Forked from
ogs / ogs
15570 commits behind the upstream repository.
-
Christoph Lehmann authoredChristoph Lehmann authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
TimeDiscretizedODESystem.cpp 8.04 KiB
/**
* \copyright
* Copyright (c) 2012-2018, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include "TimeDiscretizedODESystem.h"
#include "MathLib/LinAlg/ApplyKnownSolution.h"
#include "MathLib/LinAlg/UnifiedMatrixSetters.h"
#include "NumLib/IndexValueVector.h"
namespace detail
{
//! Applies known solutions to the solution vector \c x.
template <typename Solutions, typename Vector>
void applyKnownSolutions(std::vector<Solutions> const* const known_solutions,
Vector& x)
{
if (!known_solutions)
return;
for (auto const& bc : *known_solutions)
{
for (std::size_t i = 0; i < bc.ids.size(); ++i)
{
// TODO that might have bad performance for some Vector types, e.g.,
// PETSc.
MathLib::setVector(x, bc.ids[i], bc.values[i]);
}
}
MathLib::LinAlg::finalizeAssembly(x);
}
} // namespace detail
namespace NumLib
{
TimeDiscretizedODESystem<ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Newton>::
TimeDiscretizedODESystem(const int process_id, ODE& ode,
TimeDisc& time_discretization)
: _ode(ode),
_time_disc(time_discretization),
_mat_trans(createMatrixTranslator<ODETag>(time_discretization))
{
_Jac = &NumLib::GlobalMatrixProvider::provider.getMatrix(
_ode.getMatrixSpecifications(process_id), _Jac_id);
_M = &NumLib::GlobalMatrixProvider::provider.getMatrix(
_ode.getMatrixSpecifications(process_id), _M_id);
_K = &NumLib::GlobalMatrixProvider::provider.getMatrix(
_ode.getMatrixSpecifications(process_id), _K_id);
_b = &NumLib::GlobalVectorProvider::provider.getVector(
_ode.getMatrixSpecifications(process_id), _b_id);
}
TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Newton>::~TimeDiscretizedODESystem()
{
NumLib::GlobalMatrixProvider::provider.releaseMatrix(*_Jac);
NumLib::GlobalMatrixProvider::provider.releaseMatrix(*_M);
NumLib::GlobalMatrixProvider::provider.releaseMatrix(*_K);
NumLib::GlobalVectorProvider::provider.releaseVector(*_b);
}
void TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Newton>::assemble(const GlobalVector& x_new_timestep)
{
namespace LinAlg = MathLib::LinAlg;
auto const t = _time_disc.getCurrentTime();
auto const& x_curr = _time_disc.getCurrentX(x_new_timestep);
auto const dxdot_dx = _time_disc.getNewXWeight();
auto const dx_dx = _time_disc.getDxDx();
auto& xdot = NumLib::GlobalVectorProvider::provider.getVector(_xdot_id);
_time_disc.getXdot(x_new_timestep, xdot);
_M->setZero();
_K->setZero();
_b->setZero();
_Jac->setZero();
_ode.preAssemble(t, x_curr);
_ode.assembleWithJacobian(t, x_curr, xdot, dxdot_dx, dx_dx, *_M, *_K, *_b,
*_Jac);
LinAlg::finalizeAssembly(*_M);
LinAlg::finalizeAssembly(*_K);
LinAlg::finalizeAssembly(*_b);
MathLib::LinAlg::finalizeAssembly(*_Jac);
NumLib::GlobalVectorProvider::provider.releaseVector(xdot);
}
void TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Newton>::getResidual(GlobalVector const& x_new_timestep,
GlobalVector& res) const
{
// TODO Maybe the duplicate calculation of xdot here and in assembleJacobian
// can be optimuized. However, that would make the interface a bit more
// fragile.
auto& xdot = NumLib::GlobalVectorProvider::provider.getVector(_xdot_id);
_time_disc.getXdot(x_new_timestep, xdot);
_mat_trans->computeResidual(*_M, *_K, *_b, x_new_timestep, xdot, res);
NumLib::GlobalVectorProvider::provider.releaseVector(xdot);
}
void TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Newton>::getJacobian(GlobalMatrix& Jac) const
{
_mat_trans->computeJacobian(*_Jac, Jac);
}
void TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Newton>::applyKnownSolutions(GlobalVector& x) const
{
::detail::applyKnownSolutions(
_ode.getKnownSolutions(_time_disc.getCurrentTime(), x), x);
}
void TimeDiscretizedODESystem<ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Newton>::
applyKnownSolutionsNewton(GlobalMatrix& Jac, GlobalVector& res,
GlobalVector& minus_delta_x, GlobalVector& x)
{
auto const* known_solutions =
_ode.getKnownSolutions(_time_disc.getCurrentTime(), x);
if (!known_solutions || known_solutions->empty())
return;
using IndexType = MathLib::MatrixVectorTraits<GlobalMatrix>::Index;
std::vector<IndexType> ids;
for (auto const& bc : *known_solutions)
{
std::copy(bc.ids.cbegin(), bc.ids.cend(), std::back_inserter(ids));
}
// For the Newton method the values must be zero
std::vector<double> values(ids.size(), 0);
MathLib::applyKnownSolution(Jac, res, minus_delta_x, ids, values);
::detail::applyKnownSolutions(known_solutions, x);
}
TimeDiscretizedODESystem<ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Picard>::
TimeDiscretizedODESystem(const int process_id, ODE& ode,
TimeDisc& time_discretization)
: _ode(ode),
_time_disc(time_discretization),
_mat_trans(createMatrixTranslator<ODETag>(time_discretization))
{
_M = &NumLib::GlobalMatrixProvider::provider.getMatrix(
ode.getMatrixSpecifications(process_id), _M_id);
_K = &NumLib::GlobalMatrixProvider::provider.getMatrix(
ode.getMatrixSpecifications(process_id), _K_id);
_b = &NumLib::GlobalVectorProvider::provider.getVector(
ode.getMatrixSpecifications(process_id), _b_id);
}
TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Picard>::~TimeDiscretizedODESystem()
{
NumLib::GlobalMatrixProvider::provider.releaseMatrix(*_M);
NumLib::GlobalMatrixProvider::provider.releaseMatrix(*_K);
NumLib::GlobalVectorProvider::provider.releaseVector(*_b);
}
void TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Picard>::assemble(const GlobalVector& x_new_timestep)
{
namespace LinAlg = MathLib::LinAlg;
auto const t = _time_disc.getCurrentTime();
auto const& x_curr = _time_disc.getCurrentX(x_new_timestep);
_M->setZero();
_K->setZero();
_b->setZero();
_ode.preAssemble(t, x_curr);
_ode.assemble(t, x_curr, *_M, *_K, *_b);
LinAlg::finalizeAssembly(*_M);
LinAlg::finalizeAssembly(*_K);
LinAlg::finalizeAssembly(*_b);
}
void TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Picard>::applyKnownSolutions(GlobalVector& x) const
{
::detail::applyKnownSolutions(
_ode.getKnownSolutions(_time_disc.getCurrentTime(), x), x);
}
void TimeDiscretizedODESystem<
ODESystemTag::FirstOrderImplicitQuasilinear,
NonlinearSolverTag::Picard>::applyKnownSolutionsPicard(GlobalMatrix& A,
GlobalVector& rhs,
GlobalVector& x)
{
auto const* known_solutions =
_ode.getKnownSolutions(_time_disc.getCurrentTime(), x);
if (known_solutions)
{
using IndexType = MathLib::MatrixVectorTraits<GlobalMatrix>::Index;
std::vector<IndexType> ids;
std::vector<double> values;
for (auto const& bc : *known_solutions)
{
std::copy(bc.ids.cbegin(), bc.ids.cend(), std::back_inserter(ids));
std::copy(bc.values.cbegin(), bc.values.cend(),
std::back_inserter(values));
}
MathLib::applyKnownSolution(A, rhs, x, ids, values);
}
}
} // namespace NumLib