diff --git a/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.cpp b/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.cpp index 3c5237803dd931bf06e6679e727ff5b3d6544d52..1d28c6edac8f79b51d7ff5de23ed246ccba10b7b 100644 --- a/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.cpp +++ b/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.cpp @@ -96,7 +96,7 @@ void LocalLinearLeastSquaresExtrapolator::extrapolateElement( "integration points."); auto const pair_it_inserted = _qr_decomposition_cache.emplace( - std::make_pair(num_nodes, num_int_pts), CachedData{N_0}); + std::make_pair(num_nodes, num_int_pts), CachedData{}); auto& cached_data = pair_it_inserted.first->second; if (pair_it_inserted.second) @@ -106,9 +106,11 @@ void LocalLinearLeastSquaresExtrapolator::extrapolateElement( // interpolation_matrix * nodal_values = integration_point_values // We are going to pseudo-invert this relation now using singular value // decomposition. - Eigen::MatrixXd interpolation_matrix(num_int_pts, num_nodes); + auto& interpolation_matrix = cached_data.A; + interpolation_matrix.resize(num_int_pts, num_nodes); - for (unsigned int_pt = 0; int_pt < num_int_pts; ++int_pt) { + interpolation_matrix.row(0) = N_0; + for (unsigned int_pt = 1; int_pt < num_int_pts; ++int_pt) { auto const& shp_mat = extrapolatables.getShapeMatrix(element_index, int_pt); assert(shp_mat.cols() == num_nodes); @@ -134,12 +136,12 @@ void LocalLinearLeastSquaresExtrapolator::extrapolateElement( assert(rank == num_nodes); // cf. http://eigen.tuxfamily.org/dox/JacobiSVD_8h_source.html - cached_data.p_inv.noalias() = + cached_data.A_pinv.noalias() = V.leftCols(rank) * S.head(rank).asDiagonal().inverse() * U.leftCols(rank).transpose(); } - else if (cached_data.N_0 != N_0) { + else if (cached_data.A.row(0) != N_0) { OGS_FATAL("The cached and the passed shapematrices differ."); } @@ -149,7 +151,7 @@ void LocalLinearLeastSquaresExtrapolator::extrapolateElement( // Apply the pre-computed pseudo-inverse. Eigen::VectorXd const nodal_values = - cached_data.p_inv * integration_point_values_vec; + cached_data.A_pinv * integration_point_values_vec; // TODO: for now always zeroth component is used. This has to be extended if // multi-component properties shall be extrapolated @@ -174,23 +176,18 @@ void LocalLinearLeastSquaresExtrapolator::calculateResidualElement( const unsigned num_nodes = global_indices.size(); // filter nodal values of the current element - std::vector<double> nodal_vals_element(num_nodes); + Eigen::VectorXd nodal_vals_element(num_nodes); for (unsigned i = 0; i < num_nodes; ++i) { // TODO PETSc negative indices? nodal_vals_element[i] = _nodal_values[global_indices[i]]; } - double residual = 0.0; - double int_pt_val_extrapolated = 0.0; + auto const& interpolation_matrix = + _qr_decomposition_cache.find({num_nodes, num_int_pts})->second.A; - for (unsigned int_pt = 0; int_pt < num_int_pts; ++int_pt) { - NumLib::shapeFunctionInterpolate( - nodal_vals_element, - extrapolatables.getShapeMatrix(element_index, int_pt), - int_pt_val_extrapolated); - auto const& ax_m_b = int_pt_val_extrapolated - int_pt_vals[int_pt]; - residual += ax_m_b * ax_m_b; - } + double const residual = (interpolation_matrix * nodal_vals_element - + MathLib::toVector(int_pt_vals)) + .squaredNorm(); _residuals.set(element_index, std::sqrt(residual / num_int_pts)); } diff --git a/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.h b/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.h index a8ad37bae94ef721c5d75d7a7994d60664c072a1..f7ec28b8aeeea50e6a162f1706fa1605878907aa 100644 --- a/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.h +++ b/NumLib/Extrapolation/LocalLinearLeastSquaresExtrapolator.h @@ -99,19 +99,14 @@ private: //! Avoids frequent reallocations. std::vector<double> _integration_point_values_cache; - //! Stores a QR decomposition of some matrix. - struct CachedData { - explicit CachedData(Eigen::Ref<const Eigen::RowVectorXd> N_0_) - : N_0(N_0_) - { - } - - //! Zeroth shape matrix. Used for assertion only. - Eigen::RowVectorXd const N_0; - - //! Moore-Penrose pseudo-inverse of the nodal value to integration point - //! value interpolation matrix. - Eigen::MatrixXd p_inv; + //! Stores a matrix and its Moore-Penrose pseudo-inverse. + struct CachedData + { + //! The matrix A. + Eigen::MatrixXd A; + + //! Moore-Penrose pseudo-inverse of A. + Eigen::MatrixXd A_pinv; }; /*! Maps (#nodes, #int_pts) to (N_0, QR decomposition),