Forked from
ogs / ogs
27338 commits behind the upstream repository.
-
Tom Fischer authoredTom Fischer authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
MathTools.cpp 2.28 KiB
/*
* MathTools.cpp
*
* Created on: Jan 13, 2010
* Author: TF
*/
#include "MathTools.h"
namespace MathLib {
#ifdef _OPENMP
double scpr(double const * const v, double const * const w, unsigned n,
unsigned num_of_threads)
{
long double res (0.0);
unsigned k;
#pragma omp parallel
{
#pragma omp parallel for reduction (+:res)
for (k = 0; k<n; k++) {
res += v[k] * w[k];
}
}
return res;
}
#endif
void crossProd(const double u[3], const double v[3], double r[3])
{
r[0] = u[1] * v[2] - u[2] * v[1];
r[1] = u[2] * v[0] - u[0] * v[2];
r[2] = u[0] * v[1] - u[1] * v[0];
}
double calcProjPntToLineAndDists(const double p[3], const double a[3],
const double b[3], double &lambda, double &d0)
{
// g (lambda) = a + lambda v, v = b-a
double v[3] = {b[0] - a[0], b[1] - a[1], b[2] - a[2]};
// orthogonal projection: (g(lambda)-p) * v = 0 => in order to compute lambda we define a help vector u
double u[3] = {p[0] - a[0], p[1] - a[1], p[2] - a[2]};
lambda = scpr (u, v, 3) / scpr (v, v, 3);
// compute projected point
double proj_pnt[3];
for (size_t k(0); k<3; k++) proj_pnt[k] = a[k] + lambda * v[k];
d0 = sqrt (sqrDist (proj_pnt, a));
return sqrt (sqrDist (p, proj_pnt));
}
double sqrNrm2 (const GEOLIB::Point* p0)
{
return scpr (p0->getData(), p0->getData(), 3);
}
double sqrDist (const GEOLIB::Point* p0, const GEOLIB::Point* p1)
{
const double v[3] = {(*p1)[0] - (*p0)[0], (*p1)[1] - (*p0)[1], (*p1)[2] - (*p0)[2]};
return scpr (v, v, 3);
}
double sqrDist(const double* p0, const double* p1)
{
const double v[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
return scpr (v, v, 3);
}
bool checkDistance(GEOLIB::Point const &p0, GEOLIB::Point const &p1, double squaredDistance)
{
return (sqrDist(&p0, &p1) < squaredDistance);
}
float normalize(float min, float max, float val)
{
return ((val-min)/static_cast<float>(max-min));
}
double getAngle (const double p0[3], const double p1[3], const double p2[3])
{
const double v0[3] = {p0[0]-p1[0], p0[1]-p1[1], p0[2]-p1[2]};
const double v1[3] = {p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2]};
// apply Cauchy Schwarz inequality
return acos (scpr (v0,v1,3) / (sqrt(scpr(v0,v0,3)) * sqrt(scpr (v1,v1,3))));
}
} // namespace