diff --git a/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/i_micro_porosity.md b/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/i_micro_porosity.md
new file mode 100644
index 0000000000000000000000000000000000000000..3f873bf32662d7959ff00648171455caa15872ed
--- /dev/null
+++ b/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/i_micro_porosity.md
@@ -0,0 +1,2 @@
+An optional tag enables double structure porosity model. It requires
+micro-saturation property to be available in the material properties.
diff --git a/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/nonlinear_solver b/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/nonlinear_solver
new file mode 120000
index 0000000000000000000000000000000000000000..deb868ceeaceec88b0a2320b4e5e48349d31704f
--- /dev/null
+++ b/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/nonlinear_solver
@@ -0,0 +1 @@
+../../../../../nonlinear_solver
\ No newline at end of file
diff --git a/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/t_mass_exchange_coefficient.md b/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/t_mass_exchange_coefficient.md
new file mode 100644
index 0000000000000000000000000000000000000000..71a29ba0ae6def3f08fba6077023459980465f7f
--- /dev/null
+++ b/Documentation/ProjectFile/prj/processes/process/RICHARDS_MECHANICS/micro_porosity/t_mass_exchange_coefficient.md
@@ -0,0 +1 @@
+\copydoc ProcessLib::RichardsMechanics::MicroPorosityParameters::mass_exchange_coefficient
diff --git a/ProcessLib/RichardsMechanics/ComputeMicroPorosity.h b/ProcessLib/RichardsMechanics/ComputeMicroPorosity.h
index c62d9f10dc7e4f896af0862d3f28a4892be1be28..79ecf3d9c3200a946659f83f34ce8ef43805967c 100644
--- a/ProcessLib/RichardsMechanics/ComputeMicroPorosity.h
+++ b/ProcessLib/RichardsMechanics/ComputeMicroPorosity.h
@@ -49,20 +49,30 @@ std::ostream& operator<<(std::ostream& os,
               << "sigma_sw: " << state.sigma_sw.transpose();
 }
 
+struct MicroPorosityParameters
+{
+    NumLib::NewtonRaphsonSolverParameters nonlinear_solver_parameters;
+
+    /// Coefficient \f$\bar\alpha\f$ of the micro structure mass exchange. If
+    /// this is given then the micro_saturation MPL property must be provided
+    /// too.
+    double mass_exchange_coefficient;
+};
+
 template <int DisplacementDim>
 MicroPorosityStateSpace<DisplacementDim> computeMicroPorosity(
     MathLib::KelvinVector::KelvinVectorType<DisplacementDim> const&
         I_2_C_el_inverse,
     double const rho_LR_m,  // for simplification equal to rho_LR_M
-    double const mu_LR, double const alpha_bar, double const alpha_B,
-    double const phi_M, double const p_L, double const p_L_m_prev,
+    double const mu_LR,
+    MicroPorosityParameters const& micro_porosity_parameters,
+    double const alpha_B, double const phi_M, double const p_L,
+    double const p_L_m_prev,
     MaterialPropertyLib::VariableArray const& /*variables_prev*/,
     double const S_L_m_prev, double const phi_m_prev,
     ParameterLib::SpatialPosition const pos, double const t, double const dt,
     MaterialPropertyLib::Property const& saturation_micro,
-    MaterialPropertyLib::Property const& swelling_stress_rate,
-    NumLib::NewtonRaphsonSolverParameters const& nonlinear_solver_parameters)
-
+    MaterialPropertyLib::Property const& swelling_stress_rate)
 {
     namespace MPL = MaterialPropertyLib;
     static constexpr int kelvin_vector_size =
@@ -93,6 +103,9 @@ MicroPorosityStateSpace<DisplacementDim> computeMicroPorosity(
                 solution.template segment<kelvin_vector_size>(i_sigma_sw)};
     }
 
+    double const alpha_bar =
+        micro_porosity_parameters.mass_exchange_coefficient;
+
     auto const update_residual = [&](ResidualVectorType& residual) {
         double const delta_phi_m = solution[i_phi_m];
         double const delta_e_sw = solution[i_e_sw];
@@ -131,7 +144,8 @@ MicroPorosityStateSpace<DisplacementDim> computeMicroPorosity(
             rho_LR_m *
                 (phi_m * delta_S_L_m - (alpha_B - phi_M) * S_L_m * delta_e_sw) +
             phi_m * S_L_m * rho_LR_m * delta_e_sw -
-            alpha_bar / mu_LR * (p_L - p_L_m) * dt;
+            micro_porosity_parameters.mass_exchange_coefficient / mu_LR *
+                (p_L - p_L_m) * dt;
     };
 
     auto const update_jacobian = [&](JacobianMatrix& jacobian) {
@@ -172,9 +186,8 @@ MicroPorosityStateSpace<DisplacementDim> computeMicroPorosity(
         jacobian.template block<kelvin_vector_size, 1>(
             i_sigma_sw, i_p_L_m) = -dsigma_sw_dS_L_m * dS_L_m_dp_cap_m;
 
-
         jacobian(i_p_L_m, i_phi_m) =
-            rho_LR_m * (delta_S_L_m + phi_m * delta_e_sw);
+            rho_LR_m * (delta_S_L_m + S_L_m * delta_e_sw);
 
         jacobian(i_p_L_m, i_e_sw) = -rho_LR_m * S_L_m * (alpha_B - phi_M - phi_m);
 
@@ -194,7 +207,7 @@ MicroPorosityStateSpace<DisplacementDim> computeMicroPorosity(
                               decltype(update_residual),
                               decltype(update_solution)>(
             linear_solver, update_jacobian, update_residual, update_solution,
-            nonlinear_solver_parameters);
+            micro_porosity_parameters.nonlinear_solver_parameters);
 
     auto const success_iterations = newton_solver.solve(jacobian);
 
diff --git a/ProcessLib/RichardsMechanics/CreateRichardsMechanicsProcess.cpp b/ProcessLib/RichardsMechanics/CreateRichardsMechanicsProcess.cpp
index 11b21d687ab0f18d41abfdc80ab02f41277ba374..98dc906828254b6bdbef7b7ac4922f861320cbc7 100644
--- a/ProcessLib/RichardsMechanics/CreateRichardsMechanicsProcess.cpp
+++ b/ProcessLib/RichardsMechanics/CreateRichardsMechanicsProcess.cpp
@@ -17,6 +17,7 @@
 #include "MaterialLib/MPL/Medium.h"
 #include "MaterialLib/SolidModels/CreateConstitutiveRelation.h"
 #include "MaterialLib/SolidModels/MechanicsBase.h"
+#include "NumLib/CreateNewtonRaphsonSolverParameters.h"
 #include "ParameterLib/Utils.h"
 #include "ProcessLib/Output/CreateSecondaryVariables.h"
 #include "ProcessLib/Utils/ProcessUtils.h"
@@ -169,6 +170,20 @@ std::unique_ptr<Process> createRichardsMechanicsProcess(
         MathLib::KelvinVector::KelvinVectorDimensions<DisplacementDim>::value,
         &mesh);
 
+    std::optional<MicroPorosityParameters> micro_porosity_parameters;
+    if (auto const micro_porosity_config =
+            //! \ogs_file_param{prj__processes__process__RICHARDS_MECHANICS__micro_porosity}
+        config.getConfigSubtreeOptional("micro_porosity"))
+    {
+        micro_porosity_parameters = MicroPorosityParameters{
+            NumLib::createNewtonRaphsonSolverParameters(
+                //! \ogs_file_param{prj__processes__process__RICHARDS_MECHANICS__micro_porosity__nonlinear_solver}
+                micro_porosity_config->getConfigSubtree("nonlinear_solver")),
+            //! \ogs_file_param{prj__processes__process__RICHARDS_MECHANICS__micro_porosity__mass_exchange_coefficient}
+            micro_porosity_config->getConfigParameter<double>(
+                "mass_exchange_coefficient")};
+    }
+
     auto const mass_lumping =
         //! \ogs_file_param{prj__processes__process__RICHARDS_MECHANICS__mass_lumping}
         config.getConfigParameter<bool>("mass_lumping", false);
@@ -183,6 +198,7 @@ std::unique_ptr<Process> createRichardsMechanicsProcess(
         std::move(solid_constitutive_relations),
         initial_stress,
         specific_body_force,
+        micro_porosity_parameters,
         mass_lumping,
         explicit_hm_coupling_in_unsaturated_zone};
 
diff --git a/ProcessLib/RichardsMechanics/IntegrationPointData.h b/ProcessLib/RichardsMechanics/IntegrationPointData.h
index 6fb1cdf83645a3e16c6e7a03780defad533629ad..4a0a2f7ac2f29c80f7227f1b40ff9e15ee764631 100644
--- a/ProcessLib/RichardsMechanics/IntegrationPointData.h
+++ b/ProcessLib/RichardsMechanics/IntegrationPointData.h
@@ -60,8 +60,12 @@ struct IntegrationPointData final
 
     typename ShapeMatricesTypePressure::GlobalDimVectorType v_darcy;
 
+    double liquid_pressure_m = std::numeric_limits<double>::quiet_NaN();
+    double liquid_pressure_m_prev = std::numeric_limits<double>::quiet_NaN();
     double saturation = std::numeric_limits<double>::quiet_NaN();
     double saturation_prev = std::numeric_limits<double>::quiet_NaN();
+    double saturation_m = std::numeric_limits<double>::quiet_NaN();
+    double saturation_m_prev = std::numeric_limits<double>::quiet_NaN();
     double porosity = std::numeric_limits<double>::quiet_NaN();
     double porosity_prev = std::numeric_limits<double>::quiet_NaN();
     double transport_porosity = std::numeric_limits<double>::quiet_NaN();
@@ -85,8 +89,10 @@ struct IntegrationPointData final
         sigma_eff_prev = sigma_eff;
         sigma_sw_prev = sigma_sw;
         saturation_prev = saturation;
+        saturation_m_prev = saturation_m;
         porosity_prev = porosity;
         transport_porosity_prev = transport_porosity;
+        liquid_pressure_m_prev = liquid_pressure_m;
         material_state_variables->pushBackState();
     }
 
diff --git a/ProcessLib/RichardsMechanics/LocalAssemblerInterface.h b/ProcessLib/RichardsMechanics/LocalAssemblerInterface.h
index c81918f5ce0992a820ee9227ffd7bfb91cf0d0e0..37acf893ffbf94b006d300d6bf512259c6f77cfa 100644
--- a/ProcessLib/RichardsMechanics/LocalAssemblerInterface.h
+++ b/ProcessLib/RichardsMechanics/LocalAssemblerInterface.h
@@ -64,6 +64,22 @@ struct LocalAssemblerInterface : public ProcessLib::LocalAssemblerInterface,
         std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_table,
         std::vector<double>& cache) const = 0;
 
+    virtual std::vector<double> getMicroSaturation() const = 0;
+
+    virtual std::vector<double> const& getIntPtMicroSaturation(
+        const double t,
+        std::vector<GlobalVector*> const& x,
+        std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_table,
+        std::vector<double>& cache) const = 0;
+
+    virtual std::vector<double> getMicroPressure() const = 0;
+
+    virtual std::vector<double> const& getIntPtMicroPressure(
+        const double t,
+        std::vector<GlobalVector*> const& x,
+        std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_table,
+        std::vector<double>& cache) const = 0;
+
     virtual std::vector<double> getPorosity() const = 0;
 
     virtual std::vector<double> const& getIntPtPorosity(
diff --git a/ProcessLib/RichardsMechanics/RichardsMechanicsFEM-impl.h b/ProcessLib/RichardsMechanics/RichardsMechanicsFEM-impl.h
index cad65d3b19dd2af28c9c279169e117ab542f7587..ca36115eb74837f40acfe9b87d0215873ca0cec6 100644
--- a/ProcessLib/RichardsMechanics/RichardsMechanicsFEM-impl.h
+++ b/ProcessLib/RichardsMechanics/RichardsMechanicsFEM-impl.h
@@ -13,6 +13,7 @@
 
 #include <cassert>
 
+#include "ComputeMicroPorosity.h"
 #include "IntegrationPointData.h"
 #include "MaterialLib/MPL/Medium.h"
 #include "MaterialLib/MPL/Utils/FormEigenTensor.h"
@@ -219,6 +220,8 @@ void RichardsMechanicsLocalAssembler<ShapeFunctionDisplacement,
         variables[static_cast<int>(MPL::Variable::capillary_pressure)] =
             p_cap_ip;
         variables[static_cast<int>(MPL::Variable::phase_pressure)] = -p_cap_ip;
+        _ip_data[ip].liquid_pressure_m_prev = -p_cap_ip;
+        _ip_data[ip].liquid_pressure_m = -p_cap_ip;
 
         auto const temperature =
             medium->property(MPL::PropertyType::reference_temperature)
@@ -229,6 +232,17 @@ void RichardsMechanicsLocalAssembler<ShapeFunctionDisplacement,
             medium->property(MPL::PropertyType::saturation)
                 .template value<double>(variables, x_position, t, dt);
 
+        if (medium->hasProperty(MPL::PropertyType::saturation_micro))
+        {
+            MPL::VariableArray vars;
+            vars[static_cast<int>(MPL::Variable::capillary_pressure)] =
+                p_cap_ip;
+            double const S_L_m =
+                medium->property(MPL::PropertyType::saturation_micro)
+                    .template value<double>(vars, x_position, t, dt);
+            _ip_data[ip].saturation_m_prev = S_L_m;
+        }
+
         // Set eps_m_prev from potentially non-zero eps and sigma_sw from
         // restart.
         auto const C_el = _ip_data[ip].computeElasticTangentStiffness(
@@ -801,8 +815,9 @@ void RichardsMechanicsLocalAssembler<ShapeFunctionDisplacement,
 
         // Swelling and possibly volumetric strain rate update.
         auto& sigma_sw = _ip_data[ip].sigma_sw;
+        auto const& sigma_sw_prev = _ip_data[ip].sigma_sw_prev;
+        if (!medium->hasProperty(MPL::PropertyType::saturation_micro))
         {
-            auto const& sigma_sw_prev = _ip_data[ip].sigma_sw_prev;
 
             // If there is swelling, compute it. Update volumetric strain rate,
             // s.t. it corresponds to the mechanical part only.
@@ -828,33 +843,79 @@ void RichardsMechanicsLocalAssembler<ShapeFunctionDisplacement,
                     MPL::Variable::volumetric_strain)]) +=
                     identity2.transpose() * C_el.inverse() * sigma_sw_prev;
             }
+        }
 
-            if (solid_phase.hasProperty(MPL::PropertyType::transport_porosity))
-            {
-                variables_prev[static_cast<int>(
-                    MPL::Variable::transport_porosity)] =
-                    _ip_data[ip].transport_porosity_prev;
+        auto const mu =
+            liquid_phase.property(MPL::PropertyType::viscosity)
+                .template value<double>(variables, x_position, t, dt);
 
-                _ip_data[ip].transport_porosity =
-                    solid_phase.property(MPL::PropertyType::transport_porosity)
-                        .template value<double>(variables, variables_prev,
-                                                x_position, t, dt);
-                variables[static_cast<int>(MPL::Variable::transport_porosity)] =
-                    _ip_data[ip].transport_porosity;
-            }
-            else
-            {
-                variables[static_cast<int>(MPL::Variable::transport_porosity)] =
-                    phi;
+        // TODO (naumov) saturation_micro must be always defined together with
+        // the micro_porosity_parameters.
+        if (medium->hasProperty(MPL::PropertyType::saturation_micro))
+        {
+            double const phi_M_prev = _ip_data[ip].transport_porosity_prev;
+            double const phi_prev = _ip_data[ip].porosity_prev;
+            double const phi_m_prev = phi_prev - phi_M_prev;
+            double const p_L_m_prev = _ip_data[ip].liquid_pressure_m_prev;
+
+            auto const S_L_m_prev = _ip_data[ip].saturation_m_prev;
+
+            auto const [delta_phi_m, delta_e_sw, delta_p_L_m, delta_sigma_sw] =
+                computeMicroPorosity<DisplacementDim>(
+                    identity2.transpose() * C_el.inverse(), rho_LR, mu,
+                    *_process_data.micro_porosity_parameters, alpha, phi,
+                    -p_cap_ip, p_L_m_prev, variables_prev, S_L_m_prev,
+                    phi_m_prev, x_position, t, dt,
+                    medium->property(MPL::PropertyType::saturation_micro),
+                    solid_phase.property(
+                        MPL::PropertyType::swelling_stress_rate));
+
+            auto& phi_M = _ip_data[ip].transport_porosity;
+            phi_M = phi - (phi_m_prev + delta_phi_m);
+            variables_prev[static_cast<int>(
+                MPL::Variable::transport_porosity)] = phi_M_prev;
+            variables[static_cast<int>(MPL::Variable::transport_porosity)] =
+                phi_M;
+
+            auto& p_L_m = _ip_data[ip].liquid_pressure_m;
+            p_L_m = p_L_m_prev + delta_p_L_m;
+            {  // Update micro saturation.
+                MPL::VariableArray variables_prev;
+                variables_prev[static_cast<int>(
+                    MPL::Variable::capillary_pressure)] = -p_L_m_prev;
+                MPL::VariableArray variables;
+                variables[static_cast<int>(MPL::Variable::capillary_pressure)] =
+                    -p_L_m;
+
+                _ip_data[ip].saturation_m =
+                    medium->property(MPL::PropertyType::saturation_micro)
+                        .template value<double>(variables, x_position, t, dt);
             }
+            sigma_sw = sigma_sw_prev + delta_sigma_sw;
+        }
+
+        if (solid_phase.hasProperty(MPL::PropertyType::transport_porosity))
+        {
+            variables_prev[static_cast<int>(
+                MPL::Variable::transport_porosity)] =
+                _ip_data[ip].transport_porosity_prev;
+
+            _ip_data[ip].transport_porosity =
+                solid_phase.property(MPL::PropertyType::transport_porosity)
+                    .template value<double>(variables, variables_prev,
+                                            x_position, t, dt);
+            variables[static_cast<int>(MPL::Variable::transport_porosity)] =
+                _ip_data[ip].transport_porosity;
+        }
+        else
+        {
+            variables[static_cast<int>(MPL::Variable::transport_porosity)] =
+                phi;
         }
 
         double const k_rel =
             medium->property(MPL::PropertyType::relative_permeability)
                 .template value<double>(variables, x_position, t, dt);
-        auto const mu =
-            liquid_phase.property(MPL::PropertyType::viscosity)
-                .template value<double>(variables, x_position, t, dt);
 
         // Set mechanical variables for the intrinsic permeability model
         // For stress dependent permeability.
@@ -934,7 +995,17 @@ void RichardsMechanicsLocalAssembler<ShapeFunctionDisplacement,
             .noalias() +=
             N_u_op.transpose() * phi * rho_LR * dS_L_dp_cap * b * N_p * w;
 
-        if (solid_phase.hasProperty(MPL::PropertyType::swelling_stress_rate))
+        // For the swelling stress with double structure model the corresponding
+        // Jacobian u-p entry would be required, but it does not improve
+        // convergence and sometimes worsens it:
+        // if (medium->hasProperty(MPL::PropertyType::saturation_micro))
+        // {
+        //     -B.transpose() *
+        //         dsigma_sw_dS_L_m* dS_L_m_dp_cap_m*(p_L_m - p_L_m_prev) /
+        //         p_cap_dot_ip / dt* N_p* w;
+        // }
+        if (!medium->hasProperty(MPL::PropertyType::saturation_micro) &&
+            solid_phase.hasProperty(MPL::PropertyType::swelling_stress_rate))
         {
             using DimMatrix = Eigen::Matrix<double, 3, 3>;
             auto const dsigma_sw_dS_L =
@@ -1036,6 +1107,31 @@ void RichardsMechanicsLocalAssembler<ShapeFunctionDisplacement,
 
         local_rhs.template segment<pressure_size>(pressure_index).noalias() +=
             dNdx_p.transpose() * rho_LR * k_rel * rho_Ki_over_mu * b * w;
+
+        if (medium->hasProperty(MPL::PropertyType::saturation_micro))
+        {
+            double const alpha_bar = _process_data.micro_porosity_parameters
+                                         ->mass_exchange_coefficient;
+            auto const p_L_m = _ip_data[ip].liquid_pressure_m;
+            local_rhs.template segment<pressure_size>(pressure_index)
+                .noalias() -=
+                N_p.transpose() * alpha_bar / mu * (-p_cap_ip - p_L_m) * w;
+
+            local_Jac
+                .template block<pressure_size, pressure_size>(pressure_index,
+                                                              pressure_index)
+                .noalias() += N_p.transpose() * alpha_bar / mu * N_p * w;
+            if (p_cap_dot_ip != 0)
+            {
+                double const p_L_m_prev = _ip_data[ip].liquid_pressure_m_prev;
+                local_Jac
+                    .template block<pressure_size, pressure_size>(
+                        pressure_index, pressure_index)
+                    .noalias() += N_p.transpose() * alpha_bar / mu *
+                                  (p_L_m - p_L_m_prev) / (dt * p_cap_dot_ip) *
+                                  N_p * w;
+            }
+        }
     }
 
     if (_process_data.apply_mass_lumping)
@@ -1246,6 +1342,58 @@ std::vector<double> const& RichardsMechanicsLocalAssembler<
         _ip_data, &IpData::saturation, cache);
 }
 
+template <typename ShapeFunctionDisplacement, typename ShapeFunctionPressure,
+          typename IntegrationMethod, int DisplacementDim>
+std::vector<double> RichardsMechanicsLocalAssembler<
+    ShapeFunctionDisplacement, ShapeFunctionPressure, IntegrationMethod,
+    DisplacementDim>::getMicroSaturation() const
+{
+    std::vector<double> result;
+    getIntPtMicroSaturation(0, {}, {}, result);
+    return result;
+}
+
+template <typename ShapeFunctionDisplacement, typename ShapeFunctionPressure,
+          typename IntegrationMethod, int DisplacementDim>
+std::vector<double> const& RichardsMechanicsLocalAssembler<
+    ShapeFunctionDisplacement, ShapeFunctionPressure, IntegrationMethod,
+    DisplacementDim>::
+    getIntPtMicroSaturation(
+        const double /*t*/,
+        std::vector<GlobalVector*> const& /*x*/,
+        std::vector<NumLib::LocalToGlobalIndexMap const*> const& /*dof_table*/,
+        std::vector<double>& cache) const
+{
+    return ProcessLib::getIntegrationPointScalarData(
+        _ip_data, &IpData::saturation_m, cache);
+}
+
+template <typename ShapeFunctionDisplacement, typename ShapeFunctionPressure,
+          typename IntegrationMethod, int DisplacementDim>
+std::vector<double> RichardsMechanicsLocalAssembler<
+    ShapeFunctionDisplacement, ShapeFunctionPressure, IntegrationMethod,
+    DisplacementDim>::getMicroPressure() const
+{
+    std::vector<double> result;
+    getIntPtMicroPressure(0, {}, {}, result);
+    return result;
+}
+
+template <typename ShapeFunctionDisplacement, typename ShapeFunctionPressure,
+          typename IntegrationMethod, int DisplacementDim>
+std::vector<double> const& RichardsMechanicsLocalAssembler<
+    ShapeFunctionDisplacement, ShapeFunctionPressure, IntegrationMethod,
+    DisplacementDim>::
+    getIntPtMicroPressure(
+        const double /*t*/,
+        std::vector<GlobalVector*> const& /*x*/,
+        std::vector<NumLib::LocalToGlobalIndexMap const*> const& /*dof_table*/,
+        std::vector<double>& cache) const
+{
+    return ProcessLib::getIntegrationPointScalarData(
+        _ip_data, &IpData::liquid_pressure_m, cache);
+}
+
 template <typename ShapeFunctionDisplacement, typename ShapeFunctionPressure,
           typename IntegrationMethod, int DisplacementDim>
 std::vector<double> RichardsMechanicsLocalAssembler<
diff --git a/ProcessLib/RichardsMechanics/RichardsMechanicsFEM.h b/ProcessLib/RichardsMechanics/RichardsMechanicsFEM.h
index 0405a366014ace685d8e84c78005588c144ccdb6..1f43d85ee21f9cada6dfad91c74f1b7a38b8ed5a 100644
--- a/ProcessLib/RichardsMechanics/RichardsMechanicsFEM.h
+++ b/ProcessLib/RichardsMechanics/RichardsMechanicsFEM.h
@@ -189,6 +189,20 @@ public:
         std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_table,
         std::vector<double>& cache) const override;
 
+    std::vector<double> getMicroSaturation() const override;
+    std::vector<double> const& getIntPtMicroSaturation(
+        const double t,
+        std::vector<GlobalVector*> const& x,
+        std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_table,
+        std::vector<double>& cache) const override;
+
+    std::vector<double> getMicroPressure() const override;
+    std::vector<double> const& getIntPtMicroPressure(
+        const double t,
+        std::vector<GlobalVector*> const& x,
+        std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_table,
+        std::vector<double>& cache) const override;
+
     std::vector<double> getPorosity() const override;
     std::vector<double> const& getIntPtPorosity(
         const double t,
diff --git a/ProcessLib/RichardsMechanics/RichardsMechanicsProcess.cpp b/ProcessLib/RichardsMechanics/RichardsMechanicsProcess.cpp
index 4c886cc527e41a4e8f9a3d7134671b73c1ed5c3c..ba8ab4c497bcff1cc7daddbf4068c855b734b676 100644
--- a/ProcessLib/RichardsMechanics/RichardsMechanicsProcess.cpp
+++ b/ProcessLib/RichardsMechanics/RichardsMechanicsProcess.cpp
@@ -314,6 +314,12 @@ void RichardsMechanicsProcess<DisplacementDim>::initializeConcreteProcess(
     add_secondary_variable("saturation", 1,
                            &LocalAssemblerIF::getIntPtSaturation);
 
+    add_secondary_variable("micro_saturation", 1,
+                           &LocalAssemblerIF::getIntPtMicroSaturation);
+
+    add_secondary_variable("micro_pressure", 1,
+                           &LocalAssemblerIF::getIntPtMicroPressure);
+
     add_secondary_variable("porosity", 1,
                            &LocalAssemblerIF::getIntPtPorosity);
 
diff --git a/ProcessLib/RichardsMechanics/RichardsMechanicsProcessData.h b/ProcessLib/RichardsMechanics/RichardsMechanicsProcessData.h
index e42b6e1c3b95d3b7820b5b99d5a30112ba57ec1f..85dc20c4ce5ce8a4418af7c9931bdd5da20d84b6 100644
--- a/ProcessLib/RichardsMechanics/RichardsMechanicsProcessData.h
+++ b/ProcessLib/RichardsMechanics/RichardsMechanicsProcessData.h
@@ -10,14 +10,13 @@
 
 #pragma once
 
-#include "ParameterLib/Parameter.h"
-
+#include <Eigen/Dense>
 #include <memory>
 #include <utility>
 
-#include <Eigen/Dense>
-
+#include "ComputeMicroPorosity.h"
 #include "MaterialLib/MPL/MaterialSpatialDistributionMap.h"
+#include "ParameterLib/Parameter.h"
 
 namespace MaterialLib
 {
@@ -55,6 +54,8 @@ struct RichardsMechanicsProcessData
     /// A vector of displacement dimension's length.
     Eigen::Matrix<double, DisplacementDim, 1> const specific_body_force;
 
+    std::optional<MicroPorosityParameters> micro_porosity_parameters;
+
     bool const apply_mass_lumping;
 
     /// If set, improves convergence of the global Newton method in unsaturated
diff --git a/ProcessLib/RichardsMechanics/Tests.cmake b/ProcessLib/RichardsMechanics/Tests.cmake
index d5700e319711602c581fd9227fa178731a0e9127..e47f44b8684428f76d2010c24bf060c17e2593d7 100644
--- a/ProcessLib/RichardsMechanics/Tests.cmake
+++ b/ProcessLib/RichardsMechanics/Tests.cmake
@@ -9,6 +9,7 @@ if (NOT OGS_USE_MPI)
     OgsTest(PROJECTFILE RichardsMechanics/RichardsFlow_2d_small.prj RUNTIME 9)
     OgsTest(PROJECTFILE RichardsMechanics/RichardsFlow_2d_small_masslumping.prj RUNTIME 10)
     OgsTest(PROJECTFILE RichardsMechanics/RichardsFlow_2d_quasinewton.prj RUNTIME 80)
+    OgsTest(PROJECTFILE RichardsMechanics/double_porosity_swelling.prj)
     OgsTest(PROJECTFILE RichardsMechanics/deformation_dependent_porosity.prj RUNTIME 8)
     OgsTest(PROJECTFILE RichardsMechanics/deformation_dependent_porosity_swelling.prj RUNTIME 11)
     OgsTest(PROJECTFILE RichardsMechanics/orthotropic_power_law_permeability_xyz.prj RUNTIME 80)
diff --git a/Tests/Data/RichardsMechanics/double_porosity_swelling.prj b/Tests/Data/RichardsMechanics/double_porosity_swelling.prj
new file mode 100644
index 0000000000000000000000000000000000000000..ddd75f69dc2a2982c5bd755dd015d84e65d0bc2a
--- /dev/null
+++ b/Tests/Data/RichardsMechanics/double_porosity_swelling.prj
@@ -0,0 +1,371 @@
+<?xml version="1.0" encoding="ISO-8859-1"?>
+<OpenGeoSysProject>
+    <mesh>square_1x1_quad_1e2.vtu</mesh>
+    <geometry>square_1x1.gml</geometry>
+    <processes>
+        <process>
+            <name>RM</name>
+            <type>RICHARDS_MECHANICS</type>
+            <integration_order>2</integration_order>
+            <dimension>2</dimension>
+            <micro_porosity>
+                <mass_exchange_coefficient>1e-12</mass_exchange_coefficient>
+                <nonlinear_solver>
+                    <maximum_iterations>100</maximum_iterations>
+                    <residuum_tolerance>1e-8</residuum_tolerance>
+                    <increment_tolerance>1e-20</increment_tolerance>
+                </nonlinear_solver>
+            </micro_porosity>
+            <constitutive_relation>
+                <type>LinearElasticIsotropic</type>
+                <youngs_modulus>E</youngs_modulus>
+                <poissons_ratio>nu</poissons_ratio>
+            </constitutive_relation>
+            <process_variables>
+                <pressure>pressure</pressure>
+                <displacement>displacement</displacement>
+            </process_variables>
+            <secondary_variables>
+                <secondary_variable internal_name="sigma" output_name="sigma"/>
+                <secondary_variable internal_name="swelling_stress" output_name="swelling_stress"/>
+                <secondary_variable internal_name="epsilon" output_name="epsilon"/>
+                <secondary_variable internal_name="velocity" output_name="velocity"/>
+                <secondary_variable internal_name="saturation" output_name="saturation"/>
+                <secondary_variable internal_name="porosity" output_name="porosity"/>
+                <secondary_variable internal_name="transport_porosity" output_name="transport_porosity"/>
+                <secondary_variable internal_name="dry_density_solid" output_name="dry_density_solid"/>
+                <secondary_variable internal_name="micro_saturation" output_name="micro_saturation"/>
+                <secondary_variable internal_name="micro_pressure" output_name="micro_pressure"/>
+            </secondary_variables>
+            <specific_body_force>0 0</specific_body_force>
+            <initial_stress>sigma0</initial_stress>
+            <mass_lumping>true</mass_lumping>
+        </process>
+    </processes>
+    <media>
+        <medium>
+            <phases>
+                <phase>
+                    <type>AqueousLiquid</type>
+                    <properties>
+                        <property>
+                            <name>viscosity</name>
+                            <type>Constant</type>
+                            <value>1e-3</value>
+                        </property>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>1e3</value>
+                        </property>
+                    </properties>
+                </phase>
+                <phase>
+                    <type>Solid</type>
+                    <properties>
+                        <property>
+                            <name>density</name>
+                            <type>Constant</type>
+                            <value>2e3</value>
+                        </property>
+                        <property>
+                            <name>biot_coefficient</name>
+                            <type>Constant</type>
+                            <value>0.6</value>
+                        </property>
+                        <property>
+                            <name>permeability</name>
+                            <type>Constant</type>
+                            <value>1e-21</value>
+                        </property>
+                        <property>
+                            <name>porosity</name>
+                            <type>PorosityFromMassBalance</type>
+                            <initial_porosity>phi0</initial_porosity>
+                            <minimal_porosity>0</minimal_porosity>
+                            <maximal_porosity>1</maximal_porosity>
+                        </property>
+                        <property>
+                            <name>transport_porosity</name>
+                            <type>TransportPorosityFromMassBalance</type>
+                            <initial_porosity>phi_tr0</initial_porosity>
+                            <minimal_porosity>0</minimal_porosity>
+                            <maximal_porosity>1</maximal_porosity>
+                        </property>
+                        <property>
+                            <name>swelling_stress_rate</name>
+                            <type>SaturationDependentSwelling</type>
+                            <swelling_pressures>1e7 1e7 1e7</swelling_pressures>
+                            <exponents>1 1 1</exponents>
+                            <lower_saturation_limit>0</lower_saturation_limit>
+                            <upper_saturation_limit>1</upper_saturation_limit>
+                        </property>
+                    </properties>
+                </phase>
+            </phases>
+            <properties>
+                <property>
+                    <name>reference_temperature</name>
+                    <type>Constant</type>
+                    <value>293.15</value>
+                </property>
+                <property>
+                    <name>relative_permeability</name>
+                    <type>Constant</type>
+                    <value>1</value>
+                </property>
+                <property>
+                    <name>saturation</name>
+                    <type>SaturationVanGenuchten</type>
+                    <residual_liquid_saturation>0.0</residual_liquid_saturation>
+                    <residual_gas_saturation>0</residual_gas_saturation>
+                    <exponent>0.5</exponent>
+                    <p_b>1e6</p_b>
+                </property>
+                <property>
+                    <name>saturation_micro</name>
+                    <type>SaturationVanGenuchten</type>
+                    <residual_liquid_saturation>0</residual_liquid_saturation>
+                    <residual_gas_saturation>0</residual_gas_saturation>
+                    <exponent>0.5</exponent>
+                    <p_b>1e7</p_b>
+                </property>
+                <property>
+                    <name>bishops_effective_stress</name>
+                    <type>BishopsSaturationCutoff</type>
+                    <cutoff_value>1</cutoff_value>
+                </property>
+            </properties>
+        </medium>
+    </media>
+    <time_loop>
+        <processes>
+            <process ref="RM">
+                <nonlinear_solver>nonlinear_solver</nonlinear_solver>
+                <convergence_criterion>
+                    <type>PerComponentDeltaX</type>
+                    <norm_type>NORM2</norm_type>
+                    <abstols>1e-3 1e-10 1e-10</abstols>
+                </convergence_criterion>
+                <compensate_non_equilibrium_initial_residuum>false</compensate_non_equilibrium_initial_residuum>
+                <time_discretization>
+                    <type>BackwardEuler</type>
+                </time_discretization>
+                <time_stepping>
+                    <type>IterationNumberBasedTimeStepping</type>
+                    <t_initial>0.0</t_initial>
+                    <t_end>1e5</t_end>
+                    <initial_dt>100</initial_dt>
+                    <minimum_dt>1</minimum_dt>
+                    <maximum_dt>1e3</maximum_dt>
+                    <!-- linear function m=1.25-0.025*n omitting m=1, because of stale situation -->
+                    <number_iterations>1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25</number_iterations>
+                    <multiplier> 1.225 1.2 1.175 1.15 1.125 1.1 1.075 1.05 1.025 0.975 0.95 0.925 0.9 0.875 0.85 0.825 0.8 0.775 0.75 0.725 0.7 0.675 0.65 0.625</multiplier>
+                </time_stepping>
+            </process>
+        </processes>
+        <output>
+            <type>VTK</type>
+            <prefix>double_porosity_swelling</prefix>
+            <suffix>_t_{:time}</suffix>
+            <timesteps>
+                <pair>
+                    <repeat>200000</repeat>
+                    <each_steps>1</each_steps>
+                </pair>
+            </timesteps>
+            <variables>
+                <variable>displacement</variable>
+                <variable>pressure</variable>
+                <variable>sigma</variable>
+                <variable>swelling_stress</variable>
+                <variable>epsilon</variable>
+                <variable>velocity</variable>
+                <variable>saturation</variable>
+                <variable>porosity</variable>
+                <variable>transport_porosity</variable>
+                <variable>dry_density_solid</variable>
+                <variable>micro_saturation</variable>
+                <variable>micro_pressure</variable>
+            </variables>
+            <fixed_output_times>1e3 1e4 2e4 3e4 4e4 5e4 6e4 7e4 8e4 9e4</fixed_output_times>
+        </output>
+    </time_loop>
+    <parameters>
+        <parameter>
+            <name>sigma0</name>
+            <type>Function</type>
+            <expression>1e5*0.6</expression>
+            <expression>1e5*0.6</expression>
+            <expression>1e5*0.6</expression>
+            <expression>0</expression>
+        </parameter>
+        <!-- Mechanics -->
+        <parameter>
+            <name>E</name>
+            <type>Constant</type>
+            <value>2e9</value>
+        </parameter>
+        <parameter>
+            <name>nu</name>
+            <type>Constant</type>
+            <value>0.2</value>
+        </parameter>
+        <parameter>
+            <name>phi0</name>
+            <type>Constant</type>
+            <value>0.4</value>
+        </parameter>
+        <parameter>
+            <name>phi_tr0</name>
+            <type>Constant</type>
+            <value>0.3</value>
+        </parameter>
+        <!-- Model parameters -->
+        <parameter>
+            <name>displacement0</name>
+            <type>Constant</type>
+            <values>0 0</values>
+        </parameter>
+        <parameter>
+            <name>pressure_ic</name>
+            <type>Constant</type>
+            <values>1e5</values>
+        </parameter>
+        <parameter>
+            <name>dirichlet0</name>
+            <type>Constant</type>
+            <value>0</value>
+        </parameter>
+        <parameter>
+            <name>dirichlet_pressure</name>
+            <type>Constant</type>
+            <value>1</value>
+        </parameter>
+        <parameter>
+            <name>dirichlet_pressure_ramp</name>
+            <type>CurveScaled</type>
+            <curve>pressure_ramp</curve>
+            <parameter>dirichlet_pressure</parameter>
+        </parameter>
+    </parameters>
+    <curves>
+        <curve>
+            <name>pressure_ramp</name>
+            <coords>0.0 1e3  2e4  6e4 8e4 1e5</coords>
+            <values>1e5 1e5 -1e6 -1e6 1e5 1e5</values>
+        </curve>
+    </curves>
+    <process_variables>
+        <process_variable>
+            <name>displacement</name>
+            <components>2</components>
+            <order>1</order>
+            <initial_condition>displacement0</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>left</geometry>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>dirichlet0</parameter>
+                </boundary_condition>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>bottom</geometry>
+                    <type>Dirichlet</type>
+                    <component>1</component>
+                    <parameter>dirichlet0</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+        <process_variable>
+            <name>pressure</name>
+            <components>1</components>
+            <order>1</order>
+            <initial_condition>pressure_ic</initial_condition>
+            <boundary_conditions>
+                <boundary_condition>
+                    <geometrical_set>square_1x1_geometry</geometrical_set>
+                    <geometry>top</geometry>
+                    <type>Dirichlet</type>
+                    <component>0</component>
+                    <parameter>dirichlet_pressure_ramp</parameter>
+                </boundary_condition>
+            </boundary_conditions>
+        </process_variable>
+    </process_variables>
+    <nonlinear_solvers>
+        <nonlinear_solver>
+            <name>nonlinear_solver</name>
+            <type>Newton</type>
+            <max_iter>30</max_iter>
+            <linear_solver>general_linear_solver</linear_solver>
+        </nonlinear_solver>
+    </nonlinear_solvers>
+    <linear_solvers>
+        <linear_solver>
+            <name>general_linear_solver</name>
+            <eigen>
+                <solver_type>SparseLU</solver_type>
+                <scaling>true</scaling>
+            </eigen>
+        </linear_solver>
+    </linear_solvers>
+    <test_definition>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>pressure</field>
+            <absolute_tolerance>1e-8</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>saturation</field>
+            <absolute_tolerance>1e-14</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>displacement</field>
+            <absolute_tolerance>5e-11</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>sigma</field>
+            <absolute_tolerance>1e-8</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>epsilon</field>
+            <absolute_tolerance>1e-14</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>velocity</field>
+            <absolute_tolerance>5e-14</absolute_tolerance>
+            <relative_tolerance>0</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>porosity</field>
+            <absolute_tolerance>5e-14</absolute_tolerance>
+            <relative_tolerance>1e-15</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>porosity_avg</field>
+            <absolute_tolerance>1e-14</absolute_tolerance>
+            <relative_tolerance>1e-15</relative_tolerance>
+        </vtkdiff>
+        <vtkdiff>
+            <regex>double_porosity_swelling_.*.vtu</regex>
+            <field>dry_density_solid</field>
+            <absolute_tolerance>2e-12</absolute_tolerance>
+            <relative_tolerance>1e-15</relative_tolerance>
+        </vtkdiff>
+    </test_definition>
+</OpenGeoSysProject>
diff --git a/Tests/Data/RichardsMechanics/double_porosity_swelling_t_100000.000000.vtu b/Tests/Data/RichardsMechanics/double_porosity_swelling_t_100000.000000.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..343252955403a0bdb5d4b5ed43bbb64b3b500731
--- /dev/null
+++ b/Tests/Data/RichardsMechanics/double_porosity_swelling_t_100000.000000.vtu
@@ -0,0 +1,51 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="232"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="6.9610445082e-08"     RangeMax="1.5145578224e-05"     offset="316"                 />
+      <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="400" format="appended" RangeMin="0.39999129051"        RangeMax="0.40000227271"        offset="9804"                />
+      <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="400" format="appended" RangeMin="1"                    RangeMax="1"                    offset="12640"               />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="65696.499665"         RangeMax="115173.55431"         offset="12732"               />
+      <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="2.2952494216e-09"     offset="28708"               />
+      <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="400" format="appended" RangeMin="0.29999129054"        RangeMax="0.30000227271"        offset="29432"               />
+    </FieldData>
+    <Piece NumberOfPoints="121"                  NumberOfCells="100"                 >
+      <PointData>
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-1.1803867341e-20"    RangeMax="3.6486891515e-07"     offset="32264"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="1847.1271552"         offset="33068"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="5.2695164356e-06"     offset="33752"               />
+        <DataArray type="Float64" Name="dry_density_solid" format="appended" RangeMin="1199.9967276"         RangeMax="1200.0199319"         offset="36164"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="8.843041249e-08"      RangeMax="1.5060189721e-05"     offset="37112"               />
+        <DataArray type="Float64" Name="micro_pressure" format="appended" RangeMin="180.01832712"         RangeMax="100000"               offset="41040"               />
+        <DataArray type="Float64" Name="micro_saturation" format="appended" RangeMin="1"                    RangeMax="1"                    offset="41364"               />
+        <DataArray type="Float64" Name="porosity" format="appended" RangeMin="0.39999003405"        RangeMax="0.40000163621"        offset="41472"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="19851.517501"         RangeMax="121453.41461"         offset="42440"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="19851.517501"         RangeMax="121453.41461"         offset="43420"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="1"                    RangeMax="1"                    offset="44400"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="65286.486438"         RangeMax="111187.06027"         offset="44508"               />
+        <DataArray type="Float64" Name="swelling_stress" NumberOfComponents="4" format="appended" RangeMin="0"                    RangeMax="2.7196889505e-09"     offset="49468"               />
+        <DataArray type="Float64" Name="transport_porosity" format="appended" RangeMin="0.29999003727"        RangeMax="0.30000163621"        offset="49908"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="3.3710995553e-17"     RangeMax="8.0148482499e-13"     offset="50876"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="53384"               />
+        <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.39999364392"        RangeMax="0.40000138974"        offset="53448"               />
+        <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="1"                    RangeMax="1"                    offset="54268"               />
+        <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="71559.877391"         RangeMax="112041.61355"         offset="54340"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="1.4142135624"         offset="58444"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="58980"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="59704"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="60012"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF6dRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A9dSrDw==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9Y1NbTQTU8xMDRKMjQysgAALYwEfg==AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAqRsAAAAAAAA=eF5l2Xc8Vv//+HFSKSkU0o5K9a6QFKFjJ0JCiYYRZWRvyd57b7Jlj+x42rPIDCUhRYOUQqK+3W6f0+v8fufy793jco3zel6v1zGNReRXNvhjXQ8VwwU/FQIV/sPzOq/1kctRKNsm0rWH0YfCfQ77vLLmOIxN432HXp5lZBXhhnoKsWnLl1FP9kcMzy+KPZOGg79lX0/RB2Ks1Bd6d5oSLpJvJZX3WBXMXblr+Tx8KTyPXdfkndZJ1HcJLei6Zhcgd+76Oir8QRv1ZOfll+6XslGCOxO/We73BmEqb2hLpe7mI9+6d4fY+uc6oMks/aIt1Z/CmS83Wsfs5Uf9i7ZapTdHc5HvrvKuMzhuiHqyq9EH3zBxVQKBFKMnG6WCsdGo+cvBG7OR03usmCr5G8K7/5zepU8GYG9IvlNFt7uaaT/2rw8TPuU7YZNBPL8bL9sjDU1RH05yRZvWq6ucYrDfbNL4yOFA7OX8SypPkVTkHNx6aypUTeCkHj3QnfancIWgzxwjSyrYv/6XDDisoYtH7rmfvvhnghnqyX5wkK22Q1MWsxo6JqEU4IkFZphb1K+GIs/0HppJ+GYCE9Q7zz7U9KBwT/ackqod+qinmzt/LO+jOfK3O39TreE0Qz3Z9Sy9klTq7mBp7fylL+NNseY4oRBqLQfsn6ct+t73WzECPuFTrg3nTCj8QdrGoe+sVqhnsTlT8JojBvmJA1lf3JeNUb+N5HmBy3uWoiyxgp+Mm3PrbGEzY5d4Y3Eq8uzFfHar04Yw3aJucmXJFjaRfCnN9WuCkAPqxaN1bqsdyUc+2bTktteI6CVJfhVuirbvc8AUrse4/acfClrTwZJDK8XIfWjNbqzKGgC1TewxKetQ0CT56RnF4TMWjqh3ZnX9MWtSgfyutdXKXSeiJ3tPqYIPtZojdjnsZlZ7fwJMGljTjghVI3+4+mbqw5IR+MZnN3/elEjhar12u9N1bVHv0VufxhBeh9ybg1nNesAY9WSfqn3z9taiDcY14lrhl+iG5S60v9jHQcyXX9I+TrtPccOsg/bD4remFF5oZcrXP8+CeiUDzaR3X4j5MvU8LiZSTg9m8J7steV/uFuydKGx9W4/vYIHptmByY4YEe6/QDs2VmQA36dvGmw9bkXh134vrA0W1Ea9es4I17dbxHzy7xJm+M5oC/N4f53kZkolyRcHLCBH5NTcySkvzNfj530usTzk6kY93atbbEAiN3v3VlkHzIfkDT2Vz9y4jVGvr3PDRUMiB7l5jqpamJ4ziOO9Hsn1ewXbPg7bAn+lvlfDtA9ml5Yy9uRaFnIvBZsJ/hsOkPVtD39njgtmT3KbrzaPLjYao37t8203t+8k5luAr9bf998V9etIfrHW62Bcog18vZlQ0Szog9XPGSgY7Cfm27OWpV8Sv+6DpN9JQRU6NwxIHi3OvnpsUhP1NV3siecciPlWLcdb85LFBfXVJP8xtfRzi5QR3PqppTHr64Z5JOt584yHId84Meu/vc4K1FlFYnr1nCjckv58dtHXq9i/vu5JMm+Vny1yEcWih/GRdqgne5LCVwerWxgWZWeh5k13D1O6p6YyO2GF1of7e9kgg+E7oLjOJ+vSBV0KHxGr+yTqbov6rNPt+WfMopA/2i865SlogPpMknekNdcW91ljveYxgeWX7MBBpiZUeT4F+Z7H/c+10/hgJC73fsd6e7AlOZeTy5/3E+6oH7tek3CtPA852y8jgeUbgqifIPlsibAkR6k7lqqQGMHrEwpqTMszTXPEfFv3xqLD+po45hbhOtRZEArqJJf2e3fFTdAb9blpMtM0Zf/P/Ju4JeDxWgT1eSQ3kKTeNr3NGzs8VhHep5oII3tT/SRaiPl2UM+RvjjgBkgH3TbaMpcIwyQfF1fbrV7vgnHivWFRYI/b5nrkUXMf9JoyNeE83pO9LixfYt9RF6zdaOlVgoQKyPErdAScIda3de3v8FhqQZj4sG08Vc0DFEne2sSgfKz8EHTi/cj1pLIfP4n9za62yS4ZM0vUk11O/YTzB0cLoJLbbfaiv72GDdO2XowlfM+uXDkafWtoHrsSsnjWFcjecdG954L8317xf724bPTghn5ivjBYybflK7qjXpTkOgGVvj0NrnBCSY+V1ksLm6tRvFixQuyvopZWy9TvuIHvVhFDe0Y7IHsK1/788uvOcBzvF4bGW+7YEPPpQWssn/orP9QvkdxztfpYebc3aLAUy+R6mWNKekIfE79nIk+bqhbYPu0F+V9aJ2eHdYHshdtsPC8XuaL+miMbk7BaOvJ5g4bDolJBkIv3KiSninKwst/iC1+Kn9jZbbfDMhqM6e6NpiCP2HXgfZ6rF1zrD7POrBahcFU9bvBVc4QZvB/b0xvw5U4C8pWK8owYmQC4gfcTJA+/nLuvaN4dLNP9u21obbDYjfO18Q0RyAczNng7tbqAZwxN25FzGhSutToc5PlNB/Vnm+rLH5i4Ik+MzPniG+EBPnhPdmyUd7s6iznsilV80rv5Ora/bB3mdeomWh8rjX3vjJNNICn+3iO/id1Adle5j6e0TC2w3XifbS7b2mQRhvx+V9r4mXsWcA/vyU5Xd8u3McsEy2S8vGgxaw+zxtH2q9uTkYc1DKruiFHGNpcvJMsWOlB4eq28vzWzD5aB97G9Yscy9XKRg5X/mnssihg93ieRfNPVtHGqNG8s491xzbfPQuGe71Gd7BRivlX+pxP3MvkelkbHl1/zIxQMSK71mM2tzC4Yy8R78+Q/v+6yVCIvj5S+bfbbEPXGJJ/cz3JDRjcYo1kyZbIJfAhzo5dUa8prkFupi5lofeOGFKW79K7KSRQesxwvCmre2Fq8t+W2SGNYJOZb8385PXoeMpCK99YkvywvcvakmBcWuHff59aFUPDWkdwi20msL5YHyj5t+dKgGPhxHnYkgTvJ1U7ua2oelYB/PU/DzqX2fMK7DSM3SJk8QP1xkmtNfCmQ/OEAP/ema4rxhUBdWmTZEwfkznD/T9VgvzOIhBQces+bCNUkT13sdbny99eW8b5EmyrWfivh1LMbnR36AkAU78n+Rf/1+eXf/vDiUEuf2XM/4GN9OvgiCu2PnIsiDCdo7gTAmxTLDq/LsZR+lt5RL96P6PXiDm18jOaL84tQR60PU+EwgvfHSd4/qVCwiyYcymizKowOuIG/9IV1m2rTkF/tbDF2iw6FSxyxEl8mwin8lPteo/KJYCjF+3u/H9KIbET7M2f/eP2UfWLRoIj3ZDdXrk9S9osEHZrTdAduWwKcYeGTlU1GzuvIe1/xcBgkhJ9ffckbQOEHBhbXUrMFgwHe6+wqvf/DCu3vnGdczw2nTEVBIt5rknx8eM1t5aFwmI55ZnjtsAYo8gquozaMJN5f6bitgrZBsCnnprVvlAuFL6jGLjkwe8ArvP/Pw/yF1xZv5E+zPN82HQkDerwn++vb9HnPZvxgmv9K+TFOLdDbQbNHwEMLXZ/9oX7jTTIusE3MP9YtwIbCv16JYJ8LPgtzeE9FV1N5PMYfrS+2FYnLmhs84ADek73rEnOj33FtuOjjJeX0whHcO/lv72ZNQH7S+4CkdNo+4DAZj/hs5wK2JLdL/HiiIssLU8B7b7WBoECnbOR9TWYuc/qSsBPvyS7efr1EK8UT233+j9sJ9jDoYFif18VFzDfR2vjTIpcsMcnqK//9MaZ015PX3iYxh2P78D4++Dc/fwEx35j7vkzHPbbApPE+ieQ2C8cZK2bCMDpOWr7O8iQwTdBbuXK+FvlVyccyv56fx1boON29zyXDPZL7Ga2ssRULRn0wjeaGDx6NyEUS1bdLaR/BfuI92RWYnuja2QRhAgtOvg4x6SD5/G1lZhXx/V5Hc5rjba4yMIe3Xuekzgc5kg+/zdC4Gq8MqJ+pmkmsJPzEyMD6OUk31JOdh83deFTcDQIfTv1kCkiDlVZ/5bslyJ21Reg+U53zgjPumSWZ3/7u+9r+f9/22TsjmMML9Tf2PuPhziT8xtpmHta14ahXIXmJ+totowthYFsXsVxqlwJDBSncDv6E3x7yZiz2D4ec0K4nyx3ZMEZyVqXJxCXFcNT7H/1d06BIeFx2fc/C63jUk13u4B7NcynxYGNB09j/IRH4XvNUbVgm5kv3D1mL4Y+xcKrcTL7OMRMESP6mKnIk+Wws6kVTHA70XCA82S6hQNU+GfVkP3ZDYvIJezKEHpdNtLGNgunzi7zLhknI4WXz/Nv7CWBmsZB5emcqhb/6UHqmsScO9Wy5XZ+K3dD+zvlr3MX3s/dSUE9299RGr9GoZHhBe/jTwP0goNJaDq99EoN8/0SdBPvaODA2tDKOHo2j8PvTWudp3KNQX2YkHOv2BN0fdJ7/yEYl7JuEerKLjfSuUQ9PAAPB8Dvap92BLm5Ap+CsJ7o+X/PJ3+97GQpnji8d6hsLgQ0kj3DQ9gyY9EK96Kre7OYUXbS+1ITTLCdrIlG/n+QBfox2BdlBMHGIPeVKvDskyUZ8CYgORi64Y7CZ95A9aFyodZzY4wfRJOcwrNwett8a+9ffa+EyqbiZhnwwQbBHQ9kZ9Xoklwo5Y02PmWATfZWWd3zCIJq5d7xPvwD50d3zp2Uz72HeoUze5W5/5xfJORfuHKEqjkB9vHKNllUjcb4tZA+fXgdEH03yHtYniYMlEZj5JA3H8R/JwBPDpjo1SMw3sadBrio10thBscWvnLqpcITkTjInuM8oEv0NJ6VAT8Zm5Js6Xt1fJ34e/vXXSN7++ayG0FgYttLIf/TS1WKg8u5RxoQd0ecbO+j1sVPuBmTq28h9xsopXDNbKz/f5Sb860XNoDT/BeHhIZdktxz3Qj3ZPz/t0M5W8oL13lN5FYNF4MxpWnslzwldnzJ1bobSygGw06NcZ8NwGYXzn2gPl64NAFq83z8jzpuT74z8wkutAxK50bAL76lIXhO8VkBiIhpW2PU6vJ4XQt3xc552ei7Ig4eHM54qxkInx+7RnuVS6Cb50tfTy49jYlHPE5jXt9Mfna+cH87snypQTkG9Ismf/+xiPGibAqG7SjsGVPOBpz8287uIG3Lr6rdsuW+SYa3whdZ6lxIKp+3udU1dSoZwvE8y3bZYQOuOvMigZ9n1dCasx/tCkks51unYK2TCJRchOnPIAkXVtJLkT8Tj0/ANnjbvTwO7dcEvnokXgybJzfs01rwvSgNFvB9T+sAmOki8vgFbGdr1Atlgg/dkl2Hr7bNjyYZPMdV8Nz+ngoCWR8MXPuLzCa7tfSfDnw4TppaNpgL5FF7GHtARYJEGH/F+aLKwew+XJXL6HK485Zt/v7fwnuy8mz+ERMVkAbPAYw4bmjiQDH7U9GNJDl2ffMEvHOpYUmBivHDLpR0ZwEXyHU5eHNnrkoAF78f+XP98XvsBWl/sp1yFfLUyYBzvu0m+juPUuMXlNHhQIKK/8jIEGIv2z1dcDkXOKiXR9rQiAvb6FK9EqMYCG8m5qKeOniz3AGu8Z9szlsuwnphvq0UrIWyLMbDnX0/yhpdqNR2nAuHjwo0ovtZwEDiw53JRIjHfprm0etZcNYGWb0lUeaLRFN6y2L7X+X0wNo7395I2vlvir0LOGyQg9C3BGprxXo/kyfOX+r2UA7H6jA9lc3dTITps65hzLXE+bRh9J3pg8ipw/Xr2PezP3+uc5GkPxx0/mcVjjXi/Etol58/fjnxGr72lNWKx5gzefyf5vou/RS+8TMCcVz1Tty9WwaOcJh1jdmJ/lrHGXCVeVAseO7QIz+yqo/AOjg0NxYta8K8vNLHhvSxAuKApnxGvsg/qya68FLNhydkHupPO7L5UUAXO/hbxjurE/khn9Wn2gahgaLSUONLNXEfhT79uKU16HYz6OeeyjF9JhDcF3tvW4hcHDXg/TXIBt4I9Er1xcL6bNSpqYxV4c+fvppoivGhg0klELBF43xzfceF7LYUHcUn+oa9KRL2e9+b4Tg3ifNlkt0FccVM66skuwFlBXS6dDk0VGj+kX1aAZJfL0a+thD+t6b9w4nw6FB+toP14u5bCvznrH90QnQ6NeB+skvMxw5A4H1dynbj+/HkOlOI92ce/1gtls+dC5bjU/MPJMpB7BjTnJwgf2qkrf+dcNrQWBQ+0HgG4QPKcxZWMiIBsqMb7FY/ZsjRX4nxv/mNwe2tdIXTiPdlH3qY2jU4XQsjXam7n6cdwVegtj3YT4YXWmcZ7xfNgd/O+We7RJxR+u54lrPpiHgTjfU13rV3iIOEshzxYp+KKYS/ek91UtvpIWVIx7L5iaz9ztwDM23KfcQgT90cdyq0cGTXy4AlXZePk3gowI/nIptfum11yYS/enzK7P7zbmfj/0MBNO/E/k8WoJ/vGDXnNq1bFkD9MtVZdIw3CtzncFLyI9udUW4WOsbLVPwIT6g2P37wvAn+ST/resrGKy0C96J1mkY9/Yoi/fzfm9iHhQjDDe7I77btz5JFSPriKUX9n+hkLVCumG/dl2yCfiXJ/6BkeCxd+pQhyz/49X5C8Kjhnw3l3Q9QrrhdbreQi5muN5YA4S1A8XMV7sm8Xigm5mWsFI8ca+n+ppEPwyF3zeZUy5PwBb3W/gAu0cCwMTw4VULjpJoFDOibJ2BjeJ+n6V2zc2YLcpOZQhebtMGjCe7Kz7ReWeqMejYXucHOn/10PTwdHb781akL+c9E/OWGTFnwrSGkedm2icKXPYgcYxLXgX8/J0zPIfY9w2q8aZpf1vWEe78m+mauzZ8baG9T7hahDmBpA7QHtNVl95M41WF2oCncweIfP0Kg1NIEqyVdO2aaeuBCM+vXOw9uYbxPuJOKVYPktFvW0JC/kE8mX3xQH9IyqSunHG+Bmvvrwk+uEd7AFebKuT4Rg+XMj2wWa4RbJmcJqlp3PJcImvO9guCQ8Lk+4ES2z6tyOdNSTPUDyWEj66XSQP7h1wO10AzxiytrvJEL4hkfVs4/b0mGr8ZU7s13NkEXyLFeevZG/0kEO768d/LJhCyfhIUISTD6/coER79VJzstaLmrIlQdnhbaIXlzTAJEO8a4iDIRLFF7r4OfPhQfy9Lmrmi0Uvmmg5N28cy4I4v0pg1lLrY/o/oqzrsF/lxXsi8EJ78ne7DB06/jDYli5M/SCTb0eXuzjNYzoJe7POCzt4tOdKYTfD/yru0pbKHyAVmXad2MRLOO9A+NymUkZ4U4M3Tt2yZTBH7wn+9DeDV2iumVwRzHp4nbqOuCZ150pqyO82oQ/pHC1GLLnLzusD22h8LQDIGbdXAx6eH9B5I3w1yXCl7Z+qH8YWAk5eC9N8lctJua6VytB6r7946HfVTDcZcf/xYpYH9dbjiXb3isB6o3mbyYZ/r5+kjPd/TVw5tJjEMH7nVzZa06GEee78pAxzq8r1bCy4X/9bpIb8xZeL3jzBKKr6TxkowvgFjfv4W85hFNXFa7MbH0M97wrA6sMG+AGyb+/9NMO/PwYYvBec4tq/eVe4vmJhh3+GBFdA6Z4r0PysyVrFM+YAzwwXkr0OvYI5h69OpOk+RS53GVG2S+haXAgM6HDUDoAWyE57VKfQf23JMwX7/vfZ1yoZhpE3h1OvW5J0Q0s8L6b5OzfetQqrxViiY8TrzVxtUCg4so2j4JR+OfMOtjG66yqcHd19t1moTYKH8kVnmEIuQL/+j3yTQ/scwmv25n9dLuUG+jh/T6St709qmfM7AbpD5sWuEJaYEX7546Dj5A7T+n7wUKCN2QE1UZMdrdR+GDx9Og6Jm/U+/L/2XTlIeFfLU++6pGPgHS8J7v2Dk1DNdoIcKZz/HpSsRWUQsN+cEQRfvJ2MpTKR8G8RVTt3dV2UCT5tsw2z83jkeCE98/so2cDfAj3dHe7f576774b75+S3IgzSuNbRxLoUK8URt9sg4VPW6TsHQn3kBo3s7qVDA3Nt7CGuqewRPKYAZmR6l3JqF9myNr3zIhwsa4M/7aDj6AR78mucIthkWEiExSW0p/YJbSD46cDpzdrEe613dZ0Wi8TmLgXo8+xdlH4G5mMM6r7M0ER73fYFryfViD8gXgAi8CJQtiK92QvuZ5m+2VDIbwTCcnsHu+A3hMld8NEiOujvfR0v/rjPFhyL5datuqm8NUjYKKmkgeTeJ8oG7ml7zDhc2lL8j1vS2AZ78nuO1odp1hSAg+T1p7qXHgKCsaF69duJHxNYaGDzlgRBHbwT+9i6gV5kodcOJkecLcIUvE+tGouNvrZa+Seabt2Pt9UBcF4T3a6c/HiS6GV4B8V2Rh7pBOWj9icH1Ei/JOoFTc4lcDu1torNat9FB7ftWfhrkYx+OF9l8nTo0XiI8ij+G9tT1SqhZ1430lyueb1o9K8NRB9hzn2WmUncHziLN45+hL5YFK9jpzsEyj+ZBQaQzdM4dJvbFj4ukohHO9V6Vx9t+wfQt7r3WSzra8V9WRf/2ifIi1LM/yqWfuJuqoeeMQkfzmuJfzKbW/xeI56UGo6Y9Bb/5bCW5ZdJW9ENAIV/K+PH8JWMRvi+Tm3VDImTQ6CMt4nkZxnazkT1d5hyJZO0pbRb4eR6cTVYrp3yEv5eNw6etdh+pfqs8siO2CU5JofaxL2fubB/vWToRf9OWkJ99hFN8OVYw7/erJLJPBFb20zA3vd1ajHHB0wwKhVOE2N3JlRn8aaT8cMPFnL1k49eErhs9NTexJ1jVBP09e088DiJHL6c61JpX5uqKcmeYKryMyaU67gcVHrgmPcU9jKcpLH+jPh/7HRGMaYuoCsyoHyKLVOYCL5x+M37yxLO6Kexsxcgekl4Za3to3raAWhfh3Ja0ewrDbmAODU1yj0fdMJ2wsWev3aCXfTEp+UCPeFM09tD6Qf6AZWkldDxaK9sBfqqbVD/TrzCW99py+3/0Mk6skewnzohdC5CAjb3V5e4dQNnJVHGIqiCM9s4kizlQqFgY6ABflzvRTuukWx/PTvINQrbU7mvWhBuPaug/JMO5JQr0hyabvOnqZPCfDAr1Qw1KMX5qiVA5VUCM/io+V68CQKYi94j31gH6DwYqGVSpqKcNRrK21d3HmQ8LpABa49lzJQT3aprTKWmp1/z51imj/t1w3AIruGdPTSW+QVTFOXEqgSYPb83XD+NcOwQPLnqv9Z7ouMRr361VT9uSLClRIZmMUs8lF/jeSWYic512C5MJ4waN/IMAS/RDUkj5ggp/rkqXMqWzEBYjtprvA0v4YVku9hOW3+RTkS9RMyctE3/kwg53Q5Kba2thj14yRvT3sXPPCnEM72J6V+/PEabgdle09vJ3zTe93VQg8v4LE9OiYaPwY6JF/UaF4z1RyO/ev56MKCbzCMIWf+yF7c9ikF9WQvWMvlJy1kBc9jdxx16HsHpWp7hKu3jBOPr6/NLmVVigmnW1laKwxBGcl9BdcftdJ2w/71Wg0nXv3sJuaLSrOx8cFtXai/TXLa7/I8WYFN2P8B7uhBFA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAALAgAAAAAAAA=eF4l1Xk8VPsfx3EaKZSl/KRIUpIlS1QmpCGSELokpKTkWnLrKlExkivJEq5lZOeSLcmSpbJ1b5YUlX0XkhTdKEzc8/7+/no+XnPOmTnfz3zPzKvPwl9i4zq1Y2Jp41A6xn8a/sq4OAH5bI2/w9wCJnn9dgzfEuyb3DcHBVVmeeIoub+VcsEZJSNR6Duzei0My18tA4M35EiR9hnRgvWTN+hwaFWBCQxwdD0Ma59t+w26iw+7wu8XppnwS964D7R8HZUPRflDcuFEX9ITuH1VfiXkb7L+DlXnnWYhW3GExqKMpUUQF8681YfzGn7Ef1dWmUFtP3eimZJvDNxfqkiUYgenkfOXilJhhWrIELyxpmQQ2thf+Yg57GDzdsK3+lGfYNfQtm7I4A78Cmm2bwehAc2YzK3MlvUBqpuxyNw61l2YQdccOS6EZokrL4MeRm8k4cKwqDC8kBezCwoY926HjbJ3DsKzQuv3wSVGsyPMVLE5AW+U7vMi30916O8wXISeAS9KByXB3cJmJVBKSKgI6nC3foG/LYuYhDWmSYvQfpRJHPa8qYt136U5EvdkFplCB8E8opJuGAum+QYSrzyoz4INTMtM2EnnmoSaAXcnYMpEZBfWnRrzshw6Vq/rgZruZpXwl/obQ7BE4GEtDOS/NgY9rbNfwKnC4X9h/1rZdngrIOknNJ96PwCrTcUEcN9ZNgNkvqfaGzahDabCuKFc8bgabBurIXMu8Yw+AuXL3TXI8XNnyDyLrUKs4FXNwFCYTy8g+5Kp15UO/RKcE2D/NKMXFpm3voOrJDymYYbW6c9QwrKXjnXPhDfuhj8+zB4m+zKu4RA8Ong9ERppmN+D5gnsAuhX3JIDB119OOIp+UbMFtAKGyPrsC6rBZdksv5fLJ/DkzuVUsicgtWbYJNoRxa8mTTQDCMVmDkw24pJ5u1syibzL2hSJ/N+/7yoCp6u3zkLz3cqd0DToa2cWIfKD6lhdHJkygb059vnyX6V5tmjCI35uETIfmlMIc91fOcnMs9GuUHyXFfrK5D9ebC2IhiOTc8EwPbLvlXwWHRZOTRx4OyDE5s+DcBoeX85rPuju9sOqC8poQd7lh83hJyakhmwKNcqG/KvGX0KrQ2rq2GYko0U5qdSoikNZX54xZB57fE2hG8imaS3tjFJr1xtlQhrH501g9eSc0nfNy0nPZacnAsZt5VPwbJOiXyY+CbfHi5zuEf2bUnvzBXolcxL9u3/1M5ch4Ht9iOw5sWKJBimxTMFc44+uA/F0vrIc//6ek8bek5EXx6tte7AJDq0u9ACnfQqSRrezRj3gxa0djPI+eFxHrwRIHEHflj/bR6q2dp0ku+BLb4Vc+nXpq2GYtbcsTC9bIYJvVdqkPkNOA0kQHptDwNzc+Ny2QwXtxdF4z5OZAWRdXtGqJNe5OAnPec4GA8vJ3sXQvGHgSz49bHkQ7j6j6i/YN4m4Qq47Vl1OgzhYZSR+b9IeAzXO7AboNpyu1LYo11ZD+nqC28hT939Ucg0KyZzcvFyIL+vP9/v4MA62fpTZI6z7t/J/1VLdpkEdHcz2A8Lwr+dJPvXssAayjrYeEPbneLxsLM+ro3MTS+N7EOnwg3imAfvSd/N0KRj2hUG3iz+C77LWf6V7Muop8OwwEpXF/O6OziWChWba5fdo/zT+VBTDGV9C10vmtJjtKQRfdov8wDaQer3ZrSMsj/pjJ4H5Hy2b5UO2l2P/gYdMpiji5bvVX2N9juduR897lLXg26d1yPv76eT24GuGFJkoPvdGj+jOU4tGKO7/V98RGtGzx1C5x+xFsAc5dVzz6J3lfTxo3llVUj7p8QYoI0GBePQc24Pj6JZlkrp6ND77uR355HtLCfed23QBHkePNqCNqJn0hnKmOfijNIAOmfRog6dOF3rgfOeajQokn3HMCHvo8aRrY/53Sobf4rzXNuPdMBxuWCzRMqPOltJ722wI/3EZpT8DgeFlRmiW7UOkmZsFCUt0vGuBf2qOUILfXDh4mv0RU0FTbT9o03N6Es+qfLonT8jG9Eu9DWy6NpWl/8fL5UTRZ/Sq2hA71r0EEYfO7aDPGflLn/yoLcE2ZB9dM2wihttMj0yh9Yqt+RDa3T5L6FXOQ4JoscFVY2w/pD9BnLkersyJ/K/ec5TH22gfWceHRV7JgPtmfrPe3QoZ10IOvejWCXmVfiJTyuFMn83/V5CHP6PP2xOo3T6tkvrLqVuqKq9L+XCoxbSaXqtpNX/bldD6zwuPYp27mftRjdd8bdAj/tskUbbc0jS0SLc3TLoUu0RDXJ91yYBtMEBTiH0s/lLa9Du/E7CaJl02kw45XMvzW4fSj639B/oVxlf+tB24Qe60esELsShr9G4BtAxFXsT0UxX7wb0FrqGOdqWFtqGtq0OtUN7Xzn2Gs11dVQYPZpWw43P57OLNEIXB2Vqo6fqHaOuU0ZGCjaR+196LoPjvFOVXJGUDJOrB65SHnwpHBiB+w0QL/ambBE7z8LrfH2xvwbh/T1649GX+5a7oP9mOwaT6wRmLdALxdVh6LTpQ9bo6h6T8+hlC2OK6FDjJ5fQ56IP70Z/LdbTQesfb5y+hc81EjRG73h5i40WT1DlRre4rGChE+T7hdEXA9Kz0Cxb3zLc5z9fwiXRCrH9TejzyuOqaL+sdXboEw6mPoGUe5QeeKPfOxaz0C2D3+a8KFdw1lX9QUlTENuO4165E5Poyv5Hx3GcSzwkFm0s4aqC4wX1z51x/dSzHl5PyrN39r/A513Y2y10iZJPX68P5/8HpPK4Sg==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAIwAAAAAAAAA=eF7txTENAAAIA7A5w78bJCyI4GufJmcntm3btv18AaBV2YA=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAArS4AAAAAAAA=eF4VmXc8198XxxOFSiojIZJoIBWJEkeFqCRZWdmb7BRZIRnZs4isKCqlKHE1lJSZrWSPz/vtk9L0ld/5/eXxcT6vO86993leBw15jrVBajTw/9y3WH+IgvW3em/08tKQMipXW97EQ5q2ZvzoUqJh5pupYg9Q8D1noZO5joYQud8z5+bWgpIEi4PmIRrqqoWMJtQpYE1u/3aLj4bpyxWLBycPkMcCicdy99NQ+Fg1YeEwBUPxP6WqeWgou+Sgr+C/h/AE9KzcqkHDap4fljbHKFjx+AVf2Hoakl7Y8ojbHSLb2K7U9qjQcKoy90O8FgVaxu5h5Tj+rVX0qMS8IMmdHV9y+ygNEvTOvQ4GFCRJt61gFaTBSiqdK93kBLl9MfXhGdyffXxfXvJpCtqaA8/LCtCwuC7X7UGJMkkVa6pg6tDgvmT529eWFNzo2F4RvZGGx5o1JbqSuiQqSCrzDI5/Z32O2qazFAxP10uNCdGwRmrjGo9ZMfKGk9Up6TQNmnljubreFLx/ZuUos5kGxWt+QyP8BqTe3ubkf8dpuFJ1SfCOJwX8HX+GrmzC+cp/jbM9UyYDIkbDPmdoCFx3JF8rggLwiJj4JknDZHVfsJ6VAek9su7LXxyfZaBiM+MyBS+V5uxTJHB89tUeZrMccCPpQ1e3JQ1nhzb6dt6iYHFkvt9gJw0tSkFyHwPPkOtVUR/NTWkYKY2d88ujILTM2fSXNA3bggRCH9/cQZT6pFMTrWnwEHv/Rq2Ggk2LtoMv5WiouhzzQOm0MYmT7SyLtqDhncJPLnhGgTdvvMSLPTREvtqc+1YDIHR1T6ONG57vN/+s6AkKzsmt4U3D81K4fEzOwdiUfLQJGTZzouE3e/6XqHEKGo7uN0k5SEPuVXWlfn95eO+uHb3MgYZ6UVVtbk4ajk2F7mA7QsNgSZSsZ5Mx2dbKrpBuS8Na/52V3hw03FbzTHU8TEN5oOzjZQGn4ZMh9eCNLw2zdQ2T61F3pk1cr0GPhswbwVa7ckyISlWJ+RlvGrQFHp8ORF3Vdp7nOzD+IloxXOP2KeDL+Xc6CsffGNC4phT3cSenvizfCPO/bKf7W3UjwmZXdznUhoa+u9Vmjhi3aH3wxwrjKjN/Dm+xsISN+vPlcudxfr2aQKMqGor1azlOOtMQ3p6RPbrCmLAI1XyW9sP3EX73LR/GjSPL9bkwPsd91Vj611mosVxyeiuej8on8fbSSRq29+buN3en4fgjE57JjQZkW21FNW1Cw3WfVpcbGA/3OPFRB+Ozz1ZdsJiyg6ArRoPvPWjY6R/CqqY6A3OLvxqWhtPQeyeFS0jLgHwe5dRIxngEt0z2HoxrphdYzl3G/NQx51912MEyhaUaNnj/V/05zX3aewZsOD9/ir6C71MtL5jpoE/WRFhyyGD8QSwjWB3jMtm+OpcwziL3mzGU5wCJ9qLds5g/kWdvT8d9mAFaad59Qw4NSn/HqrIT9ElS5aXMZxj/pmP5Khjjjz8kDa7E+Ktug5boOAeI1eQws1GnwfDu9v/SlzBBJj1/7WIeri+tf/7nISNS9zVrczCea5FhM22B8UtqR1kbMO54XGfHIaY1pJzz73uJ7yfv+PSPDXpMUKrjSTj7GPnwcIBr84wReSOwMm/QmIbvP69NfDnFhESnqlBJjD98fiLvbqY1dCurHujYjef+iKebA/kTZPNJ4SzyyWrbNc9WBQEiJRr4pAJ5okZvfgzIt/U3KL50LnyvJj734zlZgNvTpTkU34NpxCvxlycouJfO+Y4L+fl627neln49cur0bW0r5MXM846l85oUHGoVKFFfTUNCfrs+f6suiQbPPyv34fsUfDPWpUeB0GCB9F/km1LrcFHjE33yud392wDyIjB4+ZZjOH754VFn9zU0HFyqbu577Dj5abChRBn5XODhUJBpSsHlueMDO5BvkVdMfK6UWZNTk/y3uMRpUO4sGuYypED4TKzgTeR3Qq3P18W3FmRNPvsdCvB9Fnael7WnYInvWbd2XO8ROXGO02NWRMHWzu8p8kKJv2x6sxUFh8cUvrzmx3eU8VnNyM2I6Hocf70Sz4+1f/LLHT/k16GCK7OiNJi8/ftK0t+JeO0uTejdRcPRY+T0TeRfSkXA31HM57rhBvNgLRuygvcxz44TyPvUn7rJVyiYFasp+7aFhpWu6Q13ltqTqGwX843KNNC/bMR1kX9Hw7eH3MN8uM29L+D4YkS4oll3DiEfz7lJPz2H/JtI53xbIkVDw+DlzR4OriSYp/r8R6xPTS2ZsdI5FBz865dlv5WG07Re+Vt9a7LvTJJfHt4P9cnEnU+eUqAD7GL+eB/SZT0XXZ/YkUVJLe32Y3g/rgfbXH5CQdX3OYMjyNeE29mhi/u0idOKYt7nyM//7o4WSYzg/ZkVqks+gLzhGM3aGOFMtveYT9IGNNhZtvfPDlLAKOCcO6tIg1/Eo1+WTwyJQdD5xsGzuD6pOu0OVhpWbFbZF4316pnt2kDHIUsS7FZjOoO8SXDQZXax0NBu3tIfp4ociRGUTGtWg+VKAZcEkAcJ/M2CjzFPlQNqjBcnkRdV+27N9tuQPdsI91Z7Ggz0ztZVYx0OFeiIb8B8S8ywKTQkboXgW7qlUlg/Nv+8ekEDvydcJcWujeuNk7ieXvvsFPmpc9DrrhkNOmIRd+ztaDg0IqnkrI/86m2JY2W3gZeWsWqvvPB9MP27bt/HOuLnkDOMPD/WtKFom6k+Uea6wKl+jgZbQR+Oxns0XMuzbl2K8enIhEidJ1agOOwhyI7vN/X20eUGw8ixsJjld12xnlpK7VBatolYODvd1sLzKXvXUCKBcaUCztJAjEfba62q3esBSqaKf3Vw/PxY+wifAzOwa15v/HsY8sPrr+GY7xZiOLIrKhHzU1Y+uk0d43s2tl19hfFserhUcZ0H+AgEPLqL+bC8xz3v5DUD+0wra/Yh34y6JTcPXpCGG6lJE6sw/vJaJ/shjIfsD2jkxvjVZSk5bz94gbJwmWE85iWgtvvyXNsMfLWYsBC8ie+/iO/e2mfbwDjz1VUm8q88OzvhPcZBpczlG/JPM3B+T/s9L/hTMd0Tiu9nT8g4xcrJhFSPlyaP8mlY8uEk67rtGkTqt1HNSqxbN9rq7ew5mDBVn9PBj/G+XdbXdeNdoD50YTwJ64fWs90SR62Y4KTa5fi6GnmzynFQuU+LTDY4vxPG/Oas4soptWRCZcKDoa0YN9xkNros3xnibE6eOL4C6/fXV/29xhR0rGHr3I98Cqma55zfuYUIcB+4aYL3Orxf1WPjSQoq54OcgtjQH86JPgjoW0NqvXZXNqJeU+ZEQIsJBSybxpWrUP+jM+ir2LOzZL/IRvYe1EsKvOXmOYX+b4VV2zzqmyxOaU8fsiAWu7RYGpFnLvXvYnehv5prbA1rws/n81dzhdlakfhXJrd4GBT4SHLvfYn+bqksn5QFO97Hg9vZh3+Yk8rQk09skWeNy0dtb9pRoCfUreiAn5+vPV8UEXWOTPNZGd+jKOh12ca1x4wCwxChoT/oIy6sWrgxJ+JGWnnvH9mHfu9+7ML6fncKTm26us4Z+bbu5urpJmF3IvlXZXjvXwpWaljVCSIfC3up6hLk/1n9k267bZ3IMlVWFnPkkddebU6vAAoCtAea4zfQ8EVX2fl2ji85syUpx3SBgpaZsvsPvCj4yAp+Lbg/yTsDUqaHvIn1u/e3M2RoSJY4//JiNOZvVzHfPuTn8xOZDa1xXmRgb1DqRm4cPyT/X38YBZ+jO3Qz0B/nPj/1+B2rG9GyfDC8gPVH6RLnHe5c9KevY07eQH62bDOwGz3iT541WbeEYT0S6Nk77pFBQeOmqugFYRruVo/++a3oQyz/zf6YQr+2tU4qQOsxBWMSSvc9kJ8jO/aJC6t6kXmZn7ZLkJfLmij+k/cpeLf77zE/9J8hnB+P/YhzIJPcmZujNWlQXfZW5l0PBU77vgyskcf6qequN/HUj4SoZifmytIgvfZqY0s7BbqH8/z5kZ8/BMQ6Xx/yIBnZltt18X3RU/sUR35REBgqUuaB/GxbmfylL8OFnB/Ps05AvyilHKXx/TsFdR3uz0KwXrJc3i/yWU2X8FBpDdrojzi2rC37gOvmbNXXdkG/3tK18pE18SAce3sWo7VpOOxn9ewT7kNtc6FxAPoJ+YbDMg/XmhG93bp7RpBnf1T8+k4g94YC5xzzkZ+5w3Lu52KNycfeFIYLro/P6Q2HB9aZ/4rU01/j54FekmsqbQEJMgZNm5Bns7LRKkfwXYtd+MMyZIX8Dqu8OCphQVZ2ZYaXIN/5Tfpd7W+gb8/X3sWKvD25XzVlPMkY8ufvS4fhuPR234rodqzb7O5/HB3xvTb8WpbgogLj/tLl90/h+XJ+1OPHeO/4+8w5nM9xr54D088bxqdGRWn0kwIjR4IVds3Ahx95VEcwcvraOX/eX4og52CZJ4T+2/VFvugL2RnY2Lkk7izG6+5fKC8W9Qa3n6cPnML6Zjl2/y2/2wz8lpJ3KI9A/94nuPmJoiEkuu/efBvz53vYMYxynQGOaMamcIwLNf2KJkkX4NIwyyIL1o3WVMfu3u4Z4BMY3nE2lwbBP/JHR6sNoMhkcMwY+dj/XTTxHsY3+WWOymM84VTQx5XeFyC3STfRBs9j89CFOMv1THBkXnM1KcL6kWyqfKhJgLApjur0Yb3Tq/msrMLPBL9334UUC2m4N9Z9adm4F/D2nAkWxP7k07ocdeUgJryZTzdZSzAfOW0f05vlCHpH5UTkH8vM0h8bLjFhtOs/TmYtvielQE6tVV6wkltaX+U9+qKJr+4G2L+p7HaN24h8cfih32FotYe47adqvFMp+D27qfEW8oVL+caE8x8KnBtLmyq7dxIW2U7vS6ifs0+lT/lQsO8UX5kZ6lnOmCSJ99gTM5PUgQrUv/d8rXkT+bHCTJ29FPXEoZTX54I9Mc8y/SzzkQI3vpnLL85TUF+z+mIa9kE6ur5q8pucyY/jlKwt+pYNh/QEdJ0p8JzyWr3lP/SZhyRGjbscyQoJ5mvOTlw3KG/eg/y5qHnLygt5fGFHZue0xHlS2h28Hm6iL3LNfVznRoGIz/Kfi6gvEZ+VXAjxIytr92rfQz47TPnqJSNfpq4YiPYhv10Vqz7PtfqRnSEJd07gu5/LfD/91Bc5rHj3CctSGkb/8l5pdvMlleml7VFjFLDravn8uUpBjNW74ofIt8DJXp08pRDSdWaZ/NYKChKX5K4Su0QBzzox6EefM5a0RkN4TTA5sNnvjA/mo3PzyK8zadi/gv/h7ci3vxvU1ml/CiQJTQZbbryjYAfX9el85KOh1C4F75V4H9YkKDzfe5Forb7u/A/3w97hpxxWgOPLZOs/RH+pX7aNbbo9jOQ9ubhXspkC0+c7Zd8j/+zWG2gu4P5MtummiQeHEoNi8VgR9PuNwwpC6ejvVob5i81i/x5Uvpv329NLZDUY6jVi/fkR9fJ9fRkFe7Yt6xBCvneu/XeJf96fbKMY973xM/dPo3JGKwUDDaChsR19TqSJr19cGOkJFzkv8o2CAzdGz/K/oYDN7cMvD+T7kioojZIJIbs3DXPUor9eunTh4G6agu7lyT6NyHOnsp9+Pq7+5Nbb05W2mE9h1w1Tgtg/z3rcE32InMt8LfZZycyD8CqzGgUhD309Q/32oO9/vvnRi6vIy0yBYjH555fI5VEfVgn08zn92WLCa2nojm1181ZAf7urPerPXV9y+e87kwH0/z5BKf5P8Ke8AM+vy8jz2uKunIpOZ5J+n/eiGfrhXwz7kG70l48ixv7lox/5sjhwJrpbnFhs8gylkE+8/DI8v7HvFFCp3piCfo1HNtOzQ8+DhHQ9zXVF/x19eVFQIJSGrDsxEo+Qt6X848UP9x4nHw/IL92FfDE/sOmJcw3m/cGnWRH004o1S6oKrnGQc/s9Fmn0R9wHzimYPMN5Hkh7rka+htbqVTmae0FrisKKGfy+9c3t3daiM+C54sufgYvIUReOhup7ssQp2Yv9LvJh5U1/Qz0R5N8K2QvvL6C/DUyS40j0BLfmpW94sV6szVPWVbObgQ0jqjnnsT/eycYjeCzyLHwRXX+nXQP9eqVa41fbGfD9dWT9Voy7MB4r6UgFw/dns0QMeSxn9Huf79AM3GrdmRF+C3m6WXf74xQLOM+1vHAQ+dfgsnB/C8bZxuTWymP8xd7IhcmZIMg0nJzkwnxKZRTsUJBlwpz1See+UuwDvOQFXB/thoAzYe1PsT4v3bDSTmwnE+6PVBa8LsH69H52k/eBC8CYqmlWtEG/P/azfugeE/R+iusua6LhtsxcRj61Dj5ShlVjuH89e/P/3pczgfV8dPTXRvSPBu30Zxd/OD3TFemGvkS0pO6Hajj2t4xpgau/sc8ShR2a0SqkTLlRoleaggfKgZ/68Ht3g4qXbJmgwKVqfW+ahwp5+uBT6Tn8fdrjvoijqD9fPqscg/rZfGdtetKNrFnSqtWPelntdLcR/N6KQ+VbJFHvka4OT8bcSKLA4SvbkFtKJun7b0ZSkHxfKq4e/Zb/1+PtHJxe5MPwatPCveg7jkefU0H+COeLvLCcosAGkr5fnvMkW2v4Rw6jPm1yrGQV9o879BcnB1Bvz75eOG9tMLGJHH5MUC/Y3/P5Duofa3zbGIj6FkOzg8ILQQSeif8siUWu8Wja7cWfV8z4Bs8uUnDh8Imsu2PBZPHFhz/N2Ldbpe4u+ncRf/95UXT7DAUKeyUO/44KJrrXDyVKxFHwNPlFm/g1CjKU5S/2o15kcu8Pc4dIwptPpWgfpaCUr2wdHYj9b63IswLUmw/lNbIqRZKjB1xSu4ooMGbbuH13Ouq8dc40L0f/srLg9ZLRcKKbpvhd25aCzaYJyBQKJhvrPaR+UhAnmz3iZxJOhm95mKjfRt93a89B6gbWlb7TIgfR30aH2fxdLxZDZhcOVlVj3Sr5U6ivhfu7uvvN3iz0WeFFZgLX0qOJyIMioU9vMe8CViKv7uA9+OHQU42cqFihJMAciiQfsxLkvsRQMJ9kOhqO48ees865iPxnSdm9fl96BDEW1F9+Eutf5HP+xphqCsws+F5K8WH9FzvWV5AZS3jYVET04in4vm9t/PFSCpp7uK9Sy9Aflh7upXRiyNsL648rfMX12y6p292G+29ga+EVw341Kjv+5q9wsrHzuBVrLQXVz06wFb6i4KewHm8U+tnUY5G8EhBGfKxXTPrgflzZ3++Uxry+K//lfHobDV2/biTZ3b1Knj9XXVB7TYGaxQafm0MU3Fimfr8Bedj2LGI9Yy6SGP5zOlqGfv+aBv0lBuvAO6477iuRj2Izyy0Uj1wiG9rZHgVjvi/NdwSEYN2pfJHIuQT9a5lF58DaGC+ynkEC/qDfjvtztLzmOA1Rf1luGaGf4cwOFrAuCiUdtaYTTdjvBJbLaj3A35+/N6l8HDnaWvrhXnayP3k5MhcQjryvOX+znD0S+xD/afcwPRqg8xb7dW1b8i/knjcX+m0W0WtUCfat7Jt6725Bf6qkvKtPS9oKml5/cQo69n8e69gzp2ioN+kyC3TB9z1QLKZi5ERW2Fy3Ykd+HCg+WJA4jj506essEfSXLQ6GISdUjeGzxcF4CVzPSv0+2S7sj62fs31v8qeBGUhvYyobAvPtRb6DGE8sd1o7gPGp9Skf2zC+EBn1xr8rBPwlM0NvIY9dvLT+NP6//w23HDuKPth31UJXsg76x4Qu9qcYn37f09eC8YhBZoMOxm9c0DYv6wmB1iuFGyXQ75taq13kVmDCEmsrkQLkn/OIw9I81z0gN0m3q2D/cOJi8gSfHBO4Lj6MKS3GPEx+6k+ODoGDBbLqVcjX8Q4nAbMvTKxjDPV9nTR8/OW3RVVjN7nO5v+3Df3fRupZhPUnJlxLO/jwIPro1SMnKv/0BsHM7/r8JF4K+leW32r5QsFW+ZE+DeSX2BT/icqf6mS7/XreEy8ZsM3hpUoQ3nO/+N9+P9AvNbT+63Yb1yDH20vvOaP+gOepdlnUB3O9HxdBvb9NTubQvCcJUl2ySQL1197bu39uwv7PcSjsA+rLLedLezZ4kVezU6tshCloNRS6a47386mavPF39EPvTvXqOb/wI7I7TieHNzJgpqCSqwjnb41vrj6AfktGalZEmf88KQsM1/4uRMGxsIhbOYMU3HzfnHoZ9d/OxsevkbxMllfSrbyot24VZZtAH1Uu6PSraZSCh8ev+/45eZlEbfqqV4J8Zj78kGczjD4xoW7BEfvVF8lcrJ6u4aSf7WIHTzcDlst8VfuH8//mHM5mnUSf+MXq3PLCcMKeuuXcOtRzR95cx4H7t1s2t6Ed/Vip1KafPl6x5MyFcmZgFwMkFusrbuH8UUH8T12R/1n++HLvxJKjfYo9PRq4bt2FJ2a4r6XnCqYOoj/sZn/YZFkbQ+aOHuoLm2GA1t1gRc0WHPedpPM29ElRFWbJYmMxpIuvJcQT9R9UDE3qMK+hpfuTupBPk6cdTyiyJpGQ8J4wIdRfzOrpK/lAgeLy5+vqKQpUtx98kMGfRPZZf/qW5Io8rjwiGYTjGuR0tDmtomH4THt/xI4EMhkSHXyGh4LVC+caZbuxPx//5yOEPHA6872vkjuBxLAPfxNDX92gbST5lEnB7cM9bb9R7zX16PC+MynkoGR88CTq3ZLCGl16KTCKYfUtRb3aVOchB5UU8vQ0t3k5+nvBxJ0ZSiz4Dt54pVuhf40X7hBUPp9AXrYxm89pYX27XzQ3hT50cHz6+1rk54LFqt1FtfEkP0MoricP72/BWeNhLqzzq4LfxGzE/lT+xKsdfinkAf9//zKPU2DyqvtREt7LVqlf4spYHz5pLHmh9jmZXFhxMUW1H+u2kKX/cfShmexJS4XxvZXu2yWity6WFOQviRdJoeBVPcu+cFzXlzK5+tM4ftufoHU3P0eR93Ezno2Y9+pte2a8dTBv0cu/FKIflZx5q1tpkUjmJH1db2Pd4GzpuHsHOSK7+3bOJ+RZSfaX1CdX40mNumTJKqwXo11/ys9gXxnR7vr5InLUeKJ/orY/hPya92phzFLgzRbnnxhIw4YlS25XoF86vllDKaTPg+h8mimMQj8ssVf4ltYgxp339v9EP8jTXqrbIRlOIpMPvHfA/VZb33MJ7UJflP62YKcJns/PkRUlHudJZ3Na6Dlc79CDJz8OKc9A0PihoK/nafiuamczfsqY/Bc4/J4L/bxzdnRUqeIMiLbzrTX2Qf68mG+/ceAiHIK2uXCcL/l83ouMyRn4ZXRpdlk+fl/v1I+0OCviOCMM4uh3BWx8DJaMzcC1w7rhbjfR7zpLz2pfPQ9nklkNNJDPhXwHgqLPMSFrxsv85WMcz/dw/ZpXaqRuxjSB1sJ+TnrtCR8vJrgv05Iuq6Yhadvp4Ms8kbCk+P1KIczLlop7d93lvoLWUmXejDmsN/IZO5knhutsl0povriC/fZzwZQR+a8gvGHdSOgvGk5XX+feLXUFku535bE5MsBeQ2JKG9/Ru3S7yoHHFKzZM2kX8EabVGZb561cy4AyNY6S2F0UrE0+6iuC922guOzLnZFjhG3M9UinAwM2CAR5x6kjB9/PG5WhXiQhJOxmsTcRbv99eGANAyx4rORaZJGPbz6vZ+aiX1DpTZRo8iZH5pmccq4M6OUJKLiO+g8tATXx2Ie9Yu276kYukM5fbfyhOP+fpIdbmTuRPzqPVEdQH/ghZlO3zEUyWtW2Nc+FAUdXLBXWP0yBe5x53wLO/+f08/gxywgSVvlQnonzu1/df7MYOZW1Ks38FOqrFflNs9C/bFCa+ffGlwHOsiVOtagvH3oyJIg+hi1rzxXBgCtEQ2NJeBsPA6oq6HcgRcE/2/8OZaN+j1v4YH/PFZLEaTz/wYcBGp66pl2qFOyuEPu8qYqCJffIciGDBFLN7xzSvY4BmXMpNcZbsS7stVfNx358deZUxfzlBHK70FM/5QoDunv2V51Vo2C6wqBlVw36zWkDsXdhCWRn9z0VQyEGKNm926MrSYGm6piWGOafNd5G7dSLBLK/ouGyWiQDNq+M9+VVpsC3rvTfp6dYHzJcJB+mppL6ETZ3VkEGhKeLfGUTo6Dv2P4LzTi/rfIFjf2dqUTrqsnA80IGTImyUCZAwZDY4BzbC6wf6vW2NuYppPHWqdhzMsjf8X9GmpvR904OWM7mU3Bc7NXjnOspxLbl5A/PAgaoK3adlDqAPs/hI1c1oeAtr7QEN0sW6Z/UKBSXZkDhv45n6zdScHJn+4XCW8jRrzvPa6tmkZdBP60NOhnQcEnvhx2ev86iz+cYrDNSKVnTApVpxEmzujrmFANoWdYY7y3owx5I+GSiT92oo/8uviaN7M29lSyD+jRW1qqGIzjvJjFuW9RXSl3ojR2+QYYd7aZtUF9X+fDER3EKqPa2Ak/Uj4/tqWadvkFM3hAXbqy/S4qVRvaa4viBGQNcWEe7qjOG4pvSyJqI8pT7CXh/+H1lLBSxPjI6JBXwfG6KZm8+JJpGUkyenS0SpWD0u/jDRCfsk7iTWwuwjuZ3ev9k0c8mOgIlUZopDNCzObtQje9LPLhZ8EMdBV/2++97VHyD8DTrB18Lxrw9EG69k0TB9Q2XSlb+wzrKtvfCAYVk4nOmzatlkQFdH+dX1WD/5KVsNi70GX3EUf+Xt2MSye2at3GeURRouFKcinjvlThmn8xg/7AQYMG9Sy6TcBxVD63goIA/vknjaBoF7FKtc//GsU8geWeyo9JJVOaIwoEuvO/XOIsz16Ov/Zh69hfyrr9VooMlL5xU00eretE/rxix1gz9/99JtjMXPyO/g5+UOvGYGpAGwZxoUZxPPPn7jx3dNMwZ6D7sR7/lzCh8ILEjknx3Z11V+wP7l8njaes6cF2lJadfGtDwpqFz54Z2S7K/jt+wG/175bac9IzEGZCa/5qqhTzbqMJxMCHGhTg330p4h+/tmrSafWfADCz+S7aNtEf/2ONxUmBNDJjccDx+Fv3y/I0xj6p5JhzrORTbhpz/oqG2RUYgiJy7MxepN4/j50ap/hhjwoqBMZPV9TQUH0l6PzYeBp5RD2ZP5zHgPvcQX7QpE7xFph2kLWl4y7pVWMlXm+Tz6slQJxjweE/jlvsa////c7ufHvptB93Hv542apP4r6sG1FG/+b5O3SnUx0aq64mgfi7N+YfQNy/yPrBs/WfU7+lQaD6P+qQSGasjqBcIHdh19z8vEpXln1qcwwC3guBDuiZMaFNtemV7lsY+/VjCMdELxKJdJChenQEme0qUVxxhQs2HuVoRrAf1xrHKn9QvkA8zSdt8UL/8x+S1sDNM+Jk8ZrQb9b6hCb8npsJJgqTSWjPUz4etu6p8mAkMMW49xlEaer/eb961EE7+BhTefpzFgK2cc9L3jJiwPJRhzmtBQ9ppxYBdJ64Qt8rlmqN7GRBkFJtyUYUJli2XXw9iH8MsNc3Z43+FuL/V/H0Y9UP7L7mMGjDB90NcWZ45DeUXuNp8LBNIF0tJmifq4Spfxz1lJrQLSfK5oT58y83hH74JRFtHZW9xBgP8Mrme1J7G/Fgdkh0yo6HjoPvJ9ZMJZPmp0sfnxRggnOXY/W0vEw5aZ5/kU8V+5CTzRwp3IvmeLZT+MZ0B37rDVHx0mSD9QDRxNeq/C1uonApKIyW5VwQKNzEgr+eTxe09TOh+cPHBIay3/3YOjjYXppGYYP2JJ9kM6MufWL39JBM+dfS8+4P6nXNxfnNjqeTFvwdPWLkYUMS6uPS/HUwok/ta+14R+7QKTtiJ7z+XIfYw8gYDWPQ3qthqM2FKtSjtrSn2eQtSFfblN0inc/Dl9pUMePtQfs8+SSY8ufk8+jr6jflnxQG5EzfIYHfWqcsPGMAuN59PjjPhX/P0gjfen4f6azJ0NbJIb+dJBu8SBoR5Oa6w28QEr9XGtgLyNLxWSjrF4pVF/Pyfn8i6zwDdyogUYS3sb85x/Y3G83dWePeg9lgecfbzmpBanIbGuW9/iTATOO9dtJSVo+HktpjV6VZ5ZH2JTWv8JwYcEmrgyMTz+0TcpTiwf1xq6UgZXMwmnO98B8XYGBCQHx17UJQJglpy9+7i/OODBqzc4tmkdmWKttUgA9oKr8x+NmNChPjNwl5X9K9Ob67XduaTp9JFZ74vY8DKncd9L+P+6+7YbA/C/praobJVqDSfsIfqsbkqUNC79/dIYygTfkXftipAH9i907ip+OFN8umbxL4OrF+668ruj+xngqeD+c5aPD9LxdU9X35nkz7L6qBCrLvrK5M/3CtiQosz98CnazQccX3yyDG4iNxtj32wagsDriYezWo8ywQ1zVe3f2nSoO657sCyW4VE88yrb73YL3VX2dgd7MH7oXDgDlstciqEMXniOvL7sfxqN7wfwq2q0ptxfbw6672mkD9VL9tmBOkcMrHvr1HrNwpOyB34y1/DBD8+zzXz6N/MkzpOyv8uIlMpzt42aQxI0l5fP2/LhPvSJ7r////+0ocN7YJ5xYT5094qDsdrUVv7SV3vK0wGCd3M+Y+G/but202Z8cTA6RRT2WUGJBKam/u9vkKwUFrYu4MzwBxrjb2lEw07grnNP7HMgJqe9cexqFnYzf4qayZ9Bn70Z6/NmncjSbN/pmOXM+F6rmhDQMksPM9XCRLsnYF7LXZ0zNlMMNa45G7rOQmDfr4qmwtGIfdb2madjGm4Mvlm6wqGGulxGjRKlpmEl4sffsskj0JIAHPgzJVpmIt5FjpZA0TvqHtjGuoFg5VKGagvn7tyKQT1OQVblklNuZFpl9aK16hfYE+y/YX69Etf9sWiPiMu7/qtbDey9MnOO+J2k3DBvmbXwK1REFeyTspMnYZPUreqfgl6k3ypwg93BCehmNVESSVhFKBrMWs+bBqGekU1U8u8yDnuhsuVqJd/uyFZvHAUohL/OEulTYP5VoW8qqgQwhOuXHRQaBJM7J5cj0gahfs7073jLk9D6T8fR3a9EGLI/Uoo6sQkOB6K4OHLGwWxT2pdEQnT8N+hG+uW8IeRq2Ni6uNzEzD/ZCCbih6FR3qZluYXp4GzJKvnTn0o0aq1+M9RZxJ2/2OmZuD++WIHHtsnTsOMTOtuabto4pdSI/HmxwQ89dbc5HFtFApY5NVUAqZhbUrzr+410aT9+NkwTelJ8OmJmKvLGYXC/SmjDlen4cMJud8tP6KJS4RpgnDNBKSMsylWho1C01GebeZu0xC6stFJ9Vo0ufw8otwU8yt/XbRwTf4omN55uiYwehpMlmjqM2qSiPDP0JpdzyfApCRnctmVUQisVtL3dJ8G6cG1XOJXk0hqcbFBM9sknCizv8N2YxT+rVFY8itkGvZJ1HcKSSWRbcUVzKceE7DXbapt0W8UhlurJL+ZToPR6oyl774lkvqwqkd/l00CvaF06+PcUZCgNM6K4/nI7DiYzSacSbTCXupMeE5Ac6+0zoOAUeC42xghYo5xHt53FSMZROPs/jC2TxNQFDhVsitrFBak2JUL/Kch3CRh8O+qdKL812bDcr4JcBp5yL3bEfOf1JZXoDENSqtXLKi8TCMXpLLr4z5PQHaZT7EBzn/wt1OADJ6PS0zzqLdCLrFpaDCO58f986pyGbqPwjcL+SGZo9MgbB/zPXVtLhkX0m5+gvnNkvq+7MzNUdBf3Zug4D0NYuIFLMF118nQTVWt3eXjkB173/aJ6ShonktjpshOQ7wes4VmvU60vyxszyUTQCu/8PlbPgpF7bGUyPlpqPuz5ua4QgHZb/u9YEPFOIxkB3cYu4zCLTntY5fkML9JCstFevPJzJE5n9ncCeC780o09dUo7LWJmRb0nYZ7WVrliW03id3+24lX9o/DuduzRX+dR+GqZZVniNA0yK/QKi0Mv0E0sjkrYyomwHmV4KZ/K8Yg7lnujsrIadDkonccOXmbxCc9bxM7Pg5NnJrFNg9G4UvVhweCMtOQ8Jra1ny7iCxuL6gbfjwBW+Wvv4q3HoPCQdUJ/sxpWM1V9pZ3ZyEJfpPI8Yx3DGKud3UtezoKyzUD/sR+nYKfTXMyZlQueSFd76E9OgHCqtxXdwqMg82wWUZQA85fHnc19FIF2f+uvHrzoTEILNK+XnBuDOq1MkrnNk6Da9xu5UKz+6QmOlbExHsK9lQdL84LG4f33lL1GVLody20zaYzSolJ9I0yl4ghEK1as1IS72+ZN3PLxl1TcIFT3+uFXTn5zz9vY5v2FIh65uZf+jIGq62BcLMywCjjImyKeUFS/B/cHTYbgkkPW/alYyPAsGLbksI+BRysC+qGQS+JY+mM1yutCbi53Do0Nm0IFmtKFgbIFOzmmytmML+qxspnrH+zeQLOOcXu+BA7BDGiH4s2PpmC+qbxEoMjgsBV2j6npD0B39i+RVlnDEFQTVywXv0UXGdRaj/y14xwyQVmKotPwH/2wnvyrw2BpUjVtmTUf7fdL1mXaUoObzCuZ+yZgI/3lQY3pA5B8LaNm1hqpiC5PVjr2T8T0reJs3jp8gm4960wY/DqEIQ5X+1tuD8F++7qjBS2GpKAj1u8deUnwDDbtehu1hBcHplqs3s+BRFs5mFvDN2Jw0CnsQP7BEwO9pz1ih8CVknDGKmKKVjmdaSlRtUVx2/7b45tAjIq7FxZU4ZA8NcKvgyML+Qamf9e60IcfD4sQNM4bHtT4JqG53BhpTafVMEUnBJ+evd0iANhH9TgM8TxF+8oN1/JHgKryhCZP4+mIEPObPGZiT+5s+cw/60P41BNApoFcX7zd3UysUVTMOnJVTyV6EfGb+ve9KzFc9exP6SXPASyTUaWJjh+gnoTR3OuD3n2M5LR5D4ODUPenY7BuD8Lu+8eCVMQ7/qjP5fDi/x8PbRron4czr8sjdqWNwQGk5OzLcVT4LNHZ5D5JpQk8wlcUvMahw6jKiHVuCE4E/gzfDx5Cjw0Ro72BoQQO7XXH1zNx2H994AWVZx/eUGRHhPHV/vpw2drFkjqBqSWbp0eA7HMVDN3vyFI0yaDG32mYNbs4yWPj/5kwDV+3WbrcQjLLRjmLRqCay0e6QWpU/ChT0js+X9RpInjp8bAzBgEaNaeO4znJ+0XvaXDfwpSrx0zeKl4heT7GrVJ4b01EOBXzMb8i03x7d2G8fy60L1yLmGEI8MA1OXGYEteZ7KN0xDc8OxMmDk+Bet7WVl9eUPISg+5847jY9DEEtkSXzYEKSOzfbZBU9Cq1W3vqJtIHBN3j4cqjYFvtLqUYdgQ3HR5oCB1egqUjDJOcEokkGNaU3WXNMZAspFT6D7en6hWm9e3TKYgtrPB/FBYJFGxb1zupjIK51vrqTvGQ1DXLZSeIzAFilc6+4d4L5PQ8zMueSfHoDxUpEmlbggy/zl6NthMQfsa64GpvHSyIrW5IkFzFIyvdt3Yf2kIrJeLHX4hNgWPHJ2uKzFSiW6l6FYa62LwlhdefveG4G1iMoNnP75vdeZXaxJJQu8pNPbxjsC9Ec3+WV2cX3eDfnz/JPimnDwlqR9K/j4UEbHJRm6K1eroTA3BfELS8NWjU7ByzGaQa0M2USvfS3TFR8B38PCTxughKDwpcGzZNNY7rpR4pnUWOc39e6pQfgSKyV9O28UhOPDS5l0z2xRwZcineql5Ed/9rLLPzYbhYczBfqfGIci/VnT9Y/MkcPrFaCiLhkC5SID4/PkRWP5v+deqVSMQ0T7OugXnV1C81hZtEUdWaUc6rssdBrtGrfrarmGQyNneuX3dFBwbz2MxuGhJtJ+lh1lmDMLWVx+7xwuHYDBy+TKXI5Pw8OzjCsPiXBhvUetz+DAKMbCuVn58GLRYjzCqwqfg2bpLoXX87iC+qzJ7n/lneGssKrzj7GcYhdSkrqIJEF12cIue0RMojm516JAdhcPbT8wNn/sC+c/b/bdMTIL+pf646sl78D/ucMVfAQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAA/gEAAAAAAAA=eF7tyc9L03Ecx/ExKo1ceEkkoTpYUFMiCAPr88XlKkI79CVYkETkiEwdQj8JYuuQhdkPwb5C0o+lK2gJtnDO9PMta0k/wA4FJQYdsoJYuUvRapud3pfXfxC8Hpfn4elwEBEREREREREREREREREREREREREREf0fzENuK3asVWPlN6/Z7ImMzyms/K6nCXeiL66w8tuL2gPesUU2Vr7fdzi8NRXTWPlrA1VNTyZSGit/71BlleW5pLHyQ59zO6czBQZW/vbywNDB9A2Flf8+F+4MFv7SWPn1UyM/gu9GNVb+z+43ni2utMLK/5sst3b7BjRW/vPwzOMVyRIbK//qpnlvL/Y+1Fj5zo6ZzMm2+QZWflnNYOVs+p7Cyq8rTq0f9C6wsfJDFW3PemoSCit/dZm5v1H91lj5S2udjUF9XmHl77BO1FcvfKWw8k+3HPDGgnc0Vn6mtWtd5KvDxsrvbEqeqm6IK6z8qQdz00t6v2us/PBdK3d0NqKw8l3LhmtdviIDKz9tXtj4pTCgsPL9517U9R8pMLDys8tXFXtuRzVW/i0ztKdnMq+x8m8OqG0V+2yFlT8Z/5O8djyrsPL7PplnRt2PFFb+SOl4NPJysYGVH59oWPn6Y4fGyu/f9a30eklWY+Vfdm64Mpw/q7Hyo/4PofvdeYWV/w9mlO6DAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKQgAAAAAAAA=eF4l1XlczPsex/G4lFAORWOuNp1ISvtNi0pp1cYUSVla0I2j0SKVEiXdbhITSiNUZNApNzGWJHUUIZP29YScGolU6oTu7/3x1/Pxmt/jN7/v7zPf32+CjhUe0zeotzTR5x+GQl3FFDijbVYizBzpPQFdndj0ubpe/lkYk9R8EgqepuVCfuq682TNu2LITrtyHSo6XCmH2iVr7kM1VlwT3JK0qB7uu+z4F2RJSL6DvpvKpQ0YJ2/FSMKsWSlsmGx/hAU/Ba1wgIIrS+zg4UiTjbA8334DvB44fALePjWVTKmO5UNN/nLyzI893TCjgU1mXtokhs1saXKsmqVnyNjtXq0LazLUV8HsTFdz6PV8SQzUuO4WDcf/npuAdVdn5O2D3G7tozAypjwMtuWo/JfmMrInGrZk99LcAkYNaN4N/QY0ty3FM9PIviEBzau05hz8R+/uu5B38OYNONte7yW80xtRAf0eq/8JxwU3aa78tp0SuI9Vz4ZH0crrmuehi7w1ZKBekcgCyj5cbAJFN/rdYIlA4ALf5QQnwxnZy5Pgtv6VZ+HXODYZOVepA1rwJ9thg5VrPx2/akfWtWsYYi76C1VJSUd/a7iT/ckKBtXzj8IupeWJ0CRRm+ZkpbfTA0pvLg6HzTPEnrDXb1EM9Ljq5Ev7pGB+PJw5bOMHE5wPppI3KkIgW9nkDBxIjo2C3v0lBdB65ADNdyIkQAhFycsuwDLXIy/g7ngfmrPnXN0+WMGRboAPJX5MQsehJUNQoVFFA/fpWO9I+1K5K5TmucB4mjEMT2mLoPl/CN4Lc2/LpEDDpgmaZ9lgRD1M1wysg/zDJ95RGwS8gZ+jFFZiLuLXYiOa079OO8E5bsG28IAkKwvmx4p5UFSqtQXrGuZNN6X5fBz82c+qqaXVRYEw7CbXmtZvErULav6x0PbnfS2MoLn0ZdD81+4Q0T6N3urqDaf51/6c276nXDgYXZYFn6Tfp9/FTNusBEb9OiMb3r1U9wSK8/i/0/cEmtFzbRx6lObpXxlFz3VAdxXtzxYfT3X0wZQ0ZZrfLwu94YAOxwP2f8vaD2OFiVE0x6pFlTBOWuoJbBTe7oReOUM0v4wGoQXmYm03ZAOvXovzghNvvDdDnZrhe7DWrbEM3kmX06P7fCX3Vo9xszab+sFeNnX25c/G6C0uk/1oFVO7lWjbfo4YfcTU1A5dp/Z0HL029I492nKPwwQ645sR7Vv3/WnzoIxp3nZ4+fn3BVCdOxELt/pdpO9d3nQpGdoNONjAW+aRhTBGIYL2d3pRVyXsKOqg94xquPMg1AsyeQh1LI/8E3N4mx0iRl+IX2+PVlK+Q3M++r9UHqwZGd4HfU+XPoAJLdmXYdWXHHr/reSksaH8pdcbYeTUKGPajz4RbVDm/DSa47kKF11cR8JazQHKa4l0aJ1ZV2gOORLRRnC6qbwzLHZSNYRn1t91gnnKK6ygtfAG7b9ir80WUCO3dT3M3G5M5n7LCICt57+6w/AWT39Y8Yr3G8z3tTkEWWJXmpOk3Hd6T6THPsmEp7qTaY486XT6v/Jbw7kDZ0r1tND1NY+Pw7JBx2H4+NuwHObx4dktQ8j1NwiBjzvNaR9Ori25BQvHWPdgDzdFEvNgKbnRey7YNicFhq/wOghthtrb4bLoeHMjxsqdvtlQY9qbQOwTn+D6Th2s55A79Rh7NfW0+7N3oW/XLKI2i3DcgT650LsdPadLtButGm3bgb4b8TwIzfpm1YpOnb4lAh3E66LzFdtt96GdYqrpeKhU4DH06XHee3Skol8Culnn1Bu0Zd+XAnTtK9tJdJVbJDW/4ukP+j4zvR70hyiBvi7jMam1A2ibT9Wr0Ao20vTecR1NO4cuWpxIz8OMELXbaJ5FWw3t07SaA3Te2UFfzNMkxVcWnzs3+Feja1vfr0bXZ9p0Y46KnCNe+HwKt49L+7fyV7ExY1z7A+qX/mP96A0jcfQell/GeYve09T9G7qrtPgN+gZ3bzDaf5dWE/ov3ux/o+UaqxrQX5yFO9HzWeZV6IbT2oHoUdG1CrTv7um70N/dK4vRU7s8AtD1Z2QL0RKf/6DnzGW6Ti764eIRWo/M200X0O3/iTuFfsH5lIduClXMRF+ejBag4wW19P+g1PrnY/T9r+un4v4Np8ztRg80q9P/gIX+D4uVjLPMt8fSe+6c71K0bsItT+yztUfzG00Z19SJjHDeLvbhe+aMI6kvGzVx3aXP/2YxnnAJbkLrdgVPoCu3cl+g361bN4AejzSsQ/vMUxxEx7MelKG/ZApF6NycsEdo95bYBnRDqLAA3dmRJUB78eZcR88umFKIrlrFP47myDWGoS9KWpxEh1smR9L1lnWGoYsKZhqg5fj8A2h9z9fGaAVJ+QC0UPRarMDYlb00BP3RW2MMPWfe5yB0rvyhQnTwKp8L1F+1etHr1Fa3oFP9JVagdbQFgcsZPTK3PkJfTN5wXoux5718pzxjx45CFbS/cqkr2iNpvuF8xhyFC6OLGePFCUbo84dlx9CW6bLq6JNn+nrQzruDlqFVa1a/R8vUj0qhh+aX3EObxQXOQWspKD9G+3A+tuE6MWNesehPNsJedKSlajJayqIjB520wGQJOsYluRA9Mv7WEG2eqMlB816bX1dl9A5L2YEesil4iC6Vq/oqx/ioX18a/SHJVx7HS1J/V0dPWOSfwvHyKducVBjblGofoc0dcvaje1IDv8zDOotaldEqxxc9w3Fxq9IQ2qc8Ke8Xxs8m25yxHoX9MddkGd9zNwbg+P8BdlVruQ==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAOgIAAAAAAAA=eF410V9IU1EcB/AfElERMRBCMmIvzQmyyHoYGZc9WK1AnCIiFLVguCxpztRiubqamazUdjW3tHKuOTdLMix8WOD6Z5Mg9lC0omgPkwh96iWJWN37+56evnx+55zf+d1ziWg2FClMEMnK+0CTlsXHbfYKItp7xNGimkrMMa/md62/u1Xb8wUnbqiWc2QeVB16NvNBUZ2e8TqGNVfVrl7R9pNNrtfO0/Y5F7toxcMeL+9mt1f2a5Y/Fgc0y1Xr77JfjoV53fQ9otnS7IzyenjtFp+nagevW7+42UVLl9nB2uvsngNDbMPRO+y/S+g3r4+yO/MxtssQZ+eMo2yqPMvW13nYoV+97Nmon61fGGXr7k3g/uoptvFrnN0TQ78/16axnrqNeQsxr5xGv6TJh/6PRtjZyDhbVzMJu6bY6Ub013kn2ZaH+B7LNgXzpjrQPy+jf8wPr47A1gm2PHyfnVwMw10BnD92BvuWxZz5AdT1TcgyvCc1YF7KBOD94r3WYR7K4X9S3Rj6bZpD3beA+qfHMLUhs17UQwOwrh82D8H2c7BRzDn9BHXDK/jbW/jpc5hOIpNd4p7zsMUn3AzLHeL7YqgbE/CFFBxOwy2v/58TaRV5SSTJCLeweCdLCOftYt5MEs4uin3JCmmrO1Hj6ZPiu52f6z1B6YetYbNTzQ0ZpeSqmocLXpTNq7nv0M9TGy8GpdJEablfzd6bSntjZ1B6szJo2qnmluUHB3e0BaU9u5S11tN90j/AefLfAQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAA4AEAAAAAAAA=eF6FVE0oBGEYnouIi7IhW1wQJysrP5n6UGz5m6KErDnYzPprW6v2OG2IuDlyUE7KQQ5LNDU5iKLkiLQc3DiJIkXM+2mebz/m8va8z/P+ft83Sn555dhpHrNDpf7jg0GmfH+6aq6sFd4VjxO2dvTA/HKd4WDFTGlTw77zUa5PXTUFW0tGOG83vzV6BzSOldXLFuukwub6oofayZdBm/jI0XWgR5ngfCSna69+JsbxxZNxuN0dtk3Dcz/UW8PI/2Pjlht/1XNZ9OuOPq66+Qhhy42FfBZgSbxu2eGy1t2ndgZ+6pviuN7xA5bVwTjC2DfOQzrMG1f1/arshtN+BnGg53WhDp8f9wp6E/sjP/Qp7In8v/1sZWYsdNI9FPfPdWn92KcJetyvcM5iP+kx1+emUpvJ6mnm5mV18NzwPLB/2XmgpfvFsWSOiJpbkOwLf8wyh/8nv3DfoA7xVA/fLfoFHvKK7z4rsXhb9BhnhP+ON8FS33OwD85L9iS9VxAv7En1vAa9bWfzzM2THv8DODfOL3vf5NcgP6/n2Jhkjt98D9F3f+Jm3Xb7SW9AHNXXoJ4h4WOq2yKvgw7fIeo1y/cc3ehYCtkOBh31QXk1yMfrQpxsPzwP5MN5ZHvWrE/rawMHAQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAA8AYAAAAAAAA=eF5V0Hk8FPgfx3FHuXJL5NckOX4Rk8QP4WvJseonRzlaR3ITmVzJkXNqcl/jHLfBjKPJYDfHx7B2VHK0jrCLRJTFT0rMxs7vr53f4/f+7/nf6/Hm4vr/aSsJTLvJOKO/vXLSVfAM0Z/jIIfpuuSlUI7ZPUHvThbe51iNj9kR+HM8x/dOsXiEsUkcL+p8CnXkT+Z4w0JwAj+UyLGhtE1pq0Esx+ZJRoqiDjiO/15e/PZQGDYGZOwMttt27VHul5qI+vpo8ORxK9HP80I8Rvk38X9GgfJMaltD9h107Ri57q+FCJBYzSo0k4hAU0yLqa8bOHB96cvmyYlGFsM69inuXiBG+H4f3/cA2XEz4zeVBNFI2BJDVCkBFRffPm3nHYDqi5QvTDPjUMS1dMZ1zRjEcJxgBXpGItadcyMmyni0fX8vVaXRG+UF+hg/2k3jdGNmLHea0lJhTKGuOmr+LKrAvD+YFEkFq6tl/26sNEFzP2fy5sUQYO4Nq6bO3A5hxeP+ksvAQxE1JFqZ7YqKhSPIJRMJ4Pvr74nXdHwQS8SELVQXBnq9K69qNgKR1O2vU3OxYhBYF7CjOBqEeloNoy60RaH9WV01bIYf+rCnwlUmmoZ2Oo4rUjF2qL0o4qGdNREl0GY2Xrh5wCf+yYUDPxKnV1/0gP1NIQ+SezTPShc6grrSC5bkSC5cfNqsO/WdD9S0/Wefn5EDzfN/xB6DIFgPE6HMJWcB9c9PZr2pOPixPOjm/j4BtG79YBqveRcuuA9peWs+AD7N1yUauzhIMPrqq8r8Dsa8Zw0cLe4C95aztQ8hEVlYeGoZ6ISDERIwXhLMRyGfi6Pax2KgavZb5HPFSqQeuXKoNSUF5q5qux6ZJnN6bbKfcr1dKQStwJxmqZpgMBDP1PAlFIKKvNTk51exsFDwLjTdoQDO9j/QLMtNAW2liAFNgXzYEhcqkcl/DB3pqr/JaGSDNTP3t4bzGfCLjeQW3TEFPj59FuIWngXCd/xlTdId4N2aC5s7PBtiggPwj4rx6AN31oCTWw7skI/Rav9VgmYLBOdpdnkQ7mG67j9ORuPfq++dGymAnY87NjN6LZzeEY+krkVyKWzJC8XsRUaDEPt3DWHLUgg7Ubx2TygVukLIKuViJdCnV3xpdT8X+KiHRXKbCyHT5JBPvEURPH9IcJYm5sEhUpRpSTUJdPyaD4ezH8O2kG8Sfa4CQq5kuHS3+wGWa00Bs1cJAaqnpNdUHqHge90zK21VcHpXfyn9bAV6CyG+xJZqMPbWW+K/24jIH91ccppqofGDpJ4Nnc7p7bP5ksjyIYHT4vg1ukAK4Cmim+MiJJB2DArPWsqDez+ptMl9LIFGDwVeAVwZ1KyRMLaVRXBcwVPqi04N+BdIJcsX58NyYuHYqkk9MMnOUZQ3aXBVVthLsIEKF4X1J1tnAuG8mqOkJbYZ6NMKHRT9xwhLIi3o1rfAP3RGVLD7VUg3+IT25sYTOOOnTkbPaMiewuzrnaJB2ua7z16Xn3F6xYa1ti/zVAJ2WcBN1DYNDg+Jzbm1VQC3WVv/S/tSML5wq0KsoRzY2zNTDrG1EHprcwvzmATyViLugqgRVBne1jWdRdAxuvoSu0oDor735RWzXBgouFR+7hsd8jNDN5h/PIAbNNtTGfQOOMp6MjLenIgGPwwOnWb+BGnsjbflbyoRq+19hCvxGSyGYbzY/2xF5yyScebuXcB1Q5a+lQScXpooLvYH5yzofF48E6ecAxUxg2FV3ZmwA3tO182rQALfesSwPR103lqfsdKmQsAsxbmnjAB2ngKR2M6n4CBp2GJlmQgn1nO7F/AdIJU+X7XO7wVh68v6IhFd4EIy3FjnTUBoy3ZqVp8Bj4oHcV2LReh9PX19GfqBvE/1pVRT0I5H7agYawDiRhhXFUw7UNPt2qnQhAEQP6I8H5A5wOmVU/1KaD1PA5k9I+Xdb3kwW6m2L3+CBgMlJqxg41qIPWW7fp76BJajXAQxgk+AMpLsmJDTApfIEvoHtu1gTiESmLVNsNU9E2BE6YINpkq2TSAFFmV3j/I490HjFyu3dZlaELzr1J9v8gtcx93RqGkogGxF6lh63QvYuLguOdUWjWTf6K6G+I1C3KqlxMEhKmIs0QPjmBOgkqBlv6v2v387X82bCacwwF1OPL66jAjpBaalw5EMmAvyWB7lqgNCchZx/AoDFLRreZ+zaaDWP5z5+lMvGFzBrCZX/QhmEzfVfacAOlQbifexvTCkwxfTxdcDkScRTplnAKZfk453ynXCyNEgSVvrF8DrzA4+7NQORDPzQULTKBCigm9YD1OB2J8hbWY5DtXWv8qUXfRH4s0P3xtyTULgPmY7pbYO/RcpIpLcAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAApgIAAAAAAAA=eF4d0X0s1HEcB3CMY3Sj0zKVFdt5GJnGbrcTJ8915zxlYT3McD/O5pI8DcWi0qXp+MNTqz9SpyJxEdG5eerBCnkoxSqikxgRdtx17+9fr31/n8/3ve/ev49ptRF63VKfSS0jDKr8qWA4pEr1hEZZK45Qpu62gHXyn6tahdQnUDj9AQ5mrcjgEWZcAbzxZyMSCnx8o7Cf2vuK5H9V2PGgPMHLGwoz3zpD3/ESSxjpSq3jnmZAMQzliR31UGZbd5nk5nDDyTm+6TT2+dxjsTD6+ReSL/vMCYR0z013qDxbux8WapXbuCcMCJ2AefUmT2C77YF8aMqICobMcZYI+wqjVQpWZ+rFwWVn9Um4FsT1g8FcA/Luc4xwM9hYHD6D+zfdq5rh1Bu3XPhsOJcDHbcCsrHHOiPIJLk01nmof59KhIxVFcnnsykv6LogsoH36C2k5zHl8ZewKWEwAxZYGx6CiWmaKtKf+lolHG2cLSf9igQSeNRSmA+TV6yS4PqnGvJfzUtpJN+7VX8aOdIw9nVY4dJqDueWJ4owv6B1IC6Khwqhpm0xD9qzhtIh06wlHlYMbwXBq1zDfdCyrGgKOZcyjFNg7/zII43Ozr0GJ/R189JKiljtEM2D7ul6fFgj6yTfJTHV/rBfIvaAnA0VHS68T+ogfX8X5cJJqToG+WGtr2eRr+yXzMEUa/lvWH733V94MLVnBxYzc4yxb5Myswv+YytNoP0vpzHMDze7LezoXGtweLCt00/BvmWBd6qyb0ObitAaGBW0+RiW2cl7YPvyqR8wpk9M241e0zxc4HzXSDr0eFjIZaAfjnHyHp1eEd/ERjpDvLsuQl9RwxVoSh+9A53GqT4Yu2mlgQKFik+DPZVPoVWbxRLkDfBKMF+KfRGC83+6UteNAQAAAAAAAAAAgAAAAAAAACAPAAAAAAAAYAsAAAAAAAA=eF5N1Xk8VesaB3CkTKdL3DIknFIkSeGgTi9SGdqkKGxHhjKEEMLONh6zbY4tMzuZx21WD2WmMo8JJVOZklSmc+8f967V+vf7ede7nt/zvs+6cJJdW+5QBHoe6WbCul0CDP97DG9oWGtfP1KXeYzO4VQbgd65B+a25eAeK8zgSUg1BPcJjvO8+6OQKoFUdUyxGPOwiE2JHLa7IE2UiitMi0LzRto6O/r5mCPKuNcCixMsCc73TfJGIYr7cJjL8SzMU8/ouKqmuAKx9fWw/UIoSlButDz6RwLmrCfGHu3ZIsH6ZvhnTXdv1OFbJSxhr4T+78RkHelRZjJIb37NW2rXBiafPbYWz9Mwr34UsvZqkgzXDBxr70cGg0S5/g/ZnRLMN9rT1Rn3eQJZm32GzJ0AtZp1KjH2tZg7VVuIWSJPsFk+IZnUkALJ5mlB5Q9fYO5BbNGz3PYE46MdUpkVQahslsBPoOL5KVRfIi9yXkIbF9YYWN2Dkf+ZYshSx/3cYHThI09jqCerdzASQ1G/i1OTW2IR5pxZIVuSoTZQ7PWVdESGghT1BMFsJQ9zWRYT2piWI7jb9CWXy1FQw9Ve7RdseL46Z8yEtxvswSPmtQdNIRi5XttXHx6J55vgNEjwlbgDKGYyzD+WjIqZiE/Zi2QwX5CQ71JLlAXu8trK2DhduDtx5aby+1SsfutPb0eKy0zREZtxXQTBEGXEJ3J4Hs+3X2bLwGfWDiWW8RyP10qAqR3uuax0PN/1C+FEhTUr5KQ8duGgSCqsi07n7zTg+ba1tOYR6Ubo8EC2BYetGerh8U1fHMLzSbhyLzs+VxcNZjQJD7JaojizlRZLIu6t5ykypGsOEGIQ4az1533knpKY7NNYgLneoYB2uwAyEC4eb//7LAmtZR7/PFCdi3ndXG5sx7IviDcUuynbeyORUKPTvtlPMD+9y+NAV6kvdKrLZUvweCPnOEGKTcZjzBm9CCA9SgJW7kmREAZntHKx2Dx+yRLzmX6OVI1hU5B6YHOS8MEUNnjfhmmuJ2H1L402fa9ntkYF233J5johUOucGqMSjuc7GCp5wIvwEJ36zs75djUBzm5TWSUP12F+t8YjjVXNDW1JKde3iKWBRun9ZXrUS8zrYzxs+HVs0czC1oPRPylwh/9wFzUGP1+7RRVXehSIKOTQ42aO6FCIbPRfo6viHqx0dLbUggRzJuLvpboCwIC5iWh1Ds9PwJq5P94/CC7nBb1+EusJ2oGsJ/lEszH33jFiT6ZEQLTTwrFgKTvYE7X/xoYlDe8vTaG7fS0SzG9O2pz/ogzfHwjyy2okYv6vybSJn7dDIcefebKKcBCI84LljuUkzJlfsyx+6vQABYeBb6p/OIJS2Tm3GCEqVn9FTNTcaX09RPk4zrtkGAodsyzu+pXFmA8oadKndvughKuX9sqwJYLyaozl5DKe774PNe/UtHzQ0SpvudHAdHio9K8fXHuaMB+/ZxXcHe2CTD48JCwEZIKd9ms90MDvZ9Qevs19gcbI7esJCz6GTDhGO83kIIW7Z/gF+XEpPwhhNLup7ZIOoHvZ+nsLfv4E3wjc0xKPhruqL/5gX02CYwbn9/K9xvObhqdPq3ipcJO97ERKeBxEhO6dIVVnYG7vaLF6r/QxzIraSxqbhYMqgf5G9EIS5vSHKU9Mm6mgr1VT3BrpB9z5qn7IIhjzVyVmqyRaFAQ//uaVaOIDU0IfZ6h8FKx+OzU/H/0EFyipaivrz6GAijZZQLw/H/P8hr8GqLPuKNWcm0lRNgk4DagRQirPMNd/Twm4LvA3GicV+nnYZwDf1OKw/Goz5mqh8iFF39zRuu4MwSi0BDSfawV6e8Rj3zdMKVJ9lmmMWkvTVkMvl4Djjt9L0STcEw+2CPqlB8FSDd/YzGIRbGXrXW59j/vpyLbPgjXxcEP5ClX8SAGcmmx5nvwD96TqhSBSURpIuEt5KgnlgJt0jNoxQdyP6Lnc3l2aCWQ3Fw2mjUxgGirut3gZg/fP5UN9kzAN6r617RHxTwRv9stvXfn8MZehs6mYq6YDxfnWN79n0TDLm/g1T8QPv9/rSep0h1j44qRYWCYSDUU2b9iu3MnBXNqO3BV92xDOuGpz5RakQA63wueyvc8xz+McJkt+9kKV+VrRQ59psLTceP6TUzvmj6o+VlU5+KDCkTbxSfYaSBFyfOU/Eod9n8hqozyEGaFE26BrzmPVMLe5bZtwGK//UGqzBk9jGDARApYfX66G+J48I/kN3M/PW7oflE4C0dnFcXuJKhCNC3Ou08D/T5v3NILq4mkwwxEdUGNQAWtCWm3Ndfh8PSXG+dXYLAdYPomryaWUwVxKo8U7Q3w+uNfMlVw6kQ8+GjXqYymFcGAqfvnwABXPf+BS1c/ZPPgrttd+bpMG01+kTR2MwzDPYXJ9yLiYBfKpcC2InATVV/XK5kRDsHyY2DktPHyoECdiZfUKpUKbeqD83ZOVmE9yealMt6sg9XVrgUKPDOhOCKfzsHRizmXqmpbjqINSIo5usHK/gJ/lN3O9uvH5U1TVrem3zxD55pXUAM8LUNGyZWr7ZT6tyRnG7R+igFOOZ5flf9e/efqCLn/nl/VGpMtpFckwszKx+epnA4T9lElK6izCvM/K+OG0VhYE89KLQp42wL7304Vl04WYM8wGhTe05ANnnXTB4Kt6sFQdmeJ/W4D5/lE7qldyCUjf/i1/aPsZ/Ek9ybFijftcxJCcjFkZ7E2Mm6pfr4KpEnVX5QJ8/6Z4izzO5jJQkOrV5+8tgMHVbGFZETrmbxqojOG8xcDx9JoD8UsuJDPPXL1XgM9ftLFNEHWhgUiBWAf/SCmQv/jUcrT2Yf7SmusMeeABmjvLoPPOvhkezGRnm5KasP7u2rxJnNczQPSl9Xu58c1wga5MiHuA+3hzc9UURwh0nzXrWGBrgcfWrbRyW9wvXk8fCFd7DPwsQjUdtS3g1BxZcdIU962Wkb/PnqMB0/read3wVvA/+JfAdUPcZ9J59Xy58sDAMHteUrcNyvtLA/p+cSeBVjLNswRWzY8Ox/e2QUKYnwmXBu4xpqy1JrV0IP5ojhja3w58zFuS1cWNmOuVVl9cJFdChEzGOOuzVlCOlz126X0D5tHZpO8SirXQlGV1JCyyFEp9TC7619Vg7uP8rYVdtxIcdHdmA4czEUNzn9qSpwfmK2Ks8uNBLSDkGr60ttEGL8H4oviZD5ibX7XZOfWdiNwYY9w0rrZD8FMWi6aTuG9p2QY6KHoBV7Jt/7xWB7A4sXWkieBeTxg/rt8VAfSDAtRTm51A0NOV6mbHXVZP2VrjHRUQ49KfFUZv4LyMsID9wnvM5X96XyrNTIeMYp7CtspumA6uDd/bjHvkyrmeiU9ZYGcf+rtVVC+Y1of2MkXj7lNofE0xLh8qE5UGiE39wNR6qyhHEfc3RusXf+ctAdF/pMdot0Yg9QmL4Lb5JN5fsZHVqLVSWP5tMYBtcgoOdPp5m0yOYj5m3LEkXVAC7CNuum+N5+HbEnNHYipen/In1cGWigpYF+kX4tjdCc6Enz7/cExjfq5GdZdehCn6d7D7u12+naB96gvr6G7cVZPV3AyE7aH/fglpaesVBJTLvjz99SO+v5B4cMeEF2zQdT42x3QBpcf+2Y0+3Il1McuzYsGwURa8blzbA2FKApm7snBv8jjUl3MwGoSKKqvcPfphLrA47YcF7rJWULLBQ4VxpR9npNWG4c7rimkX7l/eL9ffcLc6BTQnog1/HH8Hn/IInTwJU3j+JkK/q1hmgAvhrVBg9CQsT9zad38Qz4fE0Cs6tB4L43IuIaM9I6Dp/JwzJ2McP19rC1H692nQLl4jXK3YA/fN7Tg/RMxifks6XJAq1ob+A9H+Ct4=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA0gAAAAAAAAA=eF5jYgCCrB8OTFSiGdFoBirTo+YyjJpLB3Nrrz9PspvxwoH7wXpLPyD9cQWzXy2QNvzG++IUkF77WGOH0cwXDgcY19ZtA9Ip2VmHXGa9cDhRyVV0a/YLhwq9L5bai144bHjmden5jhcOEzV9fh9KfuGwjEfpCrNbkUOG27ytNdZFDjsuTEv9LVXkwJZ+tbTlYaHDQl7tl50dhQ4Oz87/MWMpdIjSu7c22bDAoYmPb5Xv6lyHCKn9StMa0hx4stNFOVTzHVhv73c8tKzXAQDAzPZ4AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAALgAAAAAAAAA=eF5jYACBD/YMVKIZofR/MHhPUD2p9Ki5EHrUXAg91Mz9BzWXWvRfKA0AqRwGsA==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAtAIAAAAAAAA=eF4d0H8s1HEcx3EZLW03YskSya+m5NiUm2ki6k5+nd8z3cZYXOLUcWpilM3l/Ob8OnZlqaMVRyiRipJpifO7cil1HQ5DKHf6vu6vx/b5ft7P7+fzmSqLW66onHR1rK9eh5cYdO1KQsvkb4dhSMFLT+jxhsaBcw6JrfCni+02lDF/XKgiFGdt1EJFw/wW1GQp5ejNeVmo+9TRjh1Yr2l+EHP3iuWu8NZYWRLUZ/s8gRRGwCY0kFO90NErTBXCNY30HTgx3TeNzjPSaym8qi1bgmR5rw7mjLnHyPBPCSkSPkw6LYRFuksLMJRU6ImOpE10H1owevZVE/r36vegY3Wuoxcati8PQzvNgnlIb5XqYt6k5rab+vwx8VlQoAqRwB5fUwp65O1yEfy818QOXaMX5+swH2jm9wCqxAMtMMdt4T3k08TqvnPdhDE6EbTwi+p3V4yp33mSGWCN3sieulbo3U6PRnc0kcLA3I1gp0gonW9jwthN7zQ4zuuvgJMCpvo+J5vmtNCTSo4yoGTWaQaOjMjy0Q2VP81GlxbG5WL/ocaVO7C4qKsA8gxfVcL9esxH0DKW+QEqsx12o5MQR4+GO/YUKbzs0jyAbpJNUJAA96N2r/MJPWIUa5DcuWsVbumKVuBv8hn1uurEkEY5+tcWjsCwjSEWTI0aNcb/QqjjAmh+vWoR/ahg4Rec+1Oe1hSMyGF/hDak2W7IXuU0QHvHMj68aZqeC3/5rJfAPd9rlLBWNP61hvA5i5MiJMwc62jmENoV6jXC/mA5H7Y5D7KhmdTeAx7vY2nDCX52ZwphvLVtAjyVmTGdTMgdDndmEypUXYOJhMpSHU4+4dl/BlegwiDNFz5OWTSC+kUz7/IIS9vfBkKru+FiHiFly1WWS8hj+8dCd7+/7th/IKOlCd//A3LnENs=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAvQIAAAAAAAA=eF6t0v8v1HEcB3Cb77m6RNg4Z6mRZI5Zh8pbZiYm5ZovJed2DVFUzix9WQqbbyUaq8mQb2UaOozLlzHzdW59Ch1LzJecjWrpPq3O9Xq9/4Zevzz2fG3P10+vCctE431XWGIxK6G+L42gFot9qf47PKptjtYIve+5QX1YkUnluvsYoAPX1zXmYNYBoTXdjyx8nUtiiSpATb3FmKyjnEBvqsQ6nRpvI6cmD32ivnLrU6Plpie20ATBsvE8GCQVjmL+0CLOuAv3Z374Uv3mlTJUaedEddRFpaPbQtlNtL7z5w20ZkaZisY0W4jRCJtWU9QpOmSF9qJ1I4cTWaK3lTeK9tlZjaNWgUWTqGVjgRL99ljFoP6Sro8oP+byIhrZrbZ1AZtSebFHsLfy1NUZ3HA4aT2fxpJ+Y7If/aJJ46IpSl8jtOzF7j9zICtv20R7vLrXULcsvoLmXSWLKvDsXz2PabDrmMx2CQx/VpcbF84STz/rYrS5eawWNalyH0aDRdtb6OA1nr0Y7LByFqJ7HfbMob+LCs2kYN6kulAGdvU2cILBO52bqe9GWULEfBHa1MHRRxWx+dkKcMjj3moP+MSV64N2LA/NdoPerYLMLjD/OVPUDGoejTslg5c40kTzMZZU+7iknTPQEMdy7ix6qOy7kQhUZZutnQf7kvTdosCFAJ+2GLCCbeNdBD1EwTopmOgY9KAENKwKmM4x1BC25Ve3jb6GxEUsvzxVoyXRyb0O/uDKlEB+HDw4UNLuBapKawVHwez21TFHcMBEe9seHBRyzmirteSzZaheJPimIc57uFJLbPv9aqbrtYTk5O6cbmCIr/dafTy4oMt4WwsupawlcBoZUnk1LL8A1BmtGts0MUQyFRKaAGrCTPiRrxmyMWEm4cgZwlddaBCpGVLHV9gvShiihwP/9r/9B9ky0LY=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAvQIAAAAAAAA=eF6t0v8v1HEcB3Cb77m6RNg4Z6mRZI5Zh8pbZiYm5ZovJed2DVFUzix9WQqbbyUaq8mQb2UaOozLlzHzdW59Ch1LzJecjWrpPq3O9Xq9/4Zevzz2fG3P10+vCctE431XWGIxK6G+L42gFot9qf47PKptjtYIve+5QX1YkUnluvsYoAPX1zXmYNYBoTXdjyx8nUtiiSpATb3FmKyjnEBvqsQ6nRpvI6cmD32ivnLrU6Plpie20ATBsvE8GCQVjmL+0CLOuAv3Z374Uv3mlTJUaedEddRFpaPbQtlNtL7z5w20ZkaZisY0W4jRCJtWU9QpOmSF9qJ1I4cTWaK3lTeK9tlZjaNWgUWTqGVjgRL99ljFoP6Sro8oP+byIhrZrbZ1AZtSebFHsLfy1NUZ3HA4aT2fxpJ+Y7If/aJJ46IpSl8jtOzF7j9zICtv20R7vLrXULcsvoLmXSWLKvDsXz2PabDrmMx2CQx/VpcbF84STz/rYrS5eawWNalyH0aDRdtb6OA1nr0Y7LByFqJ7HfbMob+LCs2kYN6kulAGdvU2cILBO52bqe9GWULEfBHa1MHRRxWx+dkKcMjj3moP+MSV64N2LA/NdoPerYLMLjD/OVPUDGoejTslg5c40kTzMZZU+7iknTPQEMdy7ix6qOy7kQhUZZutnQf7kvTdosCFAJ+2GLCCbeNdBD1EwTopmOgY9KAENKwKmM4x1BC25Ve3jb6GxEUsvzxVoyXRyb0O/uDKlEB+HDw4UNLuBapKawVHwez21TFHcMBEe9seHBRyzmirteSzZaheJPimIc57uFJLbPv9aqbrtYTk5O6cbmCIr/dafTy4oMt4WwsupawlcBoZUnk1LL8A1BmtGts0MUQyFRKaAGrCTPiRrxmyMWEm4cgZwlddaBCpGVLHV9gvShiihwP/9r/9B9ky0LY=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAALgAAAAAAAAA=eF5jYACBD/YMVKIZofR/MHhPUD2p9Ki5EHrUXAg91Mz9BzWXWvRfKA0AqRwGsA==AQAAAAAAAAAAgAAAAAAAACAPAAAAAAAAZQ4AAAAAAAA=eF4Vlnk81N0Xx0UonlCoSJt+oYQSbQ86obFFskWPlJ1IJVvZSkRhlHWsZa8QSVS2myXVowXJEppJljHfO7YiKn73+Wv+uPO9r3M/n/f5nPMmOd1niS6GAsfuYBNtCq4xgnfqSGJYE5j9TlFEpTa+en9qLg3DBUNu7Sp9Cj6mZetOrsbgrd04NMrSQTuifD5NGWMI85gs23aCAvqfkgp+GQyv1sy6xXiZo4yZZmqvNQYxo07Wp8sUVBQ8jcv4HwaG/zPzz7//QTEhv/9qc8BQLlVB8y+hwGfDhM7nnRhc7r49JhprjwrkPBoenMEQdf9+VeUPCg40ZhoxAcOXyabGgu1OKEIytHnVWQwfxQ3oO6wwSHZ+1ymwwPDgH9HK/jpnFMjhL+xzw0AF3+mxf4dhkIWP9HhgyHh14dptdxdEH9IfunoKw/PbYfF51lzweaRglB1B6u8/OzBPd0GVQp/ONlliOO0vteHpKBfah1WOht7FcGX7UI96uQtqf6raEGOPISfc1mzp+XEo9GZ/YNdikLgeqOdNc0UPvnsZOO/DsFbHKSX+MAVTXY1zKeIYfq+Ibym13gmxXW7bNP/GMLnl0ckVRhQYq/Kv0yb6a7auG9capKHJX2Wmu3WIHlaS/xjYUqDff0L2iDQG9U355+YYFshyrmw+3QTDuQlxwcRACuJ+IZdPshj27bj4qNTEBlkZRj7qOoFhse30jFcxBQHtiZtFVIg+AhPmWgPHkapjbmilE/HvW2jFwBQFtw8d6Fp/kLwvMEpdx/go0vUduAfuGOanwh9tMMOQzRJfJW6OgSdmsrlhfiPS32xtO+iCoUapHGLfYFDzc9tYRvy6e3R8VoVjAJdbG9+/tsOg5bXBW+U4F94Iz/fsIvpubTTobPKygi7efsk7RF/PDG3xpxwu3KXueK3MxpBpNlZ8IMUMiqWu2ugRPiJG+oWfBYwDjUec1VqPoc6lLigz9DCUVTreUyJ6qWeoTI2ZUDDvt97MQ4TUwdptqxChBWbyH0cT12JoXE2fizenYGmB+LygGAbuXtx72sQaPV8ucsyE6GVY6aN33IGCdBtjDpbAUCa3/22BrAvy+PaQ9oXwyHxW05QcTIH4dcn3husx+NFPjjt3eaBMweUaLYcwjEnLnNp6n4KSjrMRDtswfN1VbbPT3wPpKjUfyjmGoUdMgjPFpuCDt6JG+H4MifvljZzEnJD6SeFL5baEt0kl3hWHMbSJ5q+dJv3Uy/i4MXarIVr96Z7I7tOElwCxFDrhSljH2gIRvWvnpLtE8szAKTZaZCP5/p7t65wpUy68U9adcL+GYeevp5LS7k4w3ft1kzDR13Tia9zZaS6UK7y4EZKDQb8vL6tNzAF4O+/4VhP/HQJ0lK/Hj0O/r1LkxWYMsTkypkmqllBTrn7+Vi8FAsIrhdztKbCN8VnrLIDBbt1seKeNLoTdUJS+P0CB316+Sx1OFLyzWV41JIhBddmGZ/NPHJHtl6GUvDEKrui0JXSeI/4IRHeG/EX4+/sZIwW8EWtir/GVPxQo75df0RJOAU9OcZEP0T9QtTQs5Yk/isgxufpfHjFaf6yoKaTgokGhzO5NGEaU29I3vQ1An3a1J6QrY+A4MLcWkDrixqysgfiV8dq/2zzQB3VZsnJGSb79yqkwNNyFQYlR5aBJdF7Vd62tJN4ZbfQ17NlKeFaXDYy+Uki4P/ad+ZzkQZ3gR7vs+IPwrabLZu1xDP56KpXfdLnQz5PuvhhK3pfww/PngBsk37znO0C+b6qi26QvciEAtGYe5WHYcL2+6ZWxO0hwE35MkfxpkBV71YvGwYHPIibuPQZfYFRl4VMgt0XyRup1CsoW37zz8qXA6uxL3fQ5CraPJeV2smkg42I5sTWagmZN9z5nfwrUImMaRucpONN2185kvyfSEl2Z/IpBwZHU0qhJwuf6KDmBqQUKnOzklVH2ZST0Lx60LqVA5KkiU4Hcs1ua/7sU8U/1qGXVWuoq2nXpWKXMOwqeHP47eDGHgtmp0Vz+lRi0O//peDFxDTGPKdX+JrlQGEDz/PkvBasbyrxSiP5yWPTrF+8wZJm/4DhD+otH5P6BUVHC/ZbqjS/VMTjmenQmdFxCS4o7ggv+y79bB9aUBBMuD7pXiZEc0VKUdEWzp5BivnyPniHRy677UcwWLgS9bV3X5Idh+sKOmzIWjhAeo8hvY4ph2OOocCHfOCxjrP3QSvQ9EZwe1lJwFrw37yk6dYH4+df6k3kL41CZI+aW1k/mDSv5ifApR/A5X5zGlCVzKWqGeekB4csZGx2eoODEsaghCR49OO+yI09WngIFL7dk0SIKRm6NaWlOEs5awrK0rbxRt+HJTJoaBeV8poE0Mp8i+yw9jn6noDeNL6w45yrKV+vkGpHc1izSVystpyBtjl9wkfjn4sIfS0+OQmmP9nf4nqXgs8p5ldt1FLDmNqep8WEoGjeIsuCLRe86V3wITqfA38qnXLyLAiENY2NTor+Q7++cv0tj0eOZxYbuDgqefyzP/El8M27YwtwmR/IwpUnSU+sGcm1wmp4RxhCgGNC2jXCr9Lo5VoDMi2RGUJGxYgjScnVZlryX8B35JXX3Ui6UqBzCLzxJvgQ/uGhRoYMeXrQQ8DIgc/Fj/mtzkXEY9WFsi80n+4DFktpfC65glR0S33AJQ2dslkztngnQiNka5/0DQwXvw2aNa+5wtpXObUzmwF17XtrIDfJuDdOu6rcU5DwI8vty+jC0b7GcDUjlgNzvlT8CyLmzQKDDTsJb4//WLWmL9kX0pA8DhjkcuOrOrHSLosAx1Sq89j0FWnUyEi+kIpDtkpPppo85EC3UsSMxkgJP3vP0+XYKaBHdxYOudNR7I8dm4j0HvkeZb99E7nfITDHm66Fg2E9dfYITj3SbNaNv/uZA2cJODdZtCv5Mf5UvHaSgM8T/HM/qJFSWPVCioEWBru94ngiZj+pZcWLCMxQsy7JqamYlooFfIc9dSX85GzqmLiE5BoeU/ANJPr07L7lCd+lt9NdVvdcaI6SexJQLDEcMQXtfCt/WIPvJmaIEV80w1DpdQaVtJ//3TaofTOfCGEukJjSK5Ix3w5WEDEX4YANX+dIxWEa8zHcxnwDM/KFwS5ALPI2xFeXh+yEt2nI4wZoDbsZd8SIvyVz7uWzoOg+GLsc3AXk+OiDkbC8qR85lahZjFEluFwiUROiQ8551YqKCDn7Id1VPUeFxDgxIvtoR3UD6Yhluyl0ke8Q7+nMR/euo5GOiT5oNBxydc/xc6zAs9b6QtJucOz2u+NwSdQsJqem+vObAgfk6Zd/7zzDsejMovJzc/7KQEVFET0KiJ/a1qF/igISP9BBUYciPE6tZsxRDjLdGSO2rVFRavPTD6wIO3PzIYqqQuX3uccuNf8l83tzjfs0rMgO5ygTPVC6Q+j4c1qgexnDot5yQoQKGtN5DzedkM1FA9YJzAvFFOiiLy2fMhemuiAfhhPOlxw7e99zMQNnlD3lfEf1t+s1ehTC54FDp8qOX6JtuEBqrqkpHCqWyO6bIvsdcFzQ8KzoJeYn7GAkGXIj6U8zhnToN5Wn6Zi19bEiW0hRhfGfDwISxuPgkBzbU/Yk8/FUbNu33HEJdbKCpj2m2TpNfg5WC7HEO0Bxq/+idv4h8Olextr1mg/doxSabSTbE139PvUJxYE+SiG5y1jV07Fl28r1yNhwJXF64AbPhmaZsj/wI4b2vTfdzTyzSd52tzU9hQwJT9JPqCBvmC9WqbjM5QB/nLY4+kIimee6sFgphg/HLiAM1TDZ0yX+8L9/LAetivYBuRiry0L5QKeXFhnPdeldfDbBhIasuL+ETB7S3XzLacycLtaaO7rA9wwZtzXtxFybYkNnEtrbt4cA0CmTMXMxGoesnG8we/vcuh/d06zH4ebm/8uUvDtQImWRKn8hDjdYjvTV1HOAVtAjVIZzUF3cPtJJ+6Ov70u1jno0GUuteDDMx6Ip6LMaS/fsuN1vuG9E7dHXcGZ+gR+je9+0ptMoRMO61fyImPgiJtkdFi2THgObUtTER68KJ+pzL40UjMOuXKZGxahBC8nqOhm0ag9DcmeNCvq6oUF9n1eOYEZhfRQkorRwEy1W5WXNSY7DG3KjBnu2PJu6LhC8cH4GML55GiSKDELQudNuYyBhoqBfs84oIQ50iUbv3rBiBGtlHEneEBsHwvPC97YtsWHlzj7Vt+w10+X++roXFw2ClYbomiX8QPlySH+4eY0Pfnbm4DN7byPthj0LfvmHwO1JRyFwyCD7OMrem2tmgH83d8rdbEpqs/ZqvUz4EPmVDKankfkpSoaf5GRu2Nj1VqZ5joNueTA/1zG8AouaLfkqDgI2ESi1vsEGuRt/k/UA6+vzz8tRFGgvS2+3URpoH4YFCs+CX36PwK4/RIs1KRb0JwuV8kZ8hO/0UbrJnQpCeBN0nfQSyPnjyu/bcRTsjawusJEagXFC8KS6KBQ9lbunbP2bDCw9TY1RuAK3KFvxS/COgJmOZUh3JgnW+1RHby9gge3NL5ZvTx1FZTY+z3adhMLjwp1oqggW9nbP7jQrYcDqGZ4/cjCtqzd1txwofhrWHZYuUr7CgQXmlOl8SGy4Gr645Xu+N7j62DTUWGoZJGi13SQALmAvX7/ZdZgNPlbbpJvplNG9K/yxsOwSqX0NL+D1YwFq+Z9Tdkg0d9jZLVdlXkUZyvbi/xzdo/9nK53icBflhYW12m0k/do30j4hFItq2H6FVewehJt6s5v1hFpyJOXTQhDkKvJ6/SthLotEBlaq1+QZfQV9lufQ+NxbYiqPc+KpRCK9Xu7byTwgqsHqQ0p/zDcy2Vuj3Px6EPVK0BOt80i/s2mW9SnS0uurJsnX/DsE7x+Cwjt9fQEbSSaFClg1/OmuXSNWXw/8BQYrYiA==AQAAAAAAAAAAgAAAAAAAACAPAAAAAAAAKQEAAAAAAAA=eF5jYBgFo2AUjIJRMApGwSgYBaNgFIwC6oDK0GmzPsi/2ItOw+STOt7dWi3x3Badhslb8HY4x808uhedhsnf+i+7WeXbQ1t0Gia/TPnCkbLQC3vRaZj8BWWmCI7lK2zRaZj8Ih2WAxcmPrBFp2HyC5aL/EpLebMXnYbJn9jFpHVr4QVbdBomr3A6pkr39M696DRMXm1lC1+Sz+O96DRM/tzxnUWTzoraodMweYYLC3Qve4vuw6ChoELZo+Vq43dbdBomb9H+z8xyudA+dBomv2fGnd1+Tb9t0WmY/IHfgQuThCfvRadh8jp8P+f9seHbh07D5P/9N7p276eUHToNt7/B87lH3t+96DRMvkLuxHsf7Q+26DRMvqT7pb7maUE7dBomDwDjbBUwAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAswIAAAAAAAA=eF4d0XlIk3Ecx3HTdTjTtoEIIZm3I4/pdB4NZiod5nSVYcsyKkkNHbO0dIqVOu87hnmkWZIOJQbhlXahecwuOzQTdHPmhubR5cI8ej7PX68/fs/3/fD9/ZLdjAo82B95T3hepdDw71wdfGqW1gVnnYRTcO6MhsYmlAzvCIU3R1/JYBkl4xuMsiz38STMDJLeho3GldmYy5vpyYeTouNV8EBt92Po45w9DneL3UwwrzDVHoZv9fPlsDlrWgNbmQw/9EqrLaqgKPlcMuZONEVK4Lb6W2S/NyvqAbmHTd8glLk0rUJ/kzFfdGzleTnQsIk5BS8JAnnoDeqFLfDf2VYhvu+cOhYF2wUF8fBdjZMUavkSOVRw9kxAzuZWS3RYd5YToFDXMQL7Ze6B6GU0tg/AlpNqLnl/XTp/WBUSzYeMCelFyNQcJftj3CttcGX61wpczhWT9xxN+f4cXrvPDUVvUTC/DiXGH/TuhFZL71ehWCqgYM6gYtYcxjtc8ICpHAq5z6cjN8h3TRS91MOk9JEUdM8nZDqh9zMrzMqLUPfDxhbnj4IK7SB7XwQT2ipOs8n95UYHYc8WSgwssRquh6uG8+uwRjmSiu7a5+BodOm9CwvoDqsjSlmEXzZyS2BfeE0RLJEHFMLsofFi2DwQVw07d+Z0w82yy1TsZ74maoMqtZhDvhPDMxf934u+19GPdKy7CvXWZnFw8GHaKbhRRA+C/W9cWZDRaWEPk7QlLrA23bsS7g9MTPEmDKfSaX7orDTz6fi/yPAQdK9Qe8B67WsatN7gqWiEXEtZA1QVD0XAdGUDFe51Dk7ZRfiM3T5mSji5NBxnTGhATdx0JORrRX+gUqQYhTPbJ+/BkLzYMKi62/HVgZClifWBwUpdvD1hgGv+nB1hTOvSC3wnyqxk4fw/6omnXg==AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAANgcAAAAAAAA=eF4V0ns01PkbB/DZocZtVS4xwzimWorG/ZbvZ6Z1q1UqyXVCF7lPTtJicVimBiGJMEpkOMWuCK3L9zPU1NmsW61rbiFjzEokQrn9Pr/nv9c57/M857zPU6FbNC0wOoklBdbuKkrgAJUvs3vvpPtgP/PrA3nIkTTzBa8rbOyr76goBZl3vId65GQE9ta9rCEM+cyRTH8Xx0hs/TB14SRy6tzxKdzpKsaVutKtj7wS318t/yUZ08oII6ojbxO3v24lVWHfn/+08348B3QEggOX1noxJ9X5XoM4Dii2Xuvp9B3GnX93pYyGofsJdiHGmct4nvyN3Y23UZ6Q9EeipS/+Yrwr934KB86MlOhfyr6Mc6NtZ3KRH3u/rxdFxuGsUvwcF/kGVTYDunDwzw2pumxknz9774ef5OLnjSxPOyH3JQY5fXNOwlUsMvYc+P+++q8V6St5+HAMxVEVWcIdTFtUbMF7ZHS1eMkcuF6pnn6IMIXfswh9qXeDA5k+iz9r+n/EHOZo091RHNjAG4jxy9kOvJspcc08DrwY5p/sGB2DPSAuh1Iz+OBdpuL5Mkkq9nCT0qyGfCQvKzNwPh/b3P3SkIS8dpo+EfypGLt7KHlhNh3ZqCs0+CYfuyIYVu5Ebogfb3ogX4y5sMmj5cj2N/badW3WYQe9ZbfuIr83/CNTx3wYO/I2o56MLF0lSuX7EwHB83tHRSofTPrFBt/ZIsGcUub7U3F88CQvrrz69V64mRxgZ/eADwpnPBsmC/Lxx0W/Jqp6CaH4WSwpWPUx7v1Uhb4TefqgL2ig1+PmLdl8ArI1rfbU8egWPLa1iyjxFEKI2WYQ9YT4TIaBRhvyYOcyK6VXgC/dwnaUI3OH+Jje9R6c7awTkou8oa38NOHYN9wr/J9WGnKn0ur0CJkGBcozpoNuQvjngp9R60kd8K/3P1XOjkKoefVJ++pFW1CWV0ynBwshTf1eosy3v7DHSWe48fsmwLv9HSbsuL+xhPa7ab8h6yVK2OTSPiz8qD8pFLnkcH7/2IVRLGewX9oVOe1NmF/a13HsRbO+ihXyacvuryuDw5hpqYwZGdlCOXg/bvUF641MbCUhp4COY9KFaiC9p+Ntwd4JcP3DL+HiucPA/VgcP5o2AXJv7xr90mMPN0S3PgpVJ4D9NH25Ue8CtNEdTU02nQCUwhCdsmt9+LP0W1PjRIJAcnGt0x7907rMAnMEWW7jl3VriyXcqXOrqgtZXe1jFC18DWeNGJo0IoeKZEMfVW7hI+4Z5CLk8i1xBVXqO/55WcEuCfl1ZAO1QnoXlFfp3AhHzn16cd/bHy1gcRbNUgF5x09D6tt7fGB/r0hFkUAQ7B36MNkd4QdGbZQDwMwW5G8bqY2X+R0c6uoVfdxJEMhIHmVvl1vCjE5tjmVLqIwq1cwkt0IpQFZeNkxD1lmSpZeMK4EZa6+RcGStu0etPB6SQXfVnnpHZPNdAWO2uVTAFf+3oo5scnm4OOG4Ovg6VkqenKYy6u6aM5XaDEF6iNyzV8imi2VcNZ4rOKo9lrcduUW8krs8FAvyD9hXnpikMjpc2qg79JOgA3DIG+uiMj7bLMrKLhbC0UpVizdELYb0w5x2Vr0SjA1vmdKcxwRyaXID/af3wDSTm60qyPKu2Sn5D42hMb6kvTGHCeIlebP0z5ZQQdeyZACZnpM7c6gEg2OLvZQK5CnT6sb/qi0gq3elLQq5lVKz1ll9AlKsvwWeRU4FjhrrIAKKwuYHyj9hgiWL8DUj6QL4cf+FPsMZTHDei5D3w2oxeP/iGkljABPkqNUxx1ZxwI/KE98nAcGrnWrTcrHGwFLnb1tpNRbjROHhWmtNG+CYVfNkfTeL4Xm0YupBlDPI6PqQK0Y2P+fhX3jWHSQRe7NeIn/2KyOavfECc7wpeR7yeFy0JMzYDTz3cFcMQVZIuGNExEOByE0h7RSyg13Vu+GVLGC8KlVXrspiQBdNUYJTAzCzCbsaosRiLMnJUCJqWiBZy4qWT2AxtEnfadraQ7A7p81ETGcxQryz+u+fcYauczKG0mpM1H+WidbyOdgdwwlf281klN6K8iwRhsG25OzlCWS72/P6wolrcLeIlN2IrBx0VlZKIxpe+kJNSUGu1SuatW+PgDGDlu4uyDr7K/U9xKkw0vmi0BR51oFkbdJaDdtcdeKvqTIZ4/pZw31P++Gtfez2Z7uYjKYS08znBaPgupXtpu4Gg6FYpCPIDVgFtw9ymUHGTAYBTYOUbJPBZuy+OApb8OHfFY5i/bYm0Z3K7xHIEqr1J94rYhOv3cfAG1noObGj05PUtDQR9KsFcgmnsGr+JqlpRMPtkQyy2RQMpQX80MSF3rL9ZLaghmUXhC/0HfINtolpRHbgwgUXEtGaco7fvx05qFlsJsmsa0ybrrmcrMoWAE09D/9VQtN852uCG5EtuFcwyznoQGwy1LA12GPKFvwPdE6rQw==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAARAIAAAAAAAA=eF4d0V1IU2EAxnHMjTLMZQ10sbRisWgbWS1ILzKISQo2nOaFLMzNsk/KHb+gGHNCm0vEsLb2UaaSlC6dCctsYplUtpibMJ0uDAdSmZsusjly1XnO1e/ivP/nPfDGDCeC940z2VpOzhrs3KZOMpJK809mwK+t42fgvewRPTx9hTYLA8LDe02kB6W1VVC/tX0UutonAti5Y2uhdkuOnIvHeUeejwPtPYQE7gnKm6D6dtgDu6wbdqM3pz2shlM3BB9h1KpwYkfdovfC/eLyRUh74N2M7uUA/yi1k68j4EJu8TDsd6cz0S9UcKj/y3jKnYJ+7vxz9CnSz6/gYrPJBYu+dC/B158kqehH6RVF0GDL6oS9mhd09PZ4Ry3UuRk/Yen52HV0N/kJdXCXnauBBSLVI1jWpH0PPxQmx2GH5h0rhN8GG9/CVKZGgp3jLt8yFLLKOnD+LLu+C5r9i30wkS14A52VfXPQ5iEY6P0CCfU+v9YtfhhkORuxI6ngEWZ0F+s2GdD1GCm7WSsJ8K8smkSZKWPDd0ZRFvQVyGqgYuZ3ALoDsknc92wLL4L9uYZppoVU7/nHgE8icRvhzh2mP7iPGKgMQ+vjyDJcHbpAx3cX/XIuXEtrG4N2+eTVNtLtpQ1iLc5X80QwJ6zKgEvjI8nwUOLqdw1pR8qwAxpMVXehNMZpho7MaD8sLi+Zv0V6qnVIrSb9wZ9VwFBILIF5ukvpUNl7bbqe9JjIXgOV+4h1Fak3dKAKLg9a5FBITKwoSf8DNfKyCA==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAFQAAAAAAAAA=eF5jYACBD/YMo/QoPUpj0AD4RXZdAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA5AsAAAAAAAA=eF4Nlnk8lN0XwK2lLGUpUbYWv4SSpOIth4giEnotLcooY6dFTV7Jln0be3be0mpLGUtuKVlKSSKtw9hmnjtDovJWfvfv83nOved7vufcJ/yazcYluzC4vm18dmw3Bf+t8KLtVcCAz30TXe3zP8Seu38M7cZg1HPq8kU7CvwfF7UNKGIwO6k88vswIC1zReHZ/RgYH0yDttMpcO6V3bdIDcO5LYxhWSdL1MgLcKO7Yqg6Om7tzqSALXNeY0YLQ3HHb7u9dVZoYdFb4++eGO5nbHP07KHga9nLVbe3Y9DQMBoW2bobRcnPnd7kh0Esf67bQhPD5bjO04rWGGTC4M7NRB2UdPhIriuJc+cbqM/pGCLktl8ecMcgqnD/zbMTm+HV6mibjyS/x7mKB3x5PhjVl75YfwFDSFcUpyRuD3TPtASkuGD4umaQTi/mQ6JP/dEukqfXd7GaZu0+2FAVF6Zhh6Hc/kPQX1oCOCJ0t0PuNoZfHZeSnnwxhhXt02Z55F62rGnq8l4KhpT+C3i9lJwfw3OLdDBDvgpPXkjpYlj6w5AW7EiBcn5OmQ3h2/zsVhcNuSAz7oDKMKm36Een55gPBW1MXOu2EkPk4hl9evYJ1M58YDFviaFSv53/OZ0CxWSlch1yXr/OWaMGbRqqWXG+0vJvDI5r9aMdX1CQHxy7mDLAoMf6tzk5zh2Z9V71FfUg55ssid5D+mJeEOtRQfIVaJ/YnPPKFn3s57jUn8JgITGPFiZgGNB55qN5FEPQePTZTzWm0Dl0wP45+b78VpbiCxk+1NhttKoPwZCybk2rytpjMDGgpmZL+GVce2uxspQPDTabFZYxMXypkdIpYXrAdNNNezvCz7/tgkW/gQCuhxup+t8lvunGejxa4QSjYLhB7jsFJ6Pazs4SPoNJ+g5XF2Fo827vo9EOoNVr+nSa/lBQnPXTpvoIBevXzVYPSWFQGBB3ajQ9hTJXlQTtlcaAmp1obYEUyKbTnuTLYwj4HZTqvj4IyXYpNklrYOgLe/vmbBoFJyo2HVBWxfBY1OQLzeM0mip8tttiGwZNL9fSxCcU5Bn4ZbTqYPijofNrEoKQNT0/AxPflKqeX/iyBAO7hy0ya0L6E5JnPPiKhqpFz7rtIX7HPK9YM3geg3RqkU0v6YdPyRHdnA83TOjVEmO2hKf2OSm6pjAfDvpv2805jaFR991d9wWeEFuRu9TJmcyD77iOB+En3TP67xTxr0VCvGCHcADISKidmrMlfE/tMt25TwCrhy0ay2vIvHXFC626cRzq7rnn/Kii4KyOm9ucLwXlbc6dHkIYRBYsExQ+dUYiLDx3n0WBtqmlyqNgCoJzFm+3FsUwPtJXltAehCYTVEx4nRT8/ha/afASBfM2jZWuhP9zT1p67CQDYd/zli+GKVCajJVnZlOw5fZJC3nCl14XWNSOLyGl5SWXC0XI3LUkNR9qoeDK91KpzYT34RSXe8KSl5BbhHbM1BqSz/9FpeY8Bf0dm4MKiZ/SAZz5+1IhKGz88T/lpuS+wp0dY2RuR4/byawi9Q4v93qSMuWOik71ivk7Ytjm9zzmKMbQfiSmbobM+6qLq7ncY8eB7ydmOHcIg/uCAqEtZYQfh9XfR/jdY4gP7fQ6DXUlRa9+HsCwZz6cKRwggHnKl+HZgEGrwKly3RU66Ic4eJWTvXbtwq3qtIsUpGc9L+wXUJD5ok0u/L07YryUKzrjTMFt5frEdWGE73/JfapfKWgte3NFLvI80toUa8HwpiBZYc44LYqCBGnl/SLE5zOmNEm8LBLl5b/RtIqhQPgSe1cz8c/xdbylAeGw0kUo4FnzFZTt+jVf8TYFZutZhyRuUTA72qjXK4kh0fXhD78Vcejp1VtrmwbJvdiJuV7vKPg8Ut7iR/zllKQ5WMxGo+xPQ9lNxP9ohkymKvG2+FNHn/YODH423AU8HgOdXNPOtyD75VyK/w2b+xhozf1RB45gmDMVJI87Aar7HtclILxDU13Ee2P4EGg7dziJ7IGh9V5m1sWnYVubTOLFfcTf63/m6+MEYB76cjzwIcmn1zB0XCgQtq9is9/zeGDgGy/x91sKQm2HNi7mU1Czs9CxcoCGvHt5/MavPMhjqjivJnHDu93XjxG+aTMLizZWh6EpGzsNpjAF8e8sN0SSeO1C3ntvwvevBY9qmhNiEa0yVpehTEHijPfeSFJ/boNe2Dzhq31nuWLHTAoyMjdk7QQKxsqGv58hnr7N8FkTL4zhkoZjyjmDdGRQJ76x/CwFDRsiNUd/UZD9895HW1kMU9V0/sMN6ehBTojQt0YKTGZy5UKJlydWFbwK3YDhg7fEoFh3EiqlqowaZDC8yHdMwncwrKjLe+TogGFkaL+ffEYoKvz0zr3DAkPY4qx/S1L5IJG5V7iS8MtVcnDuOXMcPu9TsBUj+/OE1fbeCkoA7yPNilf3YzCJuCI6KXMOXB+NBQf+xYMhnd0y0sbEw02loyPEgynzrD8Ka08h9wF7tbRdPCjtHizR2EGBPl8iaZLEHQuEU8eNLyPu/2632JnzQEhOjZmwlXgrmbL0GPGpdyRiNtY0Ed0zN2Z3HeCBbr2Oo/5mCtznLcvn71DwD3Nsi4gOEy1jvUKTXjywTOE6sDaS96XCeZtTDfF15Q98yDYbvZq+c+0wkwePlSI1CgwoUKeXPfpDeP1sGrVPfpmL3ggMGNoDPFgfbTP5/QAF3f/UXvR7SUEYI1aqlJWLZCT3h6ubk/6qn5FkZFDgUKppF036+88JH7rvsUxkEnW65NcIBQrGt1QPncXwrqXI5SPZr6fN3qvG9p1Hh+ui+Rk/KWimMXltxgIo9vH5casQg413MUNUwgvyIyrFckN44D8l+VXIXgBinARavROGvcePOzpYn0RpX5x7hYN5UCvf4dlmS/jr+UmuJ/sk6ZCPtU9bOKJ2XVdTIPVv7hAL30T2q293LAvsMTTYGqsnr0pEF78PaV47zINFrJn4LbsFUBd3dDKN/O843ddUnm5jIr0Z+tanjjx4rZ2sXmUkgK4dXTf3kXmRH1C+0HkyF2lej8n/25kH4/IhLxF5/0Ra9Ct79mL47yDTtSWqEI1yxTIfBfHg2tpFJjK7BGBnSN/QSvbVSl2WTNmWEvT+hsD1rzs8qPFQb+kIFIAq3VC8+ySpz/xYKtVcipRCFGtVrSi4d3knM79QAE82m5t+TSbvlVHhsPu2MgRn9DSTDPlgEJTT8+X3JDjJ3kn+4M2HeH+6RNPLYFB+d21ppt04+LdE9kjlc0C53lgXp3Chr7UjXV/qOIovqKvQg3GgRnaMVuVxYKz2VwQzkQtnFNrMIz9fQOP2qPi6xjgouI3mPs7mgIegQXIomgvhPlvFfeVjUEhJoFrTtzHyzqfzh9I5IDd3Mp+6yAXJ1swocZFUNJWx9bVr4xiktnb8GkzgQOSn+ceLA7hglM+1O3UlEw2kh+OOC2MQYZXhtjuKA+efFsjQ3bkwne7gIZ9zFcmhQpbXtjF4TGNRztEc+FEsy3dx4EKtfVSr/4di1MlzLoubHQX/wWiPXw0ckEzW6Va258LBDonwLqsypMq40RQROgoO+OsmZfoI3FOg2qPduLBSIba4cvomuiFc5KnqNQJZGc79PVtG4CM3OzhLiQsNeUs+pq5tQKIBW2PCDcdg3rDlXXY6Gwaxnvz2pglozsgLmXeyRmhueZKWyhjoWcWp7SHx1ddZTssfTECorohR0mcaataKj7OeGIVCVqBKShobMtw9NdJvT8Cikg/cYOlg1HXUINklZxS+H1xSaZXKhpw114PV8yfg57jVfnjOQNPlR+LXao6CtEpBkWkyG5Yl5RizoybgoZhoFaM2ArVHPnn/NnEE/HvuVF9IYEPozeG6G54TUGvoMl7qGofEBG47Fj7jwHqtSbcZEj/gYxalv2sC5uianrpZqai1+ua06rthMBQRXaZewIbOSaerUnIT0NsvHpXKTkfFOiZah7lDZF+Vesr6DEFpVZtdqOQEtF0RX14Q5o1kDZLfCP9hQ9bs0lHOYjbolFIPn2WOgwrfSl3CqgL+D8eXcFQ=AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/Data/RichardsMechanics/double_porosity_swelling_t_50000.000000.vtu b/Tests/Data/RichardsMechanics/double_porosity_swelling_t_50000.000000.vtu
new file mode 100644
index 0000000000000000000000000000000000000000..ecbd0d3464b25fbbeae5d32aa94bb2cd4e4361c5
--- /dev/null
+++ b/Tests/Data/RichardsMechanics/double_porosity_swelling_t_50000.000000.vtu
@@ -0,0 +1,51 @@
+<?xml version="1.0"?>
+<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
+  <UnstructuredGrid>
+    <FieldData>
+      <DataArray type="Int8" Name="IntegrationPointMetaData" NumberOfTuples="465" format="appended" RangeMin="34"                   RangeMax="125"                  offset="0"                   />
+      <DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="20" format="appended" RangeMin="45"                   RangeMax="103"                  offset="232"                 />
+      <DataArray type="Float64" Name="epsilon_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="1.0298926899e-06"     RangeMax="0.00073900561706"     offset="316"                 />
+      <DataArray type="Float64" Name="porosity_ip" NumberOfTuples="400" format="appended" RangeMin="0.39978820515"        RangeMax="0.40003412102"        offset="9908"                />
+      <DataArray type="Float64" Name="saturation_ip" NumberOfTuples="400" format="appended" RangeMin="0.79604048639"        RangeMax="1"                    offset="13104"               />
+      <DataArray type="Float64" Name="sigma_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="36006.279026"         RangeMax="2598838.3679"         offset="13584"               />
+      <DataArray type="Float64" Name="swelling_stress_ip" NumberOfComponents="4" NumberOfTuples="400" format="appended" RangeMin="0"                    RangeMax="3532682.4027"         offset="30092"               />
+      <DataArray type="Float64" Name="transport_porosity_ip" NumberOfTuples="400" format="appended" RangeMin="0.29986998461"        RangeMax="0.30024511818"        offset="30792"               />
+    </FieldData>
+    <Piece NumberOfPoints="121"                  NumberOfCells="100"                 >
+      <PointData>
+        <DataArray type="Float64" Name="HydraulicFlow" format="appended" RangeMin="-2.0264693197e-09"    RangeMax="7.3816535103e-16"     offset="33996"               />
+        <DataArray type="Float64" Name="NodalForces" NumberOfComponents="2" format="appended" RangeMin="4.5474735089e-13"     RangeMax="59881.200981"         offset="34740"               />
+        <DataArray type="Float64" Name="displacement" NumberOfComponents="2" format="appended" RangeMin="0"                    RangeMax="0.000269923915"       offset="35724"               />
+        <DataArray type="Float64" Name="dry_density_solid" format="appended" RangeMin="1199.9240388"         RangeMax="1200.4416768"         offset="38160"               />
+        <DataArray type="Float64" Name="epsilon" NumberOfComponents="4" format="appended" RangeMin="1.218601912e-06"      RangeMax="0.00085294958892"     offset="39240"               />
+        <DataArray type="Float64" Name="micro_pressure" format="appended" RangeMin="-999942.67551"        RangeMax="118728.66285"         offset="43220"               />
+        <DataArray type="Float64" Name="micro_saturation" format="appended" RangeMin="0.99608807099"        RangeMax="1.0004895209"         offset="43532"               />
+        <DataArray type="Float64" Name="porosity" format="appended" RangeMin="0.39977916159"        RangeMax="0.40003798062"        offset="43820"               />
+        <DataArray type="Float64" Name="pressure" format="appended" RangeMin="-1000000"             RangeMax="137440.00006"         offset="44900"               />
+        <DataArray type="Float64" Name="pressure_interpolated" format="appended" RangeMin="-1000000"             RangeMax="137440.00006"         offset="46012"               />
+        <DataArray type="Float64" Name="saturation" format="appended" RangeMin="0.72334339497"        RangeMax="1.0336894126"         offset="47124"               />
+        <DataArray type="Float64" Name="sigma" NumberOfComponents="4" format="appended" RangeMin="38611.402603"         RangeMax="3831136.8717"         offset="47432"               />
+        <DataArray type="Float64" Name="swelling_stress" NumberOfComponents="4" format="appended" RangeMin="0"                    RangeMax="4791832.9615"         offset="52512"               />
+        <DataArray type="Float64" Name="transport_porosity" format="appended" RangeMin="0.29985987211"        RangeMax="0.30037552493"        offset="52932"               />
+        <DataArray type="Float64" Name="velocity" NumberOfComponents="2" format="appended" RangeMin="1.1749184618e-17"     RangeMax="1.1374400001e-11"     offset="54016"               />
+      </PointData>
+      <CellData>
+        <DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0"                    RangeMax="0"                    offset="56624"               />
+        <DataArray type="Float64" Name="porosity_avg" format="appended" RangeMin="0.39984149136"        RangeMax="0.40001845672"        offset="56688"               />
+        <DataArray type="Float64" Name="saturation_avg" format="appended" RangeMin="0.89534669966"        RangeMax="1"                    offset="57608"               />
+        <DataArray type="Float64" Name="stress_avg" NumberOfComponents="4" format="appended" RangeMin="39056.764759"         RangeMax="1007641.1251"         offset="57780"               />
+      </CellData>
+      <Points>
+        <DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0"                    RangeMax="1.4142135624"         offset="61980"               />
+      </Points>
+      <Cells>
+        <DataArray type="Int64" Name="connectivity" format="appended" RangeMin=""                     RangeMax=""                     offset="62516"               />
+        <DataArray type="Int64" Name="offsets" format="appended" RangeMin=""                     RangeMax=""                     offset="63240"               />
+        <DataArray type="UInt8" Name="types" format="appended" RangeMin=""                     RangeMax=""                     offset="63548"               />
+      </Cells>
+    </Piece>
+  </UnstructuredGrid>
+  <AppendedData encoding="base64">
+   _AQAAAAAAAAAAgAAAAAAAANEBAAAAAAAAiwAAAAAAAAA=eF6t0LEKwlAMBdB/ydxF6dRfEQlRYwn0JY8kRYr0332Di0s71PHeC2e4bxBNHp1STLFaS0jutAQMl/fPaP5gh+HcgVJhGCBkLIRSoTVzubGjPfFupZqyZgP6tdsjKOfvtuGcdp1qbiG5HFPSSaNRif/x4sXTJDpipHPEsau4hkzbP/Xrdf0A9dSrDw==AQAAAAAAAAAAgAAAAAAAABQAAAAAAAAAHAAAAAAAAAA=eF4z0zPWM9Y1NbTQTU8xMDRKMjQysgAALYwEfg==AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAA9xsAAAAAAAA=eF5l2nc4Vv/jx/HbzBaySvZKJUlZdYxkRFZISKioVFRSidxJVoVP0ZAklSgyQ9L7mA17ZY/byN4789d1fY/3uX7n7t/H9bzCfe6X97mPuYdfQukYhxHDTx69S+20KAn7d9f5wceIIU/wurxvdlZ+kMo3dxaW+QmTkTmsl47efbg+HvebTzfYoZGvYU/04neHZZ45RoLY046o4blhJOuU2BFdc9yN1GjYH92JB2VZoU/MUgapXKTxUWL/T1PYPwdv5lzjaKB7WpQlpsmmw57oP1mKN+xOigZ7xVT7ajKGkdCQlAeFQyTo/H2eMRpXMgDlulmPm9IQlW80DQ81CruIrPdMCTTNyQZrYN0v3uf98MPtC+yJbnU/IXqfTgQQV9F9eXVtCEmtbaf/3rkMnf1M07cHYzkguDNyh1zDIJJOcA42xb3JVS+R9T5l702663UL0F1/PCenP/4G+1SC72I4brHDMwAxO71KVy87gHgZ5g/MKcxC3+yXp6tO+xXkXhf4w3G2n8rpKGP1aWyZsHcCkSGKMWPQbylZFJowANg7Erxq57HjL5nTkJO26gaK4t1IqZ9sWGNgL/S15Z/N179+AQ8o0zOSv7qoXJDhghDHl0LYz9DRyJVOFkI3HOiTSxb5Cnuie3C2X51mLEQqIxIP2zdWIw75c7fj7aqRdZ+zW/p2xyALlJqxOHd9o3bjFO+8taYy2HOHqTzckzwMnblHNfCWN95vJPihC+2NfmgZUpocwLbyoQCQU1e5dVxmoV/UlayWZ8sAGwePpt3zKAC3CU4xmMjct6kG9uIp395c2UbSWPc3dyY9sn+nw16C4NxLeffrxWoQt4Yg2gS3bsArbldcKEUPXcjQV2k/fQYw0rw0luVN7Scszr7smK2Gfcf2Vfnbj5mhB05t6r2ugvedBPcb8kurGqhGLH8OZwu7jQE3hTJF5AA79CAHw9axhBwQYLKLZk8Gte93SRy5d+Qn7NOCWcbBwEbojj7HSZpfvsCe6C3W4jYnSn4gM4Y6bUaefUi0xsimp6L4vngG9txLPnEF9APRSJYOCpVviT66vBLgDXtPpvPn0ifxfXl9YWSmJyAb9kS/sPhz//NnmWBE0T9mULgfUTrt4CSaiHuXy3Gv2JVsYHU8nzW0sYvKe+xrssw5k8Ew1idbX57I58KdzyXTKfDhd9gTvYNlf9392gJwoGKDqfpcP6LzokXY9DK+b1te6C6KiBeDzEa5fa0WPVQe6/0rrs8iC/bmqDfP57er8P21LYAkTzldAXszgp9IFL6352IxECxVaJblGUCiIyRi7nnh+zZfJXJcevY7UL66k1bvQi+VBwbcLZAKTgUCWO/KxZbvUInv21cf6Q1D2pWwv0DwTd3hW5MlURB7TcbKEelDFEWym5664/sWTVfbLnG4CJRHrqxRanqQXQQfKc7faX3jCbLeaykkajyrH4duUCQVIinxE/YaBHdWaVdKNgkHrKWkwL/qXcgW1cdPhGX6oP+9bnpED8kAwpK2gtY8FCr/fGwptkW2BFnvab4xlPmwlUFP5uynq6Bkg61YT/Rm1tSSp42FiNed+1Kz/1UjE8MiTm3mP+G+6H3QFlA69wyx4ebacWUPtdP45vkLq/5GbmD9cZN8W+0fg9Bf7XYzEroWidhivTXBr+itbWhn/o2UqwkfctlcAO4kPa73+DADfcv23O4O6VyEd+9OzkSbfOBD8F3cdzs0LduRMqzfugAyhJjwfUMVPgq87MtFBLBemOAvj665KtxrR9zUaV/4PugG50d7mPsQfN/Ij1dCvlbkIk8n6mnDP3QDV4JLS9w/KTDbjlzC+sU2vnOmnCzQh0H68E1LvF8mOM2lnPkNje3IGOu1XnX+cTBeOnqoiI4DOq2XHqMX3X2g9iTglEfvOBgj+HubtLM3heuQUaw3sOY5nEnmgv6f4/4ZHcsooIr1egR3qn41qGlWi/BuC0CVPzQg2hfncm4/wt/fMbI78u9fuQO2uCwu/uhJovLx6LvHj2sbgvX+9KHXIzRXcf8as827X7IYiGA90StOkgVpthWBD16spdvkmv+dj0anGLRwt0uLdD4GioHE5Fz6lbGvVH5500606FoB7NtkaZb7UvDzVWv2pNYVzzoghfVNBHc+d+CSbG0N2EUy6W01akd0Ev9kevzE9+nsoJPdA/ca4P7S2ey/uV9UPiXsZ+SoXw5747z6Zl3xFejihQqLls+bYW9KcIUBDp1FowawsH0tL/gdBYml/xphc30JupGeg5bqVB2oHK718ZqrQ94S/KR0T1niwXLwF+sjPtC5yIbh++a4cg29F90CqrA+nOAHDTacFiuvBwkZHAUq//Zj9dzJ7fqF+L7JWR1jt3xTDSis3W9i/v18lwl+oa+5PjwqD/afl4zRcbpJ6B1017wRg9+wzyD4C+ME/S3Pf4BjV2+GaD1sR6Zc/rtUaDQIPf+T1l0LEwCMU/aj94qbqLyhVfnmJ5mvyHr/jKXPnq7jN/76vWhnc54oAiZYT/SSo6B735M0ZFOwslOUaxUygTovelUkwn2JUWE2/XYnA+kKfhPN71WBLBA8MSx69OWvJtg/SNY0YAz4A91B9VqIWnga0on1RG8OU95/4EgT8jU9z2oLAwpIfyjX1kamoOdUOzbMc1Uhy2Ld4kX9X6n8QP0cZ/PWXthvOqQRbqO7Br3Hw7rnSHMVQiv+v57o+j5Kjz+Z9CISU581FfO6gfWrwSgtC3zfIlPNr1KMaxCdRcll48puYEHwPSIn1vom/iCSWP/dr2hleQHftxsJPdlF+/Ge6GIv3r1u6v+DPHcLjM+1mgAXDBjbUsI4oadJ0ERkiaQiauP0LWm0k1Qe/U0zxzqqFYnCeuM9rqZSudzQjx6Rm/jr+w72RLcGh8zOa7cgx1Vd3ye9LgUeEg+cfeTx84XH48T39XkRgCNOVWBWs5fK778rX3j8+z9gg/Vs+3kdD/LjPtmcfvnTzwrAifX0BN+zv9H2u2sFyBrwB4kfCkHbn2VKzBh8f5MtTG/ol1ysBlti5332tHcBCsFzDyrIGnlXgWysf1tZrlv1BHftrEor49h2sBXrEwheF3hJPGWiDbgHZlQyhr0CKsltm6S24fuS6DsqJbPaCpjubfY/6NcClAgOXIQFQ61aABnr94tdC7W2XIS+8qjQ+qxYL2DBeqIzbrCtfXGkBxTvu6QoYfENiR6uXPrh9Bf6A4GNvCVZFGB63upSVGoZIPo2Lib1b/3tIB/r37Zq+3e9moeu+YvmyWbaPmCO9UQ3+XJNWEmjF5QLvd+S+rsKyWki23fn4PsW+9SBReZaByCNt998eMkIEP0d3YLMTGQjKMX69FCjUX2DKegyrhY2jSo9gDTxvz6T4FbamrW3HnUCi87DB2Rj65CId0cOKj8ahZ5ie+TQHslawDR7RmbDl2IqH77MEXwqJBtYYr1T30FKtGkX9M3GglEM3xvARqwneu1WkUsNTCVAfyb2rG5DKbJoV+LR/d936DOl1nop4Y+RS0ZHNFz/K0HmCC77/ED57tZ6RAfrg87vvGa31Ar3JUD/ROfv7dZgvSf6vpQBmqXgOoSx3vaz5moOKB77IU5RHoce+dqLsqhcjzSIX22qk84EOQTfny+jblPXD/t6Z+M2o6Mr0HOz+b0HauuRRqwvJ7iJ4RxTjegA4ndO6954QTfgm6BvOyaM75vsfR7vwtQWJLvJZitDaDfYRPCGbwo5qe6jyB2s33FB4LmvHBt0OqHFnqTeFuQL1hNdi1Fy5F3IKFIZvtlO4cUkqN0vyrUwgt+fGjcURpuZFCAmK4nWTWFToJrgriR6FwWjHqQC60M4ebk4P26C3qbPYnnqby5yBOsDCD732ON80LFu5IjyxIfXb8dB/ta01WJJ/Pou2rfnppvGW5B8463LWMQCle+7GV28X/sdWO8paS51k0q4/xH15dnGXg97oisajOT57awHnnZ7jPw4R8HZYy37MvWhk9Wzgg+VjDWCoe+278ZV54E7wQvuPpQ9pdYEexXETvbuJdzLpxnF/0vshb0CwcNagngcqnpBHt9s68vJfnDjFE/mx7u4J77Lo6380QtOfNH7Guk+Q+VHYj2sK1rxXsC+jPnjU9zf1zFXR2iMwp7oBpUFUhFHR4Gwl8VvnzAKcPD0v5Dkg/vGzsM2HbuHwI460bdt0hNUHnl64VBLwyDsKUu7rRPEcY/IpTDfZpqEfS/BrX2y15ZaJoBu/aCOo2IVMBr8+jLdbQa6ksSZBefrQ0BfWajxMusfoE9wqaaclz6DA7DXieE8+KsL7htZlvZj+7n7E7DfT3CtL4kOQ0HjYOKGR9xH3+uIVbBej8+PCfzrL8jhfs7ZC2qjtb+dSKoBRN9yUVL5y7dO2MctazX57YTnQ7JG+8edCo8GYE90VfN7WVcde4H7xUYzJ6c8JORRpWiNcie8Picbi4TzD5QDstuDcQqvJwggeIuqxXKuaDKy3pNNt814qqTh+zV1a4t1Yw3sHQgub+obluRgAdz3H/KUmk0FlEAGJKC0B3pG98Y/sQ3VSOpeegZNqQ9ggOBnfsU8547rR9Z7eiFBXQahv9BHdYMfT5rXwJ7ofv9efDVKPxLYQR/Pvbsb6OwOeh/ORwf3odOOP5K9jYKYOMmeYHfpApoEv1MU1S2dNAV7fd2naKoF/vncWtQ91Y1aXbAn+sPuGqWEjikkp1lmqMFmGgQ9OlzveRY/n007lgtVWZci4gEf1L+HzwB/gqtdljxzgzQM+9SB70sb7vJDV00taOC6UwJ7otcUv+YJLh1E9P1fnBOIWAMKe+NGYz0H4Osr+b1wvnM6BdQI9y7fnadHif68fok3wSwNrPfhNbIzoeW4u5SZidhmNoFqrCf6d5cmKQOWZvCkecEp99AqoPhK+Kkfxq9P5xSzXYtPOsFqfsud8nP0KNGjNfVfKBpRwFOsTzVzCo43HILOQz6TY3t8CCxjfSzB5wfo93O1DIGB7WFlWneXgLt2aguv9jB07U9bmUVZRgDbTVluuV10KJnge8VOObO3jIAhrDeVVY+c6BrB31+54wrPr0wDVqwnevrVR51hLdMg7sSmBAOuebCx3NnhxW74fIBMc1kqXP3jFEgcjDINYqVBib5zyTIzSBbvHbwiFlx48H1o2p7FJiK/ABKwnuhMWX0KFz4ugGPp4RUVtRPAY+fAlPxH3PfShP/wqpgB00dr7J3PL1G5t+HpAD+RWWCN9UyF4e6ICby/JbOYK2zUE1wEk1hPIrhBNH2Vsesi2LHA2olEdQOBHDm1Sgnc77ZJZNouTQGTpeArn8SmqLygddv1lYtTYCfWP8nal8/FjH99Qm3v9r45Mw+MsJ7odq0fF3Sa5sBAxZ2jEqIlIM7GPLqkEF4fJA5HlDuloh8smrirXWLuBLEEt4pjfurzvgsMYf3Z3AqDkpE26Hbqw/sYR0YAj+n/eqK/9d77tb6kD+yeP5Hl3ZgKSIjcldDr+P11PsUp47Z8LIhkLA/jZEQBmeAuivHykiHtiBLWqzzf7Jn1eAJ6ykT1A64Tn4AX1hPd3v1GnVlxK3KIqdCN9yIFCAzG5zRvxT8f9E49Yz97qgvRNPRhsxVoB5sITmN9WYFm9xzsm87+UaVE4/uW5Shz9JxFN6KM9USPUaiVU0+cQ5DtDCXKT2YB2/naTyRm/Hxm7mb0zf1RDcJS6mkdJjcP6AnOdY3vwpvr07BP4lM64v9oC3ShU7U77taVI8xYn0Dwd+9OxF1PnkLs46pJ7X1MKDlIbWiMkgVfn71PPQ+5xmcCcvCK1r2bHFSuqHJz5BpvFljvSWUaKvToF+iG2lwN6h6tsCf686Ea39WqVoA8aFNpuPWvt3QxZpAG8PpME6vc8/5mN0j77XW94ui//5/gPBF3zuxj6wEH1nukSsn7fRH0qEyWtMhtYyAd6/MP/H9flgbdknljwPnG0kIJeQNK3qr84/DVn9DNf/5ibPt33ijdaXKwppOdynlPd5irm06CM1hPuqhZ/Mq7Gt83n61m/dLz4AfWE/22oOJL3ZR5YHjb592+RAaU7M7ZbXuvHt+HPv0e+cB5kHL6QkFeIRsaS/BmMetNvicXYE86Eny+Xa8V+vty5bXM2FXwCetFCa7GpKfAcHMNDO02URjyp0Xzw7ZeT35CgV4z+/2NxftlEHPb87KqPQuaQHAO+7YI/9oV0I/1OQpX1S8e/AP9oNj1KTNNWvQ11hP91G+a4cHftOiQqOwOPrMloDLNdU44G/5+JPdKFitO3F4FTYU2rcdKGVCia2/QGjVPWQMDWJ/jzXA08Qa8Pya/dmXwtjelQ9uwnug1bQebwwboUCFVksWU+Sjwe/TofdkY/nx6dISXr1R4EVilZYcuOS+D2wRXWgjcMTn6F/BhfTpqQ3N2O+7vW1XeltwmocexnuhHui7vOu5MQu2yrTQoXjUgQcixUCsPf769ddZILOPcIGjY3nFNSrMXpBLcXoLOwqu6GZhifX5CQ2rC5gK4b/InnMvZt4+DSawnJf5/z/+7+ffTxG4wzxC1vNOkFQykiRctBE1Dz1xIYso1rkOYvl+JntvV8u/+7f97nFiBbZ7VHMLI+L/eer+MeogeK9yX0mf5OZYddQgb1hM9mfm73huvOeQsjWzYOekFkHRMv/iPFS905ZSFAMYndYj8VHCVpPZf8JbgSItlbq/HCuyv8B9OMKwShR5focQYbl+DKGM90ee6JDdv6F9GHK2EWITUuVCSpA57jT4Ffn9awzm3W09+BottF79t6uWh8jekHAMBtiyw3qfa+7cUbMU9zk3NK+9VC1jC+liC9yktJpWVtgCjs7Uvo/W5UE1xh9HlpM51JzOZp68wnu8GRcpLrsdkNqGiBK9quna06XM37EkbzJ9k+3RAHwyz3DfVO4r3BH/NJ/igSGEMsHlemS405UJjEwVEgja3Q9f9OxNnv3kSyJwOoE2I3UTl/n8/6hZenASsWE9+70Dj6tsC3fe3UIFs7jyQxXoHgmf/rjv9gH0BAFfRUA+Zf99/hswHpg+N0B28crJj+P6Cus/b36XI81L5BHfigZncv+Ab1lPG4rzsAmuhHwrsvxLyiIQ2YD3Rw+s6937uJaEd8dtoTtzciOY7vTDnOFEK/fFrviNeviTU6LEL/c9gXip3v/WKn5WfBvbkFyTG+o/J0GlCLUz/hDGgh7GeFP3/vdGlfbOnDCPKeMydzvYyO5of994w7B78/UqOuiVb47BCh0b82v2mYQsvlc+ERUdzrtLD/qz89hDTJPh8g/xRMG4q2IEFjcR6ojPI8wEVR1ZUrcPmA9BhROPN7pyKL8A/H7x5WL9Z9RMDGrnqyrIrhxtNIvjT66cG/Fk2wP5Grk3b6ht4vieNNAeEMuuww57oq4xxLy1iOdCkzq3TSbpzgKkiXv5zHjyfkpwaTI9ZCNCiXSTGZ7WtTCgjwUmqj2+/cqJFX2J97LHUsq4/+POlHvsHzo9mmNBmrCd6UEHlw3aEGa29ln+mNpYC8mMlyP1mtdC19Pof6i31gzUfzxbfpiFAIfhjeSsDMbFWpAvrBb7qbEu5hZ8PtQy19YX5R0E31hP9tHRs/dXBamSzSMbD9/FLYEfWX3a+fh7oTyztu6z8vyOzKraf5EJIKNGvcNLRSndt0ODHekn3adOlXVLQtyuJfZjJuIksYz3Ri9W0Q3PvMWrs9Ebcw9/wogOsAiHo3jm4T0d3WDQsWaYAcRqaXIkCfiqPXmitcF1KBvJYLxr2KuSsIe58yR0/jzfWAzGsJ/qr+KofG5LqQWjzYcPbG/nQ8BU5Zdlz0MlvnKet7JzbQELbUp70eQE0iOAn/5sJEBtvBWFYL3pW7lXJW9wz0ANTVc/7QTzWKxCcwxIJUbTvBw6C2uLaPXzoDWeRIPtG3FO+BzgnTQ8ByzV9RDxfEHUnuLHixXL2d0Owr19UEV+Rmsf3Z5eZ65M908AK66sJLnBGR1iPbRpYO/vqCjEJoLExN7wzrXA/at/yrO3WDHCqGFHO/LUFjSZ4YlRG1iuHGXAM60nS3zXlH+LuuuPzLba1JXAK69kInns29HlVzxLQyTfKyzMWRCd6WopYQ3C3pAnfT3n279yz6+bX2BBhdJngBTFFVmdylsFBrBdIvBpGY4h7v5vHVosgOpSM9UIEf4aEfuB79u98dtxRO0drM6pAM8BGeo//fLfZPt74djsdemGn03zwvCiV0/e7S/fdp0Nbsb6w5vLneSn493Fkcbu5vLUmFvQi1hN9tb+uVkuVFeUgKeY1/hBEKwLp3URX8OerswdZ3Z90M6F7mH9QzIE4lc/UOOiNLjGjnFif9MpOImTXKHSZjxlq6YbcqALWfyS47BX7+BNN3OgWefMXnpd50aRdxzxG/nRDvzscdTF1gh39JWu89DNKAk0luIAbR+jJnRtRIawnuQuOacSFwH0iB17pPdPCj5ZhPdGbyBnqFzkF0e6yR44BQYxoPn/lLBMTvm8SjNp+gRXMaP/k1YeaUSJUbvk5qvzwURZ0EOtJrMdfHDjdAp3ZwNOtkIsfHcR6TYK/i43b9NaCHz2MLDzfi9Kiqbo2zaHD+N8H7rMefjZlMw+ckDN2AhsZqVxN+vA9vUI2DW2sb/PaJ1KcLgfd3tra9vfHRdg3EVw5nkeyQZBV48vnBlvuSQH07eigZjy/BrrunzaWoWnxd4F30A7QwrUZjSd41re9jorbT4L1PoyefewzD+5q7ce1JnWLYE/0+KciIW2HC0Hwm4fn/AsEUaXLF5gp7NDJd04J3xtdLQZqLXWV01xbqNz3l+O2xNUC2FfeXpnvoMHdpj9/ZJL2N+zLCW4c1Q2q/OrAC1vSz9yLW1CuZVv6oVkE+mcxqyyPb/WAVgfZFiS9FeUm+INLdrpasrWwvy7fdlazC/eAdHHKuFYX7InenWZomjTWCdr833I5cgijKp2OfWGVuKew6In+EqOAgUZW8WgNUSqX4ikcr/dsg720b+vStlTcPbN4hqT+DMKe6G6fk7V+rPYDz9fbt/r2iaJfpHMqiiJxzyZZD01o9IOORd8c0zxxNJvgTy2O37F42wv7eXXZDSwXcJ8449ONzE/BnugjnKvJ7omTYEJ2wCD4igQa5h5nk6SPe+xTT9qv3hNA/ULijwwnaSq3PshBEb0/CvuaOxZMP7hwr3p76+/pA8uwJ3qrPJuLWsAiuFfpk/G4WBodJwk2mv85AK/P4hnhT3/L5sHw6pMpysB2dJTg+b3pkiHZs7CfuD38pzgOd9VWLcun8ozoej9O8IN198NPSjKgzjFk7+EYOTTC4+zyiBvumwtrarvKaVAr3ZWva1cVqbwzlY7z5kcS7PUnPMoeyeBuUdXd67+LB/ZEz/u+5Fcdw42+DvR3MA7cgVotu7HMcOAee1tgOHeYGc3atT1iMFwNtSR4SLP4AC+JBfZ8j9N/sWzCPZA1RXj3T3HYE10vbrJdr0IcfWrHXaJPJ4eGZL33tTynBv3dNn7xWCsmlPQwdlOWoQ6Vxz/X96cL6UHWe3+ndoR9yx7oHK0x/dm/FWAfQHB+p6uhMifk0P8Do5nR9A==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAOwkAAAAAAAA=eF4d1nk8VVsfBnCZKXGEcHOiElF6i4okGogmlcr0RiKdDJH5mpJkCB1TmcsQEm6GmxLSJKckIhmiTElFRVQK3d/TX9/Ps9bezt7PXmtv+hGKWqHJHbqCJ+r9z5L5UbaxyA/8hFqRh7tt9MLInD35bIzPlao0Dyc9c7nzMf5jx5H0CPLOMllemCH/IjeSPKcSJQKfFf3cGU0yNBe/jCJ9Hv2KiCFbgpbMg4HZJcZxZL10Pjc04TLhTSQXJ2+/eZH0dVK+kkQK16UFwR3znScukffce59Dg0lPnQyycKmrJjTovS50lYx/m88LR38fGod7pPonYdDWG8UlpPKUVjnsusX2LCU/ZLFcYfi6sSWVJJfHk4WwnFWgUUWubA2SgaNJYuEPyEjDASdYF7LwAnpSauQ3O0N2pCr2IA9OzslGHrxbmojetnO++YaQFq97ItBb+wJFZxzncay0B322vLXkx7h4WUPBOfxOgPdzjKuml7qhN4Ms9hTGZbVrj7DJ0OCsYfQ6k5NjFovr+bXlMPqUu8b38AJZMpNdn0CeYc9kos+z0stU4V9+7x6nk25eDBOoOhxrdpnsm/DVh/JmXlp55Hk+q6VwYvyZI3qTb+UEwuORnRHo7YZ1cxrstd4Sh96KRvhDYd6GsDfobXKZUQtcYCuyspq0ul3Thf5WiYip1pKdux60PySv/+N0CT3NvpneeIrUiXzahJzRMD0riPRl3s9Ab5U1iTPI261eGaK3rQUluadJtc/Vrei3ZeZnHM5Teu+hhN5OzSkbwHlpjxyM0Nu+pvzL6HeOcWUa+owv/zWG9Zr+jiGFPtmmfevRJ9POvxfrcExnNz96tZ0nbIc+Mzt7XdDnnhiRxalkpOWgWgq5bprfFj0elRVfDSeu1ZrnkHmiz5UhV5be/9BjRNZ7M/jbWYmB3uYaNmrB1HSLTPTmJTeQAtee3bEZfY3ENmlDvePTfDVk81XlgDvkfM0Adw6uszfpQx2pKnfVDr3wMP8d9SVnB2p7IxuwtvH6kW8Mc2zRU+xEoIw/6ZzWk4+s+LvCGnmzpZ8vetu2wJ8dSO4/NLAYvX0KH9DE82ArmNxHvyZq+88Ek5pFXKrodzqDaxjnzexdxMI+d+hIVMe4xcJ7SudJ/hCNr+i9jhVcih7lG11b0bOivHcy9rWjm00V+lzp08aPHg8orAxIJm+sW96bSb7Q9TeFq4M1Xl4h9W6ZMdBnZ/j8xuvkgPsq4WLSpbnREL1lyZZYwFmr6pTRF8Midz3k2mVReI8UPv7k7V3y+e++nAbynxivN0/JCxopAuihy6JC1JO0XnL1J3prj+VwI9c/2vkV86eDLgh6kSoHhVqRr04c+ID5Hz6MJvSWxSMn4UP6JQjfRU7uWMCLPBbax0Hf9xKZYfi78y/nMdAj96WRRmT1j98V0G+uwewePLemWTqHsU6NmFZMHKd43UAP63X53kXX0W95k00KejTdZSyEcVejwkfo8Wu/+f54Mp3nQC/Wp86UtAt65dbiL8B7cbkS+x3MSk19WUjq5aydV0SOD9/vQo9Vi05qYj1+qnqqi75WdtumQj9WGC/2qxlDdj72K/dXQfNWsibsi8ML0vzio2j0wphbyzxBqmjYOyK3CdlMOZP5DRlbvUnfxW2FmL/mm9ONefu8Jn3kL8zNxejJvvlypwuZ3NwvhGw7uUIDWTqOWxw9BTWJy7qRz+38jbDO+2Vc9p4kb6/teoa+fY+/VsPfjeOL3oEs0WxXgOdzV6XNDevZ8NtR7QAyvnl0P94f6uf15XDcZ4tKDno0rRCNQL9PFL6XYb1Ojn53x/tgeovgUazL6m8RYfj+3A3i8OaS7LFPS7Eeq6KDm9Bn+iEfFvpsWCfJuk9226zmwvdB/oOOK/arrbYDH/Zr0LXe6B5yXMtA8Q2p8zIh3ZVs2V20iUWe5+7xQeaECsgh37hd+xF5TaScAvJtuxAv5DxD4cJjZPA892j0INLB+xF5d9GGMsxn5DAZf+YzNNrQ295Tv4Vxfp6TeACOH2UdKLEnDcslDqKnSr9B0+PkHUkTb3cywLLxb5yfpN3T9TepKfjLEc8zvffhBJ7nsbonZx3J2vXNp7C+haUSJDGeotjRgDwi9toOeZ9kbiN61E3kqsf7NtM3rQnfobU+mxuwXqVKBR9mk+YikwnY56I8Fhzs2y1uJ5OwX7uPcNhPyNArI7qQL39F5ygpzQ45DW3Dv03ivmLWqNpYkQOc6iHkRduqjJGDDgtkIq8XL7A8RKqvtbFDft9hxUS+9nELD/LGOrd9lvjdhvYA3PflFYP1FmTl7glX5HnLNrmbkSXdvA7obWF1uoMpaf3Y6izmtV88VT9ABosdyDhKnpMx3WlC6nHNskKvM6Jd9ftII69zyjj/7FfBeGMy43Xaa+yD7owh1/2ked3IGQfyyUwaYw/JkJC2w3qf/nJQ7wjZp/6XF55H3KuwXTZkm9QPQ7wPwkQ401i/hmUC+7AOv2+aFsL3Zv7QwDKsQ8+oRUX4/npWbBebnULvtTe7y3jJtTmD8rienQ/iFXEfI682rEYeF7q5DllF0GPEjjzv0a6O+6qtUZWDxWW89lB/jlo2rkteJ3Y7rkeVwexDnp77OBr5xq1P1tZk9uUYdfTr4RAbiRzemXkUeeHS5+5wSmwkCf00h53c9Oc4sXIXZM3Ca/+iZ7ne9TLbyH1Li4IOkp8GP43qkx+EXHciD3uU9GuS0U4yHJznl1HsuoYsTBKJ+j8p2y/QrUqmTvM1o2fv7K1rlpBDekfHsB+csiQXapEn373Tx/5xkeyzX0eO96dJYJ8fv6n0FH0GC77yXEq9sQ8/LFcmeTb4n0xPpPudbH2RTKryfs5GVmgyFEghfbZqmaSSzU5Tcomk3Z3JYeQu6eqbf/LLCRW43jk0LxY5PE09iWTGrSiOI/1OyFXEkDn6lkPhZN5c740YH2q/4XyOnPHgjg8jNxivbvYjDcQ98iNI1lDOUACZ75PA/DMu4LKLRb41rujGuKpk0hxHMouxoMWBFJWoGTAiBxxSlE6QdY4GWrtwHXa1fGa4jgfqilLkj5moK5akxK+5D2VItXvf8/aQemZvRMsu0v9zLXX2yBGvC56VUlYw0C0MphxwK22rAuWAguiNPZRD1BN6Ayn/B/4ZiuI=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAARgEAAAAAAAA=eF5jYACBD/YMo/QoPUqP0qP0KD1Kj9Kj9Cg9ShOk787/2NZw+b29rc0F3nuVL+3v3FX/0gTkV3x/UfkAyJ8fZDuhDchvjSwReQLk7zPz/d8L5H82ONPwGsjfIOxWOhXI//5l2ZdPQP5ex6b0RUD+ss+rnvwHqbc85rAOyDff1LqXu+ql/aeb/1YfBPJZLuZoywP5Hzo5H14C8v28Q9MMgHyPX1tK3wH5tbou3D5A/m3Hjka2K+/t3c7o66QA+fO3zZupA+Rf+f+uqAvIf3l5W7MvkB80p2LSaiC/LHS5XyOQX1Xheeo+kL9CO117BZC/8PpeHvbql/ZiYau77gH5rQme4nZAvr2lR+ZTIH/T2i+8rkB+S8rq2weB/I+lWzgVgfwdO7nWGwH5AvMCJk4AmndQviPs9KX39pnqr55qAv0HAOrSXQ8=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAAOzAAAAAAAAA=eF4Nl3c8VX8Yx5Etq4SUokJFRhKhPCeS0RIilZIyQqjssiuU9SsjI5vMKLL5Xlv2HtnjGvfi3mvvn7/P6znne17nPJ/P++1IVq4QqyCBlIOT+VW6ekTroRDSzDAF7rL4IY56I6Tf0HnqjhoJ/qvUS9xcq0fLc16qI3/xIL7Ef0ySzhyk1cI9bVtJcDh23jBNsRa5ik8c0j81BfG5QSVxmp8Qx4kzk1/vkeA5sfGbsWQdsowUqzWfwkNu6u13nOHuSMziw0cqKjIEM3bf17pZhVhVjukvPJyC42e1LgY7BKPIm86+qf4k+KE8r7srVY0wGd6+ypNTwJfMH53BKo+ePlVodj1Hhn0qL+k5FUqR/XmfSUL+FFQsvGYolIhCrSoSrSLFJLhZ9H3HkrYcpZ/0NEGuU+DiKM5QCh+QqtWXGnUbMqSSL3Rys+Ygjv0CfqEC00CSUJW/KvEdFQYd0j3CSoYBY7GI1m+/UDu/kdbu/BS851W9vEu6B6+YCuMiqsiwY1rX6XY0CCxULECufhp0XzJZN5cmIIKYgqSlERlOKnU5SXV4wbl7GQxxYdPQIDZaftbODXW9F3s1NEmGfPTfzcrr+fAp02ygVGsGxl925nreT0Ahhxlnl8PJ0MFOfU6Q6w9YOtwLVxedAbnsF9PLJz6CWbfw61kLCui9Olhj9LwR0m49Gup6NAvNHr7c5kvJSOQFDYH6OAX6v/3NC2poAH9ezQgj2VmgqRerLHhpC0+ffnh64zQFNtjqHrtsdcLlwFCNYNIsZOBNnwqvJCKlR6bFVitkGGZKLYj62wmZ+xlW43pmYc3mTdT2sRh4xDt8+hCBAo/yU8e8vo6AzOb1nhP2RNA8NSAbeiMFXTqIPC4WUqDpAl/gV5cRSHcs8JJ+RITN5U9k/lcR4Htr14B2HwUMf7IucNNNwturLXMxW0QYzjDS/byWgJYq/NI3CGQIMNfm+W99AnK3uLiPkIkg1/dsq5E9E6iPGsp+YFwE9iO07UJSc2Ax+Dk5gWEBUmR7A6hYk5B10MzHt2QKXO1S34gVmoOYsPbmY1vz8ObWfIX+Zjr0NtuWCjwggzs+n/rS7b3nqKW5ldougNB6rQHbjTjEwixc1qlHhjvLE9Qmt8hwyoTWncdmAY7lP+jujMoDQ3uV6ZloCth602Q+MliBmoaU2ZRNEnSe1737/XUc8stZm46OoIDyF4lMv/srENzfOdu5QQIVvpD+/b55MP7c7YacKgkcxZOv91mvww/+OP5oQTKQCmM3O4OiUTyfG3eZOgmSjggXFdmsQy+zYJDrCTKkXOeMC/Ysgva/ZwhdP8lwruJ2xW3uXYj21CyR/0QBxboUFg3FaPTZ7Uzeg99kePyz5YIUzy40WTeIH/1MATZv9ke5YUWwdV+QMVN8HjC0lE0jQo3xMJ03OpBOgfy3rP9cvaNReqaSCUFkHuyTukNDhamxgI5lMfk0ChRS0lcctIvA7M5y14ArCdgYynTYV/ZhXhncv8MPLIFDUJztf13R6JIzLd1bl739I8bIJyzvwzbs+10R5xK0ztFzSisVQQXvUcHSTCLk+IcQ5hzosNMK+lmfriyB1agFn8vJBORY65vn5UeEKLMBnSI7OmybNOl+Sn4JTlKIob4DvyA9vZ5Nef8CRAso973uZsCiaCWSmq2WwaC+L6ZjJQEZGsgmMM3Mg8+m71XoZMDeFJU4mJovw8UdGZ3BV79gV8bY+KzfAoQy5I35Y9WI8dmpp7h2PCxlcMyseDxEplfmho4mEUF496xppHAdEsDTU7sexsOMwnmxoZMmYPHrZIxV/AJYYZnCBqWVyGpkIpqWgAcO7f3tT67Go+qiTL4npUSgv3Qy3TS+Bnk/rVXESeFhQJvaRngtBn37WfQnkp0EKZP7R/RYcWjdKlvjifAUfLKVif34PR619n/8QfdsDva92Ej0ratEA/vt+r444IGwRfqd4R+KtGM+lFZdJIHLAD/ryzsFyPSmmv6vN1Mwfm38WJ97DlIrOv5H79cciE6uhbbVlKK7xP1Tk9V4+BHuu0qVlo6oknR0NsJIAB9J11+fSENHWOPfBY5PAX3ZsjwGP1HNHI4p8e88SGzVjPb/y0H0F6d1FTSmgHDG4wxeJw6ZleZMXBwjQc9D2abU1RBYvPzwO6PjNFQuSjofaP2DIo+9Pcv/eAHEe8Z/CpubwIxJvH3u0BS81p4bq8/9iRJUU7uMpMhgsT2SFPcxHxp1zWtOsczA7fsdSKUtB31uTWf8qEQCRiGC7UX0G8ojZh/L/jcNDofPZ+WlfUO1ExedttPIkHk1UeXa6l9g/c+b9eHODCzwVwU8f5uPMl5eyjhRuLdf91LTAg/Ww3Y3XcrL9zOwHrLxKkr0B+py7tOSjCOD8tfnUbPrHbBevlGfFjsL25G7X6jImejIpsyptL1+es9V8fLZ/Q7goTrz2/TOLPTwup02s/EAf4eWYQF9CmQ8rnZZNBsGk0L85Cc2Irxq7HyQVPwLtayK/orIJ8PysOAtq7oh8FznalErI4Bqnlaju5YTGpg1zv6WQYZpMmHFlmMCBB/4cQqmEgFn+1MmbCgaWSoqxgw83usnPv2XB2fHYdZrxafCkwgC8/3nGS2zIdGHM9Jib1+PjOjfoGYgwo/QSXxV8jzcxP82O+0Tj6T6Z3yzDCkwzFhdGT9CAIdyLUMT93lozOoLk1bKhMBQQ1EjCTIUlg5OTOJIwOvjSv9HZAHiRh3F6Sie8FjhlZ/Iyb08So5/21NGAj8DxovfBBeA5oppU4ojgs/yM3897CiQeZPR2Kx/GTim6+M3+0hgVy9CI5viDobDW2fUzCmAv9i0cb9nGa61BcjPdZPgrVj87IY2gtpP/20LyZKAJZOb3o1jHUR7BU0/spCBd2KfxpRmIsR6PUv+rEwCalHN7PCD63Di3j3OODYyFLiGRFAqawAjXmELyiYDRbxOTWRlB1Lkmh3I3hRQ9fwnnT+SCDwTHPkrJWQgZGxRYH0Hvv2hOcHiQ4HrJiwhwjM1gCp5DSvE5iH3WIffIWlqLJN4LyXv514f1WvUmjYlQraXm+IF/nko8Cv8cfQ8NZZRdXK8MpMCmkphWlRQCysVD/db7+3P6Mjra1IytFjJzRTvSskloFX/vX3AJhEIJ4I2UwJJMHTDwFjuAi1WJvQGtYkvgdxjqePpp2uhdW3wo+NePkiT5Q/L9NFhuMfXcxhMl+DL661K/tU3yLPwwwENbSIov5uU+q+dDut1iBrD3V+CGAMOnUuZpaCVPNHw4e4C/PmOPVJ+yYh5/9HoCMhZhkNnxMZmrL3Rjon/Pf3peSg/S7SLNWXEIppjaNUTl6Eginkp82UJaH5J2rcaMguxOuEeV9VKkN+td6USknjgolsc2eayQH+KLhVw/5iEWRq5z9QHKtFT/fi0/KUJmCXXGM2IyCCuorosLHkW+N5K889dKUJ37WLNnGEvn5RD44NVfiKH0YfGRgWTkBBK13+PtQKdcavWpdnreY84jbDg0kzkLvYLMp4T4KSkh6ZiQR5yucD6qcgLD8EhhiyGh7NRP+czD98cPLg/5//rIVCOujMv/cu5NwnS6SHjW4fT0bu3rv5MUQQYfjJvLNSXidy8+3p4ivBgO6mmXiNThgaNJJvxe7wZ+vyLZK9OAerapjvN7j8JTkJ5P01Si9ERugH1xhkiqFWXS5yVDkHnmw+E28hPgabHFO8EZzESSPe3YMuZhucah4M/v01HubJuApgYHjBNTFV1MQ8tDZkfodWbg6T/QjUf58YC3Y9Y8x8pU5BwfaaPbagSrXkfuax6bAaSIl+0cd+QRe85WSmO3/AQLhZKKr+FQ2nNDwemm/Z4pMivWedSAZh2xvPI6k+D/+rcBn65DP0Ian7N+YAA56+83E7SzoFRFbfLHi5TEEA6KBi9kIe+JPbtsw5YgOniA8P7hepAM+24UinvDPTo34i4mFKF/E00I8OOEGH+nbe9zK8qaOHbesagOA06uo8zOU8h9Fz7zYF0DRLcrRzgx9O2g3PzakLA5Ax0VtUHGXQUIlvDmaSMc/MgdPyRIWdbK5htyaokas6AoFDLYXbpZOR2aPFj2dQe70zU2fF3/4O0u8sBeccJsNY8/kH0PUJxY/igDtMFSAf1P2rx/fCfu4xEw/tZSLGYZPK+8ws9j4jszeoiAZNmzlHpY2Mg8tvoodcCAfoil54yfkhBiXRuz5X38uEn1Unj7eZRaDLriL8ZS4Cnn+8zyB5MAjmFd11+lWQo1yrbd9B/BnqXTt1TaJgDn6+adZyLWcgl+cnT40JkMGKQ1Bi8PAP2aaFRdG/n4KUIncqDG5EwyFDIQawjgbIh7la+0ALE/LTh9no/Dz/19BtuXv8OOixL/WU/SLA7PPQ79tACaEkFuFjazUP4MfHmXsVKOLv0+m7IgT3+fnIjy71wCQRUFhtffCZBdNoI4lCOhJjVrKNmFDLIC/57YpezBCu0nm6PvUmwcXpYTGugAo6qLRCneEgQOanLFyW5BsJMWLN7Lwn0AgjOPPwF8MVRIytbigSFORkabLJrcK0rbIcyRIIb1fm/oi+1AKU2l7tzL/92JixwN77uwKYP/ZqlLQWEc9j2NeYXgOUae2/UXzLw5VSQyyJ2gE/30elhh72+ule/svqhBZLip98KHp+Hj0xnI8MUqTEurtPPhH9RIHAGFGMHi6DZKN664tA8OCfpplHvXd/SdPPcyKYAvaiuvAZDG5g4pVV/qt073/3QVP8MWkxM0dBC8MUSSIm85PLCFQH1fQalgT2/zFzGFaym02Icb/J8l82WwNz5CekqVRt855RUPFVAhKsfcVeI4fTYuzYCQfz3EqyZ1/xjZfgG/ipBeEl6Ijj4mTI1+dNjnT2yHqSoJXjjz0W8YFkNeg9jDv+qWoDVNsmjzklMWId9Qr/dpRXAmtR6k34GwY3A3cqyAwtwuqsbbxDBhJ1/t2Ate3IFevsSCdeNqiB47nFfSeAYRBBFTulhYUjRd3/sSaFJWLcfG5fidUcZTrcbmlh7IPahczb12G/E+O7Yyfmn4yAa7Zebl+WCNiabuctDxuBkQbqlHHxFyR4ug0Kik8A7msjjw5+PnF6cU20/3APY7UiaIsHfyNHO/wnJbBwOKtpetOr6g/h/nl6g/jEOy9dFejOpXdB0Rs6dbw6T0BV967CseyE6X/sicTKlD1h42sVfZWch5v43viEV4/D+lpd8tHUBYtF8ZllYNg6UbxwxN6xewT+1uaY7AZNwFrjkzu/UoEO7o991uvqA6ghh+D+aVLRpl01/s28cfMKz1CbtapD8yGJUaMUkJEZYndfbFwcNZRYXA0/hoaT5aFpaYTWacb/WJ9Oxxy11mfwSuCDUa6+ncSdgYu+7X9KdsalCJw9buxutTwKxQ4GT408WpK7iDxs8wIO1a+j5U0otKJeiENsAw8CoPaj0Xu09FP9sP3ekegI4zvwefLrShC7/jW26HzsNHx/4O77fVwI6E/fcTl+YguKF90YfyPVoVf32dK/QOMwZzGZ6seWAsjeNqk/XJESrbf2Jl6lFXCZPy3e5ZuCxxZNewRvVIO7Oa9v8YwoO8qKBBK421D7J0e8aMQ7S3fx4LKEcjgtUyYpr4OGA7wrbM6sWVHo4xyawgQAxv+4rv3vWAry3bqGF3Gl48+gZrXFCLZo/8TI3P3UKWoq5PyZdbQCjoMttThlToCjFGMt5qwIdE7Sg5v9JBF2udyLpzd1gr8uo9S58BrJb6r4LdzchzbOnr13zn4a58Afq5aWdUBq2asQQNA1vEyzlu9zrEO+wyrbf53kQ3ApnOe8zBIxO+0yLSmdBz/XD0/LTJYg1lEFlV5gIEXob4pa6g1ArnOuod2oWVgp8R3muxaNld+Zb5zn38oKJ1cMtchIGIzvovu7xQpHY8es5GTg0VtAz1lsyB/z5pf8dpZmEcHVvHqkiAkTlvz0qoZ2NcuLzz8/SksDhm8RSwxUCSNQcv6ZtPQfzc6lO7oauoB8U8dfgwQLIWDr7nztIAEL4i6Fc5Tlg8vqeWCGBIIWz/sWmOhnifR71p/2mwNHEq3l26wsQeQjZPqu4ikTyDaPLKCTYJNOk/Nvz5H57/1s9TQvAM1XmyKtTBqEFxGhy/gLE19w4Vft+BS7I9xsLO+z5CJvoj3NPy6Gw2U6Tde98SgmWyo2BK/CXe8NT1IMEW63kNwXv2mFQ+tXm2XgyEE8pdgd+34YKzntB+pcp8HLoi7rOGQQayWQHpb3886Z+uPz1xzYYztv9fHSdAvFb2RI9he0QfPP5FRWqeejKpez3EqDGNPfJ9XYmUIDvvuxTwp8qyDy0my9wZB70tD53Sp6gxtQVLUwlUyiQc/Vq5+W+bhA4VNjCe2jv/sG7VjYadFisbZlPQ8ES6NJ95704XAXn19/v/7jn6/vFv8kcu0GHJaWReURKlqAj3E7CeK4bNpSvvcsPI0LFytsV5d8MWM5RYvGIwDJQ7peO3R5KgwkZquJPEQTAJ+nL2yYwYIvOCcoK1HscHdxbKb7UBHIlQbe/KJBAXvQ+7+//WLCFi/03wjlWIYruuK76QiLovxgY2HBaAN3+Cw9HPFkw0ZDgTgppBWS2bASsHBvhdN6r8pK2JpAYO/tFKbwIvCNfx04Uj4NF601JZBWIlqeD4rIrUxFVl+uV7rlY8Bdb4SxyGAXapaMWxW5BSP3CUNMuagL//g/0+geK4LoL27O8/HGImJv9/ed4OYohjpkm0qeh4E9WGmxVMXBnf3CX3+tRCLD54TOnVY4y+Of0zTzbYLgjTAbPVwIH8l5uH2WcAMbDNIu7/1UgH3JaxXV5N3SfC1zOyCbCRLF18/m6UdjoDkj62VSBMqXLXvW+bINq6dT2qdEi4AQ9Zt2dcTiw9u7DFaZWVJZ/PkWA3RMxdj3NE6uOgzFV/X8vykaBWa/qcahwK0rmGR978rMb6K1UdOVdy2G07buQZvwEoPBCxT8CrSgvVE6gLCEX5peHloIX0iFWWmXjre0Y7JqIPVKQbEWnAkJPMCZ1A1uXy52s3jI47u9YfSx6Atxe15cJ/O5GmTb0xx845wJ/zU2CU2IaTM/zR9yxHAOEKQ4nVXSjsr8cJsb3hsDytwnPRGol9F08p68bPglaZuxGNjqdaDTpznwdTyMIL0woqTPlw7jIHWe6wHFgx8ucbGLtRIqNcRPO74cgqnyeJfZE9d5e2/GM/pwEhZDkjcc2/Wj6xyvCql0j2DIsn8ZtFEL8j/BLwcnjsHWgqaTkTD/ymubt9Fofh0SaRp5/gY2gUGdWoEk1Bb3X6ZxN/TpRz6UyJdEr/XBW9r9xy7xq0NY1EM1Wn4RPu14BIbod6Gr6vMObJxNgzvM17ZVbG1B9uvJQ0XQKfGMlBeWz+tCTcvOP+/f/A13jeQGHU41wlFeyJTZ7Eq7o/5Qxc+pFB9bX+zlZZ4DW3olXYrYHXvglcnVtTIOvF5Oq28kWREjmnNB8OgGkG3T8jV+7YMxuNvRk6xTM5lnLPIuvQ0yqZY9CT8xC1fzNsDOaI/C4xyzsPscsPN49f7STswN1LHaZtO71qU2uiPSehUFrRdbhH5PTICrVKOIf34Lsb9UfO8Q/B5LqpI3dzEkQIJDboksIICkQ+5CekIe2Dm5yqkoSILyoRLbx/CR4Pyxje4ER4H77p0sSkaEwJJ+7qmC+AAMbkYaRQ/PwuWcgrYpxHnJamL1e5xQjYyr8rOUeb8pbmkWaGs/DglrqVJD/HOx0FTHoxymh2a24+LCKeUj8GC/5PW4RkmTETc+GLIBO/OWh9RNF8GLaqHqGZgE432+8+ZG6CH6SQwtXkhb2+EPZxkmvHeQYrJMO3SfD7zQ+j2r3TQg9mcfwuIIMy8/eqZLGi2B9q/nPFScyiPx4Vd3iswkMgqw3zPfysN1fmzn/YzvkBmreK62Yg4Dv+6Pzo6gw6QvJG8tme/6rzP/8uehfIOSeWFAWnYdhjgh6SKDCenlxTfT2FLA49ji3enMA1qRei+Z/JEPdq5Rosxk67Ob3Redb7MugsPlYQ6LuL4RUDTlsFJPh6OQFBvICHbbmyXbr8dFluOdMlXJWYxAcH/2xl9QiwrGmmbO0x5mw8ADFO9rpy9ApliWS+ioX+m7rVTtwEEB2oCNmjZkJ68/gkFf02vPbZoM3dUudMFhodTW6kQQPxtkusZmyYcWHb+vp316DxX3BB92ys4FdumwGxEjgS1nLpNFmw+jkTmKYyBrgvbQXLtN2Qi2P5q8D4n9R+dJf2hxSK1zTe1QVtDIKbz6MHrNoDEdHbox2/bk6inSNr49InK2FdxYH3/gED+3BMeomjUYg5Z/RHj4Gf9HfaiGT6rA9P8rxufOaMArb621x+mKVaJOcp955cxSZ0W3H6zvWQOXxF59vugyB9GCTPpN1JRLNRjf9pKtRd9LV7MKKVqhlKGX9JTUGP/QEGO5616GO/1S/1cuNIPxElsHnbzVwaiAg3GZuCD6v/Tblu1GPbh85GVBUUI2Svm8a/rJpgS3LxO3nHGMwu0a6zv26E8Wee5x6yGAE7ZMTut/gXQWfkx859qYNgX69vONGdydqMvjymyo8D3EOyeUNCreCX9NLA/WUMWCi8dNZruhC3BVh2iGD/5CWKm8PibMapEckLTKzh4GYux+n86wb6flHuOmo5iMTPeP2g+S9/JiaG3Hdy8ebfKzKTRJDKCPgm+pZ9QGEG2VSUs/DQfpBCUfea8Nwrinwp1jbEDqsN1zWrvsDNMBgeLGjGbRy/a0cLcehhFRlrb8xgH7NVjJeru5AnrrMEmsWlRBZ6OTh9N8IFNZ9+tNdMoju9hRFfFBLBA0kU5xS8xeuW2qmJ4iOg6UNVcTZqjGU46zmj1ftRAfSGw7pl5ZBrK1seaLWCFgMGJeaC40jnNavBp+bzdAUPv/Ap64ZSFc2sam4CbjyfKWYX2gE8dBRP0rnKkb140alQe2Ve7yjb2A+MQqzHt5Ztc9G0HsD2YjKhCa4U0IT+lqwEQQ9opbtHCbg7BmLMANsAqkurpTLmJUgXQb7VRdRHOC111nXCkeh5dq6L63HBDLXcdzCOQ0B4dmpifVb7fDxgH3o8Bs8TKgIOubbDyKeY7y9ISZ1cCLlABQ4N0Cfr1kuh9gEPBzx7lCLHEDHrn4qZ9k/DD+P2JAEwjvByHfXgbYMD3YLp9j/Oz2GXNcvG575VA93mXXFvOhb4Q8VJUTGbgLOlXaX9BeNIm1a7su3+KbAqhQ8GXwHgfq6beOK8Ayo8dbL3HVqR1cUK7883PPup/fDMtnG+2Hj69GnGx1TEC7edEHMtAFleo+SPudMA8OTW0GugpOgW6voLlM2C6bitW+uv+pGfiUB1yOfjwNt1rqQZ/M43D40feiSxQw8z3x2/1NGG0qS/KQ2YE6EwKq1t/x9c3DlGR9uR34O3Lu2Q3f5fZGa4idrVjcC2NcW1Jh/nwMR035mTao52M1/7rpDrIE37Fez3JVIUHblJb6XexWUUn1nOfd8PfSx62pOUBjyPevtdf7rHr/CLRa39RXISTNnL/AjgXH9pFzd52ow5rx8jvrkHDhN6p53Vt4BWu5nD57jyDAhN2Fwf+cvDBTWvOnY4z9vvusuX5/uwBFN3US3ETIkULteZL40Cm+9ZUa12CmgM6uf9Zh/z085N5MuKi2Dc975mq+vG6FUf4O2+BMFBr3b2oli9NisKnH+juEyNMRqcd4PHYUvp17MLGcTINn+6ApvKjPm+U3iyYLcCtDpbEW6qRZD3rBi9ye2WbgdP6NDCWDGJkj1/PG0K+CT3LISIzsEvmczb7SWkeE/bfqOUXlOrCZHpEDl+AYovn/zFHv8B/h9uJUj50hgMWPp2XyOExNjqrBbnV2Hf7+szFq3B8Dz9yMpkSg8is2oVc4cHIQl+lvjC8wjQO0nzttEH4v27T/7++kBMrrvfOOM4eFeSPonkBGk1Q9yJ6bzUk/GoYHDpHy6H3jU53SBvdB1EJQwh8ITO8Nw5dK7kNhb1Uha6fWKFi8ZBV8vXDIv6oFltq3vHZf6QT+GUNITUo1uPd+/VDowidzeCgr8ejAINZwXYuROjUB8TsUN48xGZMCS88Vkg4RKEuw/pN3ugX8apYnmiv3QkkKHGwlqQroBPOd/0OCR4IU6iSdiA+DaplURtTUMI9Gj+0vNetBgzJ9fD1jJ6O0D/lB9gW7oXks+HULqgyXefbUu/T2I359OveLEBOI7MNLvR/kH1bxjse76e/lCKybJur8fsYoSr0mmklBypn1hsUEXHGwyEDh/uB9CDmukFA33o5IrRTZa5hOI6718NGdZH4iannMic45APqsQeXR1FPV51fQ5NJJQvECby1XhDugwJ7ce/NwHEry5GQVGY+hz3MHBswMjKE1pOe13YB+k7TrvnKgcgUmu9+sRV8fQF6GLPwr9F1DQtvE14sV2UCt9FuZ6rh+myzQC3s6OIQWzsBDuG6PoGnMPXpejG5bkVq/Jao/AM/pf7yWrpxAQC58kbS8gk6BPNPzWTbAg8Ug45WYfmGQ78B2wmkaCvOzWKgbdiF6w63C0cjf8bjrIWRI8CoF+W7CqiEe3dO6URVkQ0IrTaEa5WiMoyVYOydP+g53uEMuzQlMo/fSHncHAHvRraO3fRas2MLumr76wMgJpXR+ln+sQUfIAywdzeiI6tHxaajGyAhKFb9yOa+6DIycEH4crzqHAj1889+vlIMPfaSqvxtqB9JVq1oFxHHpD3qtupu3d33i+8+nuGFp7XahiTKoCX8nfUj+TB+GuS/Y12bBp1J/YdHr16h90VGxUkX2uAW5qXQrZeDEGnRyA0jfmkHZK3pmRqHGEXvmRjkj9AZnUUz65FgOgu/KifAo/j4KZqSWklDph9RCfSMBuOyh7tRRnuE8C245Hdty1CdSUNvhDxwiheYW3n8Vra0H5o5FmDmUU+HHJ3wqOT6AzOc43S207QTObKq6svgP87+1voHybBPY14b6IiBl0q7izx3GtHH21UXcPfFAP/gbfDVZZxuBYsWZFzpsZlF5anVPAg4eNlxtXuG1GQdtaWHLFZQZGnrwx5S7sQMOxgoI8J0cgpCU+79/kMBw3225o2pmCCvWer/2MVWg3uY6DrD0D2lz0xatP9rhT/0ygeAERHO0XvgRK9iIRv1Putx+Pw1HWwXst40Sw06ISpVcgwOKbprnG1UY0jrGUCqoTgLj24tvL4VU48z40p1GDBK89LggcXysFAdr8u9ZfCCBqK3CjYHoV7Lc1n3HrkKDWduvP3Xuj8BrzbNEVo8C70ixxbJcW+yn0JT64fQke1MmOMvSUQdAJ/Yi3WhRIcGJixO+jwxaj1XT//VuClP6jLRKvRiF7AJdmazwLCSkRRmK9LNhcUr5Wa9AKDLNaFP41KYPFQnDvvjwDNiGUrPZqFuw/D1PiUcsVmPo4S3AfwIPVnWV61c+LMJxn9DRBlQvbZrjh9YiwBUVJU5fWl4uAvjzX1nGdAnUZrL72l7mwhPFN/rSaLdji2yg2eYmH0M8/HBOWF9Fnp5S0uxPj4C9cMi4r9A/OCEcZF4TGouGaLKFN+3X0+OGpzuSTo3CNmHdxJKEL9Nld8M+OxqE3UqwmlmuLKOOupxLLXr8JfTkjzsX3DywL1o/npVahAouDB6uc1tF7mV2zx6x7va9/0qMkvAvSX+WAQEMVsuixZtngXULL6KGsdOQ4jMU29P0i9EO+xFeREyGNyLNwo+8L0wYavM1zBx8/AgVlwHJ4sxNsDz42a2NuQg9eiCbXnVhCR864G5XdGAeSzuBLx6p+4LSIqHeQ7kHON/68eXpwAx0qkHe21RmBrld3Y4c6OqFvYNf89sseFKi2MnNCaQmxf/CwtpwegxUjRpbU9/1wy1yj4fjnfjQ8dqaQfHgTldm2sDOvDEFsbadCf1oHnFvhzglk/Yd+MSsH5eksoYk3Ry73KIyB+f0uW0OJfrCaZqEWfTGG9ifZP/aW2ETPbu9LH44aBPbyuPhAnQ5oF6csjqWNIWsusepM7iU0ryX9cC5tFOw4ygQYRPrhtFIQOdJxHK1/6vEmWG4hNbHitajdfhgPP2BU39oG3At9ksJr46ho/ZuEFLaEbEWqGNvvjYCYC73D+ts+aOu9g2kU7u2f7bWFl2Fb6E7PgJaJXi982/cgv1i4DSp8Itw75WbRd0v7PBG6RcQZ0tmVqzUMeV/Cv8le6AcftR6V35EzKO9fS7a8+zZaEXLpj+vuhAvqrorqr1rA226XbuXDLPrmIq75RXsRcSdpO2++6IffegVXfTd6gXguE1GVkFDm7EfV5OZtdMByabt1uAU020oDiDuN8FwFE4yXIqOTO2sV6lQkNGQ9n/vpYh+45kTOjzz/B1K3xZ/LMiyg68t+bFZy2+gluaC9dasW4t8cVHV50AhNed5bbRokhP0ifud9T0JN534vR8+0wuJIo2vS3T64NjE3/8NxCZmkus4qlG4jzjwmra5PmfC5w86EVqYO7F/9kxtWWkbmOS7vVbnHkc2+2w+pzrXBhw+cg+NLQ5DFKtbh10FCxNr7JMLldTR0VYrgnBAGoeIEw4vezfAp0dChf5SMFIXK87JdJxD7lyaz4uR8GP7u95b91AAYfFTlCv2zgto9XBgFKeuIwtWWLP1fJVJ9PBjtP1YHssecCiarVlFc8qS+YXIW0PXxi3/6VwfEh7Sl2IVx+MLyVP8uNxFxO4n6srvMou2OYdq7t6MQX2t6RZ1ML4ifmV1K8CWi5UOBp2/2psLj67XbTqxV0Le4k/pkagwsBhclJQwX0bExyShS7SwC3snRlZ/ZaHE7Noo+qgeAKLvbE7aIgiI446U8x4Ev8koHrxkeVi4rT7CtzEARzlwpL6odKZln62faDkAY1nqo4tAkWE90ChckTEO786WHgmzVEGR9hVwnNwdBq2sMCnE74MhUcFi7mwwnmnMdCr90oyym95tWC1PQ9RdLZV/bhuIBqmKRc2Qor1TtkYIi2H2d2fX8+iQMZ7T8ChdkxgKieTi+7vHhfXnee/lOOSDMNX8t7+4wKKsm7ubXMmE3W1Fqe9oSJBhQnKx8KEC9NDp3RWUFLDleP9TP4cXqLYKZgtyoMCePmLJ8ijFQlX/QuWS3CMceDdKYefNiwnQm934KUWH1wjZPGpzJkF5+6vtV5U0kH3rO59r4HBC7lvIP7/HBpIj92ohWONoxMgo8kriLOK4Fsu8FE4RKF9QAsRM+aEeemVEJQ25NKYZ2sImGRA55/1yfg+rv03m39PugOb2KUiOGUJX1xO1bcbuopNueRbmeAO+20qvsVjtBRWtmTYQFIfk4X2rWY1tIx6F0uDxlDiQOqehf/dAL30f7x/2Ya5Bv3iWbmHdUuGf/qZGELxFAQ9PAiSO1A55kDXHSZFWj2xQm0j3uLVQ9X2RhMzkHI61Xv/Ml9ULw8RvAodWO2IecTKucqHB4JtW3PfYEYGG4Xz5d2wFkuls9DSfakWUXvn6nchtZsTc4/lKaA5MHz08fYumBsct5lL7ZTjT+pZrLqJcaJ49fq7ujPgs8TLg6rWNtsFwpltyV2YmsuVtNOwq30R0GD1/W4Dl4ooeyK6R7wKJQlGa3aRA9v1BkrNlBjRMYyupLj5gFWrqjWruqbeChlJC3ETSI/ETrXzYzUuEYWHyiLL4S4bhQABqZ7wSrxSqrTw3D6KeifeEgYR+ue71f6+GeZyXTmd3z1voLdB293Cpxw6jr9MhbNToqnNpF3uK/jUSok+++zcHSBfYH8ckPiybRxiX/Wr3pfThRIQub4plp2JRcezPu+xcu77PZlEuaRCbHp0jOetS4Z+70lf4OBDhOXbX7+nk7lP6be1guhUcnAvxLqCrocfmcT1YZWPFQFzAQF4eVQXXThxYZDTwqvZ6eFfCAGsewWYnXukiAl2XxnN0q7fDPw5TNR2seOf/Rcuaqocepf+Y/0tgwCUNeejNnykuh+zWVx475PNo9kf42wogGZyL65e/Z4BnA/SIMS1NaYDL8nmoqbg7Rdqx+fajNjDN1Uf1lFjMKERpOD8tDdIGkdbfjgN486sW5mXs40+CIl9W3i2mmAauOO1Bt3AxvWp/JCHfv9ZJto4eyJTNu2H9rYp1jBAx+ss9cuPAB7WSMbfYLLKOlp+53TwnQ4E4wavhXq+BBU9Kq5YxAM5ylyWORv7OIlM6POV65zIbLsG1tune7Ezb38/29olOBRBe+Cnw5u4TUGRqyiGY0uMqKmDqlglEYm61gTvxSD/GPXH+wmmyhwG6xLvoPbLi+plWfUMsaULpbFVA1UoMyNAxLTWAb1f+5ECjouYUqzz0fjx8bAS53qbzPfB0wKMpM+Kq4ikLn+dqLtDhwgfD8y/GtFBToRUd7Oa0Nefu5jmJH19ElTU/pWdw26j49ts8huAEiHq5c77zYCDEmSmqSXjS4Qm3xzYw4DpzMwjVZtq1udL9LIeRxajdaCnGqpH+9D9e/Mm3H7zGGTn0EoiGlD6rsbE1aHUfAMC2vMoh+CRHuCqS+TmfCqSawpK+fbEV979q/WqtXIIPzSmxGL5eQeMaylw/LOCoc6Hehj+mCf+712X8HhkGQ/9KO4xQ1DnNPsGRrZsJ13LQ9ctehE53Qpms68roKCYy+O2l0hAYn69epIqNaDk53UsocbtNgc0Z3gzg8SDDhJSSqKjCGcu9TZ6fG5qPcxFKqtFFqLJdr5/SsxgLE0zq9G9VaAd6m3ScmIyuQJEZPLDt4DBN/7dns+4cGi/OL+c77ewI1vPxlu2a7CEX3OFl7B/gxo9pwjhI1GkyLukTZkXEZBG7xhZTv48ZJCCbwed4QxwXKVT9jyGDEzVzg0k5zf4kK7b3RvTg57G6Hp8RBSXFMUtu5oP60AtbFurWaLqmGnjxyPz1BzY07+8Gi872aOI5HL/jTnR+MuNKrgnNMxEzUZrgV27Q3f1b1kTv7BXHsugIlHM4oYN8XWlZxzzLQEd0D6dsvuHF8i+Tgw3fEcVeuyp4p7WXEdVMVyrhqZiMJbSPdRx5yWJW0Ya/JGXFMRJQ66IegAsZrct3HeT4dfXwe8kr3OTeOX3jOdklZHHfS+HKBZRMj7qqS6YOoWwhtfHWwqfWUw8L3ax34LCOOrVjypB84qYBlSV6qXlUrQ8v7aOuuXubBXXslu+KvLY6zr1ZUIEsy4QarXhzN4kXoNfuxszeU5LBH0pmJ54+LY8eKmIWvHlTAdINvf2WWKEFvkdaAjzQPLkmusTDlijjO/Uqv8Tt+JlzrIwVbv/q/KJgc87MIk8Nc2ZVXePfeXyXqc3r2IQUs0Wjtu1FdHXLRObRV84EXR+/rl3JVTxynHOJybr6QCfeaFPLkGnM9skpSWD/aJYvxpCsshbKLY2Yp0owSW/KYyJyxiTZPDRpVLdxxdeTF8VOYD3+UE8dxOleeN4xmwjFNBzyb5O1EvefrCVm9shjDvdPmd8XFsaYLuA20K4/Z4+1MLWPakb/vjsuRh3y4A+WN1n0PxHGRf0ZzI98y4wq7l23vsLSjB8M139hlZbFQY96WhJVzmLdB9+n0PnlsKzyPXZyuFeX+eVv7nxofrqXNdOGXlDhummNI00+XGbdH39d1bQaRkLOBE1lBFqOKNs6tFxDHNJbNGf2H5LHFT7KT51/8Q0SXDyGN/Udx/1Rb5+89Fcc1pnOGTbxnwQ10T0Vbh/WhpjYrL71bFzH9pvGHMQ3nsO+dq/9dSZbHfjBtRVbMdaN8J8sVBdxRHMXnVMviWXHcg5RB/cq7LLgC9+iY8tlJZHMvv7FI5yLm9iWknGqfOKZ+HxuIy5DHTkSkHJsJmUBV5UlIhE0A17eqbi1oKY7bmiiIdh7dj7NYDy3fcRhDl7Lms/YRL2AXqJK9eh3PYSbDKOnmPXks6RHlenX/CHo/8G+2ePs4buI/fjvJM+I4mpg+G+3E/ThOomvOWVkycuh74p+8eAE7NutqXV18DothlvYmPZLHpL9nLPubkVAR+3ExN7Ig7q8HU1yknThuPOhUd/drNpwVbarKxTgCMn37zyQz6Tz2vdpHeF+1GBYWTOvb2XwJGzAMMdwenkFvZnWpmkcEcc1T7/QrxcRxOZu7wgek2HAf3l27n1W7jX55MjTSZJ3HBlUTWLtYz2EjYZLzZ3ouYTVpCnjOqS1Ur2LL9bTnBK4i+yJ9/l1xHN4sX/L2IXaclXS1APWxJRTGwOG3sCWGMYkZySBWUUyTOi8/uEkOw18QMW46t4TeuCkwP9mbb7H4tv/HPXHcf9ojDNf35t8UBf7VFGHFuc/m7C7vzQcHvIjoYBLFyinvKV/35uWLEUFKghXH1fNz5EKnAE7W59rfzwqiOF0azxyMxIyzTW/kjBinIHUIadowPIb5tXFJtUiexcKIb2uF9GWx6ksMWUI6zcApH7S5WM2P8zJ3lvn7/SROgW9c6J7oPpwFq7ZckODef130tztHQBA7cPptajVeEvu8/na3/I4cVvbD+gOjPRfuf/ie8Yc=AQAAAAAAAAAAgAAAAAAAAAAyAAAAAAAA7AEAAAAAAAA=eF7tkU1LlGEYhQdqoSZIkJoKjZhRNCF9WDQ28N4vZVO4qUkqAnFXkFKIbYKCMCeIvkZaqMNQ5KYoWkS0sEVCEy0UJIkhCdqUGPM4hVm0iAZ6Nmdz/kFwrs21uM7m5o5EhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ4v+gq6J9bj7tjI0+7Crr3jUFIRv9QmH6xulhZ2z0QvX262/8no2eXpieCoacsdHvbtx86rnfs9GHspnzc5edsdG3nsj9uuP3bPTvuZVI70VnbPQdx6yv3+/Z6NGF2czDAWds9CfXul+2+T0bPdEWHx8964yN/nTsVuJ3YxCy0bd1rk2v7nXGRj/zpWV03O/Z6EvlyuLrbmds9E0jh88l/Z6NHr1ysj91wN9NRj8Y+5DLNwQhG926VvaXdztjoy+2lm8f8Xs2+r784MihqDM2er69VJVdH4Rs9PqdV+OP1zhjo3d0HG/4Wx+EbPT2z1+TM6WisdH3TNxvXOX3bPTab/GeB4WisdGXUqnFZF0QstHfb5kq7H1RNDZ633LPQFgbhGz0n9WT95qfFY2Nvqt1OdHs92z0qpqx7NG3RWOj18TSf2b8no2eKU12PmpyxkavmCh8uuT/xUZ/tWF23fwPZ2z0m4MfW2LRIGSj/wMwDqfiAQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAQAkAAAAAAAA=eF4dlnk8FfsfhwuRLUsIUajIEhFHWTpZW5yuQotKHZK1tBAhSUK/KJWIsh831xIVIckWl24vylK9bJEkSskWKvp93v56Xs/Md46ZZz4zo0uponn5uhZmJt8RKdBSeUZNgWgvyfGCB/v9aoObfDZVBXPz7cYUiWKbEk3BGx9/MVZg/bOCJCWiWemxTauIy2tWZa4kOm6+2a9MzGkqOw7ysWNXqBHdZctzVYnSxlaD6sRDD00TwfGEoaS1xAc6fTtABd5qYx1iBpshC3be541eT9wrHOgJdt8QebuBaF7J3wz2BWzlmBAVg82SwYiEySum2J5/NgaUf/fXNitiXWyLNRhsoyrCIoYacQmAyk2R5XbEJGHnx+AeLovGXcSXXrIF4GWdbEUHompvEC+4e9ljTXR66pY6Ikc8rVfhDw+JuWskTwzax9JGt3eO1ySWEYf9AlagW1BROS/WCc5nBaCbY/BEylxflqsFuoUtEfPE9nIGSwjdOg1V47C9sPXg79VEJTmjcBViApM5ip5ysV3T6FlsluKgRdwab3xEkyitGm+oTVR5WF2DnsUSIYf1iXyiOUMMYn2Y+ig6nomW6AarR0RaNhFXpExWgNeuui1AtxIvJ2mQZ5XPCnSzn/ZkgGenO9XRzTQidfkc3yj4o1Pks96j4P3fd+t3E6ds7X3B53ezag4S/T8dOAWabuFdj07pO/TdZYhdK1084Eaut+7ARUv2G6Cbjb12vCyxc9KnF95ubrVpKbH20p7j6OYVf1MDx1VeWFSFvnJ3WeewTpfN8wHz+dXdbAO2FwzYMdBTbUdsFLbrhuTko6fGSGArtpfOSAZqECPefkpB19+5nBl01PMJ5AdHVDPLdImrJ4Lr1xHfxqX+RsfpgpwXYKT5obGNRMMsj2ow1rD9OTrKG4WOgnf4qrK3ETnv3VpAhv64AboJFAfpgi3LPnagU5S6x2vwLdetlL1ER9NqKTCvSUrYCdcRoHPRkVhfZDKLTreKt0dKENOXvBZFp57575Pgvr0bZ+C60dIFksQZvQAzdCuPt52Gvx+XkEC3tkeSqtLEwR9BT+GhSuea4WufDO1H3491X+Uw382Wt2vQMcbgdhjW3fryZD6e93ne2g3YPlqyrwpzyZFvjMK8HuKSY+G5LnMTOI75fPhYdB3mkFfo1y70rBY7mYqOw6X1UuCuptoAQ+LRNskRA2LD0sbj6Ni1czQb9FV64LaVGCz8ggPOO+reizlULdw2Dsb/x65Gp8wxZisY3z9msZ94l8s5eB/xdMJZpivRUk3U34Wo3LguDR0Cxm2yFhFHnprchJ9Ud0qEO7L7o6SIMrJa6SLEF8PpXvCN0cOh8JviOe7opJtUdE+MKKGZYT/XzbsoCX5R4awTeu/RLlHA795bb5IDj9OPcIc3XLz+BO8Bk54Mf9ynk3feTKN3f/FkMdY92dLThr6vPj/ZgveBrcevdej4tX8gfa77Bws2OoYHjX3F3BokfQvQw+/GPlyIOU1pTjGf61i5OgQ00dM7YUls3/gqF7wSfsAXc7i3TKAZvLbbpQ2d6n1ndNFtMZdiMp7TkeyC+3jfJUelj3oRDyhe5gG/arFVRHFdmQdL+Ij/NvzhgXtxfsbCWa4G7+CCT09YLiSaSjD94PwmHt3Yf7WkY6s4kffoBh9+osbRIA66ccfUNWB9jnpiDuZ4sUdugSDRe1byw2JiQMHCLwLELa9Ou6G3BPeZetwPlRTlj0uIDzxnzeF7ak4I4T3QEf2nFfdN92jkN/h/Kt1FWHd53M4Jz/2wTZYS+jo9ubYd8xoXeV0Yc3y1K20W3x3baysUQWtZp2QmcVnUpUrMo72KnAc6ak+KcW0mHm7Km3+A6PvrRQJYGPqWH8/rdCt3Cpsobh6oEkCMbOkuP0NsPa6pj+twGbDsmE9UTPQXhx9SSCuCW9sdCoM/X1lcCreZlReFG/ZyLODL7wmpoEvqqeSL8A+Wb1jYz2CWZM8jqhg0nhAi9kknZGC/KW+uFNaHcQ1vw/4e67xhzPl+yfMjXLj+/CFRYaLUhNtirNd67e+L3q1pNxfgfqkEHozG/ZlmOy9fQHRo9ZTBnGblr8nHfVWrOOUKj8n2m4UP5DHd0bFt7W1nvG/1JRge+B69Eut0WUMstEp3MCb+uHtDEz1zEscc7YnvBAV1MIeevx1VnYlyGyPaDhPTTOu8I7Fu9bKl4JTitRict+rLmp+TOi1MH6c9F+ClPbsG4Ut/phrAa3PMJ36QN7z8OYPrCvGeKoZvC+tKhLexhYbGybtdTi2BG9QFH4GzBq4KwO9XtwuNktv4JXOjW9lufZ4R8mmnqWXY33TMpeEbuUL2tw1/iJoF3z8OEXsSbk/i71/POn0EPiiyshr7Za6kawwStc8wzmDOvQwuCOD4aXaEPA+5azwjB/sz7z2YQf+rl7+3/SIPaigUgWucVvz0k9zv/vVefL9UMx1vYX47WGlfMI83OuI4+N6khpx7hjkUVy6zxPdE0LYvK4N4zH+AlYwuG8+X4nzeH1hTgeuKOP3mBTySs6MJXpMmHDGL61l0qgG0s68tAs23J/8BO/6uM/pNLHyj1ofzqckuDoTf/MdJBedrY3NpeopotEGtAT1FeNRXTaOTj+Ef+OMKD+EJ4o3scB30cVUU7MB20WxrfniThflf6Fwa0PqwB/0qLGW/E8POX4rsnjtP/v5hYugiq6BmoiJvgSOOEzHYJvCSaKKTuQr3+enZNN9aou6tFE90ljV+1/iUGNI+G4nngccovwTHC4aEdOM9tCg/cF4T+f+CGHmYy4U7q47g/0mpdB+RSqLmT4cd1UQxXT9xtnYL000kR05fv4U5VJtrCpdpfcOCh//7zzcH8nyJ92xd8nTjKyEHyXcszhyDV60uLLEn//RhpEuTvLbM7dE+cr3O4+1a5DGhImttybvUPvMrk7evPMexI+/cxB2kQn4j2HJgK7mZzHCrNPkVa4uPVuTO1481yZLHDTiYG5N/d+pduYB81/sDPUzyvBKlSj7yprDYYg3ynbe3h/QzWpiT6606tcj7xL9nDJJPHHwbJ0P+UsjI/yG5uo8Ptzx5m3dY3yMGziNjnjjW7zlsYk0eXmPUI0a++PYZRfjfSgZZ5uRSm6eMy/VamFzWX8I45FWpsqLytP//zY+MsQ==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAADQIAAAAAAAA=eF5d0V9IU3EUB/CfMMsXaVHQQMO7lhlthdrNUqde12yLdG7DbvNfzWU1i8mlQA0KLlFBEL7mS3B9KAyshm8a/ByDoIQYLCIDH8KgP08OQRAyyJ3v6aX78uGc87vnnt+5Qmw/aktzEfHk3BsyVEdqT3soX3BHya873ZSvPXiG4vBz5M1UB94Tf5qIQC3ibBvqHT6KM2on8tMuuKOBDGej5FQ+QBZCfZjnYw3meKYjHuG+aeTFWy/M/KDvmvZGxI8r8L2f7eifD5P2l+ir3WnAXLaz6DvHrobw3niU73MS9/5yGfV+vq96murmQ5i50U8qc3HSKhnl+SJwswUmhqCnFa6ch8Fu9D/VCLV6uDeIeiXmEBt9iF0XeL5l7DvN+7INwhifi+E/CasdLvdCQ4W+IegZgCLEfXnfmwZ0DENT4b7D0DzA50d57uOI7Tp03EI+Huf+1dyH9yncbAznC7wfLcV9D/2bi/tfRN66jjid5HrTf/P7+HyK8xE2zvUejhMsz2vyPsyRosaRm/Peba1XY++Lziw8IP2lFhn+tUTeX7QtFTVvd5Fb65PkzKUp0kgEyXTzxry39HDkkzO3S54oueaxf66S74zAi/G1Kpndc9d3rFyR+1onk6tHFZl7VD17dVCR3/xjr/dPK9KR/z5QtqXIe78rJgK6U16pceW0pFOq+odZv75b/gXJksFkAQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAwAIAAAAAAAA=eF5lk29IE3EYx6/AIlDsZUiWGZaYLZkSgp2dvbBskb6IViApvWkixV6ETQI5ponCXgwxO8TitIkrbMyQ1cqtRZSRE3oVBkWrCBZUWOiLIDLu93u+F3u8N18+z//nubuHbQGl8F53ynX/7Lu/49OaIp52tbTxqKds9bHNY9mmH61LcWJvQvcXlK0WxIgVfUcoXnGgIUqsqxsnf7o6mkw7/9j5FXc4rzcFfhFLj93YELE55l74MP9+LoV6ftdsaO7Ic2JvYrjiywNjMZ4K5Dcf3r1Xh13N1fYE6qGOlD5iH4vzM/tlsvtIkQ/W1VwNsjh7Drt/7be3PT3HuzWys/kG2Dw+5u8Ds/7we9b1y433Mfsw6+dl9RX9orLt9m/jliYR8/G7ID5Afi/z4w466+Nhcfbd2N7cjj4h9LPr5y/nDZ2rwneH/PV7ScE9kY/9dMbYt4/ns/r8u8L3MEJq103A31H9tfLXJvxXqIs7GYhjddHvfx2FEimO7esHUz7mHGJ74Q5jpCFW11Rb3E+nPi880yTj/WGeO+x+6Id9sAfqB5nfUHMVfUeJh9m8qD/F5oQGE63J+M1dva80ybgXVGd52Bd3x/0wzwTzQ03UQxzbD/WvE49jT8obteMC2f2lDc2vNYlDZMdcYMyN94j3j/8C8+L/DpPi7iarg/kxb4w4KlWPkP2uVC2KPPVNpiY8USe+X+2qx6yXaVss1TKdUckjRZaaF7okFw6UWZopGiT/okPEOyeJV2uERtLE/lpL9YNrxMv7hJ50zEheqkpacshJvL1OcP+KiM886TcFt8yb9ZtPeC/tUb+nPrXNhv0eaVe0Aisu+7EzKrlkp8UlV7qIU+VivuJBYsUp6jomiQ0xnzKdJtZUzCu5vFr4zzhmJL+U86pO4tONQo2VaNJzbe3U1uLx5J/BzkeV82byH4ZLUZ4=AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAAgcAAAAAAAA=eF5V0Hs81Pkex3ETcklmkFvrHrJ2XdqI0HeG3DZlkJpWwjYtUUTlluvZLZs9wuKUGjKRsi6tJJdan5/csi7jfr+NYdzGZQa5Vez5pzmP8/7v+cfn8Xg9PgIC/z85w0LXczpl6IsDj+4RbHVo4Jt+5kOYa0s73yYP8hUv2vfyTcKzZ4K/GeLbd/sU8UrnKN/4qNP3kCWTb6SUV0DJGuPb8X79pwvc/90/rEqPUBvr4fvL/rSfDrR1YsBFhe6IbNor1JG2JOFf3goeSfrqFl21qMi8JEWuvRmoq/M/35JjoL5E3KdR+0bg9sYZkNW6kfUoIYhTWANkntMHWnU/4r2J9/lD4jW4WoJUhf0wIjUd0Fuv9kMvhgmNnqsjiOVf7fRg4C3KaKlj8mRHUEQAjn5XshX5lFp9e/3iAKpQG89dkuhFsHjkTNbRLhQvm+VD+mmY3+0ZJH+SUjYCOLuGKpmy58jcLyaIqzMCNSvJdK//VKD58RT6HeoQBHJNNF+cq0XM9Ju3Tkj3QwQ556ryxyYUbftufK2iEyTXEhkzth3IONH9fHZOPYRlt145frkb5UfSpb7TOQSOkX2BCYK9iBlr5v1epRk1Nqj+Wmncg373mz6DCY8gqlj+67bQDnTTVf/l7Mkp1Le2m9qMb0DhHgJM4uI8v5eZJeTyPpYNtNG88y13gsGA5Wt8XJMNz5WiX+ZdvQEy7s0CNRsT8NsxUYpaQDiywFt/za4ah+BfyPVVUY9RKj31yajKMIyKbtzZ61qMHP5U/857sR3ytqUbl+9WoiB35311/ikw7SO/H/seQ49+IL6669KFynUOf5WY8ReajSJ7phSwkVYSeYsmX4CWYrTaV0V4SK2pN6ZHrRAWDTpCTalr/N6BDLjlpcUBRrrGtQMGpVDmIUhrr56D1AZVn9hvasEys9piMmQWJiu2bdKsm2A5uX4wb3kKis+QpMj3GRAQwq4QyGPBQ7l3K1F1beCVYBGrDn3g3EITonkyYHHPE9PEqiLI19vd3nO5BSql4s+1JfahjFZrnrxrK5xwZPTs+20euRvnSpHcO8H7gkvhKGkdHeuNWGfMD4Dx00o85/AOv/fRgJg25rEEVrqqtiLmDcB6efbV3zuLcGqBINhV1AMMozCTtZoFuOauoYkUxiA2zuxong0HCA8y7DPcJuDXSx9Lw4amQDrsylYojw2XpvRlqVJjYGjOCzHWmYYC/QeB4XbVUE8aVIoiT0Nc6eby+PcDKHxi4Hr9zWkI1DeieZ/loXFjQuu47iy0m+UmJ41+RsYpM2lxHgsQyCrL9S0SIn7pVYrZoS9OcUHMRYGjcaIT6k//+HkSuEBMGn+mJ8uCvX7eNg1HuLDPWlVG7t4c2PVPVNmYLsLcuY68u3I8oBOLOGzNOQgk3xOhm6yC4UdDxor4BFzpUpCJd1uDHoEY3arGFjDSIkpoOK9DUIr91yyHPtRHjUyU+fc6hEumo9yUFaRBeLEQYbEBF3+OyOum7iKWFJVKUDK2ID2qpu4CiPN7pyx124fEeDCUmRC1sWsQ9r/1j6ub5ULBcOqCyPYsmBJPuYhGcGEF96Zl69oKaKTZKdqoLkFo2F6rtNebMKjtLFL7hAPi18eOlCfuAG4V56FIYcO7XIbeJctdmGe/OS0guxuqmaFvnBYEMXcS68a/nDuQiYOcMiteCCs8bhGUhFZRu9+jix7DQlhZSM9j2xphIs64izKquRuLrChum9GX4vcOPOg1fWLKhSRSnp7USyZ0/q6bYq3EhZ4dreS+Li7Ez1BOuwYvwUnC4TKUvAnvS5SHHfsXYJdZSb62Ew5TjBX3fd4yBzdZO01tn4Wx23PvX+Fc2UCpbpOwfyGOhZr95Hmf2gfFOGmv0S1JTIyExR+/X49uPPVJmPlIwE7Q3PKjfZdRrPWzY40XpDCGymHzgwqixB6y4icjJI1N/qCQaovk+L3RgpuSJbh5KD6guRqdNQE5n0/Mhr7jQOq4VTmbswI+erepGbNzQLU0U9n7dBskV6VH3A7NQtqY97LOQWEsWv5acLf0FNg92ju38XQP5pR52lC4mAmEYxYJ6jFS2GWfhc9wkgGinPd3IwtlsY6CPgO3zTa0o4YzL0f7MWWHq7QisWXkmtOo5KCtgllRb9yaqRQh0q0HR8ydVLH13foq6gRlfu+iWM6mwzges7MsUMs1YIMj5+HxxmY8lunLzsBnfoBnneomBnfw2FU44uBYK4CpRTedjfrvn5i9Nt9OBopgQb/4t/wlKolN3ys+YGSEx+THZpkmIRKY1Xnt7VMO+7C/u4zzeSwxzKv38VIOaT8m/NaeTskWxpzVMaeYQ+oY+bZveX7QJ7iZT3ljevkgdvAPPKXZoQgtkmQD3tYbYpLut8Pio+SI/wByQpd6AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAABwMAAAAAAAA=eF4d0n0w03EcwHGSZ7N5GsrsNroe3KnUPKdVh+tGacadlcljSqQHjYvIqemQNsIWrnacqC7tpDkUtbgu3c7DKZQiyUN5OtnMU59Pf71u+32/7+/D71fL2R9j2CZixrOmSWh2Md3KAGQ/q0rQA6/4ThM2gyqGs1oL7H4XtGfttYjptZKmVINMx1zjRfBNn9RzFhzyFrhMgfTUEDn2KCx5LBrFepyA3ch9JAV2SaMP4rArUFcFaIO80G4+dinN31axS3tRR8RunEmfIXaXw5rfToLqeocGIxjPlQxGo0LpzAXse1eJlPrgc+2zKbpg+ykyexNIb9nGXYd5E8kLomUwNYu6HbstwQ1pMyCR/iRxAuwfGAw2gfG+A4UGKLmLRjcGS5ReRdg3rxD4Yb/Yy4SK+24+UKrZgHmT1+StGvDzTiofu0X6C8I/2BNTCeOg9NOI0BTGJ720C0Ldoy1yCHjfiV22uM665tEc9u1WU4bwXjrGzolx353pw/2rMF9OOhP6FywI70v6DZLlW7ijoIwTwDGDcVUZXAfUMt5DQALtjTKjieDxnm4BrrO4klGP91TmqcrBfpTEPwbfY/bH0kQVdHLHAznT4B3N3tovoGIpXGKJ57ZuykGrJR/c/9vrU2QBnq4gsM1x/mVHU1zPoKbtEJ6jlF15AvvOk6EeuG9Ce0cydhtbBsd78Rw1czJreL4QN6hAZ36YzqMqmoxsA16K3TGLvwsL6hbIYGBXhCuu++ooRYr31nP4Zw6+1xvWhmL8HvJTGREK3LdyimgH/w+TjTjorvMhFAp4snWDZw9uNaMuUvHcrsF8GjjhL/6KfvcrF+Lz9/ybF3EdLktSrgPaNrq5yfD7tuOuCbDbn5mSizqpxm6DzJaeyHzwujnD4i54dU7X+R74q96l8z5oGdnUKwWfqm1iUH7mUhnOr1/0dbICxdwwoQZ8uPuW9wrI4+UdWwOPVLM3tNpFzHQd/Q49UJXtWkIERwZ8siigpzK1jAHGzw9RYsGxgzN+CjCwMo8vA/8BROPcWw==AQAAAAAAAAAAgAAAAAAAACAPAAAAAAAAhgsAAAAAAAA=eF5N1nk8lFsDwHGGEJGdbEXZyZq9QylU2smaV2VpcSWlcLXY7rVESMyVJCbi2peSdA6vJWOsQ6OyZNCMPdnGEt77x9vz3Pn3+5lznvM75/M8R86s94pv2SS4HpfApTFHQGz///HGWt3TT3J918bdblk7OAk434upkJL+5dN+gVL38yBnVdDKU8UpYOtZLC1wkR3zHFIG9VVlFbTwd/2pT5sE8XPs78RdNuAvP5O0oDYWUweFT/Wmdk+PA5qY/XElRxbmVWGeiu8TGiFbmOSguNM3UKzqU9d9cgLzy+rk8HCNZuicQl7eXf4F+LkZhKRVZYJf3nbx2YdNdzIssOO9E0goASWHApM2vH9g7qo0YKwYR4bb572ePP1Cg/zf2DzEVAnmv9xGhj61cp4MM32UlqPdxyDzstMj9QQ+zFlUGUWDWDJ8aDoUqXduBt7+rd7CBglhHitKvc93pwWGyJGlYsPGwEBO/KOlRLzfa6mKDBY9FRjoBavyNY8Bj6zvVinGuLfXfMnIe5APQZZlSrfzONBrc4nQk8P7Dj5XViX3v4YKjHNt1VHjQBIJ7RgQx/v+pJ5zFUh4C5tVs+p8Do8BOaJOmr433ndi5Ehg/M5yuBYds4/LcxTUlerNxWybxNyiSUC0oigWDhCRbDfhC1gm8qQAf3vM37RXRotIlYE8ephGBE8JiEkYfW42P4v1NX2rmyopVw8ukrn4SJ9pMC2r5Enqbrxvny/lQpr7B1CQP+zanjMGE8eDZPcM4X37xeOFFddqwYl+Ez251hnIb8o2xRQVxvxBDAFw3CsDtZ8MC4nZA2B36P7dI954nyTZOmVhyRxQpl3ZXFU9CIxD3s6w78H9yJY3fm2K76HLEit0vnEI3HygdHPyMBvmdNX0QvtsMtyMuXEpynUYtGvkRetormPr56q8xtXOaIPE4J0OPoQR0LF+fHd4MN63uXbHruHeZtg9V9lYf5QOPOUz0sU0pjE3yu2/se9lOTR9flVdt7gXyB27WeVi+A5zikkFrzmlCmjTriqY8JeAo9I5mg6MGazvJLeuv/mhLpAGRnKLq2lweELh8BQ73pf3vq69SCMNXK3hSkn0H4eX+Eot2inbMC/y7nLcI9UFZi6685IlZqF246WAizIimHsMXY/fwfgvOCL+2N+cmQ+9TJBIxFv8fNlbu8zajBcAZvbAANWaCDeU8xb7fXH3jjwaEF7TDBNKi77fdCwE72ZUH3X74P06dCJfMc7SYKYXPytBognYqPdvJVuvYV5DrEleDOiDVl557rd9qGBh+zb9NjO8b2igq+3x5M/Q7JuvxuglGkim6Xh7KM9i/rqTxPNusR22GiivyJZTwceMdhJXKBVzAb7+rKKLaYBIOmAu1FAE1GPjZOM2xrC+UjWp8pLFPcAnSt3jN00atDJPDCBEs2N98lJWTjFUhkCG5HyUdMEEnNk8m8hzUADzaVvH/+gsfAaMNfXb2Qd+QBNqLnN9UhTzfCbtG+/vbYDNfPLolMk4tBPkT5rMX8aeT/da+MSiTzEwrmI+cF9iQiPuTpNOEu7KbjIM+RgqfP6BR9fSaBR+ki2JCgvC/ZVWvUSjPh1SPE/nccb2Qw21sVzvbrxfkalJpKkjA8b1UDwS7lMgce73YImNRcy3Bpy0Oi/ChMLTV+ctJUPBUESndM3fP/D9KYlMeciiw9yHOWU2LbVg1DJBVSeQjjmJlTuS+LMFCjMoYfsZJODXlA1gzwDWN2nqpJlhQwfIIap1qn7ogW/Fvz6MPsCG9fH6cFL5p9kISE/ZeZepNAWf5j33O7BNEPNDIQ6O98LpQD+JCDzH56BadXhUaKUE5idbgx7/NdMDqAs5EmTyGvSb3zVn+BI/Hz5XfvaWFxSCLJWP9dY71qCYgdv1659wT170vbsg+BnuCXKQv7KyDOWi5epJl/H1xz8L0vIdY8Ktp8t+gCOL8FwZxZBn7xzmq7cn3RKcZqHVjfromtXvcOP2/IZZFe7u11xSVO7OwWz9f84FxwgMa9ib/WYaHz94Nu9DrvwPKFyUW+LlSIFnfvPhKCnGv3/1m966tHMMuJRSUbUxlQt9yMoNchPJmN8Jt24LvlMMpR5LD88kUmFxxC0FrohVrH+R0NfETKdhUHLlSH5jwjQ06mo7fncM72ui0DzM0fcNvGozZhoSFiHUAETOPmnMqamnw8ev9IOHXoMv/+7nQtMvJ5oqhPqw+avE+g5yceUBwfm/BIPSuJDJ31r3gw73Y25evz9e0HUQdtNZDVv+uwVdGDpnybP5FfOxwO8B7BXT0OTajSf9spxI7dABd0GLEcwjhOyG144vwgc6q8EVzuwom1Lw9OZXJubrLnCQR2YV/uHhKUKwW4VbIkTluXnw92+td2/Tow9rMNtpbq/o5gx8muX4psbsO+bHZLsWHrNYMMjmQ3ZXSy8Mzare/2MKn78zZAs/3D0Oo5zz07dcokKvnlOuRKFprK/HmYVqSaFOkDysO5NVMAOtdlpL3t2O3w92rVrILtCZIFP5oMEjyIIaumLLoTLymD9fSzB1EBgB+cN3TvQdEES3FDysJM0o2PjD5j1i8QIkMHElZKEBCKLl4/G1glfImN/QXKQNiAxBmcSCT3zqgui8t4K9h0c95t91bJmtYrPQ7rNKzeXm7cjtzWSc0noh5qqMn2pDAsvQgHh+a6+tACIJJ6WYGlRj609457hlX8YmzHzENCew8yEbp2+smH/uUb9cXWBT9tUwAeU1qTwlv+dEUqfdgvjuMTCfvaYdlEngRKm3Wx0ne5agrhvX2tABvH8kf2cY5SEb0iGXKQgVDkP/zdZkDsNezCVFtFrHtkzAMfkLx77wz0JRgZSB9Ej8+6YnwNurajsEvlCuq2zmrcCaerLxO00lzBUqQ4jXHEdB6SnhIPsBURQXSqZJO+PfV5WGcPWxty9Ay32tW208YqjbmVpq/y+frFeb91LrhzwFBrnZkWJI98n1w4cB7txKVP7e4iloJhRv8NhcHLns4tZ8/BI/H5t9X3PstZZgEx1JGHNJoDrbq59ftUzi5+d2ACno0wbs7TgScPaaBLpf6j3qYcnE/Fxjeaa5MSeSOFF4ixQojlzfOMUd8+nDHTYW6OzZii5/3HhGMxRGLacttFIz8f3rZ1v7Q9lkG4oj7YkKriegxMqdzlTBf+3PercDi4MbFVyiv13WXIE396snnymYx8b3t62TFW5ZgLnDP4fuRbEjo0PGDdvKNbG+tWThV/U7q0C6hmap25+SKLIwUt/ktSZ2vzrYc6FJXZgElv8SUfzKkEQEimLQ9kLcJT82ed5h64K+prr8F7ZKofz2wfzORNyXlrVfdETS4WrytBH3mjRq/1jOHeGJO8v7exz99SRkaTmNnO+QQ0fTK4tYarjPjMxd5yEsQB32lOIhW3mUOrB4KnJcA3OtAsIn79k1WNtyUYftxW707E7fE7kK3I/584Z+cuBAPcZT+kuDiqjti2xHfjXupMrlkdk/eVFNK7t/hLYiangsNbBig8//RcUzt8NREKmV7d+b6rADGRFthV7H4q4QF3+vLpAH8aS5i3VYcaPMwtpSZkM31v8BhVm1JKCAiEK0y/G/SyG7tfNnJXaYY/8fsvaKzR7NBxwNchFnOaXR4BKx75Aw7vcKzovfHayFoPvZnyH5MmjXSqdi8DrA3GLHPb9rd7ug2sdHE4wnO5GHjrd1yWfcl29N8B9e7YPOlsQTO/kV0IIGLW3rS9yzpF9OjKeOwvhUngbF64qoYh+vSYMr7nPq8Wqlr6dhnJdfvmOmGsqtmVIpXt+P+cPcPdkSnYvQgK7Zmv5MB+nXSyRfjsHdNVLBwjKTDWlk2DFqy40R6UWjngQ/7jpDTRvLWryo2MjKN8DvEGqads1kiuGuAFSLq7MJKFLqkZ204xF0SF1F7ndfbfz5stqWike10f8AeyfvZw==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAxwAAAAAAAAA=eF5jYgCCrB8OTFSiGdFoBirTo+YyjJpLB3ONWqp+fNj+x0EgwLN6244/Dtfys48K7/7j0HKuZpPR/j8Oqz+FfU46+sdBrqKDzfDcH4e9r7P/JN7647DyjGQn8+s/Djtms8zu+vPH4ZnwugSBj38cpC/OXH+z7o+DQsKGDVwtegf/sW+YAaJXsXP7g+gQx9xznED6XnEnD4je1PnvOzuQZjk3s5wNSLdlhTWyAOnia3M/MwHpX7zfH7MC6cxNdyJ5gTQAE/L8Dg==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAtQAAAAAAAAA=eF5jYACBD/YMVKIZofR/MHhPUD2p9Ki5EHrUXAhNK3P3hQlsYGD6YN/z99ZGEJ1XHb4dRH9IfnwARMs4GZwH0X+Plz4G0ac+Jv4H0RqpJqqMQDpk31EfED2lcr8xiBZcFqQFkpdcN9Xz9/339rOmzE0C0R6mIetBdOAvLtM/QPrT/Ed/QXTqxK3S/4B0xI+py/8D6XVnVx9mfACk2Xj/MAPpW+uNm5mA9AwVKfEvQHkACov+mw==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAACQMAAAAAAAA=eF4l0n0sFGAcB3C9WP3BVChLy7u7tqY0tWNxGTVvtRLGiVSbjl4c3UjeT951w7o7rjdKsVTmJSx13qYLl0hvJyFupeIiasi5vr/112fPH8/39/I81obdIZklSna+MHhtFuRNrNTLgY7WZy7kw1bTGe9C6JVz9IYESnPSg2/BNI3GtxJeD+IZ18J9PdxfzbCPzd/3nFyVXJMBf2ZWcyjf3Labkw1Hpf6yPNj72k1cAKvNAqfFUNtl2HUTVtxd/acC2nHn9ShXaRoa8BQuJYZYyWHoyZ6H6XDWlOV7me5xOvdT/nRBvJT6/ry7/oyQ6jyZ+HAVDg9eWbgO58yr2u9BiVg9VAP787KTnsEXtl9HuuBgK5eTCnf9vjZH+omyFAJow4rX0ByCa1Z1uXDj4yEm7UNf/LC8BMY2yEPLYZuziSPlvlneHtgCm9btkfXCeLOX7QmkMMUzEepFhvxIggztoX6qw/ho6fJ/T5FC2kvEtoED1LfCsW5DKbTu6Iuqhk7CEw/a4E1F/ZF31G+9wZZYWNrvk0oOpeq3xsEGjcD4ErydWztOdRQ33B7TvmxVQja9px3TSVEMdw7LGFXwE2NZ3QGFcv7CZ7jIrj0dRec53avkQXXGDh706igURFMf2lAjPpS4r2m6CBMlCSk0h7yysZLyXTf7+pfBcNGjesrl23R+m4XqJ2nrIuDbra9/cKn/Wc9CcnLBwZ0c8bITkXHFHtJIaOOd4EB1rTuFZbS/oUiNN72rzMvInv5ZWISq0VCK+zrT5mE4nz12VnQc9u/cvhACx9Xh4cHUp2UDMxDmjzUa+EP2SjcXPzg107LMgUGMoGaa0zV5lUMRzROz+IWFXO3E4Kb0YiW7xajHQgBZyyz7FBjNnDa5BO9Iu7NjYFjjeSMu1JbpFHKgh7O/hQ9cbJrRPQiXlrYp02BB5ZTLeeQPv5+MKpZgP/Lg9RLIzRwdKIL3s+fd8+BYvIiXAscvfj91DkbnjKgOw738wHwzWDpR5igTK9mqGGbAX5GSvYInf2WG8z84Hgz7AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAHwMAAAAAAAA=eF6t0OdPU1EYBvArIqsqFgXRQio4E0wVV51wrigoVJZGQYzaVFHqYoQViyC2DiCynBWhYBEMOIglVgk4GILERL8YkKVIVTSgWLjem0Lj0//B8+WXN+d5T97z9tu0Pt0mZ4mXscbRH5q/+lj5wN9mg3w5TDC9ELrDX8baudZQX3eg2BDDkiphXtkr+F0eLymC193PTkqGxqxr6hAYHHx+rQz5vWfS1Aehk+30BxGw61y4XxBc6jQoXAuHTmcsEUJtuauSgql36t160D8lrOBHLSyV3R65DJMjirxkcGjGjTPzketWlQ7PgwZdu8ccy5y/a1t4UBJWcpRF7kt4fWEvtM7WT2mAxxewK6/DOL1AdAy+SO/3IvDdSPlsF2jaVr9PfIwlZflOK1dDk6IlRwQLtPF/POHoir8VfFjy6VYHZ9lX3aF7H+GB4kGxDj7URutVsN2ttzsEOgzxGDPere78UJZwBHvz3CGKg7cPa7NiYKCa6YuCLnbZz/zh+TcC02Lo50ucJ6JZEqUJlDRC+/d9EQoYMHhFRUNfTdTzLTDFtu/Xx0SW7A6xquiCaTuCS3ugVCzd/wk2N5uN/ZZ7U+DmASieEPtb6o1vuYfd0FBXueEVrEgKuRpqyalS3tYk4N8BL4djCUvuTg6eEQMnKidVhcJ9a1YtXAhdcmLPfvZlSS59s08BuxzbpD98WCIYoMedYVDxo+lum1iiVHkmToX7R71d29Bno5P1J9lxRJJ3sqEQKmw7DD+huEmuVNpzxPWEt+CIA0fGYyJTtDyOLNLlDYRO48hYGl+a7ciR5O4Ne+7zORLdKZ95BXVG+O7vIxMsaVuS23rBnSFVg8VSD+g6PzLqm4Ahe+Wz6MY5DCmPD7LOcmHI7M62mmE+Q040Vedn8hgSu8CKX27FkEybuOi53Bhp1z/5k2YeI5rHdkUF6xjSq7F2kGdStEKclL7sHEXn86s1OSqK3lmi9q+6RNGHZUa3rlyK9pOsV1feoOgEkayxQ0vRm9+dikytpeit74UU9Zqi03dVeF6so+jTPF1P2HaKpnAylKKX/9t/HOHLPg==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAHwMAAAAAAAA=eF6t0OdPU1EYBvArIqsqFgXRQio4E0wVV51wrigoVJZGQYzaVFHqYoQViyC2DiCynBWhYBEMOIglVgk4GILERL8YkKVIVTSgWLjem0Lj0//B8+WXN+d5T97z9tu0Pt0mZ4mXscbRH5q/+lj5wN9mg3w5TDC9ELrDX8baudZQX3eg2BDDkiphXtkr+F0eLymC193PTkqGxqxr6hAYHHx+rQz5vWfS1Aehk+30BxGw61y4XxBc6jQoXAuHTmcsEUJtuauSgql36t160D8lrOBHLSyV3R65DJMjirxkcGjGjTPzketWlQ7PgwZdu8ccy5y/a1t4UBJWcpRF7kt4fWEvtM7WT2mAxxewK6/DOL1AdAy+SO/3IvDdSPlsF2jaVr9PfIwlZflOK1dDk6IlRwQLtPF/POHoir8VfFjy6VYHZ9lX3aF7H+GB4kGxDj7URutVsN2ttzsEOgzxGDPere78UJZwBHvz3CGKg7cPa7NiYKCa6YuCLnbZz/zh+TcC02Lo50ucJ6JZEqUJlDRC+/d9EQoYMHhFRUNfTdTzLTDFtu/Xx0SW7A6xquiCaTuCS3ugVCzd/wk2N5uN/ZZ7U+DmASieEPtb6o1vuYfd0FBXueEVrEgKuRpqyalS3tYk4N8BL4djCUvuTg6eEQMnKidVhcJ9a1YtXAhdcmLPfvZlSS59s08BuxzbpD98WCIYoMedYVDxo+lum1iiVHkmToX7R71d29Bno5P1J9lxRJJ3sqEQKmw7DD+huEmuVNpzxPWEt+CIA0fGYyJTtDyOLNLlDYRO48hYGl+a7ciR5O4Ne+7zORLdKZ95BXVG+O7vIxMsaVuS23rBnSFVg8VSD+g6PzLqm4Ahe+Wz6MY5DCmPD7LOcmHI7M62mmE+Q040Vedn8hgSu8CKX27FkEybuOi53Bhp1z/5k2YeI5rHdkUF6xjSq7F2kGdStEKclL7sHEXn86s1OSqK3lmi9q+6RNGHZUa3rlyK9pOsV1feoOgEkayxQ0vRm9+dikytpeit74UU9Zqi03dVeF6so+jTPF1P2HaKpnAylKKX/9t/HOHLPg==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAxAAAAAAAAAA=eF5jYACBD/YMVKIZofR/MHhPUD2p9Ki5EHrUXAhNK3PD4myzF3Z+sBdemVexCEi7WP/dsBRITzGa6bMaSF8K5du6GUiz10Uu2Q+kl99eLnMBSP++k1P5DEg/s7784i+Q1r837eI7IN3NJBcRDKQt1hQpXld7bu+hczDoNpAWKi7QeQGkj6QXTf4HpFvYn1orqD+3n/PZUT0ASOekHe6fBKSVene6vgXSelemcPhqANV995TmA9LFomo8C1Wf2wMAAR/8NA==AQAAAAAAAAAAgAAAAAAAACAPAAAAAAAAvw4AAAAAAAA=eF4NlHc81f8Xx424ypYQEjILicyM86GUEmVESUh8v9HXShmpiESJ7BJZRYjEJSu9P7YQLpG9N9e91/xF/Px5/jqP8zrP11NoTCcoYpYCFdvESTmzJuQv2L6avX8abgrW8vNGnvvG2xbgUclOhQDZhSdOkvWo8RLG3nl+GkxfxpILm2JQ+F95iUFXKqwzRRAfGpcigw/Wl+Ko0wBxYu+s5TNQ6UmpxOsLVJhQN7curcmC7VBlyVuss0D9dJ/np2YuCiv1CzxxhQZady+PLm21Q8WpMsXopDn4JFak97GyAPklnw1S8KHBmGfMUKPHGFhXdsqnZS1AQckNlfnqQvTpUcUl12M0sFG8zPjw1RLYaFk/y5VZghByEbIoLEIOIoeN5p2p8G2mby63cR1I/7x+H0ygwqFjll2vu4oQsaLfmepAAYkyb9vfV+mwlnSZXyFvaeC/nCH793MRMvIZ0GagkcH/pXI4d8sezJ2bm7VLeQW6jKNfC3QWoQHLVCeZ9SV4GUUe1itmwVo59ya4DK2CNtXGX/Q5EZmz/mGzO06BZGm+PQMDDai6+Lj6TP8U8I0fluEKewJ/S/ya1KwoMHSCafvcYC2a1+D3TuGZBl/7acuEqFg0RN9TEdBAAX2KjQHxZwmy8rJrOlU6DYqcLJzXq9KQs9QBKLhOBSM/iR6z21lg9PXp9x/tM2BvZCTW352Bwo98Wbo7RYVJ64nNTbd2aHuYE91gPwcZpQo3p/OTEVG393i3HA3a9ox+iaaMgo/gV9VMtwXgCWfwofe/h9oLEspSGWgguS+iVXiVDCKfaWwG/yODzy1Pf5aDSaDUeJKHcXd/TNSWmUn4Oqxya4/e36BA2cdZ1oxPefCOfRt9uEmB0ERHBiZLOmwtM0L6SCINPtQdasmWKATX5LlwwjoZTKoV7OSW92ADNTXTG/orEFtlIvXROgf0HhhJ2+2lwAqJT5d9317MvfPRMwHGNZgwkUmRJiZBfeKWpNvqPFRx1Lu0atUg5463MroqUxAok2BWIBkFHW9Sx2rsFkDW/QEpqxoh6at08S7OU9CdfnFVJCUTkVQP2OtELIJL08clgaIvyOwOc9YG6zRQPBrcOyaLkFC8Yle97hJY2a2Q1/KywCNao6/88AwY9Ihwz578ioRPxWj4P6OA01bspnBPK7x/rvItPH8Wfs9En5s/u8vX/VOHVbSoQHfUU/Kt+wjk7onLS6yeB2nxfMbrj94hn8iRQ8sPqXDyUfTCU+5F4CjjYvF3IMNtbrVnwjoZILqppuJ/lArXevjT0+rWIPhVdi2pngL9err5oq3l4FrNvkKxoYBscuvDgwZ02NUd8/j/ommQuHv7ai4O1t8/HA4jLEFUtoZHsBMTFuvuVVB9dwVyjhy4XPeiHEpjL9yrUqGA+N5fOSc592F0FT+sXb3W4KumgGSpRR6E3O6Z9fabAM+7k/oBX4tR+wufmECxSfhI7jwh7R4Pr2uOz20TJkGiQNaH62ohKn3CYmtrNgm8w0O38pSKkM/N2tHj6VPQpFQdqnouGf3Ifuy2NT8JC/Omjw+b44hdRqyvW2AW9r62mPsW8AkeFklbya9MQVn5hTvrJnWoWGXF6QT7AjB8v/m3tbYJhOw5FXj9ZiC49RZRqq8GSSfKrTLOkkGbi83rB8cAZJppd4++moOpsVxFeUIpErItYGTxoUC4K1e5eOksXHMbv6ptsggMBsF1pn7BsPCyPFSuhgJWdBwPJLVXgbMEp8vZ9UGzo2NxKDsCD1vtRvIlChBGDT+Q9tJhxqlrql+9acDVFKl16UATHGm2z16SWgL62C0+ehFmrJBBPPECWoHXoyHB0RK1UH2z0ibwBQXM0zJEP/ezYl/K6czqtdeBf8M+w2C0BHgrD3lSSjvhX4ZOgV+aryCJPypmIHMc9l17xlXi8BoayuuyKay/QN3w413n0/FgxRxAdiGNg5bzkdj1+kqkOLa9/yd9L/jfSSkSyP8A9vk6wRFXJ8AqM8RIsPgH8tL0u/748TB84zNPHLMpgX9CApUfG04Coc6Nz9+yA8WVvf85zzYBIZ3PlM6/qYeLYV5ner/u9oM58/fXmQ6kebGOmW9wBk7KlqdZ8nfDmq/osZfVM6D4zijNfbwZ8anw6AeqLEJkaujA/tYJWLR5qhEcOw9S2P4gnEpEM0485PmpJajjdFL2SKCBQaDcaVnHJTA3VBByzSoFHqX/EiKOUuDXU5V311u2QeGFqEecAg2ELA4pxw20AkeMqp7tlSXgkfcwUGAiYOWib9yeiK2CooWvvtHxZsjum+H7T4wKOluqeEo6B+Zpw/1U3GcDqjQeSJJ0EOxlD4xZP1SFPqW21ISH1oDAzyLds62jMGbTrNBBSADWzHZKA6kUWRn3eii71MCGJ099weIo/EtScVH1qkEk+iZrYmsq2vi3kJffsAaYGQqMDliMgWAdfpo3goT2pZzL6gwlgvhR2RXe2RoQNPhxxYBvHBpOZeT32vWiW3cGr2SntcGuIywPyDSA3eNvoYaXJ2DywhONrsIB1NQ7lDqQMQh6DF6T36Lawcn/VN+q0hSYH/w84prQh/SCbB60G+/Og6/PtagMwvG/YmbU1RlI/pxW63SlA6XizDrn3RcgNXCze7ZmAfT6nNR69iyCuebQnhGX16jvlkyQ+rUl2OLv5PindhNGOB7cv+hHBQ+ecau8By0Q5/pOft/jJdgh/E6xGyRgfVlG3Bz+q3Dbnvv9xbV2YGvx+DiluOsTKX4pBUduTCA/MnPB8g/k9V8PMGKvh+bPHv5TteNI0TrxuDK5C4R3nr8/6zYM0scEistdYkCDZu7cajKORGqfy96P6QKybUzOxothSA83DJqLbEAcz+aaAltHUUezRy5PSCeYhJu+S6IMQ9LaJSV/9h405sj3Ui9rEPUaprhZ9HdAO5/XOL3TCHzQc9LtDR1BxxsFuSycO9ECqS6FY7ANFpPkOzs0RyFG7f2NR/oT6IfMmN17nVwU4vIykn2XpxyPdSamijHY+HL2qlHkJHKqLt/ZdiOBlGNnvASQwMYZq1bVnQQu+7ftv96MISe+so2Hr3b7ZLJ8uMdzFJCfuPpphVloGxQUa37SifyfmFIHjBYg2L4mixy9CiZex0ByaAnUdAnfbSilQOi+ByG8u7yLXSa/3CJgVlpyLcMPV4E3M8mNPYwEIgR8/wz3CkyoNltPvuHFrsk3FRWe+wtOJ7zvKsS2QoANG8unCBqq6CDGn9seBnJuwERwcR+oooS+EbFI2Lg37fkrkoaSwvOO9e3metNSdT8xuQ/kbzf+l7PSiOqjDFcXHtPQfLMh50GpIThKTGUdvdkHDGq+Qznrv1Gx852dFyI0RBRU46K+74dYQyLjS8U+sKreypzLHUOCy/kObPMUZLr0OkqztwdepUbTqdzqg9t5Kt7ksBlUw5p/M557AY1dsv9xuZMEvqz09Glf+oF/NHnD9tIiKtONbNgIG0GrlVYuy8XN0GIr7PrTZBgmooHZhnMJiYg+eNa9NwdotrlKi0MtsB2Y+nzIahwosqKctgWzSEOk3HxabAw+NzetCo5MgHNjwEdl+1ng03rhY6rUhQrMWeGP+zyw8XqrcrIyYSNrDiamy8tgTJVvYTNqAsqCdQO96QYYc/HTbBsPYq4dG9LoCD12tm3eIDS2DT4asRMWov4gza838vbenoZ11hnPPP0eqDOIVqoOegHP2+I6hub/oDfRTlZyWtPwNpZ/rG62GxSjBJUYBuqQuhtYsVE20Z3c93k+n6bg6FPMUWrkFxiJMixG6XejEXXorPT7i468YdXlTJ4Em2w1919qXdD23NOpSm0U+aq1/xNzcgdValQR63vHIfDr74heMRLYn7/40YcyjR5Z/6l0lKHDp1gws6sHR6Fp3xEpokQ7POeOrpS8tYTqM6I+5G9so/RQPfJbg92//E0IQ6fbQIYxbFAiaBmx7liIOp9ZR5eXBdnXPTqgKwHN6BG6gP6e7vipmVXU12vest7wG518KsVAtmyHK7X2TDsVI/BbWTWwdoCKSmZrzitkt4NxYxwj4y7fZ4lP0k2H5wEkLe/5iI8g2h1G4WWtTeBlEHjmmiaKrdN8Q7Xv7MFG/tkRYS5Lh8Y/NekFSeJ41hm36iV7WdzbXX4+myiE3wxKLnkoHQkzchf+Z0gUx6USjEmeDrL4wtMcq9YqIXygKhufcyhHwuona2S2xPGc8+dv2P8ri9MnsyS2DQrh/dGxspNKzejofduf8d5H8Dt/8KNcnrI4B7/8l4j9wjjcvaJ+7ckv9Ino5UuQk8DTmR4Y6wTJ4n08VfesHYTxYeUwFg+OYVTOtKLx6LAkzi5J10RIk8V1DpwJLusQxu+ay5jt5E+iCf/pW7rGUjjfC+HAyk5ZvHgkvzvW7hB+XtSkyICZjG7xJieV+0rjInG9Z1mOHMUVTd19+P8cwkeaHFy1E1bQ2oDnZoqyNO4q1wa/LY/iAXaHlc6sHsJZD3a+yLf9H+J4Y7RGIonj1wj32OVsZXGryzzFYu1CuJhagDT/Ng09snqoVJDNh+ubT5Y25nDjbv/+XgmR5MGN1Q1QI4ENH855IujYhWGmYhZrCrKaWKFOmLTuIX1sNb6iR2E4FlZWKLHLzRimcV/AWlVGE1tqnf/rJqSPWaRXKMsfz0GuUz/Ch79gWHXHoBavpCbGSFpS7D6gj53h8qsYkqxAoiZr3RlBGPY/3Nya4bAmdoVHI7mfVR+jfHCRzCqpQ7XxN6jUUxgWdFqe4xSvJvbtRjYOW3qYwUn8It96G1pYNduUagfsdKDoy1I6TWwyt6rGd0IPqx0SW4zi7EEbrXJaSBYwkZS8rJI+DWxfhhSB+bseZubt4N25OILi2N/rdEvpYKVNoipKIRrYzwseO46P9LB9+ed74n/OIma1aZNjzJqYao7vU78ydazusUt42Q6GSWif+LJuuoJaixSYGeWUMD+1gc3n31Uxj63bcd57MCx6mL+nkLyA2O70qgdGyGOj8mfPWPNoYaN2aa2WGhjGyDZm3aIuiP8ffk2f/A==AQAAAAAAAAAAgAAAAAAAACAPAAAAAAAAGgEAAAAAAAA=eF5jYBgFo2AUjIJRMApGwSgYBaNgFIwC6oCLT+tcDJpEDqLTMPm6mITECCAfnYbJX2feZX8ZyEenYfKsbfe1VzaLHESnYfL9P+a8fNkichCdhslbxFzQ39gmchCdhsm3H1MoV+0UOYhOw+S9cg+2VvWIHESnYfLP3m9q+NEvchCdhus//unqjl6gPjQaJn/+pPuX3jKRg+g0TD7o/6pd/RKujug0TL57zpbdrUA+Og2Td8qrkUgH8tFpmHxTn+Z6QyAfnYbJTzL9nP9Q3NURnYa7j8fdIB/IR6dh8la3X96+IObqiE7D5MuiCqf9EHV1RKdh8kJRFW4iQD46DZM30GDxWwXko9Mw+ZrfeWzF0q6O6DRMHgDmZevkAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAADAMAAAAAAAA=eF4V0nlIk3Ecx/GcE7Kc5p1X3jqs5pVn5UwNNddqMNF0WTlbsgRLzIpUlhmZ5oI0tjzKiA5FiQotZSNnlxod+ghLy7K0FMyrptP8p8/3rxcPPM/7+/39eDpapUb3UIbvyV287QEtyhruekG9ls3xg6L2yp8BcNVrJjwY+nu7LUZCd5Xq9y4Y+9f8YQr8kcO6kgqlw5yRQzC30TGFupUeyQby2XOpwROe2jaX5gvleaOB1I3pXLgcBBukbdnUjeHfvErdPpNr96hb2G6co67awag5DBdWcxLd4JX2gWlSZcj6Rv0LAbbbvGHxh71mXKgQlxXw4JlC/5pweLErQRILw4Mqiqh7zNfLMQ3KuhVnpfReBsvgBHuVYUpnOMfzlLnClwM2Kuq7hGkFPrBFWNRDezcEJsaEQuv9R5Z3wlT9o8E9dG7164V0mNnyIS0XmnXKJPbQjus0Tj4wNZY7wk71lJzmaAs1+k2wyoPNpXthv8gb2wrljKA1Cj6VyM2T4Yj/6u5M2l8mnM6HBcLmdisYf/yX0wZ4wvn+AWuYpHJ9aAujfQQlNEceMSqke9KVcIepr9MxR0Ng/+l0XQI8qVNVHIR+RyxrzsG64RQTc+iqvLWVnL/k3kdOSTa7rocf1cttHNrja5PIBloE2zvROSRxojj6X4aeTM9Gw3+8JCF17Z5nXaiG58UuLSyY9+z4RbKgejyALK55P2oCSyfe8OjZLuRHKBtqJ+ze09zeLO52urdzbNVPfyicaOsXwz+sUlEbLKm73LUSwvBZS2aBpKz/1TUjPF+xZs0iDNTs61mAPsWi5lmor/+in4GlVQfUBrjU/UdMcz47Nr7bDB0sahWDtF+ufm5TMMNflL81usGN+T4mLvC0Mv6rPRR8ioixhH5vY5+YQo66fMNSEMO/M2ZWNAkNptlbpuBsS6E9fb8jeqB+HebldLETMqIYfpN85Xs6nJ/X3xDDkPzcZQEsmExauwsqTkiHeLC3VeNuA2tdIhVjkQz/8cG836VQElSer4lg+JYd163G4X9YTqmPAQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAgwcAAAAAAAA=eF4N1Hk41HsbBnBRiIqKCcmSLGPI0NupxvMjKjMVzjnlaKLsGbsYY2Rtxem1D2NCtiyDjtGUMH1/lbTSayxxKClSSUN1NdlKvfP897nu+8/7el6QWXYfW+ygcK/JwYQNTFSjX/Dz+htXeKysFGtuwERpZ9QsDK29Iaukji3dwUShIkENUcgA7aFv0Tp0JtryauveozORsI/oNXgrholMdgXNs38xYbeH51xWMhMVePg/jueyYUxtKk/gy0QUvw3b8kPigeu3U9dag4m6B8rZWfYJwOuxiy1nRaMG/frhfysS4Jt6+fB9+ygk3HK20j8gEdJGdaw6bMKQw+JfOfMWdrDCUoC+9IeAaUuqs9jXFawpUSN67SGgM2pl49DuBfIeg9XZeSEQ4rhI9WMxoPHz/E4jRgisn+i8M/EoEnL47beexITAz8ubdX4qx4Ax5VBApkooOH+RNtd1saFnfoRJSQ+DIdew9uLX8eCjbn2h82AkBD2T8O4TE8EzwWKlnzAK/ohS2D8nToJ/pYFjBe1MqJEvmHh4MQUSeGvPp7TGQNCGfAp+EYN728IsajZykPs36yukUReIa9sXbmjCQamUTW+JSV6gM36x7sweDvJpLUL++QxI9jyj6x4uyys6WsZoJ2GgpMrgUyEHfT/JciOvZAHNVa/0kpCDPtD66dotpyBOdHVMq4aD8vvc5YeHkkA/Qi5d3oeDbsyEE+w9UyB60iyisiUPKf3IcvtWmwzuXdTzQT656IDwxfvfDiWD8uxkS756BkpMazOif9oJqcvcm9mLjXDMs5nvHbgfunOunbddaATFpZN2sy4eMK5O7/SZa4SrdpbZs70BwA/+HDUr69enTggfXw4H60ZX9Tg1AYwz5QlHepjQSwq1NKEJQPQybI0i4RQ83XWh8cQdATgPJmSzipLBwI+5XcmlCTwsJg8TNM4C/3DPc4fJJsiwn3rc4JQOxke0TCL3XIPgTO76EeNMEFIoZvvsmqAnWp+b4QoQpRcRRarvRoJNtW9OarmA4/ZDRmxhN6JHL2Sk3fCC0UiNRbeubhS/Rll3SDMYvpwmrmuQdqNV5TyOtzAaSl/lnZNaipFwg5nT5fR4CM83vUWPFaP+2SOVlkZnQVI26Hm2U4zuMy9dniCnASlCfnWxRg+C/OPqr3zSoDhHPJZk3YN2H9lKMpftKVfV91XVTTH6z3alMieeI3r+PbTBRdqFbtY8Gx5NNkD1W+vKLXUl8Cw7efbKKivkcM+TpmEgAZ7B7RvLybbI5tPGg6YWEpCbOnfOS2CH4vbk3q53kACfNh2wKvw39PXv1P0kf5lJIQ8UXdXguNNyQWqBBKaTtbm9ffvA5sXxwxavJUCUDljkEhhwSjXTsOD3aSDUmvwkYn/DlCubm9EzDSwDpcP+T2vhgnTreOC1aRh+6nRIq1EInWr6GSfkP8L826FPDo3u8FrfI9c0WAWfDq1veGjPgCfbZxJ3Rajgve4/l47FxYHz8IH6O0kqeEAxv4KleB5aywyu3+Gp4Ec2ZL4j/ZEFJYQxTZ12FdwqJiaD5siFgcnyppWLKvio0+ZcIbEcwr4aivKoqnh+/hId66uCvDfeIUcFqngBOaykdqoQgjlro9iEVfhOVbWmZnIzeunPqzLtVMU3m+nNVV58gJo2BrZffa+MVzw0pVZ3xSCB5gyXWWGGnbjGOX1Q4wKirMlJaK42w9ZtUrZ4ISiQ/bWpq3eFZtjpYG7lwvoK9LVlNSH+iRmWbjwSdzSFj+iZ7wt5H82wtA+Oj8y7mpCe52ZVS10iFkO+nv9n8k1U4hvHLfMmYttDM93GjdrQn1MdjL2IiL1WK65WWLsfaaePSJfrm2PratH7scgRWEwK/WX1mojRNV8YFQV/ADkK4ekmP1OM5vaqJjY6DyL+VxYUv5yKB543YaxrrwSlR7dTLilT8VjxjTX9wdehNJZ9x1aTip9dENncl9yGmUmbxD0kKv78Sq7C3dyH4GRN5/o4U/Gcso5m5U4xiPSZbhkJVLzDwv2dofIgnOoY/fEdUfG1F6rYX1Ofw6Fb1TuDCTTc7eWEiPW5BbpWnfE5yKLhM77bKvZS5pC0cqDfdhcNV1qm22m7fwUeneo33jC8D/8xRu8hPLmGeMd3j0d9L8RSmcLs4nX3kLnKirogmY9F9Uq+C/qQS/ZGH2eZY3SaqqZuvETu4tZlG2VmxRXXkoreIu/7Kv/0LBZi0o8Zi3a7Z1CXsJUZKDNeXVp2pkOK9hIeHOtbKMQyfuVeMi+ZR4EuRV9WyIxKH2oPsnrRj+LMaeJ8Idb/I1Jt8QoBe+bbYVUjs1fBoKU2ZwvWN9mcPL9UiMnJ7q4KUfQOzxoYmeVjeddzU2CLqYjnhRhyc3yslaxEWf7NTBRnGxoSLrPI/WXCATFRJCAlMEjzfIx7TJGRNK0hSkzVbKMt8DGtuuJsYboSRU//89XRRT5W6hIRrEA2FGkNSe+qL/Gx+H8GbeXX7hA9VqRnqsnVYb/UGlZrgLGoEIq7dijUYQFK5GbjHe93ka+0TZksq8PWSI0bi+hLbaVP/9vLkfCx/wPUuqzNAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAjwIAAAAAAAA=eF4V0n0sFGAcB/Bwi7Ey5joq13kZRYg5XVI0d7LI9XY166yQ45xudqfuDlG4GJ2l85JTSpnMy45L3i4ry1tm3KgtN7r0glTMy3r5o9X3+euz59l+3+f3/PZbzqVZ3qyeDh0M1mUUQtY+Ga8YRpXYtpXCdGpOfjmsX6Hoa+DTP7Yu9bCXGs1rhW+OtI52wndHRwwvYFrwtnsF0HFOZE5y75gcposgO7fJTwUrJt3t1VDgUZSpgctceehjGO1zkkLybFqHArqgK33Roh82+DENN+BqT49bPlxisWaV0G0hgE76jOn223obyn/KXlfB0o1vnDpSd9iK2QJVHZXLJG/Smit/BS+OyDquweud2rkcKKG1xZJ8pafXOZKrW2/2KYG1a5L9pM/wAW/tfTimYqY3QatafX83fFRm4gzDVDt/pRyOXDKIFbA5k5qaBTcqk8ZIfna5J4PM427hkPstyLWZ1ZA+2YtOpgaY4eUU0gM9+ua7xmBNtwNHAscLDg4SeSsha1J4mvXS/yr85ex9KJPUMZwjSd/mxWI6mWueyD7iAQyrO7FI/ptjHjg6BTWiY3FpcCp7Jor4YSKQSzz/12OAOJEynCyGTP32dvLe23hLSTY0JruMk7n6H5f66kidrdH6Pcldn69PhM8ezpgSoFQ0mxwPG9lB4gtwafWKMA7m0/kKPkyxYyvIPUNJMV4m54j23WSPpOGN859gtXpHiwDahOzakwQTNUIayeU92RtPcqalipWzsEHAMMTA3x+DjRwYZOnID4NbWGXaM3CnWazFAlTnJTyvqcJ+uGYpq2FRVdmPcvhdIFSrYK92qi8Phh2ooEoh7Z/vZj4URn75zIJfdaf0ZjBFFjqwCf4Hr6KZAg==AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAXgAAAAAAAAA=eF5jYACBD/YMo/QoPQzomDVbGjYse2P/9YgR504g3dTftvYUkN79NHfrMyDt+F+0iH/5G3vVwol5HkC6i/9E9zQgXZnX9u0TkI40UA9nXvHGfk+6sfw6oHoAXMWVvQ==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAAKwwAAAAAAAA=eF4N1Wcg1fsfwHGRLUJWWaGQ9S83DeLziwrppow4DYVUbkWDkq6QrnGNkJlSsjKyyiHre+xxbI6RPY5jnGl2rP99/H7yfvaqCy7uvhnKgI7DX3Z0JzaiE8J/aCetkiHmGP8PGwEPtNU3qPFumAH9hVELNTMENKRrOdr3YAauuVBK6XGhSOrCnfXBu0z4FL1kduvAByR/mNy47xoFIk8peJzliUZbz+K03TlZIL9ppl2KrwHBSfuyiNpZqO59mJStEYlaTyo/JrizwNxgy7Dr9yAsvla9M5E+D5vfAtOvL/kgb7enj+AFCyyrs5euSsyCCNXyhsMGFVSNZX7Fc/uCLhy1GmUzYbz8Sd+tnkW4v23dO2DPgNv6jjjB+gQoedzD0bzBgDnaScM3xhvw86xe+hCJCTE2qvKvdL/ASVWJ4K4oOpyxbV6+HM6J8QGP+70bi5AcbowTH0mBt6Xqjk4tVEiqFZGSSufBWl8IRP/uXoKVvRzhRtWRcPs5n1GdMg0sFBfq2cw6dHbS4yLmTwYrHTO60thbVB7aHNlAoYGRXXA2YlQhldwRaeUVMux7M3reRCUDHcQ1Pa1VZsCYGWtorCwebZ9QYu8fn4GyIGb4mxd56CuOCaeXGRA/RzTM/6sabsfii81MZ8Ei1ZItNpOLrEo5/W/nMGHvT+NljVsDUDkUSPTSmQeb2Vrb+LBPKHDioFwqNwuc/ra7HrI2A+d30fA176gwMs/Fbk8OhZWfuVnWRCb8+aKXnmyxCF8FZuSdjzIg7mfwqX2vC4CBv4QTZjNgPSd4Y3TnBjidizJpamLCeYfQO4obZUAMSDrEn06H5h+Sq+lFnNgfwdNFxm6LEC66U5T7WjlQ8o66UbqosB4W3eCqyItpxy3iMrmXwae3WcpAIRucTvrpaqpSwHvs7q5yaYQGXT7zJyROQ0envcf4w2Skde5RYNPBWZgzFzAM4cEj9YTgAWc+MrwZDr7uOP4DCdR5G/PvnIdEN+5/cW/foCG6SN3SLBkwKv9mQV8lStrbo4+eUiGEOkVzu4Mg4dlFQwVzCsheIh3iTq5CxbUzg++26LC1Q9w1zooEQRmxszlH58Ao/soFumgxclP0kbuzyQC9r+66fN/++9J++bL2xwKY7p7y+1H1GlVuF0lmXWeCJkUuQE2JBQ3Xfgrsb6ADTdecfDKtGEw+vXI8zWQA7rzQP7m310FR5+K6TiYTaOEKg4TmOrDM8t6830WHhO3lr+eWODHxWtpKWNgitH93387CN8DTDinfR9NU0NMmRn2R4cNsM6haun8tg0yGXIa6Px7aUjw30mRHIMg8rUWElYnsti04BM5NAS2E+vhJfyay6rNQsDUbAzIXI7HRMQk9Fi3QeJI5BfjFLFeO9wTUvBCk51MwAcF0Z//nNrFw+pjCkd6n0zC7PlPD09+EePr7re7LkWEg3ibPqbsCTvqHXdWoIoOzgeFxjzwi4k5ZwLlqzoH8iYDlrWNdMM9SivROocBz37sKsmKNaOO8MKNAhQbv9p4h7lWegEvjxlXL+vOwluhntHqqGM1rCt7t8WbAdYewjk/yDAj4SDKL+UiD1WpN4JDLB/MdT5Vluxmwx7lHSFuKDaZ7MvlPOzDhCCpLcIxqho2LQzHWogxwY575bKnHha2Q9qxt5i3CtxRT9/upHXCob7fWAB8Nwih26mLv+TFGv2HjLN8KXFF/G8oRTwAetleauCUegpQmoz6bFMCcFWcZPm4CLkjYN3QlF6D5wCIrOhOBRLKKaaVPIbD/dlownpyAcKcz9pLuTairKDVrtbUFeDI90vTvFoPjzZHRC4GTYERl7/r2qBvFiUzn5pmSIOY9wybFCkElfcL0SfIUpJ+ihUsa9SHpKbJgXdUYbB65LquOI4KGO9HY044MApaDfTN+JOS5MqP46PQM6Md0pEVI/ILkdPU4QwYFbAfn9Hic2tGDjL6dBAsqlOA0W4r45oAvsfWaVNoCiP7K+J4hkI7wmyImZx4wYCpOYF0vZhWocl1Gr5oZcGdlws9jdxMcO+sfmfMnA3oIipetz3Jh767iUrOqF2FneEMOTacXmm/JHBiwpkGbw6P7XKWCmMVknqn57ApIihidoCg2wQLedMVuoA89fWZmO6xJhGhds7p9iWPAJZxVHhtUjL7atxuspfeidqz3mgJ3C/xDXVaJqBmDuBfTFZGhHajoSNWJmL4ORG6rsPbf0QS5GsYtcyrjkDQjxClqPohaIu4f1TQgIIqA4vJFmQZYjnKMFR4dh9uHvrDNO8eQUH/x/AOZfBCxLFTnZDfAXTN2Bl1rEoJ7V5VErSbQu8wWm+zkXviENwiqPNQJH/n/iBXwmIbOvCcG+/TH0OObl6uXjKbhOk/Yor/ZOKh902RKmc1C/0RsA02sC8Xl8rrwblPh1KXpKZ5FFnQMrbgdU6OD0IKHEYVdBMXuxNYP4Qwg6m8tW2dwYs+11Q78ilgErjyBu3SbfnBObDkmWU+DchXvTZy/MGbbuea6KLoGVKdi1ZKZTmBJK0XcdllA0i8gSZA4CO7CxMIB1WHowlY5/40rRQFd5Tk/1+fRyl8KV7krB+B/4YG6r2WHYep4YXGsdDdyNTfb6h+eQzcS7LJdQvugoBUXHCI/DIF7m02q7oyimXqyPOU+BVFfy0l+Vu6BD3FfI1fuDUOa41Yw6co0sv3eNFKXMIk+vr9XGBvZDjzjpSVCXiNgTRLuaCifRWel+X4SGnqRkGUrlD5shIan/FLqyWMgcXbNn2k6j3zxUqwD/iWAtRnO2OS2A4WmJ3i5fhJih1xK1YfJaEF5WTqgbAp2Vc43s9RnwOVmtJbP1TnIDdNy89nbifxrhp/vWqGDoLdDVpsXBxYZ6cZlHc2CblflIt3DvVBICvkSL8EAC1/qtfo9olhj7cCxiuzfkPVSVRz0B0FtY7iuCL+CAq908w88n4DCKrcj7Bv9cOplvH0bowQxRMVBW3IV+Za32HWtjkMfv0hF42gfOLCnDN2HulCLZ3GqFX4Vjcf6KT38NQYBu3ttZakk8HGKG2AxRtFQ9XGc8JU1FFux/80n0jDwhgjdH0/vhSUniRMl/WSUrrG9Sb63hkJu38lq+9QHhyq9GST7Hsil5NR4b1NRbXcZqXpkBfmlizjwUIiQcmH+7WHUDXwXSj0qbrGQSW7SgZRKJuqaTFBOjMgFiX0cthJFvcCK6Tpz3GIJFQemFIcM96MJC42KiNf5QP5lLXiGcxS4vL7H+HYykOzllrb2kmnQCXXnF45dgkJvJS0dNRoE7P9f9CWZEsTtdd1oQZoG9QlK2onNYhi9+9GN3z1suJfV2esSNQFlcTufmT7eRF56XWYmpAU4fM+y8pxSHxhJrkk5SxShb98MKc1BWyge7fh2PmIBZMLb/pVQJQHy1DcTVWtFYe22zmk4DkL9ioG6DnUejucjAwH1Higw1LSeOzWAqo9o7Ite20HYE+/1j3jVHLTJvzk1K9MJ3obq9q/qJhDDNelHg/BOwlUeMXrO5/9cnpB5YdjbBETVVdrIhTnk3qy/TXPhIaQPNVwR65yCTjwukhFeCfiNf9r7OFioJokULWHFR0hYD9SZH/0F5GdfOGM2k+BeerCzpekauuu3fuNoNS8hu59PwS3qB8hmXeaI80xCE9lbxy+JbqO1Crlmm4dbKGjawFh3IQ2WsJtksZJ6+LPY7s1X+Q3kid+uu+oyDT6vjqyY+YtjuDWCnUkwGwp8Ll/LYvSBjcSu0mFFZcyXdjYu+XE8wkbyv1aJq2GMIzs+EC0+IvTy2DYvRQnzfbAQFxqWiEp2eGyzedWwemmvzZPmeLR0znrt3uP/Ou/3YAGPZMTCDfpE0VUxo+iC4UD3WoSPV9PdLN6Pgd8NovTzVHTwb0/9142qWPoIkopQaUclJvsJc6mKGBJToRUH5iI3jXclv8NVMcuC2GzCTxLqcVXT2m0gj6GRBzrWvXhE+PyhZFpfFWusbvXsyB9DuflnbqkOyGD5PIf2GAnWo2ri7j+qCQcx8t7nNmGps4jTPzMp2FUco1AGD+m9JCHW+cbsfL6D2EtJ0wDS1WU0qCXxl/L5ndhQoKiQ1rk5ZLgVzZydU8E8s0QNZZK5CFCTMymoWAQUh0Q+XtP//P7M41LKUsHed08I0LX5Cf8HZ1qRuA==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF
+  </AppendedData>
+</VTKFile>
diff --git a/Tests/ProcessLib/RichardsMechanics/MicroporosityComputation.cpp b/Tests/ProcessLib/RichardsMechanics/MicroporosityComputation.cpp
index 611e21b08c55e65878288bb27e19e66ba2e183d7..57df6f0b07e3d3a6c6baa1e02054131bf5ed744f 100644
--- a/Tests/ProcessLib/RichardsMechanics/MicroporosityComputation.cpp
+++ b/Tests/ProcessLib/RichardsMechanics/MicroporosityComputation.cpp
@@ -75,9 +75,6 @@ TEST(RichardsMechanics, computeMicroPorosity)
     static constexpr auto eps = 2e-14;
     constexpr int DisplacementDim = 2;
 
-    static const NumLib::NewtonRaphsonSolverParameters
-        nonlinear_solver_parameters{1000, 1e-8, 1e-15};
-
     //
     // Create properties.
     //
@@ -125,7 +122,9 @@ TEST(RichardsMechanics, computeMicroPorosity)
         I_2_C_el_inverse = identity2.transpose() * C_el.inverse();
     double const rho_LR_m = 1e3;
     double const mu_LR = 1e-3;
-    double const alpha_bar = 1e-14;
+    MicroPorosityParameters const micro_porosity_parameters{
+        NumLib::NewtonRaphsonSolverParameters{1000, 1e-8, 1e-15}, 1e-14};
+
     double const alpha_B = 1;
     double const phi_M = 0.45;
 
@@ -175,10 +174,10 @@ TEST(RichardsMechanics, computeMicroPorosity)
         auto const state_increment = computeMicroPorosity<DisplacementDim>(
             I_2_C_el_inverse,
             rho_LR_m,  // for simplification equal to rho_LR_M
-            mu_LR, alpha_bar, alpha_B, phi_M, p_L, state_prev.p_L_m,
-            MaterialPropertyLib::VariableArray{}, S_L_m_prev, state_prev.phi_m,
-            pos, t, dt, saturation_micro, swelling_stress_rate,
-            nonlinear_solver_parameters);
+            mu_LR, micro_porosity_parameters, alpha_B, phi_M, p_L,
+            state_prev.p_L_m, MaterialPropertyLib::VariableArray{}, S_L_m_prev,
+            state_prev.phi_m, pos, t, dt, saturation_micro,
+            swelling_stress_rate);
 
         // push back state
         state_prev = state;