Skip to content
Snippets Groups Projects
Commit ed4b925e authored by Dmitri Naumov's avatar Dmitri Naumov
Browse files

Merge branch 'BHE_array_2D' into 'master'

Update the python script for the BHE Array 2D benchmark

See merge request ogs/ogs!3475
parents e245bab7 312fdf97
No related branches found
No related tags found
No related merge requests found
...@@ -50,12 +50,12 @@ In this model, the quad element was adopted to compose the mesh. The initial tem ...@@ -50,12 +50,12 @@ In this model, the quad element was adopted to compose the mesh. The initial tem
| Parameter | Symbol | Value | Unit | | Parameter | Symbol | Value | Unit |
| -------------------------------- |:------------ | -------------------:| ----------------:| | -------------------------------- |:------------ | -------------------:| ----------------:|
| Soil thermal conductivity | $\lambda$ | 1.720 | $Wm^{-1}K^{-1}$ | | Soil thermal conductivity | $\lambda$ | $2.0$ | $Wm^{-1}K^{-1}$ |
| Soil heat capacity | $\rho c$ | $2.925\times10^{6}$ | $J^{-3} mK^{-1}$ | | Soil heat capacity | $\rho c$ | $2.925\times10^{6}$ | $J^{-3} mK^{-1}$ |
| Ground thermal diffusivity | $\alpha$ | $5.7\times10^{-7}$ | $Wm^{-1}K^{-1}$ | | Ground thermal diffusivity | $\alpha$ | $5.7\times10^{-7}$ | $Wm^{-1}K^{-1}$ |
| Initial subsurface temperature | $T_0$ | 10 | $^{\circ}C$ | | Initial subsurface temperature | $T_0$ | $10$ | $^{\circ}C$ |
| Heat extraction rate of the BHE | $q$ | 35 | $W/m$ | | Heat extraction rate of the BHE | $q$ | $35$ | $W/m$ |
| Diameter of the BHE | $D$ | 0.15 | $m$ | | Diameter of the BHE | $D$ | $0.15$ | $m$ |
{{< img src="../BHE_array_benchmark_figures/figure_1.png" >}} {{< img src="../BHE_array_benchmark_figures/figure_1.png" >}}
...@@ -65,15 +65,19 @@ Different meshes were adopted to analyse the impact of mesh density on the numer ...@@ -65,15 +65,19 @@ Different meshes were adopted to analyse the impact of mesh density on the numer
\begin{equation} \begin{equation}
\begin{split} \begin{split}
\Delta = {\rm{ }}a{r_b}\ \hspace{6mm} \Delta = {\rm{ }}a{r_b},\ \hspace{6mm}
a = \left\{ \begin{array}{l}
4.81 \hspace{2mm} for\hspace{2mm} n=4\\
6.13 \hspace{2mm} for\hspace{2mm} n=6\\
6.16 \hspace{2mm} for\hspace{2mm} n=8
\end{array}\right.
\label{eq_4}
\end{split} \end{split}
\end{equation} \end{equation}
with
\begin{equation*}
a = 4.81 \hspace{2mm} for\hspace{2mm} n=4,
\end{equation*}
\begin{equation*}
a = 6.13 \hspace{2mm} for\hspace{2mm} n=6,
\end{equation*}
\begin{equation*}
a = 6.16 \hspace{2mm} for\hspace{2mm} n=8.
\end{equation*}
where $r_b$ is the BHE radius. n denotes the number of surrounding nodes. n = 8 is typical for a squared grid meshes. In this study, the BHE diameter is assumed to be 0.15 m. Based on equation (4) the optimal element size should be set to approximately 0.5 m. where $r_b$ is the BHE radius. n denotes the number of surrounding nodes. n = 8 is typical for a squared grid meshes. In this study, the BHE diameter is assumed to be 0.15 m. Based on equation (4) the optimal element size should be set to approximately 0.5 m.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment