxFujfBtosuEvO986/KTYlHgx7EH9FQXYlwZ5riMvtArwl+K81cB8p3Owv5jnyXW9ERhxcW0HzoX9yG8T92siL80y49b0tDU3HuaYcv9SyCVJ6kK+Kymg9LcI9hbbsWA+8H2GYd0ncRBx1FdAboXEzfQ7U9LweZIG1hq691nl8Dm8BxGKW9S1G4Onc42FV8uVOwN92oO6xLK93zRqUj5KVVyTAlsTigz3+yMZyV19WEcfURaoijuzsjOhVg078or+Vz75qGuiICR/rSCxJt8Y/6tvNH08+VvgT2yI3+76vKXAKBsbPX97Ty/4zI80VemYMO3rn/zG/Mm/LP8neBh89B8RipPmK7zrblJndJ/51nWvB/x6yBeqSrh+8tJYof6Rd+THZ9mHwGc9ylSV2/fHVJ+oUfcXX6+6/PcB8A9Bv24oObNTxkxpM5JGN9+58mo3+H7oZ32kviisP78iqUftPxfz+lBXDeSWS75/I/bx/dEf5JefdZL3zngjj03dLkd/RbakWp1DfzvoAtBY8KlnG3CcxPXCcT4p6m5+n/1cpRt6oE8/6rCb+/BeLh8HboAc+0ajasd4B36fpS/Olzngcc5j+jaLb6MC9epFHv1/v2XPHEmDxA5/WWf0boe/8FNwzih06Hf0D4X2O/o+5wdxEngH+ZDTJe4/g3XWYfa1GtABO18cwjrjAT3KOkmteuFRPV3n045GrtAkniTXtWKHvajnAnUzyHmX+pm/iIdgf2O8+E4gb7K+cp32cT5qAuX8xXixbjFveT71oJ8E9mM/54IGYPgdNWT3y6pX6H8m85f3wP7KutSE/dBvom+E8kJE/3av4913NIk5z1fRH7vdYqXEQea7Bj2cq/NwDusF/cX57Kf6Hod++os+Y3I+Z5zoF+ItOrGf/pHPeRR9xZr72oHRf12fOeSoB37dZL3kfbJusd9xnkIfFQutOLiKIm+lf5xqSoy5VVh10+F3OPicY/hOGG/ko9lm6ZcU8dJQd0W5apNTtmAf38Vu1SZn5Sfqo8Z1vmfeL+sB5ybmMe3EOxCsN3wHzXZ50Qs+5kHGwTqX8V0NfZzvNOPxF0PPS0fyTYlxnsb7cuRngPHgfOyc2xiPCku/pPxuQf0OsJ/w/lkXmF8u6nf4i7lfcJ5hPWLc6BfviXWY8ybmQBffM+dx5gf8de8FH3aLnZIGOafQL9jt4ndfqvr9gt9v+l8rNSXm3Mx6RnsZL9RfrdyuT6nGufweW0v9hl0+C/Fg3+H3C/1CfRV8n7Tb2Z+WgbL/8t4xb1r3wXOZ35hj3R3AtM+R32YP+PhOseLKPOH9MU84l+hq4NTT6onD1abE2Vifi32O3x009mH6QX9pP74LAs5+ZcUBdrGPsv4iPwTvkev8vQbvwOLze5Lnsi6lACNuVjxZz1GvlHBg2se8Rj0J2wfM97AJON1hV5GkAdZrr+ENq5pgRjaYErNPJYDSfvZv1gPKl9j3mezrM2A3v8NpL+5XMH85x7Ju8HudcWEe8rsNNEj/WCeZn1kOvcuBvfb9Ovsj5hnrew9xjmedZP2CH0Grr1p6tQmtU6++jTx58XvJvOELEXfmgh96L38eqH0rcwn4Ib8m35wx8Q3mdcjfader0mMxl7/Y7+4cPZvMOSfkv97eUvUvvxtC/TpuydOsZ7QrtF6y6Fj2ON7HakP4nnxZ27UYuED9D5ZbP+g=AQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAnBMAAAAAAAA=eF5ll3c41f///ysiouyioRKSJkqleiSSIk17FRURRUaFEiGjaCizrEj23h5n4JxTmcfemxzrWFnVt38+5339rt/zv9t1v17Xdbvur8frej5eK1b8v4fy+qvn3+9E+B87WT1fIdxZy+IOr7OEHYutLDYM+V5Hl+xlsayFmmU5c5DF8b+YZ4aHGSy2Mb7HvOg7yeLAzacPWR2bZvGBrT/ivbjmWFw2QrlyYGqexf87oZ2bqXLRURiqT+ESfE+EDx9PeFx3ikJNrXPRCgm1sCy34XRY+yfsbNF21f7cCu5+ayizvZEYyhAdqBrpgZvBeze6JYdhwKyq7ofYQVjuSmBK5AXjrjLt8SxPBjScXWVe/TAA8w/uXNigPgm9Sr37Ny9Z4OKpzp67A1OwP3llTPX5AFB9ujDfFTwLuxrp2c8m44Dx6tur4nPzYH2t/f36y3ksb3/3uqPGT9KxpJJbCeYJIJupoaB4NR3vbwy2zeOoBfnVZyPk3qXhmM+lZ5kpLZBkk+ec/z4F94X4GA+c7AH6XcVrKgZfUcXZKZdOGID1ymu9840+Y1/Lez6l6yNwe/2hp3kZ4Tjjo50atWUC1OQFK25WO6DzquduqxaZELahcI5QHQExR25vMbWaATtHYBY/yIYrm3/OddHnwGek/PM33nKWr1Wx8jTf/nykSpiqvV9CmNbf2zA2lodtAeILZmtqYNqcMju/NQ/H73iWqUo1g6lJKCH9Yw4KHu1YvnygG0YU0ioj92XhaWKkiolJP7CFzmlkdaSimQp9Y2LkMES5mHySi4nFqm1TDCXGKBCidL+Wzzsj5xbRgsJPk3D2b107W8Jn8PXcsm81ZQp+MEeSDyqVgPc5LmLCwAwEeIl6mjn9YPnqXd3312Yj4rnfXwor75VAfiyvax6xFD8LvwqYdKmElPjZiqupJXhwh877Y7KNUNU1JxGUVoQdAnenVyd0wLKThfRmh3ysE/tpTA/pBSNOgR7/Z1mY6OrZGWI+CLoJ7GcDLn1B+WU1SdX9IyCXMXLp8JATrhRcrP0+MwakcJXYEYlkWKPIFDrfOAkXLa8dLtpNgldVAsIZiVPQt72SmsD233d06O+UY4gHCTvt1bUZzoVwwtBs+9ELJAxepj14/vgbdLeV36THEpGDVqug10kHf4l2FwkrAp7kCW0Vd2+FuLIvj7d2FWNORso7z8BueNTX/fdQSy5OYOHEwdY+mFhfWUJYTMJlk7386puGwCXg4YNGeQdsfGOrdvvCCLxUrPccyUyHA3zrRIVsxkA5raEhpKEMCvpiXfVOTsKEgbzVqfk6lq9tNnWIa7QMabY/p2+q5oHzuwNk7tQyrK0MWZA8QYGsX8onrX6ScW3kB7h2sxZGtaznRt1IKOu2jaa1pQkapO64VCsQUMGBuZef3A5xH8WsI58UYPl2u/gaqR6wGbMYV6WnYlSxrZzgP//Is6oacuL2qOrw0ynKeRDSVDhfXI3IBE9+gWe//wzDtd+reNMTK+CBa7yBoxMDDgndNWeXr2f5Fv95v4deUYFObvciznFnQ7bvZ04ujwp8I5vFrjNPhuSl9lLuL+W45eADjyRKJeyxMvYnCpeh+qXUsKR0OqQbL4mIBhFx8GKu46B+M4STjc03+RShsmAZSaKpHdaZidbw+6ajgOaF7e+CuoEnNu4dXd4eXeRWSveH9kKozNNWUlUWtNGVTIR8+0H1xFX/9yQKSAmorzloMQiaylf0aur+871Jm91/WJyKBV6lgsfYM2BY6w/ZrYGCXx6lTboMEECHo7B022gFGnQvPv7EQ4MzzQJuJifL8XPLx9jLtjVgIegxnfCKhBpZy3tMxOth+eZ60UzeEixyRfmZoCaYa5I+ttEhAylxl0XNS1uh95tl8uIxR1ypIPto5N/8hyuK3Jc0zob+UYO1j3d3g4K8vZSEOhXs7A0DP9j0gDnv9oNNf/7z5SPrHTbkp+Hzymz9ayPJ8K5Rgrm6jIph4ZQnjf7FMHNL4lRcNQXvWOtMbpstgx1pHCtm1lWgvfD++ybbvkPqn/bnGSpkvJjnJcV5rQYko6R1D+8rxQGDt3v1iuvAKzuDRjiSiU19QbX2lHq4O01oyRp8jEFOr9wvuTVCpiKPq4Z1Nth3qZNvTzRB5byXVLMVFVyNTy3FHm2BtWIcT5IZ//nWJzU8rflBQ9IeTT1l/UQosRVeze1KQ/G0lCaj6nzYsO2AiI0bFVVNiBbzTCKox/ldXZNcgdJ5UfcMCypgVNdG5cg3MjaTPC/IvPwGB86Z+cWyIx7XfyUWqlUJETevq72sy8TWQ867vi9Ugdruxm8Seu4YKM42W5ZeDTum5+4ZqGbDGqtfTtYV1eAr/oWidpsKOLJW3aqgGla4U6VPtNXD1FWbdltKxv93341rcy+dDAvCXNM3Ucol31j53dht9++UEkHiYhC/970gfBOf7OF4u5GVt/La+Z2qqYWjk9wrX1QHounporV84V2snPHwVSOhvxUS82VrhZteov6uSLN67/7/7uvjn/6Mi/TCX/nNXwJi/LCaLUfS1OInK5+tLdNh6xwEfwurO4rpXrhcl7yry2mclatInR86U80AOX32rMv2rtiro7ubr5PJytfr+4ZmP5wEifirttsl9PAtdfDVaOQMK7c3nFwXtnMa1C9oyNw1dAWHSa2jf1x+sXIPcJFWZ8zCfIFT1K+6d/B+1dyBKeI8JHkOKRLnEsAvwV0RX2dA6Xae0Lj3Ufi/5wSrLXmd+77gL57vn2jW3yBZnDa4CaJQqF1a6vVVIoi4ev/+G/MFNzzQ/zK9rRFehqscvrLyE6611yx/aV4L3MYNz3c2JqCM1oTF7sNdsNnT7qCGUwTmfRC71nO8FXikQyk++vHYz9d8Nvp0P1z11xk85xCCB98u1irG9EC6pNqfR+OxmOBhQdVc9xP6ROynpw3e4OTT5MZklUHINM6PvCIfhe6np5ZF2cdhTwCvZoq5B04/eyKzfg0DihXZux9JBaPdCc3XfW+ZMODWmWTsaQ/CrtI2MDUBhh+PhzmI2GGL41dmh9IMKKtN8xdLh0FR7JEnm92nQNzA3H7/rWAY5Ixx8mbOwbS1r668Rhp0Hfxani0wC45fHz+BjWkQevDXQ8XoXxDEdQl9QwmwZzjUL3gmHbpmIsOKHqSz+pxRitQ1s87Gi1NdBXfcaHDUkNngsykdn/R63PvoRYARizDbk4ey8Zj2ZaVK7QZYztNfPJ2XijlN0mKqb2rA4HOIyiHfLHRkwJ3m9Z1wRuHKzhvSyfhBpuSN9mIzpOwjP088l4mjBn/4tF37QHnWz1x16xfMCreIIZC6oYih0Xn5dDrmb7c6lcMzDAmrVhksLkVjcw0npXPLAHCOrDmao/oVdYMafXWKRiG9QtDy1IfXuFpU++L9oJ/w6vguZlF3FO7loNcdI08ClyvHjPa8J8hZ/H7NJjoOmmpDjRFizuiX7VFuKDcNuwPEXoyIfoX7tgWVJnpMoH1ajEngi4FDJ9S1IqNmge2picnbwRK47r5pLCNuGio7sta0cBTA2yMvranDsxB4xUB/4DcV9jRuM5efSwMPjVUvOMTzWX3avsvJdyUU4dAd/xe6bFTImi0w6g3NQ2kncgxbRSlIP0iat3cowlKGK/mwUD20z0XEXniYi/4RV5QpjVXw7vyuS0MehVjox8vtAu3wwkNUqdU3G0cjS8myh5oA7azNokj5KJdhGid9phe6B8ObXN0zMOFneJuXUBc8PCPue5+Rg528m0UXXAYhqERofXFVIhoLZCTyePcBL5e4iU9gBopanzDiJ4+A5AmBF5tVQpBY9Vic6+UQPEiZ0BHfEo/2s/x8Z4UnwI35e9NWhSBYsmycVApnQOSKgYrdbc74haSldjCbCcY24b2pIlnwnlepjS9xAnSDcvV/siWC9XJ90pumaWjQq7q5/99+Qp6VrFZuZIJR7IeeyacEUOtrVTtfPQ379ChbfjhWAw+DPyXtbgo0W5wmCLMhq8/klOBH5huJuBQx1paxoQLIZrr5nZdL8fLoNRm7P0WQecC7tW+IgM05L+kT9nUg9PrNbE5NMZYXnvjcvPoHyAZfOfDzAgFVlj4GHBlqgRWCEZZ7TxXikKUJs4ynAYaiHfKFb5TimRc2PVdyusF7veGQh1IuguDXR3u3tsPL1Fehg+WFWFm24hrFrR8i6rfK5+5Px5P3VZPTwnqAq/3N/hrVHFzQWY4hnBsGHy5icM/eSCw85bP5rtQA0JYmdfb8m9+2N44xOoKjUKSlAPH338NTBwNbl5Rh+BvNc/dTnCMyr7rLfqubgCi+pH3n5fOha5i/J0JmFIKG9q4ZHU+FnnmdG1MEJhyZagiLsKSBZWmds0XwBNyQSdrECCdDQ4jhN72HTHirP7r3kUgdTIxR8+Wcv4JmTuCMoyOJ1SeNqTOgTyMjsyx8z49WMsSpCT2wXENCDs/1d8x780E0ZMdFp0AynnfV9A17WQMvsjhuxW4i4q3fgfXi3VQI6Hxi/L2JhDFxBPrl/U3Qt2tG7ic/opFNWF9YXB2cXTynOu9JxO2tPCu1ajrgGm9Bn6NMIbYvim4TpTfDb8FkX2lCKTr+ZbteeqgXKG53fPY2ZOJ2uQB927lOcMgUaD6vnI+WRM5zF1wHIGg4hOvJ9Sgc1Luo89qzFxpzOKzNn6TghZVh2l65w9C88LTmc1M4nGebJzLc/v1f/dXbu2nFA5Qhy24M6mLAUm3OCsG9xcAeMQplt4aB87jpn+ulGeDSy/nVeG4c2ENnetmLfsDFbZIr1I4yYOHhDcW+5nI4Z7QnYnR5DAztbe5nfKXDZZESKSm1BFD3TeSmtpex+lxO1FFuGilHU9/ZeB47IkhufEOTMCnD08Hcfp/iciCsJod0KLEcC8ut5m+vrgSn6vt27hpkfByqWyYXUg4RR6LFJFrK0P2hijL1dD1ofxNP8npExNc2rpqmO2qA+eZEQY0eGc0EVi6sn26Bt1WMrZoaJTj/Rekhx60GuPan7diGCQI+FPGmXQzogkuXfmzsHc7+9z6kfO4GtEJHqXULf3Ah9syND8179MKThc9RYaXRWCNwgVcrqAuW/G9q+69MxwXJFzxZsgOgu2+1oEnHJ6BvJhudVugFas6U9sUmO3zJFrymvWQILOV3xb/4XQrWFjcso336IUBE/9YpjSyAzJJQhtII0GJP7ChmVMH+U/1c/aRBCLj9lyiuQYFXDo9z6WPDoJvvapPxth4IsstGJeviYLe30nBfTgWrT7VRU8npZxTsXH3eR5q9FNj8ufmtZCpQcVFxudQ1E3bSdya5HqPg/R/T+wMHqLD99JzkroUyvBUry066SYLXCZs4d+hV/Nvv4i7v0KqFR9sPF4nNkbBmWH2o0vA7KC7u8K3JLcOlSwrBwN0IgmG33s5lIIYkZv0u5qiD5LSshUVREnZYzlu7fWyFaAlelQPPc1Fs1/GnI3KN0LZ2x3Uh/WKsLttpOrjq3/5grCjA/BmDJ72Wo9h3t4LwSJXlDvYMdGbr78kO6QHB1MTG9u3RcEaMx2BuoAOivt3uD9V9gDliCnZm7/ogK5HPPcqEAPMK5+UhsxvWp3Jx5+3KhthlnvDjjwagaHZwU7dgDbyfHCRqaPfClS2il2lCVEgvEbkhNtgHojk+XGtm6oFO8DLsXRsNu8a0/Xh4qaw+NyXeNg2MoaKKFMVvzL4A7MVsKoOcKAhxbfGHrqQBfQXh87gOFf1TQzYprSqHsN1d1tIHK1De4d0Fg9UIS2183LkWFLwgbC04vKISeEpntqesLcN4Ls+v3wcqYIlSMk1M+zffJYpGx7TqYF+I9719xQRsYbJbKnZUQp4XyE9PktCbK7rTrLsBbMruOD8h5mFQ10o+Jek6qFfhPLwnsQTbzUWXjhxogYSYrGsz3HF4SS3oMVOwAcZUP8TLtWWgn53dBSOldgjX1WvR8IqGD+8et8RnNIEuI/Ugb4Mz8t2L1xBf3QVWv6xHe38QoHndwIcFtlZ47vVG7ahdNmhcJX08UdkNH2lUBR3tGsjUeH5zg0g7CC/rXik0o0KuiFzBrr8dsE42TP/IQj1s/RVbz7EqEnKv+ZzR/PNfnz4E9ser7GlokX3DefF1Djx0NIr1u/4vz1jM7+n/CjIyz1ZwStBwJdtr7bdJRLit3GumxENBE24jaVH7Qtin/LCxQIaKeUp3J89uoULnZLdaWHUZ7gkUWVejTgZLycBE5vUKHOO/emB6oRL4XMJ+/TYlorF55Q1iHhWC6dqzn/zIOPdgyr78bS2Mbz3w83BuPt6i5QbuNK0E89tnTlZFleJuZw26cCUdRiqnR5L3fMb+6kOJ5Lc1oPTKbZ1WQCYe54x2WkhqAKEsJol8PBp05TeVeHPWgX2w5/iSyBOMJRlRb59ogjOx2u94hwmgICZl17CBDvuEKrYd0cmGLrOb3o8+NINSkmJRnmkNrHlgSqrtpkO9V7Cixx0qfLjbrOnqUw/sH3MCRrvroebzq+B7LqGQHEhJKc2noUIqiVO9KRN22CjHbhOi4YSHskqARyncTOVJ0Mik4BHrraqN98tgXeLq1cwb5Xg43PGeMZkKQao8L0+2EJHRV3Rbhu8HSPoTadG2BZjkupYvTbUK/KrvtZnuiMf8UoHdRbbV8EuzzjuhKApUGMO+R6nVMBO+vp3aQQCZM1tCqrAaLKhZxP2GNfB/hHhs+g==AQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAAACAAAAAAAAA=eF5N2Xc81t/7OHAi+y2jUlKREKloqJBTlBVSaRKSkpGMSChkZJWRUTZZkRFCyGW7rZBR2Ss7875vm19//L6v87n/fT7Ofd+v67pe55zrnIRdjmXBx6joXYnN0u78VqD5/58tTzjunut0kVUrRWeQKhVFwS6v9pfYKwwlc8R+c4CO+8C3lddUZCK+Eer1u4Vw73777vECAZB9O6v73zoVndfk/Egb/YPwG/Un/9jsPQT8aft9Tr9fQDHlDB/uRjcRXlhsS32KpEA/nt0p/84iGhCzex/JXUd4YGzJ3f1s5yBWUXKiW3kJhW8acjEsLyWcbc74TFGiKvCMxut8u76MrLSoN2buRBEe9Xqelkv8JvTuvq950HEFMW67Y+5eXor+z01r3vUWxDyAoO0eRS/LVpH8Zv5p0sBvwn+tqh5/HWAP2Xs4FUTvrqEcvSN+fuVThKcztvORE6Kg18pTrmqGgqKXLPWGf+P4daQvmDqvLRQLH3I6q8RARZHHnxtwx2Mv0ip4AzQ+kDdMPm+qSEWyR8o+Mizh+PqNMoXF0ISDKh9JlT2TitLGLNyPFuL4znAfP7FNPh782OiURc8toIKdK2uHc3F8E745GC0xp4JEq5u5LXUBFZUqilpK4PgaeFyM75rKhPaJAS+P2kXElJI4k1KD4+u4qiAcp5cDVrfWBoayltAhz/Rze89F4vyL9Fzwrc6DK0OSnklhy0h7E8V4uRTH13mrhaXqUgFcHvy6KUJmBZGn2BnO7O8gPI7pyansriKYcBCbbCtdRqcePB2hLRgn/J3IzZZemTA4r5DdJHyIgvI2+8aKs+D4SUeTT+n8ZYLNu0/sfIgoiDleQOpiC47fuLq/V13+e2AdPCDz0oaCjrVdZRzdj33PdjqFyaSPoHiZo0qvgYJ41xQ2sfU3E25XqkGWOJANmdbiNsIKVLQ8+8Jwa2Ij4RF3DQbNdL9CdrRfmGkTFd0zSdJX0KohfCvdi3g5XQCv5DdWaiYLaPnFHO9SERDu9K6kVcGmDDwnNy4Wry2gYyopFq9OvCF8ONrKmDazAqZu+G+vMVxETm7u0RMRZUR8SLfijZMMK+GouI1mnfYi8jI48nB29ifhRleFYxXel4LnwuaOu4MLiE4mMsKOPITdpxc6Rd+AbvDfSy+p82hgrmpq6iGur8DIhxVtjtzwO5CGZoOOjM7Wxt0clsQezlMf+fF7LGR7Plp1OkhGnK+rRSRdcfwY5pj6hz5/Bl1HTn56EzLi1xGxCkC4PvkqeJak5QogiIfbY0sBGS3vpbcuMa4n/Cpr/Lmqw6Uw5fakppWLghSrx91Ix6oIV7OWSOPrq4AnX+ztSQ8o6CjvuaRkiQLCL0iMJi0MVkPPeq9wWCwFcZk+EV69dIVwHwpHkJp/DYzpfqtgT6Ygbqe6XplgXL+Hy4IPTViT4Fd8XdXyfQrKui1US0fXSnhWjRq7V3opnNekBs7SUBDp042M8L19hDMabrtwZsUN3Ko/0a3cnUOrfk6H6oTw81tb8bcGpfMCPdN3l1/Gc4ht5LsK/QCurxaVmXOXUQIIf9T2vuU8h85N2nA7vv1OeHJt3zORzV+Ai3PUjTduDtWGv/kRKYbj5+p9u5HpbzGsX77cx1szhwKPjc/fvkQifBRCfrmul4PMt+Jv1ybnkNZ5kvqsdxnh1HWVclJbNShuMhb8sDGH/otczN7zMYdwXqMcS2/PWhju4Q7rIs+hnBUfhpMmz4jnT+Eb0zusUgfcU8MaMqVzSLj57Z8tzd8Il4l650vKJUGDpjZroMm/8Q8TfH15Ggk/9onfYya/BNKfMm+t2jWH7IPNYo/a4vrmShRkpxV0hrj+tMts3jPoRYTAgAC5Ftefd+4F8RR++P7+4/yEzwziUzLa5BGMfZvngaBI2iT4avz+VYD/DCrdHFhqbILf3/jVGwEvk3NBI/+e6UbQDDLuZU5tuVBNuJZHTlO0Zwm4szRLcP3z8O6w22V95YTzpz9qC+WrhMcirTlBHv9+v7756RnSN8Ir216spP57/gcGwwOihjPo6cEytaz1DMK3H65eEmurhbRpcvwh4Rn0JolUc3bOkXh++QcFn/nya2EofYO1M3waed1Mee7Wnks4t0ZXnoFaNTiZkoffd06hUY22xffKVYSfNTfSVdQqhunIguhB/SnEZky9JX4Jxz/9UFTrct0zuPKXfKR/51+k+qAqKkG5kvh/pUfphMpuCcLny/q8/Jx/UZ6LhOef5QrCs56BQt5GIpixlHJkUiaRgokMfdVm7FeMpKQe++VCTUzBseXySXTS16XthyKuP/2+Kzk/bpTA8MNXv8k2k6hJ++GMCDeeP1M6NE03YitgMr+hM4NuElmEuolyCucR7mwdZ25SVg13dPilou9PoCbhY35cY8mEb4rwblKWrgFvzqgah7BxxKKeM1+kZ0I8/8CQSHXqIxLsS2oSickaQyafdXKeTKYT7l3U18GeWAH7njsOsfeOoqtvKwN8Q4sIv3SwVDp2XwF4mLyN/2k/igZmDp3R78Hzi3dYS5dR0BMI4pgwXOMZQyFeGY0xEfj5Ro8+VfLYLATe/bvfedOOoe27L6mEHMB+0kL6jtPuBHgbg4rOFo8i2gqLqewiXF8cLtnDhYk5sJraWq6iMYp6KtVOex0sJNwtd883tdJvIDRo1Lf8eQT9elrALyCJ42dQK8bEHVkGj15ZbZwZH0bc+23569w+E95Dx/88S7ASVgecN8hLf9DAKI8p7cYHwnNkXrDyblTCCul8oMfYEIo4kGv7g2JG+Fu9TpaQ3AooFn1Py944iOKEN6Ve54ol4mMzqETjP1IC95T9erx7BpDh2M3C9Q84/mxuzArc/54v/G+JGZfLAJpiDzWQvPOJcKaJw3vEnz+CSWl+tUc3/yC7NoeMHUdyid+XYAD9NEMh8L+esRIu+QeF79Nknur+QvhTg/axXN5YOEyfFJtVPITeM/sbCwzi+c9uKeD4ZE4mlJ0eT3lMP4RGn7zdWSKaTbhl+6ftirT5MNF+Y98u1kHkJcKc3RqYSfhwyugEW983kNGty1jv6UeyAlN/Ulc/El5Ndcx1byiBlIO9DU3+fchg+fZI9rcYwouj2aLnjpSCyPMq7nnTHhTlzHJTU+QV9l2F04fvA0hVHh578KMTuds7hrJ1uRHxUU/Ton5VzIea/tiPP1N+o8dTd17pm4UQXpQaYeTAnwqZao299d2/UN4iHZeDhxbx/blJFHHX+9fhKbmwmVtiAIXGjnGPK+D5K1B0LUN4XQg0GS+3K5H7Ue6eN4pJFemEa4sZ7rhFDoLVC2uZoNCPwiK2sZ5WSiPc9saa4N3n8cC8SZX5qUgfkpLn5IhvSCFc6CWK3eGQBlztiEdPrxuNLYc8zNVNIvylDp3MT+0skLiopMY/8RtZOdp1DbDi+uTRCDe9F5kDT+4WHTl0uh2pT/m4mi6EE97Ee9ji6kgOLORWC07H/0BhI4G+zAv+hJvsHHdjCsiCJWshrdeijYhHlnRig9Yex4e/XLtIMQW06OWGU/Jq0d3IL8/tD8gRnul3T1HydxD42z0UcuwjocPb6I9Gyr0lPPieQeVkshHSzC778HJTHwrKYhexsE0lnElk7uSfXm7oWD0XNXq9F3l/mShG/Tg+10U1Pc5uVwemm4prEle7UZfslH7iAVxfufOCj9KndCBq7nGjxZYO5LjuL7FmkEi4xq+WUDqD++AxRGut/qUNeVfsZxIsiCPcN6/zxMhrU9goNXve7d2E4PqgPxqKIPwm48skG0YLuJdpO6+0UokqHOyt/Hrx872n2f0oJ8oCdgYFeh4qykVcLCH3GFhw/epo5i2qapiBfG5L7DQlFG2veGUXePUJ/v38zXKeX25Cz8kog0wre5jp1Ns1N2xIOIv41OkyMSN0r7NG/+DDx3Ca8/qVY68eE05RfVy5teUhOikVbLghR0UMOnvnWFNxf5EhaPbVX+9v8aM+hePD+6jo7Pb99k412Af8R2Rn5ieKx1u+8J0woyIf3hUTYTnsl2Ufg0UxAzCcqB++cJqKZBga4hbf/k//55Ed+pbRAZwqjPT2VVHRtaB3GzKXcX+yi9ulfJf6ViDFd6jvdqSiLicN474x7B3WpzZpMfnAjoNKZ+ovLqAxzqOgVoT3328iQi5kVuwFerVoheBxKvK7fj/idxrev1sMMXVzqATBTpYHE3krC6gj0ktU2RHvL8XVfbWu3DwAT5ZLJ5HrAtJ9znfkeyrev0qLXEil3x4Oej9uaaW3LKIxDrr85SG8P//+0cJEuf8osKLlvkWFRbT4k3Nqcj/uP8WTHzepLsUAS1M0R0jTEtpFDRFeo8Hrj1qIWwGT41lI5FFluCu6hIbM+iNd6nB/KqcVEtNjHQ/ST2USGSaWUbQ6476vx5PQ/3ksh+Jo+W5N2Hfxx5Hvh5bRbG2HzOAS7l/lRklcZ6eS4DyH4WMunlVEn8rStfN0EzGeSbirm9NbF/K7Gf9qXlhB4aznKkvT8frNxKdBJ+SQCpVrbXkp29fQn08qLUkXcX8lXne8ffqaL9gsR/kFXFxFWXVM++LEcf/bBZuZd/+XBhV7jNOc7q8iN+O3jleF/hL+svzU33zJ97B+5HR96AoFPRU1iUypx/WzSSzXSLLLHt5cU/O1i6Kg3QdNQoytsNO8D69ZukEPBdzrVabCVDQ5wOgcr4v9xX9m4/z7g8Aw+82t4CwKkjg5o8cpiz2iMbFKNuYt/NWJFrziQEUvd/1Yk32M649l48qZ5uoYEBrVfGgyRUFxiiwdun7Ym+oMO8TefQD1pZSynEUq4ipOJ6234fo0DBPcqvEiCRKO6Qff06Qijzm05KuB69OJUtWuppkGJZI/pcfDF9Bj57jE3lhcnyGtViWVJ9NB76mrQ2QbFSXXHljefAHXp1qXoIbW02ygZ9aaf6O/iFLCZy97U3F9BqaMn3j5LAs2HabOn3u2gFJUWe72yeP+ICR+nH/6cD6Y8X3jNpNbQinMLpOGvXj/sDjL5UJH+gL6+5rXdxxbRDrD/KUffpQQTnFYqdDILALHd+d5Lgsto+leumKpJFyfYvTpbdTWfIhK2/KUfX4RBZy4lv2OLQS/HyVTy2UaJfDDnGPkxdAy8gw8a0PnjetzUWMm+PDFAvjukJSq/G4J9QWIPJ7WwucD6ysZQ5H3SsE5QqwjkmEFfadKRxowDxIef59ZZfpmFsTUuGXUtC0hyu9tp3PJvwgnLwvZkwaL4ZStbd6g5hL6od8pIPJ8hPDoRuuK/zxegrhLA/MlKQrSWDhAE7GK8x9x3ichLNQLknwa+bdGk9HnbSGXSk9jPxVNqp5l4IAxmSRvh9sUVPXgrbCxL/ZNUtdIgQc+gHSxg/iODDJ6Kng8kLQJ+znBNxo706KgIKQ13fpffy/9rK7x2jtcPyvcLNFMjRnA8eEqXO4hI8PsnYJHtLDvCjW/Mf8qHXgTdPxlmahIVC5W7vkCrp/iIF3mdv5c4KM5kS8qRkEd+zouXuXA9SvwyCo6OycXTLVTipK8qOiEKX/Tpibcf2ewdpOReBHIs/1g+f2agjzt+j+bMeL6/aEsl3229xvs/RtbRr97AbWHprjs2YL7K3lbXWa1qRJ4J/5az4n23/urXT9lVYb7z5mn3H2//vVLtx583bqatYDEmiZPHuLG+89kK//xet1yiLqdInrZjooyy1t0s6aKCFe+F/PcWbgSvls4OlGOLKLv+556cGSkEfltt34RH1laATwnqHGW3VTEq/xpnBTphP+feWO/P1M1xOxul4u6t4jCB3Jm5xlxff6Sa6PjuFAOjTxKiRT2BZTfl2j9azeuT32VWCbyhyqYGOJzYtq7iPYzmQ/v1cHnJ9IsGbOb27JB66B5t90gFc3kird9mGsj/Piz95TQzaXwbHOV5y0rKgqku/zRwX2A8IL6BfntPQ6gY7sycWZtHvm2+KWc1cb5ry2n5ZL9GgBTDcczLKXm0cVnjZEPlXB+mZP1gmhatkKFccvLrzxk5CPyK658HHvw3hg7b7sUsGrilT9ybh4Z5EsI2HFiD4n4ZXvN/QNkJj9zzFEloyrFgWEbKq4vXfmMycHOL8DEE6pzW38e1SfOs9x7gP3UrI+Q361s8Ati3jwVQEYXpZgqM9Jw/XiZP1Ex3l8M3luDppP955Hwq5YZHS3sA3KfmxMCimA8uezumWEyipCCaNpIfL6RJPHMlW2iDOppo74cqZ9H6qrvS55q4/lvh3qelU9gGSR6s4rZylIQzQNdgbdbcH+ePz5Jy3qmCuYM214UMZPR+URLEYc7uL/vyUg6LnSlCnivhu3tcf033mxvUVP0J8LFDHPiM16T4OI9CQqzLBmFdcgplhjh9V9D6KLo8L4aOPTibPTeBAryNWhgHhDLJPJr9sR7S3MrCWLCG4P9LpNRX9bL1aN69wlneac3kaxQCwy04oGjnhT0mnS3ufpMPeFZjksNkrSVkPXitmjWSTKSfLVz5uypEsIv7FVqjz9PgpnCE99uHaUggaboBisBvH7/KVlx+iSdDWaPTgrRjf2Lf9rt3tTSZsIT606re+eXgMoNjVjnN/NIIc9VOba1k/DRHcbNzh+sQS3qY1Df/TkUkpAVF7UD55/+05iwu0gwnKR4+MU4zqLbN0Kiv0c3EG57cOLn9fgdULzKuIvNZg6xK7vlBN/C54c9q7e/07lkwHjvMKe7yyz6dedtf4IMHt+jfdSSa1cimBcIkYQC5lCxplNlogf2l283e+/u/ArSNaruAn6zyOTaFFv0Ot6/5VQknKlv+gKZv3MfOn6ZQ6MWJZLulrh+fJWPfLVIKIWz0mo3D8bNIiv66n2Bebj+aCZN1BTIAJPXN8gBHXMIDvrY0mTh+a/M9c2fE42VwJ4n/344ZxbddFOMYeXB67ct063/pNwq4MQYnWsnZQ71Ld+Iofjg84+eqyftrLbUQMU9x2p6mEXxaixhV3Lx+ix/UjZNRooEac+b795cnkNkTougy5HxhE8tMolJk2ohvtbrqkDuLGJhHb/McDWLcDvGckuVt7VAtnTSS+ycQ2o3GP7OUPD8mXPKc8VjuAZ4mMSm1v7FT/6RTWIxrQPhJbtXJCx+1AKq9sobC5lDOrnlzaWt+HyOUfEAzcucCiibdrNyUp5FjfyLlLcqBYQzBT7UdcyvBsWJS7QM8nMoxe2B6mRMC+EPVFVXWAY+QwtL2ZzX5AxKrGSTSf5US7iHtvvFq3sA4J7kZdfEGRQsva5OfY3H81VU9W3hfgy1Surb5r1nEG+nF8W5C+e3VHIjpXI0BBj9ZDcU+aaRwtZbVuZ78PnylUF6s79tu2Dy2GOHo29mUOODfcFGu/D4swFS5fKbPkMPjYTi753T6Ios+xUJEl7fxNJ+hBQsJMKv5UvzuYEzqITNe6zLHn//RccjysxQCLeF0sVnOKb/9We/Xwzl4fooD7vWIBKYC1wHrPZYB82gntHX26VKcH19YzpdkVxcBiXNruVvV6dQ/efQmp5KPH/Zim5mLDAqAfLvP+flX8+gTbbawulhuP9ovjoT1t1cBX1drQ+vt06hXWmNZi9z/uf+jDVpZ3FzBQgrnas2splBGioHBYLu4/mNa35HmdGnGkimP3eD5DuFMi+dk2CxxfcXtR7cbS0iJFDedSbJ/MIMYlH+WWetg+832Y6cEGPNqAXZSeZPBTunEEMS27CoDZ5fzT9eSqQdqwEbBt+thynTSLacs3YXXTKRXzWWg9w+sySwGh/J03vyFzmlswQaf39C+EUeh+6lBzXg80daulZ2Gn2t7zCWGMPzY2G9kkLAqXLo/OS0eCppEl15ti7Kuyeb8CmdJ8i7qBISD5wr44/49/8EIzPVJesIb13IvSe4NRPSIp2kG7sn0BRbpcioMt4f0FWvNsbEFALd54c7F80nUNIzc7tLoSTCNYs70slCxmBTOyjxYttfZBgc1KB5Auf3U42gkvGfEPiVUBnhtW0CMY6wZ3b54PVL/r4wi1z3HmA6xQv6dH+RqqdgYV0Izv9UoYyeOTkTAnd/uyTCMIE0gwI+TSnh8fGMvuPFdImQwb6oXtU1iYTP+33UkMfn/xcPb+jJuxTCDMerFcOf4yhHhJ3hghWuj1bT2sPifl8gTv9TxlDEJNr/LE75DSt2NYVGnlDjMlhW4jth9GocMQmMx4V34fPfgmHbVK79AEdati7WyU4iRf7b8p8t8fnuG/Ua+WS+KjCw3jrEwz2OpFTMREoEsNsVR18u9iuHFLacsKacCcRAy9J49wCe355nMMRtNiYB15kXPp9sx1C6ZXTWhBY+//zaHuyhqlMFgWyjT9/TTKDs2xY2yWbvCC9psRj0LyXBp28rLe8zRlG/weRs1hN8vrTjeeob9hfVcEm87pObyDiieT545Yh4DJHfriz5lYuOVdDEfqfXr3QETUZY5YfXiBLj85988vpuWgWW+0Pux6mMoYVbZPZTlvj+Y05VKNG2rQTCZx/ttCkZRrLUO5ZZM7j/Clg4f3nxXRnoH6p3Sk8ZRUwhc+uW0bi+6+Ujv6T5p0Km/rMV694/6PDG+R7auS+Ev7XZKq9GyYWAMcPjpk5/0E22BYWehXzCGdm/k73q78EPHR+6LrYxxHfoGp+4M86fuKGAe/hGELh0pVdyHhxBu9qMFIpG8PsfM+50Seo/Adjuf5xppXcUneLlLOIJKia8i/ptfjtLBqw5Q/AA2wgiG03n7nHH468ktl6c4PwAff/pF1zzGEXD2v6nuiLw/l/DWuCFBtdX2Lll28ru7GEk3XZ+Le/yV8K5zKun7eKyIDJECR2iGUWS7YE/H+lj52Xxrxv6WAJ250ZuiPIPI7Yw8QF5cTy/fYhxOeXYUABb1kWUhDVG0OHknjbtYFw/bOSQR5SacjglpD8rfvMPUj3qIS06iPuXIL8qdba8EihrOu9y1GoYndGOvJq9jM8/PQb2p4c5VoL+jgBmi7tDqCy8T7LKFZ8vl45Yp+oMlIHVOwmn7VZ/UI7i95LRx7i/Dkm/knZetRLidCT2HbgwiI5KCag46+DzzVqZuqYI+3LYTsN4mv/OECrYJxjxis+PyK8bv9ToRFkZnD0us2DOOYBI/h//eii9IMY3FqfzjnGXQZG66oGBG4PIcMVIhErzkRifVZ6nZSBUCIUCpt/P9PShFIkwPSOEz99L0fdDJg1FsGJuH78nbQBlvnZXPiaC9799wqNXsmMSYHRh97OOvF6UaN4uu9gdT3jJoT0lZwczQXF+yOnnfA9i90cuSm7hhN8YaXHf8vMmiIikv1O+8Ael5O06t74Ln2+8ZYvJMqb4g1ftT/Py1EGk6VLoNDSO54cPCXLQmioIq55M5x4tDiGW1Lrb3U/x/cmX8KzhHtaP0DNu0SnqMIj03095fIjD47V29r+L9w6HYuei37/+5W/54q5rJwT+Z3658IPOUiIH9JTNWaMmBpC8nQyfYhW+f5oM9HjEPpICN7ckvWD2HESJ4wrml9awMwRW+vwtKICqQNbQvfQDSKqGTSb9Ir5/MZR/1y12NRvkzraly9kMoDOnbh7+04bvH9Kb0R19V4CJ1770W5v7kHL58dwXKnh99Xj80yqKKR+OTzcITJ3sRzuseUqdoxMIJ0faBHYMloDV8KdRudoeZBU99FvLG89/h0ztG+yXC8DZ/8uCVlUverwt2Eu2HddnV7t/ocGdEnAJS+54mN2JPtt6P7pegNd/+42f3CHWhSD3zqlYZW83Uhnb9mMyBc+PWjp6Z1hLC8GU8kiyMuIX2lqfPxB525fwKx1nHXNL8qHnmYmIflkHWu7r3E/6EEjUxxNpVy/Rjixw/s1y8HlDG3rE5zz/JuMu4Q1rhe6M7lmw7TGLpobcbxRGpyTx60wA4e0CqY9WP4bDaqTS0IWgFnTPVZuN/7M74UXbVVhfdMUBiV7S81bGDxQiltmvR8Hn/ylsY7ub8jmQBQ1n/hOuAeThYEv6vB/fL+Vm+buFBLuBck6hx+n5PlSp6+ZwVRXnT3SwevY/IwH47+XDBzci+tEk99BIrjCeH3J/m2q6m0bBar96SVpKHwqqgt0fSnB+DRz4ArQX3YHeW1eaIbcPXS5tv5twELvFeeNXVj7JYFhYfDMwuRfZbVuzvCuC56cqwRHHL07BcPiKjNOxX//ev7bqZydO4vsXO83ttB7ymZBECT5aR+5Ck+pRbId88P00uZruAOdiFAx/U9d8nNiJLDjEwo9r4foSC2vT4RXJht2H+HJd9X+jztnXVf9txp7+uv/vec0PMHzPU1GM+xearG7hOhSB7w9bfxqK85rlgAsLo4K9aBvaeiKYxrMEe4vTx/qXeQlgeWvEiOVxK9piY4x8XuH6bAhUj620yYbmxPS7P1OaELvbRYd5Rrz+80rYKrYyJMKBwpG2ZN5mFMNklzhI8SD887MrtzaeZACVpLD1fhkJHR55lzowjevT6lnC+R77D1Ak6S/1bawedYjRM8903iVcIDz3q6pPHGht3qQDNaWIvkP1ddJ1O8LbS7XFLnWHQdqva3qk+hoEw/nhJirWhK8Lec8kmrrAZvfFfbHbC9FeWblrHe3XCS9ZKh587uoC7BYf/Sv2fUVJvjQNB33cCKcpXu3+efYBIp/USw/I6EVxNwxnZJVx/n/z+toqdh+BjrUfZu3XexDpTFu5Pj++n1sfdz7IPKQErrFBE5b/3m+9OS6Jbb34/tLAqri8sPUqmBbpiEwP/UQfPV0e0sTj/jRcfYuYmLY2uEo/vrZZsAWd53fpeZSA81f4XHH39kl9GOk13qT7pg6Zd4h37DDH+fn2qN7q2qIBsEft8CFnlKCI6tcPPij7Ec7Rr7puHGsAJNcuCmPoJ2RZ/mXlyylnwvsS3rxJP6ENgVvvWO7jcECqFhlc9g9MsH/elFhczwXeQnqJ9ucswKq09Cd/qAThIfwRHKFHH6D/B54JFto=AQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA4AEAAAAAAAA=eF7t0N9LU3EcxnHpYixdStKwpMSL6JcVWVEgmV+MYBKVVxYMwijXj2XHTRK6kEYYa86cc9bEVrMh2o8LEbUSrNk5iwwJW9JFo4uCJL0wqAiiHfh2ep5/oD/gvG9eFx/4XDxb8l9K6Z8Ty2UKHnhHJwJ0ahN1j2lQ30W9Iyp0VtCpTy9g0yRNqsbfSFp8GaXf/HRcUN/nFHQodPt3DVo8tERX4eYB2uaj2achKatmxXyMajXUrnVCawHN33sD3nN0wPq6IGy83A73zwXgQoja47ekPDYjotfohgq6lLwJg2tp5HgPPOyLwMRAN3R9DMOvB+kvK7Wv7JdSeSUs2Th8PkH/HKUx9S5ctYauOHEHiv4YbPl5G77x0FOVtDfzyNhZE33TtC5CbZX08euHsLmKWocewLCNHvLdhxeK6J6lIXilpdnYIymcTrosj3647oWLGQ9szaX6+ib4Y58Cy9wXYcdsI+wKUzVt7KQ8EW1J6g/Q1Ttp7bMwvFpO30a7oK6HoN1LB220er4Tuh3njf/DQuymPb/PwYJeerKIjrSehbXvz8DEVlocdcGN2+iYhSZy/93jolB3wdI0zQapsoMWphrg4BHalzkNZy7R6XJavI7mmJmZmZmZmf13fwGhqx1PAQAAAAAAAAAAgAAAAAAAAKgKAAAAAAAA1wQAAAAAAAA=eF611WtM1XUcx3Gn2xmiYjhJJXVsMkwFJ2paivjTrGmYKRWKKOUlAi/cvFYzjgghAucPhzuiIhJemglqqWEh5yACYoCaUyQnG6I2JVOcqMf+Hb9vHvCs9aDz5L3XznYe/OH/+Y52OqvrCZdUb71S+vZFeiqRnnmdrj5uldom0OhSizRoCj1zs0IaeZqWW+y/m96oWo/R9gT6g6LGlkrp7Ag69i+r1BBFh9ss0lFFNM5In5/UdH16vbqVT61zqIvVJHXoT50mp0j3zk6WfhqQJF37xQ6p76VE6R2NuuzJ0vWF51V2PPWYQu+XZ0qThtL0RRnS943p0sIiszSkOU16+x362IG6OBfoesQ5ZXi+R/rLKfrsA5pv2S0dOIT2C94lVQX50o2PdkovRNEV02hO03f252xVedU0IJ32nUZ/rDkkXTedOuw/KE3rS/2MB6RrBtFJ9/dLYzausz+PchUURHv2ode2R0vvNkVJtzhSm3uk9KFPhHTM6nBpcv1aaWoatTTan1PECRVXThMS6eDxdP7PadJYb9qQnSq12TSpSzQt7ktn3jJJV89eZf/9I0pNpBmdYdL+OXTZIFq6JVQ6/7fPpYWe1DU7RDrSix430ELHl9/vUQNsIVK3Rvo8iUaMowMqP5MWz6N5TSul5zfQam/qOoz2+J8+eQbe4/Wh9qZcVMV3eG83BuK/D+PBXtgnEE++VSnOaue9dovHE9fjJmd84iHveabZKm7bgH2csalfl3daxDm/sgPrZ+Ivh1P/Mt7/3fVVup7boO7uwmMqsP9KHJqFXZ2x2wK88gB7EdtxVjx1HA6Nx66l7Ee5IzZPwq+ZKsXuDezIqqE4wIxbq6xinyL64BC74uBpf8/9LqiP1mFfZ7zGgDsqzGKnMHZn6wzcZx/7U5uZJr5azg41nEsVG+vZo02tmrjtNru09YVJHOCB/xiN00vZKXNyijh8Lg0ws1Mui+y7sKJG3fgEz1PY8QW79fBpntgnHHckYO0n9izjz1xx5D127fKbePMA7BWRI45T7F1UYbbYI42da7+dJQ4fiZuCsOcI6mRgB688/lbXvzqrljexfw0tuDkO7yjGfr3xtnfx1bXs46iqInFqGTs5yxN76Ozljth94utzcOiVQnHhUXbz5ls4ZyHOr9wrnptJcxvZz3u1R+3/FxWq8zB2L8PeoXhNMl7WC59WOCOOvc28Xir2fcTeBi7HdYHY2lwiDq9if+M/xs1++EHTEfGCnjg3BuuL6f1QdtnNfZv9eZepsRNwZD/cXsNez6qNFbd4481L8bFo9nto3Vbx6Wx2vMdw/KSEPQ8JNoqdLrPrT/JjxEuG4YL2r8WmEnZ+SDgOm0r3VbPvtmf2v0vCMfVNEb54DzcsxXcs+PgT9v+VGBy2CRvd8cFW7oLXyUJxyHvYZwbefqLrTtTsFQdPx43BuKOTu7HLGc/rKJAG+HI/brS9/H6/WvUqdr+G/au5I+YSfHIhNkTgxFruS90gbByFfz+SIn5q5N74++IbLdyZzrpksdty3CMMtw/BhhG4wJEu7sVd4j5pKret6w7JndKU6fvu90pTbwR3v1uaUs+4U9wvTS1JxNwxTRUM7H7PNDX+AHeLu6ap2g+73zdNRY3sfue0rjunqX+7V//18w9o4zlgAQAAAAAAAAAAgAAAAAAAAKAqAAAAAAAA7CgAAAAAAAA=eF4Vl3c8Fe4XxyUroYwkRVpCKikS4pBREpEkiaLIzEq2a17z4l57r4yM7DLvsfdMKE1KhWxRfPPz+/t5nfO8znmez+e8jwEZKBWbnZC4CDMRPIko39S6WjFBhvjtH26pntC5eLme3eItXxcw3NNJN3ZNwMEGf/asnRQYtWdzcygdp9Jp7RK44twFcfdO53sExuGyLzGwzZ8CTqdKTv0pWKJ2l39d4N3VDRGBG5db/0bh2cpkgUe3o+AdT5xqqxANXndkI5PHu6E7gf3UuQwSVrjdkg+lRMPDIz7vbIqZkNDjPaC01AMGR+2cFNjckDdZLiX3ciz8tzi7j36aA6/yjdmfVOyDXu9L7sPEp/D15AN/3bh4oGPs5HxI4UOP1f5XoY/6wbVr+4aDRxzMVWkcf12WBDOnbYncr0VwTffo5wjNAbD/MvijU/c5VK38Ewt0SwN+p8KZuwcuYKOXu16D6SC0zEbqnTnyCo53EPTsQjNB+t3ztXG3a5hxSYKL5tFrqIh5ABaqbdA+qh0hMpwL3AfvMttvs8PQv3VvBPI7Ye4D281dLxMxl6f4pngEGT4uK3U8Su2kkqMNjUfaOuHJq9iEnq3+S37LOPavkgyNLKPzl1fvooV8uP3/+/97OyNnoGA83iytv512kgKBXeQYwVVrFNlLM4oFXdCe1Mn1KjYac/umPzCuU6DJ+vp/gm5OeDzL682wQzfoSO1sDRgJx5+CXtWeJ6LBQJp+2X+bJ7Zr8twes+sBWgLzwYhHHpi24aXCMRgD+a+03wV0+mBm/sUU3axeMNgrkFx0/gmU6vorXtoZD1mTTkyLiQH4LdOFIZq2H56xOtlzLsdCl3Si8TxtEoCiPmOQSTDSKe2ca2vshwP3zdZLR/NAjrA0EbORCrP3unRp58LQw7bO8ovDAJBy3tMmfHoJ6pfvzqfWZoDP2SnFmu0R6OyT0LIvfQC6N3QiDz5sBh4zi52zitkgM31ipPeANRb+mfPeX98BZXqaH1yDEvCjnOV07XwkyLuM2MTkjVFHhR5w9Ax3QD6tyITYTDxK/epqluIiQ+0HqoVeiBU6VeiYPRDoBPv9tHVVG7H4ZllYMItABtEvA6dTnd2xjPUzSSu+E6JvLgVT7KOQ5kCv2qYMBUqZ5o7qKPqjrHf25zi5Lti9WJS4kRSGamOHP6VdjwKNYLmzu46H4qv92m50O7uBcaWvZuy8C8pNNKoN9ESD8BB3Y5lZJH4tzHzEv9INRXa5lxhLnEGogUbTvz0Wdp5+PdDsFoX9gYHxCtM9YPXi3355pTjY8Hwtlm6QAMEHXOiPrMRg9dPWusnWXmip2rnX5Hge3Ji2TtrMTobvwx/jE+ti8ePYWk7GxT74Nhaz6lReAdXX94/pDaeB4+3wuDQiBT++PP69S6UPSsqcj80+QLCJzE7xYM8EC9H28ZjaexjgyJbecLkd1I6dBrP+WCxlkW5r2hkJATzFhYpp36iXQwXLCXfa4X2dPS2DVCzaR6j83hSOhJyDkbHjjQ448CMevpDbgV+6WWvlVjTu1Cj/qBEQCWP7M1+tZPjipHpOluBMO3wXGxInTkUiQ6pt19NjZHhp9OWE1cEwHJ0UfCxh3AGWd8poxBYC0Uf/ClVjFwWuaqkPObBT8MoXVYeEmQ7wdl+TNNSxw4MlbxOMNKLAw/NMlr9ILCaFHu4f9ugErfWEAPZED/jzU7l4cTYa3jzwrePwTUBe29e5TTRdsOfeHJP/61jw4m4YEt6IBYbTSxNmhkn4lZXE5nOrC567Lbr9/S8b3h7JuNXjnABRRkvrA4cTUSaHiTntURckFOtkFliXAqNp4wtD9WSYnn8RKpNKQeVDqj/2b8UT4i2ODS9XQe/agwdJAmlAw8uolHb5FtZ7Jv/oNWmFIvkVc+VpCrLVx67tGAkH94Fodt6kX9TTQ3RKTx63wtEMb+N6QwoeKWsy+kobAXTUyTTRqKd4Yt01Uj+yFUR29Pw9mBWJdJfLFZTVIoCj5tZ/aTeI+IziGifW2gq7vxyt4PoTikoDVRfVWyKgmdYHx4UicRuXzfdNxjbYo/R8zWabL9IsVYgSXSKB9cCemBNiMVgp814w+lob2Oy7yHDm7H2Us+rbb21NBjJfn/VNhwQkkdqIh4PboMvS2OepEQGYI4+edcumQKf43r0TdsnoWpRwfHdRG+gRp0+dZYwBP69WZvKxaCB+SnZ6rpqCoY4sbxQK2uB5keJhs8pMWFXf6+n+JQYKHV2f0VsnYtZ5ZfnvxDaw0lC44p5WCOKy7Gz0GAd3K+e2FZPIKObj9rXHsg10JI4HaOeXwWU1+aqWhAR4u93ypfoPLdRx8L+ke6oZtD+E9MbEknCz5u/8X+kwoD83sKjuuUj93q5DryXeDBffW787mxOGdMrcb41vh4FqQJvMONEFC3Yqfbp2sRnszMi/mEuDMVTmY1lRZRiE1PwSoTkWhCcqAxL01Jth6FrHEwcNfyxOdLKs0CPBuKAcF8dtMo50+Akp6jcDfD+0yVnogmLNHI6NquFw9OWD5kzrWPz3xSgyzKgZWrp8vET2i6E7YXJjUzkCvBl+LnyzSsTj006rJ280Ax/bS6WHjwgw6p4oG8EVCa3nDY/NtCajcO3Hsusnm2FO5tHkDAsFftEeebewkwy5C9J5hdnJyBnvMNL3qwn+MHA5WXalwh/VE1IPDlIgw9WjZuxdPKZQ3fwYs5sgmHVge5hzNiRILCUHSm7NZxO15YNDEXhe4qutp3cT2L4ozR9Yywd73hz3FfFoaLXzTMtIU8d51/0Hf3Y1wNC33YM6b/2Qn2tVs8okGH6rEF/ddFmhLskua3a1NUCgFqf9TwE/bJSf1o96HAw3Dt4ltfq74PBtfD1V3QCRUsbW18e88XKd05fD0cHAT9qyoB1ByNazRp+Z2QCui6MhG1ZuuCzTJLH2Nhhe7qLfN3WYjOHJxNW9Xg3Ay2HQGz5qhTvGr4TNKYeA+EBIUOy3GLw/2cx650oDSD29FMHlowWlbm9uxX0OgROGR+hH7iYgDJrMWP5DwIiLsfQVHmD7YGN5piAUGk7JfVv6l4jPG8XV9yYjlPr9nJEII0FVcyI7e2YYbHJPc03sT8S6rFN/R0URWAQWTrP/jIUHjlw9kXkkkFroYdw3FYNXAlHobQgVRkdy5yaepYJpV40vW2Q4sJw25u2iCcNsLZEsh1NUGLMTq2BbTAemgWvdnbsiIJhH8ITPsAq+s+6TfNFWD2tnzDwzZJ/iaePq0etORBiaYhJn1lmlFukZ1uUX1kO67y/Vl+pO2GyqLk2wJsI3SZ7yLJunOFbqZfPHqB5m1VOWXW86YLpdpLjGTSIs0+XsfjsVgLoJ3gYxn+pAwfSnj2SnJf4YPfRL8hwRMoLJvWSfCCyX9QzhPVUHSsnViqVKNzGBTViCgYsIbEy61xZzonCsbqN45lotdNHK8xs9NYCD6yILQ5sB4JrStO7/JBbf/+2QunGpBj6axr1o73sKGQl9ffI0RAi6M9pHYx6HIjtzwsh7q2Hy07nJKs4AIGovpA9t5X986YW37UYMNp7SMRv6/Ap2W6/3tGtFgJWN4niKCBEI2p4i1o1kfCbp1144+BLG6FMUCUxRcIVSW5i1mwiTdQ3TfFv1pSkVfpvVewkrwbvWa/kpwF0V5utJCIDag7nJLQaAn2RcJMmXqkFJnMWGiekeyl6WDldI8oMmhRCpjLpV6nAm0zU/rmqQqNH2Z5AzxKDCRiFbdz84Uc28IbZuj1bErlizoCpQv1o7et1OD03zb+yuOOgHs2l/3koH++CDTF8p/9xXQPfjZePZu1eR/feDdzIkX+BIfWwRlxmMGy+679a5v4TmXf+EqlVEwWKREE144wO0x/R7MygR+DRxv+XKnkqYF945vWvcAAgMr2tiGX0gyjPBmPiMjPo3Bg1Vgsqh1cxlW3nNY9hTWhL3U8obVJ5JH2/goOD26nlt8nwpiIbrTAUFuoIhrfOymysBJrQiDMIsI1FE1W4+2LwEjFWTNLVKfOAIYajpULwXLKx+V8mfD8bHEnp3SPzF8IXJsjjyoj84B2f8oGH2hLcX1s8TeD2RTrH1ji/TC9iYnfbQ7nIFv/ikuWBvNzD8o4fZ74TwWYIkyflxJSxMqq7r6EnAs/13NN9t94FsigQumq1R6X+U9k0fqwRZhqMfpv9KArNt9mntTm/I0mX3+QtmaHmU33xYvQI+0CsRRBRkoSHgat4nAW/YfVQyZbnWCRV3Ez5azJVBi4Xh+ieBS6AycuKbLjsBOOrEK1PuEJDGoqji26FS8N7YuE935yosp17vJOt7wPDdKEaS0ZZf6YZ/CNheDDsF/b88n7sBd5QO577hdwVyShyb6+cAbHrcUxJOyIdpute+XgMGMJcatDD+ygmec5iyEMWJGCNjabrvUA742Ev1Xjn7AM7QyifZ+TqAc4dXSHSCHwredI679TAT9MqkLn91soCrhI5iuhFbmBe94vZeyAO7E51+2hSkgZul0mrULmtIS1YiOURbQ8jbAx9GDpvhULugxZWqFIjYRb/L45kscH3d/+3b3CNYvHtYPUxBGrJINTYD1DJoXwyhFq+cheurzXFyVV6wX1nptRjbJJVfUv+StU4Z8Mhp+FwJOAvdr+99ecXiBbdNuhWeHxFApctDC9rcpRBmp+VpdlgcAsOnSIGsHhBy555lBasYzm3/wdPOUQwCLeYfru85DZoNwY/8+l2A7W5+amH1edSlD6n+0PocZHVUhC/VCsJsxu9OLs8nsKF6vekXRQ4lPUrffzbNAqQm2DjmcYHSG6JypL4tqJgERNR0KKAnj2zw0X2JsKDTe4KvlBmdjr86vSPzIcxXpy+R7RQxQ7JM4ud6CLzYudtNR0kUj7dIVRYw6UJs2dSMtbk8zra8snwsYQ3mKx+8qMJSmDQoFmO0dA68Oc+cybA8gfBAM2tDRgvjFMISTV4CzvQr3dFzOYoXz4unB1dcgIeUvC95ncrY9bum9MuYMorQhdsMPDmEm+b72qxCZYAqYsRnztYF2u/2MihNJ2Ak9YoHzTIZnnjLc+qpI9VfwcJJZaoTmI0KBdx0E9Fb6YOCUTcZ8E8zqzA9ler5JoElXa0LRK0PHjyTF4+qAS03jJUoMN5r+0D34ltqZ5uwyW6mLpjnIpnRvErAEItWdtat/PI7Kzve/7uGh3sjhPiauoCdw+3o6Bbv/5jrOfDjJwUkLFsvmRAnqaSXtIfM73cBxzWD/fwtcahXr1xiYU2BeyQjrdLNu7i211iF0bkbzrswBjy2IaPdL4JS1GwUlNr424WkLVCzzMpaL//e2h8DGA3tJKJRlnxnvEg+CliP0vVO+pgiserI/Q7zHrBZX2ePmwhAhVPbCW+NY2A5YerHGbp1qv3a0f/KW7uBfnfnBh17OAq5cC5UPo2G0Gy/kAk2G+RUrc7bF98LV021Fe0J15GxYrWf814c3CE3VGUu0WEyLZQNDvZA4zNGuX/DbriYzLLthXAs/NtkYuAdtsdK5HhYvr0fygMeqz2ihALn+g55ddZEsF9O0d53lQNFz2UNV/H2QTW5/2ToayfopuT+UXKMh1ke/lXTUid8o4FcFu/64Xdvj2cBKQO0HX+niRemQBqDh5n7+CGs9c88vF+zH+7YZNNkGcVBf6H7+cOBSVB14cF2d5IrcsRmN432D4DI045er+kS8LzranRyOB241FZV/iyIYT0l79yxkwMwX9/P//DEc+DWNf+ccycNaJefpxzw8sSmY6uMEe8HIfCA64pUOQJjxO9e3ZZn8MuT6PfTzghXLXU4OvkGwfHf7QE1sVfw/vBcytYqAV6/V47H8RMwj1s0Lbh2EC60VJybPdQKgydT1xNGciBJtNvDYcUSZ0evreyt6gTLH4PbtgcnYvnGk+efUsnQXTow9bL3GnqlFpxZVe2E0512dzd3JSKF/2EKWYsMAYeehNtThqmyVfcK7i12QoGqxqlm1QR8tJQ/PfOLDFaOsgo/b5vi7ocjuSvGnbCyc9vlDbsEfE/rsm/NiQznGLhFQ9se4uWtXaHgQRc0W8VFtlNiUT/oql44iQLGdRY54qn2eP2Z0t1nZZ3wV2wi5D4hDo93X9BV/UkG7kMnSbH1T3B6Lv6d6a5uWJOkbethpiAQo8ovhkSB1bFUIwUOV2R6z8fGfaELitC0MmExCpf7QJT2BQUWr01WfbpEwO/VnN7EhW5QUs4o4uYORCdnnXytpWh4l0qrpdlMwHZBHVevhS4IIPk9ORhJwtKvp/uCX0dBdtdtkmCCPw7YmKlw7OgF4Xjx3xpjt3FS+vSv8Q+xMPPx3iNXgh+GvJ3kev62G0quCYRvLLiiJ0fIEtejGBhmsOVRGg5GHlE2mgtafTB//ojrgnMIuKrjJyvrBLiJst0fTwTirK+MI3lrfy99qXj/gPlTqFUdUHb3j4Phb3EsZ4fDMY3ZxUHeqB8KRPfXDotngB7hZH7Tm2SY/LVQ60sKQUcSR0fevj7Q35vouEM+Dsr1+VuZNBKBs/Dp0BgPGb+Vrb/4zDEADEzDQ0vtJVDdHDaldj4dlJbUE7tOhqGI9R+x1sP9IPDZKJDjWR5czWXqh8UUMIj8/W6vOgXTjPXnmogD0NUUS5t0iQqKeaaCcypZEGft7aBj4IdWkqQuhfB+sJdkz31fXwlM/WyGf7vSYZYj7hkeicRzhWvarCn9kDbnMB4m2gjJfI3mlyKywKTMydCUpIMa+y3ItJ0d8HGlLNV+i7efFId35f2LBM8nesK+pga4/Lpm9TdnB9RGl2zW8cfjqfLzrd9CI8El/ZaUcMcX6qHd57/tWu8AVdZcbiG+eBR95r1/TpkMjTPMFaj4BOPvnXjxQbgDRjbbZit84/DrpMLydGEk5Jhzbz6it8P/5JMrBAw6wTOXIrRmFYP1TI/RbJQMJzP9pi9ne6PHfq65zxYdkLY2wn47MQYDJj5nNnNs5feqk++eJ+D1fUap37f8fYZ6X4B7KhLfXVN056unQJl2lI0tKRDnmoImu4Y6QCdrKTaYn4JaLDuc2nHrfxM1SoniQZj08c5DicwuCJR4TIqZ9kfJ2giTmO3RoPvAMCn7UjiqXw0ctjXpBEmullnGoyH4JuqKyxJSoPlipseZLf7LiX88Eu/RDaoHMr7cIiqh7J8R8SfVMWBppHF/soOM22qO8eXs6gKD2E2V7lVHtOy6ZfzrYDTQ3ORfVLi8pRe1e1xrlj3w6nYPM0tHKCheG9nN+DcOipHx0KxnNFpxi9XI9XSBoARz4W2CG1y68Zmh91cM2H2LbclwjsU9Nj4cyjd6ITxSziKKNQOixhyDZz8mghjbwHwhUyyuzt2WuUHsBguC6OLakS3/7C5VzZWNB/3pwra48Hh0lHzYeXRbH+RMuAusthTDcJXmnmu+qaBmxCFtaByNq7Qy2ov7tvTxa5P0kDcXDjw0NtzBmwSrKZLpCwfj8WvG5exC+T4wEgoY6eGrAekrKdYyM+nQa331qABtAF7vu0LDrdsDct5K9V9ZygFZ5r9d8EgF2ZjQKpwg42R1a9lHjR5QWi4Tq7xdBxaXYXoiNh2MJpfkf85o4Jq/8HSGVjuQc6qqWrJj8UIOSZhpbyRksfTw7c83wXmKa8x2kzbgmy7JTx+MRnvn7eWLARFgfTNC9c/+79Tm7rqAeKd2EP3swedrG4OmrKM/0m5EguzFR88P3fPAanoOwav2bbD79UVOJohGzh03fw6lR4BHvQ1fSd4TfMWdNfayvh3E1NVY599QUDirnWu9LxJeR50l/1IIxAL9iy5HUtvg1FW3LiV7CjI0ZKmPL0VAO5+7AJ+LP+r92CHDKtgB8ZMCaWqLJDzqdiHnBpkMR69UHousisCqys1S88k24Jqr1zl0PAI/ct5IO+8dCctsQm9Ey8NRUmihsfNZB3DOiKl7RXpjhGqIXGMmBSYP9gm5/ovCj8kujwwU22FCp6Rm9yd/tE/rmrh5nQxT2u6ziklR2Gpa07Ui3gk38/cc8b96HXhyzT5m7oqG2Z8tjXWFccj7oO94T147HE54S2H0NkeDM2fTrc0pwLEpVC+0xSsnyGUCvrWdwKomsvPaeBjYtWgtHxyPATmeNlUL+US8bHUDWXdt+UflLS36+17wj+h58+NQFBxkdLpB8y0Rac7/11Ao3AUMzcE+hmzpYBawz+f80Xj4ZVQ2cJuUiI5LeYL6Rh3A+8zxONtqDBRcKJw7HRcDvZN0mfbHklGcvI8wa9QFPyriaqcohVC/KR5a3Z8IvNLu3LKasfhZub+C4t8BpZcH5+pvPQPmz9vvJL2Igxs5X7LvzCagv7b6aw/DLjDcTi08fqYSDC/p1uS0pIDvDMP4sK4/0o1oPNlw7gCb4UsisYnF0L7t+Bsr+kQIjPWLlCOR0a0q9pvV/Q7opL9rc6O7ErxNLD2crZJhOYhh+USXMuo0rSsfMm+F5AQBH9ZWCp4uW7y5ORkOaZ57dzS7mCHBo1pDR6sFbL3dvgtERWK520efslgS3N/d9TpMb5oqnqc/3evVCvKWzkIbOWS0vbLDX/5wBORTfpT9c/XGp9AQJ3q7Bd6/9viQwx6JbbKa63r1JNAQSplmDnRGrrJiv43nrYAGf4XfK0Sg8UzY5lmfCDgmtuFtUxKKaslVNM8ft4DI2T8y/r9I+Pu9QZHPuXCg//jhSopEIMpx2F/cMdkKxTepaiWEQJyaoCP+29IXW0Rc9ZFoCnLK33kdHNkCRRdDXB04g/Ck7Mq4Ik0EHG6fFFqojkTQW9luLtwGhSSVhJpsZ5SurPBv/LnFHDfP3hk7G4ccLyf2Mla1gBRP3ti3Si9U0JMivo2OANeePbZBzTFY9I+ydtaiDWQHHV+stz6A+2xj/m//I8MGk5akRV8ilhoJrRA/tAA3nZV7RY026ly4LcN6b2s+1awV3v24xUPeh9u9E9rg9N+sn4UQBrbvTPxt9aJAjqVuIPxVMkq7xTUvLrXA2IPKk0M2BBjibRpUNybDQJncSp9HMq723bfTLGgDdfXqfUqqKXDuy+ffRqvRwMDl5c9Tn4TPrd0v4/xW/WCzyL7FPWcNZQY1EingdH7Pi69NyUiy2+yN3bqf5MTVvhGRC/hs+7lPXbHQ7WO/5/DfGEztz4/b29sCQXO8P+9tzeVzF1fGqDTRkPCImW5QOwH1iZkbAS5t8ChiWt1UqwRG7VU118vjYShVy/DBqC8+apg4dDu2BdKqhlKjmJ9DTmjh0Bm3GHBhXtKQVYpEAc3Xv/mftkBk/Z2ah6+LISQk4RLb91iwf1NgunFRATvP/pb7dLoZSJWV/LH6JEwA9stBl8LAVHzB/rqVOc7FszRa0TTB4SCvtyWlQfiv99driTchQLaIPzs2MUvVzWrXVznfDIN08/SydqH43mrX6nVCGNx7xv2D9bMP6vVyephtxdt/eMXF+jEQe2necdhNhUCK/DO/n+4uKN3vceSIUjOMRNYuHbsViH+zzNO+/xcGIxf3Mzp2klBpAlQiNhvhlHOb/04IwE4Oxgke0VDIqpK2O8MShJLO3NMW2s2gc690cNjHG69dV46JbiJBaQT56fmeKGwX95X3WG+EFJbk1kNu3kjTf8cyPzUUzmR+EYk4R0aBoZDm0TvNQMORrMr1xQobNoteCbwLh6w1xpmv2vHYyDPK9t9cI0TdI6Zm/+eA4h1GwpPqYfCUxGtB4d3i5UE+jct6zbDYwkxSVrUGUiw7n1ZWBBh7H4yP80hCvKsvc3pkK/5F2d/hOhk4HkoduSJDAs+HP0Xu9yagelDHorN889Z8DfI+khkMDAEah2uJkeA+PGySnJSMwVbcL32fN0KT/5y+laoXLLNOhP+zDgf15uyhUUzCyYVdnkTWZtiz+/M3Jul4qDYYdkuLIIOPh3KndFEi7j1GPNn0sBESLcmNJccjwVboy8u/Nlv6sigxChVLwsqzoixvO5vgm+g20SWpTBDcDOLIL6TATHOeC0EnGlM0i4XlWRvh5Kv9fBxvEuE6/aWj3hci4d2YheyRg3HIMmHyWjyqCdwZnxmbPc2D2usjtZkNUXBA2tixZ8QbNfOO7lCobIDuXSdGuI5lQlIwNS5lc4vvBPcYVuSSkD6hcYgtrAG4bEtPcf3OBltD6uSuDDKs1TdXPvghgzp3LWe9OxqAp7jk3myhH/r0m7JKPQgG/ROLz6IfmWMEeW83NRpB2zKQIRQIaODi+enoz0D4N38n/KDAAjWYtaBjERtAKKGXV1rSF0dT/8nzuAdD6Bstxop+HzR5QbesHYaQZeu/THvdC8UYzv2dmgqE0XmjI0I2zhgsw3iroagBCEMp/N/ZCGhRvD708kUwTGX0UL/5k1DR2lB6xAGh+qeEWm+oG86c/sKisRgIkgb7GztniGigtq27PKIBet5nntVPfoLL+QyruxhCIN7QV6DfJgpfcpYWZFxGKLfw4/5V4Ii9ZRupJ+iD4J4LS5WVaiSGHJ0odjZpADk7h2hP81s4Fr3k/5gYAn78DMo9QXFYed+8iMiMcHmk0uQ+1QQx867CbtEgUNlraixXEY39No1/xI80wEn6CK+K47YgcvXfm2vSoUCnE3irmjsRZ6wudP9+TIWNPaPaspu6kMR8/szvx0FQO3WC3bI/Dm+MHPrk0IOwXDlbF3srACQHEiIv84eB3lzj5w3nRIy56dg9kloPikMVbMINrnC50WvvzeEgOBXV9uUvewI++ywwZfcQgXOxgk0znALZD6gFRsdIkF//NHZuKQ4L4pJ6VHPrwIkwGN+lHgwbAcoJvHeCoTy8+FfGlzg0dZF5nbBChREx4zE15iQoPn9JZkE0HP6dvfLwVhEZM4dvS+cm1YLByjBnGk8U3HNiic/+sfW+XFNqDzKj8KbMr2Y+IyowBk9+l5NKB+ez1/6KbYRDpFzGBdpYTzx/y6KPsbgGTh3e0Tv0Jh5oy470iWmFwJtxtklJ1yB81Ud3lKRcA9NyB60TfROhqTRTfHXrvLrh2mDFmgSumFCkL1fXg6tKh9MVtqeYJa+t+dOaCLbH6qRcrpnhoPNtoTNPaiH55/35G36PkW6WndH+rz9YXYjhlphZpNKLCnbqBdRDkxlnjvXRJ8hgKCI4ZkCEA9ydU9sueGP/atXMea1aOKVG4/iWzwbjVlW/p036g6Rt6UiS8BPsHvNJPX6wHioVd8h+prVDHgYJ7lPyRDCftwqPGQzBQ2ZMZq6TNcDvXrt4odAczfpIn7IL/aHV88fI3JaeuAttXjEG1EHWyaIlRbEHKBDzruw8HxHeMvSl/edBxketyqzBUjVgzZdBLvS+j4mrgryduv6gryEc9bA+DJt1u4tY6mqhQv/m7R+Ce4BrXqP64zYiTN2E/tGVaLzIRJfvcK0aYqYTnhGUFPEVWxsx8JcfCKWa5sSEklFGYofxq7Ya0F9K+GXRag0fMyPb5lYDgBch5/RoLOpqfd62erIKsnoEihTCDAA+cEofIfjB4O1/asPLUUi4N2x0qrAaWgea7Fu7CLBepBeiTU+Eq/wTz2+kxSJDpnkw4+RL0Dm1eDR11AFq6dpMHA/4QaBd+dWu5Gik4QvkI3tUwQszylcOxxD4zTgedekIERSFSnQXB6IwqUTK/1xAJRxTZqs/VuwNNNHrJm0dvuBMKtOq2RWFUTHhn3PuvoJbits3bYPIEKwNBMmzRAgZ5n07f5CELgN/DrcfrwD3A5KHX+QFAZNSD32chy+M3rzCS/gdjszKv0MK4l6CswI/k4h9FNQ+fyBntFW/uT6PihyNM4oKmOyd+lsG6h+X9m5LI4HIBG/07E5fkDalG8uq80FWGnbRdtsyeJG5P/1SUxDQidwtWxLwAR4hQa2RiBPoKB1CpRGthv4Q4h+pdSNM4fZzzwvygyNCRbNdA8ZIZ3Lp/A/pV+A9VD/BmqSOan4d46HnfIEJXgyYD61QYwq5Sr71VgFTeH2TupwBuofTxR256gf2DNkn7bvc8HXW0jX3zZeg927lR+ktNVRv+z6TyeQL1QFqkZoRNvjF+ue+tzxVYDD212yARwePS6Q7Rb72haHuVRmKWQAqKp7v57n+Eg7Hrhtk8l5Cp4xO6Z9EH3g/zs3b+s4De4O8kqw4XsHNhxChte8CCqQvyrw/6Qut/jlJPXlhGLH3uUGORCWUps8dZ3cVRLFJpUuBNd7QyPbzKr29Pzbbev33r70SThXtVJuhXoPKC3nsm+Y+QL6bLajhHokjDQURn6nl8G90N+RwAAz51H07X0YA5o3U/dT8YDx6tLiIQ7MCnKfEl77amoJoB6NyUaI38MJtkmY9GVmmmHuBoQzqXbnkPxzQg3mjUbpqZi8YPUjm0ZkPQ81XdbVXa8uArOHuS9r2BFr/uztVOUyA7kEfY25hMvIm2nX7C5WA7E31ZFN+M2CM+dO7nOgOLGUH7lY5kbDI/3xQ8MlSECnqZ8vlIUDj+DumSUECqIS9uV/UTcLirPaHFQlFkHtqfDnHyR7oDr+stNFxhaHPNj7MziGYMc4h/ra9GH7baXQZPPeDhPK/+Yz/ecL1Pp/B2mk/5Nh5NYvnYj5Ic/tMSFFcYGIkmubsbWfIStl5+1KYHz5K39x24PkL2L138L2WiS8EaTedDJPwgKy9Xe/2ltmgygkJrbSgXMhQ52F76uUObncpK6OuTuCTU96uPeuIFc5abCcu5ECe+pDAe18LiI/lYSV+d4CRHqOdoaRxecOFSmxUq4SZ1j1/WAvOwgErQftj37zhsDuVaXBEFx32TIyo/igHypdw/dwRMXB5GWuq3kaAYBVPlx+aS9R2lrw2QlUFKFmzvZvlPQ+GLyRaXjh4A55j+kX/xRZZGMrI30nl8D1pxqLX/wwINH4l3CIQoH+XwITffT2k3XNc1yClHHSVyr4PvpIDqbRRAaVYAngNnFSdlXXb8ut/9l0BZaD4TE7l/suz8KnQRiDlrhesxX4pSB8zQymm1mGGHWXAv+GvbPCfMvjd2F8qUeMJjAWuHKo7fTDjamFC0/sS0B2V+vDp03kwkH4qklrtDr3b2Me3nbZDczYGqdOcJUCTejHW98J1sEkfyKypcgN75sh1fgV/rE94Wi2n9QIYw9d+VFfKwQvZdMF5OReQcicu9tg8waELmb7ZzYXwo37knN70LZBtHUpOMHcGGUd7rfa8AOQ9s7eM/dBzWH/jY+AZrgQkE8ZgFuEnsMOI0Y+0zxlDr8k8y7+eB+sryjtSLtwH3WAWSzq+J8Ddf/ewVZw//gi+fjImPgskSRmO/b+vwn4lTar+kC3ck+fli7JzRveFG3nMCs/AR1Ph1rF0M1gbsHqodtoeyriOv7jh6I2/NwsnpnNTgO+qwYunr7VhRrLy6gFnc7jef3KWM+UJtjL3T91nzIByJc4YR3Vr8PnnfSO39TFYhTk6S0Y5os1Oy/J9vDHwt3vHh+AremByo8P7zjdjuPe6hmmlzxoD6YJPCe1Og4zPPHqEJFM44MchcO23JXTm86XS3ryBgmZ1JMvxCBhirKAe8tKHtMWwp6ef3wWdyFr5p49v4O+MgvvKDOEgPBe0m7B2CChM1HLtnbeBKVLPaKVECmTOabz8HFwG7staY2qZZ6BiOFfy9T0v0OVt+3i6aBu2RyeOQ2UpdGhlGor3i0Fjw2+ixk5PyLDmOSnoy4sXbXmf5+0pAQd50xoTxlMQK4Wi49ZuQBKOGezZJojiTgO9zC6FMHWnSUVz+jg8jlK5eiLnKVDWTa1T75zCyqdyLCoJOZBZ7KwusZ8Pxgz4Djr9sodvFxbu2LeJ4y6x4ZOq/6VB695hvpWgr/Ka4yx7JsUs4YiXu6oUqwROi3vip/AoeKz+hXL3uAA6LLEPwO17oFlz70RTwTlk3D0wWxbhDfTRgXP2YWewP5+oxyp9FT6rR3xlED+FqQU3T2Uva8LSr4VQb4cLSBfUJp/RzAYP/3tP//b9V+p8b4/POVslVGlb0FB5eACtLhxhLhHjxL89XaePZkjB/wAKJlACAQAAAAAAAAAAgAAAAAAAAFAVAAAAAAAAkg8AAAAAAAA=eF4t13c81d8fB3DJ91tUpGEVLdlZleS+aRhJskLaim6h+squEEJIsleEe6+MUFZm9syeyde3Hy0hKyOV8fM47/vn8/Fyzzmf44/zemvHGtXTdBgwf7TTJ3fuswrnBvgRyp8DnMpMtyu3XMuohGJJdFC1iutp60bQ5UKbxc1wxn5uA7ehDuK7qy9/P+TTCRLFaE51J0FqQRdM+6J1/zgL5kx0woAx+rFsQ3e6exsMi6IX++kR27ZXQxgb+ulx9THxi/kgPttOXP5N4bHjBB3mjlUTU+8MZzsWZ4MWoBOmiikSpyqhnx8txmBz3fG9Af7+WEXMmjX4FzWoDe5EoE/sM9ftFeuEL8poHfc/MlKGXfC/3krihidLQnkBnfDOHk1N8qLbybTBPn70tXD3thfFVWDaUUF8dPCs2/2RPJh6jRaIHxfofk+D421JxHMF0W8mk7MgthBt/uxXmL16BSQ7ol3st0s2UN8Czxp0a6yRgG5MK3y985zYJspmZAdXBzAaEomPax9o0BbvhDIOtNvV/vsvbnbACg0GcaJ+Y3wftEJ2EJ04yvLTyq7wStBkR5tf44jjjHwNyW004v6T5wIubE2AspRHeB9PJjldx1+Bti/TRkHyv0PLwFMcXWel1p0wUwvHA/yInfszhQ7ubgZ6iS/xpJfxFy+t5fuq9iE+P2T7L8fxdriU+ZD47IHGpIqYNsiN8CaWvPNjbvuNJtgU5kVseOO905/icmBt8yRO7o2+VWubA6NuaD0ZRXXBmFhQtbpNHMC+lmVIJx2WjqJ3J1jIu2UVw2KDNXGfwuxPiaIq+HsN2pFa0vBg01vgZ/+HONCkTXXTUBMc7rhJrGgwSXOIaQFb5xvEYh1RanGWzUAVsiL+e3ht/6ZL9eDUZ0F8ec3CEwn/EvAdvE5sLPbV2z48E4Y90DDN5/JdJBLocWeIj9IbyylDScBrg67aO/SizyIPdEZMiH/HNjz7NFQG/evRCz1y/Cs1qqH5uzFxPE12zdkrdSAQYEQ8z1/Pe6KkHvg4DIkzT1xofFxQB79dDIgVuie0vAKrwJpbn/heXPeSYno+cP7RJb4rkv197lQaLD5EFzpoRD9TCIa3RWrE/XOfdiWupoGIP/q0S6VTYnImiCypEmct9a0M8iiASAF0sqXOlwj2Muj6dgTva7p1Yd/FCmi/c5h4KTjNov5cJez4rELsYzjquPCwAuw0lIm5v+Rnf3peAkpvKfi9XAZmgkeywD5Jifj8eMkANDIgUBptIdvzvs/ZB34L7CW2u62irqccCXKj8sRbpT6aWxUmQcxV9EsqcCTuyIRyXzliaqLWgJF3LviayRLfaestXBeXDwasMsRpVcfqQwcKQNV5D/F+paL/luj5UDsuSaz8VqXQQDwHznlJEAsMH3zKiE+CttvixDVdCxOc1tGwfkkM75fjw2A39z1I/S1MfEB99orcWz9w6ECHHWcEqe2LBtNLaIu9ka5Ln2iwjr4L71u952TxyySYf76TmGNPsK0W2wuwd9qB/6+QxElJjTRIldhO/OTprm73zFSY6BEiDrSptzt/KxHykwSJ2znjuP53MBI4qrcSK5RrCDOafEHeAp2naRv/3ccMAh0EiD89DXY8rWULrufQasIO8VpNHkBdgy5MvOxYO+0HH3z5iWmWlxcCqgJB9D8+4mtlk98MJoKhlxPdzD9NPxEWAh+keIk97ey5abLB4KDFg+sp52VuMPCHGvfNxGxHlx5uLneBoKlNxPmD82/631jBdCn6c15dT2LiM0rnVvz9N+NI9wn/WIoWO1piB9u/+ivjKc9bcL0JTzd3nikapdcGrbPF5WO2aizl109czzJQdpit/ynFm4qe75a91mIeTRmt24j3kTA1lM8TQZHag342lXY+ixpI+TdxA/79icygkZpoSqgWuvvT5l+hf9EondJoduvp7a+X32OOw/i++mktPjfbxoAJ5vvMcv+q3sCaEri9Dy1pyX1paDgbuJjvtZj9mN6QcR24C6Jjwgw3drlVAp35fn8cofsOqbWC+Ty+r3W5EVVG0o1wk/me12Tv0jzt2QEF7ZgXSu0YXFPUBneZ7/uGkrtqMv5dwEtHB45ePBNo0gkczPd+WMoglf61C5yt0YYWN71KvbvgD/P9D5PwVGv43QHnD6GnB5UC80s74S2zD2RfsxLcw90MwIN+n1DxX7BJG8wz+0Fa18r3ist9wHQB+4BAks9lq7Eq8GP2Ba4CXlmR3fmgwOwLTuHhBheX+4LwUewDtbYSEe/N6TCj/Zo4/PTo/ni3N7BJEnM78fYVdPls8KFgbqJdSRn7UgszC9gPxkR4NE0aK2Dnasx1KLf2q/xogYJizJ+cUy5wEG+ArJxc4qCyTlGaeAfQLDFfnE492cvTBlfUMWcJbZxeJdYF1LWY19m+Vlt42gGxpTnEIWdXDqm7dYF+MvaNtSPjiwUlnZAviXna5ydcgrEd4H0Mc8PM+5uFFzugMDSbuFtNftL3QRMYzmIf0SyqshN43QrJHJi35IeoWC/3FbFqzOOaTfurxatAmJZFrG73SW3pSB7kOKKnGefdpHppMFbN7C/i+0VUfidAiFEUsXfISlahL0UgGIX5ghbLi5mGTEg+iLnBOL30YWQN6BzB/IRCzkfJm+UgMRhJzOcfdkBifzP4VGDf0RaZm+KRrocblzGn2feYbBdqh8qdmC/EsccPZLTAjYwI4ne8ewoVWTpB1gr7UHMv5VSjVDu8fBdOLDHkNOhg0AmmydiPrNoGePkPdkD6UBjeb/HTkBmfdugcwX5EDdzassurHbb9DMX7/hijnz/QANYnMb+4Psam/kcz1PNhLiZUobt/uU/ZjmKfUhPsTahLqYBj1iHEkqrOfEleuZAqiT5AORT7UyAB3KOwT9mPVxkbDsXBpwUXYo0soV9segVgcwbzOAsBbqvwlzDfg/m3Muo3qnsV9PyL/etKupzKnrES6LPCvMOLU4jPogGui2BuPbChVM+kBqSLnImHVPcq6Fu3wvgR7GvWRa56zVsboaj5HrG8f5e7kXA7aFOwv7Hf8Tl5f1srfM66S2xEOd+pe7MdXISxz/n97R3pvaYNBpzuEMdEhGyYbGiF6zzY71RuZASyWbSCoqITcU/Zr5acQ8t9ZS/2ve/7fpo+utoATtyOxIH0wappmxxgScG+l/r8Q9o19zIol3MgnuN9xfaeLRvEuu2J01fU9nDExoLQaex/Fnu8rj3rj4bYHnNc32dy9cJgLtiswtztQRlPwtNU+J2GueJDTr/8knKws8J+eMUjYpCDsxBYpTA/tjVkqTOvFtb6YV8M0PxwxLG9AnrPmqE3cfVa3m4EsVu3iC/3f9qumF4LF1WvEHvEOgT+Mm2BPlHsly8PCnSl726AyClT4qpW4QWBnhYwb8J+KeW2WlYzvRFm718iZjEV7dVZaARzF0vir6c9tswHNUAA20XiWpnLm/8qr4Zfl7GPXi8pECj4WQM3ks4T088wZDKW+6h8LvbRnJPXR31jikAu9hzxkkPSsT1lL+G5DDp00MxsZLmv9vpgP/VXixDSkg6DBKoOMavWgLvz/zIhVRpzDnrIxq45Buw8gHnPvMCE+HQxsLlif235svo/8M2BwNSTxAyNtNyMM5XQ4Xqa2Nrh4yGWF2+gs0abWMLT+J/T8rVgo4x9988Bv+HXSRVwOPwEsdGGhx8MgutBqBH77nUtLguKaTUwxLSItUtK3x8arod51VPE5ywaL7E9rgH5UE1iDcnbGa0+tZBZi3044vxKq9L4arjyU4N4UWd7KyWyHJS89Yip3+2oI5Pl8M89dWKtK8d+Ty/35eBy7MvDLma1ax1z4Z0J9uP9yinbFp8kw6V+7MOexdU8nQeCYZKOOcsw6wyffQB8XY/99q2TxY5bs6kQo465MpvfcVbRZyA6gP12ka+u5Hl3LtT743q/RRcYcV7pkHQK84WfK6gsMm8g0/0ocV19j8q4fi4cvnWQWNgy+8XcvXI4IYd9vPJOMoPRWAhmFEViWS2xVeWHK+FHxiHim5QBx2fpJbC6QYHYUnHmwTbHSji6Gfv6Gc+drmoiZbC4dz9xt+vTeaGoctDzAWJ9FW675vclcDcM+zifRNKw6NZC6FHE76WnqPuxXS+AWT7s4zHcF9ZJNjHgbyv8HqmaknpZ7gxgm8U+fmplpeNm1gR47Yy2X9chYnrXB7jYcH3eM384YlgfAOtu7OP1/iHROwRpYJqC63tSlTobWoNB/hf2cwVxY/MtxulA/4n93/LgN4O1ljTwc8Rc2nSzrVNENjCY+7dSeXUfhaSCYiL2eRlNOzEzuzwYycL5wJxRlcT68hWkPMJ+Px9uvWKsrgCOHZIm5pA6J+q5PhsSD4oS97pFjcT+KgDW11LERvnFxhdYc8CzajfxlkO676JP5kGAEn6PtEuppv5iFqzXwnmA93a9zAW2TAj6g+cxbDqldKM/A/IncR4w2z3tyn8rGiwUMe9R1Xv68kMCBIzifLBhkzVjMTUEtNzRq+d1j6zbeA9WDeL6ItH/DdndsAHNVpwXgmUeD/X/FQqmUZivWJtfYKroARnpmC8upp1yl4sH6RWYG/ekr5pqCgLhY5gzrrK/eBWeCCt34/xizGZLq0yIgp54nD+agwMZM3Up8IoLz8/aW8ujyh4PehU4f2QKj8q1H0oDvzacZyb6OM46q9BAPm8L8Xa5TtMi7TSodd9GXBjZ+CFlNR0aA3EeUZWVfXKVJwW0D+N5FLy+aq//kgAV13A+cf1cNxlckwBmCnied88DopQexEDqBZxPJmTNO94tz0PbI/A8bH5jhi2pT8A7BueV6h2VQ0KX3GCDPnrnuql5mq8ZsFjg/msjOL6pPzoFrcx5xME9tsi21Rmu78U8/0bx+agTZqDGnE8EonbVlcs/hOi3eL49JjOPVjfbAI05r5SZjJ2SzwsAx72Y17dolNyauQudzPmFcfevj5/3BMOcPZ7fysTEYrbKDWaZ84zrj7T1dVkh0BuL512MMRxPnfAAT+Z8EzO0edVXxxBgFOF51rm+i08JewAjzHmn5PNAqfVQIPB/xf2Sx0e+T8l6gBhz/lkh99oxo80bGErMee3lzrYxA2foY85D/qsm6jVLraD4Pe53Pee25j8VNyGAOR/Nhcq88yw7B03M+ahpa0ToQ81nlDUb8Typ7hG3zrTFUGy/4/ouzoWLs7EJFKUE9FS6KpuCJoNyZT9aNmT9qn9FPCiUl7ifx9eGGla1cEo+L5pd//GqGK9nlFX38PypA4zIF7pPKO5DuH+fAutowO4gyj4ntEK79BbhfTTKK0D/Hwjdksw=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAMgAAAAAAAAA=eF4TfKXbOHN6oa0gGs0ABejio/Kj8qPyo/Kj8qPyo/Kj8qPyo/Kj8qPy5MoDANWzInE=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAIQkAAAAAAAA=eF4N04cjFHwDB/CIosKThwgpnvKQmS3JlyhpSArlIYmTerKKjBTODt0d51B2KVGZZcXPXkc0zKzUE6Uiq2G87+d/+Awu8n09/Ndt0hznWn65mwHLH237/aZaUVyZpHB0JIn8E5p7xkwmDodS5ZYm5dtwdVO9b/lOFrkybSdZ0RqHDBVljZrMNgx3PXThSGMQq5kNX1jt8XCOChUeOsHGy/BUpohGOPnVQtUV0k/A3N2qup2G7Zi+EKtWYHicdAUqV01pJWIwQPqY54UOvB89tG8mNhpHkzQTVIaSQQ26Fd7OfoFMDQrPiGsqktgXk6yZmZhxFvyeXtgJrjeleUt5Gag2H6MR0UK80Xg8s4HRhVbDgIKy/fcg5WpyNy2A4OI/pYcST73EGSGTEdZQMunTCdjMZcNAf9QH8cQjrRCQrq7wfJhE9JRfHUI2A2bD+k8lQ1sRM75kxSPIIiEtn6SWEIc5bSevgJlWHN1VwIMCBln3/rL5H+rx0Fj9kbKH1YbDUuNL99jhpJiXMk2LYUKLPzWm+hIb3TwfJCkdNmSiOF1b0oEFzbw1cYae7VCM+MX9xTcKxap+J790JGFgk28/7+0O3Dv7+ffqpTuwzK3aspCTAZ1b3mpNXS9AVeg1zYlNxwG5juSSPwpw/FG/poxrJ97WlrUqyWRB7fni02SD5zDmynlhkdaJS6ZytarTiURxpzFVmkkHd6rNNbpoC3xEBSl1AywSfXWLZ0QPHQGizr/fmbSAT+lxn2Qgk6wekP5z5AwDIVZSMwP3WzCofOeRuh+dZIT/CjmsEYewJ5O6/+1qxcJthdJk6zCy0ac4muUQj1dnHMWbRlpxur472VvChhyyVs+SnWdiXFyr7HNOG/QynFNMPCKQF7Sp1YIjESv3G1Tj/diYHG8wS2Ymo2903t1nZzpKHvo2Oai0wz3iR5RJeQpOU4plGGcf4yeNd7s3rR0CFc5zRx+k44iA+NyCTyk42HMXDp5vh1OWbSMll0k63gx1hcTQ8Fhfevg4pQkj9cu9Vg3xhO3KXHezjgaRrNPNojFN2Mf5nG9HM4MwheP07FTpMPZ/4vqrpwkWn6fWWGfGkrGPvVWnh+mgqSx/tTRoRuF8xQX+BCpZ3zex7UcXAyX8nQI91c24Ju/yLLfMkriBqdosGI9Rh5yEL0YtwLIS3ZEViu3HeNudcpgwLdZeMClvgdL3n7ZbElnoy9/movDzNlKtT8iuLLdgToqqY/M6Cf1uTIvhyznwiV1W9ZtsAZXys3lu9x1UW3p/So4sQk38YsOHkBYcVCn7r8CLTsjJ5uoX6bHIsCkW0rZowOQG6+06HTQi+EbP9PrXWDRmTwt2uzZA8prhEcGUWDK75su/OrG3IHp4nKckswFOwkVFmYqRpKYy/wW3EQ0HtvS6jn5swNpTXSN52oHk2w1xV94ZGq57PWFZqjXiZZ/kgxhZCyJS4xjf2EuHgHLHiYNejeC/lSpxsCYIHrrS1xbmGbAdtW9JT2yExH5syDWJh0ddg8KuogSopT3LcQtphBwruznvORMBjrvq6WJ38XKsLvKyTCOei76fLtVk4emniCCJpEfA+19821Ib4Dtxro3nZiRx68nbW913E7rG7/5sXlWHk98XB13ZEURVbrMzgysaHyPMXDMF6pBlLOApNB1G9LLtpvntogGJxZR+uTokWyZUhRtSyQ7l8bPCX6IxHCzWd9KkDo97lSqCg33JfXWd8tqyGDzR0mtVtK/Distfpg2Kx4lv1mdLvdZYrIr5OFLjUIexd8Z2nL5+yLY4azDMT4Ovb9Nyx9463Kayn828pEHpnHw82UyHuPbuOJ/3tThXXDOzKZ0OYXrB9aDiFFh/GwiMNq+FnsKNT16nGKDcbjEb/nAXHjQFus3TGrhwjPI5KQUSQTUJv+TxCKzKVx7cH09gfyXmrsHPG4R52aGZNRmB0Zmznx7EERz4IH/AJvI6qXlEV8j8EYHai0Ka+bcIfqRNDETX+xF7jnP5O4Ui8VZxi3B1MAGD52278bAnKb7yTM/FJBKakRxzuo4Eh7OWuldMLUitNbvFPiUSpLA94LssQXrl9va4NR64LyuYPy8UhbXORlvbIqtRuij1tN82HO8sFlQas6JwYMKdsmhfBaMHkelr5W5Ck/yyLZSKx0EHxem3nyrxfs965sj5m1j3e7aEKykZdu2d0T13KtB4+m8x9QA3ohTMFWM4Gwra4KauPZcq0Xs+yCVZxp18DHLK120Pxdcfm/bNGlaiItJco9fXnVTtPikiFhKKtZk3tlVNVsDTUE3/Px83MrTmybKDdChyHE5M1VIqYOrSGbRu/jxJkL3XuL8kBDzz/7BNHpbjlRRNx3vEgtTHcZ71OxQCXV+5l/2PyuAVrDs6lmiPrtEKM/YUFSrL6Uba50uhrei7OHrSH45jbn3D96i4dJAr/2ffU1z/MGSecJyKPBcD71dcEXjoEXs1Q6YE/XsmjCaKgsE0udEbmx6Nxcw/K7rYRWgsuqIq0X2Y2CaJlw38TYWES9PwdflSHC3ZEO9WeYzQ3wmk9XQGYz3/duOVpmdQeJHyeIx6grBnKZxDssHYLVexcQf3M4hctBpR7LMiwlMJYqf3BKGZt8r6zacSpJTlHVt9zYo08XFGXJAMxFYjY605ajFEmjuXuy8fIYvj384pdQVAKe5y3t3Bwv9/9I/U/7YXi6LyDQvu/uC+UnA7d20BBES4xfx2OIPRcLN88Jgvwpxiw5+rPoarXOWtsEBveO7m3XHS5ypGV5+4cyrsIdSntnBWuHvhylitR1ifN14LXJotnb6PK69m+MxidiFXXbbsXlEgOI869nK8KMZFW89Y5RUlcOTYeWTLBEJI7JtX57ZiqPFE2X/d+zfCysQ3Lslcx2f+oKIqdiGi95X4R6uJ4W1Wwl4hQX9s1lmpq36fD4qgilCE7m99KzsrrXpcxeSTna9j+B5BQaWnU4n2XP/rwaP8Z1c8UbY7ZNdy1X2ExWTfMN+6Ff6z/yo5e15CiLHR6ymrTMTk1R/OWm+ALaEiR7Z+c8IqgwXuqHfJkM9nH/s8YoFHRew0FtMeCcJFL79ei0OSxdoKU/PjOEDRatzmaYOCnaqd+pw0/A/X+6m5AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAA4wQAAAAAAAA=eF6t1W00lGkYB3CG1m7ZNmnUaktI25I2W3k5Xq5CSIRFsaoRiWropGaY2awz6GBJJswysvL+tnZGCY0ZZsigSWxSkpKNIfK+ZByj3Q97zn1/2M6e03F//D1fnv99/Z/rMX+b9GoolgTDl9o2Lb6fAIV/z8JoW9cdVhio8zTMXmDebGPNl6ZEA/mpkuFNzFvWu+UouCRAogyuHsDcbru+GjWRCfXu1BUPlpAz7Ti/PWGlgWBPfo8h5r7X6dY+imzwsI/L8pEj/+8z+YHnH3ZFIqM252wYxK9g8fBcihU6F79mMIFc/5LZhr2Pq8qPfAIhCz67ru1btYi8YiIus3VHPjQ85u/LkyEvyDy4aaa9BGwJ7nvSZpF3unbq9cVwIPmpewh1Erl2/nMZr/IWCL9Pf/3lyPLn1VFeOO4D0WBzqfRkHpbX+VyX5bPaGzC1XXmvGMulNhNqp8MvgvDV6kFG75DbR+TFRJK5kEdYKteaQM5Wy5Pf7q6EoitOxpIB5Er0gCfz2nfBurefGNyNfFXfXrLpTgGkt3H8Mu8vf95pN8vBzy//DHdo/rmuWN4ipWtti7w8KJbSbEaweakrmaz2N+fCeT3W5hgsly+/MPmAWxWkZU9w218hn83e2J2sygfd3G9k5Q+Rk8jKrLhiIUSpqm3z4CE/cmb3QvBgA5wfJndbFi5/XotvPSIzSpJBn1Z/dATrbbqwq2SLuBj2h/QyA+eQX3CvFjU7VsKhZxRnMynyXWZ2wTGVtUCydbz5ZztyGqeNH2kugrDSE4Pn7iDXnMndyTG4B/veUNgFGcgPW+WLDgeKIdzbxzOBsfx5axxLaicbUoC6ITqUhuUt8zARO3qUwxHiOe/EaeRSgaZgYLwauN9RdbR6kQftaF8vsxDCMdq8TocAea6rJMtB+R44T3WTjTORbzhhdcZQuxl+0Eg116Mhr1w5ELHNshVmN3h2GJCWP693oHpqqiELfIZS1NdheY8z3jG0LnLB1spk5Vqst/4k1yazdh7sWBhx/+sRcvEauUmTTgMsna7T9ylHzgrdfbzRXAymerp/hEcj/2LQ2JtOaYX3CXfD3I8hD+3cqzl/WgIH5yhz6tbIvSJoOfpGElh8vi5N6cDH38NWxtSU6iwLMqggncT2P4nYe5OztgLod0MIjWPIo/aNuY3P1ILCGoUaZay3AZGUCLpiI7zZ5bTRqAA5/+geIcH/nzl+lc/VpCKXMwvCbVruQ52TrLDMEXlSLP0xr/ABdI+y4nV3IZccilR1kUvg/i1KYr3Zx+flMyTz3JEUuD77zuEiNt9+weTGjoFySA/ZeuoTrM9zvxPzRYM10BNjZa//DLnu2Hhyo4cINEoNmNcqsd5mFGTXDzVBp3bxol4schcreUuaoBV6iFq0Ai+sDydl/IlVD6CauTt+zBQ5dehFVpKfBEydBZ1u2NyjPF+efWjfBKVuWsPyq/9/D9zLddIkUhR0CLPZZdh+fm3gtd+XeAO8Vu40GMX+R8EvB1puOxTDFVHqo2Zsj4lvON8ijldAcJz1cP8o8okUpYCoX2vAz76xXaUHuWs1+6eAzUKIP7yF3lqHfGaBX0Ul3APp7aVeB+x7b7qgMrT6kBiKHFe9lUQh98sRWZQ9F0FVktOpfg5yjU/NfgnqY0Psk+laQ6y3fwNibaDfAQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAApgEAAAAAAAA=eF5jYMAGPthjFR5AcXuhQPu13PPtW5tPfLL+8x6uztbQXdJr6SJ7qZCgpxN+IcQbDl4+Edq1yF6F03XiAiRx7IB099BavKxqJlPYlq32rWIrRBsfIflr6fKfr45tt2c/cOD2tDsIcf/Id0t+MW2055EP637yduj516qa/9sH8wP2yzYq+Pzci3D/7u/X50XZHbCX1zhx5QiSeJeIgewup832F9RcmE+8GHr+fWHvtf2oyRH7DUJ+WzxmItyv236OVff9Iftv7O5LHyxFiLOwnm7PMNxi31UtsqXy2dDz71HlL4tLrI7bv7o2LeJ3OcL9Mjff/n505Ij9j8LVyoWTEeLrL5/sTZm5xd6nsm9//tOh598FXmypc7pO2m8KN2hyiEa4/31nqnY63zF7I777B8paEeJaK1VrJm/ZYv+gVTRCcwj6F5e4w5wMBu4Lx+yfqK+suVGD8Fec+m8NrvQt9jLb/xh9HEb+NZrIfO3ZwWP2dxvumtTUIvy1525Oq6XeZvvDOVKZP4dgeUWq+JWD2e56muvtO56ap134MPz9i0scAOLdGYs=AQAAAAAAAAAAgAAAAAAAAGAJAAAAAAAAWQYAAAAAAAA=eF5Nlns01FsUxzWUG64eGpUeQkrEpZQkjvQYTRRRkUopUaFFGUZcjVieySRz8yjCeF6XaqKYYSZ5JXFTUhHKK+J45DFC99y17jrn/v78rN/av/3d+7v3/vVeqVs1/RMCo2/R7T2hjmUS/z0KxYqGrYhP9de9fczxwdztnaR2CuJVu8z43bHXMY8Sgxt7EK9ean1f4mAk5mU2jLkvZyHYq6G5iBHFxlygn/5BG3H23vw/mzhxmNvSwu46zEBw6pafmcOcBMxDrlePGE1DABZbgzzZZMyVbA91xUxBYKxHW07npmK+dv4edgri10SN1YcjCA+fyyn+V9ccKqvk/oX/6Sr7xK5D+cx5oHp5PYvkOf+WyqlC9F0r6at8CuUu5s/e8E3TxBA8gGGJNRvTMd9NsdGPG4OAm7hv1Wh9NuYx72w8GEMQNFo1qrcF52MuPHTny/I+CFTSP4qLeQ+JXsUsKuszBAy/eMoR3mPMpYXCj5wWpIubKe6rLMJcTvlIZOcABAftB9OnKA8w33Ul53Qa0qsqNXXCAZB+DWtIbalEuiwvvjV+X5KEua+8gqveBASLRr32qvIzMU+jzOYpQwhoAWnBgW4FmGeGWGyt7YQgYVHazKNmHuZmLR1U92YIJP2cmyZVnmJ+py7fKfEFBLJtW9y26Qgwz3iwxkIsgGD71QXjQwZCzJU1qt88R7xk4t29YyaEN6zbLVndC0HEEt1VxWaPMH/MPJNqhfSOWBt3/eofgXlWN3NXH+pXpuTNuuniNMwvqXNWByNdCpIG8meMiK64ZFhQ3458yM+I2WNdiLla6gZx3isIxpJXNMfI8TEPklu0zrYYAkc3KU5YFsnzUq9bs3EGBEfOb55y73qGecHiAzzzeAh6Ab2oQv855uPSNG47FwLt0FdztSF5P+LqEh6zGwKpubWhrnqkzprMsqN9yLc7frMNjM+OwXynRwvbZRyCO8K32WsqszDf/97b0hDF8bQpElXRSRzH3fSUz/UQ6BrudQ/mlWDuk3Oy6+JjCJj5dfxAIxHmpl+9E7gof6XRVJ18LZK/r73D4UgWBAdM0kUHXCox72vi2P3wgaBC7Xvale1VmE965qp5xkKw8v3Aj8/PSRwLZnTZpS4I8htrbpyNJ3kyll33YiK9T+jZJUPPYjE/Qr1oHzUCQa6tQSXdNo/UeRNDVRnNS7dASdA5SOblOHNStQH5ynVj/VLxDtIvy+Fmt62JEKRa1d41lyL5HFO8baTOhGDZSZPz2iok/7Flhxu0HCHgyXQGrDOuwfzhUd0gUwcIUujznJMiCN8k3yZkhEAAw521XORJfdpDqHYbkF7NbHX/WB7R69ATq7AE6bV3Ubh9W5uD+W4TA5nFyLcnWBMs5cvEtxun+my+v4bgjKNVhWF9Meaz50o1HfIgqFw4Y1ChSny1TV3tb9/rEHC8Np8oNyL5/Ix86mNzHIIFXVvt/bxJ/vvGvccVzCDwatyiNHmuFvPpj0viJPdAYBfAvK+pR3jn+mz/Zn8ITJNcJWQbSPyVRdObhpHek+t/aMi4EL3xDNA9hPb/WtbwsNwY0ev31INSjvabI7UlJX8x2W8SCyWeSCHfBpkOWA+OEt9+1bVYoYfmyDnQO8BvTjnp48r0AiUGBPyj+kLKGdLHUgtxRi4dghk213dX9QvMm/s54Wq6EESH+r0pzniJ+YuH3lFlhhDU7g+UOzhD9LZea9X3D4BgE1uyqVtE9Ja7KZ0Xo33Fb3ULMdQh++rW2IT5ZdRfPqt2sqCP+PmOx9qz85CfOwRDKxo6iZ8/BJvQNN9DMP4XNV3U9QRzxRwt9k0eBGoDgzHltmROG1WyptVDkW/jucllPRUkDlWZybVD98JkpjpOQPpbxN4cPrAN+eG0mA9lid5tloJGa9R3Rk/r3WgnojfHWrl35gaq/+FPF17RSPywLoNzDejevRFdpOlsIPeuQZickIv2c4F/aXe0YxDmdjI6Wv3oHn3Rstt5ikruUYjo9usqtMfcP3VWPzIne8w9zKy3ox/5OcnyIXWQ+MGJVl4v/QHNV6ykc9A9Up/wA2v8akrRHS9K+N15NZn37kezLeZo3ken+IUMCpn3TLrst9ogtK88pXvk95M+FkZbnO3Ih8DpvmhH7kdS59CmkRJt5FvFXwz/cG0j/y3/AGDwdg0=AQAAAAAAAAAAgAAAAAAAAPgfAAAAAAAAIwQAAAAAAAA=eF51mEFqHTEQRH2nZO/b5E7JDf4Rsv4rgQMDHwyCLGQUwogJg44Q/EUxdFVXr6zyo9WqHs186eUljx/fP+Pna64X0b8842H4KvqKZvJ00b8946/JP0T/9fYZ/8y80+i6boxzvYgOH3K+ir6imTxddPiQ5x+iw4d83ml07XP0gfUievSB+Sr6imbydNGjD5x/iB594Hmn0fW5hg+5XkTHOOer6CuaydNFhw95/iE6fMjnnUbXfRyfB9aL6Mib81X0Fc3k6aLH54HzD9Hj88DzTqMjGuXH/mG9iB79Zb6KHsecp4se35Ocf4ge35M87zS6vqfjvmC9iA4fcr6KvqKZPF30uC84/xA97guedxpdv0vwIdeL6Cvvw/BV9BXN5OmiY5znH6LDh3zeaXT9Dsf3A+tFdPiQ81X0Fc3k6aKj7jz/ED2+H3jeaXT93QEfcr2IDh9yvoq+opk8XXT4kOcfomOczzuNfv0ff8X3JOtFdPiQ81X0Fc3k6aLH55jzD9HjOnneafLcjC/6/6/POu/Cx33E+TbDF+HXet+Fj/vu4td6f5v8Vfg1/jDrbcI/07/9MfV0s95d+Liv2c/D1D+MP6fw8T3A9Uzjw+01Pu9XcJ8xZh7j/LnYDF+ER9+ZR9+ZR9/z/FV49D1fbxMefc/r6Wa9u/Doe+7nYeofxp9TePQ9r2caH9B3PUes2KjOu/CxDt7fm+GL8LHvF798fggf+875q/Cx77zeJnzsO9fThV+xCx/f2+znYeofwse+X3x8z3M9U3T0Pfp6BfqAMfrOPPrO/IrNnjeZx5h5jJlH3/P8VXj0PV9vEx59z+vpZr27Pecyj77n9Q/jz2nPxXk90/iA/a7nRP5+xv2u5+j8e7sZvgiP+pjHOpmP+13P48zH/a7ndObR97yebta7C4++534epv5h/DmFj79vuZ5pfMD3Xs/F8Anj+J3QewPmV2yGL8LH51LvGZiP69H7B+bjWO8lmEffmUff8/XuwqPvuZ+H8Oh77s8pfPxdx/VM4wPe83oPENfN73m9J2F+xWb4Ijz6zjz6znx8z+t9C/NYf77eJjzGeT3drHcXHn1nPr7n9T4n9+cUHn3P65nGh5u991ixU513c9+C33V8jtnsfRHz6Dvza50P4dH3PH8VHn3P19uEh195PV14jJmPY/bzsPdXzC/utPdazK+YoqPvcZ4r+HwZv++D8uAcx+fRzfBF+LWed+HRd+bj953zV+HR93y9TXj0Pa+nm/XuwqNPuZ+HqX8Yf07h4zmO65nGh5u918I8GKPvzKPvzK/Y7H0g8+g788vnh/Doe56/Co++5+ttwqPveT3drHe395DMox95/cP4c9p7y7yeaXzA77pJ9dxFX7GJvvK+ix5/d/E94Yfo8Jn1Fbvo8Tnmek7R/wO2lrzJAQAAAAAAAAAAgAAAAAAAAAAZAAAAAAAA+AQAAAAAAAA=eF5d11f86HMdx3F/e+89Dw7H3nv+bcdelZUOKSO0yF7tQcMoyjhlFA1SlJFQCJFVshVFRmXvceH1vDi/383z8bv4vK9eN9/JJnv/G8kZc4Y8Mo/Jb+ZR6W7ynCntHJ3H5bfTnrspcua0c2yekKekPXdT5ixp5/j8fJ6WJ6S7qXLWtHNifjG/m/bcTZ2zpZ0v5JfzjLTnbpqcPe18Kb+a30977qbNOdLOV/LreVbaczddzpl2vpYn5Tlpz930OVfa+UaenBPTns70Mk/OnXr7Tp6X30p3epk37ejt1Lwg7bnTy3xpR2+n54/Tnju9zJ929Pa9vCjtudPLAmlHb2fmT9OeO70smHb09oP8edpzp5eF0o7ezs5L0p47vSycdvR2bv4y7bnTyyJpR28/zF+lPXe6G5N2JuaP8vK0pzO9LJaLpt4uzN/m+elOL4unHb39JK9Ke+70Mjbt6O3ivCbtudPLEmlHbz/La9OeO70smXb09ou8Lu2508u4tKO3S/OGtOdOL0ulHb1dln9Me+70snTa0duv86a0504vy6QdvV2Rf0p77sbksmlHb7/JW9OezvSyfC6Xers6b88r051eVkg7evtd/iXtudPLimlHb7/Pu9KeO72slHb0dn3ek/bc6WXltHNd/iH/mvbc6WWVtKO3G/O+tOdOL6umHb3dnPenPXd6WS3t6O2WfDDtudPL6mlHb7flw2nPne7WSDt6+3M+mvZ0ppe1cs3U2535z7wj3ell7bSjt7vzibTnTi/rpB293Zv/Tnvu9LJu2tHb3/KptOdOL+ulHb39PZ9Oe+70sn7a0dsD+Wzac6eXDdKO3h7K/6Y9d3rZMO3o7ZH8f9pzp5fRtKO3x/KFtOdOdxvlaOrtH/lSPpY608smuXHq7V/5aj6e7vSyadrR25P5etpzp5fN0o7e/pNvpj13etk87ejtmXw77bnTyxZpR2/P5btpz51etkw7evtfjvRgs+dOL+PTjt6ezym6t+dOL1ulHb29mFN1b8/daG6ddvT2ck7Tvb3R1N02aUdvr+R03dvTmV62y21Tb2/kjN2/1r87vWyfdvT2Vs7cvT13etkh7ejtnZy1e3vu9LJj2tGbh/rsac+dXnZKO3qbvLs5PfjTnV52Tjt6mzLnTnvu9LJL2tHb1DnvYM+dXj6QdvQ2bc4/2HOnlw+mHb1NnwsO9tzp7kNpR28z5MKDPZ3pZbfcNfU2Sy6aM41MeqeX3dOO3mbLxQd77vSyR9rR2xy5xGDPnV72TDt6myvHDfbc6eXDaUdv8+TSgz13etkr7ehtvlx2sOdOLx9JO3pbIJcf7LnTy4S0o7eFcsXBnju97J0TUm+L5MqDPXe62yft6G1MrjrY05le9s2Ppt7G5hq52Mikd3r5WNrR25K51mDPnV4+nnb0tlSuM9hzp5f90o7elsn1Bnvu9LJ/2tHbcrnBYM+dXg5IO3pbIUcHe+70cmDa0dtKufFgz92E/ETa0dsquelgz93eeVDa0dtquflgz53uDk47els9txzs6Uwvn8xDUm9r59a55sikd3r5VNrR27q5zWDPnV4+nXb0tn5uO9hzp5fPpB29bZjbDfbc6eWzaUdvG+X2gz13ejk07ehtk9xhsOdOL4elHb1tljsO9tzp5XNpR29b5E6DPXd6OTzt6G187jzYc6e7I9KO3rbKXQZ77wEQhC2+AQAAAAAAAAAAgAAAAAAAACADAAAAAAAApgAAAAAAAAA=eF4txRFghAAAAMC2SRiGYRg+huFjGIZhGIZh+BiGYRiGYfgYhoPu5MLgETl24tSZX85d+O3SlWs3bt259+DRH0+evXj15t2HT399+Xbw8xQ6cuzEqTO/nLvw26Ur127cunPvwaM/njx78erNuw+f/vry7eD3KXTk2IlTZ345d+G3S1eu3bh1596DR388efbi1Zt3Hz799eXbwd9T6MixE/8DLbMvQA==AQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF4TF6c9AADGKQj9
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1.gml b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1.gml
new file mode 100644
index 00000000000..4a8339c9302
--- /dev/null
+++ b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1.gml
@@ -0,0 +1,31 @@
+<?xml version="1.0" encoding="ISO-8859-1"?>
+<?xml-stylesheet type="text/xsl" href="OpenGeoSysGLI.xsl"?>
+
+<OpenGeoSysGLI xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ogs="http://www.opengeosys.org">
+    <name>square_1x1_geometry</name>
+    <points>
+        <point id="0" x="0" y="0" z="0" name="origin"/>
+        <point id="1" x="0" y="1" z="0"/>
+        <point id="2" x="0.707107" y="0" z="-0.707107"/>
+        <point id="3" x="0.707107" y="1" z="-0.707107"/>
+    </points>
+
+    <polylines>
+        <polyline id="0" name="left">
+            <pnt>0</pnt>
+            <pnt>1</pnt>
+        </polyline>
+        <polyline id="1" name="right">
+            <pnt>2</pnt>
+            <pnt>3</pnt>
+        </polyline>
+        <polyline id="2" name="bottom">
+            <pnt>0</pnt>
+            <pnt>2</pnt>
+        </polyline>
+        <polyline id="3" name="top">
+            <pnt>1</pnt>
+            <pnt>3</pnt>
+        </polyline>
+    </polylines>
+</OpenGeoSysGLI>
diff --git a/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1_quad8_1e2.vtu b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1_quad8_1e2.vtu
new file mode 100644
index 00000000000..98443920621
--- /dev/null
+++ b/Tests/Data/HydroMechanics/Linear/Gravity/RotatedAroundVerticalAxis/square_1x1_quad8_1e2.vtu
@@ -0,0 +1,48 @@
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64">
+  <UnstructuredGrid>
+    <Piece NumberOfPoints="341" NumberOfCells="100">
+      <PointData>
+      </PointData>
+      <CellData>
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="binary" RangeMin="0" RangeMax="1.4142135623730951">
+          +B8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKY/9RGBqyPwAAAAAAAAAAC2P/URgasr8KY/9RGBrCPwAAAAAAAAAAC2P/URgawr+OFP96JCfLPwAAAAAAAAAAjxT/eiQny78KY/9RGBrSPwAAAAAAAAAAC2P/URga0r/MO39mnqDWPwAAAAAAAAAAzTt/Zp6g1r+OFP96JCfbPwAAAAAAAAAAjxT/eiQn279Q7X6Pqq3fPwAAAAAAAAAAUu1+j6qt378KY/9RGBriPwAAAAAAAAAAC2P/URga4r9rTz9cW13kPwAAAAAAAAAAbE8/XFtd5L/MO39mnqDmPwAAAAAAAAAAzTt/Zp6g5r8AAAAAAAAAAJqZmZmZmbk/AAAAAAAAAAAKY/9RGBqyP5qZmZmZmbk/C2P/URgasr8KY/9RGBrCP5qZmZmZmbk/C2P/URgawr+OFP96JCfLP5qZmZmZmbk/jxT/eiQny78KY/9RGBrSP5qZmZmZmbk/C2P/URga0r/MO39mnqDWP5qZmZmZmbk/zTt/Zp6g1r+OFP96JCfbP5qZmZmZmbk/jxT/eiQn279Q7X6Pqq3fP5qZmZmZmbk/Uu1+j6qt378KY/9RGBriP5qZmZmZmbk/C2P/URga4r9rTz9cW13kP5qZmZmZmbk/bE8/XFtd5L/MO39mnqDmP5qZmZmZmbk/zTt/Zp6g5r8AAAAAAAAAAJqZmZmZmck/AAAAAAAAAAAKY/9RGBqyP5qZmZmZmck/C2P/URgasr8KY/9RGBrCP5qZmZmZmck/C2P/URgawr+OFP96JCfLP5qZmZmZmck/jxT/eiQny78KY/9RGBrSP5qZmZmZmck/C2P/URga0r/MO39mnqDWP5qZmZmZmck/zTt/Zp6g1r+OFP96JCfbP5qZmZmZmck/jxT/eiQn279Q7X6Pqq3fP5qZmZmZmck/Uu1+j6qt378KY/9RGBriP5qZmZmZmck/C2P/URga4r9rTz9cW13kP5qZmZmZmck/bE8/XFtd5L/MO39mnqDmP5qZmZmZmck/zTt/Zp6g5r8AAAAAAAAAADMzMzMzM9M/AAAAAAAAAAAKY/9RGBqyPzMzMzMzM9M/C2P/URgasr8KY/9RGBrCPzMzMzMzM9M/C2P/URgawr+OFP96JCfLPzMzMzMzM9M/jxT/eiQny78KY/9RGBrSPzMzMzMzM9M/C2P/URga0r/MO39mnqDWPzMzMzMzM9M/zTt/Zp6g1r+OFP96JCfbPzMzMzMzM9M/jxT/eiQn279Q7X6Pqq3fPzMzMzMzM9M/Uu1+j6qt378KY/9RGBriPzMzMzMzM9M/C2P/URga4r9rTz9cW13kPzMzMzMzM9M/bE8/XFtd5L/MO39mnqDmPzMzMzMzM9M/zTt/Zp6g5r8AAAAAAAAAAJqZmZmZmdk/AAAAAAAAAAAKY/9RGBqyP5qZmZmZmdk/C2P/URgasr8KY/9RGBrCP5qZmZmZmdk/C2P/URgawr+OFP96JCfLP5qZmZmZmdk/jxT/eiQny78KY/9RGBrSP5qZmZmZmdk/C2P/URga0r/MO39mnqDWP5qZmZmZmdk/zTt/Zp6g1r+OFP96JCfbP5qZmZmZmdk/jxT/eiQn279Q7X6Pqq3fP5qZmZmZmdk/Uu1+j6qt378KY/9RGBriP5qZmZmZmdk/C2P/URga4r9rTz9cW13kP5qZmZmZmdk/bE8/XFtd5L/MO39mnqDmP5qZmZmZmdk/zTt/Zp6g5r8AAAAAAAAAAAAAAAAAAOA/AAAAAAAAAAAKY/9RGBqyPwAAAAAAAOA/C2P/URgasr8KY/9RGBrCPwAAAAAAAOA/C2P/URgawr+OFP96JCfLPwAAAAAAAOA/jxT/eiQny78KY/9RGBrSPwAAAAAAAOA/C2P/URga0r/MO39mnqDWPwAAAAAAAOA/zTt/Zp6g1r+OFP96JCfbPwAAAAAAAOA/jxT/eiQn279Q7X6Pqq3fPwAAAAAAAOA/Uu1+j6qt378KY/9RGBriPwAAAAAAAOA/C2P/URga4r9rTz9cW13kPwAAAAAAAOA/bE8/XFtd5L/MO39mnqDmPwAAAAAAAOA/zTt/Zp6g5r8AAAAAAAAAADMzMzMzM+M/AAAAAAAAAAAKY/9RGBqyPzMzMzMzM+M/C2P/URgasr8KY/9RGBrCPzMzMzMzM+M/C2P/URgawr+OFP96JCfLPzMzMzMzM+M/jxT/eiQny78KY/9RGBrSPzMzMzMzM+M/C2P/URga0r/MO39mnqDWPzMzMzMzM+M/zTt/Zp6g1r+OFP96JCfbPzMzMzMzM+M/jxT/eiQn279Q7X6Pqq3fPzMzMzMzM+M/Uu1+j6qt378KY/9RGBriPzMzMzMzM+M/C2P/URga4r9rTz9cW13kPzMzMzMzM+M/bE8/XFtd5L/MO39mnqDmPzMzMzMzM+M/zTt/Zp6g5r8AAAAAAAAAAGZmZmZmZuY/AAAAAAAAAAAKY/9RGBqyP2ZmZmZmZuY/C2P/URgasr8KY/9RGBrCP2ZmZmZmZuY/C2P/URgawr+OFP96JCfLP2ZmZmZmZuY/jxT/eiQny78KY/9RGBrSP2ZmZmZmZuY/C2P/URga0r/MO39mnqDWP2ZmZmZmZuY/zTt/Zp6g1r+OFP96JCfbP2ZmZmZmZuY/jxT/eiQn279Q7X6Pqq3fP2ZmZmZmZuY/Uu1+j6qt378KY/9RGBriP2ZmZmZmZuY/C2P/URga4r9rTz9cW13kP2ZmZmZmZuY/bE8/XFtd5L/MO39mnqDmP2ZmZmZmZuY/zTt/Zp6g5r8AAAAAAAAAAJqZmZmZmek/AAAAAAAAAAAKY/9RGBqyP5qZmZmZmek/C2P/URgasr8KY/9RGBrCP5qZmZmZmek/C2P/URgawr+OFP96JCfLP5qZmZmZmek/jxT/eiQny78KY/9RGBrSP5qZmZmZmek/C2P/URga0r/MO39mnqDWP5qZmZmZmek/zTt/Zp6g1r+OFP96JCfbP5qZmZmZmek/jxT/eiQn279Q7X6Pqq3fP5qZmZmZmek/Uu1+j6qt378KY/9RGBriP5qZmZmZmek/C2P/URga4r9rTz9cW13kP5qZmZmZmek/bE8/XFtd5L/MO39mnqDmP5qZmZmZmek/zTt/Zp6g5r8AAAAAAAAAAM3MzMzMzOw/AAAAAAAAAAAKY/9RGBqyP83MzMzMzOw/C2P/URgasr8KY/9RGBrCP83MzMzMzOw/C2P/URgawr+OFP96JCfLP83MzMzMzOw/jxT/eiQny78KY/9RGBrSP83MzMzMzOw/C2P/URga0r/MO39mnqDWP83MzMzMzOw/zTt/Zp6g1r+OFP96JCfbP83MzMzMzOw/jxT/eiQn279Q7X6Pqq3fP83MzMzMzOw/Uu1+j6qt378KY/9RGBriP83MzMzMzOw/C2P/URga4r9rTz9cW13kP83MzMzMzOw/bE8/XFtd5L/MO39mnqDmP83MzMzMzOw/zTt/Zp6g5r8AAAAAAAAAAAAAAAAAAPA/AAAAAAAAAAAKY/9RGBqyPwAAAAAAAPA/C2P/URgasr8KY/9RGBrCPwAAAAAAAPA/C2P/URgawr+OFP96JCfLPwAAAAAAAPA/jxT/eiQny78KY/9RGBrSPwAAAAAAAPA/C2P/URga0r/MO39mnqDWPwAAAAAAAPA/zTt/Zp6g1r+OFP96JCfbPwAAAAAAAPA/jxT/eiQn279Q7X6Pqq3fPwAAAAAAAPA/Uu1+j6qt378KY/9RGBriPwAAAAAAAPA/C2P/URga4r9rTz9cW13kPwAAAAAAAPA/bE8/XFtd5L/MO39mnqDmPwAAAAAAAPA/zTt/Zp6g5r8KY/9RGBqiPwAAAAAAAAAAC2P/URgaor8AAAAAAAAAAJqZmZmZmak/AAAAAAAAAACQFP96JCe7PwAAAAAAAAAAkRT/eiQnu78KY/9RGBqyP5qZmZmZmak/C2P/URgasr/MO39mnqDGPwAAAAAAAAAAzTt/Zp6gxr8KY/9RGBrCP5qZmZmZmak/C2P/URgawr9Q7X6Pqq3PPwAAAAAAAAAAUu1+j6qtz7+OFP96JCfLP5qZmZmZmak/jxT/eiQny79rTz9cW13UPwAAAAAAAAAAbE8/XFtd1L8KY/9RGBrSP5qZmZmZmak/C2P/URga0r8uKL9w4ePYPwAAAAAAAAAALyi/cOHj2L/MO39mnqDWP5qZmZmZmak/zTt/Zp6g1r/uAD+FZ2rdPwAAAAAAAAAA8AA/hWdq3b+OFP96JCfbP5qZmZmZmak/jxT/eiQn27/ZbN/MdvjgPwAAAAAAAAAA2mzfzHb44L9Q7X6Pqq3fP5qZmZmZmak/Uu1+j6qt3787WR/XuTvjPwAAAAAAAAAAPFkf17k7478KY/9RGBriP5qZmZmZmak/C2P/URga4r+bRV/h/H7lPwAAAAAAAAAAnEVf4fx+5b9rTz9cW13kP5qZmZmZmak/bE8/XFtd5L/MO39mnqDmP5qZmZmZmak/zTt/Zp6g5r8KY/9RGBqiP5qZmZmZmbk/C2P/URgaor8AAAAAAAAAADQzMzMzM8M/AAAAAAAAAACQFP96JCe7P5qZmZmZmbk/kRT/eiQnu78KY/9RGBqyPzQzMzMzM8M/C2P/URgasr/MO39mnqDGP5qZmZmZmbk/zTt/Zp6gxr8KY/9RGBrCPzQzMzMzM8M/C2P/URgawr9Q7X6Pqq3PP5qZmZmZmbk/Uu1+j6qtz7+OFP96JCfLPzQzMzMzM8M/jxT/eiQny79rTz9cW13UP5qZmZmZmbk/bE8/XFtd1L8KY/9RGBrSPzQzMzMzM8M/C2P/URga0r8uKL9w4ePYP5qZmZmZmbk/Lyi/cOHj2L/MO39mnqDWPzQzMzMzM8M/zTt/Zp6g1r/uAD+FZ2rdP5qZmZmZmbk/8AA/hWdq3b+OFP96JCfbPzQzMzMzM8M/jxT/eiQn27/ZbN/MdvjgP5qZmZmZmbk/2mzfzHb44L9Q7X6Pqq3fPzQzMzMzM8M/Uu1+j6qt3787WR/XuTvjP5qZmZmZmbk/PFkf17k7478KY/9RGBriPzQzMzMzM8M/C2P/URga4r+bRV/h/H7lP5qZmZmZmbk/nEVf4fx+5b9rTz9cW13kPzQzMzMzM8M/bE8/XFtd5L/MO39mnqDmPzQzMzMzM8M/zTt/Zp6g5r8KY/9RGBqiP5qZmZmZmck/C2P/URgaor8AAAAAAAAAAAAAAAAAANA/AAAAAAAAAACQFP96JCe7P5qZmZmZmck/kRT/eiQnu78KY/9RGBqyPwAAAAAAANA/C2P/URgasr/MO39mnqDGP5qZmZmZmck/zTt/Zp6gxr8KY/9RGBrCPwAAAAAAANA/C2P/URgawr9Q7X6Pqq3PP5qZmZmZmck/Uu1+j6qtz7+OFP96JCfLPwAAAAAAANA/jxT/eiQny79rTz9cW13UP5qZmZmZmck/bE8/XFtd1L8KY/9RGBrSPwAAAAAAANA/C2P/URga0r8uKL9w4ePYP5qZmZmZmck/Lyi/cOHj2L/MO39mnqDWPwAAAAAAANA/zTt/Zp6g1r/uAD+FZ2rdP5qZmZmZmck/8AA/hWdq3b+OFP96JCfbPwAAAAAAANA/jxT/eiQn27/ZbN/MdvjgP5qZmZmZmck/2mzfzHb44L9Q7X6Pqq3fPwAAAAAAANA/Uu1+j6qt3787WR/XuTvjP5qZmZmZmck/PFkf17k7478KY/9RGBriPwAAAAAAANA/C2P/URga4r+bRV/h/H7lP5qZmZmZmck/nEVf4fx+5b9rTz9cW13kPwAAAAAAANA/bE8/XFtd5L/MO39mnqDmPwAAAAAAANA/zTt/Zp6g5r8KY/9RGBqiPzMzMzMzM9M/C2P/URgaor8AAAAAAAAAAGZmZmZmZtY/AAAAAAAAAACQFP96JCe7PzMzMzMzM9M/kRT/eiQnu78KY/9RGBqyP2ZmZmZmZtY/C2P/URgasr/MO39mnqDGPzMzMzMzM9M/zTt/Zp6gxr8KY/9RGBrCP2ZmZmZmZtY/C2P/URgawr9Q7X6Pqq3PPzMzMzMzM9M/Uu1+j6qtz7+OFP96JCfLP2ZmZmZmZtY/jxT/eiQny79rTz9cW13UPzMzMzMzM9M/bE8/XFtd1L8KY/9RGBrSP2ZmZmZmZtY/C2P/URga0r8uKL9w4ePYPzMzMzMzM9M/Lyi/cOHj2L/MO39mnqDWP2ZmZmZmZtY/zTt/Zp6g1r/uAD+FZ2rdPzMzMzMzM9M/8AA/hWdq3b+OFP96JCfbP2ZmZmZmZtY/jxT/eiQn27/ZbN/MdvjgPzMzMzMzM9M/2mzfzHb44L9Q7X6Pqq3fP2ZmZmZmZtY/Uu1+j6qt3787WR/XuTvjPzMzMzMzM9M/PFkf17k7478KY/9RGBriP2ZmZmZmZtY/C2P/URga4r+bRV/h/H7lPzMzMzMzM9M/nEVf4fx+5b9rTz9cW13kP2ZmZmZmZtY/bE8/XFtd5L/MO39mnqDmP2ZmZmZmZtY/zTt/Zp6g5r8KY/9RGBqiP5qZmZmZmdk/C2P/URgaor8AAAAAAAAAAM3MzMzMzNw/AAAAAAAAAACQFP96JCe7P5qZmZmZmdk/kRT/eiQnu78KY/9RGBqyP83MzMzMzNw/C2P/URgasr/MO39mnqDGP5qZmZmZmdk/zTt/Zp6gxr8KY/9RGBrCP83MzMzMzNw/C2P/URgawr9Q7X6Pqq3PP5qZmZmZmdk/Uu1+j6qtz7+OFP96JCfLP83MzMzMzNw/jxT/eiQny79rTz9cW13UP5qZmZmZmdk/bE8/XFtd1L8KY/9RGBrSP83MzMzMzNw/C2P/URga0r8uKL9w4ePYP5qZmZmZmdk/Lyi/cOHj2L/MO39mnqDWP83MzMzMzNw/zTt/Zp6g1r/uAD+FZ2rdP5qZmZmZmdk/8AA/hWdq3b+OFP96JCfbP83MzMzMzNw/jxT/eiQn27/ZbN/MdvjgP5qZmZmZmdk/2mzfzHb44L9Q7X6Pqq3fP83MzMzMzNw/Uu1+j6qt3787WR/XuTvjP5qZmZmZmdk/PFkf17k7478KY/9RGBriP83MzMzMzNw/C2P/URga4r+bRV/h/H7lP5qZmZmZmdk/nEVf4fx+5b9rTz9cW13kP83MzMzMzNw/bE8/XFtd5L/MO39mnqDmP83MzMzMzNw/zTt/Zp6g5r8KY/9RGBqiPwAAAAAAAOA/C2P/URgaor8AAAAAAAAAAJqZmZmZmeE/AAAAAAAAAACQFP96JCe7PwAAAAAAAOA/kRT/eiQnu78KY/9RGBqyP5qZmZmZmeE/C2P/URgasr/MO39mnqDGPwAAAAAAAOA/zTt/Zp6gxr8KY/9RGBrCP5qZmZmZmeE/C2P/URgawr9Q7X6Pqq3PPwAAAAAAAOA/Uu1+j6qtz7+OFP96JCfLP5qZmZmZmeE/jxT/eiQny79rTz9cW13UPwAAAAAAAOA/bE8/XFtd1L8KY/9RGBrSP5qZmZmZmeE/C2P/URga0r8uKL9w4ePYPwAAAAAAAOA/Lyi/cOHj2L/MO39mnqDWP5qZmZmZmeE/zTt/Zp6g1r/uAD+FZ2rdPwAAAAAAAOA/8AA/hWdq3b+OFP96JCfbP5qZmZmZmeE/jxT/eiQn27/ZbN/MdvjgPwAAAAAAAOA/2mzfzHb44L9Q7X6Pqq3fP5qZmZmZmeE/Uu1+j6qt3787WR/XuTvjPwAAAAAAAOA/PFkf17k7478KY/9RGBriP5qZmZmZmeE/C2P/URga4r+bRV/h/H7lPwAAAAAAAOA/nEVf4fx+5b9rTz9cW13kP5qZmZmZmeE/bE8/XFtd5L/MO39mnqDmP5qZmZmZmeE/zTt/Zp6g5r8KY/9RGBqiPzMzMzMzM+M/C2P/URgaor8AAAAAAAAAAMzMzMzMzOQ/AAAAAAAAAACQFP96JCe7PzMzMzMzM+M/kRT/eiQnu78KY/9RGBqyP8zMzMzMzOQ/C2P/URgasr/MO39mnqDGPzMzMzMzM+M/zTt/Zp6gxr8KY/9RGBrCP8zMzMzMzOQ/C2P/URgawr9Q7X6Pqq3PPzMzMzMzM+M/Uu1+j6qtz7+OFP96JCfLP8zMzMzMzOQ/jxT/eiQny79rTz9cW13UPzMzMzMzM+M/bE8/XFtd1L8KY/9RGBrSP8zMzMzMzOQ/C2P/URga0r8uKL9w4ePYPzMzMzMzM+M/Lyi/cOHj2L/MO39mnqDWP8zMzMzMzOQ/zTt/Zp6g1r/uAD+FZ2rdPzMzMzMzM+M/8AA/hWdq3b+OFP96JCfbP8zMzMzMzOQ/jxT/eiQn27/ZbN/MdvjgPzMzMzMzM+M/2mzfzHb44L9Q7X6Pqq3fP8zMzMzMzOQ/Uu1+j6qt3787WR/XuTvjPzMzMzMzM+M/PFkf17k7478KY/9RGBriP8zMzMzMzOQ/C2P/URga4r+bRV/h/H7lPzMzMzMzM+M/nEVf4fx+5b9rTz9cW13kP8zMzMzMzOQ/bE8/XFtd5L/MO39mnqDmP8zMzMzMzOQ/zTt/Zp6g5r8KY/9RGBqiP2ZmZmZmZuY/C2P/URgaor8AAAAAAAAAAAAAAAAAAOg/AAAAAAAAAACQFP96JCe7P2ZmZmZmZuY/kRT/eiQnu78KY/9RGBqyPwAAAAAAAOg/C2P/URgasr/MO39mnqDGP2ZmZmZmZuY/zTt/Zp6gxr8KY/9RGBrCPwAAAAAAAOg/C2P/URgawr9Q7X6Pqq3PP2ZmZmZmZuY/Uu1+j6qtz7+OFP96JCfLPwAAAAAAAOg/jxT/eiQny79rTz9cW13UP2ZmZmZmZuY/bE8/XFtd1L8KY/9RGBrSPwAAAAAAAOg/C2P/URga0r8uKL9w4ePYP2ZmZmZmZuY/Lyi/cOHj2L/MO39mnqDWPwAAAAAAAOg/zTt/Zp6g1r/uAD+FZ2rdP2ZmZmZmZuY/8AA/hWdq3b+OFP96JCfbPwAAAAAAAOg/jxT/eiQn27/ZbN/MdvjgP2ZmZmZmZuY/2mzfzHb44L9Q7X6Pqq3fPwAAAAAAAOg/Uu1+j6qt3787WR/XuTvjP2ZmZmZmZuY/PFkf17k7478KY/9RGBriPwAAAAAAAOg/C2P/URga4r+bRV/h/H7lP2ZmZmZmZuY/nEVf4fx+5b9rTz9cW13kPwAAAAAAAOg/bE8/XFtd5L/MO39mnqDmPwAAAAAAAOg/zTt/Zp6g5r8KY/9RGBqiP5qZmZmZmek/C2P/URgaor8AAAAAAAAAADQzMzMzM+s/AAAAAAAAAACQFP96JCe7P5qZmZmZmek/kRT/eiQnu78KY/9RGBqyPzQzMzMzM+s/C2P/URgasr/MO39mnqDGP5qZmZmZmek/zTt/Zp6gxr8KY/9RGBrCPzQzMzMzM+s/C2P/URgawr9Q7X6Pqq3PP5qZmZmZmek/Uu1+j6qtz7+OFP96JCfLPzQzMzMzM+s/jxT/eiQny79rTz9cW13UP5qZmZmZmek/bE8/XFtd1L8KY/9RGBrSPzQzMzMzM+s/C2P/URga0r8uKL9w4ePYP5qZmZmZmek/Lyi/cOHj2L/MO39mnqDWPzQzMzMzM+s/zTt/Zp6g1r/uAD+FZ2rdP5qZmZmZmek/8AA/hWdq3b+OFP96JCfbPzQzMzMzM+s/jxT/eiQn27/ZbN/MdvjgP5qZmZmZmek/2mzfzHb44L9Q7X6Pqq3fPzQzMzMzM+s/Uu1+j6qt3787WR/XuTvjP5qZmZmZmek/PFkf17k7478KY/9RGBriPzQzMzMzM+s/C2P/URga4r+bRV/h/H7lP5qZmZmZmek/nEVf4fx+5b9rTz9cW13kPzQzMzMzM+s/bE8/XFtd5L/MO39mnqDmPzQzMzMzM+s/zTt/Zp6g5r8KY/9RGBqiP83MzMzMzOw/C2P/URgaor8AAAAAAAAAAGZmZmZmZu4/AAAAAAAAAACQFP96JCe7P83MzMzMzOw/kRT/eiQnu78KY/9RGBqyP2ZmZmZmZu4/C2P/URgasr/MO39mnqDGP83MzMzMzOw/zTt/Zp6gxr8KY/9RGBrCP2ZmZmZmZu4/C2P/URgawr9Q7X6Pqq3PP83MzMzMzOw/Uu1+j6qtz7+OFP96JCfLP2ZmZmZmZu4/jxT/eiQny79rTz9cW13UP83MzMzMzOw/bE8/XFtd1L8KY/9RGBrSP2ZmZmZmZu4/C2P/URga0r8uKL9w4ePYP83MzMzMzOw/Lyi/cOHj2L/MO39mnqDWP2ZmZmZmZu4/zTt/Zp6g1r/uAD+FZ2rdP83MzMzMzOw/8AA/hWdq3b+OFP96JCfbP2ZmZmZmZu4/jxT/eiQn27/ZbN/MdvjgP83MzMzMzOw/2mzfzHb44L9Q7X6Pqq3fP2ZmZmZmZu4/Uu1+j6qt3787WR/XuTvjP83MzMzMzOw/PFkf17k7478KY/9RGBriP2ZmZmZmZu4/C2P/URga4r+bRV/h/H7lP83MzMzMzOw/nEVf4fx+5b9rTz9cW13kP2ZmZmZmZu4/bE8/XFtd5L/MO39mnqDmP2ZmZmZmZu4/zTt/Zp6g5r8KY/9RGBqiPwAAAAAAAPA/C2P/URgaor+QFP96JCe7PwAAAAAAAPA/kRT/eiQnu7/MO39mnqDGPwAAAAAAAPA/zTt/Zp6gxr9Q7X6Pqq3PPwAAAAAAAPA/Uu1+j6qtz79rTz9cW13UPwAAAAAAAPA/bE8/XFtd1L8uKL9w4ePYPwAAAAAAAPA/Lyi/cOHj2L/uAD+FZ2rdPwAAAAAAAPA/8AA/hWdq3b/ZbN/MdvjgPwAAAAAAAPA/2mzfzHb44L87WR/XuTvjPwAAAAAAAPA/PFkf17k747+bRV/h/H7lPwAAAAAAAPA/nEVf4fx+5b8=
+          <InformationKey name="L2_NORM_FINITE_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0
+            </Value>
+            <Value index="1">
+              1.4142135624
+            </Value>
+          </InformationKey>
+          <InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
+            <Value index="0">
+              0
+            </Value>
+            <Value index="1">
+              1.4142135624
+            </Value>
+          </InformationKey>
+        </DataArray>
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="binary" RangeMin="0" RangeMax="340">
+          ABkAAAAAAAAAAAAAAAAAAAEAAAAAAAAADAAAAAAAAAALAAAAAAAAAHkAAAAAAAAAfAAAAAAAAACOAAAAAAAAAHoAAAAAAAAAAQAAAAAAAAACAAAAAAAAAA0AAAAAAAAADAAAAAAAAAB7AAAAAAAAAH4AAAAAAAAAkAAAAAAAAAB8AAAAAAAAAAIAAAAAAAAAAwAAAAAAAAAOAAAAAAAAAA0AAAAAAAAAfQAAAAAAAACAAAAAAAAAAJIAAAAAAAAAfgAAAAAAAAADAAAAAAAAAAQAAAAAAAAADwAAAAAAAAAOAAAAAAAAAH8AAAAAAAAAggAAAAAAAACUAAAAAAAAAIAAAAAAAAAABAAAAAAAAAAFAAAAAAAAABAAAAAAAAAADwAAAAAAAACBAAAAAAAAAIQAAAAAAAAAlgAAAAAAAACCAAAAAAAAAAUAAAAAAAAABgAAAAAAAAARAAAAAAAAABAAAAAAAAAAgwAAAAAAAACGAAAAAAAAAJgAAAAAAAAAhAAAAAAAAAAGAAAAAAAAAAcAAAAAAAAAEgAAAAAAAAARAAAAAAAAAIUAAAAAAAAAiAAAAAAAAACaAAAAAAAAAIYAAAAAAAAABwAAAAAAAAAIAAAAAAAAABMAAAAAAAAAEgAAAAAAAACHAAAAAAAAAIoAAAAAAAAAnAAAAAAAAACIAAAAAAAAAAgAAAAAAAAACQAAAAAAAAAUAAAAAAAAABMAAAAAAAAAiQAAAAAAAACMAAAAAAAAAJ4AAAAAAAAAigAAAAAAAAAJAAAAAAAAAAoAAAAAAAAAFQAAAAAAAAAUAAAAAAAAAIsAAAAAAAAAjQAAAAAAAACgAAAAAAAAAIwAAAAAAAAACwAAAAAAAAAMAAAAAAAAABcAAAAAAAAAFgAAAAAAAACOAAAAAAAAAJEAAAAAAAAAowAAAAAAAACPAAAAAAAAAAwAAAAAAAAADQAAAAAAAAAYAAAAAAAAABcAAAAAAAAAkAAAAAAAAACTAAAAAAAAAKUAAAAAAAAAkQAAAAAAAAANAAAAAAAAAA4AAAAAAAAAGQAAAAAAAAAYAAAAAAAAAJIAAAAAAAAAlQAAAAAAAACnAAAAAAAAAJMAAAAAAAAADgAAAAAAAAAPAAAAAAAAABoAAAAAAAAAGQAAAAAAAACUAAAAAAAAAJcAAAAAAAAAqQAAAAAAAACVAAAAAAAAAA8AAAAAAAAAEAAAAAAAAAAbAAAAAAAAABoAAAAAAAAAlgAAAAAAAACZAAAAAAAAAKsAAAAAAAAAlwAAAAAAAAAQAAAAAAAAABEAAAAAAAAAHAAAAAAAAAAbAAAAAAAAAJgAAAAAAAAAmwAAAAAAAACtAAAAAAAAAJkAAAAAAAAAEQAAAAAAAAASAAAAAAAAAB0AAAAAAAAAHAAAAAAAAACaAAAAAAAAAJ0AAAAAAAAArwAAAAAAAACbAAAAAAAAABIAAAAAAAAAEwAAAAAAAAAeAAAAAAAAAB0AAAAAAAAAnAAAAAAAAACfAAAAAAAAALEAAAAAAAAAnQAAAAAAAAATAAAAAAAAABQAAAAAAAAAHwAAAAAAAAAeAAAAAAAAAJ4AAAAAAAAAoQAAAAAAAACzAAAAAAAAAJ8AAAAAAAAAFAAAAAAAAAAVAAAAAAAAACAAAAAAAAAAHwAAAAAAAACgAAAAAAAAAKIAAAAAAAAAtQAAAAAAAAChAAAAAAAAABYAAAAAAAAAFwAAAAAAAAAiAAAAAAAAACEAAAAAAAAAowAAAAAAAACmAAAAAAAAALgAAAAAAAAApAAAAAAAAAAXAAAAAAAAABgAAAAAAAAAIwAAAAAAAAAiAAAAAAAAAKUAAAAAAAAAqAAAAAAAAAC6AAAAAAAAAKYAAAAAAAAAGAAAAAAAAAAZAAAAAAAAACQAAAAAAAAAIwAAAAAAAACnAAAAAAAAAKoAAAAAAAAAvAAAAAAAAACoAAAAAAAAABkAAAAAAAAAGgAAAAAAAAAlAAAAAAAAACQAAAAAAAAAqQAAAAAAAACsAAAAAAAAAL4AAAAAAAAAqgAAAAAAAAAaAAAAAAAAABsAAAAAAAAAJgAAAAAAAAAlAAAAAAAAAKsAAAAAAAAArgAAAAAAAADAAAAAAAAAAKwAAAAAAAAAGwAAAAAAAAAcAAAAAAAAACcAAAAAAAAAJgAAAAAAAACtAAAAAAAAALAAAAAAAAAAwgAAAAAAAACuAAAAAAAAABwAAAAAAAAAHQAAAAAAAAAoAAAAAAAAACcAAAAAAAAArwAAAAAAAACyAAAAAAAAAMQAAAAAAAAAsAAAAAAAAAAdAAAAAAAAAB4AAAAAAAAAKQAAAAAAAAAoAAAAAAAAALEAAAAAAAAAtAAAAAAAAADGAAAAAAAAALIAAAAAAAAAHgAAAAAAAAAfAAAAAAAAACoAAAAAAAAAKQAAAAAAAACzAAAAAAAAALYAAAAAAAAAyAAAAAAAAAC0AAAAAAAAAB8AAAAAAAAAIAAAAAAAAAArAAAAAAAAACoAAAAAAAAAtQAAAAAAAAC3AAAAAAAAAMoAAAAAAAAAtgAAAAAAAAAhAAAAAAAAACIAAAAAAAAALQAAAAAAAAAsAAAAAAAAALgAAAAAAAAAuwAAAAAAAADNAAAAAAAAALkAAAAAAAAAIgAAAAAAAAAjAAAAAAAAAC4AAAAAAAAALQAAAAAAAAC6AAAAAAAAAL0AAAAAAAAAzwAAAAAAAAC7AAAAAAAAACMAAAAAAAAAJAAAAAAAAAAvAAAAAAAAAC4AAAAAAAAAvAAAAAAAAAC/AAAAAAAAANEAAAAAAAAAvQAAAAAAAAAkAAAAAAAAACUAAAAAAAAAMAAAAAAAAAAvAAAAAAAAAL4AAAAAAAAAwQAAAAAAAADTAAAAAAAAAL8AAAAAAAAAJQAAAAAAAAAmAAAAAAAAADEAAAAAAAAAMAAAAAAAAADAAAAAAAAAAMMAAAAAAAAA1QAAAAAAAADBAAAAAAAAACYAAAAAAAAAJwAAAAAAAAAyAAAAAAAAADEAAAAAAAAAwgAAAAAAAADFAAAAAAAAANcAAAAAAAAAwwAAAAAAAAAnAAAAAAAAACgAAAAAAAAAMwAAAAAAAAAyAAAAAAAAAMQAAAAAAAAAxwAAAAAAAADZAAAAAAAAAMUAAAAAAAAAKAAAAAAAAAApAAAAAAAAADQAAAAAAAAAMwAAAAAAAADGAAAAAAAAAMkAAAAAAAAA2wAAAAAAAADHAAAAAAAAACkAAAAAAAAAKgAAAAAAAAA1AAAAAAAAADQAAAAAAAAAyAAAAAAAAADLAAAAAAAAAN0AAAAAAAAAyQAAAAAAAAAqAAAAAAAAACsAAAAAAAAANgAAAAAAAAA1AAAAAAAAAMoAAAAAAAAAzAAAAAAAAADfAAAAAAAAAMsAAAAAAAAALAAAAAAAAAAtAAAAAAAAADgAAAAAAAAANwAAAAAAAADNAAAAAAAAANAAAAAAAAAA4gAAAAAAAADOAAAAAAAAAC0AAAAAAAAALgAAAAAAAAA5AAAAAAAAADgAAAAAAAAAzwAAAAAAAADSAAAAAAAAAOQAAAAAAAAA0AAAAAAAAAAuAAAAAAAAAC8AAAAAAAAAOgAAAAAAAAA5AAAAAAAAANEAAAAAAAAA1AAAAAAAAADmAAAAAAAAANIAAAAAAAAALwAAAAAAAAAwAAAAAAAAADsAAAAAAAAAOgAAAAAAAADTAAAAAAAAANYAAAAAAAAA6AAAAAAAAADUAAAAAAAAADAAAAAAAAAAMQAAAAAAAAA8AAAAAAAAADsAAAAAAAAA1QAAAAAAAADYAAAAAAAAAOoAAAAAAAAA1gAAAAAAAAAxAAAAAAAAADIAAAAAAAAAPQAAAAAAAAA8AAAAAAAAANcAAAAAAAAA2gAAAAAAAADsAAAAAAAAANgAAAAAAAAAMgAAAAAAAAAzAAAAAAAAAD4AAAAAAAAAPQAAAAAAAADZAAAAAAAAANwAAAAAAAAA7gAAAAAAAADaAAAAAAAAADMAAAAAAAAANAAAAAAAAAA/AAAAAAAAAD4AAAAAAAAA2wAAAAAAAADeAAAAAAAAAPAAAAAAAAAA3AAAAAAAAAA0AAAAAAAAADUAAAAAAAAAQAAAAAAAAAA/AAAAAAAAAN0AAAAAAAAA4AAAAAAAAADyAAAAAAAAAN4AAAAAAAAANQAAAAAAAAA2AAAAAAAAAEEAAAAAAAAAQAAAAAAAAADfAAAAAAAAAOEAAAAAAAAA9AAAAAAAAADgAAAAAAAAADcAAAAAAAAAOAAAAAAAAABDAAAAAAAAAEIAAAAAAAAA4gAAAAAAAADlAAAAAAAAAPcAAAAAAAAA4wAAAAAAAAA4AAAAAAAAADkAAAAAAAAARAAAAAAAAABDAAAAAAAAAOQAAAAAAAAA5wAAAAAAAAD5AAAAAAAAAOUAAAAAAAAAOQAAAAAAAAA6AAAAAAAAAEUAAAAAAAAARAAAAAAAAADmAAAAAAAAAOkAAAAAAAAA+wAAAAAAAADnAAAAAAAAADoAAAAAAAAAOwAAAAAAAABGAAAAAAAAAEUAAAAAAAAA6AAAAAAAAADrAAAAAAAAAP0AAAAAAAAA6QAAAAAAAAA7AAAAAAAAADwAAAAAAAAARwAAAAAAAABGAAAAAAAAAOoAAAAAAAAA7QAAAAAAAAD/AAAAAAAAAOsAAAAAAAAAPAAAAAAAAAA9AAAAAAAAAEgAAAAAAAAARwAAAAAAAADsAAAAAAAAAO8AAAAAAAAAAQEAAAAAAADtAAAAAAAAAD0AAAAAAAAAPgAAAAAAAABJAAAAAAAAAEgAAAAAAAAA7gAAAAAAAADxAAAAAAAAAAMBAAAAAAAA7wAAAAAAAAA+AAAAAAAAAD8AAAAAAAAASgAAAAAAAABJAAAAAAAAAPAAAAAAAAAA8wAAAAAAAAAFAQAAAAAAAPEAAAAAAAAAPwAAAAAAAABAAAAAAAAAAEsAAAAAAAAASgAAAAAAAADyAAAAAAAAAPUAAAAAAAAABwEAAAAAAADzAAAAAAAAAEAAAAAAAAAAQQAAAAAAAABMAAAAAAAAAEsAAAAAAAAA9AAAAAAAAAD2AAAAAAAAAAkBAAAAAAAA9QAAAAAAAABCAAAAAAAAAEMAAAAAAAAATgAAAAAAAABNAAAAAAAAAPcAAAAAAAAA+gAAAAAAAAAMAQAAAAAAAPgAAAAAAAAAQwAAAAAAAABEAAAAAAAAAE8AAAAAAAAATgAAAAAAAAD5AAAAAAAAAPwAAAAAAAAADgEAAAAAAAD6AAAAAAAAAEQAAAAAAAAARQAAAAAAAABQAAAAAAAAAE8AAAAAAAAA+wAAAAAAAAD+AAAAAAAAABABAAAAAAAA/AAAAAAAAABFAAAAAAAAAEYAAAAAAAAAUQAAAAAAAABQAAAAAAAAAP0AAAAAAAAAAAEAAAAAAAASAQAAAAAAAP4AAAAAAAAARgAAAAAAAABHAAAAAAAAAFIAAAAAAAAAUQAAAAAAAAD/AAAAAAAAAAIBAAAAAAAAFAEAAAAAAAAAAQAAAAAAAEcAAAAAAAAASAAAAAAAAABTAAAAAAAAAFIAAAAAAAAAAQEAAAAAAAAEAQAAAAAAABYBAAAAAAAAAgEAAAAAAABIAAAAAAAAAEkAAAAAAAAAVAAAAAAAAABTAAAAAAAAAAMBAAAAAAAABgEAAAAAAAAYAQAAAAAAAAQBAAAAAAAASQAAAAAAAABKAAAAAAAAAFUAAAAAAAAAVAAAAAAAAAAFAQAAAAAAAAgBAAAAAAAAGgEAAAAAAAAGAQAAAAAAAEoAAAAAAAAASwAAAAAAAABWAAAAAAAAAFUAAAAAAAAABwEAAAAAAAAKAQAAAAAAABwBAAAAAAAACAEAAAAAAABLAAAAAAAAAEwAAAAAAAAAVwAAAAAAAABWAAAAAAAAAAkBAAAAAAAACwEAAAAAAAAeAQAAAAAAAAoBAAAAAAAATQAAAAAAAABOAAAAAAAAAFkAAAAAAAAAWAAAAAAAAAAMAQAAAAAAAA8BAAAAAAAAIQEAAAAAAAANAQAAAAAAAE4AAAAAAAAATwAAAAAAAABaAAAAAAAAAFkAAAAAAAAADgEAAAAAAAARAQAAAAAAACMBAAAAAAAADwEAAAAAAABPAAAAAAAAAFAAAAAAAAAAWwAAAAAAAABaAAAAAAAAABABAAAAAAAAEwEAAAAAAAAlAQAAAAAAABEBAAAAAAAAUAAAAAAAAABRAAAAAAAAAFwAAAAAAAAAWwAAAAAAAAASAQAAAAAAABUBAAAAAAAAJwEAAAAAAAATAQAAAAAAAFEAAAAAAAAAUgAAAAAAAABdAAAAAAAAAFwAAAAAAAAAFAEAAAAAAAAXAQAAAAAAACkBAAAAAAAAFQEAAAAAAABSAAAAAAAAAFMAAAAAAAAAXgAAAAAAAABdAAAAAAAAABYBAAAAAAAAGQEAAAAAAAArAQAAAAAAABcBAAAAAAAAUwAAAAAAAABUAAAAAAAAAF8AAAAAAAAAXgAAAAAAAAAYAQAAAAAAABsBAAAAAAAALQEAAAAAAAAZAQAAAAAAAFQAAAAAAAAAVQAAAAAAAABgAAAAAAAAAF8AAAAAAAAAGgEAAAAAAAAdAQAAAAAAAC8BAAAAAAAAGwEAAAAAAABVAAAAAAAAAFYAAAAAAAAAYQAAAAAAAABgAAAAAAAAABwBAAAAAAAAHwEAAAAAAAAxAQAAAAAAAB0BAAAAAAAAVgAAAAAAAABXAAAAAAAAAGIAAAAAAAAAYQAAAAAAAAAeAQAAAAAAACABAAAAAAAAMwEAAAAAAAAfAQAAAAAAAFgAAAAAAAAAWQAAAAAAAABkAAAAAAAAAGMAAAAAAAAAIQEAAAAAAAAkAQAAAAAAADYBAAAAAAAAIgEAAAAAAABZAAAAAAAAAFoAAAAAAAAAZQAAAAAAAABkAAAAAAAAACMBAAAAAAAAJgEAAAAAAAA4AQAAAAAAACQBAAAAAAAAWgAAAAAAAABbAAAAAAAAAGYAAAAAAAAAZQAAAAAAAAAlAQAAAAAAACgBAAAAAAAAOgEAAAAAAAAmAQAAAAAAAFsAAAAAAAAAXAAAAAAAAABnAAAAAAAAAGYAAAAAAAAAJwEAAAAAAAAqAQAAAAAAADwBAAAAAAAAKAEAAAAAAABcAAAAAAAAAF0AAAAAAAAAaAAAAAAAAABnAAAAAAAAACkBAAAAAAAALAEAAAAAAAA+AQAAAAAAACoBAAAAAAAAXQAAAAAAAABeAAAAAAAAAGkAAAAAAAAAaAAAAAAAAAArAQAAAAAAAC4BAAAAAAAAQAEAAAAAAAAsAQAAAAAAAF4AAAAAAAAAXwAAAAAAAABqAAAAAAAAAGkAAAAAAAAALQEAAAAAAAAwAQAAAAAAAEIBAAAAAAAALgEAAAAAAABfAAAAAAAAAGAAAAAAAAAAawAAAAAAAABqAAAAAAAAAC8BAAAAAAAAMgEAAAAAAABEAQAAAAAAADABAAAAAAAAYAAAAAAAAABhAAAAAAAAAGwAAAAAAAAAawAAAAAAAAAxAQAAAAAAADQBAAAAAAAARgEAAAAAAAAyAQAAAAAAAGEAAAAAAAAAYgAAAAAAAABtAAAAAAAAAGwAAAAAAAAAMwEAAAAAAAA1AQAAAAAAAEgBAAAAAAAANAEAAAAAAABjAAAAAAAAAGQAAAAAAAAAbwAAAAAAAABuAAAAAAAAADYBAAAAAAAAOQEAAAAAAABLAQAAAAAAADcBAAAAAAAAZAAAAAAAAABlAAAAAAAAAHAAAAAAAAAAbwAAAAAAAAA4AQAAAAAAADsBAAAAAAAATAEAAAAAAAA5AQAAAAAAAGUAAAAAAAAAZgAAAAAAAABxAAAAAAAAAHAAAAAAAAAAOgEAAAAAAAA9AQAAAAAAAE0BAAAAAAAAOwEAAAAAAABmAAAAAAAAAGcAAAAAAAAAcgAAAAAAAABxAAAAAAAAADwBAAAAAAAAPwEAAAAAAABOAQAAAAAAAD0BAAAAAAAAZwAAAAAAAABoAAAAAAAAAHMAAAAAAAAAcgAAAAAAAAA+AQAAAAAAAEEBAAAAAAAATwEAAAAAAAA/AQAAAAAAAGgAAAAAAAAAaQAAAAAAAAB0AAAAAAAAAHMAAAAAAAAAQAEAAAAAAABDAQAAAAAAAFABAAAAAAAAQQEAAAAAAABpAAAAAAAAAGoAAAAAAAAAdQAAAAAAAAB0AAAAAAAAAEIBAAAAAAAARQEAAAAAAABRAQAAAAAAAEMBAAAAAAAAagAAAAAAAABrAAAAAAAAAHYAAAAAAAAAdQAAAAAAAABEAQAAAAAAAEcBAAAAAAAAUgEAAAAAAABFAQAAAAAAAGsAAAAAAAAAbAAAAAAAAAB3AAAAAAAAAHYAAAAAAAAARgEAAAAAAABJAQAAAAAAAFMBAAAAAAAARwEAAAAAAABsAAAAAAAAAG0AAAAAAAAAeAAAAAAAAAB3AAAAAAAAAEgBAAAAAAAASgEAAAAAAABUAQAAAAAAAEkBAAAAAAAA
+        </DataArray>
+        <DataArray type="Int64" Name="offsets" format="binary" RangeMin="8" RangeMax="800">
+          IAMAAAAAAAAIAAAAAAAAABAAAAAAAAAAGAAAAAAAAAAgAAAAAAAAACgAAAAAAAAAMAAAAAAAAAA4AAAAAAAAAEAAAAAAAAAASAAAAAAAAABQAAAAAAAAAFgAAAAAAAAAYAAAAAAAAABoAAAAAAAAAHAAAAAAAAAAeAAAAAAAAACAAAAAAAAAAIgAAAAAAAAAkAAAAAAAAACYAAAAAAAAAKAAAAAAAAAAqAAAAAAAAACwAAAAAAAAALgAAAAAAAAAwAAAAAAAAADIAAAAAAAAANAAAAAAAAAA2AAAAAAAAADgAAAAAAAAAOgAAAAAAAAA8AAAAAAAAAD4AAAAAAAAAAABAAAAAAAACAEAAAAAAAAQAQAAAAAAABgBAAAAAAAAIAEAAAAAAAAoAQAAAAAAADABAAAAAAAAOAEAAAAAAABAAQAAAAAAAEgBAAAAAAAAUAEAAAAAAABYAQAAAAAAAGABAAAAAAAAaAEAAAAAAABwAQAAAAAAAHgBAAAAAAAAgAEAAAAAAACIAQAAAAAAAJABAAAAAAAAmAEAAAAAAACgAQAAAAAAAKgBAAAAAAAAsAEAAAAAAAC4AQAAAAAAAMABAAAAAAAAyAEAAAAAAADQAQAAAAAAANgBAAAAAAAA4AEAAAAAAADoAQAAAAAAAPABAAAAAAAA+AEAAAAAAAAAAgAAAAAAAAgCAAAAAAAAEAIAAAAAAAAYAgAAAAAAACACAAAAAAAAKAIAAAAAAAAwAgAAAAAAADgCAAAAAAAAQAIAAAAAAABIAgAAAAAAAFACAAAAAAAAWAIAAAAAAABgAgAAAAAAAGgCAAAAAAAAcAIAAAAAAAB4AgAAAAAAAIACAAAAAAAAiAIAAAAAAACQAgAAAAAAAJgCAAAAAAAAoAIAAAAAAACoAgAAAAAAALACAAAAAAAAuAIAAAAAAADAAgAAAAAAAMgCAAAAAAAA0AIAAAAAAADYAgAAAAAAAOACAAAAAAAA6AIAAAAAAADwAgAAAAAAAPgCAAAAAAAAAAMAAAAAAAAIAwAAAAAAABADAAAAAAAAGAMAAAAAAAAgAwAAAAAAAA==
+        </DataArray>
+        <DataArray type="UInt8" Name="types" format="binary" RangeMin="23" RangeMax="23">
+          ZAAAAAAAAAAXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcX
+        </DataArray>
+        <DataArray type="Int64" IdType="1" Name="faces" format="binary" RangeMin="0" RangeMax="0">
+          IAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==
+        </DataArray>
+        <DataArray type="Int64" IdType="1" Name="faceoffsets" format="binary" RangeMin="1" RangeMax="100">
+          IAMAAAAAAAABAAAAAAAAAAIAAAAAAAAAAwAAAAAAAAAEAAAAAAAAAAUAAAAAAAAABgAAAAAAAAAHAAAAAAAAAAgAAAAAAAAACQAAAAAAAAAKAAAAAAAAAAsAAAAAAAAADAAAAAAAAAANAAAAAAAAAA4AAAAAAAAADwAAAAAAAAAQAAAAAAAAABEAAAAAAAAAEgAAAAAAAAATAAAAAAAAABQAAAAAAAAAFQAAAAAAAAAWAAAAAAAAABcAAAAAAAAAGAAAAAAAAAAZAAAAAAAAABoAAAAAAAAAGwAAAAAAAAAcAAAAAAAAAB0AAAAAAAAAHgAAAAAAAAAfAAAAAAAAACAAAAAAAAAAIQAAAAAAAAAiAAAAAAAAACMAAAAAAAAAJAAAAAAAAAAlAAAAAAAAACYAAAAAAAAAJwAAAAAAAAAoAAAAAAAAACkAAAAAAAAAKgAAAAAAAAArAAAAAAAAACwAAAAAAAAALQAAAAAAAAAuAAAAAAAAAC8AAAAAAAAAMAAAAAAAAAAxAAAAAAAAADIAAAAAAAAAMwAAAAAAAAA0AAAAAAAAADUAAAAAAAAANgAAAAAAAAA3AAAAAAAAADgAAAAAAAAAOQAAAAAAAAA6AAAAAAAAADsAAAAAAAAAPAAAAAAAAAA9AAAAAAAAAD4AAAAAAAAAPwAAAAAAAABAAAAAAAAAAEEAAAAAAAAAQgAAAAAAAABDAAAAAAAAAEQAAAAAAAAARQAAAAAAAABGAAAAAAAAAEcAAAAAAAAASAAAAAAAAABJAAAAAAAAAEoAAAAAAAAASwAAAAAAAABMAAAAAAAAAE0AAAAAAAAATgAAAAAAAABPAAAAAAAAAFAAAAAAAAAAUQAAAAAAAABSAAAAAAAAAFMAAAAAAAAAVAAAAAAAAABVAAAAAAAAAFYAAAAAAAAAVwAAAAAAAABYAAAAAAAAAFkAAAAAAAAAWgAAAAAAAABbAAAAAAAAAFwAAAAAAAAAXQAAAAAAAABeAAAAAAAAAF8AAAAAAAAAYAAAAAAAAABhAAAAAAAAAGIAAAAAAAAAYwAAAAAAAABkAAAAAAAAAA==
+        </DataArray>
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+</VTKFile>
-- 
GitLab