Newer
Older
* Copyright (c) 2012-2016, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include "EigenLinearSolver.h"
#include <logog/include/logog.hpp>
#ifdef USE_MKL
#include <Eigen/PardisoSupport>
#endif
#ifdef USE_EIGEN_UNSUPPORTED
#include <unsupported/Eigen/src/IterativeSolvers/Scaling.h>
#endif
#include "EigenVector.h"
#include "EigenMatrix.h"
#include "EigenTools.h"
#include "MathLib/LinAlg/LinearSolverOptions.h"
// TODO change to LinearSolver
class EigenLinearSolverBase
{
public:
using Vector = EigenVector::RawVectorType;
using Matrix = EigenMatrix::RawMatrixType;
virtual ~EigenLinearSolverBase() = default;
//! Solves the linear equation system \f$ A x = b \f$ for \f$ x \f$.
virtual bool solve(Matrix &A, Vector const& b, Vector &x, EigenOption &opt) = 0;
};
/// Template class for Eigen direct linear solvers
template <class T_SOLVER>
class EigenDirectLinearSolver final : public EigenLinearSolverBase
bool solve(Matrix& A, Vector const& b, Vector& x, EigenOption& /*opt*/) override
if (!A.isCompressed()) A.makeCompressed();
_solver.compute(A);
if(_solver.info()!=Eigen::Success) {
ERR("Failed during Eigen linear solver initialization");
if(_solver.info()!=Eigen::Success) {
ERR("Failed during Eigen linear solve");
return true;
}
private:
T_SOLVER _solver;
};
/// Template class for Eigen iterative linear solvers
template <class T_SOLVER>
class EigenIterativeLinearSolver final : public EigenLinearSolverBase
bool solve(Matrix& A, Vector const& b, Vector& x, EigenOption& opt) override
{
INFO("-> solve");
_solver.setTolerance(opt.error_tolerance);
_solver.setMaxIterations(opt.max_iterations);
if (!A.isCompressed())
A.makeCompressed();
_solver.compute(A);
if(_solver.info()!=Eigen::Success) {
ERR("Failed during Eigen linear solver initialization");
x = _solver.solveWithGuess(b, x);
INFO("\t iteration: %d/%ld", _solver.iterations(), opt.max_iterations);
INFO("\t residual: %e\n", _solver.error());
if(_solver.info()!=Eigen::Success) {
return false;
return true;
}
private:
T_SOLVER _solver;
};
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
template <template <typename, typename> class Solver, typename Precon>
std::unique_ptr<EigenLinearSolverBase> createIterativeSolver()
{
using Slv = EigenIterativeLinearSolver<
Solver<EigenMatrix::RawMatrixType, Precon>>;
return std::unique_ptr<Slv>(new Slv);
}
template <template <typename, typename> class Solver>
std::unique_ptr<EigenLinearSolverBase> createIterativeSolver(
EigenOption::PreconType precon_type)
{
switch (precon_type) {
case EigenOption::PreconType::NONE:
return createIterativeSolver<Solver,
Eigen::IdentityPreconditioner>();
case EigenOption::PreconType::DIAGONAL:
return createIterativeSolver<
Solver, Eigen::DiagonalPreconditioner<double>>();
case EigenOption::PreconType::ILUT:
// TODO for this preconditioner further options can be passed.
// see https://eigen.tuxfamily.org/dox/classEigen_1_1IncompleteLUT.html
return createIterativeSolver<
Solver, Eigen::IncompleteLUT<double>>();
default:
OGS_FATAL("Invalid Eigen preconditioner type.");
}
}
template <typename Mat, typename Precon>
using EigenCGSolver = Eigen::ConjugateGradient<Mat, Eigen::Lower, Precon>;
std::unique_ptr<EigenLinearSolverBase> createIterativeSolver(
EigenOption::SolverType solver_type, EigenOption::PreconType precon_type)
{
switch (solver_type) {
case EigenOption::SolverType::BiCGSTAB: {
return createIterativeSolver<Eigen::BiCGSTAB>(precon_type);
}
case EigenOption::SolverType::CG: {
return createIterativeSolver<EigenCGSolver>(precon_type);
}
default:
OGS_FATAL("Invalid Eigen iterative linear solver type. Aborting.");
}
}
EigenLinearSolver::EigenLinearSolver(
const BaseLib::ConfigTree* const option)
using Matrix = EigenMatrix::RawMatrixType;
if (option)
setOption(*option);
// TODO for my taste it is much too unobvious that the default solver type
// currently is SparseLU.
switch (_option.solver_type) {
case EigenOption::SolverType::SparseLU: {
using SolverType =
Eigen::SparseLU<Matrix, Eigen::COLAMDOrdering<int>>;
_solver.reset(new details::EigenDirectLinearSolver<SolverType>);
return;
}
case EigenOption::SolverType::BiCGSTAB:
case EigenOption::SolverType::CG:
_solver = details::createIterativeSolver(_option.solver_type,
_option.precon_type);
return;
case EigenOption::SolverType::PardisoLU: {
#ifdef USE_MKL
using SolverType = Eigen::PardisoLU<EigenMatrix::RawMatrixType>;
_solver.reset(new details::EigenDirectLinearSolver<SolverType>);
return;
#else
OGS_FATAL(
"The code is not compiled with Intel MKL. Linear solver type "
"PardisoLU is not available.");
OGS_FATAL("Invalid Eigen linear solver type. Aborting.");
EigenLinearSolver::~EigenLinearSolver() = default;
void EigenLinearSolver::setOption(BaseLib::ConfigTree const& option)
ignoreOtherLinearSolvers(option, "eigen");
//! \ogs_file_param{linear_solver__eigen}
auto const ptSolver = option.getConfigSubtreeOptional("eigen");
if (!ptSolver)
return;
if (auto solver_type =
//! \ogs_file_param{linear_solver__eigen__solver_type}
ptSolver->getConfigParameterOptional<std::string>("solver_type")) {
_option.solver_type = _option.getSolverType(*solver_type);
}
if (auto precon_type =
//! \ogs_file_param{linear_solver__eigen__precon_type}
ptSolver->getConfigParameterOptional<std::string>("precon_type")) {
_option.precon_type = _option.getPreconType(*precon_type);
}
if (auto error_tolerance =
//! \ogs_file_param{linear_solver__eigen__error_tolerance}
ptSolver->getConfigParameterOptional<double>("error_tolerance")) {
_option.error_tolerance = *error_tolerance;
}
if (auto max_iteration_step =
//! \ogs_file_param{linear_solver__eigen__max_iteration_step}
ptSolver->getConfigParameterOptional<int>("max_iteration_step")) {
_option.max_iterations = *max_iteration_step;
}
#ifdef USE_EIGEN_UNSUPPORTED
if (auto scaling =
//! \ogs_file_param{linear_solver__eigen__scaling}
ptSolver->getConfigParameterOptional<int>("scaling")) {
_option.scaling = static_cast<bool>(*scaling);
}
#endif
bool EigenLinearSolver::solve(EigenMatrix &A, EigenVector& b, EigenVector &x)
{
INFO("------------------------------------------------------------------");
INFO("*** Eigen solver computation");
#ifdef USE_EIGEN_UNSUPPORTED
std::unique_ptr<Eigen::IterScaling<EigenMatrix::RawMatrixType>> scal;
if (_option.scaling)
{
INFO("-> scale");
scal.reset(new Eigen::IterScaling<EigenMatrix::RawMatrixType>());
scal->computeRef(A.getRawMatrix());
b.getRawVector() = scal->LeftScaling().cwiseProduct(b.getRawVector());
}
#endif
auto const success = _solver->solve(A.getRawMatrix(), b.getRawVector(),
x.getRawVector(), _option);
#ifdef USE_EIGEN_UNSUPPORTED
if (scal)
x.getRawVector() = scal->RightScaling().cwiseProduct(x.getRawVector());
#endif
INFO("------------------------------------------------------------------");
return success;