Skip to content
Snippets Groups Projects
Commit 620e2f68 authored by wenqing's avatar wenqing
Browse files

[Web] Added a documentation about BGRa creep model

parent 2af83061
No related branches found
No related tags found
No related merge requests found
+++
date = "2018-07-19T15:15:45+01:00"
title = "BGRa creep model"
weight = 171
project = "ThermoMechanics/CreepBGRa/SimpleAxisymmetricCreep/SimpleAxisymmetricCreepWithAnalyticSolution.prj"
author = "Wenqing Wang"
[menu]
[menu.benchmarks]
parent = "thermo-mechanics"
+++
{{< data-link >}}
The BGRa stationary creep model defines the uniaxial creep strain
increment as
$$\Delta{ \epsilon}^c=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m \Delta t
$$
where $A$, $m$ and $Q$ are parameters determined
by experiments, $Q$ is called activation energy,
$R_u=8.314472 \mbox{J/(Kmol)}$ is the universal gas constant, and
${ \sigma}_f$ is a stress scaling factor.
Creep potential and creep strain
================================
Assume there is a creep potential $g^c$ and the creep induced strain
rate is given by the flow rule
$$\dot { \mathbf \epsilon}^c ({ \sigma})= \frac{2}{3}{\dfrac{\partial g^c}{\partial { \mathbf \sigma}}}
$$ where ${ \sigma}$ is the equivalence stress
defined by
${ \sigma}={\sqrt{{\frac{3}{2}}}}{\left\Vert{\mathbf s}\right\Vert}$
with ${\mathbf s}= { \mathbf \sigma}-\frac{1}{3}{ \sigma}{\mathbf I}$,
the deviatoric stress. The creep strain rate is then expressed as
$$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma})= \frac{2}{3} {\dfrac{\partial g^c}{\partial { \sigma}}}{\dfrac{\partial { \sigma}}{\partial { \mathbf \sigma}}}=\sqrt{{\frac{2}{3}}}{\dfrac{\partial g^c}{\partial { \sigma}}}\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}={\dfrac{\partial g^c}{\partial { \sigma}}}\dfrac{{\mathbf s}}{\sigma}
\end{gathered}$$
The above creep strain rate expression
must be valid for the problems with different dimension. Applying
the creep rate equation to one dimensional leads to
$$\begin{gathered}
\dot { \epsilon}^c = {\dfrac{\partial g^c}{\partial { \sigma}}}{\color{red} {\frac{2}{3}}}=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m
\end{gathered}$$ which says
$$\begin{gathered}
{\dfrac{\partial g^c}{\partial { \sigma}}}={\color{red}{\frac{3}{2}}}Ae^{-Q/R_u T}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m
\end{gathered}$$
Therefore, the creep strain rate for multi-dimensional problems can be
derived as $$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma})={\color{red} {\sqrt{\frac{3}{2}}}}Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
\end{gathered}$$
Stress integration
==================
The above creep strain rate expression can be simplified as $$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma}) = b {\left\Vert{\mathbf s}\right\Vert}^{m-1} {\mathbf s}
\end{gathered}$$
with
$$b={\left(\dfrac{3}{2}\right)^{(m+1)/2}} \dfrac{Ae^{-Q/R_uT}}{{{ \sigma}_f}^m}$$
The strain rate under creeping condition can be expressed as
$$\begin{gathered}
\dot { \mathbf \epsilon}= \dot { \mathbf \epsilon}^e + \dot { \mathbf \epsilon}^c
\end{gathered}$$ Due to Hook’s law, the stress rate is
given by
$$\begin{gathered}
\dot { \mathbf \sigma}= \mathbf{C} \dot { \mathbf \epsilon}^e = \mathbf{C} (\dot { \mathbf \epsilon}- \dot { \mathbf \epsilon}^c)
\end{gathered}$$
where
$\mathbf{C}:= \lambda \mathcal{J} + 2G \mathbf I \otimes \mathbf I $
with $\mathcal{J}$ the forth order identity, $\mathbf I$ the second order identity,
$\lambda$ the Lame constant, $G$ the shear module, and $\otimes$ the tensor
product notation.
is a forth order tensor. Substituting equation and the expression of $C$
into the stress rate expression, equation , we have
$$\begin{gathered}
\dot { \mathbf \sigma}= \mathbf{C} \dot { \mathbf \epsilon}- 2bG {\left\Vert{\mathbf s}\right\Vert}^{m-1}
{\mathbf s}
\end{gathered}$$
The stress of the present time step, $n+1$, is then can be expressed as
$$\begin{gathered}
{ \mathbf \sigma}^{n+1} = { \mathbf \sigma}^{n} + \mathbf{C} \Delta { \mathbf \epsilon}-
2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} {\mathbf s}^{n+1}
\end{gathered}$$
To solve the stress, the
Newton-Raphson is applied to .
Let $$\begin{gathered}
\mathbf{r}= { \mathbf \sigma}^{n+1} -
{ \mathbf \sigma}^{n} - \mathbf{C} \Delta
{ \mathbf \epsilon}+ 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
{\mathbf s}^{n+1}
\end{gathered}$$
be the residual. The Jacobian
of is derived as
$$\begin{gathered}
\mathbf{J}_{{ \mathbf \sigma}}= {\dfrac{\partial \mathbf{r}}{\partial { \mathbf \sigma}^{n+1}}} = \mathcal{I} + 2bG\Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
\left(\mathcal{I} - \frac{1}{3} \mathbf{I} \otimes \mathbf{I} + (m-1){\left\Vert{\mathbf s}^{n+1}\right\Vert}^{-2} {\mathbf s}^{n+1}\otimes {\mathbf s}^{n+1}\right)
\end{gathered}$$
Consistent tangent
==================
Once the converged stress integration is obtained, the tangential of
stress with respect to strain can be obtained straightforwardly by
applying the partial derivative to equation with respect to strain
increment as
$$\begin{aligned}
{\dfrac{\partial { \mathbf \sigma}^{n+1}}{\partial \Delta { \mathbf \epsilon}}} = \mathbf{C} - {\dfrac{\partial \left(2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} {\mathbf s}^{n+1}\right)}{\partial \Delta { \mathbf \epsilon}}}
\end{aligned}$$
We see that $$\begin{aligned}
{\dfrac{\partial { \mathbf \sigma}^{n+1}}{\partial { \mathbf \epsilon}^{n+1}}} = \mathbf{J}_{{ \mathbf \sigma}}^{-1} \mathbf{C}
\end{aligned}$$
If the model is used for the thermo-mechanical problems and the problems
are solved by the monolithic scheme, the displacement-temperature block
of the global Jacobian can be derived as
$$\begin{aligned}
- 2G\dfrac{Q}{R} {{\int}_{\Omega} \dfrac{b}{T^2} {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} \mathbf{B}^T {\mathbf s}^{n+1} \mathrm{d} \Omega}
\end{aligned}$$
*Note*: The above rate form of stress integration is implemented in ogs6.
Alternatively, one can use a absolute stress integration form, which can be found in the attached
[PDF](../doku_BGRa.pdf).
Example
=======
We verify the scheme by a one dimensional extension with constant
pressure of ${ \sigma}_0=5 ~\mbox{MPa}$. The values of the parameters are
given as $A=0.18 \mbox{d}^{-1}$, $m=5$, $Q=54 ~\mbox{kJ/mol}$,
$E=25000 ~\mbox{MPa}$, and the temperature is constant everywhere of
100 $^{\circ}\mbox{C}$. The analytical solution of the strain is given
straightforward as
$$\begin{gathered}
{ \epsilon}=-\dfrac{{ \sigma}_0}{E}-Ae^{-Q/RT}{ \sigma}_0^m t
\end{gathered}$$
The comparison of the results
obtained by the present multidimensional scheme with the analytical
solution is shown in the following figure:
{{< img src="../bgra0.png" >}}
web/content/docs/benchmarks/CreepBGRa/bgra0.png

129 B

File added
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment