Skip to content
Snippets Groups Projects
groundwater-flow-robin.pandoc 1.42 KiB
Newer Older
  • Learn to ignore specific revisions
  • +++
    date = "2017-02-15T11:46:49+01:00"
    title = "Groundwater Flow (Robin)"
    project = "Elliptic/line_1_GroundWaterFlow/line_1e1_robin_left_picard.prj"
    author = "Dmitri Naumov"
    
    
    [menu]
      [menu.benchmarks]
        parent = "elliptic"
    
    +++
    
    
    
    ## Equations
    
    We start with simple linear homogeneous elliptic problem:
    $$
    \begin{equation}
    k\; \Delta h = 0 \quad \text{in }\Omega
    \end{equation}$$
    w.r.t boundary conditions
    $$
    \eqalign{
    h(x) = g_D(x) &\quad \text{on }\Gamma_D,\cr
    k{\partial h(x) \over \partial n} = g_N(x) &\quad \text{on }\Gamma_N,
    }$$
    where $h$ could be hydraulic head, the subscripts $D$ and $N$ denote the Dirichlet- and Neumann-type boundary conditions, $n$ is the normal vector pointing outside of $\Omega$, and $\Gamma = \Gamma_D \cup \Gamma_N$ and $\Gamma_D \cap \Gamma_N = \emptyset$.
    
    ## Problem specification and analytical solution
    
    We solve the Laplace equation on a line domain $[0\times 1]^2$ with $k = 1$ w.r.t. the specific boundary conditions:
    
    $$
    \eqalign{
    h(x,y) = 1 &\quad \text{on } (x=0,y) \subset \Gamma_D,\cr
    h(x,y) = 1 &\quad \text{on } (x,y=0) \subset \Gamma_D,\cr
    k {\partial h(x,y) \over \partial n} = 1 &\quad \text{on } (x=1,y) \subset \Gamma_N,\cr
    k {\partial h(x,y) \over \partial n} = 0 &\quad \text{on } (x,y=1) \subset \Gamma_N.
    }$$
    
    The solution of this problem is
    $$
    \begin{equation}
    h(x,y) = 1 + \sum_{k=1}^\infty A_k \sin\bigg(C_k y\bigg) \sinh\bigg(C_k x\bigg),
    \end{equation}
    $$