Newer
Older
+++
date = "2017-12-29"
title = "StaggeredScheme"
weight = 151
project = "HydroMechanics/StaggeredScheme/InjectionProduction1D/InjectionProduction1D.prj"
author = "Wenqing Wang"
[menu]
[menu.benchmarks]
parent = "hydro-mechanics"
+++
{{< data-link >}}
---
# Consolidation example based on fluid injection and production application
{{< img src="../InjectionProduction.png" >}}

wenqing
committed
Based on one of the examples about injection and
production well that is present by Kim et al. \cite kimTchJua2011, this benchmark

wenqing
committed
is used to verify the staggered scheme, which
is implemented in OGS-6 for modelling of the coupled hydro-mechanical (HM)
processes in the porous media. The problem of the example is defined
in a 10 x 150 m <span class="math inline"><em></em><sup>2</sup></span>
domain (as shown in the figure). The deformation is solved under the plane strain
assumption. Initially, the pore pressure and the

wenqing
committed
stress are set to zero. On all boundaries no fluid flux condition is
applied for the hydraulic process. On the lateral
and the bottom boundaries, zero normal displacement is prescribed. On
the top surface a vertical traction boundary condition of 2.125 MP is
applied. The gravity related terms are neglected in both: the Darcy velocity
and the momentum balance equation.
The material properties are shown in the following table.
<table>

wenqing
committed
<caption>Material properties</caption>
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
<thead>
<tr class="header">
<th align="left">Property</th>
<th align="left">Value</th>
<th align="left">Unit</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">Water density</td>
<td align="left">1,000</td>
<td align="left">kg/m<span class="math inline"><em></em><sup>3</sup></span></td>
</tr>
<tr class="even">
<td align="left">Porosity</td>
<td align="left">0.3</td>
<td align="left">–</td>
</tr>
<tr class="odd">
<td align="left">Viscosity</td>
<td align="left"><span class="math inline">10<sup>−3</sup></span></td>
<td align="left">Pa<span class="math inline">⋅</span>s</td>
</tr>
<tr class="even">
<td align="left">Specific storage</td>
<td align="left"><span class="math inline">10<sup>−4</sup></span></td>
<td align="left">m <span class="math inline"><em></em><sup>−1</sup></span></td>
</tr>
<tr class="odd">
<td align="left">Intrinsic permeability</td>
<td align="left"><span class="math inline">4.9346165<em>e</em> × 10<sup>−11</sup></span></td>
<td align="left">m<span class="math inline"><em></em><sup>2</sup></span></td>
</tr>
<tr class="even">
<td align="left">Young’s modulus</td>
<td align="left"><span class="math inline">5 × 10<sup>8</sup></span></td>
<td align="left">Pa</td>
</tr>
<tr class="odd">

wenqing
committed
<td align="left">Poisson ratio</td>
<td align="left">0.3</td>
<td align="left">–</td>
</tr>
</tbody>
</table>

wenqing
committed
The time duration is 8.64 <span class="math inline">⋅10<sup>6</sup></span> s,
and the time step size is 8.64 <span class="math inline">⋅10<sup>4</sup></span> s.

wenqing
committed
For the verification the example is also solved by the monolithic
scheme. The displacement solution at the last