diff --git a/Documentation/ProjectFile/prj/processes/process/THERMO_RICHARDS_MECHANICS/c_THERMO_RICHARDS_MECHANICS.md b/Documentation/ProjectFile/prj/processes/process/THERMO_RICHARDS_MECHANICS/c_THERMO_RICHARDS_MECHANICS.md index 7166b3fa9a4f1a457321ded7dbcccc3bddad5f3c..d601f463ab3ce3cf7a0a0622ffa73e1b274468ad 100644 --- a/Documentation/ProjectFile/prj/processes/process/THERMO_RICHARDS_MECHANICS/c_THERMO_RICHARDS_MECHANICS.md +++ b/Documentation/ProjectFile/prj/processes/process/THERMO_RICHARDS_MECHANICS/c_THERMO_RICHARDS_MECHANICS.md @@ -1,2 +1 @@ -Non-isothermal Richards flow process coupled with deformation process in -porous media. It is for coupled thermal hydraulic mechanical processes. +\copydoc ProcessLib::ThermoRichardsMechanics::ThermoRichardsMechanicsProcess diff --git a/ProcessLib/ThermoRichardsMechanics/ThermoRichardsMechanicsProcess.h b/ProcessLib/ThermoRichardsMechanics/ThermoRichardsMechanicsProcess.h index f37d5915d1d28bbd37e7085a031c61f439426ce2..984964b4d4719ee5b86de878b18d4b78a6d64029 100644 --- a/ProcessLib/ThermoRichardsMechanics/ThermoRichardsMechanicsProcess.h +++ b/ProcessLib/ThermoRichardsMechanics/ThermoRichardsMechanicsProcess.h @@ -18,9 +18,93 @@ namespace ProcessLib { namespace ThermoRichardsMechanics { -/// Global assembler for the monolithic scheme of the non-isothermal Richards -/// flow coupled with mechanics. -/// +/** + * \brief Global assembler for the monolithic scheme of the non-isothermal + * Richards flow coupled with mechanics. + * + * <b>Governing equations without vapor diffusion</b> + * + * The energy balance equation is given by + * \f[ + * (\rho c_p)^{eff}\dot T - + * \nabla (\mathbf{k}_T^{eff} \nabla T)+\rho^l c_p^l \nabla T \cdot + * \mathbf{v}^l + * = Q_T + * \f] + * with\f$T\f$ the temperature, \f$(\rho c_p)^{eff}\f$ the effective + * volumetric heat + * capacity, \f$\mathbf{k}_T^{eff} \f$ + * the effective thermal conductivity, \f$\rho^l\f$ the density of liquid, + * \f$c_p^l\f$ the specific heat capacity of liquid, \f$\mathbf{v}^l\f$ the + * liquid velocity, and \f$Q_T\f$ the point heat source. The effective + * volumetric heat can be considered as a composite of the contributions of + * solid phase and the liquid phase as + * \f[ + * (\rho c_p)^{eff} = (1-\phi) \rho^s c_p^s + S^l \phi \rho^l c_p^l + * \f] + * with \f$\phi\f$ the porosity, \f$S^l\f$ the liquid saturation, \f$\rho^s \f$ + * the solid density, and \f$c_p^s\f$ the specific heat capacity of solid. + * Similarly, the effective thermal conductivity is given by + * \f[ + * \mathbf{k}_T^{eff} = (1-\phi) \mathbf{k}_T^s + S^l \phi k_T^l \mathbf I + * \f] + * where \f$\mathbf{k}_T^s\f$ is the thermal conductivity tensor of solid, \f$ + * k_T^l\f$ is the thermal conductivity of liquid, and \f$\mathbf I\f$ is the + * identity tensor. + * + * The mass balance equation is given by + * \f{eqnarray*}{ + * \left(S^l\beta - \phi\frac{\partial S}{\partial p_c}\right) \rho^l\dot p + * - H(S-1)\left( \frac{\partial \rho^l}{\partial T} + * +\rho^l(\alpha_B -S) + * \alpha_T^s + * \right)\dot T\\ + * +\nabla (\rho^l \mathbf{v}^l) + S \alpha_B \rho^l \nabla \cdot \dot {\mathbf + * u}= Q_H + * \f} + * where \f$p\f$ is the pore pressure, \f$p_c\f$ is the + * capillary pressure, which is \f$-p\f$ under the single phase assumption, + * \f$\beta\f$ is a composite coefficient by the liquid compressibility and + * solid compressibility, \f$\alpha_B\f$ is the Biot's constant, + * \f$\alpha_T^s\f$ is the linear thermal expansivity of solid, \f$Q_H\f$ + * is the point source or sink term, \f$ \mathbf u\f$ is the displacement, and + * \f$H(S-1)\f$ is the Heaviside function. + * The liquid velocity \f$\mathbf{v}^l\f$ is + * described by the Darcy's law as + * \f[ + * \mathbf{v}^l=-\frac{{\mathbf k} k_{ref}}{\mu} (\nabla p - \rho^l \mathbf g) + * \f] + * with \f${\mathbf k}\f$ the intrinsic permeability, \f$k_{ref}\f$ the relative + * permeability, \f$\mathbf g\f$ the gravitational force. + * + * The momentum balance equation takes the form of + * \f[ + * \nabla (\mathbf{\sigma}-b(S)\alpha_B p^l \mathbf I) +\mathbf f=0 + * \f] + * with \f$\mathbf{\sigma}\f$ the effective stress tensor, \f$b(S)\f$ the + * Bishop model, \f$\mathbf f\f$ the body force, and \f$\mathbf I\f$ the + * identity. The primary unknowns of the momentum balance equation are the + * displacement \f$\mathbf u\f$, which is associated with the stress by the + * the generalized Hook's law as + * \f[ + * {\dot {\mathbf {\sigma}}} = C {\dot {\mathbf \epsilon}}^e + * = C ( {\dot {\mathbf \epsilon}} - {\dot {\mathbf \epsilon}}^T + * -{\dot {\mathbf \epsilon}}^p - {\dot {\mathbf \epsilon}}^{sw}-\cdots ) + * \f] + * with \f$C\f$ the forth order elastic tensor, + * \f${\dot {\mathbf \epsilon}}\f$ the total strain rate, + * \f${\dot {\mathbf \epsilon}}^e\f$ the elastic strain rate, + * \f${\dot {\mathbf \epsilon}}^T\f$ the thermal strain rate, + * \f${\dot {\mathbf \epsilon}}^p\f$ the plastic strain rate, + * \f${\dot {\mathbf \epsilon}}^{sw}\f$ the swelling strain rate. + * + * The strain tensor is given by displacement vector as + * \f[ + * \mathbf \epsilon = + * \frac{1}{2} \left((\nabla \mathbf u)^{\text T}+\nabla \mathbf u\right) + * \f] + * where the superscript \f${\text T}\f$ means transpose, + */ template <int DisplacementDim> class ThermoRichardsMechanicsProcess final : public Process {