Skip to content
Snippets Groups Projects
GeometricBasics.cpp 9.89 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright (c) 2012-2021, OpenGeoSys Community (http://www.opengeosys.org)
    
     *            Distributed under a Modified BSD License.
     *              See accompanying file LICENSE.txt or
     *              http://www.opengeosys.org/project/license
     */
    
    
    #include "BaseLib/Logging.h"
    
    #include "GeometricBasics.h"
    
    
    double orientation3d(MathLib::Point3d const& p,
                         MathLib::Point3d const& a,
                         MathLib::Point3d const& b,
                         MathLib::Point3d const& c)
    {
    
        auto const pp = Eigen::Map<Eigen::Vector3d const>(p.getCoords());
        auto const pa = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
        auto const pb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
        auto const pc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
    
    
        Eigen::Vector3d const u = pp - pa;
        Eigen::Vector3d const v = pp - pb;
        Eigen::Vector3d const w = pp - pc;
        return u.cross(v).dot(w);
    
    double calcTetrahedronVolume(MathLib::Point3d const& a,
                                 MathLib::Point3d const& b,
                                 MathLib::Point3d const& c,
                                 MathLib::Point3d const& d)
    {
    
        auto const va = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
        auto const vb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
        auto const vc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
        auto const vd = Eigen::Map<Eigen::Vector3d const>(d.getCoords());
    
        Eigen::Vector3d const w = vb - va;
        Eigen::Vector3d const u = vc - va;
        Eigen::Vector3d const v = vd - va;
        return std::abs(u.cross(v).dot(w)) / 6.0;
    
    double calcTriangleArea(MathLib::Point3d const& a, MathLib::Point3d const& b,
                            MathLib::Point3d const& c)
    {
    
        auto const va = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
        auto const vb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
        auto const vc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
        Eigen::Vector3d const u = vc - va;
        Eigen::Vector3d const v = vb - va;
        Eigen::Vector3d const w = u.cross(v);
        return 0.5 * w.norm();
    
    bool isPointInTetrahedron(MathLib::Point3d const& p, MathLib::Point3d const& a,
                              MathLib::Point3d const& b, MathLib::Point3d const& c,
                              MathLib::Point3d const& d, double eps)
    {
        double const d0 (MathLib::orientation3d(d,a,b,c));
        // if tetrahedron is not coplanar
        if (std::abs(d0) > std::numeric_limits<double>::epsilon())
        {
            bool const d0_sign (d0>0);
            // if p is on the same side of bcd as a
            double const d1 (MathLib::orientation3d(d, p, b, c));
    
            if (!(d0_sign == (d1 >= 0) || std::abs(d1) < eps))
            {
    
            // if p is on the same side of acd as b
            double const d2 (MathLib::orientation3d(d, a, p, c));
    
            if (!(d0_sign == (d2 >= 0) || std::abs(d2) < eps))
            {
    
            // if p is on the same side of abd as c
            double const d3 (MathLib::orientation3d(d, a, b, p));
    
            if (!(d0_sign == (d3 >= 0) || std::abs(d3) < eps))
            {
    
            // if p is on the same side of abc as d
            double const d4 (MathLib::orientation3d(p, a, b, c));
    
            return d0_sign == (d4 >= 0) || std::abs(d4) < eps;
    
    bool isPointInTriangle(MathLib::Point3d const& p,
                           MathLib::Point3d const& a,
                           MathLib::Point3d const& b,
                           MathLib::Point3d const& c,
                           double eps_pnt_out_of_plane,
                           double eps_pnt_out_of_tri,
                           MathLib::TriangleTest algorithm)
    {
        switch (algorithm)
        {
            case MathLib::GAUSS:
                return gaussPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
                                            eps_pnt_out_of_tri);
            case MathLib::BARYCENTRIC:
                return barycentricPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
                                                  eps_pnt_out_of_tri);
            default:
                ERR("Selected algorithm for point in triangle testing not found, "
                    "falling back on default.");
        }
        return gaussPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
                                    eps_pnt_out_of_tri);
    }
    
    bool gaussPointInTriangle(MathLib::Point3d const& q,
                              MathLib::Point3d const& a,
                              MathLib::Point3d const& b,
                              MathLib::Point3d const& c,
                              double eps_pnt_out_of_plane,
                              double eps_pnt_out_of_tri)
    {
    
        auto const pa = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
        auto const pb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
        auto const pc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
        Eigen::Vector3d const v = pb - pa;
        Eigen::Vector3d const w = pc - pa;
    
        mat(0, 0) = v.squaredNorm();
    
        mat(0, 1) = v[0] * w[0] + v[1] * w[1] + v[2] * w[2];
        mat(1, 0) = mat(0, 1);
    
        mat(1, 1) = w.squaredNorm();
        Eigen::Vector2d y(
            v[0] * (q[0] - a[0]) + v[1] * (q[1] - a[1]) + v[2] * (q[2] - a[2]),
            w[0] * (q[0] - a[0]) + w[1] * (q[1] - a[1]) + w[2] * (q[2] - a[2]));
    
        y = mat.partialPivLu().solve(y);
    
    
        const double lower(eps_pnt_out_of_tri);
        const double upper(1 + lower);
    
        if (-lower <= y[0] && y[0] <= upper && -lower <= y[1] && y[1] <= upper &&
            y[0] + y[1] <= upper)
        {
            MathLib::Point3d const q_projected(std::array<double, 3>{
                {a[0] + y[0] * v[0] + y[1] * w[0], a[1] + y[0] * v[1] + y[1] * w[1],
                 a[2] + y[0] * v[2] + y[1] * w[2]}});
            if (MathLib::sqrDist(q, q_projected) <= eps_pnt_out_of_plane)
    
        }
    
        return false;
    }
    
    bool barycentricPointInTriangle(MathLib::Point3d const& p,
                                    MathLib::Point3d const& a,
                                    MathLib::Point3d const& b,
                                    MathLib::Point3d const& c,
                                    double eps_pnt_out_of_plane,
                                    double eps_pnt_out_of_tri)
    {
        if (std::abs(MathLib::orientation3d(p, a, b, c)) > eps_pnt_out_of_plane)
    
        auto const vp = Eigen::Map<Eigen::Vector3d const>(p.getCoords());
        auto const va = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
        auto const vb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
        auto const vc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
        Eigen::Vector3d const pa = va - vp;
        Eigen::Vector3d const pb = vb - vp;
        Eigen::Vector3d const pc = vc - vp;
    
        double const area_x_2(calcTriangleArea(a, b, c) * 2);
    
    
        double const alpha((pb.cross(pc).norm()) / area_x_2);
    
        if (alpha < -eps_pnt_out_of_tri || alpha > 1 + eps_pnt_out_of_tri)
    
        double const beta((pc.cross(pa).norm()) / area_x_2);
    
        if (beta < -eps_pnt_out_of_tri || beta > 1 + eps_pnt_out_of_tri)
    
        double const gamma(1 - alpha - beta);
    
        return !(gamma < -eps_pnt_out_of_tri || gamma > 1 + eps_pnt_out_of_tri);
    
    bool isPointInTriangleXY(MathLib::Point3d const& p,
                             MathLib::Point3d const& a,
                             MathLib::Point3d const& b,
                             MathLib::Point3d const& c)
    {
        // criterion: p-a = u0 * (b-a) + u1 * (c-a); 0 <= u0, u1 <= 1, u0+u1 <= 1
    
        mat(0, 0) = b[0] - a[0];
        mat(0, 1) = c[0] - a[0];
        mat(1, 0) = b[1] - a[1];
        mat(1, 1) = c[1] - a[1];
    
        Eigen::Vector2d y;
        y << p[0] - a[0], p[1] - a[1];
    
        y = mat.partialPivLu().solve(y);
    
    
        // check if u0 and u1 fulfills the condition
    
        return 0 <= y[0] && y[0] <= 1 && 0 <= y[1] && y[1] <= 1 && y[0] + y[1] <= 1;
    
    bool dividedByPlane(const MathLib::Point3d& a, const MathLib::Point3d& b,
                        const MathLib::Point3d& c, const MathLib::Point3d& d)
    {
        for (unsigned x = 0; x < 3; ++x)
        {
            const unsigned y = (x + 1) % 3;
            const double abc =
                (b[x] - a[x]) * (c[y] - a[y]) - (b[y] - a[y]) * (c[x] - a[x]);
            const double abd =
                (b[x] - a[x]) * (d[y] - a[y]) - (b[y] - a[y]) * (d[x] - a[x]);
    
            if ((abc > 0 && abd < 0) || (abc < 0 && abd > 0))
    
        }
        return false;
    }
    
    bool isCoplanar(const MathLib::Point3d& a, const MathLib::Point3d& b,
                    const MathLib::Point3d& c, const MathLib::Point3d& d)
    {
    
        auto const pa = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
        auto const pb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
        auto const pc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
        auto const pd = Eigen::Map<Eigen::Vector3d const>(d.getCoords());
    
        Eigen::Vector3d const ab = pb - pa;
        Eigen::Vector3d const ac = pc - pa;
        Eigen::Vector3d const ad = pd - pa;
    
        auto const eps_squared =
            std::pow(std::numeric_limits<double>::epsilon(), 2);
        if (ab.squaredNorm() < eps_squared || ac.squaredNorm() < eps_squared ||
            ad.squaredNorm() < eps_squared)
    
        {
            return true;
        }
    
        // In exact arithmetic <ac*ad^T, ab> should be zero
        // if all four points are coplanar.
    
        const double sqr_scalar_triple(std::pow(ac.cross(ad).dot(ab), 2));
    
        // Due to evaluating the above numerically some cancellation or rounding
        // can occur. For this reason a normalisation factor is introduced.
        const double normalisation_factor =
    
            (ab.squaredNorm() * ac.squaredNorm() * ad.squaredNorm());
    
    
        // tolerance 1e-11 is choosen such that
        // a = (0,0,0), b=(1,0,0), c=(0,1,0) and d=(1,1,1e-6) are considered as
        // coplanar
        // a = (0,0,0), b=(1,0,0), c=(0,1,0) and d=(1,1,1e-5) are considered as not
        // coplanar
        return (sqr_scalar_triple / normalisation_factor < 1e-11);
    }
    
    
    }  // end namespace MathLib